ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ МАГНИТНОГО МОМЕНТА В СЛОИСТО-НЕОДНОРОДНЫХ СРЕДАХ

И.Г.ДЖАФАРОВ, И.М.АБУТАЛЫБОВ, М.Б.АСАДОВА

Азербайджанский Государственный Педагогический Университет AZ11007, Баку, ул. У.Гаджибекова 34

Рассматривается процесс переходного излучения магнитного дипольного момента в плоскослоистой немагнитной среде. Получены выражения, описывающие поле излучения и изменение собственного поля. Проводится анализ полученных формул в случае ультрарелятивистского магнитного момента.

Переходное излучение заряда на плоской границе раздела двух изотропных сред с различными физическими свойствами, впервые теоретически предсказанное почти полвека назад Гинзбургом и Франком [1], явилось в последние десятилетия предметом интенсивных исследований. В настоящее время основные усилия направлены на создание практических систем, использующих переходное излучение для идентификации релятивистских частиц, что является одной из наиболее важных задач в физике высоких энергий.

Задача о переходном излучении магнитного момента рассматривалась в работах [3-5]. Данная работа посвящена переходному излучению, возникающему в слабонеоднородной плоскослоистой немагнитной среде.

Электромагнитное поле в неоднородной среде описывается уравнениями:

$$\left(\vec{\nabla}^2 - \frac{\varepsilon}{c^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \vec{\nabla} (\vec{\nabla} \vec{E}) + \frac{4\pi}{c^2} \frac{\partial \vec{j}}{\partial t}, \qquad (1)$$

$$\left(\vec{\nabla}^{2} - \frac{\varepsilon}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)\vec{H} = -\frac{1}{\varepsilon}\left[\vec{\nabla}\varepsilon\left[\vec{\nabla}\vec{H}\right]\right] + \frac{4\pi}{c}\left(\frac{1}{\varepsilon}\left[\vec{\nabla}\varepsilon,\vec{j}\right] - \left[\vec{\nabla}\vec{j}\right]\right),\tag{2}$$

где \vec{j} - плотность тока, создаваемая движущимся источником, это может быть заряд или электрический и магнитный мультипольный моменты. Решить уравнения (1) и (2) в общем виде невозможно. Они поддаются точному или приближенному решению только тогда, когда диэлектрическая проницаемость среды зависит лишь от одной переменной. Поскольку рассматриваемая плоскослоистая среда, диалектрическая проницаемость которой $\varepsilon = \varepsilon(z) = \varepsilon^0 + \delta\varepsilon(z)$ и $|\delta\varepsilon(z)| << \varepsilon^0$, является пространственно слабонеоднородной в определенном направлении решения уравнений (1) и (2) можно найти методом последовательных приближений с учетом того, что $\vec{E} = \vec{E}^0 + \delta\vec{E}, \vec{H} = \vec{H}^0 + \delta\vec{H}$. Так как $|\delta\vec{E}| << |\vec{E}^0|$, $|\delta\vec{H}| < |\delta\vec{E}| < |\vec{E}^0|$, величины малости первого порядка, а \vec{E}^0 и \vec{H}^0 , описывающие поле в однородной среде с диэлектрической проницаемостью ε^0 , нам известны, основная задача определить добавки к полю, обусловленные неоднородностью среды, для которых получаются следующие уравнения:

$$\left(\vec{\nabla}^{2} - \frac{\varepsilon^{0}}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)\delta\vec{E} = \frac{\delta\varepsilon}{c^{2}}\frac{\partial^{2}\vec{E}^{0}}{\partial t^{2}} - \frac{1}{\varepsilon^{0}}\vec{\nabla}\left(\delta\varepsilon\vec{E}^{0}\right),\tag{3}$$

ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ МАГНИТНОГО МОМЕНТА В СЛОИСТО-НЕОДНОРОДНЫХ СРЕДАХ

$$\left(\vec{\nabla}^{2} - \frac{\varepsilon^{0}}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)\delta\vec{H} = \frac{\delta\varepsilon}{c^{2}}\frac{\partial^{2}\vec{H}^{0}}{\partial t^{2}} + \frac{1}{\varepsilon^{0}}\left(\left[\vec{\nabla}\,\delta\varepsilon\,,\,\vec{j}\,\right] - \left[\vec{\nabla}\,\delta\varepsilon\left[\vec{\nabla}\,\vec{H}^{0}\,\right]\right]\right)$$
(4)

Плотность тока создается равномерно движущимися вдоль оси z магнитным моментом \vec{m}

$$\vec{j} = crot\vec{M} + \partial\vec{P} / \partial t , \qquad (5)$$

где

$$\vec{M}(\vec{r},t) = \vec{m}\delta(\vec{r}-\vec{\upsilon}t) , \ \vec{P}(\vec{r},t) = \vec{p}\delta(\vec{r}-\vec{\upsilon}t)$$
(6)

– векторы магнитной и электрической поляризаций, $\vec{p} = \left[\vec{\beta}\vec{m}\right]$ –электрический дипольный момент, совмещенный с движущимся магнитным моментом, $\vec{v} = c\vec{\beta}$ – его скорость.

В силу того, что рассматриваемая задача однородна во времени и по направлениям во всей среде, перпендикулярным скорости источника, целесообразно все величины разлагать в интеграл Фурье по времени и по поперечной компоненте радиус – вектора \vec{r}_1 :

$$\delta \vec{E}(\vec{r},t) = \int \delta \vec{E}_{\omega \vec{\chi}}(z) \exp(i \vec{\chi} \vec{r}_{\perp} - i \omega t) d\omega d\vec{\chi}$$
(7)

и т.д.

Прежде чем приступить к решению дифференциальных уравнений (3) и (4), необходимо найти их Фурье-изображения и выбрать конкретные функции для $\delta \varepsilon(z)$, плавно изменяющиеся на интервале Δz от значения - $\Delta \varepsilon/2$ до значения + $\Delta \varepsilon/2$, причем $\varepsilon_1 = \varepsilon^0 - \Delta \varepsilon/2$, а $\varepsilon_2 = \varepsilon^0 + \Delta \varepsilon/2$. В качестве таких функций можно предложить

$$\delta \varepsilon \quad (z) = \frac{\Delta \varepsilon}{2} th \quad \frac{z}{\Delta z} , \qquad (8)$$

$$\delta \varepsilon (z) = \frac{\Delta \varepsilon}{\pi} \operatorname{arctg} \quad \frac{z}{\Delta z}, \qquad (9)$$

$$\delta \varepsilon (z) = \frac{\Delta \varepsilon}{\sqrt{\pi}} \int_{0}^{z} \exp \left[-\left(x / \Delta z \right)^{2} \right] dx \quad (10)$$

Фурье – изображения которых, соответственно, равны

$$\delta \varepsilon_{\eta} = \frac{\Delta \varepsilon}{4i} \cdot \frac{\Delta z}{sh(\pi \eta \Delta z/2)} , \qquad (11)$$

$$\delta \varepsilon_{\eta} = \frac{\Delta \varepsilon}{2\pi i \eta} \exp(-I \eta I \Delta z), \qquad (12)$$

$$\delta \varepsilon_{\eta} = \frac{\Delta \varepsilon}{2\pi i \eta} \exp\left[-\left(\eta \Delta z/2\right)^{2}\right].$$
(13)

