PHASE TRANSITIONS IN CuAgS_{0.5}Se_{0.5}

Yu.G. ASADOV, R.B. BAYKULOV, Yu.I. ALIYEV

Institute of Physics of National Academy of Sciences of Azerbaijan,

Az-1143, H. Javid av., 33

 $CuAgS_{0.5}Se_{0.5}$ monocrystals were synthesized and grown. Phase transitions were investigated by high temperature x-ray analysis. It's been shown, that at room temperature crystals have two phases, and one of the phases has structure of $Cu_{1.96}S$ and the other of CuAgSe. Both phases at 695 K turn to single FCC lattice with parameter *a*=6.356 Å.

In [1] it has been determined that CuAgS crystals at room temperature are crystallized into orthorhombic structure with lattice parameters a=4.06 Å, b=6.66 Å, c=7.99 Å, space group D¹⁷_{2h} – Cmcm, Z=4, ρ =6.4 r/cM³. The only thing about polymorphism mentioned in [1], is that at 366 K low temperature orthorhombic modification turns to hexagonal one that is identical to β -Cu₂S (a=4.005 Å, c=6.806 Å, Z=2, space group P6₃/mmm)[2].

In [3] phase transitions in CuAgS were investigated. It has been shown that low temperature orthorhombic modification at 400 K turns to hexagonal and the hexagonal one in its part turns at 705 K to high temperature FCC with a=5.7288Å. Crystal turns back to its initial state when cooled.

Partial replacement of 50% Se atoms by Te atoms and its influence on phase transitions in $CuAgS_{0.5}Te_{0.5}$ were also investigated in [3]. It has been shown that at room temperature $CuAgS_{0.5}Te_{0.5}$ consist of three phases, one of them iden-

tical, as regards lattice size, to low temperature monocline $Cu_{1.96}S$ [4], another one has lattice of low temperature orthorhombic phase of Cu_2Te [5] and the last one has lattice of low temperature orthorhombic CuAgS [1]. $CuAgS_{0.5}Te_{0.5}$ consist of three phases and at 720±1 K turns to single FCC phase with lattice parameter *a*=6.531 Å.

In present paper the influence of partial replacement of 50% of S atoms by Se atoms on structure and temperatures of phase transitions in $CuAgS_{0.5}Se_{0.5}$ has been investigated. The conditions of crystal synthesis and growth did not differ from those of CuAgS and $CuAgS_{0.5}Te_{0.5}$ [3].

An X-ray diffractometric temperature investigation was conducted in a "DRON-3M" diffractometer with a temperature attachment URVT-2000 in vacuum (10⁻¹ Pa). Angular resolution was $\approx 0.1^{\circ}$. Diffraction angles were measured with an accuracy $\Delta \theta = \pm 0.02^{\circ}$.

Table 1

XRD data for CuAgS _{0.5} Se _{0.5} (Fe-filtered, CoK _{α} radiation, λ_{α} =1.7902 A, 55kV,	12mA).	
---	--------	--

ти	Θ	I/I _o	D _{exp.} Å	CuAgSe		Ag ₂ Se		Lettier Demonstrand Å
Ι, Κ				d _{calc.} Å	hkl	d _{calc.} Å	Hkl	Lattice Parameters, A
1	2	3	4	5	6	7	8	9
	18° 00'	30	2.897	2.898	243	2.890	150	Cu _{1.96} S
	19° 30'	80	2.682	2.690	10 0 0	2.681	042	Monocline
	20° 24'	100	2.568	2.569	044			a=26.897
	21° 36'	50	2.432	2.437	162			b=15.515
	23° 30'	70	2.245	2.245	942			c=13.585
	25° 06'	40	2.110	2.111	326			Z=8
	25° 36'	50	2.072	2.073	11 2 3			S.G. P2 _{1/n}
	26° 36'	60	1.999	1.998	645	2.012	220	$\rho_{\rm x}$ =5.870 g/cm ³
293	28° 24'	90	1.882	1.882	027	1.890	191	
	31° 24'	40	1.718	1.717	275, 390	1.710	0 10 2	CuAgSe
	33° 42'	50	1.163	1.614	038			Orthorhombic
	37° 24'	10	1.474	1.473	908, 286			a=4.086
	39° 06'	30	1.419	1.419	938	1.411	243	b=20.533
	41° 24'	10	1.354	1.354	078, 1 0 10			C=0.273
	45° 54'	10	1.247	1.246	0 5 10	1.247	0 10 4	$3.0. D_{2h} - F4/mm$
	48° 00'	20	1.205	1.205	0610	1.204	115	$\rho_x = 7.895 \text{ g/cm}^3$
373	17° 55'	30	2.909	2.910	243	2.909	150	Cu _{1.96} S
	19° 28'	80	2.686	2.686	10 0 0	2.684	042	a=26.859
	20° 19'	100	2.578	2.579	044			b=15.811
	21° 27'	45	2.448	2.447	132			c=13.608
	23° 28'	70	2.248	2.248	942			$\rho_x = 5.759 \text{ g/cm}^3$
	25° 00'	40	2.118	2.118	326			
	25° 33'	50	2.075	2.074	11 2 3			
	26° 32'	60	2.004	2.004	645	2.014	220	CuAgSe
	28° 18'	90	1.888	1.888	027	1.906	191	a=4.107
	31° 17'	35	1.724	1.724	275, 390	1.724	0 10 2	b=20.664
	33° 34'	45	1.619	1.619	038			c=6.374
	37° 17'	10	1.478	1.478	908			$\rho_x = 1.683 \text{ g/cm}^3$
	38° 59'	25	1.423	1.423	938	1.411	243	

