ГАЛЬВАНОЭЛЕКТРИЧЕСКИЕ, ЭЛЕКТРОННЫЕ И ИОННЫЕ СВОЙСТВА ПОЛУПРОВОДНИКОВЫХ СОЕДИНЕНИЙ $Cu_{2-x}B^{VI}(B^{VI}-S,Se,Te)$ Ф.М.МУСТАФАЕВ

Мингячевирский Политехнический Институт г.Мингячевир, ул. Д.Алиевой 21

Гальваноэлектрические, электронные и ионные свойства нестехиометрических халькогенидов меди изучены методом кулонометрического титрования. Кулонометрическое титрование было проведено при температурах 363 и 423К ($Cu_{2-x}S$); 373 и 413К ($Cu_{2-x}Se$); 410 и 460К ($Cu_{2-x}Te$).

Халькогениды меди (Cu_2S , Cu_2Se , Cu_2Te)-нестехиометрические полупроводниковые фазы переменного состава, характеризующиеся модификационными превращениями, дефектной структурой и смешанной (электронной и ионной) проводимостью [1].

Электрические и физико-химические свойства соединений $Cu_{2-x}B^{VI}(B^{VI}-S,Se,Te)$ широко изучены. Возможность управления их свойствами путем регулируемого отклонения от стехиометрии позволяет считать их перспективными материалами для полупроводниковой электроники. Наличие структурных фазовых переходов меняет физико-химические свойства халькогенидов меди скачкообразно, что позволяет использовать их в качестве различных чувствительных датчиков, переключателей и термисторов [1].

Однако некоторые физико-химические (гальваноэлектрические, электронные и ионные) свойства нестехиометрических халькогенидов меди изучены недостаточно [2,3].

Эти свойства изучены нами методом кулонометрического титрования, разработанным Вагнером [4].

Нами проведено кулонометрическое титрование при постоянной температуре в гальваническом элементе типа:

$$Cu \left| Cu_4 \stackrel{Cu^{z_+}}{Rb} Cl_3 J_2 \left| Cu_{2\pm x} \stackrel{\downarrow_{P_I}}{B} VI \right| Pt....(I),$$

где Cu^{Z^+} -заряд иона меди, $B^{VI}-S, Se, Te$; х-отклонение от стехиометрии, $\downarrow Pt$ - платиновый зонд, $Cu_4RbCl_3J_2$ -суперионный электролит, знак \pm зависит от полярности приложенного напряжения.

Технология получения твердого электролита $Cu_4RbCl_3J_2$ и халькогенидов меди Cu_2S , Cu_2Se , Cu_2Te и методика измерения подробно описаны в монографии [5].

В зависимости от полярности приложенного напряжения количество перенесенного вещества по закону Фарадея определяется:

$$m_{Cu} = \frac{A_{Cu} \cdot I \cdot t}{z \cdot F},\tag{1}$$

где A_{Cu} -атомная масса меди, І-сила тока t-время пропускания тока.

Отклонение от стехиометрии (x) меняется на величину Δx

$$\Delta x = \frac{I \cdot t}{\frac{m}{\mu} \cdot z \cdot F},\tag{2}$$

где m и μ - масса и молекулярная масса образца, соответственно.

Согласно Вагнеру [4], x после пропускания тока определяется выражением: $x = x_0 + \Delta x$; где x_0 -соответствует составу соединения, которое находится в электрохимическом равновесии с чистой медью ($\mu_{Cu}^0 = \mu_{Cu}$), у которого э.д.с. элемента равна нулю (E=0), где μ_{Cu}^0 и μ_{Cu} -химические потенциалы чистой меди и соединения, соответственно.

Согласно [6], x для p-типа полупроводниковых халькогенидов меди определяется по следующему уравнению:

$$x - 2x_{\varrho}^{0} sh(\varepsilon - \varepsilon^{0}), \tag{3}$$

где x_g^0 , ε^0 - мольная доля дырок и приведенная э.д.с. стехиометрического состава, соответственно, $\varepsilon^0 = \frac{z \cdot F}{RT} \cdot E^0$, $\varepsilon = \frac{z \cdot F}{RT} \cdot E$ (при x=0, E=E 0), sh -гиперболический синус.