Находим Фурье – изображения уравнений (3) и (4) с учетом Фурье – изображения плотности тока (5), определяемого равенством

$$\vec{j}_{\omega\vec{\chi}}(z) = \frac{ic}{(2\pi)^3 \upsilon} \left[\vec{\chi} + \vec{e}_3 \omega \gamma^{-2} / \upsilon, \vec{m} \right] \exp(i\omega z / \upsilon), \qquad (14)$$

$$\mathcal{D}\delta\vec{E}_{\omega\bar{\chi}} = -\int \delta\varepsilon_{\xi} \exp(i(\xi - \frac{\omega}{\upsilon})z) d\xi \left\{ \frac{\omega^2}{c^2} \vec{E}_{\omega\bar{\chi}}^0 - \frac{1}{\varepsilon^0} (\xi \vec{e}_3 + \vec{\chi}) \left[(\vec{\chi} \vec{E}_{\omega\bar{\chi}}^0) + \xi (\vec{e}_3 \vec{E}_{\omega\bar{\chi}}^0) \right] \right\}, \quad (15)$$

$$\mathcal{D} \partial \vec{H}_{\omega \vec{\chi}} = -\int \delta \varepsilon_{\xi} \exp(i(\xi - \frac{\omega}{\upsilon})z) d\xi \left\{ \frac{\omega^2}{c^2} \vec{H}_{\omega \vec{\chi}}^0 - \frac{i}{\varepsilon^0} (\xi - \frac{\omega}{\upsilon}) \left[\vec{e}_3, \vec{j}_{\omega \vec{\chi}} - i \left[\vec{k}_s \vec{H}_{\omega \vec{\chi}}^0 \right] \right] \right\}, \quad (16)$$

где оператор $\mathcal{B} = \frac{\partial^2}{\partial z^2} + k_{r_z}^2$, $\xi = \eta + \frac{\omega}{\upsilon}$, $k_{r_z} = \frac{\omega}{c} \sqrt{\varepsilon^0 - \chi^2 c^2 / \omega^2}$ - продольная компонента волнового вектора поля излучения, $\vec{k}_s = \vec{\chi} + \vec{e}_3 \omega / \upsilon$ - волновой вектор собственного поля, а $\vec{e}_3 = \vec{\upsilon} / \upsilon$ - ортвектор.

Векторы собственного поля магнитного момента в однородной немагнитной среде с диэлектрической проницаемостью \mathcal{E}^0 (поле излучения в однородной среде считается отсутствующим) имеют следующий вид:

$$\vec{E}_{\omega\bar{\chi}}^{0} = \frac{c^{2} \exp(i\omega z/\upsilon)}{2\pi^{2} \upsilon \omega^{2} \varepsilon^{0}} (\varepsilon^{0} - c^{2}/\upsilon^{2} - \chi^{2} c^{2}/\omega^{2})^{-1} \times \\ \times \left\{ \vec{e}_{3} (\varepsilon^{0} - 1) \frac{\omega}{c} [\vec{\chi}\vec{m}]_{z} + \frac{\varepsilon^{0} \omega}{c} [\vec{\chi}\vec{m}]_{\perp} + \frac{\varepsilon^{0} \omega^{2} \gamma^{-2}}{\upsilon^{2}} [\vec{\beta}\vec{m}] - \vec{\chi}\beta [\vec{\chi}\vec{m}]_{z} \right\}, \quad (17)$$
$$\vec{H}_{\omega\bar{\chi}}^{0} = \frac{c^{2} \exp(i\omega z/\upsilon)}{2\pi^{2} \upsilon \omega^{2}} (\varepsilon^{0} - c^{2}/\upsilon^{2} - \chi^{2} c^{2}/\omega^{2})^{-1} \times$$

$$\times \left\{ \vec{e}_{3} \chi^{2} \left[-m_{z} + \frac{\omega \gamma^{-2}}{\upsilon \chi^{2}} (\vec{m} \vec{\chi}) \right] + \vec{\chi} (m_{z} \omega / \upsilon + (\vec{m} \vec{\chi})) - \vec{m}_{\perp} (\chi^{2} + \omega^{2} \gamma^{-2} / \upsilon^{2}) \right\}.$$
(18)

