532.13:536.22

Ca(NO₃)₂ (aq) AS HEAT TRANSFER FLUID FOR THE ALTERNATIVE ENERGY RESOURCES. I. (p, ρ , T) and (p_s , ρ_s , T_s) PROPERTIES

SAFAROV J.T., NAJAFOV G.N., SHAHVERDIYEV A.N., HUSEYNOV S.O., HASSEL E.P.¹

Azerbaijan Technical University, Baku, Azerbaijan ¹ University of Rostock, Rostock, Germany

(p, ρ , T) and (p_s , ρ_s , T_s) properties of Ca(NO₃)₂ (aq) at T=(298.15 to 398.15) K, at pressures up to p=60 MPa were reported. The experiments were carried out at molalities m=(0.18848, 0.32075, 0.52994, 1.07546, 2.03143, and 3.28155) mol·kg⁻¹ of calcium nitrate.

The absorption refrigerating machines and absorption heat pumps successful are used for the receiving of cold and heat as alternative energy resources. For the analysis of detailed properties of these systems, it is necessary to know the thermodynamic properties of refrigeration agents and heat transfer rates of these installations [1]. The serious problems in using the conventional LiBr + H₂O solution as a working fluid are crystallization and corrosion, because the high absorber temperature caused by the air-cooling needs a higher absorbent concentration of the working fluid to maintain low vapor pressure in the absorber. The heat transfer fluids of these systems will be thermal stability during all working range of temperatures. The reaction with metals, corrosion, consolidation and crystallization materials should be minimal. One of the common methods to reduce crystallization of the working fluid is to add a small amount of other salts and organic substance having nonvolatile and hygroscopic properties have been used. Solutions for these systems widely apply various anticorrosive and anticristallisation additivities, such as calcium nitrate [2]. Previous investigations [3-22] of the (p, ρ, T) and (p_s, ρ_s, T_s) properties of Ca(NO₃)₂ (aq) are tabulated in Table 1. From the table it is to be seen, that mainly all papers include the results only in ambient pressure, except [18-19]. However, it is necessary to investigate these solutions over a wider range of state parameters in order to provide accurate data for the absorption cycle.

This paper is a continuation of our previous publications [23]. In the present paper, the (p, ρ, T) and (p_s, ρ_s, T_s) properties of Ca(NO₃)₂ (aq) at *T*=(298.15 to 398.15) K, at pressures up to *p*=60 MPa are reported.

2. Experimental

The (p, ρ, T) and (p_s, ρ_s, T_s) properties were investigated in an experimental installation implementing the constant-volume piezometer method [24]. The apparatus enables the determination of (p, ρ, T) and (p_s, ρ_s, T_s) with high accuracy, as well as the determination of experimental isotherms, isochores, and isobars.

The main part of the installation is a spherical, thick-walled, high-pressure vessel manufactured of 1Cr18Ni9Ti grade stainless steel. The volume of piezometer (0.35013 dm^3) was determined by the mass of water filling it at an exactly measured temperature and moderate pressure of the order of 1 to 1.5 MPa.

Under these conditions, the density of ordinary water is known with high accuracy (0.001-0.003%) from the IAPWS formulation values for ordinary water [25]. The reliability of the data obtained was verified after each run by a control measurement of volumetric properties of water. Deviations of all the parameters did not exceed the tolerance given by [25].

