УДК 621.311.22

МЕМБРАННАЯ ТЕХНОЛОГИЯ ВОДОПОДГОТОВКИ ДЛЯ ЭЛЕКТРОСТАНЦИЙ АЗЕРБАЙДЖАНА

АЛИЕВ А.Ф.

Азербайджанский научно-исследовательский институт энергетики и энергетического проектирования

Обследована современная обратноосмотическая технология водоподготовки на ГРЭС «Шимал». Изучены физико-химический и санитарно-бактериологический составы обессоливаемой подземной солоноватой и других вод. Рассмотрены альтернативные варианты водоисточников для применения в мембранной технологии. Рекомендуется распространить современные энерго- и экологически эффективные мембранные технологии для других электростанций Азербайджана.

На ГРЭС «Шимал» с сентября 2002 года применяется новейшая полностью автоматизированная и компьютизированная система водоподготовки (ВПУ) для котлоагрегатов, включающая мембранную обратноосмотическую (reverse osmotic RO) установку. Подобные системы отсутствуют на всем пространстве бывшего СССР, и Азербайджан является первой страной СНГ, обладающий этой технологией для электростанций в промышленном масштабе.

Преимуществами обратноосмотического (гиперфильтрационного) обессоливания воды являются сравнительно небольшие и быстро окупаемые капитальные затраты. Установки просты и надежны, легко автоматизируются и не требуют больших трудозатрат. Мембранная технология как энерго-, материало-и ресурсосберегающая является приоритетным показывают широкие возможности ее применения во многих отраслях промышленности, в частности, энергетической. При этом, наряду с экономическими, успешно решаются направлением научно-технического прогресса. Достижения в этой области и экологические проблемы.

В настоящее время практически во всех новых системах водоподготовки наиболее развитых стран мира используются различные мембранные технологии (в основном, обратноосмотические и электродиализные). Использование антинакипинов, позволило значительно снизить загрязнение мембран отложениями. Мембранные системы требуют меньшего внимания персонала, чем другие обессоливающие установки и установки для умягчения, и лучше работают в циклических режимах [1].

В Азербайджане впервые в 1970 – 1980 г.г. обратноосмотическая система была исследована для обессоливания каспийской морской воды в Бакинском филиале ВНИИ ВОДГЕО (ныне НИПИ «Суканал») Н.Я. Садыховым и др. [2-4]. В разработанной технологии предусмотрено предварительное умягчение воды на Na – катионитовых фильтрах, хлорирование, подкисление серной кислотой и, только после этого, обессоливание на обратноосмотической установке с регенерацией катионитовых фильтров использованием концентратов обратноосмотического аппарата. [5].

В 1992-1994 гг. в НИПИ «Суканал» была выполнена НИР под руководством автора настоящей статьи, в которой приводятся результаты многолетних исследований экологической обстановки и характеристики сточных вод ряда отраслей промышленности Азербайджана, в частности, энергетической, и возможности их очистки применением мембранной технологии на базе оборудования зарубежных стран. Получены исходные данные для разработки технологий обратноосмотического мембранного разде-

ления жидкостей широкого спектра минерализации, в том числе, с использованием намывных фильтров [6]. По рекомендациям этих исследований институтом «Бакводоканалпроект» была создана «Схема Мероприятий с дальнейшим применением в народном хозяйстве Азербайджанской республики мембранной технологии для опреснения и очистки природных и сточных вод на период до 2010 года».

В работе К.М. Абдуллаева с сотрудниками [7] дана характеристика подземных вод Абшерона, представляющих интерес с точки зрения использования их на ТЭС при обратноосмотическом обессоливании с предварительным ионообменным умягчением. Предложены технологические схемы подготовки воды для технического водоснабжения основных систем ТЭС.

Ниже рассмотрим систему водоподготовки на ГРЭС «Шимал», построенную по технологии ряда стран (Япония, Южная Корея и др.), с целью распространения современных методов водоподготовки для других электростанций Азербайджана.

