COLLECTIVE 1⁺ STATES IN ^{176,178}Hf DEFORMED NUCLEI

H. YAKUT, M. BEKTAŞOĞLU, F.ERTUĞRAL AND R. AKKAYA

Physics Department, Faculty of Arts and Sciences, Sakarya University,

54100 Serdivan, Adapazarı, Turkey

In this study, properties of the collective $I^{\pi} = 1^+$ (K=0 and K=1) states, generated by the residual paired and isovector spin-spin interactions, in the deformed nuclei ^{176,178}Hf are investigated in the Quasiparticle Random Phase Approximation (QRPA) method using the deformed Saxon-Woods Potential. Furthermore, contribution of *M1* transition matrix element to the energy weighted sum rules and energy distribution of *M1* excitation strength functions were investigated for these states. We have observed that the low-lying 1⁺ states have weak correlations and small value of B(M1, 0 \rightarrow 1), and the collective 1⁺ states with larger values of B(M1) are in the energy region 8-10 MeV for K = 0 and 10-12 MeV for K = 1. We have also shown that the number of states for K = 0 is less than K = 1 states.

INTRODUCTION

Magnetic dipole excitations in heavy nuclei are of considerable interest in modern nuclear structure physics. Both low lying orbital and high lying magnetic resonance excitations were studied systematically to test nuclear models. An outstanding example is the so-called M1 scissors mode to which most attention was paid in the past. This lowlying orbital 1⁺ states were first observed in ¹⁵⁶Gd in high resolution inelastic (e, e') reactions in 1984 [1]. Two of the important properties of these states are their low energy ($\omega \leq 4$ MeV) and having a value for their reduced magnetic dipole probability $B(0^+ \rightarrow 1^+)$ in the interval 0.6-1.8 μ_N^2 . The different aspects of the magnetic dipole transition of 1⁺ states have been investigation in inelastic proton scattering at small angles for the nuclei ¹⁵⁴Sm, ¹⁵⁶Gd and ¹⁶⁴Dy [2]. Before these experimental studies, existence of a state with the energy E=3.18 MeV and B(M1,0^+ \rightarrow 1^+)=1.8\,\mu_N^2 in the nucleus ¹⁶⁸Er was observed in theoretical calculations using quasiparticle model in the framework of RPA and taking into account the residual paired and spin-spin interactions [3]. Calculations have shown that collective states in the energy range 2-4 MeV and occur in the nuclei 154 Sm and 168 Er [4]. These states expected by the theory were experimentally studied using (γ, γ') resonance scattering reactions and a state with E=3.39 MeV and B(M1)=(0.71 \pm 0.08) μ_N^2 was observed in the nucleus ¹⁶⁸Er [5].

Recently, magnetic dipole resonances ($I^{\pi} = 1^+$) have been experimentally found in wide region from light spherical nuclei up to actinides [6-11]. These experiments shown that a very broad M1 resonance at energies between 7 and 11 MeV exits in heavy spherical and deformed nuclei.

Spin-spin interactions in the spherical even-even nuclei happen in connection with the particle hole transitions between the spin-orbital elements of the neutron-neutron and proton-proton single particle states [12]. Unlike the potential of spherical nuclei, the picture is more complicated. In such case, the magnetic quantum number of every J-shell splits into excitations characterized by the angular momentum projection on the symmetry axis K=0 and K=1. Due to split mentioned, shell structure of the nucleus is destroyed and this causes an increase in the density of 1⁺ states ($\rho \approx 10$ MeV⁻¹). Based on the information given, two independent branches

of 1^+ states, namely K=0 and K=1, exist due to axial symmetry in deformed nuclei. K=0 corresponds to the spin vibrations along with the symmetry axis, and K=1 corresponds to the perpendicular ones. K=1 branch is easy to investigate in photon scattering experiments since electromagnetic waves are transverse. Results of such experiments have shown that in low energy spectroscopic region K=1 states are denser compare to K=0 levels.

The well-known Random Phase Approximation (RPA) is one the most popular method in theoretical microscopic study of nuclear structure and describes many-body systems. In nuclear physics RPA has been exploited to model properties of the excited states that allows to calculate intensities of various nuclear reactions, including decay probability of electromagnetic, beta and double beta decay. For the nuclei away from closed shells there appear static pairing correlations within the quasi-particle representation is usually referred to as quasi-particle version of RPA(QRPA), which consider the quasi-particle correlations and excitations.

