ВЛИЯНИЕ ТЕПЛОФИЗИЧЕСКИХ ПРОЦЕССОВ В КОМПОЗИТАХ ПОЛИМЕР-ПИРОКЕРАМИКА НА ФОРМИРОВАНИЕ В НИХ ПИРОЭЛЕКТРИЧЕСТВА

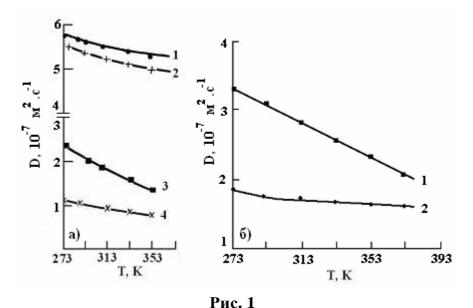
М.К.КЕРИМОВ, М.А.КУРБАНОВ, Ф.Г.АГАЕВ, С.Н.МУСАЕВА, Э.А.КЕРИМОВ, Г.Х.КУЛИЕВА

Институт Физики НАН Азербайджана AZ 1143, Баку, ул. Г.Джавида 33

Рассматриваются особенности формирования пироэлектрического эффекта в композитах полимер-пьезокерамика различной структуры. Обсуждаются возможные вклады теплофизических процессов (температуропроводности, термического расширения, теплоемкости) в формирование пироэлектричества гетерогенной системы полимер-пирокерамика. Экспериментально показано, что пироэлектричество, соответствующее температурному изменению поляризации вследствие термического расширения композита, незначительно.

Наличие пироэлектричества в гетерогенной системе полимер-пирокерамика, как предполагается в [1-3], может быть связано с неравномерным распределением инжектированных при электротермополяризации зарядов, неоднородностью по фазам температурной зависимости диэлектрической проницаемости (ϵ) и коэффициента линейного расширения (α), а также с величиной изменения спонтанной поляризации, пропорциональной изменению температуры, то есть

$$\gamma = \Phi \frac{2\varepsilon_1}{2\varepsilon_1 + \varepsilon_2} \left\{ P_s \left[\frac{\varepsilon_2}{2\varepsilon_1 + \varepsilon_2} \left(\frac{\lambda_1}{\varepsilon_1} - \frac{\lambda_2}{\varepsilon_2} \right) + \left(\alpha_1 + \alpha_2 \right) \right] + \frac{\partial P_s}{\partial T} \right\},$$

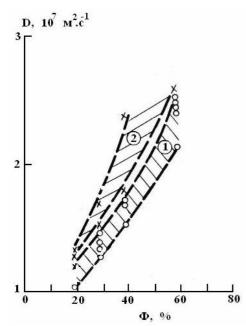

где Φ - объемное содержание пирокерамики в композите, λ - температурный коэффициент диэлектрической проницаемости фаз, α - коэффициент линейного расширения фаз.

Первый член в общих скобках, пропорциональный спонтанной поляризации P_S , представляет собой пироэлектричество, обусловленное гетерогенностью системы. Член ($\lambda_1/\epsilon_1-\lambda_2/\epsilon_2$) характеризует неоднородность температурной зависимости диэлектрической проницаемости полимера и пирокерамики, а член ($\alpha_1+\alpha_2$) - неоднородность температурного коэффициента линейного расширения фаз. Второй член в общих скобках $\partial P_S/\partial T$ учитывает пироэлектричество пирокерамики. Индексы 1 и 2 относятся полимерной и пироэлектрической фазам, соответственно.

Известно, что полиолефины - полиэтилен (ПЭ), полипропилен (ПП) являются неполярными полимерами и примерно имеют одинаковые значения диэлектрической проницаемости теплофизических характеристик И Фторуглеродистый полимер поливинилиденфторид (ПВДФ) является полярным сегнетоэлектрическим полимером с относительно высокой диэлектрической проницаемостью. ПВДФ привлекает особое внимание среди пироэлектрических полимеров из-за больших пьезо- и пироэлектрических коэффициентов. микроскопическом уровне ПВДФ является пироэлектриком с полным дипольным моментом 2,27Дебай (7,56·10⁻²⁸Кл·см) на маномерную единицу [1]. Коэффициент линейного расширения $\Pi B \mathcal{I} \Phi$ $\alpha = 1, 2 \cdot 10^{-4} \text{K}^{-1}$. Это очень близко к максимуму экспериментальной величины пирокоэффициента ПВДФ 2,4пКл/(cм²·K). Отметим, что в термическом расширении композита существенную роль играет межфазная адгезия [5], ограничивающая подвижность полимерных цепей на границе раздела Кроме этого, термическое расширение композита является сложной

