УДК 621. 311

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПОТЕРИ ВОЗБУЖДЕНИЯ СИНХРОННЫМ ГЕНЕРАТОРОМ БЛОКА ПГУ-400 МВт НА УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМЫ

ГУСЕЙНОВ А. М., ОДЖАХВЕРДОВА А. С.

АзНИИЭ и ЭП

Рассматриваются процессы в синхронном генераторе нового блока ПГУ-400 МВт фирмы "MITSUBISHI" при потере им возбуждения и оценивается их влияние на устойчивость энергосистемы.

Потеря возбуждения синхронным генератором (с.г.), как известно, возникает по причине технических нарушений в сложной системе возбуждения. Она сопровождается возникновением небаланса мощности на валу с.г. по причине снижения электромагнитной мощности. Вследствие инерционности лишь через некоторое время вступает в действие автоматический регулятор скорости (АРС), уменьшая впуск пара в турбину. Сразу при потере возбуждения с.г. входит в режим потреблении реактивной мощности. Потребляемая из энергосистемы (ЭС) реактивная мощность поддерживает выдачу некоторого сниженного значения активной мощности. Однако, это уже происходит в режиме колебания с некоторым скольжением. Наступает асинхронный режим.

Асинхронный режим с.г., потерявшего возбуждения, может оказать влияние на устойчивость работы как соседних с.г. станции, с.г. близлежащих станций, так и ЭС в целом. Степень этого влияния зависит от значимости с.г. в системе, его мощности, параметров, схемы включения в систему и др., что предопределяет необходимость исследования влияния потери возбуждения на с.г. блока ПГУ-400 МВт фирмы "МІТSUBISHI", включенного в Азербайджанскую ЭС в 2002 г. на "Шимал" ГРЭС.

Параметры с.г. блока ПГУ-400 МВт:

$P = 403 \text{ MB}_{\text{T}}$	$x'_{d} = 0.32 \text{ o.e.}$	$T'_{do} = 6.5 c$
$\cos \varphi = 0.85$	$x_{d} = 2,02 \text{ o.e.}$	$T''_{do} = 0.023 c$
$U = 21 \kappa \text{B}$	$x''_{d} = 0.25$ o.e.	$T'_{d} = 1,07 c$
M_J = 8070 $\kappa\Gamma m^2$		$T''_{d} = 0.018 c$
		$T''_{qo} = 0.036 c$
		$T_{\rm J} = 0.84 {\rm c}$

Мощность с.г. составляет примерно 10% от располагаемой мощности ЭС.

Расчетный эксперимент проведен с помощью программного комплекса "Мустанг-95" и включал следующие варианты:

— режимы нагрузки блока 400,300 и 200 МВт при нагрузке ЭС 3700 МВт,

- режим номинальной мощности (400 MBт) блока при нагрузках ЭС 4300 и 3100 MBт (режим максимальной и средней нагрузки) и нормальной перспективной схеме электрической сети 220-330-500 кВ,
- режим номинальной нагрузки (400 MBт) блока при нагрузках ЭС 2800 и 1600 MBт и переводе двух блоков Али-Байрамлинской ГРЭС на работу по ВЛ-230 кВ Имишли-Парсабад (Иран), т.е. режим минимальной нагрузки и измененной схемы ЭС.

Последняя схема характеризуется некоторым ухудшением условий устойчивости в связи с размыканием внутрисистемного кольца линии 220-330-500 кВ.

Для характеристики процессов, происходящих при потере возбуждения, фиксировались:

- время выхода из синхронизма;
- диапазон изменения активной и реактивной мощности, тока статора и напряжения;
- скольжение.

На близлежащей станции, какой является Бакинская ТЭЦ-1, на которой установлены 2 блока ГТУ по 55 МВт, фиксировались ток статора генератора и напряжения на выходных шинах $110~{\rm kB}$ станции.

