ВЗАИМОДЕЙСТВИЕ TISe с SmSe И НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ TISmSe₂

Ф.М.СЕИДОВ, Э.М.КЕРИМОВА, Н.З.ГАСАНОВ

Институт Физики НАН Азербайджана AZ 1143, Баку, пр. Г.Джавида, 33

Изучение фазового равновесия в системе TISe-SmSe показало, что при соотношении компонентов 1:1 образуется соединение TISmSe₂ с конгруэнтным плавлением, а растворимость SmSe в TISe при комнатной температуре составляет 5мол%. В результате исследования температурной зависимости электропроводности и коэффициента Холла монокристаллов TISmSe₂ выявлено, что соединение TISmSe₂ является полупроводником р-типа. Определенная из наклона высокотемпературных участков кривых $lgRT^{3/2}=f(10^3/T)$ и $lg\sigma=f(10^3/T)$ ширина его запрещенной зоны составляет 0,95эВ. Установлено, что в соединении TISmSe₂ изменение холловской подвижности носителей тока с температурой соответствует рассеянию на акустических колебаниях решетки.

Тройные таллиевые халькогениды с редкоземельными элементами являются представителями нового класса полупроводников [1-8]. Как известно, решетка TlSe составлена из двух самостоятельных структурных единиц – восьмивершинника, с ионным характером связи M-X (металл - халькогенид) (Tl^{1+} -Se) и тетраэдра, с ковалентной связью между M-X (Tl^{3+} -Se). Для управления полупроводниковыми свойствами при катионном замещении в рамках структурного типа практически возможным и наиболее рациональным является замещение трехвалентных ионов в тетраэдрах соответствующими элементами III^B подгруппы (Ga, In), а также трехвалентными редкоземельными элементами (Sm, Yb, Dy, Gd), не затрагивая при этом одновалентных ионов в восьмивершиннике.

В связи с этим в настоящей работе было изучено фазовое равновесие в системе TlSe-SmSe и некоторые физические свойства полупроводниковых кристаллов TlSmSe₂.

Образцы системы TlSe-SmSe получены прямым сплавлением элементов высокой чистоты в кварцевых ампулах, вакуумирован-ных до 1,3·10⁻²Па.

при Температура печи этом поднималась со скоростью 5К/мин 1490÷1570K. до При этой температуре ампула выдерживалась течение 7÷8 часов, а в затем медленно охлаждалась ЛО температуры отжига, определенной по кривым дифференциальнотермического анализа (ДТА). Сплавы, содержащие В своем составе до 50мол% SmSe, отжигали при температуре 650±10К в течение 570 часов, а сплавы с концентрацией SmSe 50÷100мол% - при 1390±20К в течение 610 часов.

> **Рис.1.** Диаграмма состояния системы TlSe-SmSe.

Ф.М.СЕИДОВ, Э.М.КЕРИМОВА, Н.З.ГАСАНОВ

Низкотемпературную часть диаграммы состояния системы TlSe-SmSe исследовали на приборе HTP-64, высокотемпературную часть – на установке ВДТА-8, позволяющей работать до 2470К под давлением спектрально чистого гелия.

Построенная по результатам ДТА диаграмма состояния системы TlSe-SmSe показана на Рис.1. Как следует из диаграммы, в системе TlSe-SmSe при соотношении компонентов 1:1 образуется соединение TlSmSe₂ с конгруэнтным плавлением при температуре 1560К. Область гомогенности для данного соединения отсутствует. При комнатной температуре в TlSe растворяется 5мол% SmSe. Нонвариантная перитектическая точка отвечает составу (TlSe)_{0,85}(SmSe)_{0,15} и температуре 850К. Между TlSmSe₂ и SmSe образуется простая эвтектика состава (TlSe)_{0,36}(SmSe)_{0,64}, плавящаяся при температуре 1400К.

Таблица 1.

