ОСОБЕННОСТИ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ В ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ МОНОКРИСТАЛЛАХ СЕЛЕНИДА ИНДИЯ

А.Ш.АБДИНОВ, Р.Ф.БАБАЕВА, Р.М.РЗАЕВ, Г.Х.ЭЙВАЗОВА

Бакинский Государственный Университет AZ 1145, г.Баку, ул.З.Халилова, 23

Исследовано влияние легирования редкоземельными элементами (РЗЭ) типа гадолиния, гольмия и диспрозия при различных содержаниях введенной примеси (N_{P3Э}=0; 10⁻⁵; 10⁻⁴; 10⁻³; 10⁻²; 10⁻¹ат.%.) на особенности статической ВАХ и температурной зависимости плотности темнового тока в диапазоне 77÷450К в высокоомных монокристаллах n-InSe.

Установлено, что в специально нелегированных кристаллах n-InSe при T \geq 150K токопрохождение определяется режимом TOO3. С понижением температуры наблюдается заметное отклонение от режима TOO3. При легировании с $N_{P39} \leq 10^{-4} ar.\%$ это отклонение усиливается, а при $N_{P39} > 10^{-4} ar.\%$ наоборот, резко уменьшается. Полученные результаты объясняются на основе зависимости степени пространственной неоднородности кристаллов n-InSe<P3Э> от уровня легирования P3Э.

В [1-5] сообщалось о влиянии легирования редкоземельными элементами (РЗЭ) типа гадолиния (Gd), гольмия (Ho) и диспрозия (Dy) на электрические и фотоэлектрические свойства монокристаллов селенида индия (InSe). Хотя при этом часть полученных результатов нашли свои удовлетворительные объяснения, однако, остались и невыясненные аспекты, которые требуют независимых дополнительных исследований.

С этой целью в представленной работе нами исследованы особенности ВАХ легированных редкоземельными элементами Gd, Ho, Dy кристаллов n-InSe. Было установлено в [6-8], что подобные исследования могут помочь выяснению особенностей процесса токопрохождения и определения энергетического спектра запрещенной зоны в этом материале.

Измерения проводились интервале температуры 77÷450K В при напряженностях электрического поля вплоть до E=10³B/см (в предпробойной области ВАХ). Изучаемые образцы получались путем скалывания от крупных монокристаллических слитков n–InSe<P3Э>, которые выращивались методами Бриджмена и медленного охлаждения при постоянном градиенте температуры вдоль слитка. Брались кристаллы n-InSe<P3Э> с процентным содержанием введенной примеси N_{P3Э}=0; 10⁻⁵; 10⁻⁴; 10⁻³; 10⁻²; 10⁻¹ат.%. Толщина образцов – расстояние между контактами (d) - варьировалась в пределах 20÷300мкм. Токовые контакты создавались путем припаивания металлического индия (In) и олова (Sn) или же нанесением серебряной пасты на открытом воздухе на свежесколотые поверхности образцов. Оказалось что, наиболее подходящей и информативной структурой является In-InSe<P3Э>-In. Расположение контактов были таковы, чтобы ток через изучаемые образцы протекал в направлении перпендикулярно естественным слоям. Удельное темновое сопротивление изучаемых образцов при 300К в зависимости от значения N_{P32} составляло $\rho_{T0}=10^4 \div 10^5 \text{Om} \cdot \text{см}$ и значительно (почти на 3-4 порядка) увеличивалось с понижением температуры до 77К.

Снимались статические ВАХ кристаллов InSe<P3Э> при различных значениях N_{P3Э} (Puc.1) и температурах (Puc.2), а также температурная зависимость

плотности темнового тока (j) этих образцов при различных значениях приложенного напряжения и N_{P3Э} (Puc.3).

Установлено, что в области относительно низких температур (T \leq 120К) в специально нелегированных кристаллах n-InSe, BAX при малых значениях приложенного напряжения подчиняется экспоненциальному (Puc.1, кривая 1), а при относительно больших значениях - степенным ($I \sim U^r$) законам. В степенном участке BAX с ростом приложенного напряжения (U) показатель степени (r) получает последовательные значения r=1, r=2, r>2, и, наконец, опять r=2. На участке крутого роста тока (где r>2) при 77К значение показателя степени достигает ~5. С ростом температуры, во–первых, на кривых BAX (при T \leq 120÷150К для различных образцов) исчезает участок с экспоненциальной зависимостью, вовторых, уменьшается значение r на участке крутого роста тока (при T \geq 400 К значение r составляет ~2), в- третьих, расширяется протяженность линейного участка BAX.