характеристикой, отражающей не только характер межфазной адгезии, но и деформационные свойства компонентов композита от температуры. Поэтому в качестве компонентов пирокомпозитов неполярных и полярных полимеров, а также сегнетокерамики различных структур позволит более корректно определить вклад теплофизических эффектов в пироэлектричество композитов полимер-пирокерамика. Наличие полярных групп в макромолекуле, а также доменная структура и спонтанная поляризация пирочастиц несомненно являются влияющими факторами на межфазные явления и, следовательно, теплофизические эффекты в композите. Поэтому такой набор полимеров (ПЭ, ПП, ПВДФ) и пьезокерамик (ПКР-3М - ромбоэдрическая, ПКР-7М - тетрагональная) позволит особенности влияния теплофизических выявить формирование пироэлектрического эффекта в композитах полимер-пирокерамика. Определение удельной теплоемкости проведено измерителем ИТС-400, предназначенным температурной зависимости ДЛЯ исследования удельной твердых теплоемкости тел, a для измерения коэффициента температуропроводности использован метод плоских температурных волн в режиме автоколебаний [6]. Исследование термического расширение композитов проводилось на кварцевом дилатометре ДСК-900 от комнатной температуры до 393 K [7].

На Рис.1(а) представлены температурные зависимости коэффициента температуропроводности (D) исходных компонентов исследуемых композитов. Полученные результаты показывают, что D полимеров и пьезокерамик заметно отличаются. Кроме этого, D неполярного полимера ПЭВП больше, чем у полярного сегнетоэлектрического ПВДФ.



Температурные зависимости коэффициента температуропроводности

- (а) -пирокерамик ПКР-7М (1), ПКР-3М (2) и полимеров ПЭВП (3), ПВДФ (4);
- (б) композитов ПЭВП+50% об. ПКР-3М (1) и ПВДФ+50% об. ПКР-3М (2).

На Рис.1(б) представлены температурные зависимости D композитов, полученных на основе неполярного ПЭВП и полярного ПВДФ с использованием в качестве пирофазы керамики ПКР-3М. Видно, что разница в значениях коэффициента температуропроводности исходных полимеров практически сохраняется для значений D композитов на их основе. Необходимо отметить, что D композитов, полученных на основе ПВДФ и пьезокерамик различной структуры,

например, ПКР-7М (тетрагональная Т) и ПКР-3М (ромбоэдрическая Р₃),

отличаются. Это различие практически сохраняется для всех исследованных объемных содержаний пирокерамик в композите (Рис.2), причем композиты на основе пирокерамик тетрагональной структуры имеют относительно высокую температуропроводность по сравнению с композитами. полученными использованием пирокерамик ромбоэдрической структуры.

Рис.2.

Зависимости коэффициента температуропроводности от объемного содержания пирокерамики в композитах, полученных на основе ПВДФ: 1 – ПВДФ+ПКР-3М; 2 – ПВДФ+ПКР-7М.

Таблица 1.

Структура пирокерамики	Композиты	Оптимальт условия поляризац $E_{\rm n}(MB/M)$		Температура измерения, $T_{\text{из,}}(K)$	ү (мКл/к·м²)
Рэ	ПВДФ+50%ПКР-3М	4,5	373	373	240
T	ПВДФ+50% ПКР-7М	6	373	373	110
РЭ	ПЭВП+50 % ПКР-3М	5	393	373	76
T	ПЭВП+50 % ПКР-7М	6	393	373	55

В Таблице1 приведены значения пирокоэффициентов (γ) композитов, полученных на основе полярных, неполярных полимеров и пьезокерамик Т и P_3 структур. Экспериментальные данные показывают, что композиты на основе пирокерамик P_3 структуры и полярного полимера ПВДФ обладают более высоким пирокоэффициентом, чем композиты, полученные на основе неполярного полимера и пирокерамик Т структуры. Однако, как видно из Рис.1, коэффициенты температуропроводности неполярного полимера ПЭВП и пьезокерамики ПКР-7М больше, чем полярного ПВДФ и пирокерамики ПКР-3М. Эти результаты позволяют предположить, что не существует прямой зависимости между D исходных компонентов и γ композитов.

