ВЛИЯНИЕ ЛЕГИРОВАНИЯ ЦИНКОМ И СЕРЕБРОМ НА МЕХАНИЗМЫ И ТЕМПЕРАТУРЫ ФАЗОВЫХ ПЕРЕХОДОВ В Си₂Те

Р.Б. БАЙКУЛОВ

Институт физики НАН Азербайджана AZ-1143, г. Баку, пр. Г. Джавида, 33

Синтезированы Cu₂Te, Cu_{1.50}Ag_{0.50}Te и Cu_{1.50}Zn_{0.50}Te, выращены их монокристаллы. Высокотемпературным рентгендифрактометрическим методом исследованы структурные превращения. Показано, что Cu₂Te в интервале температур 290÷1000К претерпевает пять структурных превращений. Число превращений сокращается до двух в Cu_{1.50}Zn_{0.50}Te и одного Cu_{1.50}Ag_{0.50}Te.

В [1] показано, что Cu₂Te при комнатной температуре кристаллизуется в гексагональной структуре с параметрами решетки $a_0=4.237$ Å, $c_0=7.274$ Å, пр. гр. D¹_{6h}-P6/mmm, Z=2, $\rho=7.33$ г/см³. Согласно [2,3] для Cu₂Te при комнатной температуре характерна ромбическая структура с параметрами решетки $a=a_0 \sqrt{3} = 7.319$, $b=3a_0 \sqrt{3} = 22.236$, $c=5c_0=36.458$ Å являющаяся сверхструктурой гексагональной фазы.

В [4-10] с помощью ДТА измерения электропроводности и рентгенографическим методом показано, что в температурном интервале 290÷900К в кристалле Cu₂Te наблюдается пять структурных превращений: при 433, 531, 590, 633 и 835К. В [1] установлено, что кристаллы Cu₂Te в температурном интервале 290÷453К двухфазные. Они состоят из ромбической фазы с параметрами решетки, соответствующими параметрам решетки приведенным в [2,4] и гексагональной фазы с параметрами решетки a=4.1481, c=7.1833Å.

В данной работе рассматриваются полиморфные превращения в Cu₂Te и влияние частичного изоморфного замещения атомов меди атомами цинка и серебра на процессы фазаобразования и температуру полиморфных превращений.

С этой целью были синтезированы и выращены методом Бриджмена монокристаллы Cu_2Te , $Cu_{1.50}Zn_{0.50}Te$ и $Cu_{1.50}Ag_{0.50}Te$.

Гомогенные образцы состава Cu_2Te , $Cu_{1.50}Zn_{0.50}Te$ и $Cu_{1.50}Ag_{0.50}Te$ получали прямым синтезом элементов (медь электролитическая, цинк, серебро и теллур «OЧ») в двустенных ампулах из высококачественного кварца с внутренним диаметром 1.2 и длинной 10 см, которые обладают высокой термической стойкостью и обеспечивают качественную герметичность, что исключает окисление синтезируемых веществ в случае растрескивания одной из ампул.

С целью предотвращения взрыва, а также для полной гомогенизации расплавленного цинка ($T_{nл.}=692.4$ K), серебро ($T_{nл.}=1233.5$ K) с теллуром ($T_{nл.}=725$ K) и медью ($T_{nл.}=1375$ K) температуру в печи медленно повышали до температуры плавления теллура и выдерживали при этой температуре 3ч., после чего далее повышали со скоростью 50K/час до точки выше температуры плавления Cu₂Te ($T_{nл.}=1375$ K). После двухчасовой выдержки при этой температуре с циклическим вибрированием, ампулы с образцами медленно охлаждали до 420K и проводили гомогенизирующий отжиг в течении 400ч.

Для получения монокристаллов Cu₂Te, Cu_{1.50}Zn_{0.50}Te и Cu_{1.50}Ag_{0.50}Te, использовали экспериментально найденную комбинацию методов Бриджмена и медленного охлаждения. Синтезированные полукристаллические вещества загружали в ампулы специально изготовленные для метода Бриджмена.

ВЛИЯНИЕ ЛЕГИРОВАНИЯ ЦИНКОМ И СЕРЕБРОМ НА МЕХАНИЗМЫ И ТЕМПЕРАТУРЫ ФАЗОВЫХ ПЕРЕХОДОВ В Си₂Те

Вакуумированные до давления 10⁻³Па ампулы с соответствующим составом помещали в печь, температура которой регулировалась с помощью терморегулятора. Далее температуру медленно поднимали до температуры плавления соединения. После трехчасовой выдержки ампула опускалась со скоростью 2мм/ч. В третьей зоне печи, имеющей постоянную температуру 400К, образцы в ампуле отжигали в течении трех недель.

