ОПРЕДЕЛЕНИЕ ПОСТОЯННЫХ РАСПРОСТРАНЕНИЯ И ПОСТРОЕНИЕ СТРУКТУРЫ ПОЛЕЙ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В КРУГЛОМ ВОЛНОВОДЕ

Г.Ш.НАБИЕВ

Азербайджанский Технический Университет AZ 1073, г.Баку, пр. Г.Джавида, 25

Определены постоянные распространения электромагнитных волн в круглом волноводе. Разработаны методы расчета электромагнитного поля в круглом волноводе как с однородным так, и с частичным диэлектрическим заполнением, моделирующим наличие активной среды.

ВВЕДЕНИЕ

Изучение физических процессов, протекающих в устройствах сверхвысоких частот (СВЧ), направленное на создание новых устройств подобного рода, на увеличение мощности и укорочение длины волны генераторов и усилителей и построение моделей таких устройств в современных условиях является одним из приоритетных направлений развития телекоммуникации.

Одно из важных мест среди всех типов СВЧ устройств принадлежит сложным волноводам благодаря их высоким техническим и экономическим характеристикам. Это связно с расширением области использования таких устройств в физических исследованиях, с созданием новых типов передающих трактов, радиолокаторов миллиметрового диапазона, позволяющих существенно повысить дальность передачи электромагнитной энергии, а также точность определения координат целей и расширить возможности исследования космического пространства, и с рядом других направлений.

В последние время в связи с появлением новых областей применения сложных СВЧ устройств возрос интерес к изучению особенностей распространения электромагнитных волн в этих устройствах. В современных сложных СВЧ устройствах структуру электромагнитного поля формируют волноводы, в связи с чем необходимо ее знать и уметь рассчитывать.

Все это приводит к тому, что необходимо уметь рассчитывать поля в сложных волноводных структурах, поскольку стандартными типами волноводов интерес в промышленности и в науке не ограничивается. В ряде случаев необходимо использование иных видов систем, к которым можно отнести гребневые (Н- и Т-образные) волноводы и волноводы иных форм поперечного сечения.

Сложность геометрии и приближенное решение задачи о собственных числах и собственных функциях таких волноводов делает актуальной задачу электродинамического моделирования в них структур электромагнитных полей существующих типов волн. Математическое моделирование представляет мощный инструмент анализа распространения волн в волноведущих системах. Такое исследование дает наиболее полную исчерпывающую информацию о параметрах сложной волноводной структуры и характере распространения волн в ней. Одним из представителей таких типов волноводов является круглый волновод, разработка методики расчета параметров которого является задачей настоящей работы. Его применение связано как с возможностями использования таких систем в радиолокации, так и для созданием других типов устройств для канализации электромагнитной энергии.

ОПРЕДЕЛЕНИЕ ПОСТОЯННЫХ РАСПРОСТРАНЕНИЯ И ПОСТРОЕНИЕ СТРУКТУРЫ ПОЛЕЙ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В КРУГЛОМ ВОЛНОВОДЕ

Целью работы является разработка методов расчета, создание комплекса программ и анализа на их основе параметров электромагнитного поля в круглом волноводе как с однородным, так и с частичным диэлектрическим заполнением, моделирующем наличие активной среды.

Задача определения постоянных распространения и построения структуры полей электромагнитных волн в круглом волноводе (Рис.1) сводится к необходимости решения однородного двумерного уравнения Гелъмголъца

$$\nabla_{\perp}^{2} E_{z} + g^{2} E_{z} = 0,$$

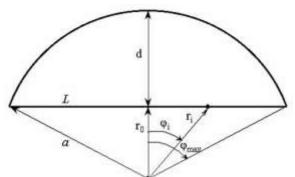
$$\nabla_{\perp}^{2} H_{z} + g^{2} H_{z} = 0$$
(1)

с однородными граничными условиями

$$E_z=0$$
 (2a)

$$\frac{\partial H_z}{\partial n} = 0, (26)$$

заданными на контуре. При этом невозможно подобрать такую ортогональную систему координат, координаты поверхностей которой совпали бы с поверхностью волновода. В этом случае хотя бы поверхностное граничное условие будет иметь вид функции двух переменных, что делает невозможным полностью аналитическое решение краевой задачи и приводит к необходимости использования численных методов.



Рассмотрим решение краевой задачи (1), (2) с использованием метода коллокации[1,2] и метода конечных разностей[1,2].

Рис.1. Поперечное сечение круглого волновода.

ПОСТРОЕНИЕ И РЕШЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

В цилиндрической системе координат уравнения (1) имеют вид

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_Z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \varphi^2} + g^2 E_2 = 0,$$
 (3a)

$$\frac{\partial^2 H_z}{\partial r^2} + \frac{1}{r} \frac{\partial H_Z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 H_z}{\partial \varphi^2} + g^2 H_2 = 0, \tag{36}$$

здесь под E_z и H_z понимаются $E_z = E_z(r, \varphi)$ и $H_z = H_z(r, \varphi)$, соответственно.

