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Energy spectrum of a weak coupling polaron is considered in a disk-shaped quantum dot. An
analitical expression for the polaron energy correction to the ground and the first excited state was
calculated using a modified perturbation theory. Anticrossing of the polaron energy levels in the
dependence on the quantum dot radius was obtained.

INTODUCTION

Investigation of electron spectrum in quantum dots has been attracted much
attention in the last decade as it has been technologically possible to produce well
characterized quasi-zero-dimensional structures. Most of these structures are made of
polar materials. Therefore, the polaron phenomena can strongly influence the electron
spectrum. There has been a great interest of the polaron phenomena in quantum well,
quantum wire and quantum dot structures. It is known that the polaron effects are
enhanced when going from 2D to 1D and then to OD system. The normalized polaron
energy shift of the ground state AEo/ahw o, wWhere o is the Frohlich coupling constant
and hoo is the energy of longitudinal optical (LO) phonon, equals to —1 and -rt/2 in he
case Of 3D and 2D system respectively. In one-dimensional case AEo/ahw o is
proportional to InR when the radius of the cylindrical quantum wire is R—0 [1]. The
most significant polaron effects are realized in quantum dots. Applying the Feyman
variational principle the basic polaron parameters were obtained in the case of spherical
quantum dot and it was shown that AEy/ahm o depends on the quantum dot radius more
strongly than in 1D case [1].

On the other hand, one of the interesting experimental facts is absence of the
expected LO-phonon bottleneck effect of photoexcited electrons in quantum dots. There
is a number of papers proposed various reasons why the expected bottleneck effect may
be bypassed [2-4]. In paricular, in the works [5,6] the energy relaxation of the excited
electrons in quantum dots was discussed in connection with polaron effects. So, it is
interesting to investigate polaron spectrum in quantum dots in the case of the resonance
where the distance between size-quantized levels equals to the LO-phonon energy.

Another interesting fact is that the electron- LO-phonon interaction leads to
anticrossing of the energy levels. Larsen was the first to point out the level repulsion at
w=wLo, Where o is the cyclotron frequency, in bulk crystals in the presence of a
magnetic field [7]. The anticrossing of energy levels was observed in absorption
spectrum of quantum dots InAs/GaAs in magnetic field [8]. Appearance of the
anticrossing in the dependence of polaron levels on the quantum dot radius theoretically
was derived on the base of two-levels system [6]. More precisely, the disk-shaped
InAs/GaAs quantum dot in the presence of a magnetic field by using the Davydov’s
canonical transformation was considered theoretically in the paper [9].

The goal of the present paper is to investigate polaron spectrum in the case of disk-
shaped quantum dot. We shall use a modified perturbation theory taking into account the
interaction between E; and Eq®+ hoLo, where Eo® and E; are the ground and the
first excited energy level of the confined electron respectively. In spite of the fact that
due to the electronic confinement in the low-dimensional structures, the strong-coupling
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regime can be realized even at the small value of the electron-phonon interaction constant
o, we use the perturbation theory. As it will be shown below the weak-coupling regime
still may be realized for small value o and quantum dot’s size usually considered in
experiments.

POLARON ENERGY

In the present paper we consider a disk-shaped quantum dot, i.e. a cylindrical
quantum dot with the radius essentially exceeding its height. The same situation usually
is realized in experiments. Usually the diameter of the disk exceeds its height by the
order. Besides, we use the oscillator model of the potential confining electron’s
movement along the cylindrical axis z with the frequency w, and in the plane of the disk
with the frequency . According to the considered shape of the disk it is assumed that
w>>o. It is considered that the levels connected with confinement along z are situated
too over the ground state and their influence can be neglected. It is suggested that the
coupling constant of a polar crystal in a quantum dot is too little (for GaAs a~0.07). In
this connection we use the perturbation theory for polaron energy shift. The suggested
model of the quantum dot is related to the following Schrddinger equation for electron
noninteracting with phonons:

[0° 1 6p? + (LIp) 81 0p + (1Ip?) % 1 69Ty + %y 16Z% +
+ (2moE@/h? — me?w?p?/h? — me’w,z°/h?) y = 0, (1)
where my is the electron’s effective mass in the quantum dot, p, ¢, z are the cylindrical
coordinates. The solution of the equation (1) is well known:
i = (@8 /1) (@p) ™ Lo ) ™ () exp(-alpil2- alzf2ime).  (2)

where Ljn_|m|)Im (a’p?) are the associated Laguerre polinomials, a’=mow/h, a,>=mow,/h,

anm’=(n- | m | )/ (n+|m | ), n=0,1,2,..., m=0,£2,44,....+nif nis even, m=+1,£3,...,n if
n is odd and m=0 for n=0. The energy spectrum is:
E,P=hw,/2+ ho(n+1). (3)