TABLE 1

A literature revision of experimental works dedicated to the thermodynamic properties of Ca(NO ₃) ₂ (aq)								aq)
First author	Reference	Year	Method	Properties	Uncertainty	Temperature, T/K	Pressure, <i>p</i> /MPa	Concentration
Mylius	[3]	1897		ρ		291.15	0.1	w=0.548
Jones	[4]	1904		ρ		248.83 to 272.95	0.1	w=0.069 to 0.3998
ICT ^a	[5]	1928		ρ		279.15 to 303.15	0.1	<i>w</i> =0.02 to 0.68
Pearce	[6]	1935	OP	ρ , P , a_s , γ		298.15	0.1	m=0 to 8.3601 mol·kg ⁻¹
Scott	[7]	1936	Р	ρ, α, V_{ϕ}	0.01 %	308.15	0.1	<i>w</i> =0 to 0.7551
Lamberg	[8]	1948		ρ		273.15 to 313.15	0.1	w=0.48 to 0.643
Ewing	[9]	1950	Р	ρ, V_{ϕ}	0.02 %	298.15 to 333.15	0.1	m=0 to 20.19 mol·kg ⁻¹
Rodyanskiy	[10]	1962	А	v		298.15 to 613.15	0.1	m=0.25 to 3.0 mol·kg ⁻¹
Romankov	[11]	1969	Р	ρ		298.15 to 353.15	0.1	w=0.507 to 0.73
Balashova	[12]	1969		ρ		298.15	0.1	w=0.5763
Millero	[13]	1972						
Blinova	[14]	1978	Review	ρ, η		273.15 to 393.15	0.1	<i>w</i> =0 to 0.7
Spitzer	[15]	1979	FD	V_{ϕ}	$0.5 \text{ cm}^3 \cdot \text{mol}^{-1}$	298.15	0.1	m=0.03825 to 0.23711 mol·kg ⁻¹
Kuznetsov	[16]	1983	Р	ρ	$\pm 2.10^{-4} \text{ g/cm}^{-3}$	288.15 to 318.15	0.1	m=0.693 to 5.555 mol·kg ⁻¹
Jain	[17]	1984	MD	ρ, α, V_{ϕ}	±0.05 %	293.15 to 333.15	0.1	m=0.0093 to 18.6 mol·kg ⁻¹
Akhundov	[18]	1989	CVP	p, ρ, Τ, w	±0.065 %	298.15 to 598.15	0.1 to 50	w=0.3 to 0.41
Akhundov	[19]	1989	CVP	p, ρ, Τ, w	±0.065 %	298.15 to 598.15	0.1 to 50	w=0.042 to 0.2
Krumgalz	[20]	1996	Review	$V = V_{\phi}$	$\pm 0.29 \cdot 10^{-4} \text{ g/cm}^{3}$	298.15	0.1	
Jahagidar	[21]	1997	Р	ρ	$\pm 0.0002 \text{ g/cm}^3$	298.15 to 318.15	0.1	m=0.01 to 1.0 mol·kg ⁻¹
Vercher	[22]	1999	OTD	ρ, V_{ϕ}	$\pm 0.08 \text{ kg/m}^3$	298.15	0.1	<i>x</i> =0.00507 to 0.1069

ICT, International critical tables; OP, Ostwald pycnometer; P, Pycnometer; A, autocluve; FD, flow densimeter; MD, manometric densimeter; CVP, constant volume piezometer; OTD, oscillating-tube densimeter; ρ , density; P, vapor pressure; a_s , activity of solvent; γ , activity coefficient; α , thermal expansivity; V_{ϕ} apparent molar volume; v, spesific volume; η , viscosity; w, mass fraction; m, molality; x, mole fraction.

а

The temperature was measured by two TSN-25 platinum resistance thermometers, the pressure by MP-6, MP-60 and MP-600 deadweight pressure gages and by a differential manometer at ambient pressure. In accordance with metrological recommendations of [26], the experimental uncertainties were $\Delta T=\pm 3$ mK for temperature, $\Delta p=\pm 5\cdot 10^{-2}$ MPa for high pressure and $\Delta p=\pm 5\cdot 10^{-4}$ MPa for ambient pressure, $\Delta \rho=\pm 3\cdot 10^{-2}$ kg·m⁻³ for density.

The calcium nitrate tetrahydrate (GR grade, >99.0 mass. %) was purchased from Merck (Germany). The solvents were used directly without further purification, whereas the calcium nitrate was desiccated in an oven hold at T=473.15 K under vacuum for the 30 h. Double distilled water was used for the preparation of the solutions. The solutions were prepared by mass using a BP 221 S electronic scale (Sartorius AG, Germany).

3. Results and discussion

In this work, the (p, ρ, T) and (p_s, ρ_s, T_s) properties of Ca(NO₃)₂ (aq) at *T*=(298.15 to 398.15) K and at pressures up to *p*=60 MPa are reported. The experiments were carried out at molalities *m*=(0.18848, 0.32075, 0.52994, 1.07546, 2.03143, and 3.28155) mol·kg⁻¹ of calcium nitrate. The obtained (p, ρ, T) and (p_s, ρ_s, T_s) values are listed in the Table 2. The presented (p_s, ρ_s, T_s) values were measured in the saturation point at *T*=398.15 K.

Using a program for standard thermodynamic analysis to describe the (p, ρ, T) and (p_s, ρ_s, T_s) properties of Ca(NO₃)₂ (aq), the equation of state [24] was used:

$$p = A \rho^2 + B \rho^8 + C \rho^{12}, \tag{1}$$

where: A, B and C are the coefficients of Eqn. (1) and all are functions of temperature and molality in the following form:

$$A = \sum_{i=1}^{3} T^{i} \sum_{j=0}^{5} a_{ij} m^{j}; B = \sum_{i=0}^{2} T^{i} \sum_{j=0}^{5} b_{ij} m^{j}; C = \sum_{i=0}^{2} T^{i} \sum_{j=0}^{5} c_{ij} m^{j}.$$
 (2)

The a_{ij} , b_{ij} and c_{ij} are the coefficients of the polynomials and are tabulated in Table 3. The equation of state defined by equations (1) and (2) reproduces our experimental values with a 0.02246 % average deviation.

