ДОЛГОВРЕМЕННАЯ РЕЛАКСАЦИЯ ТОКА В МОНОКРИСТАЛЛЕ TIGaS₂

С.Н. МУСТАФАЕВА, А.А. ИСМАИЛОВ

Институт физики НАН Азербайджана AZ 1143, Баку, пр. Г.Джавида, 33

Результаты изучения токов изотермической релаксации, вольт-амперных характеристик при различных температурах, термостимулированных токов позволили выявить в монокристалле TlGaS₂ два ловушечных уровня с энергиями активации E_{t1} =0.14÷0.16эВ и E_{t2} =0.32эВ. Показано, что за долговременной спад тока в TlGaS₂ ответственен ловушечный уровень E_{t1} =0.14эВ.

Монокристаллы $TlGaS_2$ относятся к классу слоистых широкозонных полупроводников (максимум собственного фототока приходится на 2.72эВ при 300К) с высоким электрическим сопротивлением [1]. Сильное влияние на электрические и фотоэлектрические свойства этих кристаллов оказывают энергетические уровни в запрещенной зоне, обусловленные структурными дефектами. Наличие локальных состояний приводит к различным временным изменениям тока, протекающего через кристалл.

Целью настоящей работы явилось изучение релаксационных токов в монокристалле TlGaS₂, сведения о которых в литературе отсутствуют.

Образцы из монокристаллов TlGaS₂ [1] были изготовлены в сэндвичварианте, так что электрическое поле к ним прикладывалось вдоль кристаллографической оси C, т.е. поперек естественных слоев монокристаллов. В качестве контактного материала к кристаллам TlGaS₂ использована серебряная паста. Толщина монокристаллов была ~300мкм, а подконтактная площадь составляла $2 \cdot 10^{-2}$ см². Удельное темновое сопротивление изготовленных из TlGaS₂ образцов составляло ρ = $2 \cdot 10^9$ Oм·см при 293K.

При изучении процессов переноса заряда было обнаружено, что при приложении к образцу Ag-TlGaS₂-Ag постоянного электрического напряжения темновой ток, протекающий в нем, изменялся во времени. Характер изменения тока зависел от величины приложенного напряжения. Серебро, как известно, является быстродиффундирующей примесью в полупроводниках, поэтому при приложении постоянного электрического поля к структуре Ag-TlGaS₂-Ag могла иметь место электродиффузия Ag в TlGaS₂ и соответствующие необратимые изменения свойств TlGaS₂. Однако полученные нами экспериментальные результаты указывают на то, что электродиффузия контактного материала не оказывает существенного влияния на релаксационные характеристики структуры Ag-TlGaS₂-Ag.

На Рис.1(а) показаны экспериментальные зависимости тока, протекающего через образец Ag–TlGaS₂–Ag, от времени при различных приложенных электрических напряжениях. Как видно из Рис.1(а), при всех напряжениях имела место спадающая релаксация тока, и примерно через 6 минут устанавливался стационарный уровень тока. При увеличении напряжения спад тока со временем становился более пологим (кривые 1 - 4).

Вследствие того, что величина тока зависела от времени выдержки напряжения, вольтамперные характеристики (BAX) изученных образцов из TlGaS₂ обнаруживали гистерезис, т.е. прямая и обратная ветви BAX не совпадали; прямая ветвь снималась при повышении напряжения, а обратная ветвь – при понижении напряжения. На Рис.2 приведены BAX образца Ag–TlGaS₂–Ag, снятые по

ДОЛГОВРЕМЕННАЯ РЕЛАКСАЦИЯ ТОКА В МОНОКРИСТАЛЛЕ TIGaS₂

установившимся значениям тока, при различных температурах в интервале 293÷393К. ВАХ при температурах 293, 320 и 350К (кривые 1-3) характеризовались коротким сублинейным участком $I \sim V^{0.5}$, переходящим в участок $I \sim V^{1.2 \div 1.3}$. При 293К после участка $I \sim V^{1.2}$ имел место крутой рост тока $I \sim V^4$. При высоких температурах 373 и 393К ВАХ характеризовались одним наклоном $I \sim V^{1.5}$ во всей изученной области электрических напряжений (кривые 4 и 5). Спадающая релаксация тока в монокристаллах $TlGaS_2$ приводила к меньшей степени зависимости тока от напряжения.