In this study, properties of $I^{\pi} = 1^+$ (K=0 and K=1) spinvibration states in the even-even ^{176,178}Hf isotopes were studied using QRPA method. Contribution of M1 transition matrix element to the energy weighted sum rules and energy distribution of M1 excitation strength functions were investigated for these states.

THEORY

For a system with large number of particles, like nucleus, it is difficult to solve the Schrödinger equation due to large number of the degrees of freedom. Therefore, in the microscopic model, it is assumed that neutron and proton in the nucleus move in a common field produced by them and assumed that they interact with each other. It is based on the Shell model. In this model the component of the effective force responsible for the excitations is taken into account in the microscopic calculations.

Assuming that 1^+ states are produced by the spin-spin forces in deformed nuclei, Hamiltonian of the system can be chosen as

$$H = H_{sqp} + V_{\sigma\tau} \tag{1}$$

where H_{sqp} is the single quasi-particle Hamiltonian represented by

$$H_{sqp} = \sum_{s\tau} \varepsilon_s(\tau) (\alpha_s^+(\tau) \alpha_s(\tau) + \alpha_{\tilde{s}}^+(\tau) \alpha_{\tilde{s}}(\tau))$$
(2)

In this expression, $\varepsilon_s = \sqrt{(E_s - \lambda)^2 + \Delta^2}$ is quasiparticle energy of the nucleons, and E_s is energy of the average field. Δ and λ are the gap and chemical potential parameters of the super fluid model, respectively. $\alpha^+(\alpha)$ are the quasi-particle creation(annihilation) operators.

The second term in Eq. 1

$$V_{\sigma\tau} = \frac{1}{2} \chi_{\sigma\tau} \sum_{i \neq j} \sigma_i \sigma_j \tau_i^z \tau_j^z$$
(3)

represents the isovector spin-spin interactions. Here, σ and τ are spin and isotropic Pauli matrices, respectively. All the unexplained expressions used here are given in Ref. [13].

The isovector spin-spin interactions can be written in terms of particle operators:

$$V_{\sigma\tau} = \chi_{\sigma\tau} \sum_{\mu=0,\pm 1} D^+_{\mu} D_{\mu}$$
(4)

In case of $\chi_{np} = \chi_{pn} = q\chi$ and $\chi_{nn} = \chi_{pp} = \chi$ q=-1. In the quasi-particle representation the D_{μ} operator splits up into quasi-boson and scattering terms in the form

$$D_{\mu}(\tau) = \sum_{ss'} \sigma_{ss'} \left\{ \mu_{ss'} B_{ss'} + \frac{1}{\sqrt{2}} L_{ss'} (C_{ss'}^{+} + C_{ss'}) \right\} +$$

$$+ \sum_{ss'} \sigma_{s\tilde{s}'} \left\{ \mu_{ss'} \overline{B}_{ss'} - \frac{1}{\sqrt{2}} L_{ss'} (\overline{C}_{ss'}^{+} + \overline{C}_{ss'}) \right\}$$

$$(5)$$

$$H_{ss'} = u_s v_{s'} + u_{s'} v_s \quad \text{are the bon parameters, expressed} \quad B_{ss'} = \sum_{\rho=\pm 1} \rho \alpha_{s\rho}^+ \alpha_{s'\rho} \qquad B_{ss'}^+ = \sum_{\rho=\pm 1} \rho \alpha_{s'\rho}^+ \alpha_{s\rho} \quad (7)$$

Here, $M_{ss'} = u_s u_{s'} + v_s v_{s'}$ and $L_{ss'} = u_s v_{s'} + u_{s'} v_s$ are the Bogoliubov canonical transformation parameters, expressed through u_s and v_s , $D_{\mu}^{(\nu)} = \langle s | D_{\mu} | s' \rangle$ are single-particle matrix elements of the Pauli spin operator, and

are the quasi-particle operators. In RPA, collective 1^+ states are considered as one-phonon excitations given by

$$C_{ss'} = \frac{1}{\sqrt{2}} \sum_{\rho=\pm 1} \rho \alpha_{s'\rho} \alpha_{s-\rho} , \ C_{ss'}^{+} = \frac{1}{\sqrt{2}} \sum_{\rho=\pm 1} \rho \alpha_{s-\rho}^{+} \alpha_{s'\rho}^{+} \quad (6)$$