Подставив эти выражения в (15) и (16), находим

$$\mathcal{D} \delta \vec{E}_{\omega \vec{\chi}}(z) = \int \vec{F}_{\omega \vec{\chi} \xi}^{e} \exp(-i\xi z) d\xi , \qquad (19)$$

$$D \delta \vec{H}_{\omega \vec{\chi}}(z) = \int \vec{F}_{\omega \vec{\chi} \xi}^{m} \exp(-i\xi z) d\xi .$$
⁽²⁰⁾

Здесь подынтегральные векторные функции равны

$$\begin{split} \vec{F}_{\omega\vec{\chi}\vec{\xi}}^{e} &= -\frac{c^{2}\delta\varepsilon_{\vec{\xi}}}{2\pi^{2}\omega^{2}\upsilon\varepsilon^{0}}(\varepsilon^{0}-c^{2}/\upsilon^{2}-\chi^{2}c^{2}/\omega^{2})^{-1}\bigg\{\vec{e}_{3}(\varepsilon^{0}-1)\frac{\omega^{3}}{c^{3}}[\vec{\chi}\vec{m}]_{z} - \\ &-\vec{\chi}\frac{\omega^{2}}{c^{2}}\frac{\upsilon}{c}[\vec{\chi}\vec{m}]_{z} + \varepsilon^{0}\frac{\omega^{3}}{c^{3}}[\vec{\chi}\vec{m}]_{\perp} + \varepsilon^{0}\frac{\omega^{4}\gamma^{-2}}{c^{2}\upsilon^{2}}[\vec{\beta}\vec{m}] - \frac{1}{\varepsilon^{0}}[\vec{\chi}\vec{m}]_{z}(\vec{e}_{3}\vec{\xi}+\vec{\chi})\times \quad (21) \\ &\times\bigg[-\frac{\upsilon}{c}(\chi^{2}+\varepsilon^{0}\frac{\omega^{2}\gamma^{-2}}{\upsilon^{2}}) + (\varepsilon^{0}-1)\vec{\xi}\frac{\omega}{c}\bigg]\bigg\}, \\ \vec{F}_{\omega\vec{\chi}\vec{\xi}}^{m} &= -\frac{c^{2}\delta\varepsilon_{\vec{\xi}}}{2\pi^{2}\upsilon\omega^{2}\varepsilon^{0}}(\varepsilon^{0}-c^{2}/\upsilon^{2}-\chi^{2}c^{2}/\omega^{2})^{-1}\bigg\{\varepsilon^{0}\frac{\omega^{2}}{c^{2}}[\vec{e}_{3}\chi^{2}\times \\ &\times(-m_{z}+\frac{\omega\gamma^{-2}}{\upsilon\chi^{2}}(\vec{m}\vec{\chi})) + \vec{\chi}(m_{z}\omega/\upsilon+(\vec{m}\vec{\chi})) - \vec{m}_{\perp}(\chi^{2}+\omega^{2}\gamma^{-2}/\upsilon^{2})\bigg] + \quad (22) \\ &+(\vec{\xi}-\frac{\omega}{\upsilon})\varepsilon^{0}\frac{\omega^{2}}{c^{2}}\bigg[m_{z}\vec{\chi}-\frac{\omega\gamma^{-2}}{\upsilon}\vec{m}_{\perp}+\frac{\upsilon}{\varepsilon^{0}\omega}[\vec{\chi}\vec{e}_{3}][\vec{\chi}\vec{m}]_{z}\bigg]\bigg\}. \end{split}$$

Из (19) и (20) находим запаздывающие решения

ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ МАГНИТНОГО МОМЕНТА В СЛОИСТО-НЕОДНОРОДНЫХ СРЕДАХ

$$\delta \vec{E}_{\omega \bar{\chi}}(z) = -\int \vec{F}_{\omega \bar{\chi} \xi}^{e}(\xi) (\xi^{2} - \xi_{0}^{2})^{-1} \exp(-i\xi z) d\xi , \quad (23)$$

$$\delta H_{\omega\bar{\chi}}(z) = -\int F_{\omega\bar{\chi}\xi}^{m}(\xi)(\xi^{2} - \xi_{0}^{2})^{-1} \exp(i\xi z) d\xi , \quad (24)$$