Физико-химический и санитарно-бактериологический состав исходной воды

В качестве исходной (обессоливаемой) воды на ГРЭС «Шимал» используется подземная вода колодцев с общим солесодержанием ~ 1600 мг/л и общей жесткостью ~ 17 мг-экв/л (табл.1). По своему солевому составу эта вода относится к солоноватым по классификации И.Э.Апельцина и В.А.Клячко [8] или слабосолоноватым по классификации И.Л.Монгайта [9]. По числу бактерий группы кишечных палочек в 1 л воды, как это видно по результатам санитарно-бактериологического анализа, этот показатель превышает норматив для питьевой воды в 13 раз, а по числу колоний бактерий в 1 мл воды в 2,4 раза (табл.2).

Очевидно, что для нормальной работы обратноосмотической установки необходимо предусмотреть мероприятия по предотвращению биологического разрушения мембран и отложений на их поверхностях труднорастворимых солей.

Известно, что существенное влияние на свойства мембран оказывает рН исходного раствора. По данным американского ученого Воса [2], при обессоливании 9 %ного раствора NaCl при рН 5,0-6,5 за 8 месяцев селективность мембран снижается \sim в 2 раза, при рН 6,5-7,0—в 5 раз, при рН 10—в 10 раз. Поэтому подкисление исходной воды до рН \sim 5,0 во многих случаях выгодно как для оптимального режима работы мембран так и для предотвращения карбонатных и магнезиальных отложений .

Эти соображения, по-видимому, учтены при обратноосмотическом обессоливании подземной солоноватой воды колодцев на ГРЭС «Шимал».

Технология обессоливания подземной воды на ГРЭС «Шимал»

Исходная вода (табл.1;2) из бака емкостью ~ 2000 м³ (рис.1), подается на обработку гипохлоритом натрия NaOCl (для уничтожения бактерий) и затем на механический фильтр двойного действия, который очищает воду от крупных примесей и твердых частиц. В качестве фильтрующих загрузок используется кварцевой песок и антрацит. После фильтра имеется ловушка, предназначенная для задержания мелких частиц песка и антрацита, которые могут быть вымыты из механического фильтра.

Далее на линии движения воды установлен смеситель, представляющий собой трубу с фланцевыми соединениями, в которую врезаются 3 линии подачи реагентов:

- серной кислоты (12% H_2SO_4) для поддержания 5 ≤ pH ≤ 6;
- тиосульфита натрия (10% Na₂S₂O₅) для дехлорирования воды;
- антинакипина (флокон, FLOCON) для предотвращения накипеобразования.

После смесителя вода попадает на патронный фильтр, который очищает ее от мелких частиц (до 5 микрон). Далее вода подается бустерным насосом в RO аппарат, состоящий из 4-х блоков; количество мембранных пакетов (модулей) на 1 блок - 6.

Таблица 1 Физико-химический состав подземных вод ГРЭС «Шимал» в сравнении с нормами для питьевой воды

	Под	Питьевая		
Наименование показателей, единица измерения	Старый колодец	Новый колодец № 9	Новый колодец № 15	вода, нормы (стандарты стран СНГ)
1. Водородный показатель (рН)	7,75	7,7	7,8	6,0-9,0
2. Сухой остаток (общее соле- содержание), мг/л	1630,0	1920,0	1560,0	≤ 1000,0
3. Хлориды (Cl ⁻), мг/л	190,0	640,0	275,0	≤ 350,0
4. Сульфаты (SO $_4^{2-}$), мг/л	795,0	812,5	501,2	≤ 500,0
5. Общая жесткость $\mathcal{H}_{oo}(Ca^{2+}+Mg^{2+})$, мг-экв/л	16,8	19,0	10,0	≤ 7,0
Кальций (Ca ²⁺), -"-	5,2	5,3	2,2	
Магний (Mg ²⁺), -"-	11,6	13,7	7,8	
6. Общая щелочность Щ $_{06}$ (HCO $_3^-$ +CO $_3^{2-}$),мг-экв/л	4,25	2,5	3,5	не нормируется
Гидрокарбонаты (HCO $_3^-$), -"-	4,25	2,5	3,5	_ "_
Карбонаты (CO $_3^{2-}$), -"-	0	0	0	
7. Общее железо Fe _{o6} (Fe ²⁺ + Fe ³⁺), мг/л	0,04	0,07	0,04	0,3 (1)
8. Медь (Cu ²⁺), -"-	0,006	0	0	1,0
9. Фтор (F ⁻), -"-	0,85	0,7	0,65	0,7
10. Азот аммонийный (NH $_4^+$, по N), -"-	0,02	0,01	0,015	2,0
11. Нитраты (NO $_3^-$), -"-	15,5	16,0	14,5	45,0
12. Нитриты (NO ⁻ ₂), -"-	0,002	следы	следы	3,0