Решение этих уравнений методом разделения переменных [3-7] приводит к следующим выражениям

$$E_z(r,\varphi) = \sum_{m=0}^{\infty} \left[C_{Em} J_m(gr) + D_{Em} N_m(gr) \right] \left[A_{Em} \cos(m\varphi) + B_{Em} \sin(m\varphi) \right], \tag{4a}$$

$$H_{z}(r,\varphi) = \sum_{m=0}^{\infty} \left[C_{Em} J_{m}(gr) + D_{Em} N_{m}(gr) \right] \left[A_{Em} \cos(m\varphi) + B_{Em} \sin(m\varphi) \right], \tag{46}$$

где $J_m(gr)$ — функция Бесселя или цилиндрическая функция первого рода m-го порядка; $N_m(gr)$ — функция Неймана или цилиндрическая функция второго рода m — го порядка; g — поперечное волновое число.

Из Рис.1, на котором изображено поперечное сечение круглого волновода, видно, что его контур состоит из двух частей: дуги радиуса r=a и прямой линии L.

Удовлетворяя граничным условиям (2) на границе r=a и учитывая, что они должны выполняется при любых φ , получим

$$D_{Em} = -C_{Em} \frac{j_m(ga)}{N_m(ga)},\tag{5a}$$

$$D_{Hm} = -C_{Hm} \frac{J'_{m}(ga)}{N'_{m}(ga)}. (56)$$

Тогда, вводя обозначения

$$Z_{Em}(gr) = J_m(gr)N_m(ga) - J_m(ga)N_m(gr),$$
 (6a)

$$Z_{Hm}(gr) = J_{m}(gr)N'_{m}(ga) - J'_{m}(ga)N_{m}(gr), \tag{66}$$

получим

$$E_z(r,\varphi) = \sum_{m=0}^{\infty} Z_{Em}(gr) [A_{Em}\cos(m\varphi) + B_{Em}\sin(m\varphi)], \tag{7a}$$

$$H_{z}(r,\varphi) = \sum_{m=0}^{\infty} Z_{Hm}(gr) \left[A_{Hm} \cos(m\varphi) + B_{Hm} \sin(m\varphi) \right]$$
 (76)

Здесь постоянны $C_{\it Em}/N_{\it m}(ga)$ и $C_{\it Hm}/N'_{\it m}(ga)$ внесены в коэффициенты $A_{\it Em}$ и $B_{\it Em}$, $A_{\it Hm}$ и $B_{\it Hm}$, соответственно.

Граничные условия (2) на границе L не могут быть удовлетворены аналитически. Воспользуемся методом коллокации [1,2], который заключается в следующем: параметры A_{Em} и B_{Em} для E-волн или A_{Hm} и B_{Hm} для H-волн выбираются так, чтобы функции (7а) и (7б) точно удовлетворяли граничным условиям (2а) и (2б), соответственно в дискретном ряде точек, принадлежащих границе L. Тем самым они будут приближенно выполняется на всей границе L.

Методом коллокации для E-волн получены дисперсионные уравнения (8) и (9), решая которые можно получить значения поперечного волнового числа, и, следовательно, критические длины волн

$$\left[Z_k(gr_i)\sin k\varphi \right] = 0, \tag{8}$$

где - k = 1,2,...,n -индекс по строке; i = 1,2,...,n - индекс по столбцу ; n - количество точек на половине границы L,

$$\left[Z_{k}(gr_{i})\cos k\varphi_{i}\right] = 0, \tag{9}$$

где - k = 0,1,...,n; i = 0,1,...,n.

Для Н-волн дисперсионные соотношения получены в виде

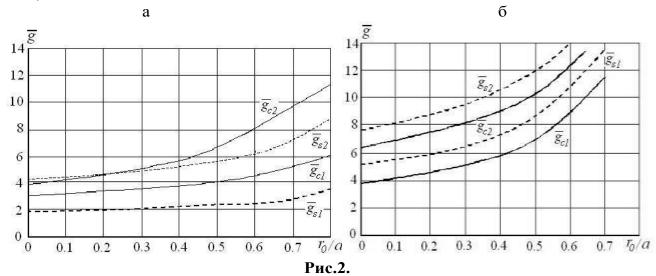
$$\left\| \cos(k+1)\varphi_i \left(gZ'_{Hk}(gr_i) - \frac{k}{r_i} Z_{Hk}(gr_i) \right) + \cos(k-1)\varphi_i \left(gZ'_{Hk}(gr_i) + \frac{k}{r_i} Z_{Hk}(gr_i) \right) \right\| = 0, \quad (10)$$

$$\left[\sin(k+1)\varphi_i \left(gZ'_{Hk}(gr_i) - \frac{k}{r_i} Z_{Hk}(gr_i) \right) + \sin(k-1)\varphi_i \left(gZ'_{Hk}(gr_i) + \frac{k}{r_i} Z_{Hk}(gr_i) \right) \right] = 0. (11)$$

Получив из решения (10) и (11) значения поперечного волнового числа g, можем найти критические длины волн.

