# КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ КРИСТАЛЛОВ *Y*<sub>2</sub>*O*<sub>2</sub>*S*-*Er*<sup>+3</sup> Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, А.А.МАМЕДОВ

Институт физики НАН Азербайджана AZ 1143, Баку, пр.Г.Джавида,33

Методом позиционной симметрии определено число нормальных колебаний в кристаллах  $Y_2O_2S$ , их тип симметрии. Используя технику операторов проектирования, получена детальная информация о динамике движения атомов в элементарной ячейке  $Y_2O_2S$ , построены матрицы координат симметрии. Определены частоты нормальных колебаний  $Y_2O_2S$  активные в спектрах комбинационного рассеяния света. Определены величины шести силовых постоянных в  $Y_2O_2S$ .

иттрия, активированные Оксисульфиды многими редкоземельными трехвалентными (РЗ<sup>3+</sup>) ионами, обладают большим квантовым выходом люминесценции как при фото, так и при катодовозбуждении. В последнее время полупроводниковым возрос интерес к материалам, активированным редкоземельными ионами  $Er^{3+}$ , с целью создания на их основе миниатюрных лазеров с длиной волны излучения  $\lambda ≥ 2 м \kappa M$ . Для выяснения перспективности использования полупроводникового материала, как лазерного, а также для определения максимальной длины волны генерации, необходимо исследование его колебательных спектров. Целью настоящей работы является определение числа нормальных колебаний в кристаллах  $Y_2O_2S$ , получение детальной информации о динамики движения атомов в элементарной ячейке, определение частоты нормальных колебаний кристаллов  $Y_2O_2S$  активных в спектрах комбинационного рассеяния света, а также определение постоянных в кристаллах силовых оксисульфидов.

Теоретико-групповые методы анализа фундаментальных колебаний кристаллов позволяют однозначно определить число колебаний, их тип симметрии, а также указать условия при использовании того или иного метода исследования. Проведем классификацию колебаний кристалла У2028 методом позиционной симметрии [1]. Для этого необходимо воспользоватся таблицей характеров неприводимых представлений точечной группы  $D_{3d}$  [2]. Возможные позиции атомов в группе  $D_{3d}^3$  следующие:  $2D_{3d}(1)$ ,  $2C_{3v}(2)$ ,  $2C_{2h}(3)$ ,  $2C_2(6)$ ,  $C_s(6)$ ,  $C_1(12)$ . Позиции атомов определяется однозначно:  $C_{3v}$  для атомов Y и O и  $D_{3d}$  для атомов S (в других позициях может размешаться только три или более атомов). представления позиционной группы D<sub>3d</sub> Векторные не содержатся В представлениях  $A_{1g}$ ,  $A_{2g}$ ,  $E_{g}$  и  $A_{2u}$  группы  $D_{3d}$  кристалла. Представление  $E_{u}$ группы  $D_{3d}$  содержит одно векторное представление  $E_{u}$  и по одному векторному представлению  $(E_u + E_g)$  для Y и O. Поэтому в полное колебательное представление группы  $D_{3d}$  входят три представления  $E_u$  и два  $E_g$ :

$$\Gamma = 3A_{2u} + 2A_{1g} + 3E_u + 2E_g.$$
(1)

Форма нормальных колебаний, т.е. направление и амплитуда смешения каждого атома находятся при полном решении колебательной задачи. Теоретикогрупповые методы позволяют сделать выводы о форме колебаний, не прибегая к

#### Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, А.А.МАМЕДОВ

полному расчету. Детальную информацию содержат координаты симметрии, определяемые с помощью операторов проектирования [3].