Только ~ 70 % забираемой воды может быть обращено в чистый продукт (пермеат), остальное – концентрированный отход (рассол);

После обратноосмотического аппарата обессоленная вода подается в бак дегазатора, который служит для удаления CO_2 , образуемого при подкислении воды.

Затем большая часть обессоленной воды подается на фильтр смешанного действия (ФСД), который удаляет ионы, остающиеся после обратного осмоса. В ФСД используются катионитовые и анионитовые смолы, поэтому далее вода подается на смолоотделитель и, очищаясь от смол, попадает в бак деминерализованной воды.

Т.о. ВПУ включает процессы хлорирования и дехлорирования воды, очистки ее от механических примесей, подкисления, обработки антинакипином, обессоливания обратным осмосом, декарбонизации, ионного обмена на ФСД и смолоотделения. Большая часть солей воды удаляется вначале RO установкой, остальная часть – намного меньшая – ионным обменом на ФСД.

Альтернативные источники воды для обессоливания обратным осмосом

После строительства 2-й очереди ГРЭС «Шимал» количество подземных вод в качестве исходной для обессоливания будет недостаточным. Поэтому необходимо изучить другие возможности с использованием альтернативных водных источников.

Наименование показателей	Единица измерения	Питьевая вода (стандарты стран СНГ)	Содержание				
ХПК (химическое поглощение кислорода)	мгО2/л	не > 15,0	16,0				
БПК _{полн} (биохимическое потребление кислорода)	мг/л	не > 3,0	4,5				
Коли-индекс	Число бактерий группы кишечных палочек (БГКП) в 1литре воды	не > 3,0	39,0				
Общее микробное число, t 37 °C	Число колоний бактерий в 1 мл воды	не > 100,0	240,0				

В качестве последних нам представляются 6 вариантов:

- 1. Смесь продувочной воды котла с водой из очистных сооружений;
- 2. Смесь продувочной воды котла с охлаждающей водой старых колодцев;
- 3. Вода из очистных сооружений;
- 4. Вода Самур-Абшеронского канала (джейранбатанская);
- 5. Куринская водопроводная вода;
- 6. Каспийская морская вода;

Вода Самур-Абшеронского канала более благоприятная, чем куринская. В ней меньше общего солесодержания, сульфатов и ионов жесткости (табл.3).

В настоящее время в связи с нехваткой воды пробурены новые колодцы, в частности, $\mathbb{N}_{2}\mathbb{N}_{2}$ 9 и 15. По своему физико-химическому составу (табл.1) наиболее благоприятная вода содержится в колодце \mathbb{N}_{2} 15, она почти питьевого качества. В колодце \mathbb{N}_{2} 9 вода более высокого солесодержания, чем в старых колодцах, а смесь этих вод, которые сливаются в общий бак, практически аналогична воде старых колодцев.

На территории ГРЭС «Шимал» имеются также и другие воды (смесь продувочной воды котла-утилизатора с водой из очистных сооружений; смесь продувочной воды котла-утилизатора с охлаждающей водой старых колодцев; вода из очистных сооружений). Эти воды отличаются меньшим, по сравнению с подземной, солесодержанием (табл.1 и 3), однако в их составе имеются нефтепродукты (1-8мг/л), фосфаты $(0,6-2,5 \text{ мгРО}_4^{3-}/\pi)$ и кремнекислота $(3,8-5,1 \text{ мг SiO}_2/\pi)$. В случае применения этих вод для RO установки необходимо согласование с японской стороной, т.к. при этом возможны изменения технологического процесса обессоливания.