Согласно [6-8] такой степенной ход ВАХ в изучаемых кристаллах InSe обусловлен осуществлением режима токов, ограниченных объемными зарядами (ТООЗ). Однако, в рамках существующей теории ТООЗ [9] остается невыясненным области относительно низких температур обнаруженный В начальный экспоненциальный участок ВАХ. При прочих одинаковых условиях с ростом N_{P3Э}, проявления и протяженность независимо ОТ материала РЗЭ. яркость (до N_{P3Э}≈10⁻⁴ат.%) увеличивается участка сначала экспоненциального BAX (Рис.1, кривая 2), а далее уменьшается и при $N_{P32} \approx 10^{-1}$ ат.% этот участок ВАХ при рассмотренных нами условиях почти исчезает (рис.1, кривые 3 и 4). При этом, протяженность линейного участка ВАХ сначала уменьшается, а далее растет. Экспоненциальный участок ВАХ исчезает также при освещении изучаемого образца белым или же собственным светом (Рис.1, кривая 5). Воздействие собственного или белого света приводит также к расширению линейного участка BAX.

Рис.2.

Статические ВАХ кристаллов InSe <Dy> Статические I при различных уровнях легирования. N_{Dy} , ат.%: 1-0; 2, 5-10⁻⁵; 3-10⁻³; 4-10⁻¹. T, K: 1 - 77; 2 Кривые 1÷4 – в темноте, кривая 5 - при N_{Dy} = 10⁻¹ат%. воздействии белого света, T = 77 К.

Статические ВАХ кристаллов InSe<Dy> при различных температурах.

T, K: 1 - 77; 2 - 120; 3 - 250; 4 - 300. N_{Dy}= 10^{-1} at%.

ОСОБЕННОСТИ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ В ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ МОНОКРИСТАЛЛАХ СЕЛЕНИДА ИНДИЯ

[6-8], BAX Следуя работам ИЗ степенных участков специально нелегированных и легированных РЗЭ типа Gd, Но и Dy с различной N_{P3Э} при помощи формул теории Ламперта для ТООЗ [9] оценены значения энергетической глубины залегания (ε_t) и плотности (N_t) ловушек, а также подвижности (μ) и концентрации (n_0) свободных носителей заряда в изучаемых кристаллах InSe<P3Э> при различных условиях (температурах, материалах и количествах вводимой примеси РЗЭ). Установлено наличие в изучаемых кристаллах двух групп локальных состояний с энергетической глубиной залегания *ε*_{t1}≈*ε*_c−0,30эВ и $\varepsilon_{t2} \approx \varepsilon_c - 0.50$ в, соответственно. Значения ε_{t1} и ε_{t2} почти не зависят от температуры и степени легирования кристаллов, а плотность (концентрация) соответствующих уровней прилипания (особенно уровней с $\varepsilon = \varepsilon_{t'}$) меняется с N_{P3Э}. Найденные при этом значения *є*₁ и *є*₁ хорошо согласуются со значениями для глубины залегания мелких α– и глубоких β–уровней прилипания [10], найденных из других (фотоэлектрических) исследований в изучаемых кристаллах InSe<P3Э> [11-16].

Измерены также температурная зависимость плотности тока (*j*) в изучаемых кристаллах InSe<P3Э> (Рис.3). Оказалось, что при рассмотренных нами условиях ход кривых зависимостей i(T) существенным образом зависит как от величины приложенного к изучаемой структуре внешнего напряжения и воздействия внешней подсветки, так и от значения N_{P3Э}. В частности, в специально нелегированных кристаллах InSe в области относительно низких температур (T≤120÷150К) и малых внешних напряжений, где доминирует экспоненциальная зависимость тока от напряжения, зависимость lgi от 10³/T,K имеет активационный зависимости *j*(*T*) состоят из двух частей – начальной характер и кривые (низкотемпературной) пологой и последующей (высокотемпературной) более резкой. Найденные по наклону этих частей кривых lgi(10³/T,K) значения для энергии активации в различных образцах оказались *ε*_α/≈(0,05÷0,07)эВ и $\varepsilon_{\alpha 2} \approx (0,25 \div 0,30)$ эВ, соответственно. С ростом приложенного к изучаемым образцам внешнего напряжения значение $\varepsilon_{\alpha 1}$ постепенно увеличивается. Наконец, при напряжениях, находящихся за пределами экспоненциальной части ВАХ, кривые *lgi*(10³/T,K) изображаются лишь одной прямой линией. Определенные из наклона

этой прямой линии значения энергии активации составляют $\varepsilon_{\alpha} \approx (0,20 \div 0,25)$ эВ для различных образцов и от приложенного к образцу внешнего напряжения почти не зависят.