Figure 1 shows the plot of density ρ of Ca(NO₃)₂ (aq) against pressure *p* at *m*=0.52994 mol·kg⁻¹. Figure 2 shows the plot of density ρ of Ca(NO₃)₂ (aq) against pressure *p* at *T*=298.15 K. Figure 3 shows the plot of deviations of experimental density ρ_{exp} from the calculated by equations (1) and (2) density ρ_{cal} against pressure *p*.

The values of experimental density are compared with literature values [3, 9, 10, 18, 19, 22]. Figure 4 shows the deviation of density ρ of Ca(NO₃)₂ (aq) from literature values against molality *m* at *T*=298.15 K and *p*=0.1 MPa. The comparison of the newly measured and presented values with literature values at the investigated state parameters interval shows good agreement with [3, 9, 10, 18, 19 and 22]. The average deviation of our results with ICT [3] was 0.0429 %. The results of Ewing and Mikovsky [9] were shown the 0.0339 % average deviation. The results of Rodyansky *etc.* [10] are agreed with presented results in 0.2135 %. The comparison of presented results with results of Akhundov *etc.* [18, 19] was shown 0.016 % average deviation. The average deviation of presented results from the results of Vercher *etc.* [22] was 0.07245 %.

The density of investigated solutions at high pressures are available only in [18, 19]. The comparison of the newly measured results at high pressures with these results shows good agreement. The average deviation of both results with presented results at low pressures is ± 0.0025 %. The average deviation increase at high pressures ± 0.048 %.

<i>p</i> /MPa	$\rho/(\text{kg}\cdot\text{m}^{-3})$	<i>p</i> /MPa	$\rho/(\text{kg}\cdot\text{m}^{-3})$	<i>p</i> /MPa	$\rho/(\text{kg}\cdot\text{m}^{-3})$	
<i>m</i> =0.1884	8 mol·kg ⁻¹					
<i>T</i> =298.15	K	<i>T</i> =348.15	Κ	<i>T</i> =398.15	5 K	
00.10	1019.61	00.10	996.02	$p_{\rm s} = 0.2306$	$\rho_{\rm s} = 960.37$	
04.56	1021.64	05.02	998.32	06.25	963.20	
09.58	1023.78	10.75	1000.72	10.23	965.07	
19.64	1028.07	21.45	1005.21	19.64	969.50	
30.45	1032.67	32.86	1009.99	31.12	974.90	
40.57	1036.99	39.74	1012.87	40.03	979.09	
49.23	1040.68	49.53	1016.97	50.42	983.98	
58.79	1044.75	59.61	1021.20	59.45	988.23	
<i>T</i> =323.15	K	<i>T</i> =373.15	K			
00.10	1009.68	00.10	979.36			
05.24	1011.97	04.58	981.57			
11.56	1014.58	09.86	983.87			
18.52	1017.46	19.62	988.15			
29.71	1022.09	30.75	993.02			
41.23	1026.85	39.84	997.00			
51.02	1030.90	50.06	1001 48			
59.56	1034 43	58.98	1005 39			
m=0.3207	5 mol.kg ⁻¹	00.70	1000.07			
T=298.15	K K	T=3.48 15	К	T=398.14	5 K	
00.10	1035.03	00 10	1010 55	n = 0.2298	a = 974.73	
03.75	1035.05	04 99	1012.80	$p_{s} = 0.2290$ 05.75	977 34	
12 45	1040.40	10.05	1012.00	09.75	978 99	
21 21	1040.40	10.05	1018.88	20.54	98/1 33	
21.51	1047.73	30.45	1023 53	30.06	088.83	
<i>2)</i> .04 <i>1</i> 1 20	1047.75	20.45 20.31	1025.55	39.61	003 3/	
50.06	1056.43	40.31 50.14	1027.08	<i>1</i> 8 75	007.66	
50.00	1050.45	58.65	1031.62	40.73	1002.81	
37.12 T-222 15	1000.29 V	56.05 T = 272.15	1055.40 V	39.03	1002.01	
1-525.15	1024 50	1-3/5.13	N 002 72			
00.10	1024.30	00.10	995.72			
03.12	1020.75	03.12	990.18			
10.04	1028.03	10.04	998.34			
19.84	1032.84	21.07	1003.47			
29.95	1037.04	31.02 40.20	1007.85			
41.12	1041.09	40.29	1011.07			
50.02	1045.38	51.02	1016.40			
39.83	1049.46	59.61	1020.18			
m=0.5299	4 mol·kg ⁻¹	T 0 40 1 5	**	T 2 00 1	• • •	
7=298.15	K	7=348.15	K	7=398.13) K	
00.10	1058.67	00.10	1032.98	$p_{\rm s} = 0.2286$	$\rho_{\rm s} = 996.86$	
02.75	1059.87	05.46	1035.52	04.67	998.97	
11.45	1063.58	11.94	1038.27	10.63	1001.81	
19.56	1067.04	21.54	1042.35	21.37	1006.92	
29.34	1071.22	30.08	1045.97	29.64	1010.86	
40.27	1075.88	41.36	1050.76	40.37	1015.96	
51.64	1080.73	50.34	1054.57	49.61	1020.36	
59.03	1083.88	57.96	1057.81	58 37	1024.53	

