ТЕМПЕРАТУРНОЕ ИЗМЕНЕНИЕ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ В ПОЛУПРОВОДНИКАХ

Ф.Н.АБДУЛЛАЕВ, Т.Г.КЕРИМОВА, И.А.МАМЕДОВА, Р.А.СУЛЕЙМАНОВ, Н.А.АБДУЛЛАЕВ

Институт физики НАН Азербайджана AZ 1143, Баку, пр. Г Джавида, 33.

Методом наименьших квадратов осуществлен сравнительный анализ теоретической кривой, описывающей вклад деформации кристаллической решётки вследствие теплового расширения и электрон-фононного взаимодействия в температурное изменение ширин запрещённых зон полупроводников. Обсуждается немонотонный температурный ход ширин запрещённых зон целого ряда полупроводников. Показано, что рост ширины запрещённой зоны с температурой в $TIGaS_2$, $AgGaS_2$, $ZnGa_2Se_4$ при низких температурах обусловлен деформацией кристаллической решётки, а быстрое падение при высоких температурах – вкладом электрон-фононного взаимодействия. Установлено, что в слоистых кристаллах наиболее эффективной в электрон-фононном взаимодействии является полностью симметричная оптическая фононная мода A_1 , поляризованная перпендикулярно слоям с энергией примерно 16мэВ в GaSe и 14мэВ в InSe.

ВВЕДЕНИЕ

Известно, что изменение ширины запрещённой зоны полупроводников с температурой происходит по двум причинам: из-за деформации кристаллической решётки вследствие теплового расширения и электрон-фононного взаимодействия [1]. Если деформационный вклад в температурное изменение ширины запрещённой зоны может быть как положительным, так и отрицательным в зависимости от знака деформационного потенциала, то электрон-фононное взаимодействие, как правило, приводит к уменьшению ширины запрещённой зоны. Вследствие этого при экспериментальном изучении температурной зависимости ширины запрещённой зоны зачастую наблюдается немонотонный её характер: в одних температурных областях она может возрастать, а в других – падать. Анализ имеющихся в литературе данных показывает, что по температурному поведению ширины запрещённой зоны полупроводники можно условно разделить на три группы [2,3]: а) соединения, в которых с повышением температуры наблюдается увеличение ширины запрещённой зоны (TlGaS₂, PbS, PbTe, TlBr и др.), б) соединения, в при низких температурах с повышением температуры сначала которых наблюдается увеличение ширины запрещённой зоны, а затем в широкой области температур дальнейшее повышение температуры сопровождается быстрым уменьшением ширины запрещённой зоны (GaS, PbI₂, AgGaS₂, ZnGa₂Se₄ и др.), в) и, наконец, наиболее широкий класс соединений, в которых при низких температурах с повышением температуры ширина запрещённой зоны сначала уменьшается слабо, а затем экспоненциально падает (Ge, Si, GaSe, InSe и многие др.). Необходимо отметить, что никогда не наблюдалась зависимость типа – сначала с повышением температуры ширина запрещённой зоны немного уменьшается, а при дальнейшем повышении температуры – возрастает. Это по-видимому обусловлено тем, что электрон-фононное взаимодействие, как правило понижающее ширину запрещённой зоны, эффективно при более высоких температурах.

межслоевой B слоистых полупроводниках наличие слабой связи обуславливает характерные особенности фононных спектров, проявляющиеся, в существовании низкочастотных частности, в акустических колебаний с квадратичным законом дисперсии (т.н. «изгибная» мода) и низкочастотных оптических мод. Эти особенности отражаются и в специфическом протекании Ф.Н.АБДУЛЛАЕВ, Т.Г.КЕРИМОВА, И.А.МАМЕДОВА, Р.А.СУЛЕЙМАНОВ, Н.А.АБДУЛЛАЕВ электрон-фононного взаимодействия. В [4,5] показано, что при низких температурах небольшой рост ширины запрещённой зоны с температурой может быть обусловлен доминирующей ролью в электрон-фононном взаимодействии «изгибных» колебаний, которым присуща высокая плотность колебаний. Такое поведение $E_g(T)$ имеет место при температурах T<50K в слоистых PbI₂, HgI₂ [4] и GaS [5].