Исследования при высоких температурах проводились на дифрактометре ДРОН-3М (Си K_{α} излучение, Ni-фильтр) с высокотемпературной приставкой УРВТ-2000 в вакууме (10⁻¹ а). Угловое разрешение съемки составляло ~0.1°. Использовался режим непрерывного сканирования. В экспериментах ошибка определения углов не превышала $\Delta \theta = \pm 0.02^{\circ}$.

1. Си₂Те. Монокристаллы Си₂Те при комнатной температуре двухфазные и состоят из гексагональной фазы с параметрами решетки a=7.319Å $\approx a_o \sqrt{3}$, b=22.236Å $\approx 3c_o$, c=36.458Å $\approx 5c_o$, являющейся сверхструктурой гексагональной фазы ($a_o=4.237$ Å, $c_o=7.274$ Å, пр. гр. Р6/mmm, Z=2 – фаза Новотного [1]). В интервале температур 290-418 К двухфазность кристалла сохраняется. При 448К из двухфазного образца выделяется вторая гексагональная фаза с параметрами решетки a=8.4191Å, c=21.8733Å.

Температурная зависимость параметров кристаллической решетки существующих модификаций Cu₂Te.

Как видно из Рис.1, образованная вторая гексагональная модификация не влияет на параметры первой гексагональной модификации. Но с образованием этой гексагональной модификации значение параметра <u>с</u> ромбической модификации резко сокращается $\Delta c=0.72$ Å. Это дает нам основание сделать вывод, что вторая гексагональная модификация образуется за счет ромбической модификации. При 504К параметры <u>а</u> и <u>с</u> первой гексагональной модификации растут скачком, а параметры <u>а</u> и <u>b</u> ромбической модификации скачком уменьшаются. В этом случае,

Р.Б. БАЙКУЛОВ

вероятно, между модификациями происходят катионные перемещения. При 590К ромбическая и первая гексагональная модификации превращаются во вторую гексагональную модификацию и кристалл Cu₂Te становится однофазным. Так как параметры второй гексагональной модификации в данном случае не меняются, можно подтвердить, что в этом процессе вторая гексагональная значит модификация играет роль эпитаксии. Таким образом, кристалл Cu₂Te становится однофазным в интервале температур 590÷638К. При 638К с появлением отражения высокотемпературной ГЦК модификации плоскости (111)заново от восстанавливается ромбическая модификация. При 848К ромбическая и вторая гексагональная модификации превращаются в ГЦК модификацию с параметрами решетки а=3.1140Å.

На Рис.1 приведены температурные зависимости параметров элементарных ячеек всех существующих модификаций Cu₂Te в интервале температур 290÷900К. Все указанные структурные переходы обратимы и при охлаждении до комнатной температуры кристалл последовательно возвращается в первоначальное состояние.

Таблица 1.

	тепловые расширения модификации кристалла Си2те.					
Cu ₂ Te	Температура (К)	$\alpha_{[100]} 10^{-6} K^{-1}$	$\alpha_{[010]} 10^{-6} K^{-1}$	$\alpha_{[001]} 10^{-6} K^{-1}$	$\overline{\alpha} = \frac{\sum \alpha_i}{3} \cdot 10^{-6} K^{-1}$	
І-я Гексагональная	290÷373 290÷473 290÷573	34.62 34.73 50.34		17.78 29.59 45.59	16.77 29.56 45.18	
II-я Гексагональная	473÷573 473÷673 473÷773 473÷821	37.89 39.52 45.57 45.80		37.99 39.52 43.87 45.76	37.92 39.50 45.01 45.77	
Ромбическая	290÷373 290÷473 290÷573 290÷773 290÷821	17.12 32.18 -0.10 6.54 4.45	37.39 32.02 11.74 2.36 1.16	30.73 -94.32 -20.18 4.77 5.45	28.41 -30.12 -8.54 4.56 3.69	
ГЦК	673÷773 673÷821 673÷873 673÷973 673÷1073	32.883 35.216 32.883 35.898 37.405				

Тепловые расширения модификаций кристалла Cu₂Te.

