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Electrons in Kane type semiconductors quantum disk in presence of Rashba spin-orbital interaction
and external magnetic field parallel to axis of quantum disk are considered theoretically. A three-level
model of the kp theory is used to describe electrons in weak Rashba spin-orbit coupling regimes and
external magnetic field, taking into account the main features of the band structure in InSb-type
semiconductors: a small energy gap, a strong spin-orbit interaction. We calculated the radii, thickness,
coupling strength, and magnetic field dependence of Rashba splitting for electrons. It has been seen that the
Rashba splitting of the electrons are decreased with the increasing of radius.

INTRODUCTION

The study of semiconductor quantum dots and nanocrystals in recent years has
been of great interest from experimental and theoretical points [1]. The interest originates
from an ultimate limit of size quantization in solids in those objects. For an ideal
quantum dot the electron spectrum consists of a set of discrete levels. This makes the
semiconductor quantum dots very attractive for possible applications in micro and nano-
opto-electronics [2].

The electron spin plays an important role in the quantum dot design. Spin-
dependent effects that are naturally present in quantum dots are of great importance for
the emerging field of spintronics. Spintronics is a new branch of electronics where
electron spin is the active element for information storage and transport [3]. An example
is Rashba spin-orbit coupling [4], which has recently attracted much attention as it is the
basis of a spin-controlled field-effect transistor [5]. In [6,7] found analytic solution to the
problem of the Rashba spin-orbit coupling in semiconductor quantum dots and calculated
the energy spectrum, wave functions, and spin-flip relaxation times using perturbation
theory. The above descriptions treat the case of a simple parabolic energy band.

However, the experimental advantages of using narrow-gap semiconductors for
the reduced dimensionality systems make it necessary to account for the real band
structure of these materials. To consider the nonparabolicity of the electron dispersion in
narrow-and medium gap semiconductors take into account the coupling of the conduction
and valence bands. This is purpose of our work. We now calculate the total spin-splitting
energy in Kane type quantum disk with hard walls both without and with an applied
constant axial magnetic field. It has a contribution due the Zeeman effect and another to
the Rashba effect. We consider a three-level model-Kane model of the band structure at
k=0 (the I" point). The I'g level (s type symmetry) is separated by the energy gap Eg from

the I'g level (p type), which is in turn split off by the spin-orbit interaction A from the
I'7 level (p type). We also omit the free-electron term in the diagonal part and the Paul

spin term, as they give only small contributions to the effective mass and the spin g value
of electrons in InSh. The Rashba spin-orbit interaction for conduction band and valence
and given by respectively:

Hr =Re(ikI) H, =R @K-T) H=R,(@[kT), )
where k is the momentum operator, R, Ry, Ra is the coupling strength for conduction
band, valence band, spin-orbit-splitting band respectively, J={Jy, Jy, J.} are the angular
momentum matrices for j=1/2 and j=3/2 [8], n is the unit vector in the growth direction.
The Kane Hamiltonian is represented in the Bloch basis [9].
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Here P is the Kane parameter, Ey - the band gap energy, A- the value of spin-
orbital splitting and ky =k, * iky,lz = —iV . The zero of energy is chosen at bottom of

the conduction band.
The Rashba Hamiltonian have the following nonzero elements:

V3

H12:—i-%-Rc-k, H34=—i-7-R\,-k_, Hys =—i-Ry -k_, (6)
Hse?"g'Rv"& H78:_i%.RA'k—’ Hy=H; . ()

For Kane model putting Rc=2R, R,=R, R4=2R. The effective mass m, at the band
edge defined as [10]:

K2 P2 2A+3Ey ®
2m, 3By A+Eg
We are diagonalize the Kane Hamiltonian with the help of unitary transformation
HY =uH oU , where U is the matrix of the transformation. For electron states
i 2
P2 b e 0
3 E+Ey E+Eg+A
Ho = SN C)
P2 2 1 2
0 —E—( + )k
3 E+Ey E+E5+A
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After unitary transformation the Rashba Hamiltonian with providing the terms
linear with k will be as follows for the conduction band.

L[ 0 —iRk 0
R7liRk, 0 | (10)

The spin splitting for electron states it increases linearly with in plane wave vector
k, whereas the spin-splitting of heavy hole states can be of third order in k. These results
are in agreement with [11].
Following the perturbation approach we present the Hamiltonian H as:
H = HO +H R - (11)
Where the Hamiltonian Hy describes the electron states in zero Rashba spin-orbital
interaction, and the Hamiltonian describes the effect of a weak Rashba spin-orbital
interaction Hg.
In cylindrical coordinates the eigen function for unperturbed Hamiltonian Hp is
Cq | |expil(j-1/2)p +k;z]-Jj1/2(kp)
Co| | expil(j+1/2)p+k;z]-Jjis2(ke |
where ¢ is azimuthal angle, p is the distance from disk axis, J (p) the Bessel function

of the I-th order. We expand eigenfunction for perturbed Hamiltonian H in the basis of
the two lowest spin-resolved eigenstates of the Hamiltonian Hy. Accordingly,

