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The discrete symmetry transformation method has been applied for non-abelian conformal affine Toda models.

1. Within the integrable models in 1+1 dimensions, the
investigation of the different Toda Field Theories has recent-
ly received a lot of attention. According to their underlying
algebraic structure, they can be divided into three categories;
each one exhibiting nice characteristic properties. First,
associated to the finite simple Lie algebras, there are the
Conformal Toda models, which are conformally invariant
1+1 field theories. Even more, they permit the construction of
extensions of the Virasoro algebra including higher spin
generators, namely W-algebras. The second class of theories
are the Affine Toda models, based on loop algebras, which
can be regarded as a perturbed Conformal Toda model where
the conformal symmetry is broken by the perturbation while
the integrability is preserved [1]. One of their main properties
is that they possess soliton solutions. These two classes of
models are called abelian or non-abelian referring to whether
their fields live on an abelian or non-abelian group [2, 3, 4,
5]. Finally, the conformal symmetry can be restored in the
abelian Affine Toda models just by adding two extra fields
which do not modify the dynamics of the original model; one
of these fields is a connection whose only role is to imple-
ment the conformal invariance. These are the so called
Conformal Affine Toda models [6, 7], and they are based on
a full Kac-Moody algebra; moreover, they are integrable [§],
and have soliton solutions [9]. In fact, many properties of the
Affine Toda models can be more easily understood by consi-
dering them as the Conformal Affine Toda models with the
conformal symmetry spontaneously broken.

At the same time the problem of constructing of the
solutions of self-dual Yang-Mills (SDYM) model and its
dimensional reductions, the one dimensional WZNW model
in our case, in the explicit form for arbitrary semisimple Lie
algebra, rank of which is greater than two, remains important
for the present time. The interest arises from the fact that
almost all integrable models in one, two and (1+2)-
dimensions are symmetry reductions of SDYM or they can
be obtained from it by imposing the constraints on Yang-
Mills potentials [10-27].

Two effective methods of generating of the exact solu\

9(x,.x ) > g (x )alx,.x ), alx..x )= a(x,.x )gr(x.)

tions, the Riemann Hilbert Problem formalism [20] and the
discrete symmetry transformation method [22], have been
applied to Toda like systems. This work is devoted to con-
struct a group theoretical background of earlier considera-
tions.

The two-loop WZNW model was introduced in [6] as the
generalization of the ordinary WZNW model to the affine
case. Its equations of motion are given by

o0.fag’)=0 ; ale,aa)-0

where 0, are derivatives with respect to the light-cone va-
riables X, =X+t, and @ is an element of the group G
formed by exponentiating an untwisted affine (real) Kac-
Moody (KM) algebra G.lts generators T,", D and C satisfy
the commutation relations

[Tama Tan: facb -I—Crmn + rT'|Cga.b5m+n,0 (2.2)

o, tr|=mTr, [cD)=lc.Tr=0 @3
where fg are the structure constants of a finite (real) semi-
simple Lie algebra G, n and m are integers, and g, is the
Killing form of G, i.e., g, =Tr(T,T,), T, being the gene-
rators of G. The non-degenerate bilinear form of G is de-
fined as

T = Omino (T, Ty),  Tr(C,D)=1

Tr(C,T,")=Tr(D,T,") =0 24)

and we will use the same notation, Tr, for both the Killing

form of G and the bilinear form of G.
2. The two-loop WZNW model is invariant under left and
right translations

2.5)

The corresponding Noether currents are the components of 6_@@‘1 and g‘la .0, and they generate two commuting copies of

the so called two-loop Kac-Moody algebra, defined by the relations

92 38 (Y)|= 15 3T (00X~ y)+ Gapdm_n (kB (x— y)+ MIC () (x~ y))

[9°(x). 32(y)]= mI(y)a(x - )
l38(x), 3°(y)|= ko,a(x-y)
[9°(x), a7 (y)|= 0

(26)
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The left and right currents satisfying the above relations are related to the group element g in eq.(2.1) by

Falc)=kg12,0= 3 3 a™IR0 T + IR 0x)C + I, D

ab n=—ow

AL )=k g7 = 3 g®In T+ 3P(x )C+IS(x)D

ab n=—w

where ga' is the inverse of the Killing form g,, defined above. The different meaning of the two central extensions in

eqs.(2.6)-(2.9) algebra is clarified by expressing the algebra as

[Tr(UF(x), Trv F(y)]=Tr([U,VIF(x))a(x -

where U,V are two elements of the Kac-Moody algebra
G,F is either Fror F_, and Tr is the invariant bilinear
form of G.