The electrons are assumed to be coupled to dispersiveness LO-phonons of the bulk
crystal. The potential yielded by one LO-phonon is:
®q= (A/q) exp(iq.pcose+iq,z), (4)
where A=ihwo(4nalyoV)Y?, q is the phonon wave vector, q. and g, are the components of
the phonon wave vector laying in the plane of the disk and along z axes correspondingly,
a=(0.%+ 9,92, yo>=2mewo/h, hawyg is the energy of LO-phonon at g=0, V is the quantum
dot’s volume.
The matrix element corresponding to the emission of the LO-phonon is

Mpm—n'm'= I Ynme (Pq*LP*n’m’dV, (5)
where e is the electron charge. Using the expressions (2) and (5) we obtain
I\/Inm—>n'm’: (2Aanman’m'('i)m-m /Q) eXp(-Qz2/4az2) I nm—>n'm’(qJ_/23)a (6)

where

o )= [ X! 130 08) L ety ™ 02)x0 () Jr-m(20),
0
Jm-m(2Xy) is the Bessel function.

It is assumed that the difference between conductivity bands of the material of
guantum dot and surroundings is quite large and sufficient number of quantum levels
exists inside the quantum well. So, while calculating the polaron energy, we shall take
into account the electron’s transitions to the all levels. Far from the resonance the polaron
correction to the energy in the second order of the perturbation theory is defined as
follows:
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AEn = Z |M nm*)n’m’|2/(En(0)' En’(O)'h(DO) (7)
m,n,m,q
We shall substitute (3) and (6) into (7) and replace the summation over g with
integration. For simplicity we shall consider the limit ., a,—oo related to the case of zero
height cylinder. According to this limit the integral over q; is equal to:

[ exp(-a.12a,)/(a,*+.")dq, =n/q.

As a result we shall obtain the following expression of the polaron energy shift
normalized by ahwo:
AEq/ ahoo=-8(I/2)"* > anm’ awm“Jnmonm/[(N’-N) T+1] (8)
m,n,m,q

Jomon'm= .[“nm—)n’m’lzdy’
where I'=w/wo . From the kind of potential of the oscillator model it is obvious that T is
proportional to 1/R, where R is the quantum dot radius. The case of '—oo corresponds to
the ultraqguantum limit. On the other hand, the limit I'>0 corresponds to the two-
dimensional case of a plane. The polaron energy shift of the ground state AEy/ ahwo
calculated as a function of the parameter I' is plotted in Fig.1. The quantity AEys/ ahwg
trends to the well known value -7/2 for two-dimensional case in the limit '—0. In the
case of I'—>oo the quantity of AEy/
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Now we shall calculate the polaron energy shift of the level E;¥ for any value of
I' including the resonance region. As it is seen from the expression (8) for n=1, the term
corresponding to n’=0, diverges in the limit '—>1. The formula (8) is not applicable near
the resonance I'=1. In order to calculate the energy shift of the level E; in this area we
shall exclude from (8) the term corresponding to the transition from the state n=1 to n’=0
and shall take into account this contribution using the perturbation theory applicable in
the case of degeneracy of two levels E1© and Eq©@+hwo. We shall consider the system
consisted from an electron, which has the state n=0, m=0 of the level E,® and two
degenerate states n=1, m=+1 of the level E;©, and a phonon which will have the
occupation number n,=0 if the electron is on the level E®® and ny=1 if the electron is on
the level E;. So, the united noninteracting electron-phonon system may exist on the
level E;© with two degenerate states [n=1,m=+1, n,=0 > and on the level Eo®+hw, with
the state |n=1,m=0,nq,=1>. Then including the Frohlich coupling one can easy obtain the
following expression for the energy of the two-level system:

E=( E1 O+ Eo@+hwo)/2+[( E1 P+ Eo©®+hwo)?/4+ Vo1, 9)
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where Eo®= ho, E1?=2 ho, Vo’ = > (IMo,01.1**+Moo1.4/%).
Q

From (9) we can define AE;=E- E;? in the following form:

AE1/ ahoo=(1-T)/20£[(1-1)*/4+ V1| (hwo) ] a, (10)
where [Vo1|/(howo)?=16(I'/2)?0J1 1_,00. The sign plus corresponds to the region I'>1, the
sign minus to the region I'<1. The contribution into the energy shift A( E¢+hwg)=E- Eo©-
hwo corresponding to the same transition is defined by the formula (11), but with the sign
plus in the region I'<1 and with the sign minus in the region I'>1

A(Eot+hoo)/ohwo=-(1-T)/20+[(1-T) 44+ Vo1 (hwo)*] /a. (11)
The value of the integral Ji1,00 is 0.039. The total shift AE:;/ ohwo and
A(Eothwo)/ ahwo is calculated excluding from (8) the term related to the transition
n=1,m=+1—-n=0,m=0 and adding the contribution defined by (10) and (11) respectively.
The shifts AE;/ ahwo and A(Eo+hwg)/ ahwg as the functions of T" are plotted in Fig.2 and
Fig.3 respectively for a=0.07. The picture of the levels Ei/ ahwo and (Eothwo)/ ahwg is
represent in Fig.4, where E1/ hwo=2T" and (Eo@+hwg)/ hwe= I'+1 are represented by
dashed lines. In the resonance area the energy levels correspond to the wave function
represented as a superposition of the states |n=1,m=+1, n,=0> and [n=1,m=0, ng=1>.
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Fig.2.
Dependence of the
polaron energy shift AE;/ahwo on T,
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Fig.3.
Dependence of the
A(Eot+hwo)/ahwo on T'.

Fig.4

Anticrossing of the levels Ei/hmg
and (Eo+ hoo )/hwo on T'. The levels
E:9%hwo and (Eo@+hwo)/hwo are
plotted by dashed lines.

1- (Eothwo)/hwo in I'<1 region;
1’-(Eot+hwo)/hwg in T'>1 region;

2- Ei/hwg in T'<1 region;

2’- E1/hwg in I'>1 region.
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As it is shown in the Fig.4 the polaron spectrum (solid line) is situated sufficiently
close to the unperturbed electron spectrum (dashed lines). So, use of the perturbation
theory for little value of o in the considered range of the parameter I" is quite correct.

CONCLUSION
Using the perturbation theory the polaron energy shift was obtained. The polaron
shift of the ground state tends to the well known value -t/2 for two-dimensional system
in the case of I'=0. In the limit of I'—>oo the polaron shift diverges more sharp than in the
case of quantum wire when its radius tends to zero.

Using the modified perturbation theory the anticrossing of the polaron levels E;
and Eo+hwo was obtained near the resonance region.

Far from the resonance the level Eo+hmg has not the particular physical meaning,
however, the states corresponding to this level in the resonance region may be realized in
experiments on light absorption. Apart from the allowed transition Eo—E3, the transition
Eo— Eot hwp may also take place because the wave functions of these levels are mixed
in the anticrossing region.
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ONoORWN

DISK FORMALI KVANT NOQTOSINDS POLYARONUN ENERJi SPEKTRI
0.Z. SLOKBOROV, N.M. HUSEYNOV

Disk formali kvant noqtesinde zeif »olagsali polyaronun enerji spektrine baxilib.
Genislondirilmis hoyscanlanma noazeriyyosindon istifade edilerok, polyaronun ssas vo birinci enerji
soviyyelari ligiin analitic ifads alinmisdir. Enerji soviyyalorinin qarsiliglt dof olunma qiymatinin kvant
noqtesinin radiusundan asililigr alinmisdir.

DHEPITETUYECKUI CIIEKTP MOJISIPOHA B JUCKOOBPA3HOM KBAHTOBOM TOYKE
0.3.AJIEKIIEPOB, HM.I'YCEMHOB

PaccmarpuBaeTcsi SHEPreTUYECKU CHEKTp CJIa00 CBsI3aHHOIO IOJISIPOHA B KBAaHTOBOW TOYKE B
dbopme nucka. Hcrmosb3yss MOAU(PHUIIMPOBAHHYIO TEOPHIO BO3MYIICHUM, IIOJYYCHBI AHAJIUTHYCCKHUE
BBIPAXKCHUSI K IIONpPaBKaM OCHOBHOT'O M IIEPBOTO BO30YXKIEHHOTO COCTOSHUU mnoysipoHa. [lomyuenHa
BEJIMYMHA aHTHU-KPOCCUHIA PHEPreTUYECKUX YPOBHEHN B 3aBUCHMOCTHU OT Pajnlyca KBAaHTOBOU TOUKH.

Penakrop: I'.Axxnapos
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