УДК 621.313.3

МЕТОДЫ ИССЛЕДОВАНИЯ РЕЖИМОВ РАБОТЫ ВЕТРОЭЛЕКТРИЧЕСКИХ УСТАНОВОК С АСИНХРОННЫМИ ГЕНЕРАТОРАМИ ПРИ ЧАСТОТНОМ УПРАВЛЕНИИ

МУСТАФАЕВ Р.И., ГАСАНОВА Л.Г.

Азербайджанский Научно-исследовательский и проектно-изыскательский институт энергетики

Представлена математическая модель (модели состояния) и исследована на этой модели различные режимы работы ВЭУ, содержащие асинхронные генераторы, частотно – управляемые как со стороны статора, так и со стороны ротора. Предложен аналитический метод расчета и произведено его сопоставление с представленной математической моделью.

В последние годы ветроэнергетика развивается бурными темпами. Сегодня работают параллельно с электрической сетью ветроустановки единичной мощностью до 5 МВт. К 2005 году общая мощность ветроустановок в мире составила 58 ГВт.

В качестве электромеханических преобразователей в ветроэлектрических установках (ВЭУ) находят применение низкоскоростные синхронные генераторы, асинхронные машины с короткозамкнутым ротором, асинхронные машины двойного питания.

Для повышения эффективности функционирования ВЭУ в определенном диапазоне изменения скорости ветра необходимо соответственно этому регулировать также частоту вращения ветродвигателя (ВД) с сочлененным с ним генератором [1,2,3]. При таком регулировании коэффициент использования энергии ветра достигает максимальных для соответствующих скоростей ветра значений, таким образом, увеличивается выработка электроэнергии.

Выражение для мощности и момента ветродвигателя соответственно записываются в виде [1]:

$$P_{BZ} = \frac{1}{2} \rho \pi R^2 \cdot V^3 \cdot c_p \tag{1}$$

$$M_{BJI} = \frac{1}{2} \rho \pi R^3 \cdot V^2 \cdot \mu \tag{2}$$

где ρ – массовая плотность воздуха, R – радиус ветроколеса, V – скорость ветра; c_p – коэффициент использования энергии ветра, μ – относительный движущий момент ветродвигателя.

Связь между коэффициентом использования энергии ветра c_p и относительным движущим моментом μ осуществляется через соотношение:

$$c_p = \mu \cdot Z \tag{3}$$

где $Z = \frac{\omega_{BJ}R}{V}$ — число модулей или коэффициент быстроходности, ω_{BJ} — угловая частота вращения ветродвигателя.

Если из выражения (3) определить μ и подставить в выражение (2) с учетом зависимости коэффициента быстроходности от ω_{BJ} и V, то, естественно, получим:

$$M_{BJI} = \frac{P_{BJI}}{\omega_{RIJ}} \tag{4}$$

При регулировании частоты вращения ветродвигателя пропорционально скорости ветра теоретически число модулей Z должно оставаться постоянным, т.е.

$$Z = Z_{onm} = \frac{\omega_{BJ} \cdot R}{V} = const$$
 (5)

И по аэродинамической характеристике ВД соответственно $Z_{\tiny onm}$, c_p и μ должны оставаться постоянными, но в реальных ветроустановках этого в точности добиться невозможно.

Например, ВЭУ типа Gamera G-52 мощностью 850 кВт, в которой в качестве электромеханического преобразователя применена асинхронная машина двойного питания, частота вращения ВД изменяется от 30,8 об/мин (0,513 об/с) до 14,6 об/мин (0,24 об/с), т.е. в диапазоне изменения скорости ветра от 10,45 м/с до 4,96 м/с (глубина изменения $\frac{10,45}{4,96} = 2,1$) частота вращения ветродвигателя регулируется от

0,513 $\frac{1}{c}$ до 0,24 $\frac{1}{c}$ (глубина регулирования $\frac{0,513}{0,24}$ = 2,1). В указанном диапазоне коэффициент использования энергии ветра c_p для рассматриваемого ветродвигателя изменяется от величины $c_{p\, {\rm min}}$ = 0,390 до $c_{p\, {\rm max}}$ = 0,452 .

Однако если в диапазоне регулирования частоты вращения ВД оперировать средним значением коэффициента $\mathcal{C}_{p\ cp}$, которое следует определять как среднеарифметическое значение по выражению:

$$c_{pcp} = \frac{\sum_{1}^{n} c_{pi}}{n} \tag{6}$$

где c_{pi} — возможные фиксированные значения коэффициента использования энергии ветра c_p в диапазоне регулирования, n — число фиксированных значений, то ошибка при вычислении мощности не превышает значения $\pm 7-8\%$.

Продемонстрируем это на примере той же ВЭУ. В таблице 1 в диапазоне регулирования частоты вращения приведены значения скоростей ветра, соответствующие им значения c_p , мощности P и вычисленные значения частот вращения ветродвигателя $\omega_{\scriptscriptstyle RJ}$ [4].

											Таблиі	ца 1.
V, м/с	10,45	9,97	9,44	9,00	8,53	7,97	7,48	7,00	6,51	6,03	5,5	4,96
Р, кВт	587,9	535,9	479,2	421,2	362,0	277,4	232,0	186,5	149,3	117,4	86,59	61,6
<i>c_p, o.e.</i>	0,398	0,418	0,441	0,446	0,452	0,423	0,429	0,42	0,418	0,415	0,402	0,39
ω _{вД} , об/с	0,513	0,489	0,463	0,442	0,419	0,391	0,367	0,343	0,319	0,296	0,27	0,243
						1 1						

Вычисленное среднее значение коэффициента использования энергии ветра равно:

$$c_{pcp} = 0.419$$

Если теперь принять во всем диапазоне регулирования $c_p = c_{pcp} = const$, то при определении мощностей соответствующих максимальным значениям $c_{p max}$ (в

приведенном примере это $P_I = 362,05~\mathrm{kBr}$ при $c_{p\,\mathrm{max}} = 0,452)$ и минимальным значениям $c_{p\,\mathrm{min}}$ ($P_2 = 61,6~\mathrm{kBr}$ при $c_{p\,\mathrm{min}} = 0,39$) ошибка составит:

$$\Delta P_{\text{max}} = \frac{P_1 - P_1^{'}}{P_1} = +6,5\%$$
 и $\Delta P_{\text{min}} = \frac{P_2 - P_2^{'}}{P_2} = -7,8\%$,

где $P_{l}^{'}=338~\mathrm{kBr}$ и $P_{2}^{'}=66,46~\mathrm{kBr}$ значения мощностей, соответствующих скоростям ветра при $c_{p\,\mathrm{max}}$ и $c_{p\,\mathrm{min}}$, но определенных при $c_{p}=c_{p\,cp}=0,419~\mathrm{по}$ формуле (1).

Расчеты показали, что для подавляющего большинства ВЭУ при предложенном подходе ошибка при определении мощности не превышает величину 7–8%. Например, у ВЭУ «Vestas V-90» мощностью 2 МВт $c_{\it pcp}$ = 0,441, и погрешность находится в диапазоне от 8% до -2%.

