621.315.592

HIGH-FREQUENCY DIELECTRIC MEASUREMENTS ON TIGa_{1-x}Fe_xSe₂ SINGLE CRYSTALS

MUSTAFAEVA S.N., HASANOV A.I.

Institute of Physics, National Academy of Sciences of Azerbaijan

Frequency dependence of the dissipation factor tan δ , the permittivity ϵ , and the ac conductivity σ_{ac} across the layers in the frequency range $f = 5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz was studied in layered TlGa_{1-x}Fe_xSe₂ single crystals (x = 0; 0.001; 0.005 and 0.01). In the alternate electric fields, the ac-conductivity obeyed the f^{0.8} law at f = 10⁶ ÷ 10⁷ Hz and the fⁿ law (where n = 1.1 ÷ 2.0) for f > 10⁷ Hz. It was established that the mechanism of the ac charge transport across the layers in TlGa_{1-x}Fe_xSe₂ single crystals in the frequency range from 10⁶ to 10⁷ Hz is hopping over localized states near the Fermi level. Estimations yielded the following values of the parameters: the density of states at the Fermi level N_F = 9.7 \cdot 10¹⁷ ÷ 1.3 \cdot 10¹⁸ eV⁻¹ · cm⁻³; the average time of charge carrier hopping between localized states $\tau = 6.3 \cdot 10^{-8} \div 3 \cdot 10^{-7}$ s and average hopping distance R = 190 ÷ 216 Å.

TlGaSe₂ single crystals are typical representatives of layered semiconductors. Layered crystals usually contain structural defects, such as vacancies and dislocations. The presence of these defects results in a high density of localized states near the Fermi level. In [1] it is established by experiments that at T \leq 200 K in TlGaSe₂ along C-axis in constant electric field hopping conductivity with alternating length of jump in localized states near the Fermi level is taken place. Value of state density in vicinity of Fermi level (N_F) calculated from experimental results of TlGaSe₂ single crystal dc-conductivity measurement along C-axis is $2 \cdot 10^{18} \text{ eV}^{-1} \cdot \text{cm}^{-3}$. In [2] it is established that at T \leq 250 K in TlGa_{0.99}Fe_{0.01}Se₂ single crystals along C-axis in dc-electric field a variable range hopping conductivity in forbidden gap near the Fermi level has been taken place and N_F = $5.6 \cdot 10^{17} \text{ eV}^{-1} \cdot \text{cm}^{-3}$.

Of some interest is the study of influence of Ga partial substitution in TlGaSe₂ for Fe on their dielectric properties in alternate electric fields. This is the aim of the given paper.

Samples of TlGa_{1-x}Fe_xSe₂ composition have been synthesized by melting of initial highpurity components in vacuumed quartz ampoules up to 10^{-3} Pa, and their single crystals have been grown by Bridgeman-Stockbarger method. Samples from TlGa_{1-x}Fe_xSe₂ for measurements are obtained by spalling along C-axis of the natural spall from massive single crystals and have a thickness (9.5 ÷ 12.0)·10⁻³ cm. TlGa_{1-x}Fe_xSe₂ samples formed flat capacitors whose plane was perpendicular to the crystalline C axis. The capacitor plate area was (7.3 ÷ 11.5)·10⁻² cm². Ohmic contacts of samples are made by Ag paste.

Measurements of the dielectric coefficients of $TlGa_{1-x}Fe_xSe_2$ single crystals were performed at fixed frequencies in the range $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz by the resonant method using a TESLA BM 560 Qmeter. For electrical measurements, the samples were placed in a specially constructed screened cell. An ac electric field was applied across the natural layers of $TlGa_{1-x}Fe_xSe_2$ single crystals. The amplitude of the applied field corresponded to the Ohmic region of the current-voltage characteristics of $TlGa_{1-x}Fe_xSe_2$ samples. All measurements were performed at T = 300 K. The accuracy in determining the resonance capacitance and the quality factor Q = 1 / tan δ of the measuring circuit was limited by errors related to the resolution of the device readings. The accuracy of the capacitor graduation was ± 0.1 pF. The reproducibility of the resonance position was ± 0.2 pF in capacitance and $\pm (1.0 - 1.5)$ scale divisions in quality factor.

Fig. 1. Frequency dependences of the dissipation factor of $TlGa_{1-x}Fe_xSe_2$ single crystals:

1 - x = 0; 2 - x = 0.001; 3 - x = 0.005; 4 - x = 0.01 (T=300 K).

