
INTERNATIONAL TABLES

FOR

CRYSTALLOGRAPHY



International Tables for Crystallography

Volume A: Space-Group Symmetry
Editor Theo Hahn

First Edition 1983, Fifth Edition 2002

Volume B: Reciprocal Space
Editor U. Shmueli

First Edition 1993, Second Edition 2001

Volume C: Mathematical, Physical and Chemical Tables
Editors A. J. C. Wilson and E. Prince

First Edition 1992, Second Edition 1999

Volume D: Physical Properties of Crystals
Editor A. Authier
First Edition 2003

Volume E: Subperiodic Groups
Editors V. Kopský and D. B. Litvin
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V. Kopský: Institute of Physics, Academy of Sciences of the

Czech Republic, Na Slovance 2, 182 21 Prague 8, and
Department of Physics, Technical University of Liberec,

Hálkova 6, 461 17 Liberec 1, Czech Republic. E-mail:
kopsky@fzu.cz. [3.1.3, 3.1.6, GI?KoBo-1]

W. F. Kuhs: GZG Abt. Kristallographie, Gold-
schmidtstrasse 1, 37077 Göttingen, Germany. E-mail:

wkuhs1@gwdg.de. [1.9]
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Preface

By André Authier

The initial idea of having a volume of International Tables for
Crystallography dedicated to the physical properties of crystals
is due to Professor B. T. M. Willis. He submitted the proposal
to the Executive Committee of the International Union of
Crystallography during their meeting in Vienna in 1988. The
principle was then adopted, with Professor Willis as Editor.
After his resignation in 1990, I was asked by the Executive
Committee to become the new Editor. Following a broad
consultation with many colleagues, a nucleus of potential
authors met in Paris in June 1991 to define the contents of the
volume and to designate its contributors. This was followed by
a meeting in 1995, hosted by Theo Hahn in Aachen, of the
authors contributing to Part 3 and by another meeting in 1998,
hosted by Vaclav Janovec and Vojtech Kopský in Prague, of the
authors of the supplementary software.

The aim of Volume D is to provide an up-to-date account of
the physical properties of crystals, with many useful tables, to a
wide readership in the fields of mineralogy, crystallography,
solid-state physics and materials science. An original feature of
the volume is the bringing together of various topics that are
usually to be found in quite different handbooks but that have in
common their tensorial nature and the role of crystallographic
symmetry. Part 3 thus confronts the properties of twinning,
which traditionally pertains to crystallography and mineralogy,
and the properties of ferroelectric or ferroelastic domains, which
are usually studied in physics.

The volume comprises three parts and a CD-ROM of
supplementary software.

The first part is devoted to the tensorial properties of physical
quantities. After a presentation of the matrix of physical
properties and an introduction to the mathematical notion of a
tensor, the symmetry properties of tensors and the representa-
tions of crystallographic groups are discussed, with a special
treatment for the case of quasiperiodic structures. The first part
also includes several examples of physical property tensors
developed in separate chapters: elastic properties, thermal
expansion, magnetic properties, optical properties (both linear
and nonlinear), transport properties and atomic displacement
parameters.

The second part is concerned with the symmetry aspects of
excitations in reciprocal space. It includes bases of solid-state
physics and describes in the first two chapters the properties of
phonons and electrons in crystals. The following two chapters
deal with Raman and Brillouin scattering.

The third part concerns structural phase transitions and
twinning. The first chapter includes an introduction to the

Landau theory, a description of the behaviour of physical
property tensors at ferroic phase transitions and an approach
to the microscopical aspect of structural transitions and soft
modes, with practical examples. The second chapter explains
the relationship between twinning and domain structures and
introduces the group-theoretical tools needed for the analysis
of domain structures and twins. In the third chapter, the basic
concepts and definitions of twinning are presented, as well as
the morphological, genetic and lattice classifications of twins
and the properties of twin boundaries, with many examples.
The fourth chapter is devoted to the symmetry and crystal-
lographic analysis of domain structures. The relations that
govern their formation are derived and tables with useful
ready-to-use data on domain structures of ferroic phases are
provided.

An innovation of Volume D is an accompanying CD-ROM
containing two programs. The first, Ten�ar (Calculations with
Tensors and Characters) supports Part 1 for the determination of
irreducible group representations and tensor components. The
second, GI?KoBo-1, supports Part 3 on structural phase
transitions and enables the reader to find the changes in the
tensor properties of physical quantities during ferroic phase
transitions.

For various reasons, Volume D has taken quite a long
time to produce, from the adoption of its principle in 1990 to
its actual printing in 2003, and it is a particular pleasure for
me to see the outcome of so many efforts. I would like to
take this opportunity to thank all those who have
contributed to the final result. Firstly, thanks are due to
Terry Willis, whose idea the volume was and who made the
initial push to have it accepted. I am very grateful to him
for his encouragement and for having translated into English
a set of notes that I had written for my students and which
served as the nucleus of Chapter 1.1. I am greatly indebted
to the Technical Editors who have worked tirelessly over the
years: Sue Barnes in the early years and then Nicola
Ashcroft, Amanda Berry and the staff of the Editorial Office
in Chester, who did the hard work of editing all the chapters
and translating them into Standard Generalized Markup
Language (SGML); I thank them for their infinite patience
and good humour. I am also very grateful to the Research
and Development Officer, Brian McMahon, for his successful
integration of the supplementary software and for his
constant cooperation with its authors. Last but not least, I
would like to thank all the authors who contributed to the
volume and made it what it is.

xi



1.1. Introduction to the properties of tensors

By A. Authier

1.1.1. The matrix of physical properties

1.1.1.1. Notion of extensive and intensive quantities

Physical laws express in general the response of a medium to a
certain influence. Most physical properties may therefore be
defined by a relation coupling two or more measurable quantities.
For instance, the specific heat characterizes the relation between
a variation of temperature and a variation of entropy at a given
temperature in a given medium, the dielectric susceptibility the
relation between electric field and electric polarization, the
elastic constants the relation between an applied stress and the
resulting strain etc. These relations are between quantities of
the same nature: thermal, electrical and mechanical, respectively.
But there are also cross effects, for instance:

(a) thermal expansion and piezocalorific effect: mechanical
reaction to a thermal impetus or the reverse;

(b) pyroelectricity and electrocalorific effect: electrical response
to a thermal impetus or the reverse;

(c) piezoelectricity and electrostriction: electric response to a
mechanical impetus;

(d) piezomagnetism and magnetostriction: magnetic response
to a mechanical impetus;

(e) photoelasticity: birefringence produced by stress;
(f) acousto-optic effect: birefringence produced by an acoustic

wave;
(g) electro-optic effect: birefringence produced by an electric

field;
(h) magneto-optic effect: appearance of a rotatory polarization

under the influence of a magnetic field.
The physical quantities that are involved in these relations can

be divided into two categories:
(i) extensive quantities, which are proportional to the volume of

matter or to the mass, that is to the number of molecules in the
medium, for instance entropy, energy, quantity of electricity etc.
One uses frequently specific extensive parameters, which are
given per unit mass or per unit volume, such as the specific mass,
the electric polarization (dipole moment per unit volume) etc.

(ii) intensive parameters, quantities whose product with an
extensive quantity is homogeneous to an energy. For instance,
volume is an extensive quantity; the energy stored by a gas
undergoing a change of volume dV under pressure p is p dV.
Pressure is therefore the intensive parameter associated with
volume. Table 1.1.1.1 gives examples of extensive quantities and
of the related intensive parameters.

1.1.1.2. Notion of tensor in physics

Each of the quantities mentioned in the preceding section is
represented by a mathematical expression. Some are direction
independent and are represented by scalars: specific mass,
specific heat, volume, pressure, entropy, temperature, quantity of
electricity, electric potential. Others are direction dependent and
are represented by vectors: force, electric field, electric displa-
cement, the gradient of a scalar quantity. Still others cannot be
represented by scalars or vectors and are represented by more
complicated mathematical expressions. Magnetic quantities are
represented by axial vectors (or pseudovectors), which are a
particular kind of tensor (see Section 1.1.4.5.3). A few examples
will show the necessity of using tensors in physics and Section
1.1.3 will present elementary mathematical properties of tensors.

(i) Thermal expansion. In an isotropic medium, thermal
expansion is represented by a single number, a scalar, but this is

not the case in an anisotropic medium: a sphere cut in an
anisotropic medium becomes an ellipsoid when the temperature
is varied and thermal expansion can no longer be represented by
a single number. It is actually represented by a tensor of rank 2.

(ii) Dielectric constant. In an isotropic medium of a perfect
dielectric we can write, in SI units,

P ¼ "0�eE

D ¼ "0Eþ P ¼ "0ð1þ �eÞE ¼ "E;

where P is the electric polarization (= dipole moment per unit
volume), "0 the permittivity of vacuum, �e the dielectric
susceptibility, D the electric displacement and " the dielectric
constant, also called dielectric permittivity. These expressions
indicate that the electric field, on the one hand, and polarization
and displacement, on the other hand, are linearly related. In the
general case of an anisotropic medium, this is no longer true and
one must write expressions indicating that the components of the
displacement are linearly related to the components of the field:

D1 ¼ "11E
1 þ "21E

2 þ "31E
D2 ¼ "21E

1 þ "22E
2 þ "32E

D3 ¼ "31E
1 þ "32E

2 þ "33E:

8
<

:
ð1:1:1:1Þ

The dielectric constant is now characterized by a set of nine
components " ji; they are the components of a tensor of rank 2. It
will be seen in Section 1.1.4.5.2.1 that this tensor is symmetric
(" ji ¼ "ij) and that the number of independent components is
equal to six.

(iii) Stressed rod (Hooke’s law). If one pulls a rod of length ‘
and cross section A with a force F, its length is increased by a
quantity �‘ given by �‘=‘ ¼ ð1=EÞF=A; where E is Young’s
modulus, or elastic stiffness (see Section 1.3.3.1). But, at the same
time, the radius, r, decreases by�r given by �r=r ¼ �ð�=EÞF=A,
where � is Poisson’s ratio (Section 1.3.3.4.3). It can be seen that a
scalar is not sufficient to describe the elastic deformation of a
material, even if it is isotropic. The number of independent
components depends on the symmetry of the medium and it will
be seen that they are the components of a tensor of rank 4. It was
precisely to describe the properties of elasticity by a mathema-
tical expression that the notion of a tensor was introduced in
physics by W. Voigt in the 19th century (Voigt, 1910) and by L.
Brillouin in the first half of the 20th century (Brillouin, 1949).
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Table 1.1.1.1. Extensive quantities and associated intensive parameters

The last four lines of the table refer to properties that are time dependent.

Extensive quantities Intensive parameters

Volume Pressure
Strain Stress
Displacement Force
Entropy Temperature
Quantity of electricity Electric potential
Electric polarization Electric field
Electric displacement Electric field
Magnetization Magnetic field
Magnetic induction Magnetic field
Reaction rate Chemical potential
Heat flow Temperature gradient
Diffusion of matter Concentration gradient
Electric current Potential gradient

International Tables for Crystallography (2006). Vol. D, Chapter 1.1, pp. 3–33.

Copyright © 2006 International Union of Crystallography
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

(iv) Expansion in Taylor series of a field of vectors. Let us
consider a field of vectors uðrÞ where r is a position vector. The
Taylor expansion of its components is given by

uiðrþ drÞ ¼ uiðrÞ þ
@ui

@uj

� �

dx j þ 1
2

@2ui

@uj@uk

� �

dx j dxk þ . . .

ð1:1:1:2Þ

using the so-called Einstein convention, which implies that there
is automatically a summation each time the same index appears
twice, once as a superscript and once as a subscript. This index is
called a dummy index. It will be shown in Section 1.1.3.8 that the
nine partial differentials @ui=@x j and the 27 partial differentials
@2ui=ð@x j@xkÞ are the components of tensors of rank 2 and 3,
respectively.

Remark. Of the four examples given above, the first three
(thermal expansion, dielectric constant, stressed rod) are related
to physical property tensors (also called material tensors), which
are characteristic of the medium and whose components have the
same value everywhere in the medium if the latter is homo-
geneous, while the fourth one (expansion in Taylor series of a
field of vectors) is related to a field tensor whose components vary
at every point of the medium. This is the case, for instance, for the
strain and for the stress tensors (see Sections 1.3.1 and 1.3.2).

1.1.1.3. The matrix of physical properties

Each extensive parameter is in principle a function of all the
intensive parameters. For a variation diq of a particular intensive
parameter, there will be a variation dep of every extensive
parameter. One may therefore write

dep ¼ Cq
p diq: ð1:1:1:3Þ

The summation is over all the intensive parameters that have
varied.

One may use a matrix notation to write the equations relating
the variations of each extensive parameter to the variations of all
the intensive parameters:

ðdeÞ ¼ ðCÞðdiÞ; ð1:1:1:4Þ

where the intensive and extensive parameters are arranged in
column matrices, (di) and (de), respectively. In a similar way, one
could write the relations between intensive and extensive para-
meters as

dip ¼ Rq
p deq

ðdiÞ ¼ ðRÞðdeÞ:

)

ð1:1:1:5Þ

Matrices (C) and (R) are inverse matrices. Their leading diagonal
terms relate an extensive parameter and the associated intensive
parameter (their product has the dimensions of energy), e.g. the
elastic constants, the dielectric constant, the specific heat etc. The
corresponding physical properties are called principal properties.
If one only of the intensive parameters, iq, varies, a variation diq
of this parameter is the cause of which the effect is a variation,

dep ¼ Cq
p diq

(without summation), of each of the extensive parameters. The
matrix coefficients Cq

p may therefore be considered as partial
differentials:

Cq
p ¼ @ep=@iq:

The parameters Cq
p that relate causes diq and effects dep

represent physical properties and matrix (C) is called the matrix
of physical properties. Let us consider the following intensive
parameters: T stress, E electric field, H magnetic field, �

temperature and the associated extensive parameters: S strain, P
electric polarization, B magnetic induction, � entropy, respec-
tively. Matrix equation (1.1.1.4) may then be written:

S

P

B

��

0

B
B
B
@

1

C
C
C
A

¼

CT
S CE

S CH
S C�

S

CT
P CE

P CH
P C�

P

CT
B CE

B CH
B C�

B

CT
� CE

� CH
� C�

�

0

B
B
B
@

1

C
C
C
A

T

E

H

�

0

B
B
B
@

1

C
C
C
A
: ð1:1:1:6Þ

The various intensive and extensive parameters are repre-
sented by scalars, vectors or tensors of higher rank, and each has
several components. The terms of matrix (C) are therefore
actually submatrices containing all the coefficients Cq

p relating all
the components of a given extensive parameter to the compo-
nents of an intensive parameter. The leading diagonal terms, CT

S ,
CE

P , C
H
B , C

�
� , correspond to the principal physical properties,

which are elasticity, dielectric susceptibility, magnetic suscept-
ibility and specific heat, respectively. The non-diagonal terms are
also associated with physical properties, but they relate intensive
and extensive parameters whose products do not have the
dimension of energy. They may be coupled in pairs symmetrically
with respect to the main diagonal:

CE
S and CT

P represent the piezoelectric effect and the converse
piezoelectric effect, respectively;

CH
S and CT

B the piezomagnetic effect and the converse piezo-
magnetic effect;

C�
S and CT

� thermal expansion and the piezocalorific effect;
CT

P and CE
� the pyroelectric and the electrocalorific effects;

CH
P and CE

B the magnetoelectric effect and the converse
magnetoelectric effect;

CH
� and C�

B the pyromagnetic effect and the magnetocalorific
effect.

It is important to note that equation (1.1.1.6) is of a thermo-
dynamic nature and simply provides a general framework. It
indicates the possibility for a given physical property to exist, but
in no way states that a given material will exhibit it. Curie laws,
which will be described in Section 1.1.4.2, show for instance that
certain properties such as pyroelectricity or piezoelectricity may
only appear in crystals that belong to certain point groups.

1.1.1.4. Symmetry of the matrix of physical properties

If parameter ep varies by dep, the specific energy varies by du,
which is equal to

du ¼ ip dep:

We have, therefore

ip ¼
@u

@ep

and, using (1.1.1.5),

Rq
p ¼

@ip
@eq

¼
@2u

@ep@eq
:

Since the energy is a state variable with a perfect differential, one
can interchange the order of the differentiations:

Rq
p ¼

@2u

@eq@ep
¼
@iq
@ep

:

Since p and q are dummy indices, they may be exchanged and the
last term of this equation is equal to Rp

q. It follows that

Rq
p ¼ Rp

q:

Matrices Rq
p and Cq

p are therefore symmetric. We may draw two
important conclusions from this result:
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1.1. INTRODUCTION TO THE PROPERTIES OF TENSORS

(i) The submatrices associated with the principal properties are
symmetric with respect to interchange of the indices related to the
causes and to the effects: these properties are represented by
symmetric tensors. For instance, the dielectric constant and the
elastic constants are represented by symmetric tensors of rank 2
and 4, respectively (see Section 1.1.3.4).

(ii) The submatrices associated with terms that are symmetric
with respect to the main diagonal of matrices (C) and (R) and that
represent cross effects are transpose to one another. For instance,
matrix (CE

S ) representing the converse piezoelectric effect is the
transpose of matrix (CT

P ) representing the piezoelectric effect. It
will be shown in Section 1.1.3.4 that they are the components of
tensors of rank 3.

1.1.1.5. Onsager relations

Let us now consider systems that are in steady state and not in
thermodynamic equilibrium. The intensive and extensive para-
meters are time dependent and relation (1.1.1.3) can be written

Jm ¼ LmnXn;

where the intensive parameters Xn are, for instance, a tempera-
ture gradient, a concentration gradient, a gradient of electric
potential. The corresponding extensive parameters Jm are the
heat flow, the diffusion of matter and the current density. The
diagonal terms of matrix Lmn correspond to thermal conductivity
(Fourier’s law), diffusion coefficients (Fick’s law) and electric
conductivity (Ohm’s law), respectively. Non-diagonal terms
correspond to cross effects such as the thermoelectric effect,
thermal diffusion etc. All the properties corresponding to these
examples are represented by tensors of rank 2. The case of
second-rank axial tensors where the symmetrical part of the
tensors changes sign on time reversal was discussed by Zheludev
(1986).

The Onsager reciprocity relations (Onsager, 1931a,b)

Lmn ¼ Lnm

express the symmetry of matrix Lmn. They are justified by
considerations of statistical thermodynamics and are not as
obvious as those expressing the symmetry of matrix (Cq

p). For
instance, the symmetry of the tensor of rank 2 representing
thermal conductivity is associated with the fact that a circulating
flow is undetectable.

Transport properties are described in Chapter 1.8 of this
volume.

1.1.2. Basic properties of vector spaces

[The reader may also refer to Section 1.1.4 of Volume B of
International Tables for Crystallography (2000).]

1.1.2.1. Change of basis

Let us consider a vector space spanned by the set of n basis
vectors e1, e2, e3; . . . ; en. The decomposition of a vector using this
basis is written

x ¼ xiei ð1:1:2:1Þ

using the Einstein convention. The interpretation of the position
of the indices is given below. For the present, we shall use the
simple rules:

(i) the index is a subscript when attached to basis vectors;
(ii) the index is a superscript when attached to the components.

The components are numerical coordinates and are therefore
dimensionless numbers.

Let us now consider a second basis, e0j. The vector x is inde-
pendent of the choice of basis and it can be decomposed also in
the second basis:

x ¼ x0ie0i: ð1:1:2:2Þ

IfA
j
i and B

i
j are the transformation matrices between the bases

ei and e0j, the following relations hold between the two bases:

ei ¼ A
j
ie

0
j; e0j ¼ Bi

jei
xi ¼ Bi

jx
0j; x0j ¼ A

j
ix

i

)

ð1:1:2:3Þ

(summations over j and i, respectively). The matrices A
j
i and Bi

j

are inverse matrices:

A
j
iB

k
j ¼ �ki ð1:1:2:4Þ

(Kronecker symbol: �ki ¼ 0 if i 6¼ k;¼ 1 if i ¼ k).

Important Remark. The behaviour of the basis vectors and of the
components of the vectors in a transformation are different. The
roles of the matrices Aj

i and Bi
j are opposite in each case. The

components are said to be contravariant. Everything that trans-
forms like a basis vector is covariant and is characterized by an
inferior index. Everything that transforms like a component is
contravariant and is characterized by a superior index. The
property describing the way a mathematical body transforms
under a change of basis is called variance.

1.1.2.2. Metric tensor

We shall limit ourselves to a Euclidean space for which we have
defined the scalar product. The analytical expression of the scalar
product of two vectors x ¼ xiei and y ¼ y jej is

x � y ¼ xiei � y
jej:

Let us put

ei � ej ¼ gij: ð1:1:2:5Þ

The nine components gij are called the components of the metric
tensor. Its tensor nature will be shown in Section 1.1.3.6.1. Owing
to the commutativity of the scalar product, we have

gij ¼ ei � ej ¼ ej � ei ¼ gji:

The table of the components gij is therefore symmetrical. One
of the definition properties of the scalar product is that if x � y ¼ 0
for all x, then y ¼ 0. This is translated as

xiy jgij ¼ 0 8xi ¼) y jgij ¼ 0:

In order that only the trivial solution ðy j ¼ 0Þ exists, it is
necessary that the determinant constructed from the gij’s is
different from zero:

�ðgijÞ 6¼ 0:

This important property will be used in Section 1.1.2.4.1.

1.1.2.3. Orthonormal frames of coordinates – rotation matrix

An orthonormal coordinate frame is characterized by the fact
that

gij ¼ �ij ð¼ 0 if i 6¼ j and ¼ 1 if i ¼ jÞ: ð1:1:2:6Þ

One deduces from this that the scalar product is written simply as

x � y ¼ xiy jgij ¼ xiyi:

Let us consider a change of basis between two orthonormal
systems of coordinates:

ei ¼ A
j
ie

0
j:

Multiplying the two sides of this relation by e0j, it follows that

5



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

ei � e
0
j ¼ A

j
ie

0
k � e

0
j ¼ A

j
ig

0
kj ¼ A

j
i�kj (written correctly),

which can also be written, if one notes that variance is not
apparent in an orthonormal frame of coordinates and that the
position of indices is therefore not important, as

ei � e
0
j ¼ A

j
i (written incorrectly):

The matrix coefficients, Aj
i, are the direction cosines of e0j with

respect to the ei basis vectors. Similarly, we have

Bi
j ¼ ei � e

0
j

so that

A
j
i ¼ Bi

j or A ¼ BT;

where T indicates transpose. It follows that

A ¼ BT and A ¼ B�1

so that

AT ¼ A�1 ) ATA ¼ I

BT ¼ B�1 ) BTB ¼ I:

�

ð1:1:2:7Þ

The matricesA and B are unitary matrices or matrices of rotation
and

�ðAÞ
2
¼ �ðBÞ

2
¼ 1 ) �ðAÞ ¼ �1: ð1:1:2:8Þ

If �ðAÞ ¼ 1 the senses of the axes are not changed – proper
rotation.

If �ðAÞ ¼ �1 the senses of the axes are changed – improper
rotation. (The right hand is transformed into a left hand.)

One can write for the coefficients A
j
i

A
j
iB

k
j ¼ �ki ; A

j
iA

k
j ¼ �ki ;

giving six relations between the nine coefficients Aj
i. There are

thus three independent coefficients of the 3� 3 matrix A.

1.1.2.4. Covariant coordinates – dual or reciprocal space

1.1.2.4.1. Covariant coordinates

Using the developments (1.1.2.1) and (1.1.2.5), the scalar
products of a vector x and of the basis vectors ei can be written

xi ¼ x � ei ¼ x jej � ei ¼ x jgij: ð1:1:2:9Þ

The n quantities xi are called covariant components, and we shall
see the reason for this a little later. The relations (1.1.2.9) can be
considered as a system of equations of which the components x j

are the unknowns. One can solve it since �ðgijÞ 6¼ 0 (see the end
of Section 1.1.2.2). It follows that

x j ¼ xig
ij ð1:1:2:10Þ

with

gijgjk ¼ �ik: ð1:1:2:11Þ

The table of the gij’s is the inverse of the table of the gij’s. Let us
now take up the development of x with respect to the basis ei:

x ¼ xiei:

Let us replace xi by the expression (1.1.2.10):

x ¼ xjg
ijei; ð1:1:2:12Þ

and let us introduce the set of n vectors

e j ¼ gijei ð1:1:2:13Þ

which span the space En ðj ¼ 1; . . . ; nÞ. This set of n vectors forms
a basis since (1.1.2.12) can be written with the aid of (1.1.2.13) as

x ¼ xje
j: ð1:1:2:14Þ

The xj’s are the components of x in the basis e j. This basis is
called the dual basis. By using (1.1.2.11) and (1.1.2.13), one can
show in the same way that

ej ¼ gije
j: ð1:1:2:15Þ

It can be shown that the basis vectors e j transform in a change
of basis like the components x j of the physical space. They are
therefore contravariant. In a similar way, the components xj of a
vector x with respect to the basis e j transform in a change of basis
like the basis vectors in direct space, ej; they are therefore
covariant:

e j ¼ B
j
ke

0k; e0k ¼ Ak
j e

j

xi ¼ A
j
ix

0
j; x0j ¼ Bi

jxi:

)

ð1:1:2:16Þ

1.1.2.4.2. Reciprocal space

Let us take the scalar products of a covariant vector ei and a
contravariant vector e j:

ei � e
j ¼ ei � g

jkek ¼ ei � ekg
jk ¼ gikg

jk ¼ � ji

[using expressions (1.1.2.5), (1.1.2.11) and (1.1.2.13)].
The relation we obtain, ei � e

j ¼ � ji, is identical to the relations
defining the reciprocal lattice in crystallography; the reciprocal
basis then is identical to the dual basis ei.

1.1.2.4.3. Properties of the metric tensor

In a change of basis, following (1.1.2.3) and (1.1.2.5), the gij’s
transform according to

gij ¼ Ak
i A

m
j g

0
km

g0ij ¼ Bk
i B

m
j gkm:

�

ð1:1:2:17Þ

Let us now consider the scalar products, ei � e j, of two contra-
variant basis vectors. Using (1.1.2.11) and (1.1.2.13), it can be
shown that

ei � e j ¼ gij: ð1:1:2:18Þ

In a change of basis, following (1.1.2.16), the gij’s transform
according to

gij ¼ Bi
kB

j
mg

0km

g0ij ¼ Ai
kA

j
mg

km:

�

ð1:1:2:19Þ

The volumes V 0 and V of the cells built on the basis vectors e0i
and ei, respectively, are given by the triple scalar products of
these two sets of basis vectors and are related by

V 0 ¼ ðe01; e
0
2; e

0
3Þ

¼ �ðBi
jÞðe1; e2; e3Þ

¼ �ðBi
jÞV; ð1:1:2:20Þ

where �ðBi
jÞ is the determinant associated with the transforma-

tion matrix between the two bases. From (1.1.2.17) and (1.1.2.20),
we can write

�ðg0ijÞ ¼ �ðBk
i Þ�ðBm

j Þ�ðgkmÞ:

6
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If the basis ei is orthonormal, �ðgkmÞ and V are equal to one,
�ðBjÞ is equal to the volume V 0 of the cell built on the basis
vectors e0i and

�ðg0ijÞ ¼ V 02:

This relation is actually general and one can remove the prime
index:

�ðgijÞ ¼ V2: ð1:1:2:21Þ

In the same way, we have for the corresponding reciprocal
basis

�ðgijÞ ¼ V�2;

where V� is the volume of the reciprocal cell. Since the tables of
the gij’s and of the gij’s are inverse, so are their determinants, and
therefore the volumes of the unit cells of the direct and reciprocal
spaces are also inverse, which is a very well known result in
crystallography.

1.1.3. Mathematical notion of tensor

1.1.3.1. Definition of a tensor

For the mathematical definition of tensors, the reader may
consult, for instance, Lichnerowicz (1947), Schwartz (1975) or
Sands (1995).

1.1.3.1.1. Linear forms

A linear form in the space En is written

TðxÞ ¼ tix
i;

where TðxÞ is independent of the chosen basis and the ti’s are the
coordinates of T in the dual basis. Let us consider now a bilinear
form in the product space En � Fp of two vector spaces with n
and p dimensions, respectively:

Tðx; yÞ ¼ tijx
iy j:

The np quantities tij’s are, by definition, the components of a
tensor of rank 2 and the form Tðx; yÞ is invariant if one changes
the basis in the space En � Fp. The tensor tij is said to be twice
covariant. It is also possible to construct a bilinear form by
replacing the spaces En and Fp by their respective conjugates E

n

and Fp. Thus, one writes

Tðx; yÞ ¼ tijx
iy j ¼ t

j
ix

iyj ¼ t ijxiy
j ¼ tijxiyj;

where tij is the doubly contravariant form of the tensor, whereas
t
j
i and tij are mixed, once covariant and once contravariant.
We can generalize by defining in the same way tensors of rank

3 or higher by using trilinear or multilinear forms. A vector is a
tensor of rank 1, and a scalar is a tensor of rank 0.

1.1.3.1.2. Tensor product

Let us consider two vector spaces, En with n dimensions and Fp

with p dimensions, and let there be two linear forms, TðxÞ in En

and SðyÞ in Fp. We shall associate with these forms a bilinear form
called a tensor product which belongs to the product space with
np dimensions, En � Fp:

Pðx; yÞ ¼ TðxÞ � SðyÞ:

This correspondence possesses the following properties:
(i) it is distributive from the right and from the left;
(ii) it is associative for multiplication by a scalar;
(iii) the tensor products of the vectors with a basis En and those

with a basis Fp constitute a basis of the product space.
The analytical expression of the tensor product is then

TðxÞ ¼ tix
j

SðyÞ ¼ sjy
i

�

Pðx; yÞ ¼ pijx
iy j ¼ tix

isjy
j ¼ tisjx

iy j:

One deduces from this that

pij ¼ tisj:

It is a tensor of rank 2. One can equally well envisage the
tensor product of more than two spaces, for example,
En � Fp �Gq in npq dimensions. We shall limit ourselves in this
study to the case of affine tensors, which are defined in a space
constructed from the product of the space En with itself or with its
conjugate En. Thus, a tensor product of rank 3 will have n3

components. The tensor product can be generalized as the
product of multilinear forms. One can write, for example,

Pðx; y; zÞ ¼ Tðx; yÞ � SðzÞ

p
j
ikx

iyjz
k ¼ t

j
ix

iyjskz
k:

�

ð1:1:3:1Þ

1.1.3.2. Behaviour under a change of basis

A multilinear form is, by definition, invariant under a change
of basis. Let us consider, for example, the trilinear form (1.1.3.1).
If we change the system of coordinates, the components of
vectors x, y, z become

xi ¼ Bi
�x

0�; yj ¼ A
�
j y

0
�; zk ¼ Bk

�z
0� :

Let us put these expressions into the trilinear form (1.1.3.1):

Pðx; y; zÞ ¼ p
j
ikB

i
�x

0�A
�
j y

0
�B

k
�z

0� :

Now we can equally well make the components of the tensor
appear in the new basis:

Pðx; y; zÞ ¼ p0���x
0�y0�z

0� :

As the decomposition is unique, one obtains

p0��� ¼ p
j
ikB

i
�A

�
j B

k
� : ð1:1:3:2Þ

One thus deduces the rule for transforming the components of
a tensor q times covariant and r times contravariant: they
transform like the product of q covariant components and r
contravariant components.

This transformation rule can be taken inversely as the defini-
tion of the components of a tensor of rank n ¼ qþ r.

Example. The operatorO representing a symmetry operation has
the character of a tensor. In fact, under a change of basis, O
transforms into O0:

O0 ¼ AOA�1

so that

O0i
j ¼ Ai

kO
k
l ðA

�1Þ
l
j:

Now the matrices A and B are inverses of one another:

O0i
j ¼ Ai

kO
k
l B

l
j:

The symmetry operator is a tensor of rank 2, once covariant and
once contravariant.

1.1.3.3. Operations on tensors

1.1.3.3.1. Addition

It is necessary that the tensors are of the same nature (same
rank and same variance).

7



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

1.1.3.3.2. Multiplication by a scalar

This is a particular case of the tensor product.

1.1.3.3.3. Contracted product, contraction

Here we are concerned with an operation that only exists in the
case of tensors and that is very important because of its appli-
cations in physics. In practice, it is almost always the case that
tensors enter into physics through the intermediary of a
contracted product.

(i) Contraction. Let us consider a tensor of rank 2 that is once
covariant and once contravariant. Let us write its transformation
in a change of coordinate system:

t
0j
i ¼ Aj

pB
q
i t

p
q:

Now consider the quantity t0ii derived by applying the Einstein
convention ðt0ii ¼ t011 þ t022 þ t033 Þ. It follows that

t0ii ¼ Ai
pB

q
i t

p
q ¼ �qpt

q
q

t0ii ¼ t pp:

This is an invariant quantity and so is a scalar. This operation
can be carried out on any tensor of rank higher than or equal to
two, provided that it is expressed in a form such that its
components are (at least) once covariant and once contravariant.

The contraction consists therefore of equalizing a covariant
index and a contravariant index, and then in summing over this
index. Let us take, for example, the tensor t0jki . Its contracted form
is t0iki , which, with a change of basis, becomes

t0iki ¼ Ak
pt

qp
q :

The components t iki are those of a vector, resulting from the
contraction of the tensor t jki . The rank of the tensor has changed
from 3 to 1. In a general manner, the contraction reduces the rank
of the tensor from n to n� 2.

Example. Let us take again the operator of symmetry O. The
trace of the associated matrix is equal to

O1
1 þO2

2 þO3
3 ¼ Oi

i:

It is the resultant of the contraction of the tensor O. It is a tensor
of rank 0, which is a scalar and is invariant under a change of
basis.

(ii) Contracted product. Consider the product of two tensors of
which one is contravariant at least once and the other covariant
at least once:

p
jk
i ¼ t

j
iz

k:

If we contract the indices i and k, it follows that

p
ji
i ¼ t

j
iz

i:

The contracted product is then a tensor of rank 1 and not 3. It
is an operation that is very frequent in practice.

(iii) Scalar product. Next consider the tensor product of two
vectors:

t
j
i ¼ xiy

j:

After contraction, we get the scalar product:

t ii ¼ xiy
i:

1.1.3.4. Tensor nature of physical quantities

Let us first consider the dielectric constant. In the introduction,
we remarked that for an isotropic medium

D ¼ "E:

If the medium is anisotropic, we have, for one of the compo-
nents,

D1 ¼ "11E
1 þ "12E

2 þ "13E
3:

This relation and the equivalent ones for the other components
can also be written

Di ¼ "ijE
j ð1:1:3:3Þ

using the Einstein convention.
The scalar product of D by an arbitrary vector x is

Dixi ¼ "ijE
jxi:

The right-hand member of this relation is a bilinear form that is
invariant under a change of basis. The set of nine quantities "ij
constitutes therefore the set of components of a tensor of rank 2.
Expression (1.1.3.3) is the contracted product of "ij by Ej.

A similar demonstration may be used to show the tensor
nature of the various physical properties described in Section
1.1.1, whatever the rank of the tensor. Let us for instance
consider the piezoelectric effect (see Section 1.1.4.4.3). The
components of the electric polarization, Pi, which appear in a
medium submitted to a stress represented by the second-rank
tensor Tjk are

Pi ¼ d ijkTjk;

where the tensor nature of Tjk will be shown in Section 1.3.2. If
we take the contracted product of both sides of this equation by
any vector of covariant components xi, we obtain a linear form on
the left-hand side, and a trilinear form on the right-hand side,
which shows that the coefficients dijk are the components of a
third-rank tensor. Let us now consider the piezo-optic (or
photoelastic) effect (see Sections 1.1.4.10.5 and 1.6.7). The
components of the variation ��ij of the dielectric impermeability
due to an applied stress are

��ij ¼ 	ijklTjl:

In a similar fashion, consider the contracted product of both
sides of this relation by two vectors of covariant components xi
and yj, respectively. We obtain a bilinear form on the left-hand
side, and a quadrilinear form on the right-hand side, showing that
the coefficients 	ijkl are the components of a fourth-rank tensor.

1.1.3.5. Representation surface of a tensor

1.1.3.5.1. Definition

Let us consider a tensor tijkl... represented in an orthonormal
frame where variance is not important. The value of component
t01111... in an arbitrary direction is given by

t01111... ¼ tijkl...B
i
1B

j
1B

k
1B

l
1 . . . ;

where the Bi
1, B

j
1; . . . are the direction cosines of that direction

with respect to the axes of the orthonormal frame.
The representation surface of the tensor is the polar plot of

t01111....

1.1.3.5.2. Representation surfaces of second-rank tensors

The representation surfaces of second-rank tensors are
quadrics. The directions of their principal axes are obtained as
follows. Let tij be a second-rank tensor and let OM ¼ r be a
vector with coordinates xi. The doubly contracted product, tijx

ix j,
is a scalar. The locus of points M such that

8



1.1. INTRODUCTION TO THE PROPERTIES OF TENSORS

tijx
ix j ¼ 1

is a quadric. Its principal axes are along the directions of the
eigenvectors of the matrix with elements tij. They are solutions of
the set of equations

tijx
i ¼ 
x j;

where the associated quantities 
 are the eigenvalues.
Let us take as axes the principal axes. The equation of the

quadric reduces to

t11ðx
1Þ

2
þ t22ðx

2Þ
2
þ t33ðx

3Þ
2
¼ 1:

If the eigenvalues are all of the same sign, the quadric is an
ellipsoid; if two are positive and one is negative, the quadric is a
hyperboloid with one sheet; if one is positive and two are nega-
tive, the quadric is a hyperboloid with two sheets (see Section
1.3.1).

Associated quadrics are very useful for the geometric repre-
sentation of physical properties characterized by a tensor of rank
2, as shown by the following examples:

(i) Index of refraction of a medium. It is related to the dielectric
constant by n ¼ "1=2 and, like it, it is a tensor of rank 2. Its
associated quadric is an ellipsoid, the optical indicatrix, which
represents its variations with the direction in space (see Section
1.6.3.2).

(ii) Thermal expansion. If one cuts a sphere in a medium whose
thermal expansion is anisotropic, and if one changes the
temperature, the sphere becomes an ellipsoid. Thermal expan-
sion is therefore represented by a tensor of rank 2 (see Chapter
1.4).

(iii) Thermal conductivity. Let us place a drop of wax on a plate
of gypsum, and then apply a hot point at the centre. There
appears a halo where the wax has melted: it is elliptical, indicating
anisotropic conduction. Thermal conductivity is represented by a
tensor of rank 2 and the elliptical halo of molten wax corresponds
to the intersection of the associated ellipsoid with the plane of the
plate of gypsum.

1.1.3.5.3. Representation surfaces of higher-rank tensors

Examples of representation surfaces of higher-rank tensors are
given in Sections 1.3.3.4.4 and 1.9.4.2.

1.1.3.6. Change of variance of the components of a tensor

1.1.3.6.1. Tensor nature of the metric tensor

Equation (1.1.2.17) describing the behaviour of the quantities
gij ¼ ei � ej under a change of basis shows that they are the
components of a tensor of rank 2, the metric tensor. In the same
way, equation (1.1.2.19) shows that the gij’s transform under a
change of basis like the product of two contravariant coordinates.
The coefficients gij and gij are the components of a unique tensor,
in one case doubly contravariant, in the other case doubly
covariant. In a general way, the Euclidean tensors (constructed in
a space where one has defined the scalar product) are geome-
trical entities that can have covariant, contravariant or mixed
components.

1.1.3.6.2. How to change the variance of the components of a
tensor

Let us take a tensor product

t ij ¼ xiy j:

We know that

xi ¼ gikxk and y j ¼ g jlyl:

It follows that

t ij ¼ gikg jlxkyl:

xkyl is a tensor product of two vectors expressed in the dual
space:

xkyl ¼ tkl:

One can thus pass from the doubly covariant form to the
doubly contravariant form of the tensor by means of the relation

t ij ¼ gikg jltkl:

This result is general: to change the variance of a tensor (in
practice, to raise or lower an index), it is necessary to make the
contracted product of this tensor using gij or gij, according to the
case. For instance,

tlk ¼ g jltlk; t
ij
k ¼ gklt

ijl:

Remark

gij ¼ gikgkj ¼ �ij:

This is a property of the metric tensor.

1.1.3.6.3. Examples of the use in physics of different
representations of the same quantity

Let us consider, for example, the force, F, which is a tensor
quantity (tensor of rank 1). One can define it:

(i) by the fundamental law of dynamics:

F ¼ mC; with Fi ¼ m d2xi=dt2;

where m is the mass and C is the acceleration. The force appears
here in a contravariant form.

(ii) as the derivative of the energy, W:

Fi ¼ @W=@xi ¼ @iW:

The force appears here in covariant form. In effect, we shall see
in Section 1.1.3.8.1 that to form a derivative with respect to a
variable contravariant augments the covariance by unity. The
general expression of the law of dynamics is therefore written
with the energy as follows:

m d2xi=dt2 ¼ gij@jW:

1.1.3.7. Outer product

1.1.3.7.1. Definition

The tensor defined by

x
^

y ¼ x� y� y� x

is called the outer product of vectors x and y. (Note: The symbol is
different from the symbol ^ for the vector product.) The analy-
tical expression of this tensor of rank 2 is

x ¼ xiei
y ¼ y jej

�

¼) x
^

y ¼ ðxiy j � yix jÞ ei � ej:

The components pij ¼ xiy j � yix j of this tensor satisfy the
properties

pij ¼ �pji; pii ¼ 0:

It is an antisymmetric tensor of rank 2.
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

1.1.3.7.2. Vector product

Consider the so-called permutation tensor of rank 3 (it is
actually an axial tensor – see Section 1.1.4.5.3) defined by

"ijk ¼ þ1 if the permutation ijk is even

"ijk ¼ �1 if the permutation ijk is odd

"ijk ¼ 0 if at least two of the three indices are equal

8
<

:

and let us form the contracted product

zk ¼
1
2 "ijkp

ij ¼ "ijkx
iyj: ð1:1:3:4Þ

It is easy to check that

z1 ¼ x2y3 � y2x3

z2 ¼ x3y1 � y3x1

z3 ¼ x1y2 � y2x1:

8
<

:

One recognizes the coordinates of the vector product.

1.1.3.7.3. Properties of the vector product

Expression (1.1.3.4) of the vector product shows that it is of a
covariant nature. This is indeed correct, and it is well known that
the vector product of two vectors of the direct lattice is a vector of
the reciprocal lattice [see Section 1.1.4 of Volume B of Interna-
tional Tables for Crystallography (2000)].

The vector product is a very particular vector which it is better
not to call a vector: sometimes it is called a pseudovector or an
axial vector in contrast to normal vectors or polar vectors. The
components of the vector product are the independent compo-
nents of the antisymmetric tensor pij. In the space of n dimen-
sions, one would write

vi3i4...in ¼
1
2 "i1i2...inp

i1i2 :

The number of independent components of pij is equal to
ðn2 � nÞ=2 or 3 in the space of three dimensions and 6 in the space
of four dimensions, and the independent components of pij are
not the components of a vector in the space of four dimensions.

Let us also consider the behaviour of the vector product under
the change of axes represented by the matrix

�11 0 0

0 �11 0

0 0 �11

0

@

1

A:

This is a symmetry with respect to a point that transforms a
right-handed set of axes into a left-handed set and reciprocally. In
such a change, the components of a normal vector change sign.
Those of the vector product, on the contrary, remain unchanged,
indicating – as one well knows – that the orientation of the vector
product has changed and that it is not, therefore, a vector in the
normal sense, i.e. independent of the system of axes.

1.1.3.8. Tensor derivatives

1.1.3.8.1. Interpretation of the coefficients of the matrix – change
of coordinates

We have under a change of axes:

x0i ¼ Ai
jx

j:

This shows that the new components, x0i, can be considered linear
functions of the old components, x j, and one can write

Ai
j ¼ @x0i=@x j ¼ @jx

0i:

It should be noted that the covariance has been increased.

1.1.3.8.2. Generalization

Consider a field of tensors t ji that are functions of space vari-
ables. In a change of coordinate system, one has

t
j
i ¼ A�

i B
j
�t

0�
� :

Differentiate with respect to xk:

@t ji
@xk

¼ @kt
j
i ¼ A�

i B
j
�

@t0��
@x0�

@x0�

@xk

@kt
j
i ¼ A�

i B
j
�A

�
k@� t

0�
� :

It can be seen that the partial derivatives @kt
j
i behave under a

change of axes like a tensor of rank 3 whose covariance has been
increased by 1 with respect to that of the tensor t

j
i. It is therefore

possible to introduce a tensor of rank 1, rrr (nabla), of which the
components are the operators given by the partial derivatives
@=@xi.

1.1.3.8.3. Differential operators

If one applies the operator nabla to a scalar ’, one obtains

grad ’ ¼ rrr’:

This is a covariant vector in reciprocal space.
Now let us form the tensor product of rrr by a vector v of

variable components. We then have

rrr � v ¼
@v j

@xi
ei � e j:

The quantities @iv
j form a tensor of rank 2. If we contract it, we

obtain the divergence of v:

div v ¼ @iv
i:

Taking the vector product, we get

curl v ¼ rrr ^ v:

The curl is then an axial vector.

1.1.3.8.4. Development of a vector function in a Taylor series

Let uðrÞ be a vector function. Its development as a Taylor series
is written

uiðrþ drÞ ¼ uiðrÞ þ
@ui

@xj
dx j þ 1

2

@2ui

@xj@xk
dx j dxk þ . . . : ð1:1:3:5Þ

The coefficients of the expansion, @ui=@x j, @2ui=@x j@xk; . . . are
tensors of rank 2; 3; . . ..

An example is given by the relation between displacement and
electric field:

Di ¼ "ijE
j þ �ijkE

jEk þ . . .

(see Sections 1.6.2 and 1.7.2).
We see that the linear relation usually employed is in reality a

development that is arrested at the first term. The second term
corresponds to nonlinear optics. In general, it is very small but is
not negligible in ferroelectric crystals in the neighbourhood of
the ferroelectric–paraelectric transition. Nonlinear optics are
studied in Chapter 1.7.

1.1.4. Symmetry properties

For the symmetry properties of the tensors used in physics, the
reader may also consult Bhagavantam (1966), Billings (1969),
Mason (1966), Nowick (1995), Nye (1985), Paufler (1986),
Shuvalov (1988), Sirotin & Shaskol’skaya (1982), and Wooster
(1973).
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1.1.4.1. Introduction – Neumann’s principle

We saw in Section 1.1.1 that physical properties express in
general the response of a medium to an impetus. It has been
known for a long time that symmetry considerations play an
important role in the study of physical phenomena. These
considerations are often very fruitful and have led, for instance,
to the discovery of piezoelectricity by the Curie brothers in 1880
(Curie & Curie, 1880, 1881). It is not unusual for physical prop-
erties to be related to asymmetries. This is the case in electrical
polarization, optical activity etc. The first to codify this role was
the German physicist and crystallographer F. E. Neumann, who
expressed in 1833 the symmetry principle, now called Neumann’s
principle: if a crystal is invariant with respect to certain symmetry
elements, any of its physical properties must also be invariant with
respect to the same symmetry elements (Neumann, 1885).

This principle may be illustrated by considering the optical
properties of a crystal. In an anisotropic medium, the index of
refraction depends on direction. For a given wave normal, two
waves may propagate, with different velocities; this is the double
refraction effect. The indices of refraction of the two waves vary
with direction and can be found by using the index ellipsoid
known as the optical indicatrix (see Section 1.6.3.2). Consider the
central section of the ellipsoid perpendicular to the direction of
propagation of the wave. It is an ellipse. The indices of the two
waves that may propagate along this direction are equal to the
semi-axes of that ellipse. There are two directions for which the
central section is circular, and therefore two wave directions for
which there is no double refraction. These directions are called
optic axes, and the medium is said to be biaxial. If the medium is
invariant with respect to a threefold, a fourfold or a sixfold axis
(as in a trigonal, tetragonal or hexagonal crystal, for instance), its
ellipsoid must also be invariant with respect to the same axis,
according to Neumann’s principle. As an ellipsoid can only be
ordinary or of revolution, the indicatrix of a trigonal, tetragonal
or hexagonal crystal is necessarily an ellipsoid of revolution that
has only one circular central section and one optic axis. These
crystals are said to be uniaxial. In a cubic crystal that has four
threefold axes, the indicatrix must have several axes of revolu-
tion, it is therefore a sphere, and cubic media behave as isotropic
media for properties represented by a tensor of rank 2.

1.1.4.2. Curie laws

The example given above shows that the symmetry of the
property may possess a higher symmetry than the medium. The
property is represented in that case by the indicatrix. The
symmetry of an ellipsoid is

A2

M

A0
2

M0

A00
2

M00
C ¼ mmm for any ellipsoid

(orthorhombic symmetry)

A1

M

1A2

1M
C ¼

1

m
m for an ellipsoid of revolution

(cylindrical symmetry)

1
A1

M
C ¼ 1

1

m
for a sphere

(spherical symmetry):

[Axes A1 are axes of revolution, or axes of isotropy, introduced
by Curie (1884, 1894), cf. International Tables for Crystallography
(2002), Vol. A, Table 10.1.4.2.]

The symmetry of the indicatrix is identical to that of the
medium if the crystal belongs to the orthorhombic holohedry and
is higher in all other cases.

This remark is the basis of the generalization of the symmetry
principle by P. Curie (1859–1906). He stated that (Curie, 1894):

(i) the symmetry characteristic of a phenomenon is the highest
compatible with the existence of the phenomenon;

(ii) the phenomenon may exist in a medium that possesses that
symmetry or that of a subgroup of that symmetry;
and concludes that some symmetry elements may coexist with

the phenomenon but that their presence is not necessary. On the
contrary, what is necessary is the absence of certain symmetry
elements: ‘asymmetry creates the phenomenon’ (‘C’est la dissy-
métrie qui crée le phénomène’; Curie, 1894, p. 400). Noting that
physical phenomena usually express relations between a cause
and an effect (an influence and a response), P. Curie restated the
two above propositions in the following way, now known as Curie
laws, although they are not, properly speaking, laws:

(i) the asymmetry of the effects must pre-exist in the causes;
(ii) the effects may be more symmetric than the causes.
The application of the Curie laws enable one to determine the

symmetry characteristic of a phenomenon. Let us consider the
phenomenon first as an effect. If � is the symmetry of the
phenomenon and C the symmetry of the cause that produces it,

C � �:

Let us now consider the phenomenon as a cause producing a
certain effect with symmetry E:

� � E:

We can therefore conclude that

C � � � E:

If we choose among the various possible causes the most
symmetric one, and among the various possible effects the one
with the lowest symmetry, we can then determine the symmetry
that characterizes the phenomenon.

As an example, let us determine the symmetry associated with
a mechanical force. A force can be considered as the result of a
traction effort, the symmetry of which isA11M. If considered as
a cause, its effect may be the motion of a sphere in a given
direction (for example, a spherical ball falling under its own
weight). Again, the symmetry is A11M. The symmetries asso-
ciated with the force considered as a cause and as an effect being
the same, we may conclude that A11M is its characteristic
symmetry.

1.1.4.3. Symmetries associated with an electric field and with
magnetic induction (flux density)

1.1.4.3.1. Symmetry of an electric field

Considered as an effect, an electric field may have been
produced by two circular coaxial electrodes, the first one carrying
positive electric charges, the other one negative charges (Fig.
1.1.4.1). The cause possesses an axis of revolution and an infinity
of mirrors parallel to it, A11M. Considered as a cause, the
electric field induces for instance the motion of a spherical
electric charge parallel to itself. The associated symmetry is the
same in each case, and the symmetry of the electric field is
identical to that of a force, A11M. The electric polarization or
the electric displacement have the same symmetry.
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Fig. 1.1.4.1. Symmetry of an electric field.
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1.1.4.3.2. Symmetry of magnetic induction

The determination of the symmetry of magnetic quantities is
more delicate. Considered as an effect, magnetic induction may
be obtained by passing an electric current in a loop (Fig. 1.1.4.2).
The corresponding symmetry is that of a cylinder rotating around
its axis, ðA1=MÞC. Conversely, the variation of the flux of
magnetic induction through a loop induces an electric current in
the loop. If the magnetic induction is considered as a cause, its
effect has the same symmetry. The symmetry associated with the
magnetic induction is therefore ðA1=MÞC.

This symmetry is completely different from that of the electric
field. This difference can be understood by reference to
Maxwell’s equations, which relate electric and magnetic quan-
tities:

curl E ¼ rrr ^ E ¼ �
@B

@t
; curl H ¼ rrr ^H ¼

@D

@t
:

It was seen in Section 1.1.3.8.3 that the curl is an axial vector
because it is a vector product. Maxwell’s equations thus show that
if the electric quantities (E, D) are polar vectors, the magnetic
quantities (B,H) are axial vectors and vice versa; the equations of
Maxwell are, in effect, perfectly symmetrical on this point.
Indeed, one could have been tempted to determine the symmetry
of the magnetic field by considering interactions between
magnets, which would have led to the symmetry A11M for the
magnetic quantities. However, in the world where we live and
where the origin of magnetism is in the spin of the electron, the
magnetic field is an axial vector of symmetry ðA1=MÞC while the
electric field is a polar vector of symmetry A11M.

1.1.4.4. Superposition of several causes in the same medium –
pyroelectricity and piezolectricity

1.1.4.4.1. Introduction

Let us now consider a phenomenon resulting from the super-
position of several causes in the same medium. The symmetry of
the global cause is the intersection of the groups of symmetry of
the various causes: the asymmetries add up (Curie, 1894). This
remark can be applied to the determination of the point groups
where physical properties such as pyroelectricity or piezo-
electricity are possible.

1.1.4.4.2. Pyroelectricity

Pyroelectricity is the property presented by certain materials
that exhibit electric polarization when the temperature is
changed uniformly. Actually, this property appears in crystals for
which the centres of gravity of the positive and negative charges
do not coincide in the unit cell. They present therefore a spon-
taneous polarization that varies with temperature because, owing
to thermal expansion, the distances between these centres of
gravity are temperature dependent. A very important case is that
of the ferroelectric crystals where the direction of the polariza-
tion can be changed under the application of an external electric
field.

From the viewpoint of symmetry, pyroelectricity can be
considered as the superposition of two causes, namely the crystal

with its symmetry on one hand and the increase of temperature,
which is isotropic, on the other. The intersection of the groups of
symmetry of the two causes is in this case identical to the group of
symmetry of the crystal. The symmetry associated with the effect
is that of the electric polarization that is produced, A11M.
Since the asymmetry of the cause must pre-exist in the causes, the
latter may not possess more than one axis of symmetry nor
mirrors other than those parallel to the single axis. The only
crystal point groups compatible with this condition are

1; 2; 3; 4; 6;m; 2mm; 3m; 4mm; 6mm:

There are therefore only ten crystallographic groups that are
compatible with the pyroelectric effect. For instance, tourmaline,
in which the effect was first observed, belongs to 3m.

1.1.4.4.3. Piezoelectricity

Piezoelectricity, discovered by the Curie brothers (Curie &
Curie, 1880), is the property presented by certain materials that
exhibit an electric polarization when submitted to an applied
mechanical stress such as a uniaxial compression (see, for
instance, Cady, 1964; Ikeda, 1990). Conversely, their shape
changes when they are submitted to an external electric field; this
is the converse piezoelectric effect. The physical interpretation of
piezoelectricity is the following: under the action of the applied
stress, the centres of gravity of negative and positive charges
move to different positions in the unit cell, which produces an
electric polarization.

From the viewpoint of symmetry, piezoelectricity can be
considered as the superposition of two causes, the crystal with its
own symmetry and the applied stress. The symmetry associated
with a uniaxial compression is that of two equal and opposite
forces, namely A1=M 1A2=1MC. The effect is an electric
polarization, of symmetry A11M, which must be higher than or
equal to the intersection of the symmetries of the two causes:

A1

M

1A2

1M
C
\

Scrystal � A11M;

where Scrystal denotes the symmetry of the crystal.
It may be noted that the effect does not possess a centre of

symmetry. The crystal point groups compatible with the property
of piezoelectricity are therefore among the 21 noncentrosym-
metric point groups. More elaborate symmetry considerations
show further that group 432 is also not compatible with piezo-
electricity. This will be proved in Section 1.1.4.10.4 using the
symmetry properties of tensors. There are therefore 20 point
groups compatible with piezoelectricity:

1; 2; m; 222; 2mm;

3; 32; 3m; 4; �44; 422; 4mm; �442m; 6; �66; 622; 6mm; �662m

23; �443m:

The intersection of the symmetries of the crystal and of the
applied stress depend of course on the orientation of this stress
relative to the crystallographic axes. Let us take, for instance, a
crystal of quartz, which belongs to group 32 ¼ A33A2. The above
condition becomes

A1

M

1A2

1M
C
\

A33A2 � A11M:

If the applied compression is parallel to the threefold axis, the
intersection is identical to the symmetry of the crystal, A33A2,
which possesses symmetry elements that do not exist in the effect,
and piezoelectricity cannot appear. This is of course obvious
because the threefold axis is not polar. For all other directions,
piezoelectricity may appear.
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Fig. 1.1.4.2. Symmetry of magnetic induction.
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1.1.4.5. Intrinsic symmetry of tensors

1.1.4.5.1. Introduction

The symmetry of a tensor representing a physical property or a
physical quantity may be due either to its own nature or to the
symmetry of the medium. The former case is called intrinsic
symmetry. It is a property that can be exhibited both by physical
property tensors or by field tensors. The latter case is the
consequence of Neumann’s principle and will be discussed in
Section 1.1.4.6. It applies to physical property tensors.

1.1.4.5.2. Symmetric tensors

1.1.4.5.2.1. Tensors of rank 2

A bilinear form is symmetric if

Tðx; yÞ ¼ Tðy; xÞ:

Its components satisfy the relations

tij ¼ tji:

The associated matrix, T, is therefore equal to its transpose TT :

T ¼

t11 t12 t13
t21 t22 t23
t31 t32 t33

0

@

1

A ¼ TT ¼

t11 t21 t31
t12 t22 t32
t13 t23 t33

0

@

1

A:

In a space with n dimensions, the number of independent
components is equal to

ðn2 � nÞ=2þ n ¼ ðn2 þ nÞ=2:

Examples
(1) The metric tensor (Section 1.1.2.2) is symmetric because

the scalar product is commutative.
(2) The tensors representing one of the physical properties

associated with the leading diagonal of the matrix of physical
properties (Section 1.1.1.4), such as the dielectric constant. Let us
take up again the demonstration of this case and consider a
capacitor being charged. The variation of the stored energy per
unit volume for a variation dD of the displacement is

dW ¼ E � dD;

where [equation (1.1.3.3)]

Di ¼ "ijE
j:

Since both Di and Ej are expressed through contravariant
components, the expression for the energy should be written

dW ¼ gijE
j dDi:

If we replace Di by its expression, we obtain

dW ¼ gij"
i
kE

j dEk ¼ "jkE
j dEk;

where we have introduced the doubly covariant form of the
dieletric constant tensor, "jk. Differentiating twice gives

@2W

@Ek@Ej
¼ "jk:

If one can assume, as one usually does in physics, that the
energy is a ‘good’ function and that the order of the derivatives is
of little importance, then one can write

@2W

@Ek@Ej
¼

@2W

@Ej@Ek
:

As one can exchange the role of the dummy indices, one has

@2W=ð@Ej@EkÞ ¼ "kj:

Hence one deduces that

"jk ¼ "kj:

The dielectric constant tensor is therefore symmetric. One
notes that the symmetry is conveyed on two indices of the same
variance. One could show in a similar way that the tensor
representing magnetic susceptibility is symmetric.

(3) There are other possible causes for the symmetry of a
tensor of rank 2. The strain tensor (Section 1.3.1), which is a field
tensor, is symmetric because one does not take into account the
rotative part of the deformation; the stress tensor, also a field
tensor (Section 1.3.1), is symmetric because one neglects body
torques (couples per unit volume); the thermal conductivity
tensor is symmetric because circulating flows do not produce any
detectable effects etc.

1.1.4.5.2.2. Tensors of higher rank

A tensor of rank higher than 2 may be symmetric with respect
to the indices of one or more couples of indices. For instance, by
its very nature, the demonstration given in Section 1.1.1.4 shows
that the tensors representing principal physical properties are of
even rank. If n is the rank of the associated square matrix, the
number of independent components is equal to ðn2 þ nÞ=2. In the
case of a tensor of rank 4, such as the tensor of elastic constants
relating the strain and stress tensors (Section 1.3.3.2.1), the
number of components of the tensor is 34 ¼ 81. The associated
matrix is a 9� 9 one, and the number of independent compo-
nents is equal to 45.

1.1.4.5.3. Antisymmetric tensors – axial tensors

1.1.4.5.3.1. Tensors of rank 2

A bilinear form is said to be antisymmetric if

Tðx; yÞ ¼ �Tðy; xÞ:

Its components satisfy the relations

tij ¼ �tji:

The associated matrix, T, is therefore also antisymmetric:

T ¼ �TT ¼

0 t12 t13
�t12 0 t23
�t13 �t23 0

0

@

1

A:

The number of independent components is equal to ðn2 � nÞ=2,
where n is the number of dimensions of the space. It is equal to 3
in a three-dimensional space, and one can consider these
components as those of a pseudovector or axial vector. It must
never be forgotten that under a change of basis the components
of an axial vector transform like those of a tensor of rank 2.

Every tensor can be decomposed into the sum of two tensors,
one symmetric and the other one antisymmetric:

T ¼ Sþ A;

with S ¼ ðT þ TTÞ=2 and A ¼ ðT � TTÞ=2.

Example. As shown in Section 1.1.3.7.2, the components of the
vector product of two vectors, x and y,

zk ¼ "ijkx
iy j;

are really the independent components of an antisymmetric
tensor of rank 2. The magnetic quantities, B,H (Section 1.1.4.3.2),
the tensor representing the pyromagnetic effect (Section 1.1.1.3)
etc. are axial tensors.
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1.1.4.5.3.2. Tensors of higher rank

If the rank of the tensor is higher than 2, the tensor may be
antisymmetric with respect to the indices of one or several
couples of indices.

(i) Tensors of rank 3 antisymmetric with respect to every couple
of indices. A trilinear form Tðx; y; zÞ ¼ tijkx

iy jzk is said to be
antisymmetric if it satifies the relations

Tðx; y; zÞ ¼ �Tðy; x; zÞ
¼ �Tðx; z; yÞ
¼ �Tðz; y; xÞ:

9
=

;

Tensor tijk has 27 components. It is found that all of them are
equal to zero, except

t123 ¼ t231 ¼ t312 ¼ �t213 ¼ �t132 ¼ �t321:

The three-times contracted product with the permutations
tensor (Section 1.1.3.7.2), ð1=6Þ"ijktijk, is a pseudoscalar or axial
scalar. It is not a usual scalar: the sign of this product changes
when one changes the hand of the reference axes, change of basis
represented by the matrix

�11 0 0

0 �11 0

0 0 �11

0

@

1

A:

Form Tðx; y; zÞ can also be written

Tðx; y; zÞ ¼ Pt123;

where

P ¼ "ijkx
iyjzk ¼

x1 x2 x3

y1 y2 y3

z1 z2 z3

�
�
�
�
�
�

�
�
�
�
�
�

is the triple scalar product of the three vectors x, y, z:

P ¼ ðx; y; zÞ ¼ ðx ^ y � zÞ:

It is also a pseudoscalar. The permutation tensor is not a real
tensor of rank 3: if the hand of the axes is changed, the sign of P
also changes; P is therefore not a trilinear form.

Another example of a pseudoscalar is given by the rotatory
power of an optically active medium, which is expressed through
the relation (see Section 1.6.5.4)

� ¼ �d;

where � is the rotation angle of the light wave, d the distance
traversed in the material and � is a pseudoscalar: if one takes the
mirror image of this medium, the sign of the rotation of the light
wave also changes.

(ii) Tensor of rank 3 antisymmetric with respect to one couple of
indices. Let us consider a trilinear form such that

Tðx; y; zÞ ¼ �Tðy; x; zÞ:

Its components satisfy the relation

t iil ¼ 0; t ijl ¼ �t jil:

The twice contracted product

t lk ¼
1
2 "ijkt

ijl

is an axial tensor of rank 2 whose components are the indepen-
dent components of the antisymmetric tensor of rank 3, t ijl.

Examples
(1) Hall constant. The Hall effect is observed in semi-

conductors. If one takes a semiconductor crystal and applies a

magnetic induction B and at the same time imposes a current
density j at right angles to it, one observes an electric field E at
right angles to the other two fields (see Section 1.8.3.4). The
expression for the field can be written

Ei ¼ RH ikl jkBl;

where RH ikl is the Hall constant, which is a tensor of rank 3.
However, because the direction of the current density is imposed
by the physical law (the set of vectors B, j, E constitutes a right-
handed frame), one has

RH ikl ¼ �RH kil;

which shows that RH ikl is an antisymmetric (axial) tensor of rank
3. As can be seen from its physical properties, only the compo-
nents such that i 6¼ k 6¼ l are different from zero. These are

RH 123 ¼ �RH 213; RH 132 ¼ �RH 312; RH 312; RH 321:

(2) Optical rotation. The gyration tensor used to describe the
property of optical rotation presented by gyrotropic materials
(see Section 1.6.5.4) is an axial tensor of rank 2, which is actually
an antisymmetric tensor of rank 3.

(3) Acoustic activity. The acoustic gyrotropic tensor describes
the rotation of the polarization plane of a transverse acoustic
wave propagating along the acoustic axis (see for instance
Kumaraswamy & Krishnamurthy, 1980). The elastic constants
may be expanded as

cijklð!; kÞ ¼ cijklð!Þ þ idijklmð!Þkm þ . . . ;

where dijklm is a fifth-rank tensor. Time-reversal invariance
requires that dijklm ¼ �djiklm, which shows that it is an antisym-
metric (axial) tensor.

1.1.4.5.3.3. Properties of axial tensors

The two preceding sections have shown examples of axial
tensors of ranks 0 (pseudoscalar), 1 (pseudovector) and 2. They
have in common that all their components change sign when the
sign of the basis is changed, and this can be taken as the definition
of an axial tensor. Their components are the components of an
antisymmetric tensor of higher rank. It is important to bear in
mind that in order to obtain their behaviour in a change of basis,
one should first determine the behaviour of the components of
this antisymmetric tensor.

1.1.4.6. Symmetry of tensors imposed by the crystalline medium

Many papers have been devoted to the derivation of the
invariant components of physical property tensors under the
influence of the symmetry elements of the crystallographic point
groups: see, for instance, Fumi (1951, 1952a,b,c, 1987), Fumi &
Ripamonti (1980a,b), Nowick (1995), Nye (1957, 1985), Sands
(1995), Sirotin & Shaskol’skaya (1982), and Wooster (1973).
There are three main methods for this derivation: the matrix
method (described in Section 1.1.4.6.1), the direct inspection
method (described in Section 1.1.4.6.3) and the group-theoretical
method (described in Section 1.2.4 and used in the accompanying
software, see Section 1.2.7.4).

1.1.4.6.1. Matrix method – application of Neumann’s principle

An operation of symmetry turns back the crystalline edifice on
itself; it allows the physical properties of the crystal and the
tensors representing them to be invariant. An operation of
symmetry is equivalent to a change of coordinate system. In a
change of system, a tensor becomes

t
0��
�� ¼ t

ij
klA

�
i A

�
j B

k
�B

l
�:

If A represents a symmetry operation, it is a unitary matrix:
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A ¼ BT ¼ B�1:

Since the tensor is invariant under the action of the symmetry
operator A, one has, according to Neumann’s principle,

t
0��
�� ¼ t

��
��

and, therefore,

t
��
�� ¼ t

ij
klA

�
i A

�
j B

k
�B

l
�: ð1:1:4:1Þ

There are therefore a certain number of linear relations
between the components of the tensor and the number of inde-
pendent components is reduced. If there are p components and q
relations between the components, there are p� q independent
components. This number is independent of the system of axes.
When applied to each of the 32 point groups, this reduction
enables one to find the form of the tensor in each case. It depends
on the rank of the tensor. In the present chapter, the reduction
will be derived for tensors up to the fourth rank and for all
crystallographic groups as well as for the isotropic groups. An
orthonormal frame will be assumed in all cases, so that co- and
contravariance will not be apparent and the positions of indices
as subscripts or superscripts will not be meaningful. The Ox3 axis
will be chosen parallel to the threefold, fourfold or sixfold axis in
the trigonal, tetragonal and hexagonal systems. The accom-
panying software to the present volume enables the reduction for
tensors of any rank to be derived.

1.1.4.6.2. The operator A is in diagonal form

1.1.4.6.2.1. Introduction

If one takes as the system of axes the eigenvectors of the
operator A, the matrix is written in the form

exp i� 0 0

0 exp�i� 0

0 0 �1

0

@

1

A;

where � is the rotation angle, Ox3 is taken parallel to the rotation
axis and coefficientA3 is equal to +1 or�1 depending on whether
the rotation axis is direct or inverse (proper or improper
operator).

The equations (1.1.4.1) can then be simplified and reduce to

t
ij
kl ¼ t

ij
klA

�
i A

�
j B

k
�B

l
� ð1:1:4:2Þ

(without any summation).
If the product Ai

iA
j
jB

k
kB

l
l (without summation) is equal to unity,

equation (1.1.4.2) is trivial and there is significance in the
component tkl. On the contrary, if it is different from 1, the only
solution for (1.1.4.2) is that t

ij
kl ¼ 0. One then finds immediately

that certain components of the tensor are zero and that others are
unchanged.

1.1.4.6.2.2. Case of a centre of symmetry

All the diagonal components are in this case equal to �1. One
thus has:

(i) Tensors of even rank, t ij... ¼ ð�1Þ2pt ij.... The components are
not affected by the presence of the centre of symmetry. The
reduction of tensors of even rank is therefore the same in a
centred group and in its noncentred subgroups, that is in any of
the 11 Laue classes:

�11 1

2=m 2; m

mmm 222; 2mm
�33 3
�33m 32; 3m

4=m �44; 4

4=mm �442m; 422; 4mm

6=m �66; 6

6=mm �662m; 622; 6mm

m�33 23

m�33m 432; �4432:

If a tensor is invariant with respect to two elements of symmetry,
it is invariant with respect to their product. It is then sufficient to
make the reduction for the generating elements of the group and
(since this concerns a tensor of even rank) for the 11 Laue classes.

(ii) Tensors of odd rank, t ij... ¼ ð�1Þ2pþ1
t ij.... All the compo-

nents are equal to zero. The physical properties represented by
tensors of rank 3, such as piezoelectricity, piezomagnetism,
nonlinear optics, for instance, will therefore not be present in a
centrosymmetric crystal.

1.1.4.6.2.3. General case

By replacing the matrix coefficients Ai
i by their expression,

(1.1.4.2) becomes, for a proper rotation,

t jk... ¼ t jk... expðir�Þ expð�is�Þð1Þt ¼ t jk... exp iðr� sÞ�;

where r is the number of indices equal to 1, s is the number of
indices equal to 2, t is the number of indices equal to 3 and
rþ sþ t ¼ p is the rank of the tensor. The component t jk... is not
affected by the symmetry operation if

ðr� sÞ� ¼ 2K	;

where K is an integer, and is equal to zero if

ðr� sÞ� 6¼ 2K	:

The angle of rotation � can be put into the form 2	=q, where q
is the order of the axis. The condition for the component not to be
zero is then

r� s ¼ Kq:

The condition is fulfilled differently depending on the rank of
the tensor, p, and the order of the axis, q. Indeed, we have
r� s � p and

p ¼ 2, r� s � 2: the result of the reduction will be the same for
any q � 3;

p ¼ 3, r� s � 3: the result of the reduction will be the same for
any q � 4;

p ¼ 4, r� s � 4: the result of the reduction will be the same for
any q � 5.

It follows that:
(i) for tensors of rank 2, the reduction will be the same for

trigonal (threefold axis), tetragonal (fourfold axis) and hexagonal
(sixfold axis) groups;

(ii) for tensors of rank 3, the reduction will be the same for
tetragonal and hexagonal groups;

(iii) for tensors of rank 4, the reduction will be different for
trigonal, tetragonal and hexagonal groups.

The inconvenience of the diagonalization method is that the
vectors and eigenvalues are, in general, complex, so in practice
one uses another method. For instance, we may note that equa-
tion (1.1.4.1) can be written in the case of p ¼ 2 by associating
with the tensor a 3� 3 matrix T:

T ¼ BTBT;
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where B is the symmetry operation. Through identification of
homologous coefficients in matrices T and BTBT , one obtains
relations between components tij that enable the determination
of the independent components.

1.1.4.6.3. The method of direct inspection

The method of ‘direct inspection’, due to Fumi (1952a,b, 1987),
is very simple. It is based on the fundamental properties of
tensors; the components transform under a change of basis like a
product of vector components (Section 1.1.3.2).

Examples
(1) Let us consider a tensor of rank 3 invariant with respect to a

twofold axis parallel to Ox3. The matrix representing this
operator is

�11 0 0

0 �11 0

0 0 1

0

@

1

A:

The component tijk behaves under a change of axes like the
product of the components xi; xj; xk. The components x1; x2; x3 of
a vector become, respectively, �x1, �x2, x3. To simplify the
notation, we shall denote the components of the tensor simply by
ijk. If, amongst the indices i, j and k, there is an even number
(including the number zero) of indices that are equal to 3, the
product xixjxk will become �xixjxk under the rotation. As the
component ‘ijk’ remains invariant and is also equal to its oppo-
site, it must be zero. 14 components will thus be equal to zero:

111; 122; 133; 211; 222; 133; 112; 121; 212; 221; 323; 331; 332; 313:

(2) Let us now consider that the same tensor of rank 3 is
invariant with respect to a fourfold axis parallel to Ox3. The
matrix representing this operator and its action on a vector of
coordinates x1; x2; x3 is given by

x2
�x1
x3

0

@

1

A ¼

0 1 0
�11 0 0

0 0 1

0

@

1

A
x1
x2
x3

0

@

1

A: ð1:1:4:3Þ

Coordinate x1 becomes x2, x2 becomes �x1 and x3 becomes x3.
Component ijk transforms like product xix jxk according to the
rule given above. Since the twofold axis parallel to Ox3 is a
subgroup of the fourfold axis, we can start from the corre-
sponding reduction. We find

311 () 322 : t311 ¼ t322
123 () �ð213Þ : t123 ¼ �t213
113 () 223 : t113 ¼ t223
333 () 333 : t333 ¼ t333
132 () �ð231Þ : t132 ¼ �t231
131 () 232 : t131 ¼ t232
312 () �ð321Þ : t312 ¼ �t321:

All the other components are equal to zero.

It is not possible to apply the method of direct inspection for
point group 3. One must in this case use the matrix method
described in Section 1.1.4.6.2; once this result is assumed, the
method can be applied to all other point groups.

1.1.4.7. Reduction of the components of a tensor of rank 2

The reduction is given for each of the 11 Laue classes.

1.1.4.7.1. Triclinic system

Groups �11, 1: no reduction, the tensor has 9 independent
components. The result is represented in the following symbolic
way (Nye, 1957, 1985):

where the sign * represents a nonzero component.

1.1.4.7.2. Monoclinic system

Groups 2m, 2, m: it is sufficient to consider the twofold axis or
the mirror. As the representative matrix is diagonal, the calcu-
lation is immediate. Taking the twofold axis to be parallel to Ox3,
one has

t13 ¼ t31 ¼ t23 ¼ t32 ¼ 0:

The other components are not affected. The result is repre-
sented as

There are 5 independent components. If the twofold axis is
taken along axis Ox2, which is the usual case in crystallography,
the table of independent components becomes

1.1.4.7.3. Orthorhombic system

Groups mmm, 2mm, 222: the reduction is obtained by
considering two perpendicular twofold axes, parallel to Ox3 and
to Ox2, respectively. One obtains

There are 3 independent components.

1.1.4.7.4. Trigonal, tetragonal, hexagonal and cylindrical
systems

We remarked in Section 1.1.4.6.2.3 that, in the case of tensors
of rank 2, the reduction is the same for threefold, fourfold or
sixfold axes. It suffices therefore to perform the reduction for the
tetragonal groups. That for the other systems follows auto-
matically.

1.1.4.7.4.1. Groups �33, 3; 4=m, �44, 4; 6=m, �66, 6; ðA1=MÞC, A1

If we consider a fourfold axis parallel to Ox3 represented by
the matrix given in (1.1.4.3), by applying the direct inspection
method one finds

where the symbol 	 means that the corresponding component is
numerically equal to that to which it is linked, but of opposite
sign. There are 3 independent components.
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1.1.4.7.4.2. Groups �33m, 32, 3m; 4=mm, 422, 4mm, �442m; 6=mm,
622, 6mm, �662m; ðA1=MÞ1ðA2=MÞC, A11A2

The result is obtained by combining the preceding result and
that corresponding to a twofold axis normal to the fourfold axis.
One finds

There are 2 independent components.

1.1.4.7.5. Cubic and spherical systems

The cubic system is characterized by the presence of threefold
axes along the h111i directions. The action of a threefold axis
along [111] on the components x1; x2; x3 of a vector results in a
permutation of these components, which become, respectively,
x2; x3; x1 and then x3; x1; x2. One deduces that the components of
a tensor of rank 2 satisfy the relations

t11 ¼ t22 ¼ t33:

The cubic groups all include as a subgroup the group 23 of
which the generating elements are a twofold axis along Ox3 and a
threefold axis along [111]. If one combines the corresponding
results, one deduces that

t21 ¼ t32 ¼ t13 ¼ t31 ¼ t12 ¼ t23 ¼ 0;

which can be summarized by

There is a single independent component and the medium
behaves like a property represented by a tensor of rank 2, like an
isotropic medium.

1.1.4.7.6. Symmetric tensors of rank 2

If the tensor is symmetric, the number of independent
components is still reduced. One obtains the following, repre-
senting the nonzero components for the leading diagonal and for
one half of the others.

1.1.4.7.6.1. Triclinic system

There are 6 independent components. It is possible to interpret
the number of independent components of a tensor of rank 2 by
considering the associated quadric, for instance the optical indi-
catrix. In the triclinic system, the quadric is any quadric. It is
characterized by six parameters: the lengths of the three axes and
the orientation of these axes relative to the crystallographic axes.

1.1.4.7.6.2. Monoclinic system (twofold axis parallel to Ox2)

There are 4 independent components. The quadric is still any
quadric, but one of its axes coincides with the twofold axis of the
monoclinic lattice. Four parameters are required: the lengths of
the axes and one angle.

1.1.4.7.6.3. Orthorhombic system

There are 3 independent components. The quadric is any
quadric, the axes of which coincide with the crystallographic axes.
Only three parameters are required.

1.1.4.7.6.4. Trigonal, tetragonal and hexagonal systems,
isotropic groups

There are 2 independent components. The quadric is of
revolution. It is characterized by two parameters: the lengths of
its two axes.

1.1.4.7.6.5. Cubic system

There is 1 independent component. The associated quadric is a
sphere.

1.1.4.8. Reduction of the components of a tensor of rank 3

1.1.4.8.1. Triclinic system

1.1.4.8.1.1. Group 1

All the components are independent. Their number is equal to
27. They are usually represented as a 3� 9 matrix which can be
subdivided into three 3� 3 submatrices:

111 122 133

211 222 233

311 322 333

123 131 112

223 231 212

323 331 312

�
�
�
�
�
�
�

�
�
�
�
�
�
�

132 113 121

232 213 221

332 313 321

0

B
@

1

C
A:

1.1.4.8.1.2. Group �11

All the components are equal to zero.
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1.1.4.8.2. Monoclinic system

1.1.4.8.2.1. Group 2

Choosing the twofold axis parallel to Ox3 and applying the
direct inspection method, one finds

There are 13 independent components. If the twofold axis is
parallel to Ox2, one finds

1.1.4.8.2.2. Group m

One obtains the matrix representing the operator m by
multiplying by �1 the coefficients of the matrix representing a
twofold axis. The result of the reduction will then be exactly
complementary: the components of the tensor which include an
odd number of 3’s are now equal to zero. One writes the result as
follows:

There are 14 independent components. If the mirror axis is
normal to Ox2, one finds

1.1.4.8.2.3. Group 2=m

All the components are equal to zero.

1.1.4.8.3. Orthorhombic system

1.1.4.8.3.1. Group 222

There are three orthonormal twofold axes. The reduction is
obtained by combining the results associated with two twofold
axes, parallel to Ox3 and Ox2, respectively.

There are 6 independent components.

1.1.4.8.3.2. Group mm2

The reduction is obtained by combining the results associated
with a twofold axis parallel to Ox3 and with a mirror normal to
Ox2:

There are 7 independent components.

1.1.4.8.3.3. Group mmm

All the components are equal to zero.

1.1.4.8.4. Trigonal system

1.1.4.8.4.1. Group 3

The threefold axis is parallel toOx3. The matrix method should
be used here. One finds

There are 9 independent components.

1.1.4.8.4.2. Group 32 with a twofold axis parallel to Ox1

There are 4 independent components.

1.1.4.8.4.3. Group 3m with a mirror normal to Ox1

There are 4 independent components.

1.1.4.8.4.4. Groups �33 and �33m

All the components are equal to zero.

1.1.4.8.5. Tetragonal system

1.1.4.8.5.1. Group 4

The method of direct inspection can be applied for a fourfold
axis. One finds
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There are 7 independent components.

1.1.4.8.5.2. Group 422

One combines the reductions for groups 4 and 222:

There are 3 independent components.

1.1.4.8.5.3. Group 4mm

One combines the reductions for groups 4 and 2m:

There are 4 independent components.

1.1.4.8.5.4. Group 4=m

All the components are equal to zero.

1.1.4.8.5.5. Group �44

The matrix corresponding to axis �44 is

0 �11 0

1 0 0

0 0 �11

0

@

1

A

and the form of the 3� 9 matrix is

There are 6 independent components.

1.1.4.8.5.6. Group �442m

One combines either the reductions for groups �44 and 222, or
the reductions for groups �44 and 2mm.

(i) Twofold axis parallel to Ox1:

There are 6 independent components.

(ii) Mirror perpendicular to Ox1 (the twofold axis is at 45
)

The number of independent components is of course the same,
6.

1.1.4.8.5.7. Group 4=mm

All the components are equal to zero.

1.1.4.8.6. Hexagonal and cylindrical systems

1.1.4.8.6.1. Groups 6, A1, 622, A11A2, 6mm and A11M

It was shown in Section 1.1.4.6.2.3 that, in the case of tensors of
rank 3, the reduction is the same for axes of order 4, 6 or higher.
The reduction will then be the same as for the tetragonal system.

1.1.4.8.6.2. Group �66 ¼ 3=m

One combines the reductions for the groups corresponding to
a threefold axis parallel to Ox3 and to a mirror perpendicular to
Ox3:

There are 2 independent components.

1.1.4.8.6.3. Group �662m

One combines the reductions for groups 6 and 2mm:

There is 1 independent component.

1.1.4.8.6.4. Groups 6=m, ðA1=MÞC, 6=mm and
ðA1=MÞ1ðA2=MÞC

All the components are equal to zero.

1.1.4.8.7. Cubic and spherical systems

1.1.4.8.7.1. Group 23

One combines the reductions corresponding to a twofold axis
parallel to Ox3 and to a threefold axis parallel to [111]:

There are 2 independent components.
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1.1.4.8.7.2. Groups 432 and 1A1=M

One combines the reductions corresponding to groups 422 and
23:

There is 1 independent component.

1.1.4.8.7.3. Group �443m

One combines the reductions corresponding to groups �442m
and 23:

There is 1 independent component.

1.1.4.8.7.4. Groups m�33, m�33m and 1ðA1=MÞC

All the components are equal to zero.

1.1.4.9. Reduction of the components of a tensor of rank 4

1.1.4.9.1. Triclinic system (groups �11, 1)

There is no reduction; all the components are independent.
Their number is equal to 81. They are usually represented as a
9� 9 matrix, where components tijkl are replaced by ijkl, for
brevity:

This matrix can be represented symbolically by

where the 9� 9 matrix has been subdivided for clarity in to nine
3� 3 submatrices.

1.1.4.9.2. Monoclinic system (groups 2=m, 2, m)

The reduction is obtained by the method of direct inspection.
For a twofold axis parallel to Ox2, one finds

There are 41 independent components.

1.1.4.9.3. Orthorhombic system (groups mmm, 2mm, 222)

There are 21 independent components.

1.1.4.9.4. Trigonal system

1.1.4.9.4.1. Groups 3 and �33

The reduction is first applied in the system of axes tied to the
eigenvectors of the operator representing a threefold axis. The
system of axes is then changed to a system of orthonormal axes
with Ox3 parallel to the threefold axis:

with

t1111 � t1122 ¼ t1212 þ t1221
t1112 þ t1121 ¼ �ðt1211 þ t2111Þ:

�

There are 27 independent components.
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1.1.4.9.4.2. Groups �33m, 32, 3m, with the twofold axis parallel to
Ox1

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 14 independent components.

1.1.4.9.5. Tetragonal system

1.1.4.9.5.1. Groups 4=m, 4, �44

There are 21 independent components.

1.1.4.9.5.2. Groups 4=mm, 422, 4mm, �442m

There are 11 independent components.

1.1.4.9.6. Hexagonal and cylindrical systems

1.1.4.9.6.1. Groups 6=m, �66, 6; ðA1=MÞC, A1

with

t1111 � t1122 ¼ t1212 þ t1221
t1112 þ t1121 ¼ �ðt1211 þ t2111Þ:

�

There are 19 independent components.

1.1.4.9.6.2. Groups 6=mm, 622, 6mm, �662m; ðA1=MÞ1;
ðA2=MÞC, A11A2

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 11 independent components.

1.1.4.9.7. Cubic system

1.1.4.9.7.1. Groups 23, �33m

There are 7 independent components.
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1.1.4.9.7.2. Groups m�33m, 432, �443m

There are 4 independent components. The tensor is symmetric.

1.1.4.9.8. Spherical system

1.1.4.9.8.1. Groups 1ðA1=MÞC and 1A1

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 3 independent components. The tensor is symmetric.

1.1.4.9.9. Symmetric tensors of rank 4

For symmetric tensors such as those representing principal
properties, one finds the following, representing the nonzero
components for the leading diagonal and for one half of the
others.

1.1.4.9.9.1. Triclinic system

There are 45 independent coefficients.

1.1.4.9.9.2. Monoclinic system

There are 25 independent coefficients.

1.1.4.9.9.3. Orthorhombic system

There are 15 independent coefficients.

1.1.4.9.9.4. Trigonal system

(i) Groups 3 and �33

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 15 independent components.
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(ii) Groups �33m, 32, 3m

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 11 independent components.

1.1.4.9.9.5. Tetragonal system

(i) Groups 4=m, 4, �44

There are 13 independent components.

(ii) Groups 4=mm, 422, 4mm, �442m

There are 9 independent components.

1.1.4.9.9.6. Hexagonal and cylindrical systems

(i) Groups 6=m, �66, 6; ðA1=MÞC;A1

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 12 independent components.
(ii) Groups 6=mm, 622, 6mm, �662m; ðA1=MÞ1ðA2=MÞC,

A11A2

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 10 independent components.

1.1.4.9.9.7. Cubic system

(i) Groups 23, �33m

with

t1111 � t1122 ¼ t1212 þ t1221:

There are 5 independent components.
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(ii) Groups m�33m, 432, �443m, and spherical system: the reduced
tensors are already symmetric (see Sections 1.1.4.9.7 and
1.1.4.9.8).

1.1.4.10. Reduced form of polar and axial tensors – matrix
representation

1.1.4.10.1. Introduction

Many tensors representing physical properties or physical
quantities appear in relations involving symmetric tensors.
Consider, for instance, the strain Sij resulting from the application
of an electric field E (the piezoelectric effect):

Sij ¼ dijkEk þQijklEkEl; ð1:1:4:4Þ

where the first-order terms dijk represent the components of the
third-rank converse piezoelectric tensor and the second-order
terms Qijkl represent the components of the fourth-rank elec-
trostriction tensor. In a similar way, the direct piezoelectric effect
corresponds to the appearance of an electric polarization P when
a stress Tjk is applied to a crystal:

Pi ¼ dijkTjk: ð1:1:4:5Þ

Owing to the symmetry properties of the strain and stress
tensors (see Sections 1.3.1 and 1.3.2) and of the tensor product
EkEl, there occurs a further reduction of the number of inde-
pendent components of the tensors which are engaged in a
contracted product with them, as is shown in Section 1.1.4.10.3 for
third-rank tensors and in Section 1.1.4.10.5 for fourth-rank
tensors.

1.1.4.10.2. Stress and strain tensors – Voigt matrices

The stress and strain tensors are symmetric because body
torques and rotations are not taken into account, respectively
(see Sections 1.3.1 and 1.3.2). Their components are usually
represented using Voigt’s one-index notation.

(i) Strain tensor

S1 ¼ S11; S2 ¼ S22; S3 ¼ S33;
S4 ¼ S23 þ S32; S5 ¼ S31 þ S13; S6 ¼ S12 þ S21;
S4 ¼ 2S23 ¼ 2S32; S5 ¼ 2S31 ¼ 2S13; S6 ¼ 2S12 ¼ 2S21:

9
=

;

ð1:1:4:6Þ

The Voigt components S� form a Voigt matrix:

S1 S6 S5
S2 S4

S3

0

@

1

A:

The terms of the leading diagonal represent the elongations (see
Section 1.3.1). It is important to note that the non-diagonal terms,
which represent the shears, are here equal to twice the corre-
sponding components of the strain tensor. The components S� of
the Voigt strain matrix are therefore not the components of a
tensor.

(ii) Stress tensor

T1 ¼ T11; T2 ¼ T22; T3 ¼ T33;
T4 ¼ T23 ¼ T32; T5 ¼ T31 ¼ T13; T6 ¼ T12 ¼ T21:

�

The Voigt components T� form a Voigt matrix:

T1 T6 T5

T2 T4

T3

0

@

1

A:

The terms of the leading diagonal correspond to principal normal
constraints and the non-diagonal terms to shears (see Section
1.3.2).

1.1.4.10.3. Reduction of the number of independent components
of third-rank polar tensors due to the symmetry of the strain and
stress tensors

Equation (1.1.4.5) can be written

Pi ¼
P

j

dijjTjj þ
P

j6¼k

ðdijk þ dikjÞTjk:

The sums ðdijk þ dikjÞ for j 6¼ k have a definite physical
meaning, but it is impossible to devise an experiment that permits
dijk and dikj to be measured separately. It is therefore usual to set
them equal:

dijk ¼ dikj: ð1:1:4:7Þ

It was seen in Section 1.1.4.8.1 that the components of a third-
rank tensor can be represented as a 9� 3 matrix which can be
subdivided into three 3� 3 submatrices:

1 j 2 j 3
� �

:

Relation (1.1.4.7) shows that submatrices 1 and 2 are identical.
One puts, introducing a two-index notation,

dijj ¼ di� ð� ¼ 1; 2; 3Þ
dijk þ dikj ðj 6¼ kÞ ¼ di� ð� ¼ 4; 5; 6Þ:

�

Relation (1.1.4.7) becomes

Pi ¼ di�T�:

The coefficients di� may be written as a 3� 6 matrix:

11 12 13

21 22 23

31 32 33

0

@

�
�
�
�
�
�

14 15 16

24 25 26

34 35 36

1

A:

This matrix is constituted by two 3� 3 submatrices. The left-hand
one is identical to the submatrix 1, and the right-hand one is
equal to the sum of the two submatrices 2 and 3:

1 j 2þ 3
� �

:

The inverse piezoelectric effect expresses the strain in a crystal
submitted to an applied electric field:

Sij ¼ dijkEk;

where the matrix associated with the coefficients dijk is a 9� 3
matrix which is the transpose of that of the coefficients used in
equation (1.1.4.5), as shown in Section 1.1.1.4.

The components of the Voigt strain matrix S� are then given by

S� ¼ diikEk ð� ¼ 1; 2; 3Þ
S� ¼ Sij þ Sji ¼ ðdijk þ djikÞEk ð� ¼ 4; 5; 6Þ:

�

This relation can be written simply as

S� ¼ d�kEk;

where the matrix of the coefficients d�k is a 6� 3 matrix which is
the transpose of the di� matrix.

There is another set of piezoelectric constants (see Section
1.1.5) which relates the stress, Tij, and the electric field, Ek, which
are both intensive parameters:

Tij ¼ eijkEk; ð1:1:4:8Þ

where a new piezoelectric tensor is introduced, eijk. Its compo-
nents can be represented as a 3� 9 matrix:
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1

�

2

�

3

0

B
B
B
B
@

1

C
C
C
C
A
:

Both sides of relation (1.1.4.8) remain unchanged if the indices
i and j are interchanged, on account of the symmetry of the stress
tensor. This shows that

eijk ¼ ejik:

Submatrices 2 and 3 are equal. One introduces here a two-
index notation through the relation e�k ¼ eijk, and the e�k matrix
can be written

1

2þ 3

� �

:

The relation between the full and the reduced matrix is
therefore different for the dijk and the ekij tensors. This is due to
the particular property of the strain Voigt matrix (1.1.4.6), and as
a consequence the relations between nonzero components of the
reduced matrices are different for certain point groups (3, 32, 3m,
�66, �662m).

1.1.4.10.4. Independent components of the matrix associated
with a third-rank polar tensor according to the following point
groups

1.1.4.10.4.1. Triclinic system

(i) Group 1: all the components are independent. There are 18
components.

(ii) Group �11: all the components are equal to zero.

1.1.4.10.4.2. Monoclinic system

(i) Group 2: twofold axis parallel to Ox2:

There are 8 independent components.
(ii) Group m:

There are 10 independent components.
(iii) Group 2=m: all the components are equal to zero.

1.1.4.10.4.3. Orthorhombic system

(i) Group 222:

There are 3 independent components.

(ii) Group mm2:

There are 5 independent components.
(iii) Group mmm: all the components are equal to zero.

1.1.4.10.4.4. Trigonal system

(i) Group 3:

where the symbol 	 means that the corresponding component is
equal to the opposite of that to which it is linked, � means that
the component is equal to twice minus the value of the compo-
nent to which it is linked for dijk and to minus the value of the
component to which it is linked for eijk. There are 6 independent
components.

(ii) Group 32, twofold axis parallel to Ox1:

with the same conventions. There are 4 independent components.
(iii) Group 3m, mirror perpendicular to Ox1:

with the same conventions. There are 4 independent components.
(iv) Groups �33 and �33m: all the components are equal to zero.

1.1.4.10.4.5. Tetragonal, hexagonal and cylindrical systems

(i) Groups 4, 6 and A1:

There are 4 independent components.
(ii) Groups 422, 622 and A11A2:

There is 1 independent component.
(iii) Groups 4mm, 6mm and A11M:

There are 3 independent components.
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(iv) Groups 4=m, 6=m and ðA1=MÞC: all the components are
equal to zero.

(v) Group �44:

There are 4 independent components.
(vi) Group �66 ¼ 3=m:

with the same conventions as for group 3. There are 2 indepen-
dent components.

(vii) Group �442m – twofold axis parallel to Ox1:

There are 2 independent components.
(viii) Group �442m – mirror perpendicular to Ox1 (twofold axis

at 45
):

The number of independent components is of course the same.
(ix) Group �662=m:

with the same conventions as for group 3. There is 1 independent
component.

(x) Groups 4=mm, 6=mm and ðA1=MÞ1ðA2=MÞC: all the
components are equal to zero.

1.1.4.10.4.6. Cubic and spherical systems

(i) Groups 23 and �443m:

There is 1 independent component.
(ii) Groups 432 and 1A1: it was seen in Section 1.1.4.8.6 that

we have in this case

d123 ¼ �d132:

It follows that d14 ¼ 0, all the components are equal to zero.
(iii) Groupsm�33,m�33m and1ðA1=MÞC: all the components are

equal to zero.

1.1.4.10.5. Reduction of the number of independent components
of fourth-rank polar tensors due to the symmetry of the strain and
stress tensors

Let us consider five examples of fourth-rank tensors:
(i) Elastic compliances, sijkl, relating the resulting strain tensor

Sij to an applied stress Tij (see Section 1.3.3.2):

Sij ¼ sijklTkl; ð1:1:4:9Þ

where the compliances sijkl are the components of a tensor of
rank 4.

(ii) Elastic stiffnesses, cijkl (see Section 1.3.3.2):

Tij ¼ cijklSkl:

(iii) Piezo-optic coefficients, 	ijkl, relating the variation ��ij of
the dielectric impermeability to an applied stress Tkl (photoelastic
effect – see Section 1.6.7):

��ij ¼ 	ijklTkl:

(iv) Elasto-optic coefficients, pijkl, relating the variation ��ij of
the dielectric impermeability to the strain Skl:

��ij ¼ pijklSkl:

(v) Electrostriction coefficients, Qijkl, which appear in equation
(1.1.4.4):

Sij ¼ QijklEkEl; ð1:1:4:10Þ

where only the second-order terms are considered.
In each of the equations from (1.1.4.9) to (1.1.4.10), the

contracted product of a fourth-rank tensor by a symmetric
second-rank tensor is equal to a symmetric second-rank tensor.
As in the case of the third-rank tensors, this results in a reduction
of the number of independent components, but because of the
properties of the strain Voigt matrix, and because two of the
tensors are endowed with intrinsic symmetry (the elastic tensors),
the reduction is different for each of the five tensors. The above
relations can be written in matrix form:

where the second-rank tensors are represented by 1� 9 column
matrices, which can each be subdivided into three 1� 3 sub-
matrices and the 9� 9 matrix associated with the fourth-rank
tensors is subdivided into nine 3� 3 submatrices, as shown in
Section 1.1.4.9.1. The symmetry of the second-rank tensors means
that submatrices 2 and 3 which are associated with them are
equal.

Let us first consider the reduction of the tensor of elastic
compliances. As in the case of the piezoelectric tensor, equation
(1.1.4.9) can be written

Sij ¼
P

l

sijllTll þ
P

k6¼l

ðsijkl þ sijlkÞTkl: ð1:1:4:11Þ

The sums ðsijkl þ sijlkÞ for k 6¼ l have a definite physical
meaning, but it is impossible to devise an experiment permitting
sijkl and sijlk to be measured separately. It is therefore usual to set
them equal in order to avoid an unnecessary constant:

sijkl ¼ sijlk:
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Furthermore, the left-hand term of (1.1.4.11) remains
unchanged if we interchange the indices i and j. The terms on the
right-hand side therefore also remain unchanged, whatever the
value of Tll or Tkl. It follows that

sijll ¼ sjill

sijkl ¼ sijlk ¼ sjikl ¼ sjilk:

Similar relations hold for cijkl, Qijkl , pijkl and 	ijkl : the submatrices
2 and 3, 4 and 7, 5, 6, 8 and 9, respectively, are equal.

Equation (1.4.1.11) can be rewritten, introducing the coeffi-
cients of the Voigt strain matrix:

S� ¼ Sii ¼
P

l

siillTll þ
P

k 6¼l

ðsiikl þ siilkÞTkl ð� ¼ 1; 2; 3Þ

S� ¼ Sij þ Sji ¼
P

l

ðsijll þ sjillÞTll

þ
P

k 6¼l

ðsijkl þ sijlk þ sjikl þ sjilkÞTkl ð� ¼ 4; 5; 6Þ:

We shall now introduce a two-index notation for the elastic
compliances, according to the following conventions:

i ¼ j; k ¼ l; s�� ¼ siill
i ¼ j; k 6¼ l; s�� ¼ siikl þ siilk
i 6¼ j; k ¼ l; s�� ¼ sijkk þ sjikk
i 6¼ j; k 6¼ l; s�� ¼ sijkl þ sjikl þ sijlk þ sjilk:

9
>>=

>>;

ð1:1:4:12Þ

We have thus associated with the fourth-rank tensor a square
6� 6 matrix with 36 coefficients:

One can translate relation (1.1.4.12) using the 9� 9 matrix
representing sijkl by adding term by term the coefficients of
submatrices 2 and 3, 4 and 7 and 5, 6, 8 and 9, respectively:

Using the two-index notation, equation (1.1.4.9) becomes

S� ¼ s��T�: ð1:1:4:13Þ

A similar development can be applied to the other fourth-rank
tensors 	ijkl, which will be replaced by 6� 6 matrices with 36
coefficients, according to the following rules.

(i) Elastic stiffnesses, cijkl and elasto-optic coefficients, pijkl :

where

c�� ¼ cijkl

p�� ¼ pijkl:

(ii) Piezo-optic coefficients, 	ijkl :

where

i ¼ j; k ¼ l; 	�� ¼ 	iill

i ¼ j; k 6¼ l; 	�� ¼ 	iikl þ 	iilk

i 6¼ j; k ¼ l; 	�� ¼ 	ijkk ¼ 	jikk

i 6¼ j; k 6¼ l; 	�� ¼ 	ijkl þ 	jikl ¼ 	ijlk þ 	jilk:

9
>>=

>>;

(iii) Electrostriction coefficients, Qijkl : same relation as for the
elastic compliances.

1.1.4.10.6. Independent components of the matrix associated
with a fourth-rank tensor according to the following point groups

1.1.4.10.6.1. Triclinic system, groups �11, 1

1.1.4.10.6.2. Monoclinic system

Groups 2=m, 2, m, twofold axis parallel to Ox2:

1.1.4.10.6.3. Orthorhombic system

Groups mmm, 2mm, 222:
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1.1.4.10.6.4. Trigonal system

(i) Groups 3, �33:

where	 is a component numerically equal but opposite in sign to
the heavy dot component to which it is linked; � is a component
equal to twice the heavy dot component to which it is linked;� is
a component equal to minus twice the heavy dot component to
which it is linked; � is equal to 1=2ðp11 � p12Þ, ð	11 � 	12Þ,
2ðQ11 �Q12Þ, 1=2ðc11 � c12Þ and 2ðs11 � s12Þ, respectively.

(ii) Groups 32, 3m, �33m:

with the same conventions.

1.1.4.10.6.5. Tetragonal system

(i) Groups 4, �44 and 4=m:

(ii) Groups 422, 4mm, �442m and 4=mm:

1.1.4.10.6.6. Hexagonal system

(i) Groups 6, �66 and 6=m:
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(ii) Groups 622, 6mm, �662m and 6=mm:

1.1.4.10.6.7. Cubic system

(i) Groups 23 and 3m:

(ii) Groups 432, �443m and m�33m:

1.1.4.10.6.8. Spherical system

For all tensors

1.1.4.10.7. Reduction of the number of independent components
of axial tensors of rank 2

It was shown in Section 1.1.4.5.3.2 that axial tensors of rank 2
are actually tensors of rank 3 antisymmetric with respect to two
indices. The matrix of independent components of a tensor such
that

gijk ¼ �gjik

is given by

122 133

�121 223

�131 �232

123 131

231 �122

�233 �132

�
�
�
�
�
�

�
�
�
�
�
�

132 121

232 �123

�133 �231

0

@

1

A:

The second-rank axial tensor gkl associated with this tensor is
defined by

gkl ¼
1
2"ijkgijl:

For instance, the piezomagnetic coefficients that give the
magnetic moment Mi due to an applied stress T� are the
components of a second-rank axial tensor, �i� (see Section
1.5.7.1):

Mi ¼ �i�T�:

1.1.4.10.7.1. Independent components according to the
following point groups

(i) Triclinic system
(a) Group 1:

(b) Group �11: all components are equal to zero.
(ii) Monoclinic system
(a) Group 2:
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(b) Group m:

(c) Group 2=m: all components are equal to zero.

(iii) Orthorhombic system
(a) Group 222:

(b) Group mm2:

(c) Group mmm: all components are equal to zero.

(iv) Trigonal, tetragonal, hexagonal and cylindrical systems
(a) Groups 3, 4, 6 and A1:

(b) Groups 32, 42, 62 and A11A2:

(c) Groups 3m, 4m, 6m and A11M:

(d) Group �44:

(e) Group �442m:

(f) Groups �33, 4=m, �662m, �33m, 4=mm and 6=mm: all components
are equal to zero.

(v) Cubic and spherical systems
(a) Groups 23, 432 and 1A1:

The axial tensor is reduced to a pseudoscalar.
(b) Groups m�33, �443m, m�33m and 1ðA1=MÞC: all components

are equal to zero.

1.1.4.10.7.2. Independent components of symmetric axial
tensors according to the following point groups

Some axial tensors are also symmetric. For instance, the optical
rotatory power of a gyrotropic crystal in a given direction of
direction cosines �1;�2; �3 is proportional to a quantity G defined
by (see Section 1.6.5.4)

G ¼ gij�i�j;

where the gyration tensor gij is an axial tensor. This expression
shows that only the symmetric part of gij is relevant. This leads to
a further reduction of the number of independent components:

(i) Triclinic system
(a) Group 1:

(b) Group �11: all components are equal to zero.
(ii) Monoclinic system
(a) Group 2:

(b) Group m:

(c) Group 2=m: all components are equal to zero.
(iii) Orthorhombic system
(a) Group 222:

(b) Group mm2:

(c) Group mmm: all components are equal to zero.
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(iv) Trigonal, tetragonal and hexagonal systems
(a) Groups 3, 32, 4, 42, 6, 62:

(b) Group �44:

(c) Group �442m:

(d) Groups �33, 3m, �33m, 4=m, 4mm, 4=mm, �66, �662m and 6=mm: all
components are equal to zero.

(v) Cubic and spherical systems
(a) Groups 23, 432 and A11A2:

(b) Groups m�33, �443m, m�33m and 1ðA1=MÞC: all components
are equal to zero.

In practice, gyrotropic crystals are only found among the
enantiomorphic groups: 1, 2, 222, 3, 32, 4, 422, 6, 622, 23, 432.
Pasteur (1848a,b) was the first to establish the distinction
between ‘molecular dissymmetry’ and ‘crystalline dissymetry’.

1.1.5. Thermodynamic functions and physical property tensors

[The reader may also consult Mason (1966), Nye (1985) or Sirotin
& Shaskol’skaya (1982).]

1.1.5.1. Isothermal study

The energy of a system is the sum of all the forms of energy:
thermal, mechanical, electrical etc. Let us consider a system
whose only variables are these three. For a small variation of the
associated extensive parameters, the variation of the internal
energy is

dU ¼ En dDn þ Tkl dSkl þ� d�;

where � is the temperature and � is the entropy; there is
summation over all dummy indices; an orthonormal frame is
assumed and variance is not apparent. The mechanical energy of
deformation is given by Tkl dSkl (see Section 1.3.2.8). Let us
consider the Gibbs free-energy function G defined by

G ¼ U � EnDn � TklSkl ���:

Differentiation of G gives

dG ¼ �Dn dEn � Skl dTkl � � d�:

The extensive parameters are therefore partial derivatives of the
free energy:

Skl ¼ �
@G

@Tkl

; Dn ¼ �
@G

@En

; � ¼ �
@G

@�
:

Each of these quantities may be expanded by performing a
further differentiation in terms of the intensive parameters, Tkl,
En and �. We have, to the first order,

dSkl ¼
@Skl
@Tij

� �

E;�

dTij þ
@Skl
@En

� �

T;�

dEn þ
@Skl
@�

� �

E;T

��

dDn ¼
@Dn

@Tkl

� �

E;�

dTkl þ
@Dn

@Em

� �

T;�

dEm þ
@Dn

@�

� �

E;T

��

d� ¼
@�

@Tij

� �

E;�

dTij þ
@�

@Em

� �

T;�

dEm þ
@�

@�

� �

E;T

��:

To a first approximation, the partial derivatives may be consid-
ered as constants, and the above relations may be integrated:

Skl ¼ sklij
� �E;�

Tij þ dklnð Þ
T;�

En þ �klð Þ
E;T��

Dn ¼ dnklð Þ
E;�

Tkl þ "nmð Þ
T;�

Em þ pnð Þ
E;T��

�� ¼ �ij
� �E

Tij þ pmð Þ
T
Em þ ð�CE;T=�Þ��:

9
>=

>;

ð1:1:5:1Þ

This set of equations is the equivalent of relation (1.1.1.6) of
Section 1.1.1.3, which gives the coefficients of the matrix of
physical properties. These coefficients are:

(i) For the principal properties: sklij
� �E;�

: elastic compliances at
constant temperature and field; "nmð Þ

T;�: dielectric constant at
constant temperatures and stress; �CT;E: heat capacity per unit
volume at constant stress and field (� is the specific mass and CT;E

is the specific heat at constant stress and field).
(ii) For the other properties: dklnð Þ

T;� and dnklð Þ
E;� are the

components of the piezoelectric effect and of the converse effect.
They are represented by 3� 9 and 9� 3 matrices, respectively.
One may notice that

dkln ¼
@Skl
@En

¼ �
@2G

@En@Tkl

¼ �
@2G

@Tkl@En

¼
@Dn

@Tkl

¼ dnkl;

which shows again that the components of two properties that are
symmetric with respect to the leading diagonal of the matrix of
physical properties are equal (Section 1.1.1.4) and that the
corresponding matrices are transpose to one another.

In a similar way,
(a) the matrices �klð Þ

E;T of the thermal expansion and ð�ijÞ
E of

the piezocalorific effect are transpose to one another;
(b) the components ðpnÞ

T of the pyroelectric and of the elec-
trocalorific effects are equal.

Remark. The piezoelectric effect, namely the existence of an
electric polarization P under an applied stress, is always
measured at zero applied electric field and at constant
temperature. The second equation of (1.1.5.1) becomes under
these circumstances

Pn ¼ Dn ¼ ðdnklÞ
�
Tkl:

Remark. Equations (1.1.5.1) are, as has been said, first-order
approximations because we have assumed the partial derivatives
to be constants. Actually, this approximation is not correct, and in
many cases it is necessary to take into account the higher-order
terms as, for instance, in:

(a) nonlinear elasticity (see Sections 1.3.6 and 1.3.7);
(b) electrostriction;
(c) nonlinear optics (see Chapter 1.7);
(d) electro-optic and piezo-optic effects (see Sections 1.6.6 and

1.6.7).
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1.1.5.2. Other forms of the piezoelectric constants

We use here another Gibbs function, the electric Gibbs func-
tion, G2, defined by

G2 ¼ U � EnDn ���:

Differentiation of G gives

dG2 ¼ �Dn dEn þ Tij dSij � � d�:

It follows that

Tij ¼
@G2

@Sij
; Dn ¼ �

@G2

@En

; � ¼ �
@G2

@�

and a set of relations analogous to (1.1.5.1):

Tij ¼ ðcijklÞ
E;�

Skl � ðeijnÞ
S;�

En � ð
ijÞ
E;S ��

Dn ¼ ðenijÞ
E;�

Sij þ ð"nmÞ
S;�

Em þ ðpnÞ
S ��

�� ¼ ð
ijÞ
E
Sij þ ðpnÞ

S
En þ �CE;S ��=�;

9
>=

>;
ð1:1:5:2Þ

where the components cijkl
� �E;�

are the isothermal elastic stiff-
nesses at constant field and constant temperature,

eijn ¼ �
@Tij

@En

¼ �
@2G2

@En@Sij
¼ �

@2G2

@Sij@En

¼
@Dn

@Sij
¼ enij

are the piezoelectric stress coefficients at constant strain and
constant temperature,


ij ¼ �
@Tij

@�
¼ �

@2G2

@�@Sij
¼ �

@2G2

@Sij@�
¼
@��

@Sij

are the temperature-stress constants and

pn ¼
@Dn

@�
¼ �

@2G2

@�@En

¼ �
@2G2

@En@�
¼
@��

@Dn

are the components of the pyroelectric effect at constant strain.
The relations between these coefficients and the usual coeffi-

cients dkln are easily obtained:
(i) At constant temperature and strain: if one puts �� ¼ 0 and

Skl ¼ 0 in the first equation of (1.1.5.1) and (1.1.5.2), one obtains,
respectively,

0 ¼ sklijTij þ dklnEn

Tij ¼ �eijnEn;

from which it follows that

dkln ¼ sklijeijn

at constant temperature and strain.
(ii) At constant temperature and stress: if one puts �� ¼ 0 and

Tij ¼ 0, one obtains in a similar way

Skl ¼ dklnEn

0 ¼ cijklSkl � eijnEn;

from which it follows that

eijn ¼ cijkldkln

at constant temperature and stress.

1.1.5.3. Relation between the pyroelectric coefficients at constant
stress and at constant strain

By combining relations (1.1.5.1) and (1.1.5.2), it is possible to
obtain relations between the pyroelectric coefficients at constant
stress, pTn , and the pyroelectric coefficients at constant strain, pSn,
also called real pyroelectric coefficients, pSn. Let us put Tij ¼ 0 and

En ¼ 0 in the first equation of (1.1.5.1). For a given variation of
temperature, ��, the observed strain is

Skl ¼
h
�kl

iE;T
��:

From the second equations of (1.1.5.1) and (1.1.5.2), it follows
that

Dn ¼ pTn ��

Dn ¼ enklSkl þ pn��:

Substituting the expression Skl and eliminating Dn, it follows that

pTn ¼ enkl

h
�kl

iE;T
þ pSn: ð1:1:5:3Þ

This relation shows that part of the pyroelectric effect is
actually due to the piezoelectric effect.

1.1.5.4. Adiabatic study

Piezoelectric resonators usually operate at a high frequency
where there are no heat exchanges, and therefore in an adiabatic
regime ð��� ¼ 0Þ. From the third equation of (1.1.5.1), we obtain
a relation between the temperature variation, the applied stress
and the electric field:

ð�ijÞ
E
Tij þ ðpmÞ

T
Em þ

�CT;E

�
�� ¼ 0:

If we substitute this relation in the two other relations of
(1.1.5.1), we obtain two equivalent relations, but in the adiabatic
regime:

Skl ¼ sklij
� �E;�

Tij þ dklmð Þ
T;�

Em

Dn ¼ dnij
� �E;�

Tij þ "nmð Þ
T;�

Em:

By comparing these expressions with (1.1.5.1), we obtain the
following relations between the adiabatic and the isothermal
coefficients:

ðsijklÞ
E;�

¼ ðsijklÞ
E;�

�
ð�ijÞ

E
ð�klÞ

E�

�CT;E

ðdnijÞ
E;�

¼ ðdnijÞ
E;�

�
ðpnÞ

T
ð�klÞ

E�

�CT;E

ð"mnÞ
T;�

¼ ð"mnÞ
T;�

�
ðpnÞ

T
ðpmÞ

T�

�CT;E
:

1.1.6. Glossary

ei basis vectors in direct space (covariant)
ei basis vectors in reciprocal space (contravariant)
xi components of a vector in direct space

(contravariant)
xi components of a vector in reciprocal space

(covariant)
gij components of the metric tensor

t
j1...jq
i1...ip

components of a tensor of rank n, p times covariant
and q times contravariant (n ¼ pþ q)

AT transpose of matrix A
� tensor productV

outer product
^ vector product
@i partial derivative with respect to xi
�ji Kronecker symbol
"ijk permutation tensor
V volume
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p pressure
ui components of the displacement vector
Sij components of the strain tensor
S� components of the strain Voigt matrix
Tij components of the stress tensor
T� components of the stress Voigt matrix
sijkl elastic compliances
s�� reduced elastic compliances
ðsijklÞ

� adiabatic elastic compliances
cijkl elastic stiffnesses
c�� reduced elastic stiffnesses
� Poisson’s ratio
E Young’s modulus
� temperature
� entropy
�ij thermal expansion

ij temperature-stress constant
U internal energy
G Gibbs free energy
CE;T specific heat at constant stress and applied electric

field
E electric field
D electric displacement
H magnetic field
B magnetic induction
"o permittivity of vacuum
" dielectric constant
"ij dielectric tensor
ð"ijÞ

� adiabatic dielectric tensor
�e dielectric susceptibility
�ij dielectric impermeability
pi pyroelectric tensor
dijk piezoelectric tensor
di� reduced piezoelectric tensor
d�i reduced inverse piezoelectric tensor
ðdijkÞ

� adiabatic piezoelectric tensor
eijk piezoelectric tensor at constant strain
Qijkl electrostriction tensor
Q�� reduced electrostriction tensor
	ijkl piezo-optic tensor
	�� reduced piezo-optic tensor
pijkl elasto-optic tensor
p�� reduced elasto-optic tensor
RH ijk Hall constant
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Acad. Sci. 93, 1137–1140.

Curie, P. (1884). Sur les questions d’ordre: répétitions. Bull. Soc. Fr.
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d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3,
393–415.

Fumi, F. G. (1951). Third-order elastic coefficients of crystals. Phys. Rev.
83, 1274–1275.

Fumi, F. G. (1952a). Physical properties of crystals: the direct inspection
method. Acta Cryst. 5, 44–48.

Fumi, F. G. (1952b). The direct-inspection method in systems with a
principal axis of symmetry. Acta Cryst. 5, 691–694.

Fumi, F. G. (1952c). Third-order elastic coefficients in trigonal and
hexagonal crystals. Phys. Rev. 86, 561.

Fumi, F. G. (1987). Tables for the third-order elastic tensors in crystals.
Acta Cryst. A43, 587–588.

Fumi, F. G. & Ripamonti, C. (1980a). Tensor properties and rotational
symmetry of crystals. I. A new method for group 3(3z) and its
application to general tensors up to rank 8. Acta Cryst. A36, 535–
551.

Fumi, F. G. & Ripamonti, C. (1980b). Tensor properties and rotational
symmetry of crystals. II. Groups with 1-, 2- and 4-fold principal
symmetry and trigonal and hexagonal groups different from group 3.
Acta Cryst. A36, 551–558.

Ikeda, T. (1990). Fundamentals of piezoelectricity. Oxford University
Press.

International Tables for Crystallography (2000). Vol. B. Reciprocal
space, edited by U. Shmueli. Dordrecht: Kluwer Academic
Publishers.

International Tables for Crystallography (2002). Vol. A. Space-group
symmetry, edited by Th. Hahn. Dordrecht: Kluwer Academic
Publishers.

Kumaraswamy, K. & Krishnamurthy, N. (1980). The acoustic gyrotropic
tensor in crystals. Acta Cryst. A36, 760–762.
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1.2. Representations of crystallographic groups

By T. Janssen

1.2.1. Introduction

Symmetry arguments play an important role in science. Often
one can use them in a heuristic way, but the correct formulation is
in terms of group theory. This remark is in fact superfluous for
crystallographers, who are used to point groups and space groups
as they occur in the description of structures. However, besides
these structural problems there are many others where group
theory may play a role. A central role in this context is played by
representation theory, which treats the action of a group on
physical quantities, and usually this is done in terms of linear
transformations, although nonlinear representations may also
occur.

To start with an example, consider a spin system, an arrange-
ment of spins on sites with a certain symmetry, for example space-
group symmetry. The elements of the space group map the sites
onto other sites, but at the same time the spins are rotated or
transformed otherwise in a well defined fashion. The spins can be
seen as elements of a vector space (spin space) and the trans-
formation in this space is an image of the space-group element. In
a similar way, all symmetric tensors of rank 2 form a vector space,
because one can add them and multiply them by a real factor. A
linear change of coordinates changes the vectors, and the trans-
formations in the space of tensors are the image of the coordinate
transformations. Probably the most important use of such
representations is in quantum mechanics, where transformations
in coordinate space are mapped onto linear transformations in
the quantum mechanical space of state vectors.

To see the relation between groups of transformations and the
use of their representations in physics, consider a tensor which
transforms under a certain point group. Let us take a symmetric
rank 2 tensor Tij in three dimensions. We take as example the
point group 222. From Section 1.1.3.2 one knows how such a
tensor transforms: it transforms into a tensor T 0

ij according to

T 0
ij ¼

P3

k¼1

P3

m¼1

RikRjmTkm ð1:2:1:1Þ

for all orthogonal transformations R in the group 222. This action
of the point group 222 is obviously a linear one:

c1T
ð1Þ
ij þ c2T

ð2Þ
ij

� �0
¼ c1T

ð1Þ0
ij þ c2T

ð2Þ0
ij :

The transformations on the tensors really form an image of the
group, because if one writes DðRÞT for T 0, one has for two
elements Rð1Þ and Rð2Þ the relation

DðRð1ÞRð2ÞÞ
� �

T ¼ DðRð1ÞÞ DðRð2ÞÞT
� �

or

DðRð1ÞRð2ÞÞ ¼ DðRð1ÞÞDðRð2ÞÞ: ð1:2:1:2Þ

This property is said to define a (linear) representation. Because
of the representation property, it is sufficient to know how the
tensor transforms under the generators of a group. In our
example, one could be interested in symmetric tensors that are
invariant under the group 222. Then it is sufficient to consider the
rotations over 180� along the x and y axes. If the point group is a
symmetry group of the system, a tensor describing the relation
between two physical quantities should remain the same. For
invariant tensors one has

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

¼

1 0 0

0 �1 0

0 0 �1

0

B
@

1

C
A

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

1 0 0

0 �1 0

0 0 �1

0

B
@

1

C
A;

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

¼

�1 0 0

0 1 0

0 0 �1

0

B
@

1

C
A

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

�1 0 0

0 1 0

0 0 �1

0

B
@

1

C
A

and the solution of these equations is

a11 a12 a13
a12 a22 a23
a13 a23 a33

0

@

1

A ¼

a11 0 0

0 a22 0

0 0 a33

0

@

1

A:

The matrices of rank 2 form a nine-dimensional vector space. The
rotation over 180� around the x axis can also be written as

R

a11

a12

a13

a21

a22

a23

a31

a32

a33

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

1 0 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0 0

0 0 �1 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1
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C
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C
C
C
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a11
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0
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B
B
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B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

This nine-dimensional matrix together with the one corre-
sponding to a rotation along the y axis generate a representation
of the group 222 in the nine-dimensional space of three-dimen-
sional rank 2 tensors. The invariant tensors form the subspace
(a11; 0; 0; 0; a22; 0; 0; 0; a33). In this simple case, group theory is
barely needed. However, in more complex situations, the calcu-
lations may become quite cumbersome without group theory.
Moreover, group theory may give a wealth of other information,
such as selection rules and orthogonality relations, that can be
obtained only with much effort without group theory, or in
particular representation theory. Tables of tensor properties, and
irreducible representations of point and space groups, have been
in use for a long time. For point groups see, for example, Butler
(1981) and Altmann &Herzig (1994); for space groups, see Miller
& Love (1967), Kovalev (1987) and Stokes & Hatch (1988).

In the following, we shall discuss the representation theory of
crystallographic groups. We shall adopt a slightly abstract
language, which has the advantage of conciseness and generality,
but we shall consider examples of the most important notions.
Another point that could give rise to some problems is the fact
that we shall consider in part the theory for crystallographic
groups in arbitrary dimension. Of course, physics occurs in three-
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1.2. REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

dimensional space, but often it is useful to see what is general and
what is special for one, two or three dimensions. In Section 1.2.2,
the point groups are discussed, together with their representa-
tions. In Section 1.2.3, the same is done for space groups. Tensors
for point and space groups are then treated in terms of repre-
sentation theory in Section 1.2.4. Besides transformations in
space, transformations involving time reversal are important as
well. They are discussed in Section 1.2.5. Information on crys-
tallographic groups and their representations is presented in
tabular form in Section 1.2.6. This section can be consulted
independently.

1.2.2. Point groups

1.2.2.1. Finite point groups in one, two and three dimensions

The crystallographic point groups are treated in Volume A of
International Tables for Crystallography (2002). Here we just give
a brief summary of some important notions. To maintain gener-
ality, we consider the case of n-dimensional point groups.

Point groups in n dimensions are subgroups of the orthogonal
group O(n) in n dimensions. By definition they leave a point, the
origin, invariant. They are of importance in physics because
physical laws are invariant under such transformations. In this
case n ¼ 1; 2 or 3. For crystallography, the crystallographic point
groups are the most relevant ones. A crystallographic point group
is a subgroup of O(n) that leaves an n-dimensional lattice
invariant. A lattice is a collection of points

r ¼ ro þ
Pn

i¼1

niei; ni 2 Z; ð1:2:2:1Þ

where the n vectors ei form a basis of n-dimensional space. In
other words, the points of the lattice can be obtained by the
action of translations

t ¼
Pn

i¼1

niei ð1:2:2:2Þ

on the lattice origin ro. These translations form a lattice transla-
tion group in n-dimensional space, i.e. a discrete subgroup of the
group of all translations T(n) in n dimensions, generated by n
linearly independent translations.

Because a crystallographic point group leaves a lattice of
points invariant, (a) it is a finite group of linear transformations
and (b) on a basis of the lattice it is represented by integer
matrices. On the other hand, as will be shown in Section 1.2.2.2,
there is for every finite group of matrices an invariant scalar
product, i.e. a positive definite metric tensor left invariant by the
group. If one uses this metric tensor for the definition of the
scalar product, the matrices represent orthogonal transforma-
tions. Moreover, when the matrices are integer, the group of
matrices can be considered to be a crystallographic point group.
In this sense, every finite group of integer matrices is a crystal-
lographic point group. Consider as an example the group of
matrices

1 0

0 1

� �

;
0 �1

1 �1

� �

;
�1 1

�1 0

� �

;

which leaves invariant the metric tensor

g ¼
a �a=2

�a=2 a

� �

:

The lattice points n1a1 þ n2a2 go over into lattice points and the
transformation leaves the scalar product of two such vectors the
same if the scalar product of the two vectors n1a1 þ n2a2 and
n01a1 þ n02a2 is defined as

n1n
0
1a� n1n

0
2a=2� n2n

0
1a=2þ n2n

0
2a:

After a basis transformation,

e1 ¼ a1=
ffiffiffi
a

p
; e2 ¼ ða1 þ 2a2Þ=

ffiffiffiffiffi
3a

p
;

the metric tensor is in standard form (see Section 1.1.2.2):

ei � ej ¼ �ij:

This means that with respect to the basis e1; e2, the three trans-
formations become orthogonal matrices.

To be able to give a list of all crystallographic point groups in n
dimensions it is necessary to state which point groups should be
considered as different. Two point groups belong to the same
geometric crystal class if they are conjugated subgroups of O(n).
This means that K � OðnÞ and K0 � OðnÞ belong to the same
class if there is an element R 2 OðnÞ such that K0 ¼ RKR�1,
which implies that there are two orthonormal bases in the vector
space related by an orthogonal transformation R such that the
matrices of K for one basis are the same as those for K0 on the
second basis.

In one-dimensional space, there are only two different point
groups, the first consisting of the identity, the second of the
numbers �1. These groups are isomorphic to C1 and C2,
respectively, where Cm is the cyclic group of integers modulo m
(also denoted by Zm). Both are crystallographic because their
1� 1 ‘matrices’ are the integers �1.

In two-dimensional space, the orthogonal group O(2) is the
union of the subgroup SO(2), consisting of all orthogonal
transformations with determinant þ1, and the coset O(2)\SO(2),
consisting of all orthogonal transformations with determinant
�1. The group SO(2) is Abelian, and therefore all its subgroups
are Abelian. The finite ones are the rotation groups denoted by n
(n 2 Z

þ). Every element of O(2)\SO(2) is of order two, and
corresponds to a mirror line. Therefore, all the other finite point
groups are nmm (n even) or nm (n odd). The rotation groups are
isomorphic with the cyclic groups Cn and the others with the
dihedral groups Dn. Only the groups 1, 2, 3, 4, 6, m, 2mm, 3m,
4mm and 6mm leave a lattice invariant and are crystallographic.

The isomorphism class of a group can be given by its generators
and defining relations. For example, the elements of the group
4mm can be written as products (with generally more than two
factors) of the two matrices

A ¼
0 �1

1 0

� �

; B ¼
1 0

0 �1

� �

;

which satisfy the relations A4 ¼ B2 ¼ ABAB ¼ E, and every
group whose elements are products of two generating elements
with the same and not more independent relations is isomorphic.
One calls the relations the defining relations. The set of genera-
tors and defining relations is not unique. In an extreme case, one
can consider all elements of the group as generators, and the
product rules ab ¼ c as the defining relations.

For the two-dimensional groups, the generators and defining
relations are

Cn: one generator A, with An ¼ E;
Dn: two generators A and B, with An ¼ B2 ¼ ðABÞ

2
¼ E,

where E is the unit element.
The determination of all finite point groups in three-dimen-

sional space is more involved. A derivation can, for example, be
found in Janssen (1973). The group O(3) is again the union of
SO(3) and O(3)\SO(3), and in fact the direct product of SO(3)
and the group generated by the inversion I ¼ �E. One may
distinguish between three different classes of finite point groups:

(a) point groups that belong fully to the rotation group SO(3);
(b) point groups that contain the inversion �E and are,

consequently, the direct product of a point group of the first class
and the group generated by �E;
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

(c) point groups that have elements in common with
O(3)\SO(3) but do not contain �E; such groups are isomorphic
to a group of the first class, as one can see if one multiplies all
elements with determinant equal to �1 by �E.

The list of three-dimensional finite point groups is given in
Table 1.2.6.1. All isomorphism classes of two-dimensional point
groups occur in three dimensions as well. The isomorphism
classes occurring here for the first time are:

Cn � C2: A, B, with An ¼ B2 ¼ ABA�1B�1 ¼ E;

Dn � C2: A, B, C with An ¼ B2 ¼ ðABÞ
2
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E;

T: A, B, with A3 ¼ B2 ¼ ðABÞ
3
¼ E;

O: A, B, with A4 ¼ B3 ¼ ðABÞ
2
¼ E;

T � C2: A, B, C, with A3 ¼ B2 ¼ ðABÞ
3
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E;

O� C2: A, B, C, with A4 ¼ B3 ¼ ðABÞ
2
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E;

I: A, B, with A5 ¼ B3 ¼ ðABÞ
2
¼ E;

I � C2: A, B, C, with A5 ¼ B3 ¼ ðABÞ
2
¼ C2 ¼ ACA�1C�1

¼ BCB�1C�1 ¼ E:

The crystallographic groups among them are given in Table
1.2.6.2.

1.2.2.2. Representations of finite groups

As stated in Section 1.2.1, elements of point groups act on
physical properties (like tensorial properties) and on wave
functions as linear operators. These linear operators therefore
generally act in a different space than the three-dimensional
configuration space. We denote this new space by V and consider
a mapping D from the point group K to the group of nonsingular
linear operators in V that satisfies

DðRÞDðR0Þ ¼ DðRR0Þ 8 R;R0 2 K: ð1:2:2:3Þ

In other words D is a homomorphism from K to the group of
nonsingular linear transformations GLðVÞ on the vector space V.
Such a homomorphism is called a representation of K in V. Here
we only consider finite-dimensional representations.

With respect to a basis ei (i ¼ 1; 2; . . . n) the linear transfor-
mations are given by matrices �ðRÞ. The mapping � fromK to the
group of nonsingular n� n matrices GL(n;R) (for a real vector
space V) orGL(n;C) (if V is complex) is called an n-dimensional
matrix representation of K.

If one chooses another basis for V connected to the former one
by a nonsingular matrix S, the same group of operators DðKÞ is
represented by another matrix group �0ðKÞ, which is related to
�ðKÞ by S according to �0ðRÞ ¼ S�1�ðRÞS (8 R 2 K). Two such
matrix representations are called equivalent. On the other hand,
two such equivalent matrix representations can be considered to
describe two different groups of linear operators [DðKÞ and
D0ðKÞ] on the same basis. Then there is a nonsingular linear
operator T such that DðRÞT ¼ TD0ðRÞ (8 R 2 K). In this case,
the representations DðKÞ and D0ðKÞ are also called equivalent.

It may happen that a representation DðKÞ in V leaves a
subspace W of V invariant. This means that for every vector
v 2 W and every element R 2 K one has DðRÞv 2 W. Suppose
that this subspace is of dimension m< n. Then one can choose m
basis vectors for V inside the invariant subspace. With respect to
this basis, the corresponding matrix representation has elements

�ðRÞ ¼
�1ðRÞ �3ðRÞ

0 �2ðRÞ

� �

; ð1:2:2:4Þ

where the matrices �1ðRÞ form an m-dimensional matrix repre-
sentation of K. In this situation, the representations DðKÞ and
�ðKÞ are called reducible. If there is no proper invariant subspace
the representation is irreducible. If the representation is a direct
sum of subspaces, each carrying an irreducible representation,
the representation is called fully reducible or decomposable. In
the latter case, a basis in V can be chosen such that the matrices
�ðRÞ are direct sums of matrices �iðRÞ such that the �iðRÞ form
an irreducible matrix representation. If �3ðRÞ in (1.2.2.4) is zero
and �1 and �2 form irreducible matrix representations, � is fully
reducible. For finite groups, each reducible representation is fully
reducible. That means that if �ðKÞ is reducible, there is a matrix S
such that

�ðRÞ ¼ S �1ðRÞ � . . .� �nðRÞ
� 	

S�1

¼ S

�1ðRÞ 0 . . . 0

0 �2ðRÞ . . . 0

..

. ..
. . .

. ..
.

0 0 . . . �nðRÞ

0

B
B
B
B
@

1

C
C
C
C
A
S�1:

ð1:2:2:5Þ

In this way one may proceed until all matrix representations
�iðKÞ are irreducible, i.e. do not have invariant subspaces. Then
each representation �ðKÞ can be written as a direct sum

�ðRÞ ¼ S m1�1ðRÞ � . . .�ms�sðRÞ
� 	

S�1; ð1:2:2:6Þ

where the representations �1 . . . �s are all nonequivalent and the
multiplicities mi are the numbers of times each irreducible
representation occurs. The nonequivalent irreducible repre-
sentations �i for which the multiplicity is not zero are the irre-
ducible components of �ðKÞ.

We first discuss two special representations. The simplest
representation in one-dimensional space is obtained by assigning
the number 1 to all elements of K. Obviously this is a repre-
sentation, called the identity or trivial representation. Another is
the regular representation. To obtain this, one numbers the
elements of K from 1 to the order N of the group (jKj ¼ N). For
a given R 2 K there is a one-to-one mapping from K to itself
defined by Ri ! Rj � RRi. Consider the N � N matrix �ðRÞ,
which has in the ith column zeros except on line j, where the entry
is unity. The matrix �ðRÞ then has as only entries 0 or 1 and
satisfies

RRi ¼ �ðRÞjiRj; ði ¼ 1; 2; . . . ;NÞ: ð1:2:2:7Þ

These matrices �ðRÞ form a representation, the regular repre-
sentation of K of dimension N, as one sees from

ðRiRjÞRk ¼ Ri

PN

l¼1

�ðRjÞlkRl ¼
PN

l¼1

PN

m¼1

�ðRjÞlk�ðRiÞmlRm

¼
PN

m¼1

�ðRiÞ�ðRjÞ
� 	

mk
Rm ¼

PN

m¼1

�ðRiRjÞmkRm:

A representation in a real vector space that leaves a positive
definite metric invariant can be considered on an orthonormal
basis for that metric. Then the matrices satisfy

�ðRÞ�ðRÞT ¼ E

(T denotes transposition of the matrix) and the representation is
orthogonal. If V is a complex vector space with positive definite
metric invariant under the representation, the latter gives on an
orthonormal basis matrices satisfying

�ðRÞ�ðRÞy ¼ E
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(y denotes Hermitian conjugation) and the representation is
unitary. A real representation of a finite group is always
equivalent with an orthogonal one, a complex representation of a
finite group is always equivalent with a unitary one. As a proof of
the latter statement, consider the standard Hermitian metric on
V: f ðx; yÞ ¼

P
i x

	
i yi. Then the positive definite form

Fðx; yÞ ¼ ð1=NÞ
P

R2K

f DðRÞx;DðRÞyð Þ ð1:2:2:8Þ

is invariant under the representation. To show this, take an
arbitrary element R0. Then

FðDðR0Þx;DðR0ÞyÞ ¼ ð1=NÞ
P

R2K

f ðDðR0RÞx;DðR0RÞyÞ

¼ Fðx; yÞ: ð1:2:2:9Þ

With respect to an orthonormal basis for this metric Fðx; yÞ, the
matrices corresponding to DðRÞ are unitary. The complex
representation can be put into this unitary form by a basis
transformation. For a real representation, the argument is fully
analogous, and one obtains an orthogonal transformation.

From two representations, D1ðKÞ in V1 and D2ðKÞ in V2, one
can construct the sum and product representations. The sum
representation acts in the direct sum space V1 � V2, which has
elements (a; b) with a 2 V1 and b 2 V2. The representation
D1 �D2 is defined by

D1 �D2ð ÞðRÞ
� 	

ða; bÞ ¼ ðD1ðRÞa;D2ðRÞbÞ: ð1:2:2:10Þ

The matrices �1 � �2ðRÞ are of dimension n1 þ n2.
The product representation acts in the tensor space, which is the

space spanned by the vectors ei 
 ej (i ¼ 1; 2; . . . ; dimV1;
j ¼ 1; 2 . . . ; dimV2). The dimension of the tensor space is the
product of the dimensions of both spaces. The action is given by

D1 
D2ð ÞðRÞ
� 	

a
 b ¼ D1ðRÞa
D2ðRÞb: ð1:2:2:11Þ

For bases ei (i ¼ 1; 2; . . . ; d1) for V1 and e0j (j ¼ 1; 2; . . . ; d2) for
V2, a basis for the tensor product of spaces is given by

ei 
 e0j; i ¼ 1; . . . ; d1; j ¼ 1; 2; . . . ; d2; ð1:2:2:12Þ

and with respect to this basis the representation of K is given by
matrices

�1 
 �2ð ÞðRÞik;jl ¼ �1ðRÞij�2ðRÞkl: ð1:2:2:13Þ

As an example of these operations, consider

1 0

0 �1

� �

�
0 1

1 0

� �

¼

1 0 0 0

0 �1 0 0

0 0 0 1

0 0 1 0

0

B
B
B
@

1

C
C
C
A
;

1 0

0 �1

� �



0 1

1 0

� �

¼

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 �1 0

0

B
B
B
@

1

C
C
C
A
:

If two representations D1ðKÞ and D2ðKÞ are equivalent, there
is an operator S such that

SD1ðRÞ ¼ D2ðRÞS 8 R 2 K:

This relation may also hold between sets of operators that are not
necessarily representations. Such an operator S is called an
intertwining operator. With this concept we can formulate a
theorem that strictly speaking does not deal with representations
but with intertwining operators: Schur’s lemma.

Proposition. Let M and N be two sets of nonsingular linear
transformations in spaces V (dimension n) andW (dimensionm),
respectively. Suppose that both sets are irreducible (the only
invariant subspaces are the full space and the origin). Let S be a
linear transformation from V to W such that SM ¼ NS. Then
either S is the null operator or S is nonsingular and SMS�1 ¼ N.

Proof: Consider the image of V under S: ImSV � W. That means
that Sr 2 ImSV for all r 2 V. This implies that NSr ¼

SMr 2 ImSV. Therefore, ImSV is an invariant subspace of W
under N. Because N is irreducible, either ImSV ¼ 0 or
ImSV ¼ W. In the first case, S is the null operator. In the second
case, notice that the kernel of S, the subspace of V mapped on the
null vector ofW, is an invariant subspace of V underM: if Sr ¼ 0
then NSr ¼ 0. Again, because of the irreducibility, either KerS is
the whole of V, and then S is again the null operator, or KerS ¼ 0.
In the latter case, S is a one-to-one mapping and therefore
nonsingular. Therefore, either S is the null operator or it is an
isomorphism between the vector spaces V andW, which are then
both of dimension n. With respect to bases in the two spaces, the
operator S corresponds to a nonsingular matrix and M ¼ S�1NS.

This is a very fundamental theorem. Consequences of the
theorem are:

(1) If N and M are nonequivalent irreducible representations
and SM ¼ NS, then S ¼ 0.

(2) If a matrix S is singular and links two irreducible repre-
sentations of the same dimension, then S ¼ 0.

(3) A matrix S that commutes with all matrices of an irre-
ducible complex representation is a multiple of the identity.
Suppose that an n� n matrix S commutes with all matrices of a
complex irreducible representation. S can be singular and is then
the null matrix, or it is nonsingular. In the latter case it has an
eigenvalue � 6¼ 0 and S� �E commutes with all the matrices.
However, S� �E is singular and therefore the null matrix:
S ¼ �E. This reasoning is only valid in a complex space, because,
generally, the eigenvalues � are complex.

1.2.2.3. General tensors

Suppose a group K acts linearly on a d-dimensional space V:
for any v 2 V one has

Rv 2 V 8 R 2 K; v 2 V:

For a basis ai in V this gives a matrix group �ðKÞ via

Rai ¼
Pd

j¼1

�ðRÞjiaj; R 2 K: ð1:2:2:14Þ

The matrix group �ðKÞ is a matrix representation of the group K.
Consider now a linear function f on V. Because

f
Pd

i¼1

�iai

� �

¼
Pd

i¼1

�if ðaiÞ;

the function is completely determined by its value on the basis
vectors ai. A second point is that these linear functions form a
vector space because for two functions f1 and f2 the function
�1f1 þ �2f2 is a well defined linear function. The vector space is
called the dual space and is denoted by V	. A basis for this space
is given by functions f1; . . . ; fd such that

fiðajÞ ¼ �ij;

because any linear function f can be written as a linear combi-
nation of these vectors with as coefficients the value of f on the
basis vectors ai:

f ¼
Pd

i¼1

f ðaiÞfi , f ð
Pd

k¼1

�kakÞ ¼
Pd

k¼1

�k
Pd

i¼1

f ðaiÞfiðakÞ ¼
Pd

k¼1

�kf ðakÞ:
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Therefore, the space V	 also has d dimensions. If V has in
addition a nonsingular scalar product, there is for each linear
function f a vector k such that

f ðrÞ ¼ k � r; ð1:2:2:15Þ

and the vectors ki corresponding to the basis functions fi above
satisfy

ki � aj ¼ fiðajÞ ¼ �ij: ð1:2:2:16Þ

The vectors ki (with i ¼ 1; 2; . . . ; d) form the reciprocal basis (see
also Section 1.1.2.4).

The transformation properties of the vectors in dual (or reci-
procal) space can be derived from those of the vectors in V if one
puts

ðRf ÞðRrÞ ¼ f ðrÞ: ð1:2:2:17Þ

Then

Rfi ¼
Pd

i¼1

�	ðRÞjifj $
Pd

i¼1

�	ðRÞji
Pd

l¼1

�ðRÞlkfjðalÞ ¼ fiðakÞ ¼ �ik;

from which follows the relation

�	ðRÞij ¼ ��1ðRÞji: ð1:2:2:18Þ

The matrices �	ðRÞ form also a representation of K, the contra-
gredient representation. In general, the latter is not equivalent
with the former. The elements of the space V	 are dual vectors.

One can generalize the procedure that gave the dual space, and
this leads to a more abstract definition of a tensor. Consider a
bilinear function on V.

f ðr; sÞ : f ð�r1 þ �r2; �s1 þ �s2Þ ¼ ��f ðr1; s1Þ þ ��f ðr1; s2Þ

þ ��f ðr2; s1Þ þ ��f ðr2; s2Þ:

Again, such bilinear functions form a vector space of dimension
d2. Any function f ðr; sÞ is fixed by its value on the d2 pairs of basis
vectors, and these values are the coefficients of the function on a
basis

fijðak; alÞ ¼ �ik�jl: ð1:2:2:19Þ

One has

f ðr; sÞ ¼
P

ij

f ðai; ajÞfijðr; sÞ: ð1:2:2:20Þ

Analogously to the former case, one can determine the trans-
formation properties of the elements of the tensor space V	 
 V	:

Rfij ¼
Pd

k¼1

Pd

l¼1

�	ðRÞki�
	ðRÞljfkl: ð1:2:2:21Þ

The space carries the product representation of the contra-
gredient representation �	 with itself.

That this is really the same concept of tensor as usually used in
physics can be seen from the example of the dielectric tensor "ij.
For an electric field E, the energy is given by

P
ij "ijEiEj and this is

a bilinear function f"ðE;EÞ.
The most general situation occurs if one considers all multi-

linear functions of p vectors and q dual vectors. The function

f ðr1; . . . ; rp; k1; . . . ; kqÞ

is linear in each of its arguments. Again, the function is deter-
mined by its value on the basis vectors ai of V and bj of V

	. The
(p; q)-linear functions form a vector space with basis vectors
fi1;...;jq given by

fi1;...;ip;j1;...;jqðak1 ; . . . ; blq Þ ¼ �i1k1 . . . �jqlq :

The dðpþqÞ-dimensional space carries a representation of the
group K:

Rfi1;...;ip;j1;...;jq

¼
Pd

k1¼1

. . .
Pd

kp¼1

Pd

l1¼1

. . .
Pd

lq¼1

�ðRÞk1i1 . . . �ðRÞkpip�
	ðRÞl1j1 . . . fk1...lq :

ð1:2:2:22Þ

Therefore, the space of (p; q) tensors carries a representation
which is the tensor product of the pth tensor power of �ðKÞ and
the qth tensor power of the contragredient representation �	ðKÞ.

If the (0; 2) tensor f ðr; s) is symmetric in its arguments, the
space of such tensors carries the symmetrized tensor product of
the representation �ðKÞ with itself. Similarly the (anti)symmetric
(2; 0) tensors form a space that carries the symmetrized,
respectively antisymmetrized, tensor product of �	ðKÞ with itself.
This can be generalized to (p; q) tensors with all kinds of
symmetry. One can have a (0; 4) tensor that is symmetric in all its
four arguments. Such tensors form a space that not only carries a
representation of K, but one of the symmetric group S4 (the
permutation group on four letters) as well. We shall come back to
such symmetric tensors in Section 1.2.2.7.

1.2.2.4. Orthogonality relations

Important consequences from symmetry for physical systems
are related to orthogonality relations. The vanishing of matrix
elements is one example. Consider two irreducible representa-
tions �1ðKÞ and �2ðKÞ of dimensions d1 and d2, respectively. Then
take an arbitrary d1 � d2 matrix M and construct with this a new
matrix S:

S ¼
P

R2K

�1ðRÞM��1
2 ðRÞ:

For this matrix one has

S�2ðRÞ ¼
P

R02K

�1ðR
0ÞM��1

2 ðR0Þ�2ðRÞ

¼ �1ðRÞ
P

R02K

��1
1 ðRÞ�1ðR

0ÞM��1
2 ðR0Þ�2ðRÞ

¼ �1ðRÞ
P

R02K

�1ðR
�1R0ÞM��1

2 ðR�1R0Þ ¼ �1ðRÞS:

Because �1ðKÞ and �2ðKÞ are supposed to be irreducible, it
follows from Schur’s lemma that either �1 and �2 are not
equivalent and S is the null matrix, or they are equivalent. If they
are not equivalent one has

0 ¼ Sij ¼
P

R2K

P

kl

�1ðRÞikMkl�2ðR
�1Þlj: ð1:2:2:23Þ

Because we have taken an arbitrary matrix M, this implies that
P

R2K

�1ðRÞik�2ðR
�1Þlj ¼ 0 ð1:2:2:24Þ

whenever �1ðKÞ and �2ðKÞ are not equivalent.
When the two irreducible representations are equivalent we

assume them to be identical. Then S commutes with all matrices
�1ðKÞ of an irreducible representation and is thus a multiple of
the identity (in case one considers complex representations). Its
trace is then d� if the dimension of the representation is denoted
by d, but on the other hand it is

TrðSÞ ¼
P

R2K

Tr �1ðRÞM�1ðR
�1Þ

� �
¼ NTrðMÞ:

Therefore,

Sij ¼ ðN=dÞTrðMÞ�ij ¼
P

R2K

P

kl

�1ðRÞikMkl�1ðR
�1Þlj: ð1:2:2:25Þ

Hence
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P

R2K

�1ðRÞik�1ðR
�1Þlj ¼ ðN=dÞ�ij�kl: ð1:2:2:26Þ

This leads to the following proposition.

Proposition. If ��ðKÞ and ��ðKÞ are irreducible complex repre-
sentations of the finite group K one has

P

R2K

��ðRÞik��ðR
�1Þlj ¼ ðN=dÞ�ij�kl�

0
��; ð1:2:2:27Þ

where �0�� is zero if the representations are not equivalent, unity if
they are identical and undefined if they are equivalent but not
identical.

For unitary representations the orthogonality relations can be
written as

P

R2K

��ðRÞik��ðRÞ
	

jl ¼ ðN=dÞ�ij�kl�
0
��: ð1:2:2:28Þ

According to Section 1.2.2.2 for finite groupsK, there is always an
equivalent unitary representation.

1.2.2.5. Characters

Two equivalent representations of a group K are conjugate
subgroups in the group of nonsingular linear transformations.
Corresponding matrices therefore have the same invariants. It is
a remarkable fact that one of these invariants suffices for char-
acterizing the equivalence class of a representation, namely the
trace. The character of an element R 2 K in a representation
DðKÞ is the trace �ðRÞ ¼ TrðDðRÞÞ. It is a complex function on
the group: for every R 2 K there is a complex number �ðRÞ.

The character only depends on the conjugacy class: if two
elements R and R0 belong to the same class there is an element
T 2 K such that R0 ¼ TRT�1. Hence �ðR0Þ ¼ TrðDðTRT�1ÞÞ

¼ TrðDðRÞÞ ¼ �ðRÞ. Notice that for the identity element one has
DðEÞ ¼ the d-dimensional unit matrix and �ðEÞ ¼ d. For the
same reason, the character for two equivalent representations is
the same.

From the orthogonality relations for the matrix elements of
two irreducible representations follow those for characters.

Proposition. For two irreducible complex representations of a
finite group K, one has

P

R2K

��ðRÞ�
	
�ðRÞ ¼ N���: ð1:2:2:29Þ

Here one can use the Kronecker delta because characters of
equivalent representations are equal, even if they are not iden-
tical.

The character of the sum of two representations is the sum of
the characters. More generally, the character of the sum of irre-
ducible representations D�, each with multiplicity m�, is

�ðRÞ ¼
P

�

m���ðRÞ:

This gives a formula for the multiplicity of an irreducible
component:

m� ¼
P

�

m���� ¼ ð1=NÞ
P

R2K

P

�

m���ðRÞ�
	
�ðRÞ

¼ ð1=NÞ
P

R2K

�ðRÞ�	�ðRÞ: ð1:2:2:30Þ

From the expression for the multiplicities follows:

Proposition. The representations D1ðKÞ and D2ðKÞ are equiva-
lent if and only if their characters are the same: �1ðRÞ ¼ �2ðRÞ.
Two equivalent representations obviously have the same char-
acter. Nonequivalent irreducible representations have different

characters because of the orthogonality relations and the multi-
plicities and irreducible components are uniquely determined by
the formula above.

Because the character is constant on a conjugacy class,
(1.2.2.30) can also be written as

m� ¼ ð1=NÞ
Pk

i¼1

ni�ðCiÞ�
	
�ðCiÞ; ð1:2:2:31Þ

where Ci denotes the ith conjugacy class (i ¼ 1; 2; . . . k) and ni
the number of its elements.

Proposition. The representation DðKÞ is irreducible if and only if

ð1=NÞ
Pk

i¼1

nij�ðCiÞj
2
¼ 1:

Proof: For a representation that is equivalent to the sum of
irreducible representations with multiplicities m� one has

ð1=NÞ
Pk

i¼1

nij�ðCiÞj
2
¼ ð1=NÞ

Pk

i¼1

P

��

nim�m���ðCiÞ�
	
�ðCiÞ

¼
P

��

m�m���� ¼
P

�

m2
�: ð1:2:2:32Þ

If the representation is irreducible, there is exactly one value of �
for which m� ¼ 1, whereas all other multiplicities vanish. If the
representation is reducible,

P
�m

2
� > 1.

Proposition. (Burnside’s theorem.) The sum of the squares of the
dimensions of all nonequivalent irreducible representations is
equal to the order of the group.

Proof: Consider the regular representation. The value of its
character in an element R is given by the number of elements
Ri 2 K for which RRi ¼ Ri. Therefore,

�ðRÞ ¼
0 for R 6¼ E;
N for R ¼ E:




The multiplicity formula (1.2.2.30) then gives

m� ¼ ð1=NÞ
P

R2K

�ðRÞ�	�ðRÞ ¼ ð1=NÞ�ðEÞ�	�ðEÞ ¼ d�:

Each irreducible representation occurs in the regular repre-
sentation with a multiplicity equal to its dimension. Therefore,

N ¼ �ðEÞ ¼
P

�

m���ðEÞ ¼
P

�

d2�:

Proposition. The number of nonequivalent irreducible repre-
sentations of a finite group K is equal to the number of its
conjugacy classes.

Proof: Take from each equivalence class of irreducible repre-
sentations of K one unitary representative ��ðKÞ. The matrix
elements ��ðRÞij are complex functions on the group. The
number of these functions is the sum over � of d2� and that is
equal to the order of the group according to Burnside’s theorem.
The number of independent functions on K is, of course, also
equal to the order N of the group. If one considers the usual
scalar product of functions on the group,

f1 � f2 �
P

R2K

f 	1 ðRÞf2ðRÞ;

the scalar product of two of the N functions is
P

R2K

�	
�ðRÞij��ðRÞkl ¼ ðN=d�Þ����ik�jl ð1:2:2:33Þ
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according to the orthogonality relations. This means that the N
functions indeed form an orthogonal basis in the space of all
functions on the group. In particular, consider a function f ðKÞ

that is constant on conjugacy classes. This function can be
expanded in the basis functions.

f ðRÞ ¼
P

�ij

f�ij��ðRÞij

¼
P

�ij

f�ijð1=NÞ
P

T2K

��ðTRT
�1Þij

¼ ð1=NÞ
P

�ijkl

P

T2K

f�ij��ðTÞik��ðRÞkl��ðT
�1Þlj

¼ ð1=NÞ
P

�ijkl

f�ij��ðRÞklðN=d�Þ�ij�kl

¼
P

�

Pd�

i¼1

ðf�ii=d�Þ��ðRÞ:

This implies that every class function can be written as a linear
combination of the character functions. Therefore, the number of
such character functions must be equal to or larger than the
number of conjugacy classes. On the other hand, the number of
dimensions of the space of class functions is k, the number of
conjugacy classes. For the scalar product in this space given by

f1 � f2 �
Pk

i¼1

ðni=NÞf 	1 ðCiÞf2ðCiÞ

the character functions are orthogonal:

Pk

i¼1

ðni=NÞ�	�ðCiÞ��ðCiÞ ¼ ð1=NÞ
P

R2K

�	�ðRÞ��ðRÞ ¼ ���:

ð1:2:2:34Þ

There are at most k mutually orthogonal functions, and conse-
quently the number of nonequivalent irreducible characters
��ðKÞ is exactly equal to the number of conjugacy classes.

As additional result one has the following proposition.

Proposition. The functions ��ðRÞij with � ¼ 1; 2; . . . ; k and
i; j ¼ 1; 2; . . . ; d� form an orthogonal basis in the space of
complex functions on the group K. The characters �� form an
orthogonal basis for the space of all class functions.

The characters of a group K can be combined into a square
matrix, the character table, with entries ��ðCiÞ. Besides the
orthogonality relations mentioned above, there are also relations
connected with class multiplication constants. Consider the
conjugacy classes Ci of the group K. Formally one can introduce
the sum of all elements of a class:

Mi ¼
P

R2Ci

R:

It can be proven that the multiplication of two such class sums is
the sum of class sums, where such a class sum may occur more
than once:

MiMj ¼
P

k

cijkMk; cijk 2 Z:

The coefficients cijk are called the class multiplication constants.
The elements of the character table then have the following
properties.

ð1=NÞ
Pk

i¼1

ni��ðCiÞ�
	
�ðCiÞ ¼ ���; ð1:2:2:35Þ

ð1=NÞ
Pk

�¼1

��ðCiÞ�
	
�ðCjÞ ¼ ð1=niÞ�ij; ð1:2:2:36Þ

ni��ðCiÞnj��ðCjÞ ¼ d�
Pk

l¼1

cijlnl��ðClÞ: ð1:2:2:37Þ

As an example, consider the permutation group on three
letters S3. It consists of six permutations. It is a group that is
isomorphic with the point group 32. The character table is a 3� 3
array, because there are three conjugacy classes (Ci, i ¼ 1; 2; 3),
and consequently three irreducible representations (�i,
i ¼ 1; 2; 3) (see Table 1.2.2.1).

The two one-dimensional representations are equal to their
character. A representative representation for the third character
is generated by matrices

�3ðAÞ ¼
0 �1

1 �1

� �

; �3ðBÞ ¼
1 �1

0 �1

� �

and the group of matrices is equivalent to an orthogonal group
with generators

�3ðAÞ
0
¼

� 1
2

1
2

ffiffiffi
3

p

� 1
2

ffiffiffi
3

p
� 1

2

� �

; �3ðBÞ
0
¼

1 0

0 �1

� �

:

The character table is in agreement with the class multiplication
table

C1C1 ¼ C1 C2C1 ¼ C2 C3C1 ¼ C3

C1C2 ¼ C2 C2C2 ¼ 2C1 þ C2 C3C2 ¼ 2C3

C1C3 ¼ C3 C2C3 ¼ 2C3 C3C3 ¼ 3C1 þ 3C2:

1.2.2.6. The representations for point groups in one, two and three
dimensions

For the irreducible representations of the point groups, it is
necessary to know something about the structure of these groups.
Since the representations of isomorphic groups are the same, one
can restrict oneself to representatives of the isomorphism classes.
In the following, we give a brief description of the structure of the
point groups in spaces up to three dimensions. The character
tables are given in Section 1.2.6. For the infinite series of groups
(Cn and Dn), the crystallographic members are given explicitly
separately.

(i) Cn. Cyclic groups are Abelian. Therefore, each element is a
conjugacy class on itself. Irreducible representations are one-
dimensional. The representation is determined by its value on a
generator. Since An ¼ E, the character �ðAÞ of an irreducible
representation is an nth root of unity. There are n one-dimen-
sional representations. For the pth irreducible representation,
one has �ðpÞðAÞ ¼ expð2�ip=nÞ.

(ii) Dn. From the defining relations, it follows that Ap and A�p

(p ¼ 1; 2; . . . ; n) form a conjugacy class and that ApB and Apþ2B
belong to the same class. Therefore, one has to distinguish the
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Table 1.2.2.1. Character table for S3 � D3

Elements (1) (123) (132) (23) (13) (12)
Symbols E A A2 B A2B AB

Class C1 C2 C3

Order 1 3 2

�1 1 1 1
�2 1 1 �1
�3 2 �1 0
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cases of even n from those of odd n. For odd n, one has a class
consisting of E (order 1), (n� 1)/2 classes with elementsA�p, and
one class with all elements ApB (order 2). For even n, there is a
class consisting of E (order 1), one withAn=2, and (n� 2Þ/2 classes
with A�p. The other elements form two classes of order 2
elements, one with the elements ApB for p odd, the other with
ApB for p even.

The number of one-dimensional irreducible representations is
the order of the group (N) divided by the order of the commu-
tator group, which is the group generated by all elements
aba�1b�1 (a; b 2 K). For n odd this number is 2, for n even it is 4.
In addition there are two-dimensional irreducible representa-
tions: (n� 1)/2 for odd n, n=2� 1 for even n.

(iii) T;O; I. The conjugacy classes of the tetrahedral, the
octahedral and the icosahedral groups T, O and I, respectively,
are given in the tables in Section 1.2.6.

(iv) K � C2. Because the generator of C2 commutes with all
elements of the group, the number of conjugacy classes of the
direct product K � C2 is twice that for K. If A is the generator of
C2 and Ci are the classes of K, then the classes of the direct
product are Ci and CiA. The element A, which commutes with all
elements of the direct product, is in an irreducible representation
represented by a multiple of the identity. Because A is of order 2,
the factor is �1. Therefore, the character table looks like

�ðK � C2Þ ¼
�ðKÞ �ðKÞ

�ðKÞ ��ðKÞ

� �

:

The n irreducible representations where A is represented by þE
are called gerade representations, the other, where A is repre-
sented by �E, are called ungerade.

In general, if K and H are finite groups with irreducible
representations D1�ðKÞ and D2�ðHÞ, the outer tensor product acts
on the tensor product V1 
 V2 of representation spaces as

ðD1�ðRÞ 
D2�ðR
0ÞÞa
 b ¼ ðD1�ðRÞaÞ 
 ðD2�ðR

0ÞbÞ;

a 2 V1; b 2 V2: ð1:2:2:38Þ

With the irreducibility criterion, one checks that this is an irre-
ducible representation of K �H. Moreover, D1� 
D2� is
equivalent with D1�0 
D2�0 if and only if � ¼ �0 and � ¼ �0. This
means that one obtains all nonequivalent irreducible repre-
sentations of K �H from the outer tensor products of the irre-
ducible representations of K and H. If the group H is C2, there
are two irreducible representations of C2, both one-dimensional.
That means that the tensor product simplifies to a normal
product. If H ¼ C2 and D2�ðHÞ is the trivial representation, one
has from (1.2.2.38)

D�gðRÞ ¼ D�ðRÞ; D�gðRAÞ ¼ D�ðRÞ; R 2 K

D�uðRÞ ¼ D�ðRÞ; D�uðRAÞ ¼ �D�ðRÞ:

The letters g and u come from the German gerade (even) and
ungerade (odd). They indicate the sign of the operator associated
with the generator A of C2: þ1 for g representations, �1 for u
representations. The number of nonequivalent irreducible
representations of K 
 C2 is twice that of K.

Schur’s lemma and the orthogonality relations and theorems
derived above are formulated for complex representations and
are, generally, not valid for integer or real representations.
Nevertheless, many physical properties can be described using
representation theory, but being real quantities they sometimes
require a slightly different treatment. Here we shall discuss the
relation between the complex representations and physical or
real representations. Consider a real matrix representation �ðKÞ.
If it is reducible over complex numbers, it can be fully reduced.
When is an irreducible component itself real? A first condition is
clearly that its character is real. This is, however, not sufficient. A
real representation can by a complex basis transformation be put

into a complex form and such a transformation does not change
the character. Therefore, a better question is: which complex
irreducible representations can be brought into real form?
Consider a complex irreducible representation with a real char-
acter. Then it is equivalent with its complex conjugate via a
matrix S:

�ðRÞ ¼ S�	ðRÞS�1; R 2 K:

Here one has to distinguish two different cases. To make the
distinction between the two cases one has the following:

Proposition. Suppose that �ðKÞ is a complex irreducible repre-
sentation with real character, and S a matrix intertwining �ðKÞ

and its complex conjugate. Then S satisfies either SS	 ¼ E or
SS	 ¼ �E. In the former case, there exists a basis transformation
that brings �ðKÞ into real form, in the latter case there is no such
basis transformation.

Proposition. If �ðKÞ is a complex irreducible representation with
real character �ðKÞ, the latter satisfies

ð1=NÞ
P

R2K

�ðR2Þ ¼ �1:

If the right-hand side is þ1, the representation can be put into
real form, if it is �1 it cannot. (Proofs are given in Section
1.2.5.5.)

Consequently, a complex irreducible representation �ðKÞ is
equivalent with a real one if �ðRÞ ¼ �	ðRÞ and

P
R �ðR

2Þ ¼ N. If
that is not the case, a real representation containing �ðKÞ as
irreducible component is the matrix representation

1
2

�ðRÞ þ �	ðRÞ i �ðRÞ � �	ðRÞð Þ

�i �ðRÞ � �	ðRÞð Þ �ðRÞ þ �	ðRÞ

� �

�
�ðRÞ 0

0 �	ðRÞ

� �

:

ð1:2:2:39Þ

The basis transformation is given by

S ¼
E E

�iE iE

� �

:

The dimension of the physically irreducible representation is 2d,
if d is the dimension of the complex irreducible representation
�ðKÞ. In summary, there are three types of irreducible repre-
sentation:

(1) First kind: �ðKÞ ¼ �	ðKÞ,
P

R2K �ðR
2Þ ¼ þN, dimension of

real representation d;
(2) Second kind: �ðKÞ ¼ �	ðKÞ,

P
R2K �ðR

2Þ ¼ �N, dimen-
sion of real representation 2d;

(3) Third kind: �ðRÞ 6¼ �ðRÞ	,
P

R2K �ðR
2Þ ¼ 0, dimension of

real representation 2d.
Examples of the three cases:

(1) The matrices

DðAÞ ¼
0 i

i 0

� �

and DðBÞ ¼
1 0

0 �1

� �

generate a group that forms a faithful representation of the
dihedral groupD4 ¼ 422, for which the character table is given in
Table 1.2.6.5. If one uses the same numbering of conjugacy
classes, its character is �ðCiÞ ¼ 2; 0;�2; 0; 0. It is an irreducible
representation (22 þ 22 ¼ N ¼ 8) with real character. The sum of
the characters of the squares of the elements is 2þ 2 �

ð�2Þ þ 2þ 2 � 2þ 2 � 2 ¼ 8 ¼ N. Therefore, it is equivalent to
a real matrix representation, e.g. with

D0ðAÞ ¼
0 �1

1 0

� �

and D0ðBÞ ¼
0 1

1 0

� �

:
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(2) The matrices

DðAÞ ¼
0 i

i 0

� �

and DðBÞ ¼
0 �1

1 0

� �

generate a group that is a faithful representation of the quater-
nion group of order 8. This group has five classes: E, fA;A3g,
fB;B3g, fBA;ABg and A2. The character of the elements is
�ðRÞ ¼ 2; 0; 0; 0;�2 for the five classes. Then

ð1=8Þ
P

R

�ðR2Þ ¼ �1;

which means that the representation is essentially complex. A
real physically irreducible representation of the group is gener-
ated by

0 0 0 �1

0 0 �1 0

0 1 0 0

1 0 0 0

0

B
B
@

1

C
C
A and

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

0

B
B
@

1

C
C
A;

and the generated group is a crystallographic group in four
dimensions.

(3) The complex number expð2�i=nÞ generates a representa-
tion of the cyclic group Cn. For n> 2 the representation is not
equivalent with its complex conjugate. Therefore, it is not a
physical representation. The physically irreducible representa-
tion that contains this complex irreducible component is gener-
ated by

cosð2�=nÞ � sinð2�=nÞ
sinð2�=nÞ cosð2�=nÞ

� �

’
expð2�i=nÞ 0

0 expð�2�i=nÞ

� �

:

All complex irreducible representations of the finite point groups
in up to three dimensions with real character can be put into a
real form. This is not true for higher dimensions, as we have seen
in the example of the quaternion group.

1.2.2.7. Tensor representations

When V1; . . . ;Vn are linear vector spaces, one may construct
tensor products of these spaces. There are many examples in
physics where this notion plays a role. Take the example of a
particle with spin. The wave function of the particle has two
components, one in the usual three-dimensional space and one in
spin space. The proper way to describe this situation is via the
tensor product. In normal space, a basis is formed by spherical
harmonics Ylm, in spin space by the states jsszi. Spin–orbit
interaction then plays in the ð2l þ 1Þð2sþ 1Þ-dimensional space
with basis jlmi 
 jsszi. Another example is a physical tensor, e.g.
the dielectric tensor "ij of rank 2. It is a symmetric tensor that
transforms under orthogonal transformations exactly like a
symmetric bi-vector with components viwj þ vjwi, where vi and wi

(i ¼ 1; 2; 3) are the components of vectors v and w. A basis for
the space of symmetric bi-vectors is given by the six vectors
(ei 
 ej þ ej 
 ei) (i  j). The space of symmetric rank 2 tensors
has the same transformation properties.

A basis for the tensor space V1 
 V2 
 . . .
 Vn is given by
e1i 
 e2j 
 . . .
 enk, where i ¼ 1; 2; . . . ; d1; j ¼ 1; 2; . . . d2; . . . ;
k ¼ 1; 2; . . . ; dn. Therefore the dimension of the tensor product
is the product of the dimensions of the spaces Vi (see also Section
1.1.3.1.2). The tensor space consists of all linear combinations
with real or complex coefficients of the basis vectors. In the
summation one has the multilinear property

Pd1

i¼1

c1ie1i

� �



Pd2

j¼1

c2je2j

 !


 . . . ¼
P

ij...

c1ic2j . . . e1i 
 e2j 
 . . . :

ð1:2:2:40Þ

In many cases in practice, the spaces Vi are all identical and then
the dimension of the tensor product V
n is simply dn.

The tensor product of n identical spaces carries in an obvious
way a representation of the permutation group Sn of n elements.
A permutation of n elements is always the product of pair
exchanges. The action of the permutation (12), that interchanges
spaces 1 and 2, is given by

P12ei 
 ej 
 ek 
 . . . ¼ ej 
 ei 
 ek 
 . . . : ð1:2:2:41Þ

Two subspaces are then of particular interest, that of the tensors
that are invariant under all elements of Sn and those that get a
minus sign under pair exchanges. These spaces are the spaces of
fully symmetric and antisymmetric tensors, respectively.

If the spaces V1; . . . ;Vn carry a representation of a finite group
K, the tensor product space carries the product representation.

e1j1 
 e2j2 
 . . .

¼
On

i¼1

eiji !
P

k1k2...

�1ðRÞk1j1�2ðRÞk2j2 . . . e1k1 
 e2k2 
 . . . :

ð1:2:2:42Þ

The matrix �ðRÞ of the tensor representation is the tensor
product of the matrices �iðRÞ. In general, this representation is
reducible, even if the representations �i are irreducible. The
special case of n ¼ 2 has already been discussed in Section
1.2.2.3.

From the definition of the action of R 2 K on vectors in the
tensor product space, it is easily seen that the character of R in
the tensor product representation is the product of the characters
of R in the representations �i:

�ðRÞ ¼
Qn

i¼1

�iðRÞ: ð1:2:2:43Þ

The reduction in irreducible components then occurs with the
multiplicity formula.

m� ¼ ð1=NÞ
P

R2K

�	�ðRÞ
Qn

i¼1

�iðRÞ: ð1:2:2:44Þ

If the tensor product representation is a real representation, the
physically irreducible components can be found by first deter-
mining the complex irreducible components, and then combining
with their complex conjugates the components that cannot be
brought into real form.

The tensor product of the representation space V with itself
has a basis ei 
 ej (i; j ¼ 1; 2; . . . ; d). The permutation (12)
transforms this into ej 
 ei. This action of the permutation
becomes diagonal if one takes as basis ei 
 ej þ ej 
 ei
(1  i  j  d, spanning the space V
2

s ) and ei 
 ej � ej 
 ei
(1  i< j  d, spanning the space V
2

a ). If one considers the
action of K, one has with respect to the first basis �ðRÞ ¼ ��ðRÞ

2

if V carries the representation with character ��ðKÞ. With respect
to the second basis, one sees that the character of the permuta-
tion P ¼ ð12Þ is given by 1

2 dðdþ 1Þ � 1
2 dðd� 1Þ ¼ d. The action

of the element R 2 K on the second basis is

R ei 
 ej � ej 
 ei
� �

¼
P

kl

ð�� 
 ��ÞðRÞkl;ij ei 
 ej � ej 
 ei
� �

:

This implies that both V
2
s and V
2

a are invariant under R. The
character in the subspace is

�þðRÞ ¼
P

kl

ð�� 
 ��ÞðRÞkl;kl ð1:2:2:45Þ

for the symmetric subspace and

��ðRÞ ¼
P

k< l

ð�� 
 ��ÞðRÞkl;kl ð1:2:2:46Þ
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for the antisymmetric one. Consequently one has

��ðRÞ ¼ 1
2ð��ðRÞ

2
� ��ðR

2ÞÞ; d� ¼ 1
2d�ðd� � 1Þ: ð1:2:2:47Þ

For n> 2, the tensor product space does not carry just a
symmetric and an antisymmetric subspace, but also higher-
dimensional representations of the permutation group Sn. The
derivation of the character of the fully symmetric and fully
antisymmetric subspaces remains rather similar. The formulae for
the character of the representation of K carried by the fully
symmetric (þ) and fully antisymmetric (�) subspace, respec-
tively, for n ¼ 1; 2; 3; 4; 5; 6 are

n ¼ 2 : ��ðRÞ ¼
1

2!

�
�ðRÞ2 � �ðR2Þ

�

n ¼ 3 : ��ðRÞ ¼
1

3!

�
�ðRÞ3 � 3�ðR2Þ�ðRÞ þ 2�ðR3Þ

�

n ¼ 4 : ��ðRÞ ¼
1

4!

�
�ðRÞ4 � 6�ðR2Þ�ðRÞ2 þ 3�ðR2Þ

2

þ 8�ðR3Þ�ðRÞ � 6�ðR4Þ
�

n ¼ 5 : ��ðRÞ ¼
1

5!

�
�ðRÞ5 � 10�ðR2Þ�ðRÞ3 þ 15�ðR2Þ

2�ðRÞ

þ 20�ðR3Þ�ðRÞ2 � 20�ðR3Þ�ðR2Þ

� 30�ðR4Þ�ðRÞ þ 24�ðR5Þ
�

n ¼ 6 : ��ðRÞ ¼
1

6!

�
�ðRÞ6 � 15�ðR2Þ�ðRÞ4 þ 45�ðR2Þ

2�ðRÞ2

þ 40�ðR3Þ
2
� 15�ðR2Þ

3
þ 40�ðR3Þ�ðRÞ3

� 120�ðR3Þ�ðR2Þ�ðRÞ � 90�ðR4Þ�ðRÞ2

þ 90�ðR4Þ�ðR2Þ þ 144�ðR5Þ�ðRÞ

� 120�ðR6Þ
�

From this follows immediately the dimension of the two
subspaces:

n ¼ 2 :
1

2
ðd2 � dÞ

n ¼ 3 :
1

6
ðd3 � 3d2 þ 2dÞ

n ¼ 4 :
1

24
ðd4 � 6d3 þ 11d2 � 6dÞ

n ¼ 5 :
1

120
ðd5 � 10d4 þ 35d3 � 50d2 þ 24dÞ

n ¼ 6 :
1

720
ðd6 � 15d5 þ 85d4 � 225d3 þ 274d2 � 120dÞ:

These expressions are based on Young diagrams. The procedure
will be exemplified for the case of n ¼ 5. In the expression for ��

occur the partitions of n in groups of integers:

5 ¼ 4þ 1 ¼ 3þ 2 ¼ 3þ 1þ 1 ¼ 2þ 2þ 1 ¼ 2þ 1þ 1þ 1 ¼
1þ 1þ 1þ 1þ 1. Each partition corresponds with a Young
diagram with as many rows as there are terms in the sum, and in
each row the corresponding number of boxes. The total number
of boxes is n. Each partition corresponds with a term
�ðRi1 Þ�ðRi2 Þ . . . such that

P
j ij ¼ n. Here i1 is the number of

boxes in the first row etc. The prefactor then is the number of

possible permutations compatible with the partition. For
example, the partition 2þ 2þ 1 allows the permutations

ð12Þð34Þð5Þ ð13Þð24Þð5Þ ð14Þð23Þð5Þ ð12Þð35Þð4Þ ð13Þð25Þð4Þ

ð15Þð23Þð4Þ ð12Þð45Þð3Þ ð14Þð25Þð3Þ ð15Þð24Þð3Þ ð13Þð45Þð2Þ

ð14Þð35Þð2Þ ð15Þð34Þð2Þ ð23Þð45Þð1Þ ð24Þð35Þð1Þ ð25Þð34Þð1Þ

The sign of all these permutations is even: they are the product of
an even number of pair interchanges. The prefactor for the term
�ðR2Þ�ðR2Þ�ðRÞ is then þ15=5!.

1.2.2.8. Projective representations

It is useful to consider a more general type of representation,
one that gives only a homomorphism from a group to linear
transformations up to a factor. In quantum mechanics, the rele-
vance of such representations is a consequence of the freedom of
the phase of the wave function, but they also occur in classical
physics. In particular, we shall need this generalized concept for
the determination of representations of crystallographic space
groups.

A projective representation of a group K is a mapping from K
to the group of nonsingular linear transformations of a vector
space V such that

DðRÞDðR0Þ ¼ !ðR;R0ÞDðRR0Þ 8 R;R0 2 K;

where !ðR;R0Þ is a nonzero real or complex number. The name
stems from the fact that the mapping is a homomorphism if one
identifies linear transformations that differ by a factor. Then one
looks at the transformations of the lines through the origin, and
these form a projective space. Other names are multiplier or ray
representations. The mapping ! from K � K to the real or
complex numbers is called the factor system of the projective
representation. An ordinary representation is a projective
representation with a trivial factor system that has only the value
unity. A projective representation that can be identified with
DðHÞ is one with D0ðRÞ ¼ uðRÞDðRÞ for some real or complex
function u on the group. It gives the same transformations of
projective space. The projective representations DðHÞ and D0ðHÞ

are called associated. Their factor systems are related by

!0ðR;R0Þ ¼
uðRÞuðR0Þ

uðRR0Þ
!ðR;R0Þ; ð1:2:2:48Þ

as one can check easily. Two factor systems that are related in this
way are also called associated.

Not every mapping ! : K � K ! complex numbers can be
considered as a factor system. There is the following proposition:

Proposition. A mapping ! from K � K to the complex numbers
can occur as factor system for a projective representation if and
only if one has

!ðR1;R2Þ!ðR1R2;R3Þ ¼ !ðR1;R2R3Þ!ðR2;R3Þ

8 R1;R2;R3 2 K: ð1:2:2:49Þ

If one has two mappings !1 and !2 satisfying this relation, the
product !ðR;R0Þ ¼ !1ðR;R

0Þ!2ðR;R
0Þ also satisfies the relation.

Therefore, factor systems form an Abelian multiplicative group.
A subgroup is formed by all factor systems that are associated
with the trivial one:

!ðR;R0Þ ¼
uðRÞuðR0Þ

uðRR0Þ

for some function u on the group. These form another Abelian
group and the factor group consists of all essentially different
factor systems. This factor group is called Schur’s multiplicator
group.
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A projective representation is called reducible if there is a
proper invariant subspace. It is fully reducible if there is a basis
on which the representation matrices form the direct sum of two
representations. This is exactly as for ordinary representations.
Equivalence of projective representations is slightly more subtle.
Two projective representations are called associated if their factor
systems are associated. They are weakly equivalent if there is a
complex function uðRÞ on the group and a nonsingular linear
transformation S such that

D2ðRÞ ¼ uðRÞSD1ðRÞS
�1 8 R 2 K: ð1:2:2:50Þ

This implies that their factor systems are associated. Two
projective representations are strongly equivalent if their factor
systems are identical and there exists a nonsingular linear
transformation S such that D2ðRÞS ¼ SD1ðRÞ. Therefore, strong
equivalence implies weak equivalence, which in turn implies
association. The reason for this distinction will soon become
clear.

For projective representations with identical factor systems
there exist orthogonality relations for matrix elements and for
characters. It is important to notice that for projective repre-
sentations the character is generally not a class function, because
one can multiply every operator with a separate constant.

Proposition. For given factor system ! there is a finite number r
of strong equivalence classes of irreducible projective repre-
sentations. The dimensions of the nonequivalent irreducible
representations satisfy

Pr

�¼1

d2� ¼ N: ð1:2:2:51Þ

Proposition. For two irreducible projective matrix representa-
tions with the same factor system, the following holds:

P

R2K

��ðRÞij�
�1
� ðRÞkl ¼ ðN=d�Þ�

0
���il�jk: ð1:2:2:52Þ

Notice that, in general, for projective representations
�ðR�1Þ 6¼ �ðRÞ�1! Every projective representation of a finite
group is strongly equivalent with a unitary representation, for
which one has

P

R2K

��ðRÞij��ðRÞ
	

ik ¼ ðN=d�Þ�
0
���il�jk; ð1:2:2:53Þ

and for the characters
P

R2K

��ðRÞ�
	
�ðRÞ ¼ N���: ð1:2:2:54Þ

For projective representations with the same factor system,
one can construct the sum representation, which still has the
same factor system: ð�1 � �2ÞðRÞ ¼ �1ðRÞ � �2ðRÞ. On the other
hand, a reducible projective representation can be decomposed
into irreducible components with the same factor system and
multiplicities

m� ¼ ð1=NÞ
P

R2K

�ðRÞ�	�ðRÞ; ð1:2:2:55Þ

as follows directly from the orthogonality conditions.
Projective representations of a group K may be constructed

from the ordinary representations of a larger group R. Suppose
that R has a subgroup A in the centre, which means that all its
elements commute with all elements of R. Suppose furthermore
that the factor group R=A is isomorphic with K. Therefore, the
order of R is the product of the orders of A and K. Because K is
the factor group, each element of R corresponds to a unique
element of K and the elements of the subgroup A correspond to
the unit element in K. Then consider an irreducible representa-

tionD of R. For two elements r1 and r2 of R there are elements k1
and k2 in K. Define linear operators PðkiÞ ¼ DðriÞ. Then k1k2
corresponds to r1r2 up to an element a 2 A. This means

Pðk1ÞPðk2Þ ¼ DðaÞPðk1k2Þ:

Because a commutes with all elements of R, the operator DðaÞ
commutes with all the operators of the irreducible representation
DðRÞ. From Schur’s lemma it follows that it is a multiple of the
unit operator. Moreover, this multiple depends on k1 and k2:
DðaÞ ¼ !ðk1; k2ÞE. Therefore, an irreducible representation of R
gives a projective representation of K. It has been shown by
Schur that one obtains all projective representations of K, i.e. one
representative from each strong equivalence class for each class
of non-associated factor systems, in the way presented if one
takes for the group A the multiplicator group. The way to find all
projective representations of K is then: determine the multi-
plicator group, determine R, determine the ordinary irreducible
representations of R. We shall not go into detail, but only present
a way to characterize projective representations.

First we consider an example, the group K ¼ 2mm, isomorphic
toD2. It can be shown that the multiplicator group is the group of
two elements. Therefore, the representation group R has eight
elements and one can show that it is isomorphic to D4 or to the
quaternion group (in general there is not a unique R). The
character table of D4 is given in Table 1.2.2.2.

The centre is generated by A2. If the elements of the factor
group are e, a, b and ab, then E and A2 correspond to e, A and A3

to a, B and A2B to b, and AB and A3B to ab. Because A2 is
represented by the unit element for the four one-dimensional
representations, each element of the factor group corresponds to
a unique element of the representation. PðaÞ can be chosen to be
DðAÞ or DðA3Þ, but because DðA2Þ ¼ E for the one-dimensional
representations these are equal. Therefore, the one-dimensional
representations of K ¼ D2 have a trivial factor system. For the
two-dimensional representation one may choose

PðeÞ ¼
1 0

0 1

� �

; PðaÞ ¼
0 �1

1 0

� �

;

PðbÞ ¼
1 0

0 �1

� �

; PðabÞ ¼
0 1

1 0

� �

:

It is easily checked that this forms a projective representation
with a nontrivial factor system. One can characterize the
projective representation starting from the defining relations
a2 ¼ b2 ¼ ðabÞ

2
¼ e. One has PðaÞ

2
¼ �E, PðbÞ

2
¼ E,

ðPðaÞPðbÞÞ
2
¼ E. It is easily seen that one cannot achieve a trivial

factor system by multiplication of the P matrices by suitably
chosen factors. Therefore, the factor system is not associated with
the trivial one either. This is the general situation. The ordinary
representations of R can be partitioned into groups, each group
corresponding with one class of associated factor systems, and
within each group one finds representatives of each strong
equivalence class. For the example above, there is only one such
class for the nontrivial factor system as one sees from
d2 ¼ 4 ¼ N ¼ jD2j.

The general procedure then is to characterize a factor system
with expressions stemming from defining relations for the group
K. Defining relations are expressions (words) in the generators
that fix the isomorphism class of the group. They are of the form
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Table 1.2.2.2. Character table of D4

E A, A3 A2 B, A2B AB, A3B

�1 1 1 1 1 1
�2 1 �1 1 1 �1
�3 1 1 1 �1 �1
�4 1 �1 1 �1 1
�5 2 0 �2 0 0
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WiðA1;A2; . . . ;ApÞ ¼ E; i ¼ 1; 2; . . . ; s ð1:2:2:56Þ

if the Ai are the generators. For a projective representation the
corresponding product

WiðDðA1Þ;DðA2Þ; . . . ;DðApÞÞ ¼ �iE

is a multiple of the identity operator. The defining relations are
not unique for a group. Therefore, there is arbitrariness here. The
complex numbers �i that correspond to the defining relations
may be changed by multiplying the operators DðRÞ by factors
uðRÞ. This changes the factor system to an associated one. If in a
table the factor systems are given by the numbers �i, one can
identify the class of a given factor system by calculating the
corresponding words and solving the problem of finding the table
values by taking into account additional factors uðRÞ. For
example, the factor system that gives the values of �i forD2 above
is associated with one that gives �1;2;3 ¼ 1; 1;�1, if one multiplies
PðaÞ by i.

1.2.2.9. Double groups and their representations

Three-dimensional rotation point groups are subgroups of
SO(3). In quantum mechanics, rotations act according to some
representation of SO(3). Because wave functions can be multi-
plied by an arbitrary phase factor, in principle projective repre-
sentations play a role here. The projective representations of
SO(3) can be obtained from the ordinary representations of the
representation group, which is SU(2), the group of all 2� 2
matrices

a b

�b	 a	

� �

with jaj2 þ jbj2 ¼ 1:

For example, in spin space for a particle with spin 1
2, a rotation

over ’ along the z axis acts according to

expði’=2Þ 0

0 expð�i’=2Þ

� �

;

and in general the representation for a rotation over ’ along an
axis n̂n is

cosð’=2ÞEþ i sinð’=2Þðr � n̂nÞ;

where r is a vector with the three Pauli spin matrices as
components. Because the matrices for ’ ¼ 2� become �E, the
representation has a nontrivial factor system. As a representation
of SU(2), however, it is an ordinary representation.

To each rotation ðR 2 SOð3ÞÞ correspond two elements
�UðRÞ 2 SUð2Þ. To a point group K � SOð3Þ corresponds a
subset of SU(2) which is in fact a subgroup, because
UðRÞUðR0Þ ¼ �UðRR0Þ. This group is the double group Kd. It
contains both E and �E, which are both mapped to the unit
element of SO(3) under the homomorphism SU(2) ! SO(3).
Because�E commute with all elements of Kd, this group C2 is an
invariant subgroup and the factor group Kd=C2 is isomorphic to
K. Therefore, every representation ofK is a representation ofKd,
but in general there are other representations as well, the extra
representations. Notice that the double group of K does not only
depend on the isomorphism class of K, but also on the geometric
class, because the realization as subgroup of O(3) comes in.

As an example, we take the group 222 � SOð3Þ. The two
generators 2x and 2y correspond, respectively, to the matrices

�
0 i

�i 0

� �

; �
0 1

1 0

� �

:

These matrices generate a group of order eight, which can also be
presented by

A ¼
i 0

0 �i

� �

; B ¼
0 1

1 0

� �

; A4 ¼ B2 ¼ ðABÞ
2
¼ E:

This group is isomorphic with D4, a group with five irreducible
representations: four one-dimensional and one two-dimensional.
The former are the four ordinary representations of D2 because
both E and �E are represented by the unit matrix. The two-
dimensional representation has �ð�EÞ ¼ ��ðEÞ and is, there-
fore, not an ordinary representation for 222. It is an extra
representation for the double group 222d, or a projective repre-
sentation of 222. Choosing one element from SU(2) for each
generator of 222 one obtains

�ð2xÞ ¼
0 i

�i 0

� �

; �ð2yÞ ¼
0 1

1 0

� �

;

�ð2xÞ
2
¼ �ð2yÞ

2
¼ E; ð�ð2xÞ�ð2yÞÞ

2
¼ �E:

The factor system fixed in this way is not associated to a trivial
one (otherwise the irreducible representation could not be two-
dimensional). The extra representation of the double group
corresponds to a nontrivial projective representation of the point
group itself.

To construct the character table of the double group, it is
worthwhile to note that the elements of Kd mapped on one class
of K form two classes, except when the class in K consists of 180�

rotations and there exists for one element of this class another
180� rotation inK with its axis perpendicular to that of the former
element. The example above illustrates this: there are four classes
in K ¼ 222 and five classes in Kd. The identity in K corresponds
to �E in Kd, and these form two classes. The other pairs �A, �B
and�AB are mapped each on one class. This is, however, not the
most general case. �uðRÞ only belong to the same class if there is
an element S 2 K such that uðRÞuðSÞ ¼ �uðSÞuðRÞ. If one brings
uðRÞ into diagonal form, one sees that this is only possible if the
diagonal elements are�i, i.e. when the rotation angle of R is �. In
this case one has

uðSÞ
i 0

0 �i

� �

¼ �
i 0

0 �i

� �

uðSÞ;

then

uðSÞ ¼
0 expði’Þ

� expð�i’Þ 0

� �

;

which is a twofold rotation with axis perpendicular to the z axis.
Therefore, in general, if a class in K of 180� rotations does not
exist or if there is not a perpendicular 180� rotation, the class inK
corresponds to two classes in Kd.

As a second example, we consider the group K ¼ 32 of order
six. It is generated by a threefold rotation along the z axis and a
twofold rotation perpendicular to the first one. Corresponding
elements of SU(2) are

A ¼
1
2 þ

1
2 i

ffiffiffi
3

p
0

0 1
2 �

1
2 i

ffiffiffi
3

p

� �

; B ¼
0 1

�1 0

� �

:

The group Kd generated by these elements is of order 12 with six
classes: E, �E, (A;A5), (A2;A4), (B;A2B;A4B) and
(AB;A3B;A5B), which are mapped on the three classes of
K ¼ 32. Therefore, there are six irreducible representations for
Kd: four one-dimensional ones and two two-dimensional ones.
Two one-dimensional and one two-dimensional representations
are the ordinary representations of K, the other ones are extra
representations and have �ð�EÞ ¼ ��ðEÞ. As projective repre-
sentations of K ¼ 32, they are associated with ordinary repre-
sentations: for the one-dimensional ones this is obvious; for the
two-dimensional one, generated by A and B, one can find an
associated one �ðAÞ ¼ �A, �ðBÞ ¼ iB such that
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�ðAÞ3 ¼ �ðBÞ2 ¼ ð�ðAÞ�ðBÞÞ2 ¼ E

and, consequently, this representation has a trivial factor system.
This shows that, although 32d has three extra representations,
there are no nontrivial projective representations.

The characters for the double point groups are given in Table
1.2.6.7.

1.2.3. Space groups

1.2.3.1. Structure of space groups

The Euclidean group E(n) in n dimensions is the group of all
distance-preserving inhomogeneous linear transformations. In
Euclidean space, an element is denoted by

g ¼ fRjag

where R 2 OðnÞ and a is an n-dimensional translation. On a point
r in n-dimensional space, g acts according to

fRjagr ¼ Rrþ a: ð1:2:3:1Þ

Therefore, jgr1 � gr2j ¼ jr1 � r2j. The group multiplication law is
given by

fRjagfR0ja0g ¼ fRR0jaþ Ra0g: ð1:2:3:2Þ

The elements fEjag form an Abelian subgroup, the group of n-
dimensional translations T(n).

An n-dimensional space group is a subgroup of E(n) such that
its intersection with T(n) is generated by n linearly independent
basis translations. This means that this lattice translation subgroup
A is isomorphic to the group of n-tuples of integers: each trans-
lation in A can be written as

fEjag ¼
Qn

i¼1

fEjeig
ni ¼ fEj

Pn

i¼1

nieig: ð1:2:3:3Þ

The lattice translation subgroup A is an invariant subgroup
because

gfEjagg�1 ¼ fRjbgfEjagfRjbg�1
¼ fEjRag 2 A:

The factor group G=A, of the space group G and the lattice
translation group A, is isomorphic to the group K formed by all
elements R occurring in the elements fRjag 2 G. This group is the
point group of the space group G. It is a subgroup of O(n).

The unit cell of the space group is a domain in n-dimensional
space such that every point in space differs by a lattice translation
from some point in the unit cell, and such that between any two
points in the unit cell the difference is not a lattice translation.
The unit cell is not unique. One choice is the n-dimensional
parallelepiped spanned by the n basis vectors. The points in this
unit cell have coordinates between 0 (inclusive) and 1. Another
choice is not basis dependent: consider all points generated by
the lattice translation group from an origin. This produces a
lattice of points �. Consider now all points that are closer to the
origin than to any other lattice point. This domain is a unit cell, if
one takes care which part of the boundary belongs to it and which
part not, and is called the Wigner–Seitz cell. In mathematics it is
called the Voronoi cell or Dirichlet domain (or region).

Because the point group leaves the lattice of points invariant,
it transforms the Wigner–Seitz cell into itself. This implies that
points inside the unit cell may be related by a point-group
element. Similarly, space-group elements may connect points
inside the unit cell, up to lattice translations. A fundamental
region or asymmetric unit is a part of the unit cell such that no
points of the fundamental region are connected by a space-group
element, and simultaneously that any point in space can be
related to a point in the fundamental region by a space-group
transformation.

Because fEjRag belongs to the lattice translation group for
every R 2 K and every lattice translation fEjag, the lattice �
generated by the vectors ei (i ¼ 1; 2; . . . ; n) is invariant under the
point group K. Therefore, the latter is a crystallographic point
group. On a basis of the lattice�, the point group corresponds to
a group �ðKÞ of integer matrices. One has the following situation.
The space groupG has an invariant subgroupA isomorphic to Zn,
the factor group G=A is a crystallographic point group K which
acts according to the integer representation �ðKÞ on A. In
mathematical terms, G is an extension of K by A with homo-
morphism � from K to the group of automorphisms of A.

The vectors a occurring in the elements fEjag 2 G are called
primitive translations. They have integer coefficients with respect
to the basis e1; . . . ; en. However, not all vectors a in the space-
group elements are necessarily primitive. One can decompose the
space group G according to

G ¼ Aþ g2Aþ g3Aþ . . .þ gNA: ð1:2:3:4Þ

To every element R 2 K there is a coset giA with gi ¼ fRjaðRÞg as
representative. Such a representative is unique up to a lattice
translation. Instead of aðRÞ, one could as well have aðRÞ þ n as
representative for any lattice translation n. For a particular
choice, the function aðRÞ from the point group to the group T(n)
is called the system of nonprimitive translations or translation
vector system. It is a mapping from the point group K to TðnÞ,
moduloA. Such a system of nonprimitive translations satisfies the
relations

aðRÞ þ RaðSÞ ¼ aðRSÞ mod A 8 R; S 2 K: ð1:2:3:5Þ

This follows immediately from the product of two representatives
gi.

If the lattice translation subgroup A acts on a point r different
from the origin, one obtains the set �þ r. One can describe the
elements of G as well as combinations of an orthogonal trans-
formation with r as centre and a translation. This can be seen
from

fRjag ¼ fEja� rþ RrgfRjr� Rrg; ð1:2:3:6Þ

where now fRjr� Rrg leaves the point r invariant. The new
system of nonprimitive translations is given by

a0ðRÞ ¼ aðRÞ þ ðR� EÞr: ð1:2:3:7Þ

This is the effect of a change of origin. Therefore, for a space
group, the systems of nonprimitive translations are only deter-
mined up to a primitive translation and up to a change of origin.

It is often convenient to describe a space group on another
basis, the conventional lattice basis. This is the basis for a
sublattice with the same, or higher, symmetry and with the same
number of free parameters. Therefore, the sublattice is also
invariant under K and with respect to the conventional basis,
which is obtained from the original one via a basis transformation
S, the point group has the form

�conventionalðRÞ ¼ S�primitiveðRÞS
�1; ð1:2:3:8Þ

where S is the centring matrix. It is a matrix with determinant
equal to the inverse of the number of lattice points of the
primitive lattice inside the unit cell of the conventional lattice. As
an example, consider the primitive and centred rectangular
lattices in two dimensions. Both have symmetry 2mm, and two
parameters a and b. The transformation from a basis of the
conventional lattice [(2a; 0) and (0; 2b)] to a basis of the primitive
lattice [(a;�b) and (a; b)] is given by S, and the relations between
the generators of the point groups are

46



1.2. REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

�1 0

0 1

� �

¼ S
0 �1

�1 0

� �

S�1; S ¼

1
2

1
2

� 1
2

1
2

� �

1 0

0 �1

� �

¼ S
0 1

1 0

� �

S�1:

1.2.3.2. Irreducible representations of lattice translation groups

The lattice translation groupA is isomorphic to the group Zn of
n-tuples of integers. This is an infinite group and, therefore, the
usual techniques for finite groups cannot be applied. A way past
this is the following. If ai are the basis vectors of the lattice�, the
lattice translation group generated by the translations fEjNaig
forms an Abelian subgroup AN of A. The factor group A=AN is a
finite group isomorphic to the direct product of n cyclic groups of
order N. Each representation of this group is a representation of
A with the property that the elements of AN are represented by
the unit operator. This procedure is in fact that of periodic
boundary conditions in solid-state physics. In the following, we
shall consider only the representations of A that satisfy this
condition.

The irreducible representations of the direct product of n cyclic
groups of order N are all one-dimensional. According to Section
1.2.2.6 they can be characterized by n integers and read

�fpjg fEj
Pn

i¼1

nieig

� �

¼ exp½2�iðn1p1 þ n2p2 þ . . .þ nnpnÞ=N�;

ð1:2:3:9Þ

because a representation of the cyclic group CN is determined by
its value on the basis translations:

�pðfEjegÞ ¼ expð2�ip=NÞ; 0  p<N:

There are exactly Nn nonequivalent irreducible representations.
If ai are basis vectors of the lattice �, its dual basis consists of

vectors bj defined by

ai � bj ¼ 2��ij: ð1:2:3:10Þ

These vectors bj span the reciprocal lattice�
	. The scalar product

of an arbitrary lattice vector a and a reciprocal-lattice vector K is
then

K � a ¼

�
Pn

i¼1

mibi

�

�

�
Pn

j¼1

njaj

�

¼ 2�
Pn

i¼1

nimi: ð1:2:3:11Þ

The expression (1.2.3.9) then can be written more concisely if one
introduces an n-dimensional vector k:

k ¼ ð1=NÞ
Pn

i¼1

pibi: ð1:2:3:12Þ

Then (1.2.3.9) simplifies to

�fkgðfEjagÞ ¼ expðik � aÞ: ð1:2:3:13Þ

Because 0  pi=N< 1, the vector k belongs to the unit cell of the
reciprocal lattice. If one chooses that unit cell as the Voronoi cell
for the reciprocal lattice, which in direct space would be the
Wigner–Seitz cell, it is called the Brillouin zone. Therefore,
representations of the lattice translation subgroup are char-
acterized by a vector in the Brillouin zone. In fact, the vectors k
form a mesh inside the Brillouin zone, but this mesh becomes
finer if N increases. In the limit of N going to1, the wavevectors
k fill the Brillouin zone.

Just like the direct lattice, the reciprocal lattice is invariant
under the point group K. The Brillouin zone, or at least its
interior, is invariant under K as well. A fundamental domain in
the Brillouin zone is a part of the zone such that no two points of

the fundamental region are related by a point-group transfor-
mation from K and that any point in the Brillouin zone can be
obtained from a point in the fundamental region by a point-group
transformation.

1.2.3.3. Irreducible representations of space groups

For representations of space groups, we use the same argu-
mentation as for the lattice translation subgroup. Notice that the
group AN generated by the vectors fEjNeig is an invariant
Abelian subgroup of the space group G as well.

fRjagfEjNeigfR
�1j � R�1ag ¼ fEjNReig 2 AN:

The factor group G=AN is a finite group of order Nn times the
order of the point group K. Representations of this factor group
are representations of G with the property that all elements of
AN are mapped on the unit operator. We shall consider here only
such space-group representations.

Suppose that �ðGÞ is an irreducible representation of the space
group G. Its restriction �ðAÞ to the lattice translation subgroup is
then reducible, unless it is one-dimensional. Each irreducible
representation of A is characterized by a vector k in the Brillouin
zone. Therefore,

�ðfEjagÞ

¼

expðik1 � aÞ 0 0 . . . 0 0

0 expðik2 � aÞ 0 . . . 0 0

0 0 expðik3 � aÞ . . . 0 0

0 0 0 . . . . . . 0

0 0 0 . . . 0 expðikn � aÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

ð1:2:3:14Þ

Some of the vectors ki may be identical. Therefore, the matrix
representation can be written as

�ðfEjagÞ

¼

expðik1 � aÞE 0 0 . . . 0 0

0 expðik2 � aÞE 0 . . . 0 0

0 0 expðik3 � aÞE . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 expðiks � aÞE

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

ð1:2:3:15Þ

It can be shown that the dimensions of the unit matrices E are all
the same (and equal to d). Then

n ¼ s � d:

With respect to the basis on which the translation is of this form,
every basis vector in the pth block is multiplied by a factor
expðikp � aÞ.

Suppose that fRjug is an element of the space group G.
Consider a basis vector v of the representation space that gets a
factor expðik � aÞ under the translation fEjag. Then one has

DðfEjagÞv ¼ expðik � aÞv

DðfEjagÞDðfRjugÞv ¼ DðfRjugÞDðfEjR�1agÞv

¼ expðiRk � aÞDðfRjugÞv;

and because DðfRjugÞv also belongs to the representation space
there are vectors that transform with the vector Rk as well as
vectors that transform with k. This means that for every vector k
occurring in a block in (1.2.3.5), there is also a block for each
vector Rk as R runs over the point group K. The vectors
fRkjR 2 Kg form the star of k. Vectors Rk that differ by a reci-
procal-lattice vector (k0 ¼ kþ K with K 2 �	) correspond to the
same representation and are therefore considered to be the same.
Generally, a vector k may be left invariant by a subgroup of the
point group K. This point group Kk is the point group of k.
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Kk � fRjRk � k mod �	g: ð1:2:3:16Þ

Then there are s point-group elements Ri such that

K ¼ Kk [ R2Kk [ . . . [ RsKk ð1:2:3:17Þ

and each element Ri corresponds to a vector in the star:

ki ¼ Rik1; k1 ¼ k; i ¼ 1; 2; . . . ; s:

Therefore, the blocks in (1.2.3.15) for an irreducible repre-
sentation of the space group G correspond to the s branches of
the star of k. They are all of the same dimension d. If the vectors
ki in (1.2.3.15) belonged to two or more different stars, the
representation would be reducible.

To the point group of k corresponds a subgroup of the space
groupG that has Kk as point group. It is called the group of k and
is defined by

Gk � fg ¼ fRjag 2 GjR 2 Kkg: ð1:2:3:18Þ

Analogously to (1.2.3.17), one can write

G ¼ Gk [ g2Gk [ . . . [ gsGk ð1:2:3:19Þ

for elements gi ¼ fRijaig of the space group G.
As one sees from (1.2.3.15), there is a subspace of vectors v

that get a factor expðik � a) for any lattice translation a. If one
considers the action of DðgÞ with g 2 Gk, it follows immediately
that a vector from this space is transformed into a vector of the
same space: the subspace corresponding to a vector k is invariant
under Gk. Therefore this space Vk carries a representation of Gk.
It can be seen as follows that one may construct the irreducible
representation of the whole group G as soon as one knows the
representation Dk of Gk in Vk. To that end, consider a basis
e1; . . . ; ed in Vk. The vectors

wi	 ¼ DðgiÞe	 ði ¼ 1; 2; . . . ; s; 	 ¼ 1; 2; . . . ; dÞ; ð1:2:3:20Þ

form a basis of the whole representation space. Under a lattice-
translation vector a, the vector wi	 gets a factor expðiki � aÞ. On
this basis, one can determine the matrix representation �ðGÞ.
Take an element fRjug 2 G. It belongs to a certain coset gmGk in
the decomposition of G. In addition, the element fRjuggi belongs
to a well defined gjGk. This means that there is an element fSjvg
in the group Gk such that

fRjuggi ¼ gjfSjvg ði ¼ 1; 2; . . . ; s; fSjvg 2 GkÞ:

Then one can write

DðfRjugÞ i	 ¼ DðfRjugÞDðgiÞe	

¼ DðgjÞD fSjvgð Þe	

¼ DðgjÞ
Pd


¼1

�k fSjvgð Þ
	e	

¼
Pd


¼1

�k fSjvgð Þ
	 j


¼
Ps

j¼1

Pd


¼1

� fRjugð Þj
;i	 j
:

This means that the representation matrix �ðfRjugÞ can be
decomposed into s� s blocks of dimension d. In each row of
blocks there is exactly one that is not a block of zeros, and the
same is true for each column of blocks. Moreover, the only
nonzero block in the ith column and in the jth row is

DkðfSjvgÞ ¼ Dkðg
�1
j fRjuggiÞ; ð1:2:3:21Þ

where i and j are uniquely related by

fRjuggi 2 gjGk: ð1:2:3:22Þ

It can be shown that �ðGÞ is irreducible if and only if DkðGkÞ is
irreducible. From the construction, it is obvious that one may
obtain all irreducible representations of G in this way. Moreover,
one obtains all representations of G if one takes for the
construction all stars and for each star all irreducible repre-
sentations of Gk.

So the final step is to determine all nonequivalent irreducible
representations of Gk. Notice that the lattice translation
subgroup is a subgroup of Gk. Therefore,

DkðfEjagÞ ¼ expðik � aÞE:

If one makes a choice for the system of nonprimitive translations
uðRÞ, every element g ¼ fSjvg 2 Gk can be written uniquely as

g ¼ fEjagfSjuðSÞg;

for a lattice translation a. Therefore, one has

DkðfSjvgÞ ¼ expðik � aÞDkðfSjuðSÞgÞ � expfik � ½aþ uðSÞ�g�ðSÞ

ð1:2:3:23Þ

if one defines

�ðSÞ ¼ exp½�ik � uðSÞ�DkðfSjuðSÞgÞ: ð1:2:3:24Þ

It is important to notice that this definition of � does not depend
on the choice of the system of nonprimitive translations. If one
takes u0ðSÞ ¼ uðSÞ þ b (b 2 A), the result for �ðSÞ is the same.
The product of two matrices �ðSÞ and �ðS0Þ then becomes

�ðSÞ�ðS0Þ ¼ exp �ik � ½uðSÞ þ uðS0Þ�
� �

DkðfSS
0juðSÞ þ SuðS0ÞgÞ

¼ exp �ik � ½uðS0Þ � SuðS0Þ�
� �

�ðSS0Þ: ð1:2:3:25Þ

One sees that the matrices �ðRÞ form a projective representation
of the point group of k. The factor system is given by

!ðS; S0Þ ¼ expf�ik � ½uðS0Þ � SuðS0Þ�g

¼ exp½�iðk� S�1Þ � uðS0Þ�: ð1:2:3:26Þ

Such a factor system may, however, be equivalent to a trivial one.
If the space group Gk is symmorphic, one may choose the

system of nonprimitive translations to be zero. Consequently, in
this case the factor system !ðS; S0Þ is unity and the matrices �ðSÞ
form an ordinary representation of the space group Gk. This is
also the case if k is not on the Brillouin-zone boundary. If k is
inside the Brillouin zone and S 2 Kk, one has Sk ¼ kþ K only
for K ¼ 0. So inside the Brillouin zone one has Sk ¼ k for all
S 2 Kk. This implies that

expf�ik � ½uðS0Þ � SuðS0Þ�g ¼ exp½�iðk� S�1kÞ � uðS0Þ� ¼ 1:

A nontrivial factor system !ðS; S0Þ can therefore only occur for a
nonsymmorphic group Gk and for a k on the Brillouin-zone
boundary. But even then, it is possible that one may redefine the
matrices �ðSÞ with an appropriate phase factor such that they
form an ordinary representation. This is, for example, always the
case if Kk is cyclic, because cyclic groups do not have genuine
projective representations. These are always associated with an
ordinary representation.

If the factor system !ðS; S0Þ is not associated with a trivial one,
one has to find the irreducible projective representations with the
given factor system. As seen in the previous section, one may do
this by using the defining relation for the point group Kk. If these
are words WiðA1; . . . ;ArÞ in the generators A1; . . . ;Ar, the
corresponding expressions in the representation

WiðDkðA1Þ; . . . ;DkðArÞÞ ¼ �iE

are multiples of the unit operator. The values of �i fix the class of
the factor system completely. By multiplying the operators
DkðAjÞ by proper phase factors, the values of �i can be trans-
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formed into those tabulated. Then the tables give all irreducible
representations for this factor system.

In summary, the procedure for finding all irreducible repre-
sentations of a space group G is as follows.

(1) Consider all stars of k with respect to G. This means that
one takes all vectors k in a fundamental region of the Brillouin
zone.

(2) For each star, one determines the group Kk.
(3) For each Kk, one determines the factor system !ðS; S0Þ.
(4) For this factor system, one looks for all nonequivalent

irreducible (projective) representations.
(5) From the representations DkðKkÞ, one determines the

representations �kðGkÞ and �ðGÞ according to the procedure
given above.

1.2.3.4. Characterization of space-group representations

The irreducible representations of space groups are char-
acterized by a star of vectors in the Brillouin zone, and by the
irreducible, possibly projective, representations of the point
group of one point from that star.

The stars are sets of vectors in the Brillouin zone related
mutually by transformations from the point group K of the space
groupGmodulo reciprocal-lattice vectors. To obtain all stars, it is
sufficient to take all vectors in the fundamental domain of the
Brillouin zone, i.e. a part of the Brillouin zone such that no
vectors in the domain are related by point-group elements
(modulo �	) and such that every point in the Brillouin zone is
related to a vector in the fundamental domain by a point-group
operation.

From each star one takes one point k and determines the
nonequivalent irreducible representations of the point group Kk,
the ordinary representations if the group Gk is symmorphic or k
is inside the Brillouin zone, or the projective representations with
factor system ! [equation (1.2.3.26)] otherwise. These repre-

sentations are labelled 	. There are several conventions for the
choice of this label, but an irreducible representation of G is
always characterized by a pair (k; 	Þ, where k fixes the star and 	
the irreducible point-group representation.

The projective representations of the group of k, i.e. of Kk, can
be obtained from the ordinary representations of a larger group.
If the factor system !ðR;R0Þ is of order m, the order of this larger
group K̂Kk! is m times the order of Kk. Then the irreducible
representations of the space group are labelled by the vector k in
the Brillouin zone and an irreducible ordinary representation of
K̂Kk!, where ! follows from (1.2.3.26).

Two stars such that one branch of the first one has the same Kk

as one branch of the other determine representations that are
quite similar. The only difference is the numerical value of the
factors expðik � aÞ, the form of the representation matrices being
the same. Such irreducible representations of the space group are
said to belong to the same stratum. Strata are denoted by a
symbol for one vector k in the Brillouin zone. For example, the
origin, conventionally denoted by �, belongs to one stratum that
corresponds to the ordinary representations of the point groupK.
For a simple cubic space group, the point [12; 0; 0] is denoted by X.
Its Kk is the tetragonal group 4=mmm. All points [�; 0; 0] with
� 6¼ 0 and �1

2<�<
1
2 form one stratum with point group 4mm.

This stratum is denoted by� etc. The strata can be compared with
the Wyckoff positions in direct space. There a Wyckoff position is
a manifold in the unit cell for which all points have the same site
symmetry, modulo the lattice translations. Here it is a manifold of
k vectors with the same symmetry group modulo the reciprocal
lattice. The action of Gk does not involve the nonprimitive
translations. Therefore, the strata correspond to Wyckoff posi-
tions of the corresponding symmorphic space group. The stratum
symbols for the various three-dimensional Bravais classes are
given in Table 1.2.6.11.

As an example, we consider here the orthorhombic space
group Pnma. The orthorhombic Brillouin zone has a fundamental
domain with volume that is one-eighth of that of the Brillouin
zone. The various choices of k in this fundamental domain,
together with the corresponding point groups Kk, are given in
Table 1.2.3.1. The vectors k correspond to Wyckoff positions of
the group Pmmm.

In the tables, the vectors k and their corresponding Wyckoff
positions are given for the holohedral space groups. In general,
the number of different strata is smaller for the other groups. One
can still use the same symbols for these groups, or take the
symbols for the Wyckoff positions for the groups that are not
holohedral. Consider as an example the group Pmm2. Its holo-
hedral space group is Pmmm. The strata of irreducible repre-
sentations can be labelled by the symbols for Wyckoff positions
of Pmm2 as well as those of Pmmm. This is shown in Table 1.2.3.2.

The defining relations for the point group mmm are

A2 ¼ B2 ¼ ðABÞ
2
¼ C2 ¼ E; AC ¼ CA; BC ¼ CB:
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Table 1.2.3.1. Choices of k in the fundamental domain of Pnma and the
elements of Kk

k
Wyckoff
position Kk Elements

000 a mmm E mx my mz
�11 2x 2y 2z

1
200 b mmm E mx my mz

�11 2x 2y 2z
0120 e mmm E mx my mz

�11 2x 2y 2z
0012 c mmm E mx my mz

�11 2x 2y 2z
012

1
2 g mmm E mx my mz

�11 2x 2y 2z
1
2 0

1
2 d mmm E mx my mz

�11 2x 2y 2z
1
2
1
2 0 f mmm E mx my mz

�11 2x 2y 2z
1
2
1
2
1
2 h mmm E mx my mz

�11 2x 2y 2z
�00 i 2mm E my mz 2x
� 1
2 0 k 2mm E my mz 2x
�0 1

2 j 2mm E my mz 2x
� 1
2
1
2 l 2mm E my mz 2x

0�0 m m2m E mx mz 2y
1
2 �0 o m2m E mx mz 2y
0� 1

2 n m2m E mx mz 2y
1
2 �

1
2 p m2m E mx mz 2y

00� q mm2 E mx my 2z
1
2 0� s mm2 E mx my 2z
0 1
2 � r mm2 E mx my 2z

1
2
1
2 � t mm2 E mx my 2z
0�� u m11 E mx

1
2 �� v m11 E mx

�0� w 1m1 E my

� 1
2 � x 1m1 E my

��0 y 11m E mz

�� 1
2 z 11m E mz

��� � 1 E

Table 1.2.3.2. Strata of irreducible representations of Pmm2 and Pmmm

k

Wyckoff
position
in Pmm2

Wyckoff
positions
in Pmmm Kk

00� a a; c; q mm2

0 1
2 � b e; g; r mm2

1
2 0� c b; d; s mm2
1
2
1
2 � d f ; h; t mm2

�0� e i; j;w 1m1

� 1
2 � f k; l; x 1m1

0�� g m; n; u m11
1
2 �� h o; p; v m11

��� i y; z; � 1
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For the subgroups, the defining relations follow from these. The
corresponding expressions in the representation matrices �ðAiÞ

for the generators of the point groups give expressions

W left
i ðA1; . . . ;ArÞ ¼ �iW

right
i ðA1; . . . ;ArÞ; i ¼ 1; . . . :

In the example one has

�ðAÞ2 ¼ �1E �ðBÞ2 ¼ �2E
�ðAÞ�ðBÞð Þ

2
¼ �3E �ðCÞ2 ¼ �4E

�ðAÞ�ðCÞ ¼ �5�ðCÞ�ðAÞ �ðBÞ�ðCÞ ¼ �6�ðCÞ�ðBÞ:

The values for �i characterize the projective representation factor
system and are given in Table 1.2.3.3. They are unity for ordinary
representations.

By putting factors i in front of the representation matrices in
the appropriate places, some of the values of �i can be changed
from �1 to þ1. In this way, one obtains either ordinary repre-
sentations, which are necessarily one-dimensional for these
Abelian groups, or projective representations, which are in this
case two-dimensional. This is indicated as well in Table 1.2.3.3.
The one-dimensional irreducible representations are ordinary
representations of the group Kk. The two-dimensional ones are
projective representations, but correspond to ordinary repre-
sentations of the larger groups isomorphic to D4 � C2 and D4.

1.2.3.5. Double space groups and their representations

In Section 1.2.2.9, it was mentioned that the transformation
properties of spin-12 particles under rotations are not given by the
orthogonal group O(3), but by the covering group SU(2). Hence,
the transformation of a spinor field under a Euclidean transfor-
mation g is given by

g�ðrÞ ¼ �UðRÞ�ðR�1ðr� aÞÞ 8 g ¼ fRjag 2 Eð3Þ; ð1:2:3:27Þ

where the SU(2) operator UðRÞ is given by

UðRÞ ¼ E cosð’=2Þ þ ðr � nÞ sinð’=2Þ

ð1:2:3:28Þ

when the rotation R has angle ’ and axis
n. When R does not belong to SO(3) one
has to take Uð�R).

For an ordinary space group, one can
construct the double space group by

fRjag ! f�UðRÞjag ð1:2:3:29Þ

with multiplication rule

fUðRÞjagfUðSÞjbg ¼ fUðRÞUðSÞjaþ Rbg:

ð1:2:3:30Þ

An invariant subgroup of the double
space group is the translation group A.
The factor group is the double point
group Kd of the point group K.

The representations of the double
space groups can be constructed in the
same way as those of ordinary space
groups. They are characterized by a
vector k in the Brillouin zone and a label
for an irreducible, generally projective,
representation of the (double) point
group Kd

k of k, which is the double group
of Kk. Again, for nonsymmorphic space
groups or wavevectors k inside the Bril-
louin zone, the relevant irreducible
representations of Kd

k are ordinary
representations with a trivial factor
system.

For an element g of the space group G, there are two elements
of the double space group Gd. If one considers an irreducible
representation DðGdÞ for the double space group and takes for
each g 2 G one of the two corresponding elements in Gd, the
resulting set of linear operators forms a projective representation
of the space group. It is also characterized by a vector k in the
Brillouin zone and a projective representation of the point group
(not its double) Kk. This projective representation does not have
the same factor system as discussed in Section 1.2.3.3, because the
factor system now stems partly from the nonprimitive transla-
tions and partly from the fact that a double point group gives a
projective representation of the ordinary point group Kk.

The projective representations of a space group corresponding
to ordinary representations of the double space group again are
characterized by the star of a vector k. The projective repre-
sentation of the group Gk then is given by

PkðfRjagÞ ¼ expðik � aÞ�ðRÞ; ð1:2:3:31Þ

where the projective representation �ðKkÞ has the factor system

�ðRÞ�ðSÞ ¼ !sðR; SÞ exp½�iðk� R�1kÞ � aðSÞ��ðRSÞ

¼ !ðR; SÞ�ðRSÞ; ð1:2:3:32Þ

where !s is the spin factor system for Kk and aðSÞ is the
nonprimitive translation of the space-group element with
orthogonal part S. The factor system ! can be characterized by
the defining relations of Kk. If these are the words

WiðA1; . . . ;ApÞ ¼ E;

then the factor system ! is characterized by the factors �i in

Wið�ðA1Þ; . . . ;�ðApÞÞ ¼ �iE: ð1:2:3:33Þ
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Table 1.2.3.3. Characteristic values of �i for the projective irreps of Kk for the point group mmm

k
A2 B2 ðABÞ

2
C2 AC ¼ CA BC ¼ CB Representations

�1 �2 �3 �4 �5 �6 Number Dimension

000 1 1 1 1 1 1 8 1
1
200 �1 1 �1 1 �1 1 2 2

0120 1 �1 1 1 1 1 2 2

0012 1 1 1 �1 �1 1 2 2

012
1
2 1 �1 1 �1 �1 1 2 2

1
2 0

1
2 �1 1 �1 �1 1 1 8 1

1
2
1
2 0 �1 �1 �1 1 �1 1 2 2

1
2
1
2
1
2 �1 �1 �1 �1 1 1 2 2

�00 1 1 1 4 1

� 1
2 0 �1 1 �1 4 1

�0 1
2 1 �1 �1 4 1

� 1
2
1
2 �1 �1 1 4 1

0�0 1 1 1 4 1
1
2 �0 �1 1 1 1 2

0� 1
2 1 �1 1 1 2

1
2 �

1
2 �1 �1 1 4 1

00� 1 1 1 4 1
1
2 0� �1 1 �1 1 2

0 1
2 � 1 �1 1 1 2

1
2
1
2 � �1 �1 �1 1 2

0�� 1 2 1
1
2 �� �1 2 1

�0� 1 2 1

� 1
2 � �1 2 1

��0 1 2 1

�� 1
2 �1 2 1

��� 1 1
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The factors �i are the product of the values found from the spin
factor system !s and those corresponding to the factor system for
an ordinary representation [equation (1.2.3.26)].

1.2.4. Tensors

1.2.4.1. Transformation properties of tensors

A vector is an element of an N-dimensional vector space that
transforms under an orthogonal transformation, an element of
Oðn), as

x ¼
Pn

i¼1

�iai ! x0 ¼
Pn

i¼1

�0iai ¼
P

ij

Rij�jai; fRijg 2 OðnÞ:

A tensor of rank r under OðnÞ is an object with components Ti1...ir
(ij ¼ 1; 2; . . . ; n) that transforms as (see Section 1.1.3.2)

Ti1...ir
! T 0

i1...ir
¼
Pn

j1¼1

. . .
Pn

jr¼1

Ri1 j1
. . .Rirjr

Tj1...jr
:

A rank-zero tensor is a scalar, which is invariant under OðnÞ. A
pseudovector (or axial vector) has components xi and transforms
according to

xi ! x0i ¼ DetðRÞ
P

j

Rij�j

and analogously for pseudotensors (or axial tensors – see Section
1.1.4.5.3).

A vector field is a vector-valued function in n-dimensional
space. Under an orthogonal transformation it transforms
according to

FiðrÞ
0
¼
Pn

j¼1

RijFjðR
�1rÞ: ð1:2:4:1Þ

Under a Euclidean transformation, the function transforms
according to

FiðrÞ
0
¼
Pn

j¼1

RijFjðR
�1ðr� aÞÞ; fRjag 2 EðnÞ: ð1:2:4:2Þ

In a similar way, one has (pseudo)tensor functions under the
orthogonal group or the Euclidean group. So it is important to
specify under what group an object is a tensor, unless no
confusion is possible.

The n-dimensional vectors form a vector space that carries a
representation of the group O(n). Moreover, it is an irreducible
representation space. To stress this fact, one could speak of
irreducible tensors and vectors. Vectors are here just rank-one
tensors. The three-dimensional Euclidean vector space carries in
this way an irreducible representation of O(3). Such repre-
sentations are characterized by an integer l and are ð2l þ 1Þ-
dimensional. The usual three-dimensional space is therefore an
irreducible l ¼ 1 space for O(3).

Since point groups are subgroups of the orthogonal group and
space groups are subgroups of the Euclidean group, tensors
inherit their transformation properties from their supergroups.
As we have seen in Sections 1.2.2.3 and 1.2.2.7, one can also
define tensors in a quite abstract way. Irreducible tensors under a
group are then elements of a vector space that carries an irre-
ducible representation of that group. Generally, tensors are
elements of a vector space that carries a tensor product repre-
sentation and (anti)symmetric tensors belong to a space with an
(anti)symmetrized tensor product representation.

Because the point groups one usually considers in physics are
subgroups of O(2) or O(3), it is useful to consider the irreducible
representations of these groups. They are not finite, but they are
compact, and for compact groups most of the theorems for finite

groups are still valid if one replaces sums over group elements by
integration over the group.

The group O(3) is the direct product SOð3Þ � C2. Therefore,
there are even and odd representations. They have the property

D�ðRÞ ¼ �ðRÞ; D�ð�RÞ ¼ ��ðRÞ; R 2 SOð3Þ:

The irreducible representations are labelled by non-negative
integers ‘ and have character

�‘ðRÞ ¼
sinð‘þ 1

2Þ’

sin 1
2’

ð1:2:4:3Þ

if R is a rotation with rotation angle ’. From the character it
follows that the dimension of the representation D‘ is equal to
ð2‘þ 1Þ.

The tensor product of two irreducible representations of SO(3)
is generally reducible:

D‘ 
Dm ¼
M‘þm

j¼j‘�mj

Dj ð1:2:4:4Þ

and the symmetrized and antisymmetrized tensor products are

ðDm 
DmÞs ¼
Mm

j¼0

D2j; ð1:2:4:5Þ

ðDm 
DmÞa ¼
Mm

j¼1

D2j�1: ð1:2:4:6Þ

If the components of the tensor Ti1...ir
are taken with respect to

an orthonormal basis, the tensor is called a Cartesian tensor. The
orthogonal transformation R then is represented by an ortho-
gonal matrix Rij. Cartesian tensors of higher rank than one are
generally no longer irreducible for the group O(n). For example,
the rank-two tensors in three dimensions have nine components
Tij. Under SO(3), they transform according to the tensor product
of two ‘ ¼ 1 representations. Because

D1 
D1 ¼ D0 �D1 �D2;

the space of rank 2 Cartesian tensors is the direct sum of three
invariant subspaces. This corresponds to the fact that a general
rank 2 tensor can be written as the sum of a diagonal tensor, an
antisymmetric tensor and a symmetric tensor with trace zero.
These three tensors are irreducible tensors, in this case also called
spherical tensors, i.e. irreducible tensors for the orthogonal group.

An irreducible tensor with respect to the group Oð3Þ trans-
forms, in general, according to some reducible representation of a
point group K 2 Oð3Þ. If the group K is a symmetry of the
physical system, the tensor should be invariant under K, i.e. it
should transform according to the identity representation of K.

Consider, for example, a symmetric second-rank tensor under
Oð3Þ. This means that it belongs to the space that transforms
according to the representation

D0 �D2

[see (1.2.4.6)]. If the symmetry group of the system is the point
group K ¼ 432, the representation

D0ðKÞ �D2ðKÞ

has character

R: " � ¼ C3 �2 ¼ C2
4z � ¼ C4z �� ¼ C2

�ðRÞ: 6 0 2 0 2

and is equivalent to the direct sum
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�1 � �3 � �5:

The multiplicity of �1 is one. Therefore, the space of tensors
invariant underK is one-dimensional. Consequently, there is only
one parameter left to describe such a symmetric second-rank
tensor invariant under the cubic group K ¼ 432. Noninvariant
symmetric second-rank tensors are sums of tensors which trans-
form according to the �3 and �5 representations. Here we are
especially interested in invariant tensors.

1.2.4.2. Invariants

The dimension of the space of tensors of a certain type which
are invariant under a point groupK is equal to the number of free
parameters in such a tensor. This number can be found as the
multiplicity of the identity representation in the tensor space. For
the 32 three-dimensional point groups this number is given in
Table 1.2.6.9 for general second-rank tensors, symmetric second-
rank tensors and a number of higher-rank tensors.

Invariant tensors, i.e. tensors of a certain type left invariant by
a given group, may be constructed in several ways. The first way is
a direct calculation. Take as an example again a second-rank
symmetric tensor invariant under the cubic group 432. This
means that

Rf ¼ f 8 R 2 K;

which is a concise notation for

ðRf Þij ¼
P

kl

RikRjlfkl ¼ fij:

The group has two generators. Because each element of K is the
product of generators, a tensor is left invariant under a group if it
is left invariant by the generators. Therefore, one has in this case
for

f ¼

a1 a2 a3
a2 a4 a5
a3 a5 a6

0

@

1

A

the equation

0 �1 0

1 0 0

0 0 1

0

B
@

1

C
Af

0 1 0

�1 0 0

0 0 1

0

B
@

1

C
A

¼

0 1 0

0 0 1

1 0 0

0

B
@

1

C
Af

0 0 1

1 0 0

0 1 0

0

B
@

1

C
A ¼ f :

These equations form a system of 12 linear algebraic equations
for the coefficients of f with the solution

a1 ¼ a4 ¼ a6; a2 ¼ a3 ¼ a5 ¼ 0:

Up to a factor there is only one such tensor:

f ¼

a 0 0

0 a 0

0 0 a

0

@

1

A;

in agreement with the finding that the space of invariant second-
rank symmetric tensors is one-dimensional. An overview of these
relations for the 32 point groups can be found in Section 1.1.4 in
this volume.

This method can always be used for groups with a finite
number of generators. Another method for determining invariant
tensors is using projection operators.

If a group, for example a point group, acts in some linear vector
space, for example the space of tensors of a certain type, this
space carries a representation. Then it is possible to construct a

basis such that the representation corresponds to a choice of
matrix representation. In particular, if the representation is
reducible, it is possible to construct a basis such that the matrix
representation is in reduced form. This can be achieved with
projection operators.

Suppose the element R 2 K acts in a space as an operatorDðRÞ
such that the representation DðKÞ is equivalent with a matrix
representation �ðKÞ which has irreducible components ��ðKÞ.
Then choose a vector v in the representation space and construct
the d� vectors

vi ¼ ð1=NÞ
P

R2K

��ðRÞ
	

jiDðRÞv ð1:2:4:7Þ

with j fixed. If v does not have a component in the invariant space
of the irreducible representation D�, these vectors are all zero,
but for a sufficiently general vector the d� vectors form a basis for
the irreducible representation. This property follows from the
orthogonality relations.

Using this relation one can write for an invariant symmetric
second-rank tensor

f ¼ ð1=NÞ
P

R2K

DðRÞf 0 ¼ ð1=NÞ
P

R2K

�ðRÞf 0�ðRÞT

for an arbitrary symmetric second-rank tensor f 0. For the group
K ¼ 432 this would give a tensor with components fij ¼ a�ij. Of
course, this is a rather impractical method if the order of the
group is large. A simple example for a very small group is the
construction of the symmetrical and antisymmetrical components
of a function: f�ðxÞ ¼ ½f ðxÞ � f ð�xÞ�=2.

1.2.4.3. Clebsch–Gordan coefficients

The tensor product of two irreducible representations of a
group K is, in general, reducible. If ai is a basis for the irreducible
representation �� (i ¼ 1; . . . ; d�) and bj one for ��
(j ¼ 1; . . . ; d�), a basis for the tensor product space is given by

eij ¼ ai 
 bj:

On this basis, the matrix representation is, in general, not in
reduced form, even if the product representation is reducible.
Suppose that

�� 
 �� �
P

�

�m��� :

This means that there is a basis

 �‘k ð‘ ¼ 1; . . . ;m�; k ¼ 1; . . . ; d�Þ;

on which the representation is in reduced form. The multiplicity
m� gives the number of times the irreducible component ��
occurs in the tensor product. The basis transformation is given by

 �‘k ¼
X

ij

� �
i j

� 



�
k ‘

�

ai 
 bj: ð1:2:4:8Þ

The basis transformation is unitary if one starts with orthonormal
bases and has coefficients

� �
i j

� 



�
k ‘

�

ð1:2:4:9Þ

called Clebsch–Gordan coefficients. For the group O(3) they are
the original Clebsch–Gordan coefficients; for bases j‘mi and
j‘0m0i of the (2‘þ 1)- and (2‘0 þ 1)-dimensional representations
D‘ and D‘0 , respectively, of O(3) one has
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jJMi ¼
X

mm0

‘ ‘0

m m0

� 



J

M

�

j‘mi 
 j‘0m0i;

ðJ ¼ j‘� ‘0j; . . . ; ‘þ ‘0Þ: ð1:2:4:10Þ

The multiplicity here is always zero or unity, which is the reason
why one leaves out the number ‘ in the notation.

If the multiplicity m� is unity, the coefficients for given �; �; �
are unique up to a common factor for all i; j; k. This is no longer
the case if the multiplicity is larger, because then one can make
linear combinations of the basis vectors belonging to ��. Anyway,
one has to follow certain conventions. In the case of O(3), for
example, there are the Condon–Shortley phase conventions. The
degree of freedom of the Clebsch–Gordan coefficients for given
matrix representations �� can be seen as follows. Suppose that
there are two basis transformations, S and S0, in the tensor
product space which give the same reduced form:

S D� 
D�

� �
S�1 ¼ S0 D� 
D�

� �
S0�1 ¼ D ¼

M
m�D� :

ð1:2:4:11Þ

Then the matrix S0S�1 commutes with every matrix DðRÞ
(R 2 K). If all multiplicities are zero or unity, it follows from
Schur’s lemma that S0S�1 is the direct sum of unit matrices of
dimension d� . If the multiplicities are larger, the matrix S0S�1 is a
direct sum of blocks which are of the form

�11E �12E . . . �1m�E
�21E �22E . . . �2m�E

..

. ..
. . .

. ..
.

�m�1E . . . . . . �m�m�E

0

B
B
B
@

1

C
C
C
A
;

such that Detð�ijÞ ¼ 1, and the E’s are d�-dimensional unit
matrices. This means that for multiplicity-free (m�  1) cases,
the Clebsch–Gordan coefficients are unique up to a common
factor for all coefficients involving one value of �.

The Clebsch–Gordan coefficients satisfy the following rules:

� �

i j

� 



�

k ‘

�

¼
� �

j i

� 



�

k ‘

�

� �

i j

� 



�

k ‘

�

¼ 0; if D� 
D� does not contain D�

X

k‘

� �

i j

� 



�

k ‘

�	
� �

i0 j0

� 



�

k ‘

�

¼ �ii0�jj0

X

ij

� �

i j

� 



�

k ‘

�	
� �

i j

� 



�

k0 ‘0

�

¼ �kk0�‘‘0 :

For the basis vectors of the invariant space belonging to the
identity representation �1, one has � ¼ d� ¼ 1. Consequently,

 ‘ ¼
X

ij

� �
i j

� 



1

1 ‘

�

ai 
 bj:

1.2.5. Magnetic symmetry

1.2.5.1. Magnetic point groups

Until now, the symmetry transformations we have considered
affect only spatial variables. In physics, however, time coordi-
nates are also often essential, and time reversal is a very impor-
tant transformation as well.

The time-reversal operation generates a group of order 2 with
as elements the unit operator E and the time-reversal operator T.
This transformation commutes with transformations of spatial

variables. One can consider the combined operation of T and a
Euclidean transformation. In other words, we consider the direct
product of the Euclidean group EðdÞ and the time-reversal group
of order 2. Elements of this direct product that belong to EðdÞ are
called orthochronous, whereas the elements of the coset which
are combinations of a Euclidean transformation with T are called
antichronous. We shall start by considering combinations of T
and orthogonal transformations in the physical d-dimensional
space. Such combinations generate a subgroup of the direct
product of OðdÞ and the time-reversal group.

There are three types of such groups. First, one can have a
group that is already a subgroup of OðdÞ. This group does not
have time-reversing elements. A second type of group contains
the operator T and is, therefore, the direct product of a subgroup
of OðdÞ with the time-reversal group. The third type of group
contains antichronous elements but not T itself. This means that
the group contains a subgroup of index 2 that belongs toOðdÞ and
one coset of this subgroup, all elements of which can be obtained
from those of the subgroup by multiplication with one fixed time-
reversing element which is not T. If one then multiplies all
elements of the coset by T, one obtains a group that belongs to
OðdÞ and is isomorphic to the original group. This is the same
situation as for subgroups of Oð3Þ, which is the direct product of
SOð3Þ with space inversion I. Here also all subgroups of
OðdÞ � Z2 are isomorphic to point groups or to the direct product
of a point group and Z2. Magnetic groups can be used to char-
acterize spin arrangements. Because spin inverses sign under time
reversal, a spin arrangement is never invariant under T. There-
fore, the point groups of the second type are also called
nonmagnetic point groups. Because time reversal does not play a
role in groups of the first type, these are called trivial magnetic
point groups, whereas the groups of the third type are called
nontrivial magnetic point groups.

Magnetic point groups are discussed in Chapter 1.5. Ortho-
chronous magnetic point groups (trivial magnetic groups) are
denoted by their symbol as a normal point group. Magnetic point
groups containing T are denoted by the symbol for the ortho-
chronous subgroup, which is a trivial magnetic group, to which
the symbol 10 is added. Magnetic point groups that are neither
trivial nor contain T are isomorphic to a trivial magnetic point
group. They are denoted by the symbol of the latter in which all
symbols for antichronous elements are marked with a prime (0).
For example, �11 is the trivial magnetic group generated by I, �1110 is
the group of four elements generated by I and T, and �110 is the
magnetic group of order 2 generated by the product IT.

Two magnetic point groups are called equivalent if they are
conjugated in OðdÞ � Z2 by an element in OðdÞ. This means that
under the conjugation antichronous elements go to antichronous
elements. The equivalence classes of magnetic point groups are
the magnetic crystal classes. There are 32 classes of trivial crys-
tallographic magnetic point groups, 32 classes of direct products
with the time-reversal group and 58 classes of nontrivial magnetic
crystallographic point groups. They are given in Table 1.2.6.12.

1.2.5.2. Magnetic space groups

Magnetic space groups are subgroups of the direct product of
the Euclidean group EðdÞ with the time-reversal group (this
direct product is sometimes called the Shubnikov group) such
that the orthochronous elements together with the products of
the antichronous elements and T form a space group in d
dimensions. As in the case of magnetic point groups, one can
distinguish trivial magnetic groups, which are subgroups of EðdÞ,
direct products of a trivial group with the time-reversal group
(nonmagnetic) and nontrivial magnetic space groups with anti-
chronous elements but without T. The groups of the third type
can be transformed into groups of the first type by multiplication
of all antichronous elements by T.
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The translation subgroup U of a magnetic space group G is the
intersection of G and TðdÞ � fE;Tg. The factor group G/U is
(isomorphic to) a subgroup ofOðdÞ � fE;Tg. For trivial magnetic
space groups, the point group is a subgroup of OðdÞ. For direct
products with fE;Tg, the translation group is the direct product
of an orthochronous lattice with fE;Tg and the point group is a
subgroup of OðdÞ. Magnetic space groups with antichronous
elements but without T have either a translation subgroup
consisting of orthochronous elements or one with antichronous
elements as well. In the first case, the point group is a subgroup of
OðdÞ � fE;Tg and contains antichronous elements; in the second
case, one may always choose orthochronous elements for the
coset representatives with respect to the translation group, and
the point group is a subgroup of OðdÞ. Therefore, nontrivial
magnetic space groups without T have either the same lattice or
the same point group as the space group of orthochronous
elements.

Two magnetic space groups are equivalent if they are affine
conjugated via a transformation with positive determinant that
maps antichronous elements on antichronous elements. Then
there are 1656 equivalence classes: 230 classes of trivial groups
with only orthochronous elements, 230 classes of direct products
with fE;Tg and 1191 classes with nontrivial magnetic groups.

1.2.5.3. Transformation of tensors

Vectors and tensors transforming in the same way under
Euclidean transformations may behave differently when time
reversal is taken into account. As an example, both the electric
field E and magnetic field B transform under a rotation as a
position vector. Under time reversal, the former is invariant, but
the latter changes sign. Therefore, the magnetic field is called a
pseudovector field under time reversal. Under spatial inversion,
the field E changes sign, as does a position vector, but the field B
does not. Therefore, the magnetic field is also a pseudovector
under central inversion. The electric polarization induced by an
electric field is given by the electric susceptibility, a magnetic
moment induced by a magnetic field is given by the magnetic
susceptibility and in some crystals a magnetic moment is induced
by an electric field via the magneto-electric susceptibility. Under
the four elements of the group generated by T ¼ 10 and I ¼ �11,
the fields and susceptibility tensors transform according to

E �11 10 �110

E 1 �1 1 �1

B 1 1 �1 �1

�ee 1 1 1 1

�mm 1 1 1 1

�me 1 �1 �1 1

Here �11
0
¼ �1110.

In general, a vector transforms as the position vector r under
rotations and changes sign under �11, but not under 10. A pseu-
dovector under �11 or (respectively and) 10 gets an additional minus
sign. The generalization to tensors is straightforward.

gTi1...in
¼ "P"T

P

j1...jn

Qn

k¼1

Rikjk

� �

Tj1...jn
; ð1:2:5:1Þ

where "P and "T are �1, depending on the pseudotensor char-
acter with respect to space and time reversal, respectively.

Under a rotation [R 2 SOðdÞ], a vector transforms according
to a representation characterized by the character �ðRÞ of the
representation. In two dimensions � ¼ 2 cos ’ and in three
dimensions � ¼ 1þ 2 cos ’, if ’ is the rotation angle. Under IR
the character gets an additional minus sign, under RT it is the
same, and under RIT there is again an additional minus sign. For
pseudovectors, either under I or T or both, there are the extra
factors "P, "T and "P"T , respectively. As an example, the character

of the representations corresponding to the electric and magnetic
fields in two orthorhombic point groups (222, 20202 and 20mm0)
are given in Table 1.2.5.1.

The number of invariant components is the multiplicity of the
trivial representation in the representation to which the tensor
belongs. The nonzero invariant field components are Bz for 2

0202,
Ex and By for 2

0mm0. These components can be constructed by
means of projection-operator techniques, or more simply by
solving the linear equations representing the invariance of the
tensor under the generators of the point group. For example, the
magnetic field vector B transforms to (�Bx;By;�Bz) under my

and to (Bx;By;�Bz) under mz, and this gives the result that all
components are zero except By.

1.2.5.4. Time-reversal operators

In quantum mechanics, symmetry transformations act on state
vectors as unitary or anti-unitary operators. For the Schrödinger
equation for one particle without spin,

h- i
@

@t
�ðr; tÞ ¼ H�ðr; tÞ; ð1:2:5:2Þ

the operator that reverses time is the complex conjugation
operator  with

�ðr; tÞ ¼ �	ðr; tÞ ð1:2:5:3Þ

satisfying

h- i
@

@t
�	ðr;�tÞ ¼ H�	ðr;�tÞ;

which is the time-reversed equation.
This operator is anti-linear [ð��þ ��Þ ¼ �	�þ �	�] and

has the following commutation relations with the operators r and
p for position and momentum:

r�1 ¼ r; p�1: ð1:2:5:4Þ

For a Euclidean transformation g ¼ fRjag, the operation on the
state vector is given by the unitary operator

Tg�ðrÞ ¼ �ðg�1rÞ ¼ �ðR�1ðr� aÞÞ: ð1:2:5:5Þ

The two operators  and Tg commute. Therefore, if g is an
orthochronous element of the symmetry group, the corre-
sponding operator is Tg, and if gT is an antichronous element the
operator is Tg. The operator Tg is also anti-unitary: it is anti-
linear and conserves the absolute value of the Hermitian scalar
product: jhTg�jTg�ij ¼ jh�j�ij.

If the particle has a spin, the time-reversal operator has to
have the commutation relation

S�1 ¼ �S ð1:2:5:6Þ

with the spin operator S. For a spin-12 particle, the spin operators
are Si ¼ h- �i=2 in terms of the Pauli matrices. Then the time-
reversal operator is

TT ¼ �2: ð1:2:5:7Þ
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Table 1.2.5.1. Character of the representations corresponding to the electric
and magnetic fields in point groups 222, 20202 and 20mm0

ni is the number of invariants.

Point
group E ni B ni

222 3 �1 �1 �1 0 3 �1 �1 �1 0
20202 3 �1 �1 �1 0 3 1 1 �1 1
20mm0 3 �1 1 1 1 3 1 �1 1 1



1.2. REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

The operators corresponding to the elements of a magnetic
symmetry group are generally (anti-)unitary operators on the
state vectors. These operators form a representation of the
magnetic symmetry group.

TgTg0 ¼ Tgg0 : ð1:2:5:8Þ

In principle, they even form a projective representation, but as
discussed before for particles without spin the factor system is
trivial, and for particles with spin one can take as the symmetry
group the double group of the symmetry group.

1.2.5.5. Co-representations

Suppose the magnetic point group G has an orthochronous
subgroup H and an antichronous coset H 0 ¼ aH for some
antichronous element a. The elements of H are represented by
unitary operators, those of H 0 by anti-unitary operators. These
operators correspond to matrices in the following way. Suppose
�j are the elements of a basis of the state vector space. Then

Tg�j ¼
P

k

MðgÞkj�k; g 2 G: ð1:2:5:9Þ

The matrices M do not form a matrix representation in the usual
sense. They satisfy the relations

Mðg1g2Þ ¼ Mðg1ÞMðg2Þ g1 2 H

¼ Mðg1ÞM
	ðg2Þ g1 2 H 0; ð1:2:5:10Þ

as one verifies easily. Matrices satisfying these relations are called
co-representations of the group G.

A co-representation is irreducible if there is no proper invar-
iant subspace. If a co-representation is reducible, there is a basis
transformation S that brings the matrices into a block form. For
co-representations, a basis transformation S with

S�i ¼
Pm

j¼1

Sji�j ð1:2:5:11Þ

transforms the matrices according to

MðhÞ ! S�1MðhÞS; MðahÞ ! S�1MðahÞS	; ðh 2 HÞ:

ð1:2:5:12Þ

Here a is the coset representative of the antichronous elements.
The co-representation restricted to the orthochronous subgroup
H gives an ordinary representation of H which is not necessarily
irreducible even if the co-representation is irreducible. Suppose
that �1 . . . �m form a basis for the irreducible co-representation
ofG and that the restriction toH is also irreducible. The elements
Ta�1; . . . ;Ta�m form another basis for the space, and on this
basis the representation matrices of H follow from

ThTa�i ¼ TaTa�1ha�i ¼
Pm

j¼1

Mða�1haÞ
	

jiTa�j: ð1:2:5:13Þ

Because both bases are bases for the same irreducible space, it
means that the (ordinary) representations MðHÞ and Mða�1HaÞ

	

are equivalent.
If the representation MðHÞ is reducible, there is a basis

’1; . . . ; ’d for the irreducible representation DðHÞ. A basis for
the whole space then is given by

’1; . . . ; ’d;Ta’1; . . . ;Ta’d;

because the co-representation of G would be reducible if the last
d vectors were dependent on the first d. On this basis, the
matrices for the co-representation become

MðhÞ ¼
DðhÞ 0

0 Dða�1haÞ
	

� �

;

MðahÞ ¼
0 DðahaÞ

DðhÞ
	 0

� �

; h 2 H; a 2 H 0

ð1:2:5:14Þ

because

Tah’i ¼ Ta

P

j

DðhÞji’j ¼
P

j

DðhÞ
	

jiTa’j

TahTa’i ¼ Taha’i ¼
P

j

DðahaÞji’j:

The two irreducible components for MðHÞ can be either
equivalent or non-equivalent. If they are not equivalent the co-
representation is indeed irreducible, because a basis transfor-
mation S that leaves the matrices MðhÞ the same is necessarily of
the form �E� 	E because of Schur’s lemma, and such a matrix
cannot bring the matricesDðah) into a reduced form. In this case,
the co-representation MðGÞ is irreducible, in agreement with the
starting assumption, and the dimension m is twice the dimension
of the representation DðHÞ: m ¼ 2d.

If the two irreducible components DðHÞ and Dða�1HaÞ
	 are

equivalent, there is a basis transformation U such that

Dða�1haÞ
	
¼ U�1DðhÞU 8 h 2 H:

The basis transformation

T ¼
1 0

0 U�1

� �

then gives a new matrix co-representation for G:

MðhÞ ! T�1MðhÞT ¼
DðhÞ 0

0 DðhÞ

� �

;

MðahÞ ! T�1MðahÞT	 ¼
0 DðahaÞU	�1

UDðhÞ
	 0

� �

:

The most general basis transformation S that leaves MðhÞ in the
same form is then

S ¼
�E 	E
�E �E

� �

: ð1:2:5:15Þ

Under this basis transformation, the matrices MðahÞ become

S�1MðahÞS	 ¼
1

ð�� � 	�Þ
M

with

M11 ¼ ��		UDðhÞ
	
þ �	�DðahaÞU	�1

M12 ¼ j�j2DðahaÞU	�1 � j	j2UDðhÞ
	

M21 ¼ j�j2UDðhÞ
	
� j�j2DðahaÞU	�1

M22 ¼ �		UDðhÞ
	
� ��	DðahaÞU	�1:

This is block diagonal if

j	j2UU	Dða�1haÞU	�1U	 ¼ j�j2DðahaÞ

and analogous expressions for j�j2 and j�j2 also hold.
The transformation matrix U satisfies UU	 ¼ �Dða2Þ, as one

can show as follows. From the definition

Dða�1haÞ
	
¼ U�1DðhÞU

follow the two relations
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Dða�2ha2Þ ¼ U	�1U�1DðhÞUU	

Dða�2ha2Þ ¼ Dða2Þ
�1
DðhÞDða2Þ:

(Notice that a2 2 H.) Because DðHÞ is irreducible, it follows that
UU	Dða�2Þ is a multiple of the identity: UU	 ¼ �Dða2Þ. The
factor � is real because

Dða2Þ
	
¼ U�1Dða2ÞU ¼ U�1UU	U=�

and

Dða2Þ
	
¼ U	U=�	:

Hence � ¼ �	 ¼ �1.
The conditions for the transformed matrix MðahÞ to be block

diagonal then read

�j	j2Dða2ÞDða�1haÞ ¼ j�j2DðahaÞ; ð1:2:5:16Þ

with the corresponding expressions for � and �. If � is equal to
�1, these equations do not have a solution. However, when
� ¼ þ1 there is a solution, which means that the co-repre-
sentation is reducible, contrary to the assumption. Therefore, this
situation can not occur.

One can summarize these considerations in the following
theorem.

Theorem 1. If the restriction of an irreducible co-representation
to the orthochronous subgroup is reducible, then either the (two)
irreducible components are non-equivalent, or they are equiva-
lent and connected by a basis transformation U for which
UU	 ¼ �Dða2Þ. If the restriction MðHÞ is irreducible, it is
equivalent to Mða�1HaÞ

	.

In the former case, the dimension of the co-representation is
twice that of the restriction, in the latter case they are equal.
Therefore, one has the following corollary.

Corollary. A d-dimensional irreducible representation of the
orthochronous subgroup H can occur as irreducible component
of the restriction of an irreducible co-representation of G with
dimension m with

m ¼ 2d if DðHÞ nonequivalent to Dða�1HaÞ
	

m ¼ 2d if DðHÞ equivalent to Dða�1HaÞ
	 and UU	 ¼ �Dða2Þ

m ¼ d if DðHÞ equivalent to Dða�1HaÞ
	 and UU	 ¼ þDða2Þ:

The three cases from theorem (1) can be distinguished by the
following theorem:

Theorem 2. The irreducible representation DðHÞ with character
�ðHÞ belongs to the respective cases of theorem (1) if

P

h2H

�ðahahÞ ¼
0 for the first case

�N for the second case

N for the third case:

8
<

:
ð1:2:5:17Þ

The proof of theorem (2) goes as follows. We have

P

h2H

�ðahahÞ ¼
P

h2H

Pd

i¼1

DðahahÞii

¼
P

i;k;l

Dða2Þik
P

h2H

Dða�1haÞklDðhÞli;

ð1:2:5:18Þ

and this gives zero if DðHÞ and Dða�1HaÞ
	 are non-equivalent,

because of the orthogonality relations. If the two representations
are equivalent, we take for convenience unitary representations.
Then there is a unitary matrix U with

Dða�1haÞ
	
¼ U�1DðhÞU:

Then we have
P

h2H

�ðahahÞ ¼
P

ik‘mn

Dða2ÞikðU
	�1Þkm

P

h2H

DðhÞ
	

mnUn‘DðhÞ‘i

¼ ðN=dÞ
P

i;k;‘

Dða2ÞikðU
	�1Þk‘U

	
i‘

¼ ðN=dÞ
P

i;k

Dða2ÞikðU
	UÞik

¼ �ðN=dÞ
P

i;k

Dða2ÞikDða�2Þki ¼ �N:

This proves theorem (2).
In the special case of a group G in which the time reversal 10

occurs as element, one may choose a ¼ 10. In this case, a2 is the
identity and the expressions simplify. Theorem (1) now states that
an irreducible d-dimensional representation DðHÞ of an ortho-
chronous group can occur as irreducible component in the
restriction of an irreducible m-dimensional co-representation of
H � fE; 10g, with

m ¼ 2d if DðHÞ nonequivalent to DðHÞ
	

m ¼ 2d if DðHÞ ¼ UDðHÞ
	
U�1 and UU	 ¼ �E

m ¼ d if DðHÞ ¼ UDðHÞ
	
U�1 and UU	 ¼ þE;

which correspond to, respectively, [cf. theorem (2)]

P

h2H

�ðh2Þ ¼
0

�N

þN

:

8
<

:
ð1:2:5:19Þ

For a spinless particle, the time-reversal operator is the complex
conjugation . This generates a co-representation of the group Z2.
The symmetry group is the direct product of the point group H
and Z2. Compared to the degeneracy d of a state characterized by
the irreducible representation DðHÞ, the degeneracy is double
(m ¼ 2d) for the first two cases and the same for the third case.
When it is a particle with spin 1

2, the time-reversal operator is �2,
which is of order 4. If one takes for the coset representative a the
time reversal, one has Dða2Þ ¼ �E. Therefore, the degeneracy is
now doubled in the first and third case, and the same for the
second. This is Kramer’s degeneracy.

1.2.6. Tables

In the following, a short description of the tables is given in order
to facilitate consultation without reading the introductory theo-
retical Sections 1.2.2 to 1.2.5.

Table 1.2.6.1. Finite point groups in three dimensions. The point
groups are grouped by isomorphism class. There are four infinite
families and six other isomorphism classes. (Notation: Cn for the
cyclic group of order n, Dn for the dihedral group of order 2n, T,
O and I the tetrahedral, octahedral and icosahedral groups,
respectively). Point groups of the first class are subgroups of
SO(3), those of the second class contain �E, and those of the
third class are not subgroups of SO(3), but do not contain �E
either. The families Cn and Dn are also isomorphism classes of
two-dimensional finite point groups.

Table 1.2.6.2. Among the infinite number of finite three-
dimensional point groups, 32 are crystallographic.

Table 1.2.6.3. Character table for the cyclic groups Cn. The
generator is denoted by �. The number of elements in the
conjugacy classes (ni) is one for each class. The order is the
smallest nonnegative power p for which Ap ¼ E. The n irre-
ducible representations are denoted by �i.

Table 1.2.6.4. Character tables for the dihedral groups Dn of
order 2n. ni is the number of elements in the conjugacy class Ci.
The irreducible representations are denoted by �i.
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Table 1.2.6.5. The character tables for the 32 three-dimensional
crystallographic point groups. The groups are grouped by
isomorphism class (there are 18 isomorphism classes).

For each isomorphism class, the character table is given,
including the symbol for the isomorphism class, the number n of
elements per conjugacy class and the order of the elements in
each such class. The conjugation classes are specified by repre-
sentative elements expressed in terms of the generators �; �; . . ..
The irreps are denoted by �i, where i takes as many values as
there are conjugation classes. In each isomorphism class for each
point group, given by its international symbol and its Schoenflies
symbol, identification is made between the generators of the
abstract group (�; �) and the generating orthogonal transfor-
mations. Notation: Cnx is a rotation of 2�=n along the x axis, �x is
a reflection from a plane perpendicular to the x axis, Snz is a
rotation over 2�=n along the z axis multiplied by �E and �v is a
reflection from a plane through the unique axis.

The notation for the irreducible representations can be given
as �i, but other systems have been used as well. Indicated below
are the relations between �i and a system that uses a character-
ization according to the dimension of the representation and (for

groups of the second kind) the sign of the representative of �E.
This nomenclature is often used by spectroscopists.

A;A1;A2;A
0;A00 one-dimensional

B;B1;B2;B3 one-dimensional

E two-dimensional

T;T1;T2 three-dimensional

Ag;Bg etc: gerade

Au;Bu etc: ungerade

The other notation for which the relation with the present
notation is indicated is that of Kopský, and is used on the
accompanying CD-ROM.

The three functions x, y and z transform according to the
vector representation of the point group, which is generally
reducible. The reduction into irreducible components of this
three-dimensional vector representation is indicated.

The six bilinear functions x2, xy, xz, y2, yz, z2 transform
according to the symmetrized product of the vector representa-
tion. The basis functions of the irreducible components are
indicated. Because the basis functions are real, one should
consider the physically irreducible representations.

Table 1.2.6.6. The point groups of the second class containing
�E are obtained from those of the first class by taking the direct
product with the group generated by �11. From the point groups,
one obtains nonmagnetic point groups by the direct product with
the group generated by the time reversal 10. The relation between
the characters of a point group and its direct products with
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Table 1.2.6.2. Crystallographic point groups in three dimensions

Isomorphism
class

First
class

Second class
with �E

Third class
without �E Order

C1 1 1
C2 2 �11 m 2
C3 3 3
C4 4 4 4
D2 222 2=m 2mm 4
C6 6 �33 �66 6
D3 32 3m 6
C4 � C2 4=m 8
D4 422 4mm, �442m 8
D2 � C2 mmm 8
D6 622 �33m 6mm, �662m 12
T 23 12
C6 � C2 6=m 12
D4 � C2 4=mmm 16
O 432 �443m 24
D6 � C2 6=mmm 24
T � C2 m�33 24
O� C2 m�33m 48

Table 1.2.6.3. Irreducible representations for cyclic groups Cn

! ¼ expð2�i=nÞ, s.c.m ¼ smallest common multiple.

" � �2 �3 . . . �n�1

ni 1 1 1 1 . . . 1
Order 1 n s.c.m.(n, 2) s.c.m.(n, 3) . . . n

�1 1 1 1 1 . . . 1
�2 1 ! !2 !3 . . . !�1

..

.
1 ..

. ..
. ..

. . .
. ..

.

�n 1 !�1 !�2 !�3 . . . !

Table 1.2.6.4. Irreducible representations for dihedral groups Dn

(a) n odd. m ¼ 1; . . . ; ðn� 1Þ=2; j ¼ 1; . . . ; ðn� 1Þ=2, s.c.m ¼ smallest common
multiple.

" �j . . . �
ni 1 1 2 n

Order 1 s.c.m.(n; j) . . . 2

�1 1 1 . . . 1
�2 1 1 . . . �1
�2þm 2 2 cosð2�mj=nÞ . . . 0

(b) n even. m ¼ 1; . . . ; ðn=2� 1Þ; j ¼ 1; . . . ; ðn=2� 1Þ, s.c.m ¼ smallest common
multiple.

" �n=2 �j . . . � ��
ni 1 1 2 . . . n=2 n=2

Order 1 2 s.c.m.ðn; jÞ . . . 2 2

�1 1 1 1 . . . 1 1
�2 1 1 1 . . . �1 �1
�3 1 ð�1Þn=2 ð�1Þj . . . 1 �1
�4 1 ð�1Þn=2 ð�1Þj . . . �1 1
�4þm 2 ð�1Þm2 2cos(2�mj=n) . . . 0 0

Table 1.2.6.1. Finite point groups in three dimensions

Isomorphism
class

First class with
determinants > 0 Second class with �E

Third class
without �E Order

Cn n �nn (n even, > 2) n
m (n ¼ 2)

Dn n22 (n even) nmm (n even) 2n
n2 (n odd, > 1) �nn2m (n even)

nm (n odd)
Cn � C2 �nn (n odd) 2n

n=m (n even)
Dn � C2 n=mmm (n even, � 4) 4n

mmm (n ¼ 2)
�nnm (n odd, > 0)

T 23 12
O 432 �443m 24
I 532 60
T � C2 m�33 24
O� C2 m�33m 48
I � C2

�55�33m 120
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Table 1.2.6.5. Irreducible representations and character tables for the 32 crystallographic point groups in three dimensions

(a) C1

C1 "
n 1

Order 1

�1 1

1 �1 : A ¼ �1 x; y; z x2; y2; z2; yz; xz; xy
C1

(b) C2

C2 " �
n 1 1

Order 1 2

�1 1 1
�2 1 �1

2 � ¼ C2z �1 : A ¼ �1 z x2; y2; z2; xy
C2 �2 : B ¼ �3 x; y yz; xz

m � ¼ �z �1 : A
0 ¼ �1 x; y x2; y2; z2; xy

Cs �2 : A
00 ¼ �3 z yz; xz

�11 � ¼ I �1 : Ag ¼ �þ1 x2; y2; z2; yz; xz; xy
Ci �2 : Au ¼ ��1 x; y; z

(c) C3 [! ¼ expð2�i=3Þ].

C3 " � �2

n 1 1 1
Order 1 3 3

�1 1 1 1
�2 1 ! !2

�3 1 !2 !

Matrices of the real two-dimensional representation:

" � �2

�2 � �3 1 0

0 1

� �
0 �1

1 �1

� �
�1 1

�1 0

� �

3 � ¼ C3z �1 : A ¼ �1 z x2 þ y2; z2

C3 �2 � �3 : E ¼ �1c þ �
	
1c x; y x2 � y2; xz; yz; xy

(d) C4

C4 " � �2 �3

n 1 1 1 1
Order 1 4 2 4

�1 1 1 1 1
�2 1 i �1 �i
�3 1 �1 1 �1
�4 1 �i �1 i

Matrices of the real two-dimensional representation:

" � �2 �3

�2 � �4 1 0

0 1

� �
0 �1

1 0

� �
�1 0

0 �1

� �
0 1

�1 0

� �

4 � ¼ C4z �1 : A ¼ �1 z x2 þ y2; z2

C4 �3 : B ¼ �3 x2 � y2; xy
�2 � �4 : E ¼ �1c þ �

	
1c x; y yz; xz

�44 � ¼ S4 �1 : A ¼ �1 x2 þ y2; z2

S4 �3 : B ¼ �3 z x2 � y2; xy
�2 � �4 : E ¼ �1c þ �

	
1c x; y yz; xz

(e) C6 [! ¼ expð�i=3Þ].

C6 " � �2 �3 �4 �5

n 1 1 1 1 1 1
Order 1 6 3 2 3 6

�1 1 1 1 1 1 1
�2 1 ! !2 �1 �! �!2

�3 1 !2 �! 1 !2 �!
�4 1 �1 1 �1 1 �1
�5 1 �! !2 1 �! !2

�6 1 �!2 �! �1 !2 !

Matrices of the real representations:

�2 � �6 �3 � �5

"
1 0

0 1

� �
1 0

0 1

� �

�
1 �1

1 0

� �
0 �1

1 �1

� �

�2
0 �1

1 �1

� �
�1 1

�1 0

� �

�3
�1 0

0 �1

� �
1 0

0 1

� �

�4
�1 1

�1 0

� �
0 �1

1 �1

� �

�5
0 1

�1 1

� �
�1 1

�1 0

� �

6 � ¼ C6z �1 : A ¼ �1 z x2 þ y2; z2

C6 �4 : B ¼ �3
�2 � �6: E1 ¼ �1c þ �

	
1c x; y xz; yz

�3 � �5: E2 ¼ �2c þ �
	
2c x2 � y2; xy

�33 � ¼ S3z �1 : Ag ¼ �þ1 x2 þ y2; z2

S6 �4 : Au ¼ ��1 z
�2 � �6: Eu ¼ ��1c þ �

�	
1c x; y

�3 � �5: Eg ¼ �þ1c þ �
þ	
1c x2 � y2; xy; xz; yz

�66 � ¼ S6z �1 : A
0 ¼ �1 x2 þ y2; z2

C3h �4 : A
00 ¼ �3 z

�2 � �6: E
0 ¼ �2c þ �

	
2c xz; yz

�3 � �5: E
00 ¼ �1c þ �

	
1c x; y x2 � y2; xy

(f) D2

D2 " � � ��
n 1 1 1 1

Order 1 2 2 2

�1 1 1 1 1

�2
1 1 �1 �1

�3
1 �1 1 �1

�4 1 �1 �1 1

222 � ¼ C2x �1 : A1 ¼ �1 x2; y2; z2

D2 � ¼ C2y �2 : B3 ¼ �3 x yz
�� ¼ C2z �3 : B2 ¼ �4 y xz

�4 : B1 ¼ �2 z xz

mm2 � ¼ C2z �1 : A1 ¼ �1 z x2; y2; z2

C2v � ¼ �x �2 : A2 ¼ �2 xy
�� ¼ �y �3 : B2 ¼ �3 y yz

�4 : B1 ¼ �4 x xz

2=m � ¼ C2z �1 : Ag ¼ �þ1 x2; y2; z2; xy
C2h � ¼ �z �2 : Au ¼ ��1 z z

�� ¼ I �3 : Bu ¼ ��3 x; y
�4 : Bg ¼ �þ3
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Table 1.2.6.5 (cont.)

(g) D3

D3 " � �
n 1 2 3

Order 1 3 2

�1 1 1 1
�2 1 1 �1
�3 2 �1 0

Matrices of the two-dimensional representation:

" � �

�3 1 0

0 1

� �
0 �1

1 �1

� �
�1 1

0 1

� �

32 � ¼ C3z �1 : A1 ¼ �1 x2 þ y2; z2

D3 � ¼ C2x �2 : A2 ¼ �2 z
�3 : E ¼ �1 x; y xz; yz; xy; x2 � y2

3m � ¼ C3z �1 : A1 ¼ �1 z x2 þ y2; z2

C3v � ¼ �v �2 : A2 ¼ �2
�3 : E ¼ �1 x; y xz; yz; xy; x2 � y2

(h) D4

D4 " � �2 � ��
n 1 2 1 2 2

Order 1 4 2 2 2

�1 1 1 1 1 1
�2 1 1 1 �1 �1
�3 1 �1 1 1 �1
�4 1 �1 1 �1 1
�5 2 0 �2 0 0

Matrices of the two-dimensional representation:

�5

" 1 0

0 1

� �

� 0 �1

1 0

� �

�2 �1 0

0 �1

� �

� �1 0

0 1

� �

�� 0 �1

�1 0

� �

422 � ¼ C4z �1 : A1 ¼ �1 x2 þ y2; z2

D4 � ¼ C2x �2 : A2 ¼ �2 z
�3 : B1 ¼ �3 x2 � y2

�4 : B2 ¼ �4 xy
�5 : E ¼ �1 x; y xz; yz

4mm � ¼ C4z �1 : A1 ¼ �1 z x2 þ y2; z2

C4v � ¼ �v �2 : A2 ¼ �2
�3 : B1 ¼ �3 x2 � y2

�4 : B2 ¼ �4 xy
�5 : E ¼ �1 x; y xz; yz

�442m � ¼ S4z �1 : A1 ¼ �1 x2 þ y2; z2

D2d � ¼ C2v �2 : A2 ¼ �2
�� ¼ �d �3 : B1 ¼ �3 x2 � y2

�4 : B2 ¼ �4 z xy
�5 : E ¼ �1 x; y xz; yz

(i) D6

D6 " � �2 �3 � ��
n 1 2 2 1 3 3

Order 1 6 3 2 2 2

�1 1 1 1 1 1 1
�2 1 1 1 1 �1 �1
�3 1 �1 1 �1 1 �1
�4 1 �1 1 �1 �1 1
�5 2 1 �1 �2 0 0
�6 2 �1 �1 2 0 0

Matrices of the two-dimensional representations:

�5 �6

" 1 0

0 1

� �
1 0

0 1

� �

� 1 �1

1 0

� �
0 �1

1 �1

� �

�2 0 �1

1 �1

� �
�1 1

�1 0

� �

�3 �1 0

0 �1

� �
1 0

0 1

� �

� �1 1

0 1

� �
�1 1

0 1

� �

�� �1 0

�1 1

� �
0 �1

�1 0

� �

622 � ¼ C6z �1 : A1 ¼ �1 x2 þ y2; z2

D6 � ¼ C2x �2 : A2 ¼ �2 z
�3 : B1 ¼ �3 x2 � y2

�4 : B2 ¼ �4 xy
�5 : E1 ¼ �1 x; y xz; yz
�6 : E2 ¼ �2

6mm � ¼ C6z �1 : A1 ¼ �1 z x2 þ y2; z2

C6v � ¼ �v �2 : A2 ¼ �2
�3 : B1 ¼ �3 x2 � y2

�4 : B2 ¼ �4 xy
�5 : E1 ¼ �1 x; y xz; yz
�6 : E2 ¼ �2

�662m � ¼ S6z �1 : A
0
1 ¼ �1 x2 þ y2; z2

D3h � ¼ C2v �2 : A
0
2 ¼ �2

�� ¼ �d �3 : A
00
1 ¼ �3 x2 � y2

�4 : A
00
2 ¼ �4 z xy

�5 : E
0 ¼ �2 xz; yz

�6 : E
00 ¼ �1 x; y

�33m � ¼ S3z �1 : A1g ¼ �þ1 x2 þ y2; z2

D3v � ¼ �d �2 : A2g ¼ �þ2
�3 : A1u ¼ ��1 z
�4 : A2u ¼ ��2
�5 : Eu ¼ ��1 x; y
�6 : Eg ¼ �þ1 xz:yz; xy; x2 � y2

(j) T [! ¼ expð2�i=3Þ].

T " � �2 �
n 1 4 4 3

Order 1 3 3 2

�1 1 1 1 1
�2 1 ! !2 1
�3 1 !2 ! 1
�4 3 0 0 �1
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Table 1.2.6.6. Direct products with fE; �11g and fE; 10g

(a) With fE; �11g.

K � Z2 R 2 K �RR

�g �ðRÞ �ðRÞ
�u �ðRÞ ��ðRÞ

4=m C4 � Z2 cf. 4
6=m C6 � Z2 cf. 6
mmm D2 � Z2 cf. 222
4=mmm D4 � Z2 cf. 422
6=mmm D6 � Z2 cf. 622
m�33 T � Z2 cf. 23
m�33m O� Z2 cf. 432

(b) With fE; 10g.

K � Z2 R 2 K R0

�þ �ðRÞ �ðRÞ
�� �ðRÞ ��ðRÞ

10 C1 � Z2 cf. 1
210 C2 � Z2 cf. 2
m10 C2 � Z2 cf. m
22210 D2 � Z2 cf. 222
2mm10 D2 � Z2 cf. 2mm
410 C4 � Z2 cf. 4
�4410 C4 � Z2 cf. �44
4mm10 D4 � Z2 cf. 4mm
42210 D4 � Z2 cf. 422
�442m10 D4 � Z2 cf. �442m
310 C3 � Z2 cf. 3
3210 D3 � Z2 cf. 32
�3310 C6 � Z2 cf. �33
3m10 D3 � Z2 cf. 3m
6mm10 D6 � Z2 cf. 6mm
610 C6 � Z2 cf. 6
�6610 C6 � Z2 cf. �66
62210 D6 � Z2 cf. 622
�662m10 D6 � Z2 cf. �662m
2310 T � Z2 cf. 23
43210 O� Z2 cf. 432
�443m10 O� Z2 cf. �443m

(c) With fE; �11g and fE; 10g.

K � Z2 � Z2 R 2 K �RR R0 �RR0

�gþ �ðRÞ �ðRÞ �ðRÞ �ðRÞ
�uþ �ðRÞ ��ðRÞ �ðRÞ ��ðRÞ
�g� �ðRÞ �ðRÞ ��ðRÞ ��ðRÞ
�u� �ðRÞ ��ðRÞ ��ðRÞ �ðRÞ

�110 C1 � Z2 � Z2 cf. 1
210=m C2 � Z2 � Z2 cf. 2
4=m10 C4 � Z2 � Z2 cf. 4
6=m10 C6 � Z2 � Z2 cf. 6
mmm10 D2 � Z2 � Z2 cf. 222
4=mmm10 D4 � Z2 � Z2 cf. 422
�33m10 D6 � Z2 � Z2 cf. 3m
6=mmm10 D6 � Z2 � Z2 cf. 622
m310 T � Z2 � Z2 cf. 23
mð�33Þm10 O� Z2 � Z2 cf. 432

Table 1.2.6.5 (cont.)

Real representations of dimension d> 1:

�2 � �3 �4

" 1 0

0 1

� �
1 0 0

0 1 0

0 0 1

0

@

1

A

� 1 �1

0 �1

� �
0 1 0

0 0 1

1 0 0

0

@

1

A

�2 1 �1

0 �1

� �
0 0 1

1 0 0

0 1 0

0

@

1

A

� 1 0

0 1

� �
�1 0 0

0 �1 0

0 0 1

0

@

1

A

23 � ¼ C3d �1 : A ¼ �1 x2 þ y2 þ z2

T � ¼ C2z �2 � �3 : E ¼ �3c þ �
	
3c x2 � y2; x2 � z2

�4 : T ¼ �1 x; y; z xy; xz; yz

(k) O

O " � �2 � ��
n 1 8 3 6 6

Order 1 3 2 4 2

�1 1 1 1 1 1
�2 1 1 1 �1 �1
�3 2 �1 2 0 0
�4 3 0 �1 1 �1
�5 3 0 �1 �1 1

Higher-dimensional representations:

�3 �4 �5

" 1 0

0 1

� �
1 0 0

0 1 0

0 0 1

0

@

1

A
1 0 0

0 1 0

0 0 1

0

@

1

A

� 0 �1

1 �1

� �
0 0 1

1 0 0

0 1 0

0

@

1

A
0 0 1

1 0 0

0 1 0

0

@

1

A

�2 1 0

0 1

� �
�1 0 0

0 �1 0

0 0 1

0

@

1

A
�1 0 0

0 �1 0

0 0 1

0

@

1

A

� 0 1

1 0

� �
0 �1 0

1 0 0

0 0 1

0

@

1

A
0 1 0

�1 0 0

0 0 �1

0

@

1

A

�� �1 0

�1 1

� �
�1 0 0

0 0 1

0 1 0

0

@

1

A
1 0 0

0 0 �1

0 �1 0

0

@

1

A

432 � ¼ C4z �1 : A1 ¼ �1 x2 þ y2 þ z2

O � ¼ C3d �2 : A2 ¼ �2
�� ¼ C2 �3 : E ¼ �3 x2 � y2; y2 � z2

�4 : T1 ¼ �1 x; y; z
�5 : T2 ¼ �2 xy; xz; yz

�443m � ¼ S4z �1 : A1 ¼ �1 x2 þ y2 þ z2

Td � ¼ C3d �2 : A2 ¼ �2
�� ¼ �d �3 : E ¼ �3 x2 � y2; y2 � z2

�4 : T1 ¼ �1
�5 : T2 ¼ �2 x; y; z xy; yz; xz

Other point groups which are of second class and contain�E. See Table 1.2.6.6(a).

Group
Isomorphism
class

Rotation
subgroup

4=m C4 � Z2 4
6=m C6 � Z2 6
mmm D2 � Z2 222
4=mmm D4 � Z2 422
6=mmm D6 � Z2 622
m�33 T � Z2 23
m�33m O� Z2 432
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groups generated by �11, 10 and f�11; 10g are given in Tables 1.2.6.6(a),
(b) and (c), respectively.

Table 1.2.6.7. The representations of a point group are also
representations of their double groups. In addition, there are
extra representations which give projective representations of the
point groups. For several cases, these are associated with an
ordinary representation. As extra representations, those irre-
ducible representations of the double point groups that give rise
to projective representations of the point groups with a factor
system that is not associated with the trivial one are given. These
do not correspond to ordinary representations of the single
group.

Table 1.2.6.8. If one chooses for each element of a point group
one of the two corresponding SUð2Þ elements, the latter form a
projective representation of the point group. If one selects for the
rotation R 2 K � SOð3Þ the element

uðRÞ ¼ E cosð’=2Þ þ iðr � nÞ sinð’=2Þ;

where ’ is the rotation angle and n the rotation axis, and for
R 2 K � Oð3Þ\SOð3Þ the element

uðRÞ ¼ E cosð =2Þ þ iðr � nÞ sinð =2Þ;

where  and n are the rotation angle and axis of the rotation�R,
the matrices uðRÞ form a projective representation:

uðRÞuðR0Þ ¼ !sðR;R
0ÞuðRR0Þ:

The factor system !s is the spin factor system. It is determined via
the generators and defining relations

WiðA1; . . . ;ApÞ ¼ E

of the point group K. Then

WiðuðA1Þ; . . . ; uðApÞÞ ¼ �iE;

and the factors �i fix uniquely the class of the factor system !s.
These factors are given in the table.

Because �11 is represented by the unit matrix in spin space, the
double groups of two isomorphic point groups obtained from
each other by replacing the elements R 2 Oð3Þ\SOð3Þ by �R are
the same.

The projective representations with factor system !s may
sometimes be associated with one with a trivial factor system. If
this is the case, there are actually no extra representations of the
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Table 1.2.6.8. Projective spin representations of the 32 crystallographic point groups

Point group Relations giving �i

Double
group

Extra
representations

1 A ¼ E 1d No
�11 A2 ¼ E No

2, m A2 ¼ �E 2d No
2=m A2 ¼ B2 ¼ �E, ðABÞ2 ¼ E

222, 2mm A2 ¼ B2 ¼ ðABÞ
2
¼ �E 222d Yes

mmm A2 ¼ B2 ¼ ðABÞ
2
¼ �E

C2 ¼ E;AC ¼ CA, BC ¼ CB

4, �44 A4 ¼ �E 4d No
4=m A4 ¼ B2 ¼ �E, AB ¼ BA

422, 4mm, �442m A4 ¼ B2 ¼ ðABÞ
2
¼ �E 422d Yes

4=mmm As above, plus C2 ¼ E, AC ¼ CA, BC ¼ CB

3 A3 ¼ �E 3d No
�33 A6 ¼ E

32, 3m A3 ¼ B2 ¼ ðABÞ
2
¼ �E 32d No

�33m A6 ¼ E, B2 ¼ ðABÞ
2
¼ �E

6, �66 A6 ¼ �E 6d No
6=m A6 ¼ B2 ¼ �E, AB ¼ BA

622, 6mm, �662m A6 ¼ B2 ¼ ðABÞ
2
¼ �E 622d Yes

6=mmm As above, plus C2 ¼ E, AC ¼ CA, BC ¼ CB

23 A3 ¼ B2 ¼ ðABÞ
3
¼ �E 23d Yes

m3 As above, plus C2 ¼ E, AC ¼ CA, BC ¼ CB

432, �443m A4 ¼ B3 ¼ ðABÞ
2
¼ �E 432d Yes

m�33m As above, plus C2 ¼ E, AC ¼ CA, BC ¼ CB

Table 1.2.6.7. Extra representations of double groups

222d E �E �A �B �AB
�0
5 2 �2 0 0 0

422d E �E �A2 A �A �B �AB
�0
6 2 �2 0

ffiffiffi
2

p
�

ffiffiffi
2

p
0 0

�0
7 2 �2 0 �

ffiffiffi
2

p ffiffiffi
2

p
0 0

622d E �E A2 �A2 �B �A3 A5 �A5 �A3B
�0
8 2 �2 1 �1 0 0

ffiffiffi
3

p
�

ffiffiffi
3

p
0

�0
9 2 �2 1 �1 0 0 �

ffiffiffi
3

p ffiffiffi
3

p
0

�0
7 2 �2 �2 2 0 0 0 0 0

23d E �E A �A A2 �A2 �B
�0
5 2 �2 1 �1 1 �1 0

�0
6 2 �2 ! !4 !2 !5 0

�0
7 2 �2 !5 !2 !4 ! 0

432d E �E B �B �A2 A �A �AB
�0
6 2 �2 1 �1 0

ffiffiffi
2

p
�

ffiffiffi
2

p
0

�0
7 2 �2 1 �1 0 �

ffiffiffi
2

p ffiffiffi
2

p
0

�0
8 4 �4 �1 1 0 0 0 0
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double group. If there are extra representations, these are irre-
ducible representations of the double group: see Table 1.2.6.7.

Table 1.2.6.9. For the 32 three-dimensional crystallographic
point groups, the character of the vector representation � and the
number of times the identity representation occurs in a number
of tensor products of this vector representation are given. This is
identical to the number of free parameters in a tensor of the
corresponding type. For the direct products K � C2, the character
is equal to that of K on the rotation subgroup, and its opposite
[�ð�RÞ ¼ ��ðRÞ] for the coset �K.

Table 1.2.6.10. The irreducible projective representations of
the 32 three-dimensional crystallographic point groups that have
a factor system that is not associated to a trivial one. In three (and
two) dimensions all factor systems are of order two.

Table 1.2.6.11. The special points in the Brillouin zones. Strata
of irreducible representations of the space groups are char-
acterized by the wavevector k of such a point and a (possibly
projective) irreducible representation of the point group Kk. The
latter is the intersection of the symmetry group of k (the group of
k for the holohedral point group) and the point group of the
space group. For each Bravais class the special points for the
holohedry are given. These are given by their coordinates with
respect to a basis of the reciprocal lattice of the conventional cell.
These points correspond to Wyckoff positions in the corre-
sponding dual lattice. The symbols for these Wyckoff positions
and their site symmetry are given. Awell known notation for the
special points is that of Kovalev, as used in his book on repre-
sentations of space groups. Correspondence with the notation in
Kovalev (1987) is given.

Table 1.2.6.12. The three-dimensional crystallographic
magnetic and nonmagnetic point groups of type I (trivial
magnetic, no antichronous elements), type II (nonmagnetic,
containing time reversal as an element) and type III (nontrivial
magnetic, without time reversal itself, but with antichronous
elements).

1.2.7. Introduction to the accompanying software Tenvar

By M. Ephraı̈m, T. Janssen, A. Janner and

A. Thiers

1.2.7.1. Overview

The determination of tensors with specified properties often
requires long calculations. In principle the algorithms are simple,
but in complicated cases errors can be made. This is therefore a
situation in which it is best to rely on computer calculations. For
this reason, this volume is accompanied by software on a CD-
ROM. Here we shall give a short introduction to the Ten�ar
package that deals with tensors with specific symmetry properties
in the first module, and with characters of representations of
point groups in the second module. The latter play a role when
determining the number of independent elements of a tensor
invariant under a given point group, but they are much more
widely applicable.

The software package has a graphical interface with windows
and buttons. When the program is started, a window opens up in
which a choice may be made between the tensor part or the
character part of the program.

Within each of the two sections of the program, the results of
the calculations are given in numbered windows. It is possible to
browse through the various pages. Each page may be sent to a
separate window (by the command ‘to window’), or to a file (by
the command ‘to file’). Opened windows may be closed again
using a ‘close’ button.

Special features of the package are that it is dimension- and
rank-independent, and that it performs the calculations in an
exact way. The number of dimensions and the rank are only
limited by the computer memory and by the time the program
needs for higher dimensions and ranks. The calculations are exact
in the sense of the computer algebra software. Here this is
achieved by performing the calculations with integers and
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Table 1.2.6.9. Number of free parameters of some tensors

Group
Isomorphism
class

Character of
the vector
representation

Multiplicity identity representation in

�
2 �
2
s �
3 �
 �
2

s �
2
sð Þ


2
s

1 C1 3 9 6 27 18 21
�11 C2 3, �3 9 6 0 0 21

2 C2 3, �1 5 4 13 8 13
m C2 3, 1 5 4 14 10 13
2=m C2 � C2 5 4 0 0 13

222 D2 3, �1, �1, �1 3 3 6 3 9
2mm D2 3, 1, 1, �1 3 3 7 5 9
mmm D2 � C2 3 3 0 0 9

3 C3 3, 0, 0 3 2 9 6 9
�33 C3 � C2 3 2 0 0 9
32 D3 3, 0, �1 2 2 4 2 6
3m D3 3, 0, 1 2 2 5 4 6
�33m D3 � C2 2 2 0 0 6

6 C6 3, 2, 0, �1, 0, 2 3 2 7 4 5
�66 C6 3, 2, 0, 1, 0, �2 3 2 2 2 5
6=m C6 � C2 3 2 0 0 5
622 D6 3, 2, 0, �1, �1, �1 2 2 3 1 5
6mm D6 3, 2, 0, �1, 1, 1 2 2 4 3 5
�662m D6 3, �2, 0, 1, �1, 1 2 2 1 1 5
6=mmm D6 � C2 2 2 0 0 5

4 C4 3, 1, �1, 1 3 2 7 4 7
�44 C4 3, �1, �1, �1 3 2 6 4 7
4=m C4 � C2 3 2 0 0 7
422 D4 3, 1, �1, �1, �1 2 2 3 1 6
4mm D4 3, 1, �1, 1, 1 2 2 4 3 6
�442m D4 3, �1, �1, �1, 1 2 2 3 2 6
4=mmm D4 � C2 2 2 0 0 6

23 T 3, 0, 0, �1 1 1 2 1 3
m3 T � C2 1 1 0 0 3
432 O 3, 0, �1, 1, �1 1 1 1 0 3
�443m O 3, 0, �1, �1, 1 1 1 1 1 3
m3m O� C2 1 1 0 0 3
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Table 1.2.6.10. Irreducible projective representations of the 32 crystallographic point groups

(a) D2

A2 ¼ B2 ¼ E; ðABÞ2 ¼ �E

Elements E A B AB

�0
5 2 0 0 0

(b) D4

A4 ¼ �E;B2 ¼ ðABÞ
2
¼ E

Elements E A2 A A3 B A2B AB A3B

�0
6 2 0 i

ffiffiffi
2

p
i
ffiffiffi
2

p
0 0 0 0

�0
7 2 0 �i

ffiffiffi
2

p
�i

ffiffiffi
2

p
0 0 0 0

(c) D6

A6 ¼ B2 ¼ E; ðABÞ2 ¼ �E

Elements E A2 A4 B A2B A4B A3 A A5 AB A3B A5B

�0
7 2 2 2 0 0 0 0 0 0 0 0 0

�0
8 2 �1 �1 0 0 0 0 i

ffiffiffi
3

p
�i

ffiffiffi
3

p
0 0 0

�0
9 2 �1 �1 0 0 0 0 �i

ffiffiffi
3

p
i
ffiffiffi
3

p
0 0 0

(d) T [! ¼ expð2�i=3Þ].

A3 ¼ E;B2 ¼ ðABÞ
3
¼ �E

Elements E A BAB BA AB A2

�0
5 2 �1 1 1 1 �1

�0
6 2 !5 !2 !2 !2 !5

�0
7 2 ! !4 !4 !4 !

Elements ABA A2B BA2 B ABA2 A2BA

�0
5 �1 �1 �1 0 0 0

�0
6 !5 !5 !5 0 0 0

�0
7 ! ! ! 0 0 0

(e) O

A4 ¼ �E;B3 ¼ ðABÞ
2
¼ E

Elements E B AB2A A2B BA2 B2

�0
6 2 �1 1 �1 �1 �1

�0
7 2 �1 1 �1 �1 �1

�0
8 4 1 �1 1 1 1

Elements BA2B ABA3 A2B2 A2 BA2B2 B2A2B

�0
6 1 1 1 0 0 0

�0
7 1 1 1 0 0 0

�0
8 �1 �1 �1 0 0 0

Elements A A3 A3B BA3 B2A AB2

�0
6 i

ffiffiffi
2

p
i
ffiffiffi
2

p
�i

ffiffiffi
2

p
�i

ffiffiffi
2

p
�i

ffiffiffi
2

p
�i

ffiffiffi
2

p

�0
7 �i

ffiffiffi
2

p
�i

ffiffiffi
2

p
i
ffiffiffi
2

p
i
ffiffiffi
2

p
i
ffiffiffi
2

p
i
ffiffiffi
2

p

�0
8 0 0 0 0 0 0

Elements A2B2A BA AB AB2A2 AB2A2B B2AB2

�0
6 0 0 0 0 0 0

�0
7 0 0 0 0 0 0

�0
8 0 0 0 0 0 0

(f) C4 � C2

A4 ¼ B2 ¼ E;AB ¼ �BA

Elements E A A2 A3 B AB A2B A3B

�0
9 2 0 2 0 0 0 0 0

�0
10 2 0 �2 0 0 0 0 0

(g) C6 � C2

A6 ¼ B2 ¼ E;AB ¼ �BA

Elements E A A2 A3 A4 A5 B AB A2B A3B A4B A5B

�0
13 2 0 2 0 2 0 0 0 0 0 0 0

�0
14 2 0 2!2 0 2!4 0 0 0 0 0 0 0

�0
15 2 0 2!4 0 2!4 0 0 0 0 0 0 0
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cyclotomics. Use of arbitrary real numbers would imply a finite
precision.

Detailed instructions for the use of the program, together with
a guided tour (QuickStart), can be found in the manual on the
CD-ROM.

1.2.7.2. Tensors

The tensor module of Ten�ar determines the number of
independent elements and the relations between the elements of
tensors and pseudotensors invariant under a chosen point group
and with specified permutation symmetry of the indices.
Although the list of point groups provided in a database is limited
to dimensions two and three, the program runs for arbitrary
dimensions. Similarly, the choice of index permutation symmetry
is limited to rank smaller than or equal to four. This is also not a
restriction of the program, which works for arbitrary rank. For
higher dimensions and higher ranks, the user needs to provide
additional information. The limiting factors are in fact the speed,
which becomes low for higher dimensions and/or higher rank,
and the available memory, which must be sufficient to store the
tensor elements.

When the program is started and the tensor part is chosen via a
button, a selection box opens. The user can specify dimension and
rank in open fields. A field without a coloured border has a
formally correct content, but the user should check whether the
pregiven numbers correspond to his wishes. In open fields with a
coloured border, additional information must be given. Clicking
on the button ‘point group’ results in the opening of a new
selection window. A specific two- or three-dimensional point
group may be chosen via geometric crystal classes. This point
group may be viewed if wished. The chosen point group is given

by generating matrices and is the one under which the (pseu-
do)tensor is invariant.

The second symmetry is the index permutation symmetry. For
tensors and pseudotensors up to rank four, all possible symme-
tries are tabulated after clicking ‘permutation symmetry’. The
indices are numbered from 0 to r� 1, where r is the rank. The
symbol for a tensor symmetric in the indices 2 and 3 is (2 3), and it
is [2 3] if the tensor gets a minus sign under permutation. Arbi-
trary combinations of symmetric and antisymmetric series can be
made. For example, (0 1) 2 [3 4] is a rank-five tensor which is
symmetric in the first two indices and antisymmetric in the last
two indices. The symbol (0 1 2) characterizes a rank-three tensor
that is fully symmetric in all indices. For (pseudo)tensors of rank
five and higher, the user needs to specify the permutation
symmetry using parentheses in this way. Symmetrization of other
pairs is similar. For example, if the rank-three tensor T is
symmetric in the first and last indices, the symbol for its permu-
tation character is (0 2) 1. Then Txyz ¼ Tzyx.

Different settings of the point group may be specified. The
standard setting of a point group as given in International Tables
for Crystallography Volume A may be different from the one to
be specified. In this case, the user may perform a basis transfor-
mation which transforms the standard setting to the desired
setting. This is done via the button ‘basis transformation’. The
standard setting is chosen with ‘no transformation’. The trans-
formation from a hexagonal to an orthogonal (Cartesian) basis is
performed by selecting ‘hC transformation’.

Finally, the tensor or pseudotensor with the specified point
group and permutation symmetry is calculated and displayed in a
(numbered) window. The command for this is given by clicking
on the button ‘tensor’ or ‘pseudotensor’, respectively. In the
window appear the input data, such as the point group, the
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Table 1.2.6.10 (cont.)

(h) D2 � C2

A2 ¼ �E;B2 ¼ C2 ¼ ðABÞ
2
¼ E;AC ¼ CA;BC ¼ CB

Elements E A B AB C AC BC ABC

�0
9 2 0 0 0 2 0 0 0

�0
10 2 0 0 0 �2 0 0 0

A2 ¼ E;B2 ¼ C2 ¼ ðABÞ
2
¼ E;AC ¼ �CA;BC ¼ CB

Elements E A B AB C AC BC ABC

�0
11 2 0 2 0 0 0 0 0

�0
12 2 0 �2 0 0 0 0 0

A2 ¼ E;B2 ¼ C2 ¼ ðABÞ
2
¼ E;AC ¼ CA;BC ¼ �CB

Elements E A B AB C AC BC ABC

�0
13 2 2i 0 0 0 0 0 0

�0
14 2 �2i 0 0 0 0 0 0

A2 ¼ �E;B2 ¼ C2 ¼ ðABÞ2 ¼ E;AC ¼ �CA;BC ¼ CB

Elements E A B AB C AC BC ABC

�0
15 2 0 0 0 0 0 2 0

�0
16 2 0 0 0 0 0 �2 0

A2 ¼ �E;B2 ¼ C2 ¼ ðABÞ
2
¼ E;AC ¼ CA;BC ¼ �CB

Elements E A B AB C AC BC ABC

�0
17 2 0 0 0 0 2i 0 0

�0
18 2 0 0 0 0 �2i 0 0

A2 ¼ E;B2 ¼ C2 ¼ ðABÞ
2
¼ E;AC ¼ �CA;BC ¼ �CB

Elements E A B AB C AC BC ABC

�0
19 2 0 0 2i 0 0 0 0

�0
20 2 0 0 �2i 0 0 0 0

A2 ¼ �E;B2 ¼ C2 ¼ ðABÞ
2
¼ E;AC ¼ �CA;BC ¼ �CB

Elements E A B AB C AC BC ABC

�0
21 2 0 0 0 0 0 0 2i

�0
22 2 0 0 0 0 0 0 �2i
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Table 1.2.6.11. Special points in the Brillouin zones in three dimensions

(a) Triclinic

k Kk Kovalev

a 000 �11 k8
b 00 1

2
�11 k7

c 0 1
2 0

�11 k6
d 1

2 00
�11 k5

e 1
2
1
2 0

�11 k4
f 1

2 0
1
2

�11 k3
g 0 1

2
1
2

�11 k2
h 1

2
1
2
1
2

�11 k1

(b) Monoclinic P

k Kk Kovalev

a 000 2=m k7
b 00 1

2 2=m k11
c 1

2 00 2=m k12
d 0 1

2 0 2=m k13
e 0 1

2
1
2 2=m k9

f 1
2 0

1
2 2=m k8

g 1
2
1
2 0 2=m k14

h 1
2
1
2
1
2 2=m k10

i 00� 2 k3
j 0 1

2 � 2 k5
k 1

2 0� 2 k4
l 1
2
1
2 � 2 k6

m ��0 m k1
n �� 1

2 m k2

(c) Monoclinic A

k Kk Kovalev

a 000 2=m k6
b 010 2=m k8
c 1

2 00 2=m k7
d 1

2 10 2=m k9
e 0 1

2
1
2

�11 k4
f 1

2
1
2
1
2

�11 k5
g 00� 2 k2
h 1

2 0� 2 k3
i ��0 m k1

(d) Orthorhombic P

k Kk Kovalev

a 000 mmm k19
b 1

2 00 mmm k20
c 00 1

2 mmm k22
d 1

2 0
1
2 mmm k24

e 0 1
2 0 mmm k21

f 1
2
1
2 0 mmm k25

g 0 1
2
1
2 mmm k23

h 1
2
1
2
1
2 mmm k26

i �00 2mm k7
j �0 1

2 2mm k12
k � 1

20 2mm k10
l � 1

2
1
2 2mm k11

m 0�0 m2m k8
n 0� 1

2 m2m k15
o 1

2�0 m2m k13
p 1

2�
1
2 m2m k14

q 00� mm2 k9
r 0 1

2 � mm2 k18
s 1

2 0� mm2 k16
t 1
2
1
2 � mm2 k17

k Kk Kovalev

u 0�� m k1
v 1

2�� m11 k2
w �0� 1m1 k3
x � 1

2 � 1m1 k4
y ��0 11m k5
z �� 1

2 11m k6

(e) Orthorhombic C

k Kk Kovalev

a 000 mmm k14
b 010 mmm k15
c 01 1

2 mmm k17
d 00 1

2 mmm k16
e 1

2
1
2 0 2=m k12

f 1
2
1
2
1
2 2=m k13

g �00 2mm k8
h �0 1

2 2mm k9
i 0�0 m2m k10
j 0� 1

2 m2m k11
k 00� mm2 k6
l 01� mm2 k7
m 1

2
1
2 � 112 k5

n 0�� m11 k1
o �0� 1m1 k2
p ��0 11m k3
q �� 1

2 11m k4

(f) Orthorhombic I

k Kk Kovalev

a 000 mmm k17
b 001 mmm k18
c 0 1

2
1
2 2=m11 k13

1 1
2
1
2 2=m11 k10

d 1
2 0

1
2 12=m1 k14

1
2 1

1
2 12=m1 k11

e 1
2
1
2 0 112=m k15

1
2
1
2 1 112=m k12

f 1
2
1
2
1
2 222 k16

g �00 2mm k7
h 0�0 m2m k8
i 00� mm2 k9
j 1
2
1
2 � 112 k6

k 1
2�

1
2 121 k5

l � 1
2
1
2 211 k4

m 0�� m11 k1
n �0� 1m1 k2
o ��0 11m k3

(g) Orthorhombic F

k Kk Kovalev

a 000 mmm k14
b 100 mmm k15
c 010 mmm k16
d 001 mmm k17
e �00 2mm k4
f �10 2mm k5
g 0�0 m2m k6
h 1�0 m2m k7
i 00� mm2 k8
j 01� mm2 k9
k 1

2
1
2
1
2

�11 k10

k Kk Kovalev

� 1
2
1
2
1
2

�11 k11
1
2 �

1
2
1
2

�11 k12
1
2
1
2 �

1
2

�11 k13
l 0�� m11 k1
m �0� 1m1 k2
n ��0 11m k3

(h) Tetragonal P

k Kk Kovalev

a 000 4=mmm k17
b 00 1

2 4=mmm k19
c 1

2
1
2 0 4=mmm k18

d 1
2
1
2
1
2 4=mmm k20

e 0 1
2
1
2 mmm k16

f 0 1
2 0 mmm k15

g 00� 4mm k13
h 1

2
1
2 � 4mm k14

i 0 1
2 � mm2 k12

j ��0 2mm k10
k �� 1

2 2mm k11
l 0�0 m2m k8
m 0� 1

2 m2m k9
n � 1

2 0 2mm k6
o � 1

2
1
2 2mm k7

p ��0 11m k1
q �� 1

2 11m k2
r ��� m k5
s 0�� m11 k3
t � 1

2 � 1m1 k4

(i) Tetragonal I

k Kk Kovalev

a 000 4=mmm k14
b 001 4=mmm k15
c 1

2
1
2 0 mmm k13

d 1
2
1
2
1
2

�44m2 k12
e 00� 4mm k10
f 1

2 0
1
2 12=m1 k11

g 1
2
1
2 � 2mm k9

h ��0 2mm k7
i �00 2mm k7
j �ð1� �Þ0 2mm k8
k 1

2�
1
2 121 k5

l ��0 11m k2
m ��� m k3
�ð1� �Þ� m k4

n �0� 1m1 k1

(j) Trigonal R (rhombohedral axes)

k Kk Kovalev

a 000 �33m k7
b 1

2
1
2
1
2

�33m k8
c ��� 3m k6
d 00 1

2 2=m k4
e 1

2
1
2 0 2=m k5

f �ð��Þ0 2 k2
g �ð��Þ 12 2 k2
h ��� m k1
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dimension, the rank, the permutation symmetry and the setting
basis transformation, and the calculated data: the number of
independent elements (f) and the relations of these elements.
They are either zero or expressed in terms of the free parameters
a0; . . . ; af�1. The tensor elements are given by sequences
x; y; z; . . .. The four elements of a general rank-two tensor in two
dimensions are xx, xy, yx, yy, corresponding to T11, T12, T21 and
T22, respectively.

1.2.7.3. Characters

Calculations with characters of representations of point groups
can be done in the character module of the program. It is selected
in the main window by clicking ‘character’. A selection window
opens in which a point group may be selected just as in the tensor
module. The point groups are organized according to dimension
and geometric crystal class. Selection of a point group leads to the
display of the character table if one asks for it by selecting ‘view
character table’.

The character table consists of a square array of (complex)
numbers. The number of rows is the number of nonequivalent
irreducible representations and is equal to the number of
columns, which is the number of conjugacy classes of the group.
For crystallographic groups, the complex numbers that form the
entries of the character table are cyclotomic numbers. These are
linear combinations with fractions as coefficients of complex
numbers of the form expð2�in=mÞ: For example, the square root
of �1 (i) can be written as expð2�i1=4Þ: A real number like

ffiffiffi
2

p

can be written as

ffiffiffi
2

p
¼ 1

2

ffiffiffi
2

p
ð1þ iþ 1� iÞ ¼ expð2�i18Þ þ expð2�i78Þ:

Another example is

ffiffiffi
5

p
¼ 1þ 2 expð2�i15Þ þ 2 expð2�i45Þ:
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Table 1.2.6.11 (cont.)

(k) Hexagonal P

k Kk Kovalev

a 000 6=mmm k16
b 00 1

2 6=mmm k17
c 1

3
1
3 0

�66m2 k13
d 1

3
1
3
1
2

�66m2 k15
e 00� 6mm k11
f 1

2 00 mmm k12
g 1

2 0
1
2 mmm k14

h 1
3
1
3 � 3m k10

i 1
2 0� 2mm k9

j �00 2mm k5
k �0 1

2 2mm k7
l ��0 2mm k6
m �� 1

2 2mm k8
n �0� m k3
o ��� m k4
p ��0 m k1
q �� 1

2 m k2

(l) Cubic P

k Kk Kovalev

a 000 m�33m k12
b 1

2
1
2
1
2 m�33m k13

c 1
2
1
2 0 4=mmm k11

d 00 1
2 4=mmm k10

e 00� 4mm k8
f 1

2
1
2 � 4mm k7

g ��� 3m k9
h 1

2 0� mm2 k6
i ��0 2mm k4
j �� 1

2 2mm k5
k ��0 11m k1
l �� 1

2 11m k2
m ��� m k3

(m) Cubic F

k Kk Kovalev

a 000 m�33m k11
b 001 4=mmm k10
c 1

2
1
2
1
2

�33m k9
d 10 1

2
�44m2 k8

e �00 4mm k6
f ��� 3m k5
g �01 2mm k7
h ��0 2mm k4
i �ð1� �Þ 12 2 k3
j �� 11m k1
k ��� m k2

(n) Cubic I

k Kk Kovalev

a 000 m�33m k11
b 001 m�33m k10
c 1

2
1
2
1
2

�443m k10
d 1

2
1
2 0 mmm k9

e �00 4mm k8
f ��� 3m k7
g � 1

2
1
2 2mm k6

h ��0 2mm k4
i �ð1� �Þ0 2mm k9
j �� 11m k1
k ��� m k2
�ð1� �Þ� m k3

Table 1.2.6.12. Magnetic point groups

Type I Type II Type III

1 10

�11 �1110 �110

2 210 20

m m10 m0

2=m 210=m 20=m, 2=m0, 20=m0,

222 22210 2020

2mm 2mm10 20mm0, 2m0m0

mmm mmm10 m0mm, m0m0m, m0m0m0

4 410 40

�44 �4410 �440

4=m 410=m 40=m, 4=m0, 40=m0

422 42210 40220, 42020

4mm 4mm10 40mm0, 4m0m0

�442m �442m10 �44020m, �4402m0, �4420m0

4=mmm 4=mmm10 4=m0mm, 40=mm0m, 40=m0m0m, 4=mm0m0, 4=m0m0m0

3 310

�33 �3310 �330

32 3210 320

3m 3m10 3m0

�33m �33m10 �330m, �330m0, �33m0

6 610 60

�66 �6610 �660

6=m 610=m 60=m, 6=m0, 60=m0

622 62210 60220, 62020

6mm 6mm10 60mm0, 6m0m0

�662m �662m10 �66020m, �6602m0, �6620m0

6=mmm 6=mmm10 6=m0mm, 60=mm0m, 60=m0m0m, 6=mm0m0, 6=m0m0m0

23 2310

m�33 m�3310 m0 �33
432 43210 40320

�443m �443m10 �4403m0

m�33m m�33m10 m0 �33m, m�33m0, m0 �33m0
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However, many entries for the three-dimensional point groups
are simply integers.

The program provides the following information as rows above
the characters of the irreducible representation:

(1) Representative elements of the conjugacy classes expressed
in terms of the generators a; b; . . . :

(2) The number of elements of each class.
(3) The order of the elements of the classes: the lowest positive

power of an element that equals the identity.
Below the character table, the following information is displayed:

(1) In the mth row after the square character table, the class to
which the ðmþ 1Þth powers of the elements from this column
belong is given. If a conjugacy class has elements of order p, then
only the p� 1 first entries are given, because in the column there
exists p periodicity.

(2) The determinant of the three-dimensional matrix for the
element of the point group (or the elements of the conjugacy
class). This is the character of an irreducible representation.

(3) Finally, the character of the vector representation is given.
As an example, the generalized character table for the three-

dimensional point group 4mm is given in Table 1.2.7.1.
The data connected with a character table can be seen by

choosing ‘view character table’. The characters of the irreducible
representations, the determinant representation and the vector
representation are shown in the main window after selection of
‘accept character table’. From the character of these repre-
sentations, characters of other representations may be calculated.
The results are added as rows to the table, which is shown after
each calculation.

Calculations using rows from the table may have one or more
arguments. Operations with one argument will produce, for
example, the decomposition into irreducible components, the
character of the pth power, the symmetrized or antisymmetrized
square, or the character of the corresponding physical (real)
representation. Operations with two or more arguments yield
products and sums of characters. The arguments of a unitary,
binary or multiple operation are selected by clicking on the
button in front of the corresponding characters. If the result is a
new character (e.g. the product of two characters), it is added as a
row to the list of characters. If the result is not a character (e.g.
the decomposition into irreducible components), the result is
given on the worksheet.

Suppose one wants to determine the number of elastic
constants for a material with cubic 432 symmetry. After selecting
the character table for the group 432, one clicks on the button in
front of ‘vector representation’ in the character table. This yields
the character of the three-dimensional vector representation of
the group. The character of the symmetrized square is obtained
by selecting ‘symmetrized square’. This gives the character of a
six-dimensional representation. Determining the number of
times the trivial representation occurs by selecting ‘decompose’
gives the number of free parameters in the metric tensor, i.e. 1.
Clicking on ‘symmetrized square’ for the character of the six-
dimensional representation gives the character of a 21-dimen-

sional representation. Decomposition yields the multiplicity 3 for
the trivial representation, which means that there are three
independent tensor elements for a tensor of symmetry type
ðð0 1Þð2 3ÞÞ, which in turn means that there are three elastic
constants for the group 432 (see Table 1.2.6.9). For the explicit
determination of the independent tensor elements, the tensor
module of the program should be used.

Of course, many kinds of calculations unrelated to tensors can
be carried out using the character module. Examples include the
calculation of selection rules in spectroscopy or the splitting of
energy levels under a symmetry-breaking perturbation.

1.2.7.4. Algorithms

1.2.7.4.1. Construction of a basis

As a basis for a tensor space without permutation symmetry,
one may choose one consisting of non-commutative monomials.
It has dr elements, where d is the dimension and r is the rank. In
two dimensions, these are x; y for r ¼ 1, xx, xy, yx, yy for r ¼ 2
and xxx, xxy, xyx, xyy, yxx, yxy, yyx, yyy for r ¼ 3. Note that
xy 6¼ yx.

If there is permutation symmetry among the indices i1; . . . ; ip,
only polynomials xi1xi2 . . . xr occur in the basis for which
i1  i2  . . .  ip. Then xi1xi2 ¼ xi2xi1 . If there is antisymmetry
among these indices, one has the condition i1< i2< . . . < ip and
xi1xi2 ¼ �xi2xi1 . Therefore, in two dimensions, the basis for
tensors of type (1 3)2 is xxx, xxy, xyx, xyy, yxy, yyy and for those
of type [1 3]2 it is xxy, xyy. These bases can be obtained from the
general basis by elimination.

1.2.7.4.2. Action of the generators of the point group G on the
basis

The transformation of the monomial xixj . . . under the matrix
g 2 G is given by the polynomial

Pd

m¼1

gimxm

� �

�
Pd

n¼1

gjnxn

� �

. . . ;

which is in principle non-commutative. This polynomial can be
written as a sum of the monomials in the basis taking into account
the eventual (anti)symmetry of xy and yx. In this way, basis
element (a monomial) ei is transformed to

gei ¼
Pd

j¼1

MðgÞjiej:

To each generator of G corresponds such an action matrix M.
The action matrix changes if one considers pseudotensors. In

the case of pseudotensors, the previous equation changes to

gei ¼ DetðgÞ
Pd

j¼1

MðgÞjiej:

The function Det(g) is just a one-dimensional representation of
the group G. The determinant is either þ1 or �1.

1.2.7.4.3. Diagonalization of the action matrix and determina-
tion of the invariant tensor

An invariant element of the tensor space under the group G is
a vector v that is left invariant under each generator:

M1 � E

M2 � E

..

.

Ms � E

0

B
B
B
@

1

C
C
C
A
v ¼ �v ¼ 0:

If the number of generators is one, � ¼ M � E. This equation is
solved by diagonalization:
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Table 1.2.7.1. Data connected with the character table for point group 4mm

e a a2 b ab
1 2 1 2 2
1 4 2 2 2

1 1 1 1 1
1 1 1 �1 �1
1 �1 1 1 �1
1 �1 1 �1 1
2 0 �2 0 0

1 3 1 1 1
2
1

1 1 1 �1 �1
3 1 �1 1 1
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P�QQ�1v ¼ DQ�1v ¼ 0;

where Dij ¼ di�ij. The dimension of the solution space is the
number of elements di that are equal to zero. The corresponding
rows of Q form a basis for the solution space. (See example
further on.)

1.2.7.4.4. Determination of the vector representation

For a point group G, its isomorphism class and its character
table are known. For each conjugacy class, a representative
element is given as word A1A2 . . . where the Ai’s correspond to
generators. Replacing the letters by the generating matrices, one
obtains as product a matrix for which the trace is the character of
the vector representation in the conjugacy class. The characters
of all conjugacy classes being known, the representation can be
decomposed into irreducible components by means of

m� ¼ ð1=jGjÞ
P

i

ni�
	
�ðiÞ�ðiÞ;

where � labels the irreducible representations (the row number
in the character table), m� the number of times the representa-
tion � occurs, jGj the order of the group G, ni the number of
elements in the ith conjugacy class (given as the second row in the
character table), ��ðiÞ the cyclotomic in the ith row and �th
column of the character table, and �ðiÞ the calculated character in
the ith conjugacy class.

1.2.7.4.5. Determination of tensor products and their decom-
position

Given a character (for an irreducible representation from the
character table, or for the vector representation, for example),
the character of the standard rank n tensor is the nth power of the
character and can be decomposed with the multiplicity formula
for m� given above.

Fully symmetrized or antisymmetrized tensor products have
characters given by

n ¼ 2 : ��ðRÞ ¼
1

2!

�
�ðRÞ2 � �ðR2Þ

�

n ¼ 3 : ��ðRÞ ¼
1

3!

�
�ðRÞ3 � 3�ðR2Þ�ðRÞ þ 2�ðR3Þ

�

n ¼ 4 : ��ðRÞ ¼
1

4!

�
�ðRÞ4 � 6�ðR2Þ�ðRÞ2 þ 3�ðR2Þ

2

þ 8�ðR3Þ�ðRÞ � 6�ðR4Þ
�

n ¼ 5 : ��ðRÞ ¼
1

5!

�
�ðRÞ5 � 10�ðR2Þ�ðRÞ3 þ 15�ðR2Þ

2�ðRÞ

þ 20�ðR3Þ�ðRÞ2 � 20�ðR3Þ�ðR2Þ

� 30�ðR4Þ�ðRÞ þ 24�ðR5Þ
�

n ¼ 6 : ��ðRÞ ¼
1

6!

�
�ðRÞ6 � 15�ðR2Þ�ðRÞ4 þ 45�ðR2Þ

2�ðRÞ2

þ 40�ðR3Þ
2
� 15�ðR2Þ

3
þ 40�ðR3Þ�ðRÞ3

� 120�ðR3Þ�ðR2Þ�ðRÞ � 90�ðR4Þ�ðRÞ2

þ 90�ðR4Þ�ðR2Þ þ 144�ðR5Þ�ðRÞ

� 120�ðR6Þ
�
:

From this follows immediately the dimension of the subspaces of
symmetric and antisymmetric tensors:

n ¼ 2 :
1

2
ðd2 � dÞ

n ¼ 3 :
1

6
ðd3 � 3d2 þ 2dÞ

n ¼ 4 :
1

24
ðd4 � 6d3 þ 11d2 � 6dÞ

n ¼ 5 :
1

120
ðd5 � 10d4 þ 35d3 � 50d2 þ 24dÞ

n ¼ 6 :
1

720
ðd6 � 15d5 þ 85d4 � 225d3 þ 274d2 � 120dÞ:

The general expression for arbitrary rank can be determined as
follows. (See also Section 1.2.2.7)

(1) If n is the rank, the first step is to determine all possible
decompositions

n ¼
Pn

i¼1

fi

with non-negative integers fi satisfying fi  fi�1.
(2) For each such decomposition m ¼ 1; . . . ntot there is a term

Pm ¼
Yp

i¼1

Ni

fi

� �

ðfi � 1Þ!;

where N1 ¼ n, Ni ¼ Ni�1 � fi�1 ði> 1Þ and p is the number of
nonzero integers fi.

(3) If there are equal values of fi in the mth decomposition, Pm

should be divided by t! for each t-tuple of equal values
(fkþ1 ¼ . . . ¼ fkþt).

(4) The sign of the term Pm isþ1 for a symmetrized power and

Qp

i¼1

ð�1Þðfi�1Þ

for an antisymmetrized power.
(5) The expression for the character of the (anti)symmetrized

power then is

��ðRÞ ¼ ð1=M!Þ
Pntot

m¼1

signmPm

Qp

i¼1

�ðRfiÞ:

1.2.7.4.6. Invariant tensors

Once one has the character of the properly symmetrized
tensor, the number of invariants is just m1, the number of times
the trivial representation occurs in the decomposition.

Example (1). Dimension 3, rank 3, symmetry type (123), group 3.
Basis: xxx, xxy, xxz, xyy, xyz, xzz, yyy, yyz, yzz, zzz. Under

0 1 0

0 0 1

1 0 0

0

@

1

A

the basis elements go to yyy; yyz; yyx; yzz; yzx; yxx; zzz; zzx;
zxx; xxx, respectively, and these are equivalent to yyy; yyz; xyy;
yzz; xyz; xxy; zzz; xzz; xxz; xxx, respectively. This gives the ten-
dimensional matrix
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M ¼

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Then PðM � EÞQ ¼ D, with D diagonal. There are four diagonal
elements of D which are zero, and the invariant tensors corre-
spond to the corresponding four columns of the matrix Q. The
invariant polynomials are

xxxþ yyyþ zzz; xxyþ xzzþ yyz; xxzþ yzzþ xyy; xyz:

Example (2). Dimension 2, rank 2, symmetry type (12). Group
generated by

0 �1

1 �1

� �

:

Basis xx, xy, yy goes to yy, �xyþ yy, xx� 2xyþ yy. This gives

M ¼

0 0 1

0 �1 �2

1 1 1

0

@

1

A:

Because

1 0 0

2 1 2

1 0 1

0

@

1

AðM � EÞ

1 �1 1

0 1 0

0 �1 1

0

@

1

A ¼

�1 0 0

0 0 0

0 0 2

0

@

1

A;

the invariant tensor corresponds to the second column of Q,
which as a polynomial reads �xxþ xy� yy. This can be written
with the tensor Tij as

�xxþ xy� yy ¼ �
P

i;j

Tijxixj; Tij ¼
1 � 1

2

� 1
2 1

� �

This tensor T is invariant under the group.

Example (3). Dimension 3, rank 2, tensor type (12). Group
generated by matrix([[0 �1 0][1 0 0][0 0 1]]). The basis xx, xy, xz,
yy, yz, zz goes under the generator to yy, �xy, �yz, xx, xz, zz.
The solution of ðM � EÞv ¼ 0 is

�1ðxxþ yyÞ þ �2zz:

The matrix D has two zeros on the diagonal.

Example (4). Dimension 3, rank 3, type (123). Same group as in
Example (3). Basis xxx, xxy, xxz, xyy, xyz, xzz, yyy, yyz, yzz, zzz.
The solution

�1ðxxzþ yyzÞ þ �2zzz

corresponds to a tensor with relations T113 ¼ T223,
T111 ¼ T112 ¼ T122 ¼ T123 ¼ T133 ¼ T222 ¼ T233 ¼ 0.

Example (5). Dimension 3, rank 4, type ((12)(34)). Not only
i1  i2 and i3  i4, but also (i1i2Þ, should come lexicographically
before (i3i4). Basis xxxx; xxxy; xxxz; xxyy; xxyz; xxzz; xyxy;
xyxz; xyyy; xyyz; xyzz; xzxz; xzyy; xzyz; xzzz; yyyy; yyyz; yyzz;
yzyz; yzzz; zzzz. Under the same group as in example (3), there
are seven invariants. Invariant polynomial:

�1ðxxxxþ yyyyÞ þ �2ðxxxy� xyyyÞ þ �3xxyyþ �4xyxy

þ �5zzzzþ �6ðxxzzþ yyzzÞ þ �7ðxzxzþ yzyzÞ:
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Table 1.2.7.2. Calculation with characters

Generator Composite character Characters Decomposition

0 1 0

0 0 1

1 0 0

0

@

1

A

R E A AA

�ðRÞ 3 0 0
�ðRÞ3 27 0 0
�ðR2Þ 3 0 0
�ðR2Þ�ðRÞ 9 0 0
�ðR3Þ 3 3 3

Example (1) 1
6 ð�ðRÞ

3
þ 3�ðR2Þ�ðRÞ þ 2�ðR3ÞÞ 10 1 1 4D1 þ 3D2 þ 3D3

0 �1

1 �1

� � R E A AA

�ðRÞ 2 �1 �1
�ðRÞ2 4 1 1
�ðR2Þ 2 �1 �1

Example (2) 1
2 ð�ðRÞ

2
þ �ðR2Þ) 3 0 0 D1 þD2 þD3

0 �1 0

1 0 0

0 0 1

0

@

1

A

R E A AA AAA

�ðRÞ 3 1 �1 1
�ðRÞ2 9 1 1 1
�ðR2Þ 3 �1 3 �1

Example (3) 1
2 ð�ðRÞ

2
þ �ðR2Þ) 6 0 2 0 2D1 þD2 þ 2D3 þD4

As above �ðRÞ 3 1 �1 1
Example (4) �ðRÞ3 27 1 �1 1

�ðR2Þ 3 �1 3 �1
�ðR2Þ�ðRÞ 9 �1 �3 �1
�ðR3Þ 3 1 �1 1
1
6 ð�ðRÞ

3
þ 3�ðR2Þ�ðRÞ þ 2�ðR3ÞÞ 10 0 �2 0 2D1 þ 3D2 þ 2D3 þ 3D4

As above �ðRÞ 3 1 �1 1
Example (5) 1

2 ð�ðRÞ
2
þ �ðR2Þ)=�sðRÞ 6 0 2 0

�sðRÞ
2 36 0 4 0

�sðR
2Þ 6 2 6 2

((12)(34)) 21 1 5 1 7D1 þ 4D2 þ 6D3 þ 4D4

As above, example (6) 1
2 ð�ðRÞ

2
� �ðR2Þ) 3 1 �1 1 D1 þD2 þD4

As above, example (7) 1
6 ð�ðRÞ

3
� 3�ðR2Þ�ðRÞ þ 2�ðR3ÞÞ 1 1 1 1 D1
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This corresponds to the tensor relations

Txxxx ¼ �Tyyyy Txxxy ¼ Txyyy Txxxz ¼ 0

Txxyz ¼ 0 Txxzz ¼ Tyyzz Txyxz ¼ 0

Txyyz ¼ 0 Txyzz ¼ 0 Txzxz ¼ Tyzyz

Txzyy ¼ 0 Txzyz ¼ 0 Txzzz ¼ 0

Tyyyz ¼ 0 Tyzzz ¼ 0

!

�1 �3 �6 0 0 �2

�3 �1 �6 0 0 ��2

�6 �6 �5 0 0 0

0 0 0 �7 0 0

0 0 0 0 �7 0

�2 ��2 0 0 0 �4

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

The latter form is that of an elastic tensor with the usual
convention 1 ¼ xx, 2 ¼ yy, 3 ¼ zz, 4 ¼ yz, 5 ¼ xz, 6 ¼ xy.

Example (6). Dimension 3, rank 2, type [12]. The same group as
in example (3). Basis xy; xz; yz ! �yx;�yz; xz, which are
equivalent to xy;�yz; xz. The transformation in the tensor space
is

M ¼

1 0 0

0 0 1

0 �1 0

0

B
@

1

C
A!

0 0 0

0 �1 1

0 �1 �1

0

B
@

1

C
Av ¼ 0 :

v ¼

1

0

0

0

B
@

1

C
A � xy:

There is just one invariant antisymmetric polynomial xy ¼ �yx
corresponding to the tensor

T ¼
0 1

�1 0

� �

:

Example (7). Dimension 3, rank 3, type [123]. Basis xyz invariant
under the group: xyz ! �yxz � xyz.The corresponding tensor is
the fully antisymmetric rank 3 tensor: Tijk ¼ 1 if ijk is an even
permutation of 123, ¼ �1 if ijk is an odd permutation, and ¼ 0 if
two or three indices are equal (permutation tensor, see Section
1.1.3.7.2).

Example (8). Calculation with characters. See Table 1.2.7.2.

Example (9). The action matrix for a pseudotensor.
Take the group 4=m with generators

0 �1 0

1 0 0

0 0 1

0

@

1

A;
1 0 0

0 1 0

0 0 �1

0

@

1

A:

Consider the rank 3 pseudotensor (123). The action matrix is
determined from the action of the generators A and B on the
basis:

A B

xxx �yyy �xxx

xxy xyy �xxy

xxz yyz xxz

xyy �xxy �xyy

xyz �xyz xyz

xzz �yzz �xzz

yyy xxx �yyy

yyz xxz yyz

yzz xzz �yzz

zzz zzz zzz

Therefore, the action matrix becomes

0 0 0 0 0 0 1 0 0 0

0 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

�1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 1

�1 0 0 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 �1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

After diagonalization, one finds two nonzero elements on the
diagonal:

zzz ¼ a; xxz ¼ yyz ¼ b;

xxx ¼ xxy ¼ xyy ¼ xyz ¼ xzz ¼ yyy ¼ yzz ¼ 0:

1.2.8. Glossary

Ti1...in
tensor of rank n

OðnÞ orthogonal group
Z ring of integers
ei basis vectors
g metric tensor
K point group
R orthogonal transformation
Cm cyclic group of order m
SOðnÞ special orthogonal group
Z
þ positive integers

Dn dihedral group of order n
E unit transformation, matrix or element
I inversion
DðKÞ representation of K
�ðKÞ matrix representation of K
jKj order of K
� sum of spaces or operators

 tensor product
2 element of
ai basis of space or lattice
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V	 dual space
S basis transformation
� character
�ðRÞ value of � at R
Ci conjugacy class
�� irreducible character
m� multiplicity
N order of K
d� dimension of irreducible representation �
ni order of class Ci

cijk class multiplication constants
T tetrahedral group
O octahedral group
I icosahedral group
PðKÞ projective representation
WiðA1; . . . ;ApÞ word in generators Aj

Kd double group
EðnÞ Euclidean group
g ¼ fRjag element of EðnÞ
TðnÞ translation group in n dimensions
� lattice
�	 reciprocal lattice
aðRÞ translation vector system
k vector in dual space
Gk group of k
Kk point group of Gk

! factor system
Det(R) determinant of R

� �
i j

� 



�
k ‘

� Clebsch–Gordan coefficients

 time-reversal operator
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1.3. Elastic properties

By A. Authier and A. Zarembowitch

1.3.1. Strain tensor

1.3.1.1. Introduction, the notion of strain field

Let us consider a medium that undergoes a deformation. This
means that the various points of the medium are displaced with
respect to one another. Geometrical transformations of the
medium that reduce to a translation of the medium as a whole
will therefore not be considered. We may then suppose that there
is an invariant point, O, whose position one can always return to
by a suitable translation. A point P, with position vector OP ¼ r,
is displaced to the neighbouring point P0 by the deformation
defined by

PP0 ¼ uðrÞ:

The displacement vector uðrÞ constitutes a vector field. It is not a
uniform field, unless the deformation reduces to a translation of
the whole body, which is incompatible with the hypothesis that
the medium undergoes a deformation. Let Q be a point that is
near P before the deformation (Fig. 1.3.1.1). Then one can write

dr ¼ PQ; rþ dr ¼ OQ:

After the deformation, Q is displaced to Q0 defined by

QQ0 ¼ uðrþ drÞ:

In a deformation, it is more interesting in general to analyse
the local, or relative, deformation than the absolute displace-
ment. The relative displacement is given by comparing the
vectors P0Q0 ¼ dr0 and PQ. Thus, one has

P0Q0 ¼ P0Pþ PQþQQ0:

Let us set

dr0 ¼ drþ uðrþ drÞ � uðrÞ

du ¼ uðrþ drÞ � uðrÞ ¼ dr0 � dr:

)

ð1:3:1:1Þ

Replacing uðrþ drÞ by its expansion up to the first term gives

dui ¼
@ui
@xj

dxj

dx0i ¼ dxi þ
@ui
@xj

dxj:

9
>>>=

>>>;

ð1:3:1:2Þ

If we assume the Einstein convention (see Section 1.1.2.1),
there is summation over j in (1.3.1.2) and (1.3.1.3). We shall
further assume orthonormal coordinates throughout Chapter 1.3;
variance is therefore not apparent and the positions of the indices
have no meaning; the Einstein convention then only assumes
repetition of a dummy index. The elements dxi and dx0i are the
components of dr and dr0, respectively. Let us put

Mij ¼ @ui=@xj; Bij ¼ Mij þ �ij;

where �ij represents the Kronecker symbol; the �ij’s are the
components of matrix unity, I. The expressions (1.3.1.2) can also
be written using matrices M and B:

dui ¼ Mijdxj

dx0i ¼ Bijdxj:

)

ð1:3:1:3Þ

The components of the tensor Mij are nonzero, unless, as
mentioned earlier, the deformation reduces to a simple transla-
tion. Two cases in particular are of interest and will be discussed
in turn:

(i) The components Mij are constants. In this case, the defor-
mation is homogeneous.

(ii) The components Mij are variables but are small compared
with unity. This is the practical case to which we shall limit
ourselves in considering an inhomogeneous deformation.

1.3.1.2. Homogeneous deformation

If the components Mij are constants, equations (1.3.1.3) can be
integrated directly. They become, to a translation,

ui ¼ Mijxj

x0i ¼ Bijxj:

)

ð1:3:1:4Þ

1.3.1.2.1. Fundamental property of the homogeneous deforma-
tion

The fundamental property of the homogeneous deformation
results from the fact that equations (1.3.1.4) are linear: a plane
before the deformation remains a plane afterwards, a crystal
lattice remains a lattice. Thermal expansion is a homogeneous
deformation (see Chapter 1.4).

1.3.1.2.2. Spontaneous strain

Some crystals present a twin microstructure that is seen to
change when the crystals are gently squeezed. At rest, the
domains can have one of two different possible orientations and
the influence of an applied stress is to switch them from one
orientation to the other. If one measures the shape of the crystal
lattice (the strain of the lattice) as a function of the applied stress,
one obtains an elastic hysteresis loop analogous to the magnetic
or electric hysteresis loops observed in ferromagnetic or ferro-
electric crystals. For this reason, these materials are called
ferroelastic (see Chapters 3.1 to 3.3 and Salje, 1990). The strain
associated with one of the two possible shapes of the crystal when
no stress is applied is called the macroscopic spontaneous strain.

1.3.1.2.3. Cubic dilatation

Let ei be the basis vectors before deformation. On account of
the deformation, they are transformed into the three vectors

e0i ¼ Bijej:
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Fig. 1.3.1.1. Displacement vector, uðrÞ.
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The parallelepiped formed by these three vectors has a volume V0

given by

V 0 ¼ ðe01; e
0
2; e

0
3Þ ¼ �ðBÞðe1; e2; e3Þ ¼ �ðBÞV;

where �ðBÞ is the determinant associated with matrix B, V is the
volume before deformation and

ðe1; e2; e3Þ ¼ ðe1 ^ e2Þ � e3

represents a triple scalar product.
The relative variation of the volume is

V 0 � V

V
¼ �ðBÞ � 1: ð1:3:1:5Þ

It is what one calls the cubic dilatation. �ðBÞ gives directly the
volume of the parallelepiped that is formed from the three
vectors obtained in the deformation when starting from vectors
forming an orthonormal base.

1.3.1.2.4. Expression of any homogeneous deformation as the
product of a pure rotation and a pure deformation

(i) Pure rotation: It is isometric. The moduli of the vectors
remain unchanged and one direction remains invariant, the axis
of rotation. The matrix B is unitary:

BBT ¼ 1:

(ii) Pure deformation: This is a deformation in which three
orthogonal directions remain invariant. It can be shown that B is
a symmetric matrix:

B ¼ BT :

The three invariant directions are those of the eigenvectors of the
matrix; it is known in effect that the eigenvectors of a symmetric
matrix are real.

(iii) Arbitrary deformation: the matrix B, representing an
arbitrary deformation, can always be put into the form of the
product of a unitary matrix B1, representing a pure rotation, and
a symmetric matrix B2, representing a pure deformation. Let us
put

B ¼ B1B2

and consider the transpose matrix of B:

BT ¼ BT
2B

T
1 ¼ B2 B1ð Þ

�1:

The product BTB is equal to

BTB ¼ B2ð Þ
2:

This shows that we can determine B2 and therefore B1 from B.