Рис.3.

Температурная зависимость плотности тока (j) в монокристаллах InSe<Dy> при различных значениях приложенного напряжения (кривые 1, 2, 3) и уровнях

легирования (кривые 2, 4, 6).

U, B: 1, 3, 5 - 1; 2, 4, 6 - 15. N_{Dy}, at.%: 1, 2 - 0; 3, 4 - 10⁻⁵; 5, 6 - 10⁻¹. При освещении изучаемых образцов белым или же собственным светом ход кривых $lgj(10^3/T,K)$ тоже меняется. В частности, при малых напряжениях (когда доминирует экспоненциальная зависимость *I* от *U*) под воздействием света первый наклон кривых $lgj(10^3/T,K)$ исчезает и зависимость j(T) изображается одной прямой линией с наклоном, соответствующим $\varepsilon_{\alpha 2}$.

Интересным оказалось также влияние легирования РЗЭ на ход кривых $lgj(10^3/T,K)$. Как в других случаях, здесь также наблюдается существенная зависимость лишь от N_{P3Э}, а не от материала РЗЭ. В частности, при прочих одинаковых условиях в области малых напряжений с ростом N_{P3Э} наклон высокотемпературной части кривых $lgj(10^3/T,K)$ не меняется, а наклон низкотемпературной части (значение $\varepsilon_{\alpha l}$) сначала несколько увеличивается относительно исходного, потом приближается к исходному, и наконец, (при N_{P3Э} $\approx 10^{-1}$ ат.%) эта область почти исчезает и кривые зависимости $lgj(10^3/T,K)$ характеризуются лишь одним наклоном, который соответствует $\varepsilon_{\alpha} = \varepsilon_{\alpha 2} \approx (0,20 \div 0,25)$ эВ.

Сравнения вычисленных, исходя из теории ТООЗ, значений для параметров N_t , n_0 , μ со значениями этих же параметров, найденных из других [13-17] измерений (эффекта Холла, термостимулированных токов, индуцированной примесной фотопроводимостью, разогрева носителей заряда сильным СВЧ электрическим полем) показывают, что в области относительно низких температур результаты, полученные по ТООЗ, значительно отличаются от других. Причем, именно результаты, полученные по ТООЗ, оказываются не реальными: или слишком низкими, или же неоправданно высокими. Однако, с ростом температуры это расхождение постепенно ослабевает и при T>150K почти совсем исчезает. В некоторых случаях найденные по теории ТООЗ значения N_t , n_0 и μ оказываются более реальными, чем найденные из других исследований. Эта проблема – значительное отклонение результатов по ТООЗ при определенных условиях от реальности в слоистых кристаллах соединений А₃B₆ – долгое время оставалась невыясненной. Были сделаны лишь различные предположения. Однако, в [6,7] на основе подробного анализа различных вариантов было аргументированно показано, что основной причиной обнаруженного расхождения между численными значениями некоторых параметров, найденных по ТООЗ и другими независимыми методами, может быть пространственная неоднородность высокоомных кристаллов соединений А₃В₆ со слоистой структурой. Хотя в пользу правильности сделанного предположения свидетельствует также влияние внешнего напряжения на ход кривых температурной зависимости плотности тока при низких температурах и малых напряжениях [6,7], ослабление и, наконец, исчезновение расхождения между значениями отдельных параметров, найденных по теории ТООЗ и другими способами с ростом температуры, однако, оно нуждается в дополнительных исследованиях. Кажется, что обнаруженные нами влияния легирования РЗЭ на темновые ВАХ и ход кривых температурной зависимости плотности тока, а также на численные значения таких параметров, как N_t, n₀, μ в высокоомных кристаллах InSe, тоже могут быть непосредственным доказательством этого предположения.

