ИЗУЧЕНИЕ ПЯТНИСТОЙ СТРУКТУРЫ АТМОСФЕРЫ У МАГНИТНОЙ СР- ЗВЕЗДЫ 56 Ari

С.Г.АЛИЕВ, С.Г.ЗЕЙНАЛОВ

Шамахинская Астрофизическая Обсерватория им. Н.Туси НАН Азербайджана AZ1243, Азербайджан, г.Шамаха

На основании спектральных магнитных и фотометрических наблюдений изучена химическая неоднородность (пятнистость) структуры магнитной СР-звезды 56 Ari. Выявлено, что фаза максимума блеска, интенсивности линий Si II и других пекулярных элементов совпадают с минимумом линий H и HeI. Получено, что около положительного магнитного полюса интенсивности линий пекулярных элементов и температура достигают максимального значения. Установлено, что амплитуда изменения H-линий растет с увеличением номера этих линий.

Магнитные химически пекулярные (СР) звезды располагаются в верхней части главной последовательности в интервале спектральных классов F5-B0 (Те=7500÷15000°К) и составляют в среднем около 20% всех звезд этого интервала. Практически все магнитные СР-звезды являются фотометрическими, спектральными и магнитными переменными одного и того же периода, который совпадает с периодом вращения каждой звезды. Переменность этих звезд объясняется моделью наклонного ротатора с неоднородным распределением химических элементов по поверхности – пятнистостью звезд.

В большинстве работ по магнитным звездам основное внимание было уделено выявлению неоднородности поверхности этих звезд. При этом во многих работах предполагалось, что поверхность звезды физически однородна, неоднороден только химический состав [1].

 $ar{K}$ сожалению во всех предыдущих работах не было детально исследовано влияние эффекта пятнистости на структуру атмосферы, в основном, по глубине фотосферы у магнитных CP-звезд .

Целью данной работы является выявление влияния "эффекта неоднородности" на физические параметры и строение фотосферы в области пятен на примере типичной магнитной СР-звезды 56 Ari (HD 19832).

Магнитная спектрально-переменная СР-звезда 56Ari имеет спектральный класс В8р и следующие особенности, которые делают эту звезду особенно интересной для исследования:

- 1. Несмотря на то, что почти все CP звезды являются медленными (статистически $V \sin i \le 60$ км /сек) ротаторами , звезда 56 Ari является одной из быстровращающихся звезд ($V \Rightarrow k = 170$ км /сек) [2].
- 2. В спектрах этой звезды наблюдаются довольно сильные и широкие линии Si II и HeI, которые показывают четко выраженные периодические изменения.
- 3. В атмосфере 56 Ari оба эти элемента (Si и He) имеют аномальный химический состав, в результате чего может произойти изменение соотношения N(He+Si)/Nн, что может привести к изменению строения фотосферы в области пятен по сравнению со строениями нормальных звезд .
- 4. Фотометрические наблюдения, проводимые в 10-цветах [3], показывают синхронные изменения блеска во всех цветах с периодом $P=0^d$.7279, который был определен еще ранее в [4]. Бэбкок отнес ее к звездам, магнитное поле которых нельзя измерить из-за большой ширины линий. Однако позднее

ИЗУЧЕНИЕ ПЯТНИСТОЙ СТРУКТУРЫ АТМОСФЕРЫ У МАГНИТНОЙ СР-ЗВЕЗДЫ 56 Агі

фотоэлектрическим методом [1] по линии H_{β} было измерено магнитное поле этой звезды (см. ниже) .

НАБЛЮДЕНИЯ. Около 35 спектрограмм для 56Ari было получено на 2-м телескопе ШАО им. Н.Туси НАН Азербайджана в фокусах куде и кассегрена с дисперсией 4 и 10A° /мм. Часть этих спектров была использована в [2], на основании которых был определен десятикратный дефицит гелия в атмосфере 56Ari. Полученные спектрограммы равномерно распределены по периоду. Некоторые спектрограммы были отсняты настолько близко по фазе ($\Delta \phi$ =0.01-0.03), что при исследовании их можно отнести к одной фазе.

