УДК 621.311

ВЛИЯНИЕ НЕЛИНЕЙНОСТИ ТРАНСФОРМАТОРА НА ФОРМУ КРИВОЙ ТОКА В НАГРУЗКЕ

РАХМАНОВ Н.Р., ЗЕРААТПАРВАР А.*, КЕРИМОВ О.З.

Азербайджанский Научно-Исследовательский и Проектно-Изыскательский Институт Энергетики,

* Азербайджанский Энергетический Центр Исследований и Образования, Тебриз-ИРИ.

Как известно трансформатор с ферромагнитным сердечником имеет нелинейную зависимость между магнитной индукцией B и напряженностью магнитного поля H. Эта зависимость изображается в виде гистерезисной петли на базе средних значений B_{mv} and H_{mv} . У так называемых магнито-мягких материалов ($H_c < 200 A/m$), которые используются для трансформаторов и электрических машин гистерезисная петля по форме узкая, а постоянные магниты, например, как магнито-твердые материалы ($H_c > 4000 A/m$) имеют широкую петлю гистерезиса.

Приложенное к первичной обмотке трансформатора без нагрузки синусоидальное напряжение создает намагничивающий ток, который вызывает протекание в стальном сердечнике магнитного потока. Протекание магнитного потока в седечнике сопровождается потерями в стали, которые могут быть разделены на две компоненты:

- потери вызванные вихревыми токами
- потери на гистерезис

Потери на гистерезис $P_{\rm r}$ вызываются необратимыми процессами в стали, когда спонтанно меняется магнитная ориентация доменов. Эти потери пропорциональны частоте.

Для уменьшения потерь связанных с нагревом стального сердечника из-за явления гистерезиса в качестве материала сердечника используют термообработанную кремнистую сталь. Потери на гистерезис оределяют из выражения:

$$P_{\Gamma} = (\sigma_{h1} B_{M} + \sigma_{h2} B_{M}^{2}) f$$

 $\sigma_{\it h1}$ и $\sigma_{\it h2}$ - коэффициенты зависящие от качества стали.

f - частота

В_м - амплитудное значение магнитной индукции

Вихревые токи циркулирующие в стали наводятся составляющей магнитного потока в сердечнике перпендикулярной к ширине сердечника. Эти потери могут быть уменьшены за счет уменьшения толщины стальных листов, из которых набран сердечник и нанесением тонкого слоя изолирующего покрытия.

Потери на вихревые токи определяют динамические потери и могут быть оценены из выражения:

$$P_{\rm\scriptscriptstyle B} = \sigma_{\rm\scriptscriptstyle e} \, f^2 \, B_{\rm\scriptscriptstyle M}^2$$

 $\sigma_{\scriptscriptstyle e}$ - коэффициент зависящий от качества стали и толщины листов.

Значительные изменения в технологии производства электрической стали позволили производить более эффективные трансформаторы при меньшем весе. К этим изменениям можно отнести:

- Разработку холодно-катанной текстурованной стали
- Появление тонких покрытий с хорошими механическими свойствами.

- Улучшение химического состава стали
- •Улучшение в технологии ориентации структуры стали
- Появление лазерной разметки и стали, обработанной плазменной технологией
- Дальнейшее уменьшение толщины листов, с целью уменьшения потерь на вихревые токи.

В результате перечисленных мер современные электрические стали имеют потери холостого хода на 40%, а значение намагничивающего тока на 30% меньше типовых значений присущих электрическим сталям середины прошлого столетия.

Модель трансформатора учитывающая нелинейность ветви намагничивания.

Схема однофазного трансформатора представлена на Рис.1.

Рис.1 Упрощенная схема трансформатора

Общий поток в первичной обмотке может быть представлен суммой взаимного Φ и потока рассеяния первичной обмотки Φ_{11} . Общий поток во вторичной обмотке может быть представлен суммой взаимного Φ и потока рассеяния вторичной обмотки Φ_{22} .

