ЭЛЕКТРОНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ Fe_{0,5}Ga_{0,5}InS₃, Fe_{0,25}Ga_{0,5}In_{1,25}S₃ И Fe_{0,75}Ga_{0,25}InS₃

М.Г. КЯЗУМОВ, Г.Г. ГУСЕЙНОВ, М.Г. КАЗЫМОВ^{*}, Л.В РУСТАМОВА

Институт Физики НАН Азербайджана AZ 1143, г.Баку, пр. Г. Джавида, 33. Нахичеванское отделение НАН Азербайджана* AZ 3630, г.Нахичивань, пр.Г.Алиева 32

Структуры Fe_{0,5}Ga_{0,5}InS₃, Fe_{0,25}Ga_{0,5}In_{1,25}S₃ и Fe_{0,75}Ga_{0,25}InS₃, синтезированные из отдельных элементов, исследованы с помощью электрон-диффракционного метода косой текстуры, и получены следующие соответствующие параметры кристаллических решеток, пространственные группы, структурные типы и типы упаковки анионов серы в пакетах:

а=3,765Å, c=12,202Å пр.гр. Р3m1	ТОТП	2222
<i>a</i> =3,783Å, c=36,775Å пр.гр. R3m	ΤΟΤΠ	г к к г
<i>a</i> =3,781Å, c=36,662Å пр.гр. R3m.	ТОТП	<i>г</i> к к <i>г</i> ,

где Т, О и П соответственно тетраэдр, октаэдр и пустой полиэдр, *г* и к –гексагональная и кубическая упаковка слоев серы.

ВВЕДЕНИЕ

Р.G.Rustamov и др [1] и R.J.Hill и др. [2] впервые синтезировали кристаллы FeIn₂S₄. Кристаллы α- FeGa₂S₄ были синтезированы Dogguy-Smiri и др. методом XTP (химической траспортной реакции), используя как транспортер $J_2(3mg/cm^3)$ или с ℓ_2 . Синтез проводился в течение 15 дней при T₁=1000°C и T₂=950°C.

Система Ga₂S₃-FeS была исследована в [3,5]. Авторами были обнаружены 8 промежуточных фаз. Кристаллы FeGa₂S₄ имеют две модификации низкотемпературную тригональную α -фазу (пр.гр. P $\overline{3}$ m1, 1T политип) и β - фазу, имеющую орторомбическую сверхструктуру [5] со структурным типом ZnAl₂S₄ (пр.гр. Pna2₁), которая формируется на базе структуры типа вюрцит. Переход $\alpha \rightarrow \beta$ происходит при температуре 1054°C. Структура α - FeGa₂S₄ имеет ZnAl₂S₄ (I) тип, но отличается тем, что полярность структуры меняется на неполярность. Это можно описать следующим образом: S=Ga-S=Fe=S-Ga=S... Здесь ионы галлия (Ga) находятся в тетраэдрических, а ионы железа (Fe) в октаэдрических позициях.

S.Reil и Н.Наеuseler [6] установили, что кристаллы, входящие в систему FeIn₂S_xSe_{4-x} при $0 \le x \le 1,6$ (температура отжига 600°C), имеют асимметричный ZnIn₂S₄ (III, а) тип структуры [7], а при $2,6 \le x \le 4$ (температурный интервал отжига 600°C÷1000°C)- шпинелевую структуру. В области $1,8 \le x \le 2,4$ при температуре ниже 850°C кристаллизуется α -FeGa₂S₄ тип структур [3] с параметрами решетки (при x=2): a=3,942Å, c=12,816Å, пр.гр. Р $\overline{3}$ m1, а выше 850°C кристаллизуется MgAl₂S₄ тип структур [8] с параметрами решетки (при x=2): a=3,939Å, c=38,432Å, пр.гр. R $\overline{3}$ m.

М.Р.Рагdo и др. исследовали составы, входящие в систему Fe-M-Ga-S(Se) [9,10], где М – металл. Н.Siwert и др. исследовали кристаллы $Cr_{0,5}FeGa_{1,5}Se_4$ [11], H.D.Lutz и др. - кристаллы $Cr_{0,8}FeGa_{1,2}Se_4$ [12]. Результаты этих исследований приведены в Таблице 1. Как видно, во всех этих соединениях атомы железа (Fe) двухвалентные.

