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The energy spectra of carriers confined to a cylindrical semiconductor quantum wire in an inhomogeneous magnetic field which is 
0=B  0rr <  and 0≠B  elsewhere are studied by, taking into account the real band structure of InSb type semiconductors; narrow 

energy gap and strong spin-orbit interaction. It’s found that the eigen energy spectra for the magnetic quantum wire critically depend on the 
number of missing flux quanta. Since the spin effect is taken into account, each energy curve splits into two curves. The crossover point of 
energy curves for m=0 state with opposite spins is obtained around the value of S=8.  The magnetic field and the radius dependence of the 
edge g-factor is also studied. 

 
1. Introduction 
 
Recently there has been a great interest in the behavior of 

carriers with an inhomogeneous perpendicular magnetic field 
about low-dimensional systems both theoretically and 
experimentally [1,2]. On the other hand edge states play an 
important role in understanding the transport properties of 
quantum nanostructures [3].  Magnetic edge state in a 
magnetic quantum wire becomes quite popular, in particular 
conjunction with a possible candidate for a high density 
memory device or spintronic materials, so various magnetic 
nano-quantum structures are reviewed in detail [4]. Advances 
with respect to growth as well as high-resolution electron-
beam lithography techniques allow the novel confined 
structures called quantum wires or quantum rings. Transport 
properties of edge states in quantum nanostructures have 
been discussed by many groups.  Peeters, Matulis and 
İbrahim [5] presented energy levels in the magnetic antidote, 
while Reijineries, Peeters and Matulis [6] further performed a 
more detailed and complete study of the bound states of such 
a system. Solimay and Kroner [7] solved the classical and 
quantum mechanical equations for a magnetically confined 
quantum dot and discussed the eigen energies. Badalyan and 
Peeters have developed a theory for the non-homogeneous 
magnetic field induced magnetic edge states and their 
transport in a quantum wire formed by a parabolic confining 
potential [8]. Ihm et al [9,10] investigated the two 
dimensional electrons further confined in an inhomogeneous 
magnetic field. They have found that the eigenstates deviated 
from Landau levels, due o the non-uniform magnetic field 
distributions, forming the magnetic edge states which 
critically depend on the number of missing flux quanta within 

the dot or the ring. Recently Young Guo et al [11] 
investigated the electron spin effect on quantum states and 
magneto-conductance in a magnetic quantum antidote with 
inhomogeneous magnetic field results in further splitting of 
energy levels. In the work of [12] the electron states and 
circulating probability currents due to the inhomogeneous 
field distribution formed in a magnetic quantum ring is 
studied. However, the experimental advantages of using 
narrow-gap semiconductors for the reduced dimensionality 
systems make it necessary to account for the real band 
structure of these materials. The purpose of our work is 
taking into account the coupling of the conduction and 
valence bands and the non-parabolicity of the electron 
dispersion while studying the narrow and medium gap 
semiconductors. It’s also aimed to study the magnetic field 
and the radius change of edge g-factor.  In the present study, 
using eight band Kane’s model including the conduction 
band, light and spin orbital hole bands, the energy spectrum 
and edge g-factor of electrons confined to a cylindrical 
semiconductor quantum wire (InSb) in an inhomogeneous 
magnetic field which is 0=B  0rr <  and 0≠B  elsewhere 
are investigated. In the eight-band Kane’s Hamiltonian the 
valence and conduction bands interaction is taken into 
account via the only matrix element P (so called Kane’s 
parameter). We also neglect the free-electron term in the 
diagonal part and the Pauli spin term as they give small 
contributions to the effective mass and the spin g-value of 
electrons in InSb. The system of Kane equations including 
the non-dispersional heavy hole bands have the form 
[13,14,15,16]:
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Here P is the Kane parameter, Eg - the band gap energy, 

∆ - the value of spin-orbital splitting and ,yx ikkk ±=±   

∇−=
rr

ik , iC  are envelope functions. 
 
2. Theory 
The model that is considered in the present study is 

composed of an electron confined to move in a cylindrical 
semiconductor quantum wire under the influence of a 
magnetic field in the z-direction, which is non-zero except 
with a cylinder of radius 0r . The magnetic field is described 
by  
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Than the vector potential will be as follows; 
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One can now express the envelope functions 

843 ,..., CCC  by the functions 1C  and 2C respectively, and 
substitute them into the first and second equations, we finally 
obtain the following decoupled equations for 2,1C : 
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where 3∆  is three dimensional Laplacian. 

When there is magnetic field
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where zL , z component of angular momentum operator L  and 222 yxr += . 

The wave functions in cylindrical coordinates are separable; 
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where m is the angular momentum quantum number. The equation of the radial part is written as; 
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0 /φπ orHs =  is the only relevant parameter. Here s 
is a scale parameter which represents the number of missing 

flux quanta within the wire [9,10,11] and ( )e
hc=0φ  the 

flux quantum. Since there is no magnetic field inside the 
magnetic wire, the magnetic edge states may not enclose the 
magnetic flux, resulting in missing flux quanta; these are 
absent in the edge states formed by electrostatic 
confinements. The energies are easily determined from the 
continuity of the wave functions and their derivatives at the 
boundary of the wire. 

