УДК 621.315.592

СОЛНЕЧНЫЕ ПРЕОБРАЗОВАТЕЛИ НА ОСНОВЕ ИЗОТИПНЫХ ГЕТЕРОСТРУКТУР $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$, ПОЛУЧЕННЫХ МЕТОДОМ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ

АБДИНОВ А.Ш., МАМЕДОВ Г.М., * ГАСАНОВ Г.А.

Бакинский Государственный Университет *Нахичеванский Государственный Университет

Методом электрохимического осаждения изготовлены изотипные гетероструктуры $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$. Изучены зависимости электрических ИХ И фотоэлектрических свойств от режима термической обработки и состава контактирующих пленок с 0 ≤ x ≤ 0.8 и 0.3 ≤ y ≤ 0.9. Показано, что термическая обработка изучаемых структур на открытом воздухе при T_o = 380 - 400°C в течение $\tau_0 = 7$ минут приводит к значительному изменению их основных параметров и характеристик. При оптимальных условиях для структур $In_2O_3/Cd_{0.4}Zn_{0.6}S/CdS_{0.2}Se_{0.8}$ значения фотоэдс и тока короткого замыкания достигают до ~0.48 В и ~5.9 - 6.8 мА/см², соответственно.

Трехкомпонентные полупроводники $Cd_{1-x}Zn_xS$ и $CdS_{1-y}Se_y$ характеризуются разнообразными физическими свойствами, которые делают их подходящими материалами для создания тонкопленочных фотоэлектрических преобразователей энергии солнечного излучения в электрическую (солнечных элементов). В частности, путем выбора оптимального состава и режима термической обработки (TO) этих материалов становится возможным целенаправленно управлять параметрами и характеристиками созданных на их основе гетероструктур [1–5].

Успехи солнечной фотоэнергетики в настоящее время, в первую очередь, эффективности преобразования определяются повышением И снижением себестоимости материалов, используемых для создания солнечных элементов, которые могут найти положительное решение при помощи применения метола электрохимического осаждения [6-9].

В данной работе сообщается о режиме создания и результатах исследований зависимости электрических и фотоэлектрических свойств от состава (значения x и y) и влияния термической обработки солнечных элементов на основе гетероструктур $In_2O_3 / Cd_{1-x}Zn_xS / CdS_{1-y}Se_y$, созданных путем электрохимического осаждения.

Для создания изучаемых солнечных элементов, сначала методом магнетронного распыления мишени из чистого индия в кислородосодержащей атмосфере на поверхность кварцевых подложек осаждались слои In_2O_3 толщиной 1 - 2 мкм, которые одновременно играли роль катода при осаждении пленок $Cd_{1-x}Zn_xS$. Процесс электрохимического осаждения пленок $Cd_{1-x}Zn_xS$ из раствора, содержащего соли кадмия ($CdCl_2$), цинка ($ZnCl_2$) и натрия ($Na_2S_2O_3$), на поверхность In_2O_3 производился в специальном кварцевом сосуде при комнатной температуре. Расстояние между электродами при этом было не более 2 – 3 см. Пленки $Cd_{1-x}Zn_xS$ обнаружили хорошую адгезию по отношению к поверхности In_2O_3 . Потенциал осаждения

контролировался в пределах – 0.4 - 2.5 B, с увеличением которого плотность тока менялась в пределах 7.5–38 мA/см². Состав полученных пленок варьировался в интервале $0 \le x \le 0.8$, а толщина их составляла ~2 ÷ 8 мкм для различных образцов.

После этого полученные слои повторно погружались в химический раствор, содержащий соли кадмия (CdSO₄), натрия (Na₂S₂O₃) и оксида селена (SeO₂). Потенциал осаждения и плотность тока при этом изменялись в пределах – 0.1 – 0.8 В и 12 – 28 мA/см², соответственно. В результате протекшей реакции на поверхности пленок Cd_{1-x}Zn_xS образовывался тонкий (2 ÷ 9 мкм) слой n – CdS_{1-y}Se_y, состав которого варьировался в интервале $0.3 \le y \le 0.9$.

Токовыми контактами служили металлический индий или серебряная паста, омичность контактов проверялась электрическими измерениями. Активная площадь полученных таким способом гетероструктур при оптимальных условиях достигала ~0.5 ÷ 3 см².

Измерения стационарных вольтамперных характеристик (ВАХ) позволили установить, что изучаемые гетероструктуры (ГС) обладают свойствами, характерными для диодных структур-выпрямлением. На рис. 1 приведены характерные кривые стационарных ВАХ изучаемых ГС с различными составами пленок $Cd_{1-x}Zn_xS$ и $CdS_{1-y}Se_y$.