Ранее нами были синтезированы и изучены некоторые составы, входящие в систему Fe-Ga-In-S [13,14], где атомы железа трехвалентны. Образцы Fe_{0,5}Ga_{0,5}InS₃ и Fe_{0,25}Ga_{0,5}In_{1,25}S₃ были изучены рентгендифрактометрическим методом в виде порошков. Расшифровка экспериментальных данных, полученных от разных

М.Г. КЯЗУМОВ, Г.Г. ГУСЕЙНОВ, М.Г. КАЗЫМОВ, Л.В.РУСТАМОВА

образцов, показала, что в одних случаях эти кристаллы получаются в чистом виде, т.е. 1Т-однопакетный тригональный политип и 3R -трехпакетный ромбоэдрический политип, а в других случаях - в виде смеси политипов: 1T, 3R и 2H (двухпакетный гексагональный политип). Для чистых образцов $Fe_{0,5}Ga_{0,5}InS_3$ и $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ были получены соответствующие параметры кристаллической решетки [13,14]: $a=(3,796\times2)$ Å, c=12,210Å, пр.гр. P3m1 $a=(3,786\times2)$ Å, c=36,606Å, пр.гр. R3m. Как видно, значению параметра a кристаллической решетки соответствует двукратное расстояние минимального периода плотнейшей упаковки ионов серы.

Таблица 1.

	Параметры решетки				
Соединения				Пространствен-	Литература
	<i>a</i> (Å)	b (Å)	c(Å)	ные группы	
a FaCa S	3,67		12,07	$P\overline{3}m1$	[5]
α -reGa ₂ S ₄	3,654		12,056	$P\overline{3}m1$	[3]
β-FeGa ₂ S ₄	12.98	7.49	6.09	Pna2 ₁	[5]
Fe _{0,73} Ga _{2,18} S ₄	5,283		10,430	I 4	[9]
Fe _x Ga _{2,78-0.67x} S ₄	6,42		18,13	P6 ₁	[9]
Fe ₂ Ga ₂ S ₅	3,6606		44,983	R3m	[9]
	3,6508		44,843		
For Con St	3,662		29,95	D6/maa	[9]
$re_2Oa_2O_5$	3,67		30,00	r 0/mcc	
FeGa ₂ S ₄	5,501		5,501	$P\overline{4}2m$	[10]
Fe _{0,73} Ga _{2,18} S ₄	5,487		10,97	I 4	[10]
Cr _{0,5} FeGa _{1,5} Se ₄	3,828		37,94	R3m	[11]
Cr _{0,8} FeGa _{1,2} Se ₄	3,8284		37,914	R3m	[12]

Надо отметить, что при исследовании слоистых кристаллов электронографический метод косой текстуры имеет значительные преимущества перед другими методами.

В этой работе мы приводим результаты электронографического исследования трех кристаллов : $Fe_{0,5}Ga_{0,5}InS_3$, $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ и впервые синтезированного $Fe_{0,75}Ga_{0,25}InS_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Синтез всех кристаллов был проведен из отдельных элементов в идентичных условиях. Соответствующие навески в количестве 5г каждого состава поместили в очищенную высококачественную кварцевую ампулу, которую откачивали до давления 10⁻⁴Па, запаивали и помещали в однозонную печь. Температуру печи поднимали до 600°С со скоростью 100°С в час и выдерживали при этой температуре 40 минут, затем температуру с прежней скоростью поднимали до 950°С÷1000°С и выдерживали в течение 1 часа. После этого температуру печи снижали до 500÷550°С и проводили отжиг образцов в течение недели. Образцы для электронографического исследования были приготовлены методом осаждения микрокристалликов из водной суспензии на металлическую сетку, покрытую целлулоидной пленкой. Электронографический экспериментальный материал был получен на электронографе ЭГ-400.

На Рис.1, Рис.2, Рис.3 показаны электронограммы текстур образцов $Fe_{0,5}Ga_{0,5}InS_3$, $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ и $Fe_{0,75}Ga_{0,25}InS_3$, а в Таблицах2-4 приведены

некоторые соответствующие параметры рефлексов. Где R_{hkl} –расстояния между рефлексами hkl и \overline{hkl} , D_{hkl} –расстояние (в масштабе L λ) между узлами hkl обратной решетки и плоскостью (0001) кристаллической решетки, d_{hkl} -межплоскостное расстояние.

Рис.1. Электронограмма текстуры $Fe_{0,5}Ga_{0,5}InS_{3}.$

Рис.2. Электронограмма текстуры Fe_{0,25}Ga_{0,5}In_{1,25}S₃.