Таким образом, в диапазоне регулирования частоты вращения можно записать выражение для мощности ВД в виде:

$$P_{BA} = \frac{1}{2} \rho \pi R^2 \cdot c_{pcp} \cdot V^3 = K_p \cdot V^3 \tag{7}$$

где $K_p = \frac{1}{2} \rho \pi R^2 \cdot c_{pcp}$ – коэффициент пропорциональности мощности, зависящий от конструктивных параметров ВД и массовой плотности воздуха, но не зависящий от скорости ветра.

Соответственно выражение для момента ВД примет вид:

$$M_{BJ} = K_p \frac{V^3}{\omega_{BJ}} \tag{8}$$

При регулировании коэффициент быстроходности Z остается постоянным во всем диапазоне регулирования $Z=Z_{onm}=const$ (для приведенной ВЭУ $Z_{ont}=8,0$), поэтому можно записать

$$V = \frac{\omega_{B,I}R}{Z_{onm}} = \frac{R}{Z_{onm}} \cdot \omega_{B,I} \tag{9}$$

Подставляя выражение (9) в (8) получим

$$M_{BJI} = K_p \frac{R^3}{Z_{onm}^3} \cdot \omega_{BJI}^2 = K_{M} \cdot \omega_{BJI}^2 \qquad (10)$$

где $K_{_{M}} = \frac{K_{_{P}} \cdot R^{3}}{Z_{onm}^{3}}$ – коэффициент пропорциональности момента

Таким образом, момент ветродвигателя при регулировании частоты вращения пропорционально скорости ветра с определенной выше погрешностью можно считать зависящим от квадрата частоты вращения.

современных ВЭУ ДЛЯ плавного регулирования частоты ветродвигателя, как правило, используются преобразователи частоты, работающие электромеханическими преобразователями. Если электромеханических преобразователей используются супернизкоскоростные синхронные генераторы с постоянными магнитами «Ringgenerator» (установки фирм «Enercon», «Vensys»), либо асинхронные генераторы с короткозамкнутым ротором (установка фирмы «Siemens Wind Power»), то преобразователи частоты, выполненные на полностью управляемых полупроводниковых элементах (IGBT – транзисторах, либо полностью управляемых GTO – тиристорах) с ШИМ – управлением, устанавливаются в цепях статора указанных машин. Если же в качестве электромеханического преобразователя используется асинхронные машины двойного питания, то указанные преобразователи частоты устанавливаются в цепях ротора этих машин (ВЭУ фирм «Vestas», «Gamesa» «GE Wind Energy» и т.д.).

Представление математической модели (модели состояния) и исследование на этой модели различных режимов работы ВЭУ, содержащих асинхронные генераторы, частотно – управляемые как со стороны статора, так и со стороны ротора позволит учесть специфику работы указанной системы.

Уравнения асинхронной машины в клеточно – матричной форме представляются в виде [5]:

$$\begin{bmatrix} p \, \boldsymbol{\psi}_s \\ p \, \boldsymbol{\psi}_r \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}_{s1} & \boldsymbol{A}_{s2} \\ \boldsymbol{B}_{r1} & \boldsymbol{B}_{r2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\psi}_s \\ \boldsymbol{\psi}_r \end{bmatrix} + \begin{bmatrix} \boldsymbol{U}_s \\ \boldsymbol{U}_r \end{bmatrix} \tag{11}$$

где выражения для подматриц имеет вид:

$$p\boldsymbol{\psi}_{s} = \begin{bmatrix} p\psi_{s\alpha} \\ p\psi_{s\beta} \end{bmatrix}; \ p\boldsymbol{\psi}_{r} = \begin{bmatrix} p\psi_{r\alpha} \\ p\psi_{r\beta} \end{bmatrix}; \ \boldsymbol{\psi}_{s} = \begin{bmatrix} \psi_{s\alpha} \\ \psi_{s\beta} \end{bmatrix}; \boldsymbol{\psi}_{r} = \begin{bmatrix} \psi_{r\alpha} \\ \psi_{r\beta} \end{bmatrix}; \ \boldsymbol{U}_{s} = \begin{bmatrix} U_{s\alpha} \\ U_{s\beta} \end{bmatrix}; \boldsymbol{U}_{r} = \begin{bmatrix} U_{r\alpha} \\ U_{r\beta} \end{bmatrix};$$

Что касается подматриц A_{s1} , A_{s2} , B_{r1} , B_{r2} , то они зависят от формы записи уравнений асинхронной машины. При записи уравнения в осях α , β , θ неподвижных в пространстве, они равны:

$$\mathbf{A}_{sl} = \begin{bmatrix} -r_s k_s & 0 \\ 0 & -r_s k_s \end{bmatrix}; \qquad \mathbf{A}_{s2} = \begin{bmatrix} -r_s k_m & 0 \\ 0 & -r_s k_m \end{bmatrix};$$

$$\mathbf{B}_{rl} = \begin{bmatrix} -r_r k_m & 0 \\ 0 & -r_r k_m \end{bmatrix}; \qquad \mathbf{B}_{r2} = \begin{bmatrix} -r_r k_r & -\omega_r \\ \omega_r & -r_r k_r \end{bmatrix}$$
(12)

Если же уравнения записаны в осях, вращающихся со скоростью ротора (для удобства обозначим эти оси также буквами, α, β , хотя в литературе принято обозначение d, q), тогда подматрицы A_{s1} , B_{r2} будут иметь вид:

$$\mathbf{A}_{sl}^{'} = \begin{bmatrix} -r_s k_s & -\omega_r \\ \omega_r & -r_s k_s \end{bmatrix}; \quad \mathbf{B}_{r2}^{'} = \begin{bmatrix} -r_r k_r & 0 \\ 0 & -r_r k_r \end{bmatrix}$$
(13)

В вышеприведенных уравнениях система выбора относительных единиц, базовых величин, обозначений с учетом того, что $p = d/d\tau, \tau = 314 \cdot t$ (время в рад) общепринятые, коэффициенты k_s, k_r, k_m определяются из обратной матрицы параметров машины, т.е.:

$$\begin{bmatrix} k_s & 0 & k_m & 0 \\ 0 & k_s & 0 & k_m \\ k_m & 0 & k_r & 0 \\ 0 & k_m & 0 & k_r \end{bmatrix} = \begin{bmatrix} x_s & 0 & x_m & 0 \\ 0 & x_s & 0 & x_m \\ x_m & 0 & x_r & 0 \\ 0 & x_m & 0 & x_r \end{bmatrix}^{-1}$$
(14)

В выражениях (12) – (14): r_s, r_r, x_s, x_r, x_m – соответственно активные и индуктивные сопротивления статорных (*s*) и роторных (*r*) контуров, а также сопротивление взаимоиндукции (берется насыщенное значение этого параметра), ω_r – угловая частота вращения ротора асинхронного генератора.

