РЕЛАКСОРНЫЕ СВОЙСТВА И МЕХАНИЗМ ПРОВОДИМОСТИ γ-ОБЛУЧЕННЫХ КРИСТАЛЛОВ TIInS₂

Р.М.САРДАРЛЫ, О.А.САМЕДОВ, И.Ш.САДЫХОВ, Ф.Т.САЛМАНОВ, А.М.АЛЕСКЕРОВ

Институт Радиационных Проблем НАН Азербайджана AZ 1143, Баку, пр. Г.Джавида 31a

На основе проведенных исследований в кристалле $TIInS_2$ определена плотность состояний уровней, вызванных радиационными дефектами, определен радиус локализации дефектного центра и длина прыжка. Показано, что путем воздействия γ -облучения можно изменить диэлектрические свойства сегнетоэлектриков и получить устойчивое релаксорное состояние. Перенос заряда в области существования устойчивого релаксорного состояния осуществляется путем туннелирования из электронных уровней в запрещенной зоне (полученные вследствие радиационного воздействия) через потенциальные барьеры, вызванные несоразмерной сверхструктурой кристалла $TIInS_2$.

В последние годы интенсивно исследуются сегнетоэлектрики с размытыми фазовыми переходами, называемые релаксорами. Интерес к этому классу сегнетоэлектриков обусловлен перспективой их использования в качестве системы для накопления информации. Кроме того, поскольку легирующая примесь образует полярные наноразмерные домены, релаксоры являются модельными объектами для использования в интенсивно развивающейся области нанотехнологии.

TlInS₂ является Соединение кристаллом, обнаружены В котором неустойчивости кристаллических температурные решеток, приводящие к сегнетоэлектрическому упорядочению. В настоящее время однозначно установлено, что ЭТИ соединения стехиометрического состава являются несобственными сегнетоэлектриками с несоразмерной фазой.

Наши предыдущие исследования [1-4] показали, что легирование кристалла TlInS₂ некоторыми примесями приводит к сильной релаксации диэлектрической восприимчивости в области несоразмерной фазы. Было установлено, что причиной релаксации является возникновение наноразмерных полярных доменов. приводящих к тому, что упорядоченной фазе предшествует состояние дипольного или сегнетоэлектрического стекла. Легирующие атомы, приводящие возникновению релаксорного состояния, в свою очередь, образуют уровни прилипания в запрещенной зоне полупроводникового сегнетоэлектрика TlInS₂. Носители уровни, оказываются пространственно заряда, заселяя ЭТИ ограниченными, И, как следствие, проводимость В этом случае будет осуществляться посредством туннелирования через потенциальные барьеры. Это и наблюдалось нами при исследовании процесса переноса заряда в кристаллах TlInS₂, легированных Fe, Mn, и Cr, то есть была установлена безактивационная, температурно-независимая прыжковая проводимость в этих кристаллах в области несоразмерной фазы.

Влияние электронного и γ -облучения на температурную зависимость диэлектрической проницаемости $\varepsilon(T)$ и электропроводность $\sigma(T)$ кристаллов TlInS₂ исследовалась в работах [5, 6]. Было показано, что электронное облучение дозами до 10^{16} эл/см² приводит к небольшому росту T_C, дальнейшее облучение до дозы 10^{17} эл/см² смещает T_C вниз по температурной шкале на 30К. γ -облучение TlInS₂ дозой 10^8 рентген не обнаружило сколь либо существенного влияния на зависимости $\varepsilon(T)$ и $\sigma(T)$.

Целью настоящего сообщения является установление возможности получения релаксорного состояния в кристалле $TIInS_2$ путем γ -облучения и изучение механизма проводимости в области существования устойчивого релаксорного состояния. В работе приводятся результаты исследования влияния γ -облучения на электропроводность и диэлектрические свойства кристаллов $TIInS_2$ в температурной области 150÷250K.