где $\xi_0 = \frac{\omega}{c} \sqrt{\varepsilon^0 - \chi^2 c^2 / \omega^2}$. Подынтегральные функции имеют три простых полюса $\xi_1 = \xi_0$, $\xi_2 = -\xi_0$ и $\xi_3 = \omega/\upsilon$, лежащие на действительной оси, из которых первые два содержат ε^0 , а третий не содержит ε^0 . Эти функции кроме особых точек всюду аналитичны. Ввиду того, что подынтегральные функции имеют конечное число простых полюсов на вещественной оси, то под интегралами понимаются их главные значения [6,7]. Запаздывающие решения (23) и (24), удовлетворяющие требованию принципа причинности, можно получить аналитическим продолжением подынтегральной функции при z > 0 на верхнюю комплексную полуплоскость, а при z < 0 – на нижнюю комплексную полуплоскость, сместив особые точки с вещественной оси. Это можно сделать, если считать, что ${\cal E}^0$ содержит бесконечно малую, мнимую добавку. При этом полюс $\xi_1 \rightarrow \xi_0 + i\omega\delta/c$ сместится на верхнюю полуплоскость, полюс $\xi_2 \rightarrow -\xi_0 - i\omega\delta/c$ - на нижнюю

полуплоскость, а полюс $\xi_3 = \omega/\upsilon$, не содержащий ε^0 , не сместится, оставаясь на вещественной оси, соответствующие контуры для z>0 и для z<0 изображены на Рис.1.

Рис.1. Контуры интегрирования в комплексной плоскости.

Поле излучения, уходящее на $z = \pm \infty$, можно выделить из (23) и (24), если учесть вклад полюсов функции Грина. Поле излучения вперед определяется вычетом подынтегральных функций (23) и (24) в точке $\xi_1 = \xi_0$, а поле излучения назад – в точке $\xi_2 = -\xi_0$; изменение собственного поля из-за неоднородности диэлектрической проницаемости определяется вычетом подынтегральных функций в точке $\xi_3 = \omega/\upsilon$ [8]. При этом для поля излучения и для изменения собственного поля, соответственно, получим

$$\begin{split} \delta \vec{E}_{\omega \vec{\chi}}^{r1,2}(z) &= \mp \frac{i}{2\pi \upsilon (\varepsilon^{0})^{2}} \, \delta \varepsilon_{\xi_{1,2}} \, \frac{(\varepsilon^{0} - c^{2} / \upsilon^{2} - \chi^{2} c^{2} / \omega^{2})^{-1}}{\sqrt{\varepsilon^{0} - \chi^{2} c^{2} / \omega^{2}}} \exp(\pm i\omega z \sqrt{\varepsilon^{0} - \chi^{2} c^{2} / \omega^{2}} / c) \times \\ &\times \left\{ \vec{e}_{3} [\vec{\chi} \vec{m}]_{z} \left[-(\varepsilon^{0} - 1) \frac{\chi^{2} c^{2}}{\omega^{2}} \mp \frac{c}{\upsilon} \sqrt{\varepsilon^{0} - \chi^{2} c^{2} / \omega^{2}} (\varepsilon^{0} \gamma^{-2} + \frac{\chi^{2} \upsilon^{2}}{\omega^{2}}) \right] + \\ &+ \vec{\chi} \frac{c}{\omega} [\vec{\chi} \vec{m}]_{z} \left[\frac{\upsilon \varepsilon^{0}}{c} + (-\frac{c}{\upsilon} \pm \sqrt{\varepsilon^{0} - \chi^{2} c^{2} / \omega^{2}}) (\varepsilon^{0} \pm \frac{\upsilon}{c} \sqrt{\varepsilon^{0} - \chi^{2} c^{2} / \omega^{2}}) \right] - \\ &- (\varepsilon^{0})^{2} [\vec{\chi} \vec{m}]_{\perp} + \frac{(\varepsilon^{0})^{2} \omega \gamma^{-2}}{\upsilon} [\vec{m} \vec{e}_{3}] \right\}, \end{split}$$