В частности предполагается, что введенные атомы РЗЭ, растворяясь в естественных слоях InSe, во-первых, увеличивают межслоевые связи и сближают значения диэлектрической проницаемости вдоль и поперек естественных слоев [6]. Это, в свою очередь, уменьшает почти до нуля влияние слоистости кристаллов на полученные по теории ТООЗ значения отдельных параметров. Во-вторых, введенные в изучаемые кристаллы примеси РЗЭ влияют на степень ИХ пространственной неоднородности. Сначала, с ростом N_{P3Э} степень пространственной неоднородности кристаллов несколько увеличивается, а далее, уменьшаясь при ~ 10^{-1} ат.%, почти сводится к нулю, и изучаемые кристаллы при

ОСОБЕННОСТИ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ В ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ МОНОКРИСТАЛЛАХ СЕЛЕНИДА ИНДИЯ

этом начинают вести себя как пространственно-однородные полупроводники. Поэтому сначала, с ростом N_{P39} несколько (хотя и слабо) увеличиваются как наклон низкотемпературной части кривых $lgj(10^3/T,K)$, так и расхождение в значениях параметров N_t , n_0 и μ , найденных по ТООЗ и другими способами. При этом, увеличение значения N_t при $N_{P39} \approx 10^{-1}$ ат.%, относительно имеющего место в специально нелегированных кристаллах позволяет нам предполагать, что примеси P3Э входят в изучаемые кристаллы в качестве мелких уровней α-прилипания. В пользу правильности этого предположения свидетельствуют также зависимость величины спектрального распределения и скорости релаксации различных фотоэлектрических эффектов, которые обнаруживаются в изучаемых кристаллах и связываются с наличием в них мелких уровней α–прилипания [11-17].

В частности, предполагается следующее. В изучаемых кристаллах InSe, как и следует из результатов работ [13, 14], одновременно существуют мелкие α- и глубокие β-уровни прилипания. В нелегированных специально кристаллах InSe концентрация и энергетическая глубина залегания этих уровней составляют $N_{tl} \approx 10^{17}$ см⁻³; $\varepsilon_{tl} \approx 0.25 \div 0.30$ эВ; $N_{t2} \approx 10^{14}$ см⁻³ и $\varepsilon_{t2} \approx 0.50$ эВ, соответственно [11-16]. Кроме того, уровни α-прилипания преимущественно локализованы в низкоомной матрице, а уровни β-прилипания в высокоомных включениях (ВО) кристалла [13,16]. Именно такое неоднородное распределение мелких α - и глубоких β уровней прилипания вызывает отличие удельных сопротивлений этих частей, а также флуктуации потенциала И двухбарьерную структуру изучаемых высокоомных кристаллов InSe. При легировании РЗЭ вследствие введения атомов РЗЭ внутрь естественных слоев, сначала, под воздействием существующего в изучаемых кристаллах внутреннего электрического поля ионы РЗЭ в основном накапливаются в HO, а после определенного значения N⁰_{P3Э} (после предельного значения растворимости РЗЭ в НО) начинается их введение также в ВО части. Последний процесс продолжается вплоть до обеспечения в ВО части N_{P3Э}~N⁰P3Э. После этого изучаемые образцы ведут себя как «квазиоднородные» кристаллы с большим (относительно исходного) количеством мелких уровней α-прилипания. Поэтому, во-первых, при низких температурах, а также малых напряжениях для них хорошо оправдывает себя теория Ламперта для ТООЗ, во-вторых, в них усиливаются эффекты, связанные с наличием мелких уровней α -прилипания.

- 1. А.Ш.Абдинов, Р.Ф.Бабаева, Неорганические материалы, **30** (1994) 339.
- 2. А.Ш.Абдинов, Р.Ф.Бабаева, Неорганические материалы, **31** (1995) 1020.
- 3. А.Ш.Абдинов, Р.Ф.Бабаева, Ю.Г.Нуруллаев, *Неорганические материалы*, **32** (1996) 1446.
- 4. Z.A.Iskenderzade, O.M.Sadykhov and A.Sh.Abdinov, *Phys. Stat. Sol.* (a), **80** (1985) k.77.
- 5. З.А.Искендер-заде, О.М.Садыхов, А.Ш.Абдинов, ДАН Аз.ССР, **41** №8 (1985) 28.
- 6. А.Ш.Абдинов, А.Г.Кязым-заде, Н.М.Мехтиев, М.Д.Хомутова, А.Г.Шарипов, *ФТП*, **10** (1976) 76.
- 7. А.Ш.Абдинов, Я.Г.Гасанов, Ф.И.Мамедов, *ФТП*, **16** (1982) 993.
- 8. А.Ш.Абдинов, Я.Г.Гасанов, Ф.И.Мамедов, ДАН Аз.ССР, **37** №11 (1981) 22.
- 9. М.Ламперт, П.Марк, Инжекционные токи в твердых телах, Мир, М., (1973) 416.
- 10. С.М.Рывкин, Фотоэлектрические явления в полупроводниках, Наука, М., (1963) 494.