Современные технические возможности и программное обеспечение позволяют достаточно эффективно анализировать полученные экспериментальные данные в рамках существующих теоретических представлений. Целью настоящей статьи является сравнительный анализ теоретической зависимости с известными экспериментальными данными о температурном изменении ширины запрещённой зоны в полупроводниках. В результате такого сравнительного анализа предполагается получить информацию о роли вкладов деформации вследствие теплового расширения и электрон-фононного взаимодействия в температурное поведение $E_g(T)$, а также частот фононов наиболее эффективных в электрон-фононном взаимодействии.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Функциональный вид зависимости $E_g(T)$ согласно [6] можно представить в виде

$$E_{g}(T) = E_{g}(0) - \left\{ U \cdot T + V \cdot \varphi \left[\operatorname{coth} \left(\frac{\varphi}{2T} \right) - 1 \right] \right\},$$
(1)

учтём, что $\operatorname{coth} x - 1 = \frac{e^x + e^{-x}}{e^x - e^{-x}} - 1 = \frac{2}{e^{2x} - 1}$, тогда обозначи $E_g(0) - E_g(T) = y$,

получим

$$y = U \cdot T + V \cdot \frac{2\varphi}{e^{\varphi/T} - 1}.$$
 (2)

Первый член в соотношении (2) отражает вклад деформации в температурное изменение ширины запрещённой зоны. Если D_i - деформационный потенциал в направлении *i* -той оси, то изменение энергии при деформации запишется

$$\Delta E = D_i U_{ii} = D_1 U_{11} + D_2 U_{22} + D_3 U_{33}, \qquad (3)$$

здесь U_{ii} - компоненты тензора деформации, определяемые через коэффициенты теплового расширения α_{ii} , как

$$U_{ii} = \int \alpha_{ii} dT \,. \tag{4}$$

В области температур, где коэффициенты теплового расширения α_{ii} постоянны, выражение (4) упростится и примет вид

$$U_{ii} = \alpha_{ii} \cdot T \tag{5}$$

С учётом (5) в (3), очевидно, что первый член в (2) действительно отражает вклад деформации.

Авторы [7,8], изучая электрон-фононное взаимодействие в слоистых кристаллах, нашли

$$\Delta E = -B(\hbar\Omega)^{1/2} / [\exp(\hbar\Omega/kT) - 1], \qquad (6)$$

здесь $\hbar\Omega\,$ - энергия фонона, а константа

$$B = \left(8\ln 2/\pi\right)g^2 \left(h^2 Q^2 / 2m^*\right)^{1/2},\tag{7}$$

здесь g - безразмерная постоянная электрон-фононной связи, m^* -эффективная масса носителей заряда, а Q - эффективный радиус зоны Бриллюэна. Как видим, соотношение (6) хорошо согласуется со вторым членом в выражении (2). Из сравнения (6) и (2) следует, что параметр φ в (2) определяется энергией фонона наиболее эффективно участвующего в электрон-фононном взаимодействии:

$$\varphi = \frac{\hbar\Omega}{k}.$$
 (8)

Используя известные данные экспериментальных исследований температурных зависимостей ширин запрещённых зон $E_g(T)$ в полупроводниках GaS [9], TlGaS₂ [10], AgGaS₂ [11], ZnGa₂Se₄ [12], GaSe [13], InSe [14], методом наименьших квадратов путём машинной подгонки функциональной зависимости (2) к экспериментальным точкам, были определены параметры U и V.