Таким образом, выражения (10) - (14) с присовокуплением нижеследующих уравнений движения и моментов составляют математическую модель асинхронной машины $B \ni Y$.

$$T_{j}p\omega_{\Gamma} = m_{\mathfrak{I}M} - m_{B\mathcal{I}} m_{\mathfrak{I}M} = k_{m}(\psi_{s\alpha} \cdot \psi_{r\beta} - \psi_{s\beta} \cdot \psi_{r\alpha})$$
(15)

В выражении (15) T_j –инерционная постоянная системы (ветродвигателя и генератора) в $[pa\partial]$, m_{BZ} –момент ветродвигателя, определяемый по выражению (10), разумеется, приводится к валу генератора и представляется в выбранной системе

относительных единиц. При этом естественно, ω_{BJ} также приводится к валу генератора с учетом коэффициента передачи редуктора, а также числа пар полюсов генератора.

Если исследовать режим частотного управления со стороны статора асинхронного короткозамкнутого генератора, то проще использовать уравнения асинхронного генератора записанные в осях, неподвижных в пространстве. В этом случае необходимо оперировать подматрицами A_{s1} , A_{s2} , B_{r1} , B_{r2} . Для короткозамкнутого ротора

$$oldsymbol{U}_r = egin{bmatrix} U_{rlpha} \ U_{reta} \end{bmatrix} = 0$$
 , а при частотном управлении $oldsymbol{U}_s = egin{bmatrix} U_{slpha} \ U_{seta} \end{bmatrix} = egin{bmatrix} k_{us} cos(k_{f\!s} au) \ -k_{us} sin(k_{f\!s} au) \end{bmatrix}$, где $k_{us} - k_{us} sin(k_{f\!s} au)$

относительное значение амплитуды напряжения в долях от максимального, имея в виду, что $k_{us\, {\rm max}}=1$, k_{fs} — относительное значение частоты в долях от номинального, имея в виду, что $k_{fs\, \mu}=1$.

Если же проводится исследование режима частотного управления со стороны ротора (асинхронная машина двойного питания), то целесообразно уравнение машины записать в осях, вращающихся со скоростью ротора. Тогда необходимо оперировать подматрицами $A_{s1}', B_{r1}, A_{s2}, B_{r2}'$, а подматрицы напряжений статорной и роторной обмоток определяются как:

$$\boldsymbol{U}_{s} = \begin{bmatrix} \boldsymbol{U}_{s\alpha} \\ \boldsymbol{U}_{s\beta} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{U}_{s} \cdot \sin\theta \\ \boldsymbol{U}_{s} \cdot \cos\theta \end{bmatrix}; \quad \boldsymbol{U}_{r} = \begin{bmatrix} \boldsymbol{U}_{r\alpha} \\ \boldsymbol{U}_{r\beta} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{k}_{ur} \cdot \sin(\boldsymbol{k}_{fr} \cdot \tau) \\ \boldsymbol{k}_{ur} \cdot \cos(\boldsymbol{k}_{fr} \cdot \tau) \end{bmatrix}$$
(16)

где θ — угол между вектором синхронно вращающегося напряжения статора U_s и осью ротора, определяемый из соотношения $p\theta=l-\omega_r$; k_{ur} — относительное значение амплитуды напряжения роторной обмотки; k_{fr} — относительное значение частоты тока роторной обмотки.

На указанных математических моделях была проведена имитация квазистационарного режима работы ветроэлектрических установок типа «Siemens Wind Power», снабженных асинхронными генераторами с короткозамкнутым ротором и регулируемых с помощью преобразователей частоты, питающих статорные обмотки указанных генераторов.

В таблице 2 отражены результаты исследований в диапазоне регулирования частоты вращения ветродвигателя пропорционально скорости изменения ветра. Во втором столбце таблицы представлены значения скоростей ветра, определенные с 15 секундным осреднением, взятые из реальной флуктограммы изменения скорости ветра на высоте 80 м (регистрация проводилась на Апшеронском полуострове республики Азербайджан). В третьем столбце представлены значения электромагнитного момента генератора (для наглядности анализа принятых в долях от номинального), при этом момент ветродвигателя определялся по соотношению (10). Пятый столбец таблицы отражает значения регулируемых параметров – амплитуды и частоты подводимого к статору генератора напряжений $k_{\scriptscriptstyle us}$ и $k_{\scriptscriptstyle fs}$, в этом варианте принято, что они изменяются одинаково. Далее идут столбцы активной и реактивной мощности $p_{_{3M}}$ и q и значение параметра относительного скольжения, который определяется как $\beta = \omega_r - k_{fs}$. Знаки $m_{_{\scriptscriptstyle 3M}}$ и $p_{_{\scriptscriptstyle 3M}}$ отрицательны, что указывает на генераторный режим. Анализируя полученные результаты можно отметить, что во всем диапазоне регулирования между частотой вращения генератора $\omega_r(o.e.)$ и скоростью ветра V [m/c] практически сохраняется прямо пропорциональная зависимость (коэффициент пропорциональности равен 0,0978), диапазон регулирования составляет 1:2,1.

