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INVERSE CHAOS SYNCHRONIZATION IN THE MULTI-FEEDBACK IKEDA MODEL
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We investigate inverse synchronization between two uni-directionally coupled chaotic multi-feedback Ikeda systems and find both the
existence and stability conditions for anticipating, lag, and complete synchronizations.
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1. INTRODUCTION

Recently chaos synchronization [1] in coupled systems
have been extensively studied in the context of laser
dynamics, electronic circuits, chemical and biological
systems, etc. [2]. This phenomenon can be applicable in
secure communication, optimization of nonlinear system
performance, pattern recognition phenomena, species
population control, etc., see e.g. [2] and references there in.

Finite signal transmission times, memory effects make
systems with a single and multiple delays ubiquitous in
nature and technology [3]. Dynamics of multi-feedback
systems are representative examples of the multi-delay
systems. Therefore, the study of synchronization phenomena
in time-delayed systems is of high practical importance.
Prominent examples of such dynamics can be found in
biological and biomedical systems, laser physics, integrated
communications [3]. In laser physics such a situation arises in
lasers subject to two or more optical or electro-optical
feedback. Second optical feedback could be useful to
stabilize laser intensity [4]. Chaotic behavior of laser systems
with two optical feedback mechanisms is studied in recent
works [5]. Chaos synchronization between the uni-
directionally coupled continuous multi-feedback systems is
investigated in [6].

Recently in [7] we reported a type of synchronization:
inverse anticipating synchronization, where a time-delayed
chaotic system X drives another system Y in such a way that a
driven system anticipates the driver by synchronizing to its
inverse future state: X(t)=-y,=y(t-7) or equivalently y(t)=-x(t+7)
with 7>0. In [7] we focused our attention on cases when a
driving system contains a single delay time.

In this paper for the first time we investigate inverse
synchronization between two uni-directionally coupled
chaotic multi-feedback Ikeda systems and find both the

existence and  stability conditions for  different
synchronization  regimes (retarded, complete, and
anticipating).

2. SYNCHRONIZATION BETWEEN THE MULTI-
FEEDBACK IKEDA SYSTEMS

Consider inverse synchronization between the multi-
feedback Ikeda systems,

dx . .
—=—a X+M;SINX_ + M,SINX__ , )
dt I 2

dy_ m, sin m, sin Ksin 2
E__OH sSiny, +m,siny_ +Ksinx_ ()

with positive ¢, and —-m1,2,3,4.

This investigation is of considerable practical importance,
as the equations of the class B lasers with feedback (typical
representatives of class B are solid-state, semiconductor, and
low pressure CO?2 lasers [8]) can be reduced to an equation of
the Tkeda type [9].

The Ikeda model was introduced to describe the dynamics
of an optical bi-stable resonator, plays an important role in
electronics and physiological studies and is well-known for
delay-induced chaotic behavior [10-11], see also e.g. [12].
Physically x is the phase lag of the electric field across the
resonator; « is the relaxation coefficient for the driving X and
driven y dynamical variables; m;, and ms,4 are the laser
intensities injected into the driving and driven systems,
respectively. 7, are the feedback delay times in the coupled
systems; 73 is the coupling delay time between systems X and
y; K is the coupling rate between the driver X and the
response system Y.

We find that systems (1) and (2) can be synchronized on
the synchronization manifold

y=-X,_, 3)

as the error signal A:_erf +y for small A under the

1
condition

m+K=m,, m,=m, 4

obey the following dynamics

dA
m =-aA+mA, cosx, +M,A_cosX ., . (5

It is obvious that 4=0 is a solution of system (5). We
notice that for 3>7, =11, and »<

71 (3) is the inverse retarded, complete and anticipating
synchronization manifold [12], respectively. To study the

stability of the synchronization manifold y = -x___ one

can use the Krasovskii-Lyapunov functional approach.
According to [3], the sufficient stability condition for the
trivial solution 4=0 of time-delayed equation
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dA

v —T(H)A+s,(1)A, +5,(1)A,
is: F(t)> s, ()] +|s, (1))

Thus, we obtain that the sufficient stability condition for
the synchronization manifold y = “Xpn (3) can be written
as:

a > |m;|+|m,|. (©6)

As Eq.(5) is valid for small A stability condition (6) found
above holds locally. Conditions (4) are the existence

Analogously we find that y = —X is the synchronization

73772
manifold between systems (1) and (2) with the existence
m,+K=m,; and m=m; and stability conditions
o> |y + |m,).

We notice that in the case of drivers with several feedback
mechanisms synchronization manifold's stability condition
requires larger value for the relaxation coefficient in
comparison with the case of single feedback.

One can generalize the previous results to n- tuple
feedback lkeda systems. Applying the error dynamics
approach to synchronization between the following Ikeda
models

conditions for the synchronization manifold (3) between uni- dx _ : . -
directionally coupled multi-feedback systems (1) and (2). | E = X+ My, SINX, +My, SINX, A+ 4+M,, SINX
(7
dy . . . .
i —ay+m,, siny, +m, siny_ +---+m_ siny_ +ksinx,_, (8)

we find that the existence and sufficient stability conditions e.g. for [ existence and stability conditions for inverse anticipating, lag,

the synchronization manifold y = X o arer My, + k= my,

My =M, and a > ‘mly‘ +‘m2y‘ +- --+‘mny , respectively.
For the synchronization manifold y=—X, .
m, +k= m,, and M, =m, are the existence
conditions, and «a > ‘mly‘ +‘m2y‘ +- --+‘mny is the
sufficient stability condition.

3. CONCLUSIONS

For the first time we have investigated inverse

synchronization between two uni-directionally coupled
chaotic multi-feedback lkeda systems and find both the

and complete synchronization regimes. We established that in
general compared to the case of driver systems with a single
feedback system additional feedback channels requires larger
values for the relaxation coefficient.

Having in mind different application possibilities of chaos
synchronization, synchronization in multi-feedback systems
can provide more flexibility e.g. in obtaining different
anticipating time scales, etc. and opportunities in practical
applications.

It is well known that laser arrays hold great promise for
space communication applications, which require compact
sources with high optical intensities. The most efficient result
can be achieved when the array elements are synchronized.
Additional feedback channels could be useful to stabilize
nonlinear system's output, e.g. laser intensity.
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OKS RABITOLORLI IKEDA MODELINDS INVERSION XAOC SINXRONLASMASI

Bir istiqgamatde slagslondirilmis bir nege oks rabitsli xaotik ikeda modelinin inversion sinxronlasmasi dyranilib. Miixtslif
sinxronlagma rejimlari tiglin zaruri va stabillik sartleri tapilib.
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MHBEPCHUOHHASI XAOTHYECKASI CHHXPOHU3ALIMA B MOJAEJIN UKEJBI C HECKOJIbBKUMH
OBPATHBIMMU CBA3SIMU

Ha npumepe nomyssipHoit Mogenn Vkens! MHBEpCHOHHAs XaOTHUECKas CHHXPOHHU3ALMS aHAJM3UPOBaHA B CUCTEMAax C
HECKOJIBKUMH OOpaTHBIMU CBs3AMH. HaliieHb! yCIOBHUS CyIIECTBOBAaHHUS M CTAOMIIBHOCTH Pa3IMYHBIX CHHXPOHU3AIIMOHHBIX

PEKHUMOB.
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