Монокристаллы $TIInS_2$ были выращены модифицированным методом Бриджмена-Стогбаргера. Измерения проводились на гранях, вырезанных перпендикулярно плоскостям спаянности. Измерения $\sigma(T)$ и $\epsilon(T)$ проводились с помощью моста переменного тока Е7-12 на частоте 1МГц с использованием термопары медь-константан при шаге 0,1К/мин. Образцы представляли собой параллелепипеды размерами 5х2х2мм.

Облучение образцов проводилось при комнатной температуре на γ установке Co⁶⁰. Доза облучения накапливалась путем последовательных экспозиций в одном и том же образце и составляла 100, 200, 400Мрад. Измерения $\varepsilon(T)$ и $\sigma(T)$ проводились после каждого облучения.

На Рис.1 приведены зависимости $\varepsilon(T)$ кристалла TIInS₂ для необлученных (кривая 1) и облученных (кривые 2-4) образцов дозами 100, 200, 400Мрад.

Рис.1.

Температурная зависимость диэлектрической проницаемости ε(T) кристалла TlInS₂: без облучения, кривая 1 _ кривые 2, 3, 4 – облученные 100, 200, 400Мрад, дозами соответственно.

Во вставке к рисунку при-ведена зависимость $\varepsilon^{-1/2}(T)$ для кривой 4.

Как видно из Рис.1, дозы облучения до 200Мрад слабо влияют на зависимость ε(T), приводя лишь к уменьшению величины максимумов исследованной зависимости. Такая доза у-облучения, для этих кристаллов, является, по всей видимости, лишь легкой ионизирующей радиацией и играет роль активирующего фактора для таких процессов как миграция точечных дефектов, примесей, доменных границ и метастабильных состояний в стабильные, то есть наблюдается радиационностимулированное старение образцов, не приводящее к изменениям температуры фазовых переходов и энергетического спектра кристалла. При достижении 400 Мрад наблюдается радикальное экспозиционной дозы В изменение зависимости є(Т). Обнаруживается сильное размытие кривой є(Т) в температурной области T_C-T_i и уширение ее в область высоких температур (кривая 4). Как известно [7, 8], размытый характер зависимости є(Т) является необходимым условием существования релаксорного состояния. Достаточным же условием является то, что диэлектрическая проницаемость меняется не по закону Кюри-

РЕЛАКСОРНЫЕ СВОЙСТВА И МЕХАНИЗМ ПРОВОДИМОСТИ γ -ОБЛУЧЕННЫХ КРИСТАЛЛОВ TIInS₂

Вейса $\varepsilon = C/(T - T_0)$, а по закону $\varepsilon = A + B(T - T_0)^{-2}$. Эту зависимость демонстрирует вставка к Рис.1. Как видно из рисунка, зависимость $\varepsilon^{-1/2}(T)$ пересекает температурную ось при $T_f=156$ К (температура Фогеля-Фулчера). Эта характеристическая для релаксорного сегнетоэлектрика температура указывает температуру, при которой происходит замораживание полярных диполей и кристалл из состояния сегнетоэлектрического (или дипольного) стекла переходит в упорядоченное сегнетоэлектрическое состояние. Эта температура характеризуется также тем, что при ней происходит температурное заполнение ловушечных центров и локализованные заряженные примеси оказываются нейтральными.

Как известно [7], основной причиной, приводящей к размытию фазового перехода, является наличие неупорядоченного распределения зарядов в кристалле. Тот факт, что при облучении дозой в 400Мрад мы получаем релаксорный сегнетоэлектрик или сегнетоэлектрическое стекло указывает на то, что при облучении в объеме кристалла возникают зарядовые центры. На данном этапе исследований можно сделать только предположение о природе этих центров. Это могут быть радиационные дефекты, образуемые за счет энергии электронных возбуждений, создаваемых радиацией. Спектр этих электронных возбуждений довольно широк, однако на наш взгляд, наиболее вероятным механизмом образования радиационных дефектов является механизм многократной ионизации одного из атомов анионной подрешетки (механизм Варли [8]). Суть предложенного механизма состоит в том, что при двух- или более кратной ионизации анионный атом оказывается заряженным положительно и его нормальное положение в узле, окруженном катионами, оказывается неустойчивым. В результате электростатического взаимодействия с положительно заряженными катионами такой положительно заряженный анион выталкивается в междоузлье, где в последствии и нейтрализуется. Безусловно, рожденный дефект вносит свои энергетические уровни в запрещенную зону кристалла. Термозаполнение этих уровней и будет нижнюю температурную границу существования определять сегнетоэлектрического стекла [9-10].