Fig. 1 shows the experimental frequency dependences of the dissipation factor tan δ for TlGa_{1-x}Fe_xSe₂ (x = 0; 0.001; 0.005 and 0.01) single crystals. The tan δ (f) curves have two branches: a steadily descending one and a rising one. A significant dispersion in tan δ is observed for TlGa_{0.995}Fe_{0.005}Se₂ and TlGa_{0.99}Fe_{0.01}Se₂ (curves 3 and 4). At room temperature, where TlGa_{1-x}Fe_xSe₂ single crystals exhibit appreciable ac conductivity, conductivity loss becomes the main dielectric loss mechanism.

We also measured the electric capacitance of $TIGa_{1-x}Fe_xSe_2$ samples in the frequency range $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz; the capacitances were $6 \div 16$ pF. Using the measured capacities of $TIGa_{1-x}Fe_xSe_2$ samples, we calculated the permittivity ϵ at different frequencies; the permittivity varied from 9 to 17 (Fig. 2).

Fig. 3 shows the experimentally measured frequency dependence of the ac conductivity of TlGa_{1-x}Fe_xSe₂ single crystals at T = 300 K. The ac conductivity σ_{ac} varies as

f^{0.8} in the frequency range $3.2 \cdot 10^6 \div 2.9 \cdot 10^7$ Hz for TlGaSe₂ and TlGa_{0.999}Fe_{0.001}Se₂ single crystals and $8 \cdot 10^5 \div 9 \cdot 10^6$ Hz for TlGa_{0.995}Fe_{0.005}Se₂ and TlGa_{0.99}Fe_{0.01}Se₂ single crystals. The ac conductivity of investigated crystals at high frequencies (f >10⁷ Hz) obeyed the fⁿ law (where n = 1.1 ÷ 2.0). The $\sigma_{ac} \sim f^{0.8}$ dependence indicates that the mechanism of charge transport is hopping over localized states near the Fermi level [3]. The magnitude of this conductivity is much greater than that of the dc hopping conductivity of studied crystals.

This charge transport mechanism is characterized by the following expression obtained in [4]:

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 kT N_F^2 a^5 f \left[\ln \left(\frac{\nu_{ph}}{f} \right) \right]^4$$
(1)

where e is the elementary charge, k is the Boltzmann constant, N_F is the density of localized states near the Fermi level, $a = 1/\alpha$ is the localization length, α is the decay parameter of the wave function of a localized charge carrier, $\Psi \sim e^{-\alpha r}$, and v_{ph} is the phonon frequency. Using expression (1), we can calculate the density of states at the Fermi level from the measured values of the conductivity $\sigma_{ac}(f)$. Calculated values of N_F for investigated

 $TlGa_{1-x}Fe_xSe_2$ single crystals are given in Table (localization radius chosen as 34\AA , in analogy with the GaSe single crystal [5], which is a double analog of $TlGaSe_2$).

Fig. 2. Frequency dispersion of the permittivity of $TIGaSe_2$ (1); $TIGa_{0.999}Fe_{0.001}Se_2$ (2); $TIGa_{0.995}Fe_{0.005}Se_2$ (3) and $TIGa_{0.99}Fe_{0.01}Se_2$ (4) at T=300 K.

Fig. 3. Frequency-dependent ac conductivities of $TlGa_{1-x}Fe_xSe_2$ single crystals at room temperature.

The values of N_F agrees well with the values N_F found in experiments on the dc conductivity across the TlGaSe₂ and TlGa_{0.99}Fe_{0.01}Se₂ layers [1, 2].

The theory of ac hopping conductivity provides an opportunity to determine the average time τ of charge carrier hopping from one localized state to another using the formula [3]:

$$\tau^{-1} = v_{\rm ph} \exp(-2R\alpha), \qquad (2)$$

where R is the average hopping distance:

$$R = \frac{1}{2\alpha} \ln \left(\frac{v_{ph}}{f} \right)$$
(3)

Calculated values of τ and R are given in Table.

As it is seen from Table, the average hopping distance in $TlGa_{1-x}Fe_xSe_2$ single crystals varied from 190 to 216 Å. The value R calculated from dc conductivity measurements of $TlGa_{0.99}Fe_{0.01}Se_2$ single crystals was equal to 184 Å [2].

As it was shown above at high frequencies $\sigma_{ac} \sim f^2$ in TlGa_{1-x}Fe_xSe₂ single crystals. The conductivity proportional to f^2 is related to optical transitions in semiconductors and is dominant at high frequencies [3].

