СВЕРХСТРУКТУРНЫЕ ТЕКСТУРИРОВАННЫЕ ПЛЕНКИ TIInS₂

Ю.Г. АСАДОВ, М.Ф. АЛИЕВА

Институт физики НАН Азербайджан AZ 1143, Баку, пр.Г.Джавида 33

Электронографическим методом исследованы условия формирования пленок $TlInS_2$ толщиной ~30нм на поверхности кристаллов NaCl. Установлены возможности получения пленок $TlInS_2$ в аморфном, поликристаллическом и текстурованном состояниях. Показано, что при температуре 453К образуется сверхструктурная фаза состава $TlInS_2$.

Впервые в [1] показано, что TIInS2, кристаллизующийся в тетрагональной решетке, является диморфным, и кристаллизуется в низкотемпературной α - и высокотемпературной β -модификациях с параметрами решеток а=0,800; с=0,672 и а=0,768; с=2,976нм соответственно, пространственная группа симметрии (ПГС) I4/mcm. Согласно [2], результаты которых не согласуются с данными [1], кристаллы TIInS₂ существуют в двух моноклинных модификациях с постоянными а=0,776; в=0,776; с=3,001нм и а=0,777; в=0,774; с=2,400нм с ПГС P2₁ (m) – β TIInS₂ и одной гегсагональной - с периодами решетки а=0,767; с=1,498 нм, ПГС Р6/mcm- α TIInS₂.

О синтезе и изучении двух модификаций TlInS₂ с центросимметричной моноклинной ячейкой с периодами a=1,095; b=1,095; c=1,514 нм, ПГС C_{2h}^{6} и орторомбической с параметрами a=0,656; B=0,381; c=1,494 нм, ПГС D^2_{6h} сообщается в устранения разноречивостей В химико-аналитических сведениях, [3]. Для представляющиещие разные толкования химической формулы TlInS₂ и для установления не только координат атомов, но и их "сортности", рентгенографическими структурными исследованиями [1-3] установлено, что TlInS₂ является тройным сульфидом, где катион таллия имеет ионный характер. Трехвалентный индий обладает ковалентным характером связи. Химическая формула соединения TIInS₂ согласно зарядам должна записываться как $Tl^+[In^{3+}X_2]$.

Настоящая работа посвящена изучению возможности существования той или иной фазы $TIInS_2$ в пленочном состоянии, характеризующейся полиморфностью и образующей различные структуры. Идентификация образцов, состоящая в тщательной проверке химического состава и содержания в них посторонних фаз, позволяющая правильно интерпретировать полученные данные и приписать результаты эксперимента однофазным образцам с известным химическим составом, производилась нами электронографическим анализом. Постоянные решетки определялись с точностью ± 0.05 Å.

Испарение элементов системы Tl-In-S с целью получения тонких пленок с плавно изменяющимся составом производилось по методике [4]. Давление остаточных газов в вакууме составляло $\sim 10^5$ Па.

Электронографический анализ образующихся пленок в системе Tl-In-S показал, что при одновременном и последовательном испарении элементов образующиеся фазы по составу и структуре соответствуют соединениям систем Tl-S [5], In-S [6]. Наблюдались структурные различия исходных и термообработанных образцов. Пленки TlInS₂ толщиной ~ 30нм, полученные при комнатной температуре и подвергшиеся термообработке в пределах 473К, в отличие от других соединений систем $A^3B^3C_2^6$, имеют специфическую особенность, характерную только для этого соединения. На плоскости конденсации наблюдаются три различные аморфные пленки TlInS₂, расположенные достаточно близко друг от друга с отличающимися S=4 π sinθ/ λ ,

СВЕРХСТРУКТУРНЫЕ ТЕКСТУРИРОВАННЫЕ ПЛЕНКИ TIInS $_2$

кристаллизующиеся в тетрагональных [1], моноклинных [2] и ромбических структурах [3]. Значения $S=4\pi \sin\theta/\lambda$, соответсвующие диффузным линиям на электронограммах, полученных от аморфных пленок, относящиеся к различным модификациям TIInS₂ приведены в Таблице 1.

Таблица 1.

Фаза	Сингония	ПГС	а, нм	B, HM	с, нм	S= $4\pi sin\theta/\lambda$ нм ⁻¹	Источник
TlInS ₂	Тетрагон.	I4/mcm	0,774		3,003	23,61;39,25;62,74	1
""	""	··	0,800		0,672		7
""	""	··	0,768		2,976		7
""	Гегсагон.	P6/mcm	0,767		1,498		2
""	Моноклин.	$P2_1/m$	0,776	0.776	3,001		2
""	""	··	0,777	0,774	2,40	20,32; 26,06;38,43	2
""	""	$C_{S}^{4}C_{2h}^{6}$	1,095	1,095	1,514		3
""	Ромбическ	D^{2}_{6h}	0,656	0,381	1,494	15,02;24,73;38,86	3

Характеристики кристаллических и аморфных фаз TlInS₂.

