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In this paper we represent a new method of calculation of the entropy and nuclear
temperature of large deformed heavy nuclei. The essence of the method used is similar to
that for the “entropy of integer numbers” given by the Hardy-Ramanujan formula. The
obtained entropy and nuclear state equations are turned into the corresponding equations
of the nuclear Fermi-gas model in the limit of corresponding nuclear excitations.

Energy levels of the ground state bands as well as excited bands in the large
deformed heavy nuclei in the rare earths and actinides demonstrate the “equidistant”
property in a large sense. To define this symmetry property in the energy bands one can

choose in general the unit energy asE, (i) —E,(iy), where E,(iy) is the energy of the
lowest level with spin quantum number i, and parity zandE, (i) is the energy of first
excited state with quantum numbers i;and 7 over the level E,(iy). For the ground state
bands in the even-even nuclei we have E;(if) =0(0") while for the excited bands of these

nuclei E, =0 and these bands are to be characterized by the conserved quantum number

K that is the projection of the nuclear angular momentum on the nuclear symmetry axis.
The energy bands of the even-odd, odd-even and odd-odd nuclei have similar
peculiarities. The excited level of a single particle (proton, or neutron) in such nuclei
forms a head of collective excitation band [1]. Introducing the ratio

o _ Eali)-Eo(if)

=— o (1)
" E, (i) —Eo(ig)
for the levels of an appropriate band, one arrives at
E,(i7)—Eo(ig) Es(ig)—Eo(ig) E4(iz)—Eq(ig) @)

E,(i7)-Eo(ig)  Ei(if)-Eolig) E(i7)-Eo(if)
for the different energy levels, starting from second over the E,(iy) level. Using

experimental data [2] for the nuclear energy levels in the corresponding bands, one finds
an important symmetry property [3,4]
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E,(i7) — Eo(ig)
E, (i) — Eo(ig)
bands of even-even rare earth and actinide elements r = 3.3, whereas for the same bands
of the even-odd, odd-even and odd-odd nuclei r= 2. Eq.(3) can be put in the form

where r =

and this quantity changes from2 to 3,3. For the ground state

R, :R;:R,:R5...#1:2:3:4... . (4)

This result means that the ratios of the sequential excited level energies accounted

from first energy level, to the unit energy is expressible as ratios of the integer numbers,

starting from unity. This symmetry property in the energy bands of the nuclei considered

may be used in order to calculate the entropy of energy states in the large deformed

heavy nuclei. Indeed, the well-known equation in the numbers theory, the Hardy-

Ramanujan formula [3] allows for calculating the number of possible representations of

any integer as combinations of its lower integers (subintegers). This is, in fact, the
“entropy of an integer”, which is expressed as

-1 2.
P(n):4\/§.nexp(7z 3 n). (5)

This asymptotic equation has well accuracy. For n>10 the error in this equation
becomes less than 10%, by increasing n. For n=4 the error is about 20%. In the region
of nuclear excitations close to the neutron binding energy the ratio of nuclear excitation

energy U, to the unit energy ¢, = E, (i) - Eg, U/g, satisfies condition U/, >10. Then
the entropy of a nuclear state of the energy U can be calculated by

exp(z |22, ©6)

Eq.(6) implies the number of ways for representation the excitation energy U as
being combinations of the energy parcels ¢,,re;,2re,3re,... , that is the entropy of
nuclear state of the energy U. Clearly, instead of using Eq.(6), its logarithm (InP) is used
in statistical thermodynamics. Nuclear entropy is then expressed as

S=InP. @)

Thus, starting with the possibility of representation of the nuclear excitation
energy as combination of the energies of microstates we can calculate the nuclear entropy
at an excitation energy U, by the use of Eqgs.(6) and (7). Introducing the level density

parameter a, =7z2/6£0 , of the nuclear collective states, which is discussed in detail in
Refs.[3,4] and s=2,/a,E one can rewrite Eq.(6) as

P @ eXp(s). ®)
T S
Then entropy of a nucleus can be expressed as
S=InP=In63/7%+s-2Ins. (9)
For not very small excitations we may neglect the constant term in Eq.(9) to find
S=InP=s-2lIns. (10)

Here we note that the expression s=2,/a,E including into the above equations
(8)-(10), is simply the excitation energy dependence of the entropy in the Fermi-gas
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model of a nucleus. However, in this model, instead of the parameter a, should be
written the single-particle level density parameter, a.

50 1

Entropy

Fig.1.

Calculation results of nuclear entropy versus
nuclear excitation energy (a, =a=20MeV *):

— Eq.(10) , - - Fermi-gas model.