Спектрограммы, полученные в фокусе кассегрена (10Å/мм), были использованы, в основном, при анализе водородных линий [5]. В данной работе мы использовали спектрограммы, полученные в основном в фокусе куде. Привязка по фазе была проведена по элементам, полученным в [4]

JD (Vmin)=2437667.728+0.7278925E.

Подробные сведения о наблюдательных материалах и методике обработки представлены в [5]. Поскольку звезда имеет большую скорость вращения, большинство наблюдаемых линий на регистрограммах очень широкие и выявить их среди шумов записи очень трудно. По полученным регистрограммам были проведены идентификации спектральных линий, в основном, более репрезентативных химических элементов для звезд спектрального класса B8. В результате оказалось, что в спектральном интервале $\lambda\lambda3700\div4800\text{Å}$ все сильные линии в спектре 56Ari принадлежат HeI, SiII, SrII, EuII, CrII и FeII. Кроме водородных линий, которые имеют очень широкие крылья, четко выделяются и линии λ 4481 MgII и $\lambda3933.6\text{CaII}$. Профили большинства линий заметно меняются с фазой и имеют сложную структуру .

Для обработки кроме линии бальмеровской серии нам удалось выбрать линии (Таблица1), которые являются свободными или почти свободными от блендирования. Большинство из них выглядит как одиночные в фазах (ϕ =0.40÷0.60), но при ϕ =0.25-÷30 они разделяются на несколько компонентов.

Для выявления химической неоднородности (пятнистости) поверхности магнитных СР звезд имеются различные методы [6]. В основе большинства имеющихся методов лежит процедура разделения наблюдаемых контуров линий на компоненты. При этом часто бывает так, что какая-то доля компонента оказывается ложной из-за шумов и качества спектрограмм.

Чтобы избавится от таких неопределенностей и достижения цели данной статьи, т.е. выявления химической неоднородности на поверхности звезды, мы использовали метод, предложенный в [6].

Для этого во всех спектрограммах нами были определены полные (суммарные) эквивалентные ширины (средние по всему видимому диску звезды) выбранных линий, экстремальные значения которых приведены в Таблице1 (столбцы 4 и 5). Одновременно были измерены и лучевые скорости Vr по центру тяжести каждой линии, если даже данная линия состоит из нескольких компонентов. Очевидно, что при таких измерениях определяются лучевые скорости только центрального компонента, который формируется, в основном, в области пятна, расположенного около центральной части видимого диска звезды.

С целью выявления наиболее химически неоднородной (пятнистой) области на видимом полушарии у 56Ari были построены графики зависимости величин $W\lambda$ и Vr выбранных линий от фазы (ϕ). По характеру изменения все фазовые кривые можно разделить на две группы:

- 1. Линии Н и Не І;
- 2. Линии Si II и других элементов.

Таблица 1.

Элемент	Мульти	Ei	W _λ (mA°)		Элемент	Мульти	Ei	W_{λ} (mA°)	
λ	-плет	(eV)	max	min	λ	-плет	(eV)	max	min
ΗI					Cr II				
6562.61	1	10.15	9.20	7.80	4242.38	31	3.85	100	45
4340.46	1	10.15	10.70	8.60	4275.57	31	3.84	110	52
3885.39	2	10.15	10.90	6.70	4558.65	44	4.06	220	125
3750.15	2	10.15	4.50	1.90	4588.22	44	4.06	200	115
He I					Mn II				
4026.19	18	20.87	450	130	4206.37	7	5.37	200	124
4471.48	14	20.82	440	70	4253.02	7	5.36	90	48
Mg II					4284.42	6	5.35	135	80
4481.33	4	8.83	520	290	Fe II				
4390.58	10	9.96	270	140	4303.17	27	3.69	260	190
Si II					4508.28	38	3.84	280	200
3862.59	1	9.90	410	200	4515.34	37	3.83	320	200
4128.03	3	9.78	500	240	4549.47	38	3.82	380	270
4130.89	3	9.80	590	330	4583.83	38	3.79	140	65
4200.90	?	12.52	310	150	Sr II				
4621.70	-	12.52	300	145	4077.71	1	0.00	387	205
Ca II					4215.51	1	0.00	200	104
3933.66	1	0.00	260	140	4305.45	3	3.03	170	75
Sc II					Eu II				
4246.83	7	0.31	190	110	4129.73	1	0.00	86	40
4314.06	15	0.62	105	60	4205.05	1	0.00	105	60
4320.74	15	0.60	95	50					