1.3.1.2.5. Quadric of elongations

Let us project the displacement vector uðrÞ on the position
vector OP (Fig. 1.3.1.2), and let ur be this projection. The elon-
gation is the quantity defined by

ur
r
¼

u � r

r2
¼

Mijxixj

r2
;

where x1, x2, x3 are the components of r. The elongation is the
relative variation of the length of the vector r in the deformation.
Let A and S be the antisymmetric and symmetric parts of M,
respectively:

A ¼
M �MT

2
; S ¼

M þMT

2
:

Only the symmetric part of M occurs in the expression of the
elongation:

ur
r
¼

Sijxixj

r2
: ð1:3:1:6Þ

The geometrical study of the elongation as a function of the
direction of r is facilitated by introducing the quadric associated
with M:

Sijyiyj ¼ "; ð1:3:1:7Þ

where " is a constant. This quadric is called the quadric of
elongations,Q. S is a symmetric matrix with three real orthogonal
eigenvectors and three real eigenvalues, �1, �2, �3. If it is referred
to these axes, equation (1.3.1.7) is reduced to

�1 y1ð Þ
2�2 y2ð Þ

2�3 y3ð Þ
2
¼ ":

One can discuss the form of the quadric according to the sign
of the eigenvalues �i:

(i) �1, �2, �3 have the same sign, and the sign of ". The quadric
is an ellipsoid (Fig. 1.3.1.3a). One chooses " ¼ þ1 or " ¼ �1,
depending on the sign of the eigenvalues.

(ii) �1, �2, �3 are of mixed signs: one of them is of opposite sign
to the other two. One takes " ¼ �1. The corresponding quadric is
a hyperboloid whose asymptote is the cone

Sijyiyj ¼ 0:

According to the sign of ", the hyperboloid will have one sheet
outside the cone or two sheets inside the cone (Fig. 1.3.1.3b). If
we wish to be able to consider any direction of the position vector
r in space, it is necessary to take into account the two quadrics.

In order to follow the variations of the elongation ur=r with the
orientation of the position vector, one associates with r a vector y,
which is parallel to it and is defined by

y ¼ r=k; r ¼ ky;

where k is a constant. It can be seen that, in accordance with
(1.3.1.6) and (1.3.1.7), the expression of the elongation in terms of
y is

ur=r ¼ "=y2:

Thus, the elongation is inversely proportional to the square of
the radius vector of the quadric of elongations parallel to OP. In
practice, it is necessary to look for the intersection p of the
parallel to OP drawn from the centre O of the quadric of elon-
gations (Fig. 1.3.1.3a):

(i) The eigenvalues all have the same sign; the quadric Q is an
ellipsoid: the elongation has the same sign in all directions in
space, positive for " ¼ þ1 and negative for " ¼ �1.

(ii) The eigenvalues have different signs; two quadrics are to be
taken into account: the hyperboloids corresponding, respectively,
to " ¼ �1. The sign of the elongation is different according to
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Fig. 1.3.1.2. Elongation, ur=r.
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whether the direction under consideration is outside or inside the
asymptotic cone and intersects one or the other of the two
hyperboloids.

Equally, one can connect the displacement vector uðrÞ directly
with the quadric Q. Using the bilinear form

f ðyÞ ¼ Mijyiyj;

the gradient of f ðyÞ, rrrðf Þ, has as components

@f=@yi ¼ Mijyj ¼ ui:

One recognizes the components of the displacement vector u,
which is therefore parallel to the normal to the quadric Q at the
extremity of the radius vector Op parallel to r.

The directions of the principal axes of Q correspond to the
extremal values of y, i.e. to the stationary values (maximal or
minimal) of the elongation. These values are the principal elon-
gations.

If the deformation is a pure rotation

B ¼

cos � sin � 0

� sin � cos � 0

0 0 1

0

B
@

1

C
A;

M ¼

cos � � 1 sin � 0

� sin � cos � � 1 0

0 0 0

0

B
@

1

C
A:

Hence we have

Mijyiyj ¼ ðcos � � 1Þ y1 � y2ð Þ ¼ ":

The quadric Q is a cylinder of revolution having the axis of
rotation as axis.

1.3.1.3. Arbitrary but small deformations

1.3.1.3.1. Definition of the strain tensor

If the deformation is small but arbitrary, i.e. if the products of
two or more components of Mij can be neglected with respect to
unity, one can describe the deformation locally as a homogeneous
asymptotic deformation. As was shown in Section 1.3.1.2.4, it can
be put in the form of the product of a pure deformation corre-
sponding to the symmetric part of Mij, Sij, and a pure rotation
corresponding to the asymmetric part, Aij:

Sij ¼ Sji ¼
1
2

@ui
@xj

þ
@uj
@xi

� �

Aij ¼ �Aji ¼
1
2

@ui
@xj

�
@uj
@xi

� �

:

9
>>>=

>>>;

ð1:3:1:8Þ

Matrix B can be written

B ¼ I þ Aþ S;

where I is the matrix identity. As the coefficients @ui=@xj ofMij are
small, one can neglect the product A� S and one has

B ¼ ðI þ AÞðI þ SÞ:

ðI þ SÞ is a symmetric matrix that represents a pure deformation.
ðI þ AÞ is an antisymmetric unitary matrix and, since A is small,

ðI þ AÞ
�1

¼ ðI � AÞ:

Thus, ðI þ AÞ represents a rotation. The axis of rotation is
parallel to the vector with coordinates

�1 ¼
1
2

@u3
@x2

þ
@u2
@x3

� �

¼ A32

�2 ¼
1
2

@u1
@x3

þ
@u3
@x1

� �

¼ A13

�3 ¼
1
2

@u2
@x1

þ
@u1
@x2

� �

¼ A21;

9
>>>>>>>=

>>>>>>>;

which is an eigenvector of ðI þ AÞ. The magnitude of the rotation
is equal to the modulus of this vector.

In general, one is only interested in the pure deformation, i.e.
in the form of the deformed object. Thus, one only wishes to
know the quantities ðI þ SÞ and the symmetric part ofM. It is this
symmetric part that is called the deformation tensor or the strain
tensor. It is very convenient for applications to use the simplified
notation due to Voigt:

S1 ¼
@u1
@x1

; S2 ¼
@u2
@x2

; S3 ¼
@u3
@x3

;

S4 ¼
@u3
@x2

þ
@u2
@x3

; S5 ¼
@u3
@x1

þ
@u1
@x3

; S6 ¼
@u2
@x1

þ
@u1
@x2

:
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Fig. 1.3.1.3. Quadric of elongations. The displacement vector, uðrÞ, at P in the
deformed medium is parallel to the normal to the quadric at the intersection,
p, of OP with the quadric. (a) The eigenvalues all have the same sign, the
quadric is an ellipsoid. (b) The eigenvalues have mixed signs, the quadric is a
hyperboloid with either one sheet (shaded in light grey) or two sheets
(shaded in dark grey), depending on the sign of the constant " [see equation
(1.3.1.7)]; the cone asymptote is represented in medium grey. For a practical
application, see Fig. 1.4.1.1.
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One may note that

S1 ¼ S11; S2 ¼ S22; S3 ¼ S33;
S4 ¼ S23 þ S32; S5 ¼ S31 þ S13; S6 ¼ S12 þ S21:

The Voigt strain matrix S is of the form

S1 S6 S5
S6 S2 S4
S5 S4 S3

0

@

1

A:

1.3.1.3.2. Geometrical interpretation of the coefficients of the
strain tensor

Let us consider an orthonormal system of axes with centre P.
We remove nothing from the generality of the following by
limiting ourselves to a planar problem and assuming that point P0

to which P goes in the deformation lies in the plane x1Px2 (Fig.
1.3.1.4). Let us consider two neighbouring points, Q and R, lying
on axes Px1 and Px2, respectively (PQ ¼ dx1, PR ¼ dx2). In the
deformation, they go to points Q0 and R0 defined by

QQ0 :

dx01 ¼ dx1 þ @u1=@x1ð Þdx1

dx02 ¼ @u2=@x1ð Þdx1

dx03 ¼ 0

8
><

>:

RR0 :

dx01 ¼ @u1=@x2ð Þdx2

dx02 ¼ dx2 þ @u2=@x2ð Þdx2

dx03 ¼ 0:

8
><

>:

As the coefficients @ui=@xj are small, the lengths of P0Q0 and
P0R0 are hardly different from PQ and PR, respectively, and the
elongations in the directions Px1 and Px2 are

P0Q0 � PQ

PQ
¼

dx01 � dx1
dx1

¼
@u1
@x1

¼ S1

P0R0 � PR

PR
¼

dx02 � dx2
dx2

¼
@u2
@x2

¼ S2:

The components S1, S2, S3 of the principal diagonal of the Voigt
matrix can then be interpreted as the elongations in the three
directions Px1, Px2 and Px3. The angles � and � between PQ and
P0Q0, and PR and P0R0, respectively, are given in the same way by

� ¼ dx02=dx1 ¼ @u2=@x1; � ¼ dx01=dx2 ¼ @u1=@x2:

One sees that the coefficient S6 of Voigt’s matrix is therefore

S6 ¼
@u2
@x1

þ
@u1
@x2

¼ �þ �:

The angle �þ � is equal to the difference between angles
PQ ^ PR before deformation and P00Q00 ^ P0R0 after deforma-
tion. The nondiagonal terms of the Voigt matrix therefore
represent the shears in the planes parallel to Px1, Px2 and Px3,
respectively.

To summarize, if one considers a small cube before deforma-
tion, it becomes after deformation an arbitrary parallelepiped;
the relative elongations of the three sides are given by the
diagonal terms of the strain tensor and the variation of the angles
by its nondiagonal terms.

The cubic dilatation (1.3.1.5) is

�ðBÞ � 1 ¼ S1 þ S2 þ S3

(taking into account the fact that the coefficients Sij are small).

1.3.1.4. Particular components of the deformation

1.3.1.4.1. Simple elongation

Matrix M has only one coefficient, e1, and reduces to (Fig.
1.3.1.5a)

e1 0 0

0 0 0

0 0 0

0

@

1

A:

The quadric of elongations is reduced to two parallel planes,
perpendicular to Ox1, with the equation x1 ¼ �1=

ffiffiffiffiffi
jej

p
.
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Fig. 1.3.1.5. Special deformations. The state after deformation is represented
by a dashed line. (a) Simple elongation; (b) pure shear; (c) simple shear.

Fig. 1.3.1.4. Geometrical interpretation of the components of the strain
tensor. Ox1, Ox2, Ox3: axes before deformation; Ox01, Ox02, Ox03: axes after
deformation.
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1.3.1.4.2. Pure shear

This is a pure deformation (without rotation) consisting of the
superposition of two simple elongations along two perpendicular
directions (Fig. 1.3.1.5b) and such that there is no change of
volume (the cubic dilatation is zero):

e1 0 0

0 �e1 0

0 0 0

0

@

1

A:

The quadric of elongations is a hyperbolic cylinder.

1.3.1.4.3. Simple shear

Matrix Mij has one coefficient only, a shear (Fig. 1.3.1.5c):

0 s 0

0 0 0

0 0 0

0

@

1

A:

The matrix is not symmetrical, as it contains a component of
rotation. Thus we have

x01 ¼ x1 þ sx2

x02 ¼ x2

x03 ¼ x3:

9
>=

>;

One can show that the deformation is a pure shear associated
with a rotation around Ox3.

1.3.2. Stress tensor

1.3.2.1. General conditions of equilibrium of a solid

Let us consider a solid C, in movement or not, with a mass
distribution defined by a specific mass � at each point. There are
two types of force that are manifested in the interior of this solid.

(i) Body forces (or mass forces), which one can write in the
form

F dm ¼ F� d�;

where d� is a volume element and dm a mass element. Gravity
forces or inertial forces are examples of body forces. One can also
envisage body torques (or volume couples), which can arise, for
example, from magnetic or electric actions but which will be seen
to be neglected in practice.

(ii) Surface forces or stresses. Let us imagine a cut in the solid
along a surface element d� of normal n (Fig. 1.3.2.1). The two lips
of the cut that were in equilibrium are now subjected to equal and
opposite forces, R and R0 ¼ �R, which will tend to separate or
draw together these two lips. One admits that, when the area
element d� tends towards zero, the ratio R=d� tends towards a
finite limit, Tn, which is called stress. It is a force per unit area of
surface, homogeneous to a pressure. It will be considered as
positive if it is oriented towards the same side of the surface-area
element d� as the normal n and negative in the other case. The
choice of the orientation of n is arbitrary. The pressure in a liquid
is defined in a similar way but its magnitude is independent of the
orientation of n and its direction is always parallel to n. On the
other hand, in a solid the constraint Tn applied to a surface
element is not necessarily normal to the latter and the magnitude
and the orientation with respect to the normal change when the
orientation of n changes. A stress is said to be homogeneous if the
force per unit area acting on a surface element of given orien-
tation and given shape is independent of the position of the
element in the body. Other stresses are inhomogeneous. Pressure
is represented by a scalar, and stress by a rank-two tensor, which
will be defined in Section 1.3.2.2.

Now consider a volume V within the solid C and the surface S
which surrounds it (Fig. 1.3.2.2). Among the influences that are
exterior to V, we distinguish those that are external to the solid C
and those that are internal. The first are translated by the body
forces, eventually by volume couples. The second are translated
by the local contact forces of the part external to V on the
internal part; they are represented by a surface density of forces,
i.e. by the stresses Tn that depend only on the point Q of the
surface S where they are applied and on the orientation of the
normal n of this surface at this point. If two surfaces S and S0 are
tangents at the same point Q, the same stress acts at the point of
contact between them. The equilibrium of the volume V requires:

(i) For the resultant of the applied forces and the inertial
forces:

R R

S

Tn d� þ
R R R

V

F� d� ¼
d

dt

R R R

V

v d�

� �

: ð1:3:2:1Þ

(ii) For the resultant moment:

R R

S

OQ ^ Tn d� þ
R R R

V

OP ^ F� d� ¼
d

dt

R R R

V

OP ^ v d�

� �

;

ð1:3:2:2Þ

whereQ is a point on the surface S, P a point in the volume V and
v the velocity of the volume element d�.

The equilibrium of the solid C requires that:
(i) there are no stresses applied on its surface and
(ii) the above conditions are satisfied for any volume V within

the solid C.

1.3.2.2. Definition of the stress tensor

Using the condition on the resultant of forces, it is possible to
show that the components of the stress Tn can be determined
from the knowledge of the orientation of the normal n and of the
components of a rank-two tensor. Let P be a point situated inside
volume V, Px1, Px2 and Px3 three orthonormal axes, and consider
a plane of arbitrary orientation that cuts the three axes at Q, R
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Fig. 1.3.2.1. Definition of stress: it is the limit of R d� when the surface
element d� tends towards zero. R and R0 are the forces to which the two lips
of the small surface element cut within the medium are subjected.

Fig. 1.3.2.2. Stress, Tn, applied to the surface of an internal volume.
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and S, respectively (Fig. 1.3.2.3). The small volume element
PQRS is limited by four surfaces to which stresses are applied.
The normals to the surfaces PRS, PSQ and PQR will be assumed
to be directed towards the interior of the small volume. By
contrast, for reasons that will become apparent later, the normal
n applied to the surface QRS will be oriented towards the
exterior. The corresponding applied forces are thus given in Table
1.3.2.1. The volume PQRS is subjected to five forces: the forces
applied to each surface and the resultant of the volume forces
and the inertial forces. The equilibrium of the small volume
requires that the resultant of these forces be equal to zero and
one can write

�Tn d� þ T1 d�1 þ T2 d�2 þ T3 d�3 þ F� d� ¼ 0

(including the inertial forces in the volume forces).
As long as the surface element d� is finite, however small, it is

possible to divide both terms of the equation by it. If one
introduces the direction cosines, �i, the equation becomes

�Tn þ T1 d�1 þ T2 d�2 þ T3 d�3 þ F� d�=d� ¼ 0:

When d� tends to zero, the ratio d�=d� tends towards zero at the
same time and may be neglected. The relation then becomes

Tn ¼ Ti�
i: ð1:3:2:3Þ

This relation is called the Cauchy relation, which allows the stress
Tn to be expressed as a function of the stresses T1, T2 and T3 that
are applied to the three faces perpendicular to the axes, Px1, Px2
and Px3. Let us project this relation onto these three axes:

Tnj ¼ Tij�i: ð1:3:2:4Þ

The nine components Tij are, by definition, the components of the
stress tensor. In order to check that they are indeed the
components of a tensor, it suffices to make the contracted
product of each side of (1.3.2.4) by any vector xi: the left-hand
side is a scalar product and the right-hand side a bilinear form.
The Tij’s are therefore the components of a tensor. The index to
the far left indicates the face to which the stress is applied
(normal to the x1, x2 or x3 axis), while the second one indicates on
which axis the stress is projected.

1.3.2.3. Condition of continuity

Let us return to equation (1.3.2.1) expressing the equilibrium
condition for the resultant of the forces. By replacing Tn by the
expression (1.3.2.4), we get, after projection on the three axes,

R R

S

Tij d�i þ
R R R

V

Fj� d� ¼ 0;

where d�i ¼ �i d� and the inertial forces are included in the
volume forces. Applying Green’s theorem to the first integral, we
have

R R

S

Tij d�i ¼
R R R

V

@Tij=@xi
� �

d�:

The equilibrium condition now becomes
R R R

V

@Tij=@xi þ Fj�
� �

d� ¼ 0:

In order that this relation applies to any volume V, the expression
under the integral must be equal to zero,

@Tij=@xi þ Fj� ¼ 0; ð1:3:2:5Þ

or, if one includes explicitly the inertial forces,

@Tij=@xi þ Fj� ¼ �� @2xj=@t
2: ð1:3:2:6Þ

This is the condition of continuity or of conservation. It expresses
how constraints propagate throughout the solid. This is how the
cohesion of the solid is ensured. The resolution of any elastic
problem requires solving this equation in terms of the particular
boundary conditions of that problem.

1.3.2.4. Symmetry of the stress tensor

Let us now consider the equilibrium condition (1.3.2.2) relative
to the resultant moment. After projection on the three axes, and
using the Cartesian expression (1.1.3.4) of the vectorial products,
we obtain
R R

S

1
2 "ijkðxiTlj � xjTliÞd�l þ

R R R

V

1
2 "ijk�ðxiFj � xjFiÞ þ �k

� �
d� ¼ 0:

(including the inertial forces in the volume forces). "ijk is the
permutation tensor. Applying Green’s theorem to the first inte-
gral and putting the two terms together gives
Z Z Z

V

1
2 "ijk

@

@xl
ðxiTlj � xjTliÞ þ �ðxiFj � xjFiÞ

� 	

þ �k

� �

d� ¼ 0:

In order that this relation applies to any volume V within the
solid C, we must have

1
2 "ijk

@

@xl
ðxiTlj � xjTliÞ

� 	

þ �k ¼ 0

or

1
2 "ijk xi

@Tlj

@xl
þ Fj�

� �

� xj
@Tli

@xl
þ Fi�

� �

þ Tij � Tji

� 	

þ �k ¼ 0:

Taking into account the continuity condition (1.3.2.5), this
equation reduces to

1
2 "ijk�½Tij � Tji� þ �k ¼ 0:

A volume couple can occur for instance in the case of a
magnetic or an electric field acting on a body that locally
possesses magnetic or electric moments. In general, apart from
very rare cases, one can ignore these volume couples. One can
then deduce that the stress tensor is symmetrical:
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Fig. 1.3.2.3. Equilibrium of a small volume element.

Table 1.3.2.1. Stresses applied to the faces surrounding a volume element

�1, �2 and �3 are the direction cosines of the normal n to the small surface QRS.

Face Area Applied stress Applied force

QRS d� �Tn �Tn d�
PRS d�1 ¼ �1 d� T1 Tn d�1
PSQ d�2 ¼ �2 d� T2 Tn d�2
PQR d�3 ¼ �3 d� T3 Tn d�3
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Tij � Tji ¼ 0:

This result can be recovered by applying the relation (1.3.2.2)
to a small volume in the form of an elementary parallelepiped,
thus illustrating the demonstration using Green’s theorem but
giving insight into the action of the constraints. Consider a
rectangular parallelepiped, of sides 2�x1, 2�x2 and 2�x3, with
centre P at the origin of an orthonormal system whose axes Px1,
Px2 and Px3 are normal to the sides of the parallelepiped (Fig.
1.3.2.4). In order that the resultant moment with respect to a
point be zero, it is necessary that the resultant moments with
respect to three axes concurrent in this point are zero. Let us
write for instance that the resultant moment with respect to the
axis Px3 is zero. We note that the constraints applied to the faces
perpendicular to Px3 do not give rise to a moment and neither do
the components T11, T13, T22 and T23 of the constraints applied to
the faces normal to Px1 and Px2 (Fig. 1.3.2.4). The components
T12 and T21 alone have a nonzero moment.

For face 1, the constraint is T12 þ ð@T12=@x1Þ�x1 if T12 is the
magnitude of the constraint at P. The force applied at face 1 is

T12 þ
@T12

@x1
�x1

� 	

4�x2�x3

and its moment is

T12 þ
@T12

@x1
�x1

� 	

4�x2�x3�x1:

Similarly, the moments of the force on the other faces are

Face 10 : � T12 þ
@T12

@x1
ð��x1Þ

� 	

4�x2�x3ð��x1Þ;

Face 2 : T21 þ
@T21

@x2
�x2Þ

� 	

4�x1�x3�x2;

Face 20 : � T21 þ
@T21

@x2
ð��x2Þ

� 	

4�x1�x3ð��x2Þ:

Noting further that the moments applied to the faces 1 and 10

are of the same sense, and that those applied to faces 2 and 20 are
of the opposite sense, we can state that the resultant moment is

½T12 � T21�8�x1�x2�x3 ¼ ½T12 � T21���;

where 8�x1�x2�x3 ¼ �� is the volume of the small parallele-
piped. The resultant moment per unit volume, taking into
account the couples in volume, is therefore

T12 � T21 þ �3:

It must equal zero and the relation given above is thus recovered.

1.3.2.5. Voigt’s notation – interpretation of the components of the
stress tensor

1.3.2.5.1. Voigt’s notation, reduced form of the stress tensor

We shall use frequently the notation due to Voigt (1910) in
order to express the components of the stress tensor:

T1 ¼ T11; T2 ¼ T22; T3 ¼ T33;
T4 ¼ T23 ¼ T32; T5 ¼ T31 ¼ T13; T6 ¼ T12 ¼ T21:

It should be noted that the conventions are different for the Voigt
matrices associated with the stress tensor and with the strain
tensor (Section 1.3.1.3.1).

The Voigt matrix associated with the stress tensor is therefore
of the form

T1 T6 T5

T6 T2 T4

T5 T4 T3

0

@

1

A:

1.3.2.5.2. Interpretation of the components of the stress tensor –
special forms of the stress tensor

(i) Uniaxial stress: let us consider a solid shaped like a paral-
lelepiped whose faces are normal to three orthonormal axes (Fig.
1.3.2.5). The terms of the main diagonal of the stress tensor
correspond to uniaxial stresses on these faces. If there is a single
uniaxial stress, the tensor is of the form

0 0 0

0 0 0

0 0 T3

0

@

1

A:

The solid is submitted to two equal and opposite forces, T33S3
and �T33S3, where S3 is the area of the face of the parallelepiped
that is normal to theOx3 axis (Fig. 1.3.2.5a). The convention used
in general is that there is a uniaxial compression if T3 � 0 and a
uniaxial traction if T3 � 0, but the opposite sign convention is
sometimes used, for instance in applications such as piezo-
electricity or photoelasticity.

(ii) Pure shear stress: the tensor reduces to two equal uniaxial
constraints of opposite signs (Fig. 1.3.2.5b):

T1 0 0

0 �T1 0

0 0 0

0

@

1

A:

(iii) Hydrostatic pressure: the tensor reduces to three equal
uniaxial stresses of the same sign (it is spherical):

�p 0 0

0 �p 0

0 0 �p

0

@

1

A;

where p is a positive scalar.
(iv) Simple shear stress: the tensor reduces to two equal

nondiagonal terms (Fig. 1.3.2.5c), for instance T12 ¼ T21 ¼ T6.
T12 represents the component parallel toOx2 of the stress applied
to face 1 and T21 represents the component parallel to Ox1 of the
stress applied to face 2. These two stresses generate opposite
couples that compensate each other. It is important to note that it
is impossible to have one nondiagonal term only: its effect would
be a couple of rotation of the solid and not a deformation.

1.3.2.6. Boundary conditions

If the surface of the solid C is free from all exterior action and
is in equilibrium, the stress field Tij inside C is zero at the surface.
If C is subjected from the outside to a distribution of stresses Tn
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Fig. 1.3.2.4. Symmetry of the stress tensor: the moments of the couples
applied to a parallelepiped compensate each other.
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(apart from the volume forces mentioned earlier), the stress field
inside the solid is such that at each point of the surface

Tnj ¼ Tij�i;

where the �j’s are the direction cosines of the normal to the
surface at the point under consideration.

1.3.2.7. Local properties of the stress tensor

(i) Normal stress and shearing stress: let us consider a surface
area element d� within the solid, the normal n to this element and
the stress Tn that is applied to it (Fig. 1.3.2.6).

The normal stress, m, is, by definition, the component of Tn on n,

m ¼ nðTn � nÞ

and the shearing stress, s, is the projection of Tn on the surface
area element,

s ¼ n ^ ðTn ^ nÞ ¼ Tn � m:

(ii) The stress quadric: let us consider the bilinear form
attached to the stress tensor:

f ðyÞ ¼ Tijyiyj:

The quadric represented by

f ðyÞ ¼ "

is called the stress quadric, where " ¼ �1. It may be an ellipsoid
or a hyperboloid. Referred to the principal axes, and using
Voigt’s notation, its equation is

y2i Ti ¼ ":

To every direction n of the medium, let us associate the radius
vector y of the quadric (Fig. 1.3.2.7) through the relation

n ¼ ky:

The stress applied to a small surface element d� normal to n, Tn,
is

Tn ¼ krrrðf Þ

and the normal stress, 	, is

	 ¼ �iTi ¼ 1=y2;

where the �i’s are the direction cosines of n.
(iii) Principal normal stresses: the stress tensor is symmetrical

and has therefore real eigenvectors. If we represent the tensor
with reference to a system of axes parallel to its eigenvectors, it is
put in the form

T1 0 0

0 T2 0

0 0 T3

0

@

1

A:

T1, T2 and T3 are the principal normal stresses. The mean normal
stress, T, is defined by the relation

T ¼ ðT1 þ T2 þ T3Þ=3

and is an invariant of the stress tensor.

1.3.2.8. Energy density in a deformed medium

Consider a medium that is subjected to a stress field Tij. It has
sustained a deformation indicated by the deformation tensor S.
During this deformation, the forces of contact have performed
work and the medium has accumulated a certain elastic energyW.
The knowledge of the energy density thus acquired is useful for
studying the properties of the elastic constants. Let the medium
deform from the deformation Sij to the deformation Sij þ �Sij
under the influence of the stress field and let us evaluate the work
of each component of the effort. Consider a small elementary
rectangular parallelepiped of sides 2�x1, 2�x2, 2�x3 (Fig.
1.3.2.8). We shall limit our calculation to the components T11 and
T12, which are applied to the faces 1 and 10, respectively.

In the deformation �S, the point P goes to the point P0, defined
by

PP0 ¼ uðrÞ:

A neighbouring point Q goes to Q0 such that (Fig. 1.3.1.1)

PQ ¼ �r; P0Q0 ¼ �r0:

The coordinates of �r0 are given by

�x0i ¼ ��xi þ �Sij�xj:

Of sole importance is the relative displacement of Q with
respect to P and the displacement that must be taken into
account in calculating the forces applied at Q. The coordinates of
the relative displacement are
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Fig. 1.3.2.5. Special forms of the stress tensor. (a) Uniaxial stress: the stress
tensor has only one component, T33; (b) pure shear stress: T22 ¼ �T11; (c)
simple shear stress: T21 ¼ T12.

Fig. 1.3.2.6. Normal (m) and shearing (s) stress.
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�x0i � ��xi ¼ �Sij�xj:

We shall take as the position of Q the point of application of
the forces at face 1, i.e. its centre with coordinates �x1; 0; 0 (Fig.
1.3.2.8). The area of face 1 is 4�x2�x3 and the forces arising from
the stresses T11 and T12 are equal to 4�x2�x3T11 and
4�x2�x3T12, respectively. The relative displacement ofQ parallel
to the line of action of T11 is �x1�S11 and the corresponding
displacement along the line of action of T12 is �x1�S21. The work
of the corresponding forces is therefore

for T11 : 4�x1�x2�x3T11�S11

for T12 : 4�x1�x2�x3T11�S21:

The work of the forces applied to the face 10 is the same (T11,
T12 and x1 change sign simultaneously). The works corresponding
to the faces 1 and 10 are thus T11�S11�� and T12�S21�� for the two
stresses, respectively. One finds an analogous result for each of
the other components of the stress tensor and the total work per
unit volume is

�W ¼ Tij�Sji: ð1:3:2:7Þ

1.3.3. Linear elasticity

1.3.3.1. Hooke’s law

Let us consider a metallic bar of length lo loaded in pure
tension (Fig. 1.3.3.1). Under the action of the uniaxial stress
T ¼ F=A (F applied force, A area of the section of the bar), the
bar elongates and its length becomes l ¼ lo þ�l. Fig. 1.3.3.2
relates the variations of�l and of the applied stress T. The curve
representing the traction is very schematic and does not corre-
spond to any real case. The following result, however, is common
to all concrete situations:

(i) If 0 < T < To, the deformation curve is reversible, i.e. if
one releases the applied stress the bar resumes its original form.
To a first approximation, the curve is linear, so that one can write
Hooke’s law:

�l

l
¼

1

E
T; ð1:3:3:1Þ

where E is the elastic stiffness, also called Young’s modulus. The
physical mechanism at the origin of elasticity is the deformation
of the chemical bonds between atoms, ions or molecules in the
solid, which act as so many small springs. The reaction of these
springs to an applied stress is actually anharmonic and Hooke’s
law is only an approximation: a Taylor expansion up to the first
term. A rigorous treatment of elasticity requires nonlinear
phenomena to be taken into account. This is done in Section
1.3.6. The stress below which the strain is recoverable when the
stress is removed, To, is called the elastic limit.

(ii) If T > To, the deformation curve is no longer reversible. If
one releases the applied stress, the bar assumes a permanent
deformation. One says that it has undergone a plastic deforma-
tion. The region of the deformation is ultimately limited by
rupture (symbolized by an asterisk on Fig. 1.3.3.2). The plastic
deformation is due to the formation and to the movement of
lattice defects such as dislocations. The material in its initial state,
before the application of a stress, is not free in general from
defects and it possesses a complicated history of deformations.
The proportionality constant between stresses and deformations
in the elastic region depends on the interatomic force constants
and is an intrinsic property, very little affected by the presence of
defects. By contrast, the limit, To, of the elastic region depends to
a large extent on the defects in the material and on its history. It is
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Fig. 1.3.2.7. The stress quadric: application to the determination of the stress
applied to a surface element. The surface of the medium is shaded in light
grey and a small surface element, d�, is shaded in medium grey. The stress at
P is proportional to rrrðf Þ at the intersection of OP with the stress quadric.

Fig. 1.3.2.8. Determination of the energy density in a deformed medium. PP0

represents the displacement of the small parallelepiped during the
deformation. The thick arrows represent the forces applied to the faces 1
and 10.

Fig. 1.3.3.1. Bar loaded in pure tension.



1.3. ELASTIC PROPERTIES

an extrinsic property. For example, the introduction of carbon
into iron modifies considerably the extent of the elastic region.

The extents of the elastic and plastic regions vary appreciably
from one material to another. Fragile materials, for instance, have
a much reduced plastic region, with a clear break.

1.3.3.2. Elastic constants

1.3.3.2.1. Definition

Young’s modulus is not sufficient to describe the deformation
of the bar: its diameter is reduced, in effect, during the elonga-
tion. One other coefficient, at least, is therefore necessary. In a
general way, let us consider the deformation of a continuous
anisotropic medium under the action of a field of applied stresses.
We will generalize Hooke’s law by writing that at each point there
is a linear relation between the components Tij of the stress
tensor and the components Sij of the strain tensor:

Sij ¼ sijklTkl

Tij ¼ cijklSkl:
ð1:3:3:2Þ

The quantities sijkl and cijkl are characteristic of the elastic
properties of the medium if it is homogeneous and are inde-
pendent of the point under consideration. Their tensorial nature
can be shown using the demonstration illustrated in Section
1.1.3.4. Let us take the contracted product of the two sides of
each of the two equations of (1.3.3.2) by the components xi and yj
of any two vectors, x and y:

Sijxiyj ¼ sijklTklxiyj

Tijxiyj ¼ cijklSklxiyj:

The left-hand sides are bilinear forms since Sij and Tij are second-
rank tensors and the right-hand sides are quadrilinear forms,
which shows that sijkl and cijkl are the components of fourth-rank
tensors, the tensor of elastic compliances (or moduli) and the
tensor of elastic stiffnesses (or coefficients), respectively. The
number of their components is equal to 81.

Equations (1.3.3.2) are Taylor expansions limited to the first
term. The higher terms involve sixth-rank tensors, sijklmn and
cijklmn, with 36 ¼ 729 coefficients, called third-order elastic
compliances and stiffnesses and eighth-rank tensors with
38 ¼ 6561 coefficients, called fourth-order elastic compliances
and stiffnesses. They will be defined in Section 1.3.6.4. Tables for
third-order elastic constants are given in Fumi (1951, 1952, 1987).
The accompanying software to this volume enables these tables
to be derived for any point group.

1.3.3.2.2. Matrix notation – reduction of the number of
independent components

It is convenient to write the relations (1.3.3.2) in matrix form
by associating with the stress and strain tensors column matrices
1� 9 and with the tensors of the elastic stiffnesses, c, and of the
elastic compliances, s, square matrices 9� 9 (Section 1.1.4.10.4);
these two 9� 9 matrices are inverse to one another. The number
of independent components of the fourth-rank elastic tensors can
be reduced by three types of consideration:

(i) Intrinsic symmetry: it was shown in Section 1.1.1.4 that
tensors representing principal properties are symmetric. This is
the case of the elastic tensors and can be shown directly using
expression (1.3.2.7) of the energy stored per unit volume in the
medium when we allow it to deform from the state Sij to the state
Sij þ �Sij under the action of the stress Tij:

�W ¼ Tij�Sji:

Applying relation (1.3.3.1), we get

@W=@Sij ¼ cijklSkl: ð1:3:3:3Þ

Hence, one has by further differentiation

@2W=ð@Sij@SklÞ ¼ cijkl:

Nothing is changed by interchanging the role of the pairs of
dummy indices ij and lk:

@2W=ð@Skl@SijÞ ¼ cklij:

Since the energy is a state function with a perfect differential,
one can interchange the order of the differentiations: the
members on the left-hand sides of these two equations are
therefore equal; one then deduces

cijkl ¼ cklij: ð1:3:3:4Þ

The tensor of elastic stiffnesses (and also the tensor of elastic
compliances) is thus symmetrical. As shown in Section 1.1.4.5.2.2,
the number of their independent components is therefore
reduced to 45.

(ii) Symmetry of the strain and stress tensors: the strain tensor
Sij is symmetric by definition (Section 1.3.1.3.1) because rotations
are not taken into account and the stress tensor Tij is symmetric
(Section 1.3.2.4) because body torques are neglected. For this
reason, summation (1.3.3.2), Sij ¼ sijklTkl, can be factorized
[equation (1.1.4.11)]:

Sij ¼
P

l

sijllTll þ
P

k 6¼l

sijkl þ sijlk

 �

Tkl:

This shows that the number of independent components of tensor
sijkl is reduced. This effect of the symmetry of the strain and stress
tensors was discussed systematically in Section 1.1.4.10.4. It was
shown that

sijkl ¼ sijlk ¼ sjikl ¼ sjilk

cijkl ¼ cijlk ¼ cjikl ¼ cjilk
ð1:3:3:5Þ

and that the number of independent elastic compliances or
stiffnesses is reduced to 21. They are replaced by two-index
coefficients constituting 6� 6 matrices according to Voigt’s
notation:
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Fig. 1.3.3.2. Schematic stress–strain curve. T: stress; To: elastic limit; �l=l:
elongation; the asterisk symbolizes the rupture.
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i ¼ j; k ¼ l

i ¼ j; k 6¼ l

i 6¼ j; k ¼ l

i 6¼ j; k 6¼ l

compliances

s�� ¼ siill

s�� ¼ siill þ siilk

s�� ¼ sijll þ sjill

s�� ¼ sijkl þ sjikl þ sijlkþ sjilk

�
�
�
�
�
�
�
�
�
�

9
>>>>=

>>>>;

stiffnesses

c�� ¼ cijkl:

ð1:3:3:6Þ

Using these notations and Voigt’s notations for the strain and
stress tensors, equations (1.3.3.2) become:

S�� ¼ s��T�

T�� ¼ c��S�:
ð1:3:3:7Þ

For instance, the first of these two relations is written, once
developed, as

S1
S2
S3
S4
S5
S6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

s11 s12 s13 s14 s15 s16
s12 s22 s23 s24 s25 s26
s13 s23 s33 s34 s35 s36
s14 s24 s34 s44 s45 s46
s15 s25 s35 s45 s55 s56
s16 s26 s36 s46 s56 s66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

T1

T2

T3

T4

T5

T6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð1:3:3:8Þ

Matrices s�� and c�� are the inverse of each another. It is
important to note that they are matrices and not tensors. One
cannot apply to them the usual rules of transformation under a
change of base since they are only valid for the components of a
tensor. In cases where the coordinate system is changed, it is
necessary to use the components sijkl and cijkl or to establish the
rules of transformation for s�� and c��.

(iii) Symmetry of the crystal: the reduction of the number of
independent components of the matrices s�� and c�� was
discussed in Section 1.1.4.10.6. As a summary, Table 1.3.3.1 gives
the number of independent components for each Laue class.

(iv) Cauchy relation: the form that the strain energy of a
discrete-particle structure takes when its potential energy
depends only on the magnitude of the distance separating pairs of
particles is called the central or point-to-point force law. It is
shown that, when the cohesive forces have this special form,
structures that are such that every atom is situated at a centre of
symmetry have elastic constants that are totally symmetric in
their four indices. Thus

cijkl ¼ cikjl ¼ ciljk

in addition to the symmetries required by the previous consid-
erations. This additional symmetry implies the following relations
between the two-index components:

c23 ¼ c44; c14 ¼ c56
c13 ¼ c55; c25 ¼ c46
c12 ¼ c66; c36 ¼ c45:

These are known as the Cauchy relations. The further symmetry
implied by the Cauchy relations reduces the maximum number of
independent constants from 21 to 15. In crystal structures for
which they might be valid, the extent to which these relations are
fulfilled is often used to assess the validity of the assumption of a
central-force law. It is important to apply such a test only to
structures having the necessary symmetry properties for Cauchy
relations to hold. For instance, f.c.c and b.c.c. metals have the
required symmetry (an inversion centre at each atomic site),
while diamond, silicon and germanium do not. Consequently, any
apparent fulfilment of the Cauchy relation c12 ¼ c66 for a
diamond-type structure offers no ground for conclusions about
the nature of the force field.

1.3.3.2.3. Passage from elastic compliances s�� to elastic
stiffnesses c��

We have noted already that the matrix c�� is the inverse of the
matrix s��. These matrices can be written for cubic and isotropic
materials as follows:

s�� ¼

s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

c�� ¼

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

where we have, for isotropic materials,

s44 ¼ 2ðs11 � s12Þ

c44 ¼
1
2 ðc11 � c12Þ:

ð1:3:3:9Þ

We easily find that

s11 ¼
c11 þ c12

ðc11 � c12Þðc11 þ 2c12Þ
; c11 ¼

s11 þ s12
ðs11 � s12Þðs11 þ 2s12Þ

;

s12 ¼
�c12

ðc11 � c12Þðc11 þ 2c12Þ
; c12 ¼

�s12
ðs11 � s12Þðs11 þ 2s12Þ

;

s44 ¼
1

c44
; c44 ¼

1

s44
:

The coefficient c44 is sometimes called the rigidity modulus.

1.3.3.3. Elastic strain energy

Expression (1.3.2.7) of the strain energy stored per unit volume
in a medium for a small deformation can be integrated when the
medium is strained under a stress Tij according to linear elasticity.
Applying relation (1.3.3.2), one gets for the density of strain
energy

W ¼ 1
2TijSij ¼

1
2 cijklSijSkl: ð1:3:3:10Þ

1.3.3.4. Particular elastic constants

1.3.3.4.1. Volume compressibility

Let us apply a hydrostatic pressure (Section 1.3.2.5.2). The
medium undergoes a relative variation of volume �V=V ¼

S1 þ S2 þ S3 (the cubic dilatation, Section 1.3.1.3.2). If one
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Table 1.3.3.1. Number of independent components of the elastic compliances
and stiffnesses for each Laue class

Laue class

No. of
independent
components

�11; 1 21
2=m; 2;m 13
mmm; 222; 2mm 9
�33; 3 7
�33m; 32; 3m 6
4=m; 4; �44 7
4=mmm; 422; �442m; 42m 6
6=m; 6; �66 5
6=mmm; 622; �662m; 62m 5
m�33; 23 3
m�33m; 432; �4432 3
1A1=MC;1A1 2
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replaces in (1.3.3.8) the stress distribution by a hydrostatic
pressure, one obtains for the components of the strain tensor

S1 ¼ �pðs11 þ s12 þ s13Þ

S2 ¼ �pðs12 þ s22 þ s23Þ

S3 ¼ �pðs13 þ s23 þ s13Þ:

From this, we deduce the volume compressibility, 
, which is the
inverse of the bulk modulus, �:


 ¼ ��1 ¼ �
1

p

�V

V
¼ s11 þ s22 þ s33 þ 2ðs12 þ s23 þ s13Þ:

ð1:3:3:11Þ

This expression reduces for a cubic or isotropic medium to


 ¼ ��1 ¼ 3ðs11 þ 2s12Þ: ð1:3:3:12Þ

1.3.3.4.2. Linear compressibility

Under the action of a hydrostatic pressure, each vector
assumes a different elongation. This elongation is given by
equation (1.3.1.6):

ur
r
¼

Sijxixj

r2
¼ Sij�i�j ¼ sijklTkl�i�j;

where the �i’s are the direction cosines of r. The coefficient of
linear compressibility is, by definition, ð�1=pÞður=rÞ. Replacing
Tkl by its value �p�kl, we obtain for the coefficient of linear
compressibility

�
1

p

ur
r
¼ sijkl�i�j:

In the case of a cubic or isotropic medium, this expression
reduces to

�
1

p

ur
r
¼ s11 þ 2s12:

The coefficient of linear compressibility is then equal to one
third of the coefficient of volume compressibility. We note that
the quadric of elongations is a sphere.

1.3.3.4.3. Young’s modulus, Poisson’s ratio

If the applied stress reduces to a uniaxial stress, T11 ¼ T, the
strain tensor is of the form

S� ¼ s1�T:

In particular,

S1 ¼ s11T; S2 ¼ s12T:

We deduce from this that Young’s modulus (equation 1.3.3.1) is

E ¼ 1=s11: ð1:3:3:13Þ

The elongation of a bar under the action of a uniaxial stress is
characterized by S1 and the diminution of the cross section is
characterized by S2 and S3. For a cubic material, the relative
diminution of the diameter is

S2 ¼ S3 ¼ s12T:

One deduces from this that s12 is necessarily of opposite sign to
s11 and one calls the ratio 	 ¼ �s12=s11 Poisson’s ratio.

Putting this value into expression (1.3.3.12) for the coefficient
of compressibility in cubic or isotropic materials gives

��1 ¼ 3s11ð1� 2	Þ: ð1:3:3:14Þ

As the coefficient of compressibility, by definition, is always
positive, we have

0 < 	 < 0:5:

In practice, Poisson’s ratio is always close to 0.3. It is a
dimensionless number. The quantity s44=2ðs11 � s12Þ represents
the departure from isotropy of the material and is the anisotropy
factor. It is to be noted that cubic materials are not isotropic for
elastic properties. Table 1.3.3.2 gives the values of s11, s12, s44, 	
and s44=2ðs11 � s12Þ for a few cubic materials.

1.3.3.4.4. Variation of Young’s modulus with orientation

It is interesting to calculate Young’s modulus in any direction.
For this it is sufficient to change the axes of the tensor sijkl. If A is
the matrix associated with the change of axes, leading to the
direction x1 changing to the direction x

0
1, then Young’s modulus in

this new direction is

E0 ¼ 1=s011

with

s011 ¼ s01111 ¼ A1iA1jA1kA1lsijkl: ð1:3:3:15Þ
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Table 1.3.3.2. Elastic compliances of some cubic materials in (GPa)�1 (after Landoldt-Börnstein, 1979)

Material s11 s12 s44 	 s44=2ðs11 � s12Þ

Ag 22.9 �9.8 22.1 0.428 0.338
Al 16.0 �5.8 35.3 0.362 0.810
C (diamond) 1.12 �0.14 1.83 0.125 0.726
Cu 15.0 �6.3 13.3 0.42 0.312
Fe 7.67 �2.83 8.57 0.369 0.408
Ge 9.73 �2.64 14.9 0.271 0.602
Mo 2.71 �0.74 9.00 0.273 1.304
Ni 7.67 �2.93 8.23 0.382 0.388
Pb 93.7 �43.04 68.0 0.459 0.249
Si 7.74 �2.16 12.60 0.279 0.636
W 2.49 �0.70 6.35 0.281 0.995
LiF 11.6 �3.35 15.8 0.289 0.528
MgO 4.01 �0.96 6.47 0.239 0.651
NaCl 23.9 �3.20 78.7 0.133 1.452
GaAs 11.75 �3.66 16.8 0.311 0.545
ZnS 19.7 �7.6 22.6 0.386 0.414
BaTiO3 8.33 �2.68 9.24 0.322 0.420
Adamantane 240 �79 295 0.329 0.462
Almandine

ðFe3Al2Si3O12Þ

4.036 �1.093 10.77 0.271 1.050

Spinel
(MgAl2O4)

5.80 �2.05 6.49 0.353 0.413
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The matrix coefficients A1i are the direction cosines of Ox01 with
respect to the axes Ox1, Ox2 and Ox3. In spherical coordinates,
they are given by (Fig. 1.3.3.3)

A11 ¼ cos � sin ’; A12 ¼ sin � sin ’; A13 ¼ cos ’;

where � is the angle between Ox01 and Ox1, and ’ is the angle
between Ox01 and Ox3. Using the reduction of sijkl for the various
crystal classes (Section 1.1.4.9.9), we find, in terms of the reduced
two-index components, the following.

(i) Triclinic system (groups 1, �11):

s011 ¼ s11 cos
4 � þ s22 sin

4 � þ ð2s12 þ s66Þ sin
2 2�=4

�

þ ðs16 cos � þ s26 sin �Þ sin 2�� sin
4 ’

þ 2

ðs25 þ s46Þ sin � þ ðs14 þ s56Þ cos �
� �

sin 2�=2

þ s15 cos
3 � þ s24 sin

3 �
�
cos ’ sin3 ’

þ ð2s23 þ s44Þ sin
2 � þ ð2s13 þ s55Þ cos

2 �
�

þ ðs36 þ s45Þ sin 2�
�
sin2 2’=4

þ 2ðs35 cos � þ s34 sin �Þ cos
3 ’ sin ’þ s33 cos

4 ’:

(ii) Monoclinic system (groups 2, m, 2=m):

s011 ¼ s11 cos
4 � þ s22 sin

4 � þ ð2s12 þ s66Þ sin
2 2�=4

� �
sin4 ’

þ 2 ðs25 þ s46Þ sin
2 � þ s15 cos

2 �
� �

cos ’ sin3 ’ cos �

þ ð2s23 þ s44Þ sin
2 � þ ð2s13 þ s55Þ cos

2 �
� �

sin2 2’=4

þ 2s35 cos
3 ’ sin ’ cos � þ s33 cos

4 ’:

(iii) Orthorhombic system (groups 222, 2mm, mmm):

s011 ¼ s11 cos
4 � þ s22 sin

4 � þ ð2s12 þ s66Þ sin
2 2�=4

� �
sin4 ’

þ ð2s23 þ s44Þ sin
2 � þ ð2s13 þ s55Þ cos

2 �
� �

sin2 2’=4

þ s33 cos
4 ’:

(iv) Trigonal system (groups 3, �33):

s011 ¼ s11 sin
4 ’þ s33 cos

4 ’þ ð2s13 þ s44Þ sin
2 2’=4

þ ðs14 sin 3� � s25 cos 3�Þ sin 2’ sin
2 ’:

(v) Trigonal system (groups 32, 3m, �33m):

s011 ¼ s11 sin
4 ’þ s33 cos

4 ’þ ð2s13 þ s44Þ sin
2 2’=4

þ s14 sin 3� sin 2’ sin
2 ’:

(vi) Tetragonal system (groups 4, �44; 4=m):

s011 ¼ s11 þ s66 � 2ðs11 � s12Þ
� �

sin2 �=4
 �

sin4 ’þ s33 cos
4 ’

þ ð2s13 þ s44Þ sin
2 2’=4þ s16 sin 4� sin

4 ’=2:

(vii) Tetragonal system (groups 422, �442m, 4mm, 4=mmm):

s011 ¼ s11 þ s66 � 2ðs11 � s12Þ
� �

sin2 �=4
 �

sin4 ’þ s33 cos
4 ’

þ ð2s13 þ s44Þ sin
2 2’=4:

(viii) Hexagonal system:

s011 ¼ s11 sin
4 ’þ s33 cos

4 ’þ ð2s13 þ s44Þ sin
2 2’=4:

(ix) Cubic system:

s011 ¼ s11 þ s44 � 2ðs11 � s12Þ
� �

sin2 ’ cos2 ’þ sin2 2� sin2 ’=4
� �

:

This expression reduces to s11 if s44 � 2ðs11 � s12Þ ¼ 0 and we
retrieve the relation between elastic compliances in an isotropic
material (Sections 1.1.4.10.4 and 1.3.3.2.3).

The representation surface of s11, the inverse of Young’s
modulus, is illustrated in Figure 1.3.3.4 for crystals of different
symmetries. As predicted by the Neumann principle, the repre-
sentation surface is invariant with respect to the symmetry
elements of the point group of the crystal but, as stated by the
Curie laws, its symmetry can be larger. In the examples of Fig.
1.3.3.4, the symmetry of the surface is the same as that of the
point group for sodium chloride (Fig. 1.3.3.4a), tungsten
(Fig. 1.3.3.4b) and aluminium (Fig. 1.3.3.4c), which have m�33m as
point group, for tin (Fig. 1.3.3.4e, 4=mmm) and for calcite (Fig.
1.3.3.4f, �33m). But in the case of zinc (Fig. 1.3.3.4d, 6=mmm), the
surface is of revolution and has a larger symmetry. It is interesting
to compare the differences in shapes of the representation
surfaces for the three cubic crystals, depending on the value of
the anisotropy factor, which is larger than 1 for sodium chloride,
smaller than 1 for aluminium and close to 1 for tungsten (see
Table 1.3.3.2). In this latter case, the crystal is pseudo-isotropic
and the surface is practically a sphere.

1.3.3.5. Isotropic materials

The isotropy relation between elastic compliances and elastic
stiffnesses is given in Section 1.3.3.2.3. For reasons of symmetry,
the directions of the eigenvectors of the stress and strain tensors
are necessarily the same in an isotropic medium. If we take these
directions as axes, the two tensors are automatically diagonalized
and the second relation (1.3.3.7) becomes

T1 ¼ c11S1 þ c12ðS2 þ S3Þ

T2 ¼ c12S1 þ c11S2 þ c12S3

T3 ¼ c12ðS1 þ S2Þ þ c11S3:

These relations can equally well be written in the symmetrical
form

T1 ¼ ðc11 � c12ÞS1 þ c12ðS1 þ S2 þ S3Þ

T2 ¼ ðc11 � c12ÞS2 þ c12ðS1 þ S2 þ S3Þ

T3 ¼ ðc11 � c12ÞS3 þ c12ðS1 þ S2 þ S3Þ:
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Fig. 1.3.3.3. Spherical coordinates.
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If one introduces the Lamé constants,

� ¼ ð1=2Þðc11 � c12Þ ¼ c44

� ¼ c12;

the equations may be written in the form often used in mechanics:

T1 ¼ 2�S1 þ �ðS1 þ S2 þ S3Þ

T2 ¼ 2�S2 þ �ðS1 þ S2 þ S3Þ

T3 ¼ 2�S3 þ �ðS1 þ S2 þ S3Þ:

ð1:3:3:16Þ

Two coefficients suffice to define the elastic properties of an
isotropic material, s11 and s12, c11 and c12, � and �, � and 	, etc.
Table 1.3.3.3 gives the relations between the more common
elastic coefficients.

1.3.3.6. Equilibrium conditions of elasticity for isotropic media

We saw in Section 1.3.2.3 that the condition of equilibrium is

@Tij=@xi þ �Fj ¼ 0:

If we use the relations of elasticity, equation (1.3.3.2), this
condition can be rewritten as a condition on the components of
the strain tensor:

cijkl
@Skl
@xj

þ �Fi ¼ 0:

Recalling that

Skl ¼
1
2

@uk
@xl

þ
@ul
@xk

� 	

;

the condition becomes a condition on the displacement vector,
uðrÞ:

cijkl
@2

@xl@xj
þ �Fi ¼ 0:

In an isotropic orthonormal medium, this equation, projected on
the axis 0x1, can be written with the aid of relations (1.3.3.5) and
(1.3.3.9):

c11
@2u1
ð@x1Þ

2
þ c12

@2u2
@x1@x2

þ
@2u3
@x1@x3

� 	

þ 1
2 ðc11 � c12Þ

@2u1
ð@x2Þ

2
þ

@2u3
@x1@x3

þ
@2u1
ð@x3Þ

2

� 	

þ �Fi

¼ 0:

This equation can finally be rearranged in one of the three
following forms with the aid of Table 1.3.3.3.

1
2 ðc11 � c12Þ�uþ 1

2 ðc11 þ c12ÞrrrðrrruÞ þ �F ¼ 0

��uþ ð�þ �ÞrrrðrrruÞ þ �F ¼ 0

� �uþ
1

1� 2	
rrrðrrruÞ

� 	

þ �F ¼ 0:

ð1:3:3:17Þ
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Fig. 1.3.3.4. Representation surface of the inverse of Young’s modulus. (a) NaCl, cubic, anisotropy factor> 1; (b) W, cubic, anisotropy factor¼ 1; (c) Al, cubic,
anisotropy factor < 1; (d) Zn, hexagonal; (e) Sn, tetragonal; (f) calcite, trigonal.
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1.3.4. Propagation of elastic waves in continuous media –
dynamic elasticity

1.3.4.1. Introduction

The elastic properties of materials have been considered in the
preceding section in the static state and the elastic constants have
been defined in terms of the response of the material to particular
static forces. It is effectively the way the elastic constants have
been measured in the past, although the measurements could not
be very precise. A way of proceeding frequently used now is to
excite a mechanical wave in the crystal and measure its propa-
gation velocity or the wavelength associated with a particular
frequency. One method consists in sending a train of ultrasonic
waves through the crystal; one uses a pulse generator and a
piezoelectric transducer glued to the crystal. The elapsed time
between the emission of the train of waves and its reception after
reflection from the rear face of the sample is then measured.
Another method involves producing a system of standing waves
after reflection at the inner surface of the crystal and determining
the set of resonance frequencies. The experimental techniques
will be described in Section 1.3.4.6.

The purpose of the next sections is to establish relations
between the wavelength – or the velocity of propagation – and
the elastic constants.

1.3.4.2. Equation of propagation of a wave in a material

Consider the propagation of a wave in a continuous medium.
The elongation of each point will be of the form

u ¼ u0 expð2i	tÞ expð�2iq � rÞ; ð1:3:4:1Þ

where 	 is the frequency and q is the wavevector. The velocity of
propagation of the wave is

V ¼ 	=q: ð1:3:4:2Þ

We saw in Section 1.3.3.6 that the equilibrium condition is

cijkl
@2uk
@xl@xj

þ �Fi ¼ 0:

Here the only volume forces that we must consider are the
inertial forces:

cijkl
@2uk
@xl@xj

¼ �
@2xi
@t2

: ð1:3:4:3Þ

The position vector of the point under consideration is of the
form

r ¼ r0 þ u;

where only u depends on the time and r0 defines the mean
position. Equation (1.3.4.3) is written therefore

cijkl
@2uk
@xl@xj

¼ �
@2ui
@t2

: ð1:3:4:4Þ

Replacing u by its value in (1.3.4.1), dividing by �42 and
using orthonormal coordinates, we get

cijklukqjql ¼ �	2ui: ð1:3:4:5Þ

It can be seen that, for a given wavevector, �	2 appears as an
eigenvalue of the matrix cijklukqjql of which the vibration vector u
is an eigenvector. This matrix is called the dynamical matrix, or
Christoffel matrix. In order that the system (1.3.4.5) has a solution
other than a trivial one, it is necessary that the associated
determinant be equal to zero. It is called the Christoffel deter-
minant and it plays a fundamental role in the study of the
propagation of elastic waves in crystals.

Let �1; �2; �3 be the direction cosines of the wavevector q. The
components of the wavevector are

qi ¼ q�i:

With this relation and (1.3.4.2), the system (1.3.4.5) becomes

cijkluk�j�l ¼ �	2ui: ð1:3:4:6Þ

Putting

�ik ¼ cijkl�j�l ð1:3:4:7Þ

in (1.3.4.6), the condition that the Christoffel determinant is zero
can be written

� �ik � �	
2�ik


 �
¼ 0: ð1:3:4:8Þ

On account of the intrinsic symmetry of the tensor of elastic
stiffnesses, the matrix �ik is symmetrical.

If we introduce into expression (1.3.4.7) the elastic stiffnesses
with two indices [equation (1.3.3.6)], we find, for instance, for �11

and �12

�11 ¼ c11ð�1Þ
2 þ c66ð�2Þ

2 þ c55ð�3Þ
2 þ 2c16�1�2

þ 2c15�1�3 þ 2c56�2�3

�12 ¼ c16ð�1Þ
2 þ c26ð�2Þ

2 þ c45ð�3Þ
2 þ ðc12 þ c66Þ�1�2

þ ðc14 þ c56Þ�1�3 þ ðc46 þ c25Þ�2�3:

The expression for the effective value, ceijkl, of the ‘stiffened’
elastic stiffness in the case of piezoelectric crystals is given in
Section 2.4.2.2.

1.3.4.3. Dynamic elastic stiffnesses

Equation (1.3.4.7) may be written

�ik ¼
P

j6¼l

cijkl þ cilkj
� �

�j�l:

This shows that in a dynamic process only the sums ½cijkl þ cilkj�
can be measured and not cijkl and cilkj separately. On the contrary,
cijij can be measured directly. In the cubic system therefore, for
instance, c1122 is determined from the measurement of
½c1122 þ c1221� on the one hand and from that of c1221 on the other
hand.

1.3.4.4. Polarization of the elastic waves

The Christoffel determinant has three roots and the Christoffel
matrix, being Hermitian with real coefficients, has three real
eigenvalues and three orthogonal eigenvectors. The wavevector

q, therefore, encompasses three waves
with vibration vectors u1, u2, u3 which are
perpendicular to one another. In the
general case, there is no particular
angular relationship between the vibra-
tion vectors (or polarization vectors).
However, if the latter are parallel to
certain symmetry directions in the
crystal, one of the vibration vectors is
along this direction. The corresponding
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Table 1.3.3.3. Relations between elastic coefficients in isotropic media

Coefficient In terms of � and � In terms of � and 	 In terms of c11 and c12

c11 2�þ � 2�ð1� 	Þð1� 2	Þ c11
c12 � 2�	ð1� 2	Þ c12
c44 ¼ 1=s44 � � ðc11 � c12Þ=2
E ¼ 1=s11 �ð2�þ 3�Þ=ð�þ �Þ 2�ð1þ 	Þ See Section 1.3.3.2.3
s12 ��= 2�ð2�þ 3�Þ½ � �	= 2�ð1þ 	Þ½ � See Section 1.3.3.2.3
� 3=ð2�þ 3�Þ 3ð1� 2	Þ= 2�ð1þ 	Þ½ � 3=ðc11 þ 2c12Þ
	 ¼ �s12=s11 �= 2ð2�þ 3�Þ½ � 	 c11=ðc11 þ c12Þ
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wave is called longitudinal. The two other waves have their
polarization direction perpendicular to the wavevector and are
thus transverse. If one of the polarization vectors is almost
parallel to the wavevector, which often happens, then one speaks
of the vibration as being quasi-longitudinal.

1.3.4.5. Relation between velocity of propagation and elastic
stiffnesses

We shall limit ourselves to cubic, hexagonal and tetragonal
crystals and consider particular cases.

1.3.4.5.1. Cubic crystals

(i) The wavevector is parallel to [100]. The Christoffel deter-
minant reduces to

c11 � �	
2 0 0

0 c44 � �	
2 0

0 0 c44 � �	
2

0

@

1

A ¼ 0:

The three solutions are given in Table 1.3.4.1. These results are
valid for a wave propagating in any direction in an isotropic
medium.

(ii) The wavevector is parallel to [110]. The direction cosines of
the wavevector are 1=

ffiffiffi
2

p
, 1=

ffiffiffi
2

p
, 0. The Christoffel determinant

assumes the form

1
2 ðc11 þ c44Þ � �	

2 1
2 ðc12 þ c44Þ 0

1
2 ðc12 þ c44Þ

1
2 ðc11 þ c44Þ � �	

2 0

0 0 c44 � �	
2

0

@

1

A ¼ 0:

The three solutions are given in Table 1.3.4.2.
(iii) The wavevector is parallel to [111]. The Christoffel

determinant assumes the form

c11 þ 2c44 � �	
2 c12 þ c44 c12 þ c44

c12 þ c44 c11 þ 2c44Þ � �	
2 c12 þ c44

c12 þ c44 c12 þ c44 c44 � �	
2

0

@

1

A ¼ 0:

The solutions are given in Table 1.3.4.3.

1.3.4.5.2. Hexagonal crystals

In hexagonal crystals, there are five independent elastic stiff-
nesses, c11, c33, c12, c13, c44 and c66 ¼ ðc11 � c12Þ=2 (Section
1.1.4.10.4).

(i) The wavevector is parallel to [001]. The Christoffel deter-
minant reduces to

c44 � �	
2 0 0

0 c44 � �	
2 0

0 0 c33 � �	
2

0

@

1

A ¼ 0:

The solutions are given in Table 1.3.4.4.
(ii) The wavevector is parallel to [100]. The Christoffel deter-

minant readily reduces to

c11 � �	
2 0 0

0 c66 � �	
2 0

0 0 c44 � �	
2

0

@

1

A ¼ 0:

The three solutions are given in Table 1.3.4.5.

1.3.4.5.3. Tetragonal crystals (classes 4mm, �442m, 4=mmm)

In tetragonal crystals, there are six independent elastic stiff-
nesses, c11, c33, c12, c13, c44 and c66 (Section 1.1.4.10.4).

(i) The wavevector is parallel to [001]. The Christoffel deter-
minant reduces to

c44 � �	
2 0 0

0 c44 � �	
2 0

0 0 c33 � �	
2

0

@

1

A ¼ 0:

The three solutions are given in Table 1.3.4.6.
(ii) The wavevector is parallel to [100]. The Christoffel deter-

minant reduces to

c11 � �	
2 0 0

0 c66 �
2 �	2 0

0 0 c44 �
2 �	2

0

@

1

A ¼ 0:

The three solutions are given in Table 1.3.4.7.
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Table 1.3.4.1. Velocity of propagation when the wavevector is parallel to [100]
(cubic crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffi
c11=�

p
[100] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
[010] Transverse

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
Any vector normal

to [100]
Transverse

Table 1.3.4.2. Velocity of propagation when the wavevector is parallel to [110]
(cubic crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c44 þ

1
2 ðc11 þ c12Þ�=�

p
[110] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðc11 � c12Þ=�

p
½1�110� Transverse

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
[001] Transverse

Table 1.3.4.3. Velocity of propagation when the wavevector is parallel to [111]
(cubic crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11 þ 2c12 þ 4c44Þ=3�

p
[111] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11 � c12 þ c44Þ=3�

p
Any vector normal

to [111]
Transverse

Table 1.3.4.4. Velocity of propagation when the wavevector is parallel to [001]
(hexagonal crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c33Þ=�

p
[100] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
Any vector normal

to [001]
Transverse

Table 1.3.4.7. Velocity of propagation when the wavevector is parallel to [100]
(tetragonal crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffi
c11=�

p
[100] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c66=�

p
[010] Transverse

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
[001] Transverse

Table 1.3.4.6. Velocity of propagation when the wavevector is parallel to [001]
(tetragonal crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffi
c33=�

p
[100] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
[010] Transverse

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
[001] Transverse

Table 1.3.4.5. Velocity of propagation when the wavevector is parallel to [100]
(hexagonal crystals)

Velocity of propagation Polarization vector Nature of the wave

	k ¼
ffiffiffiffiffiffiffiffiffiffiffi
c11=�

p
[100] Longitudinal

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c66=�

p
[010] Transverse

	? ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=�

p
[001] Transverse
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1.3.4.6. Experimental determination of elastic constants

1.3.4.6.1. Introduction

As mentioned in Section 1.3.4.1, the elastic constants of a
material can be obtained by the elastic response of the material to
particular static forces; however, such measurements are not
precise and the most often used approach nowadays consists of
determining the velocity of ultrasonic waves propagating along
different directions of the crystal and calculating the elastic
constants from the Christoffel determinants (1.3.4.8). The
experimental values are often accurate enough to justify the
distinction between static and dynamic values of the elastic
constants and between phase and group velocities, and the
careful consideration of the frequency range of the experiments.

(i) Static and dynamic elastic constants. When one measures the
elastic response of a material to external static forces, work is
done and heat is produced. In general, the external forces are
applied slowly (quasi-elastic processes) and the solid body
remains in thermal equilibrium with its surroundings, which can
be considered as a heat reservoir. In this case, the measured
elastic constants are isothermal elastic constants as defined in
Section 1.1.5.1. On the contrary, when ultrasonic waves propagate
in a solid body, the compressed regions are slightly hotter than
the expanded regions; the associated temperature gradients give
rise to irreversible processes of thermal conduction. However, in
the megahertz or higher-frequency ranges, the processes of heat
exchange between different regions or between the solid and its
surroundings are slow compared with the period of the ultrasonic
wave and hence can be considered as isentropic. In this case, the
measured velocities are isentropic and the elastic stiffnesses
deduced from them are the adiabatic elastic stiffnesses as defined
in Section 1.1.5.4. The differences between isothermal and adia-
batic elastic stiffnesses can be calculated from equation (1.1.5.2):

�Tij ¼ ðcijklÞ
��Skl � �ij��

�� ¼ �kl�Skl þ
�CS

�
��:

By combining these two equations, it is possible to obtain
relations between the isothermal elastic stiffnesses, ðcijklÞ

�, and
the adiabatic elastic stiffnesses, ðcijklÞ

� :

ðcijklÞ
�
¼ ðcijklÞ

�
þ
�ij�kl
�cS

;

where cS is the specific heat at constant strain.
This relation shows that adiabatic elastic stiffnesses are larger

than isothermal elastic stiffnesses, at least for the terms of the
main diagonal of the elastic matrix. In general, the differences
between isothermal and adiabatic elastic stiffnesses are less than
1%. An exception to this statement concerns the temperature
region near the critical temperature Tc where a phase transition
occurs.

(ii) Frequency dependence of the elastic constants. Dynamic
measurements of the elastic constants can be performed at a wide
range of ultrasonic frequencies. Currently used techniques for
investigating a wide range of frequencies are electronic pulse-
echo techniques in the megahertz frequency range and Brillouin
scattering in the 10 GHz frequency range. To evaluate the
possible differences between dynamic elastic constants deter-
mined in different frequency ranges, high-accuracy measure-
ments of the absolute value of the elastic constants are required.
From optical resonance techniques in the megahertz frequency
range and Brillouin scattering in the gigahertz frequency range, it
has been shown that the results are the same within 0.1 to 0.2% in
the case of simple and stable crystals such as sodium chloride
when the ultrasonic waves can be considered as a ‘passive probe’
(Michard et al., 1971). Larger differences are observed when
ultrasonic waves interact with the medium, when they favour or

impede structural changes of the material or when they are
absorbed for a particular frequency.

(iii) Phase velocity and group velocity. When the velocity of
ultrasonic waves is frequency dependent (dispersive medium),
one has to distinguish phase velocity and group velocity. If a
resonance technique is used, the resonance frequencies corre-
spond to phase-matching conditions and the calculation of
velocity from the resonance frequencies leads to ‘phase velocity’.
If a pulse-echo technique is used, the transit time of an elastic
pulse is measured and the interpretation of the measurement is
more complex. In this case, Brillouin (1932) has shown that the
head and the tail of the pulse travel with the group velocity.
Differences of a few per cent can be observed between phase and
group velocities in dispersive media.

1.3.4.6.2. Resonance technique

The use of the resonance technique is a well established
approach for determining the velocity of sound in a gas by
observing nodes and antinodes of a system of standing waves
produced in the so-called Kund tube. In the case of transparent
solids, optical means allow us to visualize the standing waves and
to measure the wavelength directly (Zarembowitch, 1965). An
easier procedure can be used: let us consider a transparent crystal
in the shape of a parallelepiped (Fig. 1.3.4.1). A piezoelectric
transducer is glued to the crystal and excited at varying
frequencies. If the bonding between the transducer and the
crystal is loose enough, the crystal can be considered as free from
stress and the sequence of its resonance frequencies is given by

	 ¼ nV=2l;

where n is an integer, V the phase velocity of the wave in the
direction orthogonal to the parallel faces and l the distance
between these faces.

The looseness of the bonding can be checked by the regularity
of the arithmetic ratio, V=2l. On account of the elasto-optic
coupling, a phase grating is associated with the elastic standing-
wave system and a light beam can be diffracted by this grating.
The intensity of the diffraction pattern is maximum when reso-
nance occurs. A large number of resonance frequencies can be
detected, usually more than 100, sometimes 1000 for non-
attenuating materials. Consequently, in favourable cases the
absolute value of the ultrasonic velocity can be determined with
an uncertainty less than 10�3.

1.3.4.6.3. Pulse-echo techniques

Pulse-echo techniques are valid for transparent and opaque
materials. They are currently used for measuring ultrasonic
velocities in solids and can be used in very simple as well as in
sophisticated versions according to the required precision
(McSkimmin, 1964). In the simplest version (Fig. 1.3.4.2), an
electronic pulse generator excites the mechanical vibrations of a
piezo-electric transducer glued to one of two plane-parallel faces
of a specimen. An ultrasonic pulse whose duration is of the order
of a microsecond is generated and transmitted through the
specimen. After reflection at the opposite face, it returns and,
when it arrives back at the transducer, it gives rise to an elec-
tronic signal, or echo. The whole sequence of such echos is
displayed on the screen of an oscilloscope and it is possible to
measure from them the time interval for transit. Usually, X-cut
quartz crystals or ferroelectric ceramics are used to excite long-
itudinal waves and Y-cut quartz is used to excite transverse
waves. In many cases, a circulator, or gate, is used to protect the
receiver from saturation following the main ‘bang’. This method
is rough because the beginning and the end of a pulse are not well
characterized. Several improvements have therefore been made,
mainly based on interferometric techniques (pulse-superposition
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method, ‘sing around’ method etc.). Nevertheless, if the absolute
value of the ultrasonic velocity is not determined with a high
accuracy by using pulse-echo techniques, this approach has
proved valuable when relative values of ultrasonic velocities are
needed, e.g. temperature and pressure dependences of ultrasonic
velocities.

(i) Pulse-superposition method. A piezoelectric transducer
initiates ultrasonic pulses in the specimen. These pulses echo
back and forth within the specimen. A continuous-wave oscillator
is used to control the pulse repetition rate. When the repetition
rate is adjusted so that the initiation of a pulse coincides with the
return of the first echo from the preceding pulses, the change in
the signal amplitude indicates superposition. The pulse rate is a
measure of the travel time within the specimen.

(ii) ‘Sing around method’. The ‘sing around’ method for
measuring the velocity of ultrasonic waves involves the use of two
piezoelectric transducers, one at each end of the specimen. One
transducer receives an impulse from the electronic generator and
converts it into an ultrasonic pulse in the specimen. This pulse,
after passing through the specimen, is detected by the receiving
transducer. The received pulse triggers the electronic generator
to initiate a succeeding pulse. The pulse repetition rate is a very
sensitive probe for measuring changes of the ultrasonic velocity
in the specimen. Relative variations of 10�7 can be measured,
such as temperature or stress dependences of the velocity.

1.3.5. Pressure dependence and temperature dependence of the
elastic constants

1.3.5.1. Introduction

In a solid, the elastic constants are temperature and pressure
dependent. As examples, the temperature dependence of the
elastic stiffnesses of an aluminium single crystal within its stability
domain (the melting point is 933 K) and the pressure dependence
of the elastic stiffnesses of the ternary compound KZnF3 within
its stability domain (the crystal becomes unstable for a hydro-
static pressure of about 20 GPa) are shown in Figs. 1.3.5.1 and
1.3.5.2, respectively.

We can observe the following trends, which are general for
stable crystals:

(i) From 0 K to about �D=5, where �D is the Debye
temperature, the elastic stiffnesses decrease according to a �4

law. From �D=5 to the beginning of the instability domain, the
dependence is linear with �. In addition, ð@cii=@�Þp ¼ 0 at 0 K as
predicted by the third principle of thermodynamics.

(ii) For stable crystals, the pressure dependence of the elastic
stiffnesses is linear as long as the applied pressure is small
compared to the elastic stiffnesses. As an example, a typical order
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Fig. 1.3.4.2. Block diagram of the pulse-echo technique.

Fig. 1.3.4.1. Resonance technique: standing waves excited in a parallelepiped.

Fig. 1.3.5.1. Temperature dependence of the elastic stiffnesses of an
aluminium single crystal (after Landoldt-Börnstein, 1979).
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of magnitude for c11 in crystals is about 100 GPa and, within the
experimental uncertainty, the pressure dependence of c11 does
not depart from a linear behaviour up to at least 0.2 GPa.

These observations can be quantitatively justified on the basis
of an equation of state of a solid:

f ðTij; Sij;X;�Þ ¼ 0;

where Tij represents the stress tensor, Sij the strain tensor, X the
position of the elementary elements of the solid and � the
temperature.

Different equations of state of solids have been proposed.
They correspond to different degrees of approximation that can
only be discussed and understood in a microscopic theory of
lattice dynamics. The different steps in the development of lattice
dynamics, the Einstein model, the Debye model and the
Grüneisen model, will be presented in Section 2.1.2.7.
Concerning the temperature and the pressure dependences of the
elastic constants, we may notice that rather sophisticated models
are needed to describe correctly the general trends mentioned
above:

(a) In the Einstein model, where the N atoms of a crystal are
considered as 3N independent harmonic oscillators, the
temperature increase affects only the amplitude of the oscilla-
tions and not the average positions of the atoms; consequently,
this model can explain neither the thermal expansion nor the
temperature dependence of the elastic constants. In addition, this
theory ignores the difference between isothermal and adiabatic
elastic constants. Similarly, if the oscillators are harmonic, the
stiffness of the ‘springs’ connecting atoms does not depend on the
distances between atoms and the model cannot therefore explain
the pressure dependence of the elastic constants, which requires
anharmonic ‘springs’ or, more accurately, anharmonic potentials.

(b) In the Debye model, the 3N oscillators are not independent
but they are still harmonic. The result is that here again the elastic
constants are pressure and temperature independent.

(c) In the Grüneisen model, the frequencies of the oscillators
are volume-dependent; this so-called ‘quasiharmonic approx-
imation’ can justify the standard behaviour shown in Figs. 1.3.5.1
and 1.3.5.2.

1.3.5.2. Temperature dependence of the elastic constants

Table 1.3.5.1 gives typical values of ð@ ln cij=@�Þp for some cubic
crystals considered within their stability domain. In column 6, the
‘elastic Debye temperature’ of the crystal, ð�DÞel, has been
calculated according to the formula

ð�DÞel ¼ hv=kBð3n=4Þ
1=3;

where h is the Planck constant, kB is the Boltzmann constant, v is
an average velocity (see for instance De Launay, 1956) and n is
the number of atoms per unit volume.

It is interesting to compare ð�DÞel, the ‘elastic Debye
temperature’, with ð�DÞcal, the ‘calorimetric Debye temperature’.
The definition of ð�DÞcal will be given in Section 2.1.2.7. It results
from the attempt at founding a universal description for the
thermal properties of solids when the temperature is expressed as
a reduced temperature, �=ð�DÞcal; ð�DÞcal is obtained from
calorimetric measurements at low temperature. It is worth noting
that accurate values of low-temperature elastic constants and
low-temperature calorimetric measurements lead to an excellent
agreement between ð�DÞel and ð�DÞcal [better than 2 or 3 K (De
Launay, 1956)]. This agreement demonstrates the validity of the
Debye model in the vicinity of 0 K. From Table 1.3.5.1, we can
observe that for ionic crystals ð@ ln c11=@�Þp is, in general, greater
than ð@ ln c44=@�Þp. This remark is not valid for covalent and
metallic crystals. Typical orders of magnitude are given in Table

1.3.5.2. These statements concern only
general trends valid for stable crystals.

In the case of temperature-induced
phase transitions, some elastic constants
are softened in the vicinity and some-
times far from the critical temperature.
As an example, Fig. 1.3.5.3 shows the
temperature dependence of c44 in
RbCdF3, CsCdF3 and TlCdF3 single
crystals. RbCdF3 and TlCdF3 undergo
structural phase transitions at 124 and
191 K, respectively, while CsCdF3

remains stable in this temperature range.
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Fig. 1.3.5.2. Pressure dependence of the elastic stiffness c11 of a KZnF3

crystal. Reproduced with permission from Ultrasonics Symposium Proc.
IEEE (Fischer et al., 1980). Copyright (1980) IEEE.

Fig. 1.3.5.3. Temperature dependence of the elastic constant c44 in RbCdF3,
CsCdF3 and TlCdF3 crystals; the crystals of RbCdF3 and TlCdF3 undergo
structural phase transitions (after Rousseau et al., 1975).

Table 1.3.5.1. Temperature dependence of the elastic stiffnesses for some cubic crystals

Material
Temperature
range (K)

ð@ ln c11=@�Þp
(10�4 K�1)

ð@ ln c44=@�Þp
(10�4 K�1)

ð@ ln c12=@�Þp
(10�4 K�1)

�el

(K)

Al 80–300 �3.1 �4.45 �1.3 430
Cu 80–300 �2.01 �3.33 �1.24 344
Ag 50–300 �2.3 �4.0 �1.5 226
Pb 100–300 �4.4 �1.5 �2.8 105
Si 80–300 �0.81 �10.6 �1.10 648
Ge 150–1000 �1.2 �1.15 �1.10 374
ZnS 100–300 �1.2 �0.65 �0.8 347
NaCl 100–300 �7.8 �2.2 �4.7 321
KCl 80–300 �8.3 �2.1 �3.6 236
KBr 80–300 �7.6 �2.1 7 172
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The softening of c44 when the temperature decreases starts more
than 100 K before the critical temperature, �c. In contrast, Fig.
1.3.5.4 shows the temperature dependence of c11 in KNiF3, a
crystal that undergoes a para–antiferromagnetic phase transition
at 246 K; the coupling between the elastic and the magnetic
energy is weak, consequently c11 decreases abruptly only a few
degrees before the critical temperature. We can generalize this
observation and state that the softening of an elastic constant
occurs over a large domain of temperature when this constant is
the order parameter or is strongly coupled to the order para-
meter of the transformation; for instance, in the cooperative
Jahn–Teller phase transition in DyVO4, ðc11 � c12Þ=2 is the soft
acoustic phonon mode leading to the phase transition and this
parameter anticipates the phase transition 300 K before it occurs
(Fig. 1.3.5.5).

1.3.5.3. Pressure dependence of the elastic constants

As mentioned above, anharmonic potentials are needed to
explain the stress dependence of the elastic constants of a crystal.
Thus, if the strain-energy density is developed in a polynomial in
terms of the strain, only the first and the second elastic constants
are used in linear elasticity (harmonic potentials), whereas
higher-order elastic constants are also needed for nonlinear
elasticity (anharmonic potentials).

Concerning the pressure dependence of the elastic constants
(nonlinear elastic effect), considerable attention has been paid to
their experimental determination since they are a unique source
of significant information in many fields:

(i) In geophysics, a large part of the knowledge we have on the
interior of the earth comes from the measurement of the transit
time of elastic bursts propagating in the mantle and in the core (in
the upper mantle, the average pressure is estimated to be about a
few hundred GPa, a value which is comparable to that of the
elastic stiffnesses of many materials).

(ii) In solid-state physics, the pressure dependence of the
elastic constants gives significant indications concerning the
stability of crystals. For example, Fig. 1.3.5.2 shows the pressure
dependence of the elastic constants of KZnF3, a cubic crystal
belonging to the perovskite family. As mentioned previously, this
crystal is known to be stable over a wide range of temperature
and the elastic stiffnesses cij depend linearly on pressure. It may
be noted that, consequently, the third-order elastic constants

(TOECs) are constant. On the contrary, we observe in Fig. 1.3.5.6
that the pressure dependence of the elastic constants of TlCdF3, a
cubic crystal belonging to the same family but which is known to
become unstable when the temperature is decreased to 191 K
(Fischer, 1982), is nonlinear even at low pressures. In this case,
the development of the strain-energy density in terms of strains
cannot be stopped after the terms containing the third-order
elastic constants; the contributions of the fourth- and fifth-order
elastic constants are not negligible.

(iii) For practical use in the case of technical materials such as
concrete or worked metals, the pressure dependence of the
elastic moduli is also required for examining the effect of applied
stresses or of an applied hydrostatic pressure, and for studying
residual stresses resulting from loading (heating) and unloading
(cooling) the materials.

1.3.6. Nonlinear elasticity

1.3.6.1. Introduction

In a solid body, the relation between the stress tensor T and the
strain tensor S is usually described by Hooke’s law, which
postulates linear relations between the components of T and S
(Section 1.3.3.1). Such relations can be summarized by (see
equation 1.3.3.2)

Tij ¼ cijklSkl;

where the cijkl’s are the elastic stiffnesses.
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Table 1.3.5.2. Order of magnitude of the temperature dependence of the elastic
stiffnesses for different types of crystals

Type of crystal ð@ ln c11=@�Þp (K
�1) ð@ ln c44=@�Þp (K

�1)

Ionic �10�3 �3� 10�4

Covalent �10�4 �8� 10�5

Metallic �2� 10�4 �3� 10�4

Fig. 1.3.5.4. Temperature dependence of the elastic constant c11 in KNiF3,
which undergoes a para–antiferromagnetic phase transition. Reprinted with
permission from Appl. Phys. Lett. (Nouet et al., 1972). Copyright (1972)
American Institute of Physics.

Fig. 1.3.5.5. Temperature dependence of ðc11 � c12Þ=2 in DyVO4, which
undergoes a cooperative Jahn–Teller phase transition (after Melcher & Scott,
1972).

Fig. 1.3.5.6. Pressure dependence of the elastic constants ðc11 � c12Þ=2 in
TlCdF3. Reproduced with permission from Ultrasonics Symposium Proc.
IEEE (Fischer et al., 1980). Copyright (1980) IEEE.
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For a solid under finite strain conditions, Hooke’s law, valid for
infinitesimal deformations, does not hold, and the fundamental
definitions for stress and strain must be revisited.

1.3.6.2. Lagrangian and Eulerian description

Finite elastic strains may be treated from two different view-
points using either the Lagrangian (material) or the Eulerian
(spatial) descriptions.

Let us consider a fixed rectangular Cartesian coordinate
system with axes xi (i ¼ 1; 2; 3). Any particular position vector r
of components (x1, x2, x3) denotes a point in space. A point that
always moves with the material is called a particle or material
point. Let every particle be identified by its coordinates at some
reference time t0. These reference coordinates, referred to the
same Cartesian system, will be denoted by (a1, a2, a3) and the
corresponding position vector a. A particular vector a can serve
as a name for the particle located at that position at the reference
time t0.

The vectors r and a both specify a position in a fixed Cartesian
frame of reference. At any time, we associate each r with an a by
the rule that r is the present position vector of the particle
initially at a. This connection between r and a is written symbo-
lically as

r ¼ rðt; aÞ or xi ¼ xiðt; a1; a2; a3Þ; ð1:3:6:1Þ

where

a ¼ rðt0; aÞ or ai ¼ xiðt0; a1; a2; a3Þ: ð1:3:6:2Þ

The coordinates ai that identify the particles are calledmaterial
coordinates. A description that, like (1.3.6.1), uses (t, a1, a2, a3) as
independent variables is called a material or Lagrangian
description.

The converse of (1.3.6.1) and (1.3.6.2) may be written

a ¼ aðt; rÞ or ai ¼ aiðt; x1; x2; x3Þ; ð1:3:6:3Þ

where

r ¼ aðt0; rÞ or xi ¼ aiðt0; x1; x2; x3Þ: ð1:3:6:4Þ

A spatial description or Eulerian description uses the inde-
pendent variables (t, x1, x2, x3), the xi being called spatial coor-
dinates.

Now, for the sake of simplicity, we shall work with the
Lagrangian formulation exclusively. For more details see, for
instance, Thurston (1964) and Wallace (1970, 1972).

1.3.6.3. Strain and stress tensors

The displacement vector from the reference position of a
particle to its new position has as components

ui ¼ xi � ai: ð1:3:6:5Þ

The term strain refers to a change in the relative positions of
the material points in a body. Let a final configuration be
described in terms of the reference configuration by setting t
equal to a constant in (1.3.6.1). Then t no longer appears as a
variable and (1.3.6.1) can be written

xi ¼ xiða1; a2; a3Þ;

where the ai are the independent variables. It follows that

dxj ¼
@xj
@ai

dai ¼
@uj
@ai

þ �ij

� �

dai: ð1:3:6:6Þ

Let now the particle initially at (a1, a2, a3) move to (x1, x2, x3).
The square of the initial distance to a neighbouring particle
whose initial coordinates were aj þ daj is

ds2 ¼ dajdaj:

The square of the final distance to the same neighbouring particle
is

ds2 ¼ dxjdxj:

In a material description, the strain components Sik are defined
by the following equations:

dxjdxj � dajdaj ¼ 2Sikdaidak: ð1:3:6:7Þ

Substituting (1.3.6.6) into (1.3.6.7), it follows that

@uj
@ai

þ �ji

� �
@uj
@ak

þ �jk

� �

daidak � dajdaj ¼ 2Sikdaidak:

Hence

Sik ¼
1
2

@uk
@ai

þ
@ui
@ak

þ
@uj
@ai

@uj
@ak

� �

:

If the products and squares of the displacement derivatives are
neglected, the strain components reduce to the usual form of
‘infinitesimal elasticity’ [see equation (1.3.1.8)]:

Sik ¼
1
2

@ui
@ak

þ
@uk
@ai

� �

:

It is often useful to introduce the Jacobian matrix associated
with the transformation (a, x). The components of this matrix are

J ¼

�11 �12 �13
�21 �22 �23
�31 �32 �33

0

@

1

A;

where

�ik ¼
@xi
@ak

¼
@uj
@ak

þ �jk:

From the definition of matrix J, one has

dx ¼ Jda

and

dx2 � da2 ¼ dxð Þ
Tdx� dað Þ

Tda ¼ dað Þ
T
JTJ � �

 �

da;

where dað Þ
T, dxð Þ

T and JT are the transpose matrices of da, dx
and J, respectively, and � is the Kronecker matrix.

The Lagrangian strain matrix S may then be written symboli-
cally:

S ¼ 1
2 JTJ � �ð Þ: ð1:3:6:8Þ

When finite strains are concerned, we have to distinguish three
states of the medium: the natural state, the initial state and the
final or present state: The natural state is a state free of stress. The
initial state is deduced from the natural state by a homogeneous
strain. The final state is deduced from the initial state by an
arbitrary strain.

Concerning the stress tensor, as pointed out by Thurston
(1964), the stress-deformation relation is complicated in
nonlinear elasticity because ‘the strain is often referred to a
natural unstressed state, whereas the stress Tij is defined per unit
area of the deformed body’. For this reason, the differential of
work done by the stress is not equal to the stress components
times the differentials of the corresponding strain components.
So, following Truesdell & Toupin (1960), we shall introduce a
thermodynamic tension tensor tij defined as the first derivative of
the energy with respect to strain. If the internal energy U per unit

92



1.3. ELASTIC PROPERTIES

mass is considered, the thermodynamic tension refers to an
isentropic process. Then

t�ij ¼ �0
@U

@Sij

� �

�

;

where � is the entropy and �0 the volumic mass in the initial state.
If the Helmholtz free energy F is considered, the thermo-

dynamic tension refers to an isothermal process. Then

t�ij ¼ �0
@U

@Sij

� �

�

;

where � is the temperature. It will be shown in Section 1.3.7.2
that

Tij ¼ ð1=JÞ�ik�jl tkl:

1.3.6.4. Second-order and higher-order elastic stiffnesses

Following Brugger (1964), the strain-energy density, or strain
energy per unit volume �, is assumed to be a polynomial in the
strain:

� ¼ �0 þ cijSij þ
1

2!
cijklSijSkl þ

1

3!
cijklmnSijSklSmn; ð1:3:6:9Þ

where � ¼ �0UðX; SijÞ, �0 ¼ �0UðX; 0Þ, X denotes the config-
uration of the initial state and the Sij’s are the Lagrangian finite
strain-tensor components.

If the initial energy and the deformation of the body are both
zero, the first two terms in (1.3.6.9) are zero. Note that cij is a
stress and not an intrinsic characteristic of the material. In this
expression, the elastic stiffnesses cijkl and cijklmn are the second-
and third-order stiffnesses, respectively. Since the strain tensor is
symmetric, pairs of subscripts can be interchanged [see equation
(1.3.3.4)]:

cijkl ¼ cjikl ¼ cijlk ¼ cjilk;

cijklmn ¼ cjiklmn ¼ cijlkmn ¼ cjilkmn ¼ cijklnm

¼ cjiklnm ¼ cijlknm ¼ cjilknm:

More accurately, the isentropic and the isothermal elastic
stiffnesses are defined as the nth partial derivatives of the internal
energy and the Helmholtz free energy, respectively. For example,
the third-order isentropic and isothermal stiffnesses are, respec-
tively,

c�ijklmn ¼ �0
@3U

@Sij@Skl@Smn

;

c�ijklmn ¼ �0
@3F

@Sij@Skl@Smn

;

where the internal energy, U, is a function of X, Sij and �, and the
Helmholtz free energy, F, is a function of X, Sij and �.

From these definitions, it follows that the Brugger stiffness
coefficients depend on the initial state. When no additional
information is given, the initial state is the natural state.

The third-order stiffnesses form a sixth-rank tensor containing
36 ¼ 729 components, of which 56 are independent for a triclinic
crystal and 3 for isotropic materials (the independent compo-
nents of a sixth-rank tensor can be obtained for any point group
using the accompanying software to this volume). The three
independent constants for isotropic materials are often taken as
c123, c144 and c456 and denoted respectively by 	1, 	2, 	3, the ‘third-
order Lamé constants’.

The ‘third-order Murnaghan constants’ (Murnaghan, 1951),
denoted by l;m; n, are given in terms of the Brugger constants by
the relations

l ¼ 1
2 c112; m ¼ c155; n ¼ 4c456:

Similarly, the fourth-order stiffnesses form an eighth-rank
tensor containing 38 ¼ 6561 components, 126 of which are
independent for a triclinic crystal and 11 for isotropic materials
(the independent components of a sixth-rank tensor can be
obtained for any point group using the accompanying software to
this volume).

For a solid under finite strain conditions, the definition of the
elastic compliance tensor has to be reconsidered. In linear elas-
ticity, the second-order elastic compliances sijkl were defined
through the relations (1.3.3.2):

Sij ¼ sijklTkl or sijkl ¼
@Sij
@Tkl

;

while, in nonlinear elasticity, one has

sijkl ¼
@Sij
@tkl

;

where

tkl ¼ �0
@U

@Skl
:

1.3.6.5. Expansion of elastic constants for small initial stress

In most experiments, the initial stress is small compared with
the second-order elastic constants (for example, 1 GPa hydro-
static pressure compared with the usual value cijkl ¼ 100 GPa).
Consequently, the deformation between the initial (stressed)
state and the natural (unstressed) state is small compared with 1.
For this reason, it is convenient to expand the elastic constants in
the initial state as a power series in the strain about the natural
state. To avoid confusion, we introduce new notations: �XX now
represents the coordinates in the natural or unstressed state; X
represents the coordinates in the initial or homogeneously
strained state; ui ¼ xi � Xi are the components of displacement.
All letters with superscript bar refer to the natural state; for
example, �SSij denotes the Lagrangian strain in the natural
state; �UU ¼ Uð �XX; �SSijÞ.

Now, in order to relate the properties at X to those at �XX , we
need to specify the strain from �XX to X. Let

aij ¼
@Xi

@ �XXj

¼ ���ij:

Consequently,

@ �SSij
@Smn

¼ amianj:

The second-order elastic constants atX can be expressed in terms
of the second- and third-order elastic constants at �XX:

cijkl ¼ �0
@2U

@Sij@Skl
¼ �0

@2 �UU

@ �SSmn@ �SSpq
aimajnakpalq

or

cijkl ¼
�0
���0

�ccmnpq þ �ccmnpqrsSrs þ
1

2!
�ccmnpqrstuSrsStuþ

� �

aimajnakpalq:

This expression holds for both isentropic and isothermal elastic
constants.
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1.3.6.6. Elastic strain-energy density

The elastic strain-energy density has appeared in the literature
in various forms. Most of the authors use the Murnaghan
constants as long as isotropic solids are concerned. However,
most of the literature uses Brugger’s thermodynamic definition
when anisotropic media are under consideration (Brugger, 1964).

The elastic strain-energy density for an isotropic medium,
including third-order terms but omitting terms independent of
strain, may be expressed in terms of three strain invariants, since
an isotropic material is invariant with respect to rotation:

� ¼
�þ 2�

2
ðI1Þ

2
� 2�I2 þ

l þ 2m

3
ðI1Þ

3
� 2mI1I2 þ nI3;

where � and � are the second-order Lamé constants, l;m; n are
the third-order Murnaghan constants, and I1, I2, I3 are the three
invariants of the Lagrangian strain matrix. These invariants may
be written in terms of the strain components as

I1 ¼ S11 þ S22 þ S33

I2 ¼
S11 S12

S21 S22

�
�
�
�

�
�
�
�þ

S22 S23

S32 S33

�
�
�
�

�
�
�
�þ

S33 S31

S13 S11

�
�
�
�

�
�
�
�

I3 ¼

S11 S12 S13

S21 S22 S23

S31 S32 S33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

:

The elastic strain-energy density for an anisotropic medium (for
example a medium belonging to the most symmetrical groups of
cubic crystals) is (Green, 1973)

� ¼ 1
2 c11 ðS11Þ

2
þ ðS22Þ

2
þ ðS33Þ

2
� �

þ c12 S11S22 þ S22S33 þ S33S11
� �

þ c44½ðS12Þ
2
þ ðS21Þ

2
þ ðS23Þ

2
þ ðS32Þ

2
þ ðS31Þ

2
þ ðS13Þ

2
�

þ c111 ðS11Þ
3
þ ðS22Þ

3
þ ðS33Þ

3
� �

þ c112 ðS11Þ
2
ðS22 þ S33Þ þ ðS22Þ

2
ðS33 þ S11Þ

�

þ ðS33Þ
2
ðS11 þ S22Þ

�

þ 1
2 c144 S11½ðS23Þ

2
þ ðS32Þ

2
� þ S22½ðS31Þ

2
þ ðS13Þ

2
�



þ S33½ðS12Þ
2
þ ðS21Þ

2
�
�

þ 1
2 c166 ðS12Þ

2
þ ðS21Þ

2
� �

ðS11 þ S22Þ


þ ðS23Þ
2
þ ðS32Þ

2
� �

ðS22 þ S33Þ

þ ðS13Þ
2
þ ðS31Þ

2
� �

ðS11 þ S33Þ
�

þ c123S11S22S33 þ c456 S12S23S31 þ S21S32S13
� �

:

1.3.7. Nonlinear dynamic elasticity

1.3.7.1. Introduction

In recent years, the measurements of ultrasonic wave velocities
as functions of stresses applied to the sample and the measure-
ments of the amplitude of harmonics generated by the passage of
an ultrasonic wave throughout the sample are in current use.
These experiments and others, such as the interaction of two
ultrasonic waves, are interpreted from the same theoretical basis,
namely nonlinear dynamical elasticity.

A first step in the development of nonlinear dynamical elas-
ticity is the derivation of the general equations of motion for
elastic waves propagating in a solid under nonlinear elastic
conditions. Then, these equations are restricted to elastic waves
propagating either in an isotropic or in a cubic medium. The next
step is the examination of two important cases:

(i) the generation of harmonics when finite amplitude ultra-
sonic waves travel throughout an unstressed medium;

(ii) the propagation of small amplitude ultrasonic waves when
they travel throughout a stressed medium.

Finally, the concept of natural velocity is introduced and the
experiments that can be used to determine the third- and higher-
order elastic constants are described.

1.3.7.2. Equation of motion for elastic waves

For generality, these equations will be derived in the X
configuration (initial state). It is convenient to obtain the equa-
tions of motion with the aid of Lagrange’s equations. In the
absence of body forces, these equations are

d

dt

@L

@x0i
þ

@

@Xi

@L

@ @xi=@Xj


 � ¼ 0 ð1:3:7:1Þ

or

d

dt

@L

@x0i
þ

@

@Xi

@L

@�ij
¼ 0; ð1:3:7:2Þ

where L is the Lagrangian per unit initial volume and
�ij ¼ @xi=@Xj are the elements of the Jacobian matrix.

For adiabatic motion

L ¼ 1
2 �0x

02
i � �0U; ð1:3:7:3Þ

where U is the internal energy per unit mass.
Combining (1.3.7.2) and (1.3.7.3), it follows that

�0x
002
i ¼

@

@Xj

�0
@U

@Slm

@Slm
@�ij

� �

;

which can be written

�0x
002
i ¼

@

@Xj

�il�jm�0
@U

@Slm

� �

since

@Slm
@�ij

¼ 1
2 �im�jl þ �il�jm

 �

:

Using now the equation of continuity or conservation of mass:

�0
�

¼ J ¼ detðaijÞ;

and the identity of Euler, Piola and Jacobi:

@

@xj

1

J

@xj
@Xi

� �

¼ 0;

we get an expression of Newton’s law of motion:

�x00i ¼
dTij

dXj

or �u00i ¼
dTij

dXj

ð1:3:7:4Þ

with

Tij ¼
�0
J
�ik�jl

@U

@Skl
¼ ��ik�jl

@U

@Skl
:

Tij becomes

Tij ¼
1

J
�ik�jltkl

since

tkl ¼ �0
@U

@Skl
:
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tkl, the thermodynamic tensor conjugate to the variable Skl=�0, is
generally denoted as the ‘second Piola–Kirchoff stress tensor’.

Using �, the strain energy per unit volume, Newton’s law
(1.3.7.4) takes the form

�x00i ¼
@

@Xj

�jk
@�

@Sik

� �

or �u00i ¼
@

@Xj

�jk
@�

@Sik

� �

and

Tij ¼ �jk
@�

@Sik
: ð1:3:7:5Þ

1.3.7.3. Wave propagation in a nonlinear elastic medium

As an example, let us consider the case of a plane finite
amplitude wave propagating along the x1 axis. The displacement
components in this case become

u1 ¼ u1ðX1; tÞ; u2 ¼ u2ðX1; tÞ; u3 ¼ u3ðX1; tÞ:

Thus, the Jacobian matrix �ij reduces to

J ¼

�11 0 0

�21 0 0

�31 0 0

0

@

1

A:

The Lagrangian strain matrix is [equation (1.3.6.8)]

S ¼ 1
2 JTJ � �

 �

:

The only nonvanishing strain components are, therefore,

S11 ¼
1
2 �

2
11 þ �

2
21 þ �

2
31


 �
� 1

¼
@u1
@X1

þ 1
2

@u1
@X1

� �2

þ
@u2
@X1

� �2

þ
@u3
@X1

� �2
" #

S12 ¼ S21 ¼
1
2

@u2
@X1

S13 ¼ S31 ¼
1
2

@u3
@X1

and the strain invariants reduce to

I1 ¼ S11; I2 ¼ �ðS12S21 þ S13S31Þ; I3 ¼ 0:

1.3.7.3.1. Isotropic media

In this case, the strain-energy density becomes

� ¼ 1
2 ð�þ 2�ÞðS11Þ

2
þ 2�ðS12S21 þ S13S31Þ þ

1
3 ðl þ 2mÞðS11Þ

3

þ 2mS11 S12S21 þ S13S31ð Þ: ð1:3:7:6Þ

Differentiating (1.3.7.6) with respect to the strains, we get

@�

@S11
¼ ð�þ 2�ÞS11 þ ðl þ 2mÞðS11Þ

2 þ 2m S12S21 þ S13S31ð Þ

@�

@S12
¼ 2�S21 þ 2mS11S21

@�

@S13
¼ 2�S31 þ 2mS11S31

@�

@S21
¼ 2�S12 þ 2mS11S12

@�

@S31
¼ 2�S13 þ 2mS11S13:

All the other @�=@Sij ¼ 0.

From (1.3.7.5), we derive the stress components:

T11 ¼ �1k
@�

@S1k
; T12 ¼ �2k

@�

@S1k
; T13 ¼ �3k

@�

@S1k
;

T21 ¼ �1k
@�

@S2k
; T22 ¼ �2k

@�

@S2k
; T23 ¼ �3k

@�

@S2k
;

T31 ¼ �1k
@�

@S3k
; T32 ¼ �2k

@�

@S3k
; T33 ¼ �3k

@�

@S3k
:

Note that this tensor is not symmetric.
For the particular problem discussed here, the three compo-

nents of the equation of motion are

�u001 ¼ dT11=dX1;

�u002 ¼ dT21=dX1;

�u003 ¼ dT31=dX1:

If we retain only terms up to the quadratic order in the
displacement gradients, we obtain the following equations of
motion:

�u001 ¼ ð�þ 2�Þ
@2u1
@X2

1

þ ½3ð�þ 2�Þ þ 2ðl þ 2mÞ�
@u1
@X1

@2u1
@X2

1

þ ð�þ 2�þmÞ
@u2
@X1

@2u2
@X2

1

þ
@u3
@X1

@2u3
@X2

1

� 	

�u002 ¼ �
@2u2
@X2

1

þ ð�þ 2�þmÞ
@u1
@X1

@2u2
@X2

1

þ
@u2
@X1

@2u1
@X2

1

� 	

�u003 ¼ �
@2u3
@X2

1

þ ð�þ 2�þmÞ
@u1
@X1

@2u3
@X2

1

þ
@u3
@X1

@2u1
@X2

1

� 	

:

ð1:3:7:7Þ

1.3.7.3.2. Cubic media (most symmetrical groups)

In this case, the strain-energy density becomes

� ¼ 1
2 c11ðS11Þ

2
þ c44 ðS12Þ

2
þ ðS21Þ

2
þ ðS31Þ

2
þ ðS13Þ

2
� �

þ c111ðS11Þ
3
þ 1

2 c166S11 ðS12Þ
2
þ ðS21Þ

2
þ ðS31Þ

2
þ ðS13Þ

2
� �

:

ð1:3:7:8Þ

Differentiating (1.3.7.8) with respect to the strain, one obtains

@�

S11
¼ c11S11 þ 3c111ðS11Þ

2
þ 1

2 c166½ðS12Þ
2
þ ðS21Þ

2

þ ðS31Þ
2
þ ðS13Þ

2
Þ�

@�

S21
¼ 2c44S21 þ c166S11S21

@�

S31
¼ 2c44S31 þ c166S11S31:

All other @�=Sij ¼ 0. From (1.3.7.5), we derive the stress
components:

T11 ¼ �1k
@�

@S1k

T21 ¼ �1k
@�

@S2k

T31 ¼ �1k
@�

@S3k
:

In this particular case, the three components of the equation of
motion are
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�u001 ¼ dT11=dX1

�u002 ¼ dT21=dX1

�u003 ¼ dT31=dX1:

If we retain only terms up to the quadratic order in the
displacement gradients, we obtain the following equations of
motion:

�u001 ¼ c11
@2u1
@X2

1

þ ½3c11 þ c111�
@u1
@X1

@2u1
@X2

1

þ ðc11 þ c166Þ
@u2
@X1

@2u2
@X2

1

þ
@u3
@X1

@2u3
@X2

1

� 	

�u002 ¼ c44
@2u2
@X2

1

þ ðc11 þ c166Þ
@u1
@X1

@2u2
@X2

1

þ
@u2
@X1

@2u1
@X2

1

� 	

�u003 ¼ c44
@2u3
@X2

1

þ ðc11 þ c166Þ
@u1
@X1

@2u3
@X2

1

þ
@u3
@X1

@2u1
@X2

1

� 	

;

ð1:3:7:9Þ

which are identical to (1.3.7.7) if we put

c11 ¼ �þ 2�; c44 ¼ �; c111 ¼ 2ðl þ 2mÞ; c166 ¼ m:

1.3.7.4. Harmonic generation

The coordinates in the medium free of stress are denoted
either a or �XX. The notation �XX is used when we have to discri-
minate the natural configuration, �XX , from the initial configuration
X. Here, the process that we describe refers to the propagation of
an elastic wave in a medium free of stress (natural state) and the
coordinates will be denoted ai.

Let us first examine the case of a pure longitudinal mode, i.e.

u1 ¼ u1ða1; tÞ; u2 ¼ u3 ¼ 0:

The equations of motion, (1.3.7.7) and (1.3.7.9), reduce to

�u001 ¼ ð�þ 2�Þ
@2u1
@a21

þ ½3ð�þ 2�Þ þ 2ðl þ 2mÞ�
@u1
@a1

@2u1
@a21

for an isotropic medium or

�u001 ¼ c11
@2u1
@a21

þ ½3c11 þ c166�
@u1
@a1

@2u1
@a21

for a cubic crystal (most symmetrical groups) when a pure
longitudinal mode is propagated along [100].

For both cases, we have a one-dimensional problem; (1.3.7.7)
and (1.3.7.9) can therefore be written

�u001 ¼ K2

@2u1
@a21

þ ½3K2 þ K3�
@u1
@a1

@2u1
@a21

: ð1:3:7:10Þ

The same equation is also valid when a pure longitudinal mode
is propagated along [110] and [111], with the following corre-
spondence:

½100� K2 ¼ c11; K3 ¼ c111

½110� K2 ¼
c11 þ c12 þ 2c44

2
; K3 ¼

c111 þ 3c112 þ 12c166
4

½111� K2 ¼
c11 þ 2c12 þ 4c44

3
;

K3 ¼
c111 þ 6c112 þ 12c144 þ 24c166 þ 2c123 þ 16c456

9
:

Let us assume that K3 � K2; a perturbation solution to (1.3.7.10)
is

u ¼ u0 þ u1;

where u1 � u0 with

u0 ¼ A sinðka� !tÞ ð1:3:7:11Þ

u1 ¼ Ba sin 2ðka� !tÞ þ Ca cos 2ðka� !tÞ: ð1:3:7:12Þ

If we substitute the trial solutions into (1.3.7.10), we find after
one iteration the following approximate solution:

u ¼ A sinðka� !tÞ �
ðkAÞ

2
ð3K2 þ K3Þ

8�c2
a cos 2ðka� !tÞ;

which involves second-harmonic generation.
If additional iterations are performed, higher harmonic terms

will be obtained. A well known property of the first-order
nonlinear equation (1.3.7.10) is that its solutions exhibit discon-
tinuous behaviour at some point in space and time. It can be seen
that such a discontinuity would appear at a distance from the
origin given by (Breazeale, 1984)

L ¼ �2
ðK2Þ

2

3K2 þ K3

�!u00;

where u00 is the initial value for the particle velocity.

1.3.7.5. Small-amplitude waves in a strained medium

We now consider the propagation of small-amplitude elastic
waves in a homogeneously strained medium. As defined
previously, �XX or a are the coordinates in the natural or unstressed
state. X are the coordinates in the initial or homogeneously
strained state. ui ¼ xi � Xi are the components of displacement
from the initial state due to the wave.

Starting from (1.3.7.4), we get

Tij ¼
�0
J
�ik�jl

@U

@Skl
:

Its partial derivative is

@Tij

@xj
¼

1

J

@

@Xk

�0�il
@U

@Skl

� 	

:

If we expand the state function about the initial configuration, it
follows that

�0UðXk; SijÞ ¼ �0UðXkÞ þ cijSij þ
1
2 cijklSijSkl

þ 1
6 cijklmnSijSklSmn þ . . . :

The linearized stress derivatives become

@Tij

@xj
¼ cjl�ik þ cijkl

� � @2xk
@Xj@Xl

:

If we letDijkl ¼ cjl�ik þ cijkl
� �

, the equation of motion in the initial
state is

�0u
00
i ¼ Djkli

@2uk
@Xj@Xl

: ð1:3:7:13Þ

The coefficients Dijkl do not present the symmetry of the coeffi-
cients cijkl except in the natural state where Dijkl and cijkl are
equal.

The simplest solutions of the equation of motion are plane
waves. We now assume plane sinusoidal waves of the form

ui ¼ Ai exp½ið!t � k � XÞ�; ð1:3:7:14Þ

where k is the wavevector.
Substitution of (1.3.7.14) into (1.3.7.13) results in

�0!
2Aj ¼ DijklkjklAk
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or

�0!
2Aj ¼ �jkAk

with �jk ¼ Dijklkjkl.
The quantities �0!

2Aj and A are, respectively, the eigenvalues
and eigenvectors of the matrix �jk. Since �jk is a real symmetric
matrix, the eigenvalues are real and the eigenvectors are ortho-
gonal.

1.3.7.6. Experimental determination of third- and higher-order
elastic constants

The main experimental procedures for determining the third-
and higher-order elastic constants are based on the measurement
of stress derivatives of ultrasonic velocities and on harmonic
generation experiments. Hydrostatic pressure, which can be
accurately measured, has been widely used; however, the
measurement of ultrasonic velocities in a solid under hydrostatic
pressure cannot lead to the whole set of third-order elastic
constants, so uniaxial stress measurements or harmonic genera-
tion experiments are then necessary.

In order to interpret wave-propagation measurements in
stressed crystals, Thurston (1964) and Brugger (1964) introduced
the concept of natural velocity with the following comments:

‘According to equation of motion, the wave front is a material
plane which has unit normal k in the natural state; a wave front
moves from the plane k � a ¼ 0 to the plane k � a ¼ L0 in the time
L0=W. Thus W, the natural velocity, is the wave speed referred to
natural dimensions for propagation normal to a plane of natural
normal k.

In a typical ultrasonic experiment, plane waves are reflected
between opposite parallel faces of a specimen, the wave fronts
being parallel to these faces. One ordinarily measures a repetition
frequency F, which is the inverse of the time required for a round
trip between the opposite faces.’

Hence

W ¼ 2L0F:

In most experiments, the third-order elastic constants and
higher-order elastic constants are deduced from the stress deri-
vatives of ���0W

2. For instance, Table 1.3.7.1 gives the expressions
for ���0W

2ð Þ0 and @ ���0W
2ð Þ0=@p for a cubic crystal. These quantities

refer to the natural state free of stress. In this table, p denotes the
hydrostatic pressure and the �ijkl’s are the following linear
combinations of third-order elastic constants:

�1111 ¼ �cc111 þ 2�cc111

�1122 ¼ 2�cc112 þ �cc123

�2323 ¼ �cc144 þ 2�cc166:

1.3.8. Glossary

ei covariant basis vector
AT transpose of matrix A
ui components of the displacement vector
Sij components of the strain tensor
S� components of the strain Voigt matrix
Tij components of the stress tensor
T� components of the stress Voigt matrix
p pressure
m normal stress
s shear stress
sijkl second-order elastic compliances
s�� reduced second-order elastic compliances
ðsijklÞ

� adiabatic second-order elastic compliances
sijklmn third-order elastic compliances
cijkl second-order elastic stiffnesses
ðcijklÞ

� adiabatic second-order elastic stiffnesses
c�� reduced second-order elastic stiffnesses
cijklmn third-order elastic stiffnesses
	 Poisson’s ratio
E Young’s modulus
� bulk modulus (volume compressibility)
�, � Lamé constants
� temperature
cS specific heat at constant strain
� volumic mass
�D Debye temperature
kB Boltzmann constant
U internal energy
F free energy
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Table 1.3.7.1. Relationships between �W2, its pressure derivatives and the second- and third-order elastic constants

Propagation Polarization ���0W
2ð Þ0 @ ���0W

2ð Þ0=@p

[100] [100] �cc11 �1� 2�cc11 þ �1111ð Þ=3 ���
[100] [010] �cc44 �1� 2�cc44 þ �2323ð Þ=3 ���
[110] [110] �cc11 þ �cc12 þ 2�cc44ð Þ=2 �1� �cc11 þ �cc12 þ 2�cc44 þ 0:5 �1111 þ �1122 þ �2323

� �
 �
=3 ���

[110] ½1�110� �cc11 � �cc12 þ �cc44ð Þ=3 �1� �cc11 � �cc11 þ 0:5 �1111 � �1122

� �
 �
=3 ���

[110] [001] �cc44 �1� 2�cc44 þ �2323ð Þ=3 ���
[111] [111] �cc11 þ 2�cc12 þ 4�cc44ð Þ=3 �1� 2�cc11 þ 4�cc12 þ 8�cc14 þ �1111 þ 2�1122 þ 4�2323

� �
 �
=9 ���

[111] ½1�110� �cc11 � �cc12 þ �cc44ð Þ=3 �1� 2�cc11 � 2�cc12 þ 2�cc14 þ �1111 � �1122 þ �2323

� �
 �
=9 ���
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1.4. Thermal expansion

By H. Küppers

1.4.1. Definition, symmetry and representation surfaces

If the temperature T of a solid is raised by an amount �T, a
deformation takes place that is described by the strain tensor uij:

uij ¼ �ij�T: ð1:4:1:1Þ

The quantities �ij are the coefficients of thermal expansion. They
have dimensions of T�1 and are usually given in units of
10�6 K�1. Since uij is a symmetrical polar tensor of second rank
and T is a scalar, �ij is a symmetrical polar tensor of second rank
ð�ij ¼ �jiÞ. According to the properties of the strain tensor uij (cf.
Section 1.3.1.3.2), the ‘volume thermal expansion’, �, is given by
the (invariant) trace of the ‘linear’ coefficients �ij.

� ¼
1

V

�V

�T
¼ �11 þ �22 þ �33 ¼ trace ð�ijÞ: ð1:4:1:2Þ

The magnitudes of thermal expansion in different directions,
�011, can be visualized in the following ways:

(1) The representation quadric (cf. Section 1.1.3.5.2)

�ijxixj ¼ C ð1:4:1:3Þ

can be transformed to principal axes X1, X2 and X3 with principal
values �1, �2 and �3:

�1X
2
1 þ �2X

2
2 þ �3X

2
3 ¼ C:

The length of any radius vector leading to the surface of the
quadric ðC ¼ 1Þ represents the reciprocal of the square root of
thermal expansion along that direction, �011 ¼ a1ia1j�ij (akl are the
direction cosines of the particular direction).

If all �i are positive, the quadric ðC ¼ þ1Þ is represented by an
ellipsoid, whose semiaxes have lengths 1=

ffiffiffiffi
�i

p
. In this case, the

square of the reciprocal length of radius vector r, r�2, represents
the amount of positive expansion in the particular direction, i.e. a
dilation with increasing temperature. If all �i are negative, C is set
to�1. Then, the quadric is again an ellipsoid, and r�2 represents a
negative expansion, i.e. a contraction with increasing tempera-
ture.

If the �i have different signs, the quadric is a hyperboloid. The
asymptotic cone represents directions along which no thermal
expansion occurs ð�011 ¼ 0Þ.

If one of the �i is negative, let us first choose C ¼ þ1. Then, the
hyperboloid has one (belt-like) sheet (cf. Fig. 1.3.1.3) and the
squares of reciprocal lengths of radius vectors leading to points
on this sheet represent positive expansions (dilatations) along the
particular directions. Along directions where the hyperboloid has
no real values, negative expansions occur. To visualize these, C is
set to�1. The resulting hyperboloid has two (cap-like) sheets (cf.
Fig. 1.3.1.3) and r�2 represents the amount of contraction along
the particular direction.

If two of the �i are negative, the situation is complementary to
the previous case.

(2) A crystal sample having spherical shape (radius ¼ 1 at
temperature T) will change shape, after a temperature increase
�T, to an ellipsoid with principal axes ð1þ �1�TÞ, ð1þ �2�TÞ
and ð1þ �3�TÞ. This ‘strain ellipsoid’ is represented by the
formula

X2
1

ð1þ �1�TÞ
2
þ

X2
2

ð1þ �2�TÞ
2
þ

X2
3

ð1þ �3�TÞ
2
¼ 1:

Whereas the strain quadric (1.4.1.3) may be a real or imaginary
ellipsoid or a hyperboloid, the strain ellipsoid is always a real
ellipsoid.

(3) The magnitude of thermal expansion in a certain direction
(the longitudinal effect), �011, if plotted as radius vector, yields an
oval:

ð�1X
2
1 þ �2X

2
2 þ �3X

2
3 Þ

2
¼ ðX2

1 þ X2
2 þ X2

3 Þ
3:

If spherical coordinates ð’; #Þ are used to specify the direction,
the length of r is

jrj ¼ �011 ¼ ð�1 cos
2 ’þ �2 sin

2 ’Þ sin2 #þ �3 cos
2 #: ð1:4:1:4Þ

Sections through this representation surface are called polar
diagrams.

The three possible graphical representations are shown in Fig.
1.4.1.1.

The maximum number of independent components of the
tensor �ij is six (in the triclinic system). With increasing symmetry,
this number decreases as described in Chapter 1.1. Accordingly,
the directions and lengths of the principal axes of the repre-
sentation surfaces are restricted as described in Chapter 1.3 (e.g.
in hexagonal, trigonal and tetragonal crystals, the representation
surfaces are rotational sheets and the rotation axis is parallel to
the n-fold axis). The essential results of these symmetry consid-
erations, as deduced in Chapter 1.1 and relevant for thermal
expansion, are compiled in Table 1.4.1.1.

The coefficients of thermal expansion depend on temperature.
Therefore, the directions of the principal axes of the quadrics in
triclinic and monoclinic crystals change with temperature (except
the principal axis parallel to the twofold axis in monoclinic
crystals).

The thermal expansion of a polycrystalline material can be
approximately calculated if the �ij tensor of the single crystal is
known. Assuming that the grains are small and of comparable
size, and that the orientations of the crystallites are randomly
distributed, the following average of �011 [(1.4.1.4)] can be
calculated:

��� ¼
1

4�

Z 2�

0

Z �

0

�011 sin# d# d’ ¼ 1
3ð�1 þ �2 þ �3Þ:

If the polycrystal consists of different phases, a similar procedure
can be performed if the contribution of each phase is considered
with an appropriate weight.
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Fig. 1.4.1.1. Sections (ac plane) of representation surfaces for a trigonal (or
tetragonal or hexagonal) crystal with �11 ¼ �22 ¼ �1 and
�33 ¼ þ3� 10�5 K�1 (similar to calcite). (a) Quadric, (b) strain ellipsoid
(greatly exaggerated), (c) polar diagram. The c axis is the axis of revolution.
Sectors with negative expansions are dashed.
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

It should be mentioned that the true
situation is more complicated. The grain
boundaries of anisotropic polycrystalline
solids are subject to considerable stresses
because the neighbouring grains have
different amounts of expansion or
contraction. These stresses may cause
local plastic deformation and cracks may
open up between or within the grains.
These phenomena can lead to a hyster-
esis behaviour when the sample is heated
up or cooled down. Of course, in poly-
crystals of a cubic crystal species, these
problems do not occur.

If the polycrystalline sample exhibits a
texture, the orientation distribution
function (ODF) has to be considered in
the averaging process. The resulting
overall symmetry of a textured poly-
crystal is usually 1

m m (see Section
1.1.4.7.4.2), showing the same tensor
form as hexagonal crystals (Table 1.4.1.1),
or mmm.

1.4.2. Grüneisen relation

Thermal expansion of a solid is a conse-
quence of the anharmonicity of inter-
atomic forces (see also Section 2.1.2.8). If
the potentials were harmonic, the atoms
would oscillate (even with large ampli-
tudes) symmetrically about their equili-
brium positions and their mean central
position would remain unchanged. In
order to describe thermal expansion, the
anharmonicity is most conveniently
accounted for by means of the
so-called ‘quasiharmonic approximation’,
assuming the lattice vibration frequencies ! to be independent of
temperature but dependent on volume ½ð@!=@VÞ 6¼ 0�. Anhar-
monicity is taken into account by letting the crystal expand, but it
is assumed that the atoms vibrate about their new equilibrium
positions harmonically, i.e. lattice dynamics are still treated in the
harmonic approximation. The assumption ð@!=@VÞ ¼ 0, which is
made for the harmonic oscillator, is a generalization of the
postulate that the frequency of a harmonic oscillator does not
depend on the amplitude of vibration.

This approach leads, as demonstrated below, to the Grüneisen
relation, which combines thermal expansion with other material
constants and, additionally, gives an approximate description of
the temperature dependence of thermal expansion (cf. Krishnan
et al., 1979; Barron, 1998).

For isotropic media, the volume expansion � ½¼ 3�
¼ �11 þ �22 þ �33�, cf. (1.4.1.2), can be expressed by the ther-
modynamic relation

� ¼
1

V

@V

@T

� �

p

¼ �
1

V

@V

@p

� �

T

@p

@T

� �

V

¼ �
@p

@T

� �

V

; ð1:4:2:1Þ

� being the isothermal compressibility. To obtain the quantity
ð@p=@TÞV , the pressure p is deduced from the free energy F,
whose differential is dF ¼ �S dT � p dV, i.e. from

p ¼ �ð@F=@VÞT : ð1:4:2:2Þ

In a crystal consisting of N unit cells with p atoms in each unit
cell, there are 3p normal modes with frequencies !s (denoted by
an index s running from 1 to 3p) and with N allowed wavevectors

qt (denoted by an index t running from 1 to N). Each normal
mode !sðqtÞ contributes to the free energy by the amount

fs;t ¼
h-

2
!sðqtÞ þ kT ln 1� exp �

h- !sðqtÞ

kT

� �� �

: ð1:4:2:3Þ

The total free energy amounts, therefore, to

F ¼
X3p

s¼1

XN

t¼1

fs;t

¼
X3p

s¼1

XN

t¼1

h-

2
!sðqtÞ þ kT ln 1� exp �

h- !sðqtÞ

kT

� �� �� �

: ð1:4:2:4Þ

From (1.4.2.2)

p ¼ �
@F

@V

� �

T

¼ �
X3p

s¼1

XN

t¼1

h-

2

@!s

@V
þ
expð�h- !s=kTÞh

- ð@!s=@VÞ

1� expð�h- !s=kTÞ

� �

: ð1:4:2:5Þ

The last term can be written as

h- ð@!s=@VÞ

expðh- !s=kTÞ � 1
¼ h- nð!sðqtÞ;TÞ

@!s

@V
; ð1:4:2:6Þ

where nð!s;TÞ is the Bose–Einstein distribution
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Table 1.4.1.1. Shape of the quadric and symmetry restrictions

Quadric

System Shape Direction of principal axes

No. of
independent
components

Nonzero
components

Triclinic General
ellipsoid or
hyperboloid

No restrictions 6

Monoclinic One axis parallel to twofold
axis (b)

4

Orthorhombic Parallel to crystallographic
axes

3

Trigonal,
tetragonal,
hexagonal

Revolution
ellipsoid or
hyperboloid

c axis is revolution axis 2

Cubic,
isotropic media

Sphere Arbitrary, not defined 1
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nð!s;TÞ ¼
1

expðh- !s=kTÞ � 1
: ð1:4:2:7Þ

Differentiation of (1.4.2.5) and (1.4.2.6) with respect to
temperature at constant volume [see (1.4.2.1)] yields

@p

@T

� �

V

¼ �
X

s

X

t

h-
@nð!s;TÞ

@T

@!sðqtÞ

@V

¼ �
X

s

X

t

cVs;t
1

!sðqtÞ

@!sðqtÞ

@V
ð1:4:2:8Þ

with

cVs;t ¼ h- !sðqtÞ
@nð!s;TÞ

@T
¼ k

ðh- !s=kTÞ
2 expðh- !s=kTÞ

½expðh- !s=kTÞ � 1�2
: ð1:4:2:9Þ

This quantity, cVs;t (the Einstein function), is the well known
contribution of the normal mode !sðqtÞ to the specific heat (at
constant volume):

cV ¼
X

s

X

t

cVs;t ¼
X

s

X

t

h- !sðqtÞ
@nð!s;TÞ

@T
: ð1:4:2:10Þ

Equation (1.4.2.8) can be simplified by the introduction of an
‘individual Grüneisen parameter’ �s;t for each normal mode
!sðqtÞ:

�s;t ¼ �
V

!sðqÞt

@!sðqÞt
@V

¼ �
@½ln!sðqtÞ�

@ðlnVÞ
: ð1:4:2:11Þ

Equation (1.4.2.8) then reads [with (1.4.2.1)]

@p

@T

� �

V

¼
1

V

X

s

X

t

cVs;t�s;t ¼
�

�
: ð1:4:2:12Þ

Based on these individual parameters �s;t, an average (or overall
mode-independent) Grüneisen parameter ��� can be defined as

��� ¼

PP
�s;tc

V
s;tPP

cVs;t
¼

PP
�s;tc

V
s;t

cV
: ð1:4:2:13Þ

In this averaging process, the contribution of each normal mode
to ��� is weighted in the same way as it contributes to the specific
heat cV [see (1.4.2.10)]. Equations (1.4.2.12) and (1.4.2.13) lead to
the Grüneisen relation

� ¼ ���
�cV

V
: ð1:4:2:14Þ

The above derivation was made for isotropic media. For aniso-
tropic media, �V=V is replaced by the strain ukl and ��1 is
replaced by the stiffness tensor cijkl [cf. Chapter 2.1 and equation
(2.1.2.75)]. Then the Grüneisen parameter turns out to be a
second-rank tensor �ij:

�ij ¼
V

cV
cTijkl�kl: ð1:4:2:15Þ

In the Debye approximation, the mode frequencies scale linearly
with the cut-off frequency !D. Therefore, with h- !D ¼ kTD, the
average isotropic Grüneisen parameter is calculated to be

�D ¼ �
V

!D

@!D

@V
¼ �

V

TD

@TD

@V
¼ �

@ðlnTDÞ

@ðlnVÞ
:

Since, in the Debye theory, TD is independent of temperature, �D
turns out to be independent of temperature. As � and V are only
weakly temperature dependent, the thermal expansion � should
then, according to (1.4.2.14), roughly behave like cV, i.e. � should
be proportional to T3 at very low temperatures, and should be
approximately constant for T � TD (the Dulong–Petit law). This

behaviour is found to be approximately satisfied for many
compounds, even with different types of interatomic interaction,
and � takes values roughly between 1 and 2. Even in the case of
crystals with highly anisotropic elastic and thermal behaviour, the
three principal values of the tensor �ij [(1.4.2.15)] are comparably
uniform, having values of about 2 (Küppers, 1974).

Effectively, � shows a certain more or less pronounced
dependence on temperature. The individual �s;t are assumed to
be temperature independent. However, being an average over
the whole spectrum of excited modes [cf. (1.4.2.13)], ��� will not
necessarily have the same value at low temperatures (when only
low frequencies are excited) as at high temperatures (when all
modes are excited). Two limiting cases can be considered:

(1) At very high temperatures, all normal modes contribute by
an equal amount and the overall ��� becomes simply the mean
value of all �s;t.

�1 ¼
1

3pN

X3p

s

XN

t

�s;t:

(2) At very low temperatures, only the lower frequencies
contribute. If only the acoustic branches are considered, ��� can be
related to the velocities of elastic waves. In the long-wavelength
limit, dispersion is neglected, i.e. jqj is proportional to !:

jqtj ¼
!sðqtÞ

vsð’; #Þ
; ð1:4:2:16Þ

where vsð’; #Þ ðs ¼ 1; 2; 3Þ describes the velocities of the three
elastic waves propagating in a direction ð’; #Þ. The density of
vibrational states for each acoustic branch in reciprocal space
increases with q2 dq. From (1.4.2.16), it follows that the number
of normal modes in an increment of solid angle in q space,
d� ¼ sin# d# d’, within a frequency interval ! to !þ d!, is
proportional to ð!2 d! d�Þ=v3. The summation over t can be
converted into an integration over ! and �, leading to

�0 ¼

X3

s¼1

Z
�sð#; ’Þ d�

v3s ð#; ’Þ
X3

s¼1

Z
d�

v3ð#; ’Þ

:

The vsð’; #Þ can be calculated if the elastic constants are known.
For isotropic solids, the term

P
v�3
s can be replaced (as done in

Debye’s theory of heat capacity) by ðv�3
l þ 2v�3

tr Þ, with vl being
the velocity of the longitudinal wave and vtr the velocity of the
transverse waves.

In metals, the conduction electrons and magnetic interactions
yield contributions to the free energy and to the specific heat.
Accordingly, expression (1.4.2.14) can be augmented by intro-
duction of an ‘electronic Grüneisen parameter’, �e, and a
‘magnetic Grüneisen parameter’, �m, in addition to the ‘lattice
Grüneisen parameter’, �l, considered so far:

� ¼
�

V
ð�lc

V
l þ �ec

V
e þ �mc

V
mÞ:

1.4.3. Experimental methods

1.4.3.1. General remarks

Although the strain tensor uij and the thermal expansion
tensor �ij in general contain components with i 6¼ j (shear
strains), in practice only longitudinal effects, i.e. relative length
changes �l=l with temperature changes �T, are measured along
different directions and the results are later transformed to a
common coordinate system. Diffraction methods directly yield
this ratio �l=l. Other measuring techniques require separate
measurements of�l and l. The error in the measurement of l can
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usually be neglected. Thus, the accuracies of �l and �T limit the
accuracy of thermal expansion coefficients. The temperature
interval�T is determined by two measurements of temperatures
T2>T1, with T2 � T1 ¼ �T. To increase the accuracy of the
difference �T, this interval should be large. The measured
thermal expansion�l=ðl�TÞ is usually assigned to a temperature
at the midpoint of the temperature interval, T0 ¼ ðT2 � T1Þ=2.
This procedure is only justified if thermal expansion does not
depend on temperature.

Since, in fact, thermal expansion depends on temperature, in
principle, smaller intervals should be chosen, which, in turn,
enlarge the error of �T. Here, a compromise has to be made.
Sometimes, after completion of a first run and after reviewing the
preliminary course of �ðTÞ, it is necessary to repeat some
measurements using smaller temperature intervals in tempera-
ture ranges with large curvatures.

The more-or-less curved course of �ijðTÞ is usually fitted by
polynomials in powers of temperature. Here, those T terms
should be selected that are physically meaningful in the particular
temperature range. For the low-temperature behaviour of a
metal, a polynomial of type � ¼ AT þ BT3 þ CT5 should be
chosen. For minerals at higher temperatures, a polynomial
� ¼ �0 þ AT þ BT�1 þ CT�2 is used (Saxena & Shen, 1992).

Temperature is usually measured by thermocouples and, in the
cases of optical or electrical measurements (Sections 1.4.3.3 and
1.4.3.4) and at low temperatures also by platinum resistance
thermometers. Above 1100 K, optical pyrometers can be used.

In order to measure the thermal expansion of a crystal, at least
as many independent measurements are necessary as the tensor
has independent components (fourth column in Table 1.4.1.1). It
is advisable, however, to carry out more measurements than are
necessary. In this case (of redundancy), a ‘best’ set of tensor
components is to be determined by least-squares methods as
described below.

Let us assume the most general case of a triclinic crystal, where
m > 6 independent measurements of thermal expansions bk
ðk ¼ 1; . . . ;mÞ were performed along m different directions with
direction cosines ð�1jÞk ðj ¼ 1; 2; 3Þ with respect to the chosen
coordinate system. Each measurement bk is related to the six
unknown tensor components �ij (to be determined) by

bk ¼ ð�011Þk ¼ ð�1iÞkð�1jÞk�ij: ð1:4:3:1Þ

If the �ij are replaced by �� ð� ¼ 1; . . . ; 6Þ, using Voigt’s one-
index notation (Section 1.1.4.10.2), then bk ¼ Ck��� represents
an overdetermined inhomogeneous system of m linear equations
for the six unknowns ��. The coefficients Ck�, forming an m� 6
matrix, are products containing direction cosines according to
(1.4.3.1). The solution is obtained after several matrix calcula-
tions which are indicated by the formula (Nye, 1985)

�� ¼ ðCt
l� � Cl"Þ

�1
� 	

��
Ct

k�

n o
bk

ð�; �; "; � ¼ 1; . . . ; 6; l; k ¼ 1; . . . ;mÞ;

where a superscript ‘t’ means transposed.
Instead of determining the tensor components of a triclinic or

monoclinic crystal in a direct way, as outlined above, it is also
possible to determine first the temperature change of the crys-
tallographic unit cell and then, by formulae given e.g. by
Schlenker et al. (1978), to deduce the tensor components �ij. The
direct approach is recommended, however, for reasons of the
propagation of errors (Jessen & Küppers, 1991).

The experimental techniques of measuring relative length
changes �l=l that are most widely used include diffraction,
optical interferometry, pushrod dilatometry and electrical capa-
citance methods. If the specimens available are very small and/or
irregular in shape, only diffraction methods can be used. The
other methods require single-crystal parallelepipedal samples
with at least 5 mm side lengths.

1.4.3.2. Diffraction

Thermal expansion expresses itself, on a microscopic scale, by
a change of the interplanar spacings of lattice planes. These can
be measured by use of diffraction methods from changes of Bragg
angles �. Differentiation of the Bragg equation 2d sin � ¼ 	,
giving �d=d ¼ � cot ���, yields the thermal expansions �011 in
directions normal to lattice planes (hkl) (i.e. along
h ¼ ha� þ kb� þ lc�) and, if h has direction cosines a

ðhklÞ
1j with

respect to the chosen Cartesian coordinate system,

�0ðhklÞ11 ¼ a
ðhklÞ
1i a

ðhklÞ
1j �ij ¼

1

dðhklÞ
@dðhklÞ

@T
¼ � cot �

@�

@T
:

The coefficient cot � permits a tremendous increase of sensitivity
and accuracy if � ! 90�. That means, if possible, high-angle
ð� > 70�Þ reflections should be used for measurement because,
for a given �d, the changes of Bragg angles j��j to be measured
increase with ðcot �Þ�1

¼ tan �.
The most important diffraction techniques (X-radiation is

preferentially used) are: the rotating-crystal method, the Weis-
senberg method and diffractometers with counter recording. If
small single crystals (> approximately 50 mm) are not available,
powder methods (using a Debye–Scherrer film camera or powder
diffractometer) must be used, although the advantage of the
highly accurate back-reflections, in general, cannot be used.

Experimental aspects of measuring absolute d-values are
discussed in detail in Volume C of International Tables for
Crystallography (1999), Part 5. Since only relative displacements
are to be measured in the present case, many complications
connected with the determination of absolute values do not apply
for thermal expansion measurements, such as zero-point
correction, eccentricity of the mounted sample, refraction,
absorption and diffraction profile.

1.4.3.3. Optical methods (interferometry)

The basic principle of measuring thermal expansion by inter-
ferometry consists of converting sample-length changes into
variations of optical path differences of two coherent mono-
chromatic light beams, which are reflected from two opposite end
faces of the sample (or planes corresponding to them). An He–
Ne laser usually serves as a light source. A beam expander
produces a parallel beam and interference by two planes, which
are slightly inclined to each other, produces fringes of equal
thickness. Thermal expansion causes a movement of this fringe
pattern, which is detected by photodiodes. The number of fringes
passing a reference mark is counted and gives a measure of the
relative movement of the two planes.

As examples for various realizations of interferometric devices
(Hahn, 1998), two basic designs will be described.

(i) Fizeau interferometer (Fig. 1.4.3.1). The sample S is covered
by a thin plate P2 (with a polished upper surface and a coarsely
ground and non-reflecting lower surface) and is placed in
between a bottom plate P3 and a wedge-shaped plate P1 (wedge
angle of about 1�). The upper surface of P1 reflects the incident
beam (i) to a reflected beam (r) so that it is removed from the
interference process. The relevant interference takes place
between ray (1) reflected by the lower surface of P1 and ray (2)
reflected by the upper surface of P2. A cylindrical tube T, which
defines the distance between P1 and P3 as well as P2, is usually
made of fused silica, a material of low and well known thermal
expansion. The measured dilatation is caused, therefore, by the
difference between thermal expansion of the sample and a
portion of the fused silica tube of equal length. The whole
apparatus is mounted in a thermostat.

(ii) Michelson interferometer (Fig. 1.4.3.2). The reference
mirror M and the beam-splitter B are placed outside the ther-
mostat. The upper face of the sample S is one interference plane
and the upper surface of the bottom plate is the other. The
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interference pattern IP is divided into two fields corresponding to
the two ends of the sample. The difference of fringe movements
within these two fields yields the absolute thermal expansion of
the sample.

1.4.3.4. Electrical methods

1.4.3.4.1. Inductance changes (pushrod dilatometry)

With this method, the expansion of the crystal is transmitted
out of the cooled or heated region to an external measuring
device by a rod made of a reference material whose thermal
expansion is low and well known (usually silica glass) (cf. Gaal,
1998). If this rod is inside a tube of the same material (silica
glass), and the specimen is inside as well, then the difference in
expansion between the crystal and an equal length of the refer-
ence material is measured. Above 1100 K, instead of silica glass,
high-purity alumina or single-crystal sapphire or tungsten rods
are used.

To measure the displacement of the rods, several techniques
are used. The most important are:

(1) a ferrite core is moved in a coil to change the inductivity of
the coil, which is detected by the change of resonance frequency
of an electrical circuit having a fixed capacitance;

(2) linear-variable-differential transformers.
Temperature gradients in the rod and the tube can lead to severe
complications. For every determination, the system should be
calibrated by certified materials (White, 1998), such as �-Al2O3,
Cu, Pt, fused silica, Si, W, Mg or Mo.

1.4.3.4.2. Capacitance methods

In a way similar to the interferometric methods, the change of
the gap between the lower surface of P1 and the upper surface of
P2 (Fig. 1.4.3.1) is used to determine the thermal expansion of the
sample. This gap – with electrically conducting surfaces – is used
as the capacitance in an electric circuit with a fixed inductance.
The change of capacitance leads to a change of resonance
frequency, which is measured.

1.4.4. Relation to crystal structure

The anharmonicities of the interatomic potentials gain impor-
tance with increasing vibration amplitudes of the atoms. Since, at
a given temperature, weakly bonded atoms oscillate with larger
amplitudes, they contribute to a larger degree to thermal
expansion in comparison with stronger bonds. This correlation
follows also from the Grüneisen relation (1.4.2.14) because � (or

�) is proportional to the compressibility, which, in turn, is a rough
measure of the interatomic and intermolecular forces.

This simple consideration allows qualitative predictions of the
thermal expansion behaviour of a crystal species if the structure
is known:

(1) Covalent bonds are associated with very small thermal
expansions (diamond, graphite perpendicular to the c axis),
whereas van der Waals bonds give rise to large thermal expan-
sions (N2, graphite parallel to the c axis). In accordance with their
relatively high elastic stiffness, hydrogen bonds, especially short
hydrogen bonds, lead to comparably small thermal expansions.

(2) In layer-like structures, the maximum thermal expansion
occurs normal to the layers (mica, graphite, pentaerythritol).

(3) Thermal expansion decreases when the density of weak
bonds decreases: therefore, expansion is greater for crystals with
small molecules (many van der Waals contacts per volume) than
for their larger homologues (e.g. benzene–naphthalene–anthra-
cene).

Buda et al. (1990) have calculated the thermal expansion of
silicon by means of ab initio methods. It is to be expected that
these methods, which are currently arduous, will be applicable to
more complicated structures in the years to come and will gain
increasing importance in this field (cf. Lazzeri & de Gironcoli,
1998).

It is observed rather frequently in anisotropic materials that an
enhanced expansion occurs along one direction and a contraction
(negative expansion) in directions perpendicular to that direction
(e.g. in calcite). The volume expansion, i.e. the trace of �ij, is
usually positive in these cases, however. If the tensor of elastic
constants is known, such negative expansions can mostly be
explained by a lateral Poisson contraction caused by the large
expansion (Küppers, 1974).

Only a few crystals show negative volume expansion and
usually only over a narrow temperature range (e.g. Si and fused
silica below about 120 K and quartz above 846 K) (White, 1993).
Cubic ZrW2O8 was recently found to exhibit isotropic negative
thermal expansion over the complete range of stability of this
material (0.5–1050 K) (Mary et al., 1996). This behaviour is
explained by the librational motion of practically rigid polyhedra
and a shortening of Zr—O—W bonds by transverse vibration of
the oxygen atom. By tailoring the chemical content (of TiO2 or
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Fig. 1.4.3.1. Schematic diagram of a Fizeau interferometer. Fig. 1.4.3.2. Schematic diagram of a Michelson interferometer.
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LiAlSiO4) in a glassy matrix, an expansion coefficient can be
achieved that is nearly zero over a desired temperature range.

A compilation of numerical values of the tensor components of
more than 400 important crystals of different symmetry is given
by Krishnan et al. (1979).

Phase transitions are accompanied and characterized by
discontinuous changes of derivatives of the free energy. Since the
thermal expansion � is a second-order derivative, discontinuities
or changes of slope in the �ðTÞ curve are used to detect and to
describe phase transitions (cf. Chapter 3.1).

1.4.5. Glossary

�ij thermal expansion
� volume thermal expansion
� Grüneisen parameter
� isothermal compressibility
uij strain tensor
cV specific heat at constant volume
F free energy
p pressure
S entropy
T temperature
V volume
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1.5. Magnetic properties

By A. S. Borovik-Romanov† and H. Grimmer

1.5.1. Introduction

In the present chapter, we shall give a short review of the
structure and some properties of magnetic substances that
depend mainly on the symmetry of these substances. Aspects
related to the magnetic symmetry receive the most emphasis. The
magnetic symmetry takes into account the fact that it is necessary
to consider time inversion in addition to the usual spatial trans-
formations in order to describe the invariance of the thermo-
dynamic equilibrium states of a body.

The symmetry of magnetic materials depends not only on the
mean charge density function �ðrÞ, but also on the mean current
density jðrÞ and the mean spin density SðrÞ. The symmetry of the
function �ðrÞ is called the crystallographic or crystallochemical
symmetry of a body. If the current density jðrÞ in the crystal is not
zero, an orbital magnetic moment is produced. It is obvious that
there can be no macroscopic current in a substance which is in
thermodynamic equilibrium and the integral

R
j d� over the

magnetic elementary cell is always equal to zero. The current j,
however, may produce a macroscopic nonzero magnetic moment
mðrÞ. We shall consider below the function mðrÞ, which deter-
mines the space distribution of the total (spin and orbital)
magnetic moment density. The symmetry of the distribution of
the magnetic moment density mðrÞ may be considered as the
symmetry of the arrangement and orientation of the mean atomic
(or ionic) magnetic moments in the crystal (we shall not consider
the magnetism of the conduction electrons in this chapter).

The first part of the chapter is devoted to a brief classification
of magnetics. If mðrÞ � 0 at every point, the substance is a
disordered magnetic. There are two types of such magnetics:
diamagnets and paramagnets. The most important features of
these magnetics are briefly outlined in Section 1.5.1.1.

If mðrÞ 6¼ 0, the substance possesses a magnetic structure.
There are two cases to be considered: (1) The integral of mðrÞ
over the primitive cell is not zero (

R
m d� 6¼ 0); such a substance

is called ferromagnetic. (2)
R
m d� ¼ 0; such a substance is called

antiferromagnetic. The integration is performed over the
magnetic elementary cell, which may differ from the crystal-
lographic one. This crude classification is extended in Section
1.5.1.2.

The classification of ferromagnets according to the type of the
magnetic structure is given in Section 1.5.1.2.1. The concept of the
magnetic sublattice is introduced and the ferromagnets are
divided into two groups: one-sublattice ferromagnets and multi-
sublattice ferro- and ferrimagnets. Collinear and non-collinear
ferromagnets are described.

In Section 1.5.1.2.2, the antiferromagnets are classified by the
types of their magnetic structures: collinear, weakly non-collinear
and strongly non-collinear antiferromagnets.

Incommensurate structures are briefly mentioned in Section
1.5.1.2.3.

The study of ordered magnetics has led to an extension of the
theory of crystallographic symmetry. This extension is based on
the fact that mðrÞ changes sign under a specific transformation R,
which is equivalent to time inversion. The invariance of the
equation of motion is preserved under R. The symmetry that
admits the operation R along with ordinary crystallographic
transformations (translations, rotations and reflections) is called

the magnetic symmetry. Section 1.5.2 is devoted to magnetic
symmetry. Different types of magnetic point (Section 1.5.2.1) and
magnetic space (Section 1.5.2.3) groups are defined. The 22
magnetic Bravais lattices are displayed in Section 1.5.2.2. All
magnetic groups (both point and space) are categorized into
three types: (1) The groups that possess R as an additional
element. The crystals which belong to such space groups satisfy
mðrÞ ¼ �mðrÞ at every point, hence mðrÞ ¼ 0: Such crystals are
found to be paramagnetic or diamagnetic. Crystals with a point
group that possesses R as an additional element may also be
antiferromagnetic. This is the case if R appears in the space group
multiplied by some translations but not as a separate element. (2)
The groups that do not possess R at all. (3) The groups that
contain the element R only in combination with some other
elements (translations, rotations, reflections). The latter two
types of space groups describe ordered magnetics.

The transition from the paramagnetic state into the magneti-
cally ordered state entails a transition from one magnetic group
into another. These transitions are considered in Section 1.5.3.
Section 1.5.3.1 gives an example of the analysis of such transitions
in terms of magnetic symmetry and introduces the concept of
ferromagnetic and antiferromagnetic vectors, which characterize
the magnetic structures. The phenomenological theory of
magnetic transitions is based on the Landau theory of second-
order transitions. Section 1.5.3.3 is dedicated to this theory (see
also Section 3.1.2). The Landau theory is based on the expansion
of the thermodynamic potential into a series of the basic func-
tions of irreducible representations of the space group of the
crystal under consideration. It is essential to distinguish the
exchange and relativistic terms in the expansion of the thermo-
dynamic potential (see Section 1.5.3.2).

The domain structure of ferromagnets and antiferromagnets is
considered in Section 1.5.4, where 180� and T-domains are
described. The change from a multidomain structure to a single-
domain structure under the action of an applied magnetic field
explains the magnetization process in ferro- and ferrimagnets.
The existence of 180� domains in antiferromagnets was shown in
experiments on piezomagnetism and the linear magnetoelectric
effect.

Non-collinear antiferromagnetic structures (weakly ferro-
magnetic, non-collinear and non-coplanar antiferromagnetic
structures) are described in Section 1.5.5. The existence of these
structures is directly connected with the magnetic symmetry. Such
a structure arises if the irreducible representation responsible for
the phase transition into the ordered state is two- or three-
dimensional. Correspondingly, the magnetic group allows the
coexistence of two or three different ferro- or antiferromagnetic
vectors.

Besides the magnetic phase transition from the disordered into
the ordered state, there exist transitions from one magnetic
structure into another. Those of these that are obtained by a
rotation of the ferromagnetic or antiferromagnetic vector relative
to the crystallographic axis are called reorientation transitions
and are analysed in Section 1.5.6.

Sections 1.5.7 and 1.5.8 are devoted to phenomena that can be
(and were) predicted only on the basis of magnetic symmetry.
These are piezomagnetism (Section 1.5.7) and the magneto-
electric effect (Section 1.5.8). The reciprocal of the piezo-
magnetic effect (Section 1.5.7.1) is linear magnetostriction
(Section 1.5.7.2). The magnetoelectric effect has been investi-
gated far more than piezomagnetism. In addition to the linear
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magnetoelectric effect (Section 1.5.8.1), effects of higher order
(Section 1.5.8.2) have also been observed. In connection with the
magnetoelectric effect, ferromagnetic and antiferromagnetic
ferroelectrics are also considered (Section 1.5.8.3).

In Section 1.5.9, the magnetostriction in ferromagnets is
discussed. Only fundamental points of this problem are consid-
ered.

As noted above, only those problems of magnetism that are
closely connected with magnetic symmetry are considered in this
chapter. However, these problems are only outlined briefly here
because of the restrictions on the extent of this volume. For the
same reason, it is impossible to give an exhaustive list of refer-
ences. The references given here include selected publications on
magnetic symmetry and those describing the first experimental
work devoted to the properties connected with magnetic
symmetry.

1.5.1.1. Disordered magnetics

A crystal placed in a magnetic field H is magnetized. The
magnetized state is characterized by two vectors, the magneti-
zation M (the magnetic moment per unit volume) and the
magnetic induction B. The Gaussian system of units is used in this
chapter (see Table 1.5.10.1 at the end of the chapter for a list of
conversions fromGaussian to SI units). The magnetic induction is
given by

B ¼ Hþ 4�M: ð1:5:1:1Þ

This equation shows that the dimensions of B, H and M are the
same in the Gaussian system. The unit for B, the gauss (G), and
for H, the oersted (Oe), also coincide in magnitude, whereas the
unit for M, usually called emu cm�3, is 4� times larger. These
units are related to the corresponding SI units as follows: 1 G
¼ 10�4 tesla (T), 1 Oe ¼ 103=ð4�Þ A m�1, 1 emu cm�3 ¼
103 A m�1.

In disordered magnetics, the vectors B and M are linear in the
magnetic field. Using a Cartesian coordinate system, this can be
expressed as

Mi ¼ �ijHj and Bi ¼ �ijHj; ð1:5:1:2Þ

where �ij is the dimensionless magnetic susceptibility per unit
volume and �ij is the magnetic permeability. The susceptibility is
frequently referred to 1 g or to one mole of substance. The mass
susceptibility is written as �g, the molar susceptibility as �mol.

All three vectors H, M and B are axial vectors (see Section
1.1.4.5.3), the symmetry of which is 1=m. Accordingly, the
components of these vectors perpendicular to a mirror plane do
not change sign on being reflected by this plane, whereas the
components parallel to the plane do change sign. Consequently,
these three vectors are invariant with respect to inversion. The
quantities �ij and �ij are components of second-rank polar
tensors. In principal axes, the tensors become diagonal and both
the magnetic susceptibility and permeability of a crystal are
characterized by the three values of the principal susceptibilities
and principal permeabilities, respectively.

All disordered magnetics are divided into two types: diamag-
nets (�< 0) and paramagnets (�> 0).

Diamagnetism is a universal property of all materials. It is
associated with the tendency of all the electrons to screen the
applied external field according to the Lenz law. For materials in
which the electron orbits are spherically symmetric, the relation
for the diamagnetic susceptibility was calculated by Langevin.
For monoatomic substances he obtained

� ¼ �
Ne2

6mc2

Xi¼Z

i¼1

r2i

 !

; ð1:5:1:3Þ

whereN is the number of atoms per unit volume, Z is the number
of electrons per atom, e and m are the charge and the mass of the
electron, respectively, and r2i are the mean squares of the radii of
the electron orbits. In polyatomic substances, the summation
must be done over all types of atoms. In most chemical
compounds, the orbits are not spherical and the calculation of the
diamagnetic susceptibility becomes more complicated. In metals,
the conduction electrons contribute significantly to the diamag-
netic susceptibility. The diamagnetic susceptibility of most
substances is very small (� � 10�6) and isotropic. Rare excep-
tions are bismuth and some organic compounds, in which the
diamagnetism is strongly anisotropic.

Most paramagnetic materials contain ions (or free atoms) with
a partly filled inner electronic shell. Examples are the transition
metals and the rare-earth and actinide elements. Atoms, mole-
cules and point defects possessing an odd number of electrons are
also paramagnetic. Ions with a partly filled inner electronic shell
possess orbital L and spin S angular momenta, which determine
the total angular momentum J if the spin–orbit interaction is
strong compared with the crystal field.

The magnetic susceptibility of paramagnets follows the Curie–
Weiss law in low magnetic fields (�BB� kBT):

� ¼
Np2�2

B

3kBðT ��Þ
; ð1:5:1:4Þ

where N is the number of magnetic ions (or atoms) per cm3, �B is
the Bohr magneton, p is the effective number of Bohr magnetons,
kB is the Boltzmann factor and� is the Weiss constant. TheWeiss
constant is related to the interaction between the magnetic
moments (mostly exchange interaction) and to the effect of the
splitting of electron levels of the paramagnetic ion in the crys-
talline electric field. Many paramagnets that obey the Curie–
Weiss law transform into ordered magnetics at a temperature Tc,
which is of the order of j�j. The sign of� depends on the sign of
the exchange constant J [see relation (1.5.1.7)]. For the
substances that at low temperatures become ferromagnets, we
have �> 0, for antiferromagnets �< 0, and for ferrimagnets the
temperature dependence of � is more complicated (see Fig.
1.5.1.1). For those paramagnets that do not go over into an
ordered state,� is close to zero and equation (1.5.1.4) changes to
the Curie law.

The value of the effective number of Bohr magnetons p
depends strongly on the type of the magnetic ions and their
environment. For most rare-earth compounds at room tempera-
ture, the number p has the same value as for free ions:

p ¼ g½JðJ þ 1Þ�1=2; ð1:5:1:5Þ

where g is the Landé g-factor or the spectroscopic splitting factor
(1 � g � 2). In this case, the paramagnetic susceptibility is
practically isotropic. Some anisotropy can arise from the aniso-
tropy of the Weiss constant �.
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Fig. 1.5.1.1. Temperature dependence of 1=� at high temperatures for
different types of magnetics: (1) ferromagnet; (2) antiferromagnet; (3)
ferrimagnet.
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The behaviour of the transition-metal ions is very different. In
contrast to the rare-earth ions, the electrons of the partly filled
shell in transition metals interact strongly with the electric field of
the crystal. As a result, their energy levels are split and the orbital
moments can be ‘quenched’. This means that relation (1.5.1.5)
transforms to

pij ¼ ðgeffÞij½SðSþ 1Þ�1=2: ð1:5:1:6Þ

Here the value of the effective spin S represents the degeneration
of the lowest electronic energy level produced by the splitting in
the crystalline field; ðgeffÞij differs from the usual Landé g-factor.
The values of its components lie between 0 and 10–20. The tensor
ðgeffÞij becomes diagonal in the principal axes. According to
relation (1.5.1.6), the magnetic susceptibility also becomes a
tensor. The anisotropy of ðgeffÞij can be studied using electron
paramagnetic resonance (EPR) techniques.

The Curie–Weiss law describes the behaviour of those para-
magnets in which the magnetization results from the competition
of two forces. One is connected with the reduction of the
magnetic energy by orientation of the magnetic moments of ions
in the applied magnetic field; the other arises from thermal
fluctuations, which resist the tendency of the field to orient these
moments. At low temperatures and in strong magnetic fields, the
linear dependence of the magnetization versus magnetic field
breaks down and the magnetization can be saturated in a suffi-
ciently strong magnetic field. Most of the paramagnetic
substances that obey the Curie–Weiss law ultimately transform to
an ordered magnetic as the temperature is decreased.

The conduction electrons in metals possess paramagnetism in
addition to diamagnetism. The paramagnetic susceptibility of the
conduction electrons is small (of the same order of magnitude as
the diamagnetic susceptibility) and does not depend on
temperature. This is due to the fact that the conduction electrons
are governed by the laws of Fermi–Dirac statistics.

1.5.1.2. Ordered magnetics

1.5.1.2.1. Ferromagnets (including ferrimagnets)

As stated above, all ordered magnetics that possess a sponta-
neous magnetization Ms different from zero (a magnetization
even in zero magnetic field) are called ferromagnets. The simplest
type of ferromagnet is shown in Fig. 1.5.1.2(a). This type
possesses only one kind of magnetic ion or atom. All their
magnetic moments are aligned parallel to each other in the same
direction. This magnetic structure is characterized by one vector
M. It turns out that there are very few ferromagnets of this type in
which only atoms or ions are responsible for the ferromagnetic
magnetization (CrBr3, EuO etc.). The overwhelming majority of
ferromagnets of this simplest type are metals, in which the
magnetization is the sum of the magnetic moments of the loca-
lized ions and of the conduction electrons, which are partly
polarized.

More complicated is the type of ferromagnet which is called a
ferrimagnet. This name is derived from the name of the oxides of
the elements of the iron group. As an example, Fig. 1.5.1.2(b)
schematically represents the magnetic structure of magnetite
(Fe3O4). It contains two types of magnetic ions and the number
of Fe3þ ions (l1 and l2) is twice the number of Fe2þ ions (l3). The
values of the magnetic moments of these two types of ions differ.
The magnetic moments of all Fe2þ ions are aligned in one
direction. The Fe3þ ions are divided into two parts: the magnetic
moments of one half of these ions are aligned parallel to the
magnetic moments of Fe2þ and the magnetic moments of the
other half are aligned antiparallel. The array of all magnetic
moments of identical ions oriented in one direction is called a
magnetic sublattice. The magnetization vector of a given sublat-
tice will be denoted byMi. Hence the magnetic structure of Fe3O4

consists of three magnetic sublattices. The magnetizations of two
of them are aligned in one direction, the magnetization of the
third one is oriented in the opposite direction. The net ferro-
magnetic magnetization is Ms ¼ M1 �M2 þM3 ¼ M3.

The special feature of ferrimagnets, as well as of many anti-
ferromagnets, is that they consist of sublattices aligned anti-
parallel to each other. Such a structure is governed by the nature
of the main interaction responsible for the formation of the
ordered magnetic structures, the exchange interaction. The
energy of the exchange interaction does not depend on the
direction of the interacting magnetic moments (or spins S) rela-
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Fig. 1.5.1.2. Ordered arrangements of magnetic moments li in: (a) an
ordinary ferromagnetMs ¼ Nl1; (b) a ferrimagnetMs ¼ ðN=3Þðl1þ l2þ l3Þ;
(c) a weak ferromagnet M ¼ MD ¼ ðN=2Þðl1þ l2Þ, L ¼ ðN=2Þðl1 �l2Þ,
(Lx � My;Mx ¼Mz ¼ Ly ¼ Lz ¼ 0). (N is the number of magnetic ions per
cm3.)
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tive to the crystallographic axes and is represented by the
following relation:

Uex ¼ �
P

m;n

JmnSmSn: ð1:5:1:7Þ

Here Sm, Sn are the spins of magnetic atoms (ions) and Jmn is the
exchange constant, which usually decreases fast when the
distance between the atoms rises. Therefore, usually only the
nearest neighbour interaction needs to be taken into account.
Hence, according to (1.5.1.7), the exchange energy is a minimum
for the state in which neighbouring spins are parallel (if J> 0) or
antiparallel (if J< 0). If the nearest neighbour exchange inter-
action were the only interaction responsible for the magnetic
ordering, only collinear magnetic structures would exist (except
in triangle lattices). Together with the exchange interaction, there
is also a magnetic dipole interaction between the magnetic
moments of the atoms as well as an interaction of the atomic
magnetic electrons with the crystalline electric field. These
interactions are much smaller than the exchange interaction.
They are often called relativistic interactions. The relativistic
interactions and the exchange interaction between next-nearest
atoms bring about the formation of non-collinear magnetic
structures.

A simple non-collinear structure is the magnetic structure of a
weak ferromagnet. It contains identical magnetic ions divided in
equal amounts between an even number of sublattices. In the first
approximation, the magnetizations of these sublattices are anti-
parallel, as in usual antiferromagnets. In fact, the magnetizations
are not strictly antiparallel but are slightly canted, i.e. non-colli-
near, as shown in Fig. 1.5.1.2(c). There results a ferromagnetic
moment MD, which is small compared with the sublattice
magnetizationMi. The magnetic properties of weak ferromagnets
combine the properties of both ferromagnets and antiferro-
magnets. They will be discussed in detail in Section 1.5.5.1.

1.5.1.2.2. Antiferromagnets

As discussed above, the exchange interaction, which is of
prime importance in the formation of magnetic order, can lead to
a parallel alignment of the neighbouring magnetic moments as
well as to an antiparallel one. In the latter case, the simplest
magnetic structure is the collinear antiferromagnet, schematically
shown in Fig. 1.5.1.3(a). Such an antiferromagnet consists of one
or several pairs of magnetic sublattices of identical magnetic ions
located in equivalent crystallographic positions. The magnetiza-
tions of the sublattices are oriented opposite to each other.

Fig. 1.5.1.3(b) shows a weakly non-collinear antiferromagnet,
in which the vectors of magnetization of four equivalent sublat-
tices form a cross with a small tilting angle 2�. Such a structure
can be considered as an admixture of ‘weak antiferromagnetism’
L1 with easy axis Ox to an ordinary antiferromagnet L2 with easy
axis Oy. This weak antiferromagnetism is of the same origin as
weak ferromagnetism. Its nature will be discussed in detail in
Section 1.5.5.2.

The minimum of the exchange interaction energy of three
spins located at the corners of a triangle corresponds to a
structure in which the angles between two adjacent spins are
120�. Correspondingly, many hexagonal crystals possess a trian-
gular antiferromagnetic structure like the one shown in Fig.
1.5.1.3(c). The sum of the magnetizations of the three sublattices
in this structure equals zero. In tetragonal crystals, there is a
possibility of the existence of a 90� antiferromagnetic structure,
which consists of four equivalent sublattices with magnetizations
oriented along the positive and negative directions of the x and y
axes.

Finally, it is worth noting that in addition to the electronic
magnetically ordered substances, there exist nuclear ferro- and
antiferromagnets (below 1 mK for some insulators and below
1 mK for metals).

1.5.1.2.3. Helical and sinusoidal magnetics

There are many more complicated non-collinear magnetic
structures. Fig. 1.5.1.4(a) shows an antiferromagnetic helical
structure. It consists of planes perpendicular to the z axis in which
all the magnetic moments are parallel to each other and are
perpendicular to z. The polar angle of the direction of the
moments changes from plane to plane by some constant �. Thus
the magnetization vectors describe a spiral along the axis of the
crystal. Such structures were observed in hexagonal rare-earth
metals. A specific feature is that they often are incommensurate
structures. This means that 2�=� is not a rational number and that
the period of the magnetic spiral is not a multiple of the period of
the lattice.

Similar to the antiferromagnetic helix, ferromagnetic helical or
spiral structures exist [see Fig. 1.5.1.4(b)] in which the magneti-
zations of the layers are tilted to the axis at an angle �. As a result,
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Fig. 1.5.1.3. Ordered arrangements of magnetic moments li in: (a) an
ordinary two-sublattice antiferromagnet L ¼ ðN=2Þðl1� l2Þ; (b) a weakly
non-collinear four-sublattice antiferromagnet L1ðxÞ ¼ ðN=4Þðl1� l2� l3þ

l4Þ, L2ðyÞ ¼ ðN=4Þðl1� l2þ l3� l4Þ; (c) a strongly non-collinear three-
sublattice antiferromagnet L1 ¼ ðN=3Þð3Þ

1=2
ðl2� l1Þ, L2 ¼ ðN=3Þðl1þ l2�

l3Þ. The broken lines show the crystallographic primitive cell and the solid
lines show the magnetic primitive cell.
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the vectors of the magnetization of the layers are arranged on the
surface of a cone. The ferromagnetic magnetization is aligned
along the z axis. This structure is called a ferromagnetic helix. It
usually belongs to the incommensurate magnetic structures.

More complicated antiferromagnetic structures also exist:
sinusoidal structures, which also consist of layers in which all the
magnetic moments are parallel to each other. Fig. 1.5.1.4(c)
displays the cycloidal spiral and Figs. 1.5.1.4(d) and (e) display
longitudinal and transverse spin density waves, respectively.

1.5.2. Magnetic symmetry

As discussed in Section 1.5.1, in studies of the symmetry of
magnetics one should take into account not only the crystal-
lographic elements of symmetry (rotations, reflections and
translations) but also the time-inversion element, which causes
the reversal of the magnetic moment density vector mðrÞ.
Following Landau & Lifshitz (1957), we shall denote this element
by R. If combined with any crystallographic symmetry element G
we get a product RG, which some authors call the space-time
symmetry operator. We shall not use this terminology in the
following.

To describe the symmetry properties of magnetics, one should
use magnetic point and space groups instead of crystallographic
ones. (See also Section 1.2.5.)

By investigating the ‘four-dimensional groups of three-
dimensional space’, Heesch (1930) found not only the 122 groups
that now are known as magnetic point groups but also the seven
triclinic and 91 monoclinic magnetic space groups. He also
recognized that these groups can be used to describe the
symmetry of spin arrangements. The present interest in magnetic
symmetry was much stimulated by Shubnikov (1951), who
considered the symmetry groups of
figures with black and white faces, which
he called antisymmetry groups. The
change of colour of the faces in anti-
symmetry (black–white symmetry, see
also Section 3.3.5) corresponds to the
element R. These antisymmetry classes
were derived as magnetic symmetry point
groups by Tavger & Zaitsev (1956).
Beside antisymmetry, the concept of

colour (or generalized) symmetry also was developed, in which
the number of colours is not 2 but 3, 4 or 6 (see Belov et al., 1964;
Koptsik & Kuzhukeev, 1972). A different generalization to more
than two colours was proposed by van der Waerden & Burc-
khardt (1961). The various approaches have been compared by
Schwarzenberger (1984).

As the theories of antisymmetry and of magnetic symmetry
evolved often independently, different authors denote the
operation of time inversion (black–white exchange) by different
symbols. Of the four frequently used symbols (R ¼ E0 ¼ 1 ¼ 10)
we shall use in this article only two: R and 10.

1.5.2.1. Magnetic point groups

Magnetic point groups may contain rotations, reflections, the
element R and their combinations. A set of such elements that
satisfies the group properties is called a magnetic point group. It
is obvious that there are 32 trivial magnetic point groups; these
are the ordinary crystallographic point groups supplemented by
the element R. Each of these point groups contains all the
elements of the ordinary point group P and also all the elements
of this group P multiplied by R. This type of magnetic point group
MP1 can be represented by

MP1 ¼ P þ RP: ð1:5:2:1Þ

These groups are sometimes called ‘grey’ magnetic point groups.
As pointed out above, all dia- and paramagnets belong to this
type of point group. To this type belong also antiferromagnets
with a magnetic space group that contains translations multiplied
by R (space groups of type IIIb).

The second type of magnetic point group, which is also trivial
in some sense, contains all the 32 crystallographic point groups
without the element R in any form. For this type MP2 ¼ P.
Thirteen of these point groups allow ferromagnetic spontaneous
magnetization (ferromagnetism, ferrimagnetism, weak ferro-
magnetism). They are listed in Table 1.5.2.4. The remaining 19
point groups describe antiferromagnets. The groups MP2 are
often called ‘white’ magnetic point groups.

The third type of magnetic point groupMP3, ‘black and white’
groups (which are the only nontrivial ones), contains those point
groups in which R enters only in combination with rotations or
reflections. There are 58 point groups of this type. Eighteen of
them describe different types of ferromagnetism (see Table
1.5.2.4) and the others represent antiferromagnets.

Replacing R by the identity element E in the magnetic point
groups of the third type does not change the number of elements
in the point group. Thus each group of the third type MP3 is
isomorphic to a group P of the second type.

The method of derivation of the nontrivial magnetic groups
given below was proposed by Indenbom (1959). LetH denote the
set of those elements of the group P which enter into the asso-
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Fig. 1.5.1.4. Helical and sinusoidal magnetic structures. (a) An antiferro-
magnetic helix; (b) a cone spiral; (c) a cycloidal spiral; (d) a longitudinal spin-
density wave; (e) a transverse spin-density wave.

Table 1.5.2.1. Comparison of different symbols for magnetic point groups

Schoenflies Hermann–Mauguin Shubnikov

D4R 42210 4:210 4:21
D4 422 4:2 4:2
D4ðC4Þ 42020 4:20 4:2
D4ðD2Þ 40220 40:2 4:2

Table 1.5.2.2. Comparison of different symbols for the elements of magnetic point groups

Magnetic
point group

Elements

Schoenflies Hermann–Mauguin

D4R ¼ 42210 E;C2; 2C4; 2U2; 2U
a
2 ;

R;RC2; 2RC4; 2RU2; 2RU
a
2

1; 2x; 2y; 2z; 2xy; 2�xy;	4z;
10; 20x; 2

0
y; 2
0
z; 2
0
xy; 2

0
�xy;	4

0
z

D4 ¼ 422 E;C2; 2C4; 2U2; 2U
a
2 1; 2x; 2y; 2z; 2xy; 2�xy;	4z

D4ðC4Þ ¼ 42020 E;C2; 2C4; 2RU2; 2RU
a
2 1; 2z;	4z; 2

0
x; 2
0
y; 2
0
xy; 2

0
�xy

D4ðD2Þ ¼ 40220 E;Cz
2;C

y
2;C

x
2; 2RU

a
2 ; 2RC4 1; 2x; 2y; 2z; 2

0
xy; 2

0
�xy;	4

0
z
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ciated magnetic group MP3 not multiplied by R. The set H
contains the identity element E, for each element H also its
inverse H�1, and for each pair H1, H2 also its products H1H2 and
H2H1. Thus the set H forms a group. It is a subgroup of the
crystallographic group P. Let Pi denote an element of ðP �HÞ.
All these elements enter MP3 in the form of products RPi

because RPi ¼ PiR and R2 ¼ 1. Multiplying the elements ofMP3

by a fixed element RP1 corresponds to a permutation of the
elements of MP3. This permutation maps each element of the
subgroupH on an element ofMP3 that does not belong toH and
vice versa. It follows that one half of the elements of MP3 are
elements of ðP � HÞmultiplied by R and the other half belong to
H. The relation for the magnetic point groups of the third type
may therefore be written as

MP3 ¼ Hþ RðP � HÞ ¼ Hþ RP1H: ð1:5:2:2Þ

H is therefore a subgroup of index 2 of P. The subgroups of index
2 of P can easily be found using the tables of irreducible repre-
sentations of the point groups. Every real non-unit one-dimen-
sional representation of P contains equal numbers of characters
þ1 and �1. In the corresponding magnetic point groupMP3, the
elements of P with character �1 are multiplied by R and those
with character þ1 remain unchanged. The latter form the
subgroupH. This rule can be stated as a theorem: every real non-
unit one-dimensional representation � of a point group of
symmetry P produces an isomorphic mapping of this group upon
a magnetic group MP3 (Indenbom, 1959). This concept will be
developed in Section 1.5.3.

Using the Schoenflies symbols and the method described
above, the point groups of magnetic symmetry (magnetic point
groups) can be denoted by PðHÞ, where P is the symbol of the
original crystallographic point group and H is the symbol of that
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Table 1.5.2.3. The 90 magnetic point groups of types 2 and 3

1 2 3 4 5 6

System

Symbol of magnetic point groupM

Symmetry operators of groupMSchoenflies Shubnikov

Hermann–Mauguin

Short Full

Triclinic C1 1 1 1 1

Ci
�22 �11 �11 1; �11

CiðC1Þ
�22 �110 �110 1; �110

Monoclinic C2 2 2 121 1; 2y
C2ðC1Þ 2 20 1201 1; 20y
Cs m m 1m1 1;my

CsðC1Þ m m0 1m01 1;m0y
C2h 2 : m 2=m 1 2

m 1 1; �11; 2y;my

C2hðCiÞ 2 : m 20=m0 1 20

m0
1 1; �11; 20y;m

0
y

C2hðC2Þ 2 : m 2=m0 1 2
m0 1 1; 2y; �11

0;m0y
C2hðCsÞ 2 : m 20=m 1 20

m 1 1;my; �11
0; 20y

Orthorhombic D2 2 : 2 222 222 1; 2x; 2y; 2z
D2ðC2Þ 2 : 2 20202 20202 1; 2z; 2

0
x; 2
0
y

C2v 2
m mm2 mm2 1; 2z;mx;my

C2vðC2Þ 2
m m0m02 m0m02 1; 2z;m
0
x;m

0
y

C2vðCsÞ 2
m 20m0m 20m0m 1;mz; 2
0
x;m

0
y

D2h m
2 : m mmm 2
m

2
m

2
m 1; �11; 2x; 2y; 2z;mx;my;mz

D2hðC2hÞ m
2 : m mm0m0 2
m

20

m0
20

m0 1; �11; 2x;mx; 2
0
y; 2
0
z;m

0
y;m

0
z

D2hðD2Þ m
2 : m m0m0m0 2
m0

2
m0

2
m0 1; 2x; 2y; 2z; �11

0;m0x;m
0
y;m

0
z

D2hðC2vÞ m
2 : m mmm0 20

m
20

m
2
m0

1; 2z;mx;my; �11
0; 20x; 2

0
y;m

0
z

Tetragonal C4 4 4 4 1; 2z;	4z
C4ðC2Þ 4 40 40 1; 2z;	4

0
z

S4
�44 �44 �44 1; 2z;	�44z

S4ðC2Þ
�44 �44

0 �44
0

1; 2z;	�44
0

z

C4h 4 : m 4=m 4
m 1; �11; 2z;mz;	4z;	�44z

C4hðC2hÞ 4 : m 40=m 40

m 1; �11; 2z;mz;	4
0
z;	�44

0

z

C4hðC4Þ 4 : m 4=m0 4
m0

1; 2z;	4z; �11
0;m0z;	�44

0

z

C4hðS4Þ 4 : m 40=m0 40

m0 1; 2z;	�44z; �11
0;m0z;	4

0
z

D4 4 : 2 422 422 1; 2x; 2y; 2z; 2xy; 2�xy;	4z
D4ðD2Þ 4 : 2 40220 40220 1; 2x; 2y; 2z; 2

0
xy; 2

0
�xy;	4

0
z

D4ðC4Þ 4 : 2 42020 42020 1; 2z;	4z; 2
0
x; 2
0
y; 2
0
xy; 2

0
�xy

C4v 4
m 4mm 4mm 1; 2z;mx;my;mxy;m�xy;	4z
C4vðC2vÞ 4
m 40mm0 40mm0 1; 2z;mx;my;m

0
xy;m

0
�xy;	4

0
z

C4vðC4Þ 4
m 4m0m0 4m0m0 1; 2z;	4z;m
0
x;m

0
y;m

0
xy;m

0
�xy

D2d
�44
m �442m �442m 1; 2x; 2y; 2z;mxy;m�xy;	�44z

D2dðD2Þ
�44
m �44

0
2m0 �44

0
2m0 1; 2x; 2y; 2z;m

0
xy;m

0
�xy;	�44

0

z

D2dðC2vÞ
�44
m �44

0
m20 �44

0
m20 1; 2z;mx;my; 2

0
xy; 2

0
�xy;	�44

0

z

D2dðS4Þ
�44
m �4420m0 �4420m0 1; 2z;	�44z; 2

0
x; 2
0
y;m

0
xy;m

0
�xy

D4h m
4 : m 4=mmm 4
m

2
m

2
m 1; �11; 2x; 2y; 2z; 2xy; 2�xy;mx;my;mz;mxy;m�xy;	4z;	�44z

D4hðD2hÞ m
4 : m 40=mmm0 40

m
2
m

20

m0 1; �11; 2x; 2y; 2z;mx;my;mz; 2
0
xy; 2

0
�xy;m

0
xy;m

0
�xy;	4

0
z;	�44

0

z

D4hðC4hÞ m
4 : m 4=mm0m0 4
m

20

m0
20

m0 1; �11; 2z;mz;	4z;	�44z; 2
0
x; 2
0
y; 2
0
xy; 2

0
�xy;m

0
x;m

0
y;m

0
xy;m

0
�xy

D4hðD4Þ m
4 : m 4=m0m0m0 4
m0

2
m0

2
m0 1; 2x; 2y; 2z; 2xy; 2�xy;	4z; �11

0;m0x;m
0
y;m

0
z;m

0
xy;m

0
�xy;	�44

0

z

D4hðC4vÞ m
4 : m 4=m0mm 4
m0

20

m
20

m 1; 2z;mx;my;mxy;m�xy;	4z; �11
0; 20x; 2

0
y; 2
0
xy; 2

0
�xy;m

0
z;	�44

0

z

D4hðD2dÞ m
4 : m 40=m0m0m 40

m0
2
m0

20

m
1; 2x; 2y; 2z;mxy;m�xy;	�44z; �11

0; 20xy; 2
0
�xy;m

0
x;m

0
y;m

0
z;	4

0
z
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subgroup the elements of which are not multiplied by R. This
notation is often used in the physics literature. In the crystal-
lographic literature, the magnetic groups are defined by
Hermann–Mauguin or Shubnikov symbols. In this type of
designation, the symbols of elements multiplied by R are primed
or underlined. The primed symbols are used in most of the recent
publications. The Hermann–Mauguin and Shubnikov definitions
differ slightly, as in the case of crystallographic groups. In Table
1.5.2.1, different symbols of magnetic point groups (trivial and
nontrivial ones) are compared. This is done for the family that
belongs to the crystallographic point group D4 ¼ 422. The
symbols of the symmetry elements of these four magnetic point
groups are compared in Table 1.5.2.2.

Table 1.5.2.3 gives a list of the 90 magnetic point groups
belonging to types 2 and 3. The Schoenflies, Shubnikov and
Hermann–Mauguin symbols of the point groups are given in the
table. The entries in the Hermann–Mauguin symbol refer to
symmetry directions, as explained in Section 2.2.4 of International
Tables for Crystallography, Vol. A (2002). The elements of
symmetry of each point group are displayed using the Hermann–
Mauguin symbols. The symbol Nð2?Þ denotes N 180� rotations
with axes perpendicular to the principal symmetry axis; Nðm?Þ
denotes N mirror planes with normals perpendicular to the
principal symmetry axis. Similar definitions hold for the primed
symbols Nð20?Þ and Nðm0?Þ. The point groups are arranged in
families. The part of the Schoenflies symbol before the bracket is
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1 2 3 4 5 6

System

Symbol of magnetic point groupM

Symmetry operators of groupMSchoenflies Shubnikov

Hermann–Mauguin

Short Full

Trigonal C3 3 3 3 1;	3z
S6

�66 �33 �33 1; �11;	3z;	�33z
S6ðC3Þ

�66 �33
0 �33

0
1;	3z; �11

0;	�33
0

z

D3 3 : 2 32 321 1; 3ð2?Þ;	3z
D3ðC3Þ 3 : 2 320 3201 1;	3z; 3ð2

0
?Þ

C3v 3
m 3m 3m1 1; 3ðm?Þ;	3z
C3vðC3Þ 3
m 3m0 3m01 1;	3z; 3ðm

0
?Þ

D3d
�66
m �33m �33 2

m 1 1; �11; 3ð2?Þ; 3ðm?Þ;	3z;	�33z
D3dðS6Þ

�66
m �33m0 �33 20

m0
1 1; �11;	3z;	�33z; 3ð2

0
?Þ; 3ðm

0
?Þ

D3dðD3Þ
�66
m �33

0
m0 �33

0 2
m0 1 1; 3ð2?Þ;	3z; �11

0; 3ðm0?Þ;	�33
0

z

D3dðC3vÞ
�66
m �33

0
m �33

0 20

m 1 1; 3ðm?Þ;	3z; �11
0; 3ð20?Þ;	�33

0

z

Hexagonal C6 6 6 6 1; 2z;	3z;	6z
C6ðC3Þ 6 60 60 1;	3z; 2

0
z;	6

0
z

C3h 3 : m �66 �66 1;mz;	3z;	�66z
C3hðC3Þ 3 : m �66

0 �66
0

1;	3z;m
0
z;	�66

0

z

C6h 6 : m 6=m 6
m

1; �11; 2z;mz;	3z;	�33z;	6z;	�66z
C6hðS6Þ 6 : m 60=m0 60

m0 1; �11;	3z;	�33z; 2
0
z;m

0
z;	6

0
z;	�66

0

z

C6hðC6Þ 6 : m 6=m0 6
m0 1; 2z;	3z;	6z; �11

0;m0z;	�33
0

z;	�66
0

z

C6hðC3hÞ 6 : m 60=m 60

m 1;mz;	3z;	�66z; �11
0; 20z;	�33

0

z;	6
0
z

D6 6 : 2 622 622 1; 6ð2?Þ; 2z;	3z;	6z
D6ðD3Þ 6 : 2 60220 60220 1; 3ð2?Þ;	3z; 3ð2

0
?Þ; 2

0
z;	6

0
z

D6ðC6Þ 6 : 2 62020 62020 1; 2z;	3z;	6z; 6ð2
0
?Þ

C6v 6
m 6mm 6mm 1; 2z; 6ðm?Þ;	3z;	6z
C6vðC3vÞ 6
m 60mm0 60mm0 1; 3ðm?Þ;	3z; 2

0
z; 3ðm

0
?Þ;	6

0
z

C6vðC6Þ 6
m 6m0m0 6m0m0 1; 2z;	3z;	6z; 6ðm
0
?Þ

D3h m
3 : m �66m2 �66m2 1; 3ð2?Þ; 3ðm?Þ;mz;	3z;	�66z
D3hðD3Þ m
3 : m �66

0
2m0 �66

0
2m0 1; 3ð2?Þ;	3z; 3ðm

0
?Þ;m

0
z;	�66

0

z

D3hðC3vÞ m
3 : m �66
0
m20 �66

0
m20 1; 3ðm?Þ;	3z; 3ð2

0
?Þ;m

0
z;	�66

0

z

D3hðC3hÞ m
3 : m �66m020 �66m020 1;mz;	3z;	�66z; 3ð2
0
?Þ; 3ðm

0
?Þ

D6h m
6 : m 6=mmm 6
m

2
m

2
m 1; �11; 6ð2?Þ; 2z; 6ðm?Þ;mz;	3z;	�33z;	6z;	�66z

D6hðD3dÞ m
6 : m 60=m0mm0 60

m0
2
m

20

m0 1; �11; 3ð2?Þ; 3ðm?Þ;	3z;	�33z; 3ð2
0
?Þ; 2

0
z; 3ðm

0
?Þ;m

0
z;	6

0
z;	�66

0

z

D6hðC6hÞ m
6 : m 6=mm0m0 6
m

20

m0
20

m0 1; �11; 2z;mz;	3z;	�33z;	6z;	�66z; 6ð2
0
?Þ; 6ðm

0
?Þ

D6hðD6Þ m
6 : m 6=m0m0m0 6
m0

2
m0

2
m0

1; 6ð2?Þ; 2z;	3z;	6z; �11
0; 6ðm0?Þ;m

0
z;	�33

0

z;	�66
0

z

D6hðC6vÞ m
6 : m 6=m0mm 6
m0

20

m
20

m 1, 2z, 6ðm?Þ, 	3z, 	6z, �11
0, 6ð20?Þ, m

0
z, 	�33

0

z, 	�66
0

z

D6hðD3hÞ m
6 : m 60=mmm0 60

m
20

m
2
m0 1, 3ð2?Þ, 3ðm?Þ, mz, 	3z, 	�66z, �11

0, 3ð20?Þ, 2
0
z, 3ðm

0
?Þ, 	�33

0

z, 	6
0
z

Cubic T 3=2 23 23 1, 3ð2Þ, 4ð	3Þ

Th
�66=2 m�33 2

m
�33 1, �11, 3ð2Þ, 3ðmÞ, 4ð	3Þ, 4ð	�33Þ

ThðTÞ �66=2 m0 �33
0 2

m0
�33
0

1, 3ð2Þ, 4ð	3Þ, �110, 3ðm0Þ, 4ð	�33
0
Þ

O 3=4 432 432 1, 9ð2Þ, 4ð	3Þ, 3ð	4Þ

OðTÞ 3=4 40320 40320 1, 3ð2Þ, 4ð	3Þ, 6ð20Þ, 3ð	40Þ

Td 3=�44 �443m �443m 1, 3ð2Þ, 6ðmÞ, 4ð	3Þ, 3ð	�44Þ

TdðTÞ 3=�44 �44
0
3m0 �44

0
3m0 1, 3ð2Þ, 4ð	3Þ, 6ðm0Þ, 3ð	�44

0
Þ

Oh
�66=4 m�33m 4

m
�33 2
m 1, �11, 9ð2Þ, 9ðmÞ, 4ð	3Þ, 4ð	�33Þ, 3ð	4Þ, 3ð	�44Þ

OhðThÞ
�66=4 m�33m0 40

m
�33 20

m0 1, �11, 3ð2Þ, 3ðmÞ, 4ð	3Þ, 4ð	�33Þ, 6ð20Þ, 6ðm0Þ, 3ð	40Þ, 3ð	�44
0
Þ

OhðOÞ �66=4 m0 �33
0
m0 4

m0
�33
0 2
m0 1, 9ð2Þ, 4ð	3Þ, 3ð	4Þ, �110, 9ðm0Þ, 4ð	�33

0
Þ, 3ð	�44

0
Þ

OhðTdÞ
�66=4 m0 �33

0
m 40

m0
�33
0 20

m 1, 3ð2Þ, 6ðmÞ, 4ð	3Þ, 3ð	�44Þ, �110, 6ð20Þ, 3ðm0Þ, 4ð	�33
0
Þ, 3ð	40Þ

Table 1.5.2.3 (cont.)
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the same for each member of a family. Each family begins with a
trivial magnetic point group. It contains the same elements as the
corresponding crystallographic point group; its Schoenflies
symbol contains no brackets. For each nontrivial point group, the
list of the elements of symmetry begins with the non-primed
elements, which belong to a subgroupH of the head of the family
G. The number of the primed elements is equal to the number of
non-primed ones and the total number of the elements is the
same for all point groups of one family.

The overall number of the magnetic point groups of all three
types is 122. There are two general statements concerning the
magnetic point groups. The element RC3 ¼ 30 does not appear in
any of the magnetic point groups of type 3. Only trivial magnetic
point groups (of both first and second type) belong to the families
containing the point groups C1 ¼ 1, C3 ¼ 3 and T ¼ 23.

Only 31 magnetic point groups allow ferromagnetism. The
different types of ferromagnetism (one-sublattice ferromagnet,
ferrimagnet, weak ferromagnet, any magnetic order with nonzero
magnetization) cannot be distinguished by their magnetic
symmetry. Ferromagnetism is not admitted in any point group of
type 1. For the magnetic point groups of the second type, ferro-
magnetism is not allowed if the point group contains more than
one symmetry axis, more than one mirror plane or a mirror plane
that is parallel to the axis. The same restrictions are valid for the
point groups of type 3 (if the corresponding elements are not
multiplied by R). If the point group contains �110, ferromagnetic
order is also forbidden. There are the following rules for the
orientation of the axial vector of ferromagnetic magnetizationM:
M k N,M ? 20,M ? m,M k m0. Table 1.5.2.4 lists those magnetic
point groups that admit ferromagnetic order (Tavger, 1958). The
allowed direction of the magnetization vector is given for every
point group. Ferromagnetic order is allowed in 13 point groups of
the second type and 18 point groups of the third type.

All 31 point groups of magnetic symmetry allowing ferro-
magnetism are subgroups of the infinite noncrystallographic
group

D1hðC1hÞ ¼
1

m

20

m0
:

The transition from a paramagnetic to a ferromagnetic state is
always accompanied by a change of the magnetic symmetry.

1.5.2.2. Magnetic lattices

If the point group of symmetry describes the macroscopic
properties of a crystal, its microscopic structure is determined by
the space group, which contains the group of translations T as a
subgroup. The elements t of T are defined by the following
relation:

t ¼ n1a1 þ n2a2 þ n3a3; ð1:5:2:3Þ

where a1, a2, a3 are basic primitive translation vectors and n1, n2,
n3 are arbitrary integers. The set of points r

0 obtained by applying
all the translations of the group T to any point r defines a lattice.
All sites of the crystallographic lattice are equivalent.

The structure of the ordered magnetics is described by the
magnetic lattices and corresponding magnetic translation groups
MT . In the magnetic translation groups MT, some of the
elements t may be multiplied by R (we shall call them primed
translations). The magnetic lattices then have two types of sites,
which are not equivalent. One set is obtained by non-primed
translations and the other set by the primed ones. The magnetic
translation groupMT is isometric to the crystallographic one G0
that is obtained by replacing R by E inMT .

There are trivial magnetic translation groups, in which none of
the translation elements is multiplied by R. The magnetic lattices
of these groups coincide with crystallographic lattices.

Nontrivial magnetic translation groups can be constructed in
analogy to relation (1.5.2.2). Zamorzaev (1957) showed that
every translation group T has seven subgroups of index 2. If the
basic primitive translations of the group T are a1, a2, a3, then the
basic primitive translations of the seven subgroups H can be
chosen as follows (see also Opechowski & Guccione, 1965)
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Table 1.5.2.4. List of the magnetic classes in which ferromagnetism is admitted

(a) Triclinic

Symbol of symmetry class Allowed direction
of MsSchoenflies Hermann–Mauguin

C1 1 Any
Ci

�11 Any

(b) Monoclinic

Symbol of symmetry class Allowed direction
of MsSchoenflies Hermann–Mauguin

C2 2 k 2
C2ðC1Þ 20 ? 20

Cs ¼ C1h m ? m
CsðC1Þ m0 k m0

C2h 2=m k 2
C2hðCiÞ 20=m0 k m0

(c) Orthorhombic

Symbol of symmetry class Allowed direction
of MsSchoenflies Hermann–Mauguin

D2ðC2Þ 22020 k 2
C2vðC2Þ m0m02 k 2
C2vðCsÞ m0m20 ? m
D2hðC2hÞ mm0m0 ? m

(d) Tetragonal

Symbol of symmetry class Allowed direction
of MsSchoenflies Hermann–Mauguin

C4 4 k 4
S4

�44 k �44
C4h 4=m k 4
D4ðC4Þ 42020 k 4
C4vðC4Þ 4m0m0 k 4
D2dðS4Þ

�4420m0 k �44
D4hðC4hÞ 4=mm0m0 k 4

(e) Trigonal

Symbol of symmetry class Allowed direction
of MsSchoenflies Hermann–Mauguin

C3 3 k 3
S6

�33 k 3
D3ðC3Þ 320 k 3
C3vðC3Þ 3m0 k 3
D3dðS6Þ

�33m0 k 3

(f) Hexagonal

Symbol of symmetry class Allowed direction
of MsSchoenflies Hermann–Mauguin

C6 6 k 6
C3h

�66 k �66
C6h 6=m k 6
D6ðC6Þ 62020 k 6
C6vðC6Þ 6m0m0 k 6
D3hðC3hÞ

�66m020 k �66
D6hðC6hÞ 6=mm0m0 k 6
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H1 : 2a1; a2; a3 ð1:5:2:4Þ

H2 : a1; 2a2; a3 ð1:5:2:5Þ

H3 : a1; a2; 2a3 ð1:5:2:6Þ

H4 : 2a1; a1 þ a2; a3 ð1:5:2:7Þ

H5 : 2a2; a2 þ a3; a1 ð1:5:2:8Þ

H6 : 2a3; a3 þ a1; a2 ð1:5:2:9Þ

H7 : 2a1; a1 þ a2; a1 þ a3: ð1:5:2:10Þ

As an example, let us consider the case (1.5.2.5). In this case,
the subgroup H consists of the following translations:

tðHÞ ¼ n1a1 þ 2n2a2 þ n3a3: ð1:5:2:11Þ

Therefore the elements Gi of ðT � HÞ [which corresponds to
ðP � HÞ in relation (1.5.2.2)] must have the following form:

tðGiÞ ¼ n1a1 þ ð2n2 þ 1Þa2 þ n3a3: ð1:5:2:12Þ

The corresponding magnetic translation group consists of the
elements (1.5.2.12) multiplied by R and the elements (1.5.2.11).

The crystallographic lattices are classified into Bravais types or
Bravais lattices. The magnetic lattices are classified into Bravais
types of magnetic lattices. It turns out that there are 22 nontrivial
magnetic Bravais types. Together with the trivial ones, there are
36 magnetic Bravais lattices.

Two types of smallest translation-invariant cells are in common
use for the description of magnetically ordered structures: the
crystallographic cell obtained if the magnetic order is neglected
and the magnetic cell, which takes the magnetic order into
account. The list of the basic translations of all the magnetic
Bravais lattices was given by Zamorzaev (1957). The diagrams of
the magnetic unit cells were obtained by Belov et al. (1957).

In Figs. 1.5.2.1–1.5.2.7, the diagrams of the magnetic unit cells
of all 36 Bravais types are sketched in such a way that it is clear to
which family the given cell belongs. All the cells of one family are
displayed in one row. Such a row begins with the cell of the trivial
magnetic lattice. All nontrivial cells of a family change into the
trivial one of this family if R is replaced by E (to draw these
diagrams we used those published by Opechowski & Guccione,
1965). Open and full circles are used to show the primed and
unprimed translations. A line connecting two circles of the same
type is an unprimed translation; a line connecting two circles of
different types is a primed translation. The arrows in the trivial
magnetic cell represent the primitive (primed or unprimed)
translations for all the magnetic lattices of the family. The arrows
in the nontrivial cells are primitive translations of the magnetic
unit cell. The magnetic unit cell of a nontrivial magnetic lattice is
generated by unprimed translations only. Its volume is twice the
volume of the smallest cell generated by all (primed and
unprimed) translations. The reason for this is that one of the
primitive translations of the magnetic cell is twice a primitive
primed translation. The crystallographic cell of many simple
collinear or weakly non-collinear structures coincides with the
smallest cell generated by the primed and unprimed translations.
However, there are also magnetic structures with more compli-
cated transformations from the crystallographic to the magnetic
unit cell. The second line after each part of Figs. 1.5.2.1–1.5.2.7
gives, between braces, an extended vector basis of the magnetic
translation group (Shubnikov & Koptsik, 1972). The first line
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Fig. 1.5.2.1. Magnetic lattices of the triclinic system.

Fig. 1.5.2.2. Magnetic lattices of the monoclinic system (the y axis is the twofold axis).
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gives two symbols for each Bravais type: the symbol to the right
was introduced by Opechowski & Guccione (1965). The symbol
to the left starts with a lower-case letter giving the crystal system
followed by a capital letter giving the centring type of the cell
defined by the unprimed translations (P: primitive; C;A;B: C-,
A-, B-centred; I: body-centred; F: all-face-centred). The

subscript, which appears for the nontrivial Bravais types, indi-
cates the translations that are multiplied by time inversion R.

Ferromagnetism is allowed only in trivial magnetic Bravais
lattices. All nontrivial magnetic lattices represent anti-
ferromagnetic order. There are only two magnetic sublattices in
the simplest antiferromagnetic structures; one sublattice consists
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Fig. 1.5.2.3. Magnetic lattices of the orthorhombic system.
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of the magnetic ions located in the black sites and the other of the
ions located in the white sites. All the magnetic moments of one
sublattice are oriented in one direction and those of the other
sublattice in the opposite direction. However, anti-
ferromagnetism is allowed also in trivial lattices if the (trivial)
magnetic cell contains more than one magnetic ion. The magnetic
point group must be nontrivial in this case. The situation is more
complicated in case of strongly non-collinear structures. In such
structures (triangle, 90� etc.), the magnetic lattice can differ from
the crystallographic one despite the fact that none of the trans-
lations is multiplied by R. The magnetic elementary cell will
possess three or four magnetic ions although the crystallographic

cell possesses only one. An example of such a situation is shown
in Fig. 1.5.1.3(c). More complicated structures in which the
magnetic lattice is incommensurate with the crystallographic one
also exist. We shall not discuss the problems of such systems in
this chapter.

1.5.2.3. Magnetic space groups

There are 1651 magnetic space groups MG, which can be
divided into three types. Type I,MG1, consists of the 230 crys-
tallographic space groups to which R is added. Crystals belonging
to these trivial magnetic space groups show no magnetic order;
they are para- or diamagnetic.

Type II,MG2, consists of the same 230 crystallographic groups
which do not include R in any form. In the ordered magnetics,
which belong to the magnetic space groups of this type, the
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Fig. 1.5.2.4. Magnetic lattices of the tetragonal system.

Fig. 1.5.2.5. Magnetic lattices of the rhombohedral system. Fig. 1.5.2.6. Magnetic lattices of the hexagonal system.
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magnetic unit cell coincides with the classical one. Forty-four
groups of type II describe different ferromagnetic crystals; the
remaining antiferromagnets.

The nontrivial magnetic space groups belong to type III,MG3.
This consists of 1191 groups, in which R enters only in combi-
nation with rotations, reflections or translations. These groups
have the structure described by relation (1.5.2.2). The magnetic
space groups of this type are divided into two subtypes.

Subtype IIIa contains those magnetic space groups MG3 in
which R is not combined with translations. In these groups, the
magnetic translation group is trivial. To these space groups
correspond magnetic point groups of type MP3. There are 674
magnetic space groups of subtype IIIa; 231 of them admit
ferromagnetism, the remaining 443 describe antiferromagnets.

In the magnetic space groups of the subtype IIIb, R is
combined with translations and the corresponding point groups
are of typeMP1. They have a nontrivial magnetic Bravais lattice.
There are 517 magnetic space groups of this subtype; they
describe antiferromagnets.

In summary, the 230 magnetic space groups that describe dia-
and paramagnets are of type I, the 275 that admit spontaneous
magnetization are of types II and IIIa; the remaining 1146
magnetic space groups (types II, IIIa and IIIb) describe anti-
ferromagnets.

1.5.2.4. Exchange symmetry

The classification of magnetic structures on the basis of the
magnetic (point and space) groups is an exact classification.

However, it neglects the fundamental role of the exchange
energy, which is responsible for the magnetic order (see Sections
1.5.1.2 and 1.5.3.2). To describe the symmetry of the magnetically
ordered crystals only by the magnetic space groups means the
loss of significant information concerning those properties of
these materials that are connected with the higher symmetry of
the exchange forces. Andreev & Marchenko (1976, 1980) have
introduced the concept of exchange symmetry.

The exchange forces do not depend on the directions of the
spins (magnetic moments) of the ions relative to the crystal-
lographic axes and planes. They depend only on the relative
directions of the spins. Thus the exchange group Gex contains an
infinite number of rotations U of spin space, i.e. rotations of all
the spins (magnetic moments) through the same angle about the
same axis. The components of the magnetic moment density mðrÞ
transform like scalars under all rotations of spin space. The
exchange symmetry group Gex contains those combinations of the
space transformation elements, the rotations U of spin space and
the element R with respect to which the valuesmðrÞ are invariant.
Setting all the elements U and R equal to the identity transfor-
mation, we obtain one of the ordinary crystallographic space
groups G. This space group defines the symmetry of the charge
density �ðrÞ and of all the magnetic scalars in the crystal.
However, the vectorsmðrÞmay not be invariant with respect to G.

The concept of exchange symmetry makes it possible to clas-
sify all the magnetic structures (including the incommensurate
ones) with the help of not more than three orthogonal magnetic
vectors. We shall discuss this in more detail in Section 1.5.3.3.

More information about magnetic symmetry can be found in
Birss (1964), Cracknell (1975), Joshua (1991), Koptsik (1966),
Landau & Lifshitz (1957), Opechowski & Guccione (1965), and
in Sirotin & Shaskol’skaya (1979).

1.5.3. Phase transitions into a magnetically ordered state

Most transitions from a paramagnetic into an ordered magnetic
state are second-order phase transitions. A crystal with a given
crystallographic symmetry can undergo transitions to different
ordered states with different magnetic symmetry. In Section
1.5.3.3, we shall give a short review of the theory of magnetic
second-order phase transitions. As was shown by Landau (1937),
such a transition causes a change in the magnetic symmetry. The
magnetic symmetry group of the ordered state is a subgroup of
the magnetic group of the material in the paramagnetic state. But
first we shall give a simple qualitative analysis of such transitions.

To find out what ordered magnetic structures may be obtained
in a given material and to which magnetic group they belong, one
has to start by considering the crystallographic space group G of
the crystal under consideration. It is obvious that a crystal in
which the unit cell contains only one magnetic ion can change
only into a ferromagnetic state if the magnetic unit cell of the
ordered state coincides with the crystallographic one. If a tran-
sition into an antiferromagnetic state occurs, then the magnetic
cell in the ordered state will be larger than the crystallographic
one if the latter contains only one magnetic ion. Such antiferro-
magnets usually belong to the subtype IIIb described in Section
1.5.2.3. In Section 1.5.3.1, we shall consider crystals that trans-
form into an antiferromagnetic state without change of the unit
cell. This is possible only if the unit cell possesses two or more
magnetic ions. To find the possible magnetic structures in this
case, one has to consider those elements of symmetry which
interchange the positions of the ions inside the unit cell (espe-
cially glide planes and rotation axes). Some of these elements
displace the magnetic ion without changing its magnetic moment,
and others change the moment of the ion. It is also essential to
know the positions of all these elements in the unit cell. All this
information is contained in the space group G. If the magnetic
ordering occurs without change of the unit cell, the translation

116

Fig. 1.5.2.7. Magnetic lattices of the cubic system.
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group T in the ordered state does not contain primed elements.
Therefore, there is no need to consider the whole crystal space
group G. It will suffice to consider the cosets of T in G. Such a
coset consists of all elements of G that differ only by a translation.
From each coset, a representative with minimum translative
component is chosen. We denote a set of such representatives by
eGG; it can be made into a group by defining AB (A;B 2eGG) as
the representative of the coset that contains AB. Obviously, eGG
is then isomorphic to the factor group G=T and therefore to the
point group P of G.

Once more, we should like to stress that to construct the
magnetic structures and the magnetic groups of a given crystal it
is not enough to consider only the point group of the crystal, but
it is necessary to perform the analysis with the help of its space
group in the paramagnetic state or the corresponding group of
coset representatives. An example of such an analysis will be
given in the following section.

1.5.3.1. Magnetic structures in rhombohedral crystals

Following Dzyaloshinskii (1957a), we consider crystals
belonging to the crystallographic space group D6

3d ¼ R�33c. To this
group belong �-Fe2O3 and the carbonates of Mn2þ, Co2þ and
Ni2þ. Weak ferromagnetism was first observed in these materials.

Cr2O3, in which the magnetoelectric effect was discovered, also
belongs to this group. The magnetic ordering in these materials
occurs without change of the unit cell.

The representatives of the cosets D6
3d=T form the group eDD6

3d.
Its symmetry operations are shown in Fig. 1.5.3.1. Directed along
the z axis is the threefold axis C3 and the sixfold roto-inversion
axis ~SS6. Three twofold axes U2 run through the points � at right
angles to the z axis. One of these axes is directed along the x axis.
Arranged normal to each of the U2 axes are three glide planes ~		d.
The y axis is directed along one of these planes. The centre of
inversion ~II is located at the point �, lying on the z axis halfway
between two points �. The sign ~means that the corresponding
operation is accompanied by a translation along the z axis
through half the period of the crystal (~II means that the inversion
centre is shifted from the point � to the point �). In Fig. 1.5.3.1,
the elementary period of translation along the z axis is
marked by tz. Thus the crystallographic group eDD6

3d has the
following elements:

E; 2C3; 3U2; ~II; 3 ~		d; 2~SS6 f1;	3z; 3ð2?Þ;
~�11�11; 3ðc ¼ ~mmÞ;	~�33�33zg:

ð1:5:3:1Þ

In two types of crystals, considered below, the magnetic ions
are arranged on the z axis. If we place the magnetic ion at point 1
located between points � and � (see Fig. 1.5.3.2), then using
symmetry operations (1.5.3.1) we obtain three additional posi-
tions for other magnetic ions (points 2, 3, 4). Thus, the elementary
cell will contain four magnetic ions. This is the structure of oxides
of trivalent ions of iron and chromium (Fe2O3, Cr2O3). The
structure of these oxides is shown in Fig. 1.5.3.2. If the positions
of the magnetic ions coincide with the positions of the inversion
centre �, we obtain the structure of the carbonates of the tran-
sition metals (MnCO3, CoCO3, NiCO3, FeCO3), which is shown in
Fig. 1.5.3.3.

Evidently, the formation of a magnetic structure in the crystal
does not result in the appearance of new elements of symmetry.
The magnetic groups of magnetically ordered crystals may lack
some elements contained in the crystallographic group and some
of the remaining elements may happen to be multiplied by R
(primed). Let us find the groups of symmetry that correspond to
all possible collinear magnetic structures in rhombohedral crys-
tals with four magnetic ions in the elementary cell. We shall
assume that the magnetic moments are located at the points of
the ion positions 1–4; they will be marked l�. The symmetry
transformations cannot change the length of the vectors of the
magnetic moments but they can change the direction of these
vectors and interchange the positions of the sites 1 $ 2, 3 $ 4
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Fig. 1.5.3.1. Arrangement of the symmetry elements of the group eDD6
3d.

Fig. 1.5.3.2. Crystallographic structure of transition-metal oxides of the type
�-Fe2O3.

Fig. 1.5.3.3. Crystallographic structure of transition-metal carbonates of the
type MnCO3.
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and 1$ 3, 2$ 4. This interchange of the vectors l1, l2, l3, l4

means that these vectors form a basis of a reducible
representation of the group eDD6

3d. The following linear combina-
tions of l� form irreducible representations1 of eDD6

3d:

l1 ¼ l1 � l2 � l3 þ l4

l2 ¼ l1 � l2 þ l3 � l4

l3 ¼ l1 þ l2 � l3 � l4

m ¼ l1 þ l2 þ l3 þ l4: ð1:5:3:2Þ

Vectors l� characterize the antiferromagnetic states and are
called antiferromagnetic vectors. The ferromagnetic vector m
gives the total magnetic moment of the elementary cell. These
vectors describe the four possible collinear magnetic structures.
Three are antiferromagnetic structures: A1 (l1 6¼ 0,
l2 ¼ l3 ¼ m ¼ 0), A2 (l2 6¼ 0, l3 ¼ l1 ¼ m ¼ 0), A3 (l3 6¼ 0,
l1 ¼ l2 ¼ m ¼ 0) and one is a ferromagnetic structure, F
(l1 ¼ l2 ¼ l3 ¼ 0). All these types are presented schematically in
Fig. 1.5.3.4.

In the description of the structures of orthoferrites, other
symbols were introduced to define the linear combinations of l�
and to denote the antiferromagnetic structures under consid-
eration (see Bertaut, 1963). The two types of symbols are
compared in Table 1.5.3.1.

It should be borne in mind that in each of these types of
magnetic ordering the respective vectors l� and m may be
directed along any direction. There are 12 types of such struc-
tures in which l� orm are directed along one of the axes or planes
of symmetry. To find out to which group of magnetic symmetry
each of these structures belongs, one needs to investigate how
each element of the crystallographic symmetry transforms the
Cartesian components of the four vectors. This is shown in Table
1.5.3.2 for the group eDD6

3d. If the component keeps its direction, it
is marked by theþ sign; the� sign corresponds to reversal of the
component direction. In some cases, the transformation results in
a change of the direction of the components l�i or mi through an
angle other than 0 or �. This is marked by 0. With the help of
Table 1.5.3.2, we can easily describe all the elements of symmetry
of the magnetic group that corresponds to each structure (A�i or
F i) with the aid of the following rule. All the elements that yield
theþ sign are included in the magnetic group as they stand, while

the elements yielding the � sign must be multiplied by R; the
elements which are marked by the sign 0 are not included in the
magnetic group.2 With the aid of this rule, Table 1.5.3.3 of the
elements of the magnetic groups for the structures under
consideration was compiled. In Table 1.5.3.4, the symbols of the
magnetic point groups of all the 12 magnetic structures consid-
ered are listed. The crystals with two ions in the elementary cell
have only two sublattices and their antiferromagnetic structures
belong to the same groups as the structures A3i ¼ Ci.

One can see from Tables 1.5.3.3 and 1.5.3.4 that, in accordance
with general theory, the magnetic point groups of the crystals
under consideration are subgroups of the trivial magnetic point
group D3dR ¼

�33m10 to which they belong in the paramagnetic
state. In the example considered, the translation group does not
change in going from the paramagnetic to the ordered state. Thus
the same statement made for the point groups is also true for the
space groups. Putting R ¼ E gives a subgroup of the crystal-
lographic group of the crystal. For the magnetic structures with
the ferromagnetic or antiferromagnetic vector directed along the
z axis, it turns out that the magnetic group is isomorphic to the
crystallographic group. This rule is obeyed by all (optically)
uniaxial crystals if the transition occurs without change of the
elementary cell. (Optically uniaxial are the non-cubic crystals
with a point group possessing a threefold, fourfold or sixfold
axis.)

Tables 1.5.3.3 and 1.5.3.4 show that different types of collinear
structures may belong to the same point group (and also to the
same space group). For the antiferromagnetic structure A3y and
the ferromagnetic Fx the group is 2=m, and for the structures A3x

and Fy it is 20=m0. Thus the symmetry allows a phase to be
simultaneously ferromagnetic and antiferromagnetic. That is not
ferrimagnetic order because all the ions in the four sublattices are
identical and their numbers are equal. The ferromagnetic vector
m and the antiferromagnetic one l3 are perpendicular and
jmj � jl3j. This phenomenon is called weak ferromagnetism and
will be discussed in detail in Section 1.5.5.1. Like weak ferro-
magnetism, the symmetry also allows the coexistence of two
orthogonal antiferromagnetic structures A1 and A2. This gives
rise to weakly non-collinear antiferromagnetic structures.

The strongly non-collinear structures are described by another
set of basis vectors for the irreducible representations of the
group ~GG. If the magnetic ions l� in the crystal form triangular
planes one gets instead of (1.5.3.2) the relations for the basis
vectors:

l1 ¼
ffiffiffi
3
p
ðl1 � l2Þ

l2 ¼ l1 þ l2 � l3 ð1:5:3:3Þ

m ¼ l1 þ l2 þ l3:

1.5.3.2. Exchange and magnetic anisotropy energies

It is pertinent to compare the different kinds of interactions
that are responsible for magnetic ordering. In general, all these
interactions are much smaller than the electrostatic interactions
between the atoms that determine the chemical bonds in the
material. Therefore, if a crystal undergoes a transition into a
magnetically ordered state, the deformations of the crystal that

118

Fig. 1.5.3.4. Four types of magnetic structures of rhombohedral oxides of
transition metals. The direction of l� is shown conventionally.

Table 1.5.3.1. Two types of symbols for collinear antiferromagnetic and
ferromagnetic structures

Symbol
Alternative
symbol

A1 A
A2 G
A3 C
F F

1 By omitting its translative part, each element of eDD6
3d is mapped on the

corresponding element of the point group D3d ¼
�33m. This mapping also

establishes a one-to-one correspondence between the representations of eDD6
3d

and those of D3d ¼
�33m.

2 In Section 1.5.3.3, we shall show that this rule corresponds in the Landau theory
of phase transitions to the general law that the magnetically ordered state is
described by L�i or Mi, which form the basis of one of the irreducible
representations of the paramagnetic space group of the crystal.
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give rise to the change of its crystallographic symmetry are
comparatively small. It means that most of the non-magnetic
properties do not change drastically. As an example, the aniso-
tropic deformation of the crystal that accompanies the transition
into the ordered state (see Section 1.5.9.1) is mostly not larger
than 10�4.

The formation of the ordered magnetic structures is due
mainly to the exchange interaction between the spins S� (and
corresponding magnetic moments l of the atoms or ions). The
expression for the exchange energy can contain the following
terms [see formula (1.5.1.7)]:

S�S
; S�½S
S� �: ð1:5:3:4Þ

The exchange interaction decreases rapidly as the distance
between the atoms rises. Thus, it is usually sufficient to consider
the interaction only between nearest neighbours. The exchange
interaction depends only on the relative alignment of the spin
moments and does not depend on their alignment relative to the
crystal lattice. Therefore, being responsible for the magnetic
ordering in the crystal, it cannot define the direction of the
spontaneous magnetization in ferromagnets or of the anti-
ferromagnetic vector. This direction is determined by the spin–
orbit and magnetic spin–spin interactions, which are often called
relativistic interactions as they are small, of the order of v2=c2,
where v is the velocity of atomic electrons and c is the speed of
light. The relativistic interactions are responsible for the
magnetic anisotropy energy, which depends on the direction of
the magnetic moments of the ions with regard to the crystal
lattice. The value of the exchange energy can be represented by
the effective exchange field He. For an ordered magnetic with a
transition temperature of 100 K, He ’ 1000 kOe. Thus the
external magnetic field hardly changes the value of the magne-
tization M or of the antiferromagnetic vector L; they are
conserved quantities to a good approximation. The effective
anisotropy field Ha in cubic crystals is very small: 1–10 Oe. In
most non-cubic materials, Ha is not larger than 1–10 kOe. This
means that by applying an external magnetic field we can change
only the direction of M, or sometimes of L, but not their
magnitudes.

The magnetic anisotropy energy Ua can be represented as an
expansion in the powers of the components of the vectorsM or L.
The dependence of Ua on the direction of the magnetization is
essential. Therefore, one usually considers the expansion of the
spontaneous magnetization or antiferromagnetic vector in
powers of the unit vector n. The anisotropy energy is invariant
under time reversal. Therefore, the general expression for this
energy has the form

Ua ¼ Kijninj þ Kijk‘ninjnkn‘ þ Kijk‘mnninjnkn‘nmnn; ð1:5:3:5Þ

whereKij,Kijk‘,Kijk‘mn are tensors, the components of which have
the dimension of an energy density. The forms of the tensors
depend on the symmetry of the crystal. There are at most two
independent components in Kij. For a uniaxial crystal, the
second-order term in the anisotropy energy expansion is deter-
mined by one anisotropy constant, K. Instead of using the
components of the unit vector n, its direction can be described by
two angles: polar � and azimuthal ’. Correspondingly, the
anisotropy energy for a uniaxial crystal can be written as

Ua ¼ Kðn2x þ n2yÞ ¼ K sin2 �: ð1:5:3:6Þ

This relation is equivalent to

Ua ¼ Kð1� n2zÞ ¼ K � K cos2 �: ð1:5:3:7Þ

The direction of the magnetization vector M in a ferromagnet
or of the antiferromagnetic vector L in an antiferromagnet is
called the direction or the axis of easy magnetization. The crystals
in which this axis is aligned with a threefold, fourfold or sixfold
axis of the magnetic point group are called easy-axis magnetics.
The magnetic crystals with the main axis higher than twofold in
the paramagnetic state in which, in the ordered state, L (or M) is
perpendicular to this axis are often called easy-plane magnetics.
The anisotropy in this plane is usually extremely small. In this
case, the crystal possesses more then one axis of easy magneti-
zation and the crystal is usually in a multidomain state (see
Section 1.5.4).

If the anisotropy constant K is positive, then the vector n is
aligned along the z axis, and such a magnetic is an easy-axis one.
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Table 1.5.3.3. Magnetic groups of symmetry in rhombohedral oxides of
trivalent transition-metal ions

Type of
magnetic
structure

Magnetic moments are directed along the axis

x y z

A1 ¼ A E; U2; ~IIR; ~		dR E; U2R; ~IIR; ~		d E; 2C3; 3U2R; ~IIR; 3 ~		d; 2~SS6R

A2 ¼ G E; U2R; ~IIR; ~		d E; U2; ~IIR; ~		dR E; 2C3; 3U2; ~IIR; 3 ~		dR; 2~SS6R

A3 ¼ C E; U2R; ~II; ~		dR E; U2; ~II; ~		d E; 2C3; 3U2; ~II; 3 ~		d; 2~SS6
F ¼ F E; U2; ~II; ~		d E; U2R; ~II; ~		dR E; 2C3; 3U2R; ~II; 3 ~		dR; 2~SS6

Table 1.5.3.4. Magnetic point groups in rhombohedral oxides of transition
metals

Type of
magnetic
structure

Magnetic moments are directed along the axis

x y z

A1 ¼ A C2hðC2Þ ¼ 2=m0 C2hðCsÞ ¼ 20=m D3dðC3vÞ ¼
�330m

A2 ¼ G C2hðCsÞ ¼ 20=m C2hðC2Þ ¼ 2=m0 D3dðD3Þ ¼
�330m0

A3 ¼ C C2hðCiÞ ¼ 20=m0 C2h ¼ 2=m D3d ¼
�33m

F ¼ F C2h ¼ 2=m C2hðCiÞ ¼ 20=m0 D3dðS6Þ ¼
�33m0

Table 1.5.3.2. Sign variation of the components of antiferromagnetic and ferromagnetic vectors during transformations of the groupeDD6
3d in rhombohedral crystals

with four magnetic ions

Vector
components

Elements of symmetry

E 2C3 U1
2 U2

2 U3
2

~II ~		1d ~		2d ~		3d 2~SS6

1 	3z 2x 2
ð2Þ
? 2

ð3Þ
?

~�11�11 cx c
ð2Þ
? c

ð3Þ
? 	

~�33�33

l1x + 0 + 0 0 � � 0 0 0
l1y + 0 � 0 0 � + 0 0 0
l1z + + � � � � + + + �

l2x + 0 � 0 0 � + 0 0 0
l2y + 0 + 0 0 � � 0 0 0
l2z + + + + + � � � � �

l3x + 0 � 0 0 + � 0 0 0
l3y + 0 + 0 0 + + 0 0 0
l3z + + + + + + + + + +

mx + 0 + 0 0 + + 0 0 0
my + 0 � 0 0 + � 0 0 0
mz + + � � � + � � � +
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For an easy-plane magnetic, K is negative. It is convenient to use
equation (1.5.3.6) for easy-axis magnetics and equation (1.5.3.7)
for easy-plane magnetics. In the latter case, the quantity K is
included in the isotropic part of the thermodynamic potential �,
and (1.5.3.7) becomes Ua ¼ �K cos2 �. Instead we shall write
Ua ¼ K cos2 � in the following, so that K becomes positive for
easy-plane ferromagnetics as well.

Apart from the second-order term, terms of higher order must
be taken into account. For tetragonal crystals, the symmetry
allows the following invariant terms in the anisotropy energy:

Uað4Þ ¼ K1ðn
2
x þ n2yÞ þ K2ðn

2
x þ n2yÞ

2
þ Kxxyyn

2
xn

2
y

¼ K1 sin
2 � þ K2 sin

4 � þ K? sin
4 � sin2 2’;

ð1:5:3:8Þ

the azimuthal angle ’ is measured from the twofold axis x in the
basal plane and the constant K? determines the anisotropy in the
basal plane.

Trigonal symmetry also allows second- and fourth-order
invariants:

Uað3Þ ¼ K1ðn
2
x þ n2yÞ þ K2ðn

2
x þ n2yÞ

2

þ K0?
1
2nz½ðnx þ inyÞ

3
þ ðnx � inyÞ

3
�

¼ K1 sin
2 � þ K2 sin

4 � þ K0? cos � sin
3 � cos 3’;

ð1:5:3:9Þ

where ’ is measured from the x axis, which is chosen parallel to
one of the twofold axes. For easy-plane magnetics and K0?> 0,
the vector n is directed along one of the twofold axes in the basal
plane. If K0? is negative, then n lies in a vertical mirror plane
directed at a small angle to the basal plane. For the complete
solution of this problem, the sixth-order term must be taken into
account. This term is similar to the one that characterizes the
anisotropy of hexagonal crystals. The expression for the latter is
of the following form:

Uað6Þ ¼ K1ðn
2
x þ n2yÞ þ K2ðn

2
x þ n2yÞ

2

þ K00?
1
2½ðnx þ inyÞ

6
þ ðnx � inyÞ

6
�

¼ K1 sin
2 � þ K2 sin

4 � þ K00? sin
6 � cos 6’;

ð1:5:3:10Þ

where x and ’ have the same meaning as in (1.5.3.9).
The symmetry of cubic crystals does not allow any second-

order terms in the expansion of the anisotropy energy. The
expression for the anisotropy energy of cubic crystals contains
the following invariants:

UaðcubÞ ¼ K1ðn
2
xn

2
y þ n2xn

2
z þ n2yn

2
zÞ þ K2n

2
xn

2
yn

2
z: ð1:5:3:11Þ

In considering the anisotropy energy, one has to take into
account spontaneous magnetostriction and magnetoelastic
energy (see Section 1.5.9). This is especially important in cubic
crystals. Any collinear cubic magnetic (being brought into a
single domain state) ceases to possess cubic crystallochemical
symmetry as a result of spontaneous magnetostriction. If K1 is
positive, the easy axis is aligned along one of the edges of the
cube and the crystal becomes tetragonal (like Fe). If K1 is
negative, the crystal becomes rhombohedral and can be an easy-
axis magnetic with vector n parallel to one of the spatial diagonals
(like Ni) or an easy-plane magnetic with n perpendicular to a
spatial diagonal. We shall discuss this topic in more detail in
Section 1.5.9.3.

The considerations presented above can be applied to all
crystals belonging in the paramagnetic state to the tetragonal,
trigonal or hexagonal system that become easy-plane magnetics
in the ordered state. All of them, including the cubic crystals, may
possess more than one allowed direction of easy magnetization.

In the example considered in the previous section, these direc-
tions can be aligned along the three twofold axes for the struc-
turesAx

1;A
x
2;A

x
3;F

x and can be parallel to the three mirror planes
for Ay

1;A
y
2;A

y
3;F

y.
It is worth noting that in some applications it is more conve-

nient to use an expansion of the anisotropy energy in terms of
surface spherical harmonics. This problem has been considered in
detail by Birss (1964).

1.5.3.3. The thermodynamic theory of transitions into a magne-
tically ordered state

According to Landau (1937) (see also Landau & Lifshitz,
1951), a phase transition of the second kind can be described by
an order parameter �, which varies smoothly in the neighbour-
hood of the transition temperature Tc. The order parameter
� ¼ 0 when T � Tc and rises continuously as the temperature is
decreased below Tc, but the symmetry of the crystal changes
suddenly. The order parameter can be a scalar, a vector or a
tensor.

Consider a crystal with known space group in the paramagnetic
state. In this section, we show how the Landau theory allows us to
determine the magnetic space groups that are possible after a
second-kind phase transition into an ordered state. The appli-
cation of the Landau theory to the magnetic transitions into
different types of antiferromagnets was made by Dzyaloshinskii
(1957a,c; 1964). In these cases, the order parameter is the
magnetic moment density mðrÞ. To determine the equilibrium
form of this function, it is necessary to find the minimum of the
thermodynamic potential �, which is a functional of mðrÞ. Since
the transition is continuous andmðrÞ ¼ 0 for T � Tc, the value of
mðrÞ must be very small in the neighbourhood below the transi-
tion point. In this region, the thermodynamic potential � will be
expanded into a power series of mðrÞ. To find the proper form of
this expansion, it is convenient to represent mðrÞ as a linear
combination of functions that form bases of the irreducible
representations of the space group of the paramagnetic phase
MG:

miðrÞ ¼
P

n;�

Mi
n;�’n;�ðrÞ; ð1:5:3:12Þ

where ’n;�ðrÞ are functions that transform under the repre-
sentation n (� is the number of the function in the representa-
tion) and i ¼ x; y; z. In this expansion, the quantities Mi

n;� are
independent of r and transform with respect to i as the compo-
nents of an axial vector. The functions ’n;�ðrÞ are transformed
into combinations of one another by the elements of the group
MG. Instead, these elements can be regarded as transforming the
coefficients Mi

n;� and leaving the functions ’n;� invariant. In this
case, the quantities Mi

n;� transform according to the direct
product of the representation n of MG and the representation
formed by the components of the pseudovector. This repre-
sentation is reducible in the general case. Irreducible repre-
sentations p; q; . . . can be obtained by forming linear
combinations of the Mi

n;�. Let us denote these combinations by
cp;�; cq;�; . . .. These variables can be considered as components of
the order parameter, and the thermodynamic potential can be
expanded into a power series of cp;�. The terms of this expansion
must be invariant under the transformations of the magnetic
space group of the crystal in the paramagnetic state MG. This
group possesses R as a separate element. Therefore the expan-
sion can contain only even terms. For each irreducible repre-
sentation, there is only one invariant of second order – the sum of
the squares. Consequently, retaining only the square terms, the
expansion of the thermodynamic potential � has the form:

�ðTÞ ¼ �0ðTÞ þ
P

p

ApðTÞ
P

�

c2p;�: ð1:5:3:13Þ
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To minimize �, it is necessary to add the terms of the fourth
power. All the coefficients ApðTÞ in the relation (1.5.3.13) depend
on the temperature. At T � Tc all cp;� ¼ 0. This solution corre-
sponds to the minimum of � if all ApðTÞ are positive. The tran-
sition into the ordered state occurs if one of the quantities ApðTÞ
changes its sign. This means that the transition temperature Tc is
the temperature at which one of the coefficients ApðTcÞ ¼ 0. This
coefficient has the form:

ApðTÞ ¼ ðT � TcÞ: ð1:5:3:14Þ

Accordingly, the corresponding magnetic structure is defined by
the order parameters cp;� and belongs to the representation p.

The representation of the space group is realized by a set of
functions of the following type:

’k
 ðrÞ ¼ uk
 ðrÞ expðik
rÞ; ð1:5:3:15Þ

where the values of the vectors k are confined to the Brillouin
zone in the reciprocal lattice and the function uk
 ðrÞ is periodic in
the real lattice. The irreducible representation defined by the
vector k
 contains the functions with all the vectors k
 that
belong to the same star. The star is the set of the vectors k

obtained by applying all the transformations gi of the corre-
sponding point group to any vector of the star (see also Section
1.2.3.3). If we denote it as k1, then the set of the vectors of the star
consists of all inequivalent vectors of the form gik1.

There are three types of transition we have to consider: (1) the
magnetic lattice is commensurate with the crystallographic one
and k 6¼ 0; (2) the magnetic lattice is incommensurate with the
crystallographic one; (3) k ¼ 0 and the magnetic lattice coincides
with the crystallographic lattice. Below we shall discuss in detail
only the first and the third type of transition.

(a) k 6¼ 0.
It is found that the first type of transition occurs if the arms of

the star k
 are aligned along specific isolated crystallographic
directions and its vectors are equal to 1/2, 1/3 or 1/4 of some
translation in the reciprocal lattice (Lifshitz, 1942). Then the
magnetic structure is described by one of the 22 nontrivial
Bravais types of magnetic lattices shown in Figs. 1.5.2.1–1.5.2.7.

As an example, let us consider a magnetic transition in UO2. In
the paramagnetic state, it is a crystal with a face-centred cubic
structure (space group O5

h ¼ Fm�33m) (for details see Dzya-
loshinskii & Man’ko, 1964; Izyumov & Naish, 1979; Izyumov,
Naish & Petrov, 1979; Izyumov, Naish & Syromiatnikov, 1979;
Barbara et al., 1988). Primitive translations of the crystallographic
lattice are (see Fig. 1.5.3.5):

a1 ¼ ða=2Þð0; 1; 1Þ; a2 ¼ ða=2Þð1; 0; 1Þ; a3 ¼ ða=2Þð1; 1; 0Þ:

ð1:5:3:16Þ

Primitive translations of the reciprocal lattice are:

b1 ¼ ð2�=aÞð�1; 1; 1Þ; b2 ¼ ð2�=aÞð1;�1; 1Þ;

b3 ¼ ð2�=aÞð1; 1;�1Þ: ð1:5:3:17Þ

Let us assume that there is one magnetic ion in the primitive
cell in the position (0; 0; 0) and that the transition takes place
over a three-armed star fK10g (for the definition of the symbols of
the stars see Kovalev, 1987):

k1 ¼ ðb1 þ b2Þ=2 ¼ ð2�=aÞð0; 0; 1Þ

k2 ¼ ðb1 þ b3Þ=2 ¼ ð2�=aÞð0; 1; 0Þ ð1:5:3:18Þ

k3 ¼ ðb2 þ b3Þ=2 ¼ ð2�=aÞð1; 0; 0Þ:

If l1 is the magnetic moment at the site (0; 0; 0), the value of
liðkjÞ at ti ¼ ða=2Þðhi; ki; liÞ may be obtained for each kj with the
help of the following relation:

liðkjÞ ¼ l1 exp½iðkjtiÞ�: ð1:5:3:19Þ

From this relation, it follows that liðkjÞ ¼ 	l1 for different
combinations of ti and kj. The signs of the magnetic moments li

at the four sites at the corner and the face centres of the
conventional unit cell are displayed in Table 1.5.3.5.

Table 1.5.3.5 shows that for each arm of the vector star kj, there
exists a linear combination of the four vectors li (i ¼ lattice site)
which is a basis of the representation of one of the arms.
According to Table 1.5.3.5, these linear combinations have the
following forms:

l1 ¼ l1 � l2 � l3 þ l4

l2 ¼ l1 � l2 þ l3 � l4 ð1:5:3:20Þ

l3 ¼ l1 þ l2 � l3 � l4:

None of the vectors l� is a basis of an irreducible representa-
tion of the whole space group O5

h ¼ Fm�33m in the case under
consideration. The basis functions of the irreducible repre-
sentation are formed by linear superposition of the basis func-
tions of each arm. One of these representations, �3, is a
superposition of the following components of l�: l1z, l2y and l3x.
This corresponds to the following orientations of the magnetic
moments located in different corners of the primitive unit cell:

l1 � ½
�11; �11; �11�; l2 � ½

�11; 1; 1�; l3 � ½1; �11; 1�; l4 � ½1; 1; �11�:

ð1:5:3:21Þ

Thus the magnetic structure of UO2 consists of four primitive
cubic magnetic sublatticesMi inserted into each other. According
to (1.5.3.21), the magnetization vectors of these sublatticesMi are
aligned along the space diagonals of the cubic lattice. This
magnetic structure for UO2 was predicted theoretically by
Dzyaloshinskii & Man’ko (1964) (using the representation
approach in the way discussed above) and established by neutron
scattering by Faber et al. (1975).
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Fig. 1.5.3.5. The conventional unit cell of UO2. Only the positions of the
magnetic U4þ ions are shown. The vectors a1, a2, a3 form a basis of a primitive
cell of the crystallographic lattice; l1, l2, l3, l4 are the magnetic moments of
the ions belonging to the four magnetic lattices.

Table 1.5.3.5. The signs of liðkjÞ for four sites ti of the conventional unit cell
(the corners of a primitive cell)

t1 t2 t3 t4
a(0; 0; 0) ða=2Þ(0; 1; 1) ða=2Þ(1; 0; 1) ða=2Þ(1; 1; 0)

k1 + � � +
k2 + � + �

k3 + + � �
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This example shows that the Landau theory can solve
complicated problems of phase transitions where the magnetic
lattice does not coincide with the crystallographic one and the
magnetic structure is strongly non-collinear. Here only a quali-
tative analysis has been given; Section 1.5.3.3.1 and Section
1.5.3.3.2 will be devoted to quantitative solutions connected with
phase transitions into an ordered state.

As was discussed in Section 1.5.2, Andreev & Marchenko
(1976, 1980) introduced the concept of exchange magnetic
symmetry. This concept is based on neglecting the relativistic
interactions in comparison with the exchange interaction. In such
an approach, the orientation of the magnetic moments relative to
the crystallographic axis is arbitrary and the crystallographic
transformations act on the magnetic moments not as on vectors
but as on scalars. In the exchange approximation, three magnetic
vectors can be introduced that describe any magnetic structure.
These vectors are mutually orthogonal. All magnetic structures
can be classified into four types. (1) Collinear ferromagnets or
ferrimagnets are described by one ferromagnetic vector M. (2)
Collinear antiferromagnets are described by one anti-
ferromagnetic vector L. (3) Non-collinear ferromagnets are
described by one ferromagnetic vector M and one or two anti-
ferromagnetic vectors L�. (4) Non-collinear antiferromagnets are
described by two or three antiferromagnetic vectors L�. The
Andreev and Marchenko approach describes the magnetic
structure of UO2 considered above by three antiferromagnetic
vectors which are aligned along [1; 0; 0], [0; 1; 0] and [0; 0; 1],
respectively.

(b) Incommensurate structures (see also Section 1.10.1).
In the second type of transition, k
 differs slightly from one of

the rational values (1/2, 1/3, 1/4). Then the magnetic structure is
incommensurate with the crystallographic lattice. Such non-
collinear structures are shown in Fig. 1.5.1.4 (antiferromagnetic
and ferromagnetic helices). A detailed analysis of this problem is
given by Andreev & Marchenko (1976, 1980).

(c) k
 ¼ 0.
To the third type belong transitions for which k
 ¼ 0. In this

case, the magnetic primitive cell coincides with the crystal-
lographic one and antiferromagnetic ordering is allowed only if
there is more than one magnetic ion in the primitive cell. As
stated above, only this type of ordering allows collinear ferro-
magnetism. Therefore, we shall discuss this type of transition
later in more detail.

Let us consider the phase transition in a uniaxial crystal with
four magnetic ions in the primitive cell, as was done by Dzya-
loshinskii (1957a). Now the average density of the magnetic
moment miðrÞ in (1.5.3.12) is determined by the average values of
the magnetic moments of each ion, l1, l2, l3, l4. In (1.5.3.12),
there is no longer any need to distinguish the coefficientsMi

n� and
the functions ’n;�ðrÞ. Their productM

i
n;�’n;�ðrÞ is now replaced by

the linear combinations of the components of l1, l2, l3, l4

transforming according to the corresponding irreducible repre-
sentation of the point group P of the crystal (the space group of
which is G). To illustrate this, we shall take for G the group
D6

3d ¼ R3c, which was discussed in Section 1.5.3.1. There we
introduced the linear combinations (1.5.3.2) l1, l2, l3, m of the

vectors l1, l2, l3, l4. The components of these linear combina-
tions are basis functions of the irreducible representations of the
corresponding point group D3d ¼

�33m. The characters of the
representations of this group are given in Table 1.5.3.6. It follows
from this table that all z components of the vectors l� and m are
transformed according to different one-dimensional representa-
tions of D3d (i.e. �1; . . . ;�4). Following the rule introduced in
Section 1.5.2.1 [see relation (1.5.2.2)], we established the
magnetic point groups displayed in the last column of Table
1.5.3.6. The symbols for the magnetic structures are given in the
corresponding column. The x; y components are transformed by
two-dimensional representations: mx;my and l3x; l3y are trans-
formed according to the same representation �5; a similar
situation holds for the pairs l1x; l1y and l2x; l2y, which are trans-
formed according to �6. It is obvious that if the magnetic struc-
ture possesses x; y components of the magnetic vectors, the
magnetic point group (which must be a subgroup of D3d) will
contain only four elements of the group D3d: E, C2, I, 	?. These
elements form the point group C2h ¼ 2=m. The point group C2h

has four one-dimensional representations, which according to
relation (1.5.2.2) generate the four magnetic point groups listed
in the last column of Table 1.5.3.6. To each of these magnetic
point groups corresponds a definite magnetic structure, which is a
mixture of x and y components of l3 and m or l1 and l2. The
symbols of these structures are also listed in the table (by defi-
nition, the twofold axis is aligned along the x axis).

According to the relation (1.5.3.13), the thermodynamic
potential � contains a sum of quadratic terms of basis functions
for each irreducible representation. Thus it contains the following
invariants, which correspond to the one-dimensional repre-
sentations:

A01l
2
1z þ A02l

2
2z þ A03l

2
3z þ B0m2

z: ð1:5:3:22Þ

The invariants formed with the x; y components of the vectors l1,
l2, l3, m, which are basis functions of two-dimensional repre-
sentations, have the following form:

A001ðl
2
1x þ l21yÞ þ A002ðl

2
2x þ l22yÞ þ A003ðl

2
3x þ l23yÞ þ B00ðm2

x þm2
yÞ:

ð1:5:3:23Þ

The thermodynamic potential for any uniaxial crystal
possesses such invariants of second order. For crystals belonging
to the space group D6

3d it is possible to construct additional
invariants, which are linear combinations of the mixed products
of the x and y components of the pairs of vectors l1, l2 and l3;m
and are transformed according to the same two-dimensional
representations. These invariants have the following form:

l1xl2y � l1yl2x; l3xmy � l3ymx: ð1:5:3:24Þ

These terms are responsible for ‘weakly non-collinear’ structures;
we discuss their properties in the Section 1.5.5 and shall not take
them into account now.

Before writing the whole expression of the thermodynamic
potential, let us combine expressions (1.5.3.22) and (1.5.3.23) to
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Table 1.5.3.6. Characters of the irreducible representations of the group D3d ¼
�33m and corresponding magnetic structures

Representation

Magnetic
vector
components

Elements of symmetry

Magnetic
structure

Magnetic
point groupE 2C3 3U2 I 2S6 3	d

�1 l3z 1 1 1 1 1 1 Cz D3d ¼
�33m

�2 mz 1 1 �1 1 1 �1 Fz D3dðS6Þ ¼
�33m0

�3 l1z 1 1 �1 �1 �1 1 Az D3dðC3vÞ ¼
�330m

�4 l2z 1 1 1 �1 �1 �1 Gz D3dðD3Þ ¼
�330m0

�5 l3x my 2 �1 0 2 �1 0 Cx Fy C2hðCiÞ ¼ 20=m0

mx l3y Cy Fx C2h ¼ 2=m
�6 l1x l2y 2 �1 0 �2 1 0 Ax Gy C2hðC2Þ ¼ 2=m0

l2x l1y Ay Gx C2hðCsÞ ¼ 20=m
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separate the exchange terms from the relativistic ones. This can
be performed in two ways:

A01l
2
1z þ A001ðl

2
1x þ l21yÞ ¼ ðA1=2Þl

2
1 þ ða1=2Þl

2
1z or

A01l
2
1z þ A001ðl

2
1x þ l21yÞ ¼ ðA1=2Þl

2
1 þ ða1=2Þðl

2
1x þ l21yÞ:

ð1:5:3:25Þ

Similar rearrangements are performed for l2, l3 and m. Summing
expressions (1.5.3.22) and (1.5.3.23) and taking into account
expression (1.5.3.25), we obtain the final expression for the
thermodynamic potential� limited to the terms of second order:

�1 ¼ �0 þ ðA1=2Þl
2
1 þ ðA2=2Þl

2
2 þ ðA3=2Þl

2
3 þ ðB=2Þm

2

þ ða1=2Þl
2
1z þ ða2=2Þl

2
2z þ ða3=2Þl

2
3z þ ðb=2Þm

2
z:

ð1:5:3:26Þ

In this expression, the coefficients of the terms representing the
exchange interaction are denoted by capital letters. It is mainly
these terms that are responsible for the transition to the ordered
state. The much smaller relativistic terms are responsible for the
orientation of the vectors l� or m. Their coefficients are denoted
by small letters.

To minimize the potential (1.5.3.26), it is necessary to add
terms of the fourth order, which are restricted to the exchange
terms. The total expression for the thermodynamic potential �
will then be

� ¼ �1 þ
1
4

P

�

C�l
4
� þ

1
4C
0m4 þ 1

2

P

�

D�ðl�mÞ
2
þ 1

2

P

�

D0�l
2
�m

2:

ð1:5:3:27Þ

As pointed out above, one of the coefficients A� or B vanishes
at the transition temperature T0. This coefficient may be
expanded in a series of ðT � T0Þ [see (1.5.3.14)]. At T<T0, a
ferro- or antiferromagnetic structure will be realized, the type of
which is determined by minimization of the thermodynamic
potential (1.5.3.27).

As an example, we shall consider in the next two sections the
simplest cases, the uniaxial ferromagnet and the uniaxial anti-
ferromagnet. When doing this, we shall not restrict ourselves to a
certain crystallographic structure as in the case above. For the
sake of simplicity, it will be assumed that the primitive cell
contains only two magnetic ions and therefore there is only one
antiferromagnetic vector l. Further, we shall introduce new
variables:

M ¼ ðN=2Þm; L ¼ ðN=2Þl; ð1:5:3:28Þ

where N is the number of magnetic ions per cm3.

1.5.3.3.1. Uniaxial ferromagnet

The temperature of transition from the paramagnetic to the
ferromagnetic state is called the Curie temperature. The ther-
modynamic treatment of the behaviour of uniaxial ferromagnets
in the neighbourhood of the Curie temperature Tc is given below.

In the case of a ferromagnet ðL ¼ 0Þ, the thermodynamic
potential (1.5.3.27) near Tc including the magnetic energy �MH
is given by (see 1.5.3.25)

~�� ¼ �0 þ ðB=2ÞM
2 þ ðb=2ÞðM2

x þM2
yÞ þ ðC=4ÞM

4 �MH;

ð1:5:3:29Þ

where ~�� is used to designate the thermodynamic potential in
variables p;T;H [instead of �ðp;T;MÞ]; at the given field, ~��
should be a minimum. The equilibrium value of the magnetiza-
tion M is found by minimizing the thermodynamic potential.

First consider the ferromagnet in the absence of the external
field ðH ¼ 0Þ. The system of equations @ ~��=@M ¼ 0 has three
solutions:

ðIÞ Mx ¼ My ¼ Mz ¼ 0 ð1:5:3:30Þ

ðIIÞ Mz ¼ 0; M2
x þM2

y ¼ M2
? ¼ �

Bþ b

C
ð1:5:3:31Þ

ðIIIÞ Mx ¼ My ¼ 0; M2
z ¼ �

B

C
: ð1:5:3:32Þ

In the whole range of temperatures T>Tc when B> 0, the
minimum of the potential is determined by solution (I) (i.e.
absence of a spontaneous magnetization). The realization of the
second or third state depends on the sign of the coefficient b. If
b> 0, then the third state is realized, the magnetization M being
directed along the axis. In this case, the transition from the
paramagnetic into the ferromagnetic state will take place at
Tc ¼ T0 (when B ¼ 0). If b< 0, the magnetization is directed
perpendicular to the axis. In this case, the Curie temperature is
Tc ¼ T0 � b= (when Bþ b ¼ 0). In the absence of a magnetic
field, the difference between the two values of Tc has no physical
meaning, since it only means another value of the coefficient B
[see (1.5.3.25)]. In a magnetic field, both temperatures may be
determined experimentally, i.e. when B becomes zero and when
Bþ b becomes zero.

If a magnetic field H is applied parallel to the z axis and b> 0,
the minimization of the thermodynamic potential � leads to

H=M ¼ CM2 þ B: ð1:5:3:33Þ

This relation has been verified in many experiments and the
corresponding graphical representations are known in the
literature as Arrott–Belov–Kouvel plots (see Kouvel & Fisher,
1964). Putting B ¼ ðT � TcÞ according to (1.5.3.14), equations
(1.5.3.32) and (1.5.3.33) may be used to derive expressions for the
initial magnetic susceptibilities (for H ! 0):

�0 ¼
1

2ðTc � TÞ
� ; T<Tc; ð1:5:3:34Þ

�0 ¼
1

ðT � TcÞ
� ; T>Tc; ð1:5:3:35Þ

where � ¼ 1.
The Landau theory of phase transitions does not take account

of fluctuations of the order parameter. It gives qualitative
predictions of all the possible magnetic structures that are
allowed for a given crystal if it undergoes a second-order tran-
sition. The theory also explains which of the coefficients in the
expression for the thermodynamic potential is responsible for the
corresponding magnetic structure. It describes also quantitative
relations for the magnetic properties of the material if

1� ðT � TcÞ=Tc � TcB
2=b�3; ð1:5:3:36Þ

where � is the coefficient in the term which describes the gradient
energy. In this chapter, we shall not discuss the behaviour of the
material in the fluctuation region. It should be pointed out that, in
this region, � in relations (1.5.3.34) and (1.5.3.35) depends on the
dimensionality of the structure n and equals 1.24 for n ¼ 1, 1.31
for n ¼ 2 and 1.39 for n ¼ 3. Similar considerations are relevant
to the relations (1.5.3.31) and (1.5.3.32), which describe the
temperature dependence of spontaneous magnetization.

The relations (1.5.3.31) and (1.5.3.32) describe the behaviour
of the ferromagnet in the ‘saturated’ state when the applied
magnetic field is strong enough to destroy the domain structure.
The problem of the domains will be discussed later (see Section
1.5.4).

The transition from the paramagnetic to the ferromagnetic
state is a second-order transition, provided that there is no
magnetic field. In the presence of a magnetic field that is parallel
to the easy axis of magnetization, the magnetic symmetry of the
crystal is the same (Mz 6¼ 0) both above and below Tc. From the
point of view of symmetry, no transition occurs in this case.

123



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

1.5.3.3.2. Uniaxial antiferromagnet

Now let us proceed to the uniaxial antiferromagnet with two
ions in the primitive cell. The thermodynamic potential ~�� for
such an antiferromagnet is given in accordance with (1.5.3.26)
and (1.5.3.27) by (Landau, 1933)

~�� ¼ �0 þ ðA=2ÞL
2 þ ðB=2ÞM2 þ ða=2ÞðL2

x þ L2
yÞ

þ ðb=2ÞðM2
x þM2

yÞ þ ðC=4ÞL
4 þ ðD=2ÞðLMÞ2

þ ðD0=2ÞL2M2 �MH: ð1:5:3:37Þ

If the magnetic field is absent ðH ¼ 0Þ, then M ¼ 0 because B,
D and D0 > 0. Then three possible magnetic states are obtained
by minimizing the potential with respect to L only:

ðIÞ Lx ¼ Ly ¼ Lz ¼ 0 ð1:5:3:38Þ

ðIIÞ Lz ¼ 0; L2
x þ L2

y ¼ L2
? ¼ �

Aþ a

C
ð1:5:3:39Þ

ðIIIÞ Lx ¼ Ly ¼ 0; L2
z ¼ �

A

C
: ð1:5:3:40Þ

When a< 0, state (II) with Lz ¼ 0 is thermodynamically stable.
When a> 0, state (III) is stable and the antiferromagnetic vector
is directed along the axis. This means that the term with the
coefficient a is responsible for the anisotropy of the uniaxial
antiferromagnet. We introduce the effective anisotropy field:

Ha ¼ aL ¼ 2aM0; ð1:5:3:41Þ

where M0 is the sublattice magnetization.
Formulas (1.5.3.39) and (1.5.3.14) in the form A ¼ ðT � TcÞ

yield the expression for the temperature dependence of the
sublattice magnetization:

L2 ¼ ð=CÞðTN � TÞ; ð1:5:3:42Þ

where TN is the Néel temperature. The assertions relating to
formulas (1.5.3.34) and (1.5.3.35) concerning the fluctuation
region are also valid for the temperature dependence of the
sublattice magnetization.

The minimization of the potential ~�� with respect to M for
given L 6¼ 0 when H 6¼ 0 yields the following relation for the
magnetization:

M ¼ �?H� ð�? � �kÞðqHÞq; ð1:5:3:43Þ

where q ¼ L=jLj. Thus the magnetization of an antiferromagnet
is linear with the magnetic field, as for a paramagnet, if the
magnetic field is not too strong. The main difference is in the
anisotropy and temperature dependence of the susceptibility. The
parallel susceptibility �k decreases when the temperature is
lowered, and �? does not depend on temperature (�? ¼ 1=B)
(see Fig. 1.5.3.6). The coefficient B belongs to the exchange term
and defines the effective exchange field

He ¼
1
2BL ¼ BM0: ð1:5:3:44Þ

As seen from Fig. 1.5.3.6, �?>�k. Therefore, when the
magnetic field applied parallel to the axis of a uniaxial anti-
ferromagnet reaches the critical value

H2
c1 ¼ aL2=ð�? � �kÞ ’ aBL2

0 ¼ 2HaHe ð1:5:3:45Þ

(L0 is the value of L at T ¼ 0), a flopping of the sublattices from
the direction along the axis to some direction in the plane
perpendicular to the axis occurs. In this spin-flop transition
(which is a first-order transition into a new magnetic structure),
the magnetization jumps as shown in Fig. 1.5.3.7.

A second-order transition into a saturated paramagnetic state
takes place in a much stronger magnetic field Hc2 ¼ 2He. This
transition is called a spin-flip transition. Fig. 1.5.3.7 shows the
magnetic field dependence of the magnetization of a uniaxial
antiferromagnet. Fig. 1.5.3.8 shows the temperature dependence
of both critical fields.

The quantitative behaviour of the critical magnetic fields in the
neighbourhood of TN for both directions of the magnetic field
(H k Oz and H ? Oz) can be determined from the theory of
second-order phase transitions starting from the thermodynamic
potential ~�� and taking into account that L is small and DL2 � B
close to TN.

In the presence of the magnetic field H ? Oz, L is parallel to
Oz, LM ¼ 0, the coefficient A at L2 is replaced byAþ 2D0H2=B2

and the latter is zero at the new transition point. The critical field
is given by the relation

H2
c2 ¼ ðB

2=2D0ÞðTN � TÞ; H ? Oz: ð1:5:3:46Þ

If the field is applied parallel to the z axis, then L remains
parallel to Oz if H<Hc1 (Hc1 ’ aB2=D in the neighbourhood of
TN). Therefore,

H2
c2 ¼

B2

2ðDþD0Þ
ðTN � TÞ; H k Oz; H<Hc1: ð1:5:3:47Þ

If H > Hc1, L becomes perpendicular to the z axis and the
anisotropy term has to be taken into account:
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Fig. 1.5.3.6. Temperature dependence of the mass susceptibility �g for a
uniaxial antiferromagnet along (�k) and perpendicular (�?) to the axis of
antiferromagnetism (see Foner, 1963).

Fig. 1.5.3.7. Dependence of the relative magnetization M=Mmax on the
magnetic field at T ¼ 0. The dashed line corresponds toH ? Oz, the full line
to H k Oz. Hc1 is the field of spin-flop, Hc2 is the field of spin-flip.
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H2
c2 ¼

B2

2D0
ðTN � T � a=Þ; H k Oz; H > Hc1: ð1:5:3:48Þ

Formulas (1.5.3.46)–(1.5.3.48) show that the transition
temperature is reduced by applying the magnetic field. The
displacement of the transition point is directly proportional to the
square of the applied field. Fig. 1.5.3.9 shows the phase diagram
of an antiferromagnet in the neighbourhood of TN. Unlike
ferromagnets, antiferromagnets maintain the second-order phase
transition when a magnetic field is applied because the symmetry
of the crystal in the antiferromagnetic state differs essentially
from that in the paramagnetic state also if the crystal is placed
into a magnetic field.

Formula (1.5.3.43) describes the magnetization process only in
easy-axis antiferromagnets. For easy-plane antiferromagnets, the
anisotropy in the plane is usually extremely small and the anti-
ferromagnetic vector rotates freely in the basic plane. Therefore,
for any direction of the magnetic field, the vector L becomes

aligned perpendicular to the applied magnetic field. Corre-
spondingly the magnetization becomes

M ¼ �zHzẑzþ �?H?x̂x; ð1:5:3:49Þ

where ẑz and x̂x are unit vectors parallel and perpendicular to the
axis.

1.5.4. Domain structure

1.5.4.1. 180� domains

Neither symmetry nor energy considerations can determine
the alignment of the magnetization vector n in a non-chiral easy-
axis magnetic (of ferro- or antiferromagnetic type). The vector n
may be aligned parallel or antiparallel to the positive direction of
the z axis. Therefore, specimens of any magnetic are usually split
into separate regions called domains. In each domain of an easy-
axis magnetic, the vector n has one of its two possible directions.
Such domains are called 180� domains. Adjacent domains are
separated by a domain wall, in which the magnetic moments are
no longer strictly parallel (or antiparallel). As a result of this,
both the exchange and the anisotropy energy rise inside the
volume of the domain wall.

In ferromagnets (and ferrimagnets), the loss in the exchange
and anisotropy energy in a multidomain sample is compensated
by the gain in the magnetostatic energy. The existence of the
domain structure is responsible for the behaviour of a ferro-
magnet in an applied magnetic field. There are two kinds of
magnetization processes that one has to distinguish: the displa-
cement of the domain walls and the rotation of the spontaneous
magnetization vector from the easy direction to the direction of
the applied magnetic field. The magnetization process will first be
considered without taking the demagnetizing field into account.
If the magnetic field is applied parallel to the axis of an easy-axis
ferromagnet, the displacement of the domain wall will completely
determine the magnetization process. If the sample contains no
impurities and crystal defects, such a displacement must take
place in an infinitely small magnetic field [see curve (1) in Fig.
1.5.4.1 and Fig. 1.5.4.3a]. If the magnetic field is applied
perpendicular to the easy axis, the size of the domains does not
change but their magnetization vectors rotate. Let us denote the
spontaneous magnetization by Ms. Then the sample magnetiza-
tion M rises linearly with respect to the applied magnetic field:

M ¼ HM2
s =2K1; ð1:5:4:1Þ

where K1 is defined by relations (1.5.3.8)–(1.5.3.10). Some
nonlinearity in H can arise from the fourth-order term with K2

[see curve (2) in Fig. 1.5.4.1 and Fig. 1.5.4.3c]. When
H ¼ 2K1=Ms ¼ Hs, the magnetizations of all the domains are
rotated by 90� and the magnetization of the sample becomes
oriented along the magnetic field; its value is saturated and is
equal to the spontaneous magnetization Ms. If T 6¼ 0 K, there is
an additional rise in magnetization with the magnetic field. This
rise, which is called true magnetization, is relatively very small at
all temperatures except for the temperature region close to the
transition temperature. If the magnetic field is applied at an
arbitrary angle � to the easy axis, the magnetization process
occurs in two steps [see curves (2) in Fig. 1.5.4.2 and Fig. 1.5.4.3b].
First, as a result of the wall displacement, the magnetization
jumps to the valueM1 in a small magnetic field. Next, the rotation
process follows and at Hs the sample becomes saturated [see
curves (2) in Fig. 1.5.4.2]. It is essential to take the shape of the
sample into account in considering the problem of the magneti-
zation processes in ferromagnets, as the demagnetizing field can
be up to 4�M. In real materials, the displacement process is partly
(at low fields) reversible and partly (at higher fields) irreversible.
Therefore, complicated hysteresis processes arise in magnetizing
ferromagnets.
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Fig. 1.5.3.8. Magnetic phase diagram for a uniaxial antiferromagnet in a
magnetic field applied parallel to the axis. (1) The line of spin-flop transition
ðHc1Þ; (2) the line of spin-flip transition ðHc2Þ; P, paramagnetic phase; AFM,
easy-axis antiferromagnetic phase; SF, spin-flop phase; BP, bicritical point.

Fig. 1.5.3.9. Phase diagram for a uniaxial antiferromagnet in the proximity of
TN , calculated for MnCl2
4H2O. Experimental data are taken from Gijsman
et al. (1959).
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The problem of 180� domains in antiferromagnets is not as
clear. These domains differ in the sign of the antiferromagnetic
vector L. This vector was defined as the difference of the vectors
of sublattice magnetizations in a two-sublattice antiferromagnet,
i.e. M1 �M2. Thus two such antiferromagnetic domains differ
only by the numbering of the sites in the sublattices. Anti-
ferromagnetic 180� domains are also called S-domains. The wall
between two S-domains is schematically represented in Fig.
1.5.4.4.

The origin of the antiferromagnetic S-domains cannot be
explained from the point of view of energy balance as in a
ferromagnet. These domains give rise to additional exchange and
anisotropy energies which are not compensated by a decrease of
any other kind of energy. Thus the S-domain structure is ther-
modynamically not stable. However, experiments show that
S-domains exist in most easy-axis antiferromagnets.

The formation of S-domains can be explained by assuming that
when the material is cooled down to the Néel temperature,
antiferromagnetic ordering arises in different independent
regions. The direction of the vector L in these regions is acci-
dental. When growing regions with different directions of Lmeet,
the regular alternation of the directions of magnetic moments of
the ions is broken on the border between these regions. Domain
walls are created on such borders. Such domain structures can be
metastable.

The existence of S-domains in easy-axis antiferromagnets was
first proved in experiments in which effects that depend on the
sign of L were investigated. These are piezomagnetism, linear
magnetostriction and the linear magnetoelectric effect. The sign
of these effects depends on the sign of L. We shall discuss this
problem in detail in Sections 1.5.7 and 1.5.8. Later, 180� domain
walls were observed in neutron scattering experiments
(Schlenker & Baruchel, 1978), and the domains themselves in
magneto-optical experiments (see Kharchenko et al., 1979;
Kharchenko & Gnatchenko, 1981).

1.5.4.2. Twin domains

As pointed out in Section 1.5.3, in tetragonal non-easy-axis
magnetics, in easy-plane hexagonal and trigonal and in cubic
magnetics there is more than one easy magnetization direction (3,
4 or 6). As a result, domains arise in which vectors Ms or L are
directed to each other at 120, 109.5, 90, 70.5 and 60�. Such
domains are called twin or T-domains. The formation of magnetic
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Fig. 1.5.4.1. Magnetization curves of hexagonal cobalt for two main
crystallographic directions: (1) ½0001� and (2) ½10�110�.

Fig. 1.5.4.2. Magnetization curves of two cubic crystals (iron and nickel) for
three crystallographic directions.

Fig. 1.5.4.3. Schematic display of the magnetization: (a) along the easy axis;
(b) at an arbitrary angle to the easy axis; (c) perpendicular to the easy axis.

Fig. 1.5.4.4. A 180� domain wall in an antiferromagnet.
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T-domains is accompanied by the formation of crystallographic
domains as a result of spontaneous magnetostriction. But mostly
this is very small. Each of the T-domains may split into 180�

domains.
The magnetization process in ferromagnets possessing T-

domains is similar to the previously described magnetization of
an easy-axis ferromagnet in a magnetic field directed at an
oblique angle. First the displacement process allows those 180�

domains that are directed unfavourably in each T-domain to
disappear, and then the rotation process follows.

In easy-plane antiferromagnets, the T-domain structure is
destroyed by a small magnetic field and the antiferromagnetic
vector L in the whole specimen becomes directed perpendicular
to the applied magnetic field, as was explained in Section 1.5.3.

There are four kinds of T-domains in cubic antiferromagnets,
in which the vectors L are directed parallel or perpendicular to
the four h111i axes. Such a T-domain structure can be destroyed
only when the applied magnetic field is so strong that the anti-
ferromagnetic order is destroyed at a spin-flip transition.

1.5.4.3. Ferroic domains

Aizu (1970) gave a classification of domain formation when a
crystal undergoes a transition from an unordered to a magneti-
cally ordered state that has a lower point-group symmetry (see
also Section 3.1.1). The unordered state (called the prototype
phase) has a grey point group. The number of elements in this
group is equal to the product of the number of elements in the
point group of the ordered state (called the ferroic state) times
the number of domains. Aizu found that there are 773 possible
combinations of the point-group symmetries of the prototype and
the ferroic state, if crystallographically inequivalent orientations
of the subgroup in the group of the prototype are distinguished.
These 773 combinations are called ferroic species and are char-
acterized by a symbol giving first the point group of the proto-
type, then the letter F, then the point group of the ferroic state
and finally a letter between parentheses if different orientations
are possible. As an example, the 20 axis of the ferroic state is
parallel to the fourfold axis of the prototype in 42210F20ðpÞ and
perpendicular to it in 42210F20ðsÞ.

Let us discuss the ferroic states of rhombohedral transition-
metal oxides given in Table 1.5.3.4. The paramagnetic prototype
has point group �33m10. The four monoclinic ferroic species have
six domains (‘orientation states’) each, which form three pairs of
180� domains (‘time-conjugate orientation states’). All four
species are ‘fully ferroelastic’, i.e. the three pairs show different
orientations of the spontaneous strain; two of the four species
(�33m10F20=m0 and �33m10F2=m) are also ‘fully ferromagnetic’
because all six domains have different orientations of the spon-
taneous magnetization. Switching a domain into another with a
different orientation of the spontaneous strain can be achieved
by applying mechanical stress. If the domain was spontaneously
magnetized, the orientation of the magnetization is changed
simultaneously. Similarly, a domain can be switched into another
with a different orientation of the spontaneous magnetization by
means of a magnetic field. If the two spontaneous magnetizations
have different directions (not just opposite sign), the direction of
the spontaneous strain will change at the same time.

The Aizu classification is of interest for technological appli-
cations because it gives an overall view not only of domain
formation but also of the possibilities for domain switching.

1.5.5. Weakly non-collinear magnetic structures

As was indicated above (see Tables 1.5.3.3 and 1.5.3.6), certain
magnetic space groups allow the coexistence of two different
types of magnetic ordering. Some magnetic structures can be
described as a superposition of two antiferromagnetic structures
with perpendicular antiferromagnetic vectors L�. Such structures

may be called weakly non-collinear antiferromagnets. There can
also be a superposition of an antiferromagnetic structure L with a
ferromagnetic one M (with L ? M). This phenomenon is called
weak ferromagnetism. We shall demonstrate in this section why
one of the magnetic vectors has a much smaller value than the
other in such mixed structures.

1.5.5.1. Weak ferromagnetism

The theory of weak ferromagnetism was developed by Dzya-
loshinskii (1957a). He showed that the expansion of the ther-
modynamic potential ~�� may contain terms of the following type:
LiMk (i; k ¼ x; y). Such terms are invariant with respect to the
transformations of many crystallographic space groups (see
Section 1.5.3.3). If there is an antiferromagnetic ordering in the
material (Li 6¼ 0) and the thermodynamic potential of the
material contains such a term, the minimum of the potential will
be obtained only ifMk 6¼ 0 as well. The term LiMk is a relativistic
one. Therefore this effect must be small.

We shall consider as an example the origin of weak ferro-
magnetism in the two-sublattice antiferromagnets MnCO3,
CoCO3 and NiCO3, discussed in Section 1.5.3.1. The following
analysis can be applied also to the four-sublattice anti-
ferromagnet �-Fe2O3 (assuming L1 ¼ L2 ¼ 0, L3 ¼ L). All
these rhombohedral crystals belong to the crystallographic space
group D6

3d ¼ R3c. The thermodynamic potential ~�� for these
crystals was derived in Section 1.5.3.3. For the case of a two-
sublattice antiferromagnet, one has to add to the expression
(1.5.3.26) the invariant (1.5.3.24):

~�� ¼ ðA=2ÞL2 þ ðB=2ÞM2 þ ða=2ÞL2
z þ ðb=2ÞM

2
z

þ dðLxMy � LyMxÞ �MH: ð1:5:5:1Þ

The coefficients of the isotropic terms (A and B) are of exchange
origin. They are much larger than the coefficients of the relati-
vistic terms (a; b; d). Minimization of ~�� for a fixed value of L2

and H ¼ 0 gives two solutions:
(1) L k Oz (Lx ¼ Ly ¼ 0, M ¼ 0). FeCO3 and the low-

temperature modification of �-Fe2O3 possess such purely anti-
ferromagnetic structures.

(2) L ? Oz [Mx ¼ ðd=BÞLy, My ¼ ðd=BÞLx, Mz ¼ 0]. This
structure exhibits a spontaneous ferromagnetic moment

MD ¼ ðM
2
x þM2

yÞ
1=2
¼ ðd=BÞL: ð1:5:5:2Þ

The magnetic moment MD is smaller than the magnetization of
the sublattices (M0 ¼ L=2) in the ratio 2d=B. This phenomenon is
therefore called weak ferromagnetism. The vectorsMD and L are
mutually perpendicular. Their direction in the plane is deter-
mined by the sixth-order terms of the anisotropy energy (see
Section 1.5.3.2). This anisotropy is extremely small in most
materials. The vectors of magnetization of the sublattices M0 are
deflected by a small angle ’ ’ 2d=B away from the direction of
the antiferromagnetic axis L in such weak ferromagnets (see Fig.
1.5.5.1).

Weak ferromagnetism was first observed in the following
trigonal crystals: the high-temperature modification of haematite,
�-Fe2O3 (Townsend Smith, 1916; Néel & Pauthenet, 1952),
MnCO3 (Borovik-Romanov & Orlova, 1956) and later also in
CoCO3, NiCO3 and FeBO3. In accordance with theory, weak
ferromagnetism does not occur in trigonal crystals with a positive
anisotropy coefficient a. Such crystals become easy-axis anti-
ferromagnets. Of this type are FeCO3 and the low-temperature
modification of �-Fe2O3. For four-sublattice antiferromagnets,
the sequence of the directions of the magnetic moments of the
sublattices is also essential. For example, the structures of the
types A1 and A2 (see Fig. 1.5.3.4 and Table 1.5.3.3) do not exhibit
weak ferromagnetism.
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The behaviour of weak ferromagnets in magnetic fields applied
perpendicular ðH?Þ and parallel ðHkÞ to the trigonal axis is
described by the following relations:

M? ¼ MD þ �?H?; Mk ¼ �kHk; ð1:5:5:3Þ

where

�? ¼ 1=B; �k ¼ 1=ðBþ bÞ: ð1:5:5:4Þ

An external magnetic field can freely rotate the ferromagnetic
moment in the basal plane of the easy-plane weak ferromagnets
under consideration because their anisotropy in the basal plane is
extremely small. During such a rotation, both vectors M and L
move simultaneously as a rigid structure. On the other hand, it is
impossible to deflect the vector MD out of the basal plane, as this
is forbidden by symmetry. This is illustrated by the magnetization
curves plotted in Fig. 1.5.5.2, which confirm the relations (1.5.5.3).

It is worth mentioning that when the weakly ferromagnetic
structure is rotated in the basal plane, a change of the magnetic
space groups occurs in the following order: P2=c$ P1$ P20=c0

$ P1 $ P2=c $ . . .. Each of these symmetry transformations
corresponds to a second-order phase transition. Such transitions
are allowed because P1 is a subgroup of both groups P2=c and
P20=c0.

NiF2 was one of the first weak ferromagnets to be discovered
(Matarrese & Stout, 1954). In the paramagnetic state, it is a
tetragonal crystal. Its crystallographic space group is
D14

4h ¼ P42=mnm. In the ordered state its magnetic point group is
D2hðC2hÞ ¼ mm0m0 and the vectors L and M are directed along
two twofold axes (one of which is primed) in the plane perpen-
dicular to the former fourfold axis (see Fig. 1.5.5.3a). The invar-
iant term responsible for the weak ferromagnetism in tetragonal
fluorides has the form

dðLxMy þ LyMxÞ: ð1:5:5:5Þ

The anisotropy of the crystals of NiF2 and the relation given
above for the invariant lead to the same dependence on the
magnetic field as for trigonal crystals. However, the anisotropy of
the magnetic behaviour in the basal plane is much more
complicated than for rhombohedral crystals (see Bazhan &
Bazan, 1975). The anisotropy constant K1 is positive for most
other fluorides (MnF2, FeF2 and CoF2) and their magnetic
structure is described by the magnetic point group

D4hðD2hÞ ¼ 40=mmm0. They are easy-axis antiferromagnets
without weak ferromagnetism.

The interaction described by the invariant dðLxMy � LyMxÞ in
equation (1.5.5.1) is called Dzyaloshinskii–Moriya interaction. It
corresponds to the interaction between the spins of neighbouring
ions, which can be represented in the form

d½Si  Sj�; ð1:5:5:6Þ
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Fig. 1.5.5.1. Diagrams demonstrating two weakly ferromagnetic structures in
rhombohedral crystals with two magnetic ions in the primitive cell (compare
with Fig. 1.5.3.1). (a) Magnetic space group P2=c; (b) magnetic space group
P20=c0.

Fig. 1.5.5.2. Dependence of magnetization M? and Mk on the magnetic field
H for the weak ferromagnet MnCO3 at 4.2 K (Borovik-Romanov, 1959a).

Fig. 1.5.5.3. Magnetic structures of fluorides of transition metals. (a) The
weak ferromagnet NiF2; (b) the easy-axis antiferromagnets MnF2, FeF2 and
CoF2.
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where the vector d has the components (0; 0; dz). Terms of such
type are allowed by symmetry for crystals that in the para-
magnetic state belong to certain space groups of the trigonal,
tetragonal and hexagonal systems. In some groups of the tetra-
gonal system, weak ferromagnetism is governed by the term
dðLxMy þ LyMxÞ (as for NiF2) and in the orthorhombic system by
ðd1LiMk þ d2LkMiÞ; ði; k ¼ x; y; zÞ. In the monoclinic system, the
latter sum contains four terms. The weak ferromagnetism in most
groups of the hexagonal and cubic systems is governed by
invariants of fourth and sixth order of Li;Mk. Turov (1963)
determined for all crystallographic space groups the form of the
invariants of lowest order that allow a phase transition into a
state with weak ferromagnetism. The corresponding list of the
numbers of the space groups that allow the transition into an
antiferromagnetic state with weak ferromagnetism is given in
Table 1.5.5.1. The form of the invariant responsible for weak
ferromagnetism is also displayed in the table. Turov (1963)
showed that weak ferromagnetism is forbidden for the triclinic
system, for 14 tetragonal groups, six trigonal groups and 12 cubic
groups (those with point groups T ¼ 23 or Th ¼ m�33).

The microscopic theory of the origin of weak ferromagnetism
was given by Moriya (1960a,b, 1963). In this chapter, however, we
have restricted our consideration to the phenomenological
approach to this problem.

A large number of orthorhombic orthoferrites and ortho-
chromites with the formula RMO3 (where R is a trivalent rare-
earth ion and M is Fe3þ or Cr3þ) have been investigated in many
laboratories (cf. Wijn, 1994). Some of them exhibit weak ferro-
magnetism. The space group of these compounds is D16

2h ¼ Pnma
in the paramagnetic state. The primitive cell is the same in the
paramagnetic and magnetically ordered states. It contains four
magnetic transition-metal ions (see Fig. 1.5.5.4). They determine
to a large extent the properties of orthoferrites (outside the
region of very low temperatures). For a four-sublattice anti-
ferromagnet, there are four possible linear combinations of the
sublattice vectors, which define three types of antiferromagnetic
vectors L� and one ferromagnetic vector F [see relations (1.5.3.2)
and Table 1.5.3.1]. The exchange interaction in these compounds
governs magnetic structures, which to a first approximation are
described by the following antiferromagnetic vector (which is
usually denoted by the symbol G):

G ¼ L2 ¼ ðN=4Þðl1 � l2 þ l3 � l4Þ: ð1:5:5:7Þ

In the case of orthoferrites, the other two antiferromagnetic
vectors L1 and L3 [see relations (1.5.3.2)] are named A and C,
respectively.

The magnetic structure of the compounds under consideration
is usually called the Gi or GiFk state. Depending on the signs and
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Table 1.5.5.1. The numbers of the crystallographic space groups that allow a phase transition into a weakly ferromagnetic state and the invariants that are
responsible for weak ferromagnetism (Turov, 1963)

System Nos. of the space groups Invariants
Case
No.

Monoclinic 3–15 MxLy, MzLy, MyLx, MyLz 1

Orthorhombic 16–74 MxLy, MyLx 2

MyLz, MzLy 3

MxLz, MzLx 4

Tetragonal 81–92, 101–142 MxLy þMyLx, MxLx �MyLy 5

MxLy �MyLx 6

MxLy þMyLx 7

MxLx �MyLy 8

Trigonal 147–159, 162–167 MxLy �MyLx 9

MxLy �MyLx 10

Hexagonal 168–173, 178, 179, 190 MzðLx	iLyÞ
3, ðMx	iMyÞðLx	iLyÞ

2
Lz 11

174–177, 180–189, 191–194 MxLy �MyLx 12

iMz½ðLx þ iLyÞ
3
� ðLx � iLyÞ

3
�,

i½ðMx þ iMyÞðLx þ iLyÞ
2
� ðMx � iMyÞðLx � iLyÞ

2
�Lz

13

Mz½ðLx þ iLyÞ
3
þ ðLx � iLyÞ

3
�,

½ðMx þ iMyÞðLx þ iLyÞ
2
þ ðMx � iMyÞðLx � iLyÞ

2
�Lz

14

Cubic 207–230 MxLxðL
2
y � L2

zÞ þMyLyðL
2
z � L2

xÞ þMzLzðL
2
x � L2

yÞ 15

Fig. 1.5.5.4. Magnetic structures of orthoferrites and orthochromites RMO3.
(Only the transition-metal ions are shown; the setting Pbnm is used.) (a)
GxFz weakly ferromagnetic state; (b) GzFx weakly ferromagnetic state.
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the values of the anisotropy constants, there are three possible
magnetic states:

ðIÞ GxFz L2x 6¼ 0; MDz 6¼ 0; ð1:5:5:8Þ

ðIIÞ Gy L2y 6¼ 0; MD ¼ 0; ð1:5:5:9Þ

ðIIIÞ GzFx L2z 6¼ 0; MDx 6¼ 0: ð1:5:5:10Þ

The magnetic structures (I) and (III) are weak ferromagnets.
They are displayed schematically in Fig. 1.5.5.4. Both are
described by the same magnetic point group D2hðC2hÞ yet in
different orientations: m0m0m (i.e. 20x=m

0
x 2
0
y=m

0
y 2z=mz) for

structure (I) and mm0m0 (i.e. 2x=mx 2
0
y=m

0
y 2
0
z=m

0
z) for structure

(III). The magnetic point group of structure (II) is D2h ¼ mmm.
Weak ferromagnetism is observed in boracites with chemical

formulaM3B7O13X (whereM ¼ Co, Ni and X ¼ Br, Cl, I). These
compounds are unique, being simultaneously antiferromagnets,
weak ferromagnets and ferroelectrics. Section 1.5.8.3 is devoted
to these ferromagnetoelectrics.

Concerning the magnetic groups that allow weak ferro-
magnetism, it should be noted that, as for any ferromagnetism,
weak ferromagnetism is allowed only in those space groups that
have a trivial magnetic Bravais lattice. There must be at least two
magnetic ions in the primitive cell to get antiferromagnetic order.
Among the 31 magnetic point groups that admit ferromagnetism
(see Table 1.5.2.4), weak ferromagnetism is forbidden in the
magnetic groups belonging to the tetragonal, trigonal and hexa-
gonal systems. Twelve magnetic point groups that allow weak
ferromagnetism remain. These groups are listed in Table 1.5.5.2.

A material that becomes a weak ferromagnet below the Néel
temperature TN differs from a collinear antiferromagnet in its
behaviour above TN. A magnetic field applied to such a material
above TN gives rise to an ordered antiferromagnetic state with
vector L directed perpendicular and magnetization M parallel to
the field. Thus, as in usual ferromagnets, the magnetic symmetry
of a weak ferromagnet in a magnetic field is the same above and
below TN. As a result, the magnetic susceptibility has a maximum
at T ¼ TN [like the relations (1.5.3.34) and (1.5.3.35)]. This is true
only if the magnetic field is aligned along the easy axis for weak
ferromagnetism. Fig. 1.5.5.5 shows the anomalous anisotropy of
the temperature dependence of the magnetic susceptibility in the
neighbourhood of TN for weak ferromagnets.

Similar anomalies in the neighbourhood of TN are observed in
materials with a symmetry allowing a transition into a weakly
ferromagnetic state for which the sign of the anisotropy constant
causes their transition into purely antiferromagnetic states.

1.5.5.2. Other weakly non-collinear magnetic structures

A thermodynamic potential ~�� of the form (1.5.5.1) may give
rise not only to the weak ferromagnetism considered above but
also to the reverse phenomenon. If the coefficient B (instead of
A) changes its sign and b> 0, the material will undergo a tran-
sition into a slightly canted ferromagnetic structure, in which
Ms � LD and the expression for LD is

LD ¼ ðd=BÞMs?: ð1:5:5:11Þ

Experimental detection of such structures is a difficult problem
and to date no-one has observed such a phenomenon.

The thermodynamic potential ~�� of a four-sublattice anti-
ferromagnet may contain the mixed invariant [see (1.5.3.24)]

d1ðL1xL2y � L1yL2xÞ: ð1:5:5:12Þ

Such a term gives rise to a structure in which all four vectors of
sublattice magnetization M� form a star, as shown in Fig. 1.5.5.6
(see also Fig. 1.5.1.3b). The angle 2� between the vectors l1 and
l3 (or l2 and l4) is equal to d1=A2 if the main antiferromagnetic
structure is defined by the vector l2 [see relation (1.5.3.2)]. Such a
structure may occur in Cr2O3. In most orthoferrites discussed
above, such non-collinear structures are observed for all three
cases: purely antiferromagnetic (Gy) and weakly ferromagnetic
(GxFz and GzFx). The structure Gy is not coplanar. Apart from
the main antiferromagnetic vector G aligned along the y axis, it
possesses two other antiferromagnetic vectors: A (aligned along
the x axis) and C (aligned along the z axis). The weakly ferro-
magnetic structure GxFz has an admixture of the Ay anti-
ferromagnetic structure.

The helical (or spiral) structure described in Section 1.5.1.2.3
and depicted in Fig. 1.5.1.4 is also a weakly non-collinear anti-
ferromagnetic structure. As mentioned above, this structure
consists of atomic layers in which all the magnetic moments are
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Table 1.5.5.2. Magnetic point groups that allow weak ferromagnetism

Schoenflies Hermann–Mauguin

C1 1
Ci

�11
C2 2
C2ðC1Þ 20

Cs m
CsðC1Þ m0

C2h 2=m
C2hðCiÞ 20=m0

D2ðC2Þ 22020

C2vðC2Þ m0m02
C2vðCsÞ m0m20

D2hðC2hÞ mm0m0

Fig. 1.5.5.5. Temperature dependence of the susceptibility for CoCO3

(Borovik-Romanov & Ozhogin, 1960).

Fig. 1.5.5.6. A weakly non-collinear magnetic structure corresponding to
(1.5.5.12).
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parallel to each other and parallel to the layer. The magnetiza-
tions of neighbouring layers are antiparallel to a first approx-
imation; but, more specifically, there is a small deviation from a
strictly antiparallel alignment. The layers are perpendicular to a
vector k, which is parallel to the axis of the helix. The two
mutually perpendicular antiferromagnetic vectors L� are both
perpendicular to k. These vectors define the helical structure by
the following relation for the density of the magnetizationMðrÞ in
the layer with the coordinate r (Dzyaloshinskii, 1964; Andreev &
Marchenko, 1980):

MðrÞ ¼ L1 sin kr� L2 cos kr: ð1:5:5:13Þ

Most helical structures are incommensurate, which means that
the representation defined by the vector k does not satisfy the
Lifshitz condition (see Section 1.5.3.3).

1.5.6. Reorientation transitions

In many materials, the anisotropy constants change sign at some
temperature below the critical temperature. As a result, the
direction of the vector L (or Ms) changes relative to the crys-
tallographic axes. Correspondingly, the magnetic symmetry of the
material also changes. Such phase transitions are called reor-
ientation transitions.

Cobalt is a typical ferromagnet and experiences two such
reorientation transitions. It is a hexagonal crystal, which at low
temperatures behaves as an easy-axis ferromagnet; its magnetic
point group is D6hðC6hÞ ¼ 6=mm0m0. If the anisotropy energy
were described by the relations (1.5.3.6) and (1.5.3.7) with only
one anisotropy constant K1, the change of the sign of this
constant would give rise to a first-order transition from an easy-
axis to an easy-plane antiferromagnet. This transition would
occur at the temperature Tc at which K1ðTÞ ¼ 0. In fact, the polar
angle � which determines the direction of the spontaneous
magnetization increases progressively over a finite temperature
interval. The behaviour of � during the process of this reor-
ientation may be obtained by minimizing the expression of the
anisotropy energy (1.5.3.10), which contains two anisotropy
coefficients K1 and K2. If K2> 0, the minimum of Ua corresponds
to three magnetic phases, which belong to the following magnetic
point groups:

(1) D6hðC6hÞ ¼ 6=mm0m0; for this phase � ¼ 0; �. It is realized
at temperatures T<T1 ¼ 520 K, where K1> 0.

(2) C2hðCiÞ ¼ 20=m0; for this phase sin � ¼ 	ð�K1=2K2Þ
1=2. It is

realized at temperatures T1 ¼ 520<T<T2 ¼ 580 K, where
�2K2<K1< 0.

(3) D2hðC2hÞ ¼ mm0m0; for this phase � ¼ �=2. It is realized at
temperatures T2 ¼ 580<T <Tc ¼ 690 K, where K1< � 2K2.

The low-temperature phase is of the easy-axis type and the
high-temperature phase is of the easy-plane type. The inter-
mediate phase is called the angular phase. The two second-order
phase transitions occur at temperatures which are the roots of the
two equations

K1ðT1Þ ¼ 0; K1ðT2Þ þ 2K2ðT2Þ ¼ 0: ð1:5:6:1Þ

The chain of these transitions (including the transition to the
paramagnetic state at T ¼ Tc) may be represented by the
following chain of the corresponding magnetic point groups:

D6hðC6hÞ ¼ 6=mm0m0  !C2hðCiÞ ¼ 20=m0

 !D2hðC2hÞ ¼ mm0m0

 !ðD6h þ RD6hÞ ¼ 6=mmm10:

In Co and most of the other ferromagnets, the rotation of the
spontaneous magnetization described above may be obtained by
applying an external magnetic field in an appropriate direction.
In many antiferromagnets, there occur similar reorientation

transitions, which cannot be achieved by means of a magnetic
field.

The first reorientation transition in antiferromagnets was
observed in haematite (�- Fe2O3), which at room temperature is a
weak ferromagnet with magnetic structure A3x or A3y (see Tables
1.5.3.3 and 1.5.3.4 in Section 1.5.3.1). Morin (1950) found that the
weak ferromagnetism in haematite disappears below
TM ’ 260 K. At low temperature, haematite becomes an easy-
axis antiferromagnet with the structure A3z. Unlike in cobalt, the
transition at TM is a first-order transition in haematite. This is so
because the anisotropy constant K2 is negative in haematite. As a
result, there are only two solutions for the angle � that lead to a
minimum of the anisotropy energy Uað3Þ [(1.5.3.9)], � ¼ 0 if
K1> � K2 and � ¼ �=2 if K1< � K2. The transition tempera-
ture TM is defined by

K1ðTMÞ þ K2ðTMÞ ¼ 0: ð1:5:6:2Þ

There is the following change in the magnetic space groups at this
transition:

R3c0 !
TM P2=c

P20=c0

�
ð1:5:6:3Þ

ð1:5:6:4Þ

Which of the two groups is realized at high temperatures
depends on the sign of the anisotropy constant K0? in equation
(1.5.3.9). Neither of the high-temperature magnetic space groups
is a subgroup of the low-temperature group. Therefore the
transition under consideration cannot be a second-order transi-
tion.

Reorientation transitions have been observed in many ortho-
ferrites and orthochromites. Orthoferrites of Ho, Er, Tm, Nd, Sm
and Dy possess the structure GxFz [see (1.5.5.8)] at room
temperature. The first five of them undergo reorientation tran-
sitions to the structure GzFx at lower temperatures. This reor-
ientation occurs gradually, as in Co. Both vectors L andMD rotate
simultaneously, as shown in Fig. 1.5.6.1. These vectors remain
perpendicular to each other, but the value of MD varies from
ðd1=BÞL for MDz to ðd2=BÞL for MDx. The coefficients d1 and d2
belong to the terms LxMz and LzMx, respectively. The following
magnetic point groups are observed when these transitions occur:

20x
m0x

20y

m0y

2z
mz

 !
T1 20y

m0y
 !
T2 2x

mx

20y

m0y

20z
m0z
: ð1:5:6:5Þ

Anomalies typical for second-order transitions were observed
at the temperatures T1 and T2. The interval T2 � T1 varies from
10 to 100 K.

At low temperatures, DyFeO3 is an easy-axis antiferromagnet
without weak ferromagnetism – Gy. It belongs to the trivial
magnetic point group D2h ¼ mmm. At TM ¼ 40 K, DyFeO3

transforms into a weak ferromagnet GxFz. This is a first-order
reorientation transition of the type
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Fig. 1.5.6.1. Schematic representation of the rotation of the vectors G and F
(in the xz plane) at a reorientation transition in orthoferrites.
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D2h ¼ mmm !
TM

D2hðC2hÞ ¼ m0m0m: ð1:5:6:6Þ

Reorientation transitions in antiferromagnets occur not only as
a result of a sign change of the anisotropy constant. They can be
governed by the applied magnetic field. In Section 1.5.3.3.2, we
described the spin-flop first-order reorientation transition in an
easy-axis antiferromagnet. This transition splits into two second-
order transitions if the magnetic field is not strictly parallel to the
axis of the crystal. There is a specific type of reorientation tran-
sition, which occurs in antiferromagnets that do not exhibit weak
ferromagnetism, but would become weak ferromagnets if the
antiferromagnetic vector was directed along another crystal-
lographic direction. As an example, let us consider such a tran-
sition in CoF2. It is a tetragonal crystal with crystallographic space
group D14

4h ¼ P42=mnm. Below TN, CoF2 becomes an easy-axis
antiferromagnet. The magnetic structure of this crystal is shown
in Fig. 1.5.5.3. Its magnetic point group is D4hðD2hÞ ¼ 40=mmm0.
Let us apply the magnetic field H parallel to the twofold axis x
(see Fig. 1.5.6.2). In a typical antiferromagnet, the field stimulates
a magnetization M ¼ �?H. The structure D14

4h ¼ P42=mnm
allows weak ferromagnetism if L is perpendicular to the z axis. As
a result, if the vector L is deflected from the z axis by an angle � in
the plane yz perpendicular to the x axis, the magnetization will
rise according to the relation

M ¼ �?ðH þHD sin �Þ; ð1:5:6:7Þ

where HD ¼ MD=�? [see (1.5.5.3) and (1.5.5.4)]. As a result,
there is a gain in the magnetic energy, which compensates the loss
in the anisotropy energy. The beginning of the deflection is a
second-order transition. The balance of both energies determines
the value of �:

sin � ¼ ðHe=HaHDÞH: ð1:5:6:8Þ

The second second-order transition occurs when � becomes equal
to �=2 at the critical field Hc:

Hc ¼ HDHa=He: ð1:5:6:9Þ

After the reorientation transition, CoF2 has the same
magnetic point group as the weak ferromagnet NiF2, i.e.
D2hðC2hÞ ¼ mm0m0.

1.5.7. Piezomagnetism

As we have seen, the appearance of weak ferromagnetism in
antiferromagnets is closely connected with their magnetic
symmetry. If the magnetic point group of the antiferromagnetic
crystal contains an axis of higher than twofold symmetry, the
magnetic structure is purely antiferromagnetic. By applying an
external force that disturbs the symmetry of the crystal and
destroys the axis of high symmetry, one may create a structure
possessing weak ferromagnetism. In the previous section, we
considered such reduction of the symmetry with the aid of a
magnetic field applied perpendicular to the main axis of the
crystal. Another possibility for symmetry reduction is to apply an
external pressure and to deform the crystal. Thus, in some anti-
ferromagnetic crystals, a ferromagnetic moment may be
produced on application of external stress. This phenomenon is
called piezomagnetism.

To investigate the piezomagnetic effect from the phenomen-
ological point of view, we have to add the terms of the magne-
toelastic energy in the expansion of the thermodynamic potential.
The magnetoelastic terms of the least degree in the expansion of
the thermodynamic potential ~�� for a given stable magnetic
structure will be of the type TijMkLl (Tij are the components of
the elastic stress tensor T). These terms must be invariant relative
to the crystallographic group of the material under examination.

If we consider the potential �, which is a function of T, T, H, the
terms of the magnetoelastic energy that are responsible for
piezomagnetism are of the form HiTjk. Thus, for the piezo-
magnetic crystals the expansion of the thermodynamic potential
should be expressed by

�ðT;T;HÞ ¼ �0ðT;HÞ �
P

i;j;k

�ijkHiTjk: ð1:5:7:1Þ

If at least one term of this expansion remains invariant under the
magnetic symmetry of the given crystal, then the corresponding
component �ijk will not be zero and hence

Mi ¼ �@�=@Hi ¼ �@�0=@Hi þ�ijkTjk: ð1:5:7:2Þ

Thus, when a stress Tjk is applied, a magnetic moment is produced
which is linear with the stress.

It follows from expression (1.5.7.1) that the converse of the
piezomagnetic effect also exists, i.e. linear magnetostriction:

Sjk ¼ �@�=@Tjk ¼ �ijkHi; ð1:5:7:3Þ

where Sjk are the components of the deformation tensor.

1.5.7.1. Piezomagnetic effect

The possibility of the existence of a piezomagnetic effect was
first foreseen by Voigt (1928). However, he assumed that it is
sufficient to consider only the crystallographic symmetry in order
to predict this effect. In reality, the crystals that do not possess a
magnetic structure are characterized by the transformation R
being contained in the magnetic group as an independent
element. The transformation R changes the sign of the magnetic
vectors H, L, M. Hence, for such crystals all values of �ijk vanish
and piezomagnetism is forbidden. The magnetic groups of
magnetically ordered crystals (ferromagnets and antiferro-
magnets) contain R only in combination with other elements of
symmetry, or do not contain this transformation at all. Hence the
piezomagnetic effect may occur in such crystals. This statement
was first made by Tavger & Zaitsev (1956). The most interesting
manifestation of the piezomagnetic effect is observed in anti-
ferromagnets, as there is no spontaneous magnetization in these
materials.

From equation (1.5.7.1) it follows that �ijk is an axial tensor of
third rank. Hence, apart from the restriction that piezomagnetism
is forbidden for all para- and diamagnetic materials, it must be
absent from the 21 magnetic point groups that contain the
element CiR ¼ 1

0
(see Table 1.5.7.1). The stress tensor Tjk is

symmetrical (Tjk ¼ Tkj); see Section 1.3.2.4. Thus the tensor �ijk

is symmetrical in its last two indices. This is the reason why
piezomagnetism is prohibited for three more magnetic point
groups: O ¼ 432, Td ¼

�443m and Oh ¼ m�33m. The remaining 66
magnetic point groups were found by Tavger (1958), who also
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Fig. 1.5.6.2. Schematic representation of the rotation of the vector L under
the action of a magnetic field applied to CoF2 perpendicular to the fourfold
axis z (reorientation transition) (see Figs. 1.5.5.3a and b).
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Table 1.5.7.1. The forms of the matrix characterizing the piezomagnetic effect

Magnetic crystal class Matrix representation �i� of the
piezomagnetic tensorSchoenflies Hermann–Mauguin

C1 1 �11 �12 �13 �14 �15 �16

�21 �22 �23 �24 �25 �26

�31 �32 �33 �34 �35 �36

2

4

3

5Ci
�11

C2 2 ð¼ 121Þ 0 0 0 �14 0 �16

�21 �22 �23 0 �25 0

0 0 0 �34 0 �36

2

4

3

5Cs m ð¼ 1m1Þ
C2h 2=m ð¼ 1 2=m 1Þ

(unique axis y)

C2ðC1Þ 20 ð¼ 1201Þ �11 �12 �13 0 �15 0

0 0 0 �24 0 �26

�31 �32 �33 0 �35 0

2

4

3

5CsðC1Þ m0 ð¼ 1m01Þ
C2hðCiÞ 20=m0 ð¼ 1 20=m0 1Þ

(unique axis y)

D2 222 0 0 0 �14 0 0

0 0 0 0 �25 0

0 0 0 0 0 �36

2

4

3

5C2v mm2 ½2mm;m2m�
D2h mmm

D2ðC2Þ 20202 0 0 0 0 �15 0

0 0 0 �24 0 0

�31 �32 �33 0 0 0

2

4

3

5C2vðC2Þ m0m02
C2vðCsÞ m020m ½20m0m�
D2hðC2hÞ m0m0m

C4; C6 4; 6 0 0 0 �14 �15 0

0 0 0 �15 ��14 0

�31 �31 �33 0 0 0

2

4

3

5S4; C3h
�44; �66

C4h; C6h 4=m; 6=m

C4ðC2Þ 40 0 0 0 �14 �15 0

0 0 0 ��15 �14 0

�31 ��31 0 0 0 �36

2

4

3

5S4ðC2Þ
�440

C4hðC2hÞ 40=m

D4; D6 422; 622 0 0 0 �14 0 0

0 0 0 0 ��14 0

0 0 0 0 0 0

2

4

3

5C4v; C6v 4mm; 6mm
D2d; D3h

�442m ½�44m2�; �66m2 ½�662m�
D4h; D6h 4=mmm; 6=mmm

D4ðC4Þ; D6ðC6Þ 42020; 62020 0 0 0 0 �15 0

0 0 0 �15 0 0

�31 �31 �33 0 0 0

2

4

3

5C4vðC4Þ; C6vðC6Þ 4m0m0; 6m0m0

D2dðS4Þ; D3hðC3hÞ
�4420m0 ½�44m020�; �66m020 ½�6620m0�

D4hðC4hÞ; D6hðC6hÞ 4=mm0m0; 6=mm0m0

D4ðD2Þ 40220 0 0 0 �14 0 0

0 0 0 0 �14 0

0 0 0 0 0 �36

2

4

3

5C4vðC2vÞ 40mm0

D2dðD2Þ; D2dðC2vÞ
�4402m0; �440m20

D4hðD2hÞ 40=mmm0

C3 3 �11 ��11 0 �14 �15 �2�22

��22 �22 0 �15 ��14 �2�11

�31 �31 �33 0 0 0

2

4

3

5S6
�33

D3 32 ð¼ 321Þ �11 ��11 0 �14 0 0

0 0 0 0 ��14 �2�11

0 0 0 0 0 0

2

4

3

5C3v 3m ð¼ 3m1Þ
D3d

�33m ð¼ �33m1Þ

D3ðC3Þ 320 ð¼ 3201Þ 0 0 0 0 �15 �2�22

��22 �22 0 �15 0 0

�31 �31 �33 0 0 0

2

4

3

5C3vðC3Þ 3m0 ð¼ 3m01Þ
D3dðS6Þ

�33m0 ð¼ �33m01Þ

C6ðC3Þ 60 �11 ��11 0 0 0 �2�22

��22 �22 0 0 0 �2�11

0 0 0 0 0 0

2

4

3

5C3hðC3Þ
�660

C6hðS6Þ 60=m0

D6ðD3Þ 60220 �11 ��11 0 0 0 0

0 0 0 0 0 �2�11

0 0 0 0 0 0

2

4

3

5C6vðC3vÞ 60mm0

D3hðD3Þ; D3hðC3vÞ
�6602m0; �660m20

D6hðD3dÞ 60=m0mm0

T; Th 23; m�33 0 0 0 �14 0 0

0 0 0 0 �14 0

0 0 0 0 0 �14

2

4

3

5OðTÞ 40320

TdðTÞ �4403m0

OhðThÞ m�33m0
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constructed the 16 corresponding forms of the piezomagnetic
tensors appropriate to each point group. They are represented in
Table 1.5.7.1. (See also Birss & Anderson, 1963; Birss, 1964.)

Since the stress tensor Tjk is symmetrical, it has only six
independent components. Therefore the notation of its compo-
nents can be replaced by a matrix notation (Voigt’s notation, see
Section 1.3.2.5) in the following manner:

Tensor notation Matrix notation

T11 T1

T22 T2

T33 T3

T23;T32 T4

T31;T13 T5

T12;T21 T6

In matrix notation, equation (1.5.7.2) may be written in the form

Mi ¼ �i�T�; ð1:5:7:4Þ

where i ¼ 1; 2; 3 and � ¼ 1; 2; 3; 4; 5; 6. These notations are used
in Table 1.5.7.1. Notice that �ij ¼ �ijj for j ¼ 1; 2; 3, �i4 ¼ 2�i23,
�i5 ¼ 2�i31, and �i6 ¼ 2�i12.

The form of the matrix �i� depends on the orientation of the
axes of the Cartesian coordinate system (CCS) with respect to the
symmetry axes of the point group of the crystal under consid-
eration. These symmetry axes may be rotation axes, rotoinversion
axes or mirror-plane normals, all possibly combined with time
reversal. The usual orientations of the CCS with respect to the
symmetry axes can be expressed by the order of the entries in the
Hermann–Mauguin symbol. An entry consists (apart from
possible primes and bars) of a number N ¼ 1, 2, 3, 4 or 6 or the
letter m or N=m (¼ N

m). The conventional rules will be followed:
in the monoclinic and orthorhombic crystal systems the x, y and z
axes of the CCS are parallel to the symmetry axes given in the
first, second and third entries, respectively. In the monoclinic
system, there is only one symmetry axis, which is usually chosen
parallel to the y axis, and a short Hermann–Mauguin symbol with
only one entry is usually used, e.g. 2=m instead of 1 2=m 1. In the
trigonal and hexagonal systems, the z, x and y axes are parallel to
the symmetry axes given in the first, second and third entries,
respectively. In the tetragonal system, the z axis is parallel to the
symmetry axis given in the first entry, and the x and y axes are
parallel to the symmetry axes given in the second entry, which
appear in two mutually perpendicular directions. In the cubic
system, the symmetry axes given in the first entry appear in three
mutually perpendicular directions; the x, y and z axes of the CCS
are chosen parallel to these directions. Alternative orientations
of the same point group that give rise to the same form of �i�

have been added between square brackets [] in Table 1.5.7.1.
Notice that the Schoenflies notation does not allow us to distin-
guish different orientations of the CCS with respect to the
symmetry axes.

The forms of �i� for frequently encountered orientations of
the CCS other than those given in Table 1.5.7.1 are

(1) 112; 11m; 11 2=m (unique axis z):

0 0 0 �14 �15 0

0 0 0 �24 �25 0

�31 �32 �33 0 0 �36

2

4

3

5;

(2) 1120; 11m0; 11 20=m0 (unique axis z):

�11 �12 �13 0 0 �16

�21 �22 �23 0 0 �26

0 0 0 �34 �35 0

2

4

3

5;

(3) 22020; 2m0m0;mm020 ½m20m0�;mm0m0:

�11 �12 �13 0 0 0

0 0 0 0 0 �26

0 0 0 0 �35 0

2

4

3

5;

(4) 20220;m02m0; 20mm0 ½m0m20�;m0mm0:

0 0 0 0 0 �16

�21 �22 �23 0 0 0

0 0 0 �34 0 0

2

4

3

5;

(5) 40202; 40m0m; 4 0m02; 4 020m; 40=mm0m:

0 0 0 0 �15 0

0 0 0 ��15 0 0

�31 ��31 0 0 0 0

2

4

3

5;

(6) 60202; 60m0m; 6 0m02; 6 020m; 60=m0m0m:

0 0 0 0 0 �2�22

��22 �22 0 0 0 0

0 0 0 0 0 0

2

4

3

5;

(7) 312; 31m; 31m:

0 0 0 �14 0 �2�22

��22 �22 0 0 ��14 0

0 0 0 0 0 0

2

4

3

5;

(8) 3120; 31m0; 31m0:

�11 ��11 0 0 �15 0

0 0 0 �15 0 �2�11

�31 �31 �33 0 0 0

2

4

3

5:

Many connections between the different forms of �i� given
above and in Table 1.5.7.1 have been derived by Kopský
(1979a,b) and Grimmer (1991). These connections between the
forms that the matrix can assume for the various magnetic or
crystallographic point groups hold for all matrices and tensors
that describe properties of materials, not just for the special case
of piezomagnetism.

Dzyaloshinskii (1957b) pointed out a number of antiferro-
magnets that may display the piezomagnetic effect. These include
the fluorides of the transition metals, in which the piezomagnetic
effect was first observed experimentally (see Fig. 1.5.7.1)
(Borovik-Romanov, 1959b). Below we shall discuss the origin of
the piezomagnetic effect in fluorides in more detail.

The fluorides of transition metals MnF2, CoF2 and FeF2 are
tetragonal easy-axis antiferromagnets (see Fig. 1.5.5.3). It is easy
to check that the expansion of the thermodynamic potential ~�� up
to terms that are linear in stress Tij and invariant relative to the
transformations of the crystallographic space group D14

4h ¼

P42=mnm is represented by
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~�� ¼ ~��0 þ ðA=2ÞL
2 þ ða=2ÞðL2

x þ L2
yÞ

þ ðB=2ÞM2 þ ðb=2ÞðM2
x þM2

yÞ

þ dðLxMy þ LyMxÞ

þ 21ðMxTyz þMyTxzÞLz

þ 2�1ðLyTyz þ LxTxzÞLz

þ 22MzLzTxy þ 2�2LxLyTxy �MH: ð1:5:7:5Þ

In this expression, the sums (Tij þ Tji) that appear in the
magnetoelastic terms have been replaced by 2Tij, as Tij � Tji.

The analysis of expression (1.5.7.5) in the absence of stresses
proves that fluorides may possess weak ferromagnetism provided
that a< 0 (Lz ¼ 0) (see Section 1.5.5.1). Here we shall discuss the
easy-axis structure of the fluorides MnF2, CoF2, FeF2 (see Fig.
1.5.5.3b). In the absence of magnetic fields and stresses only
Lz 6¼ 0 for this structure. All other components of the vector L
and the magnetization vector M are equal to zero. The magnetic
point group is D4hðD2hÞ ¼ 40=mmm0.

To transform the potential ~��ðLi;Mj;Tk‘Þ [(1.5.7.5)] into the
form �ðT;T;HÞ [(1.5.7.1)], one has to insert into the magne-
toelastic terms the dependence of the components of L andM on
the magnetic field. The corresponding relations, obtained by
minimization of (1.5.7.5) without the magnetoelastic terms, are

Mx ¼
a

aðBþ bÞ � d2
Hx; Lx ¼ �

d

aðBþ bÞ � d2
Hy;

My ¼
a

aðBþ bÞ � d2
Hy; Ly ¼ �

d

aðBþ bÞ � d2
Hx;

Mz ¼
1

B
Hz; Lz ’ constant:

ð1:5:7:6Þ

To a first approximation, the component Lz does not depend on
the magnetic field.

Inserting the relations (1.5.7.6) for Mi and Li into the
magnetoelastic terms of (1.5.7.5), one gets the following expres-
sion for the corresponding terms in �ðT;Hi;TjkÞ:

�ðT;Hi;TjkÞ ¼ �0ðT;HiÞ þ 2Lz

a1 � d�1
aðBþ bÞ � d2

TyzHx

þ 2Lz

a1 � d�1
aðBþ bÞ � d2

TxzHy þ 2Lz

2
B
TxyHz:

ð1:5:7:7Þ

In this case, the expression for the magnetoelastic energy
contains only three components of the stress tensor: Tyz, Txz and
Txy. Using (1.5.7.2), we get formulas for the three main compo-
nents of the piezomagnetic effect:

Mx ¼ 2Lz

d�1 � a1
aðBþ bÞ � d2

Tyz ¼ 2�xyzTyz ¼ �14T4; ð1:5:7:8Þ

My ¼ 2Lz

d�1 � a1
aðBþ bÞ � d2

Txz ¼ 2�yxzTxz ¼ �25T5; ð1:5:7:9Þ

Mz ¼ �2Lz

2
B
Txy ¼ 2�zxyTxy ¼ �36T6: ð1:5:7:10Þ

In all three cases, the piezomagnetic moment is produced in the
direction perpendicular to the shear plane. Comparing (1.5.7.8)
and (1.5.7.9), we see that�25 ¼ �14. This is in agreement with the
equivalence of the axes x and y in the tetragonal crystals. If the
stress is applied in the plane xz (or yz), the vector L turns in the
shear plane and a component Lx (or Ly) is produced:

Lx ¼ 2Lz

�1ðBþ bÞ � d1
aðBþ bÞ � d2

Txz: ð1:5:7:11Þ

For Txy stress, no rotation of the vector L occurs.
Formulas (1.5.7.8)–(1.5.7.10) show that in accordance with

Table 1.5.7.1 the form of the matrix �i� for the magnetic point
group D4hðD2hÞ ¼ 40=mmm0 is

Ki� ¼

0 0 0 �14 0 0

0 0 0 0 �14 0

0 0 0 0 0 �36

2

4

3

5: ð1:5:7:12Þ

The relations (1.5.7.8)–(1.5.7.10) show that the components of
the piezomagnetic tensor �ijk are proportional to the compo-
nents of the antiferromagnetic vector L. Thus the sign of the
piezomagnetic moment depends on the sign of the vector L and
the value of the piezomagnetic effect depends on the domain
structure of the sample (we are referring to S-domains). The
piezomagnetic moment may become equal to zero in a poly-
domain sample. On the other hand, piezomagnetism may be used
to obtain single-domain antiferromagnetic samples by cooling
them from the paramagnetic state in a magnetic field under
suitably oriented external pressure.

There are relatively few publications devoted to experimental
investigations of the piezomagnetic effect. As mentioned above,
the first measurements of the values of the components of the
tensor �ijk were performed on crystals of MnF2 and CoF2

(Borovik-Romanov, 1960). In agreement with theoretical
prediction, three components were observed: �xyz ¼ �yxz and
�zxy. The largest value obtained for these components was
�14 ¼ 21 10�10 Oe�1. The piezomagnetic effect was also
observed for two modifications of �-Fe2O3 (Andratskii &
Borovik-Romanov, 1966). The magnetic point group of the low-
temperature modification of this compound is D3d ¼

�33m. In
accordance with form (7) given above, the following nonzero
components �ijk were found for the low-temperature state:

�xyz ¼ ��yxz; ð1:5:7:13Þ

�yyy ¼ ��yxx ¼ ��xxy: ð1:5:7:14Þ
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Fig. 1.5.7.1. The dependence of the magnetic moment of CoF2 on the
magnetic field. (1) Without stress; (2) under the stress Txz ¼ 33:3 MPa
(Borovik-Romanov, 1960).
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The values of these components are one order of magnitude
smaller than for CoF2.

The temperature dependence of the components is similar for
the piezomagnetic tensor and the sublattice magnetization. This
means that the magnetoelastic constants 1 and 2 (as well as the
constants B and d) in the relations (1.5.7.7) and (1.5.7.8) depend
only slightly on temperature.

1.5.7.2. Linear magnetostriction

From expression (1.5.7.3), it follows that a deformation of the
sample may occur in a magnetic field. This deformation is linear
with respect to the field. By its linear dependence, this effect
differs essentially from ordinary magnetostriction, which is
quadratic in the magnetic field. Most substances display such
quadratic magnetostriction. The linear magnetostriction may be
observed only in those ordered magnetics that belong to one of
the 66 magnetic point groups that allow piezomagnetism and are
listed in Table 1.5.7.1. The distinctive feature of linear magne-
tostriction is the dependence of its sign on the sign of the
magnetic field and on the sign of the antiferromagnetic vector L.
The sign of L characterizes the domain state of the specimen.
Thus, observation of linear magnetostriction gives information
about the domain state. In some materials, it has been observed
that a sudden transition from one domain state to the opposite
may occur in strong magnetic fields.

Linear magnetostriction (LM) was observed in CoF2 by
Borovik-Romanov & Yavelov (1963) in a magnetic field applied
parallel to the fourfold axis. The relations for the LM in CoF2 can
be obtained by differentiating the expression of the thermo-
dynamic potential � [(1.5.7.7)]. If the magnetic field is applied
along the y axis, a deformation Sxz appears:

Sxz ¼ �@�=@Txz ¼ 2Lz

d�1 � a1
aðBþ bÞ � d2

Hy ¼ 2�yxzHy ¼ �25H2:

ð1:5:7:15Þ

A similar formula holds for Syz if the magnetic field is applied
parallel to the x axis (with �14, which is equal to �25).

If the magnetic field is applied parallel to the fourfold axis, the
Sxy component of the deformation appears:

Sxy ¼ �@�=@Txy ¼ �2Lzð2=BÞHz ¼ �2Lz2�kHz

¼ 2�zxyHz ¼ �36H3: ð1:5:7:16Þ

If the relations (1.5.7.15) and (1.5.7.16) are compared with
(1.5.7.8)–(1.5.7.10), it is apparent that in accordance with theory
the components of the tensors of the piezomagnetic effect (PM)
and LM are identical.

Prokhorov & Rudashevskii (1969, 1975) extended the inves-
tigation of LM in CoF2. They discovered that if the applied field
becomes larger than 20 kOe, a jump in the magnetostriction
occurs and it changes its sign (see Fig. 1.5.7.2). This jump is the
result of a transition of the magnetic structure from one domain

state (Lþ) into the opposite state (L�). To explain such a tran-
sition, one has to take into account the term of third power in the
expansion of the magnetic energy (Scott & Anderson, 1966),

Um ¼ AiHi þ
1
2�ijHiHj þ CijkHiHjHk: ð1:5:7:17Þ

Cijk is an axial time-antisymmetric tensor, the sign of which
depends on the sign of the domain. This term defines the
dependence of the magnetic energy on the sign of the anti-
ferromagnetic domain.

To date, CoF2 and MnF2 are unique in that LM and PM occur
without rotating the antiferromagnetic vector L if the magnetic
field is applied along the fourfold axis (or pressure along a h110i
axis). In all other cases, these effects are accompanied by a
rotation of L and, as a result, the creation of new components Li.
To the latter belongs the LM in the low-temperature modification
of �-Fe2O3, which was observed by Anderson et al. (1964) (see
also Scott & Anderson, 1966; Levitin & Shchurov, 1973). This
compound displays PM, therefore it is obvious that LM will also
occur (see Table 1.5.7.1).

LM has been observed in some orthoferrites. One of the
orthoferrites, DyFeO3 at low temperatures, is a pure antiferro-
magnet, the vector L of which is aligned along the y axis. Its
magnetic point group (D2h ¼ mmm) allows PM and LM. The
latter was observed when a magnetic field was applied parallel to
the z axis by Zvezdin et al. (1985). There it was shown that
�zxy 6¼ 0 if 0<H<Hc. At Hc ’ 4 kOe, a first-order phase
transition into a weakly ferromagnetic state with magnetic point
group D2hðC2hÞ ¼ m0m0m ðL k Ox;MD k OzÞ occurs.

Many orthoferrites and orthochromites that possess weak
ferromagnetism belong to the same point group, which possesses
an ordinary centre of symmetry. Thus PM and LM are allowed for
these phases of orthoferrites. If the magnetic field is applied
parallel to Ox, they undergo a reorientation transition at which
both vectors, L andMD, being orthogonal, rotate in the xz plane.
These intermediate angular phases belong to the magnetic point
group C2hðCiÞ ¼ 20=m0.

LM was observed by Kadomtseva and coworkers (Kadomt-
seva, Agafonov, Lukina et al., 1981; Kadomtseva, Agafonov,
Milov et al., 1981) in two such compounds, YFeO3 and YCrO3.
The�xxz components of the LM tensor were measured, which are
allowed for the D2hðC2hÞ ¼ m0m0m state.

The experimental data obtained to date for PM and LM are
summarized in Table 1.5.7.2. The values of the components �i�

can be converted to SI units using 1 Oe�1 ¼ 4� 10�3 m A�1

¼ 4� 10�3 T Pa�1.
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Fig. 1.5.7.2. Linear magnetostriction of CoF2 (Prokhorov & Rudashevskii,
1975).

Table 1.5.7.2. Experimental data for the piezomagnetic effect (PM) and for
linear magnetostriction (LM)

a: antiferromagnetic phase; w: weak ferromagnetic phase.

Compound �i�  1010 (Oe�1) T (K) PM or LM Reference†

MnF2 �14 ’ 0:2 20 PM (1)
CoF2 �14 ¼ 21 20 PM (1)

�36 ¼ 8:2 20 PM (1)
�36 ¼ 9:8 4 LM (3)

DyFeO3 �36 ¼ 6:0 6 LM (8)
YFeO3 �15 ¼ 1:7 6 LM (6)
YCrO3 �15 ’ 1 6 LM (7)
�-Fe2O3 (a) �22 ¼ 1:9 78 LM (4)

�22 ¼ 3:2 77 PM (2)
�22 ¼ 1:3 100 LM (5)
�14 ¼ 0:3 78 LM (4)
�14 ¼ 1:7 77 PM (2)
�14 ¼ 0:9 100 LM (5)

�-Fe2O3 (w) �23 ¼ 2:5 292 PM (2)

† References: (1) Borovik-Romanov (1959b, 1960); (2) Andratskii & Borovik-Romanov
(1966); (3) Prokhorov & Rudashevskii (1969, 1975); (4) Anderson et al. (1964); (5) Levitin &
Shchurov (1973); (6) Kadomtseva, Agafonov, Milov et al. (1981); (7) Kadomtseva, Agafonov,
Lukina et al. (1981); (8) Zvezdin et al. (1985).
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1.5.7.3. Linear magnetic birefringence

The magnetic contribution to the component of the dielectric
permittivity �"ij can be represented as a series in the powers of
the components of the magnetization and the antiferromagnetic
vector. The magnetic birefringence (also called the Cotton–
Mouton or Voigt effect) is described by the real symmetrical part
of the tensor �"ij. In paramagnetic crystals, the magnetizationM is
proportional to the applied magnetic field H, and the series has
the form

�"ij ¼ QMM
ijk‘MkM‘ ¼ QMM

ijk‘ �
M
kr�

M
‘sHrHs ¼ �ijrsHrHs: ð1:5:7:18Þ

The tensor �ijrs is symmetric with respect to both the first and the
second pair of indices. The symmetry of this tensor implies that
the diagonal components of the permittivity tensor include
magnetic corrections. The modification of the diagonal compo-
nents gives rise to birefringence in cubic crystals and to a change
�npm of the birefringence in uniaxial and lower-symmetry crys-
tals. It follows from (1.5.7.18) that this birefringence is bilinear in
the applied field. Bilinear magnetic birefringence can be
observed in uniaxial crystals if the magnetic field is applied along
the x axis perpendicular to the principal z axis. In the simplest
case, a difference in the refractive indices nx and ny arises:

�npm ¼ nx � ny ¼
1

2n0
ð�"xx � �"yyÞ ¼

1

2n0
ð�xxxx � �yyxxÞH

2
x ;

ð1:5:7:19Þ

where n0 is the refractive index for the ordinary beam.
Consider now a magnetically ordered crystal which can be

characterized by an antiferromagnetic vector L0 and a magneti-
zation vector M0 in the absence of a magnetic field. Applying a
magnetic field with components Hr, we change the direction and
size of L0 andM0, getting additional components LH

k ¼ �
L
krHr and

MH
k ¼ �

M
krHr. This is illustrated by the relations (1.5.7.6). Instead

of (1.5.7.18) we get

�"ij ¼ QLL
ijk‘LkL‘ þQML

ijk‘MkL‘ þQMM
ijk‘MkM‘

¼ QLL
ijk‘L0kL0‘ þQML

ijk‘M0kL0‘ þQMM
ijk‘M0kM0‘

þ ½2QLL
ijk‘�

L
krL0‘ þQML

ijk‘ð�
M
krL0‘ þM0k�

L
‘rÞ þ 2QMM

ijk‘ �
M
krM0‘�Hr:

ð1:5:7:20Þ

The terms in the middle line of (1.5.7.20) show that in an ordered
state a change in the refractive indices occurs that is proportional
to L2

0 in antiferromagnets and to M2
0 in ferromagnets. The terms

in square brackets show that a linear magnetic birefringence may
exist. In the special case of a tetragonal antiferromagnet
belonging to the space group D14

4h ¼ P42=mnm with L0 parallel to
the principal axis z, the linear birefringence occurs in the xy plane
if the magnetic field is applied along the z axis (see Fig. 1.5.5.3). In
this case, M0 ¼ 0, �Lkz ¼ 0 for all k, �Mxz ¼ �

M
yz ¼ 0 and �Mzz ¼ 1=B

[see (1.5.7.6)]. Therefore the terms in square brackets in
(1.5.7.20) differ from zero only for one component of �"ij,

�"ij ¼ QML
xyzzL0zHz=B ¼ qzxyHzsignðL0zÞ: ð1:5:7:21Þ

As a result,

�naf ¼ nx0 � ny0 ¼
1

2n0
�"xy ¼

1

2n0
qzxyHzsignðL0zÞ; ð1:5:7:22Þ

where x0; y0 are the optic axes, which in these tetragonal crystals
are rotated by �=4 relative to the crystallographic axes.

Comparing relation (1.5.7.22) with (1.5.7.3), one can see that
like LM, there may be linear magnetic birefringence. The forms
of the tensors that describe the two effects are the same.

Linear magnetic birefringence has been observed in the
uniaxial antiferromagnetic low-temperature �-Fe2O3 when the
magnetic field was applied perpendicular to the threefold axis

(Le Gall et al., 1977; Merkulov et al., 1981). The most impressive
effect was observed in CoF2 when the magnetic field was applied
along the fourfold axis. The crystal ceased to be optically uniaxial
and a difference ðnx0 � ny0 Þ / Hz was observed in accordance
with (1.5.7.22). Such linear magnetic birefringence does not exist
in the paramagnetic state. Linear birefringence has also been
observed in CoCO3 and DyFeO3. For details of these experi-
ments, see Eremenko et al. (1989). These authors also used linear
birefringence to make the antiferromagnetic domains visible. A
further review of linear magnetic birefringence has been given by
Ferré & Gehring (1984).

Piezomagnetism, linear magnetostriction and linear birefrin-
gence in fluorides can be clearly demonstrated qualitatively for
one particular geometry. As shown in Fig. 1.5.7.3, the crystal-
lographically equivalent points 1 and 2 are no longer equivalent
after a shear deformation applied in the plane xy. During such a
deformation, the distances from the magnetic ions to the nearest
fluoride ions increase in points 1 and decrease in points 2. As a
result, the values of the g-factors for the ions change. Evidently,
the changes of the values of the g-factors for different sublattices
are opposite in sign. Thus the sublattice magnetizations are no
longer equal, and a magnetic moment arises along the direction
of sublattice magnetization. On the other hand, if we increase the
magnetization of one sublattice and decrease the magnetization
of the other by applying a magnetic field parallel to the z axis, the
interactions with the neighbouring fluoride ions also undergo
changes with opposite signs. This gives rise to the magnetostric-
tion. These considerations can be applied only to antiferro-
magnets with the fluoride structure. In these structures, single-ion
anisotropy is responsible for the weak ferromagnetism, not the
antisymmetric exchange interaction of the form d½Si  Sk�.

1.5.8. Magnetoelectric effect

Curie (1894) stated that materials that develop an electric
polarization in a magnetic field or a magnetization in an electric
field may exist. This prediction was given a more precise form by
Landau & Lifshitz (1957), who considered the invariants in the
expansion of the thermodynamic potential up to linear terms in
Hi. For materials belonging to certain magnetic point groups, the
thermodynamic potential � can be written in the form

� ¼ �0 � �ijEiHj: ð1:5:8:1Þ

If (in the absence of a magnetic field) an electric field E is applied
to a crystal with potential (1.5.8.1), a magnetization will be
produced:

Mj ¼ �
@�

@Hj

¼ �ijEi: ð1:5:8:2Þ
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Fig. 1.5.7.3. Variation of symmetry of the crystal field in the presence of the
piezomagnetic effect in CoF2. The unshaded atoms lie at height c=2 above the
xy plane (see Fig. 1.5.5.3).
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Conversely, an electric polarization P arises at zero electric field
if a magnetic field is applied:

Pi ¼ �
@�

@Ei

¼ �ijHj: ð1:5:8:3Þ

This phenomenon is called the magnetoelectric effect. A
distinction is made between the linear magnetoelectric effect
described above and two types of bilinear magnetoelectric
effects. These bilinear effects arise if the thermodynamic poten-
tial contains terms of the form EiHjHk or HiEjEk. They will be
described in Section 1.5.8.2.

1.5.8.1. Linear magnetoelectric effect

It is obvious that the linear magnetoelectric effect is forbidden
for all dia- and paramagnets as their magnetic groups possess R as
a separate element. The effect is also forbidden if the magnetic

space group contains translations multiplied by R because in
these cases the point group also possesses R as a separate
element. Since H is an axial vector that changes sign under R and
E is a polar vector that is invariant under time inversion, �ij is
an axial tensor of second rank, the components of which all
change sign under time inversion (R). From relation (1.5.8.1),
it follows that a magnetic group which allows the magnetoelectric
effect cannot possess a centre of symmetry (Ci ¼

�11). However, it
can possess it multiplied by R (CiR ¼ �110) (see Table
1.5.8.1). There are 21 magnetic point groups that possess a centre
of symmetry. The detailed analysis of the properties of the tensor
�ij shows that among the remaining 69 point groups there are 11
groups for which the linear magnetoelectric effect is also
forbidden. These groups are C3h ¼

�66, C6ðC3Þ ¼ 60, C6hðC3hÞ ¼

60=m, D3h ¼
�66m2, D3hðC3hÞ ¼

�66m020, D6hðD3hÞ ¼ 60=mmm0,
D6ðD3Þ ¼ 60220, C6vðC3vÞ ¼ 60m0m, Td ¼

�443m, OðTÞ ¼ 40320 and
OhðTdÞ ¼ m0 �330m.

All remaining 58 magnetic point groups in which the linear
magnetoelectric effect is possible are listed in Table 1.5.8.1. The
11 forms of tensors that describe this effect are also listed in this
table.3 The orientation of the axes of the Cartesian coordinate
system (CCS) with respect to the symmetry axes of the crystal is
the same as in Table 1.5.7.1. Alternative orientations of the same
point group that give rise to the same form of �ij have been added
between square brackets in Table 1.5.8.1. The tensor has the same
form for 32 ð¼ 321Þ and 312, 3m01 and 31m0, �330m01 and �3301m0; it
also has the same form for 3m1 and 31m, 3201 and 3120, �330m1 and
�3301m.
The forms of �ij for frequently encountered orientations of the

CCS other than those given in Table 1.5.8.1 are (cf. Rivera, 1994)
(1) 112; 11m0; 11 2=m0 (unique axis z):

�11 �12 0

�21 �22 0

0 0 �33

2

4

3

5;

(2) 11m; 1120; 11 20=m (unique axis z):

0 0 �13
0 0 �23
�31 �32 0

2

4

3

5;

(3) 2mm; 22020;m0m20 ½m020m�;m0mm:

0 0 0

0 0 �23
0 �32 0

2

4

3

5;

(4) m2m; 20220;mm020 ½20m0m�;mm0m:

0 0 �13
0 0 0

�31 0 0

2

4

3

5;

(5) �44m2; �4420m0; 40202; 40mm0; 40=m0mm0:

0 �12 0

�12 0 0

0 0 0

2

4

3

5:
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Table 1.5.8.1. The forms of the tensor characterizing the linear magnetoelectric
effect

Magnetic crystal class Matrix representation
of the property tensor
�ijSchoenflies Hermann–Mauguin

C1 1 �11 �12 �13
�21 �22 �23
�31 �32 �33

2

4

3

5CiðC1Þ
�11
0

C2 2 ð¼ 121Þ �11 0 �13
0 �22 0

�31 0 �33

2

4

3

5CsðC1Þ m0 ð¼ 1m01Þ

C2hðC2Þ 2=m0 ð¼ 1 2=m0 1Þ

(unique axis y)

Cs m ð¼ 1m1Þ 0 �12 0

�21 0 �23
0 �32 0

2

4

3

5C2ðC1Þ 20 ð¼ 1201Þ

C2hðCsÞ 20=m ð¼ 1 20=m 1Þ

(unique axis y)

D2 222 �11 0 0

0 �22 0

0 0 �33

2

4

3

5C2vðC2Þ m0m02 ½2m0m0; m02m0�

D2hðD2Þ m0m0m0

C2v mm2 0 �12 0

�21 0 0

0 0 0

2

4

3

5D2ðC2Þ 20202

C2vðCsÞ 20mm0 ½m20m0�

D2hðC2vÞ mmm0

C4; S4ðC2Þ; C4hðC4Þ 4; �44
0
; 4=m0 �11 �12 0

��12 �11 0

0 0 �33

2

4

3

5C3; S6ðC3Þ 3; �33
0

C6; C3hðC3Þ; C6hðC6Þ 6; �66
0
; 6=m0

S4
�44 �11 �12 0

�12 ��11 0

0 0 0

2

4

3

5C4ðC2Þ 40

C4hðS4Þ 40=m0

D4; C4vðC4Þ 422; 4m0m0 �11 0 0

0 �11 0

0 0 �33

2

4

3

5D2dðD2Þ; D4hðD4Þ
�44
0
2m0 ½�44

0
m02�; 4=m0m0m0

D3; C3vðC3Þ; D3dðD3Þ 32; 3m0; �33
0
m0

D6; C6vðC6Þ 622; 6m0m0

D3hðD3Þ; D6hðD6Þ
�66
0
m02 ½�66

0
2m0�; 6=m0m0m0

C4v; D4ðC4Þ 4mm; 42020 0 �12 0

��12 0 0

0 0 0

2

4

3

5D2dðC2vÞ; D4hðC4vÞ
�44
0
20m ½�44

0
m20�; 4=m0mm

C3v; D3ðC3Þ; D3dðC3vÞ 3m; 320; �33
0
m

C6v; D6ðC6Þ 6mm; 62020

D3hðC3vÞ; D6hðC6vÞ
�66
0
m20 ½�66

0
20m�; 6=m0mm

D2d; D2dðS4Þ
�442m; �44m020 �11 0 0

0 ��11 0

0 0 0

2

4

3

5D4ðD2Þ; C4vðC2vÞ 40220; 40m0m

D4hðD2dÞ 40=m0m0m

T; ThðTÞ 23; m0 �33
0

�11 0 0

0 �11 0

0 0 �11

2

4

3

5O; TdðTÞ; OhðOÞ 432; �44
0
3m0; m0 �33

0
m0

3 Table 1.5.8.1 shows that the tensor describing the magnetoelectric effect does not
need to be symmetric for 31 of the 58 point groups. These 31 groups coincide with
those that admit a spontaneous toroidal moment (Gorbatsevich & Kopaev, 1994);
they were first determined by Ascher (1966) as the magnetic point groups
admitting spontaneous currents.
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As mentioned above, the components of the linear magneto-
electric tensor change sign under time inversion. The sign of
these components is defined by the sign of the antiferromagnetic
vector L, i.e. by the sign of the 180� domains (S-domains). This is
like the behaviour of the piezomagnetic effect and therefore
everything said above about the role of the domains can be
applied to the magnetoelectric effect.

Dzyaloshinskii (1959) proposed the antiferromagnetic Cr2O3

as the first candidate for the observation of the magnetoelectric
(ME) effect. He showed that the ME tensor for this compound
has three nonzero components: �11 ¼ �22 and �33. The ME effect
in Cr2O3 was discovered experimentally by Astrov (1960) on an
unoriented crystal. He verified that the effect is linear in the
applied electric field. Folen et al. (1961) and later Astrov (1961)
performed measurements on oriented crystals and revealed the
anisotropy of the ME effect. In the first experiments, the ordinary
magnetoelectric effect MEE (the electrically induced magneti-
zation) was investigated. This means the magnetic moment
induced by the applied electric field was measured. Later Rado &
Folen (1961) observed the converse effect MEH (the electric
polarization induced by the magnetic field). The temperature
dependence of the components of the magnetoelectric tensor in
Cr2O3 was studied in detail in both laboratories.

In the following years, many compounds that display the linear
magnetoelectric effect were discovered. Both the electrically
induced and the magnetically induced ME effect were observed.
The values of the components of the magnetoelectric tensor
range from 10�6 to 10�2 in compounds containing the ions of the
iron group and from 10�4 to 10�2 in rare-earth compounds. Cox
(1974) collected values of �max of the known magnetoelectrics.
Some are listed in Table 1.5.8.2 together with more recent results.

Additional information about the experimental data is presented
in three conference proceedings (Freeman & Schmid, 1975;
Schmid et al., 1994; Bichurin, 1997).

The values of �ij are given in rationalized Gaussian units,
where �ij is dimensionless. Some authors follow Dzyaloshinskii
(1959) in writing (1.5.8.1) as � ¼ �0 � ð�

0
ij=4�ÞEiHj, where �

0
ij

are the non-rationalized Gaussian values of the components of
the magnetoelectric tensor. If SI units are used, then (1.5.8.1)
becomes � ¼ �0 � �

SI
ij EiHj. The connections between the values

of a tensor component expressed in these three systems are

4��ij ¼ �
0
ij ¼ 3 108�SIij : ð1:5:8:4Þ

The units of �SIij are s m�1. A detailed discussion of the rela-
tions between the descriptions of the magnetoelectric effect in
different systems of units is given by Rivera (1994).