PHASE TRANSITIONS IN CuAgS0.5 Se0.5

	41° 12'	10	1.359	1.359	1 0 10			
	45° 44'	10	1.250	1.250	0 5 10	1.250	0 10 4	
	47° 46'	20	1.209	1.209	0610	1.201	115	
	17° 49'	30	2.925	2.926	243	2.925	150	
	19° 26'	75	2.691	2 691	10.0.0	2 712	042	
	20° 10'	100	2.596	2.597	044	2.712	0.12	Cr. S
	20 10	50	2.570	2.577	162			$Cu_{1.96}S$
	21 22	50	2.430	2.430	0.42			a=26.905
	23° 24	/0	2.254	2.255	942			b=15.852
	24° 45'	40	2.138	2.138	326			c=13.753
	25° 27'	50	2.083	2.082	11 2 3			$\rho_{\rm x}$ =5.673 g/cm ³
473	26° 30'	60	2.006	2.006	645	2.030	220	
475	28° 00'	90	1.907	1.908	027	1.915	191	
	31° 05'	40	1.734	1.734	275, 390	1.734	0 10 2	CuAgSe
	33° 12'	50	1.635	1.635	038			a=4.142
	36° 55'	10	1 490	1 490	908 286			b=20.664
	38° 37'	30	1 434	1 434	938	1 425	243	c=6.374
	40° 30'	10	1.434	1.434	078 1 0 10	1.725	243	$\rho_{\rm x} = 7.619 \ {\rm g/cm^3}$
	40 39	10	1.374	1.374	078, 1010	1.262	0.10.4	P'X
	45' 11	10	1.202	1.202	0510	1.202	0 10 4	
	47° 12	20	1.220	1.221	0610	1.216	115	
	17° 47'	30	2.931	2.931	243	1.931	150	
	19° 24'	80	2.694	2.964	10 0 0	1.716	042	
	20° 07'	100	2.602	2.602	044			$Cu_{1.96}S$
	21° 20'	45	2.460	2.460	162			a=26.936
	23° 22'	70	2.257	2.258	942			b=15.893
	24° 42'	40	2.142	2.142	326			c = 13.775
	25° 25'	50	2.086	2.085	11.2.5			$2 -5.643 \text{ g/cm}^3$
	25 25 26° 17'	50	2.000	2.005	645	2.020	220	$p_x = 3.043$ g/cm
573	20 17	00	2.022	2.021	043	2.039	101	
	27 50	90	1.911	1.910	027	1.923	191	C A - S -
	31° 02'	35	1.736	1.737	275	1.741	0 10 2	CuAgse
	33° 08'	45	1.638	1.638	038			a=4.152
	36° 51'	10	1.493	1.493	908			b=20.695
	38° 32'	25	1.437	1.437	938	1.430	243	c=6.383
	40° 35'	10	1.376	1.376	1010			$\rho_{\rm x}$ =7.578 g/cm ³
	45° 06'	10	1.264	1.264	0 5 10	1.266	0 10 4	
	47° 06'	20	1.222	1.222	0610	1.218	115	
	17° 44'	30	2,939	2,937	243	2,939	150	
	19° 23'	80	2 697	2 696	10.0.0	2 720	042	
	20° 05'	100	2.697	2.696	044	2.720	0.12	
	20 05	50	2.000	2.000	162			$Cu_{1.96}S$
	21 15	70	2.400	2.407	042			a=26.936
	23* 20	/0	2.260	1.260	942			b=15.893
	24° 40'	40	2.145	1.145	326			c=13.775
	25° 24'	50	2.087	2.087	11 2 3			$\rho_{\rm x}$ =5.620 g/cm ³
673	26° 15'	60	2.024	2.024	645	2.039	220	
075	27° 54'	90	1.913	1.913	027	1.923	191	
	30° 57'	40	1.740	1.740	275	1.741	0 10 2	CuAgSe
	33° 05'	50	1.640	1.640	038			a=4.152
	36° 48'	10	1.494	1.494	908			b=20.695
	38° 29'	30	1.438	1.438	938	1.430	243	c=6.383
	40° 32'	10	1.377	1.377	1 0 10			$\rho_{\rm x}$ =7.536 g/cm ³
	45° 01'	10	1.377	1.377	0.5.10	1 266	0.10.4	
	47° 00'	20	1.200	1.200	0.6.10	1.200	115	
	+/ UU	20	2.176	1.244	200	1.220	115	
	16° 19'	40	3.176	3.185	200			
	23° 30'	65	2.246	2.245	220			
	27° 52'	100	1.915	1.915	311			FCC
	29° 12'	70	1.834	1.835	222			a=6.356
773	34° 19'	30	1.588	1.588	400			S.G. Fm3m
	37° 54'	80	1.457	1.458	331			Z=4
	39° 04'	30	1.420	1.420	420			$\rho_{\rm x}$ =6.376 g/cm ³
	43° 39'	50	1.297	1.297	422			-
	47° 04'	90	1 222	1 223	333 511			
873	16° 16'	40	3 196	1.182	200			FCC
015	220 27	40	2 250	1.102	200			a-6363
	23 21	100	2.230	1.230	211			a = 0.505
	27 49	100	1.918	1.919	311			$\mu_x = 0.335 \text{ g/cm}$
	29° 10'	70	1.837	1.837	222			
	34° 16'	30	1.590	1.591	400			
	37° 51'	80	1.459	1.460	331			
	39° 02'	30	1.422	1.423	420			