Сравнение микрофотометрированых диффузных линий электронограмм от аморфных пленок TlInS₂, кристаллизующихся в тетрагональных, моноклинных и ромбических модификациях, показало, что образующие их частицы имеют отличающиеся размеры, равные $4\div4,5$; $6,5\div7$; $5\div6$ нм соответственно.

Термическая обработка аморфных пленок TlInS₂ в интервале температур 323÷423K приводит к ИХ кристаллизации. Закристаллизованные пленки тетрагональной [1] И моноклинной [2] структур получаются поликристаллическими. Аморфные пленки TlInS₂ (Рис.1) ромбической фазы [3] проявляет текстурированность, также как и фаза состава Tl₄S₃ [5]. Ось текстуры (ось "с") перпендикулярна поверхности подложки.

Рис.1. Электронограмма от аморфных пленок TlInS₂.

Рис.2. Электронограмма от косой текстуры ромбической TlInS₂.

Электронограммы от текстур термообработанных образцов (453К), помимо основных рефлексов, характерных для известной ромбической решетки, содержат новые слабые сверхструктурные отражения, которые располагаются строго по слоевым линиям, образующим эллипсы. Совокупность всех рефлексов, наблюдаемых

Ю.Г. АСАДОВ, М.Ф. АЛИЕВА

на электронограмме от косой текстуры (Рис.2) удается проиндицировать при значениях параметров а $\approx 2a_0=1,305$; в $\approx 2B_0=0,758$; с $\approx 2c_0=2,981$ нм. Присутствующие отражения позволяют отнести наблюдаемую структуру к ПГС D⁴_{6h}-P₃/mmc.

термической устойчивости Проведен анализ обнаруженной сверхструктурной фазы вплоть до температуры 623К; в пределах этих температур никакие структурные изменения не замечены. Образование сверхструктурной фазы можно объяснить упорядочением образующихся структурных дефектов в решетке начальной фазы. Сверхрешетка может образоваться как их комбинацией, так и тем, что атомы серы в ромбической TlInS₂, согласно [3], слегка смещены от центров тетраэдров, образованных ионами металлов в направлении In-In. Это и при повышенных температурах образование стимулирует сверхструктуры ромбической решетки TlInS₂, имеющей производную от гексагональной подъячейки, также как и для исходной ромбической фазы упомянутой в [3].

- 1. H. Hahn, B. Weltman, Naturwissenchatten B.U., H2 (1967) 42.
- 2. T.Z. Isaacs, Z. fur-Crystallografic, 141 (1971) 104.
- 3. D. Muller, F.E.Poltman, H.Hahn, Z. Naturforsch., (1974) B.29B, H 1/2, s. 117.
- 4. Д.И.Исмаилов, Ф.И.Алиев, Р.М.Султанов, Р.Б.Шафизаде, *Неорг.материалы*, **27** (1991) 474.
- 5. Ф.И.Алиев, Д.И.Исмаилов, И.В.Иванова, Р.Б.Шафизаде, *Неорг.материалы*, **22** (1986) 574.
- 6. Ф.И.Алиев, Взаимодействие, фазообразование, структура и кинетика кристаллизации тонких пленок систем А³-В⁶, Диссертация д.ф.-м.н., Баку, (1993).
- 7. G.D.Guseinov, E.Mooser, E.M.Kerimova, R.S.Gamidov, I.V.Alekseev, M.Z.Ismailov, *Phys. Stat. Sol.*, **34** (1969) 40.

$SUPERSTRUCTURE\ TEXTURED\ TIInS_2\ FILMS$

Yu.G.ASADOV, M.F.ALIYEVA

The conditions of the formation of the $TIInS_2$ films~30nm thick on the surface of NaCl crystals have been investigated by the electron diffraction method. The possibilities of the production of the $TIInS_2$ films in amorphous, polycrystalline and textured have been established. It has been shown that the superstructure phase of the $TIInS_2$ appeared at temperature 453K.

İFRAT QURULUŞLU TEKSTURLAŞMIŞ TIInS₂ TƏBƏQƏLƏRİ

Yu.G.YSİDOV, M.F.ƏLİYEVA

NaCl üzərinə çökdürülmüş və qalınlığı 30nm olan TIInS₂ nazik təbəqələri elektronoqrafik üsül ilə tədqiq edilmişdir. TIInS₂. təbəqələrinin amorf, polikristall və teksturlaşmış hallarında alınma şəraitləri müəyyən olunmişdur. Göstərilmişdir ki, 453K-də TIInS₂- də ifrat quruluşlu faza əmələ gəlir.

Редактор: М.Алиев