РАСЧЕТ ИОННОГО ПРЕОБРАЗОВАТЕЛЯ КОСМИЧЕСКОЙ ПЫЛИ

К.З. НУРИЕВ

Азербайджанское Национальное Аэрокосмическое Агентство НАН Азербайджана АZ1106, г. Баку, пр. Азадлыг 106

Приводятся результаты теоретической оценки температуры ионов, образовавшихся при высокоскоростном ударе микрочастиц космического происхождения о твердую мишень. На основе результатов расчета предлагается материал мишени для получения максимальной степени ионизации исследуемых микрочастиц.

ВВЕДЕНИЕ

Одной ИЗ важных исследования микрочастиц космического задач происхождения (микрометеоритов, космической пыли) с точки зрения понимания механизма образования солнечной системы является определение их химического состава. Известно [1], что на соотношение интенсивностей линий в масс - спектре влияют такие характеристики микрометеоритов (ММ), как скорость, масса, элементный состав и плотность. Поэтому решить вопрос о методах исследования химического состава исследуемых объектов можно только тогда, когла установлены корреляционные связи между масс-спектрометрической информацией и параметрами ММ. Здесь в отличии от других масс-спектрометрических методов анализа практически исключается возможность применения эталонов. Это обусловлено, в частности, тем, что разогнать частицы микронного размеров в ускорителях до 50км/с в настоящее время не возможно. Единственным средством решения данной задачи, как нам кажется, является теоретическое установление указанной корреляции и ее экспериментальная проверка по частным, возможным в экспериментальной реализации случаям.

Следует отметить, что исследования подобного рода явились предметом ряда теоретических и экспериментальных работ. Во всех этих работах отсутствует полнота исследований. Так, например, в [2] изучение процесса столкновения ограничено образованием плазмы, а в [3] рассматривается механизм расширения плазменного облака с заранее известными электронными и ионными температурами.

В настоящей работе сделана попытка теоретического установления связи ударной скорости и температуры плазмы, образовавшейся при высокоскоростном ударе ММ о твердую мишень.

СТОЛКНОВЕНИЕ МИКРОЧАСТИЦЫ С ТВЕРДОЙ МИШЕНЬЮ

С точки зрения понимания физических процессов, происходящих при высокоскоростном ударе микрочастиц о мишень рассмотрим соударение *Fe*частицы о *W* - мишень. Этот процесс происходит в две стадии. Первая стадия фаза сжатия - начинается с момента соприкосновения частицы с мишенью. Как результат, в этой стадии по мишени и частице распространяется ударная волна сжатия, формирующаяся на границе раздела. За время $\tau = R/v$, где *R*- размер микрочастицы, v- скорость распространения ударной волны в ней, волна достигает свободной поверхности частицы. Для микронных микрометеоритов из железа $\tau_c \sim 10^{-10}$ с. В фазе сжатия происходит разрушение межатомных связей. Затем

РАСЧЕТ ИОННОГО ПРЕОБРАЗОВАТЕЛЯ КОСМИЧЕСКОЙ ПЫЛИ

наступает вторая стадия процесса. По материалу частицы начинает распространяться волна разряжения. Ее прохождение приводит к возникновению областей с низкой плотностью вещества и высокой удельной энергией. В результате происходит интенсивное испарение и ионизация материалов как ударника, так и мишени. К концу этой фазы волна разряжения достигает мишени. Отметим, что при относительно малых скоростях "энергии удара" может хватить лишь на плавление вещества мишени и его "выплескивание" из кратера.

Теоретические модели указанных процессов построены в [3,4]. Суть их состоит в численном решении гидродинамических уравнений, которые определяют распространение плотностей, скоростей и температур в рассматриваемой области. Основная проблема, с которой столкнулись авторы, состоит в том, что не существует уравнения, описывающего состояние твердого тела в широком диапазоне плотностей.

На наш взгляд при небольшом сжатии целесообразно использовать уравнение состояния

$$P = \left\{ a + b \left[\left(\frac{\rho_0}{\rho} \right)^2 \frac{\varepsilon - \varepsilon_0}{\varepsilon_1} + 1 \right]^{-1} \right\} \rho \left(\varepsilon - \varepsilon_0 \right) + A \left(\frac{\rho}{\rho_0} - 1 \right) + B \left(\frac{\rho}{\rho_0} - 1 \right), \quad (1)$$

где ρ_0 - плотность в нормальных условиях, ε_0 - внутренняя энергия на единицу массы (удельная энергия) при нормальных условиях, *a*, *b*, *A* константы, характеризующие данное вещество, ε , *B* подбираются, чтобы лучше удовлетворить эксперименту.