Рис.3. Электронограмма текстуры Fe_{0,75}Ga_{0,25}InS₃.

Габлица	2.

Fe _{0,5} C	$Ga_{0,5}InS_3$						
N⁰	2R _{эксп}	2D _{эксп}	2D _{расч}	d _{эксп}	d _{pacy}	hkil	I/I ₀ (эксп)
1	11,998	0,000	0,000	3,261	3,261	$10\overline{1}0$	Средний
2	12,415	3,204	3,206	3,151	3,150	1011	О. сильный
3	13,602	6,411	6,412	2,876	2,876	$10\overline{1}2$	О. сильный
4	15,375	9,617	9,618	2,545	2,544	1013	Слабый
5	17,563	12,825	12,824	2,227	2,228	$10\overline{1}4$	О. сильный
6	20,023	16,030	16,030	1,954	1,954	1015	Сильный
7	22,671	19,236	19,236	1,726	1,726	1016	Сильный
8	20,781	0,000	0,000	1,882	1,882	$11\overline{2}0$	О. сильный
9	22,895	9,616	9,618	1709	1708	1123	Средний
10	24,410	12,818	12,824	1,603	1,602	$11\overline{2}4$	О. сильный

Как показано на Рис.2 и Рис.3, рефлексы со значениями $-h+k+l\neq 3n$ отсутствуют. Значит, последние два кристаллы имеют ромбоэдрическую структуру. Определены соответствующие параметры кристаллической решетки и пространственные группы всех кристаллов:

ы всех кристалло c=12,202Å, c=36,775Å, c=36,662Å,

пр.гр.Р3m1- Fe_{0,5}Ga_{0,5}InS₃ пр.гр.R3m - Fe_{0,25}Ga_{0,5}In_{1,25}S₃ пр.гр.R3m - Fe_{0,75}Ga_{0,25}InS₃.

Итак, в первой структуре плотно упакованно могут располагаться четыре слоя атомов серы (S), а во второй и третьей – по двенадцать слоев из атомов серы. На Рис.1 вторым сильным рефлексом на втором эллипсе (самый сильный рефлекс $11\overline{2}0$) является- $11\overline{2}$ 3, а на рис. 2 и 3 - $11\overline{2}$ 9. Ранее нами установлено [15,16], что значение *l* второго сильного рефлекса в сериях $11\overline{2}l$ (*l* меняется) указывает на количество заполненных катионами полиэдрических слоев.

$Fe_{0,25}Ga_{0,5}In_{1,25}S_3$							
N⁰	2R _{эксп}	2D _{эксп}	2D _{расч}	D _{эксп}	d _{pacy}	hkil	I/I ₀ (эксп)
1			1,064			$10\overline{1}1$	
2	12,120	2,126	2,128	3,228	3,225	1012	О. сильный
3	12,671	4,253	4,255	3,087	3,086	$10\overline{1}4$	Сильный
4	14,068	7,443	7,446	2,781	2,780	$10\overline{1}7$	Ср. сильный
5	14,660	8,508	8,510	2,668	2,668	1018	Сильный
6	15,995	10,640	10,638	2,446	2,446	$10\overline{1}10$	Средний
7	16,721	11,699	11,701	2,340	2,340	10111	Средний
8	18,270	13,828	13,829	2,141	2,141	10113	Ср. сильный
9	19,090	14,893	14,893	2,049	2,049	10114	Средний
10	20,794	17,023	17,020	1,881	1,882	10116	Ср. слабый
11	21,671	18,084	18,084	1,805	1,805	10117	О. сильный
12	20,683	0,000	0,000	1,891	1,891	$11\overline{2}0$	О. сильный
13	22,785	9,572	9,574	1,717	1,716	$11\overline{2}9$	Средний
14	24,300	12,762	12,765	1,610	1,610	$11\overline{2}12$	О. слабый
15	26,116	15,953	15,957	1,498	1,498	$11\overline{2}15$	О.О. слабый

Таблица 3.

Таблица 4.