Most magnetoelectrics are oxides containing magnetic ions.
The ions of the iron group are contained in corundum-type
oxides [magnetic point group D3dðD3Þ ¼

�330m0], triphyllite-type
oxides with different magnetic groups belonging to the ortho-
rhombic crystallographic structure D2h ¼ mmm and other
compounds. The rare-earth oxides are represented by the
orthorhombic RMO3 structure with R ¼ rare earth, M ¼ Fe3þ,
Co3þ, Al3þ [magnetic point group D2hðD2Þ ¼ m0m0m0], tetragonal
zircon-type compounds RMO4 (R ¼ rare earth, M ¼ P, V)
[magnetic point group D4hðD2dÞ ¼ 40=m0m0m], monoclinic oxide
hydroxides ROOH [magnetic point groups C2hðC2Þ ¼ 2=m0,
C2hðCsÞ ¼ 20=m] and other compounds. Of particular interest is
TbPO4, which has the highest value of the magnetoelectric tensor
components, 1:2 10�2 (Rado & Ferrari, 1973; Rado et al., 1984).
There are also some weak ferromagnets and ferrimagnets that
exhibit the linear magnetoelectric effect. An example is the
weakly ferromagnetic boracite Ni3B7O13I. These orthorhombic
compounds will be discussed in Section 1.5.8.3. Another ortho-
rhombic magnetoelectric crystal is ferrimagnetic FeGaO3 (Rado,
1964; see Table 1.5.8.2).

It has been shown in experiments on Cr2O3 that in the spin-
flop phase �k becomes zero but a non-diagonal component �xz
arises (Popov et al., 1992). Such behaviour is possible if under the
spin-flop transition the magnetic point group of Cr2O3 transforms
from D3dðD3Þ ¼

�330m0 to C2hðCsÞ ¼ 1120=m. For the latter
magnetic point group, the ME tensor possesses only transverse
components.

The temperature dependences determined for the ME moduli,
�k and �?, in Cr2O3 are quite different (see Fig. 1.5.8.1). The
temperature dependence of �? is similar to that of the order
parameter (sublattice magnetizationM0), which can be explained
easily, bearing in mind that the magnetoelectric moduli are

139

Table 1.5.8.2. A list of some magnetoelectrics

Compound
TN or TC

(K)
Magnetic
point group

Maximum
�obs References†

Fe2TeO6 219 4=m0m0m0 3 10�5 7–9, 70
DyAlO3 3.5 m0m0m0 2 10�3 11–13
GdAlO3 4.0 m0m0m0 1 10�4 14
TbAlO3 4.0 m0m0m0 1 10�3 12, 15–17
TbCoO3 3.3 mmm0 3 10�5 12, 16, 18
Cr2O3 318 �33

0
m0 1 10�4 45–49, 70,

71, W162
Nb2Mn4O9 110 �33

0
m0 2 10�6 52, 53

Nb2Co4O9 27 �33
0
m0 2 10�5 52, 53

Ta2Mn4O9 104 �33
0
m0 1 10�5 53

Ta2Co4O9 21 �33
0
m0 1 10�4 53

LiMnPO4 35 m0m0m0 2 10�5 55, 56, 58, 60
LiFePO4 50 mmm0 1 10�4 57, 58
LiCoPO4 22 mmm0 7 10�4 54, 55, R161
LiNiPO4 23 mmm0 4 10�5 54, 55, 61
GdVO4 2.4 40=m0m0m 3 10�4 70
TbPO4 2.2 40=m0m0m 1 10�2 66, 67
DyPO4 3.4 40=m0m0m 1 10�3 68, 69
HoPO4 1.4 40=m0m0m 2 10�4 72
Mn3B7O13I 26 m0m20 2 10�6 C204
Co3B7O13Cl 12 m 3 10�4 S204
Co3B7O13Br 17 m0m20 2 10�3 88C1
Co3B7O13I 38 m0m20 1 10�3 90C3
Ni3B7O13I 61.5 m0 2 10�4 74, 75, 77–79,

90C2
Ni3B7O13Cl 9 m0m20 3 10�4 74R2, 91R1
Cu3B7O13Cl 8.4 m0m02 3 10�6 88R1
FeGaO3 305 m0m20 4 10�4 84–86
TbOOH 10.0 2=m0 4 10�4 114
DyOOH 7.2 2=m0 1 10�4 92, 114
ErOOH 4.1 20=m 5 10�4 93, 114
Gd2CuO4 6.5 mmm0 1 10�4 W161
MnNb2O6 4.4 mmm0 3 10�6 101, 102
MnGeO3 16 mmm0 2 10�6 98–100
CoGeO3 31 mmm0 1 10�4 70
CrTiNdO5 13 mmm0 1 10�5 70, 89

† Numbers refer to references quoted by Cox (1974); codes 88C1, 90C3, 88R1, 90C2, 74R2,
91R1 refer to references quoted by Burzo (1993); and codes W162, R161, C204, S204 and
W161 refer to articles in Ferroelectrics, 162, 141, 161, 147, 204, 125, 204, 57 and 161, 133,
respectively.

Fig. 1.5.8.1. Temperature dependence of the components �k and �? in Cr2O3

(Astrov, 1961).
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proportional to the magnitude of the antiferromagnetic vector
(� / Lz ¼ 2M0). However, to explain the rather complicated
temperature dependence of �k it becomes necessary to assume
that the moduli � are proportional to the magnetic susceptibility
of the crystal so that (Rado, 1961; Rado & Folen, 1962)

�k ¼ ak�kLz; �? ¼ a?�?Lz; ð1:5:8:5Þ

where ak and a? are new constants of the magnetoelectric effect
which do not depend on temperature. Formulas (1.5.8.5) provide
a good explanation of the observed temperature dependence of
�.

The linear relation between � and Lz ¼ 2M0 is also proved by
the fact that when studying the ME effect, the domain structure
of the sample is revealed. An annealing procedure to prepare a
single-domain sample has been developed. To perform this
annealing, the sample must be heated well above the Néel
temperature and then cooled below TN in the presence of electric
and magnetic fields. The directions of these fields have to agree
with the allowed components of the ME tensor. In some
compounds, a single-domain state may be obtained by applying
simultaneous pulses of both fields to a multidomain sample at
temperatures below TN (see O’Dell, 1970).

It was shown in the previous section that the piezomagnetic
effect can be explained phenomenologically as weak ferro-
magnetism caused by the change of the symmetry produced by
deformation of the lattice. The electric field may act indirectly
inducing atomic displacement (similar to the displacement under
stress) and as in piezomagnetism may cause the rise of a magnetic
moment. Such ideas were proposed by Rado (1964) and
expanded by White (1974).

The electric field may act directly to change the admixture of
orbital states in the electron wavefunctions. As a result of such
direct action, there may be a change of different terms in the
microscopic spin Hamiltonian. Correspondingly, the following
mechanisms are to be distinguished. Changes in the g-tensor can
explain the ME effect in DyPO4 (Rado, 1969). The electric-field-
induced changes in single-ion anisotropy may represent the main
mechanism of the ME effect in Cr2O3 (Rado, 1962). Two other
mechanisms have to be taken into account: changes in symmetric
and antisymmetric exchange. For details and references see the
review article of de Alcantara Bonfim & Gehring (1980).

1.5.8.2. Nonlinear magnetoelectric effects

Along with linear terms in E and H, the thermodynamic
potential� may also contain invariants of higher order in Ek;Hi:

� ¼ �0 � �ikEiHk �
1
2
ijkEiHjHk �

1
2�ijkHiEjEk: ð1:5:8:6Þ

From this relation, one obtains the following formulas for the
electric polarization Pi and the magnetization Mi:

Pi ¼ �ikHk þ
1
2 
ijkHjHk þ �jikHjEk; ð1:5:8:7Þ

Mi ¼ �kiEk þ 
jikEjHk þ
1
2 �ijkEjEk: ð1:5:8:8Þ

The third term in (1.5.8.7) describes the dependence of the
dielectric susceptibility (�eik ¼ Pi=Ek) and, consequently, of the
dielectric permittivity "ik, on the magnetic field. Similarly, the
second term in (1.5.8.8) points out that the magnetic suscept-
ibility �m may depend on the electric field (��mik ¼ 
jikEj). The
tensors 
ijk and �ijk are symmetric in their last two indices.
Symmetry imposes on 
ijk the same restrictions as on the piezo-
electric tensor and on �ijk the same restrictions as on the piezo-
magnetic tensor (see Table 1.5.7.1).

Ascher (1968) determined all the magnetic point groups that
allow the terms EHH and HEE in the expansion of the ther-
modynamic potential �. These groups are given in Table 1.5.8.3,
which has been adapted from a table given by Schmid (1973). It
classifies the 122 magnetic point groups according to which types
of magnetoelectric effects (EH, EHH or HEE) they admit and
whether they admit spontaneous dielectric polarization (E) or
spontaneous magnetization (H). It also classifies the 122 point
groups according to whether they contain �11, 10 or �110, as in a table
given by Mercier (1974). Ferromagnets, ferrimagnets and weak
ferromagnets have a point group characterized by H (the 31
groups of types 4–7 in Table 1.5.8.3); dia- and paramagnets as well
as antiferromagnets with a nontrivial magnetic Bravais lattice
have a point group containing 10 (the 32 groups of types 1, 13, 17
and 19 in Table 1.5.8.3). The 59 remaining point groups describe
antiferromagnets with a trivial Bravais lattice. The 31 point
groups characterized by E, the 32 containing �11 and the 59
remaining ones correspond to a similar classification of crystals
according to their electric properties (see Schmid, 1973).

Table 1.5.8.3 shows that for the 16 magnetic point groups of
types 16–19, any kind of magnetoelectric effect is prohibited.
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Table 1.5.8.3. Classification of the 122 magnetic point groups according to magnetoelectric types

Type

Inversions
in the
group

Permitted terms in
thermodynamic potential Magnetic point groups

Number of magnetic
point groups

1 10 E EHH 10, 210, m10, mm210, 410, 4mm10, 310, 3m10, 610, 6mm10 10 31 49 122
2 E EHH HEE 60, 60mm0 2
3 E EH EHH HEE mm2, 4mm, 40, 40mm0, 3m, 6mm 6

4 E H EH EHH HEE 1, 2, m, 20, m0, m0m20, m0m02, 4, 4m0m0, 3, 3m0, 6, 6m0m0 13 31
5 H EH EHH HEE 20202, 42020, �44, �4420m0, 320, 62020 6
6 H EHH HEE �66, �66m020 2
7 �11 H HEE �11, 2=m, 20=m0, m0m0m, 4=m, 4=mm0m0, �33, �33m0, 6=m,

6=mm0m0
10

8 EH EHH HEE 222, �44
0
, 422, �442m, 40220, �44

0
2m0, �44

0
20m, 32, �66

0
, 622, �66

0
m02,

�66
0
m20, 23, �44

0
3m0

14 73

9 EHH HEE �66m2, 60220 2

10 EH 432 1 19
11 �11

0
EH �11

0
, 2=m0, 20=m, mmm0, m0m0m0, 4=m0; 40=m0, 4=m0m0m0,
4=m0mm, 40=m0m0m, �33

0
, �33
0
m0, �33

0
m, 6=m0, 6=m0m0m0,

6=m0mm, m0 �33
0
, m0 �33

0
m0

18

12 EHH �443m 1 11
13 10 EHH 22210, �4410, 42210, �442m10, 3210, �6610, 62210, �66m210, 2310, �443m10 10
14 HEE 40320 1 11
15 �11 HEE mmm, 40=m, 4=mmm, 40=mmm0, �33m, 60=m0, 6=mmm,

60=m0m0m, m�33, m�33m0
10

16 �11
0

60=m, 60=mmm0, m0 �33
0
m 3 16

17 10 43210 1
18 �11 m�33m 1
19 �11; 10; �11

0 �1110, 2=m10, mmm10, 4=m10, 4=mmm10, �3310, �33m10, 6=m10,
6=mmm10, m�3310, m�33m10

11
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These are the 11 grey point groups that contain all three inver-
sions, the white group Oh ¼ m�33m, the grey group
(Oþ ROÞ ¼ 43210 and the three black–white groups
C6hðC3hÞ ¼ 60=m, D6hðD3hÞ ¼ 60=mmm0 and OhðTdÞ ¼ m0 �330m.

Among the 58 magnetic point groups that allow the linear
magnetoelectric effect, there are 19 that do not allow the
nonlinear effects EHH and HEE (types 10 and 11 in Table
1.5.8.3). The remaining 39 groups are compatible with all three
effects, EH, EHH and HEE; 19 of these groups describe ferro-
magnets (including weak ferromagnets) and ferrimagnets (types
4 and 5 in Table 1.5.8.3).

The 21 point groups of types 7, 14 and 15 allow only the
magnetoelectric effectHEE. These groups contain Ci ¼

�11, except
40320. The compounds belonging to these groups possess only one
tensor of magnetoelectric susceptibility, the tensor �ijk of the
nonlinear ME effect. The effect is described by

Pi ¼ �jikHjEk; ð1:5:8:9Þ

Mi ¼
1
2 �ijkEjEk: ð1:5:8:10Þ

The magnetic point group of ferrimagnetic rare-earth garnets
RFe5O12 (R ¼ Gd, Y, Dy) is D3dðS6Þ ¼

�33m0, which is of type 7.
Therefore, the rare-earth garnets may show a nonlinear ME
effect corresponding to relations (1.5.8.9) and (1.5.8.10). This was
observed by O’Dell (1967) by means of a pulsed magnetic field.
As mentioned above, this effect may be considered as the
dependence of the dielectric permittivity on the magnetic field,
which was the method used by Cardwell (1969) to investigate this
ME effect experimentally. Later Lee et al. (1970) observed the
ME effect defined by relation (1.5.8.10). Applying both static
electric fields and alternating ones (at a frequency !), they
observed an alternating magnetization at both frequencies ! and
2!. A nonlinear ME effect of the form HEE was also observed in
the weakly ferromagnetic orthoferrites TbFeO3 and YbFeO3.
Their magnetic point group is D2hðC2hÞ ¼ m0m0m.

Moreover, paramagnets that do not possess an inversion centre
Ci ¼

�11 may show an ME effect if the point group is not 43210.
They have one of the 20 grey point groups given as types 1 or 13
in Table 1.5.8.3. Bloembergen (1962) pointed out that all these
paramagnets are piezoelectric crystals. He called the ME effect in
these substances the paramagnetoelectric (PME) effect. It is
defined by the nonzero components of the tensor 
ijk:

Pi ¼
1
2
ijkHjHk; ð1:5:8:11Þ

Mi ¼ 
jikEjHk: ð1:5:8:12Þ

The PME effect was discovered by Hou & Bloembergen (1965) in
NiSO4
6H2O, which belongs to the crystallographic point group
D4 ¼ 422. The only nonvanishing components of the third-rank
tensor are 
xyz ¼ 
xzy ¼ �
yzx ¼ �
yxz ¼ 
 (
14 ¼ �
25 ¼ 2
 in
matrix notation), so that P ¼ 
ðHyHz;�HxHz; 0Þ and
M ¼ 
(�EyHz, ExHz, ExHy � EyHx). Both effects were
observed: the polarization P by applying static (Hz) and alter-
nating (Hx or Hy) magnetic fields and the magnetization M by
applying a static magnetic fieldHz and an alternating electric field
in the plane xy. As a function of temperature, the PME effect
shows a peak at 3.0 K and changes sign at 1.38 K. The coefficient
of the PME effect at 4.2 K is


ð4:2 KÞ ¼ 2:2 10�9 cgs units. ð1:5:8:13Þ

The theory developed by Hou and Bloembergen explains the
PME effect by linear variation with the applied electric field of
the crystal-field-splitting parameter D of the spin Hamiltonian.

Most white and black–white magnetic point groups that do not
contain the inversion (Ci ¼

�11), either by itself or multiplied by
R ¼ 10, admit all three types of ME effect: the linear (EH) and
two higher-order (EHH and HEE) effects. There are many
magnetically ordered compounds in which the nonlinear ME

effect has been observed. Some of them are listed by Schmid
(1973); more recent references are given in Schmid (1994a).

In principle, many ME effects of higher order may exist. As an
example, let us consider the piezomagnetoelectric effect. This is a
combination of piezomagnetism (or piezoelectricity) and the ME
effect. The thermodynamic potential � must contain invariants
of the form

� ¼ �0 � �ijk‘EiHjTk‘: ð1:5:8:14Þ

The problem of the piezomagnetoelectric effect was consid-
ered by Rado (1962), Lyubimov (1965) and recently in detail by
Grimmer (1992). All 69 white and black–white magnetic point
groups that possess neither Ci ¼

�11 nor R ¼ 10 admit the piezo-
magnetoelectric effect. (These are the groups of types 2–6, 8–12,
14 and 16 in Table 1.5.8.3.) The tensor �ijk‘ that describes the
piezomagnetoelectric effect is a tensor of rank 4, symmetric in the
last two indices and invariant under space-time inversion. This
effect has not been observed so far (Rivera & Schmid, 1994).
Grimmer (1992) analyses in which antiferromagnets it could be
observed.

1.5.8.3. Ferromagnetic and antiferromagnetic ferroelectrics

Neronova & Belov (1959) pointed out that there are ten
magnetic point groups that admit the simultaneous existence of
spontaneous dielectric polarization P and magnetic polarization
M. Materials with such a complicated ordered structure are called
ferromagnetoelectrics. Neronova and Belov considered only
structures with parallel alignment of P and M (or L). There are
three more groups that allow the coexistence of ferroelectric and
ferromagnetic order, in which P andM are perpendicular to each
other. Shuvalov & Belov (1962) published a list of the 13
magnetic point groups that admit ferromagnetoelectric order.
These are the groups of type 4 in Table 1.5.8.3; they are given with
more details in Table 1.5.8.4.

Notice that P and M must be parallel in eight point groups,
they may be parallel in 1 and m0, and they must be perpendicular
in 20, m and m0m20 (see also Ascher, 1970). The magnetic point
groups listed in Table 1.5.8.4 admit not only ferromagnetism (and
ferrimagnetism) but the first seven also admit anti-
ferromagnetism with weak ferromagnetism. Ferroelectric pure
antiferromagnets of type IIIa may also exist. They must belong to
one of the following eight magnetic point groups (types 2 and 3 in
Table 1.5.8.3): C4ðC2Þ ¼ 40; C4vðC2vÞ ¼ 40mm0; C6ðC3Þ ¼ 60;
C6vðC3vÞ ¼ 60mm0; C2v ¼ mm2; C4v ¼ 4mm; C3v ¼ 3m;
C6v ¼ 6mm.

The first experimental evidence to indicate that complex
perovskites may become ferromagnetoelectric was observed by
the Smolenskii group (see Smolenskii et al., 1958). They inves-
tigated the temperature dependence of the magnetic suscept-
ibility of the ferroelectric perovskites Pb(Mn1=2Nb1=2)O3 and
Pb(Fe1=2Nb1=2)O3. The temperature dependence at T> 77 K
followed the Curie–Weiss law with a very large antiferromagnetic
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Table 1.5.8.4. List of the magnetic point groups of the ferromagnetoelectrics

Symbol of symmetry group Allowed direction of

Schoenflies Hermann–Mauguin P M

C1 1 Any Any
C2 2 k 2 k 2
C2ðC1Þ 20 k 20 ? 20

Cs ¼ C1h m k m ? m
CsðC1Þ m0 k m0 k m0

C2vðC2Þ m0m02 k 2 k 2
C2vðCsÞ m0m20 k 20 ? m
C4 4 k 4 k 4
C4vðC4Þ 4m0m0 k 4 k 4
C3 3 k 3 k 3
C3vðC3Þ 3m0 k 3 k 3
C6 6 k 6 k 6
C6vðC6Þ 6m0m0 k 6 k 6
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Weiss constant. Later, Astrov et al. (1968) proved that these
compounds undergo a transition into a weakly ferromagnetic
state at temperatures TN ¼ 11 and 9 K, respectively.

BiFeO3 is an antiferromagnet below TN ¼ 643 K. This was
proved by neutron scattering (Kiselev et al., 1962; Michel et al.,
1969) and magnetic measurements (Smolenskii et al., 1962; see
also Venevtsev et al., 1987). BiFeO3 also possesses a spontaneous
electric polarization. The magnetic point group above TN is 3m10

and below it should have been 3m (Kiselev et al., 1962), but in
reality it possesses an antiferromagnetic spatially modulated spin
structure (Sosnovska et al., 1982). Another ferroelectric anti-
ferromagnet, YMnO3, was found by Bertaut et al. (1964). It
becomes ferroelectric at Tc ¼ 913 K (with paramagnetic point
group 6mm10) and antiferromagnetic at TN ¼ 77 K. Below this
temperature, its magnetic point group is 60mm0. The anti-
ferromagnetic ordering was also proved by investigating the
Mössbauer effect (Chappert, 1965). The symmetries of both
antiferromagnetic ferroelectrics described above do not allow
weak ferromagnetism according to Table 1.5.5.2, and, experi-
mentally, a spontaneous ferromagnetic moment has not been
observed so far.

Since Schmid (1965) developed a technique for growing single
crystals of boracites, these compounds have become the most
interesting ferromagnetoelectrics. The boracites have the
chemical formulaM3B7O13X (whereM ¼ Cu2þ, Ni2þ, Co2þ, Fe2þ,
Mn2þ, Cr2þ andX ¼ F�, Cl�, Br�, I�, OH�, NO�3 ). Many of them
are ferroelectrics and weak ferromagnets at low temperatures.
This was first shown for Ni3B7O13I (see Ascher et al., 1966). The
symmetries of all the boracites are cubic at high temperatures and
their magnetic point group is �443m10. As the temperature is
lowered, most become ferroelectrics with the magnetic point
group mm210. At still lower temperatures, the spins of the
magnetic ions in the boracites go into an antiferromagnetic state
with weak ferromagnetism. For some the ferromagnetoelectric
phase belongs to the group m0m20 and for others to m0m02, m0, m
or 1. In accordance with Table 1.5.8.4, the spontaneous polar-
ization P is oriented perpendicular to the weak ferromagnetic
moment MD for the groups m0m20 and m. There results a
complicated behaviour of boracites in external magnetic and
electric fields. It depends strongly on the history of the samples.
Changing the direction of the electric polarization by an electric
field also changes the direction of the ferromagnetic vector (as
well as the direction of the antiferromagnetic vector) and vice
versa.

As an example, Fig. 1.5.8.2 shows the results of measurements
on Ni–I boracite with spontaneous polarization along [001] and
spontaneous magnetization initially along [�11�110]. A magnetic field
was applied along [110] and the polarization induced along [001]

was measured. If the applied field was increased beyond 6 kOe,
the induced polarization changed sign because the spontaneous
magnetization had been reversed. On reversing the applied
magnetic field, the rest of the hysteresis loop describing the MEk
response was obtained.

If the spontaneous polarization is reversed, e.g. by applying an
electric field, the spontaneous magnetization will rotate simul-
taneously by 90� around the polarization axis. Applying magnetic
fields as described above will no longer produce a measurable
polarization. If, however, the crystal is rotated by 90� around the
polarization axis before repeating the experiment, a hysteresis
loop similar to Fig. 1.5.8.2 but turned upside down will be
obtained (cf. Schmid, 1967).

The similarity of the jumps in the curves of linear magneto-
striction (see Fig. 1.5.7.2) and magnetoelectric effect in Ni–I
boracite is noteworthy. More details about the present state of
investigation of the ferromagnetoelectrics are presented in the
review article of Schmid (1994b).

The ferromagnetoelectrics appear as type 4 and the ferro-
electric antiferromagnets of type IIIa as types 2 and 3 in Table
1.5.8.3. The table shows that the linear magnetoelectric effect is
admitted by all ferromagnetoelectrics and all ferroelectric anti-
ferromagnets of type IIIa, except those that belong to the two
point groups C6ðC3Þ ¼ 60 and C6vðC3vÞ ¼ 60mm0.

Concluding Section 1.5.8, it is worth noting that the magne-
toelectric effect is still actively investigated. Recent results in this
field can be found in papers presented at the 1993 and 1996
conferences devoted to this subject (see Schmid et al., 1994;
Bichurin, 1997, 2002).

1.5.9. Magnetostriction

The transition to an ordered magnetic state is accompanied by a
spontaneous distortion of the lattice, which is denoted sponta-
neous magnetostriction. The lattice distortion may be specified
by the deformation (strain) components Sij. The undeformed
state is defined as the crystal structure that would be realized if
the crystal remained in the paramagnetic state at the given
temperature. This means that it is necessary to separate the
magnetostrictive deformation from the ordinary thermal expan-
sion of the crystal. This can be done by measurements of the
magnetostriction in external magnetic fields applied in different
directions (see Section 1.5.9.2). The magnetostriction arises
because the first derivatives of the exchange and relativistic
energies responsible for the magnetic order do not vanish at
Sij ¼ 0. Thus these energies depend linearly on the deformations
around Sij ¼ 0. That part of the magnetic energy which depends
on the deformations (and consequently on the stresses) is called
the magnetoelastic energy, Ume. To find the equilibrium values of
the spontaneous magnetostriction, one also has to take the elastic
energy into account.

The magnetoelastic energy includes both an exchange and a
relativistic part. In some ferromagnets that are cubic in the
paramagnetic phase, the exchange interaction does not lower the
cubic symmetry. Thus the exchange part of Ume satisfies the
relations

@Ume=@Sii ¼ B00 and @Ume=@Sij ¼ 0 ði 6¼ jÞ: ð1:5:9:1Þ

Such a form of the magnetoelastic energy gives rise to an
isotropic spontaneous magnetostriction or volume change
(volume striction) which does not depend on the direction of
magnetization. In what follows, we shall analyse mainly the
anisotropic magnetostriction.

The spontaneous magnetostriction deformations are so small
(about 10�5) for some ferro- and antiferromagnets that they
cannot be observed by the usual X-ray techniques. However, in
materials with ions possessing strong spin–orbit interactions (like
Co2þ), it may be as large as 10�4. The magnetostriction in rare-
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Fig. 1.5.8.2. The hysteresis loop in the linear magnetoelectric effect in
ferromagnetoelectric Ni3B7O13I at 46 K (Ascher et al., 1966).
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earth metals and their compounds with iron and cobalt are
especially large (up to 10�3).

Magnetostriction is observed experimentally as a change �l of
the linear dimension along a direction specified by a unit vector
b ¼ ð
1; 
2; 
3Þ:


 ¼ �l=l ¼
P

ij

Sij
i
j; ð1:5:9:2Þ

where Sij are the deformation components, which are functions of
the components of the unit vector n aligned in the direction of the
magnetization. Only the symmetric part of the deformation
tensor Sij has been taken into account, because the antisymmetric
part represents a rotation of the crystal as a whole.

The magnetostriction that arises in an applied magnetic field
will be discussed in Section 1.5.9.2; Section 1.5.9.1 is devoted to
the spontaneous magnetostriction.

1.5.9.1. Spontaneous magnetostriction

In this section, we shall assume that the crystal under consid-
eration undergoes a phase transition from the paramagnetic state
into a magnetically ordered state. The latter is a single-domain
state with the magnetization (or the antiferromagnetic vector)
aligned along the vector n. As was mentioned above, to solve the
problem of the spontaneous magnetostriction we have to mini-
mize the sum of magnetoelastic and elastic energy.

Like the anisotropy energy, the anisotropic part of the
magnetoelastic energy can be represented as a series in the
components of the unit vector n:

Ume ¼ Qk‘mnSk‘nmnn þQk‘mnopSk‘nmnnnonp þ . . . ¼ V0
k‘Sk‘:

ð1:5:9:3Þ

As for every ordered magnetic, this relation contains only even
powers of the magnetization unit vector. The components of the
tensors Q are called magnetostrictive or magnetoelastic coeffi-
cients. They are proportional to even powers of the magnetiza-
tion M (Qk‘mn / M2 and Qk‘mnop / M4). The symmetry of the
tensors Qk‘mn and Qk‘mnop is defined by the crystallographic point
group of the initial paramagnetic phase of the crystal.

It is convenient to consider the magnetoelastic energy as part
of a general expansion of the free energy of a magnetic into a
series with respect to the deformation (as the magnetostrictive
deformations are small):

V ¼ V0 þ V0
k‘Sk‘ þ

1
2V

0
k‘mnSk‘Smn þ . . . ; ð1:5:9:4Þ

where all the expansion coefficients V0 are functions of the
components of the magnetization unit vector n. The superscripts
zero indicate that the expansion coefficients have been calculated
relative to the undistorted lattice. Such a state in which, at a given
temperature, there is no magnetic interaction to distort the
crystal is not realizable practically. It will be shown below that the
values of the coefficients V0

k‘ may be obtained experimentally by
observing the magnetostriction in a magnetic field (see Section
1.5.9.2).

The first term in (1.5.9.4) is the anisotropy energy at zero
deformation U0

a :

V0 ¼ U0
a ¼ K0

ijninj þ K0
ijk‘ninjnkn‘ þ K0

ijk‘mnninjnkn‘nmnn:

ð1:5:9:5Þ

This expression has to be compared with the expression for the
anisotropy at zero stress introduced in Section 1.5.3.2 [see
(1.5.3.5)]. It is obvious that symmetry imposes the same restric-
tions on the tensors K in both expressions for the anisotropy.
Later, we shall discuss these two relations for the anisotropy in
more detail.

The second term in (1.5.9.4) is the magnetoelastic energy
density, which is displayed in equation (1.5.9.3) and represents
the energy of anisotropic deformation.

The third term in (1.5.9.4) is quadratic in Sk‘ and can be
considered as an additional contribution to the elastic energy
arising from the distortion of the lattice by spontaneous
magnetostriction. This term is small compared with the main part
of the elastic energy, and the effect it produces is called a morphic
effect and is usually neglected.

The equilibrium deformation components S�ij may be found by
minimization of the sum of the magnetoelastic and elastic ener-
gies. The latter, Uel, is given by

Uel ¼
1
2cijk‘SijSk‘; ð1:5:9:6Þ

where cijk‘ are the elastic stiffnesses. The minimization leads to

@ðUel þ UmeÞ=@Sij ¼ cijk‘S
�
k‘ þ V0

ij ¼ 0: ð1:5:9:7Þ

We shall replace the elastic stiffnesses cijk‘ in this equation by the
elastic compliances sijk‘, taking into account that Hooke’s law
may be written in two forms (see Section 1.3.3):

Tij ¼ cijk‘Sk‘ or Sij ¼ sijk‘Tk‘: ð1:5:9:8Þ

Thus the relation for the equilibrium components of the strain S�ij
becomes

S�ij ¼ �sijk‘V
0
k‘: ð1:5:9:9Þ

Combining the relations (1.5.9.9) and (1.5.9.3), we get the
following equation for the magnetostrictive strain components Sij
as a function of the magnitude Ms and direction n ¼ Ms=Ms of
the magnetization Ms:

S�ij ¼ �sijk‘ðQk‘mnnmnn þQk‘mnopnmnnnonp þ . . .Þ

¼ M2
s Nijk‘nkn‘ þM4

s Nijk‘mnnkn‘nmnn þ . . . :

ð1:5:9:10Þ

Let us denote the spontaneous magnetostriction by 0
 (b
defines the direction of the magnetostriction relative to the
crystallographic axes). According to (1.5.9.2), we obtain

0
 ¼ M2
s Nijk‘
i
jnkn‘ þM4

s Nijk‘mn
i
jnkn‘nmnn: ð1:5:9:11Þ

Relation (1.5.9.11) shows that N ijk‘mn can be chosen as symmetric
in its first two indices and symmetric in its last four indices. It can
therefore be represented by a 6 15 matrix N�A, where
� ¼ 1; . . . ; 6 and A ¼ 01; . . . ; 15. Table 1.5.9.1 lists the pairs ij
that correspond to � and the quadruples k‘mn that correspond to
A.

Similarly,N ijk‘ can be chosen as symmetric in its first two and in
its last two indices. It can therefore be represented by a 6 6
matrix N�
, where �; 
 ¼ 1; . . . ; 6. The correspondence between
the numbers 1 to 6 and pairs ij or k‘ is given in Table 1.5.9.1.

The tensors N ijk‘ and N ijk‘mn must satisfy the symmetry of the
paramagnetic state of the crystal under consideration. In the case
of cubic crystals with fourfold axes (paramagnetic point groups
43210, �443m10 or m�33m10), the two matrices N�
 and N�A possess
instead of the 36 and 90 independent components only 3 and 6,
i.e. N11, N12, N44 and N101, N102, N104, N105, N407, N410, respectively.
The exact form of the two matrices will be given in the following.

(a) Cubic crystals.
If the point group of the paramagnetic crystal is 43210, �443m10 or

m�33m10, it follows from the Neumann principle that the only
nonvanishing components of N�
 are N11 ¼ N22 ¼ N33, N12 ¼ N23

¼ N31 ¼ N21 ¼ N32 ¼ N13 and N44 ¼ N55 ¼ N66. Similarly, the
only nonvanishing components of N�A are N101 ¼ N202 ¼ N303,
N102 ¼ N203 ¼ N301 ¼ N103 ¼ N201 ¼ N302, N104 ¼ N205 ¼ N306,
N105 ¼ N206 ¼ N304 ¼ N106 ¼ N204 ¼ N305, N407 ¼ N508 ¼ N609,
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N410 ¼ N511 ¼ N612 ¼ N413 ¼ N514 ¼ N615. The spontaneous
magnetostriction (1.5.9.11) can then be written as

0
 ¼ h0 þ h1Sðn
2
1


2
1Þ þ 2h2Sðn1n2
1
2Þ þ h3Sðn

2
1n

2
2Þ

þ h4Sðn
4
1


2
1 þ

2
3n

2
1n

2
2Þ þ 2h5Sðn1n2n

2
3
1
2Þ:

ð1:5:9:12Þ

Here an operator S() has been introduced, which denotes the
sum of the three quantities obtained by cyclic permutation of the
suffixes in the expression within the brackets. For example,
Sðn21n2n3
2
3Þ ¼ n21n2n3
2
3 þ n22n3n1
3
1 þ n23n1n2
1
2.

The coefficients hi are related in the following way to the
components of the matrices N�
 and N�A and the spontaneous
magnetization Ms:

h0 ¼ N12M
2
s þ N102M

4
s ;

h1 ¼ ðN11 � N12ÞM
2
s � 6ðN104 � N105ÞM

4
s ;

h2 ¼ 2N44M
2
s þ 4N410M

4
s ;

h3 ¼ ½�
2
3ðN101 þ 2N102Þ þ 2ðN104 þ 2N105Þ�M

4
s ;

h4 ¼ ½N101 � N102 þ 6ðN104 � N105Þ�M
4
s ;

h5 ¼ 4ð3N407 � N410ÞM
4
s : ð1:5:9:13Þ

(b) Hexagonal crystals.
The equation for the spontaneous magnetostriction of a crystal

that, in its paramagnetic state, has a point group 62210, 6mm10,
�66m210 or 6=mmm10, is of the following form [if we restrict
ourselves to the quadratic terms in (1.5.9.11)]:

0
 ¼ h0 þ h1n
2
3


2
3 þ h2ðn

2
1


2
1 þ n22


2
2Þ þ h3ðn

2
1


2
2 þ n22


2
1Þ

þ 2h4n1n2
1
2 þ 2h5n3
3ðn1
1 þ n2
2Þ þ h6

2
3:

ð1:5:9:14Þ

The coefficients hi are related to the components N�
 and the
spontaneous magnetization as follows:

h0 ¼ N13M
2
s

h1 ¼ ðN33 � N31ÞM
2
s

h2 ¼ ðN11 � N13ÞM
2
s

h3 ¼ ðN12 � N13ÞM
2
s

h4 ¼ ðN11 � N12ÞM
2
s

h5 ¼ 2N44M
2
s

h6 ¼ ðN31 � N13ÞM
2
s ð1:5:9:15Þ

As mentioned above, the values of the magnetostrictive coef-
ficients hi and the spontaneous magnetostriction 0
 may be
obtained from measurements of magnetostriction in a magnetic
field. The latter will be discussed in the next section.

Notice that there is some disagreement between our results
(1.5.9.12)–(1.5.9.13) and the corresponding results of Mason
(1951), and similarly between (1.5.9.14)–(1.5.9.15) and the results
of Mason (1954).

1.5.9.2. Magnetostriction in an external magnetic field

There are three reasons for the magnetostriction arising in a
magnetic field: (a) the transfer of the crystal into a single-domain
state if the magnetic field is directed along one of the easy axes;
(b) the deflection of the magnetization (or antiferromagnetic
vector) by the magnetic field from the easy axis in a single-
domain crystal; (c) the change of the magnetization in a suffi-
ciently strong magnetic field.

Let us begin with case (a) and consider a crystal with cubic
symmetry in the paramagnetic state (i.e. with a cubic prototype).
We calculate the magnetostriction that occurs when the applied
magnetic field transforms the crystal from the demagnetized
multidomain state into the saturated single-domain state. This
transformation is shown schematically in Fig. 1.5.9.1.

Each domain in the demagnetized state is distorted by spon-
taneous magnetostriction. The number of domains in the sample
is usually much larger than shown in the figure. Thus a sample of
a crystal with a cubic prototype which in the paramagnetic state
has the form of a cube will retain this form in the ordered state.
Its linear dimension will be changed as a result of magneto-
striction. Averaging these strains over all the domains, one gets
the spontaneous magnetostrictive change of the linear dimension
of the sample, which is equal for any direction x, y or z:

ð�lÞdem=l0 ¼ 
dem ¼ 0
ðnkÞ; ð1:5:9:16Þ

where nk defines the directions parallel to all the easy axes of the
crystal. For crystals with a cubic prototype, there are two prin-
cipal ordered states: with the easy axis along the h111i directions
as in nickel or along the h100i directions as in iron. Averaging the
strains of all eight possible easy-axis directions of the domains in
the h111i-type ferromagnet we obtain from (1.5.9.12) the
following expression for the spontaneous magnetostriction of the
demagnetized crystal:

dem ¼ h0 þ
1
3ðh1 þ h3 þ h4Þ: ð1:5:9:17Þ

In the case of the h100i-type ferromagnet, the averaging over the
six groups of domains leads to

dem ¼ h0 þ
1
3ðh1 þ h4Þ: ð1:5:9:18Þ
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Table 1.5.9.1. Correspondence between matrix indices �, A and tensor indices
of the tensors describing spontaneous magnetostriction

� ij A k‘mn

1 11 01 1111
2 22 02 2222
3 33 03 3333
4 23, 32 04 2233, 2323, 2332, 3223, 3232, 3322
5 31, 13 05 3311, 3131, 3113, 1331, 1313, 1133
6 12, 21 06 1122, 1212, 1221, 2112, 2121, 2211

07 1123, 1132, 1213, 1231, 1312, 1321, 2113,
2131, 2311, 3112, 3121, 3211

08 2231, 2213, 2321, 2312, 2123, 2132, 3221,
3212, 3122, 1223, 1232, 1322

09 3312, 3321, 3132, 3123, 3231, 3213, 1332,
1323, 1233, 2331, 2313, 2133

10 2223, 2232, 2322, 3222
11 3331, 3313, 3133, 1333
12 1112, 1121, 1211, 2111
13 3332, 3323, 3233, 2333
14 1113, 1131, 1311, 3111
15 2221, 2212, 2122, 1222

Fig. 1.5.9.1. Diagram explaining the occurrence of magnetostrictive strains in
the demagnetized and saturated states of a cube-shaped crystal with a cubic
prototype.
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In the saturated state, the sample loses its cubic form. It
becomes longer parallel to the magnetic field and thinner
perpendicular to it. By definition, the demagnetized state is taken
as a reference state for the magnetostriction in the magnetic field.
Subtracting from the general relation for spontaneous magne-
tostriction (1.5.9.12) the expressions (1.5.9.17) and (1.5.9.18) for
the demagnetized sample, Becker & Döring (1939) obtained the
equations that describe the anisotropy of the magnetostriction
caused by saturation magnetization of the h111i and h100i types
of magnetic crystals:
h111i type:

sat
 ¼ h1½Sðn
2
1


2
1Þ �

1
3� þ 2h2Sðn1n2
1
2Þ þ h3½Sðn

2
1n

2
2Þ �

1
3�

þ h4½Sðn
4
1


2
1 þ

2
3n

2
1n

2
2Þ �

1
3� þ 2h5Sðn

2
1n2n3
2
3Þ;

ð1:5:9:19Þ

h100i type:

sat
 ¼ h1½Sðn
2
1


2
1Þ �

1
3� þ 2h2Sðn1n2
1
2Þ þ h3Sðn

2
1n

2
2Þ

þ h4½Sðn
4
1


2
1 þ

2
3n

2
1n

2
2Þ �

1
3� þ 2h5Sðn

2
1n2n3
2
3Þ:

ð1:5:9:20Þ

Both types of magnetics with a cubic prototype are described
by a two-constant equation if the terms of fourth power are
neglected. This equation was obtained by Akulov (1928) in the
form

sat
 ¼
3
2100ðn

2
1


2
1 þ n22


2
2 þ n23


2
3 �

1
3Þ

þ 3111ðn1n2
1
2 þ n2n3
2
3 þ n3n1
3
1Þ;

ð1:5:9:21Þ

where the constants 100 and 111 correspond to the magneto-
strictive deformation of a ‘cubic’ ferromagnet along the direction
of the magnetic field that is applied along the directions h100i and
h111i, respectively. Let us denote by Q1 and Q2 the following
equal coefficients in the equation for the magnetoelastic energy
(1.5.9.3):

Q1 ¼ Qxxxx ¼ Qyyyy ¼ Qzzzz; Q2 ¼ Qxyxy ¼ Qyzyz ¼ Qzxzx:

ð1:5:9:22Þ

According to (1.5.9.9), the coefficients 100 and 111 may be
written as the following fractions of Qi and the elastic stiffnesses
c�
:

100 ¼
Q1

c12 � c11
; 111 ¼ �

1

3

Q2

c44
: ð1:5:9:23Þ

If the magnetic field transforms the crystal from the demag-
netized to the saturated state and if the linear dimension of the
sample along the magnetic field increases, then its dimension
perpendicular to the field will decrease (see Fig. 1.5.9.1). It
follows from relation (1.5.9.21) that the magnetostriction
perpendicular to the magnetic field is

?100 ¼ �
1
2100 and ?111 ¼ �

1
2111: ð1:5:9:24Þ

Some data for magnetostriction of ferromagnets with proto-
type symmetry m�33m10 are presented in Table 1.5.9.2.

In a uniaxial crystal, the magnetostriction in the magnetic field
arises mainly as a result of the rotation of the magnetization
vector from the direction of the easy axis to the direction of the
applied field. The magnetostriction in the magnetic field of an
easy-axis hexagonal ferromagnet can be obtained from the
relation for the spontaneous magnetostriction (1.5.9.14). In the
demagnetized state, such a ferromagnet possesses only two types
of antiparallel domains, in which the magnetization is aligned

parallel or antiparallel to the hexagonal axis (nz ¼ 	1,
nx ¼ ny ¼ 0).

Thus the magnetostriction of the demagnetized state is
described by

dem
 ¼ h0 þ ðh1 þ h6Þ

2
3: ð1:5:9:25Þ

The saturation magnetostriction can be calculated for different
directions of the applied magnetic field using the equations
(1.5.9.14), (1.5.9.15) and (1.5.9.25). If the magnetic field is applied
along the x axis (nx ¼ 1, ny ¼ nz ¼ 0), the saturation magneto-
strictions for three directions of the vector b: sat
 ¼ A; B; C
are

b k Ox A ¼ h2;

b k Oy B ¼ h3;

b k Oz C ¼ �h1: ð1:5:9:26Þ

If the magnetic field is applied at an angle of 45� to the hexagonal
axis along the [101] direction, the saturation magnetostriction
along the magnetic field is described by

D ¼ 
sat
101 ¼

1
4ðh2 � h1 þ 2h5Þ: ð1:5:9:27Þ

Using the constants A, B, C and D introduced above, the
general relation for the magnetostriction caused by magnetiza-
tion to saturation can be presented in the form

sat
 ¼ A½ðn1
1 þ n2
2Þ
2
� ðn1
1 þ n2
2Þn3
3�

þ B½ð1� n23Þð1� 

2
3Þ � ðn1
1 þ n2
2Þ

2
�

þ C½ð1� n23Þ

2
3 � ðn1
1 þ n2
2Þn3
3�

þ 4Dðn1
1 þ n2
2Þn3
3: ð1:5:9:28Þ

A typical hexagonal ferromagnet is cobalt. The magnetostriction
constants introduced above have the following values for Co at
room temperature:

A ¼ �45 10�6 C ¼ þ110 10�6

B ¼ �95 10�6 D ¼ �100 10�6

A more sophisticated treatment of the symmetry of the
magnetostriction constants is given in the monograph of Birss
(1964) and in Zalessky (1981).

1.5.9.3. The difference between the magnetic anisotropies at zero
strain and zero stress

The spontaneous magnetostriction makes a contribution to the
magnetic anisotropy (especially in magnetics with a cubic
prototype). Therefore, to find the full expression for the aniso-
tropy energy one has to sum up the magnetic U0

a [see (1.5.9.5)],
the magnetoelastic Ume [see (1.5.9.3)] and the elastic Uel [see
(1.5.9.6)] energies. At zero strain (S�ij ¼ 0), only U0

a 6¼ 0. At zero
stress

U0
a þ Ume þ Uel ¼ U0

a þ V0
ijS
�
ij þ

1
2cijk‘S

�
ijS
�
k‘

¼ U0
a þ

1
2V

0
ijS
�
ij: ð1:5:9:29Þ
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Table 1.5.9.2. Magnetostriction data for ferromagnets with prototype
symmetry m�33m10

Compound 100  106 111  106 References†

Fe 20.7 �21.2 (1)
Ni �45.9 �24.3 (1)
Fe3O4 �20 78 (2)
YIG (T ¼ 300 K) �1.4 �2.4 (3)
DyIG (T ¼ 300 K) �12.5 �5.9 (3)
DyIG (T ¼ 4:2 K) �1400 �550 (4)

† References: (1) Lee (1955); (2) Bickford et al. (1955); (3) Iida (1967); (4) Clark et al.
(1966).
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We used here the modified equation (1.5.9.7):

1
2cijk‘S

�
ijS
�
k‘ ¼ �

1
2V

0
ijS
�
ij: ð1:5:9:30Þ

Substituting the values for the spontaneous magnetostriction,
the final equation for the anisotropy energy measured at
atmospheric pressure may be written as

Ua ¼ U0
a þ

1
2V

0
ijS
�
ij

¼ ðK0
ij þ K0ijÞninj þ ðK

0
ijk‘ þ K0ijk‘Þninjnkn‘

þ ðK0
ijk‘mn þ K0ijk‘mnÞninjnkn‘nmnn þ . . . :

ð1:5:9:31Þ

As an example, for the ferromagnets with a cubic prototype
this equation may be written as

Ua ¼ ðK
0
1 þ K01ÞSðn

2
1n

2
2Þ þ ðK

0
2 þ K02Þn

2
1n

2
2n

2
3: ð1:5:9:32Þ

The coefficients K01 and K02 may be expressed in terms of the
saturation magnetostriction constants h0; . . . ; h5 [see (1.5.9.12)]
and the elastic stiffnesses c�
:

K01 ¼ c11½h0ð2h4 � 3h3Þ þ h1ðh1 � h3 þ 3h4Þ � h4ðh3 � 2h4Þ�

þ c12½2h0ð2h4 � 3h3Þ � ðh1 þ h4Þðh1 þ 2h3Þ� �
1
2c44h

2
2;

ð1:5:9:33Þ

K02 ¼ �c11½3h4ðh1 þ h3Þ þ ðh4 � h3Þð4h4 � 3h3Þ�

þ c12½3h4ðh1 þ h3Þ þ h3ð5h4 � 6h3Þ�

� 1
2c44ð6h2 þ h5Þh5: ð1:5:9:34Þ

For cubic crystals, K0
i and K0i are of the same magnitude. As an

example, for Ni one has K0
1 ¼ 80 000 erg cm�3 ¼ 8000 J m�3 and

K01 ¼ �139 000 erg cm�3 ¼ �13 900 J m�3.

1.5.10. Transformation from Gaussian to SI units

Numerical values of magnetic quantities are given in Gaussian
units in this chapter. For each quantity that appears in a table or
figure, Table 1.5.10.1 gives the corresponding Gaussian unit and
its value expressed in SI units. More details on the transformation
between Gaussian and SI units are given e.g. in the Appendix of
Jackson (1999).

1.5.11. Glossary

�ij (linear) magnetoelectric tensor

ijk nonlinear magnetoelectric tensor EHH
�ijk nonlinear magnetoelectric tensor HEE
� Weiss constant
�n magnetic birefringence
"ij dielectric permittivity
 constant describing magnetostriction
�ijk tensor describing the piezomagnetic effect
�i� matrix describing the piezomagnetic effect
�ij magnetic permeability

l magnetic moment
�B Bohr magneton
�ijk‘ piezomagnetoelectric tensor
�ðrÞ charge density
� thermodynamic potential
�eij dielectric susceptibility
�ij, �

m
ij magnetic susceptibility

B magnetic induction
c speed of light
cijk‘ elastic stiffness
d� volume element
e charge of the electron
E electric field
g Landé g-factor
H magnetic field
jðrÞ current density
J total angular momentum
k position vector in reciprocal space
kB Boltzmann factor
li sum of the magnetic moments in a unit cell,

in which some of the moments are taken
with opposite sign

Li antiferromagnetic vector
L orbital angular momentum (Section 1.5.1.1),

antiferromagnetic vector (remainder of
this chapter)

mðrÞ magnetic moment density
m sum of the magnetic moments in a unit cell
M magnetization (¼ magnetic moment per unit

volume ¼ ferromagnetic vector)
N No. of atoms per unit volume
p effective number of Bohr magnetons (Section

1.5.1), pressure (remainder of this chapter)
P electric polarization
r position vector in space
SðrÞ spin density
S spin angular momentum (of an atom or ion)
sijk‘ elastic compliance
Sij strain tensor
Tij stress tensor
T temperature
Tc transition temperature, in particular Curie

temperature
TN Néel temperature
U energy
Ua anisotropy energy
Uel elastic energy
Ume magnetoelastic energy
v velocity
Z atomic number (¼ number of electrons

per atom)

The authors express their gratitude to Dr Elena Zhdanova for
her great support in the preparation of the figures, and to
Professor Stephen Lovesey, Dr Jean-Pierre Rivera and Professor
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Table 1.5.10.1. Conversion of Gaussian to SI units

Symbol Quantity Gaussian unit and its SI equivalent

B Magnetic induction 1 gauss (G) ¼ 10�4 tesla (T)
H Magnetic field 1 oersted (Oe) ¼ 103=ð4�Þ A m�1

M Magnetization (¼ magnetic moment per unit volume) 1 emu cm�3 ¼ 103 A m�1

� Linear magnetoelectric tensor (rationalized units) 1 (dimensionless units) ¼ 4� 10�8=3 s m�1

� Piezomagnetic tensor 1 Oe�1 ¼ 4� 10�3 m A�1 ¼ 4� 10�3 T Pa�1

� Magnetic volume susceptibility 1 (dimensionless units) ¼ 4� (dimensionless units)
�g Magnetic mass susceptibility 1 cm3 g�1 ¼ 4� 10�6 m3 g�1

�mol Magnetic molar susceptibility 1 cm3 mol�1 ¼ 4� 10�6 m3 mol�1



1.5. MAGNETIC PROPERTIES

Hans Schmid for suggesting numerous improvements to the
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par le fer du manganèse dans les manganites de terres rares. Phys. Lett.
18, 229–230.

Clark, A. E., DeSavage, B. F., Tsuya, N. & Kawakami, S. (1966).
Magnetostriction of dysprosium, holmium, and erbium iron garnets. J.
Appl. Phys. 37, 1324–1326.

Cox, D. E. (1974). Spin ordering in magnetoelectrics. Int. J. Magn. 6, 67–
75. [Reprinted in Freeman & Schmid (1975), pp. 111–119.]

Cracknell, A. P. (1975). Magnetism in crystalline materials. Oxford:
Pergamon.

Curie, P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie
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Néel, L. & Pauthenet, R. (1952). Étude thermomagnétique d’un
monocristal de Fe2O3�. C. R. Acad. Sci. 234, 2172–2174.

Neronova, N. N. & Belov, N. V. (1959). Ferromagnetic and ferroelectric
space groups. (In Russian.) Kristallografiya, 4, 807–812. (English
translation: Sov. Phys. Crystallogr. 4, 769–774.)

O’Dell, T. H. (1967). An induced magneto-electric effect in yttrium iron
garnet. Philos. Mag. 16, 487–494.

O’Dell, T. H. (1970). The electrodynamics of magneto-electric media.
Amsterdam: North-Holland.

Opechowski, W. & Guccione, R. (1965). Magnetic symmetry. In
Magnetism, Vol. IIA, edited by G. T. Rado & H. Suhl, pp. 105–165.
New York: Academic Press.

Popov, Yu. F., Kazei, Z. A. & Kadomtseva, A. M. (1992). Linear
magnetoelectric effect in Cr2O3 in strong magnetic fields. (In Russian.)
Pis’ma Zh. Eksp. Teor. Fiz. 55, 238–241. (English translation: JETP
Lett. 55, 234–238.)

Prokhorov, A. S. & Rudashevskii, E. G. (1969). Magnetostriction of
antiferromagnetic cobalt fluoride. (In Russian.) Pis’ma Zh. Eksp. Teor.
Fiz. 10, 175–179. (English translation: JETP Lett. 10, 110–113.)

Prokhorov, A. S. & Rudashevskii, E. G. (1975). Magnetoelastic
interactions and the single-domain antiferromagnetic state in cobalt
fluoride. (In Russian.) Kratk. Soobshch. Fiz. 11, 3–6. (English
translation: Sov. Phys. Lebedev Inst. Rep. 11, 1–4.)

148



1.5. MAGNETIC PROPERTIES

Rado, G. T. (1961). Mechanism of the magnetoelectric effect in an
antiferromagnet. Phys. Rev. Lett. 6, 609–610.

Rado, G. T. (1962). Statistical theory of magnetoelectric effects in
antiferromagnets. Phys. Rev. 128, 2546–2556.

Rado, G. T. (1964). Observation and possible mechanisms of
magnetoelectric effects in a ferromagnet. Phys. Rev. Lett. 13, 335–
337.

Rado, G. T. (1969). Magnetoelectric evidence for the attainability of time-
reversed antiferromagnetic configurations by metamagnetic transitions
in DyPO4. Phys. Rev. Lett. 23, 644–647, 946.

Rado, G. T. & Ferrari, J. M. (1973).Magnetoelectric effects in TbPO4. AIP
Conf. Proc. 10, 1417.

Rado, G. T., Ferrari, J. M. & Maisch, W. G. (1984). Magnetoelectric
susceptibility and magnetic symmetry of magnetoelectrically annealed
TbPO4. Phys. Rev. B, 29, 4041–4048.

Rado, G. T. & Folen, V. J. (1961).Observation of the magnetically induced
magnetoelectric effect and evidence for antiferromagnetic domains.
Phys. Rev. Lett. 7, 310–311.

Rado, G. T. & Folen, V. J. (1962). Magnetoelectric effects in
antiferromagnetics. J. Appl. Phys. 33 Suppl., 1126–1132.

Rivera, J.-P. (1994). On definitions, units, measurements, tensor forms of
the linear magnetoelectric effect and on a new dynamic method applied
to Cr–Cl boracite. Ferroelectrics, 161, 165–180.

Rivera, J.-P. & Schmid, H. (1994). Search for the piezomagnetoelectric
effect in LiCoPO4. Ferroelectrics, 161, 91–97.

Schlenker, M. & Baruchel, J. (1978). Neutron techniques for the
observation of ferro- and antiferromagnetic domains. J. Appl. Phys.
49, 1996–2001.

Schmid, H. (1965). Die Synthese von Boraziten mit Hilfe chemischer
Transportreaktionen. J. Phys. Chem. Solids, 26, 973–988.

Schmid, H. (1967). Twinning and sector growth in nickel boracites grown
by transport reactions. (In Russian.) Rost Krist. 7, 32–65. (English
translation: Growth Cryst. USSR, 7, 25–52.)

Schmid, H. (1973). On a magnetoelectric classification of materials. Int. J.
Magn. 4, 337–361. [Reprinted in Freeman & Schmid (1975) pp. 121–
146.]

Schmid, H. (1994a). Introduction to the proceedings of the 2nd
international conference on magnetoelectric interaction phenomena in
crystals, MEIPIC-2. Ferroelectrics, 161, 1–28.

Schmid, H. (1994b). Multi-ferroic magnetoelectrics. Ferroelectrics, 162,
317–338.

Schmid, H., Janner, A., Grimmer, H., Rivera, J.-P. & Ye, Z.-G. (1994).
Editors. Proceedings of the 2nd international conference on magneto-
electric interaction phenomena in crystals (MEIPIC-2). Ferroelectrics,
161–162.

Schwarzenberger, R. L. E. (1984). Colour symmetry. Bull. London Math.
Soc. 16, 209–240.

Scott, R. A. M. & Anderson, J. C. (1966). Indirect observation of
antiferromagnetic domains by linear magnetostriction. J. Appl. Phys.
37, 234–237.

Shubnikov, A. V. (1951). Symmetry and antisymmetry of finite figures. (In
Russian.) Moscow: Acad. Sci. USSR. [English translation in
Shubnikov & Belov (1964) pp. 3–172 and 249–252.]

Shubnikov, A. V. & Belov, N. V. (1964). Colored symmetry, edited by W.
T. Holser. Oxford: Pergamon.

Shubnikov, A. V. & Koptsik, V. A. (1972). Symmetry in science and art.
(In Russian.) Moscow: Nauka. [English translation (1974): New York:
Plenum.]

Shuvalov, L. A. & Belov, N. V. (1962). The symmetry of crystals in which
ferromagnetic and ferroelectric properties appear simultaneously. (In
Russian.) Kristallografiya, 7, 192–194. (English translation: Sov. Phys.
Crystallogr. 7, 150–151.)

Sirotin, Y. I. & Shaskol’skaya, M. P. (1979). Fundamentals of crystal
physics. (In Russian.) Moscow: Nauka. [English translation (1982):
Moscow: Mir.]

Smolenskii, G. A., Agranovskaia, A. I., Popov, S. N. & Isupov, V. A.
(1958). New ferroelectrics of complex composition. (In Russian.) Zh.
Tekh. Fiz. 28, 2152–2153. (English translation: Sov. Phys. Tech. Phys.
3, 1981–1982.)

Smolenskii, G. A., Yudin, V. M., Sher, E. S. & Stolypin, Yu. E. (1962).
Antiferromagnetic properties of some perovskites. (In Russian.) Zh.
Eksp. Teor. Fiz. 43, 877–880. [English translation: Sov. Phys. JETP, 16
(1963), 622–624.]

Sosnovska, I., Peterlin-Neumaier, T. & Steichele, E. (1982). Spiral
magnetic ordering in bismuth ferrite. J. Phys. C, 15, 4835–4846.

Tavger, B. A. (1958). The symmetry of ferromagnetics and antiferromag-
netics. (In Russian.) Kristallografiya, 3, 339–341. (English translation:
Sov. Phys. Crystallogr. 3, 341–343.)

Tavger, B. A. & Zaitsev, V. M. (1956). Magnetic symmetry of crystals. (In
Russian.) Zh. Eksp. Teor. Fiz. 30, 564–568. (English translation: Sov.
Phys. JETP, 3, 430–436.)

Townsend Smith, T. (1916). The magnetic properties of hematite. Phys.
Rev. 8, 721–737.

Turov, E. A. (1963). Physical properties of magnetically ordered crystals.
(In Russian.) Moscow: Akad. Nauk SSSR. [English translation (1965):
New York: Academic Press.]

Venevtsev, Yu. N., Gagulin, V. V. & Zhitomirsky, I. D. (1987). Material
science aspects of seignette-magnetism problem. Ferroelectrics, 73, 221–
248.

Voigt, W. (1928). Lehrbuch der Kristallphysik. Leipzig: Teubner.
Waerden, B. L. van der & Burckhardt, J. J. (1961). Farbgruppen. Z.
Kristallogr. 115, 231–234.

White, R. L. (1974). Microscopic origins of piezomagnetism and
magnetoelectricity. Int. J. Magn. 6, 243–245. [Reprinted in Freeman
& Schmid (1975), pp. 41–43.]

Wijn, H. P. J. (1994). Magnetic properties of non-metallic inorganic
compounds based on transition elements. Perovskites. II. Oxides with
corundum, ilmenite and amorphous structures. Landolt-Börnstein III,
27, f3, Berlin: Springer.

Zalessky, A. V. (1981). Magnetic properties of crystals. In Modern
crystallography, Vol. IV, edited by L. A. Shuvalov. (In Russian.)
Moscow: Nauka. [English translation (1988): Berlin: Springer.]

Zamorzaev, A. M. (1957). Generalization of Fedorov groups. (In
Russian.) Kristallografiya, 2, 15–20. (English translation: Sov. Phys.
Crystallogr. 2, 10–15.)

Zvezdin, A. K., Zorin, I. A., Kadomtseva, A. M., Krynetskii, I. B.,
Moskvin, A. S. & Mukhin, A. A. (1985). Linear magnetostriction and
antiferromagnetic domain structure in dysprosium orthoferrite. (In
Russian.) Zh. Eksp. Teor. Fiz. 88, 1098–1102. (English translation: Sov.
Phys. JETP, 61, 645–647.)

149 references

http://dx.doi.org/openurl?url_ver=Z39.88-2003&rfr_id=ori:rid:iucr.org&rft_id=doi:10.1107/97809553602060000632&rfr_dat=cr%5FsetVer%3D01%26cr%5Fpub%3D10%2E1107%26cr%5Fwork%3DMagnetic%20properties%3Cfnr%20id%3D%22fn1%22%20number%3D%221%22%2F%3E%26cr%5Fsrc%3D10%2E1107%26cr%5FsrvTyp%3Dhtml%26cr_rfr_dat%3Dreferences


1.6. Classical linear crystal optics

By A. M. Glazer and K. G. Coxy

1.6.1. Introduction

The field of classical crystal optics is an old one, and in the last
century, in particular, it was the main subject of interest in the
study of crystallography. Since the advent of X-ray diffraction,
however, crystal optics tended to fall out of widespread use,
except perhaps in mineralogy, where it has persisted as an
important technique for the classification and identification of
mineral specimens. In more recent times, however, with the
growth in optical communications technologies, there has been a
revival of interest in the optical properties of crystals, both linear
and nonlinear. There are many good books dealing with classical
crystal optics, which the reader is urged to consult (Hartshorne &
Stuart, 1970; Wahlstrom, 1959; Bloss, 1961). In addition, large
collections of optical data on crystals exist (Groth, 1906–1919;
Winchell, 1931, 1939, 1951, 1954, 1965; Kerr, 1959). In this
chapter, both linear and nonlinear optical effects will be intro-
duced briefly in a generalized way. Then the classical derivation
of the refractive index surface for a crystal will be derived. This
leads on to a discussion on the practical means by which
conventional crystal optics can be used in the study of crystalline
materials, particularly in connection with mineralogical study,
although the techniques described apply equally well to other
types of crystals. Finally, some detailed explanations of certain
linear optical tensors will be given.

1.6.2. Generalized optical, electro-optic and magneto-optic
effects

When light of a particular cyclic frequency ! is incident on a
crystal of the appropriate symmetry, in general an electrical
polarization P may be generated within the crystal. This can be
expressed in terms of a power series with respect to the electric
vector of the light wave (Nussbaum & Phillips, 1976; Butcher &
Cotter, 1990; Kaminow, 1974):

P ¼
P
"o�

ðiÞEi ¼ "o �
ð1ÞEþ �ð2ÞE2 þ �ð3ÞE3 þ . . .

� �
; ð1:6:2:1Þ

where the �ðiÞ are susceptibilities of order i. Those working in the
field of electro-optics tend to use this notation as a matter of
course. The susceptibility �ð1Þ is a linear term, whereas the higher-
order susceptibilities describe nonlinear behaviour.

However, it is convenient to generalize this concept to take
into account other fields (e.g. electrical, magnetic and stress
fields) that can be imposed on the crystal, not necessarily due to
the incident light. The resulting polarization can be considered to
arise from many different so-called electro-optic, magneto-optic
and photoelastic (elasto-optic) effects, expressed as a series
expansion of Pi in terms of susceptibilities �ijk‘... and the
applied fields E, B and T. This can be written in the following
way:

Pi ¼ P0
i þ "o�ijE

!
j þ "o�ij‘r‘E

!
j þ "o�ijkE

!1
j E

!2
k

þ "o�ijk‘E
!1
j E

!2
k E

!3
‘ þ "o�ijkE

!1
j B

!2
k

þ "o�ijk‘E
!1
j B

!2
k B

!3
‘ þ "o�ijk‘E

!1
j T

!2
k‘ þ . . . :

ð1:6:2:2Þ

Here, the superscripts refer to the frequencies of the relevant
field terms and the susceptibilities are expressed as tensor
components. Each term in this expansion gives rise to a specific
effect that may or may not be observed, depending on the crystal
symmetry and the size of the susceptibility coefficients. Note a
possible confusion: in the notation �ðiÞ, i is equal to one less than
its rank. It is important to understand that these terms describe
various properties, both linear and nonlinear. Those terms that
describe the effect purely of optical frequencies propagating
through the crystal give rise to linear and nonlinear optics. In the
former case, the input and output frequencies are the same,
whereas in the latter case, the output frequency results from sums
or differences of the input frequencies. Furthermore, it is
apparent that nonlinear optics depends on the intensity of the
input field, and so is an effect that is induced by the strong optical
field.

If the input electrical fields are static (the term ‘static’ is used
here to mean zero or low frequency compared with that of light),
the resulting effects are either linear or nonlinear electrical
effects, in which case they are of no interest here. There is,
however, an important class of effects in which both static and
optical fields are involved: linear and nonlinear electro-optic
effects. Here, the use of the terms linear and nonlinear is open to
confusion, depending on whether it is the electrical part or the
optical part to which reference is made (see for example below in
the discussion of the linear electro-optic effect). Similar consid-
erations apply to applied magnetic fields to give linear and
nonlinear magneto-optic effects and to applied stresses, the
photoelastic effects. Table 1.6.2.1 lists the most important effects
according to the terms in this series. The susceptibilities are
written in the form �ð!1;!2; !3; . . .Þ to indicate the frequency !1

of the output electric field, followed after the semicolon by the
input frequencies !1; !2; . . ..
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Table 1.6.2.1. Summary of linear and nonlinear optical properties

Type of
polarization
term Susceptibility Effect

P0
i �ð0; 0Þ Spontaneous polarization
"o�ijE

!
j �ð!;!Þ Dielectric polarization,

refractive index, linear
birefringence

"o�ij‘r‘E
!
j �ð!;!Þ Optical rotation (gyration)

"o�ijkE
!1
j E

!2
k �ð0; 0; 0Þ Quadratic electric effect

�ð!;!; 0Þ Linear electro-optic effect or
Pockels effect

�ð!1 � !2;!1; !2Þ Sum/difference frequency
generation, two-wave mixing

�ð!;!=2; !=2Þ Second harmonic generation
(SHG)

�ð0;!=2; !=2Þ Optical rectification
�ð!3;!1; !2Þ Parametric amplification

"o�ijk‘E
!1
j E

!2
k E

!3
‘ �ð!; 0; 0Þ Quadratic electro-optic effect

or Kerr effect
�ð!;!=2; !=2; 0Þ Electric-field induced second

harmonic generation
(EFISH)

�ð�!1;!2; !3;�!4Þ Four-wave mixing

"o�ijkE
!1
j B

!2
k �ð!;!; 0Þ Faraday rotation

"o�ijk‘E
!1
j B

!2
k B

!3
‘ �ð!;!; 0; 0Þ Quadratic magneto-optic effect

or Cotton–Mouton effect
"o�ijk‘E

!1
j T

!2
k‘ �ð!;!; 0Þ Linear elasto-optic effect or

photoelastic effect
�ð!1 � !2;!1; !2Þ Linear acousto-optic effect

y The sudden death of Keith Cox is deeply regretted. He died in a sailing accident
on 27 August 1998 in Scotland at the age of 65.
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1.6. CLASSICAL LINEAR CRYSTAL OPTICS

1.6.2.1. Spontaneous polarization P0
i

A spontaneous polarization of a crystal can be created in some
polar crystals after a strong static electric field is first applied and
then removed. Subsequent application of an electric field in the
opposite direction can then reverse the sense of the spontaneous
polarization. By analogy with the well known similar phenom-
enon of ferromagnetism, such crystals are known as ferroelectrics
(Jona & Shirane, 1962; Lines & Glass, 1979). This effect is
therefore not an optical effect, but is included here for the sake of
completeness. For a crystal to be a ferroelectric, it cannot have a
centre of symmetry.

1.6.2.2. Dielectric polarization "o�ijE
!
j

Application of an electric field E of frequency ! to a crystal
results in a polarization response whose size depends on the
dielectric susceptibility �ð1Þ. This is a second-rank tensor that is
applicable to all materials, and is often quoted in terms of the
dielectric constant " ¼ "oð1þ �Þ. For electric fields at optical
frequencies, the dielectric constant is equal to the square of the
refractive index for light propagating in a certain direction and in
a particular polarization state. This effect can only be termed
optical if the frequency of the electric field lies at optical
frequencies. There is no difference between input and output
frequencies, and so the susceptibility is written in the form
�ijð!;!Þ. Because there is no change in frequency, this is a linear
optical effect.

1.6.2.3. Optical rotation (gyration) "o�ij‘r‘E
!
j

This is the phenomenon often known as optical activity (Born
& Wolf, 1993; Agranovich & Ginzburg, 1984) in which plane-
polarized light of frequency ! passing through a medium has its
polarization rotated through an angle depending on the path
length through the medium. It is seen most easily along uniaxial
directions in crystals with the appropriate symmetry. Centro-
symmetric crystals cannot show optical rotation. Because no
change in frequency occurs, it can be considered to be a linear
optical effect.

1.6.2.4. Quadratic electric effect "o�ijkE
!1
j E

!2
k

If !1 ¼ !2 ¼ 0, i.e. the susceptibility is �ijkð0; 0; 0Þ, the
resulting polarization is given by

P0
i ¼ "o�ijkE

0
j E

0
k:

This is therefore a polarization induced in the crystal by a strong
static electric field. It is a nonlinear electrical effect, and so it is
not an optical property.

1.6.2.5. Linear electro-optic effect "o�ijkE
!1
j E

!2
k

If !1 ¼ ! and !2 ¼ 0, i.e. �ijkð!;!; 0Þ, this contribution
becomes

P!i ¼ "o�ijkE
!
j E

0
k

and corresponds to the situation where light of frequency !
passes into the crystal at the same time as a static electric field is
applied. The effect, sometimes known as the Pockels effect, is to
change the polarization state of the incident light, effectively by
altering the refractive indices of the crystal. This physical prop-
erty is governed by the third-rank electro-optic susceptibility �ð2Þ,
components �ijk, which follow the same symmetry constraints as
the piezoelectric tensor. Crystals therefore must lack a centre of
symmetry for this effect to be observable. Although this can be
classified as a nonlinear effect, because more than one incident
field is involved, it is customary to call it a linear electro-optic
effect, as only a single electrical field is used, and moreover there
is no change in the frequency of the incident light.

1.6.2.6. Sum/difference frequency generation (two-wave mixing)
"o�ijkE

!1
j E

!2
k

It can happen that when two different light fields of frequen-
cies !1 and !1, such as can be obtained from two lasers, propa-
gate through a crystal, the resulting output frequency can be the
sum or difference of the two incident frequencies, through the
susceptibility �ijkð!1 � !2;!1; !2Þ. A particular case is of interest:
suppose !1 ¼ !2 ¼ !=2 i.e. �ijkð!;!=2; !=2Þ, to get

P!i ¼ "o�ijkE
!=2
j E

!=2
k :

Here, the light, on passing through the crystal, interacts with itself
to produce a doubling of the frequency. This important effect is
known as second harmonic generation or SHG and is used for
generating different laser frequencies starting from a funda-
mental frequency. The observation of SHG is also often a good
indicator of the lack of a centre of inversion in a crystal. As two
optical fields are involved, the incident field inducing the second
one, this is a true nonlinear optical effect.

Another effect can be envisaged in which the susceptibility is
�ijkð0;!=2;�!=2Þ, i.e. there is a cancellation of the two incident
frequencies to produce a polarization in the crystal. This is called
optical rectification.

Parametric amplification is an effect caused when an incident
beam at frequency !1 is incident on a nonlinear optical crystal at
the same time as an intense pump beam frequency !2, where
!2>!1. The !1 wave is then amplified accompanied by an ‘idler’
wave of frequency !3 ¼ !2 � !1.

1.6.2.7. Quadratic electro-optic effect "o�ijk‘E
!1
j E

!2
k E

!3
‘

This effect, known also as the Kerr effect, results from setting
!1 ¼ !, !2 ¼ !3 ¼ 0, i.e. the susceptibility is �ijk‘ð!;!; 0; 0Þ,
thus:

P!i ¼ "o�ijk‘E
!
j E

0
kE

0
‘:

Like the linear electro-optic effect described above, a static
electric field applied to the medium causes a change in the
refractive indices, which then affects the polarization of the
transmitted light. The difference here is that the Kerr effect is
displayed by all transparent media, including liquids. In an
otherwise optically isotropic system, application of a strong static
field makes the system optically anisotropic: this change from
isotropic to anisotropic can be used to produce a fast optical
shutter. Because the light frequency is unchanged, this can be
termed a linear optical effect, but on the other hand, because it
depends on the square of the static electric field, it is a nonlinear
electrical effect.

1.6.2.8. Electric-field induced second harmonic generation
"o�ijk‘E

!1
j E

!2
k E

!3
‘

If !1 ¼ !2 ¼ !=2 and !3 ¼ 0, i.e. the susceptibility is
�ijk‘ð!;!=2; !=2; 0Þ, the resulting polarization is

P!i ¼ "o�ijk‘E
!=2
j E

!=2
k E0

‘:

A second-harmonic response is obtained, but this time induced
by a static electric field. This is called electric-field-induced SHG
or EFISH. It is a nonlinear optical effect that is created by a
linear electric effect.

1.6.2.9. Four-wave mixing "o�ijk‘E
!1
j E

!2
k E

!3
‘

One use of a third-order nonlinear optical susceptibility is in
the important area of four-wave mixing. In this case, the complex
amplitude of the induced polarization at the frequency
!1 ¼ !2 þ !3 � !4 is given by

P
!1
i ¼ "o�ijk‘ð�!1;!2; !3;�!4ÞE

!2
j E

!3
k E

�!4

‘ :
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

Thus if a nonlinear crystal is pumped by two counter-propagating
beams of frequency !1 ¼ !2 ¼ !, and another beam !4 ¼ ! is
input at some angle, a fourth beam !3 ¼ ! results whose complex
amplitude will be the complex conjugate of the !4 beam. Thus
four-wave mixing is an important arrangement for producing
phase conjugation.

1.6.2.10. Faraday rotation "o�ijkE
!1
j B

!2
k

Application of a static magnetic field to certain crystals
through which light of frequency ! passes causes a change in
polarization state via

P!i ¼ "o�ijkE
!
j B

0
k:

The effect is to rotate the plane of polarization of the incident
light, the size of the effect depending not only on the length of the
medium traversed, but also on the size of the applied magnetic
field. An interesting difference from ordinary optical rotation is
that on reflecting the light beam back through the medium, the
plane of polarization is further rotated rather than cancelled: this
property has been used in making optical isolators.

1.6.2.11. Quadratic magneto-optic effect "o�ijk‘E
!1
j B

!2
k B

!3
‘

By analogy with the quadratic electro-optic effect, application
of a strong static magnetic field can modulate the polarization
state of the incident light via

P!i ¼ "o�ijk‘E
!
j B

0
kB

0
‘:

This effect is also known as the Cotton–Mouton effect.

1.6.2.12. Linear photoelastic effect "o�ijk‘E
!1
j T

!2
k‘

Also known as the piezo-optic effect (or elasto-optic effect),
this is usually observed through �ijk‘ð!;!; 0Þ, i.e. the applied
stress is static. Thus the application of a force to an elasto-optic
material results in a change in birefringence. This effect can be
seen not only in crystals, but also in isotropic materials such as
glass or transparent plastics. By observation of a stressed material
between crossed polars, the resulting strains can be seen as
coloured fringes, a useful way of examining engineering struc-
tures.

1.6.2.13. Linear acousto-optic effect "o�ijk‘E
!1
j T

!2
k‘

In the acousto-optic effect, the applied stress is at an
acoustic frequency !2, i.e. the relevant susceptibility is
�ijk‘ð!1 � !2;!1; !2Þ. Thus a sound wave passing through an
acousto-optic crystal modulates the refractive index via

P
!1�!2
i ¼ "o�ijk‘E

!1
j T

!2
k‘ :

A beam of light of frequency !1 passing through the crystal can
then be diffracted by the refractive index modulation, and so such
a crystal is a useful device for converting sound waves into an
optical signal for long-distance transmission along optical fibres.
As !1 � !2, the frequency of the input light is only very slightly
altered by the sound wave, and for most purposes can be
neglected.

1.6.3. Linear optics

1.6.3.1. The fundamental equation of crystal optics

It is necessary, in order to understand fully the propagation of
light through a general anisotropic crystal, to address the ques-
tion of the way in which an electromagnetic wave is affected by its
passage through a regular array of atoms or molecules. A full
analysis of this problem at a microscopical level is complicated
and was treated, for example, by Ewald (1916), who showed
through consideration of a ‘half-crystal’ how to link the electro-

magnetic field outside the crystal to that inside (a good descrip-
tion of Ewald’s work on this can be read in the book P. P. Ewald
and his Dynamical Theory of X-ray Diffraction, published by the
International Union of Crystallography, Oxford Science Publi-
cations, 1992). For the purposes needed here, it is sufficient to
apply Maxwell’s equations to a bulk anisotropic continuum
crystal, thus taking a macroscopic approach. The treatment here
follows that given by Nussbaum & Phillips (1976).

Consider the relationship between the dielectric displacement
D and an electric field E which in tensor terms is given by

Di ¼ "o"ijEj; ð1:6:3:1Þ

where "o is the vacuum dielectric permittivity and "ij is a second-
rank tensor, the relative dielectric tensor. Correspondingly, there
is an induced polarization P related to E via

Pk ¼ "o�k‘E‘; ð1:6:3:2Þ

where �k‘ is another second-rank tensor, called the dielectric
susceptibility tensor. Note that the restriction to a linear rela-
tionship betweenD and E (or P and E) confines the theory to the
region of linear optics. Addition of higher-order terms (see
above) gives nonlinear optics. (Nonlinear optics is discussed in
Chapter 1.7.)

curlH ¼ @D=@t ð1:6:3:3Þ

curlE ¼ �@B=@t; ð1:6:3:4Þ

where B and H are the magnetic induction and magnetic field
intensity, respectively. It is customary at this point to assume that
the crystal is non-magnetic, so that B ¼ �oH, where �o is the
vacuum magnetic permeability. If plane-wave solutions of the
form

E ¼ Eo exp½iðk � r� !tÞ� ð1:6:3:5Þ

H ¼ Ho exp½iðk � r� !tÞ� ð1:6:3:6Þ

D ¼ Do exp½iðk � r� !tÞ� ð1:6:3:7Þ

are substituted into equations (1.6.3.3) and (1.6.3.4), the
following results are obtained:

k�H ¼ !D ð1:6:3:8Þ

k� E ¼ �!B: ð1:6:3:9Þ

These equations taken together imply thatD,H and k are vectors
that are mutually orthogonal to one another: note that in general
E andD need not be parallel. Similarly B (and hence H), E and k
are mutually orthogonal. Now, on substituting (1.6.3.9) into
(1.6.3.8),

1

�o!
2
k� ðk� EÞ ¼ �D: ð1:6:3:10Þ

Defining the propagation vector (or wave normal) s by

s ¼
c

!
k ¼ nŝs; ð1:6:3:11Þ

where ŝs is the unit vector in the direction of s and n is the
refractive index for light propagating in this direction, equation
(1.6.3.10) then becomes

1

�oc
2
s� ðs� EÞ ¼ �D: ð1:6:3:12Þ

Via the vector identity A� ðB� CÞ ¼ ðA � CÞB� ðA � BÞC, this
result can be transformed to

�ðs � sÞEþ ðs � EÞs ¼ ��oc
2D: ð1:6:3:13Þ
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s � s is equal to n2 and s � E can be expressed simply in tensor form
as

P
j sjEj. Now, with equation (1.6.3.1), the fundamental equa-

tion of linear crystal optics is found:
P

j

ð"ihj þ sisjÞEj ¼ n2IEi; ð1:6:3:14Þ

where I is the unit matrix.

1.6.3.2. The optical indicatrix

Equation (1.6.3.14) is the relevant starting point for the deri-
vation of the way in which light propagates in an anisotropic
medium. To solve it in a particular case, treat it as an eigenvector–
eigenvalue problem: the Ei are the eigenvectors and n2 the
eigenvalues. For example, take the case of a uniaxial crystal. The
dielectric tensor is then given by

"11 0 0

0 "11 0

0 0 "33

0

@

1

A: ð1:6:3:15Þ

Assume that light propagates along a direction in the x2x3 plane,
at an angle � to the x3 axis. Then, using (1.6.3.11), it is seen that

s1 ¼ 0

s2 ¼ n sin �

s3 ¼ n cos � ð1:6:3:16Þ

and

sisj ¼

0 0 0

0 n2 sin2 � n2 sin � cos �
0 n2 sin � cos � n2 cos �

0

@

1

A: ð1:6:3:17Þ

Substituting into equation (1.6.3.14) yields

"11 0 0

0 "11 þ n2 sin2 � n2 sin � cos �

0 n2 sin � cos � "33 þ n2 cos �

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A

¼

n2 0 0

0 n2 0

0 0 n2

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A: ð1:6:3:18Þ

Solving this for the eigenvalues n gives

n21 ¼ "11 ð1:6:3:19Þ

as one solution and

1

n22
¼

cos2 �

"11
þ
sin2 �

"33
ð1:6:3:20Þ

as the other. This latter solution can be rewritten as

1

n22
¼

cos2 �

n2o
þ
sin2 �

n2e
; ð1:6:3:21Þ

showing how the observed refractive index n2 varies between the
limits set by no and ne, called the ordinary and extraordinary
refractive index, respectively (sometimes these are denoted by !
and ", respectively). Equation (1.6.3.21) can be thought of as the
equation of a uniaxial ellipsoid (circular cross section) with the
lengths of the semi-axes given by no and ne. This is illustrated in
Fig. 1.6.3.1, where OZ is the direction of propagation of the light
ray at an angle � to x3. Perpendicular to OZ, an elliptical cross
section is cut from the uniaxial ellipsoid with semi-axesOA equal
to no and OB given by (1.6.3.21): the directions OA and OB also
correspond to the eigenvectors of equation (1.6.3.4).

Direction OA is therefore the direction of the electric polar-
ization transverse to the propagation direction, so that the
refractive index measured for light polarized along OA is given
by the value no. For light polarized alongOB, the refractive index
would be given by equation (1.6.3.7). When OZ is aligned along
x3, a circular cross section of radius no is obtained, indicating that
for light travelling alongOZ and with any polarization the crystal
would appear to be optically isotropic. The ellipsoid described
here is commonly known as the optical indicatrix, in this case a
uniaxial indicatrix.

Two cases are recognized (Fig. 1.6.3.2). When no< ne, the
indicatrix is a prolate ellipsoid and is defined to be positive; when
no> ne, it is oblate and defined to be negative. Note that when
no ¼ ne the indicatrix is a sphere, indicating that the refractive
index is the same for light travelling in any direction, i.e. the
crystal is optically isotropic. The quantity �n ¼ ne � no is called
the linear birefringence (often simply called birefringence). In
general, then, for light travelling in any direction through a
uniaxial crystal, there will be two rays, the ordinary and the
extraordinary, polarized perpendicular to each other and
travelling with different velocities. This splitting of a ray of light
into two rays in the crystal is also known as double refraction.

The origin of the birefringence in terms of the underlying
crystal structure has been the subject of many investigations. It is
obvious that birefringence is a form of optical anisotropy (the
indicatrix is not spherical) and so it must be linked to anisotropy
in the crystal structure. Perhaps the most famous early study of
this link, which is still worth reading, is that of Bragg (1924), who
showed that it was possible to calculate rough values for the
refractive indices, and hence birefringence, of calcite and
aragonite. His theory relied upon the summation of polarizability
contributions from the Ca2þ and O2� ions.

Returning now to the theory of the indicatrix, more general
solution of the fundamental equation (1.6.3.14) leads to a triaxial
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Fig. 1.6.3.1. The optical indicatrix.

Fig. 1.6.3.2. Positive and negative uniaxial indicatrix.
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ellipsoid, i.e. one in which all three semi-axes are different from
one another (Fig. 1.6.3.3).

It is conventional to label the three axes according to the size
of the refractive index by n� > n� > n� (or simply � >�>�). In
such an ellipsoid, there are always two special directions lying in
the �–� plane, known as the optic axial plane, and perpendicular
to which there are circular cross sections (shown shaded) of
radius �. Thus these two directions are optic axes down which the
crystal appears to be optically isotropic, with a measured
refractive index � for light of any polarization. For this reason,
crystals with this type of indicatrix are known as biaxial. When
the angle between the optic axes, denoted conventionally as 2V, is
acute about the � axis, the crystal is positive biaxial, and when it is
acute about � the crystal is negative biaxial. Note that as 2V
becomes smaller, the biaxial indicatrix becomes closer to a
uniaxial indicatrix (positive or negative). In all general directions
the crystal is optically anisotropic. Thus, for light along x3, the
measured refractive indices will be � and � for light polarized
along x1 and x2, respectively; for light along x2, � and � are
measured for light polarized along x1 and x3, respectively; and
along x1, � and � are measured for light polarized along x2 and x3,
respectively. There are therefore three different linear birefrin-
gences to measure: �–�, �–� and �–�.

The different indicatrices are oriented in the crystal according
to symmetry considerations (Table 1.6.3.1), and so their obser-
vation can form valuable and reliable indicators of the crystal
system.

1.6.3.3. The dielectric impermeability tensor

It has been seen how the refractive indices can be described in
a crystal in terms of an ellipsoid, known as the indicatrix. Thus for
orthogonal axes chosen to coincide with the ellipsoid axes, one
can write

x21
n21

þ
x22
n22

þ
x23
n23

¼ 1; ð1:6:3:22Þ

where n1 ¼ ð"11Þ
1=2, n2 ¼ ð"22Þ

1=2 and n3 ¼ ð"33Þ
1=2. One can write

this equation alternatively as

�11x
2
1 þ �22x

2
2 þ �33x

2
3 ¼ 1; ð1:6:3:23Þ

where the �ii ¼ 1="ii are the relative dielectric impermeabilities.
For the indicatrix in any general orientation with respect to the
coordinate axes

�11x
2
1 þ �22x

2
2 þ �33x

2
3 þ 2�12x1x2 þ 2�23x2x3 þ 2�31x3x1 ¼ 1:

ð1:6:3:24Þ

Thus the dielectric impermeability tensor is described by a
second-rank tensor, related inversely to the dielectric tensor.

1.6.4. Practical observation of crystals

1.6.4.1. The polarizing microscope

There are countless applications of polarizing microscopy. One
of the largest fields of use is in mineralogy and petrology, where
the requirement is to identify naturally occurring minerals, the
optical properties of which have already been determined else-
where. Medical applications of a similar sort exist, for instance in
the identification of the minerals present in bladder or kidney
stones. The chemist or materials scientist who has synthesised a
crystalline material may also wish to identify it from known
properties, or it may be a new substance that needs to be
described. For other purposes it might, for example, be necessary
to determine the orientation (relative to crystallographic axes) of
mineral specimens, e.g. in the cutting of synthetic corundum for
the manufacture of watch jewels. This section explains the point
of view of an observer who wishes to record and measure optical
properties, for whatever reason. Although much of what follows
is discussed in terms of mineral crystals, it is equally valid for
crystals in general, whether organic or inorganic.

The polarizing microscope incorporates five major features not
found in ordinary microscopes. These are:

(i) A polarizer, normally a sheet of Polaroid, which is part of
the microscope substage assembly. This produces plane-polarized
light before the light reaches the specimen. In some microscopes,
the polarizer can be rotated, though applications of this tech-
nique are rare. In the commonly used petrological microscope,
the vibration direction of the polarizer is set in what is called the
E–W direction, that is, as the user of the microscope sees the field
of view, the vibration direction is from side to side.

(ii) An extra, high-power condenser situated in the substage
immediately below the specimen. The condenser is switched in
and out of the optical path as required.

(iii) A rotating stage, circular in plan and graduated in degrees.
For a number of purposes, specimens can be rotated through
known angles.

(iv) An analyser, a second polarizing device, situated in the
microscope tube above the specimen. Its vibration direction is set
at right angles to that of the polarizer, i.e. usually N–S. Like the
condenser, this can be inserted into the optical path as needed.

(v) A Bertrand lens, also in the microscope tube and insertable
as required, which has the function of transferring images from
the back (upper) focal plane of the objective to the front (lower)
focal plane of the eyepiece. The Bertrand lens and the extra
substage condenser are used together to convert the microscope
from the orthoscopic to the conoscopic configuration (see later).

In addition, polarizing microscopes have slotted tubes that
allow the insertion of a variety of extra devices generally known
as accessory plates. Most common amongst these are the sensi-
tive-tint plate (or 1� plate) and the quartz wedge.

Objective lenses of various magnifying powers are mounted in a
rotating turret. Apart from magnification (typically ca�5 for low
power, and �40 or more for high power), the numerical aperture
(n.a.) of a lens is an important feature. This is defined as the
diameter divided by the focal length. This is a measure of the
angle of the cone of light that can enter the objective. In the
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Fig. 1.6.3.3. Biaxial indicatrix, showing the two optic axes and corresponding
circular cross sections.

Table 1.6.3.1. Symmetry constraints on the optical indicatrix

Crystal system Indicatrix Orientation constraints

Cubic Isotropic (sphere) None

Tetragonal Uniaxial Circular cross section
perpendicular to cTrigonal

Hexagonal

Orthorhombic Biaxial All indicatrix axes aligned along
a, b and c

Monoclinic Biaxial One indicatrix axis aligned along
b (second setting)

Triclinic Biaxial None
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conoscopic use of the microscope (see Section 1.6.4.11), this angle
is required to be as large as possible so that the properties of rays
travelling through the crystal in a variety of directions can be
observed. Numerical apertures of more than ca 0.9 can not be
achieved with ‘dry’ objectives, but higher values are obtained by
inserting a drop of immersion oil between the specimen and the
lens.

Eyepieces in polarizing microscopes are set in a short tube, at
the lower end of which is mounted a set of cross wires, which lie in
the front focal plane of the lens. When the microscope is properly
focused, a real image of the specimen, created by the objective, is
made to coincide with the cross wires. The cross wires are
conventionally oriented vertically (N–S) and horizontally (E–W)
in the field of view, and coincide with the vibration directions of
the polarizer and analyser.

1.6.4.2. Specimen preparation

Specimens for examination with the polarizing microscope are
usually of two different sorts: collections of small crystals or
grains (and individual crystals), and thin sections cut from larger
solid samples. In the first category, the material is often crushed
to a fine sand, scattered on a microscope slide, a drop of
immersion oil is applied, and a cover slip is placed on top. For
special applications, an individual crystal may, for example, be
mounted on the end of a glass fibre, and similarly examined under
immersion oil. The thin-section technique is more widely used in
petrology. Here a rock sample is cut into a section of standard
thickness (0.03 mm) and mounted on a glass slide, using a resi-
nous mounting material, formerly Canada Balsam but now
synthetic. Small single crystals can also be used by mounting
them on a spindle stage, or similar device, which allows one to
orient the crystal in the microscope.

1.6.4.3. The indicatrix as an aid to practical microscopy

It is convenient for the microscopist to imagine the indicatrix
sitting inside the crystal under observation. The indicatrix ellip-
soid is fixed with respect to the crystallographic axes, according to
different crystal systems (Table 1.6.3.1). The radial dimensions of
the ellipsoid, in whatever direction, are a measure of the
refractive index of a ray vibrating in that direction. Hence,
because ray directions are approximately parallel to the micro-
scope axis, a planar section across the indicatrix at right angles to
the axis approximately contains the vibration directions of the
ray. Such a section is in general an ellipse, the magnitudes of the
major and minor axes of which represent the relative refractive
indices, and the directions of which represent the vibration
directions of the two transmitted rays. In all cases, the ray with
the greater refractive index is known as the slow ray and the
other as the fast ray. In uniaxial crystals the ordinary ray may be

slow or fast, depending on the optic sign. This mental image of
the indicatrix acts as the microscopist’s guide in the practical
operations that follow.

1.6.4.4. Vibration directions

For the microscopist, the overriding feature of the behaviour of
light transmitted through crystals is double refraction. Many of
the observations that can be made with the polarizing microscope
depend on the ability to distinguish the individual properties of
the two rays. In general, they have different refractive indices,
and in coloured crystals they may show different absorptions (i.e.
the rays show different colours after transmission, the phenom-
enon known as pleochroism – see Fig. 1.6.4.1).

When the microscope is used for observations in plane-polar-
ized light, the polarizer is inserted into the optical path but the
analyser is not. The light before entering the crystal is polarized
E–W. On entry, in the general case where the vibration directions
of the crystal happen to lie in a random orientation relative to the
vibration direction of the polarizer, the light is transmitted as two
rays resolved into the two vibration directions of the specimen.
These reach the observer’s eye unchanged, and the effects
observed are an average of what each ray would individually
demonstrate.

Two cases can be used to illustrate this fundamental concept.
The mineral calcite (CaCO3) is always given as an example of
extreme double refraction. In sections cut parallel to the c crys-
tallographic axis, the two rays have refractive indices of 1.486 and
1.658, and this is the maximum difference they can show. Crystals
in other orientations always show a smaller difference. The
numerical difference between the two refractive indices, when we
have identified the maximum difference, is what is quoted as the
birefringence of the mineral, and for calcite it is unusually large
(0.172) by the standards of other commonly occurring minerals
(cf. quartz ¼ 0.009). Birefringence is an important quantitative
optical property, because in thin sections it is easily measurable. It
is also useful to refer to the birefringence of individual grains, but
this should not be confused with the use of the same term, based
on maximum birefringence, as a diagnostic optical property of the
material concerned.

Consider a calcite crystal lying with its c axis in the plane of the
microscope slide. The vibration directions are parallel and at
right angles to the crystallographic axis. On rotation of the stage,
the c axis may be brought into parallelism with the vibration
direction of the polarizer, in which case all the light is transmitted
using only one of the vibration directions, which in this case has a
refractive index of 1.486. On turning the stage through a right
angle, all the effects seen are completely due to the other ray,
with a refractive index of 1.658. The mounting medium in stan-
dard thin-section preparations has a refractive index of ca 1.54.
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Fig. 1.6.4.1. A thin section of a rock containing the minerals aegirine (elongated crystals) and eudyalite (the matrix) viewed in plane-polarized light in two
positions at right angles to each other [(a) and (b)]. Aegirine shows pleochroism from grass-green to yellow–green (compare specific crystals in the two
photographs). Eudyalite shows pleochroism from pink to almost colourless.
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Hence, in the first position there is quite a large contrast between
the refractive index of the crystal grain and the mounting
medium, and in the other it is considerably smaller. Calcite is
usually a highly transparent and virtually colourless substance,
and whether the observer can even see the crystals depends on
the refractive index difference between it and the mounting
medium. In the first case, it is highly visible and in the second case
it is harder to see. It is of course the roughness of the surface of
the thin section, or the angularities of the form of the crushed
crystal, which create small refractions, if there is a refractive-
index contrast between it and the mounting medium, and thus
make the crystal visible. The general property is known as relief.
High relief means highly visible in this sense. Calcite shows such
extreme changes in relief on rotation of the stage that the
phenomenon is known as twinkling. Relief is not a measurable
property, but to the experienced microscopist it is a subtle and
useful guide to identification.

As a second example consider the mineral biotite, which shows
extremely strong pleochroism. Biotite is for practical purposes a
hexagonal mineral having a platy form dominated by a strong
cleavage on (001.1). In thin sections, biotite crystals cut across the
cleavage, i.e. parallel to the direction [00.1], are typically very
dark brown in plane-polarized light when the cleavage lies
parallel to the polarizer direction. When turned through 90�, the
same crystals are only a very pale brown, pale yellow, or almost
colourless. The colour contrast, a consequence of the different
absorbing properties of the two rays, is striking. Examples of
pleochroism are shown in Fig. 1.6.4.1.

From these examples it should be clear that the different rays
show different things. However, the microscopist needs to be
certain that the observations made refer exactly to one ray or the
other. When the analyser is inserted into the optical path, most
crystals (excluding those of the cubic system, and crystallites lying
in special orientations) will show polarization colours, a conse-
quence of the interference between the two rays once they are
recombined vibrating in the analyser plane. Details will be
discussed below, but for the present purpose it is the extinction
position that is of importance. On rotation, a crystal viewed with
both analyser and polarizer in position (a configuration known as
crossed Nicols, after the Nicol prism, the forerunner of Polaroid)
will transmit no light in two positions at right angles to each
other. This happens when the vibration direction of a transmitted
ray coincides with that of the polarizer. In this case, all the light
transmitted through the crystal vibrates in a single direction, at
right angles to the vibration direction of the analyser, and it is
consequently unable to reach the observer. Thus, for all obser-
vations of the effects of a particular ray, crossing the polars
(inserting the analyser), turning the stage to an extinction posi-
tion, and then uncrossing the polars (removing the analyser)
leaves the specimen showing the pure effects of whichever ray
vibrates in the same direction as the polarizer. Much that follows
depends on this simple operation.

1.6.4.5. Measuring refractive indices

Refractive indices measured carefully can be extremely useful
aids in crystal identification, as well as being of importance as
physical properties of interest. Apart from distinguishing crys-
talline species that may look similar under the microscope but
have widely different refractive indices, the precise composition
of crystalline materials belonging to important solid-solution
series (e.g. the plagioclase feldspars or the olivines, in geological
applications) can also be determined.

The direct measurement of refractive indices is often made by
the examination of crystal grains mounted in an immersion oil,
using the so-called Becke line test. This is observed in plane-
polarized light with the substage diaphragm closed down to
produce a narrow beam of essentially parallel rays. A medium-

power lens is usually suitable. When the oil has a refractive index
different from that of the crystal, the Becke line appears as a
bright rim of light around the edge of the crystal. However, as the
microscope tube is racked up and down slightly (i.e. the position
of focus is changed), the Becke line moves in or out relative to the
crystal edge. As the position of focus is lowered the line moves
towards the medium with the lower refractive index, e.g. if the oil
has a higher refractive index than the crystal, lowering the focus
(racking down) causes the Becke line to contract into the crystal.
It is of course important to set the specimen in an extinction
position before making the observation. If the oil has a refractive
index between those of the two rays passing through the crystal,
then the behaviour of the Becke line will reverse if the crystal is
rotated to the other extinction position. In cases where there is a
very large contrast between the crystal and the surrounding
medium, a line as such may not be observed, but rather the
specimen may appear to glow with concentrated light. The
equivalent of Becke line movement is then the expansion or
contraction of the light pool with changing focus.

The general objective of the observations is eventually to
achieve an exact match between the immersion medium and the
crystal. This is done by choosing different oils, or mixtures of oils,
in sequence, the refractive indices of which are measured by a
suitable refractometer. Ideally monochromatic or near-mono-
chromatic light (e.g. the Na doublet with � ¼ ca 590 nm) is used,
in which case the Becke line simply disappears when the crystal
and the oil match. In white light however, because of dispersion
by the oil, a match is shown by the presence of two faint Becke
lines, one red and one greenish blue, which migrate in opposite
directions as the focus is changed.

The general strategy of refractive-index determination is
perfectly straightforward for cubic crystals, but requires the
separate determination of values of ne and no in uniaxial crystals,
and n�, n� and n� in biaxial crystals. The most general case is that
of the biaxial crystal. If a large number of crystal grains in the
mount are examined, a number of cases may be distinguished.

(i) All grains have both refractive indices higher than the oil.
The oil has a refractive index below n�.

(ii) All grains have both refractive indices below that of the oil.
The oil has a refractive index above n�.

(iii) Some grains have both refractive indices above that of the
oil, while others have one above and one below. The oil has a
refractive index between n� and n�.

(iv) Conversely, some grains have both refractive indices below
the oil, while others have one above and one below. The oil has a
refractive index between n� and n� .

Uniaxial crystals present a simpler series of cases, in which the
crystal may show both refractive indices higher than the oil (i.e.
the refractive index of the oil is less than that of the fast ray), both
lower than the oil, or one higher and one lower.

Systematic application of the above techniques leads to the
determination of all the refractive indices required, and consti-
tutes one of the most powerful methods of crystal identification
or description. However, it is useful to make an additional check
using the fact that, in anisotropic crystals, any specimen that fails
to show polarization colours between crossed polars (i.e. remains
dark in all stage positions) must lie with an optic axis parallel to
the microscope axis. Such a crystal directly shows no (uniaxial
crystals) or n� (biaxial crystals). Furthermore, crystal grains
showing maximum birefringence (see below) can be checked to
see if they give a centred flash figure (see later), and if they do,
their two vibration directions will show ne and no, or n� and n� ,
that is, the optic axis or axes lie in the plane of the microscope
slide.

In larger crystalline specimens, several other techniques are
available for measuring the refractive index. Perhaps the simplest
and also the most convenient is to cut the crystal into a prism, and
use minimum-deviation measurements on a spectrometer table.
In addition, large plates can be inserted directly into a commer-
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cial refractometer, in order to measure the refractive index
directly.

1.6.4.6. Determination of linear birefringence

The numerical determination of linear birefringence gives less
information than a full set of refractive-index measurements, but
is nevertheless highly useful in crystal identification, particularly
in mineralogical and petrological applications where the thin
section is the norm. It is also a most sensitive indicator of changes
in the crystal structure at a phase transformation or as a function
of temperature, pressure etc. Refractive-index determination is
tedious, but birefringence determination is quick and easy.

Double refraction generates polarization colours when crystals
are viewed between crossed polars, except where the crystal is by
chance in an extinction position, or cut normal to an optic axis.
The colours result from the interference of the two transmitted
rays when they are combined into one vibration direction in the
analyser. Polarization colours are best observed with the substage
diaphragm moderately closed down, so that the transmitted light
corresponds to a roughly parallel bundle of rays (if the
diaphragm is wide open, and the supplementary condenser is
inserted, the resultant rays are far from parallel, and the polar-
ization colours will immediately be seen to degrade in the
direction of whitening).

Considering a section showing two refractive indices, n1 and n2,
the time difference required for a ray to traverse the section is

t ¼
nz

c
; ð1:6:4:1Þ

where z is the thickness of the section. The time difference
between the two rays is then

t1 � t2 ¼
ðn1 � n2Þz

c
; ð1:6:4:2Þ

which is referred to as the retardation. Multiplication by c gives
the relative retardation or optical path difference, R, where

R ¼ cðt1 � t2Þ ¼ ðn1 � n2Þz: ð1:6:4:3Þ

R is usually expressed in nm (formerly mm).
The possibilities of interference clearly depend on R, but also

on wavelength. For complete destructive interference, because of
the way the transmitted rays are resolved into the vibration
direction of the analyser (see Fig. 1.6.4.2), R must either be zero
(as in cubic crystals, and sections normal to optic axes in aniso-
tropic crystals) or a whole number of wavelengths. Thus as R
changes, either with thickness, orientation of the crystals or with
variation in birefringence in different substances, a variety of
colours are produced, essentially formed from white light with
various wavelengths subtracted. There is a good discussion of this
point in Wahlstrom (1959).

Fig. 1.6.4.3 shows the effect of increasing R on a variety of
visible-light wavelengths. When R is zero, no light is transmitted
since all wavelengths show total destructive interference. As R
increases a little, all wavelengths continue to show interference,
and the polarization colours are essentially greys, which decrease
in darkness until the middle of the first order where the grey is
very pale, almost white. Most wavelengths at this stage are

showing relatively strong transmission.
With increasing R, the region is reached
where the shortest wavelengths of the
visible light spectrum (violet) are begin-
ning to approach a phase difference of 1�.
The transmitted light then takes on first a
yellow tinge and then bright orange, as
violet light (at R 	 400 nm) and then
blue are completely removed. Next, the
removal of green light (R 	 500 nm)
results in the transmitted light being red
and at R 	 560 nm the top of the first-
order colours is reached with the removal
of yellow light. The resultant polarization
colour is a distinctive magenta colour
known as sensitive tint. The accessory
plate known as the ‘sensitive-tint’ or ‘1�’
plate is made to have R ¼ 560 nm. Its use
will be explained below, but meanwhile
note that the polarization colour is so-
called because with only very slight
changes in R it becomes obviously red
(falling R) or blue (rising R).

Between R ¼ 560 nm and R ¼

1120 nm, the second-order colours are
produced, and are similar in appearance
to the colours of the rainbow (blue,
green, yellow, orange and red in
sequence), as orange, red, violet, blue,
and green are successively cut out. The
third-order colours (R ¼ 1120–1680 nm)
are essentially a repeat of the second-
order, but there is a subtle change of
quality about them, as they take on
slightly garish hues compared with
rainbow colours (the red at the top of the
order has for example a distinct air of
‘shocking pink’ or even lipstick about it).
This effect is a consequence of the
increasing chances that two wavelengths
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Fig. 1.6.4.2. Successive sections across the optical path of the microscope. (a) Above the polarizer,
beneath the crystal. Polarized light vibrates E–W. (b) Within the crystal. Transmitted light is resolved into
the two vibration directions of the crystal (	1 and 	2). (c) Above the analyser. The two transmitted rays
are resolved into the N–S direction. Amplitudes are shown, but phase difference is not.

Fig. 1.6.4.3. Plot of retardation, R, versus wavelength, showing how polarization colours are formed.
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will be cut out simultaneously (see Fig. 1.6.4.3), e.g. while first-
order red results from the removal of green, second-order red
results from the removal of both violet and yellow.

With increasing R, the distinction of colours within each order
becomes weaker as the number of wavelengths simultaneously
removed increases. Colours are diluted towards grey or white, so
that from the fifth order upwards the range is little more than an
alternation of pale pinkish and pale greenish tints. Eventually, at
higher orders the polarization colours become a more-or-less
uniform dull white. Fig. 1.6.4.4 shows the colours produced by a
quartz crystal cut into a wedge shape.

1.6.4.7. Identification of polarization colours

Birefringence can be determined quantitatively if the polar-
ization colour can be correctly identified, and the section is of
known thickness (see Fig. 1.6.4.6). It is of course necessary to
distinguish between the birefringence of an individual grain,
which will depend on orientation (see Fig. 1.6.4.5a), and the
maximum birefringence (highest polarization colour) shown by
the crystals concerned. It is the latter that is diagnostic, and in
general it will be necessary to examine as many grains as possible
to determine it.

The grey colours of the lower part of the first-order colours are
unique and immediately identifiable, but all other colours are at
least superficially ambiguous. Even first-order white may be
confused with a high-order white. There are essentially two
methods of determining the order of an ambiguous colour, the
first of which, fringe counting, is discussed here. Other methods
depending on the use of the quartz wedge and sensitive-tint plate
will be considered later.

1.6.4.8. Fringe counting

In a well made thin section, most crystals show a uniform
polarization colour because of uniform orientation and thickness.
Crystal edges, however, frequently taper off to near-zero thick-
ness. In this case, the edge acts as a natural wedge of variable R
and displays a series of fringes corresponding to the orders within
the complete spectrum of interference colours, from first-order
grey up to the main colour shown by the body of the crystal (Figs.
1.6.4.5b and c). Using a moderately high power objective, it is
often easy to identify the individual bands and thus count up to
the order concerned. The colour band red–sensitive tint–blue
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Fig. 1.6.4.4. A quartz wedge between crossed Nicols. The thin end is on the
left. The colours shown vary between about the middle of the first order up to
high fifth order.

Fig. 1.6.4.5. (a) Photomicrograph between crossed polars of a thin section of rock containing large olivine crystals set in a fine-grained matrix. The olivine
crystals show a variety of polarization colours (first-order to high second-order) depending on their orientation. (b) Thin section between crossed polars of a
rock containing a large pyroxene crystal, intergrown with other phases marginally. The edges of the crystal are wedge-like, and therefore thinner than the main
body. The first-order white to orange colours make a prominent fringe on the right, grading inwards to sensitive tint and then to blue. The main body of the
crystal is thus determined as second-order blue. (c) A similar section to that in (a) (centre of photograph) but here the second-order blue fringe is narrow and
is succeeded by a second-order yellow fringe. Hence the main body of the crystal must be showing second-order pink.
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marking the first/second-order change is particularly easy to spot
because of its generally dark colour. The method is also usable
when the crystal grain has a sloping contact with a different
crystal, and is especially easy when the latter has significantly
lower birefringence. In this case, there are effectively two
superimposed wedges (leading to some interesting addition or
subtraction effects on R), but counting the fringes in ascending
order will lead correctly to the identification of the polarization
colour of the high-birefringence grain.

1.6.4.9. Fast and slow vibration directions

Before discussing other methods of identifying polarization
colours, it is necessary to explain the use of the sensitive-tint plate
and the quartz wedge. Both devices consist of a crystal mounted
in an elongated holder that can be inserted into a slot in the
microscope tube set at 45� to the vibration directions of the
polarizer and analyser. The vibration directions of the plates
themselves are normally oriented so that the slow ray vibrates
NE–SW and the fast ray NW–SE.

The sensitive-tint (or 1�) plate is made from a cleavage sheet
of the white mica, muscovite, and has a thickness such that
R ¼ 560 nm. To determine fast and slow directions in an
unknown specimen, the crystal grain is set to an extinction
position and then rotated 45� in either direction. Thus its own
vibration directions lie in diagonal positions, and when the tint
plate is inserted, the vibration directions of plate and grain are
parallel to each other. There are two possible cases depending
whether the fast and slow directions coincide or not, i.e. slow
vibration direction of plate parallel to the slow direction of the
crystal (and fast parallel to fast) or slow direction of plate parallel
to the fast direction of the crystal.

In the first case, the relative retardation is increased by 560 nm
and the observed polarization colour jumps up the scale by one
complete order as the plate is inserted. Thus, for example, first-
order white (R ¼ 230 nm) changes to second-order yellow/green
(R ¼ 790 nm), second-order blue changes to third-order blue etc.

When this effect is seen, it shows that the slow direction of the
crystal lies NE–SW.

In the converse case, the observed polarization colour also
changes, and, if the original colour is at least as high as second-
order, will move down the scale by one complete order, e.g.
second-order orange (R ¼ 950 nm) changes to first-order yellow/
orange (R ¼ 390 nm). If the original colour is, however, within
the first order (i.e. R< 560 nm), the new colour is still a conse-
quence of subtracting 580 nm from R, but it is the absolute value
of the new R (not the sign) which is relevant. For example, if the
original colour is a first-order grey (R ¼ 100 nm), the new colour
corresponds to R ¼ 460 nm, i.e. first-order orange. As a rapid
mental aid, it is useful to think of the original colour falling to the
bottom of the scale (R ¼ 0) and then ‘bouncing’ back up until a
change of one order has been reached, e.g. a first-order white, in
the middle of the first order, hardly changes (half an order down
followed by half an order up); first-order red changes to first-
order grey (a fall of 90% of an order, followed by a rise of 10%).

If there is any doubt about the identification of the new colour,
the crystal should be rotated through 90� and the second new
colour examined. A comparison of the two options available,
before and after rotation, rarely leaves any doubt about which is
the higher colour (i.e. the slow-parallel-to-slow case). In all cases,
whether or not the original colour is in the first order, one of the
two new colours is higher than the other.

The sensitive-tint plate is so-called because it allows investi-
gation of crystals showing very low birefringence (e.g. dark greys
with R 	 50 nm or less). In the parallel position, the new colour
will lie just on the blue side of sensitive tint, and in the crossed
position, just on the red side. These two colours are very easy to
distinguish even though they represent only a small change in R.

From the above, it should be clear what an important aid the
sensitive-tint plate can be in the actual identification of an
unknown polarization colour, whether it be the body colour of
the crystal or something observed in a set of grain-margin fringes.
There are always two other colours that can be generated using
the plate, and their relationship to the original colour is known in
terms of R change, so that there are altogether three colours

providing information.
The quartz wedge (Fig. 1.6.4.6) is an

elongated wedge-shaped plate of
progressively increasing thickness,
usually cut parallel to the c axis so that
the slow vibration direction is parallel to
the length of the wedge. In this form it is
inserted into a NE–SW slot so that the
slow direction has this orientation. Some
microscopes are, however, fitted with a
NW–SE slot, and are provided with
wedges (and sensitive-tint plates) that are
‘length fast’ rather than ‘length slow’. The
optical effects are of course the same in
both cases, but it is always a good idea to
examine an accessory plate for its vibra-
tion directions (marked by the manu-
facturer) to be on the safe side.

The wedge varies in thickness from
almost zero to about 0.2 mm, and typi-
cally shows a range of polarization
colours from dark first-order grey up to
the fourth order or so, as it is progres-
sively inserted into the slot. The wedge
can thus be used to change the polariza-
tion colour of an observed crystal by any
desired amount of R within the available
range (roughly 0–2500 nm). By using the
two vibration directions of the crystal,
these changes can be made additive or
subtractive at will. In its simplest possible
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Fig. 1.6.4.6. Polarization colours versus thickness. The lines radiating from the origin are of equal
birefringence (numerical values are given at the top and the right-hand side of the figure). The diagram
may be used to determine thickness if birefringence is known, or birefringence if thickness is known. For
example, the diagonal line for birefringence ¼ 0.009 (e.g. quartz) intersects the standard thin-section
thickness (0.03 mm) on first-order white. This is the polarization colour shown by quartz in a standard
thin section.
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application, the crystal is set so that slow is against fast and the
wedge is inserted until the crystal shows as close to zero bire-
fringence as possible, i.e. the relative retardations of the wedge
and the crystal are equal and opposite (this is called compensa-
tion). Next, the specimen is removed, the colour shown by the
wedge noted, and the wedge is slowly pulled out, counting the
orders as they go past. This is an accurate and simple alternative
method of determining polarization colours.

The accessory plates are useful in identifying the order of
polarization colours, but their most frequent application is in
determining which of the vibration directions shown by a crystal
is fast and which is slow. For example, in a specimen of a biaxial
crystal lying with the optic axial plane in the plane of the slide, the
slow ray represents � and the fast ray �. To determine which is
which, the vibration directions are set in the 45� position and the
tint plate is inserted. If the polarization colour goes up by an
order, then the slow direction of the plate is parallel to the slow
direction of the crystal. Conversely, if the colour goes down by an
order, or goes up by less than a complete order (when the original
R< 560 nm), fast in the crystal is parallel to slow in the plate.

1.6.4.10. Other methods of measuring birefringence

While the use of compensating plates is convenient, more
precise techniques have been developed for the measurement of
linear birefringence, both in an absolute and in a relative sense.
The main methods of making absolute measurements use
commercially available compensators mounted on a microscope.
The main types are used with a polarizing microscope with
crossed polars:

(i) Babinet compensator: This is mounted instead of the
eyepiece of the microscope, and uses two quartz wedges sliding in
opposite directions to each other. The wedges are so designed
that when they fully overlap, but without a birefringent specimen
in the microscope, a black compensation band is seen in the
centre of the field of view. Then when the specimen is placed on
the microscope stage in one of the two possible 45� positions, the
compensation band is shifted. When in the correct 45� position, as
found by trial, the lower wedge is then screwed out to recentre
the compensation band, and the distance moved is read from an
internal scale. This distance is calibrated in terms of relative
retardation.

(ii) Berek and Ehringhaus compensators: These use a rotating
birefringent crystal to change their effective retardation in order
to compensate against the retardation of the specimen. The
Berek compensator uses a calcite plate 0.01 mm thick, whereas
the Ehringhaus compensator has compound compensating plates
of either quartz or calcite, made of two sections of equal thickness
cut parallel to the optic axes and cemented above one another at
right angles. The compensator is inserted in the slot used for
accessory plates with the specimen in one of the two 45� posi-
tions. Then by tilting the compensator plate, the apparent retar-
dations are varied until the combined retardation matches that of
the specimen, thus giving rise to the compensation band
appearing in the centre of the field of view. The angle of tilt can
then be converted to relative rotation by the use of suitable tables
provided by the manufacturer.

In order to measure birefringence in a relative sense, the
following techniques have been devised. All are capable of
phenomenal precision in measuring changes in birefringence, in
some instances to one part in 107.

(i) Sénarmont compensator: A �=4 plate is inserted above the
specimen, with one of its principal vibration directions, say the
slow direction, parallel to the vibration direction of the polarizer.
The analyser is rotatable with a divided circle so that the angle of
rotation can be measured. It can be shown that the phase shift of
the light 
 is given in terms of the angle � through which the
analyser is turned to achieve extinction by


 ¼
2�

�
�nz ¼ 2�:

Thus if the birefringence, or more correctly the relative retar-
dation, of the specimen is changed, say by altering the
temperature, one can follow the change simply by monitoring the
angle �. This can be done either manually, or electronically using
a phase meter attached to a photomultiplier to measure the
intensity as a function of the angle of the analyser, which is
rotated at some frequency by a motor.

(ii) Intensity between crossed polars: In this case the specimen
is placed in the 45� position between crossed polars and the
intensity of the light through the system is measured by a
photomultiplier and presented typically on a recorder. On
changing the retardation of the specimen, say by heating, this
intensity changes according to

I ¼ Io sin
2 
=2:

Thus on heating a set of sin2 fringes is drawn out, and by counting
the fringes exact measurements of 
 can be made. This technique
is of great sensitivity, but suffers from the fact that the specimen
must be maintained throughout in the 45� position.

(iii) Rotating analyser: In this system (Wood & Glazer, 1980), a
�=4 plate is inserted below the substage but above the polarizer
in order to produce circularly polarized light. On passing through
a birefringent crystal specimen, this is generally converted to
elliptical polarization. This then passes through a Polaroid
analyser set to rotate about the axis of the light at a prede-
termined frequency !. The resulting intensity is then given by

I ¼ ðIo=2Þ 1þ sinð2!t � 2’Þ sin 
½ �;

where ’ is the angle between the analyser at any time and an
allowed vibration direction of the specimen. Thus by measuring
the light intensity with a photomultiplier and then by using, say,
phase-sensitive detection to examine the signal at 2!, a plot of
sin 
 can be made as the specimen’s retardation is changed. The
fact that circularly polarized light is incident on the specimen
means that it is not necessary to align the specimen to any
particular angle. Recently, a new type of optical microscope
(Glazer et al., 1996) has been developed using this principle, in
which false colour images representing Io, ’ and j sin 
j can be
formed (Fig. 1.6.4.7).

1.6.4.11. Interference figures

Interference figures provide one of the most powerful tools for
obtaining information about a crystal. The simplest applications
allow the division of crystals into uniaxial and biaxial classes,
hence constraining the crystal system. Within these classes,
crystals are easily divided into the subclasses of positive and
negative. More advanced techniques enable the orientation of
the indicatrix relative to crystallographic features to be fully
established.

Interference figures are obtained when the microscope is used
in its conoscopic configuration. This means that light is made to
pass through the specimen in as wide a range of directions as
possible. A powerful substage condenser is inserted to produce a
wide cone of incident light and the substage diaphragm is set wide
open. A diffusing screen makes a good substitute for the
condenser, as it also produces light with a variety of ray direc-
tions. However, some brightness is inevitably lost. In either case,
a high-power objective with a large numerical aperture is used to
collect the light above the specimen, and the polarizer and
analyser are crossed.

The distinction between conoscopic and orthoscopic (parallel-
light) applications of the microscope is important. For observa-
tions of birefringence, the orthoscopic arrangement is required so
that optical path lengths through the crystal are constant. The
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images observed in plane-polarized light rely on scattering from
point sources within the specimen, and do not depend strictly on
whether the configuration is conoscopic or orthoscopic. Never-
theless, relief and the Becke line are much more clearly obser-
vable in orthoscopic use.

The principle of conoscopic use is quite different. Here, the
image is formed in the back focal plane of the objective. Any
group of parallel rays passing through the specimen is brought to
a focus in this plane, at a specific point depending on the direction
of transmission. Hence every point in the image corresponds to a
different transmission direction (see Fig. 1.6.4.8). Moreover, the
visible effects are entirely caused by interference, and there is no
image of the details of the specimen itself. That image is of course
also present, towards the top of the tube at or near the cross
wires, but the two are not simultaneously visible. The conoscopic
image may be viewed simply by removing the eyepiece and
looking down the tube, where it appears as a small but bright
circle. More commonly however, the Bertrand lens is inserted in
the tube, which has the effect of transferring the conoscopic
image from the back focal plane of the objective to the front focal
plane of the eyepiece, where it coincides with the cross wires and
may be examined as usual.

It is useful to think of the conoscopic image as analogous to the
gnomonic projection as used in crystallography. The geometrical
principles are the same, as each direction through the crystal is
projected directly through the centre of the lens into the back
focal plane.

1.6.4.12. Uniaxial figures

To understand the formation of an interference figure, consider
a simple example, a specimen of calcite cut at right angles to the c
crystallographic axis. Calcite is uniaxial negative, with the optic
axis parallel to c. The rays that have passed most obliquely
through the specimen are focused around the edge of the figure,
while the centre is occupied by rays that have travelled parallel to
the optic axis (see Fig. 1.6.4.8). The birefringence within the
image clearly must increase from nil in the centre to some higher
value at the edges, because the rays here have had longer path
lengths through the crystal. Furthermore, the image must have
radial symmetry, so that the first most obvious feature of the
figure is a series of coloured rings, corresponding in outward
sequence to the successive orders. The number of rings visible
will of course depend on the thickness of the sample, and when
birefringence is low enough no rings will be obvious because all
colours lie well within the first order (Figs. 1.6.4.9a and b). Fig.
1.6.4.10(a) illustrates, by reference to the indicatrix, the way in
which the vibration directions of the o and e rays are disposed.
Fig. 1.6.4.10(b) shows the disposition of vibration directions in
the figure. Note that o rays always vibrate tangentially and e rays
radially. The o-ray vibration directions lie in the plane of the
figure, but e-ray vibration directions become progressively more
inclined to the plane of the figure towards the edge.

The shaded cross on the figure illustrates the position of dark
‘brushes’ known as isogyres (Fig. 1.6.4.10b). These develop
wherever vibration directions lie N–S or E–W, hence corre-
sponding to the vibration directions of the analyser and polarizer.
As the stage is rotated, as long as the optic axis is truly parallel to
the microscope axis, the figure will not change. This is an example
of a centred uniaxial optic axis figure, and such a figure identifies
the crystal as belonging to the tetragonal, trigonal or hexagonal
systems (see Fig. 1.6.4.11a).

From the point of crystal identification, one can also determine
whether the figure coincides with the uniaxial positive ðne> no)
or uniaxial negative (ne< no) cases. Inserting the sensitive-tint
plate will move the coloured ring up or down the birefringence
scale by a complete order. Fig. 1.6.4.11(c) shows the centred optic
axis figure for calcite, which is optically negative. The insertion of
a tint plate with its slow vibration direction lying NE–SW lowers
the colours in the NE and SW quadrants of the figure, and raises
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Fig. 1.6.4.7. Three birefringence images of industrial diamond viewed along [111] taken with the rotating analyser system. (a) I0; (b) j sin 
j; (c) orientation ’ of
slow axis with respect to horizontal.

Fig. 1.6.4.8. Formation of the interference figure. The microscope axis lies
vertically in the plane of the paper. A bundle of rays travelling through the
crystal parallel to the microscope axis (dashed lines) is brought to a focus at
A in the back focal plane of the objective. This is the centre of the
interference figure. A bundle of oblique rays (solid lines) is brought to a
focus at B, towards the edge of the figure.
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those in the other quadrants (Fig. 1.6.4.11b). The simplest general
rule is to look at the dark first-order grey in the original figure,
lying immediately adjacent to the optic axis, i.e. the centre of the
cross formed by the isogyres (Figs. 1.6.4.11b and c). If the crystal
is optically negative, this colour changes to first-order yellow in
the NE quadrant, if positive to blue. When the crystal has low
birefringence, these colours may occupy the whole quadrant.

An off-centre uniaxial optic axis figure is obtained when the
optic axis is inclined to the microscope axis by an amount which is
small enough for it still to be visible within the figure (roughly
within 25� of the microscope axis, using a normal high-power
objective). Such figures show an isogyre cross with attendant
rings, but the centre of the cross does not lie in the centre of the
figure, and as the stage is rotated the centre of the cross moves
round the figure in a circle (Figs. 1.6.4.9c and d). The isogyres
remain NS and EW throughout. If the figure is so off-centre that
the centre of the cross is not visible, the behaviour of the figure
becomes difficult to interpret, and may easily be confused with
some sorts of off-centre biaxial figures (see below). In the
extreme case, when the optic axis lies in the plane of the slide, a
quite different figure, known as a flash figure, is obtained. This is
similar to many of the figures obtained from biaxial crystals, and
will be considered further below.

1.6.4.13. Biaxial figures

(i) Acute bisectrix figures: Biaxial figures may be introduced by
considering a crystal with a small 2V angle, oriented so that the
acute bisectrix is parallel to the microscope axis. The conoscopic
figure will have much in common with the uniaxial case already
discussed (and indeed will become identical as 2V tends to zero),
and some form of bilateral rather than radial symmetry is to be
expected.

Vibration directions within the figure can be deduced by
consideration of the Biot–Fresnel construction. Given that the
form of the indicatrix is known, this is used to determine vibra-
tion directions in any orientation required. A general case
presented in the form of a stereographic projection is given in Fig.
1.6.4.12(a). It is first necessary to know the positions of the optic
axes and the position of a ray direction. Two planes are
constructed, each containing one optic axis and the ray direction.
Two additional planes are constructed, each containing the
microscope axis and bisecting the angles between the first two
planes. The plane in which the vibration directions lie is plotted
normal to the ray direction, and the two vibration directions in
this plane are fixed by the intersections of this plane with the two
additional planes. This is also a very powerful construction to use
in conjunction with orthoscopic methods. If crystallographic
features, e.g. traces of cleavage planes, crystallographic axes, twin
planes etc. (twinning is discussed in Chapter 3.3) are added to the
stereogram, it becomes possible to determine the predicted
angles between vibration directions and crystallographic features.
One of the most fundamental aims of polarizing microscopy is the
determination of the complete orientation of the indicatrix
relative to crystallographic directions. Familiarity with the Biot–
Fresnel construction is a substantial aid.
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Fig. 1.6.4.9. (a) Centred uniaxial optic axis figure of a crystal with low birefringence. The isogyres are diffuse and the polarization colours in the quadrants are
likely to be first-order grey. (b) As above, but for a crystal with high birefringence. The isogyres are narrower, and circular rings of polarization colours are
seen, progressing outwards from first order to higher orders. (c) Off-centre uniaxial optic axis figure in the straight position (extinction position of crystal). (d)
The same rotated to 45�. The curved arrow shows the rotation of the figure as the stage is turned clockwise. Arrows inside the field of view show directions of
motions of isogyres. If the optic axis lies outside the field of view, such figures are difficult to interpret and may easily be confused with an off-centre biaxial
optic axis figure when 2V is small to moderate.

Fig. 1.6.4.10. (a) Vibration directions of an oblique ray passing through
calcite, viewed relative to the indicatrix. OA is the optic axis, normal to the
circular cross section of indicatrix, r is the ray direction, e and o are,
respectively, the vibration directions of the extraordinary and ordinary rays
in the plane of the elliptical cross section of the indicatrix normal to r. (b)
Vibration directions as seen in the figure. The tangential set represents the o
rays, the radial set represents e rays. The isogyres are also shown.
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Returning to the interference figure, a modified version of the
Biot–Fresnel construction is illustrated in Fig. 1.6.4.12(b). Since
the interference figure is analogous to a gnomonic rather than a
stereographic projection, the various constructional planes
required are straight lines. The vibration directions for the
complete figure are given in Fig. 1.6.4.12(c).

Considering first the isogyres (brushes), if the optic axial plane
lies N–S, as in Fig. 1.6.4.13(a), clearly the isogyres form a cross, as
in the uniaxial case. There is a small difference, however. Because
the vibration directions curve round more rapidly near the optic
axial plane, the N–S isogyre is sharper than the E–W, which is
relatively broadened and less dark.

If the slide is rotated so that the optic axial plane lies NE–SW,
inspection of the vibration directions in Fig. 1.6.4.13(b) shows
that the isogyres must part in the direction shown. Rotation of
the stage through a full 180� will thus show two positions at which
the brushes cross – once when the optic axial plane lies N–S, the
other when it lies E–W – and two positions of maximum
separation of the isogyres – when the optic axial plane lies NE–
SW and NW–SE (see Fig. 1.6.4.14a). The position of the broader,
more diffuse, brush will alternate. The amount by which the two

isogyres are separated in the 45� position depends on the size of
2V. Since the field of view is usually about 60�, when 2V is 60� the
isogyres will retreat right to the edge of the field of view in the 45�

position, and then come back as rotation continues. When
2V> 60�, the brushes will entirely leave the field of view for part
of the rotation (Fig. 1.6.4.14c). Approximate estimates of 2V can
be made on this basis.

As in the uniaxial case, coloured fringes are also part of the
figure, and are most obvious when birefringence is high (Fig.
1.6.4.14a and Fig. 1.6.4.15a). The outermost fringes have an
elliptical form, but towards the centre of the figure they are
distorted into a dumbbell-like or figure-of-eight form. This arises
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Fig. 1.6.4.11. (a) Centred optic axis figure of quartz (uniaxial). The
birefringence is low, resulting in a diffuse cross and quadrant colours in
the lower half of the first order. (b) The same figure with the sensitive-tint
plate inserted (slow vibration direction NE–SW). The isogyres take on the
sensitive-tint colour. Compensation takes place in the NE and SW quadrants
(slow directions of crystal and plate parallel to each other) resulting in
second-order blue, that is, one whole order above the original. In the other
quadrants, the colours also apparently rise, but are restricted to yellow (high
first-order). Thus the crystal is optically positive, that is, e rays (radial) are
slow and o rays (tangential) are fast. (c) Centred optic axis figure of calcite
with sensitive-tint plate (slow direction lying NE–SW) inserted. The
birefringence is very high so there are many coloured rings. In the top right
quadrant, the colour immediately adjacent to the cross is first-order yellow,
whereas in the top left it is second-order blue. Calcite is hence optically
negative. It can be observed that all the coloured rings in the top right and
bottom left quadrants are an order lower than their counterparts in the top
left and bottom right.

Fig. 1.6.4.12. (a) The Biot–Fresnel construction illustrated on the stereo-
graphic projection. (b) Method of determining vibration directions in a
biaxial acute bisectrix figure using the Biot–Fresnel construction and a
gnomonic projection. (c) Complete vibration directions of a figure similar to
the above. As noted in the text, the directions shown are components
resolved into the plane of the figure, and the true vibration directions are in
general somewhat inclined.

Fig. 1.6.4.13. (a) Illustration of the formation of crossed isogyres when the
optic axial plane of a biaxial figure lies N–S. The shaded lines illustrate the
zones in which vibration directions are N–S and E–W, leading to the
formation of the isogyres. Along the E–W line, the zone across which
vibration directions depart little from N–S and E–W is broad, hence this
isogyre is wider than the N–S isogyre. (b) Illustration of the formation of
separated curved isogyres when the same crystal is in the 45� position (optic
axial plane NE–SW).
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because the areas of minimum birefringence must lie adjacent to
the optic axes, and birefringence, although generally increasing
outwards, must also increase towards a point midway between the
optic axes. This effect is slight when birefringence is low, but is
prominent when birefringence is high, in which case each optic
axis is surrounded by its own set of almost-circular fringes, set
within the general elliptical array.

Optic sign can be determined from the acute bisectrix biaxial
figure in a way analogous to the uniaxial case. The stage is rotated
to the 45� position, i.e. with maximum separation of the isogyres,
and the analogues of the uniaxial quadrants are identified. The
difference here is that in one of the 45� positions the NE and SW
quadrants join through the space between the optic axes, and in
the other the NWand SE quadrants are connected. The sensitive-
tint plate is employed just as in the uniaxial case, and the same
rules apply to change of colour (Fig. 1.6.4.15a and b). For
example, suppose that the stage is turned so that the NE and SW
quadrants are separated from each other. Optically positive
crystals show second-order blue close to the isogyre within the
quadrant (on the concave side of the isogyre), while first-order
yellow appears on the convex side, which is part of the combined
NW and SE quadrants. Optically negative crystals show the
reverse.

Slightly off-centre acute bisectrix figures are easy to interpret if
2V is low, but as the degree of off-centring increases, and as 2V
increases, it is obvious that interpretational difficulties will
rapidly increase, and recourse must be made to the optic axis
figure.

(ii)Optic axis figures: Although the acute bisectrix figure forms
the most convenient introduction to the subject, it is in practice
quite difficult to find a suitable section without trial and error. In
monoclinic and triclinic crystals, for example, the acute bisectrix
section is not in general identifiable by reference to crystal-
lographic features (cleavage, faces etc.), nor by any special optical
properties observable under orthoscopic conditions. As in the
uniaxial case, however, the optic axis section is identifiable by its
low-to-nil birefringence. The optic axis figure is the workhorse of
the microscopist.

The essential feature of this figure is that, as the stage is
rotated, one of the optic axes is positioned permanently in the
centre of the field of view, while the other rotates around it. One
of the isogyres is always visible. When 2V is small, on rotation of
the stage the figure simply looks like a wobbly version of the
acute bisectrix figure. Both isogyres are visible, and determina-
tion of optic sign, using the sensitive-tint plate, is as described
above.

As 2V increases, however, the second
isogyre leaves the field during part of the
rotation, and the point where the isogyres
cross, when the optic axial plane lies N–S
or E–W, moves towards the edge of the
field of view. Eventually, with further
increase of 2V, the second isogyre does
not enter the field of view at all, and the
figure consists of a single brush rotating
about the optic axis. The brush changes
from straight, when it lies N–S or E–W, to
curved, when the crystal is in the 45�

position, and the degree of curvature
decreases with rising 2V. When
2V ¼ 90�, the brush remains straight
in all positions. With experience, the
maximum curvature of the isogyre
can be used for rough estimation of
2V.

Optic sign is readily determined from
any sort of optic axis figure by setting the
crystal in the 45� position and using the
curvature of the isogyre to identify the
various ‘quadrants’ as described above.
This of course is not possible when
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Fig. 1.6.4.14. (a) Drawing of biaxial optic axis figures set in the 45� position with the optic axial plane set NW–SE. 2V, represented by the angle O1–O2, is about
40� (cf. total field of view of ca 60�). The distribution of coloured fringes is represented, with near-circular areas of first-order colours around the optic axes,
progressing outwards to higher orders (see also Fig. 1.6.4.15a). (b) The same figure in the straight position (optic axial plane N–S). Note that the isogyre along
the optic axial plane is sharper than the E–W isogyre. (c) Representation of a biaxial figure in the 45� position when 2V> 60�. The isogyres leave the field
completely.

Fig. 1.6.4.15. (a) Acute bisectrix figure of a biaxial crystal with 2V ’ 40�. The optic axial plane is oriented
NW–SE. First-order colours are confined to the two circular ‘eyes’ or melatopes around the optic axes,
with sensitive tint itself making a figure-of-eight shape (‘dumbbell’). At the edge of the figure in the NE
and SW directions the coloured fringes reach third-order pink. (b) The same figure with the sensitive-tint
plate inserted (slow direction NE–SW). The isogyres have taken on the sensitive-tint colour. Between the
optic axes (e.g. the centre of the figure), the original sensitive-tint dumbbell has become black, and to the
NW and SE of the centre all the fringes have dropped by one order. Conversely, in the extreme NWand
SE directions all fringes have gained an order. The little patches of yellow lying just inside the optic axes,
and the accompanying blue patches just outside, indicate by analogy with the uniaxial figure that the
crystal is optically negative.
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2V ¼ 90�, and such crystals are described as optically
neutral.

A further piece of useful information is derivable from optic
axis (and acute bisectrix) figures, i.e. the direction of the optic
axial plane, that is, the line joining the two optic axes. Even if the
second isogyre is never visible, the position of the second optic
axis, outside the field of view, is easily judged. By reverting to
orthoscopic observation without moving the specimen, it is easy
to see how the optic axial plane relates to crystallographic
features such as faces, cleavages or twin planes.

(iii) Other biaxial figures: Several special figures are occa-
sionally useful, and their behaviour is readily explained by
comparison with the acute bisectrix figure. The obtuse bisectrix
figure behaves like the acute bisectrix figure, but as if 2V were
very large. The isogyres form a diffuse cross in the centre of the
field, and then, on rotation, rapidly depart from the field, either
via the NE and SW quadrants or via the NWand SE. As rotation
approaches 90�, they re-enter the field of view from the other
direction. When 2V approaches 90�, there is of course very little
difference between the acute and obtuse bisectrix figures, and to
determine which is which it is necessary to measure the speed at
which isogyres leave the field of view during rotation (for a given
rotation the obtuse bisectrix isogyres move further).

The optic normal figure (often known as a flash figure because
of the extreme speed of isogyre movement) is formed when the
optic axial plane lies in the plane of the slide. Its behaviour on
rotation of the stage is an extremely rapidly moving version of the
obtuse bisectrix figure. The isogyres are very broad and diffuse,
and when the cross is formed there is little more than a
momentary darkening of the whole field of view. The brushes
vanish completely from the field with only a very small rotation
from this position. Often it requires careful inspection even to be
certain that the cross splits into two brushes that vanish diag-
onally from the field.

The optic normal figure is useful in orientation studies and, as
mentioned above, grain mounts of orthorhombic crystals may
naturally give rise to suitably oriented crystals. In thin sections,
the figure is useful to confirm that grains apparently showing
maximum birefringence do in fact lie with their optic axial planes
normal to the microscope axis. When only a small number of
grains are available, this check is important.

In the most general sense, this exercise illustrates that all
figures are variations on a single theme, in which the vibration
direction diagram of Fig. 1.6.4.12(c) can be thought of as being
viewed from different distances (delimiting the size of the area
viewed) and different directions (i.e. where the centre of the field
of view is, relative to the centre of the diagram). For, example, the
figure shown represents a centred uniaxial optic axis figure if
viewed from infinite distance in a direction corresponding to the
centre of the diagram. On the other hand, if viewed from close up
in the same direction (so that the field of view is thought of as a
rather small circle in the middle of the diagram), the figure
becomes analogous to the acute bisectrix figure of a crystal with a
large 2V, the obtuse bisectrix figure, or even the uniaxial flash
figure (but see below), with increasing distance of the viewpoint.
Off-centre figures can be equally well explained by placing the
viewpoint non-centrally.

Only the uniaxial flash figure and the biaxial optic normal
figure seem, at first sight, to defy exact interpretation, because the
optic axes, lying in the plane of the figure, seem to require to be
plotted at infinity in the plane of the paper. This then requires
that the map of the vibration directions consists of two linear sets
at a right angle to each other. No explanation of the rapid
separation of the diffuse isogyres accompanying a small rotation
from the extinction position is forthcoming. Rather, a simple
extinction of the whole field is predicted at every 90�.

In fact, the vibration directions seen in such figures still retain
the ‘barrel-shaped’ configuration seen in Fig. 1.6.4.12(c), though
degrees of curvature can be very small. This arises because the

true vibration directions of, for example, the e rays in the uniaxial
case, do not lie in the plane of the figure (except at the centre). A
curved surface is required for the true description of the vibration
directions. We have up to this point regarded the diagram as flat,
but in fact the vibration directions, as we view them, become
distorted into the barrel shape.

1.6.4.14. Orientation studies

The full skills of the microscopist are required in the produc-
tion of an accurate description of the optical orientation of a
sample, that is the relationship of the indicatrix to the crystal-
lographic axes.

It is best to start by determining the crystal system. Completely
isotropic crystals are cubic, uniaxial crystals are tetragonal,
trigonal or hexagonal, while biaxial crystals are orthorhombic,
monoclinic or triclinic. Crystallographic features such as edges,
faces, crystal outlines, shapes, cleavages and twin planes give the
additional information required to subdivide the uniaxial and
biaxial classes.

In uniaxial cases, a grain giving a centred optic axis figure is
required. If the crystals look square, or have cleavages and/or
twin planes intersecting at right angles, then the system is most
likely to be tetragonal. Features disposed as equilateral triangles
indicate triclinic, and hexagonal arrangements may indicate
triclinic or hexagonal. The cases are often impossible to distin-
guish.

Orthorhombic crystals are usually fairly easy to identify
because, although biaxial, they still show parallelism between
many optical and crystallographic properties. For example,
vibration directions commonly lie parallel to the traces of clea-
vage planes or crystal outlines (so-called straight extinction).
Alternatively, vibration directions may bisect the angles between
such features (symmetrical extinction). Furthermore, crystals with
obviously special orientations can be identified, e.g. a section
showing two sharply defined cleavages (i.e. lying at right angles to
the plane of the slide) perhaps at right angles to each other, or
producing a diamond pattern, is obviously cut normal to an
important crystallographic direction, perhaps containing two of
the crystallographic axes. The interference figure of such a
section should be examined carefully as it is likely to be a centred
version of the acute bisectrix, obtuse bisectrix or flash figure.

Monoclinic crystals are extremely common, and, while biaxial,
do not generally show the parallelism of optical and crystal-
lographic features typical of the orthorhombic system. There is
no general recipe for success in determining the optical orien-
tation of such crystals, other than systematic observation of
crystals in different orientations. The most important observa-
tions are the relationships between extinction positions and
crystallographic features, and the nature of the interference
figures. All monoclinic crystals have one plane that, if at right
angles to the slide, shows symmetrical or straight extinction. This
plane is observed when the twofold symmetry axis lies in the
plane of the slide. In crystals that show two cleavages, their
intersection is also likely to mark a crystallographic axis. From
consideration of such features it is often possible to identify a
crucial special section, that lying perpendicular to the twofold
axis. This is an important section, because two crystallographic
axes now lie in the plane of the slide and their directions may be
indicated by cleavage traces, crystal edges etc. Determination of
the angles between vibration directions and supposed crystal-
lographic axis directions then gives the important angle (e.g.
n�; c) which expresses the tilt of the indicatrix within the plane
normal to the twofold axis.

If everything fails, and no relationship can be found between
crystallographic and optical directions, the crystal is probably
triclinic, and it is not possible to say very much about its orien-
tation using the flat-stage microscope. Recourse must then be had
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to the universal stage, a device that allows rotation of the slide in
three dimensions. This is rarely done these days.

Orientation studies are completed by assigning specific axes of
the indicatrix to specific crystallographic axes. The identification
of the principal axes of the indicatrix is easy. For example, in
uniaxial cases, sections showing maximum birefringence contain
the unique crystallographic axis, which is parallel to the ne
direction. Knowledge of the optic sign shows which of the two
vibration directions coincides with ne, on the basis of being fast or
slow. In biaxial cases, the maximum birefringence section has n�
and n� lying in the plane of the slide, and of these n� corresponds
of course to the slow ray. In biaxial crystals, the identification of
the optic axial plane direction in a figure enables immediate
identification of the n� direction, which is normal to it.

1.6.4.15. Absorption colours

Many crystalline substances are coloured in transmitted light
under the microscope, as a result of the absorption of certain
visible-light wave bands. Though there may be much variability
between one sample of a substance and another, colour is
nevertheless often a great aid in identification.

Absorption, like other optical phenomena, is capable of
showing marked anisotropy, the phenomenon known as pleo-
chroism. Pleochroism is usually obvious in both grain mounts and
thin sections, because grains change colour when rotated in
plane-polarized light. The effect can be subtle (e.g. the mineral
hypersthene is almost colourless in thin sections but often shows
pleochroism from a very faint pink to a very faint green), or very
marked (e.g. dark brown to colourless or pale yellow in the
mineral biotite). The full description of pleochroism involves the
assigning of different colours to specific axes of the indicatrix.
Uniaxial crystals are dichroic, that is, two colours describe the
effects. Sections showing centred optic axis figures do not exhibit
pleochroism, showing only the pure absorption colours of light
vibrating normal to the optic axis (no). In biotite for example
(which is for practical purposes uniaxial), this colour is usually
dark brown. Maximum birefringence sections, or those showing
centred flash figures in grain mounts, show maximum pleo-
chroism, one vibration direction exhibiting the no absorption
already noted, and the other the pure effects of absorption on ne
(in the case of biotite, colourless to pale yellow). Random
sections show less pleochroism, and colours that are combina-
tions of the pure end members.

Biaxial crystals can be notably trichroic, and colours are
readily assigned by looking at maximum birefringence (flash
figure) sections to obtain n� (fast ray) and n� (slow ray)
absorptions, and optic axis sections to obtain that for n�.

The other notable thing about absorption colours is that they
can occasionally severely mask polarization colours. Once this is
appreciated, the use of the sensitive-tint plate is often sufficient to
identify the latter.

1.6.4.16. Dispersion

Dispersion, that is to say variation of refractive index
depending on wavelength, is a common phenomenon in crystals,
and occasionally an important aid in identification. In extreme
cases, it results in the production of highly anomalous polariza-
tion colours, often browns, blue greys or brownish purples, or
bright colours which just look slightly unusual compared with
normal second- or third-order colours. Anomalous colours are
highly diagnostic of certain substances (e.g. the minerals chlorite,
zoisite and epidote).

Dispersion also results in a lack of definition of extinction
positions, because in biaxial crystals there may effectively be
differently oriented indicatrices for different wavelengths. In
extreme cases, it may be impossible to locate the extinction
position with any accuracy. As an example of a milder case, the
very common mineral plagioclase (triclinic) shows subtle, though

highly characteristic, features between crossed polars in sections
cut approximately normal to the b crystallographic axis. The
normal polarization colours seen in between the extinction
positions are pure first-order greys and whites, but as a grain is
rotated slowly through an extinction position the colours darken
and take on a bluish (cold) tinge before going black, and then
lighten again with a yellowish (warm) tinge. This is the result of a
slight mismatch of the orientations of the indicatrices for long
and short wavelengths.

Such dispersion is also often obvious (at least, when looked
for) in the interference figures of biaxial crystals. Isogyres
become edged with ‘cold’ (i.e. bluish) and ‘warm’ (tending to red
or orange) fringes on opposite sides, indicating that optic axes for
different wavelengths have slightly different positions.

Dispersion is a difficult phenomenon to investigate fully with
the polarizing microscope. In cubic crystals, it can only be studied
systematically by the determination of refractive indices using a
number of monochromatic light sources of different wavelengths.
Uniaxial crystals can show anomalous polarization colours, but
they do not show fringes in interference figures, nor vagueness in
extinction position, because the indicatrices for different wave-
lengths all have the same orientation. Like cubic crystals,
however, the dispersion can be investigated by monochromatic
light studies of refractive index. Biaxial crystals present the most
complex cases. Not only can the shape of the indicatrix vary with
wavelength (i.e. the relative values of the principal refractive
indices), but so can orientation relative to the crystallographic
axes. There are even substances known (admittedly with small
2V) in which the optic axial plane for red light is at right angles to
the optic axial plane for violet light. The phenomenon is known
as ‘crossed axial plane dispersion’, a real challenge for the
microscopist.

1.6.5. Optical rotation

1.6.5.1. Introduction

Optical rotation or gyration, as it is sometimes known, was first
recorded by Arago in 1811. Since then, a great deal of work has
been done to try to explain this phenomenon, and at the present
time it is one of the few physical properties of a crystal that can be
successfully understood in terms of the underlying crystal struc-
ture (Glazer & Stadnicka, 1986). Lowry (1935) has given a good
historical account of the subject.

Optical rotation is the phenomenon observed in some crystals
(and in some solutions of, usually, organic compounds) of the
rotation of plane-polarized light on passing through the crystal. If
the rotation, as seen by the observer, is to the left or counter-
clockwise it is known as laevorotation; if to the right or clockwise
it is known as dextrorotation. A crystal that shows this effect is
sometimes called optically active or gyrotropic. It is therefore
clear that, from a symmetry point of view, optical rotation can
only occur in a crystal in which one direction is not equivalent to
its opposite, i.e. there are no inversion symmetry operations that
can change chirality.

One of the earliest theories to explain the origin of optical
rotation was given by Fresnel. This was based on the idea that a
plane-polarized wave can be equally described by two opposing
circularly polarized waves propagating along the same direction.
In Fig. 1.6.5.1(a), the polarization vector OA is simply given by
the vector sum of OB and OC, polarization vectors at some
instant of time belonging to a right-circular and a left-circular
wave, respectively. Here it is assumed that the light propagates in
a direction towards the viewer. If the light now passes through a
gyrotropic material, one of the circularly polarized waves will be
slowed down with respect to the other (this corresponds to having
a small difference in refractive indices for the two waves). Thus
on emerging from the crystal, there will be a phase difference
between the circular waves, so that on recombining, the resulting
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plane of linear polarization OA will have rotated through an
angle ’. This is shown in Fig. 1.6.5.1(b), where the right-circular
(clockwise) component travels faster than the left-circular
(anticlockwise) component. Because of this, in a given time, the
electric vector for the right-circular wave, observed in a fixed
plane perpendicular to the line of sight, will have rotated through
a larger angle clockwise than the electric vector for the left-
circular wave will have rotated anticlockwise. The result is a net
rotation to the right, i.e. dextrorotation, of the vector OA. The
left and right-circular refractive indices, nL and nR, are inversely
related to the velocities of the waves, and so Fig. 1.6.5.1(b)
corresponds to the case where nL> nR. Thus this theory shows
that a positive value of nL � nR defines dextrorotation and that
optical rotation is in fact a form of circular birefringence.

Fig. 1.6.5.2 illustrates in a more generalized way the nature of
the birefringences possible in a crystal. Formally, the refractive
index of a medium can be written in terms of real and imaginary
components:

n ¼ n0 þ in00; ð1:6:5:1Þ

the imaginary component referring to the absorption of the light
(the real and imaginary terms are related as usual by the
Kramers–Kronig relationship). Similarly, the linear and circular
birefringences can also be written in real and imaginary terms:

�nlinear ¼ ðn1 � n2Þ
0
þ iðn1 � n2Þ

00

�ncircular ¼ ðnL � nRÞ
0
þ iðnL � nRÞ

00: ð1:6:5:2Þ

The real linear birefringence (a) shows a resonance, changing
sign, at a particular wavelength. Its variation with wavelength is
known as birefringent dispersion. The imaginary component (b)
peaks at this wavelength and corresponds to the difference in
absorption between linear polarization states. This is called linear
dichroism (LD) and is determined by quantum-mechanical
selection rules resulting from matrix elements of the type
h�1jp̂pj�0i, where p̂p is the electric dipole operator. The circular
components follow similar behaviour. The real circular birefrin-
gence (c) corresponds to the optical rotation and its change with
wavelength is known as optical rotatory dispersion (ORD). The
imaginary circular birefringence (d) corresponds to the differ-
ence in absorption of opposite circularly polarized states. This is
called circular dichroism (CD) and is determined by the matrix
elements of the type h�1j�̂�j�0i, where �̂� is the polarizability
operator. Since �̂� is an even function, whereas p̂p is an odd
function, the selection rules for LD and CD are different, and
each type of spectrum gives different information.

The link between optical rotation and crystal structure has
been the subject of a great deal of work from the 18th century to
date. Experimental methods for determining absolute chirality
(Glazer & Stadnicka, 1989) of crystals only became routine in the
late 1940s with the use of the X-ray anomalous dispersion effect,

which made it possible to determine the absolute sense of the
chiral nature of a crystal and then to link this to the sense of
optical rotation. However, despite the preponderance of a great
many complex theories, until recently, experimental evidence to
support these theories has been fragmentary. It was shown by
Glazer & Stadnicka (1986) that, at least for inorganic crystals, the
problem lay in mistakes in the experiments or publications
describing the experiments, rather than in the underlying
theories. Once these errors are taken into account, it is possible to
find a direct link between the chiral nature of the structure and
the optical rotation, which appears to work in almost all cases. It
has even been possible to produce a computer program
OPTACT (Devarajan & Glazer, 1986; Glazer, 2002), using a
polarizability theory based on earlier work by Born (1933), that is
capable of calculating both the sign and magnitude of the effect
with reasonable precision in many cases. OPTACT also calcu-
lates the refractive indices with good reliability.

1.6.5.2. The dielectric tensor and spatial dispersion

The relevant polarization term to consider here is

P!i ¼ !0�ij‘r‘E
!
j : ð1:6:5:3Þ

The important part of this expression is the use of the field
gradient, which implies a variation of the electric field across the
unit cell of the crystal rather than the assumption that E is
everywhere constant. This variation in E is known as spatial
dispersion (Agranovich & Ginzburg, 1984).

Assume propagation of a plane wave given by E ¼

Eo expðik � rÞ through an optically active crystal. Substituting into
the expression for the polarization gives

P!i ¼ i!0�ij‘E
!
j k‘: ð1:6:5:4Þ

This term can now be treated as a perturbation to the dielectric
tensor "ijð!Þ to form the effective dielectric tensor "ijð!; kÞ:

"ijð!; kÞ ¼ "ijð!Þ þ i�ij‘k‘; ð1:6:5:5Þ
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Fig. 1.6.5.2. Real and imaginary birefringence as a function of wavelength: (a)
real linear; (b) imaginary linear; (c) real circular; (d) imaginary circular.

Fig. 1.6.5.1. Fresnel’s explanation of optical rotation.



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

where �ij‘ has been written for the susceptibility �ij‘ in order to
distinguish it from the use of � elsewhere. Note that this can be
expressed more generally as a power-series expansion in the
vector k (Agranovich & Ginzburg, 1984) to allow for a general-
ization to include all possible spatial dispersion effects:

"ijð!; kÞ ¼ "ijð!Þ þ i�ij‘ð!Þk‘ þ �ij‘mð!Þk‘km; ð1:6:5:6Þ

where the susceptibilities are in general themselves dependent on
frequency.

1.6.5.3. Symmetry of effective dielectric tensor

To determine the symmetry constraints on the effective
dielectric tensor, it should be recognized that the application of a
real electric field E must lead to a real dielectric displacement D.
This therefore implies that one can write

"ijð!; kÞ ¼ "�ijð�!
�;�k�Þ

or

"ijð!
�; k�Þ ¼ "�ijð�!;�kÞ: ð1:6:5:7Þ

Furthermore, in the absence of any absorptive processes, "ij must
be Hermitian, that is

"ijð!; kÞ ¼ "jið!;�kÞ: ð1:6:5:8Þ

This is fulfilled by the following symmetry constraints for the
leading terms in the effective dielectric tensor:

"ijð!Þ ¼ "jið!Þ; �ij‘ð!Þ ¼ ��ji‘ð!Þ; �ij‘mð!Þ ¼ �ji‘mð!Þ:

ð1:6:5:9Þ

In a gyrotropic crystal, there must be at least one direction that
is not equivalent to its opposite, and so such a crystal cannot
have a centre of symmetry. (Only a noncentrosymmetric
crystal can be gyrotropic. However, it is true to say that all non-
gyrotropic crystals must be centrosymmetric.) Therefore, for a
non-gyrotropic crystal,

"ijð!; kÞ ¼ "ijð!;�kÞ: ð1:6:5:10Þ

It follows therefore in such a case that

�ij‘ð!Þ ¼ 0: ð1:6:5:11Þ

It is obvious then that the susceptibility �ij‘ð!Þ has the required
symmetry for gyration and that it forms an antisymmetric tensor
of rank 3 (see Section 1.1.4.5.3 for the properties of antisym-
metric tensors).

1.6.5.4. Gyration tensor

It is convenient to rewrite the effective dielectric expression in
the following way (just keeping the first two terms):

"ijð!; kÞ ¼ "ijð!Þ þ iêeijmgm‘kl; ð1:6:5:12Þ

where êeijm is a unit antisymmetric pseudotensor of rank 3 or
permutation tensor (êe123 ¼ 1, êe213 ¼ �1, êe112 ¼ 0 etc.; êeijm is not
affected by mirror reflection) and gm‘ represents a pseudotensor
(i.e. axial tensor) of rank 2. One can then write further

"ijð!; kÞ ¼ "ijð!Þ þ iêeijmGm; ð1:6:5:13Þ

where Gm ¼ gm‘k‘ is a component of a pseudovector (i.e. axial
vector), known as the gyration vector. The formula for the
dielectric displacement can then be expressed in the form

Di ¼ "o"ijð!; kÞEj ¼ "o "ijð!ÞEj � i G� Eð Þi
� �

: ð1:6:5:14Þ

The operation G� E can also be represented by the product of
an antisymmetric tensor ½G� with the vector E:

0 G12 G13

�G12 0 G23

�G13 �G23 0

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A ¼

G12E2 þG13E3

G23E3 �G12E1

�G13E1 �G23E2

0

B
@

1

C
A

¼

�G3E2 þG2E3

�G1E3 þG3E1

�G2E1 þG1E2

0

B
@

1

C
A;

ð1:6:5:15Þ

where�G1 ¼G23 ¼�G32,�G2 ¼�G13 ¼G31 and�G3 ¼G12 ¼

�G21. If ŝs is the unit vector in the propagation direction, then

G ¼ Gŝs ð1:6:5:16Þ

and G represents the magnitude of the gyration vector. Thus,

ŝs �G ¼ ŝs �Gŝs ¼ Gŝs � ŝs ¼ G: ð1:6:5:17Þ

Consequently, if one knows the direction of propagation inside
the crystal, the coefficient G can be calculated via

G ¼ ŝs1G1 þ ŝs2G2 þ ŝs3G3 ð1:6:5:18Þ

and then the optical rotatory power is defined as

� ¼
�G

�n
; ð1:6:5:19Þ

where � is the angle of rotation in degrees per millimetre.
According to the way in which the sign of G has been defined
here, a positive value of � means dextrorotation and a negative
value means laevorotation.

There is a possibility of confusion here in terminology with
respect to the term ‘gyration tensor’. It is seen that there exists an
antisymmetric tensor ½G�: this is sometimes referred to as the
gyration tensor. However, returning to equation (1.6.5.12), it is
the pseudotensor given by gm‘ that is more often described as the
gyration tensor. The difference between them is really one of
emphasis. The ½G� tensor refers to the polarization directions of
the wave, whereas the g tensor is referred to the direction of wave
propagation. Thus, for example, G23 refers to a wave whose
polarization lies in the x2x3 plane, and so propagates in the x1
direction, according to the axial gyration vector component �G1.
The gyration is equally described by the tensor component g11.
Being an axial tensor, g11 corresponds to a wave travelling along
x1, along which direction one observes a rotation in the x2x3
plane.

Although g is in general an antisymmetric tensor, since it is
only the scalar products gm‘ŝsmŝs‘ that are important in deter-
mining the rotation of the plane of polarization, the components
of D, and hence the refractive index behaviour, are independent
of the antisymmetric part of gm‘. It is thus possible to construct a
table of tensor invariances for the symmetric part of the gyration
tensor with regard to the possible symmetry classes of a crystal
(Table 1.6.5.1). For a discussion of the importance of the anti-
symmetric terms, see Agranovich & Ginzburg (1984).

1.6.5.5. Optical rotation along the optic axis of a uniaxial crystal

Consider a uniaxial crystal such as quartz, crystallizing in point
group 32. In this case, the only dielectric tensor terms (for the
effect of symmetry, see Section 1.1.4.10) are "11 ¼ "22 6¼ "33, with
the off-diagonal terms equal to zero. The equations for the
dielectric displacements along the three coordinate axes x1, x2
and x3 are then given, according to equations (1.6.5.14) and
(1.6.5.15), by
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D1 ¼ "o"11E1 � i"o G12E2 þG13E3

� �

D2 ¼ "o"22E2 � i"o G23E3 �G21E1

� �

D3 ¼ "o"33E3 � i"o G31E1 �G32E2

� �
: ð1:6:5:20Þ

If the light is taken to propagate along x3, the optic axis, the
fundamental optics equation (1.6.3.14) is expressed as

"11 �iG12 �iG13

iG12 "11 �iG23

iG13 iG23 "33 þ n2

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A

¼

n2 0 0

0 n2 0

0 0 n2

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A: ð1:6:5:21Þ

As usual, the longitudinal solution given by

iG13E1 þ iG23E2 þ "33E3 ¼ 0 ð1:6:5:22Þ

can be ignored, as one normally deals with a transverse electric
field in the normal case of propagating light. For a non-trivial
solution, then,

"11 � n2 �iG12

iG12 "11 � n2

�
�
�
�

�
�
�
� ¼ 0; ð1:6:5:23Þ

which gives

n2 ¼ "11 �G12: ð1:6:5:24Þ

This results in two eigenvalue solutions, n1 and n2, from which
one has

ðn1 � n2Þðn1 þ n2Þ ¼ 2G12 ¼ �2G3 ð1:6:5:25Þ

and thus

n1 � n2 ¼
G12

�nn
¼ �

G3

�nn
: ð1:6:5:26Þ

The optical rotatory power (1.6.5.19) is then given by

� ¼
�G3

� �nn
¼
�ðn2 � n1Þ

�
: ð1:6:5:27Þ

Note that in order to be consistent with the definition of rotatory
power used here, n2> n1 for a dextrorotatory solution. This
implies that n2 should be identified with nL and n1 with nR. To
check this, find the eigenvectors corresponding to the two solu-
tions (1.6.5.24).

For n21 ¼ "11 �G3, the following matrix is found from
(1.6.5.21):

G3 iG3

�iG3 G3

� �

¼ 0; ð1:6:5:28Þ

giving the Jones matrix

ð1=21=2Þ
1

�i

� �

¼ 0: ð1:6:5:29Þ

This corresponds to a right-circularly polarized wave. It should be
noted that there is confusion in the optics textbooks over the
Jones matrices for circular polarizations. Jones (1948) writes a
right-circular wave as

1

i

� �

;

but this is for a definition of right-circularly polarized light as that
for which an instantaneous picture of the space distribution of its
electric vector describes a right spiral. The modern usage is to
define the sense of circular polarization through the time varia-
tion of the electric vector in a given plane as seen by an observer
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Table 1.6.5.1. Symmetry constraints (see Section 1.1.4.10) on the gyration tensor gij

All gij components are zero for the centrosymmetric point groups plus 4mm, �443m, 3m, 6mm, �66 and �66m2.

Triclinic Monoclinic Orthorhombic

Point group 1 Point group 2 (2 k x2) Point group m (m ? x2) Point group 222

g11 g12 g13
g12 g22 g23
g13 g23 g33

0

@

1

A
g11 0 g13
0 g22 0

g13 0 g33

0

@

1

A
0 g12 0

g12 0 g23
0 g23 0

0

@

1

A
g11 0 0

0 g22 0

0 0 g33

0

@

1

A

Point group 2 (2 k x3) Point group m (m ? x3) Point group mm2

g11 g12 0

g12 g22 0

0 0 g33

0

@

1

A
0 g13

0 g23
g13 g23 0

0

@

1

A
0 g12 0

g12 0 0

0 0 0

0

@

1

A

Tetragonal Trigonal and hexagonal Cubic and isotropic

Point groups 4, 422 Point group �44 Point groups 3, 32, 6, 622 Point groups 432, 23

g11 0 0

0 g11 0

0 0 g33

0

@

1

A
g11 g12 0

g12 �g11 0

0 0 0

0

@

1

A
g11 0 0

0 g11 0

0 0 g33

0

@

1

A
g11 0 0

0 g11 0

0 0 g11

0

@

1

A

Point group �442m Isotropic, no centre of symmetry

g11 0 0

0 �g11 0

0 0 0

0

@

1

A
g11 0 0

0 g11 0

0 0 g11

0

@

1

A
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looking towards the source of the light. This reverses the defi-
nition given by Jones.

For n22 ¼ "11 þG3, the following matrix is found:

�G3 iG3

�iG3 �G3

� �

¼ 0; ð1:6:5:30Þ

giving

ð1=21=2Þ
1

i

� �

¼ 0: ð1:6:5:31Þ

This corresponds to a left-circularly polarized wave. Therefore
it is proved that the optical rotation arises from a competition
between two circularly polarized waves and that in equation
(1.6.5.26) n1 ¼ nR and n2 ¼ nL, the refractive indices for right-
and left-circularly polarized light, respectively. Note that Fres-
nel’s original idea of counter-rotating circular polarizations fits
nicely with the eigenvectors rigorously determined in (1.6.5.29)
and (1.6.5.31). Thus

� ¼
�ðnL � nRÞ

�
: ð1:6:5:32Þ

Finally, for light propagating along x3 in quartz, one can write the
direction of the wave normal as

ŝs1 ¼ 0; ŝs2 ¼ 0; ŝs3 ¼ 1 ð1:6:5:33Þ

and then the gyration vector is given by

G ¼ gi3ŝsiŝs3 ¼ g13 þ g23 þ g33 ¼ g33 ð1:6:5:34Þ

as g12 ¼ g23 ¼ 0 in point group 32. Thus from (1.6.5.26) it is seen
that

g33 ¼ G3 ¼ �G12; ð1:6:5:35Þ

thus linking one of the components of the gyration tensor gm‘
with a component of the gyration vector G and a tensor
component of ½G�.

1.6.5.6. Optical rotation perpendicular to the optic axis of a
uniaxial crystal

The magnitude of circular birefringence is typically about 10�4

times smaller than that of linear birefringence. For this reason,
optical rotation has usually been observed only in directions
where the linear birefringence is absent, such as in optic axial
directions. However, it has been clear for some time that optical
rotation also exists in other directions and that with specialized
techniques it is even possible to measure it. The techniques
(Moxon & Renshaw, 1990; Moxon et al., 1991) are complex and
require very precise measuring capabilities, and therefore are
generally not commonly available.

Probably the best known case where optical rotation has been
measured in a linearly birefringent section is that of quartz. It has
been seen that it is easy to measure the rotation along the optic
axial direction, since this is the direction along which the crystal
looks isotropic. Szivessy &Münster (1934) measured the rotation
in a direction perpendicular to the optic axis and found that its
magnitude was smaller and opposite in sign to that along the
optic axis of the same crystal.

To see the relationship between the linear and circular bire-
fringences, consider light travelling along x1 in quartz. The
fundamental equation (1.6.3.14) then becomes

"11 � n2 �iG12 �iG13

iG12 "11 �iG23

iG13 iG23 "33

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A

¼

n2 0 0

0 n2 0

0 0 n2

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A: ð1:6:5:36Þ

Solving for the non-trivial transverse solutions

"11 � n2 �iG23

iG23 "33 � n2

�
�
�
�

�
�
�
� ¼ 0 ð1:6:5:37Þ

and then

n4 � n2ð"11 þ "33Þ þ "11"33 �G2
23 ¼ 0: ð1:6:5:38Þ

Finding the roots of this equation considered as a quadratic in n2,
the following birefringence is obtained:

n1 � n2 ¼ no � neð Þ
2
þðG2

23= �nn
2Þ

� �1=2
: ð1:6:5:39Þ

The eigenvectors for the two solutions n1 and n2 can easily be
shown to correspond to elliptical polarizations. Notice that in
equation (1.6.5.39), two refractive-index solutions are obtained
whose difference depends on two terms, one with respect to the
linear birefringence no � ne and the other to the circular bire-
fringence represented by the gyration component G23 ¼ �G1.
The refractive-index difference n1 � n2 gives rise to a phase shift
between the two elliptically polarized components of the light,
given by

� ¼ ð2�=�Þðn1 � n2Þ; ð1:6:5:40Þ

from which

�2 ¼ ð4�2=�2Þ ðno � neÞ
2
þ ðG2

23= �nn
2Þ

� �

¼ 
2 þ ð2�Þ2; ð1:6:5:41Þ

where


 ¼
2�

�
ðno � neÞ and � ¼

��G23

� �nn
¼

��G1

� �nn
: ð1:6:5:42Þ


 is the phase difference when there is no optical rotation and 2�
is the phase difference corresponding to a normal optical rotation
� when there is no linear birefringence. (1.6.5.41) shows that the
linear and circular terms simply add, and this is known as the
principle of superposition.

This reveals that an elliptical polarization is created by the
simple vector addition of a linearly polarized wave to a circularly
polarized wave, as indicated in Fig. 1.6.5.3. From this, the ellip-
ticity  of the polarization is given by

 ¼ tanð12�Þ; ð1:6:5:43Þ

where

tan � ¼
2�



: ð1:6:5:44Þ
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Fig. 1.6.5.3. The principle of superposition.



1.6. CLASSICAL LINEAR CRYSTAL OPTICS

171

Table 1.6.6.1. Symmetry constraints (see Section 1.1.4.10) on the linear electro-optic tensor rij (contracted notation)

Triclinic Monoclinic Orthorhombic

Point group 1 Point group 2 (2 k x2) Point group m (m ? x2) Point group 222

r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

0 r12 0

0 r22 0

0 r32 0

r41 0 r43
0 r52 0

r61 0 r63

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

r11 0 r13
r21 0 r23
r31 0 r33
0 r42 0

r51 0 r53
0 r62 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

0 0 0

0 0 0

0 0 0

r41 0 0

0 r52 0

0 0 r63

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Point group 2 (2 k x3) Point group m (m ? x3) Point group mm2

0 0 r13
0 0 r23
0 0 r33
r41 r42 0

r51 r52 0

0 0 r63

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

r11 r12 0

r21 r22 0

r31 r32 0

0 0 r43
0 0 r53
r61 r62 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

0 0 r13
0 0 r23
0 0 r33
0 r42 0

r51 0 0

0 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Tetragonal Trigonal

Point group 4 Point group �44 Point group 3 Point group 32

0 0 r13
0 0 r13
0 0 r33
r41 r51 0

r51 �r41 0

0 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

0 0 r13
0 0 �r13
0 0 0

r41 �r51 0

r51 r41 0

0 0 r63

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

r11 �r22 r13
�r11 r22 r13
0 0 r33
r41 r51 0

r51 �r41 0

�r22 �r11 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

r11 0 0

�r11 0 0

0 0 0

r41 0 0

0 �r41 0

0 �r11 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Point group �442m Point group 422 Point group 3m1 (m ? x1) Point group 31m (m ? x2)

0 0 0

0 0 0

0 0 0

r41 0

r41 0

0 0 r63

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

0 0 0

0 0 0

0 0 0

r41 0 0

0 �r41 0

0 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
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0 �r22 r13
0 r22 r13
0 0 r33
0 r51 0
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�r22 0 0
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B
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Point group 4mm

0 0 r13
0 0 r13
0 0 r33
0 r51 0

r51 0 0

0 0 0

0
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B
B
@

1

C
C
C
C
C
C
A

Hexagonal Cubic

Point group 6 Point group 6mm Point group 622 Point groups �443m, 23

0 0 r13
0 0 r13
0 0 r33
r41 r51 0

r51 �r41 0

0 0 0

0

B
B
B
B
B
B
@
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0 0 r13
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0 r51 0
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B
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B
@
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0 0 0

0 0 0
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r41 0 0
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0 0 0
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B
B
@
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0 0 0

0 0 0
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r41 0 0
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Point group �66 Point group �66m2 (m ? x1) Point group �662m (m ? x2) Point group 432
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0 0 0

0 0 0
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�r22 �r11 0
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0 �r22 0
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0 0 0
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0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
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Thus

tan � ¼
G1

�nnðno � neÞ
¼

g11
�nnðno � neÞ

: ð1:6:5:45Þ

Generally speaking, the ellipticity is extremely small and
difficult to measure (Moxon & Renshaw, 1990). In right-handed
quartz (right-handed with respect to optical rotation observed
along the c axis), no ¼ 1:544, ne ¼ 1:553, g11 ¼ g22 ¼

�5:82� 10�5 and g33 ¼ 12:96� 10�5 measured at � ¼ 5100 Å.
Since the c axis is also the optic axis, 
 ¼ 0 for the (0001) plane,
and thus  ¼ 1 for this section [equations (1.6.5.44) and
(1.6.5.43)]. This value of  ¼ 1 means that the two waves are
circular (see Section 1.6.5.5), i.e. there is no linear birefringence,
only a pure rotation. In this direction, the gyration g33 means a
rotation of � ¼ 29:5� mm�1 [using equation (1.6.5.27)]. In a
direction normal to the optic axis, from equation (1.6.5.40) one
finds � ¼ �13:3� mm�1. However, in this direction, the crystal
appears linearly birefringent with 
 ¼ 110:88 mm�1 [equation
(1.6.5.42)]. Thus the ellipticity  ¼ �0:00209, as calculated from
equations (1.6.5.44) and (1.6.5.43). In other words, the two waves
are very slightly elliptical, and the sense of rotation of the two
ellipses is reversed. Because of the change in sign of the gyration
coefficients, it is found that at an angle of 56� 100 down from the
optic axis  ¼ 0, meaning that waves travelling along this direc-
tion show no optical rotation, only linear birefringence.

1.6.6. Linear electro-optic effect

The linear electro-optic effect, given by P!i ¼ "o�ijkE
!
j E

0
k, is

conventionally expressed in terms of the change in dielectric
impermeability caused by imposition of a static electric field on
the crystal. Thus one may write the linear electro-optic effect as

��ij ¼ rijkE
0
k; ð1:6:6:1Þ

where the coefficients rijk form the so-called linear electro-optic
tensor. These have identical symmetry with the piezoelectric
tensor and so obey the same rules (see Table 1.6.6.1). Like the
piezoelectric tensor, there is a maximum of 18 independent
coefficients (triclinic case) (see Section 1.1.4.10.3). However,
unlike in piezoelectricity, in using the Voigt contracted notation
there are two major differences:

(1) In writing the electro-optic tensor components as rij, the
first suffix refers to the column number and the second suffix is
the row number.

(2) There are no factors of 1/2 or 2.
Typical values of linear electro-optic coefficients are around
10�12 mV�1.

1.6.6.1. Primary and secondary effects

In considering the electro-optic effect, it is necessary to bear in
mind that, in addition to the primary effect of changing the
refractive index, the applied electric field may also cause a strain
in the crystal via the converse piezoelectric effect, and this can
then change the refractive index, as a secondary effect, through
the elasto-optic effect. Both these effects, which are of compar-
able magnitude in practice, will occur if the crystal is free.
However, if the crystal is mechanically clamped, it is not possible
to induce any strain, and in this case therefore only the primary
electro-optic effect is seen. In practice, the free and clamped
behaviour can be investigated by measuring the linear birefrin-
gence when applying electric fields of varying frequencies. When
the electric field is static or of low frequency, the effect is
measured at constant stress, so that both primary and secondary
effects are measured together. For electric fields at frequencies
above the natural mechanical resonance of the crystal, the strains
are very small, and in this case only the primary effect is
measured.

1.6.6.2. Example of LiNbO3

In order to understand how tensors can be used in calculating
the optical changes induced by an applied electric field, it is
instructive to take a particular example and work out the change
in refractive index for a given electric field. LiNbO3 is the most
widely used electro-optic material in industry and so this forms a
useful example for calculation purposes. This material crystallizes
in point group 3m, for which the electro-optic tensor has the form
(for the effect of symmetry, see Section 1.1.4.10) (with x1
perpendicular to m)

0 �r22 r13
0 r22 r13
0 0 r33
0 r51 0

r51 0 0

�r22 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; ð1:6:6:2Þ

with r13 ¼ 9:6, r22 ¼ 6:8, r33 ¼ 30:9 and r51 ¼ 32:5� 10�12 mV�1,
under the normal measuring conditions where the crystal is
unclamped.

Calculation using dielectric impermeability tensor. Suppose, for
example, a static electric field E0

3 is imposed along the x3 axis. One
can then write

��1
��2
��3
��4
��5
��6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

0 �r22 r13
0 r22 r13
0 0 r33
0 r51 0

r51 0 0

�r22 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

0

0

E0
3

0

@

1

A ¼

r13E
0
3

r13E
0
3

r33E
0
3

0

0

0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð1:6:6:3Þ

Thus

��1 ¼ r13E
0 ¼ ��2

��3 ¼ r33E
0

��4 ¼ ��5 ¼ ��6 ¼ 0: ð1:6:6:4Þ

Since the original indicatrix of LiNbO3 before application of the
field is uniaxial,

�1 ¼
1

n2o
¼ �2

�3 ¼
1

n2e
; ð1:6:6:5Þ

and so differentiating, the following are obtained:

��1 ¼ ��2 ¼ �
2

n3o
�no

��3 ¼ �
2

n3e
�ne: ð1:6:6:6Þ

Thus, the induced changes in refractive index are given by

�n1 ¼ �n2 ¼ �
n3o
2
r13E

0
3

�n3 ¼ �
n3e
2
r33E

0
3: ð1:6:6:7Þ

It can be seen from this that the effect is simply to change the
refractive indices by deforming the indicatrix, but maintain the
uniaxial symmetry of the crystal. Note that if light is now
propagated along, say, x1, the observed linear birefringence is
given by

ðne � noÞ �
1
2ðn

3
er33 � n3or13ÞE

0
3: ð1:6:6:8Þ
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If, on the other hand, the electric field E0
2 is applied along x2,

i.e. within the mirror plane, one finds

��1 ¼ �r22E
0
2

��2 ¼ þr22E
0
2

��4 ¼ þr51E
0
2

��3 ¼ ��5 ¼ ��6 ¼ 0: ð1:6:6:9Þ

Diagonalization of the matrix

��1 0 0

0 ��2 ��4
0 ��4 ��3

0

@

1

A ð1:6:6:10Þ

containing these terms gives three eigenvalue solutions for the
changes in dielectric impermeabilities:

ð1Þ � r22E
0
2

ð2Þ
r22 þ ðr222 þ 4r251Þ

1=2

2
E0

2

ð3Þ
r22 � ðr222 þ 4r251Þ

1=2

2
E0

2:

ð1:6:6:11Þ

On calculating the eigenfunctions, it is found that solution (1) lies
along x1, thus representing a change in the value of the indicatrix
axis in this direction. Solutions (2) and (3) give the other two axes
of the indicatrix: these are different in length, but mutually
perpendicular, and lie in the x2x3 plane. Thus a biaxial indicatrix
is formed with one refractive index fixed along x1 and the other
two in the plane perpendicular. The effect of having the electric
field imposed within the mirror plane is thus to remove the
threefold axis in point group 3m and to form the point subgroup
m (Fig. 1.6.6.1).

Relationship between linear electro-optic coefficients rijk and the
susceptibility tensor �ð2Þijk . It is instructive to repeat the above
calculation using the normal susceptibility tensor and equation
(1.6.3.14). Consider, again, a static electric field along x3 and light
propagating along x1. As before, the only coefficients that need to

be considered with the static field along x3 are �113 ¼ �223 and
�333. Equation (1.6.3.14) can then be written as

"1 þ "o�13E
0
3 þ n2 0 0

0 "1 þ "o�13E
0
3 0

0 0 "3 þ "o�33E
0
3

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A

¼

n2 0 0

0 n2 0

0 0 n2

0

B
@

1

C
A

E1

E2

E3

0

B
@

1

C
A; ð1:6:6:12Þ

where for simplicity the Voigt notation has been used. The first
line of the matrix equation gives

ð"1 þ "o�13E
0
3 þ n2ÞE1 ¼ n2E1: ð1:6:6:13Þ

Since only a transverse electric field is relevant for an optical
wave (plasma waves are not considered here), it can be assumed
that the longitudinal field E1 ¼ 0. The remaining two equations
can be solved by forming the determinantal equation

"1 þ "o�13E
0
3 � n2 0

0 "3 þ "o�33E
0
3 � n2

�
�
�
�

�
�
�
� ¼ 0; ð1:6:6:14Þ

which leads to the results

n21 ¼ "1 þ "o�13E
0
3 and n22 ¼ "3 þ "o�33E

0
3: ð1:6:6:15Þ

Thus

n21 ¼ n2o þ "o�13E
0
3 and n22 ¼ n2e þ "o�33E

0
3; ð1:6:6:16Þ

and so

ðn1 � noÞðn1 þ noÞ ¼ "o�13E
0
3 and ðn2 � neÞðn2 þ neÞ ¼ "o�33E

0
3;

ð1:6:6:17Þ

and since n1 ’ no and n2 ’ ne,

n1 � no ¼
"o�13E

0
3

2no
and n2 � ne ¼

"o�33E
0
3

2ne
: ð1:6:6:18Þ

Subtracting these two results, the induced birefringence is found:

ðne � noÞ �
1
2

"o�33
ne

�
"o�13
no

� �

E0
3: ð1:6:6:19Þ

Comparing with the equation (1.6.6.8) calculated for the linear
electro-optic coefficients,

ðne � noÞ �
1
2 n

3
er33 � n3or13

� �
E0

3; ð1:6:6:20Þ

one finds the following relationships between the linear electro-
optic coefficients and the susceptibilities �ð2Þ:

r13 ¼
"o�13
n4o

and r33 ¼
"o�33
n4e

: ð1:6:6:21Þ

1.6.7. The linear photoelastic effect

1.6.7.1. Introduction

The linear photoelastic (or piezo-optic) effect (Narasimha-
murty, 1981) is given by P!i ¼ "o�ijk‘E

!
j S

0
k‘, and, like the electro-

optic effect, it can be discussed in terms of the change in dielectric
impermeability caused by a static (or low-frequency) field, in this
case a stress, applied to the crystal. This can be written in the form

��ij ¼ �ijk‘T
0
k‘: ð1:6:7:1Þ
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Fig. 1.6.6.1. (a) Symmetry elements of point group 3m. (b) Symmetry
elements after field applied along x2. (c) Effect on circular section of uniaxial
indicatrix.
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The coefficients �ijk‘ form a fourth-rank tensor known as the
linear piezo-optic tensor. Typically, the piezo-optic coefficients
are of the order of 10�12 m2 N�1. It is, however, more usual to
express the effect as an elasto-optic effect by making use of the
relationship between stress and strain (see Section 1.3.3.2), thus

Tk‘ ¼ ck‘mnSmn; ð1:6:7:2Þ

where the ck‘mn are the elastic stiffness coefficients. Therefore
equation (1.6.7.2) can be rewritten in the form

��ij ¼ �ijk‘ck‘mnSmn ¼ pijmnSmn ð1:6:7:3Þ

or, in contracted notation,

��i ¼ pijSj; ð1:6:7:4Þ

where, for convenience, the superscript 0 has been dropped, the
elastic strain being considered as essentially static or of low
frequency compared with the natural mechanical resonances of
the crystal. The pijmn are coefficients that form the linear elasto-
optic (or strain-optic) tensor (Table 1.6.7.1). Note that these
coefficients are dimensionless, and typically of order 10�1,
showing that the change to the optical indicatrix is roughly one-
tenth of the strain.

The elasto-optic effect can arise in several ways. The most
obvious way is through application of an external stress, applied
to the surfaces of the crystal. However, strains, and hence
changes to the refractive indices, can arise in a crystal through
other ways that are less obvious. Thus, it is a common finding that
crystals can be twinned, and thus the boundary between twin
domains, which corresponds to a mismatch between the crystal
structures either side of the domain boundary, will exhibit a
strain. Such a crystal, when viewed between crossed polars under
a microscope will produce birefringence colours that will high-
light the contrast between the domains. This is known as strain
birefringence. Similarly, when a crystal undergoes a phase tran-
sition involving a change in crystal system, a so-called ferroelastic
transition, there will be a change in strain owing to the difference
in unit-cell shapes. Hence there will be a corresponding change in
the optical indicatrix. Often the phase transition is one going
from a high-temperature optically isotropic section to a low-
temperature optically anisotropic section. In this case, the high-
temperature section has no internal strain, but the low-
temperature phase acquires a strain, which is often called the
spontaneous strain (by analogy with the term spontaneous
polarization in ferroelectrics).

1.6.7.2. Spontaneous strain in BaTiO3

As an example of the calculation of the relationship between
spontaneous strain and linear birefringence, consider the high-
temperature phase transition of the well known perovskite
BaTiO3. This substance undergoes a transition at around 403 K
on cooling from its high-temperature Pm�33m phase to the room-
temperature P4mm phase. The P4mm phase is both ferroelectric
and ferroelastic. In this tetragonal phase, there is a small distor-
tion of the unit cell along [001] and a contraction along h100i
compared with the unit cell of the high-temperature cubic phase,
and so the room-temperature phase can be expected to have a
uniaxial optical indicatrix.

The elasto-optic tensor for the m�33m phase is (Table 1.6.7.1)

p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð1:6:7:5Þ

Consider the low-temperature tetragonal phase to arise as a small
distortion of this cubic phase, with a spontaneous strain Ss3 given
by the lattice parameters of the tetragonal phase:

Ss3 ¼ ½ðc� aÞ=a�: ð1:6:7:6Þ

Therefore, the equations (1.6.7.4) for the dielectric imperme-
ability in terms of the spontaneous strain component are given in
matrix form as

��1

��2

��3

��4

��5

��6

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼

p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

0

0

Ss3

0

0

0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼

p12S
s
3

p12S
s
3

p11S
s
3

0

0

0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð1:6:7:7Þ

so that

��1 ¼ ��2 ¼ p12S
s
3

��3 ¼ p11S
s
3

��4 ¼ ��5 ¼ ��6 ¼ 0: ð1:6:7:8Þ

By analogy with equations (1.6.6.5) and (1.6.6.6), the induced
changes in refractive index are then
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Fig. 1.6.7.1. (a) Symmetry elements of point group �443m. (b) Symmetry
elements after strain applied along [110]. (c) Effect on spherical indicatrix.
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�n1 ¼ �n2 ¼ �
n3cub
2

p12S
s
3

�n3 ¼ �
n3cub
2

p11S
s
3; ð1:6:7:9Þ

where ncub is the refractive index of the cubic phase. Thus the
birefringence in the tetragonal phase as seen by light travelling
along x1 is given by

�n3 ��n2 ¼ �
n3cub
2

ðp11 � p12ÞS
s
3: ð1:6:7:10Þ

Thus a direct connection is made between the birefringence of
the tetragonal phase of BaTiO3 and its lattice parameters via the
spontaneous strain. As in the case of the linear electro-optic
effect, the calculation can be repeated using equation (1.6.3.14)
with the susceptibilities �11 and �12 to yield the relationship

p11 ¼
c1111"o�11

n4o
; p12 ¼

c1122"o�12
n4o

: ð1:6:7:11Þ

1.6.7.3. The acousto-optic effect

The acousto-optic effect (Sapriel, 1976) is really a variant of
the elasto-optic effect, in that the strain field is created by the
passage of a sound wave through the crystal. If this wave has
frequency !1, the resulting polarization in the presence of a light

wave of frequency !2 is given by P!i ¼ �ijk‘E
!2
j S

!1
k‘, where

! ¼ !1 � !2. However, since the sound-wave frequency is very
small compared with that of the light, to all intents and purposes
the change in frequency of the light field can be ignored. The
effect then of the sound wave is to produce within an acousto-
optic crystal a spatially modulated change in refractive index: a
beam of light can then be diffracted by this spatial modulation,
the resulting optical diffraction pattern thus changing with the
changing sound signal. Acousto-optic materials therefore can be
used as transducers for converting sound signals into optical
signals for transmission down optical fibres in communications
systems. Consider, for instance, a sound wave propagating along
the [110] direction in gallium arsenide (GaAs), which crystallizes
in point group �443m. Suppose that this sound wave is long-
itudinally polarized. With respect to the cube axes, this corre-
sponds to an oscillatory shear strain S12 sinð!t � k�Þ, where � is a
distance along the [110] direction (Fig. 1.6.7.1). Then one can
write

��ij ¼ pij12S12 sinð!t � k�Þ ð1:6:7:12Þ

or in contracted notation

��i ¼ pi6S6 sinð!t � k�Þ: ð1:6:7:13Þ

From Table 1.6.7.1, it seen that the change in dielectric imper-
meability tensor is
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Table 1.6.7.1. Symmetry constraints on the linear elasto-optic (strain-optic) tensor pij (contracted notation) (see Section 1.1.4.10.6)

Triclinic Orthorhombic Tetragonal Trigonal

Point group 1 Point groups 222, mm2, mmm Point groups 4, �44, 4=m Point groups 3, �33

p11 p12 p13 p14 p15 p16
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
p41 p42 p43 p44 p45 p46
p51 p52 p53 p54 p55 p56
p61 p62 p63 p64 p65 p66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 0 0 0

p21 p22 p23 0 0 0

p31 p32 p33 0 0 0

0 0 0 p44 0 0

0 0 0 p55 0

0 0 0 0 0 p66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 0 0 p16
p12 p22 p13 0 0 �p16
p31 p31 p33 0 0 0

0 0 0 p44 p45 0

0 0 0 �p45 p55 0

p61 �p61 0 0 p66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 p14 p15 p16
p12 p11 p13 �p14 �p15 �p16
p31 p31 p33 0 0 0

p41 �p41 0 p44 p45 �p51
p51 �p51 0 �p44 p44 p41
�p16 p16 0 �p15 p14

1
2 ðp11 � p12Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Monoclinic Point groups 4mm, �442m, 422, 4=mmm Point groups 3m, �33m, 32

Point groups 2, m, 2=m (2 k x2) Point groups 2, m, 2=m (2 k x3)

p11 p12 p13 0 0 0

p12 p22 p13 0 0 0

p31 p31 p33 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 p14 0 0

p12 p11 p13 �p14 0 0

p13 p13 p33 0 0 0

p41 �p41 0 p44 0 0

0 0 0 0 p44 p41
0 0 0 0 p14

1
2 ðp11 � p12Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 0 p15 0

p21 p22 p23 0 p25 0

p31 p32 p33 0 p35 0

0 0 0 p44 0 p46
p51 p52 p53 0 p55 0

0 0 0 p64 0 p66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 0 0 p16
p21 p22 p23 0 0 p26
p31 p32 p33 0 0 p36
0 0 0 p44 p45 0

0 0 0 p54 p55 0

p61 p62 p63 0 0 p66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Hexagonal Cubic Isotropic

Point groups 6, �66, 6=m Point groups m�33, 23

p11 p12 p12 0 0 0

p12 p11 p13 0 0 0

p12 p12 p11 0 0 0

0 0 0 1
2 ðp11 � p12Þ 0 0

0 0 0 0 1
2 ðp11 � p12Þ 0

0 0 0 0 0 1
2 ðp11 � p12Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p13 0 0 p16
p12 p11 p13 0 0 �p16
p31 p31 p33 0 0 0

0 0 0 p44 p45 0

0 0 0 �p45 p44 0

�p16 p16 0 0 0 1
2 ðp11 � p12Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p21 0 0 0

p21 p11 p12 0 0 0

p12 p21 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Point groups 6mm, �66m2, 622, 6=mmm Point groups �443m, 432, m�33m

p11 p12 p13 0 0 0

p12 p11 p13 0 0 0

p13 p13 p33 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 1
2 ðp11 � p12Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

p11 p12 p12 0 0 0

p12 p11 p13 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A
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��6 ¼ p66S6 sinð!t � k�Þ ¼ p44S6 sinð!t � k�Þ ð1:6:7:14Þ

since all other components are zero. This means that the original
spherical indicatrix of the cubic crystal has been distorted to form
a biaxial indicatrix whose axes oscillate in length according to

n1 ¼ ncub þ
n3cub
2

p44S6 sinð!t � k�Þ

n2 ¼ ncub �
n3cub
2

p44S6 sinð!t � k�Þ

n3 ¼ ncub; ð1:6:7:15Þ

thus forming an optical grating of spatial periodicity given by the
k� term. In gallium arsenide, at a wavelength of light equal to
1.15 mm, p11 ¼ �0:165, p12 ¼ �0:140 and p44 ¼ �0:072. It is
convenient to define a figure of merit for acousto-optic materials
(Yariv & Yeh, 1983) given by

M ¼
n6p2

dv3
; ð1:6:7:16Þ

where v is the velocity of the sound wave and d is the density of
the solid. For gallium arsenide, d ¼ 5340 kg m�3, and for a sound
wave propagating as above v ¼ 5:15 m s�1. At the wavelength
� ¼ 1:15mm, n ¼ 3:37, and so it is found that M ¼ 104. In prac-
tice, figures of merits can range from less than 0.001 up to as high
as 4400 in the case of Te, and so the value for gallium arsenide
makes it potentially useful as an acousto-optic material for
infrared signals.

1.6.8. Glossary

�, �, � refractive indices of biaxial indicatrix, �<�<�
�̂� polarizability operator
Bi ith component of magnetic induction
c velocity of light
ck‘mn k‘mnth component of elastic stiffness tensor
�ijk... ijk . . .th component of generalized

susceptibility
d density
Di ith component of dielectric displacement
� phase difference of light
êeijm unit antisymmetric pseudotensor of rank 3
Ei ith component of electric field
gij, Gij ijth component of gyration tensor
G gyration vector
�ij‘ third-rank optical gyration susceptibility
H magnetic field intensity
�ij ijth component of dielectric impermeability

tensor
"o permittivity of free space
"ij ijth component of dielectric tensor
 ellipticity of wave
k wavevector of light propagating in crystal

(jkj ¼ 2�=�)
� wavelength of light
�o vacuum magnetic permeability
n refractive index of light
n�, n�, n� refractive indices for biaxial indicatrix,

n� < n� < n�
no ordinary refractive index
ne extraordinary refractive index
�i wavefunction of state i
Pi ith component of electric polarization
pijk‘ ijk‘th component of elasto-optic (strain-optic)

tensor
p̂p electric dipole operator

� optical rotatory power
�ijk‘ ijk‘th component of linear piezo-optic tensor
rijk ijkth component of linear electro-optic tensor
ŝs unit vector in the direction of s, the wave normal
Sij ijth component of strain tensor
Tij ijth component of stress tensor
v velocity of sound
V half the angle between optic axes
! cyclic frequency
xi direction of ith Cartesian axis, i ¼ 1; 2; 3
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1.7. Nonlinear optical properties

By B. Boulanger and J. Zyss

1.7.1. Introduction

The first nonlinear optical phenomenon was observed by
Franken et al. (1961): ultraviolet radiation at 0.3471 mm was
detected at the exit of a quartz crystal illuminated with a ruby
laser beam at 0.6942 mm. This was the first demonstration of
second harmonic generation at optical wavelengths. A coherent
light of a few W cm�2 is necessary for the observation of
nonlinear optical interactions, which thus requires the use of laser
beams.

The basis of nonlinear optics, including quantum-mechanical
perturbation theory and Maxwell equations, is given in the paper
published by Armstrong et al. (1962).

It would take too long here to give a complete historical
account of nonlinear optics, because it involves an impressive
range of different aspects, from theory to applications, from
physics to chemistry, from microscopic to macroscopic aspects,
from quantum mechanics of materials to classical and quantum
electrodynamics, from gases to solids, from mineral to organic
compounds, from bulk to surface, from waveguides to fibres and
so on.

Among the main nonlinear optical effects are harmonic
generation, parametric wave mixing, stimulated Raman scat-
tering, self-focusing, multiphoton absorption, optical bistability,
phase conjugation and optical solitons.

This chapter deals mainly with harmonic generation and
parametric interactions in anisotropic crystals, which stand out as
one of the most important fields in nonlinear optics and certainly
one of its oldest and most rigorously treated topics. Indeed, there
is a great deal of interest in the development of solid-state laser
sources, be they tunable or not, in the ultraviolet, visible and
infrared ranges. Spectroscopy, telecommunications, telemetry
and optical storage are some of the numerous applications.

The electric field of light interacts with the electric field of
matter by inducing a dipole due to the displacement of the
electron density away from its equilibrium position. The induced
dipole moment is termed polarization and is a vector: it is related
to the applied electric field via the dielectric susceptibility tensor.
For fields with small to moderate amplitude, the polarization
remains linearly proportional to the field magnitude and defines
the linear optical properties. For increasing field amplitudes, the
polarization is a nonlinear function of the applied electric field
and gives rise to nonlinear optical effects. The polarization is
properly modelled by a Taylor power series of the applied electric
field if its strength does not exceed the atomic electric field (108–
109 V cm�1) and if the frequency of the electric field is far away
from the resonance frequencies of matter. Our purpose lies
within this framework because it encompasses the most
frequently encountered cases, in which laser intensities remain in
the kW to MW per cm2 range, that is to say with electric fields
from 103 to 104 V cm�1. The electric field products appearing in
the Taylor series express the interactions of different optical
waves. Indeed, a wave at the circular frequency ! can be radiated
by the second-order polarization induced by two waves at !a and
!b such as ! ¼ !a � !b: these interactions correspond to sum-
frequency generation (! ¼ !a þ !b), with the particular cases of
second harmonic generation (2!a ¼ !a þ !a) and indirect third
harmonic generation (3!a ¼ !a þ 2!a); the other three-wave
process is difference-frequency generation, including optical
parametric amplification and optical parametric oscillation. In
the same way, the third-order polarization governs four-wave
mixing: direct third harmonic generation (3!a ¼ !a þ !a þ !a)

and more generally sum- and difference-frequency generations
(! ¼ !a � !b � !c).

Here, we do not consider optical interactions at the micro-
scopic level, and we ignore the way in which the atomic or
molecular dielectric susceptibility determines the macroscopic
optical properties. Microscopic solid-state considerations and the
relations between microscopic and macroscopic optical proper-
ties, particularly successful in the realm of organic crystals, play a
considerable role in materials engineering and optimization. This
important topic, known as molecular and crystalline engineering,
lies beyond the scope of this chapter. Therefore, all the
phenomena studied here are connected to the macroscopic first-,
second- and third-order dielectric susceptibility tensors �(1), �(2)

and �(3), respectively; we give these tensors for all the crystal
point groups.

We shall mainly emphasize propagation aspects, on the basis of
Maxwell equations which are expressed for each Fourier
component of the optical field in the nonlinear crystal. The
reader will then follow how the linear optical properties come to
play a pivotal role in the nonlinear optical interactions. Indeed,
an efficient quadratic or cubic interaction requires not only a high
magnitude of �(2) or �(3), respectively, but also specific conditions
governed by �(1): existence of phase matching between the
induced nonlinear polarization and the radiated wave; suitable
symmetry of the field tensor, which is defined by the tensor
product of the electric field vectors of the interacting waves; and
small or nil double refraction angles. Quadratic and cubic
processes cannot be considered as fully independent in the
context of cascading. Significant phase shifts driven by a sequence
of sum- and difference-frequency generation processes attached
to a �ð2Þ � �ð2Þ contracted tensor expression have been reported
(Bosshard, 2000). These results point out the relevance of polar
structures to cubic phenomena in both inorganic and organic
structures, thus somewhat blurring the borders between quad-
ratic and cubic NLO.

We analyse in detail second harmonic generation, which is the
prototypical interaction of frequency conversion. We also present
indirect and direct third harmonic generations, sum-frequency
generation and difference-frequency generation, with the specific
cases of optical parametric amplification and optical parametric
oscillation.

An overview of the methods of measurement of the nonlinear
optical properties is provided, and the chapter concludes with a
comparison of the main mineral and organic crystals showing
nonlinear optical properties.

1.7.2. Origin and symmetry of optical nonlinearities

1.7.2.1. Induced polarization and susceptibility

The macroscopic electronic polarization of a unit volume of
the material system is classically expanded in a Taylor power
series of the applied electric field E, according to Bloembergen
(1965):

P ¼ P0 þ "oð�
ð1Þ � Eþ �ð2Þ � E2 þ . . .þ �ðnÞ � En þ . . .Þ;

ð1:7:2:1Þ

where �(n) is a tensor of rank nþ 1, En is a shorthand abbre-
viation for the nth order tensor product E� E� . . .� E¼ �n E
and the dot stands for the contraction of the last n indices of the
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tensor �(n) with the full En tensor. More details on tensor algebra
can be found in Chapter 1.1 and in Schwartz (1981).

A more compact expression for (1.7.2.1) is

P ¼ P0 þ P1ðtÞ þ P2ðtÞ þ . . .þ PnðtÞ þ . . . ; ð1:7:2:2Þ

where P0 represents the static polarization and Pn represents the
nth order polarization. The properties of the linear and nonlinear
responses will be assumed in the following to comply with time
invariance and locality. In other words, time displacement of the
applied fields will lead to a corresponding time displacement of
the induced polarizations and the polarization effects are
assumed to occur at the site of the polarizing field with no remote
interactions. In the following, we shall refer to the classical
formalism and related notations developed in Butcher (1965) and
Butcher & Cotter (1990).

Tensorial expressions will be formulated within the Cartesian
formalism and subsequent multiple lower index notation. The
alternative irreducible tensor representation, as initially imple-
mented in the domain of nonlinear optics by Jerphagnon et al.
(1978) and more recently revived by Brasselet & Zyss (1998) in
the realm of molecular-engineering studies, is particularly
advantageous for connecting the nonlinear hyperpolarizabilities
of microscopic (e.g. molecular) building blocks of molecular
materials to the macroscopic (e.g. crystalline) susceptibility level.
Such considerations fall beyond the scope of the present chapter,
which concentrates mainly on the crystalline level, regardless of
the microscopic origin of phenomena.

1.7.2.1.1. Linear and nonlinear responses

1.7.2.1.1.1. Linear response

Let us first consider the first-order linear response in (1.7.2.1)
and (1.7.2.2): the most general possible linear relation between
P(t) and E(t) is

Pð1ÞðtÞ ¼ "o
Rþ1

�1

d� Tð1Þðt; �Þ � Eð�Þ; ð1:7:2:3Þ

where T(1) is a rank-two tensor, or in Cartesian index notation

Pð1Þ
� ðtÞ ¼ "o

Rþ1

�1

d� Tð1Þ
��ðt; �ÞE�ð�Þ: ð1:7:2:4Þ

Applying the time-invariance assumption to (1.7.2.4) leads to

Pð1Þðt þ t0Þ ¼ "o
Rþ1

�1

d� Tð1Þðt þ t0; �Þ � Eð�Þ

¼ "o
Rþ1

�1

d� Tð1Þðt; � þ t0Þ � Eð�Þ

¼ "o
Rþ1

�1

d�0 Tð1Þðt; �0 � t0Þ � Eð�
0Þ; ð1:7:2:5Þ

hence Tð1Þðt þ t0; �Þ ¼ Tð1Þðt; � � t0Þ or, setting t ¼ 0 and t0 ¼ t,

Tð1Þðt; �Þ ¼ Tð1Þð0; � � tÞ ¼ Rð1Þðt � �Þ; ð1:7:2:6Þ

where R(1) is a rank-two tensor referred to as the linear polar-
ization response function, which depends only on the time
difference t � �. Substitution in (1.7.2.5) leads to

Pð1ÞðtÞ ¼ "o
Rþ1

�1

d� Rð1Þðt � �ÞEð�Þ

¼ "o
Rþ1

�1

d� Rð1Þð�ÞEðt � �Þ: ð1:7:2:7Þ

R(1) can be viewed as the tensorial analogue of the linear impulse
function in electric circuit theory. The causality principle imposes
that R(1)(�) should vanish for � < 0 so that P(1)(t) at time t will

depend only on polarizing field values before t. R(1), P(1) and E
are real functions of time.

1.7.2.1.1.2. Quadratic response

The most general expression for P(2)(t) which is quadratic in
E(t) is

Pð2ÞðtÞ ¼ "o
Rþ1

�1

Rþ1

�1

d�1 d�2 T
ð2Þðt; �1; �2Þ � Eð�1Þ � Eð�2Þ

ð1:7:2:8Þ

or in Cartesian notation

Pð2Þ
� ðtÞ ¼ "o

Rþ1

�1

Rþ1

�1

d�1 d�2 T
ð2Þ
���ðt; �1; �2ÞE�ð�1ÞE�ð�2Þ: ð1:7:2:9Þ

It can easily be proved by decomposition of T(2) into symmetric
and antisymmetric parts and permutation of dummy variables
(�, �1) and (�, �2), that T

(2) can be reduced to its symmetric part,
satisfying

T
ð2Þ
���ðt; �1; �2Þ ¼ T

ð2Þ
���ðt; �2; �1Þ: ð1:7:2:10Þ

From time invariance

Tð2Þðt; �1; �2Þ ¼ Rð2Þðt � �1; t � �2Þ; ð1:7:2:11Þ

Pð2ÞðtÞ ¼ "o
Rþ1

�1

Rþ1

�1

d�1 d�2 R
ð2Þðt � �1; t � �2Þ � Eð�1Þ � Eð�2Þ;

Pð2ÞðtÞ ¼ "o
Rþ1

�1

Rþ1

�1

d�1 d�2 R
ð2Þð�1; �2Þ � Eðt � �1Þ � Eðt � �2Þ:

ð1:7:2:12Þ

Causality demands that R(2)(�1, �2) cancels for either �1 or �2
negative while R(2) is real. Intrinsic permutation symmetry
implies that R���

(2)(�1, �2) is invariant by interchange of (�, �1)
and (�, �2) pairs.

1.7.2.1.1.3. Higher-order response

The nth order polarization can be expressed in terms of the
(nþ 1)-rank tensor TðnÞðt; �1; �2; . . . ; �nÞ as

PðnÞðtÞ ¼ "o
Rþ1

�1

d�1
Rþ1

�1

d�2 . . .
Rþ1

�1

d�n TðnÞðt; �1; �2; . . . ; �nÞ

� Eð�1Þ � Eð�2Þ � . . .� Eð�nÞ: ð1:7:2:13Þ

For similar reasons to those previously stated, it is sufficient to
consider the symmetric part of T(n) with respect to the n!
permutations of the n pairs (�1, �1), (�2, �2) . . . (�n, �n). The T

(n)

tensor will then exhibit intrinsic permutation symmetry at the nth
order. Time-invariance considerations will then allow the intro-
duction of the (nþ 1)th-rank real tensor R(n), which generalizes
the previously introduced R operators:

PðnÞ
� ðtÞ ¼ "o

Rþ1

�1

d�1
Rþ1

�1

d�2 . . .
Rþ1

�1

d�n RðnÞ
��1�2...�n

ð�1; �2; . . . �nÞ

� E�1 ðt � �1ÞE�2 ðt � �2Þ . . .E�nðt � �nÞ: ð1:7:2:14Þ

R(n) cancels when one of the �i’s is negative and is invariant under
any of the n! permutations of the (�i, �i) pairs.

1.7.2.1.2. Linear and nonlinear susceptibilities

Whereas the polarization response has been expressed so far in
the time domain, in which causality and time invariance are most
naturally expressed, Fourier transformation into the frequency
domain permits further simplification of the equations given
above and the introduction of the susceptibility tensors according
to the following derivation.
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The direct and inverse Fourier transforms of the field are
defined as

EðtÞ ¼
Rþ1

�1

d! Eð!Þ expð�i!tÞ ð1:7:2:15Þ

Eð!Þ ¼ ð1=2�Þ
Rþ1

�1

dt EðtÞ expði!tÞ; ð1:7:2:16Þ

where Eð!Þ� ¼ Eð�!Þ as E(t) is real.

1.7.2.1.2.1. Linear susceptibility

By substitution of (1.7.2.15) in (1.7.2.7),

Pð1ÞðtÞ ¼ "o
Rþ1

�1

d!
Rþ1

�1

d� Rð1Þð�Þ � Eð!Þ exp½�i!ðt � �Þ�

Pð1ÞðtÞ ¼ "o
Rþ1

�1

d! �ð1Þð�!�;!ÞEð!Þ expð�i!�tÞ;

ð1:7:2:17Þ

where

�ð1Þð�!�;!Þ ¼
Rþ1

�1

d� Rð1Þð�Þ expði!�Þ:

In these equations, !� ¼ ! to satisfy the energy conservation
condition that will be generalized in the following. In order to
ensure convergence of �(1), ! has to be taken in the upper half
plane of the complex plane. The reality of R(1) implies that
�ð1Þð�!�;!Þ

�
¼ �ð1Þð!�

�;�!
�Þ.

1.7.2.1.2.2. Second-order susceptibility

Substitution of (1.7.2.15) in (1.7.2.12) yields

Pð2ÞðtÞ ¼ "o
Rþ1

�1

d!1

Rþ1

�1

d!2

Rþ1

�1

d�1
Rþ1

�1

d�2 R
ð2Þð�1; �2Þ

� Eð!1Þ � Eð!2Þ expf�i½!1ðt � �1Þ þ !2ðt � �2Þ�g

ð1:7:2:18Þ

or

Pð2ÞðtÞ ¼ "o
Rþ1

�1

d!1

Rþ1

�1

d!2 �
ð2Þð�!�;!1; !2Þ � Eð!1Þ � Eð!2Þ

� expð�i!�tÞ ð1:7:2:19Þ

with

�ð2Þð�!�;!1; !2Þ ¼
Rþ1

�1

d�1
Rþ1

�1

d�2 R
ð2Þð�1; �2Þ

� exp½ið!1�1 þ !2�2Þ�

and !� ¼ !1 þ !2. Frequencies !1 and !2 must be in the upper
half of the complex plane to ensure convergence. Reality
of R(2) implies �ð2Þð�!�;!1; !2Þ

�
¼ �ð2Þð!�

�;�!
�
1;�!

�
2Þ.

�ð2Þ
���ð�!�;!1; !2Þ is invariant under the interchange of the

(�, !1) and (�, !2) pairs.

1.7.2.1.2.3. nth-order susceptibility

Substitution of (1.7.2.15) in (1.7.2.14) provides

PðnÞðtÞ ¼ "o
Rþ1

�1

d!1

Rþ1

�1

d!2 . . .
Rþ1

�1

d!n �
ðnÞð�!�;!1; !2; . . .!nÞ

� Eð!1Þ � Eð!2Þ � . . .� Eð!nÞ expð�i!�tÞ

ð1:7:2:20Þ

where

�ðnÞð�!�;!1; !2; . . . ; !nÞ

¼
Rþ1

�1

d�1
Rþ1

�1

d�2 . . .
Rþ1

�1

d�n RðnÞð�1; �2; . . . ; �nÞ exp
�
i
Pn

j¼1

!j�j
�

ð1:7:2:21Þ

and !� ¼ !1 þ !2 þ . . .þ !n.
All frequencies must lie in the upper half complex plane and

reality of �(n) imposes

�ðnÞð�!�;!1; !2; . . . ; !nÞ
�
¼ �ðnÞð!�

�;�!
�
1;�!

�
2; . . . ;�!

�
nÞ:

ð1:7:2:22Þ

Intrinsic permutation symmetry implies that �ðnÞ��1�2...�nð�!�;
!1; !2; . . . ; !nÞ is invariant with respect to the n! permutations of
the (�i, !i) pairs.

1.7.2.1.3. Superposition of monochromatic waves

Optical fields are often superpositions of monochromatic
waves which, due to spectral discretization, will introduce
considerable simplifications in previous expressions such as
(1.7.2.20) relating the induced polarization to a continuous
spectral distribution of polarizing field amplitudes.

The Fourier transform of the induced polarization is given by

PðnÞð!Þ ¼ ð1=2�Þ
Rþ1

�1

dt PðnÞðtÞ expði!tÞ: ð1:7:2:23Þ

Replacing P(n)(t) by its expression as from (1.7.2.20) and applying
the well known identity

ð1=2�Þ
Rþ1

�1

dt exp½ið!� !�Þt� ¼ �ð!� !�Þ ð1:7:2:24Þ

leads to

PðnÞð!Þ ¼ "o
Rþ1

�1

d!1

Rþ1

�1

d!2 . . .
Rþ1

�1

d!n �
ðnÞð�!�;!1; !2; . . .!nÞ

� Eð!1ÞEð!2Þ . . .Eð!nÞ�ð!� !�Þ: ð1:7:2:25Þ

In practical cases where the applied field is a superposition of
monochromatic waves

EðtÞ ¼ ð1=2Þ
P

!0

½E!0 expð�i!0tÞ þ E�!0 expði!
0tÞ� ð1:7:2:26Þ

with E�!0 ¼ E�
!0 . By Fourier transformation of (1.7.2.26)

Eð!Þ ¼ ð1=2Þ
P

!0
½E!0�ð!� !0Þ þ E�!0�ð!þ !0Þ�: ð1:7:2:27Þ

The optical intensity for a wave at frequency !0 is related to the
squared field amplitude by

I!0 ¼ "ocnð!
0ÞhE2ðtÞit ¼

1
2 "ocnð!

0ÞjE!0 j
2: ð1:7:2:28Þ

The averaging as represented above by brackets is performed
over a time cycle and nð!0Þ is the index of refraction at frequency
!0.

1.7.2.1.4. Conventions for nonlinear susceptibilities

1.7.2.1.4.1. Classical convention

Insertion of (1.7.2.26) in (1.7.2.25) together with permutation
symmetry provides

PðnÞ
� ð!�Þ ¼ "o

P

�1�2...�n

P

!

Kð�!�;!1; !2; . . . ; !nÞ

� �ðnÞ��1�2...�nð�!�;!1; !2; . . . ; !nÞ

� E�1 ð!1ÞE�2ð!2Þ . . .E�nð!nÞ; ð1:7:2:29Þ
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where the summation over ! stands for all distinguishable
permutation of !1; !2; . . . ; !n, K being a numerical factor given
by

Kð�!�;!1; !2; . . . ; !nÞ ¼ 2sþm�np; ð1:7:2:30Þ

where p is the number of distinct permutations of !1; !2; . . . ; !n,
n is the order of the nonlinear process, m is the number of d.c.
fields (e.g. corresponding to !	 ¼ 0) within the n frequencies and
s ¼ 0 when !� ¼ 0, otherwise s ¼ 1. For example, in the absence
of a d.c. field and when the !i’s are different, K ¼ 2s�nn!.

The K factor allows the avoidance of discontinuous jumps in
magnitude of the �ðnÞ��1�2...�n elements when some frequencies are
equal or tend to zero, which is not the case for the other
conventions (Shen, 1984).

The induced nonlinear polarization is often expressed in terms
of a tensor d(n) by replacing �(n) in (1.7.2.29) by

�ðnÞ ¼ 2�s�mþndðnÞ: ð1:7:2:31Þ

Table 1.7.2.1 summarizes the most common classical nonlinear
phenomena, following the notations defined above. Then,
according to Table 1.7.2.1, the nth harmonic generation induced
nonlinear polarization is written

Pð2Þ
� ðn!Þ ¼ "o

P

�1�2...�n

2n�1�ðnÞ��1�2...�n ð�n!;!; !; . . . ; !Þ

� E�1 ð!ÞE�2 ð!Þ . . .E�nð!Þ: ð1:7:2:32Þ

The E�i are the components of the total electric field E(!).

1.7.2.1.4.2. Convention used in this chapter

The K convention described above is often used, but may lead
to errors in cases where two of the interacting waves have the
same frequency but different polarization states. Indeed, as
demonstrated in Chapter 1.6 and recalled in Section 1.7.3, a
direction of propagation in an anisotropic crystal allows in the
general case two different directions of polarization of the elec-
tric field vector, written E+ and E�. Then any nonlinear coupling
in this medium occurs necessarily between these eigen modes at
the frequencies concerned.

Because of the possible non-degeneracy with respect to the
direction of polarization of the electric fields at the same
frequency, it is suitable to consider a harmonic generation
process, second harmonic generation (SHG) or third harmonic
generation (THG) for example, like any other non-degenerated
interaction. We do so for the rest of this chapter. Then all terms
derived from the permutation of the fields with the same
frequency are taken into account in the expression of the induced
nonlinear polarization and the K factor in equation (1.7.2.29)
disappears: hence, in the general case, the induced nonlinear
polarization is written

PðnÞ
� ð!�Þ ¼ "o

P

�1;...;�n

�ðnÞ��1...�nð�!�;!1; . . . ; !nÞ

� E�
�1
ð!1Þ . . .E

�
�n
ð!nÞ; ð1:7:2:33Þ

where þ and � refer to the eigen polarization modes.
According to (1.7.2.33), the nth harmonic generation induced

polarization is expressed as

PðnÞ
� ðn!Þ ¼ "o

P

�1;...;�n

�ðnÞ��1...�nð�n!;!; . . . ; !Þ

� E�
�1
ð!1Þ . . .E

�
�n
ð!nÞ: ð1:7:2:34Þ

For example, in the particular case of SHG where the two waves
at ! have different directions of polarization E+(!) and E�(!)
and where the only nonzero �ð2Þyij coefficients are �yxz and �yzx,
(1.7.2.34) gives

Pð2Þ
y ð2!Þ ¼ "o½�yxzð�2!;!; !ÞEþ

x ð!ÞE
�
z ð!Þ

þ �yzxð�2!;!;!ÞEþ
z ð!ÞE

�
x ð!Þ�:

ð1:7:2:35Þ

The two field component products are equal only if the two eigen
modes are the same, i.e. þ or �.

According to (1.7.2.33) and (1.7.2.34), we note that
�ðnÞ��1...�n ð�!�; !1; . . . ; !nÞ changes smoothly to �ðnÞ��1...�n ð�n!;
!; . . . ; !Þ when all the !1; . . .!n approach continuously the same
value !.

1.7.2.2. Symmetry properties

1.7.2.2.1. Intrinsic permutation symmetry

1.7.2.2.1.1. ABDP and Kleinman symmetries

Intrinsic permutation symmetry, as already discussed, imposes
the condition that the nth order susceptibility �ðnÞ��1�2...�nð�!�;
!1; !2; . . . ; !nÞ be invariant under the n! permutations of the
(�i; !i) pairs as a result of time invariance and causality.
Furthermore, the overall permutation symmetry, i.e. the invar-
iance over the ðnþ 1Þ! permutations of the (�i; !i) and (�;�!�)
pairs, may be valid when all the optical frequencies occuring in
the susceptibility and combinations of these appearing in the
denominators of quantum expressions are far removed from the
transitions, making the medium transparent at these frequencies.
This property is termed ABDP symmetry, from the initials of the
authors of the pioneering article by Armstrong et al. (1962).

Let us consider as an application the quantum expression of
the quadratic susceptibility (with damping factors neglected), the
derivation of which being beyond the scope of this chapter, but
which can be found in nonlinear optics treatises dealing with
microscopic interactions, such as in Boyd (1992):

�ð2Þ���ð�!�;!1; !2Þ

¼
Ne3

"2oh
- 2 ST

X

abc


oðaÞ
r
�
abr

�
bcr

�
ca

ð�ba � !1 � !2Þð�ca � !1Þ
;

ð1:7:2:36Þ

where N is the number of microscopic units (e.g. molecules in the
case of organic crystals) per unit volume, a, b and c are the eigen
states of the system, �ba and �ca are transition energies, r�ab is the
� component of the transition dipole connecting states a and b,
and 
oðaÞ is the population of level a as given by the corre-
sponding diagonal term of the density operator. ST is the
summation operator over the six permutations of the (�;�!�),
(�; !1), (�; !2). Provided all frequencies at the denominator are
much smaller than the transition frequencies �ba and �ca, the
optical frequencies �!�, !1, !2 can be permuted without
significant variation of the susceptibility. It follows correspond-
ingly that the susceptibility is invariant with respect to the

181

Table 1.7.2.1. The most common nonlinear effects and the corresponding
susceptibility tensors in the frequency domain

Process Order n �!�;!1; !2; . . . ; !n K

Linear absorption 1 �!;! 1
Optical rectification 2 0;�!;! 1/2
Linear electro-optic effect 2 �!;!; 0 2
Second harmonic generation 2 �2!;!;! 1/2
Three-wave mixing 2 �!3;!1; !2 1
D.c. Kerr effect 3 �!;!; 0; 0 3
D.c. induced second harmonic
generation

3 �2!;!;!; 0 3/2

Third harmonic generation 3 �3!;!;!; ! 1/4
Four-wave mixing 3 �!4;!1; !2; !3 3/2
Coherent anti-Stokes Raman
scattering

3 �!as;!p;�!p;�!s 3/4

Intensity-dependent refractive
index

3 �!;!;�!;! 3/4

nth harmonic generation n �n!;!; !; . . . ; ! 21�n
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permutation of Cartesian indices appearing only in the
numerator of (1.7.2.36), regardless of frequency. This property,
which can be generalized to higher-order susceptibilities, is
known as Kleinman symmetry. Its validity can help reduce the
number of non-vanishing terms in the susceptibility, as will be
shown later.

1.7.2.2.1.2. Manley–Rowe relations

An important consequence of overall permutation symmetry is
the Manley–Rowe power relations, which account for energy
exchange between electromagnetic waves in a purely reactive
(e.g. non-dissipative) medium. Calling Wi the power input at
frequency !i into a unit volume of a dielectric polarizable
medium,

Wi ¼ EðtÞ �
dP

dt
ðtÞ

� �

; ð1:7:2:37Þ

where the averaging is performed over a cycle and

EðtÞ ¼ Re½E!i expð�j!itÞ�

PðtÞ ¼ Re½P!i expð�j!itÞ�: ð1:7:2:38Þ

The following expressions can be derived straightforwardly:

Wi ¼
1
2!i ReðiE!i � P!i Þ ¼

1
2!i ImðE�

!i
� P!i Þ: ð1:7:2:39Þ

Introducing the quadratic induced polarization P(2), Manley–
Rowe relations for sum-frequency generation state

W1

!1

¼
W2

!2

¼ �
W3

!3

: ð1:7:2:40Þ

Since !1 þ !2 ¼ !3, (1.7.2.40) leads to an energy conservation
condition, namely W3 þW1 þW2 ¼ 0, which expresses that the
power generated at !3 is equal to the sum of the powers lost at !1

and !2.
A quantum mechanical interpretation of these expressions in

terms of photon fusion or splitting can be given, remembering
that Wi=h

- !i is precisely the number of photons generated or
annihilated per unit volume in unit time in the course of the
nonlinear interactions.

1.7.2.2.1.3. Contracted notation for susceptibility tensors

The tensors �ð2Þ���ð�2!;!; !Þ or dð2Þ���ð�2!;!; !Þ are invariant
with respect to (�, �) permutation as a consequence of the
intrinsic permutation symmetry. Independently, it is not possible
to distinguish the coefficients �ð2Þijk ð�2!;!; !Þ and �ð2Þikj ð�2!;!; !Þ
by SHG experiments, even if the two fundamental waves have
different directions of polarization.

Therefore, these third-rank tensors can be represented in
contracted form as 3� 6 matrices ��mð�2!;!; !Þ and
d�mð�2!;!; !Þ, where the suffix m runs over the six possible
(�, �) Cartesian index pairs according to the classical convention
of contraction:

for �: x ! 1 y ! 2 z ! 3

for m: xx ! 1 yy ! 2 zz ! 3 yz ¼ zy ! 4

xz ¼ zx ! 5 xy ¼ yx ! 6:

The 27 elements of �ð2Þ���ð�2!;!; !Þ are then reduced to 18 in the
��m contracted tensor notation (see Section 1.1.4.10).

For example, (1.7.2.35) can be written

Pð2Þ
y ð2!Þ ¼ "o�25ð�2!;!; !Þ½eþx ð!ÞE

þð!Þe�z ð!ÞE
�ð!Þ

þ eþz ð!ÞE
þð!Þe�x ð!ÞE

�ð!Þ�: ð1:7:2:41Þ

The same considerations can be applied to THG. Then the 81
elements of �ð3Þ����ð�3!;!; !; !Þ can be reduced to 30 in the ��m

contracted tensor notation with the following contraction
convention:

for �: x ! 1 y ! 2 z ! 3

for m: xxx ! 1 yyy ! 2 zzz ! 3 yzz ! 4 yyz ! 5

xzz ! 6 xxz ! 7 xyy ! 8 xxy ! 9 xyz ! 0:

If Kleinman symmetry holds, the contracted tensor can be further
extended beyond SHG and THG to any other processes where all
the frequencies are different.

1.7.2.2.2. Implications of spatial symmetry on the susceptibility
tensors

Centrosymmetry is the most detrimental crystalline symmetry
constraint that will fully cancel all odd-rank tensors such as the
d(2) [or �(2)] susceptibilities. Intermediate situations, corre-
sponding to noncentrosymmetric crystalline point groups, will
reduce the number of nonzero coefficients without fully depleting
the tensors.

Tables 1.7.2.2 to 1.7.2.5 detail, for each crystal point group, the
remaining nonzero �(2) and �(3) coefficients and the eventual
connections between them. �(2) and �(3) are expressed in the
principal axes x, y and z of the second-rank �(1) tensor. (x; y; z) is
usually called the optical frame; it is linked to the crystal-

182

Table 1.7.2.2. Nonzero �(2) coefficients and equalities between them in the
general case

Symmetry class �(2) nonzero elements

Triclinic
C1 (1) All 27 elements are independent and nonzero

Monoclinic
C2 (2) (twofold axis

parallel to z)
xyz, xzy, xxz, xzx, yyz, yzy, yxz, yzx, zxx, zyy,
zzz, zxy, zyx

Cs (m) (mirror
perpendicular to z)

xxx, xyy, xzz, xxy, xyx, yxx, yyy, yzz, yxy, yyx,
zyz, zzy, zxz, zzx

Orthorhombic
C2v (mm2) (twofold

axis parallel to z)
xzx, xxz, yyz, yzy, zxx, zyy, zzz

D2 (222) xyz, xzy, yzx, yxz, zxy, zyx

Tetragonal
C4 (4) xyz ¼ �yxz, xzy ¼ �yzx, xzx ¼ yzy, xxz ¼ yyz,

zxx ¼ zyy, zzz, zxy ¼ �zyx
S4 (�44) xyz ¼ yxz, xzy ¼ yzx, xzx ¼ �yzy, xxz ¼ �yyz,

zxx ¼ �zyy, zxy ¼ zyx
D4 (422) xyz ¼ �yxz, xzy ¼ �yzx, zxy ¼ �zyx
C4v (4mm) xzx ¼ yzy, xxz ¼ yyz, zxx ¼ zyy, zzz
D2d (�442m) xyz ¼ yxz, xzy ¼ yzx, zxy ¼ zyx

Hexagonal
C6 (6) xyz ¼ �yxz, xzy ¼ �yzx, xzx ¼ yzy,

xxz ¼ yyz, zxx ¼ zyy, zzz, zxy ¼ �zyx
C3h (�66) xxx ¼ �xyy ¼ �yxy ¼ �yyx, yyy ¼ �yxx ¼

�xyx ¼ �xxy
D6 (622) xyz ¼ �yxz, xzy ¼ �yzx, zxy ¼ �zyx
C6v (6mm) xzx ¼ yzy, xxz ¼ yyz, zxx ¼ zyy, zzz
D3h (�662m) (mirror

perpendicular to x)
yyy ¼ �yxx ¼ �xxy ¼ �xyx

Trigonal
C3 (3) xxx ¼ �xyy ¼ �yyx ¼ �yxy, xyz ¼ �yxz,

xzy ¼ �yzx, xzx ¼ yzy, xxz ¼ yyz,
yyy ¼ �yxx ¼ �xxy ¼ �xyx, zxx ¼ zyy,
zzz, zxy ¼ �zyx

D3 (32) xxx ¼ �xyy ¼ �yyx ¼ �yxy, xyz ¼ �yxz,
xzy ¼ �yzx, zxy ¼ �zyx

C3v (3m) (mirror
perpendicular to x)

yyy ¼ �yxx ¼ �xxy ¼ �xyx, xzx ¼ yzy,
xxz ¼ yyz, zxx ¼ zyy; zzz

Cubic
T (23), Td (�443m) xyz ¼ xzy ¼ yzx ¼ yxz ¼ zxy ¼ zyx
O (432) xyz ¼ �xzy ¼ yzx ¼ �yxz ¼ zxy ¼ �zyx
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lographical frame by the standard conventions given in Chapter
1.6.

1.7.3. Propagation phenomena

1.7.3.1. Crystalline linear optical properties

We summarize here the main linear optical properties that
govern the nonlinear propagation phenomena. The reader may
refer to Chapter 1.6 for the basic equations.

1.7.3.1.1. Index surface and electric field vectors

The relations between the different field vectors relative to a
propagating electromagnetic wave are obtained from the
constitutive relations of the medium and from Maxwell equa-
tions.

In the case of a non-magnetic and non-conducting medium,
Maxwell equations lead to the following wave propagation
equation for the Fourier component at the circular frequency !
defined by (1.7.2.15) and (1.7.2.16) (Butcher & Cotter, 1990):

rxrxEð!Þ ¼ ð!2=c2ÞEð!Þ þ !2�0Pð!Þ; ð1:7:3:1Þ

where ! ¼ 2�c=�, � is the wavelength and c is the velocity of light
in a vacuum; �0 is the free-space permeability, E(!) is the electric
field vector and P(!) is the polarization vector. In the linear regime, Pð!Þ ¼ "0�

ð1Þð!ÞEð!Þ, where "0 is the
free-space permittivity and �(1)(!) is the first-order electric
susceptibility tensor. Then (1.7.3.1) becomes

rxrxEð!Þ ¼ ð!2=c2Þ"ð!ÞEð!Þ: ð1:7:3:2Þ

"ð!Þ ¼ 1þ �ð1Þð!Þ is the dielectric tensor. In the general case,
�ð1Þð!Þ is a complex quantity i.e. �ð1Þ ¼ �ð1Þ

0

þ i�ð1Þ
00

. For the
following, we consider a medium for which the losses are small
(�ð1Þ

0

� �ð1Þ
00

); it is one of the necessary characteristics of an
efficient nonlinear medium. In this case, the dielectric tensor is
real: " ¼ 1þ �ð1Þ

0

.
The plane wave is a solution of equation (1.7.3.2):

Eð!;X;Y;ZÞ ¼ eð!ÞEð!;X;Y;ZÞ exp½�ikð!ÞZ�: ð1:7:3:3Þ

(X;Y;Z) is the orthonormal frame linked to the wave, where Z is
along the direction of propagation.

We consider a linearly polarized wave so that the unit vector e
of the electric field is real (e ¼ e�), contained in the XZ or YZ
planes.

Eð!;X;Y;ZÞ ¼ Að!;X;Y;ZÞ exp½i�ð!;ZÞ� is the scalar
complex amplitude of the electric field where �ð!;ZÞ is the
phase, and E�ð�!;X;Y;ZÞ ¼ Eð!;X;Y;ZÞ. In the linear
regime, the amplitude of the electric field varies with Z only if
there is absorption.

k is the modulus of the wavevector, real in a lossless medium:
þkZ corresponds to forward propagation along Z, and �kZ to
backward propagation. We consider that the plane wave propa-
gates in an anisotropic medium, so there are two possible
wavevectors, k+ and k�, for a given direction of propagation of
unit vector u:

k�ð!; ; ’Þ ¼ ð!=cÞn�ð!; ; ’Þuð; ’Þ: ð1:7:3:4Þ

(; ’) are the spherical coordinates of the direction of the unit
wavevector u in the optical frame; (x; y; z) is the optical frame
defined in Section 1.7.2.

The spherical coordinates are related to the Cartesian coor-
dinates (ux; uy; uz) by

ux ¼ cos ’ sin  uy ¼ sin ’ sin  uz ¼ cos : ð1:7:3:5Þ
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Table 1.7.2.3. Nonzero �(2) coefficients and equalities between them under the
Kleinman symmetry assumption

Symmetry class
Independent nonzero �(2) elements under
Kleinman symmetry

Triclinic
C1 (1) xxx, xyy ¼ yxy ¼ yyx, xzz ¼ zxz ¼ zzx,

xyz ¼ xzy ¼ yxz ¼ yzx ¼ zxy ¼ zyx,
xxz ¼ xzx ¼ zxx, xxy ¼ xyx ¼ yxx, yyy,
yzz ¼ zyz ¼ zzy, yyz ¼ yzy ¼ zyy, zzz

Monoclinic
C2 (2) (twofold
axis parallel to z)

xyz ¼ xzy ¼ yxz ¼ yzx ¼ zxy ¼ zyx,
xxz ¼ xzx ¼ zxx, yyz ¼ yzy ¼ zyy, zzz

Cs (m) (mirror
perpendicular to z)

xxx, xyy ¼ yxy ¼ yyx, xzz ¼ zxz ¼ zzx,
xxy ¼ xyx ¼ yxx, yyy, yzz ¼ zyz ¼ zzy

Orthorhombic
C2v (mm2) (twofold
axis parallel to z)

xzx ¼ xxz ¼ zxx, yyz ¼ yzy ¼ zyy, zzz

D2 (222) xyz ¼ xzy ¼ yzx ¼ yxz ¼ zxy ¼ zyx

Tetragonal
C4 (4) xzx ¼ xxz ¼ zxx ¼ yzy ¼ yyz ¼ zyy, zzz
S4 (�44) xyz ¼ xzy ¼ yzx ¼ yzx ¼ zxy ¼ zyx, xzx ¼ xxz

¼ zxx ¼ �yzy ¼ �yyz ¼ �zyy
D4 (422) All elements are nil
C4v (4mm) xzx ¼ xxz ¼ zxx ¼ yyz ¼ yzy ¼ zyy, zzz
D2d (�442m) xyz ¼ xzy ¼ yzx ¼ yxz ¼ zxy ¼ zyx

Hexagonal
C6 (6) xzx ¼ xxz ¼ zxx ¼ yyz ¼ yzy ¼ zyy, zzz
C3h (�66) xxx ¼ �xyy ¼ �yxy ¼ �yyx, yyy ¼ �yxx ¼

�xyx ¼ �xxy
D6 (622) All elements are nil
C6v (6mm) xzx ¼ xxz ¼ zxx ¼ yyz ¼ yzy ¼ zyy, zzz
D3h (�662m) (mirror
perpendicular to x)

yyy ¼ �yxx ¼ �xxy ¼ �xyx

Trigonal
C3 (3) xxx ¼ �xyy ¼ �yyx ¼ �yxy, xzx ¼ xxz ¼ zxx

¼ yyz ¼ yzy ¼ zyy, yyy ¼ �yxx ¼ �xxy ¼

�xyx, zzz
D3 (32) xxx ¼ �xyy ¼ �yyx ¼ �yxy
C3v (3m) (mirror
perpendicular to x)

yyy ¼ �yxx ¼ �xxy ¼ �xyx, xzx ¼ xxz ¼ zxx
¼ yyz ¼ yzy ¼ zyy, zzz

Cubic
T (23), Td (�443m) xyz ¼ xzy ¼ yzx ¼ yxz ¼ zxy ¼ zyx
O (432) All elements are nil

Fig. 1.7.3.1. Field vectors of a plane wave propagating in an anisotropic
medium. (X;Y;Z) is the wave frame. Z is along the direction of propagation,
X and Y are contained in�+ and�� respectively, by an arbitrary convention.
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The refractive indices n�ð!; ; ’Þ ¼ ½"�ð!; ; ’Þ�1=2, ðnþ > n�Þ,
real in the case of a lossless medium, are the two solutions of the
Fresnel equation (Yao & Fahlen, 1984):

n� ¼
2

�B	 ðB2 � 4CÞ1=2

� �1=2

B ¼ �u2xðbþ cÞ � u2yðaþ cÞ � u2zðaþ bÞ

C ¼ u2xbcþ u2yacþ u2zab

a ¼ n�2
x ð!Þ; b ¼ n�2

y ð!Þ; c ¼ n�2
z ð!Þ:

ð1:7:3:6Þ

nx(!), ny(!) and nz(!) are the principal refractive indices of the
index ellipsoid at the circular frequency !.

Equation (1.7.3.6) describes a double-sheeted three-dimen-
sional surface: for a direction of propagation u the distances from
the origin of the optical frame to the sheets (+) and (�) corre-
spond to the roots n+ and n�. This surface is called the index
surface or the wavevector surface. The quantity (nþ � n�) or
(n� � nþ) is the birefringency. The waves (+) and (�) have the
phase velocities c=nþ and c=n�, respectively.

Equation (1.7.3.6) and its dispersion in frequency are often
used in nonlinear optics, in particular for the calculation of the
phase-matching directions which will be defined later. In the
regions of transparency of the crystal, the frequency law is well
described by a Sellmeier equation, which is the case for normal
dispersion where the refractive indices increase with frequency
(Hadni, 1967):

n�ð!iÞ< n�ð!jÞ for !i<!j: ð1:7:3:7Þ

If !i or !j are near an absorption peak, even weak, n�(!i) can be
greater than n�(!j); this is called abnormal dispersion.

The dielectric displacements D�, the electric fields E�, the
energy flux given by the Poynting vector S� ¼ E� �H� and the
collinear wavevectors k� are coplanar and define the orthogonal
vibration planes �� (Shuvalov, 1981). Because of anisotropy, k�

and S�, and hence D� and E�, are non-collinear in the general
case as shown in Fig. 1.7.3.1: the walk-off angles, also termed
double-refraction angles, 
� ¼ arccosðd� � e�Þ ¼ arccosðu � s�Þ
are different in the general case; d�, e�, u and s� are the unit
vectors associated with D�, E�, k� and S�, respectively. We shall
see later that the efficiency of a nonlinear interaction is strongly
conditioned by k, E and 
, which only depend on �(1)(!), that is
to say on the linear optical properties.

The directions S+ and S� are the directions normal to the
sheets (+) and (�) of the index surface at the points n+ and n�.

For a plane wave, the time-average Poynting vector is (Yariv &
Yeh, 2002)

S�ð!Þ
�
�

�
� ¼ 1

2Re E�ð!Þ �H��ð!Þ
� 	�

�
�
�

¼ 1
2

k�ð!Þ
�
�

�
�

�0!
E�ð!Þ
�
�

�
�2cos2 
�ð!Þ:

ð1:7:3:8Þ

kS�k is the energy flow I ¼ h- !N�, which is a power per unit area
i.e. the intensity, where h- ! is the energy of the photon andN� are
the photons flows. 
�(!) is the angle between S� and u; it is
detailed later on.

The unit electric field vectors e+ and e�are calculated from the
propagation equation projected on the three axes of the optical
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Table 1.7.2.4. Nonzero �(3) coefficients and equalities between them in the general case

Symmetry class �(3) nonzero elements

Triclinic
C1 (1), Ci (�11) All 81 elements are independent and nonzero

Monoclinic
Cs (m), C2 (2), C2h

2
m

� �
(twofold

axis parallel to z)
xxxx, xyyy, xyzz, xzyz, xzzy, xxzz, xzxz, xzzx, xxyy, xyxy, xyyx, xxxy, xxyx, xyxx, yxxx, yyyy, yyzz, yzyz, yzzy, yxzz, yzxz,

yzzx, yxyy, yyxy, yyyx, yxxy, yxyx, yyxx, zzzz, zyyz, zyzy, zzyy, zxxz, zxzx, zzxx, zxyz, zxzy, zyxz, zzxy, zyzx, zzyx

Orthorhombic
C2v (mm2), D2 (222), D2h (mmm)
(twofold axis parallel to z)

xxxx, xxzz, xzxz, xzzx, xxyy, xyxy, xyyx, yyyy, yyzz, yzyz, yzzy, yxxy, yxyx, yyxx, zzzz, zyyz, zyzy, zzyy, zxxz, zxzx, zzxx

Tetragonal
S4 (�44), C4 (4), C4h

4
m

� �
xxxx ¼ yyyy, xyyy ¼ �yxxx, xyzz ¼ �yxzz, xzyz ¼ �yzxz, xzzy ¼ �yzzx, xxzz ¼ yyzz, xzxz ¼ yzyz, xzzx ¼ yzzy,

xxyy ¼ yyxx, xyxy ¼ yxyx, xyyx ¼ yxxy, xxxy ¼ �yyyx, xxyx ¼ �yyxy, xyxx ¼ �yxyy, zzzz, zyyz ¼ zxxz, zyzy ¼ zxzx,
zzyy ¼ zzxx, zxyz ¼ �zyxz, zxzy ¼ �zyzx, zzxy ¼ �zzyx

C4v (4mm), D2d (�442m), D4 (422),
D4h

4
m
mm

� � xxxx ¼ yyyy, xxzz ¼ yyzz, xzxz ¼ yzyz, xzzx ¼ yzzy, xxyy ¼ yyxx, xyxy ¼ yxyx, xyyx ¼ yxxy, zzzz, zyyz ¼ zxxz,
zyzy ¼ zxzx, zzyy ¼ zzxx

Hexagonal

C3h (�66), C6 (6), C6h
6
m

� �
xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xyyy ¼ xxxyþ xxyxþ xyxx ¼ �yxxx, xyzz ¼ �yxzz, xzyz ¼ �yzxz, xzzy ¼ �yzzx,

xxzz ¼ yyzz, xzxz ¼ yzyz, xzzx ¼ yzzy, xxyy ¼ yyxx, xyxy ¼ yxyx, xyyx ¼ yxxy, xxxy ¼ �yyyx, xxyx ¼ �yyxy,
xyxx ¼ �yxyy, zzzz, zyyz ¼ zxxz, zyzy ¼ zxzx, zzyy ¼ zzxx, zxyz ¼ �zyxz, zxzy ¼ �zyzx, zzxy ¼ �zzyx

C6v (6mm), D3h (�662m), D6 (622),
D6h

6
mmm
� � xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xxzz ¼ yyzz, xzxz ¼ yzyz, xzzx ¼ yzzy, xxyy ¼ yyxx, xyxy ¼ yxyx, xyyx ¼ yxxy,

zzzz, zyyz ¼ zxxz, zyzy ¼ zxzx, zzyy ¼ zzxx

Trigonal
C3 (3), C3i (�33) xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xyyy ¼ xxxyþ xxyxþ xyxx ¼ �yxxx, xyzz ¼ �yxzz, xzyz ¼ �yzxz, xzzy ¼ �yzzx,

xyyz ¼ yxyz ¼ yyxz ¼ �xxxz, xyzy ¼ yyzx ¼ yxzy ¼ �xxzx, xzyy ¼ yzxy ¼ yzyx ¼ �xzxx, xxzz ¼ yyzz, xzxz ¼ yzyz,
xzzx ¼ yzzy, xxyy ¼ yyxx, xyxy ¼ yxyx, xyyx ¼ yxxy, xxxy ¼ �yyyx, xxyx ¼ �yyxy, xyxx ¼ �yxyy, xxyz¼ xyxz¼ yxxz
¼ �yyyz, xxzy ¼ xyzx ¼ yxzx ¼ �yyzy, xzxy ¼ xzyx ¼ yzxx ¼ �yzyy, �zxxx ¼ zxyy ¼ zyxy ¼ zyyx, �zyyy ¼ zxxy ¼
zxyx ¼ zyxx, zzzz, zyyz ¼ zxxz, zyzy ¼ zxzx, zzyy ¼ zzxx, zxyz ¼ �zyxz, zxzy ¼ �zyzx, zzxy ¼ �zzyx

C3v (3m), D3 (32), D3d (�33m)
(mirror perpendicular to x)
(twofold axis parallel to x)

xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xxzz ¼ yyzz, xzxz ¼ yzyz, xzzx ¼ yzzy, xxyy ¼ yyxx, xyxy ¼ yxyx, xyyx ¼ yxxy,
xxyz ¼ xyxz ¼ yxxz ¼ �yyyz, xxzy ¼ xyzx ¼ yxzx ¼ �yyzy, xzxy ¼ xzyx ¼ yzxx ¼ �yzyy, �zyyy ¼ zxxy ¼ zxyx ¼

zyxx, zzzz, zyyz ¼ zxxz, zyzy ¼ zxzx, zzyy ¼ zzxx

Cubic
T (23), Th (m3) xxxx ¼ yyyy ¼ zzzz, xxzz ¼ yyxx ¼ zzyy, xzxz ¼ yxyx ¼ zyzy, xzzx ¼ yxxy ¼ zyyz, xxyy ¼ yyzz ¼ zzxx, xyxy ¼ yzyz ¼

zxzx, xyyx ¼ yzzy ¼ zxxz
Td (�443m), O (432), Oh (m3m) xxxx ¼ yyyy ¼ zzzz, xxzz ¼ xxyy ¼ yyzz ¼ yyxx ¼ zzyy ¼ zzxx, xzxz ¼ xyxy ¼ yzyz ¼ yxyx ¼ zyzy ¼ zxzx,

xzzx ¼ xyyx ¼ yzzy ¼ yxxy ¼ zyyz ¼ zxxz
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frame. We obtain, for each wave, three equations which relate the
three components (ex; ey; ez) to the unit wavevector components
(ux; uy; uz) (Shuvalov, 1981):

ðn�Þ
2
ðe�p � up½uxe

�
x þ uye

�
y þ uze

�
z �Þ ¼ ðnpÞ

2
e�p ðp ¼ x; y and zÞ

ð1:7:3:9Þ

with ðe�x Þ
2
þ ðe�y Þ

2
þ ðe�z Þ

2
¼ 1:

The vibration planes �� relative to the eigen polarization
modes e� are called the neutral vibration planes associated with
u: an incident linearly polarized wave with a vibration plane
parallel to �þ or �� is refracted inside the crystal without
depolarization, that is to say in a linearly polarized wave, e+ or e–,
respectively. For any other incident polarization the wave is
refracted in the two waves e+ and e�, which propagate with the
difference of phase ð!=cÞðnþ � n�ÞZ.

The existence of equalities between the principal refractive
indices determines the three optical classes: isotropic for the
cubic system; uniaxial for the tetragonal, hexagonal and trigonal
systems; and generally biaxial for the orthorhombic, monoclinic
and triclinic systems [Nye (1957) and Sections 1.1.4.1 and 1.6.3.2].

1.7.3.1.2. Isotropic class

The isotropic class corresponds to the equality of the three
principal indices: the index surface is a one-sheeted sphere, so
nþ ¼ n�, 
þ ¼ 
� ¼ 0 for all directions of propagation, and any
electric field vector direction is allowed as in an amorphous
material.

1.7.3.1.3. Uniaxial class

The uniaxial class is characterized by the equality of two
principal indices, called ordinary indices (nx ¼ ny ¼ no); the

other index is called the extraordinary index (nz ¼ ne). Then,
according to (1.7.3.6), the index surface has one umbilicus along
the z axis, nþð ¼ 0Þ ¼ n�ð ¼ 0Þ, called the optic axis, which is
along the fold rotation axis of greatest order of the crystal. The
two other principal axes are related to the symmetry elements of
the orientation class according to the standard conventions (Nye,
1957). The ordinary sheet is spherical i.e. noð; ’Þ ¼ no, so an
ordinary wave has no walk-off for any direction of propagation in
a uniaxial crystal; the extraordinary sheet is ellipsoidal i.e.
neð; ’Þ ¼ ½ðcos2 Þ=ðn2oÞ þ ðsin2 Þ=ðn2eÞ�

�1=2. The sign of the
uniaxial class is defined by the sign of the birefringence ne � no.
Thus, according to these definitions, (ne; no) corresponds to
(nþ; n�) for the positive class (ne > no) and to (n�; nþ) for the
negative class (ne< no), as shown in Fig. 1.7.3.2.

The ordinary electric field vector is orthogonal to the optic axis
(eoz ¼ 0), and also to the extraordinary electric field vector,
leading to

eoð!i; ; ’Þ � e
eð!j; ; ’Þ ¼ 0: ð1:7:3:10Þ

This relation is satisfied when !i and !j are equal or different and
for any direction of propagation (; ’).

According to these results, the coplanarity of the field vectors
imposes the condition that the double-refraction angle of the
extraordinary wave is in a plane containing the optic axis. Thus,
the components of the ordinary and extraordinary unit electric
field vectors eo and ee at the circular frequency ! are

eox ¼ � sin ’ eoy ¼ þ cos ’ eoz ¼ 0 ð1:7:3:11Þ

eex ¼ � cos½ � 
	ð; !Þ� � cos ’

eey ¼ � cos½ � 
	ð; !Þ� � sin ’

eez ¼ sin½ � 
	ð; !Þ� ð1:7:3:12Þ
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Table 1.7.2.5. Nonzero �(3) coefficients and equalities between them under the Kleinman symmetry assumption

Symmetry class Independent nonzero elements of �(3) under Kleinman symmetry

Triclinic
C1 (1), Ci (�11) xxxx, xyyy ¼ yxyy ¼ yyxy ¼ yyyx, xzzz ¼ zxzz ¼ zzxz ¼ zzzx, xyzz¼ xzyz¼ xzzy¼ yxzz¼ yzxz¼ yzzx¼ zxyz¼ zxzy

¼ zyxz¼ zyzx¼ zzxy¼ zzyx, xyyz¼ xyzy¼ xzyy¼ yxyz¼ yxzy¼ yyxz¼ yyzx¼ yzxy¼ yzyx¼ zxyy¼ zyxy¼ zyyx,
xxzz ¼ xzxz ¼ xzzx ¼ zxxz ¼ zxzx ¼ zzxx, xxxz ¼ xxzx ¼ xzxx ¼ zxxx, xxyy ¼ xyxy ¼ xyyx ¼ yxxy ¼ yxyx ¼ yyxx,
xxxy ¼ xxyx ¼ xyxx ¼ yxxx, xxyz ¼ xxzy ¼ xyxz ¼ xyzx ¼ xzxy ¼ xzyx ¼ yxxz ¼ yxzx ¼ yzxx ¼ zxxy ¼ zxyx ¼ zyxx,
yyyy, yzzz ¼ zyzz ¼ zzyz ¼ zzzy, yyzz ¼ yzyz ¼ yzzy ¼ zyyz ¼ zyzy ¼ zzyy, yyyz ¼ yyzy ¼ yzyy ¼ zyyy, zzzz

Monoclinic
Cs (m), C2 (2), C2h

2
m

� �
(twofold

axis parallel to z)
xxxx, xyyy ¼ yxyy ¼ yyxy ¼ yyyx, xyzz¼ xzyz¼ xzzy¼ yxzz¼ yzxz¼ yzzx¼ zxyz¼ zxzy¼ zyxz¼ zyzx¼ zzxy¼ zzyx,

xxzz ¼ xzxz ¼ xzzx ¼ zxxz ¼ zxzx ¼ zzxx, xxyy ¼ xyxy ¼ xyyx ¼ yxxy ¼ yxyx ¼ yyxx, xxxy ¼ xxyx ¼ xyxx ¼ yxxx,
yyyy, yyzz ¼ yzyz ¼ yzzy ¼ zyyz ¼ zyzy ¼ zzyy, zzzz

Orthorhombic
C2v (mm2), D2 (222), D2h (mmm)
(twofold axis parallel to z)

xxxx, xxzz ¼ xzxz ¼ xzzx ¼ zxxz ¼ zxzx ¼ zzxx, xxyy ¼ xyxy ¼ xyyx ¼ yxxy ¼ yxyx ¼ yyxx, yyyy, yyzz ¼ yzyz ¼ yzzy ¼
zyyz ¼ zyzy ¼ zzyy, zzzz

Tetragonal
S4 (�44), C4 (4), C4h

4
m

� �
xxxx ¼ yyyy, xyyy¼ yxyy¼ yyxy¼ yyyx¼�xxxy¼�xxyx¼�xyxx¼�yxxx, xxzz¼ xzxz¼ xzzx¼ yyzz¼ yzyz¼ yzzy

¼ zyyz ¼ zyzy ¼ zzyy ¼ zxxz ¼ zxzx ¼ zzxx, xxyy ¼ xyxy ¼ xyyx ¼ yxxy ¼ yxyx ¼ yyxx, zzzz
C4v (4mm), D2d (�442m), D4 (422),
D4h

4
mmm
� � xxxx ¼ yyyy, xxzz¼ xzxz¼ xzzx¼ yyzz¼ yzyz¼ yzzy¼ zyyz¼ zyzy¼ zzyy¼ zxxz¼ zxzx¼ zzxx, xxyy¼ xyxy¼ xyyx

¼ yxxy ¼ yxyx ¼ yyxx, zzzz

Hexagonal

C3h (�66), C6 (6), C6h
6
m

� �
,

C6v (6mm), D3h (�662m),
D6 (622), D6h

6
m
mm

� �

xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xxzz ¼ xzxz ¼ xzzx ¼ yyzz ¼ yzyz ¼ yzzy ¼ zyyz ¼ zyzy ¼ zzyy ¼ zxxz ¼ zxzx ¼
zzxx, xxyy ¼ xyxy ¼ xyyx ¼ yxxy ¼ yxyx ¼ yyxx, zzzz

Trigonal
C3 (3), C3i (�33) xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xyyz¼ xyzy¼ xzyy¼�xxxz¼�xxzx¼�xzxx¼ yxyz¼ yxzy¼ yyxz¼ yyzx¼ yzxy

¼ yzyx¼�zxxx¼ zxyy¼ zyxy¼ zyyx, xxzz¼ xzxz¼ xzzx¼ yyzz¼ yzyz¼ yzzy¼ zyyz¼ zyzy¼ zzyy¼ zxxz¼ zxzx
¼ zzxx, xxyy ¼ xyxy ¼ xyyx ¼ yxxy ¼ yxyx ¼ yyxx, xxyz ¼ xxzy ¼ xyxz ¼ xyzx ¼ xzxy ¼ xzyx ¼ �yyyz ¼ �yyzy ¼

�yzyy ¼ yxxz ¼ yxzx ¼ yzxx ¼ �zyyy ¼ zxxy ¼ zxyx ¼ zyxx, zzzz
C3v (3m), D3 (32), D3d (�33m)
(mirror perpendicular to x)
(twofold axis parallel to x)

xxxx ¼ yyyy ¼ xxyyþ xyxyþ xyyx, xxzz ¼ xzxz ¼ xzzx ¼ yyzz ¼ yzyz ¼ yzzy ¼ zyyz ¼ zyzy ¼ zzyy ¼ zxxz ¼ zxzx ¼
zzxx, xxyy¼ xyxy¼ xyyx¼ yxxy¼ yxyx¼ yyxx, xxyz¼ xxzy¼ xyxz¼ xyzx¼ xzxy¼ xzyx¼�yyyz¼�yyzy¼�yzyy
¼ yxxz ¼ yxzx ¼ yzxx ¼ �zyyy ¼ zxxy ¼ zxyx ¼ zyxx, zzzz

Cubic
T (23), Th (m3), Td (�443m),
O (432), Oh (m3m)

xxxx ¼ yyyy ¼ zzzz, xxzz ¼ xzxz ¼ xzzx ¼ xxyy ¼ xyxy ¼ xyyx ¼ yyzz ¼ yzyz ¼ yzzy ¼ yyxx ¼ yxyx ¼ yxxy ¼ zzyy ¼
zyzy ¼ zyyz ¼ zzxx ¼ zxzx ¼ zxxz
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with �
þð; !Þ for the positive class and þ
�ð; !Þ for the
negative class. 
�ð; !Þ is given by


�ð; !Þ ¼ arccosðd� � e�Þ ¼ arccosðu� � s�Þ

¼ arccos
cos2 

n2oð!Þ
þ

sin2 

n2eð!Þ

� �
cos2 

n4oð!Þ
þ

sin2 

n4eð!Þ

� ��1=2
( )

:

ð1:7:3:13Þ

Note that the extraordinary walk-off angle is nil for a propaga-
tion along the optic axis ( ¼ 0) and everywhere in the xy plane
( ¼ �=2).

1.7.3.1.4. Biaxial class

In a biaxial crystal, the three principal refractive indices are all
different. The graphical representations of the index surfaces are
given in Fig. 1.7.3.3 for the positive biaxial class (nx< ny< nz)
and for the negative one (nx > ny > nz), both with the usual

conventional orientation of the optical frame. If this is not the
case, the appropriate permutation of the principal refractive
indices is required.

In the orthorhombic system, the three principal axes are fixed
by the symmetry; one is fixed in the monoclinic system; and none
are fixed in the triclinic system. The index surface of the biaxial
class has two umbilici contained in the xz plane, making an angle
V with the z axis:

sin2 Vð!Þ ¼
n�2
y ð!Þ � n�2

x ð!Þ

n�2
z ð!Þ � n�2

x ð!Þ
: ð1:7:3:14Þ

The propagation along the optic axes leads to the internal conical
refraction effect (Schell & Bloembergen, 1978; Fève et al., 1994).

1.7.3.1.4.1. Propagation in the principal planes

It is possible to define ordinary and extraordinary waves, but
only in the principal planes of the biaxial crystal: the ordinary

electric field vector is perpendicular to
the z axis and to the extraordinary one.
The walk-off properties of the waves are
not the same in the xy plane as in the xz
and yz planes.

(1) In the xy plane, the extraordinary
wave has no walk-off, in contrast to the
ordinary wave. The components of the
electric field vectors can be established
easily with the same considerations as for
the uniaxial class:

eox ¼ � sin½’� 
	ð’; !Þ�

eoy ¼ cos½’� 
	ð’; !Þ�

eoz ¼ 0; ð1:7:3:15Þ

with þ
�ð’; !Þ for the positive class and
�
þð’; !Þ for the negative class. 
�ð’; !Þ
is the walk-off angle given by (1.7.3.13),
where  is replaced by ’, no by ny and ne
by nx:

eex ¼ 0 eey ¼ 0 eez ¼ 1: ð1:7:3:16Þ

(2) The yz plane of a biaxial crystal has
exactly the same characteristics as any
plane containing the optic axis of a
uniaxial crystal. The electric field vector
components are given by (1.7.3.11) and
(1.7.3.12) with ’ ¼ �=2. The ordinary
walk-off is nil and the extraordinary one
is given by (1.7.3.13) with no ¼ ny and
ne ¼ nz.

(3) In the xz plane, the optic axes
create a discontinuity of the shape of the
internal and external sheets of the index
surface leading to a discontinuity of the
optic sign and of the electric field vector.
The birefringence, ne � no, is nil along
the optic axis, and its sign changes on
either side. Then the yz plane, xy plane
and xz plane from the x axis to the optic
axis have the same optic sign, the oppo-
site of the optic sign from the optic axis to
the z axis. Thus a positive biaxial crystal is
negative from the optic axis to the z axis.
The situation is inverted for a negative
biaxial crystal. It implies the following
configuration of polarization:
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Fig. 1.7.3.2. Index surfaces of the negative and positive uniaxial classes. E�
o;e are the ordinary (o) and

extraordinary (e) electric field vectors relative to the external (+) or internal (�) sheets. OA is the optic
axis.

Fig. 1.7.3.3. Index surfaces of the negative and positive biaxial classes. E�
o:e are the ordinary (o) and

extraordinary (e) electric field vectors relative to the external (+) or internal (�) sheets for a propagation
in the principal planes. OA is the optic axis.
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(i) From the x axis to the optic axis, eo and ee are given by
(1.7.3.11) and (1.7.3.12) with ’ ¼ 0. The walk-off is relative to the
extraordinary wave and is calculated from (1.7.3.13) with no ¼ nx
and ne ¼ nz.

(ii) From the optic axis to the z axis, the vibration plane of the
ordinary and extraordinary waves corresponds respectively to a
rotation of �/2 of the vibration plane of the extraordinary and
ordinary waves for a propagation in the areas of the principal
planes of opposite sign; the extraordinary electric field vector is
given by (1.7.3.12) with ’ ¼ 0, �
�ð’; !Þ for the positive class
and þ
þð’; !Þ for the negative class, and the ordinary electric
field vector is out of phase by � in relation to (1.7.3.11), that is

eox ¼ 0 eoy ¼ �1 eoz ¼ 0: ð1:7:3:17Þ

The extraordinary walk-off angle is given by (1.7.3.13) with
no ¼ nx and ne ¼ nz.

The �/2 rotation on either side of the optic axes is well
observed during internal conical refraction (Fève et al., 1994).

Note that for a biaxial crystal, the walk-off angles are all nil
only for a propagation along the principal axes.

1.7.3.1.4.2. Propagation out of the principal planes

It is impossible to define ordinary and extraordinary waves out
of the principal planes of a biaxial crystal: according to (1.7.3.6)
and (1.7.3.9), e+ and e� have a nonzero projection on the z axis.
According to these relations, it appears that e+ and e� are not
perpendicular, so relation (1.7.3.10) is never verified. The walk-
off angles 
+ and 
� are nonzero, different, and can be calculated
from the electric field vectors:


�ð; ’; !Þ ¼ " arccos½e�ð; ’; !Þ � uð; ’; !Þ� � "�=2:

ð1:7:3:18Þ

" ¼ þ1 or �1 for a positive or a negative optic sign, respectively.

1.7.3.2. Equations of propagation of three-wave and four-wave
interactions

1.7.3.2.1. Coupled electric fields amplitudes equations

The nonlinear crystals considered here are homogeneous,
lossless, non-conducting, without optical activity, non-magnetic
and are optically anisotropic. The nonlinear regime allows
interactions between � waves with different circular frequencies
!i; i ¼ 1; . . . ; �. The Fourier component of the polarization
vector at !i is Pð!iÞ ¼ "0�

ð1Þð!iÞEð!iÞ þ PNLð!iÞ, where PNLð!iÞ

is the nonlinear polarization corresponding to the orders of the
power series greater than 1 defined in Section 1.7.2.

Thus the propagation equation of each interacting wave !i is
(Bloembergen, 1965)

rxrxEð!iÞ ¼ ð!2
i =c

2Þ"ð!iÞEð!iÞ þ !
2
i�0P

NLð!iÞ: ð1:7:3:19Þ

The � propagation equations are coupled by PNLð!iÞ:
(1) for a three-wave interaction, � = 3,

PNLð!1Þ ¼ Pð2Þð!1Þ ¼ "0�
ð2Þð!1 ¼ !3 � !2Þ � Eð!3Þ � E�ð!2Þ;

PNLð!2Þ ¼ Pð2Þð!2Þ ¼ "0�
ð2Þð!2 ¼ !3 � !1Þ � Eð!3Þ � E�ð!1Þ;

PNLð!3Þ ¼ Pð2Þð!3Þ ¼ "0�
ð2Þð!3 ¼ !1 þ !2Þ � Eð!1Þ � E�ð!2Þ;

(2) for a four-wave interaction

PNLð!1Þ ¼ Pð3Þð!1Þ ¼ "0�
ð3Þð!1 ¼ !4 � !2 � !3Þ

� Eð!4Þ � E�ð!2Þ � E�ð!3Þ;

PNLð!2Þ ¼ Pð3Þð!2Þ ¼ "0�
ð3Þð!2 ¼ !4 � !1 � !3Þ

� Eð!4Þ � E�ð!1Þ � E�ð!3Þ;

PNLð!3Þ ¼ Pð3Þð!3Þ ¼ "0�
ð3Þð!3 ¼ !4 � !1 � !2Þ

� Eð!4Þ � E�ð!1Þ � E�ð!2Þ

PNLð!4Þ ¼ Pð3Þð!4Þ ¼ "0�
ð3Þð!4 ¼ !1 þ !2 þ !3Þ

� Eð!1Þ � Eð!2Þ � Eð!3Þ:

The complex conjugates E�ð!1Þ come from the relation
E�ð!iÞ ¼ Eð�!iÞ.

We consider the plane wave, (1.7.3.3), as a solution of
(1.7.3.19), and we assume that all the interacting waves propagate
in the same direction Z. Each linearly polarized plane wave
corresponds to an eigen mode E+ or E� defined above. For the
usual case of beams with a finite transversal profile and when Z is
along a direction where the double-refraction angles can be
nonzero, i.e. out of the principal axes of the index surface, it is
necessary to specify a frame for each interacting wave in order to
calculate the corresponding powers as a function of Z: the
coordinates linked to the wave at !i are written (Xi;Yi;Z), which
can be relative to the mode (+) or (�). The systems are then
linked by the double-refraction angles 
: according to Fig. 1.7.3.1,
we have Xþ

j ¼ Xþ
i þ Z tan½
þð!jÞ � 


þð!iÞ�;Y
þ
j ¼ Yþ

i for two
waves (+) with 
þð!jÞ > 
þð!iÞ, and X�

j ¼ X�
i ;Y

�
j ¼ Y�

i þ

Z tan½
�ð!jÞ � 

�ð!iÞ� for two waves (�) with 
�ð!jÞ > 
�ð!iÞ.

The presence of PNLð!iÞ in equations (1.7.3.19) leads to a
variation of the � amplitudes E(!i) with Z. In order to establish
the equations of evolution of the wave amplitudes, we assume
that their variations are small over one wavelength �i, which is
usually true. Thus we can state

1

kð!iÞ

@Eð!i;Xi;Yi;ZÞ

@Z


















 Eð!i;Xi;Yi;ZÞ









 or

@2Eð!i;Xi;Yi;ZÞ

@Z2


















 kð!iÞ

@Eð!i;Xi;Yi;ZÞ

@Z

















:

ð1:7:3:20Þ

This is called the slowly varying envelope approximation.
Stating (1.7.3.20), the wave equation (1.7.3.19) for a forward

propagation of a plane wave leads to

@Eð!i;Xi;Yi;ZÞ

@Z
¼ j�0

!2
i

2kð!iÞ cos
2 
ð!iÞ

eð!iÞ � P
NLð!i;Xi;Yi;ZÞ

� exp½�jkð!iÞZ�: ð1:7:3:21Þ

We choose the optical frame (x; y; z) for the calculation of all the
scalar products eð!iÞ � P

NLð!iÞ, the electric susceptibility tensors
being known in this frame.

For a three-wave interaction, (1.7.3.21) leads to

@E1ðX1;Y1;ZÞ

@Z
¼ j�1 e1 � "0�

ð2Þð!1 ¼ !3 � !2Þ � e3 � e2
� 	

� E3ðX3;Y3;ZÞE
�
2ðX2;Y2;ZÞ expðj�kZÞ

@E2ðX2;Y2;ZÞ

@Z
¼ j�2 e2 � "0�

ð2Þð!2 ¼ !3 � !1Þ � e3 � e1
� 	

� E3ðX3;Y3;ZÞE
�
1ðX1;Y1;ZÞ expðj�kZÞ

@E3ðX3;Y3;ZÞ

@Z
¼ j�3 e3 � "0�

ð2Þð!3 ¼ !1 þ !2Þ � e1 � e2
� 	

� E1ðX1;Y1;ZÞE2ðX2;Y2;ZÞ expð�j�kZÞ;

ð1:7:3:22Þ

with ei ¼ eð!iÞ, EiðXi;Yi;ZiÞ ¼ Eð!i;Xi;Yi;ZÞ, �i ¼

ð�o!
2
i Þ=½2kð!iÞ cos

2 
ð!iÞ� and �k ¼ kð!3Þ � ½kð!1Þ þ kð!2Þ�,
called the phase mismatch. We take by convention
!1<!2 ð<!3Þ.
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If ABDP relations, defined in Section 1.7.2.2.1, are verified,
then the three tensorial contractions in equations (1.7.3.22) are
equal to the same quantity, which we write "0�

ð2Þ
eff, where �

ð2Þ
eff is

called the effective coefficient:

�ð2Þeff ¼ e1 � �
ð2Þð!1 ¼ !3 � !2Þ � e3 � e2

¼ e2 � �
ð2Þð!2 ¼ !3 � !1Þ � e3 � e1

¼ e3 � �
ð2Þð!3 ¼ !1 þ !2Þ � e1 � e2: ð1:7:3:23Þ

The same considerations lead to the same kind of equations for a
four-wave interaction:

@E1ðX1;Y1;ZÞ

@Z
¼ j�1"0�

ð3Þ
effE4ðX4;Y4;ZÞE

�
2ðX2;Y2;ZÞ

� E�
3ðX3;Y3;ZÞ expðj�kZÞ

@E2ðX2;Y2;ZÞ

@Z
¼ j�2"0�

ð3Þ
effE4ðX4;Y4;ZÞE

�
1ðX1;Y1;ZÞ

� E�
3ðX3;Y3;ZÞ expðj�kZÞ

@E3ðX3;Y3;ZÞ

@Z
¼ j�3"0�

ð3Þ
effE4ðX4;Y4;ZÞE

�
1ðX1;Y1;ZÞ

� E�
2ðX2;Y2;ZÞ expðj�kZÞ

@E4ðX4;Y4;ZÞ

@Z
¼ j�4"0�

ð3Þ
effE1ðX1;Y1;ZÞE2ðX2;Y2;ZÞ

� E3ðX3;Y3;ZÞ expð�j�kZÞ:

ð1:7:3:24Þ

The conventions of notation are the same as previously and the
phase mismatch is �k ¼ kð!4Þ � ½kð!1Þ þ kð!2Þ þ kð!3Þ�. The
effective coefficient is

�ð3Þeff ¼ e1 � �
ð3Þð!1 ¼ !4 � !2 � !3Þ � e4 � e2 � e3

¼ e2 � �
ð3Þð!2 ¼ !4 � !1 � !3Þ � e4 � e1 � e3

¼ e3 � �
ð3Þð!3 ¼ !4 � !1 � !2Þ � e4 � e1 � e2

¼ e4 � �
ð3Þð!4 ¼ !1 þ !2 þ !3Þ � e1 � e2 � e3:

ð1:7:3:25Þ

Expressions (1.7.3.23) for �ð2Þeff and (1.7.3.25) for �ð3Þeff can
be condensed by introducing adequate third- and
fourth-rank tensors to be contracted, respectively, with �ð2Þ

and �ð3Þ. For example, �ð2Þeff ¼ �ð2Þ � e3 � e1 � e2 or �ð3Þeff ¼

�ð3Þ � e4 � e1 � e2 � e3, and similar expressions. By substituting
(1.7.3.8) in (1.7.3.22), we obtain the derivatives of Manley–Rowe
relations (1.7.2.40) @Nð!3;ZÞ=@Z ¼ �@Nð!k;ZÞ=@Z ðk ¼ 1; 2Þ
for a three-wave mixing, where Nð!i;ZÞ is the Z photon flow.
Identically with (1.7.3.24), we have @Nð!4;ZÞ=@Z ¼

�@Nð!k;ZÞ=@Z ðk ¼ 1; 2; 3Þ for a four-wave mixing.
In the general case, the nonlinear polarization wave and

the generated wave travel at different phase velocities,
ð!1 þ !2Þ=½kð!1Þ þ kð!2Þ� and !3=½kð!3Þ�, respectively, because
of the frequency dispersion of the refractive indices in the crystal.
Then the work per unit time W(!i), given in (1.7.2.39), which is
done on the generated wave E(!i, Z) by the nonlinear polar-

ization PNL(!i, Z), alternates in sign for each phase shift of �
during the Z-propagation, which leads to a reversal of the energy
flow (Bloembergen, 1965). The length leading to the phase shift
of � is called the coherence length, Lc ¼ �=�k, where �k is the
phase mismatch given by (1.7.3.22) or (1.7.3.24).

1.7.3.2.2. Phase matching

The transfer of energy between the waves is maximum for
�k ¼ 0, which defines phase matching: the energy flow does not
alternate in sign and the generated field grows continuously. Note
that a condition relative to the phases �(!i, Z) also exists: the
work of PNL(!i, Z) on E(!i, Z) is maximum if these two waves are
�/2 out of phase, that is to say if �kZ þ��ðZÞ ¼ �=2, where
��ðZÞ ¼ �ð!3;ZÞ � ½�ð!1;ZÞ þ�ð!2;ZÞ�; thus in the case
of phase matching, the phase relation is �ð!3;ZÞ ¼

�ð!1;ZÞ þ�ð!2;ZÞ þ �=2 (Armstrong et al., 1962). The
complete initial phase matching is necessarily achieved when at
least one wave among all the interacting waves is not incident but
is generated inside the nonlinear crystal: in this case, its initial
phase is locked on the good one. Phase matching is usually
realized by the matching of the refractive indices using birefrin-
gence of anisotropic media as it is studied here. From the point of
view of the quantum theory of light, the phase matching of the
waves corresponds to the total photon-momentum conservation
i.e.

P��1

i¼1

h- kð!iÞ ¼ h- kð!�Þ ð1:7:3:26Þ

with � ¼ 3 for a three-photon interaction and � ¼ 4 for a four-
photon interaction.

According to (1.7.3.4), the phase-matching condition (1.7.3.26)
is expressed as a function of the refractive indices in the direction
of propagation considered (; ’); for an interaction where the �
wavevectors are collinear, it is written

P��1

i¼1

!inð!i; ; ’Þ ¼ !�nð!�; ; ’Þ ð1:7:3:27Þ

with

P��1

i¼1

!i ¼ !�: ð1:7:3:28Þ

(1.7.3.28) is the relation of the energy conservation.
The efficiency of a nonlinear crystal directly depends on the

existence of phase-matching directions. We shall see by consid-
ering in detail the effective coefficient that phase matching is a
necessary but insufficient condition for the best expression of the
nonlinear optical properties.

In an hypothetical non-dispersive medium [@nð!Þ=@! ¼ 0],
(1.7.3.27) is always verified for each of the eigen refractive indices
n+ or n�; then any direction of propagation is a phase-matching
direction. In a dispersive medium, phase matching can be
achieved only if the direction of propagation has a birefringence
which compensates the dispersion. Except for a propagation
along the optic axis, there are two possible values, n+ and n�

given by (1.7.3.6), for each of the three or
four refractive indices involved in the
phase-matching relations, that is to say 23

or 24 possible combinations of refractive
indices for a three-wave or a four-wave
process, respectively.

For a three-wave process, only three
combinations among the 23 are compa-
tible with the dispersion in frequency
(1.7.3.7) and with the momentum and
energy conservations (1.7.3.27) and
(1.7.3.28). Thus the phase matching of a
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Table 1.7.3.1. Correspondence between the phase-matching relations, the configurations of polarization and
the types according to the sum- and difference-frequency generation processes SFG (!3 ¼ !1 þ !2), DFG

(!1 ¼ !3 � !2) and DFG (!2 ¼ !3 � !1)

e� are the unit electric field vectors relative to the refractive indices n� in the phase-matching direction
(Boulanger & Marnier, 1991).

Phase-matching relations

Configurations of polarization Types of interaction

!3 !1 !2 SFG (!3) DFG (!1) DFG (!2)

!3n
�
3 ¼ !1n

þ
1 ¼ !2n

þ
2 e� e+ e+ I II III

!3n
�
3 ¼ !1n

�
1 ¼ !2n

þ
2 e� e� e+ II III I

!3n
�
3 ¼ !1n

þ
1 ¼ !2n

�
2 e� e+ e� III I II
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three-wave interaction is allowed for three configurations of
polarization given in Table 1.7.3.1.

The designation of the type of phase matching, I, II or III, is
defined according to the polarization states at the frequencies
which are added or subtracted. Type I characterizes interactions
for which these two waves are identically polarized; the two
corresponding polarizations are different for types II and III.
Note that each phase-matching relation corresponds to one sum-
frequency generation SFG (!3 ¼ !1 þ !2) and two difference-
frequency generation processes, DFG (!1 ¼ !3 � !2) and DFG
(!2 ¼ !3 � !1). Types II and III are equivalent for SHG because
!1 ¼ !2.

For a four-wave process, only seven combinations of refractive
indices allow phase matching in the case of normal dispersion;
they are given in Table 1.7.3.2 with the corresponding config-
urations of polarization and types of SFG and DFG.

The convention of designation of the types is the same as for
three-wave interactions for the situations where one polarization
state is different from the three others, leading to the types I, II,
III and IV. The criterion corresponding to type I cannot be
applied to the three other phase-matching relations where two
waves have the same polarization state, different from the two
others. In this case, it is convenient to refer to each phase-
matching relation by the same roman numeral, but with a
different index: Vi, VIi and VIIi, with the index i ¼ 1; 2; 3; 4
corresponding to the index of the frequency generated by the
SFG or DFG. For THG (!1 ¼ !2 ¼ !3), types II, III and IV are
equivalent, and so are types V4, VI4 and VII4.

The index surface allows the geometrical determination of the
phase-matching directions, which depend on the relative ellipti-
city of the internal (�) and external (+) sheets divided by the
corresponding wavelengths: according to Tables 1.7.3.1 and
1.7.3.2 the directions are given by the intersection of the internal
sheet of the lowest wavelength ½n�ð��; ; ’Þ�=ð��Þ with a linear
combination of the internal and external sheets at the other
frequencies

P��1
i¼1 ½n

�ð�i; ; ’Þ�=ð�iÞ. The existence and loci of
these intersections depend on specific inequalities between the
principal refractive indices at the different wavelengths. Note
that independently of phase-matching considerations, normal
dispersion and energy conservation impose

P��1
i¼1 ½nað�iÞ�=ð�iÞ

< ½nað��Þ�=ð��Þ with a ¼ x; y; z.

1.7.3.2.2.1. Cubic crystals

There is no possibility of collinear phase matching in a
dispersive cubic crystal because of the absence of birefringence.
In a hypothetical non-dispersive anaxial crystal, the 23 three-
wave and 24 four-wave phase-matching configurations would be
allowed in any direction of propagation.

1.7.3.2.2.2. Uniaxial crystals

The configurations of polarization in terms of ordinary and
extraordinary waves depend on the optic sign of the phase-
matching direction with the convention given in Section 1.7.3.1:
Tables 1.7.3.1 and 1.7.3.2 must be read by substituting (+, �) by
(e, o) for a positive crystal and by (o, e) for a negative one.

Because of the symmetry of the index surface, all the phase-
matching directions for a given type describe a cone with the
optic axis as a revolution axis. Note that the previous comment on
the anaxial class is valid for a propagation along the optic axis
(no ¼ ne).

Fig. 1.7.3.4 shows the example of negative uniaxial crystals
(no > ne) like �-BaB2O4 (BBO) and KH2PO4 (KDP).

From Fig. 1.7.3.4, it clearly appears that the intersection of the
sheets is possible only if ðne� Þ=ð��Þ<

P��1
i¼1 ðnoi Þ=ð�iÞ

½< ðno� Þ=ð��Þ� with � ¼ 3 for a three-wave process and � ¼ 4 for a
four-wave one. The same considerations can be made for the
positive sign and for all the other types of phase matching. There
are different situations of inequalities allowing zero, one or
several types: Table 1.7.3.3 gives the five possible situations for
the three-wave interactions and Table 1.7.3.4 the 19 situations for
the four-wave processes.

1.7.3.2.2.3. Biaxial crystals

The situation of biaxial crystals is more complicated, because
the two sheets that must intersect are both elliptical in several
cases. For a given interaction, all the phase-matching directions
generate a complicated cone which joins two directions in the
principal planes; the possible loci a, b, c, d are shown on the
stereographic projection given in Fig. 1.7.3.5.

The basic inequalities of normal dispersion (1.7.3.7) forbid
collinear phase matching for all the directions of propagation
located between two optic axes at the two frequencies concerned.
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Table 1.7.3.2. Correspondence between the phase-matching relations, the configurations of polarization and the types according to SFG (!4 ¼ !1 þ !2 þ !3),
DFG (!1 ¼ !4 � !2 � !3), DFG (!2 ¼ !4 � !1 � !3) and DFG (!3 ¼ !4 � !1 � !2) (Boulanger et al., 1993)

Phase-matching relations

Configurations of polarization Types of interaction

!4 !1 !2 !3 SFG (!4) DFG (!1) DFG (!2) DFG (!3)

!4n
�
4 ¼ !1n

þ
1 þ !2n

þ
2 þ !3n

þ
3 e� e+ e+ e+ I II III IV

!4n
�
4 ¼ !1n

�
1 þ !2n

�
2 þ !3n

þ
3 e� e� e� e+ II III IV I

!4n
�
4 ¼ !1n

�
1 þ !2n

þ
2 þ !3n

�
3 e� e� e+ e� III IV I II

!4n
�
4 ¼ !1n

þ
1 þ !2n

�
2 þ !3n

�
3 e� e+ e� e� IV I II IV

!4n
�
4 ¼ !1n

�
1 þ !2n

þ
2 þ !3n

þ
3 e� e� e+ e+ V4 V1 V2 V3

!4n
�
4 ¼ !1n

þ
1 þ !2n

�
2 þ !3n

þ
3 e� e+ e� e+ VI4 VI1 VI2 VI3

!4n
�
4 ¼ !1n

þ
1 þ !2n

þ
2 þ !3n

�
3 e� e+ e+ e� VII4 VII1 VII2 VII3

Fig. 1.7.3.4. Index surface sections in a plane containing the optic axis z of a
negative uniaxial crystal allowing collinear type-I phase matching for SFG
(!3 ¼ !1 þ !2), � ¼ 3, or for SFG (!4 ¼ !1 þ !2 þ !3), � ¼ 4. uIPM is the
corresponding phase-matching direction.
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Table 1.7.3.3. Classes of refractive-index inequalities for collinear phase matching of three-wave interactions in positive and negative uniaxial crystals

Types I, II and III refer to SFG; the types of the corresponding DFG are given in Table 1.7.3.1 (Fève et al., 1993).

Positive sign (ne > no) Negative sign (no > ne) Types of SFG

no3
�3

<
no1
�1

þ
ne2
�2

;
ne1
�1

þ
no2
�2

no1
�1

þ
ne2
�2
;
ne1
�1

þ
no2
�2

<
ne3
�3

I, II, III

ne1
�1

þ
no2
�2

<
no3
�3

<
no1
�1

þ
ne2
�2

no1
�1

þ
ne2
�2
<

ne3
�3
<

ne1
�1

þ
no2
�2

I, II

no1
�1

þ
ne2
�2
<

no3
�3

<
ne1
�1

þ
no2
�2

ne1
�1

þ
no2
�2

<
ne3
�3
<

no1
�1

þ
ne2
�2

I, III

no1
�1

þ
ne2
�2
;
ne1
�1

þ
no2
�2

<
no3
�3

<
ne1
�1

þ
ne2
�2

no1
�1

þ
ne2
�2
;
ne1
�1

þ
no2
�2

<
ne3
�3
<

no1
�1

þ
no2
�2

I

ne1
�1

þ
ne2
�2
<

no3
�3

no1
�1

þ
no2
�2

<
ne3
�3

None

Table 1.7.3.4. Classes of refractive-index inequalities for collinear phase matching of four-wave interactions in positive (na ¼ ne; nb ¼ no) and negative
(na ¼ no; nb ¼ ne) uniaxial crystals with ðnb4=�4Þ< ðna1=�1Þ þ ðna2=�2Þ þ ðna3=�3Þ

If this inequality is not verified, no phase matching is allowed. The types of phase matching refer to SFG; the types of the corresponding DFG are given in Table 1.7.3.2
(Fève, 1994).

Positive sign (ne > no) Negative sign (no > ne) Types of SFG

na1
�1

þ
na2
�2

þ
nb3
�3
;
na1
�1

þ
nb2
�2

þ
na3
�3
;
nb1
�1

þ
na2
�2

þ
na3
�3
<

nb4
�4

I

na1
�1

þ
na2
�2

þ
nb3
�3
;
na1
�1

þ
nb2
�2

þ
na3
�3

<
nb4
�4

<
nb1
�1

þ
na2
�2

þ
na3
�3

I, V4

na1
�1

þ
na2
�2

þ
nb3
�3
;
nb1
�1

þ
na2
�2

þ
na3
�3

<
nb4
�4

<
na1
�1

þ
nb2
�2

þ
na3
�3

I, VI4

na1
�1

þ
nb2
�2

þ
na3
�3
;
nb1
�1

þ
na2
�2

þ
na3
�3

<
nb4
�4

<
na1
�1

þ
na2
�2

þ
nb3
�3

I, VII4

na1
�1

þ
na2
�2

þ
nb3
�3

<
nb4
�4

<
na1
�1

þ
nb2
�2

þ
na3
�3
;
nb1
�1

þ
na2
�2

þ
na3
�3

nb1
�1

þ
nb2
�2

þ
na3
�3
<

nb4
�4

I, V4, VI4

nb4
�4

<
nb1
�1

þ
nb2
�2

þ
na3
�3

I, II, V4, VI4

na1
�1

þ
nb2
�2

þ
na3
�3
<

nb4
�4

<
na1
�1

þ
na2
�2

þ
nb3
�3
;
nb1
�1

þ
na2
�2

þ
na3
�3

nb1
�1

þ
na2
�2

þ
nb3
�3

<
nb4
�4

I, V4, VII4

nb4
�4

<
nb1
�1

þ
na2
�2

þ
nb3
�3

I, III, V4, VII4

nb1
�1

þ
na2
�2

þ
na3
�3
<

nb4
�4

<
na1
�1

þ
nb2
�2

þ
na3
�3
;
na1
�1

þ
na2
�2

þ
nb3
�3

na1
�1

þ
nb2
�2

þ
nb3
�3

<
nb4
�4

I, VI4, VII4

nb4
�4

<
na1
�1

þ
nb2
�2

þ
nb3
�3

I, IV, VI4, VII4

nb4
�4

<
na1
�1

þ
na2
�2

þ
nb3
�3
;
na1
�1

þ
nb2
�2

þ
na3
�3
;
nb1
�1

þ
na2
�2

þ
na3
�3

nb1
�1

þ
nb2
�2

þ
na3
�3
;
nb1
�1

þ
na2
�2

þ
nb3
�3
;
na1
�1

þ
nb2
�2

þ
nb3
�3

<
nb4
�4

I, V4, VI4, VII4

na1
�1

þ
nb2
�2

þ
nb3
�3
;
nb1
�1

þ
na2
�2

þ
nb3
�3

<
nb4
�4

<
nb1
�1

þ
nb2
�2

þ
na3
�3

I, II, V4, VI4, VII4

na1
�1

þ
nb2
�2

þ
nb3
�3
;
nb1
�1

þ
nb2
�2

þ
na3
�3
<

nb4
�4

<
nb1
�1

þ
na2
�2

þ
nb3
�3

I, III, V4, VI4, VII4

nb1
�1

þ
na2
�2

þ
nb3
�3
;
nb1
�1

þ
nb2
�2

þ
na3
�3
<

nb4
�4

<
na1
�1

þ
nb2
�2

þ
nb3
�3

I, IV, V4, VI4, VII4

na1
�1

þ
nb2
�2

þ
nb3
�3

<
nb4
�4

<
nb1
�1

þ
na2
�2

þ
nb3
�3
;
nb1
�1

þ
nb2
�2

þ
na3
�3

I, II, III, V4, VI4, VII4

nb1
�1

þ
na2
�2

þ
nb3
�3

<
nb4
�4

<
na1
�1

þ
nb2
�2

þ
nb3
�3
;
nb1
�1

þ
nb2
�2

þ
na3
�3

I, II, IV, V4, VI4, VII4

nb1
�1

þ
nb2
�2

þ
na3
�3
<

nb4
�4

<
na1
�1

þ
nb2
�2

þ
nb3
�3
;
nb1
�1

þ
na2
�2

þ
nb3
�3

I, III, IV, V4, VI4, VII4

nb4
�4

<
na1
�1

þ
nb2
�2

þ
nb3
�3
;
nb1
�1

þ
na2
�2

þ
nb3
�3
;
nb1
�1

þ
nb2
�2

þ
na3
�3

All
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Tables 1.7.3.5 and 1.7.3.6 give, respectively, the inequalities that
determine collinear phase matching in the principal planes for
the three types of three-wave SFG and for the seven types of
four-wave SFG.

The inequalities in Table 1.7.3.5 show that a phase-matching
cone which would join the directions a and d is not possible for
any type of interaction, because the corresponding inequalities
have an opposite sense. It is the same for a hypothetical cone
joining b and c.

The existence of type-II or type-III SFG phase matching
imposes the existence of type I, because the inequalities relative
to type I are always satisfied whenever type II or type III exists.

However, type I can exist even if type II or type III is not allowed.
A type-I phase-matched SFG in area c forbids phase-matching
directions in area b for type-II and type-III SFG. The exclusion is
the same between d and a. The consideration of all the possible
combinations of the inequalities of Table 1.7.3.5 leads to 84
possible classes of phase-matching cones for both positive and
negative biaxial crystals (Fève et al., 1993; Fève, 1994). There are
14 classes for second harmonic generation (SHG) which corre-
spond to the degenerated case (!1 ¼ !2) (Hobden, 1967).
The coexistence of the different types of four-wave phase

matching is limited as for the three-wave case: a cone joining a
and d or b and c is impossible for type-I SFG. Type I in area d
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Table 1.7.3.5. Refractive-index conditions that determine collinear phase-matching loci in the principal planes of positive and negative biaxial crystals for three-
wave SFG

a, b, c, d refer to the areas given in Fig. 1.7.3.5. The types corresponding to the different DFGs are given in Table 1.7.3.1 (Fève et al., 1993).

Types of SFG

Phase-
matching
loci in the
principal
planes

Inequalities determining three-wave collinear phase matching in
biaxial crystals

Positive biaxial crystal Negative biaxial crystal

nxð!iÞ< nyð!iÞ< nzð!iÞ nxð!iÞ > nyð!iÞ > nzð!iÞ

Type I a nx3
�3
<

ny1

�1
þ
ny2

�2
<

nz3
�3

nx1
�1

þ
nx2
�2
>

ny3

�3
>

nz1
�1

þ
nz2
�2

b nx1
�1

þ
nx2
�2
<

ny3

�3
<

nz1
�1

þ
nz2
�2

nx3
�3
>

ny1

�1
þ
ny2

�2
>

nz3
�3

c nx3
�3
<

nz1
�1

þ
nz2
�2

<
ny3

�3

nx1
�1

þ
nx2
�2
>

nz3
�3
>

ny1

�1
þ
ny2

�2

d ny1

�1
þ
ny2

�2
<

nx3
�3
<

nz1
�1

þ
nz2
�2

ny3

�3
>

nx1
�1

þ
nx2
�2
>

nz3
�3

Type II a nx3
�3
<

nx1
�1

þ
ny2

�2
;
nz1
�1

þ
ny2

�2
<

nz3
�3

ny1

�1
þ
nx2
�2
>

ny3

�3
>

ny1

�1
þ
nz2
�2

b ny1

�1
þ
nx2
�2
>

ny3

�3
>

ny1

�1
þ
nz2
�2

nx3
�3
>

nx1
�1

þ
ny2

�2
;
nz1
�1

þ
ny2

�2
>

nz3
�3

c nx3
�3
<

nx1
�1

þ
nz2
�2

;
ny1

�1
þ
nz2
�2
<

ny3

�3

nz1
�1

þ
nx2
�2
>

nz3
�3
>

nz1
�1

þ
ny2

�2

c* nx1
�1

þ
nz2
�2

<
nx3
�3

;
ny3

�3
<

ny1

�1
þ
nz2
�2

nz1
�1

þ
nx2
�2
>

nz3
�3
>

nz1
�1

þ
ny2

�2

d nx1
�1

þ
ny2

�2
<

nx3
�3
<

nx1
�1

þ
nz2
�2

ny3

�3
>

ny1

�1
þ
nx2
�2

;
nz1
�1

þ
nx2
�2
>

nz3
�3

d* nx1
�1

þ
ny2

�2
<

nx3
�3
<

nx1
�1

þ
nz2
�2

ny1

�1
þ
nx2
�2
>

ny3

�3
;
nz3
�3
>

nz1
�1

þ
nx2
�2

Type III a nx3
�3
<

ny1

�1
þ
nx2
�2

;
ny1

�1
þ
nz2
�2
<

nz3
�3

nx1
�1

þ
ny2

�2
>

ny3

�3
>

nz1
�1

þ
ny2

�2

b nx1
�1

þ
ny2

�2
<

ny3

�3
<

nz1
�1

þ
ny2

�2

nx3
�3
>

ny1

�1
þ
nx2
�2

;
ny1

�1
þ
nz2
�2
>

nz3
�3

c nx3
�3
<

nz1
�1

þ
nx2
�2

;
nz1
�1

þ
ny2

�2
<

ny3

�3

nx1
�1

þ
nz2
�2
>

nz3
�3
>

ny1

�1
þ
nz2
�2

c* nz1
�1

þ
nx2
�2

<
nx3
�3

;
ny3

�3
<

nz1
�1

þ
ny2

�2

nx1
�1

þ
nz2
�2
>

nz3
�3
>

ny1

�1
þ
nz2
�2

d ny1

�1
þ
nx2
�2
<

nx3
�3
<

nz1
�1

þ
nx2
�2

ny3

�3
>

nx1
�1

þ
ny2

�2
;
nx1
�1

þ
nz2
�2
>

nz3
�3

d* ny1

�1
þ
nx2
�2
<

nx3
�3
<

nz1
�1

þ
nx2
�2

nx1
�1

þ
ny2

�2
>

ny3

�3
;
nz3
�3
>

nx1
�1

þ
nz2
�2

Conditions c, d are applied if ny1

�1
�
nx1
�1
;
ny2

�2
�
nx2
�2
<

ny3

�3
�
nx3
�3

ny1

�1
�
nz1
�1
;
ny2

�2
�
nz2
�2
<

ny3

�3
�
nz3
�3

Conditions c*, d* are applied if ny3

�3
�
nx3
�3
<

ny1

�1
�
nx1
�1
;
ny2

�2
�
nx2
�2

ny3

�3
�
nz3
�3
<

ny1

�1
�
nz1
�1
;
ny2

�2
�
nz2
�2
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forbids the six other types in a. The same restriction exists
between c and b. Types II, III, IV, V4, VI4 and VII4 cannot exist
without type I; other restrictions concern the relations between
types II, III, IVand types V4, VI4, VII4 (Fève, 1994). The counting
of the classes of four-wave phase-matching cones obtained from
all the possible combinations of the inequalities of Table 1.7.3.6 is
complex and it has not yet been done.

For reasons explained later, it can be interesting to consider a
non-collinear interaction. In this case, the projection of the
vectorial phase-matching relation (1.7.3.26) on the wavevector
kð!�; �; ’�Þ of highest frequency !� leads to

P��1

i¼1

!inð!i; i; ’iÞ cos �i� ¼ !�nð!�; �; ’�Þ; ð1:7:3:29Þ

where �i� is the angle between kð!i; i; ’iÞ and kð!�; �; ’�Þ, with
� ¼ 3 for a three-wave interaction and � ¼ 4 for a four-wave

interaction. The phase-matching angles (�; ’�) can be expressed
as a function of the different (i; ’i) by the projection of (1.7.3.26)
on the three principal axes of the optical frame.

The configurations of polarization allowing non-collinear
phase matching are the same as for collinear phase matching.
Furthermore, non-collinear phase matching exists only if colli-
near phase matching is allowed; the converse is not true (Fève,
1994). Note that collinear or non-collinear phase-matching
conditions are rarely satisfied over the entire transparency range
of the crystal.

1.7.3.2.3. Quasi phase matching

When index matching is not allowed, it is possible to increase
the energy of the generated wave continuously during the
propagation by introducing a periodic change in the sign of the
nonlinear electric susceptibility, which leads to a periodic reset of
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Table 1.7.3.6. Refractive-index conditions that determine collinear phase-matching loci in the principal planes of positive and negative biaxial crystals for four-
wave SFG

The types corresponding to the different DFGs are given in Table 1.7.3.2 (Boulanger et al., 1993).

(a) SFG type I.

Phase-
matching
loci in the
principal
planes

Inequalities determining four-wave collinear phase matching in biaxial crystals

Positive sign Negative sign

a nx4
�4

<
ny1

�1
þ
ny2

�2
þ
ny3

�3
<

nz4
�4

nz1
�1

þ
nz2
�2

þ
nz3
�3
<

ny4

�4
<

nx1
�1

þ
nx2
�2

þ
nx3
�3

b nx1
�1

þ
nx2
�2

þ
nx3
�3

<
ny4

�4
<

nz1
�1

þ
nz2
�2

þ
nz3
�3

nz4
�4
<

ny1

�1
þ
ny2

�2
þ
ny3

�3
<

nx4
�4

c nx4
�4

<
nz1
�1

þ
nz2
�2

þ
nz3
�3
<

ny4

�4

ny1

�1
þ
ny2

�2
þ
ny3

�3
<

nz4
�4
<

nx1
�1

þ
nx2
�2

þ
nx3
�3

d ny1

�1
þ
ny2

�2
þ
ny3

�3
<

nx4
�4
<

nz1
�1

þ
nz2
�2

þ
nz3
�3

nz4
�4
<

nx1
�1

þ
nx2
�2

þ
nx3
�3
<

ny4

�4

(b) SFG type II (i ¼ 1; j ¼ 2; k ¼ 3), SFG type III (i ¼ 3; j ¼ 1; k ¼ 2), SFG type IV (i ¼ 2; j ¼ 3; k ¼ 1).

Phase-
matching
loci in the
principal
planes

Inequalities determining four-wave collinear phase matching in biaxial crystals

Positive sign Negative sign

a nx4
�4
<

nxi
�i

þ
nxj

�j
þ
nyk

�k
;
nzi
�i

þ
nzj

�j
þ
nyk

�k
<

nz4
�4

nyi

�i
þ
nyj

�j
þ
nzk
�k

<
ny4

�4
<

nyi

�i
þ
nyj

�j
þ
nxk
�k

b nyi

�i
þ
nyj

�j
þ
nxk
�k

<
ny4

�4
<

nyi

�i
þ
nyj

�j
þ
nzk
�k

nz4
�4
<

nzi
�i

þ
nzj

�j
þ
nyk

�k
;
nxi
�i

þ
nxj

�j
þ
nyk

�k
<

nx4
�4

c nx4
�4
<

nxi
�i

þ
nxj

�j
þ
nzk
�k

;
nyi

�i
þ
nyj

�j
þ
nzk
�k

<
ny4

�4

nzi
�i

þ
nzj

�j
þ
nyk

�k
<

nz4
�4
<

nzi
�i

þ
nzj

�j
þ
nxk
�k

c* nxi
�i

þ
nxj

�j
þ
nzk
�k

<
nx4
�4

;
ny4

�4
<

nyi

�i
þ
nyj

�j
þ
nzk
�k

nzi
�i

þ
nzj

�j
þ
nyk

�k
<

nz4
�4
<

nzi
�i

þ
nzj

�j
þ
nxk
�k

d nxi
�i

þ
nxj

�j
þ
nyk

�k
<

nx4
�4
<

nxi
�i

þ
nxj

�j
þ
nzk
�k

nz4
�4
<

nzi
�i

þ
nzj

�j
þ
nxk
�k

;
nyi

�i
þ
nyj

�j
þ
nxk
�k

<
ny4

�4

d* nxi
�i

þ
nxj

�j
þ
nyk

�k
<

nx4
�4
<

nxi
�i

þ
nxj

�j
þ
nzk
�k

nzi
�i

þ
nzj

�j
þ
nxk
�k

<
nz4
�4

;
ny4

�4
<

nyi

�i
þ
nyj

�j
þ
nxk
�k

SFG type II ði; jÞ ¼ ð1; 2Þ; SFG type III ði; jÞ ¼ ð1; 3Þ; SFG type IV ði; jÞ ¼ ð2; 3Þ

Conditions
c, d are
applied if

nyi

�i
þ
nyj

�j
�
nxi
�i

�
nxj

�j
<

ny4

�4
�
nx4
�4

nyi

�i
þ
nyj

�j
�
nzi
�i

�
nzj

�j
<

ny4

�4
�
nz4
�4

Conditions
c*, d* are
applied if

ny4

�4
�
nx4
�4
<

nyi

�i
þ
nyj

�j
�
nxi
�i

�
nxj

�j

ny4

�4
�
nz4
�4

<
nyi

�i
þ
nyj

�j
�
nzi
�i

�
nzj

�j
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� between the waves (Armstrong et al., 1962). This method is
called quasi phase matching (QPM). The transfer of energy
between the nonlinear polarization and the generated electric
field never alternates if the reset is made at each coherence
length. In this case and for a three-wave SFG, the nonlinear
polarization sequence is the following:

(i) from 0 to Lc, P
NLð!3Þ ¼ "0�

ð2Þð!3Þe1e2E1E2 expfi½kð!1Þ þ

kð!2Þ�Zg;
(ii) from Lc to 2Lc, P

NLð!3Þ ¼ �"0�
ð2Þð!3Þe1e2E1E2 expfi½kð!1Þ

þ kð!2Þ�Zg, which is equivalent to PNLð!3Þ ¼

"0�
ð2Þð!3Þe1e2E1E2 expðif½kð!1Þ þ kð!2Þ�Z � �gÞ.
QPM devices are a recent development and are increasingly

being considered for applications (Fejer et al., 1992). The
nonlinear medium can be formed by the bonding of thin wafers
alternately rotated by �; this has been done for GaAs (Gordon et
al., 1993). For ferroelectric crystals, it is possible to form periodic
reversing of the spontaneous polarization in the same sample by
proton- or ion-exchange techniques, or by applying an electric
field, which leads to periodically poled (pp) materials like
ppLiNbO3 or ppKTiOPO4 (Myers et al., 1995; Karlsson &
Laurell, 1997; Rosenman et al., 1998).

Quasi phase matching offers three main advantages when
compared with phase matching: it may be used for any config-
uration of polarization of the interacting waves, which allows us
to use the largest coefficient of the �ð2Þ tensor, as explained in the
following section; QPM can be achieved over the entire trans-
parency range of the crystal, since the periodicity can be adjusted;
and, finally, double refraction and its harmful effect on the
nonlinear efficiency can be avoided because QPM can be realized
in the principal plane of a uniaxial crystal or in the principal axes
of biaxial crystals. Nevertheless, there are limitations due to the
difficulty in fabricating the corresponding materials: diffusion-
bonded GaAs has strong reflection losses and periodic patterns
of ppKTP or ppLN can only be written over a thickness that does
not exceed 3 mm, which limits the input energy.

1.7.3.2.4. Effective coefficient and field tensor

1.7.3.2.4.1. Definitions and symmetry properties

The refractive indices and their dispersion in frequency
determine the existence and loci of the phase-matching direc-
tions, and so impose the direction of the unit electric field vectors
of the interacting waves according to (1.7.3.9). The effective
coefficient, given by (1.7.3.23) and (1.7.3.25), depends in part on
the linear optical properties via the field tensor, which is the
tensor product of the interacting unit electric field vectors
(Boulanger, 1989; Boulanger & Marnier, 1991; Boulanger et al.,
1993; Zyss, 1993). Indeed, the effective coefficient is the
contraction between the field tensor and the electric suscept-
ibility tensor of corresponding order:
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Table 1.7.3.6 (cont.)

(c) SFG type V4 (i ¼ 1; j ¼ 2; k ¼ 3), SFG type VI4 (i ¼ 2; j ¼ 3; k ¼ 1), SFG type VII4 (i ¼ 3; j ¼ 1; k ¼ 2).

Phase-
matching
loci in the
principal
planes

Inequalities determining four-wave collinear phase matching in biaxial crystals

Positive sign Negative sign

a nx4
�4
<

nxi
�i

þ
nyj

�j
þ
nyk

�k
;
nzi
�i

þ
nyj

�j
þ
nyk

�k
<

nz4
�4

nyi

�i
þ
nzj

�j
þ
nzk
�k

<
ny4

�4
<

nyi

�i
þ
nxj

�j
þ
nxk
�k

b nyi

�i
þ
nxj

�j
þ
nxk
�k

<
ny4

�4
<

nyi

�i
þ
nzj

�j
þ
nzk
�k

nz4
�4
<

nzi
�i

þ
nyj

�j
þ
nyk

�k
;
nxi
�i

þ
nyj

�j
þ
nyk

�k
<

nx4
�4

c0 nx4
�4
<

nxi
�i

þ
nzj

�j
þ
nzk
�k

;
nyi

�i
þ
nzj

�j
þ
nzk
�k

<
ny4

�4

nzi
�i

þ
nyj

�j
þ
nyk

�k
<

nz4
�4
<

nzi
�i

þ
nxj

�j
þ
nxk
�k

c** nxi
�i

þ
nzj

�j
þ
nzk
�k

<
nx4
�4

;
ny4

�4
<

nyi

�i
þ
nzj

�j
þ
nzk
�k

nzi
�i

þ
nyj

�j
þ
nyk

�k
<

nz4
�4
<

nzi
�i

þ
nxj

�j
þ
nxk
�k

d0 nxi
�i

þ
nyj

�j
þ
nyk

�k
<

nx4
�4
<

nxi
�i

þ
nzj

�j
þ
nzk
�k

nz4
�4
<

nzi
�i

þ
nxj

�j
þ
nxk
�k

;
nyi

�i
þ
nxj

�j
þ
nxk
�k

<
ny4

�4

d** nxi
�i

þ
nyj

�j
þ
nyk

�k
<

nx4
�4
<

nxi
�i

þ
nzj

�j
þ
nzk
�k

nzi
�i

þ
nxj

�j
þ
nxk
�k

<
nz4
�4

;
ny4

�4
<

nyi

�i
þ
nxj

�j
þ
nxk
�k

SFG type V4, (i ¼ 1); SFG type VI4 (i ¼ 2) ; SFG type VII4 (i ¼ 3)

Conditions
c0, d0 are
applied if

nyi

�i
�
nxi
�i
<

ny4

�4
�
nx4
�4

nyi

�i
�
nzi
�i
<

ny4

�4
�
nz4
�4

Conditions
c**, d** are
applied if

ny4

�4
�
nx4
�4
<

nyi

�i
�
nxi
�i

ny4

�4
�
nz4
�4
<

nyi

�i
�
nzi
�i

Fig. 1.7.3.5. Stereographic projection on the optical frame of the possible loci
of phase-matching directions in the principal planes of a biaxial crystal.
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(i) For three-wave mixing,

�ð2Þeffð!a; !b; !c; ; ’Þ ¼
P

ijk

�ijkð!aÞFijkð!a; !b; !c; ; ’Þ

¼ �ð2Þð!aÞ � F
ð2Þð!a; !b; !c; ; ’Þ;

ð1:7:3:30Þ

with

Fð2Þð!a; !b; !c; ; ’Þ ¼ eð!a; ; ’Þ � eð!b; ; ’Þ � eð!c; ; ’Þ;

ð1:7:3:31Þ

where !a; !b; !c correspond to !3; !1; !2 for SFG (!3 ¼

!1 þ !2); to !1; !3; !2 for DFG (!1 ¼ !3 � !2); and to
!2; !3; !1 for DFG (!2 ¼ !3 � !1).

(ii) For four-wave mixing,

�ð3Þeffð!a; !b; !c; !d; ; ’Þ ¼
P

ijkl

�ijklð!aÞFijklð!a; !b; !c; !d; ; ’Þ

¼ �ð3Þð!aÞ � F
ð3Þð!a; !b; !c; !d; ; ’Þ;

ð1:7:3:32Þ

with

F ð3Þð!a; !b; !c; !d; ’Þ

¼ eð!a; ; ’Þ � eð!b; ; ’Þ � eð!c; ; ’Þ � eð!d; ; ’Þ;

ð1:7:3:33Þ

where !a; !b; !c; !d correspond to !4; !1; !2; !3 for SFG (!4 ¼

!1 þ !2 þ !3); to !1; !4; !2; !3 for DFG (!1 ¼ !4 � !2 � !3); to
!2; !4; !1; !3 for DFG (!2 ¼ !4 � !1 � !3); and to !3; !4; !1;
!2 for DFG (!3 ¼ !4 � !1 � !2).

Each eð!i; ; ’Þ corresponds to a given eigen electric field
vector.

The components of the field tensor are trigonometric functions
of the direction of propagation.

Particular relations exist between field-tensor components of
SFG and DFG which are valid for any direction of propagation.
Indeed, from (1.7.3.31) and (1.7.3.33), it is obvious that the field-
tensor components remain unchanged by concomitant permuta-
tions of the electric field vectors at the different frequencies and
the corresponding Cartesian indices (Boulanger &Marnier, 1991;
Boulanger et al., 1993):

F
e3e1e2
ijk ð!3 ¼ !1 þ !2Þ ¼ F

e1e3e2
jik ð!1 ¼ !3 � !2Þ

¼ F
e2e3e1
kij ð!2 ¼ !3 � !1Þ ð1:7:3:34Þ

and

F
e4e1e2e3
ijkl ð!4 ¼ !1 þ !2 þ !3Þ

¼ F
e1e4e2e3
jikl ð!1 ¼ !4 � !2 � !3Þ

¼ F
e2e4e1e3
kijl ð!2 ¼ !4 � !1 � !3Þ

¼ F
e3e4e1e2
lijk ð!3 ¼ !4 � !1 � !2Þ;

ð1:7:3:35Þ

where ei is the unit electric field vector at !i.
For a given interaction, the symmetry of the field tensor is

governed by the vectorial properties of the electric fields, detailed
in Section 1.7.3.1. This symmetry is then characteristic of both the
optical class and the direction of propagation. These properties
lead to four kinds of relations between the field-tensor compo-
nents described later (Boulanger & Marnier, 1991; Boulanger et
al., 1993). Because of their interest for phase matching, we
consider only the uniaxial and biaxial classes.

(a) The number of zero components varies with the direction
of propagation according to the existence of nil electric field
vector components. The only case where all the components are

nonzero concerns any direction of propagation out of the prin-
cipal planes in biaxial crystals.

(b) The orthogonality relation (1.7.3.10) between any ordinary
and extraordinary waves propagating in the same direction leads
to specific relations independent of the direction of propagation.
For example, the field tensor of an (eooo) configuration of
polarization (one extraordinary wave relative to the first Carte-
sian index and three ordinary waves relative to the three other
indices) verifies Fxxij þ Fyyij ðþ Fzzij ¼ 0Þ ¼ Fxixj þ Fyiyj

ðþ Fzizj ¼ 0Þ ¼ Fxijx þ Fyijy ðþ Fzijz ¼ 0Þ ¼ 0, with i and j equal to
x or y; the combination of these three relations leads to Fxxxx ¼

�Fyyxx ¼ �Fyxyx ¼ �Fyxxy, Fyyyy ¼ �Fxxyy ¼ �Fxyxy ¼ �Fxyyx and
Fyxyy ¼ Fyyxy ¼ Fyyyx ¼ �Fxyxx ¼ Fxxyx ¼ �Fxxxy. In a biaxial
crystal, this kind of relation does not exist out of the principal
planes.

(c) The fact that the direction of the ordinary electric field
vectors in uniaxial crystals does not depend on the frequency,
(1.7.3.11), leads to symmetry in the Cartesian indices relative to
the ordinary waves. These relations can be redundant in
comparison with certain orthogonality relations and are valid for
any direction of propagation in uniaxial crystals. It is also the case
for biaxial crystals, but only in the principal planes xz and yz. In
the xy plane of biaxial crystals, the ordinary wave, (1.7.3.15), has a
walk-off angle which depends on the frequency, and the extra-
ordinary wave, (1.7.3.16), has no walk-off angle: then the field
tensor is symmetric in the Cartesian indices relative to the
extraordinary waves. The walk-off angles of ordinary and extra-
ordinary waves are nil along the principal axes of the index
surface of biaxial and uniaxial crystals and so everywhere in the
xy plane of uniaxial crystals. Thus, any field tensor associated with
these directions of propagation is symmetric in the Cartesian
indices relative to both the ordinary and extraordinary waves.

(d) Equalities between frequencies can create new symmetries:
the field tensors of the uniaxial class for any direction of
propagation and of the biaxial class in only the principal planes
xz and yz become symmetric in the Cartesian indices relative to
the extraordinary waves at the same frequency; in the xy plane of
a biaxial crystal, this symmetry concerns the indices relative to
the ordinary waves. Equalities between frequencies are the only
situations for which the field tensors are partly symmetric out of
the principal planes of a biaxial crystal: the symmetry concerns
the indices relative to the waves (+) with identical frequencies; it
is the same for the waves (�): for example, F�þþ

ijk ð2! ¼ !þ !Þ ¼
F�þþ
ikj ð2! ¼ !þ !Þ, F�þþ�

ijkl ð!4 ¼ !þ !þ !3Þ ¼ F�þþ�
ikjl ð!4 ¼

!þ !þ !3Þ, F���þ
ijkl ð!4 ¼ !þ !þ !3Þ ¼ F���þ

ikjl ð!4 ¼

!þ !þ !3Þ and so on.

1.7.3.2.4.2. Uniaxial class

The field-tensor components are calculated from (1.7.3.11) and
(1.7.3.12). The phase-matching case is the only one considered
here: according to Tables 1.7.3.1 and 1.7.3.2, the allowed config-
urations of polarization of three-wave and four-wave interactions,
respectively, are the 2o.e (two ordinary and one extraordinary
waves), the 2e.o and the 3o.e, 3e.o, 2o.2e.

Tables 1.7.3.7 and 1.7.3.8 give, respectively, the matrix repre-
sentations of the three-wave interactions (eoo), (oee) and of the
four-wave (oeee), (eooo), (ooee) interactions for any direction of
propagation in the general case where all the frequencies are
different. In this situation, the number of independent compo-
nents of the field tensors are: 7 for 2o.e, 12 for 2e.o, 9 for 3o.e, 28
for 3e.o and 16 for 2o.2e. Note that the increase of the number of
ordinary waves leads to an enhancement of symmetry of the field
tensors.

If there are equalities between frequencies, the field tensors
oee, oeee and ooee become totally symmetric in the Cartesian
indices relative to the extraordinary waves and the tensors eoo
and eooo remain unchanged.

Table 1.7.3.9 gives the field-tensor components specifically nil
in the principal planes of uniaxial and biaxial crystals. The nil
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components for the other configurations of polarization are
obtained by permutation of the Cartesian indices and the
corresponding polarizations.

From Tables 1.7.3.7 and 1.7.3.8, it is possible to deduce all the
other 2e.o interactions (eeo), (eoe), the 2o.e interactions (ooe),
(oeo), the 3o.e interactions (oooe), (oeoo), (ooeo), the 3e.o
interactions (eoee), (eeoe), (eeeo) and the 2o.2e interactions
(oeoe), (eoeo), (eeoo), (oeeo), (eooe). The corresponding inter-
actions and types are given in Tables 1.7.3.1 and 1.7.3.2.
According to (1.7.3.31) and (1.7.3.33), the magnitudes of two
permutated components are equal if the permutation of polar-
izations are associated with the corresponding frequencies. For
example, according to Table 1.7.3.2, two permutated field-tensor
components have the same magnitude for permutation between
the following 3o.e interactions:

(i) (eooo) SFG (!4) type I < 0 and the three (oeoo) interac-
tions, DFG (!1) type II < 0, DFG (!2) type III < 0, DFG (!3) type
IV < 0;

(ii) the three (oooe) interactions, SFG (!4) type II > 0, DFG
(!1) type III > 0, DFG (!2) type IV > 0 and (eooo) DFG (!3)
type I > 0;

(iii) the two (ooeo) interactions SFG (!4) type III > 0, DFG
(!1) type IV > 0, (eooo) DFG (!2) type I > 0, and (oooe) DFG
(!3) type II > 0;

(iv) (oeoo) SFG (!4) type IV > 0, (eooo) DFG (!1) type I > 0,
and the two interactions (ooeo) DFG (!2) type II > 0, DFG (!3)
type III > 0.

The contraction of the field tensor and the uniaxial dielectric
susceptibility tensor of corresponding order, given in Tables
1.7.2.2 to 1.7.2.5, is nil for the following uniaxial crystal classes
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Table 1.7.3.8. Matrix representations of the (oeee), (eooo) and (ooee) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz,
with !1 6¼ !2 6¼ !3 (Boulanger et al., 1993)

Interactions Four-rank Fijklð; ’Þ field tensors

Type oeee
SFG(!4) type
I > 0

DFG (!1) type
I < 0

DFG (!2) type
I < 0

DFG (!3) type
I < 0

Type eooo
SFG (!4) type
I < 0

DFG (!1) type
I > 0

DFG (!2) type
I > 0

DFG (!3) type
I > 0

Type ooee
SFG (!4) type
V4 > 0

DFG (!1) type
V1 > 0

DFG (!2) type
V2 > 0

DFG (!3) type
V3 > 0

Table 1.7.3.7. Matrix representations of the (oee) and (eoo) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz, with
!1 6¼ !2 (Boulanger & Marnier, 1991)

Interactions Three-rank Fijkð; ’Þ field tensors

Type eoo
SFG (!3) type I < 0
DFG (!1) type I > 0
DFG (!2) type I > 0

Type oee
SFG (!3) type I > 0
DFG (!1) type I < 0
DFG (!2) type I < 0
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and configurations of polarization: D4 and D6 for 2o.e, C4v and
C6v for 2e.o, D6, D6h, D3h and C6v for 3o.e and 3e.o. Thus, even if
phase-matching directions exist, the effective coefficient in these
situations is nil, which forbids the interactions considered
(Boulanger & Marnier, 1991; Boulanger et al., 1993). The number
of forbidden crystal classes is greater under the Kleinman
approximation. The forbidden crystal classes have been deter-
mined for the particular case of third harmonic generation
assuming Kleinman conjecture and without consideration of the
field tensor (Midwinter & Warner, 1965).

1.7.3.2.4.3. Biaxial class

The symmetry of the biaxial field tensors is the same as for the
uniaxial class, though only for a propagation in the principal
planes xz and yz; the associated matrix representations are given
in Tables 1.7.3.7 and 1.7.3.8, and the nil components are listed in
Table 1.7.3.9. Because of the change of optic sign from either side
of the optic axis, the field tensors of the interactions for which the
phase-matching cone joins areas b and a or a and c, given in Fig.
1.7.3.5, change from one area to another: for example, the field
tensor (eoee) becomes an (oeoo) and so the solicited components
of the electric susceptibility tensor are not the same.

The nonzero field-tensor components for a propagation in the
xy plane of a biaxial crystal are: Fzxx, Fzyy, Fzxy 6¼ Fzyx for (eoo);
Fxzz, Fyzz for (oee); Fzxxx, Fzyyy, Fzxyy 6¼ Fzyxy 6¼ Fzyyx,
Fzxxy 6¼ Fzxyx 6¼ Fzyxx for (eooo); Fxzzz, Fyzzz for (oeee);
Fxyzz 6¼ Fyxzz, Fxxzz, Fyyzz for (ooee). The nonzero components for
the other configurations of polarization are obtained by the
associated permutations of the Cartesian indices and the corre-
sponding polarizations.

The field tensors are not symmetric for a propagation out of
the principal planes in the general case where all the frequencies
are different: in this case there are 27 independent components
for the three-wave interactions and 81 for the four-wave inter-
actions, and so all the electric susceptibility tensor components
are solicited.

As phase matching imposes the directions of the electric fields
of the interacting waves, it also determines the field tensor and
hence the effective coefficient. Thus there is no possibility of
choice of the �ð2Þ coefficients, since a given type of phase
matching is considered. In general, the largest coefficients of
polar crystals, i.e. �zzz, are implicated at a very low level when
phase matching is achieved, because the corresponding field
tensor, i.e. Fzzz, is often weak (Boulanger et al., 1997). In contrast,
QPM authorizes the coupling between three waves polarized
along the z axis, which leads to an effective coefficient which is
purely �zzz, i.e. �eff ¼ ð2=�Þ�zzz, where the numerical factor
comes from the periodic character of the rectangular function of
modulation (Fejer et al., 1992).

1.7.3.3. Integration of the propagation equations

1.7.3.3.1. Spatial and temporal profiles

The resolution of the coupled equations (1.7.3.22) or (1.7.3.24)
over the crystal length L leads to the electric field amplitude
EiðX;Y;LÞ of each interacting wave. The general solutions are
Jacobian elliptic functions (Armstrong et al., 1962; Fève,
Boulanger & Douady, 2002). The integration of the systems is
simplified for cases where one or several beams are held constant,
which is called the undepleted pump approximation. We consider
mainly this kind of situation here. The power of each interacting
wave is calculated by integrating the intensity over the cross
section of each beam according to (1.7.3.8). For our main
purpose, we consider the simple case of plane-wave beams with
two kinds of transverse profile:

EðX;Y;ZÞ ¼ eEoðZÞ for ðX;YÞ 2 ½�wo;þwo�

EðX;Y;ZÞ ¼ 0 elsewhere ð1:7:3:36Þ

for a flat distribution over a radius wo;

EðX;Y;ZÞ ¼ eEoðZÞ exp½�ðX2 þ Y2Þ=w2
o� ð1:7:3:37Þ

for a Gaussian distribution, where wo is the radius at (1=e) of the
electric field and so at (1=e2) of the intensity.
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Table 1.7.3.9. Field-tensor components specifically nil in the principal planes of uniaxial and biaxial crystals for three-wave and four-wave interactions

ði; j; kÞ ¼ x; y or z.

Configurations
of polarization

Nil field-tensor components

(xy) plane (xz) plane (yz) plane

eoo Fxjk ¼ 0;Fyjk ¼ 0 Fixk ¼ Fijx ¼ 0 Fiyk ¼ Fijy ¼ 0
Fyjk ¼ 0 Fxjk ¼ 0

oee Fixk ¼ Fijx ¼ 0 Fiyk ¼ Fijy ¼ 0 Fixk ¼ Fijx ¼ 0
Fiyk ¼ Fijy ¼ 0 Fxik ¼ 0 Fyjk ¼ 0

eooo Fxjkl ¼ 0;Fyjkl ¼ 0 Fixkl ¼ Fijxl ¼ Fijkx ¼ 0 Fiykl ¼ Fijyl ¼ Fijky ¼ 0
Fyjkl ¼ 0 Fxjkl ¼ 0

oeee Fixkl ¼ Fijxl ¼ Fijkx ¼ 0 Fiykl ¼ Fijyl ¼ Fijky ¼ 0 Fixkl ¼ Fijxl ¼ Fijkx ¼ 0
Fiykl ¼ Fijyl ¼ Fijky ¼ 0 Fxjkl ¼ 0 Fyjkl ¼ 0

ooee Fijxl ¼ Fijkx ¼ 0 Fxjkl ¼ Fixkl ¼ 0 Fyjkl ¼ Fiykl ¼ 0
Fijyl ¼ Fijky ¼ 0 Fijyl ¼ Fijky ¼ 0 Fijxl ¼ Fijkx ¼ 0

Fig. 1.7.3.6. Schematic configurations for second harmonic generation: (a)
non-resonant SHG; (b) external resonant SHG: the resonant wave may
either be the fundamental or the harmonic one; (c) internal resonant SHG.
P!;2! are the fundamental and harmonic powers; HT! and HR!;2! are the
high-transmission and high-reflection mirrors at ! or 2! and T!;2! are the
transmission coefficients of the output mirror at ! or 2!. NLC is the
nonlinear crystal with a nonzero �(2).
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The associated powers are calculated according to (1.7.3.8),
which leads to

PðLÞ ¼ mðn=2Þð"o=�oÞ
1=2
jEoj

2�w2
o ð1:7:3:38Þ

where m ¼ 1 for a flat distribution and m ¼ 1=2 for a Gaussian
profile.

The nonlinear interaction is characterized by the conversion
efficiency, which is defined as the ratio of the generated power to
the power of one or several incident beams, according to the
different kinds of interactions.

For pulsed beams, it is necessary to consider the temporal
shape, usually Gaussian:

PðtÞ ¼ Pc expð�2t2=�2Þ ð1:7:3:39Þ

where Pc is the peak power and � the half (1=e2) width.
For a repetition rate f (s�1), the average power ~PP is then given

by

~PP ¼ Pc�f ð�=2Þ
1=2

¼ ~EEf ð1:7:3:40Þ

where ~EE is the energy per Gaussian pulse.
When the pulse shape is not well defined, it is suitable to

consider the energies per pulse of the incident and generated
waves for the definition of the conversion efficiency.

The interactions studied here are sum-frequency generation
(SFG), including second harmonic generation (SHG:
!þ ! ¼ 2!), cascading third harmonic generation (THG:
!þ 2! ¼ 3!) and direct third harmonic generation (THG:
!þ !þ ! ¼ 3!). The difference-frequency generation (DFG) is
also considered, including optical parametric amplification
(OPA) and oscillation (OPO).

We choose to analyse in detail the different parameters relative
to conversion efficiency (figure of merit, acceptance bandwidths,
walk-off effect etc.) for SHG, which is the prototypical second-
order nonlinear interaction. This discussion will be valid for the
other nonlinear processes of frequency generation which will be
considered later.

1.7.3.3.2. Second harmonic generation (SHG)

According to Table 1.7.3.1, there are two types of phase
matching for SHG: type I and type II (equivalent to type III).

The fundamental waves at ! define the pump. Two situations
are classically distinguished: the undepleted pump approxima-
tion, when the power conversion efficiency is sufficiently low to
consider the fundamental power to be undepleted, and the
depleted case for higher efficiency. There are different ways to
realize SHG, as shown in Fig. 1.7.3.6: the simplest one is non-
resonant SHG, outside the laser cavity; other ways are external or
internal resonant cavity SHG, which allow an enhancement of the
single-pass efficiency conversion.

1.7.3.3.2.1. Non-resonant SHG with undepleted pump in the
parallel-beam limit with a Gaussian transverse profile

We first consider the case where the crystal length is short
enough to be located in the near-field region of the laser beam
where the parallel-beam limit is a good approximation. We make
another simplification by considering a propagation along a
principal axis of the index surface: then the walk-off angle of each
interacting wave is nil so that the three waves have the same
coordinate system (X;Y;Z).

The integration of equations (1.7.3.22) over the crystal length
Z in the undepleted pump approximation, i.e. @E!1 ðX;Y;ZÞ=@Z
¼ @E!2 ðX;Y;ZÞ=@Z ¼ 0, with E2!

3 ðX;Y; 0Þ ¼ 0, leads to

jE2!
3 ðX;Y;LÞj2 ¼ fK2!

3 ½"o�
ð2Þ
eff �g

2
jE!1 ðX;Y; 0ÞE

!
2 ðX;Y; 0Þj

2

� L2 sin c2½ð�k � LÞ=2�: ð1:7:3:41Þ

(1.7.3.41) implies a Gaussian transversal profile for
jE2!

3 ðX;Y;LÞj if jE!1 ðX;Y; 0Þj and jE!2 ðX;Y; 0Þj are Gaussian.
The three beam radii are related by ð1=w2

o3Þ ¼ ð1=w2
o1Þ þ ð1=w2

o2Þ,
so if we assume that the two fundamental beams have the same
radius w!o , which is not an approximation for type I, then
w2!

o ¼ ½w!o=ð2
1=2Þ�. Two incident beams with a flat distribution of

radius w!o lead to the generation of a flat harmonic beam with the
same radius w2!

o ¼ w!o .
The integration of (1.7.3.41) according to (1.7.3.36)–(1.7.3.38)

for a Gaussian profile gives in the SI system

P2!ðLÞ ¼ BP!1 ð0ÞP
!
2 ð0Þ

L2

w2
o

sin c2
�k � L

2

� �

B ¼
32�

"oc

2N � 1

N

d2eff
�2!

T2!
3 T!1 T

!
2

n2!3 n!1 n
!
2

; ðW�1Þ

ð1:7:3:42Þ

where c ¼ 3� 108 m s�1, "o ¼ 8:854� 10�12 A s V�1 m�1 and so
ð32�="ocÞ ¼ 37:85� 103 VA�1. L (m) is the crystal length in the
direction of propagation. �k ¼ k2!3 � k!1 � k!2 is the phase
mismatch. n2!3 , n!1 and n!2 are the refractive indices at the
harmonic and fundamental wavelengths �2! and �! (mm): for the
phase-matching case, �k ¼ 0, n2!3 ¼ n�ð2!Þ, n!1 ¼ n!2 ¼ nþð!Þ
for type I (the two incident fundamental beams have the same
polarization contained in �+, with the harmonic polarization
contained in ��) and n!1 ¼ nþð!Þ 6¼ n!2 ¼ n�ð!Þ for type II (the
two solicited eigen modes at the fundamental wavelength are in
�+ and ��, with the harmonic polarization contained in ��).
T2!
3 , T!1 and T!2 are the transmission coefficients given by

Ti ¼ 4ni=ðni þ 1Þ2. deff (pm V�1) ¼ ð1=2Þ�eff ¼ ð1=2Þ½Fð2Þ � �ð2Þ� is
the effective coefficient given by (1.7.3.30) and (1.7.3.31). P!1 ð0Þ
and P!2 ð0Þ are the two incident fundamental powers, which are
not necessarily equal for type II; for type I we have obviously
P!1 ð0Þ ¼ P!2 ð0Þ ¼ ðP!tot=2Þ. N is the number of independently
oscillating modes at the fundamental wavelength: every long-
itudinal mode at the harmonic pulsation can be generated by
many combinations of two fundamental modes; the ð2N � 1Þ=N
factor takes into account the fluctuations between these long-
itudinal modes (Bloembergen, 1963).

The powers in (1.7.3.42) are instantaneous powers P(t).
The second harmonic (SH) conversion efficiency, �SHG,

is usually defined as the ratio of peak powers P2!
c ðLÞ=P!c;totð0Þ, or

as the ratio of the pulse total energy ~EE
2!
ðLÞ= ~EE

!

totð0Þ. For Gaussian
temporal profiles, the SH ð1=e2Þ pulse duration �2! is equal to
�!=ð2

1=2Þ, because P2! is proportional to P2
!, and so, according to

(1.7.3.40), the pulse average energy conversion efficiency is
1=ð21=2Þ smaller than the peak power conversion efficiency given
by (1.7.3.42). Note that the pulse total energy conversion effi-
ciency is equivalent to the average power conversion efficiency
~PP
2!
ðLÞ= ~PP

!

totð0Þ, with ~PP ¼ ~EE � f where f is the repetition rate.
Formula (1.7.3.42) shows the importance of the contribution of

the linear optical properties to the nonlinear process. Indeed, the
field tensor F(2), the transmission coefficients Ti and the phase
mismatch �k only depend on the refractive indices in the
direction of propagation considered.

