УДК 621.315.592

ВЛИЯНИЕ АНИЗОТРОПНОГО ДАВЛЕНИЯ НА КРЕМНИЕВУЮ МОП-СТРУКТУРУ

ЛЮТФАЛИБЕКОВА А.Э.

ОКБ Космического Приборостроения АНАКА, г. Баку

Необходимость использования в современной аппаратуре контроля экологических параметров окружающей среды миниатюрных полупроводниковых датчиков неэлектрических величин, в частности, интегральных преобразователей механических величин, интенсифицировала исследование объемных и поверхностных свойств полупроводников и полупроводниковых приборов под влиянием механических напряжений [1, 2].

Из механических величин чаще других измеряются такие параметры, как давление, сила и ускорение [3-5]. Однако, при производстве микроэлектронных преобразователей не менее важной проблемой является возникновение упругих механических напряжений в процессе проведения высокотемпературных технологических операций, вследствие различия термоупругих постоянных разных слоев многослойной полупроводниковой структуры. Например, известно, что при термическом выращивании окисла на поверхности кремния на границе раздела Si-SiO₂ возникают упругие механические напряжения, зависящие от толщины пленки [6]. Однако роль этих напряжений и их влияние на параметры МОП-структур слабо изучены. Например, в [7] исследовалось влияние механических напряжений на свойства границы раздела Si-SiO₂, но авторы ограничились качественным объяснением механизмов наблюдавшихся явлений в МОПструктурах.

Настоящая статья посвящена исследованию локально анизотропного давления, создаваемого с помощью стальной иглы диаметром 50 мкм, на электрические свойства кремниевых МОП-структур. Образцы изготавливались на кремниевых пластинах КЭФ-1 с плоскостью кристаллографической ориентации (111). Пластины химически обрабатывались и полировались, затем термическим окислением в атмосфере сухого кислорода выращивался окисел толщиной 0,1 мкм. На поверхность окисла вакуумным испарением наносили пленку алюминия толщиной 1 мкм и с помощью фотолитографии создавались электроды МОП-конденсатора диаметром 1 мм. Свойства границы раздела Si-SiO₂ исследовались с помощью измерения высокочастотных вольт-емкостных характеристик (1 МГц) на мосте полных проводимостей Л2-7.

Результаты измерений C-V-характеристик при различных давлениях показаны на рис. 1. Кривая 1 измерена при нулевом давлении. При положительном напряжении на затворе электроны притягиваются к поверхности пластин и образуют вторую обкладку конденсатора с диэлектриком в виде пленки SiO₂, поэтому емкость структуры постоянна. По мере перехода напряжения смещения на затворе в сторону отрицательных значений электроны отталкиваются от границы раздела Si-SiO₂ и емкость расширяющейся области пространственного заряда (ОПЗ) последовательно добавляется к емкости окисла. При этом общая емкость структуры уменьшается, согласно формуле:

$$\frac{1}{C} = \frac{1}{C_0} + \frac{1}{C_s}.$$
 (1)

Одновременно к границе раздела Si-SiO₂ притягиваются дырки и при некотором напряжении смещения на затворе происходит инверсия типа проводимости на поверх-

ности полупроводника с n-типа на p-тип, после чего расширение ОПЗ прекращается и емкость в инверсионной части C-V-характеристики опять становится постоянной. По известной методике интерпретации C-V-характеристик [8], сдвиг кривой относительно оси ординат в точке плоских зон объясняется наличием в окисле положительного заряда Q_0 , обусловленного наличием ионов щелочных металлов, попадающих в окисел во время термического выращивания, который вычисляется по формуле:

$$Q_0 + Q_{SS} = C_0 \Delta U_3^{FB}, \qquad (2)$$

где Q_{SS} - заряд поверхностных состояний, C_0 - емкость окисла, - сдвиг экспериментальной кривой относительно оси ординат в точке плоских зон. При этом емкость плоских зон равна:

$$C_{S}^{FB} = q (e_{S} N_{D} / kT)^{1/2},$$
 (3)

где N_D - концентрация легирующей примеси в полупроводнике, ε_S - диэлектрическая проницаемость полупроводника, T - абсолютная температура, k - постоянная Больцмана.