Таблица 2. $\beta = \omega_r - k_{fs},$

		1		1	,	1	аблица 2.
	V,	$m_{\scriptscriptstyle \mathfrak{IM}}$,	$\omega_{r,}$	$k_{us}=k_{fs}$	$p_{\scriptscriptstyle \mathfrak{IM}}$,	q ,	$\beta = \omega_r - k_{fs}$,
№	м/с	o.e.	o.e.	0.e.	0.e.	o.e.	0.e.
1	7	-0,295	0,679	0,67	-0,201	0,325	0,009
2	8,75	-0,468	0,855	0,84	-0,40	0,356	0,015
3	9,8	-0,588	0,959	0,94	-0,564	0,323	0,019
4	10,5	-0,667	1,021	1	-0,681	0,255	0,021
5	7,7	-0,361	0,751	0,74	-0,272	0,344	0,011
6	9,1	-0,502	0,886	0,87	-0,445	0,352	0,016
7	5,25	-0,163	0,505	0,50	-0,083	0,273	0,005
8	9,1	-0,502	0,886	0,87	-0,445	0,352	0,016
9	8,89	-0,476	0,862	0,847	-0,410	0,355	0,015
10	5,25	-0,163	0,505	0,50	-0,083	0,273	0,005
11	4,9	-0,144	0,475	0,47	-0,068	0,265	0,004
12	4,9	-0,144	0,475	0,47	-0,068	0,265	0,004
13	4,9	-0,144	0,475	0,47	-0,068	0,265	0,004
14	7	-0,295	0,679	0,67	-0,201	0,325	0,009
15	8,75	-0,468	0,855	0,84	-0,40	0,356	0,015
16	9,8	-0,588	0,959	0,94	-0,564	0,323	0,019
17	7	-0,295	0,679	0,67	-0,201	0,325	0,009
18	5,25	-0,163	0,505	0,50	-0,083	0,273	0,005
19	7	-0,103	0,679	0,67	-0,201	0,325	0,009
20	5,25	-0,163	0,505	0,50	-0,083	0,273	0,005
21	9,1	-0,502	0,886	0,87	-0,445	0,352	0,016
22	9,1	-0,502	0,886	0,87	-0,445	0,352	0,016
23	8,75	-0,468	0,855	0,84	-0,40	0,356	0,015
24	•			,			
	n i	-U / 1D	0.607	0.60	-() 143	1 11 1111	0.007
27	6,3	-0,236	0,607	0,60	-0,143	0,303	0,007
24	,		, I	1	<u> </u>	7	Габлица 3.
	V,	$m_{\scriptscriptstyle \mathfrak{IM}}$,	ω_r ,	k_{us} ,	k_{fs} ,	$p_{\scriptscriptstyle \mathfrak{IM}}$,	Габлица 3. $\beta = \omega_r - K_{fs}$,
№	V, м/с	т _{эм} , 0.е.	ω_r , o.e.	k _{us} , o.e.	k_{fs} , o.e.	р _{эм} , о.е.	Габлица 3. $\beta = \omega_r - K_{fs}$, o.e.
<u>№</u>	V, м/с 7	т _{эм} , о.е. -0,303	ω _r , o.e. 0,688	k _{us} , o.e. 0,49	k_{fs} , o.e. 0,67	р _{эм} , о.е. -0,208	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e. \\ 0.018$
<u>№</u> 1 2	V, м/с 7 8,75	<i>т</i> _{эм} ,	ω _r , o.e. 0,688 0,858	k _{us} , o.e. 0,49 0,76	k _{fs} , o.e. 0,67 0,84	р _{эм} , о.е. -0,208 -0,404	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e. \\ 0.018 \\ 0.018$
<u>№</u> 1 2 3	V, м/с 7 8,75 9,8	<i>m</i> _{3<i>M</i>} , <i>o.e.</i> -0,303 -0,471 -0,587	ω _r , o.e. 0,688 0,858 0,958	k _{us} , o.e. 0,49 0,76 0,96	k _{fs} , o.e. 0,67 0,84 0,94	р _{эм} , о.е. -0,208 -0,404 -0,562	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e. \\ 0.018 \\ 0.018 \\ 0.018$
№ 1 2 3 4	V, M/c 7 8,75 9,8 10,5	<i>m</i> _{3M} , <i>o.e.</i> -0,303 -0,471 -0,587 -0,663	ω _r , ο.e. 0,688 0,858 0,958 1,018	k _{us} , o.e. 0,49 0,76 0,96 1,09	k _{fs} , o.e. 0,67 0,84 0,94	р _{эм} , о.е. -0,208 -0,404 -0,562 -0,675	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. 0,018 0,018 0,018 0,018
Nº 1 2 3 4 5 5	V, M/c 7 8,75 9,8 10,5 7,7	<i>т</i> _{эм} ,	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60	k _{fs} , o.e. 0,67 0,84 0,94 1 0,74	$p_{\scriptscriptstyle 3M}$, o.e. -0.208 -0.404 -0.562 -0.675 -0.278	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e. \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018$
Nº 1 2 3 4 5 6	V, M/c 7 8,75 9,8 10,5 7,7 9,1	$m_{_{2M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82	k _{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87	$p_{_{3M}}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$
Nº 1 2 3 4 5 6 7	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27	k _{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50	р _{эм} , о.е. -0,208 -0,404 -0,562 -0,675 -0,278 -0,448 -0,089	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$
Nº 1 2 3 4 5 6 7 8	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1	$m_{\scriptscriptstyle 3M}$, o.e. -0.303 -0.471 -0.587 -0.663 -0.367 -0.505 -0.172 -0.505	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81	k _{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,87	$p_{\scriptscriptstyle 3M}$, o.e. -0.208 -0.404 -0.562 -0.675 -0.278 -0.448 -0.089 -0.449	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e.$ 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
Nº 1 2 3 4 5 6 7 8 9	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89	$m_{\scriptscriptstyle 2M}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,479$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,865	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78	k _{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,87 0,847	$p_{\scriptscriptstyle 2M}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$ $-0,089$ $-0,449$ $-0,414$	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e. \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018$
Nº 1 2 3 4 5 6 7 8 9 10	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,479$ $-0,172$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,865 0,518	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27	k _{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,847 0,50	$p_{_{3M}}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$ $-0,089$ $-0,449$ $-0,414$ $-0,089$	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e. \\ 0.018$
Nº 1 2 3 4 5 6 7 8 9 10	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,479$ $-0,172$ $-0,172$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,865 0,518 0,488	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27 0,24	k_{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,847 0,50 0,47	$p_{\scriptscriptstyle 3M}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$ $-0,089$ $-0,449$ $-0,089$ $-0,074$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$
Nº 1 2 3 4 5 6 7 8 9 10 11 12	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9	$m_{\scriptscriptstyle 2M}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,172$ $-0,152$ $-0,152$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,865 0,488 0,488 0,488	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27 0,24 0,24	k_{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,847 0,50 0,47 0,47	$p_{_{2M}}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$ $-0,089$ $-0,414$ $-0,089$ $-0,074$	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e.$ 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
Nº 1 2 3 4 5 6 7 8 9 10 11 12 13	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9	$m_{_{2M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,518 0,865 0,518 0,488 0,488 0,488	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27 0,24 0,24	k_{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,847 0,50 0,47 0,47	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs}, \\ o.e.$ 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
Nº 1 2 3 4 5 6 7 8 9 10 11 12 13 14	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,885 0,518 0,488 0,488 0,488 0,488 0,688	k _{us} , o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27 0,24 0,24 0,24 0,49	k_{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,847 0,50 0,47 0,47 0,47 0,67	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$ $0,018$
$ \begin{array}{c c} N_{2} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75	$m_{\scriptscriptstyle 3M}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,865 0,518 0,488 0,488 0,488 0,688 0,858	kus, o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27 0,24 0,24 0,49 0,76	k_{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,47 0,47 0,47 0,67 0,84	$p_{_{3M}}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$ $-0,089$ $-0,449$ $-0,089$ $-0,074$ $-0,074$ $-0,074$ $-0,008$ $-0,009$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
Nº 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8	$m_{_{2M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,865 0,518 0,488 0,488 0,488 0,688 0,858 0,958	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ \end{array}$	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,50$ $0,47$ $0,47$ $0,47$ $0,67$ $0,84$ $0,94$	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs}, o.e.$ 0.018
$ \begin{array}{r} $	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$ $-0,303$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,518 0,488 0,488 0,488 0,488 0,688 0,958 0,688 0,688	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ \end{array}$	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,50$ $0,47$ $0,47$ $0,47$ $0,67$ $0,67$ $0,94$ $0,67$	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
$ \begin{array}{c} $	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7 5,25	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$ $-0,303$ $-0,172$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,865 0,518 0,488 0,488 0,488 0,688 0,958 0,688 0,518	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,27\\ \end{array}$	k_{fs} , o.e. 0,67 0,84 0,94 1 0,74 0,87 0,50 0,47 0,47 0,47 0,67 0,94 0,67 0,50	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
$ \begin{array}{c} $	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7 5,25	$m_{\scriptscriptstyle 3M}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$ $-0,303$ $-0,172$ $-0,303$ $-0,172$ $-0,303$ $-0,172$ $-0,303$ $-0,172$ $-0,303$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,888 0,865 0,518 0,488 0,488 0,488 0,688 0,958 0,688 0,518 0,688 0,518 0,688 0,518 0,688	kus, o.e. 0,49 0,76 0,96 1,09 0,60 0,82 0,27 0,81 0,78 0,27 0,24 0,24 0,49 0,76 0,96 0,49 0,27 0,49 0,27 0,49	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,50$ $0,47$ $0,47$ $0,47$ $0,67$ $0,67$ $0,67$ $0,67$ $0,67$ $0,67$ $0,67$ $0,67$	$p_{\scriptscriptstyle 3M}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,675$ $-0,278$ $-0,448$ $-0,089$ $-0,449$ $-0,074$ $-0,074$ $-0,074$ $-0,008$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$ $-0,009$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
Nº 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7 5,25 7 5,25	$m_{_{2M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,479$ $-0,172$ $-0,152$ $-0,172$ $-0,172$ $-0,172$ $-0,172$ $-0,172$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,865 0,518 0,488 0,488 0,488 0,688 0,958 0,688 0,518 0,688 0,518	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,$	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,50$ $0,47$ $0,47$ $0,67$ $0,67$ $0,67$ $0,50$ $0,67$ $0,50$	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
$\begin{array}{c c} N_{\underline{0}} \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array}$	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7 5,25 9,1	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$ $-0,303$ $-0,172$ $-0,303$ $-0,172$ $-0,505$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,865 0,518 0,488 0,488 0,488 0,688 0,958 0,688 0,518 0,688 0,518 0,888	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,82\\ \end{array}$	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,047$ $0,47$ $0,47$ $0,47$ $0,67$ $0,94$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
$\begin{array}{c} N_{\underline{0}} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ \end{array}$	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7 5,25 9,1 9,1 9,1	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$ $-0,303$ $-0,172$ $-0,303$ $-0,172$ $-0,505$ $-0,505$ $-0,505$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,865 0,518 0,488 0,488 0,488 0,688 0,518 0,688 0,518 0,688 0,518 0,888 0,888 0,888 0,888	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,82\\ 0,82\\ 0,82\\ \end{array}$	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,47$ $0,47$ $0,47$ $0,67$ $0,67$ $0,60$ $0,67$ $0,50$ $0,67$ $0,60$ $0,67$ $0,60$	$p_{_{3M}}$, o.e. $-0,208$ $-0,404$ $-0,562$ $-0,448$ $-0,089$ $-0,444$ $-0,089$ $-0,074$ $-0,074$ $-0,074$ $-0,208$ $-0,404$ $-0,562$ $-0,208$ $-0,404$ $-0,562$ $-0,208$ $-0,404$ $-0,414$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$
$\begin{array}{c c} N_{\underline{0}} \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array}$	V, M/c 7 8,75 9,8 10,5 7,7 9,1 5,25 9,1 8,89 5,25 4,9 4,9 4,9 7 8,75 9,8 7 5,25 9,1	$m_{_{3M}}$, o.e. $-0,303$ $-0,471$ $-0,587$ $-0,663$ $-0,367$ $-0,505$ $-0,172$ $-0,505$ $-0,172$ $-0,152$ $-0,152$ $-0,152$ $-0,152$ $-0,303$ $-0,417$ $-0,587$ $-0,303$ $-0,172$ $-0,303$ $-0,172$ $-0,505$	ω _r , o.e. 0,688 0,858 0,958 1,018 0,758 0,888 0,518 0,865 0,518 0,488 0,488 0,488 0,688 0,958 0,688 0,518 0,688 0,518 0,888	$\begin{array}{c} k_{us},\\ o.e.\\ 0,49\\ 0,76\\ 0,96\\ 1,09\\ 0,60\\ 0,82\\ 0,27\\ 0,81\\ 0,78\\ 0,27\\ 0,24\\ 0,24\\ 0,24\\ 0,24\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,76\\ 0,96\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,49\\ 0,27\\ 0,82\\ \end{array}$	k_{fs} , o.e. $0,67$ $0,84$ $0,94$ 1 $0,74$ $0,87$ $0,50$ $0,847$ $0,047$ $0,47$ $0,47$ $0,47$ $0,67$ $0,94$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$ $0,50$ $0,67$	$p_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Габлица 3. $\beta = \omega_r - K_{fs},$ o.e. $0,018$