1. Во всех спектрограммах звезды 56Ari были обработаны наблюдаемые Нлинии, а также две линии Не I $\lambda 4026$ и $\lambda 4471$. Обнаружены изменения W_{λ} и Vr рассматриваемых линий водорода и гелия с периодом, которые показывают одинаковый ход (Puc.1). На Puc.1 представлены также кривые изменения блеска в ΔY ($\lambda 4600$ A°) по измерениям [3].

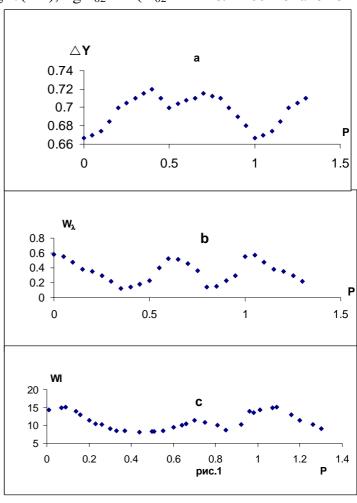
Сравнение показывает, что в максимуме блеска звезды эквивалентные ширины линий H и Hе получают минимальные значения, а в минимуме блеска - максимальные, т.е. блеск и интенсивности этих линий изменяются в противофазе. Наибольшую амплитуду изменения показывают H-линии с высокими номерами (n>10 коротковолновые линии $\lambda \le 3800$ Å). Согласно [7,8] эффективные глубины образования (τ)H-линий сильно различаются, причем линии с высокими номерами формируются в самых верхних слоях атмосферы с $\tau \le 0.15$ для звезд ранних спектральных классов O - FO.

Чтобы получить информацию о физических условиях по глубине атмосферы, были построены зависимости относительных значений (W_{λ}/W_{λ}) интенсивностей Нлиний от номера (n) для фаз максимума и минимума блеска звезды 56Ari (Puc.2). Как видно из Puc.2, амплитуда изменения

$$A = (W_{\lambda}/W_{\lambda}) \max - (W_{\lambda}/W_{\lambda}) \min$$
 (1)

увеличивается с номером H-линий, и в области $H\alpha$ достигает минимального значения $(A \rightarrow O)$. Это означает, что в нижних слоях атмосферы $(\tau \geq 0.6)$, где эффективно формируются линии $H\alpha$ - $H\gamma$, феномен химической пекулярности убывает и становится незначительным.

По измеренным значениям W_{λ} , центральным глубинам Rc и номером(nm) последней из наблюдаемых линий серии Бальмера обычными методами [7] были определены электронные плотности (lgne) для фаз максимума и минимума в отдельности.


Полученные значения для lgne(nm), $lgN_{02}H$ ($N_{02}H$ – количество атомов

водорода во втором состоянии в 1см^3 , а H - толщина «однородной атмосферы» звезды) и $lgne(W_\lambda)$ после введения всех необходимых поправок по [7] приведены в Таблице2.

С целью сравнения полученных результатов с данными других авторов в столбце 6 этой таблицы приведены значения соответствующих величин, взятых из литературы, а также результаты определения Δlgne для нормальной αLeo B8 (Te=13250), исзвезды пользованной в качестве звезды сравнения. Получено, что в фазе минимума величина $lgne(W_{\lambda})$ (определяемого по методу Унзольда) в нижних слоях атмосферы (т≥0.6) имеет такое же значение, как у нормальной звезды αLeo в пределах точности определения Δ lgne= ± 0.05 .

Рис.1.

а - изменение блеска ΔY ($\lambda 4600$), б — эквивалентная ширина (W_{λ}) линии HeI $\lambda 4472 \mathring{A}$, с - W_{λ} линии H $_{\delta}$ для 56Ari в зависимости от фазы.