(i) Figure of merit.
The contribution of F(2) was discussed previously, where it was

shown that the field tensor is nil in particular directions of
propagation or everywhere for particular crystal classes and
configurations of polarization (even if the nonlinearity �(2) is
high).

The field tensor F(2) of SHG can be written with the contracted
notation of d(2); according to Table 1.7.3.1 and to the contraction
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conventions given in Section 1.7.2.2, the contracted field-tensor
components for the phase-matched SHG are

Fi1 ¼ e�i ð2!Þ½e
þ
x ð!Þ�

2

Fi2 ¼ e�i ð2!Þ½e
þ
y ð!Þ�

2

Fi3 ¼ e�i ð2!Þ½e
þ
z ð!Þ�

2

Fi4 ¼ 2e�i ð2!Þe
þ
y ð!Þe

þ
z ð!Þ

Fi5 ¼ 2e�i ð2!Þe
þ
x ð!Þe

þ
z ð!Þ

Fi6 ¼ 2e�i ð2!Þe
þ
x ð!Þe

þ
y ð!Þ

for type I and

Fi1 ¼ e�i ð2!Þe
þ
x ð!Þe

�
x ð!Þ

Fi2 ¼ e�i ð2!Þe
þ
y ð!Þe

�
y ð!Þ

Fi3 ¼ e�i ð2!Þe
þ
z ð!Þe

�
z ð!Þ

Fi4 ¼ e�i ð2!Þ½e
þ
y ð!Þe

�
z ð!Þ þ e�y ð!Þe

þ
z ð!Þ�

Fi5 ¼ e�i ð2!Þ½e
þ
x ð!Þe

�
z ð!Þ þ e�x ð!Þe

þ
z ð!Þ�

Fi6 ¼ e�i ð2!Þ½e
þ
x ð!Þe

�
y ð!Þ þ e�x ð!Þe

þ
y ð!Þ�

for type II, with i ¼ ð1; 2; 3Þ for Fij, corresponding to i ¼ ðx; y; zÞ
for e�i ð2!Þ.

The ratio d2eff=n
2!
3 n!1 n

!
2 in formula (1.7.3.42) is called the figure

of merit of the direction considered. The effective coefficient is
given in Section 1.7.5 for the main nonlinear crystals and for
chosen SHG wavelengths.

(ii) Effect of the phase mismatch.
The interference function sin c2ð�kL=2Þ is a maximum and

equal to unity only for�k ¼ 0, which defines the phase-matching
condition. Fig. 1.7.3.7 shows the effect of the phase mismatch on
the growth of second harmonic conversion efficiency, �SHG, with
interaction distance Z.

The conversion efficiency has a Z2 dependence in the case of
phase matching. The harmonic power oscillates around Z2 for
quasi phase matching, but is reduced by a factor of 4/�2 compared
with that of phase-matched interaction (Fejer et al., 1992).

An SHG phase-matching direction (PM; ’PM) for given
fundamental wavelength (�PM) and type of interaction, I or II, is
defined at a given temperature (TPM). It is important to consider
the effect of deviation of �k from 0 due to variations of angles
(PM � d; ’PM � d’), of temperature (TPM � dT) and of wave-

length (�PM � d�) on the conversion efficiency. The quantities
that characterize these effects are the acceptance bandwidths ��
(� ¼ ; ’;T; �), usually defined as the deviation from the phase-
matching value �PM leading to a phase-mismatch variation �k
from 0 to 2�/L, where L is the crystal length. Then �� is also the
full width of the peak efficiency curve plotted as a function of � at
0.405 of the maximum, as shown in Fig. 1.7.3.8.

Thus L�� is a characteristic of the phase-matching direction.
Small angular, thermal and spectral dispersion of the refractive
indices lead to high acceptance bandwidths. The higher L��, the
lower is the decrease of the conversion efficiency corresponding
to a given angular shift, to the heating of the crystal due to
absorption or external heating, or to the spectral bandwidth of
the fundamental beam.

The knowledge of the angular, thermal and spectral dispersion
of the refractive indices allows an estimation of �� by expanding
�k in a Taylor series about �PM:

2�

L
¼ �k ¼

@ð�kÞ

@�









�PM

�� þ
1

2

@2ð�kÞ

@�2









�PM

ð��Þ2 þ . . . : ð1:7:3:43Þ

When the second- and higher-order differential terms in
(1.7.3.43) are negligible, the phase matching is called
critical (CPM), because L�� ’ j2�=½@ð�kÞ=@�j�PM �j is small. For
the particular cases where @ð�kÞ=@�j�PM ¼ 0, L�� ¼

fj4�L=½@2ð�kÞ=@�2j�PM �jg
1=2 is larger than the CPM acceptance

and the phase matching is called non-critical (NCPM) for the
parameter � considered.

We first consider the case of angular acceptances. In uniaxial
crystals, the refractive indices do not vary in ’, leading to an
infinite ’ angular acceptance bandwidth. � is then the only one
to consider. For directions of propagation out of the principal
plane (PM 6¼ �=2), the phase matching is critical. According to
the expressions of no and ne() given in Section 1.7.3.1, we have

(1) for type I in positive crystals, neð; !Þ ¼ noð2!Þ and

L� ’ 2�=f�ð!=cÞn3oð2!Þ½n
�2
e ð!Þ � n�2

o ð!Þ� sin 2PMg;

ð1:7:3:44Þ

(2) for type II in positive crystals, 2noð2!Þ ¼ neð; !Þ þ noð!Þ
and
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Fig. 1.7.3.7. Spatial growth evolution of second harmonic conversion
efficiency, �SHG, for non phase matching (NPM), �k 6¼ 0, and phase
matching (PM), �k ¼ 0, in a ‘continuous’ crystal, and for quasi phase
matching (QPM) in a periodic structure. The dashed curve corresponds to
(4/�2)�PM(Z) where �PM is the conversion efficiency of the phase-matched
SHG. lc ¼ �=�k is the coherence length. Fig. 1.7.3.8. Conversion efficiency evolution as a function of � for a given

crystal length. � denotes the angle ( or ’), the temperature (T) or the
wavelength (�). �PM represents the parameter allowing phase matching.
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L� ’ 2�=f�ð!=2cÞ½2noð2!Þ � noð!Þ�
3

� ½n�2
e ð!Þ � n�2

o ð!Þ� sin 2PMg; ð1:7:3:45Þ

(3) for type I in negative crystals, neð; 2!Þ ¼ noð!Þ and

L� ’ 2�=f�ð!=cÞn3oð!Þ½n
�2
o ð2!Þ � n�2

e ð2!Þ� sin 2PMg;

ð1:7:3:46Þ

(4) for type II in negative crystals, 2neð; 2!Þ ¼ neð; !Þ þ

noð!Þ and

L� ’ 2�=f�ð!=cÞn3eð; 2!Þ½n
�2
e ð2!Þ � n�2

o ð2!Þ� sin 2PM





þ ð!=2cÞn3eð; !Þ½n
�2
e ð!Þ � n�2

o ð!Þ� sin 2PMg



:

ð1:7:3:47Þ

CPM acceptance bandwidths are small, typically about one
mrad cm, as shown in Section 1.7.5 for the classical nonlinear
crystals.

When PM ¼ �=2, @�k=@ ¼ 0 and the phase matching is non-
critical:

(1) for type I in positive crystals, neð!Þ ¼ noð2!Þ and

L� ’ 2�L=f�ð!=cÞn3oð2!Þ½n
�2
e ð!Þ � n�2

o ð!Þ�g
� �1=2

; ð1:7:3:48Þ

(2) for type II in positive crystals, 2noð2!Þ ¼ neð!Þ þ noð!Þ and

L� ’ 2�L=f�ð!=2cÞn3eð!Þ½n
�2
e ð!Þ � n�2

o ð!Þ�g
� �1=2

; ð1:7:3:49Þ

(3) for type I in negative crystals, noð!Þ ¼ neð2!Þ and

L� ’ 2�L=fð!=cÞn3oð!Þ½n
�2
e ð2!Þ � n�2

o ð2!Þ�g
� �1=2

; ð1:7:3:50Þ

(4) for type II in negative crystals, 2neð2!Þ ¼ neð!Þ þ noð!Þ
and

L� ’
�
j2�L=f�ð!=cÞn3eð2!Þ½n

�2
e ð2!Þ � n�2

o ð2!Þ�

þ ð!=2cÞn3eð!Þ½n
�2
e ð!Þ � n�2

o ð!Þ�gj
�1=2
:

ð1:7:3:51Þ

Values of NCPM acceptance bandwidths are given in Section
1.7.5 for the usual crystals. From the previous expressions for
CPM and NCPM angular acceptances, it appears that the angular
bandwidth is all the smaller since the birefringence is high.

The situation is obviously more complex in the case of biaxial
crystals. The ’ acceptance bandwidth is not infinite, leading to a
smaller anisotropy of the angular acceptance in comparison with
uniaxial crystals. The expressions of the  and ’ acceptance
bandwidths have the same form as for the uniaxial class only in
the principal planes. The phase matching is critical (CPM) for all
directions of propagation out of the principal axes x, y and z: in
this case, the mismatch �k is a linear function of small angular
deviations from the phase-matching direction as for uniaxial
crystals. There exist six possibilities of NCPM for SHG, types I
and II along the three principal axes, corresponding to twelve
different index conditions (Hobden, 1967):

(1) for positive biaxial crystals

Type I ðxÞ n
y
2! ¼ nz!

Type I ðyÞ nx2! ¼ nz!
Type I ðzÞ nx2! ¼ ny!
Type II ðxÞ n

y
2! ¼ 1

2ðn
y
! þ nz!Þ

Type II ðyÞ nx2! ¼ 1
2ðn

x
! þ nz!Þ

Type II ðzÞ nx2! ¼ 1
2ðn

x
! þ ny!Þ;

ð1:7:3:52Þ

(2) for negative biaxial crystals

Type I ðxÞ nz2! ¼ ny!
Type I ðyÞ nz2! ¼ nx!
Type I ðzÞ n

y
2! ¼ nx!

Type II ðxÞ nz2! ¼ 1
2ðn

y
! þ nz!Þ

Type II ðyÞ nz2! ¼ 1
2ðn

x
! þ nz!Þ

Type II ðzÞ n
y
2! ¼ 1

2ðn
x
! þ ny!Þ:

The NCPM angular acceptances along the three principal axes
of biaxial crystals can be deduced from the expressions relative to
the uniaxial class by the following substitutions:

Along the x axis:

L�’ (type I > 0Þ ¼ ð1:7:3:50Þ with noð!Þ ! nzð!Þ;

neð2!Þ ! nyð2!Þ and noð2!Þ ! nxð2!Þ

L� (type I > 0Þ ¼ ð1:7:3:48Þ with noð2!Þ ! nyð2!Þ;

neð!Þ ! nzð!Þ and noð!Þ ! nxð!Þ

L�’ (type II > 0Þ ¼ ð1:7:3:51Þ with ne ! ny and no ! nx

L� (type II > 0Þ ¼ ð1:7:3:49Þ with neð!Þ ! nzð!Þ

and noð!Þ ! nxð!Þ

L�’ (type I< 0Þ ¼ ð1:7:3:48Þ with noð2!Þ ! nzð2!Þ;

neð!Þ ! nxð!Þ and noð!Þ ! nyð!Þ

L� (type I< 0Þ ¼ ð1:7:3:50Þ with noð!Þ ! nyð!Þ;

neð2!Þ ! nzð2!Þ and noð2!Þ ! nxð2!Þ

L�’ (type II< 0Þ ¼ ð1:7:3:49Þ with neð!Þ ! nxð!Þ

and noð!Þ ! nyð!Þ

L� (type II< 0Þ ¼ ð1:7:3:51Þ with ne ! nz and no ! nx:

Along the y axis:

L�’ is the same as along the x axis for all interactions

L� (type I > 0Þ ¼ ð1:7:3:48Þ with noð2!Þ ! nxð2!Þ;

neð!Þ ! nzð!Þ and noð!Þ ! nyð!Þ

L� (type II > 0Þ ¼ ð1:7:3:49Þ with neð!Þ ! nzð!Þ

and noð!Þ ! nyð!Þ

L� (type I< 0Þ ¼ ð1:7:3:50Þ with noð!Þ ! nxð!Þ;

neð2!Þ ! nzð2!Þ and noð2!Þ ! nyð2!Þ

L� (type II< 0Þ ¼ ð1:7:3:51Þ with ne ! nz and no ! ny:

Along the z axis:

L�xz (type I > 0Þ ¼ ð1:7:3:48Þ with noð2!Þ ! nyð2!Þ;

neð!Þ ! nxð!Þ and noð!Þ ! nzð!Þ

L�yz (type I > 0Þ ¼ ð1:7:3:48Þ with noð2!Þ ! nxð2!Þ;

neð!Þ ! nyð!Þ and noð!Þ ! nzð!Þ

L�xz (type II > 0Þ ¼ ð1:7:3:49Þ with neð!Þ ! nxð!Þ

and noð!Þ ! nzð!Þ

L�yz (type II > 0Þ ¼ ð1:7:3:49Þ with neð!Þ ! nyð!Þ

and noð!Þ ! nzð!Þ

L�xz (type I< 0Þ ¼ ð1:7:3:50Þ with noð!Þ ! nyð!Þ;

neð2!Þ ! nzð2!Þ and noð2!Þ ! nxð2!Þ

L�yz (type I< 0Þ ¼ ð1:7:3:50Þ with noð!Þ ! nxð!Þ;

neð2!Þ ! nzð2!Þ and noð2!Þ ! nyð2!Þ
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L�xz (type II< 0Þ ¼ ð1:7:3:51Þ with ne ! nx and no ! nz

L�yz (type II< 0Þ ¼ ð1:7:3:51Þ with ne ! ny and no ! nz:

The above formulae are relative to the internal angular
acceptance bandwidths. The external acceptance angles are
enlarged by a factor of approximately n(!) for type I or
½n1ð!Þ þ n2ð!Þ�=2 for type II, due to refraction at the input plane
face of the crystal. The angular acceptance is an important issue
connected with the accuracy of cutting of the crystal.

Temperature tuning is a possible alternative for achieving
NCPM in a few materials. The corresponding temperatures for
different interactions are given in Section 1.7.5.

Another alternative is to use a special non-collinear config-
uration known as one-beam non-critical non-collinear phase
matching (OBNC): it is non-critical with respect to the phase-
matching angle of one of the input beams (referred to as the non-
critical beam). It has been demonstrated that the angular
acceptance bandwidth for the non-critical beam is exceptionally
large, for example about 50 times that for the critical beam for
type-I SHG at 1.338 mm in 3-methyl-4-nitropyridine-N-oxide
(POM) (Dou et al., 1992).

The typical values of thermal acceptance bandwidth, given in
Section 1.7.5, are of the order of 0.5 to 50 K cm. The thermal
acceptance is an important issue for the stability of the harmonic
power when the absorption at the wavelengths concerned is high
or when temperature tuning is used for the achievement of
angular NCPM. Typical spectral acceptance bandwidths for SHG
are given in Section 1.7.5. The values are of the order of 1 nm cm,
which is much larger than the linewidth of a single-frequency
laser, except for some diode or for sub-picosecond lasers with a
large spectral bandwidth.

Note that a degeneracy of the first-order temperature or
spectral derivatives (@�k=@TjTPM

¼ 0 or @�k=@�j�PM ¼ 0) can
occur and lead to thermal or spectral NCPM.

Consideration of the phase-matching function �PM ¼ f ð�PMÞ,
where �PM ¼ TPM, PM, ’PM or all other dispersion parameters of
the refractive indices, is useful for a direct comparison of the
situation of non-criticality of the phase matching relative to �PM
and to the other parameters �PM: a nil derivative of �PM with
respect to �PM, i.e. d�PM=d�PM ¼ 0 at the point (�oPM; �

o
PM), means

that the phase matching is non-critical with respect to �PM and so
strongly critical with respect to �PM, i.e. d�PM=d�PM ¼ 1 at this
point. Then, for example, an angular NCPM direction is a spectral
CPM direction and the reverse is also so.

(iii) Effect of spatial walk-off.
The interest of the NCPM directions is increased by the fact

that the walk-off angle of any wave is nil: the beam overlap is
complete inside the nonlinear crystal. Under CPM, the inter-
acting waves propagate with different walk-off angles: the
conversion efficiency is then attenuated because the different
Poynting vectors are not collinear and the beams do not overlap.
Type I and type II are not equivalent in terms of walk-off angles.
For type I, the two fundamental waves have the same polariza-
tion E+ and the same walk-off angle 
+, which is different from
the harmonic one; thus the coordinate systems that are involved
in equations (1.7.3.22) are ðX1;Y1;ZÞ ¼ ðX2;Y2;ZÞ ¼

ðXþ
! ;Y

þ
! ;ZÞ and ðX3;Y3;ZÞ ¼ ðX�

2!;Y
�
2!;ZÞ. For type II, the two

fundamental waves have necessarily different walk-off angles 
+

and 
�, which forbids the nonlinear interaction beyond the plane
where the two fundamental beams are completely separated. In
this case we have three different coordinate systems: ðX1;Y1;ZÞ
¼ ðXþ

! ;Y
þ
! ;ZÞ, ðX2;Y2;ZÞ ¼ ðX�

! ;Y
�
! ;ZÞ and ðX3;Y3;ZÞ ¼

ðX�
2!;Y

�
2!;ZÞ.

The three coordinate systems are linked by the refraction
angles 
 of the three waves as explained in Section 1.7.3.2.1. We
consider Gaussian transverse profiles: the electric field amplitude
is then given by (1.7.3.37). In these conditions, the integration of
(1.7.3.22) over (X;Y;Z) by assuming tan 
 ¼ 
, the non-deple-

tion of the pump and, in the case of phase matching, �k ¼ 0
leads to the efficiency �SHG(L) given by formula (1.7.3.42)
with sin c2ð�kL=2Þ ¼ 1 and multiplied by the factor
½GðL;wo; 
Þ�=½cos

2 
ð2!Þ� where 
ð2!Þ is the harmonic walk-off
angle and GðL;wo; 
Þ is the walk-off attenuation function.

For type I, the walk-off attenuation is given by (Boyd et al.,
1965)

GIðtÞ ¼ ð�1=2=tÞ erfðtÞ � ð1=t2Þ½1� expð�t2Þ�

with

t ¼ ð
L=woÞ ð1:7:3:53Þ

and

erfðxÞ ¼ ð2=�1=2Þ
Rx

0

expð�t2Þ dt:

For uniaxial crystals, 
 ¼ 
eð2!Þ for a 2oe interaction and

 ¼ 
eð!Þ for a 2eo interaction. For the biaxial class, 
 ¼ 
eð2!Þ
for a 2oe interaction and 
 ¼ 
eð!Þ for a 2eo interaction in the xz
and yz planes, 
 ¼ 
oð!Þ for a 2oe interaction and 
 ¼ 
oð2!Þ for
a 2eo interaction in the xy plane. For any direction of propagation
not contained in the principal planes of a biaxial crystal, the
fundamental and harmonic waves have nonzero walk-off angles,
respectively 
+(!) and 
�(2!). In this case, (1.7.3.53) can be used
with 
 ¼ j
þð!Þ � 
�ð2!Þj.

(a) For small t (t 
 1), GIðtÞ ’ 1 and P2!ðLÞ � L2,
(b) For large t (t � 1), GIðtÞ ’ ð�1=2=tÞ and so P2!ðLÞ � L=


according to (1.7.3.42) with �k ¼ 0.
For type II, we have (Mehendale & Gupta, 1988)

GIIðtÞ ¼ ð2=�1=2Þ
Rþ1

�1

F2ða; tÞ da

with

Fða; tÞ ¼ ð1=tÞ expð�a2Þ
Rt

0

exp½�ðaþ �Þ2� d� ð1:7:3:54Þ

and

a ¼
r

wo

� ¼

u

wo

t ¼

L

wo

:

r and u are the Cartesian coordinates in the walk-off plane where
u is collinear with the three wavevectors, i.e. the phase-matching
direction.

 ¼ 
eð!Þ for (oeo) in uniaxial crystals and in the xz and yz

planes of biaxial crystals. 
 ¼ 
oð!Þ in the xy plane of biaxial
crystals for an (eoe) interaction.

For the interactions where 
�(2!) and 
�(!) are nonzero, we
assume that they are close and contained in the same plane,
which is generally the case. Then we classically take 
 to be the
maximum value between j
�ð2!Þ � 
þð!Þj and j
�ð!Þ � 
þð!Þj.
This approximation concerns the (eoe) configuration of polar-
ization in uniaxial crystals and for biaxial crystals in the xz and yz
planes, in the xy plane for (oeo) and out of the principal planes
for all the configurations of polarization.

The exact calculation of G, which takes into account the three
walk-off angles, 
�(!), 
+(!) and 
�(2!), was performed in the
case where these three angles were coplanar (Asaumi, 1992). The
exact calculation in the case of KTiOPO4 (KTP) for type-II SHG
at 1.064 mm gives the same result for L=zR< 1 as for one angle
defined as previously (Fève et al., 1995), which includes the
parallel-beam limit L=zR< 0.3–0.4: zR ¼ ½kð!Þw2

o�=2 is the
Rayleigh length of the fundamental beam inside the crystal.

(a) For t 
 1, GIIðtÞ ’ 1, leading to the L2 dependence of
P2!ðLÞ.
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(b) For t � 1, GIIðtÞ ’ ðt2a=t
2Þ with ta ¼ ½ð2Þ1=2 arctanð21=2Þ�1=2,

corresponding to a saturation of P2!ðLÞ because of the walk-off
between the two fundamental beams as shown in Fig. 1.7.3.9.

The saturation length, Lsat, is defined as 2:3tawo=
, which
corresponds to the length beyond which the SHG conversion

efficiency varies less than 1% from its saturation value
BP!ð0Þt2a=


2.
The complete splitting of the two fundamental beams does not

occur for type I, making it more suitable than type II for strong
focusing. The fundamental beam splitting for type II also leads to
a saturation of the acceptance bandwidths �� (� ¼ ; ’;T; �),
which is not the case for type I (Fève et al., 1995). The walk-off
angles also modify the transversal distribution of the generated
harmonic beam (Boyd et al., 1965; Mehendale & Gupta, 1988):
the profile is larger than that of the fundamental beam for type I,
contrary to type II.

The walk-off can be compensated by the use of two crystals
placed one behind the other, with the same length and cut in the
same CPM direction (Akhmanov et al., 1975): the arrangement of
the second crystal is obtained from that of the first one by a �
rotation around the direction of propagation or around the
direction orthogonal to the direction of propagation and
contained in the walk-off plane as shown in Fig. 1.7.3.10 for the
particular case of type II (oeo) in a positive uniaxial crystal out of
the xy plane.

The twin-crystal device is potentially valid for both types I and
II. The relative sign of the effective coefficients of the twin

crystals depends on the configuration of
polarization, on the relative arrangement
of the two crystals and on the crystal
class. The interference between the waves
generated in the two crystals is destruc-
tive and so cancels the SHG conversion
efficiency if the two effective coefficients
have opposite signs: it is always the case
for certain crystal classes and configura-
tions of polarization (Moore & Koch,
1996).

Such a tandem crystal was used, for
example, with KTiOPO4 (KTP) for type-
II SHG at �! ¼ 1:3 mm (
 ¼ 2:47�) and
�! ¼ 2:532 mm (
 ¼ 2:51�): the conver-
sion efficiency was about 3.3 times the
efficiency in a single crystal of length 2L,
where L is the length of each crystal of
the twin device (Zondy et al., 1994). The
two crystals have to be antireflection
coated or contacted in order to avoid
Fresnel reflection losses.

Non-collinear phase matching is
another method allowing a reduction of
the walk-off, but only in the case of type
II (Dou et al., 1992). Fig. 1.7.3.11 illus-
trates the particular case of (oeo) type-II
SHG for a propagation out of the xy
plane of a uniaxial crystal, or in the xz or
yz plane of a biaxial crystal.

In the configuration of special non-
collinear phase matching, the angle
between the fundamental beams inside
the crystal is chosen to be equal to the
walk-off angle 
. Then the associated
Poynting vectors S!;o and S!;e are along
the same direction, while that of the
generated wave deviates from them only
by approximately 
/2. The calculation
performed in the case of special non-
collinear phase matching indicates that it
is possible to increase type-II SHG
conversion efficiency by 17% for near-
field undepleted Gaussian beams (Dou et
al., 1992). Another advantage of such
geometry is to turn type II into a pseudo
type I with respect to the walk-off,
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Fig. 1.7.3.10. Twin-crystal device allowing walk-off compensation for a direction of propagation PM in the
yz plane of a positive uniaxial crystal. (X;Y;Z) is the wave frame and (x; y; z) is the optical frame. The
index surface is given in the yz plane. k! is the incident fundamental wavevector. The refracted
wavevectors k!;o, k!;e and k2!;o are collinear and along k!. S!;o, S!;e and S2!;o are the Poynting vectors of
the fundamental and harmonic waves. E!;o, E!;e and E2!;o are the electric field vectors. 
 is the walk-off
angle.

Fig. 1.7.3.9. Beam separation in the particular case of type-II (oeo) SHG out
of the xy plane of a positive uniaxial crystal or in the xz and yz planes of a
positive biaxial crystal. S!;o, S!;e and S2!;o are the fundamental and harmonic
Poynting vectors; k! and k2! are the associated wavevectors collinear to the
CPM direction. wo is the fundamental beam radius and 
 is the walk-off
angle. Lsat is the saturation length.
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because the saturation phenomenon of type-II CPM is
avoided.

(iv) Effect of temporal walk-off.
Even if the SHG is phase matched, the fundamental and

harmonic group velocities, vgð!Þ ¼ @!=@k, are generally
mismatched. This has no effect with continuous wave (c.w.) lasers.
For pulsed beams, the temporal separation of the different beams
during the propagation can lead to a decrease of the temporal
overlap of the pulses. Indeed, this walk-off in the time domain
affects the conversion efficiency when the pulse separations are
close to the pulse durations. Then after a certain distance, L�, the
pulses are completely separated, which entails a saturation of the
conversion efficiency, for both types I and II (Tomov et al., 1982).
Three group velocities must be considered for type II. Type I is
simpler, because the two fundamental waves have the same
velocity, so L� ¼ �=½v�1

g ð!Þ � v�1
g ð2!Þ�, which defines the

optimum crystal length, where � is the pulse duration. For
type-I SHG of 532 nm in KH2PO4 (KDP), vg(266 nm)
¼ 1:84� 108 m s�1 and vg(532 nm) ¼ 1:94� 108 m s�1, so L�
¼ 3:5 mm for 1 ps. For the usual nonlinear crystals, the temporal
walk-off must be taken into account for pico- and femtosecond
pulses.

1.7.3.3.2.2. Non-resonant SHG with undepleted pump and
transverse and longitudinal Gaussian beams

We now consider the general situation where the crystal length
can be larger than the Rayleigh length.

The Gaussian electric field amplitudes of the two eigen electric
field vectors inside the nonlinear crystal are given by

E�ðX;Y;ZÞ ¼ E�
o

wo

wðZÞ
exp

"

�
ðX þ 
þZÞ2 þ ðY þ 
�ZÞ2

w2ðZÞ

#

� exp

 

i

(

k�Z � arctanðZ=zRÞ

þ
k� ðX þ 
þZÞ2 þ ðY þ 
�ZÞ2
� 	

2Z 1þ ðz2R=Z
2Þ

� 	

)!

ð1:7:3:55Þ

with 
� ¼ 0 for E+ and 
þ ¼ 0 for E�.
(X;Y;Z) is the wave frame defined in Fig. 1.7.3.1. E�

o is the
scalar complex amplitude at ðX;Y;ZÞ ¼ ð0; 0; 0Þ in the vibration
planes ��.

We consider the refracted waves E+ and E– to have the same
longitudinal profile inside the crystal. Then the ð1=e2Þ beam
radius is given by wðZÞ

2
¼ w2

o½1þ ðZ2=z2RÞ�, where wo is the
minimum beam radius located at Z ¼ 0 and zR ¼ kw2

o=2, with
k ¼ ðkþ þ k�Þ=2; zR is the Rayleigh length, the length over which
the beam radius remains essentially collimated; k� are the
wavevectors at the wavelength � in the direction of propagation
Z. The far-field half divergence angle is �� ¼ 2=kwo.

The coordinate systems of (1.7.3.22) are identical to those of
the parallel-beam limit defined in (iii).

In these conditions and by assuming the undepleted pump
approximation, the integration of (1.7.3.22) over (X;Y;Z) leads
to the following expression of the power conversion efficiency
(Zondy, 1991):

�SHGðLÞ ¼
P2!ðLÞ

P!ð0Þ
¼ CLP!ð0Þ

hðL;wo; 
; f ;�kÞ

cos2 
2!

with

C ¼ 5:95� 10�2 2N � 1

N

d2eff
�3!

n!1 þ n!2
2

T2!
3 T!1 T

!
2

n2!3 n!1 n
!
2

ðW�1 m�1Þ

ð1:7:3:56Þ

in the same units as equation (1.7.3.42).
For type I, n!1 ¼ n!2 , T!1 ¼ T!2 , and for type II n!1 6¼ n!2 ,

T!1 6¼ T!2 .
The attenuation coefficient is written

hðL;wo; 
; f ;�kÞ ¼ ½2zRð�Þ
1=2=L�

Rþ1

�1

jHðaÞj2 expð�4a2Þ da

with

HðaÞ ¼
1

ð2�Þ1=2

ZLð1�f Þ=zR

�fL=zR

d�

1þ i�
exp ��2 � þ

fL

zR

� �2

�i��

" #

for type I: � ¼ 0 and � ¼ �kzR þ 4

zR
wo

a

for type II: � ¼

zR

woð2Þ
1=2

and � ¼ �kzR þ 2

zR
wo

a;

ð1:7:3:57Þ

where f gives the position of the beam waist inside the crystal:
f ¼ 0 at the entrance and f ¼ 1 at the exit surface. The definition
and approximations relative to 
 are the same as those discussed
for the parallel-beam limit. �k is the mismatch parameter, which
takes into account first a possible shift of the pump beam direc-
tion from the collinear phase-matching direction and secondly
the distribution of mismatch, including collinear and non-
collinear interactions, due to the divergence of the beam, even if
the beam axis is phase-matched.

202

Fig. 1.7.3.11. Comparison between (a) collinear and (b) special non-collinear
phase matching for (oeo) type-II SHG. k!;o, k!;e and k2!;o are the
wavevectors, S!;o, S!;e and S2!;o are the Poynting vectors of the fundamental
and harmonic waves, and E!;o,E!;e and E2!;o are the electric field vectors; 
 is
the walk-off angle in the collinear case and the angle between k!;o and k!;e

inside the crystal for the non-collinear interaction.
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The computation of hðL;wo; 
; f ;�kÞ allows an optimization
of the SHG conversion efficiency which takes into account L=zR,
the waist location f inside the crystal and the phase mismatch�k.

Fig. 1.7.3.12 shows the calculated waist location which allows
an optimal SHG conversion efficiency for types I and II with
optimum phase matching. From Fig. 1.7.3.12, it appears that the
optimum waist location for type I, which leads to an optimum
conversion efficiency, is exactly at the centre of the crystal,
fopt ¼ 0:5. For type II, the focusing (L=zR) is stronger and the
walk-off angle is larger, and the optimum waist location is nearer
the entrance of the crystal. These facts can be physically under-
stood: for type I, there is no walk-off for the fundamental beam,
so the whole crystal length is efficient and the symmetrical
configuration is obviously the best one; for type II, the two
fundamental rays can be completely separated in the waist area,
which has the strongest intensity, when the waist location is far
from the entrance face; for a waist location nearer the entrance,
the waist area can be selected and the enlargement of the beams
from this area allows a spatial overlap up to the exit face, which
leads to a higher conversion efficiency.

The divergence of the pump beam imposes non-collinear
interactions such that it could be necessary to shift the direction
of propagation of the beam from the collinear phase-matching
direction in order to optimize the conversion efficiency. This
leads to the definition of an optimum phase-mismatch parameter
�kopt ( 6¼ 0) for a given L=zR and a fixed position of the beam
waist f inside the crystal.

The function hðL;wo; 
; fopt;�koptÞ, written hmðB;LÞ, is
plotted in Fig. 1.7.3.13 as a function of L=zR for different values
of the walk-off parameter, defined as B ¼ ð1=2Þ
f½ðk!o þ

k!e Þ=2�Lg
1=2, at the optimal waist location and phase mismatch.

Consider first the case of angular NCPM (B ¼ 0) where type-I
and -II conversion efficiencies obviously have the same L=zR
evolutions. An optimum focusing at L=zR ¼ 5:68 exists which
defines the optimum focusing zRopt

for a given crystal length or
the optimal length Lopt for a given focusing. The conversion
efficiency decreases for L=zR > 5:68 because the increase of the
‘average’ beam radius over the crystal length due to the strong
focusing becomes more significant than the increased peak power
in the waist area.

In the case of angular CPM (B 6¼ 0), the L=zR variation of
type-I conversion efficiency is different from that of type II. For

type I, as B increases, the efficiency curves keep the same shape,
with their maxima abscissa shifting from L=zR ¼ 5:68 (B ¼ 0) to
2.98 (B ¼ 16) as the corresponding amplitudes decrease. For type
II, an optimum focusing becomes less and less appearent, while
ðL=zRÞopt shifts to much smaller values than for type I for the
same variation of B; the decrease of the maximum amplitude is
stronger in the case of type II. The calculation of the conversion
efficiency as a function of the crystal length L at a fixed zR shows
a saturation for type II, in contrast to type I. The saturation
occurs at B ’ 3 with a corresponding focusing parameter
L=zR ’ 0:4, which is the limit of validity of the parallel-beam
approximation. These results show that weak focusing is suitable
for type II, whereas type I allows higher focusing.

The curves of Fig. 1.7.3.14 give a clear illustration of the walk-
off effect in several usual situations of crystal length, walk-off
angle and Gaussian laser beam. The SHG conversion efficiency is
calculated from formula (1.7.3.56) and from the function
(1.7.3.57) at fopt and �kopt.

1.7.3.3.2.3. Non-resonant SHG with depleted pump in the
parallel-beam limit

The analytical integration of the three coupled equations
(1.7.3.22) with depletion of the pump and phase mismatch has
only been done in the parallel-beam limit and by neglecting the
walk-off effect (Armstrong et al., 1962; Eckardt & Reintjes, 1984;
Eimerl, 1987; Milton, 1992). In this case, the three coordinate
systems of equations (1.7.3.22) are identical, (X;Y;Z), and the
general solution may be written in terms of the Jacobian elliptic
function snðm; �Þ.

For the simple case of type I, i.e. E!1 ðX;Y;ZÞ ¼ E!2 ðX;Y;ZÞ ¼
E!ðX;Y;ZÞ ¼ E!totðX;Y;ZÞ=ð2

1=2Þ, the exit second harmonic
intensity generated over a length L is given by (Eckardt &
Reintjes, 1984)

I2!ðX;Y;LÞ ¼ I!totðX;Y; 0ÞT
2!T!v2bsn

2 �ðX;YÞL

vb
; v4b

� �

:

ð1:7:3:58Þ

203

Fig. 1.7.3.12. Position fopt of the beam waist for different values of walk-off
angles and L=zR, leading to an optimum SHG conversion efficiency. The
value fopt ¼ 0:5 corresponds to the middle of the crystal and fopt ¼ 0
corresponds to the entrance surface (Fève & Zondy, 1996).

Fig. 1.7.3.13. Optimum walk-off function hmðB;LÞ as a function of L=zR for
various values of B ¼ ð1=2Þ
f½ðk!o þ k!e Þ=2�Lg

1=2. The curve at B ¼ 0 is the
same for both type-I and type-II phase matching. The full lines at B 6¼ 0 are
for type II and the dashed line at B ¼ 16 is for type I. (From Zondy, 1990).
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I!totðX;Y; 0Þ ¼ 2I!ðX;Y; 0Þ is the total initial fundamental
intensity, T2! and T! are the transmission coefficients,

1

vb
¼

�s

4
þ 1þ

�s

4

� �2
" #1=2

with

�s ¼ ðk2! � k!Þ=�

and

�ðX;YÞ ¼
!deff
cn2!

ðT!Þ
1=2
jE!totðX;Y; 0Þj: ð1:7:3:59Þ

For the case of phase matching (k! ¼ k2!, T! ¼ T2!), we have
�s ¼ 0 and vb ¼ 1, and the Jacobian elliptic function snðm; 1Þ is
equal to tanhðmÞ. Then formula (1.7.3.58) becomes

I2!ðX;Y;LÞ ¼ I!totðX;Y; 0ÞðT
!Þ

2 tanh2½�ðX;YÞL�; ð1:7:3:60Þ

where �ðX;YÞ is given by (1.7.3.59).
The exit fundamental intensity I!ðX;Y;LÞ can be established

easily from the harmonic intensity (1.7.3.60) according to the
Manley–Rowe relations (1.7.2.40), i.e.

I!ðX;Y;LÞ ¼ I!totðX;Y; 0ÞðT
!Þ

2sech2½�ðX;YÞL�: ð1:7:3:61Þ

For small �L, the functions tanh2ð�LÞ ’ �2L2 and
sn2½ð�L=vbÞ; v

4
b� ’ sin2ð�L=vbÞ with vb ’ 2=�s.

The first consequence of formulae (1.7.3.58)–(1.7.3.59) is that
the various acceptance bandwidths decrease with increasing �L.
This fact is important in relation to all the acceptances but in
particular for the thermal and angular ones. Indeed, high effi-
ciencies are often reached with high power, which can lead to an
important heating due to absorption. Furthermore, the diver-
gence of the beams, even small, creates a significant dephasing: in
this case, and even for a propagation along a phase-matching
direction, formula (1.7.3.60) is not valid and may be replaced by
(1.7.3.58) where kð2!Þ � kð!Þ is considered as the ‘average’
mismatch of a parallel beam.

In fact, there always exists a residual mismatch due to the
divergence of real beams, even if not focused, which forbids
asymptotically reaching a 100% conversion efficiency: I2!ðLÞ
increases as a function of �L until a maximum value has been
reached and then decreases; I2!ðLÞ will continue to rise and fall
as �L is increased because of the periodic nature of the Jacobian
elliptic sine function. Thus the maximum of the conversion effi-
ciency is reached for a particular value (�L)opt. The determina-
tion of (�L)opt by numerical computation allows us to define the
optimum incident fundamental intensity I!opt for a given phase-
matching direction, characterized by K, and a given crystal length
L.

The crystal length must be optimized in order to work with an
incident intensity I!opt smaller than the damage threshold intensity
I!dam of the nonlinear crystal, given in Section 1.7.5 for the main
materials.

Formula (1.7.3.57) is established for type I. For type II, the
second harmonic intensity is also an sn2 function where the
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Fig. 1.7.3.14. Type-I and -II conversion efficiencies calculated as a function of L=zR for different typical walk-off angles 
: (a) and (c) correspond to a fixed
focusing condition (wo ¼ 30 mm); the curves (b) and (d) are plotted for a constant crystal length (L ¼ 5 mm); all the calculations are performed with the same
effective coefficient (deff ¼ 1 pm V�1), refractive indices (n2!3 n!1 n

!
2 ¼ 5:83) and fundamental power [P!ð0Þ ¼ 1 W]. B is the walk-off parameter defined in the

text (Fève & Zondy, 1996).
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intensities of the two fundamental beams I!1 ðX;Y; 0Þ and
I!2 ðX;Y; 0Þ, which are not necessarily equal, are taken into
account (Eimerl, 1987): the tanh2 function is valid only if perfect
phase matching is achieved and if I!1 ðX;Y; 0Þ ¼ I!2 ðX;Y; 0Þ,
these conditions being never satisfied in real cases.

The situations described above are summarized in Fig. 1.7.3.15.
We give the example of type-II SHG experiments performed

with a 10 Hz injection-seeded single-longitudinal-mode (N ¼ 1)
1064 nm Nd:YAG (Spectra-Physics DCR-2A-10) laser equipped
with super Gaussian mirrors; the pulse is 10 ns in duration and is
near a Gaussian single-transverse mode, the beam radius is 4 mm,
non-focused and polarized at �/4 to the principal axes of a 10 mm
long KTP crystal (L� ¼ 15 mrad cm, L�’ ¼ 100 mrad cm). The
fundamental energy increases from 78 mJ (62 MW cm�2) to
590 mJ (470 MW cm�2), which correponds to the damage of the
exit surface of the crystal; for each experiment, the crystal was
rotated in order to obtain the maximum conversion efficiency.
The peak power SHG conversion efficiency is estimated from the
measured energy conversion efficiency multiplied by the ratio
between the fundamental and harmonic pulse duration
(�!=�2! ¼ 21=2). It increases from 50% at 63 MW cm�2 to a
maximum value of 85% at 200 MW cm�2 and decreases for
higher intensities, reaching 50% at 470 MW cm�2 (Boulanger,
Fejer et al., 1994).

The integration of the intensity profiles (1.7.3.58) and (1.7.3.60)
is obvious in the case of incident fundamental beams with a flat
energy distribution (1.7.3.36). In this case, the fundamental and
harmonic beams inside the crystal have the same profile and
radius as the incident beam. Thus the powers are obtained from
formulae (1.7.3.58) and (1.7.3.60) by expressing the intensity and
electric field modulus as a function of the power, which is given
by (1.7.3.38) with m ¼ 1.

For a Gaussian incident fundamental beam, (1.7.3.37), the
fundamental and harmonic beams are not Gaussian (Eckardt &
Reintjes, 1984; Pliszka & Banerjee, 1993).

All the previous intensities are the peak values in the case of
pulsed beams. The relation between average and peak powers,
and then SHG efficiencies, is much more complicated than the
ratio �2!=�! of the undepleted case.

1.7.3.3.2.4. Resonant SHG

When the single-pass conversion efficiency SHG is too low,
with c.w. lasers for example, it is possible to put the nonlinear
crystal in a Fabry–Perot cavity external to the pump laser or
directly inside the pump laser cavity, as shown in Figs. 1.7.3.6(b)
and (c). The second solution, described later, is generally used
because the available internal pump intensity is much larger.

We first recall some basic and simplified results of laser cavity
theory without a nonlinear medium. We consider a laser in which
one mirror is 100% reflecting and the second has a transmission T
at the laser pulsation !. The power within the cavity, Pin(!), is
evaluated at the steady state by setting the round-trip saturated
gain of the laser equal to the sum of all the losses. The output
laser cavity, Pout(!), is given by (Siegman, 1986)

Poutð!Þ ¼ TPinð!Þ

with

Pinð!Þ ¼
2goL

0 � ð� þ TÞ

2SðT þ �Þ
: ð1:7:3:62Þ

L0 is the laser medium length, go ¼ �No is the small-signal gain
coefficient per unit length of laser medium, � is the stimulated-
emission cross section, No is the population inversion without
oscillation, S is a saturation parameter characteristic of the
nonlinearity of the laser transition, and � ¼ �L ¼ 2�LL

0 þ � is
the loss coefficient where �L is the laser material absorption
coefficient per unit length and � is another loss coefficient
including absorption in the mirrors and scattering in both the
laser medium and mirrors. For given go, S, �L, � and L0, the
output power reaches a maximum value for an optimal trans-
mission coefficient Topt defined by ½@Poutð!Þ=@T�Topt

¼ 0, which
gives

Topt ¼ ð2goL
0�Þ1=2 � �: ð1:7:3:63Þ

The maximum output power is then given by

Pmax
out ð!Þ ¼ ð1=2SÞ½ð2goL

0Þ
1=2

� �1=2�2: ð1:7:3:64Þ

In an intracavity SHG device, the two cavity mirrors are 100%
reflecting at ! but one mirror is perfectly transmitting at 2!. The
presence of the nonlinear medium inside the cavity then leads to
losses at ! equal to the round-trip-generated second harmonic
(SH) power: half of the SH produced flows in the forward
direction and half in the backward direction. Hence the highly
transmitting mirror at 2! is equivalent to a nonlinear transmis-
sion coefficient at ! which is equal to twice the single-pass SHG
conversion efficiency �SHG.

The fundamental power inside the cavity Pin(!) is given at the
steady state by setting, for a round trip, the saturated gain equal
to the sum of the linear and nonlinear losses. Pin(!) is then given
by (1.7.3.62), where T and � are (Geusic et al., 1968; Smith, 1970)

T ¼ 2�SHG ¼ ½Poutð2!Þ=Pinð!Þ� ð1:7:3:65Þ

and

� ¼ �L þ �NL: ð1:7:3:66Þ

�SHG is the single-pass conversion efficiency. �L and �NL are the
loss coefficients at ! of the laser medium and of the nonlinear
crystal, respectively. L is the nonlinear medium length. The two
faces of the nonlinear crystal are assumed to be antireflection-
coated at !.

In the undepleted pump approximation, the backward and
forward power generated outside the nonlinear crystal at 2! is

Poutð2!Þ ¼ 2KP2
inð!Þ ð1:7:3:67Þ

with

K ¼ BðL2=w2
oÞ sin c

2ð�kL=2Þ;

where

B ¼
32�

"oc

2N � 1

N

d2eff
�2!

T2!
3 T!1 T

!
2

n2!3 n!1 n
!
2

ðW�1Þ:
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Fig. 1.7.3.15. Schematic SHG conversion efficiency for different situations of
pump depletion and dephasing: (a) no depletion, no dephasing, � ¼ �2L2;
(b) no depletion with constant dephasing �, � ¼ �2L2 sin c2�; (c) depletion
without dephasing, � ¼ tanh2ð�LÞ; (d) depletion and dephasing, � ¼

�msn
2ð�L=vb; v

4
bÞ.
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The intracavity SHG conversion efficiency is usually defined as
the ratio of the SH output power to the maximum output power
that would be obtained from the laser without the nonlinear
crystal by optimal linear output coupling.

Maximizing (1.7.3.67) with respect to K according to (1.7.3.62),
(1.7.3.65) and (1.7.3.66) gives (Perkins & Fahlen, 1987)

Kopt ¼ ð�L þ �NLÞS ð1:7:3:68Þ

and

Pmax
out ð2!Þ ¼ ð1=2SÞ½ð2goL

0Þ
1=2

� ð�L þ �NLÞ
1=2
�
2: ð1:7:3:69Þ

(1.7.3.69) shows that for the case where �NL 
 �L (� ’ �L), the
maximum SH power is identically equal to the maximum
fundamental power, (1.7.3.64), available from the same laser for
the same value of loss, which, according to the previous definition
of the intracavity efficiency, corresponds to an SHG conversion
efficiency of 100%. Pmax

out ð2!Þ strongly decreases as the losses
(�L þ �NL) increase . Thus an efficient intracavity device requires
the reduction of all losses at ! and 2! to an absolute minimum.

(1.7.3.68) indicates that Kopt is independent of the operating
power level of the laser, in contrast to the optimum transmitting
mirror where Topt, given by (1.7.3.63), depends on the laser gain.
Kopt depends only on the total losses and saturation parameter.
For given losses, the knowledge of Kopt allows us to define the
optimal parameters of the nonlinear crystal, in particular the
figure of merit, d2eff=n

2!
3 n!1 n

!
2 and the ratio (L/wo)

2, in which the
walk-off effect and the damage threshold must also be taken into
account.

Some examples: a power of 1.1 Wat 0.532 mm was generated in
a TEMoo c.w. SHG intracavity device using a 3.4 mm
Ba2NaNb5O15 crystal within a 1.064 mm Nd:YAG laser cavity
(Geusic et al., 1968). A power of 9.0 W has been generated at
0.532 mm using a more complicated geometry based on an
Nd:YAG intracavity-lens folded-arm cavity configuration using
KTP (Perkins & Fahlen, 1987). High-average-power SHG has
also been demonstrated with output powers greater than 100 W
at 0.532 mm in a KTP crystal inside the cavity of a diode side-
pumped Nd:YAG laser (LeGarrec et al., 1996).

For type-II phase matching, a rotated quarter waveplate is
useful in order to reinstate the initial polarization of the funda-
mental waves after a round trip through the nonlinear crystal, the
retardation plate and the mirror (Perkins & Driscoll, 1987).

If the nonlinear crystal surface on the laser medium side has a
100% reflecting coating at 2! and if the other surface is 100%
transmitting at 2!, it is possible to extract the full SH power in
one direction (Smith, 1970). Furthermore, such geometry allows
us to avoid losses of the backward SH beam in the laser medium
and in other optical components behind.

External-cavity SHG also leads to good results. The resonated
wave may be the fundamental or the harmonic one. The corre-
sponding theoretical background is detailed in Ashkin et al.
(1966). For example, a bow-tie configuration allowed the
generation of 6.5 W of TEMoo c.w. 0.532 mm radiation in a 6 mm
LiB3O5 (LBO) crystal; the Nd:YAG laser was an 18 W c.w. laser
with an injection-locked single frequency (Yang et al., 1991).

1.7.3.3.3. Third harmonic generation (THG)

Fig. 1.7.3.16 shows the three possible ways of achieving THG: a
cascading interaction involving two �(2) processes, i.e.
!þ ! ¼ 2! and !þ 2! ¼ 3!, in two crystals or in the same
crystal, and direct THG, which involves �(3), i.e. !þ !þ ! ¼ 3!.

1.7.3.3.3.1. SHG (!þ ! ¼ 2!) and SFG (!þ 2! ¼ 3!) in
different crystals

We consider the case of the situation in which the SHG is
phase-matched with or without pump depletion and in which the
sum-frequency generation (SFG) process (!þ 2! ¼ 3!), phase-

matched or not, is without pump depletion at ! and 2!. All the
waves are assumed to have a flat distribution given by (1.7.3.36)
and the walk-off angles are nil, in order to simplify the calcula-
tions.

This configuration is the most frequently occurring case
because it is unusual to get simultaneous phase matching of the
two processes in a single crystal. The integration of equations
(1.7.3.22) over Z for the SFG in the undepleted pump approx-
imation with E!1 ðZSFG ¼ 0Þ ¼ E!1 ðLSHGÞ, E2!

2 ðZSFG ¼ 0Þ ¼

E2!
2 ðLSHGÞ and E3!

3 ðZSFG ¼ 0Þ ¼ 0, followed by the integration
over the cross section leads to

P3!ðLSFGÞ

¼ BSFG½aP
!ðLSHGÞ�P

2!ðLSHGÞ
L2

SFG

w2
o

sin c2
�kSFGLSFG

2
ðWÞ

with

BSFG ¼
72�

"oc

2N � 1

N

d2eff
�2!

T3!
3 T!1 T

2!
2

n3!3 n!1 n
2!
2

ðW�1Þ

a ¼ 1 for type-I SHG, a ¼ 1
2 for type-II SHG:

ð1:7:3:70Þ

P!(LSHG) and P2!(LSHG) are the fundamental and harmonic
powers, respectively, at the exit of the first crystal. LSHG and LSFG

are the lengths of the first and the second crystal, respectively.
�kSFG ¼ k3! � ðk! þ k2!Þ is the SFG phase mismatch. �! is the
fundamental wavelength. The units and other parameters are as
defined in (1.7.3.42).

For type-II SHG, the fundamental waves are polarized in two
orthogonal vibration planes, so only half of the fundamental
power can be used for type-I, -II or -III SFG (a ¼ 1=2), in
contrast to type-I SHG (a ¼ 1). In the latter case, and for type-I
SFG, it is necessary to set the fundamental and second harmonic
polarizations parallel.

The cascading conversion efficiency is calculated according to
(1.7.3.61) and (1.7.3.70); the case of type-I SHG gives, for
example,

�THGðLSHG;LSFGÞ ¼
P3!ðLSFGÞ

P!totð0Þ

¼ BSFGðT
!Þ

4
P!totð0Þ tanh

2ð�LSHGÞ

� sech2ð�LSHGÞ
L2

SFG

w2
o

sin c2
�kSFGLSFG

2

� �

;

ð1:7:3:71Þ

where � is as in (1.7.3.59).
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Fig. 1.7.3.16. Configurations for third harmonic generation: (a) cascading
process SHG (!þ ! ¼ 2!): SFG (!þ 2! ¼ 3!) in two crystals NLC1 and
NLC2 and (b) in a single nonlinear crystal NLC; (c) direct process THG
(!þ !þ ! ¼ 3!) in a single nonlinear crystal NLC.
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(n!, T!) are relative to the phase-matched SHG crystal and
(n!1 ; n

2!
2 ; n

3!
3 ;T

!
1 ;T

2!
2 ;T

3!
3 ) correspond to the SFG crystal.

In the undepleted pump approximation for SHG, (1.7.3.71)
becomes (Qiu & Penzkofer, 1988)

�THGðLSHG;LSFGÞ

¼ BT!
P!ð0Þ

w2
o

� �2

L2
SHGL

2
SFG sin c2

�kSFGLSFG

2

� �

ð1:7:3:72Þ

with

B ¼ BSHG � BSFG

¼
576�2

"2oc
2

2N � 1

N

� �2d2effSHG
d2effSFG
�4!

T3
SHG

n3SHG

� �
T3
SFG

n3SFG

� �

in W�2, where

T3
SHG

n3SHG

¼
ðT!Þ

3

ðn!Þ
3

and
T3
SFG

n3SFG
¼

T3!
3 T!1 T

2!
2

n3!3 n!1 n
2!
2

:

The units are the same as in (1.7.3.42).
A more general case of SFG, where one of the two pump

beams is depleted, is given in Section 1.7.3.3.4.

1.7.3.3.3.2. SHG (!þ ! ¼ 2!) and SFG (!þ 2! ¼ 3!) in the
same crystal

When the SFG conversion efficiency is sufficiently low in
comparison with that of the SHG, it is possible to integrate the
equations relative to SHG and those relative to SFG separately
(Boulanger, Fejer et al., 1994). In order to compare this situation
with the example taken for the previous case, we consider a type-
I configuration of polarization for SHG. By assuming a perfect
phase matching for SHG, the amplitude of the third harmonic
field inside the crystal is (Boulanger, 1994)

E3!ðX;Y;ZÞ ¼ jK3!ð"o�effSFGÞ

�
RL

0

E!totðX;Y;ZÞE
2!ðX;Y;ZÞ expðj�kSFGZÞ dZ

ð1:7:3:73Þ

with

E2!ðX;Y;ZÞ ¼ ðT!Þ
1=2
jE!totð0Þj tanhð�ZÞ

and E!totðX;Y;ZÞ ¼ ðT!Þ
1=2
jE!totð0Þj sechð�ZÞ:

ð1:7:3:74Þ

� is as in (1.7.3.59).
(1.7.3.73) can be analytically integrated for undepleted pump

SHG; sechðmÞ ! 1, tanhðmÞ ! m, and so we have

�THGðLÞ ¼ P3!ðLÞ=P!totð0Þ ð1:7:3:75Þ

with

P3!ðLÞ

¼
576�2

"2oc
2

2N � 1

N

� �2

T3!
d2effSHG

d2effSFG

n3!ðn!Þ
3
ðn2!Þ

2

½T!P!totð0Þ�
3

w4
o�

4
!

JðLÞ;

where the integral J(L) is

JðLÞ ¼
RL

0

Z expði�kSFGZÞ dZ



















2

: ð1:7:3:76Þ

For a nonzero SFG phase mismatch, �kSFG 6¼ 0,

JðLÞ ’ L2=ð�kSFGÞ
2: ð1:7:3:77Þ

For phase-matched SFG, �kSFG ¼ 0,

JðLÞ ¼ L4=4: ð1:7:3:78Þ

Therefore (1.7.3.75) according to (1.7.3.78) is equal to
(1.7.3.72) with LSHG ¼ LSFG ¼ L=2, �kSFG ¼ 0 and 100%
transmission coefficients at ! and 2! between the two crystals.

1.7.3.3.3.3. Direct THG (!þ !þ ! ¼ 3!)

As for the cascading process, we consider a flat plane wave
which propagates in a direction without walk-off. The integration
of equations (1.7.3.24) over the crystal length L, with
E3!

4 ðX;Y; 0Þ ¼ 0 and in the undepleted pump approximation,
leads to

E3!
4 ðX;Y;LÞ ¼ jK3!

4 ½"o�
ð3Þ
eff�E

!
1 ðX;Y; 0ÞE

!
2 ðX;Y; 0ÞE

!
3 ðX;Y; 0Þ

� L sin c½ð�k � LÞ=2� expð�j�kL=2Þ:

ð1:7:3:79Þ

According to (1.7.3.36) and (1.7.3.38), the integration of
(1.7.3.79) over the cross section, which is the same for the four
beams, leads to

�THGðLÞ ¼
P3!ðLÞ

P!ð0Þ
¼ BTHG½P

!ð0Þ�2
L2

w4
o

sin c2½ð�k � LÞ=2�

with

BTHG ¼
576

"2oc
2

d2eff
�2!

T3!
4 ðT!1 Þ

2
T!2

n3!4 ðn!1 Þ
2
n!2

ðm2 W�2Þ; ð1:7:3:80Þ

where deff ¼ ð1=4Þ�ð3Þeff is in m2 V�2 and �! is in m. The statistical
factor is assumed to be equal to 1, which corresponds to a
longitudinal single-mode laser.

The different types of phase matching and the associated
relations and configurations of polarization are given in Table
1.7.3.2 by considering the SFG case with !1 ¼ !2 ¼ !3 ¼ !4=3.

1.7.3.3.4. Sum-frequency generation (SFG)

SHG (!þ ! ¼ 2!) and SFG (!þ 2! ¼ 3!) are particular
cases of three-wave SFG. We consider here the general situation
where the two incident beams at !1 and !2, with !1<!2, interact
with the generated beam at !3, with !3 ¼ !1 þ !2, as shown in
Fig. 1.7.3.17. The phase-matching configurations are given in
Table 1.7.3.1.

From the general point of view, SFG is a frequency up-
conversion parametric process which is used for the conversion of
laser beams at low circular frequency: for example, conversion of
infrared to visible radiation.

The resolution of system (1.7.3.22) leads to Jacobian elliptic
functions if the waves at !1 and !2 are both depleted. The
calculation is simplified in two particular situations which are
often encountered: on the one hand undepletion for the waves at
!1 and !2, and on the other hand depletion of only one wave at
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Fig. 1.7.3.17. Frequency up-conversion process !1 þ !2 ¼ !3. The beam at !1

is mixed with the beam at !2 in the nonlinear crystal NLC in order to
generate a beam at !3. P

!1;!2;!3 are the different powers.
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!1 or !2. For the following, we consider plane waves which
propagate in a direction without walk-off so we consider a single
wave frame; the energy distribution is assumed to be flat, so the
three beams have the same radius wo.

1.7.3.3.4.1. SFG (!1 þ !2 ¼ !3) with undepletion at !1 and !2

The resolution of system (1.7.3.22) with E1ðX;Y; 0Þ 6¼ 0,
E2ðX;Y; 0Þ 6¼ 0, @E1ðX;Y;ZÞ=@Z ¼ @E2ðX;Y;ZÞ=@Z ¼ 0 and
E3ðX;Y; 0Þ ¼ 0, followed by integration over ðX;YÞ, leads to

P!1 ðLÞ ¼ ðT!1 Þ
2
P!1 ð0Þ ð1:7:3:81Þ

P!2 ðLÞ ¼ ðT!2 Þ
2
P!2 ð0Þ ð1:7:3:82Þ

P!3 ðLÞ ¼ BP!1 ð0ÞP!2 ð0Þ
L2

w2
o

sin c2
�k � L

2
ð1:7:3:83Þ

with

BSFG ¼
72�

"oc

2N � 1

N

d2eff
�2!

T!3T!1T!2

n!3n!1n!2
ðW�1Þ

in the same units as equation (1.7.3.70).

1.7.3.3.4.2. SFG (!s þ !p ¼ !i) with undepletion at !p

ð!s; !p; !iÞ ¼ ð!1; !2; !3Þ or ð!2; !1; !3Þ.
The undepleted wave at !p, the pump, is mixed in the

nonlinear crystal with the depleted wave at !s, the signal, in order
to generate the idler wave at !i ¼ !s þ !p. The integrations of
the coupled amplitude equations over (X;Y;Z) with
EsðX;Y; 0Þ 6¼ 0, EpðX;Y; 0Þ 6¼ 0, @EpðX;Y;ZÞ=@Z ¼ 0 and
EiðX;Y; 0Þ ¼ 0 give

PpðLÞ ¼ T2
pPpð0Þ ð1:7:3:84Þ

PiðLÞ ¼
!i

!s

Psð0Þ�
2L2 sin

2f�2L2 þ ½ð�k � LÞ=2�2g1=2

�2L2 þ ½ð�k � LÞ=2�2

ð1:7:3:85Þ

PsðLÞ ¼ Psð0Þ 1�
!s

!i

PiðLÞ

Psð0Þ

� �

; ð1:7:3:86Þ

with �k ¼ ki � ðks þ kpÞ and �2 ¼ ½BsPpð0Þ�=w
2
o, where

Bs ¼
8�

"oc

2N � 1

N

d2eff
�s�i

TsTpTi

nsnpni
:

Thus, even if the up-conversion process is phase-matched
(�k ¼ 0), the power transfers are periodic: the photon transfer
efficiency is then 100% for �L ¼ ð2mþ 1Þð�=2Þ, where m is an
integer, which allows a maximum power gain !i=!s for the idler.
A nonlinear crystal with length L ¼ ð�=2�Þ is sufficient for an
optimized device.

For a small conversion efficiency, i.e. �L weak, (1.7.3.85) and
(1.7.3.86) become

PiðLÞ ’ Psð0Þ
!i

!s

�2L2 sin c2
�k � L

2
ð1:7:3:87Þ

and

PsðLÞ ’ Psð0Þ: ð1:7:3:88Þ

The expression for Pi(L) with �k ¼ 0 is then equivalent to
(1.7.3.83) with !p ¼ !1 or !2, !i ¼ !3 and !s ¼ !2 or !1.

For example, the frequency up-conversion interaction can be
of great interest for the detection of a signal, !s, comprising IR
radiation with a strong divergence and a wide spectral bandwidth.
In this case, the achievement of a good conversion efficiency,
Pi(L)/Ps(0), requires both wide spectral and angular acceptance
bandwidths with respect to the signal. The double non-criticality
in frequency and angle (DNPM) can then be used with one-beam

non-critical non-collinear phase matching (OBNC) associated
with vectorial group phase matching (VGPM) (Dolinchuk et al.,
1994): this corresponds to the equality of the absolute magnitudes
and directions of the signal and idler group velocity vectors i.e.
d!i=dki ¼ d!s=dks.

1.7.3.3.5. Difference-frequency generation (DFG)

DFG is defined by !3 � !1 ¼ !2 with E2ðX;Y; 0Þ ¼ 0 or
!3 � !2 ¼ !1 with E1ðX;Y; 0Þ ¼ 0. The DFG phase-matching
configurations are given in Table 1.7.3.1. As for SFG, the solu-
tions of system (1.7.3.22) are Jacobian elliptic functions when the
incident waves are both depleted. We consider here the simplified
situations of undepletion of the two incident waves and depletion
of only one incident wave. In the latter, the solutions differ
according to whether the circular frequency of the undepleted
wave is the highest one, i.e. !3, or not. We consider the case of
plane waves that propagate in a direction without walk-off and
we assume a flat energy distribution for the three beams.

1.7.3.3.5.1. DFG (!p � !s ¼ !i) with undepletion at !p and !s

ð!s; !i; !pÞ ¼ ð!1; !2; !3Þ or ð!2; !1; !3Þ.
The resolution of system (1.7.3.22) with EsðX;Y; 0Þ 6¼ 0,

EpðX;Y; 0Þ 6¼ 0, @EpðX;Y;ZÞ=@Z ¼ @EsðX;Y;ZÞ=@Z ¼ 0 and
EiðX;Y; 0Þ ¼ 0, followed by integration over (X;Y), leads to the
same solutions as for SFG with undepletion at !1 and !2, i.e.
formulae (1.7.3.81), (1.7.3.82) and (1.7.3.83), by replacing !1 by
!s, !2 by !p and !3 by !i. A schematic device is given in Fig.
1.7.3.17 by replacing (!1, !2, !3) by (!1, !3, !2) or (!2, !3, !1).

1.7.3.3.5.2. DFG (!s � !p ¼ !i) with undepletion at !p

ð!s; !i; !pÞ ¼ ð!3; !1; !2Þ or ð!3; !2; !1Þ.
The resolution of system (1.7.3.22) with EsðX;Y; 0Þ 6¼ 0,

EpðX;Y; 0Þ 6¼ 0, @EpðX;Y;ZÞ=@Z ¼ 0 and EiðX;Y; 0Þ ¼ 0,
followed by the integration over (X;Y), leads to the same
solutions as for SFG with undepletion at !1 or !2: formulae
(1.7.3.84), (1.7.3.85) and (1.7.3.86).

1.7.3.3.5.3. DFG (!p � !s ¼ !i) with undepletion at !p –
optical parametric amplification (OPA), optical parametric
oscillation (OPO)

ð!s; !i; !pÞ ¼ ð!1; !2; !3Þ or ð!2; !1; !3Þ.
The initial conditions are the same as in Section 1.7.3.3.5.2,

except that the undepleted wave has the highest circular
frequency. In this case, the integrations of the coupled amplitude
equations over (X;Y;Z) lead to

PpðLÞ ¼ T2
pPpð0Þ; ð1:7:3:89Þ

PiðLÞ ¼ Psð0Þ
!i

!s

�2L2 sinh
2f�2L2 � ½ð�k � LÞ=2�2g1=2

�2L2 � ½ð�k � LÞ=2�2
ð1:7:3:90Þ

and

PsðLÞ ¼ Psð0Þ 1þ
!s

!i

PiðLÞ

Psð0Þ

� �

¼ Psð0Þ 1þ �2L2 sinh
2f�2L2 � ½ð�k � LÞ=2�2g1=2

�2L2 � ½ð�k � LÞ=2�2

� �

ð1:7:3:91Þ

with �k ¼ kp � ðki þ ksÞ and �2 ¼ ½BiPpð0Þ�=w
2
o, where wo is the

beam radius of the three beams and

Bi ¼
8�

"oc

2N � 1

N

d2eff
�s�i

TsTpTi

nsnpni
:
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The units are the same as in equation (1.7.3.42).
Equations (1.7.3.90) and (1.7.3.91) show that both idler and

signal powers grow exponentially. So, firstly, the generation of the
idler is not detrimental to the signal power, in contrast to DFG
(!s � !p ¼ !i) and SFG (!s þ !p ¼ !i), and, secondly, the signal
power is amplified. Thus DFG (!p � !s ¼ !i) combines two
interesting functions: generation at !i and amplification at !s.
The last function is called optical parametric amplification
(OPA).

The gain of OPA can be defined as (Harris, 1969)

GðLÞ ¼
PsðLÞ

Psð0Þ
� 1

















: ð1:7:3:92Þ

For example, Baumgartner & Byer (1979) obtained a gain of
about 10 for the amplification of a beam at 0.355 mm by a pump at
1.064 mm in a 5 cm long KH2PO4 crystal, with a pump intensity of
28 MW cm�2.

According to (1.7.3.91), for �k2L2=4 � �2L2, sinh2ðimÞ !

� sin2ðmÞ and so the gain is given by

Gsmall gain ’ �2L2 sin c2
�k � L

2

� �

: ð1:7:3:93Þ

Formula (1.7.3.93) shows that frequencies can be generated
around !s. The full gain linewidth of the signal,�!s, is defined as
the linewidth leading to a maximum phase mismatch�k ¼ 2�=L.
If we assume that the pump wave linewidth is negligible, i.e.
�!p ¼ 0, it follows, by expanding�k in a Taylor series around !i

and !s, and by only considering the first order, that

�!small gain
s









 ¼ �!small gain

i









 ’ ð2�=LbÞ ð1:7:3:94Þ

with b ¼ ½1=vgð!iÞ� � ½1=vgð!sÞ�, where vgð!Þ ¼ @!=@k is the
group velocity.

This linewidth can be termed intrinsic because it exists even if
the pump beam is parallel and has a narrow spectral spread.

For type I, the spectral linewidth of the signal and idler waves
is largest at the degeneracy: b ¼ 0 because the idler and signal
waves have the same polarization and so the same group velocity
at degeneracy, i.e. !i ¼ !s ¼ !p=2. In this case, it is necessary to
consider the dispersion of the group velocity @2!=@2k for the
calculation of �!s and �!i. Note that an increase in the crystal
length allows a reduction in the linewidth.

For type II, b is never nil, even at degeneracy.
A parametric amplifier placed inside a resonant cavity

constitutes an optical parametric oscillator (OPO) (Harris, 1969;
Byer, 1973; Brosnan & Byer, 1979; Yang et al., 1993). In this case,
it is not necessary to have an incident signal wave because both
signal and idler photons can be generated by spontaneous
parametric emission, also called parametric noise or parametric
scattering (Louisell et al., 1961): when a laser beam at !p

propagates in a �(2) medium, it is possible for pump photons to
spontaneously break down into pairs of lower-energy photons of
circular frequencies !s and !i with the total photon energy
conserved for each pair, i.e !s þ !i ¼ !p. The pairs of generated
waves for which the phase-matching condition is satisfied are the
only ones to be efficiently coupled by the nonlinear medium. The
OPO can be singly resonant (SROPO) at !s or !i (Yang et al.,
1993; Chung & Siegman, 1993), doubly resonant (DROPO) at
both !s and !i (Yang et al., 1993; Breitenbach et al., 1995) or triply
resonant (TROPO) (Debuisschert et al., 1993; Scheidt et al.,
1995). Two main techniques for the pump injection exist: the
pump can propagate through the cavity mirrors, which allows the
smallest cavity length; for continuous waves or pulsed waves with
a pulsed duration greater than 1 ns, it is possible to increase the
cavity length in order to put two 45� mirrors in the cavity for the
pump, as shown in Fig. 1.7.3.18. This second technique allows us
to use simpler mirror coatings because they are not illuminated
by the strong pump beam.

The only requirement for making an oscillator is that the
parametric gain exceeds the losses of the resonator. The
minimum intensity above which the OPO has to be pumped for
an oscillation is termed the threshold oscillation intensity Ith. The
oscillation threshold decreases when the number of resonant
frequencies increases: I

!p
th ðSROPOÞ > I

!p
th ðDROPOÞ >

I
!p
th ðTROPOÞ; on the other hand the instability increases because
the condition of simultaneous resonance is critical.

The oscillation threshold of a SROPO or DROPO can be
decreased by reflecting the pump from the output coupling
mirror M2 in configuration (a) of Fig. 1.7.3.18 (Marshall & Kaz,
1993). It is necessary to pump an OPO by a beam with a smooth
optical profile because hot spots could damage all the optical
components in the OPO, including mirrors and nonlinear crystals.
A very high beam quality is required with regard to other para-
meters such as the spectral bandwidth, the pointing stability, the
divergence and the pulse duration.

The intensity threshold is calculated by assuming that the
pump beam is undepleted. For a phase-matched SROPO, reso-
nant at !s or !i, and for nanosecond pulsed beams with intensities
that are assumed to be constant over one single pass, I

!p
th is given

by

I
!p
th ¼

1:8

KL2ð1þ �Þ2
25L

c�
þ 2�Lþ Ln

1

ð1� TÞ
1=2

� �

þ Lnð2Þ

 �2

:

ð1:7:3:95Þ

K ¼ ð!s!i�
2
effÞ=½2nð!sÞnð!iÞnð!pÞ"oc

3�; L is the crystal length; � is
the ratio of the backward to the forward pump intensity; � is the
1/e2 half width duration of the pump beam pulse; and 2� and T
are the linear absorption and transmission coefficients at the
circular frequency of the resonant wave !s or !i. In the nano-
second regime, typical values of I

!p
th are in the range 10–

100 MW cm�2.
(1.7.3.95) shows that a small threshold is achieved for long

crystal lengths, high effective coefficient and for weak linear
losses at the resonant frequency. The pump intensity threshold
must be less than the optical damage threshold of the nonlinear
crystal, including surface and bulk, and of the dielectric coating of
any optical component of the OPO. For example, a SROPO using
an 8 mm long KNbO3 crystal (deff ’ 10 pm V�1) as a nonlinear
crystal was performed with a pump threshold intensity of
65 MW cm�2 (Unschel et al., 1995): the 3 mm-diameter pump
beam was a 10 Hz injection-seeded single-longitudinal-mode
Nd:YAG laser at 1.064 mm with a 9 ns pulse of 100 mJ; the
SROPO was pumped as in Fig. 1.7.3.18(a) with a cavity length of
12 mm, a mirror M1 reflecting 100% at the signal, from 1.4 to
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Fig. 1.7.3.18. Schematic OPO configurations. P!p is the pump power. (a) can
be a SROPO, DROPO or TROPO and (b) can be a SROPO or DROPO,
according to the reflectivity of the cavity mirrors (M1, M2).
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2 mm, and a coupling mirror M2 reflecting 90% at the signal and
transmitting 100% at the idler, from 2 to 4 mm.

For increasing pump powers above the oscillation threshold,
the idler and signal powers grow with a possible depletion of the
pump.

The total signal or idler conversion efficiency from the pump
depends on the device design and pump source. The greatest
values are obtained with pulsed beams. As an example, 70% peak
power conversion efficiency and 65% energy conversion of the
pump to both signal (�s ¼ 1:61 mm) and idler (�i ¼ 3:14 mm)
outputs were obtained in a SROPO using a 20 mm long KTP
crystal (deff ¼ 2:7 pm V�1) pumped by an Nd:YAG laser
(�p ¼ 1:064 mm) for eye-safe source applications (Marshall &
Kaz, 1993): the configuration is the same as in Fig. 1.7.3.18(a)
where M1 has high reflection at 1.61 mm and high transmission at
1.064 mm, and M2 has high reflection at 1.064 mm and a 10%
transmission coefficient at 1.61 mm; the Q-switched pump laser
produces a 15 ns pulse duration (full width at half maximum),
giving a focal intensity around 8 MW cm�2 per mJ of pulse
energy; the energy conversion efficiency from the pump relative
to the signal alone was estimated to be 44%.

OPOs can operate in the continuous-wave (cw) or pulsed
regimes. Because the threshold intensity is generally high for the
usual nonlinear materials, the cw regime requires the use of
DROPO or TROPO configurations. However, cw-SROPO can
run when the OPO is placed within the pump-laser cavity
(Ebrahimzadeh et al., 1999). The SROPO in the classical external
pumping configuration, which leads to the most practical devices,
runs very well with a pulsed pump beam, i.e. Q-switched laser
running in the nanosecond regime and mode-locked laser emit-
ting picosecond or femtosecond pulses. For nanosecond opera-
tion, the optical parametric oscillation is ensured by the same
pulse, because several cavity round trips of the pump are allowed
during the pulse duration. It is not possible in the ultrafast
regimes (picosecond or femtosecond). In these cases, it is
necessary to use synchronous pumping: the round-trip transit
time in the OPO cavity is taken to be equal to the repetition
period of the pump pulse train, so that the resonating wave pulse
is amplified by successive pump pulses [see for example Ruffing et
al. (1998) and Reid et al. (1998)].

OPOs are used for the generation of a fixed wavelength, idler
or signal, but have potential for continuous wavelength tuning
over a broad range, from the near UV to the mid-IR. The tuning
is based on the dispersion of the refractive indices with the
wavelength, the direction of propagation, the temperature or any
other variable of dispersion. More particularly, the crystal must
be phase-matched for DFG over the widest spectral range for a
reasonable variation of the dispersion parameter to be used.
Several methods are used: variation of the pump wavelength at a
fixed direction, fixed temperature etc.; rotation of the crystal at a
fixed pump wavelength, fixed temperature etc.; or variation of the
crystal temperature at a fixed pump wavelength, fixed direction
etc.

We consider here two of the most frequently encountered
methods at present: for birefringence phase matching, angle
tuning and pump-wavelength tuning; and the case of quasi phase
matching.

(i) OPO with angle tuning.
The function of a tunable OPO is to generate the signal and

idler waves over a broad range,�!s and�!i, respectively, from a
fixed pump wave at !p. The spectral shifts �!s ¼ !þ

s � !�
s and

�!i ¼ !þ
i � !�

i are obtained by rotating the nonlinear crystal by
an angle �� ¼ �þ � �� in order to achieve phase matching over
the spectral range considered: !pnð!p; �Þ ¼ !inð!i; �Þ þ

!snð!s; �Þ with !p ¼ !i þ !s from ð!þ
s ; !

�
i ; �

�Þ to ð!�
s ; !

þ
i ; �

	Þ,
where (�) and (+), respectively, denote the minimum and
maximum values of the data considered. Note that �!s ¼ ��!i

and so ð��i=�
þ
i �

�
i Þ ¼ �ð��s=�

þ
s �

�
s Þ if the spectral bandwidth of

the pump, �!p, is zero.

In the case of parallelepipedal nonlinear crystals, the tuning
rate �!i;s=�� has to be high because �� cannot exceed about
30� of arc, i.e. 15� on either side of the direction normal to the
plane surface of the nonlinear crystal: in fact, the refraction can
lead to an attenuation of the efficiency of the parametric inter-
action for larger angles. For this reason, a broad-band OPO
necessarily requires angular critical phase matching (CPM)
directions over a broad spectral range. However, the angular
criticality is detrimental to the spectral stability of the signal and
idler waves with regard to the pointing fluctuations of the pump
beam: a pointing instability of the order of 100 mrad is considered
to be acceptable for OPOs based on KTP or BBO crystals. Fig.
1.7.3.19 shows the phase-matching tuning curves �i(�) and �s(�)
for (a) BBO pumped at �p ¼ 355 nm and (b) KTP pumped at
�p ¼ 1064 nm, where � ¼  or ’ is an internal angle: the calcu-
lations were carried out using the refractive indices given in Kato
(1986) for BBO and in Kato (1991) for KTP.

The divergence of the pump beam may increase the spectral
bandwidths �!s and �!i: the higher the derivatives @�i;s=@� are,
the higher the spectral bandwidths for a given pump divergence
are. Furthermore, @�i;s=@� vary as a function of the phase-
matching angle �. The derivative is a maximum at the degeneracy
�i ¼ �s ¼ 2�p, when the idler and signal waves are identically
polarized: this is the case for BBO as shown in Fig. 1.7.3.19(a). We
give another example of a type-I BBO OPO pumped at 308 nm
by a narrow-band injection-seeded ultraviolet XeCl excimer laser
(Ebrahimzadeh et al., 1990): the spectral bandwidth, expressed
in cm�1

ð@�i;s=�
2
i;s ¼ @!i;s=2�cÞ, varies from 78 cm�1 to

500 cm�1 for a crystal length of 1.2 cm, corresponding to a
signal bandwidth ��s ’ 1:8 nm at 480 nm and ��s ’ 18 nm at
600 nm, respectively. The degeneracy is not a particular situation
with respect to the derivative of the phase-matching curve when
the idler and signal waves are orthogonally polarized as shown in
Fig. 1.7.3.19(b) with the example of KTP.

The way currently used for substantial reduction of the spectral
bandwidth is to introduce bandwidth-limiting elements in the
OPO cavity, such as a grazing grating associated with a tuning
mirror reflecting either the signal or the idler according to the
chosen resonant wavelength. The rotations of the nonlinear
crystal and of the restricting element have to be synchronized in
order to be active over all the wavelength range generated.
Narrow bandwidths of about 0.1 cm�1 can be obtained in this
way, but the gain of such a device is low. High energy and narrow
spectral bandwidth can be obtained at the same time by the
association of two OPOs: an OPO pumped at !p and without a
restricting element inside the cavity is seeded by the idler or
signal beam emitted by a narrow spectral bandwidth OPO also
pumped at !p.

The disadvantages of parallelepipedal crystals can be circum-
vented by using a nonlinear crystal cut as a cylindrical plate, with
the cylinder axis orthogonal to the OPO cavity axis and to the
plane of the useful phase-matching directions (Boulanger et al.,
1999; Pacaud et al., 2000; Fève, Pacaud et al., 2002). Such a
geometry allows us to consider any phase-matching range by
rotation of the cylinder around its revolution axis. It is then
possible to use interactions with a weak angular tuning rate to
reduce the spectral bandwidth and increase the stability of the
generated beams. Moreover, the propagation of the beams is at
normal incidence for any direction, so collinear phase matching
can be maintained, leading to better spatial and spectral trans-
verse profiles. Because of the cylindrical geometry of the
nonlinear crystal, it is necessary to focus the pump beam and to
collect the signal and idler beams with cylindrical lenses. The
cavity mirrors, plane or cylindrical, are then placed between the
nonlinear crystal and the lenses. The diameter of the crystal being
about a few tenths of a millimetre, the associated focal distance is
short, i.e. a few millimetres, which leads to a strong spatial
filtering effect, preventing the oscillation of beams with a quality
factor M2 bigger than about 1.5.
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(ii) OPO with a tuning pump.
The nonlinear crystal is fixed and the pump frequency can vary

over �!p, leading to a variation of the signal and idler
frequencies such that �!i þ�!s ¼ �!p.

In Fig. 1.7.3.20, the example of N-(4-nitrophenyl)-l-propinol
(NPP) pumped between 610 and 621 nm is shown (Ledoux et al.,
1990; Khodja et al., 1995a). The phase-matching curve �i,s(�p) is
calculated from the Sellmeier equations of Ledoux et al. (1990)
for the case of identical polarizations for the signal and idler
waves. The tuning rate is a maximum at the degeneracy, as for
angular tuning with identical polarizations.

For any configuration of polarization, the most favourable
direction of propagation of an OPO with a tuning pump is a
principal axis of the index surface, because the phase matching is
angular non-critical and so wavelength critical. In this optimal
situation, the OPO has a low sensitivity to the divergence and
pointing stability of the pump beam; furthermore, the walk-off
angle is nil, which provides a higher conversion efficiency.

(iii) Quasi-phase-matched OPO with a tunable periodicity.
In a QPM device, the interacting frequencies are fixed by the

frequency dispersion of the birefringence of the nonlinear
material and by the periodicity of the grating. A first possibility is
to fabricate a series of gratings with different periodicities in the
same nonlinear crystal; the translation of this crystal with respect
to the fixed pump beam allows us to address the different gratings
and thus to generate different couples (!s, !i). Because the
tuning is obtained in discrete steps, it is necessary to combine
temperature or angle tuning with the translation of the sample in
order to interpolate smoothly between the steps. For example, a
device based on a periodically poled LiNbO3 (ppLN) crystal with
a thickness of 0.5 mm and a length along the periodicity vector of
1 cm has been developed (Myers et al., 1996). A total of 25
gratings with periods between 26 and 32 mm were realized in
0.25 mm increments. The OPO was pumped at 1.064 mm and
generated a signal between 1.35 and 1.98 mm, with the corre-
sponding idler between 4.83 and 2.30 mm.

Fan-shaped gratings have been demonstrated as an alternative
approach for continuous tuning (Powers et al., 1998). However,
such a structure has the disadvantage of introducing large spec-
tral heterogeneity to the generated beams, because the grating
period is not constant over the pump beam diameter.

Finally, the most satisfactory alternative for continuous tuning
is the use of a cylindrical crystal with one single grating (Fève et
al., 2001). The variations of the signal and idler wavelengths are
then obtained by rotation of the cylinder around its revolution
axis, which is orthogonal to the OPO cavity axis and to the plane
containing the frame vector �. For a direction of propagation
making an angle � with �, the effective period of the grating as
seen by the collinear interacting wavevectors is �� ¼ ð�= cos �Þ,
leading to a continuous spectral tuning. For example, a rotation
over an � range of 26� of a ppKTP cylinder pumped at 1064 nm
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Fig. 1.7.3.19. Calculated angular tuning curves.  and ’ are the spherical
coordinates of the phase-matching directions. d is the phase-matching angle
of the degeneracy process (�di ¼ �ds ¼ 2�p). �

o
i and �

o
s are the idler and signal

wavelengths, respectively, generated at o. Ordinary and extraordinary refer
to the polarization.

Fig. 1.7.3.20. Calculated pump wavelength tuning curve. �dp is the pump
wavelength leading to degeneracy for the direction considered ( ¼ 12:5,
’ ¼ 0�). Ordinary and extraordinary refer to the polarization.
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leads to a signal tuning range of 520 nm, between 1515 and
2040 nm, while the corresponding idler is tuned over 1340 nm,
between 2220 and 3560 nm.

For an overview of OPO and OPA, the reader may refer to the
following special issues of the Journal of the Optical Society of
America B: (1993), 10(9), 1656–1794; (1993), 10(11), 2148–2239
and (1995), 12(11), 2084–2310; and to the Handbook of Optics
devoted to OPO (Ebrahimzadeh & Dunn, 2000).

1.7.4. Determination of basic nonlinear parameters

We review here the different methods that are used for the study
of nonlinear crystals.

1.7.4.1. Phase-matching directions and associated acceptance
bandwidths

The very early stage of crystal growth of a new material usually
provides a powder with particle sizes less than 100 mm. It is then
impossible to measure the phase-matching loci. Nevertheless,
careful SHG experiments performed on high-quality crystalline
material may indicate whether the SHG is phase-matched or not
by considering the dependence of the SHG intensity on the
following parameters: the angle between the detector and the
direction of the incident fundamental beam, the powder layer
thickness, the average particle size and the laser beam diameter
(Kurtz & Perry, 1968). However, powder measurements are
essentially used for the detection in a simple and quick way of
noncentrosymmetry of crystals, this criterion being necessary to
have a nonzero �(2) tensor (Kurtz & Dougherty, 1978). They also
allow, for example, the measurement of the temperature
of a possible centrosymmetric/noncentrosymmetric transition
(Marnier et al., 1989).

For crystal sizes greater than few hundred mm, it is possible to
perform direct measurements of phase-matching directions. The
methods developed at present are based on the use of a single
crystal ground into an ellipsoidal (Velsko, 1989) or spherical
shape (Marnier & Boulanger, 1989; Boulanger, 1989; Boulanger
et al., 1998); a sphere is difficult to obtain for sample diameters
less than 2 mm, but it is the best geometry for large numbers and
accurate measurements because of normal refraction for every
chosen direction of propagation. The sample is oriented using X-
rays, placed at the centre of an Euler circle and illuminated with
fixed and appropriately focused laser beams. The experiments are
usually performed with SHG of different fundamental wave-
lengths. The sample is rotated in order to propagate the funda-
mental beam in different directions: a phase-matching direction is
then detected when the SHG conversion efficiency is a maximum.
It is then possible to describe the whole phase-matching cone
with an accuracy of 1�. A spherical crystal also allows easy
measurement of the walk-off angle of each of the waves
(Boulanger et al., 1998). It is also possible to perform a precise
observation and study of the internal conical refraction in biaxial
crystals, which leads to the determination of the optic axis angle
V(!), given by relation (1.7.3.14), for different frequencies (Fève
et al., 1994).

Phase-matching relations are often poorly calculated when
using refractive indices determined by the prism method or by
measurement of the critical angle of total reflection. Indeed, all
the refractive indices concerned have to be measured with an
accuracy of 10�4 in order to calculate the phase-matching angles
with a precision of about 1�. Such accuracies can be reached in
the visible spectrum, but it is more difficult for infrared wave-
lengths. Furthermore, it is difficult to cut a prism of few mm size
with plane faces.

If the refractive indices are known with the required accuracy
at several wavelengths well distributed across the transparency
region, it is possible to fit the data with a Sellmeier equation of
the following type, for example:

n2i ð�Þ ¼ Ai þ
Bi�

2

�2 � Ci

þDi�
2: ð1:7:4:1Þ

ni is the principal refractive index, where i ¼ o (ordinary) and e
(extraordinary) for uniaxial crystals and i ¼ x; y and z for biaxial
crystals.

It is then easy to calculate the phase-matching angles (PM,
’PM) from (1.7.4.1) using equations (1.7.3.27) or (1.7.3.29) where
the angular variation of the refractive indices is given by equation
(1.7.3.6).

The measurement of the variation of intensity of the generated
beam as a function of the angle of incidence can be performed on
a sphere or slab, leading, respectively, to internal and external
angular acceptances. The thermal acceptance is usually measured
on a slab which is heated or cooled during the frequency
conversion process. The spectral acceptance is not often
measured, but essentially calculated from Sellmeier equations
(1.7.4.1) and the expansion of �k in the Taylor series (1.7.3.43)
with � ¼ �.

1.7.4.2. Nonlinear coefficients

The knowledge of the absolute magnitude and of the relative
sign of the independent elements of the tensors �(2) and �(3) is of
prime importance not only for the qualification of a new crystal,
but also for the fundamental engineering of nonlinear optical
materials in connection with microscopic aspects.

However, disparities in the published values of the nonlinear
coefficients of the same crystal exist, even if it is a well known
material that has been used for a long time in efficient devices
(Eckardt & Byer, 1991; Boulanger, Fève et al., 1994). The
disagreement between the different absolute magnitudes is
sometimes a result of variation in the quality of the crystals, but
mainly arises from differences in the measurement techniques.
Furthermore, a considerable amount of confusion exists as a
consequence of the difference between the conventions taken for
the relation between the induced nonlinear polarization and the
nonlinear susceptibility, as explained in Section 1.7.2.1.4.

Accurate measurements require mm-size crystals with high
optical quality of both surface and bulk.

1.7.4.2.1. Non-phase-matched interaction method

The main techniques used are based on non-phase-matched
SHG and THG performed in several samples cut in different
directions. The classical method, termed the Maker-fringes
technique (Jerphagnon & Kurtz, 1970; Herman & Hayden, 1995),
consists of the measurement of the harmonic power as a function
of the angle between the fundamental laser beam and the rotated
slab sample, as shown in Fig. 1.7.4.1(a).

The conversion efficiency is weak because the interaction is
non-phase-matched. In normal incidence, the waves are collinear
and so formulae (1.7.3.42) for SHG and (1.7.3.80) for THG are
valid. These can be written in a more convenient form where the
coherence length appears:

Pn!ðLÞ ¼ An!½P!ð0Þ�nðdn!eff � l
n!
c Þ

2 sin2ð�L=2ln!c Þ

l2!c ¼ ð�c=!Þð2n2!3 � n!1 � n!2 Þ
�1

l3!c ¼ ð�c=!Þð3n3!4 � n!1 � n!2 � n!3 Þ
�1: ð1:7:4:2Þ

The coefficient An! depends on the refractive indices in the
direction of propagation and on the fundamental beam geometry:
A2! and A3! can be easily expressed by identifying (1.7.4.2) with
(1.7.3.42) and (1.7.3.80), respectively.

When the crystal is rotated, the harmonic and fundamental
waves are refracted with different angles, which leads to a
variation of the coherence length and consequently to an oscil-
lation of the harmonic power as a function of the angle of inci-
dence, �, of the fundamental beam. Note that the oscillation
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Table 1.7.5.1. Mineral nonlinear crystals

The letters (a, b, c) refer to the crystallographic frame. These data are mainly extracted from Bordui & Fejer (1993).

(a) SHG (1.064–0.532 mm).

KD2PO4

(KD*P)
NH4H2PO4

(ADP)
CsD2AsO4

(CD*A)
�-BaB2O4

(BBO)
LiB3O5

(LBO)

Crystal class �442m �442m �442m 3m mm2
Transparency (mm) 0.18–1.8 0.184–1.5 0.27–1.66 0.198–2.6 0.16–2.3
Non-critical �pump at room

temperature (mm)
Type I 0.519 0.524 1.045 0.409 0.554 (c)

1.212 (a)
Type II — — — — 1.19 (b)

Tpm (K) 385 421
Type of phase matching II II I I I (a)
 (�) 54 62 90 23 90
’ (�) — — — — 0
Effective coefficient deff

(pm V�1)
0.35 0.39 0.30 1.9 0.85

Angular bandwidth (mrad cm) 2.3 2.2 51 0.53 72
Walk-off angles

! (�) 1.3 1.2 0 0 0

2! (�) 1.4 1.5 0 3.2 0

Thermal bandwidth (K cm) 12 2.1 3.3 51 3.9
Spectral bandwidth (nm cm) 5.6 26 2.5 2 3.6
Surface optical damage threshold

(GW cm�2)
5 (1 ns) 6 (15 ns) 0.25 (12 ns) 13.5 (1 ns) 25 (0.1 ns)
>8 (0.6 ns at 0.53 mm) >8 (0.6 ns at 0.53 mm) 23 (14 ns) 1.4 (12 ns at 0.78 mm)

32 (8 ns at 0.53 mm)

SHG (1.064–0.532 mm) (cont.).

KTiOPO4 (KTP) KNbO3 5% MgO:LiNbO3 LiIO3

Crystal class mm2 mm2 3m 6mm
Transparency (mm) 0.35–4.5 0.4–5.5 0.35–5 0.31–5 jj to c,

0.34–4 ? to c
Non-critical �pump at room temperature (mm)

Type I — 0.860 (a) 0.756
0.982 (b)

Type II 0.990 (b) — —
1.081 (a)

Tpm (K) 456 380
Type of phase matching II (a, b) I (b) I I
 (�) 90 90 90 30
’ (�) 23 90 — —
Effective coefficient deff (pm V�1) 2.4 �13 4.7 1.8
Angular bandwidth (mrad cm) 9 13 33 0.34
Walk-off angles

! (�) 0.20 0 0 0

2! (�) 0.27 0 0 4.3

Thermal bandwidth (K cm) 17 0.3 0.75 23
Spectral bandwidth (nm cm) 0.46 0.12 0.31 0.82
Surface optical damage threshold

(GW cm�2)
9–20 (1 ns) 7 (1 ns) 2 (1 ns)
>2 (10 ns at 0.5 mm) >1 (10 ns) 1 (0.1 ns at 0.53 mm)

(b) SHG (532–266 nm).

KD2PO4 (KD*P) NH4H2PO4 (ADP) �-BaB2O4 (BBO)

Crystal class �442m �442m �442m
Transparency (mm) 0.18–1.8 0.184–1.5 0.198–2.6
Non-critical �pump at room temperature (mm) 0.519 0.524 0.409
Tpm (K) 308 324
Type of phase matching I I I
 (�) 90 90 47
’ (�) — — —
Effective coefficient deff (pm V�1) 0.44 0.57 2.0
Angular bandwidth (mrad cm) 16 16 0.16
Walk-off angles

! (�) 0 0 0

2! (�) 0 0 4.8

Thermal bandwidth (K cm) 3.0 0.54 4.0
Spectral bandwidth (nm cm) 0.13 0.13 0.073
Surface optical damage threshold (GW cm�2) 5 (1 ns) 6 (15 ns) 13.5 (1 ns)

>8 (0.6 ns at 0.53 mm) >8 (0.6 ns at 0.53 mm) 23 (14 ns)
32 (8 ns at 0.53 mm)



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

exists even if the refractive indices do not vary with the direction
of propagation, which would be the case for an interaction
involving only ordinary waves during the rotation. The most
general expression of the generated harmonic power, i.e.
Pn!ð�Þ ¼ jð�Þ sin2 �ð�Þ, must take into account the angular
dependence of all the refractive indices, in particular for the
calculation of the coherence length and transmission coefficients
(Herman & Hayden, 1995). The effective coefficient is then
deduced from the angular spacing of the Maker fringes and from
the conversion efficiency at the maxima of oscillation.

A continuous variation of the phase mismatch can also be
performed by translating a wedged sample as shown in Fig.
1.7.4.1(b) (Perry, 1991). The harmonic power oscillates as a
function of the displacement x. In this case, the interacting waves
stay collinear and the oscillation is only caused by the variation of
the crystal length. Relation (1.7.4.2) is then valid, by considering
a variable crystal length LðxÞ ¼ x tan �; An! and ln!c are constant.
The space between two maxima of the wedge fringes is
�xc ¼ 2lc= tan �, which allows the determination of lc. Then the
measurement of the harmonic power, Pn!

max, generated at a
maximum leads to the absolute value of the effective coefficient:

jdn!eff j ¼
Pn!
max

An!½P!ð0Þ�2l2c

 �1=2

lc ¼ ð�xc tan�=2Þ: ð1:7:4:3Þ

It is necessary to take into account a multiple reflection factor
in the expression of An!.

The Maker-fringes and wedge-fringes techniques are essen-
tially used for relative measurements referenced to a standard,
usually KH2PO4 (KDP) or quartz (�-SiO2).

1.7.4.2.2. Phase-matched interaction method

The use of phase-matched interactions is suitable for absolute
and accurate measurements (Eckardt & Byer, 1991; Boulanger,
Fève et al., 1994). The sample studied is usually a slab cut in a
phase-matching direction. The effective coefficient is determined
from the measurement of the conversion efficiency using the
theoretical expressions given by (1.7.3.30) and (1.7.3.42) for SHG,
and by (1.7.3.80) for THG, according to the validity of the
corresponding approximations. Because of phase matching, the
generated harmonic power is not weak and it is measurable with
very good accuracy, even with a c.w. conversion efficiency.

Recent experiments have been performed in a KTP crystal cut
as a sphere (Boulanger et al., 1997, 1998): the absolute magni-
tudes of the quadratic effective coefficients are measured with an
accuracy of 10%, which is comparable with typical experiments
on a slab.

For both non-phase-matched and phase-matched techniques, it
is important to know the refractive indices and to characterize
the spatial, temporal and spectral properties of the pump beam
carefully. The considerations developed in Section 1.7.3 about
effective coefficients and field tensors allow judicious choices of
configurations of polarization and directions of propagation for
the determination of the absolute value and relative sign of the
independent coefficients of tensors �(2) and �(3), given in Tables
1.7.2.2 to 1.7.2.5 for the different crystal point groups.

1.7.5. The main nonlinear crystals

Tables 1.7.5.1 and 1.7.5.2 give some characteristics of the main
nonlinear crystals. No single nonlinear crystal is the best for all
applications, so the different materials must be seen as comple-
mentary to each other.

A complete review of mineral crystals is given in Bordui &
Fejer (1993). General references for organic crystals may be
found, for example, in Chemla & Zyss (1987), Zyss (1994), and
Dmitriev et al. (1991). Perry (1991) deals with both organic and
inorganic materials.

A new generation of materials has been developed since 1995
for the design of new compact all-solid-state laser sources. These
optical materials are multifunction crystals, such as LiNbO3:Nd

3+,
Ba2NaNb5O15:Nd

3+, CaGd4(BO3)3O:Nd3+ or YAl3(BO3)4:Yb
3+,

for example, in which the laser effect and the nonlinear frequency

214

Table 1.7.5.1 (cont.)

(c) SHG (4000–2000 nm).

AgGaS2 AgGaSe2 ZnGeP2 Tl3AsSe3 (TAS)

Crystal class �442m �442m �442m 3m
Transparency (mm) 0.5–13 0.78–18 0.74–12 1.3–17
Non-critical �pump at room temperature (mm) 1.8 and 11.2 3.1 3.2 —

12.8 10.3
Type of phase matching I I I I
 (�) 31 52 56 33
’ (�) — — — —
Effective coefficient deff (pm V�1) 10.4 28 70 68
Angular bandwidth (mrad cm) 3.7 6.0 5.0 4.2
Walk-off angles

! (�) 0 0 0.65 0

2! (�) 1.2 0.64 0 3.1

Thermal bandwidth (K cm) 50 50 40 5.7 (SHG at 10.6 mm)
Spectral bandwidth (nm cm) 11 22 20 —
Surface optical damage threshold (GW cm�2) 0.5 (10 ns bulk) 0.01–0.04 (50 ns, 2 mm) 0.05 (25 ns at 2 mm) 0.016 (250 ns at 10.6 mm)

0.02–0.03 (10 ns at
10.6 mm)

1 (2 ns at 10.6 mm)

Fig. 1.7.4.1. (a) The Maker-fringes technique; (b) the wedge-fringes
technique.
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Table 1.7.5.2. Organic and organo-mineral crystals

Abbreviations for crystals: 5-NU: 5-nitrouracil; MAP: methyl-(2,4-dinitrophenyl)-aminopropanoate; MNA: 2-methyl-4-nitroaniline; POM: 3-methyl-4-nitropyridine-N-
oxide; NPP:N-(4-nitrophenyl)-l-propinol; 2A5NPDP: 2-amino-5-nitropyridine dihydrogen phosphate. OPA, OPO and SROPO are abbreviations for optical parametric
amplification, oscillation and single resonant optical parametric oscillator, respectively. 1 e.s.u. ¼ 4:19� 10�4 m V�1.

Crystal Space group Transparency Refractive index phase matching (PM) Damage threshold

Urea P�4421m 220 nm to 2 mm 90� type-II PM at 597 nm 1.4 GW cm�2 at 354.7 nm
PM to 238 nm

5-NU P212121 410 nm to 2 mm nb > nc > na
Types I and II for SHG and SFG (!þ 2!! 3!)

MAP P21 500 nm to 2 mm nx < ny < nz >3 GW cm�2 at 1.06 mm, 10 ns, 10 Hz
Non-critical PM: at 1.083 mm (along z); at 1.06 mm

(between room temperature and liquid N2)
>150 MW cm�2 at 532 nm, 7 ns, 10 Hz

MNA Cc 500 nm to 2 mm nx = 2.093 and ny = 2.494 at 1.06 mm

POM P212121 500 nm to 2 mm nb > na > nc 1 TW cm�2 at 610 nm (10 Hz, 100 fs)
Type-I PM tunable from 2 mm to 0.8 mm 2 GW cm�2 at 1.06 mm (20 ps)

150 MW cm�2 at 0.532 mm (20 ps)
50 MW cm�2 at 0.532 mm (10 ns)

NPP P21 500 nm to 2 mm ny > nx > nz 10 GW cm�2 at 620 nm (100 fs, 10 Hz)
nx � nz = 0.78 at 532 nm
Non-critical PM at 1.15 mm
dPM=dT = �0.303 mrad K�1

2A5NPDP Pna21 0.420 to 1.7 mm nx < ny < nz
nz � nx = 0.158 at 546 nm
nz � ny = 0.152 at 546 nm
Type-II non-critical PM at 1.06 mm at 210 K
Type-I (deff = 2.25 pm V�1) PM at 1.34 mm
Type-II (deff = 4.5 pm V�1) PM at 1.34 mm
dPM=dT = �0.137 mrad K�1 for type II at 1.34 mm
d�=dT = 0.176 nm K�1 for PM (295 < T < 343 K)

DAST Cc 700 nm to 2 mm n1(720 nm) ¼ 2.519
n2(720 nm) ¼ 1.720
n3(720 nm) ¼ 1.635

2A5NPCl P21 410 nm to 1.65 mm See Horiuchi et al. (2002)

Crystal Nonlinear coefficients SHG (dij) and EO (rij) OPO/OPA References†

Urea d14 = 1.4 pm V�1 SRO �p = 354.7 nm tp = 7 ns (a), (b), (c), (d)
r41 = 56 � 10�9 e.s.u. Yield: 20.5%
r63 = 25 � 10�9 e.s.u. Threshold: 45 mW

Output: 6 mWat 1.22 mm
Tunability: 0.499 to 1.23 mm

5-NU d14 = d25 = d36 = 8.7 pm V�1 at 1.06 mm (e)

MAP d21 = 40 � 5 � 10�9 e.s.u. (f)
d22 = 44 � 5 � 10�9 e.s.u.
d23 = 8.8 � 2 � 10�9 e.s.u.
d25 = �1.3 � 2 � 10�9 e.s.u.

MNA d11 = 250 pm V�1 at 1.06 mm (g), (h), (i)
d11 = 190 pm V�1 at 1.2 mm
d11 = 165 pm V�1 at 1.3 mm
d11 = 145 pm V�1 at 1.47 mm
d11 = 125 pm V�1 at 1.54 mm
(d211=n

3)MNA = 2000(d211=n
3)LiNbO3

r11 = 67 � 25 pm V�1 at 632.8 nm
1
2ðn

3
1r11 � n33r31Þ = 270 � 50 pm V�1

POM d14 = d25 = d36 = 23 � 3 pm V�1 at 1.06 mm OPA: G = 103 (j), (k), (l), (m), (n)
r41 = 3.6 � 0.6 pm V�1 at 632.8 nm �p = 532 nm, 10 Hz, 25 ps
r52 = 5.1 � 0.4 pm V�1 at 632.8 nm Ip = 130 MW cm�2

r63 = 2.6 � 0.3 pm V�1 at 632.8 nm Infrared input: 5 kW cm�2 at degeneracy

NPP d21 = 56.5 � 5 pm V�1 at 1.34 mm OPA: G ’ 104 at degeneracy (1.24 mm); (m), (o), (p), (q), (r), (s)
d22 = 18.7 � 2 pm V�1 at 1.34 mm pump: 620 nm, 100 fs, 10 Hz
d22 = 128 pm V�1 at 1.06 mm OPO, �pump tuning: 593 < �p < 670 nm,
r12 = 25.5 pm V�1 at 632.8 nm 1000 < �i,s < 1500 nm
r22 = 24 pm V�1 at 632.8 nm OPO, birefringence tuning: �p = 670 nm,
n3reff = 60 pm V�1 at 1.34 mm 900 < �i,s < 1700 nm

DRO threshold at 670 nm: 0.45 MW cm�2,
pump: 2.3 MW cm�2 (60 ns, 10 Hz).
Yield: 4.5%, IRoutput 90 mJ

2A5NPDP At 1.34 mm: d33 = 12 � 1 pm V�1, d15 = 6 � 1 pm V�1 OPA: � = 29 � 3 cm�1 (Ip = 30 GW cm�2); (r), (s), (t), (u)
At 1.06 mm: d24 = 1 � 0.4 pm V�1, d15 = 7 � 1 pm V�1 deff = 2.6 � 0.5 pm V�1; �s = 1.005 mm, �p = 612 nm

OPA: � = 19 � 3 cm�1, G = 106, �s = 1 mm, �i = 1.5 mm,
�p = 612 nm

OPO: �pump tuning: 565 < �p < 590 nm; �s ’ 1.003 mm;
1286 < �i < 1500 nm

SRO: threshold: 6 MW cm�2; Ip = 37.2 MW cm�2

(7 ns, 10 Hz); yield 3%, IRoutput 150 mJ
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conversion occur simultaneously inside the same crystal. An
overview of these attractive materials is given in Brenier (2000).

1.7.6. Glossary

�0 vacuum magnetic permeability
"0 permittivity of free space
c velocity of light in a vacuum
P electronic polarization
Pn nth order electronic polarization
PNL nonlinear polarization
�(n) nth order dielectric susceptibility tensor
" dielectric tensor
n refractive index
nx, ny, nz principal refractive indices
(x, y, z) principal axes of the index surface (optical

frame)
no, ne refractive indices of the ordinary and

extraordinary eigen modes
T transmission coefficient
V half of the angle between optic axes
! laser circular frequency
� laser wavelength
’ laser phase
vg laser group velocity
k wavevector
u unit wavevector
(, ’) spherical coordinates of the wavevector in the

optical frame
� neutral vibration plane
E electric field vector
(e, E) unit vector and amplitude of the electric field
D dielectric displacement vector
d unit dielectric displacement vector
H magnetic field vector
S Poynting vector
s unit Poynting vector
W work done per unit time
(X;Y;Z) orthonormal wave frame where Z is along the

wavevector

 double refraction angle (walk-off angle)
r nabla operator
� tensorial product
� tensorial contraction
� vectorial product
Q* complex conjugate of Q
w0 laser beam waist radius
ZR Rayleigh length of the laser beam
� laser pulse half duration
f repetition rate of the pulsed laser
P, P(t) laser instantaneous power

I instantaneous laser intensity
~EE total energy per laser pulse
~PP average laser power
Pc laser peak power
L crystal length
�eff, deff effective coefficient
F(n) nth order field tensor
�k phase mismatch
�SHG conversion efficiency of second harmonic

generation
G, h spatial walk-off attenuation functions

We thank Dr J. P. Fève for his valuable assistance and critical
reading of the manuscript.
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Table 1.7.5.2 (cont.)

Crystal Nonlinear coefficients SHG (dij) and EO (rij) OPO/OPA References†

DAST d11(1318 nm) = 1010 pm V�1 Terahertz generation (difference frequency mixing) (v), (w)
d11(1542 nm) = 290 pm V�1

d26(1542 nm) = 39 pm V�1

r11(720 nm) = 92 pm V�1

r11(1313 nm) = 53 pm V�1

r11(1535 nm) = 47 pm V�1

2A5NPCl d11 = 9 � 4 pm V�1 (x)
d12 = 8 � 3 pm V�1

d13 = 11 � 4 pm V�1

deff = 5.1 pm V�1 or 9.7 pm V�1

† References: (a) Halbout et al., 1979; (b) Morrell et al., 1979; (c) Donaldson & Tang, 1984; (d) Rosker et al., 1985; (e) Puccetti et al., 1993; (f) Oudar & Hierle, 1977; (g) Levine et al., 1979; (h)
Lipscomb et al., 1981; (i) Morita et al., 1988; (j) Zyss et al., 1981; (k) Sigelle & Hierle, 1981; (l) Zyss et al., 1985; (m) Ledoux et al., 1987; (n) Josse et al., 1988; (o) Ledoux et al., 1990; (p) Josse et al.,
1992; (q) Khodja et al., 1995(b); (r) Khodja, 1995; (s) Zyss et al., 1984; (t) Kotler et al., 1992; (u) Fève et al., 1999; (v) Bosshard, 2000; (w) Kawase et al., 2000; (x) Horiuchi et al., 2002.
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1.8. Transport properties

By G. D. Mahan

1.8.1. Introduction

The flow of either electricity or heat is regarded as ‘transport’.
These flows are an extremely important characteristic of crystals.
Some materials conduct heat or electricity well, while others
conduct them poorly. Such properties are important for the use of
materials in manufactured products, as some applications require
good conductors, while others require poor conductors.

In this chapter, we review the transport properties of crystals.
The primary concern is the flow of either electricity or of heat.
The topic is restricted to steady-state flows and we do not treat
a.c. currents. We also limit our discussion to linear response,
which is defined precisely below. In general, it means that the
flows of electricity and heat are small.

1.8.2. Macroscopic equations

The basic equations of transport are given below (Ziman, 1962;
Goldsmid, 1986; Mahan, 1990). (The symbols used in this chapter
are defined in Section 1.8.6.)

J ¼ rðE� S rT
�!

Þ ð1:8:2:1Þ

JQ ¼ JTS� K rT
�!

; ð1:8:2:2Þ

where J and JQ are the current density and the heat current,
respectively. The three main transport coefficients are the elec-
trical conductivity �, the thermal conductivity K and the Seebeck
coefficient S. The electrical resistivity � is the inverse of the
conductivity, � ¼ 1=�. In general, the currents, electric field and

rT
�!

are vectors while �, S and K are second-rank tensors. The
number of independent tensor components is determined by the
symmetry of the crystal (see Chapter 1.1). We assume cubic
symmetry, so all of the quantities can be treated as scalars.
Onsager relations require that the Seebeck coefficient S is the
same in the two equations. A description of the transport prop-
erties of most crystals is simply given as a graph, or table, of how
each of the three parameters ð�; S;KÞ varies with temperature.
The range of variation among crystals is enormous.

The above equations assume that there is no magnetic field and
have to be changed if a magnetic field is present. This special case
is discussed below.

1.8.3. Electrical resistivity

1.8.3.1. Properties of the electrical resistivity

The electrical conductivity is usually written as (Ziman, 1962;
Goldsmid, 1986; Mahan, 1990)

� ¼
n0e

2�

m�
; ð1:8:3:1Þ

where n0 is the density of conduction electrons in units ofm
�3, e is

the charge on the electron, � is the lifetime of the electron andm�

is the effective mass. Here we are assuming parabolic bands, so
the energy of the electron is "ðkÞ ¼ h- 2k2=2m�.

If one measures � as a function of temperature, then one has
determined �ðTÞ, assuming that one knows n0 and m� from other
measurements, e.g.Allen et al. (1986). The electron density n0 can
sometimes be determined from the Hall effect, as discussed in
Section 1.8.3.4. The effective mass m� can be determined by a

cyclotron resonance experiment or a similar experiment that
measures the properties of the Fermi surface. Also, the ratio
n0=m

� can be found by measuring the frequency dependence of
the dielectric function in the infrared (Sievers, 1980):
�ð!Þ ¼ �1 � 4�n0e

2=ðm�!2Þ. Here the factors n0e
2=m� occur in

the same combination as found in the d.c. conductivity. The
factors n0 and m� can also be determined by numerical calcula-
tions of the band structure of the solid. In any case, we assume
that these parameters are known. The only difficult parameter to
find is the lifetime.

The lifetime of the electrons is usually determined by solving a
Boltzmann equation for the distribution function of the electrons.
The method of solution is described in many references (Ziman,
1962; Goldsmid, 1986; Mahan, 1990) and will not be repeated
here. The Boltzmann equation is itself an approximate equation,
since one must do some averaging over the particles in deriving it.
This approximate equation can then be solved by a variety of
methods: analytical with approximations, variationally or
numerically with great accuracy. The latter is done quite easily
with today’s computers. Here we shall summarize the main
contributions to the lifetime.

The electrical resistivity is the inverse of the conductivity,

� ¼
m�

n0e
2

1

�
: ð1:8:3:2Þ

The scattering rate of the electron can often be calculated using
Fermi’s golden rule, which is an equation of the form

1

�i
¼

2�

h-

X

f

jMif j
2
½1� cos ���ðEi � Ef Þ: ð1:8:3:3Þ

Here the lifetime of an initial state i is given by summing over all
of the final states f that can be reached by a matrix element Mif .
The factor of ½1� cos �� is included to measure the amount of
scattering, where � is the angle through which the electron
scatters. Anything that scatters or interacts with an electron
contributes to the lifetime. This includes the thermal vibrations of
the ions, which is an intrinsic effect. There are also extrinsic
effects such as scattering from impurities, grain boundaries,
dislocations and the boundaries of the crystal. The latter is
important in thin films or wires.

Matthiessen’s rule (Matthiessen & Vogt, 1864) states that the
resistivities from each type of scattering process can simply be
added. The total resistivity can be written as

� ¼
m�

n0e
2

X

j

1

�j
; ð1:8:3:4Þ

where �j is the lifetime from one of the scattering mechanisms.
There are several important disclaimers regarding this rule. It is
far from rigorous. It is often untrue. Yet it works very well 95% of
the time. We shall adopt the rule here for our discussion of the
resistivity.

The major contributions to the resistivity of solids are:
(1) Impurities. Every crystal has impurities, as it is not possible

to make a crystal without some defects. The reasons for this are
well understood and here we just assume this fact. The formula
for the lifetime contains two factors (Mahan, 1990): (a) the
concentration of impurities ni and (b) the phase shifts �lðkÞ for
scattering an electron of wavevector k and angular momentum l,
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1

�iðkÞ
¼

4�nih
-

m�k

X

l

l sin2½�lðkÞ � �l�1ðkÞ�: ð1:8:3:5Þ

Although this expression appears complicated, one can view it as
consisting of three parts:

1

�i
¼ nivk�cðkÞ; ð1:8:3:6Þ

vk ¼
h- k

m�
; ð1:8:3:7Þ

�c ¼
4�

k2

X

l

l sin2½�lðkÞ � �l�1ðkÞ�: ð1:8:3:8Þ

The three factors are the concentration ni of impurities, the
electron velocity vk and the cross section �c. For each impurity,
the cross section is a function of k. The lifetime is the density of
impurities multiplied by a simple function of electron energy and
is independent of temperature. A careful analysis shows that
there is a temperature dependence to the scattering by impurities.
However, this dependence is rather slight, and is dwarfed by the
large temperature dependence of the electron scattering by
phonons (Bass et al., 1990). It is a common approximation to treat
�i as a constant independent of temperature. It is easy to deter-
mine this constant experimentally: the resistivity in the limit of
zero temperature contains just the contribution from impurities
and defects.

It is possible to add a known amount of impurities intention-
ally. Then a measurement of the impurity resistance provides a
measurement of the cross section �c, since the Fermi velocity vF is
usually known.

(2) Phonons in metals. Crystals are composed of atoms, which
vibrate. As the temperature increases, they vibrate with larger
amplitude. These vibrations provide a noise spectrum for the
electrons and cause the electrons to scatter. The scattering of
electrons by phonons is an intrinsic process. For most solids, this
process is the dominant contribution to the electrical resistivity at
temperatures above 100 K.

Ziman (1962) first derived the following expression for the
resistivity due to the scattering of electrons by phonons in a
metal:

�ðTÞ ¼ C0
X

�

Z

q d3qjM�ðqÞj
2
ðn̂n� � qÞ

2
�
@nBð!Þ

@!

� �

!¼!�ðqÞ

ð1:8:3:9Þ

C0 ¼
3h- 	0

Me216v2Fk
4
F

: ð1:8:3:10Þ

The constant C0 collects numerous constants including the Fermi
wavevector kF , the Fermi velocity vF, the ion mass M and the
unit-cell volume 	0. The phonons have wavevector q and
different phonon bands (e.g. TA, LA, TO) are denoted by �. The
phonon frequencies are !�ðqÞ and the matrix element for scat-
tering the electron by wavevector q is M�ðqÞ.

Equation (1.8.3.9) is easy to evaluate using a computer code
that generates all of the phonons at different points in the Bril-
louin zone. It is the formula used most often to calculate the
temperature dependence of the resistivity of metals. However,
the reader is warned that this formula is not exact, as it represents
an approximate solution of the Boltzmann equation. In the only
case in which the accuracy of equation (1.8.3.9) has been tested
against numerically accurate solutions of the Boltzmann equa-
tion, Wu & Mahan (1984) found that (1.8.3.9) had an error of a
few per cent. However, the formula is useful because it gives an
answer that only errs by a few per cent and is relatively easy to
calculate.

Equation (1.8.3.9) has one feature that is simple and important.
At high temperature, the resistivity becomes proportional to

temperature. The Bose–Einstein occupation number
nBð!Þ ’ kBT=h

- ! and then the derivative with respect to ! is
simple. This gives the expression

�ðTÞ ¼
m�

n0e
2

1

�ðTÞ
ð1:8:3:11Þ

1

�
¼

2�

h-
�tkBT ð1:8:3:12Þ

�t ¼
m

M

	0
16�2k3F

Z

q d3q
jM�ðqÞj

2
ðn̂n� � qÞ

2

½h- !�ðqÞ�
2

:

ð1:8:3:13Þ

At high temperature, which in practice is above half of the Debye
temperature, the inverse lifetime of the electron is proportional
to the temperature. The coefficient is the dimensionless constant
�t, which is called the ‘transport form of lambda’ (see Grimvall,
1981). This parameter gives the strength of the interaction
between the electrons and the phonons. It ranges from very small
values ð�t � 0:1Þ for the noble metals to values above 4 for heavy
metals such as lead and mercury (see Grimvall, 1981).

Now we give some examples of the resistivity of common
metals and show that the above formulas give a good account of
the resistivity. Fig. 1.8.3.1 shows the intrinsic resistivity as a
function of temperature for a simple metal (sodium). The data
are taken from Bass et al. (1990). The impurity resistivity has
been subtracted away. The resistivity is lowest at low tempera-
ture, increases at higher temperature and becomes linear at very
high temperatures. In actual crystals, the low-temperature value
is determined by scattering from impurities and is different for
each piece of metal. If one subtracts the constant value and plots
�ðTÞ � �ð0Þ, then the curve is the same for each crystal of sodium.
This is just the phonon contribution to the resistivity.

At very high temperatures, the resistivity is found to deviate
from being linear with temperature. This deviation is due to the
thermal expansion of the crystal at high temperature. This can be
supressed by taking measurements at constant volume, as is the
case for the results shown in Fig. 1.8.3.1. If the crystal is put under
pressure to maintain constant volume, then the high-temperature
resistivity is highly linear with temperature.

Also interesting is the behaviour of the resistivity at very low
temperatures, say less than 1 K. For the alkali metals, the
temperature dependence was found by Bass et al. (1990) to be
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Fig. 1.8.3.1. The temperature dependence of the intrinsic electrical resistivity
of sodium at constant density. The data are taken from Bass et al. (1990).
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�ðTÞ ¼ �ið1þ BT2Þ þ AT2: ð1:8:3:14Þ

The term �i is the constant due to the impurity scattering. There
is also a term proportional to BT2, which is proportional to the
impurity resistance. This factor is due to the Koshino–Taylor
effect (Koshino, 1960; Taylor, 1964), which has been treated
rigorously by Mahan & Wang (1989). It is the inelastic scattering
of electrons by impurities. The impurity is part of the lattice and
phonons can be excited when the impurity scatters the electrons.
The term AT2 is due to electron–electron interactions. The
Coulomb interaction between electrons is highly screened and
makes only a small contribution to A. The largest contribution to
A is caused by phonons. MacDonald et al. (1981) showed that
electrons can interact by exchanging phonons. There are also
terms due to boundary scattering, which is important in thin films:
see Bruls et al. (1985).

Note that (1.8.3.14) has no term from phonons ofOðT5Þ. Such a
term is lacking in simple metals, contrary to the assertion in most
textbooks. Its absence is due to phonon drag. For a review and
explanation of this behaviour, see Wiser (1984). The T5 term is
found in the noble metals, where phonon drag is less important
owing to the complexities of the Fermi surface.

1.8.3.2. Metal alloys

Alloys are solids composed of a mixture of two or more
elements that do not form a stoichiometric compound. An
example is CuxNi1�x, in which x can have any value. For small
values of x, or of ð1� xÞ, the atoms of one element just serve as
impurities in the other element. This results in the type of
behaviour described above. However, in the range 0:2< x< 0:8, a
different type of resistivity is found. This was first summarized by
Mooij (1973), who found a remarkable range of behaviours. He
measured the resistivity of hundreds of alloys and also surveyed
the published literature for additional results. He represented the
resistivity at T ¼ 300 K by two values: the resistivity itself,
�ðT ¼ 300Þ, and its logarithmic derivative, 
 ¼ d lnð�Þ=dT. He
produced the graph shown in Fig. 1.8.3.2, where these two values
are plotted against each other. Each point is one sample as
represented by these two numbers. He found that all of the
results fit within a band of numbers, in which larger values of
�ðT ¼ 300Þ are accompanied by negative values of 
. Alloys with
very high values of resistivity generally have a resistivity �ðTÞ
that decreases with increasing temperature. The region where

 ¼ 0 corresponds to a resistivity of �� ¼ 150 m� cm, which
appears to be a fixed point. As the temperature is increased, the
resisitivities of alloys with �>�� decrease to this value, while the
resisitivities of alloys with �<�� increase to this value.

Mooij’s observations are obviously important, but the reason
for this behaviour is not certain. Several different explanations
have been proposed and all are plausible: see Jonson & Girvin
(1979), Allen & Chakraborty (1981) or Tsuei (1986).

Recently, another group of alloys have been found that are
called bad metals. The ruthenates (see Allen et al., 1996; Klein et
al., 1996) have a resistivity �>�� that increases at high
temperatures. Their values are outliers on Mooij’s plot.

1.8.3.3. Semiconductors

The resistivity of semiconductors varies from sample to
sample, even of the same material. The conductivity can be
written as � ¼ n0e�, where e is the charge on the electron,
� ¼ e�=m� is the mobility and n0 is the density of conducting
particles (electrons or holes). It is the density of particles n0 that
varies from sample to sample. It depends upon the impurity
content of the semiconductor as well as upon temperature. Since
no two samples have exactly the same number of impurities, they
do not have the same values of n0. In semiconductors and insu-
lators, the conducting particles are extrinsic – they come from
defects, impurities or thermal excitation – in contrast to metals,
where the density of the conducting electrons is usually an
intrinsic property.

In semiconductors, instead of talking about the conductivity,
the more fundamental transport quantity (Rode, 1975) is the
mobility �. It is the same for each sample at high temperature if
the density of impurities and defects is low. There is an intrinsic
mobility, which can be calculated assuming there are no impu-
rities and can be measured in samples with a very low density of
impurities. We shall discuss the intrinsic mobility first.

Fig. 1.8.3.3 shows the intrinsic mobility of electrons in silicon,
from Rode (1972), as a function of temperature. The mobility
generally decreases with increasing temperature. This behaviour
is found in all common semiconductors. The mobility also
decreases with an increasing concentration of impurities: see
Jacoboni et al. (1977).

The intrinsic mobility of semiconductors is due to the scat-
tering of electrons and holes by phonons. The phonons come in
various branches called TA, LA, TO and LO, where T is trans-
verse, L is longitudinal, A is acoustic and O is optical. At long
wavelengths, the acoustic modes are just the sound waves, which
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Fig. 1.8.3.2. The temperature coefficient of resistance versus resistivity for
alloys according to Mooij (1973). Data are shown for bulk alloys (þ), thin
films (�) and amorphous alloys (�).

Fig. 1.8.3.3. The intrinsic mobility of electrons in silicon. Solid line: theory;
points: experimental. After Rode (1972).
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can be modelled by a Debye model, !jðqÞ ¼ cjq, where cj is the
speed of sound for the mode j. At long wavelengths, the optical
modes have a constant frequency which is represented by an
Einstein model, !jðqÞ ¼ !j0.

The intrinsic mobility is that for a low density of electrons or
holes. The existing conducting particles are then confined to the
lowest wavevector states near the minimum of the conduction
band (electrons) or near the maximum of the valence band
(holes). The phonons scatter the particles locally, so that the
wavevector changes by small amounts, which can only be done by
phonons of long wavelength. The above approximations, of using
a Debye model for A modes and an Einstein model for O modes,
is accurate. This is because one only needs to consider phonons of
long wavelength: the approximations are inaccurate for phonons
of short wavelength, but they are irrelevant.

The exception to this general behaviour is where the conduc-
tion band has several equivalent minima and the phonons scatter
an electron from one minimum to another. This is called inter-
valley scattering. If the minima of the two electron pockets are
separated by a wavevector qm, then one needs phonons of energy
!jðqmÞ. Again, these are a fixed set of constants, so one can
assume an Einstein model with these phonons as the frequency.
For the calculation of the intrinsic mobility of a semiconductor,
one does not need to know all of the phonon modes in the solid,
as one does for a metal. Instead, one needs to know only the
phonons at selected points in the Brillouin zone.

The inverse lifetimes for each scattering process are simply
added:

1

�ðkÞ
¼

1

�AðkÞ
þ

1

�OðkÞ
þ

1

�IðkÞ
: ð1:8:3:15Þ

The three terms are acoustic, optical and intervalley. First, we
discuss the scattering by optical phonons. The inverse lifetime is
proportional to the density of optical phonons N0:

1

�0
¼

N0

�0
; ð1:8:3:16Þ

N0 ¼
1

expðh- !0=kBTÞ � 1
: ð1:8:3:17Þ

The lifetime �0 / N�1
0 ¼ expðh- !0=kBTÞ � 1. This shows that the

mobility increases exponentially at lower temperatures according
to the factor expðh- !0=kBTÞ � 1. This feature is common to nearly
all semiconductors.

The factor N0 occurs because the electrons must absorb an
optical phonon in order to scatter. The density of optical phonons
in the crystal is proportional to the factor N0. Since usually
kBT< h- !0 at room temperature, the thermally excited electrons
have less energy than an optical phonon. In this case, the elec-
trons cannot emit a phonon, since they are unable to lose that
much energy: the process has no final state.

Notice that we have not yet discussed the mechanism by which
the electron couples to the optical phonons. In general, there are
two: the polar interaction and the deformation potential inter-
action. Polar interactions are found in crystals with different
atoms and where there is some ionic bonding. When the charged
ions vibrate, it results in oscillating dipoles that create long-range
electric fields. Polar interactions are important in III–Vand II–VI
semiconductors such as GaAs or CdS. Polar interactions are not
present in elemental semiconductors such as silicon and germa-
nium, since each ion is neutral. However, the deformation
potential interaction is present in these and could scatter strongly.

Next we discuss the intervalley scattering, where an electron
moves between equivalent conduction-band minima. Here the
phonons have a discrete energy h- !jðqmÞ. At low temperatures, the
electron can only absorb this phonon and the process is
proportional to Nð!jðqmÞÞ. This behaves, in many ways, like the
scattering by optical phonons. However, since !jðqmÞ<!0, the

temperature at which phonon emission can occur is lower. At low
temperatures, the intervalley scattering also contributes expo-
nential factors to the inverse lifetime. These contributions are
usually lower than the optical phonon scattering. However, in
silicon, Rode (1972) showed that the intervalley scattering
dominates over the optical phonon scattering.

The scattering by acoustic phonons only is important at low
temperature. For most semiconductors, the interaction between
electrons and acoustic phonons is due to the deformation
potential interaction. The standard calculation gives the inverse
lifetime as proportional to T3=2, which becomes smaller at low
temperature. However, since the other phonon contributions
become smaller with an exponential dependence upon
temperature, at small enough temperatures the acoustic phonon
term makes the largest contribution to the inverse lifetime.
Therefore, at low temperatures, the scattering by acoustic
phonons limits the mobility of the electron. Of course, this
presumes that there is no contribution from the scattering by
impurities. Since this contribution is a constant at low tempera-
ture, it is always the dominant contribution at low temperatures.
Only in samples with a small concentration of impurities can one
actually observe the limitation by acoustic phonons. For most
samples, with a moderate density of impurities, the optical-
phonon part forms the limit at intermediate temperatures, the
impurity scattering forms the limit at low temperatures and one
never observes the limit from acoustic phonons.

The discussion above covers the behaviour in the majority of
cases. There are special types of crystal that show special beha-
viour. One of these is crystals that are strongly piezoelectric. The
size of the electron–phonon interaction due to piezoelectricity is
governed by the electromechanical coupling constant. In crystals
where this number is relatively large, the scattering of electrons
by acoustic phonons gives � / T1=2 at low temperature, as shown
by Mahan (1990). So far, the only class of crystals where this is
found is the II–VI semiconductors with the wurtzite structure:
ZnO and CdS. These are the most piezoelectric crystals found so
far. They both show a dependence of the mobility upon T1=2 at
low temperature.

Finally, we should mention that semiconductors have an
intrinsic conductivity that provides an absolute minimum to the
conductivity of any sample. The value of this conductivity
depends upon temperature. An electron is thermally excited
above the energy gap, creating an electron and a hole. The
density of electrons or holes is usually determined by the density
of the various impurities or native defects, such as vacancies or
interstitials. However, in a perfect crystal without defects, there
will still be electrons and holes. The density of electrons ðnÞ and
holes ðpÞ obeys the relationship

np ¼ 4NcNv

2�h- 2

mckBT

� �3=2
2�h- 2

mvkBT

� �3=2

expð�EG=kBTÞ;

ð1:8:3:18Þ

where EG is the energy gap between the electron and hole bands,
and Nj and mj are the number of equivalent bands and their
effective masses. This formula comes from chemical equilibrium:
the recombination of electrons and holes is controlled by phase
space and the energy gap. The absolute minimum number of
electrons and holes is where n ¼ p, so that each is equal to the
square root of the right-hand side of (1.8.3.18). If this minimum
value is called nm ¼ pm, then the minimum conductivity is
�m ¼ nmð�c þ �vÞ, where �c and �v are the mobilities of the
electrons and the holes, respectively. The conductivity is never
lower than this value.

1.8.3.4. The Hall effect

Measurement of the Hall effect is simple and often useful. One
takes a crystal and applies a magnetic field Bz along the z axis.
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Then one imposes a current density jx along the x axis. One finds
that the Lorentz force induces a voltage, or the equivalent elec-
tric field Ey, in the y direction. The electric field is proportional to
both the current and magnetic field. The ratio Ey=ðjxBzÞ is the
Hall constant RH . The inverse of RH is just the charge e and the
speed of light c multiplied by the density of electrons n0:

Ey

jxBz

¼ RH ¼
1

n0ec
: ð1:8:3:19Þ

This provides a simple and accurate method of measuring the
density of electrons. It works well when there is only one kind of
current carrier and works well in semiconductors with a low
density of carriers. A typical experiment for a semiconductor is to
measure the conductivity � and the Hall constant RH ; the
mobility is then � ¼ cRH�. If the conducting particles are holes
in a semiconductor, the Hall constant has the opposite sign, which
indicates positive charge carriers.

Measurement of the Hall effect does not work well if the
semiconductor contains a mixture of different carriers, such as
electrons and holes, or even electrons from different kinds of
conduction bands. In these cases, the constant RH is not easily
interpreted. Similarly, measuring the Hall effect is rarely useful in
metals. It only works well in the alkali metals, which have all of
the electrons in the first Brillouin zone on a spherical Fermi
surface. In most metals, the Fermi surface extends over several
Brillouin zones and has numerous pockets or regions of different
curvatures. Regions of positive curvature act as electrons and
give a negative Hall constant; regions of negative curvature act as
holes and give a positive contribution to the Hall constant. Again,
it is difficult to interpret the Hall constant when both contribu-
tions are present. In general, the Hall effect is most useful in
semiconductors.

1.8.3.5. Insulators

Insulators are crystals that do not conduct electricity by the
flow of electrons or holes. We shall not mention this case. The
band gaps EG are sufficiently large that the intrinsic mobility is
very small.

1.8.3.6. Ionic conductors

There are many ionic solids that have an appreciable electrical
conductivity from the diffusive motion of ions. Any material in
which the conductivity from the motion of ions is very much
larger than that from the motion of electrons is useful as a battery
material. For this reason, such materials have been investigated
extensively, see e.g. Mahan & Roth (1976) or Salamon (1979).

1.8.4. Thermal conductivity

1.8.4.1. Introduction

The thermal conductivity determines the ability of the crystal
to conduct heat. Device applications of crystals usually need an
extreme value of the thermal conductivity: some applications
need a low thermal conductivity, while others need a high thermal
conductivity. At room temperature, the largest value of thermal
conductivity is for diamond, which has K ¼ 1:8 kW m�1 K�1; see
e.g. Spitzer (1970), Slack (1979) or Berman (1976). The lowest
values are for amorphous materials, which have
K ¼ 0:1 W m�1 K�1.

Heat flow can be carried by two kinds of excitations: phonons
and electrons. The phonons carry most of the heat in insulators
and semiconductors. Electrons carry appreciable amounts of heat
only if there is a high density of conduction electrons, as in a
metal. In metals, the electrons usually carry most of the heat. Of
course, the heat conduction by phonons and electrons depends
upon temperature. At high temperatures, the standard assump-
tion is that the heat flows from phonons and electrons are inde-

pendent and can be calculated separately. However, there is an
electron–phonon interaction, which causes a correlation between
the two kinds of heat flow. This is called phonon drag and is an
important phenomenon at low temperatures – typically less than
50 K. We are concerned mostly with higher temperatures, so will
not discuss phonon drag here.

First consider the heat flow carried by phonons. As a rule of
thumb, crystals with high values of thermal conductivity are those
that are: (1) tetrahedrally bonded, (2) contain elements of low
atomic number, and (3) lack impurities and defects (Spitzer, 1970;
Berman, 1976; Slack, 1979).

The inverse of the thermal conductivity is called the thermal
resistivity. There is an equivalent of Matthiessen’s rule for
thermal conductivity: it is a reasonable approximation to take the
various contributions to the thermal resistivity and simply to add
them. This is not a rigorous theorem; it is just a process that gives
a reasonable answer most of the time. Here we shall discuss four
contributions to the thermal resistivity: boundary scattering,
impurity scattering, isotope scattering and anharmonic inter-
actions:

RK ¼ RB þ Ri þ RI þ RA: ð1:8:4:1Þ

These various terms are discussed in order.

1.8.4.2. Boundary scattering

At low temperatures, the phonons that are thermally excited
are those which have an energy near to or less than the thermal
energy h-�ðqÞ � kBT. This usually means acoustic modes of long
wavelength. They tend to have a long mean free path, which can
extend to the size of the crystal. In this case, the limiting process
on the phonon scattering is simply bouncing off the walls of the
crystal. The formula for this process is best derived from the
classical formula for the thermal conductivity (see Ziman, 1962),

K ¼ ð1=3ÞC�vv�; ð1:8:4:2Þ

where C is the heat capacity, �vv is the average velocity and� is the
mean free path. To apply this to the present problem, take � to
be equal to the average dimension of the crystal and �vv to be the
speed of sound averaged over the various directions. At low
temperatures, the heat capacity C / T3, as given by the Debye
theory. Since � and �vv are constants, then K / T3, which agrees
well with the dependence found experimentally. Of course, the
thermal resistance RB is just the inverse of RB / T�3.

1.8.4.3. Impurity scattering

Impurities can be either point defects or extended defects such
as dislocations. Here we confine our remarks to point defects.
When acoustic phonons of long wavelength scatter from point
defects, the process is very much like the Rayleigh scattering of
light. The basic cross section varies as the fourth power of the
frequency. Equivalently, at long wavelength, it varies as the
fourth power of the wave number q of the phonons (see Ziman,
1962):

1

�iðqÞ
¼ niq

4Ci; ð1:8:4:3Þ

where ni is the concentration of impurities and Ci is a constant
characteristic of the impurity. Of course, this lifetime for the
phonon of wave number q must be averaged over all of the
wavevectors in the crystal as a function of temperature. This
averaging is actually mathematically delicate. At temperatures T
less than the Debye temperature �, the average value of q is
q � kBT=ðh

- vÞ and Ri � T4. At high temperatures ðT>�Þ, the
average of 1=�ðqÞ is a constant, since all values of q in the Bril-
louin zone are equally accessible. In this limit, Ri � constant.
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1.8.4.4. Isotope scattering

The perfect crystal is defined as having each atom in its
expected position, with no vacancies, interstitials or other defects.
Such a crystal would still have a type of disorder that scatters
phonons. Most elements have several natural isotopes for their
nuclei. Natural crystals usually reflect this mixture of isotopes.
Special crystals can be made that are composed of a single
isotope, and these lack the resistive term from isotope scattering.
However, most crystals have isotope scattering. The scattering is
from the mass difference of the nuclei. The interaction term
comes from the kinetic energy of the ion vibrational motion. If
there are two isotopes with masses M1 and M2, with concentra-
tions c and ð1� cÞ, respectively, then the average of the mass in
the kinetic energy term as discussed by Klemens (1955) is

1

M

� �

¼
c

M1

þ
1� c

M2

: ð1:8:4:4Þ

The kinetic energy term of the ions is then

X

i

P2
j

2Mj

¼
X

i

1
2P

2
i

1

M

� �

þ
1

Mj

�
1

M

� �� �� �

: ð1:8:4:5Þ

The second term is the perturbation. When we evaluate the
golden rule for scattering, we square the matrix element and then
average the square:

1

Mj

�
1

M

� �� �2
* +

¼ c
1

M1

�
1

M

� �� �2

þ ð1� cÞ
1

M2

�
1

M

� �� �2

ð1:8:4:6Þ

¼ cð1� cÞ
1

M1

�
1

M2

� �2

ð1:8:4:7Þ

¼ cð1� cÞ
�M

M1M2

� �2

: ð1:8:4:8Þ

The isotope scattering depends upon the concentration in the
form cð1� cÞ and upon the square of the mass difference
�M ¼ M2 �M1. The isotope fluctuations act as point defects.
The total expression for the scattering cross section also includes
a factor of q4 in addition to the factors given above. Thus their
temperature dependence is identical to that of the point defects:
RI � T4 at low temperature and RI � constant at high
temperature.

This behaviour is found experimentally. The isotope scattering
is usually a small contribution to the thermal resistivity. It is only
important in temperature regions where the other resistivities are
small. This occurs, of course, at the maximum value of the
thermal conductivity, since that is where all of the resistivities are
small. Changing the isotopic mix of a crystal changes the thermal
conductivity in the temperature regions where it is large. One
example is diamond, which is usually 99% 12C and 1% 13C.
Anthony et al. (1990) showed that eliminating the 13C increases
the thermal conductivity by a factor of nearly two (1.8 to
3.2 kW m�1 K�1) at room temperature. Another example is
germanium, where isotope scattering makes a sizeable contri-
bution to the thermal resistance (see Berman, 1976).

1.8.4.5. Alloy scattering

Alloys are mixtures of two or more different crystal ‘ingre-
dients’. We assume that the atoms are randomly located on the
different atom sites. Some alloys are ordered, but that makes
them crystals. An example of a disordered alloy is GaxAl1�xAs.
Since GaAs and AlAs have the same crystal structure and nearly
the same lattice constant, the mixed crystal permits any value of
x. The Ga and Al atoms randomly occupy the cation site in the

zinc blende lattice. Experimentally, it is found that the thermal
resistance as a function of x is (see Ziman, 1962; Berman, 1976)

RðxÞ ¼ xRGaAs þ ð1� xÞRAlAs þ xð1� xÞRA: ð1:8:4:9Þ

The first two terms just average the thermal resistance of the two
lattices. The third term is the scattering of the phonons from the
alloy fluctuations. It is derived in the same way as the equivalent
factor of cð1� cÞ in the discussion of isotope scattering in Section
1.8.4.4. In alloys, the fluctuations are due to two factors: the mass
difference at the atoms sites (as in isotope scattering) and the
difference in the bonding between Ga and Al. The constant RA

depends on these factors. It is not small: Yao (1987) showed that
the term xð1� xÞRA is four or five times larger than the others at
x ¼ 1=2. Although we have cited a particular example of alloy
scattering, this dependence is quite universal. Alloy fluctuations
typically dominate the thermal resistivity of alloys.

1.8.4.6. Anharmonic interactions

In crystals that are relatively pure, i.e. those that lack large
numbers of impurities, the important limitation on thermal
conductivity at high temperature is from anharmonic interactions
(Ziman, 1962). The vibrational potential between neighbouring
atoms is not perfectly harmonic. Besides the quadratic depen-
dence on vibrational distance, there is usually a term that
depends upon the third and perhaps fourth powers of the relative
displacements of the ions. These latter terms are the anharmonic
part of the vibrational potential energy. They cause the crystal to
expand with temperature and also contribute to the thermal
resistance.

For most crystals, the cubic term is important. Its contribution
is best explained using the language of phonons. The cubic term
means that three phonons are involved. This usually means that
one phonon decays into two others, or two phonons combine into
one. Both processes contribute to the lifetime of the phonons. On
rare occasions, the phase space of the phonons does not permit
these events. For example, silicon has a very high frequency
optical phonon branch (62 meV at the zone centre) while the
acoustic phonons have rather low frequencies. The optical
phonons are unable to decay into two of lower frequency, since
the two do not have enough energy. This explains, in part, why
silicon has a high thermal conductivity. However, this case is
unusual. In most crystals, the phonons have similar energy and
one can decay into two of lower energy.

The three-phonon events have a simple dependence upon
temperature. When one phonon goes to two, or vice versa, the
rate depends upon the density of phonons nBð!qÞ as given by the
Bose–Einstein occupation number. At high temperature, i.e.
about half of the Debye temperature, this function can be
expanded to

nBð!qÞ ¼
1

expðh- !q=kBTÞ � 1
’

kBT

h- !q

ð1:8:4:10Þ

and the thermal resistance is proportional to temperature. Thus a
plot of the inverse thermal conductivity versus temperature
usually shows a linear behaviour at high temperature. This linear
term is from the anharmonic interactions. There are two main
reasons for deviations from linear behaviour: the thermal
expansion of the crystal and the contribution of the anharmonic
quartic terms, which tend to go as OðT2Þ.

1.8.4.7. Thermal conductivity of metals

Heat conduction in metals can occur by either phonons or
electrons. The conduction by phonons has been discussed above.
In metals, there is another contribution to the thermal resistance:
the absorption of the phonons by the electrons. Metals have low-
energy excitations, which consist of exciting an electron just
below the chemical potential to an occupied state just above the
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chemical potential. The separation in energy between these two
electron states can be arbitrarily small and can be small enough to
be equal to the energy of a phonon. By this process, the energy of
the phonon can be absorbed by the electron gas, which contri-
butes to the thermal resistance of the phonons.

However, in metals, the electrons tend to carry more heat than
the phonons. The latter play a secondary role. Thus, we divide the
thermal conductivity into electronic and phonon parts,
K ¼ Ke þ Kp. This choice of separation is rather interesting.
Note that we do not combine their inverses, as we do for the
components of each separate contribution.

The thermal resistance due to the electrons is related to the
electrical resistance. Both depend upon the lifetime of the elec-
trons. Because of this, there is a simple relationship between the
electronic part of the thermal conductivity and the electrical
conductivity �. This relationship is called the Wiedemann–Franz
law (Wiedemann & Franz, 1853).

Ke ¼ L0�T ð1:8:4:11Þ

L0 ¼
�2

3

kB
e

� �2

: ð1:8:4:12Þ

The parameter L0 is called the Lorenz number. The value given
above is for a metal with a well defined Fermi surface, so the
electrons obey Fermi–Dirac statistics. In the other limit of clas-
sical statistics, its value is 2ðkB=eÞ

2. We caution that this simple
relation between the electrical and thermal conductivities is not
exact. The reason for this is that the two lifetimes are not iden-
tical: the electrical conductivity uses the lifetime for changing the
momentum of the electron, while the thermal conductivity uses
the lifetime for changing the energy current. However, the two
lifetimes are similar. In practice, the Wiedemann–Franz law is
found to work quite well. It seems to be valid regardless of the
mechanisms that scatter the electrons: whether the scattering is
by phonons, impurities or spin excitations. It can be used to
estimate the thermal conductivity from electrons in metals, or in
semiconductors with large densities of conduction electrons or
holes.

1.8.5. Seebeck coefficient

The Seebeck coefficient S is the third transport coefficient that
enters into the fundamental equations (1.8.2.1) and (1.8.2.2).
Here we discuss some of its basic properties. First, we write down
three integrals for the transport coefficients according to Gold-
smid (1986):

� ¼ e2
Z þ1

�1

d" �
@nF
@"

� �

�ð"Þ ð1:8:5:1Þ

T�S ¼ e

Z þ1

�1

d" �
@nF
@"

� �

�ð"Þ "� �ð Þ ð1:8:5:2Þ

TKe ¼

Z þ1

�1

d" �
@nF
@"

� �

�ð"Þ "� �ð Þ
2; ð1:8:5:3Þ

where � is the chemical potential, e is the electron charge,

�
@nF
@"

� �

¼
1

kBT

exp ½ð"� �Þ=kBT�

fexp ½ð"� �Þ=kBT� þ 1g2
; ð1:8:5:4Þ

�ð"Þ, which we will call the transport distribution function, is
given by

�ð"Þ ¼
P

k

vxðkÞ
2�ðkÞ�ð"� "ðkÞÞ; ð1:8:5:5Þ

where the summation is over the first Brillouin zone, vxðkÞ is the
group velocity of the carriers with wavevector k in the direction
of the applied field, �ðkÞ is the lifetime of the carriers and "ðkÞ is

the dispersion relation for the carriers. In cases in which many
bands contribute to the transport process, the summation has to
be extended to all the bands. In some particular cases, such as for
parabolic bands, the transport distribution defined in (1.8.5.5)
takes a much simpler form:

�ð"Þ ¼ Nð"Þvxð"Þ
2�ð"Þ; ð1:8:5:6Þ

where Nð"Þ is the density of states.
The Seebeck coefficient is defined in (1.8.5.2). Since the left-

hand side of this equation contains �TS, S is defined as the ratio
of the two integrals in (1.8.5.1) and (1.8.5.2). The magnitude of
the function �ð"Þ is immaterial for S, since the magnitude cancels
in the ratio. All that matters is the dependence of �ð"Þ upon the
energy ". The function @nF=@" is a symmetric function of ".
Furthermore, it becomes very small when " is more than a few
thermal energies ðkBTÞ away from the chemical potential. The
Seebeck coefficient depends upon how �ð"Þ varies within this
small energy range. The usual case is that it is a smooth function
of " that can be expanded in a Taylor series:

�ð"Þ ’ �ð�Þ þ ð"� �Þ
@�ð�Þ

@�
þOðð"� �Þ2Þ ð1:8:5:7Þ

� ¼ e2�ð�Þ ð1:8:5:8Þ

S ¼
�3k2BT

3e

@

@�
ln½�ð�Þ�: ð1:8:5:9Þ

The Seebeck coefficient has a linear dependence upon
temperature. The coefficient of this term depends upon the
energy variations in �ð"Þ at the chemical potential. In most
metals, a linear dependence upon temperature is observed (e.g.
Rowe, 1995), particularly at high temperature. This linearity is
found when one simple criterion is satisfied: that the function
�ð"Þ has a smooth dependence upon energy near the chemical
potential.

Any deviation from linear behaviour in the Seebeck coefficient
implies that the function �ð"Þ has a more complicated behaviour
near the chemical potential. Here we review several possible
shapes. One is a simple Lorentzian peak:

� ¼ 1þ C
�2

ð"� �� "0Þ
2
þ �2

: ð1:8:5:10Þ
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Fig. 1.8.5.1. The Seebeck coefficient S in units of S0 ¼ kB=e for �ð"Þ
containing a Lorentzian peak. The values of S increase as the resonance
energy E0 increases away from the chemical potential.
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The peak of the Lorentzian is at "0 and the width is �. Fig. 1.8.5.1
shows the Seebeck coefficient calculated with this functional
form. We arbitrarily took � ¼ kBT� and T� ¼ 100 K. The four
curves are for "0=kB ¼ 10, 30, 100 and 300 K, and the larger "0 has
the larger Seebeck coefficient. All of the curves have a broad
peak as a function of temperature. If "0 ¼ 0, then S ¼ 0, since the
integrand is an odd function of ð"� �Þ. The vertical scale is S=S0
where S0 ¼ kB=e = 86.17 mV K�1. We see from Fig. 1.8.5.1 that it
is difficult to get values of S=S0 very much larger than unity.

Another example is that of mixed-valence materials with f
electrons. The f shells make electron states of narrow energy,
which are approximated as Lorentzians. In this case, �ð"Þ equals
the inverse of the right-hand side of (1.8.5.10). The argument for
this is that 1=�ð"Þ is proportional to the right-hand side of
(1.8.5.10). Since � / �, it contains the inverse of (1.8.5.10).
Interestingly enough, plots of the Seebeck coefficient by Jaccard
& Sierro (1982) for this case also contain broad peaks in energy,
where S=S0 has a maximum of about unity. In this case, a proper
calculation includes the fact that both C and � are functions of
temperature. For a review, see Mahan (1997).

We give these examples of the Seebeck coefficient because
they are the cases that occur most often. In many metals, the
Seebeck coefficient is either linear with temperature or has broad
peaks. The broad peaks are due to structure in � near the
chemical potential. This structure is usually due either to varia-
tions in the density of states or in the electron lifetime.

In insulators, the Seebeck coefficient can become relatively
large. The exact value depends upon the energy gap, the
temperature and the density of impurities. This example is
treated in many references, e.g. Goldsmid (1986) and Rowe
(1995).

1.8.6. Glossary

T temperature (K)
J current density (A m�2)
JQ heat current (W m�2)
r electrical conductivity (S m�1)
� electrical resistivity
K thermal conductivity (W m�1 K�1)
E electric field (V m�1)
S Seebeck coefficient (V K�1)
kB Boltzmann constant
RH Hall constant
m� effective mass of the electron
� lifetime of the electron
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1.9. Atomic displacement parameters

By W. F. Kuhs

1.9.1. Introduction

Atomic thermal motion and positional disorder is at the origin of
a systematic intensity reduction of Bragg reflections as a function
of scattering vectorQ. The intensity reduction is given as the well
known Debye–Waller factor (DWF); the DWF may be of purely
thermal origin (thermal DWF or temperature factor) or it may
contain contributions of static atomic disorder (static DWF). As
atoms of chemically or isotopically different elements behave
differently, the individual atomic contributions to the global
DWF (describing the weakening of Bragg intensities) vary.
Formally, one may split the global DWF into the individual
atomic contributions. Crystallographic experiments usually
measure the global weakening of Bragg intensities and the
individual contributions have to be assessed by adjusting indivi-
dual atomic parameters in a least-squares refinement.

The theory of lattice dynamics (see e.g. Willis & Pryor, 1975)
shows that the atomic thermal DWF T� is given by an exponential
of the form

T�ðQÞ ¼ hexpðiQu�Þi; ð1:9:1:1Þ

where u� are the individual atomic displacement vectors and the
brackets symbolize the thermodynamic (time–space) average
over all contributions u�. In the harmonic (Gaussian) approx-
imation, (1.9.1.1) reduces to

T�ðQÞ ¼ exp½ð�1=2ÞhðQu�Þ
2
i�: ð1:9:1:2Þ

The thermodynamically averaged atomic mean-square displa-
cements (of thermal origin) are given as Uij ¼ huiuji, i.e. they are
the thermodynamic average of the product of the displacements
along the i and j coordinate directions. Thus (1.9.1.2) may be
expressed with Q ¼ 4�hjaj in a form more familiar to the crys-
tallographer as

T�ðhÞ ¼ expð�2�2hija
ijhjja

jjUij
�Þ; ð1:9:1:3Þ

where hi are the covariant Miller indices, ai are the reciprocal-cell
basis vectors and 1 � �; ’ � 3. Here and in the following, tensor
notation is employed; implicit summation over repeated indices is
assumed unless stated otherwise. For computational convenience
one often writes

T�ðhÞ ¼ expð�hihj�
ij
�Þ ð1:9:1:4Þ

with �ij� ¼ 2�2jaijjajjUij
� (no summation). Both h and b are

dimensionless tensorial quantities; h transforms as a covariant
tensor of rank 1, b as a contravariant tensor of rank 2 (for details
of the mathematical notion of a tensor, see Chapter 1.1).

Similar formulations are found for the static atomic DWF S�,
where the average of the atomic static displacements �u� may
also be approximated [though with weaker theoretical justifica-
tion, see Kuhs (1992)] by a Gaussian distribution:

S�ðQÞ ¼ exp½ð�1=2ÞhðQ�u�Þ
2
i�: ð1:9:1:5Þ

As in equation (1.9.1.3), the static atomic DWF may be
formulated with the mean-square disorder displacements
�Uij ¼ h�ui�uji as

S�ðhÞ ¼ expð�2�2hija
ijhjja

jj�Uij
�Þ: ð1:9:1:6Þ

It is usually difficult to separate thermal and static contribu-
tions, and it is often wise to use the sum of both and call them
simply (mean-square) atomic displacements. A separation may
however be achieved by a temperature-dependent study of
atomic displacements. A harmonic diagonal tensor component of
purely thermal origin extrapolates linearly to zero at 0 K; zero-
point motion causes a deviation from this linear behaviour at low
temperatures, but an extrapolation from higher temperatures
(where the contribution from zero-point motion becomes negli-
gibly small) still yields a zero intercept. Any positive intercept in
such extrapolations is then due to a (temperature-independent)
static contribution to the total atomic displacements. Care has to
be taken in such extrapolations, as pronounced anharmonicity
(frequently encountered at temperatures higher than the Debye
temperature) will change the slope, thus invalidating the linear
extrapolation (see e.g. Willis & Pryor, 1975). Owing to the diffi-
culty in separating thermal and static displacements in a standard
crystallographic structure analysis, a subcommittee of the IUCr
Commission on Crystallographic Nomenclature has recom-
mended the use of the term atomic displacement parameters
(ADPs) for Uij and �ij (Trueblood et al., 1996).

1.9.2. The atomic displacement parameters (ADPs)

One notes that in the Gaussian approximation, the mean-square
atomic displacements (composed of thermal and static contri-
butions) are fully described by six coefficients �ij, which trans-
form on a change of the direct-lattice base (according to
ak ¼ Akiai) as

�kl ¼ AkiAlj�
ij: ð1:9:2:1Þ

This is the transformation law of a tensor (see Section 1.1.3.2);
the mean-square atomic displacements are thus tensorial prop-
erties of an atom �. As the tensor is contravariant and in general
is described in a (non-Cartesian) crystallographic basis system, its
indices are written as superscripts. It is convenient for compar-
ison purposes to quote the dimensionless coefficients �ij as their
dimensioned representations Uij.

In the harmonic approximation, the atomic displacements are
fully described by the fully symmetric second-order tensor given
in (1.9.2.1). Anharmonicity and disorder, however, cause devia-
tions from a Gaussian distribution of the atomic displacements
around the atomic position. In fact, anharmonicity in the thermal
motion also provokes a shift of the atomic position as a function
of temperature. A generalized description of atomic displace-
ments therefore also involves first-, third-, fourth- and even
higher-order displacement terms. These terms are defined by a
moment-generating functionM(Q) which expresses hðexpðiQu�Þi
in terms of an infinite number of moments; for a Gaussian
distribution of displacement vectors, all moments of order> 2 are
identically equal to zero. Thus

MðQÞ ¼ hexpðiQu�Þi ¼
P1

N¼0

ðiN=N!ÞhðQu�Þ
N
i: ð1:9:2:2Þ

The moments hðQu�Þ
N
i of order N may be expressed in terms

of cumulants hðQu�Þ
N
icum by the identity

P1

N¼0

ð1=N!ÞhðQu�Þ
N
i � exp

P1

N¼1

ð1=N!ÞhðQu�Þ
N
icum: ð1:9:2:3Þ
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Separating the powers ofQ and u in (1.9.2.2) and (1.9.2.3), one
may obtain expressions involving moments � and cumulants k
explicitly as

MðQÞ ¼
P1

N¼0

ðiN=N!ÞQiQjQk . . .Qn�
ijk...n ð1:9:2:4Þ

and the cumulant-generating function K(Q) as

KðQÞ ¼ exp½MðQÞ� ¼
P1

N¼1

ðIN=N!ÞQiQjQk . . .Qnk
ijk...n: ð1:9:2:5Þ

The indices i; j; k; . . . ; n run in three-dimensional space from 1 to
3 and refer to the crystallographic basis system. Moments may be
expressed in terms of cumulants (and vice versa); the transfor-
mation laws are given in IT B (2001), equation (1.2.12.9) and
more completely in Kuhs (1988, 1992). The moment- and
cumulant-generating functions are two ways of expressing the
Fourier transform of the atomic probability density function
(p.d.f.). If all terms up to infinity are taken into account, M(Q)
and K(Q) are [by virtue of the identity expðiQÞ ¼

P
ðiQÞ

N=N!]
identical. For a finite series, however, the cumulants of order N
carry implicit information on contributions of order N2, N3 etc. in
contrast to the moments. Equations (1.9.2.4) and (1.9.2.5) are
useful, as they can be entered directly in a structure-factor
equation (see Chapter 1.2 in IT B); however, the moments (and
thus the cumulants) may also be calculated directly from the
atomic p.d.f. as

�ijk...n ¼
R
uiujuk . . . un p:d:f:ðuÞ du: ð1:9:2:6Þ

The real-space expression of the p.d.f. obtained from a Fourier
transform of (1.9.2.5) is called an Edgeworth series expansion. If
one assumes that the underlying atomic p.d.f. is close to a
Gaussian distribution, one may separate out the Gaussian
contributions to the moment-generating function as suggested by
Kuznetsov et al. (1960) and formulate a generating function for
quasimoments as

~MMðQÞ ¼ exp½ð1=2ÞhðQuÞ2i�
P1

N¼3

ðiN=N!ÞQiQjQk . . .Qn ~��
ijk...n:

ð1:9:2:7Þ

These quasimoments are especially useful in crystallographic
structure-factor equations, as they just modify the harmonic case.
The real-space expression of the p.d.f. obtained from a Fourier
transformation of (1.9.2.7) is called a Gram–Charlier series
expansion. Discussions of its merits as compared to the Edge-
worth series are given in Zucker & Schulz (1982a,b), Kuhs (1983,
1988, 1992) and Scheringer (1985).

1.9.2.1. Tensorial properties of (quasi)moments and cumulants

By separating the powers of Q and u, one obtains in equations
(1.9.2.4), (1.9.2.5) and (1.9.2.7) the higher-order displacement
tensors in the form of moments, cumulants or quasimoments,
which we shall denote in a general way as bijk...; note that bij is
identical to �ij. They transform on a change of the direct-lattice
base according to

bpqr... ¼ ApiAqjArk . . . b
ijk...: ð1:9:2:8Þ

The higher-order displacement tensors are fully symmetric
with respect to the interchange of any of their indices; in the
nomenclature of Jahn (1949), their tensor symmetry thus is [bN].
The number of independent tensor coefficients depends on the
site symmetry of the atom and is tabulated in Sirotin (1960) as
well as in Tables 1.9.3.1–1.9.3.6. For triclinic site symmetry, the
numbers of independent tensor coefficients are 1, 3, 6, 10, 15, 21
and 28 for the zeroth to sixth order. Symmetry may further

reduce the number of independent coefficients, as discussed in
Section 1.9.3.

In many least-squares programs for structure refinement, the
atomic displacement parameters are used in a dimensionless form
[as given in (1.9.1.4) for the harmonic case]. These dimensionless
quantities may be transformed according to

Uijk...n ¼ ½N!=ð2�ÞN�bijk...njaijjajjjakj . . . janj ð1:9:2:9Þ

(no summation) into quantities of units ÅN (or pmN); ai etc. are
reciprocal-lattice vectors. Nowadays, the published structural
results usually quote Uij for the second-order terms; it would be
good practice to publish only dimensioned atomic displacements
for the higher-order terms as well.

1.9.2.2. Contraction, expansion and invariants of atomic displa-
cement tensors

Anisotropic or higher-order atomic displacement tensors may
contain a wealth of information. However, this information
content is not always worth publishing in full, either because the
physical meaning is not of importance or the significance is only
marginal. Quantities of higher significance or better clarity are
obtained by an operation known as tensor contraction. Likewise,
lower-order terms may be expanded to higher order to impose
certain (chemically implied) symmetries on the displacement
tensors or to provide initial parameters for least-squares refine-
ments. A contraction is obtained by multiplying the contravariant
tensor components (referring to the real-space basis vectors) with
the covariant components of the real-space metric tensor gij; for
further details on tensor contraction, see Section 1.1.3.3.3. In the
general case of atomic displacement tensors of (even) rank N,
one obtains

NI0 ¼ gijgkl . . . gmnb
ijkl...mn: ð1:9:2:10Þ

NI0 is called the trace of a tensor of rank N and is a scalar
invariant; it is given in units of lengthN and provides an easily
interpretable quantity: In the case of 4I0, a positive sign indicates
that the corresponding (real-space) p.d.f. is peaked, a negative
sign indicates flatness of the p.d.f. The larger NI0, the stronger the
deviation from a Gaussian p.d.f. provoked by the atomic displa-
cements of orderN. The frequently quoted isotropic equivalentU
value Ueq is also obtained by this contraction process. Noting that
Uij may be expressed in terms of bij (¼ �ij) according to (1.9.2.9)
and that the trace of the matrix U is given as TrðUÞ ¼ ð2�2Þ

�1:2
I0,

one obtains

Ueq ¼ ð1=3Þð2�2Þ
�1
gijb

ij: ð1:9:2:11Þ

Note that in all non-orthogonal bases, TrðUÞ 6¼ U11 þ U22 þ U33.
In older literature, the isotropic equivalent displacement para-
meter is often quoted as Beq, which is related to Ueq through the
identity Beq ¼ 8�2Ueq. The use of Beq is now discouraged
(Trueblood et al., 1996). Higher atomic displacement tensors of
odd rank N may be reduced to simple vectors v by the following
contraction:

Nvi ¼ gjkglm . . . gnpb
ijklm...np: ð1:9:2:12Þ

where v1 is the 23 trace etc. Nvi is sometimes called a vector
invariant, as it can be uniquely assigned to the tensor in question
(Pach & Frey, 1964) and its units are lengthN�1. The vector v is
oriented along the line of maximum projected asymmetry for a
given atom and vanishes for atoms with positional parameters
fixed by symmetry; Johnson (1970) has named a vector closely
related to 3v the vector of skew divergence. The calculation of v is
useful as it gives the direction of the largest antisymmetric
displacements contained in odd-rank higher-order thermal-
motion tensors.
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Table 1.9.3.1. Site-symmetry table giving key to Tables 1.9.3.2 to 1.9.3.6 for restrictions on the symmetry of various thermal-motion tensors

Hex denotes hexagonal axes.

Point symmetry at special position
Position
x; y; z

Cross-reference for tensor tables

Symmetry axes Point-group generators 1B 1C 1D 1E 1F

m3m 4½0; 0; 1� 3½1; 1; 1� �11 0; 0; 0 B1 C0 D1 E0 F1
�443m �44½0; 0; 1� 3½1; 1; 1� 0; 0; 0 B1 C1 D1 E1 F1
432 4½0; 0; 1� 3½1; 1; 1� 0; 0; 0 B1 C0 D1 E0 F1
m3 3½1; 1; 1� 2½0; 0; 1� �11 0; 0; 0 B1 C0 D1 E0 F2
23 3½1; 1; 1� 2½0; 0; 1� 0; 0; 0 B1 C1 D1 E1 F2
6=mmm Hex 6½0; 0; 1� 2½1; 0; 0� �11 0; 0; 0 B9 C0 D2 E0 F3
�66m2 Hex �66½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B9 C9 D2 E5 F3
�66m2 Hex �66½0; 0; 1� 2½1; 2; 0� 0; 0; 0 B9 C10 D2 E6 F3
6mm Hex 6½0; 0; 1� �22½1; 0; 0� 0; 0; z B9 C19 D2 E17 F3
622 Hex 6½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B9 C0 D2 E0 F4
6=m Hex 6½0; 0; 1� �11 0; 0; 0 B9 C0 D2 E0 F4
�66 Hex �66½0; 0; 1� 0; 0; 0 B9 C20 D2 E24 F4
6 Hex 6½0; 0; 1� 0; 0; z B9 C19 D2 E17 F4
4=mmm 4½0; 0; 1� 2½1; 0; 0] �11 0; 0; 0 B2 C0 D3 E0 F5
4=mmm 4½0; 1; 0� 2½0; 0; 1� �11 0; 0; 0 B3 C0 D4 E0 F6
4=mmm 4½1; 0; 0� 2½0; 1; 0� �11 0; 0; 0 B4 C0 D5 E0 F7
�442m �44½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B2 C1 D3 E7 F5
�442m �44½0; 0; 1� 2½1; 1; 0� 0; 0; 0 B2 C2 D3 E8 F5
�442m �44½0; 1; 0� 2½0; 0; 1� 0; 0; 0 B3 C1 D4 E9 F6
�442m �44½0; 1; 0� 2½1; 0; 1� 0; 0; 0 B3 C3 D4 E10 F6
�442m �44½1; 0; 0� 2½0; 1; 0� 0; 0; 0 B4 C1 D5 E11 F7
�442m �44½1; 0; 0� 2½0; 1; 1� 0; 0; 0 B4 C4 D5 E12 F7
4mm 4½0; 0; 1� �22½1; 0; 0� 0; 0; z B2 C13 D3 E25 F5
4mm 4½0; 1; 0� �22½0; 0; 1� 0; y; 0 B3 C14 D4 E26 F6
4mm 4½1; 0; 0� �22½0; 1; 0� x; 0; 0 B4 C15 D5 E27 F7
422 4½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B2 C0 D3 E2 F5
422 4½0; 1; 0� 2½0; 0; 1� 0; 0; 0 B3 C0 D4 E3 F6
422 4½1; 0; 0� 2½0; 1; 0] 0; 0; 0 B4 C0 D5 E4 F7
4=m 4½0; 0; 1� �11 0; 0; 0 B2 C0 D12 E0 F14
4=m 4½0; 1; 0] �11 0; 0; 0 B3 C0 D13 E0 F15
4=m 4½1; 0; 0� �11 0; 0; 0 B4 C0 D14 E0 F16
�44 �44½0; 0; 1� 0; 0; 0 B2 C16 D12 E28 F14
�44 �44½0; 1; 0] 0; 0; 0 B3 C17 D13 E29 F15
�44 �44½1; 0; 0� 0; 0; 0 B4 C18 D14 E30 F16
4 4½0; 0; 1� 0; 0; z B2 C13 D12 E31 F14
4 4½0; 1; 0� 0; y; 0 B3 C14 D13 E32 F15
4 4½1; 0; 0� x; 0; 0 B4 C15 D14 E33 F16
�33m 3½1; 1; 1� 2½1; �11; 0� �11 0; 0; 0 B5 C0 D6 E0 F8
�33m 3½1; 1; �11� 2½1; �11; 0� �11 0; 0; 0 B6 C0 D7 E0 F9
�33m 3½1; �11; 1� 2½1; 1; 0� �11 0; 0; 0 B7 C0 D8 E0 F10
�33m 3½�11; 1; 1� 2½1; 1; 0� �11 0; 0; 0 B8 C0 D9 E0 F11
�33m Hex 3½0; 0; 1� 2½1; 0; 0� �11 0; 0; 0 B9 C0 D10 E0 F12
�33m Hex 3½0; 0; 1� 2½1; 2; 0� �11 0; 0; 0 B9 C0 D11 E0 F13
3m 3½1; 1; 1� �22½1; �11; 0� x; x; x B5 C33 D6 E34 F8
3m 3½1; 1; �11] �22½1; �11; 0� x; x; �xx B6 C34 D7 E35 F9
3m 3½1; �11; 1� �22½1; 1; 0� x; �xx; x B7 C35 D8 E36 F10
3m 3½�11; 1; 1� �22½1; 1; 0� �xx; x; x B8 C36 D9 D37 F11
3m Hex 3½0; 0; 1� �22½1; 0; 0� 0; 0; z B9 C37 D10 E38 F12
3m Hex 3½0; 0; 1� �22½1; 2; 0� 0; 0; z B9 C38 D11 E39 F13
32 3½1; 1; 1� 2½1; �11; 0� 0; 0; 0 B5 C5 D6 E13 F8
32 3½1; 1; �11� 2½1; �11; 0� 0; 0; 0 B6 C6 D7 E14 F9
32 3½1; �11; 1� 2½1; 1; 0� 0; 0; 0 B7 C7 D8 E15 F10
32 3½�11; 1; 1� 2½1; 1; 0� 0; 0; 0 B8 C8 D9 E16 F11
32 Hex 3½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B9 C9 D10 E5 F12
32 Hex 3½0; 0; 1� 2½1; 2; 0� 0; 0; 0 B9 C10 D11 E6 F13
�33 �33½1; 1; 1� 0; 0; 0 B5 C0 D15 E0 F17
�33 �33½1; 1; �11� 0; 0; 0 B6 C0 D16 E0 F18
�33 �33½1; �11; 1� 0; 0; 0 B7 C0 D17 E0 F19
�33 �33½�11; 1; 1� 0; 0; 0 B8 C0 D18 E0 F20
�33 Hex �33½0; 0; 1� 0; 0; 0 B9 C0 D19 E0 F21
3 3½1; 1; 1� x; x; x B5 C54 D15 E58 F17
3 3½1; 1; �11� x; x; �xx B6 C55 D16 E59 F18
3 3½1; �11; 1� x; �xx; x B7 C56 D17 E60 F19
3 Hex 3½�11; 1; 1� �xx; x; x B8 C57 D18 E61 F20
3 3½0; 0; 1� 0; 0; z B9 C58 D19 E62 F21
mmm 2½0; 0; 1� 2½1; 0; 0� �11 0; 0; 0 B10 C0 D20 E0 F22
mmm 2½0; 0; 1� 2½1; 1; 0� �11 0; 0; 0 B11 C0 D21 E0 F23
mmm 2½0; 1; 0� 2½1; 0; 1� �11 0; 0; 0 B12 C0 D22 E0 F24
mmm 2½1; 0; 0� 2½0; 1; 1� �11 0; 0; 0 B13 C0 D23 E0 F25
mmm Hex 2½0; 0; 1� 2½1; 0; 0� �11 0; 0; 0 B14 C0 D24 E0 F26
mmm Hex 2½0; 0; 1� 2½1; 1; 0� �11 0; 0; 0 B11 C0 D21 E0 F23
mmm Hex 2½0; 0; 1� 2½0; 1; 0� �11 0; 0; 0 B15 C0 D25 E0 F27
mm 2½0; 0; 1� �22½1; 0; 0� 0; 0; z B10 C21 D20 E40 F22
mm 2½0; 0; 1� �22½1; 1; 0� 0; 0; z B11 C22 D21 E41 F23
mm 2½0; 1; 0� �22½0; 0; 1� 0; y; 0 B10 C23 D20 E42 F22
mm 2½0; 1; 0� �22½1; 0; 1� 0; y; 0 B12 C24 D22 E43 F24
mm 2½1; 0; 0� �22½0; 0; 1� x; 0; 0 B10 C25 D20 E44 F22
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Table 1.9.3.1 (cont.)

Point symmetry at special position
Position
x; y; z

Cross-reference for tensor tables

Symmetry axes Point-group generators 1B 1C 1D 1E 1F

mm 2½1; 0; 0� �22½0; 1; 1� x; 0; 0 B13 C26 D23 E45 F25
mm 2½1; 1; 0� �22½0; 0; 1� x; x; 0 B11 C27 D21 E46 F23
mm 2½1; �11; 0� �22½0; 0; 1� x; �xx; 0 B11 C28 D21 E47 F23
mm 2½1; 0; 1� �22½0; 1; 0� x; 0; x B12 C29 D22 E48 F24
mm 2½1; 0; �11� �22½0; 1; 0� x; 0; �xx B12 C30 D22 E49 F24
mm 2½0; 1; 1� �22½1; 0; 0� 0; y; y B13 C31 D23 E50 F25
mm 2½0; 1; �11� �22½1; 0; 0� 0; y; �yy B13 C32 D23 E51 F25
mm Hex 2½0; 0; 1� �22½1; 0; 0� 0; 0; z B14 C40 D24 E52 F26
mm Hex 2½0; 0; 1� �22½1; 1; 0� 0; 0; z B11 C22 D21 E41 F23
mm Hex 2½0; 0; 1� �22½0; 1; 0� 0; 0; z B15 C39 D25 E53 F27
mm Hex 2½1; 0; 0� �22½0; 0; 1� x; 0; 0 B14 C41 D24 E54 F26
mm Hex 2½2; 1; 0� �22½0; 0; 1� 2x; x; 0 B15 C42 D25 E55 F27
mm Hex 2½1; 1; 0� �22½0; 0; 1� x; x; 0 B11 C27 D21 E46 F23
mm Hex 2½1; 2; 0� �22½0; 0; 1� x; 2x; 0 B14 C43 D24 E56 F26
mm Hex 2½0; 1; 0� �22½0; 0; 1� 0; y; 0 B15 C44 D25 E57 F27
mm Hex 2½1; �11; 0� �22½0; 0; 1� x; �xx; 0 B11 C28 D21 E47 F23
222 2½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B10 C1 D20 E18 F22
222 2½0; 0; 1� 2½1; 1; 0� 0; 0; 0 B11 C2 D21 E19 F23
222 2½0; 1; 0� 2½1; 0; 1� 0; 0; 0 B12 C3 D22 E20 F24
222 2½1; 0; 0� 2½0; 1; 1� 0; 0; 0 B13 C4 D23 E21 F25
222 Hex 2½0; 0; 1� 2½1; 0; 0� 0; 0; 0 B14 C11 D24 E22 F26
222 Hex 2½0; 0; 1� 2½1; 1; 0� 0; 0; 0 B11 C2 D21 E19 F23
222 Hex 2½0; 0; 1� 2½0; 1; 0] 0; 0; 0 B15 C12 D25 E23 F27
2=m 2½0; 0; 1� �11 0; 0; 0 B16 C0 D26 E0 F28
2=m 2½0; 1; 0� �11 0; 0; 0 B17 C0 D27 E0 F29
2=m 2½1; 0; 0� �11 0; 0; 0 B18 C0 D28 E0 F30
2=m 2½1; 1; 0� �11 0; 0; 0 B19 C0 D29 E0 F31
2=m 2½1; �11; 0� �11 0; 0; 0 B20 C0 D30 E0 F32
2=m 2½1; 0; 1� �11 0; 0; 0 B21 C0 D31 E0 F33
2=m 2½1; 0; �11� �11 0; 0; 0 B22 C0 D32 E0 F34
2=m 2½0; 1; 1� �11 0; 0; 0 B23 C0 D33 E0 F35
2=m 2½0; 1; �11� �11 0; 0; 0 B24 C0 D34 E0 F36
2=m Hex 2½0; 0; 1� �11 0; 0; 0 B16 C0 D26 E0 F28
2=m Hex 2½1; 0; 0� �11 0; 0; 0 B25 C0 D35 E0 F37
2=m Hex 2½2; 1; 0� �11 0; 0; 0 B26 C0 D36 E0 F38
2=m Hex 2½1; 1; 0� �11 0; 0; 0 B19 C0 D29 E0 F31
2=m Hex 2½1; 2; 0� �11 0; 0; 0 B27 C0 D37 E0 F39
2=m Hex 2½0; 1; 0� �11 0; 0; 0 B28 C0 D38 E0 F40
2=m Hex 2½1; �11; 0� �11 0; 0; 0 B20 C0 D30 E0 F32
m �22½0; 1; 0� x; 0; z B17 C64 D27 E77 F29
m �22½1; 0; 0� 0; y; z B18 C65 D28 E78 F30
m �22½1; 1; 0� x; �xx; z B19 C66 D29 E79 F31
m �22½1; �11; 0� x; x; z B20 C67 D30 E80 F32
m �22½1; 0; 1� x; y; �xx B21 C68 D31 E81 F33
m �22½1; 0; �11� x; y; x B22 C69 D32 E82 F34
m �22½0; 1; 1� x; y; �yy B23 C70 D33 E83 F35
m �22½0; 1; �11� x; y; y B24 C71 D34 E84 F36
m Hex �22½0; 0; 1� x; y; 0 B16 C63 D26 E76 F28
m Hex �22½1; 0; 0� x; 2x; z B25 C72 D35 E85 F37
m Hex �22½2; 1; 0� 0; y; z B26 C73 D36 E86 F38
m Hex �22½1; 1; 0� x; �xx; z B19 C66 D29 E79 F31
m Hex �22½1; 2; 0� x; 0; z B27 C74 D37 E87 F39
m Hex �22½0; 1; 0� 2x; x; z B28 C75 D38 E88 F40
m Hex �22½1; �11; 0� x; x; z B20 C67 D30 E80 F32
2 2½0; 0; 1� 0; 0; z B16 C45 D26 E63 F28
2 2½0; 1; 0� 0; y; 0 B17 C46 D27 E64 F29
2 2½1; 0; 0� x; 0; 0 B18 C47 D28 E65 F30
2 2½1; 1; 0� x; x; 0 B19 C48 D29 E66 F31
2 2½1; �11; 0� x; �xx; 0 B20 C49 D30 E67 F32
2 2½1; 0; 1� x; 0; x B21 C50 D31 E68 F33
2 2½1; 0; �11� x; 0; �xx B22 C51 D32 E69 F34
2 2½0; 1; 1� 0; y; y B23 C52 D33 E70 F35
2 2½0; 1; �11� 0; y; �yy B24 C53 D34 E71 F36
2 Hex 2½0; 0; 1� 0; 0; z B16 C45 D26 E63 F28
2 Hex 2½1; 0; 0� x; 0; 0 B25 C59 D35 E72 F37
2 Hex 2½2; 1; 0� 2x; x; 0 B26 C60 D36 E73 F38
2 Hex 2½1; 1; 0� x; x; 0 B19 C48 D29 E66 F31
2 Hex 2½1; 2; 0� x; 2x; 0 B27 C61 D37 E74 F39
2 Hex 2½0; 1; 0� 0; y; 0 B28 C62 D38 E75 F40
2 Hex 2½1; �11; 0� x; �xx; 0 B20 C49 D30 E67 F32
�11 �11 0; 0; 0 B29 C0 D39 E0 F41
�11 Hex �11 0; 0; 0 B29 C0 D39 E0 F41
1 1 x; y; z B29 C76 D39 E89 F41
1 Hex 1 x; y; z B29 C76 D39 E89 F41
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Atomic displacement tensors may also be partially contracted
or expanded; rules for these operations are found in Kuhs (1992).

1.9.3. Site-symmetry restrictions

Atoms (or molecules) situated on special positions of a space
group exhibit (time–space averaged) probability distributions
with a symmetry corresponding to the site symmetry. The p.d.f.’s
describing these distributions contain the atomic displacement
tensors. The displacement tensors enter into the structure-factor
equation, which is the Fourier transform of the scattering density
of the unit cell, via the atomic Debye–Waller factor, which is the
Fourier transform of the atomic p.d.f. (see Chapter 1.2 of IT B).
As discussed above, the tensor is fully symmetric with respect to
the interchange of indices (inner symmetry). The site-symmetry
restrictions (outer symmetry) of atomic displacement tensors of
rank 2 are given in Chapter 8.3 of IT C (1999), where the tabu-
lation of the constraints on the tensor coefficients are quoted for
every Wyckoff position in each space group. Here the constraints
for atomic displacement tensors of ranks 2, 3, 4, 5 and 6 for any
crystallographic site symmetry are tabulated; some restrictions
for tensors of rank 7 and 8 can be found in Kuhs (1984). To use
these tables, first the site symmetry has to be identified. The site
symmetries are given in IT A (2002) for the first equipoint of
every Wyckoff position in each space group. The tabulated
constraints may be introduced in least-squares refinements (some
programs have the constraints of second-order displacement
tensor components already imbedded). It should also be
remembered that, due to arbitrary phase shifts in the structure-
factor equation in a least-squares refinement of a noncen-
trosymmetric structure, for all odd-order tensors one coefficient
corresponding to a nonzero entry for the corresponding acentric
space group has to be kept fixed (in very much the same way as
for positional parameters); e.g. the term b123 has to be kept fixed
for one atom for all refinements in all space groups belonging to
the point groups �443m or 23, while all other terms bijk are allowed
to vary freely for all atoms (Hazell & Willis, 1978). Even if this is
strictly true only for the Edgeworth-series expansion, it also holds
in practice for the Gram–Charlier case (Kuhs, 1992).

1.9.3.1. Calculation procedures

Levy (1956) and Peterse & Palm (1966) have given algorithms
for determining the constraints on anisotropic displacement
tensor coefficients, which are also applicable to higher-order
tensors. The basic idea is that a tensor transformation according
to the symmetry operation of the site symmetry under consid-
eration (represented by the point-group generators) should leave
the tensor unchanged. For symmetries higher than the identity 1,
this only holds true if some of the tensor coefficients are either
zero or interrelated. The constraints may be obtained explicitly
from solving the homogeneous system of equations of tensor
transformations (with one equation for each coefficient).

1.9.3.2. Key to tables

After identification of the site symmetry of the atomic site
under consideration, the entry point (cross-reference) for the
tabulation of the displacement tensors of a given rank (Tables
1.9.3.2–1.9.3.6) needs to be looked up in Table 1.9.3.1. The line
entry corresponding to the cross-reference number in Tables
1.9.3.2–1.9.3.6 holds the information on the constraints imposed
by the outer symmetry on the tensor coefficients. The order of
assignment of independency of the coefficients is as for increasing
indices of the coefficients (first 1, then 2, then 3, where 1, 2 and 3
refer to the three crystallographic axes), except for the unmixed
coefficients, which have highest priority in every case; this order
of priority is the same as the order in the tables reading from left
to right. For better readability, each coefficent is assigned a letter
(or 0 if the component is equal to zero by symmetry). Constraints

thus read as algebraic relations between letter variables. Some
more complicated constraint relations are quoted as footnotes to
the tables.

1.9.4. Graphical representation

Atomic displacement tensors (ADTs) described by their tensor
coefficients may be represented graphically to clarify their
physical meaning. Different graphical representations exist and
will be discussed separately for second- and higher-order tensors
in the following.

1.9.4.1. Representation surfaces of second-order ADTs

Numerous examples of graphical representations of thermal-
motion tensors (or, more generally speaking, atomic displace-
ment tensors) have appeared in the literature since the early days
of the computer program ORTEP written by C. K. Johnson
(1965), yet the equal-probability surface usually displayed is only
one of the possible representations of a second-order atomic
displacement tensor. Representation surfaces are usually calcu-
lated in a Cartesian coordinate system. Accordingly, one has to
transform the second-order ADT b into UC described in a
Cartesian frame:

UC ¼ ð2�2Þ
�1FTbF: ð1:9:4:1Þ

The transformation matrix depends on the choice of Cartesian
axes ei with respect to the reciprocal-cell axes ai (or equally well
with respect to the direct axes ai). Choosing e1 along a

1, e2 in the
a1a2 plane and e3 completing the right-handed set, one obtains for
the transformation matrix F (see also Willis & Pryor, 1975)

F ¼

1=a1 a2 cos �� a3 cos ��

0 a2 sin �� �a3 sin �� cos �
0 0 1=a3

0

@

1

A: ð1:9:4:2Þ

Clearly, there is an infinite number of possible choices for
relating a Cartesian frame to a crystallographic coordinate
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Table 1.9.3.2. Symmetry restrictions on coefficients in second-order tensors

Cross-
reference

No. of
independent
variables

Symbols and coefficient indices

A B C D E F
(1) (2) (3) (1) (1) (2)
(1) (2) (3) (2) (3) (3)

B1 1 A A A 0 0 0
B2 2 A A C 0 0 0
B3 2 A B A 0 0 0
B4 2 A B B 0 0 0
B5 2 A A A D D D
B6 2 A A A D �D �D
B7 2 A A A D �D D
B8 2 A A A D D �D
B9 2 A A C A/2 0 0
B10 3 A B C 0 0 0
B11 3 A A C D 0 0
B12 3 A B A 0 E 0
B13 3 A B B 0 0 F
B14 3 A B C B/2 0 0
B15 3 A B C A/2 0 0
B16 4 A B C D 0 0
B17 4 A B C 0 E 0
B18 4 A B C 0 0 F
B19 4 A A C D E �E
B20 4 A A C D E E
B21 4 A B A D E �D
B22 4 A B A D E D
B23 4 A B B D �D F
B24 4 A B B D D F
B25 4 A B C B/2 E 2E
B26 4 A B C A/2 0 F
B27 4 A B C B/2 E 0
B28 4 A B C A/2 E E/2
B29 6 A B C D E F
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Table 1.9.3.3. Symmetry restrictions on coefficients in third-rank symmetric polar tensors

Cross-
reference

No. of
independent
variables

Symbols and coefficient indices

A B C D E F G H I J
(1) (2) (3) (1) (1) (1) (1) (2) (2) (1)

(1) (2) (3) (1) (2) (1) (3) (2) (3) (2)

(1) (2) (3) (2) (2) (3) (3) (3) (3) (3)

C0 0 0 0 0 0 0 0 0 0 0 0
C1 1 0 0 0 0 0 0 0 0 0 J
C2 1 0 0 0 0 0 F 0 �F 0 0
C3 1 0 0 0 D 0 0 0 0 �D 0
C4 1 0 0 0 0 E 0 �E 0 0 0
C5 1 0 0 0 D �D �D D D �D 0
C6 1 0 0 0 D �D D D �D �D 0
C7 1 0 0 0 D D D �D �D �D 0
C8 1 0 0 0 D D �D �D D �D 0
C9 1 0 0 0 D D 0 0 0 0 0
C10 1 A �A 0 A/2 �A/2 0 0 0 0 0
C11 1 0 0 0 0 0 F 0 0 0 F
C12 1 0 0 0 0 0 0 0 H 0 H
C13 2 0 0 C 0 0 F 0 F 0 0
C14 2 0 B 0 D 0 0 0 0 D 0
C15 2 A 0 0 0 E 0 E 0 0 0
C16 2 0 0 0 0 0 F 0 �F 0 J
C17 2 0 0 0 D 0 0 0 0 �D J
C18 2 0 0 0 0 E 0 �E 0 0 J
C19 2 0 0 C 0 0 F 0 F 0 F/2
C20 2 A �A 0 D D �A 0 0 0 0 0
C21 3 0 0 C 0 0 F 0 H 0 0
C22 3 0 0 C 0 0 F 0 F 0 J
C23 3 0 B 0 D 0 0 0 0 I 0
C24 3 0 B 0 D 0 0 0 0 D J
C25 3 A 0 0 0 E 0 G 0 0 0
C26 3 A 0 0 0 E 0 E 0 0 J
C27 3 A A 0 D D 0 G 0 G 0
C28 3 A �A 0 D �D 0 G 0 �G 0
C29 3 A 0 A 0 E F F E 0 0
C30 3 A 0 �A 0 E F �F �E 0 0
C31 3 0 B B D 0 D 0 H H 0
C32 3 0 B �B D 0 �D 0 H �H 0
C33 3 A A A D D D D D D J
C34 3 A A �A D D �D D �D D J
C35 3 A �A A D �D �D �D �D D J
C36 3 A �A �A D �D D �D D D J
C37 3 A �A C A/2 �A/2 F 0 F 0 F/2
C38 3 0 0 C D D F 0 F 0 F/2
C39 3 0 0 C 0 0 F 0 H 0 F/2
C40 3 0 0 C 0 0 F 0 H 0 H/2
C41 3 A 0 0 D D 0 G 0 0 0
C42 3 A B 0 A/2 A/6 + 2B/3 0 G 0 G/2 0
C43 3 A B 0 B/6 + 2A/3 B/2 0 G 0 2G 0
C44 3 0 B 0 D D 0 0 0 I 0
C45 4 0 0 C 0 0 F 0 H 0 J
C46 4 0 B 0 D 0 0 0 0 I J
C47 4 A 0 0 0 E 0 G 0 0 J
C48 4 A A 0 D D F G �F G 0
C49 4 A �A 0 D �D F G �F �G 0
C50 4 A 0 A D E F F E �D 0
C51 4 A 0 �A D E F �F �E �D 0
C52 4 0 B B D E D �E H H 0
C53 4 0 B �B D E �D �E H �H 0
C54 4 A A A D E E D D E J
C55 4 A A �A D E �E D �D E J
C56 4 A �A A D E E �D �D �E J
C57 4 A �A �A D E �E �D D �E J
C58 4 A �A C D D �A F 0 F 0 F/2
C59 4 A 0 0 D D F G 0 0 F
C60 4 A B 0 A/2 A/6 + 2B/3 0 G H G/2 H
C61 4 A B 0 B/6 + 2A/3 B/2 F G 0 2G F
C62 4 0 B 0 D D 0 0 H I H
C63 6 A B 0 D E 0 G 0 I 0
C64 6 A 0 C 0 E F G H 0 0
C65 6 0 B C D 0 F 0 H I 0
C66 6 A �A C D �D F G F �G J
C67 6 A A C D D F G F G J
C68 6 A B �A D E F �F �E D J
C69 6 A B A D E F F E D J
C70 6 A B �B D E �D E H �H J
C71 6 A B B D E D E H H J
C72 6 A B C B/6 + 2A/3 B/2 F G H 2G H/2
C73 6 0 B C D D F 0 H I F/2
C74 6 A 0 C D D F G H 0 H/2
C75 6 A B C A/2 A/6 + 2B/3 F G H G/2 F/2
C76 10 A B C D E F G H I J



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

234

Table 1.9.3.4. Symmetry restrictions on coefficients in fourth-rank symmetric polar tensors

(a) A–H.

Cross-
reference

No. of
independent
variables

Symbols and coefficient indices

A B C D E F G H
(1) (2) (3) (1) (1) (1) (1) (1)
(1) (2) (3) (1) (1) (1) (1) (1)
(1) (2) (3) (1) (1) (2) (2) (3)
(1) (2) (3) (2) (3) (2) (3) (3)

D1 2 A A A 0 0 F 0 F
D2 3 A A C A/2 0 A/2 0 H
D3 4 A A C 0 0 F 0 H
D4 4 A B A 0 0 F 0 H
D5 4 A B B 0 0 F 0 F
D6 4 A A A D D F G F
D7 4 A A A D �D F G F
D8 4 A A A D �D F G F
D9 4 A A A D D F G F
D10 4 A A C A/2 E A/2 E/2 H
D11 4 A A C A/2 0 A/2 G H
D12 5 A A C D 0 F 0 H
D13 5 A B A 0 E F 0 H
D14 5 A B B 0 0 F 0 F
D15 5 A A A D E F G F
D16 5 A A A D E F G F
D17 5 A A A D E F G F
D18 5 A A A D E F G F
D19 5 A A C A/2 E A/2 G H
D20 6 A B C 0 0 F 0 H
D21 6 A A C D 0 F 0 H
D22 6 A B A 0 E F 0 H
D23 6 A B B 0 0 F G F
D24 6 A B C D 0 B/6 + 2D/3 0 H
D25 6 A B C A/2 0 F 0 H
D26 9 A B C D 0 F 0 H
D27 9 A B C 0 E F 0 H
D28 9 A B C 0 0 F G H
D29 9 A A C D E F G H
D30 9 A A C D E F G H
D31 9 A B A D E F G H
D32 9 A B A D E F G H
D33 9 A B B D �D F G F
D34 9 A B B D D F G F
D35 9 A B C D E B/6 + 2D/3 G H
D36 9 A B C A/2 0 F G H
D37 9 A B C D E B/6 + 2D/3 G H
D38 9 A B C A/2 E F E/2 H
D39 15 A B C D E F G H

(b) I–P.

Cross-
reference

No. of
independent
variables

Symbols and coefficient indices

I J K L M N P
(1) (1) (1) (1) (2) (2) (2)
(2) (2) (2) (3) (2) (2) (3)
(2) (2) (3) (3) (2) (3) (3)
(2) (3) (3) (3) (3) (3) (3)

D1 2 0 0 0 0 0 F 0
D2 3 A/2 0 H/2 0 0 H 0
D3 4 0 0 0 0 0 H 0
D4 4 0 0 0 0 0 F 0
D5 4 0 0 0 0 0 N 0
D6 4 D G G D D F D
D7 4 D G �G �D �D F �D
D8 4 D �G G �D D F D
D9 4 D �G �G D �D F �D
D10 4 A/2 �E/2 H/2 0 �E H 0
D11 4 A/2 G H/2 0 0 H 0
D12 5 �D 0 0 0 0 H 0
D13 5 0 0 0 �E 0 F 0
D14 5 0 0 0 0 M N �M
D15 5 E G G D D F E
D16 5 �E G �G �D �D F �E
D17 5 �E �G G �D D F E
D18 5 E �G �G D �D F �E
D19 5 A/2 G � E H/2 0 �E H 0
D20 6 0 0 0 0 0 N 0
D21 6 D 0 K 0 0 H 0
D22 6 0 J 0 E 0 F 0
D23 6 0 0 0 0 M N M
D24 6 B/2 0 K 0 0 2K 0
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Cross-
reference

No. of
independent
variables

Symbols and coefficient indices

I J K L M N P
(1) (1) (1) (1) (2) (2) (2)
(2) (2) (2) (3) (2) (2) (3)
(2) (2) (3) (3) (2) (3) (3)
(2) (3) (3) (3) (3) (3) (3)

D25 6 �A/4 + 3F/2 0 H/2 0 0 N 0
D26 9 I 0 K 0 0 N 0
D27 9 0 J 0 L 0 N 0
D28 9 0 0 0 0 M N P
D29 9 D �G K L �E H �L
D30 9 D G K L E H L
D31 9 I J �G E �I F �D
D32 9 I J G E I F D
D33 9 I J �J �I M N M
D34 9 I J J I M N M
D35 9 B/2 �E/8 + 3G K L �E/4 + 6G 2K 2L
D36 9 �A/4 + 3F/2 G H/2 0 M N P
D37 9 B/2 G K L 0 2K 0
D38 9 �A/4 + 3F/2 J H/2 L �E/4 + 3J/2 N L/2
D39 15 I J K L M N P

Table 1.9.3.4 (cont.)

Table 1.9.3.5. Symmetry restrictions on coefficients in fifth-rank symmetric polar tensors

(a) A–K.

Cross-
reference

No. of
independent
coefficients

Symbols and coefficient indices

A B C D E F G H I J K
1 2 3 1 1 1 1 1 1 1 1
1 2 3 1 1 1 1 1 1 1 1
1 2 3 1 1 1 1 1 2 2 2
1 2 3 1 1 2 2 3 2 2 3
1 2 3 2 3 2 3 3 2 3 3

E0 0 0 0 0 0 0 0 0 0 0 0 0
E1 1 0 0 0 0 0 0 G 0 0 0 0
E2 1 0 0 0 0 0 0 G 0 0 0 0
E3 1 0 0 0 0 0 0 G 0 0 0 0
E4 1 0 0 0 0 0 0 0 0 0 0 0
E5 2 0 0 0 D 0 D 0 0 D 0 K
E6 2 A �A 0 A/2 0 A/10 0 H �A/10 0 H/2
E7 2 0 0 0 0 0 0 G 0 0 0 0
E8 2 0 0 0 0 E 0 0 0 0 0 0
E9 2 0 0 0 0 0 0 G 0 0 0 0
E10 2 0 0 0 D 0 0 0 0 I 0 0
E11 2 0 0 0 0 0 0 G 0 0 0 0
E12 2 0 0 0 0 0 F 0 �F 0 0 0
E13 2 0 0 0 D �D F 0 �F �F 0 0
E14 2 0 0 0 D D F 0 �F �F 0 0
E15 2 0 0 0 D D F 0 �F F 0 0
E16 2 0 0 0 D �D F 0 �F F 0 0
E17 3 0 0 C 0 E 0 E/2 0 0 E/2 0
E18 3 0 0 0 0 0 0 G 0 0 0 0
E19 3 0 0 0 0 E 0 G 0 0 0 0
E20 3 0 0 0 D 0 0 G 0 I 0 0
E21 3 0 0 0 0 0 F 0 �F 0 0 0
E22 3 0 0 0 0 0 0 G 0 0 2G 0
E23 3 0 0 0 0 0 0 G 0 0 G 0
E24 4 A �A 0 D 0 (1)† 0 H (3)† 0 K
E25 4 0 0 C 0 E 0 0 0 0 J 0
E26 4 0 B 0 D 0 0 0 0 I 0 K
E27 4 A 0 0 0 0 F 0 F 0 0 0
E28 4 0 0 0 0 E 0 G 0 0 0 0
E29 4 0 0 0 D 0 0 G 0 I 0 0
E30 4 0 0 0 0 0 F G �F 0 0 0
E31 5 0 0 C 0 E 0 G 0 0 J 0
E32 5 0 B 0 D 0 0 G 0 I 0 K
E33 5 A 0 0 0 0 F 0 F 0 0 0
E34 5 A A A D D F G F F J J
E35 5 A A �A D �D F G F F J �J
E36 5 A �A A D �D F G F �F J �J
E37 5 A �A �A D D F G F �F J J
E38 5 A �A C A/2 E A/10 E/2 H �A/10 E/2 H/2
E39 5 0 0 C D E D E/2 0 D E/2 K
E40 6 0 0 C 0 E 0 0 0 0 J 0
E41 6 0 0 C 0 E 0 G 0 0 J 0
E42 6 0 B 0 D 0 0 0 0 I 0 K
E43 6 0 B 0 D 0 0 G 0 I 0 K
E44 6 A 0 0 0 0 F 0 H 0 0 0
E45 6 A 0 0 0 0 F G H 0 0 0
E46 6 A �A 0 D 0 F 0 H F 0 K
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Table 1.9.3.5 (cont.)

Cross-
reference

No. of
independent
coefficients

Symbols and coefficient indices

A B C D E F G H I J K
1 2 3 1 1 1 1 1 1 1 1
1 2 3 1 1 1 1 1 1 1 1
1 2 3 1 1 1 1 1 2 2 2
1 2 3 1 1 2 2 3 2 2 3
1 2 3 2 3 2 3 3 2 3 3

E47 6 A �A 0 D 0 F 0 H �F 0 K
E48 6 A 0 A 0 E F 0 H 0 J 0
E49 6 A 0 �A 0 E F 0 H 0 G 0
E50 6 0 B B D D 0 0 0 I J J
E51 6 0 B �B D �D 0 0 0 I J �J
E52 6 0 0 C 0 E 0 G 0 0 J 0
E53 6 0 0 C 0 E 0 E/2 0 0 J 0
E54 6 A 0 0 D 0 F 0 H (4)† 0 K
E55 6 A B 0 A/2 0 F 0 H (5)† 0 H/2
E56 6 A B 0 D 0 (2)† 0 H (6)† 0 K
E57 6 0 B 0 D 0 D 0 0 I 0 K
E58 7 A A A D E F G H H J J
E59 7 A A �A D E F G H H J �J
E60 7 A �A A D E F G H �H J �J
E61 7 A �A �A D E F G H �H J J
E62 7 A �A C D E (1)† E/2 H (3)† E/2 K
E63 9 0 0 C 0 E 0 G 0 0 J 0
E64 9 0 B 0 D 0 0 G 0 I 0 K
E65 9 A 0 0 0 0 F G H 0 0 0
E66 9 A A 0 D E F G H F 0 K
E67 9 A �A 0 D E F G H �F 0 K
E68 9 A 0 A D E F G H I J 0
E69 9 A 0 �A D E F G H I J 0
E70 9 0 B B D D F 0 �F I J J
E71 9 0 B �B D �D F 0 �F I J �J
E72 9 A 0 0 D E F G H (4)† 2G K
E73 9 A B 0 A/2 0 F G H (5)† G H/2
E74 9 A B 0 D E (2)† G H (6)† 2G K
E75 9 0 B 0 D 0 D G 0 I G K
E76 12 A B 0 D 0 F 0 H I 0 K
E77 12 A 0 C 0 E F 0 H 0 J 0
E78 12 0 B C D E 0 0 0 I J K
E79 12 A �A C D E F G H �F J K
E80 12 A A C D E F G H F J K
E81 12 A B �A D E F G H I J K
E82 12 A B A D E F G H I J K
E83 12 A B �B D �D F G F I J �J
E84 12 A B B D D F G F I J J
E85 12 A B C D E (2)† G H (6)† J K
E86 12 0 B C D E D E/2 0 I J K
E87 12 A 0 C D E F G H (4)† J K
E88 12 A B C A/2 E F E/2 H (5)† J H/2
E89 21 A B C D E F G H I J K

(b) L–V.

Cross-
reference

No. of
independent
coefficients

Symbols and coefficient indices

L M N P Q R S T U V
1 1 1 1 1 1 2 2 2 2
1 2 2 2 2 3 2 2 2 3
3 2 2 2 3 3 2 2 3 3
3 2 2 3 3 3 2 3 3 3
3 2 3 3 3 3 3 3 3 3

E0 0 0 0 0 0 0 0 0 0 0 0
E1 1 0 0 G 0 G 0 0 0 0 0
E2 1 0 0 �G 0 0 0 0 0 0 0
E3 1 0 0 0 0 �G 0 0 0 0 0
E4 1 0 0 N 0 �N 0 0 0 0 0
E5 2 0 D 0 K 0 0 0 0 0 0
E6 2 0 �A/2 0 �H/2 0 0 0 0 �H 0
E7 2 0 0 G 0 Q 0 0 0 0 0
E8 2 L 0 0 0 0 0 �E 0 �L 0
E9 2 0 0 N 0 G 0 0 0 0 0
E10 2 0 0 0 0 0 0 0 �I 0 �D
E11 2 0 0 N 0 N 0 0 0 0 0
E12 2 0 M 0 0 0 �M 0 0 0 0
E13 2 F �D 0 0 0 D D F �F �D
E14 2 �F �D 0 0 0 D �D F F �D
E15 2 F D 0 0 0 �D �D �F �F �D
E16 2 �F D 0 0 0 �D D �F F �D
E17 3 L 0 E/2 0 L/2 0 E 0 L 0
E18 3 0 0 N 0 Q 0 0 0 0 0
E19 3 L 0 �G 0 0 0 �E 0 �L 0
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Table 1.9.3.5 (cont.)

Cross-
reference

No. of
independent
coefficients

Symbols and coefficient indices

L M N P Q R S T U V
1 1 1 1 1 1 2 2 2 2
1 2 2 2 2 3 2 2 2 3
3 2 2 2 3 3 2 2 3 3
3 2 2 3 3 3 2 3 3 3
3 2 3 3 3 3 3 3 3 3

E20 3 0 0 0 0 �G 0 0 �I 0 �D
E21 3 0 M N 0 �N �M 0 0 0 0
E22 3 L 0 2G 0 L 0 S 0 0 0
E23 3 0 0 N 0 Q 0 (14)† 0 Q 0
E24 4 0 (7)† 0 (13)† 0 0 0 �H 0 0
E25 4 L 0 0 0 0 0 E 0 L 0
E26 4 0 0 0 0 0 0 0 I 0 D
E27 4 0 M 0 P 0 M 0 0 0 0
E28 4 L 0 G 0 Q 0 �E 0 �L 0
E29 4 0 0 N 0 G 0 0 �I 0 �D
E30 4 0 M N 0 N �M 0 0 0 0
E31 5 L 0 �G 0 0 0 E 0 L 0
E32 5 0 0 0 0 �G 0 0 I 0 D
E33 5 0 M N P �N M 0 0 0 0
E34 5 F D G J G D D F F D
E35 5 �F D G �J G D �D F �F D
E36 5 F �D G J G �D �D ��F F D
E37 5 �F �D G �J G �D D �F �F D
E38 5 L �A/2 E/2 �H/2 L/2 0 E �H L 0
E39 5 L D E/2 K L/2 0 E 0 L 0
E40 6 L 0 0 0 0 0 S 0 U 0
E41 6 L 0 G 0 Q 0 E 0 L 0
E42 6 0 0 0 0 0 0 0 T 0 V
E43 6 0 0 N 0 G 0 0 I 0 D
E44 6 0 M 0 P 0 R 0 0 0 0
E45 6 0 M N P N M 0 0 0 0
E46 6 0 D 0 K 0 R 0 H 0 R
E47 6 0 �D 0 �K 0 R 0 �H 0 �R
E48 6 H M 0 J 0 E M 0 F 0
E49 6 �H M 0 �J 0 �E �M 0 �F 0
E50 6 I 0 0 0 0 0 S T T S
E51 6 �I 0 0 0 0 0 S T �T �S
E52 6 L 0 (10)† 0 Q 0 (15)† 0 2Q 0
E53 6 L 0 (11)† 0 L/2 0 S 0 U 0
E54 6 0 (4)† 0 K 0 R 0 0 0 0
E55 6 0 (8)† 0 P 0 R 0 (16)† 0 R/2
E56 6 0 B/2 0 (12)† 0 R 0 (17)† 0 2R
E57 6 0 (9)† 0 K 0 0 0 T 0 V
E58 7 F E G J G D D F H E
E59 7 �F �E G �J G D �D F �H �E
E60 7 F E G J G �D �D �F H �E
E61 7 �F �E G �J G �D D �F �H E
E62 7 L (7)† E/2 (13)† L/2 0 E �H L 0
E63 9 L 0 N 0 Q 0 S 0 U 0
E64 9 0 0 N 0 Q 0 0 T 0 V
E65 9 0 M N P Q R 0 0 0 0
E66 9 L D �G K 0 R �E H �L R
E67 9 L �D �G �K 0 R �E �H �L �R
E68 9 H M 0 J �G E M �I F �D
E69 9 �H M 0 �J �G �E �M �I �F �D
E70 9 I M N 0 �N �M S T T S
E71 9 �I M N 0 �N �M S T �T �S
E72 9 L (4)† 2G K L R 0 0 0 0
E73 9 0 (8)† N P Q R (14)† (16)† Q R/2
E74 9 L B/2 2G (12)† L R 0 (17)† 0 2R
E75 9 0 (9)† N K Q 0 (14)† T Q V
E76 12 0 M 0 P 0 R 0 T 0 V
E77 12 L M 0 P 0 R S 0 U 0
E78 12 L 0 0 0 0 0 S T U V
E79 12 L �D G �K Q R E �H L �R
E80 12 L D G J Q R E H L R
E81 12 �H M N �J G �E �M I �F D
E82 12 H M N J G E M I F D
E83 12 �I M N P N M S T �T �S
E84 12 I M N P N M S T T S
E85 12 L B/2 (10)† (12)† N M (15)† (17)† 2N 2M
E86 12 L 2I (11)† K L/2 0 S T U V
E87 12 L (4)† (10)† K N M (15)† 0 2N 0
E88 12 L (8)† (11)† P L/2 R S (16)† U U/2
E89 21 L M N P Q R S T U V

† (1)�2A/5 + D; (2)�3A/5 + B/10 + 3D/2; (3)�3A/5 + D; (4)�D + 2F; (5)�A/4 + 3F/2; (6)�2A/5 + B/5 + D; (7)�A +D; (8)�A/5 + 2B/5 + F; (9)�D + 2I; (10)�2G + 3J; (11)�E/4 + 3J/2;
(12) �2H + 3K; (13) �H + K; (14) �G + 2N; (15) �4G + 6J; (16) �H/4 + 3P/2; (17) �4H + 6K.
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Table 1.9.3.6. Symmetry restrictions on coefficients in sixth-rank symmetric polar tensors

(a) A–N.

Cross-
reference

No. of
independent
parameters

Symbols and coefficient indices

A B C D E F G H I J K L M N
1 2 3 1 1 1 1 1 1 1 1 1 1 1
1 2 3 1 1 1 1 1 1 1 1 1 1 1
1 2 3 1 1 1 1 1 1 1 1 1 2 2
1 2 3 1 1 1 1 1 2 2 2 3 2 2
1 2 3 1 1 2 2 3 2 2 3 3 2 2
1 2 3 2 3 2 3 3 2 3 3 3 2 3

F1 3 A A A 0 0 F 0 F 0 0 0 0 F 0
F2 4 A A A 0 0 F 0 H 0 0 0 0 H 0
F3 5 A A C A/2 0 F 0 H (1)† 0 H/2 0 F 0
F4 6 A A C D 0 F 0 H (2)† 0 H/2 0 (5)† 0
F5 6 A A C 0 0 F 0 H 0 0 0 0 F 0
F6 6 A B A 0 0 F 0 H 0 0 0 0 M 0
F7 6 A B B 0 0 F 0 F 0 0 0 0 M 0
F8 7 A A A D D F G F I J J I F J
F9 7 A A A D �D F G F I J �J �I F J
F10 7 A A A D �D F G F I J �J �I F �J
F11 7 A A A D D F G F I J J I F �J
F12 7 A A C A/2 E F E/2 H (1)† E/10 H/2 I F �E/10
F13 7 A A C A/2 0 F G H (1)† G H/2 0 F G
F14 8 A A C D 0 F 0 H 0 0 K 0 F 0
F15 8 A B A 0 E F 0 H 0 J 0 0 M 0
F16 8 A B B 0 0 F 0 H 0 0 0 0 M N
F17 10 A A A D E F G H I J K I H K
F18 10 A A A D E F G H I J K �I H �K
F19 10 A A A D E F G H I J K �I H K
F20 10 A A A D E F G H I J K I H �K
F21 10 A A C D E F G H (2)† (4)† H/2 L (5)† (7)†
F22 10 A B C 0 0 F 0 H 0 0 0 0 M 0
F23 10 A A C D 0 F 0 H I 0 K 0 F 0
F24 10 A B A 0 E F 0 H 0 J 0 L M 0
F25 10 A B B 0 0 F G F 0 0 0 0 M N
F26 10 A B C D 0 F 0 H (3)† 0 K 0 (6)† 0
F27 10 A B C A/2 0 F 0 H (1)† 0 H/2 0 M 0
F28 16 A B C D 0 F 0 H I 0 K 0 M 0
F29 16 A B C 0 E F 0 H 0 J 0 L M 0
F30 16 A B C 0 0 F G H 0 0 0 0 M N
F31 16 A A C D E F G H I J K L F �J
F32 16 A A C D E F G H I J K L F J
F33 16 A B A D E F G H I J K L M N
F34 16 A B A D E F G H I J K L M N
F35 16 A B B D �D F G F I J �J �I M N
F36 16 A B B D D F G F I J J I M N
F37 16 A B C D E F G H (3)† J K L (6)† (8)†
F38 16 A B C A/2 0 F G H (1)† G H/2 0 M N
F39 16 A B C D E F G H (3)† J K L (6)† (9)†
F40 16 A B C A/2 E F E/2 H (1)† J H/2 L M (10)†
F41 28 A B C D E F G H I J K L M N

(b) P–c.

Cross-
reference

No. of
independent
parameters

Symbols and coefficient indices

P Q R S T U V W X Y Z a b c
1 1 1 1 1 1 1 1 1 2 2 2 2 2
1 1 1 2 2 2 2 2 3 2 2 2 2 3
2 2 3 2 2 2 2 3 3 2 2 2 3 3
2 3 3 2 2 2 3 3 3 2 2 3 3 3
3 3 3 2 2 3 3 3 3 2 3 3 3 3
3 3 3 2 3 3 3 3 3 3 3 3 3 3

F1 3 P 0 F 0 0 0 0 0 0 0 F 0 F 0
F2 4 P 0 F 0 0 0 0 0 0 0 F 0 H 0
F3 5 H/2 0 R A/2 0 H/2 0 R/2 0 0 H 0 R 0
F4 6 H/2 0 R (11)† 0 H/2 0 R/2 0 0 H 0 R 0
F5 6 P 0 R 0 0 0 0 0 0 0 H 0 R 0
F6 6 P 0 H 0 0 0 0 0 0 0 M 0 F 0
F7 6 P 0 M 0 0 0 0 0 0 0 Z 0 Z 0
F8 7 P J F D G J J G D D F I F D
F9 7 P J F D G �J J �G �D �D F �I F �D
F10 7 P �J F D �G �J �J G �D D F I F D
F11 7 P �J F D �G J �J �G D �D F �I F �D
F12 7 H/2 I/2 R A/2 �E/2 H/2 �I/2 R/2 0 �E H �I R 0
F13 7 H/2 Q R A/2 G H/2 Q R/2 0 0 H 0 R 0
F14 8 P 0 R �D 0 �K 0 0 0 0 H 0 R 0
F15 8 P 0 H 0 0 0 �J 0 �E 0 M 0 F 0
F16 8 P �N M 0 0 0 0 0 0 Y Z 0 Z �Y
F17 10 P J F E G J K G D D F I H E
F18 10 P J F �E G �J �K �G �D �D F �I H E
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system with correspondingly different transformation matrices F
(see e.g. Chapter 1.1 of IT B). The most useful representation
surface of the second-order atomic displacement tensor UC is the
representation quadric defined by the tensor invariant

2I0 ¼ uTU�1
C u ð1:9:4:3Þ

where u is a displacement vector; U�1 is often called the
variance–covariance matrix and has (in a general axes frame)
covariant components. Under the conditions of positive definite-
ness,

DetðUCÞ

Uii
C

Uii
CU

jj
C �U

ij
CU

ij
C ðno summationÞ

9
=

;
all positive; ð1:9:4:4Þ

the surface of the representation quadric is an ellipsoid whose
semi-major axes (for 2I0 ¼ 0) are of lengths equal to the root-
mean-square displacements (r.m.s.d.’s) along the axes directions.
The thermal vibration ellipsoids calculated in ORTEP are related
to this surface; considering the discussion in Section 1.9.1, they
should more appropriately be called atomic displacement ellip-
soids or simply ORTEP ellipsoids. One notes that the Fourier
transform of the atomic DWF, the atomic probability density
function P(u), is given in the case of a second-order tensor as a
trivariate Gaussian distribution,

PðuÞ ¼
½DetðU�1

C Þ�
1=2

ð2�Þ3=2
exp �1

2u
TU�1

C u
� �

: ð1:9:4:5Þ

On comparing (1.9.4.3) and (1.9.4.5), it is evident that (1.9.4.3)
defines a surface of constant probability of finding a (displaced)
atom. The integral of (1.9.4.5) over the volume inside the ellip-
soid is a constant. For 2I0 ¼ C2 with the integration limit
C ¼ 1:5382 (2.5003), the integral is equal to one half (nine
tenths), and the ellipsoid is then called a 50 (90) per cent prob-
ability ellipsoid.

Other representation surfaces can be defined and are useful for
special considerations. The quantities of interest are either the
r.m.s.d.’s or the mean-square displacements (m.s.d.’s) defined in
direct space. Here a distinction has to be made between the
averaged squared displacement along a certain direction and the
average for all squared displacements of an atom projected onto
a given direction. Representation surfaces may also be calculated
in reciprocal space, related to surfaces in direct space by Fourier
transformation. For further details, see Nelmes (1969) and
Hummel et al. (1990).

1.9.4.2. Higher-order representations

Representation surfaces of higher-order tensors may be
calculated from their invariants. While for second-order tensors
surfaces can be found that fully describe the directional aspects of
the tensor involved, higher-order tensors need several different
surfaces for a full description (see e.g. Wondratschek, 1958;
Sirotin, 1961). This makes the graphical representation of the
displacements somewhat cumbersome and it is therefore rarely
used. Instead, the probability density functions [given in equa-
tions (6.1.1.46), (6.1.1.48) or (6.1.1.49) of IT C] are calculated
from the tensor coefficients and displayed in sections or as three-
dimensional surfaces. If the higher-order terms are small, it is
more appropriate to display only the difference between the total
p.d.f. and the related Gaussian p.d.f., which may be calculated
from the second-order displacement tensor using equation
(1.9.4.5). Here, the second-order terms that were refined together
with the higher-order terms are usually used (not the best-fitting
second-order terms of a fit in the harmonic approximation):

PdeformationðuÞ ¼ PgeneralðuÞ � PGaussianðuÞ: ð1:9:4:6Þ

The resulting anharmonic deformation densities (or disorder
deformation densities in the case of static disorder) Pdeformation(u)
may be displayed in a similar way to the total p.d.f.’s Pgeneral(u).
The graphical representations appropriate for displaying those
densities are similar to those used for electronic deformation
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Table 1.9.3.6 (cont.)

Cross-
reference

No. of
independent
parameters

Symbols and coefficient indices

P Q R S T U V W X Y Z a b c
1 1 1 1 1 1 1 1 1 2 2 2 2 2
1 1 1 2 2 2 2 2 3 2 2 2 2 3
2 2 3 2 2 2 2 3 3 2 2 2 3 3
2 3 3 2 2 2 3 3 3 2 2 3 3 3
3 3 3 2 2 3 3 3 3 2 3 3 3 3
3 3 3 2 3 3 3 3 3 3 3 3 3 3

F19 10 P �J F �E �G �J �K G �D D F I H �E
F20 10 P �J F E �G J K �G D �D F �I H �E
F21 10 H/2 Q R (11)† (13)† H/2 (18)† R/2 0 �E H �L R 0
F22 10 P 0 R 0 0 0 0 0 0 0 Z 0 b 0
F23 10 P 0 R D 0 K 0 W 0 0 H 0 R 0
F24 10 P 0 H 0 T 0 J 0 E 0 M 0 F 0
F25 10 P N M 0 0 0 0 0 0 Y Z a Z Y
F26 10 P 0 R B/2 0 (16)† 0 W 0 0 (22)† 0 2W 0
F27 10 P 0 R (12)† 0 (17)† 0 R/2 0 0 Z 0 b 0
F28 16 P 0 R S 0 U 0 W 0 0 Z 0 b 0
F29 16 P 0 R 0 T 0 V 0 X 0 Z 0 b 0
F30 16 P Q R 0 0 0 0 0 0 Y Z a b c
F31 16 P Q R D �G K �Q W X �E H �L R �X
F32 16 P Q R D G K Q W X E H L R X
F33 16 P �K H S T �N J �G E �S M �I F �D
F34 16 P K H S T N J G E S M I F D
F35 16 P N M S T U �U �T �S Y Z a Z Y
F36 16 P N M S T U U T S Y Z a Z Y
F37 16 P Q R B/2 (14)† (16)† (19)† W X (20)† (22)† (23)† 2W 2X
F38 16 P Q R (12)† (15)† (17)† Q R/2 0 Y Z a b c
F39 16 P Q R B/2 (9)† (16)† Q W X 0 (22)† 0 2W 0
F40 16 P L/2 R (12)† T (17)† V R/2 X (21)† Z (24)† b X/2
F41 28 P Q R S T U V W X Y Z a b c

† (1)�A/4 + F/2; (2) A/2 � 3D/2 + 3F/2; (3) B/20� 3D/5 + 3F/2; (4)�2E/5 + G; (5) A� 2D + F; (6) B/5� 2D/5 + F; (7)�3E/5 + G; (8) 2E� 5G + 4J; (9)�G + 2J; (10)�E/4 + 3J/2; (11) A�

D; (12) A/2� 5F/2 + 5M/2; (13)�E + G; (14) 6E� 15G + 10J; (15)�G + 2N; (16)�2K + 3P; (17)�H/4 + 3P/2; (18)�L + Q; (19)�2L + 3Q; (20) 12E� 30G + 20J; (21) E/2� 5J/2 + 5T/2; (22)
�4K + 6P; (23) �4L + 6Q; (24) �L/4 + 3V/2.
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Fig. 1.9.4.1. A selection of graphical representations of density modulations due to higher-order terms in the Gram–Charlier series expansion of a Gaussian
atomic probability density function. All figures are drawn on a common scale and have a common orientation. All terms within any given order of expansion
are numerically identical and refer to the same underlying isotropic second-order term; the higher-order terms of different order of expansion differ by one
order of magnitude, but refer again to the same underlying isotropic second-order term. The orthonormal crystallographic axes are oriented as follows: x
oblique out of the plane of the paper towards the observer, y in the plane of the paper and to the right, and z in the plane of the paper and upwards. All
surfaces are scaled to 1% of the absolute value of the maximum modulation within each density distribution. Positive modulations (i.e. an increase of density)
are shown in red, negative modulations are shown in blue. The source of illumination is located approximately on the [111] axis. The following graphs are
shown (with typical point groups for specific cases given in parentheses). Third-order terms: (a) b222; (b) b223; (c) b113 = �b223 (point group �44); (d) b123 (point
group �443m). Fourth-order terms: (e) b2222; (f) b1111 = b2222; (g) b1111 = b2222 = b3333 (point group m�33m); (h) b1222; (i) b1112 = b1222; (j) b1122; (k) b1133 = b2233; (l)
b1122 = b1133 = b2233 (point group m�33m). Fifth-order terms: (m) b22222; (n) b12223; (o) b11123 = b12223; (p) b11123 = b12223 = b12333 (point group �443m). Sixth-order
terms: (q) b222222; (r) b111111 = b222222; (s) b111111 = b222222 = b333333 (point group m�33m); (t) b112222; (u) b111133 = b222233; (v) b113333 = b223333; (w) b111122 = b112222 =
b111133 = b113333 = b222233 = b223333 (point group m�33m); (x) b112233 (point group m�33m).

Fig. 1.9.4.1. A selection of graphical representations of density modulations due to higher-order terms in the Gram–Charlier series expansion of a Gaussian
atomic probability density function. All figures are drawn on a common scale and have a common orientation. All terms within any given order of expansion
are numerically identical and refer to the same underlying isotropic second-order term; the higher-order terms of different order of expansion differ by one
order of magnitude, but refer again to the same underlying isotropic second-order term. The orthonormal crystallographic axes are oriented as follows: x
oblique out of the plane of the paper towards the observer, y in the plane of the paper and to the right, and z in the plane of the paper and upwards. All
surfaces are scaled to 1% of the absolute value of the maximum modulation within each density distribution. Positive modulations (i.e. an increase of density)
are shown in red, negative modulations are shown in blue. The source of illumination is located approximately on the [111] axis. The following graphs are
shown (with typical point groups for specific cases given in parentheses). Third-order terms: (a) b222; (b) b223; (c) b113 = �b223 (point group �44); (d) b123 (point
group �443m). Fourth-order terms: (e) b2222; (f) b1111 = b2222; (g) b1111 = b2222 = b3333 (point group m�33m); (h) b1222; (i) b1112 = b1222; (j) b1122; (k) b1133 = b2233; (l)
b1122 = b1133 = b2233 (point group m�33m).
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Fig. 1.9.4.1 (cont.). Fifth-order terms: (m) b22222; (n) b12223; (o) b11123 = b12223; (p) b11123 = b12223 = b12333 (point group �443m). Sixth-order terms: (q) b222222; (r) b111111 =
b222222; (s) b111111 = b222222 = b333333 (point group m�33m); (t) b112222; (u) b111133 = b222233; (v) b113333 = b223333; (w) b111122 = b112222 = b111133 = b113333 = b222233 = b223333

(point group m�33m); (x) b112233 (point group m�33m).
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densities (see e.g. Smith et al., 1977). A number of examples of
displacement deformation densities of high symmetry are shown
in Fig. 1.9.4.1 as three-dimensional contour maps.

1.9.5. Glossary

bijk... atomic displacement tensor
�ij, Uijk... atomic displacement parameter
gij metric tensor
S� atomic static Debye–Waller factor
T� atomic thermal Debye–Waller factor
Q scattering vector
ui atomic displacement
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1.10. Tensors in quasiperiodic structures

By T. Janssen

1.10.1. Quasiperiodic structures

1.10.1.1. Introduction

Many materials are known which show a well ordered state
without lattice translation symmetry, often in a restricted
temperature or composition range. This can be seen in the
diffraction pattern from the appearance of sharp spots that
cannot be labelled in the usual way with three integer indices. The
widths of the peaks are comparable with those of perfect lattice
periodic crystals, and this is a sign that the coherence length is
comparable as well.

A typical example is K2SeO4, which has a normal lattice
periodic structure above 128 K with space group Pcmn, but below
this temperature shows satellites at positions �c�, where � is an
irrational number, which in addition depends on temperature.
These satellites cannot be labelled with integer indices with
respect to the reciprocal basis a�, b�, c� of the structure above the
transition temperature. Therefore, the corresponding structure
cannot be lattice periodic.

The diffraction pattern of K2SeO4 arises because the original
lattice periodic basic structure is deformed below 128 K. The
atoms are displaced from their positions in the basic structure
such that the displacement itself is again periodic, but with a
period that is incommensurate with respect to the lattice of the
basic structure.

Such a modulated structure is just a special case of a more
general type of structure. These structures are characterized by
the fact that the diffraction pattern has sharp Bragg peaks at
positions H that are linear combinations of a finite number of
basic vectors:

H ¼
Pn

i¼1

hia
�
i ðinteger hiÞ: ð1:10:1:1Þ

Structures that have this property are called quasiperiodic. The
minimal number n of basis vectors such that all hi are integers is
called the rank of the structure. If the rank is three and the
vectors ai do not all fall on a line or in a plane, the structure is just
lattice periodic. Lattice periodic structures form special cases of
quasiperiodic structures. The collection of vectors H forms the
Fourier module of the structure. For rank three, this is just the
reciprocal lattice of the lattice periodic structure.

The definition given above results in some important practical
difficulties. In the first place, it is not possible to show experi-
mentally that a wavevector has irrational components instead of
rational ones, because an irrational number can be approximated
by a rational number arbitrarily well. Very often the wavevector
of the satellite changes with temperature. It has been reported
that in some compounds the variation shows plateaux, but even
when the change seems to be continuous and smooth one can not
be sure about the irrationality. On the other hand, if the wave-
vector jumps from one rational position to another, the structure
would always be lattice periodic, but the unit cell of this structure
would vary wildly with temperature. This means that, if one
wishes to describe the incommensurate phases in a unified
fashion, it is more convenient to treat the wavevector as gener-
ically irrational. This experimental situation is by no means
dramatic. It is similar to the way in which one can never be sure
that the angles between the basis vectors of an orthorhombic

lattice are really 90�, although this is a concept that no-one has
problems understanding.

A second problem stems from the fact that the wavevectors of
the Fourier module are dense. For example, in the case of K2SeO4

the linear combinations of c� and �c� cover the c axis uniformly.
To pick out a basis here could be problematic, but the intensity of
the spots is usually such that choosing a basis is not a problem. In
fact, one only observes peaks with an intensity above a certain
threshold, and these form a discrete set. At most, the occurrence
of scale symmetry may make the choice less obvious.

1.10.1.2. Types of quasiperiodic crystals

One may distinguish various families of quasiperiodic systems.
[Sometimes these are also called incommensurate systems
(Janssen & Janner, 1987).] It is not a strict classification, because
one may have intermediate cases belonging to more than one
family as well. Here we shall consider a number of pure cases.

An incommensurately modulated structure or incommensurate
crystal (IC) phase is a periodically modified structure that without
the modification would be lattice periodic. Hence there is a basic
structure with space-group symmetry. The periodicity of the
modification should be incommensurate with respect to the basic
structure. The position of the jth atom in the unit cell with origin
at the lattice point n is nþ rj (j ¼ 1; 2; . . . ; s).

For a displacive modulation, the positions of the atoms are
shifted from a lattice periodic basic structure. A simple example
is a structure that can be derived from the positions of the basic
structure with a simple displacement wave. The positions of the
atoms in the IC phase are then

nþ rj þ f jðQ � nÞ ½f jðxÞ ¼ f jðxþ 1Þ�: ð1:10:1:2Þ

Here the modulation wavevector Q has irrational components
with respect to the reciprocal lattice of the basic structure. One
has

Q ¼ �a� þ �b� þ �c�; ð1:10:1:3Þ

where at least one of �, � or � is irrational. A simple example is
the function f jðxÞ ¼ Aj cosð2�xþ ’jÞ, whereAj is the polarization
vector and ’j is the phase of the modulation. The diffraction
pattern of the structure (1.10.1.2) shows spots at positions

H ¼ h1a
� þ h2b

� þ h3c
� þ h4Q: ð1:10:1:4Þ

Therefore, the rank is four and a�4 ¼ Q. In a more general
situation, the components of the atom positions in the IC phase
are given by

n� þ r�j þ
P

m

A�
j ðQmÞ cosð2�Qm � nþ ’jm�Þ; � ¼ x; y; z:

ð1:10:1:5Þ

Here the vectors Qm belong to the Fourier module of the struc-
ture. Then there are vectors Qj such that any spot in the
diffraction pattern can be written as

H ¼
P3

i¼1

hia
�
i þ

Pd

j¼1

h3þjQj ð1:10:1:6Þ

and the rank is 3þ d. The peaks corresponding to the basic
structure [the combinations of the three reciprocal-lattice vectors
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a�i (i ¼ 1; 2; 3)] are called themain reflections, the other peaks are
satellites. For the latter, at least one of the h4; . . . ; hn is different
from zero.

A second type of modulation is the occupation or composition
modulation. Here the structure can again be described on the
basis of a basic structure with space-group symmetry. The basic
structure positions are occupied with a certain probability by
different atom species, or by molecules in different orientations.
In CuAu(II), the two lattice positions in a b.c.c. structure are
occupied by either Cu and Au or by Au and Cu with a certain
probability. This probability function is periodic in one direction
with a period that is not a multiple of the lattice constant. In
NaNO2, the NO2 molecules are situated at the centre of the
orthorhombic unit cell. There are two possible orientations for
the V-shaped molecule, and the probability for one of the
orientations is a periodic function with periodicity along the a
axis. In this case, the modulation wavevector �a� has a compo-
nent � that strongly depends on temperature in a very narrow
temperature range.

If the probability of finding species A in position nþ rj or of
finding one orientation of a molecule in that point is given by
PjðQ � nÞ, the probability for species B or the other orientation is
of course 1� PjðQ � nÞ. In the diffraction pattern, the spots
belong to the Fourier module with basic vectors a�, b�, c� and Q.
The analogous expression for a more general situation with more
modulation wavevectors, or with more species or orientations, is a
straightforward generalization.

The first examples of IC phases were found inmagnetic systems
(see Section 1.5.1.2.3). For example, holmium has a spiral spin
arrangement with a periodicity of the spiral that does not fit with
the underlying lattice. For the � component (� ¼ x; y; z) of the
magnetic moment at position nþ rj one has in an incommensu-
rate magnetic system a superposition of waves

S�ðnjÞ ¼
P

m

Mm�j cosð2�Qm � nþ ’m�Þ: ð1:10:1:7Þ

The most general expression is

S�ðnjÞ ¼
P

H2M�

M�jðHÞ expðiH � nÞ; ð1:10:1:8Þ

where M� is the Fourier module (1.10.1.1).
A following class of quasiperiodic materials is formed by

incommensurate composite structures. To this belong misfit
structures, intercalates and incommensurate adsorbed layers. An
example is Hg3�xAsF6. This consists of a subsystem of AsF6

octahedra forming a (modulated) tetragonal system and two
other subsystems consisting of Hg chains, one system of chains in
the x direction and one in the y direction. Because the average
spacing between the Hg atoms is irrational with respect to the
lattice constant of the host AsF6 system in the same direction, the
total structure does not have lattice periodicity in the a or b
direction.

In general, there are two or more subsystems, labelled by �, and
the atomic positions are given by

n� þ r�j þmodulation; ð1:10:1:9Þ

where n� belongs to the �th lattice, and where the modulation is a
quasiperiodic displacement from the basic structure. The
diffraction pattern has wavevectors

H ¼
P

�

P3

i�¼1

hi�a
�
�i�

¼
Pn

i¼1

hiai: ð1:10:1:10Þ

Each of the reciprocal-lattice vectors a��j belongs to the Fourier
module M� and can be expressed as a linear combination with
integer coefficients of the n basis vectors a�i .

Very often, composite structures consist of a host system in the
channels of which another material diffuses with a different, and

incommensurate, lattice constant. Examples are layer systems in
which foreign atoms intercalate. Another type of structure that
belongs to this class is formed by adsorbed monolayers, for
example a noble gas on a substrate of graphite. If the natural
lattice constant of the adsorbed material is incommensurate with
the lattice constant of the substrate, the layer as a whole will be
quasiperiodic.

In general, the subsystems can not exist as such. They form
idealized lattice periodic structures. Because of the interaction
between the subsystems the latter will, generally, become
modulated, and even incommensurately modulated because of
the mutual incommensurability of the subsystems. The displacive
modulation will, generally, contain wavevectors that belong to
the Fourier module (1.10.1.10). However, in principle, additional
satellites may occur due to other mechanisms, and this increases
the rank of the Fourier module.

The last class to be discussed here is that of quasicrystals. In
1984 it was found (Shechtman et al., 1984) that in the diffraction
pattern of a rapidly cooled AlMn alloy the spots were relatively
sharp and the point-group symmetry was that of an icosahedron,
a group with 120 elements and one that can not occur as point
group of a three-dimensional space group. Later, ternary alloys
were found with the same symmetry of the diffraction pattern,
but with spots as sharp as those in ordinary crystals. These
structures were called quasicrystals. Others have been found with
eight-, ten- or 12-fold rotation symmetry of the diffraction
pattern. Such symmetries are also noncrystallographic symmetries
in three dimensions. Sometimes this noncrystallographic
symmetry is considered as characteristic of quasicrystals.

Mathematical models for quasicrystals are quasiperiodic two-
and three-dimensional tilings, plane or space coverings, without
voids or overlaps, by copies of a finite number of ‘tiles’. Examples
are the Penrose tiling or the standard octagonal tiling in two
dimensions, and a three-dimensional version of Penrose tiling, a
quasiperiodic space filling by means of two types of rhombo-
hedra. For Penrose tiling, all spots of the diffraction pattern are
linear combinations of the five basis vectors

a�m ¼ fa cos½2�ðm� 1Þ=5�; a sin½2�ðm� 1Þ=5�g ðm ¼ 1; . . . 5Þ:

ð1:10:1:11Þ

Because the sum of these five vectors is zero, the rank of the
spanned Fourier module is four. The Fourier module of the
standard octagonal tiling is spanned by

a�m ¼ fa cos½ðm� 1Þ�=4�; a sin½ðm� 1Þ�=4�g ðm ¼ 1; . . . ; 4Þ:

ð1:10:1:12Þ

The rank of the Fourier module is four. The rank of the Fourier
module of the three-dimensional Penrose tiling, consisting of two
types of rhombohedra with a ratio of volumes of ð

ffiffiffi
5

p
þ 1Þ=2, is

six and basis vectors point to the faces of a regular dodecahedron.
An atomic model can be obtained by decorating the tiles with

atoms, each type of tile in a specific way. Some quasicrystals can
really be considered as decorated tilings.

1.10.1.3. Embedding in superspace

A simple example of a quasiperiodic function is obtained in the
following way. Consider a function of n variables which is peri-
odic with period one in each variable.

f ðx1; . . . ; xnÞ ¼ f ðx1 þ 1; x2; . . . ; xnÞ; . . . : ð1:10:1:13Þ

Now take n mutually irrational numbers �i and define the func-
tion gðxÞ with one variable as

gðxÞ ¼ f ð�1x; �2x; . . . ; �nxÞ: ð1:10:1:14Þ

Because of the irrationality, the function gðxÞ is not periodic. If we
consider the Fourier transform of f ðx1; . . . ; xnÞ we get
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f ðx1; . . . ; xnÞ ¼
P

m1

. . .
P

mn

Am1;...;mn
exp½2�iðm1x1 þ . . .þmnxnÞ�

ð1:10:1:15Þ

and consequently

gðxÞ ¼
P

m1...mn

Am1;...;mn
exp 2�i

Pn

i¼1

mi�i

� �

x

� �

; ð1:10:1:16Þ

which proves that the function is quasiperiodic of rank n with n
basis vectors 2��i in one dimension.

The quasiperiodic function gðxÞ is therefore the restriction to
the line ð�1x; . . . ; �nxÞ in n-dimensional space. This is a general
situation. Each quasiperiodic function can be obtained as the
restriction of a periodic function in n dimensions to a subspace
that can be identified with the physical space. We denote the n-
dimensional space in which one finds the lattice periodic struc-
ture (the superspace) by Vs, the physical space by VE and the
additional space, called internal space, by VI , such that Vs is the
direct sum of VE and VI . In the field of quasicrystals, one often
uses the name parallel space for VE and perpendicular space for
VI .

On the other hand, one can embed the quasiperiodic function
in superspace, which means that one constructs a lattice periodic
function in n dimensions such that its restriction to physical space
is the quasiperiodic function. Take as an example the displacively
modulated structure of equation (1.10.1.2). Compare this three-
dimensional structure with the array of lines

nþ rj þ f jðQ � nþ tÞ; t
� �

ðreal tÞ ð1:10:1:17Þ

in four-dimensional space. The restriction to the three-
dimensional hyperplane t ¼ 0 gives exactly the structure
(1.10.1.2). Moreover, the four-dimensional array of lines is lattice
periodic. Because f j is periodic, the array is left invariant if one
replaces t by t þ 1, and for every lattice vector m of the basic
structure the array is left invariant if one replaces simultaneously
t by t �Q �m. This means that the array is left invariant by all
four-dimensional lattice vectors of the lattice � with basis

asi ¼ ðai;�Q � aiÞ ði ¼ 1; 2; 3Þ; a4 ¼ ð0; 1Þ: ð1:10:1:18Þ

Indeed the quasiperiodic IC phase is the restriction to VE (t ¼ 0)
of the lattice periodic function in four dimensions.

The reciprocal basis for (1.10.1.18) consists of the basis vectors

a�si ¼ ða�i ; 0Þ ði ¼ 1; 2; 3Þ; a�4 ¼ ðQ; 1Þ: ð1:10:1:19Þ

These span the reciprocal lattice ��. The projection of this basis
on VE consists of the four vectors a�i ði ¼ 1; 2; 3Þ andQ, and these
form the basis for the Fourier module of the quasiperiodic
structure.

This is a well known situation. From the theory of Fourier
transformation one knows that the projection of the Fourier
transform of a function in n dimensions on a d-dimensional
subspace is the Fourier transform of the restriction of that n-
dimensional function to the same d-dimensional subspace. This
gives a way to embed the quasiperiodic structure in a space with
as many dimensions as the rank of the Fourier module. One
considers the basis of the Fourier module as the projection of n
linearly independent vectors in n-dimensional space. This means
that for every vector of the Fourier module one has exactly one
reciprocal-lattice vector in Vs. Suppose the quasiperiodic struc-
ture is given by some function, for example the density �ðrÞ. Then

�ðrÞ ¼
P

H2M�

�̂�ðHÞ expðiH � rÞ: ð1:10:1:20Þ

One may define a function in n-dimensional space by

�sðrsÞ ¼
P

Hs2�
�

�̂�ðHÞ expðiHs � rsÞ; ð1:10:1:21Þ

where Hs is the unique reciprocal-lattice vector that is projected
on the Fourier module vector H. It is immediately clear that the
restriction of �s to physical space is exactly �. Moreover, the
function �s is lattice periodic with lattice �, for which �� is the
reciprocal lattice.

This construction can be performed in the following equivalent
way. Consider a point r in physical space, where one has the
quasiperiodic function �ðrÞ. The Fourier module of this function
is the projection on physical space of the n-dimensional reci-
procal lattice �� with basis vectors a�si (i ¼ 1; 2; . . . ; n). The
reciprocal lattice �� corresponds to the direct lattice �. A point r
in VE can also be considered as an element (r, 0) in n-dimensional
space. By the translations of �, this point is equivalent with a
point rs with lattice coordinates

�i ¼ Frac a�si:ðr; 0Þð Þ ¼ Fracða�i � rÞ ð1:10:1:22Þ

in the unit cell of �, where FracðxÞ is x minus the largest integer
smaller than x. If one puts �sðrsÞ ¼ �ðrÞ, the function � deter-
mines the function �s in the unit cell, and consequently in the
whole n-dimensional space Vs. This means that all the informa-
tion about the structure in VE is mapped onto the information
inside the n-dimensional unit cell. The information in three
dimensions is exactly the same as that in superspace. Only the
presentation is different.

In the case in which the crystal consists of point atoms, the
corresponding points in d-dimensional physical space VE are the
intersection of (n� d)-dimensional hypersurfaces with VE. For
displacively modulated IC phases in three dimensions with one
modulation wavevector, one has n ¼ 4, d ¼ 3 and the hypersur-
faces are just lines in superspace, as we have seen. For more
independent modulation vectors the dimension of the hypersur-
faces is larger than one. In this case, as often in the case of
composite structures, the (n� d)-dimensional surfaces do not
have borders. This in contrast to quasicrystals, where they are
bounded. All these hypersurfaces for which the intersection with
physical space gives the atomic positions are called atomic
surfaces.

1.10.2. Symmetry

1.10.2.1. Symmetry transformations

Because the embedded periodic structure in n dimensions has
lattice periodicity, it has n-dimensional space-group symmetry as
well. It is not a priori clear that such a symmetry group in the
unphysical n-dimensional space is relevant for the physical
structure, but we shall show here that the superspace description
is indeed useful for the description of quasiperiodic systems. First
we shall discuss some of the structures of these higher-dimen-
sional space transformations.

Suppose the diffraction pattern has rotational symmetry.
Consider for example an orthogonal transformation R that leaves
the diffraction pattern invariant. In particular, any basis vector of
the module is transformed into an element of the module, i.e. an
integral linear combination of the basis vectors.

Ra�i ¼
Pn

j¼1

Mjia
�
j ; i ¼ 1; 2; . . . ; n: ð1:10:2:1Þ

Because the matrixM depends on R and acts in reciprocal space,
we denote it by ��ðRÞ ¼ M. The matrix ��ðRÞ has integer entries.
Because the intensity of the diffraction pattern is not constant on
circles around the origin (that would imply that one can not
distinguish separate peaks), the orthogonal transformation R is of
finite order. Then a theorem from group theory states that ��ðRÞ
is similar to an n-dimensional orthogonal transformation Rs. The
latter certainly has an invariant subspace: the physical space.
Therefore, one can find a basis transformation S such that the
matrix ��ðRÞ is conjugated to the direct sum of an orthogonal
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transformation R in VE and an additional orthogonal transfor-
mation in VI :

S��ðRÞS�1 ¼
R 0

0 RI

� �

; R 2 OðdÞ; RI 2 Oðn� dÞ:

ð1:10:2:2Þ

We denote this orthogonal transformation in Vs as Rs or as a
couple (R;RI). Clearly, the transformation Rs leaves the
embedded reciprocal lattice �� invariant. Moreover, this trans-
formation leaves the direct lattice � invariant as well. As always,
the action of Rs on the basis of� for which a�si form the reciprocal
basis is then given by

Rsasi ¼
Pn

j¼1

�ðRÞjiasj with �ðRÞij ¼ ��ðR�1Þji: ð1:10:2:3Þ

This is the usual relation between the action on a basis and the
action on the reciprocal basis.

By construction, the orthogonal transformation Rs ¼ ðR;RIÞ

leaves the lattice � invariant, and can therefore belong to the
point group of a periodic structure with this lattice. In general,
such a point-group element does not leave the periodic structure
itself invariant, just as a point group in three dimensions does not
leave a crystal with a nonsymmorphic space group invariant. One
then has to combine the orthogonal transformation with a
translation that in general does not belong to the lattice. Here a
translation has components in physical as well as in internal
space. A translation can be denoted by (aE; aI). Then a general
solid motion can be written as

g ¼ ðR;RIÞjðaE; aIÞ
� 	

: ð1:10:2:4Þ

The action of such a transformation on a point rs in superspace is
given by

grs ¼ g rE; rIð Þ ¼ RrE þ aE;RIrI þ aIð Þ: ð1:10:2:5Þ

If such a transformation leaves the periodic array of atomic
surfaces in superspace invariant, it is a symmetry transformation.
In particular, the elements (aE; aI) of the translation group � are
such symmetry transformations.

1.10.2.2. Point groups

The orthogonal transformations that leave the diffraction
pattern invariant form a point group K, a finite subgroup of OðdÞ,
where d is the dimension of the physical space. All elements act
on the basis of the Fourier module as in (1.10.2.1) and the
matrices ��ðKÞ form a representation of the group K, an integral
representation because the matrices have all integer entries, and
reducible because the physical space is an invariant subspace for
��ðKÞ. BecauseK is finite, this representation is equivalent with a
representation in terms of orthogonal matrices. Moreover, by
construction ��ðKÞ leaves the n-dimensional reciprocal lattice��

invariant. It is an n-dimensional crystallographic point group. The
components R of Rs form a d-dimensional point group KE, which
is not necessarily crystallographic, and the components RI form
an (n� d)-dimensional point group KI.

Consider as an example an IC phase with orthorhombic basic
structure and one independent modulation wavevector �c� along
the c axis. Suppose that the Fourier module, which is of rank four,
is invariant under the point group mmm. Then one has for the
three generators

mxa
�
1 ¼ �a�1; mxa

�
2 ¼ a�2; mxa

�
3 ¼ a�3; mxa

�
4 ¼ a�4

mya
�
1 ¼ a�1; mya

�
2 ¼ �a�2; mya

�
3 ¼ a�3; mya

�
4 ¼ a�4

mza
�
1 ¼ a�1; mza

�
2 ¼ a�2; mza

�
3 ¼ �a�3; mza

�
4 ¼ �a�4 :

Therefore, the corresponding matrices ��ðRÞ are

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
;

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
;

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0

B
B
B
@

1

C
C
C
A
;

ð1:10:2:6Þ

which implies that the three generators of the four-dimensional
point group are (mx; 1), (my; 1) and (mz; �11).

The diffraction pattern of the standard octagonal tiling has
rank four, basis vectors of the Fourier module are

ð1; 0Þ; ð
ffiffiffiffiffiffiffi
1=2

p
;
ffiffiffiffiffiffiffi
1=2

p
Þ; ð0; 1Þ; ð�

ffiffiffiffiffiffiffi
1=2

p
;
ffiffiffiffiffiffiffi
1=2

p
Þ

and the pattern is invariant under a rotation of �=4 and a mirror
symmetry. The action of these elements on the given basis of the
Fourier module is

��ðR1Þ ¼

0 0 0 �1

1 0 0 0

0 1 0 0

0 0 1 0

0

B
B
@

1

C
C
A; ��ðR2Þ ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B
B
@

1

C
C
A:

By a basis transformation, one may bring these transformations
into the form

cosð�=4Þ � sinð�=4Þ 0 0

sinð�=4Þ cosð�=4Þ 0 0

0 0 cosð3�=4Þ � sinð3�=4Þ

0 0 sinð3�=4Þ cosð3�=4Þ

0

B
B
B
@

1

C
C
C
A
;

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
:

Therefore, the �=4 rotation in physical space is combined with a
3�=4 rotation in internal space in order to get a transformation
that leaves a lattice invariant.

A three-dimensional example is the case of a quasicrystal with
icosahedral symmetry. For the diffraction pattern all spots may be
labelled with six indices with respect to a basis with basis vectors

a�1 ¼ ð0; 0; 1Þ

a�2 ¼ ða; 0; bÞ

a�3 ¼ a cosð2�=5Þ; a sinð2�=5Þ; bð Þ

a�4 ¼ a cosð4�=5Þ; a sinð4�=5Þ; bð Þ

a�5 ¼ a cosð4�=5Þ;�a sinð4�=5Þ; bð Þ

a�6 ¼ a cosð2�=5Þ;�a sinð2�=5Þ; bð Þ;

with a ¼ 2=
ffiffiffi
5

p
and b ¼ 1=

ffiffiffi
5

p
. The rotation subgroup that leaves

the Fourier module invariant is generated by
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��ðAÞ ¼

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

��ðBÞ ¼

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 1 0 0 0 0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

ð1:10:2:7Þ

Moreover, there is the central inversion �E. The six-dimensional
representation of the symmetry group, which is the icosahedral
group �55�33m, is reducible into the sum of two nonequivalent three-
dimensional irreducible representations. A basis for this repre-
sentation in the six-dimensional space is then given by

ða�1; ca
�
1Þ ða�2;�ca�2Þ ða�3;�ca�4Þ

ða�4;�ca�6Þ ða�5;�ca�3Þ ða�6;�ca�5Þ;

ð1:10:2:8Þ

which projects on the given basis in VE.
The point-group elements considered here are pairs of

orthogonal transformations in physical and internal space.
Orthogonal transformations that do not leave these two spaces
invariant have not been considered. The reason for this is that the
information about the reciprocal lattice comes from its projection
on the Fourier module in physical space. By changing the length
scale in internal space one does not change the projection but one
would break a symmetry that mixes the two spaces. Nevertheless,
quasicrystals are often described starting from an n-dimensional
periodic structure with a lattice of higher symmetry. For example,
the icosahedral 3D Penrose tiling can be obtained from a struc-
ture with a hypercubic six-dimensional lattice. Its reciprocal
lattice is that spanned by the vectors (1.10.2.8) where one puts
c ¼ 1. The symmetry of the periodic structure, however, is lower
than that of the lattice and has a point group in reducible form.
Therefore, we shall consider here only reducible point groups,
subgroups of the orthogonal group OðnÞ which have a d-dimen-
sional invariant subspace, identified with the physical space.

The fact that the spaces VE and VI are usually taken as
mutually perpendicular does not have any physical relevance.
One could as well consider oblique projections of a reciprocal
lattice �� on VE. What is important is that the intersection of the
periodic structure with the physical space should be the same in
all descriptions. The metric in internal space VI follows naturally
from the fact that there is a finite group KI.

1.10.2.3. Superspace groups

The quasiperiodic function �ðrÞ in d dimensions can be
embedded as lattice periodic function �sðrsÞ in n dimensions. The
symmetry group of the latter is the group of all elements g
(1.10.2.4) for which

�sðrsÞ ¼ �sðgrsÞ ¼ �sðRErþ aE;RIrI þ aIÞ: ð1:10:2:9Þ

This group is an n-dimensional space group G. It has an invariant
subgroup of translations, which is formed by the lattice transla-
tions�, and the quotientG=� is isomorphic to the n-dimensional
point group K. However, not every n-dimensional space group
can occur here because we made the restriction to reducible point

groups. For example, the n-dimensional hypercubic groups do not
occur in this way as symmetry groups of quasiperiodic systems.

The product of two superspace group elements is

fRs1jas1gfRs2jas2g ¼ fRs1Rs2jas1 þ Rs1as2g: ð1:10:2:10Þ

On a lattice basis for �, the orthogonal transformations Rs1 and
Rs2 are integer n� n matrices and the translations as1 and as2 are
column vectors. The orthogonal transformations Rs leave the
origin invariant. The translations depend on the choice of this
origin. For a symmorphic space group there is a choice of origin
such that the translations a are lattice translations.

The point-group elements are reducible, which means that in
the physical space one has the usual situation. If d ¼ 3 then the
only intrinsic nonprimitive translations are those in screw axes or
glide planes. An n-dimensional orthogonal transformation can
always be written as the sum of a number r of two-dimensional
rotations with rotation angle different from �, a p-dimensional
total inversion and a q-dimensional identity transformation. The
integers r; p; q may be zero and 2rþ pþ q ¼ n. The possible
intrinsic nonprimitive translations belong to the q-dimensional
space in which the identity acts. For the three examples in the
previous section, the internal component of the nonprimitive
translation for mx and my in the first example can be different
from zero, but that for mz in the same example is zero. For the
octagonal case, only the second generator can have an intrinsic
nonprimitive translation in the fourth direction, and for the
icosahedral case the two generators have one two-dimensional
invariant plane and one pointwise invariant line in VI .

In the diffraction pattern of an IC phase one can distinguish
between main reflections and satellites. A symmetry operation
cannot transform a main reflection into a satellite. This implies
that for these structures the reciprocal lattice of the basic struc-
ture is left invariant by the point group, and consequently the
latter must be a three-dimensional crystallographic point group.
Therefore, the point groups for IC phases are the same as those
for lattice periodic systems. They act in superspace as a repre-
sentation of a three-dimensional crystallographic point group.
This is not true for an arbitrary quasiperiodic structure. The
restriction in the general case comes from the requirement that
the three-dimensional point group must have a faithful integer
matrix representation in superspace. There is a mathematical
statement to the effect that the lowest dimension in which a
p-fold rotation can be represented as an integer matrix is given by
the Euler function, the number of integers smaller than p that do
not divide p. For example, for a prime number p this number is
p� 1. This implies that if one restricts the rank of the Fourier
module (i.e. the dimension of the superspace) to six, only values
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 and 18 are possible for p. The
values 7, 9, 14 and 18 only occur for two-dimensional quasi-
periodic structures of rank six. Therefore, the allowable three-
dimensional point groups for systems up to rank six are limited to
the groups given in Table 1.10.2.1. The possible superspace
groups for IC modulated phases of rank four are given in Chapter
9.8 of Volume C of International Tables (1999). Superspace
groups for quasicrystals of rank n � 6 are given in Janssen (1988).

The notation of higher-dimensional symmetry groups is
discussed in two IUCr reports (Janssen et al., 1999, 2002).

1.10.3. Action of the symmetry group

1.10.3.1. Action of superspace groups

The action of the symmetry group on the periodic density
function �s in n dimensions is given by (1.10.2.9). The real
physical structure, however, lives in physical space. One can
derive from the action of the superspace group on the periodic
structure its action on the quasiperiodic d-dimensional one. One
knows that the density function in VE is just the restriction of that
in Vs. The same holds for the transformed function.
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g�sðrsÞ ¼ �sðg
�1rsÞ ! g�ðrÞ ¼ �s½R

�1ðr� aEÞ;�R�1
I aI �:

ð1:10:3:1Þ

This transformation property differs from that under an
n-dimensional Euclidean transformation by the ‘phase shift’
�R�1

I aI . Take for example the IC phase with a sinusoidal
modulation. If the positions of the atoms are given by

nþ rj þAj cosð2�Q � nþ ’jÞ;

then the transformed positions are

Rðnþ rjÞ þ RAj cosð2�Q � nþ ’j � R�1
I aIÞ þ aE: ð1:10:3:2Þ

If the transformation g is a symmetry operation, this means that
the original and the transformed positions are the same.

Rðnþ rjÞ þ aE ¼ n0 þ rj0

and

RAj cosð2�Q � nþ ’j � R�1
I aIÞ ¼ Aj0 cosð2�Q � n0 þ ’j0 Þ:

This puts, in general, restrictions on the modulation.
Another view of the same transformation property is given by

Fourier transforming (1.10.2.9). The result for the Fourier
transform is

g�̂�sðksÞ ¼ �̂�sðR
�1
s ksÞ expð�iks � asÞ ð1:10:3:3Þ

and because there is a one-to-one correspondence between the
vectors ks in the reciprocal lattice and the vectors k in the Fourier
module one can rewrite this as

g�̂�ðkÞ ¼ �̂�ðR�1kÞ expð�ik � aE � kI � aIÞ: ð1:10:3:4Þ

For a symmetry element one has g�̂�ðkÞ ¼ �̂�ðkÞ. Therefore, the
superspace group element g is a symmetry transformation of the
quasiperiodic function � if

�̂�ðkÞ ¼ �̂�ðR�1kÞ expð�ik � aE � kI � aIÞ: ð1:10:3:5Þ

This relation is at the basis of the systematic extinctions. If one has
an orthogonal transformation R such that this in combination
with a translation (aE; aI) is a symmetry element and such that
Rk ¼ k, then

�̂�ðkÞ ¼ 0 if k � aE þ kI � aI 6¼ 2�� integer: ð1:10:3:6Þ

Because the structure factor is the Fourier transform of a density
function which consists of � functions on the positions of the
atoms, for a quasiperiodic crystal it is the Fourier transform of a
quasiperiodic function �ðrÞ. Therefore, symmetry-determined
absence of Fourier components leads to zero intensity of the
corresponding diffraction peaks. Therefore, although there is no
lattice periodicity for aperiodic crystals, systematic extinctions
follow in the same way from the symmetry as in lattice periodic
systems if one considers the n-dimensional space group as the
symmetry group.

1.10.3.2. Compensating gauge transformations

The transformation property of the Fourier transform of the
density given in the previous section can be formulated in
another way. Consider a function �ðrÞ which is invariant under a
d-dimensional Euclidean transformation fRjag in physical space.
Then its Fourier transform satisfies

�̂�ðkÞ ¼ �̂�ðR�1kÞ expð�ik � aÞ: ð1:10:3:7Þ

Conversely, if the Fourier transform satisfies this relation, the
Euclidean transformation is a symmetry operation for �ðrÞ. The

two equations (1.10.3.5) and (1.10.3.7) are closely related. One
can also write (1.10.3.5) as

�̂�ðkÞ ¼ �̂�ðR�1kÞ expð�ik � aÞ exp½i�ðR; kÞ�; ð1:10:3:8Þ

where �ðR; kÞ can be considered as a gauge transformation that
compensates for the phase shift: it is a compensating gauge
transformation. It is a function that is linear in k,

�ðR; kþ k0Þ ¼ �ðR; kÞ þ�ðR; k0Þ ðmod 2�Þ; ð1:10:3:9Þ

and satisfies a relation closely related to the one satisfied by
nonprimitive translations.

�ðR; kÞ þ�ðS;RkÞ ¼ �ðRS; kÞ ðmod 2�Þ: ð1:10:3:10Þ

[Recall that a system of nonprimitive translations uðRÞ satisfies
uðRÞ þ RuðSÞ ¼ uðRSÞ modulo lattice translations.] Therefore,
the Euclidean transformation fRjag combined with the compen-
sating gauge transformation with gauge function �ðR; kÞ is a
symmetry transformation for �ðrÞ if equation (1.10.3.8) is satis-
fied. This is a three-dimensional formulation of the superspace
group symmetry relation (1.10.3.5).

1.10.3.3. Irreducible representations of three-dimensional space
groups

A third way to describe the symmetry of a quasiperiodic
function is by means of irreducible representations of a space
group. For the theory of these representations we refer to
Chapter 1.2 on representations of crystallographic groups.

Consider first a modulated IC phase. Suppose the positions of
the atoms are given by

nþ rj þ unj; ð1:10:3:11Þ

where n belongs to the lattice, rj is a position inside the unit cell
and unj is a displacement. If the structure is quasiperiodic with
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Table 1.10.2.1. Allowable three-dimensional point groups for systems up to
rank six

Isomorphism
class Order

Three-dimensional
point groups

C1 1 1
C2 2 2, �11, m
C3 3 3
C4 4 4, �44
C5 5 5
C6 6 6, �66, �33
C8 8 8, �88
C10 10 10, 10, �55
C12 12 12, 12
D2 4 222, 2=m, 2mm
D3 6 32, 3m
D4 8 422, 4mm, �442m
D5 10 52, 5m
D6 12 622, �33m, 6mm, �662m
D8 16 822, 8mm, �882m
D10 20 10 22, 10mm, 10 2m, �55m
D12 24 12 22, 12mm, 12 2m
C4 � C2 8 4=m
C6 � C2 12 6=m
C8 � C2 16 8=m
C10 � C2 20 10=m
C12 � C2 24 12=m
D2 � C2 8 mmm
D4 � C2 16 4=mmm
D6 � C2 24 6=mmm
D8 � C2 32 8=mmm
D10 � C2 40 10=mmm
D12 � C2 48 12=mmm
T 12 23
O 24 432, �443m
I 60 532
T � C2 24 m�33
O� C2 48 m�33m
I � C2 120 �55�33m
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Fourier module M�, the vectors unj can be written as a super-
position of normal modes.

unj ¼
P

k2M�;�

Qk�"""ðk�jjÞe
ik�n þ c:c:; ð1:10:3:12Þ

where the coefficient Qk� is a normal coordinate, � denotes the
band index and """ðk�jjÞ denotes the polarization of the normal
mode. The normal coordinates transform under a space group
according to one of its irreducible representations. The relevant
space group here is that of the basic structure. For the simple case
of a one-dimensional irreducible representation, for each k the
effect is simply multiplication by a factor of absolute value unity.
For example, for the modulated phase with basic space group
Pcmn and wavevector k ¼ �c� there are four non-equivalent
one-dimensional representations. It depends on the band index
which representation occurs in the decomposition. The space-
group element fRjag, for which Rq ¼ q (modulo reciprocal
lattice) acts on Qk� according to

Qk� ! Qk� expðik: � aÞ	�ðRÞ;

where 	�ðRÞ is the character of R in an irreducible representation
associated with the branch �. Because the character of a one-
dimensional representation is of absolute value unity, one may
write it as exp½i’�ðR; kÞ�. Consequently, if the decomposition of
the displacement contains only the vectors �k, the factor
exp½i’�ðR; kÞ� describes a shift in the modulation function.

Consider again as an example a basic structure with space
group Pcmn and a modulation wavevector �c�. The point group
Kk that leaves the modulation wavevector invariant is generated
by my and mx. This point group mm2 has four elements and four
irreducible representations, all one-dimensional. One of them has
for the character 	ðmxÞ ¼ þ1, 	ðmyÞ ¼ �1. If the displacements
of the atoms are described by a normal mode belonging to this
irreducible representation, then the compensating phase shifts
for cx and my are, respectively, 0 and �. In the notation for
superspace groups, this is the group Pcmn(00�)1s�11. The same
structure can be described by the irreducible representation
characterized as �3, because the modulation wavevector is the
point � in the Brillouin zone and the irreducible representation
�3 has the character mentioned above.

In this way there is a correspondence between superspace
groups for (3þ 1)-dimensional modulated structures and two-
dimensional irreducible representations of three-dimensional
space groups.

1.10.4. Tensors

1.10.4.1. Tensors in higher-dimensional spaces

A vector in an n-dimensional space V transforms under an
element of a point group as r ! Rr. With respect to a basis ai, the
coordinates and basis vectors transform according to

a0i ¼
Pn

j¼1

Rjiaj

r ¼
Pn

i¼1

xiai ! r0 ¼
Pn

i¼1

x0iai; x0i ¼
Pn

j¼1

Rijxj

and the reciprocal basis vectors and coordinates in reciprocal
space according to

a�i ¼
Pn

j¼1

Rija
�0

j

k ¼
Pn

i¼1


ia
�
i ! k0 ¼

Pn

i¼1


0ia
�
i ; 
0i ¼

Pn

j¼1

R�1
ji 
j:

With respect to an orthonormal basis in V the transformations
are represented by orthogonal matrices. For orthogonal matrices

R�1 ¼ RT , the vectors in reciprocal space transform in exactly the
same way as in direct space:

r ¼
Pn

i¼1

xiei ! r0 ¼
Pn

i¼1

x0iei x0i ¼
Pn

i¼1

Rijxi

k ¼
Pn

i¼1


ie
�
i ! k0 ¼

Pn

i¼1


0ie
�
i 
0i ¼

Pn

i¼1

Rij
j:

As discussed in Section 1.2.4, a tensor is a multilinear function of
vectors and reciprocal vectors. Consider for example a tensor of
rank two, the metric tensor g. It is a function of two vectors r1 and
r2 which results in the scalar product of the two.

gðr1; r2Þ ¼ r1 � r2:

It clearly is a symmetric function because gðr1; r2Þ ¼ gðr2; r1Þ. It is
a function that is linear in each of its arguments and therefore

gðr1; r2Þ ¼ g
Pn

i¼1

xiei;
Pn

j¼1

yjej

 !

¼
P

ij

xiyj�ij ¼
P

i

xiyj

if xi and yj are Cartesian coordinates of r1 and r2, respectively. For
another basis, for example a lattice basis, one has coordinates �i
and �j, and the same function becomes

gðr1; r2Þ ¼ g
Pn

i¼1

�iai;
Pn

j¼1

�jaj

 !

¼
P

ij

�i�jgij ð1:10:4:1Þ

with gij ¼ gðai; ajÞ. The relation between the Cartesian tensor
components and the lattice tensor components follows from the
basis transformation from orthonormal to a lattice basis. If

aj ¼
P

k

Skjek; ð1:10:4:2Þ

then the lattice tensor components are

gij ¼
P

k

SkiSkj:

For example, in the two-dimensional plane a lattice spanned by
að1; 0Þ and að�1

2;
1
2

ffiffiffi
3

p
Þ has a basis obtained from an orthonormal

basis by the basis transformation

S ¼ a
1 � 1

2

0 1
2

ffiffiffi
3

p

� �

and consequently the tensor components in lattice coordinates
are

gij ¼
a2 � 1

2 a
2

� 1
2 a

2 a2

� �

:

The transformation of the tensor g under an orthogonal
transformation follows from its definition. The transformation of
the Cartesian tensor under the orthogonal transformation R is

g0ij ¼
P

kl

RkiRljgkl ¼
P

kl

RkiRlj�kl ¼ �ij

because of the fact that the matrix Rij is orthogonal. The trans-
formation of the tensor components with respect to the lattice
basis, on which R is given by �ðRÞ, is

g0ij ¼
P

kl

�ðRÞki�ðRÞljgkl; ð1:10:4:3Þ

or in matrix form g0 ¼ �ðRÞTg�ðRÞ.
The metric tensor is invariant under a point group K if

gij ¼
P

kl

�ðRÞki�ðRÞljgkl 8 R 2 K: ð1:10:4:4Þ
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On the one hand this formula can be used to determine the
symmetry of a lattice with metric tensor g and on the other hand
one may use it to determine the general form of a metric tensor
invariant under a given point group. This comes down to the
determination of the free parameters in g for given group of
matrices �ðKÞ. These are the coordinates in the space of invariant
tensors.

1.10.4.2. Tensors in superspace

The tensors occurring for quasiperiodic structures are defined
in a higher-dimensional space, but this space contains as privi-
leged subspace the physical space. Since physical properties are
measured in this physical space, the coordinates are not all on the
same footing. This implies that sometimes one has to make a
distinction between the various tensor elements as well.

The distinction between physical and internal (or perpendi-
cular) coordinates can be made explicit by using a split basis. This
is a basis for the superspace such that the first d basis vectors span
the physical subspace and the other n� d basis vectors the
internal space. A lattice basis is, generally, not a split basis.

Let us consider again the metric tensor which is used to
characterize higher-dimensional lattices as well, and in particular
those corresponding to quasiperiodic structures. The elements
gij ¼ gðai; ajÞ transform according to

g0ij ¼ gða0i; a
0
jÞ ¼

P

kl

RkiRljgkl:

The symmetry of an n-dimensional lattice with metric tensor g is
the group of nonsingular n� n integer matrices S satisfying

g ¼ STgS; ð1:10:4:5Þ

where T means the transpose. For a lattice corresponding to a
quasiperiodic structure, this group is reducible into a d- and an
(n� d)-dimensional component, where d is the dimension of
physical space. This means that the d-dimensional component,
which forms a finite group, is equivalent with a d-dimensional
group of orthogonal transformations. In general, however, this
does not leave a lattice in physical space invariant. However, it
leaves the Fourier module of the quasiperiodic structure invar-
iant. The basis vectors, for which the metric tensor determines the
mutual relation, belong to the higher-dimensional superspace.
Therefore, in this case the external and internal components of
the basis vectors do not need to be treated differently. For the
metric tensor g on a split basis one has

gij ¼ 0 if i � d; j > d or i > d; j � d:

A quasiperiodic structure has an n-dimensional lattice
embedding such that the intersection of� with the physical space
VE does not contain a d-dimensional lattice. Because of the
incommensurability, however, there are lattice points of � arbi-
trarily close to VE. This means that by an arbitrarily small shear
deformation one may get a lattice in the physical space. The
deformed quasiperiodic structure then becomes periodic. In
general, the symmetry of the lattice then changes. This is certainly
the case if the point group of the quasiperiodic structure is
noncrystallographic, because then there cannot be a lattice in
physical space left invariant by such a point group. For a given
lattice � with symmetry group K one may ask which subgroups
allow a deformation of the lattice that gives periodicity in VE.

Physical tensors give often relations between vectorial or
tensorial properties. Then they are multilinear functions of p
vectors (and possibly q reciprocal vectors). An example is the
dielectric tensor " that gives the relation between E and D fields.
This relation and the corresponding expression for the free
energy F are

Di ¼
P

j

"ijEj or F ¼
P

ij

Ei"ijEj ¼ "ðE;EÞ: ð1:10:4:6Þ

Therefore, the " tensor is a bilinear function of vectors. The
difference from the metric tensor is that here the vectors E andD
are physical quantities which have d components and lie in
physical space. The transformation properties therefore only
depend on the physical-space components RE of the superspace
point group, and not on the full transformations R.

An intermediate case occurs for the strain. The strain tensor S
gives the relation between a displacement and its origin: the point
r is displaced to rþ�r with �r linear in r:

�ri ¼
P

j

Sijrj:

In ordinary elasticity, both r and �r belong to the physical space,
and the relevant tensor is the symmetric part of S:

1
2ð@i�rj þ @j�riÞ:

For a quasiperiodic structure, �r may be either a vector in
physical space or in superspace and may depend both on physical
and internal coordinates. That means that the matrix � is either
d� d, or n� d or n� n. Displacements in physical space are said
to affect the phonon degrees of freedom, those in internal space
the phason degrees of freedom. The phonon and phason displa-
cements are functions of the physical-space coordinates. The
transformation of the strain tensor under an element of a
superspace group is

S0ij ¼
Pd

k¼1

Pd

l¼1

REkiREljSkl for phonon degrees;

S0ij ¼
Pn

k¼dþ1

Pd

l¼1

RIkiREljSkl for phason degrees;

S0ij ¼
Pn

k¼1

Pn

l¼1

RskiRsljSkl for the general case.

The first two of these expressions apply only to a split basis, but
the third can be written on a lattice basis.

Pn

k;l¼1

�ðRÞki�ðRÞljSkl: ð1:10:4:7Þ

The tensor of elastic stiffnesses c gives the relation between
stress T and strain S. The stress tensor is a physical tensor of rank
two and dimension three. For the phonon strain one has

Sij ¼
P3

kl

cijklTkl; ði; j ¼ 1; . . . ; 3Þ: ð1:10:4:8Þ

The phonon part of the elasticity tensor is symmetric under
interchange of ij and kl, i and j, and k and l. It can be written in
the usual notation c� with ; � ¼ 1; 2; . . . ; 6 with 1 ¼ ð11Þ,
2 ¼ ð22Þ, 3 ¼ ð33Þ, 4 ¼ ð23Þ, 5 ¼ ð13Þ, 6 ¼ ð12Þ. Its transforma-
tion property under a three-dimensional orthogonal transfor-
mation is

c0ijkl ¼
P

i0j0k0l0
Ri0iRj0 jRk0kRl0lci0 j0k0l0 :

For the phason part a similar elasticity tensor is defined. This and
the third elastic contribution, the coupling between phonons and
phasons, will be discussed in Section 1.10.4.5.

1.10.4.3. Inhomogeneous tensors

A vector field in d-dimensional space assigns a vector to each
point of the space. This vector-valued function may, for a quasi-
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periodic system, have values in physical space or in superspace. In
both cases one has the transformation property

gf iðrÞ ¼
P

j

Rjif jðg
�1rÞ: ð1:10:4:9Þ

For a vector field in physical space, i and j run over the values
1; 2; 3. This vector field may, however, be quasiperiodic. This
means that it may be embedded in superspace. Then

gf iðrsÞ ¼
P3

j¼1

REjif j R
�1
E ðr� aÞ;R�1

I ðrI � aIÞ

 �

: ð1:10:4:10Þ

Here i ¼ 1; 2; 3. If the vector field has values in superspace, as
one can have for a displacement, one has

gf iðrsÞ ¼
Pn

j¼1

Rsjif j R
�1
E ðr� aÞ;R�1

I ðrI � aIÞ

 �

: ð1:10:4:11Þ

Here i ¼ 1; . . . ; n. For Cartesian coordinates with respect to a
split basis, Rs acts separately on physical and internal space and
one has

gf iðrsÞ ¼
Pn

j¼dþ1

RIjif j R
�1
E ðr� aÞ;R�1

I ðrI � aIÞ

 �

ð1:10:4:12Þ

for i ¼ dþ 1; . . . ; n.
Just as for homogeneous tensors, inhomogeneous tensors may

be divided into physical tensors with components in physical
space only and others that have components with respect to an
n-dimensional lattice. A physical tensor of rank two transforms
under a space-group element g ¼ fRsjasg as

ðgTÞijðrsÞ ¼
Pd

k¼1

Pd

l¼1

REkiREljTkl½R
�1
E ðrE � aEÞ;R

�1
I ðrI � aIÞ�:

ð1:10:4:13Þ

This implies the following transformation property for the
Fourier components:

ðgT̂TÞijðkÞ ¼
Pd

k¼1

Pd

l¼1

REkiREljTklðR
�1
E kÞ expðiREk:aE þ iRIkI :aIÞ:

ð1:10:4:14Þ

This gives relations between various Fourier components and
restrictions for wavevectors k for which REk ¼ k:

T̂TijðkÞ ¼
Pd

k¼1

Pd

l¼1

REkiREljTklðkÞ expðiREk:aE þ iRIkI :aIÞ:

ð1:10:4:15Þ

For tensors with superspace components, the summation over
the indices runs from 1 to n. An invariant tensor then satisfies

T̂TijðkÞ ¼
Pn

k¼1

Pn

l¼1

RskiRsljTklðkÞ expðiREk:aE þ iRIkI :aIÞ:

ð1:10:4:16Þ

The generalization to higher-rank tensors is straightforward.

1.10.4.4. Irreducible representations

For the characterization of vectors and tensors one needs the
irreducible and vector representations of the point groups. If the
point group is crystallographic in three dimensions, these can be
found in Chapter 1.2. All point groups for IC phases or composite
structures belong to this category. Exceptions are the point
groups for quasicrystals. For the finite point groups for structures

up to rank six these are given in Table 1.10.5.1. This table
presents:

(1) The character tables for the point groups

5; �55; 5m; 52; �55m

10; 10; 10=m; 10mm; 10 22; 10 2m; 10=mmm

8; �88; 8=m; 8mm; 822; �882m; 8=mmm

12; 12; 12=m; 12mm; 12 22; 12 2m; 12=mmm

532; �55�33m:

(2) Matrices for the generators in the irreducible representa-
tions of the groups

�55m; 10=mm; 8=mmm; 12=mmm; �55�33m:

(3) The vector representations and some tensor representa-
tions for the groups in the systems

�55m; 10=mmm; 8=mmm; 12=mmm; �55�33m:

The character tables can be used to determine the number of
independent tensor elements. This is the dimension of subspace
of tensors transforming with the identity representation. Tensors
transform according to (properly symmetrized or anti-
symmetrized) tensor products of vector representations. The
number of times the identity representation occurs in the
decomposition of the tensor product into irreducible components
is equal to the number of independent tensor elements and can
be calculated with the multiplicity formula. A number of exam-
ples are given in the following section.

1.10.4.5. Determining the number of independent tensor elements

1.10.4.5.1. Piezoelectric tensor

(See Sections 1.1.4.4.3 and 1.1.4.10.1.) The strain in a crystal is
determined by its displacement field. For a quasiperiodic crystal,
this displacement can have components in the physical space VE

as well as in the internal space VI. The first implies a local
displacement of the material, the latter corresponds to a local
deformation because of the shift in the internal coordinate, which
is, for example, the phase of a modulation wave or a phason jump
for a quasicrystal. The displacement in the point r is
u ¼ ½uEðrÞ; uIðrÞ�. Denote uE by v and uI by w. The strain tensor
then is given by @ivj and by @iwk. Here i and j run from 1 to the
physical dimension d, and k from 1 to the internal dimension
n� d. The antisymmetric part of @ivj corresponds to a global
rotation, which does not lead to an energy change. Therefore, the
relevant tensors are

eij ¼ ð@ivj þ @jviÞ=2; fik ¼ @iwk;

ði; j ¼ 1; . . . ; d; k ¼ 1; . . . ; n� dÞ:

ð1:10:4:17Þ

Both the phonon part e and the phason part f may be coupled to
an external electric field E. A linear coupling is given by the
piezoelectric tensor pijk. The free energy is given by

F ¼
R
dr

P

ijk

peijkeijEk þ
P

ijk

p
f
ijkfijEk

 !

:

The tensor e transforms with the symmetrized square of the
vector representation in physical space, the tensor f according to
the product of the vector representations in physical and internal
space. Then pe and pf transform according to the product of these
two representations with the vector representation in physical
space, because E is a physical vector.

As an example, consider the decagonal phase with point group
10 mm(103 mm). The physical space is three-dimensional and
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carries a (2þ 1)-reducible representation (�i 	 �5), the internal
space an irreducible two-dimensional representation (�8). The
symmetrized square of the first is six-dimensional, and the
product of first and second is also six-dimensional. The products
of these two with the three-dimensional vector representation in
physical space are both 18-dimensional. The first contains the
identity representation three times, the other does not contain
the identity representation. This implies that the piezoelectric
tensor has three independent tensor elements, all belonging to pe.
The tensor pf is zero.

1.10.4.5.2. Elasticity tensor

(See Section 1.3.3.2.) As an example of a fourth-rank tensor,
we consider the elasticity tensor. The lowest-order elastic energy
is a bilinear expression in e and f :

F ¼
R
dr 1

2

P

ijkl

cEijkleijekl þ
1
2

P

ijkl

cIijklfijfkl þ
P

ijkl

cEIijkleijfkl

 !

:

ð1:10:4:18Þ

The elastic free energy is a scalar function. The integrand must
be invariant under the operations of the symmetry group. When
�EðKÞ is the vector representation of K in the physical space (i.e.
the vectors in VE transform according to this representation) and
�IðKÞ the vector representation in VI , the tensor eij transforms
according to the symmetrized square of �E and the tensor fij
transforms according to the product �E 
 �I . Let us call these
representations �e and �f , respectively. This implies that the term
that is bilinear in e transforms according to the symmetrized
square of �e, that the term bilinear in f transforms according to
the symmetrized square of �f , and that the mixed term trans-
forms according to �e 
 �f . The number of elastic constants
follows from their transformation properties. If d ¼ 3 and
n ¼ 3þ p, the number of constants cE is 21, the number of
constants cI is 3pð3pþ 1Þ=2 and the number of cIE is 18p.
Therefore, without symmetry conditions, there are altogether
3ð2þ pÞð7þ 3pÞ=2 elastic constants. For arbitrary dimension d of
the physical space and dimension n of the superspace this number
is

dðdþ 1Þðd2 þ dþ 2Þ=8þ pdðpdþ 1Þ=2þ d2ðdþ 1Þp=2

¼ dð2pþ dþ 1Þð2þ dþ d2 þ 2pdÞ=8:

The number of independent elastic constants is the number of
independent coefficients in F, and this is given by the number of
invariants, i.e. the number of times the identity representation
occurs as irreducible component of, respectively, the symmetrized
square of �e, the symmetrized square of �f , and of �e 
 �f . The

first number is the number of elastic
constants in classical theory. The other
elastic constants involve the phason
degrees of freedom, which exist for
quasiperiodic structures. The theory of
the generalized elasticity theory for
quasiperiodic crystals has been given by
Bak (1985), Lubensky et al. (1985),
Socolar et al. (1986) and Ding et al.
(1993).

As an example, we consider an icosa-
hedral quasicrystal. The symmetry group
532 has five classes, which are given in
Table 1.10.5.1. The vector representation
is �2. It has character 	ðRÞ ¼

3; 1þ �;��; 0;�1. The character of its
symmetrized square is 6; 1; 1; 0; 2. Then
the character of the representation with
which the elasticity tensor transforms is
21; 1; 1; 0; 5. This representation contains

the trivial representation twice. Therefore, there are two free
parameters (c1111 and c1122) in the elasticity tensor for the phonon
degrees of freedom.

For the phason degrees of freedom, the displacements trans-
form with the representation �3. In this case, the phason elasticity
tensor transforms with the symmetrized square of the product of
�2 and �3. Its character is 45; 0; 0; 0; 5. This representation
contains the identity representation twice. This implies that this
tensor also has two free parameters.

Finally, the coupling term transforms with the product of the
symmetrized square of �2, �2 and �3. This representation has
character 54;�1;�1; 0; 2 and consequently contains the identity
representation once. In total, the number of independent elastic
constants is five for icosahedral tensors. The fact that we have
only used the rotation subgroup 532, instead of the full group
�55�33m, does not change this number. The additional central
inversion makes the irreducible representations either even or
odd. The elasticity tensors should be even, and there are exactly
as many even irreducible representations as odd ones. This is
shown in Table 1.10.4.1 (cf. Table. 1.10.5.1 for the character table
of the group 532).

1.10.4.5.3. Electric field gradient tensor

As an example, we consider a symmetric rank-two tensor, e.g.
an electric field gradient tensor, in a system with superspace
group symmetry Pcmn(00�)1s�11. The Fourier transform of the
tensor Tij is nonzero only for multiples of the vector �c�. The
symmetry element consisting of a mirror operationMy and a shift
1
2as4 in VI then has

REk ¼ k; k � aE ¼ 0; RI ¼ þ1; kI � aI ¼ �:

Then equation (1.10.4.15) leads to the relation

T̂Tðm�c�Þ ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0

B
@

1

C
A

¼ ð�1Þm
1 0 0

0 �1 0

0 0 1

0

B
@

1

C
A

a11 a12 a13

a21 a22 a23

a31 a32 a33

0

B
@

1

C
A

1 0 0

0 �1 0

0 0 1

0

B
@

1

C
A

with solution
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Table 1.10.4.1. Characters of the point group 10mmð103 mmÞ for representations relevant for elasticity

� ¼ ð
ffiffiffi
5

p
� 1Þ=2.

Representation

Classes

Reduction
E A A2 B AB
1 12 12 20 15

�E 3 1þ � �� 0 �1 �2

�I 3 �� 1þ � 0 �1 �3

�2
E 9 2þ � 1� � 0 1

�Eðg
2Þ 3 �� 1þ � 0 3

�e ¼ ð�EÞ
2
s 6 1 1 0 2 �1 þ �5

�2
e 36 1 1 0 4

�eðg
2Þ 6 1 1 0 6

ð�eÞ
2
s 21 1 1 0 5 2�1 þ �4 þ 3�5

�f ¼ �E � �I 9 �1 �1 0 1 �4 þ �5

ð�f Þ
2
s 45 0 0 0 5 2�1 þ �2 þ �3 þ 3�4 þ 5�5

�e � �f 54 �1 �1 0 2 �1 þ 2�2 þ 2�3 þ 4�4 þ 5�5
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T̂T ¼

a11 0 a13

0 a22 0

a13 0 a33

0

B
@

1

C
A ðm evenÞ;

T̂T ¼

0 a12 0

a12 0 a23

0 a23 0

0

B
@

1

C
A ðm oddÞ:

This symmetry of the tensor can, for example, be checked by
NMR (van Beest et al., 1983).

1.10.4.6. Determining the independent tensor elements

In the previous sections some physical tensors have been
studied, for which in a number of cases the number of the
independent tensor elements has been determined. In this section
the problem of determining the invariant tensor elements
themselves will be addressed.

Consider an orthogonal transformation R acting on the vector
space V. Its action on basis vectors is given by

e0i ¼
P

j

Rjiej: ð1:10:4:19Þ

If the basis is orthonormal, the matrix Rij is orthogonal
(RRT ¼ E). For a point group in superspace the action of R in VE

differs, in general, from that on VI .

e0Ei ¼
P

j

REjieEj; e0Ii ¼
P

j

RIjieIj: ð1:10:4:20Þ

The action of R on the tensor product space V1 
 V2, with Vi

either VE or VI , is given by

e01i 
 e02j ¼
P

k

P

l

R1
kiR

2
lje1k 
 e2l: ð1:10:4:21Þ

If both Ri are orthogonal matrices, the tensor product is also
orthogonal. For the symmetrized tensor square ðV 
 VÞsym the
basis formed by ei 
 ei (i ¼ 1; . . .) and ðei 
 ej þ ej 
 eiÞ=

ffiffiffi
2

p

(i< j) is orthogonal.
A vector

P

ij

cijei 
 ej in the tensor product space is invariant if

RcRT ¼ c: ð1:10:4:22Þ

A tensor as a (possibly symmetric or antisymmetric) bilinear
function with coefficients fij ¼ f ðei; ejÞ is invariant if the matrix fij
satisfies

RTfR ¼ f : ð1:10:4:23Þ

For orthogonal bases the equations (1.10.4.22) and (1.10.4.23) are
equivalent.

Which spaces have to be chosen for Vi depends on the physical
tensor property. The algorithm for determining invariant tensors
starts from the transformation of the basis vectors ei, from which
the basis transformation in tensor space follows after due
orthogonalization in the case of (anti)symmetric tensors. This

procedure can be continued to obtain higher-rank tensors. For
orthogonal bases the invariant subspace is spanned by vectors
corresponding to the independent tensor elements. We give a
number of examples below.

1.10.4.6.1. Metric tensor for an octagonal three-dimensional
quasicrystal

From the Fourier module for an octagonal quasicrystal in 3D
the generators of the point group can be expressed as 5D integer
matrices. They are

A ¼ 8ð83Þ ¼

0 0 0 �1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

B ¼ mzð1Þ ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 �1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

and

C ¼ mðmÞ ¼

�1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A
;

and span an integer representation of the point group
8/mmm(831mm). Solution of the three simultaneous equations
STgS ¼ g is equivalent with the determination of the subspace of
the 15D symmetric tensor space that is invariant under the point
group. The space has as basis the elements eij with i � j. The
solution is given by

g ¼

g11 g12 0 �g12 0

g12 g11 g12 0 0

0 g12 g11 g12 0

�g12 0 g12 g11 0

0 0 0 0 g55

0

B
B
B
B
@

1

C
C
C
C
A
:

If ei 
 ej is denoted by ij, the solution follows because 55 is left
invariant by A, B and C, whereas the orbits of 11 and 12 are
11 ! 22 ! 33 ! 44 ! 11 and 12 ! 23 ! 34 ! �14 ! 12,
respectively.

1.10.4.6.2. EFG tensor for Pcmn

The electric field gradient tensor transforms as the product of a
reciprocal vector and a vector. In Cartesian coordinates the
transformation properties are the same. The point group for the
basic structure of many IC phases of the family of A2BX4

compounds ismmm, and the point group for the modulated phase
is the 4D group mmm(11�11), with generators
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Table 1.10.4.2. Sign change of @iEj under the generators A, B, C

A B C

11 + + +
12 � � +
13 � + �

21 � � +
22 + + +
23 + � �

31 � + �

32 + � �

33 + + +
41 � + �

42 + � �

43 + + +
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A ¼

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
; B ¼

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
;

C ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0

B
B
B
@

1

C
C
C
A
:

The tensor elements @iEj being indicated by ij, the transformation
under the generators gives a factor �1 as shown in Table 1.10.4.2.

From this, it follows that the four independent tensor elements
are @1E1, @2E2, @3E3 and the phason part @4E3.

1.10.4.6.3. Elasticity tensor for a two-dimensional octagonal
quasicrystal

The point group of the standard octagonal tiling is generated
by the 2D orthogonal matrices

A ¼

ffiffiffiffiffiffiffi
1=2

p
�

ffiffiffiffiffiffiffi
1=2

p

ffiffiffiffiffiffiffi
1=2

p ffiffiffiffiffiffiffi
1=2

p

� �

; B ¼
�1 0

0 1

� �

:

In the tensor space one has the following transformations of the
basis vectors; they are denoted by ij for ei 
 ej:

11 ! 1
2ð11þ 12þ 21þ 22Þ

12 ! 1
2ð�11þ 12� 21þ 22Þ

21 ! 1
2ð�11� 12þ 21þ 22Þ

22 ! 1
2ð11� 12� 21þ 22Þ:

In the space spanned by a ¼ 11, b ¼
ffiffiffiffiffiffiffi
1=2

p
ð12þ 21Þ and c ¼ 22,

the eightfold rotation is represented by the matrix

SE ¼

1
2 �

ffiffiffiffiffiffiffi
1=2

p
1
2ffiffiffiffiffiffiffi

1=2
p

0 �
ffiffiffiffiffiffiffi
1=2

p

1
2

ffiffiffiffiffiffiffi
1=2

p
1
2

0

@

1

A:

In the six-dimensional space with basis aa,
ffiffiffiffiffiffiffi
1=2

p
ðabþ baÞ,ffiffiffiffiffiffiffi

1=2
p

ðacþ caÞ, bb,
ffiffiffiffiffiffiffi
1=2

p
ðbcþ cbÞ and cc, the rotation gives the

transformation

1
4

1
2

ffiffiffi
2

p
=4 1

2
1
2

1
4

� 1
2 � 1

2 0 0 1
2

1
2ffiffiffi

2
p
=4 0 1

2 �
ffiffiffiffiffiffiffi
1=2

p
0

ffiffiffi
2

p
=4

1
2 0 �

ffiffiffiffiffiffiffi
1=2

p
0 0 1

2

� 1
2

1
2 0 0 � 1

2
1
2

1
4 � 1

2

ffiffiffi
2

p
=4 1

2 � 1
2

1
4

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

The vector v such that S � v ¼ v then is then of the form

v ¼ ðv1; 0; ðv1 � v4Þ
ffiffiffi
2

p
; v4; 0; v1Þ

T :

This vector is also invariant under the mirror B. This means that
there are two independent phonon elastic constants cE1111 and
cE1212, whereas the other tensor elements satisfy the relations

cE1112 ¼ cE1222 ¼ 0; cE2222 ¼ cE1111;

cE1122 ¼ ðcE1111 þ cE1212Þ
ffiffiffiffiffiffiffi
1=2

p
:

The internal component of the eightfold rotation is A3, that of the
mirror B is B itself. The phason strain tensor transforms with the
tensor product of external and internal components. This implies
that the basis vectors, denoted by ij (i ¼ 1; 2; j ¼ 3; 4), transform
under the eightfold rotation according to

13 ! ð�13þ 14� 23þ 24Þ=2

14 ! ð�13� 14� 23� 24Þ=2

23 ! ð13� 14� 23þ 24Þ=2

24 ! ð13þ 14� 23� 24Þ=2:

The symmetrized tensor square of this matrix gives the trans-
formation in the space of phason–phason elasticity tensors, the
direct product of the transformations in the 3D phonon strain
space and the 4D phason strain space gives the transformation in
the space of phonon–-phason elasticity tensors. The first matrix is
given by

1

16

1
ffiffiffi
2

p
�

ffiffiffi
2

p
�

ffiffiffi
2

p
1 �

ffiffiffi
2

p
�

ffiffiffi
2

p
1

ffiffiffi
2

p
1

�
ffiffiffi
2

p
0 2 0

ffiffiffi
2

p
0 �2 �

ffiffiffi
2

p
0

ffiffiffi
2

p

ffiffiffi
2

p
2 0 0

ffiffiffi
2

p
0 0 �

ffiffiffi
2

p
�2 �

ffiffiffi
2

p

�
ffiffiffi
2

p
0 0 2

ffiffiffi
2

p
�2 0

ffiffiffi
2

p
0 �

ffiffiffi
2

p

1 �
ffiffiffi
2

p
�

ffiffiffi
2

p ffiffiffi
2

p
1

ffiffiffi
2

p
�

ffiffiffi
2

p
1 �

ffiffiffi
2

p
1

�
ffiffiffi
2

p
0 0 �2

ffiffiffi
2

p
2 0

ffiffiffi
2

p
0 �

ffiffiffi
2

p

ffiffiffi
2

p
�2 0 0

ffiffiffi
2

p
0 0 �

ffiffiffi
2

p
2 �

ffiffiffi
2

p

1
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
1

ffiffiffi
2

p ffiffiffi
2

p
1

ffiffiffi
2

p
1

�
ffiffiffi
2

p
0 �2 0

ffiffiffi
2

p
0 2 �

ffiffiffi
2

p
0

ffiffiffi
2

p

1 �
ffiffiffi
2

p ffiffiffi
2

p
�

ffiffiffi
2

p
1 �

ffiffiffi
2

p ffiffiffi
2

p
1 �

ffiffiffi
2

p
1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Vectors invariant under this operation and the transformation
corresponding to the mirror B correspond to invariant elasticity
tensors. For the transformation B, all tensor elements with an odd
number of indices 1 or 3 are zero. In the space of phason–phason
tensors the general invariant vector is

ðx1; 0; 0;�x6 þ ðx5 � x1Þ
ffiffiffi
2

p
; x5; x6; 0; x5; 0; x1Þ:

There are three independent elastic constants, x1 ¼ c1313,
x5 ¼ c1414 and x6 ¼ c1423. For the phonon–phason elastic
constants the corresponding invariant vector is

ðx; 0; 0; x; 0; x=
ffiffiffi
2

p
;�x=

ffiffiffi
2

p
; 0;�x; 0; 0;�xÞ:

The independent elastic constant is x ¼ c1113 ¼ c1124 ¼ c1214
ffiffiffi
2

p
¼

�c1223
ffiffiffi
2

p
¼ �c2213 ¼ �c2224.

1.10.4.6.4. Piezoelectric tensor for a three-dimensional octa-
gonal quasicrystal

A quasicrystal with octagonal point group 8/mmm(831mm) will
not show a piezoelectric effect because the point group contains
the central inversion. We consider here the point group
8mm(83mm) which is a subgroup without central inversion. It is
generated by the matrices

A ¼

� �� 0 0 0

� � 0 0 0

0 0 1 0 0

0 0 0 �� ��

0 0 0 � ��

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

B ¼

�1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 �1 0

0 0 0 0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

Here � ¼
ffiffiffi
2

p
=2. There are two components for the strain, a

phonon component e and a phason component f . The phonon
strain tensors form a 6D space, the phason strain tensors also a
6D space. The phonon strain space transforms with the symme-
trized square of the physical parts of the operations, the phason
strain space with the product of physical and internal parts. For
the eightfold rotation the corresponding matrices are

254



1.10. TENSORS IN QUASIPERIODIC STRUCTURES

Se ¼

1
2 �� 0 1

2 0 0

� 0 0 �� 0 0

0 0 � 0 �� 0
1
2 � 0 1

2 0 0

0 0 � 0 � 0

0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

Sf ¼

� 1
2 � 1

2
1
2

1
2 0 0

1
2 � 1

2 � 1
2

1
2 0 0

� 1
2 � 1

2 � 1
2 � 1

2 0 0
1
2 � 1

2
1
2 � 1

2 0 0

0 0 0 0 �� ��

0 0 0 0 � ��

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

The action on the space of piezoelectric tensors is given, for the
phonon and the phason part, by taking the product of these
matrices with the physical part AE. The invariant vectors under
these matrices give the invariant tensors. If the second generator
is taken into account, which requires that the number of indices 1
or 4 is even, this results in the independent tensor elements

x3 ¼ c113; x16 ¼ c322; x18 ¼ c333

with relation c223 ¼ c113, whereas all other elements are zero for
the coupling between the electric field and phonon strain. There
is no nontrivial invariant vector in the second case. Therefore, all
tensor elements for the coupling between the electric field and
phason strain are zero.

1.10.4.6.5. Elasticity tensor for an icosahedral quasicrystal

The point group of an icosahedral quasicrystal is 532(5232)
with generators having components

AE ¼

1 � �1� �

� 1þ � 1

1þ � �1 �

0

B
@

1

C
A=2;

BE ¼

�� 1þ � �1

1þ � 1 �

1 �� �1� �

0

B
@

1

C
A=2

in physical space and components

AI ¼

�1 � �1� �
�� ��1 1

1þ � 1 ��

0

@

1

A=2; BI ¼

0 0 �1

�1 0 0

0 1 0

0

@

1

A

in internal space (see Table 1.10.5.2). The phonon and phason
strain tensors form a 6D, respectively 9D, vector space, in which
the point group acts with matrices

Se ¼
1

4

1 �
ffiffiffi
2

p
�’

ffiffiffi
2

p
1� � �

ffiffiffi
2

p
2þ �

�
ffiffiffi
2

p
2 0

ffiffiffi
2

p
�2 �’

ffiffiffi
2

p

’
ffiffiffi
2

p
0 �2 ��

ffiffiffi
2

p
2 �

ffiffiffi
2

p

1� �
ffiffiffi
2

p
�
ffiffiffi
2

p
2þ � ’

ffiffiffi
2

p
1

ffiffiffi
2

p
2 2 �’

ffiffiffi
2

p
0 �

ffiffiffi
2

p

2þ � �’
ffiffiffi
2

p ffiffiffi
2

p
1 ��

ffiffiffi
2

p
1� �

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

Sf ¼
1

4

�� ’ �1 � � 1 1 �� 1 �2� � ’

’ 1 � 1 � 1� � �2 � � �’ �1

1 �� �’ � � � 1 �1 �’ 1 2þ �

� � 1 1 �� �1 2þ � �’ �� ’ �1

1 � 1� � 2þ � ’ 1 ’ 1 �

� � � 1 �1 ’ �1 �2� � 1 �� �’

�1 2þ � �’ � �’ 1 � � 1 1 ��

2þ � ’ 1 �’ �1 �� 1 � 1� �

’ �1 �2� � �1 � ’ � � � 1 �1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

and

Te ¼
1

4

1 ��
ffiffiffi
2

p
’

ffiffiffi
2

p
1� � �

ffiffiffi
2

p
2þ �

�
ffiffiffi
2

p
�2 0

ffiffiffi
2

p
�2 �’

ffiffiffi
2

p

�’
ffiffiffi
2

p
0 �2 �

ffiffiffi
2

p
�2

ffiffiffi
2

p

1� � �
ffiffiffi
2

p
��

ffiffiffi
2

p
2þ � ’

ffiffiffi
2

p
1

�
ffiffiffi
2

p
2 2 ’

ffiffiffi
2

p
0 ��

ffiffiffi
2

p

2þ � ’
ffiffiffi
2

p
�

ffiffiffi
2

p
1 ��

ffiffiffi
2

p
1� �

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

Tf ¼
1

2

0 0 1 0 0 �� 0 0 ’

1 0 0 �� 0 0 ’ 0 0

0 �1 0 0 � 0 0 �’ 0

0 0 � 0 0 �’ 0 0 �1

� 0 0 �’ 0 0 �1 0 0

0 �� 0 0 ’ 0 0 1 0

0 0 �’ 0 0 �1 0 0 �

�’ 0 0 �1 0 0 � 0 0

0 ’ 0 0 1 0 0 �� 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

This implies that the phonon elasticity tensors form a 21D space,
the phason elasticity tensors a 45D space and the phonon–phason
coupling a 54D space. The invariant vectors under these ortho-
gonal transformations correspond to invariant elastic tensors.
Their coordinates are the elastic constants. For the given
presentation of the point group, these are given in Table 1.10.4.3.
The tensor elements are expressed in parameters x and y where
there are two independent tensor elements. The tensor elements
that are not given are zero or equal to that given by the
permutation symmetry. If bases for the phonon and phason strain
are introduced by

½1� ¼ 11; ½2� ¼ 12; ½3� ¼ 13; ½4� ¼ 22; ½5� ¼ 23; ½6� ¼ 33

for the phonon part and

½1� ¼ 14; ½2� ¼ 15; ½3� ¼ 16; ½4� ¼ 24; ½5� ¼ 25; ½6� ¼ 26;

½7� ¼ 34; ½8� ¼ 35; ½9� ¼ 36

for the phason part, the elastic tensors may be given in matrix
form as

cee ¼

xþ y 0 0 x 0 x

0 y 0 0 0 0

0 0 y 0 0 0

x 0 0 xþ y 0 x

0 0 0 0 y 0

x 0 0 x 0 xþ y

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

cff ¼

z �2u ��u ��u �u ��u �u 0 �u

�2u z� 2�u u �u u 0 0 �2u �u

��u u z ��u 0 ��2u �u �u �u

��u �u ��u z �u u ��2u �u 0

�u u 0 �u z ��2u �u ��u ��u

��u 0 ��2u u ��2u z� 2�u 0 ��u u

�u 0 �u ��2u �u 0 z� 2�u �u ��2u

0 �2u �u �u ��u ��u �u z ��u

�u �u �u 0 ��u u ��2u ��u z

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

cef ¼

�v ��v ��2v ��3v �v ��2v v ��v ���1v

��3v �v ��2v �2v v �v 0 0 0

v ��v ���1v 0 0 0 ��v ��2v ��3v

��1v v �v ��2v v ��v ��2v ��3v �v

0 0 0 ��2v �3v �v �v ���1v v

��v ��2v ��3v �v ���1v v ��v �2v v

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

The parameters x; y; z; u; v are the five independent elastic
constants.

1.10.5. Tables

In this section are presented the irreducible representations of
point groups of quasiperiodic structures up to rank six that do not
occur as three-dimensional crystallographic point groups.
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Table 1.10.5.1. Character tables of some point groups for quasicrystals

(a) C5 ½! ¼ expð2�i=5Þ�.

C5 " � �2 �3 �4

n 1 1 1 1 1
Order 1 5 5 5 5

�1 1 1 1 1 1
�2 1 ! !2 !3 !4

�3 1 !2 !4 ! !3

�4 1 !3 ! !4 !2

�5 1 !4 !3 !2 !

Generators
Vector
representation

Perpendicular
representation

5 � ¼ C5z �1 	 �2 	 �5 �3 	 �4

(b) D5 ½� ¼ ð
ffiffiffi
5

p
� 1Þ=2�.

D5 " � �2 �
n 1 2 2 5

Order 1 5 5 2

�1 1 1 1 1
�2 1 1 1 �1
�3 2 � �1� � 0
�4 2 �1� � � 0

Generators
Vector
representation

Perpendicular
representation

52 � ¼ C5z �2 	 �3 �4

� ¼ C2x

5m � ¼ C5z �1 	 �3 �4

� ¼ mx

�55m � 52� Z2 �1u 	 �3u �4u

(c) C8 ½! ¼ expð�i=4Þ ¼ ð1þ iÞ=
ffiffiffi
2

p
�.

C8 " � �2 �3 �4 �5 �6 �7

n 1 1 1 1 1 1 1 1
Order 1 8 4 8 2 8 6 8

�1 1 1 1 1 1 1 1 1
�2 1 ! i !3 �1 !5 �i !7

�3 1 i �1 �i 1 i �1 �i
�4 1 !3 �i ! �1 !7 i !5

�5 1 �1 1 �1 1 �1 1 �1
�6 1 !5 i !7 �1 ! �i !3

�7 1 �i �1 i 1 �i �1 i
�8 1 !7 �i !5 �1 !3 i !

Generators
Vector
representation

Perpendicular
representation

8 � ¼ C8z �1 	 �2 	 �8 �4 	 �6
�88 � ¼ S8z �4 	 �5 	 �6 �2 	 �8

8=m � 8� Z2 �1u 	 �2u 	 �8u �4u 	 �6u

(d) D8

D8 " � �2 �3 �4 � ��
n 1 2 2 2 1 4 4

Order 1 8 4 8 2 2 2

�1 1 1 1 1 1 1 1
�2 1 1 1 1 1 �1 �1
�3 1 �1 1 �1 1 1 �1
�4 1 �1 1 �1 1 �1 1
�5 2

ffiffiffi
2

p
0 �

ffiffiffi
2

p
�2 0 0

�6 2 0 �2 0 2 0 0
�7 2 �

ffiffiffi
2

p
0

ffiffiffi
2

p
�2 0 0

Generators
Vector
representation

Perpendicular
representation

822 � ¼ C8z �2 	 �5 �7

� ¼ C2x

8mm � ¼ C8z �1 	 �5 �7

� ¼ mx
�882m � ¼ S8z �3 	 �7 �5

� ¼ 22x

8=mmm � 822� Z2 �2u 	 �5u �7u

(e) C10 ½! ¼ expð2�i=5Þ�.

C10 " �2 �4 �6 �8

n 1 1 1 1 1
Order 1 5 5 5 5

�1 1 1 1 1 1
�2 1 ! !2 !3 !4

�3 1 !2 !4 ! !3

�4 1 !3 ! !4 !2

�5 1 !4 !3 !2 !
�6 1 1 1 1 1
�7 1 ! !2 !3 !4

�8 1 !2 !4 ! !3

�9 1 !3 ! !4 !2

�10 1 !4 !3 !2 !

C10 �5 �7 �9 � �3

n 1 1 1 1 1
Order 2 10 10 10 10

�1 1 1 1 1 1
�2 1 ! !2 !3 !4

�3 1 !2 !4 ! !3

�4 1 !3 ! !4 !2

�5 1 !4 !3 !2 !
�6 �1 �1 �1 �1 �1
�7 �1 �! �!2 �!3 �!4

�8 �1 �!2 �!4 �! �!3

�9 �1 �!3 �! �!4 �!2

�10 �1 �!4 �!3 �!2 �!

Table 1.10.4.3. Elastic constants for icosahedral quasicrystals

Type
Free
parameters Relations

Phonon–phonon 2 c1111 ¼ c2222 ¼ c3333 ¼ x
c1122 ¼ c1133 ¼ c2233 ¼ y
c1212 ¼ c1313 ¼ c2323 ¼ x� y

Phason–phason 2 c1414 ¼ c1616 ¼ c2424 ¼ c2525 ¼ c3535 ¼ c3636 ¼ x
c1416 ¼ c1424 ¼ �c1425 ¼ c1426 ¼ �c1436 ¼ y
c1524 ¼ c1536 ¼ �c1624 ¼ c1634 ¼ c1635 ¼ �y
c1636 ¼ c2425 ¼ c2435 ¼ c2534 ¼ �c2535 ¼ �y
c2536 ¼ c2635 ¼ c3536 ¼ y; c1515 ¼ c2626 ¼ c3434 ¼ xþ 2y
c1415 ¼ c1535 ¼ �c1626 ¼ �c2434 ¼ �c2526 ¼ �c3436 ¼ y�
c1434 ¼ �c11516 ¼ �c1525 ¼ �c2426 ¼ �c2636 ¼ c3435 ¼ y=�

Phonon–phason 1 �c1114 ¼ c1134 ¼ c1225 ¼ c2225 ¼ c2336 ¼ c3326 ¼ c3336
¼ �c1115=� ¼ c1125=� ¼ �c1135� ¼ c1215� ¼ c1226�
¼ �c1334� ¼ �c2226� ¼ c2236� ¼ c2326� ¼ c2334�
¼ �c3334� ¼ �c1116�

2 ¼ �c1126�
2 ¼ �c1216�

2

¼ �c1335�
2 ¼ �c2224�

2 ¼ �c2234�
2 ¼ c3335�

2

¼ �c1136� ¼ c1224� ¼ �c1316� ¼ �c2335�
¼ �c1124=�

3 ¼ �c1336=�
3 ¼ c2235=�

3 ¼ c2325=�
3
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Generators
Vector
representation

Perpendicular
representation

10 � ¼ C10z �1 	 �7 	 �10 �8 	 �9
�55 � ¼ S5z �6 	 �8 	 �9 �7 	 �10

10 � ¼ S10z �2 	 �4 	 �6 �3 	 �5

10=m � 10� Z2 �1u 	 �7u 	 �10u �8u 	 �9u

(f) D10 ½� ¼ ð
ffiffiffi
5

p
� 1Þ=2�.

D10 " � �2 �3

n 1 2 2 2
Order 1 10 5 10

�1 1 1 1 1
�2 1 1 1 1
�3 1 �1 1 �1
�4 1 �1 1 �1
�5 2 1þ � � ��
�6 2 � �1� � �1� �
�7 2 �� �1� � 1þ �
�8 2 �1� � � �

D10 �4 �5 � ��
n 2 1 5 5

Order 5 2 2 2

�1 1 1 1 1
�2 1 1 �1 �1
�3 1 �1 1 �1
�4 1 �1 �1 1
�5 �1� � �2 0 0
�6 � 2 0 0
�7 � �2 0 0
�8 �1� � 2 0 0

Generators
Vector
representation

Perpendicular
representation

10 22 � ¼ C8z �2 	 �5 �7

� ¼ C2x

10mm � ¼ C8z �1 	 �5 �7

� ¼ mx

10 2m � ¼ S10z �3 	 �7 �5

� ¼ 22x
�55m � ¼ S5z �3 	 �7 �5

10=mmm � 10 22� Z2 �2u 	 �5u �7u

(g) C12 ½! ¼ expð�i=6Þ�.

C12 " � �2 �3 �4 �5

n 1 1 1 1 1 1
Order 1 12 6 4 3 12

�1 1 1 1 1 1 1
�2 1 ! !2 i !4 !5

�3 1 !2 !4 �1 �!2 �!4

�4 1 i �1 �i 1 i
�5 1 !4 �!2 1 !4 �!2

�6 1 !5 �!4 i �!2 !
�7 1 �1 1 �1 1 �1
�8 1 �! !2 �i !4 �!5

�9 1 �!2 !4 1 �!2 !4

�10 1 �i �1 i 1 �i
�11 1 �!4 �!2 �1 !4 !2

�12 1 �!5 �!4 �i �!2 �!

C12 �6 �7 �8 �9 �10 �11

n 1 1 1 1 1 1
Order 2 12 3 4 6 12

�1 1 1 1 1 1 1
�2 �1 �! �!2 �i �!4 �!5

�3 1 !2 !4 �1 �!2 �!4

�4 �1 �i 1 i �1 �i
�5 1 !4 �!2 1 !4 �!2

�6 �1 �!5 !4 �i !2 �!
�7 1 �1 1 �1 1 �1
�8 �1 ! �!2 i �!4 !5

C12 �6 �7 �8 �9 �10 �11

n 1 1 1 1 1 1
Order 2 12 3 4 6 12

�9 1 �!2 !4 1 �!2 !4

�10 �1 i 1 �i �1 i
�11 1 �!4 �!2 �1 !4 !2

�12 �1 !5 !4 i !2 !

Generator
Vector
representation

Perpendicular
representation

12 C12z �1 	 �2 	 �12 �6 	 �8

12 S12z �6 	 �7 	 �8 �2 	 �12

12=m � 12� Z2 �1u 	 �2u 	 �12u �6u 	 �8u

(h) D12

D12 " � �2 �3

n 1 2 2 2
Order 1 12 6 4

�1 1 1 1 1
�2 1 1 1 1
�3 1 �1 1 �1
�4 1 �1 1 �1
�5 2

ffiffiffi
3

p
1 0

�6 2 1 �1 �2
�7 2 0 �2 0
�8 2 �1 �1 2
�9 2 �

ffiffiffi
3

p
1 0

D12 �4 �5 �6 � ��
n 2 2 1 6 6

Order 3 12 2 2 2

�1 1 1 1 1 1
�2 1 1 1 �1 �1
�3 1 �1 1 1 �1
�4 1 �1 1 �1 1
�5 �1 �

ffiffiffi
3

p
�2 0 0

�6 �1 1 2 0 0
�7 2 0 �2 0 0
�8 �1 �1 2 0 0
�9 �1

ffiffiffi
3

p
�2 0 0

Generators
Vector
representation

Perpendicular
representation

12 22 � ¼ C12z �2 	 �5 �9

� ¼ C2x

12mm � ¼ C12z �1 	 �5 �9

� ¼ mx

12 2m � ¼ S8z �4 	 �9 �5

� ¼ 22x

12=mmm � 12 22� Z2 �2u 	 �5u �9u

(i) I ½� ¼ ð
ffiffiffi
5

p
� 1Þ=2�.

I " � �2 � ��
n 1 12 12 20 15

Order 1 5 5 3 2

�1 1 1 1 1 1
�2 3 1þ � �� 0 �1
�3 3 �� 1þ � 0 �1
�4 4 �1 �1 1 0
�5 5 0 0 �1 1

Generators
Vector
representation

Perpendicular
representation

532 � ¼ C5 �2 �3

� ¼ C3d

�55�33m � 532� Z2 �2u �3u

Table 1.10.5.1 (cont.)
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Table 1.10.5.1 gives the characters of the point groups Cn with
n ¼ 5; 8; 10; 12, Dn with n ¼ 5; 8; 10; 12, and the icosahedral
group I. The direct products with Z2 then follow easily. Although
these direct products of a group K with Z2 do not belong to the
isomorphism class of K, their irreducible representations are
nevertheless given in the table for K because these irreducible
representations have the same labels as those forK apart from an
additional subindex u. The reresentations of the subgroup K of
K � Z2 are the same as for K itself, those for the cosets get an
additional minus sign. In the tables, the characters for the groups
K � Z2 are separated from those for K by a horizontal rule. In
addition to the characters are given the realizations of crystal-

lographic point groups, and the irreducible components of the
vector representations in direct space VE and internal space VI

for these realizations. The vector representation in VI is called
the perpendicular representation.

In Table 1.10.5.2 the representation matrices for the irre-
ducible representations in more than one dimension are given
(one-dimensional representations are just the characters). For
the cyclic groups there are only one-dimensional representations,
for the dihedral groups there are one- and two-dimensional
irreducible representations. There are four irreducible repre-
sentations of I of dimension larger than one. The four- and five-
dimensional ones are given as integer representations. They form

258

Table 1.10.5.2. Matrices of the irreducible representations of dimension d � 2 corresponding to the irreps of Table 1.10.5.1

(a) D5

Representation Dð�pÞ Dð�Þ

�3 cosð2�p=5Þ � sinð2�p=5Þ
sinð2�p=5Þ cosð2�p=5Þ

� �
0 1

1 0

� �

�4 cosð4�p=5Þ � sinð4�p=5Þ
sinð4�p=5Þ cosð4�p=5Þ

� �
0 1

1 0

� �

(b) D8

Representation Dð�pÞ Dð�Þ

�5 cosð�p=4Þ � sinð�p=4Þ
sinð�p=4Þ cosð�p=4Þ

� �
0 1

1 0

� �

�6 cosð�p=2Þ � sinð�p=2Þ
sinð�p=2Þ cosð�p=2Þ

� �
0 1

1 0

� �

�7 cosð3�p=4Þ � sinð3�p=4Þ
sinð3�p=4Þ cosð3�p=4Þ

� �
0 1

1 0

� �

(c) D10

Representation Dð�pÞ Dð�Þ

�5 cosð�p=5Þ � sinð�p=5Þ
sinð�p=5Þ cosð�p=5Þ

� �
0 1

1 0

� �

�6 cosð2�p=5Þ � sinð2�p=5Þ
sinð2�p=5Þ cosð2�p=5Þ

� �
0 1

1 0

� �

�7 cosð3�p=5Þ � sinð3�p=5Þ
sinð3�p=5Þ cosð3�p=5Þ

� �
0 1

1 0

� �

�8 cosð4�p=5Þ � sinð4�p=5Þ
sinð4�p=5Þ cosð4�p=5Þ

� �
0 1

1 0

� �

(d) D12

Representation Dð�pÞ Dð�Þ

�5 cosð�p=6Þ � sinð�p=6Þ
sinð�p=6Þ cosð�p=6Þ

� �
0 1

1 0

� �

�6 cosð�p=3Þ � sinð�p=3Þ
sinð�p=3Þ cosð�p=3Þ

� �
0 1

1 0

� �

�7 cosð�p=2Þ � sinð�p=2Þ
sinð�p=2Þ cosð�p=2Þ

� �
0 1

1 0

� �

�8 cosð2�p=3Þ � sinð2�p=3Þ
sinð2�p=3Þ cosð2�p=3Þ

� �
0 1

1 0

� �

�9 cosð5�p=6Þ � sinð5�p=6Þ
sinð5�p=6Þ cosð5�p=6Þ

� �
0 1

1 0

� �
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Table 1.10.5.2 (cont.)

(e) I. First column: numbering of the elements. f ¼ ð1þ
ffiffiffi
5

p
Þ=2; t ¼ ð

ffiffiffi
5

p
� 1Þ=2. Horizontal rules separate conjugation classes.

No. Order �2 �4 �5

1 1 1 0 0

0 1 0

0 0 1

0

@

1

A
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B
B
@

1

C
C
A

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A

2 5 1=2 t=2 �f=2
t=2 f=2 1=2
f=2 �1=2 t=2

0

@

1

A
0 0 0 �1

1 0 0 �1

0 1 0 �1

0 0 1 �1

0

B
B
@

1

C
C
A

1 0 0 0 �1

0 0 0 0 �1

0 1 0 0 �1

0 0 1 0 �1

0 0 0 1 �1

0

B
B
B
B
@

1

C
C
C
C
A

3 5 1=2 �t=2 f=2
�t=2 f=2 1=2
f=2 �1=2 t=2

0

@

1

A
0 0 1 �1

1 0 0 �1

0 0 0 �1

0 1 0 �1

0

B
B
@

1

C
C
A

0 �1 1 0 0

0 �1 0 0 1

0 �1 0 0 0

0 �1 0 1 0

1 �1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

4 5 1=2 t=2 f=2
t=2 f=2 �1=2
�f=2 1=2 t=2

0

@

1

A
�1 1 0 0

�1 0 1 0

�1 0 0 1

�1 0 0 0

0

B
B
@

1

C
C
A

1 �1 0 0 0

0 �1 1 0 0

0 �1 0 1 0

0 �1 0 0 1

0 �1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

5 5 t=2 �f=2 1=2
f=2 1=2 t=2
�1=2 t=2 f=2

0

@

1

A
0 �1 0 0

0 �1 0 1

1 �1 0 0

0 �1 1 0

0

B
B
@

1

C
C
A

0 1 0 �1 0

0 0 0 �1 1

0 0 1 �1 0

1 0 0 �1 0

0 0 0 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

6 5 f=2 �1=2 �t=2
1=2 t=2 f=2
�t=2 �f=2 1=2

0

@

1

A
0 1 �1 0

0 0 �1 0

0 0 �1 1

1 0 �1 0

0

B
B
@

1

C
C
A

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

7 5 f=2 1=2 t=2
�1=2 t=2 f=2
t=2 �f=2 1=2

0

@

1

A
0 �1 0 1

0 �1 1 0

1 �1 0 0

0 �1 0 0

0

B
B
@

1

C
C
A

�1 0 1 0 0

�1 1 0 0 0

�1 0 0 0 1

�1 0 0 0 0

�1 0 0 1 0

0

B
B
B
B
@

1

C
C
C
C
A

8 5 t=2 f=2 �1=2
�f=2 1=2 t=2
1=2 t=2 f=2

0

@

1

A
�1 0 1 0

�1 0 0 0

�1 0 0 1

�1 1 0 0

0

B
B
@

1

C
C
A

0 0 0 1 �1

1 0 0 0 �1

0 0 1 0 �1

0 0 0 0 �1

0 1 0 0 �1

0

B
B
B
B
@

1

C
C
C
C
A

9 5 t=2 f=2 1=2
�f=2 1=2 �t=2
�1=2 �t=2 f=2

0

@

1

A
0 0 �1 0

0 0 �1 1

0 1 �1 0

1 0 �1 0

0

B
B
@

1

C
C
A

�1 0 0 1 0

�1 0 1 0 0

�1 0 0 0 0

�1 1 0 0 0

�1 0 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A

10 5 f=2 1=2 �t=2
�1=2 t=2 �f=2
�t=2 f=2 1=2

0

@

1

A
0 �1 0 1

1 �1 0 0

0 �1 0 0

0 �1 1 0

0

B
B
@

1

C
C
A

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

11 5 1=2 �t=2 �f=2
�t=2 f=2 �1=2
f=2 1=2 t=2

0

@

1

A
0 1 �1 0

0 0 �1 1

1 0 �1 0

0 0 �1 0

0

B
B
@

1

C
C
A

0 0 �1 0 1

0 0 �1 0 0

1 0 �1 0 0

0 0 �1 1 0

0 1 �1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

12 5 f=2 �1=2 t=1
1=2 t=2 �f=2
t=2 f=2 1=2

0

@

1

A
0 0 1 �1

0 0 0 �1

0 1 0 �1

1 0 0 �1

0

B
B
@

1

C
C
A

0 0 0 �1 0

0 1 0 �1 0

1 0 0 �1 0

0 0 0 �1 1

0 0 1 �1 0

0

B
B
B
B
@

1

C
C
C
C
A



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

260

Table 1.10.5.2 (cont.)

No. Order �2 �4 �5

13 5 t=2 �f=2 �1=2
f=2 1=2 �t=2
1=2 �t=2 f=2

0

@

1

A
�1 0 0 1

�1 0 1 0

�1 0 0 0

�1 1 0 0

0

B
B
@

1

C
C
A

0 0 �1 0 0

0 0 �1 1 0

0 1 �1 0 0

1 0 �1 0 0

0 0 �1 0 1

0

B
B
B
B
@

1

C
C
C
C
A

14 5 �t=2 f=2 �1=2
f=2 1=2 t=2
1=2 �t=2 �f=2

0

@

1

A
0 0 �1 1

0 0 �1 0

1 0 �1 0

0 1 �1 0

0

B
B
@

1

C
C
A

1 0 0 �1 0

0 0 0 �1 1

0 0 0 �1 0

0 1 0 �1 0

0 0 1 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

15 5 �t=2 f=2 1=2
f=2 1=2 �t=2
�1=2 t=2 �f=2

0

@

1

A
0 �1 1 0

0 �1 0 1

0 �1 0 0

1 �1 0 0

0

B
B
@

1

C
C
A

1 0 �1 0 0

0 0 �1 1 0

0 0 �1 0 1

0 0 �1 0 0

0 1 �1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

16 5 �f=2 1=2 �t=2
�1=2 �t=2 f=2
t=2 f=2 1=2

0

@

1

A
0 0 �1 1

1 0 �1 0

0 1 �1 0

0 0 �1 0

0

B
B
@

1

C
C
A

0 �1 0 0 0

0 �1 0 1 0

0 �1 1 0 0

0 �1 0 0 1

1 �1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

17 5 �t=2 �f=2 1=2
�f=2 1=2 t=2
�1=2 �t=2 �f=2

0

@

1

A
0 �1 0 0

0 �1 1 0

0 �1 0 1

1 �1 0 0

0

B
B
@

1

C
C
A

0 0 0 0 �1

1 0 0 0 �1

0 1 0 0 �1

0 0 0 1 �1

0 0 1 0 �1

0

B
B
B
B
@

1

C
C
C
C
A

18 5 �t=2 �f=2 �1=2
�f=2 1=2 �t=2
1=2 t=2 �f=2

0

@

1

A
�1 0 0 1

�1 0 0 0

�1 1 0 0

�1 0 1 0

0

B
B
@

1

C
C
A

�1 1 0 0 0

�1 0 1 0 0

�1 0 0 0 1

�1 0 0 1 0

�1 0 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

19 5 �f=2 �1=2 t=2
1=2 �t=2 f=2
�t=2 f=2 1=2

0

@

1

A
0 1 0 �1

0 0 1 �1

0 0 0 �1

1 0 0 �1

0

B
B
@

1

C
C
A

�1 0 0 0 1

�1 0 0 0 0

�1 0 1 0 0

�1 1 0 0 0

�1 0 0 1 0

0

B
B
B
B
@

1

C
C
C
C
A

20 5 �f=2 1=2 t=2
�1=2 �t=2 �f=2
�t=2 �f=2 1=2

0

@

1

A
0 �1 1 0

1 �1 0 0

0 �1 0 1

0 �1 0 0

0

B
B
@

1

C
C
A

0 1 0 �1 0

0 0 0 �1 0

1 0 0 �1 0

0 0 1 �1 0

0 0 0 �1 1

0

B
B
B
B
@

1

C
C
C
C
A

21 5 1=2 �t=2 f=2
t=2 �f=2 �1=2
f=2 1=2 �t=2

0

@

1

A
�1 1 0 0

�1 0 0 1

�1 0 0 0

�1 0 1 0

0

B
B
@

1

C
C
A

0 0 0 1 �1

0 1 0 0 �1

0 0 0 0 �1

0 0 1 0 �1

1 0 0 0 �1

0

B
B
B
B
@

1

C
C
C
C
A

22 5 1=2 �t=2 �f=2
t=2 �f=2 1=2
�f=2 �1=2 �t=2

0

@

1

A
0 0 0 �1

0 0 1 �1

1 0 0 �1

0 1 0 �1

0

B
B
@

1

C
C
A

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

23 5 1=2 t=2 f=2
�t=2 �f=2 1=2
f=2 �1=2 �t=2

0

@

1

A
0 0 �1 0

1 0 �1 0

0 0 �1 1

0 1 �1 0

0

B
B
@

1

C
C
A

0 0 �1 0 1

0 1 �1 0 0

0 0 �1 1 0

1 0 �1 0 0

0 0 �1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

24 5 1=2 t=2 �f=2
�t=2 �f=2 �1=2
�f=2 1=2 �t=2

0

@

1

A
�1 0 1 0

�1 0 0 1

�1 1 0 0

�1 0 0 0

0

B
B
@

1

C
C
A

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0

B
B
B
B
@

1

C
C
C
C
A
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Table 1.10.5.2 (cont.)

No. Order �2 �4 �5

25 5 �f=2 �1=2 �t=2
1=2 �t=2 �f=2
t=2 �f=2 1=2

0

@

1

A
0 1 0 �1

0 0 0 �1

1 0 0 �1

0 0 1 �1

0

B
B
@

1

C
C
A

0 �1 1 0 0

1 �1 0 0 0

0 �1 0 1 0

0 �1 0 0 0

0 �1 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A

26 3 �1=2 t=2 �f=2
�t=2 f=2 1=2
f=2 1=2 �t=2

0

@

1

A
1 �1 0 0

0 �1 1 0

0 �1 0 0

0 �1 0 1

0

B
B
@

1

C
C
A

0 �1 0 1 0

0 �1 0 0 1

1 �1 0 0 0

0 �1 1 0 0

0 �1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

27 3 �1=2 �t=2 f=2
t=2 f=2 1=2
�f=2 1=2 �t=2

0

@

1

A
1 0 �1 0

0 0 �1 0

0 1 �1 0

0 0 �1 1

0

B
B
@

1

C
C
A

0 0 1 0 �1

0 0 0 0 �1

0 0 0 1 �1

1 0 0 0 �1

0 1 0 0 �1

0

B
B
B
B
@

1

C
C
C
C
A

28 3 �1=2 t=2 f=1
�t=2 f=2 �1=2
�f=2 �1=2 �t=2

0

@

1

A
0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0

B
B
@

1

C
C
A

0 0 �1 1 0

0 0 �1 0 0

0 1 �1 0 0

0 0 �1 0 1

1 0 �1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

29 3 0 0 1

1 0 0

0 1 0

0

@

1

A
0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

0

B
B
@

1

C
C
A

0 1 0 0 �1

0 0 1 0 �1

1 0 0 0 �1

0 0 0 0 �1

0 0 0 1 �1

0

B
B
B
B
@

1

C
C
C
C
A

30 3 �1=2 �t=2 �f=2
t=2 f=2 �1=2
f=2 �1=2 �t=2

0

@

1

A
0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0

B
B
@

1

C
C
A

0 �1 0 0 1

0 �1 1 0 0

0 �1 0 0 0

1 �1 0 0 0

0 �1 0 1 0

0

B
B
B
B
@

1

C
C
C
C
A

31 3 0 0 �1

1 0 0

0 �1 0

0

@

1

A
1 �1 0 0

0 �1 0 1

0 �1 1 0

0 �1 0 0

0

B
B
@

1

C
C
A

0 0 0 0 �1

0 0 1 0 �1

0 0 0 1 �1

0 1 0 0 �1

1 0 0 0 �1

0

B
B
B
B
@

1

C
C
C
C
A

32 3 f=2 1=2 �t=2
1=2 �t=2 f=2
t=2 �f=2 �1=2

0

@

1

A
�1 0 1 0

�1 1 0 0

�1 0 0 0

�1 0 0 1

0

B
B
@

1

C
C
A

�1 1 0 0 0

�1 0 0 0 0

�1 0 0 1 0

�1 0 0 0 1

�1 0 1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

33 3 0 1 0

0 0 1

1 0 0

0

@

1

A
0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0

B
B
@

1

C
C
A

0 0 1 �1 0

1 0 0 �1 0

0 1 0 �1 0

0 0 0 �1 1

0 0 0 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

34 3 0 0 �1

�1 0 0

0 1 0

0

@

1

A
0 0 0 �1

0 1 0 �1

0 0 1 �1

1 0 0 �1

0

B
B
@

1

C
C
A

0 1 �1 0 0

0 0 �1 0 1

0 0 �1 1 0

0 0 �1 0 0

1 0 �1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

35 3 0 �1 0

0 0 1

�1 0 0

0

@

1

A
�1 0 0 1

�1 1 0 0

�1 0 1 0

�1 0 0 0

0

B
B
@

1

C
C
A

0 0 0 �1 1

1 0 0 �1 0

0 0 0 �1 0

0 0 1 �1 0

0 1 0 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

36 3 f=2 �1=2 t=2
�1=2 �t=2 f=2
�t=2 �f=2 �1=2

0

@

1

A
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

0

B
B
@

1

C
C
A

0 �1 0 0 1

0 �1 0 1 0

1 �1 0 0 0

0 �1 0 0 0

0 �1 1 0 0

0

B
B
B
B
@

1

C
C
C
C
A
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Table 1.10.5.2 (cont.)