Известно, что наличие примеси в полупроводнике приводит к возникновению локализованных состояний с энергиями вблизи уровня Ферми [11-13]. По этим локализованным состояниям осуществляется прыжковый механизм переноса заряда, который оказывает существенное влияние, как на электрические, так и на диэлектрические свойства полупроводникового сегнетоэлектрика. Следует отметить, что даже в специально не легированных кристаллах TIInS₂, TIGaSe₂ и TIGaS₂, согласно [14-17], имеет место прыжковая проводимость.

Рассмотрим температурную зависимость ас-проводимости кристалла TlInS₂ в температурной области существования несоразмерной фазы. Измерения выполнены в интервале частот 10³÷10⁶Гц. На Рис.2(а) приведена температурная зависимостьэлектропроводности $\sigma(T)$ исходного кристалла TeInS₂ и облученного дозой 400Мрад (Рис.2b). На Рис.2b можно выделить три температурные области, характеризующиеся различными механизмами переноса зарядов. Высокотемпературная ветвь приведенной зависимости до температуры Т_d=250К, соответствующей температуре перехода соединения в релаксорное состояние (температура Бернса), имеет экспоненциальный характер с наклоном 0,32эВ и термовозбуждению разрешенную зону. соответствует носителей в В температурном интервале Т_d-Т_f проводимость характеризуется монотонно убывающей энергией активации. Измерения частотной зависимости электропроводности при температуре 200К в области частот 10³-10⁶Гц показали, что эта зависимость близка к зависимости $f^{0,8}$. Эти данные свидетельствует о том,

57

что перенос заряда в этой температурной области осуществляется с помощью прыжковой проводимости с переменной длиной прыжка по состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми [12, 13].

Рис.2.

Температурная зависимость электропроводности σ(T) кристалла TlInS₂: а - для исходного кристалла; b - облученного дозой 400 Мрад.

С другой стороны, именно в этой температурной области соединение $TlInS_2$ находится в состоянии дипольного стекла, что связано с процессом локализации неоднородной поляризации на нанодоменах, как результат локализации зарядов на дефектах. Таким образом, возникает уникальная возможность управлять динамикой решеточной подсистемы, находящейся в несоразмерной фазе, посредством воздействия на энергетический спектр электронной подсистемы дефектов.

Проводимость, частотная зависимость которой при f<<v_{фон} имеет вид $\sigma \sim f^{0.8}$, согласно [12-13], должна описываться следующим выражением:

$$\sigma(f) = \frac{\pi^3 e^2 KT [N(E_F)]^2}{96} \alpha^{-5} f \left[\ln \left(\frac{v_{\phi_{OH}}}{f} \right) \right]^4, \tag{1}$$

где е – заряд электрона, k – постоянная Больцмана, N_f – плотность локализованных состояний вблизи уровня Ферми, а=1/ α – радиус локализации, α – постоянная спада волновой функции локализованного носителя заряда Ψ =e^{- $\alpha\kappa$}, v_{фон} – частота фонона.