Consider now a gradation of the Kac-Moody algebra G

G =®G, (2.13)

1]

with

G.. G, |G (2.14)

S+r

The reduction presented in this section does not require that
this gradation is integer; it just needs that the grades s take
zero, positive and negative values, i.e.,

(2.15)

with |

K.=N"'6.gg'N=N"6_N+6_BB'+Bo_MM'B™'

Kr=Mg'o,gM"'=B"'N'9,NB+B'9,B+0,MM "

Although the quantities K, ,gr are not chiral, they have a
simpler structure than the currents and will be very useful in
what follows. We will reduce the two-loop WZNW model by
imposing constraints not directly on the currents but on
K|, r - We impose the constraints

B (No,NJB = A, (2.22)

B@O_MM B =A (2.23)

where A, are constant elements of éﬂ . These constraints
reduce the two-loop WZNW model to a theory containing
only the fields corresponding to the components of B and to
the components of Nand M associated to the generators
whose grade is <| and > respectively.

To obtain the equations of motion for such model one notices

that the constraints (2.22) and (2.23) imply that |

2
24_ Zi_
or or
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(2.10)
(2.11)

y)+KTr(UV)a,48(x-y) (2.12)
G, =®G G.=0G 2.16

" s0 o s ° 2.16)

We now consider those group elements that can be writ-
ten in a “Gauss decomposition” form

g=NBM G (2.17)

where N,Band M are group elements formed by exponen-
tiating elements of G, , G, and G_ respectively.

Using eq.(2.17), we can write the equations of motion
(2.1)as

[H.IH. f]] =20 X7, [ X", f]] -2 X" ,[ X", f]] +2[[§—H,f],[x*,f]] =0

0 Kg=|Kg, oMM 2.18)
0,K, =|K_,N"a,N] 2.19)
where we have introduced
(2.20)
(2.21)
N6, NeG (2.24)
@-MMT'eG, (2.25)
Therefore the only terms of zero grade on the right hand
side of (2.19) are coming from
A N"o,N]=|A . BAB™|. So we get
0,088 =|a,BAB] (2.26)
which can also be written as
0_(879,B)=-|A,.B"'A_ B 2.27)

These are the equations of motion of what we call the genera-
lized non-abelian conformal affine Toda models.
3. The one dimensional reduction of self duality equa-

tions obtained in [20] are the equations for the element f |
taking values in the semisimple algebra,

3.1)
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Here H,X™ are generators of A1 (SL(2,C) algebra

X, X |= Hy[H, X |= 22x
embedded to gauge algebra in the half-integer way.

Let’s rewrite (3.1) in the equivalent form:
1,0 1.0 _
—(—+H)-[X", fl,-=[=—-H, f]+ X" ]-
[2 ( P )1 ] 5 [ P ] 1
—l[i—H, f1+ X =0
2or
This equation after changing the variable t = Inr has the

following form

o 1 of 1

—+—H-[X", fl,-—+—=[H, f]+ X" ]-

[8t > [ ] at+2[ 1+ X7]

o 1 (3.2)

——+—[H,f]+ X" =0

ot 2

Introducing the notation

F M LHL e %o o 33

=e —_ 4 — . + e 5 .
(at 2[ ] D (3.3)

1
~Ht
multiplying (2) from the left side by €2 and from the right
Lt
side by e 2, we obtain

oF

Due to the evident equality

Lt Dt

e2 X'e?2 =¢gX*

the last equation can be rewritten in a form

%—et[[x*,ﬁ,ﬁ]ﬁ:o , (3.4)
where

L e

f=e2 fe?2

In terms of these notations we have from (3.3) the follow-
ing expression
of
-——+
ot

F- [H,f]+ X e'=0

Let’s introduce the notation

41

Then (3.4) has a form

~

%Jr[A,F]:O : (3.5)
where A=—¢€'[X", f].

The equation (5) is one-dimensional evolution equation
defined by Lax pair operators and it is one of the principal
criteria of equations integrability.

From the presentation (3.5) it is followed that

0
—spF" =0, for ¥vn
6tsp

and solution of the equations can be found in a form

F =g, (3.6)

where @(t) takes values in the corresponding Lie group and
Fo=F_,-

From equation (5) and presentation (6) it is directly fol-
lowed the expression for the operator A:

_ 0
A=glp™ (¢ :E“’) (3.7)

Let’s consider the commutator of F with X :

[X*,F]= [x+,x—]—et%[x+,f~]+et[x+,[H,F]] -

. 0

=H -¢ E[x*, f1-2e'[X*, 1+ € [X*,[H,f]]=

H ‘%(e‘[x*,ﬂ)—e‘[x*, Fl+[H.e X", 1.

Taking into account (3.6) and (3.7) the last expression can
rewritten in a form

(X", 0Fp ' 1=H - (¢ 0™ =90 97" +[H,¢' p7'1.

Making the substitution ¢ = thq and introducing a new

variable 7 = €', we have

2.

-1 — F —l’x+
7.5, 9 )=[aF,q ]

(3.7)

Equation (3.8) is one-dimensional generalized non-
abelian conformal affine Toda model as it is obviously seen
from eq. (2.26).