Соотношения между напряжениями, токами и потоком в стали могут быть выражены уравнениями:

$$E_1 = R_1 \cdot I_1 + L_1 \cdot \frac{\Delta I_1}{\Delta T} + N_1 \cdot \frac{\Delta \Phi}{\Delta T}$$
 (1)

$$E_2 = R_2 \cdot I_2 + L_2 \cdot \frac{\Delta I_2}{\Delta T} + N_2 \cdot \frac{\Delta \Phi}{\Delta T}$$
 (2)

$$\Delta \Phi = G \cdot N_1 \cdot \Delta I_1 + G \cdot N_2 \cdot \Delta I_2 \tag{3}$$

где:

Е₁ - напряжение на первичной обмотке, В

Е₂ - напряжение на вторичной обмотке, В

 I_1 - ток в обмотке 1, A

 I_2 - ток в обмотке 2, А

 R_1 - сопротивление обмотки 1, Ω

 R_2 - сопротивление обмотки 2, Ω

G - магнитная проводимость, Вб/А-витки

L₁ - индуктивность рассеяния первичной обмотки, Гц

L₂ - индуктивность рассеяния вторичной обмотки, Гц

 N_1 - число витков обмотки 1

 N_2 - число витков обмотки 2

ΔІ - приращение тока, А

∆Ф - приращение магнитного потока, Вб

ΔТ - приращение времени, сек

Уравнения 1,2,3 в матричной форме:

$$\begin{bmatrix} E_{1} - R_{1} \cdot I_{1} \\ E_{2} - R_{2} \cdot I_{2} \\ 0 \end{bmatrix} = \begin{bmatrix} L_{1} & 0 & N_{1} \\ 0 & L_{2} & N_{2} \\ G_{M} \cdot N_{1} & G_{M} \cdot N_{2} & -1 \end{bmatrix} \cdot \begin{bmatrix} \frac{\Delta I_{1}}{\Delta T} \\ \frac{\Delta I_{2}}{\Delta T} \\ \frac{\Delta \Phi}{\Delta T} \end{bmatrix}$$
(4)

Напряжения на обмотках 1 и 2 являются входными величинами рассмотренной модели трансформатора. Искомыми являются токи в различных режимах работы трансформатора. Правый член в уравнении 4 – матрица коэффициентов. Все члены матрицы коэффициентов имеют фиксированные значения за исключением магнитной проводимости G. Для выбранного материала сердечника магнитную проводимость определяют из:

$$G_M = \mu \cdot S / \ell$$

где:

μ - магнитная проницаемость, Гц/м

S - площадь поперечного сечения, м²

ℓ - средняя длина силовой линии, м

Имея ввиду Ф=В·S, магнитную проницаемость можно представить как отношение приращения магнитной индукции к приращению напряженности магнитного поля:

$$\mu = \Delta B / \Delta H$$
, где:

 $\mu = \Delta \; B \; / \; \Delta H \; , \; \text{где:}$ $\Delta \; B \; - \; \text{измеряется в} \quad B \text{б/m}^2$

ΔН - А-витки/м

Связь между В и Н можно выразить эмпирическим выражением Фролиха:

$$B = H/(c + b \cdot |H|)$$

b и **c** константы определяемые из:

$$\mathbf{b} = \frac{1 - \frac{1}{\sqrt{\mu_i}}}{B_{nac}} , \qquad \mathbf{c} = 1/\mu_i \mu_o$$

μ і - начальная относительная проницаемость

μ₀ _ проницаемость в пустоте

Внас – индукция насыщения

Пользуясь зависимостью В-Н, моделируемой уравнением Фролиха, можно определить значения магнитной проницаемости для различных режимов работы трансформатора. В некоторых работах [2] показано, что использование функции намагничивания с учетом гистерезиса существенно не улучшает модель, но усложняет ее и увеличивает компьютерное время расчета.

Эквивалентная схема двухобмоточного трансформатора представлена на Рис.2.