$$(25)$$

$$\begin{split} \delta \vec{H}_{\omega \vec{\chi}}^{r1,2}(z) &= \mp \frac{ic}{2\pi \upsilon \omega} \delta \varepsilon_{\xi_{1,2}} \frac{(\varepsilon^0 - c^2/\upsilon^2 - \chi^2 c^2/\omega^2)^{-1}}{\sqrt{\varepsilon^0 - \chi^2 c^2/\omega^2}} \exp(\pm i\omega z \sqrt{\varepsilon^0 - \chi^2 c^2/\omega^2}/c) \times \\ &\times \left\{ \vec{e}_3 \chi^2(m_z - \frac{\omega \gamma^{-2}}{\upsilon \chi^2} \cdot \vec{m} \vec{\chi}) - \vec{\chi}(\vec{m} \vec{\chi} \pm m_z \frac{\omega}{c} \sqrt{\varepsilon^0 - \chi^2 c^2/\omega^2}) + \right. \end{split}$$
(26)
$$&+ \vec{m}_{\perp} (\chi^2 \pm \frac{\omega^2 \gamma^{-2}}{\upsilon^2} \cdot \frac{\upsilon}{c} \sqrt{\varepsilon^0 - \chi^2 c^2/\omega^2}) + \frac{1}{\varepsilon^0} [\vec{\chi} \vec{e}_3 [\![\vec{\chi} \vec{m}]\!]_z (1 \mp \frac{\upsilon}{c} \sqrt{\varepsilon^0 - \chi^2 c^2/\omega^2}) \right\},$$
$$&\delta \vec{E}_{\omega \vec{\chi}}^s(z) = \frac{z}{|z|} \frac{\Delta \varepsilon c^2 \exp(i\omega z/\upsilon)}{(2\pi)^2 \upsilon \omega^2 (\varepsilon^0)^2} (\varepsilon^0 - c^2/\upsilon^2 - \chi^2 c^2/\omega^2)^{-2} \left\{ (\vec{e}_3 \frac{\omega}{\upsilon} + \vec{\chi}) [\vec{\chi} \vec{m}]_z \times \\ &\times \frac{\upsilon}{c} (2\varepsilon^0 - c^2/\upsilon^2 - \chi^2 c^2/\omega^2) - \frac{\omega (\varepsilon^0)^2}{c} [\vec{\chi} \vec{m}] + \frac{(\varepsilon^0)^2 \omega^2 \gamma^{-2}}{\upsilon^2} [\vec{m} \vec{\beta}] \right\}, \end{aligned}$$

$$\delta \vec{H}_{\omega \vec{\chi}}^{s}(z) = \frac{z}{|z|} \frac{\Delta \varepsilon c^{2} \exp(i\omega z/\upsilon)}{(2\pi)^{2} \upsilon \omega^{2}} (\varepsilon^{0} - c^{2}/\upsilon^{2} - \chi^{2} c^{2}/\omega^{2})^{-2} \times \\ \times \left\{ \vec{e}_{3} \chi^{2} (m_{z} - \frac{\omega \gamma^{-2}}{\upsilon \chi^{2}} \vec{m} \vec{\chi}) - \vec{\chi} (m_{z} \omega/\upsilon + \vec{m} \vec{\chi}) + \vec{m}_{\perp} (\chi^{2} + \frac{\omega^{2} \gamma^{-2}}{\upsilon^{2}}) \right\}.$$
(28)

В формулах (25) – (28) знак **r** соответствует полю излучения, а знак **s** – собственному полю; индекс 1 – излучению вперед, а индекс 2 – излучению назад. В формулах (25) – (28) продольная и поперечная компоненты поля разделены, причем выражения ортвектора $\vec{e}_3 = \vec{\upsilon}/\upsilon$ соответствуют продольной части, а все остальные – поперечной части. В ультрарелятивиском случае $|\delta \varepsilon_{\xi_1}| >> |\delta \varepsilon_{\xi_2}|$, что и свидетельствует о том, что основная часть энергии приходится на долю излучения вперед.