In the calculations of the electron energy spectra for 
narrow gap InSb cylindrical wires we choose the 
semiconductor band structure parameters for InSb: energy 
gap Eg=0.2368 eV, spin orbit splitting is ∆=0.810 eV, 

42.23
2 2

2
0 == P

m
p

h
ε  eV and 0m  is the free-electron 

mass [18]. 
The effective edge g-factor can be determined from the 

Zeeman splitting of subbands: 
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Here ↑ε  and ↓ε  are the electron energy for spin +z 

and –z directions respectively. 
 
3. Results 
In this section, it’s calculated exactly and discussed the 

single-electron eigenstates and transport properties of a 
magnetic quantum wire by taking into account the real band 
structure of InSb type materials; narrow energy gap and 
strong spin-orbit interaction. Figure 1 represents the 
estimated dependence of the energy eigenvalues in the 
magnetic quantum wire on the angular momentum m. The 
solid curves correspond to the spin up case 

2
1+=σ   and the 

spin down case 
2

1−=σ  respectively for different m values. 

To allow comparison with the works of [9,10,11], in this 
figure and the following one, the energy is in units of 

10 =ϖh  at 5000 =r Ǻ and TH 633.20 =  (corresponding the 
s=5 in references [9,10,11]). 
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Fig. 1. The dependence of the energy eigenvalues σnmE  in the quantum wire on the angular momentum m for 5000 =r Ǻ,  

            TH 633.20 = , 0=zk  . 

 
At a first look in Figure 1, we notice the Landau level 

degeneracy is broken. As it can be seen the lowest energy 
state occurs at m=0. This result indicates that the 
inhomogeneity of the magnetic field perturbs mostly the 
states near the boundary of the quantum wire, and this 
perturbation is caused by the missing flux quanta s. The 
energy levels increase slowly with the decrease of angular 

momentum m for m<0, while they increase rapidly with the 
increasing of m for m>0 as in references [9,10,11]. The 
splitting, due to the spin between the energy levels are 
decreased with the increasing of n, which is the main 
different result in comparison with the ref. [11] and it’s 
because of the interaction between the valence and 
conduction band. 

 

 
 
Fig. 2. Energy spectra as a function of  S n=0 and  m=-1 to +2 , where 

2
1±  is spin up and spin down values. 5000 =r Ǻ, 0=zk . 

 
In Figure 2, we represent the energy spectra as a function 

of the number of missing magnetic flux quanta S 
( 0

2 /φπrHS = ). In this figure it’s shown only n=0 and m=-1 

to +2 states to avoid the complexity. The energy units 0ωh  
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are set to one at s=5 and 0r  is fixed.  The different energy 
levels are labeled with the corresponding quantum 
numbers ( )σ,m . Since the spin effect is taken into account, 
each energy curve splits into two curves. The crossover point 
of energy curves for  m=0 state with opposite spins is 
obtained around the value of  S=8.  It’s noted that some of 

the crossover points in the same angular quantum number 
may be located outside the magnetic region presented. 

In Figure 3 the magnetic field change of edge g factor for 
electrons at the ground state (m=0) is illustrated. It’s seen 
that edge g-factor increases with the increasing of the 
magnetic field. 

 

 
 
Fig.  3. Edge g-factor versus magnetic field, for electrons of InSb at the ground state. 5000 =r Ǻ, 0=zk . 

 
Figure 4 represents the radius change of edge g factor for electrons at the ground state (m=0). It can be seen that the edge 

g-factor approaches to the bulk value with the increasing of the radius. 
 

 
Fig.  4. Edge g factor versus radius for electrons of InSb at the ground state. H=1 T, 0=zk . 
 
4. Conclusion 
We have investigated the energy spectra of a magnetic 

quantum wire by taking into account the real band structure 
of InSb type semiconductors. Energy spectra of quantum wire 
shows deviated structures from the bulk Landau levels. It’s 
shown that the different behaviors of the edge states depend 

on the amount of the flux in a magnetic quantum wire. The 
magnetic field dependence of edge g-factor is also 
investigated and found that edge g-factor increases with the 
increasing of the magnetic field. In addition to this, it is 
shown that the edge g-factor approaches to the bulk value 
with the increasing of the radius. 
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KEYN TİPLİ YARİMKEÇİRİCİ KVANT TELLƏRİNDƏ KƏNAR HALLAR 

 
InSb tipli maqnit kvant tellərində elektronların enerji spektrləri yarimkeçiricinin real zona quruluşu nəzərə alınmaqla hesablanmışdır. 

Elektronların kənar hallarının effektiv g-faktorunun kvant telinin radiusundan və xarici magnit sahəsindən asılılığı öyrənilmişdir. 
  

А.М. Бабаев, Ш. Чакмактепе, А. Кокче 
 

КРАЕВЫЕ СОСТОЯНИЯ В КВАНТОВОЙ ПРОВОЛОКЕ КЕЙНОВСКОГО ПОЛУПРОВОДНИКА 
 

Исследован энергетический спектр носителей тока в полупроводниковой цилиндрической квантовой проволоке во внешнем, 
неоднородном магнитном поле, 0=B  ,при 

0rr <  and 0≠B  в остальном пространстве, с учетом реальной зонной структуры 
узкощелевых полупроводников типа InSb с сильным спин-орбитальным взаимодействием. Найдено, что энергетический спектр 
критически зависит от числа квантов магнитного потока. С учетом спина каждая энергетическая кривая расщепляется на две. Для 
состояния m=0 кривые с противоположными значениями спина  пересекаются  около S=8. Изучена зависимость от магнитного 
поля и радиуса проволоки краевого g- фактора. 
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