Потери в сердечнике представлены сопротивлением R_m , реактивное сопротивление X_m моделирует намагничивание. Ток намагничивания, который обычно не превышает 0,5%-1,0% от номинального тока нагрузки, вызывает небольшие по величине падения напряжений на элементах R_1 и X_1 , которыми из-за малости можно пренебречь

Рис. 2 Эквивалентная схема однофазного трансформатора

На Рис.3 представлена функция намагничивания для стального сердечника. Площадь гистерезисной петли пропорциональна потерям на гистерезис. Более качественная электросталь имеет более узкую петлю гистерезиса, более крутую кривую В-Н и более резко выраженную точку перегиба на участке перехода в режим насыщения.

Рис. 3 Кривая намагничивания для стального сердечника

С увеличением частоты приложенного напряжения гистерезисная петля В-Н становится более пологой, а площадь ее увеличивается, т.е. потери в сердечнике растут. По этой причине, т.е. при наличии высокочастотных гармонических составляющих, трансформаторы перегреваются и даже повреждаются, несмотря на то, что ток нагрузки и мощность, потребляемая нагрузкой, не превышают номинальных значений.

Оценка гармонических искажений обусловленных нелинейностью трансформатора.

В качестве примера рассматривается трансформатор средней мощности, питающийся от источника с гармоническими составляющими Рис.4. Уравнения 1,2,3 принимают вид:

$$E_{1k} = R_1 \cdot I_{1k} + L_{1k} \cdot \frac{\Delta I_{1k}}{\Delta T} + N_1 \cdot \frac{\Delta \Phi \kappa}{\Delta T} \tag{1_k}$$

$$E_{2k} = R_2 \cdot I_{2k} + L_{2k} \cdot \frac{\Delta I_{2k}}{\Delta T} + N_2 \cdot \frac{\Delta \Phi \kappa}{\Delta T} \qquad (2_{\kappa})$$

$$\Delta \Phi \kappa = G \cdot N_1 \cdot \Delta I_{1k} + G \cdot N_2 \cdot \Delta I_{2k} \tag{3_k}$$

Решена задача потокораспределения и определены потери в трансформаторе для двух случаев — когда приложенное напряжение не содержит гармоник и когда

сердечник насыщен и в цепи присутствуют гармоники тока. При моделировании форма и уровень гармонических составляющих могут быть выбраны из имеющейся библиотеки по трансформаторам типичных данных по гармоникам. Определены параметры схемы замещения трансформатора. Для ветви моделирующей поток рассеяния:

$$R_s = R_1 = \Delta P_{\kappa_3} U^2 / S_{\text{hom}}^2$$

 $\Delta P_{\kappa 3}$ - потери в обмотке для режима короткого замыкания, оговариваемые производителем трансформатора. Для трансформатора мощностью 40MBA эти потери составляют около 50кВт. Далее все сопротивления, напряжения, токи ветвей и токи трансформатора преобразуем к первичной стороне трансформатора — $110\kappa B$.

Таким образом, если коэффициент трансформации

$${\bf k}={\bf U}_1/~{\bf U}_2$$
 , то ${\bf U}_2{}^0={\bf U}_2\cdot{\bf k}$, ${\bf Z}_2{}^0={\bf Z}_2\cdot{\bf k}^2$, ${\bf I}_2{}^0={\bf I}_2/{\bf k}$.
$${\bf X}_{\rm S}={\bf u}_{\bf k}\%\cdot{\bf U}^2/\left({\bf S}_{\rm HOM}\cdot{\bf 100}\right)$$

 $u_k\%$ -- напряжение короткого замыкания в процентах от номинального.

Для ветви намагничивания, которая определяет потери на гистерезис и вихревые токи:

$$g_{\mu} = \Delta P_{xx} / U_{HOM}^{2}$$

 ΔP_{xx} – потери без нагрузки.

$$b_{\mu} = I_{xx\%} S_{HOM} / U_{HOM}^{2} \cdot 100)$$

Используя данные завода изготовителя для трансформатора мощностью 40MBA:

$$\begin{split} R_s &= \Delta P_{\kappa_3} \ U^2 / S^2_{_{HOM}} = 160 \cdot \ 10^3 \cdot (110 \cdot \ 10^3)^2 \ / \ 40^2 \cdot 10^{12} = 1,21 \\ X_s &= u_k\% \cdot U^2 \ / \ (S_{_{HOM}} \cdot \ 100) = 10,5 \cdot (110 \cdot \ 10^3)^2 \ / \ (40 \cdot \ 10^6 \cdot \ 100) = 31,76 \end{split}$$