TABLE 2: Experimental (p, ρ , T) and (p_s , ρ_s , T_s) values of Ca(NO₃)₂ (aq)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2	СО	NTINUE OF TA	BLE 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>p</i> /MPa	$\rho/(\text{kg}\cdot\text{m}^{-3})$	p/MPa	$\rho/(\text{kg}\cdot\text{m}^{-3})$	<i>p</i> /MPa	$\rho/(\text{kg}\cdot\text{m}^{-3})$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T=323.15 I	K	<i>T</i> =373.15	Κ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.10	1047.37	00.10	1015.87			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04.96	1049.57	06.87	1019.15			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.64	1052.37	12.56	1021.68			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.05	1055.88	19.54	1024.78			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.12	1060.09	28.73	1028.87			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.56	1064.46	41.94	1034.74			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50.34	1068.55	50.91	1038.72			
<i>m</i> =1.07546 mol·kg ⁻¹ $T=298.15 \text{ K}$ $T=348.15 \text{ K}$ $T=398.15 \text{ K}$ 00.10 1116.96 00.10 1088.27 $p_{z}=0.2253 \rho_{s}=1051.41$ 03.45 1118.47 04.56 1090.47 0.567 1054.03 11.23 1121.79 09.94 1092.79 10.64 1056.42 19.62 1125.36 19.57 1096.95 20.34 1061.09 29.98 1129.77 29.64 1101.30 30.94 10661.19 40.61 1134.30 41.85 1106.57 40.38 1070.73 50.66 1133.33 52.47 1111.15 50.07 1075.39 59.67 1142.43 59.96 1114.39 59.31 1079.84 7=323.15 K <i>T</i> =373.15 K T 7 10.67 1075.52 20.75 1112.76 20.34 1079.88 30.64 116.94 30.67 1084.55 40.08 1120.93 41.31 1089.35 50.94 1093.70 59.87 1129.29 59.03 1097.35 <i>T=298.15</i> K <i>T=348.15</i>	58.43	1071.93	59.76	1042.66			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	m = 1.07546	6 mol·kg ⁻¹					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>T</i> =298.151	Κ	T=348.15	К	<i>T</i> =398.1	5 K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.10	1116.96	00.10	1088.27	$p_s = 0.2253$	$\rho_s = 1051.41$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03 45	1118 47	04.56	1090 47	05 67	1054.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 23	1121 79	09.94	1092.79	10.64	1056 42	
29.981129.7729.641101.3030.941066.1940.611134.3041.851106.5740.381070.7350.061138.3352.471111.1550.071075.3959.671142.4359.961114.3959.311079.84T=323.15 KT=373.15 K00.101070.5705.261106.2205.871073.3510.341108.3710.671075.5220.751112.7620.341093.7059.871120.9341.311089.3550.941125.5250.941093.7059.871122.0959.031097.35m=2.03143 mol·kg ⁻¹ T=398.15 KT=398.15 K7=298.15 KT=348.15 KT=348.15 Kps=0.2195 ρ_s =1136.7105.031210.0005.341177.5304.681138.8710.851212.4411.641180.2809.571141.2421.061216.7121.571188.5329.781151.0430.741220.7530.511188.5329.781151.0430.741220.7530.511188.5329.781151.0430.741220.7530.511188.5329.781151.0430.741220.7530.511188.5329.781151.0430.741220.7530.511188.5329.781151.0430.741220.7530.511188.5329.781150.4959.741232.8859.461201.1759.371165.397=323.15 K <td>19.62</td> <td>1125.36</td> <td>19.57</td> <td>1096 95</td> <td>20.34</td> <td>1061.09</td> <td></td>	19.62	1125.36	19.57	1096 95	20.34	1061.09	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.98	1129.77	29.64	1101 30	30.94	1066 19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.61	1134 30	41.85	1106.57	40.38	1070 73	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.06	1138.33	52 47	1111 15	50.07	1075 39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.67	1142 43	59.96	1114 39	59.31	1079.84	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T=323 15 1	Χ	T=373.15	K	57.51	1079.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 10	1103 90	00 10	1070 57			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05.26	1105.90	05.87	1073 35			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.34	1108.37	10.67	1075.52			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.75	1112 76	20.34	1079.88			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.64	1112.70	30.67	1084 55			
