ЭЛЕКТРОНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Ga_{1,3}In_{3,4}S₇

М.Г.КЯЗУМОВ, И.Р.АМИРАСЛАНОВ, Ю.Г.АСАДОВ

Институт Физики НАН Азербайджана AZ 1143, Баку, пр.Г.Джавида33

По электронограммам текстуры расшифрована ромбоэдрическая кристаллическая структура

Ga_{1,3}In_{3,4}S₇ с параметрами решетки: a=3,82Å, c=63,41Å, и пр. гр. R 3 m. Распределение плотноупакованных атомов серы (позиции A, B, C) и катионов (позиции a, e, c), которые заполняют И окаэдрические образованные ими тетраэдрические (T) (O) пустоты такое: ...AcBп(c)СвBcAaСп(c)Ac..., где п(с)-частично (на 14%) заполненные межпакетные тетраэдрические позиции. По электронограммам от монокристаллов установлены параметры сверхрешетки: $A_{1,2} = \sqrt{7a}$ и $A_3 = 2a$.

ВВЕДЕНИЕ

Известно, что в системе Ga-In-S синтезировано и выращено много соединений со структурными типами ТТОТТП, ТОТП, ТОТП, ТОТП, ТОТП, ТОТП, ТОТП, ТОТП, ТОТП, СОП, ТОТП, ГОП, ТОТП, ГОП, ТОТП, ГОП, ТОТП, Слоев, П-пустых, П и П2-частично заполненных (менее чем на 1/3 каждой позиции) полиэдрических слоев.

В структурах, где структурной единицей является один из ТОТП, ТОТТП и ТТОТТП типа пакетов, переходы пакет-пакет осуществляются по типу г г, т.е. пакеты упаковываются по типу г г. В структурах, где структурная единица состоит из двух или трех разных пакетов, такой тип (г г) упаковки нарушается, так как в структурах со структурной единицей (ТОТП+ООП) переходы пакет-пакет осуществляются по типу г к [5-6]. В литературе [7] приведена структура кристалла Ga_{0,5}In_{1,5}S₃, где структурной единице переходы между двумя ТОТП пакетами осуществляются по типу г г, а между ТОТП и ООП пакетами по типу г к.

Рис.1.

Проекции структур межпакетного пространства Ga_{1,3}In_{3,4}S₇:

а) на плоскость $11\overline{2}0$, б) и e) на плоскость 0001. В случае б) каждая из T, O и \overline{T} позиций на 1/4 заполнены, а в случае e) на 1/3 заполнены только T позиции, где а-тетраэдрические (T), b-октаэдрические (O) и с-инверсионно тетраэдрические (\overline{T}) позиции.

Структура уникальная, но допущены некоторые незначительные ошибки. T и \overline{T} позиции между двумя пакетами ТОТП заполнялись катионами на 30%, а октаэдрическая $\Pi(O)$ позиция - на 12% (Рис.1а). На самом деле, в совершенном

кристалле тетраэдрические позиции $\Pi(T)$ и $\Pi(\overline{T})$ могут заполняться максимум на 25%. Одновременные частичные заполнения всех трех T, O и \overline{T} позиций межпакетного (межслоевого) пространства между двумя ТОТП пакетами (слоями) возможно только при условии заполнения не более 1/4 части (показаны жирными буквами *a*, b, c) каждой из этих позиций (Рис.1б). В этом случае расстояния между катионами K_T и K_0 , а также K_T и $K_{\overline{T}}$, соответственно, приблизительно равнялись бы значениям:

$$\left[\left(\frac{\sqrt{3}}{3} \cdot 2a\right)^2 + \left(\frac{1}{4} \cdot \frac{c}{33}\right)^2\right]^{\frac{1}{2}} = 4,47 \text{ \AA} \quad \text{M} \quad \left[\left(\frac{\sqrt{3}}{3} \cdot 2a\right)^2 + \left(\frac{1}{2} \cdot \frac{c}{33}\right)^2\right]^{\frac{1}{2}} = 4,66 \text{ \AA}$$

где *a*=3,814Å, c=100,04Å.