В случае сильного сжатия ($\rho/\rho_0 \sim 10$) нарушается индивидуальность электронных оболочек отдельных атомов, и состояние твердого тела описывается с помощью статической модели Томаса-Ферми [5]. В пределе очень больших давлений $P \sim \rho^{5/3}$

Таким образом, наряду со сложностями при решении уравнений гидродинамики, которые являются нелинейными, возникает проблема выбора уравнения состояний. Здесь же следует указать важное ограничение теории, связанное с предположением об установлении термодинамического равновесия за фронтом ударной волны. Эти предположения справедливы, если

$$\tau_p << \tau_c, \tag{2}$$

где τ_p - характерное время релаксационных процессов, определяемое ионноэлектронными столкновениями. Для слабых взаимодействий $(e^2 n^{1/3} < < k T) \tau_p \approx 10^{-13} \div 10^{-14}$ с. Отметим, что для частиц размером 0,01мкм условие (2) может нарушаться, поэтому результаты теории требует сравнения с экспериментом.

Такие данные измерений элементного состава полевых частиц кометы Галлея, полученные прибором ПУМА в проекте ВЕГА в 1986г., опубликованы в [6]. В зарегистрированных спектрах присутствовали ионы H, C, O, Na, Mg, Si, Ca, Fe элементов, входящих в состав частиц пыли, а также ионы серебра (материал мишени).

В [6] отмечается, что в массовом спектре пылевых частицах кометы Галлея было зарегистрировано много частиц с массой 10⁻¹⁶г и меньше скоростями ~80км/с. Исходя из теоретических предпосылок, удар таких частиц не должен сопровождаться образованием заметного числа ионов. Причины расхождения экспериментальных и теоретических результатов могут быть в некорректности модели. В частности, предположение об установлении локального термодинамического равновесия в процессе волны разряжения нам кажется не совсем правильным. Рассчитанная температура оказывается заниженной, что привело ошибке при расчете степени ионизации по формуле Саха. Более

корректное описание процесса в волне разряжения возможно с использованием кинетического метода.

СВЯЗЬ ВЫСОКОСКОРОСТНОГО УДАРА И ТЕМПЕРАТУРЫ ОБРАЗОВАВШИХСЯ ИОНОВ

Рассмотрим состояние вещества после воздействия ударной волны. Опорной точкой этих исследований является общая внутренняя энергия частицы и мишени, как функция скорости удара ММ о мишень. Зависимость энергии ударной волны от скорости частицы *v* показана на Рис.1. Удельная внутренняя энергия (энергия на единицу массы) для сильных ударов равна [7]

$$\Delta E_{H} = \frac{1}{2} \upsilon^{2} = \frac{1}{2} \left(\frac{\upsilon}{\sqrt{\rho_{q} / \rho_{M} + 1}} \right)^{2}$$
(3)

Как видно из (3) внутренняя энергия частицы после соударения определяется

в основном плотностями ударника и мишени. При этом общая внутренняя энергия состоит из энергии упругого столкновения атомов вещества $\Delta E_{a,}$, энергии ядра ΔE_{Ti} и энергии колебания электронов ΔE .

Рис.1.

Зависимость энергии ударной волны от скорости частицы *v*.

Из рисунка видно, что для частиц со скоростями v>10км/с энергия электронных колебаний на порядок превышает ΔE_{Ti} и ΔE_a , тогда как для частиц с v<10км/с доминирующим является ΔE_a . При таких скоростях энергии частицы хватает только на дробление ее на мелкие, а ударная волна нагревает частицы до температур не превышающих 4000К. Это способствует ионизации только примесей (частицы и мишени) с низким потенциалом ионизации. При ударной скорости $v\approx6$ км/с энергии ударника хватает, чтоб перевести его в жидкое состояние.

Вероятность испарения (с последующей ионизацией) атомов примесей, диффундирующихся через вещество ударника, находящегося в жидком состоянии, определятся

$$(x) = \sqrt{2 D(\tau) \tau}, \qquad (4)$$

где D=5·10⁶*exp*{-5000/г}см/с- коэффициент диффузии, *т*- время релаксации и может быть определено экспериментально.