При помощи выражения (1) вычислена плотность состояния на уровне Ферми по экспериментально измеренным значениям проводимости в температурной области, в которой соединение TIInS₂ находится в состоянии дипольного стекла. При T=200K $v_{\phi o \mu}$ =10¹² Гц, f=10⁶ Гц, получаем:

$$N_F^2 = 2.4 \cdot 10^{47} \sigma_{ac}(f) \alpha^{-5}.$$
 (2)

Если предположить, что концентрация радиационных дефектов в TlInS₂ порядка 10^{18} см⁻³, то характерные размеры локализованных нанообластей будут а~10 nm. Если считать эти размеры радиусом локализации ($\sigma_{ac}(f) - B \text{ Om}^{-1} \cdot \text{сM}^{-1}$), то плотность локализованных вблизи уровня Ферми состояний примет значение N_F= 10^{19} эB⁻¹см⁻³. В случае термически активированных перескоков носителей между локализованными состояниями среднее время прыжка с участием фонона определяется следующим выражением [12, 13]:

$$\tau^{-1} = v_{\phi o \mu} \exp(-2\alpha R), \qquad (3)$$

здесь R – средняя длина прыжка из одного локализованного состояния в другое.

Из экспериментальной зависимости $\sigma_{ac}(f)$ для τ^{-1} можно найти среднюю частоту, при которой выполняется зависимость $f^{0,8}$, что, соответствует среднему времени прыжка $\tau = 2 \ \mu s$.

Средняя длина прыжка вычислялась по формуле:

$$R = \left(\frac{1}{2}\alpha\right) \ln \left(\frac{v_{\phi_{0H}}}{f}\right),\tag{4}$$

Поскольку частоты фононов имеют порядок $v_{\phi o \mu} = 10^{12} \Gamma \mu$, то в нашей измеряемой области частот длина перескоков будет колебаться в области 70÷105нм, что примерно в 7-10 раз превышает среднее расстояние между центрами локализации носителей заряда.

В работах [14-17] измерена ас- и dc-проводимость в специально нелегированных кристаллах TlInS₂ и его слоистых структурных аналогах TlGaS₂ и TlGaSe₂. Следует отметить, что во всех этих кристаллах наблюдается прыжковая проводимость с переменной длиной прыжка по локализованным состояниям вблизи уровня Ферми. Для измерений поперек слоев эта проводимость была превалирующей над проводимостью по разрешенной зоне вплоть до T=200K. Аналогичные результаты были также получены для слоистых кристаллов GaS и GaSe [18]. В этой работе делается предположение что, прыжковая проводимость связана с анионными вакансиями. Природа неконтролируемых дефектов в TlInS₂, которые и приводят к прыжковой проводимости, при сравнительно высоких температурах может быть различной. Причиной этого могут быть как анионные, так и катионные [2] вакансии, разупорядочение в стыковке слоев и другие дефекты. Однако, как было отмечено в [3], эти дефекты не приводят к релаксации диэлектрической проницаемости, а, следовательно, и к состоянию дипольного или сегнетоэлектрического стекла.

Температурная область, лежащая между T_f и T_d характеризуется участком, в котором наблюдается слабая температурная зависимость проводимости (210÷240K) Рис.2(b). Следует отметить, что такой характер проводимости при низких температурах (T<170K) характерен для кристаллов этого класса [14-17]. Он свидетельствует о наличии безактивационной прыжковой проводимости, при которой прыжки носителей заряда по локализованной зоне происходят с испусканием фонона [13]. Для у-облученного соединения TlInS₂ такой характер проводимости наблюдается ниже 170К, то есть В упорядоченной сегнетоэлектрической фазе. Механизм же ослабления температурной зависимости проводимости в температурной области T_f-T_d, на наш взгляд, vчастка принципиально иной. Как известно, эта температурная область характеризуется нарушением трансляционно-инвариантной периодичности кристаллической решетки TlInS₂ и возникновением сверхструктуры не кратной исходной трансляции решетки. В этом случае происходит расщепление параболических зон в мини зоны, разделенные малыми запрещенными энергетическими зонами и имеющими зону Бриллюэна, определяемую периодом сверхрешетки. В работах [19, 20] теоретически рассмотрено прохождение тока в структурах со сверхрешетками, где было показано, что протекание тока определяется резонансным туннелированием через разделяющие ямы потенциальные барьеры. При этом надо учесть, что дефекты, образованные радиационным воздействием имеют радиус локализации 10нм, т.е. могут пространственно квантоваться и образовывать структуры с пространственным ограничением носителей заряда во всех трех измерениях (квантовые точки). Согласно [21], нижний предел для размера квантовой точки определяется из условия, при котором хотя бы один электронный уровень существует в квантовой точке. Этот размер не должен быть меньше 4 нм. По