Crystal composition	N_F , $eV^{-1} \cdot cm^{-3}$	R, Å	τ, s	R / a
TlGaSe ₂	$1.01 \cdot 10^{18}$	190	$6.3 \cdot 10^{-8}$	5.6
TlGa _{0.999} Fe _{0.001} Se ₂	10^{18}	190	$6.3 \cdot 10^{-8}$	5.6
TlGa _{0.995} Fe _{0.005} Se ₂	$9.7 \cdot 10^{17}$	210	$2.0 \cdot 10^{-7}$	6.18
$TlGa_{0.99}Fe_{0.01}Se_{2}$	$1.25 \cdot 10^{18}$	216	$3.0 \cdot 10^{-7}$	6.35

Table. Parameters of TlGa_{1-x}Fe_xSe₂ single crystals obtained from high-frequency dielectric measurements

Thus, the results of high-frequency dielectric measurements on $TlGa_{1-x}Fe_xSe_2$ single crystals are in good agreement with the results of dc conductivity measurements.

- 1. Mustafaeva S.N., Aliev V.A., Asadov M.M. // Fiz. Tverd. Tela (St. Petersburg).1998. N1. P.48-51.
- Mustafaeva S.N., Hasanov A.I., Kerimova E.M. // Izvestiya NAN Azerb. 2003. N5. P. 117-119.
- 3. *Mott N.F., Davis E.A.* // Electronic processes in Non-Crystalline Materials (Clarendon. Oxford. 1971: Mir. Moscow. 1974).
- 4. Pollak M. // Philos. Mag. 1971. 23. P. 519-542.
- 5. Mustafaeva S.N. // Neorgan. Mater. 1994. N5. P. 619-621.

TIGa_{1-x}Fe_xSe₂ MONOKRİSTALLARININ YÜKSƏKTEZLİKLİ DIELEKTRİK ÖLÇMƏLƏRİ

MUSTAFAYEVA S.N., HƏSƏNOV A.İ.

TlGa_{1-x}Fe_xSe₂ (x=0; 0.001; 0.005; 0.01) laylı monokristalların f=5·10⁴÷3.5·10⁷ Hs tezlik oblastında dielektrik itgisinin tangens bucağının dispersiyası (tg δ), dielektrik nüfuzluğu (ε) və monokristalların C oxu istigamətində ac–keziriciliyi (σ_{ac}) tədqiq edilmişdir. Dəyişən elektrik sahəsində 10⁶–10⁷ Hs tezlik oblastında ac–keçiriciliyi f^{0.8}–qanuna tabe olur, f>10⁷ Hs olduqda isə fⁿ–qanunu ödənilir ki, harada n=1.1–2.0. Müəyyən olunmuşdur ki, 10⁶-dan 10⁷ Hs qədər tezliklə TlGa_{1-x}Fe_xSe₂ monokristallarında C oxu istigamətində yükün ötürülməsi ilə baş verən kezid mexanizmini yaradan səbəb Fermi səviyyəsinə yaxın olan oblastlarda lokalizə olunmuş yük daşıyıcılarının hoppanmalarıdır. Fermi səviyyəsinə yaxın olan hal üçün, sıxlıg N_F=9.7·10¹⁷÷1.3·10¹⁸eV⁻¹·sm⁻³, lokalizə olunmuş halların arasındakı hoppanmaların orta vaxtı τ=6.3·10⁻⁸÷3·10⁻⁷s və hoppanmaların orta məsafəsi R=190÷216 Å təyin edilmişdir.

ВЫСОКОЧАСТОТНЫЕ ДИЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ МОНОКРИСТАЛЛОВ ТІGa_{1-x}Fe_xSe₂

МУСТАФАЕВА С.Н., ГАСАНОВ А.И.

В слоистых монокристаллах TlGa_{1-x}Fe_xSe₂ (x=0; 0.001; 0.005 и 0.01) в частотной области f=5·10⁴÷3.5·10⁷ Гц изучена дисперсия тангенса угла диэлектрических потерь (tg δ), диэлектрической проницаемости (ϵ) и ас–проводимости (σ_{ac}) поперек слоев. В переменных электрических полях в частотном диапазоне 10⁶–10⁷ Гц ас–проводимость характеризовалась f ^{0.8}-законом, а при f>10⁷ Гц наблюдался f ⁿ-закон (где n=1.1–2.0). Установлено, что при частотах от 10⁶ до 10⁷ Гц за механизм переноса заряда поперек слоев монокристаллов TlGa_{1-x}Fe_xSe₂ ответственны прыжки носителей заряда по локализованным вблизи уровня Ферми состояниям. Определены: плотность состояний вблизи уровня Ферми N_F= 9.7·10¹⁷÷1.3·10¹⁸ зВ⁻¹·см⁻³; среднее время прыжков между локализованными состояниями τ =6.3·10⁻⁸÷3·10⁻⁷ с и среднее расстояние прыжков R=190÷216 Å.