The next question how to obtain from this solution new
solutions using the discrete symmetry transformation:
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Pl
f+
0 +
a(;: —(f°— F°+z)—ah(;f
VA
aFO_(fO ) g0 f
0Z 0Z
ag =(f°—F°+z)2—8h(;f
zZ
OF" _(t0_poygp0inf
0z 0z

Here f(f*,f° f7)is considered to be a known solution

of equation (3.7) and F(F*,F° F)is one to be deter-
mined. The discrete symmetry transformation is to apply at

C2FH(FO—FO

—2fT(f0—F°

6f°

62

8f°

3.8

82 6.8
0

+ Z)af_ —

(f)

6f°

LA 28f‘

(f7)

I . . .. .
first to two-dimensional generalization of equation (3.7) and

then one-dimensional solution is to obtain by reduction.
The concrete realization of the solution will be derived in
next publications.

T.Eguchi and S-K.Yang, Phys. Lett. 224B, 1989, 373-

378; T.J. Hollowood and P. Mansfield, Phys. Lett.

226B, 1989, 73-79.

AN. Leznov and M.V. Saveliev, Commun. Math. Phys.

89, 1983, 59-75; Theor. Mat. Phys. 54, 1983, 209-217.

A.N. Leznov and M.V. Saveliev, Group Theoretical Me-

thods for Integration of Non Linear Dynamical Systems;

Progress in Physics 15 (Birkhauser, Basel, 1992).

J.L. Gervais and M.V. Saveliev, Phys. Lett. 286B ,1992,

271.

J. Underwood, Aspects of non abelian Toda theories,

hep-th/9304156.

H. Aratyn, L.A. Ferreira, J.F. Gomes and A.H. Zimer-

man, Phys. Lett. 254B, 1991, 372-380

[7] O.BabdonandL. Bonora, Phys. Lett. 244B (1990)220-226.

A. Aratyn, L.A. Ferreira, J.F. Gomes and A.H. Zimer-

man, Phys. Lett. A, hep-th/9308086.

H. Aratyn, C.P. Constantinidis, L.A. Ferreira, J.F.

Gomes and AH. Zimerman, Nucl. Phys. B406

[FS1(1993)727-770

R.S Ward, Phil. Trans. R. Soc. Lond.A315, 451 (1985);

Lect. Notes Phys., 1987, 280, 106; Lond. Math. Soc.

Lect. Notes Ser., 1990, 156, 246.

[11] LJ. Mason and G.A. J.Sparling. Phys. Lett.,
A137,29;J. Geom. and Phys., 1992, §, 243.

[12] S Chakravarty, M.J. Ablowitz and P.A. Clarkson. Phys.

Rev. Lett., 1990, 1085.

[10]

1989,

[13] I. Bakas and D.A. Depireux. Mod. Phys. Lett.,
A6, 399.

[14] M.J. Ablowitz, S Chakravarty and L.A. Takhtajan.
Comm. Math. Phys., 1993, 158, 1289.

[15] T.A. Ivanova and A.D. Popov. Phys. Lett., 1992, A170,
293.

[16] LJ. Mason and N.M.J. Woodhouse. Nonlinearity 1,
1988, 73; 1993, 6, 569.

[17] M. Kovalyov, M. Legare and L. Gagnon. J. Math. Phys.,
1993, 34, 3425.

[18] M. Legare and A.D. Popov. Pis'ma Zh. Eksp. Teor. Fiz.,
1994, 59, 845.

[19] AA. Belavin and V.E. Zakharov. Phys. Lett., 1978, B73,
53.

[20] AN. Leznov and M.A. Mukhtarov. J. Math. Phys., 1987,
28 (11), 2574; Prepr. IHEP, 1987, 87-90. Prepr. ICTP
163, Trieste, Italy, 1990; J. Sov. Lazer Research, 13 (4),
284, 1992.

[21] A.N. Leznov. IHEP preprint-92/87, 1990.

[22] A.N. Leznov, M.A.Mukhtarov and W.J.Zakrzewski. Tr. J.
of Physics 1995, 19, 416.

[23] M.A.Mukhtarov. Fizika, 2002, v. 5, N 2, 38

[24] M.A.Mukhtarov. Fizika, 2002, v. 5, N 3, 3

[25] V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys.

B247, 1984, 83.

[26] F. Bastiandlli, Nucl. Phys. B361, 1991, 555.

[27] A.A. Tseytlin, Nucl. Phys. B411, 1994, 509.

1991,

M.A. Muxtarov

TODUN QEYRIi-ABEL KONFORM AFFIN MODELININ HAMILTON REDUKSIiYASI

Todun geyri-abel konform Affin modeli {igiin diskret simmetriyanin doyisma metodu totbig edilmigdir.
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