ИНТЕРПРЕТАЦИЯ ЭЛЕКТРОННЫХ СПЕКТРОВ ИОНОВ НЕОДИМА В КРИСТАЛЛАХ ОКСИСУЛЬФИДА ЛАНТАНА С ПОМОЩЬЮ ТЕОРИИ КРИСТАЛЛИЧЕСКОГО ПОЛЯ

Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, С.А.ЛОЗИЦКИЙ, А.А.МАМЕДОВ

Институт физики НАНАзербайджана AZ 1143, Баку, пр.Г.Джавида,33

Проведена интерпретация штарковской структурой уровней ${}^{4}I_{9/2-15/2}$, ${}^{4}F_{3/2}$ иона Nd^{3+} в La_2O_2S в рамках теории кристаллического поля.

Оксисульфиды редкоземельных элементов (Ln₂O₂S, Ln – редкоземельные ионы) широко используются в промышленности при производстве осциллографичесприборов, усиливающих экранов для медицинской диагонастики, ких люминесцентных источников света. Монокристаллы $La_2O_2S - Nd^{+3}$ известны, как среда с высоким коэффициентом усиления излучения [1]. При вычислении лазерных характеристик особо важное значение имеет определение типа центров свечений, их энергетической схемы уровней, а также определение параметров кристаллического поля (B_k^q). Типы центров Nd^{+3} в La_2O_2S и схема штарковских уровней ${}^{4}I_{9/2-11/2}$, ${}^{4}F_{3/2}$ известны из [2]. Целью настоящей работы является определение параметров кристаллического поля (B_k^q) и, используя их, построение щтарковской структуры мультиплетов ${}^{4}I_{13/2-15/2}$.

Гамильтониан кристалла, состоящий из n электронов с массой m и N ядер с массой M_a (α – номер атома), имеет вид [3]

$$H = -\frac{h^2}{2m} \sum_{i=1}^n \Delta_i - \frac{h^2}{2} \sum_{\alpha=1}^N \frac{\Delta_\alpha}{M_\alpha} + V(r, R), \qquad (1)$$

где потенциальная энергия V зависит как от совокупности координат электронов r, так и от совокупности координат ядер R.

При построении теории энергетических спектров примесных ионных парамагнитных кристаллов прежде всего учитывается взаимодействие электронов примесного иона друг с другом и с ядром парамагнитного иона H_0 (в H_0 включается также кинетическая энергия электронов). Взаимодействие примесного иона с окружающими ионами кристаллической решетки H_{kp} можно в первом приближении описать, как штарковское расщепление его уровней в некотором среднем электрическом поле окружающих ионов, которое мы будем называть кристаллическим полем. Данная физическая модель сохраняет все свойства системы, следующие из ее симметрии. И наконец, надо рассмотреть спинорбитальное взаимодействие H_{so} . Таким образом, гамильтониан для примесного иона в ионном кристалле имеет вид

$$H = H_{0}' + H_{ee}' + H_{kp} + H_{SO}.$$
 (2)

Гамильтониан взаимодействия *n* электронов парамагнитного иона с его ядром может быть записан в виде

$$H'_{0} = \sum_{i=1}^{n} \left(-\frac{h^{2}}{2m} \nabla_{i}^{2} - \frac{Ze^{2}}{r_{i}} \right).$$
(3)

Вместо кулоновского взаимодействия всех электронов с ядром можно рассмотреть движение электронов в центрально-симметричном самосогласованном поле ядра, окружающих ионов и остальных электронов $U(r_i)$.

Тогда в нулевом приближении мы имеем уравнение

$$H_0 \psi = E \psi , \qquad (4)$$

где

$$H_{0} = \sum_{i=1}^{n} \left[-\frac{h^{2}}{2m} \nabla_{i}^{2} - eU(r_{i}) \right].$$
(5)

Уравнение (4) определяет состояние системы n-электронов в центральносимметричном поле U(r).