No. Order �2 �4 �5

37 3 0 0 1

�1 0 0

0 �1 0

0

@

1

A
�1 1 0 0

�1 0 0 0

�1 0 1 0

�1 0 0 1

0

B
B
@

1

C
C
A

0 0 �1 0 0

0 0 �1 0 1

1 0 �1 0 0

0 1 �1 0 0

0 0 �1 1 0

0

B
B
B
B
@

1

C
C
C
C
A

38 3 0 1 0

0 0 �1

�1 0 0

0

@

1

A
1 0 0 �1

0 0 0 �1

0 0 1 �1

0 1 0 �1

0

B
B
@

1

C
C
A

�1 0 0 0 1

�1 0 0 1 0

�1 1 0 0 0

�1 0 1 0 0

�1 0 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

39 3 f=2 1=2 t=2
1=2 �t=2 �f=2
�t=2 f=2 �1=2

0

@

1

A
0 0 �1 0

0 1 �1 0

1 0 �1 0

0 0 �1 1

0

B
B
@

1

C
C
A

0 �1 0 0 0

1 �1 0 0 0

0 �1 0 0 1

0 �1 1 0 0

0 �1 0 1 0

0

B
B
B
B
@

1

C
C
C
C
A

40 3 �t=2 �f=2 1=2
f=2 �1=2 �t=2
1=2 t=2 f=2

0

@

1

A
1 0 �1 0

0 1 �1 0

0 0 �1 1

0 0 �1 0

0

B
B
@

1

C
C
A

�1 0 0 1 0

�1 0 0 0 1

�1 1 0 0 0

�1 0 0 0 0

�1 0 1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

41 3 �t=2 �f=2 �1=2
f=2 �1=2 t=2
�1=2 �t=2 f=2

0

@

1

A
0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

0

B
B
@

1

C
C
A

0 0 �1 1 0

1 0 �1 0 0

0 0 �1 0 1

0 1 �1 0 0

0 0 �1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

42 3 �t=2 f=2 1=2
�f=2 �1=2 t=2
1=2 �t=2 f=2

0

@

1

A
1 0 0 �1

0 1 0 �1

0 0 0 �1

0 0 1 �1

0

B
B
@

1

C
C
A

0 0 0 �1 0

0 0 1 �1 0

0 0 0 �1 1

1 0 0 �1 0

0 1 0 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

43 3 �t=2 f=2 �1=2
�f=2 �1=2 �t=2
�1=2 t=2 f=2

0

@

1

A
0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

0

B
B
@

1

C
C
A

0 1 0 0 �1

0 0 0 1 �1

0 0 0 0 �1

1 0 0 0 �1

0 0 1 0 �1

0

B
B
B
B
@

1

C
C
C
C
A

44 3 f=2 �1=2 �t=2
�1=2 �t=2 �f=2
t=2 f=2 �1=2

0

@

1

A
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0

B
B
@

1

C
C
A

0 0 1 �1 0

0 0 0 �1 0

0 0 0 �1 1

0 1 0 �1 0

1 0 0 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

45 3 0 �1 0

0 0 �1

1 0 0

0

@

1

A
0 �1 0 0

1 �1 0 0

0 �1 1 0

0 �1 0 1

0

B
B
@

1

C
C
A

�1 0 1 0 0

�1 0 0 1 0

�1 0 0 0 0

�1 0 0 0 1

�1 1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

46 2 �1 0 0

0 1 0

0 0 �1

0

@

1

A
0 1 0 �1

1 0 0 �1

0 0 1 �1

0 0 0 �1

0

B
B
@

1

C
C
A

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0

0

B
B
B
B
@

1

C
C
C
C
A

47 2 �f=2 1=2 t=2
1=2 t=2 f=2
t=2 f=2 �1=2

0

@

1

A
�1 0 0 0

�1 1 0 0

�1 0 0 1

�1 0 1 0

0

B
B
@

1

C
C
A

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A

48 2 �f=2 �1=2 �t=2
�1=2 t=2 f=2
�t=2 f=2 �1=2

0

@

1

A
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0

B
B
@

1

C
C
A

�1 0 0 0 0

�1 1 0 0 0

�1 0 0 1 0

�1 0 1 0 0

�1 0 0 0 1

0

B
B
B
B
@

1

C
C
C
C
A
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Table 1.10.5.2 (cont.)

No. Order �2 �4 �5

49 2 �f=2 �1=2 t=2
�1=2 t=2 �f=2
t=2 �f=2 �1=2

0

@

1

A
1 0 �1 0

0 0 �1 1

0 0 �1 0

0 1 �1 0

0

B
B
@

1

C
C
A

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

0

B
B
B
B
@

1

C
C
C
C
A

50 2 �f=2 1=2 �t=2
1=2 t=2 �f=2
�t=2 �f=2 �1=2

0

@

1

A
�1 0 0 0

�1 0 1 0

�1 1 0 0

�1 0 0 1

0

B
B
@

1

C
C
A

0 0 0 �1 1

0 1 0 �1 0

0 0 1 �1 0

0 0 0 �1 0

1 0 0 �1 0

0

B
B
B
B
@

1

C
C
C
C
A

51 2 t=2 f=2 �1=2
f=2 �1=2 �t=2
�1=2 �t=2 �f=2

0

@

1

A
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0

B
B
@

1

C
C
A

�1 0 0 0 0

�1 0 0 0 1

�1 0 1 0 0

�1 0 0 1 0

�1 1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

52 2 t=2 f=2 1=2
f=2 �1=2 t=2
1=2 t=2 �f=2

0

@

1

A
1 0 0 �1

0 0 1 �1

0 1 0 �1

0 0 0 �1

0

B
B
@

1

C
C
A

0 1 �1 0 0

1 0 �1 0 0

0 0 �1 0 0

0 0 �1 1 0

0 0 �1 0 1

0

B
B
B
B
@

1

C
C
C
C
A

53 2 �1=2 t=2 f=2
t=2 �f=2 1=2
f=2 1=2 t=2

0

@

1

A
0 �1 1 0

0 �1 0 0

1 �1 0 0

0 �1 0 1

0

B
B
@

1

C
C
A

0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

54 2 �1=2 t=2 �f=2
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crystallographic groups in 4D and 5D. The two three-dimensional
representations have the same matrices. The elements, however,
are connected by an outer automorphism. That means that the ith
element Ri is represented by �2ðRiÞ in the representation �2, and
by �3ðRiÞ ¼ �2ð’RiÞ in �3. The element ’Ri is another element
Rj. The corresponding j for each i is given in Table 1.10.5.3.
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Table 1.10.5.3. The representation matrices for �3

The representation matrices for �3 are the same as for �2. Correspondences are
given as pairs i; j: �3ðRiÞ ¼ �2ðRjÞ.

i j i j i j i j i j i j

1 1 11 21 21 5 31 42 41 29 51 48
2 14 12 16 22 6 32 45 42 39 52 54
3 23 13 17 23 8 33 36 43 33 53 46
4 15 14 4 24 10 34 27 44 30 54 50
5 25 15 2 25 11 35 26 45 38 55 52
6 24 16 13 26 34 36 28 46 49 56 57
7 19 17 12 27 35 37 31 47 53 57 59
8 20 18 7 28 43 38 40 48 51 58 56
9 18 19 9 29 44 39 37 49 47 59 58
10 22 20 3 30 41 40 32 50 55 60 60
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2.1. Phonons

By G. Eckold

2.1.1. Introduction

Interatomic interactions in crystalline solids not only determine
the equilibrium atomic structure but also the possible excitations
of the lattice: the motions of atoms, molecules or ions. The
investigation of dynamical processes provides us with detailed
information about the interatomic forces. Obviously, there are a
huge variety of possible collective motions within a solid, which
represents a multiparticle system with 1023 degrees of freedom.
As long as the solid may be described by an equilibrium structure
and atomic displacements from the average positions are small
compared with interatomic distances, the dynamical behaviour of
the lattice is essentially determined by well defined lattice
vibrations or phonons. These elementary excitations of a solid are
described by eigenvectors and eigenfrequencies reflecting the
strength of interatomic interactions. Owing to the symmetry
(space group) of the equilibrium structure there are constraints
for the individual eigenvectors. In special high-symmetry cases,
phonon eigenvectors can even be predicted merely on the basis
of group-theoretical considerations.

This chapter is devoted to the implications of lattice symmetry
on the form, i.e. on the eigenvectors, of lattice vibrations. We
restrict ourselves to the consideration of perfect crystals and
harmonic vibrations. In addition, some aspects of anharmonicity
are discussed in terms of a quasi-harmonic model, yielding the
connection between microscopic dynamics and macroscopic
thermodynamic quantities such as thermal expansion. However,
intrinsic anharmonic effects associated with the interaction of
phonons, phonon damping or localized vibrations due to defects,
for example, are beyond the scope of this article. In Section 2.1.2
we present the fundamentals of lattice dynamics with special
emphasis on the role of the dynamical matrix. Section 2.1.3 deals
with the symmetry properties of this matrix along with its
eigenvectors and eigenfrequencies. Symmetry-induced degen-
eracies will be considered in some detail as well as compatibility
relations for phonon wavevectors corresponding to points of
higher symmetry within the reciprocal space. Finally, the optical
selection rules for long wavelength vibrations are presented.
Some examples are included in order to illustrate the theoretical
results.

For a further discussion of other phenomena associated with
lattice vibrations the reader is referred to the monographs of
Leibfried (1955), Maradudin et al. (1971), Reissland (1973),
Srivastava (1990) or Dove (1993).

2.1.2. Fundamentals of lattice dynamics in the harmonic
approximation

2.1.2.1. Hamiltonian and equations of motion

In order to reduce the complexity of lattice dynamical
considerations, we describe the crystal’s periodicity by the
smallest unit needed to generate the whole (infinite) lattice by
translation, i.e. the primitive cell. Each individual primitive cell
may be characterized by a running index l and a vector rl pointing
to its origin. Let there be N atoms per cell, the equilibrium
positions of which are given by

ro�l ¼ rl þ ro� � ¼ 1; . . . ;N l ¼ 1; 2; . . . ; ð2:1:2:1Þ

ro� being the vector of the �th atom with respect to the origin of
the primitive cell (see Fig. 2.1.2.1).

The set of vectors ro�l describes the structure of the perfect
lattice. At a particular time t, however, the �th atom within the lth
primitive cell, denoted by (�l), may be found at a position r�lðtÞ
which differs slightly from the equilibrium position, the time-
dependent displacement being

u�lðtÞ ¼ r�lðtÞ � ro�l ¼ r�lðtÞ � rl � ro�: ð2:1:2:2Þ

The potential energy V of the whole crystal depends on the
position vectors of all atoms,

V ¼ Vðr1; r2; . . . ; r�l; . . .Þ; ð2:1:2:3Þ

and is minimal if all atoms occupy their equilibrium positions. For
small displacements, it can be expanded in a Taylor series with
respect to u�lðtÞ:

V ¼ Vo þ 1
2

P

�l

P

�0 l0

P3

�¼1

P3

�¼1

u��lðtÞV��ð�l; �
0l0Þ u

�
�0l0 ðtÞ þ . . . ;

ð2:1:2:4Þ

where u��lðtÞ denotes the Cartesian coordinate of u�lðtÞ in direc-
tion �. In the harmonic approximation, third and higher-order
terms are neglected. In order to simplify the formulae, we now
drop the time argument, keeping in mind that we are always
dealing with dynamical displacements. The expansion coefficients
in equation (2.1.2.4) are the partial derivatives of the potential
energy with respect to the atomic displacements taken at the
equilibrium positions:

V��ð�l; �
0l0Þ ¼

@2V

@u��l@u
�
�0 l0

�
�
�
�
o

: ð2:1:2:5Þ

Using the matrix notation

Vð�l; �0l0Þ ¼
V11ð�l; �

0l0Þ V12ð�l; �
0l0Þ V13ð�l; �

0l0Þ

V21ð�l; �
0l0Þ V22ð�l; �

0l0Þ V23ð�l; �
0l0Þ

V31ð�l; �
0l0Þ V32ð�l; �

0l0Þ V33ð�l; �
0l0Þ

0

@

1

A

ð2:1:2:6Þ

and dropping the constant Vo, equation (2.1.2.4) reads

V ¼ 1
2

P

�l

P

�0l0
u�l Vð�l; �

0l0Þ u�0 l0 þ . . . : ð2:1:2:7Þ

The product �Vð�l; �0l0Þu�0 l0 is just the force fð�lÞ acting upon
atom ð�lÞ if the atom ð�0l0Þ is displaced by u�0 l0 (Fig. 2.1.2.2).
Hence, the matrix Vð�l; �0l0Þ may be regarded as a force constant
matrix and its elements V��ð�l; �

0l0Þ as force constants. These
parameters may be calculated with the help of specific interaction
models such as pair potentials, tensor-force models or more
complicated many-body interactions.
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Fig. 2.1.2.1. Definition of position vectors.
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The Hamiltonian of the perfect harmonic crystal can now be
written in the form

H ¼
X

�l

p2�l
2m�

þ 1
2

X

�l

X

�0 l0

u�l Vð�l; �
0l0Þ u�0l0 ð2:1:2:8Þ

if p�l and m� are the momentum and the mass of atom (�l),
respectively. Consequently, the equation of motion for a parti-
cular atom (�l) is given by

m�

d2u�l
dt2

¼ �
X

�0 l0

Vð�l; �0l0Þ u�0 l0 : ð2:1:2:9Þ

Solutions of this set of coupled differential equations are of the
form

u��l ¼
1
ffiffiffiffiffiffiffiffiffi
Nm�

p e� exp½iðqrl � !tÞ�; ð2:1:2:10Þ

which are plane waves with wavevector q and polarization vector
e�. If a finite crystal is considered or if periodic boundary
conditions are applied, the wavevector is restricted to a sequence
of discrete and equidistant values which are, however, very close
to each other. Thus, for practical work q can be treated as a
continuous variable. The polarization vectors e� are, in general,
different for every atom �. Moreover, they depend on q and for
each wavevector there are 3N different modes of vibration
characterized not only by different e�’s but also by different
vibrational frequencies !. Hence, equation (2.1.2.10) can be
written more specifically as

u��lðq; jÞ ¼
1
ffiffiffiffiffiffiffiffiffi
Nm�

p e�ðq; jÞ exp½iðqrl � !q;jtÞ�; ð2:1:2:10aÞ

where the running index j ¼ 1; . . . ; 3N labels the different
fundamental vibrations or phonons. The upper index � distin-
guishes two waves with identical frequencies which are travelling
in opposite directions.

2.1.2.2. Stability conditions

Not all of the elements of the force-constant matrix are inde-
pendent. From its definition, equation (2.1.2.5), it is clear that the
force-constant matrix is symmetric:

V��ð�
0l0; �lÞ ¼ V��ð�l; �

0l0Þ: ð2:1:2:11Þ

Moreover, there are general stability conditions arising from the
fact that a crystal as a whole is in mechanical equilibrium: If a
macroscopic crystal is rigidly translated by a vector uo, no
interatomic interactions are affected and, hence, the force acting
on any particular atom must vanish:

P

�0 l0
V��ð�l; �

0l0Þ u�o ¼ 0 for arbitrary uo ð2:1:2:12Þ

and, consequently,

P

�0 l0
V��ð�l; �

0l0Þ ¼ 0: ð2:1:2:12aÞ

This relation is known as the condition of translational invariance.
In a similar way, it is argued that no interatomic interactions

are affected when the crystal is rigidly rotated by infinitesimal
amounts about arbitrary axes. This condition of rotational
invariance leads to the following restrictions for the force
constants:

P

�0 l0
½V��ð�l; �

0l0Þ ro
�

�0 l0 � V��ð�l; �
0l0Þ ro

�

�0l0 � ¼ 0 ð2:1:2:13Þ

for all � ¼ 1; . . . ;N and �; �; � ¼ 1; 2; 3.
In mechanical equilibrium, there must not be any strains within

the crystal. The conditions of an unstrained crystal are also known
as Huang conditions and may be formulated as

P

�l

P

�0 l0
fV��ð�l; �

0l0Þ½ro
�

�l � ro
�

�0l0 �½r
o�

�l � ro
�

�0l0 �

� V��ð�l; �
0l0Þ½ro

�

�l � ro
�

�0l0 �½r
o�

�l � ro
�

�0l0 �g ¼ 0

ð2:1:2:14Þ

for all �; �; �; � ¼ 1; 2; 3.
All these stability conditions are independent of the particular

crystal structure. There are other restrictions that are due to the
symmetry of the atomic arrangement. They will be considered in
detail in Section 2.1.3.

2.1.2.3. The dynamical matrix

If the ansatz (2.1.2.10a) is inserted into the equation of motion
(2.1.2.9), the following eigenvalue equation is obtained:

!2
q;je�ðq; jÞ

¼
X

�0l0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m�m�0

s

Vð�l; �0l0Þ exp½iqðrl0 � rlÞ�e�0 ðq; jÞ

¼
X

�

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m�m�0

s
X

l0

Vð�l; �0l0Þ exp½iqðrl0 � rlÞ�

" #

e�0 ðq; jÞ:

ð2:1:2:15Þ

The summation over all primitive cells on the right-hand side of
equation (2.1.2.15) yields the Fourier-transformed force-constant
matrix

F��0 ðqÞ ¼
P

l0
Vð�l; �0l0Þ exp½iqðrl0 � rlÞ�; ð2:1:2:16Þ

which is independent of l for infinite crystals. F��0 ðqÞ contains all
interactions of type � atoms with type �0 atoms. Using this
notation, equation (2.1.2.15) reduces to

!2
q;je�ðq; jÞ ¼

X

�0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m�m�0

s

F��0 ðqÞ e�0 ðq; jÞ: ð2:1:2:17Þ

If for a given vibration characterized by ðq; jÞ we combine the
three-dimensional polarization vectors e�ðq; jÞ of all atoms within
a primitive cell to a 3N-dimensional polarization vector eðq; jÞ,
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Fig. 2.1.2.2. Definition of the force acting on atom (�l) when atom (�0l0) is
displaced by u�0 l0.
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eðq; jÞ ¼

e1ðq; jÞ

..

.

eNðq; jÞ

0

B
@
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C
A ¼

ex1ðq; jÞ
e
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ð2:1:2:18Þ

and simultaneously the 3� 3 matrices F��0 ðqÞ to a 3N � 3N
matrix F(q)

FðqÞ ¼

Fxx
11 F

xy
11 Fxz

11 Fxx
1N F

xy
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F
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;

ð2:1:2:19Þ

equation (2.1.2.17) can be written in matrix notation and takes
the simple form

!2
q;j eðq; jÞ ¼ ½MFðqÞM� eðq; jÞ ¼ DðqÞ eðq; jÞ; ð2:1:2:20Þ

where the diagonal matrix

M ¼

1ffiffiffiffi
m1

p 0 0

0 1ffiffiffiffi
m1

p 0 s

0 0 1ffiffiffiffi
m1

p

..

. ..
.

1ffiffiffiffiffi
mN

p 0 0

s 0 1ffiffiffiffiffi
mN

p 0

0 0 1ffiffiffiffiffi
mN

p

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð2:1:2:21Þ

contains the masses of all atoms. The 3N � 3N matrix

DðqÞ ¼ MFðqÞM ð2:1:2:22Þ

is called the dynamical matrix. It contains all the information
about the dynamical behaviour of the crystal and can be calcu-
lated on the basis of specific models for interatomic interactions.
In analogy to the 3� 3 matrices F��0 ðqÞ, we introduce the
submatrices of the dynamical matrix:

D��0 ðqÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p F��0 ðqÞ: ð2:1:2:22aÞ

Owing to the symmetry of the force-constant matrix,

V��ð�l; �
0l0Þ ¼ V��ð�

0l0; �lÞ; ð2:1:2:23Þ

the dynamical matrix is Hermitian:1

DTðqÞ ¼ D�ðqÞ ¼ Dð�qÞ ð2:1:2:24Þ

or more specifically

D
��
��0 ðqÞ ¼ D

���

�0� ðqÞ ¼ D
��
�0�ð�qÞ: ð2:1:2:24aÞ

Obviously, the squares of the vibrational frequency !q;j and the
polarization vectors eðq; jÞ are eigenvalues and corresponding
eigenvectors of the dynamical matrix. As a direct consequence of

equation (2.1.2.20), the eigenvalues !2
q;j are real quantities and

the following relations hold:

!2
q;j ¼ !2

�q;j; ð2:1:2:25Þ

e�ðq; jÞ ¼ eð�q; jÞ: ð2:1:2:26Þ

Moreover, the eigenvectors are mutually orthogonal and can be
chosen to be normalized.

2.1.2.4. Eigenvalues and phonon dispersion, acoustic modes

The wavevector dependence of the vibrational frequencies is
called phonon dispersion. For each wavevector q there are 3N
fundamental frequencies yielding 3N phonon branches when !q;j

is plotted versus q. In most cases, the phonon dispersion is
displayed for wavevectors along high-symmetry directions. These
dispersion curves are, however, only special projections of the
dispersion hypersurface in the four-dimensional q–! space. As a
simple example, the phonon dispersion of b.c.c. hafnium is
displayed in Fig. 2.1.2.3. The wavevectors are restricted to the first
Brillouin zone (see Section 2.1.3.1) and the phonon dispersion for
different directions of the wavevector are combined in one single
diagram making use of the fact that different high-symmetry
directions meet at the Brillouin-zone boundary. Note that in Fig.
2.1.2.3, the moduli of the wavevectors are scaled by the Brillouin-
zone boundary values and represented by the reduced coordi-
nates �. Owing to the simple b.c.c. structure of hafnium with one
atom per primitive cell, there are only three phonon branches.
Moreover, for all wavevectors along the directions [00�] and
[���], two exhibit the same frequencies – they are said to be
degenerate. Hence in the corresponding parts of Fig. 2.1.2.3 only
two branches can be distinguished.

Whereas in this simple example the different branches can be
separated quite easily, this is no longer true for more complicated
crystal structures. For illustration, the phonon dispersion of the
high-Tc superconductor Nd2CuO4 is shown in Fig. 2.1.2.4 for the
main symmetry directions of the tetragonal structure (space
group I4=mmm, seven atoms per primitive cell). Note that in
many publications on lattice dynamics the frequency � ¼ !=2� is
used rather than the angular frequency !.

The 21 phonon branches of Nd2CuO4 with their more
complicated dispersion reflect the details of the interatomic
interactions between all atoms of the structure. The phonon
frequencies � cover a range from 0 to 18 THz. In crystals with
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Fig. 2.1.2.3. Phonon dispersion of b.c.c. hafnium for wavevectors along the
main symmetry directions of the cubic structure. The symbols represent
experimental data obtained by inelastic neutron scattering and the full lines
are the results of the model. From Trampenau et al. (1991). Copyright (1991)
by the American Physical Society.

1 The superscripts T and * are used to denote the transposed and the complex
conjugate matrix, respectively.
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strongly bonded molecular groups, like SiO4 tetrahedra in quartz
or SO4 tetrahedra in sulfates, for example, the highest frequen-
cies are found near 35 THz and correspond to bond-stretching
vibrations. Soft materials like organic molecular crystals, on the
other hand, exhibit a large number of phonon branches within a
rather small frequency range which cannot easily be separated.
Deuterated naphthalene (C10D8) is a well investigated example.
The low-frequency part of its phonon dispersion is shown in Fig.
2.1.2.5.

Whereas neutron inelastic scattering is the most powerful
method for the determination of phonons at arbitrary wavevec-
tors, long wavelength ðq ! 0Þ phonons may also be detected by
optical spectroscopy. The determination of phonon frequencies
alone is, however, not sufficient for a concise determination of
dispersion branches. Rather, individual phonons have to be
assigned uniquely to one of the 3N branches, and this may prove
a rather hard task if N is large. Here, symmetry considerations of
eigenvectors are of special importance since phonons belonging
to the same branch must exhibit the same symmetry properties.
Moreover, inspection of Figs. 2.1.2.3 to 2.1.2.5 shows that some of
the branches cross each other and others do not. It is a general
statement that crossing is only allowed for branches with
different symmetries – a property which yields a classification
scheme for the different phonon branches. The symmetry of
fundamental vibrations of a lattice will be discussed in some
detail in Section 2.1.3.

In the limit of long wavelengths, there are always three parti-
cular modes with identical polarization vectors for all atoms,

which will be considered in the following. At exactly q ¼ 0 (the �
point) or infinite wavelength, the eigenvalue equation (2.1.2.15)
reduces to

!2
0;j e�ð0; jÞ ¼

X

�0 l0

1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p Vð�l;�0l0Þ e�0 ð0; jÞ: ð2:1:2:27Þ

One immediately recognizes that there are special solutions with

1
ffiffiffiffiffiffi
m�

p e�ð0; jÞ ¼ uo for all �; ð2:1:2:28Þ

i.e. the (mass-weighted) eigenvectors of all atoms are identical.
There are three orthogonal eigenvectors of this kind and the
displacement pattern of such phonons corresponds to rigid
translations of the whole lattice along the three orthogonal
coordinates in direct space. These motions do not affect any
interatomic interaction. Hence, there is no change in potential
energy and the condition of translational invariance (cf. Section
2.1.2.2) guarantees that the frequencies of these modes are zero:

!2
0;j ¼

P

�0 l0
Vð�l;�0l0Þ ¼ 0 for j ¼ 1; 2; 3: ð2:1:2:29Þ

The phonon branches that lead to zero frequency at the � point
(q ¼ 0) are called acoustic, whereas all other branches are called
optic. The dispersion of acoustic branches in the vicinity of the �
point can be investigated by expanding the phase factor in
equation (2.1.2.15) in powers of q. Using (2.1.2.28) one obtains

m� !
2
q!0;j uo

¼
P

�0l0
Vð�l; �0l0Þ f1þ iq ðrl0 � rlÞ �

1
2½q ðrl0 � rlÞ�

2
þ . . .g uo:

ð2:1:2:30Þ
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Fig. 2.1.2.4. Phonon dispersion of Nd2CuO4 along the main symmetry
directions of the tetragonal structure. The symbols represent experimental
data obtained by inelastic neutron scattering and the full lines are drawn to
guide the eye. Reprinted from Pintschovius et al. (1991), copyright (1991),
with permission from Elsevier.

Fig. 2.1.2.5. Low-frequency part of the phonon dispersion of deuterated
naphthalene at 6 K. The symbols represent experimental data obtained by
inelastic neutron scattering and the full lines are drawn to guide the eye.
Reproduced with permission from Natkaniec et al. (1980). Copyright (1980)
IOP Publishing Limited.
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Neglecting higher-order terms, summing up both sides of equa-
tion (2.1.2.30) over � and multiplying by uo yields

M !2
q!0;j u

2
o

¼
P

�

P

�0l0

P

��

u�o V��ð�l; �
0l0Þ u�o

þ i
P

�

q�
P

�

P

�0 l0

P

��

u�o V��ð�l; �
0l0Þ ðro

�

l0 � ro
�

l Þ u�o

� 1
2

P

�

P

�

q� q�
P

�

P

�0l0

P

��

u�o V��ð�l; �
0l0Þ

� ðro
�

l0 � ro
�

l Þ ðro
�

l0 � ro
�

l Þ u
�
o;

ð2:1:2:31Þ

M being the total mass of all atoms within the primitive cell
(M ¼

PN
�¼1 m�). The first term on the right-hand side is zero

according to equation (2.1.2.29). The second term vanishes due to
the symmetry property of the force-constant matrices, equation
(2.1.2.23). Hence (2.1.2.31) is simplified to

M
!q!0;j

jqj

� �2

¼ �1
2

X

�

X

�

q� q�

q2

X

�

X

�0 l0

X

��

V��ð�l; �
0l0Þ

� ðr
�
l0 � r

�
l Þ ðr

�
l0 � r�l Þ

u�o u
�
o

u2o
: ð2:1:2:32Þ

The right-hand side no longer depends on the moduli of the
wavevector and displacement but only on their orientation with
respect to the crystal lattice. Consequently, acoustic dispersion
curves always leave the � point as a straight line with a constant
slope (!=jqj).

The displacement pattern of these long-wavelength modes
corresponds to a continuous deformation of a rigid body. Hence,
acoustic phonons near the � point can be regarded as sound
waves and the slope of the dispersion curve is given by the
corresponding sound velocity,

vs ¼ !=jqj: ð2:1:2:33Þ

Sound velocities, on the other hand, can be calculated from
macroscopic elastic constants using the theory of macroscopic
elasticity (cf. Chapter 1.3). Thus we are able to correlate
macroscopic and microscopic dynamic properties of crystals.
Using the generalized Hooke’s law, the equation of motion for
the dynamic deformation of a macroscopic body may be written
as

	
@2ujðtÞ

@t2
¼
X3

k¼1

X3

l¼1

X3

m¼1

cjklm
@2ul
@rk@rm

; ð2:1:2:34Þ

	 being the macroscopic density, ui the ith Cartesian component
of the deformation and (cjklm) the symmetric tensor of elastic
stiffnesses, which is discussed in detail in Chapter 1.3. The solu-
tion of this differential equation using plane waves,

u ¼ uo exp½iðqr� !tÞ�; ð2:1:2:35Þ

leads to the following relation:

	
!

jqj

� �2

ujo ¼
X3

k¼1

X3

l¼1

X3

m¼1

cjklm
qk qm
q2

ulo: ð2:1:2:36Þ

If we define the components of the propagation tensor by

�jl ¼
X3

k¼1

X3

m¼1

cjklm
qk qm
q2

; ð2:1:2:37Þ

equation (2.1.2.36) may be written as the eigenvector equation

	 v2s uo ¼ C uo: ð2:1:2:38Þ

For a given propagation direction as defined by the Cartesian
components of q, the eigenvectors of the corresponding propa-
gation tensor yield the polarization of three mutually orthogonal
deformation waves. Its eigenvalues are related to the respective
sound velocities vs ¼ !=jqj. If the tensor of elastic stiffnesses is
known, the elements of C and, hence, the velocity of elastic
(sound) waves can be calculated for arbitrary propagation
directions (see Section 1.3.4). These data, in turn, allow the
prediction of the slopes of acoustic phonon dispersion curves
near q ¼ 0.

2.1.2.5. Eigenvectors and normal coordinates

The plane-wave solutions (2.1.2.10) of the equations of motion
form a complete set of orthogonal functions if q is restricted to
the first Brillouin zone. Hence, the actual displacement of an
atom (�l) can be represented by a linear combination of the
u��lðq; jÞ:

u�l ¼
P

q

P

j

½Aq;j u
þ
�lðq; jÞ þ A0

q;j u
�
�lðq; jÞ�: ð2:1:2:39Þ

Since this displacement is an observable quantity, it must corre-
spond to a real vector, not a complex one. Hence, the coefficients
Aq;j obey the relation

A0
q;j ¼ A�

�q;j ð2:1:2:40Þ

and equation (2.1.2.39) reduces to

u�l ¼
1
ffiffiffiffiffiffiffiffiffi
Nm�

p
X

q

X

j

Qq;j e�ðq; jÞ expðiqrlÞ; ð2:1:2:41Þ

where

Qq;j ¼ Aq;j expð�i!q;jtÞ þ A�
�q;j expði!q;jtÞ ¼ Q�

�q;j: ð2:1:2:42Þ

If the displacement vectors u�l are combined to form a 3N-
dimensional vector ul in analogy to the formation of the eigen-
vector eðq; jÞ from the individual polarization vectors e�ðq; jÞ
[equation (2.1.2.18)] we obtain

ul ¼
1
ffiffiffiffi
N

p
X

q

X

j

Qq;j Meðq; jÞ expðiqrlÞ: ð2:1:2:43Þ

Thus, the atomic displacement is a linear combination of the
eigenvectors eðq; jÞ of the dynamical matrix. The coefficients Qq;j

are called normal coordinates. They reflect the relative weight
and amplitude of a particular vibrational mode (q; j) which is
temperature-dependent and may be determined by statistical
methods.

In terms of these normal coordinates, the Hamiltonian of the
lattice (2.1.2.8) is reduced to a sum of independent harmonic
oscillators. These are called phonons and may be regarded as
quantum quasiparticles.

H ¼
NZ

2N

X

q

X

j

dQq;j

dt

�
�
�
�

�
�
�
�

2

þ !2
q;j Qq;j

�
�

�
�2

" #

: ð2:1:2:44Þ

(NZ is the number of primitive cells within the crystal.)

2.1.2.6. Amplitudes of lattice vibrations

Lattice vibrations that are characterized by both the
frequencies !q;j and the normal coordinates Qq;j are elementary
excitations of the harmonic lattice. As long as anharmonic effects
are neglected, there are no interactions between the individual
phonons. The respective amplitudes depend on the excitation
level and can be determined by quantum statistical methods. The
energy levels of a lattice vibration (q; j) are those of a single
harmonic oscillator:
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En ¼ ðnþ 1
2Þh
- !q;j; ð2:1:2:45Þ

as illustrated in Fig. 2.1.2.6. The levels are equidistant and the
respective occupation probabilities are given by Boltzmann
statistics:

pn ¼
exp½�ðnþ 1=2Þðh- !q;j=kTÞ�

P1

m¼0 exp½�ðmþ 1=2Þðh- !q;j=kTÞ�
: ð2:1:2:46Þ

In the quasiparticle description, this quantity is just the prob-
ability that at a temperature T there are n excited phonons of
frequency !q;j. Moreover, in thermal equilibrium the average
number of phonons is given by the Bose factor:

nq;j ¼
1

expðh- !q;j=kTÞ � 1
ð2:1:2:47Þ

and the corresponding contribution of these phonons to the
lattice energy is

Eq;j ¼ ðnq;j þ
1
2Þ h
- !q;j: ð2:1:2:48Þ

The mean-square amplitude of the normal oscillator coordinate is
obtained as

Qq;j

�
�

�
�2

D E
¼

h-

!q;j

nq;j þ
1
2

� �
: ð2:1:2:49Þ

At high temperatures (kT � h- !q;j), the phonon number, the
corresponding energy and the amplitude approach the classical
values of

nq;j �!
T!1

kT

h- !q;j

; ð2:1:2:50Þ

Eq;j �!
T!1

3NNZkT and ð2:1:2:51Þ

Qq;j

�
�

�
�2

D E
�!
T!1

kT

!2
q;j

;

respectively. Note that occupation number, energy and amplitude
merely depend on the frequency of the particular lattice vibra-
tion. The form of the corresponding eigenvector eðq; jÞ is irrele-
vant.

2.1.2.7. Density of states and the lattice heat capacity

The total energy stored in the harmonic phonon system is
given by the sum over all phonon states (q; j):

Eph ¼
P

q

P

j

h- !q;j nq;j þ
1
2

� �
: ð2:1:2:52Þ

Related thermodynamic quantities like the internal energy or the
heat capacity are determined by the frequency distribution of the
lattice vibrations rather than by details of the phonon dispersion.
Hence, it is useful to introduce the phonon density of states Gð!Þ
in such a way that Gð!Þ d! is the number of phonons with
frequencies between ! and !þ d!. Using this quantity, the sum
in (2.1.2.52) may be replaced by an integral expression:

Eph � Eo ¼

Z1

0

h- !

expðh- !=kTÞ � 1
Gð!Þ d!: ð2:1:2:53Þ

Here, Eo is the energy at T ¼ 0. The derivative with respect to
temperature provides the lattice heat capacity at constant
volume:

cV ¼ k

Z1

0

h- !

kT

� �2
expðh- !=kTÞ

½expðh- !=kTÞ � 1�2
Gð!Þ d!: ð2:1:2:54Þ

As an example, Fig. 2.1.2.7 displays the phonon dispersion of
GaAs as determined by inelastic neutron scattering along with
the phonon density of states. Obviously, even in this relatively
simple substance Gð!Þ (DOS) exhibits a rather complicated
multi-peak structure. Integral properties like the heat capacity
are, however, not very sensitive to details of Gð!Þ. There are two
well known approximations for Gð!Þ that are able to reproduce
some prominent features of cV :

(1) The Einstein model.
In the Einstein model, it is assumed that all phonons exhibit

the same frequency !E (Einstein oscillator) and Gð!Þ is repre-
sented by a delta function:

GEinsteinð!Þ ¼ 3NNZ�ð!� !EÞ: ð2:1:2:55Þ
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Fig. 2.1.2.6. Energy levels of a quantum-mechanical harmonic oscillator.

Fig. 2.1.2.7. Phonon dispersion and density of states for GaAs. The experimental data are from Strauch & Dorner (1990); the full lines and the density of states
(DOS) are results of ab initio model calculations by Giannozzi et al. (1991). From Giannozzi et al. (1991). Copyright (1991) by the American Physical Society.
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Consequently, the heat capacity turns out to be

cEinsteinV ¼ 3NNZk
�E

T

� �2
expð�E=TÞ

½expð�E=TÞ � 1�2
; ð2:1:2:56Þ

where we use the abbreviation

�E ¼ h- !E=k; ð2:1:2:57Þ

which is the Einstein temperature.
At low temperatures, this model predicts an exponential

temperature dependence of the heat capacity ½cV / expð�E=TÞ�,
which does not correspond to the experimental findings in most
substances. Here, the Debye model provides a significant
improvement.

(2) The Debye model.
In contrast to the Einstein model, which takes only one optic

mode into account, the Debye model is restricted to acoustic
modes that exhibit a linear dispersion close to the � point (see
Section 2.1.2.4). Neglecting any deviation from linear behaviour,
we get the simple result that the density of states is proportional
to the square of the phonon frequency. The total number of
phonon states is, however, given by 3NNZ, which is the number of
all dynamical degrees of freedom of the whole system. Conse-
quently, the frequency spectrum is assumed to be limited to
frequencies below a particular value !D according to

3NNZ ¼
R!D

0

GDebyeð!Þ d!: ð2:1:2:58Þ

This limiting frequency is called the Debye frequency and is
related to an appropriate average of (longitudinal and trans-
verse) sound velocities and exhibits large values for hard mate-
rials. Fig. 2.1.2.8 compares schematically the true phonon density
of states with the Debye approximation. The density of phonon
states may thus be represented by

GDebyeð!Þ ¼ 9NNZð!
2=!3

DÞ ð2:1:2:59Þ

and, correspondingly, the heat capacity is

c
Debye
V ¼ 9NNZk

T

�D

� �3 Z�D=T

0

x4 expðxÞ

½expðxÞ � 1�2
dx; ð2:1:2:60Þ

yielding a temperature dependence as shown in Fig. 2.1.2.9.
�D is the Debye temperature, which is defined as

�D ¼ h- !D=k: ð2:1:2:61Þ

At low temperatures, the heat capacity is proportional to T3, in
excellent agreement with most experiments:

c
Debye
V �!

T!0

12
5�

4NNZkðT=�DÞ
3: ð2:1:2:62Þ

It is not surprising that the Debye model provides a reasonable
description of the low-temperature heat capacity, since in this
temperature regime well below the Debye temperature, optical
phonons are hardly excited and the heat capacity is dominated by
the low-frequency acoustic modes which are modelled exactly. At
higher temperatures it is, however, necessary to take into account
the thermal excitation of (in general less dispersive) optic modes.
This can be achieved either by introducing a temperature
dependence of the Debye temperature or by mixing a Debye
term like (2.1.2.60) and Einstein terms like (2.1.2.56).

As an example, we consider the case of GaAs, the density of
states of which is shown in Fig. 2.1.2.7. Obviously there are two
very pronounced peaks at high frequencies, which are due to
nearly dispersionless optical phonon branches. These modes may
therefore be regarded as Einstein oscillators. The remaining
acoustic branches lead to the more continuous part of the spec-
trum at lower frequencies, which may be approximated by a
Debye law.

2.1.2.8. Thermal expansion, compressibility and Grüneisen para-
meters

So far, we have always assumed that the crystal volume is
constant. As long as we are dealing with harmonic solids, the
thermal excitation of phonons does not result in a mean displa-
cement of any atom. Consequently, thermal expansion cannot be
understood in the harmonic approximation. It is due to the fact
that there are anharmonic contributions to the lattice energy, i.e.
third- and higher-order terms in the expansion with respect to
atomic displacements [equation (2.1.2.4)]. Moreover, in an
anharmonic lattice phonons are no longer independent elemen-
tary excitations. Rather, different lattice vibrations interact with
each other leading to temperature-dependent frequency shifts,
damping etc. Quantitatively, anharmonic effects may be analysed
by means of perturbation theory, which is, however, beyond the
scope of the present article. Details may be found, for example, in
the monograph The Physics of Phonons (Reissland, 1973).

Some aspects of anharmonicity can, however, be discussed on
the basis of the quasi-harmonic model. This approach makes use
of the fact that the atomic interactions vary with the interatomic
spacing and, hence, with the volume or, more generally, with any
type of lattice deformation. The phonon frequencies will there-
fore depend on the deformation as well. Using the deformed
lattice as a new reference frame for lattice dynamical calculations,
the corresponding frequencies may be obtained again on the
basis of a harmonic model with modified effective force
constants. The comparison of phonons of both the original and
the (arbitrarily) deformed lattice finally yields the partial deri-
vatives of the frequencies !q;j with respect to the components "kl
of the strain tensor.
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Fig. 2.1.2.8. Schematic representation of the true phonon density of states
(solid line) along with the Debye approximation (dotted line). Note that the
areas under the two curves are identical.

Fig. 2.1.2.9. Temperature dependence of the heat capacity at constant volume
according to the Debye model.
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If the deformation is exclusively due to a change of tempera-
ture, the phonon frequency shifts can thus be related to the
coefficients of thermal expansion. In this approximation, any
intrinsic temperature dependence of phonon frequencies due to
phonon interactions is neglected. Note that just those effects are,
however, of particular importance if displacive phase transitions
that are associated with soft phonon modes are considered.

In the quasi-harmonic approximation, we use the thermo-
dynamic relation between the Helmholtz free energy A and the
partition function Z:

A ¼ �kT lnZ: ð2:1:2:63Þ

Z is given in terms of the energy levels of the independent
harmonic oscillators:

Z ¼ expð��=kTÞ
Y

q;j

expð�h- !q;j=2kTÞ

1� expð�h- !q;j=kTÞ
; ð2:1:2:64Þ

where � is the potential energy of the crystal if all atoms occupy
their equilibrium positions. Hence, the following expression for A
results:

A ¼ �þ 1
2

P

q;j

h- !q;j þ kT
P

q;j

ln 1� expð�h- !q;j=kTÞ
� �

:

ð2:1:2:65Þ

Elementary thermodynamics yields the pressure p as the partial
derivative of A with respect to the volume at constant tempera-
ture:

p ¼ � @A=@Vð ÞT : ð2:1:2:66Þ

This relation may be generalized if not only volume changes are
taken into account but also arbitrary deformations as described
by the strain tensor """ ¼ ð"klÞ:


kl ¼ �ð1=VÞ @A=@"klð ÞT ð2:1:2:67Þ

with the stress tensor r ¼ ð
klÞ. Note that the hydrostatic pres-
sure p and the relative volume change are given by the traces of r
and """, respectively:

p ¼ �1
3

P3

k¼1


kk; ð�V=VÞ ¼
P3

k¼1

"kk: ð2:1:2:68Þ

Taking the temperature derivative of (2.1.2.66), we obtain

@
kl
@T

� �

"

¼ �
1

V

@

@T

@A

@"kl

� �

T

� �

"

: ð2:1:2:69Þ

Using Euler’s relations, the left-hand side may be written as

@
kl
@T

� �

"

¼ �
X

mn

@
kl
@"mn

� �

T;"m0n0

@"mn

@T
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¼ �
X

mn

cklmn �mn; ð2:1:2:70Þ

where the tensor of the elastic stiffnesses

cklmn ¼
@
kl
@"mn

� �

T;"m0n0

ð2:1:2:71Þ

and the tensor of thermal expansion

�kl ¼
@"kl
@T

� �




ð2:1:2:72Þ

have been introduced.
The free energy depends on the lattice deformations via the

phonon frequencies. Hence, using (2.1.2.65), the right-hand side
of (2.1.2.69) is evaluated as

@

@T

@A

@"kl

� �

T

� �
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¼
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@T
h-
X

q;j

1

expðh- !q;j=kTÞ � 1
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� �
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X

q;j

@nq;j
@T
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@"kl

� �

T

ð2:1:2:73Þ

under the assumption that the phonon frequencies do not depend
explicitly on the temperature. [nq;j is the Bose factor, (2.1.2.47)].

Let us denote the contribution of a single phonon (q; j) to the
heat capacity at constant volume by

~ccq;j ¼ h- !q;j

@nq;j
@T

: ð2:1:2:74Þ

Then the combination of (2.1.2.69), (2.1.2.70) and (2.1.2.71) yields
the result

V
X

mn

cklmn �mn ¼
X

q;j

~ccq;j
@ ln!q;j

@"kl
¼
X

q;j

~ccq;j �qj;kl ð2:1:2:75Þ

with the generalized-mode Grüneisen parameters

�qj;kl ¼
@ ln!q;j

@"kl
: ð2:1:2:76Þ

The set of equations (2.1.2.75) (for k; l ¼ 1; 2; 3) provide rela-
tions between the variation of phonon frequencies with the
lattice deformations on the one hand and the tensors of elastic
stiffnesses and thermal expansion on the other hand.

For cubic crystals, the tensor of the thermal expansion is
diagonal,

�kl ¼
1
3��kl; ð2:1:2:77Þ

where � represents the coefficient of volume expansion. If Voigt’s
notation is used for the elastic stiffnesses (cf. Section 1.3.3.2.2),
equation (2.1.2.75) reduces to

1
3V�ðc11 þ 2c12Þ ¼

P

q;j

~ccq;j�qj;11 ¼
P

q;j

~ccq;j�qj;22 ¼
P

q;j

~ccq;j�qj;33:

ð2:1:2:78Þ

If there is an isotropic deformation, the shift of phonon
frequencies may be described by an averaged-mode Grüneisen
parameter:

�q;j ¼
1
3

P3

m¼1

�qj;mm ð2:1:2:79Þ

and (2.1.2.78) may be rewritten as

1
3V�ðc11 þ 2c12Þ ¼

P

q;j

~ccq;j�q;j: ð2:1:2:80Þ

Introducing the mean Grüneisen parameter � by the summation
over all phonon states,

� ¼

P
q;j �q;j~ccq;j
cV

; ð2:1:2:81Þ

we arrive at

1
3V�ðc11 þ 2c12Þ ¼ �cV : ð2:1:2:82Þ

Remembering that in cubic crystals the expression

� ¼
3

c11 þ 2c12
ð2:1:2:83Þ

represents the isothermal compressibility, we find the commonly
used scalar form of equation (2.1.2.75):
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� ¼ �
cV�

V
; ð2:1:2:84Þ

which relates the thermodynamic quantities thermal expansion,
compressibility and heat capacity with the mean Grüneisen
parameter. For most substances, � exhibits values between 1 and
4 which are hardly temperature dependent. Hence, equation
(2.1.2.84) may be regarded as an equation of state for solid
systems.

Experimentally, it is almost impossible to determine the heat
capacity at constant volume cV since the thermal expansion
cannot be easily compensated. The more convenient quantity is
cp, the heat capacity at constant pressure. There is a simple
thermodynamic relation between the two quantities,

cp ¼ cV þ
TV�2

�
; ð2:1:2:85Þ

and hence the following equation is obtained:

cp ¼
1

�
þ �T

� �
�V

�
: ð2:1:2:86Þ

2.1.3. Symmetry of lattice vibrations

Having presented the basic formulation of lattice dynamics in
Section 2.1.2, we will now consider the constraints that arise due
to the symmetry of the particular atomic arrangement within a
crystal. We shall see in the following how group-theoretical
methods can be used in order:

(a) to reduce the number of independent elements of the
dynamical matrix;

(b) to provide a unique labelling of individual phonon bran-
ches according to the symmetries of the respective eigenvectors;
and

(c) to deal with degeneracies of particular phonon modes.
The theoretical aspects will be illustrated by means of simple
examples which may serve as a guide for the application of the
formalism to other systems of interest.

2.1.3.1. Symmetry constraints for the dynamical matrix

The elements of the 3N � 3N dynamical matrix as introduced
in Section 2.1.2.3 are given by

D
��
��0 ðqÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X

l0

V��ð�l; �
0l0Þ exp½iqðrl0 � rlÞ�: ð2:1:3:1Þ

Using the matrix notation for the 3� 3 submatrices introduced in
(2.1.2.22a), this equation reads

D��0 ðqÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X

l0

Vð�l; �0l0Þ exp½iqðrl0 � rlÞ�: ð2:1:3:1aÞ

Since the vector rl0 � rl corresponds to a vector of the direct
lattice, the right-hand side of equation (2.1.3.1) is invariant with
respect to changes of the wavevector q by an arbitrary reciprocal
lattice vector g. Hence, the elements of the dynamical matrix
represent periodic functions within the reciprocal space:

Dðqþ gÞ ¼ DðqÞ: ð2:1:3:2Þ

The same periodicity can also be assumed for the eigenvalues, or
eigenfrequencies, and for the eigenvectors:2

!qþg;j ¼ !q;j;

eðqþ g; jÞ ¼ eðq; jÞ: ð2:1:3:3Þ

Consequently, we can restrict our discussion to wavevectors
within the first Brillouin zone.

Owing to the symmetry of the atomic structure, not all of the
force constants V��ð�l; �

0l0Þ reflecting the interaction between
atoms ð�lÞ and ð�0l0Þ are independent. Rather, there are
constraints to the elements of the dynamical matrix according to
the space group of the crystal. In the following, these constraints
will be considered in some detail. Suppose the space group
contains a symmetry operation fSjvðSÞ þ xðmÞg.3 When applied
to the crystal, this symmetry operation sends atom ð�lÞ into
another atom ðKLÞand simultaneously atom ð�0l0Þ into ðK0L0Þ. At
the same time, the wavevector of a phonon is rotated from q into
S q. Hence, the elements of the dynamical matrix that describes
the dynamics of the crystal after application of the symmetry
operation may be written as

D
��
KK0 ðS qÞ

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKmK0

p
X

L0

V��ðKL;K0L0Þ exp½iðS qÞðrL0 � rLÞ�

ð2:1:3:4Þ

or in submatrix notation

DKK0 ðS qÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKmK0

p
X

L0

VðKL;K0L0Þ exp½iðS qÞðrL0 � rLÞ�:

ð2:1:3:4aÞ

This submatrix can be related to the corresponding matrix
D��0 ðqÞ that describes the same dynamical behaviour, but in the
unrotated crystal. To this end, we first consider the transform-
ation of the force-constant matrices under the symmetry opera-
tion. Obviously, the interaction between atoms ð�lÞ and ð�0l0Þ has
to be of the same type as the interaction between ðKLÞ and
ðK0L0Þ.

Since the potential energy is invariant with respect to
symmetry operations, the force constants are related via

P

��

P

�l

P

�0l0
V��ð�l; �

0l0Þ u��l u
�
�0 l0

¼
P

��

P

KL

P

K0L0

V��ðKL;K0L0Þ u�KL u
�
K0L0 ð2:1:3:5Þ

or in matrix notation
P

�l

P

�0l0
u�l Vð�l; �

0l0Þ u�0 l0 ¼
P

KL

P

K0L0

uKL VðKL;K0L0Þ uK0L0 :

ð2:1:3:5aÞ

Owing to the symmetry operation, the displacements of atoms
ð�lÞ and ð�0l0Þ are rotated and transferred to atoms ðKLÞ and
ðK0L0Þ, respectively (see Fig. 2.1.3.1). Thus, (2.1.3.5) can be
rewritten as
P

��

P

�l

P

�0 l0
V��ð�l; �

0l0Þ u�ð�lÞ u�ð�
0l0Þ

¼
P

��

P

�l

P

�0 l0
V��ðKL;K0L0Þ

P

�

S��u�ð�lÞ
P

�

S��u�ð�
0l0Þ:

ð2:1:3:6Þ
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2 If for a given wavevector q the dynamical matrix exhibits degenerate
eigenvalues, the most one can strictly infer from equation (2.1.3.2) is that the
eigenvector eðqþ g; jÞ may be represented by some linear combination of those
eigenvectors eðq; j0Þ that correspond to the same eigenvalue. One always can
choose, however, an appropriate labelling of the degenerate phonon modes and
appropriate phase factors for the eigenvectors in order to guarantee that the
simple relation (2.1.3.3) holds.

3 We use the Seitz notation for symmetry operations: S denotes a rigid rotation of
the lattice, vðSÞ is the corresponding vector of a fractional translation in the case of
screw axes, glide planes etc. and xðmÞ is a lattice vector.
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Moreover, this relation is valid for arbitrary displacements and,
hence, the matrices of force constants transform according to

V��ð�l; �
0l0Þ ¼

P

��

V��ðKL;K0L0ÞS��S�� ð2:1:3:7Þ

or

Vð�l; �0l0Þ ¼ ST VðKL;K0L0Þ S: ð2:1:3:7aÞ

Using the fact that the matrix of rotation S is unitary ðS�1 ¼ STÞ,
the inverse relation is obtained:

VðKL;K0L0Þ ¼ SVð�l; �0l0Þ ST : ð2:1:3:7bÞ

Hence, the force-constant submatrices transform like tensors do.
One has to bear in mind, however, that the matrices in equation
(2.1.3.7b) correspond to different pairs of atoms as illustrated by
Fig. 2.1.3.2. Using this result in equation (2.1.3.4a) and remem-
bering the fact that atoms related by a symmetry operation have
the same mass, we obtain

D
��
KK0 ðS qÞ

¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X

��

S��S��

X

l0

V��ð�l; �
0l0Þ exp½iðS qÞðrL0 � rLÞ�

¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X

��

S��S��

X

l0

V��ð�l; �
0l0Þ exp½iq S�1ðrL0 � rLÞ�:

ð2:1:3:8Þ

The phase factor on the right-hand side contains the indices L
and L0 of those primitive cells into which the atoms ð�lÞ and ð�0l0Þ
are sent by the symmetry operation fSjvðSÞ þ xðmÞg. In general,
the phase is not conserved during the transformation and, hence,
the sum over l0 cannot simply be replaced by the matrix elements
D��
��0 ðqÞ. Rather, we have to consider the phase factor in more

detail in order to find the transformation law for the dynamical
matrix.

The position vectors of particles ð�lÞ and ðKLÞ are related via

roKL ¼ roK þ rL ¼ fSjvðSÞ þ xðmÞg ro�l

¼ S ro�l þ vðSÞ þ xðmÞ

¼ S ðro� þ rlÞ þ vðSÞ þ xðmÞ ð2:1:3:9Þ

and

ro� þ rl ¼ S�1 ðroK þ rLÞ � vðSÞ � xðmÞ

¼ fSjvðSÞ þ xðmÞg
�1 roK þ S�1 rL:

ð2:1:3:9aÞ

Consequently, the vector appearing in the phase factor of equa-
tion (2.1.3.8) can be expressed as

S�1 rL ¼ ro� þ rl � fSjvðSÞ þ xðmÞg
�1 roK: ð2:1:3:10Þ

When inserted into equation (2.1.3.8), the required transforma-
tion law for the dynamical matrix is obtained:

D
��
KK0 ðS qÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X

��

S��S��

X

l0

V��ð�l; �
0l0Þ

� exp½iq ðrl0 � rlÞ�

� exp½iq ðfSjvðSÞ þ xðmÞg
�1 roK � ro�Þ�

� exp½�iq ðfSjvðSÞ þ xðmÞg
�1 roK0 � ro�0 Þ�

ð2:1:3:11Þ

or

D
��
KK0 ðS qÞ ¼

P

��

S��S��D
��
��0 ðqÞ

� exp½iq ðfSjvðSÞ þ xðmÞg
�1 roK � ro�Þ�

� exp½�iq ðfSjvðSÞ þ xðmÞg
�1 roK0 � ro�0 Þ�;

ð2:1:3:11aÞ

or in submatrix notation

DKK0 ðS qÞ ¼ ST D��0 ðqÞ S

� exp½iq ðfSjvðSÞ þ xðmÞg
�1 roK � ro�Þ�

� exp½�iq ðfSjvðSÞ þ xðmÞg
�1 roK0 � ro�0 Þ�:

ð2:1:3:11bÞ

Again, these are relations between pairs of submatrices of the
dynamical matrix. In contrast to the matrices of force constants,
however, phase factors have to be considered here. This is
because the symmetry operation fSjvðSÞ þ xðmÞg may send
different atoms � and �0 located within the same primitive cell (0)
into atoms ðKLÞ and ðK0L0Þ within different primitive cells L and
L0 as illustrated in Fig. 2.1.3.3. Therefore, the product of phase
factors in equation (2.1.3.11) is in general different from unity.

Irrespective of the particular primitive cells in which the atoms
are located, however, the labels � and K of those atoms that are
related by a symmetry operation are uniquely determined. Given
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Fig. 2.1.3.1. Transformation of atomic displacements by a symmetry
operation.

Fig. 2.1.3.2. Relation between interaction of symmetry-related atoms.
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the label � and a particular symmetry operation fSjvðSÞ þ xðmÞg,
the label K may be represented by the function

K ¼ Foð�; SÞ; ð2:1:3:12Þ

which represents the atom transformation table.4 With the defi-
nition of unitary transformation matrices

���K�ðq; fSjvðSÞ þ xðmÞgÞ

¼ S���ð�;F
�1
o ðK; SÞÞ exp½iq ðfSjvðSÞ þ xðmÞg

�1 roK � ro�Þ�;

ð2:1:3:13Þ

we are now able to formulate the transformation law for the
dynamical matrix briefly as

DðS qÞ

¼ Cðq; fSjvðSÞ þ xðmÞgÞDðqÞCþ
ðq; fSjvðSÞ þ xðmÞgÞ:

ð2:1:3:14Þ

Obviously, with the help of equation (2.1.3.13), we can allocate a
unitary matrix to each symmetry operation. These C matrices,
however, do not form a representation of the crystal space group
in the mathematical sense since the mapping

fSjvðSÞ þ xðmÞg ! Cðq; fSjvðSÞ þ xðmÞgÞ

is not a linear one. Rather, we obtain the following transforma-
tion matrix for the product of two symmetry operations:

Cðq; fS1jvðS1Þ þ xðm1Þg � fS2jvðS2Þ þ xðm2ÞgÞ

¼ CðS2 q; fS1jvðS1Þ þ xðm1ÞgÞCðq; fS2jvðS2Þ þ xðm2ÞgÞ:

ð2:1:3:15Þ

The nonlinearity of the mapping is due to the fact that the first
matrix on the right-hand side of this equation depends on the
wavevector S2 q rather than on q. If we restrict our considerations
to the symmetry operations of the space group G(q) of the
wavevector q that leave the wavevector invariant modulo some
reciprocal-lattice vector g(q, S),

S q ¼ q� gðq; SÞ; ð2:1:3:16Þ

then equation (2.1.3.13) provides an ordinary (3N-dimensional)
representation of this symmetry group.5 In the following, we
denote the elements of the subgroup G(q) by fRjvðRÞ þ xðmÞg.

The corresponding unitary and Hermitian transformation
matrices can be reduced to

���K�ðq; fRjvðRÞ þ xðmÞgÞ

¼ R��� �;F
�1
o ðK;RÞ

� �

� exp½iq ðR�1 roK � R�1 vðRÞ � R�1 xðmÞ � ro�Þ�

¼ R��� �;F
�1
o ðK;RÞ

� �

� exp½iRq ðroK � fRjvðRÞ þ xðmÞg ro�Þ�

¼ R��� �;F
�1
o ðK;RÞ

� �

� exp½iq ðroK � fRjvðRÞ þ xðmÞg ro�Þ�:

ð2:1:3:17Þ

According to equation (2.1.3.14), they commute with the dyna-
mical matrix:

Cðq; fRjvðRÞ þ xðmÞgÞDðqÞC�1
ðq; fRjvðRÞ þ xðmÞgÞ ¼ DðqÞ:

ð2:1:3:18Þ

This relation contains the symmetry constraints for the dynamical
matrix. The independent elements of D(q) may be obtained by
application of equation (2.1.3.18) for every operation of the space
group of the wavevector.

Another approach to the symmetry reduction of the dynamical
matrix is based on group-theoretical considerations making use
of the well known irreducible representations of symmetry
groups. It is especially useful for the prediction of the form of
eigenvectors and the investigation of degeneracies. Following the
treatment of Maradudin & Vosko (1968), we consider the purely
rotational elements of the space group G(q) that form the point
group of the wavevector GoðqÞ ¼ fRg. According to equation
(2.1.3.17), we associate a matrix operator

Tðq;RÞ ¼ exp½iq ðvðRÞ þ xðmÞÞ�Cðq; fRjvðRÞ þ xðmÞgÞ

ð2:1:3:19Þ

to each of the elements of Go(q). These matrix operators are
uniquely determined by the rotations R and do not depend
on the translational parts of the space-group operation
fRjvðRÞ þ xðmÞg, as proven by inspection of the individual matrix
elements:

T
��
K� ðq;RÞ ¼ R��� �; F

�1
o ðK;RÞ

� �
exp½iq ðroK � R ro�Þ�: ð2:1:3:19aÞ

These T matrices again commute with the dynamical matrix,

Tðq;RÞDðqÞT�1ðq;RÞ ¼ DðqÞ; ð2:1:3:20Þ

but in contrast to the C matrices they do not provide an ordinary
representation of the group Go(q). For the multiplication of two
symmetry elements Ri and Rj the following relation holds:

Tðq;RiÞTðq;RjÞ

¼ exp½iðq� R�1
i qÞðvðRjÞ þ xðmjÞÞ�Tðq;Ri � RjÞ:

ð2:1:3:21Þ

According to equation (2.1.3.16), q� R�1
i q is a reciprocal-lattice

vector gðq;R�1
i Þ and hence

Tðq;RiÞTðq;RjÞ ¼ exp½igðq;R�1
i Þ vðRjÞ�Tðq;Ri � RjÞ

¼ ’ðq;Ri;RjÞTðq;Ri � RjÞ:

ð2:1:3:21aÞ

Thus, the T matrices provide not a normal but a multiplier
representation of the group Go(q). The phase factor on the right-
hand side of equation (2.1.3.21a) is the complex multiplier
characteristic for the (ordered) product of symmetry operations.
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Fig. 2.1.3.3. Symmetry-related atoms in different primitive cells.

4 Since the rotation S uniquely defines the fractional translation vðSÞ and since a
lattice translation xðmÞ never changes the label of an atom within the primitive
cell, the function Fo depends only on S.
5 According to (2.1.3.10), the vector fSjvðSÞ þ xðmÞg

�1 roK � ro� is always a lattice
vector. Hence, the transformation matrix remains invariant when the wavevector
is shifted by a reciprocal-lattice vector. If wavevectors within the first Brillouin
zone are considered, g(q, S) is always zero. For wavevectors on the Brillouin-zone
boundary, however, there may be symmetry operations like the inversion that
transform q into another equivalent but not identical vector q0 ¼ qþ g.
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For wavevectors within the first Brillouin zone, the reciprocal-
lattice vectors gðq;R�1

i Þ are identically zero (see last footnote)
and the T representation is an ordinary one. The same is true if
none of the symmetry elements of Go(q) contains a fractional
translation, i.e. for symmorphic space groups. Therefore, multi-
pliers have to be taken into account only if nonsymmorphic space
groups and wavevectors on the Brillouin-zone boundary are
considered.

There are some other restrictions for the dynamical matrix
arising from the fact that inverting the wavevector is equivalent
to taking the complex conjugate dynamical matrix [c.f. equation
(2.1.2.24)]:

D�ðqÞ ¼ Dð�qÞ: ð2:1:3:22Þ

Hence it is useful to extend our discussion to those symmetry
operations that invert the phonon wavevector. Let us assume that
the space group of the crystal contains an element fS�jvðS�Þg
with

S� q ¼ �q: ð2:1:3:23Þ

Using equation (2.1.3.14) we obtain

Dð�qÞ ¼ D�ðqÞ ¼ Cðq; fS�jvðS�ÞgÞDðqÞCþ
ðq; fS�jvðS�ÞgÞ:

ð2:1:3:24Þ

In order to provide a consistent description, we introduce an anti-
unitary operator Ko which transforms an arbitrary vector W into
its complex conjugate counterpart W�

Ko W ¼ W�: ð2:1:3:25Þ

Obviously, Ko does not commute with the dynamical matrix but
exhibits the following transformation behaviour:

Ko DðqÞKo ¼ D�ðqÞ: ð2:1:3:26Þ

On the other hand, we infer from equation (2.1.3.24) that

Ko Cðq; fS�jvðS�ÞgÞDðqÞCþ
ðq; fS�jvðS�ÞgÞKo

¼ Ko Dð�qÞKo

¼ D�ð�qÞ

¼ DðqÞ;

ð2:1:3:27Þ

which provide the additional constraints for the dynamical
matrix. In component form, this last relation can be written
explicitly as

½expð�iqrKÞD
��
KK0 ðqÞ expðiqrK0 Þ�

�

¼
P

��

ðS�Þ�� ½expð�iqr�ÞD
��
��0 ðqÞ expðiqr�0 Þ� ðS�Þ��

ð2:1:3:28Þ

if particles (�l) and (�0l0) are sent into (KL) and (K0L0) by the
symmetry operation fS�jvðS�Þg, respectively.

If S� represents the inversion ðS�Þ�� ¼ ����
� �

, in particular,
then (2.1.3.28) reduces to

½expð�iqrKÞD
��
KK0 ðqÞ expðiqrK0 Þ�

�
¼ ½expð�iqr�ÞD

��
��0 ðqÞ expðiqr�0 Þ�:

ð2:1:3:29Þ

Moreover, if every atom is itself a centre of inversion (e.g. the
NaCl structure) (K ¼ � and K0 ¼ �0), the matrix C(q) defined by

C
��
��0 ðqÞ ¼ expð�iqr�ÞD

��
��0 ðqÞ expðiqr�0 Þ ð2:1:3:30Þ

is a real and symmetric matrix with real eigenvectors for arbitrary
wavevectors q.

In terms of group theory we proceed as follows: We add to the
space group of the wavevector G(q) the elements of the coset
fS�jvðS�Þg �GðqÞ.6 This will result in a new space group
which we call Gðq;�qÞ. If instead of the matrix
operator Cðq; fSjvðSÞ þ xðmÞgÞ the anti-unitary operator
Ko Cðq; fS�jvðS�Þ þ xðmÞgÞ is assigned to those symmetry
operations that invert the wavevector, then a representation of
the whole groupGðq;�qÞ is provided. Moreover, all these matrix
operators commute with the dynamical matrix.

As before, let us restrict ourselves to the rotational parts of the
symmetry operations. The point group of the wavevectorGoðqÞ is
enlarged by the coset S� �GoðqÞ yielding the groupGoðq;�qÞ. In
analogy to equation (2.1.3.19), the elements of the left coset will
be represented by the matrix operator

Tðq; S� � RÞ ¼ Ko exp½�iq ðvðS� � RÞ þ xðmÞÞ�

� Cðq; fS� � RjvðS� � RÞ þ xðmÞgÞ

¼ exp½iq ðvðS� � RÞ þ xðmÞÞ�

� KoCðq; fS� � RjvðS� � RÞ þ xðmÞgÞ:

ð2:1:3:31Þ

The T matrix operators provide a multiplier corepresentation.
The multipliers are not uniquely defined as in equation
(2.1.3.21a). Rather, the definition depends on the type and the
order of the symmetry operations involved. In order to distin-
guish between the different kinds of symmetry operations, we
introduce the following notation:

�RR 2 Goðq;�qÞ is an arbitrary element of the point group.
R 2 GoðqÞ is an element of the point group of the wavevector

GoðqÞ which is a subgroup of Goðq;�qÞ. This element is repre-
sented by an unitary matrix operator.

A 2 S� �GoðqÞ is an element of the coset S� �GoðqÞ, repre-
sented by an anti-unitary operator.

The multiplication rule

Tðq; �RRiÞTðq; �RRjÞ ¼ ’ðq; �RRi; �RRjÞTðq; �RRi �
�RRjÞ ð2:1:3:32Þ

is determined by the multipliers

’ðq;Ri; �RRjÞ ¼ exp½iðq� R�1
i qÞ vð �RRjÞ�

’ðq;Ai; �RRjÞ ¼ exp½�iðqþA�1
i qÞ vð �RRjÞ�: ð2:1:3:33Þ

Again, this representation reduces to an ordinary representation
either for symmorphic space groups [all vð �RRiÞ ¼ 0] or for wave-
vectors within the interior of the Brillouin zone.

All matrix operators of the T representation commute with the
dynamical matrix. Hence, they may be used for the determination
of independent elements of the dynamical matrix as well as for
the determination of the form of eigenvectors compatible with
the atomic structure.

2.1.3.1.1. Example

As an example, we consider a crystal of tetragonal symmetry,
space group P4mm, with lattice parameters a and c. The primitive
cell spanned by the three mutually orthogonal vectors a, b and c
contains ten atoms at the positions listed in Table 2.1.3.1 and
shown in Fig. 2.1.3.4. Consequently, the dynamical matrix has
30� 30 elements.

The space group P4mm contains eight symmetry operations,
namely

(1) the identity, denoted E;
(2) a 90� rotation around the z axis, denoted Dz

90;
(3) a 180� rotation around the z axis, denoted Dz

180;
(4) a 270� rotation around the z axis, denotedDz

270;
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6 The choice of the left coset is arbitrary. We could also consider the right coset
GðqÞ � fS�jvðS�Þg. The same enlarged group and the same representations are
obtained.
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(5) a mirror plane normal to the x axis, denoted mx;
(6) a mirror plane normal to the y axis, denoted my;
(7) a mirror plane normal to the ½�1110� axis, denoted m½�1110�; and
(8) a mirror plane normal to the ½110� axis, denoted m½110�.

Obviously, atoms No. 3 to 10 are chemically identical and have
the same mass.

For the reduction of the dynamical matrix, we need the func-
tion Foð�; SÞ, yielding the label of that atom into which � is sent
by the symmetry operation S. This function can be represented by
the atom transformations shown in Table 2.1.3.2. This table
displays the labels of atoms � and K related by a particular
symmetry operation and also the relative position rl � rL of the
primitive cells l and L where both atoms are located. This
information is needed for the calculation of phase factors in the
expression for the matrix operators T. Via the twofold axis, atom
6, for example, is transformed into atom 9 located within the cell
which is shifted by the vector �a� b.

Let us first consider the case of phonons with infinite wave-
lengths and, hence, the symmetry reduction of the dynamical
matrix at zero wavevector (the � point). Here, the point group of
the wavevector is equivalent to the point group 4mm of the
lattice. According to equation (2.1.3.19a), we can immediately
write down the transformation matrix for any of these symmetry
operations. Using the notation

E ¼

1 0 0

0 1 0

0 0 1

0

@

1

A Dz
90 ¼

0 �1 0

1 0 0

0 0 1

0

@

1

A

Dz
180 ¼

�1 0 0

0 �1 0

0 0 1

0

@

1

A Dz
270 ¼

0 1 0

�1 0 0

0 0 1

0

@

1

A

mx ¼

�1 0 0

0 1 0

0 0 1

0

@

1

A my ¼

1 0 0

0 �1 0

0 0 1

0

@

1

A

m½�1110� ¼

0 1 0

1 0 0

0 0 1

0

@

1

A m½110� ¼

0 �1 0

�1 0 0

0 0 1

0

@

1

A

for the three-dimensional vector representation of the symmetry
elements, we obtain the T matrix operators

Tð0;EÞ ¼

E 0 0 0 0 0 0 0 0 0

0 E 0 0 0 0 0 0 0 0

0 0 E 0 0 0 0 0 0 0

0 0 0 E 0 0 0 0 0 0

0 0 0 0 E 0 0 0 0 0

0 0 0 0 0 E 0 0 0 0

0 0 0 0 0 0 E 0 0 0

0 0 0 0 0 0 0 E 0 0

0 0 0 0 0 0 0 0 E 0

0 0 0 0 0 0 0 0 0 E

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

Tð0;Dz
90Þ ¼

Dz
90 0 0 0 0 0 0 0 0 0

0 Dz
90 0 0 0 0 0 0 0 0

0 0 0 0 0 Dz
90 0 0 0 0

0 0 0 0 0 0 0 0 Dz
90 0

0 0 0 0 0 0 0 Dz
90 0 0

0 0 0 Dz
90 0 0 0 0 0 0

0 0 0 0 Dz
90 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Dz
90

0 0 Dz
90 0 0 0 0 0 0 0

0 0 0 0 0 0 Dz
90 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

Tð0;Dz
180Þ ¼

Dz
180 0 0 0 0 0 0 0 0 0

0 Dz
180 0 0 0 0 0 0 0 0

0 0 0 Dz
180 0 0 0 0 0 0

0 0 Dz
180 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Dz
180

0 0 0 0 0 0 0 0 Dz
180 0

0 0 0 0 0 0 0 Dz
180 0 0

0 0 0 0 0 0 Dz
180 0 0 0

0 0 0 0 0 Dz
180 0 0 0 0

0 0 0 0 Dz
180 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
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Table 2.1.3.1. Example structure in space group P4mm

Atom
No. x y z

1 0 0 0
2 0.5 0.5 0.6
3 0.2 0.1 0
4 0.8 0.9 0
5 0.9 0.8 0
6 0.1 0.8 0
7 0.2 0.9 0
8 0.8 0.1 0
9 0.9 0.2 0
10 0.1 0.2 0

Fig. 2.1.3.4. Projection along the tetragonal z axis of the example structure
given in Table 2.1.3.1.

Table 2.1.3.2. Atom transformation table

P4mm Symmetry operation

Atom
No. E Dz

90 Dz
180 Dz

270 mx my m½�1110� m½110�

1 1 1 1 1 1 1 1 1
2 2 2� a 2� a� b 2� b 2� a 2� b 2 2� a� b
3 3 9� a 4� a� b 6� b 8� a 7� b 10 5� a� b
4 4 6� a 3� a� b 9� b 7� a 8� b 5 10� a� b
5 5 7� a 10� a� b 8� b 6� a 9� b 4 3� a� b
6 6 3� a 9� a� b 4� b 5� a 10� b 8 7� a� b
7 7 10� a 8� a� b 5� b 4� a 3� b 9 6� a� b
8 8 5� a 7� a� b 10� b 3� a 4� b 6 9� a� b
9 9 4� a 6� a� b 3� b 10� a 5� b 7 8� a� b
10 10 8� a 5� a� b 7� b 9� a 6� b 3 4� a� b
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Tð0;Dz
270Þ ¼

Dz
270 0 0 0 0 0 0 0 0 0

0 Dz
270 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Dz
270 0

0 0 0 0 0 Dz
270 0 0 0 0

0 0 0 0 0 0 Dz
270 0 0 0

0 0 Dz
270 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Dz
270

0 0 0 0 Dz
270 0 0 0 0 0

0 0 0 Dz
270 0 0 0 0 0 0

0 0 0 0 0 0 0 Dz
270 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

Tð0;mxÞ ¼

mx 0 0 0 0 0 0 0 0 0

0 mx 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 mx 0 0

0 0 0 0 0 0 mx 0 0 0

0 0 0 0 0 mx 0 0 0 0

0 0 0 0 mx 0 0 0 0 0

0 0 0 mx 0 0 0 0 0 0

0 0 mx 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 mx

0 0 0 0 0 0 0 0 mx 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

Tð0;myÞ ¼

my 0 0 0 0 0 0 0 0 0

0 my 0 0 0 0 0 0 0 0

0 0 0 0 0 0 my 0 0 0

0 0 0 0 0 0 0 my 0 0

0 0 0 0 0 0 0 0 my 0

0 0 0 0 0 0 0 0 0 my

0 0 my 0 0 0 0 0 0 0

0 0 0 my 0 0 0 0 0 0

0 0 0 0 my 0 0 0 0 0

0 0 0 0 0 my 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

Tð0;m½�1110�Þ ¼

m½�1110� 0 0 0 0 0 0 0 0 0

0 m½�1110� 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 m½�1110�

0 0 0 0 m½�1110� 0 0 0 0 0

0 0 0 m½�1110� 0 0 0 0 0 0

0 0 0 0 0 0 0 m½�1110� 0 my

0 0 0 0 0 0 0 0 m½�1110� 0

0 0 0 0 0 m½�1110� 0 0 0 0

0 0 0 0 0 0 m½�1110� 0 0 0

0 0 m½�1110� 0 0 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

and

Tð0;m½110�Þ ¼

m½110� 0 0 0 0 0 0 0 0 0

0 m½110� 0 0 0 0 0 0 0 0

0 0 0 0 m½110� 0 0 0 0 0

0 0 0 0 0 0 0 0 0 m½110�

0 0 m½110� 0 0 0 0 0 0 0

0 0 0 0 0 0 m½110� 0 0 0

0 0 0 0 0 m½110� 0 0 0 0

0 0 0 0 0 0 0 0 m½110� 0

0 0 0 0 0 0 0 m½110� 0 0

0 0 0 m½110� 0 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Since each of these matrices commutes with the dynamical matrix
(T�1 DT ¼ D, with T�1 ¼ TT), the following relations are
obtained for the D��0 ð0Þ submatrices:

D11ð0Þ ¼

D11
11 0 0

0 D11
11 0

0 0 D33
11

0

B
@

1

C
A;

D22ð0Þ ¼

D11
22 0 0

0 D11
22 0

0 0 D33
22

0

B
@

1

C
A;

D13ð0Þ ¼ Dz
270 D16ð0ÞD

z
90 ¼

D22
16 �D12

16 �D23
16

�D12
16 D11

16 D13
16

�D23
16 D13

16 D33
16

0

B
@

1

C
A;

¼ Dz
180 D14ð0ÞD

z
180 ¼

D11
14 D12

14 �D13
14

D12
14 D22

14 �D23
14

�D13
14 �D23

14 D33
14

0

B
@

1

C
A;

¼ Dz
90 D19ð0ÞD

z
270 ¼

D22
19 �D12

19 D23
19

�D12
19 D11

19 �D13
19

D23
19 �D13

19 D33
19

0

B
@

1

C
A;

¼ mx D18ð0Þmx ¼

D11
18 �D12

18 �D13
18

�D12
18 D22

18 D23
18

�D13
18 D23

18 D33
18

0

B
@

1

C
A;

¼ my D17ð0Þmy ¼

D11
17 �D12

17 D13
17

�D12
17 D22

17 �D23
17

D13
17 �D23

17 D33
17

0

B
@

1

C
A;

¼ m½�1110� D1;10ð0Þm½�1110� ¼

D22
1;10 D12

1;10 D23
1;10

D12
1;10 D11

1;10 D13
1;10

D23
1;10 D13

1;10 D33
1;10

0

B
@

1

C
A;

¼ m½110� D15ð0Þm½110� ¼

D22
15 D12

15 �D23
15

D12
15 D11

15 �D13
15

�D23
15 �D13

15 D33
15

0

B
@

1

C
A;

and so on for the other submatrices.
For nonzero wavevectors q along a� (q ¼ ha�), the point group

GoðqÞ contains the identity and the mirror plane my only. The
respective T matrix operators are the same as for the � point:

Tðq;myÞ ¼ Tð0;myÞ:

There are, however, symmetry elements that invert the wave-
vector, namelyDz

180 andmx. Hence the enlarged groupGoðq;�qÞ
consists of the elements E, my, mx and Dz

180. Inspection of the
atom transformation table yields the remaining matrix operators:

Tðha�;Dz
180Þ ¼

expð�2�ihÞ

Dz
180 expð2�ihÞ 0 0 0 0 0 0 0 0 0

0 Dz
180 0 0 0 0 0 0 0 0

0 0 0 Dz
180 0 0 0 0 0 0

0 0 Dz
180 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Dz
180

0 0 0 0 0 0 0 0 Dz
180 0

0 0 0 0 0 0 0 Dz
180 0 0

0 0 0 0 0 0 Dz
180 0 0 0

0 0 0 0 0 Dz
180 0 0 0 0

0 0 0 0 Dz
180 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Ko

and
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Tðha�;mxÞ ¼

expð�2�ihÞ

mx expð2�ihÞ 0 0 0 0 0 0 0 0 0

0 mx 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 mx 0 0

0 0 0 0 0 0 mx 0 0 0

0 0 0 0 0 mx 0 0 0 0

0 0 0 0 mx 0 0 0 0 0

0 0 0 mx 0 0 0 0 0 0

0 0 mx 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 mx

0 0 0 0 0 0 0 0 mx 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Ko:

Being anti-unitary, the corresponding inverse operators are7

T�1ðha�;Dz
180Þ ¼ Ko T

þðha�;Dz
180Þ;

T�1ðha�;mxÞ ¼ Ko T
þðha�;mxÞ:

The invariance of the dynamical matrix with respect to the
similarity transformation (T�1 DT ¼ D) using any of these
operators leads to the following relations for wavevectors along
a�:8

For RR ¼ my :

D11 D12 D13 D14 D15 D16 D17 D18 D19 D1;10

D22 D23 D24 D25 D26 D27 D28 D29 D2;10

D33 D34 D35 D36 D37 D38 D39 D3;10

D44 D45 D46 D47 D48 D49 D4;10

D55 D56 D57 D58 D59 D5;10

D66 D67 D68 D69 D6;10

D77 D78 D79 D7;10

D88 D89 D8;10

D99 D9;10

D10;10

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

~DD11
~DD12

~DD17
~DD18

~DD19
~DD1;10

~DD13
~DD14

~DD15
~DD16

~DD22
~DD27

~DD28
~DD29

~DD2;10
~DD23

~DD24
~DD25

~DD26

~DD77
~DD78

~DD79
~DD7;10

~DD73
~DD74

~DD75
~DD76

~DD88
~DD89

~DD8;10
~DD83

~DD84
~DD85

~DD86

~DD99
~DD9;10

~DD93
~DD94

~DD95
~DD96

~DD10;10
~DD10;3

~DD10;4
~DD10;5

~DD10;6

~DD33
~DD34

~DD35
~DD36

~DD44
~DD45

~DD46

~DD55
~DD56

~DD66

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

with ~DDkl ¼ my Dkl my ¼

D11
kl �D12

kl D13
kl

�D21
kl D22

kl �D23
kl

D31
kl �D32

kl D33
kl

0

B
@

1

C
A

;

for RR ¼ Dz
180 :

D11 D12 D13 D14 D15 D16 D17 D18 D19 D1;10

D22 D23 D24 D25 D26 D27 D28 D29 D2;10

D33 D34 D35 D36 D37 D38 D39 D3;10

D44 D45 D46 D47 D48 D49 D4;10

D55 D56 D57 D58 D59 D5;10

D66 D67 D68 D69 D6;10

D77 D78 D79 D7;10

D88 D89 D8;10

D99 D9;10

D10;10

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

~DD�
11

~DD�
12

~DD�
14

~DD�
13

~DD�
1;10

~DD�
19

~DD�
18

~DD�
17

~DD�
16

~DD�
15

~DD�
22

~DD�
24

~DD�
23

~DD�
2;10

~DD�
29

~DD�
28

~DD�
27

~DD�
26

~DD�
25

~DD�
44

~DD�
43

~DD�
4;10

~DD�
49

~DD�
48

~DD�
47

~DD�
46

~DD�
45

~DD�
33

~DD�
3;10

~DD�
39

~DD�
38

~DD�
37

~DD�
36

~DD�
35

~DD�
10;10

~DD�
10;9

~DD�
10;8

~DD�
10;7

~DD�
10;6

~DD�
10;5

~DD�
99

~DD�
98

~DD�
97

~DD�
96

~DD�
95

~DD�
88

~DD�
87

~DD�
86

~DD�
85

~DD�
77

~DD�
76

~DD�
75

~DD�
66

~DD�
65

~DD�
55

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

with ~DDkl ¼ Dz
180 Dkl D

z
180 ¼

D11
kl D12

kl �D13
kl

D21
kl D22

kl �D23
kl

�D31
kl �D32

kl D33
kl

0

B
@

1

C
A

and

for RR ¼ mx :

D11 D12 D13 D14 D15 D16 D17 D18 D19 D1;10

D22 D23 D24 D25 D26 D27 D28 D29 D2;10

D33 D34 D35 D36 D37 D38 D39 D3;10

D44 D45 D46 D47 D48 D49 D4;10

D55 D56 D57 D58 D59 D5;10

D66 D67 D68 D69 D6;10

D77 D78 D79 D7;10

D88 D89 D8;10

D99 D9;10

D10;10

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

~DD�
11

~DD�
12

~DD�
18

~DD�
17

~DD�
16

~DD�
15

~DD�
14

~DD�
13

~DD�
1;10

~DD�
19

~DD�
22

~DD�
28

~DD�
27

~DD�
26

~DD�
25

~DD�
24

~DD�
23

~DD�
2;10

~DD�
29

~DD�
88

~DD�
87

~DD�
86

~DD�
85

~DD�
84

~DD�
83

~DD�
8;10

~DD�
89

~DD�
77

~DD�
76

~DD�
75

~DD�
74

~DD�
73

~DD�
7;10

~DD�
79

~DD�
66

~DD�
65

~DD�
64

~DD�
63

~DD�
6;10

~DD�
69

~DD�
55

~DD�
54

~DD�
53

~DD�
5;10

~DD�
59

~DD�
44

~DD�
43

~DD�
4;10

~DD�
49

~DD�
33

~DD�
3;10

~DD�
39

~DD�
10;10

~DD�
10;9

~DD�
99

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

with ~DDkl ¼ mx Dkl mx ¼

D11
kl �D12

kl �D13
kl

�D21
kl D22

kl D23
kl

�D31
kl D32

kl D33
kl

0

B
@

1

C
A:

For the submatrixD11 (and similarly also for D12 andD22) we can
combine the three relations and obtain

D11 ¼ mx D
�
11 mx ¼

D11�
11 �D12�

11 �D13�
11

�D12
11 D22�

11 D23�
11

�D13
11 D23

11 D33�
11

0

B
@

1

C
A

¼ my D11 my ¼

D11
11 �D12

11 D13
11

�D12�
11 D22

11 �D23
11

D13�
11 �D23�

11 D33
11

0

B
@

1

C
A

¼ Dz
180 D

�
11 D

z
180 ¼

D11�
11 D12�

11 �D13�
11

D12
11 D22�

11 �D23�
11

�D13
11 �D23

11 D33�
11

0

B
@

1

C
A:
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7 Tþ denotes the Hermitian conjugate matrix.
8 Note that the lower half of the Hermitian matrix in each case is omitted for
clarity.
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Hence

D11
11 ¼ D11�

11 ¼ � real

D12
11 ¼ �D12

11 ¼ 0

D13
11 ¼ �D13�

11 ¼ i� imaginary

D22
11 ¼ D22�

11 ¼ � real

D23
11 ¼ �D23

11 ¼ 0

D33
11 ¼ D33�

11 ¼ � real

) D11 ¼

� 0 i�
0 � 0

�i� 0 �

0

@

1

A:

Obviously, the symmetry considerations lead to a remarkable
reduction of the independent elements of the dynamical matrix.

2.1.3.2. Symmetry of dispersion planes

According to equation (2.1.3.3), the phonon dispersion is
periodic within the reciprocal space:

!ðqþgÞj ¼ !q;j: ð2:1:3:34Þ

Moreover, for each symmetry operation of the space group of the
crystal, the eigenvalue equation may be written in the form

DðS qÞ eðS q; jÞ ¼ !2
ðS qÞ;j eðS q; jÞ ð2:1:3:35Þ

and due to the transformation property of the dynamical matrix,
equation (2.1.3.14),

DðqÞCþ
ðq; fSjvðSÞ þ xðmÞgÞ eðS q; jÞ

¼ !2
ðS qÞ;j C

þ
ðq; fSjvðSÞ þ xðmÞgÞ eðS q; jÞ:

ð2:1:3:36Þ

Hence !2
ðS qÞ;j is an eigenvalue of the dynamical matrixD(q) at the

wavevector q as is !2
q;j itself. If the eigenvalues are not degen-

erate, i.e. if there is not more than one linear independent
eigenvector for each eigenvalue, then

!2
ðS qÞ;j ¼ !2

q;j: ð2:1:3:37Þ

If, on the other hand, there are degenerate phonon modes
(!q;j ¼ !q;j0 , j 6¼ j0), the most we can strictly infer from equation
(2.1.3.36) is

!2
ðS qÞ;j ¼ !2

q;j0 : ð2:1:3:37aÞ

Without any loss of generality, however, it is possible to label the
modes at S q in terms of those modes at wavevector q in such a
way that equation (2.1.3.37) remains valid. Hence, we conclude
that the phonon dispersion !(q)9 in the three-dimensional reci-
procal space exhibits the full symmetry of the point group of the
crystal, as illustrated in Fig. 2.1.3.5.

Moreover, !q;j is an even function of q (Fig. 2.1.3.6). This is
always true even if the space group does not contain the inver-
sion, since the dynamical matrix is Hermitian. From the eigen-
vector equation (2.1.2.20) we have

Dð�qÞ eð�q; jÞ ¼ D�ðqÞ eð�q; jÞ ¼ !2
�q;j eð�q; jÞ: ð2:1:3:38Þ

Taking the complex conjugate and remembering that the eigen-
values of a Hermitian matrix are real quantities,

DðqÞ e�ð�q; jÞ ¼ !2
�q;j e

�ð�q; jÞ: ð2:1:3:38aÞ

Obviously, !2
�q;j is an eigenvalue of D(q) just as !2

q;j is. Hence,
with the same arguments as above we conclude that

!�q;j ¼ !q;j: ð2:1:3:39Þ

2.1.3.3. Symmetry properties of eigenvectors

In the previous section we used the symmetry properties of the
dynamical matrix to derive equation (2.1.3.36). Since the phonon
dispersion !ðq; jÞ is invariant with respect to all symmetry
operations fSjvðSÞ þ xðmÞg of the space group [equation
(2.1.3.37)], we conclude that not only is eðq; jÞ an eigenvector
of the dynamical matrix D(q) but so is the vector
Cþ

ðq; fSjvðSÞ þ xðmÞg eðS q; jÞ. If the corresponding eigenvalue
!2
q;j is not degenerate, the (normalized) eigenvectors are uniquely

determined except for a phase factor of unit modulus. Hence, the
following relation holds:

eðS q; jÞ ¼ expði’ÞCðq; fSjvðSÞ þ xðmÞgÞ eðq; jÞ

¼ expði’ÞCðS q; fEjxðmÞgÞCðq; fSjvðSÞgÞ eðq; jÞ

¼ expði’Þ exp½�iðS qÞ xðmÞ�Cðq; fSjvðSÞgÞ eðq; jÞ:

ð2:1:3:40Þ

The statement giving the atomic displacements as solutions of the
equations of motion (cf. Section 2.1.2) was based on Bloch waves,
the polarization vector being invariant with respect to lattice
translations. It is therefore convenient to choose the arbitrary
phase factor in the transformation law for eigenvectors in such a
way as to leave the right-hand side of equation (2.1.3.40) inde-
pendent of xðmÞ. Setting the phase angle ’ equal to ðS qÞ xðmÞ, we
obtain the simple form of the transformation law

eðS q; jÞ ¼ Cðq; fSjvðSÞgÞ eðq; jÞ: ð2:1:3:41Þ

This choice is, however, not always possible. If there is a
symmetry operation S� that inverts the wavevector, then in
addition to equation (2.1.3.40) there is another relation between
eð�q; jÞ and eðq; jÞ due to the Hermitian nature of the dynamical
matrix. Hence in this case the transformation law may differ from
equation (2.1.3.41), as discussed in Section 2.1.3.5.2.

If the dynamical matrix exhibits degenerate eigenvalues for the
wavevector q, the most that can be said is that the symmetry
operation fSjvðSÞ þ xðmÞg sends an eigenvector eðq; jÞ into some
linear combination of all those eigenvectors that correspond to
the same eigenvalue. Without any loss of generality we may,
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Fig. 2.1.3.5. Symmetry of the dispersion surface.

Fig. 2.1.3.6. The dispersion relation is an even function of q.

9 Note that we always choose the positive root !ðqÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi
!2ðqÞ

p
for the phonon

frequency.
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however, demand that equation (2.1.3.41) remains valid even in
this case, since if we would have determined eigenvectors eðq; jÞ
at q then among the variety of possible and equivalent ortho-
normal sets of eigenvectors at S q we simply choose that parti-
cular one which is given by (2.1.3.41). There is, however, one
exception, which applies to wavevectors on the Brillouin-zone
boundary and symmetry operations with S q ¼ qþ g (where g is
a reciprocal-lattice vector): owing to the periodicity eðqþ g; jÞ ¼
eðq; jÞ, equation (2.1.3.3), the eigenvectors eðS q; jÞ and eðq; jÞ
have to be identical in this case.

If we consider those symmetry operations that leave the
wavevector invariant (except for an additional reciprocal-lattice
vector), we are able to obtain special conditions for the eigen-
vectors themselves. In Section 2.1.3.1 we found that the dyna-
mical matrix commutes with the T matrix operators defined by
equation (2.1.3.19a). Hence, if R is an arbitrary element of the
point groupGoðqÞ, the vector Tðq;RÞeðq; jÞ is an eigenvector with
respect to the eigenvalue !2

q;j as well as eðq; jÞ:

DðqÞ fTðq;RÞ eðq; jÞg ¼ !2
q;j fTðq;RÞ eðq; jÞg: ð2:1:3:42Þ

Since eigenvalues may be degenerate, we now replace the index j
that labels the 3N different phonon branches by the double index

�: 
 labels all different eigenvalues whereas � distinguishes
those phonons that are degenerate by symmetry,10 i.e. that have
the same frequency but different eigenvectors,

j ! 
; �:

� runs from 1 to f
 if f
 is the degeneracy of the eigenfrequency
!q;
 . With this notation, equation (2.1.3.42) can be rewritten as

DðqÞ fTðq;RÞ eðq; 
�Þg ¼ !2
q;
 fTðq;RÞ eðq; 
�Þg: ð2:1:3:42aÞ

Consequently, the vector Tðq;RÞ eðq; 
�Þ has to be some linear
combination of all eigenvectors eðq; 
�0Þ, �0 ¼ 1; . . . ; f
 , corre-
sponding to the same eigenvalue !2

q;
,

Tðq;RÞ eðq; 
�Þ ¼
Pf


�0¼1

ð
Þ��0 ðq;RÞ eðq; 
�
0Þ: ð2:1:3:43Þ

Obviously, the eigenvectors eðq; 
�Þ ð� ¼ 1; . . . ; f
Þ span a vector
space that is invariant with respect to all symmetry operations of
the point group of the wavevector. Moreover, this vector space
does not contain any proper invariant subspaces and is therefore
irreducible. Under the symmetry operations of the group GoðqÞ,
the f
 eigenvectors transform into each other. The corresponding
coefficients ð
Þ��0 ðq;RÞ can be regarded as the elements of a
complex (f
 � f
) matrix s

ð
Þðq;RÞ that induces a unitary irre-
ducible multiplier representation (IMR) of the point group of the
wavevector. The complex multiplier is exactly the same as for the
3N-dimensional reducible representation provided by the T
matrix operators [cf. equation (2.1.3.21)].

For a given point groupGoðqÞ there is only a limited number of
irreducible representations. These can be calculated by group-
theoretical methods and are tabulated, for example, in the
monographs of Kovalev (1965) or Bradley & Cracknell (1972).
The multipliers are specific for the individual space groups G(q)
and depend merely on the fractional translations v(R) associated
with a symmetry element R. It should be noted that for wave-
vectors within the Brillouin zone and for symmorphic space
groups all multipliers are unity and we are left with ordinary
irreducible representations. Hence, merely on the basis of group-
theoretical considerations, restrictions for the phonon eigenvec-
tors can be obtained.

A particular phonon can now be characterized by the
symmetry of the corresponding eigenvector, i.e. the irreducible

multiplier representation (IMR) that describes its transformation
behaviour. All degenerate phonons obviously belong to the same
IMR. Moreover, phonons with different frequencies may belong
to the same IMR. On the other hand, there may also be IMRs to
which no phonon belongs at all. For a given crystalline structure it
is possible, however, to predict the number of phonons with
eigenvectors transforming according to a particular irreducible
multiplier representation:

Let us arrange all eigenvectors eðq; 
�Þ of the dynamical
matrix as columns of a unitary matrix eðqÞ in such a way that
eigenvectors of the same irreducible representation occupy
neighbouring columns:

eðqÞ ¼ ðeðq; 11Þ . . . eðq; 1f1Þeðq; 21Þ . . . eðq; 2f2Þ . . .Þ: ð2:1:3:44Þ

This matrix can now be used for a similarity transformation of the
T matrix operators:

eðqÞ�1 Tðq;RÞ eðqÞ ¼ Dðq;RÞ: ð2:1:3:45Þ

Since an eigenvector can never change its symmetry by the
multiplication with the T matrix operator and since all eigen-
vectors are pairwise orthonormal, the resulting matrix Dðq;RÞ
has block-diagonal form. Moreover, each block on the diagonal
consists of the matrix of a particular irreducible multiplier
representation:

Dðq;RÞ ¼

s
ð1Þðq;RÞ 0 s 0 0

0 s
ð2Þðq;RÞ s 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 . .
.

0

0 0 0 0 . .
.

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð2:1:3:46Þ

The matrix of eigenvectors thus reduces the operators T to block-
diagonal form.

There may be several phonons with different frequencies that
belong to the same symmetry (irreducible representation). All
purely longitudinally polarized lattice vibrations, irrespective of
whether these are acoustic or optic modes, belong to the totally
symmetric representation. This is because each vector parallel to
q – and in purely longitudinal modes the polarization vectors of
each individual atom are parallel to the wavevector – is left
invariant by any of the symmetry elements of GoðqÞ. A particular
irreducible representation may thus appear more than once in
the decomposition of the T matrix and, consequently, two or
more of the blocks within the matrix Dðq;RÞ may be identical.
Therefore, it is convenient to split the index 
 that labels the
modes of different frequency into two indices s and a,


 ! s; a:

s characterizes the inequivalent irreducible multiplier repre-
sentations and a is the running index over all modes of the same
symmetry but of different frequency. If cs denotes the multiplicity
of the representation s, then a takes the values 1; . . . ; cs. Using
this notation, the transformation law for the eigenvectors can be
rewritten as

Tðq;RÞ eðq; sa�Þ ¼
Pfs

�0¼1

ðsÞ��0 ðq;RÞ eðq; sa�
0Þ

for � ¼ 1; . . . ; fs and a ¼ 1 . . . ; cs:

ð2:1:3:47Þ

As a well known result from group theory, the multiplicity cs of a
particular irreducible multiplier representation s in the decom-
position of the reducible 3N-dimensional T-matrix representation
can be calculated from the respective characters
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10 Accidental degeneracies that are due to the specific strength of interatomic
forces are not considered here.
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�ðq;RÞ ¼
P

��

T���� ðq;RÞ

¼
P

��

R�� �ð�;Foð�;RÞÞ exp½iqðr� � Rr�Þ�

ð2:1:3:48Þ

and

�ðsÞðq;RÞ ¼
Pfs

�¼1

ðsÞ��ðq;RÞ ð2:1:3:49Þ

according to

cs ¼ ð1=jGjÞ
P

R

�ðq;RÞ�ðsÞ�ðq;RÞ: ð2:1:3:50Þ

The summation index runs over all symmetry elements of the
point group GoðqÞ, the order of which is denoted by jGj. Hence
we are able to predict the number of non-degenerate phonon
modes for any of the different irreducible multiplier repre-
sentations on the basis of group-theoretical considerations.
Obviously, there are exactly cs � fs modes with eigenvectors that
transform according to the irreducible multiplier representation
s. Among these, groups of always fs phonons have the same
frequency. The degeneracy corresponds to the dimensionality of
the irreducible representation. The crystallographic space groups
give rise to one-, two- or three-dimensional irreducible repre-
sentations. A maximum of three fundamental lattice vibrations
can therefore be degenerate by symmetry, a situation that is
observed for some prominent wavevectors within cubic crystals.

Symmetry considerations not only provide a means for a
concise labelling of phonons; group theory can also be used to
predict the form of eigenvectors that are compatible with the
lattice structure. This aspect leads to the concept of symmetry
coordinates, which is presented in Section 2.1.3.4.

2.1.3.3.1. Example

Let us return to the example presented in Section 2.1.3.1.1. At
the � point, the point group of the wavevector is identical to the
point group of the crystal, namely 4mm. It contains all eight
symmetry operations and there are five different irreducible
representations, denoted ð1

þÞ, ð1
�Þ, ð3

þÞ, ð3
�Þ and s

ð2Þ. The
corresponding character table including the reducible repre-
sentation provided by the T-matrix operators (cf. Section
2.1.3.1.1) has the form shown in Table 2.1.3.3. The representations
ð1

þÞ, ð1
�Þ, ð3

þÞ and ð3
�Þ are one-dimensional, and s

ð2Þ is two-
dimensional. The upper index, þ or �, refers to the symmetry
with respect to the mirror plane mx. According to (2.1.3.50), we
may calculate the multiplicities of these irreducible representa-
tions in the decomposition of the 30-dimensional T representa-
tion. As the result we obtain

cð1þÞ ¼ 5; cð1�Þ ¼ 3; cð3þÞ ¼ 3; cð3�Þ ¼ 3; c
sð2Þ ¼ 8:

Hence for the sample structure presented in Section 2.1.3.1.1 we
expect to have five phonon modes of symmetry ð1

þÞ, three modes

for each of the symmetries ð1
�Þ, ð3

þÞ and ð3
�Þ, and 16 modes of

symmetry s
ð2Þ, the latter being divided into pairs of doubly

degenerate phonons.

2.1.3.4. Symmetry coordinates

So far, we have used the 3N Cartesian coordinates of all atoms
within a primitive cell in order to describe the dynamics of the
crystal lattice. Within this coordinate system, the elements of the
dynamical matrix can be calculated on the basis of specific models
for interatomic interactions. The corresponding eigenvectors or
normal coordinates are some linear combinations of the Carte-
sian components. With respect to these normal coordinates,
which are specific to each particular crystal, the dynamical matrix
has diagonal form and contains the squares of the eigen-
frequencies reflecting the interatomic forces.

As shown in Sections 2.1.3.1 and 2.1.3.3, there are constraints
for the dynamical matrix due to the symmetry of the crystal
lattice and, hence, eigenvectors must obey certain transformation
laws. Not all arbitrary linear combinations of the Cartesian
coordinates can form an eigenvector. Rather, there are
symmetry-adapted coordinates or simply symmetry coordinates
compatible with a given structure that can be used to predict the
general form of eigenvectors without the need for any particular
model of interatomic interactions. These symmetry coordinates
can be determined on the basis of the irreducible multiplier
representations introduced in the previous section.

From the T-matrix operators and the representation matrices
s
ðsÞðq;RÞ of a particular irreducible multiplier representation we
may define another matrix operator PðsÞðqÞ with the elements

P
ðsÞ
��0 ðqÞ ¼ ðfs=jGjÞ

P

R

ðsÞ���0 ðq;RÞTðq;RÞ: ð2:1:3:51Þ

When applied to an arbitrary 3N-dimensional vectorW built from
the Cartesian coordinates of the individual atoms, this operator
yields the particular component of W that transforms according
to the irreducible representation s. Hence it acts as a projection
operator. Defining a set of fs vectors by

Eðq; s�Þ ¼ P
ðsÞ
��0 ðqÞW; � ¼ 1; . . . ; fs; ð2:1:3:52Þ

we obtain

Tðq;R0ÞEðq; s�Þ ¼ ðfs=jGjÞ
P

R

ðsÞ���0 ðq;RÞTðq;R
0ÞTðq;RÞW:

ð2:1:3:53Þ

Using the multiplication rule (2.1.3.21a), it can be shown that the
right-hand side of this equation reduces to

ðfs=jGjÞ
P

R

Pfs

�00¼1

ðsÞ�00�ðq;R
0Þ ðsÞ��00�0 ðq;R

0 � RÞTðq;R0 � RÞW;

which can also be written in the form
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Table 2.1.3.3. Character table of the point group 4mm

4mm

Symmetry operation

E Dz
90 Dz

180 Dz
270 mx my m½�1110� m½110�

�T 30 2 �2 2 2 2 2 2
�ð1þÞ 1 1 1 1 1 1 1 1
�ð1�Þ 1 1 1 1 �1 �1 �1 �1
�ð3þÞ 1 �1 1 �1 1 1 �1 �1
�ð3�Þ 1 �1 1 �1 �1 �1 1 1

s
ð2Þ 1 0

0 1

� �
i 0

0 �i

� �
�1 0

0 �1

� �
�i 0

0 i

� �
0 1

1 0

� �
0 �1

�1 0

� �
0 �i

i 0

� �
1 i

�i 0

� �

�
sð2Þ 2 0 �2 0 0 0 0 0
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Pfs

�00¼1

ðsÞ�00�ðq;R
0Þ ðfs=jGjÞ

P

R

ðsÞ��00�0 ðq;RÞTðq;RÞW;

since if R runs over all symmetry operations of the group GoðqÞ
the same is true for the product R0 � R. Comparing this expres-
sion with the definitions (2.1.3.51) and (2.1.3.52) we obtain

Tðq;R0ÞEðq; s�Þ ¼
Pfs

�00¼1

ðsÞ�00�ðq;R
0ÞEðq; s�00Þ: ð2:1:3:54Þ

Hence the set of vectors Eðq; s�Þ span an irreducible vector space
and transform into each other in just the same way as the
eigenvectors eðq; sa�Þ of the dynamical matrix do.

If the corresponding irreducible representation s appears only
once in the decomposition of the 3N-dimensional T representa-
tion, then the vector space provided by the Eðq; s�Þ,
� ¼ 1; . . . ; fs, is uniquely determined. Consequently, these basis
vectors themselves may be regarded as eigenvectors of the
dynamical matrix. In this case, symmetry considerations alone
determine the polarization of lattice vibrations irrespective of the
particular interatomic interactions.

If, on the other hand, the multiplicity cs of the representation s
is larger than 1, the most that can be inferred is that each of the
vectors Eðq; s�Þ is some linear combination of the cs eigenvectors
eðq; sa�Þ, a ¼ 1; . . . ; cs. By an appropriate choice of the different
generating vectorsWa in (2.1.3.52), it is, however, always possible
to find a set of cs pairwise orthogonal vectors Eðq; sa�Þ that span
the same vector space as the eigenvectors eðq; sa�Þ. If we repeat
this procedure for every irreducible representation s contributing
to the T representation, we obtain 3N linearly independent
vectors, the symmetry coordinates, that generate a new coordi-
nate system within the 3N-dimensional space of atomic displa-
cements. With respect to this coordinate system the dynamical
matrix is reduced to a symmetry-adapted block-diagonal form.

In order to show this, let us denote the matrix elements of the
transformed dynamical matrix by �DDs0a0�0

sa� ðqÞ (� ¼ 1; . . . ; fs,
a ¼ 1; . . . ; cs) and the components of the symmetry coordinates
by E�� ðq; sa�Þ (� ¼ 1; . . . ;N, � ¼ 1; 2; 3). Then the following
equation holds, since the dynamical matrix D(q) commutes with
the T-matrix operators and since the symmetry coordinates
transform according to (2.1.3.54):

D
s0a0�0

sa� ðqÞ

¼
P

��

P

�0�

E��� ðq; sa�ÞD��
��0 ðqÞE

�
�0 ðq; s

0a0�0Þ

¼
P

��

P

�0�

E��� ðq; sa�Þ

�
P

�1�1

P

�2�2

fðT�1ðq;RÞÞ��1��1
D
�1�2
�1�2 ðqÞ ðTðq;RÞÞ

�2�
�2�

0 g

� E
�
�0 ðq; s

0a0�0Þ

¼
P

�1�1

P

�2�2

Pfs

�¼1

Pfs

�0¼1

ðsÞ��� ðq;RÞE
��
1
�1 ðq; sa�Þ

�D�1�2
�1�2

ðqÞ ðs
0Þ

�0�0 ðq;RÞE
�2
�2
ðq; s0a0�0Þ

¼
Pfs

�¼1

Pfs

�0¼1

ðsÞ��� ðq;RÞ 
ðs0Þ
�0�0 ðq;RÞD

s0a0�0

sa� ðqÞ:

ð2:1:3:55Þ

Owing to the orthogonality of the irreducible representation, we
obtain after summation over all symmetry elements R and divi-
sion by the order of the group

D
s0a0�0

sa� ðqÞ ¼ ð1=jGjÞ
P

R

Pfs

�¼1

Pfs

�0¼1

ðsÞ��� ðq;RÞ 
ðs0Þ
�0�0 ðq;RÞD

s0a0�0

sa� ðqÞ

¼ ð1=fsÞ
Pfs

�¼1

Pfs

�0¼1

���0���0�ss0 D
s0a0�0

sa� ðqÞ

¼ ð1=fsÞ���0�ss0
Pfs

�¼1

D
sa0�

sa� ðqÞ: ð2:1:3:56Þ

This equation proves the block-diagonal form of the transformed
dynamical matrix �DD. Hence, with respect to the symmetry coor-
dinates, the dynamical matrix can be represented by submatrices
�DD
ðsÞ
ðqÞ of dimension cs � cs that are determined by the individual

irreducible representations (s):

DðqÞ ¼

D
ð1Þ
ðqÞ 0 s 0

0 D
ð2Þ
ðqÞ s 0

..

. ..
. . .

. ..
.

0 0 s . .
.

0

B
B
B
B
@

1

C
C
C
C
A
: ð2:1:3:57Þ

The elements of the submatrices are given by

D
ðsÞ

aa0 ðqÞ ¼
P

��

P

�0�

E��� ðq; sa�ÞD��
��0 ðqÞE

�
�0 ðq; sa

0�Þ; ð2:1:3:58Þ

and must be independent of �. Obviously, a submatrix D
ðsÞ
ðqÞ

may appear once, twice or three times on the diagonal, according
to the dimensionality fs of the respective irreducible repre-
sentation.

The eigenvectors and eigenvalues of the block-diagonalized
dynamical matrix can be collected from the eigenvectors and
eigenvalues of the individual submatrices. Hence, the eigenvec-
tors of D

ðsÞ
ðqÞ correspond to the cs non-degenerate phonons of

symmetry s.

2.1.3.4.1. Example

Let us try to find the symmetry coordinates corresponding to
our sample structure introduced in Section 2.1.3.1.1 for q ¼ 0.
Using the irreducible representations displayed in Section
2.1.3.3.1, we write down the projection operator for representa-
tion ð1

�Þ according to equation (2.1.3.51):

P
ð1�Þ
11 ð0Þ ¼

1

8

R�
1 0 0 0 0 0 0 0 0 0

0 R�
1 0 0 0 0 0 0 0 0

0 0 E Dz
180 �m½110� Dz

90 �my �mx Dz
270 �m½�1110�

0 0 Dz
180 E �m½�1110� Dz

270 �mx �my Dz
90 �m½110�

0 0 �m½110� �m½�1110� E �mx Dz
270 Dz

90 �my Dz
180

0 0 Dz
270 Dz

90 �mx E �m½110� �m½�1110� Dz
180 �my

0 0 �my �mx Dz
90 �m½110� E Dz

180 �m½�1110� Dz
270

0 0 �mx �my Dz
270 �m½�1110� Dz

180 E �m½110� Dz
90

0 0 Dz
90 Dz

270 �my Dz
180 �m½�1110� �m½110� E �mx

0 0 �m½�1110� �m½110� Dz
180 �my Dz

90 Dz
270 �mx E

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

with the abbreviations

Rþ
1 ¼ EþDz

90 þDz
180 þDz

270 þmx þmy þm½110� þm½�1110�

¼

0 0 0

0 0 0

0 0 8

0

B
@

1

C
A;

R�
1 ¼ EþDz

90 þDz
180 þDz

270 �mx �my �m½110� �m½�1110�

¼

0 0 0

0 0 0

0 0 0

0

B
@

1

C
A ¼ 0:
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From the results in Section 2.1.3.4, we expect to have five
symmetry coordinates corresponding to representation ð1

þÞ and
three for ð1

�Þ according to the respective multiplicities. Let
x1; y1; z1; x2; y2; z2; . . . ; x10; y10; z10 denote the basis of the 30-
dimensional space generated by the displacements of the ten
atoms in the x, y and z directions, respectively. If we apply the
projection operator P1þ

11 ð0Þ to the basis vector z1, we obtain the
first symmetry coordinate according to equation (2.1.3.52):

Eð0; 1þ11Þ ¼ P
ð1þÞ
11 ð0Þ

0

0

1

0

0

0

..

.

0

0

0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼ P
ð1þÞ
11 ð0Þ z1 ¼ z1:

In a similar way we may use the basis vectors z2, x3, z3 and x5 in
order to generate the other symmetry coordinates:

Eð0; 1þ21Þ ¼ P
ð1þÞ
11 ð0Þ z2 ¼ z2

Eð0; 1þ31Þ ¼ P
ð1þÞ
11 ð0Þ x3

¼ 1
8½x3 � x4 � y5 � y6 þ x7 � x8 þ y9 þ y10�

Eð0; 1þ41Þ ¼ P
ð1þÞ
11 ð0Þ z3

¼ 1
8½z3 þ z4 þ z5 þ z6 þ z7 þ z8 þ z9 þ z10�

Eð0; 1þ51Þ ¼ P
ð1þÞ
11 ð0Þ x5

¼ 1
8½�y3 þ y4 þ x5 � x6 þ y7 � y8 þ x9 � x10�:

(It can easily be shown that all the other basis vectors would lead
to linearly dependent symmetry coordinates.)

Any eigenvector of the dynamical matrix corresponding to the
irreducible representation ð1

þÞ is necessarily some linear
combination of these five symmetry coordinates. Hence it may be
concluded that for all lattice vibrations of this symmetry, the
displacements of atoms 1 and 2 can only be along the tetragonal
axis. Moreover, the displacements of atoms 3 to 10 have to be
identical along z, and pairs of atoms vibrate in opposite directions
within the xy plane.

For the representation ð1
�Þ we obtain the following symmetry

coordinates when P
ð1�Þ
11 ð0Þ is applied to x3, z3 and x5:

Eð0; 1�11Þ ¼ P
ð1�Þ
11 ð0Þ x3

¼ 1
8½x3 � x4 þ y5 � y6 � x7 þ x8 þ y9 � y10�

Eð0; 1�21Þ ¼ P
ð1�Þ
11 ð0Þ z3

¼ 1
8½z3 þ z4 � z5 þ z6 � z7 � z8 þ z9 � z10�

Eð0; 1�31Þ ¼ P
ð1�Þ
11 ð0Þ x5

¼ 1
8½y3 � y4 þ x5 þ x6 þ y7 � y8 � x9 � x10�:

Obviously, none of the corresponding phonons exhibits any
displacement of atoms 1 and 2. There is an antiphase motion of
pairs of atoms not only within the tetragonal plane but also along
the tetragonal z axis.

For the representations ð3
�Þ we obtain the following projection

operators:

P
ð3�Þ
11 ð0Þ ¼

1

8

R�
3 0 0 0 0 0 0 0 0 0

0 R�
3 0 0 0 0 0 0 0 0

0 0 E Dz
180 �m½110� �Dz

90 �my �mx �Dz
270 �m½�1110�

0 0 Dz
180 E �m½�1110� �Dz

270 �mx �my �Dz
90 �m½110�

0 0 �m½110� �m½�1110� E �mx �Dz
270 �Dz

90 �my Dz
180

0 0 �Dz
270 �Dz

90 �mx E �m½110� �m½�1110� Dz
180 �my

0 0 �my �mx �Dz
90 �m½110� E Dz

180 �m½�1110� �Dz
270

0 0 �mx �my �Dz
270 �m½�1110� Dz

180 E �m½110� �Dz
90

0 0 �Dz
90 �Dz

270 �my Dz
180 �m½�1110� �m½110� E �mx

0 0 �m½�1110� �m½110� Dz
180 �my �Dz

90 �Dz
270 �mx E

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

with

R�
3 ¼ E�Dz

90 þDz
180 �Dz

270 �mx �my �m½110� �m½�1110� ¼ 0:

Both representations appear three times in the decomposition
of the T representation. Hence, we expect three phonons of each
symmetry and also three linearly independent symmetry coor-
dinates. These are generated if the projection operators are
applied to the basis vectors x3, z3 and x5:

Eð0; 3�11Þ ¼ P
ð3þÞ
11 ð0Þ x3

¼ 1
8½x3 � x4 � y5 þ y6 � x7 � x8 � y9 � y10�

Eð0; 3�21Þ ¼ P
ð3þÞ
11 ð0Þ z3

¼ 1
8½z3 þ z4 � z5 � z6 � z7 � z8 � z9 � z10�

Eð0; 3�11Þ ¼ P
ð3þÞ
11 ð0Þ x5

¼ 1
8½�y3 � y4 þ x5 � x6 � y7 þ y8 � x9 � x10�:

Just as for representation ð1
�Þ, the symmetry coordinates corre-

sponding to representations ð3
�Þ do not contain any component

of atoms 1 and 2. Consequently, all lattice modes of these
symmetries leave the atoms on the fourfold axis at their equili-
brium positions at rest.

Representation sð2Þ is two-dimensional and appears eight times
in the decomposition of the T representation. Hence, there are 16
doubly degenerate phonons of this symmetry. According to
(2.1.3.51), four projection operators P

ð2Þ
11 ð0Þ, P

ð2Þ
21 ð0Þ, P

ð2Þ
12 ð0Þ and

P
ð2Þ
22 ð0Þ can in principle be constructed, the latter two being,

however, equivalent to the former ones:

P
ð2Þ
11
22

ð0Þ ¼

1

4

R�
2 0 0 0 0 0 0 0 0 0

0 R�
2 0 0 0 0 0 0 0 0

0 0 E �Dz
180 0 �iDz

90 0 0 �iDz
270 0

0 0 �Dz
180 E 0 �iDz

270 0 0 �iDz
90 0

0 0 0 0 E 0 �iDz
270 �iDz

90 0 �Dz
180

0 0 �iDz
270 �iDz

90 0 E 0 0 �Dz
180 0

0 0 0 0 �iDz
90 0 E �Dz

180 0 �iDz
270

0 0 0 0 �iDz
270 0 �Dz

180 E 0 �iDz
90

0 0 �iDz
90 �iDz

270 0 �Dz
180 0 0 E 0

0 0 0 0 �Dz
180 0 �iDz

90 �iDz
270 0 E

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

and

P
ð2Þ
12
21

ð0Þ ¼

1

4

D�
2 0 0 0 0 0 0 0 0 0

0 D�
2 0 0 0 0 0 0 0 0

0 0 0 0 �im½110� 0 �my mx 0 �im½�1110�

0 0 0 0 �im½�1110� 0 mx �my 0 �im½110�

0 0 �im½110� �im½�1110� 0 mx 0 0 �my 0

0 0 0 0 mx 0 �im½110� �im½�1110� 0 �my

0 0 �my mx 0 �im½110� 0 0 �im½�1110� 0

0 0 mx �my 0 �im½�1110� 0 0 �im½110� 0

0 0 0 0 �my 0 �im½�1110� �im½110� 0 mx

0 0 �im½�1110� �im½110� 0 �my 0 0 mx 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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with

R�
2 ¼ E� iDz

90 �Dz
180 � iDz

270 ¼

2 �2i 0

�2i 2 0

0 0 0

0

B
@

1

C
A;

D�
2 ¼ mx �my � im½110� � im½�1110� ¼

�2 �2i 0

�2i 2 0

0 0 0

0

B
@

1

C
A:

The projection operator P
ð2Þ
11 ð0Þ applied to the basis vectors x1,

x2, x3, x5, x6, x7, z3 and z5 yields eight symmetry coordinates for
eight phonon modes with different eigenfrequencies. Owing to
the degeneracy, each of these phonons has a counterpart with the
same frequency but with a different linearly independent eigen-
vector. These new eigenvectors are built from another set of
symmetry coordinates, which is generated if the other operator
P
ð2Þ
21 ð0Þ is applied to the same vectors x1, x2, x3, x5, x6, x7, z3 and

z5.The two sets of symmetry coordinates are

Eð0; 211Þ ¼ P
ð2Þ
11 ð0Þ x1 ¼

1
2½x1 þ iy1�

Eð0; 221Þ ¼ P
ð2Þ
11 ð0Þ x2 ¼

1
2½x2 þ iy2�

Eð0; 231Þ ¼ P
ð2Þ
11 ð0Þ x3 ¼

1
4½x3 þ x4 þ iy6 þ iy9�

Eð0; 241Þ ¼ P
ð2Þ
11 ð0Þ x5 ¼

1
4½x5 þ x10 þ iy7 þ iy8�

Eð0; 251Þ ¼ P
ð2Þ
11 ð0Þ x6 ¼

1
4½x6 þ x9 þ iy3 þ iy4�

Eð0; 261Þ ¼ P
ð2Þ
11 ð0Þ x7 ¼

1
4½x7 þ x8 þ iy5 þ iy10�

Eð0; 271Þ ¼ P
ð2Þ
11 ð0Þ z3 ¼

1
4½z3 � z4 � iz6 þ iz9�

Eð0; 281Þ ¼ P
ð2Þ
11 ð0Þ z5 ¼

1
4½z5 � z10 þ iz7 � iz8�

Eð0; 212Þ ¼ P
ð2Þ
21 ð0Þ x1 ¼

1
2½�x1 þ iy1�

Eð0; 222Þ ¼ P
ð2Þ
21 ð0Þ x2 ¼

1
2½�x2 þ iy2�

Eð0; 232Þ ¼ P
ð2Þ
21 ð0Þ x3 ¼

1
4½�x7 � x8 þ iy5 þ iy10�

Eð0; 242Þ ¼ P
ð2Þ
21 ð0Þ x5 ¼

1
4½�x6 � x9 þ iy3 þ iy4�

Eð0; 252Þ ¼ P
ð2Þ
21 ð0Þ x6 ¼

1
4½�x5 � x10 þ iy7 þ iy8�

Eð0; 262Þ ¼ P
ð2Þ
21 ð0Þ x7 ¼

1
4½�x3 � x4 þ iy6 þ iy9�

Eð0; 272Þ ¼ P
ð2Þ
21 ð0Þ z3 ¼

1
4½�z7 þ z8 � iz5 þ iz10�

Eð0; 282Þ ¼ P
ð2Þ
21 ð0Þ z5 ¼

1
4½z6 � z9 � iz3 þ iz4�:

Looking carefully at these sets of symmetry coordinates, one
recognises that both vector spaces are spanned by mutually
complex conjugate symmetry coordinates.

Collecting all symmetry coordinates as column vectors within a
30� 30 matrix we finally obtain the matrix shown in Fig. 2.1.3.7.
For simplicity, only nonzero elements are displayed. This matrix
can be used for the block-diagonalization of any dynamical
matrix that describes the dynamical behaviour of our model
crystal.

2.1.3.5. Degeneracy of lattice vibrations

Whenever two phonon modes of the same wavevector exhibit
identical frequencies but linearly independent eigenvectors, these
modes are called degenerate. As discussed in the preceding
sections, the symmetry of the crystal lattice may cause degen-
eracies if there are higher-dimensional irreducible representa-
tions of the point group of the phonon wavevector. Two-
dimensional representations yield twofold degenerate lattice
vibrations, whereas threefold degeneracy may be found for
special wavevectors in cubic crystals exhibiting three-dimensional
irreducible representations. In addition, there are two other
reasons for the possible existence of degenerate lattice vibra-

tions: accidental degeneracy and degeneracy due to time-reversal
invariance of the lattice vibrations. Both phenomena will be
described in the following.

2.1.3.5.1. Accidental degeneracy

The symmetry analysis of lattice vibrations provides a powerful
tool not only for the characterization of eigenvectors but also for
the presentation of experimental results. In neutron scattering
experiments, for example, a series of single phonons may be
detected but symmetry determines which of these phonons
belong to the same branch, i.e. how the single phonons have to be
connected by a dispersion curve. The decision as to which of Figs.
2.1.3.8(a) or (b), which represent the same experimental results
as full circles, is the correct one can be made by symmetry
arguments only. In Fig. 2.1.3.8(a) the two phonon branches
intersect. Thus, there are two degenerate phonons at the single
wavevector q�. From the symmetry point of view, this particular
wavevector has no special properties, i.e. the point group Goðq

�Þ

is just the same as for neighbouring wavevectors. Hence, the
degeneracy cannot be due to symmetry and the respective
eigenvectors e1 and e2 are not related by any transformation
matrix. As a consequence, the two phonons cannot belong to the
same irreducible representation, because otherwise every linear
combination �e1 þ �e2 would equally well represent a valid
eigenvector to the same eigenvalue with the same symmetry. It is,
however, highly improbable that the special nature of the
interatomic interactions gives rise to this uncertainty of eigen-
vectors at some wavevector within the Brillouin zone. Rather, it is
expected that any infinitesimal change of force constants will
favour one particular linear combination which, consequently,
must correspond to a phonon of lower frequency. At the same
time, there will be another well defined orthogonal eigenvector
with slightly higher frequency – just as is represented in Fig.
2.1.3.8(b). Hence, two phonon branches of the same symmetry do
not intersect and yield a frequency gap. This phenomenon is
sometimes called anticrossing behaviour. It is associated with an
eigenvector exchange between the two branches.

Accidental degeneracy according to Fig. 2.1.3.8(a), on the
other hand, can only be observed if the two phonon branches
belong to different irreducible representations. In this case, the
eigenvectors are uniquely determined even at q� since a mixing is
forbidden by symmetry.

2.1.3.5.2. Time-reversal degeneracy

In Section 2.1.3.3, we considered in some detail the symmetry
of phonon eigenvectors with respect to the symmetry operations
contained in the point group GoðqÞ of the wavevector. We know,
however, that those symmetry operations that invert the wave-
vector give rise to additional constraints for the dynamical
matrix. A lattice vibration with wavevector �q can also be
regarded as a wave travelling in the opposite direction þq on a
reversed timescale. Since the classical equations of motion are
invariant with respect to time reversal, both phonon eigenvectors,
eðqÞ and eð�qÞ, are related and additional degeneracies may
appear if there are symmetry operations that transform q into
�q.

Let A be the rotational part of such a symmetry operation. We
have shown in Section 2.1.3.1 that anti-unitary matrix operators
Tðq;AÞ can be defined that commute with the dynamical matrix.
Not only the eigenvectors eðq; sa�Þ, � ¼ 1; . . . ; fs, but also

eðq; sa�Þ ¼ Tðq;AÞ eðq; sa�Þ ð2:1:3:59Þ

are therefore eigenvectors corresponding to the same eigen-
frequency. If the latter are linear combinations of the former
ones, no new information about degeneracies can be expected. If,
on the other hand, Tðq;AÞ eðq; sa�Þ is orthogonal to all vectors
eðq; sa�0Þ, it belongs to another vector space corresponding to
different indices s0 and a0. In this case, the eigenfrequencies !q;sa
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and !q;s0a0 have to be identical and additional degeneracies
appear that may even relate different irreducible representations
s and s0.

In order to distinguish between the two possibilities, we have
to consider the transformation behaviour of the vector eðq; sa�Þ.
According to the multiplication rule for the T-matrix operators,
(2.1.3.32), we obtain

Tðq;RÞ eðq; sa�Þ ¼ Tðq;RÞTðq;AÞ eðq; sa�Þ

¼ ’�ðq;A;A�1 � R �AÞ ’ðq;R;AÞ

� Tðq;AÞTðq;A�1 � R �AÞ eðq; sa�Þ:

ð2:1:3:60Þ

The operation A�1 � R �A leaves the wavevector invariant and
is therefore an element of the point groupGoðqÞ. Hence the right-
hand side can be expressed in terms of the irreducible repre-
sentation s

ðsÞðq;RÞ:

Tðq;RÞ eðq; sa�Þ ¼ ’�ðq;A;A�1 � R �AÞ ’ðq;R;AÞTðq;AÞ

�
Pfs

�0¼1

ðsÞ�0�ðq;A
�1 � R �AÞ eðq; sa�0Þ

¼ ’�ðq;A;A�1 � RÞ ’�ðq;A�1 � R;AÞ

�
Pfs

�0¼1

ðsÞ��0� ðq;A
�1 � R �AÞ eðq; sa�0Þ:

ð2:1:3:61Þ

Obviously, the new eigenvectors eðq; sa�Þ transform according to
the conjugated representation sðsÞðq;RÞ defined by

sðsÞðq;RÞ ¼ ’�ðq;A;A�1 � RÞ ’�ðq;A�1 � R;AÞ

� ðsÞ�ðq;A�1 � R �AÞ; ð2:1:3:62Þ

A being an arbitrary representative of those symmetry opera-
tions that invert the wavevector q.

If the irreducible representations sðsÞðq;RÞ and s
ðsÞðq;RÞ are

not equivalent, the eigenvectors eðq; sa�Þ and eðq; sa�0Þ are
linearly independent and, hence, the vibrations of the two
representations are degenerate. In this case, sðsÞðq;RÞ is called a
representation of the third kind. Within the decomposition of the
T representation, sðsÞðq;RÞ and sðsÞðq;RÞ always appear in pairs.

If, on the other hand, the two representations are equivalent,
there is a matrix b with

sðsÞðq;RÞ ¼ b
�1

s
ðsÞðq;RÞ b ð2:1:3:63Þ

corresponding to a transformation of the coordinate system. It
can be shown that the product b b� has the following form:

b b
�
¼ �’ðq;A;AÞ sðsÞðq;A2Þ: ð2:1:3:64Þ

In many cases, A is of order 2, i.e. A2 ¼ E (for A ¼ i or A ¼ m,
for example), and the right-hand side of (2.1.3.64) reduces to �E.

Those representations for which the þ sign in (2.1.3.64) holds
have come to be called representations of the first kind [b b�

¼

þ’ðq;A;AÞsðsÞðq;A2Þ ] and those that correspond to the � sign

287

Fig. 2.1.3.8. (a) Accidental degeneracy of phonons with different symmetry.
(b) Anticrossing of phonons with the same symmetry (no degeneracy).

Fig. 2.1.3.7. Matrix of symmetry coordinates at q ¼ 0 for the example structure given in Fig. 2.1.3.4 and Table 2.1.3.1.
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representations of the second kind ½b b�
¼ �’ðq;A;AÞsðsÞðq;A2Þ�.

Without going into the details of the two cases, we merely wish to
present the results that are most relevant for our discussion. For a
more detailed presentation see e.g. Maradudin & Vosko (1968).

For representations of the first kind, the eigenvectors eðq; sa�Þ
and eðq; sa�0Þ are related by a linear transformation. Hence there
are no additional degeneracies due to the time-reversal invar-
iance of the equation of motion. Let us consider the special case
of a point group GoðqÞ whose elements commute with the
symmetry operation A. Crystals with a centre of inversion always
meet this condition. For wavevectors within the Brillouin zone or
for symmorphic space groups all multipliers are unity and
sðsÞðq;RÞ ¼ s

ðsÞ�ðq;RÞ. In this case, representations are of the first
kind if they are real representations.

For representations of the second kind, eðq; sa�Þ and eðq; sa�0Þ
are linearly independent. The corresponding lattice vibrations
are degenerate due to time-reversal invariance. Consequently,
the multiplicity of the representation s

ðsÞðq;RÞ in the decom-
position of the T representation is an even number and pairs of
eigenfrequencies are identical:

!q;sa ¼ !q;sa0 with a 6¼ a0: ð2:1:3:65Þ

The theory of characters provides us with a rather simple
criterion for the distinction between representations of the first,
second or third kind. Without any proof, we simply present the
result that is particularly important for practical work:

ð1=jGjÞ
P

R

’ðq;A � R;A � RÞ�
sðsÞ ðq; ðA � RÞ2Þ

¼

þ1 for representations of the first kind

�1 for representations of the second kind

0 for representations of the third kind

8
><

>:

9
>=

>;
:

ð2:1:3:66Þ

Finally, let us consider the special case of a real dynamical matrix.
This can be found for crystals in which each atom is a centre of
inversion or for special wavevectors on the Brillouin-zone
boundary or at the � point, for example. In this case, the dyna-
mical matrix commutes with the operator Ko that transforms
arbitrary vectors into their complex-conjugate counterparts.
Hence, the vectors Ko eðq; sa�Þ ¼ e�ðq; sa�Þ are eigenvectors to
the eigenvalue !2

q;sa as well as eðq; sa�Þ itself. Since eðq; sa�Þ
transforms under the elements of the point group GoðqÞ
according to the irreducible representation s

ðsÞðqÞ, e�ðq; sa�Þ
belongs to the complex-conjugate representation. If the two
representations are not real ones and therefore not identical, the
corresponding lattice vibrations have to be degenerate. Every
linear combination of the eigenvectors eðq; sa�Þ and e�ðq; sa�Þ is
an eigenvector as well. Thus, we are free to choose real
eigenvectors, namely: ð1=

ffiffiffi
2

p
Þ½eðq; sa�Þ þ e�ðq; sa�Þ� and

ð1=
ffiffiffi
2

p
iÞ½eðq; sa�Þ � e�ðq; sa�Þ�.

2.1.3.5.3. Example

Let us consider the space group P�66. For wavevectors along the
hexagonal axis, the point group GoðqÞ consists of the three
symmetry operations E, Dz

120 and Dz
240. Being a cyclic group, its

irreducible representations are one-dimensional (see Table
2.1.3.4). The mirror plane mz inverts the wavevector and the two
threefold rotations are self-conjugated with respect to mz:

mz D
z
120 mz ¼ Dz

120

mz D
z
240 mz ¼ Dz

240:

If we remember that for symmorphic space groups all multipliers
are unity, we obtain the following conjugate representations
according to (2.1.3.62):

�ð1Þ ¼ ð1Þ� ¼ ð1Þ

�ð2Þ ¼ ð2Þ� ¼ ð3Þ

�ð3Þ ¼ ð3Þ� ¼ ð2Þ:

Obviously, �ð2Þ and ð2Þ are inequivalent and, hence, pairs of
phonons corresponding to representations ð2Þ and ð3Þ, respec-
tively, are degenerate. The two transverse acoustic phonon
branches in particular not only leave the � point with the same
slope as determined by the elastic stiffness c44 ¼ c2323 (cf. Section
2.1.2.4 and Chapter 1.3) but are strictly identical throughout the
whole Brillouin zone.

Another example may illustrate the degeneracy of phonons at
special wavevectors where the elements of the dynamical matrix
are real quantities. Let us consider the nonsymmorphic space
group P63. For the � point (q ¼ 0), the one-dimensional repre-
sentations of this cyclic group are collected in Table 2.1.3.5.
Obviously, ð2Þð0Þ and ð6Þð0Þ form a pair of complex-conjugated
representations as well as ð3Þð0Þ and ð5Þð0Þ. Therefore, always
two lattice vibrations of these symmetries exhibit the same
frequencies. The eigenvectors for representation ð6Þð0Þ or ð5Þð0Þ
can be combined with the eigenvectors of corresponding modes
of representations ð2Þð0Þ or ð3Þð0Þ, respectively, to yield real
quantities.

For wavevectors within the Brillouin zone along the hexagonal
axis, the irreducible representations are the same as for the �
point. However, the elements of the dynamical matrix are
complex and symmetry does not yield any degeneracies. Hence
phonons can be distinguished according to the six different
representations.

At the Brillouin-zone boundary along the hexagonal axis
(q ¼ c�=2, the A point), one has to take into account multipliers
of the form exp½iq vðRÞ� since the space group is non-
symmorphic. For symmetry operations without fractional trans-
lation (E, Dz

120, D
z
240) this factor is unity, whereas it equals the

complex unit i for the other elements of the point group (Dz
60,

Dz
180, D

z
300). Hence the six irreducible multiplier representations

are as shown in Table 2.1.3.6. Now we have three pairs of
complex-conjugate representations, namely: ð1Þðc�=2Þ and
ð4Þðc�=2Þ; ð2Þðc�=2Þ and ð3Þðc�=2Þ; and ð5Þðc�=2Þ and ð6Þðc�=2Þ.
Again, pairs of phonons of corresponding representations are
degenerate. As a consequence, the phonon dispersion curves
need not approach the Brillouin-zone boundary with a horizontal
slope but meet another branch with the opposite slope.

In conclusion, group-theoretical considerations for wavevec-
tors along the hexagonal axis yield at the centre (� point) as well
as at the boundary (A point) of the first Brillouin zone pairs of
degenerate phonon modes. Both modes belong to complex-
conjugate representations. This result can be used in order to
display the dispersion curves very clearly in an extended zone
scheme plotting the phonon branches of different symmetries
alternately from � to A and from A back to � as illustrated in Fig.
2.1.3.9. Here, the phonon dispersion for the room-temperature
phase of KLiSO4 is shown as an example. Note that irreducible
representations are frequently denoted by the letters A, B, E, T
instead of our notation ðiÞ. T and E are reserved for repre-
sentations that (at the � point) are triply and doubly degenerate,
respectively. An index � or g/u is often used to distinguish
representations that are symmetric (gerade) and antisymmetric
(ungerade) with respect to a prominent symmetry operation, e.g.
a centre of inversion or, in the case of P63, the twofold axis. The
total symmetric representation is always denoted by A. Hence in
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Table 2.1.3.4. Irreducible representations of the point group 3

3 E Dz
120 Dz

240

ð1Þ 1 1 1
ð2Þ 1 expði2�=3Þ expð�i2�=3Þ
ð3Þ 1 expð�i2�=3Þ expði2�=3Þ
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the preceding example all the representations ð2Þ, ð3Þ, ð5Þ and ð6Þ

are E-type representations since they are doubly degenerate at
the zone centre due to time-reversal degeneracy. Moreover, ð3Þ

and ð5Þ are symmetric with respect to Dz
180. Therefore, the irre-

ducible representations of Fig. 2.1.3.9 can be identified as
A ¼ ð1Þ, B ¼ ð2Þ, E�

1 ¼ ð2Þ, Eþ
1 ¼ ð6Þ, Eþ

1 ¼ ð5Þ and Eþ
1 ¼ ð3Þ.

It can be seen that all phonon branches cross the zone
boundary continuously while changing their symmetry. This
behaviour is a direct consequence of the time-reversal degen-
eracy.

2.1.3.6. Compatibility relations

In our last example, we recognized that the group of the
wavevector consists of the same elements, irrespective of whether
the � point, the zone-boundary A point or any other wavevector
along the hexagonal axis is concerned. This behaviour, however,
is the exception rather than the rule. In general, wavevectors on
the Brillouin-zone boundary exhibit different point groups to
wavevectors within the Brillouin zone and the � point yields the
full point group of the crystal. Obviously, the symmetry of the
lattice vibrations changes discontinuously when approaching
prominent wavevectors. Phonon branches, on the other hand,
represent continuous functions !(q) within the reciprocal space.
Hence the question arises as to how the different irreducible
(multiplier) representations associated with one particular
phonon branch at different wavevectors are interrelated, i.e.
which of the individual representations are compatible.

The solution of this problem is quite simple as long as all of the
irreducible multiplier representations are one-dimensional. For
arbitrary wavevectors within the Brillouin zone, the point group
GoðqÞ is always a subgroup of Goð0Þ as well as of GoðqBZÞ, where

qBZ represents a wavevector at the Brillouin-zone boundary in
the direction of q. When leaving a prominent wavevector (q ¼ 0
or q ¼ qBZ), the transformation properties of lattice vibrations
with respect to all those symmetry operations that are conserved
do not change. Hence, the compatibility relations for one-
dimensional irreducible multiplier representations can be
formulated as

sðq;RÞ ¼ sð0;RÞ ¼ sðqBZ;RÞ 8 R 2 GoðqÞ: ð2:1:3:67Þ

The simple relation (2.1.3.67) does not hold, however, if higher-
dimensional representations have to be considered at prominent
wavevectors. With respect only to the symmetry elements of the
subgroup GoðqÞ, those representations are not necessarily irre-
ducible. Rather, they may be decomposed into several (up to
three) irreducible components sðsÞðqÞ. The multiplicities are given
by the characters using the following equation:

cs ¼
P

R2GoðqÞ

�
sð0;RÞ �sðsÞðq;RÞ

or ð2:1:3:68Þ

c0s ¼
P

R2GoðqÞ

�
sðqBZ;RÞ

�
sðsÞðq;RÞ:

Hence, phonons corresponding to irreducible representations
s
ðsÞðqÞ with nonzero multiplicities cs (c

0
s) will mix at the � point

(zone boundary) to yield degenerate modes corresponding to the
higher-dimensional representation.

In conclusion, group theory provides an important tool not
only for the labelling of lattice vibrations according to irreducible
multiplier representations but also for the assignment of bran-
ches at points of degeneracy within the reciprocal space.

2.1.3.6.1. Example

To illustrate compatibility relations, let
us once more consider the example of
space group P4mm as introduced in
Sections 2.1.3.1.1, 2.1.3.3.1 and 2.1.3.4.1.
For wavevectors along a� we have
GoðqÞ ¼ fE;myg and there are two irre-
ducible representations, a symmetric one
(with respect to my) s

þðqÞ with
s
þðq;myÞ ¼ 1 and an antisymmetric one
with s

�ðq;myÞ ¼ �1. Remember the
representations for the � point, shown in
Table 2.1.3.7. We immediately recognize
that the �-point representations ð1

þÞð0Þ
and ð3

þÞð0Þ are related to the symmetric
representation þ for nonzero wavevec-
tors along a�. ð1

�Þð0Þ and ð3
�Þð0Þ, on the
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Table 2.1.3.5. Irreducible representations of the space group P63 for q ¼ 0 (the � point)

P63 E Dz
60 Dz

120 Dz
180 Dz

240 Dz
300

ð1Þð0Þ 1 1 1 1 1 1
ð2Þð0Þ 1 expði�=3Þ expði2�=3Þ �1 expði4�=3Þ ¼ expð�i2�=3Þ expði5�=3Þ ¼ expð�i�=3Þ
ð3Þð0Þ 1 expði2�=3Þ expði4�=3Þ ¼ expð�i2�=3Þ 1 expði2�=3Þ expði4�=3Þ ¼ expð�i2�=3Þ
ð4Þð0Þ 1 �1 1 �1 1 �1
ð5Þð0Þ 1 expði4�=3Þ ¼ expð�i2�=3Þ expði2�=3Þ 1 expði4�=3Þ ¼ expð�i2�=3Þ expði2�=3Þ
ð6Þð0Þ 1 expði5�=3Þ ¼ expð�i�=3Þ expði4�=3Þ ¼ expð�i2�=3Þ �1 expði2�=3Þ expði�=3Þ

Table 2.1.3.6. Irreducible representations of the space group P63 for q ¼ c�=2 (the A point)

P63 E Dz
60 Dz

120 Dz
180 Dz

240 Dz
300

ð1Þðc�=2Þ 1 i 1 i 1 i
ð2Þðc�=2Þ 1 i expði�=3Þ ¼ expð�i�=6Þ expði2�=3Þ �i expði4�=3Þ ¼ expð�i2�=3Þ i expð�i�=3Þ ¼ expði�=6Þ
ð3Þðc�=2Þ 1 i expði2�=3Þ ¼ expði�=6Þ expði4�=3Þ ¼ expð�i2�=3Þ i expði2�=3Þ i expð�i2�=3Þ ¼ expð�i�=6Þ
ð4Þðc�=2Þ 1 �i 1 �i 1 �i
ð5Þðc�=2Þ 1 i expð�i2�=3Þ ¼ expð�i�=6Þ expði2�=3Þ i expði4�=3Þ ¼ expð�i2�=3Þ i expði2�=3Þ ¼ expði�=6Þ
ð6Þðc�=2Þ 1 i expð�i�=3Þ ¼ expði�=6Þ expði4�=3Þ ¼ expð�i2�=3Þ �i expði2�=3Þ i expði�=3Þ ¼ expð�i�=6Þ

Fig. 2.1.3.9. Low-frequency part of the phonon dispersion of KLiSO4 at room temperature (space group
P63). The phonons are arranged in an extended zone scheme according to the different irreducible
representations [after Eckold & Hahn (1987)]. The symbols represent experimental data and the lines
represent the results of model calculations.
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other hand, are related to the antisymmetric representation �.
The two-dimensional representation s

ð2Þð0Þ exhibits the char-
acter �

sð2Þð0;myÞ
¼ 0. When leaving the � point along a�, it there-

fore splits into the symmetric representation with �þðq;myÞ
¼ 1

and the antisymmetric one with ��ðq;myÞ
¼ �1. Consequently,

there are always pairs of a symmetric and an antisymmetric
lattice vibration which degenerate at the Brillouin-zone centre
and the phonon dispersion along a� exhibits the principal beha-
viour as shown in Fig. 2.1.3.10. Here, six modes are displayed
which illustrate the six possibilities for relating symmetric and
antisymmetric vibrations to the �-point representations.

2.1.3.7. Optical selection rules

Inelastic neutron scattering is the unique experimental method
for the determination of phonons at arbitrary wavevectors.
Additional information can be obtained by optical methods,
infrared absorption and Raman spectroscopy. For the detection
of lattice vibrations, electromagnetic radiation of appropriate
frequencies in the THz regime is needed. The corresponding
wavelengths are of the order of 10�2 cm and are therefore very
large compared with typical lattice parameters. Consequently,
optical spectroscopy is sensitive to long-wavelength phonons
only, i.e. to �-point modes. Moreover, the visibility of lattice
vibrations in infrared or Raman experiments is governed by
selection rules which, in turn, are determined by the symmetry
of the corresponding eigenvectors. We may distinguish
infrared-active modes, Raman-active modes and ‘silent’ modes
that are neither infrared- nor Raman-active. Some simple group-
theoretical arguments lead to the criteria for infrared or Raman
activity.

Infrared spectroscopy is based on the absorption of electro-
magnetic radiation by phonons, as shown in Fig. 2.1.3.11. Photons
can only be absorbed by those lattice vibrations that are asso-
ciated with a periodic variation of an electric dipole moment.
Since the dipole moment is a vector, it transforms under the
symmetry operations of the crystal according to the vector
representation sv which is provided by the ordinary 3� 3
matrices describing the effect of any rotation, mirror plane etc.
upon an arbitrary vector of our three-dimensional space. It
should be noted that the vector representation is in general
reducible and can be regarded as the direct product of some
irreducible representations. Lattice vibrations can carry an elec-
tric dipole moment only if their symmetry is compatible with the
symmetry of a vector, i.e. if the corresponding irreducible
representation is contained within the vector representation. The
multiplicity of a particular irreducible �-point representation s

within the decomposition of the vector representation sv can be
calculated from the respective characters �

s
and �

sv
. Hence we

may formulate the criterion for infrared activity as follows:
Phonons corresponding to an irreducible representation s are
infrared active if

c
s
¼ ð1=jGjÞ

P

R

�
s
ðRÞ�

sv
ðRÞ 6¼ 0: ð2:1:3:69Þ

(First order) Raman spectroscopy, on the other hand, is based
on the scattering of electromagnetic waves by phonons (see Fig.
2.1.3.12). Scattered intensity can only be obtained if the incident
wave polarizes the crystal in such a way that it acts as a source for
the outgoing wave. This is achieved if the tensor of the polariz-
ability exhibits nonzero elements that relate electric field
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Table 2.1.3.7. Irreducible representations of the space group P4mm for q ¼ 0 (the � point)

P4mm

Symmetry operation

E Dz
90 Dz

180 Dz
270 mx my m½�1110� m½110�

ð1
þÞð0Þ 1 1 1 1 1 1 1 1

ð1
�Þð0Þ 1 1 1 1 �1 �1 �1 �1

ð3
þÞð0Þ 1 �1 1 �1 1 1 �1 �1

ð3�Þð0Þ 1 �1 1 �1 �1 �1 1 1

s
ð2Þð0Þ 1 0

0 1

� �
i 0

0 �i

� �
�1 0

0 �1

� �
�i 0

0 i

� �
0 1

1 0

� �
0 �1

�1 0

� �
0 �i

i 0

� �
0 i

�i 0

� �

�
sð2Þ ð0Þ 2 0 �2 0 0 0 0 0

Fig. 2.1.3.10. Illustration of the compatibility relations for phonons in a
tetragonal crystal with space group P4mm for wavevectors along [�00]. Fig. 2.1.3.12. Principle of Raman spectroscopy.

Fig. 2.1.3.11. Principle of infrared absorption.
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components in the directions of the incident and scattered waves.
Hence, only those lattice vibrations that are associated with a
periodic variation of the polarizability tensor can yield (first-
order) Raman intensity. Their symmetry has to be compatible
with the symmetry of a tensor, i.e. the corresponding irreducible
representation has to be contained within the (reducible) tensor
representation sT . As for infrared activity, we may therefore
formulate the criterion for Raman-active phonons with the help
of the characters �

s
and �

sv
: Phonons corresponding to an irre-

ducible representation s are Raman active if

c
s
¼ ð1=jGjÞ

P

R

�
s
ðRÞ�

sT
ðRÞ 6¼ 0: ð2:1:3:70Þ

Without going into details, we note that the tensor representation
sT is the symmetric square of the vector representation sv and its
character may be calculated from the character of sv,

�
sT
ðRÞ ¼ 1

2½�
2
vðRÞ þ �vðR

2Þ�: ð2:1:3:71Þ

It should be noted that group-theoretical considerations yield
necessary conditions for the visibility of phonons. They cannot
predict, however, intensities of active modes since these depend
on crystal-specific properties like dipole moments or elements of
the polarizability tensor.

2.1.3.7.1. Example

As an example, let us once more consider the space group
P4mm. For q ¼ 0, the character table shown in Table 2.1.3.8
summarizes all essential information about irreducible, vector
and tensor representations. Obviously, the vector representation
consists of the irreducible representations ð1

þÞ and s
ð2Þ, the latter

being two-dimensional. �-point phonons corresponding to these
two representations are infrared active. All other lattice vibra-
tions cannot be detected by absorption experiments.

Using the multiplicities as calculated from (2.1.3.70), we obtain
the decomposition of the tensor representation:

sT ¼ 2ð1
þÞ þ ð3

þÞ þ ð3
�Þ þ s

ð2Þ:

Hence phonons corresponding to the representations ð1
þÞ, ð3

þÞ,
ð3

�Þ and s
ð2Þ are Raman active.

All lattice vibrations that belong to the representation ð1
�Þ are

neither infrared nor Raman active. They cannot be detected in
(first-order) optical experiments and are therefore called silent
modes.

2.1.4. Conclusion

Phonon investigations provide one of the most powerful tools for
the determination of interatomic interactions within crystals
since the phonon dispersion reflects all aspects of microscopic
forces acting between the individual atoms. The symmetry of the
atomic arrangement leads to certain restrictions for the actual

type of lattice vibrations. In this chapter, we have presented the
fundamental ideas about phonon dispersion with special
emphasis on the symmetry properties of the vibrations of a
lattice.

Experimental phonon data are frequently interpreted in terms
of either phenomenological interatomic potentials or ab initio
band-structure calculations. In most cases, rather specific models
are used for the theoretical calculation of the phonon dispersion
for particular substances. This aspect is, however, beyond the
scope of the present article. The interested reader is therefore
referred to the original literature and a compilation by Bilz &
Kress (1979), where phonon dispersion curves for more than a
hundred insulating crystals are collected.

In the present chapter we have restricted ourselves to
the general aspects of the symmetry reduction of both the
dynamical matrix and its eigenvectors. It has been shown that
group-theoretical methods play an important role in the labelling
of phonons, in the consideration of degeneracies and, in parti-
cular, in the correct interpretation of experimental results.

It should be added that there is a computer program written by
Warren & Worlton (1974) that enables the calculation of
symmetry coordinates for arbitrary structures, for example. As
part of a general lattice-dynamical program package for
phenomenological model calculations written by Eckold et al.
(1987; see also Eckold, 1992), it provides the symmetry reduction
of the dynamical matrix and the assignment of individual phonon
modes to the respective irreducible multiplier representations.

2.1.5. Glossary

a�, b�, c� reciprocal-lattice vectors
A Helmholtz free energy
A element of the coset S� �GoðqÞ
CðqÞ ¼ ðC

��
��0 ðqÞÞ modified dynamical matrix

cij elastic stiffness in Voigt notation
ðcjklmÞ tensor of elastic stiffnesses
cp lattice heat capacity at constant pressure
~ccq;j contribution of phonon state (q; j) to the

heat capacity at constant volume
cs multiplicity of irreducible representation

s
cV lattice heat capacity at constant volume

c
Debye
V lattice heat capacity at constant volume

according to the Debye model
cEinsteinV lattice heat capacity at constant volume

according to the Einstein model
DðqÞ ¼ ðD

��
��0 ðqÞÞ dynamical matrix

D
ðsÞ
ðqÞ submatrix of the block-diagonalized

dynamical matrix corresponding to
irreducible multiplier representation 
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Table 2.1.3.8. Character table of the space group P4mm for q ¼ 0 (the � point)

P4mm

Symmetry operation

E Dz
90 Dz

180 Dz
270 mx my m½�1110� m½110�

�ð1þÞ 1 1 1 1 1 1 1 1
�ð1�Þ 1 1 1 1 �1 �1 �1 �1
�ð3þÞ 1 �1 1 �1 1 1 �1 �1
�ð3�Þ 1 �1 1 �1 �1 �1 1 1
�
sð2Þ 2 0 �2 0 0 0 0 0

sv

1 0 0

0 1 0

0 0 1

0

@

1

A
0 �1 0

1 0 0

0 0 1

0

@

1

A
�1 0 0

0 �1 0

0 0 1

0

@

1

A
0 1 0

�1 0 0

0 0 1

0

@

1

A
�1 0 0

0 1 0

0 0 1

0

@

1

A
1 0 0

0 �1 0

0 0 1

0

@

1

A
0 1 0

1 0 0

0 0 1

0

@

1

A
0 �1 0

�1 0 0

0 0 1

0

@

1

A

�
sv

3 1 �1 1 1 1 1 1
�
sT

6 0 2 0 2 2 2 2
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D��0 ðqÞ 3� 3 submatrix of the dynamical
matrix

Di
� matrix of rotation about axis i by the

angle �
e�ðq; jÞ polarization vector of atom �

corresponding to the phonon ðq; jÞ
eðq; jÞ eigenvector of the dynamical matrix

corresponding to the phonon ðq; jÞ
E identity
Eðq; sa�Þ

¼ ðE��ðq; sa�ÞÞ
matrix of symmetry coordinates

Eo zero-point energy
Eph lattice energy
Eq;j contribution of the phonon ðq; jÞ to the

energy of the lattice
foð�; SÞ atom transformation table
f
 degeneracy of the eigenfrequency !q;


FðqÞ ¼ ðF�;�0 ðqÞÞ Fourier-transformed force-constant
matrix

g reciprocal-lattice vector
GðqÞ space group of the wavevector q
GoðqÞ point group of the wavevector q
Goðq;�qÞ augmented point group of the

wavevector q
jGj order of group G
Gð!Þ density of phonon states
GDebyeð!Þ density of phonon states according to the

Debye model
GEinsteinð!Þ density of phonon states according to the

Einstein model
H Hamiltonian
h- Planck constant (1:0546� 10�34 J s)
I inversion
k Boltzmann constant

(1:381� 10�23 J K�1)
Ko anti-unitary operator
M mass tensor
mi mirror plane perpendicular to axis i
m� mass of atom �
nq;j Bose factor corresponding to the phonon

state (q; j)
N number of atoms within the primitive

cell
NZ number of primitive cells
p pressure
p�l momentum of atom ð�lÞ
pn occupation probability of quantum

state n
PðsÞðqÞ ¼ ðP

ðsÞ
��0 ðqÞÞ projection operator

q phonon wavevector
qBZ wavevector on the Brillouin-zone

boundary
Qq;j normal coordinate corresponding to the

phonon ðq; jÞ
rl vector to the origin of the lth primitive

cell
r�lðtÞ time-dependent position vector of atom

ð�lÞ
ro� equilibrium position of atom � with

respect to the origin of the primitive
cell

ro�l equilibrium position of atom � within the
lth primitive cell

R element of the point group of the
wavevector GoðqÞ

�RR element of Goðq;�qÞ
fSjvðSÞ þ xðmÞg symmetry operation (Seitz notation)
S ¼ ðS��Þ matrix of rotation

S� space-group element that inverts the
wavevector

t time
T temperature
Tðq;RÞ

¼ ðT
��
K� ðq;RÞÞ

matrix operator associated with a
symmetry operation r of the point
group of the wavevector q

uo polarization vector for elastic waves
u�lðtÞ displacement vector of atom ð�lÞ
V potential energy
V volume
Vð�l; �0l0Þ

¼ ðV��ð�l; �
0l0ÞÞ

matrix of force constants acting between
atoms ð�lÞ and ð�0l0Þ

vs sound velocity
vðSÞ fractional translation associated with

symmetry operation S
xðmÞ lattice translation
Z partition function
a ¼ ð�klÞ tensor of thermal expansion
� coefficient of volume expansion
� mean Grüneisen parameter
�q;j averaged-mode Grüneisen parameter
�qj;kl generalized-mode Grüneisen parameters

C ¼ ð�jlÞ propagation tensor

C ¼ ð���K�ðq; fSjvðSÞ
þ xðmÞgÞÞ

transformation matrix

�kl Kronecker delta
�ð!Þ Dirac delta function
Dðq;RÞ block-diagonal matrix of irreducible

representations
""" ¼ ð"klÞ strain tensor
� character of a representation
’ðq; ri; rjÞ multiplier associated with two symmetry

operations ri and rj of the point group
of the wavevector q

� potential energy
� isothermal compressibility
�D Debye temperature
�E Einstein temperature
	 density
r ¼ ð
klÞ stress tensor
s
ðsÞðq;RÞ irreducible representation

¼ ððsÞ��0 ðq;RÞÞ

sðsÞðq;RÞ conjugated representation
sv vector representation
sT tensor representation
!D Debye frequency
!E Einstein frequency
!q;j frequency of phonon ðq; jÞ

W arbitrary vector
* denotes the complex-conjugate quantity
þ denotes the Hermitian conjugate matrix
T denotes the transposed matrix
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2.2. Electrons

By K. Schwarz

2.2.1. Introduction

The electronic structure of a solid, characterized by its energy
band structure, is the fundamental quantity that determines the
ground state of the solid and a series of excitations involving
electronic states. In this chapter, we first summarize several basic
concepts in order to establish the notation used here and to
repeat essential theorems from group theory and solid-state
physics that provide definitions which we need in this context.
Next the quantum-mechanical treatment, especially density
functional theory, is described and the commonly used methods
of band theory are outlined. One scheme is presented explicitly
so that concepts in connection with energy bands can be
explained. The electric field gradient is discussed to illustrate a
tensorial quantity and a few examples illustrate the topics of this
chapter.

2.2.2. The lattice

2.2.2.1. The direct lattice and the Wigner–Seitz cell

The three unit-cell vectors a1, a2 and a3 define the parallele-
piped of the unit cell. We define

(i) a translation vector of the lattice (upper case) as a primitive
vector (integral linear combination) of all translations

Tn ¼ n1a1 þ n2a2 þ n3a3 with ni integer; ð2:2:2:1Þ

(ii) but a vector in the lattice (lower case) as

r ¼ x1a1 þ x2a2 þ x3a3 with xi real: ð2:2:2:2Þ

From the seven possible crystal systems one arrives at the 14
possible space lattices, based on both primitive and non-primitive
(body-centred, face-centred and base-centred) cells, called the
Bravais lattices [see Chapter 9.1 of International Tables for
Crystallography, Volume A (2002)]. Instead of describing these
cells as parallelepipeds, we can find several types of polyhedra
with which we can fill space by translation. Avery important type
of space filling is obtained by the Dirichlet construction. Each
lattice point is connected to its nearest neighbours and the
corresponding bisecting (perpendicular) planes will delimit a
region of space which is called the Dirichlet region, the Wigner–
Seitz cell or the Voronoi cell. This cell is uniquely defined and has
additional symmetry properties.

When we add a basis to the lattice (i.e. the atomic positions in
the unit cell) we arrive at the well known 230 space groups [see
Part 3 of International Tables for Crystallography, Volume A
(2002)].

2.2.2.2. The reciprocal lattice and the Brillouin zone

Owing to the translational symmetry of a crystal, it is conve-
nient to define a reciprocal lattice, which plays a dominating role
in describing electrons in a solid. The three unit vectors of the
reciprocal lattice bi are given according to the standard definition
by

aibj ¼ 2��ij; ð2:2:2:3Þ

where the factor 2� is commonly used in solid-state physics in
order to simplify many expressions. Strictly speaking (in terms of
mathematics) this factor should not be included [see Section
1.1.2.4 of the present volume and Chapter 1.1 of International

Tables for Crystallography, Volume B (2000)], since the
(complete) reciprocity is lost, i.e. the reciprocal lattice of the
reciprocal lattice is no longer the direct lattice.

b1 ¼ 2�
a2 � a3

a1 � a2 � a3
and cyclic permutations. ð2:2:2:4Þ

In analogy to the direct lattice we define
(i) a vector of the reciprocal lattice (upper case) as

Km ¼ m1b1 þm2b2 þm3b3 with mi integer; ð2:2:2:5Þ

(ii) a vector in the lattice (lower case) as

k ¼ k1b1 þ k2b2 þ k3b3 with ki real: ð2:2:2:6Þ

From (2.2.2.5) and (2.2.2.1) it follows immediately that

TnKm ¼ 2�N with N an integer. ð2:2:2:7Þ

A construction identical to the Wigner–Seitz cell delimits in
reciprocal space a cell conventionally known as the first Brillouin
zone (BZ), which is very important in the band theory of solids.
There are 14 first Brillouin zones according to the 14 Bravais
lattices.

2.2.3. Symmetry operators

The concepts of symmetry operations in connection with a
quantum-mechanical treatment of the electronic states are
essential for an understanding of the electronic structure. In this
context the reader is referred, for example, to the book by
Altmann (1994).

For the definition of symmetry operators we use in the whole
of this chapter the active picture, which has become the standard
in solid-state physics. This means that the whole configuration
space is rotated, reflected or translated, while the coordinate axes
are kept fixed.

A translation is given by

r0 ¼ rþ T ð2:2:3:1Þ

tr ¼ rþ T; ð2:2:3:2Þ

where t on the left-hand side corresponds to a symmetry
(configuration-space) operator.

2.2.3.1. Transformation of functions

Often we are interested in a function (e.g. a wavefunction) f ðrÞ
and wish to know how it transforms under the configuration
operator g which acts on r. For this purpose it is useful to
introduce a function-space operator egg which defines how to
modify the function in the transformed configuration space so
that it agrees with the original function f ðrÞ at the original
coordinate r:

eggf ðgrÞ ¼ f ðrÞ: ð2:2:3:3Þ

This must be valid for all points r and thus also for g�1r, leading to
the alternative formulation

eggf ðrÞ ¼ f ðg�1rÞ: ð2:2:3:4Þ
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The symmetry operations form a group G of configuration-space
operations gi with the related group eGG of the function-shape
operatorseggi. Since the multiplication rules

gigj ¼ gk !eggieggj ¼eggk ð2:2:3:5Þ

are preserved, these two groups are isomorphic.

2.2.3.2. Transformation of operators

In a quantum-mechanical treatment of the electronic states in
a solid we have the following different entities: points in config-
uration space, functions defined at these points and (quantum-
mechanical) operators acting on these functions. A symmetry
operation transforms the points, the functions and the operators
in a clearly defined way.

Consider an eigenvalue equation of operator A (e.g. the
Hamiltonian):

A’ ¼ a’; ð2:2:3:6Þ

where ’ðrÞ is a function of r. When g acts on r, the function-space
operatoregg acts [according to (2.2.3.4)] on ’ yielding  :

 ¼egg’! ’ ¼egg�1 : ð2:2:3:7Þ

By putting ’ from (2.2.3.7) into (2.2.3.6), we obtain

Aegg�1 ¼ aegg�1 : ð2:2:3:8Þ

Multiplication from the left byegg yields

eggAegg�1 ¼ aeggegg�1 ¼ a : ð2:2:3:9Þ

This defines the transformed operatoreggAegg�1 which acts on the
transformed function  that is given by the original function ’
but at position g�1r.

2.2.3.3. The Seitz operators

The most general space-group operation is of the form wp with
the point-group operation p (a rotation, reflection or inversion)
followed by a translation w:

wp ¼ fpjwg: ð2:2:3:10Þ

With the definition

fpjwgr ¼ wpr ¼ wðprÞ ¼ prþ w ð2:2:3:11Þ

it is easy to prove the multiplication rule

fpjwgfp0jw0g ¼ fpp0jpw0 þ wg ð2:2:3:12Þ

and define the inverse of a Seitz operator as

fpjwg�1
¼ fp�1j � p�1wg; ð2:2:3:13Þ

which satisfies

fpjwgfpjwg�1
¼ fEj0g; ð2:2:3:14Þ

where fEj0g does not change anything and thus is the identity of
the space group G.

2.2.3.4. The important groups and their first classification

Using the Seitz operators, we can classify the most important
groups as we need them at the beginning of this chapter:

(i) the space group, which consists of all elements G ¼ ffpjwgg;
(ii) the point group (without any translations) P ¼ ffpj0gg;

and
(iii) the lattice translation subgroup T ¼ ffEjTgg, which is an

invariant subgroup of G, i.e. T /G. Furthermore T is an Abelian
group, i.e. the operation of two translations commute (t1t2 ¼ t2t1)
(see also Section 1.2.3.1 of the present volume). A useful

consequence of the commutation property is that T can be
written as a direct product of the corresponding one-dimensional
translations,

T ¼ Tx � Ty � Tz: ð2:2:3:15Þ

(iv) A symmorphic space group contains no fractional trans-
lation vectors and thus P is a subgroup of G, i.e. P /G.

(v) In a non-symmorphic space group, however, some p are
associated with fractional translation vectors v. These v do not
belong to the translation lattice but when they are repeated a
specific integer number of times they give a vector of the lattice.
In this case, fpj0g can not belong to G for all p.

(vi) The Schrödinger group is the group S of all operationsegg
that leave the Hamiltonian invariant, i.e.eggHegg�1 ¼ H for allegg 2 S.
This is equivalent to the statement that egg and H commute:
eggH ¼ Hegg. From this commutator relation we find the degenerate
states in the Schrödinger equation, namely that egg’ and ’ are
degenerate with the eigenvalue E whenever egg 2 S, as follows
from the three equations

H’ ¼ E’ ð2:2:3:16Þ

eggH’ ¼ Eegg’ ð2:2:3:17Þ

Hegg’ ¼ Eegg’: ð2:2:3:18Þ

2.2.4. The Bloch theorem

The electronic structure of an infinite solid looks so complicated
that it would seem impossible to calculate it. Two important steps
make the problem feasible. One is the single-particle approach, in
which each electron moves in an average potential VðrÞ according
to a Schrödinger equation,

H ðrÞ ¼ �
h- 2

2m
r2 þ VðrÞ

� �

 ðrÞ ¼ E ðrÞ; ð2:2:4:1Þ

and has its kinetic energy represented by the first operator. The
second important concept is the translational symmetry, which
leads to Bloch functions. The single-particle aspect will be
discussed later (for details see Sections 2.2.9 and 2.2.10).

2.2.4.1. A simple quantum-mechanical derivation

In order to derive the Bloch theorem, we can simplify the
problem by considering a one-dimensional case with a lattice
constant a. [The generalization to the three-dimensional case can
be done easily according to (2.2.3.15).] The one-dimensional
Schrödinger equation is

�
h- 2

2m

d2

dx2
þ VðxÞ

� �

 ðxÞ ¼ E ðxÞ; ð2:2:4:2Þ

where VðxÞ is invariant under translations, i.e. Vðxþ aÞ ¼ VðxÞ.
We define a translation operator t according to (2.2.3.1) for the
translation by one lattice constant as

tx ¼ xþ a ð2:2:4:3Þ

and apply its functional counterpartett to the potential, which gives
[according to (2.2.3.4)]

ettVðxÞ ¼ Vðt�1xÞ ¼ Vðx� aÞ ¼ VðxÞ: ð2:2:4:4Þ

The first part in H corresponds to the kinetic energy operator,
which is also invariant under translations. Therefore, sinceett 2 T
(the lattice translation subgroup) and ett 2 S (the Schrödinger
group), ett commutes with H, i.e. the commutator vanishes,
½ett;H� ¼ 0 orettH ¼ Hett. This situation was described above [see
(2.2.3.16)–(2.2.3.18)] and leads to the fundamental theorem of
quantum mechanics which states that when two operators
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commute the eigenvectors of the first must also be eigenvectors
of the second. Consequently we have

H ðxÞ ¼ E ðxÞ ð2:2:4:5Þ

ett ðxÞ ¼ � ðxÞ; ð2:2:4:6Þ

where � is the eigenvalue corresponding to the translation by the
lattice constant a. The second equation can be written explicitly
as

ett ðxÞ ¼  ðt�1xÞ ¼  ðx� aÞ ¼ � ðxÞ ð2:2:4:7Þ

and tells us how the wavefunction changes from one unit cell to
the neighbouring unit cell. Notice that the electron density must
be translationally invariant and thus it follows

from  �ðx� aÞ ðx� aÞ ¼  �ðxÞ ðxÞ that ��� ¼ 1; ð2:2:4:8Þ

which is a necessary (but not sufficient) condition for defining �.

2.2.4.2. Periodic boundary conditions

We can expect the bulk properties of a crystal to be insensitive
to the surface and also to the boundary conditions imposed,
which we therefore may choose to be of the most convenient
form. Symmetry operations are covering transformations and
thus we have an infinite number of translations in T, which is
most inconvenient. Away of avoiding this is provided by periodic
boundary conditions (Born–von Karman). In the present one-
dimensional case this means that the wavefunction  ðxÞ becomes
periodic in a domain L ¼ Na (with integer N number of lattice
constants a), i.e.

 ðxþ NaÞ ¼  ðxþ LÞ ¼  ðxÞ: ð2:2:4:9Þ

According to our operator notation (2.2.4.6), we have the
following situation when the translation t is applied n times:

ettn ðxÞ ¼  ðx� naÞ ¼ �n ðxÞ: ð2:2:4:10Þ

It follows immediately from the periodic boundary condition
(2.2.4.9) that

�N ¼ 1 ð2:2:4:11Þ

with the obvious solution

� ¼ exp½2�iðn=NÞ� with n ¼ 0� 1;�2; . . . : ð2:2:4:12Þ

Here it is convenient to introduce a notation

k ¼
2�

a

n

N
ð2:2:4:13Þ

so that we can write � ¼ expðikaÞ. Note that k is quantized
due to the periodic boundary conditions according to
(2.2.4.13). Summarizing, we have the Bloch condition (for the
one-dimensional case):

 ðxþ aÞ ¼ expðikaÞ ðxÞ; ð2:2:4:14Þ

i.e. when we change x by one lattice constant a the wavefunction
at x is multiplied by a phase factor expðikaÞ. At the moment
(2.2.4.13) suggests the use of k as label for the wavefunction
 kðxÞ.

Generalization to three dimensions leads to the exponential
expðikTÞ with

P3

i¼1

kini ¼ k � T using (2.2.2.6) and (2.2.2.1) ð2:2:4:15Þ

and thus to the Bloch condition

 kðrþ TÞ ¼ expðikTÞ kðrÞ; ð2:2:4:16Þ

or written in terms of the translational operator fEjTg [see
(2.2.3.15)]

fEjTg kðrÞ ¼  kðr� TÞ ¼ expð�ikTÞ kðrÞ: ð2:2:4:17Þ

The eigenfunctions that satisfy (2.2.4.17) are called Bloch func-
tions and have the form

 kðrÞ ¼ expðikrÞukðrÞ; ð2:2:4:18Þ

where ukðrÞ is a periodic function in the lattice,

ukðrÞ ¼ ukðrþ TÞ for all T; ð2:2:4:19Þ

and k is a vector in the reciprocal lattice [see (2.2.2.6)] that plays
the role of the quantum number in solids. The k vector can be
chosen in the first BZ, because any k0 that differs from k by just a
lattice vector K of the reciprocal lattice has the same Bloch factor
and the corresponding wavefunction  kþKðrÞ satisfies the Bloch
condition again, since

exp½iðkþ KÞT� ¼ expðikTÞ expðiKTÞ ¼ expðikTÞ; ð2:2:4:20Þ

where the factor expðiKTÞ is unity according to (2.2.2.7). Since
these two functions,  kþKðrÞ and  kðrÞ, belong to the same Bloch
factor expðikTÞ they are equivalent. A physical interpretation of
the Bloch states will be given in Section 2.2.8.

2.2.4.3. A simple group-theoretical approach

Let us repeat a few fundamental definitions of group theory:
For any symmetry operation gi 2 G, the product ggig

�1 can
always be formed for any g 2 G and defines the conjugate
element of gi by g. Given any operation gi, its class CðgiÞ is defined
as the set of all its conjugates under all operations g 2 G. What
we need here is an important property of classes, namely that no
two classes have any element in common so that any group can be
considered as a sum of classes.

Assuming periodic boundary conditions with N1;N2;N3

number of primitive cells along the axes a1; a2; a3, respectively, a
lump of crystal with N ¼ N1N2N3 unit cells is studied. The
translation subgroup T contains the general translation operators
T, which [using (2.2.3.15)] can be written as

fEjTg ¼ fEjn1a1gfEjn2a2gfEjn3a3g; ð2:2:4:21Þ

where each factor belongs to one of the three axes. Since T is
commutative (Abelian), each operation of T is its own class and
thus the number of classes equals its order, namely N. From the
general theorem that the squares of the dimensions of all irre-
ducible representations of a group must equal the order of the
group, it follows immediately that all N irreducible representa-
tions of T must be one-dimensional (see also Section 1.2.3.2 of
the present volume). Taking the subgroup along the a1 axis, we
must have N1 different irreducible representations, which we
label (for later convenience) by k1 and denote as

k1
bTTfEjn1a1g: ð2:2:4:22Þ

These representations are one-dimensional matrices, i.e.
numbers, and must be exponentials, often chosen of the form
expð�2�ik1n1Þ. The constant k1 must be related to the corre-
sponding label of the irreducible representation. In the three-
dimensional case, we have the corresponding representation

k1k2k3
bTTfEjTg ¼ exp½�2�iðk1n1 þ k2n2 þ k3n3Þ� ¼ expð�ik � TÞ;

ð2:2:4:23Þ

where we have used the definitions (2.2.2.6) and (2.2.2.1). Within
the present derivation, the vector k corresponds to the label of
the irreducible representation of the lattice translation subgroup.
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2.2.5. The free-electron (Sommerfeld) model

The free-electron model corresponds to the special case of taking
a constant potential in the Schrödinger equation (2.2.4.1). The
physical picture relies on the assumption that the (metallic)
valence electrons can move freely in the field of the positively
charged nuclei and the tightly bound core electrons. Each valence
electron moves in a potential which is nearly constant due to the
screening of the remaining valence electrons. This situation can
be idealized by assuming the potential to be constant [VðrÞ ¼ 0].
This simple picture represents a crude model for simple metals
but has its importance mainly because the corresponding equa-
tion can be solved analytically. By rewriting equation (2.2.4.1), we
have

r2 kðrÞ ¼ �
2mE

h- 2
 kðrÞ ¼ �jkj2 kðrÞ; ð2:2:5:1Þ

where in the last step the constants are abbreviated (for later
convenience) by jkj2. The solutions of this equation are plane
waves (PWs)

 kðrÞ ¼ C expðik � rÞ; ð2:2:5:2Þ

where C is a normalization constant which is defined from the
integral over one unit cell with volume �. The PWs satisfy the
Bloch condition and can be written (using the bra–ket notation)
as

jki ¼  kðrÞ ¼ �1=2 expðik � rÞ: ð2:2:5:3Þ

From (2.2.5.1) we see that the corresponding energy (labelled by
k) is given by

Ek ¼
h- 2

2m
jkj2: ð2:2:5:4Þ

In this context it is useful to consider the momentum of the
electron, which classically is the vector p ¼ mv, where m and v
are the mass and velocity, respectively. In quantum mechanics we
must replace p by the corresponding operator P.

Pjki ¼
h-

i

@

@r
jki ¼

h-

i
ikjki ¼h- kjki: ð2:2:5:5Þ

Thus a PW is an eigenfunction of the momentum operator with
eigenvalue h- k. Therefore the k vector is also called the
momentum vector. Note that this is strictly true for a vanishing
potential but is otherwise only approximately true (referred to as
pseudomomentum).

Another feature of a PW is that its phase is constant in a plane
perpendicular to the vector k (see Fig. 2.2.5.1). For this purpose,
consider a periodic function in space and time,

’kðr; tÞ ¼ exp½iðk � r�!tÞ�; ð2:2:5:6Þ

which has a constant phase factor expði!tÞ within such a plane.
We can characterize the spatial part by r within this plane. Taking
the nearest parallel plane (with vector r0) for which the same
phase factors occur again but at a distance � away (with the unit
vector e normal to the plane),

r0 ¼ rþ �e ¼ rþ �
k

jkj
; ð2:2:5:7Þ

then k � r0 must differ from k � r by 2�. This is easily obtained from
(2.2.5.7) by multiplication with k leading to

k � r0 ¼ k � rþ �
jkj2

jkj
¼ k � rþ �jkj ð2:2:5:8Þ

k � r0 � k � r ¼ �jkj ¼ 2� ð2:2:5:9Þ

� ¼
2�

jkj
or jkj ¼

2�

�
: ð2:2:5:10Þ

Consequently � is the wavelength and thus the k vector is called
the wavevector or propagation vector.

2.2.6. Space-group symmetry

2.2.6.1. Representations and bases of the space group

The effect of a space-group operation fpjwg on a Bloch func-
tion, labelled by k, is to transform it into a Bloch function that
corresponds to a vector pk,

fpjwg k ¼  pk; ð2:2:6:1Þ

which can be proven by using the multiplication rule of Seitz
operators (2.2.3.12) and the definition of a Bloch state (2.2.4.17).

A special case is the inversion operator, which leads to

fijEg k ¼  �k: ð2:2:6:2Þ

The Bloch functions  k and  pk, where p is any operation of the
point group P, belong to the same basis for a representation of
the space group G.

h kj ¼ h pkj for all p 2 P for all pk 2 BZ: ð2:2:6:3Þ

The same pk cannot appear in two different bases, thus the two
bases  k and  k0 are either identical or have no k in common.

Irreducible representations of T are labelled by the N distinct
k vectors in the BZ, which separate in disjoint bases ofG (with no
k vector in common). If a k vector falls on the BZ edge, appli-
cation of the point-group operation p can lead to an equivalent k0

vector that differs from the original by K (a vector of the reci-
procal lattice). The set of all mutually inequivalent k vectors of pk
(p 2 P) define the star of the k vector (Sk) (see also Section 1.2.3.3
of the present volume).

The set of all operations that leave a k vector invariant (or
transform it into an equivalent kþ K) forms the group Gk of the
k vector. Application of q, an element of Gk, to a Bloch function
(Section 2.2.8) gives

q j
kðrÞ ¼  j0

kðrÞ for q 2 Gk; ð2:2:6:4Þ
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where the band index j (described below) may change to j0. The
Bloch factor stays constant under the operation of q and thus the
periodic cell function u

j
kðrÞ must show this symmetry, namely

qu
j
kðrÞ ¼ u

j0

kðrÞ for q 2 Gk: ð2:2:6:5Þ

For example, a px-like orbital may be transformed into a py-like
orbital if the two are degenerate, as in a tetragonal lattice.

A star of k determines an irreducible basis, provided that the
functions of the star are symmetrized with respect to the irre-
ducible representation of the group of k vectors, which are called
small representations. The basis functions for the irreducible
representations are given according to Seitz (1937) by

hs j
kj; where s 2 Sk;

written as a row vector hj with j ¼ 1; . . . ; n, where n is the
dimension of the irreducible representation of Sk with the order
Sk
�
�

�
�. Such a basis consists of n Sk

�
�

�
� functions and forms an n Sk

�
�

�
�-

dimensional irreducible representation of the space group. The
degeneracies of these representations come from the star of k
(not crucial for band calculations except for determining the
weight of the k vector) and the degeneracy from Gk. The latter is
essential for characterizing the energy bands and using the
compatibility relations (Bouckaert et al., 1930; Bradley &
Cracknell, 1972).

2.2.6.2. Energy bands

Each irreducible representation of the space group, labelled by
k, denotes an energy EjðkÞ, where k varies quasi-continuously
over the BZ and the superscript j numbers the band states. The
quantization of k according to (2.2.4.13) and (2.2.4.15) can be
done in arbitrary fine steps by choosing corresponding periodic
boundary conditions (see Section 2.2.4.2). Since k and kþ K
belong to the same Bloch state, the energy is periodic in reci-
procal space:

EjðkÞ ¼ Ejðkþ KÞ: ð2:2:6:6Þ

Therefore it is sufficient to consider k vectors within the first BZ.
For a given k, two bands will not have the same energy unless
there is a multidimensional small representation in the group of k
or the bands belong to different irreducible representations and
thus can have an accidental degeneracy. Consequently, this can
not occur for a general k vector (without symmetry).

2.2.7. The k vector and the Brillouin zone

2.2.7.1. Various aspects of the k vector

The k vector plays a fundamental role in the electronic struc-
ture of a solid. In the above, several interpretations have been
given for the k vector that

(a) is given in reciprocal space,
(b) can be restricted to the first Brillouin zone,
(c) is the quantum number for the electronic states in a solid,
(d) is quantized due to the periodic boundary conditions,
(e) labels the irreducible representation of the lattice transla-

tion subgroup T (see Section 2.2.4.3)
(f) is related to the momentum [according to (2.2.5.5)] in the

free-electron case and
(g) is the propagation vector (wavevector) associated with the

plane-wave part of the wavefunction (see Fig. 2.2.5.1).

2.2.7.2. The Brillouin zone (BZ)

Starting with one of the 14 Bravais lattices, one can define the
reciprocal lattice [according to (2.2.2.4)] by the Wigner–Seitz
construction as discussed in Section 2.2.2.2. The advantage of
using the BZ instead of the parallelepiped spanned by the three
unit vectors is its symmetry. Let us take a simple example first,

namely an element (say copper) that crystallizes in the face-
centred-cubic (f.c.c.) structure. With (2.2.2.4) we easily find that
the reciprocal lattice is body-centred-cubic (bcc) and the corre-
sponding BZ is shown in Fig. 2.2.7.1. In this case, f.c.c. Cu has Oh

symmetry with 48 symmetry operations p 2 P (point group). The
energy eigenvalues within a star of k (i.e. k 2 Sk) are the same,
and therefore it is sufficient to calculate one member in the star.
Consequently, it is enough to consider the irreducible wedge of
the BZ (called the IBZ). In the present example, this corresponds
to 1/48th of the BZ shown in Fig. 2.2.7.1. To count the number of
states in the BZ, one counts each k point in the IBZ with a proper
weight wk to represent the star of this k vector.

2.2.7.3. The symmetry of the Brillouin zone

The BZ is purely constructed from the reciprocal lattice and
thus only follows from the translational symmetry (of the 14
Bravais lattices). However, the energy bands EjðkÞ, with k lying
within the first BZ, possess a symmetry associated with one of the
230 space groups. Therefore one can not simply use the geome-
trical symmetry of the BZ to find its irreducible wedge, although
this is tempting. Since the effort of computing energy eigenvalues
increases with the number of k points, one wishes to restrict such
calculations to the basic domain, but the latter can only be found
by considering the space group of the corresponding crystal
(including the basis with all atomic positions).

One possible procedure for finding the IBZ is the following.
First a uniform grid in reciprocal space is generated by dividing
the three unit-cell vectors bi by an integer number of times. This
is easy to do in the parallelepiped, spanned by the three unit-cell
vectors, and yields a (more-or-less) uniform grid of k points. Now
one must go through the complete grid of k points and extract a
list of non-equivalent k points by applying to each k point in the
grid the point-group operations. If a k point is found that is
already in the list, its weight is increased by 1, otherwise it is
added to the list. This procedure can easily be programmed and is
often used when k integrations are needed. The disadvantage of
this scheme is that the generated k points in the IBZ are not
necessarily in a connected region of the BZ, since one member of
the star of k is chosen arbitrarily, namely the first that is found by
going through the complete list.
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Fig. 2.2.7.1. The Brillouin zone (BZ) and the irreducible wedge of the BZ for
the f.c.c. direct lattice. After the corresponding figure from the Bilbao
Crystallographic Server (http://www.cryst.ehu.es/cryst/). The IBZ for any
space group can be obtained by using the option KVEC and specifying the
space group (in this case No. 225).
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2.2.8. Bloch functions

We can provide a physical interpretation for a Bloch function by
the following considerations. By combining the group-theoretical
concepts based on the translational symmetry with the free-
electron model, we can rewrite a Bloch function [see (2.2.4.18)] in
the form

 j
kðrÞ ¼ jkiujkðrÞ; ð2:2:8:1Þ

where jki denotes the plane wave (ignoring normalization) in
Dirac’s ket notation (2.2.5.3). The additional superscript j
denotes the band index associated with EjðkÞ (see Section
2.2.6.2). The two factors can be interpreted most easily for the
two limiting cases, namely:

(i) For a constant potential, for which the first factor corre-
sponds to a plane wave with momentum h- k [see (2.2.5.5)] but the
second factor becomes a constant. Note that for a realistic (non-
vanishing) potential, the k vector of a Bloch function is no longer
the momentum and thus is often denoted as pseudomomentum.

(ii) If the atoms in a crystal are infinitely separated (i.e. for
infinite lattice constants) the BZ collapses to a point, making the
first factor a constant. In this case, the second factor must
correspond to atomic orbitals and the label j denotes the atomic
states 1s, 2s, 2p etc. In the intermediate case, k is quantized [see
(2.2.4.13)] and can take N values (or 2N states including spin) for
N cells contained in the volume of the periodic boundary
condition [see (2.2.4.21)]. Therefore, as the interatomic distance
is reduced from infinity to the equilibrium separations, an atomic
level j is broadened into a band EjðkÞ with the quasi-continuous k
vectors and thus shows dispersion.

According to another theorem, the mean velocity of an elec-
tron in a Bloch state with wavevector k and energy EjðkÞ is given
by

vjðkÞ ¼
1

h-
@

@k
EjðkÞ: ð2:2:8:2Þ

If the energy is independent of k, its derivative with respect to k
vanishes and thus the corresponding velocity. This situation
corresponds to the genuinely isolated atomic levels (with band
width zero) and electrons that are tied to individual atoms. If,
however, there is any nonzero overlap in the atomic wavefunc-
tions, then EjðkÞ will not be constant throughout the zone.

In the general case, different notations are used to characterize
band states. Sometimes it is more appropriate to label an energy
band by the atomic level from which it originates, especially for
narrow bands. In other cases (with a large band width) the free-
electron behaviour may be dominant and thus the corresponding
free-electron notation is more appropriate.

2.2.9. Quantum-mechanical treatment

A description of the electronic structure of solids requires a
quantum-mechanical (QM) treatment which can be para-
meterized (in semi-empirical schemes) but is often obtained from
ab initio calculations. The latter are more demanding in terms of
computational effort but they have the advantage that no
experimental knowledge is needed in order to adjust parameters.
The following brief summary is restricted to the commonly used
types of ab initio methods and their main characteristics.

2.2.9.1. Exchange and correlation treatment

Hartree–Fock-based (HF-based) methods (for a general
description see, for example, Pisani, 1996) are based on a wave-
function description (with one Slater determinant in the HF
method). The single-particle HF equations (written for an atom
in Rydberg atomic units) can be written in the following form,
which is convenient for further discussions:

�r2 þ VNeðrÞ þ
XN

j¼1

Z

 HF
j ðr0Þ

�
�

�
�2 2

jr� r0j
dr0

"

�
XN

j¼1

Z

 HF
j ðr0Þ�

1

jr� r0j
Prr0 

HF
j ðr0Þ dr0

#

 HF
i ðrÞ

¼ �HF
i  

HF
i ðrÞ; ð2:2:9:1Þ

with terms for the kinetic energy, the nuclear electronic potential,
the classical electrostatic Coulomb potential and the exchange, a
function potential which involves the permutation operator Prr0 ,
which interchanges the arguments of the subsequent product of
two functions. This exchange term can not be rewritten as a
potential times the function  HF

i ðrÞ but is truly non-local
(i.e. depends on r and r0). The interaction of orbital j with
itself (contained in the third term) is unphysical, but this self-
interaction is exactly cancelled in the fourth term. This is no
longer true in the approximate DFT method discussed below.
The HF method treats exchange exactly but contains – by defi-
nition – no correlation effects. The latter can be added in an
approximate form in post-HF procedures such as that proposed
by Colle & Salvetti (1990).

Density functional theory (DFT) is an alternative approach in
which both effects, exchange and correlation, are treated in a
combined scheme but both approximately. Several forms of DFT
functionals are available now that have reached high accuracy, so
many structural problems can be solved adequately. Further
details will be given in Section 2.2.10.

2.2.9.2. The choice of basis sets and wavefunctions

Most calculations of the electronic structure in solids (Pisani,
1996; Singh, 1994; Altmann, 1994) use a linear combination of
basis functions in one form or another but differ in the basis sets.
Some use a linear combination of atomic orbitals (LCAO) where
the AOs are given as Gaussian- or Slater-type orbitals (GTOs or
STOs); others use plane-wave (PW) basis sets with or without
augmentations; and still others make use of muffin-tin orbitals
(MTOs) as in LMTO (linear combination of MTOs; Skriver,
1984) or ASW (augmented spherical wave; Williams et al., 1979).
In the former cases, the basis functions are given in analytic form,
but in the latter the radial wavefunctions are obtained numeri-
cally by integrating the radial Schrödinger equation (Singh, 1994)
(see Section 2.2.11).

Closely related to the choice of basis sets is the explicit form of
the wavefunctions, which can be well represented by them,
whether they are nodeless pseudo-wavefunctions or all-electron
wavefunctions including the complete radial nodal structure and
a proper description close to the nucleus.

2.2.9.3. The form of the potential

In the muffin-tin or the atomic sphere approximation (MTA or
ASA), each atom in the crystal is surrounded by an atomic sphere
in which the potential is assumed to be spherically symmetric [see
(2.2.12.5) and the discussion thereof]. While these schemes work
reasonably well in highly coordinated, closely packed systems
(such as face-centred-cubic metals), they become very approx-
imate in all non-isotropic cases (e.g. layered compounds, semi-
conductors, open structures or molecular crystals). Schemes that
make no shape approximation in the form of the potential are
termed full-potential schemes (Singh, 1994; Blaha et al., 1990;
Schwarz & Blaha, 1996).

With a proper choice of pseudo-potential one can focus on the
valence electrons, which are relevant for chemical bonding, and
replace the inner part of their wavefunctions by a nodeless
pseudo-function that can be expanded in PWs with good
convergence.
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2.2.9.4. Relativistic effects

If a solid contains only light elements, non-relativistic calcu-
lations are well justified, but as soon as heavier elements are
present in the system of interest relativistic effects can no longer
be neglected. In the medium range of atomic numbers (up to
about 54), so-called scalar relativistic schemes are often used
(Koelling & Harmon, 1977), which describe the main contraction
or expansion of various orbitals (due to the Darwin s-shift or the
mass–velocity term) but omit spin–orbit splitting. Unfortunately,
the spin–orbit term couples spin-up and spin-down wavefunc-
tions. If one has n basis functions without spin–orbit coupling,
then including spin–orbit coupling in the Hamiltonian would lead
to a 2n� 2n matrix equation, which requires about eight times as
much computer time to solve it (due to the n3 scaling). Since the
spin–orbit effect is generally small (at least for the valence
states), one can simplify the procedure by diagonalizing the
Hamiltonian including spin–orbit coupling in the space of the
low-lying bands as obtained in a scalar relativistic step. This
version is called second variational method (see e.g. Singh, 1994).
For very heavy elements it may be necessary to solve Dirac’s
equation, which has all these terms (Darwin s-shift, mass–velocity
and spin–orbit) included. Additional aspects are illustrated in
Section 2.2.14 in connection with the uranium atom.

2.2.10. Density functional theory

The most widely used scheme for calculating the electronic
structure of solids is based on density functional theory (DFT). It
is described in many excellent books, for example that by Drei-
zler & Gross (1990), which contains many useful definitions,
explanations and references. Hohenberg & Kohn (1964) have
shown that for determining the ground-state properties of a
system all one needs to know is the electron density �ðrÞ. This is a
tremendous simplification considering the complicated wave-
function of a crystal with (in principle infinitely) many electrons.
This means that the total energy of a system (a solid in the
present case) is a functional of the density E½�ðrÞ�, which is
independent of the external potential provided by all nuclei. At
first it was just proved that such a functional exists, but in order to
make this fundamental theorem of practical use Kohn & Sham
(1965) introduced orbitals and suggested the following proce-
dure.

In the universal approach of DFT to the quantum-mechanical
many-body problem, the interacting system is mapped in a
unique manner onto an effective non-interacting system of quasi-
electrons with the same total density. Therefore the electron
density plays the key role in this formalism. The non-interacting
particles of this auxiliary system move in an effective local one-
particle potential, which consists of a mean-field (Hartree) part
and an exchange–correlation part that, in principle, incorporates
all correlation effects exactly. However, the functional form of
this potential is not known and thus one needs to make
approximations.

Magnetic systems (with collinear spin alignments) require a
generalization, namely a different treatment for spin-up and spin-
down electrons. In this generalized form the key quantities are
the spin densities ��ðrÞ, in terms of which the total energy Etot is

Etotð�"; �#Þ ¼ Tsð�"; �#Þ þ Eeeð�"; �#Þ þ ENeð�"; �#Þ

þ Excð�"; �#Þ þ ENN; ð2:2:10:1Þ

with the electronic contributions, labelled conventionally as,
respectively, the kinetic energy (of the non-interacting particles),
the electron–electron repulsion, the nuclear–electron attraction
and the exchange–correlation energies. The last term ENN is the
repulsive Coulomb energy of the fixed nuclei. This expression is
still exact but has the advantage that all terms but one can be
calculated very accurately and are the dominating (large) quan-

tities. The exception is the exchange–correlation energy Exc,
which is defined by (2.2.10.1) but must be approximated. The first
important methods for this were the local density approximation
(LDA) or its spin-polarized generalization, the local spin density
approximation (LSDA). The latter comprises two assumptions:

(i) That Exc can be written in terms of a local exchange–
correlation energy density "xc times the total (spin-up plus spin-
down) electron density as

Exc ¼
R
"xcð�"; �#Þ � ½�" þ � #� dr: ð2:2:10:2Þ

(ii) The particular form chosen for "xc. For a homogeneous
electron gas "xc is known from quantumMonte Carlo simulations,
e.g. by Ceperley & Alder (1984). The LDA can be described in
the following way. At each point r in space we know the electron
density �ðrÞ. If we locally replace the system by a homogeneous
electron gas of the same density, then we know its exchange–
correlation energy. By integrating over all space we can calculate
Exc.

The most effective way known to minimize Etot by means of the
variational principle is to introduce (spin) orbitals ��jk constrained
to construct the spin densities [see (2.2.10.7) below]. According to
Kohn and Sham (KS), the variation of Etot gives the following
effective one-particle Schrödinger equations, the so-called Kohn–
Sham equations (Kohn & Sham, 1965) (written for an atom in
Rydberg atomic units with the obvious generalization to solids):

½�r2 þ VNe þ Vee þ V�
xc��

�
jkðrÞ ¼ ��jkðrÞ�

�
jkðrÞ; ð2:2:10:3Þ

with the external potential (the attractive interaction of the
electrons by the nucleus) given by

VNeðrÞ ¼
2Z

r
; ð2:2:10:4Þ

the Coulomb potential (the electrostatic interaction between the
electrons) given by

VeeðrÞ ¼ VCðrÞ ¼

Z
�ðr0Þ

jr� r0j
dr0 ð2:2:10:5Þ

and the exchange–correlation potential (due to quantum
mechanics) given by the functional derivative

VxcðrÞ ¼
�Exc½�ðrÞ�

��
: ð2:2:10:6Þ

In the KS scheme, the (spin) electron densities are obtained by
summing over all occupied states, i.e. by filling the KS orbitals
(with increasing energy) according to the Aufbau principle.

��ðrÞ ¼
P

j;k

��jkj�
�
jkðrÞj

2: ð2:2:10:7Þ

Here ��jk are occupation numbers such that 0 � ��jk � 1=wk,
where wk is the symmetry-required weight of point k. These KS
equations (2.2.10.3) must be solved self-consistently in an itera-
tive process, since finding the KS orbitals requires the knowledge
of the potentials, which themselves depend on the (spin) density
and thus on the orbitals again. Note the similarity to (and
difference from) the Hartree–Fock equation (2.2.9.1). This
version of the DFT leads to a (spin) density that is close to the
exact density provided that the DFT functional is sufficiently
accurate.

In early applications, the local density approximation (LDA)
was frequently used and several forms of functionals exist in the
literature, for example by Hedin & Lundqvist (1971), von Barth
& Hedin (1972), Gunnarsson & Lundqvist (1976), Vosko et al.
(1980) or accurate fits of the Monte Carlo simulations of
Ceperley & Alder (1984). The LDA has some shortcomings,
mostly due to the tendency of overbinding, which causes, for
example, too-small lattice constants. Recent progress has been
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made going beyond the LSDA by adding gradient terms or higher
derivatives (r� andr2�) of the electron density to the exchange–
correlation energy or its corresponding potential. In this context
several physical constraints can be formulated, which an exact
theory should obey. Most approximations, however, satisfy only
part of them. For example, the exchange density (needed in the
construction of these two quantities) should integrate to �1
according to the Fermi exclusion principle (Fermi hole). Such
considerations led to the generalized gradient approximation
(GGA), which exists in various parameterizations, e.g. in the one
by Perdew et al. (1996). This is an active field of research and thus
new functionals are being developed and their accuracy tested in
various applications.

The Coulomb potential VCðrÞ in (2.2.10.5) is that of all N
electrons. That is, any electron is also moving in its own field,
which is physically unrealistic but may be mathematically
convenient. Within the HF method (and related schemes) this
self-interaction is cancelled exactly by an equivalent term in the
exchange interaction [see (2.2.9.1)]. For the currently used
approximate density functionals, the self-interaction cancellation
is not complete and thus an error remains that may be significant,
at least for states (e.g. 4f or 5f) for which the respective orbital is
not delocalized. Note that delocalized states have a negligibly
small self-interaction. This problem has led to the proposal of
self-interaction corrections (SICs), which remove most of this
error and have impacts on both the single-particle eigenvalues
and the total energy (Parr et al., 1978).

The Hohenberg–Kohn theorems state that the total energy (of
the ground state) is a functional of the density, but the intro-
duction of the KS orbitals (describing quasi-electrons) are only a
tool in arriving at this density and consequently the total energy.
Rigorously, the Kohn–Sham orbitals are not electronic orbitals
and the KS eigenvalues "i (which correspond to Ek in a solids) are
not directly related to electronic excitation energies. From a
formal (mathematical) point of view, the "i are just Lagrange
multipliers without a physical meaning.

Nevertheless, it is often a good approximation (and common
practice) to partly ignore these formal inconsistencies and use the
orbitals and their energies in discussing electronic properties. The
gross features of the eigenvalue sequence depend only to a
smaller extent on the details of the potential, whether it is orbital-
based as in the HF method or density-based as in DFT. In this
sense, the eigenvalues are mainly determined by orthogonality
conditions and by the strong nuclear potential, common to DFT
and the HF method.

In processes in which one removes (ionization) or adds
(electron affinity) an electron, one compares the N electron
system with one with N � 1 or N þ 1 electrons. Here another
conceptual difference occurs between the HF method and DFT.
In the HF method one may use Koopmans’ theorem, which states
that the "HF

i agree with the ionization energies from state i
assuming that the corresponding orbitals do not change in the
ionization process. In DFT, the "i can be interpreted according to
Janak’s theorem (Janak, 1978) as the partial derivative with
respect to the occupation number ni,

"i ¼
@E

@ni
: ð2:2:10:8Þ

Thus in the HF method "i is the total energy difference for
�n ¼ 1, in contrast to DFT where a differential change in the
occupation number defines "i, the proper quantity for describing
metallic systems. It has been proven that for the exact density
functional the eigenvalue of the highest occupied orbital is the
first ionization potential (Perdew & Levy, 1983). Roughly, one
can state that the further an orbital energy is away from the
highest occupied state, the poorer becomes the approximation to
use "i as excitation energy. For core energies the deviation can be
significant, but one may use Slater’s transition state (Slater,

1974), in which half an electron is removed from the corre-
sponding orbital, and then use the "TSi to represent the ionization
from that orbital.

Another excitation from the valence to the conduction band is
given by the energy gap, separating the occupied from the
unoccupied single-particle levels. It is well known that the gap is
not given well by taking �"i as excitation energy. Current DFT
methods significantly underestimate the gap (half the experi-
mental value), whereas the HF method usually overestimates
gaps (by a factor of about two). A trivial solution, applying the
‘scissor operator’, is to shift the DFT bands to agree with the
experimental gap. An improved but much more elaborate
approach for obtaining electronic excitation energies within DFT
is the GW method in which quasi-particle energies are calculated
(Hybertsen & Louie, 1984; Godby et al., 1986; Perdew, 1986). This
scheme is based on calculating the dielectric matrix, which
contains information on the response of the system to an external
perturbation, such as the excitation of an electron.

In some cases, one can rely on the total energy of the states
involved. The original Hohenberg–Kohn theorems (Hohenberg
& Kohn, 1964) apply only to the ground state. The theorems may,
however, be generalized to the energetically lowest state of any
symmetry representation for which any property is a functional of
the corresponding density. This allows (in cases where applicable)
the calculation of excitation energies by taking total energy
differences.

Many aspects of DFT from formalism to applications are
discussed and many references are given in the book by
Springborg (1997).

2.2.11. Band-theory methods

There are several methods for calculating the electronic structure
of solids. They have advantages and disadvantages, different
accuracies and computational requirements (speed or memory),
and are based on different approximations. Some of these aspects
have been discussed in Section 2.2.9. This is a rapidly changing
field and thus only the basic concepts of a few approaches in
current use are outlined below.

2.2.11.1. LCAO (linear combination of atomic orbitals)

For the description of crystalline wavefunctions (Bloch func-
tions), one often starts with a simple concept of placing atomic
orbitals (AOs) at each site in a crystal denoted by jmi, from which
one forms Bloch sums in order to have proper translational
symmetry:

�kðrÞ ¼
P

m

expðikTmÞjmi: ð2:2:11:1Þ

Then Bloch functions can be constructed by taking a linear
combination of such Bloch sums, where the linear-combination
coefficients are determined by the variational principle in which a
secular equation must be solved. The LCAO can be used in
combination with both the Hartree–Fock method and DFT.

2.2.11.2. TB (tight binding)

A simple version of the LCAO is found by parameterizing the
matrix elements hm0jHjmi and hm0jmi in a way similar to the
Hückel molecular orbital (HMO) method, where the only non-
vanishing matrix elements are the on-site integrals and the
nearest-neighbour interactions (hopping integrals). For a parti-
cular class of solids the parameters can be adjusted to fit
experimental values. With these parameters, the electronic
structures of rather complicated solids can be described and yield
quite satisfactory results, but only for the class of materials for
which such a parametrization is available. Chemical bonding and
symmetry aspects can be well described with such schemes, as
Hoffmann has illustrated in many applications (Hoffmann, 1988).

301



2. SYMMETRYASPECTS OF EXCITATIONS

In more complicated situations, however, such a simple scheme
fails.

2.2.11.3. The pseudo-potential schemes

In many respects, core electrons are unimportant for deter-
mining the stability, structure and low-energy response properties
of crystals. It is a well established practice to modify the one-
electron part of the Hamiltonian by replacing the bare nuclear
attraction with a pseudo-potential (PP) operator, which allows us
to restrict our calculation to the valence electrons. The PP
operator must reproduce screened nuclear attractions, but must
also account for the Pauli exclusion principle, which requires that
valence orbitals are orthogonal to core ones. The PPs are not
uniquely defined and thus one seeks to satisfy the following
characteristics as well as possible:

(1) PP eigenvalues should coincide with the true (all-electron)
ones;

(2) PP orbitals should resemble as closely as possible the all-
electron orbitals in an external region as well as being smooth
and nodeless in the core region;

(3) PP orbitals should be properly normalized;
(4) the functional form of the PP should allow the simplifica-

tion of their use in computations;
(5) the PP should be transferable (independent of the system);

and
(6) relativistic effects should be taken into account (especially

for heavy elements); this concerns mainly the indirect relativistic
effects (e.g. core contraction, Darwin s-shift), but not the spin–
orbit coupling.

There are many versions of the PP method (norm-conserving,
ultrasoft etc.) and the actual accuracy of a calculation is governed
by which is used. For standard applications, PP techniques can be
quite successful in solid-state calculations. However, there are
cases that require higher accuracy, e.g. when core electrons are
involved, as in high-pressure studies or electric field gradient
calculations (see Section 2.2.15), where the polarization of the
charge density close to the nucleus is crucial for describing the
physical effects properly.

2.2.11.4. APW (augmented plane wave) and LAPW methods

The partition of space (i.e. the unit cell) between (non-over-
lapping) atomic spheres and an interstitial region (see Fig.
2.2.12.1) is used in several schemes, one of which is the
augmented plane wave (APW) method, originally proposed by
Slater (Slater, 1937) and described by Loucks (1967), and its
linearized version (the LAPW method), which is chosen as the
one representative method that is described in detail in Section
2.2.12.

The basis set is constructed using the muffin-tin approximation
(MTA) for the potential [see the discussion below in connection
with (2.2.12.5)]. In the interstitial region the wavefunction is well
described by plane waves, but inside the spheres atomic-like
functions are used which are matched continuously (at the sphere
boundary) to each plane wave.

2.2.11.5. KKR (Korringa–Kohn–Rostocker) method

In the KKR scheme (Korringa, 1947; Kohn & Rostocker,
1954), the solution of the KS equations (2.2.10.3) uses a Green-
function technique and solves a Lippman–Schwinger integral
equation. The basic concepts come from a multiple scattering
approach which is conceptually different but mathematically
equivalent to the APWmethod. The building blocks are spherical
waves which are products of spherical harmonics and spherical
Hankel, Bessel and Neumann functions. Like plane waves, they
solve the KS equations for a constant potential. Augmenting the
spherical waves with numerical solutions inside the atomic
spheres as in the APW method yields the KKR basis set.

Compared with methods based on plane waves, spherical waves
require fewer basis functions and thus smaller secular equations.

The radial functions in the APW and KKR methods are
energy-dependent and so are the corresponding basis functions.
This leads to a nonlinear eigenvalue problem that is computa-
tionally demanding. Andersen (1975) modelled the weak energy
dependence by a Taylor expansion where only the first term is
kept and thereby arrived at the so-called linear methods LMTO
and LAPW.

2.2.11.6. LMTO (linear combination of muffin-tin orbitals)
method

The LMTO method (Andersen, 1975; Skriver, 1984) is the
linearized counterpart to the KKR method, in the same way as
the LAPW method is the linearized counterpart to the APW
method. This widely used method originally adopted the atomic
sphere approximation (ASA) with overlapping atomic spheres in
which the potential was assumed to be spherically symmetric.
Although the ASA simplified the computation so that systems
with many atoms could be studied, the accuracy was not high
enough for application to certain questions in solid-state physics.

Following the ideas of Andersen, the augmented spherical
wave (ASW) method was developed by Williams et al. (1979).
The ASW method is quite similar to the LMTO scheme.

It should be noted that the MTA and the ASA are not really a
restriction on the method. In particular, when employing the
MTA only for the construction of the basis functions but
including a generally shaped potential in the construction of the
matrix elements, one arrives at a scheme of very high accuracy
which allows, for instance, the evaluation of elastic properties.
Methods using the unrestricted potential together with basis
functions developed from the muffin-tin potential are called full-
potential methods. Now for almost every method based on the
MTA (or ASA) there exists a counterpart employing the full
potential.

2.2.11.7. CP (Car–Parrinello) method

Conventional quantum-mechanical calculations are done using
the Born–Oppenheimer approximation, in which one assumes (in
most cases to a very good approximation) that the electrons are
decoupled from the nuclear motion. Therefore the electronic
structure is calculated for fixed atomic (nuclear) positions. Car &
Parrinello (1985) suggested a new method in which they
combined the motion of the nuclei (at finite temperature) with
the electronic degrees of freedom. They started with a fictitious
Lagrangian in which the wavefunctions follow a dynamics
equation of motion. Therefore, the CP method combines the
motion of the nuclei (following Newton’s equation) with the
electrons (described within DFT) into one formalism by solving
equations of motion for both subsystems. This simplifies the
computational effort and allows ab initio molecular dynamics
calculations to be performed in which the forces acting on the
atoms are calculated from the wavefunctions within DFT. The CP
method has attracted much interest and is widely used, with a
plane-wave basis, extended with pseudo-potentials and recently
enhanced into an all-electron method using the projector
augmented wave (PAW) method (Blöchl, 1994). Such CP
schemes can also be used to find equilibrium structures and to
explore the electronic structure.

2.2.11.8. Order N schemes

The various techniques outlined so far have one thing in
common, namely the scaling. In a system containing N atoms the
computational effort scales as N3, since one must determine a
number of orbitals that is proportional to N which requires
diagonalization of ðkNÞ � ðkNÞ matrices, where the prefactor k
depends on the basis set and the method used. In recent years
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much work has been done to devise algorithms that vary linearly
with N, at least for very large N (Ordejon et al., 1995). First
results are already available and look promising. When such
schemes become generally available, it will be possible to study
very large systems with relatively little computational effort. This
interesting development could drastically change the accessibility
of electronic structure results for large systems.

2.2.12. The linearized augmented plane wave method

The electronic structure of solids can be calculated with a variety
of methods as described above (Section 2.2.11). One repre-
sentative example is the (full-potential) linearized augmented
plane wave (LAPW) method. The LAPW method is one among
the most accurate schemes for solving the effective one-particle
(the so-called Kohn–Sham) equations (2.2.10.3) and is based on
DFT (Section 2.2.10) for the treatment of exchange and corre-
lation.

The LAPW formalism is described in many references, starting
with the pioneering work by Andersen (1975) and by Koelling &
Arbman (1975), which led to the development and the descrip-
tion of the computer code WIEN (Blaha et al., 1990; Schwarz &
Blaha, 1996). An excellent book by Singh (1994) is highly
recommended to the interested reader. Here only the basic ideas
are summarized, while details are left to the articles and refer-
ences therein.

In the LAPW method, the unit cell is partitioned into (non-
overlapping) atomic spheres centred around the atomic sites
(type I) and an interstitial region (II) as shown schematically in
Fig. 2.2.12.1. For the construction of basis functions (and only for
this purpose), the muffin-tin approximation (MTA) is used. In the
MTA, the potential is assumed to be spherically symmetric within
the atomic spheres but constant outside; in the former atomic-
like functions and in the latter plane waves are used in order to
adapt the basis set optimally to the problem. Specifically, the
following basis sets are used in the two types of regions:

(1) Inside the atomic sphere t of radius Rt (region I), a linear
combination of radial functions times spherical harmonics Y‘mðr̂rÞ
is used (we omit the index t when it is clear from the context):

	kn ¼
P

‘m

½A‘mu‘ðr;E‘Þ þ B‘m _uu‘ðr;E‘Þ�Y‘mðr̂rÞ; ð2:2:12:1Þ

where r̂r represents the angles # and ’ of the polar coordinates.
The radial functions u‘ðr;EÞ depend on the energy E. Within a
certain energy range this energy dependance can be accounted
for by using a linear combination of the solution u‘ðr;E‘Þ and its
energy derivative _uu‘ðr;E‘Þ, both taken at the same energy E‘
(which is normally chosen at the centre of the band with the
corresponding ‘-like character). This is the linearization in the
LAPW method. These two functions are obtained on a radial
mesh inside the atomic sphere by numerical integration of the
radial Schrödinger equation using the spherical part of the
potential inside sphere t and choosing the solution that is regular
at the origin r ¼ 0. The coefficients A‘m and B‘m are chosen by
matching conditions (see below).

(2) In the interstitial region (II), a plane-wave expansion (see
the Sommerfeld model, Section 2.2.5) is used:

	kn ¼ ð1=
ffiffiffiffi
�

p
Þ expðiknrÞ; ð2:2:12:2Þ

where kn ¼ kþ Kn, Kn are vectors of the reciprocal lattice, k is
the wavevector in the first Brillouin zone and � is the unit-cell
volume [see (2.2.5.3)]. This corresponds to writing the periodic
function ukðrÞ (2.2.4.19) as a Fourier series and combining it with
the Bloch function (2.2.4.18). Each plane wave (corresponding to
kn) is augmented by an atomic-like function in every atomic
sphere, where the coefficients A‘m and B‘m in (2.2.12.1) are
chosen to match (in value and slope) the atomic solution with the

corresponding plane-wave basis function of the interstitial
region.

The solutions to the Kohn–Sham equations are expanded in
this combined basis set of LAPWs,

 k ¼
P

n

cn	kn ; ð2:2:12:3Þ

where the coefficients cn are determined by the Rayleigh–Ritz
variational principle. The convergence of this basis set is
controlled by the number of PWs, i.e. by the magnitude of the
largest K vector in equation (2.2.12.3).

In order to improve upon the linearization (i.e. to increase the
flexibility of the basis) and to make possible a consistent treat-
ment of semi-core and valence states in one energy window (to
ensure orthogonality), additional (kn-independent) basis func-
tions can be added. They are called ‘local orbitals’ (Singh, 1994)
and consist of a linear combination of two radial functions at two
different energies (e.g. at the 3s and 4s energy) and one energy
derivative (at one of these energies):

	LO‘m ¼ ½A‘mu‘ðr;E1;‘Þ þ B‘m _uu‘ðr;E1;‘Þ þ C‘mu‘ðr;E2;‘Þ�Y‘mðr̂rÞ:

ð2:2:12:4Þ

The coefficients A‘m, B‘m and C‘m are determined by the
requirements that 	LO should be normalized and has zero value
and slope at the sphere boundary.

In its general form, the LAPW method expands the potential
in the following form:

VðrÞ ¼

P

LM

VLMðrÞKLMðr̂rÞ inside sphere
P

K

VK expðiKrÞ outside sphere

8
<

:
ð2:2:12:5Þ

where KLM are the crystal harmonics compatible with the point-
group symmetry of the corresponding atom represented in a local
coordinate system (see Section 2.2.13). An analogous expression
holds for the charge density. Thus no shape approximations are
made, a procedure frequently called the ‘full-potential LAPW’
(FLAPW) method.

The muffin-tin approximation (MTA) used in early band
calculations corresponds to retaining only the L ¼ 0 and M ¼ 0
component in the first expression of (2.2.12.5) and only theK ¼ 0
component in the second. This (much older) procedure corre-
sponds to taking the spherical average inside the spheres and the
volume average in the interstitial region. The MTA was
frequently used in the 1970s and works reasonable well in highly
coordinated (metallic) systems such as face-centred-cubic (f.c.c.)
metals. For covalently bonded solids, open or layered structures,
however, the MTA is a poor approximation and leads to serious
discrepancies with experiment. In all these cases a full-potential
treatment is essential.

The choice of sphere radii is not very critical in full-potential
calculations, in contrast to the MTA, where this choice may affect
the results significantly. Furthermore, different radii would be
found when one uses one of the two plausible criteria, namely
based on the potential (maximum between two adjacent atoms)
or the charge density (minimum between two adjacent atoms).
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Fig. 2.2.12.1. Schematic partitioning of the unit cell into atomic spheres (I)
and an interstitial region (II).
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Therefore in the MTA one must make a compromise, whereas in
full-potential calculations this problem practically disappears.

2.2.13. The local coordinate system

The partition of a crystal into atoms (or molecules) is ambiguous
and thus the atomic contribution cannot be defined uniquely.
However, whatever the definition, it must follow the relevant site
symmetry for each atom. There are at least two reasons why one
would want to use a local coordinate system at each atomic site:
the concept of crystal harmonics and the interpretation of
bonding features.

2.2.13.1. Crystal harmonics

All spatial observables of the bound atom (e.g. the potential or
the charge density) must have the crystal symmetry, i.e. the point-
group symmetry around an atom. Therefore they must be
representable as an expansion in terms of site-symmetrized
spherical harmonics. Any point-symmetry operation transforms a
spherical harmonic into another of the same ‘. We start with the
usual complex spherical harmonics,

Y‘mð#; ’Þ ¼ N‘mP
m
‘ ðcos#Þ expðim’Þ; ð2:2:13:1Þ

which satisfy Laplacian’s differential equation. The Pm
‘ ðcos#Þ are

the associated Legendre polynomials and the normalization N‘m

is according to the convention of Condon & Shortley (1953). For
the ’-dependent part one can use the real and imaginary part and
thus use cosðm’Þ and sinðm’Þ instead of the expðim’Þ functions,

but we must introduce a parity p to distinguish the functions with
the same mj j. For convenience we take real spherical harmonics,
since physical observables are real. The even and odd poly-
nomials are given by the combination of the complex spherical
harmonics with the parity p either þ or � by

y‘mp ¼
y‘mþ ¼ ð1=

ffiffiffi
2

p
ÞðY‘m þ Y‘ �mmÞ þ parity

y‘m� ¼ �ði=
ffiffiffi
2

p
ÞðY‘m � Y �mmÞ � parity

;

(

m ¼ 2n

y‘mp ¼
y‘mþ ¼ �ð1=

ffiffiffi
2

p
ÞðY‘m � Y‘ �mmÞ þ parity

y‘m� ¼ ði=
ffiffiffi
2

p
ÞðY‘m þ Y‘ �mmÞ � parity

;

(

m ¼ 2nþ 1:

ð2:2:13:2Þ

The expansion of – for example – the charge density �ðrÞ
around an atomic site can be written using the LAPW method
[see the analogous equation (2.2.12.5) for the potential] in the
form

�ðrÞ ¼
P

LM

�LMðrÞKLMðr̂rÞ inside an atomic sphere; ð2:2:13:3Þ

where we use capital letters LM for the indices (i) to distinguish
this expansion from that of the wavefunctions in which complex
spherical harmonics are used [see (2.2.12.1)] and (ii) to include
the parity p in the indexM (which represents the combined index
mp). With these conventions, KLM can be written as a linear
combination of real spherical harmonics y‘mp which are
symmetry-adapted to the site symmetry,

KLMðr̂rÞ ¼
y‘mp non-cubicP

j cLjy‘jp cubic

�

ð2:2:13:4Þ

i.e. they are either y‘mp [(2.2.13.2)] in the non-cubic cases (Table
2.2.13.1) or are well defined combinations of y‘mp’s in the five
cubic cases (Table 2.2.13.2), where the coefficients cLj depend on
the normalization of the spherical harmonics and can be found in
Kurki-Suonio (1977).

According to Kurki-Suonio, the number of (non-vanishing)
LM terms [e.g. in (2.2.13.3)] is minimized by choosing for each
atom a local Cartesian coordinate system adapted to its site
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Table 2.2.13.1. Picking rules for the local coordinate axes and the corresponding LM combinations (‘mp) of non-cubic groups taken from Kurki-Suonio (1977)

Symmetry Coordinate axes ‘;m; p of y‘mp Crystal system

1 Any All ð‘;m;�Þ Triclinic
1 Any ð2‘;m;�Þ

2 2 k z ð‘; 2m;�Þ Monoclinic
m m ? z ð‘; ‘� 2m;�Þ

2=m 2 k z;m ? z ð2‘; 2m;�Þ

222 2 k z; 2 k y ð2 k xÞ ð2‘; 2m;þÞ; ð2‘þ 1; 2m;�Þ Orthorhombic
mm2 2 k z;m ? y ð2 ? xÞ ð‘; 2m;þÞ

mmm 2 ? z;m ? y; 2 ? x ð2‘; 2m;þÞ

4 4 k z ð‘; 4m;�Þ Tetragonal
4 �4 k z ð2‘; 4m;�Þ; ð2‘þ 1; 4mþ 2;�Þ

4=m 4 k z;m ? z ð2‘; 4m;�Þ

422 4 k z; 2 k y ð2 k xÞ ð2‘; 4m;þÞ; ð2‘þ 1; 4m;�Þ

4mm 4 k z;m ? y ð2 ? xÞ ð‘; 4m;þÞ

42m �4 k z; 2 k x ðm ¼ xy ! yxÞ ð2‘; 4m;þÞ; ð2‘þ 1; 4mþ 2;�Þ

4mmm 4 k z;m ? z;m ? x ð2‘; 4m;þÞ

3 3 k z ð‘; 3m;�Þ Rhombohedral
3 �3 k z ð2‘; 3m;�Þ

32 3 k z; 2 k y ð2‘; 3m;þÞ; ð2‘þ 1; 3m;�Þ

3m 3 k z;m ? y ð‘; 3m;þÞ

3m �3 k z;m ? y ð2‘; 3m;þÞ

6 6 k z ð‘; 6m;�Þ Hexagonal
6 �6 k z ð2‘; 6m;þÞ; ð2‘þ 1; 6mþ 3;�Þ

6=m 6 k z;m ? z ð2‘; 6m;�Þ

622 6 k z; 2 k y ð2 k xÞ ð2‘; 6m;þÞ; ð2‘þ 1; 6m;�Þ

6mm 6 k z;m k y ðm ? xÞ ð‘; 6m;þÞ

62m �6 k z;m ? y ð2 k xÞ ð2‘; 6m;þÞ; ð2l þ 1; 6mþ 3;þÞ

6mmm 6 k z;m ? z;m ? y ðm ? xÞ ð2‘; 6m;þÞ

Table 2.2.13.2. LM combinations of cubic groups as linear cominations of
y‘mp’s (given in parentheses)

The linear-combination coefficients can be found in Kurki-Suonio (1977).

Symmetry LM combinations

23 (0 0), (3 2�), (4 0, 4 4þ), (6 0, 6 4þ), (6 2þ, 6 6þ)
m3 (0 0), (4 0, 4 4þ), (6 0, 6 4þ) (6 2þ, 6 6þ)
432 (0 0), (4 0, 4 4þ), (6 0, 6 4þ)
43m (0 0), (3 2�), (4 0, 4 4þ), (6 0, 6 4þ),
m3m (0 0), (4 0, 4 4þ), (6 0, 6 4þ)
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symmetry. In this case, other LM terms would vanish, so using
only these terms corresponds to the application of a projection
operator, i.e. equivalent to averaging the quantity of interest [e.g.
�ðrÞ] over the star of k. Note that in another coordinate system
(for the L values listed) additional M terms could appear. The
group-theoretical derivation led to rules as to how the local
coordinate system must be chosen. For example, the z axis is
taken along the highest symmetry axis, or the x and y axes are
chosen in or perpendicular to mirror planes. Since these coor-
dinate systems are specific for each atom and may differ from the
(global) crystal axes, we call them ‘local’ coordinate systems,
which can be related by a transformation matrix to the global
coordinate system of the crystal.

The symmetry constraints according to (2.2.13.4) are
summarized by Kurki-Suonio, who has defined picking rules to
choose the local coordinate system for any of the 27 non-cubic
site symmetries (Table 2.2.13.1) and has listed the LM combi-
nations, which are defined by (a linear combination of) functions
y‘mp [see (2.2.13.2)]. If the� parity appears, both theþ and the�
combination must be taken. An application of a local coordinate
system to rutile TiO2 is described in Section 2.2.16.2.

In the case of the five cubic site symmetries, which all have a
threefold axis in (111), a well defined linear combination of y‘mp

functions (given in Table 2.2.13.2) leads to the cubic harmonics.

2.2.13.2. Interpretation for bonding

Chemical bonding is often described by considering orbitals
(e.g. a pz or a dz2 atomic orbital) which are defined in polar
coordinates, where the z axis is special, in contrast to Cartesian
coordinates, where x, y and z are equivalent. Consider for
example an atom coordinated by ligands (e.g. forming an octa-
hedron). Then the application of group theory, ligand-field theory
etc. requires a certain coordinate system provided one wishes to
keep the standard notation of the corresponding spherical
harmonics. If this octahedron is rotated or tilted with respect to
the global (unit-cell) coordinate system, a local coordinate system
is needed to allow an easy orbital interpretation of the inter-
actions between the central atom and its ligands. This applies also
to spectroscopy or electric field gradients.

The two types of reasons mentioned above may or may not
lead to the same choice of a local coordinate system, as is illu-
strated for the example of rutile in Section 2.2.16.2.

2.2.14. Characterization of Bloch states

The electronic structure of a solid is specified by energy bands
EjðkÞ and the corresponding wavefunctions, the Bloch functions
 j

kðrÞ. In order to characterize energy bands there are various
schemes with quite different emphasis. The most important
concepts are described below and are illustrated using selected
examples in the following sections.

2.2.14.1. Characterization by group theory

The energy bands are primarily characterized by the wave-
vector k in the first BZ that is associated with the translational
symmetry according to (2.2.4.23). The star of k determines an
irreducible basis provided that the functions of the star are
symmetrized with respect to the small representations, as
discussed in Section 2.2.6. Along symmetry lines in the BZ (e.g.
from � along � towards X in the BZ shown in Fig. 2.2.7.1), the
corresponding group of the k vector may show a group–subgroup
relation, as for example for � and �. The corresponding irre-
ducible representations can then be found by deduction (or by
induction in the case of a group–supergroup relation). These
concepts define the compatibility relations (Bouckaert et al.,
1930; Bradley & Cracknell, 1972), which tell us how to connect
energy bands. For example, the twofold degenerate representa-
tion �12 (the eg symmetry in a cubic system) splits into the�1 and

�2 manifold in the � direction, both of which are one-dimen-
sional. The compatibility relations tell us how to connect bands.
In addition, one can also find an orbital representation and thus
knows from the group-theoretical analysis which orbitals belong
to a certain energy band. This is very useful for interpretations.

2.2.14.2. Energy regions

In chemistry and physics it is quite common to separate the
electronic states of an atom into those from core and valence
electrons, but sometimes this distinction is not well defined, as
will be discussed in connection with the so-called semi-core
states. For the sake of argument, let us discuss the situation in a
solid using the concepts of the LAPW method, keeping in mind
that very similar considerations hold for all other band-structure
schemes.

A core state is characterized by a low-lying energy (i.e. with a
large negative energy value with respect to the Fermi energy) and
a corresponding wavefunction that is completely confined inside
the sphere of the respective atom. Therefore there is effectively
no overlap with the wavefunctions from neighbouring atoms and,
consequently, the associated band width is practically zero.

The valence electrons occupy the highest states and have
wavefunctions that strongly overlap with their counterparts at
adjacent sites, leading to chemical bonding, large dispersion (i.e. a
strong variation of the band energy with k) and a significant band
width.

The semi-core states are in between these two categories. For
example, the 3s and 3p states of the 3d transition metals belong
here. They are about 2–6 Ry (1 Ry ¼ 13.6 eV) below the valence
bands and have most of the wavefunctions inside their atomic
spheres, but a small fraction (a few per cent) of the corresponding
charge lies outside this sphere. This causes weak interactions with
neighbouring atoms and a finite width of the corresponding
energy bands.

Above the valence states are the unoccupied states, which
often (e.g. in DFT or the HF method) require special attention.

2.2.14.3. Decomposition according to wavefunctions

For interpreting chemical bonding or the physical origin of a
given Bloch state at EjðkÞ, a decomposition according to its
wavefunction is extremely useful but always model-dependent.
The charge density  j

kðrÞ
� j

kðrÞ corresponding to the Bloch state
at EjðkÞ can be normalized to one per unit cell and is (in prin-
ciple) an observable, while its decomposition depends on the
model used. The following considerations are useful in this
context:

(1) Site-centred orbitals. In many band-structure methods, the
Bloch functions are expressed as a linear combination of atomic
orbitals (LCAO). These orbitals are centred at the various nuclei
that constitute the solid. The linear-combination coefficients
determine how much of a given orbital contributes to the
wavefunction (Mulliken population analysis).

(2) Spatially confined functions. In many schemes (LMTO,
LAPW, KKR; see Section 2.2.11), atomic spheres are used in
which the wavefunctions are described in terms of atomic-like
orbitals. See, for example, the representation (2.2.12.1) in the
LAPW method (Section 2.2.12), where inside the atomic sphere
the wavefunction is written as an ‘-like radial function times
spherical harmonics (termed partial waves). The latter require a
local coordinate system (Section 2.2.13) which need not to be the
same as the global coordinate system of the unit cell. The reasons
for choosing a special local coordinate system are twofold: one is
a simplification due to the use of the point-group symmetry, and
the other is the interpretation, as will be illustrated below for
TiO2 in the rutile structure (see Section 2.2.16.2).

(3) Orbital decomposition. In all cases in which ‘-like orbitals
are used (they do not require a local coordinate system) to
construct the crystalline wavefunction, an ‘-like decomposition
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can be done. This is true for both atom-centred orbitals and
spatially confined partial waves. A corresponding decomposition
can be done on the basis of partial electronic charges, as discussed
below. A further decomposition into the m components can only
be done in a local coordinate system with respect to which the
spherical harmonics are defined.

(4) Bonding character. As in a diatomic molecule with an
orbital on atom A and another on atom B, we can form bonding
and antibonding states by adding or subtracting the corre-
sponding orbitals. The bonding interaction causes a lowering in
energy with respect to the atomic state and corresponds to a
constructive interference of the orbitals. For the antibonding
state, the interaction raises the energy and leads to a change in
sign of the wavefunction, causing a nodal plane that is perpen-
dicular to the line connecting the nuclei. If the symmetry does not
allow an interaction between two orbitals, a nonbonding state
occurs. Analogous concepts can also be applied to solids.

(5) Partial charges. The charge corresponding to a Bloch
function of state EjðkÞ – averaged over the star of k – can be
normalized to 1 in the unit cell. A corresponding decomposition
of the charge can be done into partial electronic charges. This is
illustrated first within the LAPW scheme. Using the resolution of
the identity this 1 (unit charge) of each state E

j
k can be spatially

decomposed into the contribution qoutðE
j
kÞ from the region

outside all atomic spheres (interstitial region II) and a sum over
all atomic spheres (with superscript t) which contain the charges
qtðE

j
kÞ (confined within atomic sphere t). The latter can be further

decomposed into the partial ‘-like charges qt‘ðE
j
kÞ, leading to

1 ¼ qoutðE
j
kÞ þ

P
t

P
‘ q

t
‘ðE

j
kÞ. In a site-centred basis a similar

decomposition can be done, but without the term qoutðE
j
kÞ. The

interpretation, however, is different, as will be discussed for Cu
(see Section 2.2.16). If the site symmetry (point group) permits,
another partitioning according to m can be made, e.g. into the t2g
and eg manifold of the fivefold degenerate d orbitals in a octa-
hedral ligand field. The latter scheme requires a local coordinate
system in which the spherical harmonics are defined (see Section
2.2.13). In general, the proper m combinations are given by the
irreducible representations corresponding to the site symmetry.

2.2.14.4. Localized versus itinerant electrons

Simple metals with valence electrons originating from s- and p-
type orbitals form wide bands which are approximately free-
electron like (with a large band width W). Such a case corre-
sponds to itinerant electrons that are delocalized and thus cause
metallic conductivity.

The other extreme case is a system with 4f (and some 5f)
electrons, such as the lanthanides. Although the orbital energies

of these electrons are in the energy range of the valence elec-
trons, they act more like core electrons and thus are tightly bound
to the corresponding atomic site. Such electrons are termed
localized, since they do not hop to neighbouring sites (controlled
by a hopping parameter t) and thus do not contribute to metallic
conductivity. Adding another of these electrons to a given site
would increase the Coulomb repulsion U. A large U (i.e. U > t)
prevents them from hopping.

There are – as usual – borderline cases (e.g. the late 3d tran-
sition-metal oxides) in which a delicate balance between t and U,
the energy gain by delocalizing electrons and the Coulomb
repulsion, determines whether a system is metallic or insulating.
This problem of metal/insulator transitions is an active field of
research of solid-state physics which shall not be discussed here.

In one example, however, the dual role of f electrons is illu-
strated for the uranium atom using relativistic wavefunctions
(with a large and a small component) characterized by the
quantum numbers n, ‘ and j. Fig. 2.2.14.1 shows the outermost
lobe (the large component) of the electrons beyond the [Xe] core
without the 4f and 5d core-like states. One can see the 6s1=2, 6p1=2
and 6p3=2 (semi-core) electrons, and the 6d3=2 and 7s1=2 (valence)
electrons.

On the one hand, the radial wavefunction of the 5f5=2 orbital
has its peak closer to the nucleus than the main lobes of the semi-
core states 6s1=2, 6p1=2 and 6p3=2, and thus demonstrates the core
nature of these 5f electrons. On the other hand, the 5f5=2 orbital
decays (with distance) much less than the semi-core states and
electrons in this orbital can thus also play the role of valence
electrons, like electrons in the 6d3=2 and 7s1=2 orbitals. This dual
role of the f electrons has been discussed, for example, by
Schwarz & Herzig (1979).

2.2.14.5. Spin polarization

In a non-fully-relativistic treatment, spin remains a good
quantum number. Associated with the spin is a spin magnetic
moment. If atoms have net magnetic moments they can couple in
various orders in a solid. The simplest cases are the collinear spin
alignments as found in ferromagnetic (FM) or antiferromagnetic
(AF) systems with parallel (FM) and antiparallel (AF) moments
on neighbouring sites. Ferrimagnets have opposite spin align-
ments but differ in the magnitude of their moments on neigh-
bouring sites, leading to a finite net magnetization. These cases
are characterized by the electronic structure of spin-up and spin-
down electrons. More complicated spin structures (e.g. canted
spins, spin spirals, spin glasses) often require a special treatment
beyond simple spin-polarized calculations. In favourable cases,
however, as in spin spirals, it is possible to formulate a general-
ized Bloch theorem and treat such systems by band theory
(Sandratskii, 1990).

In a fully relativistic formalism, an additional orbital moment
may occur. Note that the orientation of the total magnetic
moment (spin and orbital moment) with respect to the crystal
axis is only defined in a relativistic treatment including spin–orbit
interactions. In a spin-polarized calculation without spin–orbit
coupling this is not the case and only the relative orientation
(majority-spin and minority-spin) is known. The magnetic
structures may lead to a lowering of symmetry, a topic beyond
this book.

2.2.14.6. The density of states (DOS)

The density of states (DOS) is the number of one-electron
states (in the HF method or DFT) per unit energy interval and
per unit cell volume. It is better to start with the integral quantity
Ið"Þ, the number of states below a certain energy ",

Ið"Þ ¼
2

VBZ

X

j

Z

BZ

#ð"� "jkÞ dk; ð2:2:14:1Þ
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Fig. 2.2.14.1. Relativistic radial wavefunctions (large component) of the
uranium atom. Shown are the outer lobes of valence and semi-core states
excluding the [Xe] core, and the 4f and 5d core states.
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where VBZ is the volume of the BZ, the factor 2 accounts for the
occupation with spin-up and spin-down electrons (in a non-spin-
polarized case), and #ð"� "jkÞ is the step function, the value of
which is 1 if "jk is less than " and 0 otherwise. The sum over k
points has been replaced by an integral over the BZ, since the k
points are uniformly distributed. Both expressions, sum and
integral, are used in different derivations or applications. The
Fermi energy is defined by imposing that IðEFÞ ¼ N, the number
of (valence) electrons per unit cell.

The total DOS is defined as the energy derivative of Ið"Þ as

nð"Þ ¼
dIð"Þ

d"
; ð2:2:14:2Þ

with the normalization

N ¼
REF

�1

nð"Þ d"; ð2:2:14:3Þ

where the integral is taken from �1 if all core states are
included or from the bottom of the valence bands, often taken to
be at zero. This defines the Fermi energy (note that the energy
range must be consistent with N). In a bulk material, the origin of
the energy scale is arbitrary and thus only relative energies are
important. In a realistic case with a surface (i.e. a vacuum) one
can take the potential at infinity as the energy zero, but this
situation is not discussed here.

The total DOS nð"Þ can be decomposed into a partial (or
projected) DOS by using information from the wavefunctions as
described above in Section 2.2.14.3. If the charge corresponding
to the wavefunction of an energy state is partitioned into
contributions from the atoms, a site-projected DOS can be
defined as ntð"Þ, where the superscript t labels the atom t. These
quantities can be further decomposed into ‘-like contributions
within each atom to give nt‘ð"Þ. As discussed above for the partial
charges, a further partitioning of the ‘-like terms according to the
site symmetry (point group) can be done (in certain cases) by
taking the proper m combinations, e.g. the t2g and eg manifold of
the fivefold degenerate d orbitals in a octahedral ligand field. The
latter scheme requires a local coordinate system in which the
spherical harmonics are defined (see Section 2.2.13). In this
context all considerations as discussed above for the partial
charges apply again. Note in particular the difference between
site-centred and spatially decomposed wavefunctions, which
affects the partition of the DOS into its wavefunction-dependent
contributions. For example, in atomic sphere representations as
in LAPW we have the decomposition

nð"Þ ¼ noutð"Þ þ
P

t

P

‘

nt‘ð"Þ: ð2:2:14:4Þ

In the case of spin-polarized calculations, one can also define a
spin-projected DOS for spin-up and spin-down electrons.

2.2.15. Electric field gradient tensor

2.2.15.1. Introduction

The study of hyperfine interactions is a powerful way to
characterize different atomic sites in a given sample. There are
many experimental techniques, such as Mössbauer spectroscopy,
nuclear magnetic and nuclear quadrupole resonance (NMR and
NQR), perturbed angular correlations (PAC) measurements etc.,
which access hyperfine parameters in fundamentally different
ways. Hyperfine parameters describe the interaction of a nucleus
with the electric and magnetic fields created by the chemical
environment of the corresponding atom. Hence the resulting
level splitting of the nucleus is determined by the product of a
nuclear and an extra-nuclear quantity. In the case of quadrupole
interactions, the nuclear quantity is the nuclear quadrupole
moment (Q) that interacts with the electric field gradient (EFG)

produced by the charges outside the nucleus. For a review see, for
example, Kaufmann & Vianden (1979).

The EFG tensor is defined by the second derivative of the
electrostatic potential V with respect to the Cartesian coordi-
nates xi, i ¼ 1; 2; 3, taken at the nuclear site n,

�ij ¼
@2V

@xi @xj

�
�
�
�
n

�
1

3
�ijr

2

�
�
�
�
n

; ð2:2:15:1Þ

where the second term is included to make it a traceless tensor.
This is more appropriate, since there is no interaction of a nuclear
quadrupole and a potential caused by s electrons. From a theo-
retical point of view it is more convenient to use the spherical
tensor notation because electrostatic potentials (the negative of
the potential energy of the electron) and the charge densities are
usually given as expansions in terms of spherical harmonics. In
this way one automatically deals with traceless tensors (for
further details see Herzig, 1985).

The analysis of experimental results faces two obstacles: (i)
The nuclear quadrupole moments (Pyykkö, 1992) are often
known only with a large uncertainty, as this is still an active
research field of nuclear physics. (ii) EFGs depend very sensi-
tively on the anisotropy of the charge density close to the nucleus,
and thus pose a severe challenge to electronic structure methods,
since an accuracy of the density in the per cent range is required.

In the absence of a better tool, a simple point-charge model
was used in combination with so-called Sternheimer (anti-)
shielding factors in order to interpret the experimental results.
However, these early model calculations depended on empirical
parameters, were not very reliable and often showed large
deviations from experimental values.

In their pioneering work, Blaha et al. (1985) showed that the
LAPW method was able to calculate EFGs in solids accurately
without empirical parameters. Since then, this method has been
applied to a large variety of systems (Schwarz & Blaha, 1992)
from insulators (Blaha et al., 1985), metals (Blaha et al., 1988) and
superconductors (Schwarz et al., 1990) to minerals (Winkler et al.,
1996).

Several other electronic structure methods have been applied
to the calculation of EFGs in solids, for example the LMTO
method for periodic (Methfessl & Frota-Pessoa, 1990) or non-
periodic (Petrilli & Frota-Pessoa, 1990) systems, the KKR
method (Akai et al., 1990), the DVM (discrete variational
method; Ellis et al., 1983), the PAW method (Petrilli et al., 1998)
and others (Meyer et al., 1995). These methods achieve different
degrees of accuracy and are more or less suitable for different
classes of systems.

As pointed out above, measured EFGs have an intrinsic
uncertainty related to the accuracy with which the nuclear
quadrupole moment is known. On the other hand, the quadru-
pole moment can be obtained by comparing experimental
hyperfine splittings with very accurate electronic structure
calculations. This has recently been done by Dufek et al. (1995a)
to determine the quadrupole moment of 57Fe. Hence the calcu-
lation of accurate EFGs is to date an active and challenging
research field.

2.2.15.2. EFG conversion formulas

The nuclear quadrupole interaction (NQI) represents the
interaction of Q (the nuclear quadrupole moment) with the
electric field gradient (EFG) created by the charges surrounding
the nucleus, as described above. Here we briefly summarize the
main ideas (following Petrilli et al., 1998) and provide conversions
between experimental NQI splittings and electric field gradients.

Let us consider a nucleus in a state with nuclear spin quantum
number I > 1=2 with the corresponding nuclear quadrupole
moment Qi;j ¼ ð1=eÞ

R
d3r�nðrÞrirj, where �nðrÞ is the nuclear
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charge density around point r and e is the proton’s charge. The
interaction of this Q with an electric field gradient tensor Vi;j,

H ¼ e
P

i;j

Qi;jVi;j; ð2:2:15:2Þ

splits the energy levels EQ for different magnetic spin quantum
numbers mI ¼ I; I � 1; . . . ;�I of the nucleus according to

EQ ¼
eQVzz½3m

2
I � IðI þ 1Þ�ð1þ 
2=3Þ1=2

4Ið2I � 1Þ
ð2:2:15:3Þ

in first order of Vi;j, where Q represents the largest component of
the nuclear quadrupole moment tensor in the state characterized
by mI ¼ I. (Note that the quantum-mechanical expectation value
of the charge distribution in an angular momentum eigenstate is
cylindrical, which renders the expectation value of the remaining
two components with half the value and opposite sign.) The
conventional choice is jVzzj > jVyyj 	 jVxxj. Hence, Vzz is the
principal component (largest eigenvalue) of the electric field
gradient tensor and the asymmetry parameter 
 is defined by the
remaining two eigenvalues Vxx;Vyy through


 ¼
jðVxx � VyyÞj

jVzzj
: ð2:2:15:4Þ

(2.2.15.3) shows that the electric quadrupole interaction splits the
(2I þ 1)-fold degenerate energy levels of a nuclear state with spin
quantum number I (I > 1=2) into I doubly degenerate substates
(and one singly degenerate state for integer I). Experiments
determine the energy difference � between the levels, which is
called the quadrupole splitting. The remaining degeneracy can be
lifted further using magnetic fields.

Next we illustrate these definitions for 57Fe, which is the most
common probe nucleus in Mössbauer spectroscopy measure-
ments and thus deserves special attention. For this probe, the
nuclear transition occurs between the I ¼ 3=2 excited state and
I ¼ 1=2 ground state, with a 14.4 KeV � radiation emission. The
quadrupole splitting between the mI ¼ �ð1=2Þ and the
mI ¼ �ð3=2Þ state can be obtained by exploiting the Doppler
shift of the � radiation of the vibrating sample.

� ¼
VzzeQð1þ 
2=3Þ1=2

2
: ð2:2:15:5Þ

For systems in which the 57Fe nucleus has a crystalline environ-
ment with axial symmetry (a threefold or fourfold rotation axis),
the asymmetry parameter 
 is zero and � is given directly by

� ¼
VzzeQ

2
: ð2:2:15:6Þ

As 
 can never be greater than unity, the difference between the
values of � given by equation (2.2.15.5) and equation (2.2.15.6)
cannot be more than about 15%. In the remainder of this section
we simplify the expressions, as is often done, by assuming that

 ¼ 0. As Mössbauer experiments exploit the Doppler shift of
the � radiation, the splitting is expressed in terms of the velocity
between sample and detector. The quadrupole splitting can be
obtained from the velocity, which we denote here by �v, by

� ¼
E�

c
�v; ð2:2:15:7Þ

where c ¼ 2:9979245580� 108 m s�1 is the speed of light and
E� ¼ 14:41� 103 eV is the energy of the emitted � radiation of
the 57Fe nucleus.

Finally, we still need to know the nuclear quadrupole moment
Q of the Fe nucleus itself. Despite its utmost importance, its value
has been heavily debated. Recently, however, Dufek et al.
(1995b) have determined the value Q ¼ 0:16 b for 57Fe (1 b
¼ 10�28 m2) by comparing for fifteen different compounds

theoretical Vzz values, which were obtained using the linearized
augmented plane wave (LAPW) method, with the measured
quadrupole splitting at the Fe site.

Now we relate the electric field gradient Vzz to the Doppler
velocity via

�v ¼
eQc

2E�
Vzz: ð2:2:15:8Þ

In the special case of the 57Fe nucleus, we obtain

Vzz ½10
21 V m�2� ¼ 104

2E� ½eV�

c ½m s�1�Q ½b�
�v ½mm s�1�


 6�v ½mm s�1�: ð2:2:15:9Þ

EFGs can also be obtained by techniques like NMR or NQR,
where a convenient measure of the strength of the quadrupole
interaction is expressed as a frequency �q, related to Vzz by

�q ¼
3eQVzz

2hIð2I � 1Þ
: ð2:2:15:10Þ

The value Vzz can then be calculated from the frequency in MHz
by

Vzz ½10
21 V m�2� ¼ 0:02771

Ið2I � 1Þ

Q ½b�
�q ½MHz�; ð2:2:15:11Þ

where ðh=eÞ ¼ 4:1356692� 10�15 V Hz�1. The principal compo-
nent Vzz is also often denoted as eq ¼ Vzz.

In the literature, two conflicting definitions of �q are in use.
One is given by (2.2.15.10), and the other, defined as

�q ½Hz� ¼
e2qQ

2h
; ð2:2:15:12Þ

differs from the first by a factor of 2 and assumes the value
I ¼ 3=2. Finally, the definition of q ¼ Vzz=e has been introduced
here. In order to avoid confusion, we will refer here only to the
definition given by (2.2.15.10). Furthermore, we also adopt the
same sign convention for Vzz as Schwarz et al. (1990) because it
has been found to be consistent with the majority of experimental
results.

2.2.15.3. Theoretical approach

Since the EFG is a ground-state property that is uniquely
determined by the charge density distribution (of electrons and
nuclei), it can be calculated within DFT without further
approximations. Here we describe the basic formalism to calcu-
late EFGs with the LAPW method (see Section 2.2.12). In the
LAPW method, the unit cell is divided into non-overlapping
atomic spheres and an interstitial region. Inside each sphere the
charge density (and analogously the potential) is written as radial
functions �LMðrÞ times crystal harmonics (2.2.13.4) and in the
interstitial region as Fourier series:

�ðrÞ ¼

P

LM

�LMðrÞKLMðr̂rÞ inside sphere
P

K

�K expðiKrÞ outside sphere

8
<

:
ð2:2:15:13Þ

The charge density coefficients �LMðrÞ can be obtained from the
wavefunctions (KS orbitals) by (in shorthand notation)

�LMðrÞ ¼
P

E
j

k
<EF

P

‘m

P

‘0m0

R‘mðrÞR‘0m0 ðrÞGMmm0

L‘‘0 ; ð2:2:15:14Þ

where GMmm0

L‘‘0 are Gaunt numbers (integrals over three spherical
harmonics) and R‘mðrÞ denote the LAPW radial functions [see
(2.2.12.1)] of the occupied states Ej

k below the Fermi energy EF.
The dependence on the energy bands in R‘mðrÞ has been omitted
in order to simplify the notation.
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For a given charge density, the Coulomb potential is obtained
numerically by solving Poisson’s equation in form of a boundary-
value problem using a method proposed by Weinert (1981). This
yields the Coulomb potential coefficients vLMðrÞ in analogy to
(2.2.15.13) [see also (2.2.12.5)]. The most important contribution
to the EFG comes from a region close to the nucleus of interest,
where only the L ¼ 2 terms are needed (Herzig, 1985). In the
limit r ! 0 (the position of the nucleus), the asymptotic form of
the potential rLvLMKLM can be used and this procedure yields
(Schwarz et al., 1990) for L ¼ 2:

V2M ¼ �C2M

Z R

0

�2MðrÞ

r3
r2 drþ C2M

Z R

0

�2MðrÞ

r

r

R

� �5

dr

þ 5
C2M

R2

X

K

VðKÞj2ðKRÞK2MðKÞ; ð2:2:15:15Þ

with C2M ¼ 2
ffiffiffiffiffiffiffiffiffiffi
4�=5

p
, C22 ¼

ffiffiffiffiffiffiffi
3=4

p
C20 and the spherical Bessel

function j2. The first term in (2.2.15.15) (called the valence EFG)
corresponds to the integral over the respective atomic sphere
(with radius R). The second and third terms in (2.2.15.15) (called
the lattice EFG) arise from the boundary-value problem and from
the charge distribution outside the sphere considered. Note that
our definition of the lattice EFG differs from that based on the
point-charge model (Kaufmann & Vianden, 1979). With these
definitions the tensor components are given as

Vxx ¼ C V22þ � 1=
ffiffiffi
3

p� �
V20

h i

Vyy ¼ C �V22þ � 1=
ffiffiffi
3

p� �
V20

h i

Vzz ¼ C 2=
ffiffiffi
3

p� �
V20

Vxy ¼ CV22�

Vxz ¼ CV21þ

Vyz ¼ CV21� ð2:2:15:16Þ

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
15=4�

p
and the indexM combines m and the partity

p (e.g. 2þ). Note that the prefactors depend on the normalization
used for the spherical harmonics.

The non-spherical components of the potential vLM come from
the non-spherical charge density �LM. For the EFG only the
L ¼ 2 terms (in the potential) are needed. If the site symmetry
does not contain such a non-vanishing term (as for example in a
cubic system with L ¼ 4 in the lowest LM combination), the
corresponding EFG vanishes by definition. According to the
Gaunt numbers in (2.2.15.14) only a few non-vanishing terms
remain (ignoring f orbitals), such as the p–p, d–d or s–d combi-
nations (for f orbitals, p–f and f–f would appear), where this
shorthand notation denotes the products of the two radial func-
tions R‘mðrÞR‘0m0 ðrÞ. The s–d term is often small and thus is not
relevant to the interpretation. This decomposition of the density
can be used to partition the EFG (illustrated for the Vzz

component),

Vzz 
 Vp
zz þ Vd

zz þ small contributions; ð2:2:15:17Þ

where the superscripts p and d are a shorthand notation for the
product of two p- or d-like functions.

From our experience we find that the first term in (2.2.15.15) is
usually by far the most important and often a radial range up to
the first node in the corresponding radial function is all that
contributes. In this case the contribution from the other two
terms is rather small (a few per cent). For first-row elements,
however, which have no node in their 2p functions, this is no
longer true and thus the first term amounts only to about 50–
70%.

In some cases interpretation is simplified by defining a so-
called asymmetry count, illustrated below for the oxygen sites in
YBa2Cu3O7 (Schwarz et al., 1990), the unit cell of which is shown
in Fig. 2.2.15.1.

In this case essentially only the O 2p orbitals contribute to the
O EFG. Inside the oxygen spheres (all taken with a radius of
0.82 Å) we can determine the partial charges qi corresponding to
the px, py and pz orbitals, denoted in short as px, py and pz charges.

With these definitions we can define the p-like asymmetry
count as

�np ¼
1
2ðpx þ pyÞ � pz ð2:2:15:18Þ

and obtain the proportionality

Vzz / 1=r3
� �

p
�np; ð2:2:15:19Þ

where 1=r3
� �

p
is the expectation value taken with the p orbitals. A

similar equation can be defined for the d orbitals. The factor 1=r3

enhances the EFG contribution from the density anisotropies
close to the nucleus. Since the radial wavefunctions have an
asymptotic behaviour near the origin as r‘, the p orbitals are more
sensitive than the d orbitals. Therefore even a very small p
anisotropy can cause an EFG contribution, provided that the
asymmetry count is enhanced by a large expectation value.

Often the anisotropy in the px, py and pz occupation numbers
can be traced back to the electronic structure. Such a physical
interpretation is illustrated below for the four non-equivalent
oxygen sites in YBa2Cu3O7 (Table 2.2.15.1). Let us focus first on
O1, the oxygen atom that forms the linear chain with the Cu1
atoms along the b axis. In this case, the py orbital of O1 points
towards Cu1 and forms a covalent bond, leading to bonding and
antibonding states, whereas the other two p orbitals have no
bonding partner and thus are essentially nonbonding. Part of the
corresponding antibonding states lies above the Fermi energy
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Fig. 2.2.15.1. Unit cell of the high-temperature superconductor YBa2Cu3O7

with four non-equivalent oxygen sites.

Table 2.2.15.1. Partial O 2p charges (in electrons) and electric field gradient
tensor O EFG (in 1021 V m�2) for YBa2Cu3O7

Numbers in bold represent the main deviation from spherical symmetry in the 2p
charges and the related principal component of the EFG tensor.

Atom px py pz Vaa Vbb Vcc

O1 1.18 0.91 1.25 �6.1 18.3 �12.2
O2 1.01 1.21 1.18 11.8 �7.0 �4.8
O3 1.21 1.00 1.18 �7.0 11.9 �4.9
O4 1.18 1.19 0.99 �4.7 �7.0 11.7
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and thus is not occupied, leading to a smaller pz charge of 0.91 e,
in contrast to the fully occupied nonbonding states with occu-
pation numbers around 1.2 e. (Note that only a fraction of the
charge stemming from the oxygen 2p orbitals is found inside the
relatively small oxygen sphere.) This anisotropy causes a finite
asymmetry count [(2.2.15.18)] that leads – according to
(2.2.15.19) – to a corresponding EFG.

In this simple case, the anisotropy in the charge distribution,
given here by the different p occupation numbers, is directly
proportional to the EFG, which is given with respect to the crystal
axes and is thus labelled Vaa, Vbb and Vcc (Table 2.2.15.1). The
principal component of the EFG is in the direction where the p
occupation number is smallest, i.e. where the density has its
highest anisotropy. The other oxygen atoms behave very simi-
larly: O2, O3 and O4 have a near neighbour in the a, b and c
direction, respectively, but not in the other two directions.
Consequently, the occupation number is lower in the direction in
which the bond is formed, whereas it is normal (around 1.2 e) in
the other two directions. The principal axis falls in the direction of
the low occupation. The higher the anisotropy, the larger the
EFG (compare O1 with the other three oxygen sites). Excellent
agreement with experiment is found (Schwarz et al., 1990). In a
more complicated situation, where p and d contributions to the
EFG occur [see (2.2.15.17)], which often have opposite sign, the
interpretation can be more difficult [see e.g. the copper sites in
YBa2Cu3O7; Schwarz et al. (1990)].

The importance of semi-core states has been illustrated for
rutile, where the proper treatment of 3p and 4p states is essential
to finding good agreement with experiment (Blaha et al., 1992).
The orthogonality between ‘-like bands belonging to different
principal quantum numbers (3p and 4p) is important and can be
treated, for example, by means of local orbitals [see (2.2.12.4)].

In many simple cases, the off-diagonal elements of the EFG
tensor vanish due to symmetry, but if they don’t, diagonalization
of the EFG tensor is required, which defines the orientation of
the principal axis of the tensor. Note that in this case the orien-
tation is given with respect to the local coordinate axes (see
Section 2.2.13) in which the LM components are defined.

2.2.16. Examples

The general concepts described above are used in many band-
structure applications and thus can be found in the corresponding
literature. Here only a few examples are given in order to illus-
trate certain aspects.

2.2.16.1. F.c.c. copper

For the simple case of an element, namely copper in the f.c.c.
structure, the band structure is shown in Fig. 2.2.16.1 along the �

symmetry direction from � to X. The character of the bands can
be illustrated by showing for each band state the crucial infor-
mation that is contained in the wavefunctions. In the LAPW
method (Section 2.2.12), the wavefunction is expanded in atomic
like functions inside the atomic spheres (partial waves), and thus
a spatial decomposition of the associated charge and its portion
of ‘-like charge (s-, p-, d-like) inside the Cu sphere, qCu‘ ðE

j
kÞ,

provides such a quantity. Fig. 2.2.16.1 shows for each state E
j
k a

circle the radius of which is proportional to the ‘-like charge of
that state. The band originating from the Cu 4s and 4p orbitals
shows an approximately free-electron behaviour and thus a k2

energy dependence, but it hybridizes with one of the d bands in
the middle of the � direction and thus the ‘-like character
changes along the � direction.

This can easily be understood from a group-theoretical point of
view. Since the d states in an octahedral environment split into
the eg and t2g manifold, the d bands can be further partitioned
into the two subsets as illustrated in Fig. 2.2.16.2. The s band
ranges from about �9.5 eV below EF to about 2 eVabove. In the
� direction, the s band has�1 symmetry, the same as one of the d
bands from the eg manifold, which consists of �1 and �2. As a
consequence of the ‘non-crossing rule’, the two states, both with
�1 symmetry, must split due to the quantum-mechanical inter-
action between states with the same symmetry. This leads to the
avoided crossing seen in the middle of the � direction (Fig.
2.2.16.1). Therefore the lowest band starts out as an ‘s band’ but
ends nearX as a ‘d band’. This also shows that bands belonging to
different irreducible representations (small representations) may
cross. The fact that �12 splits into the subgroups �1 and �2 is an
example of the compatibility relations. In addition, group-
theoretical arguments can be used (Altmann, 1994) to show that
in certain symmetry directions the bands must enter the face of
the BZ with zero slope.

Note that in a site-centred description of the wavefunctions a
similar ‘-like decomposition of the charge can be defined as
1 ¼

P
t

P
‘ q

t
‘ (without the qout term), but here the partial

charges have a different meaning than in the spatial decom-
position. In one case (e.g. LAPW), qt‘ refers to the partial charge
of ‘-like character inside sphere t, while in the other case
(LCAO), it means ‘-like charge coming from orbitals centred at
site t. For the main components (for example Cu d) these two
procedures will give roughly similar results, but the small
components have quite a different interpretation. For this
purpose consider an orbital that is centred on the neighbouring
site j, but whose tail enters the atomic sphere i. In the spatial
representation this tail coming from the j site must be repre-
sented by the (s, p, d etc.) partial waves inside sphere i and
consequently will be associated with site i, leading to a small
partial charge component. This situation is sometimes called the
off-site component, in contrast to the on-site component, which
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Fig. 2.2.16.1. Character of energy bands of f.c.c. copper in the� direction. The radius of each circle is proportional to the respective partial charge of the given
state.
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will appear at its own site or in its own sphere, depending on the
representation, site-centred or spatially confined.

2.2.16.2. The rutile TiO2

The well known rutile structure (e.g. TiO2) is tetragonal (see
Fig. 2.2.16.3) with the basis consisting of the metal atoms at the 2a
Wyckoff positions, (0; 0; 0) and (12 ;

1
2 ;

1
2), and anions at the 4f

position, located at (�u;�u; 0) and (12 � u; 12 � u; 12) with a typical
value of about 0.3 for the internal coordinate u. Rutile belongs to
the non-symmorphic space group P42=mmm (D14

4h) in which the
metal positions are transformed into each other by a rotation by
90� around the crystal c axis followed by a non-primitive trans-
lation of (12 ;

1
2 ;

1
2). The two metal positions at the centre and at the

corner of the unit cell are equivalent when the surrounding
octahedra are properly rotated. The metal atoms are octahedrally
coordinated by anions which, however, do not form an ideal
octahedron. The distortion depends on the structure parameters
a, c=a and u, and results in two different metal–anion distances,
namely the apical distance da and the equatorial distance de, the
height (z axis) and the basal spacing of the octahedron. For a
certain value u� the two distances da and de become equal:

u ¼ u� ¼ 1
4 ½1þ

1
2 ðc=aÞ

2
�: ð2:2:16:1Þ

For this special value u� and an ideal c=a ratio, the basal plane of
the octahedron is quadratic and the two distances are equal. An
ideal octahedral coordination is thus obtained with

da ¼ de; c ¼
ffiffiffi
2

p
ð1� 2uÞa ð2:2:16:2Þ

uideal ¼
1
2 ð2�

ffiffiffi
2

p
Þ ¼ 0:293 ð2:2:16:3Þ

ðc=aÞideal ¼ 2�
ffiffiffi
2

p
¼ 0:586: ð2:2:16:4Þ

Although the actual coordination of the metal atoms deviates
from the ideal octahedron (as in all other systems that crystallize
in the rutile structure), we still use this concept for symmetry
arguments and call it octahedral coordination.

The concept of a local coordinate
system is illustrated for rutile (TiO2) from
two different aspects, namely the crystal
harmonics expansion (see Section 2.2.13)
and the interpretation of chemical
bonding (for further details see Sorantin
& Schwarz, 1992).

(i) The expansion in crystal harmonics.
We know that titanium occupies the
Wyckoff position 2a with point group
mmm. From Table 2.2.13.1 we see that for
point group mmm (listed under the
orthorhombic structure) we must choose
the x axis parallel to [110], the y axis
parallel to [110] and the z axis parallel to
[001]. We can transform the global coor-
dinate system (i.e. that of the unit cell)
into the local coordinate system around
Ti. The following first LM combinations

appear in the series (2.2.12.5): ðLMÞ ¼ ð0; 0Þ; ð2; 0Þ; ð2; 2Þ; ð4; 0Þ;
ð4; 2Þ; ð4; 4Þ; . . ., etc.

(ii) The interpretation of bonding. The second reason for
choosing a local coordinate system is that it allows the use of
symmetry-adapted orbitals for interpreting bonding, interactions
or crystal-field effects. For this purpose, one likes to have the axes
pointing to the six oxygen ligands, i.e. the x and y axes towards the
oxygen atoms in the octahedral basal plane, and the z axis
towards the apical oxygen (Fig. 2.2.16.3). The Cartesian x and y
axes, however, are not exactly (but approximately) directed
toward the oxygen ligands due to the rectangular distortion of the
octahedral basal plane.

For oxygen in TiO2 with point group mm2, the two types of
local systems are identical and are shown in Fig. 2.2.16.3 for the
position (12 � u; 12 þ u; 12). The z axis coincides with that of the Ti
atom, while it points to the neighbouring oxygen of the basal
plane in the octahedron around Ti at the origin. Only in this local
coordinate system are the orbitals arranged in the usual way for
an octahedron, where the d orbitals split (into the three orbitals
of t2g and the two of eg symmetry) and thus allow an easy inter-
pretation of the interactions, e.g. one of the two eg orbitals,
namely the Ti dz2 can form a � bond with the O pz orbital.
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Fig. 2.2.16.2. Decomposition of the Cu d bands into the eg and t2g manifold. The radius of each circle is
proportional to the corresponding partial charge.

Fig. 2.2.16.3. The local coordinate system in rutile for titanium (small
spheres) and oxygen (large spheres). Fig. 2.2.16.4. Schematic transitions in X-ray emission and absorption spectra.



2. SYMMETRYASPECTS OF EXCITATIONS

2.2.16.3. Core electron spectra

In excitations involving core electrons, simplifications are
possible that allow an easier interpretation. As one example,
(soft) X-ray emission (XES) or absorption (XAS) spectra are
briefly discussed. In the one-electron picture, the XES process
can be described as sketched in Fig. 2.2.16.4. First a core electron
of atom A in state n0‘0 is knocked out (by electrons or photons),
and then a transition occurs between the occupied valence states
at energy " and the core hole (the transitions between inner core
levels are ignored).

According to Fermi’s golden rule, the intensity of such a
transition can be described by

IAn0‘0 ð�Þ ¼ �3
P

‘

W‘‘0n
A
‘ ð"ÞMAð‘; n

0‘0; "Þ2�ð"� EA
n0‘0 � h�Þ;

ð2:2:16:5Þ

whereW‘‘0 comes from the integral over the angular components
(Table 2.2.16.1) and contains the �‘ ¼ �1 selection rule, nA‘ ð"Þ is
the local (within atomic sphere A) partial (‘-like) DOS,
MAð‘; n

0‘0; "Þ2 is the radial transition probability [see (2.2.16.6)
below], and the last term takes the energy conservation into
account.

The MAð‘; n
0‘0; "Þ2 are defined as the dipole transition (with

the dipole operator r) probability between the valence state at "
and the core state characterized by quantum numbers n0‘0,

MAð‘; n
0‘0; "Þ2 ¼

½
R RA

0 uA‘ ðr; "Þr
3RA core

n0‘0 ðrÞ dr�2

R RA

0 ½uA‘ ðr; "Þ�
2r2 dr

: ð2:2:16:6Þ

In this derivation one makes use of the fact that core states are
completely confined inside the atomic sphere. Therefore the
integral, which should be taken over the entire space, can be
restricted to one atomic sphere (namely A), since the core
wavefunction RA core

n0‘0 ðrÞ and thus the integrand vanishes outside
this sphere. This is also the reason why XES (or XAS) are related
to nA‘ ð"Þ, the local DOS weighted with the ‘-like charge within the
atomic sphere A.

The interpretation of XES intensities is as follows. Besides the
�3 factor from Fermi’s golden rule, the intensity is governed by
the �‘ ¼ �1 selection rule and the energy conservation. In
addition, it depends on the number of available states at " which
reside inside sphere A and have an ‘-like contribution, times the
probability for the transition to take place from the valence and
to the core hole under energy conservation. For an application,
see for example the comparison between theory and experiment
for the compounds NbC and NbN (Schwarz, 1977).

Note again that the present description is based on an atomic
sphere representation with partial waves inside the spheres, in
contrast to an LCAO-like treatment with site-centred basis
functions. In the latter, an equivalent formalism can be defined
which differs in details, especially for the small components (off-
site contributions). If the tails of an orbital enter a neighbouring
sphere and are crucial for the interpretation of XES, there is a
semantic difference between the two schemes as discussed above
in connection with f.c.c. Cu in Section 2.2.16.1. In the present
framework, all contributions come exclusively from the sphere
where the core hole resides, whereas in an LCAO representation
‘cross transitions’ from the valence states on one atom to the core

hole of a neighbouring atom may be important. The latter
contributions must be (and are) included in the partial waves
within the sphere in schemes such as LAPW. There is no physical
difference between the two descriptions.

In XES, spectra are interpreted on the basis of results from
ground-state calculations, although there could be relaxations
due to the presence of a core hole. As early as 1979, von Barth
and Grossmann formulated a ‘final state rule’ for XES in metallic
systems (von Barth & Grossmann, 1979). In this case, the initial
state is one with a missing core electron (core hole), whereas the
final state is close to the ground state, since the hole in the
valence bands (after a valence electron has filled the core hole)
has a very short lifetime and is very quickly filled by other valence
electrons. They applied time-dependent perturbation theory and
could show by model calculations that the main XES spectrum
can be explained by ground-state results, whereas the satellite
spectrum (starting with two core holes and ending with one)
requires a treatment of the core-hole relaxation. This example
illustrates the importance of the relevant physical process in
experiments related to the energy-band structure: it may not
always be the just the ground states that are involved and
sometimes excited states must be considered.

2.2.17. Conclusion

There are many more applications of band theory to solids and
thus an enormous amount of literature has not been covered
here. In this chapter, an attempt has been made to collect rele-
vant concepts, definitions and examples from group theory, solid-
state physics and crystallography in order to understand
symmetry aspects in combination with a quantum-mechanical
treatment of the electronic structure of solids.

The author wishes to thank the following persons who
contributed to this chapter: P. Blaha, the main author of WIEN;
J. Luitz, for help with the figures; and P. Herzig, with whom the
author discussed the group-theoretical aspects.
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2.3. Raman scattering

By I. Gregora

2.3.1. Introduction

The term Raman scattering, traditionally used for light scattering
by molecular vibrations or optical lattice vibrations in crystals, is
often applied in a general sense to a vast variety of phenomena of
inelastic scattering of photons by various excitations in molecules,
solids or liquids. In crystals these excitations may be collective
(phonons, plasmons, polaritons, magnons) or single-particle
(electrons, electron–hole pairs, vibrational and electronic exci-
tation of impurities). Raman scattering provides an important
tool for the study of the properties of these excitations. In the
present chapter, we shall briefly review the general features of
Raman scattering in perfect crystals on a phenomenological basis,
paying special attention to the consequences of the crystal
symmetry. Our focus will be mainly on Raman scattering by
vibrational excitations of the crystal lattice – phonons. Never-
theless, most of the conclusions have general validity and may be
(with possible minor modifications) transferred also to inelastic
scattering by other excitations.

2.3.2. Inelastic light scattering in crystals – basic notions

Although quantum concepts must be used in any complete theory
of inelastic scattering, basic insight into the problem may be
obtained from a semiclassical treatment. In classical terms, the
origin of inelastically scattered light in solids should be seen in
the modulation of the dielectric susceptibility of a solid by
elementary excitations. The exciting light polarizes the solid and
the polarization induced via the modulated part of the suscept-
ibility is re-radiated at differently shifted frequencies. Thus
inelastic scattering of light by the temporal and spatial fluctua-
tions of the dielectric susceptibility that are induced by elemen-
tary excitations provides information about the symmetry and
wavevector-dependent frequencies of the excitations themselves
as well as about their interaction with electromagnetic waves.

2.3.2.1. Kinematics

Let us consider the incident electromagnetic radiation, the
scattered electromagnetic radiation and the elementary excita-
tion to be described by plane waves. The incident radiation is
characterized by frequency !I, wavevector kI and polarization
vector eI . Likewise, the scattered radiation is characterized by !S,
kS and eS:

EI;Sðr; tÞ ¼ EI;SeI;S expðikI;Sr� !tÞ: ð2:3:2:1Þ

The scattering process involves the annihilation of the incident
photon, the emission or annihilation of one or more quanta of
elementary excitations and the emission of a scattered photon.
The scattering is characterised by a scattering frequency ! (also
termed the Raman shift) corresponding to the energy transfer h- !
from the radiation field to the crystal, and by a scattering wave-
vector q corresponding to the respective momentum transfer h- q.
Since the energy and momentum must be conserved in the
scattering process, we have the conditions

!I � !S ¼ !;

kI � kS ¼ q: ð2:3:2:2Þ

Strictly speaking, the momentum conservation condition is valid
only for sufficiently large, perfectly periodic crystals. It is further
assumed that there is no significant absorption of the incident and

scattered light beams, so that the wavevectors may be considered
real quantities.

Since the photon wavevectors (kI , kS) and frequencies (!I , !S)
are related by the dispersion relation ! ¼ ck=n, where c is the
speed of light in free space and n is the refractive index of the
medium at the respective frequency, the energy and wavevector
conservation conditions imply for the magnitude of the scattering
wavevector q

c2q2 ¼ n2I!
2
I þ n2Sð!I � !Þ

2
� 2nInS!Ið!I � !Þ cos ’; ð2:3:2:3Þ

where ’ is the scattering angle (the angle between kI and kS). This
relation defines in the (!; q) plane the region of wavevectors and
frequencies accessible to the scattering. This relation is particu-
larly important for scattering by excitations whose frequencies
depend markedly on the scattering wavevector (e.g. acoustic
phonons, polaritons etc.).

2.3.2.2. Cross section

In the absence of any excitations, the incident field EI at
frequency !I induces in the crystal the polarization P, related to
the field by the linear dielectric susceptibility tensor � ("0 is the
permittivity of free space):

P ¼ "0�ð!IÞEI : ð2:3:2:4Þ

The linear susceptibility �ð!IÞ is understood to be independent of
position, depending on the crystal characteristics and on the
frequency of the radiation field only. In the realm of nonlinear
optics, additional terms of higher order in the fields may be
considered; they are expressed through the respective nonlinear
susceptibilities.

The effect of the excitations is to modulate the wavefunctions
and the energy levels of the medium, and can be represented
macroscopically as an additional contribution to the linear
susceptibility. Treating this modulation as a perturbation, the
resulting contribution to the susceptibility tensor, the so-called
transition susceptibility �� can be expressed as a Taylor expansion
in terms of normal coordinates Qj of the excitations:

�! �þ ��; where �� ¼
P

j

�ðjÞQj þ
P

j;j0
�ðj;j

0ÞQjQj0 þ . . .:

ð2:3:2:5Þ

The tensorial coefficients �ðjÞ; �ðj;j
0Þ; . . . in this expansion are, in a

sense, higher-order susceptibilities and are often referred to as
Raman tensors (of the first, second and higher orders). They are
obviously related to susceptibility derivatives with respect to the
normal coordinates of the excitations. The time-dependent
polarization induced by �� via time dependence of the normal
coordinates can be regarded as the source of the inelastically
scattered radiation.

The central quantity in the description of Raman scattering is
the spectral differential cross section, defined as the relative rate
of energy loss from the incident beam (frequency !I, polarization
eI) as a result of its scattering (frequency !S, polarization eS) in
volume V into a unit solid angle and unit frequency interval. The
corresponding formula may be concisely written as (see e.g.
Hayes & Loudon, 1978)

d2�

d� d!S

¼
!3
S!IV

2nS

ð4�Þ2c4nI
eI��eS
�
�

�
�2

D E

!
: ð2:3:2:6Þ
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2.3. RAMAN SCATTERING

The symbol . . .h i! stands for the power spectrum (correlation
function) of the transition susceptibility fluctuations. The spectral
differential cross section is the quantity that can be directly
measured in a Raman scattering experiment by analysing the
frequency spectrum of the light scattered into a certain direction.
By integrating over frequencies !S for a particular Raman band
and, in addition, over the solid angle, one obtains, respectively,
the differential cross section (d�=d�) and the total cross section
(�tot):

d�

d�
¼

Z
d2�

d� d!S

� �

d!S; �tot ¼

Z
d�

d�

� �

d�:

These quantities are useful in comparing the integrated scattered
intensity by different excitations.

2.3.2.3. Experimental aspects

In a scattering experiment on crystals, the choice of the scat-
tering geometry implies setting the propagation directions kI and
kS and the polarization of the incident and scattered light with
respect to the crystallographic axes and defining thus the direc-
tion of the scattering wavevector q as well as the particular
component (or a combination of components) of the transition
susceptibility tensor ��. In practice, the incident radiation is
almost exclusively produced by a suitable laser source, which
yields a monochromatic, polarized narrow beam, with a well
defined wavevector kI . The light scattered in the direction of kS is
collected over a certain finite solid angle ��. Its polarization is
analysed with a suitable polarization analyser, and the scattered
intensity as a function of frequency !S (or Raman shift !) is
analysed using a spectrometer.

To characterize the Raman scattering geometry in a particular
experimental arrangement, standard notation for the scattering
geometry is often used, giving the orientation of the wavevectors
and polarization vectors with respect to a reference Cartesian
coordinate system, namely: kIðeI; eSÞkS. Thus, for example, the
symbol xðzyÞzmeans that right-angle scattering geometry is used,
where the incident beam polarized in the z ¼ ½001� direction
propagates along the x ¼ ½100� axis, while the scattered beam is
collected in the z direction and the polarization analyser is set
parallel with the y ¼ ½010� direction. The measured intensity,
being proportional to j�zyj

2, gives information on this particular
component of the transition susceptibility tensor. By virtue of the
momentum conservation, the scattering wavevector q in this case
is oriented along the ½10�11� direction.

In a typical Raman experiment with visible light
(!� !I � !S), the magnitudes of the wavevectors kI � ks ¼ k
are of the order of 105 cm�1, much lower than those of the
reciprocal-lattice vectors K (� 108 cm�1). Consequently, the
range of the magnitudes of the scattering wavevectors q acces-
sible by varying the scattering geometry from ’ ¼ 0� (forward
scattering) to ’ ¼ 180� (back scattering) is 0 � q � 2k, i.e. by
about three orders of magnitude lower than the usual dimensions
of the Brillouin zone. The use of back-scattering geometry is
imperative in the case of opaque samples, which show stronger
absorption for the exciting (or scattered) light.

It should be noted that the general formula for the spectral
differential cross section (2.3.2.5) applies to the situation inside
the crystal. Since in real experiments the observer is always
outside the crystal, several corrections have to be taken into
account. These are in particular due to refraction, reflection and
transmission of the incident and scattered light at the interfaces,
as well as absorption of light in the crystal. Attention must be
paid in the case of anisotropic or gyrotropic crystals, where
birefringence or rotation of the polarization direction of both
incident and scattered light may occur on their paths through the
crystal, between the interfaces and the scattering volume.

We conclude this section by remarking that, owing to the
obvious difficulties in taking all the properties of the experi-
mental setup and the corrections into consideration, measure-
ments of absolute Raman intensities tend to be extremely rare.
There exist, however, several crystals for which absolute deter-
mination of the cross section for particular excitations has been
made with reasonable reliability and which may serve as
secondary standards.

2.3.3. First-order scattering by phonons

In what follows, we shall be more specific and by underlying
excitations we shall explicitly understand lattice vibrations –
phonons – although the treatment is also applicable to other
types of collective excitations in a crystal.

Let us recall (see Chapter 2.1) that atomic displacements in the
crystal lattice can be expressed as linear combinations of the
normal modes of vibrations – eigenvectors of the dynamical
matrix.

u�l ¼
X

q

X

j

u�lðq; jÞ ¼
1
ffiffiffiffiffiffiffiffiffi
Nm�

p
X

q

X

j

QjðqÞe�ðq; jÞ expðiqrlÞ;

ð2:3:3:1Þ

where l denotes the primitive unit cell, � (� ¼ 1; . . . ; s) is the
index of the atom (mass m�) in the unit cell and N is the number
of unit cells in the crystal. The eigenvectors e�ðq; jÞ, also called
polarization vectors, are normalized vectors describing the
displacement pattern of atoms in the reference unit cell in a jth
normal mode of vibration (j ¼ 1; 2; 3; . . . ; 3s) with a wavevector
q. The normal modes can be classified according to irreducible
representations of the crystal space group and labelled corre-
spondingly. In the case of degeneracy, the branch index j stands,
in fact, for two indices: one for the irreducible representation,
and the other distinguishing the degenerate partners of the same
frequency. The coefficients QjðqÞ are called normal coordinates
and represent the time-dependent amplitudes of the normal
modes, vibrating with frequencies !jðqÞ. The reality of the
displacements and the hermiticity of the dynamical matrix
impose the following conditions:

e�ðq; jÞ ¼ e��ð�q; jÞ; !jðqÞ ¼ !jð�qÞ; QjðqÞ ¼ Q�j ð�qÞ:

ð2:3:3:2Þ

In the limit of q! 0, three of the vibrational branches corre-
spond to homogeneous displacements of the crystal with
vanishing frequency along three independent directions. These
branches are termed acoustic. The remaining 3s� 3 branches
(provided that s> 1) are called optic; they correspond to relative
displacement of sublattices with nonzero frequency.

For completeness, we note that in a phenomenological treat-
ment the amplitude of the polarization set up by atomic displa-
cements of the normal modes with wavevector q can be expressed
as

P�ðqÞ ¼
P

j

Zj�ðqÞQjðqÞ; ð2:3:3:3Þ

introducing the (3s� 3) effective charge matrix of the jth normal
mode of vibration (per unit cell of volume Vc),

Zj�ðqÞ ¼
@P�ðqÞ

@QjðqÞ

� �

¼
1

Vc

X

�

z
ð�Þ
��

e��ðq; jÞ
ffiffiffiffiffiffiffiffiffi
Nm�

p : ð2:3:3:4Þ

The quantity z
ð�Þ
�� represents the microscopic effective charge of

the �th atom in the unit cell. Owing to dynamic contributions of
ionic deformability, it is not a scalar but rather a (3� 3) tensor in
general. Hence, in general, the direction of the contribution of a
mode to the electrical polarization (2.3.3.3) need not correspond
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to its mechanical polarization, as given by the mode eigenvectors
e�ðq; jÞ.

In some cases, the optic modes carrying a nonzero effective
charge Zj (so-called polar optic modes) may be classified as
transverse (TO) or longitudinal (LO). Whenever applicable, this
classification should be understood in the correct sense, i.e.
according to the orientation of the associated electric polarization
PjðqÞ ¼ ZjðqÞQjðqÞ relative to the wavevector q.

2.3.3.1. First-order scattering cross section and Raman spectral line
shapes

In the first-order scattering by a single excitation of the normal
mode (q; j) of frequency !j and wavevector qj, the energy and
wavevector conservation conditions give

! ¼ 	!j

q ¼ 	qj;

with the þ sign corresponding to a Stokes process (one excitation
quantum is created) and the� sign to an anti-Stokes process (one
quantum is annihilated).

Let us explicitly consider the Stokes component, described by
the term linear in the normal coordinate Qj of the excitation.
Inserting the plane-wave expressions for the quantities into the
first term of the expansion (2.3.2.5) for �� and comparing the
terms with common time dependence, we get for the Stokes
polarization due to the normal mode (q; j)

PðkSÞ ¼ "0�
ðjÞðq; !I;�!ÞQ

�
j ðq; !ÞEIðkIÞ;

which corresponds to a plane wave at a frequency of
!S ¼ !I � !.

Since, in the harmonic approximation, the normal modes (q; j)
are dynamically independent, i.e. uncorrelated, the cross section
for the Stokes component of the first-order scattering by phonons
can be written as a sum over contributions from individual
excitations. A summation convention over repeated Cartesian
indices is understood throughout this chapter:

d2�

d� d!S

¼
!3
S!IV

2nS

ð4�Þ2c4nI

X

j

eI��
ðjÞ
��ðq; !I;�!ÞeS�

�
�
�

�
�
�
2

QjðqÞQ
�
j ðqÞ

� �

!
:

ð2:3:3:5Þ

Let us first briefly review the last term in this expression, which
– together with the universal frequency-dependent first factor –
essentially determines the shape of the scattered light spectrum,
i.e. the frequency and temperature dependence of the spectral
differential cross section. It depends exclusively on the fluctua-
tion properties of the excitations participating in the scattering
process.

The power spectrum of the fluctuations can be calculated using
the linear response theory. The normal coordinates, i.e. excitation
amplitudes of the normal modes, satisfy the decoupled equations
of motion (with phenomenological damping constant � j;q added
to take into account the finite lifetime of excitations in real
crystals within the quasi-harmonic approximation):

€QQjðqÞ þ �j;q _QQjðqÞ þ !
2
j ðqÞ ¼ 0:

If a fictitious generalized force FðtÞ with Fourier components
Fð!Þ is applied to the system, the average of the Fourier
components of the excitation amplitude and the force are
proportional,

�QQjðq; !Þ ¼ Tjðq; !ÞFð!Þ;

where the proportionality coefficient Tjðq; !Þ is called a linear
response function.

The fluctuation–dissipation theorem (or, more exactly, its
quantum version) relates the power spectrum h. . .i! of a fluctu-
ating quantity to the imaginary part of the corresponding
response function. The results for the Stokes and anti-Stokes
components of the scattering are, respectively:

QjðqÞQ
�
j ðqÞ

� �

!
¼ ðh- =�Þ nð!Þ þ 1½ �ImTjðq; !Þ and

Q�j ðqÞQjðqÞ
� �

!
¼ ðh- =�Þnð!ÞImTjðq; !Þ; ð2:3:3:6Þ

where nð!Þ is the Bose–Einstein statistical factor

nð!Þ ¼ ½expðh- !=kBTÞ � 1��1; ð2:3:3:7Þ

which gives the occupation number of phonon states.
The linear response function of the normal coordinates is

readily obtained from the equation of motion (N being the
number of primitive cells in the crystal):

Tjðq; !Þ ¼
1

N

1

!2
j ðqÞ � !

2 � i!�j;q
; hence

ImTjðq; !Þ ¼
1

N

!�j;q

½!2
j ðqÞ � !

2�
2
þ !2�2j;q

:

If the damping parameter �j;q of the excitations is much smaller
than the frequency !jðqÞ, as is usually the case for phonons in
perfect crystals, this function is closely approximated by a
Lorentzian centred at !jðqÞ, with a full width �j;q at half
maximum. Hence, introducing a suitably normalized lineshape
function Ljð!Þ,

R1

�1

Ljð!Þ d! ¼ 1;

we can write for the power spectra (2.3.3.5) of the jth normal
mode in the spectral differential cross section

QjðqÞQ
�
j ðqÞ

� �

!
¼

h-

2N!jðqÞ
fn½!jðqÞ� þ 1gLjð!Þ and

Q�j ðqÞQjðqÞ
� �

!
¼

h-

2N!jðqÞ
n½!jðqÞ�Ljð!Þ ð2:3:3:8Þ

for the Stokes and anti-Stokes case, respectively.
Note that at low temperatures the differential cross section of

the anti-Stokes component in the spectrum becomes vanishingly
small, because the mean number of thermally excited phonons
vanishes at T ¼ 0.

Information about the interaction of photons with individual
excitations is contained in the central term in the expression for
the cross section (2.3.3.5), i.e. in the nonlinear susceptibility
�ðjÞ��ðq; !I;�!Þ.

2.3.3.2. Symmetry properties of the scattering cross section

The quantity that controls the symmetry properties of the
scattering cross section due to excitation QjðqÞ is the squared
modulus of the corresponding second-order susceptibility
(second-rank tensor), contracted with the two polarization
vectors of the incident and scattered light:

eSv
ðjÞðq; !I;�!ÞeI

�
�

�
�2
 eS��

ðjÞ
��ðq; !I;�!ÞeI�

�
�
�

�
�
�
2

: ð2:3:3:9Þ

The nonlinear susceptibility tensor v
ðjÞðq; !I;�!Þ is usually

referred to as the first-order Raman tensor (defined in the
literature to within a factor). Before discussing the consequences
of the crystal symmetry on the form of the Raman tensor, let us
mention two important approximations on which conventional
analysis of its symmetry properties is based.
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In a general case, the second-order susceptibilities are not
necessarily symmetric. However, they fulfil a general symmetry
property which follows from the symmetry of the scattering with
respect to time inversion. Since the anti-Stokes process can be
regarded as a time-inverted Stokes process (exchanging the role
of the incident and scattered photons), it can be shown that in
non-magnetic materials the susceptibilities obey the relation

�ðjÞ��ð�q; !S; !Þ ¼ �
ðjÞ
��ðq; !I;�!Þ: ð2:3:3:10Þ

In the quasi-static limit, i.e. if the scattering frequency is
negligibly small compared with the incident photon frequency
(0 � !� !I � !S), it follows that the susceptibilities of non-
magnetic materials become symmetric in the Cartesian indices �,
�. This symmetry is very well fulfilled in a great majority of cases.
Appreciable antisymmetric contributions are known to occur, e.g.
under resonant conditions, where the quasi-static approximation
breaks down as the energy of the incident (or scattered) photon
approaches those of electronic transitions.

Thus, in the first approximation, we set ! equal to zero and
remove the time dependence in the phonon amplitudes, treating
the normal coordinates as static. Then the nonlinear suscept-
ibilities correspond to susceptibility derivatives,

�ðjÞ��ðq; !I;�!Þ ! R
j
��ðqÞ 
 �

ðjÞ
�� q; !Ið Þ ¼

@���ð!IÞ

@Q�j ðqÞ
; ð2:3:3:11Þ

where we suppressed the explicit dependence on !I and intro-
duced a simplified notation for the Raman tensor RjðqÞ, still
keeping the dependence on the scattering wavevector.

In deriving the symmetry properties of the Raman tensor RjðqÞ
that follow from the crystal lattice symmetry, the main point is
thus to determine its transformation properties under the
symmetry operation of the crystal space group.

Since the magnitude of the scattering vector q 
 jqj is very
small compared with the Brillouin-zone dimensions, another
conventional approximation is to neglect the q dependence of
the susceptibilities. Setting q! 0 enables us to analyse the
symmetry of the Raman tensor in terms of the factor group G0,
which is isomorphous to the point group of the crystal lattice.
This approach is, again, appropriate for the vast majority of cases.
An important exception is, for instance, the scattering by acoustic
modes (Brillouin scattering) or scattering by longitudinal plasma
waves in semiconductors (plasmons): in these cases the Raman
tensor vanishes for q ¼ 0, since this limit corresponds to a
homogeneous displacement of the system. Possible q-dependent
effects can be treated by expanding the Raman tensor in powers
of q and using compatibility relations between the symmetries at
q ¼ 0 and at the full symmetries applicable in the q 6¼ 0 case.

Let us mention that another notation is sometimes used in the
literature for the Raman tensor. Since the square modulus of a
second-rank tensor contracted with two vectors can be written as
a fourth-rank tensor contracted with four vectors, one can
introduce a fourth-rank tensor IðjÞ,

I
ðjÞ
��	
 ¼

@����
@Qj

@�	

@Q�j

;

so that the scattering cross section of the jth mode is

d�ðjÞ

d� d!S

� eI�eI	eS�eS
I
ðjÞ
��	
:

If there are no antisymmetric components in the susceptibility
derivatives, it can be shown that the fourth-rank tensor
I ¼ ðI��	
Þ has at most 21 independent components, as for the
elastic constants tensor.

2.3.3.3. Raman tensor and selection rules at q � 0

The scattering cross section, being a scalar quantity, must be
invariant with respect to all symmetry elements of the space
group of the crystal. This invariance has two important conse-
quences: it determines which normal modes (j) can contribute to
the scattering (Raman activity of the modes) and it also gives the
restrictions on the number of independent components of the
Raman tensor (polarization selection rules).

At q � 0, the transformation properties of the incident and
scattered light are described by the three-dimensional polar
vector representation �PV of the appropriate point group of the
crystal, since the quantities that characterize the light (EI , ES,
P . . .) are all polar vectors, i.e. first-rank polar tensors (T�). The
transformation properties of a normal mode jmust correspond to
an irreducible matrix representation �ðjÞ of the crystal point
group. We recall that in cases of two- or three-dimensional
representations (degeneracy), the index j represents two indices.

In order that a particular normal mode j in a given crystal be
Raman active, i.e. symmetry-allowed to contribute to the (first-
order) scattering cross section, the necessary condition is that the
corresponding irreducible representation �ðjÞ must be contained
in the decomposition of the direct Kronecker product repre-
sentation �PV � �PV at least once:

�PV � �PV � �ðjÞ: ð2:3:3:12Þ

In this case, the Kronecker product �PV � �PV � �ðjÞ contains
the identity representation at least once, so the cross section
remains invariant under the transformation of the crystal point
group. In the phenomenological formulation, the susceptibility
derivatives correspond to third derivatives of a particular
potential energy � (interaction Hamiltonian),

R
j
�� ¼

@���
@Q�j

 !


@3�

@EI�@E
�
S�@Q

�
j

 !

; ð2:3:3:13Þ

such that the product �PV � �PV � �ðjÞ is the reducible repre-
sentation of the Raman tensor. If condition (2.3.3.12) holds, then
the Raman tensor Rj does not vanish identically and may have at
least one independent nonzero component. As the representa-
tion �PV � �PV is that of a second-rank polar tensor, equivalent
formulation of the Raman activity of a normal mode j is that the
corresponding normal coordinate Qj must transform like one or
more components of a polar tensor. The transition susceptibility
��ðjÞ transforms accordingly. The task of determining whether a
given normal mode j is Raman active or not thus consists of
simply decomposing the representation �PV � �PV and identi-
fying the irreducible components �ðjÞ.

The second consequence of the invariance condition is the
imposition of restrictions on the Cartesian components of the
Raman tensor for modes allowed to participate in the scattering.
By virtue of the properties of the irreducible representations �ðjÞ,
some components of the corresponding Raman tensor are
required to vanish whereas others may have related values. This
fact results in anisotropies in the observed cross section
depending on the polarization directions of the incident and
scattered light, and is usually referred to as polarization selection
rules. As the scattering cross section of the excitation (j) is
proportional to the scalar quantity

eSR
jeI

�
�

�
�2
 eS�R

j
��eI�

�
�
�

�
�
�
2

;

one can generally ‘isolate’ a given component of the Raman
tensor by suitably arranging the scattering geometry in the
experiment, i.e. by choosing the orientation of the wavevectors kI
and kS and the polarization vectors eI and eS with respect to
crystallographic axes.
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For each normal mode (j) allowed in the scattering, the
number of independent components of its Raman tensor is given
by the multiplicity coefficients cðjÞ of the irreducible representa-
tion �ðjÞ in the decomposition

�PV � �PV ¼ cð1Þ�ð1Þ � cð2Þ�ð2Þ � . . . ; ð2:3:3:14Þ

where the multiplicity coefficient cðjÞ corresponds to the number
of times the given irreducible representation �ðjÞ enters the
decomposition. If the representation �ðjÞ is two- or three-
dimensional, then for each occurrence of �ðjÞ in (2.3.3.14) there
are two or three degenerate partners (of the same frequency)
whose Raman tensors are symmetry-related.

The matrix form of the Raman tensor corresponding to a given
irreducible representation – i.e. symmetry species – �ðjÞ can be
readily constructed by finding the appropriate bilinear basis
functions that transform according to the corresponding irre-
ducible representation �ðjÞ. The required number of such inde-
pendent bases is given by the multiplicity coefficient cðjÞ.
Alternatively, one may construct invariant polynomials (trans-
forming as scalars) of order four, i.e. of the same order as the
product EI�ES�Qj.

Making allowance for possible antisymmetric scattering, we
have not explicitly supposed that the Raman tensor is symmetric.
We recall that the derivative (2.3.3.13) is not necessarily
symmetric in the � and � indices as long as the fields EI� and ES�

correspond to different frequencies (inelastic scattering).
However, each second-rank polar tensor T�� (nine components),
transforming according to �PV � �PV, can be decomposed into a
symmetric part T 0�� ¼ T 0�� (six components), transforming like a
symmetric polar tensor ½�PV � �PV�S, and an antisymmetric part
T 00�� ¼ �T

00
�� (three components), transforming like an axial

vector (for the definition of axial tensors, see Section 1.1.4.5.3)
according to �AV ¼ ½�PV � �PV�A.

The symmetry-restricted forms of the (3� 3) Raman tensors
corresponding to all Raman-active symmetry species are
summarized in Table 2.3.3.1 (see e.g. Hayes & Loudon, 1978) for
each of the 32 crystal symmetry classes. Spectroscopic notation is
used for the irreducible representations of the point groups. The
symbols (x, y or z) for some Raman-active symmetry species in
the noncentrosymmetric classes indicate that the respective
components of polar vectors also transform according to these
irreducible representations. Hence the normal coordinates of the
phonons of these polar symmetry species (polar phonons)
transform in the same way and, consequently, the corresponding
component of the effective charge tensor Zj�ðq ¼ 0Þ, see (2.3.3.4),
is not required by symmetry to vanish. Polar phonons thus may
carry a nonzero dipole moment and contribute to the polariza-
tion in the crystal, which manifests itself in infrared activity and
also in the Raman scattering cross section (see Section 2.3.3.5).

For convenience, the Raman tensors are explicitly split into a
symmetric and possible antisymmetric part (upper and lower row
of each part of the table, respectively, in each case). The
conventional symmetric Raman tensors are appropriate for most
cases of practical interest. Besides the resonant conditions
mentioned above, there are other exceptions. For instance, there
are optical phonons that transform like axial vectors, such as in
the case of A2 (or A2g, A

0
2) modes in some uniaxial crystal classes,

where the Raman tensor is purely antisymmetric. Antisymmetric
scattering by these modes may become allowed at finite wave-
vector q. Antisymmetric Raman tensors are also needed for
analysing the symmetry of scattering in magnetic materials
(scattering by spin waves – magnons), or non-magnetic materials
under a magnetic field, where the susceptibility itself is essentially
nonsymmetric.

We note that the matrix form of the Raman tensors depends on
the setting of the Cartesian axes with respect to the crystal-
lographic axes. To avoid ambiguities and apparent disagreement
with other sources, we give the results for alternative orientations

of the point groups in several cases where different settings of the
twofold axes or mirror planes with respect to the Cartesian axes
are commonly used. This concerns all monoclinic classes (unique
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Table 2.3.3.1. Symmetry of Raman tensors in the 32 crystal classes

The symbols a, b, c, d, e, f, g, h and i in the matrices stand for arbitrary parameters
denoting possible independent nonzero components (in general complex) of the
Raman tensors. Upper row: conventional symmetric Raman tensors; lower row:
antisymmetric part. Alternative orientations of the point group are distinguished
by subscripts at 2 or m in the class symbol indicating the direction of the twofold
axis or of the normal to the mirror plane.
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direction parallel to y or z), tetragonal class �442m, trigonal classes
32, 3m and �33m, as well as hexagonal class �662m.

2.3.3.4. Centrosymmetric crystals

In those point groups that contain the inversion operation, i.e.
in the eleven centrosymmetric (nonpolar) crystal classes

�11; 2=m;mmm; 4=m; 4=mmm; �33; �33m; 6=m; 6=mmm;m3;m3m;

the irreducible representations are divided into two groups, odd
and even, according to the parity. Since second-rank polar tensors
must transform according to the even parity representations only,
whereas polar vectors transform according to odd parity repre-
sentations, the selection rules for electric dipole absorption
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Table 2.3.3.1 (cont.)
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(infrared activity) and for Raman scattering are incompatible.
This is often expressed as the mutual exclusion rule or comple-
mentarity principle: The excitations in a crystal belonging to a
centrosymmetric class cannot be simultaneously active in
infrared absorption and in Raman scattering. Let us note,
however, that even-parity excitations are not necessarily all
Raman active, and that odd-parity excitations are not necessarily
infrared active.

In the remaining noncentrosymmetric crystal classes, the
excitations have no defined parity with respect to inversion and
can be, in principle, both Raman and infrared active.

Example: Consider a Raman scattering experiment on a crystal of
tetragonal symmetry, class 4=mmm. Raman-active phonons,
allowed in conventional symmetric scattering, are of the
symmetry species A1g, B1g, B2g and Eg. (the A2g species admits
purely antisymmetric scattering only). Straightforward applica-
tion of Table 2.3.3.1 makes it possible to determine the polar-

ization selection rules, i.e. to determine which symmetry species
will contribute to the scattering cross section in various experi-
mental configurations. Choosing the Cartesian axes x 
 ½100�,
y 
 ½010�, z 
 ½001� consistent with the standard setting of the
4=mmm point group, i.e. the fourfold rotation axis 4 k z, let us
further introduce the notation x0 
 ½110�, y0 
 ½�1110�. Then the
contributions to the cross section for different symmetry species
can be distinguished by their dependence on the polarization
vectors eI and eS of the incident and scattered light:

A1g : jðeIxeSx þ eIyeSyÞaþ eIzeSzbj
2

B1g : jðeIxeSx � eIyeSyÞdj
2

B2g : jðeIxeSy þ eIyeSxÞej
2

Eg : ½ðeIxeSz þ eIzeSxÞ
2 þ ðeIyeSz þ eIzeSyÞ

2�jf j2:
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Table 2.3.3.1 (cont.)
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A
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Examples of some special scattering geometries that permit the
separation of the contributions of different symmetry species are
shown in Table 2.3.3.2 (five distinct configurations are sufficient
to determine the five independent parameters a, b, d, e, f of the
symmetric Raman tensors).

If, for some reason, antisymmetric scattering is allowed,
possible contribution of the A2g modes should be considered as
well. The contribution to cross section from these modes is
proportional to jðeIxeSy � eIyeSxÞcj

2, hence it can be distinguished
from the contribution of the B2g symmetry species by a suitable
choice of the scattering geometry.

2.3.3.5. Noncentrosymmetric crystals

Special care is required in treating the scattering by those
optical phonons in the 21 noncentrosymmetric (polar) crystal
classes (1, 2,m, 222,mm2, 4, �44, 422, 4mm, �442m, 3, 32, 3m, 6, �66, 622,
6mm, �66m2, 23, 432, �443m) that are simultaneously infrared-active.
Since these polar modes carry a nonzero macroscopic effective
charge (2.3.3.4), they contribute to the total polarization in the
crystal, hence also to the macroscopic electric field, which in turn
leads to a coupling between these modes. The polarization being
a polar vector, the modes that contribute have the same
symmetry character, i.e. they must also transform like the
components of polar vectors.

An important consequence of the macroscopic field associated
with polar modes in the crystal is the partial lifting of the
degeneracies of the long-wavelength (q � 0) mode frequencies
(so-called TO–LO splitting). Since the macroscopic field in the
crystal is longitudinal, it must be proportional to the longitudinal
component of the polarization. Hence, the equations of motion
for all polar modes carrying a nonzero longitudinal polarization
(i.e. Pj � q 6¼ 0) become coupled by the field and, consequently,
their frequencies depend on the direction of q. This phenomenon
is called directional dispersion and is connected with the fact that
in the electrostatic approximation the dynamical matrix with
long-range Coulomb forces shows non-analytic behaviour for
q! 0. In lattice dynamics, the limit can be treated correctly by
taking into account the retardation effects in the range where cq
becomes comparable to !jðqÞ, i.e. in the crossing region of free
photon and optical phonon dispersion curves. As a result, one
finds that for small q the true eigenmodes of the system –
polaritons – have a mixed phonon–photon character and their
frequencies show strong dispersion in the very close vicinity of
q ¼ 0. Experimentally, this polariton region is partially accessible
only in near-forward Raman scattering [see (2.3.2.3)]. For larger
scattering wavevectors in the usual right-angle or back-scattering
geometries, the electrostatic approximation, cq� !, is well
applicable and the excitations behave like phonons. Owing to the
coupling via the longitudinal macroscopic electric field, however,
the directional dispersion of these phonon branches remains.

Detailed analysis is complicated in the general case of a low-
symmetry crystal with more polar modes (see e.g. Claus et al.,
1975). In crystals with at least orthorhombic symmetry, the
principal axes of the susceptibility tensor are fixed by symmetry

and for the wavevectors oriented along these principal axes the
polar optic modes have purely transverse (TO) or longitudinal
(LO) character with respect to the associated polarization. The
character of a mode is usually mixed for a general direction of the
wavevector.

Strictly speaking, conventional symmetry analysis in terms of
irreducible representations of the factor group (point group) of
the crystal, though giving a true description of polaritons at
q ¼ 0, cannot account for the lifting of degeneracies and for the
directional dispersion of polar modes. A correct picture of the
symmetries and degeneracies is, however, obtained by taking into
account the finiteness of the wavevector q and classifying the
vibrations according to the irreducible (multiplier) corepre-
sentations of the point group of the wavevector G0ðqÞ, which is a
subgroup of the factor group. Compatibility relations of the
representations at q! 0 can then be used to establish a corre-
spondence between the two approaches.

The oscillating macroscopic field associated with long-
wavelength LO polar modes acts as another source of modulation
of the susceptibility. In addition to the standard atomic displa-
cement contribution connected with the mechanical displace-
ments of atoms, one also has to consider that the transition
susceptibility also contains the electro-optic term arising from the
distortion of electron shells of atoms in the accompanying
macroscopic field E. Separating both contributions, we may write

��ðjÞ��ðq � 0; !IÞ ¼
d���
dQj

Qj

¼
@���
@Qj

Qj þ
@���
@E�

Ej
�

¼
@���
@Qj

þ
@���
@E�

dE�

dQj

� �

Qj;

ð2:3:3:15Þ

or, in terms of the Raman tensor,

�� ¼
P

j

RjQj ¼
P

j

ðajQj þ bEjÞ ¼
P

j

aj þ bðdE=dQjÞ
� �

Qj;

where we introduce the notation aj and bðdE=dQjÞ for the atomic
displacement and electro-optic contributions to the Raman tensor
Rj. As usual, Qj stands for the normal coordinate of the jth mode
and E for the total macroscopic electric field resulting from the
longitudinal polarization of all optic modes. The modes that
contribute to E are only LO polar modes; they transform as
Cartesian components of polar vectors (x, y, z). Hence the
electro-optic term contributes to the Raman cross section only if
Ej ¼ ðdE=dQjÞ 6¼ 0, i.e. if the mode has at least partially long-
itudinal character. Hence, not only the frequencies but also the
scattering cross sections of the TO and LO components of polar
modes belonging to the same symmetry species are, in general,
different.

Nevertheless, in view of the fact that the macroscopic electric
field associated with LO polar phonons transforms in the same
way as its polarization vector, the symmetry properties of both
the atomic displacement and the electro-optic contributions to
the Raman tensors of polar modes are identical. They correspond
to third-rank polar tensors, which have nonzero components only
in piezoelectric crystals. The symmetry-restricted form of these
tensors can also be derived from Table 2.3.3.1 by combining the
matrices corresponding to the x, y and z components. Note that
these may belong to different irreducible representations in
lower-symmetry classes (e.g. z cannot mix with x, y), and that in
some uniaxial classes the z component is missing completely.
Finally, in the noncentrosymmetric class 32 of the cubic system,
the Raman tensors of the triply degenerate polar modes (F1) are
purely antisymmetric; therefore all components of the piezo-
electric tensor also vanish.
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Table 2.3.3.2. Raman selection rules in crystals of the 4=mmm class

Scattering configuration Cross section for symmetry species

Back scattering
Right-angle
scattering A1g B1g B2g Eg

�zzðxxÞz; �zzðyyÞz yðxxÞz; xðyyÞz  jaj2  jdj2 — —
�xxðzzÞx; �yyðzzÞy xðzzÞy  jbj2 — — —
�zzðxyÞz yðxyÞx; zðxyÞx — —  jej2 —
�yyðxzÞy; �xxðyzÞx yðxzÞx; xðyzÞy — — —  jf j2

�zzðx0x0Þz y0ðx0x0Þz  jaj2 —  jej2 —
�zzðx0y0Þz y0ðx0y0Þz —  jdj2 — —
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Example: To illustrate the salient features of polar-mode scat-
tering let us consider a crystal of the 4mm class, where of the
Raman-active symmetry species the modes A1ðzÞ and Eðx; yÞ are
polar. According to Table 2.3.3.1, their (q ¼ 0) Raman tensors
are identical to those of the A1g and Eg modes in the preceding
example of a 4=mmm-class crystal. Owing to the macroscopic
electric field, however, here one has to expect directional
dispersion of the frequencies of the long wavelength (q � 0) A1

and E optic phonon modes according to their longitudinal or
transverse character. Consequently, in determining the polar-
ization selection rules, account has to be taken of the direction of
the phonon wavevector (i.e. the scattering wavevector) q with
respect to the crystallographic axes. Since for a general direction
of q the modes are coupled by the field, a suitable experimental
arrangement permitting the efficient separation of their respec-
tive contributions should have the scattering wavevector q
oriented along principal directions. At q k z, the A1 phonons are
longitudinal (LOk) and both E modes (2TO?) are transverse,
remaining degenerate, whereas at q k x or q k y, the A1 phonons
become transverse (TO?) and the E phonons split into a pair of
(TO?, LO?) modes of different frequencies. The subscripts k or
? explicitly indicate the orientation of the electric dipole moment
carried by the mode with respect to the fourfold axis (4 k c 
 z).

Schematically, the situation (i.e. frequency shifts and splittings)
at q � 0 can be represented by

q k z q k x

� A1ðTOkÞ

A1ðLOkÞ �

� ExðLO?Þ

Eð2TO?Þ � � EyðTO?Þ

For a general direction of q, the modes are of a mixed char-
acter and their frequencies show directional (angular) dispersion.
The overall picture depends on the number of A1 and E phonons
present in the given crystal, as well as on their effective charges
and on the ordering of their eigenfrequencies. In fact, only the
EðTO?Þ modes remain unaffected by the directional dispersion.

Table 2.3.3.3 gives the corresponding contributions of these
modes to the cross section for several representative scattering
geometries, where subscripts TO and LO indicate that the
components of the total Raman tensor may take on different
values for TO and LO modes due to electro-optic contributions
in the latter case.

2.3.3.6. q-dependent terms

So far, we have not explicitly considered the dependence of the
Raman tensor on the magnitude of the scattering wavevector,
assuming q! 0 (the effects of directional dispersion in the case
of scattering by polar modes were briefly mentioned in the
preceding section). In some cases, however, the Raman tensors
vanish in this limit, or q-dependent corrections to the scattering
may appear. Formally, we may expand the susceptibility in a
Taylor series in q. The coefficients in this expansion are higher-
order susceptibility derivatives taken at q ¼ 0. The symmetry-
restricted form of these tensorial coefficients may be determined
in the same way as that of the zero-order term, i.e. by decom-
posing the reducible representation of the third-, fourth- and

higher-order polar Cartesian tensors into irreducible components
�ðjÞ. General properties of the q-dependent terms can be
advantageously discussed in connection with the so-called
morphic effects (see Sections 2.3.4 and 2.3.5).

2.3.4. Morphic effects in Raman scattering

By morphic effects we understand the effects that arise from a
reduction of the symmetry of a system caused by the application
of external forces. The relevant consequences of morphic effects
for Raman scattering are changes in the selection rules. Appli-
cations of external forces may, for instance, render it possible to
observe scattering by excitations that are otherwise inactive.
Again, group-theoretical arguments may be applied to obtain the
symmetry-restricted component form of the Raman tensors
under applied forces.

It should be noted that under external forces in this sense
various ‘built-in’ fields can be included, e.g. electric fields or
elastic strains typically occurring near the crystal surfaces. Effects
of ‘intrinsic’ macroscopic electric fields associated with long-
wavelength LO polar phonons can be treated on the same
footing. Spatial-dispersion effects connected with the finiteness of
the wavevectors, q or k, may also be included among morphic
effects, since they may be regarded as being due to the gradients
of the fields (displacement or electric) propagating in the crystal.

2.3.4.1. General remarks

Various types of applied forces – in a general sense – can be
classified according to symmetry, i.e. according to their transfor-
mation properties. Thus a force is characterized as a polar force if
it transforms under the symmetry operation of the crystal like a
polar tensor of appropriate rank (rank 1: electric field E; rank 2:
electric field gradient rE, stress T or strain S). It is an axial force
if it transforms like an axial tensor (rank 1: magnetic field H).
Here we shall deal briefly with the most important cases within
the macroscopic approach of the susceptibility derivatives. We
shall treat explicitly the first-order scattering only and neglect, for
the moment, q-dependent terms.

In a perturbation approach, the first-order transition suscept-
ibility �� in the presence of an applied force F can be expressed in
terms of Raman tensors RjðFÞ expanded in powers of F:

��ðFÞ ¼
P

j

RjðFÞQj;

where RjðFÞ ¼ Rj0 þ RjFFþ 1
2R

jFFFFþ . . .:

ð2:3:4:1Þ

Here, Rj0 ¼ �ðjÞð0Þ ¼ ð@���=@QjÞ is the zero-field intrinsic Raman
tensor, whereas the tensors

RjFF ¼
@2���
@Qj@F	

� �

F	;

RjFFFF ¼
@3���

@Qj@F	@F


� �

F	F
 etc: ð2:3:4:2Þ

are the force-induced Raman tensors of the respective order in
the field, associated with the jth normal mode. The scattering
cross section for the jth mode becomes proportional to
jeSðR

j0 þ RjFFþ 1
2R

jFFFFþ . . .ÞeIj
2, which, in general, may

modify the polarization selection rules. If, for example, the mode
is intrinsically Raman inactive, i.e. Rj0 ¼ 0 whereas RjF 6¼ 0, we
deal with purely force-induced Raman scattering; its intensity is
proportional to F2 in the first order. Higher-order terms must be
investigated if, for symmetry reasons, the first-order terms vanish.

For force-induced Raman activity, in accordance with general
rules, invariance again requires that a particular symmetry
species �ðjÞ can contribute to the first-order transition suscept-
ibility by terms of order n in the force only if the identity

322

Table 2.3.3.3. Raman selection rules in crystals of the 4mm class

Scattering configuration

Cross section for
symmetry species

A1 E

q k z zðxxÞz; zðyyÞz  jaLOj
2 —

q ? z xðzzÞx; xðzzÞy  jbTOj
2 —

�yyðxzÞy; �xxðyzÞx —  jfTOj
2

x0ðzx0Þy0; x0ðy0zÞy0 — 1
2jfTOj

2
þ 1

2jfLOj
2
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representation is contained in the reducible representation of the
nth-order Raman tensor.

An equivalent formulation is that the nth-order tensor-like
coefficients in the corresponding force-induced Raman tensor,
i.e.

R
jF...F
��	...
 ¼

@1þ n���
@Qj@F	 . . . @F


� �

in the term RjF...FF. . .F;

vanish identically for symmetry reasons unless
½�PV � �PV� � ½�ðFÞ�

n
S � �ðjÞ. Here ½�ðFÞ�nS ¼ ½�ðFÞ � �ðFÞ �

. . .� �ðFÞ�S is the symmetrized nth power of the representation
�ðFÞ according to which the generalized force F transforms under
the operation of the point group. The requirement for the
symmetrized part is dictated by the interchangeability of the
higher-order derivatives with respect to the components of the
force. We recall that the first factor representing the suscept-
ibility, ½�PV � �PV�, need not be symmetric in general. However,
for most purposes (non-resonant conditions, non-magnetic crys-
tals in the absence of a magnetic field) it can be replaced by its
symmetrized part ½�PV � �PV�S.

Standard group-theoretical methods can be used to determine
the force-induced Raman activity in a given order of the field and
to derive the matrix form of the corresponding Raman tensors.
Before treating several important cases of morphic effects in
more detail in the following sections, let us make a few comments.

Beside the force-induced effects on the scattering tensors,
there are also the direct morphic effects of the forces on the
excitations themselves (possible frequency shifts, lifting of mode
degeneracies etc.), which can be investigated by an analogous
perturbation treatment, i.e. by expanding the dynamical matrix in
powers of F and determining the corresponding force-induced
corrections in the respective orders.

The lifting of degeneracies is a typical sign of the fact that the
symmetry of the problem is reduced. The extended system crystal
+ applied force corresponds to a new symmetry group resulting
from those symmetry operations that leave the extended system
invariant. Consequently, the new normal modes (in the long-
wavelength limit) can be formally classified according to the new
point group appropriate for the extended system, which quali-
tatively accounts for the new reduced symmetries and degen-
eracies.

The force-induced Raman tensors referring to the original
crystal symmetry should thus be equivalent to the Raman tensors
of the corresponding modes in the new point group via the
compatibility relations. The new point-group symmetry of the
extended system is often used to investigate Raman-induced
activity. It should be noted, however, that this approach generally
fails to predict to what order in the force the induced changes in
the Raman tensors appear. Such information is usually of prime
importance for the scattering experiment, where appropriate

setup and detection techniques can be applied to search for a
force-induced effect of a particular order. Thus the perturbation
method is usually preferable (Anastassakis, 1980).

In the following sections, we shall briefly treat the most
important cases in the conventional limit q! 0 (neglecting for
the moment the spatial dispersion).

2.3.4.2. Electric-field-induced scattering

Expanding the linear dielectric susceptibility into a Taylor
series in the field, we write

���ðEÞ ¼ ���ð0Þ þ
@���
@E�

E� þ
@2���
@E�@E�

E�E� þ . . . : ð2:3:4:3Þ

The coefficients of the field-dependent terms in this expansion
are, respectively, third-, fourth- and higher-rank polar tensors;
they describe linear, quadratic and higher-order electro-optic
effects. The corresponding expansion of the Raman tensor of the
jth optic mode is written as RjðEÞ ¼ Rj0 þ RjEEþ 1

2R
jEEEEþ . . ..

Since the representation �ðEÞ ¼ �PV, the coefficients of the
linear term in the expansion for �, i.e. the third-rank tensor
b��� ¼ ð@���=@E�Þ, transform according to the reducible repre-
sentation given by the direct product:

½�PV � �PV�S � �PV:

First-order field-induced Raman activity (conventional
symmetric scattering) is thus obtained by reducing this repre-
sentation into irreducible components �ðjÞ. Higher-order contri-
butions are treated analogously.

It is clear that in centrosymmetric crystals the reduction of a
third-rank polar tensor cannot contain even-parity representa-
tions; consequently, electric-field-induced scattering by even-
parity modes is forbidden in the first order (and in all odd orders)
in the field. The lowest non-vanishing contributions to the field-
induced Raman tensors of even-parity modes in these crystals are
thus quadratic in E; their form is obtained by reducing the
representation of a fourth-rank symmetric polar tensor
½�PV � �PV�S � ½�PV � �PV�S into irreducible components �ðjÞ.
On the other hand, since the electric field removes the centre of
inversion, scattering by odd-parity modes becomes allowed in
first order in the field but remains forbidden in all even orders. In
noncentrosymmetric crystals, parity considerations do not apply.

For completeness, we note that, besides the direct electro-optic
contribution to the Raman tensor due to field-induced distortion
of the electronic states of the atoms in the unit cell, there are two
additional mechanisms contributing to the total first-order
change of the dielectric susceptibility in an external electric field
E. They come, respectively, from field-induced relative displa-
cements of atoms due to field-induced excitation of polar optical
phonons QpðEÞ  E and from field-induced elastic deformation
SðEÞ ¼ dE (piezoelectric effect, d being the piezoelectric tensor).
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Table 2.3.4.1. Symmetrized (s) and antisymmetrized (a) sets of trilinear basis functions corresponding to symmetry species of the 4mm class

Species Basis functions Symmetry

A1 ðx1x2 þ y1y2Þz3; z1z2z3; ðx1z2 þ z1x2Þx3 þ ðy1z2 þ z1y2Þy3 (s)
ðx1z2 � z1x2Þx3 þ ðy1z2 � z1y2Þy3 (a)

A2 ðx1z2 þ z1x2Þy3 � ðy1z2 þ z1y2Þx3 (s)
ðx1y2 � y1x2Þz3; ðx1z2 � z1x2Þy3 � ðy1z2 � z1y2Þx3 (a)

B1 ðx1x2 � y1y2Þz3; ðx1z2 þ z1x2Þx3 � ðy1z2 þ z1y2Þy3 (s)
ðx1z2 � z1x2Þx3 � ðy1z2 � z1y2Þy3 (a)

B2 ðx1y2 þ y1x2Þz3; ðx1z2 þ z1x2Þy3 þ ðy1z2 þ z1y2Þx3 (s)
ðx1z2 � z1x2Þy3 þ ðy1z2 � z1y2Þx3 (a)

E ½ðx1x2 þ y1y2Þx3; ðx1x2 þ y1y2Þy3�; ½z1z2x3; z1z2y3�;
½ðx1z2 þ z1x2Þz3; ðy1z2 þ z1y2Þz3�; ½ðx1x2 � y1y2Þx3;
�ðx1x2 � y1y2Þy3]; ½ðx1y2 þ y1x2Þy3, ðx1y2 þ y1x2Þx3�

(s)

½ðx1z2 � z1x2Þz3; ðy1z1 � z1y2Þz3�; ½ðx1y2 � y1x2Þy3,
�ðx1y2 � y1x2Þx3�

(a)
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In order to separate these contributions, we write formally
�ðEÞ ¼ �ðE;QpðEÞ; SðEÞÞ and get, to first order in the field,

��ðEÞ ¼ ð@�=@EÞEþ
P

p

ð@�=@QpÞQpðEÞ þ ð@�=@SÞSðEÞ

¼
P

j

RjEEQj, where we define

RjE ¼ ð@Rj=@EÞ þ
P

p

ð@Rj=@QpÞðdQp=dEÞ þ ð@R
j=@SÞd:

ð2:3:4:4Þ

The first term in these equations involves the susceptibility
derivative b ¼ ð@�=@EÞ at constant Qp and S. The second term
involves the second-order susceptibility derivatives with respect
to the normal coordinates: �ðj;pÞ ¼ ð@2�=@Qj@QpÞ ¼ ð@R

j
��=@QpÞ.

Since QpðEÞ  Zp
E
, where the quantity Zp ¼ ðZp
Þ is the
effective charge tensor (2.3.3.4) of the normal mode p, its
nonzero contributions are possible only if there are infrared-
active optical phonons (for which, in principle, Zp 6¼ 0) in the
crystal. The third term is proportional to the field-induced elastic
strain SðEÞ ¼ dE via the elasto-optic tensor p ¼ ð@�=@SÞ and can
occur only in piezoelectric crystals.

Example: As an illustration, we derive the matrix form of linear
electric-field-induced Raman tensors (including possible anti-
symmetric part) in a tetragonal crystal of the 4mm class. The
corresponding representation ½�PV � �PV� � �PV in this class
reduces as follows:

½�PV � �PV�S � �PV ¼ 3A1 �A2 � 2B1 � 2B2 � 5E;

½�PV � �PV�A � �PV ¼ A1 � 2A2 � B1 � B2 � 2E:

Suitable sets of symmetrized (s) and antisymmetrized (a) basis
functions (third-order polynomials) for the representations of the
4mm point group can be easily derived by inspection or using
projection operators. The results are given in Table 2.3.4.1. Using
these basis functions, one can readily construct the Cartesian
form of the linear contributions to the electric-field-induced
Raman tensors RjðEÞ ¼ RjEE for all symmetry species of the
4mm-class crystals. The tensors are split into symmetric
(conventional allowed scattering) and antisymmetric part.

Symmetric Antisymmetric

A1 :

a1Ez : a2Ex

: a1Ez a2Ey

a2Ex a2Ey b1Ez

0

@

1

A þ

: : a3Ex

: : a3Ey

�a3Ex �a3Ey :

0

@

1

A

A2 :

: : c2Ey

: : �c2Ex

c2Ey �c2Ex :

0

@

1

A þ

: c1Ez c3Ey

�c1Ez : �c3Ex

�c3Ey c3Ex :

0

@

1

A

B1 :

d1Ez : d2Ex

: �d1Ez �d2Ey

d2Ex �d2Ey :

0

@

1

A þ

: : d3Ex

: : �d3Ey

�d3Ex d3Ey :

0

@

1

A

B2 :

: e1Ez e2Ey

e1Ez : e2Ex

e2Ey e2Ex :

0

@

1

A þ

: : e3Ey

: : e3Ex

�e3Ey �e3Ex :

0

@

1

A

E :

ðf1 þ f2ÞEx f4Ey f5Ez

f4Ey ðf1 � f2ÞEx :
f5Ez : f3Ex

0

@

1

A þ

: g4Ey g5Ez

�g4Ey : :
�g5Ez : :

0

@

1

A

ðf1 � f2ÞEy f4Ex :
f4Ex ðf1 þ f2ÞEy f5Ez

: f5Ez f3Ey

0

@

1

A þ

: �g4Ex :
g4Ex : g5Ez

: �g5Ez :

0

@

1

A

2.3.4.3. Raman scattering in a magnetic field

In a magnetic field, the dielectric susceptibility tensor of a
crystal is known to obey the general relation (Onsager reciprocity
theorem for generalized kinetic coefficients)

���ðHÞ ¼ ���ð�HÞ: ð2:3:4:5Þ

Further, in the absence of absorption, the susceptibility must be
Hermitian, i.e.

���ðHÞ ¼ �
�
��ðHÞ: ð2:3:4:6Þ

Hence, vðHÞ is neither symmetric nor real. Expanding vðHÞ in the
powers of the field,

���ðHÞ ¼ ���ð0Þ þ
@���
@H	

H	 þ
@2���
@H	@H


H	H
 þ . . . ; ð2:3:4:7Þ

it follows that all terms of the magnetic-field-induced Raman
tensor that are of odd powers in H are purely imaginary and
antisymmetric in � and �, whereas all terms of even powers in H
are real and symmetric.

Let us discuss in more detail the symmetry properties of the
first-order term, which can be written as

����ðHÞ ¼ if��	H	; ð2:3:4:8Þ

where the tensor f, referred to as the magneto-optic tensor, is real
and purely antisymmetric in the first two indices:

f��
 
 �ið@���=@H
Þ ¼ �f��
:

The representation �ðfÞ of the magneto-optic tensor f may thus
be symbolically written as

�ðfÞ ¼ ½�PV � �PV�A � �AV ¼ �AV � �AV ¼ �PV � �PV

¼ �ðT�T�Þ; ð2:3:4:9Þ

since the antisymmetric part of the product of two polar vectors
transforms like an axial vector, and the product of two axial
vectors transforms exactly like the product of two polar vectors.
Hence, the representation �ðfÞ is equivalent to the representation
of a general nonsymmetric second-rank tensor and reduces in
exactly the same way (2.3.3.14).

�ðfÞ ¼ �PV � �PV ¼ cð1Þ�ð1Þ � cð2Þ�ð2Þ � . . . :

We arrive thus at the important conclusion that, to first order
in the field, only the modes that normally show intrinsic Raman
activity (either symmetric and antisymmetric) can take part in
magnetic-field-induced scattering. Moreover, the magnetic-field-
induced Raman tensors for these symmetry species must have the
same number of components as the general nonsymmetric
Raman tensors at zero field.

In order to determine the symmetry-restricted matrix form of
the corresponding field-induced Raman tensors (linear in H) in
Cartesian coordinates, one can use the general method and
construct the tensors from the respective (antisymmetric) basis
functions. In this case, however, a simpler method can be
adopted, which makes use of the transformation properties of the
magneto-optic tensor as follows.

From the definition of the tensor f, it is clear that its Cartesian
components f��
 must have the same symmetry properties as the
product ½E�E��AH
. The antisymmetric factor ½E�E��A trans-
forms, however, as "��	H	, where "��	 is the fully antisymmetric
third-rank pseudotensor (Levi–Civita tensor). Consequently, f��

must transform in the same way as "��	H	H
, which in turn
transforms identically to "��	E	E
. Therefore, comparison of the
matrices corresponding to the irreducible components �ðjÞ
provides a simple mapping between the components of the
Cartesian forms of the linear field-induced Raman tensors
RjðHÞ ¼ RjhH and the intrinsic Raman tensorsRj0. Explicitly, this
mapping is given by

R
jH
��
 


@2���
@Qj@H


¼ if
ðjÞ
��
  i"��	R

jo
	
: ð2:3:4:10Þ
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For any given symmetry species, this relation can be used to
deduce the matrix form of the first-order field-induced Raman
tensors from the tensors given in Table 2.3.3.1.

Example: We consider again the 4mm class crystal. The repre-
sentation �ðfÞ of the magneto-optic tensor f in the 4mm class
reduces as follows:

�ðfÞ ¼ �PV � �PV ¼ 2A1 �A2 � B1 � B2 � 2E:

Straightforward application of the mapping mentioned above
then gives the following symmetry-restricted matrix forms of
contributions to the magnetic-field-induced Raman tensors RjHH
for all symmetry species of the 4mm-class crystals. The number of
independent parameters for each species is the same as in the
intrinsic nonsymmetric zero-field Raman tensors:

A1 :

: ib0Hz �ia0Hy

�ib0Hz : ia0Hx

ia0Hy �ia0Hx :

0

B
@

1

C
A

A2 :

: : ic0Hx

: : ic0Hy

�ic0Hx �ic
0Hy :

0

B
@

1

C
A

B1 :

: : id0Hy

: : id0Hx

�id0Hy �id
0Hx :

0

B
@

1

C
A

B2 :

: : �ie0Hx

: : ie0Hy

ie0Hx �ieHy :

0

B
@

1

C
A

E :

: ig0Hx :

�ig0Hx : if 0Hz

: �if 0Hz :

0

B
@

1

C
A

: ig0Hy �if
0Hz

�ig0Hy : :

if 0Hz : :

0

B
@

1

C
A:

Let us note that the conclusions mentioned above apply, strictly
speaking, to non-magnetic crystals. In magnetic materials in the
presence of spontaneous ordering (ferro- or antiferromagnetic
crystals) the analysis has to be based on magnetic point groups.