$$|\psi_{i}\rangle = Q_{i}^{+} |\psi_{0}\rangle = \frac{1}{\sqrt{2}} \left[\sum_{nut.} \left\{ \psi_{ss'}^{i} C_{ss'}^{+} - \varphi_{ss'}^{i} C_{ss'} \right\} + \sum_{prot.} \left\{ \psi_{vv'}^{i} C_{vv'}^{+} - \varphi_{vv'}^{i} C_{vv'} \right\} \right] |\psi_{0}\rangle \quad (8)$$

where Q_i^+ is the phonon creation operator, $|\Psi_0\rangle$ is the phonon vacuum. The two quasi-particle amplitudes $\psi_{ss'}$ and $\varphi_{ss'}$ are normalized by

$$\sum_{\mu\tau} \left[\psi_{\mu}^{i^{2}}(\tau) - \varphi_{\mu}^{i^{2}}(\tau) \right] = 1$$
(9)

¹ The dispersion equation for the excitation frequency w is obtained in the form

$$(1 + \chi F_n)(1 + \chi F_p) - q^2 \chi^2 F_n F_p = \mathbf{0}$$
 (10)

using a variational method and

$$\delta\left\{\left\langle\psi|Q_{i}HQ_{i}^{+}|\psi\rangle-\left\langle\psi|H|\psi\rangle-\omega_{i}\left(\sum_{i}\left(\psi_{s}^{i^{2}}-\varphi_{s}^{i^{2}}\right)-1\right)\right\}=0$$
(11),

together with the RPA procedure. The roots of this equation gives the energy of 1^+ states.

MAGNETIC PROPERTIES OF THE COLLECTIVE 1^+ STATES

The characteristic quantity of the spin vibrational 1^+ states is the probability of the M1 transitions. The M1 transition operator is given by where μ is the magnetic dipole operator expressed as

 $\vec{M}_i = \langle \psi_i | \vec{\mu} | \psi_0 \rangle$

$$\vec{\mu} = \sum_{\tau,i} \left[(g_s^{\tau} - g_l^{\tau}) \vec{s}_i^{\tau} + g_l^{\tau} \vec{J}_i^{\tau} \right]$$
(13)

(12)

I

In this equation, J is the total angular momentum operator, g_s^{τ} ve g_l^{τ} are the orbital and spin g factors of the

$$B(M1,0\to 1^+) = \frac{3}{16\pi} \left[\sum_{n\mu} \mu_{ss'}^n L_{ss'} g_{ss'} + \sum_{prot.} \mu_{vv'}^p L_{vv'} g_{vv'} \right]$$
(14)

where $\mu_{ss'}^{(\tau)}$, $\overset{1}{\mu}$ are the single-particle matrix elements of the magnetic dipole operator.

SUM RULE

In quantum mechanics, the probability of a transition from one state to another is bounded by some definite relations called sum rules. There are two kinds of sum rules; energy-weighted (EWSR) and non-energy-weighted sum rule (NEWSR). The sum rules are used in the microscopic nuclear theory in order to investigate the properties of collective excitations. These rules, in case of an arbitrary potential, allow one to calculate the vibration of the giant dipole and quadrupole resonant energy.

For the case of M1 transitions, the EWSR is written as

$$\frac{1}{4} \langle \psi_0 \left[\left[\vec{\mu}, \left[H, \vec{\mu} \right] \right] \psi_0 \right\rangle = \frac{8}{3} \pi \sum_i \omega_i B_i (M \mathbf{1}, \mathbf{0}^+ \to \mathbf{1}^+)$$
(15)

and we are specifically interested in the energy region of saturation of the right-hand side of Eq. 15, namely the energy dependence of the function

$$\chi_n(\omega_i) = \frac{8}{3}\pi \sum_i \omega_i B_i(M \mathbf{1}, \mathbf{0}^+ \to \mathbf{1}^+)$$
(16)

The left-hand side of Eq. 15 does not depend on the strength parameter χ , and represents the quasi-particle estimate of the sum rule. Thus, the sum rules help one make conclusions about the accuracy of RPA solutions, while the

contribution of different 1^+ states to the sum rule is given by the function χ .

nucleons, respectively. Using Eqs. 8, 12 and 13, the M1

transition probability for the state 1⁺ can be written as

NUMERICAL CALCULATIONS AND DISCUSSION

In calculations, the single-particle model is used taking the deformed Saxon-Woods potential as the average field potential. The Schrodinger Eq. is solved by means of the method mentioned in Ref. [14]. Calculations are performed for ^{176,178}Hf isotopes, the deformation parameters and interaction constants are taken from Ref. [15] and Ref. [16], respectively. For this reason, throughout this study, the RPA method with harmonic approach is used. The isovector spinspin interaction constant is chosen as $\chi_{\sigma\tau} = 40/A$ [17].

