УДК 621.311.22

МЕТОДИКА ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОНОЭТИЛЕНГЛИКОЛЯ И КОРРЕКТИРОВКА КОНЦЕНТРАЦИИ МОНОЭТИЛЕНГЛИКОЛЯ И НИТРИТА В РАБОЧЕЙ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ ГАЗОВЫХ ДВИГАТЕЛЕЙ МОДУЛЬНЫХ ЭЛЕКТРОСТАНЦИЙ

ИБРАГИМОВ Г.Ш.

ОАО «Азерэнержи»

В статье приведен график, который позволяет при известной плотности охлаждающей жидкости, определить процентное содержание (количество) моноэтиленгликоля в жидкости и ряд уравнений, позволяющей определить количество моноэтиленгликоля и ингибитора NALCOOL-2000, необходимого для приведения в норму концентрацию этих реагентов.

В 2006-2007 годах в ряде городов Азербайджанской Республики смонтированы и введены в эксплуатацию модульные электрические станции, общей мощностью 758,4 МВт.

На модульных электрических станциях установлены 52 газовых двигателя мощностью по 8,7МВт и 18 мощностью по 17МВт марки W20V34SG компании «WARTSILA», Финляндия.

В настоящее время в республике ведется строительство новой модульной электростанции мощностью 104,4 МВт, с установкой 12 газовых двигателей марки W20V34SG, мощностью по 8,7МВт.

Охлаждение газовых двигателей, осуществляется закрытой жидкостной системой охлаждения, разделенной на высокотемпературный и низкотемпературный контуры. Жидкость охлаждается в отдельном центральном охладителе.

Качество охлаждающей жидкости должно удовлетворять следующим нормам : \mathbb{X}_0 ≤3,6 мг-экв/л ; Cl⁻ ≤50мг/л; SO₄-² ≤ 150мг/л; pH = 8 - 10; NO₂ = от типа применяемого ингибитора (см. таблицу №1); плотность моноэтиленгликоля (Антифриз) - от температуры окружающей среды, в зимний период.(Л-1)

Наименование и расход широко применяемых ингибиторов, а также нормы для содержания NO₂ в охлаждающей жидкости, приведены в таблице №1. (Л-1)

Ингибиторы, в частности, NALCOOL-2000, предназначены для зашиты металла от эррозии и коррозии, содержания в чистоте поверхности охлаждения, предотвращения перегрева металла, совместимы с антифризом и просты в контроле и управлении.

Продукт защищает черные металлы, медь, медные сплавы и другие металлы. Не воздействует на резину и другие неметаллические компоненты в пределах охлаждающей системы.

Передозировка ингибитора не опасна, а содержание NO₂, ниже установленной нормы может привести к образованию локальной коррозии на поверхностях охлаждения.

На модульных электростанциях республики, в качестве ингибитора применяется NALCOOL-2000, с расходом - 35 кг/м 3 , а для понижения температуры замерзания - моноэтиленгликоль с плотностью - 1115 кг/м 3 . Охлаждающий раствор приготовляется в конденсате.

Таблица №1

No	Наименование ингибитора	Расход	Содержание		
		ингибитора,	нитрита, мг/литр		
		литр/ M^3			
1	Corrshield NT-4293	10	670-1000		
	Corrshield NT-4200	10			
2	Drewgard, 4109	16-30	640-1200		
3	Liquidewt	8-12	470-700		
4	Maxigard	16-30	640-1200		
5	Cooltreat 651	5	800		
6	Maricol CW	8-16	1000-2000		
7	Nalco 39 (L)	16-36	550-1200		
8	NALCOOL-2000	32-48	1000-1500		
9	Nalfleet EWT9-108	2,2-3,4	1000-1500		
10	Nalfeet CWT9-131C	8-12	1000-1500		
11	Rocor NB Liquid	10-24	1500		
12	Vecom CWT Diesel QC-2	6-10	1500-2500		
13	Dieselguard NB	2-4,8 kg	1500		