Рис.1. Темновая ВАХ не подвергнутых ТО изотипных гетероструктур $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ при T = 300 K. x: 1-0.4; 2-0.5; 3-0.6; 4-0.65; 5-0.6; 6-0.7y: 1-0.8; 2-0.8; 3-0.8; 4-0.9; 5-0.9; 6-0.9

Оказалось, что пропускное направление при этом реализуется в случае положительной полярности внешнего смещения на пленке $CdS_{1-y}Se_y$. Коэффициент выпрямления для структур $In_2O_3/Cd_{0.5}Zn_{0.5}S/CdS_{0.2}Se_{0.8}$ составляет 800 – 900 при U = 1 В (Рис.1, кривая 2) и постепенно спадает с увеличением х и уменьшением у (Рис.1, кривая 3 – 6), что, по-видимому, связано с увеличением сопротивления контактирующих пленок $n - Cd_{1-x}Zn_xS$ и $n - CdS_{1-y}Se_y$.

ВАХ изучаемых структур при прямом смещении сначала подчиняется экспоненциальному закону, что свидетельствует о преобладании рекомбинационнотуннельного механизма переноса носителей тока через гетероструктуры [10, 11]. При U > (0.7 - 0.92)В для различных структур ВАХ переходит на линейный участок. Наблюдение линейного участка прямой ветви ВАХ позволяет определить токовое напряжение отсечки $U_d = (0.46 - 0.79)$ В для структур с различными значениями х и у. Начиная с U \geq (1–1.4)В, (в зависимости от значения х и у) ВАХ изучаемых структур при прямом смещении подчиняется степенному закону I ~ Uⁿ (где n \geq 2), что скорее всего может объясняться инжекцией носителей тока в CdS_{1-v}Se_v [11].

При обратном смещении в области U \leq (1 \div 6) B, BAX всех изучаемых ГС подчиняется линейному закону (I ~ U), а при U \geq (3 \div 7) В наступает мягкий пробой.

На рис. 2 приведены характерные кривые вольтфарадных характеристик (ВФХ) изучаемых ГС с различными значениями х и у при 300 К. Как следует из этого рисунка, для ГС $In_2O_3/Cd_{0.5}Zn_{0.5}S/CdS_{0.2}Se_{0.8}$ величина диффузионной контактной разности потенциалов U_D составляет ~0.54 В (Рис.2, кривая 1), а для ГС $In_2O_3/Cd_{0.4}Zn_{0.6}S/CdS_{0.2}Se_{0.8}$ оно ~0.61 В (Рис.2, кривая 2). Наблюдаемое изменение U_D с увеличением значений х и у, может объясняться изменением ширины запрещенной зоны пленок $Cd_{1-x}Zn_xS$ и $CdS_{1-y}Se_y$ [12, 13].

Рис.2. ВФХ не подвергнутых ТО изотипных гетеропереходов $In_2O_3 / Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ при T = 300 K. x : 1 - 0.5; 2 - 0.6; 3 - 0.6; 4 - 0.7; 5 - 0.8y : 1 - 0.8; 2 - 0.8; 3 - 0.9; 4 - 0.9; 5 - 0.9

Анализ вольтамперных и вольтфарадных характеристик изучаемых ГС показывает, что найденные из этих измерений значения U_D с увеличением значений х и у приближаются, а иногда даже совпадают. Это говорит о том, что электрические диполи на границе раздела гетеропереходов уменьшаются, с увеличением значений х и у, хотя постоянные кристаллических решеток пленок $Cd_{0.4}Zn_{0.6}S$ и $CdS_{0.2}Se_{0.8}$ отличается почти на 9% [14, 15].

При освещении ГС $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ фотоактивным светом обнаруживается фотовольтаический эффект. Знак фотонапряжения при этом

оказывается не зависящим от геометрии их освещения и сохраняется во всей области фоточувствительности изучаемых ГС. Это обстоятельство позволяет предполагать, что единственной активной областью в таких структурах, является гетерограница контактирующих полупроводников. Для ГС с различными составами пленок, значение фотоэдс и тока короткого замыкания при освещенности ~1500 лк и температуре 300 К, составляют ~(0.22 - 0.43) В и ~(0.58 - 0.96) мА/см², соответственно.

На рис. 3. представлены характерные кривые спектральной зависимости тока короткого замыкания в не подвергнутых ТО гетероструктурах $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ при температуре 300 К. Как видно из этого рисунка, при освещении ГС со стороны $CdS_{1-y}Se_y$ для всех изучаемых структур длинноволновый край фоточувствительности определяется межзонным переходам в пленках $CdS_{1-y}Se_y$ (hv₁ = 1.88 ÷ 2.43 эВ для различных значений х и у).

Рис. 3. Спектральное распределение тока короткого замыкания в неотожженных изотипных гетеропереходах $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ при T = 300 K.