1120.051121.051100.05 50.94 1125.52 50.94 1093.70 59.87 1129.29 59.03 1097.35 $m=2.03143 \text{ mol·kg}^1$ $T=348.15 \text{ K}$ $T=398.15 \text{ K}$ $T=298.15 \text{ K}$ $T=348.15 \text{ K}$ $T=398.15 \text{ K}$ 00.10 1207.98 00.10 1175.06 $p_s=0.2195 \rho_s=1136.71$ 05.03 1210.00 05.34 1177.53 04.68 1138.87 10.85 1212.44 11.64 1180.28 09.57 1141.24 21.06 1216.71 21.57 1184.62 19.61 1146.11 30.74 1220.75 30.51 1188.53 29.78 1151.04 41.06 1225.07 40.28 1192.79 39.61 1155.81 50.09 1228.84 50.07 1197.07 49.27 1160.49 59.74 1232.88 59.46 1201.17 59.37 1165.39 $T=323.15 \text{ K}$ $T=373.15 \text{ K}$ $T=373.15 \text{ K}$ $T=373.15 \text{ K}$ 00.10 1192.56 00.10 1156.23 04.97 1194.70 05.08 1158.72 09.56 1196.64 11.61 1161.70 20.37 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18 1183.18 1183.18	40.08	1120.93	41 31	1089.35			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.94	1125.52	50.94	1093.70			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59.94	1129.32	59.03	1097 35			
$T=298.15$ K $T=348.15$ K $T=398.15$ K00.101207.9800.101175.06 $p_s=0.2195$ $\rho_s=1136.71$ 05.031210.0005.341177.5304.681138.8710.851212.4411.641180.2809.571141.2421.061216.7121.571184.6219.611146.1130.741220.7530.511188.5329.781151.0441.061225.0740.281192.7939.611155.8150.091228.8450.071197.0749.271160.4959.741232.8859.461201.1759.371165.39 $T=323.15$ K $T=373.15$ K01.01156.2304.9709.561196.6411.611161.7020.371201.2120.071165.5731.571205.9429.511169.8840.951209.9140.051174.6958.641183.18	m=2.031/3	r_{12}	57.05	1077.55			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T=2.0314	Z morkg	T=3.48 15	K	<i>T</i> =308 1	5 K	
00.10 1207.93 00.10 1175.00 $p_s=0.2195$ $p_s=1130.71$ 05.03 1210.00 05.34 1177.53 04.68 1138.87 10.85 1212.44 11.64 1180.28 09.57 1141.24 21.06 1216.71 21.57 1184.62 19.61 1146.11 30.74 1220.75 30.51 1188.53 29.78 1151.04 41.06 1225.07 40.28 1192.79 39.61 1155.81 50.09 1228.84 50.07 1197.07 49.27 1160.49 59.74 1232.88 59.46 1201.17 59.37 1165.39 $T=373.15$ K $T=373.15$ K $T=373.15$ K 01.0 1156.23 04.97 1194.70 05.08 1158.72 09.56 1196.64 11.61 1161.70 20.37 1201.21 20.07 1165.57 31.57 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	1-296.131	1207.08	00.10	1175.06	n = 0.2105	5 K a -1136 71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.10	1207.98	05.24	1177.52	$p_{\rm s}$ -0.2195	$\mu_{\rm s}$ -1130.71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.85	1210.00	11.64	1180.28	04.08	11/1 2/	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.06	1212.44	21.57	1184.62	10.61	1141.24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.00	1210.71	21.57	1184.02	20.78	1140.11	
41.00 1225.07 40.28 1192.79 39.01 1155.81 50.09 1228.84 50.07 1197.07 49.27 1160.49 59.74 1232.88 59.46 1201.17 59.37 1165.39 $T=323.15$ K $T=373.15$ K $T=373.15$ K 00.10 1192.56 00.10 1156.23 04.97 1194.70 05.08 1158.72 09.56 1196.64 11.61 1161.70 20.37 1201.21 20.07 1165.57 31.57 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	<i>J</i> 1.06	1220.75	40.28	1102.70	29.70	1151.04	
50.09 1228.04 50.07 1197.07 49.27 1100.49 59.74 1232.88 59.46 1201.17 59.37 1165.39 $T=323.15$ K $T=373.15$ K 00.10 1192.56 00.10 1156.23 04.97 1194.70 05.08 1158.72 09.56 1196.64 11.61 1161.70 20.37 1201.21 20.07 1165.57 31.57 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	50.00	1223.07	40.28	1192.79	<i>J</i> 9.01 <i>A</i> 0.27	1155.81	
JJ.74 1252.03 $JJ.46$ 1201.17 $JJ.57$ 1103.57 $T=323.15 K$ $T=373.15 K$ 00.10 1192.56 00.10 1156.23 04.97 1194.70 05.08 1158.72 09.56 1196.64 11.61 1161.70 20.37 1201.21 20.07 1165.57 31.57 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	50.09	1220.04	59.07	1201 17	49.27 50.37	1165 30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T = 222 15	1252.00	T = 373.15	1201.17	57.57	1105.57	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-525.151 00.10	1102 56	00.10	1156.23			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0/ 07	1192.30	00.10	1150.25			
09.30 1190.04 11.01 1101.70 20.37 1201.21 20.07 1165.57 31.57 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	04.97	1194.70	03.08	1156.72			
20.37 1201.21 20.07 1103.37 31.57 1205.94 29.51 1169.88 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	20 27	170.04	20.07	1165.57			
31.37 1203.94 29.31 1109.00 40.95 1209.91 40.05 1174.69 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	20.57	1201.21	20.07	1163.37			
40.55 1205.51 40.05 1174.09 50.27 1213.84 49.96 1179.22 59.87 1217.90 58.64 1183.18	J1.J/ 40.05	1203.94	27.31 40.05	1107.00			
50.27 1215.04 47.70 11/9.22 59.87 1217.90 58.64 1183.18	+0.75 50 27	1207.71	40.03	1170.02			
	50.27	1213.04	49.90 58 61	11/9.22			