Формулы (25) и (26), описывающие переходное излучение магнитного момента в слоисто-неоднородной немагнитной среде довольно сильно упрощаются при усреднении по всем возможным направлениям вектора $\vec{\chi}$:

$$\overline{\delta E}_{\omega\chi}^{r_{1,2}} = \mp \frac{ic \left[\vec{m}_{\perp} \vec{e}_{3} \right]}{2\pi \upsilon \omega \left(\varepsilon^{0} \right)^{5/2}} \delta \varepsilon_{\xi_{1,2}} \left(\varepsilon^{0} - c^{2} / \upsilon^{2} \right)^{-1} \left\{ \frac{\chi^{2}}{2} \left[\frac{\upsilon \varepsilon^{0}}{c} + (29) + \left(-\frac{c}{\upsilon} \pm \sqrt{\varepsilon^{0}} \right) \left(\varepsilon^{0} \pm \frac{\upsilon}{c} \sqrt{\varepsilon^{0}} \right) \right] + \frac{(\varepsilon^{0})^{2} \omega^{2} \gamma^{-2}}{c \upsilon} \right\} \exp(\pm i \omega z \sqrt{\varepsilon^{0}} / c),
\overline{\delta H}_{\omega\chi}^{r_{1,2}} = \mp \frac{c \vec{m}_{\perp}}{2\pi \upsilon \omega} \delta \varepsilon_{\xi_{1,2}} (\varepsilon^{0} - c^{2} / \upsilon^{2})^{-1} \left\{ \chi^{2} - \frac{1}{2\varepsilon^{0}} \chi^{2} (1 \mp \frac{\upsilon}{c} \sqrt{\varepsilon^{0}}) \pm \frac{\omega^{2} \gamma^{-2}}{c \upsilon} \right\} \exp(\pm i \omega z \sqrt{\varepsilon^{0}} / c).$$
(30)

Отсюда для поля излучения вдоль (против) направления движения источника $(\theta = 0, \pi; \chi = 0)$ получаем простое соотношение

$$\overline{\delta H}_{\omega\chi}^{r1,2} = \mp \sqrt{\varepsilon^0} \left[\vec{e}_3 \, \overline{\delta E}_{\omega}^{r1,2} \right] = \frac{i \vec{m}_{\perp} \omega}{2 \pi c^2} \, \delta \varepsilon_{\xi_{1,2}} \frac{1 - \upsilon^2 c^2}{1 - \varepsilon^0 \upsilon^2 / c^2} \exp(\pm i \frac{\omega \sqrt{\varepsilon^0}}{c} z) \,, \quad (31)$$

Из (31) видно, что при ультрарелятивистских скоростях поле излучения в направлении движения магнитного момента является плоской волной с волновым вектором $\vec{k}_{\mu} = (\omega \sqrt{\varepsilon^0} / c) \vec{e}_3$, чего нельзя сказать о других направлениях ($\theta \neq 0$).

Знак « ± » у вектора $\overline{\delta E}_{\omega}^{r_{1,2}}$ обусловлен тем, что при распространении волны против направления движения вектор $\overline{\delta E}_{\omega}^{r_{1,2}}$, как полярный вектор изменяет направление на обратное так, чтобы векторы $\overline{\delta E}_{\omega}^{r_{1,2}}$, $\overline{\delta H}_{\omega}^{r_{1,2}}$, $-\vec{e}_3$ составляли правовинтовую ортогональную систему.