Таблица 3 отражает результаты исследования квазистационарного режима при тех же условиях, но при регулировании амплитуды напряжения на постоянство относительного скольжения $\beta = const$.

Анализ результатов показывает, что при таком регулировании воплощается закон академика М.П. Костенко, т.е. $k_{us} = k_n \cdot k_{fs} \cdot \sqrt{m_{BJ}}$ в данном случае $m_{BJ} = \left| m_{_{9M}} \right|$ и коэффициент пропорциональности $k_n = 1,33$.

И, наконец, в таблице 4 приведены результаты исследования при регулировании напряжения на постоянство потребляемой асинхронной машиной реактивной мощности. Такое регулирование было выбрано на тот случай, если возникнет необходимость компенсировать потребляемую генератором ВЭУ реактивную мощность батареей статических конденсаторов установленных перед преобразователем частоты. В этом случае нет необходимости регулировать емкость этих конденсаторов в зависимости от значений скорости ветра — энергоносителя. Эту функцию берет на себя преобразователь.

Таблица 4.

							аолица 4.
	V,	$m_{\scriptscriptstyle \mathfrak{I}\!\!M}$,	ω_r ,	k_{us} ,	k_{fs} ,	$p_{\scriptscriptstyle \mathfrak{IM}}$,	q ,
No	м/с	o.e.	o.e.	o.e.	o.e.	o.e.	0.e.
1	7	-0,294	0,677	0,750	0,67	-0,199	0,317
2	8,75	-0,465	0,852	0,915	0,84	-0,396	0,317
3	9,8	-0,588	0,958	0,946	0,94	-0,563	0,317
4	10,5	-0,670	1,023	0,960	1	-0,686	0,317
5	7,7	-0,358	0,748	0,870	0,74	-0,268	0,317
6	9,1	-0,50	0,884	0,925	0,87	-0,442	0,317
7	5,25	-0,162	0,503	0,658	0,50	-0,081	0,317
8	9,1	-0,50	0,884	0,925	0,87	-0,442	0,317
9	8,89	-0,473	0,860	0,918	0,847	-0,407	0,317
10	5,25	-0,162	0,503	0,658	0,50	-0,081	0,317
11	4,9	-0,143	0,473	0,625	0,47	-0,068	0,317
12	4,9	-0,143	0,473	0,625	0,47	-0,068	0,317
13	4,9	-0,143	0,473	0,625	0,47	-0,068	0,317
14	7	-0,294	0,677	0,750	0,67	-0,199	0,317
15	8,75	-0,465	0,852	0,915	0,84	-0,396	0,317
16	9,8	-0,588	0,958	0,946	0,94	-0,563	0,317
17	7	-0,294	0,677	0,750	0,67	-0,199	0,317
18	5,25	-0,162	0,503	0,658	0,50	-0,081	0,317
19	7	-0,294	0,677	0,750	0,67	-0,199	0,317
20	5,25	-0,162	0,503	0,658	0,50	-0,081	0,317
21	9,1	-0,50	0,884	0,925	0,87	-0,442	0,317
22	9,1	-0,50	0,884	0,925	0,87	-0,442	0,317
23	8,75	-0,465	0,852	0,915	0,84	-0,396	0,317
24	6,3	-0,238	0,610	0,512	0,60	-0,145	0,317