$Fe_{0,75}Ga_{0,25}InS_3$							
N⁰	2R _{эксп}	2D _{эксп}	2D _{расч}	D _{эксп}	d _{pacy}	hkil	I/I ₀ (эксп)
1			1,067		3,261	$10\overline{1}1$	
2	12,130	2,132	2,134	3,225	3,223	1012	О. сильный
3	12,684	4,267	4,268	3,084	3,083	$10\overline{1}4$	Сильный
4	14,092	7,470	7,469	2,776	2,776	$10\overline{1}7$	Ср. сильный
5	14,683	8,536	8,536	2,665	2,664	1018	Сильный
6	16,017	10,668	10,670	2,443	2,442	$10\overline{1}10$	Слабый
7	16,745	11,736	11,737	2,335	2,336	10111	Средний
8	18,307	13,872	13,872	2,137	2,137	10113	Ср. сильный
9	19,125	14,936	14,939	2,046	2,045	10114	Ср. слабый
10	20,841	17,075	17,073	1,877	1,877	10116	Ср. слабый
11	21,721	18,140	18,140	1,801	1,801	10117	Сильный
12	20,694	0,000	0,000	1,890	1,890	$11\overline{2}0$	О. сильный
13	22,810	9,601	9,603	1,715	1,715	1129	Ср. сильный
14	24,320	12,797	12,805	1,606	1,608	$11\overline{2}12$	О.О. слабый
15	26,151	16,000	16,006	1,496	1,495	$11\overline{2}15$	О. слабый

Значит в первой структуре только три полиэдрических слоя из четырех, во второй и третей только девять из двенадцати заполнены катионами. Значит, все структуры имеют ТОТП структурный тип, т.е. пакеты состоят из центральных октаэдрических (О) слоев, к которым с двух сторон примыкают тетраэдрические (Т) слои, а последний межпакетный полиэдрический слой (П)- пустует. В

ЭЛЕКТРОНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ Fe_{0.5}Ga_{0.5}InS₃, Fe_{0.25}Ga_{0.5}In_{1.25}S₃ И Fe_{0.75}Ga_{0.25}InS₃

структурах, где структурной единицей является один из ТОТП, ТОТТП и ТТОТТП пакетов, переходы пакет-пакет осуществляются по типу zz, т.е. анионы, находящиеся на вершинах пакетов, упаковываются по типу zz [7, 17]. Учитывая это и важные правила Н.В. Белова о плотнейшей упаковке [18], установлено, что анионы серы в кристалле Fe_{0,75}Ga_{0,25}InS₃ упаковываются по типу zzzz, а в кристаллах Fe_{0,25}Ga_{0,5}In_{1,25}S₃ и Fe_{0,75}Ga_{0,25}InS₃ - по типу zкzz. Учитывая размеры ионных радиусов и валентности каждого иона в предложенных нами моделях структур, часть трехвалентных ионов индия расположена в октаэдрах, а остальные ионы - в тетраэдрах. На Рис.4 показаны планы предложенных моделей структур, в которых анионы занимают частные позиции A(0; 0), B(1/3; -1/3), C(-1/3; 1/3). Толщины анионов взяты одинаковыми, а катионы распределены в центрах T и O

полиэдров. Сравнение экспериментальных значений интенсивностей (І_{экс}) рефлексов 10 1 *l* и 1 01*l* с их расчетными значениями для этих моделей показало правильности предложенных моделей.

Рис.4.

Проекции кристаллических структур $Fe_{0,5}Ga_{0,5}InS_3$, $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ и $Fe_{0,75}Ga_{0,25}InS_3$ на плоскость (11 $\overline{2}$ 0) в координационных полиэдрах, соответственно.

В кристалле Fe_{0,5}Ga_{0,5}InS₃ атомы серы занимают (2/3; 1/3; -0,375), (1/3; 2/3; -0,125), (2/3; 1/3; 0,125) и (1/3; 2/3; 0,375) позиции, тетраэдрические катионы занимают (1/3; 2/3; -0,313) и (2/3; 1/3; 0,313) позиции, а октаэдрические катионы индия (0; 0; 0) позицию.

В кристаллах $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ и $Fe_{0,75}Ga_{0,25}InS_3$ атомы серы занимают (0; 0; -0,125), (2/3; 1/3; -0,042), (1/3; 2/3; 0,042) и (0; 0; 0,125) позиции, тетраэдрические катионы занимают (2/3; 1/3; -0,104) и (1/3; 2/3; 0,104) позиции, а октаэдрические катионы индия (0; 0; 0) позиции.