При заполнении более, чем на 25% Т и \overline{T} позиций межпакетного пространства, расстояния между некоторыми катионами K_T и $K_{\overline{T}}$ равнялись бы

$$\left[\left(\frac{\sqrt{3}}{3} \cdot a\right)^2 + \left(\frac{1}{2} \cdot \frac{c}{33}\right)^2\right]^{\frac{1}{2}} = 2,67 \text{ \AA}$$

а между катионами К_Т и К₀ -

$$\left[\left(\frac{\sqrt{3}}{3} \cdot a \right)^2 + \left(\frac{1}{4} \cdot \frac{c}{33} \right)^2 \right]^{\frac{1}{2}} = 2,33 \text{ Å},$$

а это не допустимо.

На Рис.1*в* показано, что одна из позиций Т, О или \overline{T} заполнена на 1/3**а**. Как видно в этом случае другие две из этих позиций должны пустовать.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Заранее синтезированные кристаллы выращивались методом химической транспортной реакцией (ХТР). Дифракционный эксперимент проведен на высоковольтном электронографе ЭГ-400. Получены электронограммы текстурированного образца и монокристалла.

На Рис.2 представлена электронограмма текстуры Ga_{1,3}In_{3,4}S₇.

Рис.2.

Электронограмма текстуры Ga_{1,3}In_{3,4}S₇.

На первом эллипсе присутствуют $\overline{101}$,3n-1 и $10\overline{1}$,3n+1, а на втором только $11\overline{2}$,3n рефлексы. Наличие на электронограмме - h+k+1≠3n типа погасаний указывает на ромбоэдричность структуры. Определены параметры кристаллической решетки: a=3,82Å, c=63,41Å. Следовательно толщина 1/3 части решетки равна c/3= 21,14Å. Эта толщина соответствует семи плотноупакованным слоям серы. Вторым сильным рефлексом на втором эллипсе (серия $11\overline{2}$ 1) является рефлекс $11\overline{2}$ 15 (где, $\ell=15=5x3$). Принимая во внимание выводы, приведенные в [9,10], мы установили, что в ячейке только в 15 полиэдрических слоях из 21, а в каждой 1/3 части ячейки

(т.е. в структурной единице) в пяти полиэдрических слоях из семи катионы заселяют полиэдры.

В [6] расшифрована кристаллическая структура $(Ga,In)_2S_3(c,I)$ с параметрами гексагональной решетки: a=3,826Å, c=21,144Å пр. гр. Р $\overline{3}$ m1. В этой структуре (Рис.3а) элементарная ячейка состоит из двух различных ОО и ТОТ пакетов,

каждый из которых встречается в виде структурной единицы γ -фазы In₂S₃ [11] и ZnIn₂S₄ [12], CdInGa(Al)S₄ [13,14].

Тетраэдрические (Т) пустоты, находящиеся между этими (ООП и ТОТП) чередующимися пакетами частично (15%) заполнены атомами Ga. В результате этого образуется катионный дефицит в октаэдрах (О) индия. В этой структуре из семи полиэдрических слоев пять заполнены (не учитывая 15%-ное заполнение тетраэдров галлием) катионами. Значит структура нашего образца имеет такой же тип, т.е. ТОТП₁ООП₁.

Рис.3.

Проекция кристаллической структуры политипных модификаций $Ga_{1,3}In_{3,4}S_7$ на плоскость (11 $\overline{2}0$). а)1T, б) 3R.

На Рис.4а,б, в приведены точечные электронограммы, относящиеся к кристаллам одного синтеза (ХТР). В этих электронограммах на фоне редкой сетки сильных рефлексов, свойственной упаковке атомов серы (S) с базисным периодом гексагональной ячейки a=3,826Å, в закономерных сочетаниях с ней наблюдались суперпозиции сеток более слабых рефлексов.

б

а

Рис.4. Электронограммы различных монокристаллических образцов Ga_{1,3}In_{3,4}S₇.