При освещении со стороны In_2O_3

x: 1 - 0.35; 2 - 0.4; 3 - 0.5; 4 - 0.5; 5 - 0.5; 6 - 0.6y: 1 - 0.2; 2 - 0.3; 3 - 0.5; 4 - 0.6; 5 - 0.7; 6 - 0.8

При освещении изучаемых ГС $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ со стороны In_2O_3 длинноволновый край фоточувствительности смещается в сторону относительно коротких длин волн спектра. При этом резко возрастает полная ширина спектрального распределения тока короткого замыкания (Рис.3, кривые 1 – 6). Следует отметить, что наиболее широкополосная фоточувствительность достигается в гетероструктурах, полученных при более малых толщинах (5 мкм) пленок $Cd_{1-x}Zn_xS$ (Рис.3, кривая 6).

С целью повышения фоточувствительности созданных солнечных элементов в работе исследовано также влияние ТО на фотоэлектрические свойства изучаемых ГС. Термическая обработка проводилась на открытом воздухе при температуре $T_o = 100 - 500^{\circ}$ С. Длительность процедуры при этом составляла $\tau_o = 2 - 12$ мин.

На рис. 4 представлены характерные кривые спектрального распределения тока

короткого замыкания для ГС $In_2O_3 / Cd_{0.4}Zn_{0.6}S / CdS_{0.2}Se_{0.8}$, до и после ТО. Как видно из рисунка, после ТО спектральное распределение тока короткого замыкания изучаемых ГС значительно изменяется-спектр расширяется и наблюдается увеличение фототока почти в 5–6 раз. При увеличении температуры отжига от 100 до 200°С (при $\tau_0 = 5$ мин) фоточувствительность пленок $CdS_{1-y}Se_y$ резко увеличивается, а фоточувствительность пленок $Cd_{1-x}Zn_xS$ (hv₂ = 2.6 ÷ 3.3 эВ) остается почти неизменной (Рис. 4, кривая 2). Дальнейшее увеличение температуры отжига до 380 ÷ 400°С приводит к резкому увеличению фоточувствительности гетероструктур в широком спектральном диапазоне 0.354 ÷ 0.7 мкм (Рис. 4, кривая 3). Долговременный отжиг ($\tau_0 \ge 15$ мин) ГС при температурах выше 450°С приводит к ухудшению параметров и наконец разрушению изучаемых структур (Рис. 4, кривая 4–6).

Рис. 4. Спектральное распределение тока короткого замыкания в изотипных гетеропереходах $In_2O_3/Cd_{0.4}Zn_{0.6}S/CdS_{0.2}Se_{0.8}$ при T = 300 K, до (1) и после TO (2-6). T_0 , °C: 1 – 0; 2 – 200; 3 – 400; 4 – 420; 5 – 470; 6 - 480 τ_0 , мин: 1 – 0; 2 – 5; 3 – 7; 4 – 9; 5 – 15; 6 - 18

Следует отметить, что при рассмотренных выше условиях, значение тока короткого замыкания изучаемых ГС немонотонно зависит не только от температуры, но и от длительности ТО. Для термически-обработанных на воздухе при $T_o = 380 - 400$ °C в течение $\tau_o = 7$ мин гетероструктур $In_2O_3/Cd_{0.4}Zn_{0.6}S/CdS_{0.2}Se_{0.8}$, максимальное значение фотоэдс и тока короткого замыкания, при освещенности 1500 лк и температуре 300 К, составляют ~0.48 В и ~5.9 – 6.8 мА/см², соответственно.

Наблюдаемые изменения после ТО в параметрах ГС $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ объясняются возможностью электронно-молекулярного взаимодействия поверхности изучаемых структур с кислородом [16, 17].

Следует отметить, что параметры подвергнутых ТО изотипных ГС $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$, полученные нами методом электрохимического осаждения, не подвергались деградации при длительном хранении их (более 8–9 месяцев) в условиях комнатной температуры.

Таким образом, из проведенных исследований следует, что путем выбора оптимального состава для пленок $Cd_{1-x}Zn_xS$ и $CdS_{1-y}Se_y$ и режима для TO, можно изготовить фоточувствительные гетероструктуры $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ с целенаправленно управляемыми параметрами, которые могут быть успешно использованы в солнечной энергетике.

