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The simple examples of spontaneous breaking of various symmetries for the scalar theory with fundamental mass have been considered. 

Higgs' generalizations on ”fundamental mass” that was introduced into the theory on a basis of the five-dimensional de Sitter space are 
found. 
 

The concept of mass having its root in great antiquity 
still remains fundamental. Every theoretical and experimental 
research in classical physics and the quantum physics, related 
to mass - a step to an insight of the nature. Besides mass, 
other fundamental constants, such as Planck’s constant h  
and speed of light c, also play the most important role in 
modern theories. The first one is related to quantum 
mechanics, and the second one is related to the theory of 
relativity. 

Characteristics and interactions of elementary particles 
(EP) can be described more or less in terms of local fields 
(LP) which in their turn regard to low representations of 
corresponding compact groups of symmetry. Concept of LP 
essentially is a synonym of concept EP. At present 
elementary particles are such kind of particles (real and 
hypothetical), characteristics and interactions of which could 
be adequately described in terms of LP. As we know, mass of 
E P m  is Kazimir’s operator of noncompact Poincare group, 
and those representations of the given group which are used 
in the quantum field theory (QFT), can take any values in an 
interval ∞<≤ m0 . Two particles today mentioned as EP 
can have masses different from each other on many orders. 
Formally standard QFT remains logically irreproachable 
circuit in cases when masses of particles can be comparable 
to masses of macromatters. Modern QFT does not forbid 
such physically nonsensical extrapolation. Probably it is the 
basic defect of the theory?  

 In 1965 M.A. Markov has put forward a hypothesis [1] 
according to which the spectrum of masses of EP should 
break on «planck mass»  
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Here h , c are known universal constants and G is a 

gravitational constant. The particles of limiting mass 
.Planckmm =  named by M.A. Markov as "maximons" are 

called to play a special role in the world of elementary 
particles. The concept of "maximon" is assumed as a basis of 
Markov’s script of the early universe [2]. It is significant that 
in relation to QFT Markov’s restriction (1) acts as an 
additional phenomenological condition. It does not affect 
structure of this theory in any way, and even for the 
description of maximon the standard theoretical-field device 
is used. New version of QFT, in basis of which the postulate- 

M.A.Markov's principle about limitation of mass of 
elementary particles (1) is put alongside with traditional 
quantum and relativistic postulates, has been worked out by 
V.G. Kadyshevsky [3]. The key role in the approach 
developed by him belongs to 5-dimensional configuration 
representation. Remaining inherently four-dimensional, the 
theory assumes the original local Langrangian formulation in 
which dependence of fields on auxiliary fifth coordinate also 
is found as local. Internal symmetries in this formalism 
generate the gauge transformations localized in the same 5-
dimensional configuration space. Thus Markov’s condition is 
written down as Mm ≤ , considering limiting mass M simply 
as  a certain new universal constant of the theory, so-called 
«fundamental mass» (FM). EP with Mm = are still called as 
maximons. In the limit ∞→M  new QFT coincides with the 
usual field theory in which the spectrum of particles is 
unlimited. On a strict mathematical basis new parameter FM 
is entered in QFT which. Together with parameters of the 
standard quantum theory this parameter will play an essential 
role in high energy physics [4]. In work [5] geometrical 
interpretation of effect of spontaneous breaking of symmetry 
which plays a key role in standard model is advanced. This 
approach is related to an effective utilization in device QFT 
of 4-pulse de Sitter and anti-de Sitter’s spaces with constant 
curvature. In our works [6] simple examples of spontaneous 
breakings of various symmetries for the scalar theory with 
FM have been considered and Higgs’ generalizations on FM 
are cited.  

In the given work we shall continue research on the basis 
of simple examples of spontaneous breakings of various 
symmetries for the scalar theory with ФМ. For this purpose 
we use Lagrangian formalism from works [3, 4]. 

Formulation of QFT with FM, discussed in work [4], is 
based on the quantum version of the de Sitter’s equation, that 
is on the 5-dimensional equation of a field: 
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To every field in 5-space a wave function ),( 5xxΦ  
submitting with the equation (2) is compared. This is 
equivalent to the statement that ),( 5xxΦ  the field in usual 
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space-time is described by wave function with the double 
number of components: 
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Typical for this circuit the doubling of number of field 

degrees of freedom disappears at ∞→M . At finite M the 

analogue of a usual field variable should be considered 

)0,()( xx Φ=Φ , and function 
5
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=χ is auxiliary. 

Now we shall consider simple examples of spontaneous 
breakings of various symmetries for the scalar theory with 
FM.  

