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MESONS DISTRIBUTION FUNCTIONS IN THE “NAIVE-NON-ABELIANIZATION”
APPROXIMATION AND POWER-SUPPRESSED CORRECTIONS TO Fg(Q?)
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Baku State Univercity, Institute for Applied Mathematics
AZ 1148, Z. Khalilov st., 23

Power suppressed corrections to the kaon electromagnetic form factor Fy(Q?) is estimated by means of the running coupling constant
method. In calculating the mesons distribution amplitudes (DAs) found, the “naive non-abelianization” approximation is used. Comparisons
are made with Fy(Q?) obtained using the “ordinary” DAs and running coupling constant method, as well as with frozen coupling

approximation’s results.

1. Investigation of mesons electromagnetic (e.m.) form
factors (ffs) Fy, (Q?) is one of the interesting and long-
standing problems in perturbative QCD (pQCD) [1-3]. The
form factors are a source of information on the structure of
mesons, on their DAs @, (X,,ué), which are universal,

nonperturbative quantities characterizing meson M. These
DAs can be used to explain and compute other exclusive
processes involving M. Therefore, comparing the calculated
form factors with experimental data, one can deduce the
information concerning the shape of DA. But before inferring
such information and making conclusions about a meson DA,
one has to be sure that all corrections, are least those
calculable in the context of pQCD, are taken into account.
There are some sources of such corrections to the meson e.m.

form factor Fy, (Q?), considered in the literature [4-8]. First
of all, these are the next-to-leading order correction to the
hard-scattering amplitude T (X, y:Q2, ,ué, ,ué) of the
subprocess (' + y* — (4’ found in [4], the two-loop
correction the
V[X, y;aq (Qz)] and to the distribution amplitude itself |

to Brodsky-Lepage evolution kernel
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where Q* =—q? is the momentum transfer in the process
(q ? is the square of the four-momentum of the virtual photon

Y k), ,ué, ,u,% are the renormalization and factorization

scales, respectively.
At the leading order of pQCD the hard-scattering

amplitude T, (X, y:Q2, Uz, /l,% )

factorization scale /Jé and depends on yé only through

does not depend on the

the running coupling constant ag (,ué ) At the next-to-
leading order, T, depends on ,ué , /1,% explicitly due to terms
proportional to ln(Qz/,u,% ) and ln[(l —xN1-y)Q? /,ué] (see
[4]). The proper choice of these scales, i.e. the choice which
minimizes the higher-order corrections to Fy, (Q?) and at
the same time allows one to estimate the power-suppressed

corrections to Fy, (Q?), is an important problem in pQCD

24

obtained in [5]. The form factor Fy, (Q?) with effects of
transverse momenta of the meson constituents on the one-
gluon exchange hard scattering amplitude T, and on the
distribution amplitude, including the Sudakov form factor
and unconventional helicity components (h, +h, =+1) of
the meson wave-function, has been computed in [6-8].
Another source of contributions to the form factor
Fu (Q?) is the power-suppressed corrections, which in the
present experimentally-accessible regime of momentum
transfer (Q? ~a few GeV?), may play an important role

in explaining the experimental data. In order to estimate these
corrections in [9] and [10], the running coupling constant
method and infrared matching scheme have been used.

In this letter we calculate the hard-scattering e.m. form
factor of the kaon using the running coupling constant
method and the mesons DAs, recently obtained in [11] in the
“naive non-abelianization” (NNA) approximation.

2. It is well known that at large momentum transfer the

meson M electromagnetic form factor Fy, (Qz) is given by
the expression [1]

(1

[4,9,10,12]. For the factorization scale yé a natural choice is
sz =Q7 which eliminates the logarithms of Q?/u?. In

Ref.9 the renormalization scale ,ué has been chosen as

mr =([1-xN1-y)Q%,  m =xyQ7, @)
and in [10] as
pr=0-x)Q%/2, m=xQ*/2. (3

Equation (2) describes the case with two running
variables (X, y), whereas in (3) we freeze one of the
variables by taking its mean value. In (3), we take
<y> =1/2, X is the running variable. Alternatively, one can

take <X> =1/2,and VY as the running variable or the mean

value of the sum of the form factors, calculated using both of
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these possibilities; due to symmetry of Ty and (1) with
respect to X, Y, one will obtain the same result. In all cases
the choice of yé , /,_Ié depends on the Feynman diagram for

Ty under consideration. Of course, the second choice, (3),
leaves in the NLO correction some logarithmic terms, but it |

16
Ty (%, ;Q% a5 (1R)) =

7Ce

allows us to compare our predictions with results obtained by
means of the infrared matching scheme [13], and also leads to
better agreement with experimental data [10]. Therefore, we
shall use (3) in our computations.

