РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ КАТИОННОГО ЗАМЕЩЕНИЯ НА ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В

Cu_{15x} Ag_{1+x} Se (x=0, 0.4, 0.5)

Ю.Г. АСАДОВ, Р.Б.БАЙКУЛОВ

Институт Физики НАН Азербайджана AZ 1143, Баку, Г.Джавида, 31

Высокотемпературным рентгендифрактометрическим методом исследовались монокристаллы Cu_{1.6}Ag_{0.4}Se. Показано, что образцы при комнатной температуре двухфазные и состоят из ромбической фазы CuAgSe с параметрами решетки a=4.104Å, b=20.350Å, c=6.350Å и ромбической фазы Ag₂Se с параметрами a=4.333Å, b=7.062Å, c=7.764Å. Этот двухфазный образец при 540К переходит в единую ГЦК фазу с параметром a=5.896Å.

Соединение CuAgSe образуется при соотношении CuSe:Ag₂Se=1:1 по перитектической реакции при температуре 1033 К [1]. Кристаллическая структура низкотемпературной модификации в [2] определена как тетрагональная с параметрами элементарной ячейки a=4.083Å, c=6.30Å, Z=2, пр.гр. D^{7}_{4h} – P4/nmm и ρ_x =7.91г/см³. Позднее в [3] кристаллическая структура CuAgSe определена как ромбическая с параметрами элементарной ячейки a=4.105 Å, b=20.35 Å, c=6.31 Å, Z=10, ρ_x =7.88г/см³. Последняя является сверхструктурой тетрагональной решетки. Параметр b_p ромбической решетки кратен пяти параметрам b_t тетрагональной решетки (b_p=5b_t). По данным [3] в ромбической структуре CuAgSe атомы Ag находятся в плоскостях перпендикулярных оси <u>с</u>. Около каждого из них располагается 4 атома Ag на расстояниях 2.96Å и 6 атомов Se на расстояниях 2.67Å (4Se), 3.59Å (1Se) и 3.64Å (1Se). Атомы Se образуют втянутые тетраэдры, в центре которых находятся атомы Cu. Расстояние Se-Se=3.03Å, Cu-Se=2.06Å – 2.50Å и наименьшее расстояние Cu-Ag=2.98Å.

Как показано в [4], 11 дифракционных отражений, зафиксированных в интервале $10^{\circ} \le 20 \le 90^{\circ}$ от кристалла CuAgSe, при комнатной температуре (293K) остаются неизменными до 495K. При 545K все 11 дифракционных отражений исчезают и в прежнем интервале углов фиксируется четыре новых отражения от плоскостей с индексами: (111), (200), (220) и (311), принадлежащие высокотемпературной ГЦК модификации с параметрами элементарной ячейки a=6.0823 Å, Z=4, пр.гр. Fm3m и $\rho_x=7.39$ г/см³.

Кристаллы Cu_{0.5}Ag_{1.5}Se, где соотношение катионов изменено, при комнатной температуре двухфазные. Одна фаза кристаллизуется в структуре ромбической фазы Ag₂Se [5], где параметры элементарной ячейки a=4.333Å, b=7.062Å, c=7.764Å, а вторая - в ромбической структуре CuAgSe. Обе фазы при 488К одновременно превращаются в единую высокотемпературную ГЦК модификацию с параметром элементарной ячейки a=6.1068Å [6].

Двухфазные при комнатной температуре образцы $Cu_{0.5}Ag_{1.5}Se$, при температуре выше 488К становятся однофазными со структурой высокотемпературной модификации CuAgSe. В противном случае при 408К ромбическая модификация Ag₂Se превращалась бы в ОЦК [7], а ромбическая модификация CuAgSe при 504К превращалась бы в ГЦК модификацию. Следовательно, выше 504К образец состоял бы двух ОЦК+ГЦК модификаций.