Если вектор смещения  $U_e$  -го атома имеет компоненты  $x_l$ ,  $y_l$ ,  $z_l$  то в результате действия оператора проектирования на каждую компоненту (например,  $x_l$ ) получим линейные комбинации компонент смещения других атомов, называемые базисными функциями  $U_x^{\alpha}$ :

$$U_{x}^{\alpha} = (f_{\alpha} / f) \sum_{n} (\tau_{ij}^{\alpha})^{*} R x_{l}, \quad h \in G_{0},$$
(2)

где f - размерность фактор группы  $G_o$ ,  $f_\alpha$  - размерность  $\alpha$  -го неприводимого представления,  $\tau_{ij}^{\alpha}$  - матричный элемент i -ой строки; j -го столбца матрицы неприводимого представления фактор группы  $G_o$ , R - оператор матрицы преобразования, соответствующий элементу  $h \in G_o$ .

Такие же функции можно найти для смещения  $U_y^{\alpha}$  и  $U_z^{\alpha}$ . Число различных базисных функций  $U^{\alpha}$  может быть меньше либо равно 3N, где N-число атомов в примитивной решетке. Базисные функции преобразуются по  $\alpha$ -му неприводимому представлению и, следовательно, относятся к определенному типу симметрии.

Сначала составляется матрицы неприводимых представлений группы  $D_{3d}$ , а затем трехмерные матрицы преобразования оператора R, соответствующих каждому элементу точечной группы  $D_{3d}^3$ . Для определения координат симметрии, преобразующихся по представлению  $A_{1g}$  пользуются формулой (2). В колебательное представление входит  $2A_{1g}$  и следовательно, будут две координаты симметрии  $U_1$  и  $U_2$ . Представление одномерно и все  $\tau_{ij} = 1$ . Нетрудно найти, что

$$\sum_{h} Rx_1 = 0, \quad h \in G_o.$$
(3)

Также найдем

$$\sum_{h} Ry_{1} = 0, \quad \sum_{h} RZ_{1} = 6Z_{1} - 6Z_{1} = 0, \qquad h \in G_{0}.$$
(4)

Таким образом можно сделать вывод, что атомы серы в колебаниях типа  $A_{1g}$  не участвуют. Далее найдем координаты симметрии для атомов кислорода и металла:

$$U_o = (Z_3 - Z_2)/2, \qquad U_M = (Z_5 - Z_4)/2.$$
 (5)

Координаты симметрии, преобразующиеся по другим представлениям, имеют следующий вид:

$$U_{s}(A_{2U}) = Z_{1}, \quad U_{o} = (A_{2U}) = \frac{Z_{2} + Z_{3}}{2}, \quad U_{M} = \frac{Z_{5} - Z_{4}}{2}.$$
 (6)

$$\begin{cases} U_{11} = 0 & U_{12} = 0 & O \\ U_{21} = \frac{y_2 - y_3}{2} & U_{22} = \frac{x_3 - x_2}{2} & O \\ U_{11} = 0 & U_{12} = 0 & M \\ U_{21} = \frac{y_4 - y_5}{2} & U_{22} = \frac{x_5 - x_4}{2} & U_{22} = \frac{x_5 - x_4}{2} & U_{22} = \frac{x_5 - x_4}{2} & U_{23} = 0 & S \end{cases}$$

$$(7)$$

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ КРИСТАЛЛОВ Y202S-Er<sup>+3</sup>

| $\begin{cases} U_{11} = \frac{x_2 + x_3}{2} \\ U_{21} = 0 \end{cases}$ | $U_{12} = \frac{y_2 + y_3}{2}$ $U_{22} = 0$ | 0                        |     |
|------------------------------------------------------------------------|---------------------------------------------|--------------------------|-----|
| $\begin{cases} U_{11} = \frac{x_4 + x_5}{2} \\ U_{21} = 0 \end{cases}$ | $U_{12} = \frac{y_4 + y_5}{2}$ $U_{22} = 0$ | $M \left\{ E_u \right\}$ | (8) |
| $\begin{cases} U_{11} = x_1 \\ U_{21} = 0 \end{cases}$                 | $U_{12} = y_1$ $U_{22} = 0$                 | S                        |     |