At the leading order of pQCD, Ty has the following form:

2 as(up) | 1as(ig)

QZ

where Cp =4/3 is the color factor.
3. An important moment in our study is the choice of the
mesons DAs ¢, (X,Qz) in Eq.(1). The meson DAs are

phenomenological model functions, the information about
shapes of which should be taken either from experimental
data, or from nonperturbative calculations. The evolution of
Ou (X,Qz) as a function of the factorization scale Q can be
found by means of pQCD methods [1]. In the literature for
the pion, kaon and p, -meson various model DAs have been
proposed [2,14,15]. They have been obtained using QCD
sum rules method. But from the very beginning these DAs,
enhanced in the endpoint region (for example, the Chernyak-
Zhitnitsky DA of the pion) have been met with criticism [16],
intensified recently in the light of new experimental data on

the transition form factor F,W (Qz) reported by CLEO
collaboration [17]. In [18] and [19] the authors have |

b (6,Q2 )= i [x(1 - x)]“"’iobn (@), (@ Je2/ > (2x 1),

where {Cs/zm (2X—1)} are the Gegenbauer polynomials,
An(as) are normalization constants, D, (Qz) define the

evolution of @), (X,Qz) with Q% and & = g (Q2 )ﬂo /4r .
Here, the Nntakes odd values in the case of the kaon, because
the kaon DA contains an antisymmetric under replacement

2X—1<>1-2x [2]. In (5) fy,
constant, for the kaon it equals to f, =0.112GeV . In

accordance with this normalization of DA and decay constant
f\, , which differs from that of [11], A,(as) are given by
the expression

is the meson M decay

I'(3+2a) n'  3+2a+2n
A = , (6
n(as) V3r(1+a)r(2+a) (2+2a), 2+2a+2n ©
where I’ (Z) is the Euler gamma function, (a)n is the

Pochhammer symbol, (), = [(e +n)/T(a).
In this work we neglect the dependence of @, (X,QZ) on
the factorization scale Q2 , therefore we do not write down

the expression for b, (Q2 ) It is worth noting that (5) |

as(,uz)zm%), By :ll—gnf, B

25

3(1-x)1-y) 3 xy [ @

concluded that these data can be explained by the pion
asymptotic or asymptotic-like DA and that model DA from
[2] (Chernyak-Zhitnitsky DA) disagrees with the data. At the
same time an asymptotic-like pion DA employed for

computation of the electromagnetic form factor F,_ (Qz) in
the hard-scattering approach (1) gives result lying below the
experimental data on F_ Q2 . As it was proven in [9] and

[10], the power-suppressed corrections, estimated using the
running coupling constant method, enhance the “ordinary”
pQCD result approximately by a factor 2 and can help in

solution of problems with F, Q?).

Recently, in [11] the authors have calculated the

contribution of “bubble chain” diagrams to the Brodsky-
Lepage evolution kernel V [X, Yo (Q2 )] in the “naive non-

abelianization” (NNA) approximation and, as a result, have
got new, infrared (ir) renormalon improved DA for the meson

)

and (6) are valid for both even and odd values of n.
4. As it has been emphasized above, here we choose the

renormalization scale ,ué as in (3). But the electromagnetic
form factor (see (1) and (4)) with oy [(1 - X)Qz] (and
as (XQ2 / 2)) suffers from ir singularities associated with the
behavior of ag in the soft regions X —1; 0 . Thus, the
form factor F,, (Qz) can be found after regularization of
g (,quz in this endpoint regions. To solve this problem it is
convenient to express the running coupling constant

aq (/1Q2 /2) in terms of g (Q2 /2), which can be done by
means of the renormalization group equation [20]

__ Qs
l+InA/t

_a3f n[l+InA/t]

2
asiQ*12) 47B, 1+ A/t]

O]

Here, t =47/ fyaq (Q2 /2), g =g (Q2 /2) is the
one-loop QCD coupling constant and £, £, are the QCD
beta-function one- and two-loop coefficients, respectively,
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where N; is the number of quark flavors, A is the QCD

parameter A = 0.2GeV .