(12)

lP=d:|_-l/:|_'C:|_+dZ-V2C2. (13)
Substituting this result in Eq (11), and using to the standard recurrence relations
d jx1/2
PVl J 172 (kx) = kJ j1/2 (kx) (14)

we get the coefficients d; , satisfy the eigenvalue equation:

- E —iRk_}(dlj
. =0, (15)

_IRk+ c—E d2
where ¢ is the solution of equations:
Be+Eg)(e+A+ Eg)—%(33+2A+3Eg)P2(k2 +q2)=0, (16)

where Kk, g are wave vector perpendicular and parallel to the quantum disk axis. Equating
the determinant of matrix (15) to zero, one obtains for the spectrum of electrons

E=c+iRk. a7)
Using equations (16) and (17) found the equation for value of k
) 3 SE(E+E,)E+E+A)
k= +kR 5 (= +E(E+E,)+(2E+E )(E+E+A))+
(2A+3E +3E)) (2A+3E +3E,) 18)
) _3E(E+Eg)(E+E+A) _
(2A+3E+3EQ)P2

The boundary conditions requiring the equality of radial function to zero on
quantum disk boundary have the following form:

dqd j_1yp(kga)+dyJd 4,5 (kya) =10 (19)

d1J jy1s2(kyga) +dzJd jr1/2(kga) =20, (20)
where kj , are the solutions of the quadratic equation (18).
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The spectrum of the electrons in quantum disk is defined from the equality to zero of a
determinant of the system (19)-(20):

J j-1/2 (kla)‘] j+1/2 (kza) -J j-1/2 (kza)J j+LI2 (kla) =0. (21)
The energy is complicated of the disk parameters and the electron angular
momentum. The energy system consist of discrete levels enumerated by a set of numbers
{n,j}, where n donotes to the nth solution of (21) with fixed j.We have solved this
dispersion relations for a JnSb disk for several radii p , several thickness d, and several R
using the band structure parameters:my=0.014my, E4=0.24eV, R=4.10%*eV.cm
[12,13].The evolution of the first few energy levels with the parameter y =R/P is

shown in Fig.1.The energy scale is in init. of Eg, Eg is band gap energy and the curves
are labelled by quantum number (n, j).
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Fig.1

Rashba splittings:
energy as a function ofy = R/P for the states (1/2,0)(a), (3/2,0)(b), (1/2,1)(c), (5/2,0)(d),

(3/2,1)(e), (1/2,2)(F), (7/2,0)(1), (5/2,1)(m), (3/2,2)(n), (1/2,3)(K)

In Fig.2.show Rashba splitting (Energy differences E(1/2,1)-E(3/2,0)) as a
function of p for thickness of quantum disk d=20A. It has been seen that the Rashba
AE/Eg splitting are decreased with the

0. 0000S0EE increasing of radius.
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o of p for thickness of quantum disk
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The thickness dependence of Rashba splitting calculated for JnSb quantum disk is shown
in Fig.3.for p =200A. It has been seen that the Rashba splitting are decreased with the

increasing of thickness.
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APPLIED MAGNETIC FIELD

For a uniform magnetic field, H directed along the z axis, the vector potential may
be chosen in the form

A':(—HL,HX ’Oj (22)
2 2
k, have the forms
ki _>ki il%ﬂH ri, (23)
where ry =x=xiy, 4, :;—H (24)
- c

We want to transform Hamiltonian (5) into an effective equation for electron states
that depends only on the conduction band spinor components of the eight-component
envelope function. By eliminating the valence band components from the (5) for we
obtain:

2 2

P 2 1 19 2 P 1 1

CE+—( " Y a4 Ayt H - )C2=0,  (25)
3 E+Eg E+Eg+A 4 3 E+Eg E+Eg+A

where L, z component of angular momentum operator L and p?=x?+y? . The Rashba

spin-orbit Hamiltonian for conduction band
Hg = R(iloK ), (26)

where o are Pauli spin-matrices.
Taking into account the Rashba spin-orbit terms EQ.(25) can be written in the

matrix form:
Hi1—-E —iRk_ C
u | =0, (27)
IRk+ H22—E C2
where
P? 2 1 1 P’A,, 1 1
H, = + V2 + AL += 2 p° : 28
=y L i e o U
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P 1 1
wz—g(E e Eg A>e +2Ly + M) 3 - B ) (29)

We consider a disk with the radius p and the thickness d in the cylindrical
coordinates(p, @, z).In cylindrical coordinates k. have the form:

K. = —iexp( iigo)-(iir 0 3 ° j (30)

|
op pop 2q°?

where « is the magnetic length.
The origin of the system lies at the centre of the disk and z-axis being

chosen along the rotation axis. Since the system is cylindrically symmetric, the wave

function can be represented as:

Im]

c exp(ime + ik, z)exp(——j x 2Y(x)

1)_ 2 1)

C, [m+Y
exp(im¢+ikzz)exp(—§)x 2 7(x)

Substituting these functions into EqQ.(27), we obtain second-order differential
equations for the radial functions:

2
TV 4 xefm |)dY(X) 1(1 s +m—ha? —a?k 2} (0 +
dx
L 200 11 - (32
i 2
+\/§X ( ™ X(1+|m+]j+m)Z(x)j
2
ddigx)+(—x+l |m+]j)dz—ix)—i(2 |m+]j+m+ha aktz)Z(x)
e -
—anX 2 (dY(X) Eéq[ﬂ m— 2x)Y(x)j
In Eq.(33) the following notations are used:
A ( 1 B 1 )
"CE+E; E+Eg+A
h= , (34)
o
E+ Eg E+ Eg +A
3E
i (E+Eg E+Eq+A (35)
w7 4 3R . p? 36)
eH ’ PZ( 2 1 )’ 2a2 .
E+Eg E+Eg +A
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We have introduced parameters a; and a, which is related to the equations
following form:

2
di(x) (Cx+ 1+\m\)d ()— aY (X) =0, (37)
d Z(x) dZ(X)

+(—x+1+|m+1)) -a,Z(x)=0. (38)

dx?

Equations are the canonical form of Kummer’s equations for the confluent

hypergeometric function [14]. Taking into account EQs.(37)-(38), EQgs.(32)-(33) can be
written as:

(a —%(1+|m|+ m—ha? —ak 2 V(9 +

1+\m+]J Im| : (39)

af (dZ( ), j
— 1+m+1+m)Z(x
=X e+ miz(9
1 2 2, 2
(a, —E(2+|m +1+m+ha® —a‘k )Z(x)—
1+|m|—|m+1| ~ ) . (40)
af 5, (dY (x j
- —X mi —m-—2X x)|=0
e (204 22 (m Y ()
The solutions of (39), (40) that is bounded is Y(X)=d1 M(az,b1,x) and Z(x)=d,
M(az,bz,X)
Where
m +|m|
a; = 5 —30,b1=|m|+1, (41)
m+1+|m+1
ay =~ 1 g by =[m 41 (42)
go=%-(2-72+2-5—1i\/1—4-s+4-52+7/2+2-(2-g+1)j, (43)
az-ktz:2-5+1;a2-ﬂ2:2-7/2;h-a2=—2-s. (44)
The wave function can be written:
m+1+m+
R ()=0;-d - M( rd—1—80+,b1,><)+02-d2+-M(—n—l—ﬁ»,bzm), (43)
m+1+/m
R (X) =0;-dy_-M ﬂ—l—g(y,bl,xhcz-dz_-M(ﬁ—l—g&,bz,x)- (46)

In a nanocrystal W|th an infinite potential barrier the wave function must vanish at
the the quantum disk surface gives the dispersion equation for the electron quantum size
levels:

d d m+|m m+1+{m+

I 22 M | |—80+,b1,x)-M(J—l—eo_,bz,x)—
m+|m| m+1+|m+ﬂ

M ( gy by, X)) M(—— T 1 gy by, X) =0

2

This equatlon provides all the information about the energy spectrum of electrons.

The energy is complicated function of the disk parameters p, d and the electron angular
momentum m. The energy system consist of discrete levels enumerated by a set of
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numbers {n,m}, where n donotes to the n-th solution of (47) with fixed m. Equation (47)
can be useful for analysing the influence of nonparabolicity on the energy spectrum of
electrons in a quantum disk.

CONCLUSION

Analytic solutions of the Kane equations have been presented for a quantum disk
in the presence of Rashba spin-orbit interaction and external magnetic field. The
nonparabolicity of the spectrum of light holes, electrons and spin-orbit splitting valence
band were taken into account. The spin splitting for electron states it increases linearly
with in plane wave vector k, whereas the spin-splitting of heavy hole states can be of
third order in k..
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KEYN TIiPLI NANODISKDO RASBA PARCALANMASI
F.M.HOSIMZADS, A M.BABAYEV

Keyn spektrine malik yarimkegirici nanodiskda elektronlarin enerji spektrlori Ragba spin-
orbital qarsiligh tosiri nozoro alinmaqla hesablanmusdir. Rasba parcalanmasmin nanodiskin
radiusundan ve qalimligindan asililigi dyrenilmisdir. Gostarilmisdir ki, nanodiskin radiusu va qalinligi
artdiqca par¢alanmanin qiymati azalir.

CHIMH-OPBUTAJIBHOE PACIIEIVIEHUE PAIIIBBI B
KEMHOBCKOM KBAHTOBOM JUCKE

O MI'AIINM3AJIE, AM.BABAEB

Haiinensl sHepreTMYecKuil CHEKTpP HOCHUTEJNEH 3apsaa B KBAaHTOBOM JIMCKE C YYETOM CHHH-
opOutanpHOTO B3ammozaeicTBuss Pam6wl. Haidinensr 3aBucuMocTH pacmiersieHus Pambsr oT pammyca u
TOJIIIUHBI KBAHTOBOTrO nucka. [lokasaHo, 9YTO mpy BO3pacTaHWM paauyca W TOJIIHWHBI JUCKA PACILEIUICHUE
YMEHbIIACTCH.

Penakrop: 3.'yceitnoB
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