- 1. Shirland F.A., Choudhury P.R.// Rep. Prog. Phys. –1978.- № 41.-p.1839-1879.
- 2. Gupta P., Chaudhuri S., Pal A.K.// Phys. D: Appl. Phys. –1993. № 26.-p.1709-1713.
- 3. Hassan G.E., Ramadan M.R., El-Labani H., Badawi M.H., Aboul-Enein S., Carter M.J., Hill R.// Semicond. Sci. Technol. –1994. № 9.-p.1261-1264.
- 4. Nair S.M., Nair P.K., Zingaro R.A., Meyers E.A.// Proc.SPIE. –1995. № 2531. -p.254-264.
- 5. *Klenk R., Schock H.W.//* Proc.SPIE.– 1994. № 2255. –p.822-833.
- 6. Jain V.K., Kulshreshtha A.P.// J. Phys. D: Appl. Phys. –1981. № 14.-p.2327-2331.
- 7. Ilieva M., Malinovska D.D., Ranguelov B., Markov I. // J. Phys.: Condens. Matter. -1999. № 11.-p.10025-10031.
- 8. Jayakrishnan R., Nair J.P., Kuruvilla B.A., Kulkarni S.K., Pandey R.K.// Semicond. Sci. Technol. –1996. №11.-p.116-123.
- 9. Pandey R.K., Rooz A.J.N.// J. Phys. D: Appl. Phys. –1986. № 19. -p.917-923.
- 10. Абдинов А.Ш., Кязым-заде А.Г., Мамедов В.К., Тагиров В.И.// ФТП. –1980. №14. -с.605-607.
- 11. Бакуменко В.И., Ковалюк З.Д., Курбатов Н.Л., Тагаев В.Г., Чишко В.Ф.//ФТП. -1980.- №14. -c.1115-1119.
- 12. *Razykov T.M., Kadyrov B.Kh., Khodyaeva M.A.* //Phys.Stat.Sol.(a).-1985. №91. -p.87-91.
- 13. Ермолич И.Б., Витриховский Н.И., Георгиева И.И., Матвиевская Г.И., Павелец А.М., Шейнкман М.К.//ФТП.- 1981. №15.-с.907-914.
- 14. Поляков В.И., Перров П.И., Ермаков М.Г.//Письма в ЖТФ.- 1981. № 7. -с.623-627.
- 15. Loher T., Tomm Y., Pettenkofer C., Klein A., Jaegermann W.//Semicond. Sci. Technol. –2000. №15.-p.514-522.
- 16. Джафаров М.А.//Неорганические материалы.-1999. № 5.-с.1307-1312.
- 17. Abdinov A.Sh., Jafarov M.A., Mekhtiev N.M., Mamedov H.M.// Proc. SPIE.-2000. - № 4340.-p.107-111.

ELEKTROKİMYƏVİ ÇÖKDÜRMƏ ÜSULU İLƏ ALINMIŞ $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ İZOTİP HETEROKEÇİDLƏRİ ƏSASINDA GÜNƏŞ ÇEVİRİCİLƏRİ

ABDİNOV Ə.Ş., MƏMMƏDOV H.M., HƏSƏNOV H.Ə.

Elektrokimyəvi çökdürmə üsulu ilə izotip $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ heterokeçidləri hazırlanmış, onların elektrik və fotoelektrik xassələri termik emal rejimindən və kontakta gətirilmiş nazik təbəqələrin $0 \le x \le 0.8$ və $0.3 \le y \le 0.9$ tərkibindən asılı olaraq öyrənilmişdir. Müəyyən olunmuşdur ki, öyrənilən strukturların açıq havada $T_0 = 380 - 400^{\circ}S$

temperaturda τ_o = 7 dəqiqə ərzində termik emalı onların əsas parametr və xarakteristikalarını nəzərəçarpacaq dərəcədə dəyişdirir. Belə ki, optimal şəraitdə $In_2O_3/Cd_{0.4}Zn_{0.6}S/CdS_{0.2}Se_{0.8}$ strukturları üçün boş gediş gərginliyi və qısa qapanma cərəyanı uyğun olaraq ~0.48 V и ~5.9 – 6.8 mA/sm² qiymətlərini alır.

SOLAR CONVERTERS ON THE BASIS OF ISOTYPIC $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ HETEROSTRUCTURES PREPARED BY THE METHOD OF ELECTROCHEMICAL DEPOSITION

ABDINOV A.SH., MAMEDOV H.M., HASANOV H.A.

 $In_2O_3/Cd_{1-x}Zn_xS/CdS_{1-y}Se_y$ heterostructures are prepared by the electrodeposition method and their electrical and photoelectrical properties were studied as a function of heart-treatment condition and of composition ($0 \le x \le 0.8$ and $0.3 \le y \le 0.9$) of the contacted films. The results obtained indicate that annealing in air at $T_a = 380 \div 400^{\circ}$ C for $\tau_a = 7$ min leads to significant changes in the base photoelectric parameters and characteristics of the heterostructures. Under optimal conditions a maximal values of open-circuit-photovoltage and short-circuit-photocurrent for heterostructures $In_2O_3/Cd_{0.4}Zn_{0.6}S/CdS_{0.2}Se_{0.8}$ reached ~0.48 V and ~5.9 \div 6.8 mA/cm², respectively.