На рис. 1 иллюстрируется характер изменения вышеотмеченных основных показателей при потере возбуждения в условиях номинальной нагрузки с.г. (400 МВт) и нагрузки ЭС-3700 МВт. После незначительных колебаний, примерно на 2-ой с. происходит сброс электромагнитной мощности, а еще через 1 с. вступает в действие АРС, который уменьшает впуск пара в турбину. Выход с.г. из синхронизма и асинхронный ход наступает через 2,9 с после потери возбуждения. Наиболее интенсивно с момента потери возбуждения изменяется реактивная мощность с.г. Потребляемая реактивная мощность создает ток намагничивания, который составляет большую часть тока статора. Максимальная величина потребляемой реактивной мощности составляет 257 МВар. С момента потери возбуждения ток статора начинает увеличиваться и составляет $1.7I_{\text{ном}}$. Понижение напряжения до 7.4 кВ $(0.35~U_{\text{H}})$ на выводах с.г. 400 МВт, работающего в блоке генератор-трансформатор с отпайкой на собственные нужды (СН), при потере возбуждения приводит к снижению напряжения на шинах СН до 2,2 кВ. Это может привести к остановке блока из-за уменьшения производительности механизмов СН. Перевод питания шин СН с рабочего трансформатора на резервный не приведет к положительному результату, т.к. при этом на СШ 110 кВ "Шимал" ГРЭС напряжение снижается до 64,4 кВ, т.е. 0,54 Uн.

На СШ 110 кВ соседней Бакинской ТЭЦ-1 напряжение снижается до 89,4 кВ, т.е. $0.78~\rm U_{\rm H}$, а ток статора изменяется незначительно. Вышеизложенное является результатом анализа кривых процесса выхода на асинхронный режим, представленных на рис. 1.

Результаты анализа вариантов расчетного эксперимента представлены в табл. 1

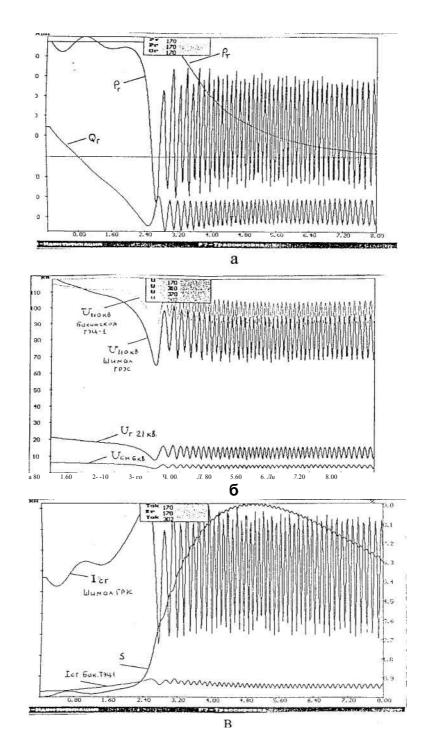


Рис. 1. Процессы в синхронном генераторе блока ПГУ-400 МВт при потере возбуждения

- а. $P_{\Gamma}Q_{\Gamma}$ активная и реактивная мощности с.г.,
 - $P_{\scriptscriptstyle T}$ мощность турбины.
- б. $U_{\text{сн 6 кB}}$ напряжение на шинах собственных нужд блока ПГУ-400 МВт,
 - $U_{\rm r\,21\,kB}$ напряжение на выводах с.г. блока ПГУ-400 МВт,
 - $U_{110 \text{ кВ}}$ напряжение на шинах 110 кВ "Шимал" ГРЭС и Бакинской ТЭЦ-1.
- в. I_{ct} ток статора генератора "Шимал" ГРЭС и Бакинской ТЭЦ-1,
- S скольжение ротора с.г. блока ПГУ-400 МВт.

