УДК 621.311

СОЛНЕЧНЫЕ ПРЕОБРАЗОВАТЕЛИ С БАРЬЕРОМ ШОТТКИ Pt/a — $Si_{0,80}Ge_{0,20}$:Н И С p-i-n-СТРУКТУРОЙ, ПОЛУЧЕННЫМИ МЕТОДОМ ПЛАЗМОХИМИЧЕСКОГО ОСАЖДЕНИЯ

наджафов б.а.

Институт Радиационных Проблем НАН Азербайджана

Исследованы солнечные элементы с барьером Шоттки $Pt/a-Si_{0,80}Ge_{0,20}$: H (где H=23 ат.%) и p-i-n- структурой, базовый материал для которых был изготовлен методом плазмохимического осаждения с шириной запрещенной зоны E_g =1,72 эB. Установлено, что наибольшие значения коэффициентов полезного действия (к.п.д.) составляют η = 5,9% и η = 4,2% для p-i-n- и Pt/a- $Si_{0,80}Ge_{0,20}$:H, соответственно с площадью элементов S=0,8 см².

В работе рассматриваются некоторые физические параметры тонких пленок а- $\mathrm{Si}_{0,80}\mathrm{Ge}_{0,20}$: Н и (где H=23 ат.%) солнечных элементов с барьером Шоттки Pt/а- $\mathrm{Si}_{0,80}\mathrm{Ge}_{0,20}$: Н и р–i–n- структурой. Для получения фотогальванического эффекта пленка освещалась источником света мощностью $\sim 90~\mathrm{MBT}\cdot\mathrm{cm}^2$. Толщина пленки а- $\mathrm{Si}_{0,80}\mathrm{Ge}_{0,20}$:Н составляла d $\sim 0,8~\mathrm{mkm}$. Для использования р-i-n- структуры подложка была выбрана стеклянная, покрытие — ОИО (окись-индий-олово) толщиной $\sim 500~\mathrm{Å}$, которое пропускает свет на 80%. Причем і-слой являлся нелегированным и коэффициент оптического поглощения α в видимой области спектра достигал величины $8\cdot 10^4\mathrm{cm}^{-1}$ и описывался следующим соотношением:

$$ch v = B(h v - E_g)^2 \tag{1}$$

Значение B, определенное экстраполяцией зависимости (α hv) $^{1/2}$ от hv, составляет 539 эВ $^{-1}$ см $^{-1/2}$. E_g — ширина запрещенной зоны составляет 1,72 эВ. Величина μ т для i —слоя - 10^{-7} см 2 B $^{-1}$. Эффективность процесса генерации в нашем случае равна единице (η \approx 1). Тонкие p^+ и n^+ слои имеют толщину 200-350 Å и изготавливаются в разряде SiH₄, содержащем \sim 1% B_2 H₆ и PH₃ (рис. 1).

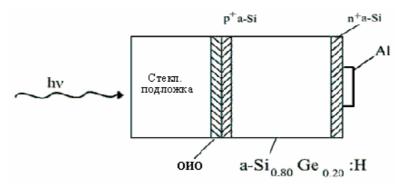


Рис.1. Структура солнечных элементов с p-i-n-переходом на основе $a\text{-Si}_{0.80}\text{Ge}_{0.20}$:H, H= 23 aт.%.

Уровень легирования был B_2H_6 / SiH_4 и $PH_3/SiH_4 \le 10^{-4}$. В качестве контактного электрода на освещаемой стороне элемента использовали полупрозрачный проводящий

слой ОИО (окись-индий-олово), а на обратную сторону элементов наносился слой Al. При этом наибольший коэффициент полезного действия составлял 5.9% и наилучшие значения величин тока короткого замыкания $J_{\kappa 3}$, напряжения разомкнутой цепи (V_{∞}) и коэффициента заполнения (ζ) соответственно равны -12,4 мА·см²; 790 мВ; 0,52 (рис.2, кривая 2).