					Continue of T	able 2
p/MPa	$ ho/{ m kg}{ m m}^{-3}$	p/MPa	$ ho/{ m kg}{\cdot}{ m m}^{-3}$	<i>p</i> /MPa	$ ho/{ m kg}{ m m}^{-3}$	
<i>m</i> =3.2815	5 mol·kg ⁻¹					
<i>T</i> =298.15	K	<i>T</i> =348.15	Κ	<i>T</i> =398.1	5 K	
00.10	1307.58	00.10	1270.97	$p_{\rm s} = 0.2109$	$\rho_{\rm s}$ =1230.55	
04.96	1309.62	05.02	1273.28	05.06	1233.32	
11.37	1312.24	10.34	1275.60	10.27	1235.91	
18.56	1315.17	20.17	1279.88	21.34	1241.42	
27.54	1318.84	31.20	1284.68	29.58	1245.52	
40.31	1324.05	41.06	1288.97	39.57	1250.49	
50.62	1328.25	49.21	1292.51	50.67	1256.01	
59.12	1331.72	59.31	1296.91	59.11	1260.21	
<i>T</i> =323.15	K	<i>T</i> =373.15	Κ			
00.10	1290.28	00.10	1251.06			
05.03	1292.36	04.64	1253.34			
10.21	1294.49	10.28	1255.94			
20.54	1298.73	20.34	1	260.59		
31.23	1303.11	30.61	1265.33			
40.54	1306.93	39.95	1269.64			
50.24	1310.91	49.27	1273.94			
59.41	1314.67	59.95	1278.87			