Дважды вырожденным колебаниям  $E_g$  и  $E_u$  соответствует движение атомов в плоскости *хоу*, при этом пары координат ( $U_{11}$  и  $U_{12}$ ,  $U_{21}$  и  $U_{22}$ ) объединяются следующим образом:

$$U_{s}(E_{g}) = 0 \qquad U_{s}(E_{u}) = U_{11} + iU_{12}$$

$$U_{M}(E_{g}) = U_{21} + iU_{22} \qquad U_{M}(E_{u}) = U_{11} + iU_{12} \qquad (9)$$

$$U_{o}(E_{g}) = U_{21} + iU_{22} \qquad U_{o}(E_{u}) = U_{11} + iU_{12}$$

Любые две координаты симметрии, преобразующиеся по одному неприведенному представлению, соответствуют одинаковому направлению смещения атомов:  $U(A_{1g})$  и  $U(A_{2u})$  по оси Z,  $U(E_u)$  и  $U(E_g)$  в плоскости *хоу*. Учитывая, что в каждом колебании участвуют все атомы ячейки, получим, что любая пара нормальных колебаний кристалла, преобразующихся по одному представлению, есть линейная комбинация соответствующих им координат симметрии:

$$\begin{split} & q_1(A_{1g}) = U_M(A_{1g}) - U_0(A_{1g}) , \\ & q_2(A_{1g}) = U_M(A_{1g}) + U_0(A_{1g}) , \\ & q_3(E_g) = U_M(E_g) - U_0(E_g) , \\ & q_4(E_g) = U_M(E_g) + U_0(E_g) , \end{split}$$



$$q_{5}(A_{2U}) = U_{M}(A_{2U}) - U_{0}(A_{2U}) + U_{S}(A_{2U})$$

$$q_{6}(A_{2u}) = U_{M}(A_{2u}) + U_{0}(A_{2u}) - U_{S}(A_{2u})$$

$$q_{7}(E_{u}) = U_{M}(E_{u}) - U_{0}(E_{u}) + U_{S}(A_{2u})$$

$$q_{8}(E_{u}) = U_{M}(E_{u}) + U_{0}(E_{u}) - U_{S}(A_{2u})$$

В матричной форме координаты симметрии могут быть представлены в виде квадратных субматриц 5-го порядка (Таблица1). Спектры комбинационного рассеяния света возбуждались излучением аргонового лазера с 488,0нм в  $90^{\circ}$ геометрии и  $\lambda_{\scriptscriptstyle B} = 476,3$  и ФЭУ комнатной регистрировались при температуре помощью двойного с монохроматора ДФС-24, с разрешением не хуже  $1CM^{-1}$ .

#### Рис.1.

Спектры комбинационного рассеяния света кристалла $Y_{1,88}$ Er<sub>0,12</sub>O<sub>2</sub>S при T=293K,  $\lambda$ =476,3нм.

#### Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, А.А.МАМЕДОВ

Излучение аргонового лазера обладает достаточной интенсивностью в непрерывном режиме для наблюдения активных в спектрах комбинационного рассеяния света колебаний, а возможность перестройки длины волны возбуждения позволило в эксперименте отстроиться от линий люминесценции ионов эрбия. На рис.1 приведен спектр комбинационного рассеяния света для кристаллов  $Y_{1.88}Er_{0,12}O_2S$  при различных направлениях поляризации падающего и рассеянного света. Частоты нормальных колебаний в спектрах комбинационного рассеяния света оказались следующими:

251 $cm^{-1} - v_1(A_{1g})$ , 475 $cm^{-1} - v_2(A_{1g})$ , 143 $cm^{-1} - v_3(E_g)$ , 447 $cm^{-1} - v_4(E_g)$ . Таблица 1.

