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We present theoretical studies of superlattice structures formed from altemnating layers of two
simple-cubic Heisenberg antiferromagnetic materials. The spin-wave regions for spin waves propagating in
a general direction in the superlattice are derived by the Green function method. The results are illustrated
numerically.

An exciting aspect of solid-state physics is the discovery or exploration of new
classes of materials, whose physical propertics may differ dramatically from textbook
descriptions of simple solids. During the past decade, there has been considerable effort
devoted to the synthesis and study of composite materials, and of superlattices formed
from alternating layers of different materials [1-3]. In magnetic superlattices, elementary
excitations such as spin waves are collective excitations of the structure as a whole, and as
a consequence have properties distinctly different from the modes associated with any
one constituent, Some qualitative features of superlattice are most easily explained for the
simple — cubic structure in terms of modified single - film properties. The bulk spin-wave
regions in simple-cubic Heizenberg antiferromagnetic material are derived in Ref.[4] The
aim of this paper is to study by the Green function method [5] properties of an
antiferrormagnetic superlattice with quantum Heisenberg spins at finite temperature and
this theoretical studies are analogous to one from the Ref.[6],where ferromagnetic
superlattice is considered. The Green function method gives opportunity to study the
behavior of parameters characterising the superlattice. For example, magnetic
sucseptibility, temperature dependence of magnetization, local density of magnon states
and oth. may be studied by the Green function method.

We consider a simple cubic antiferromagnetic superlattice model in which the
atomic planes of material 1 alternate with atomic planes of material 2 [2]. Each atomic
plane 1s assumed to be the {001] planes. The materials are taken to be simple — cubic
Heisenberp antiferromagnet, having exchange constant i) and ip and lattice constant a.
Assuming exchange interactions may be both ferromagnetically and antiferromagnetically , .
it 1s possible two spin arrangements between constituents.

The Heisenberg Hamiltonian is used to describe for system:
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where Hj is the internal field, which is assumed to be paralell to the spins along the z
axis and H®Y (i =1,2) anisotropy field for a antiferromagnet with simple unaxial
qnisotropy along the z axis. We define a double — time Green function in real space G; (3,
1)=<<8;" (t); S (t )>>. By magnetic symmetry, there are two sublattices corresponding to
up and down spins for both the materials. Writing the equation of motion for Green
function and employing the random-phase approximation one obtains a set of equations
coupling four different types of Green function, namely two of type G (t, t ) where i and
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j belong to the same sublattice, and two of the type Fj (t, t ) where i and j belong to
different sublattices. Furthermore, to emphasize the layered structure we shall uvse the
following the frequency and two-dimensional Fourier transformation [2]
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where k;; is two-dimensional wave vector, @ is spin-wave frequency, n and n indices of
the iayers to which r; and 1j aid LEIONE, iespeciively. Assuming that n-th layer is of the
material 1 and (n+1)-th laver 15 of the material 2. one obtains the foliowing set of

equations when the exchange interaction between constituents is antiferromagnetically
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where E= (@ -g up Ho)/611$ , 2=G(@, ky)) - 6I;S and the expression of other terms
appearing in the set of equations (3) and (4) are given in the Appendix.

The system is also periodic in the z direction, which lattice constant is d=2a.
According to Bloch"s theorem we introd uces the foglgxy'fg plane waves [2]
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The set of equations (3) and (4) may be rewritten under following matrix form
Mu=s and Nu=s (6)
where
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where T= é (1 + exp (ikd)) and T is the complex conjugate of T. The Green functions
for the four-sublattice model are obtained by solving the equations (6). We can also give
combined expressions of the Green functions
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The poles of the Green functions occur at energies
E, =1y0.5]-p++/p’-40]. (8)

The expressions of the terms appearing (6-8) are given in the Appendix. Equations
[7-8] are the main results of this paper. It can be verified from equation (8) that when both
media are identical, I; =I; = I the equations (8) reduces to the well-known expression of
bulk-spin wave dispersion equation for antiferromagnetic constituents [7]. In Fig.1,2,3 the
results numerically illustrated for a particular choice of parameters. Fig.2 shows the spin-
wave regions for the superlattice as a function of the quantity q, while Fig.1 shows those
for the components 1 and 2 [4]. In Fig.3 the spin-wave regions are shown as a function of
g for =0 and q=0.5. All these figures correspond to —1 <cosk,d<1.