Из зависимостей параметров решетки всех модификаций рассчитаны тепловые расширения по главным кристаллографическим направлениям, которые выведены в Таблице1. Коэффициенты термического расширения, отнесенные к 290К первой гексагональной модификации Cu₂Te, в интервале температур 290÷590К имеют определенные анизотропии, тогда как у второй гексагональной модификации, образовавшейся при температуре 448К, анизотропия теплового расширения ($\alpha_{[100]} = \alpha_{[001]}$) отсутствует. Резко выраженные анизотропии тепловых расширений имеет ромбическая модификация.

ВЛИЯНИЕ ЛЕГИРОВАНИЯ ЦИНКОМ И СЕРЕБРОМ НА МЕХАНИЗМЫ И ТЕМПЕРАТУРЫ ФАЗОВЫХ ПЕРЕХОДОВ В Си $_2 {\rm Te}$

2. $Cu_{1.50}Ag_{0.50}Te$. Из кристаллического слитка $Cu_{1.50}Ag_{0.50}Te$ вырезается тонкая пластинка размером 2×4×4мм и при комнатной температуре полученные дифрактограммы индицируются на основе параметров решетки ромбической фазы Cu₂Te: a=7.3193Å, b=22.2435Å, c=36.3636Å и на основе параметров ромбической фазы CuAgTe: a=3.1216Å, b=4.0423Å, c=6.8708Å. Отсюда следует, что кристаллы $Cu_{1,50}Ag_{0,50}Te$ при комнатной температуре являются лвухфазными. т.е. кристаллизуются в ромбической структуре Cu₂Te и CuAgTe, причем относительное количество Cu₂Te больше, чем CuAgTe. В дифракционных отражениях зафиксированных в интервале температур от комнатной до 423К изменений не происходит. Только при 469±1К низкотемпературный двухфазный кристалл Cu_{1.50}Ag_{0.50}Te превращается в две примитивные кубические фазы с параметрами решетки a₁=7.009Å и a₂=6.878Å, отличающимися параметрами элементарной ячейки и интенсивностями дифракционных отражений, где $I^{1}_{(220)}>I^{2}_{(220)}$, $I^{1}_{(222)}>I^{2}_{(222)}$, $I_{(320)}^{1} > I_{(320)}^{2}$ и $I_{(400)}^{1} > I_{(400)}^{2}$. При дальнейшем нагреве обе примитивные кубические фазы сохраняли свою индивидуальность, а при обратном охлаждении ниже 469К превращались в две упорядоченные фазы, одна из которых по параметрам решетки идентична низкотемпературной фазе Cu₂Te, а другая – CuAgTe. Как было отмечено, низкотемпературная ромбическая фаза Cu₂Te через 4 промежуточных фазовых превращения при 848К превращается в высокотемпературную ГЦК фазу с параметром решетки a=6.114Å. Про вторую фазу CuAgTe известно то, что при комнатной температуре она кристаллизуется в структурном типе ромбической CuTe с параметрами решетки a=3.12Å, b=4.05Å, c=6.875Å, ρ =8.20Å.

На Рис.2 приведена температурная зависимость параметров решетки

Как $Cu_{1.50}Ag_{0.50}Te$. видно ИЗ Рис.2, параметры a(T), b(T), c(T)обеих ромбических и а(Т) обеих примитивных кубических линейно. решеток растет В Таблице2 приведены коэффициенты линейного расширения, рассчитанные ИЗ параметров решеток существующих фаз.

Р.Б. БАЙКУЛОВ

Как видно из Таблицы 2, ромбическая фаза кристаллизуется по структурному типу Cu₂Te и сильно деформируется в направлении [100], т.е. $\alpha_{[100]} > \alpha_{[010]} \approx \alpha_{[001]}$, а ромбическая фаза, кристаллизующаяся по структурному типу CuAgTe, деформируется в направлении [010], т.е. $\alpha_{[100]} < \alpha_{[010]} > \alpha_{[001]}$. Это является одной из причин неустойчивости обеих ромбических фаз, которые при 469К переходят каждая в свою высокотемпературную примитивную кубическую фазу.