Table 1.

Ton-pair correlation parameters and the deformation parameters for ^{176,178}Hf isotopes

А	N	δ^2	Δ_{n}	$\Delta_{\rm p}$	λ_n	λ_{p}
176	104	0.2731	0.655	0.75	-4.139	-6.098
178	106	0.2563	0.72	0.75	-3.664	-6.412

Calculations have shown that, small probability of the M1 transition from the ground state to the 1^+ excitation levels appear in the energy region up to 5 MeV. Information on the low energy 1^+ (K=0 and K=1) levels and the state structure of them for 176,178 Hf in the spectroscopic region is given in Table 2 and 3.

ig. 1. Energy diagram of B(M1) values (above) and sum rule for the 1⁺ states with K=0 and K=1 in ^{1/0}Hf. The left –hand side of the sum rule is shown by dotted line. The solid line corresponds to the function χ_1 [Eq. 16].

Table 2.

The characteristic 1^+ (K=0 and K=1) states and the transition probability B(M1) for ¹⁷⁶Hf in the spectroscopic energy region.

	176]	H <u>f K=U</u>				
Energy	BM1	Amplitudes	Structure of states			
ω (MeV)	(μ_N^2)	Ψ_{μ}				
5.717	0.159	-0.187 0.280 0.215 0.135 0.553	nn512-503 nn512-752 pp530-550 pp541-532 pp411-402			
8.332	0.726	0.364 -0.236 -0.165 0.146 0.238 0.122 -0.186 -0.329	nn640-631 nn642-633 pp301-530 pp530-521 pp541-521 pp532-523 pp523-514 pp413-404			
8.544	0.399	0.278 -0.507 -0.132 -0.130 -0.263 -0.118	nn530-750 nn640-631 nn532-501 nn642-633 pp523-514 pp413-404			
8.974	0.432	-0.529 -0.428	nn514-505 pp523-514			
9.228	1.144	-0.415 -0.102 -0.346 0.162 -0.190 0.287	nn530-501 nn642-633 nn514-505 pp431-640 pp532-512 pp523-514			
9.264	0.488	0.554 -0.191 0.279 -0.148 0.174	nn530-501 nn514-505 pp431-640 pp532-512 pp523-514			
9.540 1.252		-0.131 0.638 0.165	Nn514-505 pp532-512 pp523-514			

	¹⁷⁶ Hf K=1					
Energy	BM1	Amplitu	Structure of			
(MeV)	$(\mu_{\mathbb{N}}^{*})$	Ψ_{μ}	S TALIES			
2.509	2.519	0.705	pp523-514			
3.199	0.208	-0.704	pp550-532			
3.355	1.110	0.687	pp411-402			
3.623	0.689	0.112	nn660-631			
		-0.149	nn631-642			
4 41 2	0 700	0.508	pp415-404			
4.417	0.722	-0.704	pp411-400			
4.496	0.309	-0.704	pp411-402			
5.299	0.470	0.128 0.184	nn622-633 pp530-550			
6.530	0.435	0.183	nn651-651			
		-0.209	nn501-523			
		0.162	nn613-624			
		-0.240	nn:05-305			
		0.221	pp330-332			
0.006	1 000	0.132	pp332-323			
9.775	1.602	0.319	pp:///			
		0.107	pp:32-314 55/22-404			
		0.509	pp422-404 pp503_514			
0.021	0.527	0.175	nn 550-750			
	0.067	-0.266	pp521-541			
		0.101	pp532-514			
		0.572	pp503-514			
10350	1.529	0.462	pp530-521			
		0.212	pp550-512			
		-0.102	pp521-541			
		0.300	pp541-512			
		-0.192	pp532-514			
		-0.120	pp <i>5</i> 03-514			
10.600	4.028	0.178	nn523-505			
		-0.291	pp://////21			
		-0.107	pp:///.041			
		0.115	pp640-660			
		-0.177 0.103	pp:92-303			
		0.195	pp:02-000			
		-0,144	pp532-514			
		-0.114	pp503-514			
10.640	0.666	-0.113	nn550-501			
		-0.645	pp532-303			
		-0.131	pp521-512			
10.784	0.854	-0.248	nn523-505			
		-UD10	pp040-060			

Table 3.