Временные изменения тока, протекающего через систему Ag-TlGaS₂-Ag при различных значениях приложенного электрического напряжения V(B): 1 – 0.1; 2 – 0.5; 3 – 0.9; 4 – 1.2; а – в обычных координатах; b – в полулогарифмическом масштабе; T=293K.

ВАХ образца Ag-TlGaS₂-Ag при различных температурах T, K: 1 – 293; 2 – 320; 3 – 350; 4 – 373; 5 – 393.

Спад тока со временем можно объяснить тем, что в образце, по которому компенсирующий течет ток, аккумулируется заряд, частично величину приложенного внешнего напряжения. На Рис.3 приведена экспериментальная зависимость накопленного в системе Ag-TlGaS₂-Ag заряда Q от времени выдержки напряжения V=0.1В при 293К. Со временем величина заряда нарастала и где-то через 6-7 минут выходила на насыщение. Максимальная величина накопленного в образце Ag-TlGaS₂-Ag заряда составляла 4.8·10⁻⁸Кл, что $Q_{\text{max}} = 2.4 \cdot 10^{-6} \text{Кл/см}^2$. плотности соответствовало максимальной заряда

Приведенные на Рис.1(а) спадающие ветви релаксационных кривых I(t) перестроены в полулогарифмическом масштабе и показаны на Рис.1(b). Как видно из этого рисунка, экспериментальные данные в координатах lg I от t спрямлялись. Это находилось в согласии с формулой для спадающих I - t характеристик

$$I(t) = \frac{q \,\mu \tau \, n_t \, S \, F}{\tau_d} \, \exp\!\left(-\frac{t}{\tau_d}\right),\tag{1}$$

полученной в [2] на основе простой кинетической модели, предполагающей наличие в кристалле дискретных ловушечных уровней при условии, что процессами перезахвата носителей заряда можно пренебречь. В формуле (1) q – заряд электрона; μ – дрейфовая подвижность носителей заряда; τ – время жизни носителей заряда; n_t – плотность носителей на ловушках; S – подконтактная площадь; F – напряженность приложенного электрического поля. Согласно (1) ток спадает экспоненциально со временем с временной постоянной τ_d . По наклонам

прямых lg I от t, показанных на Рис.1(b), определены временные постоянные τ_d для различных напряжений.

Рис. 3. Зависимость накопленного в системе Ag–TlGaS₂–Ag заряда от времени выдержки напряжения V=0.1В при 293К.

Рис.4.

Зависимости постоянной времени τ_d спада темнового тока (кривая1) и тока отсечки I_0 (кривая2) от величины приложенного к системе Ag–TlGaS₂– Ag электрического напряжения при 293K.

Рис.5. Температурные зависимости τ_d (кривая 1) и темнового тока I (кривая 2) в монокристалле TlGaS₂ при V=0.5B.

График зависимости $\tau_d(V)$ показан на Рис.4 (кривая 1), откуда следует, что τ_d линейно растет с ростом напряжения. Токи отсечки (I_0), определенные экстраполяцией прямых lg I(t) на рис. 1, b до пересечения с осью ординат, графически представлены на рис. 4 (кривая 2) в зависимости от напряжения. С ростом напряжения I_0 линейно возрастал. Этот экспериментальный факт находится в согласии с формулой (1), из которой следует, что при t=0

$$I_0 = \frac{q\,\mu\tau n_t\,S\,F}{\tau_d}\,.\tag{2}$$

Нами также изучена температурная зависимость постоянной времени τ_d , описывающей релаксацию темнового тока в системе Ag–TlGaS₂–Ag (Puc.5, кривая 1). Как видно из Puc.5, экспериментальные результаты подчинялись закономерности

$$\tau_d = \exp\left(-\frac{E_i}{kT}\right). \tag{3}$$

Наклон полученной экспоненциальной зависимости $lg \tau_d$ от 10^3 /T составлял $E_t=0.14$ эВ. Это свидетельствует о том, что долговременная релаксация тока в образце TlGaS₂ обусловлена захватом носителей заряда ловушечным уровнем $E_t=0.14$ эВ.