коэффициенты теплового расширения Cu _{1.50} Ag _{0.50} Te.							
Модификация	Температура (К)	$\alpha_{[100]} 10^{-6} K^{-1}$	$\alpha_{[010]} 10^{-6} K^{-1}$	$\alpha_{[001]} 10^{-6} K^{-1}$	$\overline{\alpha} = \frac{\sum \alpha_i}{3}$		
Cu ₂ Te	293÷373 293÷423	29.7 29.8	16.7 22.7	16.0 13.6	20.8 20.0		
CuAgTe	293÷373 293÷423	25.6 23.7	30.6 37.9	27.7 26.0	28.0 29.2		
P ₁ P ₂	473÷573 473÷573	0.80 17.3					

Таблица 2.

Надо отметить, что кристаллы состава $Cu_{1.50}Ag_{0.50}Te$ при комнатной температуре двухфазные и кристаллизуются в структурном типе Cu_2Te и CuAgTe, но ни температуры превращений, ни структуры высокотемпературных модификаций не соответствуют их высокотемпературным модификациям.

3. Си_{1.50}Zn_{0.50}Te. Зафиксированные от кристалла Cu_{1.50}Zn_{0.50}Te при комнатной температуре (290К) дифракционные отражения индицируются на основе параметров сверхструктурной ромбической модификации Cu₂Te, где a=7.3192Å, b=22.2362Å, c=36.4581Å и некоторые из зафиксированных отражений индицируются также на основе параметров решетки гексагональной модификации, где a=4.2478Å, c=7.2335Å. После выявления двухфазности кристалла Cu_{1.50}Zn_{0.50}Te включали печь и через каждые 50К проводили контрольные дифракционные

записи. Температуры образца перед каждой началом записи поддерживали постоянной в течении 30мин. При этих условиях, вплоть до 773К. число отражений И ИХ зафиксированные интенсивность, при комнатной температуре, остаютпостоянными. При 811±2K ся ромбическая модификация полностью превращается в гексагональную модификацию.

Рис.3.

Температурные зависимости параметров решетки ромбических, гексагональных и кубических модификаций Cu_{1.50}Zn_{0.50}Te.

ВЛИЯНИЕ ЛЕГИРОВАНИЯ ЦИНКОМ И СЕРЕБРОМ НА МЕХАНИЗМЫ И ТЕМПЕРАТУРЫ ФАЗОВЫХ ПЕРЕХОДОВ В Си₂Те

При переходе ромбической модификации в гексагональную последняя играет роль затравки. По этой причине на температурной зависимости параметров элементарной ячейки гексагональной модификации скачка не наблюдается (Рис.3). При 970К гексагональная модификация превращается в высокотемпературную ГЦК модификацию с параметрами а=6.1187Å. При охлаждении образца до комнатной температуры дифракционная картина полностью восстанавливается в обратной последовательности.

На Рис.3 приведены температурные зависимости параметров элементарных ячеек всех фаз для $Cu_{1.50}Zn_{0.50}$ Те существующих в интервале температур 290÷1000К. Видно, что параметры a_p , c_r и a_k в зависимости от температуры растут линейно, а на кривых $b_p=f(t)$ и $c_p=f(t)$ при 470К и $a_r=f(t)$ при 570К наблюдаются небольшие перегибы. Это вероятно связано с перераспределением катионов.

Таблица 3.

тепловые расширения модификации кристалла Си _{1.50} 210.501С.						
$Cu_{1.50}Zn_{0.50}Te$	Температура (К)	$\alpha_{[100]} 10^{-6} K^{-1}$	$\alpha_{[010]} 10^{-6} K^{-1}$	$\alpha_{[001]} 10^{-6} K^{-1}$	$\overline{\alpha} = \frac{\sum \alpha_i}{3}$	
Ромбическая	293					
	293÷373	11.95	11.86	6.96	10.26	
	293÷473	17.46	11.29	7.06	11.94	
	293÷573	17.13	12.59	8.61	12.78	
	293÷673	16.54	13.12	8.95	12.87	
	293÷773	17.65	13.31	9.45	13.47	
Гексагональная	293					
	293÷373	-		- 1.21	-	
	293÷473	14.42		11.21	13 56	
	293÷573	14.71		13.73	14.38	
	293÷673	14.25		14.99	14.50	
	293÷773	15.65		15.90	15.73	
	293÷873	18.35		13.28	16.66	
	293÷973	19.53		16.37	18.48	
ГЦК	973÷1073	13.24			13.24	

Тепловые расширения модификаций кристалла Cu_{1.50}Zn_{0.50}Te.