Электронограмма, представленная на Рис.4а, выявляет гексагональные сверхрешетки в плоскости базиса с периодам $A_{1,2} = \sqrt{7} a$, вызванные заселением только 6/7 частей октаэдров индием (In) в пакете ...ООП..., и заселением галлием

(Ga) 1/7 части межпакетных (между ООП и ТОТП) тетраэдров, примыкающих своими базисами к октаэдрам и сверхрешетку с периодом $A_3=2a$, вызванную распределением 3/4 In и 1/4 вакансий в октаэдрах, входящих в пакет $TOT\Pi$. Такой тип электронограмм ранее нами наблюдался и в кристаллах (Ga, In)₂S₃ со структурным типом $TOT\Pi$ [15].

С учетом вышеуказанного распределение атомов в 1/3 части ячейки таково:S6/7In S1/7GaS(In, Ga) S(3/4) InS (In, Ga) S1/7Ga S6/7In...

На начальном этапе толщины полиэдров взяты одинаковыми (т.е. c/21) и атомы катионов были расположены в центрах полиэдров. Неплохое соответствие вычисленных и экспериментальных значений интенсивностей (I') для рефлексов $11\overline{2}1$ указывает на правильность расположения атомов вдоль оси *с*.

С учитом важных правил Н.В.Белова о плотнейшей упаковке [16], построены модели возможных трехслойных ромбоэдрических политипов:

...АсВп(*a*)АbВ*a*СсВп(b)С*a*..., ...АсВп(*a*)АbВсА*a*Вп(b)Ас... и ...АсВп(c)СвВсА*a*Сп(c)Ас.... Сравнение экспериментальных значений интенсивностей $I_{3\kappa c}$ рефлексов $I0\bar{I} \ell$ и $\bar{I}0I \ell$ с их расчетными значениями (I'_{6bl}) для выше указанных моделей показало, что в структуре плотноупакованные анионы (A, B, C) и катионы (*a*, b, c) располагаются по следующему закону: ... АсВп(c)СвВсА*a*Сп(c)Ас_кO_кП(T)_гT_кO_кT_гП(T)_кO..., где п(c) и П(T) - на 14% заполненные межпакетные тетраэдрические позиции, г и к, соответственно, гексагональная и кубическая упаковка атомов серы (S).

Вычисление интенсивностей осуществлялось по формуле [17]

$$I_{hkl} = F_{hkl}^2 \cdot P \cdot d_{hk0} \cdot d_{hkl},$$

где *I*_{hkl} -значение локальной интенсивности рефлекса, *F*_{hkl} -структурный фактор, Рфактор повторяемости, d - межплоскостное расстояние.

Для уточнения структуры использованы z координаты атомов катионов приведенных в [6]. Это немного улучшало соответствие между $I_{3\kappa c}$ и $I_{6\omega q}$. В Таблице1 приведены координаты атомов, а в Таблице2 - экспериментальные и вычисленные значения интенсивностей, а на Рис.3, б представлен план структуры $Ga_{1,3}In_{3,4}S_7$.

Атомы	Заселенность	Координаты атомов 1/6 части ячейки			
	позиции, %	x/a	y/b	z/c	
\mathbf{S}_1	100	-1/3	1/3	0,0221	
\mathbf{S}_2	100	0	0	0,0718	
\mathbf{S}_3	100	-1/3	1/3	0,1191	
\mathbf{S}_4	50	1/3	-1/3	0,1667	
In ₁	(38-50)	0	0	0	
(Ga, In)	(97-85)	-1/3	1/3	0,0597	
Ga ₂	14	0	0	0,1128	
In ₂	86	0	0	0,1345	

Таблица 1.

 S_4 заселяют на 100%, а In₁ на (75-100)% все позиции, но они находятся на границе 1/6 независимой части ячейки.

На Рис.4,б относительная интенсивность сетки сверхструктурных рефлексов A=2a гораздо слабее, чем на Рис.4,а, на Рис.4,*в* эти рефлексы совсем исчезают. Это связано с изменением количества заселенных позиций в пакете $TO\overline{T}$, т.е. интервал

М.Г.КЯЗУМОВ, И.Р.АМИРАСЛАНОВ, Ю.Г.АСАДОВ

заселенных индием позиций меняется от 75% до 100%. Идентичность электронограмм текстур указывает и на идентичность кристаллических структур этих трех образцов.