|          |                | $Z_1$ | $Z_2$ | $Z_3$ | $Z_4$ | $Z_5$ |
|----------|----------------|-------|-------|-------|-------|-------|
|          | $S_1$          | 1     | 0     | 0     | 0     | 0     |
|          | $S_2$          | 0     | 1/√2  | 1/√2  | 0     | 0     |
| $U_Z$    | $S_3$          | 0     | 0     | 0     | 1/52  | 1/52  |
|          | $\mathbf{S}_4$ | 0     | -1/√2 | 1/52  | 0     | 0     |
|          | $S_5$          | 0     | 0     | 0     | 1/52  | -1/√2 |
|          | $S_1$          | 0     | -1/√2 | 1/√2  | 0     | 0     |
|          | $S_2$          | 0     | 0     | 0     | 1/52  | -1/√2 |
| $U_{xy}$ | $S_3$          | 0     | 1/52  | 1/52  | 0     | 0     |
| 2        | $S_4$          | 0     | 0     | 0     | 1/52  | 1/52  |
|          | $S_5$          | 1     | 0     | 0     | 0     | 0     |

Матрицы нормальных кординат кристалла  $Y_2O_2S$ 

Для анализа оптически активных нормальных колебаний вычислим силовые постоянные в кристаллах оксисульфида иттрия. Впервые метод F - G матриц для анализа оптически активных нормальных колебаний был применен для цепочечных полимеров с трансляционной симметрией [4,5]. В последствии он был распространен и для трехмерных кристаллических решеток. Одними из первых были исследованы важные в практическом отношении кристаллические решетки типа алмаза и флюорита [6]. Метод F - G матриц приводит к решению секулярного уравнения:

$$F \cdot G - \lambda E / = O, \qquad (10)$$

где *E* – единичная матрица одного порядка с матрицами *F* и *G*;  $\lambda = 4\pi^2 v^2 c^2$ , где *c* - скорость света, *v* – экспериментальное волновое число (*cм*<sup>-1</sup>).

Составление матриц обратных атомных масс G и матриц потенциальных энергий F производится в два этапа. На первом этапе матрицы F и G составляются во внутренних координатах.

Рассмотрим элементарную (*ijk*)-ую ячейку кристалла оксисульфида иттрия (рис.2). Ячейки соседние с данными могут быть обозначены индексами (i+1, j, k), (i-1, j, k) и т. д. Расстояния между атомами обозначены как  $r_1, r_2, r_3, ..., r_{26}$ .

Выражение для потенциальной энергии имеет вид:

$$2V = f_1 \sum_{i=1}^{2} \Delta r_i^2 + f_2 \sum_{i=3}^{8} \Delta r_i^2 + f_3 \sum_{i=9}^{14} \Delta r_i^2 + f_4 \sum_{i=15}^{20} \Delta r_i^2 + f_5 \sum_{i=21}^{23} \Delta r_i^2 + f_6 \sum_{i=24}^{26} \Delta r_i^2 , \qquad (11)$$

где  $f_i$  – силовые постоянные. Силовые постоянные  $f_i$ , где  $i = 1 \div 6$  соответствуют следующими видами связи:

$$\begin{split} f_1 &\Rightarrow Y(C_{3\nu}) - O(C_{3\nu}) \ , \ f_2 \Rightarrow Y(C_{3\nu}) - O(C_{3\nu}) \ , \ f_3 \Rightarrow Y(C_{3\nu}) - S(D_{3d}) \ , \ f_4 \Rightarrow O(C_{3\nu}) - S(D_{3d}) \ , \\ f_5 &\Rightarrow O(C_{3\nu}) - O(C_{3\nu}) \ , \ f_6 \Rightarrow Y(C_{3\nu}) - Y(C_{3\nu}) \end{split}$$

В матричной форме

$$2V = R^{+}F_{i}R = X^{+}B^{+}F_{i}BX = X^{+}F_{c}X, \qquad (12)$$

Где  $F_i$  и  $F_c$  - матрицы потенциальных энергий в нормальных и декартовых координатах, соответственно, R и X векторы смещений в нормальных и декартовых координатах, соответственно.