Из расчетной схемы $Z_5 = Z_s = 1,21+i 31,76$

Основная часть электрической схемы представлена эквивалентным источником энергии U9, работающим в базисном режиме. Ветвь, моделирующая поток рассеяния трансформатора, представлена импедансом Z_{5} , а ветвь намагничивания - статической нагрузкой g_{μ} - jb_{μ} , которая имеет P_{xx} = 50 kBt и Q_{xx} = 260 kBAp

Статическая нагрузка 88 подсоединена через короткий кусок кабеля (cable 54).

Чтобы исключить влияние коэффициента трансформации при моделировании на оставшуюся вне трансформатора схему, оставляем трансформатор в схеме, однако представляем его как идеальный понижающий напряжение элемент электрической схемы. Несмотря на то, что приложенное к первичной обмотке напряжение имеет синусоидальную форму, ток первичной обмотки, в основном, содержит 3, 5 и 7-ую гармоники Рис.4. На схеме потокораспределения, как это следует из Рис.5, мощность потребляемая в ветви намагничивания составляет 0,05МВт и 0,3МВА.

Результаты гармонического анализа представлены в таблице 1 и на Рис. 6. Как и ожидалось на кривой тока, протекающего через кабель (к ветви намагничивания), нет 3-ей гармоники, но есть ток 5-ой гармоники, достигающий 20% от тока основной частоты. Не отмечено наличие токов более высокого порядка в ветви Z_5 .

В ветви намагничивания (шина 229) действующее значение тока 1,42A, а ток основной частоты равен 1,39A; в то же время значение ASUM составляет 1,74A. Величина искажений определяется из:

$$I_{dist}=1,74-1,39=0,35A.$$

Общее значение ТНD=0,35/1,74=0,20 или точнее в процентах 20,62%.

При увеличении напряжения на первичной обмотке со 110 kB до 120 kB в ветви намагничивания шина 229 действующее значение тока составило величину 1,55 A, ток основной частоты 1,52 A, а значение ASUM (арифметическая сумма всех гармоник, включая основную) равно 1,93 A. Величина искажений равна $I_{\text{dist}}=1,93$ - 1,52=0,41 A. THD = 0,41/1,93=0,22. Или в процентах - THD = 22%. Потери в стали увеличились с 50 kBt до 60 kBt.

SYS. HARMONICS INFO.