Алгоритм вычислений был следующим. Сумма квадратичных отклонений

$$S = \sum_{i=1}^{N} (y_i - y)^2 = \sum_{i=1}^{N} \left[y_i - \left(U \cdot T_i + V \cdot \frac{2\varphi}{e^{\varphi/T_i} - 1} \right) \right]^2.$$
(9)

Для нахождения нормальных уравнений приравниваем частные производные нулю

$$\begin{cases} \frac{\partial S}{\partial U} = (-2)\sum_{i=1}^{N} T_i \left(y_i - U \cdot T_i - V \cdot \frac{2\varphi}{e^{\varphi/T_i} - 1} \right) = 0 \\ \frac{\partial S}{\partial V} = (-2)\sum_{i=1}^{N} \left(\frac{2\varphi}{e^{\varphi/T_i} - 1} \right) \left(y_i - U \cdot T_i - V \cdot \frac{2\varphi}{e^{\varphi/T_i} - 1} \right) = 0 \end{cases}$$
(10)

Получаем систему двух линейных уравнений с двумя неизвестными *U* и *V*, математически легко решаемую методом исключения (методом Гаусса).

$$\begin{cases} \sum_{i=1}^{N} y_i T_i = U \cdot \left(\sum_{i=1}^{N} T_i^2\right) + V \cdot 2\varphi \left(\sum_{i=1}^{N} \frac{T_i}{e^{\varphi/T_i} - 1}\right) \\ \sum_{i=1}^{N} y_i \frac{1}{e^{\varphi/T_i} - 1} = U \cdot \left(\sum_{i=1}^{N} \frac{T_i}{e^{\varphi/T_i} - 1}\right) + V \cdot 2\varphi \left[\sum_{i=1}^{N} \left(\frac{1}{e^{\varphi/T_i} - 1}\right)^2\right]. \end{cases}$$
(11)

В результате численного решения определяются параметры U и V. В решаемой задаче варьируется также с определённым шагом параметр φ . Параметр φ определяется по наименьшей сумме S квадратичных отклонений в (9). Результаты вычислений приведены на Рис.1, Рис.2 и Рис.3 и отражены в Таблице 1. Очевидно хорошее согласие теоретически рассчитанных кривых (сплошные линии) с экспериментальными данными (точки).

Данные Таблицы 1 несут в себе определённую информацию и позволяют сделать следующие выводы. Как видно из Таблицы 1, значения параметра U находятся в пределе $10^{-4} \div 10^{-6}$, что согласуется с соотношением (5), поскольку величины коэффициентов теплового расширения также меняются в этих пределах, а величина деформационного потенциала обычно порядка $D\sim1\div10$. Для сравнения, величина параметра U в классических полупроводниках Ge равна 2,1·10⁻⁴, а в Si – $1,3\cdot10^{-4}$ [6]. Практически во всех соединениях знак параметра U отрицателен, что свидетельствует о положительном знаке деформационного потенциала в этих соединениях и положительном вкладе деформации кристаллической решётки в температурное изменение ширины запрещённой зоны этих полупроводников. В

Ф.Н.АБДУЛЛАЕВ, Т.Г.КЕРИМОВА, И.А.МАМЕДОВА, Р.А.СУЛЕЙМАНОВ, Н.А.АБДУЛЛАЕВ монокристаллах InSe, Si, Ge знак параметра U положителен, соответственно вклад деформации – отрицателен.

Кристаллы	Eg(0),eV	φ, Κ	Параметр, U	Параметр, V
GaS	2,593	80	- 1,18 · 10 ⁻⁴	$1,46 \cdot 10^{-4}$
AgGaS ₂	2,72	500	- 9,46 · 10 ⁻⁵	$2,60 \cdot 10^{-4}$
TlGaS ₂	2,606	1000	$-1,49 \cdot 10^{-4}$	- 1,06 · 10 ⁻¹
ZnGa ₂ Se ₄	2,6712	50	$-2,35\cdot10^{-3}$	$2,05 \cdot 10^{-3}$
GaSe	2,109	200	$-3,85 \cdot 10^{-5}$	$2,98 \cdot 10^{-4}$
InSe	1,3525	160	$3,63 \cdot 10^{-6}$	$1,97 \cdot 10^{-4}$
Si [6]	1,2576	340	$1,25 \cdot 10^{-4}$	$0,83 \cdot 10^{-4}$
Ge [6]	0,8064	190	$2,13 \cdot 10^{-4}$	$1,01 \cdot 10^{-4}$

Таблица 1.

Значения параметров φ , U, и V.