Необходимо отметить, что в большинстве современных ВЭУ (типа «Gamesa», «Vestas», «Nordex», «GE Wind Energy») в качестве электромеханических преобразователей применяется асинхронная машина двойного питания (АМДП) благодаря ее блестящим регулировочным характеристикам, что и находит подтверждение в результатах расчета на представленной математической модели. Если необходимо более подробно учесть насыщение, вытеснение тока в пазу и т.п. в асинхронной машине, то следует обратиться к [6].

При исследовании частотного управления со стороны ротора в асинхронной машине двойного питания, частота тока в обмотке ротора должна быть равна $f_r = f_s \cdot s$, и при изменении знака скольжения при переходе из двигательного режима в генераторный должны меняться знаки амплитуды и частоты питающего ротор

напряжения, что и учтено в параметрах таблицы 5 и 6. Здесь в таблице 5 представлены значения параметров при регулировании при равенстве относительных значений амплитуды и частоты питающего ротор напряжения, т.е. $k_{ur} = k_{fr}$.

Таблина 5

						т и оттици с
	V,	$m_{\scriptscriptstyle \mathfrak{I}\!\!M}$,	ω_r ,	$k_{ur}=k_{fr}$,	$p_{\scriptscriptstyle \mathfrak{IM}}$,	q ,
№	M/C	o.e.	o.e.	o.e.	o.e.	o.e.
1	6,10	-0,304	0,78	0,22	-0,237	0,430
2	6,25	-0,320	0,80	0,20	-0,253	0,477
3	6,42	-0,336	0,82	0,18	-0,275	0,536
4	6,64	-0,361	0,85	0,15	-0,307	0,666
5	6,89	-0,387	0,88	0,12	-0,342	0,902
6	9,49	-0,752	1,22	-0,22	-0,917	-0,255
7	9,39	-0,721	1,20	-0,20	-0,860	-0,284
8	9,23	-0,696	1,18	-0,18	-0,821	-0,322
9	9,00	-0,661	1,15	-0,15	-0,760	-0,386
10	8,61	-0,605	1,10	-0,10	-0,665	-0,516

При синхронном значении частоты вращения $\omega_r=1$ $k_{ur}=k_{fr}=0$, при изменении $k_{ur}=k_{fr}$ от 0 до значения $k_{ur}=k_{fr}=-0.22$, машина работает в режиме генератора и частота вращения ω_r достигает значения максимального значения $\omega_r=1.22$ (т.е. если синхронная частота вращения была равной $\omega_{rs}=1500\,\mathrm{of/muh}$, то стала $\omega_{rmax}=1830\,\mathrm{of/muh}$).

Знаки перед $m_{_{3M}}$ и $p_{_{3M}}$ зависят от значения и знака m_{BJ} и показывают, что асинхронная машина все время работает в генераторном режиме, хотя знак скольжения может изменяться от -0,22 до +0,22. Знаки перед значением реактивной мощности показывает, что при +q машина потребляет из сети реактивную мощность, а при -q она ее отдает в сеть.

В таблице 6 нашли отражение значения режимных параметров АМДП при регулировании на постоянство выдачи реактивной мощности q в сеть. В этом случае значение амплитуд напряжений k_{ur} несколько меняется по отношению к k_{fr} .

Таблица 6

	V,	$m_{\scriptscriptstyle \mathfrak{IM}}$,	ω_r ,	k_{ur} ,	k_{fr} ,	$p_{\scriptscriptstyle \mathfrak{IM}}$,	<i>q</i> ,
$N_{\underline{0}}$	M/C	o.e.	o.e.	o.e.	o.e.	o.e.	o.e.
1	6,10	-0,304	0,78	0,2515	0,22	-0,237	-0,387
2	6,25	-0,319	0,80	0,2301	0,20	-0,256	-0,387
3	6,42	-0,336	0,82	0,2087	0,18	-0,276	-0,387
4	6,64	-0,360	0,85	0,1766	0,15	-0,307	-0,387
5	6,89	-0,387	0,88	0,1446	0,12	-0,341	-0,387
6	9,49	-0,744	1,22	-0,2259	-0,22	-0,908	-0,387
7	9,39	-0,720	1,20	-0,2042	-0,20	-0,864	-0,387
8	9,23	-0,696	1,18	-0,1824	-0,18	-0,822	-0,387
9	9,00	-0,661	1,15	-0,1500	-0,15	-0,760	-0,387
10	8,61	-0,605	1,10	-0,0965	-0,10	-0,666	-0,387

Для сопоставительного анализа приводится расчет режима частотного управления рассмотренного асинхронного генератора аналитическим методом.

В установившемся режиме работы момент асинхронного генератора, управляемого изменением частоты со стороны статора будет уравновешиваться моментом ветродвигателя, приведенного к валу генератора:

$$m_{\ni M}(k_u, k_f, \beta) = m_{BI} \tag{17}$$

где $m_{\mathfrak{I}\!M}(k_u,k_f,\beta)$ - электромагнитный момент асинхронного генератора ВЭУ, в общем случае зависящий от величины напряжения k_u , частоты тока питания k_f и относительного скольжения β .

Согласно [7, 8] уравнение для электромагнитного момента генератора, можно представить в виде:

$$m_{\mathfrak{I}M} = \frac{A \cdot k_u^2}{B + C \cdot k_f^2 + D \cdot k_f} \tag{18}$$

где
$$A = -\left[2r_s + \left(b^2 + c^2\right)\frac{s_n}{r_r} + \left(d^2 + e^2\right)\frac{r_r}{s_n}\right]$$

$$B = b^2 \frac{\beta}{r_r} + d^2 \frac{r_r}{\beta}$$

$$C = c^2 \frac{\beta}{r_r} + e^2 \frac{r_r}{\beta}$$

$$D = -2 \cdot r_s$$

В свою очередь:

$$b = -r_s \left(1 + \frac{x_{\sigma r}}{x_m} \right); \ e = 1 + \frac{x_{\sigma s}}{x_m}; \ c = x_{\sigma s} + x_{\sigma r} \left(1 + \frac{x_{\sigma s}}{x_m} \right); \ d = -\frac{r_s}{x_m}$$

Необходимо отметить, что в общем случае параметры роторной цепи генератора при частотном управлении зависят от относительного скольжения. Но при установившихся режимах работы относительное скольжение β , как правило, не должно превышать значения номинального скольжения s_n , т.е. $0 < \beta \le s_n$, поэтому можно считать эти параметры постоянными, значения которых соответствуют $s \approx 0$.