## Таблица 2.

| Мат | рица | $B_{\rm v}^1$ |  |
|-----|------|---------------|--|
|     |      | - x           |  |

| $\Lambda \tau_i$ | <i>N</i> =1        | 2                 | 3                  | 4                 | 5                 |
|------------------|--------------------|-------------------|--------------------|-------------------|-------------------|
| 1                | 0                  | 0                 | 0                  | 0                 | 0                 |
| 2                | 0                  | 0                 | 0                  | 0                 | 0                 |
| 3                | 0                  | $-\cos \alpha/2$  | 0                  | $\cos \alpha / 2$ | 0                 |
| 4                | 0                  | $\sin \alpha$     | 0                  | $-\sin \alpha$    | 0                 |
| 5                | 0                  | $-\sin \alpha/2$  | 0                  | $\cos \alpha / 2$ | 0                 |
| 6                | 0                  | 0                 | $\cos \alpha / 2$  | 0                 | $-\cos \alpha/2$  |
| 7                | 0                  | 0                 | $-\sin \alpha$     | 0                 | $\sin \alpha$     |
| 8                | 0                  | 0                 | $\cos \alpha / 2$  | 0                 | $-\cos \alpha/2$  |
| 9                | $\cos\beta/2$      | 0                 | 0                  | $-\cos\beta/2$    | 0                 |
| 10               | $\cos\beta/2$      | 0                 | 0                  | $-\cos\beta/2$    | 0                 |
| 11               | $-\sin\beta$       | 0                 | 0                  | $\sin \beta$      | 0                 |
| 12               | $-\cos\beta/2$     | 0                 | 0                  | 0                 | $\cos \beta/2$    |
| 13               | $\sin \beta$       | 0                 | 0                  | 0                 | $\sin\beta$       |
| 14               | $-\cos\beta/2$     | 0                 | 0                  | 0                 | $\cos \beta/2$    |
| 15               | $\cos \gamma / 2$  | 0                 | $-\cos \gamma / 2$ | 0                 | 0                 |
| 16               | $-\sin\gamma$      | 0                 | $\sin \gamma$      | 0                 | 0                 |
| 17               | $\cos \gamma / 2$  | 0                 | $-\cos \gamma / 2$ | 0                 | 0                 |
| 18               | $-\cos \gamma / 2$ | $\cos \gamma / 2$ | 0                  | 0                 | 0                 |
| 19               | $\sin \gamma$      | $-\sin\gamma$     | 0                  | 0                 | 0                 |
| 20               | $-\cos \gamma/2$   | $\cos \gamma / 2$ | 0                  | 0                 | 0                 |
| 21               | 0                  | $-\cos \delta/2$  | $\cos \delta / 2$  | 0                 | 0                 |
| 22               | 0                  | $\sin\delta$      | $-\sin\delta$      | 0                 | 0                 |
| 23               | 0                  | $-\cos \delta/2$  | $\cos \delta / 2$  | 0                 | 0                 |
| 24               | 0                  | 0                 | 0                  | $-\cos\theta/2$   | $-\cos\theta/2$   |
| 25               | 0                  | 0                 | 0                  | $\sin \theta$     | $\sin 	heta$      |
| 26               | 0                  | 0                 | 0                  | $-\cos\theta/2$   | $\cos \theta / 2$ |

Матрица *В* может быть представлена в виде суммы трех матриц  $B_X^1$ ,  $B_Y^1$  и  $B_Z^1$ , причем

$$B_{X}^{+'}F_{i}^{'}B_{X}^{'} = B_{Y}^{+'}F_{i}^{'}B_{Y}^{'}.$$
 (13)

Матрицы  $B_X^1$  и  $B_Z^1$  приведены в Таблице2 и Таблице3, а на Рис.2. обозначены углы, входящие в элементы матрицы B'. Матрицы  $F_i$  и  $G_i$  а также  $F_C$  и  $G_C$  являются матрицами одного порядка.