N⁰	Ι	θ	$d_{3\kappa c \pi}(\text{\AA})$	hkl	d _{pacч} (Å)	Параметры элементарной ячейки
1	6	11°15'	3,844	200	3,851	
2	6	14°15'	3,126	211	3,14	
3	7	16°	2,792	220	2,789	Тетрагональная сингония
4	10	17°15'	2,595	202	2,596	a =7,682Å
5	4	20°15'	2,224	103	2,210	c =6,981Å
6	4	20°45'	2,172	222	2,170	z = 4
7	7	21°51'	2,068	321	2,087	
8	4	22°54'	1,978	400	1,972	
9	4	23°36'	1,922	410	1,913	
10	4	24°30'	1,856	330	1,859	
11	6	26°30'	1,746	004	1,751	
12	10	29°	1,587	323	1,581	
13	5	31°24'	1,477	413	1,472	
14	3	32°	1,452	333	1,449	
15	3	34°	1,376	005	1,390	
16	2	35°12'	1,335	531	1,315	
17	4	36°12'	1,303	600	1,310	
18	4	37°27'	1,267	334	1,269	
19	2	38°6'	1,247	620	1,247	
20	5	40°18'	1,190	443	1,194	

Расчет рентгенограммы кристалла TlSmSe_{2.}

Рентгенограммы порошковых образцов TlSmSe₂ снимали на установке УРС-55 в СиK_α излучении в камере РКД-57. Результаты идентификации дебаеграммы для соединения TlSmSe₂ представлены в Таблице 1, откуда видно, что экспериментально полученные ($d_{3ксп}$) и рассчитанные ($d_{pасч}$) межплоскостные расстояния практически совпадают, и TlSmSe₂ кристаллизуется в тетрагональной сингонии с параметрами решетки a=7,682Å; c=6,981Å; z=4.

Для исследования электрических свойств $TlSmSe_2$ были получены их монокристаллы, выращенные видоизмененным методом Бриджмена-Стокбаргера в специально изготовленных ампулах из плавленого кварца. Внутренние стенки ампулы были покрыты слоем графита. Ампулы помещали в вертикальную двухзонную печь. Равновесную температуру в верхней высокотемпературной зоне устанавливали на 25÷30К выше температуры плавления ($T_{n\pi}$) вещества, а температура низкотемпературной зоны была на 30÷40К ниже $T_{n\pi}$. Между этими двумя зонами имелась переходная зона с градиентом температуры ~20К/см.

ВЗАИМОДЕЙСТВИЕ ТІSe с SmSe И НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ ТІSmSe₂ Ампула с веществом с помощью специального механизма вводилась вдоль оси трубчатой печи в верхнюю высокотемпературную зону и после 15÷20-часовой стабилизации режима перемещалась вниз со скоростью 0,8мм/час. За 7÷8 дней ампула с веществом, полностью пройдя через переходную зону кристаллизации, оказывалась в низкотемпературной зоне печи. Затем, температуры обеих зон медленно (за 2÷3 суток) понижались до комнатной.

Рис.2.

Температурная зависимость электропроводности (а) и коэффициента Холла (б) монокристаллов TISmSe₂ (1, 2, 3 – различные образцы).

Полученные таким образом слитки TlSmSe₂ были составлены из ориентированных вдоль ампулы длинных (~10см) тончайших волокон, образующих монолитный кристалл.

Электропроводность и коэффициент Холла TlSmSe₂ исследовались компенсационным методом. Образец для измерений имел форму параллелепипеда с размерами (3×4×12)·10⁻³м. Для создания надежных омических контактов вольфрамовые зонды приваривались к бокам образца при помощи конденсаторного разряда.

На Рис.2 приведены температурные зависимости электропроводности и коэффициента Холла монокристаллов TlSmSe₂. Как видно ИЗ рисунка, электропроводность увеличивается по мере увеличения температуры, т.е. зависимость имеет полупроводниковый $\sigma(T)$ лля TlSmSe₂ характер. Экспоненциальный рост электро-проводности с температурой в области высоких температур связан с появлением собственной проводимости. Было определено значение ширины запрещенной зоны монокристаллов TlSmSe₂, вычисленное по

Ф.М.СЕИДОВ, Э.М.КЕРИМОВА, Н.З.ГАСАНОВ

наклонам высокотемпературных участков графиков $lgRT^{3/2}=f(10^3/T)$ и $lg\sigma=f(10^3/T)$, оно оказалось равным 0,95эВ.