Интересно отметить, что при пренебрежении активным сопротивлением статорной цепи $r_s = 0$, что можно сделать при относительно больших мощностях асинхронного генератора, выражение (18) значительно упрощается и принимает вид аналога уравнения Клосса для частотного управления:

$$m_{\Im M} = -\frac{k_u^2 \left[c^2 \frac{S_u}{r_r} + e^2 \frac{r_r}{S_u} \right]}{k_f^2 \left[c^2 \frac{\beta}{r_r} + e^2 \frac{r_r}{\beta} \right]}$$

Выше было определено выражение для момента ветродвигателя (10), при приведение его к валу генератора получится:

$$m_{BJI} = k_{MI} \cdot \omega^2 \tag{20}$$

где
$$m_{{\scriptscriptstyle B}\!{\scriptscriptstyle J}}=\frac{M_{{\scriptscriptstyle B}\!{\scriptscriptstyle J}}}{i\cdot M_{{\scriptscriptstyle H}}}; \quad \omega=\frac{\omega_{{\scriptscriptstyle B}\!{\scriptscriptstyle J}}\cdot i}{\omega_{{\scriptscriptstyle 0}}}; \quad k_{{\scriptscriptstyle M}\!{\scriptscriptstyle \Gamma}}=\frac{\omega_{{\scriptscriptstyle 0}}^2\cdot k_{{\scriptscriptstyle M}}}{i^3\cdot M_{{\scriptscriptstyle H}}}; \quad M_{{\scriptscriptstyle H}}$$
, $\omega_{{\scriptscriptstyle 0}}$ — номинальный момент и

синхронная частота вращения ротора генератора; i – передаточное число редуктора.

Подставляя выражения (18) и (20) в соотношение (17) и имея в виду, что $\omega = k_f + \beta$, получим:

$$\frac{k_u^2 \cdot E}{k_f^2 \cdot F} = k_{M\Gamma} (\beta + k_f)^2 \tag{21}$$

где
$$E = c^2 \frac{s_n}{r_r} + e^2 \frac{r_r}{s_n}$$
; $F = c^2 \frac{\beta}{r_r} + e^2 \frac{r_r}{\beta}$

При регулировании на постоянство относительного скольжения, т. е. $\beta = \beta_{onm} = const$ во всем диапазоне регулирования, получим выражение, по которому необходимо регулировать напряжение:

$$k_{u} = k_{f} \sqrt{\frac{k_{M\Gamma} \cdot E}{F} k_{f}^{2} + \frac{2k_{M\Gamma} \cdot E \cdot \beta_{onm}}{F} k_{f} + \frac{k_{M\Gamma} \cdot E}{F} \beta_{onm}^{2}}$$
 (22)

При учете активного сопротивления статорной обмотки, т. е. при $r_s \neq 0$ выражение усложняется и принимает вид:

$$k_u = \sqrt{\frac{k_{M\Gamma}}{A}} \sqrt{C \cdot k_f^4 + N \cdot k_f^3 + L \cdot k_f^2 + I \cdot k_f + B \cdot \beta_{onm}^2}$$
 (23)

где
$$N=D+2eta_{onm}\cdot {\bf C}$$
 ; $L=B+2eta_{onm}\cdot D+eta_{onm}^2\cdot {\bf C}$; $I=2eta_{onm}\cdot B+eta_{onm}^2\cdot D$

Сравним результаты расчета оптимальной диаграммы, полученной по формуле (23) с расчетом установившегося режима по полным алгебро-дифференциальным уравнениям асинхронного генератора ВЭУ, результаты которого приведены в таблице 3.

Параметры генератора в о.е.: $r_s=0.022$; $r_r=0.031$, $x_{\sigma s}=0.078$, $x_{\sigma r}=0.1$, $x_m=4.3$; $s_{\scriptscriptstyle H}=0.035$; $x_s=4.378$; $x_r=4.4$; $k_{\scriptscriptstyle M\Gamma}=0.64$; $\omega_0=157$ 1/c; $T_j=100$ рад; $\beta_{\scriptscriptstyle Onm}=0.018$; $k_{\scriptscriptstyle P}=0.171$; i=33; $M_{\scriptscriptstyle H}=690$ Нм, $P_{\scriptscriptstyle H}=110$ кВт.

Значения рассчитанных коэффициентов: b=0.0225; c=0.1798; e=1.018; d=0.0051; A=0.9989; B=0.0003387; C=1.8; D=0.044; N=0.1088; L=0.0025; I=0.000026.

Конечная формула расчета после упрощений принимает вид:

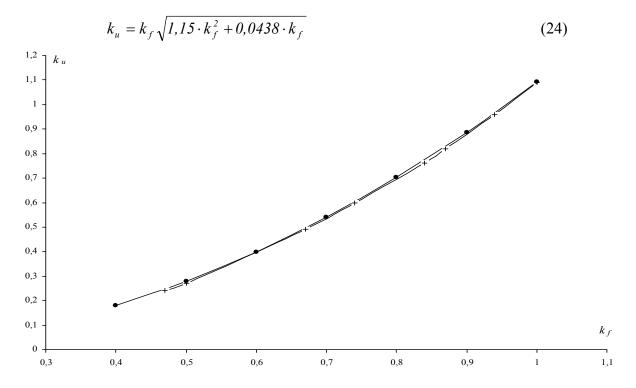


Рис.1 Зависимость $k_u = f(k_f)$ при управлении на $\beta_{onm} = const$:

- • по предложенному аналитическому методу
- -×- по полным алгебро-дифференциальным уравнениям при установившемся режиме

На рис.1 приведены кривые, $k_u = f(k_f)$ построенные по формуле (24) (точки) и там нанесены значения (крестики) взятые из таблицы 3. Из сопоставления видно, что данные таблицы 3 практически находятся на кривой $k_u = f(k_f)$ полученной по формуле (24).

Помимо установившихся и квазистационарных режимов работы ВЭУ на предложенных моделях состояния, естественно, можно исследовать и динамические режимы работы указанных машин. На рис. 2, приведены кривые асинхронного пуска асинхронного генератора ВЭУ (имитация режима пуска ВЭУ типа «Gamesa» G-52), при скорости ветра равной приблизительно 4,5 м/с в момент времени $\tau = 110$ рад машина переходит в генераторный режим и значение электромагнитного момента ветродвигателя достигает величины $m_{_{3M}}=-0,1$. Скорость при этом становится выше синхронной $\omega_r=1,003$ (такой пуск целесообразно применять для ВЭУ относительно малых мощностей).