Масса испаряющихся атомов железа *∆ М* за время *τ* определяется уравнением Герца-Кнудсена [8]

$$\Delta M/\tau = 4 \pi r^2 P_s \sqrt{m/2 \pi k T} , \qquad (5)$$

где P_s - давление насыщенного пара, m - масса ударника kT - энергия испарившихся атомов. Степень ионизации атомов основного состава вещества ударника определяется из соотношения

$$n_i/n_0 = (g_i/g_0) exp \left\{ e(\Phi - \varphi_i)/kT \right\}.$$
(6)

РАСЧЕТ ИОННОГО ПРЕОБРАЗОВАТЕЛЯ КОСМИЧЕСКОЙ ПЫЛИ

При больших скоростях удара микрочастицы наблюдается совсем иная картина. Область состояния вещества простирается от начального твердого состояния до конечного газового, пересекается пределами Ферми и "критический". При рассмотрении процесса столкновения и механизма ионообразования надо учесть, что происходит полная ионизация веществ системы частица - участок мишени, и тогда принцип границы раздела между твердым (жидким) состоянием и вакуумом не применим. В этом случае внутренняя энергия, образованная ударом определяется уравнением

$$\left(P \, dV + dE\right)T = dS\,\,\hat{},\tag{7}$$

показывающим, что энтропия твердой и газовой фаз одинакова и приобретаемая при столкновении твердого вещества температура достигает определенной величины, а релаксация идет вдоль пунктирной кривой (Рис.1). Этот случай относится к плотности $n \ge 10^{26}$ м⁻³, при этом остаточная ионизация определяется скоростью рекомбинации, а энтропию в случае высокой плотности можно вычислить из тепловой энергии электронов и удельной теплоемкости для зонной модели

$$S = \int_0^T C_v \, d \ln T \,. \tag{8}$$

Приравнивая его к энтропии идеального газа, получим энтропию пара твердого вещества и электронного газа

$$S = (1 - i)S_{Fe} + (S_w + S_e).$$
(9)

Уравнение газовой энтропии включает в себя тепловое возбуждение атомов и ионов и дает возможность определить степень ионизации.

Рассчитаем температуру вещества испарившегося при столкновении микрочастицы с твердой мишенью. Учитывая сложность решения транцептентных уравнений рассмотрим температуру при следующих допущениях:

- 1. фронт ударной волны сферически симметричный;
- 2. давление на фронте во время всего этапа постоянно и равно начальному;
- 3. распределение температуры и плотности облака плазмы равномерны.

При высокоскоростном ударе (несколько км/с) частицы о мишень наблюдается сверхзвуковое проникновение ее в мишень, которое можно разбить на два этапа: этап установившегося и неустановившегося движения. Первый этап характеризуется постоянством давления и скорости. На втором этапе давление и скорость затухают во времени. Следует отметить, что параметры вещества при разгрузке зависят только от P_{max} , действующего в данном объеме, т.е. от давления на фронте ударной волны. Найдем давление на фронте ударной волны на первом этапе при $R < R_0$ или $t \le \tau$, где R_0 - радиус облака установившейся плазмы в момент времени τ .

В момент соударения от места удара как в частице, так и в мишени начинает распространяться сильная ударная волна с начальными параметрами

$$P_{r_1} = \frac{\rho_{r_0} v_0^2}{\left(1 - x_r\right) \left(1 + \sqrt{\rho_{r_0} / \rho_{\mu_0}}\right)} , \qquad (10)$$

$$P_{M11} = \frac{\rho_{M_0} v_0^2}{\left(1 - x_M\right) \left(1 + \sqrt{\rho_{m_0} / \rho_{r_0}}\right)} , \qquad (11)$$

$$D_{M} = \frac{\nu_{0}}{\left(1 - x_{r}\right) \left(1 + \sqrt{\rho_{M_{0}}/\rho_{r_{0}}}\right)},$$
(12)

где ρ_{r_1} и ρ_{M_1} - начальные давления частицы и мишени, ρ_{r_0} , ρ_{M_0} плотности частицы и мишени, $x_r = \frac{\rho_{r_0}}{\rho_r}$, $x_M = \frac{\rho_{M_0}}{\rho_M}$ - степени сжатия материала частицы и мишени, v_o -

скорость частицы, D_{M} - скорость распространения фронта волны в мишени.