For our purposes it is convenient to rewrite the meson DA
in the following form:

0
1+a
13K e

n=

Pu (XQ ) ©)

The explicit expressions of new coefficients K, ((Zs ) can
be found in the Appendix.

Substituting (4), (7) and (9) into (1), performing
integration over X using the inverse Laplace transformations
[21]

00

1 1
— = exp[-u(t+z)u""'du, Rev >0 (10)
(t+2) F(V)!
and
lnt” J.exp ult+2)[1-C-nujdu, (1)
(t+z) 3

where 7 = ln(l - X), and after integration over Yy we find

the following expressions for the e.m. form factor for the
kaon:

2 4
Q2F, (@2 :M{zz K,B2+n+a,l+a)
98, o
x Kdem) U,t)B2+1+a, 1+a—u)du
1=0 0
+ZKnB(2+a,1+n+a)
n=0

o0

I exp

0

4
x> K, tu)R(U,t)B(2 + @, 1+ 1+ —u)du}, (12)

=0
with R(u,t) defined as

By

0

R(u,t)=1--Lu(l-C-Int—Inu).

In (12), B(x,y)=T(x)[(y)/T(x+y) is the Beta
function, C =0.577216 is the Euler-Mascheroni constant.

As it was demonstrated in [9] the integration in (1) in the
framework of the running coupling constant method using the
inverse Laplace transforms allows us to obtain the Borel

transforms B|Q?F,, [u) and the resumed expressions for
2 2

Q*Fy (@7)
The inverse Borel transformation (12) have the infinite

number of infrared renormalon poles at the points
U= N +«a in the Borel plane. Indeed, this is evident from

the following formula for B(c, )

26

(k+a+p)
(k+a)k+pB)

a+ﬁ1—[

and N=1; K+LKk+1+1.

After regularization of these ir renormalon poles in
accordance with the principal value prescription (see Refs. 20
and 22) Eq. (12) became the resumed form factor

[QZ FM (QZ )]res

It is instructive to compare our recent result with its
obtained in the context of the same method, but using the
“ordinary” DA (« =0, in (5)) [9,10],

1) we have the infinite number of ir renormalon poles,
instead of finite one,

2) each infrared renormalon pole in (12) is shifted to a
value o .

B(a.

(13)

It is known [9, 10] that an ir renormalon pole at U = U,

corresponds to a power-suppressed contribution

(A2 /Q? )UO to the form factor. Even if the pole is located at
U=U,+a, its contribution is of order (A2 / QZ)UO /e.
Therefore, our formula (12) take into account the power-
suppressed corrections C (Q2 XAz /Q? )p , p=123,.. to
the meson e.m. form factor QZFM (Qz), the coefficients

CP(QZ) of which depend on the meson DA under

consideration. It is worth noting that the principal value
prescription itself produces the higher twist ir renormalon

X, (QZXA2 / Qz)P which has to be canceled
exactly by uv-renormalon ambiguities of higher twist
corrections to QzFM (Q2

effects and do not estimate &C (Q2 )

5. In this section we compare our result for the kaon

ambiguities

). In our work we neglect these

electromagnetic ff Fy (Qz) obtained in the context of the

running coupling constant method using the ir renormalon
improved (9) and the ordinary DAs with each other, as well

as with Fy (QZ)
approximation. It is worth noting that in this approximation
Fu (QZ) with new DAs (9) can be easily calculated.

Equation (12) together with (13) is our final expression,
which can be used for computation of power-suppressed

found by means of the frozen coupling

corrections to Fy, (Qz) In numerical calculations we have

used N =120 ir renormalon poles in (13); this is enough for
correct estimation of integrals in (12). Our results for the

kaon electromagnetic form factor F, (QZ are depicted in

Figs. 1 and 2. It is interesting to compare ffs found by means
of the ordinary and ir renormalon improved DA. The same
DAs in the framework of the frozen coupling approximation
lead to predictions shown also in Fig.1. In this approximation
the ir renormalon effects reduce the perturbative QCD

contribution to Fy (Qz) The

Fq (Qz) found by means of different model DAs are plotted
in Fig.2.

kaon electromagnetic ff
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Fig. 1. The kaon electromagnetic form factor F (Qz ) asa

function of Q 2 All curves are found using the
asymptotic DA. Curves 1, 2 correspond to ff obtained
using the running coupling constant method; curve (1) —
by means of infrared renormalon improved DA, curve
(2) — using the ordinary DA. Curves 3 and 4 describe ff
calculated in the framework of the frozen coupling
approximation, with (curve 3) and without (curve 4) ir
renormalon corrections.