На Рис.3(а) приведены зависимости абсолютного значения температурного коэффициента расширения (ТКР) и пирокоэффициента (γ) композита ПЭВП+ПКР-3М от объемного содержания (Ф) пирофазы ПКР-3М. Экспериментальные результаты показывают, что с увеличением объемного содержания пирофазы абсолютные значения ТКР композита заметно уменьшаются (кривая 1). В то же время, пирокоэффициент композита растет быстрее, чем по линейному закону. Ранее нами было показано, что с увеличением объемного содержания пирофазы в композитах полимерная фаза при определенном Ф полностью переходит на межфазный слой, структура которого формируются под влиянием поверхности пирокерамической частицы. В этом слое подвижность полимерных цепей низка и определяется межфазными взаимодействиями.

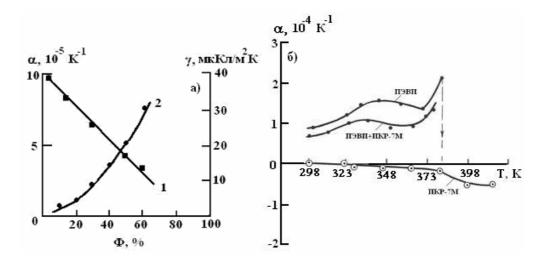


Рис. 3.

- а)-Зависимости температурного коэффициента расширения (1) и пирокоэффициента (2) от объемного содержания пирофазы композита ПЭВП+ПКР-3М;
- б)-Температурные зависимости коэффициента термического расширения композита ПЭВП+40% об. ПКР-7М и исходных компонентов.

На Рис.3(б) представлены температурные зависимости температурного коэффициента расширения композита ПЭВП+ПКР-7М и его исходных компонентов. Если сравнивать температурный ход α (Т) ПЭВП, ПКР-7М и композита ПЭВП+ПКР-7М, то можно сделать вывод, что температурное поведение α композита определяется, в основном, поведением аналогичного параметра полимера. Поэтому полный переход полимерной фазы на межфазный слой при увеличении объемного содержания будет сопровождаться уменьшением α от α то наблюдается экспериментально (Рис. α (2)).

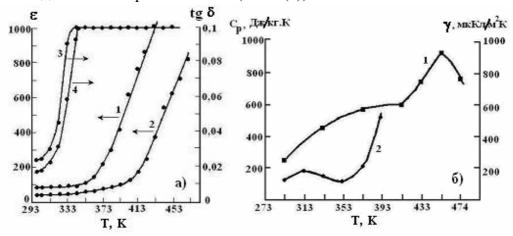


Рис. 4.

а)-Температурные зависимости ε и tg δ композита ПВДФ+ПКР-3М: 1,3—до поляризации; 2,4—после поляризации при $T_n=373~K;~E_n=3~MB/~M.;~\Phi=50\%$ об. ПКР-3М; б)-Температурные зависимости удельной теплоемкости (1) и пирокоэффициента (2) композита ПВДФ+50% об. ПКР-3М.

На Рис. $4(a,\delta)$ сопоставлены температурные зависимости диэлектрической проницаемости (ϵ), $tg\delta$ и пирокоэффициента (γ) композита ПВДФ+ПКР-3М.

М.К.КЕРИМОВ, М.А.КУРБАНОВ, Ф.Г.АГАЕВ, С.Н.МУСАЕВА, Э.А.КЕРИМОВ, Г.Х.КУЛИЕВА

Видно, что характер изменения функций γ =f(T) и ϵ =f(T) не совпадает. Следует также отметить, что температурные зависимости ϵ композита ПВДФ+ПКР-3M до и после поляризации заметно отличаются. Величина температуры, при которой наблюдается резкий рост ϵ в случае поляризованных образцов сдвигается в сторону высоких температур, что, по-видимому, связано с усилением межфазных взаимодействий в процессе электротермополяризации. Эффект уменьшения ϵ пока трудно однозначно объяснить, однако, в первом приближении, можно предположить, что он связан ориентацией и монодоменизацией пирочастиц в поле инжектированных зарядов [7]. Пирокоэффициент композита ПВДФ+ПКР-3M сначала в окрестности комнатной температуры растет, достигает максимума, затем уменьшается до 353K, а потом растет быстрее, чем по линейному закону. На Рис.4(б) также показана температурная зависимость удельной теплоемкости композита. Сопоставление зависимостей γ (T), ϵ (T) и C_P (T) показывает, что вклад температурных изменений ϵ и C_P в изменение пирокоэффициента от температуры не является определяющим.

