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1. INTRODUCTION 
 

Recently chaos synchronization [1] in coupled systems 
have been extensively studied in the context of laser 
dynamics, electronic circuits, chemical and biological 
systems, etc. [2]. This phenomenon can be applicable in 
secure communication, optimization of nonlinear system 
performance, pattern recognition phenomena, species 
population control, etc., see e.g. [2] and references there in. 

Finite signal transmission times, memory effects make 
systems with a single and multiple delays ubiquitous in 
nature and technology [3]. Dynamics of multi-feedback 
systems are representative examples of the multi-delay 
systems. Therefore, the study of synchronization phenomena 
in time-delayed systems is of high practical importance. 
Prominent examples of such dynamics can be found in 
biological and biomedical systems, laser physics, integrated 
communications [3]. In laser physics such a situation arises in 
lasers subject to two or more optical or electro-optical 
feedback. Second optical feedback could be useful to 
stabilize laser intensity [4]. Chaotic behavior of laser systems 
with two optical feedback mechanisms is studied in recent 
works [5]. Chaos synchronization between the uni-
directionally coupled continuous multi-feedback systems is 
investigated in [6]. 

Recently in [7] we reported a type of synchronization: 
inverse anticipating synchronization, where a time-delayed 
chaotic system x drives another system y in such a way that a 
driven system anticipates the driver by synchronizing to its 
inverse future state: x(t)=-yτ≡-y(t-τ) or equivalently y(t)=-x(t+τ) 
with τ>0. In [7] we focused our attention on cases when a 
driving system contains a single delay time. 

In this paper for the first time we investigate inverse 
synchronization between two uni-directionally coupled 
chaotic multi-feedback Ikeda systems and find both the 
existence and stability conditions for different 
synchronization regimes (retarded, complete, and 
anticipating). 

 

2. SYNCHRONIZATION BETWEEN THE MULTI- 
    FEEDBACK IKEDA SYSTEMS 

 

Consider inverse synchronization between the multi-
feedback Ikeda systems, 
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with positive α1,2 and –m1,2,3,4.  

This investigation is of considerable practical importance, 
as the equations of the class B lasers with feedback (typical 
representatives of class B are solid-state, semiconductor, and 
low pressure CO2 lasers [8]) can be reduced to an equation of 
the Ikeda type [9]. 

The Ikeda model was introduced to describe the dynamics 
of an optical bi-stable resonator, plays an important role in 
electronics and physiological studies and is well-known for 
delay-induced chaotic behavior [10-11], see also e.g. [12]. 
Physically x is the phase lag of the electric field across the 
resonator; α is the relaxation coefficient for the driving x and 
driven y dynamical variables; m1,2 and m3,4 are the laser 
intensities injected into the driving and driven systems, 
respectively. τ1,2 are the feedback delay times in the coupled 
systems; τ3 is the coupling delay time between systems x and 
y; K is the coupling rate between the driver x and the 
response system y.  

We find that systems (1) and (2) can be synchronized on 
the synchronization manifold  
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as the error signal yx
13
+−=∆ −ττ   for small ∆ under the 

condition 
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obey the following dynamics   
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It is obvious that ∆=0 is a solution of system (5). We 

notice that for τ3>τ1, τ3=τ1, and τ3< 
τ1 (3) is the inverse retarded, complete and anticipating 

synchronization manifold [12], respectively. To study the 
stability of the synchronization manifold 

13 ττ −−= xy  one 
can use the Krasovskii-Lyapunov functional approach. 
According to [3], the sufficient stability condition for the 
trivial solution ∆=0 of time-delayed equation  
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Thus, we obtain that the sufficient stability condition for 
the synchronization manifold 

13
xy ττ −−=  (3) can be written 

as: 
                          23 mm +>α .                                 (6) 

 
As Eq.(5) is valid for small ∆ stability condition (6) found 

above holds locally. Conditions (4) are the existence 
conditions for the synchronization manifold (3) between uni-
directionally coupled multi-feedback systems (1) and (2). 

Analogously we find that 
23

xy ττ −−=  is the synchronization 
manifold between systems (1) and (2) with the existence 
m2+K=m4 and m1=m3 and stability conditions 

43 mm +>α . 
We notice that in the case of drivers with several feedback 

mechanisms synchronization manifold's stability condition 
requires larger value for the relaxation coefficient in 
comparison with the case of single feedback.  

One can generalize the previous results to n- tuple 
feedback Ikeda systems. Applying the error dynamics 
approach to synchronization between the following Ikeda 
models 
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we find that the existence and sufficient stability conditions e.g. for 
the synchronization manifold 

1k
xy ττ −−=  are: y1x1 mkm =+ , 

nynx mm =  and nyy2y1 mmm +⋅⋅⋅++>α , respectively. 

For the synchronization manifold 
2k

xy ττ −−= , 

y2x2 mkm =+  and nynx mm =  are the existence 

conditions, and nyy2y1 mmm +⋅⋅⋅++>α  is the 

sufficient stability condition. 
 
3. CONCLUSIONS 

 

For the first time we have investigated inverse 
synchronization between two uni-directionally coupled 
chaotic multi-feedback Ikeda systems and find both the 

existence and stability conditions for inverse anticipating, lag, 
and complete synchronization regimes. We established that in 
general compared to the case of driver systems with a single 
feedback system additional feedback channels requires larger 
values for the relaxation coefficient.  

Having in mind different application possibilities of chaos 
synchronization, synchronization in multi-feedback systems 
can provide more flexibility e.g. in obtaining different 
anticipating time scales, etc. and opportunities in practical 
applications.  

It is well known that laser arrays hold great promise for 
space communication applications, which require compact 
sources with high optical intensities. The most efficient result 
can be achieved when the array elements are synchronized. 
Additional feedback channels could be useful to stabilize 
nonlinear system's output, e.g. laser intensity. 
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ЯKS RABИTЯLЯRLИ ИKEDA MODELИNDЯ ИNVERSИON XAOC SИNXRONLAШMASЫ 
 

Bir istiqamяtdя яlaqяlяndirilmiш bir neчя яks rabitяli  xaotik Иkeda modelinin inversion sinxronlaшmasы юyrяnilib. Mцxtяlif 
sinxronlaшma rejimlяri цчцn zяruri vя stabillik шяртляри tapыlыb.
 

Э.М. Шахвердиев, Р.А. Нуриев, E.M. Гусейнова, Л.Г. Гашимова, Р.Г. Гашимов 
.  

ИНВЕРСИОННАЯ  ХАОТИЧЕСКАЯ СИНХРОНИЗАЦИЯ В МОДЕЛИ ИКЕДЫ С  НЕСКОЛЬКИМИ  
ОБРАТНЫМИ СВЯЗЯМИ 

 
На примере популярной модели  Икеды  инверсионная хаотическая синхронизация анализирована в системах  с  

несколькими обратными связями. Найдены условия существования  и стабильности различных синхронизационных 
режимов. 
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