Table 1

Project: Location: Contract:	Location: PowerStation 4.7.4C Contract:									Page: 11 Date: 11-04-2008 SN: File: harmonic		
90BROWN111 Engineer:		Study Case: HA										
Bus Info. & Rated kV								Current Distortion				
ID THD(%) TIF		` ′	` ´	` ′	` '		To Bus ID	` '	` ′			
1S-ESW8100	1B 11.0	0 99.89	99.89	99.89	0.00	0.50	Bus-1	943.57	943.57	943.68	0.00	
0.50							EJB2	943.57	943.57	943.68	0.00	
0.50							Bus220	95.60	95.60	95.60	0.00	
0.50							Bus224	1176.31	1176.31	1176.31	0.00	
0.50							Bus225	864.35	864.35	864.35	0.00	
0.50							Bus226	420.67	420.67	420.67	0.00	
0.50							Bus227	95.60	95.60	95.60	0.00	
0.50							Bus83	687.77	687.77	688.16	0.04	
0.52 Bus83	11.00	99.89	99.89	99.90	0.01	0.50	Bus231	701.13	701.13	701.52	0.04	
).51						1	IS-ESW81001B	687.77	687.77	688.16	0.04	
0.52 Bus220	11.00	99.88	99.88	99.89	0.00	0.50	1S-ESW81001B	95.61	95.61	95.61	0.00	
0.50 Bus221	110.00	100.00	100.00	100.03	0.03	0.51	Bus229	1.38	1.41	1.73	20.73	
54.67							Bus232	72.13	72.13	72.44	0.35	
1.08							Bus233	71.82	71.82	71.82	0.00	
0.50 Bus224	11.00	99.87	99.87	99.87	0.01	0.50	1S-ESW81001E	1176.31	1176.31	1176.31	0.00	
0.50 Bus225	11.00	99.87	99.87	99.88	0.00	0.50	1S-ESW81001E	8 864.35	864.35	864.35	0.00	
0.50 Bus226	11.00	99.88	99.88	99.88	0.00	0.50	1S-ESW81001E	420.67	420.67	420.67	0.00	
0.50 Bus227	11.00	99.88	99.88	99.89	0.00	0.50	1S-ESW81001E	95.61	95.61	95.61	0.00	
0.50 Bus229	110.00	100.00	100.00	100.03	0.03	0.51	Bus221	1.39	1.42	1.74	20.62	
54.38 Bus231	11.00	99.90	99.90	99.90	0.00	0.50	Bus83	701.13	701.13	701.52		
0.04 0.51							Bus233	718.11	718.11	718.49		
0.04 0.51 Bus232	110.00	100.00	100.00	100.03	0.00	0.51	Bus221	72.13	72.13	72.44		
0.35 1.08 Bus233	110.00	99.77	99.77	99.79	0.00	0.50	Bus221	71.82	71.82	71.82		
0.00 0.50							Bus231	71.81	71.81	71.81		
0.00 0.50 Bus-1 0.00 0.50	11.00	100.00	100.00	100.01	0.02	0.50	1S-ESW81001					

Рис. 4 Гармоники тока в ветви намагничивания однофазного трансформатора

Рис 5 Фрагмент схемы энергосистемы с потокораспределением

Рис. 6 Гармонический анализ для фрагмента схемы энергосистемы

Рис. 7 Гармонический анализ в ветви намагничивания при напряжении 110кВ

Выводы

- 1. Получена расчетная модель трансформатора, где ветвь намагничивания представлена нелинейной статической нагрузкой
- 2. Гармонический анализ проведенный для схемы энергосистемы показал присутствие 5-ой и 7-ой гармоник в ветви намагничивания
- 3. На выходе трансформатора на зажимах вторичной обмотки уровень гармоник близок к нулю даже при 10% перевозбуждении трансформатора по входу.

4. С увеличением входного напряжения на 10% потери в стали увеличиваются на 20%

1. Г.И.Атабеков и др. «Теоретические основы электротехники», Энергия, 1966.

- 2. Transformer modeling as applied to differential protection. Stanley E Zocholl, Armando Guzman, Daqing Hou. Schweitzer Engineering Laboratories, Inc., Pullman, Washington
- 3. *Jiles and D. L. Atherton*, "Theory of Ferromagnetic Hysteresis," Journal of Magnetism and Magnetic Materials, 61 (1986) 48-60. North-Holland, Amsterdam.

TRANSFORMATORUN QEYRI-XƏTTILIYININ YÜK CƏRƏYANI ƏYRISININ FORMASINA TƏSIRI

RƏHMANOV N.R., ZƏRAƏTPƏRVƏR A., KƏRIMOV O.Z.

Bu məqalədə veber-amper xarakteristikasının qeyrixətdiliyini nəzərə alaraq transformatorun modeli təhlil olunur. Transformatorun girişində normal gərginlikdə, həm də bu səviyyənin 10% həddini aşması zamanı güc selinin paylanmasına baxılıb.

Açar sözlər: transformator, gisterezis, harmonikalar, model.

TRANSFORMER NONLINEARITY MODEL, ESTIMATION OF ITS IMPACT ON CURRENT DISTORTION IN SUPPLIED NETWORK

RAHMANOV N.R., ALI ZERAATPARVAR, KERIMOV O.Z.

Paper presents a power transformer model taking in consideration nonlinear function of energization and over excitation. Load flow and harmonic analysis is performed with nominal voltage at transformer input and with 10% overvoltage.

Key Words: transformer, model, hysteresis, harmonic.