The characteristic 1^+ (K=0 and K=1) states and the transition probability B(M1) for ¹⁷⁸Hf in the spectroscopic energy region.

¹⁷⁸ Hf K=0			¹⁷⁸ Hf K=1					
Energy	Energy BM1 Amplitudes		Structure of		Fnorm	BMI	Amplit	Structure of
ω	(μ^2)	<u>w</u>	states		ω ω	101411 72 N	udes	etatee
(MeV)	1. A. W. A.	×μ			(MeV)	(μ_N)	1//	0 ML 810
5.716	0.194	-0.141	nn512-503	1	(1.20.07	- 420	Ψµ	
		-0354	pp530-550		8.032	0.469	0.111	nn660-651
		0.556	рр420-411				-0.438	nn631-631
		-0.135	pp541-532				-0.151	pp
		0.122	pp411-402				-0.151	pp420-400
6.341	0.415	-0.103	nn651-642				0.234	pp420-402
		-0.148	nn642-622				0.107	pp512.523
		-0.107	pp://////		8 140	0.435	0.207	pp512-525 nn631-651
	0.070	0.642	pp://////		0.140	0.400	0.124	pp541-523
7.381	0.379	0.111	nn640-651				0.529	pp512-523
		-0.164	nn601-642		9 727	0.650	0.168	nn 530-512
		0.124	10020-702				0.141	pp 521-541
		-0.405	nn633.613				0.111	pp431-651
		0.131	nn420-400				0.626	рр422-404
		0.299	nn 32-523		9.820	1.780	0.516	pp521-541
8.126	0.289	-0.137	nn640-631				0.137	pp532-514
		-0.233	nn642-633				-0.274	pp422-404
		-0.182	pp530-521		10.029	0.707	-0.152	nn530-510
		-0.325	pp541-521				0.583	nn510-532
		-0.114	pp523-514				-0.241	pp521-541
		0.480	pp413-404				0.200	pp532-514
8.277	0.435	-0.411	nn640-631		10.042	0.923	-0.421	nn530-510
		-0.180	nn642-633				-0379	nn510-532
		-0.155	pp541-521				-0.247 0.057	pp521-541
		-0.177	pp523-514		10.050	0.000	0.40	pp::::::::::::::::::::::::::::::::::::
0.002		-0.451	pp413-404		10028	0.909	0.243	nn550-510
9.026	2.293	0.237	nn330-301				0.127	nn010-302
		0.132	nn040-001				0.202	pp521-541
		-0.132	nn.52-761		10.254	1.856	-0.332	pp:02-514
		-0.163	nn642.633		10101	1.000	0.200	pp530-521
		0.124	DD 532-523				-0.139	pp521-541
		-0.239	pp532-512				-0.199	pp411-422
		0.476	pp523-514				-0.403	pp532-514
		-0.104	рр413-404				0.135	pp503-514
9.363	1.018	0.651	pp532-512		10.461	0.404	-0357	pp530-521
		0.157	pp523-514				-0.293	pp411-431
9.746	0.116	0.551	nn514-505	1			-0.212	pp541-512
		0.433	pp550-510				0.450	pp503-514
9.756	0.160	0.420	nn514-505	1	10.593	1.508	0.437	nn642-402
		-0.580	pp550-510				0.208	nn503-514
							-0.192	212C-Uנ-U בנפ נואפ
							0.117	pp:///.512
				2	10,604	0.022	10207	pp.05-514
					10/004	0.700	שנכיו-	101042-402

-0.142

0.200

-0.219

pp530-521 pp532-303

pp503-514

Fig. 2. Energy diagram of B(M1) values (above) and sum rule for the 1⁺ states with K=0 and K=1 in 178 Hf. The left –hand side of the sum rule is shown by dotted line. The solid line corresponds to the function χ_i [Eq. 16].

Results of the calculations for ^{176,178}Hf nuclei are given in Figure 1 and 2. Probability of B(M1) transition as a function of energy for $I^{\pi} = 1^+$ (K=0 and K=1) excitations are shown in Fig. 1. As seen in the figure, there are several collective states with large transition probabilities $(B(M1) = (1.2 - 3.4)\mu_N^2$ exist for $\omega \le 4$ MeV for these isotopes. There are many states between 4 and 12 MeV and

the most collective energy interval where these states are pached is 8-10 MeV for K=0 and 10-12 MeV for K=1.

ACKNOWLEDGMENT

We would like to acknowledge useful conversation with Prof. Dr. A. A. Kuliev and Dr. E. Guliyev.