Аналогичным образом, в ультрарелятивистском приближении, для собственного поля магнитного момента, движущегося в слоисто-неоднородной немагнитной среде, усредненного по всем возможным направлениям вектора $\vec{\chi}$ в плоскости, перпендикулярной его скорости и ориентированного вдоль ее направления, получим

$$\overline{\vec{H}}_{\omega}^{s} = \overline{\vec{H}}_{\omega}^{0} + \delta \overline{\vec{H}}_{\omega}^{s} = \frac{\vec{m}_{\perp}}{2\pi^{2}\upsilon} \frac{1 - \upsilon^{2}/c^{2}}{1 - \varepsilon^{0}\upsilon^{2}/c^{2}} \left[1 + \frac{|z|}{z} \frac{\Delta\varepsilon}{2} \frac{\upsilon^{2}}{c^{2}} \frac{1}{1 - \varepsilon^{0}\upsilon^{2}/c^{2}} \right] \exp(i\omega z/\upsilon), \quad (32)$$

$$\overline{\vec{F}}_{\omega}^{s} = \overline{\vec{F}}_{\omega}^{0} + \overline{\vec{SF}}_{\omega}^{s} = \left| \overline{\vec{U}}_{\omega}^{s} \cdot \vec{\rho} \right| \qquad (33)$$

$$\vec{E}_{\omega}^{s} = \vec{E}_{\omega}^{0} + \delta \vec{E}_{\omega}^{s} = \left[\vec{H}_{\omega}^{s}, \vec{\beta} \right].$$
(33)

Из формул (32), (33) видно, что изменение собственного поля зависит от скорости и неоднородности диэлектрической проницаемости, причем оно увеличивается в направлении движения источника (z>0), а уменьшается в обратном направлении (z<0).

Полученные результаты можно применить к земной атмосфере, морской воде и земной коре, которые, в известном приближении, являются слоистонеоднородными.

- 1. В.Л.Гинзбург, И.М.Франк, *ЖЭТФ*, **16** (1946) 15.
- 2. В.Л.Гинзбург, В.Н.Цытович, Переходное излучение и переходное рассеяние, Москва, (1984).
- 3. И.М.Абуталыбов, И.Г.Джафаров, М.Б.Асадова, «Бильги» даргиси, (Физика-математика-науки о Земле), № 1 (2000) 19., «Бильги» даргиси, (Физика-математика-науки о Земле), № 1 (2001) 4.
- 4. И.М.Абуталыбов, М.Б.Асадова, И.Г.Джафаров, Тезисы докладов II республиканской научной конференции «Актуальные проблемы физики», Баку, (2001) 11.

И.Г.ДЖАФАРОВ, И.М.АБУТАЛЫБОВ, М.Б.АСАДОВА

- 5. Э.Т.Уиттекер, Дж.Н.Ватсон, *Курс современного анализа, ч.1, Москва,* (1963).
- 6. Г.Арфкен, Математические методы в физике, Москва, (1970).
- 7. И.М.Абуталыбов, М.Б.Асадова, И.Г.Джафаров, *Физика (Ин-т Физики НАНА), в печати.*

QEYRİ-BİRCİNS TƏBƏQƏLİ MÜHİTDƏ MAQNİT MOMENTİNİN KEÇİD ŞÜALANMASI

İ.H.CƏFƏROV, İ.M.ABUTALIBOV, M.B.ƏSƏDOVA

Müstəvi təbəqəli qeyri-maqnit muhitdə maqnit dipol momentinin keçid südlanmasına baxılmışdır. Şualanma sahəsinin və məxsusi sahənin dəyişməsini təsvir edən ifadələr alınmışdır. Alınan ifadələr ultrarelyativistik maqnit momenti halında təhlil edilmişdir.

THE TRANSITIVE RADIATION OF MAGNETIC MOMENT IN FLAT-LAYERED MEDIUM

I.H.JUFAROV, I.M.ABUTALIBOV, M.B.ASADOVA

The process of the transitive radiation of magnetic difield moment in flat-layered non-magnetic medium was regarded. General expressions describing fields of radiation and alteration of its own field were got. The analyse of received formulas for ultrarelativistique magnetic moment was conducted.

Редактор: С.Мехтиева