Как известно, пирокоэффициент γ , являющийся мерой пироактивности диэлектриков, определяется выражением $\Delta P/\Delta T$, где ΔP - остаточная реориентационная поляризация в пирокерамике [1]. Любой метод определения γ сводится к измерению с единицы поверхности диэлектрика заряда $\Delta Q \sim \Delta P$, возникающего на электродах образца при изменении температуры. Учитывая это фундаментальное понятие, можно считать, что характер изменения пирокоэффициента от температуры, в основном, определяется релаксацией доменов в поле инжектированных зарядов, аккумулированных на границе полимер-пирокерамика.

- 1. М.Лайнс, А.Гласс, Сегнетоэлектрики и родственные им материалы, (1981).
- 2. R.Hayкawa, Y.Wada, Adv. Polym. Sci., №11 (1973) 1.
- 3. С.Н.Мусаева, М.Г.Шахтахтинский, М.А.Курбанов, Ф.И.Сеидов, А.И.Мамедов, А.О.Рагимов, *Физика*, **III** №1 (1997) 48.
- 4. Энциклопедия полимеров, Советская энциклопедия, Москва, 1, 2, 3 (1972).
- 5. В.Е.Басин, Адгезионная прочность. Москва, Химия, (1981).
- 6. Б.С.Колупаев, Релаксационные термические свойства наполненных полимерных систем. Львов. Вица школа, (1980) 200.
- 7. Н.И.Мякин, И.И.Лифанов, Измерительная техника, №2 (1977) 19.

POLİMER-PİROKERAMİKA KOMPOZİTDƏ İSTİLİK-FİZİKİ PROSESLƏRİN ONLARDA PİROELEKTRİKLİYİN FORMALAŞMASINA TƏSİRİ

M.K.KƏRİMOV, M.Ə.QURBANOV, F.Q.AĞAYEV, S.N.MUSAYEVA, E.A.KƏRİMOV, G.X.QULİYEVA

Polimer-müxtəlif strukturlu pyezokeramika kompozitlərdə piroelektrik effektinin formalaşması xüsusiyyətlərinə baxılmışdır. Polimer-pirokeramika heterogen sistemdə piroelektrikliyin formalaşmasında istilik-fiziki effektlərin (temperatur keçiriciliyi, termik genişlənmə, istilik tutumu) mümkün rolu müzakirə edilmişdir. Təcrübi olaraq göstərilmişdir ki, kompozitin termik genişlənməsi nəticəsində yaranan polyarizasiyanın temperatur dəyişməsinə uyğun piroelektrik effekti kiçikdir.

INFLUENCE OF THERMAL PROCESSES IN POLYMER-PYROCERAMICS COMPOSITES ON FORMATION THE PYROELECTRICITY

M.K.KERIMOV, M.A.KURBANOV, F.G.AGAEV, S.N.MUSAEVA, E.A.KERIMOV, G.KH.GULIEVA

Features of formation the pyroelectric effect in composites polymer-piezoceramics of various structures were considered. Possible contributions of thermal effects (thermal diffusivity, thermal expansion, thermal capacity) in formation of pyroelectricity in heterogeneous system polymer-pyroceramics were discussed. It was experimentally shown that pyroelectricity corresponding to temperature change of polarization owing to thermal expansion of a composite insignificantly.

ВЛИЯНИЕ ТЕПЛОФИЗИЧЕСКИХ ПРОЦЕССОВ В КОМПОЗИТАХ ПОЛИМЕР-ПИРОКЕРАМИКА НА ФОРМИРОВАНИЕ В НИХ ПИРОЭЛЕКТРИЧЕСТВА

Редактор: С.Мехтиева