Фосфаты в воде не опасны для RO – аппарата; наоборот, доза до 20 мг PO $_4^{3-}$ /л [2,10] уменьшает осадкообразование на мембранах. Известно также, что присутствие в воде гексаметафосфата натрия (ГМФН) тормозит осаждение гипса CaSO $_4$ ·2H $_2$ O на поверхности мембран [11]. Наличие силикатов в воде может отрицательно отражаться на работе RO аппаратов, т.к. известно влияние на процесс образования силикатных отложений гидрооксидов не только железа, но и алюминия [12]. В связи с этим, понятны жесткие требования зарубежных фирм к содержанию кремния в обрабатываемой обратным осмосом воде. Например, фирма "Хаггер и Эльзассер" считает, что в аппараты RO нельзя подавать воду с содержанием SiO $_2$ более 4 мг/л [2].

Проведенные эксперименты [3,5] показали, что нефтепродукты, имеющиеся в воде, отрицательно воздействуют на процесс RO – опреснения. При их концентрации выше 10 мг/л в течение 50 часов производительность мембран падала в 1,5 раза, а солесодержание снижалось с 91-94 % до 55-60 %.

Таблица 3 Физико-химический состав вод альтернативных источников для обратноосмотической установки ГРЭС «Шимал»

	Смесь проду-	Смесь про-	Вода	Курин-	Вода из	Каспий-
	вочной воды	дувочной	ИЗ	ская во-	Самур-	ская
Наименование показателей,	котла –ути- лизатора с	воды котла- утилизатоа с	очист- ных	допро- водная	Абше- рон-	морская Вода
единица измерения	водой из	охлаждаю-	coopy-	воднал	ского	Бода
ogaming manusprime	очистных со-	щей водой	жений		канала	
	оружений	старых ко-				
		лодцев				
1. Водородный показатель, (рН)	7,5	8,4	8,7	7,0-8,7	6,8-8,8	7,8
2. Сухой остаток (общее соле- содержание), мг/л	714,0	441,2	692,5	435,0- 948,0	294,0- 520,0	12780,0
3. Хлориды (Cl ⁻), мг/л	175,0	80,0	160,0	57,0-	29,0-	5630,0
3. жыориды (C1), милл	175,0	00,0	100,0	129,0	154,0	3030,0
4 Cyry dowy (SQ ²⁻) yr/r	432,5	285,2	440,1	188,0-	85,0-	2530,0
4. Сульфаты (SO $_4^{2-}$), мг/л	432,3	265,2	440,1	664,0	210,0	2330,0
5. Общая жесткость	8,0	5,2	6,3	5,0-10,1	2,4-6,6	74,0
$\mathcal{K}_{oo}(Ca^{2+}+Mg^{2+})$, мг-экв/л Кальций (Ca^{2+}), -"-	2,5	1,6	1,9	2,0-4,0	1,0-3,0	16,0
Магний (Mg ²⁺), -"-	5,5	3,6	4,4	5,0-8,0	4,0-5,0	58,0
6. Общая щелочность	2.2	1.5	1 /	21.40	1,75-	2.02
$\coprod_{\text{об}} (\text{HCO}_{3}^{-} + \text{CO}_{3}^{2-}), \text{ мг-экв/л}$	2,2	1,5	1,4	3,1-4,0	3,0	3,92
Гидрокарбонаты (HCO_3^-), -"-	2,2	1,45	1,3	3,1-4,0	1,75- 3,0	3,6
Карбонаты (CO_3^{2-}), -"-	0	0,05	0,1	0	0	3,2
1. Общее железо Fe _{o6} (Fe ²⁺ + Fe ³⁺), мг/л	0,09	0,3	0,2	0,04- 0,7	0 - 0,42	2,1
8. Медь (Cu ²⁺), -"-	0	0,006	0,012	0 - 0,1	0 – 0,005	0,1
9. Кремнекислота (SiO ₂), мкг/л	5129,0	3850,0	4247,0	Следы	Следы	_
10. Фосфаты, мг PO_4^{3-} мг/л	2,5	0,6	1,3	Следы	Следы	_
11. Нефтепродукты, -"-	1,0	8,0	1,0	0	0	1,2

Пресные воды Самур-Абшеронского канала и Куры более благоприятны по своему ионному составу, чем подземные воды, используемые для обессоливания в настоящее время на ГРЭС «Шимал». С экономической точки зрения наиболее выгодно использовать в качестве исходной воду Самур-Абшеронского канала, т.к., независимо от метода обессоливания, себестоимость обессоливания в первую очередь зависит от ее солесодержания. Чем больше солесодержание (особенно жесткость и щелочность) исходной воды, тем выше себестоимость процесса обессоливания.