Используя зависимости J_{κ_3} от V_{∞} , и, применив следующее соотношение [1]

$$V_{\infty} = \frac{n'kT}{q} \ln \left(\frac{J_{\kappa 3}}{J_0} + 1 \right) \tag{2},$$

определили коэффициент качества диода n' при освещении; его наибольшее значение составляет 2, 48.

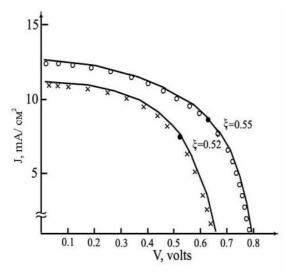


Рис.2 . J-V характеристики для солнечного элемента при освещении источником света мощностью $\sim 90~\text{MBT/cm}^2$. 1 — типа барьера Шоттки, 2- с р-i-n- структурой

Величина J_0 определяется из темновой вольтамперной характеристики (I-V) и ее значение для p-i-n-структуры соответствует $J_0 \sim 10^{-12} \ \text{A/cm}^2$.

Аналогично были созданы солнечные элементы типа барьера Шоттки: Pt/a - $Si_{0,80}Ge_{0,20}$:H, (где H=23 ат.%). Для этой цели была выбрана стальная подложка, а в качестве покрытия использовалась окись ZrO_2 ; пропускание света этого покрытия составляло $\sim 80\%$. Чтобы улучшить воспроизводимость и работу солнечного элемента на подложку наносился тонкий n^+ слой толщиной 200 Å, который был изготовлен из SiH_4 (рис3).

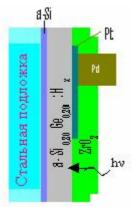


Рис.3. Структура солнечных элементов типа барьера Шоттки Pt/a- $Si_{0,80}Ge_{0,20}$:H, H=23 ат.%

Используя темновые вольтамперные характеристики, определили плотность тока насыщения J_0 по формуле:

$$J_0 = q\mu_c N_c E_s \exp\left(-\frac{\varphi_B}{kT}\right) \tag{3},$$

где μ_c — подвижность электрона в зоне проводимости, значение которой, равное $6\text{cm}^2/\text{B}\cdot\text{c}$, находим из значений зависимости электропроводности от температуры σ (T); N_c - эффективная плотность состояний в зоне проводимости, значение ее равно - N_c = 10^{21}cm^{-3} ; $E_s \approx 10^4$ B/cm [3]. Получив из темновых вольтамперных характеристик значение плотности тока насыщения J_0 , находим высоту потенциального барьера (ϕ_B), которая равна ϕ_B = 1,2 эВ и коэффициент качества диода n=1,4.

Из (C-V) характеристики [4] находим значение внутреннего потенциала V_0 -0,42 В и плотность пространственного заряда $N{\sim}3\cdot10^{15} \text{см}^{-3}$. Тогда, используя следующее уравнение [1],

$$W_{B} = \left(\frac{\varepsilon}{2\pi q}\right)^{1/2} \cdot \left(\frac{V_{0}}{N}\right)^{1/2} \tag{4},$$

определяем ширину области пространственного заряда: $W_B \approx 0.35$ мкм.

На рис.2 (кривая 1, 2) показаны J-V характеристики для солнечного элемента Pt/a- $Si_{0,80}Ge_{0,20}$:Н и p-i-n-структурой после освещения источником света мощностью $\sim 90 \text{ MBT/cm}^2$.

Используя зависимости J_{κ_3} от V_{∞} , находим коэффициент качества диода n'=1.52.

Как видно из рис.2, наибольшее значение коэффициента полезного действия составляет η =4,2%, а наилучшие значения величин тока короткого замыкания ($J_{\kappa 3}$), напряжения разомкнутой цепи (V_{∞}) и коэффициента заполнения (ζ) соответственно равны: $J_{\kappa 3}$ =11,2 мА/см², V_{∞} =650 мВ, ζ =0,55.

На рис.4 представлена зависимость коэффициента собирания от длины волны света при потоке фотонов $\sim 10^{13} \div 10^{14} \ {\rm cm^2c^{-1}}$ в режиме короткого замыкания, рассчитанная по данным оптического поглощения для пленки толщиной 0,8 мкм; при расчете падающий поток фотонов уменьшен на 80% для учета ограниченного оптического пропускания металлической пленки (кривая 1); аналогично показан коэффициент собирания для p-i-n структуры (кривая 2).