2.3.4.4. Stress- (strain-) induced Raman scattering

Stress-induced Raman scattering is an example of the case
when the external ‘force’ is a higher-rank tensor. In the case of
stress, we deal with a symmetric second-rank tensor. Since
symmetric stress (T) and strain (S) tensors have the same
symmetry and are uniquely related via the fourth-rank elastic
stiffness tensor (c),

T�� ¼ c��	
S	
;

it is immaterial for symmetry purposes whether stress- or strain-
induced effects are considered. The linear strain-induced
contribution to the susceptibility can be written as

����ðSÞ ¼
@���
@S	


� �

S	


so that the respective strain coefficients (conventional symmetric
scattering) transform evidently as

½�PV � �PV�S � ½�PV � �PV�S;

i.e. they have the same symmetry as the piezo-optic or elasto-optic
tensor. Reducing this representation into irreducible components
�ðjÞ, we obtain the symmetry-restricted form of the linear strain-
induced Raman tensors. Evidently, their matrix form is the same
as for quadratic electric-field-induced Raman tensors. In
centrosymmetric crystals, strain-induced Raman scattering (in
any order in the strain) is thus allowed for even-parity modes
only.

2.3.5. Spatial-dispersion effects

For q ¼ 0, the normal modes correspond to a homogeneous
phonon displacement pattern (all cells vibrate in phase).
Phenomenologically, the q-dependence of Raman tensors can be
understood as a kind of morphic effect due to the gradients of the
displacement field. Developing the contribution of the long-
wavelength jth normal mode to the susceptibility in Cartesian
components of the displacement of atoms in the primitive cell
and their gradients, we obtain

��ðjÞ��ðqÞ ¼
X

�

@���

@uðjÞ�;�

 !

0

uðjÞ�;�ðqÞ þ i
X

�

@���

@ðruðjÞ�;�Þ�

 !

0

q�u
ðjÞ
�;�ðqÞ;

ð2:3:5:1Þ

where the derivatives are taken at q ¼ 0, and we use the obvious
relation ru

ðjÞ
�;� ¼ iqu

ðjÞ
�;� .

Transforming to normal coordinates, using (2.3.3.1), we iden-
tify the q ¼ 0 intrinsic Raman tensor Rj0 of the jth normal mode,
explicitly expressed via Cartesian displacements of atoms,

R
jo
�� 
 �

ðjÞ
��ð0Þ 


@���
@Qj

� �

¼
X

�

@���

@uðjÞ�;	

 !
e�;	ð0; jÞ
ffiffiffiffiffiffiffiffiffi
Nm�

p ; ð2:3:5:2Þ

and introduce the first-order q-induced atomic displacement
Raman tensor coefficients Rjq:

R
jq
��� 
 �i

@�ðjÞ��
@q�

 !

¼ �i
@2���
@Qj@q�

� �

¼
X

�

@�ðjÞ��
@ðru�;	Þ�

 !
e�;	ð0; jÞ
ffiffiffiffiffiffiffiffiffi
Nm�

p : ð2:3:5:3Þ

Hence, to the lowest order in q, the transition susceptibility is
expressed as

��ðjÞ��ðqÞ ffi R
j0
�� þ iR

jq
���q�

	 

Qjð0Þ: ð2:3:5:4Þ

In a more general case, spatial dispersion should be considered
together with the electro-optic contributions due to the internal
macroscopic field E and its gradients. Assuming the linear
susceptibility to be modulated by the atomic displacements Qj

and the macroscopic electric field E as well as by their gradients
rQj and rE, we can expand the transition susceptibility of the jth
phonon modeQjðqÞ to terms linear in q and formally separate the
atomic displacement and electro-optic parts of the Raman tensor
[see (2.3.3.15)]:

�vðjÞðqÞ ¼ ð@v=@QjÞQjðqÞ þ ið@v=@rQjÞqQjðqÞ

þ ð@v=@EÞEjðqÞ þ ið@v=@rEÞqEjðqÞ;

or concisely

�vðjÞðqÞ ¼ ajðqÞQjðqÞ þ bðqÞEjðqÞ;

with

ajðqÞ ¼ ðaj0 þ iajqqÞ; bðqÞ ¼ ðb0 þ ibqqÞ: ð2:3:5:5Þ
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Hence, setting EjðqÞ ¼ ðdE=dQjÞQjðqÞ, we write for the total
Raman tensor

RjðqÞ ¼ ajðqÞ þ bðqÞðdE=dQjÞ: ð2:3:5:6Þ

The definitions of the tensors aj and ajq correspond to (2.3.5.2)
and (2.3.5.3). Analogously, the tensors b0 and bq are defined by

b0��� ¼
@���
@E�

� �

; b
q
���� ¼ �i

@2���
@q�@E�

� �

¼
@���

@ðrE�Þ�

� �

:

ð2:3:5:7Þ

The q-independent part aj0 of the atomic displacement Raman
tensor corresponds to the standard q ¼ 0 Raman tensors Rj0,
whose symmetry properties and matrix form were discussed in
Section 2.3.3.3.

Like aj0, the form of the q-dependent contribution ajqq also
depends on the symmetry properties of the corresponding
normal coordinate Qjðq � 0Þ. Since q (or rQj) and E are polar
vectors, the symmetry properties of the ajq are identical to those
of the coefficients RjE of the electric-field-induced Raman tensor
discussed in Section 2.3.4.2: they transform according to the
q ¼ 0 representation ½�PV � �PV�S � �PV � �ðjÞ. Hence, the
symmetry-restricted matrix form of the q-dependent contribution
to the atomic displacement Raman tensor ajqq is exactly the same
as that of the corresponding electric-field-induced Raman tensor
RjEE. In general, these linear terms must vanish for even-parity
modes in centrosymmetric crystals (where the lowest-order non-
vanishing contributions to the Raman tensor are quadratic). The
third-rank tensor b0 corresponds to the first-order susceptibility
derivative b and the fourth-rank tensor bq to its first-order q-
dependent part.

As mentioned above, the q-independent third-rank polar
tensor b0 is nonzero only in noncentrosymmetric (piezoelectric)
crystals, where it contributes to Raman tensors for polar long-
itudinal optical (LO) phonons. The corresponding electro-optic
terms in Rj, connected with the accompanying longitudinal
electric field E, are given by b0ðdE=dQjÞ. Symmetry arguments
imply that the q-independent part of such terms must have the
same form as the atomic displacement Raman tensor for polar
LO phonons, since the corresponding normal coordinates trans-
form as components of polar vectors.

The q-dependent part of the electro-optic contribution, the
polar fourth-rank tensor bq ¼ ðbq����Þ, transforms as
½�PV � �PV�

S � �PV � �PV and its symmetry properties are
similar to those of the quadratic electro-optic tensor (however, as
q and E are not interchangeable, there is no symmetry in the last
two indices �; �). Thus, for finite q, the term bqq has nonzero
components in all crystal classes. The corresponding contribution
to the Raman tensor, however, is possible only in noncen-
trosymmetric crystals. Again, because of the (dE=dQj) factor, the
symmetry-restricted matrix form of this contribution for polar
LO phonons will be equivalent to that of the ajq term. As far as
symmetry is concerned, the distinction between atomic displa-
cement and electro-optic contributions is therefore immaterial.

The occurrence of q-dependent terms leads to polarization
selection rules that are generally different from those of intrin-
sically (q ¼ 0) Raman-active modes. For this reason, this
phenomenon is sometimes referred to as forbidden scattering. It
is often observed under resonance conditions.

We recall that the terms linear in q, i.e. proportional to
displacement gradients and elastic strains, are fundamental for
the description of inelastic light scattering by those excitations for
which the transition susceptibility identically vanishes in the limit
q! 0 regardless of lattice point symmetry. This is the case for
scattering by acoustic phonons (Brillouin scattering) and also for
scattering by plasma waves (plasmons in semiconductors).

We have explicitly considered only the q-dependent effects,
due to gradients of phonon fields. In general, spatial dispersion

may be also due to the gradients of the electric (or magnetic) field
of the incident or scattered photons. The corresponding effects
are often referred to as k-dependent effects. In view of the
wavevector conservation condition (2.3.2.2), the three wavevec-
tors q, kI and kS are always related, which simplifies the symmetry
analysis. Without going into details, we note that, microscopically,
the k-dependent effects come from photon–electron interactions
beyond the usual dipole approximation, i.e. from multipolar
effects. The symmetry-allowed matrix form of the k-induced
contributions, depending on the nature of the leading micro-
scopic mechanism, can be obtained by standard group-theoretical
techniques.

Example: As an example we give the symmetry-restricted form
for the linear q-dependent contribution to the Raman tensors for
Raman-inactive triply degenerate F1u modes in the m3m (Oh)
class:

Rj ¼ 0;

Rjqq ¼

cqx bqy bqz

bqy aqx :

bqz : aqx

0

B
@

1

C
A;

aqy bqx :

bqx cqy bqz

: bqz aqy

0

B
@

1

C
A;

aqz : bqx

: aqz bqy

bqx bqy cqz

0

B
@

1

C
A:

The same form of the q-dependent contribution holds for
Raman-active optic F2 modes in the �443m (Td) class. The
conventional (q ¼ 0) intrinsic Raman tensor of F2 is nonzero, but
has off-diagonal components only. Since these modes are also
infrared-active, there is a concomitant splitting of LO and TO
frequencies as well as a possible electro-optic contribution to the
Raman tensor due to the accompanying longitudinal macroscopic
field. If one chooses q k z, for instance, the first two matrices
correspond to two degenerate TO modes and the third one to the
LO mode. Combining the q-independent and q-dependent
contributions, we get for each triplet of (2TO þ LO) F2 modes

Rj0 þ Rjqq ¼

: : bqz

: : cTO

bqz cTO :

0

B
@

1

C
A j1 ¼ F2ðTOxÞ;

: : cTO

: : bqz

cTO bqz :

0

B
@

1

C
A j2 ¼ F2ðTOyÞ;

aqz cLO :

cLO aqz :

: : dqz

0

B
@

1

C
A j3 ¼ F2ðLOzÞ:

The difference in the parameters cTO and cLO is due to the
electro-optic contribution to the Raman tensor for the LO mode.
In the back-scattering geometry for scattering from the (001) face
of the crystal, only the LOz modes can take part. Intrinsic allowed
components jcLOj

2 are observable in the crossed (xy) polarization
geometry, whereas the q-dependent terms jaqzj

2 appear as
‘forbidden’ scattering in parallel (xx) or (yy) geometries.

2.3.6. Higher-order scattering

In higher-order processes, the scattering involves participation of
two or more quanta (j and j0) of the elementary excitations. Let us
discuss briefly the second-order scattering by phonons, where the
energy and wavevector conservation conditions read
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!I � !S ¼ ! ¼ 	!j 	 !j0 ;

kI � kS ¼ q ¼ 	qj 	 qj0 : ð2:3:6:1Þ

The combinations of signs in these equations correspond to four
possibilities, in which either both phonons, j and j0, are created
(Stokes process: þþ), both annihilated (anti-Stokes process:
��), or one is created and the other annihilated (difference
process: þ�, �þ). If in the Stokes or anti-Stokes case both
excitations are of the same type, j ¼ j0, one speaks of overtones.
The corresponding terms in the transition susceptibility are the
coefficients of a bilinear combination of normal coordinates in
the expansion of �v.

In the quasi-static limit, the transition susceptibilities for the
second-order scattering correspond, again, to the susceptibility
derivatives. Thus, the spectral differential cross section for the
second-order scattering (Stokes component) can be formally
written as

d2�

d! d�
�

X

j;j0

qjþqj0 ¼q�0

eS�
@2���

@Q�j ðqjÞ@Q
�
j0 ðqj0 Þ

eI�

�
�
�
�
�

�
�
�
�
�

2

� �½!jðqjÞ þ !j0 ðqj0 Þ � !�;

with ! ¼ !I � !S> 0. In this formula, we have suppressed the
universal factors [see (2.3.3.5)] and the explicit expression for the
response function (thermal factors). Instead, the delta function
(response function in the limit of zero damping) expresses the
energy-conservation condition.

The wavevector selection rules in the long-wavelength limit,
with q ¼ 0, imply that qj ¼ �qj0 (the same holds for anti-Stokes
components, while qj ¼ qj0 for difference scattering), so the
wavevectors themselves need not be small and, in principle,
scattering by phonons with all wavevectors from the Brillouin
zone can be observed.

Without invoking any symmetry arguments for the Raman
activity, such as the restrictions imposed by crystal symmetry on
the susceptibility derivatives, it is clear that the intensity of
second-order scattering at a frequency ! is controlled by the
number of those combinations of phonons whose frequencies
obey ! ¼ !jðqÞ þ !j0 ð�qÞ. The quantity determining this number
is the combined density of states of phonon pairs, i.e.

�2ð!Þ ¼
P

j;j0

P

q

�½!jðqÞ þ !j0 ðqÞ � !�: ð2:3:6:2Þ

This function can be calculated provided the dispersion curves
!jðqÞ of the excitations are known. The density of states is a
continuous function and shows features known as the van Hove
singularities corresponding to the critical points, where one or
more components of the gradient rq½!jðqÞ þ !j0 ðqÞ� vanish. Most
of the critical points occur for wavevectors on the boundary,
where the vanishing gradients of the individual dispersion curves
are often dictated by the crystal symmetry, but they also occur in
those regions of the reciprocal space where both dispersion
curves have opposite or equal slopes at the same wavevector q.
To a first approximation, the second-order spectrum is thus
essentially continuous, reflecting the two-phonon density of
states, with peaks and sharp features at frequencies close to the
positions of the van Hove singularities. This is to be contrasted
with the first-order scattering, where (in perfect crystals) only
single peaks corresponding to long-wavelength (q � 0) phonons
occur.

Group-theoretical arguments may again be invoked in deriving
the selection rules that determine the Raman activity of a
particular combination of excitations (Birman, 1974). The
susceptibility derivative again transforms as a tensor. For a given
pair of excitations (j; q) and (j0;�q) responsible for the modu-

lation, the combined excitation symmetry is obtained by taking
the direct product of the irreducible representations of the space
group corresponding to the participating excitations,

�ðj; j0Þ ¼ Dj;q �Dj0;�q: ð2:3:6:3Þ

The representation �ðj; j0Þ, unlike Dj;q, corresponds to a zero-
wavevector representation of the crystal space group and is
therefore equivalent to a (reducible) representation of the crystal
point group. It can be decomposed into irreducible components.
Raman scattering of the pair is allowed if a Raman-active q ¼ 0
representation is contained in this decomposition of �ðj; j0Þ or,
alternatively, if the product ½�PV � �PV�S � �ðj; j0Þ contains the
totally symmetric representation �ð1Þ.

The selection rules for the second-order scattering are, in
general, far less restrictive than in the first-order case. For
example, it can be shown that for a general wavevector q in the
Brillouin zone there are no selection rules on the participation of
phonons in the second-order scattering, since the representations
�ðj; j0Þ contain all Raman-active symmetries. In specific crystal
structures, however, restrictions occur for the wavevectors
corresponding to special symmetry positions (points, lines or
planes) in the Brillouin zone. This implies that the selection rules
may suppress some of the van Hove singularities in the second-
order spectra.

Morphic effects in second-order scattering, due to an applied
external force F (see Section 2.3.4.1), may be investigated using
the same criteria as in first-order scattering, i.e. decomposing
the q ¼ 0 representation �ðFÞ � ½�PV � �PV�S � �ðj; j0Þ and
searching for the matrix form of the corresponding second-order
Raman tensors.

Generalization to third- and higher-order processes is obvious.
Concluding this section, we note that in a Raman-scattering

experiment, higher-order features in the spectra can in principle
be distinguished from first-order features by different behaviour
of the differential scattering cross section with temperature. For
example, the respective thermal factors entering the expression
for the second-order scattering cross section are given in Table
2.3.6.1.

2.3.7. Conclusions

In this overview of Raman scattering in crystals, we have almost
exclusively based our considerations on a phenomenological,
semi-classical viewpoint without going into details of the under-
lying microscopic theory. This is surely an appropriate approach
to a discussion of the fundamental consequences of crystal
symmetry on the selection rules governing the varied phenomena
of inelastic light scattering and on the symmetry-restricted form
of the corresponding tensorial quantities encountered in this vast
and fruitful field. We have attempted to treat the most important
symmetry aspects of the inelastic scattering of light by collective
excitations in perfect crystals, concentrating on scattering by
optical phonons – in the traditional sense of Raman scattering
studies. Within a limited scope, we tried to give some insight into
the nature of the phenomena relevant in connection with this
topic. Our coverage is certainly not exhaustive (nor original); we
have also deliberately omitted all scattering phenomena
connected with purely electronic excitations, although the
corresponding symmetry aspects can be analysed on the same
footing. The essence of the truth is rather simple: As long as the
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Table 2.3.6.1. Thermal factors for second-order Raman scattering

nð!Þ is given by (2.3.3.7).

Factor Process Raman shift

½nð!jÞ þ 1�½nð!j0 Þ þ 1� Stokes ð! ¼ !j þ !j0 Þ

½nð!jÞ þ 1�ðn!j0 Þ Difference ð! ¼ !j � !j0 Þ

nð!jÞnð!j0 Þ Anti-Stokes ð! ¼ �!j � !j0 Þ
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excitations are characterized by irreducible representations of the
symmetry group of the system, the well proven tools of the theory
of representations are at hand to work out the consequences (if
common sense does not readily provide the answer).

For an experimental physicist, symmetry analysis is invaluable
in designing the experimental arrangement expected to give
evidence of some particular phenomenon. The type of answer
one may expect from such analysis is characteristic of the group-
theoretical predictions. One can learn whether a particular effect
is allowed or forbidden, and – if it is allowed – one can learn how
many independent coefficients may be needed to describe it.
Symmetry analysis alone cannot predict how large the effect is, or
why it occurs, though it may well indicate the way to make it more
easily observable. In order to understand or justify its actual
magnitude, one has to analyse in greater detail the underlying
microphysical mechanisms; however, the analysis must be
consistent with restrictions dictated by the symmetry of the
problem and, here again, symmetry arguments with powerful
group-theoretical tools provide reliable guidance.

For the sake of brevity, citations have been largely suppressed
in the present overview. Instead, the relevant sources are
included in the list of references.

For detailed information about all the varied aspects of light
scattering in solids and recent advances in this vast and fruitful
field, the reader is referred to specialized monographs, e.g. Turrell
(1972), Hayes & Loudon (1978), and to a comprehensive series
edited by Cardona & Güntherodt (1975–).

2.3.8. Glossary

�; �; �; �; . . . ; 	; 
: Greek indices are used for Cartesian
components of vectors and tensors (summation over repeated
indices is understood).
aj atomic displacement Raman tensor of the jth

phonon mode, defined as @v=@Qj

b susceptibility derivative @v=@E (closely related to
the electro-optic tensor rÞ

c velocity of light
c elastic stiffness tensor
d piezoelectric tensor
v susceptibility tensor
eI;S polarization vector of incident and scattered light
e�ðq; jÞ phonon eigenvector of the jth phonon mode of

wavevector q
E electric field intensity
f magneto-optic tensor

�j;q damping constant of mode ðj; qÞ
H magnetic field intensity
"0 permittivity of free space
""" permittivity tensor
kI;S wavevector of incident and scattered light
nI;S refractive index for incident and scattered light
P polarization
q phonon wavevector
QjðqÞ normal coordinate (amplitude of the jth phonon

mode of wavevector qÞ
Rj Raman tensor of jth phonon mode
S strain tensor
T stress tensor
� scattering cross section
! angular frequency
ZðqÞ effective charge matrix
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2.4. Brillouin scattering

By R. Vacher and E. Courtens

2.4.1. Introduction

Brillouin scattering originates from the interaction of an incident
radiation with thermal acoustic vibrations in matter. The
phenomenon was predicted by Brillouin in 1922 (Brillouin, 1922)
and first observed in light scattering by Gross (Gross, 1930a,b).
However, owing to specific spectrometric difficulties, precise
experimental studies of Brillouin lines in crystals were not
performed until the 1960s (Cecchi, 1964; Benedek & Fritsch,
1966; Gornall & Stoicheff, 1970) and Brillouin scattering became
commonly used for the investigation of elastic properties of
condensed matter with the advent of laser sources and multipass
Fabry–Perot interferometers (Hariharan & Sen, 1961; Sander-
cock, 1971). More recently, Brillouin scattering of neutrons
(Egelstaff et al., 1989) and X-rays (Sette et al., 1998) has been
observed.

Brillouin scattering of light probes long-wavelength acoustic
phonons. Thus, the detailed atomic structure is irrelevant and the
vibrations of the scattering medium are determined by macro-
scopic parameters, in particular the density � and the elastic
coefficients cijk‘. For this reason, Brillouin scattering is observed
in gases, in liquids and in crystals as well as in disordered solids.

Vacher & Boyer (1972) and Cummins & Schoen (1972) have
performed a detailed investigation of the selection rules for
Brillouin scattering in materials of various symmetries. In this
chapter, calculations of the sound velocities and scattered
intensities for the most commonly investigated vibrational modes
in bulk condensed matter are presented. Brillouin scattering from
surfaces will not be discussed. The current state of the art for
Brillouin spectroscopy is also briefly summarized.

2.4.2. Elastic waves

2.4.2.1. Non-piezoelectric media

The fundamental equation of dynamics (see Section 1.3.4.2),
applied to the displacement u of an elementary volume at r in a
homogeneous material is

�€uui ¼
@Tij

@xj
: ð2:4:2:1Þ

Summation over repeated indices will always be implied, and T is
the stress tensor. In non-piezoelectric media, the constitutive
equation for small strains S is simply

Tij ¼ cijk‘Sk‘: ð2:4:2:2Þ

The strain being the symmetrized spatial derivative of u, and c
being symmetric upon interchange of k and ‘, the introduction of
(2.4.2.2) in (2.4.2.1) gives (see also Section 1.3.4.2)

� €uui ¼ cijk‘
@2uk
@xj@x‘

: ð2:4:2:3Þ

One considers harmonic plane-wave solutions of wavevector Q
and frequency !,

uðr; tÞ ¼ u0 exp iðQ � r� !tÞ: ð2:4:2:4Þ

For u0 small compared with the wavelength 2�=Q, the total
derivative €uu can be replaced by the partial @2u=@t2 in (2.4.2.3).
Introducing (2.4.2.4) into (2.4.2.3), one obtains

cijk‘Q̂QjQ̂Q‘u0k ¼ C�iku0k; ð2:4:2:5Þ

where Q̂Q ¼ Q=jQj is the unit vector in the propagation direction,
�ik is the unit tensor and C � �V2, where V ¼ !=jQj is the phase
velocity of the wave. This shows that u0 is an eigenvector of the
tensor cijk‘Q̂QjQ̂Q‘. For a given propagation direction Q̂Q, the three
eigenvalues CðsÞ are obtained by solving

cijk‘Q̂QjQ̂Q‘ � C�ik

�
�
�

�
�
� ¼ 0: ð2:4:2:6Þ

To each CðsÞ there is an eigenvector uðsÞ given by (2.4.2.5) and an
associated phase velocity

VðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
CðsÞ=�

p
: ð2:4:2:7Þ

The tensor cijk‘Q̂QjQ̂Q‘ is symmetric upon interchange of the
indices (i; k) because cijk‘ ¼ ck‘ij. Its eigenvalues are real positive,
and the three directions of vibration ûuðsÞ are mutually perpendi-
cular. The notation ûuðsÞ indicates a unit vector. The tensor
cijk‘Q̂QjQ̂Q‘ is also invariant upon a change of sign of the propa-
gation direction. This implies that the solution of (2.4.2.5) is the
same for all symmetry classes belonging to the same Laue class.

For a general direction Q̂Q, and for a symmetry lower than
isotropic, ûuðsÞ is neither parallel nor perpendicular to Q̂Q, so that
the modes are neither purely longitudinal nor purely transverse.
In this case (2.4.2.6) is also difficult to solve. The situation is much
simpler when Q̂Q is parallel to a symmetry axis of the Laue class.
Then, one of the vibrations is purely longitudinal (LA), while the
other two are purely transverse (TA). A pure mode also exists
when Q̂Q belongs to a symmetry plane of the Laue class, in which
case there is a transverse vibration with ûu perpendicular to the
symmetry plane. For all these pure mode directions, (2.4.2.6) can
be factorized to obtain simple analytical solutions. In this chapter,
only pure mode directions are considered.

2.4.2.2. Piezoelectric media

In piezoelectric crystals, a stress component is also produced
by the internal electric field E, so that the constitutive equation
(2.4.2.2) has an additional term (see Section 1.1.5.2),

Tij ¼ cijk‘Sk‘ � emijEm; ð2:4:2:8Þ

where e is the piezoelectric tensor at constant strain.
The electrical displacement vector D, related to E by the

dielectric tensor """, also contains a contribution from the strain,

Dm ¼ "mnEn þ emk‘Sk‘; ð2:4:2:9Þ

where """ is at the frequency of the elastic wave.
In the absence of free charges, divD ¼ 0, and (2.4.2.9)

provides a relation between E and S,

"mnQnEm þ emk‘QmSk‘ ¼ 0: ð2:4:2:10Þ

For long waves, it can be shown that E and Q are parallel.
(2.4.2.10) can then be solved for E, and this value is replaced in
(2.4.2.8) to give

Tij ¼ cijk‘ þ
emijenk‘Q̂QmQ̂Qn

"ghQ̂QgQ̂Qh

" #

Sk‘ � c
ðeÞ
ijk‘Sk‘: ð2:4:2:11Þ
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Comparing (2.4.2.11) and (2.4.2.2), one sees that the effective
elastic tensor cðeÞ now depends on the propagation direction Q̂Q.
Otherwise, all considerations of the previous section, starting
from (2.4.2.6), remain, with c simply replaced by cðeÞ.

2.4.3. Coupling of light with elastic waves

2.4.3.1. Direct coupling to displacements

The change in the relative optical dielectric tensor j produced
by an elastic wave is usually expressed in terms of the strain,
using the Pockels piezo-optic tensor p, as

ð���1Þij ¼ pijk‘Sk‘: ð2:4:3:1Þ

The elastic wave should, however, be characterized by both strain
S and rotation A (Nelson & Lax, 1971; see also Section 1.3.1.3):

A½k‘� ¼
1
2

@uk
@x‘

�
@u‘
@xk

� �

: ð2:4:3:2Þ

The square brackets on the left-hand side are there to emphasize
that the component is antisymmetric upon interchange of the
indices, A½k‘� ¼ �A½‘k�. For birefringent crystals, the rotations
induce a change of the local j in the laboratory frame. In this
case, (2.4.3.1) must be replaced by

ð���1Þij ¼ p0ijk‘
@uk
@x‘

; ð2:4:3:3Þ

where p0 is the new piezo-optic tensor given by

p0ijk‘ ¼ pijk‘ þ pij½k‘�: ð2:4:3:4Þ

One finds for the rotational part

pij½k‘� ¼
1
2½ð�

�1Þi‘�kj þ ð��1Þ‘j�ik � ð��1Þik�‘j � ð��1Þkj�i‘�:

ð2:4:3:5Þ

If the principal axes of the dielectric tensor coincide with the
crystallographic axes, this gives

pij½k‘� ¼
1
2ð�i‘�kj � �ik�‘jÞð1=n

2
i � 1=n2j Þ: ð2:4:3:6Þ

This is the expression used in this chapter, as monoclinic and
triclinic groups are not listed in the tables below.

For the calculation of the Brillouin scattering, it is more
convenient to use

ð��Þmn ¼ ��mi�njp
0
ijk‘

@uk
@x‘

; ð2:4:3:7Þ

which is valid for small ��.

2.4.3.2. Coupling via the electro-optic effect

Piezoelectric media also exhibit an electro-optic effect linear in
the applied electric field or in the field-induced crystal polariza-
tion. This effect is described in terms of the third-rank electro-
optic tensor r defined by

ð���1Þij ¼ rijmEm: ð2:4:3:8Þ

Using the same approach as in (2.4.2.10), for long waves Em can
be expressed in terms of Sk‘, and (2.4.3.8) leads to an effective
Pockels tensor pe accounting for both the piezo-optic and the
electro-optic effects:

peijk‘ ¼ pijk‘ �
rijmenk‘Q̂QmQ̂Qn

"ghQ̂QgQ̂Qh

: ð2:4:3:9Þ

The total change in the inverse dielectric tensor is then

ð���1Þij ¼ ðpeijk‘ þ pij½k‘�Þ
@uk
@x‘

¼ p0ijk‘
@uk
@x‘

: ð2:4:3:10Þ

The same equation (2.4.3.7) applies.

2.4.4. Brillouin scattering in crystals

2.4.4.1. Kinematics

Brillouin scattering occurs when an incident photon at
frequency �i interacts with the crystal to either produce or absorb
an acoustic phonon at ��, while a scattered photon at �s is
simultaneously emitted. Conservation of energy gives

�� ¼ �s � �i; ð2:4:4:1Þ

where positive �� corresponds to the anti-Stokes process.
Conservation of momentum can be written

Q ¼ ks � ki; ð2:4:4:2Þ

where Q is the wavevector of the emitted phonon, and ks, ki are
those of the scattered and incident photons, respectively. One can
define unit vectors q in the direction of the wavevectors k by

ki ¼ 2�qn=�0; ð2:4:4:3aÞ

ks ¼ 2�q0n0=�0; ð2:4:4:3bÞ

where n and n0 are the appropriate refractive indices, and �0 is the
vacuum wavelength of the radiation. Equation (2.4.4.3b) assumes
that ��� �i so that �0 is not appreciably changed in the scat-
tering. The incident and scattered waves have unit polarization
vectors e and e0, respectively, and corresponding indices n and n0.
The polarization vectors are the principal directions of vibration
derived from the sections of the ellipsoid of indices by planes
perpendicular to q and q0, respectively. We assume that the
electric vector of the light field Eopt is parallel to the displacement
Dopt. This is exactly true for many cases listed in the tables below.
In the other cases (such as skew directions in the orthorhombic
group) this assumes that the birefringence is sufficiently small for
the effect of the angle between Eopt and Dopt to be negligible. A
full treatment, including this effect, has been given by Nelson et
al. (1972).

After substituting (2.4.4.3) in (2.4.4.2), the unit vector in the
direction of the phonon wavevector is given by

Q̂Q ¼
n0q0 � nq

n0q0 � nq
�
�

�
�
: ð2:4:4:4Þ

The Brillouin shift �� is related to the phonon velocity V by

�� ¼ VQ=2�: ð2:4:4:5Þ

Since ��0 ¼ c, from (2.4.4.5) and (2.4.4.3), (2.4.4.4) one finds

�� ffi ðV=�0Þ½n
2 þ ðn0Þ

2
� 2nn0 cos ��1=2; ð2:4:4:6Þ

where � is the angle between q and q0.

2.4.4.2. Scattering cross section

The power dPin, scattered from the illuminated volume V in a
solid angle d�in, where Pin and �in are measured inside the
sample, is given by

dPin

d�in

¼ V
kBT�

2n0

2n�40C
MIin; ð2:4:4:7Þ

where Iin is the incident light intensity inside the material,
C ¼ �V2 is the appropriate elastic constant for the observed
phonon, and the factor kBT results from taking the fluctuation–
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dissipation theorem in the classical limit for h��� kBT (Hayes
& Loudon, 1978). The coupling coefficient M is given by

M ¼ jeme
0
n�mi�njp

0
ijk‘ûukQ̂Q‘j

2: ð2:4:4:8Þ

In practice, the incident intensity is defined outside the scattering
volume, Iout, and for normal incidence one can write

Iin ¼
4n

ðnþ 1Þ2
Iout: ð2:4:4:9aÞ

Similarly, the scattered power is observed outside as Pout, and

Pout ¼
4n0

ðn0 þ 1Þ2
Pin; ð2:4:4:9bÞ

again for normal incidence. Finally, the approximative relation
between the scattering solid angle �out, outside the sample, and
the solid angle �in, in the sample, is

�out ¼ ðn0Þ
2�in: ð2:4:4:9cÞ

Substituting (2.4.4.9a,b,c) in (2.4.4.7), one obtains (Vacher &
Boyer, 1972)

dPout

d�out

¼
8�2kBT

�40

n4

ðnþ 1Þ2
ðn0Þ

4

ðn0 þ 1Þ2
�VIout; ð2:4:4:10Þ

where the coupling coefficient � is

� ¼
1

n4ðn0Þ
4

jeme
0
n�mi�njp

0
ijk‘ûukQ̂Q‘j

2

C
: ð2:4:4:11Þ

In the cases of interest here, the tensor j is diagonal, �ij ¼ n2i �ij
without summation on i, and (2.4.4.11) can be written in the
simpler form

� ¼
1

n4ðn0Þ
4

jein
2
i p

0
ijk‘ûukQ̂Q‘e

0
jn

2
j j
2

C
: ð2:4:4:12Þ

2.4.5. Use of the tables

The tables in this chapter give information on modes and scat-
tering geometries that are in most common use in the study of
hypersound in single crystals. Just as in the case of X-rays, Bril-
louin scattering is not sensitive to the presence or absence of a
centre of symmetry (Friedel, 1913). Hence, the results are the
same for all crystalline classes belonging to the same centric
group, also called Laue class. The correspondence between the
point groups and the Laue classes analysed here is shown in Table
2.4.5.1. The monoclinic and triclinic cases, being too cumbersome,
will not be treated here.

For tensor components cijk‘ and pijk‘, the tables make use of the
usual contracted notation for index pairs running from 1 to 6.
However, as the tensor p0ijk‘ is not symmetric upon interchange of
ðk; ‘Þ, it is necessary to distinguish the order ðk; ‘Þ and ð‘; kÞ. This
is accomplished with the following correspondence:

1; 1 ! 1 2; 2 ! 2 3; 3 ! 3

1; 2 ! 6 2; 3 ! 4 3; 1 ! 5

2; 1 ! �66 3; 2 ! �44 1; 3 ! �55:

Geometries for longitudinal modes (LA) are listed in Tables
2.4.5.2 to 2.4.5.8. The first column gives the direction of the
scattering vector Q̂Q that is parallel to the displacement ûu. The
second column gives the elastic coefficient according to (2.4.2.6).
In piezoelectric materials, effective elastic coefficients defined in
(2.4.2.11) must be used in this column. The third column gives the
direction of the light polarizations êe and êe0, and the last column

gives the corresponding coupling coefficient � [equation
(2.5.5.11)]. In general, the strongest scattering intensity is
obtained for polarized scattering (êe ¼ êe0), which is the only
situation listed in the tables. In this case, the coupling to light (�)
is independent of the scattering angle �, and thus the tables apply
to any � value.

Tables 2.4.5.9 to 2.4.5.15 list the geometries usually used for the
observation of TA modes in backscattering (� ¼ 180�). In this
case, ûu is always perpendicular to Q̂Q (pure transverse modes), and
êe0 is not necessarily parallel to êe. Cases where pure TA modes
with ûu in the plane perpendicular to Q̂Q are degenerate are indi-
cated by the symbolD in the column for ûu. For the Pockels tensor
components, the notation is p	� if the rotational term vanishes by
symmetry, and it is p0	� otherwise.

Tables 2.4.5.16 to 2.4.5.22 list the common geometries used for
the observation of TAmodes in 90� scattering. In these tables, the
polarization vector êe is always perpendicular to the scattering
plane and êe0 is always parallel to the incident wavevector of light
q. Owing to birefringence, the scattering vector Q̂Q does not
exactly bisect q and q0 [equation (2.4.4.4)]. The tables are written
for strict 90� scattering, q � q0 ¼ 0, and in the case of birefringence
the values of qðmÞ to be used are listed separately in Table 2.4.5.23.
The latter assumes that the birefringences are not large, so that
the values of qðmÞ are given only to first order in the birefringence.

2.4.6. Techniques of Brillouin spectroscopy

Brillouin spectroscopy with visible laser light requires observing
frequency shifts falling typically in the range�1 to�100 GHz, or
�0.03 to �3 cm�1. To achieve this with good resolution one
mostly employs interferometry. For experiments at very small
angles (near forward scattering), photocorrelation spectroscopy
can also be used. If the observed frequency shifts are 	 1 cm�1,
rough measurements of spectra can sometimes be obtained with
modern grating instruments. Recently, it has also become
possible to perform Brillouin scattering using other excitations, in
particular neutrons or X-rays. In these cases, the coupling does
not occur via the Pockels effect, and the frequency shifts that are
observed are much larger. The following discussion is restricted
to optical interferometry.

The most common interferometer that has been used for this
purpose is the single-pass planar Fabry–Perot (Born & Wolf,
1993). Upon illumination with monochromatic light, the
frequency response of this instrument is given by the Airy
function, which consists of a regular comb of maxima obtained as
the optical path separating the mirrors is increased. Successive
maxima are separated by �=2. The ratio of the maxima separation
to the width of a single peak is called the finesse F, which
increases as the mirror reflectivity increases. The finesse is also
limited by the planarity of the mirrors. A practical limit is
F � 100. The resolving power of such an instrument is R ¼ 2‘=�,
where ‘ is the optical thickness. Values of R around 106 to 107 can
be achieved. It is impractical to increase ‘ above �5 cm because
the luminosity of the instrument is proportional to 1=‘. If higher
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Table 2.4.5.1. Definition of Laue classes

Crystal
system

Laue
class Point groups

Cubic C1 432; �443m;m�33m
C2 23; �33m

Hexagonal H1 622; 6mm; �662m; 6=mm
H2 6; �66; 6=m

Tetragonal T1 422; 4mm; �442m; 4=mm
T2 4; �44; 4=m

Trigonal R1 32; 3m; �33m
R2 3; �33

Orthorhombic O mmm; 2mm; 222
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resolutions are required, one uses a spherical interferometer as
described below.

A major limitation of the Fabry–Perot interferometer is its
poor contrast, namely the ratio between the maximum and the
minimum of the Airy function, which is typically �1000. This
limits the use of this instrument to samples of very high optical
quality, as otherwise the generally weak Brillouin signals are
masked by the elastically scattered light. To avert this effect,
several passes are made through the same instrument, thus
elevating the Airy function to the corresponding power (Hari-
haran & Sen, 1961; Sandercock, 1971). Multiple-pass instruments
with three, four or five passes are common. Another limitation of
the standard Fabry–Perot interferometer is that the interference
pattern is repeated at each order. Hence, if the spectrum has a
broad spectral spread, the overlap of adjacent orders can greatly
complicate the interpretation of measurements. In this case,
tandem instruments can be of considerable help. They consist of
two Fabry–Perot interferometers with combs of different periods
placed in series (Chantrel, 1959; Mach et al., 1963). These are
operated around a position where the peak transmission of the
first interferometer coincides with that of the second one. The
two Fabry–Perot interferometers are scanned simultaneously.
With this setup, the successive orders are reduced to small ghosts
and overlap is not a problem. A convenient commercial instru-
ment has been designed by Sandercock (1982).

To achieve higher resolutions, one uses the spherical Fabry–
Perot interferometer (Connes, 1958; Hercher, 1968). This consists

of two spherical mirrors placed in a near-confocal configuration.
Their spacing ‘ is scanned over a distance of the order of �. The
peculiarity of this instrument is that its luminosity increases with
its resolution. One obvious drawback is that a change of resolving
power, i.e. of ‘, requires other mirrors. Of course, the single
spherical Fabry–Perot interferometer suffers the same limitations
regarding contrast and order overlap that were discussed above
for the planar case. Multipassing the spherical Fabry–Perot
interferometer is possible but not very convenient. It is prefer-
able to use tandem instruments that combine a multipass planar
instrument of low resolution followed by a spherical instrument
of high resolution (Pine, 1972; Vacher, 1972). To analyse the
linewidth of narrow phonon lines, the planar standard is adjusted
dynamically to transmit the Brillouin line and the spherical
interferometer is scanned across the line. With such a device,
resolving powers of �108 have been achieved. For the dynamical
adjustment of this instrument one can use a reference signal near
the frequency of the phonon line, which is derived by electro-
optic modulation of the exciting laser (Sussner & Vacher, 1979).
In this case, not only the width of the phonon, but also its
absolute frequency shift, can be determined with an accuracy of
�1 MHz. It is obvious that to achieve this kind of resolution, the
laser source itself must be appropriately stabilized.

In closing, it should be stressed that the practice of inter-
ferometry is still an art that requires suitable skills and training in
spite of the availability of commercial instruments. The experi-
menter must take care of a large number of aspects relating to the
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Table 2.4.5.2. Cubic Laue classes C1 and C2: longitudinal modes

This table, written for the class C2, is also valid for the class C1 with the additional relation p12 ¼ p13.
It can also be used for the spherical system where c44 ¼

1
2ðc11 � c12Þ, p44 ¼

1
2ðp11 � p12Þ.

Q̂Q ¼ ûu C e ¼ e0 �

ð1; 0; 0Þ c11 ð0; 1; 0Þ p213=c11
ð1; 0; 0Þ c11 ð0; 0; 1Þ p212=c11
ð1; 1; 0Þ=

ffiffiffi
2

p
1
2ðc11 þ c12Þ þ c44 ð0; 0; 1Þ ðp12 þ p13Þ

2=4C

ð1; 1; 0Þ=
ffiffiffi
2

p
1
2ðc11 þ c12Þ þ c44 ð1;�1; 0Þ=

ffiffiffi
2

p
ð2p11 þ p12 þ p13 � 4p44Þ

2=16C

ð1; 1; 1Þ=
ffiffiffi
3

p
1
3ðc11 þ 2c12 þ 4c44Þ ð1; 1;�2Þ=

ffiffiffi
6

p
ðp11 þ p12 þ p13 � 2p44Þ

2=9C

ð1; 1; 1Þ=
ffiffiffi
3

p
1
3ðc11 þ 2c12 þ 4c44Þ ð1;�1; 0Þ=

ffiffiffi
2

p
ðp11 þ p12 þ p13 � 2p44Þ

2=9C

Table 2.4.5.3. Tetragonal T1 and hexagonal H1 Laue classes: longitudinal
modes

This table, written for the class T1, is also valid for the classH1 with the additional
relations c66 ¼

1
2ðc11 � c12Þ; p66 ¼

1
2ðp11 � p12Þ.

Q̂Q ¼ ûu C e ¼ e0 �

ð1; 0; 0Þ c11 ð0; 1; 0Þ p212=c11
ð1; 0; 0Þ c11 ð0; 0; 1Þ p231=c11
ð0; 0; 1Þ c33 ð1; 0; 0Þ p213=c33
ð0; 0; 1Þ c33 ð0; 1; 0Þ p213=c33
ð1; 1; 0Þ=

ffiffiffi
2

p
1
2ðc11 þ c12Þ þ c66 ð0; 0; 1Þ p231=C

ð1; 1; 0Þ=
ffiffiffi
2

p
1
2ðc11 þ c12Þ þ c66 ð1;�1; 0Þ=

ffiffiffi
2

p
ðp11 þ p12 � 2p66Þ

2=4C

Table 2.4.5.4. Hexagonal Laue class H2: longitudinal modes

Q̂Q ¼ ûu C e ¼ e0 �

ð1; 0; 0Þ c11 ð0; 1; 0Þ p212=c11
ð1; 0; 0Þ c11 ð0; 0; 1Þ p231=c11
ð0; 0; 1Þ c33 ð1; 0; 0Þ p213=c33
ð0; 0; 1Þ c33 ð0; 1; 0Þ p213=c33
ð1; 1; 0Þ=

ffiffiffi
2

p
c11 ð0; 0; 1Þ p231=c11

ð1; 1; 0Þ=
ffiffiffi
2

p
c11 ð1;�1; 0Þ=

ffiffiffi
2

p
p212=c11

Table 2.4.5.6. Orthorhombic Laue class O: longitudinal modes

Q̂Q ¼ ûu C e ¼ e0 �

ð1; 0; 0Þ c11 ð0; 1; 0Þ p221=c11
ð1; 0; 0Þ c11 ð0; 0; 1Þ p231=c11
ð0; 1; 0Þ c22 ð0; 0; 1Þ p232=c22
ð0; 1; 0Þ c22 ð1; 0; 0Þ p212=c22
ð0; 0; 1Þ c33 ð1; 0; 0Þ p213=c33
ð0; 0; 1Þ c33 ð0; 1; 0Þ p223=c33

Table 2.4.5.7. Trigonal Laue class R1: longitudinal modes

Q̂Q ¼ ûu C e e0 �

ð1; 0; 0Þ c11 ð0; 1; 0Þ ð0; 1; 0Þ p212=c11
ð1; 0; 0Þ c11 ð0; 0; 1Þ ð0; 0; 1Þ p231=c11
ð1; 0; 0Þ c11 ð0; 1; 0Þ ð0; 0; 1Þ p241=c11
ð0; 0; 1Þ c33 ð1; 0; 0Þ ð1; 0; 0Þ p213=c33
ð0; 0; 1Þ c33 ð0; 1; 0Þ ð0; 1; 0Þ p213=c33

Table 2.4.5.8. Trigonal Laue class R2: longitudinal modes

Q̂Q ¼ ûu C e e0 �

ð0; 0; 1Þ c33 ð1; 0; 0Þ ð1; 0; 0Þ p213=c33
ð0; 0; 1Þ c33 ð0; 1; 0Þ ð0; 1; 0Þ p213=c33

Table 2.4.5.5. Tetragonal Laue class T2: longitudinal modes

Q̂Q ¼ ûu C e ¼ e0 �

ð0; 0; 1Þ c33 ð1; 0; 0Þ p213=c33
ð0; 0; 1Þ c33 ð0; 1; 0Þ p213=c33
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Table 2.4.5.9. Cubic Laue classes C1 and C2: transverse modes, backscattering

This table, written for the class C2, is also valid for the class C1 with the additional relation p12 ¼ p13.
It can also be used for the spherical system where c44 ¼

1
2ðc11 � c12Þ, p44 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C e e0 �

ð1; 1; 0Þ=
ffiffiffi
2

p
ð1;�1; 0Þ=

ffiffiffi
2

p
1
2ðc11 � c12Þ ð0; 0; 1Þ ð0; 0; 1Þ ðp12 � p13Þ

2=2ðc11 � c12Þ

ð1; 1; 1Þ=
ffiffiffi
3

p
D 1

3ðc11 � c12 þ c44Þ ð1; 1;�2Þ=
ffiffiffi
6

p
ð1;�1; 0Þ=

ffiffiffi
2

p
½3ðp12 � p13Þ

2
þ ðp12 þ p13 þ 4p44 � 2p11Þ

2
�=72C

Table 2.4.5.10. Tetragonal T1 and hexagonal H1 Laue classes: transverse modes, backscattering

This table, written for the class T1, is also valid for the class H1 with the additional relations c66 ¼
1
2ðc11 � c12Þ; p66 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C e e0 �

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ ð1; 0; 0Þ ð0; 1;�1Þ=
ffiffiffi
2

p
½ðn21 þ n23Þ

2=16n41n
4
3C�ðn

2
1p66 � n23p

0
44Þ

2

Table 2.4.5.11. Hexagonal Laue class H2: transverse modes, backscattering

c66 ¼
1
2ðc11 � c12Þ; p66 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C e e0 �

ð1; 0; 0Þ ð0; 1; 0Þ c66 ð0; 1; 0Þ ð0; 1; 0Þ p216=c66
ð1; 0; 0Þ ð0; 0; 1Þ c44 ð0; 1; 0Þ ð0; 0; 1Þ p245=c44
ð0; 1; 1Þ=

ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ ð1; 0; 0Þ ð1; 0; 0Þ p216=ðc44 þ c66Þ

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ ð1; 0; 0Þ ð0; 1;�1Þ=
ffiffiffi
2

p
½ðn21 þ n23Þ

2=16n41n
4
3C�ðn

2
1p66 � n23p

0
44Þ

2

Table 2.4.5.12. Tetragonal Laue class T2: transverse modes, backscattering

Q̂Q ûu C e e0 �

ð1; 0; 0Þ ð0; 0; 1Þ c44 ð0; 1; 0Þ ð0; 0; 1Þ p245=c44
ð1; 1; 0Þ=

ffiffiffi
2

p
ð0; 0; 1Þ c44 ð0; 0; 1Þ ð1;�1; 0Þ=

ffiffiffi
2

p
p245=c44

Table 2.4.5.13. Orthorhombic Laue class O: transverse modes, backscattering

Q̂Q ûu C e e0 �

ð1; 1; 0Þ=
ffiffiffi
2

p
ð0; 0; 1Þ 1

2ðc44 þ c55Þ ð0; 0; 1Þ ð1;�1; 0Þ=
ffiffiffi
2

p
½ðn21 þ n22Þ

2=16n41n
4
2C�ðn

2
1p

0
55 � n22p

0

4�44
Þ
2

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc55 þ c66Þ ð1; 0; 0Þ ð0; 1;�1Þ=
ffiffiffi
2

p
½ðn22 þ n23Þ

2=16n42n
4
3C�ðn

2
2p

0
66 � n23p

0

5�55
Þ
2

ð1; 0; 1Þ=
ffiffiffi
2

p
ð0; 1; 0Þ 1

2ðc44 þ c66Þ ð0; 1; 0Þ ð�1; 0; 1Þ=
ffiffiffi
2

p
½ðn21 þ n23Þ

2=16n41n
4
3C�ðn

2
3p

0
44 � n21p

0

6�66
Þ
2

Table 2.4.5.14. Trigonal Laue class R1: transverse modes, backscattering

c66 ¼
1
2ðc11 � c12Þ; p66 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C e e0 �

ð0; 1; 0Þ ð1; 0; 0Þ c66 ð0; 0; 1Þ ð1; 0; 0Þ p241=c66
ð0; 0; 1Þ D c44 ð1; 0; 0Þ ð1; 0; 0Þ p214=c44
ð0; 0; 1Þ D c44 ð0; 1; 0Þ ð1; 0; 0Þ p214=c44
ð0; 1; 1Þ=

ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ þ c14 ð1; 0; 0Þ ð0; 1;�1Þ=
ffiffiffi
2

p
½ðn21 þ n23Þ

2=16n41n
4
3C�½n

2
1ðp66 þ p14Þ � n23ðp

0
44 þ p41Þ�

2

ð0; 1;�1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ � c14 ð1; 0; 0Þ ð0; 1; 1Þ=
ffiffiffi
2

p
½ðn21 þ n23Þ

2=16n41n
4
3C�½n

2
1ðp66 � p14Þ þ n23ðp41 � p044Þ�

2

Table 2.4.5.15. Trigonal Laue class R2: transverse modes, backscattering

Q̂Q ûu C e e0 �

ð0; 0; 1Þ D c44 ð1; 0; 0Þ ð1; 0; 0Þ ðp214 þ p215Þ=c44
ð0; 0; 1Þ D c44 ð0; 1; 0Þ ð1; 0; 0Þ ðp214 þ p215Þ=c44
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Table 2.4.5.16. Cubic Laue classes C1 and C2: transverse modes, right-angle scattering

This table, written for the class C2, is also valid for the class C1 with the additional relation p12 ¼ p13.
It can also be used for the spherical system where c44 ¼

1
2ðc11 � c12Þ, p44 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C
Scattering
plane e e0 �

ð1; 0; 0Þ D c44 ð001Þ ð0; 0; 1Þ ð1;�1; 0Þ=
ffiffiffi
2

p
p244=2c44

ð1; 0; 0Þ D c44 ð010Þ ð0; 1; 0Þ ð1; 0; 1Þ=
ffiffiffi
2

p
p244=2c44

ð1; 1; 0Þ=
ffiffiffi
2

p
ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ð1; 0; 0Þ p244=2c44

ð1; 1; 0Þ=
ffiffiffi
2

p
ð�1; 1; 0Þ=

ffiffiffi
2

p
1
2ðc11 � c12Þ ð001Þ ð0; 0; 1Þ ð0; 0; 1Þ ðp12 � p13Þ

2=4C

ð1; 1; 0Þ=
ffiffiffi
2

p
ð�1; 1; 0Þ=

ffiffiffi
2

p
1
2ðc11 � c12Þ ð1�10Þ ð1;�1; 0Þ=

ffiffiffi
2

p
ð1; 1;�

ffiffiffi
2

p
Þ=2 ð2p11 � p12 � p13Þ

2=32C

Table 2.4.5.17. Tetragonal T1 and hexagonal H1 Laue classes: transverse modes, right-angle scattering

This table, written for the class T1, is also valid for the class H1 with the additional relations c66 ¼
1
2ðc11 � c12Þ; p66 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C
Scattering
plane e e0 �

ð1; 0; 0Þ ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ðq
ð1Þ
1 ; q

ð1Þ
2 ; 0Þ ðq

ð1Þ
1 p0

4�44
Þ
2=c44

ð1; 0; 0Þ ð0; 1; 0Þ c66 ð010Þ ð0; 1; 0Þ ðq
ð2Þ
1 ; 0; q

ð2Þ
3 Þ f½ðn3q

ð2Þ
1 Þ

2
þ ðn1q

ð2Þ
3 Þ

2
�
2=n43c66gðq

ð2Þ
1 p66Þ

2

ð0; 0; 1Þ D c44 ð010Þ ð0; 1; 0Þ ðq
ð5Þ
1 ; 0; q

ð5Þ
3 Þ f½ðn3q

ð5Þ
1 Þ

2
þ ðn1q

ð5Þ
3 Þ

2
�
2=n41c44gðq

ð5Þ
3 p044Þ

2

ð1; 1; 0Þ=
ffiffiffi
2

p
ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ðq

ð7Þ
1 ; q

ð7Þ
2 ; 0Þ ½ðq

ð7Þ
1 þ q

ð7Þ
2 Þp0

4�44
�
2=2c44

ð1; 1; 0Þ=
ffiffiffi
2

p
ð1;�1; 0Þ=

ffiffiffi
2

p
1
2ðc11 � c12Þ ð1�10Þ ð1;�1; 0Þ=

ffiffiffi
2

p
ðq

ð10Þ
1 ; qð10Þ1 ; qð10Þ3 Þ f½2ðn3q

ð10Þ
1 Þ

2
þ ðn1q

ð10Þ
3 Þ

2
�
2=n43ðc11 � c12Þg½q

ð10Þ
1 ðp11 � p12Þ�

2

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ ð100Þ ð1; 0; 0Þ ð0; 1; 0Þ p266=ðc44 þ c66Þ

Table 2.4.5.18. Hexagonal H2 Laue class: transverse modes, right-angle scattering

c66 ¼
1
2ðc11 � c12Þ; p66 ¼

1
2ðp11 � p12Þ.

Q̂Q ûu C
Scattering
plane e e0 �

ð1; 0; 0Þ ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ðq
ð1Þ
1 ; q

ð1Þ
2 ; 0Þ ðq

ð1Þ
1 p0

4�44
þ q

ð1Þ
2 p45Þ

2=c44
ð1; 0; 0Þ ð0; 1; 0Þ c66 ð001Þ ð1; 1; 0Þ=

ffiffiffi
2

p
ð1;�1; 0Þ=

ffiffiffi
2

p
p216=c66

ð1; 0; 0Þ ð0; 1; 0Þ c66 ð010Þ ð0; 1; 0Þ ðq
ð2Þ
1 ; 0; q

ð2Þ
3 Þ f½ðn3q

ð2Þ
1 Þ

2
þ ðn1q

ð2Þ
3 Þ

2
�
2=n43c66gðq

ð2Þ
1 p66Þ

2

ð0; 0; 1Þ D c44 ð010Þ ð0; 1; 0Þ ðq
ð5Þ
1 ; 0; q

ð5Þ
3 Þ f½ðn3q

ð5Þ
1 Þ

2
þ ðn1q

ð5Þ
3 Þ

2
�
2=n41c44gðq

ð5Þ
3 Þ

2
ðp

02
44 þ p245Þ

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ ð100Þ ð1; 0; 0Þ ð1; 0; 0Þ p216=ðc44 þ c66Þ

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc44 þ c66Þ ð100Þ ð1; 0; 0Þ ð0; 1; 0Þ p266=ðc44 þ c66Þ

Table 2.4.5.19. Tetragonal T2 Laue class: transverse modes, right-angle scattering

Q̂Q ûu C
Scattering
plane e e0 �

ð1; 0; 0Þ ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ðq
ð1Þ
1 ; q

ð1Þ
2 ; 0Þ ðq

ð1Þ
1 p0

4�44
þ q

ð1Þ
2 p45Þ

2=c44
ð1; 0; 0Þ ð0; 0; 1Þ c44 ð010Þ ð0; 1; 0Þ ðq

ð2Þ
1 ; 0; q

ð2Þ
3 Þ f½ðn3q

ð2Þ
1 Þ

2
þ ðn1q

ð2Þ
3 Þ

2
�
2=n41c44gðq

ð2Þ
3 p45Þ

2

ð0; 0; 1Þ D c44 ð010Þ ð0; 1; 0Þ ðq
ð5Þ
1 ; 0; q

ð5Þ
3 Þ f½ðn3q

ð5Þ
1 Þ

2
þ ðn1q

ð5Þ
3 Þ

2
�
2=n41c44gðq

ð5Þ
3 Þ

2
ðp

02
44 þ p245Þ

ð1; 1; 0Þ=
ffiffiffi
2

p
ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ðq

ð7Þ
1 ; q

ð7Þ
2 ; 0Þ ½ðq

ð7Þ
1 þ q

ð7Þ
2 Þp0

4�44
þ ðq

ð7Þ
2 � q

ð7Þ
1 Þp45�

2=2c44

Table 2.4.5.20. Orthorhombic Laue class O: transverse modes, right-angle scattering

Q̂Q ûu C
Scattering
plane e e0 �

ð1; 0; 0Þ ð0; 0; 1Þ c55 ð001Þ ð0; 0; 1Þ ðq
ð1Þ
1 ; q

ð1Þ
2 ; 0Þ f½ðn2q

ð1Þ
1 Þ

2
þ ðn1q

ð1Þ
2 Þ

2
�
2=n42c55gðq

ð1Þ
1 p055Þ

2

ð1; 0; 0Þ ð0; 1; 0Þ c66 ð010Þ ð0; 1; 0Þ ðq
ð2Þ
1 ; 0; q

ð2Þ
3 Þ f½ðn3q

ð2Þ
1 Þ

2
þ ðn1q

ð2Þ
3 Þ

2
�
2=n43c66gðq

ð2Þ
1 p0

6�66
Þ
2

ð0; 1; 0Þ ð1; 0; 0Þ c66 ð100Þ ð1; 0; 0Þ ð0; qð3Þ2 ; q
ð3Þ
3 Þ f½ðn3q

ð3Þ
2 Þ

2
þ ðn2q

ð3Þ
3 Þ

2
�
2=n43c66gðq

ð3Þ
2 p066Þ

2

ð0; 1; 0Þ ð0; 0; 1Þ c44 ð001Þ ð0; 0; 1Þ ðq
ð4Þ
1 ; q

ð4Þ
2 ; 0Þ f½ðn2q

ð4Þ
1 Þ

2
þ ðn1q

ð4Þ
2 Þ

2
�
2=n41c44gðq

ð4Þ
2 p0

4�44
Þ
2

ð0; 0; 1Þ ð0; 1; 0Þ c44 ð010Þ ð0; 1; 0Þ ðq
ð5Þ
1 ; 0; q

ð5Þ
3 Þ f½ðn3q

ð5Þ
1 Þ

2
þ ðn1q

ð5Þ
3 Þ

2
�
2=n41c44gðq

ð5Þ
3 p044Þ

2

ð0; 0; 1Þ ð1; 0; 0Þ c55 ð100Þ ð1; 0; 0Þ ð0; qð6Þ2 ; q
ð6Þ
3 Þ f½ðn3q

ð6Þ
2 Þ

2
þ ðn2q

ð6Þ
3 Þ

2
�
2=n42c55gðq

ð6Þ
3 p0

5�55
Þ
2

ð1; 1; 0Þ=
ffiffiffi
2

p
ð0; 0; 1Þ 1

2ðc44 þ c55Þ ð001Þ ð0; 0; 1Þ ðq
ð7Þ
1 ; q

ð7Þ
2 ; 0Þ f½ðn2q

ð7Þ
1 Þ

2
þ ðn1q

ð7Þ
2 Þ

2
�
2=n41n

4
2ðc44 þ c55Þg


ðn21q
ð7Þ
1 p055 þ n22q

ð7Þ
2 p0

4�44
Þ
2

ð0; 1; 1Þ=
ffiffiffi
2

p
ð1; 0; 0Þ 1

2ðc55 þ c66Þ ð100Þ ð1; 0; 0Þ ð0; qð8Þ2 ; q
ð8Þ
3 Þ f½ðn3q

ð8Þ
2 Þ

2
þ ðn2q

ð8Þ
3 Þ

2
�
2=n42n

4
3ðc55 þ c66Þg


ðn22q
ð8Þ
2 p066 þ n23q

ð8Þ
3 p0

5�55
Þ
2

ð1; 0; 1Þ=
ffiffiffi
2

p
ð0; 1; 0Þ 1

2ðc44 þ c66Þ ð010Þ ð0; 1; 0Þ ðq
ð9Þ
1 ; 0; q

ð9Þ
3 Þ f½ðn1q

ð9Þ
3 Þ

2
þ ðn3q

ð9Þ
1 Þ

2
�
2=n41n

4
3ðc44 þ c66Þg


ðn23q
ð9Þ
3 p044 þ n21q

ð9Þ
1 p0

6�66
Þ
2
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optical setup, the collection and acceptance angles of the
instruments, spurious reflections and spurious interferences, etc.
A full list is too long to be given here. However, when properly
executed, interferometry is a fine tool, the performance of which
is unequalled in its frequency range.
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Cecchi, L. (1964). Etude interférométrique de la diffusion Rayleigh dans
les cristaux – diffusion Brillouin. Doctoral Thesis, University of
Montpellier.
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Table 2.4.5.21. Trigonal Laue class R1: transverse modes, right-angle scattering
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Table 2.4.5.22. Trigonal Laue class R2: transverse modes, right-angle scattering
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Table 2.4.5.23. Particular directions of incident light used in Tables 2.4.5.17 to 2.4.5.22
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3.1. Structural phase transitions

By J.-C. Tolédano, V. Janovec, V. Kopský, J. F. Scott and P. Boček

This chapter contains six contributions describing aspects of
phase transitions in crystals that are of interest to crystal-
lographers. The first contribution (Section 3.1.1) is a brief intro-
duction aimed at defining the field of structural transitions. This
restricted field constitutes, at present, the background of the
clearest set of experimental and theoretical considerations. In this
section, the terminology is specified. The second section (Section
3.1.2) describes the ideas and methods of the theory of structural
phase transitions. This theory relates the symmetry characteristics
of the transitions to their physical characteristics. The application
of the symmetry principles that derive from this theory is illu-
strated by the results contained in Tables 3.1.3.1 and 3.1.4.1. The
first of these two tables concerns the simple but experimentally
widespread situation in which a structural transition is not
accompanied by a change in the number of atoms per primitive
crystal cell. The second table concerns the general case, in which
the number of atoms changes, and which corresponds to the onset
of superlattice reflections at the phase transition. This table
provides, for a set of hypothetical transformations, the various
symmetry-based predictions of the theory. Section 3.1.5 is
devoted to the important topic of soft modes, which is related to
the microscopic mechanism of a structural transition. Finally,
Section 3.1.6 is an introduction to the software package Group
Informatics contained in the accompanying CD-ROM.

3.1.1. Introduction

By J.-C. Tolédano

Phase transformations (the term transitions can be considered as
a synonym) are experimentally recognized to exist in a large
variety of systems submitted to a change in temperature or
pressure: fluids, solids or mesophases, crystalline or disordered
solids, metals or insulators.

This recognition is sometimes based on very obvious effects.
This is, for instance, the case for the boiling or the freezing of a
liquid, because the different phases, vapour, liquid, solid, differ
greatly in their physical properties (e.g the difference of density
between the two fluids, or the difference of mechanical hardness
between the liquid and the solid). In these cases, a phase trans-
formation appears as an abrupt and major change of the physical
properties.

In other systems, solids in particular, the existence of a phase
transformation is generally revealed by more subtle effects only.
The nature of these effects differs from one system to another:
minor discontinuities in the lattice parameters of a crystalline
phase; occurence over a narrow temperature range of anomalies
in certain specific physical properties; onset of a definite pattern
of crystal twins etc.

Systems undergoing phase transitions constitute an important
field of interest for crystallographers. This is due to the fact that,
at the microscopic level, a phase transformation is generally
accompanied by a change of the global or local atomic config-
uration. The structural data, i.e. the specification of the differ-
ences in atomic configurations between the two phases, or the
study of the local ordering precursor to a transition, are thus
essential, or at least important, clues to the understanding of the
mechanism of the transition considered.

Conversely, the investigation of phase transitions has stimu-
lated new developments in the techniques and concepts used by

crystallographers. For instance, it has been necessary to improve
the precision of goniometric measurements and the control of
temperature in order to detect accurately anomalies affecting the
lattice parameters across a phase transition or to study the
asymmetry of diffraction spots caused by the domain structure in
a ‘low-symmetry’ phase. On the other hand, new methods of
structural determination, relying on concepts of n-dimensional
crystallography, had to be developed in order to study transitions
to incommensurate phases.

Standard crystallographic considerations, based on the deter-
mination of the characteristics of a lattice and of a basis, appear
to be most useful in the study of phase transformations between
crystalline phases, due to the fact that, at a microscopic level,
each phase is entirely described by its periodic crystal structure.
There are a wide variety of such transformations and the task of
classifying them has been attempted from several standpoints.

The most important distinction is that made between recon-
structive and non-reconstructive transitions. This distinction stems
from a comparison of the crystal structures of the two phases. In a
reconstructive transition, the distances between certain atoms
change by amounts similar to the dimension of the unit cell, and
certain chemical bonds between neighbouring atoms are then
necessarily broken (see Tolédano & Dmitriev, 1996, and refer-
ences therein). The graphite–diamond transformation and many
transformations in metals and alloys are examples of recon-
structive transitions. If, instead, a transition preserves approxi-
mately the configuration of the chemical bonds between
constituents, the transition is non-reconstructive.

Other classifications, which partly overlap with the preceding
one, involve distinctions between diffusionless and diffusion-
assisted transitions (i.e those that require random hopping of
atoms to achieve the change of atomic configuration) or between
displacive and order–disorder transitions. Likewise, a number of
transformations in metals or alloys are assigned to the class of
martensitic transformations that is defined by a set of specific
experimental observations (twinning behaviour, mechanical
properties etc.). Finally, the distinction between ferroic and non-
ferroic transitions has been progressively adopted in the recent
years.

Owing to an insufficient understanding of the observations, the
relationships between these various classifications is not fully
clear at present. It is not even clear whether the same definitions
and concepts can be applied to the description of all phase
transformations between solid phases. For instance, one observes
in certain solids (e.g. mixed lead magnesium niobates with an
average perovskite structure) very broad anomalies of the
physical properties (i.e. extending over a wide range of
temperatures). These systems, which have stimulated many
studies in recent years, are known to be chemically and structu-
rally heterogeneous simultaneously at several length scales. The
relevance to these systems of standard concepts defined for phase
transitions in homogeneous systems, in which the anomalies of
the physical properties are sharp, is uncertain.

It is therefore reasonable to restrict a review of basic concepts
and theories to the simple reference case of structural phase
transitions. We consider this terminology, in its restricted
meaning, as pertaining to the situation of only a fraction of the
phase transitions that take place in solids and imply a modifica-
tion of the crystal structure. These are part of non-reconstructive
transitions between homogeneous crystalline phases. It is
customary to specify that a structural transition only slightly
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alters the chemical bond lengths (by less than e.g. 0.1 Å) and their
relative orientations (by less than e.g. a few degrees).

Experimentally, such transitions are characterized by small
values of the heat of transformation (less than a few calories per
gram), weak discontinuities in the relevant physical quantities
(e.g. lattice parameters) and the occurrence of a symmetry rela-
tionship between the two phases surrounding the transition.

In the simplest case, this relationship consists of the fact that
the space group of one of the phases is a subgroup of the space
group of the other phase, and that there is specific correspon-
dence between the symmetry elements of the two phases. For
example, for the phase transition occurring at 322 K in triglycine
sulfate (Lines & Glass, 1977), the same binary axis can be found
in the two phases. Likewise, the vector defining one of the
primitive translations in one phase can be a multiple of the vector
defining a primitive translation in the other phase.

In a more general way, the crystal structures of the two phases
considered are both slight distortions of a reference structure,
termed the prototype (or parent) structure. In this case, the space
groups of the two phases are both subgroups of the space group
of the prototype structure, with, as in the simple case above, a
specific correspondence between the symmetry elements of the
two phases and of the prototype structure. A well documented
example of this situation is provided by two of the three transi-
tions occurring in barium titanate (Lines & Glass, 1977).

A subclassification of structural transitions into ferroic classes
is of interest (Aizu, 1969; Tolédano & Tolédano, 1987, and
references therein). Indeed the distinction of ferroic classes
allows one to establish a relationship between the point
symmetries of the two phases surrounding a phase transition, the
observed twinning, and the nature of the physical properties
mainly affected by the phase transition.

The group–subgroup relationship that exists, in the standard
situation, between the space groups of the two phases adjacent to
a structural transition implies that the point group of one phase is
either a subgroup of the point group of the other phase or is
identical to it.

If the two point groups are identical, the corresponding tran-
sition is classified as non-ferroic.

In the general case, the point group of one phase (the ferroic
phase) is a strict subgroup of the point group of the other phase
(the prototype phase). The transition is then classified as ferroic.
Originally, a somewhat more abstract definition was given (Aizu,
1969): a crystal was said to be ferroic if it can exist in two or more
orientation states having equal stabilities in the absence of
external forces, and when the various orientation states have
crystal structures that only differ in their global spatial orienta-
tions. The latter definition, which focuses on the situation of the
ferroic phase, derives from the former one: the lowering of point
symmetry that accompanies the transition between the prototype
phase and the ferroic phase results in the existence of various
variants or twin orientations having the same structures within a

global reorientation (see also Sections 3.2.1, 3.2.3, 3.3.7, 3.3.10
and 3.4.1).

The various orientation states can coexist in a given sample
and then determine a twinning pattern. Geometrical and physical
considerations pertaining to twinned structures are developed in
Chapters 3.2 and 3.3 of this volume. In particular, it can be shown
that the structure of one orientation state can be brought to
coincide with the structure of another orientation state by means
of a set of geometrical transformations R which all belong to the
space group of the prototype phase.

If we adopt a common frame of reference for all the orienta-
tion states of the ferroic phase, the tensors representing certain
macroscopic quantities (see Chapter 1.1) will have different
values in the different states (e.g. distinct nonzero components).
If a certain macroscopic tensor has components differing in two
states, a and b, these components are thus modified by the action
of the geometrical transformations R which transforms (reori-
ents) one structure into the other. Hence they are not invariant by
geometrical operations belonging to the group of symmetry of
the prototype phase: their value is necessarily zero in this phase.

Ferroic transitions therefore possess three characteristics:
(i) They are associated with a lowering of crystallographic

point symmetry.
(ii) Components of certain macroscopic tensors aquire

nonzero values below Tc.
(iii) The same tensors allow one to distinguish, at a macro-

scopic level, the various orientation states arising in the ferroic
phase.

The subclassification of ferroics into ferroic classes has a
crystallographic and a physical content. The crystallographic
aspect is based on the type of point-symmetry lowering occurring
at the transition, while the physical aspect focuses on the rank of
the tensor (necessarily traceless) characterizing the different
orientation states of the crystal in the ferroic phase and on the
nature of the physical quantity (electrical, mechanical, . . .)
related to the relevant tensor (see Chapter 1.1). Table 3.1.1.1
specifies this twofold classification.

Note that a given transition related to a class defined by a
tensor of rank n can belong to several classes defined by tensors
of higher rank: e.g. a ferroelectric transition can also be ferro-
elastic and will also display characteristics of a higher-order
ferroic.

The point-symmetry changes defining each class have been
enumerated in various works (see for instance Aizu, 1973, and
references therein).

The interest of the above classification is that it provides a
guiding framework for the experimental investigations. Hence,
the recognition that a transition is ferroelectric (respectively,
ferroelastic) directs the investigation of the transition towards the
examination of the dielectric (respectively, mechanical) proper-
ties of the system in the expectation that these will be the
quantities mainly affected by the transition. This expectation is
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Table 3.1.1.1. Ferroic classification of structural parameters

Class

Ferroelectric Ferroelastic Higher-order ferroic

Symmetry change (1) Non-polar to polar crystal
point group (reference
situation) or

(2) polar to polar group with
additional polar axes

Change of crystal system
(syngony) (except from
hexagonal to rhombohedral)

Change of point group not
complying with the two
preceding classes

Examples (1) 2=m) 2 mmm) 2=m 622) 32
(2) mm2) m (orthorhombic) monoclinic) 4=mmm) 4=m

Rank of relevant tensor 1 (vector) 2 � 3
Physical nature of the tensorial

quantity
Dielectric polarization Strain Component of the piezoelectric

or elastic tensor
Main physical properties affected

by the transition
Dielectric, optical Mechanical, elastic Piezoelectric

Prototype example (temperature
of transition)

Trigycine sulfate (322 K) Lanthanum pentaphosphate,
LaP5O14 (420 K)

Quartz, SiO2 (846 K); niobium
dioxide, NbO2 (1080 K)
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based on the fact that the dielectric polarization (respectively, the
thermal strain tensor) acquires spontaneous components across
the transition.

Conversely, if neither of these two classes of ferroics is
involved in the transition considered, one knows that one must
focus the study on components of higher-rank macroscopic
tensors in order to reveal the characteristic anomalies associated
with the transition. Also, the knowledge of the ferroic class of a
transition specifies the nature of the macroscopic tensorial
quantity that must be measured in order to reveal the domain
structure. For instance, ferroelastic domains correspond to
different values of symmetric second-rank tensors. Aside from
the spontaneous strain tensor, we can consider the dielectric
permittivity tensor at optical frequencies. The latter tensor
determines the optical indicatrix, which will be differently
oriented in space for the distinct domains. Consequently, with
suitably polarized light one should always be able to ‘visualize’
ferroelastic domains. Conversely, such visualization will never be
possible by the same method for a non-ferroelastic system.

3.1.2. Thermodynamics of structural transitions

By J.-C. Tolédano

3.1.2.1. Introduction

In the study of structural phase transitions, the crystal-
lographer is often confronted by an ambiguous situation. Small
changes in atomic positions determine structures having different
space groups, and the data are generally compatible with several
possible symmetry assignments. In order to make a choice, the
crystallographer must be able to rely on some theoretical
substrate, which will allow him to discard certain of the possible
assignments.

The relevant theoretical framework in this field is the ther-
modynamical and symmetry considerations that form the Landau
theory of phase transitions. In this chapter, we describe the ideas
and results of this theory.

In the next section, we give an introduction to the main ideas
of the theory by using an example consisting of a simple spec-
ulative type of structural phase transition. In Section 3.1.2.3, we
discuss various situations of experimental interest relative to the
thermodynamical aspect of the theory: first and second order of
the transition, metastable states and thermal hysteresis. In
Section 3.1.2.4, we provide a brief description, in two steps, of the
general arguments constituting the foundation of the theory. In
Section 3.1.2.5, we discuss the case of a structural transition
actually occurring in nature and having a greater complexity than
the speculative case considered in Section 3.1.2.2. In this section
we also analyse the relationship between the ferroic character of
a transition (see Section 3.1.1) and its order-parameter symmetry.

3.1.2.2. Basic ideas of Landau’s theory of phase transitions

The Landau theory of phase transitions is a phenomenological
theory. It does not aim to establish that a phase transition exists in
a given system. The existence of a transition is an experimental
fact considered as a starting point of the theory. The explanatory
power of the theory is to establish the overall consistency of the
microscopic characteristics of the transition (space symmetry and
structural changes, anomalies in the phonon spectrum etc.) and
the results of the measurement of various relevant macroscopic
quantities of thermal, dielectric, optical or mechanical nature.

The continuous (‘second-order’) character of the transition
plays an essential role in working out the general foundations of
the theory. However, though its strict field of validity is that of
continuous transitions, the theory also satisfactorily applies to a
large fraction of discontinuous transitions.

The Landau theory defines two basic concepts: the order
parameter (OP) and the transition free energy (LFE). It is worth
pointing out that these concepts keep their usefulness in the
modern statistical theory of critical phenomena, even though
these phenomena do not generally comply with the results of
Landau’s theory. From the symmetry properties of the order
parameter and of the Landau free energy, it is possible to infer, on
the one hand, a certain number of observable symmetry char-
acteristics of the system: degeneracy of the ‘low-symmetry’ phase
(i.e. number of energetically equivalent domain orientations in
this phase), enumeration of the possible symmetries of the ‘low-
symmetry’ phase for a given symmetry of the ‘high-symmetry’
phase. On the other hand, macroscopic physical quantities can be
classified as functions of their symmetries with respect to the
order parameter. This classification leads to that of the various
types of anomalous behaviours that can be induced by the
occurrence of a phase transition.

In order to give an intuitive approach to the basic arguments of
the Landau theory, and to its use, we first analyse an artificially
simplified example of a crystalline phase transition.

3.1.2.2.1. Description of a prototype example

Fig. 3.1.2.1 represents a unit cell of a speculative crystalline
structure with a simple tetragonal Bravais lattice, in which a
phase transition is assumed to take place. Negative ions (filled
circles) occupy the vertices of the tetragonal cell (lattice
constants a ¼ b 6¼ c). A positive ion Mþ is at the centre of the
cell.

This configuration is assumed to be the equilibrium state of the
system above the temperature Tc of the transition (see Fig.
3.1.2.2). Below Tc, equilibrium is assumed to correspond to a
structure that only differs from the high-temperature structure by
the fact thatMþ lies out of the centre of the cell in an unspecified
direction. Hence the latter equilibrium is characterized by the
magnitude and direction of the displacement d0 ¼ ðdx; dy; dzÞ of
the central ion. At high temperature, the equilibrium corresponds
to d0 ¼ 0.
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Fig. 3.1.2.1. Model of a structural transition. The filled circles at the vertices
of the cell are singly charged negative ions and the empty circle at the centre
is a singly charged positive ion. d is an arbitrary displacement of the central
ion.

Fig. 3.1.2.2. (a) Variation of the free energy as function of the amplitude of
the displacement of the central ion in Fig. 3.1.2.1. (b) Typical temperature
dependence in the vicinity of Tc of the coefficient of a second-degree term in
the Landau expansion (3.1.2.1) whenever this coefficient is strictly positive at
Tc: one can see that this positivity is also valid slightly above and below Tc.
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3.1.2.2.2. Basic assumptions and strategy

Our aim is to determine the above displacement as a function
of temperature. Landau’s strategy is to determine d0 by a varia-
tional method. One considers an arbitrary displacement d of the
Mþ ion. For given temperature T and pressure p (or volume V),
and specified values of the components of d, there is, in principle,
a definite value FðT; p; dx; dy; dzÞ for the free energy F of the
system. This function is a variational free energy since it is
calculated for an arbitrary displacement. The equilibrium
displacement d0ðT; pÞ is defined as the displacement that mini-
mizes the variational free energy F. The equilibrium free energy
of the system is FeqðT; pÞ ¼ FðT; p; d0Þ. Note that, strictly
speaking, in the case of a given pressure, one would have to
consider a variational Gibbs function (F þ pV) in order to
determine the equilibrium of the system. We will respect the
current use in the framework of Landau’s theory of denoting this
function F and call it a free energy, though this function might
actually be a Gibbs potential.

The former strategy is not very useful as long as one does not
know the form of the variational free energy as a function of the
components of the displacement. The second step of Landau’s
theory is to show that, given general assumptions, one is able to
determine simply the form of FðT; p; dÞ in the required range of
values of the functions’ arguments.

The basic assumption is that of continuity of the phase transi-
tion. It is in fact a dual assumption. On the one hand, one assumes
that the equilibrium displacement d0ðT; pÞ has components
varying continuously across the transition at Tc. On the other
hand, one assumes that F is a continuous and derivable function
of ðT; p; dÞ, which can be expanded in the form of a Taylor
expansion as function of these arguments.

Invoking the continuity leads to the observation that, on either
side of Tc, jd0j is small, and that, accordingly, one can restrict the
determination of the functional form of FðT; p; dÞ to small values
of ðdx; dy; dzÞ and of jT � Tcj. F will then be equal to the sum of
the first relevant terms of a Taylor series in the preceding vari-
ables.

3.1.2.2.3. Symmetry constraints and form of the free energy

The central property of the variational free energy which
allows one to specify its form is a symmetry property. F is a
function of ðdx; dy; dzÞ which is invariant by the symmetry trans-
formations of the high-temperature equilibrium structure. In other
terms, an arbitrary displacement d and the displacement
d0 obtained by applying to d one of the latter symmetry
transformations correspond to the same value of the free
energy.

Indeed, both displacements determine an identical set of
mutual distances between the positive and negative ions of the
system and the free energy only depends on this ‘internal’
configuration of the ions.

Note that, in the case considered here (Fig. 3.1.2.1), the set of
symmetry transformations comprises, aside from the lattice
translations, fourfold rotations around the z axis, mirror
symmetries into planes and the products of these transforma-
tions. The set of rotations and reflections forms a group G of
order 16, which is the crystallographic point group 4=mmm (or
D4h).

Also note that this symmetry property of the free energy also
holds for each degree of the Taylor expansion of F since the
geometrical transformations of G act linearly on the components
of d. Hence, terms of different degrees belonging to the expan-
sion of F will not ‘mix’, and must be separately invariant.

Let us implement these remarks in the case in Fig. 3.1.2.1. It is
easy to check that by successive application to the components of
d of the mirror symmetries perpendicular to the three axes, no
linear combination of these components is invariant byG: each of
the three former symmetry transformations reverses one

component of d and preserves the two others. Linear terms are
therefore absent from the expansion.

As for second-degree terms, the same symmetry transforma-
tions preclude the existence of combinations of bilinear products
of the type dxdy. Actually, one finds that the fourfold symmetry
imposes that the most general form of the second-degree
contribution to the variational free energy is a linear combination
of d2z and of ðd

2
x þ d2yÞ. Hence the Taylor expansion of F, restricted

to its lowest-degree terms, is

F ¼ FoðT; pÞ þ
�1ðT; pÞ

2
d2z þ

�2ðT; pÞ

2
d2x þ d2y
� �

: ð3:1:2:1Þ

3.1.2.2.4. Reduction of the number of relevant degrees of
freedom: order parameter

Let us now derive the key result of the theory, namely, that
either the component dz or the pair of components (dx; dy) will
take nonzero values below Tc (but not both). The meaning of this
result will be clarified by symmetry considerations.

The derivation of this result relies on the fact that one, and one
only, of the two coefficients �i in equation (3.1.2.1) must vanish
and change sign at Tc, and that the other coefficient must remain
positive in the neighbourhood of Tc.

(a) Before establishing the latter property in (b) hereunder, let
us show that its validity implies the stated key result of the theory.
Indeed, if one �i coefficient is strictly positive (e.g. �1 > 0), then
the minimum of F with respect to the components of d (e.g. dz)
multiplying this coefficient in (3.1.2.1) occurs for zero equilibrium
values of these components (e.g. d0z ¼ 0) in the vicinity of Tc,
above and below this temperature. Hence, depending on the
coefficient �i which remains positive, either dz or the pair (dx; dy)
can be omitted, in the first place, from the free-energy expansion.
The remaining set of components is called the order parameter of
the transition. At this stage, this fundamental quantity is defined
as the set of degrees of freedom, the coefficient of which in the
second-degree contribution to F vanishes and changes sign at Tc.
The number of independent components of the order parameter
(one in the case of dz, two in the case of the pair dx; dy) is called
the dimension of the order parameter.

Note that the preceding result means that the displacement of
the Mþ ion below Tc cannot occur in an arbitrary direction of
space. It is either directed along the z axis, or in the (x; y) plane.

(b) Let us now establish the property of the �i postulated
above.

At Tc, the equilibrium values of the components of d are zero.
Therefore, at this temperature, the variational free energy
(3.1.2.1) is minimum for dx; dy; dz ¼ 0. Considering the form
(3.1.2.1) of F, this property implies that we have (Fig. 3.1.2.2)
�iðTcÞ � 0 (i ¼ 1; 2).

Note that these inequalities cannot be strict for both coeffi-
cients �i, because their positiveness would hold on either side of
Tc in the vicinity of this temperature. Consequently, the minimum
of F would correspond to d ¼ 0 on either side of the transition
while the situation assumed is only compatible with this result
above Tc. Using the converse argument that the equilibrium
values of the components of d are not all equal to zero below Tc

leads easily to the conclusion that one, at least, of the two coef-
ficients �i must vanish at Tc and become negative below this
temperature.

Let us now show that the two coefficients �i cannot vanish
simultaneously at Tc. This result relies on the ‘reasonable’
assumption that the two coefficients �i are different functions of
temperature and pressure (or volume), no constraint in this
respect being imposed by the symmetry of the system.

Fig. 3.1.2.3 shows, in the ðT; pÞ plane, the two lines corre-
sponding to the vanishing of the two functions �i. The simulta-
neous vanishing of the two coefficients occurs at an isolated point
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ðT0; p0Þ. Let us consider, for instance, the situation depicted in
Fig. 3.1.2.3. For p > p0, on lowering the temperature, �1 vanishes
at T 0 and �2 remains positive in the neighbourhood of T 0. Hence,
the equilibrium value of the set (dx; dy) remains equal to zero on
either side of T 0. A transition at this temperature will only
concern a possible change in d0z.

Likewise for p below p0, a transition at T 00 will only concern a
possible change of the set of components (d0x; d

0
y), the third

component dz remaining equal to zero on either sides of T 00.
Hence an infinitesimal change of the pressure (for instance a
small fluctuation of the atmospheric pressure) from above p0 to
below p0 will modify qualitatively the nature of the phase trans-
formation with the direction of the displacement changing
abruptly from z to the (x; y) plane. As will be seen below, the
crystalline symmetries of the phases stable below T 0 and T 00 are
different. This is a singular situation, of instability, of the type of
phase transition, not encountered in real systems. Rather, the
standard situation corresponds to pressures away from p0, for
which a slight change of the pressure does not modify signifi-
cantly the direction of the displacement. In this case, one coef-
ficient �i only vanishes and changes sign at the transition
temperature, as stated above.

3.1.2.2.5. Stable state below Tc and physical anomalies induced
by the transition

We have seen that either dz or the couple (dx; dy) of compo-
nents of the displacement constitute the order parameter of the
transition and that the free energy needs only to be expanded as a
function of the components of the order parameter. Below the
transition, the corresponding coefficient �i is negative and,
accordingly, the free energy, limited to its second-degree terms,
has a maximum for d ¼ 0 and no minimum. Such a truncated
expansion is not sufficient to determine the equilibrium state of
the system. The stable state of the system must be determined by
positive terms of higher degrees. Let us examine first the simplest
case, for which the order parameter coincides with the dz
component.

The same symmetry argument used to establish the form
(3.1.2.1) of the Landau free energy allows one straightforwardly
to assert the absence of a third-degree term in the expansion of F
as a function of the order parameter dz, and to check the effective
occurrence of a fourth-degree term. If we assume that this
simplest form of expansion is sufficient to determine the equili-
brium state of the system, the coefficient of the fourth-degree
term must be positive in the neighbourhood of Tc. Up to the
latter degree, the form of the relevant contributions to the free
energy is therefore

F ¼ FoðT; pÞ þ
�ðT � TcÞ

2
d2z þ

�

4
d4z: ð3:1:2:2Þ

In this expression, �1, which is an odd function of ðT � TcÞ

since it vanishes and changes sign at Tc, has been expanded
linearly. Likewise, the lowest-degree expansion of the function
�ðT � TcÞ is a positive constant in the vicinity of Tc. The function
F0, which is the zeroth-degree term in the expansion, represents

the normal ‘background’ part of the free energy. It behaves
smoothly since it does not depend on the order parameter. A plot
of ½FðdzÞ � F0� for three characteristic temperatures is shown in
Fig. 3.1.2.4.

The minima of F, determined by the set of conditions

@F

@dz
¼ 0;

@2F

@2dz
> 0; ð3:1:2:3Þ

occur above Tc for dz ¼ 0, as expected. For T<Tc they occur for

d0z ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
ðTc � TÞ

�

s

: ð3:1:2:4Þ

This behaviour has a general validity: the order parameter of a
transition is expected, in the framework of Landau’s theory, to
possess a square-root dependence as a function of the deviation
of the temperature from Tc.

Note that one finds two minima corresponding to the same
value of the free energy and opposite values of d0z. The corre-
sponding upward and downward displacements of the Mþ ion
(Fig. 3.1.2.1) are distinct states of the system possessing the same
stability.

Other physical consequences of the form (3.1.2.2) of the free
energy can be drawn: absence of latent heat associated with the
crossing of the transition, anomalous behaviour of the specific
heat, anomalous behaviour of the dielectric susceptibility related
to the order parameter.

The latent heat is L ¼ T�S, where �S is the difference in
entropy between the two phases at Tc. We can derive S in each
phase from the equilibrium free energy FðT; p; d0zðT; pÞÞ using
the expression

S ¼ �
dF

dT

�
�
�
�d

0
z ¼ �

@F

@T
d0z þ

@F

@dz

dðdzÞ

dT

�
�
�
�

�
�
�
�d

0
z

� �

: ð3:1:2:5Þ

However, since F is a minimum for dz ¼ d0z, the second contri-
bution vanishes. Hence

S ¼ �
�

2
d0z
� �2
�
@F0

@T
: ð3:1:2:6Þ

Since both d0z and (@F0=@T) are continuous at Tc, there is no
entropy jump �S ¼ 0, and no latent heat at the transition.

Several values of the specific heat can be considered for a
system, depending on the quantity that is maintained constant. In
the above example, the displacement d of a positive ion deter-
mines the occurrence of an electric dipole (or of a macroscopic
polarization P). The quantity ", which is thermodynamically
conjugated to dz, is therefore proportional to an electric field (the
conjugation between quantities � and � is expressed by the fact
that infinitesimal work on the system has the form � d� – cf.
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Fig. 3.1.2.3. Plots representative of the equations �1ðp;TÞ ¼ 0 and
�2ðp;TÞ ¼ 0. The simultaneous vanishing of these coefficients occurs for a
single couple of temperature and pressure (p0,T0).

Fig. 3.1.2.4. Plots of the Landau free energy as a function of the order
parameter, for values of the temperature above or below Tc or coincident
with Tc. The shape of the plot changes qualitatively from a one-minimum
plot to a two-minimum plot.
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Sections 1.1.1.4 and 1.1.5). Let us show that the specific heat at
constant electric field has a specific type of anomaly.

This specific heat is expressed by

c" ¼ T
@S

@T

�
�
�
�": ð3:1:2:7Þ

Using (3.1.2.6), we find

T > Tc : c0" ¼ �
@2F0ðT; pÞ

@T2
; ð3:1:2:8Þ

T<Tc : c" ¼ �
@2F0ðT; pÞ

@T2
�
�

2

dðd0zÞ
2

dT
T ¼ c0" þ

�2

2�
:

ð3:1:2:8aÞ

Hence above and below Tc the specific heat is a different,
smoothly varying function of temperature, determined by the
background free energy F0ðT; pÞ and by the smooth variation of
the � coefficient. Fig. 3.1.2.5(a) reproduces the anomaly of the
specific heat, which, on cooling through Tc, has the form of an
upward step.

Finally, let us consider the anomaly of the susceptibility �,
which, in the case considered, is proportional to the dielectric
susceptibility of the material. It is defined as

� ¼ lim"!0

@dz
@"

�
�
�
�d

0
z: ð3:1:2:9Þ

In order to calculate �, it is necessary to examine the behaviour
of the system in the presence of a small field, ", conjugated to the
order parameter. In this case, the appropriate thermodynamical
potential whose minimum determines the equilibrium of the
system is not F butG ¼ F � dz". MinimizingG with respect to dz
leads to

dz �ðT � TcÞ þ �d
2
z

� �
¼ ": ð3:1:2:10Þ

For small values of ", the solution of this equation must tend
towards the equilibrium values dz ¼ 0. Deriving these solutions
with respect to ", we obtain

�ðT > TcÞ ¼
1

�ðT � TcÞ
; �ðT <TcÞ ¼

1

2�ðT � TcÞ
:

ð3:1:2:11Þ

The susceptibility goes to infinity when T ! Tc from either side
of the transition (Fig. 3.1.2.5b). The set of anomalies in c" and �
described in this paragraph represents the basic effects of
temperature on quantities that are affected by a phase transition.
They constitute the ‘canonical signature’ of a phase transition of
the continuous type.

Certain complications arise in the cases where the transition is
not strictly continuous, where the order parameter is coupled to
other degrees of freedom, and where the order parameter is not

one-dimensional. We consider one of these complications in
Section 3.1.2.3.

3.1.2.2.6. Symmetry considerations

3.1.2.2.6.1. Order-parameter symmetry

Up to now, we have defined the order parameter as a set of
degrees of freedom determining a second-degree contribution to
the free energy, the coefficient of which has a specific tempera-
ture dependence proportional to ðT � TcÞ. Actually, the order
parameter can also be defined on the basis of its specific
symmetry characteristics.

Let us consider the manner by which the components (dx, dy,
dz) transform when we apply to the crystal each of the 16
symmetry operations of the group G ¼ 4=mmm. Table 3.1.2.1
specifies the results of these transformations.

In the first place, we note that dz is transformed either into
itself or into (�dz). If we consider this coordinate as the basis
vector of a one-dimensional vector space, we can conclude that
this vector space (i.e. the space formed by the set of vectors that
are linear combinations of the basis) is invariant by all the
transformations of the group G. Such a space, containing
obviously no space of smaller dimension, is, according to the
definitions given in Chapter 1.2, a one-dimensional irreducible
invariant space with respect to the group G.

Each of the components (dx; dy) is not transformed into a
proportional component by all the elements of G. Certain of
these elements transform dx into �dy, and conversely. Hence dx
and dy are not, separately, bases for one-dimensional irreducible
invariant spaces. However, their set generates a two-dimensional
vector space that has the property to be invariant and irreducible
by all the transformations of G.

Note that the set of the three components (dx, dy, dz) carries a
three-dimensional vector space which, obviously, has the prop-
erty to be invariant by all the transformations ofG. However, this
vector space contains the two invariant spaces carried respec-
tively by dz and by (dx; dy). Hence it is not irreducible.

In conclusion, from a symmetry standpoint, the order para-
meter of a phase transition is a set of degrees of freedom that
carries an irreducible vector space (an irreducible representa-
tion) with respect to the action of the group G, the latter group
being the symmetry group of the high-symmetry phase.

3.1.2.2.6.2. Degeneracy of the low-symmetry phase

We had noted above that the structure is invariant by G in the
stable state of the system above Tc. When d 6¼ 0, the structure
becomes invariant by a smaller set of transformations. Let us
enumerate these transformations for each possible stable state of
the system below Tc.

When the order parameter coincides with dz, we determined,
below Tc, two stable states, d0z ¼ �½�ðTc � TÞ=��1=2. The crys-
talline structures determined by these displacements of the Mþ

ion parallel to the z axis are both invariant by the same set of
eight symmetry transformations. These comprise the cyclic group
of order 4 generated by the fourfold rotation around z, and by the
reflections in planes containing this axis. This set is the group
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Fig. 3.1.2.5. (a) Qualitative temperature dependence of the specific heat at a
continuous transition. (b) Temperature dependence of the susceptibility at a
continuous transition.

Table 3.1.2.1. Transformation of the components of d under the symmetry
operations of group G ¼ 4=mmm

G E C4 C2 C3
4 �x �y �xy �xy0

dz dz dz dz dz dz dz dz dz
dx dx dy �dx �dy �dx dx �dy dy
dy dy �dx �dy dx dy �dy �dx dx

G I S34 �z S4 Ux Uy Uxy Uxy0

dz �dz �dz �dz �dz �dz �dz �dz �dz
dx �dx �dy dx dy dx �dx �dy dy
dy �dy dx dy �dx �dy dy dx �dx
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C4v ¼ 4mm, a subgroup F of G. The transition is thus accom-
panied by a lowering of the symmetry of the system.

Also note that the two states �dzz are transformed into each
other by certain of the symmetry operations such as the mirror
symmetry �z ‘lost’ below Tc. These two states correspond to the
same value of the free energy [the minimum value determined in
equation (3.1.2.3)]: they are equally stable. This can also be
checked by applying to the system the mirror symmetry �z. This
transformation keeps unchanged the value of F since the free
energy is invariant by all the transformations belonging to G (to
which �z belongs). The state dz is, however, not preserved, and is
transformed into (�dz).

We have not determined explicitly the stable states of the
system in the case of a two-dimensional order parameter (dx; dy).
A simple discussion along the line developed for the one-
dimensional order parameter dz would show that the relevant
form of the free energy is

F ¼ F0 þ
�ðT � TcÞ

2
d2x þ d2y
� �

þ �1 d4x þ d4y
� �

þ �2d
2
xd

2
y

ð3:1:2:12Þ

and that the possible stable states below Tc are:
(i) d0x ¼ �½�ðTc � TÞ=�1�

1=2, dy ¼ 0;
(ii) d0y ¼ �½�ðTc � TÞ=�2�

1=2, dx ¼ 0;
(iii) and (iv) d0x ¼ �dy ¼ �½�ðTc � TÞ=ð�1 þ �2Þ�

1=2.
Like the case of dz, there is a lowering of the crystal symmetry

below Tc. In the four cases, one finds that the respective
symmetry groups of the structure are (i) F ¼ C2v ¼ mm2x; (ii)
F 0 ¼ C2v ¼ mm2y; (iii) F ¼ C2v ¼ mm2xy; (iv) F

0 ¼ C2v ¼mm2xy.
States (i) and (ii) correspond to each other through one of the

‘lost’ transformations of G (the rotations by �=2). They therefore
possess the same free energy and stability. The second set of
states (iii) and (iv) also constitute, for the same reason, a pair of
states with the same value of the equilibrium free energy.

Note that the symmetry groups associated with equally stable
states are conjugate relative to G, that is they satisfy the rela-
tionship F 0 ¼ gFg�1, with g belonging to G.

3.1.2.3. Free-energy models for discontinuous transitions

Expression (3.1.2.2) for the free energy, discussed in the
preceding section, only contains terms of even degrees as a
function of the order parameter. We have stressed that this
property derives from symmetry considerations. Let us provi-
sionally ignore the symmetry constraints and assume that the
phase transition in a given system is described by a free energy
containing a term of degree three as a function of the order
parameter.

F ¼ F0 þ
�ðT � T0Þ

2
�2 þ

�

3
�3 þ

�

4
�4: ð3:1:2:13Þ

The stable state of this system at each temperature is determined
by the minimum of F. The extrema of this function are provided
by

@F

@�
¼ � �ðT � T0Þ þ ��þ ��

2
	 


¼ 0; ð3:1:2:14Þ

the solutions of which are

� ¼ 0 and � ¼
1

2�
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4��ðT0 � TÞ

ph i
: ð3:1:2:15Þ

A straightforward analysis based on (3.1.2.13) and (3.1.2.15)
shows that, depending on the range of temperatures, the free
energy has one of the forms schematically represented in Fig.
3.1.2.6(a). This form changes at three characteristic temperatures.

(i) Above T1 ¼ ðT0 þ �
2=4��Þ, the free energy has one

extremum (a minimum) for � ¼ 0. The stable state of the system
corresponds to a zero value of the order parameter.

(ii) For T0<T<T1, the free energy has two minima, one for
� ¼ 0 and the other one for � ¼ ð1=2�Þf��� ½�2 þ
4��ðT1 � TÞ�1=2g. These minima define one stable state (the
deepest minimum) and one metastable state. Note that the zero
value of the order parameter constitutes the stable state in the
range Tc<T<T1 with Tc ¼ T0 þ �

2=9��. Hence, the observed
phase transition corresponding to a change from a zero value to a
nonzero value of the order parameter occurs at Tc. Below this
temperature, and down to T0, the system has a stable state at
� 6¼ 0 and a metastable state at � ¼ 0.

(iii) Finally, below T0, the free energy has two minima both
corresponding to � 6¼ 0, the value � ¼ 0 being a relative
maximum.

The remarkable physical consequences of this sequence of
shapes are the following.

In the first place, it appears that the equilibrium value of the
order parameter changes discontinuously at Tc. The free energy
(3.1.2.13) therefore provides us with a model of discontinuous
phase transitions. Referring to equation (3.1.2.6), we can see that
a discontinuity of the order parameter is necessarily associated
with a nonzero latent heat (or entropy) for the transition. More
precisely, the downward jump experienced, on heating, by the
equilibrium value of the order parameter corresponds to an
endothermal transition. Such a transition is also termed
(following Ehrenfest’s classification) a first-order transition, since
the entropy, which is a first derivative of the free energy, is
discontinuous.

On the other hand, the occurrence of metastable states, in
certain temperature ranges, generates thermal hysteresis. Indeed,
on cooling from above T1, the system is likely to remain in the
state � ¼ 0 down to the temperature T0, even though between T1

and T0 this state is not the stable state of the system. Conversely,
on heating, the system will remain in a state � 6¼ 0 up to T1, even
though this state does not constitute the stable state of the system
between Tc and T1. Hence, the variations of the order parameter
will schematically vary as in Fig. 3.1.2.6(b), the temperature
dependence below the discontinuity being determined by equa-
tion (3.1.2.15). Likewise, the susceptibility will vary as in Fig.
3.1.2.6(c).

The form (3.1.2.13) of the free energy is not the only model
form for discontinuous transitions. Another canonical form is

F ¼ F0 þ
�ðT � T0Þ

2
�2 �

�

4
�4 þ

	

6
�6; ð3:1:2:16Þ

where �, � and 	 are positive coefficients. The negative coefficient
of the fourth-degree term has the effect of introducing more than
one minimum in a certain temperature range. Fig. 3.1.2.7 shows
the different shapes of the plot of Fð�Þ over different temperature
ranges. The situation is similar to the one already discussed in the
presence of a third-degree contribution to the free energy. It
corresponds to a discontinuous transition associated with a latent
heat as well as to the existence of a range of thermal hysteresis.

Two relevant questions arise from consideration of the above
models of first-order transitions.

In the first place, one can object to the use of a polynomial
expansion of the free energy in cases involving a discontinuity of
the order parameter while the assumption of continuity of the
phase transition has been used as an essential substrate of the
argument developed. However, the approach will clearly keep its
validity if a transition, though discontinuous, involves ‘small’
discontinuties. The criterion for estimating if a discontinuity is
small relies on the comparison between the atomic displacements
involved by the transition and the distances between atoms in the
structure. If the displacements are a small fraction of the
distances between atoms, then the method used can be consid-
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ered as valid. Indeed, the total free energy of the system depends
on the distance between atoms, because this distance controls the
strength of the interaction energy within the system. Hence, the
transition only changes in a minor way the value of the system’s
free energy.

On the other hand, one has to check that there are systems of
physical interest for which the crystallographic symmetry allows
free-energy forms of the type (3.1.2.13), (3.1.2.16). Indeed, the
crystallographic symmetry relative to the example in Section
3.1.2.2 was such that the presence of a third-degree term in the
Landau free energy was excluded.

Such verification is not necessary for the free energy of type
(3.1.2.16). This free energy is only characterized by a specific sign
of the coefficient of the fourth-degree term, a circumstance that is
not defined by symmetry considerations.

By contrast, an actual crystallographic model of a transition
described by (3.1.2.13), which involves a term of degree three, is
required to support the relevance of the corresponding model.
Such a model is provided, for instance, by a crystal the high-
temperature phase of which has a rhombohedral symmetry (e.g.
R3m), and which undergoes a transition corresponding to an
atomic displacement d perpendicular to the ternary axis (Fig.
3.1.2.8).

If we refer the components to a rectangular frame of coordi-
nates, the matrices representing the mode of transformation of
the components (dx; dy) under application of the generating

elements of the group R3m have a form reproduced in existing
tables. It is easy to check that the form of the Landau free energy
resulting from a search of invariant polynomials of successive
degrees is

F ¼ F0 þ
�ðT � T0Þ

2
d2x þ d2y
� �

þ
�

3
d2x � 3d2y
� �

þ
�

4
d2x þ d2y
� �2

:

ð3:1:2:17Þ

We note that the form of the free energy of this system,
determined by its symmetry, involves a third-degree term. Let us
show that the thermodynamic properties corresponding to this
form are qualitatively identical to the ones derived from the
canonical free energy (3.1.2.13). In this view, let us put
dx ¼ � cos 
 and dy ¼ � sin 
. The free energy takes the form

F ¼ F0 þ
�ðT � T0Þ

2
�2 þ

�

3
�3 cos 
 cos2 
 � 3 sin2 


� �
þ
�

4
�4:

ð3:1:2:18Þ

For such a free energy, it is remarkable that for � 6¼ 0 the
directions 
 of the extrema, which are determined by @F=@
 ¼ 0,
are independent of the value of �. These directions form two sets
which we denote A (
 ¼ 0, 2�=3, 4�=3) and B (�=3, �, ��=3). If
we replace in equation (3.1.2.18) � by one of these values, we
obtain

F ¼ F0 þ
�ðT � T0Þ

2
�2 �

�

3
�3 þ

�

4
�4; ð3:1:2:19Þ

the sign in front of the � coefficient being þ for the A set of 

angles and � for the B set. We are therefore brought back to a
form close to the canonical one [equation (3.1.2.13)]. Note that
for � > 0, the stable second minimum of the free energy [equa-
tion (3.1.2.15)] corresponded to �< 0, i.e. to ��< 0. Hence in
(3.1.2.19), � being a positive modulus, the second stable minimum
will correspond to a negative coefficient for �3. Depending on the
sign of �, the direction 
 of this minimum will either be the set A
or the set B of 
 values.

3.1.2.4. Generalization of the approach

Let us summarize the results obtained in the study of the
specific models described in the preceding sections. We have
shown that an order parameter (e.g. dz or dx; dy) is a set of scalar
degrees of freedom that allows the description of the symmetry
and physical changes accompanying the phase transition in a
system. The equilibrium values of the n components of the order
parameter are zero for T � Tc and not all zero for T<Tc. The n
components define a vector space that is an irreducible invariant
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Fig. 3.1.2.6. (a) Plots of the free energy as a function of the order parameter
for various temperature values in the framework of the model of a
discontinuous transition associated with equation (3.1.2.13). (b) Temperature
dependence of the equilibrium value of the order parameter, as determined
by the model of a discontinuous transition. (c) Temperature dependence of
the susceptibility in this model.

Fig. 3.1.2.7. Plots of the free energy as a function of the order parameter for
various temperatures in the framework of the model of a discontinuous
transition associated with equation (3.1.2.16). The temperature decreases
from right to left, the transition being reached for the temperature
corresponding to the third plot.

Fig. 3.1.2.8. Schematic representation of the displacement associated with the
order parameter in a crystal having trigonal (rhombohedral) symmetry.
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space by the group G, which is the crystallographic symmetry
group of the high-temperature phase. A variational free energy F
associated with the transition, and termed the Landau free
energy, can be expanded as a function of the components of the
order parameter. The second-degree term of this expansion has a
coefficient that vanishes and changes sign at the transition
temperature. The form of F is determined by the symmetry
properties of the order parameter, i.e. by the mode of transfor-
mation of the components of the order parameter into each other
when the operations of G are applied to them. The specific form
of F determines the symmetries of the potentially stable phases
below Tc, the degeneracy of these phases, the temperature
dependencies of relevant physical quantities and, in certain cases,
the thermodynamic order of the phase transition.

In this section, let us briefly outline the arguments used in
order to formulate the theory in a general framework.

These arguments rely in part on the properties of the irre-
ducible representations of a group. The reader can refer to
Chapter 1.2 for a comprehensive presentation of irreducible
representations. We will consider here representations of a group
G carried by a set of degrees of freedom (�1; �2; �3; . . .), and use
essentially the following properties.

(a) If the set is irreducible and non-totally symmetric (trivial),
there is no linear combination f1ð�iÞ ¼ �1�1 þ �2�2 þ . . . of the �i
that is invariant by all the elements of G.

(b) If the set is irreducible, there is a single homogeneous
polynomial of degree two that is invariant by the group G. Its
form is f2 ¼

P
�2i .

(c) If gðrÞ is an arbitrary function of the space coordinates
½r ¼ ðx; y; zÞ�, one can always write

gðrÞ ¼
P

	

P

j

’	;jðrÞ; ð3:1:2:20Þ

where each set of functions ’	;j (j ¼ 1; 2; � � � ; p) defines a space
generated by the p functions which is invariant and irreducible by
the group G and corresponds to the irreducible representation
labelled �	 of G.

3.1.2.4.1. Description of the phase transition

In order to generalize the considerations developed in the
preceding sections, we have to define, independently from any
specific structure, the basic ingredients of the theory: definition of
a variational set of degrees of freedom; construction of a free
energy; determination of the stable states on either side of a
transition temperature.

In a first step, we describe an arbitrary atomic configuration of
a system by the set of densities �iðrÞ of the particles of type (i).
This set constitutes variational degrees of freedom, which can be
used to construct the variational free energy of the system
F½T; �iðrÞ�. The equilibrium of the system is defined by the set of
functions �eqi ðT; rÞ that minimize the free energy.

The symmetry of the system at a given temperature is defined
as the set of geometrical transformations that leave invariant all
the �eqi . This set forms a group.

We are then in a position to define a continuous transition at Tc

by two conditions:
(i) The �eqi ðT; rÞ are functions whose forms change continu-

ously across Tc.
(ii) The symmetry group of the system just above Tc is different

to the symmetry just below Tc.
Hence the phase transition, though associated with a continuous
change of the spatial configuration of the atoms, is associated
with a sudden change of the symmetry.

3.1.2.4.2. Order parameter

As compared with the set (dx; dy; dz) used in the example of
Section 3.1.2.2, the variational functions �iðrÞ have the drawback

of not being small and scalar quantities, thus making an expan-
sion of the free energy more complicated.

Without loss of generality, let us restrict ourselves to a single
type of (i) particles. In order to remove the difficulty mentioned
above we put

�ðrÞ ¼ �0ðrÞ þ
PP

�	;j’	;jðrÞ; ð3:1:2:21Þ

where �0 ¼ �
eqðTc; rÞ is the equilibrium density at Tc. Let us

denote by G the symmetry group of this equilibrium density. The
sum in the second part of (3.1.2.21) is a small increment since the
transition is continuous. This increment has been expanded, as in
(3.1.2.20), as a function of irreducible functions with respect to
the group G. Moreover, each function has been expressed as the
product of a normalized function ’	;j and of small scalar para-
meters �	;j. It is easy to convince oneself that it is possible to
consider that under the action of G either the ’	;j transform into
each other, the �	;j being fixed coefficients, or the �	;j transform
into each other, the functions ’	;j being fixed. We shall adopt the
second convention. The variational free energy can then be
written in the form

F ¼ F T; �	;j; ’	;jðrÞ
	 


: ð3:1:2:22Þ

At each temperature, the characteristics of the system are
specified by the following conditions:

(i) The equilibrium corresponds to the values �	;j that make
the free energy a minimum. These values define through
(3.1.2.21) the equilibrium density of particles in the system.

(ii) The symmetry of the system is defined as the group of
invariance of the determined equilibrium density.

Note that, in ð�� �0Þ, the contribution of the degrees of
freedom �	;j spanning a totally symmetric representation can be
ignored in the first place. One can show that such a contribution
would have the same symmetry on either side of the transition.
Therefore it is not crucially associated with the symmetry change
defining the phase transition.

Following the ideas introduced in Section 3.1.2.2, the free-
energy form is obtained as a Taylor expansion as a function of the
small parameters �	;j. Besides, each polynomial term of a given
degree of this expansion is invariant by G. Indeed, F, being a
scalar, is unchanged by any rotation or reflection. Among the
transformations, those belonging to G have the additional
property of leaving invariant the density �0 which is, besides T
and the �	;j, an argument of the function F.

It is easy to check that the group-theoretical rules recalled at
the beginning of this section determine the absence of an invar-
iant linear term in the expansion. Moreover, these rules specify
the form of the second-degree contribution. We have

F ¼ F0ðTÞ þ
P
�	

P
�2	;j

� �
: ð3:1:2:23Þ

On the other hand, the equilibrium density is

�eq � �0 ¼
PP

�0	;j’	;jðrÞ: ð3:1:2:24Þ

Let us first consider the system at Tc. The equilibrium values of
all the �	;j are zero. Hence, on the basis of (3.1.2.23), we conclude
that all the �	 satisfy the condition �	 > 0 (since the second-
degree expansion must be minimum at the origin). Note that this
condition cannot be strict for all 	. Otherwise, these coefficients
would also be positive in the vicinity of Tc, on either side of this
temperature. As a consequence, the equilibrium values �0	;j would
all be zero and the symmetry would be unchanged. Hence, one at
least of the �	 has to vanish and to change sign at Tc. An argument
already invoked in Section 3.1.2.2 allows one to assert that one �	
coefficient only has this property. The �	;j corresponding to the
other indices 	 keep zero equilibrium values in the vicinity of Tc

and can be ignored in the first place. We can therefore drop in
(3.1.2.23) all degrees of freedom except the ones associated with
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the �	 coefficient that vanishes at Tc. The set �	;j (j¼ 1; 2; . . . ;m)
constitutes the m-dimensional order parameter of the transition
considered. As this set comprises all the degrees of freedom
contributing to a single second-degree term in the free energy, it
necessarily constitutes a basis for an irreducible vector space with
respect to G, according to the group-theoretical rules recalled
above.

3.1.2.4.3. Stable states and symmetry in the vicinity of Tc

Above Tc, due to the positivity of � (we can drop the 	 index),
the equilibrium values of the �j are zero and the symmetry is G,
identical to the symmetry at Tc. Below Tc, � is negative and the
minimum of F occurs away from the origin in the f�jg space. The
symmetry of the system is defined by all the transformations
leaving invariant the density:

�eq ¼ �0 þ
P
�0j ’jðrÞ: ð3:1:2:25Þ

Since the �0j contribution to the second member is small, these
transformations have to be selected among those belonging to
the invariance group of �0. The space f�jg defines a non-trivial
representation of the latter group since the linear combination of
the order-parameter components present in �eq cannot be
invariant by all the transformations of G. The symmetry group of
the system below Tc is therefore a subgroup F of G.

As pointed out in Section 3.1.2.2, in order to determine the
minimum of F below Tc, it is necessary to expand the free energy
to degrees higher than two. The relevant expression of the free
energy is then

F ¼ F0ðT; �0Þ þ
1
2�ðT � TcÞ

P
�2j

� �
þ f3ð�jÞ þ f4ð�jÞ þ . . . ;

ð3:1:2:26Þ

where we have developed the coefficient �, which is an odd
function of ðT � TcÞ to the lowest degree in ðT � TcÞ. It can be
shown that the existence of a third-degree term f3ð�jÞ depends
exclusively on the nature of the representation �	 associated with
the order parameter. If the symmetry of the order parameter is
such that a third-degree term is not symmetry forbidden, the
transition will be of the type analysed in Section 3.1.2.3: it will be
discontinuous.

For any symmetry of the order parameter, fourth-degree terms
f4ð�jÞ will always be present in the free-energy expansion (there
will be at least one such term that is the square of the second-
degree term). No further general statement can be made.
Depending on the form and coefficients of this term, a continuous
or discontinuous transition will be possible towards one or
several distinct low-symmetry phases. The form of the f4ð�jÞ term
can be determined by searching the most general fourth-degree
polynomial that is invariant by the set of transformations
belonging to G.

In summary, in the light of the preceding considerations, the
study of a phase transition according to the Landau scheme can
be developed along the following lines:

(a) Search, as a starting information on the system, the
symmetry group G of the more symmetric phase surrounding the
transition and the nature of the irreducible representation �	
associated with the order parameter. Both can be obtained from a
crystallographic investigation as illustrated by the example in the
next section.

(b) Check the possibility of a third-degree invariant on
symmetry grounds.

(c) Construct the free energy by determining the form of the
invariant polynomials of the required degrees.

(d) Determine, as a function of the coefficients of the free-
energy expansion, the absolute minimum of F.

(e) For each minimum, determine the invariance group of the
density �eq, i.e. the ‘low-symmetry’ group of the system.

(f) Derive the temperature dependence of the quantities
related to the order parameter component �j.

(g) Consider (as discussed in the next section) the coupling of
the order parameter to other relevant ‘secondary’ degrees of
freedom, and derive the temperature dependence of these
quantities.

3.1.2.5. Application to the structural transformation in a real
system

Let us examine the particular ingredients needed to apply
Landau’s theory to an example of structural transitions, i.e. a
transition between crystalline phases.

3.1.2.5.1. Nature of the groups and of their irreducible
representations

The phases considered being crystalline, their invariance
groups, G or F, coincide with crystallographic space groups. Let
us only recall here that each of these groups of infinite order is
constituted by elements of the form fRjtg where R is a point-
symmetry operation and t a translation. The symmetry operations
R generate the point group of the crystal. On the other hand,
among the translations t there is a subset forming an infinite
group of ‘primitive’ translations T generating the three-dimen-
sional Bravais lattice of the crystal.

For a space group G, there is an infinite set of unequivalent
irreducible representations. An introduction to their properties
can be found in Chapter 1.2 as well as in a number of textbooks.
They cannot be tabulated in a synthetic manner as the better-
known representations of finite groups. They have to be
constructed starting from simpler representations. Namely, each
representation is labelled by a double index.

(i) The first index is a k vector in reciprocal space, belonging to
the first Brillouin zone of this space. The former vector defines a
subgroup GðkÞ of G. This group is the set of elements fRjtg of G
whose component R leaves k unmoved, or transforms it into an
‘equivalent’ vector (i.e. differing from k by a reciprocal-lattice
vector). The group GðkÞ has irreducible representations labelled
�mðkÞ of dimension nm which are defined in available tables.

(ii) A representation of G can be denoted �k;m. It can be
constructed according to systematic rules on the basis of the
knowledge of �mðkÞ. Its dimension is nmr where r is the number of
vectors in the ‘star’ of k. This star is the set of vectors, unequi-
valent to k, having the same modulus as k and obtained from k by
application of all the point-symmetry elements R of G.

3.1.2.5.2. The example of gadolinium molybdate, Gd2(MoO4)3

Gadolinium molybdate (GMO) is a substance showing one
complication with respect to the example in Section 3.1.2.2. Like
the prototype example already studied, it possesses below its
phase transition an electric dipole (and a spontaneous polariza-
tion) resulting from the displacement of ions. However, one does
not observe the expected divergence of the associated suscept-
ibility (Fig. 3.1.2.5).

3.1.2.5.2.1. Experimental identification of the order-parameter
symmetry

The high-temperature space group G is known for GMO from
X-ray diffraction experiments. It is the tetragonal space group
P�4421m. The corresponding point group �442m has eight elements,
represented in Fig. 3.1.2.9.

The k vector labelling the irreducible representation asso-
ciated with the order parameter can be directly deduced from a
comparison of the diffraction spectra above and below Tc. We
have seen that the difference of the two stable structures
surrounding the transition is specified by the equilibrium density:

�ðT; rÞ � �ðTc; rÞ ¼
P
�k;m’k;mðrÞ: ð3:1:2:27Þ
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One can show, using the properties of the irreducible repre-
sentations of the space groups, that the Fourier transform of the
difference of densities given above is proportional to �ðK� kÞ,
i.e. this Fourier transform is nonzero only for a K vector equal to
the k vector indexing the order parameter. The implication of this
property is that below Tc, the X-ray spectrum of the system will
contain additional reflections whose locations in reciprocal space
are defined by the vector of the order parameter. Experimentally,
the vectors joining the Bragg spots existing in both phases to the
closest superlattice spots only appearing below Tc are the vectors k
defining partly the irreducible representation �k;m that specifies
the symmetry properties of the order parameter.

In GMO, X-ray diffraction measurements show that super-
lattice spots appear below Tc at one of the four equivalent k
vectors

�
a�1 � a�2

2
: ð3:1:2:28Þ

The operations of the point group �442m transform these vectors
into each other. The star of k is therefore reduced to a single
vector. On the other hand, consultation of available tables
provides us with the possible representations �k;m necessary to
construct the representation �k;m of the order parameter (the
entries of the tables being the k vector determined and the space
group G). There are three unequivalent �k;m, which are repro-
duced in Table 3.1.2.2.

The ambiguity in the symmetry of the order parameter has
now to be lifted. In this approach, the method is to work out for
each �m the symmetries G of the phases that are possibly stable
below Tc. One then compares the results with the observed space
group below Tc, which, for GMO, is the orthorhombic space
group Pba2.

The group F of interest is the invariance group of the density
difference [equation (3.1.2.27)]. Note that this difference can be
considered as a ‘vector’ with components �i in the irreducible
space of the order parameter. In each irreducible space, the
action of the elements of G on a vector is represented by the set

of matrices reproduced in Table 3.1.2.2. Let us first examine �1 in
this table. Clearly, the matrices relative to fS4j0g, fS

3
4j0g, fC

0
2jtg

and fC002 jtg rotate by �=2 any vector of the two-dimensional space
carrying the representation. These elements will not leave any
direction unmoved and consequently they will not belong to F.
The other elements either preserve any vector (and they then
obviously belong to F) or they reverse any direction. However, in
the latter case, the product of any two of these elements belongs
to F.

Summarizing these remarks, we obtain a single possible group
F consisting of the elements fEj0g, fC2ja1g, f�1jtg, f�2jtþ a1g and
by the infinite translation group generated by the vectors
ða1 � a2Þ and a3. The symbol for this space group is Pmm2.

A similar inspection yields for the representation �2 the group
Pba2 and for �3 three possible groups (P4, Pbm2 and P2).
Comparison with the experimental observation, recalled above,
allows one to identify unambiguously the appropriate repre-
sentation as �2. In conclusion, the irreducible representation
associated with the order parameter of the transition in GMO can
be denoted �k;m. Its k vector is k ¼ �ða�1 � a�2Þ=2, and its ‘small
representation’ is �2ðkÞ. The number of components of the order
parameter is two, equal to the dimension of �k;m, which itself is
equal to the product of the number of vectors in the star of k
(one) and of the dimension of �2 (two).

3.1.2.5.2.2. Construction of the free energy and stable states

Denote by (�1, �2) the two components of the order parameter.
The Landau free energy can be constructed by selecting the
homogeneous polynomials of different degrees that are invariant
by the distinct matrices of �2. There are four such matrices. It is
easy to check that the most general form of fourth-degree
polynomial invariant by the action of these four matrices is

F ¼ F0 þ
�ðT � TcÞ

2
�21 þ �

2
2

� �
þ
�1
4
�41 þ �

4
2

� �
þ
�2
2
�21�

2
2

þ
�3
2
�1�2 �

2
1 � �

2
2

� �
: ð3:1:2:29Þ

A discussion of the minima of this free energy can be made
according to the same method as in Section 3.1.2.3, by putting
�1 ¼ � cos 
, �2 ¼ � sin 
. One then finds that, in accordance with
the symmetry considerations developed in Section 3.1.2.5.2.1,
there is a single possible symmetry below Tc. The equilibrium
state of the system corresponds to an angle 
 whose value
depends on the values of the coefficients in the expansion. The
modulus � has the standard temperature dependence
� / ðTc � TÞ

1=2.
As in the model/example described in Section 3.1.2.2, below Tc

there are several stable states having the same free energy.
Indeed, one can easily check in expression (3.1.2.29) that if (�01,
�02) is an absolute minimum of the free energy (3.1.2.29), the
states (��02, �

0
1), (��

0
1, �

0
2), (��

0
1, ��

0
2) are symmetry-related
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Fig. 3.1.2.9. Rotations/reflections belonging to the point group of gadolinium
molybdate.

Table 3.1.2.2. Matrices defining the irreducible representations of Pba2 for k ¼ a�1 þ a�2

G

fEj0g fS4j0g fC2j0g fS34j0g f�1jtg f�2jtg fC02jtg fC002 jtg a1 a2 a3

�1 1 0

0 1

0 1

�1 0

�1 0

0 �1

0 �1

1 0

1 0

0 1

�1 0

0 �1

0 1

�1 0

0 �1

1 0

�1 0

0 �1

�1 0

0 �1

1 0

0 1

�2 1 0

0 1

0 1

�1 0

�1 0

0 �1

0 �1

1 0

�1 0

0 �1

1 0

0 1

0 �1

1 0

0 1

�1 0

�1 0

0 �1

�1 0

0 �1

1 0

0 1

�3 1 0

0 1

1 0

0 �1

1 0

0 1

1 0

0 �1

0 1

1 0

0 1

1 0

0 �1

1 0

0 �1

1 0

�1 0

0 �1

�1 0

0 �1

1 0

0 1
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minima corresponding to the same value of the equilibrium free
energy.

The intensities of the diffraction ‘superlattice’ spots, being
proportional to the square of the atomic displacement �, vary
linearly as a function of temperature. On the other hand, the
diverging susceptibility associated with the order parameter is
related to a rapid increase of the diffuse scattering of X-rays or
neutrons at the location of the superlattice spots in reciprocal
space. Hence, consistent with the macroscopic measurements, it is
not related to a divergence of the dielectric susceptibility.

3.1.2.5.2.3. Macroscopic behaviour of GMO

In GMO, macroscopic quantities are degrees of freedom that
are distinct from the order parameter. Indeed, their symmetry
properties are different, since any lattice translation will leave
them invariant, while this is not the case for the order parameter
(see Section 3.1.2.5.2.1). Nevertheless, certain of the macroscopic
quantities behave singularly at the transition. These degrees of
freedom can be decomposed, as shown in Section 3.1.2.4, as the
sum of irreducible degrees of freedom. Having a symmetry
different from that of the order parameter, they were neglected
in the first step of the description of the phase transition. In a
more detailed description, they have to be taken into account.

Let us, for instance, consider the Pz component of the dielec-
tric polarization of GMO, as well as the " component of the strain
tensor which represents a shear in the xy plane of the crystal. The
matrices in Table 3.1.2.3 recall the mode of transformation of the
order-parameter components as well as those of these two
quantities under the action of the G group.

We can complete the expression of the free energy of the
system by adding to F in (3.1.2.29) the contributions of the
preceding degrees of freedom up to the second degree (which, as
will be seen, is comparable to the fourth degree used for the
order parameter). The resulting expression is provided by
(3.1.2.30) below, in which we have neglected a bilinear term in Pz

and " as this term does not change the qualitative result we want
to establish.

F1 ¼ F þ
b

2
P2
z þ

c

2
"2 þ �1Pz �

2
1 � �

2
2

� �
þ �2" �

2
1 � �

2
2

� �
;

ð3:1:2:30Þ

where F is provided by equation (3.1.2.29). At equilibrium, the
derivatives of F1 with respect to Pz and " vanish. These conditions
yield

Pz ¼ �
�1
b
�21 � �

2
2

� �
; " ¼ �

�2
c
�21 � �

2
2

� �
: ð3:1:2:31Þ

As stressed in Section 3.1.2.5.2.2, the equilibrium direction in
the order-parameter space corresponds to the trivial 
 ¼ 0 angle.
Hence �21 � �

2
2

� �
6¼ 0 below Tc, resulting in the fact that nonzero

values of Pz and " will onset below the transition temperature.
Besides, the form (3.1.2.31) indicates that the two macroscopic
quantities considered, which are proportional to the square of the
order parameter, are expected to vary linearly as a function of
temperature below Tc. Note that terms such as P2

z are of the same
order of magnitude as fourth-degree terms of the order para-
meter.

We can also determine the behaviour of the dielectric
susceptibility �, by calculating the variations of the equilibrium

value of Pz as a function of an applied electric field E parallel to
the polarization. We proceed as in Section 3.1.2.2, and minimize
the potential G1 ¼ ðF1 � PzEÞ with respect to the order para-
meter and to the polarization. In order to obtain the qualitative
behaviour of �, we simplify the free energy by considering a
single component of the order parameter. We also neglect the
shear strain component ". The set of simplified equations

� ¼
@Pz

@E
jE ¼ 0; bPz þ ��

2 ¼ E ð3:1:2:32Þ

@F1

@E
¼ � �ðT � TcÞ þ ��

2�21
b

� �

�2 þ
2�1
b

E

 �

yields the following expression of the susceptibility:

� ¼
1

b
for T > Tc and � ¼

1

b
þ

2�21
b �� 2�21=b
� � for T<Tc:

ð3:1:2:33Þ

We find an upward step of the dielectric susceptibility on cooling.
Likewise, consideration of the ‘elastic’ susceptibility relative to
the shear strain component " would determine an upward step of
the elastic compliance (Fig. 3.1.2.10). The more usually measured
elastic constant, which is the inverse of the compliance, under-
goes a downward step on cooling.

We have seen in the preceding paragraph that the low-
symmetry phase of gadolinium molybdate possesses four equally
stable states differing by the values of the order-parameter
components. Equation (3.1.2.31) shows that two of the states are
associated with the same sign of the polarization Pz or of the
shear strain ", while the two other states possess opposite values
of Pz and ". According to the definitions given in Section 3.1.1,
gadolinium molybdate belongs to the category of ferroelectrics as
well as to that of ferroelastics.

The example of GMO clearly shows that the ferroic classifi-
cation is less informative than the one based on the order-para-
meter symmetry. The latter determines the full symmetry change
(orientational and translational), while the former only specifies
the orientational symmetry change. On the other hand, the
ferroic classification is not informative about the physical beha-
viour as a function of temperature. Thus, the model ferroelectric
in Section 3.1.2.2 has a diverging dielectric susceptibility at Tc,
while a GMO-type ferroelectric keeps a finite susceptibility. The
ferroic classification has nevertheless the advantage of specifying
the nature of the macroscopic quantities that are expected to
behave anomalously at the transition, and are therefore worth
measuring.
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Table 3.1.2.3. Action of the generators of Pba2 on the order parameter and on
the polarization and strain components

E S4 �1 a1 a2 a3

�1 1 0 0 1 �1 0 �1 0 �1 0 1 0
�2 0 1 �1 0 0 �1 0 �1 0 �1 0 1

Pz 1 �1 1 1 1 1
" 1 �1 1 1 1 1

Fig. 3.1.2.10. Temperature dependence of the macroscopic susceptibility (or
elastic compliance, sij) in gadolinium molybdate. Compare with the ‘normal’
behaviour in Fig. 3.1.2.5(b).
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3.1.3. Equitranslational phase transitions. Property tensors at
ferroic phase transitions

By V. Janovec and V. Kopský

In the Landau theory, presented in the preceding Section 3.1.2,
symmetry considerations and thermodynamics are closely inter-
woven. These two aspects can be, at least to some extent,
disentangled and some basic symmetry conditions formulated
and utilized without explicitly invoking thermodynamics. State-
ments which follow directly from symmetry are exact but usually
do not yield numerical results. These can be obtained by a
subsequent thermodynamic or statistical treatment.

The central point of this section is Table 3.1.3.1, which contains
results of symmetry analysis for a large class of equitranslational
phase transitions and presents data on changes of property
tensors at most ferroic phase transitions. Notions and statements
relevant to these two applications are explained in Sections
3.1.3.1 and 3.1.3.2, respectively. Table 3.1.3.1 with a detailed
explanation is displayed in Section 3.1.3.3. Examples illustrating
possible uses of the table are given in Section 3.1.3.4.

3.1.3.1. Equitranslational phase transitions and their order
parameters

A basic role is played in symmetry considerations by the
relation between the space group G of the high symmetry parent
or prototype phase, the space group F of the low-symmetry
ferroic phase and the order parameter �: The low-symmetry
group F consists of all operations of the high-symmetry group G
that leave the order parameter � invariant. By the term order
parameter we mean the primary order parameter, i.e. that set of
degrees of freedom whose coefficient of the quadratic invariant
changes sign at the phase-transition temperature (see Sections
3.1.2.2.4 and 3.1.2.4.2).

What matters in these considerations is not the physical nature
of � but the transformation properties of �, which are expressed
by the representation �� of G. The order parameter � with d�
components can be treated as a vector in a d�-dimensional carrier
space V� of the representation ��, and the low-symmetry group
F comprises all operations of G that do not change this vector. If
�� is a real one-dimensional representation, then the low-
symmetry group F consists of those operations g 2 G for which
the matricesDð�ÞðgÞ [or characters ��ðgÞ] of the representation ��
equal one, Dð�ÞðgÞ ¼ ��ðgÞ ¼ 1. This condition is satisfied by one
half of all operations of G (index of F in G is two) and thus the
real one-dimensional representation �� determines the ferroic
group F unambiguously.

A real multidimensional representation �� can induce several
low-symmetry groups. A general vector of the carrier space V� of
�� is invariant under all operations of a group Ker ��, called the
kernel of representation ��, which is a normal subgroup of G
comprising all operations g 2 G for which the matrixDð�ÞðgÞ is the
unit matrix. Besides that, special vectors of V� – specified by
relations restricting values of order-parameter components (e.g.
some components of � equal zero, some components are equal
etc.) – may be invariant under larger groups than the kernel
Ker ��. These groups are called epikernels of �� (Ascher &
Kobayashi, 1977). The kernel and epikernels of �� represent
potential symmetries of the ferroic phases associated with the
representation ��. Thermodynamic considerations can decide
which of these phases is stable at a given temperature and
external fields.

Another fundamental result of the Landau theory is that
components of the order parameter of all continuous (second-
order) and some discontinuous (first-order) phase transitions
transform according to an irreducible representation of the space
group G of the high-symmetry phase (see Sections 3.1.2.4.2 and
3.1.2.3). Since the components of the order parameter are real
numbers, this condition requires irreducibility over the field of

real numbers (so-called physical irreducibility or R-irreducibility).
This means that the matrices Dð�ÞðgÞ of R-irreducible repre-
sentations (abbreviated R-ireps) can contain only real numbers.
(Physically irreducible matrix representations are denoted by
Dð�Þ instead of the symbol �� used in general considerations.)

As explained in Section 1.2.3 and illustrated by the example of
gadolinium molybdate in Section 3.1.2.5, an irreducible repre-
sentation �k;m of a space group is specified by a vector k of the
first Brillouin zone, and by an irreducible representation �mðkÞ of
the little group of k, denoted GðkÞ. It turns out that the vector k
determines the change of the translational symmetry at the phase
transition (see e.g Tolédano & Tolédano, 1987; Izyumov &
Syromiatnikov, 1990; Tolédano & Dmitriev, 1996). Thus, unless
one restricts the choice of the vector k, one would have an infinite
number of phase transitions with different changes of the trans-
lational symmetry.

In this section, we restrict ourselves to representations with
zero k vector (this situation is conveniently denoted as the �
point). Then there is no change of translational symmetry at the
transition. In this case, the group F is called an equitranslational
or translationengleiche (t) subgroup of G, and this change of
symmetry will be called an equitranslational symmetry descent
G +

t
F . An equitranslational phase transition is a transition with

an equitranslational symmetry descent G +t
F .

Any ferroic space-group-symmetry descent G + F uniquely
defines the corresponding symmetry descentG + F, whereG and
F are the point groups of the space groups G and F , respectively.
Conversely, the equitranslational subgroup F of a given space
group G is uniquely determined by the point-group symmetry
descent G + F, where G and F are point groups of space groups
G and F , respectively. In other words, a point-group symmetry
descentG + F defines the set of all equitranslational space-group
symmetry descents G +t

F , where G runs through all space
groups with the point group G. All equitranslational space-group
symmetry descents G +t

F are available in the software
GI?KoBo-1, where more details about the equitranslational
subgroups can also be found.

Irreducible and reducible representations of the parent point
group G are related in a similar way to irreducible representa-
tions with vector k ¼ 0 for all space groups G with the point
group G by a simple process called engendering (Jansen & Boon,
1967). The translation subgroup TG of G is a normal subgroup and
the point group G is isomorphic to a factor group G=TG. This
means that to every element g 2 G there correspond all elements
fgjtþ uGðgÞg of the space group G with the same linear consti-
tuent g, the same non-primitive translation uGðgÞ and any vector t
of the translation group TG (see Section 1.2.3.1). If a repre-
sentation of the point group G is given by matrices DðgÞ, then the
corresponding engendered representation of a space group G
with vector k ¼ 0 assigns the same matrix DðgÞ to all elements
fgjtþ uGðgÞg of G.

From this it further follows that a representation �� of a point
group G describes transformation properties of the primary
order parameter for all equitranslational phase transitions with
point-symmetry descent G + F. This result is utilized in the
presentation of Table 3.1.3.1.

3.1.3.2. Property tensors at ferroic phase transitions. Tensor
parameters

The primary order parameter expresses the ‘difference’
between the low-symmetry and high-symmetry structures and
can be, in a microscopic description, identified with spontaneous
displacements of atoms (frozen in soft mode) or with an increase
of order of molecular arrangement. To find a microscopic inter-
pretation of order parameters, it is necessary to perform mode
analysis (see e.g. Rousseau et al., 1981; Aroyo & Perez-Mato,
1998), which takes into account the microscopic structure of the
parent phase.
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Physical properties of crystals in a continuum description are
described by physical property tensors (see Section 1.1.1.2), for
short property tensors [equivalent expressions are matter tensors
(Nowick, 1995; Wadhawan, 2000) or material tensors (Shuvalov,
1988)]. Property tensors are usually expressed in a Cartesian
(rectangular) coordinate system [in Russian textbooks called a
crystallophysical system of coordinates (Sirotin & Shaskolskaya,
1982; Shuvalov, 1988)] which is related to the crystallographic
coordinate system (IT A, 2002) by convention (see IEEE Stan-
dard on Piezoelectricity, 1987; Sirotin & Shaskolskaya, 1982;
Shuvalov, 1988). In what follows, Cartesian coordinates will mean
coordinates in the crystallophysical system and tensor compo-
nents will mean components in this coordinate system.

As explained in Section 1.1.4, the number of independent
components of property tensors depends on the point-group
symmetry of the crystal: the higher this symmetry is, the smaller
this number is. Lowering of point-group symmetry at ferroic
phase transitions is, therefore, always accompanied by an
increased number of independent components of some property
tensors. This effect manifests itself by the appearance of morphic
(Strukov & Levanyuk, 1998) or spontaneous tensor components,
which are zero in the parent phase and nonzero in the ferroic
phase, and/or by symmetry-breaking increments of nonzero
components in the ferroic phase that break relations between
these tensor components which hold in the parent phase. Thus,
for example, the strain tensor has two independent components
u11 ¼ u22; u33 in a tetragonal phase and four independent
components u11 6¼ u22; u33; u12 in a monoclinic phase. In a tetra-
gonal-to-monoclinic phase transition there is one morphic
component u12 and one relation u11 ¼ u22 is broken by the
symmetry-breaking increment �u11 ¼ ��u22.

Changes of property tensors at a ferroic phase transition can
be described in an alternative manner in which no symmetry-
breaking increments but only morphic terms appear. As we have
seen, the transformation properties of the primary order para-
meter � are described by a d�-dimensional R-irreducible matrix
representation Dð�Þ of the group G. One can form d� linear
combinations of Cartesian tensor components that transform
according to the same representation Dð�Þ. These linear combi-
nations will be called components of a principal tensor parameter
of the ferroic phase transition with a symmetry descent G + F.
Equivalent designations are covariant tensor components
(Kopský, 1979a) or symmetry coordinates (Nowick, 1995) of
representation �� of group G. Unlike the primary order para-
meter of a ferroic phase transition, a principal tensor parameter is
not uniquely defined since one can always form further principal
tensor parameters from Cartesian components of higher-rank
tensors. However, only the principal tensor parameters formed
from components of one, or even several, property tensors up to
rank four are physically significant.

A principal tensor parameter introduced in this way has the
same basic properties as the primary order parameter: it is zero in
the parent phase and nonzero in the ferroic phase, and trans-
forms according to the same R-irep Dð�Þ. However, these two
quantities have different physical nature: the primary order
parameter of an equitranslational phase transition is a homo-
geneous microscopic distortion of the parent phase, whereas the
principal tensor parameter describes the macroscopic manifes-
tation of this microscopic distortion. Equitranslational phase
transitions thus possess the unique property that their primary
order parameter can be represented by principal tensor para-
meters which can be identified and measured by macroscopic
techniques.

If the primary order parameter transforms as a vector, the
corresponding principal tensor parameter is a dielectric polar-
ization (spontaneous polarization) and the equitranslational
phase transition is called a proper ferroelectric phase transition.
Similarly, if the primary order parameter transforms as compo-
nents of a symmetric second-rank tensor, the corresponding

principal tensor parameter is a spontaneous strain (or sponta-
neous deformation) and the equitranslational phase transition is
called a proper ferroelastic phase transition.

A conspicuous feature of equitranslational phase transitions is
a steep anomaly (theoretically an infinite singularity for contin-
uous transitions) of the generalized susceptibility associated with
the primary order parameter, especially the dielectric suscept-
ibility near a proper ferroelectric transition (see Section 3.1.2.2.5)
and the elastic compliance near a proper ferroelastic transition
(see e.g. Tolédano & Tolédano, 1987; Tolédano & Dmitriev, 1996;
Strukov & Levanyuk, 1998).

Any symmetry property of a ferroic phase transition has its
pendant in domain structure. Thus it appears that any two ferroic
single domain states differ in the values of the principal tensor
parameters, i.e. principal tensor parameters ensure tensor
distinction of any two ferroic domain states. If, in particular, the
principal order parameter is polarization, then any two ferroic
domain states differ in the direction of spontaneous polarization.
Such a ferroic phase is called a full ferroelectric phase (Aizu,
1970). In this case, the number of ferroic domain states equals the
number of ferroelectric domain states. Similarly, if any two ferroic
domain states exhibit different spontaneous strain, then the
ferroic phase is a full ferroelastic phase. An equivalent condition
is an equal number of ferroic and ferroelastic domain states (see
Sections 3.4.2.1 and 3.4.2.2).

The principal tensor parameters do not cover all changes of
property tensors at the phase transition. Let DðÞ be a d-
dimensional matrix R-irep of G with an epikernel (or kernel) L
which is an intermediate group between F and G, in other words,
L is a supergroup of F and a subgroup of G,

F � L � G: ð3:1:3:1Þ

This means that a vector  of the d-dimensional carrier space V
ofDðÞ is invariant under operations of L. The vector  specifies a
secondary order parameter of the transition, i.e.  is a morphic
quantity, the appearance of which lowers the symmetry fromG to
L (for more details on secondary order parameters see Tolédano
& Tolédano, 1987; Tolédano & Dmitriev, 1996). Intermediate
groups (3.1.3.1) can be conveniently traced in lattices of
subgroups displayed in Figs. 3.1.3.1 and 3.1.3.2.

One can form linear combinations of Cartesian tensor
components that transform according to DðÞ. These combina-
tions are components of a secondary tensor parameter which
represents a macroscopic appearance of the secondary order
parameter .

If a secondary tensor parameter is a spontaneous polarization
and no primary order parameter with this property exists, the
phase transition is called an improper ferroelectric phase transi-
tion (Dvořák, 1974; Levanyuk & Sannikov, 1974). Similarly, an
improper ferroelastic phase transition is specified by existence of a
secondary tensor parameter that transforms as components of
the symmetric second-rank tensor (spontaneous strain) and by
absence of a primary order parameter with this property. Unlike
proper ferroelectric and proper ferroelastic phase transitions,
which are confined to equitranslational phase transitions, the
improper ferroelectric and improper ferroelastic phase transi-
tions appear most often in non-equitranslational phase transi-
tions. Classic examples are an improper ferroelectric phase
transition in gadolinium molybdate (see Section 3.1.2.5.2) and an
improper ferroelastic phase transition in strontium titanate (see
Section 3.1.5.2.3). Examples of equitranslational improper
ferroelectric and ferroelastic symmetry descents can be found in
Table 3.1.3.2.

Secondary tensor parameters and corresponding suscept-
ibilities exhibit less pronounced changes near the transition than
those associated with the primary order parameter (see e.g.
Tolédano & Tolédano, 1987; Tolédano & Dmitriev, 1996; Strukov
& Levanyuk, 1998).
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Table 3.1.3.1. Point-group symmetry descents associated with irreducible representations

Property tensors that appear in this table: " enantiomorphism, chirality; Pi dielectric polarization; u� strain; g� optical activity; di� piezoelectric tensor; Ai�

electrogyration tensor; ��� piezo-optic tensor (i ¼ 1; 2; 3; �; � ¼ 1; 2; . . . ; 6). Applications of this table to symmetry analysis of equitranslational phase transitions and
to changes of property tensors at ferroic transitions are explained in Section 3.1.3.3.

(a) Triclinic parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 1 C1

No ferroic symmetry descent

Parent symmetry G: 1 Ci

Au x�1 1 C1 1 All components of odd parity tensors 2 1 2

(b) Monoclinic parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 2z C2z

B x3 1 C1 1 P1, P2; u4; u5 2 2 2

Parent symmetry G: mz Csz

A00 x3 1 C1 1 "; P3; u4; u5 2 2 2

Parent symmetry G: 2z=mz C2hz

Bg xþ3 1 Ci 1 u4; u5 2 2 0
Au x�1 2z C2z 1 "; P3 2 1 2
Bu x�3 mz Csz 1 P1;P2 2 1 2

(c) Orthorhombic parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 2x2y2z D2

B1g x2 2z C2z 1 P3; u6 2 2 2
B3g x3 2x C2x 1 P1; u4 2 2 2
B2g x4 2y C2y 1 P2; u5 2 2 2

Parent symmetry G: mxmy2z C2vz

A2 x2 2z C2z 1 u6 2 2 1
B2 x3 mx Csx 1 P2; u4 2 2 2
B1 x4 my Csy 1 P1; u5 2 2 2

Parent symmetry G: mxmymz D2h

B1g xþ2 2z=mz C2hz 1 u6 2 2 0
B3g xþ3 2x=mx C2hx 1 u4 2 2 0
B2g xþ4 2y=my C2hy 1 u5 2 2 0
A1u x�1 2x2y2z D2 1 "; g1, g2, g3; d14, d25, d36 2 1 0
B1u x�2 mxmy2z C2vz 1 P3 2 1 2
B3u x�3 2xmymz C2vx 1 P1 2 1 2
B2u x�4 mx2ymz C2vy 1 P2 2 1 2

(d) Tetragonal parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 4z C4z

B x3 2z C2z 1 �u1 ¼ ��u2, u6 2 2 1

1E � 2E ðx1; y1Þ 1 C1 1 ðP1;P2Þ; ðu4;�u5Þ 4 4 4
(Li)

Parent symmetry G: 4z S4z

B x3 2z C2z 1 "; P3; �u1 ¼ ��u2, u6 2 2 2

1E � 2E ðx1; y1Þ 1 C1 1 ðP1;�P2Þ; ðu4;�u5Þ 4 4 4

Parent symmetry G: 4z=mz C4hz

Bg xþ3 2z=mz C2hz 1 �u1 ¼ ��u2, u6 2 2 0
Au x�1 4z C4z 1 "; P3 2 1 2
Bu x�3 4z S4z 1 g1 ¼ �g2, g6; d31 ¼ �d32, d36, d14 ¼ d25, d15 ¼ �d24 2 1 0

1Eg �
2Eg ðxþ1 ; y

þ
1 Þ 1 Ci 1 ðu4;�u5Þ 4 4 0

1Eu �
2Eu ðx�1 ; y

�
1 Þ mz Csz 1 ðP1;P2Þ 4 2 4
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 4z2x2xy D4z

A2 x2 4z C4z 1 P3 2 1 2
B1 x3 2x2y2z D2 1 �u1 ¼ ��u2 2 2 0
B2 x4 2xy2xy2z D̂D2z 1 u6 2 2 0

E ðx1; 0Þ 2x C2x 2 P1; u4 4 4 4
ðx1; x1Þ 2xy C2xy 2 P1 ¼ P2; u4 ¼ �u5 4 4 4

(Li) ðx1; y1Þ 1 C1 1 ðP1;P2Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4zmxmxy C4vz

A2 x2 4z C4z 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 1
B1 x3 mxmy2z C2vz 1 �u1 ¼ ��u2 2 2 1
B2 x4 mxymxy2z ĈC2vz 1 u6 2 2 1

E ðx1; 0Þ mx Csx 2 P2; u4 4 4 4
ðx1; x1Þ mxy Csxy 2 P2 ¼ �P1; u4 ¼ �u5 4 4 4
ðx1; y1Þ 1 C1 1 ðP2;�P1Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4z2xmxy D2dz

A2 x2 4z S4z 1 g6; d31 ¼ �d32, d15 ¼ �d24 2 1 0
B1 x3 2x2y2z D2 1 "; �u1 ¼ ��u2 2 2 0
B2 x4 mxymxy2z ĈC2vz 1 P3; u6 2 2 2

E ðx1; 0Þ 2x C2x 2 P1; u4 4 4 4
ðx1; x1Þ mxy Csxy 2 P1 ¼ �P2; u4 ¼ �u5 4 4 4
ðx1; y1Þ 1 C1 1 ðP1;�P2Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4zmx2xy D̂D2dz

A2 x2 4z S4z 1 g1 ¼ �g2; d36, d14 ¼ d25 2 1 0
B2 x3 mxmy2z C2vz 1 P3; �u1 ¼ ��u2 2 2 2
B1 x4 2xy2xy2z D̂D2z 1 "; u6 2 2 0

E ðx1; 0Þ mx Csx 2 P2; u4 4 4 4
ðx1; x1Þ 2xy C2xy 2 P2 ¼ P1; u4 ¼ �u5 4 4 4
ðx1; y1Þ 1 C1 1 ðP2;P1Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4z=mzmxmxy D4hz

A2g xþ2 4z=mz C4hz 1 A31 ¼ A32, A33, A15 ¼ A24 2 1 0
B1g xþ3 mxmymz D2h 1 �u1 ¼ ��u2 2 2 0
B2g xþ4 mxymxymz D̂D2hz 1 u6 2 2 0
A1u x�1 4z2x2xy D4z 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0
A2u x�2 4zmxmxy C4vz 1 P3 2 1 2
B1u x�3 4z2xmxy D2dz 1 g1 ¼ �g2; d14 ¼ d25, d36 2 1 0
B2u x�4 4zmx2xy D̂D2dz 1 g6; d31 ¼ �d32, d15 ¼ �d24 2 1 0

Eg ðxþ1 ; 0Þ 2x=mx C2hx 2 u4 4 4 0
ðxþ1 ; x

þ
1 Þ 2xy=mxy C2hxy 2 u4 ¼ �u5 4 4 0

ðxþ1 ; y
þ
1 Þ 1 Ci 1 ðu4;�u5Þ 8 8 0

Eu ðx�1 ; 0Þ 2xmymz C2vx 2 P1 4 2 4
ðx�1 ; x

�
1 Þ mxy2xymz C2vxy 2 P1 ¼ P2 4 2 4

ðx�1 ; y
�
1 Þ mz Csz 1 ðP1;P2Þ 8 8 8

(e) Trigonal parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 3z C3

E ðx1; y1Þ 1 C1 1 (P1, P2) 3 3 3
(u1 � u2, �2u6), (u4, �u5)

(La, Li) �u1 ¼ ��u2

Parent symmetry G: 3z C3i

Au x�1 3z C3 1 "; P3 2 1 2

Eg ðxþ1 ; y
þ
1 Þ 1 Ci 1 (u1 � u2, �2u6), (u4, �u5) 3 3 0

(La) �u1 ¼ ��u2

Eu ðx�1 ; y
�
1 Þ 1 C1 1 (P1, P2) 6 3 6

Parent symmetry G: 3z2x D3x

A2 x2 3z C3 1 P3 2 1 2

E ðx1; 0Þ 2x C2x 3 P1; �u1 ¼ ��u2, u4 3 3 3
(La, Li) ðx1; y1Þ 1 C1 1 (P1, P2); (u1 � u2, �2u6), (u4, �u5) 6 6 6

Parent symmetry G: 3zmx C3vx

A2 x2 3z C3 1 "; g1 ¼ g2, g3; d11 ¼ �d12 ¼ �d26, d14 ¼ �d25 2 1 1

E ðx1; 0Þ mx Csx 3 P2; �u1 ¼ ��u2, u4 3 3 3
(La) ðx1; y1Þ 1 C1 1 (P2, �P1); (u1 � u2, �2u6), (u4, �u5) 6 6 6



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

354

Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 3zmx D3dx

A2g xþ2 3z C3i 1 A22 ¼ �A21 ¼ �A16, A31 ¼ A32, A33, A15 ¼ A24 2 1 0
A1u x�1 3z2x D3x 1 "; g1 ¼ g2, g3; d11 ¼ �d12 ¼ �d26, d14 ¼ �d25 2 1 0
A2u x�2 3zmx C3vx 1 P3 2 1 2

Eg ðxþ1 ; 0Þ 2x=mx C2hx 3 �u1 ¼ ��u2, u4 3 3 0
(La) ðxþ1 ; y

þ
1 Þ 1 Ci 1 (u1 � u2, �2u6), (u4, �u5) 6 6 0

Eu ð0; y�1 Þ mx Csx 3 P2 6 3 6
ðx�1 ; 0Þ 2x C2x 3 P1 6 3 6
ðx�1 ; y

�
1 Þ 1 C1 1 (P1, P2) 12 6 12

Parent symmetry G: 3z2y D3y

A2 x2 3z C3 1 P3 2 1 2

E ð0; y1Þ 2y C2y 3 P2; �u1 ¼ ��u2, u5 3 3 3
(La, Li) ðx1; y1Þ 1 C1 1 (P1, P2); (2u6, u1 � u2), (u4, �u5) 6 6 6

Parent symmetry G: 3zmy C3vy

A2 x2 3z C3 1 "; g1 ¼ g2, g3; d22 ¼ �d21 ¼ �d16, d14 ¼ �d25 2 1 1

E ð0; y1Þ my Csy 3 P1; �u1 ¼ ��u2, u5 3 3 3
(La) ðx1; y1Þ 1 C1 1 (P2, �P1); (2u6, u1 � u2), (u4, �u5) 6 6 6

Parent symmetry G: 3zmy D3dy

A2g xþ2 3z C3i 1 A11 ¼ �A12 ¼ �A26, A31 ¼ A32, A33, A15 ¼ A24 2 1 0
A1u x�1 3z2y D3y 1 "; g1 ¼ g2, g3; d22 ¼ �d21 ¼ �d16, d14 ¼ �d25 2 1 0
A2u x�2 3zmy C3vy 1 P3 2 1 2

Eg ð0; yþ1 Þ 2y=my C2hy 3 �u1 ¼ ��u2, u5 3 3 0
(La) ðxþ1 ; y

þ
1 Þ 1 Ci 1 (2u6, u1 � u2), (u4, �u5) 6 6 0

Eu ð0; y�1 Þ 2y C2y 3 P2 6 3 6
ðx�1 ; 0Þ my Csy 3 P1 6 3 6
ðx�1 ; y

�
1 Þ 1 C1 1 (P1, P2) 12 6 12

(f) Hexagonal parent groups
Covariants with standardized labels and conversion equations:

g�1 ¼ g1 þ g2; g�2x ¼ g1 � g2; g�2y ¼ 2g6

g1 ¼
1
2 ðg
�
1 þ g�2xÞ; g2 ¼

1
2 ðg
�
1 � g�2xÞ; �g1 ¼ ��g2 ¼

1
2 g
�
2x

d�1 ¼ d14 � d25; d�2x;2 ¼ d14 þ d25; d�2y;2 ¼ d24 � d15

d�2;1 ¼ d31 þ d32; d�2x;1 ¼ 2d36; d�2y;1 ¼ d32 � d31

d14 ¼
1
2 ðd
�
1 þ d�2x;2Þ; d25 ¼

1
2 ð�d

�
1 þ d�2x;2Þ; �d14 ¼ �d25 ¼

1
2 d
�
2x

d36 ¼
1
2 d
�
2x;1; d31 ¼

1
2 ðd
�
2;1 � d�2y;1Þ; d32 ¼

1
2 ðd
�
2;1 þ d�2y;1Þ:

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 6z C6

B x3 3z C3 1 d11 ¼ �d12 ¼ �d26, d22 ¼ �d21 ¼ �d16 2 1 1

E2 ðx2; y2Þ 2z C2z 1 (u1 � u2, 2u6) �u1 ¼ ��u2 3 3 1
(La, Li)

E1 ðx1; y1Þ 1 C1 1 (P1,P2) 6 6 6
(Li) (u4, �u5)

Parent symmetry G: 6z C3h

A00 x3 3z C3 1 "; P3 2 1 2

E0 ðx2; y2Þ mz Csz 1 (P2, P1) 3 3 3
(La) (u1 � u2, 2u6) �u1 ¼ ��u2

E00 ðx1; y1Þ 1 C1 1 (u4, �u5) 6 6 6

Parent symmetry G: 6z=mz C6h

Bg xþ3 3z C3i 1 A11 ¼ �A12 ¼ �A26, A22 ¼ �A21 ¼ �A16 2 1 0
Au x�1 6z C6 1 "; P3 2 1 2
Bu x�3 6z C3h 1 d11 ¼ �d12 ¼ �d26, d22 ¼ �d21 ¼ �d16 2 1 0

E2g ðxþ2 ; y
þ
2 Þ 2z=mz C2hz 1 (u1 � u2, 2u6) �u1 ¼ ��u2 3 3 0

(La)

E1g ðxþ1 ; y
þ
1 Þ 1 Ci 1 (u4, �u5) 6 6 0

E2u ðx�2 ; y
�
2 Þ 2z C2z 1 (g1 � g2, 2g6) g1 ¼ �g2, g6 6 3 2

(2d36, d32 � d31) d32 ¼ �d31, d36
(d14 þ d25, d24 � d15) d14 ¼ d25, d24 ¼ �d15

E1u ðx�1 ; y
�
1 Þ mz Csz 1 (P1, P2) 6 3 6
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In tensor distinction of domains, the secondary tensor para-
meters play a secondary role in a sense that some but not all
ferroic domain states exhibit different values of the secondary
tensor parameters. This property forms a basis for the concept of
partial ferroic phases (Aizu, 1970): A ferroic phase is a partial
ferroelectric (ferroelastic) one if some but not all domain states
differ in spontaneous polarization (spontaneous strain). A non-
ferroelectric phase denotes a ferroic phase which is either non-
polar or which possesses a unique polar direction available

already in the parent phase. A non-ferroelastic phase exhibits no
spontaneous strain.

3.1.3.3. Tables of equitranslational phase transitions associated
with irreducible representations

The first systematic symmetry analysis of Landau-type phase
transitions was performed by Indenbom (1960), who found all
equitranslational phase transitions that can be accomplished
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 6z2x2y D6

A2 x2 6z C6 1 P3 2 1 2
B1 x3 3z2x D3x 1 d11 ¼ �d12 ¼ �d26 2 1 0
B2 x4 3z2y D3y 1 d22 ¼ �d21 ¼ �d16 2 1 0

E2 ðx2; 0Þ 2x2y2z D2 3 �u1 ¼ ��u2 3 3 0
(La, Li) ðx2; y2Þ 2z C2z 1 (u1 � u2, 2u6) 6 6 2

E1 ðx1; 0Þ 2x C2x 3 P1; u4 6 6 6
ð0; y1Þ 2y C2y 3 P2; u5 6 6 6

(Li) ðx1; y1Þ 1 C1 1 (P1, P2); (u4, �u5Þ 12 12 12

Parent symmetry G: 6zmxmy C
6v

A2 x2 6z C6 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 1
B2 x3 3zmx C3vx 1 d22 ¼ �d21 ¼ �d16 2 1 1
B1 x4 3zmy C3vy 1 d11 ¼ �d12 ¼ �d26 2 1 1

E2 ðx2; 0Þ mxmy2z C2vz 3 �u1 ¼ ��u2 3 3 1
(La) ðx2; y2Þ 2z C2z 1 (u1 � u2, 2u6) 6 6 1

E1 ðx1; 0Þ mx Csx 3 P2; u4 6 6 6
ð0; y1Þ my Csy 3 P1; u5 6 6 6
ðx1; y1Þ 1 C1 1 (P2, �P1); (u4, �u5) 12 12 12

Parent symmetry G: 6z2xmy D
3h

A02 x2 6z C3h 1 d22 ¼ �d21 ¼ �d16 2 1 0
A001 x3 3z2x D3x 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0
A002 x4 3zmy C3vy 1 P3 2 1 2

E0 ðx2; 0Þ 2xmymz C2vx 3 P1; �u1 ¼ ��u2 3 3 3
(La) ðx2; y2Þ mz Csz 1 (P1,�P2); (u1 � u2, 2u6) 6 6 6

E00 ðx1; 0Þ 2x C2x 3 u4 6 6 3
ð0; y1Þ my Csy 3 u5 6 6 6
ðx1; y1Þ 1 C1 1 (u4, �u5) 12 12 12

Parent symmetry G: 6zmx2y D̂D3h

A02 x2 6z C3h 1 d11 ¼ �d12 ¼ �d26 2 1 0
A002 x3 3zmx C3vx 1 P3 2 1 2
A01 x4 3z2y D3y 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0

E0 ðx2; 0Þ mx2ymz C2vy 3 P2; �u1 ¼ ��u2 3 3 3
(La) ðx2; y2Þ mz Csz 1 (P2, P1); (u1 � u2, 2u6) 6 6 6

E00 ðx1; 0Þ mx Csx 3 u4 6 6 6
ð0; y1Þ 2y C2y 3 u5 6 6 3
ðx1; y1Þ 1 C1 1 (u4, �u5) 12 12 12

Parent symmetry G: 6z=mzmxmy D
6h

A2g xþ2 6z=mz C6h 1 A31 ¼ A32, A33, A15 ¼ A24 2 1 0
B1g xþ3 3zmx D3dx 1 A11 ¼ �A12 ¼ �A26 2 1 0
B2g xþ4 3zmy D3dy 1 A22 ¼ �A21 ¼ �A16 2 1 0
A1u x�1 6z2x2y D6 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0
A2u x�2 6zmxmy C6v 1 P3 2 1 2
B1u x�3 6z2xmy D3h 1 d11 ¼ �d12 ¼ �d26 2 1 0
B2u x�4 6zmx2y D̂D3h 1 d22 ¼ �d21 ¼ �d16 2 1 0

E2g ðxþ2 ; 0Þ mxmymz D2h 3 �u1 ¼ ��u2 3 3 0
(La) ðxþ2 ; y

þ
2 Þ 2z=mz C2hz 1 (u1 � u2, 2u6) 6 6 0

E1g ðxþ1 ; 0Þ 2x=mx C2hx 3 u4 6 6 0
ð0; yþ1 Þ 2y=my C2hy 3 u5 6 6 0
ðxþ1 ; y

þ
1 Þ 1 Ci 1 (u4, �u5) 12 12 0

E1u ðx�1 ; 0Þ 2xmymz C2vx 3 P1 6 3 6
ð0; y�1 Þ mx2ymz C2vy 3 P2 6 3 6
ðx�1 ; y

�
1 Þ mz Csz 1 (P1, P2) 12 6 12

E2u ðx�2 ; 0Þ 2x2y2z D2 3 �g1 ¼ ��g2; d36, �d14 ¼ �d25 6 3 0
ð0; y�2 Þ mxmy2z C2vz 3 g6: d32 ¼ �d31, d24 ¼ �d15 6 3 2
ðx�2 ; y

�
2 Þ 2z C2z 1 (g1 � g2, 2g6); ð2d36; d32 � d31Þ, ðd14 þ d25; d24 � d15Þ 12 6 2
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continuously. A table of all crystallographic point groups G along
with all their physically irreducible representations, corre-
sponding ferroic point groups F and related data has been
compiled by Janovec et al. (1975). These data are presented in an
improved form in Table 3.1.3.1 together with corresponding
principal tensor parameters and numbers of ferroic, ferroelectric
and ferroelastic domain states. This table facilitates solving of the
following typical problems:

(1) Inverse Landau problem (Ascher & Kobayashi, 1977) of
equitranslational phase transitions: For a given equitranslational
symmetry descent G +t

F (determined for example from
diffraction experiments), find the representation �� of G that
specifies the transformation properties of the primary order
parameter. Solution: In Table 3.1.3.1, one finds a physically irre-

ducible representation�� of thepoint groupG of G with epikernel
F (point group of F ). For some symmetry descents from cubic
point groups G ¼ 432, �443m and m�33m, the inverse Landau
problem has two solutions, which are given in Table 3.1.3.2.

If for a given symmetry descent G +t
F no appropriate R-irep

exists in Table 3.1.3.1, then the primary order parameter �
transforms according to a reducible representation of G. These
transitions are always discontinuous and can be accomplished
with several reducible representations. Some symmetry descents
can be associated with an irreducible representation and with
several reducible representations. All these transitions are
treated in the software GI?KoBo-1 and in Kopský (2001). All
point-group symmetry descents are listed in Table 3.4.2.7 and can
be traced in lattices of subgroups (see Figs. 3.1.3.1 and 3.1.3.2).
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Table 3.1.3.1 (cont.)

(g) Cubic parent groups
Covariants with standardized labels and conversion equations:

u3x ¼ uþ3x ¼ u3 � aðu1 þ u2Þ; u3y ¼ uþ3y ¼ bðu1 � u2Þ

�u1 ¼ �
1
3 u
þ
3x þ

1ffiffi
3
p uþ3y; �u2 ¼ �

1
3 u
þ
3x �

1ffiffi
3
p uþ3y; �u3 ¼

2
3 u
þ
3x

g�1 ¼ g1 þ g2 þ g3; g�3x ¼ g3 � aðg1 þ g2Þ; g�3y ¼ bðg1 � g2Þ

g1 ¼
1
3 g
�
1 �

1
3 g
�
3x þ

1ffiffi
3
p g�3y; g2 ¼

1
3 g
�
1 �

1
3 g
�
3x �

1ffiffi
3
p g�3y; g3 ¼

1
3 g
�
1 þ

2
3 g
�
3x

d�1 ¼ d14 þ d25 þ d36; d�3x ¼ bðd14 � d25Þ; d�3y ¼ aðd14 þ d25Þ � d36

d14 ¼
1
3 d
�
1 þ

1ffiffi
3
p d�3x þ

1
3 d
�
3y; d25 ¼

1
3 d
�
1 �

1ffiffi
3
p d�3x þ

1
3 d
�
3y; d36 ¼

1
3 d
�
1 �

2
3 d
�
3y

d1x ¼ d13 � d12; d1y ¼ d21 � d23; d1z ¼ d32 � d31

d2x ¼ d13 þ d12; d2y ¼ d21 þ d23; d2z ¼ d32 þ d31

d13 ¼
1
2 ðd1x þ d2xÞ; d21 ¼

1
2 ðd1y þ d2yÞ; d32 ¼

1
2 ðd1z þ d2zÞ

d12 ¼
1
2 ðd2x � d1xÞ; d23 ¼

1
2 ðd2y � d1yÞ; d31 ¼

1
2 ðd2z � d1zÞ

a ¼ 1
2, b ¼

ffiffi
3
p

2 , �
a
�� ¼ ð��� � ���Þ, � ¼ 1; 2; . . . ; 6, � ¼ 1; 2; . . . ; 6.

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 23 T

E ðx3; y3Þ 2x2y2z D2 1 [u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 3 3 0
(La) �u1 þ �u2 þ �u3 ¼ 0

T ð0; 0; z1Þ 2z C2z 3 P3; u6 6 6 6
ðx1; x1; x1Þ 3p C3p 4 P1 ¼ P2 ¼ P3; u4 ¼ u5 ¼ u6 4 4 4

(La, Li) ðx1; y1; z1Þ 1 C1 1 (P1, P2, P3); (u4, u5, u6) 12 12 12

Parent symmetry G: m3 Th

Au x�1 23 T 1 "; g1 ¼ g2 ¼ g3; d14 ¼ d25 ¼ d36 2 1 0

Eg ðxþ3 ; y
þ
3 Þ mxmymz D2h 1 [u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 3 3 0

(La) �u1 þ �u2 þ �u3 ¼ 0

Eu ðx�3 ; y
�
3 Þ 2x2y2z D2 1 [g3 � aðg1 þ g2Þ, bðg1 � g2Þ� 6 3 0

�g1 þ �g2 þ �g3 ¼ 0
[bðd14 � d25Þ, aðd14 þ d25Þ � d36]
�d14 þ �d25 þ �d36 ¼ 0

Tg ð0; 0; zþ1 Þ 2z=mz C2hz 3 u6 6 6 0
ðxþ1 ; x

þ
1 ; x

þ
1 Þ 3p C3ip 4 u4 ¼ u5 ¼ u6 4 4 0

(La) ðxþ1 ; y
þ
1 ; z

þ
1 Þ 1 Ci 1 (u4, u5, u6) 12 12 0

Tu ð0; 0; z�1 Þ mxmy2z C2vz 3 P3 6 3 6
ðx�1 ; x

�
1 ; x

�
1 Þ 3p C3p 4 P1 ¼ P2 ¼ P3 8 4 8

ðx�1 ; y
�
1 ; z

�
1 Þ 1 C1 1 (P1, P2, P3) 24 12 24

Parent symmetry G: 432 O

A2 x2 23 T 1 d14 ¼ d25 ¼ d36 2 1 0

E ðx3; 0Þ 4z2x2xy D4z 3 �u1 ¼ �u2 ¼ �
1
2 �u3 3 3 0

(La) ðx3; y3Þ 2x2y2z D2 1 ½u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 6 6 0
�u1 þ �u2 þ �u3 ¼ 0

T1 ð0; 0; z1Þ 4z C4z 3 P3 6 3 6
ðx1; x1; 0Þ 2xy C2xy 6 P1 ¼ P2 12 12 12
ðx1; x1; x1Þ 3p C3p 4 P1 ¼ P2 ¼ P3 8 4 8

(Li) ðx1; y1; z1Þ 1 C1 1 (P1, P2, P3) 24 24 24

T2 ð0; 0; z2Þ 2xy2xy2z D̂D2z 3 u6 6 6 0
ðx2;�x2; z2Þ 2xy C2xy 6 u4 ¼ �u5, u6 12 12 12
ðx2; x2; x2Þ 3p2xy D3p 4 u4 ¼ u5 ¼ u6 4 4 0

(La, Li) ðx2; y2; z2Þ 1 C1 1 (u4, u5, u6) 24 24 24
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 43m Td

A2 x2 23 T 1 "; g1 ¼ g2 ¼ g3 2 1 0
A14 ¼ A25 ¼ A36; �

a
23 ¼ �

a
31 ¼ �

a
12

E ðx3; 0Þ 4z2xmxy D2dz 3 �u1 ¼ �u2 ¼ �
1
2 �u3 3 3 0

(La) ðx3; y3Þ 2x2y2z D2 1 [u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 6 6 0
�u1 þ �u2 þ �u3 ¼ 0

T1 ð0; 0; z1Þ 4z S4z 3 g6; d32 ¼ �d31, d24 ¼ �d15 6 3 0
ðx1; x1; 0Þ mxy Csxy 6 g4 ¼ g5 12 12 12

d13 ¼ �d23, d12 ¼ �d21
d35 ¼ �d34, d26 ¼ �d16

ðx1; x1; x1Þ 3p C3p 4 g4 ¼ g5 ¼ g6 8 4 4
d13 ¼ d21 ¼ d32; d12 ¼ d23 ¼ d31
d35 ¼ d16 ¼ d24; d26 ¼ d34 ¼ d15

ðx1; y1; z1Þ 1 C1 1 (g4, g5, g6) 24 24 24
(d13 � d12, d21 � d23, d32 � d31)
(d35 � d26, d16 � d34, d24 � d15)

T2 ð0; 0; z2Þ mxymxy2z ĈC2vz 3 P3; u6 6 6 6
ðx2;�x2; z2Þ mxy Csxy 6 P1 ¼ �P2, P3; u4 ¼ �u5, u6 12 12 12
ðx2; x2; x2Þ 3pmxy C3vp 4 P1 ¼ P2 ¼ P3; u4 ¼ u5 ¼ u6 4 4 4

(La) ðx2; y2; z2Þ 1 C1 1 (P1, P2, P3); (u4, u5, u6) 24 24 24

Parent symmetry G: m3m Oh

A2g xþ2 m3 Th 1 A14 ¼ A25 ¼ A36; �
a
23 ¼ �

a
31 ¼ �

a
12 2 1 0

A1u x�1 432 O 1 "; g1 ¼ g2 ¼ g3; 2 1 0
A2u x�2 43m Td 1 d14 ¼ d25 ¼ d36 2 1 0

Eg ðxþ3 ; 0Þ 4z=mzmxmxy D4hz 3 �u3 3 3 0
(La) ðxþ3 ; y

þ
3 Þ mxmymz D2h 1 ½�u3 � að�u1 þ �u2Þ, bð�u1 � �u2Þ� 6 6 0

Eu ðx�3 ; 0Þ 4z2x2xy D4z 3 g1 ¼ g2, g3; d14 ¼ �d25 12 3 0
ð0; y�3 Þ 4z2xmxy D2dz 3 g1 ¼ �g2; d14 ¼ d25 ¼ d36 6 3 0
ðx�3 ; y

�
3 Þ 2x2y2z D2 1 [g3 � aðg1 þ g2Þ, bðg1 � g2Þ� 12 6 0

½bðd14 � d25Þ; aðd14 þ d25Þ � d36�

T1g ð0; 0; zþ1 Þ 4z=mz C4hz 3 A33, A32 ¼ A31, A24 ¼ A15;A14 ¼ �A25 6 3 0
ðxþ1 ; x

þ
1 ; 0Þ 2xy=mxy C2hxy 6 A11 ¼ A22, 12 12 0

A13 ¼ A23, A12 ¼ A21

A35 ¼ A34, A26 ¼ A16

ðxþ1 ; x
þ
1 ; x

þ
1 Þ 3p C3ip 4 A11 ¼ A22 ¼ A33 8 4 0

A13 ¼ A21 ¼ A32, A12 ¼ A32 ¼ A31

A35 ¼ A16 ¼ A24, A26 ¼ A34 ¼ A15

ðxþ1 ; y
þ
1 ; z

þ
1 Þ 1 Ci 1 (A11, A22, A33) 24 24 0

(A13 þA12, A21 þA23, A32 þA31)
(A35 þA26, A16 þA34, A24 þA15)

T2g ð0; 0; zþ2 Þ mxymxymz D̂D2hz 3 u6 6 6 0
ðxþ2 ;�x

þ
2 ; z

þ
2 Þ 2xy=mxy C2hxy 6 u4 ¼ �u5, u6 24 12 12

ðxþ2 ; x
þ
2 ; x

þ
2 Þ 3pmxy D3dp 4 u4 ¼ u5 ¼ u6 4 4 0

(La) ðxþ2 ; y
þ
2 ; z

þ
2 Þ 1 Ci 1 (u4, u5, u6) 24 24 0

T1u ð0; 0; z�1 Þ 4zmxmxy C4vz 3 P3 6 3 6
ðx�1 ; y

�
1 ; 0Þ mz Csz 3 P1,P2 24 12 24

ðx�1 ; x
�
1 ; 0Þ mxy2xymz ĈC2vxy 6 P1 ¼ P2 12 6 12

ðx�1 ;�x
�
1 ; z

�
1 Þ mxy Csxy 6 P1 ¼ �P2, P3 24 12 24

ðx�1 ; x
�
1 ; x

�
1 Þ 3pmxy C3vp 4 P1 ¼ P2 ¼ P3 8 4 8

ðx�1 ; y
�
1 ; z

�
1 Þ 1 C1 1 (P1, P2, P3) 48 24 48

T2u ð0; 0; z�2 Þ 4zmx2xy D̂D2dz 3 g6; d32 ¼ �d31, d24 ¼ �d15 6 3 0
ðx�2 ; y

�
2 ; 0Þ mz Csz 3 g4, g5; d13, d12, d21, d23 24 12 24

d35, d26, d16, d34
ðx�2 ;�x

�
2 ; 0Þ mxy2xymz ĈC2vxy 6 g4 ¼ �g5; d13 ¼ d23, d21 ¼ d21 12 6 12

d35 ¼ d34, d16 ¼ d26
ðx�2 ;�x

�
2 ; z

�
2 Þ 2xy C2xy 6 g4 ¼ �g5, g6; d13 ¼ d23, d21 ¼ d21 24 12 12

d35 ¼ d34, d16 ¼ d26
d32 ¼ �d31, d24 ¼ �d15

ðx�2 ; x
�
2 ; x

�
2 Þ 3p2xy D3p 4 g4 ¼ g5 ¼ g6; 8 4 0

d13 ¼ �d12 ¼ d21 ¼ �d23 ¼ d32 � d31
d35 ¼ �d26 ¼ d16 ¼ �d34 ¼ d24 ¼ �d15

ðx�2 ; y
�
2 ; z

�
2 Þ 1 C1 1 (g4, g5, g6) 48 24 48

(d13 � d12, d21 � d23, d32 � d31)
(d35 � d26, d16 � d34, d24 � d15)
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The solution of the inverse Landau problem – i.e. the identi-
fication of the representation �� relevant to symmetry descent
G + F – enables one to determine the corresponding nomal
mode (so-called soft mode) of the transition (see e.g. Rousseau et
al., 1981). We note that this step requires additional knowledge of
the crystal structure, whereas other conclusions of the analysis
hold for any crystal structure with a given symmetry descent
G + F. Normal-mode determination reveals the dynamic
microscopic nature of the instability of the crystal lattice which
leads to the phase transition (for more details and examples, see
Section 3.1.5).

The representation �� further determines the principal tensor
parameters associated with the primary order parameter �. If one
of them is a vector (polarization) the soft mode is infrared-active
in the parent phase; if it is a symmetric second-rank tensor
(spontaneous strain), the soft mode is Raman active in this phase.
Furthermore, the R-irep �� determines the polynomial in
components of � in the Landau free energy (basic invariant
polynomials, called integrity bases, are available in the software
GI?KoBo-1 and in Kopský, 2001) and allows one to decide
whether the necessary conditions of continuity of the transition
(so-called Landau and Lifshitz conditions) are fulfilled.

(2) Direct Landau problem of equitranslational phase transi-
tions: For a given space group G of the parent phase and the R-
irep �� (specifying the transformation properties of the primary
order parameter �), find the corresponding equitranslational
space group F of the ferroic phase. To solve this task, one first
finds in Table 3.1.3.1 the point group F that corresponds to point
group G of space group G and to the given R-irep ��. The point-
group symmetry descent G + F thus obtained specifies uniquely
the equitranslational subgroup F of G that can be found in the
lattices of equitranslational subgroups of space groups available
in the software GI?KoBo-1 (see Section 3.1.6).

(3) Secondary tensor parameters of an equitranslational phase
transition G +t

F . These parameters are specified by the repre-
sentation � of G associated with a symmetry descent � + L,
where L is an intermediate group [see equation (3.1.3.1)]. In
other words, the secondary tensor parameters of the transition
G + F are identical with principal tensor parameters of the
transition G + L. To each intermediate group L there corre-
sponds a set of secondary tensor parameters. All intermediate
subgroups of a symmetry descent G + F can be deduced from
lattices of subgroups in Figs. 3.1.3.1 and 3.1.3.2.

The representation � specifies transformation properties of
the secondary tensor parameter  and thus determines e.g its

infrared and Raman activity in the parent phase and enables one
to make a mode analysis. Representation � together with ��
determine the coupling between secondary and primary tensor
parameters. The explicit form of these faint interactions (Aizu,
1973; Kopský, 1979d) can be found in the software GI?KoBo-1
and in Kopský (2001).

(4) Changes of property tensors at a ferroic phase transition.
These changes are described by tensor parameters that depend
only on the point-group-symmetry descent G + F. This means
that the same principal tensor parameters and secondary tensor
parameters appear in all equitranslational and in all non-equi-
translational transitions with the same G + F. The only difference
is that in non-equitranslational ferroic phase transitions a prin-
cipal tensor parameter corresponds to a secondary ferroic order
parameter. It still plays a leading role in tensor distinction of
domains, since it exhibits different values in any two ferroic
domain states (see Section 3.4.2.3). Changes of property tensors
at ferroic phase transitions are treated in detail in the software
GI?KoBo-1 and in Kopský (2001).

We note that Table 3.1.3.1 covers only those point-group
symmetry descents G + F that are ‘driven’ by R-ireps of G. All
possible point-group symmetry descentsG + F are listed in Table
3.4.2.7. Principal and secondary tensor parameters of symmetry
descents associated with reducible representations are combi-
nations of tensor parameters appearing in Table 3.1.3.1 (for a
detailed explanation, see the manual of the software GI?KoBo-1
and Kopský, 2000). Necessary data for treating these cases are
available in the software GI?KoBo-1 and Kopský (2001).

3.1.3.3.1. Explanation of Table 3.1.3.1

Parent symmetry G: the short international (Hermann–
Mauguin) and the Schoenflies symbol of the point group G of the
parent phase are given. Subscripts specify the orientation of
symmetry elements (generators) in the Cartesian crystal-
lophysical coordinate system of the group G (see Figs. 3.4.2.3 and
3.4.2.4, and Tables 3.4.2.5 and 3.4.2.6).

R-irep ��: physically irreducible representation �� of the group
G in the spectroscopic notation. This representation defines
transformation properties of the primary order parameter � and
of the principal tensor parameters. Each complex irreducible
representation is combined with its complex conjugate and thus a
real physically irreducible representation R-irep is formed.
Matrices Dð�Þ of R-ireps are given explicitly in the the software
GI?KoBo-1.
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Table 3.1.3.2. Symmetry descents G + F1 associated with two irreducible representations

G �� F1

Proper or improper Domain states Full or partial

Ferroelectric Ferroelastic nf ne na Ferroelectric Ferroelastic

432 T1 2xy proper improper 12 12 12 full full
T2 improper proper

T1 1 improper improper 24 24 24 full full
T2 proper proper

�443m T1 mxy improper improper 12 12 12 full full
T2 proper proper

T1 1 improper improper 24 24 24 full full
T2 proper proper

m�33m T1g 2xy=mxy non improper 12 0 12 non full
T2g non proper

T1g
�11 non improper 24 0 24 non full

T2g non proper

T1u mx�yy2xymz proper improper 12 12 6 full partial
T2u improper improper

T1u mz proper improper 24 24 12 full partial
T2u improper improper

T1u 1 proper improper 48 48 24 full partial
T2u improper improper
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(La) below the symbol of the irreducible representation ��
indicates that the Landau condition is violated, hence the tran-
sition cannot be continuous (second order). The Landau condi-
tion requires the absence of the third-degree invariant
polynomial of the order-parameter components (the symme-
trized triple product ½���

3 must not contain the identity repre-
sentation of G). For more details see Lyubarskii (1960), Kociński
(1983, 1990), Tolédano & Tolédano (1987), Izyumov & Syro-
miatnikov (1990) and Tolédano & Dmitriev (1996).

(Li) below the symbol of the irreducible representation ��
means that the Lifshitz condition is violated, hence the transition
to a homogeneous ferroic phase is not continuous. The Lifshitz
condition demands the absence of invariant terms that couple
bilinearly the order-parameter components with their spatial
derivatives that are not exact differentials (the antisymmetric

square f��g
2 has no representation in common with the vector

representation of G). For more details see Lyubarskii (1960),
Kociński (1983, 1990), Tolédano & Tolédano (1987), Izyumov &
Syromiatnikov (1990) and Tolédano & Dmitriev (1996).

If there is no symbol (La) and/or (Li) below the symbol of the
R-irep �� (i.e. if both Landau and Lifshitz conditions are
fulfilled), then the R-irep is called an active representation. In the
opposite case, the R-irep is a passive representation (Lyubarskii,
1960; Kociński, 1983, 1990).

Standard variables: components of the order parameter in the
carrier space of the irreducible representation �� expressed in so-
called standard variables (see the manual of the software
GI?KoBo-1). Upper and lower indices and the typeface of
standard variables allow one to identify to which irreducible
representation �� they belong. Standard variables of one-

dimensional representations are denoted
by x (Sans Serif typeface), two- or three-
dimensional R-ireps by x; y or x; y; z,
respectively. Upper indices þ and �

correspond to the lower indices g
(gerade) and u (ungerade) of spectro-
scopic notation, respectively. The lower
index specifies to which irreducible
representation the variable belongs.

For multidimensional representations,
a general vector of the carrier space V� is
given in the last row; this vector is
invariant under the kernel of �� that
appears as a low-symmetry group in
column F1. The other rows contain
special vectors defined by equal or zero
values of some standard variables; these
vectors are invariant under epikernels of
�� given in column F1.

F1: short international (Hermann–
Mauguin) and Schoenflies symbol of the
point group F1 which describes the
symmetry of the first single domain state
of the ferroic (low-symmetry) phase. The
subscripts define the orientation of
symmetry elements (generators) of F1 in
the Cartesian crystallophysical coordi-
nate system of the group G (see Figs.
3.4.2.3 and 3.4.2.4, and Tables 3.4.2.5 and
3.4.2.6). This specifies the orientation of
the group F1, which is a prerequisite for
domain structure analysis (see Chapter
3.4).

nF : number of subgroups conjugate to
F1 under G. If nF ¼ 1, the group F1 is a
normal subgroup ofG (see Section 3.2.3).

Principal tensor parameters: covariant
tensor components, i.e. linear combina-
tions of Cartesian tensor components
that transform according to the same
matrix R-irep Dð�Þ as the primary order
parameter �. Principal tensor parameters
are given in this form in the software
GI?KoBo-1 and in Kopský (2001).

This presentation is in certain situa-
tions not practical, since property tensors
are usually described by numerical values
of their Cartesian components. Then it is
important to know morphic Cartesian
tensor components and symmetry-
breaking increments of nonzero Carte-
sian components that appear sponta-
neously in the ferroic phase. The bridge
between these two presentations is
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Fig. 3.1.3.1. Lattice of subgroups of the group m�33m. Conjugate subgroups are depicted as a pile of cards.
In the software GI?KoBo-1, one can pull out individual conjugate subgroups by clicking on the pile. All
conjugate subgroups are given explicitly in Table 3.4.2.7.

Fig. 3.1.3.2. Lattice of subgroups of the group 6=mmm. Conjugate subgroups are depicted as a pile of
cards. In the software GI?KoBo-1, one can pull out individual conjugate subgroups by clicking on the
pile. All conjugate subgroups are given explicitly in Table 3.4.2.7.
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provided by the conversion equations that express Cartesian
tensor components as linear combinations of principal and
secondary covariant components (for more details on tensorial
covariants and conversion equations see Appendix E of the
manual for GI?KoBo-1 and Kopský, 2001).

We illustrate the situation on a transition with symmetry
descent 4z2x2xy + 2x2y2z. In Table 3.1.3.1, we find that the prin-
cipal tensor parameter transforms according to irreducible
representation B1 with standard variable x3. The corresponding
covariant u3 ¼ u1 � u2 can be found in Appendix E of the
manual of GI?KoBo-1 (or in Kopský, 2001), where one also finds
an invariant containing u1 and u2: u1;1 ¼ u1 þ u2. The corre-
sponding conversion equations are: u1 ¼

1
2 ðu1;1 þ u3Þ,

u2 ¼
1
2 ðu1;1 � u3Þ. In the parent phase u3 ¼ u

ðpÞ
1 � u

ðpÞ
2 ¼ 0, hence

u
ðpÞ
1 ¼ u

ðpÞ
2 ¼

1
2 u1;1, whereas in the ferroic phase u

ðf Þ
1 ¼

1
2 ðu1;1 þ u3Þ

¼ u
ðpÞ
1 þ

1
2u1;1 ¼ u

ðpÞ
1 þ �u1, u

ðf Þ
2 ¼ u

ðpÞ
2 �

1
2u1;1 ¼ u

ðpÞ
2 þ �u2 ¼

u
ðpÞ
1 � �u1. The symmetry-breaking increments �u1 ¼ ��u2

describe thus the changes of the Cartesian components that
correspond to the nonzero principal tensor component u1 � u2.

An analogous situation occurs frequently in trigonal and
hexagonal parent groups, where u1 � u2 (or g1 � g2) transforms
like the first or second component of the principal tensor para-
meter. In these cases, the corresponding symmetry-breaking
increments of Cartesian components are again related:
�u1 ¼ ��u2 (or �g1 ¼ ��g2).

We note that relations like A11 ¼ �A12 ¼ �A26 do not imply
that these components transform as the standard variable.
Though these components are proportional to the principal
tensor parameter in the first domain state, they cannot be
transformed to corresponding components in other domain states
as easily as covariant tensor components of the principal tensor
parameter.

In general, it is useful to consider a tensor parameter as a
vector in the carrier space of the respective representation. Then
the Cartesian components are projections of this vector on the
Cartesian basis of the tensor space.

The presentation of the principal tensor parameters in the
column Principal tensor parameters of this table is a compromise:
whenever conversion equations lead to simple relations between
morphic Cartesian components and/or symmetry-breaking
increments, we present these relations, in some cases together
with corresponding covariants. In the more complicated cases,
only the covariants are given. The corresponding conversion
equations and labelling of covariants are given at the beginning
of that part of the table which covers hexagonal and cubic parent
groups G. In the main tables of the software GI?KoBo-1, the
principal tensor parameters and the secondary tensor parameters
up to rank 4 are given consistently in covariant form. Labelling of
covariant components and conversion equations are given in
Appendix E of the manual.

The principal tensor parameters presented in Table 3.1.3.1
represent a particular choice of property tensors for standard
variables given in the second column. To save space, property
tensors are selected in the following way: polarization P and
strain u are always listed; if none of their components transform
according to Dð�Þ, then components of one axial and one polar
tensor (if available) appearing in Table 3.1.3.3 are given. Principal
parameters of two different property tensors are separated by a
semicolon. If two different components of the same property
tensor transform in the same way, they are separated by a comma.

As tensor indices we use integers 1; 2; 3 instead of vector
components x; y; z and contracted indices 1; 2; 3; 4; 5; 6 in matrix
notation for pairs xx; yy; zz; yz 	 zy; zx 	 xz; xy 	 yx, respec-
tively

Important note: To make Table 3.1.3.1 compatible with the
software GI?KoBo-1 and with Kopský (2001), coefficients of
property tensors in matrix notation with contracted indices 4, 5, 6
do not contain the numerical factors 2 and 4 which are usually

introduced to preserve a compact form (without these factors) of
linear constitutive relations [see Chapter 1.1, Nye (1985) and
especially Appendices E and Fof Sirotin & Shaskolskaya (1982)].
This explains the differences in matrix coefficients appearing in
Table 3.1.3.1 and those presented in Chapter 1.1 or in Nye (1985)
and in Sirotin & Shaskolskaya (1982). Thus e.g. for the symmetry
descent 6z2x2y + 3z2x, we find in Table 3.1.3.1 the principal tensor
parameters d11 ¼ �d12 ¼ �d26, whereas according to Chapter 1.1
or e.g. to Nye (1985) or Sirotin & Shaskolskaya (1982) these
coefficients for F1 ¼ 3z2x are related by equations
d11 ¼ �d12 ¼ �2d26.

Property tensors and symbols of their components that can be
found in Table 3.1.3.1 are given in the left-hand half of Table
3.1.3.3. The right-hand half presents other tensors that transform
in the same way as those on the left and form, therefore, covar-
iant tensor components of the same form as those given in the
column Principal tensor parameters. Principal and secondary
tensor parameters for all property tensors that appear in Table
3.1.3.3 are available in the software GI?KoBo-1.

nf : number of ferroic single domain states that differ in the
primary order parameter � and in the principal tensor para-
meters.

na: number of ferroelastic single domain states. If na ¼ nf ,
na< nf or na ¼ 1, the ferroic phase is, respectively, a full, partial
or non-ferroelastic one.

ne: number of ferroelectric single domain states. If ne ¼ nf ,
ne< nf or ne ¼ 0; 1, the ferroic phase is, repectively, a full, partial
or non-ferroelectric one (n ¼ 0 or n ¼ 1 correspond to a non-
polar or to a polar parent phase, respectively) (see Section 3.4.2).

3.1.3.4. Examples

Example 3.1.3.4.1. Phase transition in triglycine sulfate (TGS).
Assume that the space groups of both parent (high-symmetry)
and ferroic (low-symmetry) phases are known: G ¼ P21=c ðC

5
2hÞ,

F 1 ¼ P21 ðC
2
2Þ. The same number of formula units in the

primitive unit cell in both phases suggests that the transition is an
equitranslational one. This conclusion can be checked in the
lattice of equitranslational subgroups of the software GI?KoBo-
1. There we find for the low-symmetry space group the symbol
P1121ðb=4Þ, where the vector in parentheses expresses the shift of
the origin with respect to the conventional origin given in IT A
(2002).

In Table 3.1.3.1, one finds that the corresponding point-group-
symmetry descent 2z=mz + 2z is associated with irreducible
representation �� ¼ Au. The corresponding principal tensor
parameters of lowest rank are the pseudoscalar " (enantio-
morphism or chirality) and the vector of spontaneous polariza-
tion with one nonzero morphic component P3 – the transition is a
proper ferroelectric one. The non-ferroelastic (na ¼ 1) full
ferroelectric phase has two ferroelectric domain states
(nf ¼ ne ¼ 2). Other principal tensor parameters (morphic
tensor components that transform according to ��) are available
in the software GI?KoBo-1: g1, g2, g3, g6; d31, d32, d33, d36, d14, d15,
d24, d25. Property tensors with these components are listed in
Table 3.1.3.3. As shown in Section 3.4.2, all these components
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Table 3.1.3.3. Important property tensors

i ¼ 1; 2; 3; �; � ¼ 1; 2; . . . ; 6.

Tensor
components Property

Tensor
components Property

" enantiomorphism chirality
Pi polarization pi pyroelectricity
u� strain "ij dielectric permittivity
g� optical activity
di� piezoelectricity ri� electro-optics
Ai� electrogyration
��� piezo-optics Q�� electrostriction
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change sign when one passes from one domain state to the other.
Since there is no intermediate group between G and F, there are
no secondary tensor parameters.

Example 3.1.3.4.2. Phase transitions in barium titanate
(BaTiO3). We shall illustrate the solution of the inverse Landau
problem and the need to correlate the crystallographic system
with the Cartesian crystallophysical coordinate system. The
space-group type of the parent phase is G ¼ Pm3m, and those of
the three ferroic phases are F

ð1Þ
1 ¼ P4mm, F

ð2Þ
1 ¼ Cm2m,

F
ð3Þ
1 ¼ R3m, all with one formula unit in the primitive unit cell.
This information is not complete. To perform mode analysis,

we must specify these space groups by saying that the lattice
symbol P in the first case and the lattice symbol R in the third
case are given with reference to the cubic crystallographic basis
(a; b; c), while lattice symbol C in the second case is given with
reference to crystallographic basis ½ða� bÞ; ðaþ bÞ; c�. If we now
identify vectors of the cubic crystallographic basis with vectors of
the Cartesian basis by a ¼ aex, b ¼ aey, c ¼ aez, where ex, ey, ez
are three orthonormal vectors, we can see that the corresponding
point groups are F

ð1Þ
1 ¼ 4zmxmxy, F

ð2Þ
1 ¼ mxy2xymz, F

ð3Þ
1 ¼ 3pmxy.

Notice that without specification of crystallographic bases one
could interpret the point group of the space group Cm2m as
mx2ymz. Bases are therefore always specified in lattices of equi-
translational subgroups of the space groups that are available in
the software GI?KoBo-1, where we can check that all three
symmetry descents are equitranslational.

In Table 3.1.3.1, we find that these three ferroic subgroups are
epikernels of the R-irep �� ¼ T1u with the following principal
tensor components: P3, P1 ¼ P2, P1 ¼ P2 ¼ P3, respectively.
Other principal tensor parameters can be found in the main
tables of the software GI?KoBo-1. The knowledge of the
representation �� allows one to perform soft-mode analysis (see
e.g. Rousseau et al., 1981).

For the tetragonal ferroelectric phase with F1 ¼ 4zmxmy, we
find in Fig. 3.1.3.1 an intermediate group L1 ¼ 4z=mzmxmxy. In
Table 3.1.3.1, we check that this is an epikernel of the R-irep Eg

with secondary tensor parameter �u3. This phase is a full (proper)
ferroelectric and partial ferroelastic one.

More details about symmetry aspects of structural phase
transitions can be found in monographs by Izyumov & Syro-
miatnikov (1990), Kociński (1983, 1990), Landau & Lifshitz
(1969), Lyubarskii (1960), Tolédano & Dmitriev (1996) and
Tolédano & Tolédano (1987). Group–subgroup relations of space
groups are treated extensively in IT A1 (2003).

3.1.4. Example of a table for non-equitranslational phase
transitions

By J.-C. Tolédano

In the preceding Section 3.1.3, a systematic tabulation of possible
symmetry changes was provided for the class of equitranslational
phase transitions. This tabulation derives from the principles
described in Section 3.1.2, and relates the enumeration of the
symmetry changes at structural transitions to the characteristics
of the irreducible representations of the space group G of the
‘parent’ (highest-symmetry) phase adjacent to the transition.
Systematic extension of this type of tabulation to the general case
of transitions involving both a decrease of translational and of
point-group symmetry has been achieved by several groups
(Tolédano & Tolédano, 1976, 1977, 1980, 1982; Stokes & Hatch,
1988). The reader can refer, in particular, to the latter reference
for an exhaustive enumeration of the characteristics of possible
transitions. An illustration of the results obtained for a restricted
class of parent phases (those associated with the point symmetry
4=m and to a simple Bravais lattice P) is presented here.

In order to clarify the content Table 3.1.4.1, let us recall (cf.
Section 3.1.2) that Landau’s theory of continuous phase transi-
tions shows that the order parameter of a transition transforms
according to a physically irreducible representation of the space
group G of the high-symmetry phase of the crystal. A physically
irreducible representation is either a real irreducible repre-
sentation of G or the direct sum of two complex-conjugate irre-
ducible representations of G. To classify the order-parameter
symmetries of all possible transitions taking place between a
given parent (high-symmetry) phase and another (low-
symmetry) phase, it is therefore necessary, for each parent space
group, to list the various relevant irreducible representations.

Each irreducible representation of a given space group can be
denoted �nðk

�Þ and identified by two quantifies. The star k�,
represented by a vector linking the origin of reciprocal space to a
point of the first Brillouin zone, specifies the translational
symmetry properties of the basis functions of �nðk

�Þ. The
dimension of �nðk

�Þ is equal to the number of components of the
order parameter of the phase transition considered. A given
space group has an infinite number of irreducible representations.
However, physical considerations restrict a systematic enumera-
tion to only a few irreducible representations. The restrictions
arise from the fact that one focuses on continuous (or almost
continuous) transitions between strictly periodic crystal struc-
tures (i.e. in particular, incommensurate phases are not consid-
ered), and have been thoroughly described previously (Tolédano
& Tolédano, 1987, and references therein).

3.1.5. Microscopic aspects of structural phase transitions and soft
modes

By J. F. Scott

3.1.5.1. Introduction

Phase transitions in crystals are most sensitively detected via
dynamic techniques. Two good examples are ultrasonic attenua-
tion and internal friction. Unfortunately, while often exquisitely
sensitive to subtle second-order phase transitions [e.g. the work
of Spencer et al. (1970) on BaMnF4], they provide no real
structural information on the lattice distortions that occur at such
phase transitions, or even convincing evidence that a real phase
transition has occurred (e.g. transition from one long-range
thermodynamically stable ordered state to another). It is not
unusual for ultrasonic attenuation to reveal a dozen reproducible
anomalies over a small temperature range, none of which might
be a phase transition in the usual sense of the phrase. At the other
extreme are detailed structural analyses via X-ray or neutron
scattering, which give unambiguous lattice details but often
totally miss small, nearly continuous rigid rotations of light ions,
such as hydrogen bonds or oxygen or fluorine octahedra or
tetrahedra. Intermediate between these techniques are phonon
spectroscopies, notably infrared (absorption or reflection) and
Raman techniques. The latter has developed remarkably over the
past thirty years since the introduction of lasers and is now a
standard analytical tool for helping to elucidate crystal structures
and phase transitions investigated by chemists, solid-state
physicists and materials scientists.

3.1.5.2. Displacive phase transitions

3.1.5.2.1. Landau–Devonshire theory

Landau (1937) developed a simple mean-field theory of phase
transitions which implicitly assumes that each atom or ion in a
system exerts a force on the other particles that is independent of
the distance between them (see Section 3.1.2.2). Although this is
a somewhat unphysical crude approximation to the actual forces,
which are strongly dependent upon interparticle spacings, it
allows the forces of all the other particles in the system to be
replaced mathematically by an effective ‘field’, and for the
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resulting equations to be solved exactly. This mathematical
simplicity preserves the qualitative features of the real physical
system and its phase transition without adding unnecessary
cumbersome mathematics and had earlier been used to great
advantage for fluids by Van der Waals (1873) and for magnetism
by Weiss (1907). Landau’s theory is a kind of generalization of
those earlier theories. In it he defines an ‘order parameter’ x, in
terms of which most physical quantities of interest may be
expressed via free energies. In a ferromagnet, the order para-
meter corresponds to the net magnetization; it is zero above the
Curie temperature Tc and increases monotonically with
decreasing temperature below that temperature. In a liquid–gas
phase transition the order parameter is the difference in density
in the gas and liquid phases for the fluid.

Devonshire independently developed an equivalent theory for
ferroelectric crystals around 1953 (Devonshire, 1954). For
ferroelectrics, the order parameter is the spontaneous dielectric
polarization P. In both his formalism and that of Landau, the
ideas are most conveniently expressed through the free energy of
the thermodynamic system:

FðP;TÞ ¼ AðT � TcÞP
2 þ BP4 þ CP6; ð3:1:5:1aÞ

whereA and C are positive quantities and Bmay have either sign.
Scott (1999) shows that C changes sign at ferroelectric-to-

superionic conducting transition temperatures. As shown in Fig.
3.1.5.1, minimization of the free energy causes the expectation
value of P to go from zero above the Curie temperature to a
nonzero value below. If B is positive the transition is continuous
(‘second-order’), whereas if B is negative, the transition is
discontinuous (‘first-order’), as shown in Fig. 3.1.5.2. The coeffi-
cient B may also be a function of pressure p or applied electric
field E and may pass through zero at a critical threshold value of
p or E. Such a point is referred to as a ‘tricritical point’ and is
marked by a change in the order of the transition from first-order
to second-order. The term ‘tri-critical’ originates from the fact
that in a three-dimensional graph with coordinates temperature
T, pressure p and applied field E, there are three lines marking
the ferroelectric–paraelectric phase boundary that meet at a
single point. Crossing any of these three lines produces a
continuous phase transition (Fig. 3.1.5.3).

3.1.5.2.2. Soft modes

Minimization of the free energy above leads to the dependence
of spontaneous polarization P upon temperature given by
PðTÞ ¼ Pð0Þ½ðTc � TÞ=Tc� for continuous transitions. In the more
general case discussed by Landau, the polarization P is replaced
by a generic ‘order parameter’ ’ðTÞ with the same dependence.
Cochran’s contribution (1960, 1961) was to show that for
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Table 3.1.4.1. Possible symmetry changes across transitions from a parent phase with space group P4=m, P42=m, P4=n, P42=n, I4=m or I41=a

Equitranslational symmetry changes are not included (cf. Section 3.1.3). The coordinates of the points in the second column are referred to the primitive unit cell of the
reciprocal lattice. The terms used in the fifth column are introduced in Section 3.1.1. The last column is characteristic of non-equitranslational transitions.

Parent
space
group

Irreducible representation

Possible
low-symmetry
space groups

Macroscopic
characteristics of
the transition

Change in
the number
of atoms
per primitive
unit cell

Brillouin
zone
point

Dimension
of the order
parameter

P4=m 1
2 ;

1
2 ; 0 2 P2=m; P2=b Ferroelastic 2

1 P4=m; P4=n Non-ferroic 2
0; 0; 12 2 P21=m Ferroelastic 2

1 P4=m; P42=m Non-ferroic 2
1
2 ;

1
2 ;

1
2 2 B2=m Ferroelastic 2

1 I4=m Non-ferroic 2
0; 12 ;

1
2 2 B2=m Ferroelastic 2

1 I4=m Non-ferroic 4
0; 12 ; 0 2 P2=m; P2=b Ferroelastic 2

1 P4=m; P4=n Non-ferroic 4
P42=m

1
2 ;

1
2 ; 0 2 P2=m; P2=b Ferroelastic 2
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continuous ‘displacive’ (as opposed to ‘order–disorder’) transi-
tions, this order parameter is (or is proportional to) a normal
mode of the lattice. One normal mode of the crystal must, in
Cochran’s theory, literally soften: the generalized force constant
for this mode weakens as a function of temperature, and its
frequency consequently decreases. This soft-mode theory
provided an important step from the macroscopic description of
Landau and Devonshire to a microscopic theory, and in parti-
cular, to vibrational (phonon) spectroscopy.

Cochran illustrated this theory using a ‘shell’ model in which
the electrons surrounding an ion were approximated by a rigid
sphere; shell–shell force constants were treated as well as shell–
core and core–core terms, in the general case. The initial appli-
cation was to PbTe and other rock-salt cubic structures that
undergo ferroelectric structural distortions.

For this simple case, the key equations relate the optical
phonon frequencies of long wavelength to two terms: a short-
range force constant R00 and a long-range Coulombic term. It is
important that in general neither of these terms has a patholo-
gical temperature dependence; in particular, neither vanishes at
the Curie temperature. Rather it is the subtle cancellation of the
two terms at Tc that produces a ‘soft’ transverse optical phonon.

The longitudinal optical phonon frequency !LOðTÞ is positive
definite and remains finite at all temperatures:

�!2
LO ¼ R00 þ

8�Z2e2

9"VðTÞ
; ð3:1:5:1bÞ

where � is a reduced mass for the normal mode; Ze is an effective
charge for the mode, related to the valence state of the ions
involved; " is the high-frequency dielectric constant and VðTÞ is
the unit-cell volume, which is a function of temperature due to
thermal expansion.

By comparison, the transverse optical phonon frequency

�!2
TO ¼ R00 �

4�Z2e2

3"VðTÞ
ð3:1:5:1cÞ

can vanish accidentally when VðTÞ reaches a value that permits
cancellation of the two terms. Note that this does not require any
unusual temperature dependence of the short-range interaction
term R00. This description appears to satisfy all well studied
ferroelectrics except for the ‘ultra-weak’ ones epitomized by
TSCC (tris-sarcosine calcium chloride), in which the Coulombic
term in (3.1.5.1b) and (3.1.5.1c) is very small and the pathological
dependence occurs in R00. This leads to a situation in which the
longitudinal optical phonon is nearly as soft as is the transverse
branch.

Subsequent to Cochran’s shell-model developments, Cowley
(1962, 1964, 1970) replaced this phenomenological modelling
with a comprehensive many-body theory of phonon anharmo-
nicity, in which the soft-mode temperature is dominated by
Feynman diagrams emphasizing renormalization of phonon self-
energies due to four-phonon interactions (two in and two out).
This contrasts with the three-phonon interactions that dominate
phonon linewidths under most conditions.

It is worth noting that the soft optical phonon branch is
necessarily always observable in the low-symmetry phase via
Raman spectroscopy in all 32 point-group symmetries. This was
first proved by Worlock (1971), later developed in more detail by
Pick (1969) and follows group-theoretically from the fact that the
vibration may be regarded as a dynamic distortion of symmetry
�i which condenses at Tc to produce a static distortion of the
same symmetry. Hence the vibration in the distorted phase has
symmetry given by the product �i 
 �i, which always contains
the totally symmetric representation �1 for any choice of �i. If �i

is non-degenerate, its outer product with itself will contain only
�1 and there will be a single, totally symmetric soft mode; if �i is
degenerate, there will be two or three soft modes of different
symmetries, at least one of which is totally symmetric.

Since the totally symmetric representation is Raman-active for
all 32 point-group symmetries, this implies that the soft mode is
always accessible to Raman spectroscopy at least in the distorted,
low-symmetry phase of the crystal.

3.1.5.2.3. Strontium titanate, SrTiO3

Among the perovskite oxides that are ferroelectric insulators,
barium titanate has received by far the most attention from the
scientific community since its independent characterization in
several countries during World War II. The discovery of a
ferroelectric that was robust, relatively inert (not water-soluble)
and without hydrogen bonding was a scientific breakthrough, and
its large values of dielectric constant and especially spontaneous
polarization are highly attractive for devices. Although not
ferroelectric in pure bulk form, strontium titanate has received
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Fig. 3.1.5.1. Free energy FðP;TÞ and order parameter PðTÞ from the Landau–
Devonshire theory [equation (3.1.5.1a)] for a continuous second-order
ferroelectric phase transition [coefficient B positive in equation (3.1.5.1a)].
The insert shows the temperature dependence of the order parameter, i.e. the
expectation value of the displacement xðTÞ.

Fig. 3.1.5.2. Free energy FðP;TÞ and order parameter PðTÞ from the Landau–
Devonshire theory [equation (3.1.5.1a)] for a discontinuous first-order
ferroelectric phase transition [coefficient B negative in equation (3.1.5.1a)].
T1 is the temperature (see Fig. 3.1.2.6) below which a secondary minimum
appears in the free energy.

Fig. 3.1.5.3. Three-dimensional graph of phase boundaries as functions of
temperature T, pressure p and applied electric field E, showing a tricritical
point where three continuous phase boundaries intersect.
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the second greatest amount of attention of this family over the
past thirty years. It also provides a textbook example of how
optical spectroscopy can complement traditional X-ray crystal-
lographic techniques for structural determination.

Fig. 3.1.5.4 shows the structure of strontium titanate above and
below the temperature (T0 ¼ 105 K) of a non-ferroelectric phase
transition. Note that there is an out-of-phase distortion of oxygen
ions in adjacent primitive unit cells (referred to the single
formula group ABO3 in the high-temperature phase). This out-
of-phase displacement approximates a rigid rotation of oxygen
octahedra about a [100], [010] or [001] cube axis, except that the
oxygens actually remain in the plane of the cube faces. We note
three qualitative aspects of this distortion: Firstly, it doubles the
primitive unit cell from one formula group to two; this will
approximately double the number of optical phonons of very

long wavelength (q ¼ 0) permitted in infrared and/or Raman
spectroscopy. Secondly, it makes the gross crystal class tetragonal,
rather than cubic (although in specimens cooled through the
transition temperature in the absence of external stress, we might
expect a random collection of domains with tetragonal axes along
the original [100], [010], [001] cube axes, which will give macro-
scopic cubic properties to the multidomain aggregate). Thirdly,
the transition is perfectly continuous, as shown in Fig. 3.1.5.5,
where the rotation angle of the oxygen octahedra about the cube
axis is plotted versus temperature.

Fig. 3.1.5.4 does not correspond at all to the structure inferred
earlier from X-ray crystallographic techniques (Lytle, 1964). The
very small, nearly rigid rotation of light ions (oxygens) in
multidomain specimens caused the X-ray study to overlook the
primary characteristic of the phase transition and to register
instead only the unmistakable change in the c=a ratio from unity.
Thus, the X-ray study correctly inferred the cubic–tetragonal
characteristic of the phase transition but it got both the space
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Fig. 3.1.5.4. Structure of strontium titanate above (undisplaced ions) and
below (arrows) its anti-ferrodistortive phase transition at ca. 105 K. Below
this temperature, the cubic primitive cell undergoes a tetragonal distortion
and also doubles along the [001] cubic axis (domains will form along [100],
[010] and [001] of the original cubic lattice). The ionic displacements
approximate a rigid rotation of oxygen octahedra, out-of-phase in adjacent
unit cells, except that the oxygens actually remain on the cube faces, so that a
very small Ti—O bond elongation occurs.

Fig. 3.1.5.5. Rotation angle versus temperature for the oxygen octahedron
distortion below 105 K in strontium titanate described in Fig. 3.1.5.4. The
solid curve is a mean-field least-squares fit to an S ¼ 1 Brillouin function.

Fig. 3.1.5.6. Raman spectra of strontium titanate below its cubic–tetragonal
phase transition temperature. These features disappear totally above the
phase transition temperature, thereby providing a vivid indication of a rather
subtle phase transition.

Fig. 3.1.5.7. Temperature dependence of phonon branches observed in the
Raman spectra of tetragonal strontium titanate.
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group and the size of the primitive cell wrong. The latter error has
many serious implications for solid-state physicists: For example,
certain electronic transitions from valence to conduction bands
are actually ‘direct’ (involving no change in wavevector) but
would have erroneously been described as ‘indirect’ with the
structure proposed by Lytle. More serious errors of interpreta-
tion arose with the microscopic mechanisms of ultrasonic loss
proposed by Cowley based upon Lytle’s erroneous structure.

The determination of the correct structure of strontium tita-
nate (Fig. 3.1.5.4) was actually made via EPR studies (Unoki &
Sakudo, 1967) and confirmed via Raman spectroscopy (Fleury et
al., 1968). The presence of ‘extra’ q ¼ 0 optical phonon peaks in
the Raman spectra below T0 (Fig. 3.1.5.6) is simple and unmis-
takable evidence of unit-cell multiplication. The fact that two
optical phonon branches have frequencies that decrease
continuously to zero (Fig. 3.1.5.7) as the transition temperature is
approached from below shows further that the transition is
‘displacive’, that is, that the structures are perfectly ordered both
above and below the transition temperature. This is a classic
example of Cochran’s soft-mode theory discussed above.

3.1.5.2.4. Lanthanum aluminate, LaAlO3

A structural distortion related to that in strontium titanate is
exhibited in lanthanum aluminate at approximately 840 K. As in
strontium titanate, the distortion consists primarily of a nearly
rigid rotation of oxygen octahedra. However, in the lanthanide
aluminates (including NdAlO3 and PrAlO3) the rotation is about
the [111] body diagonal(s) of the prototype cubic structure. The
rotation, shown in Fig. 3.1.5.8, is out-of-phase in adjacent cubic
unit cells, analogous to that in strontium titanate.

Historically, this phase transition and indeed the structure of
lanthanum aluminate were incorrectly characterized by X-ray
crystallography (Geller & Bala, 1956) and correctly assigned by
Scott (1969) and Scott & Remeika (1970) via Raman spectro-
scopy. The causes were as in the case of strontium titanate,
namely that it is difficult to assess small, nearly rigid rotations of
light ions in twinned specimens. In the case of lanthanum
aluminate, Geller and Bala incorrectly determined the space
group to be R�33m (D5

3d), rather than the correct R�332=c (D6
3d)

shown in Fig. 3.1.5.8, and they had the size of the primitive unit
cell as one formula group rather than two.

3.1.5.2.5. Potassium nitrate, KNO3

Potassium nitrate has a rather simple phase diagram, repro-
duced in Fig. 3.1.5.9. Two different structures and space groups
were proposed for the ambient temperature phase I: Shinnaka
(1962) proposed D6

3d (R�332=c) with two formula groups per
primitive cell (Z ¼ 2), whereas Tahvonen (1947) proposed D5

3d

(R�33m) with one formula group per primitive cell. In fact, both are
wrong. The correct space group is that of Nimmo & Lucas (1973):
D6

3d (R�332=c) with one formula group per primitive cell. Again,
Raman spectroscopy of phonons shows that the Tahvonen
structure predicts approximately twice as many spectral lines as
can be observed. Balkanski et al. (1969) tried creatively but
unsuccessfully to account for their spectra in terms of Tahvonen’s
space-group symmetry assignment for this crystal; later Scott &
Pouligny (1988) showed that all spectra were compatible with the
symmetry assigned by Nimmo and Lucas. In this case, in contrast
to the perovskites strontium titanate and lanthanum aluminate,
the confusion regarding space-group symmetry arose from the
large degree of structural disorder found in phase I of KNO3. The
structures of phases II and III are unambiguous and are,
respectively, aragonite D16

2h (Pnma) with Z ¼ 4 and C5
3v (R3m)

with Z = 1.

3.1.5.2.6. Lanthanum pentaphosphate

The lanthanide pentaphosphates (La, Pr, Nd and TbP5O14)
consist of linked ribbons of PO4 tetrahedra. In each material a
structural phase transition occurs from a high-temperature D7

2h

(Pncm) point-group symmetry orthorhombic phase to a C2h
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Fig. 3.1.5.8. (a) Structure of lanthanum aluminate above (undistorted) and
below (arrows) its cubic–rhombohedral phase transition near 840 K. As in
strontium titanate (Figs. 3.1.5.4–3.1.5.7), there is a nearly rigid rotation of
oxygen octahedra (the oxygen ions actually remain on the cube faces);
however, in the lanthanide aluminates (Ln = La, Pr, Nd) the rotation is about
a cube [111] body diagonal, so that the resulting structure is rhombohedral,
rather than tetragonal. The primitive unit cell doubles along the cubic [111]
axis; domains will form with the unique axis along all originally equivalent
body diagonals of the cubic lattice. (b) Optical phonon frequences versus
temperature in lanthanum aluminate.

Fig. 3.1.5.9. Phase diagram of potassium nitrate, KNO3.
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(P21=c) monoclinic phase. The macroscopic order parameter for
this transition is simply the monoclinic angle ’, or more precisely
(’� 90�). In this family of materials, the X-ray crystallography
was unambiguous in its determination of space-group symmetries
and required no complementary optical information. However,
the Raman studies (Fox et al., 1976) provided two useful pieces of
structural information. First, as shown in Fig. 3.1.5.10, they
showed that the phase transition is entirely displacive, with no
disorder in the high-symmetry phase; second, they showed that
there is a microscopic order parameter that in mean field is
proportional to the frequency of a ‘soft’ optical phonon of long
wavelength (q ¼ 0). This microscopic order parameter is in fact
the eigenvector of that soft mode (normal coordinate), which
approximates a rigid rotation of phosphate tetrahedra.

3.1.5.2.7. Barium manganese tetrafluoride

BaMnF4 is an unusual material whose room-temperature
structure is illustrated in Fig. 3.1.5.11(a). It consists of MnF6
octahedra, linked by two shared corners along the polar a axis,
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Fig. 3.1.5.10. (a) ‘Soft’ optical phonon frequency versus temperature in
LaP5O14, showing displacive character of the phase transition. Large acousto-
optic interaction prevents the optical phonon frequency from reaching zero
at the transition temperature, despite the second-order character of the
transition. (b) Lanthanum pentaphosphate structure, showing linked
‘ribbons’ of phosphate tetrahedra.

Fig. 3.1.5.11. (a) Structure of barium metal fluoride BaMF4 (M = Co, Mn, Mg,
Zn, Ni) at ambient temperature (300 K). (b) Raman spectroscopy of barium
manganese fluoride above and below its structural phase transition
temperature, ca. 251 K. (c) Temperature dependence of lower energy
phonons in (b).
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with ribbons of such octahedra rather widely separated by the
large ionic radius barium ions in the b direction. The resulting
structure is, both magnetically and mechanically, rather two-
dimensional, with easy cleavage perpendicular to the b axis and
highly anisotropic electrical (ionic) conduction.

Most members of the BaMF4 family (M = Mg, Zn, Mn, Co, Ni,
Fe) have the same structure, which is that of orthorhombic C2v

(2mm) point-group symmetry. These materials are all ferro-
electric (or at least pyroelectric; high conductivity of some makes
switching difficult to demonstrate) at all temperatures, with an
‘incipient’ ferroelectric Curie temperature extrapolated from
various physical parameters (dielectric constant, spontaneous
polarization etc.) to lie 100 K or more above the melting point
(ca. 1050 K). The Mn compound is unique in having a low-
temperature phase transition. The reason is that Mnþ2 represents
(Shannon & Prewitt, 1969) an end point in ionic size (largest) for
the divalent transition metal ions Mn, Zn, Mg, Fe, Ni, Co; hence,
the Mn ion and the space for it in the lattice are not a good match.
This size mismatch can be accommodated by the r.m.s. thermal
motion above room temperature, but at lower temperatures a
structural distortion must occur.

This phase transition was first detected (Spencer et al., 1970)
via ultrasonic attenuation as an anomaly near 255 K. This
experimental technique is without question one of the most
sensitive in discovering phase transitions, but unfortunately it
gives no direct information about structure and often it signals
something that is not in fact a true phase transition (in BaMnF4

Spencer et al. emphasized that they could find no other evidence
that a phase transition occurred).

Raman spectroscopy was clearer (Fig. 3.1.5.11b), showing
unambiguously additional vibrational spectra that arise from a
doubling of the primitive unit cell. This was afterwards confirmed
directly by X-ray crystallography at the Clarendon Laboratory,
Oxford, by Wondre (1977), who observed superlattice lines
indicative of cell doubling in the bc plane.

The real structural distortion near 250 K in this material is
even more complicated, however. Inelastic neutron scattering at
Brookhaven by Shapiro et al. (1976) demonstrated convincingly
that the ‘soft’ optical phonon lies not at (0; 1=2; 1=2) in the
Brillouin zone, as would have been expected for the bc-plane cell
doubling suggested on the basis of Raman studies, but at
(0:39; 1=2; 1=2). This implies that the actual structural distortion
from the high-temperature C12

2v (Cmc21) symmetry does indeed
double the primitive cell along the bc diagonal but in addition
modulates the lattice along the a axis with a resulting repeat
length that is incommensurate with the original (high-tempera-
ture) lattice constant a. The structural distortion microscopically
approximates a rigid fluorine octahedra rotation, as might be
expected. Hence, the chronological history of developments for
this material is that X-ray crystallography gave the correct lattice
structure at room temperature; ultrasonic attenuation revealed a
possible phase transition near 250 K; Raman spectroscopy
confirmed the transition and implied that it involved primitive

cell doubling; X-ray crystallography confirmed directly the cell
doubling; and finally neutron scattering revealed an unexpected
incommensurate modulation as well. This interplay of experi-
mental techniques provides a rather good model as exemplary for
the field. For most materials, EPR would also play an important
role in the likely scenarios; however, the short relaxation times
for Mn ions made magnetic resonance of relatively little utility in
this example.

3.1.5.2.8. Barium sodium niobate

The tungsten bronzes represented by Ba2NaNb5O15 have
complicated sequences of structural phase transitions. The
structure is shown in Fig. 3.1.5.12 and, viewed along the polar
axis, consists of triangular, square and pentagonal spaces that
may or may not be filled with ions. In barium sodium niobate, the
pentagonal channels are filled with Ba ions, the square channels
are filled with sodium ions, and the triangular areas are empty.

The sequence of phases is shown in Fig. 3.1.5.13. At high
temperatures (above Tc ¼ 853 K) the crystal is tetragonal and
paraelectric (P4=mbm ¼ D5

4h). When cooled below 853 K it
becomes ferroelectric and of space group P4bm ¼ C2

4v (still
tetragonal). Between ca. 543 and 582 K it undergoes an incom-
mensurate distortion. From 543 to ca. 560 K it is orthorhombic
and has a ‘1q’ modulation along a single orthorhombic axis. From
560 to 582 K it has a ‘tweed’ structure reminiscent of metallic
lattices; it is still microscopically orthorhombic but has a short-
range modulated order along a second orthorhombic direction
and simultaneous short-range modulated order along an ortho-
gonal axis, giving it an incompletely developed ‘2q’ structure.

As the temperature is lowered still further, the lattice becomes
orthorhombic but not incommensurate from 105–546 K; below
105 K it is incommensurate again, but with a microstructure quite
different from that at 543–582 K. Finally, below ca. 40 K it
becomes macroscopically tetragonal again, with probable space-
group symmetry P4nc (C6

4v) and a primitive unit cell that is four
times that of the high-temperature tetragonal phases above
582 K.

This sequence of phase transitions involves rather subtle
distortions that are in most cases continuous or nearly contin-
uous. Their elucidation has required a combination of experi-
mental techniques, emphasizing optical birefringence (Schneck,
1982), Brillouin spectroscopy (Oliver, 1990; Schneck et al., 1977;
Tolédano et al., 1986; Errandonea et al., 1984), X-ray scattering,
electron microscopy and Raman spectroscopy (Shawabkeh &
Scott, 1991), among others. As with the other examples described
in this chapter, it would have been difficult and perhaps impos-
sible to establish the sequence of structures via X-ray techniques
alone. In most cases, the distortions are very small and involve
essentially only the oxygen ions.

3.1.5.2.9. Tris-sarcosine calcium chloride (TSCC)

Tris-sarcosine calcium chloride has the structure shown in Fig.
3.1.5.14. It consists of sarcosine molecules of formula
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Fig. 3.1.5.12. Structure of the tungsten bronze barium sodium niobate
Ba2NaNb5O15 in its highest-temperature P4=mbm phase above 853 K.

Fig. 3.1.5.13. Sequence of phases encountered with raising or lowering the
temperature in barium sodium niobate.
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CH3NHCH2COOH in which the hydrogen ion comes off the
COOH group and is used to hydrogen bond the nitrogen ion to a
nearby chlorine, forming a zwitter ion. As is illustrated in this
figure, this results in a relatively complex network of N—H� � �Cl
bonds. The COO� ion that results at the end group of each
sarcosine is ionically bonded to adjacent calcium ions. The
resulting structure is highly ionic in character and not at all that
of a ‘molecular crystal’. The structure at ambient temperatures is
Pnma (D16

2h) with Z ¼ 4; below 127 K it distorts to Pna21 (C9
2v)

with Z still 4.
It had been supposed for some years on the basis of NMR

studies of the Cl ions, as well as the conventional wisdom that
‘hydrogen-bonded crystals exhibit order–disorder phase transi-
tions’, that the kinetics of ferroelectricity at the Curie tempera-
ture of 127 K in TSCC involved disorder in the proton positions
along the N—H� � �Cl hydrogen bonds. In fact that is not correct;
even the NMR data of Windsch & Volkel (1980), originally
interpreted as order–disorder, actually show (Blinc et al., 1970) a
continuous, displacive evolution of the H-atom position along the
H� � �Cl bond with temperature, rather than a statistical averaging

of two positions, which would characterize order–disorder
dynamics. In addition, as shown in Fig. 3.1.5.15, there is (Kozlov et
al., 1983) a lightly damped ‘soft’ phonon branch in both the
paraelectric and ferroelectric phases. TSCC is in fact a textbook
example of a displacive ferroelectric phase transition. The
hydrogen bonds do not exhibit disorder in the paraelectric phase.
Rather, the transition approximates a rigid rotation of the
sarcosine molecules, which stretches the N—H� � �Cl bond
somewhat (Prokhorova et al., 1980).

3.1.5.2.10. Potassium dihydrogen phosphate, KH2PO4

Potassium dihydrogen phosphate, colloquially termed ‘KDP’,
has probably been the second most studied ferroelectric after
barium titanate. It has been of some practical importance, and the
relationship between its hydrogen bonds, shown in Fig. 3.1.5.16,
the perpendicular displacement of heavier ions (K and P) and the
Curie temperature has fascinated theoretical physicists, who
generally employ a ‘pseudo-spin model’ in which the right and
left displacements of the hydrogen ions along symmetric
hydrogen bonds (O� � �H� � �O) can be described by a fictitious spin
with up (þ1=2) and down (�1=2) states.

Unlike TSCC, discussed above, KDP has perfectly symmetric
hydrogen bonds. Therefore, one might expect that above a
sufficiently high temperature the protons can quantum-
mechanically tunnel between equivalent potential wells sepa-
rated by a shallow (and temperature-dependent) barrier. Below
TC the protons order (all to the right or all to the left) in spatial
regions that represent ferroelectric domains. This model, initially
proposed by Blinc (1960), is correct and accounts for the large
isotope shift in the Curie temperature noted for deuterated
specimens. The complication is that the spontaneous polarization
arises along a direction perpendicular to these proton displace-
ments, so the dipoles do not arise from proton displacements
directly. Instead, the proton coupling (largely Coulombic) to the
potassium and phosphorus ions causes their displacements along
the polar axis. This intricate coupling between protons along
hydrogen bonds, which undergo an order–disorder transition,
and K and P ions, which undergo purely displacive movements in
their equilibrium positions, forms the basis of the theoretical
interest in the lattice dynamics of KDP. Following Strukov &
Levanyuk (1998), we would say that arguments over whether this
transition is displacive or order–disorder are largely semantic; the
correct description of KDP is that the thermal change in occu-
pancy of the O� � �H� � �O double wells modifies the free energy in
such a way that the K and P ions undergo a displacive rearran-
gement.
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Fig. 3.1.5.14. Structure of tris-sarcosine calcium chloride,
(CH3NHCH2COOH)3CaCl2. The hydrogen ion (proton) on the COOH
group is relocated in the crystal onto the N atom to form a zwitter ion,
forming an H—N—H group that hydrogen bonds to adjacent chlorine ions.
Each nitrogen forms two such hydrogen bonds, whereas each chlorine has
three, forming a very complex network of hydrogen bonding. The phase
transition is actually displacive, involving a rather rigid rolling of whole
sarcosine molecules, which stretches the N—H bonds; it is not order–disorder
of hydrogen ions in a Cl� � �H—N double well. (The Cl� � �H—N wells are
apparently too asymmetric for that.)

Fig. 3.1.5.15. ‘Soft’ optical phonon frequencies versus temperature in both
ferroelectric and paraelectric phases of tris-sarcosine calcium chloride.

Fig. 3.1.5.16. The structure of potassium dihydrogen phosphate, KH2PO4,
showing the O� � �H� � �O hydrogen bonds.
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The difficulty comes in recognizing that the normal-mode
coordinate x corresponding to the soft mode in this case involves
protons (H ions) and K and P ions. Therefore, the free-energy
description (as in Fig. 3.1.5.17) will have partly displacive char-
acter and partly order–disorder. If the transition were purely
displacive (as in TSCC, discussed above), all the important
temperature changes would be in the shape of the free energy
FðxÞ with temperature T. Whereas if the transition were purely
order–disorder (as in NaNO2, discussed below), the shape of the
free-energy curves FðxÞ would be quite independent of T; only
the relative populations of the two sides of the double well would
be T-dependent. KDP is intermediate between these descrip-
tions. Strictly, it is ‘displacive’ in the sense that its normal mode is
a propagating mode, shown in Fig. 3.1.5.18 by Peercy’s pressure-
dependence Raman studies (Peercy, 1975a,b). If it were truly
order–disorder, the mode would be a Debye relaxation with a
spectral peak at zero frequency, independent of pressure or
temperature. Only the width and intensity would depend upon
these parameters.

As a final note on KDP, this material exhibits at ambient
pressure and zero applied electric field a phase transition that is
very slightly discontinuous. Application of modest pressure or
field produces a truly continuous transition. That is, the tricritical
point is easily accessible [at a critical field of 6 kV cm�1,
according to Western et al. (1978)].

3.1.5.2.11. Sodium nitrite, NaNO2

Sodium nitrite exhibits a purely order–disorder transition and
has been chosen for discussion to contrast with the systems in the
sections above, which are largely displacive. The mechanism of its
transition dynamics is remarkably simple and is illustrated in Fig.
3.1.5.19. There is a linear array of Na and N ions. At low
temperatures, the arrow-shaped NO2 ions (within each domain)
point in the same direction; whereas above the Curie tempera-
ture they point in random directions with no long-range order.
The flopping over of an NO2 ion is a highly nonlinear response.
Therefore the response function (spectrum) associated with this
NO2 flip-flop mode will consist of two parts: a high-frequency
peak that looks like a conventional phonon response (lightly
damped Lorentzian), plus a low-frequency Debye relaxation
(‘central mode’ peaking at zero frequency). Most of the
temperature dependence for this mode will be associated with the
Debye spectrum. The spectrum of sodium nitrite is shown in Fig.
3.1.5.20.

Particularly interesting is its phase diagram, relating struc-
ture(s) to temperature and ‘conjugate’ field applied along the
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Fig. 3.1.5.17. Double-well models [circled letters show the time-averaged
expectation values of the position xðTÞ of the order parameter at each
temperature]. (a) For purely order–disorder systems, the depth and
separation of the wells is temperature-independent; only the thermal
populations change, due to either true quantum-mechanical tunnelling
(which only occurs for H or D ions) or thermally activated hopping (for
heavier ions). (b) For purely displacive systems, all the temperature
dependence is in the relative depths of the potential wells. [For mixed
systems, such as KH2PO4, both well depth(s) and thermal populations change
with temperature.]

Fig. 3.1.5.18. Pressure dependence of the ‘soft’ optical phonon branch Raman
spectra in potassium dihydrogen phosphate (after Peercy, 1975b), showing
the displacive character of the phase transition [purely order–disorder phase
transitions cannot exhibit propagating (underdamped) soft modes].

Fig. 3.1.5.19. Structure of sodium nitrite, NaNO2. The molecularly bonded
NO2 ions are shaped like little boomerangs. At high temperatures they are
randomly oriented, pointing up or down along the polar b axis. At low
temperatures they are (almost) all pointed in the same direction (þb or �b
domains). Over a small range of intermediate temperatures their directions
have a wave-like ‘incommensurate’ modulation with a repeat length L that is
not an integral multiple of the lattice constant b.
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polar axis. As Fig. 3.1.5.21 illustrates somewhat schematically,
there are first-order phase boundaries, second-order phase
boundaries, a tricritical point and a critical end point (as in a gas–
liquid diagram). If the electric field is applied in a direction
orthogonal to the polar axis, a Lifshitz point (Fig. 3.1.5.22) may be
expected, in which the phase boundaries intersect tangentially.
The ionic conductivity of sodium nitrite has made it difficult to
make the figures in Figs. 3.1.5.21 and 3.1.5.22 precise.

3.1.5.2.12. Fast ion conductors

As exemplary of this class of materials, we discuss in this
section the silver iodide compound Ag13I9W2O8. This material
has the structure illustrated in Fig. 3.1.5.23. Conduction is via
transport of silver ions through the channels produced by the
W4O16 ions (the coordination is not that of a simple tetrahedrally
coordinated WO4 tungstate lattice).

This crystal undergoes three structural phase transitions
(Habbal et al., 1978; Greer et al., 1980; Habbal et al., 1980), as
illustrated in Fig. 3.1.5.24. The two at lower temperatures are
first-order; that at the highest temperature appears to be
perfectly continuous. Geller et al. (1980) tried to fit electrical data
for this material ignoring the uppermost transition.

As in most of the materials discussed in this review, the phase
transitions were most readily observed via optical techniques,
Raman spectroscopy in particular. The subtle distortions involve
oxygen positions primarily and are not particularly well suited to
more conventional X-ray techniques. Silver-ion disorder sets in
only above the uppermost phase transition, as indicated by the
full spectral response (as in the discussion of sodium nitrite in the
preceding section).

Infrared (Volkov et al., 1985) and Raman (Shawabkeh & Scott,
1989) spectroscopy have similarly confirmed low-temperature
phase transitions in RbAg4I5 at 44 and 30 K, in addition to the
well studied D7

3–D
2
3 (R32–P321) transition at 122 K. The two

lower-temperature phases increase the size of the primitive cell,
but their space groups cannot be determined from available
optical data. The 44 K transition is signalled by the abrupt
appearance of an intense phonon feature at 12 cm�1 in both
infrared and Raman spectra.

3.1.5.2.13. High-temperature superconductors

It is useful to play Devil’s Advocate and point out difficulties
with the technique discussed, to indicate where caution might be
exercised in its application. YBa2Cu3O7�x (YBaCuO) provides
such a case. As in the case of BaMnF4 discussed in Section
3.1.5.2.7, there was strong evidence for a structural phase tran-
sition near 235 K, first from ultrasonic attenuation (Wang, 1987;

370

Fig. 3.1.5.20. Raman spectra of sodium nitrite, showing diffusive Debye-like
response due to large-amplitude flopping over of nitrite ions [note that the
high-frequency phonon-like response is due to the small-amplitude motion of
this same normal mode; thus in this system N ions give rise not to 3N (non-
degenerate) peaks in the spectral response function, but to 3N þ 1].

Fig. 3.1.5.21. Phase diagram for sodium nitrite for ‘conjugate’ electric fields
applied along the polar b axis, showing triple point, tricritical point and
critical end point. (a) Schematic; (b) real system.

Fig. 3.1.5.22. Phase diagram for sodium nitrite for electric fields applied
perpendicular to the polar b axis. In this situation, a Lifshitz point is possible
where phase boundaries ‘kiss’ (touch tangentially).
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Laegreid et al., 1987) and then from Raman studies (Zhang et al.,
1988; Huang et al., 1987; Rebane et al., 1988). However, as years
passed this was never verified via neutron or X-ray scattering.
Researchers questioned (MacFarlane et al., 1987) whether indeed
a phase transition exists at such a temperature in this important
material. At present it is a controversial and occasionally
contentious issue. A difficulty is that light scattering in metals
probes only the surface. No information is obtained on the bulk.
Ultrasonic attenuation and internal friction probe the bulk, but
give scanty information on mechanisms or structure.

In the specific case of YBaCuO, the ‘extra’ phonon line (Fig.
3.1.5.25) that emerges below 235 K is now known not to be from
the superconducting YBa2Cu3O7�x material; its frequency of
644 cm�1 is higher than that of any bulk phonons in that material.
However, this frequency closely matches that of the highest
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Fig. 3.1.5.23. (a) Crystal structure of silver iodide tungstate (Ag13I9W2O8);
(b) showing conduction paths for Ag ions (after Chan & Geller, 1977).

Fig. 3.1.5.24. Evidence for three phase transitions in silver iodide tungstate:
(a) dielectric and conductivity data; (b) specific heat data; (c) Raman data.
The lower transitions, at 199 and 250 K, are first order; the upper one, at
285 K, is second order.
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LO (longitudinal optical) phonon in the semiconducting
YBa2Cu3O6þx material, suggesting that the supposed phase
transition at 235 Kmay be not a structural transition but instead a
chemical transition in which oxygen is lost or gained at the
surface with temperature cycling.

3.1.5.3. Low-temperature ferroelectric transitions

It has historically been difficult to establish the nature of
ferroelectric phase transitions at cryogenic temperatures. This is
simply because the coercive fields for most crystals rise as the
temperature is lowered, often becoming greater than the break-
down fields below ca. 100 K. As a result, it is difficult to
demonstrate via traditional macroscopic engineering techniques
(switching) that a material is really ferroelectric. Some authors
have proposed (e.g. Tokunaga, 1987) on theoretical grounds the
remarkable (and erroneous) conjecture that no crystals have
Curie temperatures much below 100 K. A rebuttal of this spec-
ulation is given in Table 3.1.5.1 in the form of a list of counter-
examples. References may be found in the 1990 Landolt–
Börnstein Encyclopedia of Physics (Vol. 28a). The original work
on pure cadmium titanate and on lead pyrochlore (Hulm, 1950,
1953) did not demonstrate switching, but on the basis of
more recent studies on mixed crystals Ca2�2xPb2xNb2O7 and
CaxCd1�xTiO3, it is clear that the pure crystals are ferroelectric at
and below the stated temperatures.

Hence, in Table 3.1.5.1 we see examples where X-ray structural
studies may establish the symmetries requisite for ferroelectricity
without the macroscopic switching being demonstrated. This is
the converse case to that primarily emphasized in this section (i.e.
the use of techniques complementary to X-ray scattering to
determine exact crystal symmetries); it is useful to see these
reverse cases to demonstrate the full complementarity of X-ray
crystallography and dynamic spectroscopic techniques.

3.1.6. Group informatics and tensor calculus

By V. Kopský and P. Boček

We shall briefly describe here the intentions and contents of the
software package that constitutes part of the accompanying CD-
ROM: GI?KoBo-1 (Group Informatics, first two letters of
authors names, release 1). A more detailed description is
contained in the manual; the user may consult this file on the
screen, but we recommend that it is printed out and that the
printout is followed in order to become familiar with the theo-
retical background as well as with more detailed instructions for
the use of the software.

The main purpose of this software is to describe the changes of
tensor properties of crystalline materials during ferroic phase
transitions, including basic information about domain states. The

software provides powerful information in a standardized
manner and it is based on a few advanced methodical points that
are not yet available in textbooks. These points are:

(i) The introduction of typical variables, which was inspired by
the symbolic method of the old invariant theory (Weitzenböck,
1923).

(ii) The method of Clebsch–Gordan products (Kopský,
1976a,b). The name stems from Clebsch–Gordan coefficients,
known in quantum mechanics as coefficients of momentum
addition. In this case, the coefficients are connected with the
orthogonal group Oð3Þ; analogous coefficients were later intro-
duced and calculated for crystal point groups (Koster et al., 1963).
They appear in Clebsch–Gordan products, which represent a
better adaptation of results for our purposes.

(iii) Tables of tensorial covariants (Kopský, 1979a,b). The name
covariant may sound rather unusual now, but it was originally
used by Weyl (1946); it is equivalent to symmetry-adapted bases
(form-invariant bases and other terms are also used). The term
covariant is classical and its semantical use is easier.

(iv) Tables of fine structures of domain states (Kopský, 1982).
These are contained in a booklet which is practically unknown
though, together with tables of tensorial covariants, it contains all
answers concerning changes of tensor properties at ferroic phase
transitions.

Remark. The original term fine domain structure was amended
because it is not quite accurate.

(v) Extended integrity bases (Patera et al., 1978; Kopský, 1979c).
These represent finite sets of polynomial invariants and covar-
iants suitable for the calculation of all types of interactions in
symmetric systems.

(vi) Lattices of subgroups (Ascher, 1968; Kopský, 1982).
Subgroups of a group constitute a partially ordered set of special
properties called a lattice. The unfortunate coincidence of the
term (in English) with crystallographic lattices should be disre-
garded; it is always possible to see from the context what we
mean by this term.

These methods provide good ammunition for all types of
group-theoretical considerations where work with characters is
insufficient and knowledge of the explicit bases of irreducible
representations is necessary. This is exactly the case for the
theory of structural phase transitions, and the consideration of
domain states, pairs of domain states and domain walls or twin
boundaries. The main results of the software are contained in
tables of symmetry descents G + H and/or G + Fi, where G is
the parent point group, H its normal subgroup and Fi is the set of
conjugate subgroups. These tables provide information about
changes of tensors at ferroic phase transitions as well as basic
information about interactions, and they are also supplemented
by tables of equitranslational subgroups of space groups.

To make this exposition quite clear, we begin in the manual
from the beginning with a brief review of elementary group-
theoretical concepts used in the software. Relevant elementary
tables (listed below in Section A) are followed by more advanced
information proceeding towards the central goal of providing
information for all symmetry descents (Section B). To achieve
this goal, it was also necessary to introduce our own standard
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Fig. 3.1.5.25. Raman spectra of YBa2Cu3O7�x below an apparent phase
transition at ca. 235 K (Zhang et al., 1988).

Table 3.1.5.1. Low-temperature ferroelectrics

Formula

Curie
temperature Tc

(K)

Curie
constant C
(K)

Entropy
change �S
(cal mol�1 K�1)

NH4Al(SO4)2�12H2O 71 ? ?
NH4Fe(SO4)2�12H2O 88 400 0.15
(NH4)2Cd(SO4)3 95 ? ?
CdTiO3 55 4:5
 104 ?
Pb2Nb2O7 15.3 ? ?
LiTlC4H4O6�H2O 10.5 ? ?
K3Li2Nb5O15 7 ? ?
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notation for specifically oriented groups, for their elements and
for irreducible representations (ireps). The reasons for the
introduction of these standards are twofold: (i) There is no
unique and commonly accepted notation in the literature. The
recent book by Altmann & Herzig (1994) contains slight incon-
sistencies (different symbols for elements in a group and in its
subgroup) and is also not compatible with another prominent
source (Bradley & Cracknell, 1972). (ii) We need a strict speci-
fication of groups and their subgroups with reference to a
Cartesian coordinate system and a strict specification of matrix
ireps; neither is available in the literature. This does not mean
that we introduce brand-new symbols; we simply adapt those that
are already in use and we take extreme care that every symbol
has a unique meaning.

It is recommended that users follow the manual when first
using the software. The tabular content is as follows:

A. General information
On opening the program, a panel Crystallographic appears on

the screen. In the left-hand part are listed crystallographic
geometric classes in a tree form wrapped to crystallographic
systems (families). A click on a system brings to the screen a list
of its crystallographic geometric classes as either Hermann–
Mauguin, Schoenflies or Shubnikov symbols (the latter are used
only on this level).

The default choice for the notation is set in a table Options
under the pull-down menu File. Hermann–Mauguin or Schoen-
flies symbols are offered for groups, standard or spectroscopic
notation for group elements, classes of ireps and classes of
conjugate elements. The temporary notation, under the pull-
down menu Notation, also includes the choice of Shubnikov
symbols.

When the user clicks on a geometric class, all specifically
oriented groups of this class used in the software appear in the
right-hand part of the panel. At the top appear the groups in
standard orientation that are further used as the standard parent
groups, all remaining groups appearing below. For some groups
two or three standard orientations are available, for reasons
explained in the manual. The option of using Hermann–Mauguin
or Schoenflies symbols for groups is available throughout; up to a
certain point there are options for using either standard symbols
of group elements and of ireps (as defined here) or spectroscopic
symbols. A specific group is picked using the left mouse button,
then a click with the right mouse button opens a pull-down menu.
The following information is available under the titles:

(1) Basic info: This contains information relevant to each
group of the geometric class, such as the number of elements,
generators, isomorphism type, normalizer, number of conjugacy
classes and the standard orientations.

(2) Group elements: Activates the group calculator, the keys of
which list elements of the group. Performs calculation of products
(strings) of up to ten elements by left or right multiplication.

(3) Correlation stnd./spectro: Symbols of groups, elements and
classes of ireps for standard and spectroscopic notation are
correlated.

(4) Class structure: Symbols of classes of conjugate elements
are defined and elements of classes are listed.

(5) Class multiplication table: Displays class multiplication
formulae.

(6) Character table: Standard and spectroscopic symbols of
classes of ireps are specified and kernels of ireps are presented.

(7) Kronecker products: Tables of Kronecker products of
classes of ireps are displayed. Up to this point, both standard and
spectroscopic notation are used.

(8) Ireps and standard variables: Irreducible matrix repre-
sentations (ireps) are explicitly defined. These also define the
standard symbols of typical variables.

Brief: Brief tables specify matrices of ireps for generators of
the group.

Full: Full tables provide these matrices for each group element.
Kernels of ireps are presented. From this point onwards only the
standard notation is used.

(9) Clebsch–Gordan products: Up to orthorhombic groups,
one Clebsch–Gordan product table is given. For groups of higher
systems, there are two options: complex Clebsch–Gordan tables,
where variables ð��; ��Þ are used, and real Clebsch–Gordan
tables, with variables ðx�; y�Þ for two-dimensional real ireps.

(10) Tensorial covariants: Decomposition of tensors up to
fourth rank into their covariant components is displayed.

B. Ferroic phase transitions
(11) Subgroups: Choice of this item displays a panel with the

lattice of subgroups of the originally chosen point group G either
in Schoenflies or in Hermann–Mauguin symbols. The pull-down
menuGraph in the upper bar enables handling of the lattice: each
item can be picked and moved to another place, the rearranged
lattice can be fixed as default or reset, and the lattice can be sent
to a printer. Notice that sets of conjugate subgroups are stacked
like a pile of sheets of paper and can be unstacked. Consecutive
clicks activate individual subgroups of the set. In the upper part
of the panel, ireps of the parent groupG in spectroscopic symbols
are listed; these are followed by boxes in which it is possible to
scroll for special vectors of the respective carrier space in terms
of typical variables. Clicking on a vector marks its stabilizer
(epikernel of the irep) in the lattice and activates it at the same
time. With each irep is associated a table of the extended integrity
basis; the table is called either by the option Integrity bases under
the pull-down menu View or directly by using the right mouse
button in the box of this irep. If the Ctrl key is pressed after the
choice of one vector, another vector may be chosen; as a result,
an intersection of the respective epikernels is marked in the
lattice.

Each subgroup of the lattice may also be activated indepen-
dently. Lattices of subgroups serve themselves as menus for
consideration of specific symmetry descents. Clicking on a
subgroup H or on one of the stack of conjugate subgroups Fi

activates the following information about symmetry descent
G + H or G + Fi:

(1) Domain: This option brings to the screen the main table
that describes changes of tensor properties in chosen ferroic
descent. The option is available under the pull-down menu View
or directly at the subgroup in the case of normal subgroups. The
change of tensor properties is given with reference to the first
domain state and hence to the group F1 from the set of conjugate
subgroups. It is given for all tensors listed in Section 3.1.2.3 in a
slightly different manner than in Table 3.1.3.1. Namely, principal
and secondary tensor parameters of the transition are distin-
guished. In other words, the onsetting tensor components are
distinguished according to the ireps to which they belong. From
this information, one can deduce the fine structure of domain
states with all possible crossovers when some tensor properties
are identical in several domains. In tables for those symmetry
descents where the subgroup is not an epikernel of a certain irep,
expressions of the subgroup as possible intersection of epikernels
are presented.

To each table is attached information about G-invariant forms
of interactions. This consists of:

Integrity basis: of invariants in the primary order parameter.
Faint interactions: These are those interactions of the primary

order parameter with secondary (faint) parameters that are
responsible for the occurrence of faint parameters.

Electric switching interactions: The interactions of all order
parameters with an external electric field.

Elastic switching interactions: The interactions of all order
parameters with an external stress field.

(2) Integrity bases: Needs activation of the box of ireps as
explained above. Displays the extended integrity basis of poly-
nomials in variables of the chosen irep. This consists of the
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integrity basis of polynomial invariants and of the linear bases of
polynomial covariants.

(3) Twinning group: This option works for the first group of the
set of conjugate subgroups only. It displays a table that contains
consecutive normalizers of the set of conjugate subgroups, left,
right and double coset resolutions of the parent group G with
respect to the subgroup F1, and the twinning groups assigned to
double cosets. This is the basic information concerning pairs of
domain states.

Lattices of equitranslational subgroups of the space groups. The
importance of these lattices was realized by Ascher (1968), who
prepared the first tables. However, his tables do not contain full
information about subgroups; neither the parent group nor the
subgroups are completely specified. The current version gives the
full information about subgroups including their settings and
origins. The pull-down menu Groups contains two options: Point
and Space. The choice of the second option brings to the screen
another panel, in the right-hand part of which are listed space
groups of the geometric class G through Hermann–Mauguin
symbols corresponding to all settings and cell choices where
applicable. The number of the space-group type, the Schoenflies
symbol, the setting and the cell choice are shown in the left-hand
part of the panel when you click on one of these Hermann–
Mauguin symbols. At the same time, the symbols of the point
groups in the lattice change to Schoenflies symbols of oriented
space-group types. As you click on any of these subgroups, the
Hermann–Mauguin symbol that specifies the subgroup comple-
tely appears in the lower bar of the panel, reserved for this
information. Though the embellished lattice symbols used in this
presentation are self-explanatory, consultation of the manual is
recommended.

The option Point returns the lattice to its original form of the
lattice of point groups.

The following is a list of tabular appendices contained in the
manual:

Appendix A: correlation of various notations and Jones’
faithful representation symbols;

Appendix B: Schoenflies and Hermann–Mauguin symbols of
groups in standard orientations and of their subgroups;

Appendix C: isomorphisms used for defining irreducible
representations;

Appendix D: standard polynomials;
Appendix E: labelling of covariants and conversion equations;
Appendix F: list of symmetry descents;
Appendix G: nonstandard lattice letters.
Our symbols for point-symmetry operations are compared

with other sources in Appendix A. Symbols of all groups used in
the software are given in Appendix B and isomorphisms in
Appendix C. Standard polynomials in Appendix D are abbre-
viated symbols for more complicated polynomials that appear in
the main tables. Appendix E is of primary importance for
consideration of the relationship between tensor parameters and
their contribution to Cartesian tensor components as already
indicated in the text explaining Table 3.1.3.1. In Appendix F are
listed and classified all symmetry descents considered in the main
table. Consultation of Appendix G is strongly recommended to
all users who want to use the lattices of equitranslational
subgroups of the space groups.

3.1.7. Glossary

(a) Groups
G point-group symmetry of the parent

(prototype, high-symmetry) phase
G space-group symmetry of the parent

(prototype, high-symmetry) phase

F point-group symmetry of the ferroic
(low-symmetry) phase (domain state
not specified)

F space-group symmetry of the ferroic
(low-symmetry) phase (domain state
not specified)

F1 point-group symmetry of the first ferroic
single domain state

F 1 space-group symmetry of the first ferroic
single domain state

G + F point-group symmetry descent from G to F
G + F space-group symmetry descent from G to F
G +

t
F equitranslational symmetry descent from G toF

�� representation of G (or of G) according to
which � transforms

Dð�Þ irreducible matrix representation of the order
parameter �

�� character of the matrix representation Dð�Þ

R-irep physically irreducible representation
nF number of subgroups conjugate under G

to subgroup F1

nf number of ferroic single domain states
na number of ferroelastic single domain states
ne number of ferroelectric single domain states

(b) Physical quantities
c specific heat
di� piezoelectric tensor
F, G free energy
g� optical activity
Pi dielectric polarization
S entropy
sij elastic compliance
Tc Curie temperature
uij, u� strain tensor
V cell volume
� dielectric susceptibility
" enantiomorphism, chirality
"ij high-frequency dielectric constant or

permittivity
� order parameter (primary)
 order parameter (secondary)
!LO longitudinal optic mode frequency
!TO transverse optic mode frequency
��� piezo-optic tensor
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3.2. Twinning and domain structures

By V. Janovec, Th. Hahn and H. Klapper

3.2.1. Introduction and history

Twins have been known for as long as mankind has collected
minerals, admired their beauty and displayed them in museums
and mineral collections. In particular, large specimens of contact
and penetration twins with their characteristic re-entrant angles
and simulated higher symmetries have caught the attention of
mineral collectors, miners and scientists. Twinning as a special
feature of crystal morphology, therefore, is a ‘child’ of miner-
alogy, and the terms and symbols in use for twinned crystals have
developed during several centuries together with the develop-
ment of mineralogy.

The first scientific description of twinning, based on the
observation of re-entrant angles, goes back to Romé de l’Isle
(1783). Haüy (1801) introduced symmetry considerations into
twinning. He described hemitropes (twofold rotation twins) and
penetration twins, and stated that the twin face is parallel to a
possible crystal face. Much pioneering work was done by Weiss
(1809, 1814, 1817/1818) and Mohs (1822/1824, 1823), who
extended the symmetry laws of twinning and analysed the
symmetry relations of many twins occurring in minerals.
Naumann (1830) was the first to distinguish between twins with
parallel axes (Zwillinge mit parallelen Achsensystemen) and twins
with inclined (crossed) axes (Zwillinge mit gekreuzten Achsen-
systemen), and developed the mathematical theory of twins
(Naumann, 1856). A comprehensive survey of the development
of the concept and understanding of twinning up to 1869 is
presented by Klein (1869).

At the beginning of the 20th century, several important
mineralogical schools developed new and far-reaching ideas on
twinning. The French school of Mallard (1879) and Friedel (1904)
applied the lattice concept of Bravais to twinning. This culmi-
nated in the lattice classification of twins by Friedel (1904, 1926)
and his introduction of the terms macles par mériédrie (twinning
by merohedry), macles par pseudo-mériédrie (twinning by
pseudo-merohedry),macles par mériédrie réticulaire [twinning by
reticular (lattice) merohedry] and macles par pseudo-mériédrie
réticulaire (twinning by reticular pseudo-merohedry). This
concept of twinning was very soon taken up and further devel-
oped by Niggli in Zürich, especially in his textbooks (1919, 1920,
1924, 1941). The lattice theory of Mallard and Friedel was
subsequently extensively applied and further extended by J. D. H.
Donnay (1940), and in many later papers by Donnay & Donnay,
especially Donnay & Donnay (1974). The Viennese school of
Tschermak (1904, 1906), Tschermak & Becke (1915), and Tertsch
(1936) thoroughly analysed the morphology of twins, introduced
the Kantennormalengesetz and established the minimal condi-
tions for twinning. The structural and energy aspects of twins and
their boundaries were first accentuated and developed by
Buerger (1945). Presently, twinning plays an important (but
negative) role in crystal structure determination. Several
sophisticated computer programs have been developed that
correct for the presence of twinning in a small single crystal.

A comprehensive review of twinning is given by Cahn (1954);
an extensive treatment of mechanical twinning is presented in the
monograph by Klassen-Neklyudova (1964). A tensor classifica-
tion of twinning was recently presented by Wadhawan (1997,
2000). Brief modern surveys are contained in the textbooks by
Bloss (1971), Giacovazzo (1992) and Indenbom (see Vainshtein et
al., 1995), the latter mainly devoted to theoretical aspects. In
previous volumes of International Tables, two articles on twinning

have appeared: formulae for the calculation of characteristic twin
data, based on the work by Friedel (1926, pp. 245–252), are
collected by Donnay & Donnay in Section 3 of Volume II of the
previous series (Donnay & Donnay, 1972), and a more mathe-
matical survey is presented by Koch in Chapter 1.3 of Volume C
of the present series (Koch, 1999).

Independently from the development of the concept of twin-
ning in mineralogy and crystallography, summarized above, the
concept of domain structures was developed in physics at the
beginning of the 20th century. This started with the study of
ferromagnetism by Weiss (1907), who put forward the idea of a
molecular field and formulated the hypothesis of differently
magnetized regions, called ferromagnetic domains, that can be
switched by an external magnetic field. Much later, von Hámos &
Thiessen (1931) succeeded in visualizing magnetic domains by
means of colloidal magnetic powder. For more details about
magnetic domains see Section 1.6.4 of the present volume.

In 1921, Valasek (1921) observed unusual dielectric behaviour
in Rochelle salt and pointed out its similarity with anomalous
properties of ferromagnetic materials. This analogy led to a
prediction of ‘electric’ domains, i.e. regions with different direc-
tions of spontaneous polarization that can be switched by an
electric field. Materials with this property were called Seignette
electrics (derived from the French, ‘sel de Seignette’, denoting
Rochelle salt). The term seignettoelectrics is still used in Russian,
but in English has been replaced by the term ferroelectrics
(Mueller, 1935). Although many experimental and theoretical
results gave indirect evidence for ferroelectric domain structure
[for an early history see Cady (1946)], it was not until 1944 that
Zwicker & Scherrer (1944) reported the first direct optical
observation of the domain structure in ferroelectric potassium
dihydrogen phosphate (KDP). Four years later, Klassen-
Neklyudova et al. (1948) observed the domain structure of
Rochelle salt in a polarizing microscope (see Klassen-Neklyu-
dova, 1964, p. 27). In the same year, Blattner et al. (1948), Kay
(1948) and Matthias & von Hippel (1948) visualized domains and
domain walls in barium titanate crystals using the same tech-
nique.

These early studies also gave direct evidence of the influence
of mechanical stress and electric field on domain structure.
Further, it was disclosed that a domain structure exists only
below a certain temperature, called the Curie point, and that the
crystal structures below and above the Curie point have different
point-group symmetries. The Curie point thus marks a structural
phase transition between a paraelectric phase without a domain
structure and a ferroelectric phase with a ferroelectric domain
structure. Later, the term ‘Curie point’ was replaced by the more
suitable expression Curie temperature or transition temperature.

The fundamental achievement in understanding phase transi-
tions in crystals is the Landau theory of continuous phase tran-
sitions (Landau, 1937). Besides a thermodynamic explanation of
anomalies near phase transitions, it discloses that any continuous
phase transition is accompanied by a discontinuous decrease of
crystal symmetry. In consequence, a phase with lower symmetry
can always form a domain structure.

The basic role of symmetry was demonstrated in the
pioneering work of Zheludev & Shuvalov (1956), who derived by
simple crystallographic considerations the point groups of para-
electric and ferroelectric phases of all possible ferroelectric phase
transitions and gave a formula for the number of ferroelectric
domain states.
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A mechanical analogy to ferroelectric domains exists in the
form of domains that differ in strain and can be switched by
mechanical stress. This effect was studied under the name
‘twinning with change of form’ in the monoclinic ferroelectric
phase of Rochelle salt by Klassen-Neklyudova et al. (1948) and
Chernysheva (1950). A detailed description of this work in
English is presented by Klassen-Neklyudova (1964, pp. 27–30,
75–78) in her monograph on mechanical twinning of crystals.
Indenbom (1960) has shown that such behaviour is not confined
to ferroelectric crystals and has listed many symmetry changes of
potential phase transitions accompanied by the appearance of a
spontaneous strain that could give rise to domains with different
strain. Aizu (1969) called such crystals ferroelastic crystals in
analogy with ferroelectric crystals. Ferroelastic domains differ in
spontaneous strain and can be switched by mechanical stress.

Generalization of the concepts of ferromagnetic, ferroelectric
and ferroelastic crystals followed soon after (Aizu, 1970): A
ferroic crystal has two or more orientation states (oriented bulk
structures of domains) that can be switched by means of a
magnetic field, an electric field, a mechanical stress or by a
combination of these. Ferroic domains are distinct in some
tensors describing the material properties of the crystal. Aizu has
also shown that the type of domain structure is determined by the
change of point-group symmetry at the structural phase transi-
tion from a prototypic (parent, high-symmetry) phase without
domains to a ferroic (distorted, low-symmetry, daughter) phase in
which domains appear.

A more detailed history of the research of ferromagnetic,
ferroelectric, ferroelastic and ferroic materials in general can be
found in the book by Wadhawan (2000).

The domain structure determines to a certain extent electric,
elastic, electromechanical and other properties of ferroic crystals.
The investigation of domain structures has thus become an
inseparable part of the research of ferroelectrics, ferroelastics
and ferroic crystalline materials in general.

Most of the work has been devoted to ferroelectrics, since their
specific properties have found important applications, some of
which (e.g. production of anisotropic ceramics, ferroelectric
memories) are based on irreversible and hysteretic changes of the
ferroelectric domain structure under an electric field. References
to ferroelectric, ferroelastic and other domain structures are
given at the end of Section 3.4.1.

Even though the basic concepts of twinning and domain
structures are closely related and have many aspects in common,
the study of both subjects has developed independently, using
different terms and symbols to describe rather similar facts. There
are many cases that can be treated equally well by both
approaches, e.g. merohedral twins and non-ferroelastic domain
structures. There are cases, however, which can only be under-
stood with one of the two concepts, e.g. the (111) spinel twins
cannot be interpreted as a domain structure, because a high-
symmetry parent phase does not exist. Of the two topics, twinning
is the older, whereas the younger topic domain structure has
recently advanced to a more detailed physical understanding.

In the two following chapters, 3.3 and 3.4, the two topics are
treated separately and in their own right. It will be apparent that
the two approaches, despite the great similarity of their objects,
are quite different: for domain structures the all-important
theoretical basis is the existence of a – real or potential (hypo-
thetical) – parent (prototypic) phase from which the ferroic
(distorted) phase is derived. This lowering of symmetry, expressed
by a group–subgroup relation between the symmetries of the
parent and ferroic phases, is the source of an impressive theo-
retical edifice which allows the explanation, and even the
prediction, of many crystallographic properties of a given domain
structure.

The situation is different in twinning: whereas transformation
twins are closely related to domain structures and hence can be
treated with the same theoretical tools, many growth twins and

mechanical twins are characterized by the absence of an existing –
and even a hypothetical – parent structure. From this it follows
that growth and mechanical twins (which are the typical twin
specimens of mineral collections) are to a much lesser extent
amenable to group-theoretical analysis. Instead, each twinning
case must be considered separately, and the orientation
and contact relations of the twin partners must be
individually ascertained. This requires discussion of many ‘type
cases’.

The present chapter continues with a short excursion into
bicrystallography (Section 3.2.2), a topic not treated further in
this article, followed by Section 3.2.3 with an exposition of basic
concepts of set theory and group theory needed in Chapters 3.3
and 3.4.

3.2.2. A brief survey of bicrystallography

Both twinning and domain structures appear to be special cases
of the relatively young research field of bicrystallography (Pond
& Vlachavas, 1983), which has its origin in the study of grain
boundaries in metals. Grains are coexisting crystals with identical
composition and structure but with different orientations.
Coexisting grains can be formally treated as generalized twins in
which one of the conditions (viz a crystallographic relation
between the twin components) is dropped.

A common feature of twins, domain structures and grain
aggregates is the interface between coexisting crystals. The
simplest edifice containing a crystalline interface is a bicrystal
consisting of two semi-infinite perfect crystals (components) and
a single planar interface along which the two crystals adjoin. For
easier comprehension, one crystal of a bicrystal can be ‘coloured’
black and the other crystal white. Then the operations that leave
both crystals unchanged are trivial colour-preserving symmetry
operations, whereas the symmetrizing operations, which trans-
form the black crystal into the white one and vice versa, are
nontrivial colour-reversing operations. If one marks these colour-
reversing operations by a prime or a star, then the symmetry
group of a bicrystal has the structure of a dichromatic (black-and-
white) group (see Section 3.2.3.2.7).

The dissymmetrization (symmetry reduction or lowering,
symmetry descent) plays a basic role in bicrystallography. This is
a process in which an object changes from a high-symmetry form
into a low-symmetry form. As shown in Chapter 3.4, any
dissymmetrization is accompanied by the formation of several
symmetrically equivalent specimens of the low symmetry called
variants. Variants are related by suppressed (lost) symmetry
operations that are present in the low-symmetry form but are
missing in the high-symmetry form. The set of all low-symmetry
variants recovers the symmetry of the high-symmetry form. This
general statement is referred to as the law of symmetry
compensation and can be alternatively expressed by the following
sentence (Shubnikov & Koptsik, 1974): If symmetry is reduced at
one structural level, it arises and is recovered at another struc-
tural level. A paradigmatic example of dissymmetrization is a
structural phase transition in which a high-symmetry parent
(prototypic) phase changes into a low-symmetry distorted
(ferroic) phase. The variants of the low-symmetry distorted phase
are called single domain states or orientation states. The set of all
single domain states recovers the high symmetry of the parent
phase (see Chapter 3.4).

A systematic method for deriving the bicrystal symmetry,
which is identical with the symmetry of the bicrystal interface,
consists of four hierarchical stages (Pond & Vlachavas, 1983). At
each stage, the bicrystal is represented by a construct (model)
which is more detailed – and has, therefore, the same or lower
symmetry – than the construct of the previous stage. These
successive dissymmetrizations bring about at each stage equiva-
lent variants of the bicrystal’s construct. Different sets of variants
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at different stages have distinct physical significance and provide
a basic generic classification of bicrystals and their interfaces.

The first stage deals with the so-called dichromatic pattern
consisting of two interpenetrating black and white lattices of the
two crystal components (Pond & Bollmann, 1979). The coin-
ciding ‘grey’ points constitute the coincidence site lattice (CSL)
(see Bollmann, 1970, 1982), which corresponds to the twin lattice
in twinning (see Section 3.3.8). To find variants of the dichromatic
pattern, bicrystallography replaces the symmetry group of a
nonexistent previous ‘zero stage’ with a minimal group
containing symmetries of the black crystal and the white crystal.
This group is called the embracing or fundamental group of
dichromatic patterns (Shubnikov & Koptsik, 1974; Pond &
Vlachavas, 1983; Wadhawan, 2000). If the symmetry group of the
dichromatic pattern is smaller than the embracing group, then
this dissymmetrization produces orientational or translational
variants of the dichromatic pattern.

In the second stage, black and white lattices are decorated by
atoms and these crystal structures are represented by lattice
complexes. [A lattice complex of a crystal is here defined as the
set of points obtained by carrying out on each occupied atomic
position all symmetry operations of the crystal’s space group.
Note that in crystallography the term ‘lattice complex’ has a
different meaning; see IT A (2002), Parts 8 and 14.] Two inter-
penetrating black and white lattice complexes of crystal compo-
nents form the dichromatic complex of a bicrystal. If the
symmetry of the dichromatic complex is lower than that of the
dichromatic pattern, the dissymmetrization gives rise to complex
variants of the dichromatic complex. The concept of a dichro-
matic complex corresponds to the concept of a domain pair in
domain structure analysis (see Section 3.4.3).

Mental constructions of the first two stages specify only the
relation between the lattices and structures of crystal components
of a bicrystal. In the third stage, an ideal bicrystal is formed by
sectioning the black-and-white lattice (or structure) on the
interface plane and discarding the black lattice (or structure) on
one side of the section and the white lattice (structure) on the
other side. If the interfacial plane is a crystallographic plane with
two-dimensional periodicity, then the symmetry of this ideal
bicrystal is described by a dichromatic layer group (see Sections
3.4.4.2 and 3.4.4.3). This group is smaller than the space-group
symmetry of the dichromatic complex and this dissymmetrization
gives rise to morphological variants of the ideal bicrystal.
Operations suppressed at this dissymmetrization relate different
morphological variants of the ideal bicrystal. An ideal bicrystal
corresponds to a domain twin with zero-thickness domain wall
(see Section 3.4.4).

All three preceding stages use geometrical models of an
interface with fixed atomic positions. At the final fourth stage,
these geometrical constraints are lifted and the ideal bicrystal
relaxes to a real or relaxed bicrystal with a minimum free energy.
During this relaxation process the interface plane may migrate
into either crystal, one crystal may translate rigidly with respect
to the other, and each atom may adjust its position to relax any
resultant force acting on it. The relaxation may even include
insertion or removal of additional material at the interface. If the
symmetry of the relaxed bicrystal is lower than that of the ideal
bicrystal, then relaxational variants of the relaxed bicrystal
appear. The one-dimensional interface between two interfacial
relaxational variants forms a line defect of the bicrystal interface.
Relaxation variants of finite-thickness domain walls and line
defects in these walls are discussed in Section 3.4.4.

Two main theoretical approaches have been used in examining
the microscopic structure of a real bicrystal interface. In the older
one, a real interface is treated as a periodic array of dislocations.
This approach, still based on geometrical models, has explained
successfully the microscopic structure of small-angle grain
boundaries, but has failed in large-angle grain boundaries
(misorientation angle larger than 15�).

More recent investigations utilizing computer simulations
allow one to lift geometrical constraints and permit the calcula-
tion of equilibrium atomic positions directly from interatomic
forces. These calculations have revealed that the lattice coin-
cidence is almost always lost upon relaxation and that the
microscopic structure of bicrystal interfaces can be described as
an ordered sequence of coordination polyhedra. These conclu-
sions have been confirmed by high-resolution electron micro-
scopy. For more details see, for example, Fischmeister (1985),
Sutton & Balluffi (1995) and Gottstein & Shvindlerman (1999).

The first three ‘classical’ stages of the bicrystallographical
analysis already yield valuable conclusions. They disclose generic
relations between different interfaces, specify crystal-
lographically equivalent variants of an interface and classify line
defects in interfaces. The symmetry of a bicrystal imposes
constraints on tensor properties of the bicrystal interface,
provides classification of the interfacial vibrational modes,
discloses possible interfacial transitions etc. (see, for example,
Kalonji, 1985).

The methodology of bicrystallography has many common
features with the symmetry analysis of domain structures but,
since both approaches have developed independently, they use a
different terminology. Moreover, in comparison with bicrystals,
domain structures and twins are more restricted by crystal-
lographic constraints. This has resulted in more extensive appli-
cation of group theory in domain structures than in
bicrystallography. On the other hand, bicrystallography is more
general and can even treat interfaces between two crystals
belonging to different phases (heterophase interfaces).

A synoptic ‘roadmap for the use of interfacial symmetry’,
compiled by Kalonji (1985), provides a quick guide to the
possible applications of bicrystallography. A short introduction to
bicrystallography can be found in Wadhawan (2000); a brief
comparison of the concepts and terminologies of bicrystals, twins
and domain structures is presented by Hahn et al. (1999). An
extensive treatment of bicrystallography is available in the paper
by Pond & Vlachavas (1983) and in the book by Sutton & Balluffi
(1995), where other aspects of crystalline interfaces are also
thoroughly covered.

3.2.3. Mathematical tools

Analysis of domain structures and twins does not deal primarily
with single-crystal structures, as does classical crystallography,
but studies collections of several crystal structures – which
usually differ in orientation and position in space – and examines
relations between these structures and their coexistence. The
exact formulation of such an analysis uses mathematical concepts
that are not yet quite common in crystallography. Thus, e.g., a
collection of crystallographic objects has to be decomposed into
equivalence classes called orbits and strata, or the symmetry of an
object (structure, domain wall, twin) has to be described with
respect to a given group, which necessitates replacing the usual
notion of a symmetry group by a ‘stabilizer’ (isotropy group). A
prerequisite of introducing these terms is the concept of group
action, which provides a basic and efficient tool for domain-
structure analysis.

Another special feature of domain studies is that one can
associate with a ferroic structure under study another structure,
called the parent (prototypic) structure, from which the ferroic
structure can be derived by small microscopic distortions. The
fact that the symmetry of the ferroic phase is lower than that of
the parent phase invokes the notion of a subgroup. Associated
notions such as conjugate subgroups, normalizers and decom-
position of a group into left and double cosets of a subgroup play
an important role in the analysis.

Since some of these concepts are not available in standard
texts, we present in this section the necessary mathematical
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background and explanation of terms and relations that appear in
Chapters 3.3 and 3.4.

Section 3.2.3.1 introduces the basic concepts of set theory and
explains the notion of unordered and ordered pairs, mappings of
sets and the partition of a set into equivalence classes. Section
3.2.3.2 deals with basic group theory and is devoted mainly to
group–subgroup relations and relevant notions, of which the
coset decompositions are of central importance. In Section
3.2.3.3, group theory is combined with set theory in the ‘action of
a group on a set’ (for short, ‘group action’). Notions of stabilizer,
orbit and stratum are explained and their significance is illu-
strated by several examples.

A simple exposition of the main group-theoretical concepts,
including group action and orbits, can be found in the book by
Hahn & Wondratschek (1994). A concise presentation of group
actions and related notions with many examples has been given
by Michel (1980). Other more detailed references are given at the
end of each of the following sections.

3.2.3.1. Sets, pairs, mappings and equivalence classes

3.2.3.1.1. Sets

Definition 3.2.3.1. A set is a collection of distinguishable objects.
The objects constituting a set are called elements (or points) of
the set.

In Chapter 3.4 we encounter mainly two types of sets: sets the
elements of which are crystalline objects (domain states, domain
twins, domain walls etc.), and sets, like groups, with elements of
mathematical nature, e.g. rotations, transformations, operations
etc. The sets of crystalline objects will be denoted by capital sans-
serif letters, e.g. A;B; . . ., and capital bold letters, e.g. S;M;N; . . .
or S1; S2; S3; . . ., will be used to denote elements of such sets.
Groups will be denoted by capital italic letters, e.g. G, F etc., and
their elements by lower-case italic letters, e.g. g; h; . . .. The
exposition of this section is given for sets the elements of which
are (crystalline) objects, but all notions and relations hold for any
other sets.

If an element S belongs to the set A, one writes S 2 A, in the
opposite case S 62 A. Sets consisting of a small number of
elements can be expressed explicitly by writing their elements
between curly braces, A ¼ fS;M;N;Qg. The order of elements in
the symbol of the set is irrelevant. From the definition of a set it
follows that there are no equal elements in the set, or in other
words, any two equal elements coalesce into one:

fS; Sg ¼ fSg: ð3:2:3:1Þ

If a set contains many (or an infinite number of) elements, the
elements are specified in another way, e.g. by stating that they
have a certain property in common.

The number of elements in a set is the order of the set. A finite
set A consists of a finite number of elements and this number is
denoted by jAj. An infinite set contains infinite number of
elements and an empty set, denoted by ;, contains no element. In
what follows, the term ‘set’ will mean a ‘finite nonempty set’
unless explicitly stated otherwise.

A set B is a subset of A, B � A or A � B, if every element of B
is an element of A. If each element of B is an element of A, and
vice versa, then B is equal to or identical with A, B ¼ A or A ¼ B.
If there exists at least one element of A which is not contained in
B, then B is a proper subset of A, B � A or A � B. The subset B is
often defined by a restriction that specifies only some elements
of A as elements of B. This is written in short as B ¼

fS 2 Ajrestriction on Sg; the expression means that B consists of
all elements of A that satisfy the restriction given behind the
sign j.

The intersection of two sets A and B, A \ B or B \ A, is a set
comprising all elements that belong both to A and to B. If the sets

A and B have no element in common, A \ B ¼ ;, then one says
that the sets A and B are disjoint. The union of sets A and B,
A [ B or B [ A, is a set consisting of all elements that belong
either to A or to B. Sometimes the symbolþ is used instead of the
symbol [. The difference of set A and B, or the complement of B
in A, A� B, comprises those elements of A that do not belong to
B.

3.2.3.1.2. Pairs

A collection of two objects Si and Sk constitutes an unordered
pair. The objects of an unordered pair are called elements or
points. A trivial unordered pair consists of two identical elements.
A non-trivial unordered domain pair comprises two non-identical
elements and is identical with a set of order two.

Note that we do not identify an unordered pair with a set of
order two where, according to (3.2.3.1), two equal objects
coalesce into one. In spite of this difference we shall use the same
symbol for the unordered pair as for the set of order two, but
reverse the symbol fS; Sg for the trivial unordered pair. With this
reservation, the identity

fSi; Skg ¼ fSk; Sig ð3:2:3:2Þ

holds for both unordered pairs and for sets of order two.
An ordered pair, denoted ðSi; SkÞ, consists of the first and the

second member of the pair. If Si ¼ Sk, the ordered pair is called a
trivial ordered pair, ðSi; SiÞ; if Si 6¼ Sk the pair ðSi; SkÞ is a non-
trivial ordered pair. The ordered pair ðSk; SiÞ with a reversed
order of elements is called a transposed pair. In contrast to
unordered pairs, initial and transposed non-trivial ordered pairs
are different objects,

ðSi; SkÞ 6¼ ðSk; SiÞ for Si 6¼ Sk: ð3:2:3:2aÞ

The members Si and Sk of an ordered pair ðSi; SkÞ can either
belong to one set, Si 2 A; Sk 2 A, or each to a different set,
Si 2 A; Sk 2 B.

Two ordered pairs ðSi; SkÞ and ðSm; SpÞ are equal,
ðSi; SkÞ ¼ ðSm; SpÞ, if and only if Si ¼ Sm and Sk ¼ Sp.

We shall encounter ordered and unordered pairs in Sections
3.4.3 and 3.4.4, where the members of pairs are domain states or
domain twins. However, pairs are also essential in introducing
further concepts of set theory. The starting point is the following
construction of a set of pairs that are formed from two sets:

A Cartesian product A� B of two sets A and B is a set of all
ordered pairs ðS;MÞ, where S 2 A;M 2 B. The sets A and B can
be different or identical sets. If the sets A and B are finite, then
the Cartesian product A� B consists of jAj � jBj ordered pairs.

3.2.3.1.3. Mappings

A mapping ’ of a set A into a set B is a rule which assigns to
each element S 2 A a unique element M 2 B. This is written
symbolically as ’ : S 7!M or M ¼ ’ðSÞ, and one says that S is
mapped to M under the mapping ’. The element M is called the
image of the element S under ’. The assignment ’ : S 7!M can be
expressed by an ordered pair ðS;MÞ, if one ascribes S to the first
member of the pair and the element M to the second member of
the pair ðS;MÞ. Then the mapping ’ of a set A into a set B,
symbolically written as ’ : A ! B, can be identified with such a
subset of ordered pairs of the Cartesian product A� B in which
each element S of A occurs exactly once as the first member of
the pair ðS;MÞ. If A is a finite set, then ’ consists of jAj ordered
pairs.

We note that in a mapping ’ : A ! B several elements of A
may be mapped to the same element of B. In such a case, the
mapping ’ is called a many-to-one mapping. If the mapping
’ : A ! B is such that each element of B is the image of some
element of A, then the mapping ’ is called amapping of A onto B.
If ’ is a mapping of A onto B and, moreover, each element of B is

380



3.2. TWINNING AND DOMAIN STRUCTURES

the image of exactly one element of A, then the mapping ’
becomes a one-to-one correspondence between A and B,
’ : A $ B. In this case, A and B are of the same order.

One often encounters a situation in which one assigns to each
ordered pair ðS;MÞ an element N, where all three elements
S;M;N are elements from the same set A, symbolically
’ : ðS;MÞ 7!N; S;M;N 2 A or ’ : A� A ! A. Such a mapping
is called a binary operation or a composition law on the set A. A
sum of two numbers aþ b ¼ c or a product of two numbers
a � b ¼ c, where a; b; c belong to the set of all real numbers, are
elementary examples of binary operations.

3.2.3.1.4. Equivalence relation on a set, partition of a set

The notion of the ordered pair allows one to introduce another
useful concept, namely the relation on a set. An example will
illustrate this notion. Let Z be a set of integers,
Z ¼ f. . . ;�2;�1; 0; 1; 2; . . .g. For each ordered pair ðm; nÞ,
m; n 2 Z, one can decide whether m is smaller than n, m< n, or
not. All pairs ðm; nÞ that fulfil the condition m< n form a subset
R of all possible ordered pairs Z� Z. In other words, the relation
m< n defines a subset R of the set Z� Z, R � Z� Z. Similarly,
the relation jmj ¼ jnj (jnj denotes absolute value of n) defines
another subset of Z� Z.

To indicate that an element S is related to M by 	
R, where

S;M 2 A, one writes S	
R M, where the relation R defines a subset

R of all ordered pairs A� A, R � A� A (the same letter R is
used for the subset and for the relation on A). The opposite also
holds: Each subset R of A� A defines a certain relation 	

R on A.
A relation 	

R is called an equivalence relation on the set A if it
satisfies three conditions:

S 	
R
S for all S 2 A ðreflexivityÞ; ð3:2:3:3Þ

if S;M 2 A and S 	
R
M; then M 	

R
S ðsymmetryÞ; ð3:2:3:4Þ

if S;M;N 2 A; S 	
R
M and M 	

R
N; then S 	

R
N ðtransitivityÞ:

ð3:2:3:5Þ

Thus, for example, it is easy to corroborate that the relation
jmj ¼ jnj on the set of integers Z fulfils all three conditions
(3.2.3.3) to (3.2.3.5) and is, therefore, an equivalence relation on
the set Z. On the other hand, the relation m< n is not an
equivalence relation on Z since it fulfils neither the
reflexivity (3.2.3.3) nor the symmetry condition (3.2.3.4).

Let 	
R be an equivalence relation on A and S 2 A; all elements

M 2 A such that M	
R S constitute a subset of A denoted ½S
R and

called the equivalence class of S with respect to 	
R (or the R-

equivalence class of S). The element S is called the representative
of the class ½S
R. Any other member of the class can be chosen as
its representative. Any two elements of the equivalence class ½S
R
are R-equivalent elements of A.

From the definition of the equivalence class, it follows that any
two elements M;N 2 A are either R-equivalent elements of A,
M	

R N, and thus belong to the same class, ½M
R ¼ ½N
R, or are not
R-equivalent, and thus belong to two different classes that are
disjoint, ½M
R \ ½N
R ¼ ;. In this way, the equivalence relation 	

R

divides the set A into disjoint subsets (equivalence classes), the
union of which is equal to the set itself. Such a decomposition
is called a partition of the set A associated with the equivalence
relation 	

R . For a finite set A this decomposition can be expressed
as a union of equivalence classes,

A ¼ ½S
R [ ½M
R [ . . . [ ½Q
R; ð3:2:3:6Þ

where S;M; . . . ;Q are representatives of the equivalence classes.
Generally, any decomposition of a set into a system of disjoint

non-empty subsets such that every element of the set is a member
of just one subset is called a partition of the set. To any partition of
a set A there corresponds an equivalence relation	

R such that the

R-equivalence classes of A form that partition. This equivalence
relation defines two elements as equivalent if and only if they
belong to the same subset.

The term ‘equivalent’ is often used when it is clear from the
context what the relevant equivalence relation is. Similarly, the
term ‘class’ is used instead of ‘equivalence class’. Sometimes
equivalence classes have names that do not explicitly indicate
that they are equivalence classes. For example, in group theory,
conjugate subgroups, left, right and double cosets form equiva-
lence classes (see Section 3.2.3.2). Often instead of the expression
‘partition of a set A’ an equivalent expression ‘classification of the
elements of a set A’ is used. The most important equivalence
classes in the symmetry analysis of domain structures are called
orbits and will be discussed in Section 3.2.3.3.

More details on set theory can be found in Kuratowski &
Mostowski (1968), Lipschutz (1981), and Opechowski (1986).

3.2.3.2. Groups and subgroups

3.2.3.2.1. Groups

Operations (isometries) that act on a body without changing its
form and internal state combine in the same way as do elements
of a group. Group theory is, therefore, the main mathematical
tool for examining transformation properties – symmetry prop-
erties in particular – of crystalline objects. The basic concept of
group theory is that of a group.

Definition 3.2.3.2. A group G is a set that satisfies four postu-
lates:

(1) To each ordered pair ðgi; gjÞ of two elements of G, there
corresponds a unique element gk of G, i.e. a binary operation
(composition law) is defined on the set G. Usually, one writes the
ordered pair simply as a ‘product’ gigj and the composition law as
an equation,

gigj ¼ gk; gi; gj; gk 2 G: ð3:2:3:7Þ

This condition is referred to as closure of G under multiplication.
(2) The multiplication is associative, i.e. for any three elements

gi; gj; gk of G it holds that if gigj ¼ gl and gjgk ¼ gm then
glgk ¼ gigm. This condition is usually written as one equation,

ðgigjÞgk ¼ giðgjgkÞ; ð3:2:3:8Þ

which expresses the requirement that the product of any three
elements of G is the same, no matter which two of the three one
multiplies first, as long as the order in which they stand is not
changed. From postulate (2) it follows that the product of any
finite sequence of group elements is determined uniquely if the
order in which the elements are placed is preserved.

(3) The set G contains an identity or unit element e such that

eg ¼ ge ¼ g for any element g 2 G: ð3:2:3:9Þ

(4) For any element g 2 G there exists an inverse element g�1

such that

gg�1 ¼ g�1g ¼ e: ð3:2:3:10Þ

The number of elements of a group G is called the order of the
group. If the order of the group is finite, it is denoted by jGj.

The multiplication of group elements is, in general, not
commutative, i.e. gigj 6¼ gjgi may hold for some gi; gj 2 G. If the
multiplication is commutative, i.e. if gigj ¼ gjgi for all gi; gj 2 G,
then the group G is called a commutative or Abelian group. All
groups of orders 1 to 5 are Abelian. In Abelian groups, an
additive notation is sometimes used instead of the multiplicative
notation, i.e. if gi and gk are elements of an Abelian group G then
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one writes gi þ gk instead of gigk. Additive notation is usually
used in groups of translations.

The nth power gn of an element g 2 G, where n is a positive
integer, is defined recursively in the following manner:

(i) g0 ¼ e; g1 ¼ g, where e is a unit element of G;
(ii) gnþ1 ¼ gng;
(iii) g�n ¼ ðgnÞ

�1.
IfG is written additively, one writes ng instead of gn and speaks of
a multiple of g.

If m and n are integers and g is an element of G then the
following laws of exponents hold:

gmgn ¼ gmþn ¼ gngm; ð3:2:3:11Þ

ðgmÞ
n
¼ gmn ¼ ðgnÞ

m: ð3:2:3:12Þ

A set of elements fg1; g2; . . .g of a group G is called a set of
generators of G if any element of the group G can be written as a
product of powers of these generators. In general, a group may
have several sets of generators.

The order of an element g is the smallest positive integer m
such that gm ¼ e. An element g and the inverse element g�1 have
the same order. The order m of any element g of a finite group G
is a factor of the order jGj.

Two groups G and G0 with elements g1; g2; . . . ; gi; . . . and
g01; g

0
2; . . . ; g

0
i; . . ., respectively, are isomorphic if there is an one-

to-one correspondence ’ between G and G0,

’ : gi $ g0i for each gi 2 G; ð3:2:3:13Þ

such that

whenever ’ : gi $ g0i and ’ : gj $ g0j; then ’ : gigj $ g0ig
0
j:

ð3:2:3:14Þ

In other words, the isomorphism of two groups G and G0 is a one-
to-one mapping of G onto G0 [(3.2.3.13)] which preserves the
products of the elements of the two groups [(3.2.3.14)]. Two
isomorphic groups G and G0 are denoted as G ffi G0.

Isomorphism is an equivalence relation that divides the set of
all groups into classes of isomorphic groups. Between two groups
G and G0 there may exist several isomorphisms.

Groups that appear in Chapters 3.3 and 3.4 are mostly crys-
tallographic groups [for their definition and properties see
Bradley & Cracknell (1972), Hahn &Wondratschek (1994), IT A
(2002), IT A1 (2003), Janssen (1973), Opechowski (1986), and
Vainshtein (1994)]. Elements of these groups are distance-
preserving transformations (mappings) called isometries, Eucli-
dean transformations, motions or crystallographic operations.
Whenever we encounter crystallographic groups we shall use the
term ‘crystallographic operation’ or just ‘operation’ or ‘isometry’
instead of ‘element’.

In what follows, the group G may be a crystallographic point
group or a crystallographic space group. Since we shall be mainly
concerned with a continuum approach, we shall have in mind
point groups. When we consider space groups, we shall mention
this explicitly and, if possible, use calligraphic letters, e.g. G,F etc.
for space groups.

Crystallographic operations of crystallographic point groups
and products of these operations can be found by means of the
multiplication calculator in the software GI?KoBo-1 under the
menu item Group Elements (see the manual for GI?KoBo-1).

3.2.3.2.2. Subgroups

Definition 3.2.3.3. Let G be a group. A subset F of G is a
subgroup of G if it forms a group under the product rule of G, i.e.
if it fulfils the group postulates (1) to (4).

For finite groups these requirements can be replaced by a
single condition [see e.g.Opechowski (1986)]: The product of any
two elements fi; fj of F belongs to F,

fifj ¼ fk; fk 2 F for any fi; fj 2 F: ð3:2:3:15Þ

The groups G and F are denoted the high-symmetry group and
the low-symmetry group, respectively. The pair ‘group G –
subgroup F’ is called the symmetry descent G � F, dissymme-
trization G � F or symmetry reduction G � F. A symmetry
descent is a basic specification of a phase transition and corre-
sponding domain structure (see Chapters 3.1 and 3.4).

Each group G always has at least two subgroups: the group G
itself (sometimes called the improper subgroup) and the trivial
subgroup consisting of the unit element only. The symbol F � G
signifies that F is a subgroup of G including the improper
subgroupG, whereas F � Gmeans that F is a proper subgroup of
G which differs from G. By this definition, the trivial subgroup is
a proper subgroup. This definition of a proper subgroup [used e.g.
in Volume A of the present series (IT A, 2002) and by
Opechowski (1986)] is convenient for our purposes, although
often by the term ‘proper subgroup’ one understands a subgroup
different from G and from the trivial subgroup.

A proper subgroup F of G is a maximal subgroup of G if it is
not a proper subgroup of some other proper subgroup H, i.e. if
there exists no group H such that F � H � G: A group can have
more than one maximal subgroup.

A group P for whichG is subgroup is called a supergroup of G,
G � P. IfG is a proper subgroup ofQ,G � Q, thenQ is a proper
supergroup of G. IfG is a maximal subgroup of P, then P is called
a minimal supergroup of G.

Let a group L be a proper supergroup of a group F, F � L, and
simultaneously a proper subgroup of a groupG, L � G. Then the
sequence of subgroups

F � L � G ð3:2:3:16Þ

will be called a group–subgroup chain and the group L an
intermediate group of the chain (3.2.3.16).

Subgroups of crystallographic point groups are listed in Table
3.4.2.7 and are displayed in Figs. 3.1.3.1 and 3.1.3.2 (see also the
software GI?KoBo-1, menu item Subgroups).

3.2.3.2.3. Left and right cosets

If F1 is a proper subgroup of G and gi is a fixed element of G,
then the set of all products gif , where f runs over all elements of
the subgroup F1, is denoted giF1 and is called the left coset of F1 in
G,

giF1 ¼ fgif j 8f 2 F1g; gi 2 G; F1 � G; ð3:2:3:17Þ

where the sign 8 means ‘for all’. Similarly, one defines a right
coset of F1 in G:

F1gi ¼ ffgij 8f 2 F1g; gi 2 G; F1 � G: ð3:2:3:18Þ

[Some authors, e.g.Hall (1959), call the set giF1 a right coset of F1

in G and the set F1gi a left coset of F1 in G.] Since in the appli-
cation of cosets in the symmetry analysis of domain structures left
cosets are used almost exclusively, all statements that follow are
formulated for left cosets. Each statement about left cosets has a
complementary statement about right cosets which can in most
cases be obtained by replacing ‘left’ with ‘right’.

The element gi which appears explicitly in the symbol giF1 of
the left coset of F1 is called a representative of the left coset giF1.
Any element of a left coset can be chosen as its representative.

Left coset criterion: Two elements gi and gj belong to the same
left coset, giF1 ¼ gjF1, if and only if g

�1
i gj belongs to the subgroup

F1, g
�1
i gj 2 F1.
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The property of ‘belong to the same left coset’ is an equiva-
lence relation, therefore two left cosets of the same subgroup are
either identical or have no elements in common.

Proposition 3.2.3.4. The union of all distinct left cosets of F1 in
G constitutes a partition of G and is called the decomposition of
G into the left cosets of F1. If the set of left cosets of F1 in G is
finite, then the decomposition of G into the left cosets of F1 can
be expressed as

G ¼ g1F1 [ g2F1 [ . . . [ gnF1 ¼
[n

i¼1

giF1; ð3:2:3:19Þ

where the symbol [ is the set-theoretical union (see Section
3.2.3.1). For the representative g1 of the first left coset the unit
element e is usually chosen, g1 ¼ e. Then the first left coset is
identical with the subgroup F1. The number of elements in each
left coset of the decomposition is equal to the order of the group
F1.

The set of left-coset representatives fg1; g2; . . . gng is some-
times called a left transversal to F1 in G.

The number n of distinct left cosets is called the index of the
subgroup F1 in the group G and is denoted by the symbol ½G : F1
.
If the groups G and F1 are of finite order then

n ¼ ½G : F1
 ¼ jGj : jF1j; ð3:2:3:20Þ

where jGj and jF1j are the orders of G and F1, respectively. From
this equation follows:

Lagrange’s theorem: the order of a finite group is a multiple of
the order of each of its subgroups. Alternatively, the index of a
subgroup and the order of a finite subgroup are divisors of the
group order.

We note that an infinite subgroup of an infinite group can have
a finite index. Important examples are subgroups of translational
groups of crystallographic space groups and subgroups of space
groups (see Example [oC] 3.2.3.32 in Section 3.2.3.3.5).

The decompositions of crystallographic point groups into left
and right cosets are available in the software GI?KoBo-1, under
Subgroups\View\Twinning Group.

Proposition 3.2.3.5. Let L1 be an intermediate group
F1 � L1 � G. The group G can be decomposed into left cosets of
L1,

G ¼ h1L1 [ h2L1 [ . . . [ hmL1 ¼
[m

j¼1

hjL1; ð3:2:3:21Þ

where

m ¼ ½G : L1
 ¼ jGj : jL1j; ð3:2:3:22Þ

and the group L1 into left cosets of F1,

L1 ¼ p1F1 [ p2F1 [ . . . [ pdF1 ¼
[d

k¼1

pkF1; ð3:2:3:23Þ

where

d ¼ ½L1 : F1
 ¼ jL1j : jF1j: ð3:2:3:24Þ

Then the decomposition of G into left cosets of F1 can be written
in the form

G ¼
[m

j¼1

[d

k¼1

hjpkF1 ð3:2:3:25Þ

and the index n of F1 in G can be expressed as a product of
indices m and d,

n ¼ ½G : F1
 ¼ ½G : L1
½L1 : F1
 ¼ md: ð3:2:3:26Þ

Decompositions (3.2.3.19) and (3.2.3.21) of a group into left
cosets enable one to divide a set of objects into classes of
symmetrically equivalent objects (see Section 3.2.3.3.4). The
concept of domain states is based on this result (see Section
3.4.2).

3.2.3.2.4. Conjugate subgroups

Two subgroups Fi and Fk are conjugate subgroups if there
exists an element g of G such that

gFig
�1 ¼ Fk; g 2 G: ð3:2:3:27Þ

More explicitly, one says that the subgroup Fk is conjugate by g
(or conjugate under G) to the subgroup Fi. Conjugate subgroups
are isomorphic.

The property of ‘being conjugate’ is an equivalence relation.
The set of all subgroups of a groupG can therefore be partitioned
into disjoint classes of conjugate subgroups. Conjugate subgroups
of crystallographic point groups are given in Table 3.4.2.7 and in
the software GI?KoBo-1, under Subgroups\View\Twinning
Group.

3.2.3.2.5. Normalizers

The collection of all elements g that fulfil the relation

gFig
�1 ¼ Fi; g 2 G; ð3:2:3:28Þ

constitutes a group denoted by NGðFiÞ and is called the
normalizer of Fi in G. The normalizer NGðFiÞ is a subgroup of G
and a supergroup of Fi,

Fi � NGðFiÞ � G: ð3:2:3:29Þ

The normalizer NGðFiÞ determines the subgroups conjugate to
Fi under G (see Example 3.2.3.10). The number m of subgroups
conjugate to a subgroup Fi under G equals the index of NGðFiÞ in
G:

m ¼ ½G : NGðFiÞ
 ¼ jGj : jNGðFiÞj; ð3:2:3:30Þ

where the last equation holds for finite G and Fi.
Normalizers of the subgroups of crystallographic point groups

are available in Table 3.4.2.7 and in the software GI?KoBo-1
under Subgroups\View\Twinning Group.

3.2.3.2.6. Normal subgroups

Among subgroups of a group, a special role is played by
normal subgroups. A subgroupH ofG is a normal (invariant, self-
conjugate) subgroup of G if and only if it fulfils any of the
following conditions:

(1) The subgroupH ofG has no conjugate subgroups under G.
(No subscript is therefore needed in the symbol of a normal
subgroup H.)

(2) The normalizer NGðHÞ of H equals the group G,

NGðHÞ ¼ G: ð3:2:3:31Þ

(3) Every element g of G commutes with H, or, equivalently,
each left coset gH equals the right coset Hg:

gH ¼ Hg for every g 2 G: ð3:2:3:32Þ

For a normal subgroup H of a group G a special symbol / is
often used instead of �, H /G.
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3.2.3.2.7.Halving subgroups and dichromatic (black-and-white)
groups

Any subgroup H of a group G of index 2, called a halving
subgroup, is a normal subgroup. The decomposition ofG into left
cosets of H consists of two left cosets,

G ¼ H [ gH: ð3:2:3:33Þ

Sometimes it is convenient to distinguish elements of the coset
gH from elements of the halving subgroup H. This can be
achieved by attaching a sign (usually written as a superscript) to
all elements of the coset. We shall use for this purpose the sign €.
To aid understanding, we shall also mark for a while the elements
of the group H with another sign, ~. The multiplication law for
these ‘decorated elements’ can be written in the following form:

g~1 g
~
2 ¼ g~3 ; g~4 g

€
5 ¼ g€6 ; g€7 g

~
8 ¼ g€9 ; g€10g

€
11 ¼ g~12:

ð3:2:3:34Þ

Now we replace the label ~ by a dummy ‘no mark’ sign (i.e. we
remove ~), but we still keep in mind the multiplication rules
(3.2.3.34). Then the decomposition (3.2.3.33) becomes

G ¼ H [ g€H; ð3:2:3:33aÞ

since the coset g€H assembles all marked elements and H
consists of all bare elements of the group G.

The sign € can carry useful additional information, e.g. the
application of labelled operations g€ is connected with some
changes or new effects, whereas the application of a bare
operation brings about no such changes or effects.

The label € can be replaced by various signs which can have
different meanings. Thus in Chapter 3.3 a prime 0 signifies a
nontrivial twinning operation, in Chapter 1.5 it is associated with
time inversion in magnetic structures, and in black-and-white
patterns or structures a prime denotes an operation which
exchanges black and white ‘colours’ (the qualifier ‘black-and-
white’ concerns group operations, but not the black-and-white
pattern itself). In Chapter 3.4, a star ? denotes a transposing
operation which exchanges two domain states, while underlining
signifies an operation exchanging two sides of an interface and
underlined operations with a star signify twinning operations of a
domain twin. Various interpretations of the label attached to the
symbol of an operation have given rise to several designations of
groups with partition (3.2.3.34): black-and-white, dichromatic,
magnetic, anti-symmetry, Shubnikov or Heech–Shubnikov and
other groups. For more details see Opechowski (1986).

3.2.3.2.8. Double cosets

Let F1 andH1 be two proper subgroups of the groupG. The set
of all distinct products hgjf , where gj is a fixed element of the
group G and f and h run over all elements of the subgroups F1

and H1, respectively, is called a double coset of F1 and H1 in G.
The symbol of this double coset is H1gjF1,

F1gjH1 ¼ ffgjhj 8f 2 F1; 8h 2 H1g;

gj 2 G; F1 � G; H1 � G; ð3:2:3:35Þ

where the sign 8 means ‘for all’.
In the symmetry analysis of domain structures, only double

cosets with H1 ¼ F1 are used. We shall, therefore, formulate
subsequent definitions and statements only for this special type of
double coset.

The fixed element gj is called the representative of the double
coset F1gjF1. Any element of a double coset can be chosen as its
representative.

Two double cosets are either identical or disjoint.

Proposition 3.2.3.6. The union of all distinct double cosets
constitutes a partition of G and is called the decomposition of the
group G into double cosets of F1, since F1F1 ¼ F1. If the set of
double cosets of F1 in G is finite, then the decomposition of G
into the double cosets of F1 can be written as

G ¼ F1g1F1 [ F1g2F1 [ . . . [ F1gqF1: ð3:2:3:36Þ

For the representative g1 of the first double coset F1gjF1 the unit
element e is usually chosen, g1 ¼ e. Then the first double coset is
identical with the subgroup F1.

A double coset F1gjF1 consists of left cosets of the form fgjF1,
where f 2 F1. The number r of left cosets of F1 in the double coset
F1gjF1 is (Hall, 1959)

r ¼ ½F1 : F1j
; ð3:2:3:37Þ

where

F1j ¼ F1 \ gjF1g
�1
j : ð3:2:3:38Þ

The following definitions and statements are used in Chapter
3.4 for the double cosets F1gjF1 [for derivations and more details,
see Janovec (1972)].

The inverse ðF1gjF1Þ
�1 of a double coset F1gjF1 is a double

coset F1g
�1
j F1, which is either identical or disjoint with the double

coset F1gjF1. The double coset that is its own inverse is called an
invertible (self-inverse, ambivalent) double coset. The double
coset that is disjoint with its inverse is called a non-invertible
(polar) double coset and the double cosets F1gjF1 and
ðF1gjF1Þ

�1
¼ F1g

�1
j F1 are called complementary polar double

cosets.
The inverse left coset ðgjF1Þ

�1 contains representatives of all
left cosets of the double coset F1g

�1
j F1. If a left coset gjF1 belongs

to an invertible double coset, then ðgjF1Þ
�1 contains representa-

tives of left cosets constituting the double coset F1gjF1. If a left
coset gjF1 belongs to a non-invertible double coset, then ðgjF1Þ

�1

contains representatives of left cosets constituting the comple-
mentary double coset ðF1gjF1Þ

�1.
A double coset consisting of only one left coset,

F1gjF1 ¼ gjF1; ð3:2:3:39Þ

is called a simple double coset. A double coset F1gjF1 is simple if
and only if the inverse ðgjF1Þ

�1 of the left coset gjF1 is again a left
coset. For an invertible simple double coset gjF1 ¼ ðgjF1Þ

�1.
The union of all simple double cosets F1gjF1 ¼ gjF1 in the

double coset decomposition of G (3.2.3.36) constitutes the
normalizer NGðF1Þ (Speiser, 1927).

A double coset that comprises more than one left coset will be
called a multiple double coset. Four types of double cosets FgF
are displayed in Table 3.2.3.1. The double coset decompositions
of all crystallographic point groups are available in the software
GI?KoBo-1 under Subgroups\View\Twinning Group.

Double cosets and the decomposition (3.2.3.36) of a group in
double cosets are mathematical tools for partitioning a set of
pairs of objects into equivalent classes (see Section 3.2.3.3.6).
Such a division enables one to find possible twin laws and
different types of domain walls that can appear in a domain
structure resulting from a phase transition with a given symmetry
descent (see Chapters 3.3 and 3.4).

More detailed introductions to group theory can be found in
Budden (1972), Janssen (1973), Ledermann (1973), Rosen (1995),
Shubnikov & Koptsik (1974), Vainshtein (1994) and Vainshtein et
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Table 3.2.3.1. Four types of double cosets

FgF ¼ gF FgF 6¼ gF

FgF ¼ ðFgFÞ
�1 Invertible simple Invertible multiple

FgF \ ðFgFÞ
�1

¼ ; Non-invertible simple Non-invertible multiple
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al. (1995). More advanced books on group theory are, for
example, Bradley & Cracknell (1972), Hall (1959), Lang (1965),
Opechowski (1986), Robinson (1982) and Speiser (1927). Parts of
group theory relevant to phase transitions and tensor properties
are treated in the manual of the software GI?KoBo-1. Repre-
sentations of the crystallographic groups are presented in
Chapter 1.2 of this volume and in the software GI?KoBo-1 (see
the manual).

3.2.3.3. Action of a group on a set

3.2.3.3.1. Group action

A direct application of the set and group theory to our studies
would hardly justify their presentation in the last two sections.
However, an appropriate combination of these theories, called
group action, forms a very useful tool for examining crystalline
materials and domain structures in particular. In this section, the
main concepts (action of a group on a set [a], orbits [o], stabilizers
[s]) are explained and their application is illustrated with exam-
ples from crystallography, where the group G is either a crys-
tallographic point group or space group (denoted G, if necessary),
and the set is the three-dimensional point space Eð3Þ [P], a crystal
[C], a property tensor [T] and a subgroup of G [S]. Letters in
square brackets in front of the sequential number of examples
and definitions should aid navigation in the text.

Example [aP] 3.2.3.7. Crystals are objects in a three-dimen-
sional space called point space. Points of this space form an
infinite set which we denote Eð3Þ. If one chooses a point O as the
origin, then to each point X 2 Eð3Þ one can assign the position
vector OX ¼ r of a vector space Vð3Þ [see, for example, IT A
(2002), Part 8]. There is a one-to-one correspondence between
points of the point space and corresponding position vectors of
the vector space,

X $ OX ¼ r: ð3:2:3:40Þ

If one further selects three non-coplanar basic vectors e1; e2; e3,
then the position vector r can be written as

r ¼ x1e1 þ x2e2 þ x3e3; ð3:2:3:41Þ

where x1; x2; x3 are coordinates of the point X .
Let G be a point group. An operation (isometry) g 2 G

transforms (moves) the point X to a point X 0 with the position
vector

r0 ¼ x01e1 þ x02e2 þ x03e3: ð3:2:3:42Þ

Coordinates of this image point are related to coordinates of the
initial point by a linear relation,

x0i ¼
P3

j¼1

DðgÞijxj; i ¼ 1; 2; 3; ð3:2:3:43Þ

where DðgÞij are components of a 3� 3 matrix representing the
operation g.

The described motion of the point X under the operation g can
be formally expressed as a simple relation

gX ¼ X 0; g 2 G; X;X 0 2 Eð3Þ; ð3:2:3:44Þ

the exact meaning of which can be formulated in terms intro-
duced in Section 3.2.3.1 as a mapping ’ that assigns to an ordered
pair ðg;XÞ a point X 0 of the set Eð3Þ,

’ : ðg;XÞ 7!X 0; g 2 G and X;X 0 2 A: ð3:2:3:45Þ

The mapping ’ – i.e. a prescription for how to determine from g
and X the resulting point X 0 – is defined by (3.2.3.40) to
(3.2.3.43). The relation (3.2.3.44) should be considered as only a
shorthand version of the explicit relation (3.2.3.45).

The action of a group on a set generalizes the described
procedure to any group and any set. In this section, we shall use
the term ‘object’ for an element of a set and the term ‘operation’
for an element of a group.

Definition [a] 3.2.3.8. Let G be a group, A a set of objects
Si; Sj; Sk; . . . and ’ : G� A ! A a mapping that assigns to an
ordered pair ðg; SiÞ, where g 2 G; Si and Si are objects of the set
A:

’ : ðg; SiÞ 7! Sk; g 2 G; Si; Sk 2 A: ð3:2:3:46Þ

The ordered pair ðg; SiÞ can often be written simply as a product
gSi and the mapping as an equation. Then the relation (3.2.3.46)
can be expressed in a simpler form:

gSi ¼ Sk; g 2 G; Si; Sk 2 A: ð3:2:3:47Þ

If the mapping (3.2.3.46), expressed in this condensed way, fulfils
two additional conditions,

eSi ¼ Si for any Si 2 A; ð3:2:3:48Þ

where e is the identity operation (unit element) of G, and

hðgSiÞ ¼ ðhgÞSi for any h; g 2 G and any Si 2 A; ð3:2:3:49Þ

then the mapping ’ is called an action (or operation) of a group G
on a set A, or just a group action.

We must note that the replacement of the explicit mapping
(3.2.3.46) by a contracted version (3.2.3.47) is not always possible
(see Example [aS] 3.2.3.11).

The condition (3.2.3.49) requires that the first action gSi ¼ Sk
followed by the second action hSk ¼ Sm gives the same result as if
one first calculates the product hg ¼ p and then applies it to Si,
pSi ¼ Sm.

When a group G, a set A, and a mapping ’ fulfil the require-
ments (3.2.3.47) to (3.2.3.49), one says that G acts or operates on
A and the set A is called a G-set.

Example [aC] 3.2.3.9. We shall examine the action of an
isometry g on an ideal infinite crystal in the three-dimensional
space. Let us choose four points (atoms) of the crystal that define
three non-coplanar vectors a1; a2; a3 (e.g. basic lattice transla-
tions). These vectors will specify the orientation of the crystal in
space. Let g be a point-group operation. This isometry g trans-
forms (moves) points of the crystal to new positions and changes
the orientation of the crystal to a new orientation specified by
vectors a01; a

0
2; a

0
3,

a0i ¼
P3

j¼3

DðgÞjiaj; i ¼ 1; 2; 3; ð3:2:3:50Þ

where DðgÞji are coefficients of a 3� 3 matrix representing the
operation g. For non-trivial operations g, the resulting vectors
a01; a

0
2; a

0
3 always differ from the initial ones. If g is an improper

rotation (rotoinversion), then these vectors have an opposite
handedness to the vectors a1; a2; a3 of the initial orientation and,
for enantiomorphous crystals, the transformed crystal is an
enantiomorphous form of the crystal in the initial orientation.

We choose a reference coordinate system defined by the origin
O and by three non-coplanar basis vectors e1; e2; e3. By the state S
of a crystal we shall understand, in a continuum description, the
set of all its properties expressed by components of physical
property (matter) tensors in the reference coordinate system or,
in a microscopic description, the positions of atoms in the
elementary unit cell expressed in the reference coordinate
system. States defined in this way may change with temperature
and external fields, and also with the orientation of the crystal in
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space. At constant temperature and external fields, the states are
in one-to-one correspondence with the orientations of the crystal.

Application of an isometry on a state of a crystal can be treated
as a group action: Let G be a point group and A a set of all
conceivable states of a crystal. We denote by Si the state of the
crystal in an initial orientation. An operation g of G changes the
orientation of the crystal and the resulting state Sk of the crystal
in a new orientation is determined by Si and g. This is, in math-
ematical terms, a mapping of a pair ðg; SiÞ on a state Sk from the
set A, ’ : ðg; SiÞ 7! Sk, or in the shorthand notation,

gSi ¼ Sk; g 2 G; Si; Sk 2 A: ð3:2:3:51Þ

Since this mapping fulfils conditions (3.2.3.48) and (3.2.3.49), it is
a group action. We note that for some g the resulting state Sk can
be identical with the initial state Si and that several operations
can produce the same resulting state Sk.

Group action of an isometry on a crystal applies in a natural
way to domain structures, where the group G describes the
symmetry of the parent (high-symmetry) phase and the states
Si; Sk are crystallographically equivalent (G-equivalent) states of
the distorted (low-symmetry) phase called domain states. This
means that domain states are states that are crystallographically
equivalent in G. In a continuum description, domain states differ
in orientation and are called ferroic domain states or orientation
states (see Section 3.4.3.2).

Example [aT] 3.2.3.10. Let us consider a property tensor � (e.g.
polarization, permittivity, piezoelectric coefficients) and let us
denote by �ðiÞ components of this tensor expressed in a fixed
reference coordinate system. This set can be represented by a
point in the corresponding tensor space. Let us denote by B the
set of all points of this tensor space and by G a point group. The
mapping

g�ðiÞ ¼ �ðkÞ; g 2 G; �ðiÞ; �ðkÞ 2 B; ð3:2:3:52Þ

is defined by the transformation law of the tensor components
(see Chapter 1.1). This mapping fulfils conditions (3.2.3.48) and
(3.2.3.49), and can therefore be treated as a group action.

Example [aS] 3.2.3.11. Let G be a group, F a subgroup of G,
F � G, and C the set of all subgroups of G. The group G can act
on the set C by conjugation:

’ : ðg;FÞ 7! gFg�1; g 2 G;F 2 C: ð3:2:3:53Þ

In this case, one has to write the mapping explicitly since the
abbreviated form gF would mean a left coset and not a conjugate
subgroup gFg�1. One also has to corroborate the validity of
condition (3.2.3.49): ðh; ðg;FÞÞ 7! ðh; ðgFg�1ÞÞ 7! hðgFg�1Þh�1 ¼

hgFðhgÞ
�1, which is the image of ððhgÞ;FÞ.

An action of a groupG on a set A introduces two basic notions,
namely stabilizers and orbits.

3.2.3.3.2. Stabilizers (isotropy groups)

The concept of a stabilizer is closely connected with the notion
of the symmetry group of an object. Under the symmetry group F
of an object S one understands the set of all operations (isome-
tries) that map the object onto itself, i.e. leave this object S
invariant. In this approach, one usually ‘attaches’ the symmetry
elements to the object. Then the symmetry group F of the object
is its inherent property which does not depend on the orientation
and position of the object in space. The term eigensymmetry is
used in Chapter 3.3 for symmetry groups defined in this way.

The notion of a stabilizer describes the symmetry properties of
an object from another standpoint, in which the object and the
group of isometries are decoupled and introduced independently.
One chooses a reference coordinate system and a group G of
isometries, the operations of which have a defined orientation in
this reference system. Usually, it is convenient to choose as the
reference system the standard coordinate system (crystal-
lographic or crystallophysical) of the group G. The object Si
under consideration is specified not only per se but also by its
orientation in the reference system. Those operations of G that
map the object in this orientation onto itself form a group called
the stabilizer of Si in the group G. An algebraic definition is
formulated in the following way:

Definition [s] 3.2.3.12. The stabilizer (isotropy group) IGðSiÞ of
an object Si of a G-set A in group G is that subgroup of G
comprised of all operations of G that do not change Si,

IGðSiÞ ¼ fg 2 GjgSi ¼ Sig; g 2 G; Si 2 A: ð3:2:3:54Þ

Unlike the ‘eigensymmetry’, the stabilizer IGðSiÞ depends on
the group G, is generally a subgroup of G, IGðSiÞ � G, and may
change with the orientation of the object Si.

There is an important relation between stabilizers of two
objects from a G-set (see e.g. Aizu, 1970; Kerber, 1991):

Proposition 3.2.3.13. Consider two objects Si; Sk from a G-set
related by an operation g from the group G. The respective
stabilizers IGðSiÞ; IGðSkÞ are conjugate by the same operation g,

if Sk ¼ gSi; then IGðSkÞ ¼ gIGðSiÞg
�1: ð3:2:3:55Þ

Let us illustrate the meaning of stabilizers with four examples
of group action considered above.

Example [sP] 3.2.3.14. Let G be a crystallographic space group
and X a point of the three-dimensional point space Eð3Þ (see
Example 3.2.3.7). The stabilizer IGðXÞ, called the site-symmetry
group of the point X in G, consists of all symmetry operations of
G that leave the point X invariant. Consequently, the stabilizer
IGðXÞ is a crystallographic point group. If the stabilizer IGðXÞ

consists only of the identity operation, then the pointX is called a
point of general position. If IGðXÞ is a non-trivial point group,X is
called a point of special position (IT A, 2002).

Example [sC] 3.2.3.15. The symmetry of domain states
Si; Sk; . . ., treated in Example [sP] 3.2.3.9, is adequately
expressed by their stabilizers in the group G of the parent (high-
symmetry) phase, IGðSiÞ ¼ Fi, IGðSkÞ ¼ Fk; . . .. These groups are
called symmetry groups of domain states. If domain states Si; Sk
are related by an operation g 2 G, then their symmetry groups
are, according to (3.2.3.55), conjugate by g,

if Sk ¼ gSi then Fk ¼ gFig
�1: ð3:2:3:56Þ

Symmetry characterization of domain states by their stabilizers
properly reflects a difference between ferroelastic single domain
states and ferroelastic disoriented domain states (see Sections
3.4.3 and 3.4.4).

Example [sT] 3.2.3.16. The notion of the stabilizer enables one
to formulate a basic relation between the symmetry group of the
parent phase, the symmetry group of the first domain state S1 and
order parameters of the transition. In a microscopic description,
the symmetry of the parent phase is described by a space group G

and the symmetry of the first basic (microscopic) single domain
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state S1 by the stabilizer IGðS1Þ ¼ F 1. The stabilizer of the
primary order parameter �ð1Þ must fulfil the condition

IGð�
ð1ÞÞ ¼ IGðS1Þ ¼ F 1: ð3:2:3:57Þ

The appearance of nonzero �ð1Þ in the ferroic phase thus fully
accounts for the symmetry descent G � F 1 at the transition.

In a continuum description, a role analogous to �ð1Þ is played by
a principal tensor parameter �ð1Þ (see Section 3.1.3). Its stabilizer
IGð�

ð1ÞÞ in the parent point group G equals the point group F1 of
the first single domain state S1,

IGð�
ð1ÞÞ ¼ IGðS1Þ ¼ F1: ð3:2:3:58Þ

This contrasts with the secondary order parameter �ð1Þ

(secondary tensor parameter in a continuum description). Its
stabilizer

IGð�
ð1ÞÞ ¼ L1 ð3:2:3:59Þ

is an intermediate group F1 � L1 � G, i.e. the appearance of �ð1Þ

would lead only to a partial symmetry descent G � L1 with
L1 � F1.

Example [sS] 3.2.3.17. The stabilizer of a subgroup Fi � G
from Example [aS] 3.2.3.11 is the normalizer NGðFiÞ defined in
Section 3.2.3.2.5:

IGðFiÞ ¼ fg 2 GjgFig
�1 ¼ Fig ¼ NGðFiÞ: ð3:2:3:60Þ

In general, a stabilizer, which is a subgroup of G, is an example
of a structure which is induced by a group action on the group G.
On the other hand, a group action exerts a partition of the set A
into equivalence classes called orbits.

3.2.3.3.3. Orbits

The group action allows one to specify the equivalence relation
and the partition of a set into equivalence classes introduced in
Section 3.2.3.1 [see (3.2.3.6)]. If G is a group and Si; Sk are two
objects of a G-set A, then one says that the objects Si; Sk are G-
equivalent, Si 	

G Sk, if there exists an operation g 2 G that trans-
forms Si into Sk,

Sk ¼ gSi; Si; Sk 2 A; g 2 G: ð3:2:3:61Þ

In our applications, the group G is most often a crystallographic
group. In this situation we shall speak about crystallographically
equivalent objects. Exceptionally, G will be the group of all
isometriesOð3Þ (full orthogonal group in three dimensions); then
we shall talk about symmetrically equivalent objects.

The relation 	
G is an equivalence relation on a set A and

therefore divides a set A intoG-equivalence classes. These classes
are called orbits and are defined in the following way:

Definition [o] 3.2.3.18. Let A be a G-set and Si an object of the
set A. A G orbit of Si, denoted GSi, is a set of all objects of A that
are G-equivalent with Si,

GSi ¼ fgSij8g 2 Gg; Si 2 A: ð3:2:3:62Þ

Important note: The object Si of the orbit GSi is called the
representative of the orbit GSi. If the group G is known from the
context, one simply speaks of an orbit of Si.

Any two objects of an orbit areG-equivalent and any object of
the orbit can be chosen as a representative of this orbit. Two G
orbits GSr, GSs of a G-set A are either identical or disjoint. The
set A can therefore be partitioned into disjoint orbits,

A ¼ GSi [GSk [ . . . [GSq: ð3:2:3:63Þ

Different groups G produce different partitions of the set A.

Example [oP] 3.2.3.19. If X is a point in three-dimensional
point space and G is a crystallographic point group (see Example
[aP] 3.2.3.7), then the orbit GðXÞ consisting of all crystal-
lographically equivalent points is called a point form [see IT A
(2002), Part 10]. If the group is a space group G, then GðXÞ is
called the a crystallographic orbit of X with respect to G. In this
case, the crystallographic orbit is an infinite set of points due to
the infinite number of translations in the space group G [see ITA
(2002), Part 8]. In this way, the infinite set of points of the point
space is divided into an infinite number of disjoint orbits.

Example [oC] 3.2.3.20. Let S1 be a domain state from Example
[aC] 3.2.3.9. The orbit GS1, where G is the parent phase
symmetry, assembles all G-equivalent domain states,

GS1 ¼ fS1; S2; . . . ; Sng: ð3:2:3:64Þ

The existence of several equivalent states is the main character-
istic feature of domain states. Domain states of the orbit GS1
represent all possible variants of the low-symmetry phase with
the same energy and the same chance of appearance in the
domain structure. Structurally, they represent the crystal struc-
ture S1 in all distinguishable orientations (and also positions in a
microscopic description) related by isometries of the group G. If
G contains rotoinversions and if S1 is an enantiomorphic struc-
ture, then the orbit GS1 also comprises the enantiomorphic form
of S1.

Example [oT] 3.2.3.21. Let �ð1Þ be a principal tensor parameter
of the point-group-symmetry descent G � F1 (see Example [sT]
3.2.3.16). The orbit G�ð1Þ consists of all points in the tensor space
of the principal tensor parameter that are crystallographically
equivalent with respect to G,

G�ð1Þ ¼ f�ð1Þ; �ð2Þ; . . . ; �ðnÞg: ð3:2:3:65Þ

Example [oS] 3.2.3.22. The orbit GF1 of a subgroup F1 in
Example [aS] 3.2.3.11 is the set of all subgroups conjugate under
G to F1,

GF1 ¼ fF1; g2F1g
�1
2 ; . . . ; gmF1g

�1
m g: ð3:2:3:66Þ

From Proposition 3.2.3.13 and from Example [oS] 3.2.3.22, it
follows that stabilizers of objects from one orbit GSi constitute
the orbit (3.2.3.66) of all subgroups conjugate under G. One can
thus associate with each orbit GSi an orbit GFi of conjugate
subgroups of G. The set of all objects with stabilizers from one
orbitGFi of conjugate subgroups is called a stratum of Fi in the set
A (Michel, 1980; Kerber, 1999). In crystallography, the term
Wyckoff position is used for the stratum of points of the point
space (IT A, 2002).

The notion of a stratum can be also applied to the classification
of orbits of domain states treated in Example [oC] 3.2.3.22. LetG
be the symmetry of the parent phase and A the set of all states of
the crystal. Orbits GSi of domain states with stabilizers from one
orbit GFi of conjugate subgroups of G, Fi ¼ IGðSiÞ, are of the
‘same type’ and form a stratum of domain states. Domain states of
different orbits belonging to the same stratum differ in the
numerical values of parameters describing the states but have the
same crystallographic and topological properties. All possible
strata that can be formed from a given parent phase with
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symmetry G can be identified with all different orbits of
subgroups of G.

In a similar manner, points of the order-parameter space and
tensor-parameter space from Examples [sC] 3.2.3.16 and [oT]
3.2.3.21 can be divided into strata which are characterized by the
orbits of possible stabilizers.

Next, we formulate three propositions that are essential in the
symmetry analysis of domain structures presented in Section
3.4.2.

3.2.3.3.4. Orbits and left cosets

Proposition 3.2.3.23. Let G be a finite group, A a G-set and
IGðS1Þ � F1 the stabilizer of an object S1 of the set A; S1 2 A. The
objects of the orbit

GS1 ¼ fS1; S2; . . . ; Sj; . . . ; Sng ð3:2:3:67Þ

and the left cosets gjF1 of the decomposition of G,

G ¼ g1F1 [ g2F1 [ . . . [ gjF1 [ . . . [ gnF1 ¼
[n

j¼1

gjF1;

ð3:2:3:68Þ

are in a one-to-one correspondence,

Sj $ gjF1; F1 ¼ IGðS1Þ; j ¼ 1; 2; . . . ; n: ð3:2:3:69Þ

(See e.g. Kerber, 1991, 1999; Kopský, 1983; Lang, 1965.) The
derivation of the bijection (3.2.3.69) consists of two parts:

(i) All operations of a left coset gjF1 transform S1 into the same
Sj ¼ gjS1, since gjS1 ¼ gjðF1S1Þ ¼ ðgjF1ÞS1, where we use the
relation

F1S1 ¼ ff1; f2; . . . ; fqgS1

¼ ff1S1; f2S1; . . . ; fqS1g

¼ fS1; S1; . . . ; S1g ¼ fS1g ¼ S1; ð3:2:3:70Þ

which in the second line contains a generalization of the group
action and in the third line reflects Definition 3.2.3.1 of a set
as a collection of distinguishable objects, fS1; S1; . . . ; S1g ¼

S1 [ S1 . . . [ S1 ¼ S1.
(ii) Any gr 2 G that transforms S1 into Sj ¼ gjS1 belongs to the

left coset gjF1, since from gjS1 ¼ grS1 it follows that g
�1
r gjS1 ¼ S1,

i.e. g�1
r gj 2 F1, which, according to the left coset criterion, holds if

and only if gr and gj belong to the same left coset gjF1.
We note that the orbit GS1 depends on the stabilizer

IGðS1Þ ¼ F1 of the object S1 and not on the ‘eigensymmetry’ of S1.
From Proposition 3.2.3.23 follow two corollaries:

Corollary 3.2.3.24. The order n of the orbit GS1 equals the
index of the stabilizer IGðS1Þ ¼ F1 in G,

n ¼ ½G : IGðS1Þ
 ¼ ½G : F1
 ¼ jGj : jF1j; ð3:2:3:71Þ

where the last part of the equation applies to point groups only.

Corollary 3.2.3.25. All objects of the orbit GS1 can be gener-
ated by successive application of representatives of all left cosets
gjF1 in the decomposition of G [see (3.2.3.68)] to the object S1,
Sj ¼ gjS1; j ¼ 1; 2; . . . ; n. The orbit GS1 can therefore be
expressed explicitly as

GS1 ¼ fS1; g2S1; . . . ; gjS1; . . . ; gnS1g; ð3:2:3:72Þ

where the operations g1 ¼ e; g2; . . . ; gj; . . . ; gn (left transversal to
F1 in G) are the representatives of left cosets in the decomposi-
tion (3.2.3.68).

Example [oP] 3.2.3.26. The number of equivalent points of the
point form GX (G orbit of the point X) is called a multiplicity
mGðXÞ of this point,

mGðXÞ ¼ jGj : jIGðXÞj: ð3:2:3:73Þ

The multiplicity of a point of general position equals the order
jGj of the group G, since in this case IGðXÞ ¼ e, a trivial group.
Then points of the orbitGX and the operations ofG are in a one-
to-one correspondence. The multiplicity of a point of special
position is smaller than the order jGj, mGðXÞ< jGj, and the
operations of G and the points of the orbit GX are in a many-to-
one correspondence. Points of a stratum have the same multi-
plicity; one can, therefore, talk about the multiplicity of the
Wyckoff position [see IT A (2002)]. If G is a space group, the
point orbit has to be confined to the volume of the primitive unit
cell (Wondratschek, 1995).

Example [oC] 3.2.3.27. Corollaries 3.2.3.24 and 3.2.3.25 applied
to domain states represent the basic relations of domain-struc-
ture analysis. According to (3.2.3.71), the index n of the stabilizer
IGðS1Þ in the parent groupG gives the number of domain states in
the orbit GS1 and the relations (3.2.3.72) and (3.2.3.68) give a
recipe for constructing domain states of this orbit.

Example [oT] 3.2.3.28. If �ð1Þ is a principal tensor parameter
associated with the symmetry descent G � F1, then there is a
one-to-one correspondence between the elements of the orbit of
single domain states GS1 ¼ fS1; S2; . . . ; Sj; . . . ; Sng and the
elements of the orbit of the principal order parameter (points)
G�ð1Þ ¼ f�ð1Þ; �ð2Þ; . . . ; �ðjÞ; . . . ; �ðnÞg (see Example [oT]
3.2.3.21),

Sj $ gjF1 $ �ðjÞ; j ¼ 1; 2; . . . ; n: ð3:2:3:74Þ

Therefore, single domain states of the orbit GS1 can be repre-
sented by the principal tensor parameter of the orbit G�ð1Þ.