Так, по данным А.П. Мамета и Ю.А. Синявского [13] себестоимость обессоленной воды ВПУ производительностью $100~{\rm m}^3/{\rm u}$ при увеличении солесодержания исходной воды с 34,7 до $700~{\rm mr/n}$ возрастает при технологии обессоливания обратным осмосом с 3,48 до $5,26~{\rm py6/m}^3$, т.е. в $1,5~{\rm pasa}$. В случае использования традиционного метода обессоливания ионным обменом себестоимость процесса увеличивается с 4,88 до $10,15~{\rm py6/m}^3$, т.е. больше, чем в $2~{\rm pasa}$ (табл.4).

Применение пресной воды Самур-Абшеронского канала или водопроводной куринской воды затруднено в связи с относительной удаленностью этих источников от

электростанции (8-10 км). Строительство же линии водопровода требует определенных капитальных затрат, но в принципе решает проблему водообеспечения и удешевления процесса обессоливания воды.

Таблица 4 Себестоимость обессоленной воды ВПУ производительностью $100 \text{ м}^3/\text{ч}$, руб/м³

Технология обессоливания	Солесодержание исходной воды, мг/л				
	34,7	260	360	420	700
Обратный осмос	3,48	4,28	4,66	4,85	5,26
Традиционное обессоливание (ионный обмен)	4,88	5,89	6,73	7,72	10,15

В связи с тем, что ГРЭС «Шимал» находится на берегу Каспийского моря, напрашивается вариант использования Каспийской воды в качестве исходной для обессоливания. Однако, в этом случае необходимо учитывать следующее:

- При строительстве первой очереди ГРЭС японская сторона предпочла применять в качестве исходной для обессоливания солоноватую подземную воду, запасы которой весьма ограничены. Вариант с Каспийской водой был отвергнут изначально, по- видимому, из-за дороговизны технологии ее обессоливания.
- Каспийская вода в настоящее время используется прямотоком для охлаждения конденсаторов. При этом, во избежание коррозии, в том числе биологической, со стороны весьма агрессивной морской воды, применяются в качестве теплообменных очень дорогие трубки из титановых сплавов.
- При использовании каспийской воды резко увеличится себестоимость обессоливания в силу гораздо большего по сравнению с пресной водой ее солесодержания. Во много раз возрастут эксплутационные расходы, в частности, из-за увеличения расхода реагентов, снижения срока службы мембран и другого оборудования, уменьшения межремонтного периода и т.д.

Выводы

- В связи с нехваткой воды старых колодцев, на обессоливание которой рассчитана существующая обратноосмотическая технология, рекомендуется использовать дополнительно смесь вод колодцев №№ 9 и 15.
- В качестве исходной для обессоливания на обратноосмотической установке в принципе вероятно применение продувочных вод котла-утилизатора и воды из очистных сооружений, однако, в этом случае необходимо предусмотреть мероприятия по их очистке от нефтепродуктов и кремнекислоты. При этом отпадает надобность в хлорировании и дехлорировании и, возможно, применении ФСД.
- При проектировании и строительстве II-й очереди ГРЭС "Шимал" в качестве исходной предпочтительно использовать воду из Самур-Абшеронского канала (джейранбатанскую). В этом случае себестоимость водоподготовки значительно сократится. Применение метода обессоливания каспийской воды мембранной технологией или термическим способом (даже с использованием наиболее экономичных адиабатных пленочных испарителей с вынесенной зоной кипения) существенно увеличит себестоимость деминерализованной воды.
- Мембранную технологию водоподготовки необходимо распространить на другие электростанции Азербайджана, используя преимущественно в качестве исходной пресные воды открытых водоемов.