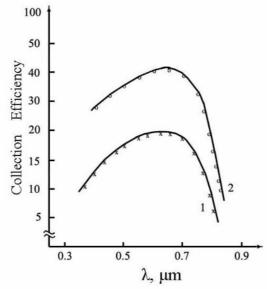


Рис.4. Спектральная зависимость коэффициента собирания от длины волны света для солнечного элемента: 1- типа барьера Шоттки; 2- с p-i-n- структурой.

В случае насыщения фототока, когда все возбужденные светом носители собираются в режиме короткого замыкания, измеренный коэффициент сбора уже не зависит от обратного смещения. Величина максимума коэффициента сбора соответствует длине волны $\lambda \leq 0.7$ мкм, соответствующей величине ширины запрещенной зоны активного i- слоя элементов.

Для улучшения качества пленок или повышения к.п.д. (η) солнечного элемента, созданного на основе a-Si_{0,80}Ge_{0,20}:H, требуются новые технологические разработки и модификация свойств активного i-слоя.

Для получения максимальной эффективности полупроводниковый материал должен удовлетворять многим требованиям, которые порой противоречат друг другу. Поэтому приходится выбирать оптимальные параметры, соответствующие максимальной эффективности СЭ (солнечные элементы).

Заключение

Полученные результаты позволяют утверждать, что для изготовления солнечных элементов на основе $a\text{-}Si_{0,80}Ge_{0,20}$:Н и a-Si:Н требуются разработка и создание новых технологических установок и модификация свойств базового материала.

1. *M.H.Brodsky*. Amorphous Semiconductors Springer Verlag, Berlin-Heidelberg – N.Y.; 1990.

- 2. *Y. Hamakava* . Amorphous Semiconductors Technologies and Devices. Nort-Holland, Amsterdam –New York –Oxford, 1983
- 3. *Б.А.Наджафов*// Физика и Техника полупроводников 2000, т.34, с.1383-1385
- 4. Б.А.Наджафов//Ученые записки НАА, Баку 2004, т.6, № 1, с.157-159

PLAZMA KİMYƏVİ CÖKDÜRMƏ ÜSULU İLƏ ALINMIŞ Pt/a- Si_{0,80}Ge_{0,20}:H ŞOTTKİ BARYERİ VƏ p-i-n STRUKTURLU GÜNƏŞ CEVRİÇİLƏRİ

NƏÇƏFOV B.A.

Baza materialı plazma kimyəvi üsulla alınmış, qadağan olunmuş zolağın eni E_g =1,72 eV olan Pt/a – $Si_{0,80}Ge_{0,20}$:H (H=23 at.%) Şottki baryeri həmcinin p-i-n strukturlu günəş elementləri tədqiq edilmişdir. Müəyyən edilmişdir ki, sahəsi S=0,8 sm² olan p-i-n və Pt/a- $Si_{0,80}Ge_{0,20}$:H strukturlu element üçün faydalı iş əmsalı uyğun olaraq η =5,9 və 4,2 %-dir.

SOLAR ENERGY CONVERTERS ON THE BASE OF Pt /a-Si_{0,80}Ge_{0,20}:H SCHOTTKY BARRIER AND p-i-n – JUNCTION TYPE STRUCTURE OBTAINED BY THE METHOD OF PLASMA –CHEMICAL PRECIPITATION

NAJAFOV B.A.

Pt/a-Si_{0,80}Ge_{0,20}:H solar cells structures with Schottky barrier and also p-i-n junction (where H=23 at.%) for which the base material were prepared by the plasma-chemical precipitation's method have been investigated. The band gap was $E_g=1,72$ eV. It has been determined that the biggest values for efficiency's coefficient were $\eta=5,9$ & 4,2% for p-i-n and Pt/a-Si_{0,80}Ge_{0,20}:H structures, respectively with elements square S=0,8sm².