Yu.G. ASADOV, R.B. BAYKULOV, Yu.I. ALIYEV

	43° 36'	50	1.298	1.299	422	
	47° 01'	40	1.224	1.225	333	
	16° 13'	40	3.205	1.186	200	
	23° 24'	65	2.254	1.253	220	
	27° 46'	100	1.921	1.921	311	
	29° 07'	70	1.840	1.840	222	FCC
973	34° 13'	30	1.592	1.593	400	a=6.372
	37° 49'	80	1.460	1.462	331	$\rho_{\rm x}$ =6.328 g/cm ³
	39° 00'	30	1.422	1.425	420	
	43° 33'	50	1.299	1.301	422	
	46° 58'	90	1.225	1.226	333	

At 293 K the XRD patterns from $5\times5\times1$ mm arbitrary oriented AgCuS_{0.5}Se_{0.5} single-crystal showed 16 diffraction peaks. Indexing of patterns confirms existence of two phases, the first is identical to monocline Cu_{1.96}S [4], the second – to low temperature orthorhombic CuAgSe [6].

All 16 diffraction peaks (Table 1) can be indexed on the basis of lattice parameters of orthorhombic $Cu_{1.96}S$, 8 of them also can be indexed on the basis of orthorhombic CuAgSe.

After the patterns were recorded at room temperature, the furnace was turned on and reference recordings were taken every 100 K without disturbing the original crystal orientation. The sample temperature prior to every record was kept constant for 40 minutes.

At 773K 9 peaks were recorded that belong to high temperature FCC modification with a=6.356 Å, Z=4, space group Fm3m. The transition temperature was determined from disappeared peaks when both phases turn to FCC at $T_r=695\pm2$ K.

Fig. 1. Temperature dependence of lattice parameters in CuAgS_{0.5}Se_{0.5}

Fig 1 shows temperature dependence of lattice parameters. As we see, lattice parameters a_1 , b_1 , c_1 of monocline Cu_{1.96}S deviate from linearity at 373 K, parameters b_1 and c_1 quickly increase and a_1 decreases and linearly grows after 373 K. Lattice parameters a_2 and c_2 of modifications identical to orthorhombic CuAgSe structure, deviate from linearity at 473 K. In spite of such changing in lattice parameters of both phases with temperature, there is not much difference in number and intensity of diffraction peaks.

Table 2 contains coefficients of thermal expansion calculated using temperature dependence of lattice parameters. As we can see, the thermal expansion for modification identical to Cu_{1.96}S along [010] significantly differ from that along [100] and [001] ($\alpha_{[100]} < \alpha_{[010]} > \alpha_{[001]}$). It's significant that in low temperature monocline modification, S atom layers form hexagonal close packages and Cu atoms are distributed

among them in 3 different ways. In this structure 51 of Cu atoms distributed in distorted triangles, 9 - in tetrahedral spaces and one is in double coordination. Some of Ag atoms might replace Cu atoms.