Таким образом, для охлаждающего раствора на газовых двигателях, смонтированных на модульной электростанции Нахичеванской AP, где температура окружающей среды в зимний период ниже, чем в других районах республики, установлены следующие нормы: $W_0 \le 3.6 \text{ мг-экв/л}$; $Cl^- \le 50 \text{мг/л}$; $SO_4^{-2} \le 150 \text{мг/л}$; $NO_2 = 1000 - 1500 \text{мг/л}$ и pH = 8,3-10; $p \le 1045 \text{кг/м}^3$, а для остальных модульных электростанций, где температура окружающей среды в зимний период относительно высока, $W_0 \le 3.6 \text{ мг-экв/л}$; $Cl^- \le 50 \text{мг/л}$; $SO_4^{-2} \le 150 \text{мг/л}$; $NO_2 = 1000 - 1500 \text{мг/л}$; $pH = 8,3-10 \text{ и } \rho \ge 1022 \text{кг/м}^3$.

Контроль качества охлаждающей жидкости осуществляется простым тестированием.

Тестирование содержания нитрита осуществляется методиками, выданными компанией «WARTSILA», а остальные качественные показатели определяются общеизвестными методиками, широко применяемыми для анализа воды и пара. (Л-2)

Методика тестирования нитрита: С помощью шприца нужна взять 5 мл раствора , поместить в стакан и довести объем образца с конденсатом до 50 мл .Добавить 2 таблетки №1 нитрита соли и взболтать до растворения таблетки №1.Образец окрасится в белый цвет. Затем добавить таблетку №2 нитрита соли и взболтать до полного растворения. Продолжать добавлять таблетки №2 нитрита соли до появления розового цвета. Розовый цвет должен стоят не менее одной минуты.

Расчет: Нитрит(мг/л, ррм)=количество таблеток№2 умножить на 180

Большой интерес представляет определение количества ингибитора NALCOOL-2000, необходимого для повышения концентрации нитрита в рабочей жидкости до установленной нормы.

Для этого автором предлагается следующая формула:

$$A = \frac{N{O_2}^{\text{ норм}} - N{O_2}^{\phi a \kappa \tau}}{100} x \ V \ x \ a \ , литр$$

где $NO_2^{\text{норм}}$ - установленная норма нитрита в охлаждающей жидкости, мг/л

 ${
m NO_2}^{{
m факт}}$ - фактическая концентрация нитрита в рабочей охлаждающей жидкости, мг/л

 ${
m V}$ - объем охлаждающей жидкости в газовом двигателе,м 3

Для газового двигателя мощностью 8,7 MvT- можно применять $V=6 m^3, a$ для газового двигателя мощностью $17 MBt-V=13 m^3$.

а - объем свежего ингибитора , необходимого для повышения концентрации нитрита в рабочей жидкости на 100мг/л.

Автором, опытным путем установлено, что для ингибитора NALCOOL-2000, $a=2,4\pi/m^3$.

Одной из сложностей тестирования охлаждающей жидкости, является определение концентрации моноэтиленгликоля в охлаждающей жидкости, которое не указано в выше названных методиках.

Для решения этого вопроса, автором выполнен ряд лабораторных работ по следующим методикам: в разные колбы помещается разное количество моноэтиленгликоля и объем конденсатом доводится до литра. С помощью ареометра определяется плотность (таблица№1), на основании чего построен график (рис1). Установлено также, что добавление в пробу ингибитора NALCOOL-2000 (р=1105кг/м³) в количестве 35 мг/л существенно не влияет на плотность жидкости.

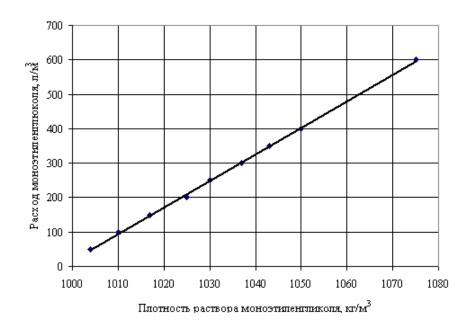


Рис.1. График для тестирования концентрации моноэтиленгликоля в охлаждающей жидкости газового двигателя «WARTSILA».