Для выделения из общего заряда границы раздела заряда поверхностных состояний Q_{SS} находится емкость полупроводника в точке инверсии:

$$C_{S}^{inv} = \left[q\varepsilon_{S}N_{D}/2\left(U_{3}^{inv} - \varphi_{S}\right)\right]^{1/2},\tag{4}$$

где ϕ_S - поверхностный потенциал, принимаемый в точке инверсии равным удвоенному значению уровня Ферми и по формуле (2) вычисляется суммарный заряд границы раздела в точке инверсии. Разность между значениями суммарного заряда на границе раздела Si-SiO₂ в точках плоских зон и инверсии и есть заряд поверхностных состояний Q_{SS}, поскольку заряд ионов щелочных металлов в окисле от изменения напряжения смещения на затворе не меняется.

Вычисления, проведенные для указанных выше параметров МОП-структур, дали следующие значения заряда поверхностных состояний и соответствующей концентрации поверхностных состояний: $1,3\cdot10^{-7}$ Кл/см² и $4,6\cdot10^{11}$ см⁻². с увеличение давления емкость МОП-структуры, как видно из рис. 1, увеличивается в инверсионной части С-V-характеристики и мало изменяется в области емкости окисла, а кривые несколько сдвигаются в левую сторону.

Рис. 1. Вольт-емкостные характеристики МОП-структур при различных локальных давлениях. 1-без давления; 2-10²; 3-2·10²; 4-4·10²; 5-6·10² кг/см²

Следовательно, действие анизотропного давления, оказываемого иглой, вызывает увеличение концентрации носителей у поверхности полупроводника и небольшое увеличение поверхностных состояний на границе раздела Si-SiO₂. Поле упругих механических напряжений приводит к миграции положительных ионов в окисле к границе раздела с кремнием, что влечет за собой горизонтальный сдвиг C-V-характеристик в сторону отрицательных напряжений. Наряду с этим, дополнительный положительный заряд на границе вызывает обогащение поверхности подложки электронами и, как следствие, рост емкости МОП-структуры в инверсионной области. Однако, заряд под давлением, вычисленный для кривой 5 рис. 1, увеличивался всего в два раза, что не объясняет более значительного увеличения концентрации носителей у поверхности кремния.

При деформации полупроводника эффективную ширину запрещенной зоны под давлением можно записать в виде [9]:

$$E_g = E_{g0} - \Delta E_g, \tag{5}$$

где E_{g0} - ширина запрещенной зоны в недеформированном полупроводнике. При давлении иглой величина ΔE_g является сложной функцией координат: в германии она имеет заметную величину в небольшой области пространства под иглой и быстро убывает с удалением от точки приложения силы, а в кремнии, наоборот, максимальная величина ΔE_g на краях области приложения силы, там, где наибольшую величину имеют сдвиговые деформации. Зависимость ΔE_g от силы F, действующей на иглу, вычисленная по упрощенной модели, приведенной в [9], показана на рис. 2.

Рис. 2. Зависимость изменения ширины запрещенной зоны от силы, действующей на иглу. 1-в центре; 2-на краях области приложения силы

В этой модели изменение ширины запрещенной зоны считается равным

$$\Delta E_g = \frac{2F}{2\pi r_0} \frac{\sqrt{r_0^2 - r^2}}{r_0^2 - z^2},\tag{6}$$

где F – сила, r₀ - радиус площади соприкосновения иглы с поверхностью полупроводника, z - глубина, равная 1 мкм, совпадает с кристаллографической осью [111]. Из рис. 2 видно, что изменения ΔE_g по кривой 2 происходят на величину почти 0.1 эВ, что вполне достаточно для значительного увеличения концентрации свободных носителей у поверхности кремния, наблюдавшиеся экспериментально в измерениях C-V-характеристик.

При воздействующей нагрузке $F_{\kappa p}>20$ Г (кривая 5, рис. 1) появлялись необратимые явления, т.е. емкость в инверсионной области не возвращалась в исходное состояние после снятия нагрузки. Это явление, по-видимому, связано с возникновением дислокаций, которые приводят к искажению зонной структуры и появлению в запрещенной зоне дополнительных уровней, на которых происходит захват и рекомбинация носителей. Как было показано в [10], величина механических напряжений 4 кГ/мм² является критической, выше которой могут возникать дислокации. Для проверки этого предположения нами проводилось травление в травителе Сиртла, которое выявило характерные треугольники (рис. 3), соответствующие выходу дислокаций на поверхность, которых не было при силах нагрузки, меньших критической.