Распределяя электроны всеми возможными способами по «одночастичным» энергетическим уровням, получаем различные конфигурации $K = (n_1 l_1, n_2 l_2, ..., n_N l_N)$. Каждая конфигурация K в нулевом приближении будет представлена одним уровнем энергии $E_0(K)$ системы. Действие оставшихся членов в гамильтониане $H = H_0 + H_{ee} + H_{kp} + H_{SO}$ будем рассматривать в рамках теории возмущений. При этом ограничимся случаем, когда энергетические интервалы между уровнями $E_0(K)$ различных конфигураций K (или по крайней мере между основной K_0 и первой из возбужденных конфигураций) достаточно велики по сравнению с расцеплениями, вызываемыми возмущением

$$V = V_{ee} + V_{kp} + V_{SO} \,. \tag{6}$$

не учитывать «взаимодействие» различных В этом случае можно конфигураций, и при расчете расщепления каждого из уровней $E_0(K)$ использовать «одноконфигурационное» приближение. При использовании теории возмущений для расчета влияния V_{ee} на уровень $E_0(K)$ одной конфигурации Kможно заменить V_{ee} на V_{ee} , ибо это приводит к постоянному сдвигу всех уровней, появляющихся при расщеплении $E_0(K)$. Если в дальнейшем не рассматривать оптические переходы, связанные с изменением конфигурации, а ограничиться лишь рассмотрением переходов внутри одной (основной) конфигурации, то указанная замена несущественна. Отметим, что замкнутые оболочки иона не вызывают расщепления уровня $E_0(K)$, приводя лишь к общему сдвигу всех уровней *К*. Их влияние может быть включено в $H_0(5)$, так как поле, создаваемое электронами замкнутой оболочки, является центрально-симметричным. Для внутренней 4 f оболочки ионов редкоземельных элементов, защищенных наружными 5S и 5P электронными оболочками от прямого влияния лигандов, принимается следующее соотношение для слагаемых потенциала: $V_{ee}\rangle\rangle V_{so}\rangle\rangle V_{kp}$. Кристаллическое поле не в состоянии разорвать связь орбитального и спинового моментов. В теории кристаллического поля это позволяет использовать волновые функции свободных ионов в качестве базисных волновых функций.

В теории кристаллического поля вместо H_{kp} в гамильтониане (2) учитывают лишь электростатическое внутрикристаллическое поле V_{kp} . Иначе говоря, задача об оптических электронах в кристаллах сводится к задаче о штарк-эффекте

Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, С.А.ЛОЗИЦКИЙ, А.А.МАМЕДОВ

примесного иона во внутрикристаллическом электростатическом поле заданной симметрии.

Это самое главное (и грубое) упрощение задачи об оптических спектрах ионов в кристаллах, но зато оно позволяет использовать в теории кристаллического поля могучий арсенал теоретических методов решения многоэлектронного уравнения Шрёдингера, разработанный для свободного атома, обобшая его на точечные группы. При этом сохраняется главное отличие задачи о примесном ионе в кристалле от задачи о свободном ионе – учитывается симметрия положения парамагнитного иона в кристаллической решетке.

Поскольку V_{kp} – электростатическая потенциальная энергия, удовлетворяющая уравнению Лапласа $\Delta V = 0$ и обладающая симметрией окружения иона, то V_{kp} можно разложить в ряд по сферическим гармоникам

$$V_{kp}(r) = \sum_{k=0}^{\infty} \sum_{q=-k}^{k} B_{k}^{q}(r) Y_{kq}(\vartheta, \varphi) = \sum_{k,q} V_{k}^{q} , \qquad (7)$$

причем знаки гармоник определены так, что $Y_{kq}^* = (-1)^q Y_{k,-q}$. Вследствие вещественности потенциала необходимо, чтобы выполнялось условие $B_k^q = (-1)^q B_k^{-q} *$.

