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EDGE STATES IN A KANE TYPE SEMICONDUCTOR QUANTUM WIRE
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The energy spectra of carriers confined to a cylindrical semiconductor quantum wire in an inhomogeneous magnetic field which is

B=0r < r, and B #0 elsewhere are studied by, taking into account the real band structure of InSb type semiconductors; narrow

energy gap and strong spin-orbit interaction. It’s found that the eigen energy spectra for the magnetic quantum wire critically depend on the
number of missing flux quanta. Since the spin effect is taken into account, each energy curve splits into two curves. The crossover point of
energy curves for m=0 state with opposite spins is obtained around the value of S=8. The magnetic field and the radius dependence of the

edge g-factor is also studied.

1. Introduction

Recently there has been a great interest in the behavior of
carriers with an inhomogeneous perpendicular magnetic field
about low-dimensional systems both theoretically and
experimentally [1,2]. On the other hand edge states play an
important role in understanding the transport properties of
quantum nanostructures [3]. Magnetic edge state in a
magnetic quantum wire becomes quite popular, in particular
conjunction with a possible candidate for a high density
memory device or spintronic materials, so various magnetic
nano-quantum structures are reviewed in detail [4]. Advances
with respect to growth as well as high-resolution electron-
beam lithography techniques allow the novel confined
structures called quantum wires or quantum rings. Transport
properties of edge states in quantum nanostructures have
been discussed by many groups. Peeters, Matulis and
Ibrahim [5] presented energy levels in the magnetic antidote,
while Reijineries, Peeters and Matulis [6] further performed a
more detailed and complete study of the bound states of such
a system. Solimay and Kroner [7] solved the classical and
quantum mechanical equations for a magnetically confined
quantum dot and discussed the eigen energies. Badalyan and
Peeters have developed a theory for the non-homogeneous
magnetic field induced magnetic edge states and their
transport in a quantum wire formed by a parabolic confining
potential [8]. Thm et al [9,10] investigated the two
dimensional electrons further confined in an inhomogeneous
magnetic field. They have found that the eigenstates deviated
from Landau levels, due o the non-uniform magnetic field
distributions, forming the magnetic edge states which
critically depend on the number of missing flux quanta within |

the dot or the ring. Recently Young Guo et al [11]
investigated the electron spin effect on quantum states and
magneto-conductance in a magnetic quantum antidote with
inhomogeneous magnetic field results in further splitting of
energy levels. In the work of [12] the electron states and
circulating probability currents due to the inhomogeneous
field distribution formed in a magnetic quantum ring is
studied. However, the experimental advantages of using
narrow-gap semiconductors for the reduced dimensionality
systems make it necessary to account for the real band
structure of these materials. The purpose of our work is
taking into account the coupling of the conduction and
valence bands and the non-parabolicity of the electron
dispersion while studying the narrow and medium gap
semiconductors. It’s also aimed to study the magnetic field
and the radius change of edge g-factor. In the present study,
using eight band Kane’s model including the conduction
band, light and spin orbital hole bands, the energy spectrum
and edge g-factor of electrons confined to a cylindrical
semiconductor quantum wire (InSb) in an inhomogeneous
magnetic field which is B=0 » < ¥y and B#0 elsewhere

are investigated. In the eight-band Kane’s Hamiltonian the
valence and conduction bands interaction is taken into
account via the only matrix element P (so called Kane’s
parameter). We also neglect the free-electron term in the
diagonal part and the Pauli spin term as they give small
contributions to the effective mass and the spin g-value of
electrons in InSb. The system of Kane equations including
the non-dispersional heavy hole bands have the form
[13,14,15,16]:
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Here P is the Kane parameter, E, - the band gap energy, |

k. have forms
A- the value of spin-orbital splitting and k, =k, tik,,

L 1 7,
k =iV, C, are envelope functions. k., =k, ilEﬂH[ _l”_zjnr (11)
2. Theory where
The model that is considered in the present study is N ﬁ (12)
composed of an electron confined to move in a cylindrical P XY, Ay = he

semiconductor quantum wire under the influence of a

magnetic field in the z-direction, which is non-zero except One can now express the envelope functions