Найдем время окончания первого этапа τ . Это время будет определяться временем израсходования частицы. В процессе его проникновения в мишень контактная поверхность будет двигаться со скоростью

$$v_{k} = \frac{v_{0}}{1 + \sqrt{\rho_{M_{0}} / \rho_{r_{0}}}},$$
(13)

а часть ударника, не участвующая еще в образовании кратера, с прежней скоростью *v*₀. Поэтому время израсходования ударника будет то же самое, равное времени, за которое все его части отдадут свою энергию на образование кратера

$$\tau = \frac{L}{\upsilon_0 - \upsilon_k} \quad , \tag{14}$$

где L - размер частицы.

Учитывая (13) получим

$$\tau = \frac{L}{\nu_0} \Big(1 + \sqrt{\rho_{r_0} / \rho_{M_0}} \Big).$$
(15)

Давление на фронте волны в мишени в момент времени au

$$P_{M_{r_{e}}} = \frac{\rho_{M_{0}} \upsilon_{0}}{\left(1 - x_{M}\right) \times \left(1 + \sqrt{\rho_{M_{0}} / \rho_{r_{0}}}\right)^{2}}.$$
(16)

На фронте волны выполняется условие [4]

$$P_{M_r} = \rho_{\mu_0} D_r^2 (1 - x_M),$$

откуда с учетом (7) получаем

$$D_{r} = \frac{\upsilon_{0}}{(1 - x_{M})\left(1 + \sqrt{\rho_{M_{0}}/\rho_{r_{0}}}\right)} \times \left(\frac{t}{\tau}\right)^{-3/5}.$$
 (17)

Учитывая (10) получаем выражение для координаты фронта ударной волны $R=1.5R_0+2.5R_0(t/\tau)^{2/5}$

или

$$\left(\frac{t}{\tau}\right)^{2/5} = \frac{2}{5} \left(\frac{R}{R_0} - 1.5\right),$$
(18)

отсюда

$$P_{M_r} = \frac{125}{8} \times \frac{\rho_{M_0} v_0^2}{\left(1 - x_M\right) \left(1 + \sqrt{\rho_{M_0} / \rho_{r_0}}\right)} \times \left(\frac{R}{R_0} + 1.5\right)^{-3}.$$
 (19)

Температуру можно получить, используя уравнение состояния с учетом высокотемпературных поправок

$$T = \frac{\left\{ \left(\frac{3R}{\mu} - \frac{\gamma R_0}{x} \right)^2 + 2\tau \rho_0 x^{-1/3} \alpha g_{_{\Im\Pi}} \left[P - P_x \left(x \right) \right] \right\}^{-1/2} - \frac{3R}{\mu} \times \frac{\gamma \rho_0}{x}}{\delta \rho_0 x^{-1/3} \alpha g_{_{\Im\Pi}}} , \qquad (20)$$

здесь

$$\gamma = \frac{1}{6} \times \frac{Ab^2 x^{2/3} exp[b(1-x^{1/3})] - 6kx^{-2/3}}{Abx^{1/2} exp[b(1-x^{1/3})] - 2kx^{-2/3}} , \qquad (21)$$

$$P(x) = A x^{2/3} e x p \left[b (1 - x^{1/3}) \right] - k x^{-4/3} , \qquad (22)$$

$$\alpha = \alpha_0 ex p \left[B \left(x^{1/3} - 1 \right) \right] , \qquad (23)$$

$$\alpha_0 = z^{1/3} m_x / m_0 , \qquad (24)$$

$$g_{_{9\pi}} = \frac{2}{3} + \frac{1}{3} B x^{1/3} , \qquad (25)$$

$$\delta = \left(\frac{\pi}{3}\right)^{2/3} \frac{k^2 m_0 N^{1/3}}{\mu t_1^2} \left(\frac{\mu}{\rho_0}\right)^{2/3},$$
(26)

где γ - параметр Грюнайдена, P_x - потенциальная составляющая давления, $g_{3\pi}$ - электронный аналог параметра Грюнайдена, k - постоянная Больцмана, R - универсальная газовая постоянная, N_0 - число Авагадро, z - число ионов, μ - атомный вес, A, B, k, α_0 - постоянные, характеризующие материалы.

Таким образом, как видно из (20) температура плазмы, образовавшейся при скоростном ударе налетающей частицы на твердую мишень, помимо скорости микрометеорита, зависит от свойств частицы и мишени (плотности, потенциала ионизации материала, температуры испарения и т.д.).