TABLE 3: Values of coefficients a_{ij} , b_{ij} , and c_{ij} in the Eqn. (2)

a_{ij}	b_{ij}	C _{ij}
$a_{10} = -7.7203424525$	$b_{00} = 3534.673$	$c_{00} = -2100.9597$
$a_{11} = -22.7991105$	$b_{01} = 7732.784893$	$c_{01} = -5804.09074161$
$a_{12} = 70.4184005$	$b_{02} = -33587.6411462751$	$c_{02} = 25555.751$
$a_{13} = -75.13357063$	$b_{03} = 37840.9591422$	$c_{03} = -29079.10855$
$a_{14} = 31.89594533224$	$b_{04} = -16359.699$	$c_{04} = 12602.60323706$
$a_{15} = -4.53723906$	$b_{05} = 2346.6509433$	$c_{05} = -1807.877$
$a_{20} = 0.02717761755$	$b_{10} = -14.278840747$	$c_{10} = 9.50409278$
$a_{21} = 0.0903276715$	$b_{11} = -36.7610808$	$c_{11} = 34.7178167$
$a_{22} = -0.2824457527154$	$b_{12} = 153.984594$	$c_{12} = -140.551607431$
$a_{23} = 0.30305710742$	$b_{13} = -172.9739773$	$c_{13} = 157.81198471$
$a_{24} = -0.129212512$	$b_{14} = 74.853371$	$c_{14} = -68.1157257$
$a_{25} = 0.018439455341$	$b_{15} = -10.7524183$	$c_{15} = 9.7561385453$
$a_{30} = -0.25849 \cdot 10^{-4}$	$b_{20} = 0.017998$	$c_{20} = -0.011613$
$a_{31} = -0.104342582 \cdot 10^{-3}$	$b_{21} = 0.0665418063$	$c_{21} = -0.06747771$
$a_{32} = 0.32266154455 \cdot 10^{-3}$	$b_{22} = -0.247447162$	$c_{22} = 0.24359$
$a_{33} = -0.346607866 \cdot 10^{-3}$	$b_{23} = 0.272297762$	$c_{23} = -0.2676481$
$a_{34} = 0.14825734275 \cdot 10^{-3}$	$b_{24} = -0.1170406841$	$c_{24} = 0.11464368847$
$a_{35} = -0.2121646 \cdot 10^{-4}$	$b_{25} = 0.01676415$	$c_{25} = -0.016363424$

4. Conclusion

The (p, ρ, T) and (p_s, ρ_s, T_s) properties of Ca(NO₃)₂ (aq) at *T*=(298.15 to 398.15) K, at pressures up to 60 MPa are reported. The experiments were carried out at molalities *m*=(0.18848, 0.32075, 0.52994, 1.07546, 2.03143, and 3.28155) mol·kg⁻¹ of calcium nitrate. The obtained results are compared with corresponding literature values.

FIGURE 1. Plot of density ρ of Ca(NO₃)₂ (aq) against pressure *p* at *m*=0.52994 mol·kg⁻¹ (\blacklozenge , 298.15 K; \blacksquare , 323.15 K; \blacktriangle , 348.15 K; \bullet , 373.15 K; \Box , 398.15 K).

FIGURE 3. Plot of deviations of experimental density $\rho_{exp.}$ from the calculated by equations (1) and (2) density $\rho_{cal.}$ against pressure p (\blacksquare , m=0.18848 mol·kg⁻¹; \blacklozenge , m=0.32075 mol·kg⁻¹; \blacktriangle , m=0.52994 mol·kg⁻¹; \bullet , m=1.07546 mol·kg⁻¹; \Box , m=2.03143 mol·kg⁻¹; \bigtriangleup , m=3.28155 mol·kg⁻¹).

FIGURE 2. Plot of density ρ of Ca(NO₃)₂ (aq) against pressure p at T=298.15 K (\Box , m=0; \blacklozenge , m=0.18848mol·kg⁻¹; \blacksquare , m=0.32075 mol·kg⁻¹; \blacklozenge , m=0.52994mol·kg⁻¹; \blacklozenge , m=1.07546 mol·kg⁻¹; \diamondsuit , m=2.03143mol·kg⁻¹; \circ , m=3.28155 mol·kg⁻¹).

Figure 4. Deviation of density ρ of Ca(NO₃)₂ (aq) at *T*=298.15 K and *p*=0.1 MPa against molality *m*, together with values reported in the literature (\blacklozenge , ICT [5]; \blacksquare , Ewing and Mikovsky [9]; \blacktriangle , Rodyanskiy *etc*. [10]; \bigtriangleup , Akhundov *etc*. [18, 19]; \Box , Vercher *etc*. [21]).

Acknowledgments

Dr. Javid Safarov would like to thank to the Alexander von Humboldt Foundation of Germany, which made possible his research period at the Rostock University of Germany. The authors thank the Rostock University (Germany) and Azerbaijan Technical University (Azerbaijan) for support of the theoretical and experimental investigations.

References

- 1. K.E. Herold, R. Radermacher, S.A. Klein, Absorption Chillers and Heat Pumps. CRC Press LLC, Boca Raton, FL, 1996.
- 2. Y. Park, J.-S. Kim, H. Lee, Int. J. Thermophysics 18 (1997) 1575-1582.
- **3.** F. Mylius, R. Funk, Ber. 30 (1897) 1718.
- 4. H.C. Jones, F.H. Getman, Z. phys. Chem. 49 (1904) 403.
- 5. The International critical tables, vol. III. NY McGraw Hill. 1928.