Отметим, что данные исследований влияния гидростатического давления на ширину запрещённой зоны монокристаллов GaS и GaSe выявили, что барический коэффициент примерно одинаков и отрицателен $dE_g/dP \sim -4 \cdot 10^{-6} eV/bar$ [15]. Это значит, что тепловое расширение кристалла приводит к увеличению ширины

запрещённой зоны и свидетельствует о положительном знаке деформационного потенциала в GaS и GaSe и об одинаковом знаке параметра *U* в этих кристаллах, что согласуется с нашими данными.

Рис.1.

Температурная зависимость ширины запрещённой зоны. Сплошная линия - теоретически рассчитанная кривая E_g(T). Чёрные квадратики – экспериментально определённые значения E_g(T) для соединений: a) TlGaS₂ и б) GaS.

Величина и знак параметра V во всех исследованных кристаллах примерно одинаковы ~ $(1\div3)\cdot10^{-4}$, что свидетельствует о схожей природе электрон-фононного взаимодействия в рассматриваемых кристаллах. Для сравнения, величина параметра V в полупроводниках Ge равна $1\cdot10^{-4}$, а в Si – 0,83·10⁻⁴ [6]. Лишь в монокристаллах TlGaS₂, имеющих совершенно отличный температурный ход

зависимости $E_g(T)$ (Рис.1.а), знак параметра V - отрицателен, а сама величина высокая ~0,1.

Рис.2.

Температурная зависимость ширины запрещённой зоны. Сплошная линия - теоретически рассчитанная кривая $E_g(T)$. Чёрные квадратики – экспериментально определённые значения $E_g(T)$ для соединений: a) $AgGaS_2$ и б) $ZnGa_2Se_4$.

Рис.3.

Температурная зависимость ширины запрещённой зоны. Сплошная линия - теоретически рассчитанная кривая $E_g(T)$. Чёрные квадратики – экспериментально определённые значения $E_g(T)$ для соединений: а) GaSe и б) InSe.

Ф.Н.АБДУЛЛАЕВ, Т.Г.КЕРИМОВА, И.А.МАМЕДОВА, Р.А.СУЛЕЙМАНОВ, Н.А.АБДУЛЛАЕВ

Это свидетельствует о необычном характере электрон-фононного взаимодействия в монокристаллах TlGaS₂, что требует специального изучения. Величина параметра φ также несёт в себе определённый физический смысл. Как было отмечено выше, в слоистых кристаллах параметр φ определяется энергией фонона наиболее эффективно участвующего в электрон-фононном взаимодействии [7,8]. В работе [13] авторы, анализируя различные модели электрон-фононного взаимодействия в монокристаллах GaSe показали, что электроны обнаруживают доминирующую связь с полностью симметричной A_1 фононной модой, энергией 16,7мэВ, поляризованной паралельноС-оси. Аналогичные исследования в слоистых монокристаллах InSe [14] выявили наиболее эффективными в электрон-фононном взаимодействии A_1 энергией 14мэВ. Именно с участием фононов такого типа происходят непрямые оптические переходы в кристаллах GaSe и InSe. Согласно соотношению (8) оценим энергию фононов из данных Таблицы 1.

$$\varepsilon = \hbar\Omega = k\varphi = 8,625 \cdot 10^{-2} \,\frac{meV}{K} \cdot \varphi(K) \cdot \tag{12}$$

В случае GaSe с параметром φ =200*K* получим энергию фононов примерно равную ~17,3мэВ, а в InSe с параметром φ =160*K* ~14,7мэВ. Как видим, полученные величины хорошо согласуются с данными [13,14].