В данной работе также рассматривается влияние катионного замещения на структурные аспекты полиморфных превращений в Cu_{1.6}Ag_{0.4}Se. Условия синтеза и

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ КАТИОННОГО ЗАМЕЩЕНИЯ НА ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В Си $_{_{1\mp X}}$ Ag $_{_{1\pm X}}$ Se (x=0, 0.4, 0.5)

методы выращивания монокристаллов состава $Cu_{1.6}Ag_{0.4}Se$ не отличались от синтеза и методов получения монокристаллов CuAgSe и $Cu_{0.5}Ag_{1.5}Se$ [7].

Исследование при высоких температурах проводились на дифрактометре ДРОН-3М (Си_а – излучение, Ni – фильтр, λ_{α} =1.5418Å) с высокотемпературной приставкой УРВТ-2000 в вакууме (10⁻¹Па). Условие разрешения записи составляло ~0.1°. Использовался режим непрерывного сканирования. В экспериментах ошибка определения углов не превышала $\Delta \theta$ =±0.02°.

При комнатной температуре (293К) от кристаллического слитка $Cu_{1.6}Ag_{0.4}Se$ в произвольной ориентации вырезали образцы (размером $2 \times 4 \times 6$ мм), для них в интервале углов $10^{\circ} \le 2\theta \le 90^{\circ}$ зафиксированы 18 четких дифракционных отражений (Рис.1 и Таблица1).

Рис 1.

Температурная дифрактометрическая запись кристалла Cu_{1.6}Ag_{0.4}Se.

Как видно из Таблицы1 из 18 отражений 14 индицируются на основе параметров ромбической фазы CuAgSe, а оставшиеся 4 и 7 из 14 индицируются также на основе параметров ромбической фазы Ag_2Se . Отсюда следует, что кристаллы $Cu_{1.6}Ag_{0.4}Se$ при комнатной температуре двухфазные, как и кристаллы $Cu_{0.5}Ag_{1.5}Se$.

После записи дифракционных отражений при комнатной температуре, не изменяя ориентации кристалла, включали печь и через каждые 50К проводили контрольные дифракционные записи. Температура образца перед началом каждой записи выдерживалась постоянной в течении 50 минут.

Таблица1.

Рентгенографические характеристики кристалла Cu_{1.6}Ag_{0.4}Se при различных температурах.