with a cylinder of radius #;. The magnetic field is described C,,C,....C; by the functions C, and C, respectively, and
by substitute them into the first and second equations, we finally
B (7) = BE (r > T 0) obtain the following decoupled equations for C, ,:
0 (r < ro) ©))
P 2 1
—8——[ jA3 C,=0 (r<n)
3le+e, &+¢,+A ’
Than the vector potential will be as follows; ¢ ¢ (13)
1 ’ where A; is three dimensional Laplacian.
A= _[ _r_ng(_ v, x,()) (10) When there is magnetic field
2 r
|
2
P 2 1 - - 22
—&+— + {—V2+2/1Hh l(l—rozr 2)Lz+/112q(1—r02r 2) rz}i
3letey, e+e,+A
, C1,2 =0 (r>r0)
P 1 1
2y — -
3leteg, e+e,+A
(14)
where L_, z component of angular momentum operator L and rr=x>+ yz.
The wave functions in cylindrical coordinates are separable;
img+ik.z 41
CL2 = Mtk ¢L2 (r) (r < ”0) (15)
imp+ik,z 12
C =" (r) (r>n) (16)
where m is the angular momentum quantum number. The equation of the radial part is written as;
d> 1d (2mE m’
{F+—d—+ o |20 =0 r<n (17
r rdr r '
d> 1d 2m E, (m-s) e’H’®
_d2+_d_+ h”z 2—( 5 ) —rz—/iH(m—s)— e r’ ¢1(§)(r):0 r>, (18)
r v dar r c

40



EDGE STATES IN A KANE TYPE SEMICONDUCTOR QUANTUM WIRE

/s 3g(g+ggxg+gg+A) 5
- , and

2m, | P* (3g+3gg+2A) ’

n

Here E1 =

. R 3 £(£+£gxg+gg+A)_ A
2m, | P2 (3e+3e, +24) 36 +36, +2A

1(12)(1”) is expressed as ¢11 z(r)ZClJ‘m‘( ;(r) where the function .J, is the Bessel function of order m,

2
-
¢1(22) (r)= Czr‘m_s‘ /26 2 U(a,b, x) where U(a, b, x) is the confluent hypergeometric function [17].
In here
2_2m0 3 8(8+8gxg+8g+A) )
T n2 ep| Be+3s, +24) —k (4
h Ep €+ gg +
1 |m—s|+m—s 38(8+8 Xg-l-é‘ +A) A
a=—+ - £ £ + (20)
2 2 ho,Be +3¢, +2A), ~ 2(3¢ +3¢, +24)
b:|m—s|+1 (21)
2m r? | 2my _,
where &), :_20 Pz, X = —— and the magnetic &y = —2P =23.42 eV and m, is the free-electron
h 215 h
mass [18].
leneth is 1., = E The effective edge g-factor can be determined from the
engthiis ty = eH Zeeman splitting of subbands:

It’s expressed the whole quantities in dimensionless units

_et-el

. _ eH 0 . g( & (22)
by letting h@, (@) = ( 2m00j is the Larmor ) L H
. _ moa)o .
frequency) and the inverse length f3| = h be 1. Here £ T and £ are the electron energy for spin +z
and —z directions respectively.

) 2 ho
In these units, hAO = %2 —1 and 7, = \/E s0 3. Results

In this section, it’s calculated exactly and discussed the

that s = H 0 ﬂ]"oz / ¢0 is the only relevant parameter. Here s single-electron eigenstates and transport properties of a
magnetic quantum wire by taking into account the real band
structure of InSb type materials; narrow energy gap and

flux quanta within the wire [9,10,11] and ¢, (2 h%) the strong spin-orbit interaction. Figure 1 represents the
e estimated dependence of the energy eigenvalues in the
magnetic quantum wire on the angular momentum m. The

solid curves correspond to the spin up case g = +% and the

is a scale parameter which represents the number of missing

flux quantum. Since there is no magnetic field inside the
magnetic wire, the magnetic edge states may not enclose the
magnetic flux, resulting in missing flux quanta; these are
absent in the edge states formed by electrostatic
confinements. The energies are easily determined from the
continuity of the wave functions and their derivatives at the ~To allow comparison with the works of [9,10,11], in this
boundary of the wire. figure and the following one, the energy is in units of
In the calculations of the electron energy spectra for hw, =1 at g =500 A and H, =2.633T (corresponding the
narrow gap InSb cylindrical wires we choose the =5 in references [9,10,11]).
semiconductor band structure parameters for InSb: energy
gap Eg=0.2368 eV, spin orbit splitting is A=0.810 eV,

spin down case g = _% respectively for different m values.
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Fig. 1. The dependence of the energy eigenvalues £ o
H,=2.633T. k. =0.