- 1. H.Y.Fan, Phys. Rev., 82 (1951) 900.
- 2. Н.В.Ткач, *ФТТ*, **21** (1979) 2506.
- 3. Б.М.Ницович, Г.М.Пестряков, И.В.Блонский, *ФТТ*, **23** (1981) 3252.
- 4. M.S.Brodin, I.V.Blonskii, A.S.Krochuk, B.M.Nitsovich and A.V.Franiv, *JETP*, **83** (1982) 1052.
- 5. G.L.Belenkii, E.Yu.Salayev, R.A.Suleymanov and N.A.Abdullayev, *Solid State Comm.*, **47** (1983) 263.
- 6. A.Manoogian and A.Leclerc, *Rhys. Stat. Sol.* (b), **92** (1978) K23.
- 7. Ph. Chmid, Nuovo Cimento, 21 (1974) 258.
- 8. R.Fivaz and Ph.E.Schmid, Transport properties of layered semiconductors. In "Optical and Electrical properties" ed. by P.A.Lee, Dordrecht-Holland: D.Reidel Publishing Company, (1976) 343.
- 9. Г.Л.Беленький, М.О.Годжаев, Э.Ю.Салаев, Письма в ЖЭТФ, 26 (1977) 385.
- 10. С.Г.Абдуллаева, Н.А.Абдуллаев, Г.Л.Беленький, Н.Т.Мамедов, Р.А.Сулейманов, ФТП, (1983) 2068.
- 11. Yu.Phil Won, W.J.Anderson and Y.S.Park, Solid State Commun., 13 (1973) 1883.
- 12. Т.Г.Керимова, Ш.С.Мамедов, И.А.Мамедова, *Неорг. материалы*, **29** (1993) 902.
- 13.G.Antonioli, D.Bianchi, U.Emiliani and P. Podini, *Nuovo Cimento*, **54 B** (1979) 211.
- 14. J.Camassel, P.Merle, H.Mathieu, A.Chevy, Phys. Rev. B, 17 (1978) 4718.
- 15. J.M.Besson, Nuovo cimento, 38 B (1977) 478.

YARIMKEÇİRİCİLƏRDƏ QADAĞAN ZONASININ TEMPERATUR ASILILIĞI

F.N.ABDULLAEV,T.Q.KƏRİMOVA, İ.Ə.MƏMMƏDOVA, R.A.SÜLEYMANOV, N.A.ABDULLAYEV

Yarımkeçiricilərdə qadağan zonasının temperatur asılılığına olan əlavələri – istilik cenişlənməsi nəticəsində qəfəs deformasiyası və elektron-fonon qarşılıqlı təsiri - təsvir edən nəzəri əyrinin müqayisəli təhlili ən kiçik kvadratlar metodu ilə aparılmışdır. Bir sıra uarımkeçiricilərin qadağan zonasının temperatur asılılığının qeyri-monotonluğu müzakirə edilmişdir. Göstərilmişdir ki, aşağı temperaturlarda TIGaS₂, AgGaS₂, ZnGa₂Se₄ monokristallarında qadağan zonasının temperatur

ТЕМПЕРАТУРНОЕ ИЗМЕНЕНИЕ ШИРИН ЗАПРЕЩЁННЫХ ЗОН В ПОЛУПРОВОДНИКАХ

asılılığının qalxması kristal qəfəsinin deformasiyası, yüksək temperaturlarda sürətlə düşməsi elektron-fonon qarşılıqlı təsiri ilə bağlıdır. Müəyyən olunmuşdur ki, GaSe –də enerjisi 16MeV və InSe-də 1MeV olan simmetrik optik fonon madası A1 laylı kristallarda elektron-fonon qarşılıqlı təsirində daha effektivdir.

THE TEMPERATURE DEPENDENCE OF BAND GAP OF SEMICONDUCTORS

F.N.ABDULLATV, T.G.KERIMOVA, I.A.MAMEDOVA, R.A.SULEYMANOV, N.A.ABDULLAEV

The comparative analysis of the theoretical curve, describing the contribution of lattice deformation due to thermal expansion, and electron-phonon interaction to temperature dependence of band gap of semiconductors has been carried out by the least squares method. Nonmonotonous temperature course of band gap of a lot of semiconductors has been discussed. It was shown that the growth of band gaps with the temperature in TlGaS₂, AgGaS₂, ZnGa₂Se₄ at low temperatures is due to lattice deformation, but fast fall at high temperatures is due to electron-phonon interaction. It has been established that completely A_1 symmetric optical phonon mode polarized perpendicularly to layers with the energy of 16MeV in GaSe and 14MeV in InSe was the most effective in phonon-electron interaction of the layered crystals.

Редактор: М.Алиев