Из (3) получается S-образная кривая титрования с точкой перегиба на участке x=0, $\varepsilon=\varepsilon^0$, x_g^o - определяется экспериментально, а ε^0 -графически.

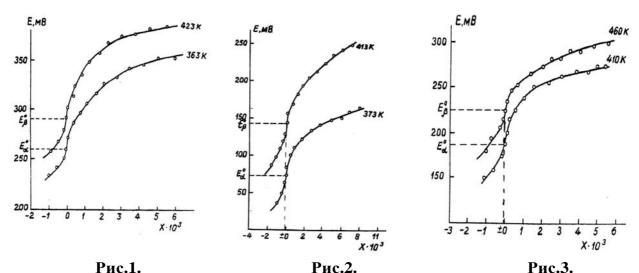
Графическим дифференцированием E=f(x) определяется термодинамический фактор взаимной (химической) диффузии ионов меди

$$F_{Cu} = \frac{z \cdot F}{RT} \cdot \frac{dE}{dx} \,. \tag{4}$$

В кристаллах халькогенидов меди образуются дефекты Френкеля (по вакансиям). Для стехиометрических кристаллов с подобными дефектами по закону действующих масс справедливо уравнение [7]

$$x_{g}^{o} = x_{e}^{o} = K_{p}^{\frac{1}{2}} = A \cdot e^{\frac{\Delta H_{F}}{2KT}},$$
 (5)

где А-постоянная Маделунга, $\Delta H_{\scriptscriptstyle F}$ =энтальпия дефектообразования по Френкелю, $K_{\scriptscriptstyle p}$ -константа равновесия.


Кулонометрической титрование было проведено при температурах 363 и 423К (CuS), 373 и 413К (Cu_2Ce), 410 и 460К (Cu_2Te).

В элементе (I) величина приложенного напряжения не должна превышать потенциал разложения твердого электролита $Cu_4RbCl_3J_2$. Ток пропускается между медным электродом и платиновым зондом. После каждой прокачки тока установившиеся значения Кривые титрования фиксировали э.д.с. нестехиометрических халькогенидов меди представлены на Рис.1-3. На кривых соответствуют стехиометрическому изгиба максимальному наклону кривой определяется стехиометрической состав α -(низкотемпературных) и β - (высокотемпературных) фаз халькогендов меди. Максимальный наклон отмечался при 260 мВ при в $\alpha - Cu_2S$ и 290мВ $\beta - Cu_2S$; 75мВ в $\alpha - Cu_2Se$ и 145мВ $\beta - Cu_2S$; 180мВ в $\alpha - Cu_2Te$ и 225мВ в $\beta - Cu_2Te$.

По формулам (1) и (2) нами было определено количество перемененных веществ (m_{Cu}) и нестехиометрия (ч) в обеих модификациях халькогенидов меди. По уравнению (3) найдены концентрации дырок α -фаз стехиометрических составов (p^0) халькогенидов меди, а из уравнения (4) определены $F_{Cu}\alpha$ -фаз нестехиометрических составов изученных фаз. Из уравнения (5), связывающего электронные и термодинамические свойства, рассчитаны при температуре 373К энтальпии образования дефектов по Френкелю (ΔH_F) α -фаз стехиометрических составов халькогенидов меди.

ГАЛЬВАНОЭЛЕКТРИЧЕСКИЕ, ЭЛЕКТРОННЫЕ И ИОННЫЕ СВОЙСТВА ПОЛУПРОВОДНИКОВЫХ СОЕДИНЕНИЙ $Cu_{2-x}B^{VI}(B^{VI}-S,Se,Te)$

Полученные результаты по гальваноэлектрическим, электронным и термодинамическим свойствам халькогенидов меди приведены в таблице и сопоставлены с литературными данными.

Рис.1. Кривые титрования сульфида меди ($Cu_{2-x}S$).

Кривые титрования селенида меди $Cu_{2-x}Se$.

Рис.3. Кривые титрования теллурида меди $Cu_{2-x}Te$.

Таблица

Некоторые физико-химические свойства нестехиометрических халькогенидов меди.