В Таблице3 приведены коэффициенты теплового расширения существующих модификаций $Cu_{1.50}Zn_{0.50}$ Те. Как видно из табл.3 коэффициенты термического расширения по основным кристаллографическим направлениям ромбической и гексагональной модификаций не так сильно отличаются, сильная анизотропия отсутствует.

На Рис.4 представлены схемы структурных превращений в кристаллах Cu_2Te , $Cu_{1.50}Ag_{0.50}Te$ и $Cu_{1.50}Zn_{0.50}Te$. Видно, что изоморфное замещение части атомов меди атомами Ag и Zn в Cu_2Te приводит к сокращению числа сложных фазовых переходов, т.е. в кристалле $Cu_{1.50}Ag_{0.50}Te$, при комнатной температуре состоящем из двух ромбических фаз, каждая из которых при 469K превращается в свою примитивную кубическую фазу, а в $Cu_{1.50}Zn_{0.50}Te$, при комнатной температуре состоящем из ромбической и гексагональной фаз, ромбическая фаза при 811K превращается в гексагональную, а гексагональная фаза при 970K переходит в высокотемпературную ГЦК. Превращения в рассмотренных кристаллах обратимы и происходят по типу монокристалл-монокристалл.

Рис.4.

Схема структурных превращений в Cu_2Te , $Cu_{1.50}Zn_{0.50}Te$ и $Cu_{1.50}Ag_{0.50}Te$.

- 1. H.Novotny, Z. Metallkunde, B37 (1946) 40.
- 2. L.Patzak, Z. Metallkd, B47 (1956) 418.
- 3. Р.Б.Баранова, В.П.Арефьев, С.А.Семилетов, *Изв. АН СССР, Неоргн. материалы*, **13** (1977) 2157.
- 4. R.Blachnik, M.Lasoka, U.Walbrecht, J. Solid. State Chem., 48 (1983) 431.
- 5. А.А.Чипиженк, М.И.Цыпин, Изв. АН СССР, Неорг. материалы, 7 (1971) 417.
- 6. P.Kubashevsky, I.Nolting, Ber. Bunsen-Ges. Phys. Chem., B77 (1973) 70.
- 7. H.Gravermann, H.Wallbuura, Z. Mettalkd., B47 (1956) 433.
- 8. F.Gustaviano, H.Luguet, J.Bougnot, Mater. Res. Bull., 8 (1973) 935.
- 9. J.Bougnot, F.Gustaviano, H.Luguet, D.Sodini, Mater. Res. Bull., 5 (1970) 763.
- 10. N. Vouroutris, C. Monolikas, Phys. Status Solidi A, 111 (1989) 491.
- 11. Yu.G.Asadov, L.V.Rustamova, G.B.Gasimov, et.al, *Phase transitions.*, **38** (1992) 247.

SİNK VƏ GÜMÜŞ ATOMLARI İLƏ AŞQARLAMANIN Cu₂Te-da TEMPERATURA VƏ FAZA KEÇİDİ MEXANİZMİNƏ TƏSİRİ

R.B. BAYKULOV

Cu₂Te, Cu_{1.50}Ag_{0.50}Te və Cu_{1.50}Zn_{0.50}Te tərkibləri sintez edilmiş və onların monokristalları göyərdilmişdir. Yüksək temperatur difraktometrik metodla quruluş çevrilmələri öyrənilmişdir. Göstərilmişdir ki Cu₂Te bizləşməsində 290ç1000K temperatur intervalında beş quruluş çevrilməsi baş verir. Quruluş çevrilmələrinin sayı Cu_{1.50}Zn_{0.50}Te-da ikiyə, Cu_{1.50}Ag_{0.50}Te-da isə birə azalır.

EFFECT OF Zn AND Ag ATOMS ON THE TEMPERATURE AND THE MECHANISM OF PHASE TRANSITIONS IN Cu₂Te CRYSTALS

R.B.BAYKULOV

The monocrystals of Cu₂Te, Cu_{1.50}Ag_{0.50}Te and Cu_{1.50}Zn_{0.50}Te synthesized ingots have been obtained. The structural phase transitions have been studied by high-temperature X-ray diffraction methods. It has been found that in Cu₂Te at 290÷1000K temperature interval five structural transformation take place. The number of phase transitions in Cu_{1.50}Zn_{0.50}Te are lessen twice and in Cu_{1.50}Ag_{0.50}Te in once.

Редактор: Г.Аждаров