Р.М.САРДАРЛЫ, О.А.САМЕДОВ, И.Ш.САДЫХОВ, Ф.Т.САЛМАНОВ, А.М.АЛЕСКЕРОВ

нашему мнению, при измерениях $\sigma(T)$ в области несоразмерной фазы возникают условия, при которых энергетические уровни квантовой точки оказываются в потенциальных ямах, вызванных сверхрешеткой кристалла TlInS₂. Резонансное туннелирование осуществляется из электронных уровней квантовой точки через потенциальные барьеры, что и приводит к наблюдаемому ослаблению температурной зависимости проводимости в области существования релаксорного состояния.

На Рис.3(а) приводится модель структуры формирования несоразмерной фазы в кристалле TIInS₂. Несоразмерную фазу (incommensurate) можно представить последовательно чередующимися себе как структуру полностью с разупорядоченными (discommensurate) упорядоченными И (commensurate) областями. На Рис.3(в) приводятся три возможных варианта возникновения пирамидальных островков при наведении радиационных дефектов или введении примесных атомов.

Рис.3.

а - модель структуры формирования несоразмерной фазы в кристалле TlInS₂,
b- три возможных варианта возникновения пирамидальных островков при наведении радиационных дефектов или введении примесных атомов.

Таким образом, проведенные комплексные исследования $\varepsilon(T)$ и $\sigma(T)$ в γ облученных кристаллах TlInS₂ позволили установить связь между динамикой поведения релаксоров, в которых релаксорное состояние возникает вследствие закрепления неоднородной поляризации в нанообластях в результате локализации зарядов на дефектах с электрической проводимостью, которая имеет прыжковый характер и обусловлен термоактивационными процессами с дефектных уровней.

РЕЛАКСОРНЫЕ СВОЙСТВА И МЕХАНИЗМ ПРОВОДИМОСТИ γ -ОБЛУЧЕННЫХ КРИСТАЛЛОВ TIInS₂

На основе проведенных исследований определена плотность состояний дефектных уровней в облученном кристалле $TllnS_2$, определен радиус локализации и длина прыжка. Показано, что путем воздействия на электронную подсистему можно изменить диэлектрические свойства релаксоров. Предполагается, что перенос заряда в области существования устойчивого релаксорного состояния связан с туннелированием из электронных уровней квантовой точки через потенциальные барьеры, вызванные сверхрешеткой кристалла $TllnS_2$.