Вещество	T, K	m_{Cu} , кг	$x \cdot 10^{-3}$	$p^0, m^{-3} \cdot 10^{24}$	$F_{Cu} \cdot 10^2$	ΔH_F \ni B
$\alpha - Cu_{2-x}S$	363	$3,67 \cdot 10^{-3}$	6,1	3,1	4,0	0,58
			4,3	3,0		
$\beta - Cu_{2-x}S$	423	$1,5 \cdot 10^{-8}$	5,5			
$\alpha - Cu_{2-x}Se$	373	$4,7 \cdot 10^{-8}$	8,0	12	2,3	0,50
			6,5	8,3		
$\beta - Cu_{2-x}Se$	413	$7,9 \cdot 10^{-7}$	7,3			
$\alpha - Cu_{2-x}Te$	410	$9,5 \cdot 10^{-7}$	5,4	6,7	3,1	0.59
			5,0	5,0		
$\beta - Cu_{2-x}Te$	460	$1,2\cdot 10^{-7}$	5,5			

Из таблицы видно, что экспериментальные результаты, полученные нами, близки к литературным данным.

- 1. В.В.Горбачев, Полупроводниковые соединения $A_2^1 B^{VI}$, Металлургия, (1980) 10517.
- 2. Р.А.Якшибаев, Исследование явлений переноса ионов и электронов в халькогенидах меди и серебра в процессе реакционной диффузии, Автореферат дисс. Канд. Физ-мат. Наук, г.Свердловск, Изд-во Уральского гос. Университета, (1973).
- 3. С.Г.Мамыко, М.И.Павлюченко, Я.И.Покровский, Самодиффузия меди в $Cu_{2-x}Se$, Изв. АН БССР серия хим. Наук, **3** (1973) 14.
- 4. T. Wanger, C. Wanger, J. Chem. Phys., 26 (1957) 1602.

Ф.М.МУСТАФАЕВ

- 5. Ф.М.Муставаев, Термодинамические, гальваноэлектрические, электронные, ионные свойства и выращивание монокристаллов халькогенидов меди и серебра, Монография, изд. «Элм», Баку, (ГОД) 95.
- 6. Ф.Крегер, Химия несовершенных кристаллов, Изд-во «Мир», (1970).
- 7. Р.А.Свелин, *Термодинамика твердого состояния*, *«Металлургия»*, (1968) 263.
- 8. Г.П.Сорокни, А.П.Парденко, *Изв. вузов «Физика»*, №5 (1966) 91.
- 9. Г.П.Сорокни, Е.В.Ковтун, *Изв. АН СССР, Неорганические материалы*, **10** (1974) 969.
- 10. Г.П.Сорокни, С.Н.Мунтян, *Изв. АН СССР, Неорганические материалы*, **3** (1967) 1805.

KULONOMETRİK TİTR METODU İLƏ CuB^{VI} $(B_{VI}-S,Se,Te)$ TİPLİ QEYRİ STEXİOMETRİK FAZALI YARIMKEÇİRİJİ BİRLƏŞMƏLƏRİN TƏDQİQİ

F.M.MUSTAFAYEV

Kulonometrik titr metodu ilə qeyri stexiometrik fazalı misin xalkoqenidlərinin $(Cu_{2-x}S, Cu_{2-x}Se, Cu_{2-x}-Te)$ qalvonoelektrik, elektron və ion xassələri byrənilmişdir. Misin xalkoqenidlərində kulnometrik titr aşağı və yuxarı temperatur fazaları üçün 363 və 423K $(Cu_{2-x}S)$; 373 və 413K $(Cu_{2-x}Se)$; 410 və 460K, temperaturlarında aparılmışdır.

INVESTIGATION OF NON-STOICHIOMETRICAL SEMICONDUCTORS COMPOSITIONS $CuB^{VI}(B_{VI}-S,Se,Te)$ by the culnometrik titration method

F.M.MUSTAFAYEV

Galvanoelectrical, electronic and ionic properties of copper chalcogenides $(Cu_{2-x}S, Cu_{2-x}Se, Cu_{2-x}-Te)$ have been investigated by the coulometric titration method. Coulometric titration was held in the temperature 363 and 423K $(Cu_{2-x}S)$; 373 and 413K $(Cu_{2-x}Se)$; 410 and 460K $(Cu_{2-x}Te)$.

Редактор: Дж. Абдинов