Table 2

Modification	Temperature K	$\alpha_{[100]} 10^{-6} K^{-1}$	$\alpha_{[010]} 10^{-6} K^{-1}$	$\alpha_{[001]} 10^{-6} K^{-1}$	$\overline{\alpha} = \frac{\sum \alpha_i}{3} \cdot 10^{-6} K^{-1}$
	293-373	-19.05	238.48	21.16	80.20
Orthorhomb.	293-473	1.65	120.67	68.70	63.67
Cu _{1.96} S	293-573	5.18	87.01	49.95	47.38
	293-673	6.46	68.86	40.29	38.54
	293-373	64.24	79.75	197.21	113.73
Orthorhomb.	293-473	76.14	35.44	87.65	66.41
CuAgSe	293-573	57.69	28.18	61.47	49.11
-	293-673	47.66	28.71	46.97	41.11
FCC	773-873	0.11			0.11
CuAgS _{0.5} Se _{0.5}	773-973	0.13			0.13

Thermal expansion coefficients for CuAgS_{0.5}Se_{0.5}

In CuAgSe lattice, Ag atoms situated in planes perpendicular to c axis. Near each of them, there are 4 Ag atoms at 2.96 Å and 6 Se atoms at 2.67 Å (4 Se), 3.59 Å (1 Se), 3.64 Å (1 Se). Se atoms form elongated tetrahedrons in which Cu atoms situated. Distance between Se atoms is Se-Se=3.30 Å, between Cu and Se is from 2.06 Å to 2.50 Å and the least one is Cu-Ag=2.98 Å.

Thermal expansion coefficient of phase crystallized as CuAgSe structure has anisotropy along basic crystallographic directions ($\alpha_{[100]} \approx \alpha_{[010]} > \alpha_{[001]}$). Strong anisotropy of thermal expansion of both phases is one of the main reasons of thermal instability of low temperature phase. We should note, that monocline Cu_{1.96}S at 377 K turns to FCC phase with

- [1] J. Frueh, Zeits. Krist. 1955, <u>106</u>, p. 299.
- [2] *N.B. Belov, V.A. Butuzov*, Докл. АН СССР, 1964, т.54, №8, с. 717.
- [3] F.Yu. Asadov, R.B. Baykulov, S.S. Gamidova, F.G. Magerramova, Vtoraya mejdunarodnaya konferentsiya po fizike kristallov «Kristallographiya XXI

a=5.707 Å and CuAgSe at 504 K turns to FCC phase (a=5.082 Å) as well. In our case that doesn't happen, i.e. both phases (Cu_{1.96}S and CuAgSe) turn to FCC phase (a=6.356 Å) at 695 K at the same time.

At room temperature CuAgS_{0.5}Se_{0.5} crystals consist of 2 phases and while heated, as seen from thermal expansion anisotropy, deform each other. The nucleus of high temperature FCC phase is formed in the interface of these two phases and grows at the expense of both phases. When cooled, FCC phase splits in two and crystal turns to initial state. Phase transitions are reversible and take place by single-poly crystal model.

veka» posveshennaya pamyati M.P. Shaskolskoy, 2003.

- [4] H. T. Evans. Zeits. Krist., 1979, <u>150</u>, p. 299.
- [5] J. Patzak, Z. Metallkund., 1956, 47, p. 433.
- [6] J. Frueh, G. K. Czamanske, C. H. Knight, Zeits. Krist., 1957, 108, p. 389.

Y.H. Əsədov, R.B. Baykulov, Y.İ. Əliyev

CuAgS_{0.5}Se_{0.5} KRİSTALINDA POLİMORF KEÇİD

 $CuAgS_{0.5}Se_{0.5}$ tərkibi sintez edilmiş və monokristalı alınmışdır. Yüksək temperatur difraktometrik metodu ilə polimorf keçid tədqiq edilmiş və göstərilmişdir ki, otaq temperaturunda kristal iki fazalıdır. Fazalardan biri $Cu_{1.96}S$ strukturasını, digəri isə AgCuSe-nin strukturasını qəbul edir. Hər iki faza 695 K-də səthinə mərkəzləşmiş kubik fazaya keçir.

Ю.Г. Асадов, Р.Б. Байкулов, Ю.И. Алиев

ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В CuAgS_{0.5}Se_{0.5}

Синтезированы и выращены монокристаллы $CuAgS_{0.5}Se_{0.5}$. Высокотемпературным рентгенографическим методом исследовались полиморфные превращения. Показано, что при комнатной температуре кристаллы - двухфазные, одна из фаз принимает структуру $Cu_{1.96}S$, а другая - CuAgSe. Обе фазы при 695 К превращаются в единую ГЦК модификацию с параметром a=6.356 Å.

Received: 09.02.05