Нами изучены также температурные зависимости холловской полвижности носителей тока кристаллов TlSmSe2. Установлено, что изменение подвижности носителей тока с температурой (Рис.3) следует закону $u = f(T^{-3/2}),$ что соответствует их рассеянию на акустических колебаниях решетки.

- 1. П.Г.Рустамов, О.М.Алиев, Т.Х.Курбанов, *Тройные халькогениды* редкоземельных элементов. Баку, Элм, (1981) 120.
- 2. М.М.Зарбалиев, *Неорган. материалы*, 36 (2000) 619.
- 3. Э.М.Годжаев, Г.И.Зейналов, Ф.М.Годжаев, *Неорган. материалы*, **24** (1988) 215.
- 4. С.Х.Агаева, М.Х.Алиева, Э.М.Годжаев, Неорган. материалы, 29 (1993) 181.
- 5. С.Х.Агаева, Н.Г.Дарвишов, А.М.Пашаев, *Fizika*, ч.2 №1 (1996) 57.
- 6. С.Х.Агаева, V Респ. науч. конф. «Физико-химический анализ и неорганическое материаловедение», Баку, (1999) 68.
- N.Z.Gasanov, E.M.Kerimova, Book of Abstracts. 16th International Conference on Ternary and Multinary Compounds (ICTMC-16). Technical University Berlin, Germany. September 15-19, (2008) ID-43.
- 8. Э.М.Керимова, Ю.Г.Асадов, Н.З.Гасанов, С.Б.Кязимов, XIII Национальная конференция по росту кристаллов НКРК–2008, тезисы докладов, Москва, 17-21 ноября, (2008) 194.

TISe-in SmSe ILƏ QARŞILIQLI TƏSIRI VƏ TISmSe₂ KRISTALLARIN BƏZI FIZIKI XASSƏLƏRI

F.M.SEYIDOV, E.M.KƏRIMOVA, N.Z.HƏSƏNOV

TlSe-SmSe sistemində faza tarazlığının öyrənilməsi göstərdi ki, komponentlərin 1:1-ə nisbətində konqruent əriyən TlSmSe₂ birləşməsi əmələ gəlir, həmçinin otaq temperaturunda TlSe-in əsasında SmSe 5mol%-ə qədər həll olunur. TlSmSe₂ monokristallarının elektrikkeçirməsinin və Xoll əmsalının temperatur asılılıgının tədqiqi nəticəsində aşkar olunmuşdur ki, TlSmSe₂ birləşməsi p-tipli yarımkeçiricidir. lgRT^{3/2}=f(10³/T) və lg σ =f(10³/T) əyrilərinin yüksək temperatur hissələrinin mailliyindən təyin olunan qadağan zonasının eni 0,95eV təşkil edir. Müəyyən edilmişdir ki, TlSmSe₂ birləşməsində yük daşıyıcılarının xoll yürüklüyünün temperaturdan asılı olaraq dəyişməsi, qəfəsin akustik raqslərindən səpilməsinə uyğun gəlir.

INTERACTION OF TISE WITH SmSe AND SOME PHYSICAL PROPERTIES OF TISmSe_2 CRYSTALS

F.M.SEIDOV, E.M.KERIMOVA, N.Z.GASANOV

The study of phase equilibrium in the system of TlSe-SmSe has been showed, that with the ratio of components 1:1 the TlSmSe₂ compound has been formed with the congruent melting, and the solubility of SmSe in TlSe at room temperature is 5mol%. As a result of research of temperature dependence of electrical conductivity and Hall coefficient of TlSmSe₂ single crystals, it has been revealed, that TlSmSe₂ compound was the semiconductor of p-type. From the inclination of the high-temperature sections of $lgRT^{3/2}=f(10^3/T)$ and $lg\sigma=f(10^3/T)$ curves, hat been determined that the width of its forbidden gap is 0,95eV. It has been found that in the TlSmSe₂ compound the temperature dependence of the Hall mobility of current carriers corresponds to scattering at the acoustic phonons of the lattice.

Редактор: Ю.Асадов