Симметрия окружения накладывает на коэффициенты B_k^q некоторые ограничения. Рассмотрим ионы Nd^{3+} в кристаллах оксисульфидов. Поскольку нас интересуют не абсолютные сдвиги уровней энергии, а лишь их относительные расщепления в кристаллическом поле, опустим члены с k = 0 в разложении (7). Можно опустить члены V_k^q с нечетным k, так как соответствующие матричные элементы равны нулю. Согласно правилам отбора для f – электронов $k \le 6$ [4]. В нашем случае ионы Nd^{3+} занимают места с точечной группой симметрии $C_{3\nu}$. При наличии оси третьего порядка возможны значения q кратные трем. Таким образом, в разложении остаются следующие члены: $B_2^0, B_4^0, B_6^0, B_4^3, B_6^3, B_6^6$.

В приближении слабого кристаллического поля удобно исходить из термов свободного иона с учетом их тонкой структуры. Как известно, из одного терма $E_0((K)\chi LS)$ под влиянием V_{so} образуется мультиплет, т.е. ряд близко расположенных термов $E_0((K)\chi LSJ)$, соответствующих различным значениям квантового числа полного момента J = L + S, L + S - 1, ..., |L - S|. Собственные функции $\psi_{\chi LSJM_J}$ терма $E_0((K)\chi LSJ)$ образуют базис неприводимого представления $D^{(J)}$ по неприводимым представлениям группы G (двойной для полуцелого J), получаем искомые термы Γ_p

$$D^{(J)} = \sum_{P} a_{P} \Gamma_{P} .$$
(8)

Кратности a_p , с которыми встречаются Γ в разложении данного терма J на термы Γ_p , вычисляются по формуле

$$a_{P} = \frac{1}{g} \sum \chi_{D}(J) \chi_{\Gamma_{P}} , \qquad (9)$$

где $\chi_{D(J)}, \chi_{\Gamma_p}$ – характеры представлений $D^{(J)}$ и Γ_p, g – порядок группы, суммирование берется по всем элементам группы.

Так как характеры для всех элементов данного класса *С* одинаковы, то вместо суммирования по всем элементам группы (9) можно производить суммирование по всем классам группы

ИНТЕРПРЕТАЦИЯ ЭЛЕКТРОННЫХ СПЕКТРОВ ИОНОВ НЕОДИМА В КРИСТАЛЛАХ ОКСИСУЛЬФИДА ЛАНТАНА С ПОМОЩЬЮ ТЕОРИИ КРИСТАЛЛИЧЕСКОГО ПОЛЯ

$$a_{P} = \frac{1}{g} \sum n_{c} \chi_{D(J)}(C) \chi_{\Gamma_{p}}(C) , \qquad (10)$$

где n_c – число элементов в классе *C* группы*G*.

Характеры представлений $D^{(J)}$ как для целого, так и для полуцелого J (L,S) определяются из соотношения

$$\chi_{D^{(J)}} = \frac{\sin(J+1/2)\phi}{\sin(\phi/2)} \quad , \tag{11}$$

где φ – угол поворота вокруг любой оси. Характер тождественного преобразования *E* получается из (11) при $\varphi \rightarrow 0$

$$\chi_{p^{(J)}}(E) = 2J + 1. \tag{12}$$

При вышеупомянутом разложении электростатической потенциальной энергии гамильтониан взаимодействия редкоземельного иона с кристаллической решеткой имеет вид

$$H = \alpha B_2^0 O_2^0 + \beta (B_4^0 O_4^0 + B_4^3 O_4^3) + \gamma (B_6^0 O_6^0 + B_6^3 O_6^3 + B_6^6 O_6^6), \qquad (13)$$

где O_k^q – оператор углового момента, α, β, γ – коэффициенты эквивалентных операторов. Для ионов Nd^{3+} они представлены в Таблице 1 [5].

Таблица 1.

Коэффициенты эквивалентных операторов ионов *Nd*³⁺ для случая промежуточной связи.