Оценим температуру плазмы, образовавшейся при соударении железной частицы с массой 10⁻¹⁰ г ее с вольфрамовой преградой при скорости 12км/с.

Вычислив величины, входящие в (20) по формулам (21-26) получим:

$$g_{3^{*}}=3,672; x=0,765; \alpha=7,41; \delta=9\times10^{-3}\frac{27}{cK}; \gamma=0,7455; P_{x}(x)=0,6587\times10^{11}\Pi a$$

При этом использованы следующие данные, характеризующие процессы:

$$\rho_{or}=7.8 \cdot 10^3$$
 κг/м³, $\rho_{or}=10.2 \cdot 10^3$ κг/м³, A=9.4389 \cdot 10^{10} Πa,

$$K=1.074\cdot10^{11}$$
Па, $b=7.7845$, $a=17.2$, $B=9.86$, $k=1.38\cdot10^{38}$ Дж/К.

Подставив полученные значения вышеупомянутых величин в (20) получим T=8581,26К. Построив распределение ионов по энергиям для данной температуры, можно определить разброс начальных энергий ΔW для рассматриваемого случая $\Delta W = 2$ эВ.

Одним из основных требований, предъявляемых к мишени, как к источнику ионов, является высокий коэффициент ионизации, определяемый из соотношения [9]

$$\alpha = \left[\frac{16}{13} A t_0 h_{01}^2 T_0^{-20/3} T^{13/6} + \left(a_p\right)^2\right]^{-1/2}.$$
(27)

Как видно из (27), для получения максимального коэффициента ионизации необходимо увеличить начальную температуру плазменного облака (τ_0), увеличить потенциал ионизации материала мишени, уменьшить начальные размеры облака плазмы (R_0).

Для уменьшения R_0 мишень должна иметь минимальное испарение во всем диапазоне скорости ММ. Для этого она должна обладать максимальной теплотой испарения.

Увеличения T_0 можно добиться за счет повышения плотности подложки, теплоты испарения и атомного веса [см. (20)]. Таким образом, для получения большей степени ионизации необходимо, чтобы материал мишени обладал

максимальной плотностью ρ_{M_0} , максимальной теплотой испарения Q_M , максимальной энергией ионизации J_m и μ . Таким требованиям отвечают молибден, тантал, вольфрам.

- 1. В.Н.Лебединец, Пыль в верхней атмосфере и космическом пространстве. Л. Гидрометеоиздат, (1986) 246.
- 2. Н.Е.Конюхов, Научно-техн. Отчет, №61334, Куйбышевский Авиационный институт, (1987).
- 3. Ю.Г.Малама, Исследование явлений, возникающих при столкновении с различными поверхностями твердых частиц, обладающих большими скоростями. Препринт ИКИ АН СССР Пр-642, (1981).
- 4. Ю.Г.Малама, Численное моделирование явлений ионизации при высокоскоростном ударе. Препринт ИКИ АН СССР Пр 725, М., (1983).
- 5. Я.Б.Зельдович, Ю.П.Райзер, Физика ударных волн и высоко температурных гидродинамических явлений. М., Наука, (1966) 326.
- 6. Р.З.Сагдеев, Д.Ж.Киссель. Ж.Л.Беро, *Письма в астрономический журнал*, **12** № 8 (1986).
- 7. S.Dzapatz and K.W, Michel, Naturforsc, 290 (1984) 870.
- 8. В.Н.Жарков, В.А.Калинин, Уравнение состояния твердых тел при высоких давлениях. М., Наука, (1968).
- 9. J.Kissel, B.Glark, D.Clair, *Solid part. Sol Syst, Symp*, Jnt. Astronunion Ottaws, No. 90 (1970).

KOSMİK TOZUN İON ÇEVİRİSİSİNİN HESABLANMASI

K.Z. NURİYEV

İşdə yüksəksürətli kosmik mikrozərrəsiklərin bərk hədəfə zərbəsindən alınan ionların temperaturunun nəzəri hesablanmasının nətisələri verilmiş, yüksək dərəcə ionlaşma əldə etmək üçün hədəfin materialı təklif olunmuşdur.

CALCULATION OF THE ION TRANSDUCER OF SPACE DUST

K.Z. NURIYEV

Results of the theoretical estimate of the temperature of the ions formed upon high -speed strike of microparticles on the solid target were given. Materials of the target for generation a high degree of ionization were proposed.

Редактор: А.Гарибов