- [1] D.Bohle et al. Phys. Lett. B137, 1984, 27.
- [2] *C. Djalali et al.* Phys. Lett. B164, 1985, 269.
- [3] *N. Lo Iudice* Phys. Rev. Lett. 1978, 41, 1532.
- [4] U. Hartmann et al. Nucl. Phys. A 465, 1987, 25.
- [5] Willis et al. Nucl. Phys. Rev. A 499, 1989, 367.
- [6] J. Margraf et al. Phys. Rev. C 47, 1993, 1474.
- [7] *R. D. Heil et al.* Nucl. Phys. A 476, 1988, 39.
- [8] A.Richter. Nucl. Phys. A 507, 1990, 99.
- [9] *B.S. Ishkanov et al.* Phys. Of Atomic Nucl. 59, 1996, [16] 1109. [17]
- [10] *H. Maser et al.* Phys. Rev. C 54, 1996, R2129.
- [11] P. von Brentano et al. Phys. Rev. Lett. 76, 1996, 2029.

- [12] Bohr and B. Mottelson, "Nuclear Structure"v.2, Benjamin, New York, Amsterdam, 1974.
- [13] F. Ertuğral, E. Guliyev, R. Akkaya and H.M. Tütüncü, Baküworkshop, Eylül 2004
- [14] F. A. Gareev, S. P. Ivanova and B. N. Kalinkin, Izv. Akad. Nauk SSSR (ser. fiz.) 32 (1968) 1960.
- [15] *S. Raman et al.* Atomic Data and Nuclear Data Tables 78, 2001, 1.
- 5, [16] J. Margraf et al., Phys. Rev. C 47 1993, 1474.
 - [17] A. Nojarov and A. Faessler, Nucl. Phys. A 484, 1988,
 1; Nucl. Phys. A 492, 1989, 105; Phys. Rev. C 41,
 1990, 1243.

H. Yakut, M. Bektaşoğlu, F.Ertuğral, R. Akkaya, P. Akkaya

DEFORMASIYA OLMUŞ 176,178Hf NÜVƏLƏRININ COLLEKTIV 1+ SƏVIYYƏLƏRI

Məqalədə qalıq cütlənmə və izovektor spin-spin qarşılıqlı təsirləri tərəfindən yaradıldığı fərz edilən I^{π}=1⁺ (K=0 və K=1) səviyyələrinin xüsusiyyətləri QRPA yanaşmasında deformasiya olmuş Saxon-Woods potensialı istifadə edilərək öyrənilmişdir. Ayrıca bu səviyyələrin M1 matris elemntlərinin enerji ağırlıqlı cəmləmə qanunlarına əlavəsi və M1 səviyyələrinin güc funksiyalarının enerji yayılması da öyrənilmişdir. Hesablamalar aşagı enerjilərdəki 1⁺ səviyyələrinin zəif korellasiona və kiçik ehtimala sahib olduğunu göstərdi. K=0 budağının ən böyük ehtimallı səviyyələri 8-10MeV bölgəsində, K=1 budağı ücün isə 10-12 MeV bölgəsində olduğu təyin edildi. Ayrıca K=1 budağına aid olan səviyyələrin sayının K=0 budağından daha çox olduğu göstərildi.

Х. Яакут, М. Бекташогли, Ф.Ертуграл, Р. Аккайа

КОЛЛЕКТИВНЫЕ 1⁺ СОСТОЯНИЯ ДЕФОРМИРОВАННЫХ ЯДЕР ^{176,178}Нf

В статье было изучено свойство I^{π}=1⁺ (K=0 и K=1) состояний, взаимодействующих посредством остаточных парных и изовекторных спин-спиновых взаимодействий для ядер ^{176,178}Нf в приближении случайных фаз (СФ) с использованием деформированного потенциала Саксона- Вуда. Кроме того, для этих состояний были изучены вклад M1 матричных

COLLECTIVE 1⁺ STATES IN ^{176,178}Hf DEFORMED NUCLEI

элементов в закон энерговесомого суммирования и энергетическое распределение силовых функций для этих состояний. Вычисления показали, что низколежащие 1⁺ состояния слабо коррелированы и маловероятны, так как для K=0 ветви возбуждении более вероятные состояния лежат в интервале 8-10 MeB, а для K=1 ветви более вероятные состояния лежат в интервале 8-10 MeB, а для K=1 больше числа состояний из ветви K=0.

Received: 09.02.2005