At a first look in Figure 1, we notice the Landau level
degeneracy is broken. As it can be seen the lowest energy
state occurs at m=(0. This result indicates that the
inhomogeneity of the magnetic field perturbs mostly the
states near the boundary of the quantum wire, and this
perturbation is caused by the missing flux quanta s. The

in the quantum wire on the angular momentum m for 7, = 500 A,

| momentum m for m<0, while they increase rapidly with the
increasing of m for m>0 as in references [9,10,11]. The
splitting, due to the spin between the energy levels are
decreased with the increasing of n, which is the main
different result in comparison with the ref. [11] and it’s
because of the interaction between the valence and

energy levels increase slowly with the decrease of angular | conduction band.
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Fig. 2. Energy spectra as a function of S n=0and m=-1 fo +2 , where + % is spin up and spin down values. 7, = 500 A, k,=0.

In Figure 2, we represent the energy spectra as a function
of the number of missing magnetic flux quanta S

| (S =Hm?/¢,). In this figure it’s shown only n=0 and m=-1

to +2 states to avoid the complexity. The energy units ¢,
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are set to one at s=5 and 7, is fixed. The different energy
labeled with the
numbers (m,O'). Since the spin effect is taken into account,

levels are corresponding quantum

each energy curve splits into two curves. The crossover point
of energy curves for m=0 state with opposite spins is
obtained around the value of S§=§8. It’s noted that some of |

-EE |

-4

o —235

=20

-4

the crossover points in the same angular quantum number
may be located outside the magnetic region presented.

In Figure 3 the magnetic field change of edge g factor for
electrons at the ground state (m=0) is illustrated. It’s seen
that edge g-factor increases with the increasing of the
magnetic field.

10 1z 1% 1&

g

Fig. 3. Edge g-factor versus magnetic field, for electrons of InSb at the ground state. r, =500 A, k,=0.

Figure 4 represents the radius change of edge g factor for electrons at the ground state (m=0). It can be seen that the edge
g-factor approaches to the bulk value with the increasing of the radius.
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Fig. 4. Edge g factor versus radius for electrons of InSb at the ground state. H=1 T, k, =0.

4. Conclusion

We have investigated the energy spectra of a magnetic
quantum wire by taking into account the real band structure
of InSb type semiconductors. Energy spectra of quantum wire
shows deviated structures from the bulk Landau levels. It’s
shown that the different behaviors of the edge states depend

43

! on the amount of the flux in a magnetic quantum wire. The

magnetic field dependence of edge g-factor is also
investigated and found that edge g-factor increases with the
increasing of the magnetic field. In addition to this, it is
shown that the edge g-factor approaches to the bulk value
with the increasing of the radius.
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A.M. Babayeyv, S. Cakmaktepe, A. Kokce

KEYN TiPLi YARIMKECIRICi KVANT TELLORINDO KONAR HALLAR

InSb tipli maqnit kvant tellorinds elektronlarin enerji spektrlori yarimkegiricinin real zona qurulusu nezors alinmaqla hesablanmigdir.

Elektronlarin kenar hallarinin effektiv g-faktorunun kvant telinin radiusundan ve xarici magnit sahasindon asililig1 6yronilmisdir.

A.M. Babaes, 1Il. Yakmakrene, A. Kokue

KPAEBBIE COCTOSTHUSI B KBAHTOBOM ITPOBOJIOKE KEHHOBCKOT'O TOJIYITIPOBOTHUKA

HccnenoBan sHEpreTUYECKUi CIIEKTp HOCUTENEH TOKa B MOIYNPOBOJHUKOBON HMJIMHAPUYECKONH KBAaHTOBOM MPOBOJIOKE BO BHEILHEM,
HEOJHOPOJHOM MAarHMTHOM NOJe, B=0 ,OpU <y, and Bz(0 B OCTAIbHOM IPOCTPAHCIBE, C YYECTOM PCalbHOH 30HHOH CIPYKTYpbI

Y3KOIIEJIEBBIX IONYIPOBOJAHUKOB THIA InSb ¢ CHIBHBIM CHHH-OPOUTAIBHBIM B3auMojieiicTBueM. HaiileHo, 4TO SHEpPreTHYECKUi CIIEKTP
KPUTHYECKH 3aBHCHT OT YKCJIa KBAHTOB MarHUTHOTO MOTOKa. C y4eToM CIMHA KaXkasi SHepPreTHUeCKasi KpuBasl paciiervisieTcss Ha jase. Jls
cocTostHUsE m=( KPUBbIE C MPOTHBOIOJIOKHBIMU 3HAYEHUSAMH CIMHA IIEPECEKAIOTCS OKOJo S=8. M3ydyeHa 3aBUCHUMOCTb OT MAarHHUTHOI'O
T0JIS ¥ Pajinyca POBOJIOKH KPaeBoro g- hakropa.
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