Расчет уравнений (8) и (9), а также (10) и (11), показал, что при увеличении числа точек корни, как правило, сходятся к какому-то определенному значению. Отклонение от этой тенденции наблюдается только при малых значениях r_0/a , что, очевидно, связано с сильным возрастанием по абсолютной величине функции

Неймана при малых значениях аргументов. На Рис.2(а,б) приведены зависимости корней уравнений (8), (9),(10) и (11) от относительного размера круглого волновода r_0/a , Экстраполируя графики на область $r_0/a \rightarrow 0$, получаем сходимость решений круглого волновода, так как для E – волн корень \overline{g}_{c1} асимптотически приближается к корню E_{11} – волны (3,832), \overline{g}_{s1} – к корню E_{21} волны (5,52),а \overline{g}_{c2} – к корню E_{31} – волны (6,38), а \overline{g}_{s2} к корню E_{41} – волны (7,588); для H – волн корень \overline{g}_{c1} асимптотически приближается к корню H_{21-} волны (3,054), \overline{g}_{c2} – к корню H_{01} – волны (3,832), \overline{g}_{s1} - к корню H_{11} – волны (1,841), \overline{g}_{s2} – к корню H_{31-} волны (4, 201).



Графики зависимостей корней уравнений (8) и (9) от размера круглого волновода

При увеличении числа узлов в конечно-разностном методе различие корней в сравнении с методом коллокации уменьшается. В отличие от метода коллокации, оказывающегося сильно неустойчивым при малых r_0/a вследствие больших отрицательных значений функции Неймана малых аргументов, метод конечных разностей позволяет производить расчет вплоть до $r_0/a=0$.

Решение уравнения краевой задачи (1), (2) методом конечных разностей дает сходные результаты. Отличие в прогнозировании сходимости в случае E – волн обусловлено неизбежными погрешностями экстраполяции.

выводы

- Численные эксперименты показали, что метод конечных разностей более применим для проведения расчетов в случае приближения к полукруглому волноводу и дает хорошие результаты по расчету волновых чисел, однако не позволяет судить о типах волн с точки зрения симметрии их полей.
- При решении задачи (1), (2) методом коллокации после численного определения волновых чисел и коэффициентов разложения в ряд на выходе получается аналитическое выражение, являющееся аппроксимацией истинного решения, что является несомненным достоинством метода.
- Получение аналитического вида формулы более удобны для дальнейших расчетов, поскольку для получения все более детального распределения полей и

Г.Ш.НАБИЕВ

мощности в волноводе нет необходимости увеличивать число точек, по которым производится решение краевой задачи.

- 1. Е.А.Волков, Численные методы, -М: Наука. Гл. ред. Физ.-мат.лит., (1987) 248.
- 2. Г.Корн, Справочник по математике для научных работников и инженеров. Определения, теоремы, формулы, Перевод со 2-го американского изд. под. общ. ред. И.Г. Арамановича/Г.Корн, Т Корн-5-е изд. -М: Наука, (1966) 724.
- 3. А.Н.Тихинов, *Уравнения математической физики*, *Учеб. пособие.-3-е изд., испр., доп. –М: Наука*, (1966) 724.
- 4. А.Г.Шеин, Физика волновых процессов и радиотехнические системы, **4** №2 (2001) 37.
- 5. Г.Ф.Заргано, В.В.Земляков, Г.П.Синявский, Физика волновых процессов и радиотехнические системы, **6** №4 (2003) 19.
- 6. И.Дж.Исламов, Численное моделирование электромагнитных полей в сверхвысокочастотных элементах и устройствах (Монография), Баку, Элм, (2005) 250.
- 7. И.Дж.Исламов, Transactions of Azerbaijan Academy of Sciences, Series of Physical-mathematical and Technical sciences, Physics and Astronomy, **XXII** №2 (2002).

DAİRƏVİ DALĞAÖTÜRƏNDƏ ELEKTROMAQNİT DALĞALARININ SAHƏSİNİN YAYILMA SABİTİNİN TƏYİNİ VƏ STRUKTURUNUN QURULMASI

H.Ş.NƏBİYEV

Dairəvi dalğaötürəndə elektromaqnit dalğalarının sahəsinin yayılma sabitinin təyin edilmişdir. Aktiv mühitdə dairəvi dalğabötürənin elektromaqnit səhəsinin hesablanma üsulu işlənib hazırlanmışdır.

DEFINITIONS OF CONSTANTS OF DISTRIBUTION AND CONSTRUCTION OF STRUCTURE OF FIELDS OF ELECTROMAGNETIC WAVES IN THE ROUND WAVE GUIDE

H.S.NABIYEV

Constants of distribution of electromagnetic waves in a round wave guide have been estimated. Methods of calculation of an electromagnetic field in a round wave guide as with homogeneous so, and with the partial dielectric filling, modeling presence of the active environment have been developed.

Редактор: А.Халилова