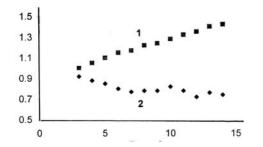

Тогда как в этой же фазе в верхних слоях атмосферы ($\tau \le 0.15$), где эффективно формируются Н-линии с высокими номерами (n>11), электронные плотности, определяемые по методу Инглиса–Теллера, на lgne(nm)=0.70 больше, чем у нормальной звезды α Leo.

Таблица 2.

Параметры	Область	Нормальн.	Параметры	Автор	Литер.	Источник
	пятна	область			данные	
ф (фаза)	0.25-0.35	0.95-0.05	Ве (Гс)	+560/-385	-346/+384	1.11
Te $(H\gamma,H_{\delta})$	13.100	12400	Ве (Гс)		-400/+550	12
Te (B- V)	13000	12700	$\Delta Te(H\gamma H_{\delta})$	700 °K	500	4.5
nm	18.00	16.50	ΔTe (B-V)	300 °K	310	2.5
lg ne (nm)	14.13	13.85	Vsini	170	200	1.11
Rc	0.80	0.84	Vэк(км/cek)	165	160-170	2.4
lg (N ₀₂ H)	16.60	16.88	Δlg ne(56Ari)	0.73		
lg ne (W_{λ})	14.86	14.82	Δlg ne(αLeo)	1.50	1.45	5

С.Г.АЛИЕВ, С.Г.ЗЕЙНАЛОВ

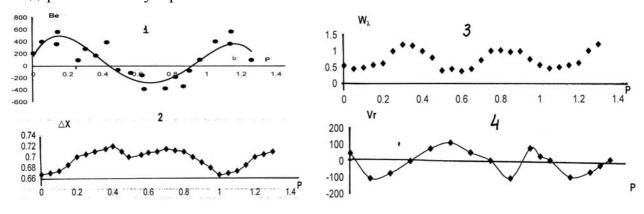
Эти наблюдательные факты показывают, что в области пятен, где интенсивности линий водорода и гелия минимальны, в верхних слоях атмосферы электронные плотности в пять раз больше, чем у нормальной звезды α Leo.

Рис.2.

Зависимость относительных значений интенсивности H- линий от номера (n); 1 – для области пятна , 2 – без пятна .

Все полученные наблюдательные факты свидетельствуют о том, что распределения заряженных частиц по глубине атмосферы в пятнах значительно отличаются от нормальных звезд. Изменения исследуемых величин могут быть связаны с различиями физических условий, в основном, с различиями температур и строением фотосферы в области пятен. С этой целью были сопоставлены теоретические [10] и наблюдаемые контуры линий Ну, Нб для фаз экстремумов интенсивности линий Н, Не и блеска звезды. В результате были получены следующие значения для параметров атмосферы звезды 56Ari: Te=13100K (max), Te=12400K (min) и lgg=3.5 (Таблица2). Как видно, разница температуры составляет ΔT =700К. Оценка разницы температур по изменениям величин B-V=-0.11 [4] дает значение $\Delta Te=310 K$. Примерно такие же расхождения температур были обнаружены и для других подобных (АО-В6) магнитных СР-звезд. Это может возникать не только из-за разницы глубин, к которым относят температуры, а также и из-за различий в структурах фотосфер магнитных СР-звезд и нормальных. Различие структур следует ИЗ аномального содержания неоднородного распределения различных элементов и наличия сильного магнитного поля в атмосферах магнитных СР-звезд.

2. Линии Si II и других (пекулярных) элементов. На всех регистрограммах были измерены полные эквивалентные ширины и лучевые скорости линии MgII, SiII, CaII, ScII, CrII, MnII, FeII, SrII и EuII, которые приведены в Таблице1.


Некоторые из этих линий в фазах максимума интенсивности линий H и He слабые и с трудом выявляются на фоне шумов записи. В этих фазах (ϕ =0.40÷0.60) ошибки измерений величин W_{\(\lambda\)} и Vr, которые были определены по спектрам звезды сравнения α Leo (7÷10%),на несколько процентов повышены (σ ≥15-20%). Несмотря на это в спектрах 56Ari имеются достаточно сильные линии выше упомянутых элементов, (особенно линии SiII), которые четко выделяются на фоне шумов и достаточно корректны для обработки. Были построены кривые зависимости значений W_{\(\lambda\)} и Vr от фазы. Изменения интенсивности линий с фазой для всех элементов показывают одинаковый характер, причем на всех кривых имеются два максимума ϕ ≈0.30 и 0.75. В этих фазах Vr=0 и контуры линий становятся сложными и состоят из нескольких компонентов.