1. *Саламов А.А.*, Развитие методов водоподготовки, Теплоэнергетика. -2003. -№7.- с. 76-78

2. Карелин Ф.Н., Обессоливание воды обратным осмосом, М. Стройиздат, 1988.-208 с.

- 3. Абдулла-заде А.А., Карелин Ф.Н., Садыхов Н.Я., Исследование процесса опреснения высокоминерализованной нефтесодержащей воды на гиперфильтрационной установке фильтр-прессового типа УГ-1, Тезисы докладов ІІ-го Всесоюзного научно-технического совещания по теме «Использование морских и солоноватых вод на ТЭС и задачи научных исследований», Баку. 1976.- с. 266-267.
- 4. Садыхов Н.Я., Абдулла-заде А.А., Карелин Ф.Н., Аскерния А.А., Султанова А.Ш, Экспериментальное исследование гиперфильтрационного опреснения минерализованной воды, Труды ВНИИ «ВОДГЕО». М.: 1978.- вып. 75, с.133-139.
- 5. *Садыхов Н.Я.*, Гиперфильтрационное опреснение воды Каспийского моря с использованием аппаратов типа «фильтр-пресс», Автореферат диссертации канд. техн. наук, М..1982 24 с.
- 6. Алиев А.Ф., Джафаров, А.С., О перспективах применения мембранной технологии для опреснения и очистки соленых и сточных вод в условиях Азербайджана, Труды НИИ «АзВОДГЕО». Баку.- 1994.- вып.ХХІ.- с. 24-29.
- 7. Абдуллаев К.М., Агамалиев М.М., Дадашева О.О., О перспективах подготовки добавочной воды котлов и теплосетей ТЭС из минерализованных вод с применением обратного осмоса. Проблемы энергетики.- 2002.- №4- с. 40-47.
- 8. *Апельцин И.Э., Клячко В.А.*, Опреснение воды, М. Стройиздат. 1968.- 222 с.
- 9. *Монгайт И.Л., Текиниди К.Д., Николадзе Г.И.*, Очистка шахтных вод. М. Изд. «Недра». 1978.- 173 с.
- 10. *Гарелс Р.М., Крайст Ч.Л.*, Растворы, минералы, равновесия, М. Изд. «Мир». 1968.-
- 11. Wilf M., Ricklis J., RO desalting of brackish water oversaturated with CaSO₄ Desalination, 1983, V.47, pp. 209-219
- 12. *George D.E.*, Prediction of silica scale formation in RO systems, Desalination, 1983, V.47, pp. 161-169.
- 13. *Мамет А.П., Синявский Ю.А.*, Применение обратного осмоса при обессоливании воды для питания парогенераторов ТЭС и АЭС, Теплоэнергетика. -2000.- № 7.- с. 20-22.

AZƏRBAYÇAN ELEKTRİK STANSİYALARI ÜCÜN MEMBRANLI TEXNOLOĞİYA İLƏ SUHAZIRLAMA

ƏLİYEV A.F.

Müasir əks osmos texnologiyası ilə suhazırlama «Şimal» DRES-də yoxlanılıb. Yeraltı şortəhər suların duzsuzlaşdırılmasının fiziki-kimyəvi və sanitar-bakterioloji tərkibləri öyrənilib. Membranlı texnologiyanı tətbiq etmək ücün, sumənbələrinin alternativ variantlarına baxılıb. Enerji və ekoloji effektli müasir membranlı texnologiyadan Azərbayçanın başqa elektrik stansiyalarında da yayılması tövsiyyə edilir.

MEMBRANE TECHNOLOGY OF WATER TREATMENT FOR AZERBAIJAN POWER PLANTS

ALIYEV A.F.

The up-to-date reverse osmose technology of "Shimal" heat power plant is inspected. Physic-chemical and medical-bacteriological compositions of demineralizated underground, salted and another waters are studied. For using in membrane technology the water sources alternative versions are considered. The modern power-and ecology-effective membrane technologies are recommended for dissemination at other Azerbaijan power plants.