- 1. Р.М.Сардарлы, О.А.Самедов, И.Ш.Садыхов, В.А.Алиев, *ФТТ*, **45** (2003) 1067.
- A.Sardarli, I.M.Filanovsky, R.M.Sardarli, O.A.Samedov, I.Sh.Sadigov, I.I.Aslanov, Proceedings of International Conference on MEMS, NANO and Smart Systems. Banff, Alberta, Canada, July 20 to July 23, (2003) 159.
- 3. Р.М.Сардарлы, О.А.Самедов, И.Ш.Садыхов, А.И.Наджафов, Н.А.Эюбова, Т.С.Мамедов, *Неорганические материалы*, **39** (2003) 406.
- 4. Р.М.Сардарлы, О.А.Самедов, А.И.Наджафов, И.Ш.Садыхов, ФТТ, **45** (2003) 1085.
- 5. A.K.Aliev, E.Z.Aliev, B.A.Natig, R.M.Sardarly. *Phys.Stat.Sol.*(a), **114** (1989) K119.
- 6. А.У.Шелег, К.В.Иодковская, С.В.Родин, В.А.Алиев, *ФТТ*, **39** (1997) 1088.
- 7. D.Viehland, S.J.Jang, L.E.Cross, M.Wilting, J. Appl. Phys., 68 (1990) 2916.
- 8. J.H.O.Varley, Nature, 174 (1954) 886.
- 9. Р.Ф.Мамин, *ФТТ*, **43** в. 7 (2001) 1262.
- 10. В.В.Лагута, М.Д.Глинчук, И.В.Кондакова, ФТТ, **46** в.7 (2004) 1224.
- 11. R.M.Sardarli, O.A.Samedov, I.Sh.Sadykhov, Ferroelectrics, 298 (2004) 275.
- 12. Н.Мотт, Э.Девис, Электронные процессы в некристаллических веществах. М., Мир, (1974) 472.
- 13. Б.И.Шкловский, А.Л.Эфрос, Электронные свойства легированных полупроводников. М., Наука, (1979) 416.
- 14. С.Н.Мустафаева, В.А.Алиев, М.М.Асадов, ФТТ, **40** в.1 (1998) 48.
- 15. С.Н.Мустафаева, ФТТ, **46** в.6 (2004) 979.
- 16. С.Н.Мустафаева, В.А.Алиев, М.М.Асадов, *ФТТ*, **40** в.4 (1998) 612.
- 17. С.Н.Мустафаева, М.М.Асадов, В.А.Рамазанзаде, ФТТ, **38** в.1 (1996) 14.
- 18. V.Angelli, C.Manfredotti, R.Murri, R.Piccolo and L.Vasanelli, *Il Nuovo Cimento*, **38 B** (1977) 327.
- 19. Р.Ф.Казаринов, Р.А.Сурис, *ФТП*, **5** (1971) 707.
- 20. R.Tsu, L,Esaki, Appl. Phys.Lett., 22 (1973) 562.
- 21. Н.Н.Леденцов, В.М.Устинов, В.А.Щукин, П.С.Копьев, Ж.И.Алферов, Д.Бимберг, *ФТП*.**32** (1998) 385.

RELAXOR PROPERTIES AND CONDUCTIVITY MECHANISM ON $\gamma\text{-}IRRADIATED$ TIInS $_2$ CRYSTALS

R.M.SARDARLI, O.A.SAMEDOV, I.SH.SADIGOV, F.T.SALMANOV, A.M.ALESKEROV

Density of condition of levels induced by radiation defects in $TlInS_2$ crystal were determined. Localization radius of the defective center and length of a jump were determined. Influence of gamma irradiation could be received steady relaxor condition. It was supposed, that the carry of a charge in the field of existence relaxor condition was connected with tunneling from electronic levels in exclusion zone received by radiating influence, through potential barriers caused by a superlattice of $TlInS_2$ crystal.

γ-ŞUALANMIŞ TIInS₂ KRİSTALLARININ RELAKSOR XASSƏLƏRİ VƏ KEÇİRİCİLİK MEXANİZMİ

R.M.SƏRDARLI, O.Ə.SƏMƏDOV, İ.Ş.SADIQOV, F.T.SALMANOV, .M. L SK ROV

TIInS₂ kristalında radiasiya defektləri əsasında yaranan səviyyələrin hal sıxlığı, sıçrayışın uzunluğu, defekt mərkəzlərinin lokallaşma radiusu təyin olunmuşdur. Göstərilmişdir ki, γşualarının təsirilə seqnetoelektriklərin dielektrik xassələrini dəyişmək və dayanıqlı relaksor halını almaq olar. Etimal olunur ki, dayanıqlı relaksor halında qadağan olunmuş zonanın elektron səviyyələrindən yüklərin köçürülməsi tunnelləşmə ilə baş verir.

Редактор: А.Грибов