В качестве примера на Рис.3 приводятся фазовые кривые величин W_{λ} и V_{r} для линий SiII ($\lambda\lambda3862$, 4128 и 4201). Как видно, нулевая лучевая скорость соответствует фазам экстремумов интенсивностей линий Si II.

Аналогичная картина наблюдается и для линий других пекулярных элементов. На этом же рисунке приведена кривая изменения магнитного поля Ве и блеска в «Х» лучах (λ 4050) Женевской системы по измерениям [3].

Анализ фазовых кривых для величин Be, W_{λ} , ΔX , (B-V) [4] и Vr показывает, что кремний и, возможно, другие пекулярные элементы сконцентрированы в двух локальных областях (пятнах) на поверхности этой звезды. Не исключено, что в

ИЗУЧЕНИЕ ПЯТНИСТОЙ СТРУКТУРЫ АТМОСФЕРЫ У МАГНИТНОЙ СР-ЗВЕЗДЫ 56 Ari этих областях имеется несколько пятен (2-3), которые в интегральном свете от видимого полушария звезды наблюдаются, как единая область с повышенным содержанием пекулярных элементов.

Рис.3. 1 – изменение Ве (Гс), 2 – блеска $\Delta X(4050 \text{Å})$, 3 - W_{λ} (bÅ) линии Si II $\lambda 4128 \div 30 \text{Å}$, 4 – Vr линии SiII $\lambda 3862 \text{Å}$ (км/сек) в зависимости от фазы.

Согласно Рис.3 максимумы блеска звезды совпадают с максимумами Ве и W_{λ} линий кремния в пределах точности измерений. Кроме того фаза главного максимума ($\phi \approx 0.3$) этих величин соответствует фазе Vr=0. Согласно модели наклонного ротатора и результатам [6] в этой фазе самое сильное пятно – область с максимальным содержанием пекулярных элементов (кроме He)- расположено на центральной части видимого полушария звезды. Из сравнения Рис.1 и Рис.3 видно, что линии водорода и гелия изменяются в противофазе с линиями Si II., блеска и магнитного поля. Это связано с тем, что в области пятна имеется десятикратный дефицит He [2]. Уменьшение интенсивности H-линий, возникающее из-за различия физических условий в пятнах и нормальной части атмосферы, никак нельзя объяснить изменением содержания атомов водорода.

<u>ОБСУЖДЕНИЕ И ВЫВОДЫ</u>. Комплексный анализ результатов спектральных, магнитных и фотометрических наблюдений еще раз подтверждает наличие неравномерного распределения различных элементов по поверхности магнитных СР - звезд, в том числе у 56Ari. Совпадение максимумов эквивалентных ширин линий пекулярных элементов (SiII, SrII, CrII и т.д.) и блеска звезд свидетельствуют о существенном влиянии химических аномалий на физические условия и строение фотосферы в области пятен. Наличие сильного магнитного поля —400/+550Гс приводит к усилению химических аномалий [1] и уменьшению роли основного поглощающего элемента — водорода. В результате изменяется коэффициент непрерывного поглощения, температурный режим (градиент) и другие характеристики атмосферы СР — звезд.

Сравнение графиков зависимостей величин W_{λ} , Be, Δx , Δy и Vr от фазы показывает, что положительный полюс магнитного поля (диполя) находится на долготе $1\approx40^{\circ}$ ($\phi\approx0.12^{\circ}$), на расстоянии 15-20° от которого расположен центр тяжести наибольшей пекулярной области (пятна) на видимом полушарии звезды 56Ari. В этой области (в пятнах) из-за химической аномалии возникает дополнительный покровный эффект ($8\div10\%$), который приводит к увеличению температуры, в среднем на $700\div1000$ К.

В конечном итоге наряду с изменениями блеска и интенсивности линий пекулярных элементов возникают изменения Н-линий, причем наибольшие изменения обнаруживаются у линий с высоким номером. Согласно [7], последние

С.Г.АЛИЕВ, С.Г.ЗЕЙНАЛОВ

эффективно формируются в верхних слоях атмосферы (τ <0.2), где степень пекулярности достигает максимального значения.