## Таблица 3

| $\Delta 	au_i$ | <i>N</i> =1   | 2             | 3              | 4              | 5             |
|----------------|---------------|---------------|----------------|----------------|---------------|
| 2              | 0             | 0             | 1              | 1              | 0             |
| 3              | 0             | -1            | 0              | 0              | 1             |
| 4              | 0             | $\cos \alpha$ | 0              | $-\cos \alpha$ | 0             |
| 5              | 0             | $\cos \alpha$ | 0              | $-\cos \alpha$ | 0             |
| 6              | 0             | $\cos \alpha$ | 0              | $-\cos \alpha$ | 0             |
| 7              | 0             | 0             | $-\cos \alpha$ | 0              | $\cos \alpha$ |
| 8              | 0             | 0             | $-\cos \alpha$ | 0              | $\cos \alpha$ |
| 9              | 0             | 0             | $-\cos \alpha$ | 0              | $\cos \alpha$ |
| 10             | $-\cos\beta$  | 0             | 0              | $\cos eta$     | 0             |
| 11             | $-\cos\beta$  | 0             | 0              | $\cos \beta$   | 0             |
| 12             | $-\cos\beta$  | 0             | 0              | $\cos \beta$   | 0             |
| 13             | $\cos \beta$  | 0             | 0              | 0              | $-\cos\beta$  |
| 14             | $\cos \beta$  | 0             | 0              | 0              | $-\cos\beta$  |
| 15             | $\cos \beta$  | 0             | 0              | 0              | $-\cos\beta$  |
| 16             | $\cos \gamma$ | 0             | $-\cos\gamma$  | 0              | 0             |
| 17             | $\cos \gamma$ | 0             | $-\cos\gamma$  | 0              | 0             |
| 18             | $\cos \gamma$ | 0             | $-\cos\gamma$  | 0              | 0             |
| 19             | $-\cos\gamma$ | $\cos \gamma$ | 0              | 0              | 0             |
| 20             | $-\cos\gamma$ | $\cos \gamma$ | 0              | 0              | 0             |
| 21             | $-\cos\gamma$ | $\cos \gamma$ | 0              | 0              | 0             |
| 22             | 0             | $-\cos\gamma$ | $\cos\delta$   | 0              | 0             |
| 23             | 0             | $-\cos\gamma$ | $\cos\delta$   | 0              | 0             |
| 24             | 0             | $-\cos\gamma$ | $\cos\delta$   | 0              | 0             |
| 25             | 0             | 0             | 0              | $\cos 	heta$   | $-\cos\theta$ |
| 26             | 0             | 0             | 0              | $\cos 	heta$   | $-\cos\theta$ |
|                | 0             | 0             | 0              | $\cos 	heta$   | $-\cos\theta$ |

Матрица  $B_z^1$ 

На втором этапе переходим к декартовым координатам. Выполнение умножения  $B_{Z}^{+}F_{i}B_{Z}$  и  $B_{X}^{+}F_{i}B_{X}^{-}$  приводит к двум квадратным матрицам  $F_{CZ}^{-}$  и  $F_{CX}^{-}$  пятого порядка. Для диагонализации матриц  $F_{CZ}^{-}$  и  $F_{CX}^{-}$  воспользуемся матрицами нормальных координат (Таблица 1):

Симметризация матрицы  $F_{CZ}$  приводит к двум матрицам:

$$A_{1g} \begin{bmatrix} f_1 + 3f_2 \cos^2 \alpha + 3f_4 \cos^2 \gamma + 6f_5 \cos^2 \delta & -f_1 + 3f_2 \cos^2 \alpha \\ -f_1 + 3f_2 \cos^2 \alpha & f_1 + 3f_2 \cos^2 \alpha + 3f_3 \cos^2 \beta + 6f_6 \cos^2 \theta \end{bmatrix} (15)$$

$$A_{2U}\begin{bmatrix} 6f_{3}\cos^{2}\beta + 6f_{4}\cos^{2}\gamma & -3\sqrt{2}f_{4}\cos^{2}\gamma & -3\sqrt{2}f_{3}\cos^{2}\beta \\ -3\sqrt{2}f_{4}\cos^{2}\gamma & f_{1} + 3f_{2}\cos^{2}\alpha + 3f_{4}\cos^{2}\gamma & -(f_{1} + 3f_{2}\cos^{2}\alpha) \\ -3\sqrt{2}f_{3}\cos^{2}\beta & -(f_{1} + 3f_{2}\cos^{2}\alpha) & f_{1} + 3f_{2}\cos^{2}\alpha + 3f_{3}\cos^{2}\beta \end{bmatrix}$$
(16)