$ SLJ\rangle$	$\alpha \cdot 10^3$	$\beta \cdot 10^4$	$\gamma \cdot 10^6$		
	(<i>k</i> = 2)	(<i>k</i> = 4)	(k = 6)		
⁴ I _{9/2}	- 6,1491	- 2,7935	- 36,4622		
${}^{4}I_{11/2}$	-4,0561	-0,9552	- 2,9091		
⁴ I _{13/2}	- 3,1062	-0,5652	-1,7968		
${}^{4}I_{15/2}$	- 2,6039	-0,4458	- 20424		
${}^{4}F_{3/2}$	50,9222				

Наша задача заключается в нахождении поправок первого порядка $\Delta E_n^{(1)}$ к значениям энергии $E_n^{(0)}$ и коэффициентов B_k^q в разложении (13).

Применение теории возмущения для случая вырожденных энергетических уровней приводит к решению секулярного уравнения:

$$U - \Delta \mathbf{E}^* \mathbf{E} = 0 \quad , \tag{14}$$

где U – матрица размерностью 2J+1, E – единичная матрица одного ранга с U, ΔE – вектор-строка, содержащая значения штарковских уровней для каждого мультиплета с квантовым числом J.

Для ионов неодима целесообразно рассмотреть три мультиплета: ${}^{4}F_{3/2}$, ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$, . Для этих мультиплетов не только можно экспериментально найти, но и идентифицировать штарковские уровни по неприводимым представлениям с помощью правил отбора.

Г.И.АБУТАЛЫБОВ, В.З.ГАСЫМОВ, С.А.ЛОЗИЦКИЙ, А.А.МАМЕДОВ

Используя таблицы работы [4], составим секулярные уравнения для мультиплетов с квантовыми числами $J = \frac{9}{2} - \frac{11}{2}$. Для сокращения записи матричных элементов U_{ij} используем следующие обозначения

$$a_{i} = \alpha B_{2}^{0} A_{2J} + \beta B_{4}^{0} A_{4J} + \gamma B_{6}^{0} A_{6J},$$

$$e_{i} = \beta B_{4}^{3} B_{4J} + \gamma B_{6}^{3} B_{6J},$$

$$C_{i} = \gamma B_{6}^{6} C_{J},$$
(15)

где A_{aJ} , B_{aJ} , C_{J} – табличные коэффициенты.

Ниже, в качестве примера, приведен определитель, служащий для нахождения собственных значений для мультиплета ${}^4I_{9/2}$

$$egin{bmatrix} a_1 & b_1 & c_1 & \ a_2 & b_2 & c_2 & \ a_3 & b_3 & c_2 & \ b_1 & a_4 & & c_1 & \ b_2 & a_5 & -b_3 & \ b_3 & a_5 & -b_2 & \ c_1 & & a_4 & -b_1 & \ c_2 & -b_3 & a_3 & \ c_2 & -b_2 & a_2 & \ c_1 & -b_1 & -b_1 & a_1 & \ \end{bmatrix}$$

С помощью дальнейших преобразований каждый определитель можно квазидиагонализировать

$$\begin{bmatrix} a_{1} & b_{1} - ic_{1} \\ b_{1} + ic_{1} & a_{4} \end{bmatrix} = E_{3/2} \\ \begin{bmatrix} a_{3} & c_{2} & -b_{3} \\ c_{2} & a_{2} & b_{2} \\ -b_{3} & b_{2} & a_{5} \end{bmatrix} = E_{1/2} \end{bmatrix} {}^{4}I_{9/2}$$
(16)
$$\begin{bmatrix} a_{2} & b_{2} - ic_{2} \\ b_{2} + ic_{2} & a_{5} \end{bmatrix} = E_{3/2} \\ \begin{bmatrix} a_{1} & -b_{1} & o & c_{1} \\ -b_{1} & a_{4} & c_{3} & b_{4} \\ 0 & c_{3} & a_{3} & b_{3} \\ c_{1} & b_{4} & b_{3} & a_{6} \end{bmatrix} = E_{1/2} \end{bmatrix}$$
(17)