Таблица № 1

Наименование продуктов	Номера проб								
	1	2	3	4	5	6	7	8	9
Конденсат, мл	950	900	850	800	750	700	650	600	400
Моноэтиленгликоль,	50	100	150	200	250	300	350	400	600
МЛ									
Охлаж. жидкость,	1000	1000	1000	1000	1000	1000	1000	1000	1000
МЛ									
Концентр. раствора,	5	10	15	20	25	30	35	40	60
%									
Плотность раствора,	1004	1010	1017	1025	1030	1037	1043	1050	1075
$\kappa\Gamma/M^3$									

С помощью построенного графика, при известной плотности (плотность определяется ареометром), можно определить концентрацию моноэтиленгликоля в рабочей охлаждающей жидкости

Для корректировки концентрации моноэтиленгликоля в рабочей жидкости предлагается следующая формула:

$$M = V$$
 (Мнорм - Мфакт), литр

В весовом выражении

$$M = V - \frac{C \rho}{100}$$
 (Мнорм - Мфакт) =1,11 V (Мнорм - Мфакт), кг

где $\,V\,$ - объем охлаждающей жидкости в газовым двигатели, $\,{}_{M}^{3}\,$;

Мнорма - установленная норма моноэтиленгликоля в охлаждающей жидкости, литр ;

Мфакт - фактическая концентрация моноэтиленгликоля в рабочей охлаждающей жидкости, литр;

С – чистота моноэтиленгликоля, равна 99,5%;

 ρ - плотность товарного моноэтиленгликоля, равна 1115,1- 1115,6 кг/м³;

В зависимости от производителя, плотность моноэтиленгликоля изменяется в широком диапазоне. Поэтому, для корректировки его количества в жидкости, необходимо использовать следующее уравнение, поскольку график построен для моноэтиленгликоля с плотностью - $1115 \, \mathrm{kr/m}^3$:

$$M = V \; (M_{\text{норм.}} - \frac{1115}{\rho_{\text{свеж}}} \; M_{\phi \text{акт}}) \; , \; \;$$
литр

где, $\rho_{\text{свеж}}$ - плотность новой партии моноэтиленгликоля, кг/м 3

Таким образом, предложенный автором график и формулы, позволяют расчётным путём определить концентрацию моноэтиленгликоля в охлаждающей жидкости и необходимого количества ингибитора для доведения до нормы концентрации нитрита и моноэтиленгликоля в рабочей охлаждающей жидкости газового агрегата модульных электростанций.

Данный график и формула могут быть использованы в других отраслях народного хозяйства, где применяется охлаждающий раствор, содержащий моноэтиленгликоль и ингибитор NALCOOL-2000.

1. Инструкция по эксплуатации WARTSILA 20V34SG, компании «WARTSILA», Финляндия;

2. *Ю.М.Кострикин*. Инструкция по анализу воды, пара и отложений теплосиловом хозяйстве, Изд-во «Энергия» , Москва, 1967 г.

MODUL ELEKTRIK STANSIYALARINDA QOYULMUŞ QAZ AQREQATLARININ SOYUDUCU MƏHLULLARINDA MONOETILENQLIKOLUN QATILIĞININ TƏYIN OLUNMA VƏ MONOETILENQLIKOL VƏ NITRITIN QATILIĞININ TƏNZIMLƏMƏ METODIKASI

IBRAHİMOV H.Ş.

Məqalədə, modul elektrik stansiyalarında qoyulmuş qaz aqreqatlarının soyuducu məhlulunda monoetilenqlikolun qatılığını təyin etmək üçün xüsusi qrafik işlənilmiş və soyuducu sistemdəki monoetilenqlikol və nitritin qatılığının normada saxlanılması üçün monoetilenqlikol və NALCOOL-2000 markalı inqibitorun tələb olunan miqdarını təyin etmək üçün düsturlar verilmişdir.

METHOD OF DETERMINATION OF MONO-ETHYLENE-GLYCOL CONCENTRATION AND CORRECTION OF IT AND OF NITRITE IN THE OPERATE COOLING LIQUID FOR GAS ENGINES AT THE PACKAGED (MODULE) POWER PLANTS

IBRAHIMOV H.Sh.

The article shows the graphic chart, which allows to determine the percentage of Monoethylene-glycol in cooling liquit at known density of the liquit.

Also there are a row of equations in the article, which allow determining of the Mono-ethylene-glycol and inhibitor NALCOOL-2000 necessary to be brought a concentration of these reagents to the required norm.