Appendix

The coefficients K, (as ) of DA in (9) are given as

gl

0z 7

0e

04r

0 2 4 6 2 10
CREA

Fig.2. The kaon em formfactor F, (Q2 ), computed in the

context of the running coupling constant method and ir
renormalon improved DAs vs Q°. Curve 1 is found using
the asymptotic DA, curve 2- by means of the Chernyak-
Zhitnitsky DA, curve 3 corresponds to DA with

parameters by =1, b, = 0.1, curve 4 —to DA with

parameters by =1, b, =-0.2.

Kolas)= A (as)—b A (ag N3 +2a)+b,A (o N2+ a)3+2a)-

—%b3 A )2+a)3+2a)5+2a)+

+ éb4 A, (as )3+ 2a)5+ 2a)[1 + %(3 +2a )7+ 205)} ,

K, (as)=2bA (as X3 +2a)-2b,A, (as )3 +2a)5+2a)+
+ 20, A (s )3+ )3+ 2a )5 + 2ax) -

—§b4A4(as N3+ a)3+2a)5+2a)7+2a),

K, (as)=2b,A, (a3 +2a)5+2a)- 20, A, (ag (3 +2a )5+ 2a )7 + 2a) +
+2b,A, (o N4+ )3+ 2a)5+2a)7+2a),

K, (ars ) = §b3A3(aS N3+ 2a )5+ 2a)7 +2a)-

_§b4A4(as Y3+ 2a)5 + 20 {7 +2)9 + 2a),

K,(as)= §b4A4 (as Y3+ 2a)5+2a)7+2a)9+2a).
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Y.V. Mommodova

“ZOIF QEYRI-ABELIZASIYA” YAXINLASMASINDA MEZONLARIN PAYLANMA FUNKSIYALARI VO
Fx (Qz) -9 USTLU DUZOLISLOR

isdo kaonun Fy(Q?) elektromagnit formfaktoruna doyison qarsihigli tosir sabiti iisulu gorgivesindo iistlii diizelislor qiymotlondirilmis,
hesablamalar zaman “zsif qeyri-abelizasiya” yaxinlasmasinda tapilmig paylanma funksiyasindan istifado olunmusdur. Alinmis noticalor
“adi” paylanma funksiyas: vo deyisen qarsiliqh tesir sabiti, eloco do fikse olunmus qarsiliqli tesir sabiti tisulunun va diger model paylanma
funksiyalarinin kdmayi ile tapilmis naticelerle miiqayise olunmusdur.

E.B. MamenoBa

®YHKIIAU PACTIPEIEJIEHUSI ME3OHOB B IIPUBJIWKEHUN «HAUBHOM HEABEJIN3AIIAN» U
CTENEHHO-ITIOJABJIEHHBIE IONTPABKU K F, (Q2 )

B paGoTe OLCHEHBI CTEMCHHO-TIONABICHHBIE TIONPABKH K IEKTPOMAarHATHOMY $hopM dakTopy Fx(Q?) KaoHa, MOTyYeHHOr0 ¢ TOMOIIBIO
MeTofa Oerymiedl HOCTOSHHOW B3aMMOJCHCTBUS. B BBIUMCICHHSX HCIIONb30BaHA (YHKIUS paclpeneleHHs ME30HOB B IPUOIMKEHHU
«HaWBHOHM HeaOenm3anumy». [lomydeHHbIE pe3ynbTaThl CPABHUBAIOTCS KAaK C Pe3ysbTaTaMH, ITOJYYEHHBIMH C NOMOIIBI0 OObIYHBIX OP 1
MeTona Oerymieil NOCTOSHHOW B3aMMOJCHCTBHS, TaK M C MCHOJNB30BaHMEM IPHOIMKECHHS (UKCHPOBAHHON HOCTOSHHOW M Pa3IHMYHBIX
MOJIeTBHBIX (QYHKIHN pactpeieseHus..
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