Example [oS] 3.2.3.29. Consider a subgroup F1 of a group G.
Since the stabilizer of F1 in G is the normalizer NGðF1Þ (see
Example [sS] 3.2.3.17), the number m of conjugate subgroups is,
according to (3.2.3.71),

m ¼ ½G : NGðF1Þ
 ¼ jGj : jNGðF1Þj; ð3:2:3:75Þ

where the last part of the equation applies to point groups only.
The orbit of conjugate subgroups is

GF1 ¼ fF1; h2F1h
�1
2 ; . . . ; hjF1h

�1
j ; . . . hmF1h

�1
m g;

j ¼ 1; 2; . . . ;m; ð3:2:3:76Þ

where the operations h1 ¼ e; h2; . . . ; hj; . . . ; hm are the repre-
sentatives of left cosets in the decomposition

G ¼ NGðF1Þ [ h2NGðF1Þ [ . . . [ hjNGðF1Þ [ . . . [ hmNGðF1Þ:

ð3:2:3:77Þ

3.2.3.3.5. Intermediate subgroups and partitions of an orbit into
suborbits

Proposition 3.2.3.30. Let GS1 be a G orbit from Proposition
3.2.3.23 and L1 an intermediate group,

F1 � L1 � G: ð3:2:3:78Þ

A successive decomposition ofG into left cosets of L1 and L1 into
left cosets of F1 [see (3.2.3.25)] introduces a two-indices rela-

388



3.2. TWINNING AND DOMAIN STRUCTURES

belling of the objects of a G orbit defined by the one-to-one
correspondence

hjpkF1 $ Sjk; j ¼ 1; 2; . . .m; k ¼ 1; 2; . . . ; d; ð3:2:3:79Þ

where fh1; h2; . . . ; hmg are the representatives of the decom-
positions of G into left cosets of L1,

G ¼ h1L1 [ h2L1 [ . . . [ hjL1 [ . . . [ hmL1; m ¼ ½G : L1
;

ð3:2:3:80Þ

and fp1; p2; . . . ; pdg are the representatives of the decomposi-
tions of L1 into left cosets of F1,

L1 ¼ p1F1 [ p2F1 [ . . . [ pkF1 [ . . . [ pdF1; d ¼ ½L1 : F1
:

ð3:2:3:81Þ

The index n of F1 inG can be expressed as a product of indices
m and d [see (3.2.3.26)],

n ¼ ½G : F1
 ¼ ½G : L1
½L1 : F1
 ¼ md: ð3:2:3:82Þ

If G is a finite group, then the index n can be expressed in terms
of orders of groups G, F1 and L1:

n ¼ jGj : jF1j ¼ ðjGj : jL1jÞðjL1j : jF1jÞ ¼ md: ð3:2:3:83Þ

When one chooses S1 ¼ S11, then the members of the orbit
GS11 can be arranged into an m� d array,

S11 S12 . . . S1k . . . S1d
S21 S22 . . . S2k . . . S2d

..

. ..
. . .

. ..
. . .

. ..
.

Sj1 Sj2 . . . Sjk . . . Sjd

..

. ..
. . .

. ..
. . .

. ..
.

Sm1 Sm2 . . . Smk . . . Smd

ð3:2:3:84Þ

The set of objects of the jth row of this array forms an Lj orbit
with the representative Sj1,

fSj1; Sj2; . . . ; Sjk; . . . ; Sjdg

¼ fhjp1S11; hjp2S11; . . . ; hjpkS11; . . . ; hjpdS11g

¼ LjSj1; ð3:2:3:85Þ

where

Lj ¼ hjL1h
�1
j ; Sj1 ¼ hjS11; j ¼ 1; 2; . . . ;m: ð3:2:3:86Þ

The intermediate group L1 thus induces a splitting of the orbit
GS11 into m suborbits LjSj1, j ¼ 1; 2; . . . ;m:

GS11 ¼ L1S11 [ L2S21 [ . . . [ LjSj1 [ . . . [ LmSm1; m ¼ ½G : L1
:

ð3:2:3:87Þ

Aizu (1972) denotes this partitioning factorization of species.

The relation (3.2.3.79) is just the application of the corre-
spondence (3.2.3.69) of Proposition 3.2.3.23 on the successive
decomposition (3.2.3.25). Derivation of the second part of
Proposition 3.2.3.30 can be sketched in the following way:

fSj1; Sj2; . . . ; Sjdg ¼ hjfp1S11; p2S11; . . . ; pdS11g

¼ hjfp1; p2; . . . ; pdgF1S11

¼ hjL1S11 ¼ hjL1h
�1
j Sj1 ¼ LjSj1;

j ¼ 1; 2; . . . ;m; ð3:2:3:88Þ

where the relation (3.2.3.70) is used.

We note that the described partitioning of an orbit into
suborbits depends on the choice of representative of the first
suborbit S11 and that the number of conjugate subgroups Lj may
be equal to or smaller than the number m of suborbits (see
Example [oS] 3.2.3.34).

Each intermediate group L1 in Proposition 3.2.3.30 can usually
be associated with a certain attribute, e.g. a secondary order
parameter, which specifies the suborbits.

Example [oP] 3.2.3.31. Let G be a point group and X1 a point
of general position ðIGðX1Þ ¼ eÞ in the point space. A symmetry
descent to a subgroup L1 � G is accompanied by a splitting of
the orbit GX1 of jGj equivalent points into m ¼ jGj : jL1j

suborbits each consisting of jL1j equivalent points. The first
suborbit is L1X1, the others are LjXj, Lj ¼ hjL1h

�1
j , Xj ¼ hjX1,

j ¼ 1; 2; . . . ;m, where hj are representatives of left cosets of L1 in
the decomposition of G [see (3.2.3.80)].

Splitting of orbits of points of general position is a special case
in which ILðX1Þ ¼ IGðX1Þ. Splitting of orbits of points of special
position is more complicated if ILðX1Þ � IGðX1Þ (see Wondrat-
schek, 1995).

Example [oC] 3.2.3.32. Let us consider a phase transition
accompanied by a lowering of space-group symmetry from a
parent space group G with translation subgroup T and point
group G to a low-symmetry space group F with translation
subgroup U and point group F. There exists a unique inter-
mediate group M, called the group of Hermann, which has
translation subgroup T and point group M ¼ F (see e.g. Hahn &
Wondratschek, 1994; Wadhawan, 2000; Wondratschek & Aroyo,
2001).

The decomposition of G into left cosets ofM, corresponding to
(3.2.3.80), is in a one-to-one correspondence with the decom-
position of G into left cosets of F, since G and M have the same
translation subgroup T andM and F have the same point group.
Therefore, the index n � ½G : M
 ¼ ½G : F
 ¼ jGj : jFj.

Since M and F have the same point group F, the decom-
position ofM into left cosets of F , corresponding to (3.2.3.81), is
in a one-to-one correspondence with the decomposition of T into
left cosets of U,

T ¼ t1Uþ t2Uþ . . .þ tdU: ð3:2:3:89Þ

Representatives t1; t2; . . . td are translations. The corresponding
vectors lead from the origin of a ‘superlattice’ primitive unit cell
of the low-symmetry phase to lattice points of T located within or
on the side faces of this ‘superlattice’ primitive unit cell (Van
Tendeloo & Amelinckx, 1974). The number dt of these vectors is
equal to the ratio vF : vG ¼ ZF : ZG, where vF and vG are the
volumes of the primitive unit cell of the low-symmetry phase and
the parent phase, respectively, and ZF and ZG are the number of
chemical formula units in the primitive unit cell of the low-
symmetry phase and the parent phase, respectively.

There is another useful formula for expressing dt ¼ ½T : U
.
The primitive basis vectors b1; b2; b3 of U are related to the
primitive basis vectors a1; a2; a3 of T by a linear relation,

bi ¼
P3

j¼1

ajmji; i ¼ 1; 2; 3; ð3:2:3:90Þ

where mji are integers. The volumes of primitive unit cells are
vG ¼ a1ða2 � a3Þ and vF ¼ b1ðb2 � b3Þ. Using (3.2.3.90), one
gets vF ¼ detðmijÞvG, where detðmijÞ is the determinant of the
ð3� 3Þ matrix of the coefficients mij. Hence the index
dt ¼ ðvF : vGÞ ¼ detðmijÞ.

Thus we get for the index N of F in G
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N ¼ ½G : F
 ¼ ½G : F
½T : U


¼ ðjGj : jFjÞðvF : vGÞ ¼ ðjGj : jFjÞðZF : ZGÞ

¼ ðjGj : jFjÞdetðmijÞ ¼ ndt: ð3:2:3:91Þ

Each suborbit, represented by a row in the array (3.2.3.84),
contains all basic (microscopic) domain states that are related by
pure translations. These domain states exhibit the same tensor
properties, i.e. they belong to the same ferroic domain state.

Example [sT] 3.2.3.33. Let us consider a phase transition with a
symmetry descent G � F1 with an orbit GS11 of domain states.
Let L1 be an intermediate group, F1 � L1 � G, and �ð1Þ the
principal order parameter associated with the symmetry descent
G � L1 [cf. (3.2.3.58)], IGð�

ð1ÞÞ ¼ L1. Since L1 is an intermediate
group, the quantity �ð1Þ represents a secondary order parameter
of the symmetry descent G � F1. The G orbit of �ð1Þ is

G�ð1Þ ¼ f�ð1Þ; �ð2Þ; . . . ; �ðmÞg; m ¼ ½G : L1
: ð3:2:3:92Þ

As in Example [oT] 3.2.3.28, there is a bijection between left
cosets of the decomposition of G into left cosets of L1 [see
(3.2.3.80)] and the G orbit of secondary order parameters
(3.2.3.92). One can, therefore, associate with the suborbit LjSj1
the value �ðjÞ of the secondary order parameter �,

LjSj1 $ �ðjÞ; j ¼ 1; 2; . . . ;m: ð3:2:3:93Þ

A suborbit LjSj1 is thus comprised of objects of the orbit GS11
with the same value of the secondary order parameter �ðjÞ.

Example [oS] 3.2.3.34. Let us choose for the intermediate
group L1 the normalizer NGðF1Þ. Then the suborbits equal

NGðFjÞSj1 ¼ fhjS11; hjp2S11; . . . ; hjpdS11g;

j ¼ 1; 2; . . . ;m ¼ ½G : NGðF1Þ
; ð3:2:3:94Þ

where p1 ¼ e; p2; . . . ; pd are representatives of left cosets pkF1 in
the decomposition of NGðF1Þ,

NGðF1Þ ¼ p1F1 [ p2F1 [ . . . [ pdF1; d ¼ ½NGðF1Þ : F1
;

ð3:2:3:95Þ

and hj are representatives of the decomposition (3.2.3.77). The
suborbit FjSj1 consists of all objects with the same stabilizer Fj,

IGðSj1Þ ¼ IGðSj2Þ ¼ . . . ¼ IGðSjdÞ ¼ Fj;

j ¼ 1; 2; . . . ;m ¼ ½G : NGðF1Þ
:

ð3:2:3:96Þ

Propositions 3.2.3.23 and 3.2.3.30 are examples of structures
that a group action induces from a group G on a G-set. Another
important example is a permutation representation of the group
G which associates operations of G with permutations of the
objects of the orbit GSi [see e.g. Kerber (1991, 1999); for appli-
cation of the permutation representation in domain-structure
analysis and domain engineering, see e.g. Fuksa & Janovec (1995,
2002)].

3.2.3.3.6. Orbits of ordered pairs and double cosets

An ordered pair ðSi; SkÞ is formed by two objects Si; Sk from
the orbitGS1. Let P denote the set of all ordered pairs that can be
formed from the objects of the orbit GS1. The group action ’ of
group G on the set P is defined by the following relation:

’ : gðSi; SkÞ ¼ ðgSi; gSkÞ ¼ ðSr; SsÞ;

g 2 G; ðSi; SkÞ; ðSr; SsÞ 2 P: ð3:2:3:97Þ

The requirements (3.2.3.47) to (3.2.3.49) are fulfilled, mapping
(3.2.3.97) defines an action of group G on the set P.

The group action (3.2.3.97) introduces the G-equivalence of
ordered pairs: Two ordered pairs ðSi; SkÞ and ðSr; SsÞ are
crystallographically equivalent (with respect to the group
G), ðSi; SkÞ 	

G ðSr; SsÞ, if there exists an operation g 2 G that
transforms ðSi; SkÞ into ðSr; SsÞ,

g 2 G ðgSi; gSkÞ ¼ ðSr; SsÞ; ðSi; SkÞ; ðSr; SsÞ 2 P: ð3:2:3:98Þ

An orbit of ordered pairs GðSi; SkÞ comprises all ordered pairs
crystallographically equivalent with ðSi; SkÞ. One can choose as a
representative of the orbit GðSi; SkÞ an ordered pair ðS1; SjÞ with
the first member S1 since there is always an operation g1i 2 G
such that gi1Si ¼ S1. The orbit F1ðS1; SjÞ assembles all ordered
pairs with the first member S1. This orbit can be expressed as

F1ðS1; SjÞ ¼ ðF1S1;F1SjÞ ¼ ðS1;F1ðgjS1ÞÞ

¼ ðS1; ðF1gjÞðF1S1ÞÞ ¼ ðS1; ðF1gjF1ÞS1Þ;

ð3:2:3:99Þ

where the identity F1S1 ¼ S1 [see relation (3.2.3.70)] has been
used.

Thus the double coset F1gjF1 contains all operations from G
that produce all ordered pairs with the first member S1 that are
G-equivalent with ðS1; Sj ¼ gjS1Þ. If one chooses gr 2 G that is
not contained in the double coset F1gjF1, then the ordered pair
ðS1; Sr ¼ grS1Þmust belong to another orbitGðS1; SrÞ 6¼GðS1; SjÞ.
Hence to distinct double cosets there correspond distinct classes
of ordered pairs with the first member S1, i.e. distinct orbits of
ordered pairs. Since the groupG can be decomposed into disjoint
double cosets [see (3.2.3.36)], one gets

Proposition 3.2.3.35. Let G be a group and P a set of all
ordered pairs that can be formed from the objects of the orbit
GS1. There is a one-to-one correspondence between the G orbits
of ordered pairs of the set P and the double cosets of the
decomposition

G ¼ F1 [ F1g2F1 [ . . . [ F1gjF1 [ . . . [ F1gqF1;

j ¼ 1; 2; . . . q: ð3:2:3:100Þ

GðS1; SjÞ $ F1gjF1 where Sj ¼ gjS1: ð3:2:3:101Þ

This bijection allows one to express the partition of the set P of
all ordered pairs into G orbits,

P ¼ GðS1; S1Þ [GðS1; g2S1Þ [ . . . [ ðS1; SjÞ [ . . . [GðS1; gqS1Þ;

ð3:2:3:102Þ

where fg1 ¼ e; g2; . . . gj; . . . gqg is the set of representatives of
double cosets in the decomposition (3.2.3.100) (Janovec, 1972).

Proposition 3.2.3.35 applies directly to pairs of domain states
(domain pairs) and allows one to find transposition laws that can
appear in the low-symmetry phase (see Section 3.4.3).

For more details and other applications of group action see e.g.
Kopský (1983), Lang (1965), Michel (1980), Opechowski (1986),
Robinson (1982), and especially Kerber (1991, 1999).
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3.3. Twinning of crystals

By Th. Hahn and H. Klapper

In this chapter, the basic concepts and definitions of twinning, as
well as the morphological, genetic and lattice classifications of
twins, are presented. Furthermore, twin boundaries are discussed
extensively. The effect of twinning in reciprocal space, i.e. on
diffraction and crystal-structure determinations, is outside the
scope of the present edition. In the literature, the concept of
twinning is very often used in a non-precise or ambiguous way. In
order to clarify the terminology, this chapter begins with a section
on the various kinds of crystal aggregates and intergrowths; in
this context twinning appears as a special intergrowth with well
defined crystallographic orientation relations.

3.3.1. Crystal aggregates and intergrowths

Minerals in nature and synthetic solid materials display different
kinds of aggregations, in mineralogy often called intergrowths. In
this chapter, we consider only aggregates of crystal grains of the
same species, i.e. of the same (or nearly the same) chemical
composition and crystal structure (homophase aggregates).
Intergrowths of grains of different species (heterophase aggre-
gates), e.g. heterophase bicrystals, epitaxy (two-dimensional
oriented intergrowth on a surface), topotaxy (three-dimensional
oriented precipitation or exsolution) or the paragenesis of
different minerals in a rock or in a technical product are not
treated in this chapter.

(i) Arbitrary intergrowth: Aggregation of two or more crystal
grains with arbitrary orientation, i.e. without any systematic
regularity. Examples are irregular aggregates of quartz crystals
(Bergkristall) in a geode and intergrown single crystals precipi-
tated from a solution. To this category also belong untextured
polycrystalline materials and ceramics, as well as sandstone and
quartzite.

(ii) Parallel intergrowth: Combination of two or more crystals
with parallel (or nearly parallel) orientation of all edges and
faces. Examples are dendritic intergrowths as well as parallel
intergrowths of spinel octahedra (Fig. 3.3.1.1a) and of quartz
prisms (Fig. 3.3.1.1b). Parallel intergrowths frequently exhibit re-
entrant angles and are, therefore, easily misinterpreted as twins.

In this context the term mosaic crystal must be mentioned. It
was introduced in the early years of X-ray diffraction in order to
characterize the perfection of a crystal. A mosaic crystal consists
of small blocks (size typically in the micron range) with orien-
tations deviating only slightly from the average orientation of the

crystal; the term ‘lineage structure’ is also used for very small
scale parallel intergrowths (Buerger, 1934, 1960a, pp. 69–73).

(iii) Bicrystals: This term is mainly used in metallurgy. It refers
to the (usually synthetic) intergrowth of two single crystals with a
well defined orientation relation. A bicrystal contains a grain
boundary, which in general is also well defined. Usually, homo-
phase bicrystals are synthesized in order to study the structure
and properties of grain boundaries. An important tool for the
theoretical treatment of bicrystals and their interfaces is the
coincidence-site lattice (CSL). A brief survey of bicrystals is given
in Section 3.2.2; a comparison with twins and domain structures is
provided by Hahn et al. (1999).

(iv) Growth sectors: Crystals grown with planar faces (habit
faces), e.g. from vapour, supercooled melt or solution, consist of
regions crystallized on different growth faces (Fig. 3.3.1.2). These
growth sectors usually have the shapes of pyramids with their
apices pointing toward the nucleus or the seed crystal. They are
separated by growth-sector boundaries, which represent inner
surfaces swept by the crystal edges during growth. In many cases,
these boundaries are imperfections of the crystal.

Frequently, the various growth sectors of one crystal exhibit
slightly different chemical and physical properties. Of particular
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Fig. 3.3.1.1. Parallel intergrowth (a) of spinel octahedra and (b) of hexagonal
quartz prisms. Part (a) after Phillips (1971, p. 172), part (b) after Tschermak
& Becke (1915, p. 94).

Fig. 3.3.1.2. (a) Optical anomaly of a cubic mixed (K,NH4)-alum crystal
grown from aqueous solution, as revealed by polarized light between crossed
polarizers: (110) plate, 1 mm thick, horizontal dimension about 4 cm. (b)
Sketch of growth sectors and their boundaries of the crystal plate shown in
(a). The {111} growth sectors are optically negative and approximately
uniaxial with their optical axes parallel to their growth directions h111i
[birefringence �n up to 5� 10�5; Shtukenberg et al. (2001)]. The (001)
growth sector is nearly isotropic (�n< 10�6). Along the boundaries A
between {111} sectors a few small {110} growth sectors (resulting from small
{110} facets) have formed during growth. S: seed crystal.
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interest is a different optical birefringence in different growth
sectors (optical anomaly) because this may simulate twinning. A
typical example of this optical anomaly is shown in Fig. 3.3.1.2.

The phenomenon optical anomaly can be explained as follows:
as a rule, impurities (or dopants) present in the solution are
incorporated into the crystal during growth. Usually, the impurity
concentrations differ in symmetrically non-equivalent growth
sectors (which belong to different crystal forms), leading to
slightly changed lattice parameters and physical properties of
these sectors. Surprisingly, optical anomalies may occur also in
symmetrically equivalent growth sectors (which belong to the
same crystal form): as a consequence of growth fluctuations,
layers of varying impurity concentrations parallel to the growth
face of the sector (‘growth striations’) are formed. This causes a
slight change of the interplanar spacing normal to the growth
face. For example, a cubic NaCl crystal grown on f100g cube faces
from an aqueous solution containing Mn ions consists of three
pairs of (opposite) growth sectors exhibiting a slight tetragonal
distortion with tetragonality 10�5 along their h100i growth
directions, and, hence, are optically uniaxial (Ikeno et al., 1968).
Although this phenomenon closely resembles all features of
twinning, it does not belong to the category ‘twinning’, because it
is not an intrinsic property of the crystal species, but rather the
result of different growth conditions (or growth mechanisms) on
different faces of the same crystal (growth anisotropy).

An analogous effect may be observed in crystals grown from
the melt on rounded and facetted interfaces (e.g. garnets). The
regions crystallized on the rounded growth faces and on the
different facets correspond to different growth sectors and may
exhibit optical anomalies.

The relative lattice-parameter changes associated with these
phenomena usually are smaller than 10�4 and cannot be detected
in ordinary X-ray diffraction experiments. They are, however,
accessible by high-resolution X-ray diffraction.

(v) Translation domains: Translation domains are homo-
geneous crystal regions that exhibit exact parallel orientations,
but are displaced with respect to each other by a vector
(frequently called a fault vector), which is a fraction of a lattice
translation vector. The interface between adjoining translation
domains is called the ‘translation boundary’. Often the terms
antiphase domains and antiphase boundaries are used. Special
cases of translation boundaries are stacking faults. Translation
domains are defined on an atomic scale, whereas the term parallel
intergrowth [see item (ii) above] refers to macroscopic
(morphological) phenomena; cf. Note (7) in Section 3.3.2.4.

(vi) Twins: A frequently occurring intergrowth of two or more
crystals of the same species with well defined crystallographic
orientation relations is called a twin (German: Zwilling; French:
macle). Twins form the subject of the present chapter. The closely
related topic of domain structures is treated in Chapter 3.4.

3.3.2. Basic concepts and definitions of twinning

Because twinning is a rather complex and widespread
phenomenon, several definitions have been presented in the
literature. Two of them are quoted here because of the particular
engagement of their authors in this topic.

George Friedel (1904; 1926, p. 421): A twin is a complex crys-
talline edifice built up of two or more homogeneous portions of the
same crystal species in contact (juxtaposition) and oriented with
respect to each other according to well-defined laws.

These laws, as formulated by Friedel, are specified in his book
(Friedel, 1926). His ‘lattice theory of twinning’ is discussed in
Sections 3.3.8 and 3.3.9 of the present chapter.

Paul Niggli (1919, 1920/1924/1941): If several crystal individuals
of the same species are intergrown in such a way that all analogous
faces and edges are parallel, then one speaks of parallel inter-
growth. If for two crystal individuals not all but only some of the
(morphological) elements (edges or faces), at least two indepen-
dent ones, are parallel or antiparallel, and if such an intergrowth
due to its frequent occurrence is not ‘accidental’, then one speaks
of twins or twin formation. The individual partners of typical twins
are either mirror images with respect to a common plane (‘twin-
plane law’), or they appear rotated by 180� around a (common)
direction (‘zone-axis law’, ‘hemitropic twins’), or both features
occur together. These planes or axes, or both, for all frequently
occurring twins turn out to be elements with relatively simple
indices (referred to the growth morphology). (Niggli, 1924, p. 176;
1941, p. 137.)

Both definitions are geometric. They agree in the essential fact
that the ‘well defined’ laws, i.e. the orientation relations between
two twin partners, refer to rational planes and directions.
Morphologically, these relations find their expression in the
parallelism of some crystal edges and crystal faces. In these and
other classical definitions of twins, the structure and energy of
twin boundaries were not included. This aspect was first intro-
duced by Buerger in 1945.

3.3.2.1. Definition of a twin

In a more extended fashion we define twinning as follows:
An intergrowth of two or more macroscopic, congruent or

enantiomorphic, individuals of the same crystal species is called a
twin, if the orientation relations between the individuals occur
frequently and are ‘crystallographic’. The individuals are called
twin components, twin partners or twin domains. A twin is
characterized by the twin law, i.e. by the orientation and chirality
relation of two twin partners, as well as by their contact relation
(twin interface, composition plane, domain boundary).

3.3.2.2. Essential addenda to the definition

(a) The orientation relation between two partners is defined as
crystallographic and, hence, the corresponding intergrowth is a
twin, if the following two minimal conditions are simultaneously
obeyed:

(i) at least one lattice row (crystal edge) [uvw] is ‘common’ to
both partners I and II, either parallel or antiparallel, i.e. ½uvw�I is
parallel to �½uvw�II;

(ii) at least two lattice planes (crystal faces) ðhklÞI and�ðhklÞII,
one from each partner, are ‘parallel’, but not necessarily
‘common’ (see below). This condition implies a binary twin
operation (twofold rotation, reflection, inversion).

Both conditions taken together define the minimal geometric
requirement for a twin (at least one common row and one pair of
parallel planes), as originally pronounced by several classical
authors (Tschermak, 1884, 1905; 1904; Tschermak & Becke, 1915;
Mügge, 1911, p. 39; Niggli, 1920/1924/1941; Tertsch, 1936) and
taken up later by Menzer (1955) and Hartman (1956). It is
obvious that these crystallographic conditions apply even more to
twins with two- and three-dimensional lattice coincidences, as
described in Section 3.3.8. Other orientation relations, as they
occur, for instance, in arbitrary intergrowths or bicrystals, are
called ‘noncrystallographic’.

The terms ‘common edge’ and ‘common face’, as used in this
section, are derived from the original morphological considera-
tion of twins. Example: a re-entrant edge of a twin is common to
both twin partners. In lattice considerations, the terms ‘common
lattice row’, ‘common lattice plane’ and ‘common lattice’ require
a somewhat finer definition, in view of a possible twin displace-
ment vector t of the twin boundary, as introduced in Note (8) of
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Section 3.3.2.4 and in Section 3.3.10.3. For this distinction the
terms ‘parallel’, ‘common’ and ‘coincident’ are used as follows:

Two lattice rows ½uvw�I and ½uvw�II:
Common: rows parallel or antiparallel, with their lattice points

possibly displaced with respect to each other parallel to the row
by a vector t 6¼ 0.

Coincident: common rows with pointwise coincidence of their
lattice points, i.e. t ¼ 0.

Two lattice planes ðhklÞI and ðhklÞII:
Parallel: ‘only’ the planes as such, but not all corresponding

lattice rows in the planes, are mutually parallel or antiparallel.
Common: parallel planes with all corresponding lattice rows

mutually parallel or antiparallel, but possibly displaced with
respect to each other parallel to the plane by a vector t 6¼ 0.

Coincident: common planes with pointwise coincidence of their
lattice points, i.e. t ¼ 0.

Two point lattices I and II:
Parallel or common: all corresponding lattice rows are

mutually parallel or antiparallel, but the lattices are possibly
displaced with respect to each other by a vector t 6¼ 0.

Coincident: parallel lattices with pointwise coincidence of their
lattice points, i.e. t ¼ 0.

Note that for lattice rows and point lattices only two cases have
to be distinguished, whereas lattice planes require three terms.

(b) A twinned crystal may consist of more than two individuals.
All individuals that have the same orientation and handedness
belong to the same orientation state (component state, domain
state, domain variant). The term ‘twin’ for a crystal aggregate
requires the presence of at least two orientation states.

(c) The orientation and chirality relation between two twin
partners is expressed by the twin law. It comprises the set of all
twin operations that transform the two orientation states into
each other. A twin operation cannot be a symmetry operation of
either one of the two twin components. The combination of a
twin operation and the geometric element to which it is attached
is called a twin element (e.g. twin mirror plane, twofold twin axis,
twin inversion centre).

(d) An orientation relation between two individuals deserves
the name ‘twin law’ only if it occurs frequently, is reproducible
and represents an inherent feature of the crystal species.

(e) One feature which facilitates the formation of twins is
pseudosymmetry, apparent either in the crystal structure, or in
special lattice-parameter ratios or lattice angles.

(f) In general, the twin interfaces are low-energy boundaries
with good structural fit; very often they are low-index lattice
planes.

3.3.2.3. Specifications and extensions of the orientation relations

In the following, the orientation and chirality relations of two
or more twin components, only briefly mentioned in the defini-
tion, are explained in detail. Two categories of orientation rela-
tions have to be distinguished: those arising from binary twin
operations (binary twin elements), i.e. operations of order 2, and
those arising from pseudo n-fold twin rotations (n-fold twin axes),
i.e. operations of order � 3.

3.3.2.3.1. Binary twin operations (twin elements)

The (crystallographic) orientation relation of two twin part-
ners can be expressed either by a twin operation or by its
corresponding twin element. Binary twin elements can be either
twin mirror planes or twofold twin axes or twin inversion centres.
The former two twin elements must be parallel or normal to
(possible) crystal faces and edges (macroscopic description) or,
equivalently, parallel or normal to lattice planes and lattice rows
(microscopic lattice description). Twin elements may be either
rational (integer indices) or irrational (irrational indices which,
however, can always be approximated by sufficiently large
integer indices). Twin reflection planes and twin axes parallel to
lattice planes or lattice rows are always rational. Twin axes and
twin mirror planes normal to lattice planes or lattice rows are
either rational or irrational. In addition to planes and axes, points
can also occur as twin elements: twin inversion centres.

There exist seven kinds of binary twin elements that define the
seven general twin laws possible for noncentrosymmetric triclinic
crystals (crystal class 1):

(i) Rational twin mirror plane (hkl) normal to an irrational
line: reflection twin (Fig. 3.3.2.1a). The lattice plane hkl is
common to both twin partners.
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Fig. 3.3.2.1. Schematic illustration of the orientation relations of triclinic twin
partners, see Section 3.3.2.3.1, (a) for twin element (i) ‘rational twin mirror
plane’ and (b) for twin element (ii) ‘irrational twofold twin axis’ (see text);
common lattice plane (hkl) for both cases. The noncentrosymmetry of the
crystal is indicated by arrows. The sloping up and sloping down of the arrows
is indicated by the tapering of their images. For centrosymmetry, both cases
(a) and (b) represent the same orientation relation.

Fig. 3.3.2.2. As Fig. 3.3.2.1, (a) for twin element (iii) ‘rational twofold twin
axis’ and (b) for twin element (iv) ‘irrational twin mirror plane’ (see text);
common lattice row [uvw] for both cases. For centrosymmetry, both cases
represent the same orientation relation.
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(ii) Irrational twofold twin axis normal to a rational lattice
plane hkl: rotation twin (Fig. 3.3.2.1b). The lattice plane hkl is
common to both twin partners.

(iii) Rational twofold twin axis [uvw] normal to an irrational
plane: rotation twin (Fig. 3.3.2.2a). The lattice row [uvw] is
common to both twin partners.

(iv) Irrational twin mirror plane normal to a rational lattice
row [uvw]: reflection twin (Fig. 3.3.2.2b). The lattice row [uvw] is
common to both twin partners.

(v) Irrational twofold twin axis normal to a rational lattice row
[uvw], both located in a rational lattice plane (hkl); perpendicular
to the irrational twin axis is an irrational plane: complex twin;
German: Kantennormalengesetz (Fig. 3.3.2.3). The lattice row
[uvw] is ‘common’ to both twin partners; the planes ðhklÞI and
ðhklÞII are ‘parallel’ but not ‘common’ (cf. Tschermak & Becke,
1915, p. 98; Niggli, 1941, p. 138; Bloss, 1971, pp. 228–230; Phillips,
1971, p. 178).

(vi) Irrational twin mirror plane containing a rational lattice
row [uvw]; perpendicular to the twin plane is an irrational
direction; the row [uvw] and the perpendicular direction span a
rational lattice plane (hkl): complex twin; this ‘inverted Kanten-
normalengesetz’ is not described in the literature (Fig. 3.3.2.3).
The row [uvw] is ‘common’ to both twin partners; the planes
ðhklÞI and ðhklÞII are ‘parallel’ but not ‘common’.

(vii) Twin inversion centre: inversion twin. The three-dimen-
sional lattice is common to both twin partners. Inversion twins
are always merohedral (parallel-lattice) twins (cf. Section 3.3.8).

All these binary twin elements – no matter whether rational or
irrational – lead to crystallographic orientation relations, as
defined in Section 3.3.2.2, because the following lattice items
belong to both twin partners:

(a) The rational lattice planes ðhklÞI and ðhklÞII are ‘common’
for cases (i) and (ii) (Fig. 3.3.2.1).

(b) The rational lattice rows ½uvw�I and ½uvw�II are ‘common’
and furthermore lattice planes ðhklÞI=ðhklÞII in the zone [uvw] are
‘parallel’, but not ‘common’ for cases (iii), (iv), (v) and (vi). Note
that for cases (iii) and (iv) any two planes ðhklÞI=ðhklÞII of the
zone [uvw] are parallel, whereas for cases (v) and (vi) only a
single pair of parallel planes exists (cf. Figs. 3.3.2.2 and 3.3.2.3).

(c) The entire three-dimensional lattice is ‘common’ for case
(vii).

In this context one realizes which wide range of twinning is
covered by the requirement of a crystallographic orientation
relation: the ‘minimal’ condition is provided by the complex twins

(v) and (vi): only a one-dimensional lattice row is ‘common’, two
lattice planes are ‘parallel’ and all twin elements are irrational
(Fig. 3.3.2.3). The ‘maximal’ condition, a ‘common’ three-
dimensional lattice, occurs for inversion twins (‘merohedral’ or
‘parallel-lattice twins’), case (vii).

In noncentrosymmetric triclinic crystals, the above twin
elements define seven different twin laws, but for centrosym-
metric crystals only three of them represent different orientation
relations, because both in lattices and in centrosymmetric crystals
a twin mirror plane defines the same orientation relation as the
twofold twin axis normal to it, and vice versa. Consequently, the
twin elements of the three pairs (i) + (ii), (iii) + (iv) and (v) + (vi)
represent the same orientation relation. Case (vii) does not apply
to centrosymmetric crystals, since here the inversion centre
already belongs to the symmetry of the crystal.

For symmetries higher than triclinic, even more twin elements
may define the same orientation relation, i.e. form the same twin
law. Example: the dovetail twin of gypsum (point group 12=m1)
with twin mirror plane (100) can be described by the four alter-
native twin elements (i), (ii), (iii), (iv) (cf. Section 3.3.4, Fig.
3.3.4.1). Furthermore, with increasing symmetry, the twin
elements (i) and (iii) may become even more special, and the
nature of the twin type may change as follows:

(i) the line normal to a rational twin mirror plane (hkl) may
become a rational line [uvw];

(ii) the plane normal to a rational twofold twin axis [uvw] may
become a rational plane (hkl).

In both cases, the three-dimensional lattice (or a sublattice of
it) is now common to both twin partners, i.e. a ‘merohedral’ twin
results.

There is one more binary twin type which seems to reduce
even further the above-mentioned ‘minimal’ condition for a
crystallographic orientation relation, the so-called ‘median law’
(German: Mediangesetz) of Brögger (1890), described by
Tschermak & Becke (1915, p. 99). So far, it has been found in one
mineral only: hydrargillite (modern name gibbsite), Al(OH)3.
The acceptability of this orientation relation as a twin law is
questionable; see Section 3.3.6.10.

3.3.2.3.2. Pseudo n-fold twin rotations (twin axes) with n � 3

There is a long-lasting controversy in the literature, e.g.
Hartman (1956, 1960), Buerger (1960b), Curien (1960), about the
acceptance of three-, four- and sixfold rotation axes as twin
elements, for the following reason:

Twin operations of order two (reflection, twofold rotation,
inversion) are ‘exact’, i.e. in a component pair they transform the
orientation state of one component exactly into that of the other.
There occur, in addition, many cases of multiple twins, which can
be described by three-, four- and sixfold twin axes. These axes,
however, are pseudo axes because their rotation angles are close
to but not exactly equal to 120, 90 or 60�, due to metrical
deviations (no matter how small) from a higher-symmetry lattice.
A well known example is the triple twin (German: Drilling) of
orthorhombic aragonite, where the rotation angle � ¼
2 arctan b=a ¼ 116:2� (which transforms the orientation state
of one component exactly into that of the other)
deviates significantly from the 120� angle of a proper threefold
rotation (Fig. 3.3.2.4). Another case of n ¼ 3 with a very small
metrical deviation is provided by ammonium lithium sulfate
(� ¼ 119:6�).

All these (pseudo) n-fold rotation twins, however, can also be
described by (exact) binary twin elements, viz by a cyclic
sequence of twin mirror planes or twofold twin axes. This is also
illustrated and explained in Fig. 3.3.2.4. This possibility of
describing cyclic twins by ‘exact’ binary twin operations is the
reason why Hartman (1956, 1960) and Curien (1960) do not
consider ‘non-exact’ three-, four- and sixfold rotations as proper
twin operations.
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Fig. 3.3.2.3. Illustration of the Kantennormalengesetz (complex twin) for twin
elements (v) and (vi) (see text); common lattice row [uvw] for both cases.
Note that both twin elements transform the net plane ðhklÞI into its parallel
but not pointwise coincident counterpart ðhklÞII. For centrosymmetry, both
cases represent the same orientation relation.
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The crystals forming twins with pseudo n-fold rotation axes
always exhibit metrical pseudosymmetries. In the case of trans-
formation twins and domain structures, the metrical pseudo-
symmetries of the low-symmetry (deformed) phaseH result from
the true structural symmetry G of the parent phase (cf. Section
3.3.7.2). This aspect caused several authors [e.g. Friedel, 1926, p.
435; Donnay (cf. Hurst et al., 1956); Buerger, 1960b] to accept
these pseudo axes for the treatment of twinning. The present
authors also recommend including three-, four- and sixfold
rotations as permissible twin operations. The consequences for
the definition of the twin law will be discussed in Section 3.3.4 and
in Section 3.4.3. For a further extension of this concept to fivefold
and tenfold multiple growth twins, see Note (6) below and
Example 3.3.6.8.

3.3.2.4. Notes on the definition of twinning

(1) The above definition of twinning covers twins with a size
range from decimetres for large mineral specimens to fractions of
microns of polydomain twins. The lower limit for a reasonable
application of the twin concept lies in the nanometre range of
100–1000 Å. Unit-cell twinning is a limiting case closely related to
superstructures or positional disorder and is not treated in this
chapter. An extensive monograph on this topic under the name
Tropochemical cell-twinning was recently published by Takeuchi
(1997).

(2) Rational twin elements are designated by integer Miller
indices (hkl) and integer direction indices [uvw] for twin mirror
planes and twin rotation axes, respectively; the values of these
indices usually are small numbers, < 6. Larger values should not
be accepted without critical assessment. Irrational twin elements
are described either by their rational ‘counterparts’ (perpendi-
cular planes or lines) or are approximated by high integer values
of the indices.

(3) For a twin, the crystallographic orientation relation is a
property of the crystal structure, in contrast to bicrystals, where
the given orientation relation is either accidental or enforced by
the experiment. If such an orientation relation happens to be
crystallographic, the bicrystal could formally be considered to be
a twin. It is not recommended, however, to accept such a bicrystal
as a twin because its orientation relation does not form ‘spon-
taneously’ as a property of the structure.

(4) There are some peculiarities about the contact relations
between two twin components. Often quite different twin
boundaries occur for one and the same orientation relation. The
boundaries are either irregular (frequently in penetration twins)
or planar interfaces. Even though crystallographic boundaries are
the most frequent interfaces, the geometry of a contact relation is
not suitable as part of the twin definition. Contact relations,
however, play an important role for the morphological classifi-
cation of twins (cf. Section 3.3.3.1). Frequently used alternative
names for twin boundaries are twin interfaces, contact planes,
composition planes or domain boundaries.

(5) Frequently, the term ‘twin plane (hkl)’ is used for the
characterization of a reflection twin. This term is justified only if
the twin mirror plane and the composition plane coincide. It is,
however, ambiguous if the twin mirror plane and the twin
interface have different orientations. In twins of hexagonal
KLiSO4, for example, the prominent composition plane ð0001Þ is
normal to the twin mirror plane ð10�110Þ (cf. Klapper et al., 1987).
The short term ‘twin plane’ should be avoided in such cases and
substituted by twin mirror plane or twin reflection plane. The
frequently used term ‘twinning on (hkl)’ [German: ‘Zwillinge
nach (hkl)’] refers to (hkl) as a twin mirror plane and not as a
contact plane.

(6) There exist twins in which the twin operations can be
regarded as fivefold or tenfold rotations (Ellner & Burkhardt,
1993; Ellner, 1995). These twins are due to pseudo-pentagonal or
pseudo-decagonal metrical features of the lattice [� ¼
arctanðc=aÞ � 72�]. They can be treated in the same way as the
three-, four- and sixfold rotation twins mentioned above. This
includes the alternative (‘exact’) description of the twinning by a
cyclic sequence of symmetrically equivalent twin reflection
planes or twofold twin axes (cf. aragonite, Fig. 3.3.2.4). For this
reason, we recommend that these intergrowths are accepted as
(pseudo) n-fold rotation twins, even though the value of n is
noncrystallographic.

(7) The classical treatment of twins considers only rotations,
reflections and inversions as twin operations. In domain struc-
tures, relations between domain states exist that involve only
translations (cf. Section 3.4.3), specifically those that are
suppressed during a phase transition. Since every domain struc-
ture can be considered as a transformation twin, it seems legit-
imate to accept these translations as twin operations and speak of
translation twins (T-twins according to Wadhawan, 1997, 2000).
The translation vector of this twin operation is also known as the
fault vector of the translation boundary (often called the anti-
phase boundary) between two translation domains [cf. Section
3.3.1(v)]. It must be realized, however, that the acceptance of
translation domains as twins would classify all stacking faults in
metals, in diamond and in semiconductors as twin boundaries.

(8) The structural consideration of twin boundaries cannot be
performed by employing only point-group twin elements as is
sufficient for the description of the orientation relation. In
structural discussions, in addition, a translational displacement of
the two structures with respect to each other by a shift vector,
which is called here the twin displacement vector t, has to be taken
into account. This displacement vector leads to a minimization of
the twin-boundary energy. The components of this vector can
have values between 0 and 1 of the basis vectors. In many cases,
especially of transformation twins, glide planes or screw axes can
occur as twin elements, whereby the glide or screw components
may be relaxed, i.e. may deviate from their ideal values. The twin
displacement vectors, as introduced here, include these glide or
screw components and their relaxations. The role of the twin
displacement vectors in the structure of the twin boundary is
discussed in Section 3.3.10.4.

(9) In some cases the term ‘twin’ is used for systematic oriented
intergrowths of crystals which are not twins as defined in this
chapter. The following cases should be mentioned:

(i) Allotwins (Nespolo, Ferraris et al., 1999): oriented crystal
associations of different polytypes of the same compound.
Different polytypes have the same chemistry and similar but
nevertheless different structures. Well known examples are the
micas, where twins and allotwins occur together (Nespolo et al.,
2000).

(ii) The oriented associations of two polymorphs (modifica-
tions) of the same compound across a phase boundary also do not
deserve the name twin because of the different structures of their
components. Note that this case is more general than the ‘allo-
twins’ of polytypes mentioned above. Interesting examples are
the oriented intergrowths of the TiO2 polymorphs rutile, anatase
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Fig. 3.3.2.4. (a) Triple growth twin of orthorhombic aragonite, CaCO3, with
pseudo-threefold twin axis. The gap angle is 11.4�. The exact description of
the twin aggregate by means of two symmetrically equivalent twin mirror
planes (110) and (�1110) is indicated. In actual crystals, the gap is usually closed
as shown in (b).
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and brookite. In this respect, the high-resolution transmission
electron microscopy (HRTEM) studies of hydrothermally
coarsened TiO2 nanoparticles by Penn & Banfield (1998),
showing the structures of anatase f121g reflection twin bound-
aries and of {112} anatase–(100) brookite interfaces on an atomic
scale, are noteworthy.

(iii) Plesiotwins (Nespolo, Kogure & Ferraris, 1999): oriented
crystal associations based on a large coincidence-site lattice
(CSL). The composition plane has a low degree of restoration of
lattice nodes and the relative rotations between individuals are
noncrystallographic. In the phlogopite fromMutsure-jima, Japan,
both ordinary twins and plesiotwins are reported (Sunagawa &
Tomura, 1976).

3.3.3. Morphological classification, simple and multiple twinning

Before discussing the symmetry features of twinning in detail, it is
useful to introduce the terms ‘simple’ and ‘multiple’ twins, which
are sometimes grouped under the heading ‘repetitive or repeated
twins’. This is followed by some morphological aspects of twin-
ning.

Simple twins are aggregates that consist of domains of only two
orientation states, irrespective of the number, size and shape of
the individual domains, Fig. 3.3.3.1(b). Thus, only one orientation
relation (one twin law) exists. Contact twins and polysynthetic
twins (see below) are simple twins.

Multiple twins are aggregates that contain domains of three or
more orientation states, i.e. at least two twin laws are involved.
Two cases have to be distinguished:

(i) The twin elements are symmetrically equivalent with respect
to the eigensymmetry group H of the crystal (cf. Section 3.3.4.1).
A typical example is provided by the equivalent (110) and (1�110)

twin mirror planes of an orthorhombic crystal (e.g. aragonite),
which frequently lead to cyclic twins (cf. Figs. 3.3.3.1a and c).

(ii) The twin elements are not equivalent with respect to the
eigensymmetry of the crystal, i.e. several independent twin laws
occur simultaneously in the twinned crystal. A typical example is
provided by a Brazil twin of quartz, with each Brazil domain
containing Dauphiné twins. This results in four domain states and
three twin laws; cf. Example 3.3.6.3.

The distinction of simple and multiple twins is important for
the following morphological classification. Further examples are
given in Section 3.3.6.

3.3.3.1. Morphological classification

The morphology of twinned crystals, even for the same species
and the same orientation relation, can be quite variable. For a
given orientation relation the morphology depends on the
geometry of the twin boundary as well as on the number of twin
partners. A typical morphological feature of growth-twinned
crystals is the occurrence of re-entrant angles. These angles are
responsible for an increased growth velocity parallel to the twin
boundary. This is the reason why twinned crystals often grow as
platelets parallel to the composition plane (cf. Section 3.3.7.1).
Detailed studies of the morphology of twins versus untwinned
crystals were carried out as early as 1911 by Becke (1911). As a
general observation, twinned crystals grow larger than untwinned
crystals in the same batch.

The following classification of twins is in use:
(i) Contact twins. Two twin partners are in contact across a

single composition plane �ðhklÞ, the Miller indices h; k; l of
which have the same values for both partners (‘common’ plane).
The contact plane usually has low indices. For reflection twins, the
composition plane is frequently parallel to the twin mirror plane
[see, however, Note (4) in Section 3.3.2.4]. Examples are shown in
Fig. 3.3.6.1 for gypsum, in Fig. 3.3.6.5 for calcite and in Fig.
3.3.6.6(a) for a spinel (111) twin. In most cases, contact twins are
growth twins.

(ii) Polysynthetic (lamellar) twins are formed by repetition of
contact twins and consist of a linear sequence of domains with
two alternating orientation states. The contact planes are parallel
(lamellar twinning). This is typical for reflection twins if the twin
mirror plane and the composition plane coincide. An illustrative
example is the albite growth twin shown in Fig. 3.3.6.11. Poly-
synthetic twins may occur in growth, transformation and defor-
mation twinning.

(iii) Penetration twins. The name ‘penetration twin’ results
from the apparent penetration of two or more (idiomorphic)
single crystals. The most prominent examples are twins of the
spinel law in cubic crystals (e.g. spinels, fluorite, diamond). The
spinel law is a reflection across (111) or a twofold rotation around
[111]. Ideally these twins appear as two interpenetrating cubes
with a common threefold axis, each cube representing one
domain state (Fig. 3.3.6.6b). In reality, these twins usually consist
of 12 pyramid-shaped domains, six of each domain state, all
originating from a common point in the centre of the twinned
crystal (as shown in Figs. 3.3.6.4 and 3.3.6.6). Another famous
example is the Carlsbad twin of orthoclase feldspar with [001] as
a twofold twin axis (Fig. 3.3.7.1). Penetration twins are always
growth twins.

(iv) Cyclic twins and sector twins. In contrast to the linear
sequence of domains in polysynthetic twins, cyclic twins form a
circular arrangement of domains of suitable shape. They are
always multiple twins (three or more orientations states) which
are (formally) generated by successive application of equivalent
twin laws. The twin aggregate may form a full circle or a fraction
of a circle (see Figs. 3.3.3.1c, 3.3.6.7 and 3.3.6.10). Impressive
examples are the ‘sixlings’ and ‘eightlings’ of rutile (Fig. 3.3.6.9,
cf. Example 3.3.6.9).
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Fig. 3.3.3.1. Schematic illustration of simple (polysynthetic) and multiple
(cyclic) twins. (a) Equivalent twin mirror planes (110) and ð1�110Þ of an
orthorhombic crystal. (b) Simple (polysynthetic) twin with two orientation
states due to parallel repetition of the same twin mirror plane ð1�110Þ; the twin
components are represented by {110} rhombs. (c) Multiple (cyclic) twin with
several (more than two) orientation states due to cyclic repetition of
equivalent twin mirror planes of type {110}.
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A special case of cyclic twins is provided by sector twins. Three
or more domains of nearly triangular shape (angular sectors)
extend from a common centre to form a twinned crystal with a
more or less regular polygonal outline. The boundaries between
two sector domains are usually planar and low-indexed. Such
twins can be interpreted in two ways:

(a) they can be described by repeated action of (equivalent)
reflection planes or twofold twin axes with suitable angular
spacings;

(b) they can be described by approximate rotation axes of
order three or more (including noncrystallographic axes such as
fivefold); cf. Section 3.3.2.3.2 and Note (6) in Section 3.3.2.4.

Prominent examples are the growth twins of NH4LiSO4 (Fig.
3.3.7.2), aragonite (Fig. 3.3.2.4), K2SO4 (Fig. 3.3.6.7) and certain
alloys with pseudo-fivefold twin axes (Fig. 3.3.6.8). Cyclic and
sector twins are always growth twins.

(v) Mimetic twins. The term ‘mimetic’ is often applied to
growth twins which, by their morphology, simulate a higher
crystal symmetry. Regular penetration twins and sector twins are
frequently also ‘mimetic’ twins. Particularly impressive examples
are the harmotome and phillipsite twins, where monoclinic
crystals, by multiple twinning, simulate higher symmetries up to a
cubic rhomb-dodecahedron.

(vi) Common names of twins. In addition to the morphological
description of twins mentioned above, some further shape-
related names are in use:

(a) dovetail twins (prominent example: gypsum, cf. Fig.
3.3.4.1);

(b) elbow twins (rutile, cassiterite, cf. Fig. 3.3.6.9a);
(c) arrowhead twin (diamond);
(d) iron-cross twins (pyrite);
(e) butterfly twins (perovskite).
It is obvious from the morphological features of twins,

described in this section, that crystals – by means of twinning –
strive to simulate higher symmetries than they actually have. This
will be even more apparent in the following section, which deals
with the composite symmetry of twins and the twin law.

3.3.4. Composite symmetry and the twin law

In this section we turn our attention to the symmetry relations in
twinning. The starting point of all symmetry considerations is the
eigensymmetryH of the untwinned crystal, i.e. the point group or
space group of the single crystal, irrespective of its orientation
and location in space. All domain states of a twinned crystal have
the same (or the enantiomorphic) eigensymmetry but may exhibit
different orientations. The orientation states of each two twin
components are related by a twin operation k which cannot be
part of the eigensymmetry H. The term eigensymmetry is intro-
duced here in order to provide a short and crisp distinction
between the symmetry of the untwinned crystal (single-domain
state) and the composite symmetry K of a twinned crystal, as
defined below. It should be noted that in morphology the term
eigensymmetry is also used, but with another meaning, in
connection with the symmetry of face forms of crystals (Hahn &
Klapper, 2002).

3.3.4.1. Composite symmetry

For a comprehensive characterization of the symmetry of a
twinned crystal, we introduce the important concept of composite
symmetry K. This symmetry is defined as the extension of the
eigensymmetry group H by a twin operation k. This extension
involves, by means of left (or right) coset composition k�H, the
generation of further twin operations until a supergroup is
obtained. This supergroup is the composite symmetry group K.

In the language of group theory, the relation between the
composite symmetry group K and the eigensymmetry group H

can be expressed by a (left) coset decomposition of the super-
group K with respect to the subgroup H:

K ¼ k1 �H [ k2 �H [ k3 �H [ . . . [ ki �H;

where k1 is the identity operation; k1 �H ¼ H� k1 ¼ H.
The number i of cosets, including the subgroup H, is the index

[i] of H in K; this index corresponds to the number of different
orientation states in the twinned crystal. If H is a normal
subgroup of K, which is always the case if i ¼ 2, then
k�H ¼ H� k, i.e. left and right coset decomposition leads to
the same coset. The relation that the number of different orien-
tation states n equals the index [i] of H in K, i.e.
n ¼ ½i� ¼ Kj j : Hj j, was first expressed by Zheludev & Shuvalov
(1956, p. 540) for ferroelectric phase transitions.

These group-theoretical considerations can be translated into
the language of twinning as follows: although the eigensymmetry
H and the composite symmetry K can be treated either as point
groups (finite order) or space groups (infinite order), in this and
the subsequent sections twinning is considered only in terms of
point groups [see, however, Note (8) in Section 3.3.2.4, as well as
Section 3.3.10.4]. With this restriction, the number of twin
operations in each coset equals the order Hj j of the eigensym-
metry point groupH. All twin operations in a coset represent the
same orientation relation, i.e. each one of them transforms
orientation state 1 into orientation state 2. Thus, the complete
coset characterizes the orientation relation comprehensively and
is, therefore, defined here as the twin law. The different opera-
tions in a coset are called alternative twin operations. A further
formulation of the twin law in terms of black–white symmetry will
be presented in Section 3.3.5. Many examples are given in Section
3.3.6.

This extension of the ‘classical’ definition of a twin law from a
single twin operation to a complete coset of alternative twin
operations does not conflict with the traditional description of a
twin by the one morphologically most prominent twin operation.
In many cases, the morphology of the twin, e.g. re-entrant angles
or the preferred orientation of a composition plane, suggests a
particular choice for the ‘representative’ among the alternative
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Fig. 3.3.4.1. Gypsum dovetail twin: schematic illustration of the coset of
alternative twin operations. The two domain states I and II are represented
by oriented parallelograms of eigensymmetry 2y=my. The subscripts x and z of
the twin operations refer to the coordinate system of the orthorhombic
composite symmetry KD of this twin; a and c are the monoclinic coordinate
axes.
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twin operations. If possible, twin mirror planes are preferred over
twin rotation axes or twin inversion centres.

The concept of the twin law as a coset of alternative twin
operations, defined above, has been used in more or less
complete form before. The following authors may be quoted:
Mügge (1911, pp. 23–25); Tschermak & Becke (1915, p. 97); Hurst
et al. (1956, p. 150); Raaz & Tertsch (1958, p. 119); Takano &
Sakurai (1971); Takano (1972); Van Tendeloo & Amelinckx
(1974); Donnay & Donnay (1983); Zikmund (1984); Wadhawan
(1997, 2000); Nespolo et al. (2000). A systematic application of
left and double coset decomposition to twinning and domain
structures has been presented by Janovec (1972, 1976) in a key
theoretical paper. An extensive group-theoretical treatment with
practical examples is provided by Flack (1987).

Example: dovetail twin of gypsum. (Fig. 3.3.4.1.) Eigensymmetry:

H ¼ 1
2y

my

1:

Twin reflection plane (100):

k2 ¼ k ¼ mx:

Composite symmetry group KD (orthorhombic):

K ¼ H [ k�H;

given in orthorhombic axes, x; y; z. The coset k�H contains all
four alternative twin operations (Table 3.3.4.1) and, hence,
represents the twin law. This is clearly visible in Fig. 3.3.6.1(a). In
the symbol of the orthorhombic composite group,

K ¼
20x
m0x

2y

my

20z
m0z
;

the primed operations indicate the coset of alternative twin
operations. The above black-and-white symmetry symbol of the
(orthorhombic) composite group K is another expression of the
twin law. Its notation is explained in Section 3.3.5. The twinning
of gypsum is treated in more detail in Example 3.3.6.2.

It should be noted that among the four twin operations of the
coset k�H two are rational, mx and 2z, and two are irrational,
mz and 2x (Fig. 3.3.4.1). All four are equally correct descriptions
of the same orientation relation. From morphology, however,
preference is given to the most conspicuous one, the twin mirror
plane mx ¼ ð100Þ, as the representative twin element.

The concept of composite symmetry K is not only a theoretical
tool for the extension of the twin law but has also practical
aspects:

(i) Morphology of growth twins. In general, the volume frac-
tions of the various twin domains are different and their distri-
bution is irregular. Hence, most twins do not exhibit regular
morphological symmetry. If, however, the twin aggregate consists
of p components of equal volumes and shapes (p ¼ ‘length’ of the
coset of alternative twin operations) and if these components
show a regular symmetrical distribution, the morphology of the
twinned crystal displays the composite symmetry. In minerals, this
is frequently very well approximated, as can be inferred from Fig.
3.3.6.1 for gypsum.

(ii) Diffraction pattern. The ‘single-crystal diffraction pattern’
of a twinned crystal exhibits its composite symmetry K if the
volume fractions of all domain states are (approximately) equal.

(iii) Permissible twin boundaries. The composite symmetry K
in its black–white notation permits immediate recognition of the
‘permissible twin boundaries’ (W-type composition planes), as
explained in Section 3.3.10.2.1.

3.3.4.2. Equivalent twin laws

In the example of the dovetail twin of gypsum above, the twin
operation k ¼ mx ¼ mð100Þ is of a special nature in that it maps
the entire eigensymmetry H ¼ 12=m1 onto itself and, hence,
generates a single coset, a single twin law and a finite composite
group K of index [2] (simple twins). There are other twin
operations, however, which do not leave the entire eigensym-
metry invariant, but only a part (subgroup) of it, as shown for the
hypothetical (111) twin reflection plane of gypsum in Example
3.3.6.2. In this case, extension of the complete group H by such a
twin operation k does not lead to a single twin law and a finite
composite group, but rather generates in the same coset two or
more twin operations k2; k3; . . . ; which are independent (non-
alternative) but symmetrically equivalent with respect to the
eigensymmetry H, each representing a different but equivalent
twin law. If applied to the ‘starting’ orientation state 1, they
generate two or more new orientation states 2, 3, 4, . . .. In the
general case, continuation of this procedure would lead to an
infinite set of domain states and to a composite group of infinite
order (e.g. cylinder or sphere group). Specialized metrics of a
crystal can, of course, lead to a ‘multiple twin’ of small finite
order.

In order to overcome this problem of the ‘infinite sets’ and to
ensure a finite composite group (of index [2]) for a pair of
adjacent domains, we consider only that subgroup of the eigen-
symmetry H which is left invariant by the twin operation k. This
subgroup is the ‘intersection symmetry’ H� of the two ‘oriented
eigensymmetries’ H1 and H2 of the domains 1 and 2 (shown in
Fig. 3.3.4.2):H� ¼ H1 \ H2. This groupH

� is now extended by k
and leads to the ‘reduced composite symmetry’ K� of the domain
pair (1, 2): K�ð1; 2Þ ¼ H� [ k2 �H

�, which is a finite supergroup
of H of index [2]. In this way, the complete coset k�H of the
eigensymmetry H is split into two (or more) smaller cosets
k2 �H

�, k3 �H
� etc., where k2; k3; . . . ; are symmetrically

equivalent twin operations inH. Correspondingly, the differently
oriented ‘reduced composite symmetries’ K

�
ð1; 2Þ ¼

H
�
[ k2 �H

�, K�ð1; 3Þ ¼ H� [ k3 �H
� etc. of the domain pairs
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Table 3.3.4.1. Gypsum, dovetail twins: coset of alternative twin operations
(twin law), given in orthorhombic axes of the composite symmetry KD

H k�H

1 mx � 1 ¼ mx

2y mx � 2y ¼ mz

my mx �my ¼ 2z
�11 mx �

�11 ¼ 2x

Fig. 3.3.4.2. Twinning of an orthorhombic crystal with equivalent twin mirror
planes (110) and ð�1110Þ. Three twin domains 1, 2 and 3, bound by {110} contact
planes, are shown. The oriented eigensymmetriesH1,H2,H3 and the reduced
composite symmetries K?ð1; 2Þ ¼ K?ð110Þ and K?ð1; 3Þ ¼ K?ð�1110Þ of each
domain pair are given in stereographic projection. The intersection symmetry
of all domains is H? ¼ 112=m.
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(1, 2), (1, 3) etc. are generated by the representative twin
operations k2, k3 etc. These cosets ki �H

� are considered as the
twin laws for the corresponding domain pairs.

As an example, an orthorhombic crystal of eigensymmetry
H ¼ 2=m 2=m 2=m with equivalent twin reflection planes
k2 ¼ mð110Þ and k3 ¼ mð�1110Þ is shown in Fig. 3.3.4.2. From the
‘starting’ domain 1, the two domains 2 and 3 are generated by the
two twin mirror planes ð110Þ and ð�1110Þ, symmetrically equivalent
with respect to the oriented eigensymmetry H1 of domain 1. The
intersection symmetries of the two pairs of oriented eigen-
symmetries H1 & H2 and H1 & H3 are identical: H� ¼ 112=m.
The three oriented eigensymmetriesH1,H2,H3, as well as the two
differently oriented reduced composite symmetries K�ð1; 2Þ ¼
K
�
ð110Þ and K�ð1; 3Þ ¼ K�ð�1110Þ of the domain pairs (1, 2) and

(1, 3), are all isomorphic of type 2=m 2=m 2=m, but exhibit
different orientations.

3.3.4.3. Classification of composite symmetries

The discussions and examples briefly presented in the previous
section are now extended in a more general way. For the classi-
fication of composite symmetries K we introduce the notion of
oriented eigensymmetry Hj of an orientation state j and attach to
it its geometric representation, the framework of oriented eigen-
symmetry elements, for short framework of oriented eigensym-
metry. Twin partners of different orientation states have the same
eigensymmetry H but exhibit different oriented eigensymmetries
Hj, which are geometrically represented by their frameworks of
oriented eigensymmetry. The well known crystallographic term
‘framework of symmetry’ designates the spatial arrangement of
the symmetry elements (planes, axes, points) of a point group or a
space group, as represented by a stereographic projection or by a
space-group diagram (cf. Hahn, 2002, Parts 6, 7 and 10).

Similarly, we also consider the intersection group
H
�
¼ H1 \ H2 of the oriented eigensymmetries H1 and H2 and

its geometric representation, the framework of intersection
symmetry. Two cases of intersection symmetries have to be
distinguished:

Case (I): H� ¼ H1 \H2 ¼ H. Here, all twin operations map
the complete oriented frameworks of the two domain states 1 and
2 onto each other, i.e. the oriented eigensymmetries H1 and H2

and their intersection group H� coincide. Hence, for binary twin
operations there is only one coset k�H ¼ k�H� and one twin
law. The composite symmetry K ¼ H� [ k�H� is crystal-
lographic. An example is provided by the dovetail twins of
gypsum, described above (cf. Table 3.3.4.1).

Case (II): H
�
¼ H1 \H2<H1 and <H2 ðindex ½i� � 2Þ.

Here, the twin operations map only a fraction 1=i of the oriented
symmetry elements of domain states 1 and 2 onto each other.
Hence, the intersection group H� of the two oriented eigen-
symmetries H1 and H2 is a proper subgroup of index ½i� � 2 of
both H1 and H2. The coset k�H� leads to the crystallographic
reduced composite symmetry

K
�
¼ H

�
[ k�H�;

as for case (I) above. The number of twin laws, different but
equivalent with respect to the ‘starting’ eigensymmetry H1 of the
first domain state 1, equals the index [i]. This implies i differently
oriented domain pairs ð1; jÞ ðj ¼ 1; 2; . . . ; iÞ. The composite
symmetry of such a domain pair is now defined by

K
�
1;j ¼ H

�
[ kj �H

� and is called the reduced composite
symmetry K�. All twin laws can be expressed by the black–white
symbol of the reduced composite symmetry K�1;j, as described in
Section 3.3.5.

The orthorhombic example given in Section 3.3.4.1 (Fig.
3.3.4.2) is now extended as follows:

Eigensymmetry H ¼ 2=m 2=m 2=m, intersection symmetry
H
�
¼ 112=m, k1 ¼ identity, k2 ¼ mð110Þ, k3 ¼ mð�1110Þ, ½i� ¼ 2.

The two cosets k2 �H
� and k3 �H

� are listed in Table 3.3.4.2.
From these cosets the two reduced composite symmetries
K
�
ð1; 2Þ and K�ð1; 3Þ are derived as follows:

K
�
ð1; 2Þ ¼ H� [ k2 �H

� and K�ð1; 3Þ ¼ H� [ k3 �H
�:

These groups of reduced composite symmetry are always
crystallographic and finite.

Note that the twin operations in these two reduced cosets
would form one coset if one of the operations (k2 or k3) were
applied to the full eigensymmetry H (twice as long as H�):
k2 �H ¼ k3 �H ¼ k2 �H

�
[ k3 �H

�. This process, however,
would not result in a finite group, whereas the two reduced cosets
lead to groups of finite order.

The two twin laws, based on k2ð110Þ and k3ð�1110Þ, can be
expressed by a black–white symmetry symbol of type
K
�
¼ 20=m0 20=m0 2=m with H� ¼ 112=m. The frameworks of

these two groups, however, are differently oriented (cf. Fig.
3.3.4.2).

In the limiting case, the intersection group H� consists of the
identity alone (index [i] = order jHj of the eigensymmetry group),
i.e. the two frameworks of oriented eigensymmetry have no
symmetry element in common. The number of equivalent twin
laws then equals the order jHj of the eigensymmetry group, and
each coset consists of one twin operation only.

3.3.4.4. Categories of composite symmetries

After this preparatory introduction, the three categories of
composite symmetry are treated.

(i) Crystallographic composite symmetry. According to case (I)
above, only the following three types of twins have crystal-
lographic composite symmetry K with two orientation states, one
coset and, hence, one twin law:

(a) all merohedral twins (cf. Section 3.3.9);
(b) twins of ‘monoaxial’ eigensymmetry H that have either a

twin reflection plane parallel or a twofold twin axis normal to the
single eigensymmetry axis. Monoaxial eigensymmetries are
2, m ¼ �22, 2=m, 3, �33, 4, �44, 4=m, 6, �66 ¼ 3=m, 6=m;

(c) the triclinic eigensymmetry groups 1 and �11; here any binary
twin element leads to a crystallographic composite symmetry K.

Examples, including some special cases of trigonal crystals, are
given in Section 3.3.6.

(ii) Noncrystallographic composite symmetry. As shown below,
a noncrystallographic composite symmetry K results if the
conditions of case (II) apply. Twins of this type are rather
complicated because more than one twin law and more than two
orientation states are involved. This case is illustrated in Figs.
3.3.3.1(c) and 3.3.4.2, where the twinning of an orthorhombic
crystal with eigensymmetry H ¼ 2=m 2=m 2=m and twin mirror
plane (110) is considered. In case (II) above and in Fig. 3.3.4.2,
domains 2 and 3 are generated from the starting domain 1 by the
application of the equivalent twin elements m1ð110Þ and
m1ð

�1110). By applying the two twin elements m2ð110Þ and m2ð
�1110Þ

of domain 2, a new domain 4 is obtained and, at the same time,
domain 1 is reproduced. Similarly, the twin elements m3ð110Þ and
m3ð

�1110Þ of domain 3 generate a further new domain 5, and
domain 1 is reproduced again.

The continuation of this construction leads in the limit to a
circular arrangement with an infinitely large number of domain
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Table 3.3.4.2. Reduced composite symmetries K�ð1; 2Þ ¼ H� [ k2 �H
� and

K
�
ð1; 3Þ ¼ H� [ k3 �H

� for the orthorhombic example in Fig. 3.3.4.2

H
� k2 �H

� k3 �H
�

1 mð110Þ mð�1110Þ

2z m ? ½�1110� m ? ½110�

mz 2 k ½�1110� 2 k ½110�

�11 2 ? ð110Þ 2 ? ð�1110Þ



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

states. The group-theoretical treatment of this process, based on
the full eigensymmetry, results in the infinite composite symmetry
group K ¼ 1=mm, with the rotation axis parallel to the twofold
axis of the intersection symmetry 112=m, common to all these
infinitely many domains. In an even more general case, for
example an orthorhombic crystal with twin reflection plane (111),
the infinite sphere group K ¼ m1 would result as composite
symmetry. Neither of these cases is physically meaningful and
thus they are not considered further here. It is emphasized,
however, that the reduced composite symmetryK� for any pair of
domains in contact, as derived in case (II) above, is finite and
crystallographic and, thus, of practical use.

(iii) Pseudo-crystallographic composite symmetry. Among
twins with noncrystallographic composite symmetry, described
above, those exhibiting structural or at least metrical pseudo-
symmetries are of special significance. Again we consider an
orthorhombic crystal with eigensymmetryH ¼ 2=m 2=m 2=m and
equivalent twin reflection planes ð110Þ and ð1�110), but now with a
special axial ratio b=a � tanð360�=nÞ

�
�

�
� (n ¼ 3, 4 or 6).

The procedure described above in (ii) leads to three different
orientation states for n ¼ 3 and 6 and to two different orientation
states for n ¼ 4, forming a cyclic arrangement of sector domains
(for cyclic and sector twins see Section 3.3.3). The intersection
group H� of all these domain states is 112=m, with the twofold
axis along the c axis. The reduced composite symmetry of any
pair of domains in contact is orthorhombic of type
K
�
¼ 20=m0 20=m0 2=m.

These multiple cyclic twins can be described in two ways (cf.
Section 3.3.2.3.2):

(a) by repeated application of equivalent binary twin opera-
tions (reflections or twofold rotations) to a pseudosymmetrical
crystal, as proposed by Hartman (1960) and Curien (1960). Note
that each one of these binary twin operations is ‘exact’, whereas
the closure of the cycle of sectors is only approximate; the
deviation from 360�=n depends on the (metrical) pseudosym-
metry of the lattice;

(b) by successive application of pseudo n-fold twin rotations
around the zone axis of the equivalent twin reflection planes.
Note that the individual rotation angles are not exactly 360�=n,
due to the pseudosymmetry of the lattice. This alternative
description corresponds to the approach by Friedel (1926, p. 435)
and Buerger (1960b).

It is now reasonable to define an extended composite symmetry
KðnÞ by adding the n-fold rotation as a further generator to the
reduced composite symmetry K� of a domain pair. This results in
the composite symmetry KðnÞ of the complete twin aggregate, in
the present case in a modification of the symmetry K� ¼
20=m0 20=m0 2=m to:
Kð6Þ ¼ Kð3Þ ¼ 6ð2Þ=m 2=m 2=m (three orientation states, two

twin laws) for n ¼ 3 and n ¼ 6;
Kð4Þ ¼ 4ð2Þ=m 2=m 2=m (two orientation states, one twin law)

for n ¼ 4.
The eigensymmetry component of the main twin axis is given in

parentheses.
This construction can also be applied to noncrystallographic

twin rotations n ¼ 5; 7; 8 etc. (cf. Section 3.3.6.8):
Kð10Þ ¼ Kð5Þ ¼ 10ð2Þ=m 2=m 2=m (five orientation states, four

twin laws) for n ¼ 5 and n ¼ 10.
The above examples are based on a twofold eigensymmetry

component along the n-fold twin axis. An example of a pseudo-
hexagonal twin, monoclinic gibbsite, Al(OH)3, without a twofold
eigensymmetry component along [001], is treated as Example
3.3.6.10 and Fig. 3.3.6.10.

It is emphasized that the considerations of this section apply
not only to the particularly complicated cases of multiple growth
twins but also to transformation twins resulting from the loss of
higher-order rotation axes that is accompanied by a small
metrical deformation of the lattice. As a result, the extended

composite symmetries KðnÞ of the transformation twins resemble
the symmetry G of their parent phase. The occurrence of both
multiple growth and multiple transformation twins of ortho-
rhombic pseudo-hexagonal K2SO4 is described in Example
3.3.6.7.

Remark. It is possible to construct multiple twins that cannot be
treated as a cyclic sequence of binary twin elements. This case
occurs if a pair of domain states 1 and 2 are related only by an n-
fold rotation or roto-inversion (n � 3). The resulting coset again
contains the alternative twin operations, but in this case only for
the orientation relation 1) 2, and not for 2) 1 (‘non-trans-
posable’ domain pair). This coset procedure thus does not result
in a composite group for a domain pair. In order to obtain the
composite group, further cosets have to be constructed by means
of the higher powers of the twin rotation under consideration.
Each new power corresponds to a further domain state and twin
law.

This construction leads to a composite symmetry KðnÞ of
supergroup index ½i� � 3 with respect to the eigensymmetry H.
This case can occur only for the following H) K pairs:
1) 3, �11) �33, 1) 4, 1) �44, m) 4=m, 1) 6, m) �66 ¼ 3=m,
m) 6=m, 2=m) 6=m (monoaxial point groups), as well as for
the two cubic pairs 222) 23, mmm) 2=m �33. For the pairs
1) 3, �11) �33, m) �66 ¼ 3=m, 2=m) 6=m and the two cubic
pairs 222) 23, mmm) 2=m �33, the K relations are of index [3]
and imply three non-transposable domain states. For the pairs
1) 4, 1) �44,m) 4=m, as well as 1) 6 andm) 6=m, four or
six different domain states occur. Among them, however, domain
pairs related by the second powers of 4 and �44 as well as by the
third powers of 6 and �66 operations are transposable, because
these twin operations correspond to twofold rotations.

No growth twins of this type are known so far. As trans-
formation twin, langbeinite (23()222) is the only known
example.

3.3.5. Description of the twin law by black–white symmetry

An alternative description of twinning employs the symbolism of
colour symmetry. This method was introduced by Curien & Le
Corre (1958) and by Curien & Donnay (1959). In this approach, a
colour is attributed to each different domain state. Depending on
the number of domain states, simple twins with two colours (i.e.
‘black–white’ or ‘dichromatic’ or ‘anti-symmetry’ groups) and
multiple twins with more than two colours (i.e. ‘polychromatic’
symmetry groups) have to be considered. Two kinds of opera-
tions are distinguished:

(i) The symmetry operations of the eigensymmetry (point
group) of the crystal. These operations are ‘colour-preserving’
and form the ‘monochromatic’ eigensymmetry group H. The
symbols of these operations are unprimed.

(ii) The twin operations, i.e. those operations which transform
one orientation state into another, are ‘colour-changing’ opera-
tions. Their symbols are designated by a prime if of order 2: 20,m0,
�110.
For simple twins, all colour-changing (twin) operations are

binary, hence the two domain states are transposable. The
composite symmetry K of these twins thus can be described by a
‘black-and-white’ symmetry group. The coset, which defines the
twin law, contains only colour-changing (primed) operations. This
notation has been used already in previous sections.

It should be noted that symbols such as 40 and 60, despite
appearance to the contrary, represent binary black-and-white
operations, because 40 contains 2, and 60 contains 3 and 20, with 20

being the twin operation. For this reason, these symbols are
written here as 40ð2Þ and 60ð3Þ, whereby the unprimed symbol in
parentheses refers to the eigensymmetry part of the twin axis. In
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contrast, 60ð2Þ would designate a (polychromatic) twin axis which
relates three domain states (three colours), each of eigensym-
metry 2. Twin centres of symmetry �110 are always added to the
symbol in order to bring out an inversion twinning contained in
the twin law. In the original version of Curien & Donnay (1959),
the black–white symbols were only used for twinning by mero-
hedry. In the present chapter, the symbols are also applied to
non-merohedral twins, as is customary for (ferroelastic) domain
structures. This has the consequence, however, that the eigen-
symmetries H or H� and the composite symmetries K or K� may
belong to different crystal systems and, thus, are referred to
different coordinate systems, as shown for the composite
symmetry of gypsum in Section 3.3.4.1.

For the treatment of multiple twins, ‘polychromatic’ composite
groups KðnÞ are required. These contain colour-changing
operations of order higher than 2, i.e. they relate three or more
colours (domain states). Consequently, not all pairs of domain
states are transposable. This treatment of multiple twins is rather
complicated and only sensible if the composite symmetry group is
finite and contains twin axes of low order (n 	 8). For this
reason, the symbols for the composite symmetry K of multiple
twins are written without primes; see the examples in Section
3.3.4.4(iii).

3.3.6. Examples of twinned crystals

In order to illustrate the foregoing rather abstract deliberations,
an extensive set of examples of twins occurring either in nature or
in the laboratory is presented below. In each case, the twin law is
described in two ways: by the coset of alternative twin operations
and by the black–white symmetry symbol of the composite
symmetry K, as described in Sections 3.3.4 and 3.3.5.

For the description of a twin, the conventional crystallographic
coordinate system of the crystal and its eigensymmetry group H
are used in general; exceptions are specifically stated. To indicate
the orientation of the twin elements (both rational and irrational)
and the composition planes, no specific convention has been
adopted; rather a variety of intuitively understandable simple
symbols are chosen for each particular case, with the additional
remark ‘rational’ or ‘irrational’ where necessary. Thus, for twin
reflection planes and (planar) twin boundaries symbols such as
mx, mð100Þ, m k ð100Þ or m ? ½100� are used, whereas twin
rotation axes are designated by 2z, 2½001�, 2 k ½001�, 2 ? ð001Þ, 3z,
3½111�, 4½001� etc.

3.3.6.1. Inversion twins in orthorhombic crystals

The (polar) 180� twin domains in a (potentially ferroelectric)
crystal of eigensymmetry H ¼ mm2 (mxmy2z) and composite
symmetry K ¼ 2=m 2=m 2=m (e.g. in KTiOPO4, NH4LiSO4, Li-
formate monohydrate) result from a group–subgroup relation of
index ½i� ¼ 2 with invariance of the symmetry framework
(merohedral twins), but antiparallel orientation of the polar axes.
The orientation relation between the two domain states is
described by the coset k�H of twin operations shown in Table
3.3.6.1, whereby the reflection in (001), mz, is considered as the
‘representative’ twin operation.

Hence, these twins can be regarded not only as reflection, but
also as rotation or inversion twins. The composite symmetry, in
black–white symmetry notation, is

K ¼
20x
mx

20y

my

2z
m0z
ð�110Þ;

whereby the primed symbols designate the (alternative) twin
operations (cf. Section 3.3.5).

3.3.6.2. Twinning of gypsum

The dovetail twin of gypsum [eigensymmetryH ¼ 1 2=m 1, with
twin reflection plane m k ð100Þ], coset of twin operations k�H
and composite symmetry K, was treated in Section 3.3.4. Gypsum
exhibits an independent additional kind of growth twinning, the
Montmartre twin with twin reflection plane m k ð001Þ. These two
twin laws are depicted in Fig. 3.3.6.1. The two cosets of twin
operations in Table 3.3.6.2 and the symbols of the composite
symmetries KD and KM of both twins are referred, in addition to
the monoclinic crystal axes, also to orthorhombic axes xD; y; zD
for dovetail twins and xM; y; zM for Montmartre twins. This
procedure brings out for each case the perpendicularity of the
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Table 3.3.6.1. Orthorhombic inversion twins: coset of alternative twin
operations (twin law)

H k�H ¼ mz �H

1 mz (normal to the polar axis [001])

mx 2x (normal to the polar axis)

my 2y (normal to the polar axis)

2z �11 (inversion)

Fig. 3.3.6.1. Dovetail twin (a) and Montmartre twin (b) of gypsum. The two
orientation states of each twin are distinguished by shading. For each twin
type (a) and (b), the following aspects are given: (i) two idealized illustrations
of each twin, on the left in the most frequent form with two twin components,
on the right in the rare form with four twin components, the morphology of
which displays the orthorhombic composite symmetry; (ii) the oriented
composite symmetry in stereographic projection (dotted lines indicate
monoclinic axes).
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rational and irrational twin elements, clearly visible in Fig. 3.3.6.1,
as follows:

KD ¼
20xD
m0xD

2y

my

20zD
m0zD

KM ¼
20xM
m0xM

2y

my

20zM
m0zM

xD (ortho) ? ð100Þ (mono) xM (ortho) k ½100� (mono)

zD (ortho) k ½001� (mono) zM (ortho) ? ð001Þ (mono):

In both cases, the (eigensymmetry) framework 2y=my is invar-
iant under all twin operations; hence, the composite symmetries
KD and KM are crystallographic of type 2=m 2=m 2=m (super-
group index [2]) but differently oriented, as shown in Fig. 3.3.6.1.
There is no physical reality behind the orthorhombic symmetry of
the two K groups: gypsum is neither structurally nor metrically
pseudo-orthorhombic, the monoclinic angle being 128�. The two
K groups and their orthorhombic symbols, however, clearly
reveal the two different twin symmetries and, for each case, the
perpendicular orientations of the four twin elements, two rational
and two irrational. The two twin types originate from indepen-
dent nucleation in aqueous solutions.

It should be noted that for all (potential) twin reflection planes
ðh0lÞ in the zone [010] (monoclinic axis), the oriented eigen-
symmetry H ¼ 1 2=m 1 would be the same for all domain states,
i.e. the intersection symmetry H� is identical with the oriented
eigensymmetry H and, thus, the composite symmetry would be
always crystallographic.

For a more general twin reflection plane not belonging to the
zone ðh0lÞ, such as ð111Þ, however, the oriented eigensymmetryH
would not be invariant under the twin operation. Consequently,
an additional twin reflection plane ð1�111Þ, equivalent with respect
to the eigensymmetry 1 2=m 1, exists. This (hypothetical) twin
would belong to category (ii) in Section 3.3.4.4 and would
formally lead to a noncrystallographic composite symmetry of
infinite order. If, however, we restrict our considerations to the
intersection symmetry H� ¼ �11 of a domain pair, the reduced
composite symmetry K� ¼ 20=m0 with m0 k ð111Þ and 20 ? ð111Þ
(irrational) would result. Note that for these (hypothetical) twins
the reduced composite symmetry K� and the eigensymmetry H
are isomorphic groups, but that their orientations are quite
different.

Remark. In the domain-structure approach, presented in Chapter
3.4 of this volume, both gypsum twins, dovetail and Montmartre,
can be derived together as a result of a single (hypothetical)
ferroelastic phase transition from a (nonexistent) orthorhombic
parent phase of symmetry G ¼ 2=m2=m2=m to a monoclinic
daughter phase of symmetry H ¼ 12=m1, with a very strong
metrical distortion of 38� from � ¼ 90� to � ¼ 128� (Janovec,
2003). In this (hypothetical) transition the two mirror planes,
(100) and (001), 90� apart in the orthorhombic form, become twin
reflection planes of monoclinic gypsum, (100) for the dovetail,
(001) for the Montmartre twin law, with an angle of 128�. It must
be realized, however, that neither the orthorhombic parent phase
nor the ferroelastic phase transition are real.

3.3.6.3. Twinning of low-temperature quartz (�-quartz)

Quartz is a mineral which is particularly rich in twinning. It has
the noncentrosymmetric trigonal point group 32 with three polar

twofold axes and a non-polar trigonal axis. The crystals exhibit
enantiomorphism (right- and left-handed quartz), piezo-
electricity and optical activity. The lattice of quartz is hexagonal
with holohedral (lattice) point group 6=m 2=m 2=m. Many types
of twin laws have been found (cf. Frondel, 1962), but only the
four most important ones are discussed here:

(a) Dauphiné twins;
(b) Brazil twins;
(c) Combined-law (Leydolt, Liebisch) twins;
(d) Japanese twins.
The first three types are merohedral (parallel-lattice) twins and

their composite symmetries belong to category (i) in Section
3.3.4.2, whereas the non-merohedral Japanese twins (twins with
inclined lattices or inclined axes) belong to category (ii).

3.3.6.3.1. Dauphiné twins

This twinning is commonly described by a twofold twin rota-
tion around the threefold symmetry axis [001]. The two orien-
tation states are of equal handedness but their polar axes are
reversed (‘electrical twins’). Dauphiné twins can be transforma-
tion or growth or mechanical (ferrobielastic) twins. The compo-
site symmetry is K ¼ 622, the point group of high-temperature
quartz (�-quartz). The coset decomposition of K with respect to
the eigensymmetry H ¼ 32 (index [2]) contains the operations
listed in Table 3.3.6.3.

The left coset 2z �H constitutes the twin law. Note that this
coset contains four twofold rotations of which the first one, 2z, is
the standard description of Dauphiné twinning. In addition, the
coset contains two sixfold rotations, 61 and 65 ¼ 6�1. The black–
white symmetry symbol of the composite symmetry is K ¼
60ð3Þ220 (supergroup of index [2] of the eigensymmetry group
H ¼ 32).

This coset decomposition 622) 32 was first listed and applied
to quartz by Janovec (1972, p. 993).

3.3.6.3.2. Brazil twins

This twinning is commonly described by a twin reflection
across a plane normal to a twofold symmetry axis. The two
orientation states are of opposite handedness (i.e. the sense of the
optical activity is reversed: optical twins) and the polar axes are
reversed as well. The coset representing the twin law consists of
the following six operations:

(i) three reflections across planes f11�220g, normal to the three
twofold axes;

(ii) three rotoinversions �33 around [001]: �331, �333 ¼ �11, �335 ¼ �33�1.
The coset shows that Brazil twins can equally well be described

as reflection or inversion twins. The composite symmetry
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Table 3.3.6.2. Gypsum: cosets of alternative twin operations of the dovetail and the Montmartre twins, referred to their specific orthorhombic axes (subscripts D
and M)

H

Dovetail twins
mxD �H

Montmartre twins
mzM �H

1 mxD ¼ m k ð100Þ (rational) mzM ¼ m k ð001Þ (rational)
2y ¼ 2 k ½010� mzD ¼ m ? ½001� (irrational) mxM ¼ m ? ½100� (irrational)
my ¼ m k ð010Þ 2zD ¼ 2 k ½001� (rational) 2xM ¼ 2 k ½100� (rational)
�11 2xD ¼ 2 ? ð100Þ (irrational) 2zM ¼ 2 ? ½001� (irrational)

Table 3.3.6.3. Dauphiné twins of �-quartz: coset of alternative twin operations
(twin law)

H 2z �H

1 2z ¼ 63

31 65ð¼ 6�1Þ

32 61

2½100� 2z � 2½100� ¼ 2½120�
2½010� 2z � 2½010� ¼ 2½210�
2½�11�110� 2z � 2½�11�110� ¼ 2½1�110�
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K ¼ �330ð3Þ
2

m0
1ð�110Þ

is a supergroup of index [2] of the eigensymmetry group 32.

3.3.6.3.3. Combined Dauphiné–Brazil (Leydolt, Liebisch) twins

Twins of this type can be described by a twin reflection across
the plane (0001), normal to the threefold axis [001]. The two
orientation states of this twin are of opposite handedness (i.e. the
optical activity is reversed, optical twin), but the polar axes are
not reversed. The coset representing the twin law consists of the
following six operations:

(i) three twin reflections across planes f10�110g, parallel to the
three twofold axes;

(ii) three rotoinversions �66 around [001]: �661, �663 ¼ mz, �66
5 ¼ �66�1.

The composite symmetry

K ¼ �660ð3Þ2m0 ¼
3

m0
2m0

is again a supergroup of index [2] of the eigensymmetry group 32.
This twin law is usually described as a combination of the
Dauphiné and Brazil twin laws, i.e. as the twofold Dauphiné twin
rotation 2z followed by the Brazil twin reflection mð11�220Þ or,
alternatively, by the inversion �11. The product 2z � �11 ¼ mz results
in a particularly simple description of the combined law as a
reflection twin on mz.

Twin domains of the Leydolt type are very rarely intergrown in
direct contact, i.e. with a common boundary. If, however, a quartz
crystal contains inserts of Dauphiné and Brazil twins, the
domains of these two types, even though not in contact, are
related by the Leydolt law. In this sense, Leydolt twinning is
rather common in low-temperature quartz. In contrast, GaPO4, a
quartz homeotype with the berlinite structure, frequently
contains Leydolt twin domains in direct contact, i.e. with a
common boundary (Engel et al., 1989).

In conclusion, the three merohedral twin laws of �-quartz
described above imply four domain states with different orien-
tations of important physical properties. These relations are
shown in Fig. 3.3.6.2 for electrical polarity, optical activity and the
orientation of etch pits on (0001). It is noteworthy that these
three twin laws are the only possible merohedral twins of quartz,
and that all three are realized in nature. Combined, they lead to
the composite symmetry K ¼ 6=m 2=m 2=m (‘complete twin’:
Curien & Donnay, 1959).

In the three twin laws (cosets) above, only odd powers of 6, �33
and �66 (rotations and rotoinversions) occur as twin operations,
whereas the even powers are part of the eigensymmetry 32.
Consequently, repetition of any odd-power twin operation
restores the original orientation state, i.e. each of these opera-
tions has the nature of a ‘binary’ twin operation and leads to a
pair of transposable orientation states.

3.3.6.3.4. Japanese twins (or La Gardette twins)

Among the quartz twins with ‘inclined axes’ (‘inclined
lattices’), the Japanese twins are the most frequent and important

ones. They are contact twins of two individuals with composition
plane ð11�222Þ. This results in an angle of 84�330 between the
two threefold axes. One pair of prism faces is parallel (coplanar)
in both partners.

There exist four orientation relations, depending on
(i) the handedness of the two twin partners (equal or

different);
(ii) the azimuthal difference (0 or 180�) around the threefold

axis of the two partners.
These four variants are illustrated in Fig. 3.3.6.3 and listed in

Table 3.3.6.4. The twin interface for all four twin laws is the same,
ð11�222Þ, but only in type III do twin mirror plane and composition
plane coincide.

In all four types of Japanese twins, the intersection symmetry
(reduced eigensymmetry) H� of a pair of twin partners is 1.
Consequently, the twin laws (cosets) consist of only one twin
operation and the reduced composite symmetry K� is a group of
order 2, represented by the twin element listed in Table 3.3.6.4. If
one were to use the full eigensymmetry H ¼ 32, the infinite
sphere group would result as composite symmetry K.

Many further quartz twins with inclined axes are described by
Frondel (1962). A detailed study of these inclined-axis twins in
terms of coincidence-site lattices (CSLs) is provided by McLaren
(1986).

3.3.6.4. Twinning of high-temperature quartz (�-quartz)

Upon heating quartz into the hexagonal high-temperature
phase (point group 622) above 846 K, the Dauphiné twinning
disappears, because the composite symmetry K of the twinned
low-temperature phase now becomes the eigensymmetryH of the
high-temperature phase. For Brazil twins, however, their nature
as reflection or inversion twins is preserved during the transfor-
mation.
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Table 3.3.6.4. The four different variants of Japanese twins according to Frondel (1962)

Handedness of
twin partners

Azimuthal
difference (�) Twin element = twin law

Label in Fig. 65
of Frondel (1962)

L–L or R–R 0 Irrational twofold twin axis normal to plane ð11�222Þ I(R), I(L)

180 Rational twofold twin axis ½11�11� 
 ½11�22�33�† parallel to plane ð11�222Þ II(R), II(L)

L–R or R–L 0 Rational twin mirror plane ð11�222Þ III

180 Irrational twin mirror plane normal to direction ½11�11� 
 ½11�22�33�† IV

† The line ½11�11� 
 ½11�22�33� is the edge between the faces zð01�111Þ and rð10�111Þ and is parallel to the composition plane ð11�222Þ. It is parallel or normal to the four twin elements. Transformation
formulae between the three-index and the four-index direction symbols, UVW and uvtw, are given by Barrett & Massalski (1966, p. 13).

Fig. 3.3.6.2. Distinction of the four different domain states generated by the
three merohedral twin laws of low-quartz and of quartz homeotypes such as
GaPO4 (Dauphiné, Brazil and Leydolt twins) by means of three properties:
orientation of the three electrical axes (triangle of arrows), orientation of
etch pits on (001) (solid triangle) and sense of the optical rotation (circular
arrow). The twin laws relating two different domain states are indicated by
arrows [D (2z): Dauphiné law; B (�11): Brazil law; C (mz): Leydolt law]. For
GaPO4, see Engel et al. (1989).
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The eigensymmetry of high-temperature quartz is 622 (order
12). Hence, the coset of the Brazil twin law contains 12 twin
operations, as follows:

(i) the six twin operations of a Brazil twin in low-temperature
quartz, as listed above in Example 3.3.6.3.2;

(ii) three further reflections across planes f10�110g, which bisect
the three Brazil twin planes f11�220g of low-temperature quartz;

(iii) three further rotoinversions around [001]: �661,
�663 ¼ mz, �66

5 ¼ �66�1.
The composite symmetry is

K ¼
6

m0
2

m0
2

m0
ð�110Þ;

a supergroup of index [2] of the eigensymmetry 622.
In high-temperature quartz, the combined Dauphiné–Brazil

twins (Leydolt twins) are identical with Brazil twins, because the
Dauphiné twin operation has become part of the eigensymmetry
622. Accordingly, both kinds of twins of low-temperature quartz
merge into one upon heating above 846 K. We recommend that
these twins are called ‘Brazil twins’, independent of their type of
twinning in the low-temperature phase. Upon cooling below
846 K, transformation Dauphiné twin domains may appear in
both Brazil growth domains, leading to four orientation states as
shown in Fig. 3.3.6.2. Among these four orientation states, two
Leydolt pairs occur. Such Leydolt domains, however, are not
necessarily in contact (cf. Example 3.3.6.3.3 above).

In addition to these twins with ‘parallel axes’ (merohedral
twins), several kinds of growth twins with ‘inclined axes’ occur in
high-temperature quartz. They are not treated here, but addi-
tional information is provided by Frondel (1962).

3.3.6.5. Twinning of rhombohedral crystals

In some rhombohedral crystals such as corundum Al2O3

(Wallace & White, 1967), calcite CaCO3 or FeBO3 (calcite
structure) (Kotrbova et al., 1985; Klapper, 1987), growth twinning
with a ‘twofold twin rotation around the threefold symmetry axis
[001]’ (similar to the Dauphiné twins in low-temperature quartz
described above) is common. Owing to the eigensymmetry �332=m
(order 12), the following 12 twin operations form the coset (twin
law). They are described here in hexagonal axes:

(i) three rotations around the threefold axis ½001�: 61, 63 ¼ 2z,
65 ¼ 6�1;

(ii) three twofold rotations around the axes ½120�, ½210�, ½1�110�;

(iii) three reflections across the planes ð10�110Þ, ð1�1100Þ, ð01�110Þ;

(iv) three rotoinversions around the threefold axis ½001�: �661,
�663 ¼ mz and �665 ¼ �66�1.
Some of these twin elements are shown in Fig. 3.3.6.4. They

include the particularly conspicuous twin reflection plane mz

perpendicular to the threefold axis [001]. The composite
symmetry is

K ¼
60

m0
ð�33Þ

2

m

20

m0
ðorder 24Þ:

It is of interest that for FeBO3 crystals this twin law always,
without exception, forms penetration twins (Fig. 3.3.6.4), whereas
for the isotypic calcite CaCO3 only (0001) contact twins are found
(Fig. 3.3.6.5). This aspect is discussed further in Section 3.3.8.6.
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Fig. 3.3.6.4. Twin intergrowth of ‘obverse’ and ‘reverse’ rhombohedra of
rhombohedral FeBO3. (a) ‘Obverse’ rhombohedron with four of the 12
alternative twin elements. (b) ‘Reverse’ rhombohedron (twin orientation).
(c) Interpenetration of both rhombohedra, as observed in penetration twins
of FeBO3. (d) Idealized skeleton of the six components (exploded along [001]
for better recognition) of the ‘obverse’ orientation state shown in (a). The
components are connected at the edges along the threefold and the twofold
eigensymmetry axes. The shaded faces are f10�110g and (0001) coinciding twin
reflection and contact planes with the twin components of the ‘reverse’
orientation state. Parts (a) to (c) courtesy of R. Diehl, Freiburg.

Fig. 3.3.6.3. The four variants of Japanese twins of quartz (after Frondel,
1962; cf. Heide, 1928). The twin elements 2 and m and their orientations are
shown. In actual twins, only the upper part of each figure is realized. The
lower part has been added for better understanding of the orientation
relation. R, L: right-, left-handed quartz. The polarity of the twofold axis
parallel to the plane of the drawing is indicated by an arrow. In addition to
the cases I(R) and II(R) , I(L) and II(L) also exist, but are not included in the
figure. Note that a vertical line in the plane of the figure is the zone axis ½11�11�
for the two rhombohedral faces r and z, and is parallel to the twin and
composition plane (11�222) and the twin axis in variant II.
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3.3.6.6. Spinel twins

The twinning of rhombohedral crystals described above also
occurs for cubic crystals as the spinel law (spinel, CaF2, PbS,
diamond, sphalerite-type structures such as ZnS, GaAs, CdTe,
cubic face- and body-centred metals). In principle, all four
threefold axes of the cube, which are equivalent with respect to
the eigensymmetry H, can be active in twinning. We restrict our
considerations to the case where only one threefold axis, [111], is
involved. The most obvious twin operations are the twofold
rotation around [111] or the reflection across (111). For centro-
symmetric crystals, they are alternative twin operations and
belong to the same twin law. For noncentrosymmetric crystals,
however, the two operations represent different twin laws. Both
cases are covered by the term ‘spinel law’.

The orientation relation defined by the spinel law corresponds
to the ‘obverse’ and ‘reverse’ positions of two rhombohedra
(cubes), as shown in Fig. 3.3.6.6. For the two (differently)
oriented eigensymmetries 4=m �33 2=m of the domain statesH1 and
H2, the intersection symmetry H� ¼ �33 2=m (order 12) results.

With this ‘reduced eigensymmetry’H�, the coset of 12 alternative
twin operations is the same as the one derived for twinning of
rhombohedral crystals in Example 3.3.6.5.

In the following, we treat the spinel twins with the twin axis
[111] or the twin reflection plane (111) for the five cubic point
groups (eigensymmetries) H ¼ m�33m, �443m, 432, m�33, 32 in detail.
The intersection groups are H� ¼ �332=m, 3m, 32, �33 and 3,
respectively. For these ‘reduced eigensymmetries’, the cosets of
the alternative twin operations are listed below with reference to
cubic axes.

(a) Eigensymmetry H ¼ 4=m �33 2=m (order 48), reduced
eigensymmetry H� ¼ �332=m1 (order 12).

Alternative twin operations:
(1) three rotations 61, 63 ¼ 2, 65 ¼ 6�1 around the axis [111];
(2) three twofold rotations around the axes ½11�22�, ½�2211�, ½1�221�;
(3) three reflections across the planes ð11�22Þ, ð�2211Þ, ð1�221Þ;

(4) three rotoinversions around the axis [111]: �661, �663 ¼ mz,
�665 ¼ �66�1.
Reduced composite symmetryK� ¼ 60=m0 ð�33Þ 2=m 20=m0 (order
24).

(b) Eigensymmetry H ¼ �443m (order 24), reduced eigensym-
metry H� ¼ 3m1 (order 6).

Two different twin laws are possible:
(1) Twin law representative: ‘twofold rotation around [111]’;
Alternative twin operations: lines (1) and (3) of case (a) above;
Reduced composite symmetry: K� ¼ 60ð3Þmm0 (order 12).
(2) Twin law representative: ‘reflection across (111)’;
Alternative twin operations: lines (2) and (4) of case (a) above;
Reduced composite symmetry: K� ¼ �660ð3Þm20 ¼ 3=m0m20

(order 12).

(c) Eigensymmetry H ¼ 432 (order 24), reduced eigensym-
metry H� ¼ 321 (order 6).

Again, two different twin laws are possible:
(1) Twin law representative: ‘twofold rotation around [111]’;
Alternative twin operations: lines (1) and (2) of case (a) above;
Reduced composite symmetry: K� ¼ 60ð3Þ220 (order 12).
(2) Twin law representative: ‘reflection across (111)’;
Alternative twin operations: lines (3) and (4) of case (a) above;
Reduced composite symmetry: K� ¼ �660ð3Þ2m0 ¼ 3=m02m0

(order 12).

(d) Eigensymmetry H ¼ 2=m 0 �33 (order 24), reduced eigen-
symmetry H� ¼ �33 (order 6).

Two different twin laws:
(1) Twin law representative: ‘twofold rotation around [111]’ or
‘reflection across (111)’;
Alternative twin operations: lines (1) and (4) of case (a) above;
Reduced composite symmetry: K� ¼ 60=m0ð�33Þ (order 12).
(2) Twin law representative: ‘reflection across ð11�22Þ’
or ‘twofold rotation around ½11�22�’;
Alternative twin operations: lines (2) and (3) of case (a) above;
Reduced composite symmetry: K� ¼ �33120=m0 (order 12).

(e) EigensymmetryH ¼ 23 (order 12), reduced eigensymmetry
H
�
¼ 3 (order 3).

Four different twin laws are possible:
(1) Twin law representative: ‘twofold rotation around [111]’;
Alternative twin operations: line (1) of case (a) above;
Reduced composite symmetry: K� ¼ 60ð3Þ (order 6).
(2) Twin law representative: ‘reflection across (111)’.
Alternative twin operations: line (4) of case (a) above.
Reduced composite symmetry: K� ¼ �660ð3Þ ¼ 3=m0 (order 6).
(3) Twin law representative: ‘twofold rotation around ½11�22�’;
Alternative twin operations: line (2) of case (a) above;
Reduced composite symmetry K� ¼ 3120 (order 6).
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Fig. 3.3.6.6. Spinel (111) twins of cubic crystals (two orientation states). (a)
Contact twin with (111) composition plane (two twin components). (b) and
(c) Penetration twin (idealized) with one ð111Þ and three f11�22g composition
planes (twelve twin components, six of each orientation state) in two
different views, (b) with one [001] axis vertical, (c) with the threefold twin
axis [111] vertical.

Fig. 3.3.6.5. Contact growth twin of calcite with the same twin law as FeBO3 in
Fig. 3.3.6.4. Conspicuous twin element: twin reflection plane (0001),
coinciding with the composition plane (0001).



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

(4) Twin law representative: ‘reflection across ð11�22Þ’;
Alternative twin operations: line (3) of case (a) above;
Reduced composite symmetry: K� ¼ 31m0 (order 6).

The restriction to only one of the four spinel twin axes h111i
combined with the application of the coset expansion to the
reduced eigensymmetry H� always leads to a crystallographic
composite symmetry K�. The supergroup generated from the full
eigensymmetry, however, would automatically include the other
three spinel twin axes and thus would lead to the infinite sphere
group m1, i.e. would imply infinitely many cosets and (equiva-
lent) twin laws. Higher-order spinel twins are discussed in Section
3.3.8.3.

3.3.6.7. Growth and transformation twins of K2SO4

K2SO4 has an orthorhombic pseudo-hexagonal room-
temperature phase with point group H ¼ mmm and axial ratio
b=a ¼ tan 60:18�, and a hexagonal high-temperature phase
(> 853 K) with supergroup G ¼ 6=m 2=m 2=m. It develops
pseudo-hexagonal growth-sector twins with equivalent twin
reflection planes ð110Þ and ð1�110Þ which are also composition
planes, as shown in Fig. 3.3.6.7. As discussed in Sections 3.3.2.3.2
and 3.3.4.4 under (iii), this corresponds to a pseudo-threefold
twin axis which, in combination with the twofold eigensymmetry
axis, is also a pseudo-hexagonal twin axis. The extended
composite symmetry is

Kð6Þ ¼ Kð3Þ ¼ 6ð2Þ=m 2=m 2=m:

Upon heating above 853 K, the growth-sector twinning
disappears. On cooling back into the low-temperature phase,
transformation twinning (‘domain structure’) with three systems
of lamellar domains appears. The three orientation states are
identical for growth and transformation twins, but the
morphology of the twins is not: sectors versus lamellae. The
composite symmetry K of the twins at room temperature is the
true structural symmetry G of the ‘parent’ phase at high
temperatures.

3.3.6.8. Pentagonal–decagonal twins

As was pointed out in Note (8) of Section 3.3.2.4 and in part
(iii) of Section 3.3.4.4, there exist twin axes with noncrystallo-
graphic multiplicities n ¼ 5; 7; 8 etc. Twins with five- or tenfold
rotations are frequent in intermetallic compounds. As an
example, FeAl4 is treated here (Ellner & Burkhardt, 1993; Ellner,
1995). This compound is orthorhombic, 2=m 2=m 2=m, with an
axial ratio close to c=a ¼ tan 72�, corresponding to a pseudo-
fivefold axis along ½010� and equivalent twin mirror planes ð101Þ
and ð�1101Þ, which are about 36� apart. In an ideal intergrowth, this
leads to a cyclic pseudo-pentagonal or pseudo-decagonal sector

twin (Fig. 3.3.6.8). All features of this twinning are analogous to
those of pseudo-hexagonal aragonite, treated in Section 3.3.2.3.2,
and of K2SO4, described above as Example 3.3.6.7.

The intersection symmetry of all twin partners isH� ¼ 12=m1;
the reduced composite symmetry K� of a domain pair in contact
is 20=m 2=m 20=m. The extended composite symmetry of the ideal
pentagonal sector twin is Kð10Þ ¼ Kð5Þ ¼ 10ð2Þ=m 2=m 2=m.

3.3.6.9. Multiple twins of rutile

Rutile with eigensymmetry 4=m 2=m 2=m develops growth
twins with coinciding twin reflection and composition plane {011}.
Owing to its axial ratio a=c ¼ tan 57:2�, the tetragonal c axes of
the two twin partners form an angle of 114.4�. The intersection
symmetry of the two domains is H� ¼ 2=m along the common
direction [100]. The reduced composite symmetry of the domain
pair is K� ¼ 2=m 20=m0 20=m0, with the primed twin elements
parallel and normal to the plane (011). A twin of this type,
consisting of two domains, is called an ‘elbow twin’ or a ‘knee
twin’, and is shown in Fig. 3.3.6.9(a).
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Fig. 3.3.6.7. Pseudo-hexagonal growth twin of K2SO4 showing six sector
domains in three orientation states. (001) plate, about 1 mm thick and 5 mm
in diameter, between polarizers deviating by 45� from crossed position for
optimal contrast of all domains. The crystal was precipitated from aqueous
K2SO4 solution containing 5% S2O3 ions. Courtesy of M. Moret, Milano.

Fig. 3.3.6.8. Pentagonal–decagonal twins. (a) Decagonal twins in the shape of
tenfold stars on the surface of a bulk alloy, formed during the solidification of
a melt of composition Ru8Ni15Al77. Scanning electron microscopy picture.
Typical diameter of stars ca. 200 mm. The arms of the stars show parallel
intergrowth. (b) Pentagonal twin aggregate of Fe4Al13 with morphology as
grown in the orthorhombic high-temperature phase, showing several typical
72� angles between neighbouring twin partners (diameter of aggregate ca.
200 mm). Orthorhombic lattice parameters a ¼ 7:7510, b ¼ 4:0336,
c ¼ 23:771 Å, space group Bmmm. The parameters c and a approximate
the relation c=a ¼ tan 72�; the pseudo-pentagonal twin axis is [010]. On
cooling, the monoclinic low-temperature phase is obtained. The twin
reflection planes in the orthorhombic unit cell are (101) and ð10�11Þ, in the
monoclinic unit cell (100) and ð�2201Þ; cf. Ellner & Burkhardt (1993, Fig. 10),
Ellner (1995). Both parts courtesy of M. Ellner, Stuttgart.
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In point group 4=m 2=m 2=m, there exist four equivalent twin
reflection planes {011} (four different twin laws) with angles of
65.6� between ð001Þ and ð0�111Þ and 45� between ð011Þ and ð101Þ,
leading to a variety of multiple twins. They may be linear poly-
synthetic or multiple elbow twins, or any combination thereof
(Fig. 3.3.6.9). Very rare are complete cyclic sixfold twins with a
large angular excess of 6� 5:6� ¼ 33:6� (corresponding formally
to a ‘5.5-fold’ twin axis) and extended composite pseudosym-
metry Kð6Þ ¼ 6ð2Þ=m 2=m 2=m, or cyclic eightfold twins with a
nearly exact fit of the sectors and a morphological pseudo-�88 twin
axis. In the ‘sixling’, the tetragonal axes of the twin components
are coplanar, whereas in the ‘eightling’ they alternate ‘up and
down’, exhibiting in ideal development the morphological
symmetry �882m of the twin aggregate. The extended composite
symmetry isKð8Þ ¼ 8ð1Þ=m 2=m 2=m with eight twin components,
each of different orientation state. These cyclic twins are depicted
in Figs. 3.3.6.9(e), (f), (g) and (h).

The sketch of the ‘eightling’ in Fig. 3.3.6.9(f) suggests a hole in
the centre of the ring, a fact which would pose great problems for
the interpretation of the origin of the twin: how do the members
of the ring ‘know’ when to turn and close the ring without an
offset? Fig. 3.3.6.9(h) suggests that the ring is covered at the back,
i.e. originates from a common point (nucleus). This was
confirmed by a special investigation of another ‘eightling’ from
Magnet Cove (Arkansas) by Lieber (2002): the ‘eightling’ started
to grow from the nucleus and developed into the shape
of a funnel with an opening of increasing diameter in the centre.
This proves the nucleation growth of the ring (cf. Section
3.3.7.1.1).

3.3.6.10. Variety of twinning in gibbsite, Al(OH)3

Gibbsite (older name: hydrargillite) forms a pronounced layer
structure with a perfect cleavage plane ð001Þ. It is monoclinic with
eigensymmetry H ¼ 12=m1, but strongly pseudo-hexagonal with

an axial ratio b=a ¼ tan 30:4�. In contrast to most other pseudo-
hexagonal crystals, the twofold eigensymmetry axis b is not
parallel but normal to the pseudo-hexagonal c axis. The normal to
the cleavage plane ð001Þ is inclined by �� 90� ¼ 4:5� against
[001]. Owing to the pseudo-hexagonal metrics of the plane ð001Þ,
the lattice planes ð110Þ and ð�1110Þ, equivalent with respect to the
eigensymmetry H ¼ 2=m, form an angle of 60.8�.

The following four significant twin laws have been observed by
Brögger (1890):

(i) (001) reflection twin: the cleavage plane (001) acts both as
twin mirror and composition plane. The pseudo-hexagonal axes
[001] of both partners are inclined to each other by 9.0�. This twin
law is quite common in natural and synthetic gibbsite.

(ii) (100) reflection twin: the twin mirror plane (100) is also the
composition plane. The angle between the (001) planes of both
partners is 9.0�, as in (i); the pseudo-hexagonal axes [001] of both
partners are parallel. This twin law is not common.

(iii) (110) reflection twin: again, twin mirror plane and
composition plane coincide. The two (001) planes span an angle
of 4.6�. This twin law is very rare in nature, but is often observed
in synthetic materials. A sixfold sector twin of synthetic gibbsite,
formed by cyclic repetition of {110} twin reflection planes 60.8�

apart, is shown in Fig. 3.3.6.10. The pseudo-hexagonal axis [001] is
common to all domains. Since the (001) plane is inclined towards
this axis at 94.5�, the six (001) facets of the twinned crystal form a
kind of ‘umbrella’ with [001] as umbrella axis (Fig. 3.3.6.10a). This
(001) umbrella faceting was recently observed in twinned
synthetic gibbsite crystals by Sweegers et al. (1999).

In contrast to orthorhombic aragonite with only three pseudo-
hexagonal orientation states, these gibbsite twins exhibit six
different orientation states. This is due to the absence of any
eigensymmetry element along the pseudo-hexagonal axis [001].
The intersection symmetry of all orientation states is �11. The
reduced composite symmetry of a domain pair is K� ¼ 120=m01,
with m0 the twin mirror plane (110).
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Fig. 3.3.6.9. Various forms of rutile (TiO2) twins, with one or several equivalent twin reflection planes {011}. (a) Elbow twin (two orientation states). (b) Twin
with two orientation states. One component has the form of an inserted lamella. (c) Triple twin (three orientation states) with twin reflection planes (011) and
ð0�111Þ. (d) Triple twin with twin reflection planes (011) and (101). (e) Cyclic sixfold twin with six orientation states. Two sectors appear strongly distorted due to
the large angular excess of 35.6�. (f) Cyclic eightfold twin with eight orientation states. (g) Perspective view of the cyclic twin of (e). (h) Photograph of a rutile
eightling (ca. 15 mm diameter) from Magnet Cove, Arkansas (Geologisk Museum, Kopenhagen). Parts (a) to (e) courtesy of H. Strunz, Unterwössen, cf.
Ramdohr & Strunz, 1967, p. 512. Photograph (h) courtesy of M. Medenbach, Bochum.
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(iv) ‘Median law’: According to Brögger (1890), this twin law
implies exact parallelism of non-equivalent edges ½110�I and
½010�II, and vice versa, of partners I and II. The twin element is an
irrational twofold axis parallel to (001), bisecting exactly the
angle between [110] and [010], or alternatively, an irrational twin
reflection plane normal to this axis. This interesting orientation
relation, which has been observed so far only for gibbsite, does
not obey the minimum condition for twinning as set out in
Section 3.3.2.2. An alternative interpretation, treating these twins
as rational [130] rotation twins, is given by Johnsen (1907), cf.
Tertsch (1936), pp. 483–484. Interestingly, this strange ‘twin law’
is the most abundant one among natural gibbsite twins.

3.3.6.11. Plagioclase twins

From the point of view of the relationship between pseudo-
symmetry and twinning, triclinic crystals are of particular interest.
Classical mineralogical examples are the plagioclase feldspars
with the ‘albite’ and ‘pericline’ twin laws of triclinic (crystal class
�11) albite NaAlSi3O8 and anorthite CaAl2Si2O8 (also microcline,
triclinic KAlSi3O8), which all exhibit strong pseudosymmetries to
the monoclinic feldspar structure of sanidine. Microcline under-
goes a very sluggish monoclinic–triclinic phase transformation
involving Si/Al ordering from sanidine to microcline, whereas
albite experiences a quick, displacive transformation from
monoclinic monalbite to triclinic albite.

The composite symmetries of these twins can be formulated as
follows:

Albite law: reflection twin on (010); composition plane (010)
rational (Fig. 3.3.6.11, Table 3.3.6.5). KA ¼ 20=m0ð�11Þ with rational
m0 k ð010Þ:

Pericline law: twofold rotation twin along [010]; composition
plane irrational k ½010�: ‘rhombic section’ (Fig. 3.3.6.12, Table
3.3.6.5). KP ¼ 20=m0ð�11Þ with rational 20 k ½010�:

Both twin laws resemble closely the monoclinic pseudosym-
metry 2=m in two slightly different but distinct fashions: each
twin law K uses one rational twin element from 2=m, the other
one is irrational. The two frameworks of twin symmetry 20=m0 are
inclined with respect to each other by about 4�, corresponding to
the angle between b (direct lattice) and b� (reciprocal lattice).

Both twins occur as growth and transformation twins: they
appear together in the characteristic lamellar ‘transformation
microclines’.

3.3.6.12. Staurolite

The mineral staurolite, approximate formula
Fe2Al9[O6(O,OH)2/(SiO4)4], has ‘remained an enigma’ (Smith,
1968) to date with respect to the subtle details of symmetry,
twinning, structure and chemical composition. A lively account of
these problems is provided by Donnay & Donnay (1983).
Staurolite is strongly pseudo-orthorhombic, Ccmm, and only
detailed optical, morphological and X-ray experiments reveal
monoclinic symmetry, C12=m1, with a ¼ 7:87, b ¼ 16:62,
c ¼ 5:65 Å and � ¼ 90� within experimental errors (Hurst et al.,
1956; Smith, 1968).

Staurolite exhibits two quite different kinds of twins:
(i) Twinning by high-order merohedry (after Friedel, 1926, p.

56) was predicted by Hurst et al. (1956) in their detailed study of
staurolite twinning. Staurolite crystals are supposed to consist of
very fine scale monoclinic (H ¼ 12=m1) microtwins on mð001Þ,
which yield a twin aggregate of orthorhombic composite
symmetry K ¼ 20=m0 2=m 20=m0. The coset consists of m0ð001Þ,
m0ð100Þ, 20 k ½100� and 20 k ½001�. Even though this twinning
appears highly probable due to the pronounced structural
pseudosymmetry (‘high-order merohedry’) of staurolite and has
been mentioned by several authors (e.g. Smith, 1968), so far it has
never been unambiguously proven. In particular, electron-
microscopy investigations by Fitzpatrick (1976, quoted in
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Fig. 3.3.6.11. Polysynthetic albite twin aggregate of triclinic feldspar, twin
reflection and composition plane (010).

Fig. 3.3.6.10. Sixfold reflection twin of gibbsite, Al(OH)3, with equivalent
(110) and ð�1110), both as twin mirror and composition planes. (a) Perspective
view of a tabular sixfold sector twin with pseudo-hexagonal twin axis c. In
each sector the monoclinic b axis is normal to the twin axis c, whereas the a
axis slopes slightly down by about 4.5� (� ¼ 94:5�), leading to an umbrella-
like shape of the twin. (b) Polarization micrograph of a sixfold twinned
hexagon (six orientation states) of the shape shown in (a). Pairs of opposite
twin components have the same optical extinction position. Courtesy of Ch.
Sweegers, PhD thesis, University of Nijmegen, 2001.

Table 3.3.6.5. Plagioclase: albite and pericline twins

H k�H (albite) k�H (pericline)

1 m k ð010Þ rational 2 k ½010� rational
�11 2 ? ð010Þ irrational m ? ½010� irrational
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Bringhurst & Griffin, 1986, p. 1470) have failed to detect the
submicroscopic twins.

(ii) Superimposed upon this first generation of microtwins very
often occurs one or the other of two spectacular ‘macroscopic’
growth penetration twins in the shape of a cross, from which in
1792 the name ‘stauros’ of the mineral was given by Dela-
métherié. The first detailed analysis of these twins was provided
by Friedel (1926, p. 461).

(a) The 90� cross (Greek cross) with twin reflection and
composition plane (031) is illustrated in Fig. 3.3.6.13(a) [cf. also
the figures on p. 151 of Hurst et al. (1956) for less idealized
drawings]. Plane (031) generates two twin components with an
angle of 2 arctanðb=3cÞ ¼ 2 arctan 0:9805 ¼ 88:9�, very close to
90�, between their c axes. The equivalent twin reflection plane
ð0�331Þ leads to the same angle, and both twin planes intersect
along the lattice row [100].

With eigensymmetryH ¼ 12=m1, the intersection symmetry of
the domain pair is H� ¼ �11 and the reduced composite symmetry
is K� ¼ 20=m0 [m0 ¼ ð031Þ]. Owing to the special axial ratio
b=3c � 1 mentioned above, the 90� cross is an excellent example
of a pseudo-tetragonal twin. The extended composite symmetry
of this twin is oriented along [100]:

Kð4Þ ¼ 4ð2Þ=m 2=m 2=m

[cf. Section 3.3.4.2(iii)] with two domain states and all twin
operations binary.

(b) The 60� cross (St Andrew’s cross) with twin reflection plane
(231) is illustrated in Fig. 3.3.6.13(b). It is the more abundant of
the two crosses, with a ratio of 60� : 90� twins � 9 : 1 in one
Georgia, USA, locality (cf. Hurst et al., 1956, p. 152). Two
equivalent twin mirror planes, ð231Þ and ð2�331Þ, intersecting in
lattice row ½10�22� exist. They include an angle of 60.4�. The action
of one of these twin reflection planes leads to the 60� cross with
an angle of 60� between the two c axes. The reduced composite
symmetry of this twin pair is K� ¼ 20=m0 ½m0 ¼ ð231Þ�.

In rare cases, penetration trillings occur by the action of both
equivalent mirror planes, ð231Þ and ð2�331Þ, leading to three
interpenetrating twin components with angles of about 60�

between neighbouring arms.

Notes
(1) In many books, the twin reflection planes for the 90� cross

and the 60� cross are given as (032) and (232) instead of (031) and
(231). The former Miller indices refer to the morphological cell,
which has a double c axis compared with the structural X-ray cell,
used here.

(2) Friedel (1926) and Hurst et al. (1956) have derived both
twin laws (031) and (231), mentioned above, from a multiple
cubic pseudo-cell, the ‘Mallard pseudo-cube’. This derivation will
be presented in Section 3.3.9.2.4 as a characteristic example of
‘twinning by reticular pseudo-merohedry’.

3.3.6.13. BaTiO3 transformation twins

The perovskite family, represented by its well known member
BaTiO3, is one of the technically most important groups of
dielectric materials, characterized by polar structures which
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Fig. 3.3.6.13. Twinning of staurolite. (a) 90� cross (‘Greek cross’) with twin
reflection and composition planes (031) and ð03�11Þ. (b) 60� cross (‘St
Andrew’s cross’) with twin reflection and composition plane (231).

Fig. 3.3.6.12. Pericline twin of triclinic feldspar. Twofold twin axis [010]. (a)
Twin with rational composition plane (001), exhibiting clearly the misfit
(exaggerated) of the two adjacent (001) contact planes, as indicated by the
crossing of lines a and a0. (b) The same (exaggerated) twin as in (a) but with
irrational boundary along the ‘rhombic section’: fitting of contact planes from
both sides (a and a0 coincide and form a flat ridge). (c) Sketch of a real
pericline twin with irrational interface (‘rhombic section’) containing the
twin axis.
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exhibit piezoelectricity, pyroelectricity and, most of all, ferro-
electricity.

BaTiO3 is cubic and centrosymmetric (paraelectric) above
393 K. Upon cooling below this temperature it transforms in one
step (first-order transformation with small �H) into the ferro-
electric tetragonal phase with polar space group P4mm. This
transition is translationengleich of index ½i� ¼ 6. Hence there are
domains of six possible orientation states at room temperature.
The transformation can be theoretically divided into two
steps:

(i) Translationengleiche symmetry reduction cubic Pm�33m �!
tetragonal P4=mmm of index ½i1� ¼ 3, leading to three sets of
ferroelastic ‘90� domains’, related by the (lost) cubic {110} twin
mirror planes or the (lost) cubic threefold axes. These three
pseudo-merohedral orientation states point with their tetragonal
c axes along the three former cube axes [100], [010] and [001],
thus including angles of nearly 90�.

(ii) Each of these centrosymmetric domains splits into two
antiparallel polar ferroelectric ‘180� domains’, whereby the space
group P4=mmm is translationsgleich reduced to P4mm of index
½i2� ¼ 2. The total index is: ½i� ¼ ½i1� � ½i2� ¼ 6.

The beautiful polysynthetic twin structure of BaTiO3 is shown
in the colour micrograph Fig. 3.4.1.1 in Chapter 3.4 of this
volume.

3.3.6.14. Twins of twins

This term is due to Henke (2003) and refers to the simulta-
neous occurrence (superposition) of two or more different twin
types (twin laws) in one and the same crystal. In twins of twins,
one ‘generation’ of twin domains is superimposed upon the
other, each with its own twin law. This may occur as a result
of:

(1) two successive phase transitions, each with its own twinning
scheme, or

(2) one phase transition with loss of two kinds of symmetry
elements, or

(3) a phase transition superimposed on an existing growth
twin.

Typical examples are:
(i) the cubic–tetragonal (m�33m()4mm) phase transition of

BaTiO3, described above. Here, 90� domains (due to the loss of
the diagonal mirror planes) are superimposed by 180� domains
(due to the loss of the inversion centres);

(ii) a similar case (tetragonal–monoclinic) is provided by the
‘type case’ of Henke (2003), (NO)2VCl6;

(iii) ammonium lithium sulfate exhibits pseudo-hexagonal
growth-sector twins upon which lamellae of ferroelectric 180�

domains are superimposed.

In this context, the term complete twin should be noted. It was
coined by Curien & Donnay (1959) for the symmetry description
of a crystal containing several merohedral twin laws. Their
preferred example was quartz, but there are many relevant
cases:

(i) The complete merohedral ‘twins of twins’ of quartz, i.e. the
superposition of the Dauphiné, Brazil and Leydolt twins, can be
formulated as follows:

Dauphinee twin law: 321) 60ð3Þ220

Brazil twin law: 321) �330ð3Þ2=m01ð�110Þ

Leydolt twin law: 321) �660ð3Þ2m0 ¼ 3=m02m0:

Combination = ‘complete twin’: 60ð3Þ=m0 2=m0 20=m0ð�110Þ; this
symmetry corresponds to the hexagonal holohedral point group
6=m 2=m 2=m, cf. Example 3.3.6.3.

(ii) Another example is provided by KLiSO4 (crystal class 6),
extensively investigated by Klapper et al. (1987):

Inversion twins: 6) 6=m0ð�110Þ

Reflection twins: 6) 6m0m0

Rotation twins: 6) 62020:

Combination = ‘complete twin’: 6=m020=m020=m0ð�110Þ; this
symmetry is isomorphic to the complete-twin symmetry of quartz,
given above, and to the hexagonal holohedral point group
6=m 2=m 2=m.

3.3.7. Genetic classification of twins

In Section 3.3.3, a classification of twins based on their
morphological appearance was given. In the present section,
twins are classified according to their origin. Genetic terms such
as growth twins, transformation twins and mechanical twins were
introduced by Buerger (1945) and are in widespread use. They
refer to the physical origin of a given twin in contrast to its
geometrical description in terms of a twin law. The latter can be
the same for twins of different origin, but it will be seen that the
generation of a twin has a strong influence on the shape and
distribution of the twin domains. An extensive survey of the
genesis of all possible twins is given by Cahn (1954).

3.3.7.1. Growth twinning

Growth twins can occur in nature (minerals), in technical
processes or in the laboratory during growth from vapour, melt
or solution. Two mechanisms of generation are possible for
growth twins:

(i) formation during nucleation of the crystal;
(ii) formation during crystal growth.

3.3.7.1.1. Twinning by nucleation

In many cases, twins are formed during the first stages of
spontaneous nucleation, possibly before the sub-critical nucleus
reaches the critical size necessary for stable growth. This idea was
originally proposed by Buerger (1945, p. 476) under the name
supersaturation twins. There is strong evidence for twin formation
during nucleation for penetration and sector twins, where all
domains originate from one common well defined ‘point’ in the
centre of the twinned crystal, which marks the location of the
spontaneous nucleus.

Typical examples are the penetration twins of iron borate
FeBO3 (calcite structure), which are intergrowths of two rhom-
bohedra, a reverse and an obverse one, and consist of 12 alter-
nating twin domains belonging to two orientation states (see
Example 3.3.6.5 and Fig. 3.3.6.4). Experimental details are
presented by Klapper (1987) and Kotrbova et al. (1985). Further
examples are the penetration twins of the spinel law (Example
3.3.6.6 and Fig. 3.3.6.6), the very interesting and complex [001]
penetration twin of the monoclinic feldspar orthoclase (Fig.
3.3.7.1) and the sector twins of ammonium lithium sulfate with
three orientation states (Fig. 3.3.7.2).

It should be emphasized that all iron borate crystals that are
nucleated from flux or from vapour (chemical transport) exhibit
penetration twinning. The occurrence of untwinned crystals has
not been observed so far. Crystals of isostructural calcite and
NaNO3, on the other hand, do not exhibit penetration twins at all.
In contrast, for ammonium lithium sulfate, NH4LiSO4, both
sector-twinned and untwinned crystals occur in the same batch.
In this case, the frequency of twin formation increases with higher
supersaturation of the aqueous solution.

The formation of contact twins (such as the dovetail twins of
gypsum) during nucleation also occurs frequently. This origin
must always be assumed if both partners of the final twin have
roughly the same size or if all spontaneously nucleated crystals in
one batch are twinned. For example, all crystals of monoclinic
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lithium hydrogen succinate precipitated from aqueous solution
form dovetail twins without exception.

The process of twin formation during nucleation, as well as the
occurrence of twins only for specific members of isostructural
series (cf. Section 3.3.8.6), are not yet clearly understood. A
hypothesis advanced by Senechal (1980) proposes that the
nucleus first formed has a symmetry that is not compatible with
the lattice of the (macroscopic) crystal. This symmetry may even
be noncrystallographic. It is assumed that, after the nucleus has
reached a critical size beyond which the translation symmetry
becomes decisive, the nucleus collapses into a twinned crystal
with domains of lower symmetry. This theory implies that for
nucleation-twinned crystals, a metastable modification with a
structure different from that of the stable macroscopic state may
exist for very small dimensions. For this interesting theoretical
model no experimental proof is yet available, but it appears
rather reasonable; as a possible candidate of this kind of genesis,
the rutile ‘eightling’ in Example 3.3.6.9 may be considered.

Recently, the ideas on twin nucleation have been experimen-
tally substantiated by HRTEM investigations of multiple twins.
The formation of these twins in nanocrystalline f.c.c. and
diamond-type cubic materials, such as Ge, Ag and Ni, is
explained by the postulation of various kinds of noncrystallo-
graphic nuclei, which subsequently ‘collapse’ into multiply
twinned nanocrystals, e.g. fivefold twins of Ge; cf. Section
3.3.10.6. An extensive review is provided by Hofmeister (1998).

3.3.7.1.2. Twinning during crystal growth

(a) An alternative theory of twinning postulates the formation
of a two-dimensional nucleus in twin position on a growth face of
an existing macroscopic (previously untwinned) crystal. Such a

mechanism was extensively described by Buerger (1945, pp. 472–
475) and followed up by Menzer (1955) and Holser (1960).
Obviously, this process is favoured by defects (inclusions, impu-
rities) in the growth face. If the twin nucleus spreads out over the
entire growth face, the twin boundary coincides with the growth
face. This mechanism is generally assumed for the generation of
large-area lamellar polysynthetic growth twins as observed for
albite (Example 3.3.6.11 and Fig. 3.3.6.11). For a critical discus-
sion of the origin of irrational twin interfaces in rotation twins
such as the pericline twins see Cahn (1954, p. 408). It should be
noted that this mechanism is possible only for twin boundaries of
very low energy, since the boundary energy of the large interface
has to be supplied in one step, i.e. during spreading out of one
growth layer in twin position. It is obvious that this kind of twin
formation can only occur if the twin boundary coincides with a
prominent growth face (F-face, rarely S-face, according to
Hartman, 1956).

(b) In the majority of growth twins, the twin boundary does not
coincide with the growth face. This is the rule for merohedral
twins, where the twin domains appear as ‘inserts’ in the shape of
pyramids or lamellae extending from the initiating defects
(mostly inclusions) into the direction of growth of the face on
which the twin has started. Examples are the pyramid-shaped
Brazil-twin inserts of quartz (Frondel, 1962, Fig. 61 on p. 87) and
the lamellar stripes of growth twins of KLiSO4 (Klapper et al.,
1987, especially. Fig. 5). Similar pyramidal twin inserts are
observed for Dauphiné growth twins in natural and synthetic
quartz. These twin morphologies in quartz, however, are often
considerably modified after growth by (partial) ferrobielastic
switching of the domains, which is easily induced by stress at
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Fig. 3.3.7.1. Orthoclase (monoclinic K-feldspar). Two views, (a) and (b), of
Carlsbad penetration twins (twofold twin axis [001]).

Fig. 3.3.7.2. Photographs of (001) plates (� 20 mm diameter, � 1 mm thick)
of NH4LiSO4 between crossed polarizers, showing sector growth twins due to
metric hexagonal pseudosymmetry of the orthorhombic lattice. (a) Nearly
regular threefold sector twin (three orientation states, three twin compo-
nents). (b) Irregular sector twin (three orientation states, but five twin
components).
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elevated temperatures [cf. Section 3.3.7.3(iii)]. Illustrations of
such Dauphiné twins are given by Frondel (1962, Fig. 49 on p. 78).

The growth-twin inserts as described above appear improbable
for non-merohedral twins because unfavourable high-energy
boundaries would be involved. As a consequence, it must be
concluded that non-merohedral twins with boundaries not coin-
ciding with a (prominent) growth face (e.g. dovetail twins of
gypsum) must form during the nucleation stage of the crystal
[Section 3.3.7.1.1 above].

(c) Another model of twin formation has been suggested by
Schaskolsky & Schubnikow (1933). It is based on the idea that in
the melt or solution the pre-existing small crystals make acci-
dental contact with analogous faces ðhklÞ1 and ðhklÞ2 parallel,
rotate and agglutinate in twin position, and continue to grow as a
twin. This concept is also favoured by Buerger (1960b). The
model of Schaskolsky & Schubnikow is based on their interesting
experiments with many (� 1400) K-alum crystals (up to 0.5 mm
in size), which sediment in solution on horizontal octahedron
(111) and cube (100) faces of large alum crystals
(20–30 mm in size). A statistical analysis of the orientation
distribution of the sedimented crystals reveals a significantly
increased frequency of (111)/(111) parallel intergrowths, of
regular (001)/(111) intergrowths and of (111) spinel twins. The
authors interpret this result as a rotation of the small crystals
around the contact-face normal after deposition on the large
crystal. This initial contact plane (ICP) model of twin formation
was critically discussed by Senechal (1980) and considered as
questionable, an opinion which is shared by the present authors.

(d) Finally, it is pointed out that twinning may drastically
modify the regular growth morphology of (untwinned) crystals. A
prominent example is the tabular shape of (111)-twinned cubic
crystals with the large face parallel to the (111) contact plane.
This is due to the increased lateral growth rate of the faces
meeting in re-entrant edges (re-entrant corner effect; Hartman,
1956; Ming & Sunagawa, 1988). The (111) tabular shape of
twinned cubic crystals plays an important role for photographic
materials such as silver bromide, AgBr (Buerger, 1960b; Bögels et
al., 1997, 1998). A more extreme habit modification is exhibited
by the h110i growth needles of cubic AgBr, which contain two
f111g twin planes intersecting along h110i (Bögels et al., 1999).

The phenomenon of habit modification by twinning has been
developed further by Senechal (1976, 1980), who presents an
alternative model of the genesis of penetration twins (cf. Section
3.3.7.1.1 above): initial cubic (111) contact twins consisting of two
octahedra change their habit during growth so as to form two
interpenetrating cubes of the spinel law. As a further example,
chabasite is cited.

(e) During melt growth of the important cubic semiconductors
with the diamond structure (Si, Ge) and sphalerite (zinc sulfide)
structure (e.g. indium phosphide, InP), twins of the spinel law
[twin mirror plane (111) or twofold twin axis [111], cf. Section
3.3.10.3.3] are frequently formed. Whereas this twinning is rela-
tively rare and can easily be avoided for Si and Ge, it is a
persistent problem for the III–V and II–VI compound semi-
conductors, especially for InP and CdTe crystals, which have a
particularly low {111} stacking-fault energy (Gottschalk et al.,
1978). For Czochralsky growth, these twins are usually nucleated
at ‘edge facets’ forming at the surface of the ‘shoulder’ (or ‘cone
region’) where the growing crystal widens from the seed rod to its
final diameter. Once nucleated, they proceed during further
growth as bulk twins or, more frequently, as twin lamellae with
sharp f111g contact planes. For a [111] pulling direction, the three
equivalent {111} twin planes with inclination of 19.5� against the
pull axis [111] are usually activated, whereas the perpendicular
(111) twin plane does not or only rarely occurs (Bonner, 1981;
Tohno & Katsui, 1986). These twins can be avoided by optimizing
the growth conditions, in particular by the choice of a proper
cone angle, which is the most crucial parameter. A mechanism of
the {111} twin formation of III–V compound semiconductors was

suggested by Hurle (1995) and experimentally confirmed for InP,
using synchroton-radiation topography combined with chemical
etching and Normarski microscopy, by Chung et al. (1998) and
Dudley et al. (1998). A comprehensive X-ray topographic study
of (111) twinning in indium phosphide crystals, grown by the
liquid-encapsulated Czochralski technique, and its interaction
with dislocations is presented by Tohno & Katsui (1986).

(f) It should be noted lastly that ‘annealing twins’ (which are an
important subject in metallurgy) are not treated in this section,
because they are considered to be part of bicrystallography.
These twins are formed during recrystallization and grain growth
in annealed polycrystalline materials (cf. Cahn, 1954, pp. 399–
401).

3.3.7.2. Transformation twinning

A solid-to-solid (polymorphic) phase transition is – as a rule –
accompanied by a symmetry change. For displacive and order–
disorder transitions, the symmetries of the ‘parent phase’
(prototype phase) G and of the ‘daughter phase’ (deformed
phase) H exhibit frequently, but not always, a group–subgroup
relation. During the transition to the low-symmetry phase the
crystal usually splits into different domains. Three cases of
transformation-twin domains are distinguished:

(i) The symmetry operations suppressed during the transition
belong to the point group G of the high-symmetry (prototype)
phase, whereas the lattice, except for a small affine deformation,
is unchanged (translationengleiche subgroup). In this case, the
structures of the domains have different orientations and/or
different handedness, both of which are related by the suppressed
symmetry elements. Thus, the transition induces twins with the
suppressed symmetry elements acting as twin elements (twin
law). The number of orientation states is equal to the index
½i� ¼ Gj j= Hj j of the group–subgroup relation, i.e. to the number
of cosets of G with respect to H, including H itself; cf. Section
3.3.4.1. If, for example, a threefold symmetry axis is suppressed,
three domain states related by approximate 120� rotations will
occur (for the problems of pseudo-n-fold twin axes, see Section
3.3.2.3.2). A further well known example is the �–� phase
transformation of quartz at 846 K. On cooling from the hexa-
gonal � phase (point group 622) to the trigonal � phase (point
group 32), the twofold rotation 2z ¼ 63, contained in the sixfold
axis of �-quartz, is suppressed, and so are the other five
rotations of the coset [cf. Example 3.3.6.3.1]. Consequently,
two domain states appear (Dauphiné twins). These twins are
usually described with the twofold axis along [001] as twin
element.

(ii) If a lattice translation is suppressed without change of the
point-group symmetry (klassengleiche subgroup), i.e. due to loss
of cell centring or to doubling (tripling etc.) of a lattice parameter,
translation domains (antiphase domains) are formed (cf.
Wondratschek & Jeitschko, 1976). The suppressed translation
appears as the fault vector of the translation boundary (antiphase
boundary) between the domains. Recently, translation domains
were called ‘translation twins’ (T-twins, Wadhawan, 1997, 2000),
cf. Section 3.3.2.4, Note (7).

(iii) The two cases can occur together, i.e. point-group
symmetry and translation symmetry are both reduced in one
phase transition (general subgroup). Here caution in the counting
of the number of domain states is advisable since now orientation
states and translation states occur together.

Well known examples of ferroelastic transformation twins are
K2SO4 (Example 3.3.6.7) and various perovskites (Example
3.3.6.13). Characteristic for non-merohedral (ferroelastic) trans-
formation twins are their planar twin boundaries and the many
parallel (lamellar) twin domains of nearly equal size. In contrast,
the twin boundaries of merohedral (non-ferroelastic) transfor-
mation twins, e.g. Dauphiné twins of quartz, often are curved,
irregular and non-parallel.
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Transformation twins are closely related to the topic of domain
structures, which is extensively treated in Chapter 3.4 of this
volume.

A generalization of the concept of transformation twins
includes twinning due to structural relationships in a family of
related compounds (‘structural twins’). Here the parent phase is
formed by the high-symmetry ‘basic structure’ (‘aristotype’) from
which the ‘deformed structures’ and their twin laws, occurring in
other compounds, can be derived by subgroup considerations
similar to those for actual transformation twins. Well known
families are ABX3 (perovskites) and A2BX4 (Na2SO4- and
K2SO4-type compounds). In Example (3) of Section 3.3.9.2.4,
growth twins among MeX2 dichalcogenides are described in
detail.

3.3.7.3. Mechanical twinning

Under mechanical load, some crystals can be ‘switched’ –
partly or completely – from one orientation state into another.
This change frequently proceeds in steps by the switching of
domains. As a rule, the new orientation is related to the original
one by an operation that obeys the definition of a twin operation
(cf. Section 3.3.2.3). In many cases, the formation of mechanical
twins (German: Druckzwillinge) is an essential feature of the
plasticity of crystals. The deformation connected with the
switching is described by a homogeneous shear. The domain
arrangement induced by mechanical switching is preserved after
the mechanical load is released. In order to re-switch the
domains, a mechanical stress of opposite sign (coercive stress) has
to be applied. This leads to a hysteresis of the stress–strain rela-
tion. In many cases, however, switching cannot be repeated
because the crystal is shattered.

All aspects of mechanical twinning are reviewed by Cahn
(1954, Section 3). A comprehensive treatment is presented in the
monograph Mechanical Twinning of Crystals by Klassen-
Neklyudova (1964). A brief survey of mechanical twinning in
metals is given by Barrett & Massalski (1966).

With respect to symmetry, three categories of mechanical twins
are distinguished in this chapter:

(i) Mechanical twinning in the ‘traditional’ sense. This kind of
twinning has been studied by mineralogists and metallurgists
under the name deformation twins for a long time. Well known
examples are the deformation twins of calcite, galena, chalco-
pyrite and cubic metals. The characteristic feature is the non-
existence of a real or virtual parent phase with a crystallographic
supergroup. From a symmetry point of view, this means that the
composite symmetry of the twin is noncrystallographic [cf.
Section 3.3.4.4(ii)]. This case is illustrated by the famous defor-
mation twins of calcite (Fig. 3.3.7.3): The eigensymmetry H of
calcite is �332=m, and the most conspicuous twin element is the twin
reflection plane ð01�112Þ which is parallel to an edge of the cleavage
rhombohedron f10�111g. The extension of the eigensymmetry by
this twin operation does not lead to a crystallographic composite
symmetry, but the reduced composite symmetry is crystal-
lographic, K� ¼ 2=m 2=m 2=m.

Another famous case is that of the �3 deformation twins
of cubic metals that obey the spinel law of mineralogy
[most conspicuous twin element: reflection plane parallel to
(111)]. The extension of the eigensymmetry 4=m�332=m by the twin
operation leads to a noncrystallographic composite symmetry.
The reduced composite symmetry K�, which is constructed from
the intersection symmetry H�, however, is crystallographic (cf.
Example 3.3.6.6).

A description of the (plastic) deformation by twinning in terms
of strain ellipsoids is presented in Section 3.3.10.1.

(ii) Ferroelastic twinning. In 1970, a special category of
mechanical twins was introduced and characterized by Aizu
(1970a), who also coined the term ferroelasticity. This group of
twins had already been treated, as part of the mechanical twins,

by Klassen-Neklyudova in her 1964 monograph mentioned
above. The defining property of a ferroelastic crystal is the
existence of a displacive (group–subgroup) transition, either real
or virtual, from the parent phase into the ferroelastic phase with
the essential requirement that parent and daughter phase belong
to different crystal families (crystal systems). Only this symmetry
feature allows for a spontaneous shear strain of the twin domains.
The spontaneous deformations in a pair of domains have the
same magnitude, but opposite signs. If the domain states can
actually be switched into each other by a mechanical stress, the
phase is called ferroelastic, otherwise it is called here potentially
ferroelastic.

Ferroelastic twinning is not necessarily the result of a real
phase transition. Switchable ferroelastic twins are frequently
formed during growth. An example is orthorhombic ammonium
sulfate, which can only be grown from aqueous solution and
which frequently develops pseudohexagonal growth twins with
three orientation states. Above about 353 K, the grown-in
domains can easily be switched stepwise from one domain state
into another by an appropriate shear stress, without the sample
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Fig. 3.3.7.3. Mechanical twins of calcite, CaCO3. All indices refer to the
standard morphological cell [cf. Section 3.3.10.2.2, Example (5)]. (a)
Generation of a deformation twin by a knife-edge impact (after Baumhauer,
1879). (b) Description as a glide process (‘twin glide’) on plane (01�112). (c),
(d) Generation of deformation twins by compression of the cleavage
rhombohedron f10�111g (Mügge, 1883). The shaded twin components have the
same orientation. (e) Successive stages of deformation twinning of NaNO3

(isotypic with calcite) by uniaxial compression. The compression axis
(vertical) is chosen with an angle of 45� against the twin glide plane ð10�112Þ
and the glide direction ½21�11�. The direction of the twofold axis is shown in the
left-hand figure. Original size of the sample: ca. 3� 3� � 9:5 mm. Part (e)
courtesy of H. E. Hoefer, PhD thesis, University of Cologne, 1989.



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

ever undergoing a phase transition. Ammonium sulfate exhibits a
virtual phase transition into a hexagonal prototype phase. It
decomposes, however, at about 473 K, well before reaching the
phase transition.

There are many examples (e.g. Rochelle salt) in which a
ferroelastic domain structure can be generated by a real phase
transition as well as by growth below the transition temperature.
As a rule, the domain textures of growth and transformation
twins are quite different. A detailed account of ferroelastic
crystals is given by Salje (1993); a recent review is provided by
Abrahams (1994).

(iii) Ferrobielastic twinning. Ferroelastic twinning implies a
switchable spontaneous strain, i.e. a change of the unit-cell
orientation in the different domains (twinning with change of
form; Klassen-Neklyudova, 1964). In some species of crystals,
however, mechanical twinning without change of the unit-cell
orientation is possible (twinning without change of form). This
can occur, for example, in trigonal crystals with a hexagonal P
lattice. Here, the shape and orientation of the unit cell does not
change from one domain to the other, and the twin is always
merohedral (cf. Section 3.3.8). The atomic structure within the
unit cell, however, is altered by the switching. The most famous
example is the Dauphiné twinning of quartz, which can be
induced by uniaxial stress along an appropriate direction. This
effect was observed a long time ago by Judd (1888) and described
in detail by Schubnikow & Zinserling (1932) and Zinserling &
Schubnikow (1933). The ‘critical stress’ for the Dauphiné
switching decreases with increasing temperature and becomes
zero at the transition to the hexagonal phase at 846 K.

The property of a crystal to form ‘twins without change of
form’ under mechanical stress was called ferrobielasticity by
Newnham (1975). Aizu (1973) speaks of second-order (ferro-
elastic) state shifts. It implies a change in the orientation of some
tensorial properties. For Dauphiné twins of quartz, it is the elastic
(fourth-rank) tensor that is responsible for the switching of the
structure. Under uniaxial stress, a direction of high Young’s
modulus1 is transformed into a (compatible) direction of smaller
Young’s modulus for which the material responds with a higher
elastic yield. Note that this switching is induced by both
compressive and tensile stress. A derivation of all crystal species
capable of second-order ferroic state shifts by electric fields and
mechanical stress, including a series of photographs showing the
development of Dauphiné twins of quartz under stress, is
presented by Aizu (1973).

For trigonal crystals with a rhombohedral (R) lattice, on the
other hand, this switching implies the change of the obverse into
the reverse rhombohedron and vice versa. In this case, the
orientation of the primitive rhombohedral unit cell is changed,
leading to ‘twinning with change of form’ (i.e. not to ferrobi-
elasticity), even though the orientation of the triple hexagonal
cell is not changed. This kind of twinning corresponds to the
(0001) reflection twins of rhombohedral crystals and the (111)
spinel twins of cubic crystals (cf. Examples 3.3.6.5 and 3.3.6.6).
The switching from a cubic obverse rhombohedron into the
reverse one actually takes place in the ‘�3 deformation twins’ of
cubic metals [cf. part (i) above].

(iv) Detwinning. The generation of twins by mechanical stress
allows, in reverse, the detwinning of crystals by the application of
appropriate stress. This method has been extensively used for the
elimination of Dauphiné twins in quartz (Thomas & Wooster,
1951; Klassen-Neklyudova, 1964, pp. 75–86). The presence of
these ‘electrical’ twins impairs the function of piezoelectric
devices, such as piezoelectric resonators, made from these crys-
tals (Iliescu & Chirila, 1995; Iliescu et al., 1997). Brazil twins of
quartz, which also entail the reversal of the electric axes (cf. Fig.
3.3.6.2) cannot be detwinned. Mechanical detwinning by appro-
priate stress is also used to obtain single-domain crystals of the

ferroelastic YBa2Cu3O7� � high-Tc superconductor. In most
cases, elevated temperatures reduce the critical stress required
for domain switching.

It is characteristic of ferroelectric crystals that they can be
switched into a single-domain state (i.e. ‘detwinned’ or ‘poled’)
by a sufficiently strong (coercive) electric field of proper direc-
tion. It is, however, also possible to detwin ferroelastic domains by
the application of electric fields. This occurs in ferroelectric–
ferroelastic crystals, where ferroelectricity and ferroelasticity are
coupled, i.e. where the reversal of the electric polarity is
accompanied by (mechanical) switching of the ferroelastic
domains into the other deformation state and vice versa. An
outstanding and well known example is Rochelle salt, which
undergoes an orthorhombic–monoclinic phase transition
222 !2 at about 297 K with coupled ferroelectricity and
ferroelasticity in the monoclinic phase (cf. Zheludev, 1971, pp.
143, 226). An extensive crystal-optical study of the ferroelastic
domain switching and detwinning in Rochelle salt by electric
fields, including film records of the domain movements, was
presented by Chernysheva [1951, 1955; quoted after Klassen-
Neklyudova (1964), pp. 75–78 and Fig. 100].

(v) Non-ferroelastic and co-elastic twins. Phase transitions with
symmetry changes within the same crystal family (crystal system)
also exhibit a spontaneous deformation of the unit cell, but all
orientation states have the same deformation, both in magnitude
and orientation. Hence, a domain switching is not possible
(except for ferrobielastic crystals treated above). Therefore, this
kind of phase transition and its associated domain structure are
called non-ferroelastic. Salje (1993) uses the term co-elastic. In
crystallography, twins resulting from this kind of phase transition
are grouped under twins by merohedry (cf. Section 3.3.8). Typical
examples of non-ferroelastic and co-elastic materials are quartz
(merohedral Dauphiné twins, phase transition P3121 !P622 at
846 K) and calcite (transition R�33c !R�33m at about 1523 K, cf.
Salje, 1993, Chapter 2).

In conclusion, it is pointed out that twins with one and the
same twin law can be generated in different ways. In addition to
the twins of potassium sulfate mentioned above [growth twins,
transformation twins and mechanical (ferroelastic) twins], the
Dauphiné twinning of quartz is an example: it can be formed
during crystal growth, by a phase transition and by mechanical
stress [ferrobielasticity, cf. part (iii) above]. As a rule, the domain
textures of a twinned crystal are quite different for growth twins,
transformation twins and mechanical twins.

3.3.8. Lattice aspects of twinning

In the previous sections of this chapter, the symmetry relations
and the morphological classification of twins have been presented
on a macroscopic level, i.e. in terms of point groups. It would be
ideal if this treatment could be extended to atomic dimensions,
i.e. if twinning could be explained and even predicted in terms of
space groups, crystal structures, interface structures and
structural defects. This approach is presently only possible
for a few specific crystals; for the majority of twins, however,
only general rules are known and qualitative predictions can be
made.

An early and very significant step towards this goal was the
introduction of the lattice concept in the treatment of twinning
(three-periodic twins). This was first done about a hundred years
ago – based on the lattice analysis of Bravais – by Mallard (1879)
and especially by Friedel (1904, 1926), in part before the advent
of X-ray diffraction. The book by Friedel (1926), particularly
Chapter 15, is the most frequently cited reference in this field.
Later, Friedel (1933) sharpened his theories to include two
further types of twins: ‘macles monopériodiques’ and ‘macles
dipériodiques’, in addition to the previous ‘macles tripériodiques’,
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see Section 3.3.8.2 below. These concepts were further developed
by Niggli (1919, 1920/1924/1941).

The lattice aspects of twinning (triperiodic twins) are discussed
in this section and in Section 3.3.9. An important concept in this
field is the coincidence-site sublattice of the twin in direct space
and its counterpart in reciprocal space. Extensive use of the
notion of coincidence-site lattices (CSLs) is made in bicrystallo-
graphy for the study of grain boundaries, as briefly explained in
Section 3.2.2.

The coincidence-site lattice and further related lattices (O- and
DSC-lattices) were introduced into the study of bicrystals by
Bollmann (1970, 1982) and were theoretically thoroughly
developed by Grimmer (1989, 2003). Their applications to grain
boundaries are contained in the works by Sutton & Balluffi
(1995) and Gottstein & Shvindlerman (1999).

3.3.8.1. Basic concepts of Friedel’s lattice theory

The basis of Friedel’s (1904, 1926) lattice theory of twinning is
the postulate that the coincidence-site sublattice common to the
two twin partners (twin lattice) suffers no deviation (strict
condition) or at most a slight deviation (approximate condition)
in crossing the boundary between the two twin components
(composition plane). This purely geometrical condition is often
expressed as ‘three-dimensional lattice control’ (Santoro, 1974, p.
225), which is supposed to be favourable to the formation of
twins.

In order to define the coincidence sublattice (twin lattice) of
the two twin partners, it is assumed that their oriented point
lattices are infinitely extended and interpenetrate each other. The
lattice classification of twins is based on the degree of coincidence
of these two lattices. The criterion applied is the dimension of the
coincidence-site subset of the two interpenetrating lattices, which
is defined as the set of all lattice points common to both lattices,
provided that two initial points, one from each lattice, are
brought to coincidence (common origin). This common origin has
the immediate consequence that the concept of the twin displa-
cement vector t – as introduced in Note (8) of Section 3.3.2.4 –
does not apply here. The existence of the coincidence subset of a
twin results from the crystallographic orientation relation (Section
3.3.2.2), which is a prerequisite for twinning. This subset is one-,
two- or three-dimensional (monoperiodic, diperiodic or triper-
iodic) twins.

If a coincidence relation exists between lattices in direct space,
a complementary superposition relation occurs for their reci-
procal lattices. This superposition can often, but not always, be
detected in the diffraction patterns of twinned crystals.

3.3.8.2. Lattice coincidences, twin lattice, twin lattice index

Four types of (exact) lattice coincidences have to be distin-
guished in twinning:

(i) No coincidence of lattice points (except, of course, for the
initial pair). This case corresponds to arbitrary intergrowth of two
crystals or to a general bicrystal.

(ii) One-dimensional coincidence: Both lattices have only one
lattice row in common. Of the seven binary twin operations listed
in Section 3.3.2.3.1, the following three generate one-dimensional
lattice coincidence:

(a) twofold rotation around a (rational) lattice row [twin
operation (iii) in Section 3.3.2.3.1];

(b) reflection across an irrational plane normal to a (rational)
lattice row (note that the coincidence would be three-dimen-
sional if this plane were rational) [twin operation (iv)];

(c) twofold rotation around an irrational axis normal to a
(rational) lattice row (complex twin, Kantennormalengesetz)
[twin operations (v) and (vi)].

Lattices are always centrosymmetric; hence, for lattices, as well
as for centrosymmetric crystals, the first two twin operations
above belong to the same twin law. For noncentrosymmetric

crystals, however, the two twin operations define different twin
laws.

(iii) Two-dimensional coincidence: Both lattices have only one
lattice plane in common. The following two (of the seven) twin
operations lead to two-dimensional lattice coincidence:

(a) reflection across a (rational) lattice plane [twin operation
(i)];

(b) twofold rotation around an irrational axis normal to a
(rational) lattice plane (note that the coincidence would be three-
dimensional if this axis were rational) [twin operation (ii)].

Again, for lattices and centrosymmetric crystals both twin
operations belong to the same twin law.

(iv) Three-dimensional coincidence: Here the coincidence
subset is a three-dimensional lattice, the coincidence-site lattice or
twin lattice. It is the three-dimensional sublattice common to the
(equally or differently) oriented lattices of the two twin partners.
The degree of three-dimensional lattice coincidence is defined by
the coincidence-site lattice index, twin lattice index or sublattice
index [j], for short: lattice index. This index is often called �,
especially in metallurgy. It is the volume ratio of the primitive
cells of the twin lattice and of the (original) crystal lattice (i.e. 1=j
is the ‘degree of dilution’ of the twin lattice with respect to the
crystal lattice):

½j� ¼ � ¼ Vtwin=Vcrystal:

The lattice index is always an integer: j ¼ 1 means complete
coincidence (parallelism), j > 1 partial coincidence of the two
lattices. The index [j] can also be interpreted as elimination of the
fraction ðj� 1Þ=j of the lattice points, or as index of the transla-
tion group of the twin lattice in the translation group of the
crystal lattice. The coincidence lattice, thus, is the intersection of
the oriented lattices of the two twin partners.

Twinning with ½j� ¼ 1 has been called by Friedel (1926, p. 427)
twinning by merohedry (‘macles par mériédrie’) (for short:
merohedral twinning), whereas twinning with ½j� > 1 is called
twinning by lattice merohedry or twinning by reticular merohedry
(‘macles par mériédrie réticulaire’) (Friedel, 1926, p. 444). The
terms for ½j� ¼ 1 are easily comprehensible and in common use.
The terms for ½j� > 1, however, are somewhat ambiguous. In the
present section, therefore, the terms sublattice, coincidence lattice
or twin lattice of index ½j� are preferred. Merohedral twinning is
treated in detail in Section 3.3.9.

Complete and exact three-dimensional lattice coincidence
(½j� ¼ 1) always exists for inversion twins (of noncentrosymmetric
crystals) [twin operation (vii)]. For reflection twins, complete or
partial coincidence occurs if a (rational) lattice row [uvw] is
(exactly) perpendicular to the (rational) twin reflection plane
(hkl); similarly for rotation twins if a (rational) lattice plane (hkl)
is (exactly) perpendicular to the (rational) twofold twin axis
[uvw].

The systematic perpendicularity relations (i.e. relations valid
independent of the axial ratios) for lattice planes (hkl) and lattice
rows [uvw] in the various crystal systems are collected in Table
3.3.8.1. No perpendicularity occurs for triclinic lattices (except for
metrical accidents). The perpendicularity cases for monoclinic
and orthorhombic lattices are trivial. For tetragonal (tet), hexa-
gonal (hex) and rhombohedral (rhomb) lattices, systematic
perpendicularity of planes and rows occurs only for the ½001�tet
and the ½001�hex (or ½111�rhomb) zones, i.e. for planes parallel and
rows perpendicular to these directions, in addition to the trivial
cases ½001� ? ð001Þ or ½111� ? ð111Þ. In cubic lattices, every lattice
plane (hkl) is perpendicular to a lattice row [uvw] (with h ¼ u,
k ¼ v, l ¼ w). More general coincidence relations were derived
by Grimmer (1989, 2003).

The index ½j� of a coincidence or twin lattice can often be
obtained by inspection; it can be calculated by using a formula for
the auxiliary quantity j0 as follows:

417



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

j0 ¼ huþ kvþ lw ðscalar product r?hkl � tuvwÞ

with sublattice index

½j� ¼ jj0j for j0 ¼ 2nþ 1

¼ jj0j=2 for j0 ¼ 2n:

Here, the indices of the plane (hkl) and of the perpendicular
row [uvw] are referred to a primitive lattice basis (primitive cell).
For centred lattices, described by conventional bases, modifica-
tions are required; these and further examples are given by Koch
(1999). Formulae and tables are presented by Friedel (1926, pp.
245–252) and by Donnay & Donnay (1972). The various equa-
tions for the quantity j0 are also listed in the last column of Table
3.3.8.1.

Note that in the tetragonal system for any (hk0) reflection twin
and any [uv0] twofold rotation twin, the coincidence lattices are
also tetragonal and have the same lattice parameter c. Further
details are given by Grimmer (2003). An analogous relation
applies to the hexagonal crystal family for (hki0) and [uv0] twins.
In the cubic system, the following types of twin lattices occur:

(111) and [111] twins: hexagonal P lattice (e.g. spinel twins);
ðhk0Þ and ½uv0� twins: tetragonal lattice;
ðhhlÞ and ½uuw� twins: orthorhombic lattice;
ðhklÞ and ½uvw� twins: monoclinic lattice.
Note that triclinic twin lattices are not possible for a cubic

lattice.
After these general considerations of coincidence-site and twin

lattices and their lattice index, specific cases of ‘triperiodic twins’
are treated in Section 3.3.8.3. In addition to the characterization
of the twin lattice by its index ½j�, the � notation used in metal-
lurgy is included.

3.3.8.3. Twins with three-dimensional twin lattices (‘triperiodic’
twins)

The following cases of exact superposition are distinguished:
(i) Twins with ½j� ¼ 1 (�1 twins). Here, the crystal lattice and

the twin lattice are identical, i.e. the coincidence (parallelism) of
the two oriented crystal lattices is complete. Hence, any twin
operation must be a symmetry operation of the point group of the
lattice (holohedry), but not of the point group of the crystal.
Consequently, this twinning can occur in ‘merohedral’ point
groups only. This twinning by merohedry (parallel-lattice twins,
twins with parallel axes) will be treated extensively in Section
3.3.9.

(ii) Twins with ½j� ¼ 2 (�2 twins). This twinning does not occur
systematically among the cases listed in Table 3.3.8.1, except for
special metrical relations. Example: a primitive orthorhombic

lattice with b=a ¼
ffiffiffi
3
p

and twin reflection plane ð110Þ or ð�1110Þ.
The coincidence lattice is hexagonal with ahex ¼ 2a and ½j� ¼ 2.

(iii) Twins with ½j� ¼ 3 (�3 twins). Twins with ½j� ¼ 3 are very
common among rhombohedral and cubic crystals (‘spinel law’)
with the following two representative twin operations:

(a) twofold rotation around a threefold symmetry axis [111]
(cubic or rhombohedral coordinate axes) or [001] (hexagonal
axes);

(b) reflection across the plane (111) or (0001) normal to a
threefold symmetry axis.
Both twin operations belong to the same twin law if the crystal is
centrosymmetric. Well known examples are the (0001) contact
twins of calcite, the penetration twins of iron borate, FeBO3, with
the calcite structure, and the spinel twins of cubic crystals (cf.
Examples 3.3.6.5, 3.3.6.6 and Figs. 3.3.6.4–3.3.6.6). For crystals
with a rhombohedral (R) lattice, the coincidence lattice is the
primitive hexagonal (P) sublattice (whose unit cell is commonly
used for the hexagonal description of rhombohedral crystals).
Here, the two centring points inside the triple hexagonal R cell do
not belong to the coincidence sublattice which is, hence, of index
½j� ¼ 3. The same holds for the spinel twins of cubic crystals,
provided only one of the four threefold axes is involved in the
twinning.

(iv) Twins with ½j� > 3 (� > 3 twins). Whereas twins with
½j� ¼ 3 are very common and of high importance among minerals
and metals, twins with higher lattice indices occur hardly at all.
All these ‘high-index’ twins can occur systematically only in
tetragonal, hexagonal, rhombohedral and cubic crystals, due to
the geometric perpendicularity relations set out in Table 3.3.8.1.
Note that for special lattice metrics (axial ratios and angles) they
can occur, of course, in any crystal system. These special metrics,
however, are not enforced by the crystal symmetry and hence the
coincidences are not strict, but only ‘pseudo-coincidences’.

Examples
(1) Tetragonal twins with twin reflection planes {210} or {130},

or twofold twin axes h210i or h130i lead to ½j� ¼ 5, the largest
value of ½j� that has been found so far for tetragonal twins. The
coincidence lattice is again tetragonal with a0 ¼ 2aþ b,
b0 ¼ �aþ 2b, c0 ¼ c and is shown in Fig. 3.3.8.1. An actual
example, SmS1:9 (Tamazyan et al., 2000b), is discussed in Section
3.3.9.2.4.

(2) There exist several old and still unsubstantiated indications
for a ½j� ¼ 5 cubic garnet twin with twin reflection plane (210), cf.
Arzruni (1887); Tschermak & Becke (1915, p. 594).

(3) Klockmannite, CuSe (Taylor & Underwood, 1960; Takeda
& Donnay, 1965). This hexagonal mineral seems to be the only
example for a hexagonal twin with ½j� > 3. X-ray diffraction
experiments indicate a reflection twin on ð13�440Þ, corresponding
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Table 3.3.8.1. Lattice planes (hkl) and lattice rows [uvw] that are mutually perpendicular (after Koch, 1999)

Lattice
Lattice plane
(hkl)

Lattice row
[uvw] Perpendicularity condition and quantity j0 ¼ huþ kvþ lw

Triclinic — — —

Monoclinic (unique axis b) (010) [010] —

Monoclinic (unique axis c) (001) [001] —

Orthorhombic (100) [100] —
(010) [010] —
(001) [001] —

Hexagonal and rhombohedral
(hexagonal axes)

(hki0) [uv0] u ¼ 2hþ k, v ¼ hþ 2k, j0 ¼ 2h2 þ 2k2 þ 2hk
(0001) [001] —

Rhombohedral
(rhombohedral axes)

(h; k;�h� k) [u; v;�u� v] u ¼ h, v ¼ k, j0 ¼ 2h2 þ 2k2 þ 2hk
(111) [111] —

Tetragonal (hk0) [uv0] u ¼ h, v ¼ k, j0 ¼ h2 þ k2

(001) [001] —

Cubic (hkl) [uvw] u ¼ h, v ¼ k, w ¼ l; j0 ¼ h2 þ k2 þ l2
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to ½j� ¼ 13. Later structural studies, however, suggest the possi-
bility of disorder instead of twinning.

(4)Galena, PbS (NaCl structure). Galena crystals from various
localities often exhibit lamellae parallel to the planes {441} which
are interpreted as (441) reflection twins with ½j� ¼ 33 (�33 twin)
(cf. Niggli, 1926, Fig. 9k on p. 53). These natural twins are
deformation and not growth twins. In laboratory deformation
experiments, however, these twins could not be generated. A
detailed analysis of twinning in PbS with respect to plastic
deformation is given by Seifert (1928).

(5) For cubic metals and alloys annealing twins (recrystalliza-
tion twins) with ½j� > 3 are common. Among them high-order
twins (high-generation twins) are particularly frequent. They are
based on the �3 (spinel) twins (first generation) which may
coalesce and form ‘new twins’ with �9 ¼ 32 [second generation,
with twin reflection plane (221)], �27 ¼ 33 [third generation,
twin reflection plane (115)], �81 ¼ 34 [fourth generation, twin
reflection plane (447)] etc. Every step to a higher generation
increases � by a factor of three (Gottstein, 1984). An interesting
and actual example is the artificial silicon tricrystal shown in Fig.
3.3.8.2, which contains three components related by two (111)
reflection planes (first generation, two �3 boundaries) and one
(221) reflection plane (second generation, one �9 boundary).

(6) The same type of tricrystal has been found in cubic
magnetite (Fe3O4) nanocrystals grown from the biogenic action
of magnetotactic bacteria in an aquatic environment (Devouard
et al., 1998). Here, HRTEM micrographs (Fig. 6 of the paper)
show the same triple-twin arrangement as in the Si tricrystal
above. The authors illustrate this triple twin by (111) spinel-type
intergrowth of three octahedra exhibiting two �3 and one �9
domain pairs. The two �3 interfaces are (111) twin reflection
planes, whereas the �9 boundary is very irregular and not a
compatible planar (221) interface (i.e. not a twin reflection
plane).

(7) A third instructive example is provided by the
fivefold cyclic ‘cozonal’ twins (zone axis ½1�110�) of Ge nanocrystals
(Neumann et al., 1996; Hofmeister, 1998), which are treated in
Section 3.3.10.6.5 and Fig. 3.3.10.11. All five boundaries between
neighbouring domains (sector angles 70.5�) are of the �3ð111Þ
type. Second nearest (2� 70:5�), third nearest (3� 70:5�) and
fourth nearest (4� 70:5�) neighbours exhibit �9, �27 and �81
coincidence relations (second, third and fourth � generation),
respectively, as introduced above in (5). These relations can be
described by the ‘cozonal’ twin reflection planes (111), (221),
(115) and (447). Since 5� 70:5� ¼ 352:5�, an angular gap of 7.5�

would result. In actual crystals this gap is compensated by
stacking faults as shown in Fig. 3.3.10.11. A detailed treatment of
all these cases, including structural models of the interfaces, is
given by Neumann et al. (1996).

(8) Examples of (hypothetical) twins with ½j� > 1 due to
metrical specialization of the lattice are presented by Koch
(1999).

3.3.8.4. Approximate (pseudo-)coincidences of two or more
lattices

In part (iv) of Section 3.3.8.2, three-dimensional lattice coin-
cidences and twin lattices (sublattices) were considered under
two restrictions:

(a) the lattice coincidences (according to the twin lattice index
[j]) are exact (not approximate);

419

Fig. 3.3.8.2. (a) A (110) silicon slice (10 cm diameter, 0.3 mm thick), cut from
a Czochralski-grown tricrystal for solar-cell applications. As seed crystal, a
cylinder of three coalesced Si single-crystal sectors in (111) and (221)
reflection-twin positions was used. Pulling direction [110] (Courtesy of M.
Krühler, Siemens AG, München). (b) Sketch of the tricystal wafer showing
the twin relations [twin laws mð111Þ and mð221Þ] and the � characters of the
three domain pairs. The atomic structures of these (111) and (221) twin
boundaries are discussed by Kohn (1956, 1958), Hornstra (1959, 1960) and
Queisser (1963).

Fig. 3.3.8.1. Lattice relations of �5 twins of tetragonal crystals with primitive
lattice: twin mirror plane and composition plane (120) with twin displace-
ment vector t = 0. Small dots: lattice points of domain 1; small x: lattice points
of domain 2; large black dots: �5 coincidence lattice.
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(b) only two lattices are superimposed to form the twin lattice.
In the present section these two conditions are relaxed as

follows:
(1) In addition to exact lattice coincidences (as they occur for

all merohedral twins) approximate lattice coincidences (pseudo-
coincidences) are taken into account.

In this context, it is important to explain the meaning of the
terms approximate lattice coincidences or pseudo lattice coin-
cidences as used in this section. Superposition of two or more
equal lattices (with a common origin) that are slightly misor-
iented with respect to each other leads to a three-dimensional
moiré pattern of coincidences and anti-coincidences. The beat
period of this pattern increases with decreasing misorientation. It
appears sensible to use the term approximate or pseudo-
coincidences only if the ‘splitting’ of lattice points is small within
a sufficiently large region around the common origin of the two
lattices. Special cases occur for reflection twins and rotation twins
of pseudosymmetrical lattices. For the former, exact two-dimen-
sional coincidences exist parallel to the (rational) twin reflection
plane and the moiré pattern is only one-dimensional in the
direction normal to this plane. Hence, the region of ‘small split-
ting’ is a two-dimensional (infinitely extended) thin layer of the
twin lattice on both sides of the twin reflection plane [example:
pseudo-monoclinic albite (010) reflection twins]. For rotation
twins, the region of ‘small splitting’ is an (infinitely long) cylinder
around the twin axis. On the axis the lattice points coincide
exactly.

In general, a typical measure of this region, in terms of the
reciprocal lattice, could be the size of a conventional X-ray
diffraction photograph. Whereas the slightest deviations from
exact coincidence lead to pseudo-coincidences, the ‘upper limit of
the splitting’, up to which two lattices are considered as pseudo-
coincident, is not definable on physical grounds and thus is a
matter of convention and personal preference. As an angular
measure of the splitting the twin obliquity has been introduced by
Friedel (1926). This concept and its use in twinning will be
discussed below in Section 3.3.8.5.

(2) The previous treatment of superposition of only two
lattices is extended to multiple twins with several inter-
penetrating lattices which are related by a pseudo n-fold twin
axis. Such a twin axis cannot be ‘exact’, no matter how close its
rotation angle comes to the exact angular value. For this reason,
twin axes of order n > 2 necessarily lead to pseudo lattice coin-
cidences.

Here it is assumed that such pseudo-coincidences exist for any
pair of neighbouring twin domains. As a consequence, pseudo-
coincidences occur for all n domains. For this case, the following
rules exist:

(i) Only n-fold twin axes with the crystallographic values
n ¼ 3, 4 and 6 lead to pseudo lattice coincidences of all domains.
Example: cyclic triplets of aragonite.

(ii) The number of (interpenetrating) lattices equals the
number of different domain states [cf. Section 3.3.4.4(iii)], viz.

6, 3 or 2 lattices for n ¼ 6;

3 lattices for n ¼ 3;

4 or 2 lattices for n ¼ 4;

whereby the case ‘2 lattices’ for n ¼ 6 leads to exact lattice
coincidence (merohedral twinning, e.g. Dauphiné twins of
quartz).

(iii) There always exists exact (one-dimensional) coincidence
of all lattice rows along the twin axis.

(iv) If there is a (rational) lattice plane normal to the twin axis,
the splitting of the lattice points occurs only parallel to this plane.
If, however, this lattice plane is pseudo-normal (i.e. slightly
inclined) to the twin axis, the splitting of lattice points also has a
small component along the twin axis.

3.3.8.5. Twin obliquity and lattice pseudosymmetry

The concept of twin obliquity has been introduced by Friedel
(1926, p. 436) to characterize (metrical) pseudosymmetries of
lattices and their relation to twinning. The obliquity ! is defined
as the angle between the normal to a given lattice plane (hkl) and
a lattice row [uvw] that is not parallel to (hkl) and, vice versa, as
the angle between a given lattice row [uvw] and the normal to a
lattice plane (hkl) that is not parallel to [uvw]. The twin obliquity
is thus a quantitative (angular) measure of the pseudosymmetry
of a lattice and, hence, of the deviation which the twin lattice
suffers in crossing the composition plane (cf. Section 3.3.8.1).

The smallest mesh of the net plane (hkl) together with the
shortest translation period along [uvw] define a unit cell of a
sublattice of lattice index [j]; j may be ¼ 1 or > 1 [cf. Section
3.3.8.2(iv)]. The quantities ! and j can be calculated for any
lattice and any (hkl)/[uvw] combination by elementary formulae,
as given by Friedel (1926, pp. 249–252) and by Donnay &Donnay
(1972). Recently, a computer program has been written by Le
Page (1999, 2002) which calculates for a given lattice all (hkl)/
[uvw]/!/j combinations up to given limits of ! and j. In the theory
of Friedel and the French School, a (metrical) pseudosymmetry
of a lattice or sublattice is assumed to exist if the twin obliquity !
as well as the twin lattice index j are ‘small’. This in turn means
that the pair lattice plane (hkl)/lattice row [uvw] is the better
suited as twin elements (twin reflection plane/twofold twin axis)
the smaller ! and j are.

The term ‘small’ obviously cannot be defined in physical terms.
Its meaning rather depends on conventions and actual analyses of
triperiodic twins. In his textbook, Friedel (1926, p. 437) quotes
frequently observed twin obliquities of 3–4� (albite 4�30, arago-
nite 3�440) with ‘rare exceptions’ of 5–6�. In a paper devoted to
the quartz twins with ‘inclined axes’, Friedel (1923, pp. 84 and 86)
accepts the La Gardette (Japanese) and the Esterel twins, both
with large obliquities of ! ¼ 5�270 and ! ¼ 5�480, as pseudo-
merohedral twins only because their lattice indices ½j� ¼ 2 and 3
are (‘en revanche’) remarkably small. He considers ! ¼ 6� as a
limit of acceptance [‘limite prohibitive’; Friedel (1923, p. 88)].

Lattice indices ½j� ¼ 3 are very common (in cubic and
rhombohedral crystals), ½j� ¼ 5 twins are rare and ½j� ¼ 6 seems to
be the maximal value encountered in twinning (Friedel, 1926, pp.
449, 457–464; Donnay & Donnay, 1974, Table 1). In his quartz
paper, Friedel (1923, p. 92) rejects all pseudo-merohedral quartz
twins with ½j� � 4 despite small ! values, and he points out, as
proof that high j values are particularly unfavourable for twin-
ning, that strictly merohedral quartz twins with ½j� ¼ 7 do not
occur, i.e. that ! ¼ 0 cannot ‘compensate’ for high j values.

In agreement with all these results and later experiences (e.g.
Le Page, 1999, 2002), we consider in Table 3.3.8.2 only lattice
pseudosymmetries with ! 	 6� and ½j� 	 6, preferably ½j� 	 3. (It
should be noted that, on purely mathematical grounds, arbitrarily
small ! values can always be obtained for sufficiently large values
of h; k; l and u; v;w, which would be meaningless for twinning.)
The program by Le Page (1999, 2002) enables for the first time
systematic calculations of many (‘all possible’) (hkl)/[uvw]
combinations for a given lattice and, hence, statistical and
geometrical evaluations of existing and particularly of (geome-
trically) ‘permissible’ but not observed twin laws. In Table 3.3.8.2,
some examples are presented that bring out both the merits and
the problems of lattice geometry for the theory of twinning. The
‘permissibility criteria’ ! 	 6� and ½j� 	 6, mentioned above, are
observed for most cases.

The following comments on these data should be made.
Gypsum: The calculations result in nearly 70 ‘permissible’

(hkl)/[uvw] combinations. For the very common (100) dovetail
twin, four (100)/[uvw] combinations are obtained. Only the two
combinations with smallest ! and [j] are listed in the table;
similarly for the less common (001) Montmartre twin. In addition,
two cases of low-index (hkl) planes with small obliquities and
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small lattice indices are listed, for which twinning has never been
observed.

Rutile: Here nearly twenty ‘permissible’ (hkl)/[uvw] combina-
tions with ! 	 6�, ½j� 	 6 occur. For the frequent (101) reflection
twins, five permissible cases are calculated, of which two are given
in the table. For the rare (301) reflection twins, only the one case
listed, with high obliquity ! ¼ 5:4�, is permissible. For the further
two cases of low obliquity and lattice index [5], twins are not
known. Among them is one case of (strict) ‘reticular merohedry’,
(210) or (130), with ! ¼ 0 and ½j� ¼ 5 (cf. Fig. 3.3.8.1).

Quartz: The various quartz twins with inclined axes were
studied extensively by Friedel (1923). The two most frequent
cases, the Japanese ð11�222Þ twin (called La Gardette twin by
Friedel) and the ð10�111Þ Esterel twin, are considered here. In both
cases, several lattice pseudosymmetries occur. Following Friedel,
those with the smallest lattice index, but relatively high obliquity
close to 6� are listed in the table. Again, a twin of (strict) ‘reti-
cular merohedry’ with ! ¼ 0 and ½j� ¼ 7 does not occur [cf.
Section 3.3.9.2.3, Example (2)].

Staurolite: Both twin laws occurring in nature, (031) and (231),
exhibit small obliquities but rather high lattice indices [6] and
[12]. The frequent (231) 60� twin with ½j� ¼ 12 falls far outside the
‘permissible’ range. The further two planes listed in the table,
(201) and (101), exhibit favourably small obliquities and lattice
indices, but do not form twins. The existing (031) and (231) twins
of staurolite are discussed again in Section 3.3.9.2 under the
aspect of ‘reticular pseudo-merohedry’.

Calcite: For calcite, 19 lattice pseudosymmetries obeying
Friedel’s ‘permissible criteria’ are calculated. Again, only a few
are mentioned here (indices referred to the structural cell). For
the primary deformation twin ð01�118Þ, e-twin after Bueble &
Schmahl (1999), cf. Section 3.3.10.2.2, Example (5), one permis-

sible lattice pseudosymmetry with small obliquity 0.59 but high
lattice index [5] is found. For the less frequent secondary defor-
mation twin ð10�114Þ, r-twin, the situation is similar. The planes
ð01�112Þ and ð10�111Þ permit small obliquities and lattice indices
	 ½5�, but do not appear as twin planes.

The discussion of the examples in Table 3.3.8.2 shows that, with
one exception [staurolite (231) twin], the obliquities and lattice
indices of common twins fall within the !=½j� limits accepted for
lattice pseudosymmetry. Three aspects, however, have to be
critically evaluated:

(i) For most of the lattice planes (hkl), several pseudo-normal
rows [uvw] with different values of ! and [j] within the 6�/[6] limit
occur, and vice versa. Friedel (1923) discussed this in his theory of
quartz twinning. He considers the (hkl)/[uvw] combination with
the smallest lattice index as responsible for the observed twin-
ning.

(ii) Among the examples given in the table, low-index (hkl)/
[uvw] combinations with more favourable !=½j� values than for
the existing twins can be found that never form twins. A
prediction of twins on the basis of ‘lattice control’ alone, char-
acterized by low ! and [j] values, would fail in these cases.

(iii) All examples in the table were derived solely from lattice
geometry, none from structural relations or other physical factors.

Note. As a mathematical alternative to the term ‘obliquity’,
another more general measure of the deviation suffered by the
twin lattice in crossing the twin boundary was presented by
Santoro (1974, equation 36). This measure is the difference
between the metric tensors of lattice 1 and of lattice 2, the latter
after retransformation by the existing or assumed twin operation
(or more general orientation operation).
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Table 3.3.8.2. Examples of calculated obliquities ! and lattice indices [j] for selected (hkl)=[uvw] combinations and their relation to twinning

Calculations were performed with the program OBLIQUE written by Le Page (1999, 2002).

Crystal (hkl)
Pseudo-normal
[uvw]

Obliquity
½
�
�

Lattice index
[j] Remark

Gypsum
A2=a
a ¼ 6:51, b ¼ 15:15, c ¼ 6:28 Å
� ¼ 127:5�

(100) [302] 2.47 3 Dovetail twin (very frequent)
[805] 0.42 4

(001) [203] 5.92 3 Montmartre twin (less frequent)
[305] 0.95 5

(101) [101] 2.60 2 No twin

ð11�11Þ ½31�44� 1.35 4 No twin

Rutile
P42=mnm
a ¼ 4:5933, c ¼ 2:9592 Å

(101) [102] 5.02 3 Frequent twin
[307] 0.84 5

(301) [101] 5.43 2 Rare twin

(201) [304] 2.85 5 No twin

(210) or (130) [210] or [130] 0 5 No twin

Quartz
P3121
a ¼ 4:9031, c ¼ 5:3967 Å

ð11�222Þ [111] 5.49 2 Japanese twin (La Gardette) (rare)

ð10�111Þ [211] 5.76 3 Esterel twin (rare)

ð10�112Þ [212] 5.76 3 Sardinia twin (very rare)

ð21�330Þ or ð14�550Þ [540] or [230] 0 7 No twin

Staurolite
C2=m
a ¼ 7:781, b ¼ 16:620, c ¼ 5:656 Å
� ¼ 90:00�

(031) [013] 1.19 6 90� twin (rare)

(231) [313] 0.90 12 60� twin (frequent)

(201) [101] 0.87 3 No twin

(101) [102] 0.87 3 No twin

Calcite
R�33c
a ¼ 4:989, c ¼ 17:062 Å
[hexagonal axes, structural
X-ray cell; cf. Section 3.3.10.2.2,
Example (5)]

ð01�112Þ [501001] 5.31 2 No twin
[701402] 2.57 3
[481] 0.59 5

ð10�114Þ [421] 0.74 4 Rare deformation twin (r-twin)

ð01�118Þ [121] 0.59 5 Frequent deformation twin (e-twin)

ð10�111Þ [14.7.1] 1.54 5 No twin
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3.3.8.6. Twinning of isostructural crystals

In the present section, the critical discussion of the lattice
theory of twinning is extended from the individual crystal species,
treated in Section 3.3.8.5, to the occurrence of merohedral twin-
ning in series of isotypic and homeotypic crystals. The crystals in
each series have the same (or closely related) structure, space
group, lattice type and lattice coincidences. The following cases
are of interest here:

(i) Quartz (SiO2), quartz-homeotypic gallium phosphate
(GaPO4) and benzil [(C6H5CO)2, so-called ‘organic quartz’]
crystallize under normal conditions in the enantiomorphic space
groups P3121 and P3221. In quartz, merohedral Dauphiné and
Brazil �1 twins are very frequent, whereas twins of the Leydolt
(or ‘combined’) law are very rare (cf. Example 3.3.6.3). In gallium
phosphate, Leydolt twins occur as frequently as Dauphiné and
Brazil twins (Engel et al., 1989). In benzil crystals, however, these
twins are never observed, although the same space-group
symmetries and conditions for systematic lattice coincidences as
in quartz and in gallium phosphate exist. The reason is the
completely different structure and chemical bonding of benzil,
which is not capable of forming low-energy boundaries for these
three twin laws.

(ii) Iron borate FeBO3, calcite CaCO3 and sodium nitrate
NaNO3 crystallize under normal conditions in the calcite struc-
ture with space group R�332=c. The rhombohedral lattice allows
twinning with a hexagonal �3 coincidence lattice (cf. Example
3.3.6.5). Practically all spontaneously nucleated FeBO3 crystals
grown from vapour (chemical transport) or solution (flux) are
�3-twinned and form intergrowths of reverse and obverse
rhombohedra (penetration twins). This kind of twinning is
comparatively rare in calcite, where the twins usually appear with
another morphology [contact twins on (0001)]. Interestingly, this
�3 twinning does not occur (or is extremely rare) in sodium
nitrate. This shows that even for isotypic crystals, the tendency to
form �3 twins is extremely different. This can also be observed
for crystals with the sodium chloride structure. Crystals of the
silver halogenides AgCl and AgBr, precipitated from aqueous
solution, develop multiple �3 twins with high frequency (Bögels
et al., 1999), and so does galena PbS, whereas the isotypic alkali
halogenides (e.g. NaCl, LiF) practically never (or only extremely
rarely) form �3 twins.

(iii) Another instructive example is provided by the �3 (111)
spinel twins in the sphalerite (ZnS) structure of III–V and II–VI
semiconductor crystals (cf. Example 3.3.6.6). In some of these
compounds this kind of twinning is quite rare (e.g. in GaAs), but
in others (e.g. InP, CdTe) it is very frequent. Gottschalk et al.
(1978) have quantitatively shown that the ease and frequency of
twin formation is governed by the (111) stacking-fault energy
[which is the energy of the (111) twin boundary]. They have
calculated the (111) stacking-fault energies of various III–V
semiconductors, taking into account the different ionicities of the
bonds. The results prove quantitatively that the frequency of the
�3 twin formation is correlated with the (111) boundary energy.

These examples corroborate the early observations of Cahn
(1954, pp. 387–388). The present authors agree with his elegantly
formulated conclusion, ‘that the fact that two substances are
isostructural is but a slender guide to a possible similarity in their
twinning behaviour’.

3.3.8.7. Conclusions

In conclusion, the lattice theory of twinning, presented in this
section, can be summarized as follows:

(i) The lattice theory represents one of the first systematic
theories of twinning; it is based on a clear and well defined
concept and thus has found widespread acceptance, especially for
the description, characterization and classification of ‘triperiodic’
(merohedral and pseudo-merohedral) twins.

(ii) The concept, however, is purely geometrical and has as its
object a mathematical, not a physical, item, the lattice. It takes
into account neither the crystal structure nor the orientation and
energy of the twin interface. This deficit has been pointed out and
critically discussed by Buerger (1945), Cahn (1954, Section 1.3),
Hartman (1956) and Holser (1958, 1960); it is the major reason
for the limitations of the theory and its low power of prediction
for actual cases of twinning.

(iii) The relations between twinning and lattice (pseudo-)
symmetries, however, become immediately obvious and are
proven by many observations as soon as structural pseudo-
symmetries exist. Twinning is always facilitated if a real or
hypothetical ‘parent structure’ exists from which the twin law and
the interface can be derived. Here, the lattice pseudosymmetry
appears as a necessary consequence of the structural pseudo-
symmetry, which usually involves only small deformations of the
parent structure, resulting in small obliquities of twin planes and
twin axes (which are symmetry elements of the parent structure)
and, hence, in twin interfaces of low energy. These structural
pseudosymmetries are the result either of actual or hypothetical
phase transitions (domain structures, cf. Chapter 3.4) or of
structural relationships to a high-symmetry ‘prototype’ structure,
as explained in Section 3.3.9.2 below.

(iv) On the other hand, twinning quite often occurs without
recognizable structural pseudosymmetry, e.g. the (100) dovetail
twins and the (001) Montmartre twins of gypsum, as well as the
(101) and (301) reflection twins of rutile and some further
examples listed in Table 3.3.8.2. In all these cases, it can be
concluded that the lattice theory of twinning is not the suitable
tool for the characterization and prediction of the twins; in the
terminology of Friedel: the twins are not ‘triperiodic’ but only
‘diperiodic’ or ‘monoperiodic’.

3.3.9. Twinning by merohedry and pseudo-merohedry

We now resume the discussion of Section 3.3.8 on three-dimen-
sional coincidence lattices and pseudo-coincidence lattices and
apply it to actual cases of twinning, i.e. we treat in the present
section twinning by merohedry (‘macles par mériédrie’) and
twinning by pseudo-merohedry (‘macles par pseudo-mériédrie’),
both for lattice index ½j� ¼ 1 and ½j� > 1, as introduced by Friedel
(1926, p. 434). Often (strict) merohedral twins are called ‘parallel-
lattice twins’ or ‘twins with parallel axes’. Donnay & Donnay
(1974) have introduced the terms twinning by twin-lattice
symmetry (TLS) for merohedral twinning and twinning by twin-
lattice quasi-symmetry (TLQS) for pseudo-merohedral twinning,
but we shall use here the original terms introduced by Friedel.

3.3.9.1. Definitions of merohedry

In the context of twinning, the term ‘merohedry’ is applied
with two different meanings which should be clearly distin-
guished in order to avoid confusion. The two cases are:

Case (1): ‘Merohedry’ of point groups
A merohedral point group is a subgroup of the holohedral

point group (lattice point group) of a given crystal system (crystal
family), i.e. group and subgroup belong to the same crystal
system. This is the original sense of the term merohedry, which
has the morphological meaning of reduction of the number of
faces of a given crystal form as compared with a holohedral
crystal form. The degree of merohedry is given by the subgroup
index [i]. For point groups within the same crystal family, possible
indices [i] are 2 (hemihedry), 4 (tetartohedry) and 8 (ogdohedry).
The only example for ½i� ¼ 8 is the point group 3 in the hexagonal
holohedry 6=m 2=m 2=m.

If the point group of a crystal is reduced to such an extent that
the subgroup belongs to a crystal family of lower symmetry, this
subgroup is called a pseudo-merohedral point group, provided
that the structural differences and, hence, also the metrical
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changes of the lattice (axial ratios) are small. Twinning by
merohedry corresponds to non-ferroelastic phase transitions,
twinning by pseudo-merohedry to ferroelastic phase transitions.

Both merohedral and pseudo-merohedral subgroups of point
groups are listed in Section 10.1.3 and Fig. 10.1.3.2 of Volume A
of this series (Hahn & Klapper, 2002); cf. also Koch (1999), Table
1.3.4.1.

Case (2): ‘Merohedry’ of translation groups (lattices)
The term ‘reticular’ or ‘lattice merohedry’ designates the

relation between a lattice and its ‘diluted’ sublattice (without
consideration of their lattice point groups). A sublattice2 is a
three-dimensional subset of lattice points of a given lattice and
corresponds to a subgroup of index ½j� > 1 of the original trans-
lation group. This kind of group–subgroup relation has been
called ‘reticular merohedry’ (‘mériédrie réticulaire’) by Friedel
(1926, p. 444). Note that the lattice and its sublattice may belong
to different crystal systems, and that the lattice point groups
(holohedries) of lattice and sublattice generally do not obey a
group–subgroup relation. This is illustrated by a cubic P lattice
(lattice point group 4=m�332=m) and one of its monoclinic
sublattices (lattice point group 2=m) defined by a general lattice
plane (hkl) and the lattice row [hkl] normal to it. The symmetry
direction [hkl] of the monoclinic sublattice does not coincide with
any of the symmetry directions of the cubic lattice, i.e. there is no
group–subgroup relation of the lattice point groups. The
subgroup common to both (the intersection group) is only �11. A
somewhat more complicated example is the ½j� ¼ 5 (�5) sublat-
tice obtained by a (210) twin reflection of a tetragonal crystal
lattice; cf. Fig. 3.3.8.1. Both lattice and sublattice are tetragonal,
4=mmm, with common c axes, but the intersection group of their
holohedries is only 4=m, the further symmetry elements are
oriented differently.

Friedel (1926, p. 449) also introduced the term ‘reticular
pseudo-merohedry’ (‘pseudo-mériédrie réticulaire’). This notion,
however, can not be applied to a single lattice and its sublattice (a
single lattice can be truly diluted but not pseudo-diluted), but
requires pseudo-coincidence of two or more superimposed
lattices, which form a ‘pseudo-sublattice’ of index ½j� > 1, as
described in Section 3.3.8.4.

Because of this complicating and confusing situation we avoid
here the term merohedry in connection with lattices and trans-
lation groups. Instead, the terms coincidence(-site) lattice, twin
lattice or sublattice of index [j] are preferred, as explained in
Section 3.3.8.2(iv). Note that we also use two different symbols [i]
and [j] to distinguish the subgroup indices of point groups and of
lattices.

3.3.9.2. Types of twins by merohedry and pseudo-merohedry

Both kinds of merohedries and pseudo-merohedries were used
by Mallard (1879) and especially by Friedel (1904, 1926) and the
French School in their treatment of twinning. Based on the
concepts of exact coincidence (merohedry), approximate coin-
cidence (pseudo-merohedry) and partial coincidence (twin lattice
index ½j� > 1), four major categories of ‘triperiodic’ twins were
distinguished by Friedel and are explained below.

3.3.9.2.1. Merohedral twins of lattice index ½j� ¼ 1

Here the lattices of all twin partners are parallel and coincide
exactly. Consequently, all twin operations are symmetry opera-
tions of the lattice point symmetry (holohedral point group), but
not of the point group of the structure. Here the term ‘mero-
hedry’ refers to point groups only, i.e. to Case (1) above.
Experimentally, in single-crystal X-ray diffraction diagrams all

reflections coincide exactly, and tensorial properties of second
rank (e.g. birefingence, dielectricity, electrical conductivity) are
not influenced by this kind of twinning.

Typical examples of merohedral twins are:
(1) Quartz: Dauphiné, Brazil and Leydolt twins (cf. Example

3.3.6.3).
(2) Pyrite, iron-cross twins: crystals of cubic eigensymmetry

2=m�33 form penetration twins of peculiar morphology by reflec-
tion on (110), with ½i� ¼ 2.

(3) KLiSO4: the room-temperature phase III of eigensymmetry
6 exhibits four domain states related by three merohedral twin
laws. These growth twins of index ½i� ¼ 4 have been characterized
in detail by optical activity, pyroelectricity and X-ray topography
(Klapper et al., 1987).

(4) Potassium titanyl phosphate, KTiOPO4: point group mm2,
forms inversion twins (ferroelectric domains) below its Curie
temperature of 1209 K.

3.3.9.2.2. Pseudo-merohedral twins of lattice index ½j� ¼ 1

These twins are characterized by pseudo-merohedry of point
groups, Case (1) in Section 3.3.9.1. The following examples are
based on structural pseudosymmetry and consequently also on
lattice pseudosymmetry, either as the result of phase transfor-
mations or of structural relationships:

(1) Transformation twins of Rochelle salt: this ferroelastic/
ferroelectric transformation at about 295 K follows the group–
subgroup relation orthorhombic 20220 ! monoclinic 121 (index
½i� ¼ 2) with � � 90�. The primed operations form the coset of
the group–subgroup relation and thus the twin law. Owing to the
small deviation of the angle � from 90�, the lattices of both twin
partners nearly coincide. Note that this group–subgroup relation
involves both an orthorhombic merohedral and a monoclinic
merohedral point group, viz 222 and 2.

(2) Transformation twins orthorhombic 20=m0 2=m 20=m0 !
monoclinic 12=m1 with � � 90�. This is a case analogous to that
of Rochelle salt, except that the point groups involved are the
holohedries of the orthorhombic and of the monoclinic crystal
system, mmm and 2=m [example: KH3(SeO3)2].

(3) Pseudo-hexagonal growth twins of an orthorhombic C-
centred crystal with b=a �

ffiffiffi
3
p

and twin reflection planes m0ð110Þ
and m0ð�1110Þ. The lattices of the three domain states nearly
coincide and form a ‘pseudo-coincidence lattice’ of lattice index
½j� ¼ 1, but of point-group index ½i� ¼ 3, with subgroup
H ¼ 2=m 2=m 2=m and supergroup Kð6Þ ¼ 6ð2Þ=m 2=m 2=m (cf.
Example 3.3.6.7). Here, in contrast to exact merohedry, in single-
crystal X-ray diffraction patterns most reflection spots will be
split into three. Note that the term ‘index’ appears twice, first as
the subgroup index ½i� ¼ 3 of the point groups and second as the
lattice index ½j� ¼ 1 of the twin lattice.

3.3.9.2.3. Twinning with partial lattice coincidence (lattice index
½j� > 1)

For these twins with partial but exact coincidence Friedel has
coined the terms ‘twinning by reticular merohedry’ or ‘by lattice
merohedry’. Here the term merohedry refers only to the
sublattice, i.e. to Case (2) above. Typical examples with ½j� ¼ 3
and ½j� > 3 were described in Section 3.3.8.3. In addition to the
sublattice relations, it is reasonable to include the point-group
relations as well. Four examples are presented:

(1) Twinning of rhombohedral crystals (lattice index ½j� ¼ 3,
example FeBO3). The eigensymmetry point groups of the struc-
ture and of the R lattice (of the untwinned crystal) are both
H ¼ �33 2=m. The extension of the eigensymmetry by the (binary)
twin operation 2z, as described in Example 3.3.6.5, leads to the
composite symmetry K ¼ 60=m0ð�33Þ 2=m 20=m0, i.e. the point-group
index is ½i� ¼ 2. The sublattice index is ½j� ¼ 3, because of the
elimination of the centring points of the original triple R lattice in
forming the hexagonal P twin lattice.
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(2) Reflection twinning across f21�330g or f14�550g, or twofold
rotation twinning around h540i or h230i of a hexagonal crystal
with a P lattice (lattice symmetry 6=m 2=m 2=m). The twin
generates a hexagonal coincidence lattice of index ½j� ¼ 7 (�7)
with a0 ¼ 3aþ 2b, b0 ¼ �2aþ b, c0 ¼ c. The hexagonal axes a0

and b0 are rotated around [001] by an angle of 40.9� with respect
to a and b. The intersection lattice point group of both twin
partners is 6=m. The extension of this group by the twin operation
‘reflection across f21�330g’ leads to the point group of the coin-
cidence lattice 6=m 20=m0 20=m0 (referred to the coordinate axes
a0; b0; c0). The primed operations define the coset (twin law). For
hexagonal lattices rotated around [001], the �7 coincidence
lattice (½j� ¼ 7) is the smallest sublattice with lattice index ½j� > 1
(least-diluted hexagonal sublattice). No example of a hexagonal
�7 twin seems to be known.

(3) Tetragonal growth twins with ½j� ¼ 5 (�5 twins) in SmS1:9
(Tamazyan et al., 2000b). This rare twin is illustrated in Fig. 3.3.8.1
and is described, together with the twins of the related phase
PrS2, in Example (3) of Section 3.3.9.2.4 below.

(4) Reflection twins across a general net plane (hkl) of a cubic
P lattice. This example has been treated already in Section
3.3.9.1, Case (2).

3.3.9.2.4. Twinning with partial lattice pseudo-coincidence
(lattice index ½j� > 1)

This type can be derived from the category in Section 3.3.9.2.3
above by relaxation of the condition of exact lattice coincidence,
resulting in two nearly, but not exactly, coinciding lattices
(pseudo-coincidence, cf. Section 3.3.8.4). In this sense, the two
Sections 3.3.9.2.3 and 3.3.9.2.4 are analogous to the two Sections
3.3.9.2.1 and 3.3.9.2.2.

The following four examples are characteristic of this group:

(1) (110) reflection twins of a pseudo-hexagonal orthorhombic
crystal with a P lattice: If the axial ratio b=a ¼

ffiffiffi
3
p

were exact, the
lattices of both twin partners would coincide exactly on a
sublattice of index ½j� ¼ 2 (due to the absence of the C centring);
cf. Koch (1999), Fig. 1.3.2.2. If b=a deviates slightly from

ffiffiffi
3
p

, the
exact coincidence lattice changes to a pseudo-coincidence lattice
of lattice index ½j� ¼ 2. Examples are ammonium lithium sulfate,
NH4LiSO4, many members of the K2SO4-type series (cf. Doch-
erty et al., 1988) and aragonite, CaCO3.

(2) Staurolite twinning: This topic has been extensively treated
as Example 3.3.6.12. The famous 90�- and 60�-twin ‘crosses’ are a
complicated and widely discussed example for Friedel’s notion of
‘twinning by reticular merohedry’ (Friedel, 1926, p. 461). It was
followed up by an extensive analysis by Hurst et al. (1956). Both
twin laws (90� and 60� crosses) can be geometrically derived from
a multiple pseudo-cubic cell a0c, b0c, c0c (so-called ‘Mallard’s
pseudo-cube’) which is derived from the structural monoclinic C-
centred cell am, bm, cm as follows, involving a rotation of � 45�

around [100]:

a0c ¼ bm þ 3cm; b0c ¼ �bm þ 3cm; c0c ¼ 3am:

Using Smith’s (1968) lattice constants for the structural
monoclinic cell with space group C2=m and a ¼ 7:871,
b ¼ 16:620, c ¼ 5:656 Å, � ¼ 90� (within the limits of error),
Vm ¼ 740 Å3, the pseudo-cube has the following lattice
constants:

a0c ¼ 23:753 b0c ¼ 23:753 c0c ¼ 23:613 Å

�c ¼ 90 �c ¼ 90 �c ¼ 88:81� V 0c ¼ 13323 Å
3
:

The volume ratio V 0c=Vm of the two cells is 18, i.e. the sublattice
index is ½j� ¼ 18. If, however, the primitive monoclinic unit cell is
used, the volume ratio doubles and the sublattice index used in
the twin analysis increases to ½j� ¼ 36. The (metrical) eigensym-

metry of the pseudo-cube is orthorhombic (due to �c ¼ 90�),
ð2=mÞ½001�ð2=mÞ½110�ð2=mÞ½1�110�, referred to a0c, b

0
c, c
0
c.

Note, however, that this pseudo-cube in reality is C-centred
because the C-centring vector 1=2ða0c þ b0cÞ ¼ 3cm is a lattice
vector of the monoclinic lattice. This C-centring has not been
considered by Friedel, Hurst and Donnay, who have based their
analysis on the primitive pseudo-cube.

According to Friedel, the ‘symmetry elements’ of the pseudo-
cube are potential twin elements of staurolite, except for
ð2=mÞ½1�110�, which is the monoclinic symmetry direction of the
structure. In Table 3.3.9.1, the twin operations of the 90� and 60�

twins are compared with the ‘symmetry operations’ of the
pseudo-cube with respect to obliquities ! and lattice indices [j],
referred to both sets of axes, pseudo-cubic a0c, b

0
c, c
0
c and mono-

clinic (but metrically orthorhombic) am, bm, cm. The calculations
were again performed with the program OBLIQUE by Le Page
(1999, 2002). In order to keep agreement with the interpretation
of Friedel and Hurst et al., the pseudo-cube is treated as primitive,
with ½j� ¼ 36.

The following interpretations can be given (cf. Fig. 13 in Hurst
et al., 1956):

(a) 90� cross (Table 3.3.9.1a, Fig. 3.3.6.13a):
(i) The pseudo-tetragonal 90� cross can be explained and

visualized very well with eight twin operations, a fourfold twin
axis along ½100�m ¼ ½001�c with operations 41, 43, �441, �443 and two
pairs of ‘diagonal’ twin operations 2 and m. They form the coset
of the (metrically) ‘orthorhombic’ (� ¼ 90�) eigensymmetry
H ¼ mmm which results in the composite symmetry
K ¼ 40ð2Þ=m 2=m 20=m0.

(ii) The obliquities for all twin operations are at most 1.2�, the
lattice index is ½j�m ¼ 1 for the twin axis, but for the ‘diagonal’
twin elements it is ½j�m ¼ 6, which is at the limit of the permissible
range. Because of these facts, Friedel prefers to consider the 90�

cross as a 90� rotation twin around ½100�m rather than as a
(diagonal) reflection twin across ð031Þm or ð0�331Þm.

(iii) Note that for the interpretation of the 90� cross the
complete pseudo-cube with lattice index ½j� ¼ 36 is not required.
Because c0c ¼ 3am, a pseudo-tetragonal unit cell with axes a0c, b

0
c,

ð1=3Þc0c and ½j� ¼ 12 is sufficient.
(b) 60� cross (Table 3.3.9.1b, Fig. 3.3.6.13b):
(iv) The widespread 60� cross is much more difficult to inter-

pret and visualize. The four threefold twin axes around h111i of
the pseudo-cube split into two pairs, both with very small obli-
quities < 1�. One pair, ½102�m and ½�1102�m, has a favourable index
½j�m ¼ 3; however, the other one, ½320�m and ½3�220�m is with ½j�m ¼ 9
unacceptably high. According to Friedel’s theory, this makes
½102�m the best choice as threefold twin axis.

(v) There is a further �90� twin rotation around ½100�c or
½013�m with small obliquity, ! ¼ 1:2�, but very high lattice index,
½j�m ¼ 6. Note that this is the same axis that has been used already
for the 90� twin, but with a 180� rotation.

(vi) The greatest deviation from the ‘permissibility’ criterion is
exhibited by the twin axes 2½101�c ¼ 2½313�m and 2½011�c
¼ 2½3�113�m and the twin planes, pseudo-normal to them, ð231Þm
and ð2�331Þm. The obliquity ! ¼ 0:9� is very good but the twin
index is ½j� ¼ 12, a value far outside Friedel’s ‘limite prohibitive’.
These operations, however, are the ‘standard’ twin operations
that are always quoted for the 60� twins. Following Friedel (1926,
p. 462), the best definition of the 60� twin is the �120� rotations
around ½102�m with ! ¼ 0:87� and ½j�m ¼ 3.

(vii) If the (true) C-centring of the pseudo-cube is taken into
account, however, no h111i pseudo-threefold axes remain; hence,
the 60� cross cannot be explained by the lattice construction of
the pseudo-cube.

(3) Growth twins of monoclinic PrS2 and of tetragonal SmS1.9:
These two rather complicated examples belong to the structural
family of MeX2 dichalcogenides which is rich in structural rela-
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tionships and different kinds of twins. The ‘basic structure’ and
‘aristotype’ of this family is the tetragonal ZrSSi structure with
axes ab ¼ bb � 3:8, cb � 7:9 Å, Vb � 114 Å3, space group
P4=nmm (b stands for basic). The crystal chemistry of this
structural family is discussed by Böttcher et al. (2000).

(a) PrS2 (Tamazyan et al., 2000a)
PrS2 is a monoclinic member of this series with space group

P21=b11 (unique axis a!) and axes a � 4:1, b � 8:1, c � 8:1 Å,
� � 90:08�, V � 269 Å3. The structure is strongly pseudo-tetra-
gonal along [001] (with cell a, b=2, c) and is a ‘derivative struc-
ture’ of ZrSSi. Hence pseudo-merohedral twinning that makes
use of this structural tetragonal pseudosymmetry would be
expected, with twin elements 4[001] or mð210Þ or 2[120] etc. and
½j� ¼ 2 because b � 2a, but, surprisingly, this twinning has not
been observed so far. It may occur in other PrS2 samples or in
other isostructural crystals of this series.

Instead, the monoclinic crystal uses another structural
pseudosymmetry, the approximate orthorhombic symmetry along
[100] with � � 90�, to twin on 2y, 2z, my or mz (coset of 2x=mx)
with composite symmetry K ¼ 2=m 20=m0 20=m0, ½j� ¼ 1 and
½i� ¼ 2 (cf. Fig. 4 of the paper).

The monoclinic PrS2 cell has a third kind of pseudosymmetry
that is not structural, only metrical. The cell is pseudo-tetragonal
along [100] due to b � c and � � 90�. This pure lattice pseudo-
symmetry, not surprisingly, is not used for twinning, e.g. via 4[100]
or mð011Þ or mð0�111Þ or 2[011] or 2½0�111�.

(b) SmS1:9 (Tamazyan et al., 2000b)
This structure is (strictly) tetragonal with axes a ¼ b � 8:8,

c � 15:9 Å, V � 1238 Å3 and space group P42=n. It is a
tenfold superstructure of ZrSSi with the following basis-vector
relations:

a ¼ 2ab þ bb; b ¼ �ab þ 2bb; c ¼ 2cb;

leading to lattice constants a �
ffiffiffi
5
p

ab, b �
ffiffiffi
5
p

bb, c � 2cb. This
well ordered tetragonal supercell now twins on mð210Þ or 2[210]
or mð130Þ or 2[130] (which is equivalent to a rotation around
[001] of 36.87�) to form a �5 twin by ‘reticular merohedry’ (½j� ¼
5) with lattice constants a0 ¼ a

ffiffiffi
5
p
¼ 19:72, b0 ¼ b

ffiffiffi
5
p
¼ 19:72,

c0 ¼ c ¼ 15:93 Å, V ¼ 6192 Å3. This is illustrated in Fig. 3.3.8.1.
SmS1:9 represents the first thoroughly investigated and docu-

mented tetragonal ½j� ¼ 5 (�5) twin known to us. The sublattice
of this twin is the tetragonal coincidence lattice with smallest

lattice index ½j� > 1, i.e. the ‘least-diluted’ systematic tetragonal
sublattice.

(4) Growth twins of micas: A rich selection of different twin
types, both merohedral and pseudo-merohedral, with ½j� ¼ 1 and
3, is provided by the mineral family of micas, which includes
several polytypes. A review of these complicated and interesting
twinning phenomena is presented by Nespolo et al. (1997).
Detailed theoretical derivations of mica twins and allotwins, both
in direct and reciprocal space, are published by Nespolo et al.
(2000).

In conclusion, it is pointed out that the above four categories of
twins, described in Sections 3.3.9.2.1 to 3.3.9.2.4, refer only to
cases with exact or approximate three-dimensional lattice coin-
cidence (triperiodic twins). Twins with only two- or one-dimen-
sional lattice coincidence (diperiodic ormonoperiodic twins) [e.g.
the (100) reflection twins of gypsum and the (101) rutile twins]
belong to other categories, cf. Section 3.3.8.2. The examples
above have shown that for triperiodic twins structural pseudo-
symmetries are an essential feature, whereas purely metrical
(lattice) pseudosymmetries are not a sufficient tool in explaining
and predicting twinning, as is evidenced by the case of staurolite,
discussed above in detail.

3.3.9.3. Pseudo-merohedry and ferroelasticity

The large group of pseudo-merohedral twins (irrespective of
their lattice index) contains a very important subset which is
characterized by the physical property ferroelasticity. Ferroelastic
twins result from a real or virtual phase transition involving a
change of the crystal family (crystal system). These transitions are
displacive, i.e. they are accompanied by only small structural
distortions and small changes of lattice parameters. The struc-
tural symmetries lost in the phase transition are preserved as
pseudosymmetries and are thus candidates for twin elements.
This leads to a pseudo-coincidence of the lattices of the twin
partners and thus to pseudo-merohedral twinning. Because of the
small structural changes involved in the transformation, domains
usually switch under mechanical stress, i.e. they are ferroelastic.
A typical example for switchable ferroelastic domains is Rochelle
salt, the first thoroughly investigated ferroelastic transformation
twin, discussed in Section 3.3.9.2.2, Example (1).
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Table 3.3.9.1. Staurolite, 60� and 90� twins

Comparison of the twin operations with the ‘symmetry operations’ of the primitive pseudo-cube with respect to obliquity ! and lattice index ½j�, referred both to the
pseudo-cubic axes, a0c, b

0
c, c
0
c, and the monoclinic (metrically orthorhombic) axes, am, bm, cm. The calculations were performed with the program OBLIQUE by Le Page

(1999, 2002).

(a) 90� cross (eight twin operations).

Twin operations referred to
Obliquity !
½
�
�

Lattice index [j] referred to

Remarksa0c; b
0
c; c
0
c am; bm; cm a0c; b

0
c; c
0
c am; bm; cm

4½001�c 4½100�m 0 1 1 Four collinear twin operations 41, 43, �441, �443

2½100�c 2½013�m 1.19 1 6 Four ‘diagonal’ (with respect to the monoclinic unit cell)
twin operations intersecting in ½001�c ¼ ½100�mmð100Þc mð031Þm 1.19 1 6

2½010�c 2½0�113�m 1.19 1 6
mð010Þc mð0�331Þm 1.19 1 6

(b) 60� cross.

Twin operations referred to
Obliquity !
½
�
�

Lattice index [j] referred to

Equivalent directionsa0c; b
0
c; c
0
c am; bm; cm a0c; b

0
c; c
0
c am; bm; cm

3½111�c (�120
�) 3½102�m 0.87 3 3 ½11�11�c ¼ ½�1102�m

3½�1111�c (�120
�) 3½320�m 0.25 3 9 ½1�111�c ¼ ½3�220�m

4½100�c (�90
�) 4½013�m 1.19 1 6 ½010�c ¼ ½0�113�m

mð100Þc mð031Þm 1.19 1 6

2½101�c 2½313�m 0.90 1 12 ½011�c ¼ ½3�113�m
mð101Þc mð231Þm 0.90 1 12 ½10�11�c ¼ ½�3313�m

½01�11�c ¼ ½31�33�m
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3.3.10. Twin boundaries

3.3.10.1. Contact relations in twinning

So far, twinning has been discussed only in terms of symmetry
and orientation relations of the (bulk) twin components. In this
chapter, the very important aspect of contact relations is
discussed. This topic concerns the orientation and the structure of
the twin boundary, which is also called twin interface, composi-
tion plane, contact plane, domain boundary or domain wall. It is
the twin boundary and its structure and energy which determine
the occurrence or non-occurrence of twinning. In principle, for
each crystal species an infinite number of orientation relations
obey the requirements for twinning, as set out in Section 3.3.2,
because any rational lattice plane (hkl), as well as any rational
lattice row [uvw], common to both partners would lead to a
legitimate reflection or rotation twin. Nevertheless, only a rela-
tively small number of crystal species exhibit twinning at all, and,
if so, with only a few twin laws. This wide discrepancy between
theory and reality shows that a permissible crystallographic
orientation relation (twin law) is a necessary, but not at all a
sufficient, condition for twinning. In other words, the contact
relations play the decisive role: a permissible orientation relation
can only lead to actual twinning if a twin interface of good
structural fit and low energy is available.

In principle, a twin boundary is a special kind of grain
boundary connecting two ‘homophase’ component crystals which
exhibit a crystallographic orientation relation, as defined in
Section 3.3.2. For a given orientation relation of the twin partners,
crystallographic or general, the interface energy depends on the
orientation of their boundary. It is intuitively clear that crystal-
lographic orientation relations lead to energetically more
favourable boundaries than noncrystallographic ones. As a rule,
twin boundaries are planar (at least in segments), but for certain
types of twins curved and irregular interfaces have been
observed. This is discussed later in this section.

In order to determine theoretically for a given twin law the
optimal interface, the interface energy has to be calculated or at
least estimated for various boundary orientations. This problem
has not been solved for the general case so far. The special
situation of reflection twins with coinciding twin mirror and
composition planes has recently been treated by Fleming et al.
(1997). These authors calculated the interface energies for three
possible reflection twin laws in each of aragonite, gibbsite,
corundum, rutile and sodium oxalate, and they compared the
results with the observed twinning. In all cases, the twin law with
lowest boundary energy corresponds to the twin law actually
observed. Another calculation of the twin interface energy has
been performed by Lieberman et al. (1998) for the ð10�22Þ reflec-
tion twins of monoclinic saccharin crystals. In this study, the ð10�22Þ
boundary energy was calculated for different shifts of the two
twin components with respect to each other. It was shown that a
minimum of the boundary energy is achieved for a particular
‘twin displacement vector’ (cf. Section 3.3.10.4.1).

Calculations of interface energies, as performed by Fleming et
al. (1997) and Lieberman et al. (1998), however, require knowl-
edge of the atomic potentials and their parameters for each pair
of bonded atoms. They are, therefore, restricted to specific
crystals for which these parameters are known. Similarly, high-
resolution electron microscopy (HRTEM) images of twin
boundaries have been obtained so far for only a small number of
crystals.

It is possible, however, to predict for a given twin law low-
energy twin boundaries on the basis of symmetry considerations,
even without knowledge of the crystal structure, as discussed in
the following section. This prediction has been carried out by
Sapriel (1975) for ferroelastic crystals. His treatment assumes a
phase transition from a real or hypothetical parent phase
(supergroup G) to a ‘distorted’ (daughter) phase of lower
eigensymmetry (subgroup H), leading to two (or more) domain

states of equal but opposite shear strain. The subgroup H must
belong to a lower-symmetry crystal system than the supergroup G,
as explained in Section 3.3.7.3(ii). Similar criteria, but restricted
to ferroelectric materials, had previously been devised in 1969 by
Fousek & Janovec (1969). A review of ferroelastic domains and
domain walls is provided by Boulesteix (1984) and an extension
of the Sapriel procedure to phase boundaries between a ferro-
elastic and its ‘prototypic’ (parent) phase is given by Boulesteix et
al. (1986).

3.3.10.2. Strain compatibility of interfaces

For a simple derivation of stress-free contact planes, we go
back to the classical description of mechanical twinning by a
homogeneous shear, which is illustrated by a deformation ellip-
soid as shown in Fig. 3.3.10.1(a) (cf. Liebisch, 1891; Niggli, 1941;
Klassen-Neklyudova, 1964). In a modification of this approach,
we consider two parts of a homogeneous, crystalline or
noncrystalline, solid body, which are subjected to equal but
opposite shear deformations �" and þ". The undeformed state
of the body and the deformed states of its two parts are repre-
sented by a sphere (" ¼ 0) and by two ellipsoids �" and þ", as
shown in Fig. 3.3.10.1(b). We now look for stress-free contact
planes between the two deformed parts, i.e. planes for which line
segments of any direction parallel to the planes experience the
same length change in both parts during the shear. This criterion
is obeyed by those planes that exhibit identical cross sections
through both ellipsoids. Mathematically, this is expressed by the
equation (Sapriel, 1975)

ð"Iij � "
II
ij Þxixj ¼ 2"x1x2 ¼ 0

("Iij ¼ "
I
12 ¼ þ"; "

II
ij ¼ "

II
12 ¼ �"; x1; x2; x3 are Cartesian coordi-

nates) which has as solutions the two planes x1 ¼ 0 (plane BB in
Fig. 3.3.10.1b) and x2 ¼ 0 (plane AA). These planes are called
‘planes of strain compatibility’ or ‘permissible’ planes. From the
solutions of the above equation and Fig. 3.3.10.1(b) it is apparent
that two such planes, AA and BB, normal to each other exist. The
intersection line of the two compatible planes is called the shear
axis of the shear deformation.

It is noted that during a shear deformation induced by the
(horizontal) translations shown in Fig. 3.3.10.1(b), only the plane
AA, parallel to the arrows, can be generated as a contact plane
between the two domains. A contact plane BB, normal to the
arrows, cannot be formed by this process, because this would lead
to a gap on one side and a penetration of the material on the
other side. Plane BB, however, could be formed during a (virtual)
switching between þ" and �" with ‘vertical’ translations, parallel
to BB, which would formally result in the same mutual
arrangement of the ellipsoids. The compatibility criterion, as
expressed by the equation above (which applies to elastic
continua), does not distinguish between these two cases. Note
that the planes AA and BB are mirror planes relating the
deformations þ" and �". Both contact planes often occur
simultaneously in growth twins, see for example the dovetail and
the Montmartre twins of gypsum (Fig. 3.3.6.1). In general, each
interface coinciding with a twin mirror plane or a plane normal to
a twin axis is a (mechanically) compatible contact plane.

It should be emphasized that the criterion ‘strain compatibility’
is a purely mechanical one for which only stress and strain are
considered. It leads to ‘mechanical’ low-energy boundaries.
Other physical properties, such as electrical polarization, may
reduce the number of mechanically permissible boundaries, e.g.
due to energetically unfavourable head-to-head or tail-to-tail
orientation of the axis of spontaneous polarization in polar
crystals. The mechanical compatibility criterion is, however,
always applicable to centrosymmetric materials.
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3.3.10.2.1. Sapriel approach to permissible (compatible) bound-
aries in ferroelastic (non-merohedral) transformation twins

The general approach to strain compatibility, as given above,
can be employed to derive the permissible composition planes for
twins with inclined axes (non-merohedral twins; for merohedral
twins see Section 3.3.10.2.3 below). This concept was applied by
Sapriel (1975) to the 94 Aizu species of ferroelastic transforma-
tion twins. According to Aizu (1969, 1970a,b), each species is
represented by a pair of symmetry groups, separated by the letter
F (= ferroic) in the form KFH, e.g. 2=m 2=m 2=mF12=m1 or
m�33mF �33m. The parent phase with symmetry G represents the
undeformed (zero-strain) reference state (the sphere in Fig.
3.3.10.1b), whereas the spontaneous strain of the two orientation
states of phase H is represented by the two ellipsoids. Details of
the calculation of the permissible domain boundaries for all

ferroelastic transformation twins are given in the paper by
Sapriel (1975).

Two kinds of permissible boundaries are distinguished by
Sapriel:

(a) W boundaries. These interfaces are parallel to symmetry
planes of the parent phase (supergroup K), which are lost in the
transition and have become twin reflection planes (F operations)
of the deformed phase (subgroup H), i.e. they are ‘crystal-
lographically prominent planes of fixed indices’ (Sapriel, 1975, p.
5129), which are fixed by the symmetry of the parent phase. A
rational lattice plane perpendicular to a lost twofold symmetry
axis of the parent phase is also a W boundary. W boundaries are
crystallographically invariant with respect to temperature and
pressure.

(b) W 0 boundaries. In contrast to W boundaries, W 0 interfaces
are not fixed by the symmetry of the parent phase, i.e. they do not
correspond to lost symmetry elements. Their orientation depends
on the direction of the spontaneous shear strain and thus changes
with temperature and pressure. In general, W 0 boundaries are
irrational planes.

Example. The distinction between these two types of boundaries
is illustrated by the example of the (triclinic) Aizu species 2=mF �11.
Here, the lost mirror plane of the monoclinic parent phase (F
operation) yields the permissible prominent W twin boundary
(010). The second permissible boundary, perpendicular to the
first, is an irrational W 0 composition plane in the zone of the
direction normal to triclinic (010), i.e. of the triclinic reciprocal b�

axis. The azimuthal orientation of this boundary around the zone
axis is not determined by symmetry but depends on the direction
of the spontaneous shear strain of the deformed triclinic phase.

Sapriel (1975) has shown that for ferroelastic crystals the pair
of perpendicular permissible domain boundaries can consist
either of two W planes, or of one W and one W 0 plane, or of two
W 0 planes. Examples are the Aizu species 2=m 2=m 2=mF12=m1,
2=mF �11 and 4F2, respectively. There are even four Aizu cases
without any permissible boundaries: 3F1, �33F �11, 23F222,
m�33Fmmm. An example is langbeinite (23F222), which was
discussed at the end of Section 3.3.4.4.

Note. The two members of a pair of permissible twin boundaries
are always exactly perpendicular to each other. Frequently
observed slight deviations from the strict 90� orientation have
been interpreted as relaxation of the perpendicularity condition
in the deformed phase, resulting from the ferroelastic phase
transition (cf. Sapriel, 1975, p. 5138). This, however, is not the
reason for the deviation from 90�, but rather a splitting of the two
(exactly) perpendicular symmetry planes in the parent phase G
into two pairs of compatible twin boundaries (i.e. two indepen-
dent twin laws) in the deformed phase H, whereby the pairs are
nearly perpendicular to each other. From each pair only one
interface (usually the rational one) is realized in the twin,
whereas the other compatible twin boundary (usually the irra-
tional one) is suppressed because of its unfavourable energetic
situation.

Examples
(1) Phase transition orthorhombic (G ¼ 2=m 2=m 2=m) )

monoclinic (H ¼ 1 2=m 1, � � 90�), in Aizu notation
2=m2=m2=mF12=m1. Whereas in G the mirror planes mx and mz

are exactly perpendicular, these planes deviate slightly (by
�� 90�) from perpendicularity in H and split into two different
twin laws (cosets), the first one containing twin plane mx, the
second one mz. Each twin law contributes its rational twin
boundary, mx or mz, to the observed twin aggregate, whereas in
each pair the perpendicular irrational plane is suppressed.

(2) In a tetragonal–orthorhombic phase transition, the two
exactly perpendicular mirror planes ð110Þ and ð�1110Þ of the
tetragonal prototype phase G split into two independent
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Fig. 3.3.10.1. (a) Classical description of mechanical twinning by homo-
geneous shear deformation (Liebisch, 1891, pp. 104–118; Niggli, 1941, pp.
145–149; Klassen-Neklyudova, 1964, pp. 4–10). The shear deforms a sphere
into an ellipsoid of equal volume by translations (arrows) parallel to the twin
(glide) plane AA. The translations are proportional to the distance from the
plane AA. Shear angle 2". (Only the translations in the upper half of the
diagram are shown, in the lower half they are oppositely directed.) (b)
Ellipsoids representing the (spontaneous) shear deformations �" and þ" of
two orientation states, referred to the (real or hypothetic) intermediate
(prototypic) state with " ¼ 0 (sphere). The switching of orientation state �"
into state þ" through the shear angle 2" is, analogous to (a), indicated by
arrows. The shear ellipsoids �" and þ" have common cross sections along
the perpendicular planesAA and BB which are both, therefore, mechanically
compatible contact planes of the þ" and �" twin domains.
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(rational) twin boundaries in the deformed orthorhombic phase
H, which are now nearly perpendicular to each other.

The most famous example of this type of twinning is the 1023 K
ferroelastic phase transition of the high-Tc superconductor
YBa2Cu3O7��. The twinning on {110} in this compound was first
extensively studied by Roth et al. (1987), both in direct space
(TEM) and in reciprocal space (electron and X-ray diffraction),
and by Schmid et al. (1988); see also Shektman (1993).

3.3.10.2.2. Extension to non-merohedral growth and mechanical
twins

The treatment by Sapriel (1975) was directed to (switchable)
ferroelastics with a real structural phase transition from a parent
phase G to a deformed daughter phase H. This procedure can be
extended to those non-merohedral twins that lack a (real or
hypothetical) parent phase, in particular to growth twins as well
as to mechanical twins in the traditional sense [cf. Section
3.3.7.3(i)]. Here, the missing supergroup G formally has to be
replaced by the ‘full’ or ‘reduced’ composite symmetryK orK� of
the twin, as defined in Section 3.3.4. Furthermore, we replace the
spontaneous shear strain by one half of the imaginary shear
deformation which would be required to transform the first
orientation state into the second via a hypothetical intermediate
(zero-strain) reference state. Note that this is a formal procedure
only and does not occur in reality, except in mechanical twinning
(cf. Section 3.3.7.3). With respect to this intermediate reference
state, the two twin orientations possess equal but opposite
‘spontaneous’ strain. With these definitions, the Sapriel treatment
can be applied to non-merohedral twins in general. This exten-
sion even permits the generalization of the Aizu notation of
ferroelastic species to KFH and K�FH� (e.g. mmmF2=m),
whereby now H and H� represent the eigensymmetry and the
intersection symmetry, and K and K� the (possibly reduced)
composite symmetry of the domain pair. With these modifica-
tions, the tables of Sapriel (1975) can be used to derive the
permissible boundaries W and W 0 for general non-merohedral
twins.

It should be emphasized that this extension of the Sapriel
treatment requires a modification of the definition of the W
boundary as given above in Section 3.3.10.2.1: The (rational)
symmetry operations of the parent phase, becoming F operations
in the phase transformation, have to be replaced by the (growth)
twin operations contained in the coset of the twin law. These twin
operations now correspond to either rational or irrational twin
elements. Consequently, the W boundaries defined by these twin
elements can be either rational or irrational, whereas by Sapriel
they are defined as rational. The Sapriel definition of the W 0

boundaries, on the other hand, is not modified: W 0 boundaries
depend on the direction of the spontaneous shear strain and are
always irrational. They cannot be derived from the twin opera-
tions in the coset and, hence, do not appear as primed twin
elements in the black–white symmetry symbol of the composite
symmetry K or K�.

In many cases, the derivation of the permissible twin
boundaries W can be simplified by application of the following
rules:

(i) any twin mirror plane, rational or irrational, is a permissible
composition plane W;

(ii) the plane perpendicular to any twofold twin axis, rational
or irrational, is a permissible composition plane W;

(iii) all these twin mirror planes and twofold twin axes can be
identified in the coset of any twin law, for example by the primed
twin elements in the black–white symmetry symbol of the
composite symmetry K (cf. Section 3.3.5).

In conclusion, the following differences in philosophy between
the Sapriel approach in Section 3.3.10.2.1 and its extension in the
present section are noted: Sapriel starts from the supergroup G of

the parent phase and determines all permissible domain walls at
once by means of the symmetry reduction G ! H during the
phase transition. This includes group–subgroup relations of index
½i� > 2. The present extension to general twins takes the opposite
direction: starting from the eigensymmetry H of a twin compo-
nent and the twin law k�H, a symmetry increase to the
composite symmetry K of a twin domain pair is obtained. From
this composite symmetry, which is always a supergroup of H of
index ½i� ¼ 2, the two permissible boundaries between the two
twin domains are derived. Repetition of this process, using
further twin laws one by one, determines the permissible
boundaries in multiple twins of index ½i�> 2.

Examples
(1) Gypsum dovetail twin, eigensymmetry H ¼ 2=m, twin

element: reflection plane (100) (cf. Example 3.3.6.2, Fig. 3.3.6.1).
Intersection symmetry of two twin domains: H� ¼ 1 2=m 1

(= eigensymmetryH); composite symmetry: K ¼ 20=m0 2=m 20=m0

(referred to orthorhombic axes); corresponding Aizu notation:
2=m 2=m 2=mF12=m1; alternative twin elements in the coset:
rational twin reflection plane m0 k ð100Þ and irrational plane m0

normal to [001], as well as the twofold axes normal to these
planes, all referred to monoclinic axes. The two alternative twin
reflection planes are at the same time permissible W boundaries.

In most dovetail and Montmartre twins of gypsum only the
rational (100) or (001) twin boundary is observed. In some cases,
however, both permissible W boundaries occur, whereby the
irrational interface is usually distinctly smaller and less perfect
than the rational one, cf. Fig. 3.3.6.1.

(2) Multiple twins with orthorhombic eigensymmetry
H ¼ 2=m 2=m 2=m and equivalent twin mirror planes (110) and
ð1�110Þ.

Intersection symmetry of two or more domain states: H� ¼
112=m; reduced composite symmetry: K� ¼ 20=m0 20=m0 2=m.

Reference is made to Fig. 3.3.4.2 in Section 3.3.4.2, where the
complete cosets for both twin laws (110) and ð1�110Þ are shown. For
each twin law, the two perpendicular twin mirror planes are at the
same time the two permissible W twin boundaries. The (110)
boundary is rational, the second permissible boundary, perpen-
dicular to (110), is irrational; similarly for ð1�110Þ. The rational
boundary is always observed. This rule remains valid for multiple
twins, in particular for the spectacular cyclic twins with pseudo n-
fold twin axes: arctan b=a � 60� (aragonite), 72� (AlMn alloy),
90� (staurolite 90� cross), . . . ; 360�=n. A pentagonal twin is
shown in Fig. 3.3.6.8.

(3) Twins of triclinic feldspars, eigensymmetry H ¼ �11 (cf.
Example 3.3.6.11, Figs. 3.3.6.11 and 3.3.6.12).

(a) Albite law: twin reflection plane (010) (referred to triclinic,
pseudo-monoclinic axes), Fig. 3.3.6.11.

Intersection symmetry: H� ¼ H ¼ �11; composite symmetry:
K ¼ 20=m0ð�11Þ.

The two permissible twin boundaries are the W twin plane
(010) (fixed and rational) and a W 0 plane perpendicular to the
first in the zone of the reciprocal axis b� ¼ ½010��, but ‘floating’
with respect to its azimuth. The rational W plane (010) is always
observed in the form of large-area, polysynthetic twin aggregates.

(b) Pericline law: twofold twin rotation axis [010] (referred to
triclinic, pseudo-monoclinic axes), Fig. 3.3.6.12.

Intersection symmetry: H� ¼ H ¼ �11; composite symmetry:
K ¼ 20=m0ð�11Þ.

The two permissible contact planes are:
(i) the irrationalW plane normal to the twin axis [010] [parallel

to the reciprocal ð010Þ� plane];
(ii) the irrational W 0 plane, normal to the first W plane, in the

zone of the [010] twin axis, but ‘floating’ with respect to its
azimuth.
The latter composition plane is the famous ‘rhombic section’
which is always observed. The azimuthal angle of the rhombic
section around [010] depends on the Na/Ca ratio of the plagio-
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clase crystal and is used for the determination of its chemical
composition.

Remark. Both twin laws (albite and pericline) occur simulta-
neously in microcline, KAlSi3O8 (‘transformation microcline’) as
the result of a slow Si/Al order–disorder phase transition from
monoclinic sanidine to triclinic microcline, forming crosshatched
lamellae of albite and pericline twins (Aizu species 2=mF �11).

(4) Carlsbad twins of monoclinic orthoclase KAlSi3O8 (cf. Fig.
3.3.7.1).

Eigensymmetry: H ¼ 12=m1; twin element: twofold axis [001]
(referred to monoclinic axes); intersection symmetry:
H
�
¼ H ¼ 12=m1; composite symmetry: K ¼ 20=m0 2=m 20=m0

(referred to orthorhombic axes).
Permissible W twin boundaries (referred to monoclinic axes):
(i) m ? ½001� (irrational),
(ii) m k ð100Þ (rational).

Carlsbad twins are penetration twins. The twin boundaries are
more or less irregular, as is indicated by the re-entrant edges on
the surface of the crystals. From some of these edges, it can be
concluded that boundary segments parallel to the permissible
(100) planes as well as parallel to the non-permissible (010)
planes (which are symmetry planes of the crystal) occur. This is
possibly due to complications arising from the penetration
morphology.

(5) Calcite deformation twins (e-twins) [cf. Section 3.3.7.3(i)
and Fig. 3.3.7.3].

The deformation twinning in calcite has been extensively
studied by Barber & Wenk (1979). Recently, these twins were
discussed by Bueble & Schmahl (1999) from the viewpoint of
Sapriel’s strain compatibility theory of domain walls.

For calcite (space group R�33c) three unit cells are in use:
(i) Structural triple hexagonal R-centred cell (‘X-ray cell’):

ahex ¼ 4:99, chex ¼ 17:06 Å. This cell is used by both Barber &
Wenk and Bueble & Schmahl.

(ii) Morphological cell: amorph ¼ ahex ¼ 4:99, cmorph ¼ 1=4chex
¼ 4:26 Å. This cell is used in many mineralogical textbooks for
the description of the calcite morphology and twinning.

(iii) Rhombohedral (pseudo-cubic) cell, F-centred, corre-
sponding to the cleavage rhombohedron and the cell of the cubic
NaCl structure: apc ¼ 3:21 Å, �pc ¼ 101:90�.

Eigensymmetry: H ¼ �332=m1; twin reflection and interface
plane: ð01�118Þhex ¼ ð01�112Þmorph ¼ ð110Þpc (similar for the two other
equivalent planes); intersection symmetry: H� ¼ 2=m along
½010�hex ¼ ½10�11�pc; reduced composite symmetry:
K
�
¼ 2=m 20=m01 2

0=m02, with m1 ¼ ð01�118Þhex ¼ ð01�112Þmorph ¼

ð110Þpc rational and m2 an irrational plane normal to the edge of
the cleavage rhombohedron (cf. Fig. 3.3.7.3). Planes m1 and m2

are compatibleW twin boundaries, of which the rational planem1

is the only one observed.
Bueble & Schmahl (1999) treated the mechanical twinning of

calcite by using the Sapriel formalism for ferroelastic crystals. The
authors devised a virtual prototypic phase of cubic m�33m
symmetry with the NaCl unit cell (iii) mentioned above. From a
virtual ferroelastic phase transition m�33m) �332=m, they derived
four orientation states (corresponding to compression axes along
the four cube diagonals). TheW boundaries are of type f110gpc ¼
f01�118ghex ¼ f01�112gmorph and f001gpc ¼ f0�1114ghex ¼ f0�1111gmorph

(cleavage faces). These boundaries are observed. The e-twins
(primary twins) with f110gpc W walls, however, dominate in
calcite (primary deformation twin lamellae), whereas the
secondary r-twins with f001gpc W boundaries are relatively
rare.

A comparison with the compatible twin boundaries m1 and m2

derived from the reduced composite symmetry K� shows that the
m1 ¼ f110gpc ¼ f01�118ghex boundary is predicted by both
approaches, whereas m2 and f001gpc ¼ f0�1114ghex differ by an
angle of 26:2�. The twin reflection planes f110gpc (e-twin) and
f001gpc (r-twin) represent different twin laws and are not alter-

native twin elements of the same twin law, as are m1 ¼ f110gpc
andm2. They would be alternative elements if the rhombohedron
(pseudo-cube), keeping its structural �332=m symmetry, were re-
distorted into an exact cube.

This situation explains the rather complicated deformation
twin texture of calcite. Whereas two e-twin components can be
stress-free attached to each other along a boundary consisting of
compatible m1 ¼ f110gpc and m2 segments, a boundary of f110gpc
and (incompatible) f001gpc segments would generate stress, which
is extraordinarily high due to the extreme shear angle of 26:2�.
The irrational m2 boundary, though mechanically compatible, is
not observed in calcite and is obviously suppressed due to bad
structural fit. As a consequence, the stress in the boundary
regions between the mutually incompatible ef110gpc and rf001gpc
twin systems is often buffered by the formation of needle twin
lamellae (Salje & Ishibashi, 1996) or structural channels along
crystallographic directions (‘Rose channels’; Rose, 1868). Twin-
ning dislocations and cracks (Barber & Wenk, 1979) also relax
high stress. In ‘real’ ferroelastic crystals with their small shear
(usually below 1�) these stress-relaxing phenomena usually do
not occur.

3.3.10.2.3. Permissible boundaries in merohedral twins (lattice
index ½j� ¼ 1)

In merohedral twins (lattice index ½j� ¼ 1), the twin elements
map the entire lattice exactly upon itself. Hence there is no
spontaneous strain, in which the twin domains would differ. The
mechanical compatibility criterion means in this case that any
orientation of a twin boundary is permissible, because interfaces
of any orientation obey the mechanical compatibility criterion,
no matter whether the planes are rational, irrational or even
curved interfaces. This variety of interfaces is brought out by
many actual cases, as shown by the following examples:

(1) Quartz.
The boundaries of Dauphiné transformation twins (622) 32)

are usually irregular, curved interfaces without macroscopically
flat parts (segments) (Frondel, 1962). The boundaries of
Dauphiné growth twins are usually curved too, but sometimes
they exhibit large segments roughly parallel to the rhombo-
hedron faces rf10�111g and zf�11011g. Inserts of growth-twin domains
often have the shape of rounded cones with apices located at the
nucleating perturbation (usually an inclusion). X-ray topography
has shown that Dauphiné boundaries are sometimes stepped on a
fine scale just above the topographic resolution of a few mm
(Lang, 1967a,b).

In contrast to Dauphiné boundaries, the contact faces of Brazil
twins (which are always growth twins) strictly adopt low-index
lattice planes, preferentially those of the major rhombohedron
rf10�111g, less frequently of the minor rhombohedron zf�11011g.
More rarely observed are boundary segments parallel to f10�110g,
f11�221g and f0001g (Frondel, 1962). A special case are the differ-
ently dyed rf10�111g Brazil-twin lamellae of amethyst (Frondel,
1962).

(2) Triglycine sulfate (TGS).
This crystal exhibits a ferroelectric transition 2=m, 2 with

antipolar (merohedral) inversion twins (180� domains). The
domains usually have the shape of irregular cylinders parallel to
the polar axis. All boundaries parallel to the polar axis are
observed, whereas boundaries inclined or normal to the polar
axis are ‘electrically forbidden’ (they would be head-to-head and
tail-to-tail boundaries, cf. Section 3.3.10.3), even though they are
mechanically permissible.

(3) Lithium formate monohydrate (polar point group mm2).
The crystals grown from aqueous solutions exhibit inversion

twins in the shape of sharply defined (010) lamellae (non-
switchable 180� domains). Other boundaries of these growth
twins have not been observed (Klapper, 1973).
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(4) KLiSO4 (polar point group 6).
Among the three different merohedral twin laws, one type,

with twin reflection plane m parallel to the hexagonal axis [001],
stands out. The numerous grown-in twin lamellae are bounded by
large planar (0001) interfaces (normal to the polar axis). It should
be noted that these very prominent twin boundaries are
perpendicular to the twin reflection plane. This is a rather rare
case of boundary orientation. These planes are oriented normal
to the polar axis but are not electrically forbidden, due to the twin
law m k ½001� which preserves the polar direction (Klapper et al.,
1987).

These examples demonstrate that in many merohedral twins
ony a small number of rational, well defined boundaries occur,
even though any boundary is permitted by the mechanical
compatibility criterion. This shows that the latter criterion is a
necessary, but not a sufficient, condition and that further
influences, in particular electrical or structural ones, are
effective.

3.3.10.2.4. Permissible twin boundaries in twins with lattice
index ½j�> 1

In contrast to the mechanical compatibility of any composition
plane in merohedral twins (lattice index ½j� ¼ 1), twins of higher
lattice index ½j� > 1 are more restricted with respect to the
orientation of permissible twin boundaries. In fact, these special
twins can be treated in the same way as the general non-
merohedral twins described in Section 3.3.10.2.2 above. Again,
we attribute equal but opposite spontaneous shear strain to the
two twin domains 1 and 2. This ‘spontaneous’ shear strain
(referred to an intermediate state of zero strain) is half the shear
deformation necessary to transform the orientation of domain 1
into that of domain 2. This also means that the lattice of domain 1
is transformed into the lattice of domain 2. The essential differ-
ence to the case in Section 3.3.10.2.2 is the fact that by this
deformation only a subset of lattice points is ‘restored’. This
subset forms the sublattice of index ½j� � 2 common to both
domains (coincidence-site sublattice, twin lattice). With this
analogy, the Sapriel formalism can be applied to the derivation of
the mechanically compatible (permissible) twin boundaries.
Again, the easiest way to find the permissible planes is the
construction of the black–white symmetry symbol of the twin law,
in which planes parallel to primed mirror planes or normal to
primed twofold axes constitute the permissible W interfaces.

It is emphasized that the concept of a deformation from
domain state 1 to domain state 2 is not always a mere mental
construction, as it is for growth twins. It is physical reality in some
deformation twins, for example in the famous �3 deformation
twins (spinel law) of cubic metals which are essential elements of
the plasticity of these metals. During the �3 deformation, the
{100} cube (a 90� rhombohedron) is switched from its ‘reverse’

into its ‘obverse’ orientation and vice versa, whereby the hexa-
gonal P sublattice of index ½j� ¼ 3 is restored and, thus, is
common to both twin domains.

Exact lattice coincidences of twin domains result from special
symmetry relations of the lattice. Such relations are system-
atically provided by n-fold symmetry axes of order n > 2, i.e. by
three-, four- and sixfold axes. In other words: twins of lattice
index ½j� > 2 occur systematically in trigonal, hexagonal, tetra-
gonal and cubic crystals. This may lead to trigonal, tetragonal and
hexagonal intersection symmetries H� (reduced eigensym-
metries) of domain pairs. Consequently, if there exists one pair of
permissible composition planes, all pairs of planes equivalent to
the first one with respect to the intersection symmetry are
permissible twin boundaries as well. This is illustrated by three
examples in Table 3.3.10.1.

For the cubic and rhombohedral �3 twins (spinel law), due to
the threefold axis of the intersection symmetry, three pairs of
permissible planes occur. The plane (111), normal to this three-
fold axis, is common to the three pairs of boundaries (threefold
degeneracy), i.e. in total four different permissible W twin
boundaries occur. These composition planes (111), ð11�22Þ, ð�2211Þ,
ð1�221Þ are indeed observed in the �3 spinel-type penetration
twins, recognizable by their re-entrant edges (Fig. 3.3.6.6). They
also occur as twin glide planes of cubic metals. For the tetragonal
�5 twin, two pairs of perpendicular permissible W composition
planes result, (120) & (�2210Þ and (310) & (�1130), one pair bisecting
the other pair under 45�. For the cubic �33 twin [galena PbS, cf.
Section 3.3.8.3, example (4)], due to the low intersection
symmetry, only one pair of permissible W boundaries results.

3.3.10.3. Electrical constraints of twin interfaces

As mentioned before, the mechanical compatibility of twin
boundaries is a necessary but not a sufficient criterion for the
occurrence of stress-free low-energy twin interfaces. An addi-
tional restriction occurs in materials with a permanent (sponta-
neous) electrical polarization, i.e. in crystals belonging to one of
the ten pyroelectric crystal classes which include all ferroelectric
materials. In these crystals, domains with different directions of
the spontaneous polarization may occur and lead to ‘electrically
charged boundaries’.

3.3.10.3.1. Merohedral twins

Of particular significance are merohedral twins with polar
domains of antiparallel spontaneous polarization �P (180�

domains). The charge density � at a boundary between two twin
domains is given by

� ¼ �2Pn;

where Pn is the component of the polarization normal to the
boundary. The interfaces with positive charge are called ‘head-to-
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Table 3.3.10.1. Examples of permissible twin boundaries for higher-order merohedral twins (½j� > 1)

�3 growth and deformation twins
of cubic crystals, twin mirror
plane (111) (spinel law)

�5 growth twins of tetragonal
rare-earth sulfides (SmS1:9),
twin mirror plane (120)

�33 deformation twins of cubic
galena (PbS), twin mirror
plane (441)†

Eigensymmetry H 4=m�332=m 4=m 2=m 2=m 4=m�332=m

Intersection symmetry H�‡ �332=m parallel to [111] 4=m parallel to [001] 2=m parallel to ½1�110�

Reduced composite symmetry K�‡ 60=m01ð�33Þ2=m 20=m03 4=m 20=m01 2
0=m02 20=m01 2=m 20=m02

Permissible twin boundaries Three pairs of perpendicular planes Two pairs of perpendicular planes One pair of permissible planes
m1 ¼ ð111Þ & m3 ¼ ð11�22Þ m1 ¼ ð120Þ & ð�2210Þ m1 ¼ ð441Þ & m2 ¼ ð11�88Þ

m1 ¼ ð111Þ & m3 ¼ ð
�2211Þ m2 ¼ ð310Þ & ð�1130Þ

m1 ¼ ð111Þ & m3 ¼ ð1�221Þ

Reference system Cubic axes Tetragonal axes Cubic axes

† The existence of this deformation twin is still in doubt (cf. Seifert, 1928). ‡ The intersection symmetry H� and the permissible boundaries are referred to the coordinate system of the
eigensymmetry; the reduced composite symmetriesK� are based on their own conventional coordinate system derived from the intersection symmetryH� plus the twin law (cf. Section 3.3.4).
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head’ boundaries, those with negative charge ‘tail-to-tail’
boundaries. Interfaces parallel to the polarization direction are
uncharged (Pn ¼ 0) (Fig. 3.3.10.2).

The electrical charges on a twin boundary constitute an addi-
tional (now electrostatic) energy of the twin boundary and are
‘electrically forbidden’. Only boundaries parallel to the polar
axes are ‘permitted’. This is in fact mostly observed: practically all
180� domains originating during a phase transition from a para-
electric parent phase to the polar (usually ferroelectric) daughter
phase exhibit uncharged boundaries parallel to the spontaneous
polarization. Uncharged boundaries have also been found in
inversion growth twins obtained from aqueous solutions, such as
lithium formate monohydrate and ammonium lithium sulfate.
Both crystals possess the polar eigensymmetry mm2 and contain
grown-in inversion twin lamellae (180� domains) parallel to their
polar axis.

‘Charged’ boundaries, however, may occur in crystals that are
electrical conductors. In such cases, the polarization charges
accumulating along head-to-head or tail-to-tail boundaries are
compensated by opposite charges obtained through the electrical
conductivity. This compensation may lead to a considerable
reduction of the interface energy. Note that the term ‘charged’ is
often used for boundaries of head-to-head and tail-to-tail char-
acter, even if they are uncharged due to charge compensation.

Examples
(1) Lithium niobate LiNbO3 exhibits a phase transition from

�332=m to 3m between 1323 and 1473 K (depending on the Li/Nb
stoichiometry). Crystals are grown from the melt (Tm ¼ 1538 K)
by Czochralski pulling along the trigonal axis [001] in the para-
electric phase. They transform into the ferroelectric polar phase
when cooled below the Curie temperature. The crystals are
electrically conductive at high temperatures and can be poled by
an electric field parallel to the polar axis. By applying an alter-
nating rectangular voltage between seed crystal and melt, a

sequence of 180� domains is formed during the subsequent
transition. The domain boundaries follow the curved growth
front (crystal–melt interface) and have alternating head-to-head
and tail-to-tail character (Räuber, 1978).

(2) Orthorhombic polar potassium titanyl phosphate, KTiOPO4

(KTP), exhibits a para- to ferroelectric phase transition
(mmm()mm2) and a considerable conductivity of potassium
ions. In this material, head-to-head and tail-to-tail boundaries are
common. Sometimes strongly folded, charged zigzag boundaries
occur, which contain large segments of faces nearly parallel to the
spontaneous polarization (Scherf et al., 1999). The average
orientation of these boundaries is roughly normal to the polar
axis (Fig. 3.3.10.2d), but their charge density is considerably
reduced by the zigzag geometry.

(3) Head-to-head and tail-to-tail twin boundaries are also
found in crystals grown from aqueous solutions. In such cases, the
polarization charges are compensated by the opposite charges
present in the electrolytic solution. An interesting example is
hexagonal potassium lithium sulfate KLiSO4 (point group 6)
which exhibits, among other types of twins, anti-polar domains of
inversion twins. The twin boundaries often have head-to-head or
tail-to-tail character and frequently coincide with the growth-
sector boundaries (Klapper et al., 1987).

3.3.10.3.2. Non-merohedral twins

Charged and uncharged boundaries may also occur in non-
merohedral twins of pyroelectric crystals. In this case, the polar
axes of the two twin domains 1 and 2 are not parallel. The charge
density � of the boundary is given by

� ¼ Pnð2Þ � Pnð1Þ;

with Pnð1Þ and Pnð2Þ the components of the spontaneous polar-
ization normal to the boundary. An example of both charged and
uncharged boundaries is provided by the growth twins of
ammonium lithium sulfate with eigensymmetry m2m. These
crystals exhibit, besides the inversion twinning mentioned above,
growth-sector twins with twin laws ‘reflection plane (110)’ and
‘twofold twin axis normal to (110)’. (Both twin elements would
constitute the same twin law if the crystal were centrosymmetric.)
The observed and permissible composition plane for both laws is
(110) itself. As is shown in Fig. 3.3.10.3, the (110) boundary is
charged for the reflection twin and uncharged for the rotation
twin. Both cases are realized for ammonium lithium sulfate. The
charges of the reflection-twin boundary are compensated by the
charges contained in the electrolytic aqueous solution from which
the crystal is grown. On heating (cooling), however, positive
(negative) charges appear along the twin boundary.

3.3.10.3.3. Non-pyroelectric acentric crystals

Finally, it is pointed out that electrical constraints of twin
boundaries do not occur for non-pyroelectric acentric crystals.
This is due to the absence of spontaneous polarization and,
consequently, of electrical boundary charges. This fact is apparent
for the Dauphiné and Brazil twins of quartz: they exhibit
boundaries normal to the polar twofold axes which are reversed
by the twin operations.

Nevertheless, it seems that among possible twin laws those
leading to opposite directions of the polar axes are avoided. This
can be explained for spinel twins of cubic crystals with the
sphalerite structure and eigensymmetry �443m. Two twin laws,
different due to the lack of the symmetry centre, are possible:

(i) twofold twin rotation around [111],
(ii) twin reflection across the plane (111).

In the first case, the sense of the polar axis [111] is not reversed, in
the second case it is reversed. All publications on this kind of
twinning, common in III–Vand II–VI compound semiconductors
(GaAs, InP, ZnS, CdTe etc.), report the twofold axis along [111] as
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Fig. 3.3.10.2. Boundaries B–B between 180� domains (merohedral twins) of
pyroelectric crystals. (a) Tail-to-tail boundary. (b) Head-to-head boundary.
(c) Uncharged boundary (Pn ¼ 0). (d) Charged zigzag boundary, with
average orientation normal to the polar axis. The charge density is
significantly reduced. Note that the charges at the boundaries are usually
compensated by stray charges of opposite sign.
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the true twin element, not the mirror plane (111); this was
discussed very early on in a significant paper by Aminoff &
Broomé (1931).

3.3.10.4. Displacement and fault vectors of twin boundaries

The statements of the preceding sections on the permissibility
of twin boundaries are very general and derived without any
regard to the crystal structure. For example, any arbitrary
reflection plane relating two partners of a crystal aggregate or
even of an anisotropic continuous elastic medium represents a
mechanically permissible boundary. For twin boundaries in
crystals, however, additional aspects have to be taken into
account, viz the atomic structure of the twin interface, i.e. the
geometrical configuration of atoms, ions and molecules and their
crystal-chemical interactions (bonding topology) in the transition
region between the two twin partners. Only if the configurations
and interactions of the atoms lead to boundaries of good struc-
tural fit and, consequently, of low energy, will the interfaces occur
with the reproducibility and frequency that are prerequisites for a
twin. In this respect, the mechanical and electrical permissibility
conditions given in the preceding sections are necessary but not
sufficient conditions for the occurrence of a twin boundary and –
in the end – of the twin itself. In the following considerations, all
twin boundaries are assumed to be permissible in the sense
discussed above.

3.3.10.4.1. Twin displacement vector t

As a first step of the structural elucidation of a reflection-twin
boundary, the mutual relation of the two lattices of the twin
partners 1 and 2 at the boundary is considered. It is assumed that
the unit cells of both lattices have the same origin with respect to
their crystal structure, i.e. that the lattice points are located in the
same structural sites of both partners. Three cases of lattice

relations across the rational composition plane (hkl) (assumed to
be parallel to the twin reflection plane) are considered, as
outlined in Fig. 3.3.10.4 [see also Section 3.3.2.4, Note (8)].

(a) The composition lattice planes ðhklÞ1 and ðhklÞ2 of domains
1 and 2 coincide pointwise (Fig. 3.3.10.4a), i.e. the lattices of the
two twin partners coincide in the twin boundary.

(b) The composition lattice planes ðhklÞ1 and ðhklÞ2 are
common but not pointwise coincident, i.e. the two lattices are
displaced by a non-integer vector t (twin displacement vector)
parallel to the composition plane (Fig. 3.3.10.4b).

(c) The composition lattice planes ðhklÞ1 and ðhklÞ2 are
displaced – in addition to the parallel component – by a
component normal to the composition plane (Fig. 3.3.10.4c). By
an appropriate choice of the lattice points with respect to the
structure, this normal component vanishes and, hence, this
general case reduces to case (b) (Fig. 3.3.10.4d).

This shows that for the characterization of a twin with coin-
ciding twin reflection and contact plane only the component of a
twin displacement vector parallel to the twin boundary is signif-
icant. Thus, on an atomic scale, not only twin reflection planes
(t � 0) but also ‘twin glide planes’ (t � 1=2vL, where vL is a
lattice translation vector), as well as all intermediate cases, have
to be considered. In principle, these considerations also apply to
irrational twin reflection and composition planes. Moreover, twin
displacement vectors also have to be admitted for the other types
of twins, viz rotation and inversion twins. Examples are given
below.
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Fig. 3.3.10.4. Lattice representation of twin displacement vectors. (a) Lattice
representation of a ‘pure’ twin reflection plane (t = 0). (b) Twin reflection
plane with parallel displacement vector t (generalized twin glide plane). (c)
Twin reflection plane with a general twin displacement vector with parallel
and normal components: t ¼ tn þ tp. By choosing a suitable new lattice point
x (origin shift), the normal component tn disappears, preserving the parallel
component tp as the true twin displacement vector and leading to case (b), as
shown in (d).

Fig. 3.3.10.3. Charged and uncharged boundaries B–B of non-merohedral
twins of pseudo-hexagonal NH4LiSO4. Point group m2m, spontaneous
polarization P along twofold axis [010]. (a) Twin element mirror plane (110):
electrically charged boundary of head-to-head character. (b) Twin element
twofold twin axis normal to plane (110): uncharged twin boundary (‘head-to-
tail’ boundary).
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So far, the considerations about twin boundaries are based on
the idealized concept that the bulk structure extends without any
deformation up to the twin boundary. In reality, however, near
the interface the structures are more or less deformed (relaxed),
and so are their lattices. This transition region may even contain a
central slab exhibiting a different structure, which is often close
to a real or hypothetical polymorph or to the parent structure.
[Examples: the Dauphiné twin boundary of �-quartz resembles
the structure of �-quartz; the iron-cross (110) twin interface of
pyrite, FeS2, resembles the structure of marcasite, another poly-
morph of FeS2.]

Whereas the twin displacement vector keeps its significance for
small distortions of the boundary region, it loses its usefulness for
large structural deformations. It should be noted that rational
twin interfaces are usually observed as ‘good’, whereas irrational
twin boundaries, despite mechanical compatibility, usually exhibit
irregular features and macroscopically visible deformations.

Twin displacement vectors are a consequence of the mini-
mization of the boundary energy. This has been proven by a
theoretical study of the boundary energy of reflection twins
of monoclinic saccharine crystals with ð10�22Þ as twin reflection and
composition plane (Lieberman et al., 1998). The authors calcu-
lated the boundary energy as a function of the lattice displace-
ment vector t, which was varied within the mesh of the ð10�22Þ
composition plane, admitting also a component normal to the
composition plane. The calculations were based on a combination
of Lennard–Jones and Coulomb potentials and result in a flat
energy minimum for a displacement vector t = [0.05/0.71/0.5]
(referred to the monoclinic axes). The calculations were carried
out for the undistorted bulk structure. The actual deformation of
the structure near the twin boundary is not known and, hence,
cannot be taken into account. Nevertheless, this model calcula-
tion shows that in general twin displacement vectors t 6¼ 0 are
required for the minimization of the boundary energy.

Twin displacement vectors have been considered as long as
structural models of boundaries have been derived. One of the
oldest examples is the model of the (110) growth-twin boundary
of aragonite, suggested by Bragg (1924) (cf. Section 3.3.10.5
below). An even more instructive model is presented by Bragg
(1937, pp. 246–248) and Bragg & Claringbull (1965, pp. 302–303)
for the Baveno (021) twin reflection and interface plane of

feldspars. It shows that the tetrahedral framework can be
continued without interruption across the twin boundary only if
the twin reflection plane is a glide plane parallel to (021). A
model of a twin boundary requiring a displacement vector t 6¼ 0
was reported by Black (1955) for the (110) twin reflection
boundary of the alloy Fe4Al13.

In their interesting theoretical study of the morphology and
twinning of gypsum, Bartels & Follner (1989, especially Fig. 4)
conclude that the (100) twin interface of Montmartre twins is a
pure twin reflection plane without displacement vector, whereas
the dovetail twins exhibit a ‘twin glide component’
a=2þ b=2þ c=2 parallel to the twin reflection plane ð�1101Þ. [Note
that in the present chapter, due to a different choice of coordi-
nate system, the Montmartre twins are given as (001) and the
dovetail twins as (100), cf. Example 3.3.6.2.]

The occurrence of twin displacement vectors can be visualized
by high-resolution transmission electron microscopy (HRTEM)
studies of twin boundaries. Fig. 3.3.10.5 shows an HRTEM
micrograph of a (112) twin reflection boundary of anatase TiO2,
viewed edge on (arrows) along ½1�331� (Penn & Banfield, 1998).
The offset of the lattices along the twin boundary is clearly
visible. This result is confirmed by the structural model presented
by the authors, which indicates a parallel displacement vector
t � 1=2vL. Twin displacement vectors have also been observed on
HRTEM micrographs of sputtered Fe4Al13 alloys by Tsuchimori
et al. (1992).

3.3.10.4.2. Fault vectors of twin boundaries in merohedral twins

Twin displacement vectors can occur in twin boundaries of
both non-merohedral (see above) and merohedral twins. For
merohedral twins, the displacement vector is usually called the
‘fault vector’, because of the close similarity of these twin
boundaries with antiphase boundaries and stacking faults (cf.
Section 3.3.2.4, Note 7). In contrast to non-merohedral twins, for
merohedral twins these displacement vectors can be determined
by imaging the twin boundaries by means of electron or X-ray
diffraction methods. The essential reason for this possibility is the
exact parallelism of the lattices of the two twin partners 1 and 2,
so that for any reflection hkl the electron and X-ray diffraction
conditions are always simultaneously fulfilled for both partners.
Thus, in transmission electron microscopy and X-ray topography,
both domains 1 and 2 are simultaneously imaged under the same
excitation conditions. By a proper choice of imaging reflections,
both twin domains exhibit the same diffracted intensity (no
‘domain contrast’), and the twin boundary is imaged by fringe
contrast analogously to the imaging of stacking faults and anti-
phase boundaries (‘stacking fault contrast’).

This contrast results from the ‘phase jump’ of the structure
factor upon crossing the boundary. For stacking faults and anti-
phase boundaries this phase jump is 2�f � ghkl, with f the fault
vector of the boundary and ghkl the diffraction vector of the
reflection used for imaging. For (merohedral) twin boundaries
the total phase jump �hkl is composed of two parts,

�hkl ¼ �hkl þ 2�f � ghkl;

with �hkl the phase change due to the twin operation and
2�f � ghkl the phase change resulting from the lattice displacement
vector f. The boundary contrast is strongest if the phase jump�hkl

is an odd integer multiple of �, and it is zero if �hkl is an integer
multiple of 2�. By imaging the boundary in various reflections hkl
and analysing the boundary contrast, taking into account the
known phase change �hkl (calculated from the structure-factor
phases of the reflections hkl1 and hkl2 related by the twin
operation), the fault vector f can be determined (see the exam-
ples below). This procedure has been introduced into transmis-
sion electron microscopy by McLaren & Phakey (1966, 1969) and
into X-ray topography by Lang (1967a,b) and McLaren &
Phakey (1969).
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Fig. 3.3.10.5. HRTEM micrograph of anatase, TiO2, with a (112) reflection
twin boundary (arrows), viewed edge-on along ½1�331�. The twin displacement
vector t = 1/2 of the boundary translation period is clearly visible. Courtesy of
R. L. Penn, Madison, Wisconsin; cf. Penn & Banfield, 1998.
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In the equation given above, for each reflection hkl the total
phase jump �hkl is independent of the origin of the unit cell. The
individual quantities �hkl and 2�f � ghkl, however, vary with the
choice of the origin but are coupled in such a way that�hkl (which
alone has a physical meaning) remains constant. This is illustrated
by the following simple example of an inversion twin.

The twin operation relates reflections hkl1 and hkl2 ¼ �hh �kk�ll1.
Their structure factors are (assuming Friedel’s rule to be valid)

F1 ¼ jFj expð�i’Þ and F2 ¼ jFj expðþi’Þ:

The phase difference of the two structure factors is �hkl ¼ 2’
and depends on the choice of the origin. If the origin is chosen at
the twin inversion centre (superscript o), the phase jump �hkl at
the boundary is given by

�hkl ¼ �
o
hkl ¼ 2’o:

This is the total phase jump occurring for reflection pairs
hkl1=hkl2 ¼ hkl= �hh �kk�ll at the twin boundary.

If the origin is not located at the twin inversion centre but is
displaced from it by a vector 1

2f, the phases of the structure factors
of reflections hkl1 and hkl2 are

’1 ¼ ’
o � 2�ð12 fÞ � ghkl and

’2 ¼ �’1 ¼ �½’
o � 2�ð12 fÞ � ghkl�:

From these equations the phase difference of the structure
factors is calculated as

�hkl ¼ ’1 � ’2 ¼ 2’o � 2�f � ghkl;

and the total phase jump at the boundary is

�hkl ¼ 2’o ¼ �hkl þ 2�f � ghkl:

This shows that here the fault vector f has no physical meaning.
It merely compensates for the phase contributions that result
from an ‘improper’ choice of the origin. If, by the procedures
outlined above, a fault vector f is determined, the true twin
inversion centre is located at the endpoint of the vector 1

2f
attached to the chosen origin.

Similar considerations apply to reflection and twofold rotation
twins. In these cases, the components of the fault vectors normal
to the twin plane or to the twin axis can also be eliminated by a
proper choice of the origin. The parallel components, however,
cannot be modified by changes of the origin and have a real
physical significance for the structure of the boundary.

Particularly characteristic fault vectors occur in (merohedral)
‘antiphase domains’ (APD). Often the fault vector is the lattice-
translation vector lost in a phase transition.

3.3.10.4.3. Examples of fault-vector determinations

(1) Inversion boundaries (180� domain walls) of ferroelectric
lithium ammonium sulfate (LAS), LiNH4SO4 (Klapper, 1987), cf.
Example 3.3.6.1.

LAS is ferroelectric at room temperature (point group m2m)
and transforms into the paraelectric state (point group mmm) at
459 K. Crystals grown from aqueous solution at about 313 K
contain grown-in inversion twins with boundaries exactly parallel
to (001), appearing on X-ray topographs by stacking-fault fringe
contrast. It was found that the boundaries are invisible in
reflections of type h0l (zone of the polar axis [010]), but show
contrast in reflections with k 6¼ 0 with some exceptions (e.g. no
contrast for reflection 040). The ‘zero-contrast’ reflections are
particularly helpful for the determination of the fault vector.
Applying the procedure described above, a fault vector
f ¼ 1=2½010� (parallel to the polar axis) was derived for the
chosen origin, which is located on the polar twofold symmetry
axis. Thus, the true twin inversion centre is located at the

endpoint of the vector 1
2f ¼ 1=4½010�. An inspection of the LAS

structure shows that this point is the location of the inversion
centre of the paraelectric parent phase above 459 K. Thus, during
the transition from the para- to the ferroelectric phase the
structural inversion centres vanish in the bulk of the domains,
but are preserved in the domain boundaries as twin inversion
centres.

For this (001) twin interface, a reasonable structural model
without any breaking of the framework of SO4 and LiO4 tetra-
hedra could be derived easily. The tetrahedra adopt a staggered
orientation across the boundary, compared with a nearly eclipsed
orientation in the bulk structure.

(2) Brazil twin boundaries of quartz.
Brazil twins are commonly classified as f11�220g reflection twins

but can alternatively be considered as inversion twins, as
explained in Section 3.3.6.3.2. The twin boundaries are usually
strictly planar and mainly parallel to one of the major rhombo-
hedron faces f10�111g but, less frequently, to one of the minor
rhombohedron faces f�11011g or prism faces f10�110g. From electron
microscopy studies of polysynthetic (lamellar) Brazil twins in
amethyst (McLaren & Phakey, 1966), fault vectors of type
f ¼ 1=2h010i, i.e. one half of one of the three translations along
the twofold axes, were obtained for twin boundaries parallel to
f10�111g, where f is parallel to the boundary. The same but slightly
shorter fault vector f ¼ 0:4h010i for f10�111g Brazil boundaries was
determined in X-ray topographic studies by Lang (1967a,b) and
Lang & Miuskov (1969). Another detailed X-ray topographic
investigation was carried out by Phakey (1969). He confirmed the
existence of the fault vector f ¼ 1=2h010i but proved also the
occurrence of further fault vectors of type f ¼ h0; 12 ;

1
3i for f10

�111g
twin boundaries. Based on these fault vectors, the structures of
the Brazil twin boundaries could be derived: it was shown that no
Si—O bonds are broken and that the left- and right-handed
partner structures join each other with only small distortions of
the tetrahedral framework. It is worth mentioning that the
structural channels along the threefold axes do not continue
smoothly across the boundary but are mutually displaced by the
fault-vector component parallel to the basal plane (0001).
McLaren, Phakey and Lang, however, did not consider the
location of the twin elements (twin inversion centre or twin
reflection plane) in the structure, which can be determined from
the fault vectors.

These structural studies of the Brazil twin boundaries have
shown that the fault vectors f are different for different orien-
tations of the interface. As a consequence, a ‘stair-rod’ dislocation
must occur along the bend of the twin interface from one
orientation to the other. Stair-rod dislocations have been
observed and characterized in the X-ray topographic study of
Brazil boundaries by Phakey (1969).

3.3.10.5. Examples of structural models of twin boundaries

Until the rather recent advent of high-resolution transmission
electron microscopy (HRTEM), no experimental method for the
direct elucidation of the atomic structures of twin interfaces
existed. Thus, many authors have devised structural models of
twin interfaces based upon the (undeformed) bulk structure of
the crystals and the experimentally determined orientation and
contact relations. The criterion of good structural fit and low
energy of a boundary was usually applied in a rather intuitive
manner to the specific case in question. The first and classic
example is the model of the aragonite (110) boundary by Bragg
(1924).

Some examples of twin-boundary models from the literature
are given below. They are intended to show the wide variety of
substances and kinds of models. Examples for the direct obser-
vation of twin-interface structures by HRTEM follow in Section
3.3.10.6.
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3.3.10.5.1. Aragonite, CaCO3

The earliest structural model of a twin boundary was derived
for aragonite by Bragg (1924), reviewed in Bragg (1937, pp. 119–
121) and Bragg & Claringbull (1965, pp. 131–133). Aragonite is
orthorhombic with space group Pmcn. It exhibits a pronounced
hexagonal pseudosymmetry, corresponding to a (hypothetical)
parent phase of symmetry P63=mmc, in which the Ca ions form a
hexagonal close-packed structure with the CO3 groups filling the
octahedral voids along the 63 axes. By eliminating the threefold
axis and the C-centring translation of the orthohexagonal unit
cell, the above orthorhombic space group results, where the lost
centring translation now appears as the glide component n. Of
the three mirror planes parallel to f11�220ghex and the three c-glide
planes parallel to f10�110ghex, one of each set is retained in the
orthorhombic structure, whereas the other two appear as possible
twin mirror planes f110gorth and f130gorth. It is noted that
predominantly planes of type f110gorth are observed as twin
boundaries, but less frequently those of type f130gorth.

From this structural pseudosymmetry the atomic structure of
the twin interface was easily derived by Bragg. It is shown in Fig.
3.3.10.6. In reality, small relaxations at the twin boundary have to
be assumed. It is clearly evident from the figure that the twin
operation is a glide reflection with glide component 1

2 c (= twin
displacement vector t).

3.3.10.5.2. Dauphiné twins of �-quartz

For this merohedral twin (eigensymmetry 32) a real parent
phase, hexagonal �-quartz (622), exists. The structural relation
between the two Dauphiné twin partners of �-quartz is best seen
in projection along [001], as shown in Fig. 3.3.10.7 and in Figure 3
of McLaren & Phakey (1966), assuming a fault vector f ¼ 0 in
both cases. These figures reveal that only small deformations
occur upon passing from one twin domain to the other, irre-
spective of the orientation of the boundary. This is in agreement
with the general observation that Dauphiné boundaries are

usually irregular and curved and can adopt any orientation. The
electron microscopy study of Dauphiné boundaries by McLaren
& Phakey confirms the fault vector f ¼ 0. It is noteworthy that
the two models of the boundary structure by Klassen-Neklyu-
dova (1964) and McLaren & Phakey (1966) imply a slab with the
�-quartz structure in the centre of the transition zone (Fig.
3.3.10.7b). This is in agreement with the assumption voiced by
several authors, first by Aminoff & Broomé (1931), that the
central zone of a twin interface often exhibits the structure of a
different (real or hypothetical) polymorph of the crystal.

There are, however, X-ray topographic studies by Lang
(1967a,b) and Lang & Miuskov (1969) which show that curved
Dauphiné boundaries may be fine-stepped on a scale of a few
tens of microns and exhibit a pronounced change of the X-ray
topographic contrast of one and the same boundary from strong
to zero (invisibility), depending on the boundary orientation.
This observation indicates a change of the fault vector with the
boundary orientation. It is in contradiction to the electron
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Fig. 3.3.10.6. Structural model of the (110) twin boundary of aragonite (after
Bragg, 1924), projected along the pseudo-hexagonal c axis. The ortho-
rhombic unit cells of the two domains with eigensymmetry Pmcn, as well as
their glide/reflection planes m and c, are indicated. The slab centred on the
(110) interface between the thin lines is common to both partners. The
interface coincides with a twin glide plane c and is shown as a dotted line
(twin displacement vector t ¼ 1=2c). The model is based on a hexagonal cell
with � ¼ 120�, the true angle is � ¼ 116:2�. The origin of the orthorhombic
cell is chosen at the inversion centre halfway between two CO3 groups along
c.

Fig. 3.3.10.7. Simplified structural model of a f10�110gDauphiné twin boundary
in quartz (after Klassen-Neklyudova, 1964). Only Si atoms are shown. (a)
Arrangement of Si atoms in the low-temperature structure of quartz viewed
along the trigonal axis [001]. (b) Model of the Dauphiné twin boundary C–D.
Note the opposite orientation of the three electrical axes shown in the upper
left and lower right corner of part (b). In this model, the structural slab
centred along the twin boundary has the structure of the hexagonal high-
temperature phase of quartz which is shown in (c).
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microscopy results of McLaren & Phakey (1966) and requires
further experimental elucidation.

3.3.10.5.3. Potassium lithium sulfate, KLiSO4

The room-temperature phase of KLiSO4 is hexagonal with
space group P63. It forms a ‘stuffed’ tridymite structure,
consisting of a framework of alternating SO4 and LiO4 tetrahedra
with the K ions ‘stuffed’ into the framework cavities. Crystals
grown from aqueous solutions exhibit merohedral growth twins
with twin reflection planes f10�110g (alternatively f11�220g) with
extended and sharply defined (0001) twin boundaries. The twins
consist of left- and right-handed partners with the same polarity.
The left- and right-handed structures, projected along the polar
hexagonal c axis, are shown in Figs. 3.3.10.8(a) and (b) (Klapper
et al., 1987). The tetrahedra of the two tetrahedral layers within
one translation period c are in a staggered orientation. A model
of the twin boundary is shown in Fig. 3.3.10.8(c): the tetrahedra
on both sides of the twin interface (0001), parallel to the plane of
the figure, now adopt an eclipsed position, leading to an unin-
terrupted framework and a conformation change in second
coordination across the interface. It is immediately obvious that
this (0001) interface permits an excellent low-energy fit of the two
partner structures. Note that all six (alternative) twin reflection
planes f10�110g and f11�220g are normal to the twin boundary. It is
not possible to establish a similar low-energy structural model of
a boundary which is parallel to one of these twin mirror planes
(Klapper et al., 1987).

Inspection of the boundary structure in Fig. 3.3.10.8(c) shows
that the tetrahedra related by the twin reflection plane f10�110g
(one representative plane is indicated by the dotted line) are

shifted with respect to each other by a twin displacement vector
t ¼ 1=2½001�. Thus, on an atomic scale, these twin reflection
planes are in reality twin c-glide planes, bringing the right- and
left-hand partner structures into coincidence.

Interestingly, upon cooling below 233 K, KLiSO4 undergoes a
(very) sluggish phase transition from the P63 phase III into the
trigonal phase IV with space group P31c by suppression of the
twofold axis parallel [001] and by addition of a c-glide plane.
Structure determinations show that the bulk structure of IV is
exactly the atomic arrangement of the grown-in twin boundary of
phase III, as presented in Fig. 3.3.10.8(c). Moreover, X-ray
topography reveals transformation twins III ! IV, exhibiting
extended and sharply defined polysynthetic (0001) twin lamellae
in IV. From the X-ray topographic domain contrast, it is proven
that the twin element is the twofold rotation axis parallel to [001].
The structural model of the (0001) twin interfaces is given in Figs.
3.3.10.8(a) and (b). They show that across the (0001) twin
boundary the tetrahedra are staggered, in contrast to the bulk
structure of IV where they are in an eclipsed orientation (Fig.
3.3.10.8c). It is immediately recognized that the two tetrahedral
layers, one above and one below the (0001) twin boundary in Fig.
3.3.10.8(a) or (b), are related by 21 screw axes.

Thus, the (idealized) (0001) twin boundary of the transfor-
mation twins of phase IV is represented by the bulk structure of
the hexagonal room-temperature phase III, whereas the twin
boundary of the growth twins of the hexagonal phase III is
represented by the bulk structure of the trigonal low-temperature
phase IV. Upon cooling from P63 (phase III) to P31c (phase IV),
the 21 axes are suppressed as symmetry elements, but they now
act as twin elements. In the model they are located as in space
group P63, one type being contained in the 63 axes, the other type

halfway in between. Upon heating, the
re-transformation IV ! III restores the
f10�110g=f11�220g reflection twins with the
same large (0001) boundaries in the same
geometry as existed before the transition
cycle, but now as result of a phase tran-
sition, not of crystal growth (strong
memory effect).

Thus, KLiSO4 is another particularly
striking example of the phenomenon,
mentioned above for the Dauphiné twins
of quartz, that the twin-interface struc-
ture of one polymorph may resemble the
bulk structure of another polymorph.

The structural models of both kinds of
twin boundaries do not exhibit a fault
vector f 6¼ 0. This may be explained by
the compensation of the glide component
1
2 c of the c-glide plane in phase IV by the
screw component 1

2 c of the 21 screw axis
in phase III and vice versa.

3.3.10.5.4. Twin models of molecular
crystals

An explanation for the occurrence of
twinning based on the ‘conflict’ between
the energetically most favourable (hence
stable) crystal structure and the
arrangement with the highest possible
symmetry was proposed by Krafczyk et
al. (1997 and references therein) for some
molecular crystals. According to this
theory, pseudosymmetrical structures
exhibit ‘structural instabilities’, i.e.
symmetrically favourable structures
occur, whereas the energetically more
stable structures are not realized, but

436

Fig. 3.3.10.8. KLiSO4: Bulk tetrahedral framework structures and models of (0001) twin boundary
structures of phases III and IV. Small tetrahedra: SO4; large tetrahedra: LiO4; black spheres: K. All three
figures play a double role, both as bulk structure and as (0001) twin-boundary structures. (a) and (b) Left-
and right-handed bulk structures of phase III (P63), as well as possible structures of the (0001) twin
boundary in phase IV. (c) Bulk structure of phase IV (P31c), as well as possible structure of the (0001)
twin boundary in phase III. The SO4 tetrahedra covered by the LiO4 tetrahedra are shown by thin lines.
Dotted line: f10�110g c-glide plane. In all cases, the (0001) twin boundary is located between the two
tetrahedral layers parallel to the plane of the figure.
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were theoretically derived by lattice-energy calculations. The
differences between the two structures provide the explanation
for the occurence of twins. The twin models contain characteristic
‘shift vectors’ (twin displacement vectors). The theory was
successfully applied to pentaerythrite, 1,2,4,5-tetrabromo-
benzene, maleic acid and 3,5-dimethylbenzoic acid.

3.3.10.6.Observations of twin boundaries by transmission electron
microscopy

In the previous sections of this chapter, twin boundaries have
been discussed from two points of view: theoretically in terms of
‘compatibility relations’, i.e. of mechanically and electrically
‘permissible’ interfaces (Sections 3.3.10.2 and 3.3.10.3), followed
by structural aspects, viz by displacement and fault vectors
(Section 3.3.10.4), as well as atomistic models of twin boundaries
(Section 3.3.10.5), in each case accompanied by actual examples.

In the present section, a recent and very powerful method of
direct experimental elucidation of the atomistic structure of twin
interfaces is summarized, transmission electron microscopy
(TEM), in particular high-resolution transmission electron
microscopy (HRTEM). This method enjoys wider and wider
application because it can provide in principle – if applied with
proper caution and criticism – direct evidence for the problems
discussed in earlier sections: ‘good structural fit’, ‘twin displace-
ment vector’, ‘relaxation of the structure’ across the boundary etc.

The present chapter is not a suitable place to introduce and
explain the methods of TEM and HRTEM and the interpretation
of the images obtained. Instead, the following books, containing
treatments of the method in connection with materials science,
are recommended: Wenk (1976), especially Sections 2.3 and 5;
Amelinckx et al. (1978), especially pp. 107–151 and 217–314;
McLaren (1991); Buseck et al. (1992), especially Chapter 11; and
Putnis (1992), especially pp. 67–80.

The results of HRTEM investigations of twin interfaces are not
yet numerous and representative enough to provide a complete
and coherent account of this topic. Instead, a selection of typical
examples is provided below, from which an impression of the
method and its usefulness for twinning can be gained.

3.3.10.6.1. Anatase, TiO2 (Penn & Banfield, 1998, 1999)

This investigation has been presented already in Section
3.3.10.4.1 and Fig. 3.3.10.5 as an example of the occurrence of a
twin displacement vector, leading to t � 1=2vL, where vL is a
lattice translation vector parallel to the (112) twin reflection
plane of anatase. Another interesting result of this HRTEM study
by Penn & Banfield is the formation of anatase–brookite inter-
growths during the hydrothermal coarsening of TiO2 nano-
particles. The preferred contact plane is (112) of anatase and
(100) of brookite, with [131] of anatase parallel to [011] of
brookite in the intergrowth plane. Moreover, it is proposed that
brookite may nucleate at (112) twin boundaries of anatase and
develop into (100) brookite slabs sandwiched between the
anatase twin components. Similarly, after hydrothermal treat-
ment at 523 K, nuclei of rutile at the anatase (112) twin boundary
were also observed by HRTEM (Penn & Banfield, 1999). A
detailed structural model for this anatase-to-rutile phase transi-
tion is proposed by the authors, from which a sluggish nucleation
of rutile followed by rapid growth of this phase was concluded.

3.3.10.6.2. SnO2 (rutile structure)

Twin interfaces (011) of the closely related tetragonal SnO2

(cassiterite) were investigated by Smith et al. (1983). A very close
agreement between HRTEM images and corresponding
computer simulations was obtained for t ¼ 1=2½1�111�ð011Þ. This
twin is termed ‘glide twin’ by the authors, because the twin
operation is a reflection across (011) followed by a displacement
vector t ¼ 1=2½1�111�ð011Þ parallel to the twin plane (011).

3.3.10.6.3. �3 (111) twin interface in BaTiO3 [cf. Section
3.3.8.3(iii)]

In cubic crystals, twins of the�3 (111) spinel type are by far the
most common. A technologically very important phase, BaTiO3

perovskite, was investigated by Rečnik et al. (1994) employing
HRTEM, computer simulations and EELS (spatially resolved
electron-energy-loss spectroscopy). The samples were prepared
by sintering at 1523 K, i.e. in the cubic phase, whereby �3 (111)
growth twins were formed. These twins are preserved during the
transition into the tetragonal phase upon cooling below
Tc ¼ 398 K. Note that these (now tetragonal) (111) twins are not
transformation twins, as are the (110) ferroelastic twins.

Fig. 3.3.10.9(a) shows an HRTEM micrograph and Fig.
3.3.10.9(b) the structural model of the (111) twin boundary, both
projected along ½1�110�. The main results of this study can be
summarized as follows.

(1) The twin boundary coincides exactly with the twin reflec-
tion plane (111). It is very sharp and consists of one atomic layer
only, common to both twin components. It is fully ‘coherent’ (cf.
Section 3.3.10.9).

(2) The twin boundary is formed by a close-packed BaO3 layer,
and the TiO6 octahedra on both sides share faces to form Ti2O9

groups. These groups occur also in the hexagonal high-
temperature modification of BaTiO3, i.e. this is a further example
of a twin interface having the structure of another polymorph of
the same compound.

(3) The EELS results suggest a reduction in the valence state
of the Ti4þ ions in the interface towards Ti3þ which is compen-
sated by some oxygen vacancies, leading to the composition of
the interface layer BaO3�x(VO)x instead of BaO3. This result
indicates that the stoichiometry of a boundary, even of a coherent
one, may differ from that of the bulk.

A very interesting structural feature of the BaTiO3 (111) twin
interface was discovered by Jia & Thust (1999), applying
sophisticated HRTEM methods to thin films of nanometre
thickness (grown by the pulsed-laser deposition technique). The
distance of the nearest Ti plane on either side of the (111) twin
reflection plane (which is formed by a BaO3 layer, see above)
from this twin plane is increased by 0.19 Å, i.e. the distance
between the Ti atoms in the Ti2O9 groups, mentioned above
under (2), is increased from the hypothetical value of 2.32 Å for
Ti in the ideal octahedral centres to 2.70 Å in the actual interface
structure. This expansion is due to the strong repulsion between
the two neighbouring Ti ions in the Ti2O9 groups. A similar
expansion of the Ti–Ti distance in the Ti2O9 groups (from 2.34 to
2.67 Å), again due to the strong repulsion between the Ti atoms,
has been observed in the bulk crystal structure of the hexagonal
modification of BaTiO3.

In addition, a decrease by 0.16 Å of the distance between the
two nearest BaO planes across the twin interface was found,
which corresponds to a contraction of this pair of BaO planes
from 2.32 Å in the bulk to 2.16 Å at the twin interface
(corresponding closely to the value of 2.14 Å in the hexagonal
phase).

It is remarkable that no significant (i.e. > 0.05 Å) displace-
ments were found for second and higher pairs of both Ti–Ti and
BaO–BaO layers. Moreover, no significant lateral shifts, i.e. no
twin displacements vectors t 6¼ 0 parallel to the (111) twin
interface, were observed.

Note that BaTiO3 is treated again in Section 3.3.10.7.5 below,
with respect to its twin texture in polycrystalline aggregates.

3.3.10.6.4. � ¼ 3 bicrystal boundaries in Cu and Ag

Differently oriented interfaces in �3 bicrystals of Cu and Ag
were elucidated by Hoffmann & Ernst (1994) and Ernst et al.
(1996). They prepared bicrystals of fixed �3 orientation rela-
tionship [corresponding to the (111) spinel twin law] but with
different contact planes. The inclinations of these contact planes
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vary by rotations around the two directions ½�1110� and ½11�22� [both
parallel to the (111) twin reflection plane] in the range � ¼
0–90�, where � ¼ 0� corresponds to the (111) ‘coherent twin
plane’, as illustrated in Figs. 3.3.10.10(a) and (b).

The boundary energies were determined from the surface
tension derived from the characteristic angles of surface grooves
formed along the boundaries by thermal etching. The theoretical
energy values were obtained by molecular statics calculations.
The measured and calculated energy curves show a deep and
sharp minimum at � ¼ 0� for rotations around both ½�1110� and
½11�22�. This corresponds to the coherent (111) �3 twin boundary
and is to be expected. It is surprising, however, that a second,
very shallow energy minimum occurs in both cases at high
� angles: �½�1110� � 82� and �½11�22� � 84�, rather than at the

compatible (112) contact plane for�½�1110� ¼ 90� [the contact plane
ð1�110Þ for �½11�22� ¼ 90� is not compatible]. For these two angular
inclinations, the boundaries, as determined by HRTEM and
computer modelling, exhibit complex three-dimensional
boundary structures with thin slabs of unusual Cu arrangements:
the �½�1110� � 82� slab has a rhombohedral structure of nine close-
packed layers (9R) with a thickness of about 10 Å (in contrast to
the f.c.c bulk structure, which is 3C). This is shown and explained
in Fig. 3.3.10.10(c). Similarly, for the �½11�22� � 84� slab a b.c.c.
structure (as for �-Fe) was found, again with a thickness of
� 10 Å.

3.3.10.6.5. Fivefold cyclic twins in nanocrystalline materials

Multiply twinned particles occur frequently in nanocrystalline
(sphere-like or rod-shaped) particles and amorphous thin films
(deposited on crystalline substrates) of cubic face-centred metals,
diamond-type semiconductors (C, Si, Ge) and alloys. Hofmeister
& Junghans (1993) and Hofmeister (1998) have carried out
extensive HRTEM investigations of nanocrystalline Ge particles
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Fig. 3.3.10.10. (a) Schematic block diagram of a � ¼ 3 bicrystal (spinel twin)
for ’½�1110� ¼ 0�, i.e. for coinciding (111) twin reflection and composition
plane. (b) Schematic block diagram of the � ¼ 3 bicrystal for ’½�1110� ¼ 82�.
(c) HRTEM micrograph of the � ¼ 3 boundary of Cu for ’½�1110� ¼ 82�,
projected along ½�1110�. The black spots coincide with the ½�1110� Cu-atom
columns. The micrograph reveals a thin (� 10 Å) interface slab of a
rhombohedral 9R structure, which can be derived from the bulk cubic 3C
structure by introducing a stacking fault SF on every third (111) plane. The
(111) planes are horizontal, the interface is roughly parallel to (4.4.11) and
(223), respectively. Courtesy of F. Ernst, Stuttgart; cf. Ernst et al. (1996).

Fig. 3.3.10.9. (a) HRTEM micrograph of a coherent (111) twin boundary in
BaTiO3, projected along ½1�110�. The intense white spots represent the ½1�110�
Ba–O columns, the small weak spots in between represent the Ti columns.
Thickness of specimen 4 nm. (b) Structural model of the (111) twin boundary
(arrow), as derived from the micrograph (a) and confirmed by computer
simulation. Note that the pure oxygen columns (open circles) are not visible
in the micrograph (a), due to the low scattering power of oxygen. Some slight
structural deformations along the twin boundary are discussed in the text.
Courtesy of W. Mader, Bonn; cf. Rečnik et al. (1994).
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in amorphous Ge films. The particles reveal, among others, five-
fold cyclic twins with coinciding (111) twin reflection planes and
twin boundaries (spinel type). A typical example of a fivefold
twin is presented in Fig. 3.3.10.11: The five different {111} twin
boundaries are perpendicular to the image plane (1�110) and
should theoretically form dihedral angles of 70.5� (supplement to
the tetrahedral angle 109.5�), which would lead to an angular gap
of about 7.5�. In reality, the five twin sectors are more or less
distorted with angles ranging up to 76�. The stress due to the
angular mismatch is often relaxed by defects such as stacking
faults (marked by arrows in Fig. 3.3.10.11). The ½1�110� junction line
of the five sectors can be considered as a pseudo-fivefold twin
axis (similar to the pseudo-trigonal twin axis of aragonite, cf. Fig.
3.3.2.4; see also the fivefold twins in the alloy FeAl4, described in
Example 3.3.6.8 and Fig. 3.3.6.8).

For the formation of fivefold twins, different mechanisms have
been suggested by Hofmeister (1998): nucleation of noncrys-
tallographic clusters, which during subsequent growth collapse
into cyclic twins; successive growth twinning on alternate cozonal
(111) twin planes; and deformation twinning (cf. Section 3.3.7).

The fivefold multiple twins provide an instructive example of a
twin texture, a subject which is treated in the following section.

3.3.10.7. Twin textures

So far in Section 3.3.10, ‘free’ twin interfaces have been
considered with respect to their mechanical and electrical
compatibility, their twin displacement vectors and their structural
features, experimentally and by modelling. In the present section,
the ‘textures’ of twin domains, both in a ‘single’ twin crystal and
in a polycrystalline material or ceramic, are considered. With the
term ‘twin texture’, often also called ‘twin pattern’, ‘domain
pattern’ or ‘twin microstructre’, the size, shape and spatial
distribution of the twin domains in a twinned crystal aggregate is
expressed. In a (polycrystalline) ceramic, the interaction of the
twin interfaces in each grain with the grain boundary is a further
important aspect. Basic factors are the ‘form changes’ and the
resulting space-filling problems of the twin domains compared to
the untwinned crystal. These interactions can occur during crystal
growth, phase transitions or mechanical deformations.

From the point of view of form changes, two categories of
twins, described in Sections 3.3.10.7.1 and 3.3.10.7.2 below, have

to be distinguished. Discussions of the most important twin cases
follow in Sections 3.3.10.7.3 to 3.3.10.7.5.

3.3.10.7.1. Merohedral (non-ferroelastic) twins (see Sections
3.3.9 and 3.3.10.2.3)

In these twins, the lattices of all domains are exactly parallel
(‘parallel-lattice twins’). Hence, no lattice deformations (spon-
taneous strain) occur and the development of the domain pattern
of the twins is not infringed by spatial constraints. As a result, the
twin textures can develop freely, without external restraints [cf.
Section 3.3.10.7.5 below].

It should be noted that these features apply to all merohedral
twins, irrespective of origin, i.e. to growth and transformation
twins and, among mechanical twins, to ferrobielastic twins [for
the latter see Section 3.3.7.3(iii)].

3.3.10.7.2. Non-merohedral (ferroelastic) twins

Here, the lattices of the twin domains are not completely
parallel (‘twins with inclined axes’). As a result, severe space
problems may arise during domain formation. Several different
cases have to be considered:

(1) Only one twin law, i.e. only two domain states occur which
can form two-component twins (e.g. dovetail twins of gypsum,
Carlsbad twins of orthoclase) or multi-component twins (e.g.
lamellar, polysynthetic twins of albite). For these twins, no spatial
constraints are imposed and, hence, the twin crystal can develop
freely, without external restraints. Again, this applies to both
growth and transformation twins.

(2) Two or more twin laws, i.e. three or more domain states
coexist. Here, the free development of a twin domain is impeded
by the space requirements of its neighbours. For growth twins,
typical cases are sector and cyclic twins (e.g. K2SO4 and arago-
nite). More complicated examples are the famous harmotome
and phillipsite growth twins, where the combined action of
several twin laws leads to a pseudo-cubic twin texture and twin
morphology.

Transformation and deformation twins are extensively treated
in the following Section 3.3.10.7.3.
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Fig. 3.3.10.11. HRTEM micrograph of a fivefold-twinned Ge nanocrystal (right) in an amorphous Ge film formed by vapour deposition on an NaCl cleavage
plane. Projection along a [1�110] lattice row that is the junction of the five twin sectors; plane of the image: ð1�110Þ. The coinciding {111} twin reflection and
composition planes (spinel law) are clearly visible. In one twin sector, two pairs of stacking faults (indicated by arrows) occur. They reduce the stress
introduced by the angular misfit of the twin sectors. The atomic model (left) shows the structural details of the bulk and of one pair of stacking faults. Courtesy
of H. Hofmeister, Halle; cf. Hofmeister & Junghans (1993); Hofmeister (1998).
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3.3.10.7.3. Fitting problems of ferroelastic twins

The real problem of space-constrained twin textures, however,
is provided by non-merohedral (ferroelastic) transformation and
deformation twins (including the cubic deformation twins of the
spinel law). This is schematically illustrated in Fig. 3.3.10.12 for
the very common case of orthorhombic�!monoclinic transfor-
mation twins (� ¼ 90� þ "Þ.

Figs. 3.3.10.12(a) and (b) show the ‘splitting’ of two mirror
planes (100) and (001) of parent symmetry mmm, as a result of a
phase transition mmmF12=m1, into the two independent and
symmetrically non-equivalent twin reflection planes (100) and
(001), each one representing a different (monoclinic) twin law.
The two orientation states of each domain pair differ by the
splitting angle 2". Note that in transformation twins the angle "
(spontaneous shear strain) is small, at most one or two degrees,
due to the pseudosymmetryH of the daughter phase with respect
to the parent symmetry G. It can be large, however, for defor-
mation twins, e.g. calcite. The resulting fitting problems in
ferroelastic textures are illustrated in Fig. 3.3.10.12(c). Owing to
the splitting angle 2", twin domains would form gaps or overlaps,
compared to a texture with " ¼ 0, where all domains fit precisely.
In reality, the misfit due to " 6¼ 0 leads to local stresses and
associated elastic strains around the meeting points of three
domains related by two twin laws [triple junctions, cf. Palmer et
al. (1988), Figs. 3–6)].

For the orthorhombic�!monoclinic transition considered
here, the two different twin laws often lead to two and (for small
") nearly perpendicular sets of polysynthetic twin lamellae. This is
illustrated in Fig. 3.3.10.12(d). The boundaries in one set are
formed by (100) planes, those in the other set by (001) planes,
both of low energy. The misfit problems are located exclusively in
the region AA where the two systems of lamellae meet. Here
wedge-like domains (the so-called ‘needle domains’, see below)
are formed, as shown in Fig. 3.3.10.12(e), i.e. the twin lamellae of
one system taper on approaching the perpendicular twin system
(right-angled twins), forming rounded or sharp needle tips. The
tips of the needle lamellae may be in contact with the perpen-
dicular lamella or may be somewhat withdrawn from it. These
effects are the consequence of strain-energy minimization in the
transition region of domain systems, as compared to the large-
area contacts between parallel twin lamellae.

The formation of two lamellae systems with wedge-like
domains was demonstrated very early on by the polarization-
optical study of the orthorhombic�!monoclinic (222�!2)
transformation of Rochelle salt at 297 K by Chernysheva (1950,
1955; quoted after Klassen-Neklyudova, 1964, pp. 27–30 and 76–
77, Figs. 35, 38 and 100; see also Zheludev, 1971, pp. 180–185).
The term ‘needle domains’ was coined by Salje et al. (1985) in
their study of the monoclinic�!triclinic ð2=m�!�11) transition of
Na-feldspar. Another detailed description of needle domains is
provided by Palmer et al. (1988) for the cubic�!tetragonal
(4=m �33 2=m�!4=m 2=m 2=m) transformation of leucite at 878 K.
The typical domain structure resulting from this transition is
shown in Fig. 3.3.10.13.

A similar example is provided by the extensively investigated
tetragonal�!orthorhombic transformation twinning of the high-
Tc superconductor YBa2Cu3O7�� (YBaCu) below about 973 K
(Roth et al., 1987; Schmid et al., 1988; Keester et al., 1988,
especially Fig. 6). Here two symmetrically equivalent systems
of lamellae with twin lawsmð110Þ andmð�1110Þmeet at nearly right
angles (" � 1�). Interesting TEM observations of tapering,
impinging and intersecting twin lamellae are presented by Müller
et al. (1989). An extensive review on twinning of YBaCu, with
emphasis on X-ray diffraction studies (including diffuse scat-
tering), was published by Shektman (1993).

A particularly remarkable case occurs for hexago-
nal�!orthorhombic ferroelastic transformation twins. Well
known examples are the pseudo-hexagonal K2SO4-type crystals
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Fig. 3.3.10.12. Illustration of space-filling problems of domains for a
(ferroelastic) orthorhombic ! monoclinic phase transition with an angle "
(exaggerated) of spontaneous shear. (a) Orthorhombic parent crystal with
symmetry 2=m 2=m 2=m. (b) Domain pairs 1þ 2, 1þ 3 and 2þ 4 of the
monoclinic daughter phase (� ¼ 90� þ ") with independent twin reflection
planes (100) and (001). (c) The combination of domain pairs 1þ 2 and 1þ 3
leads to a gap with angle 90� � 3", whereas the combination of the three
domain pairs 1þ 2, 1þ 3 and 2þ 4 generates a wedge-shaped overlap
(hatched) of domains 3 and 4 with angle 4". (d) Twin lamellae systems of
domain pairs 1þ 2 (left) and 1þ 3 (or 2þ 4) (right) with low-energy contact
planes (100) and (001). Depending on the value of ", adaptation problems
with more or less strong lattice distortions arise in the boundary region A–A
between the two lamellae systems. (e) Stress relaxation and reduction of
strain energy in the region A–A by the tapering of domains 2 (‘needle
domains’) on approaching the (nearly perpendicular) boundary of domains
3þ 1. The tips of the needle lamellae may impinge on the boundary or may
be somewhat withdrawn from it, as indicated in the figure. The angle between
the two lamellae systems is 90� � ".
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(cf. Example 3.3.6.7). Three (cyclic) sets of orthorhombic twin
lamellae with interfaces parallel to f10�110ghex or f110gorth are
generated by the transformation. More detailed observations on
hexagonal–orthorhombic twins are available for the III�!II
(heating) and I�!II (cooling) transformations of KLiSO4 at
about 712 and 938 K (Jennissen, 1990; Scherf et al., 1997). The
development of the three systems of twin lamellae of the
orthorhombic phase II is shown by two polarization micrographs
in Fig. 3.3.10.14. A further example, the cubic�!rhombohedral
phase transition of the perovskite LaAlO3, was studied by Bueble
et al. (1998).

Another surprising feature is the penetration of two or more
differently oriented nano-sized twin lamellae, which is often
encountered in electron micrographs (cf. Müller et al., 1989, Fig.
2b). In several cases, the penetration region is interpreted as a
metastable area of the higher-symmetrical para-elastic parent
phase.

In addition to the fitting problems discussed above, the
resulting final twin texture is determined by several further
effects, such as:

(a) the nucleation of the (twinned) daughter phase in one or
several places in the crystal;

(b) the propagation of the phase boundary (transformation
front, cf. Fig. 3.3.10.14);

(c) the tendency of the twinned crystal to minimize the overall
elastic strain energy induced by the fitting problems of different
twin lamellae systems.

Systematic treatments of ferroelastic twin textures were first
published by Boulesteix (1984, especially Section 3.3 and refer-
ences cited therein) and by Shuvalov et al. (1985). This topic is
extensively treated in Section 3.4.4 of the present volume. A
detailed theoretical explanation and computational simulation of
these twin textures, with numerous examples, was recently
presented by Salje & Ishibashi (1996) and Salje et al. (1998).
Textbook versions of these problems are available by Zheludev
(1971) and Putnis (1992).

3.3.10.7.4. Tweed microstructures

The textures of ferroelastic twins and their fitting problems,
discussed above, are ‘time-independent’ for both growth and
deformation twins, i.e. after twin nucleation and growth or after
the mechanical deformation there occurs in general no ‘ripening
process’ with time before the final twin structure is produced.

This is characteristically different for some transformation twins,
both of the (slow) order–disorder and of the (fast) displacive type
and for both metals and non-metals. Here, with time and/or with
decreasing temperature, a characteristic microstructure is formed
in between the high- and the low-temperature polymorph. This
‘precursor texture’ was first recognized and illustrated by Putnis
in the investigation of cordierite transformation twinning and
called ‘tweed microstructure’ (Putnis et al., 1987; Putnis, 1992). In
addition to the hexagonal–orthorhombic cordierite transforma-
tion, tweed structures have been investigated in particular in the
K-feldspar orthoclase (monoclinic–triclinic transformation), in
both cases involving (slow) Si–Al ordering processes.
Examples of tweed structures occurring in (fast) displacive
transformations are provided by tetragonal–orthorhombic Co-
doped YBaCu3O7�d (Schmahl et al., 1989) and rhombohedral–
monoclinic (Pb,Sr)3(PO4)2 and (Pb,Ba)3(PO4)2 (Bismayer et al.,
1995).

Tweed microstructures are precursor twin textures, inter-
mediate between those of the high- and the low-temperature
modifications, with the following characteristic features:
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Fig. 3.3.10.14. Twin textures generated by the two different hexagonal-to-
orthorhombic phase transitions of KLiSO4. The figures show parts of
ð0001Þhex plates (viewed along [001]) between crossed polarizers. (a) Phase
boundary III�!II with circular 712 K transition isotherm during heating.
Transition from the inner (cooler) room-temperature phase III (hexagonal,
dark) to the (warmer) high-temperature phase II (orthorhombic, birefrin-
gent). Owing to the loss of the threefold axis, lamellar f10�110ghex ¼ f110gorth
cyclic twin domains of three orientation states appear. (b) Sketch of the
orientations states 1, 2, 3 and the optical extinction directions of the twin
lamellae. Note the tendency of the lamellae to orient their interfaces normal
to the circular phase boundary. Arrows indicate the direction of motion of
the transition isotherm during heating. (c) Phase boundary I�!II with 938 K
transition isotherm during cooling. The dark upper region is still in the
hexagonal phase I, the lower region has already transformed into the
orthorhombic phase II (below 938 K). Note the much finer and more
irregular domain structure compared with the III�!II transition in (a).
Courtesy of Ch. Scherf, PhD thesis, RWTH Aachen, 1999; cf. Scherf et al.
(1997).

Fig. 3.3.10.13. Thin section of tetragonal leucite, K(AlSi2O6), between
crossed polarizers. The two nearly perpendicular systems of (101) twin
lamellae result from the cubic-to-tetragonal phase transition at about 878 K.
Width of twin lamellae 20–40 mm. Courtesy of M. Raith, Bonn.
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(a) With respect to long-range order, the tweed structure
belongs to the (disordered) high-temperature form, as shown by
synchroton radiation powder diffraction; for instance, orthoclase
has macroscopic monoclinic symmetry, and the tweed structure of
cordierite is strictly hexagonal on a macroscopic scale.

(b) Experiments that reveal short-range order, especially TEM
micrographs, infrared and Raman spectra and NMR spectra,
show features of the ordered low-temperature modification; in
orthoclase, very fine (nanometre-size) superposed triclinic albite
and pericline microdomains occur, which may even fluctuate with
time; similarly for cordierite.

With annealing or cooling time these tweed structures exhibit
continuous ‘coarsening’ of their microdomains and ‘sharpening’
of their boundaries. The tweed microstructure of orthoclase
develops into the well known crosshatched ‘transformation
microcline’ texture discussed above in Section 3.3.10.2.2, example
(3), and the cordierite tweed structure gives way to coarse twin
lamellae in two orthogonal orientations of well ordered ortho-
rhombic cordierite. Recently, interesting computer simulations of
the time evolution of twin domains have been performed for
alkali-metal feldspars by Tsatskis & Salje (1996) and for
cordierite by Blackburn & Salje (1999). These papers also contain
references to earlier work on tweed structures.

Textbook descriptions of tweed structures can be found in
the following works: Putnis, 1992, Sections 7.3.5, 7.3.6 and
12.4.1; Salje, 1993, Sections 7.3 and pp. 116–201; Putnis & Salje,
1994.

3.3.10.7.5. Twin textures in polycrystalline aggregates

So far, twin textures have been treated independently of their
occurrence in ‘single crystals’ or in polycrystalline aggregates. In
the present section, the specific situation in polycrystalline
materials such as ceramics, metals and rocks is discussed. This
treatment is concerned with the extra effects that occur in
addition to those discussed in Sections 3.3.10.7.1 to 3.3.10.7.4
above. These additional effects result from the fact that in a
polycrystalline material a given crystal grain is surrounded by
other grains and thus ‘clamped’ with respect to form and orien-
tation changes arising from mechanical stress, electrical polar-
ization or magnetization. Here, this effect is called ‘neighbour
clamping’.

Two cases of neighbour clamping occur, three-dimensional
clamping of grains in the bulk of a sample and two-dimensional
clamping at the surface of a sample. In addition, two-dimensional
clamping can occur in thin films, either free or epitaxial. The
result of this clamping is high elastic stress which is relaxed
(‘stress relief’; Arlt, 1990) by twinning, in particular by the
formation of ‘shape-preserving’ twin textures.

Twinning in a ceramic is of great technical importance for the
preparation and optimization of devices such as capacitors,
piezoelectric elements and magnets. They often contain ferro-
electric or ferromagnetic polycrystalline materials which undergo
domain switching in an electric or magnetic field and, hence, can
be poled.

In the following, we restrict our considerations to non-metallic
ceramics where twinning is generated by a ferroelastic phase
transition (e.g. perovskites). It is assumed that the ceramic is
formed at temperatures far above the phase transition, which is
accompanied on cooling by a considerable spontaneous lattice
strain in the low-temperature phase, leading to the formation of
non-merohedral twins. Without any formation of twins a
considerable change of the grain shapes would occur and cause
high inter-grain stress. The main mechanism of stress relaxation
(‘stress relief’) is the formation of a ferroelastic twin texture
which preserves the shape of the original (high-temperature
phase) grain as far as possible. Note that the twin texture
resulting from this ‘neighbour clamping’ is quite different from
the twin texture of a free, unclamped grain. In the free grain, only

few twin lamellae with usually coherent boundaries are formed,
whereas in the clamped grain several twin bands with narrow-
spaced twin lamellae of different twin types occur.

In the clamped case, the significant effect of ferroelastic twin
formation is the reduction of the elastic energy resulting from the
clamping. On the other hand, the formation of new twin inter-
faces increases the twin-boundary energy. The competition of
these effects leads to an energetic balance with a (relative)
minimum of the overall energy of the sample. The process of twin
formation does not occur sharply at the transition temperature Tc

but continues over a considerable temperature range below Tc.
The ‘ideal’ state of lowest energy is hardly ever reached due to
the rigidity of the original grain structure (which remains rather
unchanged) and to the existence of kinetic (coercive)
barriers.

The group of materials for which these effects are most typical
are the ferroelectric and ferroelastic perovskites, in particular
BaTiO3. A detailed study is provided by Arlt (1990), who also
presents extensive model calculations of relevant energy terms, as
well as of average domain sizes and widths of twin bands.

Twinning phenomena in polycrystalline metals are treated by
Christian (1965, Chapter 8).

Note. As mentioned above in Section 3.3.10.7.1, non-ferroelastic
phase transitions cause no spontaneous lattice strain and, hence,
the associated merohedral twins cannot act as ‘stress relief’ for a
‘clamped’ twin texture.

3.3.10.8. Twinning dislocations

In contrast to (low-angle) grain boundaries, twin boundaries
do not require the existence of boundary dislocations as neces-
sary constituents. Nevertheless, a special kind of dislocation,
called ‘twinning dislocation’, has been introduced in materials
science for twin boundaries of deformation twins, i.e. for twins
with a large shear angle 2" and with a twin boundary parallel to a
rational plane (hkl) which is simultaneously the twin reflection
plane (Read, 1953, p. 109; Friedel, 1964, p. 173). Geometrically, a
twinning dislocation is a step in the twin boundary (Fig.
3.3.10.15), i.e. a line along which the twin interface ‘jumps’ from
one lattice plane to the next. As shown in Fig. 3.3.10.15, this
‘dislocation line’, which is located at the twin interface, is
surrounded by lattice distortions, similar to the deformations
around regular dislocations in an untwinned crystal.

Using the concept of a Burgers circuit for regular (perfect)
dislocations, Burgers vectors bt of twinning dislocations can also
be defined. Such a Burgers vector is parallel to the (rational)
direction of shear (i.e. parallel to the intersection of the shear
plane and the twin plane, as shown in Fig. 3.3.10.15). Its modulus
is proportional to tan " and has, in general, non-integer values.
For small or zero values of the shear angle 2" (pseudo-
merohedral and merohedral twins) the Burgers vectors are small
or zero, and the related ‘twinning dislocations’ are not physically
meaningful. Note that in this approach steps in twin interfaces of
(strictly) merohedral twins are not dislocations at all, because
" ¼ 0 and bt ¼ 0.

For classical deformation twins, the shear angles 2" are large,
and ‘twinning dislocations’ are well defined and have a significant
influence on the deformation behaviour and on the shape of twin
domains. Twin interfaces exactly parallel to the twin reflection
plane are dislocation-free, whereas interfaces inclined to the
reflection plane consist of segments parallel to the reflection
plane separated by steps (i.e. twinning dislocations). For small
inclinations, the twinning dislocations are widely spaced, whereas
for curved interfaces their spacing varies. This feature plays an
important role for lenticular domains (needle domains) of
deformation twins. Twinning dislocations are also essential for
the ‘coherence’ and ‘incoherence’ of twin boundaries as used in
materials science. This aspect will be discussed in Section 3.3.10.9.
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An interesting study of twinning dislocations in deformation
twins of calcite by means of X-ray topography has been carried
out by Sauvage & Authier (1965), Authier & Sauvage (1966) and
Sauvage (1968).

Twinning dislocations can interact with regular dislocations.
Example: a twinning dislocation (i.e. the step between neigh-
bouring interface planes) ending in an untwinned crystal. The
end point must be a ‘triple node’ of three dislocations, viz of the
twinning dislocation with Burgers vector bt, of a regular dislo-
cation in twin partner 1 with Burgers vector b1 and of a regular
dislocation in twin partner 2 with Burgers vector b2. The three
vectors obey Frank’s conservation law of Burgers vectors at
dislocation nodes:

bt þ b1 þ b2 ¼ 0:

This reaction of dislocations is of great importance for the
plastic deformation of crystals by twinning.

For more detailed information on twinning dislocations,
reference is made to Read (1953, p. 109), Chalmers (1959, pp. 125
and 158), Friedel (1964, p. 173), Weertman & Weertman (1964,
pp. 141–144), and the literature quoted therein.

In conclusion, it is pointed out that twinning dislocations may
also occur in non-merohedral growth and transformation twins,
but very little has been published on this topic so far. For
transformation twins, however, twinning dislocations (in contrast
to regular dislocations) as a rule are not physically meaningful
because of the usually strong pseudosymmetry (i.e. small values
of the shear angle 2") of these twins. Nevertheless, twinning
dislocations allow the formation of the tapering twin walls of
needle twins as described in Section 3.3.10.7.3.

3.3.10.9. Coherent and incoherent twin interfaces

At the start of Section 3.3.10, the terms compatible and
incompatible twin boundaries were introduced and clearly
defined. There exists another pair of terms, coherent and inco-
herent interfaces, which are predominantly used in bicrystallo-
graphy and metallurgy for the characterization of grain
boundaries, but less frequently in mineralogy and crystallography
for twin boundaries. These terms, however, are defined in
different and often rather diffuse ways, as the following examples
show.

(1) Cahn (1954, p. 390), in his extensive review on twinning,
defines coherence in metal twins as follows: ‘An interface parallel
to a twin (reflection) plane is called a coherent interface, while
any other interface is termed non-coherent’. The same definition
is given by Porter & Easterling (1992, p. 122), who consider twin
boundaries as ‘special high-angle boundaries’. This definition is
widely used, especially in metallurgy, as evidenced by the
following textbooks: Cottrell (1955, p. 212); Chalmers (1959, p.
125); Van Bueren (1961, pp. 251 and 450), Friedel (1964, p. 173);
Klassen-Neklyudova (1964, p. 156); Kelly & Groves (1970, p.
308).

(2) Christian (1965, p. 332) distinguishes three levels of
coherence of grain boundaries:

(a) Incoherent interfaces correspond to high-angle grain
boundaries without any ‘continuity conditions for lattice vectors
or lattice planes across the interface’.

(b) Semi-coherent interfaces are low-angle boundaries formed
by a regular network of dislocations. ‘Such an interface consists of
regions in which the two structures may be regarded as being in
forced elastic coherence, separated by regions of misfit’, i.e. there
is partial local register across the boundary.

(c) Fully coherent interfaces correspond to the joining of two
twin components along their rational or irrational composition
plane in such a way that the lattices match exactly at the interface.

Very similar definitions are also used by Barrett & Massalski
(1966, p. 493) and Sutton & Balluffi (1995, Glossary) for bicrystal
boundaries. The third term, ‘fully coherent’, corresponds to the
coherence definition of Cahn. It is noted that the terms ‘fully
coherent’, ‘semi-coherent’ and ‘incoherent’ are also applied to
the interfaces of grains of different phases (‘interphase inter-
faces’), as well as to boundaries of second-phase precipitates, by
Porter & Easterling (1992, Chapter 3.4).

(3) Putnis (1992, pp. 225 and 335) considers twin interfaces, as
well as boundaries between matrix and precipitates, in minerals
by their ‘degree of lattice matching’. He uses the term coherent
twin boundaries for ‘perfect lattice plane matching across the
interface, the strains being taken up by elastic distortions’ (i.e.
without the presence of dislocations). Dislocations along the twin
boundary lead to a ‘loss of coherence’. Interfaces containing
dislocations are called semi-coherent (p. 336, Fig. 11.4), which is
similar to the definition by Christian quoted above.

(4) Shektman (1993, p. 24) defines the term coherence only for
ferroelastics (especially YBaCu) with different systems of
lamellar twin domains: boundaries between (parallel) twin
lamellae are defined as coherent interfaces, whereas boundaries
between different lamellae systems are called incoherent.

The above definitions have one feature in common: coherent
twin boundaries are planar interfaces, which are either rational or
irrational, as stated explicitely by Christian (1965, p. 332).
Beyond this, the various definitions are rather vague. In parti-
cular, they do not distinguish between ferroelastic and non-
ferroelastic (strictly merohedral) twins and do not consider the
twin displacement vector discussed in Section 3.3.10.4.

As an attempt to fill this gap, the following elucidations of the
term ‘coherence’ are suggested here. These proposals are based
on the definitions summarized above, as well as on the concepts
of compatibility of interfaces (Sections 3.3.10.1 and 3.3.10.3) and
on the notion of twin displacement vector (Section 3.3.10.4).
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Fig. 3.3.10.15. Definition of the Burgers vector b of a twinning dislocation TD
(i.e. step of twin boundary TB). (a) Closed Burgers circuit (A ¼ A0)
encircling the twinning dislocation TD. (b) Analogous circuit in a reference
crystal without dislocation (after Friedel, 1964, p. 140). The Burgers vector b
is defined as the closure error A0�!A of the reference circuit.
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(i) For twin interfaces, only the terms coherent and incoherent
are used. In view of the fact that twin interfaces do not require
regular (perfect) dislocations (but may contain twinning dislo-
cations as described above in Section 3.3.10.8), the term ‘semi-
coherent’ is reserved for grain boundaries and heterophase
interfaces.

(ii) Twin boundaries are called coherent only if they are
(mechanically) compatible. This holds for both rational and
irrational twin boundaries, as suggested by Christian (1965, p.
332). Both cases may be distinguished by using qualifying
adjectives such as ‘rationally coherent’ and ‘irrationally
coherent’. Note that irrational (compatible) twin boundaries
are usually less perfect and of higher energy than rational
ones.

(iii) For strict merohedral (non-ferroelastic) twins (lattice
index ½j� ¼ 1) any twin boundary, even a curved one, is compa-
tible and, hence, is designated here as coherent, even if the
contact plane does not coincide with the twin mirror plane.

(iv) For non-merohedral (ferroelastic) twins, a pair of (rational
or irrational) perpendicular compatible interfaces occurs
(Section 3.3.10.2.1). The same holds for merohedral twins of
lattice index ½j� > 1 (Section 3.3.10.2.4). All these compatible
boundaries are considered here as coherent.

(v) In lattice and structural terms, a twin boundary is coherent
if it exhibits a well defined matching of the two lattices along the
entire boundary, i.e. continuity with respect to their lattice vectors
and lattice planes. We want to stress that we consider the
coherence of a twin boundary not as being destroyed by the
presence of a nonzero twin displacement or fault vector as long as
there is an optimal low-energy fit of the two partner structures.
The twin displacement (fault) vector represents a ‘phase shift’
between the two structures with the same two-dimensional
periodicity along their contact plane and thus defines the conti-
nuity relation across the boundary. This statement agrees with the
general opinion that stacking faults, antiphase boundaries and
many merohedral twin boundaries, all possessing nonzero fault
vectors, are coherent. Well known examples are stacking faults in
f.c.c and h.c.p metals and Brazil twin boundaries in quartz.

It is apparent from these discussions of coherent twin interfaces
that several features have to be taken into account, some readily
available by experiments and observations, whereas others
require geometric models (lattice matching) or even physical
models (structure matching), including determination of twin
displacement vectors t.

The definitions of coherence, as treated here, often do not
satisfactorily agree with reality. Two examples are given:

(a) Japanese twins of quartz with twin mirror plane ð11�222Þ or
twofold twin axis normal to ð11�222Þ. According to the definitions
given above, the observed ð11�222Þ contact plane is coherent.
Nevertheless, these ð11�222Þ boundaries are always strongly
disturbed and accompanied by extended lattice distortions. Thus,
in reality they must be considered as not coherent.

(b) Sodium lithium sulfate, NaLiSO4, with polar point group
3m and a hexagonal lattice forms merohedral growth twins with
twin mirror plane (0001) normal to the polar axis. The compo-
sition plane coincides with the twin plane and has head-to-head
or tail-to-tail character. According to definition (iii) above, any
twin boundary of this merohedral twin is coherent. The observed
(0001) contact plane, however, despite coincidence with the twin
mirror plane, is always strongly disturbed and cannot be
considered as coherent. In this case, the observed incoherence is
obviously due to the head-to-head orientation of the boundary,
which is ‘electrically forbidden’.

These examples demonstrate that the above formal definitions
of coherence, based on geometrical viewpoints alone, are not
always satisfactory and require consideration of individual cases.

With these discussions of rather subtle features of twin inter-
faces, this chapter on twinning is concluded. It was our aim to

present this rather ancient topic in a way that progresses from
classical concepts to modern considerations, from three dimen-
sions to two and from macroscopic geometrical arguments to
microscopic atomistic reasoning. Macroscopic derivations of
orientation and contact relations of the twin partners (twin laws,
as well as twin morphologies and twin genesis) were followed by
lattice considerations and structural implications of twinning.
Finally, the physical background of twinning was explored by
means of the analysis of twin interfaces, their structural and
energetic features. It is this latter aspect which in the future is
most likely to bring the greatest progress toward the two main
goals, an atomistic understanding of the phenomenon ‘twinning’
and the ability to predict correctly its occurrence and non-
occurrence.

All considerations in this chapter refer to analysis of twinning
in direct space. The complementary aspect, the effect of twinning
in reciprocal space, lies beyond the scope of the present treatment
and, hence, had to be omitted. This concerns in particular the
recognition and characterization of twinning in diffraction
experiments, especially by X-rays, as well as the consideration of
the problems that twinning, especially merohedral twinning, may
pose in single-crystal structure determination (cf. Buerger,
1960a). Several powerful computer programs for the solution of
these problems exist. For a case study, see Herbst-Irmer &
Sheldrick (1998).

3.3.11. Glossary

(hkl) crystal face, lattice plane, net plane (Miller
indices)

{hkl} crystal form, set of symmetrically equivalent
lattice (net) planes

[uvw] zone axis, crystal edge, lattice direction,
lattice row (direction indices)

huvwi set of symmetrically equivalent lattice
directions (rows)

G symmetry group of the (real or hypothetical)
‘parent structure’ or high-symmetry
modification or ‘prototype phase’ of a
crystal; group in general

H eigensymmetry group of an (untwinned)
crystal; symmetry group of the deformed
(‘daughter’) phase of a crystal; subgroup

H1, H2, . . ., Hj oriented eigensymmetries of domain states
1, 2, . . ., j

H
�
1;2, H

� intersection symmetry group of the pair of
oriented eigensymmetries H1 and H2,
reduced eigensymmetry of a domain

K composite symmetry group of a twinned
crystal (domain pair); twin symmetry

K
�
1;2, K

� reduced composite symmetry of the domain
pair (1, 2)

KðnÞ extended composite symmetry of a twinned
crystal with a pseudo n-fold twin axis

k, k1, k2, . . ., ki twin operations (k1 = identity)

20, m0, �110, 40ð2Þ,
60ð3Þ, �330ð3Þ,
�660ð3Þ

twin operations of order two in colour-
changing (black–white) symmetry notation

jGj, jHj, jKj order of group G, H, K
[i] index of H in G, or of H in K
[j], � index of coincidence-site lattice (twin lattice,

sublattice) with respect to crystal lattice
! twin obliquity
bt Burgers vector of twinning dislocations
f fault vector of a merohedral twin boundary
t twin displacement vector
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GFH Aizu (1970a) symbol of a ferroic phase
transition (ferroic species); F = ferroic

W, W 0 designation of non-merohedral ferroelastic
twin boundaries (according to Sapriel,
1975)

Fhkl structure factor of reflection hkl
ghkl diffraction vector (reciprocal-lattice vector)

of reflection hkl
’hkl phase angle of structure factor Fhkl

�hkl , �hkl difference of phase angles (‘phase jump’)
across twin boundary

� charge density of a ferroelectric twin
boundary

P spontaneous polarization

We are indebted to Elke Haque (Bonn), Zdenek Janovec
(Prague) and Stefan Klumpp (Bonn) for preparing the figures.
We are grateful to Vaclav Janovec (Prague) for fruitful discus-
sions and to our editor André Authier for his patience and help in
preparing the manuscript.
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Abh. Königl. Akad. Wiss. Berlin, 23, 57–79.

Roth, G., Ewert, D., Heger, G., Hervieu, M., Michel, C., Raveau, B.,
D’Yvoire, F. & Revcolevschi, A. (1987). Phase transformation
and microtwinning in crystals of the high-TC superconductor
YBa2Cu3O8�x, x � 1:0. Z. Physik B, 69, 21–27.

Salje, E. K. H. (1993). Phase transformations in ferroelectric and co-
elastic crystals. Cambridge University Press.

Salje, E. K. H., Buckley, A., Van Tendeloo, G., Ishibashi, Y. & Nord, G. L.
(1998). Needle twins and right-angled twins in minerals: comparison
between experiment and theory. Am. Mineral. 83, 811–822.

Salje, E. K. H. & Ishibashi, Y. (1996).Mesoscopic structures in ferroelastic
crystals: needle twins and right-angled domains. J. Phys. Condens.
Matter, 8, 1–19.

Salje, E. K. H., Kuscholke, B. &Wruck, B. (1985).Domain wall formation
in minerals: I. Theory of twin boundary shapes in Na-feldspar. Phys.
Chem. Miner. 12, 132–140.

Santoro, A. (1974). Characterization of twinning. Acta Cryst. A30, 224–
231.

Sapriel, J. (1975). Domain-wall orientations in ferroelastics. Phys. Rev. B,
12, 5128–5140.

Sauvage, M. (1968). Observations de sources et de réactions entre
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3.4. Domain structures

By V. Janovec and J. Přı́vratská

3.4.1. Introduction

3.4.1.1. Basic concepts

It was demonstrated in Section 3.1.2 that a characteristic
feature of structural phase transitions connected with a lowering
of crystal symmetry is an anomalous behaviour near the transi-
tion, namely unusually large values of certain physical properties
that vary strongly with temperature. In this chapter, we shall deal
with another fundamental feature of structural phase transitions:
the formation of a non-homogeneous, textured low-symmetry
phase called a domain structure.

When a crystal homogeneous in the parent (prototypic) phase
undergoes a phase transition into a ferroic phase with lower
point-group symmetry, then this ferroic phase is almost always
formed as a non-homogeneous structure consisting of homo-
geneous regions called domains and contact regions between
domains called domain walls. All domains have the same or the
enantiomorphous crystal structure of the ferroic phase, but this
structure has in different domains a different orientation, and
sometimes also a different position in space. When a domain
structure is observed by a measuring instrument, different
domains can exhibit different tensor properties, different
diffraction patterns and can differ in other physical properties.
The domain structure can be visualized optically (see Fig. 3.4.1.1)
or by other experimental techniques. Powerful high-resolution
electron microscopy (HREM) techniques have made it possible
to visualize atomic arrangements in domain structures (see Fig.
3.4.1.2). The appearance of a domain structure, detected by any
reliable technique, provides the simplest unambiguous experi-
mental proof of a structural phase transition.

Under the influence of external fields (mechanical stress,
electric or magnetic fields, or combinations thereof), the domain
structure can change; usually some domains grow while others

decrease in size or eventually vanish. This process is called
domain switching. After removing or decreasing the field a
domain structure might not change considerably, i.e. the form of a
domain pattern depends upon the field history: the domain
structure exhibits hysteresis (see Fig. 3.4.1.3). In large enough
fields, switching results in a reduction of the number of domains.
Such a procedure is called detwinning. In rare cases, the crystal
may consist of one domain only. Then we speak of a single-
domain crystal.

There are two basic types of domain structures:
(i) Domain structures with one or several systems of parallel

plane domain walls that can be observed in an optical or electron
microscope. Two systems of perpendicular domain walls are often
visible (see Fig. 3.4.1.4). In polarized light domains exhibit
different colours (see Fig. 3.4.1.1) and in diffraction experiments
splitting of reflections can be observed (see Fig. 3.4.3.9). Domains
can be switched by external mechanical stress. These features are
typical for a ferroelastic domain structure in which neighbouring
domains differ in mechanical strain (deformation). Ferroelastic
domain structures can appear only in ferroelastic phases, i.e. as a
result of a phase transition characterized by a spontaneous shear
distortion of the crystal.

(ii) Domain structures that are not visible using a polarized-
light microscope and in whose diffraction patterns no splitting of
reflections is observed. Special methods [e.g. etching, deposition
of liquid crystals (see Fig. 3.4.1.5), electron or atomic force
microscopy, or higher-rank optical effects (see Fig. 3.4.3.3)] are
needed to visualize domains. Domains have the same strain and
cannot usually be switched by an external mechanical stress. Such
domain structures are called non-ferroelastic domain structures.
They appear in all non-ferroelastic phases resulting from
symmetry lowering that preserves the crystal family, and in
partially ferroelastic phases.

Another important kind of domain structure is a ferroelectric
domain structure, in which domains differ in the direction of the
spontaneous polarization. Such a domain structure is formed at
ferroelectric phase transitions that are characterized by the
appearance of a new polar direction in the ferroic phase. Ferro-
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Fig. 3.4.1.1. Domain structure of tetragonal barium titanate (BaTiO3). A thin
section of barium titanate ceramic observed at room temperature in a
polarized-light microscope (transmitted light, crossed polarizers). Courtesy
of U. Täffner, Max-Planck-Institut für Metallforschung, Stuttgart. Different
colours correspond to different ferroelastic domain states, connected areas of
the same colour are ferroelastic domains and sharp boundaries between
these areas are domain walls. Areas of continuously changing colour
correspond to gradually changing thickness of wedge-shaped domains. An
average distance between parallel ferroelastic domain walls is of the order of
1–10 mm.