Таблина 1

P = 400 3,0 сек 400 -159÷-76 325÷321 99 257÷-243 138÷-161	$P = 300$ $4,54 \text{ ce} \kappa$ 300 $-150 \div -101$ $317 \div 248$ 100 $-259 \div -251$ $144 \div 160$	Р = 200 7,6 сек 200 -189÷-93 379÷197 108 -262÷-240
400 -159÷-76 325÷321 99 257÷-243	300 -150÷-101 317÷248 100 -259÷-251	200 -189÷-93 379÷197 108
-159÷-76 325÷321 99 257÷-243	-150÷-101 317÷248 100 -259÷-251	-189÷-93 379÷197
325÷321 99 257÷-243	317÷248 100 -259÷-251	379÷197 108
325÷321 99 257÷-243	317÷248 100 -259÷-251	379÷197 108
257÷-243	-259÷-251	
257÷-243	-259÷-251	
100 101	- I 44 - - I MU	-131÷-149
	11111100	151 117
11.3	Q 7	6,25
*	-	
	· · · · · · · · · · · · · · · · · · ·	5,1÷5,7
		20÷14,8
8,8	7,0	5,4
118,2	117,9	117
54.5÷73.1	68÷73	63,1÷76,6
01,8÷98,5	102,4÷99,0	106,4÷98,6
21	21	21
$7,4 \div 9,3$	8÷9,4	6,9÷10,2
6,5÷15,8	16,6÷16,0	17,4÷15,9
6,2	6,2	6,2
$2,2 \div 2,8$	ľ	2,0÷3,0
4,9÷4,7	4,9÷4,7	5,2÷4,7
114,8 89,4÷94,9 10,8÷108	114,8 92,8÷95,1 113÷109,8	114,8 90,3÷97,5 113,6÷107,9
3	11,3 5,1÷7,1 8,8÷15,9 8,8 118,2 4,5÷73,1 01,8÷98,5 21 7,4÷9,3 6,5÷15,8 6,2 2,2÷2,8 4,9÷4,7 114,8 9,4÷94,9	11,3 5,1÷7,1 8,8÷15,9 118,2 117,9 4,5÷73,1 01,8÷98,5 102,4÷99,0 21 7,4÷9,3 6,5÷15,8 10,6÷16,0 6,2 2,2÷2,8 4,9÷4,7 114,8 9,4÷94,9 92,8÷95,1

При потере возбуждения при нагрузках на с.г. блока ПГУ-400 МВт от 200 до 400 МВт время выхода из синхронизма находится в пределах $7,6 \div 3,0$ сек., с установившимся скольжением — в пределах $5,4 \div 8,8$ %. Это говорит о том, что с.г. может быть отключен основной защитой прежде, чем начнется асинхронный режим.

В табл.2 иллюстрируется результаты оценки влияния режима ЭС и ее схемы на те же показатели при потере возбуждения в условии номинальной нагрузки блока.

Таблица 2

	1 аблица 2			
	Режим 4300	Режим 3100	Режим 2800	Режим 1600
Время выхода из синхронизма генератора, потерявшего возбуждение при относительном угле 360^{0} между генератором 400 МВт "Шимал" ГРЭС и генератором Чиркей ГЭС	2,95	4,3	2,93	4,23
Диапазон изменения мощности в установившемся асинхронном режиме <u>Активной:</u> исходная МВт	400	300	400	300
Активной: исходная МБТ Минимум пиков Максимум пиков	-134,3÷-60,5 287÷158	-139÷-97 287÷244	-171,4÷-88 321÷242,4	-137÷-91 288÷243
Реактивной: исходная МВар Минимум пиков Максимум пиков	132 -212÷-196 -96÷-140	95 -234,4÷-227 -139,6÷-152,6	65 -255÷-241,4 -152÷-170	49 -221,3÷-210,3 -147,6÷-160,4
Модуль тока статора, в кА В исходном режиме Минимум пиков Максимум пиков	11,6 4,4÷6.1 17.5÷13,1	8,7 5,2÷6,2 17,3÷15,8	11,1 5,4÷6,8 18,3÷16,1	8,4 5,5÷6,3 16,8÷15,1
Скольжение, в %	9,2	7	8,7	6,9
Напряжение, в кВ "Шимал" ГРЭС СШ 110 кВ исходное	114	155	116,3	117
Минимум пиков Максимум пиков	58,7÷67 92÷84	64,6÷68,5 97,9÷95,8	67,8÷72,1 102,5÷99	61,8÷66,1 100,2÷97,3
Вывод генератора исходное Минимум пиков Максимум пиков	21 6,8÷8,8 15÷14,4	21 7,8÷8,6 16,2÷15,75	21 8,2÷9,3 17÷16,3	21 7,5÷8,6 16,6÷16
СШ 110 кВ БакТЭЦ-1 исходное	111	114	115	115
Минимум пиков Максимум пиков	83,8÷89 103÷97	89,7÷91,6 108÷106,7	92,6÷94,8 112÷109	84÷87,3 108÷106
Выход из синхронизма генераторов близлежащей станции	нет	нет	нет	нет