Симмметризация матрицы  $F_{CX}$  приводит к двум матрицам:

δ)

d (Gy)

c (C<sub>3V</sub>)

α *V*3

 $(\mathcal{D}_{\mathcal{M}})$ 

$$E_{U}\begin{bmatrix} 1,5(f_{2}\sin^{2}\alpha + f_{4}\sin^{2}\gamma) & -1,5f_{1}\sin^{2}\alpha & -1,5\sqrt{2}f_{4}\sin^{2}\gamma \\ -1,5f_{1}\sin^{2}\alpha & 1,5(f_{2}\sin^{2}\alpha + f_{3}\sin^{2}\beta) & -1,5\sqrt{2}f_{3}\sin^{2}\beta \\ -1,5\sqrt{2}f_{4}\sin^{2}\gamma & -1,5\sqrt{2}f_{3}\sin^{2}\beta & 3(f_{3}\sin^{2}\beta + f_{4}\sin^{2}\gamma) \end{bmatrix}.$$
 (18)



Процедура симметризации матриц обратных масс приводит к двухмерным матрицам для колебаний  $A_{1g}$  и  $E_{g}$ 

$$\begin{bmatrix} \mu_0 & O \\ & & \\ O & & \mu_M \end{bmatrix}$$
(19)

и трехмерные для  $A_{2U}$  и  $E_U$ 

$$A_{2U}\begin{bmatrix} \mu_{S} & O & O \\ O & \mu_{O} & O \\ O & O & \mu_{m} \end{bmatrix} \qquad H \qquad E_{U}\begin{bmatrix} \mu_{O} & O & O \\ O & \mu_{M} & O \\ O & O & \mu_{S} \end{bmatrix}$$
(20)



Элементарная ячейка (*a*), принятые валентные углы (б) в структуре оксисульфида иттрия.

Нетрудно видеть, что определители для колебаний типа  $A_{2U}$  и  $E_U$  с помощью линейных преобразований сводятся к двухмерным. Линейная зависимость предполагает равенство нулю определителя матриц *F* для колебаний типа  $A_{2U}$  и  $E_U$ :

$$-\lambda^{3} + I_{2}\lambda^{2} - I_{1}\lambda + I_{0} = 0, \qquad (21)$$

где  $I_0$  – определитель матриц  $F_c$  для  $A_{2U}$  и  $E_U$ ,  $I_0 = 0$ ,  $I_1$  – сумма миноров по диагональным элементам матриц  $F_c$  для  $A_{2U}$  и  $E_U$ ,  $I_2$  след матриц  $F_c$  для  $A_{2U}$  и  $E_U$  [7].

Это соответствует равенству нулю частот акустических колебаний  $A_{2U}$  и  $E_U$ . Для определения силовых постоянных необходимо решить задачу оптимизации. Целевая функция составляется в виде суммы

$$\delta = \sum_{i=1}^{6} (v_i^{3\kappa cn} - v_i^{pacu})^2 .$$
 (22)

#### Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, А.А.МАМЕДОВ

Значения силовых постоянных подбираются таким образом, чтобы целевая функция (22) была минимальна. Модель, учитывающая все шесть связей позволила получить значения силовых постоянных и вычисленные значения силовых постоянных, представлены ниже:

 $f_1 = 138 \text{Hm}^{-1}, f_2 = 83 \text{Hm}^{-1}, f_3 = 37 \text{Hm}^{-1}, f_4 = 4 \text{Hm}^{-1}, f_5 = 14 \text{Hm}^{-1}, f_6 = 59 \text{Hm}^{-1}.$ 

Проанализируем вычисленные значения силовых постоянных. Силовые постоянные  $f_1$  и  $f_2$  отвечают за связи металл-кислород вдоль оси  $C_3$  и перпендикулярно ей, соответственно. При замене кислорода на серу взаимодействие между кислородом в позиции  $C_{3V}$  и кислородом (серой) в позиции  $D_{3d}$  увеличиваются, что связано с большей поляризуемостью серы.