Согласно теории неприводимых представлений групп, штарковские уровни энергий распадаются по следующим неприводимым представлениям:

$$\Gamma_{3/2} = E_{1/2} + E_{3/2}, \quad \Gamma_{9/2} = 2E_{3/2} + 3E_{1/2}, \quad \Gamma_{11/2} = 2E_{3/2} + 4E_{1/2}.$$
 (18)

Нетрудно заметить, что блоки определителей (16)-(17) второго порядка соответствуют уровням $E_{3/2}$, а остальные - уровням $E_{1/2}$. Для решения секулярных уравнений $|U - \Delta E \cdot E| = 0$ для всех мультиплетов удобно воспользоваться методом

ИНТЕРПРЕТАЦИЯ ЭЛЕКТРОННЫХ СПЕКТРОВ ИОНОВ НЕОДИМА В КРИСТАЛЛАХ ОКСИСУЛЬФИДА ЛАНТАНА С ПОМОЩЬЮ ТЕОРИИ КРИСТАЛЛИЧЕСКОГО ПОЛЯ

наименьших квадратов. В приближении кристаллического поля энергия уровней мультиплетов может быть записана: $E_e = f_e(B_k^q)$, где ℓ – номер уровня, $0 \le \ell \le J + \frac{1}{2}$, $J = \frac{9}{2} - 11/2$.

Если бы значения Е, были известны точно, то для нахождения параметров кристаллического поля B_k^q было бы достаточно взять число уровней M равное числу параметров. Практически значения Е, определяются приближенно, кроме ошибки интерпретации спектров на соответствие экспериментальной И схемы уровней могут влиять более слабые взаимодействия теоретической (например JJ -смешивание), которые не учтены в энергетических матрицах. Поэтому корни М уровней не будут удовлетворять остальным уровням. В связи с вышеизложенным возникает задача: так определить параметры B_{k}^{q} , чтобы все уравнения были удовлетворены с наибольшей точностью. Для вычисления параметров теории и теоретических энергетических уровней необходимо решить задачу оптимизации. Целевая функция строилась, как сумма квадратов отклонений, соответствующих расщепленных и экспериментальных значений энергий

$$\delta = \sum_{J} \left(\sum_{\mu = \frac{3}{2}} (E_{\mu}^{\mathfrak{scn}} - E_{\mu}^{pacu})^{2} + \sum_{\mu = \frac{1}{2}} (E_{\mu}^{\mathfrak{scn}} - E_{\mu}^{pacu})^{2} \right), \tag{19}$$

где $J = \frac{9}{2}, \frac{11}{2}$.

Минимизация целевой функции проводилась симплекс-методом с использованием растяжения и сжатия ребер симплексов на компютере.

На основании проделанных поляризационных измерений и структурных данных [2] сделаем некоторые выводы о симметрии примесных центров $La_2O_2S:Nd$. Ионы Nd^{3+} занимают двухкратную позицию C с локальной симметрией $C_{3\nu}$ и имеют в ближайшей координационной сфере 4 атома кислорода и 3 атома серы. Вполне уместно допустить, что при легировании ионы Nd^{3+} и La^{3+} статистически занимают двухкратную позицию $C_{3\nu}$. Анализ данных по σ и π поляризациям для центра (I) в соответствии с правилами отбора для электрических и магнитных дипольных переходов в поле симметрии $C_{3\nu}$, подтвердил, что симметрия примесного центра (I) есть $C_{3\nu}$. О симметрии центров (II) и (III) иона Nd^{3+} можно заключить лишь, что они ниже, чем тетрагональная.