- 11. А.Ш.Абдинов, А.А.Ахмедов, Я.Г.Гасанов, А.З.Магомедов, ФТП, **15** (1981) 1255.
- 12. А.Ш.Абдинов, Я.Г.Гасанов, ФТП, **16** (1982) 796.
- 13. А.Ш.Абдинов, Я.Г.Гасанов, *ФТП*, **16** (1982) 1523.
- 14. А.Ш.Абдинов, П.Г.Аббасова, Я.Г.Гасанов, *ФТП*, **17** (1983) 761.
- 15. А.Ш.Абдинов, Я.Г.Гасанов, Ю.Г.Нуруллаев, Сб. Физика плазмы и конденсированных сред, Изд. АГУ. Баку, (1985) 34.
- 16. А.Ш.Абдинов, Я.Г.Гасанов, Ю.Г.Нуруллаев, Сб. Неравновесные процессы в слоистых полупроводниках, Изд. АГУ. Баку, (1987) 71.
- 17. А.Ш.Абдинов, А.Г.Кязым-заде, *ФТП*, **9** (1975) 1561.

NADİR TORPAQ ELEMENTLƏRİ İLƏ AŞQARLANMIŞ İNDİUM-SELEN MONOKRİSTALLARINDA VOLT-AMPER XARAKTERİSTİKASININ XÜSUSİYYƏTLƏRİ

Ə.Ş.ABDİNOV, R.F.BABAYEVA, R.M.RZAYEV, G.H.EYVAZOVA

Daxil edilən qadolinium, holmium və disprozium tipli nadir torpaq elementi aşqarlarının N=0; 10⁻⁵; 10⁻⁴; 10⁻³; 10⁻²; 10⁻¹ at % qiymətlərində aşqarlanmanın n-InSe monokristallarında voltamper xarakteristikaya təsiri tədqiq olunmuşdur.

Göstərilmişdir ki, aşqarlanmamış n-InSe kristallarında T≥150K cərəyanın axma mexanizmi həcmi yüklərlə məhdudlaşmış cərəyan nəzəriyyəsinə tabe olur, aşağı temperaturlarda isə ondan kənara çıxır. Göstərilən nadir torpaq elementləri ilə aşqarladıqda N≤10⁻⁴at% qiymətlərində bu kənara çıxma güclənir, N>10⁻⁴at%-də isə əksinə – azalır. Fərz olunur ki, aşqarlanmanın voltamper xarakteristikaya müşahidə olunan təsiri öyrənilən kristalların nizamlılıq dərəcəsinin daxil edilən aşqarların miqdarından asılılığından irəli gəlir.

THE PECULIARITIES OF VOLT-AMPERE CHARACTERISTICS IN INDIUM SELENIUM MONOCRYSTALS DOPED BY RARE ELEMENTS

A.SH.ABDINOV, R.F.BABAYEVA, R.M.RZAYEV, G.KH.EYVAZOVA

The influence of doping by rare elements (RE) such as gadolinium, holmium and dysprosium, with various contents ($N_{RE}=0$; 10⁻⁵; 10⁻⁴; 10⁻³; 10⁻²; 10⁻¹at.%.) on peculiarities of static VAC and temperature dependence of dark current density of the high-resistance crystals of InSe was investigated in the temperature range of 77 \div 450K.

It was established, that the current passage was determined by currents regimes limited on volumetric charge (CLVC) at T \geq 150K in specially nondoped crystals of InSe. The appreciable rejection from CLVC regime was observed in these crystals with decreasing of temperature. At doping by RE with N_{RE} \leq 10⁻⁴at.% these deviations increased and at N_{RE}>10⁻⁴at.% with increasing of the doping level, on the contrary, decreased. It was supposed, that such dependence of the current passage features on N_{RE} in high-resistance crystals of InSe first of all was caused with dependence of spatial heterogeneity degree of this semiconductor on the contents of the entered RF impurity.

Редактор: С.Мехтиева