Из температурной зависимости темнового тока в системе Ag–TlGaS₂–Ag (Рис.5, кривая 2) выявлены два уровня с энергиями 0.10 и 0.32эВ.

Для выявления имеющихся локальных уровней в монокристалле TlGaS₂ нами также изучены термостимулированные токи (TCT). На Рис.6 показан спектр TCT в монокристалле TlGaS₂, снятый при скорости нагрева β =0.34K/c. На спектре TCT четко выявляются два пика при температурах T_{m1}=80 и T_{m2}=160K. Эти пики TCT соответствуют глубине ловушек 0.16 и 0.32эВ, оцененных из выражения [3]:

$$E_t = 23kT_m, (4)$$

т.е. полученные из температурных зависимостей тока и постоянной времени спада тока, а также из спектра TCT значения глубины залегания ловушек в монокристалле TlGaS₂ E_{t1} =0.14÷0.16эB, E_{t2} =0.32эB хорошо согласуются друг с другом.

Согласно теории изотермических токов в полупроводниках с ловушками [4] график зависимости *I* $\cdot t$ от *ln* t имеет максимум при $t = \tau_d$. Из формулы (1) следует, что при этом $(I \cdot t)_{max} = q \,\mu \tau \, S \, F \, e^{-1} \, n_t$. (5)

Такая зависимость для монокристалла TlGaS₂ представлена на Рис.7 при T=293K. Спад тока осуществлялся при напряжении 0.1В. Как видно из Рис.7 кривая *I*·*t* от *ln t* имела максимум при t=180с, т.е. из данного графика определена постоянная времени спада тока τ_d =180с, величина которой удовлетворительно согласуется со значением τ_d =217с, полученным из наклона зависимости *I*(*t*) в TlGaS₂ при V=0.1В и 293K (Рис.1(b), кривая 1).

Таким образом, анализ экспериментальных результатов показал, что за долговременной спад тока в TlGaS₂ ответственен ловушечный уровень E_t =0.14эB.

- 1. С.Н. Мустафаева, ФТТ, **47** (2005) 1937.
- 2. G. Micocci, A. Rizzo, A. Tepore, F. Zuanni, Phys. Stat. Sol. (a), 80 (1989) 263.
- 3. А. Милнс, Примеси с глубокими уровнями в полупроводниках, Мир, Москва, (1977).
- 4. J.G. Simmons, M.C. Tam, Phys. Rev. B, 7 (1973) 3706.

TIGaS₂ MONOKRISTALINDA CƏRƏYANIN UZUNMÜDDƏTLI RELAKSASIYASI S.N.MUSTAFAYEVA, Ə.Ə.İSMAYILOV

 $TlGaS_2 monokristalında izotermik relaksasiya cərəyanının, volt-amper xarakteristikalarının müxtəlif temperaturlarda və termostimulə edilmiş cərəyan tədqiqinin nəticələri əsasında, bu monokristalda yükdaşıyıcıların tutulmasını təmin edən aktivləşmə enerjiləri E_{t1}=0.14–0.16eV və E_{t2}=0.32eV olan iki energetik səviyyənin mövcudluğu müəyyən edilmişdir. Tapılmışdır ki, TlGaS_2 monokristalında cərəyanın uzunmüddətli azalması, enerjisi E_{t1}=0.14eV olan tutulma səviyyəsi vasitəsi ilə baş verir.$

LONG-TIME RELAXATION OF CURRENT IN TIGaS₂ SINGLE CRYSTAL S.N. MUSTAFAEVA, A.A. ISMAILOV

The results of investigation of isothermal relaxation currents, volt-ampere characteristics at various temperatures and thermally stimulated currents allowed to reveal the presence of two trapping centers with activation energies $E_{t1}=0.14\div0.16eV$ and $E_{t2}=0.32eV$ in TlGaS₂ single crystal. It was shown that trap level $E_{t1}=0.14eV$ is responsible for long-time relaxation of current in TlGaS₂ single crystal.

Редактор:А.Гарибов