“

Fig.1

The buik spin-ware regions for the components
1 and 2 as a function of transverse components of
wavevectors (d;=0,001, dy=0,002, a=2).

The analysis of the results shows that the width of the bulk-spin wave regions in the
antiferromagnetic superlattice is depended on transverse components of wave vectors and
exchange interaction. When the exchange interaction between constituents 1s
antiferromagnetically the bulk-spin wave regions are narrower than the bulk-spin wave
regions when that is ferromagnetically.
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Fig.2
™ 4,11~ Try_vx 3 3
The bulk spin-wave regions in

the superlattice as a function
of transverse components of
the wavevectors for different
va-lnes of e (d4;=0,001,
d=0,002, a=2).
a). Spin arran

gements bei-
ween constituents are antil
romagnetically,

b). spin arrangements are fer-
romagneticaily

a) b)
Fig3.
The bulk spin-wave regions in the superlattice as a function of exchange interaction
between constituents (d;=0,001, d;=0,002, ¢=2) a). £>0, when spin arrangements between
constituents are antiferromagnetically, b). £<0, when those are ferromagnetically.

APPENDIX
The terms appearing in the equations [3-8] are
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Plus sign in the expressions and €0 are taken when exchange interaction is

antiferromagnetically, minus sign and £<0 are taken when that is ferromagnetically.

L EY A\ g Y L e SRS S SR s eSSy B RS e L S
\J"‘Dkf) - T, 4

{2l =14 ;
—28{ B(F*~A%)-B.IT' +BB }
D(E,)= i =
| (B~ B, )
Pl =14 1#1 =12

1. Feng Chen and H K.Sy, J. Phys.Condens. Matter., 7 (1995) 6591.

2. H.T Diep Phys. Letters A., 138 (1989) 69.

3. J. Barnas, J. Phys, C 21 (1988) 1021.

4. T.Wolfram and R.E.Wames, Phys.Rev.,135 (1969) 762.

5. V.G.Baryaxtar, V.N.Krivorucko, D.A.Yablonskiy, Funkcii Grina v teorii
magnetizma,(1984).

6. V.S.Tagiev,V.A. Tanriverdiev 8.M.Seyid-Rzayeva,M.B.Guseynov, Fizika, Baku,
1 (2000) 33.

7. V.V.Eremenco, Vvedenie v opticheskuyu spectroskopiyu magneticov, Kiev,

(1975).
ANTIFERROMAQNIT IFRAT Q9F9SD SPIN DALGA ZONASI
V.ATANRIVERDIYEV, V.S. TAGIYEV, M.B.HUSEYNOV
lki sade kubik Heyzenberq antiferromagnitden teskil olunmus ifrat gafsse baxiir. Qrin
funksiyas! metedundan istifade edarak ifrat qafesin oxu boyunca yayilan spin dalgalan Gcilin hacm

spin-dalda zonalart muayyan edilmigdir. Natica kemiyyatce tasvir olunmusdur.

OBJACTbh OB BEMHBIX CIIMHOBbBIX BOJIH B AHTH®EPPOMATHUTHbIX
CBEPXPELIETKAX

B.A.TAHPBIBEPJIMER, B.C. TATMER, M.5.I'YCEITHOB
PaccMoTpera CBEpXpPCLICTKA COCTOAIAd H3 UCPEAYICUMXCH CAOSE MPOCTHIX  KyOHHMecKux

Telisen0epronckux antHheppomarHeTuxos. MetogoMm ¢yukumd I'puna onpeneneHa obnacTe CRHEOBBIX
BOJIH PacnpoCTPAHAIOMKMXCA BAOJb OCH CBEXPeILeTKH. Pe3yabTaTsl NPEACTaBIEHEl HHCIEHHO,
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