ЗАКЛЮЧЕНИЕ

Во всех ТТОТТП, ТОТТП, ТОТП, ТОТП $_1$ ООП $_1$, ТОТП $_1$ ООП $_1$ ТОТП $_2$ типах структур межпакетные М (метал) и S взаимодействия происходит параллельно оси *с* решетки, т.е. упаковка слоев осуществляется таким образом, чтобы расстояние между М и S было минимальным. При таком совпадении позиций металла и серы вдоль оси *с* совпадают центры межпакетных тетраэдров и центры, примыкающих (со своими базисами) к ним октаэдров, а это способствует частичному заполнению межпакетных тетраэдрических позиции катионами.

В данной работе в третьей модели переходы происходит по типу $\dots_{o}K_{\Pi(T)}\Gamma_{T}\dots(\dots A_{c}B_{\Pi(c)}C_{B}B\dots)$, и только в этом случае совпадают октаэдрические катионы ООП пакета с пограничными анионами ТОТП пакета. Видимо, главную роль при образовании стабильной структуры играют те катионы, которые частично (14%) заполняют межпакетные тетраэдрические позиции. В других моделях заполнение катионами межпакетных тетраэдрических позиции маловероятно, особенно в совершенных кристаллах.

Таблица 2.

Вычисленные и экспериментальные интенсивности

рефлексов $I0\overline{I} \ell$ и $\overline{I}0I \ell$.

hkl	d _{экс}	d _{выч}	І _{экс}	F _{выч}	Г ["] выч	І _{выч}	І ["] _{выч}
101	3,313	3,304	36	24,12	24,35	19053	19259
Ī02		3,280		8,84	-8,07	2541	2117
105	3,207	3,201	18	-15,04	-16,55	7177	8690
107	3,114	3,108	18	14,17	13,57	6186	5673
Ī08	3,049	3,053	8	7,84	10,26	1860	3186
1010	2,943	2,933	8	12,36	13,32	4441	5158
Ī011	2,860	2,869	8	-11,81	-13,92	3966	5510
1013	2,737	2,738	18	23,28	19,23	14708	10036
1014	2,669	2,672	72	43,11	41,65	49221	45944
1016	2,536	2,540	8	8,4	13,96	1776	4906
Ī017	2,483	2,475	8	-15,73	-14,29	6070	4947
1019	2,341	2,350	2	11,7	7,39	3189	1272
Ī020				7,06	0,06	1110	
1022	2,168	2,173	36	18,57	23,11	7428	11503
Ī023				4,58	9,58	437	1910
1025				-6,43	-4,9	828	481
1026	1,964	1,963	5	15,33	10,47	4573	2133
1028	1,873	1,869	36	25,6	24,73	12141	11330
ī029	1,825	1,824	36	26,45	28,87	12648	15069
1031	1,741	1,740	18	-17,25	-16,83	5132	4885
1032				5,08	4,30	435	321

1. Г.Г.Гусейнов, М.Г.Кязумов, А.С.Кулиев, И.Р.Амирасланов, Г.С.Мехдиев, ДАН Аз. ССР, XIV №7 (1988) 26.