Силовые постоянные  $f_4$  при переходе от оксидов иттрия к оксисульфиду иттрия практически не изменяется, что говорит о слабом влиянии серы (кислорода) в позиции  $D_{3d}$  на группу атомов, объединенную в параллелограмм  $Y_2O_2$ , Рис.2. Это подтверждается тем, что силовые постоянные  $f_4: O(C_{3V}) - O(C_{3v})$ или  $S(D_{3d})$  и  $f_5 \Rightarrow O(C_{3V}) - O(C_{3V})$  существенно слабее силовых постоянных, отвечающих за связи металла с кислородом, находящимся в позициях  $C_{3V}$ . Следует отметить, что в оксисульфидах также как и в оксидах сера (кислород) в позиции  $D_{3d}$  является наиболее слабо связанной в кристаллической решетке. Можно допустить, что ионы  $S^{2-}$  – могут мигрировать вдоль оси  $C_3$  через регулярную пустоту в центре элементарной решетки (позиция ( $00\frac{1}{2}$ )).

Если миграция возможна, то это автоматически влечет к анизотропии свойств, связанных с распространением тепловых колебаний и массопереносом ионов  $S^{2-}$  в направлении оси  $C_3$ 

- 1. Г.И.Жижин, Б.Н.Маврин, В.Ф.Шабанов, Оптические колебательные спектры кристаллов.-М.: Наука, (1984).
- 2. D.L.Roussean, R.P.Bauman, J.Raman spectroscopy, 10 (1981) 253.
- 3. Дж.Эллиот, П.Добер, Симметрия в физике.-М: Мир, 1 (1983).
- 4. T.Miyazawa, J.Chem. Phys., 35 (1961) 693.
- 5. L.Piseri, G.Zerbi, J.of Molec. Spectr., 26 (1968) 254.
- 6. О.Я.Манаширов, Е.П.Селихова, В.Н.Власова, *сб: Люминофоры. Синтез и исследование*, вып.16 (1976) 45.
- 7. Г.Корн, Т.Корн, Справочник по математике для научных работников и инженеров.-М.: Наука, (1977).

## Y<sub>2</sub>O<sub>2</sub>S-Er<sup>+3</sup> KRİSTALLARIN RƏQS SPEKTLƏRİ

### H.İ.ABUTALIBOV, V.Z.QASIMOV, A.Ə.MƏMMƏDOV

 $Y_2O_2S$ - $Er^{+3}$  kristallarında mövqe simmetriyası metodunu tətbiq etməklə normal rəqslərin sayı və simmetriyası təyin edilmlşdir. Proeksiya operatorları texnikasından istifadə etməklə atomların hərəkətinin dinamikası barədə tam məlumat alınmış, koordinat simmetriyası matrisaları qurulmuşdur. İşığın kombinasion səpilmə spektrlərində aktiv olan normal rəqslərin tezliyi təyin edilmişdir.  $Y_2O_2S$ -də altı ədəd güc sabitləri təyin edilmişdir.

# VIBRATIONAL SPECTRUM OF CRYSTAL $Y_2O_2S$ - $Er^{+3}$

## H.I.ABUTALIBOV, V.Z.QASIMOV, A.A.MAMEDOV

Number of normal vibration and type their symmetry in crystal  $Y_2O_2S-Er^{+3}$  was obtained. By using technique operators of project, detailed information about dynamics motion of atoms in elementary cell  $Y_2O_2S-Er3^+$  was got and matrix of co-ordinate symmetry was constructed. Frequency of normal vibration  $Y_2O_2S-Er^{+3}$  active in spectra combinative diffused light was obtained. Value of force constants in  $Y_2O_2S-Er^{+3}$  was obtained.

Редактор: Б.Аскеров