In figure 1 it is illustrated entropy of a nucleus versus excitation energy. Dashed line
indicates the Fermi-gas calculation result, solid line is the calculation result given by the
equation (10). In calculations we have chosen a, =a=20MeVv . As it follows from the
figure absolute value of the entropy in our model is regularly less and changes slower
with the energy, than that of in Fermi-gas model. At the higher excitation energies the
contribution coming from logarithmic term in Eq.(10) becomes negligible. From Eq.(10)
we obtain nuclear thermodynamic temperature as

18 _ 3, 1
T oU \/:(l ,/aouJ' ()

Resolving this algebraic equation, we easily find nuclear state equation in the form

U=lar2-T+lia721-2 (12)
2 2 a,T

The parameter a, , in the deformed nuclei of interest takes large values

(a, > 20Mev ™) [3,4]. Then, instead of Eq.(12) we obtain
U=a,T?-2T. (13)
Note that the empirical equations similar with that of Eq.(11) were formerly used
in the literature[5-7]. Eq.(13) differs from nuclear Fermi-gas state equation by — 2T . This
indicates that the nuclear excitation energy changes slower than that of the Fermi-gas

model due to the temperature term. At the higher temperatures (T>1MeV) Eq.(13)
becomes

U=a,T?, (14)
like the Fermi-gas model [8,9]. Note that the parameter a in Eq.(14), that is the single
particle level density parameter, has the same or close values with the parameter a,[3,4].

In figure 2 we represent the calculation results of nuclear excitation energy versus
temperature. Solid dots, solid line and dashed line are respectively the results of the
calculations by Egs.(12), (13) and (14),being with the parameters a, and where as

a, =a=20MeV . As it is evident from the figure, the calculation results through Egs.(12)
and (13) coincide, and EqQ.(13) may be used instead of Eq.(12) for sufficiently higher
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accuracy. Slower behavior of the excitation energy against temperature, comparing with
Fermi-gas model given by Eq.(14)is also clear in figure 2.
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Fig.2. Fig.3.
Calculation results of nuclear excitation
energy versus nuclear thermodynamic The change of degree k in Eq.(15) with the
temperature (a, =a=20MeV *): ¢ Eq.(12) , factor c=a,T .
— Eq.(13), - - Eq.(14).

In some cases it is useful to express the nuclear excitation energy depending on
temperature . For this reason we write Eq.(13) as

E=aT"=a,T?-2T, (15)

and attempt to estimate physically acceptable k values. For nuclear excitations close or

higher than neutron binding energy one may take 2a,T =2c >>1, and then the coefficient

a, can be defined as a, =a;*

Eq.(15) as

. The relationship between ¢ and k can be obtained from

(k=1)Inc=In(c-2), (16)
If c—2~c, is a good approximation then k ~ 2, on the contrary 2 >k >1/2. In figure 3,

we illustrate the behaviour of k versus c. As it is obvious from the figure, the value of k
increases with the increase in production of a, and T . Identifying the quantities a and

a, and taking into account that their values in the nuclear region of interest are change

from 20 to 35 MeV ", one can conclude that same values of k may correspond to
different values of nuclear excitations in the different nuclei. This result implies that the
value of k in the Fermi-gas model, k =2, is determined not with alone the large value of
the nuclear excitation energy (or temperature) but with the value of the parameter a,.
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DEFORMASIYA OLMUS AGIR NI"J__VaLaRDa ENERJi HALLARININ ENTROPiYASI
VO NUVO TEMPERATURU

H. OHMODOV

Bu maqalada giiclii deformasiya olmug agir ngvalorin entropiyasinin vo niive temperarturunun hesablanmasi
gzgn yeni metod verilmisdir. Bu magsadlo, tam adadlor nazariyyossindoen malum olan vo “tam odadin entropiyasi
menasinl veran Hardi-Ramanujan disturu istifads edilmisdir. Niive entropiyasinin hoyacanlanma enerjisindan
asilihgr va nivanin hal tenliyi Gg¢iin alinan neticalor limit halinda niivanin Fermi-gaz modelinin vermis oldugu
uygun tonliklarls Ust-tsts disur.

DHTPOIIUS COCTOSHUM U SAJIEPHASI TEMIIEPATYPA
B JE®@OPMHUPOBAHHBIX TAXEJBIX A1PAX

I'. AXMEJOB

B sTo0#i paboTe mpemnaraeTcs HOBBIM METOJI pacdeTa dHEPreTHYSCKOW 3aBHUCUMOCTH SHTPOIHUHU U
YpaBHEHHSI COCTOSIHUA B spax ¢ Oombmmmu nedopmamusmu. C 3To#l 1empi0 B paboTe HMCTONIB3yeTcs
dbopmyna, u3BecTHas U3 TEOPHH LEIbIX YHces Kak Gopmyna Xapnu—PamanykaHa, KOTOpas MOXET OBITh
WHTEpOpETHPOBaHA Kak ‘dHTpomusa nenoro”’. HalineHHBIE BBIpaXCHUS I SHTPOIIMM U YpPaBHEHHS
COCTOSAHUA sapa SABJAOTCA OPUTHUHAJIBHBIMKU M B HNPCACJIBHOM Ciiy4dac 6OJ'H)IHX 3Hepr1/1i/'1 nepexoaiaTr B
COOTBETCTBYIOLIME YPAaBHEHUs 11 AAepHOM Moaenu depmu—rasa.
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