[· · · · · · · · · · · · · · · ·		1 /1					
	θ		$d_{ m 3 \kappa c \pi} { m \AA}$	CuAgSe		Ag ₂ Se		Параметры элементарной ячейки. Å	
Т, К		I/I_{\circ}		1 8 111		d Å 1.1.1			
				d _{расч} А	hkl	d _{расч} А	hkl		
1	2	3	4	5	6	7	8	9	
	13° 08'	60	3.3916	3.3917	060				
	15° 28'	40	2,8916	2.8902	150			Ромбическая	
	17° 09'	50	2.6710	2.0702	150	2 6121	022	фаза CuAgSe	
	17 05	40	2.0145	2 4929	112	2.0121	022	a=4.1038	
	18 03	40	2.4850	2.4828	112	2 2210	102	h=20.3496	
	20° 19	80	2.2203	2.2207	1/1	2.2219	103	c = 6.3096	
	21° 21'	40	2.1175			2.1194	113	7-10	
	22° 15'	100	2.0362	2.0350	0 10 0			$\Sigma = 10$	
	24° 39'	10	1.8484			1.8466	220	IIp.1p. D $_{4h} - P4/IIIIIII$	
202	26° 03'	90	1.7554	1.7560	260			$\rho_x = 7.885 \Gamma/cM^{-1}$	
293	29° 21'	10	1.5728	1.5739	173				
	30° 40'	10	1 5122	110707	1,0	1 5166	015	Ромоическая	
	31° 51'	30	1.5122	1 4625	0.10.3	1.5100	105	фаза Ag ₂ Se	
	25% 001	10	1.4009	1.4023	0103	1.4018	105	a=4.333	
	33 09	10	1.3390	1.5400	084,311	1.5579	224	b=7.062	
	39° 57'	20	1.2006	1.2042	115,352			c=7.764	
	40° 27'	20	1.1882	1.1876	135	1.1885	225	Z=4	
	42° 39'	10	1.1378	1.1309	333	1.1358	160	пр.гр. Р2 ₁ 2 ₁ 2 ₁	
	48° 21'	10	1.0317	1.0323	314	1.0322	412	$\rho_x = 8.237 \ \Gamma/cm^3$	
	51° 33'	10	0.9844	1.9823	460	0.9841	430		
-	13° 06'	60	3.4005	3,3993	060				
	15° 26'	40	2 8959	2 8940	150			Ромбическая	
	17° 07'	50	2.6757	2.0740	150	2 6 1 8 0	022	фаза СиАуSe	
	17 07	30	2.0194	2 4952	110	2.0180	022	a=4 1048	
	18° 03	40	2.4884	2.4853	112	0.0000	102	h=20.3960	
373	20° 16	80	2.2255	2.2239	171	2.2228	103	c = 6.3180	
	21° 19'	40	2.1202			2.1209	113	7-10	
	22° 13'	100	2.0689	2.0396	0 10 0			$\Sigma = 10$	
	24° 37'	10	1.8505			1.8506	220	пр.гр. D _{4h} – P4/nmm $7.050 (3)$	
	26° 01'	90	1.7572	1.7571	260			$\rho_x = 7.858 \Gamma/cM^3$	
	29° 19'	10	1.5742	1.5760	173				
	30° 38'	10	1 5131	1.0700	1,0	1 5171	015	Ромбическая	
	30° 30'	20	1.5151	1 4651	0.10.2	1.5171	105	фаза Ag ₂ Se	
	31 49	30	1.4025	1.4031	0103	1.4022	105	a=4.3396	
	35 07	10	1.3402	1.3428	084,311	1.3395	224	b=7.0888	
	39° 54'	20	1.2019	1.2056	115,352			c=7.7652	
	40° 25'	20	1.1891	1.1891	135	1.1896	225	Z=4	
	42° 36'	10	1.1389	1.1313	333	1.1399	160	пр.гр. Р2 ₁ 2 ₁ 2 ₁	
	48° 19'	10	1.0323	1.0329	314	1.0337	412	$\rho_x = 8.192 \ \Gamma/cm^3$	
	51° 31'	10	0.9848	0.9840	460	0.9859	430		
	13° 03'	60	3.4141	3.4088	060				
	15° 23'	40	2,9058	2.9025	150			Ромбическая	
473	17° 03'	50	2 6293			2 6261	022	фаза CuAgSe	
	18° 00'	40	2.0275	2 1815	112	2.0201	022	a=4.1048	
	10 00 $20^{\circ} 14^{\circ}$	40	2.4740	2.4043	112	2 2272	102	b=20.3960	
	20° 14	80	2.2293	2.2294	1/1	2.2272	103	c = 6.3180	
	21° 16	40	2.1254			2.1257	113	Z-10	
	22° 11'	100	2.0421	2.0453	0 10 0			L=10	
	24° 35'	10	1.8531			1.8598	220	$p_{4h} = 14/mm$	
	25° 58'	85	1.7604	1.7631	260			$p_x = 7.038 \text{I/CM}$	
	29° 16'	10	1.5768	1.5758	173			Box 6	
	30° 35'	10	1.5154			1.5188	015	гомоическая	
	31° 46'	30	1.4642	1.4652	0.10.3	1.4643	105	φaзa Ag ₂ Se	
	35° 05'	10	1 3/12	1 3/11	084 311	1 3/36	224	a=4.3396	
	20° 51'	20	1.3412	1.3411	115 252	1.3430	224	b=7.0888	
	39 31	20	1.2032	1.2030	115,552	1.1020	225	c=7.7652	
	40° 22'	20	1.1911	1.1867	135	1.1928	225	Z=4	
	42° 34'	10	1.1395	1.1334	333	1.1459	160	пр.гр. Р2 ₁ 2 ₁ 2 ₁	
	48° 16'	10	1.0331	1.0338	314	1.0385	142	ρ _x =8.192 г/см ³	
	51° 28'	10	0.9854	1.9854	460	0.9909	430		