ЗАКЛЮЧЕНИЕ

Как видно, исследованные другими авторами кристаллы, входящие в систему Fe-In-Ga-S(Se), содержат двухвалентные ионы железа (Fe²⁺). В этих структурах двухвалентные ионы Fe находятся в октаэдрах. В пакетах ТОТП и ТОТТП все октаэдрические (О) и тетраэдрические (Т) позиции заполнены катионами, а межпакетные полиэдрические позиции (П)- пустуют. Надо отметить, что, когда мы говорим о тетраэдрах, имеются в виду те тетраэдры, которые своими вершинами примыкают к октаэдрам, те же тетраэдры, которые своими базисами примыкают к октаэдрам, не учитываются нами, потому что они не могут заполняться катионами.

В образцах, исследованных нами ранее и в данной работе, атомы железа являются трехвалентными, за исключением некоторых случаев, приведенных в [19], где из-за нехватки серы часть трехвалентных ионов железа становится двухвалентной. В тех кристаллах, где участвуют атомы индия (In), октаэдрические позиции заполняются ими, а тетраэдрические позиции - трехвалентными ионами

Fe и Ga. В случае $Fe_{1,5}Ga_{0,5}S_{2,8}$ [19] октаэдрические позиции заполняются двухвалентными (Fe²⁺) и трехвалентными ионами железа (Fe³⁺). Надо отметить, что в наших кристаллах из-за трех валентности атомов железа тетраэдрические и (или) октаэдрические позиции заполняются катионами только частично.

Приведенные в [20] результаты синтеза и структурных исследований кристаллов, входящих в систему Fe-Ga-In-S, показывают, что кристаллы состоят из чистых 1T(P3m1), 2H(P6₃mc) и 3R(R3m) политипов, а в некоторых случаях из их смесей. Приведенные в данной работе очень качественные электронограммы явно показывают, что использованные нами образцы $Fe_{0,5}Ga_{0,5}InS_3$ являются чистым 1T политипом, а образцы $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ и $Fe_{0,75}Ga_{0,25}InS_3$ – чистыми 3R политипами.

Это объясняется тем, что при получении дебаеграммы использовались порошки, приготовленные или от разных кристалликов или от большого объема кристаллического слитка. В обоих случаях порошки могут содержать в себе различные политипы. При исследовании электронографическим методом мы использовали порошки, полученные как из отдельного кристаллика, так и из очень маленького кристаллического слитка. В этом случае существование в образцах разных политипов в виде смесей маловероятно.

Определенные в данной работе параметры a=3,765Å-3,783Å соответствуют элементарному параметру в плотнейшей упаковке атомов серы (S). Приведенный в работах [13-14] параметр *a* (*a*=7,572Å-7,592Å) соответствует параметру сверхрешетки, которая формируется за счет упорядоченного расположения трехвалентных катионов железа и галлия в тетраэдрических слоях.

Результаты нескольких работ, выполненных рентгендифракционными и электронографическими методами, показывают:

- каждый кристаллик в отдельности, синтезированный в одной ампуле, является чистым политипом. При исследовании образцов рентгендифрактометрическими методами в виде порошка они вместе дают смеси различных политипов.

- Синтезированный слиток является смесью разных политипов. Политипы чередуются перпендикулярно к слоям. Маленький кусок слитка является чистым политипом.

Следует отметить, что в исследуемых нами образцах, сверхрешетка не наблюдалась. В отличие от предыдущих работ в этой работе приводится план структуры и координаты атомов всех кристаллов.

- 1. P.G.Rustamov, P.K.Babaeva, M.R.Allazov, Russ J. Jnorg Chem., 24 (1979) 1223.
- 2. R.J.Hill, J.R.Craig, G.V.Gibbs, Phys. Chem. Solids, 39 (1978) 1105.
- 3. L.Dogguy-Smiri, D.Nguyen Huy, M.P.Pardo, Mater. Res. Bull., 15 (1980) 861.
- O.Gorochov, C.Levy-Clement, L.Dogguy-Smiri and M.P.Pardo, Mater. Res. Bull., 16 (1981) 1493.
- 5. L.Dogguy-Smiri, M.P.Pardo and N-H.Dung, Compt. Rend. Acad. Sci., 287 (1978) 415.
- 6. S.Reil, H.Haeuseler, Journal of Alloys and compounds, **270** (1998) 83.
- 7. F.Lappe, A.Niggli, R.Nitsche, J.G.White, Z. Kristallogr., 117 (1962) 146.
- 8. J.Flahaut, Ann Chim., 7 (1952) 632.
- 9. M.P.Pardo et. al. Mater. Res. Bull., 16 (1981) 1375.
- 10. M.P.Pardo, J.Flahaut, Mater. Res. Bull., 15 (1980) 1043.
- 11. H.Siwert, H.D.Lutz, J.Solid. State Chem., 69 (1987) 215.
- 12. H.D.Lutz, Th.Stingl, Acta crystallogr, Sec C, 49 (1993) 207.
- 13. М.Г.Кязумов, Г.Г.Гусейнов, Тезисы докладов РСНЭ-2003, Москва 17-22 ноября, (2003) 126.
- 14.Г.Г.Гусейнов, Н.Н.Мусаева, М.Г.Кязумов, И.Б.Асадова, О.М.Алиев. Неорганические материалы, **39** №9 (2003) 1.

ЭЛЕКТРОНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ Fe_{0.5}Ga_{0.5}InS₃, Fe_{0.25}Ga_{0.5}In_{1.25}S₃ И Fe_{0.75}Ga_{0.25}InS₃

- 15. M.G.Kyazumov, 11th International conference on Ternary and Multiternary Compounds (ICTMC-11) Salford UK, 8-12 september, P1 (1997) 76.
- 16. М.Г.Кязумов, Кристаллография, 43 (1988) 661.
- 17.S.I.Radautsan, F.G.Donika, G.A.Kyosse, I.G.Mustya, Phys. Stat. Sol., **37** (1970) k123.
- 18. Н.В.Белов, Структура ионных кристаллов и металлических фаз, Изд-во АНСССР, Москва, (1947) 237.
- 19. М.Г.Кязумов, И.Б.Асадова, Г.Г.Гусейнов, Е.А.Исаева, Доклады НАН Азербайджана, LVIII №3-4 (2002) 113.
- 20. М.Г.Кязумов, Г.Г.Гусейнов, И.Б.Асадова, Р.М.Султанов, Тезисы докладов НКРК–2002, Москва 24-29 ноября, (2002) 230.

Fe0,5Ga0,5InS3, Fe0,25Ga0,5In1,25S3 və Fe0,75Ga0,25InS3 KRİSTALLARININ ELEKTRONOQRAFİK TƏDQİQİ

M.H.KAZIMOV, H.H.HÜSEYNOV, M.H.KAZIMOV, L.V.RÜSTƏMOVA

Ayrı-ayrı elementlərdən sintez olunmuş Fe_{0,5}Ga_{0,5}InS₃, Fe_{0,25}Ga_{0,5}In_{1,25}S₃ və Fe_{0,75}Ga_{0,25}InS₃ kristalları maili tekstura elektronoqrafik metodundan istifadə olunaraq tədqiq olunmuş və kristallik qəfəslərin parametrləri, quruluş tipləri və paketlərdəki kükürd anionlarının sıx yığılma tipləri ücün uyğun olaraq aşağıdakılar alınmışdır:

<i>a</i> =3,765Å,	c=12,202 Å	f. qr. R3m1	TOTB	h h h h
<i>a</i> =3,783Å,	c=36,775 Å	f. qr. R3m	TOTB	h k k h
<i>a</i> =3,781Å,	c=36,662 Å	f. qr. R3m.	TOTB	h k k h

harada ki, T, O və B –uyğun olaraq tetraedr, okta
edr və boş poliedr
dir, h və k-kükürd ionlarının heksaqonal və kubik sıx yığımıdır.

ELECTRON DIFFRACTION INVESTIGATION of Fe_{0,5}Ga_{0,5}InS_3, Fe_{0,25}Ga_{0,5}In_{1,25}S_3 and Fe_{0,75}Ga_{0,25}InS_3 CRYSTALS

M.G.KYAZUMOV, G.G.GUSEINOV, M.G.KAZIMOV, L.V.RUSTAMOVA

The structures of $Fe_{0,5}Ga_{0,5}InS_3$, $Fe_{0,25}Ga_{0,5}In_{1,25}S_3$ and $Fe_{0,75}Ga_{0,25}InS_3$ synthesized from individual elements have been investigated by electron diffraction method of oblique texture and obtained the following corresponding parameters of crystal lattices, space groups, structure types and types of packing of anions of S in packets:

<i>a</i> =3,765Å,	c=12,202Å	Sp. gr. P3m1	TOTE	h h h h
<i>a</i> =3,783Å,	c=36,775Å	Sp. gr. R3m	TOTE	h c c h
<i>a</i> =3,781Å,	c=36,662Å	Sp. gr. R3m.	TOTE	h c c h

where T, O and E- tetrahedron, an octahedron and empty polyhedron, h and c -indicate hexagonal and cubic packing of S layers.

Редактор: М.Алиев