Рис. 3. Микрофотография моноучастков кремния с дефектами, возникшими под влиянием анизотропного давления.

Таким образом, проведенные исследования показали, что увеличение концентрации свободных носителей у поверхности кремниевой подложки в МОП-структуре под влиянием анизотропного давления, оказываемого микрозондом, обусловлено не только увеличением положительного заряда в окисле у границы раздела Si-SiO₂, но и уменьшением ширины запрещенной зоны полупроводника. На рис. 4 показана зависимость инверсионной емкости МОП-структуры от давления. Линейный характер изменения емкости дает возможность применения МОП-структур в качестве датчиков давления с частотным выходом, что позволит использовать их для дистанционных измерений.

Рис. 4. Изменение инверсионной емкости МОП-структуры от давления.

- 1. Стучебников В.М. Микроэлектронные датчики за рубежом. -Приборы и системы управления, 1993, №1, с.18-20.
- 2. Годовицын И.В., Парменов Ю.А. Использование поверхностных микромеханических структур для измерения механических напряжений в пленках поликремния -Тезисы докладов 3-й международной НТК «Электроника и информатика - XXI век», Москва, 2000, с.268.

- 3. Соколов Л.В. Полупроводниковые пьезорезистивные датчики давления. Зарубежная электронная техника, 1990, №4, с.68-95.
- 4. Погалов А.И., Панкратов О.В. Микроэлектронные пьезорезистивные акселерометры. -Известия Вузов. Электроника, 2000, №2, с.95-102.
- 5. *Голуб В.С.* датчики ускорений на базе микромеханики и микроэлектроники.-Технология и конструирование в электронной аппаратуре (Одесса),2001, №1,с.31-34.
- 6. *Касимов Ф.Д., Лютфалибекова А.Э.* Расчет упругих механических напряжений в неоднородных полупроводниковых структурах. -Технология и конструирование в электронной аппаратуре (Одесса), 2002, №2, с.13-15.
- 7. *Касимова Ф.Ф., Джавадов Н.Г., Исмайлов Н.М.* Влияние механических напряжений на свойства границы раздела Si-SiO₂. -Труды 6-й международной НТК «Актуальные проблемы твердотельной электроники и микроэлектроники», Таганрог, 1999, с.126.
- 8. Кроуфорд Р. Схемные применения МОП-транзисторов. -М.: Мир, 1970. -188с.
- 9. Поляков А.Л., Шкловская-Корди В.В. Электрические характеристики кремниевых рп-переходов, подвергнутых неоднородной деформации. -В сб.: Физика электроннодырочных переходов и полупроводниковых приборов, Л.: Наука, 1969, с.141-147.
- 10. Касимов Ф.Д., Исмайлова С.А. Исследование механических напряжений в эпитаксиальных датчиках Холла различных конфигураций. -Технология и конструирование в электронной аппаратуре (Одесса), 2001, №1, с.35-37.

SILISIUM MOY-STRUKTURUNA ANIZOTROP TƏZYIGIN TƏSIRI

LÜTVƏLİBƏYOVA A.E.

Silisium MOY-strukturuna lokal anizotrop təzyigin təsiri tədqiq edilmişdir. Göstərilmişdir ki, invers tutumun artması Si-SiO₂ sərhəddində müsbət yüklərin artmasından əlavə qadağan olunmuş zonanın eninin azalması da istirak edir. MOY strukturları tezlik çıxışı olan təzyiq vericiləri kimi istifadə etmək təklif edilmişdir.

INFLUENCE OF ANISOTROPIC PRESSURE ON THE SILICON MOS-STRUCTURE

LUTPHALIBEKOVA A.E.

Influence of local anisotropic mechanical stresses on the silicon MOS-structure was investigated. It was shown, that increasing of capacitance in inversion region of C-V-curve due increasing positive charges at the boundary Si-SiO₂ and decreasing of the silicon band gap. It was suggested to use MOS-structure as sensor of pressure with frequency output.