The Lagrangian of the real scalar field in frameworks of 
QFT with FM has the form [4]: 
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Taking into account interaction in (3), we can (4) write following: 
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here 
2

2

1cos
M
m

−≡µ , where m - mass of the particles, 

described by field ϕ , and χ  is the auxiliary field, playing a 
role in interaction, M - fundamental mass and )(ϕU  is the 
unknown function describing interactions of particles.  

Whether is possible to choose the interaction 
))(()(int xUxL ϕχ=  between fields )(xϕ  and )(xχ  that 

Higg’s potential for a field )(xϕ  exists at exception of a field 
)(xχ ? Free Lagrangian (5) is invariant under transformation 
ϕϕ −→  and χχ −→ . But thus is necessary to demand, 

that )()( ϕϕ UU −=− , that )(ϕU  is an odd function of ϕ . 
Action for (5) is possible to be written as: 
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If we differentiate (6) on )(xχ , we find: 
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Substituting (7) in (6), we have: 
 

]cos)(2)()[(
2
1)( 2

2
222 µϕϕϕϕ

∂
ϕ∂ϕ
µ

U
M

Um
x

Ltot ++−=  ,   

                                                                                              (8) 
that is invariant to ϕϕ −→ . 

From breakings of discrete symmetry for usual scalar 
field it is known that Higg’s potential looks like: 
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where λ is the dimensionless constant describing interaction 
between particles.  

Let find a kind of )(ϕU  function that in (8) potential 
Higgs to appear. We shall consider the Lagrangian (8) at 
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Potential energy (9) shall look like: 
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Comparing (10) and (9), for )(ϕU  we have two different 

roots (real and imaginary) at 
2
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Now we shall consider a case when 22
2

int 4
)( χϕλϕ −=L . 

At imm →  Lagrangian (5) shall look like: 
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where mshM ='µ . 

If we differentiate (12) on χ , we find: 
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This is one of Higg’s generalizations on fundamental mass. From (13) at ∞→M  we shall receive the usual Higg’s 

Lagrangian: 
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In case of spontaneous breaking of global symmetry U (1) we have: 
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at imm → , then 
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This Lagrangian differs from (15) by its sign before m2, but still invariant to group of global transformations: 
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Taking a derivative from (16) on χ and χ , we shall find the equation of motion for χ  and  χ accordingly:  
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In a flat limit ∞→M  (18) will have a usual form. If we shall 
write as ( )ϕϕϕ min)()( VVVNew −=  then we have: 
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This Lagrangian invariant to global gauge U(1) - 

transformation: αϕϕϕ ie=→ ' . The system described by 
Lagrangian (20), has spontaneously broken symmetry U(1). 
Now the point 0)()( * == xx ϕϕ  does not corresponding with 
a minimum of energy. There any point on a circle of radius 

1'2
2
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chMR is agree with a minimum of energy. We 

can choose as stable vacuum any position, situated on a circle 
of radius R, that is all states are equivalent because of change 
concerning transformation (17). We shall choose value of 
gauge phases 0=α , uniform for all the world, and we shall 
write down ϕ(x) in the form of real and imaginary parts: 
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here ϕ1(x) and ϕ2(x) are two material fields, describing 
excitation of system concerning vacuum 

2
)( hx =ϕ . At 

transition to stable vacuum U(1) invariance is broken, as the 
phase of function ϕ is fixed. 

In new variables for Lagrangian (20) we have: 
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As a result of spontaneous breaking of symmetry the 

goldstone scalar massless particle ϕ2 and the real scalar 

particle ϕ1 with mass 
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A.İ. Muxtarov, R.M. İbadov, U.R. Xocayeva 
 

ELEMENTAR ZƏRRƏCİKLƏRİN KÜTLƏ MƏHDUDİYYƏTİ HAQQINDA 
 

Fundamental kütləli skalyar nəzəriyyənin köməyi ilə müxtəlif simmetriyaların spontan pozulmasına aid sadə misallar  
təhlil edilmişdır. “Fundamental kütlə” üçün Higgs ümumiləşməsi tapılmışdır. Bu ümumiləşmə nəzəriyyəyə de-Sitterin beş 
ölçülü fəzası əsasında daxil edilmişdir.   

 
А.И. Мухтаров, Р.М. Ибадов, У.Р. Ходжаева 

 
ОБ ОГРАНИЧЕНИИ МАСС ЭЛЕМЕНТАРНЫХ ЧАСТИЦ 

 
Рассмотрены простые примеры спонтанного нарушения различных симметрий для скалярной теории с 

фундаментальной массой. Найдены обобщения Хиггса на “фундаментальную массу”, которые введены в теорию на 
основе пятимерного пространства де-Ситтера. 
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