- 6. Pearce J.N., Blackman L.E., J. Am. Chem. Soc. 57 (1935) 24-27.
- 7. Scott A.F., Bridger G.L., J. Phys. Chem. 40, 4 (1936) 461-470.
- 8. J. Lamberger, R. Paris, Compt. rend. 227 (1948) 637-639.
- 9. Ewing W.W., Mikovsky R.J., J. Am. Chem. Soc. 72 (1950) 1390-1393.
- 10. Rodyansky I.M.,. Korobkov V.I, Galinker I.S., Russ. J.Phys. Chem. 36 (1962) 2216-2219.
- 11. Romankow Yu.I., Komarova T.A., Vestnik Moskowskogo Universiteta 6 (1969) 104-106.
- 12. Protsenko P.I., Razumovskaya O.N.,. Brikova N.A, Spravochnik po rastvorimosti nitritni
- 13. I nitratnix solevix sistem, Leningrad, 1971, p.272.
- 14. *Millero F.J.*, In Water and Aqueous Solutions; R.A. Horne, Ed.; Wiley-Interscience: New-York, 1972.
- 15. Blinova M.V, Sorina G.A., Tsekhanskaya Yu.V., Russ. J.Appl. Chem.51(1978) 466-468.
- Spitzer J.J., Olofsson I.V., Singh P.P., Hepler L.G., J. Chem. Thermodynamics 11 (1979) 233-238.
- 17. Kuznetsov V.V., Trostin V.N., Khrenova L.A., Krestov G.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 26 (1983) 1505-1506.
- 18. Jain S.K., Singh V.V., Gupta A.K, Jain A.K, Indian J. Chem. 23 A (1984) 808-811.
- 19. Akhundov T.S., Akhmedova I.N., Iskenderov A.I., Tairov A.D., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz 8 (1989) 95-96.
- **20.** Akhundov T.S., Akhmedova I.N., Tairov A.D., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz 9 (1989) 34, 55-56.
- 21. Krumgalz B.S., Pogoreisky R., J. Phys. Chem. Ref. Data 25 (1996) 663-689.
- 22. Vercher E., Rojo F.J., Martínez-Andreu A., J. Chem. Eng. Data 44 (1999) 1212-1215.
- 23. Jahagidar D.V.,. Khobragade C.N, Ind. J. Chem. 36 A (1997) 895-897.
- 24. Safarov J.T., Najafov G.N., Shahverdiyev A.N., Hassel E.P., J. Mol. Liq. (2004) in press.
- **25.** Safarov J.T., J. Chem. Thermodynamics 35 (2003) 1929-1937.
- 26. Wagner W., Pruß A., J. Phys. Chem. Ref. Data 31 (2002) 387-535.
- 27. Rabinovich S.G., Measuring Errors, Energiya: USSR. 1978, p.261.

Ca(NO₃)₂ (sulu) ALTERNATİV ENERJİ MƏNBƏƏLƏRİNDƏ İSTİLİKDAŞIYICILARI KİMİ. I. (p, ρ , T) və (p_S, ρ _S, T_S) XASSƏLƏRİ

SƏFƏROV C.T., NƏCƏFOV Q.N., ŞAHVERDIYEV A.N., HÜSEYNOV S.O., HASSEL E.P.

Ca(NO₃)₂ (sulu) qarışıqlarının *T*=(298.15-dən 398.15) K və *p*=60 MPa təzyiqə qədər (*p*, *ρ*, *T*) və (*p*_s, *ρ*_s, *T*_s) xassələri təqdim olunmuşdur. Təcrübələr *m*=(0.18848, 0.32075, 0.52994, 1.07546, 2.03143, and 3.28155) mol·kq⁻¹ molyar konsentraysiyada aparılmışdır.

Са(NO₃)₂ (вод.) КАК ТЕПЛОНОСИТЕЛЬ ДЛЯ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ. І. (*p*, *ρ*, *T*) и (*p*_s, *ρ*_s, *T*_s) СВОЙСТВА

САФАРОВ Д.Т., НАДЖАФОВ Г.Н., ШАХВЕРДИЕВ А.Н., ГУСЕЙНОВ С.О., ХАССЕЛ Е.Р.

 (p, ρ, T) и (p_s, ρ_s, T_s) свойства Ca(NO₃)₂ (вод.) в T=(298.15 до 398.15) К, давлениях до p=60 MPa приведены. Эксперименты проведены в m=(0.18848, 0.32075, 0.52994, 1.07546, 2.03143, и 3.28155) моль · кг⁻¹ молярной концентрации кальция нитрата.