Параметр B_2^0 для кристаллов симметрии точечной группы $C_{3\nu}$ определялся непосредственно из расщепления мультиплета ${}^4F_{3/2}$

$$B_2^0 = \Delta E_{{}^4F_{3/23}} / (6 \cdot \alpha_{{}^4F_{3/2}}), \qquad (20)$$

где $\Delta E_{{}^{4}F_{3/2}}$ – расщепление мультиплета ${}^{4}F_{3/2}$ (см⁻¹). Вычисленные величины расщеплений для мультиплетов ${}^{4}I_{9/2} - {}^{4}I_{11/2}$ дали незначительные отклонения от экспериментально наблюдаемых.

 $(B_2^0 = 52cM^{-1}, B_4^0 = 108cM^{-1}, B_6^0 = 28cM^{-1}, B_4^3 = -2780cM^{-1}, B_6^3 = 300cM^{-1}, B_6^6 = 200cM^{-1})$

для $La_2O_2S_3$ позволили рассчитать штарковскую структуру мультиплетов ${}^4I_{13/2}$, ${}^4I_{15/2}$ (I) центра. Результаты приведены в Таблице 2.

Таблица 2.

Значения расчетных штарковских уровней мультиплетов ${}^{4}I_{13/2}$, ${}^{4}I_{15/2}$ иона Nd^{3+} .

$ SLJ\rangle$	⁴ <i>I</i> _{13/2}					⁴ I _{15/2}									
$E(cm^{-1})$	3842	3862	3865	3893	4008	4021	4029	5832	5851	5868	5919	6081	6088	6091	6107

Проведенный сравнительный анализ расчетных энергетических уровней и частот линий в спектре поглощения ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ позволил отнести восемь линий к оптическому центру I типа. Повторный расчет параметров кристаллического поля для четырех мультиплетов ${}^{4}I_{J}$, J = 9/2 - 15/2 практически не изменил вычисленных ранее значений B_{k}^{q} для двух мультиплетов ${}^{4}I_{J}$, J = 9/2 - 11/2, что указывает на правильность интерпретации линий в спектре ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$.

- 1. R.V.Alves, R.A.Buchanan, K.A Wickersheim, E.A.C.Yates, *Journal of applied physics*, **42** (1971) 3043.
- 2. А.А.Мамедов, В.А.Смирнов, ФТТ, **34** (1992) 1850.
- 3. Д.Т.Свиридов, Ю.Ф.Смирнов, Теория оптических спектров ионов переходных металлов. М: Наука, (1977).
- 4. А.Абрагам, Б.Блинни, Электронный парамагнитный резонанс переходных ионов. М: Мир, 2 (1973).
- 5. G.H.Dicke, Spectra and energy levels of rare earth ions in crystals. Interscience, *Publ. New York*, (1968).

KRISTAL SAHƏSI NƏZƏRİYYƏSİNİN LÖMƏY İLƏ LANTN OLSİSULFİDİ RİSTALLARINDA NEODİM İONLARININ ELEKTRON SPEKTLƏRİNİN İNTERPRETASİYASI

H.İ.ABUTALIBOV, V.Z.QASIMOV, S.A.LOZITSKIY, A.A.MƏMMƏDOV

Kristal sahəsi nəzəriyyasi çərçivəsində La_2O_2S -də Nd^{+3} ionlarının ${}^4I_{9/2-15/2}$, ${}^4F_{3/2}$ səviyyələrinin strukturu interprepasiya edilmişdir.

INTERPRETATION OF ELECTRONIC SPECTRA OF ION NEODYMIUM IN CRYSTAL LANTHANUM OXYSULFIDE BY USING THEORY OF CRYSTAL FIELD

G.I.ABUTALYBOV, V.Z.QASYMOV, S.A.LOZITSKIY, A.A.MAMEDOV

Interpretation of Stark structure of levels ${}^{4}I_{9/2-15/2}$, ${}^{4}F_{3/2}$ of ion Nd^{+3} in La_2O_2S in framework of crystal field has been made.

Редактор: Б.Аскеров