На основании комплексного анализа результатов спектральных, магнитных и фотометрических наблюдений были сделаны следующие выводы:

- 1. Детальный анализ изменений в спектре звезды 56 Ari еще раз подтверждает, что различные химические (пекулярные) элементы на поверхности магнитных СР-звезд распределены неравномерно;
- 2. Фаза главного максимума полных эквивалентных ширин пекулярных элементов и блеска звезды совпадает с фазой минимальной интенсивности линий H и He:
- 3. Область с максимальным содержанием пекулярных элементов (пятно), где имеет место десятикратный дефицит Не, расположена около положительного полюса магнитного поля;
- 4. Все наблюдаемые Н-линии показывают синхронные изменения, причем амплитуда вариаций растет с увеличением номера этих линий;
- 5. Основные параметры атмосферы (Te, ne, N_{02} , Be, блеск и др.) в области пятен и окружающих частей по поверхности звезды значительно отличаются друг от друга.

Авторы благодарны Иманлы Г.С. за помощь при подготовке статьи к печати.

- 1. В.Л.Хохлова, Итоги науки и техники, Астрономия, М. ВИНИТИ, (1983) 233.
- 2. И.А.Асланов, В.Л.Хохлова, Астрономический журнал, 491(972) 271.
- 3. W.Schoneich, G.Hilderbrandt, Astron. Nachr., 297 (1976) 39.
- 4. R.H.Hardie, N.H.Schroeder, Astrophys. J., 138 (1963) 350.
- 5. С.Г.Алиев, Спектральное исследование магнитных СР-звезд с учетом эффекта пятнистости, дисс. на соискание степени кан. физ.-мат. наук, БГУ, (2003).
- 6. С.Г.Алиев, С.Г.Зейналов, *Труды международной научной конференции. ШАО*, (2004) 136.
- 7. И.М.Копылов, Изв. КрА, 35 (1966) 11.
- 8. J.Tuominon, T.V.Tuominon, K.Main, Astrophys. J., 68 (1968) 98.
- 9. И.М. Копылов, *Изв. САО*, **24** (1987) 44.
- 10. R.L. Kurucz, *Astrophys. J. Suppl.* **40** (1979) 1.
- 11. E.F.Borra, J.D.Landstreed, Astrophys. J. Suppl., 42 (1980) 421.
- 12. P.Didelon, Astron. Astrophys. Suppl., 53 (1983) 119.

56 Ari CP- MAQNIT ULDUZUNDA ATMOSFERIN LƏKƏLI QURULUŞUNUN TƏDQIQI S.H.ƏLIYEV, S.Q.ZEYNALOV

Işdə spektral, maqnit və fotometrik müşahidələr əsasında 56Ari maqnit ulduzunda atmosferin ləkəli quruluşa malik olması təsdiq edilmişdir . Aşkar edilmişdir ki, pekulyar elementlərin və parlaqlığın maksimumu H və HeI xətlərinin minimumı ilə üst-üstə düşür . Alınmışdır ki, pekulyar elementlərin və temperaturun maksimumuna (T=13100K) uyğun oblast (ləkə) maqnit sahəsinin müsbət qütbü ətrafında yerləşmişdir. Hidroqen xətlərinin dəyişkənlik amplitudası onların(seriya) nömrələrinə görə artması müəyyən edilmişdir.

STUDY OF SPOT STRUCTURE IN THE ATMOSPHERES MAGNETIC CP-star 56Ari S.Q.ALIYEV, S.Q.ZEYNALOV

The chemical pekuliarites – spot structure of the atmosphere magnetic - CP-star 56 Ari have been studied on the basis analysis of the results spectral, magnetic and photometrically observations. It has been detected that the phase of maximum light (in Δy , Δx) and maximum of lines SiII and other peculiar elements coincided with minimum of H and HeI. It has been obtained that silicon maximum occurs about positive magnetic extremum and maximum and temperature (T=13100°K). The amplitudies of variations H-lineshave increased with number of those lines.

Редактор: Э.Гулиев