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ КАТИОННОГО ЗАМЕЩЕНИЯ НА ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В Си $_{_{1\pm \chi}}$ Ag $_{_{1\pm \chi}}$ Se (x=0, 0.4, 0.5)

1	2	3	4	5	6	7	8	9
	13° 01'	60	3.4217	3.4221	060			
	15° 21'	40	2.9124	2.9198	150			Ромбическая
	17° 01'	45	2.6338			2.6334	022	фаза CuAgSe
	17° 58'	40	2.4989	2.4942	112			a=4.1048
	20° 12'	70	2.2326	2.2398	171	2.2327	103	b=20.3960
	21° 14'	35	2.1290			2.1318	113	c=6.3180
	22° 10'	100	2.0432		0 10 0			Z=10
	24° 10'	10	1.8890			1.8824	220	пр.гр. $D_{4h}^{2} - P4/nmm$
522	25° 56'	80	1.7623		260			$p_x = 7.838 17 \text{CM}$
525	29° 14'	10	1.5784	1.5909	173			Ромбинеская
	30° 33'	10	1.5166			1.5169	015	daza Ag-Se
	31° 44'	25	1.4656	1.4695	0 10 3	1.4644	105	a=4 3396
	35° 03'	10	1.3423	1.3443	084,311	1.3509	224	b=7.0888
	39° 49'	20	1.2040	1.2057	115,352			c=7.7652
	40° 20'	20	1.1930	1.1895	135	1.1928	225	Z=4
	42° 32'	10	1.1540	1.1403	333	1.1540	160	пр.гр. Р2 ₁ 2 ₁ 2 ₁
	47° 07'	10	1.0521	1.0392	314	1.0521	415	$\rho_{\rm x} = 8.192 {\rm r/cm^3}$
	51° 11'	10	1.0036	0.9935	460	1.0037	430	
	15° 10'	50	2.9469	2.9479	200			
	21° 42'	30	2.0852	2.0845	220			ГЦК
	25° 42'	45	1.7775	1.7777	311			a=5.8958
573	26° 56'	100	1.8021	1.7020	222			пр.гр. Fm3m
	31° 32'	60	1.4740	1.4740	400			Z=4
	34° 45'	40	1.3525	1.3526	331			ρ _x =7.250 г/см ³
	35° 47'	60	1.3182	1.3184	420			
	15° 07'	60	2.9559	2.9516	200			
	21° 39'	30	2.0897	2.0871	220			ГЦК
	25° 40'	45	1.7795	1.7799	311			a=5.9032
673	26° 54'	100	1.7040	1.7041	222			пр.гр. Fm3m
	31° 30'	60	1.4754	1.4758	400			Z=4
	34° 42'	40	1.3541	1.3543	331			$\rho_x = 7.223 \ \Gamma/cm^3$
	35° 45'	60	1.3196	1.3200	420			

Продолжение Таблицы 1.

Как видно из Таблицы 1, в интервале температур 293÷523К в числах и интенсивностях дифракционных отражений изменений не происходит. При 573К все дифракционные отражения исчезают и в прежнем интервале углов фиксируются 7 новых отражений, принадлежащих высокотемпературной ГЦК фазе с параметром а=5.8958Å.

Лля определения температуры равновесия между низкои фазами высокотемпературными Cu_{1.6}Ag_{0.4}Se счетчик дифрактометра был установлен на максимуме интенсивности отражения от плоскости (0 10 0) ромбической модификации CuAgSe, который исчезает при полном превращении в ГЦК модификацию и, наоборот, восстанавливается при охлаждении. Этим способом уточнена температура превращения, которая равна 540±2К. Превращение обратимое и происходит по типу монокристалл-поликристалл.