Как видно, время выхода с.г. "Шимал" ГРЭС из синхронизма зависит как от режима ЭС, так и ее внутренней схемы, и находится в пределах $2,9 \div 4,3\,$ с.

Режим потребления мощности находится в пределах $96 \div 255$ МВар, активная мощность изменяется от 172 МВт в режиме потребления до 320 МВт в режиме выдачи, ток статора увеличивается не более чем в 2 раза, напряжение на выводах с.г. снижается до 6.9 кB, а на СШ 110 кB до 50 кB.

Напряжение на СШ 110 кВ соседней Бакинской ТЭЦ-1 снижается до 84 кВ.

Во всех приведенных расчетных экспериментах с.г. ЭС не выходят из синхронизма и система остается устойчивой.

В таблице 3 приведены для сравнения значения времени выхода из синхронизма и скольжения как с.г. блока ПГУ-400 МВт, так и других с.г. крупных блоков ЭС: Аз.ГРЭС-300 МВт, ГРЭС Али-Байрамлы-150 МВт.

Таблица 3

Электростанции	"Шимал" ГРЭС	Азербайджанская ГРЭС	Али-Байрамлинская ГРЭС
Мощность			
генераторов, МВт	400	300	150
Время выхода из			
синхронизма, с.	$2,93 \div 4$ c.	$7,6 \div 12,8$ c.	8,52÷14,82 c.
Скольжение	6,9 ÷9,2 c.	$1,7 \div 2,53$ c.	1,3 ÷ 1,9 c.

Как видно с.г. блока ПГУ-400 MBт почти в 3 раза быстрее выходит из синхронизма и почти во столько же раз имеет более высокие скольжения.

Заключение

Несмотря на то, что параметры с.г. блока ПГУ-400 МВт на "Шимал" ГРЭС Азербайджанской ЭС имеет ухудшенные параметры с точки зрения устойчивости по сравнению с параметрами других с.г. крупных блоков (150,300 МВт), при потере возбуждения асинхронный ход наступает за пределами времени действия основной защиты и влияние на устойчивость как с.г. близлежащих станций, так и всей системы, не проявляется. С.г. ПГУ-400 МВт должен быть отключен от системы основной защитой.

BBQ-400 MVt BLOKUNDAKI SİNXRON GENERATORLARIN TƏSİRLƏNMƏ ZAMANI İTKİLƏRİNİN ENERJİ SİSTEMİN DAYANIQLIĞINA TƏSİRİNİN TƏDOİQİ

HÜSEYNOV A. M., OCAQVERDOVA A. S.

"MİTSUBİSHİ" firmasının BQQ-400 MVt yeni blokundakı sinxron generatorun təsirlənmə və itkilər olan halındakı proseslərə baxılır və enerjisistemin dayanıqlığı qiymətləndirilir.

RESEARCHES OF INFLUENCE OF EXCITATION LOSS BY THE SYNCHRONOUS GENERATOR OF THE BLOCK CCP-400 MWT ON STABILITY OF THE ELECTRIC POWER SYSTEM

GUSEYNOV A.M., ODJAKHVERDOVA A.C.

Processes in the synchronous generator of new block CCP-400 MWt of the "MITSUBISHI" firm are examined at loss or excitation and estimated on stability of the electric power system.