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The exact formula is obtained for the thermodynamical potential of a parabolic quantum wire directed perpendicular to the impressed 

magnetic field. 
 
The purpose of the present paper is to receive the exact 

formula for the thermodynamical potential of a parabolic 
quantum wire (QW) which axis direct perpendicular to the 
impressed magnetic field. Gazeau et. all [1] considered the 
analogous problem for QW directed parallel to magnetic 
field.  

All the calculations in this paper are made in the basis of 
coherent state [2], as the coherent-state method is the most 
simple and convenient way of solving the problem. The 
derivation of the thermodynamical potential (Ω ) is based on 
residue series in the complex plane, like that in [1]. The 
expression for Ω , derived in this paper, will be used in 
future for calculation the exact formulae of different physical 
values (for example, the thermoelectromotive force and the 
magnetic moment). 

Let us consider a quantum wire (QW) in uniform 
stationary magnetic field. We choose the vector potential in 
the form ),,( 00 xHA =

r
 which corresponds to the magnetic 

field H , parallel to the z axis. The QW is directed along the 
y  axis and characterized by parabolic confinements in the 

plane ),( zx . 
The Hamiltonian of the problem under consideration is  
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where x  is the usual canonical coordinate, xp  is its 

conjugate momentum, mceHc =ω  is the cyclotron 
frequency, c  is the velocity of light in vacuum, m  is 
electron mass, e  is the absolute value of its charge and 0ω  
characterizes the parabolic potential of the QW for electron in 
conduction band. 

Since ℵ  is independent of y  it is possible to replace 

yy pp →  everywhere. The Hamiltonian (1) can be now 
written as 
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where 
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1ℵ  and 2ℵ  are two independent harmonic oscillator 
Hamiltonians. It   is known [2], [3] that the Hamiltonian and 
wave function for harmonic oscillator in the coherent- state 
(CS) representation can be written in the form:  
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where α  and γ  are the arbitrary complex numbers. 

It is easy to check that α  and γ  satisfies all necessary 
requirements of the CS.  

For example, in the case of α : 

1) α  is eigenstate of boson annihilation operator and 

integral of motion −
αA : 
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2) α  is known to comply with normalization condition 

 
                                1=αα                       (17) 
 
The wavefunctions α  form a complete system, but 

they are not orthogonal. 
3) α  can be created from the ground state 0  for which 
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From the foregoing it transpires that one should present 

the solution of the wave equation of the problem (2) 
 

                          0=⎟
⎠
⎞

⎜
⎝
⎛ ℵ−

∂
∂ ψ
t

ih                       (19) 

in the form 
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where ., yy

yik
y pkek y == h  

Let us calculate the thermodynamical potential Ω  for 
the case under consideration. In Fermi- Dirac statistics Ω  is 
given by 
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β
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with TkB1=β ,  T  is temperature, Bk  is the Boltzmann 

contact, ξ  is the chemical potential of the conductivity 
electrons. 

We consider the case of physical interest: 
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Let us prove that 
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much as [1]. 

It is necessary for that to reduce the right hand members 
to the left- hand side using the contour integration. 

In accordance with the Jordan lemma we take an 
integration path at 0>−ℵ ξ  lying in the lower halt- plane, 
where the integrand under consideration has only simple 
poles: 
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Using residue theorems we get the right hand members 
in the form 
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The application of the formula (1.511) from [4] to the 

series (25) finishes our proof. 
Taking into account the expression (23) we transform 

formula (21) to the following form: 
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where ( )lθ  is the function 

                              ( ) ( ) 21 βθ ℵ+−= ileTrl                       (27) 
 
Now we shall calculate ( )lθ  in the basis of CS. 
Substitute the expressions (2), (8), (11), (7) into equation 

(27). For further calculation we adopt the following relations 
according to equations (22)-(25) of [5]: 

1) The trace of an arbitrary operator M  equals 
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where { }yk,,γα  are the set of quantum numbers in the CS, 

( ) ( ) ( ) ( )ααπαπ ImRe ddd 11 2 =  is the real element of the area 
in the complex plane and ( ) ( ) ( ) ( )γγπγπ ImRe ddd 11 2 = . 

2) the identity valid for boson operators 
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(29) 

3) the Poisson integral  in the form 
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It is easy to check that 0>bRe and 0>CRe  writing 

lill ImRe += and taken into account that 0Im <l  for the 
integration path lying in the lower half – plane.  

Introducing the well-known function ( ) 2aa eea −−=sh  
we finally get 
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The substitution of (34) - (36) into (26) leads to the 
following expression  for Ω : 
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Now we shall calculate Ω  for the case 0<ξ . The 

integral over l  can be evaluated by using residue theorems at 
the condition that the integrand function satisfies the Jordan 
lemma. The latter is valid if the integration path at 0<ξ  
lies in the lower half – plane. Observe that in the lower halt – 
plane the integrand function has only simple poles the same 
as in (24). 

We now determine Ω  by applying the residue theorems 
to (37): 
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Substituting (38) and (39) into (40) we find 
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Obraztsov [6] deduced a formula relating the 

thermoelectromotive force (Q) in a quantizing magnetic field 
to the entropy (S) of a semiconductor: 
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It is known that the average number of electrons ( )N  is 
given by 
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where V  is the volume. 
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Calculate Q  stating from (41)-(45). As result we obtain: 
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Put 1=n  and 00 =ω  in (46). Then we derive the well known result for the thermoelectromotive force of nondegenerate 

electron gas [6]: 
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PARABOLİK KVANT MƏFTİLİN TERMODİNAMİK POTENSİALI ÜÇÜN DƏQİQ İFADƏ 

 
İstiqaməti maqnit sahəsinə perpendikulyar olan parabolik kvant məftilin termodinamik potensialı üçün dəqiq ifadə 

alınmışdır.                         
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ТОЧНОЕ ВЫРАЖЕНИЕ ДЛЯ ТЕРМОДИНАМИЧЕСКОГО ПОТЕНЦИАЛА ПАРАБОЛИЧЕСКОЙ 
КВАНТОВОЙ ПРОВОЛОКИ 

 
Получено точное выражение для термодинамического потенциала параболической квантовой проволоки, направленной 

перпендикулярно к приложенному магнитному полю. 
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