На Рис.2 приведены температурные зависимости параметров решетки обеих ромбических и ГЦК фаз $Cu_{1.6}Ag_{0.4}Se$. Как видно из Рис.2 при температуре 473К параметры фазы, кристаллизующейся в структуре CuAgSe, резко отклоняются от линейности, а параметры <u>а</u> и <u>b</u> фазы кристаллизующейся в структуре Ag_2Se , также при 473 К отклоняются от линейности, а параметр <u>с</u> до температуры превращения сохраняет линейность.

Отклонения параметров от линейности при 473 К обеих ромбических фаз в основном связано с перераспределением двух сортов катионов. На Рис.3 представлены температурные зависимости плотности существующих фаз. При

превращении низкотемпературной ромбической фазы CuAgSe и Ag₂Se в единую ГЦК фазу разница плотности составляет $\Delta \rho_1 = 0.70$ и $\Delta \rho_2 = 0.47 \text{г/см}^3$. Как было сказано, это приводит к монокристалл-поликристалл превращениям.

Рис.2.

Температурная зависимость параметров решетки ромбической фазы CuAgSe, Ag₂Se и высокотемпературной ГЦК фазы.

Таблица	2.
---------	----

Коэффициенты теплового расширения низко- и высокотемпературной молификаций Сц₁ сА go 4Se.

Modriquin Cal. 61 (20.450)										
Состав	Гемпература, К	$\alpha_{[100]} 10^{-6} \mathrm{K}^{-1}$	$\alpha_{[010]} 10^{-6} K^{-1}$	$\alpha_{[001]} 10^{-6} \mathrm{K}^{-1}$	$\overline{\alpha} = \frac{\sum \alpha_i}{3} \cdot 10^{-6} K^{-1}$					
CuAgSe	293-373	3.046	28.502	16.641	16.063					
	293-473	21.931	28.174	-7.572	14.178					
	293-523	51.914	39.078	1.585	30.859					
Ag ₂ Se	293-373	19.040	47.437	1.932	22.803					
	293-473	35.772	50.348	6.583	30.901					
	293-523	9.101	67.846	-2.688	24.753					
ГЦК	573-673	12.551			12.551					

Из температурной зависимости параметров кристаллической решетки обеих ромбических и ГЦК фазы в интервале температур 293÷673К рассчитаны коэффициенты теплового расширения (Таблица2). Как видно из этой таблицы, коэффициенты теплового расширения рассчитанные из температурной зависимости параметров решетки, по кристаллографическим направлениям [100] и [010] намного сильнее чем в направлении [001]. Даже в направлении [001] в

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ КАТИОННОГО ЗАМЕЩЕНИЯ НА ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В Си $_{_{1\pm X}}$ Ag $_{_{1\pm X}}$ Se (x=0, 0.4, 0.5)

структуре CuAgSe при 473К и в Ag₂Se при 523К тепловое расширение становится отрицательным. Одной из причин нестабильности двухфазного кристалла Cu_{1.6}Ag_{0.4}Se является анизотропия коэффициента теплового расширения.

Рис.3 Температурная зависимость плотности CuAgSe, Ag₂Se и высокотемпературной ГЦК фазы.

Таблица З.

Кристаллическая структура существующих модификаций.