- 2. И.Р.Амирасланов, Г.Г.Гусейнов, Х.С.Мамедов, А.С.Кулиев, *Кристаллография*, **33** (1988) 767.
- 3. И.Р.Амирасланов, Р.Б.Валиев, Ю.Г.Асадов, Г.Г.Гусейнов, А.А.Мусаев, *Кристаллография*, **35** (1990) 1298.
- 4. А.Г.Абдуллаев, И.Р.Амирасланов, М.Г.Кязумов, *Препринт №*66, *НПО КИ*, *Баку*, (1988) 19.
- 5. М.Г.Кязумов, Материалы I Всесоюзного симпозиума "Методы дифракции электронов в исследовании структуры Вещества". г. Звенигород, (1991) 35.
- 6. И.Р.Амирасланов, Ф.Ю.Асадов, А.А.Мусаев, Г.Г.Гусейнов, *Кристаллография*, **34** (1989) 1012.
- 7. И.Р.Амирасланов, Ф.Ю.Асадов, Б.А.Максимов, В.Н.Молчанов, А.А.Мусаев, Н.Г.Фурманова, *Кристаллография*, **35** (1990) 332.
- 8. Б.Б.Звягин, М.Г.Кязумов, Известия АН России, сер. физическая, **57** №2 (1993) 22.
- 9. М.Г. Кязумов, Кристаллография, **43** (1998) 661.
- 10. М.Г. Кязумов, РСНЭ-97, Москва-Дубна, 25-29 мая, (1997) СТР.....
- 11. R.Diehl, C.D.Carpentier and R.Nitshe, Acta crys., B. 32 (1976) 1257.
- 12. Ф.Г.Доника, С.И.Радауцан, Г.А.Киоссе, С.А.Семилетов, Т.В.Доника, И.Г.Мустя, Кристаллография, **16** (1971) 235.
- 13. М.Г.Кязумов, А.П.Жухлистов, А.М.Фоминков, Б.Б.Звягин, XIII Всесоюзная конференция по электронной микроскопии. г. Сумы, 2 (1987) 453.
- 14. A.G. Abdullayev and M.G.Kyazumov, Thin Solid Films, 190 (1990) 303.
- 15. Б.Б.Звягин, М.Г.Кязумов, Кристаллография, 35 (1990) 1290.
- 16. Н.В.Белов, Структура ионных кристаллов и металлических фаз. М.: Изд-во АН ССР, (1947) 237.
- 17.Б.К.Вайнштейн, Структурная электронография, М. Наука, (1956) 314.

Ga1,3In3,4S7-ün KRİSTAL QURULUŞUNUN ELEKTRONOQRAFİK TƏDQİQİ

M.H.KAZIMOV, İ.R.ƏMİRASLANOV, Y.Q.ƏSƏDOV

Teksturdan alınmış elektronoqramma əsasında Ga_{1,3}In_{3,4}S₇ kristalının *a*=3,82Å, c=63,41Å parametrləri və f. qr. R $\overline{3}$ m olan romboedrik quruluşu aşkar olunmuşdur. Sıx qablaşmış kükürd (S) atomlarının (A, B, Ç pozisiyasında) və onların yaratdığı tetraedrik (T) və oktaedrik (O) boşluqları dolduran kationların (*a*, b, c pozisiyasında) paylanması ... AsVp(s)SvVsAaCp(s)As... kimidir. Harada ki, p(s)-qismən (14%) dolmuş paketlərarası tetraedrik pozisiyalardır. Monokristallardan alınmış elektronoqrammalar əsasında ifrat qəfəslərin A_{1,2}= $\sqrt{7}$ *a* və A₃=2*a* parametrləri müəyyən olunmuşdur.

ELECTRON DIFFRACTION INVESTIGATION OF Ga1,3In3,4S7 CRYSTAL STRUCTURE

M.G.KYAZUMOV, I.R.AMIRASLANOV, Yu.G.ASADOV

The rombohedral crystal structure of $Ga_{1,3}In_{3,4}S_7$ with parameters of structure a=3,82Å, c=63,41Å and R $\overline{3}$ m space group has been interpretyB (decoded) by using texture's electron-diffraction patterns. The distribution of the close packed sulfur atoms (A, B, C positions) and cations (*a*, b, c positions) which occupy tetrahedral (T) and octahedral (O) empty formed by S atoms are the following... AcB Π (c)CBBCA*a*C Π (c)Ac... where Π (c)- partially (14%) occupied interpacking tetrahedral positions. Parameters of superlattice of monocrystals $A_{1,2}=\sqrt{7} a$ and $A_3=2a$ were determined by using electron-diffraction patterns.

Редактор:С.Мехтиева