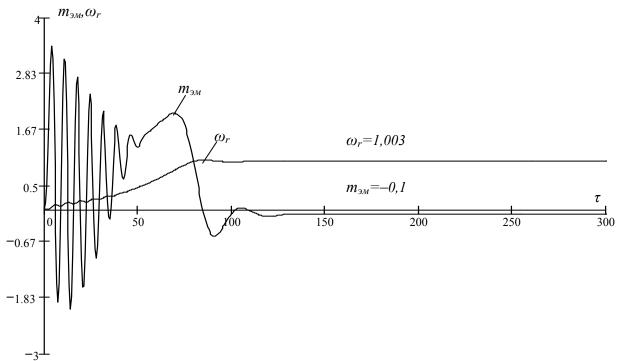


Рис.2. Кривые переходного процесса $m_{_{3M}}=f(\tau)$ и $\omega_c=f(\tau)$ при прямом асинхронном пуске с переходом в режим генератора

На рис. 2 представлены динамические характеристики асинхронного генератора ВЭУ при частотном пуске. В этом случае задатчики определяют скорости нарастания амплитуды и частоты подводимого к статору напряжения. Ветер, создавая движущий момент ветродвигателя, облегчает разгон агрегата, который осуществляется программными, линейными изменениями частоты и напряжения; после выхода на синхронную скорость, машина переходит в генераторный режим с $m_{_{3M}}=-0,1$ и $\omega_r=1,003$ (рис. 2a). Там же, показаны (рис. 2б), как программно изменяются амплитуда и частота напряжения, подводимого к статору генератора.

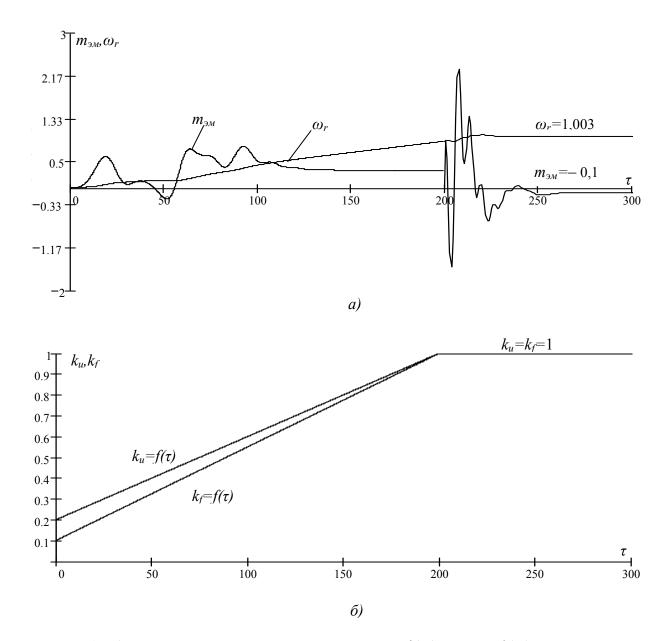


Рис.3. a) — кривые переходного процесса $m_{_{3M}}=f(\tau)$ и $\omega_r=f(\tau)$ при частотном пуске; б) — программно линейные изменения амплитуды $k_{us}=k_{_{s0}}+a\cdot\tau=0.2+0.004\cdot\tau$ и частоты $k_{_{fs}}=k_{_{f0}}+b\cdot\tau=0.1+0.0045\cdot\tau$ питающего напряжения.

ВЫВОДЫ

- 1. Определено, что с приемлемой в инженерных расчетах погрешностью (не более 8%) в зоне регулирования частоты вращения прямо пропорционально скорости ветра энергоносителя ВЭУ, момент ветродвигателя можно считать пропорциональным квадрату от частоты его вращения.
- 2. Представлена матричная форма записи уравнений состояния асинхронной машины ВЭУ при частотном управлении, как со стороны статора, так и со стороны ротора, позволяющая получить унифицированные результаты исследований.
- 3. При частотном управлении асинхронного генератора ВЭУ со стороны статора исследованы режимы работы при регулировании напряжения, как на постоянство относительного скольжения генератора, так и на постоянство потребляемой реактивной мощности. Выявлено, что первый режим согласуется с известным законом частотного управления акад. М.П. Костенко, а второй режим позволяет компенсировать

потребление реактивной мощности ВЭУ с помощью неуправляемых статических конденсаторов, установленных в месте подключения ВЭУ к электрической сети.

- 4. Продемонстрировано, что в квазистационарных режимах при частотном управлении со стороны ротора в асинхронных машинах двойного питания можно регулировать выдачу реактивной мощности в сеть.
- 5. Предложен аналитический метод расчета $k_u = f(k_f)$ при регулировании на $\beta_{onm} = const$. Результаты расчета оптимальной диаграммы практически совпадают с результатами, полученными по полным алгебро-дифференциальным уравнениям (таблица 3).
- 6. Исследованы динамические режимы ВЭУ с асинхронным генератором при частотном разгоне установки; выявлено, что в этом случае минимизируются значения пусковых моментов и токов.

1. Андрианов В.Н., Быстрицкий Д.Н., Вашкевич К.П., Секторов В.Р.. Ветроэлектрические станции. Под общей редакцией проф. В.Н. Андрианова Госэнергоиздат, М.-Л. 1960.

2. Ветроэнергетика. Под общей редакцией Д-де Рензо. Пер. с англ. Энергоатомиздат, М. 1982.

- 3. *Мустафаев Р. И., Курдюков Ю.М., Листенгартен Б.А.* Анализ систем оптимального регулирования выходной мощности ветроэлектрических установок. Электричество, 1989, №7.
 - 4. Wind energy 2006. Каталог. 2006 BWE Service CmbH.
- 5. *Мустафаев Р.И*. Об универсальной структуре математической модели электрических машин. Изв. Вузов СССР. Электромеханика 1989. №4.
- 6. *Копылов И.П.* Математическое моделирование электрических машин. М. «Высшая школа», 1987.
- 7. *Булгаков А.А*. Частотное управление асинхронными электроприводами. М. Наука, 1966.
- 8. *Мустафаев Р.И.*, *Джафаров З.С.* Особенности частотного пуска и управления электроприводом питательного насоса ТЭС. Изв. Вузов Электромеханика, 2004, № 5.

ASİNXRON GENERATORLARI OLAN KÜLƏK ELEKTRİK QURĞULARI TEZLİYƏ GÖRƏ İDARƏ EDƏN ZAMAN İŞ REJİMLƏRİNİN TƏTQİQ OLUNMA METODLARI

MUSTAFAYEV R.İ., HƏSƏNOVA L.H.

Həm stator tərəfindən, həm də rotor tərəfindən tezliyə görə tənzimlənən asinxron generatorlarla təchiz olunmuş külək elektrik qurğusunun iş rejimlərini tədqiq eləmək üçün riyazi model (vəziyyət modeli) təqdim olunmuşdur. Analitik hesabat metodu təklif olunmuşdur və işlənmiş riyazi modellə onun müqayisəsi aparılmışdır.

METHODS OF OPERATION MODES STUDY OF WIND POWER PLANTS WITH ASYNCHRONOUS GENERATORS UNDER VARIABLE - FREQUENCY CONTROL

MUSTAFAYEV R.I., HASSANOVA L.H.

Mathematical model (model of state) is presented and different operation models of WPPs, containing asynchronous generators, frequency - controlled both from stator side and from rotor side have been studied on this model. Analytical calculation method has been offered, and its comparison with presented mathematical model has been carried out.