Состав	Модиф и-кация	Параметры решетки				Плотн (Γ/cM^3)	Темп. Превр.	Модифи	Параметры решетки		Плотн. $O(\Gamma/CM^3)$
		a, A	b, A	c, A	Z	p (1/em)	К	Ruquin	a, A	Z	P(1, 0M)
CuAgSe	Ромб.	4.104	20.349	6.309	10	8.51	504	ГЦК	6.0694	4	8.02
C110 5 A 91 5 St	Ag ₂ Se Ромб.	4.333	7.062	7.764	4	8.24	488	ГЦК	6.1068	4	6.65
0.0.1 281.50	CuAgSe Ромб.	4.105	20.350	6.310	10	7.78					
	Ag ₂ Se Ромб.	4.333	7.062	36.458	4	8.24	540	ГЦК	5.8958	4	7.25
Cu _{1.6} Ag _{0.4} Se	CuAgSe Ромб.	4.103	20.349	6.299	10	7.89					

В ТаблицеЗ приведены кристаллические параметры низко- и высокотемпературных модификаций и температуры структурных превращений $Cu_{I+X} Ag_{I+X} Se$ (x=0, 0.4, 0.5). Изменение количество катионов в одном случае за счет Cu ($Cu_{0.5}Ag_{1.5}Se$), а в другом Ag ($Cu_{1.6}Ag_{0.4}Se$), не зависимо от условий синтеза и методов выращивания, приводит монокристаллы к двухфазному состоянию при комнатной температуре: I – принимает ромбическую структуру CuAgSe, а II – ромбическую структуру Ag₂Se.

При повышении температуры обе фазы одновременно превращаются в единую ГЦК фазу. При охлаждении ГЦК фаза распадается на две фазы, которые существуют при комнатной температуре.

- 1. М.И. Агаев, Ш.М. Алекперова, М.И. Заргарова, *ДАН Азерб. ССР*, **27** (1971) №5 20.
- 2. J.W. Earley, Amer. Miner., 35 (1950) 345.
- 3. A.J. Frueh, G.K. Czamanke, Ch. Knight, Z. Kristallogr., Bd. 108 (1957) 389.

Ю.Г. АСАДОВ, Р.Б.БАЙКУЛОВ

- 4. Ш.К. Кязымов, Г.Ш. Гасанов, Ю.Г. Асадов, Докл. АН Азерб. ССР, **XII** №11 (1986) 33.
- 5. C.A. Weigers, Amer. Mineral., 56 (1971) 1882.
- 6. Yu.G. Asadov, G.A. Jabrailova, *Phys. Stat. Sol.*, (a) 12 (1972) k13.
- 7. Ш.К. Кязымов, К.М. Джафаров, Ю.Г. Асадов, *Неорганические материалы*, **27** (1991) 253.

Cu_{17X} Ag_{12X} Se (x=0, 0.4, 0.5)-DƏ KATİON ƏVƏZLƏMƏNİN POLİMORF KEÇİD TƏSİRİNİN RENTGENOQRAFİK TƏDQİQİ

YU. Q. ƏSADOV, R. B. BAYKULOV

Yüksək temperatur rentqendifraktometrik metodu ilə Cu_{1.6}Ag_{0.4}Se kristalında quruluş çevrilməsi tədqiq edilmiş və ğöstərilmişdir ki otaq temperaturunda qəfəs sabitləri a=4.104Å, b=20.350Å, c=6.350Å (AgCuSe) və a=4.333Å, b=7.062Å, c=7.764Å (Ag₂Se) olan iki rombik fazadan ibarət olub, 540K-də qəfəs parametri a=5.896Å alan səthinə mərkəzləşmiş kub fazaya keçir.

X-RAY RESEARCH OF CATION DOPING INFLUENCE ON PHASE TRANSITIONS in Cu_{15x} Ag_{15x} Se (x=0, 0.4, 0.5)

Yu. G. ASADOV, R. B. BAYKULOV

 $Cu_{1.6}Ag_{0.4}Se$ monocrystals were investigated by high temperature x-ray diffraction method. At room temperature samples are two-phased and consist of orthorhombic AgCuSe phase with lattice parameters a=4.104Å, b=20.350Å, c=6.350Å, and orthorhombic Ag_Se phase with lattice parameters a=4.333Å, b=7.062Å, c=7.764Å. At 540K turns to single face-centered cubic phase with parameter a=5.896Å.

Редактор: М.Алиев