Fig. 3.4.1.2. Domain structure of a BaGa2O4 crystal seen by high-resolution
transmission electron microscopy. Parallel rows are atomic layers. Different
directions correspond to different ferroelastic domain states of domains,
connected areas with parallel layers are different ferroelastic domains and
boundaries between these areas are ferroelastic domain walls. Courtesy of H.
Lemmens, EMAT, University of Antwerp.
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electric domains can usually be switched by external electric
fields. Two ferroelectric domains with different directions of
spontaneous polarization can have different spontaneous strain
[e.g. in dihydrogen phosphate (KDP) crystals, two ferroelectric
domains with opposite directions of the spontaneous polarization
have different spontaneous shear strain], or two ferroelectric
domains with antiparallel spontaneous polarization can possess
the same strain [e.g. in triglycine sulfate (TGS) crystals].

The physical properties of polydomain crystals are significantly
influenced by their domain structure. The values of important
material property tensor components, e.g. permittivity, piezo-
electric and elastic constants, may be enhanced or diminished by
the presence of a domain structure. Owing to switching and

detwinning phenomena, polydomain materials exhibit hysteresis
of material properties. These features have important practical
implications, e.g. the production of anisotropic ceramic materials
or ferroelectric memories.

The domain structure resulting from a structural phase tran-
sition belongs to a special type of twinning referred to as trans-
formation twinning (see Section 3.3.7.2). Despite this, the current
terminology used in domain-structure studies is different. The
main terms were coined during the first investigations of ferro-
electric materials, where striking similarities with the behaviour
of ferromagnetic materials led researchers to introduce terms
analogous to those used in studies of ferromagnetic domain
structures that had been examined well at that time.

Bicrystallography (see Section 3.2.2) provides another possible
frame for discussing domain structures. Bicrystallography and
domain structure analysis have developed independently and
almost simultaneously but different language has again precluded
deeper confrontation. Nevertheless, there are common features
in the methodology of both approaches, in particular, the prin-
ciple of symmetry compensation (see Section 3.2.2), which plays a
fundamental role in both theories.

In Chapter 3.1, it is shown that the anomalous behaviour near
phase transitions can be explained in the framework of the
Landau theory. In this theory, the formation of the domain
structures follows from the existence of several equivalent solu-
tions for the order parameter. This result is a direct consequence
of a symmetry reduction at a ferroic phase transition. It is this
dissymmetrization which is the genuine origin of the domain
structure formation and which determines the basic static
features of all domain structures.

3.4.1.2. Scope of this chapter

This chapter is devoted to the crystallographic aspects of static
domain structures, especially to the symmetry analysis of these
structures. The main aim is to explain basic concepts, derive
relations that govern the formation of domain structures and
provide tables with useful ready-to-use data on domain structures
of ferroic phases. The exposition uses algebraic tools that are
explained in Section 3.2.3, but the important points are illustrated
with simple examples comprehensible even without mathema-
tical details. The synoptic tables in Sections 3.4.2 and 3.4.3 present
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Fig. 3.4.1.3. Elastic hysteresis of ferroelastic lead phosphate Pb3(PO4Þ2 (Salje,
1990). Courtesy of E. K. H. Salje, University of Cambridge. The dependence
of strain on applied stress has the form of a loop. The states at the extreme
left and right correspond to two ferroelastic domain states, steep parts of the
loop represent switching of one state into the other by applied stress. The
strain at zero stress corresponds to the last single-domain state formed in a
field larger than the coercive stress defined by the stress at zero strain (the
intersection of the loop with the axis of the applied stress). Similar dielectric
hysteresis loops of polarization versus applied electric field are observed in
ferroelectric phases (see e.g. Jona & Shirane, 1962).

Fig. 3.4.1.4. Transmission electron microscopy image of the ferroelastic
domain structure in a YBa2Cu3O7�y crystal (Rosová, 1999). Courtesy of A.
Rosová, Institute of Electrical Engineering, SAS, Bratislava. There are two
systems (‘complexes’), each of which is formed by almost parallel ferroelastic
domain walls with needle-like tips. The domain walls in one complex are
nearly perpendicular to the domain walls in the other complex.

Fig. 3.4.1.5. Non-ferroelastic ferroelectric domains in triglycine sulfate (TGS)
revealed by a liquid-crystal method. A thin layer of a nematic liquid crystal
deposited on a crystal surface perpendicular to the spontaneous polarization
is observed in a polarized-light microscope. Black and white areas
correspond to ferroelectric domains with antiparallel spontaneous polariza-
tion. The typical size of the domains is of order of 1–10mm. Courtesy of M.
Połomska, Institute of Molecular Physics, PAN, Poznań. Although one
preferential direction of domain walls prevails, the rounded shapes of the
domains indicate that all orientations of non-ferroelastic walls are possible.
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the main results of the analysis for all possible ferroic domain
structures. More detailed information on certain points can be
found in the software GI?KoBo-1.

All these results are definite – their validity does not depend
on any particular model or approximation – and form thus a firm
basis for further more detailed quantitative treatments. ‘For the
most part, the only exact statements which can be made about a
solid state system are those which arise as a direct consequence of
symmetry alone.’ (Knox & Gold, 1967.)

The exposition starts with domain states, continues with pairs
of domain states and domain distinction, and terminates with
domain twins and walls. This is also the sequence of steps in
domain-structure analysis, which proceeds from the simplest to
more complicated objects.

In Section 3.4.2, we explain the concept of domain states (also
called variants or orientational states), define different types of
domain states (principal, ferroelastic, ferroelectric, basic), find
simple formulae for their number, and disclose their hierarchy
and relation with symmetry lowering and with order parameters
of the transition. Particular results for all possible ferroic phase
transitions can be found in synoptic Table 3.4.2.7, which lists
all possible crystallographically non-equivalent point-group
symmetry descents that may appear at a ferroic phase transition.
For each descent, all independent twinning groups (character-
izing the relation between two domain states) are given together
with the number of principal, ferroelastic and ferroelectric
domain states and other data needed in further analysis.

Section 3.4.3 deals with pairs of domain states and with the
relationship between two domain states in a pair. This relation-
ship, in mineralogy called a ‘twin law’, determines the distinction
between domain states, specifies switching processes between two
domain states and forms a starting point for discussing domain
walls and twins. We show different ways of expressing the relation
between two domain states of a domain pair, derive a classifica-
tion of domain pairs, find non-equivalent domain pairs and
determine which tensor properties are different and which are
the same in two domain states of a domain pair.

The presentation of non-equivalent domain pairs is divided
into two parts. Synoptic Table 3.4.3.4 lists all representative non-
equivalent non-ferroelastic domain pairs, and for each pair gives
the twinning groups, and the number of tensor components that
are different and that are the same in two domain states. These
numbers are given for all important property tensors up to rank
four. We also show how these data can be used to determine
switching forces between two non-ferroelastic domain states.

Then we explain specific features of ferroelastic domain pairs:
compatible (permissible) domain walls and disorientation of
domain states in ferroelastic domain twins. A list of all non-
equivalent ferroelastic domain pairs is presented in two tables.
Synoptic Table 3.4.3.6 contains all non-equivalent ferroelastic
domain pairs with compatible (coherent) domain walls. This table
gives the orientation of compatible walls and their symmetry
properties. Table 3.4.3.7 lists all non-equivalent ferroelastic
domain pairs with no compatible ferroelastic domain walls.

Column K1j in Table 3.4.2.7 specifies all representative non-
equivalent domain pairs that can appear in each particular phase
transition; in combination with Tables 3.4.3.4 and 3.4.3.6, it allows
one to determine the main features of any ferroic domain
structure.

Section 3.4.4 is devoted to domain twins and domain walls. We
demonstrate that the symmetry of domain twins and domain
walls is described by layer groups, give a classification of domain
twins and walls based on their symmetry, and present possible
layer groups of non-ferroelastic and ferroelastic domain twins
and walls. Then we discuss the properties of finite-thickness
domain walls. In an example, we illustrate the symmetry analysis
of microscopic domain walls and present conclusions that can be
drawn from this analysis about the microscopic structure of
domain walls.

The exposition is given in the continuum description with
crystallographic point groups and property tensors. In this
approach, all possible cases are often treatable and where
possible are covered in synoptic tables or – in a more detailed
form – in the software GI?KoBo-1. Although the group-theore-
tical tools are almost readily transferable to the microscopic
description (using the space groups and atomic positions), the
treatment of an inexhaustible variety of microscopic situations
can only be illustrated by particular examples.

Our attempt to work with well defined notions calls for
introducing several new, and generalizing some accepted,
concepts. Also an extended notation for the symmetry operations
and groups has turned out to be indispensable. Since there is no
generally accepted terminology on domain structures yet, we
often have to choose a term from several existing more-or-less
equivalent variants.

The specialized scope of this chapter does not cover several
important aspects of domain structures. More information can be
found in the following references. There are only two mono-
graphs on domain structures (both in Russian): Fesenko et al.
(1990) and Sidorkin (2002). The main concepts of domain
structures of ferroic materials are explained in the book by
Wadhawan (2000) and in a review by Schranz (1995). Ferroelastic
domain structures are reviewed in Boulesteix (1984) and
Wadhawan (1991), and are treated in detail by Salje (1990, 1991,
2000a,b). Different aspects of ferroelectric domain structures are
covered in books or reviews on ferroelectric crystals: Känzig
(1957), Jona & Shirane (1962), Fatuzzo & Merz (1967), Mitsui et
al. (1976), Lines & Glass (1977), Smolenskii et al. (1984),
Zheludev (1988) and Strukov & Levanyuk (1998). Applications
of ferroelectrics are described in the books by Xu (1991) and
Uchino (2000). Principles and technical aspects of ferroelectric
memories are reviewed by Scott (1998, 2000).

3.4.2. Domain states

3.4.2.1. Principal and basic domain states

As for all crystalline materials, domain structures can be
approached in two ways: In the microscopic description, a crystal
is treated as a regular arrangement of atoms. Domains differ in
tiny differences of atomic positions which can be determined only
indirectly, e.g. by diffraction techniques. In what follows, we shall
pay main attention to the continuum description, in which a
crystal is treated as an anisotropic continuum. Then the crystal
properties are described by property tensors (see Section 1.1.1)
and the crystal symmetry is expressed by crystallographic point
groups. In this approach, domains exhibit different tensor prop-
erties that enable one to visualize domains by optical or other
methods.

The domain structure observed in a microscope appears to be a
patchwork of homogeneous regions – domains – that have
various colours and shapes (see Fig. 3.4.1.1). Indeed, the usual
description considers a domain structure as a collection of
domains and contact regions of domains called domain walls.
Strictly speaking, by a domain Di one understands a connected
part of the crystal, called the domain region, which is filled with a
homogeneous low-symmetry crystal structure. Domain walls can
be associated with the boundaries of domain regions. The interior
homogeneous bulk structure within a domain region will be
called a domain state. Equivalent terms are variant or structural
variant (Van Tendeloo & Amelinckx, 1974). We shall use
different adjectives to specify domain states. In the microscopic
description, domain states associated with the primary order
parameter will be referred to as primary (microscopic, basic)
domain states. In the macroscopic description, the primary
domain states will be called principal domain states, which
correspond to Aizu’s orientation states. (An exact definition of
principal domain states is given below.)
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Further useful division of domain states is possible (though not
generally accepted): Domain states that are specified by a
constant value of the spontaneous strain are called ferroelastic
domain states; similarly, ferroelectric domain states exhibit
constant spontaneous polarization etc. Domain states that differ
in some tensor properties are called ferroic or tensorial domain
states etc. If no specification is given, the statements will apply to
any of these domain states.

A domain Di is specified by a domain state Sj and by domain
region Bk: Di ¼ DiðSj;BkÞ. Different domains may possess the
same domain state but always differ in the domain region that
specifies their shape and position in space.

The term ‘domain’ has also often been used for a domain state.
Clear distinction of these two notions is essential in further
considerations and is illustrated in Fig. 3.4.2.1. A ferroelectric
domain structure (Fig. 3.4.2.1a) consists of six ferroelectric
domainsD1,D2, . . .,D6 but contains only two domain states S1, S2
characterized by opposite directions of the spontaneous polar-
ization depicted in Fig. 3.4.2.1(d). Neighbouring domains have
different domain states but non-neighbouring domains may
possess the same domain state. Thus domains with odd serial
number have the domain state S1 (spontaneous polarization
‘down’), whereas domains with even number have domain state
S2 (spontaneous polarization ‘up’).

A great diversity of observed domain structures are connected
mainly with various dimensions and shapes of domain regions,
whose shapes depend sensitively on many factors (kinetics of the
phase transition, local stresses, defects etc.). It is, therefore,
usually very difficult to interpret in detail a particular observed
domain pattern. Domain states of domains are, on the other
hand, governed by simple laws, as we shall now demonstrate.

We shall consider a ferroic phase transition with a symmetry
lowering from a parent (prototypic, high-symmetry) phase with
symmetry described by a point group G to a ferroic phase with
the point-group symmetry F1, which is a subgroup of G. We shall
denote this dissymmetrization by a group–subgroup symbol
G � F1 (orG + F1 in Section 3.1.3) and call it a symmetry descent
or dissymmetrization. Aizu (1970a) calls these symmetry descents
species and uses the letter F instead of the symbol �.

As an illustrative example, we choose a phase transition with
parent symmetry G ¼ 4z=mzmxmxy and ferroic symmetry
F1 ¼ 2xmymz (see Fig. 3.4.2.2). Strontium bismuth tantalate
(SBT) crystals, for instance, exhibit a phase transition with this
symmetry descent (Chen et al., 2000). Symmetry elements in the
symbols of G and F1 are supplied with subscripts specifying the
orientation of the symmetry elements with respect to the refer-
ence coordinate system. The necessity of this extended notation
is exemplified by the fact that the group G ¼ 4z=mzmxmxy has six
subgroups with the same ‘non-oriented’ symbol mm2: mxmy2z,
2xmymz, mx2ymz, mx�yymxy2z, 2x�yymxymz, mx�yy2xymz. Lower indices
thus specify these subgroups unequivocally and the example
illustrates an important rule of domain-structure analysis: All
symmetry operations, groups and tensor components must be
related to a common reference coordinate system and their
orientation in space must be clearly specified.

The physical properties of crystals in the continuum descrip-
tion are expressed by property tensors. As explained in Section
1.1.4, the crystal symmetry reduces the number of independent
components of these tensors. Consequently, for each property
tensor the number of independent components in the low-
symmetry ferroic phase is the same or higher than in the high-
symmetry parent phase. Those tensor components or their linear
combinations that are zero in the high-symmetry phase and
nonzero in the low-symmetry phase are called morphic tensor
components or tensor parameters and the quantities that appear
only in the low-symmetry phase are called spontaneous quantities
(see Section 3.1.3.2). The morphic tensor components and
spontaneous quantities thus reveal the difference between the
high- and low-symmetry phases. In our example, the symmetry
F1 ¼ 2xmymz allows a nonzero spontaneous polarization P

ð1Þ
0

¼ ðP; 0; 0Þ, which must be zero in the high-symmetry phase with
G ¼ 4z=mzmxmxy.

We shall now demonstrate in our example that the symmetry
lowering at the phase transition leads to the existence of several
equivalent variants (domain states) of the low-symmetry phase.
In Fig. 3.4.2.2, the parent high-symmetry phase is represented in
the middle by a dashed square that is a projection of a square
prism with symmetry 4z=mzmxmxy. A possible variant of the low-
symmetry phase can be represented by an oblong prism with a
vector representing the spontaneous polarization. In Fig. 3.4.2.2,
the projection of this oblong prism is drawn as a rectangle which
is shifted out of the centre for better recognition. We denote by S1
a homogeneous low-symmetry phase with spontaneous polar-
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Fig. 3.4.2.1. Hierarchy in domain-structure analysis. (a) Domain structure
consisting of domains D1;D2; . . . ;D6 and domain walls W12 and W21; (b)
domain twin and reversed twin (with reversed order of domain states); (c)
domain pair consisting of two domain states S1 and S2; (d) domain states S1
and S2.

Fig. 3.4.2.2. Exploded view of single-domain states S1, S2, S3 and S4 (solid
rectangles with arrows of spontaneous polarization) formed at a phase
transition from a parent phase with symmetry G ¼ 4z=mzmxmxy to a ferroic
phase with symmetry F1 ¼ 2xmymz. The parent phase is represented by a
dashed square in the centre with the symmetry elements of the parent group
G ¼ 4z=mzmxmxy shown.
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ization P
ð1Þ
0 ¼ ðP; 0; 0Þ and with symmetry F1 = 2xmymz. Let us,

mentally, increase the temperature to above the transition
temperature and then apply to the high-symmetry phase an
operation 2z, which is a symmetry operation of this high-
symmetry phase but not of the low-symmetry phase. Then
decrease the temperature to below the transition temperature.
The appearance of another variant of the low-symmetry phase S2
with spontaneous polarization P

ð2Þ
0 ¼ ð�P; 0; 0Þ obviously has the

same probability of appearing as had the variant S1. Thus the two
variants of the low-symmetry phase S1 and S2 can appear with the
same probability if they are related by a symmetry operation
suppressed (lost) at the transition, i.e. an operation that was a
symmetry operation of the high-symmetry phase but is not a
symmetry operation of the low-symmetry phase S1. In the same
way, the lost symmetry operations 4z and 4

3
z generate from S1 two

other variants, S3 and S4, with spontaneous polarizations ð0;P; 0Þ
and ð0;�P; 0Þ, respectively. Variants of the low-symmetry phase
that are related by an operation of the high-symmetry group G
are called crystallographically equivalent (in G) variants. Thus we
conclude that crystallographically equivalent (in G) variants of the
low-symmetry phase have the same chance of appearing.

We shall now make similar considerations for a general ferroic
phase transition with a symmetry descent G � F1. By the state S
of a crystal we shall understand, in the continuum description, the
set of all its properties expressed by property (matter) tensors in
the reference Cartesian crystallophysical coordinate system of
the parent phase (see Example 3.2.3.9 in Section 3.2.3.3.1). A
state defined in this way may change not only with temperature
and external fields but also with the orientation of the crystal in
space.

We denote by S1 a state of a homogeneous ferroic phase. If we
apply to S1 a symmetry operation gi of the group G, then the
ferroic phase in a new orientation will have the state Sj, which
may be identical with S1 or different. Using the concept of group
action (explained in detail in Section 3.2.3.3.1) we express this
operation by a simple relation:

gjS1 ¼ Sj; gj 2 G: ð3:4:2:1Þ

Let us first turn our attention to operations fj 2 G that do not
change the state S1:

fjS1 ¼ Sj; fj 2 G: ð3:4:2:2Þ

The set of all operations ofG that leave S1 invariant form a group
called a stabilizer (or isotropy group) of a state S1 in the group G.
This stabilizer, denoted by IGðS1Þ, can be expressed explicitly in
the following way:

IGðS1Þ � fg 2 GjgS1 ¼ S1g; ð3:4:2:3Þ

where the right-hand part of the equation should be read as ‘a set
of all operations ofG that do not change the state S1’ (see Section
3.2.3.3.2).

Here we have to explain the difference between the concept of
a stabilizer of an object and the symmetry of that object. By the
symmetry group F of an object one understands the set of all
operations (isometries) that leave this object S invariant. The
symmetry group F of an object is considered to be an inherent
property that does not depend on the orientation and position of
the object in space. (The term eigensymmetry is used in Chapter
3.3 for symmetry groups defined in this way.) In this case, the
symmetry elements of F are ‘attached’ to the object.

A stabilizer describes the symmetry properties of an object in
another way, in which the object and the group of isometries are
decoupled. One is given a group G, the symmetry elements of
which have a defined orientation in a fixed reference system. The
object can have any orientation in this reference system. Those
operations of G that map the object in a given orientation onto
itself form the stabilizer IGðS1Þ of Si in the group G. In this case,

the stabilizer depends on the orientation of the object in space
and is expressed by an ‘oriented’ group symbol F1 with subscripts
defining the orientation of the symmetry elements of F1. Only for
certain ‘prominent’ orientations will the stabilizer acquire a
symmetry group of the same crystal class (crystallographic point
group) as the eigensymmetry of the object.

We shall define a single-domain orientation as a prominent
orientation of the crystal in which the stabilizer IGðS1Þ of its state
S1 is equal to the symmetry group F1 which is, after removing
subscripts specifying the orientation, identical with the eigen-
symmetry of the ferroic phase:

IGðS1Þ ¼ F1: ð3:4:2:4Þ

This equation thus declares that the crystal in the state S1 has a
prominent single-domain orientation.

The concept of the stabilizer allows us to identify the ‘eigen-
symmetry’ of a domain state (or an object in general) Si with the
crystallographic class (non-oriented point group) of the stabilizer
of this state in the group of all rotations O(3), IOð3ÞðSiÞ.

Since we shall further deal mainly with states of the ferroic
phase in single-domain orientations, we shall use the term ‘state’
for a ‘state of the crystal in a single-domain orientation’, unless
mentioned otherwise. Then the stabilizer IGðS1Þ will often be
replaced by the group F1, although all statements have been
derived and hold for stabilizers.

The difference between symmetry groups of a crystal and
stabilizers will become more obvious in the treatment of
secondary domain states in Section 3.4.2.2 and in discussing
disoriented ferroelastic domain states (see Section 3.4.3.6.3).

As we have seen in our illustrative example, the suppressed
operations generate from the first state S1 other states. Let gj be
such a suppressed operation, i.e. gj 2 G but gj 62 F1. Since all
operations that retain S1 are collected in F1, the operation gj must
transform S1 into another state Sj,

gjS1 ¼ Sj 6¼ S1; gj 2 G; gj 62 F1; ð3:4:2:5Þ

and we say that the state Sj is crystallographically equivalent (in

G) with the state S1, Sj �
G
S1.

We define principal domain states as crystallographically
equivalent (in G) variants of the low-symmetry phase in single-
domain orientations that can appear with the same probability in
the ferroic phase. They represent possible macroscopic bulk
structures of (1) ferroic single-domain crystals, (2) ferroic
domains in non-ferroelastic domain structures (see Section
3.4.3.5), or (3) ferroic domains in any ferroic domain structure, if
all spontaneous strains are suppressed [this is the so-called parent
clamping approximation (PCA), see Section 3.4.2.5]. In what
follows, any statement formulated for principal domain states or
for single-domain states applies to any of these three situations.
Principal domain states are identical with orientation states (Aizu,
1969) or orientation variants (Van Tendeloo & Amelinckx, 1974).
The adjective ‘principal’ distinguishes these domain states from
primary (microscopic, basic – see Section 3.4.2.5) domain states
and secondary domain states, defined in Section 3.4.2.2, and
implies that any two of these domain states differ in principal
tensor parameters (these are linear combinations of morphic
tensor components that transform as the primary order para-
meter of an equitranslational phase transition with a point-group
symmetry descent G � F1, see Sections 3.1.3.2 and 3.4.2.3). A
simple criterion for a principal domain state S1 is that its stabilizer
in G is equal to the symmetry F1 of the ferroic phase [see
equation (3.4.2.4)].

When one applies to a principal domain state S1 all operations
of the group G, one gets all principal domain states that are
crystallographically equivalent with S1. The set of all these states
is denoted GS1 and is called an G-orbit of S1 (see also Section
3.2.3.3.3),
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GS1 ¼ fS1; S2; . . . ; Sng: ð3:4:2:6Þ

In our example, the G-orbit is 4z=mzmxmxyS1 ¼ fS1; S2; S3; S4g.
Note that any operation g from the parent group G leaves the

orbit GS1 invariant since its action results only in a permutation
of all principal domain states. This change does not alter the
orbit, since the orbit is a set in which the sequence (order) of
objects is irrelevant. Therefore, the orbit GS1 is invariant under
the action of the parent group G, GGS1 ¼ GS1.

A ferroic phase transition is thus a paradigmatic example of the
law of symmetry compensation (see Section 3.2.2): The dissym-
metrization of a high-symmetry parent phase into a low-
symmetry ferroic phase produces variants of the low-symmetry
ferroic phase (single-domain states). Any two single-domain
states are related by some suppressed operations of the parent
symmetry that are missing in the ferroic symmetry and the set of
all single-domain states (G-orbit of domain states) recovers the
symmetry of the parent phase. If the domain structure contains
all domain states with equal partial volumes then the average
symmetry of this polydomain structure is, in the first approx-
imation, identical to the symmetry of the parent phase.

Now we find a simple formula for the number n of principal
domain states in the orbit GS1 and a recipe for an efficient
generation of all principal domain states in this orbit.

The fact that all operations of the group IGðS1Þ ¼ F1 leave S1
invariant can be expressed in an abbreviated form in the
following way [see equation (3.2.3.70)]:

F1S1 ¼ S1: ð3:4:2:7Þ

We shall use this relation to derive all operations that transform
S1 into Sj ¼ gjS1:

gjS1 ¼ gjðF1S1Þ ¼ ðgjF1ÞS1 ¼ Sj; gj 2 G: ð3:4:2:8Þ

The second part of equation (3.4.2.8) shows that all lost opera-
tions that transform S1 into Sj are contained in the left coset gjF1

(for left cosets see Section 3.2.3.2.3).
It is shown in group theory that two left cosets have no

operation in common. Therefore, another left coset gkF1 gener-
ates another principal domain state Sk that is different from
principal domain states S1 and Sj. Equation (3.4.2.8) defines,
therefore, a one-to-one relation between principal domain states
of the orbit GS1 and left cosets of F1 [see equation (3.2.3.69)],

Sj $ gjF1; F1 ¼ IGðS1Þ; j ¼ 1; 2; . . . ; n: ð3:4:2:9Þ

From this relation follow two conclusions:
(1) The number n of principal domain states equals the number

of left cosets of F1. All different left cosets of F1 constitute the
decomposition of the group G into left cosets of F1 [see equation
(3.2.3.19)],

G ¼ g1F1 [ g2F1 [ . . . [ gjF1 [ . . . [ gnF1; ð3:4:2:10Þ

where the symbol [ is a union of sets and the number n of left
cosets is called the index of G in F1 and is denoted by the symbol
½G : F1�. Usually, one chooses for g1 the identity operation e; then
the first left coset equals F1. Since each left coset contains jF1j

operations, where jF1j is number of operations of F1 (order of
F1), the number of left cosets in the decomposition (3.4.2.10) is

n ¼ ½G : F1� ¼ jGj : jF1j; ð3:4:2:11Þ

where jGj; jF1j are orders of the point groups G;F1, respectively.
The index n is a quantitative measure of the degree of dissym-
metrization G � F1. Thus the number of principal domain states
in orbit GS1 is equal to the index of F1 in G, i.e. to the number of
operations of the high-symmetry group G divided by the number
of operations of the low-symmetry phase F1. In our illustrative
example we get n ¼ j4z=mzmxmxyj : j2xmymzj ¼ 16 : 4 ¼ 4.

The basic formula (3.4.2.11) expresses a remarkable result: the
number n of principal domain states is determined by how many
times the number of symmetry operations increases at the tran-
sition from the low-symmetry group F1 to the high-symmetry
group G, or, the other way around, the fraction 1

n is a quantitative
measure of the symmetry decrease from G to F1, jF1j ¼

1
n jGj.

Thus it is not the concrete structural change, nor even the parti-
cular symmetries of both phases, but only the extent of dissym-
metrization that determines the number of principal domain states.
This conclusion illustrates the fundamental role of symmetry in
domain structures.

(2) Relation (3.4.2.9) yields a recipe for calculating all principal
domain states of the orbit GS1: One applies successively to the
first principal domain states S1 the representatives of all left
cosets of F1:

GS1 ¼ fS1; g2S1; . . . ; gjS1; . . . ; gnS1g; ð3:4:2:12Þ

where the operations g1 ¼ e; g2; . . . ; gj; . . . ; gn are the repre-
sentatives of left cosets in the decomposition (3.4.2.10) and e is an
identity operation. We add that any operation of a left coset can
be chosen as its representative, hence the operation gj can be
chosen arbitrarily from the left coset gjF1, j ¼ 1; 2; . . . ; n.

This result can be illustrated in our example. Table 3.4.2.1
presents in the first column the four left cosets gjf2xmymzg of the
group F1 ¼ 2xmymz. The corresponding principal domain states
Sj, j ¼ 1; 2; 3; 4; and the values of spontaneous polarization in
these principal domain states are given in the second and the
third columns, respectively. It is easy to verify in Fig. 3.4.2.2 that
all operations of each left coset transform the first principal
domain state S1 into one principal domain state Sj, j ¼ 2; 3; 4:

The left coset decompositions of all crystallographic point
groups and their subgroup symmetry are available in the software
GI?KoBo-1, path: Subgroups\View\Twinning Group.

Let us turn briefly to the symmetries of the principal domain
states. From Fig. 3.4.2.2 we deduce that two domain states S1 and
S2 in our illustrative example have the same symmetry, F1 ¼

F2 ¼ 2xmymz, whereas two others S3 and S4 have another
symmetry, F3 ¼ F4 ¼ mx2ymz. We see that symmetry does not
specify the principal domain state in a unique way, although a
principal domain state Sj has a unique symmetry Fi ¼ IGðSjÞ.

It turns out that if gj transforms S1 into Sj, then the symmetry
group Fj of Sj is conjugate by gj to the symmetry group F1 of S1
[see Section 3.2.3.3, Proposition 3.2.3.13 and equation (3.2.3.55)]:

if Sj ¼ gjS1; then Fj ¼ gjF1g
�1
j : ð3:4:2:13Þ

One can easily check that in our example each operation of the
second left coset of F1 ¼ 2xmymz (second row in Table 3.4.2.1)
transforms F1 ¼ 2xmymz into itself, whereas operations from the
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Table 3.4.2.1. Left and double cosets, principal and secondary domain states and their tensor parameters for the phase transition with G ¼ 4z=mzmxmxy and
F1 ¼ 2xmymz

Left cosets gjS1 Principal domain states Secondary domain states

1 2x my mz S1 ðP00Þ ð000g00Þ R1 u1 � u2 Q11 �Q22

�11 mx 2y 2z S2 ð�P00Þ ð000�g00Þ

2xy 4z �443z mx�yy S3 ð0P0Þ ð0000�g0Þ R2 u2 � u1 Q22 �Q11

2x�yy 43z �44z mxy S4 ð0�P0Þ ð0000g0Þ
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third and fourth left cosets yield F3 ¼ F4 ¼ mx2ymz. We shall
return to this issue again at the end of Section 3.4.2.2.3.

3.4.2.2. Secondary domain states, partition of domain states

In this section we demonstrate that any morphic (spontaneous)
property appears in the low-symmetry phase in several equiva-
lent variants and find what determines their number and basic
properties.

As we saw in Fig. 3.4.2.2, the spontaneous polarization – a
principal tensor parameter of the 4z=mzmxmxy � 2xmymz phase
transition – can appear in four different directions that define
four principal domain states. Another morphic property is a
spontaneous strain describing the change of unit-cell shape; it is
depicted in Fig. 3.4.2.2 as a transformation of a square into a
rectangle. This change can be expressed by a difference between
two strain components u11 � u22 ¼ �ð1Þ, which is a morphic tensor
parameter since it is zero in the parent phase and nonzero in the
ferroic phase. The quantity �ð1Þ ¼ u11 � u22 is a secondary order
parameter of the transition 4z=mzmxmxy � 2xmymz (for
secondary order parameters see Section 3.1.3.2).

From Fig. 3.4.2.2, we see that two domain states S1 and S2 have
the same spontaneous strain, whereas S3 and S4 exhibit another
spontaneous strain �ð2Þ ¼ u22 � u11 ¼ ��ð1Þ. Thus we can infer
that a property ‘to have the same value of spontaneous strain’
divides the four principal domain states S1, S2, S3 and S4 into two
classes: S1 and S2 with the same spontaneous strain �ð1Þ and S3
and S4 with the same spontaneous strain �ð2Þ ¼ ��ð1Þ. Sponta-
neous strain appears in two ‘variants’: �ð1Þ and �ð2Þ ¼ ��ð1Þ.

We can define a ferroelastic domain state as a state of the
crystal with a certain value of spontaneous strain �, irrespective
of the value of the principal order parameter. Values � ¼ �ð1Þ and
�ð2Þ ¼ ��ð1Þ thus specify two ferroelastic domain states R1 and
R2, respectively. The spontaneous strain in this example is a
secondary order parameter and the ferroelastic domain states can
therefore be called secondary domain states.

An algebraic version of the above consideration can be
deduced from Table 3.4.2.1, where to each principal domain state
(given in the second column) there corresponds a left coset of
F1 ¼ 2xmymz (presented in the first column). Thus to the parti-
tion of principal domain states into two subsets

fS1; S2; S3; S4g ¼ fS1; S2g�ð1Þ [ fS3; S4g�ð2Þ ; ð3:4:2:14Þ

there corresponds, according to relation (3.4.2.9), a partition of
left cosets

4z=mzmxmxy

¼ ff2xmymzg [
�11f2xmymzgg [ f2xyf2xmymzg [ 2xyf2xmymzgg

¼ mxmymz [ 2xyfmxmymzg; ð3:4:2:15Þ

where we use the fact that the union of the first two left cosets of
2xmymz is equal to the group mxmymz. This group is the stabilizer
of the first ferroelastic domain state R1, IGðR1Þ ¼ mxmymz. Two
left cosets of mxmymz correspond to two ferroelastic domain
states, R1 and R2, respectively. Therefore, the number na of
ferroelastic domain states is equal to the number of left cosets of
mxmymz in 4z=mzmxmxy, i.e. to the index of mxmymz in
4z=mzmxmxy, na ¼ ½4z=mzmxmxy : mxmymz� ¼ j4z=mzmxmxyj :
jmxmymzj ¼ 16 : 8 ¼ 2, and the number da of principal domain
states in one ferroelastic domain state is equal to the index of
2xmymz in mxmymz, i.e. da ¼ ½mxmymz: 2xmymz� ¼ jmxmymzj :
j2xmymzj ¼ 8 : 4 ¼ 2.

A generalization of these considerations, performed in Section
3.2.3.3.5 (see especially Proposition 3.2.3.30 and Examples
3.2.3.10 and 3.2.3.33), yields the following main results.

Assume that �ð1Þ is a secondary order parameter of a transition
with symmetry descent G � F1. Then the stabilizer L1 of this
parameter IGð�

ð1ÞÞ � L1 is an intermediate group,

F1 � IGð�
ð1ÞÞ � L1 � G: ð3:4:2:16Þ

Lattices of subgroups in Figs. 3.1.3.1 and 3.1.3.2 are helpful in
checking this condition.

The set of n principal domain states (the orbit GS1) splits into
n� subsets

n� ¼ ½G : L1� ¼ jGj : jL1j: ð3:4:2:17Þ

Each of these subsets consists of d� principal domain states,

d� ¼ ½L1 : F1� ¼ jL1j : jF1j: ð3:4:2:18Þ

The number d� is called a degeneracy of secondary domain states.
The product of numbers n� and d� is equal to the number n of

principal domain states [see equation (3.2.3.26)]:

n�d� ¼ n: ð3:4:2:19Þ

Principal domain states from each subset have the same value
of the secondary order parameter �ðjÞ; j ¼ 1; 2; . . . ; n� and any
two principal domain states from different subsets have different
values of �ðjÞ. A state of the crystal with a given value of the
secondary order parameter �ðjÞ will be called a secondary domain
state Rj; j ¼ 1; 2; . . . ; n�. Equivalent terms are degenerate or
compound domain state.

In a limiting case L1 ¼ F1, the parameter �ð1Þ is identical with
the principal tensor parameter and there is no degeneracy,
d� ¼ 1.

Secondary domain states R1;R2; . . . ;Rj; . . . ;Rn�
are in a one-

to-one correspondence with left cosets of L1 in the decomposi-
tion

G ¼ h1L1 [ h2L1 [ . . . [ hjL1 [ . . . [ hn�L1; ð3:4:2:20Þ

therefore

Rj ¼ hjR1; j ¼ 1; 2; . . . ; n�: ð3:4:2:21Þ

Principal domain states of the first secondary domain state R1

can be determined from the first principal domain state S1:

Sk ¼ pkS1; k ¼ 1; 2; . . . ; d�; ð3:4:2:22Þ

where pk is the representative of the kth left coset of F1 of the
decomposition

L1 ¼ p1F1 [ p2F1 [ . . . [ pkF1 [ . . . [ pd�F1: ð3:4:2:23Þ

The partition of principal domain states according to a
secondary order parameter offers a convenient labelling of
principal domain states by two indices j; k, where the first index j
denotes the sequential number of the secondary domain state
and the second index k gives the sequential number of the
principal domain state within the jth secondary domain state [see
equation (3.2.3.79)]:

Sjk ¼ hjpkS11; S11 ¼ S1; j ¼ 1; 2; . . . ; n�; k ¼ 1; 2; . . . ; d�;

ð3:4:2:24Þ

where hj and pk are representatives of the decompositions
(3.4.2.20) and (3.4.2.23), respectively.

The secondary order parameter � can be identified with a
principal order parameter of a phase transition with symmetry
descent G � L1 (see Section 3.4.2.3). The concept of secondary
domain states enables one to define domain states that are
characterized by a certain spontaneous property. We present the
three most significant cases of such ferroic domain states.

3.4.2.2.1. Ferroelastic domain state

The distinction ferroelastic–non-ferroelastic is a basic division
in domain structures. Ferroelastic transitions are ferroic transi-
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tions involving a spontaneous distortion of the crystal lattice that
entails a change of shape of the crystallographic or conventional
unit cell (Wadhawan, 2000). Such a transformation is accom-
panied by a change in the number of independent nonzero
components of a symmetric second-rank tensor u that describes
spontaneous strain.

In discussing ferroelastic and non-ferroelastic domain struc-
tures, the concepts of crystal family and holohedry of a point
group are useful (ITA, 2002). Crystallographic point groups (and
space groups as well) can be divided into seven crystal systems
and six crystal families (see Table 3.4.2.2). A symmetry descent
within a crystal family does not entail a qualitative change of the
spontaneous strain – the number of independent nonzero tensor
components of the strain tensor u remains unchanged.

We shall denote the crystal family of a group M by the symbol
FamM. Then a simple criterion for a ferroic phase transition with
symmetry descent G � F to be a non-ferroelastic phase transition
is

F � G; FamF ¼ FamG: ð3:4:2:25Þ

A necessary and sufficient condition for a ferroelastic phase
transition is

F � G; FamF 6¼ FamG: ð3:4:2:26Þ

A ferroelastic domain state Ri is defined as a state with a
homogeneous spontaneous strain uðiÞ. [We drop the suffix ‘s’ or
‘(s)’ if the serial number of the domain state is given as the
superscript ðiÞ. The definition of spontaneous strain is given in
Section 3.4.3.6.1.] Different ferroelastic domain states differ in
spontaneous strain. The symmetry of a ferroelastic domain state
Ri is specified by the stabilizer IGðu

ðiÞÞ of the spontaneous strain
uðiÞ of the principal domain state Si [see (3.4.2.16)]. This stabilizer,
which we shall denote by Ai, can be expressed as an intersection
of the parent group G and the holohedry of group Fi, which we
shall denote HolFi (see Table 3.4.2.2):

Ai � IGðu
ðiÞÞ ¼ G \HolFi: ð3:4:2:27Þ

This equation indicates that the ferroelastic domain state Ri has a
prominent single-domain orientation. Further on, the term
‘ferroelastic domain state’ will mean a ‘ferroelastic domain state
in single-domain orientation’.

In our illustrative example,

A1 ¼ I4z=mzmxmxy
ðu11 � u22Þ

¼ Holð2xmymzÞ \m4z=mzmxmxy

¼ mxmymz \ 4z=mzmxmxy ¼ mxmymz:

The number na of ferroelastic domain states is given by

na ¼ ½G : A1� ¼ jGj : jA1j: ð3:4:2:28Þ

In our example, na ¼ j4z=mzmxmxyj : jmxmymzj ¼ 16 : 8 ¼ 2. In
Table 3.4.2.7, last column, the number na of ferroelastic domain
states is given for all possible ferroic phase transitions.

The number da of principal domain states compatible with one
ferroelastic domain state (degeneracy of ferroelastic domain
states) is given by

da ¼ ½A1 : F1� ¼ jA1j : jF1j: ð3:4:2:29Þ

In our example, da ¼ jmxmymzj : j2xmymzj ¼ 8 : 4 ¼ 2, i.e. two
non-ferroelastic principal domain states are compatible with each
of the two ferroelastic domain states (cf. Fig. 3.4.2.2).

The product of na and da is equal to the number n of all
principal domain states [see equation (3.4.2.19)],

nada ¼ ½G : A1�½A1 : F1� ¼ ½G : F1� ¼ n: ð3:4:2:30Þ

The number da of principal domain states in one ferroelastic
domain state can be calculated for all ferroic phase transitions
from the ratio of numbers n and na that are given in Table 3.4.2.7.

According to Aizu (1969), we can recognize three possible
cases:

(i) Full ferroelastics: All principal domain states differ in
spontaneous strain. In this case, na ¼ n, i.e. A1 ¼ F1, ferroelastic
domain states are identical with principal domain states.

(ii) Partial ferroelastics: Some but not all principal domain
states differ in spontaneous strain. A necessary and sufficient
condition is 1< na< n, or, equivalently, F1 � A1 � G. In this
case, ferroelastic domain states are degenerate secondary domain
states with degeneracy n > da ¼ jA1j : jF1j > 1. In this case, the
phase transition G � F1 can also be classified as an improper
ferroelastic one (see Section 3.1.3.2).

(iii) Non-ferroelastics: All principal domain states have the
same spontaneous strain. The criterion is na ¼ 1, i.e. A1 ¼ G.

A similar classification for ferroelectric domain states is given
below. Both classifications are summarized in Table 3.4.2.3.

Example 3.4.2.1. Domain states in leucite. Leucite (KAlSi2O6)
(see e.g. Hatch et al., 1990) undergoes at about 938 K a ferro-
elastic phase transition from cubic symmetry G ¼ m�33m to
tetragonal symmetry L ¼ 4=mmm. This phase can appear in
jG ¼ m�33mj : j4=mmmj ¼ 3 single-domain states, which we
denote R1, R2, R3. The symmetry group of the first domain state
R1 is L1 ¼ 4x=mxmymz. This group equals the stabilizer IGðu

ð1ÞÞ of
the spontaneous strain uð1Þ of R1 since Hol(4x=mxmymzÞ

¼ 4x=mxmymz (see Table 3.4.2.2), hence this phase is a full
ferroelastic one.

At about 903 K, another phase transition reduces the
symmetry 4=mmm to F ¼ 4=m. Let us suppose that this transition
has taken place in a domain state R1 with symmetry
L1 ¼ 4x=mxmymz; then the room-temperature ferroic phase
has symmetry F1 ¼ 4x=mx. The 4x=mxmymz � 4x=mx phase tran-
sition is a non-ferroelastic one [Holð4x=mxÞ ¼Holð4x=mxmymzÞ ¼

4x=mxmymz] with j4x=mxmymzj : j4x=mxj ¼ 8 : 4 ¼ 2 non-ferro-
elastic domain states, which we denote S1 and S2. Similar
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Table 3.4.2.2. Crystal systems, holohedries, crystal families and number of spontaneous strain components

Point group M Crystal system
Holohedry
HolM

Spontaneous strain
components

Crystal family
FamMIndependent Nonzero

23, m�33, 432, �443m, m�33m Cubic m�33m 1 3 Cubic

6, �66, 6=m, 622, 6mm, �662m, 6=mmmm Hexagonal 6=mmm 2 3 Hexagonal

3, �33, 32, 3m, �33m Trigonal �33m 2 3

4, �44, 4=m, 422, 4mm, �442m, 4=mmm Tetragonal 4=mmm 2 3 Tetragonal

222, mm2, mmm Orthorhombic mmm 3 3 Orthorhombic

2, m, 2=m Monoclinic 2=m 4 4 Monoclinic

1, �11 Triclinic �11 6 6 Triclinic
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considerations performed with initial domain states R2 and R3

generate another two couples of principal domain states S3, S4
and S5, S6, respectively. Thus the room-temperature phase is a
partially ferroelastic phase with three degenerate ferroelastic
domain states, each of which can contain two principal domain
states. Both ferroelastic domains and non-ferroelastic domains
within each ferroelastic domain have been observed [see Fig.
3.3.10.13 in Chapter 3.3, Palmer et al. (1988) and Putnis (1992)].

3.4.2.2.2. Ferroelectric domain states

Ferroelectric domain states are defined as states with a homo-
geneous spontaneous polarization; different ferroelectric domain
states differ in the direction of the spontaneous polarization.
Ferroelectric domain states are specified by the stabilizer IGðP

ð1Þ
s Þ

of the spontaneous polarization Pð1Þ
s in the first principal domain

state S1 [see equation (3.4.2.16)]:

F1 � C1 � IGðP
ð1Þ
s Þ � G: ð3:4:2:31Þ

The stabilizer C1 is one of ten polar groups: 1, 2, 3, 4, 6, m, mm2,
3m, 4mm, 6mm. Since F1 must be a polar group too, it is simple to
find the stabilizer C1 fulfilling relation (3.4.2.31).

The number ne of ferroelectric domain states is given by

ne ¼ ½G : C1� ¼ jGj : jC1j: ð3:4:2:32Þ

If the polar group C1 does not exist, we put ne ¼ 0. The number
ne of ferroelectric domain states is given for all ferroic phase
transitions in the eighth column of Table 3.4.2.7.

The number da of principal domain states compatible with one
ferroelectric domain state (degeneracy of ferroelectric domain
states) is given by

de ¼ ½C1 : F1� ¼ jC1j : jF1j: ð3:4:2:33Þ

The product of ne and de is equal to the number n of all
principal domain states [see equation (3.4.2.19)],

nede ¼ n: ð3:4:2:34Þ

The degeneracy de of ferroelectric domain states can be calcu-
lated for all ferroic phase transitions from the ratio of the
numbers n and ne that are given in Table 3.4.2.7.

According to Aizu (1969, 1970a), we can again recognize three
possible cases (see also Table 3.4.2.3):

(i) Full ferroelectrics: All principal domain states differ in
spontaneous polarization. In this case, ne ¼ n, i.e. C1 ¼ F1,
ferroelectric domain states are identical with principal domain
states.

(ii) Partial ferroelectrics: Some but not all principal domain
states differ in spontaneous polarization. A necessary and suffi-
cient condition is 1< ne< n, or equivalently, F1 � C1 � G.
Ferroelectric domain states are degenerate secondary domain
states with degeneracy n> de> 1. In this case, the phase transi-
tionG � F1 can be classified as an improper ferroelectric one (see
Section 3.1.3.2).

(iii) Non-ferroelectrics: No principal domain states differ in
spontaneous polarization. There are two possible cases: (a) The
parent phase is polar; then C1 ¼ G and ne ¼ 1. (b) The parent
phase is non-polar; in this case a polar stabilizer C1 does not exist,
then we put ne ¼ 0.

The classification of full-, partial- and non-ferroelectrics and
ferroelastics is given for all Aizu’s species in Aizu (1970a).

This classification for all symmetry descents is readily available
from the numbers n, na, ne in Table 3.4.2.7. One can conclude that
partial ferroelectrics are rather rare.

Example 3.4.2.3. Domain structure in tetragonal perovskites. Some
perovskites (e.g. barium titanate, BaTiO3) undergo a phase
transition from the cubic parent phase with G ¼ m�33m to a
tetragonal ferroelectric phase with symmetry F1 ¼ 4xmymz. The
stabilizer A1 ¼ Holð4xmymzÞ \m3m ¼ mxmymz. There are na ¼
jm3mj : jmxmymzj ¼ 3 ferroelastic domain states each compatible
with da ¼ jmxmymzj : j4xmymzj ¼ 2 principal ferroelectric domain
states that are related e.g. by inversion �11, i.e. spontaneous
polarization is antiparallel in two principal domain states within
one ferroelastic domain state.

A similar situation, i.e. two non-ferroelastic domain states with
antiparallel spontaneous polarization compatible with one
ferroelastic domain state, occurs in perovskites in the trigonal
ferroic phase with symmetry F ¼ 3m and in the orthorhombic
ferroic phase with symmetry F1 ¼ mx�yy2xymz.

Many other examples are discussed by Newnham (1974, 1975),
Newnham & Cross (1974a,b), and Newnham & Skinner (1976).

3.4.2.2.3. Domain states with the same stabilizer

In our illustrative example (see Fig. 3.4.2.2), we have seen that
two domain states S1 and S2 have the same symmetry group
(stabilizer) 2xmymz. In general, the condition ‘to have the same
stabilizer (symmetry group)’ divides the set of n principal domain
states into equivalence classes. As shown in Section 3.2.3.3, the
role of an intermediate group L1 is played in this case by the
normalizer NGðF1Þ of the symmetry group F1 of the first domain
state S1. The number dF of domain states with the same symmetry
group is given by [see Example 3.2.3.34 in Section 3.2.3.3.5 and
equation (3.2.3.95)],

dF ¼ ½NGðF1Þ : F1� ¼ jNGðF1Þj : jF1j: ð3:4:2:35Þ

The number nF of subgroups that are conjugate underG to F1 can
be calculated from the formula [see equation (3.2.3.96)]

nF ¼ ½G : NGðF1Þ� ¼ jGj : jNGðF1Þj: ð3:4:2:36Þ

The product of nF and dF is equal to the number n of ferroic
domain states,

n ¼ nFdF : ð3:4:2:37Þ

The normalizer NGðF1Þ enables one not only to determine
which domain states have the symmetry F1 but also to calculate
all subgroups that are conjugate under G to F1 (see Examples
3.2.3.22, 3.2.3.29 and 3.2.3.34 in Section 3.2.3.3).

Normalizers NGðF1Þ and the number dF of principal domain
states with the same symmetry are given in Table 3.4.2.7 for all
symmetry descents G � F1. The number nF of subgroups conju-
gate to F1 is given by nF ¼ n : dF.

All these results obtained for point-group symmetry descents
can be easily generalized to microscopic domain states and space-
group symmetry descents (see Section 3.4.2.5).
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Table 3.4.2.3. Aizu’s classification of ferroic phases

na is the number of ferroelastic domain states, ne is the number of ferroelectric domain states and nf is the number of ferroic domain states.

Ferroelastic Ferroelectric

Fully Partially Non-ferroelastic Fully Partially Non-ferroelectric

na ¼ n 1< na < n na ¼ 1 ne ¼ n 1< ne< n ne ¼ 0, 1
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3.4.2.3. Property tensors associated with ferroic domain states

In the preceding section we derived relations for domain states
without considering their specific physical properties. Basic
formulae for the number of principal and secondary domain
states [see equations (3.4.2.11) and (3.4.2.17), respectively] and
the transformation properties of these domain states [equations
(3.4.2.12) and (3.4.2.21), respectively] follow immediately from
the symmetry groups G, F1 of the parent and ferroic phases,
respectively. Now we shall examine which components of prop-
erty tensors specify principal and secondary domain states and
how these tensor components change in different domain states.

A property tensor � is specified by its components. The number
mið�Þ of independent tensor components of a certain tensor �
depends on the point-group symmetry G of the crystal (see
Chapter 1.1). The number mcð�Þ of nonzero Cartesian (rectan-
gular) components depends on the orientation of the crystal in
the reference Cartesian coordinate system and is equal to, or
greater than, the number mið�Þ of independent tensor compo-
nents; this number mið�Þ is independent of orientation. Then
there are mcð�Þ �mið�Þ linear relations between Cartesian tensor
components. The difference mcð�Þ �mið�Þ is minimal for a
‘standard’ orientation, in which symmetry axes of the crystal are,
if possible, parallel to the axes of the reference coordinate system
[for more on this choice, see Nye (1985) Appendix B, Sirotin &
Shaskolskaya (1982), Shuvalov (1988) and IEEE Standards on
Piezoelectricity (1987)]. Even in this standard orientation, only
for point groups of triclinic, monoclinic and orthorhombic crystal
systems is the number mcð�Þ of nonzero Cartesian components of
each property tensor equal to the number mið�Þ of independent
tensor components, i.e. all Cartesian tensor components are
independent. For all other point groups mcð�Þ �mið�Þ> 0, i.e.
there are always relations between some Cartesian tensor
components. One can verify this statement for the strain tensor in
Table 3.4.2.2.

The relations between Cartesian tensor components can be
removed when one uses covariant tensor components. [Kopský
(1979); see also the manual of the the software GI?KoBo-1 and
Kopský (2001). An analogous decomposition of Cartesian
tensors into irreducible parts has been performed by Jerphagnon
et al. (1978).] Covariant tensor components are linear combina-
tions of Cartesian tensor components that transform according to
irreducible matrix representations Dð�ÞðGÞ of the group G of the
crystal (i.e. they form a basis of irreducible representations of G;
for irreducible representations see Chapter 1.2). The number of
covariant tensor components equals the number of independent
components of the tensor �.

The advantage of expressing property tensors by covariant
tensor components becomes obvious when one considers a
change of a property tensor at a ferroic phase transition. A
symmetry descent G � F1 is accompanied by the preservation of,
or an increase of, the number of independent Cartesian tensor
components. The latter possibility can manifest itself either by the
appearance of morphic Cartesian tensor components in the low-
symmetry phase or by such changes of nonzero Cartesian
components that break some relations between tensor compo-
nents in the high-symmetry phase. This is seen in our illustrative
example of the strain tensor u. In the high-symmetry phase with
G ¼ 4z=mzmxmxy, the strain tensor has two independent
components and three nonzero components: u11 6¼ u22 ¼ u33. In
the low-symmetry phase with F1 ¼ 2xmymz, there are three
independent and three nonzero components: u11 6¼ u22 6¼ u33, i.e.
the equation u22 ¼ u33 does not hold in the parent phase. This
change cannot be expressed by a single Cartesian morphic
component.

Since there are no relations between covariant tensor
components, any change of tensor components at a symmetry
descent can be expressed by morphic covariant tensor compo-
nents, which are zero in the parent phase and nonzero in the

ferroic phase. In our example, the covariant tensor component of
the spontaneous strain is u11 � u22, which is a morphic component
since u11 � u22 ¼ 0 for the symmetry 4z=mzmxmxy but
u11 � u22 6¼ 0 for symmetry 2xmymz.

Tensorial covariants are defined in an exact way in the manual
of the software GI?KoBo-1 and in Kopský (2001). Here we give
only a brief account of this notion. Consider a crystal with
symmetry G and a property tensor � with n� independent tensor
components. Let Dð�ÞðGÞ be a d�-dimensional physically irre-
ducible matrix representation of G. The Dð�Þ

a ðGÞ covariant of �
consists of the following d� covariant tensor components: ��a ¼

ð��a;1; �
�
a;2; . . . ; �

�
a;d�

Þ, where a ¼ 1; 2; . . . and m ¼ n�=d� numbers
different d�-tuples formed from n� components of �. These
covariant tensor components are linear combinations of Carte-
sian components of � that transform as so-called typical variables
of the matrix representation Dð�ÞðGÞ, i.e. the transformation
properties under operations g 2 G of covariant tensor compo-
nents are expressed by matrices D�ðgÞ.

The relation between two presentations of the tensor � is
provided by conversion equations, which express Cartesian tensor
components as linear combinations of covariant tensor compo-
nents and vice versa [for details see the manual and Appendix E
of the software GI?KoBo-1 and Kopský (2001)].

Tensorial covariants for all non-equivalent physically irre-
ducible matrix representations of crystallographic point groups
and all important property tensors up to rank four are listed in
the software GI?KoBo-1 and in Kopský (2001). Thus, for
example, in Table D of the software GI?KoBo-1, or in Kopský
(2001) p. 5, one finds for the two-dimensional irreducible repre-
sentation E of group 422 the following tensorial covariants:
ðP1;P2Þ, ðd11; d22Þ, ðd12; d21Þ, ðd13; d23Þ, ðd26; d16Þ, ðd35; d34Þ.

Let us denote by �ð�Þð1Þa a tensorial covariant of � in the first
single-domain state S1. A crucial role in the analysis is played by
the stabilizer IGð�

ð�Þð1Þ
a Þ of these covariants, i.e. all operations of

the parent group G that leave �ð�Þð1Þa invariant. There are three
possible cases:

(1) If

IGð�
ð�Þð1Þ
a Þ ¼ G; ð3:4:2:38Þ

then all components of �ð�Þð1Þa that are nonzero in the parent phase
are also nonzero in the ferroic phase. All these components are
the same in all principal domain states. For important property
tensors and for all point groups G, these covariant tensor
components are listed in the main tables of the software
GI?KoBo-1 and in Kopský (2001). The corresponding Cartesian
tensor components are available in Section 1.1.4 and in standard
textbooks (e.g. Nye, 1985; Sirotin & Shaskolskaya, 1982).

(2) If

IGð�
ð�Þð1Þ
a Þ ¼ F1; ð3:4:2:39Þ

then any of m ¼ n�=d� tensorial covariants �
ð�Þ
a , a ¼ 1; 2; . . . ;m,

is a possible principal tensor parameter ’ð1Þ of the transition
G � F1. Any two of nf ¼ jGj : jF1j principal domain states differ
in some, or all, components of these covariants. The principal
tensor parameter ’ plays a similar symmetric (but generally not
thermodynamic) role as the order parameter � does in the
Landau theory. Only for equitranslational phase transitions is
one of the principal tensor parameters (that with the tempera-
ture-dependent coefficient) identical with the primary order
parameter of the Landau theory (see Section 3.1.3).

(3) If

IGð�
ð�Þð1Þ
a Þ ¼ L1; F1 � L1 � G; ð3:4:2:40Þ

then �ð�Þð1Þa represents the secondary tensor parameter � (see
Section 3.1.3.2). There exist n� ¼ jGj : jL1j secondary domain
states R1; R2; . . . ; Rn�

that differ in �. Unlike in the two
preceding cases (1) and (2), several intermediate groups
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L1;M2; . . . (with secondary tensor parameters �; �; . . .) that fulfil
condition (3.4.2.40) can exist.

Now we shall indicate how one can find particular property
tensors that fulfil conditions (3.4.2.39) or (3.4.2.40). The solution
of this group-theoretical task consists of three steps:

(i) For a given point-group symmetry descent G � F1, or
G � L1, one finds the representation �� that specifies the trans-
formation properties of the principal, or secondary, tensor para-
meter, which plays the role of the order parameters in a
continuum description. This task is called an inverse Landau
problem (see Section 3.1.3 for more details). The solution of this
problem is available in Tables 3.4.2.7 and 3.1.3.1, in the software
GI?KoBo-1 and in Kopský (2001), where the letters A, B signify
one-dimensional irreducible representations, and letters E and T
two- and three-dimensional ones. The dimensionality d�, or d�, of
the representation ��, or ��, specifies the maximal number of
independent components of the principal, or secondary, tensor
parameter ’, or �, respectively. ‘Reducible’ indicates that �� is a
reducible representation.

(ii) In Table 3.1.3.1 one finds in the second column, for a given
G and ��, or �� (first column), the standard variables designating
in a standardized way the covariant tensor components of the
principal, or secondary, tensor parameters (for more details see
Section 3.1.3.1 and the manual of the software GI?KoBo-1). For
two- and three-dimensional irreducible representations, this
column contains relations that restrict the values of the compo-
nents and thus reduce the number of independent components.

(iii) The association of covariant tensor components of property
tensors with standard variables is tabulated for all irreducible
representations in an abridged version in Table 3.1.3.1, in the
column headed Principal tensor parameters, and in full in the
main table of the software GI?KoBo-1 and of Kopský (2001).

Phase transitions associated with reducible representations are
treated in detail only in the software GI?KoBo-1 and in Kopský
(2001). Fortunately, these phase transitions occur rarely in nature.

A rich variety of observed structural phase transitions can be
found in Tomaszewski (1992). This database lists 3446 phase
transitions in 2242 crystalline materials.

Example 3.4.2.4. Morphic tensor components associated with
4z=mzmxmxy � 2xmymz symmetry descent.

(1) Principal tensor parameters ’ð1Þ. The representation �� that
specifies the transformation properties of the principal tensor
parameter ’ð1Þ (and for equitranslational phase transitions also
the primary order parameter �ð1Þ) can be found in the first column
of Table 3.1.3.1 for G ¼ 4z=mzmxmxy and F1 ¼ 2xmymz; the R-
irreducible representation (R-irep) �� ¼ Eu. Therefore, the
principal tensor parameter ’ð1Þ (or the primary order parameter
�ð1Þ) has two components ð’ð1Þ1 ; ’

ð1Þ
2 Þ [or ð�ð1Þ1 ; �

ð1Þ
2 )]. The standard

variables are in the second column: ðx�1 ; 0Þ. This means that only
the first component ’ð1Þ1 (or �ð1Þ1 ) is nonzero. In the column
Principal tensor parameters, one finds that ’ð1Þ1 ¼ P1 (or

�ð1Þ1 ¼ P1), i.e. one principal tensor parameter is spontaneous
polarization and the spontaneous polarization in the first domain
state S1 is PðsÞ ¼ ðP; 00Þ. Other principal tensor parameters can
be found in the software GI?KoBo-1 or in Kopský (2001), p. 185:
ðg4; 0Þ; ðd11; 0Þ; ðd12; 0Þ; ðd13; 0Þ; ðd26; 0Þ; ðd35; 0Þ (the physical
meaning of the components is explained in Table 3.4.3.5).

(2) Secondary tensor parameters �ð1Þ; �ð1Þ; . . ..
In the group lattice (group–subgroup chains) in Fig. 3.1.3.1,

one finds that the only intermediate group between 4z=mzmxmxy

and 2xmymz is L1 ¼ mxmymz. In the same table of the software
GI?KoBo-1 or in Kopský (2001), one finds �� ¼ B1g and the
following one-dimensional secondary tensor parameters: u1 � u2;
A14 þ A25; A36; s11 � s22; s13 � s23; s44 � s55; Q11 �Q22;
Q12 �Q21; Q13 �Q23; Q31 �Q32; Q44 �Q55.

The use of covariant tensor components has two practical
advantages:

Firstly, the change of tensor components at a ferroic phase
transition is completely described by the appearance of new
nonzero covariant tensor components. If needed, Cartesian
tensor components corresponding to covariant components can
be calculated by means of conversion equations, which express
Cartesian tensor components as linear combinations of covariant
tensor components [for details on tensor covariants and conver-
sion equations see the manual and Appendix E of the software
GI?KoBo-1 and Kopský (2001)].

Secondly, calculation of property tensors in various domain
states is substantially simplified: transformations of Cartesian
tensor components, which are rather involved for higher-rank
tensors, are replaced by a simpler transformation of covariant
tensor components by matrices Dð�Þ of the matrix representation
of ��, or of �� [see again the software GI?KoBo-1 and Kopský
(2001)]. The determination of the tensor properties of all domain
states is discussed in full in the book by Kopský (1982).

The relations between morphic properties, tensor parameters,
order parameters and names of domain states are compared in
Table 3.4.2.4, from which it is seen that what matters in distin-
guishing different domain states is the stabilizer of the sponta-
neous (morphic) property, where physically different parameters
may possess a common stabilizer. The latter thermodynamic
division, based on conditions of the stability, is finer than the
former division, which is based on symmetry only. This difference
manifests itself, for example, in the fact that two physically
different tensor parameters, such as the principal order para-
meter ’ and a ‘similar’ order parameter �, transform according to
different representations �’ and �� but have the same stabilizer
F1 (such symmetry descents are listed in Table 3.1.3.2) and
possess common domain states. This ‘degeneracy’ of domain
states can be even more pronounced in the microscopic
description, where the same stabilizer F 1 and therefore a
common basic domain state can be shared by three physically
different order parameters: a primary order parameter � (the
order parameter, components of which form a quadratic invar-
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Table 3.4.2.4. Morphic properties, tensor parameters, order parameters, stabilizers and domain states

Morphic property

Tensor or
order
parameter �

Stabilizer of morphic
property Domain states

Principal tensor parameter ’ ð1Þ �’ F1 Principal

‘Similar principal’ tensor parameter � ð1Þ ��

Secondary tensor parameter �ð1Þ �� L1; F1 � L1 � G Secondary ferroic

Spontaneous polarization PðsÞ �PðsÞ
C1 ¼ IGðP

ð1Þ
ðsÞ Þ Ferroelectric

Spontaneous strain uðsÞ �uðsÞ
A1 ¼ HolF1 \G Ferroelastic

Primary order parameter �ð1Þ �� F 1 Primary, basic, microscopic

Pseudoproper order parameter � ð1Þ

‘Similar’ order parameter � ð1Þ ��

Secondary order parameter �ð1Þ �� M1;F 1 � M1 � G Secondary microscopic
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iant with a temperature-dependent coefficient in the free energy),
a pseudoproper order parameter � that transforms according to
the same representation �� as the primary order parameter but
has a temperature coefficient that is not as strongly temperature-
dependent as the primary order parameter, and a ‘similar’ order
parameter � with a representation �� different from ��.

3.4.2.4. Synoptic table of ferroic transitions and domain states

The considerations of this and all following sections can be
applied to any phase transition with point-group symmetry
descent G � F. All such non-magnetic crystallographically non-
equivalent symmetry descents are listed in Table 3.4.2.7 together
with some other data associated with symmetry reduction at a
ferroic phase transition. These symmetry descents can also be
traced in lattices of point groups, which are displayed in Figs.
3.1.3.1 and 3.1.3.2.

The symmetry descents G � F1 listed in Table 3.4.2.7 are
analogous to Aizu’s ‘species’ (Aizu, 1970a), in which the symbol
F stands for the symbol � in our symmetry descent, and the
orientation of symmetry elements of the group F1 with respect to
G is specified by letters p; s; ps; pp etc:

As we have already stated, any systematic analysis of domain
structures requires an unambiguous specification of the orienta-
tion and location of symmetry elements in space. Moreover, in a
continuum approach, the description of crystal properties is
performed in a rectangular (Cartesian) coordinate system, which
differs in hexagonal and trigonal crystals from the crystal-
lographic coordinate system common in crystallography. Last but
not least, a ready-to-use and user-friendly presentation calls for
symbols that are explicit and concise.

To meet these requirements, we use in this chapter, in Section
3.1.3 and in the software GI?KoBo-1 a symbolism in which the
orientations of crystallographic elements and operations are

expressed by means of suffixes related to a reference Cartesian
coordinate system. The relation of this reference Cartesian
coordinate system – called a crystallophysical coordinate system –
to the usual crystallographic coordinate system is a matter of
convention. We adhere to the generally accepted rules [see Nye
(1985) Appendix B, Sirotin & Shaskolskaya (1982), Shuvalov
(1988), and IEEE Standards on Piezoelectricity, 1987].
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Fig. 3.4.2.3. Oriented symmetry operations of the cubic group m�33m and of its
subgroups. The Cartesian (rectangular) coordinate system x; y; z is identical
with the crystallographic and crystallophysical coordinate systems. Correla-
tion with other notations is given in Table 3.4.2.5.

Table 3.4.2.5. Symbols of symmetry operations of the point group m�33m

Standard: symbols used in Section 3.1.3, in the present chapter and in the software; all symbols refer to the cubic crystallographic (Cartesian) basis, p � ½111� (all
positive), q � ½�11�111�; r � ½1�11�11�; s � ½�111�11�. BC: Bradley & Cracknell (1972). AH: Altmann & Herzig (1994). IT A: IT A (2002). Jones: Jones’ faithful representation
symbols express the action of a symmetry operation on a vector ðxyzÞ (see e.g. Bradley & Cracknell, 1972).

Standard BC AH IT A Jones Standard BC AH IT A Jones

1 or e E E 1 x; y; z �11 or i I i �11 0; 0; 0 �xx; �yy; �zz

2z C2z C2z 2 0; 0; z �xx; �yy; z mz �z �z m x; y; 0 x; y; �zz

2x C2x C2x 2 x; 0; 0 x; �yy; �zz mx �x �x m 0; y; z �xx; y; z

2y C2y C2y 2 0; y; 0 �xx; y; �zz my �y �y m x; 0; z x; �yy; z

2xy C2a C0
2a 2 x; x; 0 y; x; �zz mxy �da �d1 m x; �xx; z �yy; �xx; z

2x�yy C2b C0
2b 2 x; �xx; 0 �yy; �xx; �zz mx�yy �db �d2 m x; x; z y; x; z

2zx C2c C0
2c 2 x; 0; x; z; �yy; x mzx �dc �d3 m �xx; y; x; �zz; y; �xx

2z�xx C2e C0
2e 2 �xx; 0; x �zz; �yy; �xx mz�xx �de �d5 m x; y; x z; y; x

2yz C2d C0
2d 2 0; y; y �xx; z; y myz �dd �d4 m x; y; �yy x; �zz; �yy

2y�zz C2f C0
2f 2 0; y; �yy �xx; �zz; �yy my�zz �df �d6 m x; y; y x; z; y

3p Cþ
31 Cþ

31 3þ x; x; x z; x; y �33p S�61 S�61 �33
þ

x; x; x �zz; �xx; �yy

3q Cþ
32 Cþ

32 3þ �xx; �xx; x �zz; x; �yy �33q S�62 S�62 �33
þ

�xx; �xx; x z; �xx; y

3r Cþ
33 Cþ

33 3þ x; �xx; �xx �zz; �xx; y �33r S�63 S�63 �33
þ

x; �xx; �xx z; x; �yy

3s Cþ
34 Cþ

34 3þ �xx; x; �xx z; �xx; �yy �33s S�64 S�64 �33
þ

�xx; x; �xx �zz; x; y

32p C�
31 C�

31 3� x; x; x y; z; x �33
5

p Sþ61 Sþ61 �33
�

x; x; x �yy; �zz; �xx

32q C�
32 C�

32 3� �xx; �xx; x y; �zz; �xx �33
5

q Sþ62 Sþ62 �33
�

�xx; �xx; x �yy; z; x

32r C�
33 C�

33 3� x; �xx; �xx �yy; z; �xx �33
5

r Sþ63 Sþ63 �33
�

x; �xx; �xx y; �zz; x

32s C�
34 C�

34 3� �xx; x; �xx �yy; �zz; x �33
5

s Sþ64 Sþ64 �33
�

�xx; x; �xx y; z; �xx

4z Cþ
4z Cþ

4z 4þ 0; 0; z �yy; x; z �44z S�4z S�4z �44
þ

0; 0; z y; �xx; �zz

4x Cþ
4x Cþ

4x 4þ x; 0; 0 x; �zz; y �44x S�4x S�4x �44
þ

x; 0; 0 �xx; z; �yy

4y Cþ
4y Cþ

4y 4þ 0; y; 0 z; y; �xx �44y S�4y S�4y �44
þ

0; y; 0 �zz; �yy; x

43z C�
4z C�

4z 4� 0; 0; z y; �xx; z �44
3

z Sþ4z Sþ4z �44
�

0; 0; z �yy; x; �zz

43x C�
4x C�

4x 4� x; 0; 0 x; z; �yy �44
3

x Sþ4x Sþ4x �44
�

x; 0; 0 �xx; �zz; y

43y C�
4y C�

4y 4� 0; y; 0 �zz; y; x �44
3

y Sþ4y Sþ4y �44
�

0; y; 0 z; �yy; �xx



3.4. DOMAIN STRUCTURES

We list all symbols of crystallographic symmetry operations
and a comparison of these symbols with other notations in Tables
3.4.2.5 and 3.4.2.6 and in Figs. 3.4.2.3 and 3.4.2.4.

Now we can present the synoptic Table 3.4.2.7.

3.4.2.4.1. Explanation of Table 3.4.2.7

G: point group expressing the symmetry of the parent (proto-
typic) phase. Subscripts of generators in the group symbol specify
their orientation in the Cartesian (rectangular) crystallophysical
coordinate system of the group G (see Tables 3.4.2.5 and 3.4.2.6,
and Figs. 3.4.2.3 and 3.4.2.4).

F1: this point group is a proper subgroup of G given in the first
column and expresses the symmetry of the ferroic phase in the first
single-domain state S1. In accordance with IT A (2002), five
groups are given in two orientations (bold and normal type).
Subscripts of generators in the group symbol specify their
orientation in the Cartesian (rectangular) crystallophysical
coordinate system of the group G (see Tables 3.4.2.5 and 3.4.2.6,
and Figs. 3.4.2.3 and 3.4.2.4). In the cubic groups, the direction
of the body diagonal is denoted by abbreviated symbols:
p � ½111� (all positive), q � ½�11�111�, r � ½1�11�11�, s � ½�111�11�. In the
hexagonal and trigonal groups, axes x0, y0 and x00, y00 of a Cartesian
coordinate system are rotated about the z axis through 120 and
240�, respectively, from the crystallophysical Cartesian coordi-
nate axes x and y.

Symmetry groups in parentheses are groups conjugate to F1

under G (see Section 3.2.3.2). These are symmetry groups
(stabilizers) of some domain states Sk different from S1 (for more
details see Section 3.4.2.2.3).

��: physically irreducible representation of the group G. This
specifies the transformation properties of the principal tensor
parameter of the phase transition in a continuum description and
transformation properties of the primary order parameter � of
the equitranslational phase transitions in the microscopic
description. The letters A, B signify one-dimensional repre-
sentations, and letters E and T two- and three-dimensional
irreducible representations, respectively. Two letters T indicate
that the symmetry descent G � F1 can be accomplished by two
non-equivalent three-dimensional irreducible representations
(see Table 3.1.3.2). ‘Reducible’ denotes a reducible representa-
tion of G. In this case, there are always several non-equivalent
reducible representations inducing the same descent G � F1 [for
more detailed information see the software GI?KoBo-1 and
Kopský (2001)].

Knowledge of �� enables one to determine for all ferroic
transitions property tensors and their components that are
different in all principal domain states, and, for equitranslational

transitions only, microscopic displacements and/or ordering of
atoms and molecules that are different in different basic
(microscopic) domain states (for details see Section 3.1.3, espe-
cially Table 3.1.3.1, and Section 3.1.2).

NGðF1Þ: the normalizer of F1 in G (defined in Section 3.2.3.2.4)
determines subgroups conjugate to F1 in G and specifies which
domain states have the same symmetry (stabilizer in G). The
number nF of subgroups conjugate to F1 inG is nF ¼ ½G : NGðF1Þ�

¼ jGj : jNGðF1Þj [see equation (3.4.2.36)] and the number dF of
principal domain states with the same symmetry is dF ¼

½NGðF1Þ : F1� ¼ jNGðF1Þj : jF1j [see equation (3.4.2.35)]. There
are three possible cases:

(i) NGðF1Þ ¼ G. There are no subgroups conjugate to F1 and
the symmetry group Fi (stabilizer of Si in G) of all principal
domain states S1; S2; . . . ; Sn is equal to G, Fi ¼ G, for all
i ¼ 1; 2; . . . ; n; hence domain states cannot be distinguished by
their symmetry. The group F1 is a normal subgroup of G;F1 /G
(see Section 3.2.3.2). This is always the case if there are just two
single-domain states S1, S2, i.e. if the index of F1 in G equals two,
½G : F1� ¼ jGj : jF1j ¼ 2.
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Fig. 3.4.2.4. Oriented symmetry operations of the hexagonal group 6=mmm
and of its hexagonal and trigonal subgroups. The coordinate system x; y; z
corresponds to the Cartesian crystallophysical coordinate system, the axes
x; y; z of the crystallographic coordinate system are parallel to the twofold
rotation axes 2x; 2x0 and to the sixfold rotation axis 6z. Correlation with other
notations is given in Table 3.4.2.6.

Table 3.4.2.6. Symbols of symmetry operations of the point group 6=mmm

Standard: symbols used in Section 3.1.3, in the present chapter and in the software; suffixes (in italic) refer to the Cartesian crystallophysical coordinate system. BC:
Bradley & Cracknell (1972). AH: Altmann & Herzig (1994). IT A: IT A (2002), coordinates (in Sans Serif) are expressed in a crystallographic hexagonal basis. Jones:
Jones’ faithful representation symbols express the action of a symmetry operation of a vector ðxyzÞ in a crystallographic basis (see e.g. Bradley & Cracknell, 1972).

Standard BC AH IT A Jones Standard BC AH IT A Jones

1 or e E E 1 x; y; z �11 or i I I �11 0; 0;0 �xx; �yy; �zz

6z Cþ
6 Cþ

6 6þ 0;0; z x� y; x; z �66z S�3 S�3
�66þ 0; 0; z y� x; �xx; �zz

3z Cþ
3 Cþ

3 3þ 0;0; z �yy; x� y; z �33z S�6 S�6
�33þ 0; 0; z y; y� x;�zz

2z C2 C2 2 0;0; z �xx; �yy; z mz �h �h m x; y; 0 x; y; �zz

32z C�
3 C�

3 3� 0;0; z y� x; �xx; z �33
5

z Sþ6 Sþ6
�33� 0; 0; z x� y; x; �zz

65z C�
6 C�

6 6� 0;0; z y; y� x; z �66
5

z Sþ3 Sþ3
�66� 0; 0; z �yy; x� y; �zz

2x C21
0 0 C21

0 0 2 x; 0; 0 x� y; �yy; �zz mx �v1 �v1 m x; 2x; z y� x; y; z

2x0 C22
0 0 C22

0 0 2 0; y; 0 �xx; y� x; �zz mx0 �v2 �v2 m 2x; x; z x; x� y; z

2x0 0 C23
0 0 C23

0 0 2 x; x; 0 y; x; �zz mx0 0 �v3 �v3 m x; �xx; z �yy; �xx; z

2y C21
0 C21

0 2 x; 2x; 0 y� x; y; �zz my �d1 �d1 m x; 0; z x� y; �yy; z

2y0 C22
0 C22

0 2 2x; x; 0 x; x� y; �zz my0 �d2 �d2 m 0; y; z �xx; y� x; z

2y0 0 C23
0 C23

0 2 x; �xx; 0 �yy; �xx; �zz my0 0 �d3 �d3 m x; x; z y; x; z
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(ii) NGðF1Þ ¼ F1. Then any two domain states Si, Sk have
different symmetry groups (stabilizers), Si 6¼ Sk , Fi 6¼ Fk, i.e.
there is a one-to-one correspondence between single-domain
states and their symmetries, Si , Fi. In this case, principal
domain states Si can be specified by their symmetries
Fi; i ¼ 1; 2; . . . ; n. The number nF of different groups conjugate
to F1 is equal to the index ½G : F1� ¼ jGj : jF1j ¼ n.

(iii) F1 � NGðF1Þ � G. Some, but not all, domain states Si, Sk
have identical symmetry groups (stabilizers) Fi ¼ Fk. The
number dF of domain states with the same symmetry group is dF
¼ ½NGðF1Þ : F1� ¼ jNGðF1Þj : jF1j [see equation (3.4.2.35)],
1< dF < n. The number nF of different groups conjugate to F1 is
equal to the index nF ¼ ½G : NGðF1Þ� ¼ jGj : jNGðF1Þj [see
equation (3.4.2.36)] and in this case 1< nF < n. It always holds
that nFdF ¼ n [see equation (3.4.2.37)].

K1j: twinning group of a domain pair (S1, Sj). This group is
defined in Section 3.4.3.2. It can be considered a colour (poly-
chromatic) group involving c colours, where c ¼ ½K1j : F1�, and is,
therefore, defined by two groups K1j and F1, and its full symbol is
K1j½F1�. In this column only K1j is given, since F1 appears in the
second column of the table.

If the group symbol of K1j contains generators with the star
symbol, ?, which signifies transposing operations of the domain
pair (S1, Sj), then the symbol K1j½F1� denotes a dichromatic
(‘black-and-white’) group signifying a completely transposable
domain pair. In this special case, just the symbol K1j containing
stars ? specifies the group F1 unequivocally.

The number in parentheses after the group symbol of K1j is
equal to the number of twinning groups K1k equivalent with
K1j.

In the continuum description, a twinning group is significant in
at least in two instances:

(1) A twinning group K1j½F1� specifies the distinction of two
domain states S1 and Sj ¼ g1jS1, where g1j 2 G (see Sections
3.4.3.2 and 3.4.3.4).

(2) A twinning group K1j½F1� may assist in signifying classes of
equivalent domain pairs (orbits of domain pairs). In most cases,
to a twinning group F1j there corresponds just one class of
equivalent domain pairs (an orbit) G(S1; Sj); then a twinning
group can represent this class of equivalent domain pairs.
Nevertheless, in some cases two or more classes of equivalent
domain pairs have a common twinning group. Then one has to
add a switching operation g1j to the twinning group, K1j½F1�ðg1jÞ
(see the end of Section 3.4.3.2). In this way, classes of equivalent
domain pairs G(S1, Sj) are denoted in synoptic Tables 3.4.2.7 and
3.4.3.6.

Twinning groups given in column K1j thus specify all G-orbits
of domain pairs. The number of G-orbits and representative
domain pairs for each orbit are determined by double cosets of
group F1 (see Section 3.4.3.2). Representative domain pairs from
each orbit of domain pairs are further analysed in synoptic Table
3.4.3.4 (non-ferroelastic domain pairs) and in synoptic Table
3.4.3.6 (ferroelastic domain pairs).

The set of the twinning groups K1j given in this column is
analogous to the concept of a complete twin defined as ‘an edifice
comprising in addition to an original crystal (domain state S1) as
many twinned crystals (domain states Sj) as there are possible
twin laws’ (see Curien & Le Corre, 1958). If a traditional defi-
nition of a twin law [‘a geometrical relationship between two
crystal components of a twin’, see Section 3.3.2 and Koch (1999);
Curien & Le Corre (1958)] is applied sensu stricto to domain
twins then one gets the following correspondence:

(i) a twin law of a non-ferroelastic domain twin is specified by
the twinning group K1j (see Section 3.4.3.3 and Table 3.4.3.4);

(ii) two twin laws of two compatible ferroelastic domain twins,
resulting from one ferroelastic single-domain pair fS1; Sjg, are
specified by two layer groups J1j associated with the twinning
group K1j of this ferroelastic single-domain pair fðS1; SjÞg (see
Section 3.4.3.4 and Table 3.4.3.6).

n: number of principal single-domain states, the finest subdi-
vision of domain states in a continuum description, n ¼

½G : F1� ¼ jGj : jF1j [see equation (3.4.2.11)].
dF : number of principal domain states with the same symmetry

group (stabilizer), dF ¼ ½NGðF1Þ : F1� ¼ jNGðF1Þj : jF1j [see
equation (3.4.2.35)]. If dF > 1, then the group F1 does not specify
the first single-domain state S1. The number nF of subgroups
conjugate with F1 is nF ¼ n : dF.

ne: number of ferroelectric single-domain states, ne ¼ ½G : C1� ¼

jGj : jC1j, where C1 is the stabilizer (in G) of the spontaneous
polarization in the first domain state S1 [see equation (3.4.2.32)].
The number de of principal domain states compatible with one
ferroelectric domain state (degeneracy of ferroelectric domain
states) equals de ¼ ½C1 : F1� ¼ jC1j : jF1j [see equation (3.4.2.33)].

Aizu’s classification of ferroelectric phases (Aizu, 1969; see
Table 3.4.2.3): ne ¼ n, fully ferroelectric; 1< ne< n, partially
ferroelectric; ne ¼ 1, non-ferroelectric, the parent phase is polar
and the spontaneous polarization in the ferroic phase is the same
as in the parent phase; ne ¼ 0, non-ferroelectric, parent phase is
non-polar.

na: number of ferroelastic single-domain states, na ¼ ½G : A1�

¼ jGj : jA1j, where A1 is the stabilizer (in G) of the spontaneous
strain in the first domain state S1 [see equation (3.4.2.28)]. The
number da of principal domain states compatible with one
ferroelastic domain state (degeneracy of ferroelastic domain
states) is given by da ¼ ½A1 : F1� ¼ jA1j : jF1j [see equation
(3.4.2.29)].

Aizu’s classification of ferroelastic phases (Aizu, 1969; see
Table 3.4.2.3): na ¼ n, fully ferroelastic; 1< na< n, partially
ferroelastic; ne ¼ 1, non-ferroelastic.

Example 3.4.2.5. Orthorhombic phase of perovskite crystals. The
parent phase has symmetry G ¼ m�33m and the symmetry of the
ferroic orthorhombic phase is F1 ¼ mx�yy2xymz. In Table 3.4.2.7, we
find that n ¼ ne, i.e. the phase is fully ferroelectric. Then we can
associate with each principal domain state a spontaneous polar-
ization. In column K1j there are four twinning groups. As
explained in Section 3.4.3, these groups represent four ‘twin laws’
that can be characterized by the angle between the spontaneous
polarization in single-domain state S1 and Sj, j ¼ 2; 3; 4; 5. If we
choose P

ð1Þ
ðsÞ along the direction [110] (F1 does not specify

unambiguously this direction, since dF ¼ 2!), then the angles
between P

ð1Þ
ðsÞ and P

ðjÞ
ðsÞ, representing the ‘twin law’ for these

four twinning groups m�33mðmzxÞ, m�33mð2zxÞ, 4z=mzmxmxy,
mx�yym

?
xymz, are, respectively, 60, 120, 90 and 180�.

3.4.2.5. Basic (microscopic) domain states and their partition into
translation subsets

The examination of principal domain states performed in the
continuum approach can be easily generalized to a microscopic
description. Let us denote the space-group symmetry of the
parent (high-symmetry) phase by G and the space group of the
ferroic (low-symmetry) phase by F 1, which is a proper subgroup
of G, F 1 � G. Further we denote by S1 a basic (microscopic) low-
symmetry structure described by positions of atoms in the unit
cell. The stabilizer IG(S1) of the basic structure S1 in a single-
domain orientation is equal to the space group F 1 of the ferroic
(low-symmetry) phase,

IGðS1Þ ¼ F 1: ð3:4:2:41Þ

By applying a lost symmetry operation gj on S1, one gets a
crystallographically equivalent low-symmetry basic structure Sj,

gjS1 ¼ Sj 6¼ S1; gj 2 G; gj 62 F 1: ð3:4:2:42Þ

We may recall that gj is a space-group symmetry operation
consisting of a rotation (point-group operation) gj and a non-
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Table 3.4.2.7. Group–subgroup symmetry descents G � F1

G: point-group symmetry of parent phase; F1: point-group symmetry of single-domain state S1; ��: representation of G; NGðF1Þ: normalizer of F1 in G; K1j: twinning
groups; n: number of principal single-domain states; dF : number of principal domain states with the same symmetry; ne: number of ferroelectric single-domain states; na:
number of ferroelastic single-domain states.

G F1 �� NGðF1Þ K1j n dF ne na

�11 1 Au
�11 �11? 2 2 2 1

2u† 1 B 2u 2?u 2 2 2 2

mu† 1 A0 0 mu m?
u 2 2 2 2

2u=mu† mu Bu 2u=mu 2?u=mu 2 2 2 1

2u Au 2u=mu 2u=m
?
u 2 2 2 1

�11 Bg 2u=mu 2?u=m
?
u 2 2 0 2

1 Reducible 2u=mu m?
u, 2

?
u, �11

? 4 4 4 2

2x2y2z 2z B1g 2x2y2z 2?x2
?
y2z 2 2 2 2

2x B3g 2x2y2z 2x2
?
y2
?
z 2 2 2 2

2y B2g 2x2y2z 2?x2y2
?
z 2 2 2 2

1 Reducible 2x2y2z 2?z, 2
?
x, 2

?
y 4 4 4 4

mxmy2z mx B2 mxmy2z mxm
?
y2
?
z 2 2 2 2

my B1 mxmy2z m?
xmy2

?
z 2 2 2 2

2z A2 mxmy2z m?
xm

?
y2z 2 2 1 2

1 Reducible mxmy2z m?
x, m

?
y, 2

?
z 4 2 4 4

mxmymz mxmy2z B1u mxmymz mxmym
?
z 2 2 2 1

2xmymz B3u mxmymz m?
xmymz 2 2 2 1

mx2ymz B2u mxmymz mxm
?
ymz 2 2 2 1

2x2y2z A1u mxmymz m?
xm

?
ym

?
z 2 2 0 1

2z=mz B1g mxmymz m?
xm

?
ymz 2 2 0 2

2x=mx B3g mxmymz mxm
?
ym

?
z 2 2 0 2

2y=my B2g mxmymz m?
xmym

?
z 2 2 0 2

mz Reducible mxmymz 2?xm
?
ymz, m

?
x2
?
ymz, 2

?
z=mz 4 4 4 2

mx Reducible mxmymz mxm
?
y2
?
z, mx2

?
ym

?
z, 2

?
x=mx 4 4 4 2

my Reducible mxmymz m?
xmy2

?
z, 2

?
xmym

?
z, 2

?
y=my 4 4 4 2

2z Reducible mxmymz m?
xm

?
y2z, 2

?
x2
?
y2z, 2z=m

?
z 4 4 2 2

2x Reducible mxmymz 2xm
?
ym

?
z, 2x2

?
y2
?
z, 2x=m

?
x 4 4 2 2

2y Reducible mxmymz m?
x2ym

?
z, 2

?
x2y2

?
z, 2y=m

?
y 4 4 2 2

�11 Reducible mxmymz 2?z=m
?
z, 2

?
x=m

?
x, 2

?
y=m

?
y 4 4 0 4

1 Reducible mxmymz m?
z, m

?
x, m

?
y, 2

?
z, 2

?
x, 2

?
y, �11

? 8 8 8 4

4z 2z B 4z 4?z 2 2 1 2

1 1E	2 E 4z 4z; 2
?
z 4 4 4 4

�44z 2z B �44z �44?z 2 2 2 2

1 1E	2 E �44z �44z; 2
?
z 4 2 4 4

4z=mz
�44z Bu 4z=mz 4?z=m

?
z 2 2 0 1

4z Au 4z=mz 4z=m
?
z 2 2 2 1

2z=mz Bg 4z=mz 4?z=mz 2 2 0 2

mz
1Eu 	

2 Eu 4z=mz 4z=mz, 2
?
z=mz 4 4 4 2

2z Reducible 4z=mz
�44?z, 4

?
z, 2z=m

?
z 4 4 2 2

�11 1Eg 	
2 Eg 4z=mz 4z=mz, 2

?
z=m

?
z 4 4 0 4

1 Reducible 4z=mz
�44z, 4z, m

?
z, 2

?
z, �11

? 8 8 8 4

4z2x2xy 4z A2 4z2x2xy 4z2
?
x2
?
xy 2 2 2 1

2x�yy2xy2z B2 4z2x2xy 4?z2
?
x2xy 2 2 0 2

2x2y2z B1 4z2x2xy 4?z2x2
?
xy 2 2 0 2

2xy ð2x�yyÞ E 2x�yy2xy2z 4z2x2xy, 2
?
x�yy2xy2

?
z 4 2 2 2

2z Reducible 4z2x2xy 4?z, 2
?
x2
?
y2z, 2

?
x�yy2

?
xy2z 4 4 2 2

2x ð2yÞ E 2x�yy2xy2z 4z2x2xy, 2x2
?
y2
?
z 4 2 2 2

1 E 4z2x2xy 4z, 2
?
z, 2

?
xð2Þ, 2

?
xyð2Þ 8 8 8 8

4zmxmxy 4z A2 4zmxmxy 4zm
?
xm

?
xy 2 2 1 1

mx�yymxy2z B2 4zmxmxy 4?zm
?
xmxy 2 2 1 2

mxmy2z B1 4zmxmxy 4?zmxm
?
xy 2 2 1 2

mxy ðmx�yyÞ E mx�yymxy2z 4zmxmxy, m
?
x�yymxy2

?
z 4 2 4 4

mx ðmyÞ E mxmy2z 4zmxmxy, mxm
?
y2
?
z 4 2 4 4

2z Reducible 4zmxmxy 4?z, m
?
xm

?
y2z, m

?
x�yym

?
xy2z 4 4 2 2

1 E 4zmxmxy 4z, m
?
xð2Þ, m

?
xyð2Þ, 2

?
z 8 8 8 8

† u ¼ x, y, z, xy, yz, zx, x�yy, y�zz, z�xx, x0 , x0 0 , y0 , y0 0 .
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Table 3.4.2.7 (cont.)

G F1 �� NGðF1Þ K1j n dF ne na

�44z2xmxy
�44z A2

�44z2xmxy
�44z2

?
xm

?
xy 2 2 0 1

mx�yymxy2z B2
�44z2xmxy

�44?z2
?
xmxy 2 2 2 2

2x2y2z B1
�44z2xmxy

�44?z2xm
?
xy 2 2 0 2

mxy ðmx�yyÞ E mx�yymxy2z �44z2xmxy, m
?
x�yymxy2

?
z 4 2 4 4

2z Reducible �44z2xmxy
�44?z, m

?
x�yym

?
xy2z, 2

?
x2
?
y2z 4 4 2 2

2x ð2yÞ E 2x2y2z �44z2xmxy, 2x2
?
y2
?
z 4 2 4 4

1 E �44z2xmxy
�44z, m

?
xyð2Þ, 2

?
z, 2

?
xð2Þ 8 8 8 8

�44zmx2xy �44z A2
�44zmx2xy �44zm

?
x2
?
xy 2 2 0 1

mxmy2z B2
�44zmx2xy �44?zmx2

?
xy 2 2 2 2

2x�yy2xy2z B1
�44zmx2xy �44?zm

?
x2xy 2 2 0 2

mx ðmyÞ E mxmy2z �44zmx2xy, mxm
?
y2
?
z 4 2 4 4

2xy ð2x�yyÞ E 2x�yy2xy2z �44zmx2xy, 2
?
x�yy2xy2

?
z 4 2 4 4

2z Reducible �44zmx2xy �44?z, m
?
xm

?
y2z, 2

?
x�yy2

?
xy2z 4 4 2 2

1 E �44zmx2xy �44z, m
?
xð2Þ, 2

?
xyð2Þ, 2

?
z 8 8 8 8

4z=mzmxmxy
�44zmx2xy B2u 4z=mzmxmxy 4?z=m

?
zmxm

?
xy 2 2 0 1

�44z2xmxy B1u 4z=mzmxmxy 4?z=m
?
zm

?
xmxy 2 2 0 1

4zmxmxy A2u 4z=mzmxmxy 4?z=m
?
zmxmxy 2 2 2 1

4z2x2xy A1u 4z=mzmxmxy 4?z=m
?
zm

?
xmxy 2 2 0 1

4z=mz A2g 4z=mzmxmxy 4?z=mzm
?
xm

?
xy 2 2 0 1

�44z Reducible 4z=mzmxmxy
�44z2

?
xm

?
xy, �44zm

?
x2
?
xy, 4

?
z=m

?
z 4 4 0 1

4z Reducible 4z=mzmxmxy 4zm
?
xm

?
xy, 4z2

?
x2
?
xy, 4z=m

?
z 4 4 2 1

mx�yymxymz B2g 4z=mzmxmxy 4?z=mzm
?
xmxy 2 2 0 2

mxmymz B1g mxmymz 4?z=mzmxm
?
xy 2 2 0 2

2x�yymxymz ðmx�yy2xymzÞ Eu mx�yymxymz 4z=mzmxmxy, m
?
x�yymxymz 4 2 4 2

2xmymz ðmx2ymzÞ Eu mxmymz 4z=mzmxmxy, m
?
xmymz 4 2 4 2

mx�yymxy2z Reducible 4z=mzmxmxy
�44?z2

?
xmxy, 4

?
zm

?
xmxy, mx�yymxym

?
z 4 4 2 2

mxmy2z Reducible 4z=mzmxmxy
�44?zmx2

?
xy, 4

?
zmxm

?
xy, mxmym

?
z 4 4 2 2

2x�yy2xy2z Reducible 4z=mzmxmxy
�44?zm

?
x2xy, 4

?
z2
?
x2xy, m

?
x�yym

?
xym

?
z 4 4 0 2

2x2y2z Reducible 4z=mzmxmxy
�44?z2xm

?
xy, 4

?
z2x2

?
xy, m

?
xm

?
ym

?
z 4 4 0 2

2xy=mxy ð2x�yy=mx�yyÞ Eg mx�yymxymz 4z=mzmxmxy, m
?
x�yymxym

?
z 4 2 0 4

2z=mz Reducible 4z=mzmxmxy 4?z=mz, m
?
x�yym

?
xymz, m

?
xm

?
ymz 4 4 0 4

2x=mx ð2y=myÞ Eg mxmymz 4z=mzmxmxy, mxm
?
ym

?
z 4 2 0 4

mxyðmx�yyÞ Reducible mx�yymxymz
�44z2xmxy, 4zmxmxy, 2

?
x�yymxym

?
z, m

?
x�yymxy2

?
z,

2?xy=mxy

8 4 8 4

mz Reducible 4z=mzmxmxy 4z=mz, 2
?
x�yym

?
xymzð2Þ, 2

?
xm

?
ymzð2Þ, 2

?
z=mz 8 8 8 4

mx ðmyÞ Reducible mxmymz
�44zmx2xy, 4zmxmxy, mxm

?
y2
?
z, mx2

?
ym

?
z,

2?x=mx

8 4 8 4

2xy ð2x�yyÞ Reducible mx�yymxymz
�44zmx2xy, 4z2x2xy, m

?
x�yy2xym

?
z, 2

?
x�yy2xy2

?
z,

2xy=m
?
xy

8 4 8 4

2z Reducible 4z=mzmxmxy
�44?z, 4

?
z, m

?
xm

?
y2z, m

?
x�yym

?
xy2z, 2

?
x2
?
y2z,

2?x�yy2
?
xy2z, 2z=m

?
z

8 8 2 4

2x ð2yÞ Reducible mxmymz
�44z2xmxy, 4z2x2xy, 2xm

?
ym

?
z, 2x2

?
y2
?
z, 2x=m

?
x 8 4 4 4

�11 Eg 4z=mzmxmxy 4z=mz, 2
?
xy=m

?
xyð2Þ, 2

?
z=m

?
z, 2

?
x=m

?
xð2Þ 8 8 0 8

1 Reducible 4z=mzmxmxy
�44z, 4z, m

?
xyð2Þ, m

?
z, m

?
xð2Þ, 2

?
xyð2Þ, 2

?
z, 2

?
xð2Þ,

�11?
16 16 16 8

3z 1 E 3z 3z 3 3 3 3

�33z 3z Au
�33z �33?z 2 2 2 1

�11 Eg
�33z �33z 3 3 0 3

1 Eu
�33z �33z, 3z, �11

? 6 6 6 3

3z2x 3z A2 3z2x 3z2
?
x 2 2 2 1

2x ð2x0 , 2x00 Þ E 2x 3z2x 3 1 3 3

1 E 3z2x 3z; 2
?
xð3Þ 6 6 6 6

3z2y 3z A2 3z2y 3z2
?
y 2 2 2 1

2y ð2y0 , 2y00 Þ E 2y 3z2y 3 1 3 3

1 E 3z2y 3z, 2
?
yð3Þ 6 6 6 6

3zmx 3z A2 3zmx 3zm
?
x 2 2 1 1

mx ðmx0 , mx0 0 Þ E mx 3zmx 3 1 3 3

1 E 3zmx 3z, m
?
xð3Þ 6 6 6 6

3zmy 3z A2 3zmy 3zm
?
y 2 2 1 1

my ðmy0 , my0 0 Þ E my 3zmy 3 1 3 3

1 E 3zmy 3z, m
?
yð3Þ 6 6 6 6
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Table 3.4.2.7 (cont.)

G F1 �� NGðF1Þ K1j n dF ne na

�33zmx 3zmx A2u
�33zmx

�33?zmx 2 2 2 1

3z2x A1u
�33zmx

�33?zm
?
x 2 2 0 2

�33z A2g
�33zmx

�33zm
?
x 2 2 0 1

3z Reducible �33zmx 3zm
?
x, 3z2

?
x, �33

?
z 4 4 2 1

2x=mx ð2x0=mx0 , 2x0 0=mx0 0 Þ Eg 2x=mx
�33zmx 3 1 0 3

mx ðmx0 , mx0 0 Þ Eu 2x=mx
�33zmx, 3zmx, 2

?
x=mxð3Þ 6 2 6 3

2x ð2x0 , 2x0 0 Þ Eu 2x=mx
�33zmx, 3z2x, 2x=m

?
xð3Þ 6 2 6 3

�11 Eg
�33zmx

�33z, 2
?
x=m

?
xð3Þ 6 6 0 6

1 Eu
�33zmx

�33z, 3z, m
?
xð3Þ, 2

?
xð3Þ, �11

? 12 12 12 6

�33zmy 3zmy A2u
�33zmy

�33?zmy 2 2 2 1

3z2y A1u
�33zmy

�33?zm
?
y 2 2 0 1

�33z A2g
�33zmy

�33zm
?
y 2 2 0 1

3z Reducible �33zmy 3zm
?
y, 3z2

?
y, �33

?
z 4 4 0 1

2y=my ð2y0=my0 , 2y0 0=my0 0 Þ Eg 2y=my
�33zmy 3 1 2 1

my ðmy0 , my0 0 Þ Eu 2y=my
�33zmy, 3zmy, 2

?
y=myð3Þ 6 2 0 3

2y ð2y0 , 2y0 0 Þ Eu 2y=my
�33zmy, 3z2y, 2y=m

?
yð3Þ 6 2 6 3

�11 Eg
�33zmy

�33z, 2
?
y=m

?
yð3Þ 6 6 0 3

1 Eu
�33zmy

�33z, 3z, m
?
yð3Þ, 2

?
yð3Þ, �11

? 12 12 12 6

6z 3z B 6z 6?z 2 2 1 1

2z E2 6z 6z 3 3 1 3

1 E1 6z 6z, 3z, 2
?
z 6 6 6 6

�66z 3z A0 0 �66z �66?z 2 2 2 1

mz E0 �66z �66z 3 2 3 3

1 E0 0 �66z �66z, 3z, m
?
z 6 6 6 6

6z=mz
�66z Bu 6z=mz 6?z=mz 2 2 0 1

6z Au 6z=mz 6z=m
?
z 2 2 2 1

�33z Bg 6z=mz 6?z=m
?
z 2 2 0 1

3z Reducible 6z=mz
�66?z, 6

?
z, �33

?
z 4 4 2 1

2z=mz E2g 6z=mz 6z=mz 3 3 0 3

mz E1u 6z=mz 6z=mz, �66z, 2
?
z=mz 6 6 6 3

2z E2u 6z=mz 6z=mz, 6z, 2z=m
?
z 6 6 2 3

�11 E1g 6z=mz 6z=mz, �33z, 2
?
z=m

?
z 6 6 0 6

1 Reducible 6z=mz
�66z, 6z, �33z, 3z, m

?
z, 2

?
z, �11

? 12 12 12 6

6z2x2y 6z A2 6z2x2y 6z2
?
x2
?
y 2 2 2 1

3z2x B1 6z2x2y 6?z2x2
?
y 2 2 0 1

3z2y B2 6z2x2y 6?z2
?
x2y 2 2 0 1

3z Reducible 6z2x2y 6?z, 3z2
?
x, 3z2

?
y 4 4 2 1

2x2y2z ð2x02y02z, 2x0 02y0 02zÞ E2 2x2y2z 6z2x2y 3 1 0 3

2z E2 6z2x2y 6z, 2
?
x2
?
y2zð3Þ 6 6 2 6

2x ð2x0 , 2x0 0 Þ E1 2x2y2z 6z2x2y, 3z2x, 2x2
?
y2
?
z 6 2 6 6

2y ð2y0 , 2y0 0 Þ E1 2x2y2z 6z2x2y, 3z2y, 2
?
x2y2

?
z 6 2 6 6

1 E1 6z2x2y 6z, 3z, 2
?
z, 2

?
xð3Þ, 2

?
yð3Þ 12 12 12 12

6zmxmy 6z A2 6zmxmy 6zm
?
xm

?
y 2 2 1 1

3zmx B2 6zmxmy 6?zmxm
?
y 2 2 1 1

3zmy B1 6zmxmy 6?zm
?
xmy 2 2 1 1

3z Reducible 6zmxmy 6?z, 3zm
?
x, 3zm

?
y 4 4 1 1

mxmy2z ðmx0my02z, mx0 0my0 02zÞ E2 mxmy2z 6zmxmy 3 1 1 3

mx ðmx0 , mx0 0 Þ E1 mxmy2z 6zmxmy, 3zmx, mxm
?
y2
?
z 6 2 6 6

my ðmy0 , my0 0 Þ E1 mxmy2z 6zmxmy, 3zmy, m
?
xmy2

?
z 6 2 6 6

2z E2 6zmxmy 6z, m
?
xm

?
y2zð3Þ 6 6 1 6

1 E1 6zmxmy 6z, 3z, 2
?
z, m

?
xð3Þ, m

?
yð3Þ 12 12 12 12

�66zmx2y �66z A2
0 �66zmx2y �66zm

?
x2
?
y 2 2 0 1

3zmx A2
0 0 �66zmx2y �66?zmx2

?
y 2 2 2 1

3z2y A1
0 �66zmx2y �66?zm

?
x2y 2 2 0 1

3z Reducible �66zmx2y �66?z, 3zm
?
x, 3z2

?
y 4 4 2 1

mx2ymz ðmx02y0mz, mx0 02y0 0mzÞ E0 mx2ymz
�66zmx2y 3 1 3 3

mz E0 �66zmx2y �66z;m
?
x2
?
ymzð3Þ 6 6 6 6

mx ðmx0 , mx0 0 Þ E0 0 my2ymz
�66zmx2y, 3zmx, mx2

?
ym

?
z 6 2 6 6

2y ð2y0 , 2y0 0 Þ E0 0 mx2ymz
�66zmx2y, 3z2y, m

?
x2ym

?
z 6 2 3 6

1 E0 0 �66zmx2y �66z, 3z, m
?
z, m

?
xð3Þ, 2

?
yð3Þ 12 12 12 12
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Table 3.4.2.7 (cont.)

G F1 �� NGðF1Þ K1j n dF ne na

�66z2xmy
�66z A2

0 �66z2xmy
�66z2

?
xm

?
y 2 2 0 1

3zmy A2
0 �66z2xmy

�66?z2
?
xmy 2 2 2 1

3z2x A1
0 0 �66z2xmy

�66?z2xm
?
y 2 2 0 1

3z Reducible �66z2xmy
�66?z, 3zm

?
y, 3z2

?
x 4 4 2 1

2xmymz ð2x0my0mz, 2x0 0my0 0mzÞ E0 mx2ymz
�66z2xmy 3 1 3 3

mz E0 �66z2xmy
�66z, 2

?
xm

?
ymzð3Þ 6 6 6 6

my ðmy0 , my0 0 Þ E0 0 mx2ymz
�66z2xmy, 3zmy, 2

?
xmym

?
z 6 2 6 6

2x ð2x0 , 2x0 0 Þ E0 0 mx2ymz
�66z2xmy, 3z2x, 2xm

?
ym

?
z 6 2 3 6

1 E0 0 �66z2xmy
�66z, 3z, m

?
z, m

?
yð3Þ, 2

?
xð3Þ 12 12 12 12

6z=mzmxmy
�66zmx2y B2u 6z=mzmxmy 6?z=mzmxm

?
y 2 2 0 1

�66z2xmy B1u 6z=mzmxmy 6?z=mzm
?
xmy 2 2 0 1

6zmxmy A2u 6z=mzmxmy 6z=m
?
zmxmy 2 2 2 1

6z2x2y A1u 6z=mzmxmy 6z=m
?
zm

?
xm

?
y 2 2 0 1

6z=mz A2g 6z=mzmxmy 6z=mzm
?
xm

?
y 2 2 0 1

�66z Reducible 6z=mzmxmy
�66zm

?
x2
?
y, �66z2

?
xm

?
y, 6

?
z=mz 4 4 0 1

6z Reducible 6z=mzmxmy 6zm
?
xm

?
y, 6z2

?
x2
?
y, 6z=m

?
z 4 4 2 1

�33zmx B1g 6z=mzmxmy 6?z=m
?
zmxm

?
y 2 2 0 1

�33zmy B2g 6z=mzmxmy 6?z=m
?
zm

?
xmy 2 2 0 1

3zmx Reducible 6z=mzmxmy
�66?zmx2

?
y, 6

?
zmxm

?
y, �33

?
zmx 4 4 2 1

3zmy Reducible 6z=mzmxmy
�66?z2

?
xmy, 6

?
zm

?
xmy, �33

?
zmy 4 4 2 1

3z2x Reducible 6z=mzmxmy
�66?z2xm

?
y, 6

?
z2x2

?
y, �33

?
zm

?
x 4 4 0 1

3z2y Reducible 6z=mzmxmy
�66?zm

?
x2y, 6

?
z2
?
x2y, �33

?
zm

?
y 4 4 0 1

�33z Reducible 6z=mzmxmy 6?z=m
?
z, �33zm

?
x, �33zm

?
y 4 4 0 1

3z Reducible 6z=mzmxmy
�66?z, 6

?
z, 3zm

?
x, 3zm

?
y, 3z2

?
x, 3z2

?
y, �33

?
z 8 8 2 1

mxmymz ðmx0my0mz, mx0 0my0 0mzÞ E2g mxmymz 6z=mzmxmy 3 1 0 3

mxmy2z ðmx0my02z, mx0 0my0 02zÞ E2u mxmymz 6z=mzmxmy, 6zmxmy, mxmym
?
z 6 2 2 3

2xmymz ð2x0my0mz, 2x0 0my0 0mzÞ E1u mxmymz 6z=mzmxmz, �66z2xmy, m
?
xmymz 6 2 6 3

mx2ymz ðmx02y0mz, mx0 02y0 0mzÞ E1u mxmymz 6z=mzmxmz, �66zmx2y, mxm
?
ymz 6 2 6 3

2x2y2z ð2x02y02z, 2x0 02y0 02zÞ E2u mxmymz 6z=mzmxmy, 6z2x2y, m
?
xm

?
ym

?
z 6 6 0 3

2z=mz E2g 6z=mzmxmy 6z=mz, m
?
xm

?
ymzð3Þ 6 6 0 6

2x=mx ð2x0=mx0 , 2x0 0=mx0 0 Þ E1g mxmymz 6z=mzmxmy, �33zmx, mxm
?
ym

?
z 6 2 0 6

2y=my ð2y0=my0 , 2y0 0=my0 0 Þ E1g mxmymz 6z=mzmxmy, �33my, m
?
xmym

?
z 6 2 0 6

mz E1u 6z=mzmxmy 6z=mz, �66z, 2
?
xm

?
ymz, m

?
x2
?
ymz, 2

?
z=mz 12 12 12 6

mx ðmx0 , mx0 0 Þ Reducible mxmymz
�66zmx2y, 6zmxmy, �33zmx, 3zmx, mxm

?
y2
?
z,

mx2
?
ym

?
z, 2

?
x=mx

12 4 12 6

my ðmy0 , my0 0 Þ Reducible mxmymz
�66z2xmy, 6zmxmy, �33zmy, 3zmy, m

?
xmy2

?
z,

2?xmym
?
z, 2

?
y=my

12 4 12 6

2z E2u 6z=mzmxmy 6z=mz, 6z, m
?
xm

?
y2zð3Þ, 2

?
x2
?
y2zð3Þ, 2z=m

?
z 12 12 2 6

2x ð2x0 , 2x0 0 Þ Reducible mxmymz
�66z2xmy, 6z2x2y, �33zmx, 3z2x, 2xm

?
ym

?
z,

2x2
?
y2
?
z, 2x=m

?
x

12 4 6 6

2y ð2y0 , 2y0 0 Þ Reducible mxmymz
�66zmx2y, 6z2x2y, �33zmy, 3z2y, m

?
x2ym

?
z,

2?x2y2
?
z, 2y=m

?
y

12 4 6 6

�11 E1g 6z=mzmxmy 6z=mz, �33z, 2
?
z=m

?
z, 2

?
x=m

?
xð3Þ, 2

?
y=m

?
yð3Þ 12 12 0 12

1 Reducible 6z=mzmxmy
�66z, 6z, �33z, 3z, m

?
z, m

?
xð3Þ, m

?
yð3Þ, 2

?
z, 2

?
xð3Þ,

2?yð3Þ, �11
?

24 24 24 12

23 3p ð3q, 3r, 3sÞ T 3p 23 4 1 4 4

2x2y2z E 23 23 3 3 0 3

2z ð2x, 2yÞ T 2x2y2z 23, 2?x2
?
y2z 6 2 6 6

1 T 23 3pð4Þ, 2
?
zð3Þ 12 12 12 12

m�33 23 Au m�33 m? �33? 2 2 0 1
�33p ð�33q, �33r, �33sÞ Tg

�33p m�33 4 1 0 4

3p ð3q, 3r, 3sÞ Tu
�33p m�33; 23 8 2 8 4

mxmymz Eg m�33 m�33 3 3 0 3

mxmy2z ð2xmymz, mx2ymzÞ Tu mxmymz m�33;mxmym
?
z 6 2 6 3

2x2y2z Eu m�33 m�33, 23, m?
xm

?
ym

?
z 6 6 0 3

2z=mz ð2x=mx, 2y=myÞ Tg mxmymz m�33, m?
xm

?
ymz 6 2 0 6

mz ðmx, myÞ Reducible mxmymz m�33, 2?xm
?
ymz, m

?
x2
?
ymz, 2

?
z=mz 12 4 12 6

2z ð2x, 2yÞ Reducible mxmymz m�33, 23, m?
xm

?
y2z, 2

?
x2
?
y2z, 2z=m

?
z 12 4 6 6

�11 Tg m�33 �33pð4Þ, 2
?
z=m

?
zð3Þ 12 12 0 12

1 Tu m�33 �33pð4Þ, 3pð4Þ, m
?
zð3Þ, 2

?
zð3Þ, �11

? 24 24 24 12
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Table 3.4.2.7 (cont.)

G F1 �� NGðF1Þ K1j n dF ne na

432 23 A2 432 4?32? 2 2 0 1

3p2x�yy ð3q2x�yy, 3r2xy, 3s2xyÞ T2 3p2x�yy 432 4 1 0 4

3p ð3q, 3r, 3sÞ T1 3p2x�yy 23, 3p2
?
x�yy 8 2 8 4

4z2x2xy ð4x2y2yz, 4y2z2xzÞ E 4z2x2xy 432 3 1 0 3

4z ð4x, 4yÞ T1 4z2x2xy 432, 4z2
?
x2
?
xy 6 2 6 3

2x2y2z E 432 23, 4?z2x2
?
xy 6 6 0 6

2x�yy2xy2z ð2y�zz2yz2x, 2z�xx2zx2yÞ T2 4z2x2xy 432, 4?z2
?
x2xy 6 2 0 6

2z ð2x, 2yÞ Reducible 4z2x2xy 23, 4y2z2xy, 4
?
z, 2

?
x�yy2

?
xy2z, 2

?
x2
?
y2z 12 4 6 12

2xy ð2yz, 2zx, 2x�yy, 2y�zz, 2z�xxÞ T1, T2 2x�yy2xy2z 432, 3r2xy, 3s2xy, 4z2x2xy, 2x�yy2
?
xy2

?
z 12 2 12 12

1 T1, T2 432 3pð4Þ, 4zð3Þ, 2
?
zð3Þ, 2

?
xyð6Þ 24 24 24 24

�443m 23 A2
�443m �44?3m? 2 2 0 1

3pmx�yy ð3qmx�yy, 3rmxy, 3smxyÞ T2 3pmx�yy
�443m 4 1 4 4

3p ð3q, 3r, 3sÞ T1 3pmx�yy
�443m, 23, 3pm

?
x�yy 8 2 4 4

�44z2xmxy ð
�44x2ymyz, �44y2zmzxÞ E �44z2xmx�yy

�443m 3 1 0 3

�44z ð�44x; �44yÞ T1
�44z2xmx�yy

�443m, �44z2
?
xm

?
xy 6 2 0 3

mx�yymxy2z ðmy�zzmyz2x, mz�xxmzx2yÞ T2
�44z2xmx�yy

�443m, �44?z2
?
xmxy 6 2 6 6

2x2y2z E �443m 23; �44?z2xm
?
xy 6 6 0 6

mxy ðmyz, mzx, mx�yy, my�zz, mz�xxÞ T1;T2 mx�yymxy2z �443m, 3rmxy, 3smxy, �44z2xmxy, m
?
x�yymxy2

?
z 12 2 12 12

2z ð2x, 2yÞ Reducible �44z2xmxy 23, �44?z, 4
?
z, m

?
x�yym

?
xy2z, 2

?
x2
?
y2z 12 4 6 12

1 T1, T2
�443m 3pð4Þ, �44zð3Þ, m

?
xyð6Þ, 2

?
zð3Þ 24 24 24 24

m�33m �443m A2u m�33m m? �33?m 2 2 0 1

432 A1u m�33m m? �33?m? 2 2 0 1

m�33 A2g m�33m m�33m? 2 2 0 1

23 Reducible m�33m �44?3m?, 4?32?, m?
z
�33p 4 4 0 1

�33pmx�yy ð
�33qmx�yy, �33rmxy, �33smxyÞ T2g

�33pmx�yy m�33m 4 1 0 4

3pmx�yy ð3qmx�yy, 3rmxy, 3smxyÞ T1u
�33pmx�yy m�33m, �443m, �33?pmx�yy 8 2 8 4

3p2x�yy ð3q2x�yy, 3r2xy, 3s2xyÞ T2u
�33pmx�yy m�33m, 432, �33?pmx�yy 8 2 0 4

�33p ð�33q, �33r, �33sÞ T1g
�33pmx�yy m�33m, m�33, �33pm

?
x�yy 8 2 0 4

3p ð3q, 3r, 3sÞ Reducible �33pmx�yy
�443m, 432, m�33, 23, 3pm

?
x�yy, 3p2

?
x�yy, �33

?
p 16 4 8 4

4z=mzmxmxy ð4x=mxmymyz,
4y=mymzmzxÞ

Eg 4z=mzmxmxy m�33m 3 1 0 3

�44z2xmxy ð
�44x2ymyz, �44y2zmzxÞ Eu 4z=mzmxmxy m�33m, �443m, 4?z=m

?
zm

?
xmxy 6 2 0 3

�44zmx2xy ð�44xmy2yz, �44ymz2zxÞ T2u 4z=mzmxmxy m�33m, 4?z=m
?
zmxm

?
xy 6 2 0 3

4zmxmxy ð4xmymyz, 4ymzmzxÞ T1u 4z=mzmxmxy m�33m, 4z=m
?
zmxmxy 6 2 6 3

4z2x2xy ð4x2y2yz, 4y2z2zxÞ Eu 4z=mzmxmxy m�33m, 432, 4z=m
?
zm

?
xm

?
xy 6 2 0 3

4z=mz ð4x=mx, 4y=myÞ T1g 4z=mzmxmxy m�33m, 4z=mzm
?
xm

?
xy 6 2 0 3

�44z ð�44x, �44yÞ Reducible 4z=mzmxmxy m�33m, �443m, �44z2
?
xm

?
xy, �44zm

?
x2
?
xy, 4

?
z=m

?
z 12 4 0 3

4z ð4x, 4yÞ Reducible 4z=mzmxmxy m�33m, 432, 4zm
?
xm

?
xy, 4z2

?
x2
?
xy, 4z=m

?
z 12 4 6 3

mxmymz Eg m�33m m�33, 4?z=mzmxm
?
xy 6 6 0 6

mx�yymxymz ðmy�zzmyzmx,
mz�xxmzxmyÞ

T2g 4z=mzmxmxy m�33m, 4?z=mzmxm
?
xy 6 2 0 6

mxmy2z ð2xmymz, mx2ymzÞ Reducible 4z=mzmxmxy m�33, 4y=mymzmzx, �44
?
zmx2

?
xy, 4

?
zmxm

?
xy,

mxmym
?
z

12 4 6 6

mx�yymxy2z ðmy�zzmyz2x, mz�xxmzx2yÞ Reducible 4z=mzmxmxy m�33m, �443m, �44?z2
?
xmxy, 4

?
zm

?
xmxy, mx�yymxym

?
z 12 4 6 6

mx�yy2xymz ðmy�zz2yzmx, mz�xx2zxmy,
2x�yymxymz, 2y�zzmyzmx,
2z�xxmzxmyÞ

T1u, T2u mx�yymxymz m�33mðmzxÞ, m�33mð2zxÞ, 4z=mzmxmxy,
mx�yym

?
xymz

12 2 12 6

2x2y2z Eu m�33m m�33, 23, �44?z2xm
?
xy, 4

?
z2x2

?
xy, m

?
xm

?
ym

?
z 12 12 0 6

2x�yy2xy2z ð2y�zz2yz2x, 2z�xx2zx2yÞ Eu 4z=mzmxmxy m�33m, 432, �44zm
?
x2xy, 4

?
z2
?
x2xy, m

?
x�yym

?
xym

?
z 12 4 0 6

2z=mz ð2x=mx; 2y=myÞ Reducible 4z=mzmxmx�yy m�33, 4y=mymzmzx, 4
?
z=mz, m

?
xm

?
ymz,

m?
x�yym

?
xymz

12 4 0 12

2xy=mxy ð2yz=myz, 2zx=mzx,
2x�yy=mx�yy, 2y�zz=my�zz, 2z�xx=mz�xxÞ

T1g, T2g mx�yymxymz m�33m, �33rmxyð2Þ, 4z=mzmxmxy, m
?
x�yymxym

?
z 12 2 0 12

mz ðmx, myÞ T1u, T2u 4z=mzmxmx�yy m�33, �44xmz2yz, 4ymzmzx, 4z=mz, 2
?
xm

?
ymzð2Þ,

m?
x�yy2

?
xymzð2Þ, 2

?
z=mz

24 8 24 12

mxy ðmyz, mzx, mx�yy, my�zz, mz�xxÞ T1u mx�yymxymz m�33m, �443m, �44z2xmxy, 4zmxmxy, �33rmxy,
�33smxy, 3rmxy, 3smxy, m

?
x�yymxy2

?
z, 2

?
xy=mxy

24 4 24 12

2z ð2x, 2yÞ Reducible 4z=mzmxmx�yy m�33, 23, �44y2zmzx, 4y2z2zx, �44
?
z, 4

?
z, m

?
xm

?
y2z,

m?
x�yym

?
xy2z, 2

?
x2
?
y2z, 2

?
x�yy2

?
xy2z, 2z=m

?
z

24 8 6 12

2xy ð2yz, 2zx, 2x�yy, 2y�zz, 2z�xxÞ T2u mx�yymxymz m�33m, 432, �33rmxy, �33smxy, 3r2xy, 3s2xy,
�44zmx2xy, 4z2x2xy, m

?
x�yy2xym

?
z, 2

?
x�yy2xy2

?
z,

2xy=m
?
xy

24 4 12 12

�11 T1g, T2g m�33m �33pð4Þ, 4z=mzð3Þ, 2
?
z=m

?
zð3Þ, 2

?
xy=m

?
xyð6Þ 24 24 0 24

1 T1u, T2u m�33m �33pð4Þ, �44zð3Þ, 4zð3Þ, m
?
zð3Þ, m

?
xyð6Þ, 2

?
zð3Þ,

2?xyð6Þ, �11
?

48 48 48 24
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primitive translation uðgjÞ, gj ¼ fgjjuðgjÞg (see Section 1.2.3). The
symbol fgjjuðgjÞg is called a Seitz space-group symbol (Bradley &
Cracknell, 1972). The product (composition law) of two Seitz
symbols is

fg1juðg1Þgfg2juðg2Þg ¼ fg1g2jg1uðg2Þ þ uðg1Þg: ð3:4:2:43Þ

All crystallographically equivalent low-symmetry basic struc-
tures form a G-orbit and can be calculated from the first basic
structure S1 in the following way:

GS1 ¼ fS1;S2; . . . ;Sj . . . ;SNg ¼ feS1; g2S1; . . . ; gjS1 . . . ; gNS1g;

ð3:4:2:44Þ

where g1 ¼ e; g2; . . . ; gj; . . . ; gN are the representatives of the
left cosets gjF 1 of the decomposition of G,

G ¼ F 1 [ g2F 1 [ . . . [ gjF 1 [ . . . [ gNF 1: ð3:4:2:45Þ

These crystallographically equivalent low-symmetry structures
are called basic (elementary) domain states.

The number N of basic domain states is equal to the number of
left cosets in the decomposition (3.4.2.45). As we shall see in next
section, this number is finite [see equation (3.4.2.60)], though the
groups G and F 1 consist of an infinite number of operations.

In a microscopic description, a basic (elementary) domain state
is described by positions of atoms in the unit cell. Basic domain
states that are related by translations suppressed at the phase
transition are called translational or antiphase domain states.
These domain states have the same macroscopic properties. The
attribute ‘to have the same macroscopic properties’ divides all
basic domain states into classes of translational domain states.

In a microscopic description, a ferroic phase transition is
accompanied by a lowering of space-group symmetry from a
parent space group G, with translation subgroup T and point
group G, to a low-symmetry space group F 1, with translation
subgroup U1 and point group F1. There exists a unique inter-
mediate group M1, called the Hermann group, which has trans-
lation subgroup T and point group M1 ¼ F1 (see e.g. Hahn &
Wondratschek, 1994; Wadhawan, 2000; Wondratschek & Aroyo,
2001):

F 1 �
c

M1 �
t

G; ð3:4:2:46Þ

F1 ¼ M1 � G; ð3:4:2:47Þ

U1 � T ¼ T ; ð3:4:2:48Þ

where �
c
denotes an equiclass subgroup (a descent at which only

the translational subgroup is reduced but the point group is
preserved) and �

t
signifies a equitranslational subgroup (only the

point group descends but the translational subgroup does not
change). GroupM1 is a maximal subgroup of G that preserves all
macroscopic properties of the basic domain state S1 with
symmetry F 1.

At this point we have to make an important note. Any space-
group symmetry descent G � F 1 requires that the lengths of the
basis vectors of the translation group U1 of the ferroic space
group F 1 are commensurate with basic vectors of the transla-
tional group T of the parent space group G. It is usually tacitly
assumed that this condition is fulfilled, although in real phase
transitions this is never the case. Lattice parameters depend on
temperature and are, therefore, different in parent and ferroic
phases. At ferroelastic phase transitions the spontaneous strain
changes the lengths of the basis vectors in different ways and at
first-order phase transitions the lattice parameters change
abruptly.

To assure the validity of translational symmetry descents, we
have to suppress all distortions of the crystal lattice. This condi-
tion, called the high-symmetry approximation (Zikmund, 1984) or
parent clamping approximation (PCA) (Janovec et al., 1989;

Wadhawan, 2000), requires that the lengths of the basis vectors a f

b f c f of the translation group U1 of the ferroic space groupF 1 are
either exactly the same as, or are integer multiples of, the basic
vectors ap bp cp of the translational group T of the parent space
group G. Then the relation between the primitive basis vectors
a f b f c f of U1 and the primitive basis vectors ap bp cp of T can be
expressed as

a f ; b f ; c f
� �

¼ ap; bp; cp
� � m11 m12 m13

m21 m22 m23

m13 m23 m33

0

@

1

A;

ð3:4:2:49Þ

where mij, i; j ¼ 1; 2; 3, are integers.
Throughout this part, the parent clamping approximation is

assumed to be fulfilled.
Now we can return to the partition of the set of basic domain

states into translational subsets. Let fS1;S2; . . . ;Sdt
g be the set

of all basic translational domain states that can be generated
from S1 by lost translations. The stabilizer (in G) of this set is the
Hermann group,

IGfS1;S2; . . . ;Sdt
g ¼ M1; ð3:4:2:50Þ

which plays the role of the intermediate group. The number of
translational subsets and the relation between these subsets is
determined by the decomposition of G into left cosets of M1:

G ¼ fg1jvðg1ÞgM1 [ fg2jvðg2ÞgM1 [ . . . [ fgjjvðgjÞgM1

[ . . . [ fgnjvðgnÞgM1: ð3:4:2:51Þ

Representatives gj ¼ fgjjuðgjÞg are space-group operations,
where gj is a point-group operation and uðgjÞ is a non-primitive
translation (see Section 1.2.3).

We note that the Hermann group M1 can be found in the
software GI?KoBo-1 as the equitranslational subgroup of G with
the point-group descent G � F1 for any space group G and any
point group F1 of the ferroic phase.

The decomposition of the point group G into left cosets of the
point group F1 is given by equation (3.4.2.10):

G ¼ g1F1 [ g2F1 [ . . . [ gjF1 [ . . . [ gnF1: ð3:4:2:52Þ

Since the space groups M1 and F 1 have identical point groups,
M1 ¼ F1, the decomposition (3.4.2.51) is identical with a
decomposition of G into left cosets of M1; one can, therefore,
choose for the representatives in (3.4.2.10) the point-group parts
of the representatives fgjjuðgjÞg in decomposition (3.4.2.51). Both
decompositions comprise the same number of left cosets, i.e.
corresponding indices are equal; therefore, the number of
subsets, comprising only translational basic domain states, is
equal to the number n of principal domain states:

n ¼ ½G : M1� ¼ ½G : F1� ¼ jGj : jF1j; ð3:4:2:53Þ

where jGj and jF1j are the number of operations of G and F1,
respectively.

The first ‘representative’ basic domain state Sj of each subset
can be obtained from the first basic domain state S1:

Sj ¼ fgjjvðgjÞgS1; j ¼ 1; 2; . . . ; n; ð3:4:2:54Þ

where fgjjvðgjÞg are representatives of left cosets of M1 in the
decomposition (3.4.2.51).

Now we determine basic domain states belonging to the first
subset (first principal domain state). Equiclass groupsM1 andF 1

have the same point-group operations and differ only in trans-
lations. The decomposition of M1 into left cosets of F 1 can
therefore be written in the form
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M1 ¼ fejt1gF 1 [ fejt2gF 1 [ . . . [ fejtkgF 1 [ . . . [ fejtdt gF 1;

ð3:4:2:55Þ

where e is the identity point-group operation and T k,
k ¼ 1; 2 . . . ; dt, are lost translations that can be identified with
the representatives in the decomposition of T into left cosets of
U1:

T ¼ t1U1 þ t2U1 þ . . .þ tkU1 þ . . .þ tdtU1: ð3:4:2:56Þ

The number dt of basic domain states belonging to one principal
domain state will be called a translational degeneracy. For the
translations t1; t2; . . . ; tk; . . . ; tdt, one can choose vectors that lead
from the origin of a ‘superlattice’ primitive unit cell of U1 to
lattice points of T located within or on the side faces of this
‘superlattice’ primitive unit cell. The number dt of such lattice
points is equal to the ratio vF : vG, where vF and vG are the
volumes of the primitive unit cells of the low-symmetry and
parent phases, respectively.

The number dt can be also expressed as the determinant
detðmijÞ of the ð3
 3Þ matrix of the coefficients mij that in
equation (3.4.2.49) relate the primitive basis vectors a f ; b f ; c f of
U1 to the primitive basis vectors ap; b p; cp of T (Van Tendeloo &
Amelinckx, 1974; see also Example 2.5 in Section 3.2.3.3). Finally,
the number dt equals the ratio ZF : ZG, where ZF and ZG are the
numbers of chemical formula units in the primitive unit cell of the
ferroic and parent phases, respectively. Thus we get for the
translational degeneracy df three expressions:

dt ¼ ½M1 : F 1� ¼ ½T : U� ¼ vF : vG ¼ detðmijÞ ¼ ZF : ZG:

ð3:4:2:57Þ

The basic domain states belonging to the first subset of transla-
tional domain states are

Sj ¼ fejtkgS1; k ¼ 1; 2; . . . ; dt; ð3:4:2:58Þ

where fejtkg is a representative from the decomposition
(3.4.2.55).

The partitioning we have just described provides a useful
labelling of basic domain states: Any basic domain state can be
given a label ab, where the first integer a ¼ 1; 2; . . . ; n specifies
the principal domain state (translational subset) and the integer
b ¼ 1; 2; . . . ; dt designates the the domain state within a subset.
With this convention the kth basic domain state in the jth subset
can be obtained from the first basic domain state S1 ¼ S11 (see
Proposition 3.2.3.30 in Section 3.2.3.3):

Sjk ¼ fgjjvðgjÞgfejtkgS11; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; dt:

ð3:4:2:59Þ

In a shorthand version, the letter S can be omitted and the
symbol can be written in the form ab, where the ‘large’ number a
signifies the principal domain state and the subscript b (transla-
tional index) specifies a basic domain state compatible with the
principal domain state a.

The number n of translational subsets (which can be associated
with principal domain states) times the translational degeneracy
dt (number of translational domain states within one translational
subset) is equal to the total number N of all basic domain states:

N ¼ ndt ¼ ðjGj : jF1jÞðvF : vGÞ ¼ ðjGj : jF1jÞdetðmijÞ

¼ ðjGj : jF1jÞðZF : ZGÞ: ð3:4:2:60Þ

Example 3.4.2.6. Basic domain states in gadolinium molybdate
(GMO). Gadolinium molybdate [Gd2(MoO4)3] undergoes a non-
equitranslational ferroic phase transition with parent space group
G ¼ P�4421m ðD3

2dÞ and with ferroic space group F 1 ¼ Pba2 ðC8
2vÞ

(see Section 3.1.2). From equation (3.4.2.53) we get n ¼

j�442mj : jmm2j ¼ 8 : 4 ¼ 2, i.e. there are two subsets of transla-
tional domain states corresponding to two principal domain
states. In the software GI?KoBo-1 one finds for the space group
P�4421m and the point group mm2 the corresponding equi-
translational subgroup M1 ¼ Cmm2 ðC11

2vÞ with vectors of the
conventional orthorhombic unit cell (in the parent clamping
approximation) ao ¼ at � bt, bo ¼ at þ bt, co ¼ ct, where at; bt; ct

is the basis of the tetragonal space group P�4421m. Hence,
according to equation (3.4.2.49),

ao; bo; co
� �

¼ at; bt; ct
� � 1 1 0

�1 1 0

0 0 1

0

@

1

A: ð3:4:2:61Þ

The determinant of the transformation matrix equals two,
therefore, according to equation (3.4.2.57), each principal domain
state can contain dt ¼ 2 translational domain states that are
related by lost translation at or bt. In all, there are four basic
domain states (for more details see Barkley & Jeitschko, 1973;
Janovec, 1976; Wondratschek & Jeitschko, 1976).

Example 3.4.2.7. Basic domain states in calomel crystals. Crystals
of calomel, Hg2Cl2, consist of almost linear Cl—Hg—Hg—Cl
molecules aligned parallel to the c axis. The centres of gravity of
these molecules form in the parent phase a tetragonal body-
centred parent phase with the conventional tetragonal basis
at; bt; ct and with space group G ¼ I4=mmm. The structure of this
phase projected onto the z ¼ 0 plane is depicted in the middle of
Fig. 3.4.2.5 as a solid square with four full circles and one empty
circle representing the centres of gravity of the Hg2Cl2 molecules
at the levels z ¼ 0 and z ¼ c=2, respectively.

The ferroic phase has point-group symmetry F1 ¼ mxymx�yy2z,
hence there are n ¼ j�442mj : jmxymx�yy2zj ¼ 2 ferroelastic principal
domain states. The conventional orthorhombic basis is
ao ¼ at � bt; bo ¼ at þ bt; co ¼ ct (see upper left corner of Fig.
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Fig. 3.4.2.5. Four basic single-domain states S1 � 11, S2 � 12, S3 � 21,
S4 � 22 of the ferroic phase of a calomel (Hg2Cl2) crystal. Full � and empty �
circles represent centres of gravity of Hg2Cl2 molecules at the levels z ¼ 0
and z ¼ c=2, respectively, projected onto the z ¼ 0 plane. The parent
tetragonal phase is depicted in the centre of the figure with a full square
representing the primitive unit cell. Arrows are exaggerated spontaneous
shifts of molecules in the ferroic phase. Dotted squares depict conventional
unit cells of the orthorhombic basic domain states in the parent clamping
approximation. If the parent clamping approximation is lifted, these unit cells
would be represented by rectangles elongated parallel to the arrows.
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3.4.2.5). This is the same situation as in the previous example,
therefore, according to equations (3.4.2.57) and (3.4.2.61), the
translational degeneracy dt ¼ 2, i.e. each ferroelastic domain
state can contain two basic domain states.

The structure S1 of the ferroic phase in the parent clamping
approximation is depicted in the left-hand part of Fig. 3.4.2.5 with
a dotted orthorhombic conventional unit cell. The arrows
represent exaggerated spontaneous shifts of the molecules. These
shifts are frozen-in displacements of a transverse acoustic
soft mode with the k vector along the [110] direction in the
first domain state S1, hence all molecules in the (110) plane
passing through the origin O are shifted along the ½1�110� direction,
whereas those in the neighbouring parallel planes are shifted
along the antiparallel direction ½�1110� (the indices are related to
the tetragonal coordinate system). The symmetry of S1 is
described by the space group F 1 ¼ Amam ðD17

2hÞ; this symbol is
related to the conventional orthorhombic basis and the origin of
this group is shifted by at=2 or b with respect to the origin 0 of the
group G ¼ I4=mmm.

Three more basic domain states S2, S3 and S4 can be obtained,
according to equation (3.4.2.44), from S1 by applying repre-
sentatives of the left cosets in the resolution of G [see equation
(3.4.2.42)], for which one can find the expression

G ¼ f1j000gF 1 [ f1j100gF 1 [ f4zj000gF 1 [ f4z
3j000gF 1:

ð3:4:2:62Þ

All basic domain states S1; S2; S3 and S4 are depicted in Fig.
3.4.2.5. Domain states S1 and S2, and similarly S3 and S4, are
related by lost translation at or bt. Thus the four basic domain
states S1; S2; S3 and S4 can be partitioned into two translational
subsets fS1;S2g and fS3;S4g. Basic domain states forming one
subset have the same value of the secondary macroscopic order
parameter �, which is in this case the difference "11 � "22 of the
components of a symmetric second-rank tensor ", e.g. the
permittivity or the spontaneous strain (which is zero in the parent
clamping approximation).

This partition provides a useful labelling of basic domain
states: S1 � 11; S2 � 12; S3 � 21; S1 � 22, where the first
number signifies the ferroic (orientational) domain state and the
subscript (translational index) specifies the basic domain state
with the same ferroic domain state.

Symmetry groups (stabilizers in G) of basic domain states can
be calculated from a space-group version of equation (3.4.2.13):

F 2 ¼ f1j100gF 2f1j100g
�1

¼ F 1;

F 3 ¼ f4zj000gF 2f4zj000g
�1

¼ Bbmm;

with the same conventional basis, and F 4 ¼ f1j100gF 3f1j100g
�1

¼ F 3, where the origin of these groups is shifted by a
t=2 or b with

respect to the origin 0 of the group G ¼ I4=mmm.

In general, a space-group-symmetry descent G � F 1 can be
performed in two steps:

(1) An equitranslational symmetry descent G�
t

M1, where
M1 is the equitranslational subgroup of G (Hermann group),
which is unequivocally specified by space group G and by the
point group F1 of the space group F 1. The Hermann group M1

can be found in the software GI?KoBo-1 or, in some cases, in IT
A (2002) under the entry ‘Maximal non-isomorphic subgroups,
type I’.

(2) An equiclass symmetry descent M1 �
c

F 1, which can be of
three kinds [for more details see IT A (2002), Section 2.2.15]:

(i) Space groups M1 and F 1 have the same conventional unit
cell. These descents occur only in space groups M1 with centred
conventional unit cells and the lost translations are some or all
centring translations of the unit cell of M1. In many cases, the
descentM1 �

c

F 1 can be found in the main tables of ITA (2002),

under the entry ‘Maximal non-isomorphic subgroups, type IIa’.
Gadolinium molybdate belongs to this category.

(ii) The conventional unit cell of M1 is larger than that of F 1.
Some vectors of the conventional unit cell of U1 are multiples of
that of T . In many cases, the descent M1 �

c

F 1 can be found in
the main tables of IT A (2002), under the entry ‘Maximal non-
isomorphic subgroups, type IIb’.

(iii) Space group F 1 is an isomorphic subgroup ofM1, i.e. both
groups are of the same space-group type (with the same
Hermann–Mauguin symbol) or of the enantiomorphic space-
group type. Each space group has an infinite number of
isomorphic subgroups. Maximal isomorphic subgroups of lowest
index are tabulated in IT A (2002), under the entry ‘Maximal
non-isomorphic subgroups, type IIc’.

3.4.3. Domain pairs: domain twin laws, distinction of domain
states and switching

Different domains observed by a single apparatus can exhibit
different properties even though their crystal structures are
either the same or enantiomorphic and differ only in spatial
orientation. Domains are usually distinguished by their bulk
properties, i.e. according to their domain states. Then the
problem of domain distinction is reduced to the distinction of
domain states. To solve this task, we have to describe in a
convenient way the distinction of any two of all possible domain
states. For this purpose, we use the concept of domain pair.

Domain pairs allow one to express the geometrical relation-
ship between two domain states (the ‘twin law’), determine the
distinction of two domain states and define switching fields that
may induce a change of one state into the other. Domain pairs
also present the first step in examining domain twins and domain
walls.

In this section, we define domain pairs, ascribe to them
symmetry groups and so-called twinning groups, and give a
classification of domain pairs. Then we divide domain pairs into
equivalence classes (G-orbits of domain pairs) – which comprise
domain pairs with the same inherent properties but with different
orientations and/or locations in space – and examine the relation
between G-orbits and twinning groups.

A qualitative difference between the coexistence of two
domain states provides a basic division into non-ferroelastic and
ferroelastic domain pairs. The synoptic Table 3.4.3.4 lists repre-
sentatives of all G-orbits of non-ferroelastic domain pairs,
contains information about the distinction of non-ferroelastic
domain states by means of diffraction techniques and specifies
whether or not important property tensors can distinguish
between domain states of a non-ferroelastic domain pair. These
data also determine the external fields needed to switch the first
domain state into the second domain state of a domain pair.
Synoptic Table 3.4.3.6 contains representative ferroelastic domain
pairs ofG-orbits of domain pairs for which there exist compatible
(permissible) domain walls and gives for each representative pair
the orientation of the two compatible domain walls, the expres-
sion for the disorientation angle (obliquity) and other data. Table
3.4.3.7 lists representatives of all classes of ferroelastic domain
pairs for which no compatible domain walls exist. Since Table
3.4.2.7 contains for each symmetry descent G � F all twinning
groups that specify different G-orbits of domain pairs which can
appear in the ferroic phase, one can get from this table and from
Tables 3.4.3.4, 3.4.3.6 and 3.4.3.7 the significant features of the
domain structure of any ferroic phase.

3.4.3.1. Domain pairs and their symmetry, twin law

A pair of two domain states, in short a domain pair, consists of
two domain states, say Si and Sk, that are considered irrespective
of their possible coexistence (Janovec, 1972). Geometrically,
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domain pairs can be visualized as two interpenetrating structures
of Si and Sk. Algebraically, two domain states Si and Sk can be
treated in two ways: as an ordered or an unordered pair (see
Section 3.2.3.1.2).

An ordered domain pair, denoted (Si; Sk), consists of the first
domain state Si and the second domain state. Occasionally, it is
convenient to consider a trivial ordered domain pair (Si; Si)
composed of two identical domain states Si.

An ordered domain pair is a construct that in bicrystallography
is called a dichromatic complex (see Section 3.3.3; Pond &
Vlachavas, 1983; Sutton & Balluffi, 1995; Wadhawan, 2000).

An ordered domain pair (Si; Sk) is defined by specifying Si and
Sk or by giving Si and a switching operation gik that transforms Si
into Sk,

Sk ¼ gikSi; Si; Sk 2 GS1; gik 2 G: ð3:4:3:1Þ

For a given Si and Sk, the switching operation gik is not uniquely
defined since each operation from the left coset gikFi [where Fi is
the stabilizer (symmetry group) of Si] transforms Si into Sk, gikSi
¼ ðgikFiÞSi ¼ Sk.

An ordered domain pair ðSk; SiÞ with a reversed order of
domain states is called a transposed domain pair and is denoted
ðSi; SkÞ

t
� ðSk; SiÞ. A non-trivial ordered domain pair ðSi; SkÞ is

different from the transposed ordered domain pair,

ðSk; SiÞ 6¼ ðSi; SkÞ for i 6¼ k: ð3:4:3:2Þ

If gik is a switching operation of an ordered domain pair
ðSi; SkÞ, then the inverse operation g�1

ik of gik is a switching
operation of the transposed domain pair ðSk; SiÞ:

if ðSi; SkÞ ¼ ðSi; gikSiÞ and ðSk; SiÞ ¼ ðSk; gkiSkÞ; then gki ¼ g�1
ik :

ð3:4:3:3Þ

An unordered domain pair, denoted by fSi; Skg, is defined as an
unordered set consisting of two domain states Si and Sk. In this
case, the sequence of domains states in a domain pair is irrele-
vant, therefore

fSi; Skg ¼ fSk; Sig: ð3:4:3:4Þ

In what follows, we shall omit the specification ‘ordered’ or
‘unordered’ if it is evident from the context, or if it is not
significant.

A domain pair ðSi; SkÞ can be transformed by an operation
g 2 G into another domain pair,

gðSi; SkÞ � ðgSi; gSkÞ ¼ ðSl; SmÞ; Si; Sk; Sl; Sm 2 GS1; g 2 G:

ð3:4:3:5Þ

These two domain pairs will be called crystallographically
equivalent (in G) domain pairs and will be denoted ðSi; SkÞ

�
G
ðSl; SmÞ.
If the transformed domain pair is a transposed domain pair

ðSk; SiÞ, then the operation g will be called a transposing opera-
tion,

g?ðSi; SkÞ ¼ ðg?Si; g
?SkÞ ¼ ðSk; SiÞ; Si; Sk 2 GS1; g? 2 G:

ð3:4:3:6Þ

We see that a transposing operation g? 2 G exchanges domain
states Si and Sk:

g?Si ¼ Sk; g?Sk ¼ Si; Si; Sk 2 GS1; g? 2 G: ð3:4:3:7Þ

Thus, comparing equations (3.4.3.1) and (3.4.3.7), we see that a
transposing operation g? is a switching operation that transforms
Si into Sk, and, in addition, switches Sk into Si. Then a product of
two transposing operations is an operation that changes neither
Si nor Sk.

What we call in this chapter a transposing operation is usually
denoted as a twin operation (see Section 3.3.5 and e.g. Holser,
1958a; Curien & Donnay, 1959; Koch, 1999). We are reserving the
term ‘twin operation’ for operations that exchange domain states
of a simple domain twin in which two ferroelastic domain states
coexist along a domain wall. Then, as we shall see, the transposing
operations are identical with the twin operations in non-ferro-
elastic domains (see Section 3.4.3.5) but may differ in ferroelastic
domain twins, where only some transposing operations of a
single-domain pair survive as twin operations of the corre-
sponding ferroelastic twin with a nonzero disorientation angle
(see Section 3.4.3.6.3).

Transposing operations are marked in this chapter by a star, ?

(with five points), which should be distinguished from an asterisk,
 (with six points), used to denote operations or symmetry
elements in reciprocal space. The same designation is used in the
software GI?KoBo-1 and in the tables in Kopský (2001). A
prime, 0, is often used to designate transposing (twin) operations
(see Section 3.3.5; Curien & Le Corre, 1958; Curien & Donnay,
1959). We have reserved the prime for operations involving time
inversion, as is customary in magnetism (see Chapter 1.5). This
choice allows one to analyse domain structures in magnetic and
magnetoelectric materials (see e.g. Přı́vratská & Janovec, 1997).

In connection with this, we invoke the notion of a twin law.
Since this term is not yet common in the context of domain
structures, we briefly explain its meaning.

In crystallography, a twin is characterized by a twin law defined
in the following way (see Section 3.3.2; Koch, 1999; Cahn, 1954):

(i) A twin law describes the geometrical relation between twin
components of a twin. This relation is expressed by a twin
operation that brings one of the twin components into parallel
orientation with the other, and vice versa. A symmetry element
corresponding to the twin operation is called the twin element.
(Requirement ‘and vice versa’ is included in the definition of
Cahn but not in that of Koch; for the most common twin
operations of the second order the ‘vice versa’ condition is
fulfilled automatically.)

(ii) The relation between twin components deserves the name
‘twin law’ only if it occurs frequently, is reproducible and
represents an inherent feature of the crystal.

An analogous definition of a domain twin law can be formu-
lated for domain twins by replacing the term ‘twin components’
by ‘domains’, say DiðSj;BkÞ and DmðSn;BpÞ, where Sj, Bk and Sn,
Bp are, respectively, the domain state and the domain region of
the domains DiðSj;BkÞ and DmðSn;BpÞ, respectively (see Section
3.4.2.1). The term ‘transposing operation’ corresponds to trans-
posing operation g?12 of domain pair ðS1; S2Þ ¼ ðSj; g

?
jnSnÞ as we

have defined it above if two domains with domain states S1 and S2
coexist along a domain wall of the domain twin.

Domain twin laws can be conveniently expressed by crystal-
lographic groups. This specification is simpler for non-ferroelastic
twins, where a twin law can be expressed by a dichromatic space
group (see Section 3.4.3.5), whereas for ferroelastic twins with a
compatible domain wall dichromatic layer groups are adequate
(see Section 3.4.3.6.3).

Restriction (ii), formulated by Georges Friedel (1926) and
explained in detail by Cahn (1954), expresses a necessity to
exclude from considerations crystal aggregates (intergrowths)
with approximate or accidental ‘nearly exact’ crystal components
resembling twins (Friedel’s macles d’imagination) and thus to
restrict the definition to ‘true twins’ that fulfil condition (i)
exactly and are characteristic for a given material. If we confine
our considerations to domain structures that are formed from a
homogeneous parent phase, this requirement is fulfilled for all
aggregates consisting of two or more domains. Then the defini-
tion of a ‘domain twin law’ is expressed only by condition (i).
Condition (ii) is important for growth twins.

We should note that the definition of a twin law given above
involves only domain states and does not explicitly contain
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specification of the contact region between twin components or
neighbouring domains. The concept of domain state is, therefore,
relevant for discussing the twin laws. Moreover, there is no
requirement on the coexistence of interpenetrating structures in
a domain pair. One can even, therefore, consider cases where no
real coexistence of both structures is possible. Nevertheless, we
note that the characterization of twin laws used in mineralogy
often includes specification of the contact region (e.g. twin plane
or diffuse region in penetrating twins).

Ordered domain pairs ðS1; S2Þ and ðS1; S3Þ, formed from
domain states of our illustrative example (see Fig. 3.4.2.2), are
displayed in Fig. 3.4.3.1(a) and (b), respectively, as two super-
posed rectangles with arrows representing spontaneous polar-
ization. In ordered domain pairs, the first and the second domain
state are distinguished by shading [the first domain state is grey
(‘black’) and the second clear (‘white’)] and/or by using dashed
and dotted lines for the first and second domain state, respec-
tively.

In Fig. 3.4.3.2, the ordered domain pair ðS1; S2Þ and the
transposed domain pair ðS2; S1Þ are depicted in a similar way for
another example with symmetry descent G ¼ 6z=mz � 2z=mz =
F1.

Let us now examine the symmetry of domain pairs. The
symmetry group Fik of an ordered domain pair ðSi; SkÞ ¼

ðSi; gikSiÞ consists of all operations that leave invariant both Si
and Sk, i.e. Fik comprises all operations that are common to
stabilizers (symmetry groups) Fi and Fk of domain states Si and
Sk, respectively,

Fik � Fi \ Fk ¼ Fi \ gikFig
�1
ik ; ð3:4:3:8Þ

where the symbol \ denotes the intersection of groups Fi and Fk.
The group Fik is in Section 3.3.4 denoted by H

 and is called an
intersection group.

From equation (3.4.3.8), it immediately follows that the
symmetry Fki of the transposed domain pair ðSk; SiÞ is the same as
the symmetry Fik of the initial domain pair ðSi; SkÞ:

Fki ¼ Fk \ Fi ¼ Fi \ Fk ¼ Fik: ð3:4:3:9Þ

Symmetry operations of an unordered domain pair fSi; Skg
include, besides operations of Fik that do not change either Si or
Sk, all transposing operations, since for an unordered domain pair
a transposed domain pair is identical with the initial domain pair
[see equation (3.4.3.4)]. If g?ik is a transposing operation of ðSi; SkÞ,
then all operations from the left coset g?ikFik are transposing
operations of that domain pair as well. Thus the symmetry group
Jik of an unordered domain pair fSi; Skg can be, in a general case,
expressed in the following way:

Jik ¼ Fik [ g?ikFik; g?ik 2 G: ð3:4:3:10Þ

Since, for an unordered domain, the order of domain states in a
domain pair is not significant, the transposition of indices i; k in
Jik does not change this group,

Jik ¼ Fik [ g?ikFik ¼ Fki [ g?kiFki ¼ Jki; ð3:4:3:11Þ

which also follows from equations (3.4.3.3) and (3.4.3.9).
A basic classification of domain pairs follows from their

symmetry. Domain pairs for which at least one transposing
operation exists are called transposable (or ambivalent) domain
pairs. The symmetry group of a transposable unordered domain
pair ðSi; SkÞ is given by equation (3.4.3.10).

The star in the symbol J?ik indicates that this group contains
transposing operations, i.e. that the corresponding domain pair
ðSi; SkÞ is a transposable domain pair.

A transposable domain pair ðSi; SkÞ and transposed domain
pair ðSk; SiÞ belong to the same G-orbit:

GðSi; SkÞ ¼ GðSk; SiÞ: ð3:4:3:12Þ

If fSi; Skg is a transposable pair and, moreover, Fi ¼ Fk ¼ Fik,
then all operations of the left coset g?ikFi simultaneously switch Si
into Sk and Sk into Si. We call such a pair a completely transpo-
sable domain pair. The symmetry group Jik of a completely
transposable pair fSi; Skg is

J?ik ¼ Fi [ g?ikFi; g?ik 2 G; Fi ¼ Fk: ð3:4:3:13Þ
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Fig. 3.4.3.1. Transposable domain pairs. Single-domain states are those from
Fig. 3.4.2.2. (a) Completely transposable non-ferroelastic domain pair. (b)
Partially transposable ferroelastic domain pair.

Fig. 3.4.3.2. Non-transposable domain pairs. (a) The parent phase with
symmetry G ¼ 6z=mz is represented by a dotted hexagon and the three
ferroelastic single-domain states with symmetry F1 ¼ F2 ¼ F3 ¼ 2z=mz are
depicted as drastically squeezed hexagons. (b) Domain pair ðS1; S2Þ and
transposed domain pair ðS2; S1Þ. There exists no operation from the group
6z=mz that would exchange domain states S1 and S2, i.e. that would transform
one domain pair into a transposed domain pair.
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We shall use for symmetry groups of completely transposable
domain pairs the symbol J?ik.

If Fi 6¼ Fk, then Fik � Fi and the number of transposing
operations is smaller than the number of operations switching Si
into Sk. We therefore call such pairs partially transposable domain
pairs. The symmetry group Jik of a partially transposable domain
pair fSi; Skg is given by equation (3.4.3.10).

The symmetry groups Jik and J?ik, expressed by (3.4.3.10) or by
(3.4.3.13), respectively, consists of two left cosets only. The first is
equal to Fik and the second one g?ikFik comprises all the trans-
posing operations marked by a star. An explicit symbol Jik½Fik� of
these groups contains both the group Jik and Fik, which is a
subgroup of Jik of index 2.

If one ‘colours’ one domain state, e.g. Si, ‘black’ and the other,
e.g. Sk, ‘white’, then the operations without a star can be inter-
preted as ‘colour-preserving’ operations and operations with a
star as ‘colour-exchanging’ operations. Then the group Jik½Fik� can
be treated as a ‘black-and-white’ or dichromatic group (see
Section 3.2.3.2.7). These groups are also called Shubnikov groups
(Bradley & Cracknell, 1972), two-colour or Heesch–Shubnikov
groups (Opechowski, 1986), or antisymmetry groups (Vainshtein,
1994).

The advantage of this notation is that instead of an explicit
symbol Jik½Fik�, the symbol of a dichromatic group specifies both
the group Jik and the subgroup Fij or F1, and thus also the
transposing operations that define, according to equation
(3.4.3.7), the second domain state Sj of the pair.

We have agreed to use a special symbol J?ik only for completely
transposable domain pairs. Then the star in this case indicates
that the subgroup Fik is equal to the symmetry group of the first
domain state Si in the pair, Fik ¼ Fi. Since the group Fi is usually
well known from the context (in our main tables it is given in the
first column), we no longer need to add it to the symbol of Jik.

Domain pairs for which an exchanging operation g?ik cannot be
found are called non-transposable (or polar) domain pairs. The
symmetry Jij of a non-transposable domain pair is reduced to the
usual ‘monochromatic’ symmetry group Fik of the corresponding
ordered domain pair ðSi; SkÞ. The G-orbits of mutually trans-
posed polar domain pairs are disjoint (Janovec, 1972):

GðSi; SkÞ \GðSk; SiÞ ¼ ;: ð3:4:3:14Þ

Transposed polar domain pairs, which are always non-equivalent,
are called complementary domain pairs.

If, in particular, Fik ¼ Fi ¼ Fk, then the symmetry group of the
unordered domain pair is

Jik ¼ Fi ¼ Fk: ð3:4:3:15Þ

In this case, the unordered domain pair fSi; Skg is called a non-
transposable simple domain pair.

If Fi 6¼ Fk, then the number of operations of Fik is smaller than
that of Fi and the symmetry group Jik is equal to the symmetry
group Fik of the ordered domain pair ðSi; SkÞ,

Jik ¼ Fik; Fik � Fi: ð3:4:3:16Þ

Such an unordered domain pair fSi; Skg is called a non-transpo-
sable multiple domain pair. The reason for this designation will be
given later in this section.

We stress that domain states forming a domain pair are not
restricted to single-domain states. Any two domain states with a
defined orientation in the coordinate system of the parent phase
can form a domain pair for which all definitions given above are
applicable.

Example 3.4.3.1. Now we examine domain pairs in our illustrative
example of a phase transition with symmetry descent G ¼

4z=mzmxmxy � 2xmymz ¼ F1 and with four single-domain states
S1; S2; S3 and S3, which are displayed in Fig. 3.4.2.2. The domain

pair fS1; S2g depicted in Fig. 3.4.3.1(a) is a completely transpo-
sable domain pair since transposing operations exist, e.g.
g?12 ¼ m?

x, and the symmetry group F12 of the ordered domain pair
ðS1; S2Þ is

F12 ¼ F1 \ F2 ¼ F1 ¼ F2 ¼ 2xmymz: ð3:4:3:17Þ

The symmetry group J12 of the unordered pair fS1; S2g is a
dichromatic group,

J?12 ¼ 2xmymz [m?
xf2xmymzg ¼ m?

xmymz: ð3:4:3:18Þ

The domain pair fS1; S3g in Fig. 3.4.3.1(b) is a partially trans-
posable domain pair, since there are operations exchanging
domain states S1 and S3, e.g. g

?
13 ¼ m?

x�yy, but the symmetry group
F13 of the ordered domain pair ðS1; S3Þ is smaller than F1:

F13 ¼ F1 \ F3 ¼ 2xmymz \mx2ymz ¼ f1;mzg � fmzg;

ð3:4:3:19Þ

where 1 is an identity operation and f1;mzg denotes the group
mz. The symmetry group of the unordered domain pair fS1; S3g is
equal to a dichromatic group,

J13 ¼ fmzg [ 2?xy:fmzg ¼ 2?xym
?
�xxymz: ð3:4:3:20Þ

The domain pair ðS1; S2Þ in Fig. 3.4.3.2(b) is a non-transposable
simple domain pair, since there is no transposing operation of
G ¼ 6z=mz that would exchange domain states S1 and S2, and
F1 ¼ F2 ¼ 2z=mz. The symmetry group J12 of the unordered
domain pair fS1; S3g is a ‘monochromatic’ group,

J12 ¼ F12 ¼ F1 ¼ F2 ¼ 2z=mz: ð3:4:3:21Þ

The G-orbit 6z=mzðS1; S2Þ of the pair ðS1; S2Þ has no common
domain pair with the G-orbit 6z=mzðS2; S1Þ of the transposed
domain pair ðS2; S1Þ. These two ‘complementary’ orbits contain
mutually transposed domain pairs.

Symmetry groups of domain pairs provide a basic classification
of domain pairs into the four types introduced above. This clas-
sification applies to microscopic domain pairs as well.

3.4.3.2. Twinning group, distinction of two domain states

We have seen that for transposable domain pairs the symmetry
group J1j of a domain pair ðS1; SjÞ specifies transposing operations
g?1jF1 that transform S1 into Sj. This does not apply to non-
transposable domain pairs, where the symmetry group J1j ¼ F1j

does not contain any switching operation. Another group exists,
called the twinning group, which is associated with a domain pair
and which does not have this drawback. The twinning group
determines the distinction of two domain states, specifies the
external fields needed to switch one domain state into another
one and enables one to treat domain pairs independently of the
transitionG � F1. This facilitates the tabulation of the properties
of non-equivalent domain pairs that appear in all possible ferroic
phases.

The twinning group K1j of a domain pair ðS1; SjÞ is defined as
the minimal subgroup of G that contains both F1 and a switching
operation g1j of the domain pair ðS1; SjÞ, Sj ¼ g1jS1 (Fuksa &
Janovec, 1995; Janovec et al., 1995; Fuksa, 1997),

F1 � K1j � G; g1j 2 K1j; ð3:4:3:22Þ

where no group K0
1j exists such that

F1 � K0
1j � K1j; g1j 2 K0

1j: ð3:4:3:23Þ

The twinning group K1j is identical to the embracing (funda-
mental) group used in bicrystallography (see Section 3.2.2). In
Section 3.3.4 it is called a composite symmetry of a twin.
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Since K1j is a group, it must contain all products of g1j with
operations of F1, i.e. the whole left coset g1jF1. For completely
transposable domain pairs, the union of F1 and g?1jF1 forms a
group that is identical with the symmetry group J?1j of the unor-
dered domain pair fS1; Sjg:

K?
1j ¼ J?1j ¼ F1 [ g?1jF1; g?1j 2 K1j; F1 ¼ Fj: ð3:4:3:24Þ

In a general case, the twinning group K1j, being a supergroup
of F1, can always be expressed as a decomposition of the left
cosets of F1,

K1j ¼ F1 [ g1jF1 [ g1kF1 [ . . . [ g1c 2 G: ð3:4:3:25Þ

We can associate with the twinning group a set of c domain
states, the K1j-orbit of S1, which can be generated by applying to
S1 the representatives of the left cosets in decomposition
(3.4.3.25),

K1jS1 ¼ fS1; Sj; . . . ; Scg: ð3:4:3:26Þ

This orbit is called the generic orbit of domain pair ðS1; SjÞ.
Since the generic orbit (3.4.3.26) contains both domain states

of the domain pair ðS1; SjÞ, one can find different and equal
nonzero tensor components in two domain states S1 and Sj by a
similar procedure to that used in Section 3.4.2.3 for ascribing
principal and secondary tensor parameters to principal and
secondary domain states. All we have to do is just replace the
groupG of the parent phase by the twinning groupK1j. There are,
therefore, three kinds of nonzero tensor components in S1 and Sj:

(1) Domain states S1 and Sj differ in the principal tensor
parameters �a of the ‘virtual’ phase transition with symmetry
descent K1j � F1,

�ð1Þa 6¼ �ðjÞa ; a ¼ 1; 2; . . . ; ð3:4:3:27Þ

where �ð1Þa and �ðjÞa are the principal tensor parameters in domain
states S1 and Sj; in the symbol of the principal tensor parameter
�a we explicitly write only the lower index a, which numbers
different principal tensor parameters, but omit the upper index
labelling the representation of K1j, according to which �a trans-
forms, and the second lower index denoting the components of
the principal tensor parameter (see Section 3.4.2.3 and the
manual of the software GI?KoBo-1, path: Subgroups\View\Do-
mains and Kopský, 2001).

The principal tensor parameters �ð1Þa of lower rank in domain
state S1 can be found for G ¼ K1j in Table 3.1.3.1 of Section
3.1.3.3, where we replaceG by K1j, and for all important property
tensors in the software GI?KoBo-1, path: Subgroups\View\Do-
mains and in Kopský (2001), where we again replace G by K1j.
Tensor parameters in domain state Sj can be obtained by applying
to the principal tensor parameters in S1 the operation g1j.

(2) If there exists an intermediate group L1j in between F1 and
K1j that does not – contrary to K1j – contain the switching
operation g1j of the domain pair ðS1; SjÞ,

F1 � L1j � K1j; g1j 2 L1j; ð3:4:3:28Þ

[cf. relation (3.4.3.23)] then domain states S1 and Sj differ not
only in the principal tensor parameters �a, but also in the
secondary tensor parameters �b:

�ð1Þb 6¼ �ðjÞb ; IK1j
ð�ð1Þb Þ ¼ L1j; b ¼ 1; . . . ; ð3:4:3:29Þ

where �ð1Þb and �ðjÞb are the secondary tensor parameters in domain
states S1 and Sj; the last equation, in which IK1j

ð�ð1Þb Þ is the
stabilizer of �ð1Þb in K1j, expresses the condition that �b is the
principal tensor parameter of the transition K1j � L1j [see
equation (3.4.2.40)].

The secondary tensor parameters �ð1Þb of lower rank in domain
state S1 can be found for G ¼ K1j in Table 3.1.3.1 of Section

3.1.3.3, and for all important property tensors in the
software GI?KoBo-1, path: Subgroups\View\Domains and in
Kopský (2001). Tensor parameters �ðjÞb in domain state Sj can be
obtained by applying to the secondary tensor parameters �ð1Þb in
S1 the operation g1j.

(3) All nonzero tensor components that are the same in
domain states S1 and Sj are identical with nonzero tensor
components of the group K1j. These components are readily
available for all important material tensors in Section 1.1.4, in the
software GI?KoBo-1, path: Subgroups\View\Domains and in
Kopský (2001).

Cartesian tensor components corresponding to the tensor
parameters can be calculated by means of conversion equations
[for details see the manual of the software GI?KoBo-1, path:
Subgroups\View\Domains and Kopský (2001)].

Let us now illustrate the above recipe for finding tensor
distinctions by two simple examples.

Example 3.4.3.2. The domain pair ðS1; S2Þ in Fig. 3.4.3.1(a) is a
completely transposable pair, therefore, according to equations
(3.4.3.24) and (3.4.3.18),

K?
12 ¼ J?12 ¼ 2xmymz [m?

xf2xmymzg ¼ m?
xmymz: ð3:4:3:30Þ

In Table 3.1.3.1, we find that the first principal tensor para-
meter �ð1Þ of the transition G ¼ K1j ¼ mxmymz � 2xmymz ¼ F1

is the x-component P1 of the spontaneous polarization,
�ð1Þ1 ¼ P1. Since the switching operation g?12 is for example the
inversion �11, the tensor parameter �ð2Þ1 in the second domain state
S2 is �

ð2Þ
1 ¼ �P1.

Other principal tensor parameters can be found in the software
GI?KoBo-1 or in Kopský (2001), p. 185. They are: �ð1Þ2 ¼ d12;
�ð1Þ3 ¼ d13; �

ð1Þ
4 ¼ d26; �

ð1Þ
5 ¼ d35 (the physical meaning of the

components is explained in Table 3.4.3.5). In the second domain
state S2, these components have the opposite sign. No other
tensor components exist that would be different in S1 and S2,
since there is no intermediate group L1j in between F1 and K1j.

Nonzero components that are the same in both domain states
are nonzero components of property tensors in the group mmm
and are listed in Section 1.1.4.7 or in the software GI?KoBo-1 or
in Kopský (2001).

The numbers of independent tensor components that are
different and those that are the same in two domain states are
readily available for all non-ferroelastic domain pairs and
important property tensors in Table 3.4.3.4.

Example 3.4.3.3. The twinning group of the partially transposable
domain pair ðS1; S3Þ in Fig. 3.4.3.1(b) with S3 ¼ 2xyS1 has the
twinning group

K13 ¼ 2xmymz [ 2xyf2xmymzg [ 2zf2xmymzg [ 2x�yyf2xmymzg

¼ 4z=mzmxmxy: ð3:4:3:31Þ

Domain states S1 and S3 differ in the principal tensor parameter
of the transition 4z=mzmxmxy � 2xmymz, which is two-dimen-
sional and which we found in Example 3.4.2.4: �ð1Þ1 ¼ ðP; 0Þ. Then
in the domain state S3 it is �ð3Þ1 ¼ Dð2xyÞðP; 0Þ ¼ ð0;PÞ. Other
principal tensors are: �ð1Þ2 ¼ ðg4; 0Þ; �

ð1Þ
3 ¼ ðd11; 0Þ; �

ð1Þ
4 ¼ ðd12; 0Þ;

�ð1Þ5 ¼ ðd13; 0Þ; �ð1Þ6 ¼ ðd26; 0Þ; �ð1Þ7 ¼ ðd35; 0Þ (the physical
meaning of the components is explained in Table 3.4.3.5). In the
domain state S3 they keep their absolute value but appear as the
second nonzero components, as with spontaneous polarization.

There is an intermediate group L13 ¼ mxmymz between
F1 ¼ 2xmymz and K13 ¼ 4z=mzmxmxy, since L13 ¼ mxmymz does
not contain g13 ¼ 2xy. The one-dimensional secondary tensor
parameters for the symmetry descentK13 ¼ 4z=mzmxmxy � L13 ¼

mxmymz was also found in Example 3.4.2.4: �ð1Þ1 ¼ u1 � u2;
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�ð1Þ2 ¼ A14 þ A25;A36; �ð1Þ3 ¼ s11 � s22; s13 � s23; s44 � s55;

�ð1Þ4 ¼ Q11 �Q22; Q12 �Q21; Q13 �Q23; Q31 �Q32; Q44 �Q55.
All these parameters have the opposite sign in S3.

The tensor distinction of two domain states S1 and Sj in a
domain pair ðS1; SjÞ provides a useful classification of domain
pairs given in the second and the third columns of Table 3.4.3.1.
This classification can be extended to ferroic phases which are
named according to domain pairs that exist in this phase. Thus,
for example, if a ferroic phase contains ferroelectric (ferroelastic)
domain pair(s), then this phase is a ferroelectric (ferroelastic)
phase. Finer division into full and partial ferroelectric (ferro-
elastic) phases specifies whether all or only some of the possible
domain pairs in this phase are ferroelectric (ferroelastic) ones.
Another approach to this classification uses the notions of prin-
cipal and secondary tensor parameters, and was explained in
Section 3.4.2.2.

A discussion of and many examples of secondary ferroic
phases are available in papers by Newnham & Cross (1974a,b)
and Newnham & Skinner (1976), and tertiary ferroic phases are
discussed by Amin & Newnham (1980).

We shall now show that the tensor distinction of domain states
is closely related to the switching of domain states by external
fields.

3.4.3.3. Switching of ferroic domain states

We saw in Section 3.4.2.1 that all domain states of the orbitGS1
have the same chance of appearing. This implies that they have
the same free energy, i.e. they are degenerate. The same
conclusion follows from thermodynamic theory, where domain
states appear as equivalent solutions of equilibrium values of the
order parameter, i.e. all domain states exhibit the same free
energy � (see Section 3.1.2). These statements hold under a tacit
assumption of absent external electric and mechanical fields. If
these fields are nonzero, the degeneracy of domain states can be
partially or completely lifted.

The free energy �ðkÞ per unit volume of a ferroic domain state
Sk, k ¼ 1; 2; . . . ; n, with spontaneous polarization P

ðkÞ
0 with

components P
ðkÞ
0i , i ¼ 1; 2; 3, and with spontaneous strain

components u
ðkÞ
0�, � ¼ 1; 2; . . . ; 6; is (Aizu, 1972)

�ðkÞ ¼ �0 � P
ðkÞ
0i Ei � u

ðkÞ
0��� � d

ðkÞ
i� Ei�� �

1
2 "0�

ðkÞ
ik EiEk

� 1
2 s

ðkÞ
�	���	 �

1
2Qik�EiEk�� � . . . ; ð3:4:3:32Þ

where the Einstein summation convention (summation with
respect to suffixes that occur twice in the same term) is used with
i; j ¼ 1; 2; 3 and �; 	 ¼ 1; 2; . . . ; 6. The symbols in equation
(3.4.3.32) have the following meaning: Ei and u� are components
of the external electric field and of the mechanical stress,
respectively, d

ðkÞ
i� are components of the piezoelectric tensor,

"0�
ðkÞ
ij are components of the electric susceptibility, s

ðkÞ
�	 are

compliance components, and Q
ðkÞ
ij� are components of electro-

striction (components with Greek indices are expressed in matrix
notation) [see Section 3.4.5 (Glossary), Chapter 1.1 or Nye
(1985); Sirotin & Shaskolskaya (1982)].

We shall examine two domain states S1 and Sj, i.e. a domain
pair ðS1; SjÞ, in electric and mechanical fields. The difference of
their free energies is given by

�ðjÞ ��ð1Þ ¼ �ðP
ðjÞ
0i � P

ð1Þ
0i ÞEi � ðu

ðjÞ
0� � u

ð1Þ
0�Þ�� � ðd

ðjÞ
i� � d

ð1Þ
i� ÞEi��

� 1
2 "0ð�

ðjÞ
ik � �ð1Þik ÞEiEk �

1
2 ðs

ðjÞ
�	 � s

ð1Þ
�	Þ���	

� 1
2 ðQ

ðjÞ
ik� �Q

ð1Þ
ik�ÞEiEk�� � . . . : ð3:4:3:33Þ

For a domain pair ðS1; SjÞ and given external fields, there are
three possibilities:

(1) �ðjÞ ¼ �ð1Þ. Domain states S1 and Sj can coexist in equili-
brium in given external fields.

(2) �ðjÞ<�ð1Þ. In given external fields, domain state Sj is more
stable than S1; for large enough fields (higher than the coercive
ones), the state S1 switches into the state Sj.

(3) �ðjÞ>�ð1Þ. In given external fields, domain state Sj is less
stable than S1; for large enough fields (higher than the coercive
ones), the state Sj switches into the state S1.

A typical dependence of applied stress and corresponding
strain in ferroelastic materials has a form of a elastic hysteresis
loop (see Fig. 3.4.1.3). Similar dielectric hysteresis loops are
observed in ferroelectric materials; examples can be found in
books on ferroelectric crystals (e.g. Jona & Shirane, 1962).

A classification of switching (state shifts in Aizu’s terminology)
based on equation (3.4.3.33) was put forward by Aizu (1972,
1973) and is summarized in the second and fourth columns of
Table 3.4.3.1. The order of the state shifts specifies the switching
fields that are necessary for switching one domain state of a
domain pair into the second state of the pair.

Another distinction related to switching distinguishes between
actual and potential ferroelectric (ferroelastic) phases, depending
on whether or not it is possible to switch the spontaneous
polarization (spontaneous strain) by applying an electric field
(mechanical stress) lower than the electrical (mechanical)
breakdown limit under reasonable experimental conditions
(Wadhawan, 2000). We consider in our classification always the
potential ferroelectric (ferroelastic) phase.

A closer look at equation (3.4.3.33) reveals a correspondence
between the difference coefficients in front of products of field
components and the tensor distinction of domain states S1 and Sj
in the domain pair ðS1; SjÞ: If a morphic Cartesian tensor
component of a polar tensor is different in these two domain
states, then the corresponding difference coefficient is nonzero
and defines components of fields that can switch one of these
domain states into the other. A similar statement holds for the
symmetric tensors of rank two (e.g. the spontaneous strain
tensor).
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Table 3.4.3.1. Classification of domain pairs, ferroic phases and of switching (state shifts)

P
ðkÞ
0i and u

ðkÞ
0� are components of the spontaneous polarization and spontaneous strain in the domain state Sk, where k ¼ 1 or k ¼ j; similarly, d

ðkÞ
i� are components of the

piezoelectric tensor, "0�
ðkÞ
ij are components of electric susceptibility, s

ðkÞ
�	 are compliance components andQ

ðkÞ
ij� are components of electrostriction (components with Greek

indices are expressed in matrix notation) [see Chapter 1.1 or e.g. Nye (1985) and Sirotin & Shaskolskaya (1982)]. Text in italics concerns the classification of ferroic
phases. E is the electric field and � is the mechanical stress.

Ferroic class Domain pair – at least in one pair Domain pair – phase Switching (state shift) Switching field

Primary At least one P
ðjÞ
0i � P

ð1Þ
0i 6¼ 0 Ferroelectric Electrically first order E

At least one u
ðjÞ
0� � u

ð1Þ
0� 6¼ 0 Ferroelastic Mechanically first order �

Secondary At least one P
ðjÞ
0i � P

ð1Þ
0i 6¼ 0 and at least one u

ðjÞ
0� � u

ð1Þ
0� 6¼ 0 Ferroelastoelectric Electromechanically first order E�

All P
ðjÞ
0i � P

ð1Þ
0i ¼ 0 and at least one "0ð�

ðjÞ
ik � �ð1Þik Þ 6¼ 0 Ferrobielectric Electrically second order EE

All u
ðjÞ
0� � u

ð1Þ
0� ¼ 0 and at least one s

ðjÞ
�	 � s

ð1Þ
�	 6¼ 0 Ferrobielastic Mechanically second order ��

. . . . . . . . . . . . . . .

i; j ¼ 1; 2; 3; �; 	 ¼ 1; 2; . . . ; 6.
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Tensor distinction for all representative non-ferroelastic
domain pairs is available in the synoptic Table 3.4.3.4. These data
also carry information about the switching fields.

3.4.3.4. Classes of equivalent domain pairs and their classifications

Two domain pairs that are crystallographically equivalent,
ðSi; SkÞ �

G
ðSl; SmÞ [see equation (3.4.3.5)], have different orien-

tations in space but their inherent properties are the same. It is,
therefore, useful to divide all domain pairs of a ferroic phase into
classes of equivalent domain pairs. All domain pairs that are
equivalent (in G) with a given domain pair, say ðSi; SkÞ, can be
obtained by applying to ðSi; SkÞ all operations of G, i.e. by
forming a G-orbit GðSi; SkÞ.

One can always find in this orbit a domain pair ðS1; SjÞ that has
in the first place the first domain state S1. We shall call such a pair
a representative domain pair of the orbit. The initial orbitGðSi; SkÞ
and the orbit GðS1; SjÞ are identical:

GðSi; SkÞ ¼ GðS1; SjÞ:

The set P of n2 ordered pairs (including trivial ones) that can
be formed from n domain states can be divided into G-orbits
(classes of equivalent domain pairs):

P ¼ GðS1; S1Þ [GðS1; g2S1Þ [ . . . [ ðS1; gjS1Þ [ . . . [GðS1; gqS1Þ:

ð3:4:3:34Þ

Similarly, as there is a one-to-one correspondence between
domain states and left cosets of the stabilizer (symmetry group)
F1 of the first domain state [see equation (3.4.2.9)], there is an
analogous relation between G-orbits of domain pairs and so-
called double cosets of F1.

A double coset F1gjF1 of F1 is a set of left cosets that can be
expressed as fgjF1, where f 2 F1 runs over all operations of F1

(see Section 3.2.3.2.8). A group G can be decomposed into
disjoint double cosets of F1 � G:

G ¼ F1eF1 [ F1g2F1 [ . . . [ F1gjF1 [ . . . [ F1gqF1;

j ¼ 1; 2; . . . ; q; ð3:4:3:35Þ

where g1 ¼ e; g2; . . .gj; . . .gq is the set of representatives of
double cosets.

There is a one-to-one correspondence between double cosets
of the decomposition (3.4.3.35) and G-orbits of domain pairs
(3.4.3.34) (see Section 3.2.3.3.6, Proposition 3.2.3.35):

GðS1; SjÞ $ F1gjF1; where Sj ¼ gjS1; j ¼ 1; 2; . . .; q:

ð3:4:3:36Þ

We see that the representatives gj of the double cosets in
decomposition (3.4.3.35) define domain pairs ðS1; gjS1Þ which
represent all different G-orbits of domain pairs. Just as different
left cosets giF1 specify all domain states, different double cosets
determine all classes of equivalent domain pairs (G-orbits of
domain pairs).

The properties of double cosets are reflected in the properties
of corresponding domain pairs and provide a natural classifica-
tion of domain pairs. A specific property of a double coset is that
it is either identical or disjoint with its inverse. A double coset
that is identical with its inverse,

ðF1gjF1Þ
�1

¼ F1g
�1
j F1 ¼ F1gjF1; ð3:4:3:37Þ

is called an invertible (ambivalent) double coset. The corre-
sponding class of domain pairs consists of transposable
(ambivalent) domain pairs.

A double coset that is disjoint with its inverse,

ðF1gjF1Þ
�1

¼ F1g
�1
j F1 \ F1gjF1 ¼ ;; ð3:4:3:38Þ

is a non-invertible (polar) double coset (; denotes an empty set)
and the corresponding class of domain pairs comprises non-
transposable (polar) domain pairs. A double coset F1gjF1 and its
inverse ðF1gjF1Þ

�1 are called complementary double cosets.
Corresponding classes called complementary classes of equivalent
domain pairs consist of transposed domain pairs that are non-
equivalent.

Another attribute of a double coset is the number of left cosets
which it comprises. If an invertible double coset consists of one
left coset,

F1gjF1 ¼ gjF1 ¼ ðgjF1Þ
�1; ð3:4:3:39Þ

then the domain pairs in the G-orbit GðS1; gjS1Þ are completely
transposable. An invertible double coset comprising several left
cosets is associated with a G-orbit consisting of partially trans-
posable domain pairs. Non-invertible double cosets can be
divided into simple non-transposable double cosets (comple-
mentary double cosets consist of one left coset each) and multiple
non-transposable double cosets (complementary double cosets
comprise more than one left coset each).

Thus there are four types of double cosets (see Table 3.2.3.1 in
Section 3.2.3.2) to which there correspond the four basic types of
domain pairs presented in Table 3.4.3.2.

These results can be illustrated using the example of a phase
transition with G ¼ 4z=mzmxmxy � 2xmymz ¼ F1 with four
domain states (see Fig. 3.4.2.2). The corresponding four left
cosets of 2xmymz are given in Table 3.4.2.1. Any operation from
the first left coset (identical with F1) transforms the second left
coset into itself, i.e. this left coset is a double coset. Since it
consists of an operation of order two, it is a simple invertible
double coset. The corresponding representative domain pair is
ðS1; �11S1Þ ¼ ðS1; S2Þ. By applying operations of G ¼ 4z=mzmxmxy

on ðS1; S2Þ, one gets the class of equivalent domain pairs (G-
orbit): ðS1; S2Þ �

G
ðS2; S1Þ �

G
ðS3; S4Þ �

G
ðS4; S3Þ. These domain pairs

can be labelled as ‘180� pairs’ according to the angle between the
spontaneous polarization in the two domain states.

When one applies operations from the first left coset on the
third left coset, one gets the fourth left coset, therefore a double
coset consists of these two left cosets. An inverse of any operation
of this double coset belongs to this double coset, hence it is a
multiple invertible double coset. Corresponding domain pairs are
partially transposable ones. A representative pair is, for example,
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Table 3.4.3.2. Four types of domain pairs

F1j J1j K1j Double coset Domain pair name symbol

F1 ¼ Fj F1 [ g?1jF1 F1 [ g?1jF1 F1g1jF1 ¼ g1jF1 ¼ ðg1jF1Þ
�1

transposable completely tc

F1j � F1 F1j [ g?1jF1j F1 [ g?1jF1 [ . . . F1g1jF1 ¼ ðF1g1jF1Þ
�1

transposable partially tp

F1 ¼ Fj F1 F1 [ g1jF1 [ g�1
1j F1 F1g1jF1 ¼ g1jF1 \ ðg1jF1Þ

�1
¼ ; non-transposable simple ns

F1j � F1 F1j F1 [ g1jF1 [ ðg1jF1Þ
�1

[ . . . F1g1jF1 \ ðF1g1jF1Þ
�1

¼ ; non-transposable multiple nm

Table 3.4.3.3. Decomposition of G ¼ 6z=mz into left cosets of F1 ¼ 2z=mz

Left coset

Principal
domain
state

1 2z �11 mz S1

3z 65z �33z �66
5

z S2

32z 6z �33
5

z
�66z S3
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ðS1; 2xyS1Þ ¼ ðS1; S3Þ which is indeed a partially transposable

domain pair [cf. (3.4.3.19) and (3.4.3.20)]. The class of equivalent

ordered domain pairs is ðS1; S3Þ �
G
ðS3; S1Þ �

G
ðS1; S4Þ �

G
ðS4; S1Þ �

G

ðS3; S2Þ �
G

ðS2; S3Þ �
G

ðS2; S4Þ �
G

ðS4; S2Þ. These are ‘90� domain
pairs’.

An example of non-invertible double cosets is provided by the
decomposition of the group G ¼ 6z=mz into left and double
cosets of F1 ¼ 2z=mz displayed in Table 3.4.3.3. The inverse of the
second left coset (second line) is equal to the third left coset
(third line) and vice versa. Each of these two left cosets thus
corresponds to a double coset and these double cosets are
complementary double cosets. Corresponding representative
simple non-transposable domain pairs are ðS1; S2Þ and ðS2; S1Þ,
and are depicted in Fig. 3.4.3.2.

We conclude that double cosets determine classes of equivalent
domain pairs that can appear in the ferroic phase resulting from a
phase transition with a symmetry descent G � F1. Left coset and
double coset decompositions for all crystallographic point-group
descents are available in the software GI?KoBo-1, path:
Subgroups\View\Twinning groups.

A double coset can be specified by any operation belonging to
it. This representation is not very convenient, since it does not
reflect the properties of corresponding domain pairs and there
are many operations that can be chosen as representatives of a
double coset. It turns out that in a continuum description the
twinning group K1j can represent classes of equivalent domain
pairs GðS1; SjÞ with two exceptions:

(i) Two complementary classes of non-transposable domain
pairs have the same twinning group. This follows from the fact
that if a twinning group contains the double coset, then it must
comprise also the inverse double coset.

(ii) Different classes of transposable domain pairs have
different twining groups except in the following case (which
corresponds to the orthorhombic ferroelectric phase in perov-
skites): the group F1 ¼ mx�yy2xymz generates with switching
operations g ¼ 2yz and g3 ¼ myz two different double cosets with
the same twinning group K12 ¼ K13 ¼ m�33m (one can verify this
in the software GI?KoBo-1, path: Subgroups\View\Twinning
groups). Domain states are characterized in this ferroelectric
phase by the direction of the spontaneous polarization. The
angles between the spontaneous polarizations of the domain
states in domain pairs ðS1; 2yzS1Þ and ðS1;myzS1Þ are 120 and 60�,
respectively; this shows that these representative domain pairs
are not equivalent and belong to two different G-orbits of
domain pairs. To distinguish these two cases, we add to the
twinning group m�33m½mx�yy2xymz� either the switching operation 2yz
or myz, i.e. the two distinct orbits are labelled by the symbols
m�33mð2xyÞ and m�33mðmxyÞ, respectively.

Bearing in mind these two exceptions, one can, in the conti-
nuum description, represent G-orbits of domain pairs GðS1; SjÞ by
twinning groups K1j½F1�.

We have used this correspondence in synoptic Table 3.4.2.7 of
symmetry descents at ferroic phase transitions. For each
symmetry descent G � F1, the twinning groups given in column
K1j specify possible G-orbits of domain pairs that can appear in
the domain structure of the ferroic phase (Litvin & Janovec,
1999). We divide all orbits of domain pairs (represented by
corresponding twinning groups K1j) that appear in Table 3.4.2.7
into classes of non-ferroelastic and ferroelastic domain pairs and
present them with further details in the three synoptic Tables
3.4.3.4, 3.4.3.6 and 3.4.3.7 described in Sections 3.4.3.5 and 3.4.3.6.

As we have seen, a classification of domain pairs according to
their internal symmetry (summarized in Table 3.4.3.2) introduces
a partition of all domain pairs that can be formed from domain
states of the G-orbit GS1 into equivalence classes of pairs with
the same internal symmetry. Similarly, any inherent physical
property of domain pairs induces a partition of all domain pairs
into corresponding equivalence classes. Thus, for example, the

classification of domain pairs, based on tensor distinction or
switching of domain states (see Table 3.4.3.1, columns two and
three), introduces a division of domain pairs into corresponding
equivalence classes.

3.4.3.5. Non-ferroelastic domain pairs: twin laws, domain distinc-
tion and switching fields, synoptic table

Two domain states S1 and Sj form a non-ferroelastic domain
pair ðS1; SjÞ if the spontaneous strain in both domain states is the
same, u

ð1Þ
0 ¼ u

ðjÞ
0 . This is so if the twinning group K1j of the pair

and the symmetry group F1 of domain state S1 belong to the same
crystal family (see Table 3.4.2.2):

FamK1j ¼ FamF1: ð3:4:3:40Þ

It can be shown that all non-ferroelastic domain pairs are
completely transposable domain pairs (Janovec et al., 1993), i.e.

F1j ¼ F1 ¼ Fj ð3:4:3:41Þ

and the twinning group K1j is equal to the symmetry group J1j of
the unordered domain pair [see equation (3.4.3.24)]:

K?
1j ¼ J?1j ¼ F1 [ g?1jF1: ð3:4:3:42Þ

(Complete transposability is only a necessary, but not a sufficient,
condition of a non-ferroelastic domain pair, since there are also
ferroelastic domain pairs that are completely transposable – see
Table 3.4.3.6.)

The relation between domain states in a non-ferroelastic
domain twin, in which two domain states coexist, is the same as
that of a corresponding non-ferroelastic domain pair consisting of
single-domain states. Transposing operations g?1j are, therefore,
also twinning operations.

Synoptic Table 3.4.3.4 lists representative domain pairs of all
orbits of non-ferroelastic domain pairs. Each pair is specified by
the first domain state S1 with symmetry group F1 and by trans-
posing operations g?1j that transform S1 into Sj, Sj ¼ g?1jS1. Twin
laws in dichromatic notation are presented and basic data for
tensor distinction and switching of non-ferroelastic domains are
given.

3.4.3.5.1. Explanation of Table 3.4.3.4

The first three columns specify domain pairs.
F1: point-group symmetry (stabilizer in K1j) of the first domain

state S1Þ in a single-domain orientation. There are two domain
states with the same F1; one has to be chosen as S1. Subscripts of
generators in the group symbol specify their orientation in the
Cartesian (rectangular) crystallophysical coordinate system of
the group K1j (see Tables 3.4.2.5, 3.4.2.6 and Figs. 3.4.2.3, 3.4.2.4).

g?1j: switching operations that specify domain pair ðS1; g
?
1jS1Þ ¼

ðS1; SjÞ. Subscripts of symmetry operations specify the orienta-
tion of the corresponding symmetry element in the Cartesian
(rectangular) crystallophysical coordinate system of the group
K1j. In hexagonal and trigonal systems, x0; y0 and x00; y00 denote the
Cartesian coordinate system rotated about the z axis through 120
and 240�, respectively, from the Cartesian coordinate axes x
and y; diagonal directions are abbreviated: p ¼ ½111�, q ¼ ½�11�111�,
r ¼ ½1�11�11�, s ¼ ½�111�11� (for further details see Tables 3.4.2.5 and
3.4.2.6, and Figs. 3.4.2.3 and 3.4.2.4).

All switching operations of the second order are given,
switching operations of higher order are omitted. The star symbol
signifies that the operation is both a transposing and a twinning
operation.

K?
1j ¼ J?1j: twinning group of the domain pair ðS1; SjÞ. This group

is equal to the symmetry group J?1j of the completely transposable
unordered domain pair fS1; Sjg [see equation (3.4.3.24)]. The
dichromatic symbol of the group K?

1j ¼ J?1j designates the twin law
of the non-ferroelastic domain pair fS1; Sjg and the twin law of all
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Table 3.4.3.4. Non-ferroelastic domain pairs, domain twin laws and distinction of non-ferroelastic domains

F1: symmetry of S1; g
?
1j: twinning operations of second order; K?

1j: twinning group signifying the twin law of domain pair ðS1; g
?
1jS1Þ; J

?
1j: symmetry group of the pair; ��:

irreducible representation of K?
1j; 
, Pi; . . ., Qij�: components of property tensors (see Table 3.4.3.5): ajc: number of distinctjequal nonzero tensor components of

property tensors.

F1 g?1j K?
1j ¼ J?1j ��

Diffraction
intensities 
 Pi g� di� Ai� s�	 Qij�

1 �11? �11? Au ¼ 1j0 3j0 6j0 18j0 0j18 0j21 0j36

2u† �11?, m?
u 2u=m

?
u Au ¼ 1j0 1j0 4j0 8j0 0j8 0j13 0j20

mu† �11?, 2?u 2?u=mu Bu ¼ 0j0 2j0 2j0 10j0 0j8 0j13 0j20

2x2y2z �11?, m?
x, m

?
y, m

?
z m?

xm
?
ym

?
z Au ¼ 1j0 0j0 3j0 3j0 0j3 0j9 0j12

2x�yy2xy2z �11?, m?
xy, m

?
x�yy, m

?
z m?

x�yym
?
xym

?
z Au ¼ 1j0 0j0 3j0 3j0 0j3 0j9 0j12

mxmy2z �11?, m?
z, 2

?
x, 2

?
y mxmym

?
z B1u ¼ 0j0 1j0 1j0 5j0 0j3 0j9 0j12

2xmymz
�11?, m?

x, 2
?
y, 2

?
z m?

xmymz B1u ¼ 0j0 1j0 1j0 5j0 0j3 0j9 0j12

mx2ymz
�11?, m?

y, 2
?
x, 2

?
z mxm

?
ymz B1u ¼ 0j0 1j0 1j0 5j0 0j3 0j9 0j12

mx�yymxy2z �11?, m?
z, 2

?
xy, 2

?
x�yy mx�yymxym

?
z B1u ¼ 0j0 1j0 1j0 5j0 0j3 0j9 0j12

4z �11?, m?
z 4z=m

?
z Au ¼ 1j0 1j0 2j0 4j0 0j4 0j7 0j10

4z 2?x, 2
?
y, 2

?
xy, 2

?
x�yy 4z2

?
x2
?
xy A2 6¼ 0j1 1j0 0j2 3j1 3j1 1j6 3j7

4z m?
x, m

?
y, m

?
xy, m

?
x�yy 4zm

?
xm

?
xy A2 6¼ 1j0 0j1 2j0 1j3 3j1 1j6 3j7

�44z �11?, m?
z 4?z=m

?
z Bu ¼ 0j0 0j0 2j0 4j0 0j4 0j7 0j10

�44z m?
xy, m

?
x�yy, 2

?
x, 2

?
y

�44z2
?
xm

?
xy A2 6¼ 0j0 0j0 1j1 2j2 3j1 1j6 3j7

�44z m?
x, m

?
y, 2

?
xy, 2

?
x�yy

�44zm
?
x2
?
xy A2 6¼ 0j0 0j0 1j1 2j2 3j1 1j6 3j7

4z=mz m?
x, m

?
y, m

?
xy, m

?
x�yy, 2

?
x, 2

?
y, 2

?
xy, 2

?
x�yy 4z=mzm

?
xm

?
xy A2g 6¼ 0j0 0j0 0j0 0j0 3j1 1j6 3j7

4z2x2xy �11?, m?
z, m

?
x, m

?
y, m

?
xy, m

?
x�yy 4z=m

?
zm

?
xm

?
xy A1u ¼ 1j0 0j0 2j0 1j0 0j1 0j6 0j7

4zmxmxy
�11?, m?

z, 2
?
x, 2

?
y, 2

?
xy, 2

?
x�yy 4z=m

?
zmxmxy A2u ¼ 0j0 1j0 0j0 3j0 0j1 0j6 0j7

�44z2xmxy
�11?, m?

z, m
?
x, m

?
y, 2

?
xy, 2

?
x�yy 4?z=m

?
zm

?
xmxy B1u ¼ 0j0 0j0 1j0 2j0 0j1 0j6 0j7

�44zmx2xy �11?, m?
z, m

?
xy, m

?
x�yy, 2

?
x, 2

?
y 4?z=m

?
zmxm

?
xy B1u ¼ 0j0 0j0 1j0 2j0 0j1 0j6 0j7

3v‡ �11? �33?v Au ¼ 1j0 1j0 2j0 6j0 0j6 0j7 0j12

3z 2?x, 2
?
x0 , 2

?
x0 0 3z2

?
x A2 6¼ 0j1 1j0 0j2 4j2 4j2 1j6 4j8

3z 2?y, 2
?
y0 , 2

?
y0 0 3z2

?
y A2 6¼ 0j1 1j0 0j2 4j2 4j2 1j6 4j8

3p 2?x�yy, 2
?
y�zz, 2

?
z�xx 3p2

?
x�yy A2 6¼ 0j1 1j0 0j2 4j2 4j2 1j6 4j8

3z m?
x, m

?
x0 , m

?
x0 0 3zm

?
x A2 6¼ 1j0 0j1 2j0 2j4 4j2 1j6 4j8

3z m?
y, m

?
y0 , m

?
y0 0 3zm

?
y A2 6¼ 1j0 0j1 2j0 2j4 4j2 1j6 4j8

3p m?
x�yy, m

?
y�zz, m

?
z�xx 3pm

?
x A2 6¼ 1j0 0j1 2j0 2j4 4j2 1j6 4j8

3z 2?z 6?z B 6¼ 0j1 0j1 0j2 2j4 2j4 2j5 4j8

3z m?
z

�66?z A
0 0

6¼ 1j0 1j0 2j0 4j2 2j4 2j5 4j8

�33z m?
x, m

?
x0 , m

?
x0 0 , 2

?
x, 2

?
x0 , 2

?
x0 0

�33zm
?
x A2g 6¼ 0j0 0j0 0j0 0j0 4j2 1j6 4j8

�33z m?
y, m

?
y0 , m

?
y0 0 , 2

?
y, 2

?
y0 , 2

?
y0 0

�33zm
?
y A2g 6¼ 0j0 0j0 0j0 0j0 4j2 1j6 4j8

�33p m?
x�yy, m

?
y�zz, m

?
z�xx, 2

?
x�yy, 2

?
y�zz, 2

?
z�xx

�33pm
?
x A2g 6¼ 0j0 0j0 0j0 0j0 4j2 1j6 4j8

�33z m?
z, 2

?
z 6?z=m

?
z Bg 6¼ 0j0 0j0 0j0 0j0 2j4 2j5 4j8

3z2x �11?, m?
x, m

?
x0 , m

?
x0 0

�33?zm
?
x A1u ¼ 1j0 0j0 2j0 2j0 0j2 0j6 0j8

3z2y �11?, m?
y, m

?
y0 , m

?
y0 0

�33?zm
?
y A1u ¼ 1j0 0j0 2j0 2j0 0j2 0j6 0j8

3z2x 2?z, 2
?
y, 2

?
y0 , 2

?
y0 0 6?z2x2

?
y B1 6¼ 0j1 0j0 0j2 1j1 1j1 1j5 2j6

3z2y 2?z, 2
?
x, 2

?
x0 , 2

?
x0 0 6?z2

?
x2y B1 6¼ 0j1 0j0 0j2 1j1 1j1 1j5 2j6

3p2x�yy �11?, m?
x�yy, m

?
y�zz, m

?
z�xx

�33?pm
?
x A1u ¼ 1j0 0j0 2j0 2j0 0j2 0j6 0j8

3z2x m?
z, m

?
y, m

?
y0 , m

?
y0 0

�66?z2xm
?
y A

0 0

1 6¼ 1j0 0j0 2j0 1j1 1j1 1j5 2j6

3z2y m?
z, m

?
x, m

?
x0 , m

?
x0 0

�66?zmx2
?
y A

0 0

1 6¼ 1j0 0j0 2j0 1j1 1j1 1j5 2j6

3pmx�yy
�11?, 2?x�yy, 2

?
y�zz, 2

?
z�xx

�33?pmx A2u ¼ 0j0 1j0 0j0 4j0 0j2 0j6 0j8

3zmx
�11?, 2?x, 2

?
x0 , 2

?
x0 0

�33?zmx A2u ¼ 0j0 1j0 0j0 4j0 0j2 0j6 0j8

3zmy
�11?, 2?y, 2

?
y0 , 2

?
y0 0

�33?zmy A2u ¼ 0j0 1j0 0j0 4j0 0j2 0j6 0j8

3zmx 2?z, m
?
y, m

?
y0 , m

?
y0 0 6?zmxm

?
y B2 6¼ 0j0 0j1 0j0 1j3 1j1 1j5 2j6

3zmy m?
x, m

?
x0 , m

?
x0 0 6?zm

?
xmy B2 6¼ 0j0 0j1 0j0 1j3 1j1 1j5 2j6

3zmx m?
z, 2

?
y, 2

?
y0 , 2

?
y0 0

�66?zmx2
?
y A

0 0

2 6¼ 0j0 1j0 0j0 3j1 1j1 1j5 2j6

3zmy m?
z, 2

?
x, 2

?
x0 , 2

?
x0 0

�66?z2
?
xmy A

0 0

2 6¼ 0j0 1j0 0j0 3j1 1j1 1j5 2j6

�33zmx m?
z, m

?
y, m

?
y0 , m

?
y0 0 6?z=m

?
zmxm

?
y B1g 6¼ 0j0 0j0 0j0 0j0 1j1 1j5 2j6

�33zmy m?
z, m

?
x, m

?
x0 , m

?
x0 0 6?z=m

?
zm

?
xmy B1g 6¼ 0j0 0j0 0j0 0j0 1j1 1j5 2j6

6z �11?, m?
z 6z=m

?
z Au ¼ 1j0 1j0 2j0 4j0 0j4 0j5 0j8

6z 2?x, 2
?
x0 , 2

?
x0 0 , 2

?
y, 2

?
y0 , 2

?
y0 0 6z2

?
x2
?
y A2 6¼ 0j1 1j0 0j2 3j1 3j1 0j5 2j6

6z m?
x, m

?
x0 , m

?
x0 0 , m

?
y, m

?
y0 , m

?
y0 0 6zm

?
xm

?
y A2 6¼ 1j0 0j1 2j0 1j3 3j1 0j5 2j6

�66z �11?, 2?z 6?z=mz Bu ¼ 0j0 0j0 0j0 2j0 0j4 0j5 0j8

�66z m?
x, m

?
x0 , m

?
x0 0 , 2

?
y, 2

?
y0 , 2

?
y0 0

�66zm
?
x2
?
y A

0

2 6¼ 0j0 0j0 0j0 1j1 3j1 0j5 2j6

�66z m?
y, m

?
y0 , m

?
y0 0 , 2

?
x, 2

?
x0 , 2

?
x0 0

�66z2
?
xm

?
y A

0

2 6¼ 0j0 0j0 0j0 1j1 3j1 0j5 2j6

† u ¼ z; xðx0; x0 0Þ; yðy0; y0 0Þ; xyðx�yy; zx; z�xx; yz; y�zzÞ. ‡ v ¼ z; pðq; r; sÞ.
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non-ferroelastic twins with domains containing S1 and Sj (see
Section 3.4.3.1).

The second part of the table concerns the distinction and
switching of domain states of the non-ferroelastic domain pair
ðS1; SjÞ ¼ ðS1; g

?
1jS1Þ.

��: irreducible representation of K1j that defines the trans-
formation properties of the principal tensor parameters of the
symmetry descent K1j � F1 and thus specifies the components of
principal tensor parameters that are given explicitly in Table
3.1.3.1, in the software GI?KoBo-1 and in Kopský (2001), where
one replaces G by K1j.

Diffraction intensities: the entries in this column characterize
the differences of diffraction intensities from two domain states
of the domain pair:

¼ signifies that the twinning operations belong to the Laue
class of F1. Then the reflection intensities per unit volume are the
same for both domain states if anomalous scattering is zero, i.e. if
Friedel’s law is valid. For nonzero anomalous scattering, the
intensities from the two domain states differ, but when the partial
volumes of both states are equal the diffraction pattern is
centrosymmetric;

6¼ signifies that the twinning operations do not belong to the
Laue class of F1. Then the reflection intesities per unit volume of
the two domain states are different [for more details, see Chapter
3.3; Catti & Ferraris (1976); Koch (1999)].

, Pi, g�; . . . ; Qij�: components (in matrix notation) of

important property tensors that are specified in Table 3.4.3.5. The
same symbol may represent several property tensors (given in the
same row of Table 3.4.3.5) of the same rank and intrinsic
symmetry. Bold-face symbols signify polar tensors. For each type
of property tensor two numbers ajc are given; number a in front
of the vertical bar j is the number of independent covariant
components (in most cases identical with Cartesian components)
that have the same absolute value but different sign in domain
states S1 and Sj. The number c after the vertical bar j gives the
number of independent nonzero tensor parameters that have equal
values in both domain states of the domain pair ðS1; SjÞ. These
tensor components are already nonzero in the parent phase.

The principal tensor parameters are one-dimensional and have
the same absolute value but opposite sign in S1 and Sj ¼ g?1jS1.
Principal tensor parameters for symmetry descents K1j � F1 and
the associated �� of all non-ferroelastic domain pairs can be
found for property tensors of lower rank in Table 3.1.3.1 and for
all tensors appearing in Table 3.4.3.4 in the software GI?KoBo-1
and in Kopský (2001), where one replaces G by K1j.

When a 6¼ 0 for a polar tensor (in bold-face components), then
switching fields exist in the combination given in the last column
of Table 3.4.3.5. Components of these fields can be determined
from the explicit form of corresponding principal tensor para-
meters expressed in Cartesian components.

Table 3.4.3.5 lists important property tensors up to fourth rank.
Property tensor components that appear in the column headings
of Table 3.4.3.4 are given in the first column, where bold face is
used for the polar tensors significant for specifying the switching
fields appearing in schematic form in the last column. In the third
and fourth columns, those propery tensors appear for which hold
all the results presented in Table 3.4.3.4 for the symbols given in
the first column of Table 3.4.3.5.

We turn attention to Section 3.4.5 (Glossary), which describes
the difference between the notation of tensor components in
matrix notation given in Chapter 1.1 and those used in the soft-
ware GI?KoBo-1 and in Kopský (2001).

The numbers a in front of the vertical bar j in Table 3.4.3.4
provide global information about the tensor distinction of two
domain states and enables one to classify domain pairs. Thus, for
example, the first number a in column Pi gives the number of
nonzero components of the spontaneous polarization that differ
in sign in both domain states; if a 6¼ 0, this domain pair can be
classified as a ferroelectric domain pair.

Similarly, the first number a in column g� determines the
number of independent components of the tensor of optical
activity that have opposite sign in domain states S1 and Sj; if
a 6¼ 0, the two domain states in the pair can be distinguished by
optical activity. Such a domain pair can be called a gyrotropic
domain pair. As in Table 3.4.3.1 for the ferroelectric (ferroelastic)
domain pairs, we can define a gyrotropic phase as a ferroic phase
with gyrotropic domain pairs. The corresponding phase transition
to a gyrotropic phase is called a gyrotropic phase transition
(Koňák et al., 1978; Wadhawan, 2000). If it is possible to switch
gyrotropic domain states by an external field, the phase is called a
ferrogyrotropic phase (Wadhawan, 2000). Further division into
full and partial subclasses is possible.

One can also define piezoelectric (electro-optic) domain pairs,
electrostrictive (elasto-optic) domain pairs and corresponding
phases and transitions.

As we have already stated, domain states in a domain pair
ðS1; SjÞ differ in principal tensor parameters of the transition
K1j � F1. These principal tensor parameters are Cartesian tensor
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Table 3.4.3.4 (cont.)

F1 g?1j K?
1j ¼ J?1j ��

Diffraction
intensities 
 Pi g� di� Ai� s�	 Qij�

6z=mz m?
x, m

?
x0 , m

?
x0 0 , m

?
y, m

?
y0 , m

?
y0 0 , 2

?
x, 2

?
x0 , 2

?
x0 0 , 2

?
y, 2

?
y0 , 2

?
y0 0 6z=mzm

?
xm

?
y A2g 6¼ 0j0 0j0 0j0 0j0 3j1 0j5 2j6

6z2x2y �11?, m?
z, m

?
x, m

?
x0 , m

?
x0 0 , m

?
y, m

?
y0 ;m

?
y0 0 6z=m

?
zm

?
xm

?
y A1u ¼ 1j0 0j0 2j0 1j0 0j1 0j5 0j6

6zmxmy
�11?, m?

z, 2
?
x, 2

?
x0 , 2

?
x0 0 , 2

?
y, 2

?
y0 , 2

?
y0 0 6z=m

?
zmxmy A2u ¼ 0j0 1j0 0j0 3j0 0j1 0j5 0j6

�66z2xmy
�11?, 2?z, m

?
x, m

?
x0 , m

?
x0 0 , 2

?
y, 2

?
y0 , 2

?
y0 0 6?z=mzm

?
xmy B2u ¼ 0j0 0j0 0j0 1j0 0j1 0j5 0j6

�66zmx2y �11?, 2?z, m
?
y, m

?
y0 , m

?
y0 0 , 2

?
x; 2

?
x0 , 2

?
x0 0 6?z=mzmxm

?
y B2u ¼ 0j0 0j0 0j0 1j0 0j1 0j5 0j6

23 �11?, m?
x, m

?
y, m

?
z m? �33 Au ¼ 1j0 0j0 1j0 1j0 0j1 0j3 0j4

23 2?xy, 2
?
yz, 2

?
zx, 2

?
x�yy, 2

?
y�zz, 2

?
z�xx 4?32? A2 6¼ 0j1 0j0 0j1 1j0 1j0 0j3 1j3

23 m?
xy, m

?
yz, m

?
zx, m

?
x�yy, m

?
y�zz, m

?
z�xx

�44?3m? A2 6¼ 1j0 0j0 1j0 0j1 1j0 0j3 1j3

m�33 m?
xy, m

?
yz, m

?
zx, m

?
x�yy, m

?
y�zz, m

?
z�xx, 2

?
xy, 2

?
yz, 2

?
zx, 2

?
x�yy, 2

?
y�zz, 2

?
z�xx m�33m? A2g 6¼ 0j0 0j0 0j0 0j0 1j0 0j3 1j3

432 �11?, m?
x, m

?
y, m

?
z, m

?
xy, m

?
yz, m

?
zx, m

?
x�yy, m

?
y�zz, m

?
z�xx m? �33m? A1u ¼ 1j0 0j0 1j0 0j0 0j0 0j3 0j3

�443m �11?, m?
x, m

?
y, m

?
z, 2

?
xy, 2

?
yz, 2

?
zx, 2

?
x�yy, 2

?
y�zz, 2

?
z�xx m? �33m A2u ¼ 0j0 0j0 0j0 1j0 0j0 0j3 0j3

Table 3.4.3.5. Property tensors and switching fields

i ¼ 1; 2; 3; �; 	 ¼ 1; 2; . . . ; 6.

Symbol Property tensor Symbol
Property
tensor

Switching
fields


 Enantiomorphism Chirality
Pi Polarization pi Pyroelectricity E
"""ij Permittivity EE
g� Optical activity
di� Piezoelectricity rijk Electro-optics Eu
Ai� Electrogyration
s�	 Elastic compliances uu
Qij� Electrostriction �ij� Piezo-optics EEu



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

components or their linear combinations that transform
according to an irreducible representation �� specifying the
primary order parameter of the transition K1j � F1 (see Section
3.1.3). Owing to a special form of K1j expressed by equation
(3.4.3.42), this representation is a real one-dimensional irre-
ducible representation of K1j. Such a representation associates +1
with operations of F1 and �1 with operations from the left coset
g?1j. This means that the principal tensor parameters are one-
dimensional and have the same absolute value but opposite sign
in S1 and Sj ¼ g?1jS1. Principal tensor parameters for symmetry
descents K1j � F1 and associated ��’s of all non-ferroelastic
domain pairs can be found for property tensors of lower rank in
Table 3.1.3.1 and for all tensors appearing in Table 3.4.3.5 in the
software GI?KoBo-1 and in Kopský (2001).

These specific properties of non-ferroelastic domain pairs
allow one to formulate simple rules for tensor distinction that do
not use principal tensor parameters and that are applicable for
property tensors of lower rank.

(i) Symmetry descents K1j � F1 of non-ferroelastic domain
pairs for lower-rank property tensors lead only to the appearance
of independent Cartesian morphic tensor components and not to
the breaking of relations between these components. These
morphic Cartesian tensor components can be found by
comparing matrices of property tensors in the twinning group K1j

and the low-symmetry group F1 as those components that appear
in F1 but are zero in K1j.

(ii) As follows from Table 3.4.3.4, one can always find a twin-
ning operation that is either inversion, or a twofold axis or a
mirror plane with a prominent crystallographic orientation. By
applying the method of direct inspection (see Section 1.1.4.6.3),
one can in most cases easily find morphic Cartesian components
in the second domain state of the domain pair considered and
prove that they differ only in sign.

Example 3.4.3.4. Tensor distinction of domains and switching in
lead germanate. Lead germanate (Pb5Ge3O11) undergoes a phase
transition with symmetry descent G ¼ �66 � 3 ¼ F1 for which
we find in Table 3.4.2.7, column K1j, just one twinning group
K1j ¼

�66
?
, i.e. K?

1j ¼ G. This means that there is only one G-orbit
of domain pairs. Since Fam3 ¼ Fam�66 [see Table 3.4.2.2 and
equation (3.4.3.40)] this orbit comprises non-ferroelastic domain
pairs. In Table 3.4.3.4, we find for F1 ¼ 3 and F?1j ¼ �66 that the two
domain states differ in some components of all property tensors
listed in this table. The first polar tensor is the spontaneous
polarization (the pair is ferroelectric) with one component
ða ¼ 1Þ that has opposite sign in the two domain states. In Table
3.1.3.1, we find for Gð¼ K1jÞ ¼

�66 and F1 ¼ 3 that this component
is P3 ¼ Pz. From Table 3.4.3.1, it follows that the state shift is
electrically first order with switching field E ¼ ð0; 0;EzÞ.

The first optical tensor, which could enable the visualization of
the domain states, is the optical activity g� with two independent
components which have opposite sign in the two domain states.
In the software GI?KoBo-1, path: Subgroups\View\Domains or
in Kopský (2001) we find these components: g3; g1 þ g2. Shur et
al. (1989) have visualized in this way the domain structure of lead
germanate with excellent black and white contrast (see Fig.
3.4.3.3). Other examples are given in Shuvalov & Ivanov (1964)
and especially in Koňák et al. (1978).

Table 3.4.3.4 can be used readily for twinning by merohedry
[see Chapter 3.3 and e.g. Cahn (1954); Koch (1999)], where it
enables an easy determination of the tensor distinction of twin
components and the specification of external fields for possible
switching and detwinning.

Example 3.4.3.5. Tensor distinction and switching of Dauphiné
twins in quartz. Quartz undergoes a phase transition from
G ¼ 6z2x2y to F1 ¼ 3z2x. Using the same procedure as in the
previous example, we come to following conclusions: There are
only two domain states S1, S2 and the twinning group, expressing
the twin law, is equal to the high-symmetry group K?

12 ¼ 6zx2y. In
Table 3.4.3.4, we find that these two states differ in one inde-
pendent component of the piezoelectric tensor and in one elastic
compliance component. Comparison of the matrices for 6z2x2y
and 3z2x (see Sections 1.1.4.10.3 and 1.1.4.10.4) yields the
following morphic tensor components in the first domain state S1:
d
ð1Þ
11 ¼�d

ð1Þ
12 ¼�2d

ð1Þ
26 and s

ð1Þ
14 ¼�s

ð1Þ
24 ¼ 2s

ð1Þ
56 . According to the rule

given above, the values of morphic components in the second

domain state S2 are d
ð2Þ
11 ¼ �d

ð1Þ
11 ¼ �d

ð2Þ
12 ¼ d

ð1Þ
12 ¼ �2d

ð2Þ
26 ¼ 2d

ð1Þ
26

and s
ð2Þ
14 ¼ �s

ð1Þ
14 ¼ �s

ð2Þ
24 ¼ s

ð1Þ
24 ¼ 2s

ð2Þ
56 ¼ �2s

ð1Þ
56 [see Section 3.4.5

(Glossary)]. These results show that there is an elastic state shift
of second order and an electromechanical state shift of second
order. Nonzero components d14 ¼ �d25 in 6z2x2y are the same in
both domain states. Similarly, one can find five independent
components of the tensor s�	 that are nonzero in 6z2x2y and equal
in both domain states. For the piezo-optic tensor ��	, one can
proceed in a similar way. Aizu (1973) has used the ferrobielastic
character of the domain pairs for visualizing domains and
realizing switching in quartz. Other methods for switching and
visualizing domains in quartz are known (see e.g. Bertagnolli et
al., 1978, 1979).

3.4.3.6. Ferroelastic domain pairs

A ferroelastic domain pair consists of two domain states that
have different spontaneous strain. A domain pair ðS1; SjÞ is a
ferroelastic domain pair if the crystal family of its twinning group
K1j differs from the crystal family of the symmetry group F1 of
domain state S1,

FamK1j 6¼ FamF1: ð3:4:3:43Þ

Before treating compatible domain walls and disorientations,
we explain the basic concept of spontaneous strain.

3.4.3.6.1. Spontaneous strain

A strain describes a change of crystal shape (in a macroscopic
description) or a change of the unit cell (in a microscopic
description) under the influence of mechanical stress, tempera-
ture or electric field. If the relative changes are small, they can be
described by a second-rank symmetric tensor u called the
Lagrangian strain. The values of the strain components uik;
i; k ¼ 1; 2; 3 (or in matrix notation u�; � ¼ 1; . . . ; 6) can be
calculated from the ‘undeformed’ unit-cell parameters before
deformation and ‘deformed’ unit-cell parameters after defor-
mation (see Schlenker et al., 1978; Salje, 1990; Carpenter et al.,
1998).
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Fig. 3.4.3.3. Domain structure in lead germanate observed using a polarized-
light microscope. Visualization based on the opposite sign of the optical
activity coefficient in the two domain states. Courtesy of Vl. Shur, Ural State
University, Ekaterinburg.
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A spontaneous strain describes the change of an ‘undeformed’
unit cell of the high-symmetry phase into a ‘deformed’ unit cell of
the low-symmetry phase. To exclude changes connected with
thermal expansion, one demands that the parameters of the
undeformed unit cell are those that the high-symmetry phase
would have at the temperature at which parameters of the low-
symmetry phase are measured. To determine these parameters
directly is not possible, since the parameters of the high-
symmetry phase can be measured only in the high-symmetry
phase. One uses, therefore, different procedures in order to
estimate values for the high-symmetry parameters under the
external conditions to which the measured values of the low-
symmetry phase refer (see e.g. Salje, 1990; Carpenter et al., 1998).
Three main strategies are illustrated using the example of leucite
(see Fig. 3.4.3.4):

(i) The lattice parameters of the high-symmetry phase are
extrapolated from values measured in the high-symmetry phase
(a straight line a0 in Fig. 3.4.3.4). This is a preferred approach.

(ii) For certain symmetry descents, it is possible to approximate
the high-symmetry parameters in the low-symmetry phase by
average values of the lattice parameters in the low-symmetry
phase. Thus for example in cubic ! tetragonal transitions one
can take for the cubic lattice parameter a0 ¼ ð2aþ cÞ=3 (the
dotted curve in Fig. 3.4.3.4), for cubic ! orthorhombic transi-
tions one may assume a0 ¼ ðabcÞ

1=3, where a; b; c are the lattice
parameters of the low-symmetry phase. Errors are introduced if
there is a significant volume strain, as in leucite.

(iii) Thermal expansion is neglected and for the high-symmetry
parameters in the low-symmetry phase one takes the lattice
parameters measured in the high-symmetry phase as close as
possible to the transition. This simplest method gives better
results than average values in leucite, but in general may lead to
significant errors.

Spontaneous strain has been examined in detail in many
ferroic crystals by Carpenter et al. (1998).

Spontaneous strain can be divided into two parts: one that is
different in all ferroelastic domain states and the other that is the
same in all ferroelastic domain states. This division can be
achieved by introducing a modified strain tensor (Aizu, 1970b),
also called a relative spontaneous strain (Wadhawan, 2000):

u
ðiÞ
ðsÞ ¼ uðiÞ � u

ðavÞ
ðsÞ ; ð3:4:3:44Þ

where u
ðiÞ
ðsÞ is the matrix of relative (modified) spontaneous strain

in the ferroelastic domain state Ri, uðiÞ is the matrix of an
‘absolute’ spontaneous strain in the same ferroelastic domain
state Ri and u

ðavÞ
ðsÞ is the matrix of an average spontaneous strain

that is equal to the sum of the matrices of absolute spontaneous
strains over all na ferroelastic domain states,

uðavÞ ¼
1

na

Xna

j¼1

uðjÞ: ð3:4:3:45Þ

The relative spontaneous strain b
ðiÞ
ðsÞ is a symmetry-breaking

strain that transforms according to a non-identity representation
of the parent group G, whereas the average spontaneous strain is
a non-symmetry breaking strain that transforms as the identity
representation of G.

Example 3.4.3.6. We illustrate these concepts with the example of
symmetry descent 4z=mzmxmxy � 2xmymz with two ferroelastic
domain states R1 and R2 (see Fig. 3.4.2.2). The absolute spon-
taneous strain in the first ferroelastic domain state R1 is

uð1Þ ¼

a�a0
a0

0 0

0 b�a0
a0

0

0 0 c�c0
c0

0

@

1

A ¼

u11 0 0

0 u22 0

0 0 u33

0

@

1

A; ð3:4:3:46Þ

where a; b; c and a0; b0; c0 are the lattice parameters of the
orthorhombic and tetragonal phases, respectively.

The spontaneous strain uð2Þ in domain state R2 is obtained by
applying to uð1Þ any switching operation that transforms R1 into
R2 (see Table 3.4.2.1),

uð2Þ ¼

u22 0 0

0 u11 0

0 0 u33

0

@

1

A: ð3:4:3:47Þ

The average spontaneous strain is, according to equation
(3.4.3.45),

uðavÞ ¼ 1
2

u11 þ u22 0 0

0 u11 þ u22 0

0 0 u33 þ u33

0

@

1

A: ð3:4:3:48Þ

This deformation is invariant under any operation of G.
The relative spontaneous strains in ferroelastic domain states

R1 and R2 are, according to equation (3.4.3.44),

u
ð1Þ
ðsÞ ¼ uð1Þ � uðavÞ ¼

1
2 ðu11 � u22Þ 0 0

0 � 1
2 ðu11 � u22Þ 0

0 0 0

0

B
@

1

C
A;

ð3:4:3:49Þ

u
ð2Þ
ðsÞ ¼ uð2Þ � uðavÞ ¼

� 1
2 ðu11 � u22Þ 0 0

0 1
2 ðu11 � u22Þ 0

0 0 0

0

B
@

1

C
A:

ð3:4:3:50Þ

Symmetry-breaking nonzero components of the relative
spontaneous strain are identical, up to the factor 1

2, with the
secondary tensor parameters �ð1Þb and �ð2Þb of the transition
4z=mzmxmxy � 2xmymz with the stabilizer I4z=mzmxmxy

ðR1Þ ¼

I4z=mzmxmxy
ðR2Þ ¼ mxmymz. The non-symmetry-breaking compo-

nent u33 does not appear in the relative spontaneous strain.

The form of relative spontaneous strains for all ferroelastic
domain states of all full ferroelastic phases are listed in Aizu
(1970b).

3.4.3.6.2. Equally deformed planes of a ferroelastic domain pair

We start with the example of a phase transition with the
symmetry descent G ¼ 4z=mzmxmxy � 2xmymz, which generates
two ferroelastic single-domain states R1 and R2 (see Fig. 3.4.2.2).
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Fig. 3.4.3.4. Temperature dependence of lattice parameters in leucite.
Courtesy of E. K. H Salje, University of Cambridge.
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An ‘elementary cell’ of the parent phase is represented in Fig.
3.4.3.5(a) by a square B0E0C0F0 and the corresponding domain
state is denoted by R0.

In the ferroic phase, the square B0E0C0F0 can change either
under spontaneous strain uð1Þ into a spontaneously deformed
rectangular cell B1E1C1F1 representing a domain state R1, or
under a spontaneous strain uð2Þ into rectangular B2E2C2F2

representing domain state R2. We shall use the letter R0 as a
symbol of the parent phase and R1; R2 as symbols of two
ferroelastic single-domain states.

Let us now choose in the parent phase a vector AB0

�!

. This

vector changes into AB1

�!

in ferroelastic domain state R1 and into

AB2

�!

in ferroelastic domain state R1. We see that the resulting

vectors AB1

�!

and AB2

�!

have different direction but equal length:

jAB1

�!

j ¼ jAB2

�!

j. This consideration holds for any vector in the
plane p, which can therefore be called an equally deformed plane
(EDP). One can find that the perpendicular plane p0 is also an
equally deformed plane, but there is no other plane with this
property.

The intersection of the two perpendicular equally deformed
planes p and p0 is a line called an axis of the ferroelastic domain
pair ðR1;R2Þ (in Fig. 3.4.3.5 it is a line at A perpendicular to the
paper). This axis is the only line in which any vector chosen in the
parent phase exhibits equal deformation and has its direction
unchanged in both single-domain states R1 and R2 of a ferro-
elastic domain pair.

This consideration can be expressed analytically as follows
(Fousek & Janovec, 1969; Sapriel, 1975). We choose in the parent
phase a plane p and a unit vector vðx1; x2; x3Þ in this plane. The

changes of lengths of this vector in the two ferroelastic domain
states R1 and R2 are u

ð1Þ
ik xixk and u

ð2Þ
ik xixk, respectively, where u

ð1Þ
ik

and u
ð2Þ
ik are spontaneous strains in R1 and R2, respectively (see

e.g. Nye, 1985). (We are using the Einstein summation conven-
tion: when a letter suffix occurs twice in the same term,
summation with respect to that suffix is to be understood.) If
these changes are equal, i.e. if

u
ð1Þ
ik xixk ¼ u

ð2Þ
ik xixk; ð3:4:3:51Þ

for any vector vðx1; x2; x3Þ in the plane p this plane will be an
equally deformed plane. If we introduce a differential sponta-
neous strain

�uik � u
ð2Þ
ik � u

ð1Þ
ik ; i; k ¼ 1; 2; 3; ð3:4:3:52Þ

the condition (3.4.3.51) can be rewritten as

�uikxixj ¼ 0: ð3:4:3:53Þ

This equation describes a cone with the apex at the origin. The
cone degenerates into two planes if the determinant of the
differential spontaneous strain tensor equals zero,

det�uik ¼ 0: ð3:4:3:54Þ

If this condition is satisfied, two solutions of (3.4.3.53) exist:

Ax1 þ Bx2 þ Cx3 ¼ 0; A0x1 þ B0x2 þ C0x3 ¼ 0: ð3:4:3:55Þ

These are equations of two planes p and p0 passing through the
origin. Their normal vectors are n ¼ ½ABC� and n0 ¼ ½A0B0C0�. It
can be shown that from the equation

�u11 þ�u22 þ�u33 ¼ 0; ð3:4:3:56Þ

which holds for the trace of the matrix det�uik, it follows that
these two planes are perpendicular:

AA0 þ BB0 þ CC0 ¼ 0: ð3:4:3:57Þ

The intersection of these equally deformed planes (3.4.3.53) is
the axis of the ferroelastic domain pair ðR1;R2Þ.

Let us illustrate the application of these results to the domain
pair ðR1;R2Þ depicted in Fig. 3.4.3.1(b) and discussed above.
From equations (3.4.3.41) and (3.4.3.47), or (3.4.3.49) and
(3.4.3.50) we find the only nonzero components of the difference
strain tensor are

�u11 ¼ u22 � u11; �u22 ¼ u11 � u22: ð3:4:3:58Þ

Condition (3.4.3.54) is fulfilled and equation (3.4.3.53) is

�u11x
2
1 þ�u22x

2
2 ¼ ðu22 � u11Þx

2
1 þ ðu11 � u22Þx

2
2 ¼ 0:

ð3:4:3:59Þ

There are two solutions of this equation:

x1 ¼ x2; x1 ¼ �x2: ð3:4:3:60Þ

These two equally deformed planes p and p0 have the normal
vectors n ¼ ½�1110� and n ¼ ½110�. The axis of this domain
pair is directed along [001].

Equally deformed planes in our example have the same
orientations as have the mirror planes m�xxy and mxy lost at the
transition 4z=mzmxmxy � mxmymz. From Fig. 3.4.3.5(a) it is clear
why: reflection m�xxy, which is a transposing operation of the

domain pair (R1;R2), ensures that the vectors AB1

�!

and AB2

�!

arising from AB0

�!

have equal length. A similar conclusion holds
for a 180� rotation and a plane perpendicular to the corre-
sponding twofold axis. Thus we come to two useful rules:

Any reflection through a plane that is a transposing operation of a
ferroelastic domain pair ensures the existence of two planes of
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Fig. 3.4.3.5. Formation of a ferroelastic domain twin. (a) Formation of
ferroelastic single-domain states R1;R2 from the parent phase R0; p and p0

are two perpendicular planes of equal deformation. (b) Formation of a
ferroelastic twin: (i) by rotating the single-domain states S1; S2 in (a) through
an angle � 1

2 ’ about the domain-pair axis A (Rþ
1 and R�

2 are the resulting
disoriented ferroelastic domain states); (ii) by a simple shear deformation
with a shear angle (obliquity) ’.
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equal deformation: one is parallel to the corresponding mirror
plane and the other one is perpendicular to this mirror plane.

Any 180� rotation that is a transposing operation of a ferroelastic
domain pair ensures the existence of two equally deformed planes:
one is perpendicular to the corresponding twofold axis and the
other one is parallel to this axis.

A reflection in a plane or a 180� rotation generates at least one
equally deformed plane with a fixed prominent crystallographic
orientation independent of the magnitude of the spontaneous
strain; the other perpendicular equally deformed plane may have
a non-crystallographic orientation which depends on the spon-
taneous strain and changes with temperature. If between
switching operations there are two reflections with corresponding
perpendicular mirror planes, or two 180� rotations with corre-
sponding perpendicular twofold axes, or a reflection and a 180�

rotation with a corresponding twofold axis parallel to the mirror,
then both perpendicular equally deformed planes have fixed
crystallographic orientations. If there are no switching operations
of the second order, then both perpendicular equally deformed
planes may have non-crystallographic orientations, or equally
deformed planes may not exist at all.

Equally deformed planes in ferroelastic–ferroelectric phases
have been tabulated by Fousek (1971). Sapriel (1975) lists
equations (3.4.3.55) of equally deformed planes for all ferro-
elastic phases. Table 3.4.3.6 contains the orientation of equally
deformed planes (with further information about the walls) for
representative domain pairs of all orbits of ferroelastic domain
pairs. Table 3.4.3.7 lists representative domain pairs of all
ferroelastic orbits for which no compatible walls exist.

3.4.3.6.3. Disoriented domain states, ferroelastic domain twins
and their twin laws

To examine another possible way of forming a ferroelastic
domain twin, we return once again to Fig. 3.4.3.5(a) and split the
space along the plane p into a half-space B1 on the negative side
of the plane p (defined by a negative end of normal n) and
another half-space B2 on the positive side of p. In the parent
phase, the whole space is filled with domain state R0 and we can,
therefore, treat the crystal in region B1 as a domain D1ðR0;B1Þ

and the crystal in region B2 as a domain D2ðR0;B2Þ (we
remember that a domain is specified by its domain region, e.g. B1,
and by a domain state, e.g. R1, in this region; see Section 3.4.2.1).

Now we cool the crystal down and exert the spontaneous strain
uð1Þ on domain D1ðR0;B1Þ. The resulting domain D1ðR1;B

�
1 Þ

contains domain stateR1 in the domain region B�
1 with the planar

boundary along ðB1C1Þ (the overbar ‘�’ signifies a rotation of the
boundary in the positive sense). Similarly, domain D2ðR0;B2Þ

changes after performing spontaneous strain uð2Þ into domain
D2ðR2;B

þ
2 Þ with domain state R2 and the planar boundary along

ðB2C2Þ. This results in a disruption in the sector B1AB2 and in an
overlap of R1 and R2 in the sector C1AC2.

The overlap can be removed and the continuity recovered by
rotating the domain D1ðR1;B

�
1 Þ through angle ’=2 and the

domain D2ðR2;B
þ
2 Þ through �’=2 about the domain-pair axis A

(see Fig. 3.4.3.5a and b). This rotation changes the domain
D1ðR1;B

�
1 Þ into domain D1ðR

þ
1 ;B1Þ and domain D2ðR2;B

�
2 Þ into

domain D1ðR
�
2 ;B2Þ, where R

þ
1 and R�

2 are domain states rotated
away from the single-domain state orientation through ’=2 and
�’=2, respectively. Domains D1ðR1;B1Þ and D1ðR2;B2Þ meet
without additional strains or stresses along the plane p and form a
simple ferroelastic twin with a compatible domain wall along p.
This wall is stress-free and fulfils the conditions of mechanical
compatibility.

Domain states Rþ
1 and R�

2 with new orientations are called
disoriented (misoriented) domain states or suborientational states
(Shuvalov et al., 1985; Dudnik & Shuvalov, 1989) and the angles

’=2 and �’=2 are the disorientation angles of Rþ
1 and R�

2 ,
respectively.

We have described the formation of a ferroelastic domain twin
by rotating single-domain states into new orientations in which a
stress-free compatible contact of two ferroelastic domains is
achieved. The advantage of this theoretical construct is that it
provides a visual interpretation of disorientations and that it
works with ferroelastic single-domain states which can be easily
derived and transformed.

There is an alternative approach in which a domain state in one
domain is produced from the domain state in the other domain by
a shear deformation. The same procedure is used in mechanical
twinning [for mechanical twinning, see Section 3.3.8.4 and e.g.
Cahn (1954); Klassen-Neklyudova (1964); Christian (1975)].

We illustrate this approach again using our example. From Fig.
3.4.3.5(b) it follows that domain state R�

2 in the second domain
can be obtained by performing a simple shear on the domain
state Rþ

1 of the first domain. In this simple shear, a point is
displaced in a direction parallel to the equally deformed plane p
(in mechanical twinning called a twin plane) and to a plane
perpendicular to the axis of the domain pair (plane of shear). The
displacement q is proportional to the distance d of the point from
the domain wall. The amount of shear is measured either by the
absolute value of this displacement at a unit distance, s ¼ q=d, or
by an angle ’ called a shear angle (sometimes 2’ is defined as the
shear angle). There is no change of volume connected with a
simple shear.

The angle ’ is also called an obliquity of a twin (Cahn, 1954)
and is used as a convenient measure of pseudosymmetry of the
ferroelastic phase.

The high-resolution electron microscopy image in Fig. 3.4.3.6
reveals the relatively large shear angle (obliquity) ’ of a
ferroelastic twin in the monoclinic phase of tungsten trioxide
(WO3). The plane (101) corresponds to the plane p of a ferro-
elastic wall in Fig. 3.4.3.5(b). The planes ð�1101Þ are crystallographic
planes in the lower and upper ferroelastic domains, which
correspond in Fig. 3.4.3.5(b) to domain D1ðR

þ
1 ;B1Þ and domain

D2ðR
�
2 ;B2Þ, respectively. The planes ð�1101Þ in these domains

correspond to the diagonals of the elementary cells of Rþ
1 and R�

2

in Fig. 3.4.3.5(b) and are nearly perpendicular to the wall. The
angle between these planes equals 2’, where ’ is the shear angle
(obliquity) of the ferroelastic twin.

Disorientations of domain states in a ferroelastic twin bring
about a deviation of the optical indicatrix from a strictly
perpendicular position. Owing to this effect, ferroelastic domains
exhibit different colours in polarized light and can be easily
visualized. This is illustrated for a domain structure of
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Fig. 3.4.3.6. High-resolution electron microscopy image of a ferroelastic twin
in the orthorhombic phase of WO3. Courtesy of H. Lemmens, EMAT,
University of Antwerp.
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YBa2Cu3O7�� in Fig. 3.4.3.7. The symmetry descent G ¼

4z=mzmxmxy � mxmymz ¼ F1 ¼ F2 gives rise to two ferroelastic
domain states R1 and R2. The twinning group K12 of the non-
trivial domain pair ðR1;R2Þ is

K12½mxmymz� ¼ J?12 ¼ mxmymz [ 4?zf2xmymzg ¼ 4?z=mzmxm
?
xy:

ð3:4:3:61Þ

The colour of a domain state observed in a polarized-light
microscope depends on the orientation of the index ellipsoid
(indicatrix) with respect to a fixed polarizer and analyser. This
index ellipsoid transforms in the same way as the tensor of
spontaneous strain, i.e. it has different orientations in ferroelastic
domain states. Therefore, different ferroelastic domain states
exhibit different colours: in Fig. 3.4.3.7, the blue and pink areas
(with different orientations of the ellipse representing the spon-
taneous strain in the plane of of figure) correspond to two
different ferroelastic domain states. A rotation of the crystal that
does not change the orientation of ellipses (e.g. a 180� rotation
about an axis parallel to the fourfold rotation axis) does not
change the colours (ferroelastic domain states). If one neglects
disorientations of ferroelastic domain states (see Section 3.4.3.6)
– which are too small to be detected by polarized-light micro-
scopy – then none of the operations of the group F1 ¼

F2 ¼ mxmymz change the single-domain ferroelastic domain
states R1, R2, hence there is no change in the colours of domain
regions of the crystal. On the other hand, all operations with a

star symbol (operations lost at the transition) exchange domain
states R1 and R2, i.e. also exchange the two colours in the domain
regions. The corresponding permutation is a transposition of two
colours and this attribute is represented by a star attached to the
symbol of the operation. This exchange of colours is nicely
demonstrated in Fig. 3.4.3.7 where a �90� rotation is accom-
panied by an exchange of the pink and blue colours in the domain
regions (Schmid, 1991, 1993).

It can be shown (Shuvalov et al., 1985; Dudnik & Shuvalov,
1989) that for small spontaneous strains the amount of shear s
and the angle ’ can be calculated from the second invariant�2 of
the differential tensor �uik:

s ¼ 2
ffiffiffiffiffiffiffiffiffiffi
��2

p
; ð3:4:3:62Þ

’ ¼
ffiffiffiffiffiffiffiffiffiffi
��2

p
; ð3:4:3:63Þ

where

�2 ¼
4u11 4u12
4u21 4u22

�
�
�
�

�
�
�
�þ

4u22 4u23
4u32 4u33

�
�
�
�

�
�
�
�þ

4u11 4u13
4u31 4u33

�
�
�
�

�
�
�
�:

ð3:4:3:64Þ

In our example, where there are only two nonzero components
of the differential spontaneous strain tensor [see equation
(3.4.3.58)], the second invariant �2 ¼ �ð�u11�u22Þ ¼

�ðu22 � u11Þ
2 and the angle ’ is

’ ¼ �ju22 � u11j: ð3:4:3:65Þ

In this case, the angle ’ can also be expressed as
’ ¼ �=2� 2 arctan a=b, where a and b are lattice parameters of
the orthorhombic phase (Schmid et al., 1988).

The shear angle ’ ranges in ferroelastic crystals from minutes
to degrees (see e.g. Schmid et al., 1988; Dudnik & Shuvalov,
1989).

Each equally deformed plane gives rise to two compatible
domain walls of the same orientation but with opposite sequence
of domain states on each side of the plane. We shall use for a
simple domain twin with a planar wall a symbol ðRþ

1 jnjR
�
2 Þ in

which n denotes the normal to the wall. The bra–ket symbol ð j
and j Þ represents the half-space domain regions on the negative
and positive sides of n, respectively, for which we have used
letters B1 and B2, respectively. Then ðRþ

1 j and jR�
2 Þ represent

domains D1ðR
þ
1 ;B1Þ and D2ðR

�
2 ;B2Þ, respectively. The symbol

ðRþ
1 jR

�
2 Þ properly specifies a domain twin with a zero-thickness

domain wall.
A domain wall can be considered as a domain twin with

domain regions restricted to non-homogeneous parts near the
plane p. For a domain wall in domain twin ðRþ

1 jR
�
2 Þ we shall use

the symbol ½Rþ
1 jR

�
2 �, which expresses the fact that a domain wall

of zero thickness needs the same specification as the domain twin.
If we exchange domain states in the twin ðRþ

1 jnjR
�
2 Þ, we get a

reversed twin (wall) with the symbol ðR�
2 jnjR

þ
1 Þ. These two

ferroelastic twins are depicted in the lower right and upper left
parts of Fig. 3.4.3.8, where – for ferroelastic–non-ferroelectric
twins – we neglect spontaneous polarization of ferroelastic
domain states. The reversed twin R�

2 jn
0jRþ

1 has the opposite
shear direction.

Twin and reversed twin can be, but may not be, crystal-
lographically equivalent. Thus e.g. ferroelastic–non-ferroelectric
twins ðRþ

1 jnjR
�
2 Þ and ðR�

2 jnjR
þ
1 Þ in Fig. 3.4.3.8 are equivalent, e.g.

via 2z, whereas ferroelastic–ferroelectric twins ðSþ1 jnjS
�
3 Þ and

ðS�3 jnjS
þ
1 Þ are not equivalent, since there is no operation in the

group K12 that would transform ðSþ1 jnjS
�
3 Þ into ðS�3 jnjS

þ
1 Þ.

As we shall show in the next section, the symmetry group
T12ðnÞ of a twin and the symmetry group T21ðnÞ of a reverse twin
are equal,

T12ðnÞ ¼ T21ðnÞ: ð3:4:3:66Þ
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Fig. 3.4.3.7. Ferroelastic twins in a very thin YBa2Cu3O7�� crystal observed in
a polarized-light microscope. Courtesy of H. Schmid, Université de Geneve.
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A sequence of repeating twins and reversed twins

. . .Rþ
1 jnjR

�
2 jnjR

þ
1 jnjR

�
2 jnjR

þ
1 jnjR

�
2 jnjR

þ
1 jnjR

�
2 . . . ð3:4:3:67Þ

forms a lamellar ferroelastic domain structure that is very
common in ferroelastic phases (see e.g. Figs. 3.4.1.1 and 3.4.1.4).

Similar considerations can be applied to the second equally
deformed plane p0 that is perpendicular to p. The two twins and
corresponding compatible domain walls for the equally deformed
plane p0 have the symbols ðR�

1 jn
0jRþ

2 Þ and ðR�
2 jn

0jRþ
1 Þ, and are

also depicted in Fig. 3.4.3.8. The corresponding lamellar domain
structure is

. . .R�
1 jn

0jRþ
2 jn

0jR�
1 jn

0jRþ
2 jn

0jR�
1 jn

0jRþ
2 jn

0jR�
1 jn

0jRþ
2 . . . :

ð3:4:3:68Þ

Thus from one ferroelastic single-domain pair ðR1;R2Þ

depicted in the centre of Fig. 3.4.3.8 four different ferroelastic
domain twins can be formed. It can be shown that these four
twins have the same shear angle ’ and the same amount of shear
s. They differ only in the direction of the shear.

Four disoriented domain states R�
1 ;R

þ
1 and R�

2 ;R
þ
2 that

appear in the four domain twins considered above are related by
lost operations (e.g. diagonal, vertical and horizontal reflections),
i.e. they are crystallographically equivalent. This result can
readily be obtained if we consider the stabilizer of a disoriented
domain state Rþ

1 , which is I4=mmmðR
þ
1 Þ ¼ 2z=mz. Then the number

ndisa of disoriented ferroelastic domain states is given by

ndisa ¼ ½G : IgðR
þ
1 Þ� ¼ j4z=mzmxmxyj : j2z=mz� ¼ 16 : 4 ¼ 4:

ð3:4:3:69Þ

All these domain states appear in ferroelastic polydomain
structures that contain coexisting lamellar structures (3.4.3.67)
and (3.4.3.68).

Disoriented domain states in ferroelastic domain structures
can be recognized by diffraction techniques (e.g. using an X-ray
precession camera). The presence of these four disoriented
domain states results in splitting of the diffraction spots of the
high-symmetry tetragonal phase into four or two spots in the
orthorhombic ferroelastic phase. This splitting is schematically
depicted in Fig. 3.4.3.9. For more details see e.g. Shmyt’ko et al.
(1987), Rosová et al. (1993), and Rosová (1999).

Finally, we turn to twin laws of ferroelastic domain twins with
compatible domain walls. In a ferroelastic twin, say ðRþ

1 jnjR
�
2 Þ,

there are just two possible twinning operations that interchange
two ferroelastic domain states Rþ

1 and R�
2 of the twin: reflection

through the plane of the domain wall (m?
�xxy in our example) and

180� rotation with a rotation axis in the intersection of the
domain wall and the plane of shear (2?xy). These are the only
transposing operations of the domain pair ðR1;R2Þ that are
preserved by the shear; all other transposing operations of the
domain pair ðR1;R2Þ are lost. (This is a difference from non-
ferroelastic twins, where all transposing operations of the pair
become twinning operations of a non-ferroelastic twin.)

Consider the twin ðSþ1 jnjS
�
3 Þ in Fig. 3.4.3.8. By non-trivial

twinning operations we understand transposing operations of the
domain pair ðSþ1 ; S

�
3 Þ, whereas trivial twinning operations leave

invariant Sþ1 and S�3 . As we shall see in the next section, the union
of trivial and non-trivial twinning operations forms a group
T1þ2�ðnÞ. This group, called the symmetry group of the twin
ðSþ1 jnjS

�
3 Þ, comprises all symmetry operations of this twin and we

shall use it for designating the twin law of the ferroelastic twin, just
as the group J?1j of the domain pair ðS1; SjÞ specifies the twin law of
a non-ferroelastic twin. This group T1þ2�ðnÞ is a layer group (see
Section 3.4.4.2) that keeps the plane p invariant, but for char-
acterizing the twin law, which specifies the relation of domain
states of two domains in the twin, one can treat T1þ2�ðnÞ as an
ordinary (dichromatic) point group T1þ2�ðnÞ. Thus the twin law of
the domain twin ðSþ1 jnjS

�
3 Þ is designated by the group

T1þ3�ðnÞ ¼ 2?xym
?
x�yymz ¼ T3�1þðnÞ; ð3:4:3:70Þ

where (3.4.3.70) expresses the fact that a twin and the reversed
twin have the same symmetry, see equation (3.4.3.66). We see that
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Fig. 3.4.3.8. Exploded view of four ferroelastic twins with disoriented
ferroelastic domain states Rþ

1 ;R
�
2 and R�

1 ;R
þ
2 formed from a single-domain

pair ðS1; S2Þ (in the centre).

Fig. 3.4.3.9. Splitting of diffraction spots from the four domain twins in Fig.
3.4.3.8. (a) Diffraction spots of the tetragonal parent phase of the domain
state R1. (b) Diffraction pattern of the domain structure with four domain
twins: white circles, Rþ

1 ; black circles, R�
1 ; white squares, Rþ

2 ; black squares,
R�

2 .
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this group coincides with the symmetry group J1þ2� of the single-
domain pair ðS1; S3Þ (see Fig. 3.4.3.1b).

The twin law of two twins ðS�1 jn
0jSþ3 Þ and ðSþ3 jn

0jS�1 Þ with the
same equally deformed plane p0 is expressed by the group

T1�3þðn
0Þ ¼ mz ¼ T3�1þðn

0Þ; ð3:4:3:71Þ

which is different from the T1þ3�ðnÞ of the twin ðSþ1 jnjS
�
3 Þ.

Representative domain pairs of all orbits of ferroelastic
domain pairs (Litvin & Janovec, 1999) are listed in two tables.
Table 3.4.3.6 contains representative domain pairs for which
compatible domain walls exist and Table 3.4.3.7 lists ferroelastic
domain pairs where compatible coexistence of domain states is
not possible. Table 3.4.3.6 contains, beside other data, for each
ferroelastic domain pair the orientation of two equally deformed
planes and the corresponding symmetries of the corresponding
four twins which express two twin laws.

3.4.3.6.4. Ferroelastic domain pairs with compatible domain
walls, synoptic table

As we have seen, for each ferroelastic domain pair for which
condition (3.4.3.54) for the existence of coherent domain walls is
fulfilled, there exist two perpendicular equally deformed planes.
On each of these planes two ferroelastic twins can be formed;
these two twins are in a simple relation (one is a reversed twin of
the other), have the same symmetry, and can therefore be
represented by one of these twins. Then we can say that from one
ferroelastic domain pair two different twins can be formed. Each
of these twins represents a different ‘twin law’ that has arisen
from the initial domain pair. All four ferroelastic twins can be
described in terms of mechanical twinning with the same value of
the shear angle ’.

3.4.3.6.4.1. Explanation of Table 3.4.3.6

Table 3.4.3.6 presents representative domain pairs of all classes
of ferroelastic domain pairs for which compatible domain walls
exist. The first five columns concern the domain pair. In subse-
quent columns, each row splits into two rows describing the
orientation of two associated perpendicular equally deformed
planes and the symmetry properties of the four domain twins that
can be formed from the given domain pair. We explain the
meaning of each column in detail.

The first three columns specify domain pairs.
F1: point-group symmetry (stabilizer in K1j) of the first domain

state S1 in a single-domain orientation.
g1j: switching operations (if available) that specify the domain

pair ðS1; Sj ¼ g1jS1Þ. Subscripts x; y; z specify the orientation of
the symmetry operations in the Cartesian coordinate system of
K1j. Subscripts x0; y0 and x00; y00 denote a Cartesian coordinate
system rotated about the z axis through 120 and 240�, respec-
tively, from the Cartesian coordinate axes x and y. Diagonal
directions are abbreviated: p ¼ ½111�, q ¼ ½�11�111�, r ¼ ½1�11�11�,
s ¼ ½�111�11�. Where possible, reflections and 180� rotations are
chosen such that the two perpendicular permissible walls have
crystallographic orientations.

K1j: twinning group of the domain pair ðS1; SjÞ. For the pair
with F1 ¼ mx�yy2xymz and K ¼ m�33m, where the twinning group
does not specify the domain pair unambiguously, we add after K1j

in parentheses a switching operation 2?xz or m
?
xz that defines the

domain pair.
Axis: axis of ferroelastic domain pair around which single-

domain states must be rotated to establish a contact along a
compatible domain wall. This axis is parallel to the intersection of
the two compatible domain walls given in the column Wall
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Table 3.4.3.6. Ferroelastic domain pairs and twins with compatible walls

F1 : symmetry of S1; g1j: twinning operations; K1j: twinning group; Axis: axis of domain pair; Equation:† direction of the axis; ’:† disorientation angle; J1j: symmetry of
the twin pair; t?1j: twinning operation; T1j: symmetry of the twin and wall, twin law of the twin; Classification: see Table 3.4.4.3.

F1 g1j K1j Axis Equation Wall normals ’ J1j t?1j T1j Classification

1 2?z 2?Z ½B�110� (a) ½001� (1) 2?z 1 AR?

½1B0�e 2?z 2?z 2?z SI

1 m?
z m?

z ½B�110� (a) ½001�e (1) m?
z m?

z m?
z SI

½1B0� m?
z 1 AR?

�11 m?
z, 2

?
z 2?z=m

?
z ½B�110� (a) ½001� (1) 2?z=m

?
z m?

z m?
z SR

½1B0� 2?z=m
?
z 2?z 2?z SR

2z 2?x, 2
?
y 2?x2

?
y2z ½001� ½100� (2) 2?x2

?
y2z 2?y 2?y SR

½010� 2?x2
?
y2z 2?x 2?x SR

2z m?
x, m

?
y m?

xm
?
y2z ½001� ½100� (2) m?

xm
?
y2z m?

x m?
x SR

½010� m?
xm

?
y2z m?

y m?
y SR

2z 4?z, 4
3?
z 4?z ½001� (b) h ½1B0� (3) 2z 1 AR

½B�110� 2z 1 AR

2z �44?z, �44
3
z

�44?z ½001� (b) h ½1B0� (3) 2z 1 AR
½B�110� 2z 1 AR

2z 3z, 6
5
z 6z ½001� (c) ½1B0� (4) 2z 1 AR

½B�110� 2z 1 AR

32z, 6z 6z ½001� (c) ½1B0� (4) 2z 1 AR
½B�110� 2z 1 AR

2z �335z, �66z 6z=mz ½001� (c) ½1B0� (4) 2z 1 AR
½B�110� 2z 1 AR

�33z, �66
5
z 6z=mz ½001� (c) ½1B0� (4) 2z 1 AR

½B�110� 2z 1 AR

2x 2?xy, 4z 4z2x2xy ½ �CCC2� (d) ½110� (5) 2?xy 1 AR?

½1�11C�e 2?xy 2?xy 2?xy SI

2x m?
xy, �44z �44z2xmxy ½ �CCC2� (d) ½110�e (5) m?

xy m?
xy m?

xy SI
½1�11C� m?

xy 1 AR?

2x 2?x0 , 3
2
z 3z2x ½

ffiffiffi
3

p
C, C, �44� (e) ½�11

ffiffiffi
3

p
0� (6) 2?x0 1 AR?

½
ffiffiffi
3

p
1C�e 2?x0 2?x0 2?x0 SI
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Table 3.4.3.6 (cont.)

F1 g1j K1j Axis Equation Wall normals ’ J1j t?1j T1j Classification

2x m?
x0 , �33

5
z

�33zmx ½
ffiffiffi
3

p
C, C, �44� (e) ½�11

ffiffiffi
3

p
0�e (6) m?

x0 m?
x0 m?

x0 SI
½

ffiffiffi
3

p
1C� m?

x0 1 AR?

2x 2?y0 , 6z 6z2x2y ½ �CC,
ffiffiffi
3

p
C, �44� (f) ½

ffiffiffi
3

p
10� (7) 2?y0 1 AR?

½�11
ffiffiffi
3

p
C�e 2?y0 2?y0 2?y0 SI

2x m?
y0 , �66z �66z2xmy ½ �CC,

ffiffiffi
3

p
C, �44� (f) ½

ffiffiffi
3

p
10�e (7) m?

y0 m?
y0 m?

y0 SI
½�11

ffiffiffi
3

p
C� m?

y0 1 AR?

2xy m?
x, �44

3
z

�44zmx2xy ½0C�11� (g) ½100�e (8) m?
x m?

x m?
x SI

½01C� m?
x 1 AR?

mz m?
x, 2

?
y m?

x2
?
ymz ½001� ½100�e (2) m?

x2
?
ymz m?

x m?
x2
?
ymz SI

½010� m?
x2
?
ymz mz AR?

mz 4z, �44
3
z 4z=mz ½001� (b) ½1B0�e0 (3) mz mz AI

½B�110�0e mz mz AI

43z, �44z 4z=mz ½001� (b) ½1B0�e0 (3) mz mz AI
½B�110�0e mz mz AI

mz 3z, �66
5
z

�66z ½001� (c) ½1B0�e0 (4) mz mz AI
½B�110�0e mz mz AI

32z, �66z �66z ½001� (c) ½1B0�e0 (4) mz mz AI
½B�110�0e mz mz AI

mz
�33z, 6

5
z 6z=mz ½001� (c) ½1B0�e0 (4) mz mz AI

½B�110�0e mz mz AI
�335z, 6z 6z=mz ½001� (c) ½1B0�e0 (4) mz mz AI

½B�110�0e mz mz AI

mx m?
xy, 4z 4zmxmxy ½ �CCC2� (d) ½110�e (5) m?

xy m?
xy m?

xy SI
½1�11C� m?

xy 1 AR?

mx 2?xy, �44z �44zmx2xy ½ �CCC2� (d) ½110� (5) 2?xy 1 AR?

½1�11C�e 2?xy 2?xy 2?xy SI

mx m?
x0 , 3

2
z 3zmx ½

ffiffiffi
3

p
C, C, �44� (e) ½�11

ffiffiffi
3

p
0�e (6) m?

x0 m?
x0 m?

x0 SI
½

ffiffiffi
3

p
1C� m?

x0 1 AR?

mx 2?x0 , �33
5
z

�33zmx ½
ffiffiffi
3

p
C, C, �44� (e) ½�11

ffiffiffi
3

p
0� (6) 2?x0 1 AR?

½
ffiffiffi
3

p
1C�e 2?x0 2?x0 2?x0 SI

mx m?
y0 , 6z 6zmxmy ½ �CC,

ffiffiffi
3

p
C, �44� (f) ½

ffiffiffi
3

p
10�e (7) m?

y0 m?
y0 m?

y0 SI
½�11

ffiffiffi
3

p
C� m?

y0 1 AR?

mx 2?y0 , �66z �66zmx2y ½ �CC,
ffiffiffi
3

p
C, �44� (f) ½

ffiffiffi
3

p
10� (7) 2?y0 1 AR?

½�11
ffiffiffi
3

p
C�e 2?y0 2?y0 2?y0 SI

mxy 2?x, �44
3
z

�44z2xmxy ½0C�11� (g) ½100� (8) 2?x 1 AR?

½01C�e 2?xy 2?x 2?x SI

2z=mz m?
x, m

?
y m?

xm
?
ymz ½001� ½100� (2) m?

xm
?
ymz m?

x m?
x2
?
ymz SR

½010� m?
xm

?
ymz m?

y 2?xm
?
ymz SR

2z=mz 4?z, 4
3?
z 4?z=mz ½001� (b) h ½1B0� (3) 2z=mz mz AR

½B�110� 2z=mz mz AR

2z=mz 3z, 6
5
z 6z=mz ½001� (c) ½1B0� (4) 2z=mz mz AR

½B�110� 2z=mz mz AR

32z, 6z 6z=mz ½001� (c) ½1B0� (4) 2z=mz mz AR
½B�110� 2z=mz mz AR

2x=mx m?
xy, 4z 4z=mzmxmxy ½ �CCC2� (d) ½110� (5) 2?xy=m

?
xy m?

xy m?
xy SR

½1�11C� 2?xy=m
?
xy 2?xy 2?xy SR

2x=mx m?
x0 , 3

2
z

�33zmx ½
ffiffiffi
3

p
CC�44� (e) ½�11

ffiffiffi
3

p
0� (6) 2?x0=m

?
x0 m?

x0 m?
x0 SR

½
ffiffiffi
3

p
1C� 2?x0=m

?
x0 2?x0 2?x0 SR

2x=mx m?
y0 , 6z 6z=mzmxmy ½ �CC,

ffiffiffi
3

p
C, �44� (f) ½

ffiffiffi
3

p
10� (7) 2?y0=m

?
y0 m?

y0 m?
y0 SR

½�11
ffiffiffi
3

p
C� 2?y0=m

?
y0 2?y0 2?y0 SR

2x2y2z 2?x�yy, 2
?
xy 4?z2x2

?
xy ½001� h ½110� (10) 2?xy2

?
x�yy2z 2?x�yy 2?x�yy SR

½1�110� 2?xy2
?
x�yy2z 2?xy 2?xy SR

2x2y2z m?
x�yy, m

?
xy

�44?z2xm
?
xy ½001� h ½110� (10) m?

xym
?
x�yy2z m?

xy m?
xy SR

½1�110� m?
xym

?
x�yy2z m?

x�yy m?
x�yy SR

2x2y2z 2?x0 , 2
?
y0 6z2x2y ½001� ½�11

ffiffiffi
3

p
0� (9) 2?x02

?
y02z 2?y0 2?y0 SR

½
ffiffiffi
3

p
10� 2?x02

?
y02z 2?x0 2?x0 SR

2x2y2z m?
x0 , m

?
y0 6z=mzmxmy ½001� ½�11

ffiffiffi
3

p
0� (9) m?

x0m
?
y02z m?

x0 m?
x0 SR

½
ffiffiffi
3

p
10� m?

x0m
?
y02z m?

y0 m?
y0 SR

2x�yy2xy2z m?
x, m

?
y

�44
?

zm
?
x2xy ½001� h ½100� (12) m?

xm
?
y2z m?

x m?
x SR

½010� m?
xm

?
y2z m?

y m?
y SR
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Table 3.4.3.6 (cont.)

F1 g1j K1j Axis Equation Wall normals ’ J1j t?1j T1j Classification

2x�yy2xy2z 2?xz, 4y 4z3p2xy ½B2 �BB� (h) ½101� (11) 2?xz 1 AR?

½�11B1� 2?xz 2?xz 2?xz SI

2x�yy2xy2z m?
xz, �44y mz

�33pmxy ½B2 �BB� (h) ½101� (11) m?
xz m?

xz m?
xz SI

½�11B1� m?
xz 1 AR?

mxmy2z m?
x�yy, m

?
xy 4?zmxm

?
xy ½001� h ½110� (10) m?

x�yym
?
xy2z m?

xy m?
xy SR

½1�110� m?
x�yym

?
xy2z m?

x�yy m?
x�yy SR

mxmy2z 2?x�yy, 2
?
xy

�44?zmx2
?
xy ½001� h ½110� (10) 2?xy2

?
x�yy2z 2?x�yy 2?x�yy SR

½1�110� 2?xy2
?
x�yy2z 2?xy 2?xy SR

mxmy2z m?
x0 , m

?
y0 6zmxmy ½001� ½�11

ffiffiffi
3

p
0� (9) m?

x0m
?
y02z m?

x0 m?
x0 SR

½
ffiffiffi
3

p
10� m?

x0m
?
y02z m?

y0 m?
y0 SR

mxmy2z 2?x0 , 2
?
y0 6z=mzmxmy ½001� ½�11

ffiffiffi
3

p
0� (9) 2?x02

?
y02z 2?y0 2?y0 SR

½
ffiffiffi
3

p
10� 2?x02

?
y02z 2?x0 2?x0 SR

mx2ymz m?
x0 , 2

?
y0

�66zmx2y ½001� ½�11
ffiffiffi
3

p
0�e (9) m?

x02
?
y0mz m?

x0 m?
x02

?
y0mz SI

½
ffiffiffi
3

p
10� m?

x02
?
y0mz mz AR?

2xmymz m?
x�yy, 2

?
xy 4z=mzmxmxy ½001� ½110� (10) 2?xym

?
x�yymz mz AR?

½1�110�e 2?xym
?
x�yymz m?

x�yy 2?xym
?
x�yymz SI

2xmymz m?
y0 , 2

?
x0

�66z2xmy ½001� ½�11
ffiffiffi
3

p
0� (9) 2?x0m

?
y0mz mz AR?

½
ffiffiffi
3

p
10�e 2?x0m

?
y0mz my0 2?x0m

?
y0mz SI

2xmymz m?
x0 , 2

?
y0 6z=mzmxmy ½001� ½�11

ffiffiffi
3

p
0�e (9) m?

x02
?
y0mz m?

x0 m?
x02

?
y0mz SI

½
ffiffiffi
3

p
10� m?

x02
?
y0mz mz AR?

mx�yymxy2z 2?x, 2
?
y

�44?z2
?
xmxy ½001� h ½100� (12) 2?x2

?
y2z 2?y 2?y SR

½010� 2?x2
?
y2z 2?x 2?x SR

mx�yymxy2z m?
xz, �44y �44z3pmxy ½B2 �BB� (h) ½101�e (11) m?

xz m?
xz m?

xz SI
½�11B1� m?

xz 1 AR?

mx�yymxy2z 2?xz, 4y mz
�33pmxy ½B2 �BB� (h) ½101� (11) 2?xz 1 AR?

½�11B1�e 2?xz 2?xz 2?xz SI

mx�yy2xymz m?
xz, 4y mz

�33pmxyðm
?
xzÞ ½B2 �BB� (h) ½101�e (11) m?

xz m?
xz m?

xz SI
½�11B1� m?

xz 1 AR?

mx�yy2xymz 2?xz, �44y mz
�33pmxyð2

?
xzÞ ½B2 �BB� (h) ½101� (11) 2?xz 1 AR?

½�11B1�e 2?xz 2?xz 2?xz SI

mxmymz m?
xy, m

?
x�yy 4?z=mzmxm

?
xy ½001� h ½110� (10) m?

x�yym
?
xymz m?

xy 2?x�yym
?
xymz SR

½1�110� m?
x�yym

?
xymz m?

x�yy m?
x�yy2

?
xymz SR

mxmymz m?
x0 , m

?
y0 6z=mzmxmy ½001� ½�11

ffiffiffi
3

p
0� (9) m?

x0m
?
y0mz m?

x0 m?
x02

?
y0mz SR

½
ffiffiffi
3

p
10� m?

x0m
?
y0mz m?

y0 2?x0m
?
y0mz SR

mxym�xxymz m?
xz, 4y mz

�33pmxy ½B2 �BB� (h) ½101� (11) 2?xz=m
?
xz m?

xz m?
xz SR

½�11B1� 2?xz=m
?
xz 2?xz 2?xz SR

4z 2?xz, 4y 4z3p2xy ½010� ½101� (13) 2?xz 1 AR?

½�1101�e 2?xz 2?xz 2?xz SI

4z m?
xz, �44y mz

�33pmxy ½010� ½101�e (13) m?
xz m?

xz m?
xz SI

½�1101� m?
xz 1 AR?

�44z m?
xz, �44y �44z3pmxy ½010� ½101� (13) m?

xz m?
xz m?

xz SI
½�1101� m?

xz 1 AR?

�44z 2?xz, 4y mz
�33pmxy ½010� ½101� (13) 2?xz 1 AR?

½�1101�e 2?xz 2?xz 2?xz SI

4z=mz m?
xz, 4y mz

�33pmxy ½010� ½101� (13) 2?xz=m
?
xz m?

xz m?
xz SR

½�1101� 2?xz=m
?
xz 2?xz 2?xz SR

4z2x2xy 2?xz, 2
?
x�zz 4z3p2xy ½010� h ½101� (13) 2?xz2

?
x�zz2y 2?�xxz 2?�xxz SR

½�1101� 2?xz2
?
x�zz2y 2?xz 2?xz SR

4z2x2xy m?
xz, m

?
x�zz mz

�33pmxy ½010� h ½101� (13) m?
xzm

?
x�zz2y m?

xz m?
xz SR

½�1101� m?
xzm

?
x�zz2y m?

x�zz m?
x�zz SR

4zmxmxy m?
x�zz, 2

?
xz mz

�33pmxy ½010� ½101� (13) 2?xzm
?
x�zzmy my AR?

½�1101�e 2?xzm
?
x�zzmy 2?xz 2?xzm

?
x�zzmy SI

�44z2xmxy m?
xz, m

?
x�zz

�44z3pmxy ½010� h ½101� (13) m?
xzm

?
x�zz2y m?

xz m?
xz SR

½�1101� m?
xzm

?
x�zz2y m?

x�zz m?
x�zz SR

�44zmx2xy m?
x�zz, 2

?
xz mz

�33pmxy ½010� ½101� (13) 2?xzm
?
x�zzmy my AR?

½�1101� 2?xzm
?
x�zzmy m?

x�zz 2?xzm
?
x�zzmy SR

�44z2xmxy 2?xz, 2
?
x�zz mz

�33pmxy ½010� ½101� (13) 2?xz2
?
x�zz2y 2?x�zz 2?x�zz SR

½�1101� 2?xz2
?
x�zz2y 2?x�zz 2?xz2

?
x�zz2y SI
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normals and its direction h is defined by a vector product
h ¼ n1 
 n2 of normal vectors n1 and n2 of these walls. Letters B
and C denote components of h which depend on spontaneous
strain.

Equation: a reference to an expression, given at the end of the
table, for the direction h of the axis, where parameters B and C in
the column Axis are expressed as functions of spontaneous strain
components. The matrices above these expressions give the form
of the ‘absolute’ spontaneous strain.

Wall normals: orientation of equally deformed planes. As
explained above, each plane represents two mutually reversed
compatible domain walls. Numbers or parameters B, C given in
parentheses can be interpreted either as components of normal

vectors to compatible walls or as intercepts analogous to Miller
indices: Planes of compatible domain walls Ax1 þ Bx2 þ Cx3 ¼ 0
and A0x1 þ B0x2 þ C0x3 ¼ 0 [see equations (3.4.3.55)] pass
through the origin of the Cartesian coordinate system of K1j and
have normal vectors n1 ¼ ½ABC� and n2 ¼ ½A0B0C0�. It is possible
to find a plane with the same normal vector ½ABC� but not
passing through the origin, e.g. Ax1 þ Bx2 þ Cx3 ¼ 1. Then
parameters A, B and C can be interpreted as the reciprocal values
of the oriented intercepts on the coordinate axes cut by this
plane, ½x1=ð1=AÞ� þ ½x2=ð1=BÞ� þ ½x3=ð1=CÞ� ¼ 1. In analogy with
Miller indices, the symbol ðABCÞ is used for expressing the
orientation of a wall. However, parameters A, B and C are not
Miller indices, since they are expressed in an orthonormal and
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Table 3.4.3.6 (cont.)

F1 g1j K1j Axis Equation Wall normals ’ J1j t?1j T1j Classification

4z=mzmxmxy m?
xz, m

?
�xxz mz

�33pmxy ½010� h ½101� (13) m?
xzm

?
�xxzmy m?

xz m?
xz2

?
�xxzmy SR

½�1101� m?
xzm

?
x�zzmy m?

x�zz 2?xzm
?
x�zzmy SR

3p 2?x, 3r 2z3p ½01�11� ½100� (14) 2?x 1 AR?

½011�e 2?x 2?x 2?x SI

3p m?
x, �33r mz

�33p ½01�11� ½100�e (14) m?
x m?

x m?
x SI

½011� m?
x 1 AR?

3p 2?xy, 4y 4z3p2xy ½1�110� ½001�e (14) 2?xy 2?xy 2?xy SI
½110� 2?xy 1 AR?

3p m?
xy, �44y �44z3pmxy ½1�110� ½001� (14) m?

xy 1 AR?

½110�e m?
xy m?

xy m?
xy SI

�33p m?
x, 3r mz

�33p ½01�11� ½100� (14) 2?x=m
?
x m?

x m?
x SR

½011� 2?x=m
?
x 2?x 2?x SR

�33p m?
xy, 4y mz

�33pmxy ½1�110� ½001� (14) 2?xy=m
?
xy 2?xy 2?xy SR

½110� 2?xy=m
?
xy m?

xy m?
xy SR

3p2x�yy 2?x, 2
?
yz 4z3p2xy ½01�11� ½100� (14) 2?x2

?
yz2y�zz 2?yz 2?yz SR

½011� 2?x2
?
yz2y�zz 2?x 2?x SR

3p2x�yy m?
x, m

?
yz mz

�33pmxy ½01�11� ½100� (14) m?
xm

?
yz2y�zz m?

x m?
x SR

½011� m?
xm

?
yz2y�zz m?

yz m?
yz SR

3pmx�yy 2?x, m
?
yz

�44z3pmxy ½01�11� ½100� (14) m?
yzmy�zz2

?
x my�zz AR?

½011�e myzmy�zz2
?
x myz myzmy�zz2

?
x SI

3pmx�yy m?
x, 2

?
yz mz

�33pmxy ½01�11� ½100�e (14) m?
x2
?
yzmy�zz m?

x m?
x2
?
yzmy�zz SI

½011� m?
x2
?
yzmy�zz my�zz AR?

�33pmx�yy m?
x, m

?
yz mz

�33pmxy ½01�11� ½100� (14) m?
xm

?
yzmy�zz m?

x m?
x2
?
yzmy�zz SR

½011� m?
xm

?
yzmy�zz m?

yz 2?xm
?
yzmy�zz SR

† Equations for directions of axes and shear angle ’:

a f e

f b d

e d c

0

@

1

A
a d 0

d b 0

0 0 c

0

@

1

A
a 0 0

0 b d

0 d c

0

@

1

A

ðaÞ ½001� ½1 de 0� ðbÞ ½�11�0� ½�10� ðdÞ ½110� ½1�11 2d
a� b

�

� ¼
2dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða� bÞ
2
þ 4d2

q

a� b
ðeÞ ½�11

ffiffiffi
3

p
0� ½

ffiffiffi
3

p
1 4d
b� a

�

ðcÞ ½�110� ½10� ðf Þ ½
ffiffiffi
3

p
10� ½�11

ffiffiffi
3

p 4
ffiffiffi
3

p

3ða� bÞ
�

 ¼
ða� bÞ þ 2

ffiffiffi
3

p
dþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða� bÞ
2
þ 4d2

q

ffiffiffi
3

p
ða� bÞ � 2d

ð1Þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ e2

p
ð2Þ 2jdj ð5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ

2
þ 2d2

p

ð3Þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ

2
þ 4d2

p
ð6Þ

ffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ

2
þ 4d2

p

ð4Þ
ffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ

2
þ 4d2

p
ð7Þ 2jdj

a b �d

b a d

�d d c

0

@

1

A
a 0 0

0 b 0

0 0 c

0

@

1

A
a d 0

d a 0

0 0 c

0

@

1

A

ðgÞ ½100� ½0�11 d
b
� ðhÞ ½101� ½�11 2d

c� d
1�

ð8Þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð9Þ

ffiffi
3

p

2 ja� bj ð11Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞ

2
þ 2d2

p

ð10Þ ja� bj ð12Þ 2jdj

a 0 0

0 a 0

0 0 c

0

@

1

A
a d d

d a d

d d a

0

@

1

A

ð13Þ ja� cj ð14Þ 2
ffiffiffi
2

p
jdj



3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

not a crystallographic coordinate system. A left square bracket [
in front of two equally deformed planes signifies that the two
domain walls (domain twins) associated with one equally
deformed plane are crystallographically equivalent (in K1j) with
two domain walls (twins) associated with the perpendicular
equally deformed plane, i.e. all four compatible domain walls
(domain twins) that can be formed from domain pair ðS1; SjÞ are
crystallographically equivalent in K1j.

The subscript e indicates that the wall carries a nonzero
polarization charge, Div P 6¼ 0. This can happen in ferroelectric
domain pairs with spontaneous polarization not parallel to the
axis of the pair. If one domain wall is charged then the perpen-
dicular wall is not charged. In a few cases, polarization and/or
orientation of the domain wall is not determined by symmetry;
then it is not possible to specify which of the two walls is charged.
In such cases, a subscript e0 or 0e indicates that one of the two
walls is charged and the other is not.
’: reference to an expression, given at the end of the table, in

which the shear angle ’ (in radians) is given as a function of the
‘absolute’ spontaneous strain components, which are defined in a
matrix given above the equations.

J1j: symmetry of the ‘twin pair’. The meaning of this group and
its symbol is explained in the next section. This group specifies
the symmetry properties of a ferroelastic domain twin and the
reversed twin with compatible walls of a given orientation and
with domain states Sþ1 , S

�
j and Sþ1 , S

�
j . This group can be used for

designating a twin law of the ferroelastic domain twin.
t?1j: one non-trivial twinning operation of the twin S1½ABC�Sj

and the wall. An underlined symbol with a star symbol signifies
an operation that inverts the wall normal and exchanges the
domain states (see the next section).

T1j: layer-group symmetry of the ferroelastic domain twin and
the reversed twin with compatible walls of a given orientation.
Contains all trivial and non-trivial symmetry operations of the
domain twin (see the next section).

Classification: symbol that specifies the type of domain twin
and the wall. Five types of twins and domain walls are given in
Table 3.4.4.3. The letter S denotes a symmetric domain twin
(wall) in which the structures in two half-spaces are related by a
symmetry operation of the twin, A denotes an asymmetric twin
where there is no such relation. The letters R (reversible) and I
(irreversible) signify whether a twin and reversed twin are, or are
not, crystallographically equivalent in K1j.

Example 3.4.3.7. The rhombohedral phase of perovskite crys-
tals. Examples include PZN-PT and PMN-PT solid solutions (see
e.g. Erhart & Cao, 2001) and BaTiO3 below 183 K. The phase
transition has symmetry descent m�33m � 3m.

In Table 3.4.2.7 we find that there are eight domain states and
eight ferroelectric domain states. In this fully ferroelectric phase,
domain states can be specified by unit vectors representing the
direction of spontaneous polarization. We choose S1 � ½111� with
corresponding symmetry group F1 ¼ 3pmz�yy.

From eight domain states one can form 7
 8 ¼ 56 domain
pairs. These pairs can be divided into classes of equivalent pairs
which are specified by different twinning groups. In column K1j of
Table 3.4.2.7 we find three twinning groups:

(i) The first twin law �33?pmx�yy characterizes a non-ferroelastic pair
(Fam�33?pmx�yy ¼ Fam3?pmx�yy) with inversion �11 as a twinning operation
of this pair. A representative domain pair is ðS1; g12S1 ¼ S2Þ ¼
ð½111�; ½�11�11�11�Þ, domain pairs consist of two domain states with
antiparallel spontaneous polarization (‘180� pairs’). Domain
walls of low energy are not charged, i.e. they are parallel with the
spontaneous polarization.

(ii) The second twinning group K13 ¼
�443m characterizes a

ferroelastic domain pair (Fam�443m ¼ m�33m 6¼ FamF1 ¼ �33pmz�yy).
In Table 3.4.3.6, we find g?13 ¼ 2?x, which defines the representative
pair ð½111�; ½1�11�11�Þ (‘109� pairs’). Orientations of compatible

domain walls of this domain pair are ð100Þ and ð011Þe (this wall is
charged). All equivalent orientations of these compatible walls
will appear if all crystallographically equivalent pairs are
considered.

(iii) The third twinning group K14 ¼ m�33m also represents
ferroelastic domain pairs with representative pair ð½111�;m?

x½111�Þ
¼ ð½111�; ½�1111�Þ (‘71� pairs’) and compatible wall orientations
ð100Þe and (011). We see that for a given crystallographic orien-
tation both charged and non-charged domain walls exist; for a
given orientation the charge specifies to which class the domain
wall belongs.

These conclusions are useful in deciphering the ‘domain-
engineered structures’ of these crystals (Yin & Cao, 2000).

3.4.3.6.5. Ferroelastic domain pairs with no compatible domain
walls, synoptic table

Ferroelastic domain pairs for which condition (3.4.3.54) for the
existence of coherent domain walls is violated are listed in Table
3.4.3.7. All these pairs are non-transposable pairs. It is expected
that domain walls between ferroelastic domain states would be
stressed and would contain dislocations. Dudnik & Shuvalov
(1989) have shown that in thin samples, where elastic stresses are
reduced, ‘almost coherent’ ferroelastic domain walls may exist.

Example 3.4.3.8. Ferroelastic crystal of langbeinite. Langbeinite
K2Mg2(SO4)3 undergoes a phase transition with symmetry
descent 23 � 222 that appears in Table 3.4.3.7. The ferroelastic
phase has three ferroelastic domain states. Dudnik & Shuvalov
(1989) found, in accord with their theoretical predictions, nearly
linear ‘almost coherent’ domain walls accompanied by elastic
stresses in crystals thinner than 0.5 mm. In thicker crystals, elastic
stresses became so large that crystals were cracking and no
domain walls were observed.

Similar effects were reported by the same authors for the
partial ferroelastic phase of CH3NH3Al(SO4)2�12H2O (MASD)
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Table 3.4.3.7. Ferroelastic domain pairs with no compatible domain walls

F1 is the symmetry of S1, g1j is the switching operation, K1j is the twinning group.
Pair is the domain pair type, where ns is non-transposable simple and nm is
non-transposable multiple (see Table 3.4.3.2). v ¼ z, p ¼ ½111�, q ¼ ½�11�111�,
r ¼ ½1�11�11�, s ¼ ½�111�11� (see Table 3.4.2.5 and Fig. 3.4.2.3).

F1 g1j K1j Pair

1 4z 4z ns

1 �44z �44z ns

1 3v 3v ns

1 �33v �33v ns

1 6z 6z ns

1 �66z �66z ns

�11 4z, 4
3
z 4z=mz ns

�11 3v, 3
2
v

�33v ns

�11 6z, 6
5
z 6z=mz ns

2z 3p, 3
2
p 2z3p nm

2z �33p, �33
5
p mz

�33p nm

2xy 3p, 3
2
p 4z3p2xy nm

2xy �33p, �33
5
p mz

�33pmxy nm

mz 3p, 3
2
p mz3

2
p nm

mxy 3p, 3
2
p

�44z3pmxy nm

mxy 4x, 4
3
x mz

�33pmxy nm

2z=mz 3p, 3
2
p mz

�33p nm

2xy=mxy 3p, 3
2
p mz

�33pmxy nm

2x2y2z 3p, 3
2
p 2z3p ns

2x2y2z �33p, �33
5
p mz

�33p ns

mxmy2z 3p, 3
2
p mz

�33p nm

mxmymz 3p, 3
2
p mz

�33p ns
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with symmetry descent �33m � mmm, where ferroelastic domain
walls were detected only in thin samples.

3.4.3.7. Domain pairs in the microscopic description

In the microscopic description, two microscopic domain states
Si and Sk with space-group symmetries F i and F k, respectively,
can form an ordered domain pair (Si;Sk) and an unordered
domain pair fSi;Skg in a similar way to in the continuum
description, but one additional aspect has to be considered. The
definition of the symmetry group F ik of an ordered domain pair
(Si;Sk),

F ik ¼ F i \ F k; ð3:4:3:72Þ

is meaningful only if the group F ik is a space group with a three-
dimensional translational subgroup (three-dimensional twin
lattice in the classical description of twinning, see Section 3.3.8)

T ik ¼ T i \ T k; ð3:4:3:73Þ

where T i and T k are translation subgroups of F i and F k,
respectively. This condition is fulfilled if both domain states Si

and Sk have the same spontaneous strains, i.e. in non-ferroelastic
domain pairs, but in ferroelastic domain pairs one has to suppress
spontaneous deformations by applying the parent clamping
approximation [see Section 3.4.2.2, equation (3.4.2.49)].

Example 3.4.3.9. Domain pairs in calomel. Calomel undergoes
a non-equitranslational phase transition from a tetragonal parent
phase to an orthorhombic ferroelastic phase (see Example 3.4.2.7
in Section 3.4.2.5). Four basic microscopic single-domain states
are displayed in Fig. 3.4.2.5. From these states, one can form 12
non-trivial ordered single-domain pairs that can be partitioned
(by means of double coset decomposition) into two orbits of
domain pairs.

Representative domain pairs of these orbits are depicted in
Fig. 3.4.3.10, where the first microscopic domain state Si parti-
cipating in a domain pair is displayed in the upper cell (light grey)
and the second domain state Sj, j ¼ 2; 3, in the lower white cell.
The overlapping structure in the middle (dark grey) is a
geometrical representation of the domain pair fS1;Sjg.

The domain pair fS1;S3g, depicted in Fig. 3.4.3.10(a), is a
ferroelastic domain pair in the parent clamping approximation.
Then two overlapping structures of the domain pair have a
common three-dimensional lattice with a common unit cell (the

dotted square), which is the same as the unit cells of domain
states S1 and S3.

Domain pair fS1;S2g, shown in Fig. 3.4.3.10(b), is a transla-
tional (antiphase) domain pair in which domain states S1 and S2

differ only in location but not in orientation. The unit cell
(heavily outlined small square) of the domain pair fS1;S2g is
identical with the unit cell of the tetragonal parent phase (cf. Fig.
3.4.2.5).

The two arrows attached to the circles in the domain pairs
represent exaggerated displacements within the wall.

Domain pairs represent an intermediate step in analyzing
microscopic structures of domain walls, as we shall see in Section
3.4.4.

3.4.4. Domain twins and domain walls

3.4.4.1. Formal description of simple domain twins and planar
domain walls of zero thickness

In this section, we examine crystallographic properties of
planar compatible domain walls and simple domain twins. The
symmetry of these objects is described by layer groups. Since this
concept is not yet common in crystallography, we briefly explain
its meaning in Section 3.4.4.2. The exposition is performed in the
continuum description, but most of the results apply with slight
generalizations to the microscopic treatment that is illustrated
with an example in Section 3.4.4.7.

We shall consider a simple domain twin T12 that consists of two
domains D1 and D2 which meet along a planar domain wall W12

of zero thickness. Let us denote by p a plane of the domain wall,
in brief wall plane ofW12. This plane is specified by Miller indices
ðhklÞ, or by a normal n to the plane which also defines the
sidedness (plus and minus side) of the plane p. By orientation of
the plane p we shall understand a specification which can, but may
not, include the sidedness of p. If both the orientation and the
sidedness are given, then the plane p divides the space into two
half-spaces. Using the bra–ket symbols, mentioned in Section
3.4.3.6, we shall denote by ð j the half-space on the negative side
of p and by j Þ the half-space on the positive side of p.

A simple twin consists of two (theoretically semi-infinite)
domains D1 and D2 with domain states S1 and S2, respectively,
that join along a planar domain wall the orientation of which is
specified by the wall plane p with normal n. A symbol ðS1jnjS2Þ
specifies the domain twin unequivocally: domain ðS1j, with
domain region ð j filled with domain state S1, is on the negative
side of p and domain j S2Þ is on the positive side of p (see Fig.
3.4.4.1a).
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Fig. 3.4.3.10. Domain pairs in calomel. Single-domain states in the parent
clamping approximation are those from Fig. 3.4.2.5. The first domain state of
a domain pair is shown shaded in grey (‘black’), the second domain state is
colourless (‘white’), and the domain pair of two interpenetrating domain
states is shown shaded in dark grey. (a) Ferroelastic domain pair ðS1;S3Þ in
the parent clamping approximation. This is a partially transposable domain
pair. (b) Translational domain pair ðS1;S2Þ. This is a completely transposable
domain pair.

Fig. 3.4.4.1. Symbols of a simple twin. (a) Two different symbols with
antiparallel normal n. (b) Symbols of the reversed twin.
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If we were to choose the normal of opposite direction, i.e. �n,
the same twin would have the symbol ðS2j � njS1Þ (see Fig.
3.4.4.1a). Since these two symbols signify the same twin, we have
the identity

ðS1jnjS2Þ � ðS2j � njS1Þ: ð3:4:4:1Þ

Thus, if we invert the normal n and simultaneously exchange
domain states S1 and S2 in the twin symbol, we obtain an identical
twin (see Fig. 3.4.4.1a). This identity expresses the fact that the
specification of the twin by the symbol introduced above does not
depend on the chosen direction of the wall normal n.

The full symbol of the twin can be replaced by a shorter symbol
T12ðnÞ if we accept a simple convention that the first lower index
signifies the domain state that occupies the half space ð j on the
negative side of n. Then the identity (3.4.4.1) in short symbols is

T12ðnÞ � T21ð�nÞ: ð3:4:4:2Þ

If the orientation and sidedness of the plane p of a wall is
known from the context or if it is not relevant, the specification of
n in the symbol of the domain twin and domain wall can be
omitted.

A twin ðS1jnjS2Þ, or T12ðnÞ, can be formed by sectioning the
ordered domain pair ðS1; S2Þ by a plane p with normal n and
removing the domain state S2 on the negative side and domain
state S2 on the positive side of the normal n. This is the same
procedure that is used in bicrystallography when an ideal
bicrystal is derived from a dichromatic complex (see Section
3.2.2).

A twin with reversed order of domain states is called a reversed
twin. The symbol of the twin reversed to the initial twin ðS1jnjS2Þ
is

ðS2jnjS1Þ � ðS1j � njS2Þ ð3:4:4:3Þ

or

T21ðnÞ � T12ð�nÞ: ð3:4:4:4Þ

A reversed twin ðS2jnjS1Þ � ðS1j�njS2Þ is depicted in Fig.
3.4.4.1(b).

A planar domain wall is the interface between the domains D1

and D2 of the associated simple twin. Even a domain wall of zero
thickness is specified not only by its orientation in space but also
by the domain states that adhere to the minus and plus sides of
the wall plane p. The symbol for the wall is, therefore, analogous
to that of the twin, only in the explicit symbol the brackets ( ) are
replaced by square brackets [ ] and T in the short symbol is
replaced by W:

½S1jnjS2� � ½S2j � njS1� ð3:4:4:5Þ

or by a shorter equivalent symbol

W12ðnÞ � W21ð�nÞ: ð3:4:4:6Þ

3.4.4.2. Layer groups

An adequate concept for characterizing symmetry properties
of simple domain twins and planar domain walls is that of layer
groups. A layer group describes the symmetry of objects that
exist in a three-dimensional space and have two-dimensional
translation symmetry. Typical examples are two-dimensional
planes in three-dimensional space [two-sided planes and
sectional layer groups (Holser, 1958a,b), domain walls and
interfaces of zero thickness], layers of finite thickness (e.g.
domain walls and interfaces of finite thickness) and two semi-
infinite crystals joined along a planar and coherent (compatible)
interface [e.g. simple domain twins with a compatible (coherent)
domain wall, bicrystals].

A crystallographic layer group comprises symmetry operations
(isometries) that leave invariant a chosen crystallographic plane
p in a crystalline object. There are two types of such operations:

(i) side-preserving operations keep invariant the normal n of
the plane p, i.e. map each side of the plane p onto the same side.
This type includes translations (discrete or continuous) in the
plane p, rotations of 360�=n; n ¼ 2; 3; 4; 6, around axes perpen-
dicular to the plane p, reflections through planes perpendicular to
p and glide reflections through planes perpendicular to p with
glide vectors parallel to p. The corresponding symmetry elements
are not related to the location of the plane p in space, i.e. they are
the same for all planes parallel to p.

(ii) side-reversing operations invert the normal n of the plane
i.e. exchange sides of the plane. Operations of this type are: an
inversion through a point in the plane p, rotations of 360�=n;
n ¼ 3; 4; 6 around axes perpendicular to the plane followed by
inversion through this point, 180� rotation and 180� screw rota-
tion around an axis in the plane p, reflection and glide reflections
through the plane p, and combinations of these operations with
translations in the plane p. All corresponding symmetry elements
are located in the plane p.

A layer group L consists of two parts:

L ¼ bLL [ sbLL; ð3:4:4:7Þ

where bLL is a subgroup of L that comprises all side-preserving
operations of L; this group is isomorphic to a plane group and is
called a trivial layer group or a face group. An underlined char-
acter s denotes a side-reversing operation and the left coset sbLL
contains all side-reversing operations of L. Since bLL is a halving
subgroup, the layer group L can be treated as a dichromatic
(black-and-white) group in which side-preserving operations are
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Table 3.4.4.1. Crystallographic layer groups with continuous translations

International Non-coordinate

1 1
�11 �11

112 2

11m m

112=m 2=m

211 2

m11 m

2=m11 2=m

222 222

mm2 mm2

m2m m2m

mmm mmm

4 4
�44 �44

4=m 4=m

422 422

4mm 4mm

�442m �442m

4=mmm 4=mmm

3 3
�33 �33

32 32

3m 3m
�33m �33m

6 6
�66 �66

6=m 6=m

622 622

6mm 6mm
�66m2 �66m2

6=mmm 6=mmm
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colour-preserving operations and side-reversing operations are
colour-exchanging operations.

There are 80 layer groups with discrete two-dimensional
translation subgroups [for a detailed treatment see IT E (2002),
or e.g. Vainshtein (1994), Shubnikov & Kopcik (1974), Holser
(1958a)]. Equivalent names for these layer groups are net groups
(Opechowski, 1986), plane groups in three dimensions (Grell et
al., 1989), groups in a two-sided plane (Holser, 1958a,b) and
others.

To these layer groups there correspond 31 point groups that
describe the symmetries of crystallographic objects with two-
dimensional continuous translations. Holser (1958b) calls these
groups point groups in a two-sided plane, Kopský (1993) coins the
term point-like layer groups. We shall use the term ‘layer groups’
both for layer groups with discrete translations, used in a
microscopic description, and for crystallographic ‘point-like layer
groups’ with continuous translations in the continuum approach.
The geometrical meaning of these groups is similar and most of
the statements and formulae hold for both types of layer groups.

Crystallographic layer groups with a continuous translation
group [point groups of two-sided plane (Holser, 1958b)] are listed
in Table 3.4.4.1. The international notation corresponds to inter-
national symbols of layer groups with discrete translations; this
notation is based on the Hermann–Mauguin (international)
symbols of three-dimensional space groups, where the c direction
is the direction of missing translations and the character ‘1’
represents a symmetry direction in the plane with no associated
symmetry element (see IT E, 2002).

In the non-coordinate notation (Janovec, 1981), side-reversing
operations are underlined. Thus e.g. 2 denotes a 180� rotation
around a twofold axis in the plane p and m a reflection through
this plane, whereas 2 is a side-preserving 180� rotation around an
axis perpendicular to the plane and m is a side-preserving
reflection through a plane perpendicular to the plane p. With
exception of �11 and 2, the symbol of an operation specifies the
orientation of the plane p. This notation allows one to signify
layer groups with different orientations in one reference coor-
dinate system. Another non-coordinate notation has been
introduced by Shubnikov & Kopcik (1974).

If a crystal with point-group symmetry G is bisected by a
crystallographic plane p, then all operations of G that leave the
plane p invariant form a sectional layer group = GðpÞ of the plane
p in G. Operations of the group GðpÞ can be divided into two sets
[see equation (3.4.4.7)]:

GðpÞ ¼ dGðpÞGðpÞ [ g dGðpÞGðpÞ; ð3:4:4:8Þ

where the trivial layer group dGðpÞGðpÞ expresses the symmetry of the
crystal face with normal n. These face symmetries are listed in IT
A (2002), Part 10, for all crystallographic point groups G and all
orientations of the plane expressed by Miller indices ðhklÞ. The
underlined operation g is a side-reversing operation that inverts
the normal n. The left coset g dGðpÞGðpÞ contains all side-reversing
operations of GðpÞ.

The number np of planes symmetrically equivalent (in G) with
the plane p is equal to the index of GðpÞ in G:

np ¼ ½G : GðpÞ� ¼ jGj : jGðpÞj: ð3:4:4:9Þ

Example 3.4.4.1. As an example, we find the sectional layer group
of the plane ð010Þ in the groupG ¼ 4z=mzmxmxy (see Fig. 3.4.2.2).

4z=mzmxmxyð010Þ ¼ mx2ymz [ myfmx2ymzg

¼ mx2ymz [ fmy; 2z; �11; 2xg

¼ mxmymz: ð3:4:4:10Þ

In this example np ¼ j4z=mzmxmxyj : jmxmymzj ¼ 16 : 8 ¼ 2
and the plane crystallographically equivalent with the plane ð010Þ
is the plane (100) with sectional symmetry mxmymz.

3.4.4.3. Symmetry of simple twins and planar domain walls of zero
thickness

We shall examine the symmetry of a twin ðS1jnjSjÞ with a
planar zero-thickness domain wall with orientation and location
defined by a plane p (Janovec, 1981; Zikmund, 1984; Zieliński,
1990). The symmetry properties of a planar domain wall W1j are
the same as those of the corresponding simple domain twin.
Further, we shall consider twins but all statements also apply to
the corresponding domain walls.

Operations that express symmetry properties of the twin must
leave the orientation and location of the plane p invariant. We
shall perform our considerations in the continuum description
and shall assume that the plane p passes through the origin of the
coordinate system. Then point-group symmetry operations leave
the origin invariant and do not change the position of p.

If we apply an operation g 2 G to the twin ðS1jnjSjÞ, we get a

crystallographically equivalent twin ðSijnmjSkÞ�
G
ðS1jnjSjÞ with

other domain states and another orientation of the domain wall,

gðS1jnjSjÞ ¼ ðgS1jgnjgSjÞ ¼ ðSijnmjSkÞ; g 2 G: ð3:4:4:11Þ

It can be shown that the transformation of a domain pair by an
operation g 2 G defined by this relation fulfils the conditions of
an action of the groupG on a set of all domain pairs formed from
the orbit GS1 (see Section 3.2.3.3). We can, therefore, use all
concepts (stabilizer, orbit, class of equivalence etc.) introduced
for domain states and also for domain pairs.

Operations g that describe symmetry properties of the twin
ðS1jnjSjÞ must not change the orientation of the wall plane p but
can reverse the sides of p, and must either leave invariant both
domain states S1 and Sj or exchange these two states. There are
four types of such operations and their action is summarized in
Table 3.4.4.2. It is instructive to follow this action in Fig. 3.4.4.2
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Fig. 3.4.4.2. A simple twin under the action of four types of operation that do
not change the orientation of the wall plane p. Compare with Table 3.4.4.2.
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using an example of the twin ðS1½010�S2Þ with domain states S1
and S2 from our illustrative example (see Fig. 3.4.2.2).

(1) An operation f1j which leaves invariant the normal n and
both domain states S1, Sj in the twin ðS1jnjSjÞ; such an operation
does not change the twin and is called the trivial symmetry
operation of the twin. An example of such an operation of the
twin ðS1½010�S2Þ in Fig. 3.4.4.2 is the reflection mz.

(2) An operation s1j which inverts the normal n but leaves
invariant both domain states S1 and Sj. This side-reversing
operation transforms the initial twin ðS1jnjSjÞ into ðS1j � njSjÞ,
which is, according to (3.4.4.1), identical with the inverse twin
ðSjjnjS1Þ. As in the non-coordinate notation of layer groups (see
Table 3.4.4.1) we shall underline the side-reversing operations.
The reflection my in Fig. 3.4.4.2 is an example of a side-reversing
operation.

(3) An operation r?1j which exchanges domain states S1 and Sj
but does not change the normal n. This state-exchanging opera-
tion, denoted by a star symbol, transforms the initial twin
ðS1jnjSjÞ into a reversed twin ðSjjnjS1Þ. A state-exchanging
operation in our example is the reflection m?

x.
(4) An operation t?1j which inverts n and simultaneously

exchanges S1 and Sj. This operation, called the non-trivial
symmetry operation of a twin, transforms the initial twin into
ðSjj � njS1Þ, which is, according to (3.4.4.1), identical with the
initial twin ðS1jnjSjÞ. An operation of this type can be expressed
as a product of a side-exchanging operation (underlined) and a
state-exchanging operation (with a star), and will, therefore, be
underlined and marked by a star. In Fig. 3.4.4.2, a non-trivial
symmetry operation is for example the 180� rotation 2?z.

We note that the star and the underlining do not represent any
operation; they are just suitable auxiliary labels that can be
omitted without changing the result of the operation.

To find all trivial symmetry operations of the twin ðS1jnjSjÞ, we
recall that all symmetry operations that leave both S1 and Sj
invariant constitute the symmetry group F1j of the ordered
domain pair ðS1; SjÞ, F1j ¼ F1 \ Fj, where F1 and Fj are the
symmetry groups of S1 and Sj, respectively. The sectional layer
group of the plane p in group F1j is (if we omit p)

F1j ¼
bFF1j [ s1j

bFF1j: ð3:4:4:12Þ

The trivial (side-preserving) subgroup bFF1j assembles all trivial
symmetry operations of the twin ðS1jnjSjÞ. The left coset s1j

bFF1j,
where s1j is a side-reversing operation, contains all side-reversing
operations of this twin. In our example bFF12 ¼ f1;mzg and
s1j
bFF1j ¼ myf1;mzg ¼ fmy; 2xg (see Fig. 3.4.4.2).
Similarly, the left coset r?1j

bFF1j contains all state-exchanging
operations, and t?1j

bFF1j all non-trivial symmetry operations of the

twin ðS1jnjSjÞ. In the illustrative example, r?1j
bFF1j ¼ m?

xf1;mzg ¼

fm?
x; 2

?
yg and t?1j

bFF1j ¼ 2?zf1;mzg ¼ f2?z; �11
?
g.

The trivial group bFF1j and its three cosets constitute the
sectional layer group J1j of the plane p in the symmetry group
J1j ¼ F1j [ g?1jF1j of the unordered domain pair fS1; Sjg,

J1j ¼
bJJ1j [ s1j

bJJ1j ¼
bFF1j [ r?1j

bFF1j [ s1j
bFF1j [ t?1j

bFF1j; ð3:4:4:13Þ

where r?1j is an operation of the left coset g?1jF1j that leaves the
normal n invariant and t1j ¼ s1jr

?
1j.

Group J1j can be interpreted as a symmetry group of a twin
pair ðS1; SjjnjSj; S1Þ consisting of a domain twin ðS1jnjSjÞ and a
superposed reversed twin ðSjjnjS1Þ with a common wall plane p.
This construct is analogous to a domain pair (dichromatic
complex in bicrystallography) in which two homogeneous
domain states S1 and Sj are superposed (see Section 3.4.3.1). In
the same way as the group J1j of domain pair fS1; Sjg is divided
into two cosets with different results of the action on this domain
pair, the symmetry group J1j of the twin pair can be decomposed
into four cosets (3.4.4.13), each of which acts on a domain twin
ðSjjnjS1Þ in a different way, as specified in Table 3.4.4.2.

We can associate with operations from each coset in (3.4.4.13)
a label. If we denote operations from bFF1j without a label by e,
underlining by a and star by b, then the multiplication of labels is
expressed by the relations

a2 ¼ b2 ¼ e; ab ¼ ba: ð3:4:4:14Þ

The four different labels e; a; b; ab can be formally viewed as four
colours, the permutation of which is defined by relations
(3.4.3.14); then the group J1j can be treated as a four-colour layer
group.

Since the symbol of a point group consists of generators from
which any operation of the group can be derived by multi-
plication, one can derive from the international symbol of a
sectional layer group, in which generators are supplied with
adequate labels, the coset decomposition (3.4.4.13).

Thus for the domain pair fS1; S2g in Fig. 3.4.4.2 with
J?12 ¼ m?

xmymz [see equation (3.4.3.18)] and pð010Þ we get the
sectional layer group J12ð010Þ ¼ m?

xmymz. Operations of this
group (besides generators) are m?

xmy ¼ 2?z; mymz ¼ 2x; m
?
xmz ¼

2?y; m
?
x2x ¼ �11

?
.

All operations g 2 G that transform a twin into itself constitute
the symmetry group T1jðnÞ (or in short T1jÞ of the twin ðS1jnjSjÞ.
This is a layer group consisting of two parts:

T1j ¼
bFF1j [ t?1j

bFF1j; ð3:4:4:15Þ

where bFF1j is a face group comprising all trivial symmetry opera-
tions of the twin and the left coset t1j

bFF1j contains all non-trivial
operations of the twin that reverse the sides of the wall plane p
and simultaneously exchange the states ðS1 and SjÞ.

One can easily verify that the symmetry T1jðnÞ of the twin
ðS1jnjSjÞ is equal to the symmetry Tj1ðnÞ of the reversed twin
ðSjjnjS1Þ,

T1jðnÞ ¼ Tj1ðnÞ: ð3:4:4:16Þ

Similarly, for sectional layer groups,

F1jðnÞ ¼ Fj1ðnÞ and J1jðnÞ ¼ Jj1ðnÞ: ð3:4:4:17Þ

Therefore, the symmetry of a twin T1jðpÞ and of sectional layer
groups F1jðpÞ, J1jðpÞ is specified by the orientation of the plane p
[expressed e.g. by Miller indices ðhklÞ] and not by the sidedness of
p. However, the two layer groups F1jðpÞ and Fj1ðpÞ, and T1jðpÞ and
Tj1ðpÞ express the symmetry of two different objects, which can in
special cases (non-transposable pairs and irreversible twins) be
symmetrically non-equivalent.

The symmetry T1jðnÞ also expresses the symmetry of the wall
W1jðnÞ. This symmetry imposes constraints on the form of tensors
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Table 3.4.4.2. Action of four types of operations g on a twin ðS1jnjSjÞ

Operation g keeps the orientation of the plane p unchanged.

g gS1 gSj gn gðS1j gjSjÞ gðS1jnjSjÞ ¼ ðgS1jgnjgSjÞ Resulting twin

f1j S1 Sj n ðS1j jSjÞ ðS1jnjSjÞ Initial twin
s1j S1 Sj �n jS1Þ ðSjj ðS1j � njSjÞ � ðSjjnjS1Þ Reversed twin
r?1j Sj S1 n ðSjj jS1Þ ðSjjnjS1Þ Reversed twin
t?1j Sj S1 �n jSjÞ ðS1j ðSjj�njS1Þ � ðS1jnjSjÞ Initial twin
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describing the properties of walls. In this way, the appearance of
spontaneous polarization in domain walls has been examined
(Přı́vratská & Janovec, 1999; Přı́vratská et al., 2000).

According to their symmetry, twins and walls can be divided
into two types: For a symmetric twin (domain wall), there exists a
non-trivial symmetry operation t?1j and its symmetry is expressed
by equation (3.4.4.15). A symmetric twin can be formed only
from transposable domain pairs.

For an asymmetric twin (domain wall), there is no non-trivial
symmetry operation and its symmetry group is, therefore,
confined to trivial group bFF1j,

T1j ¼
bFF1j: ð3:4:4:18Þ

The difference between symmetric and asymmetric walls can be
visualized in domain walls of finite thickness treated in Section
3.4.4.6.

The symmetry T1j of a symmetric twin (wall), expressed by
relation (3.4.4.15), is a layer group but not a sectional layer group
of any point group. It can, however, be derived from the sectional
layer group F1j of the corresponding ordered domain pair ðS1; SjÞ
[see equation (3.4.4.12)] and the sectional layer group J1j of the
unordered domain pair fS1; Sjg [see equation (3.4.4.13)],

T1j ¼ J1j � fF1j �
bFF1jg � fbJJ1j �

bFF1jg: ð3:4:4:19Þ

This is particularly useful in the microscopic description, since
sectional layer groups of crystallographic planes in three-
dimensional space groups are tabulated in IT E (2002), where
one also finds an example of the derivation of the twin symmetry
in the microscopic description.

The treatment of twin (wall) symmetry based on the concept of
domain pairs and sectional layer groups of these pairs (Janovec,
1981; Zikmund, 1984) is analogous to the procedure used in
treating interfaces in bicrystals (see Section 3.2.2; Pond & Boll-
mann, 1979; Pond & Vlachavas, 1983; Kalonji, 1985; Sutton &
Balluffi, 1995). There is the following correspondence between
terms: domain pair ! dichromatic complex; domain wall !
interface; domain twin with zero-thickness domain wall ! ideal
bicrystal; domain twin with finite-thickness domain wall ! real
(relaxed) bicrystal. Terms used in bicrystallography cover more
general situations than domain structures (e.g. grain boundaries
of crystals with non-crystallographic relations, phase interfaces).
On the other hand, the existence of a high-symmetry phase,
which is missing in bicrystallography, enables a more detailed
discussion of crystallographically equivalent variants (orbits) of
various objects in domain structures.

The symmetry group T1j is the stabilizer of a domain twin
(wall) in a certain group, and as such determines a class (orbit) of
domain twins (walls) that are crystallographically equivalent with
this twin (wall). The number of crystallographically equivalent
twins is equal to the number of left cosets (index) of T1j in the
corresponding group. Thus the number nWðpÞ of equivalent
domain twins (walls) with the same orientation defined by a plane
p of the wall is

nWðpÞ ¼ ½GðpÞ : T1j� ¼ jGðpÞj : jT1jj; ð3:4:4:20Þ

where GðpÞ is a sectional layer group of the plane p in the parent

groupG, ½GðpÞ : T1j� is the index of T1j inGðpÞ and absolute value
denotes the number of operations in a group.

The set of all domain walls (twins) crystallographically
equivalent in G with a given wall ½S1jnjSj� forms a G-orbit of
walls, GW1j � G½S1jnjSj�. The number nW of walls in this G-orbit
is

nW ¼ ½G : T1j� ¼ jGj : jT1jj ¼ ðjGj : jGðpÞjÞðjGðpÞj : jT1jjÞ

¼ npnWðpÞ; ð3:4:4:21Þ

where np is the number of planes equivalent with plane p
expressed by equation (3.4.4.9) and nWðpÞ is the number of
equivalent domain walls with the plane p [see equation
(3.4.4.20)]. Walls in one orbit have the same scalar properties (e.g.
energy) and their structure and tensor properties are related by
operations that relate walls from the same orbit.

Another aspect that characterizes twins and domain walls is
the relation between a twin and the reversed twin. A twin (wall)
which is crystallographically equivalent with the reversed twin
(wall) will be called a reversible twin (wall). If a twin and the
reversed twin are not crystallographically equivalent, the twin
will be called an irreversible twin (wall). If a domain wall is
reversible, then the properties of the reversed wall are fully
specified by the properties of the initial wall, for example, these
two walls have the same energy and their structures and prop-
erties are mutually related by a crystallographic operation. For
irreversible walls, no relation exists between a wall and the
reversed wall. Common examples of irreversible walls are elec-
trically charged ferroelectric walls (walls carrying a nonzero
polarization charge) and domain walls or discommensurations in
phases with incommensurate structures.

A necessary and sufficient condition for reversibility is the
existence of side-reversing and/or state-exchanging operations in

the sectional layer group J1j of the unordered domain pair fS1; Sjg
[see equation (3.4.4.13)]. This group also contains the symmetry
group T1j of the twin [see equation (3.4.4.15)] and thus provides a
full symmetry characteristic of twins and walls,

J1j ¼ T1j [ s1j
bFF1j [ t?1j

bFF1j: ð3:4:4:22Þ

Sequences of walls and reversed walls appear in simple
lamellar domain structures which are formed by domains with
two alternating domain states, say S1 and S2, and parallel walls
W12 and reversed walls W21 (see Fig. 3.4.2.1).

The distinction ‘symmetric–asymmetric’ and ‘reversible–irre-
versible’ provides a natural classification of domain walls and
simple twins. Five prototypes of domain twins and domain walls,
listed in Table 3.4.4.3, correspond to five subgroups of the
sectional layer group J1j: the sectional layer group J1j itself, the

layer group of the twin T1j ¼
bFF1j [ t1j

bFF1j; the sectional layer

group F1j ¼
bFF1j [ s1j

bFF1j; the trivial layer group bJJ1j ¼
bFF1j [ r1j

bFF1j

and the trivial layer group bFF1j.
An example of a symmetric reversible (SR) twin (and wall) is

the twin ðS1½010�S2Þ in Fig. 3.4.4.2 with a non-trivial twinning
operation 2?z and with reversing operations my and m?

x. The twin
ðSþ1 ½�1110�S

�
3 Þ and reversed twin ðS�3 ½�1110�S

þ
1 Þ in Fig. 3.4.3.8 are

symmetric and irreversible (SI) twins with a twinning operation
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Table 3.4.4.3. Classification of domain walls and simple twins

T1j J1j Classification Symbol

bFF1j [ t1j
bFF1j

bFF1j [ t1j
bFF1j [ r1j

bFF1j [ s1j
bFF1j Symmetric reversible SR

bFF1j [ t1j
bFF1j

bFF1j [ t1j
bFF1j Symmetric irreversible SI

bFF1j
bFF1j [ s1j

bFF1j Asymmetric side-reversible AR

bFF1j
bFF1j [ r1j

bFF1j Asymmetric state-reversible AR

bFF1j
bFF1j Asymmetric irreversible AI
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m?
�xxy; no reversing operations exist (walls are charged and charged

walls are always irreversible, since a charge is invariant with
respect to any transformation of the space). The twin ðS�1 ½110�S

þ
3 Þ

and reversed twin ðSþ3 ½110�S
�
1 Þ in the same figure are asymmetric

state-reversible twins with state-reversing operation m?
�xxy and with

no non-trivial twinning operation.
The same classification also applies to domain twins and walls

in a microscopic description.
As in the preceding section, we shall now present separately

the symmetries of non-ferroelastic simple domain twins [‘twin-
ning without a change of crystal shape (or form)’] and of
ferroelastic simple domain twins [‘twinning with a change of
crystal shape (or form)’; Klassen-Neklyudova (1964), Indenbom
(1982)].

3.4.4.4. Non-ferroelastic domain twins and domain walls

Compatibility conditions impose no restriction on the orien-
tation of non-ferroelastic domain walls. Any of the non-ferro-
elastic domain pairs listed in Table 3.4.3.4 can be sectioned on any
crystallographic plane p and the sectional group J1j specifies the
symmetry properties of the corresponding twin and domain wall.
The analysis can be confined to one representative orientation of
each class of equivalent planes, but a listing of all possible cases is
too voluminous for the present article. We give, therefore, in
Table 3.4.4.4 only possible symmetries T1j and J1j of non-
ferroelastic domain twins and walls, together with their classifi-
cation, without specifying the orientation of the wall plane p.

Non-ferroelastic domain walls are usually curved with a slight
preference for certain orientations (see Figs. 3.4.1.5 and 3.4.3.3).
Such shapes indicate a weak anisotropy of the wall energy �, i.e.
small changes of � with the orientation of the wall. The situation
is different in ferroelectric domain structures, where charged
domain walls have higher energies than uncharged ones.

A small energetic anisotropy of non-ferroelastic domain walls
is utilized in producing tailored domain structures (Newnham et
al., 1975). A required domain pattern in a non-ferroelastic
ferroelectric crystal can be obtained by evaporating electrodes of
a desired shape (e.g. stripes) onto a single-domain plate cut
perpendicular to the spontaneous polarization P0. Subsequent
poling by an electric field switches only regions below the elec-
trodes and thus produces the desired antiparallel domain struc-
ture.

Periodically poled ferroelectric domain structures fabricated
by this technique are used for example in quasi-phase-matching
optical multipliers (see e.g. Shur et al., 1999, 2001; Rosenman et
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Table 3.4.4.4. Symmetries of non-ferroelastic domain twins and walls

T1j J1j Classification

1 1 AI

1 �11 AR

2 AR

2? AR?

m? AR?

�11
? �11

?
SI

2=m? SR

2?=m SR

2 2m?m? AR?

2? 2? SI

2?=m? SR

2?2?2 SR

2?mm? SR

m m AI

2=m AR

2?mm? AR?

m? m? SI

2?=m? SR

m?m?2 SR

2?=m 2?=m SI

mmm? SR

2=m? 2=m? SI

m?m?m? SR

4?=m? SR

22?2? 22?2? SI

mm?m? SR

4?22? SR
�442?m? SR

m?m2? m?m2? SI

m?mm? SR

mmm? mmm? SI

4?=m?m?m SR

4 4m?m? AR?

�44
? �44

?
2m? SR

4=m? 4=m? SI

4=m?m?m? SR

42?2? 42?2? SI

4=mm?m? SR
�44
?
2?m 4?=mm?m SR

4=m?mm 4=m?mm SI

3 3m? AR?

6? AR?

�33
? �33

?
SI

�33
?
m? SR

6?=m SR

3m 6?mm? AR?

32? 32? SI
�33m? SR

6?22? SR
�662?m? SR

�33
?
m �33

?
m SI

6?=mmm? SR

6 6m?m? AR?

�66
? �66

?
SI

6?=m? SR
�66
?
2m? SR

6=m? 6=m? SI

6=m?m?m? SR

62?2? 62?2? SI

6=mm?m? SR
�66
?
m2? �66

?
m2? SI

6?=m?mm? SR

6=m?mm 6=m?mm SI

Fig. 3.4.4.3. Engineered periodic non-ferroelastic ferroelectric stripe domain
structure within a lithium tantalate crystal with symmetry descent �66 � 3.
The domain structure is revealed by etching and observed in an optical
microscope (Shur et al., 2001). Courtesy of Vl. Shur, Ural State University,
Ekaterinburg.
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al., 1998). An example of such an engineered domain structure is
presented in Fig. 3.4.4.3.

Anisotropic domain walls can also appear if the Landau free
energy contains a so-called Lifshitz invariant (see Section
3.1.3.3), which lowers the energy of walls with certain orienta-
tions and can be responsible for the appearance of an incom-
mensurate phase (see e.g. Dolino, 1985; Tolédano & Tolédano,
1987; Tolédano & Dmitriev, 1996; Strukov & Levanyuk, 1998).
The irreversible character of domain walls in a commensurate
phase of crystals also containing (at least theoretically) an
incommensurate phase has been confirmed in the frame of
phenomenological theory by Ishibashi (1992). The incommen-
surate structure in quartz that demonstrates such an anisotropy is
discussed at the end of the next example.

Example 3.4.4.2. Domain walls in �-phase of quartz. Quartz
(SiO2) undergoes a structural phase transition from the parent 
phase (symmetry group 6z2x2y) to the ferroic � phase (symmetry
3z2x). The � phase can appear in two domain states S1 and S2,
which have the same symmetry F1 ¼ F2 ¼ 3z2x. The symmetry J12
of the unordered domain pair fS1; S2g is given by J?12 ¼

3z2x [ 2yf3z2xg ¼ 6z2x2

y .

Table 3.4.4.5 summarizes the results of the symmetry analysis
of domain walls (twins). Each row of the table contains data for
one representative domain wall W12ðn12Þ from one orbit
GW12ðn12Þ. The first column of the table specifies the normal n of
the wall plane p, further columns list the layer groupsbFF12, T12 and
J12 that describe the symmetry properties and classification of the
wall (defined in Table 3.4.4.3), and nW is the number of symme-
trically equivalent domain walls [cf. equation (3.4.4.21)].

The last two columns give possible components of the spon-
taneous polarization P of the wall W12ðnÞ and the reversed wall
W21ðnÞ. Except for walls with normals [001] and [100], all walls

are polar, i.e. they can be spontaneously polarized. The reversal
of the polarization in reversible domain walls requires the
reversal of domain states. In irreversible domain walls, the
reversal of W12 into W21 is accompanied by a change of the
polarization P into P0, which may have a different absolute value
and direction different to that of P.

The structure of two domain states and two mutually reversed
domain walls obtained by molecular dynamics calculations are
depicted in Fig. 3.4.4.4 (Calleja et al., 2001). This shows a
projection on the ab plane of the structure represented by SiO4

tetrahedra, in which each tetrahedron shares four corners. The
threefold symmetry axes in the centres of distorted hexagonal
channels and three twofold symmetry axes (one with vertical
orientation) perpendicular to the threefold axes can be easily
seen. The two vertical dotted lines are the wall planes p of two
mutually reversed walls ½S1½010�S2� ¼ W12½010� and ½S2½010�S1� ¼
W21½010�. In Table 3.4.4.5 we find that these walls have the
symmetry T12½010� ¼ T21½010� ¼ 2x2

?
y2
?
z, and in Fig. 3.4.4.4 we can

verify that the operation 2x is a ‘side-reversing’ operation s12 of
the wall (and the whole twin as wall), operation 2?y is a ‘state-
exchanging operation’ r?12 and the operation 2?z is a non-trivial
‘side-and-state reversing’ operation t?12 of the wall. The walls
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Table 3.4.4.5. Symmetry properties of domain walls in quartz

jPj 6¼ jP0j; P0
� 6¼ �P�; � ¼ x; y; z.

n bFF12 T12 J12 Classification nW PðW12Þ PðW21Þ

½001� 3z 3z2

y 6z2x2


y SR 2

½100� 2x 2x2

y2


z 2x2


y2


z SI 3

½010� 1 2z 2x2

y2


z SR 6 0; 0;Pz 0; 0;�Pz

½0vw� 1 1 2x AR 12 Px;Py;Pz Px;�Py;�Pz

½u0w� 1 2y 2y SI 6 0;Py; 0 0;�P0
y; 0

½uv0� 1 2z 2z SI 6 0; 0;Pz 0; 0;P0
z

½uvw� 1 1 1 AI 12 Px;Py;Pz P0
x;P

0
y;P

0
z

Fig. 3.4.4.4. Microscopic structure of two domain states and two parallel
mutually reversed domain walls in the � phase of quartz. The left-hand
vertical dotted line represents the domain wallW12, the right-hand line is the
reversed domain wallW12. To the left of the left-hand line and to the right of
the right-hand line are domains with domain state S1, the domain between
the lines has domain state S2. For more details see text. Courtesy of M.
Calleja, University of Cambridge. Fig. 3.4.4.5. Transmission electron microscopy (TEM) image of the

incommensurate triangular (3� q modulated) phase of quartz. The black
and white triangles correspond to domains with domain states S1 and S2, and
the transition regions between black and white areas to domain walls
(discommensurations). For a domain wall of a certain orientation there are
no reversed domain walls with the same orientation but reversed order of
black and white; the walls are, therefore, non-reversible. Domain walls in
regions with regular triangular structures are related by 120 and 240�

rotations about the z direction and carry parallel spontaneous polarizations
(see text). Triangular structures in two regions (blocks) with different
orientations of the triangles are related e.g. by 2x and carry, therefore,
antiparallel spontaneous polarizations and behave macroscopically as two
ferroelectric domains with antiparallel spontaneous polarization. Courtesy of
E. Snoeck, CEMES, Toulouse and P. Saint-Grégoire, Université de Toulon.
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W12½010� and W21½010� are, therefore, symmetric and reversible
walls.

During a small temperature interval above the appearance of
the � phase at 846 K, there exists an incommensurate phase that
can be treated as a regular domain structure, consisting of
triangular columnar domains with domain walls (discommen-
surations) of negative wall energy � (see e.g. Dolino, 1985). Both
theoretical considerations and electron microscopy observations
(see e.g. Van Landuyt et al., 1985) show that the wall normal has
the ½uv0� direction. From Table 3.4.4.5 it follows that there are six
equivalent walls that are symmetric but irreversible, therefore
any two equivalent walls differ in orientation.

This prediction is confirmed by electron microscopy in Fig.
3.4.4.5, where black and white triangles correspond to domains
with domain states S1 and S2, and the transition regions between
black and white areas to domain walls (discommensurations). To
a domain wall of a certain orientation no reversible wall appears
with the same orientation but with a reversed order of black and
white. Domain walls in homogeneous triangular parts of the
structure are related by 120 and 240� rotations and carry, there-
fore, parallel spontaneous polarizations; wall orientations in two
differently oriented blocks (the middle of the right-hand part and
the rest on the left-hand side) are related by 180� rotations about
the axis 2x in the plane of the photograph and are, therefore,
polarized in antiparallel directions (for more details see Saint-
Grégoire & Janovec, 1989; Snoeck et al., 1994). After cooling
down to room temperature, the wall energy becomes positive and
the regular domain texture changes into a coarse domain struc-
ture in which these six symmetry-related wall orientations still
prevail (Van Landuyt et al., 1985).

3.4.4.5. Ferroelastic domain twins and walls. Ferroelastic twin laws

As explained in Section 3.4.3.6, from a domain pair ðS1; SjÞ of
ferroelastic single-domain states with two perpendicular equally
deformed planes p and p0 one can form four different ferroelastic

twins (see Fig. 3.4.3.8). Two mutually reversed twins ðS1jnjSjÞ and
ðSjjnjS1Þ have the same twin symmetry T1jðpÞ and the same
symmetry J1jðpÞ of the twin pair ðS1; SjjnjSj; S1Þ. The ferroelastic
twin laws can be expressed by the layer group J1jðpÞ or, in a less
complete way (without specification of reversibility), by the twin
symmetry T1jðpÞ. The same holds for two mutually reversed twins
ðS1jn

0jSjÞ and ðSjjn
0jS1Þ with a twin plane p0 perpendicular to p.

Table 3.4.4.6 summarizes possible symmetries T1j of ferro-
elastic domain twins and corresponding ferroelastic twin laws J1j.
Letters Vand W signify strain-dependent and strain-independent
(with a fixed orientation) domain walls, respectively. The classi-
fication of domain walls and twins is defined in Table 3.4.4.3. The
last column contains twinning groups K1j½F1� of ordered domain
pairs ðS1; SjÞ from which these twins can be formed. The symbol
of K1j is followed by a symbol of the group F1 given in square
brackets. The twinning group K1j½F1� specifies, up to two cases, a
class of equivalent domain pairs [orbit GðS1; SjÞ] (see Section
3.4.3.4). More details on particular cases (orientation of domain
walls, disorientation angle, twin axis) can be found in synoptic
Table 3.4.3.6. From this table follow two general conclusions:

(1) All layer groups describing the symmetry of compatible
ferroelastic domain walls are polar groups, therefore all compa-
tible ferroelastic domain walls in dielectric crystals can be spon-
taneously polarized. The direction of the spontaneous
polarization is parallel to the intersection of the wall plane p and
the plane of shear (i.e. a plane perpendicular to the axis of the
ferroelastic domain pair, see Fig. 3.4.3.5b and Section 3.4.3.6.2).

(2) Domain twin ðS1jnjSjÞ formed in the parent clamping
approximation from a single-domain pair ðS1; SjÞ and the relaxed
domain twin ðSþ1 jnjS

�
j Þ with disoriented domain states have the

same symmetry groups T1j and J1j.
This follows from simple reasoning: all twin symmetries T1j in

Table 3.4.4.6 have been derived in the parent clamping approx-
imation and are expressed by the orthorhombic groupmm2 or by
some of its subgroups. As shown in Section 3.4.3.6.2, the maximal
symmetry of a mechanically twinned crystal is also mm2. An
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Table 3.4.4.6. Symmetry properties of ferroelastic domain twins and compatible domain walls

T1j J1j Classification K1j½F1�

1 2 V AR 4?½2�, �44?½2�, 6½2�, 6=m½2�

1 2 V AR

1 2? W AR? n 2?½1�, 422½2�, �442m½m�, 32½2�, �33m½m�, 622½2�, �66m2½m�;
432½222�, m�33m½mm2�, m�33m½2?xy�½mm2�2? 2? V SI

1 2? W AR? 23½3�, 432½4�, 432½3�, m�33m½�44�

2? 2? W SI

1 m? V AR? n m?½1�, 4mm½m�, �442m½2�, 3m½m�, �33m½2�, 6mm½m�, �66m2½2�,
�443m½mm2�, m�33m½222�, m�33m½m?

xy�½m2m�m? m? W SI

1 m? W AR? m�33½3�, �443m½�44�, �443m½3�, m�33m½4�

m? 2? W SI

2? 2?2?2 W SR n 2?2?2½2�, 4?22?½222�, �44?2?m½mm2�, 622½222�, 6=mmm½mm2�,
432½422�, 432½32�, m�33m½�442m�2? 2?2?2 W SR

2? 2?=m? V SR 2?=m?½�11�, 4=mmm½2=m�, �33m½2=m�, 6=mmm½2=m�,
m�33m½mmm�m? 2?=m? W SR

2? 2?=m? W SR m�33½�33�, m�33m½4=m�, m�33m½�33�

m? 2?=m? W SR

m m V AI 4=m½m�, �66½m�, 6=m½m�

m m V AI

m 2=m V AR 4?=m½2=m�, 6=m½2=m�

m 2=m V AR

m? m?m?2 W SR n m?m?2½2�, 4?mm?½mm2�, �44?2m?½222�, 6mm½mm2�,
6=mmm½222�, �443m½�442m�, m�33m½422�, m�33m½32�m? m?m?2 W SR

m m?2?m W AR? n m?2?m½m�, 4=mmm½2mm�, �66m2½m2m�, 6=mmm½m2m�,
�443m½3m�, m�33m½4mm�, m�33m½�442m�, m�33m½3m�m?2?m m?2?m W SI

m?2?m m?m?m W SR n m?m?m½2=m�, 4?=mmm?½mmm�, 6=mmm½mmm�,
m�33m½4=mmm�, m�33m½�33m�2?m?m m?m?m W SR
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additional simple shear accompanying the lifting of the parent
clamping approximation cannot, therefore, decrease the
symmetry T1jðpÞ derived in the parent clamping approximation.
In a similar way, one can prove the statement for the group J1jðpÞ
of the twin pairs ðS1; SjjnjSj; S1Þ and ðSþ1 ; S

�
j jnjS

�
j ; S

þ
1 Þ.

3.4.4.6. Domain walls of finite thickness – continuous description

A domain wall of zero thickness is a geometrical construct that
enabled us to form a twin from a domain pair and to find a layer
group that specifies themaximal symmetry of that twin. However,
real domain walls have a finite, though small, thickness. Spatial
changes of the structure within a wall may, or may not, lower
the wall symmetry and can be conveniently described by a
phenomenological theory.

We shall consider the simplest case of a one nonzero compo-
nent � of the order parameter (see Section 3.1.2). Two nonzero
equilibrium homogeneous values of ��0 and þ�0 of this para-
meter correspond to two domain states S1 and S2. Spatial changes
of the order parameter in a domain twin ðS1jnjS2Þ with a zero-
thickness domain wall are described by a step-like function
�ð�Þ ¼ ��0 for � < 0 and �ð�Þ ¼ þ�0 for � > 0, where � is the
distance from the wall of zero thickness placed at � ¼ 0.

A domain wall of finite thickness is described by a function
�ð�Þ with limiting values ��0 and �0:

lim
�!�1

�ð�Þ ¼ ��0; lim
�!þ1

�ð�Þ ¼ �0: ð3:4:4:23Þ

If the wall is symmetric, then the profile �ð�Þ in one half-space,
say � < 0, determines the profile in the other half-space � > 0. For
continuous �ð�Þ fulfilling conditions (3.4.4.23) this leads to the
condition

�ð�Þ ¼ ��ð��Þ; ð3:4:4:24Þ

i.e. �ð�Þ must be an odd function. This requirement is fulfilled if
there exists a non-trivial symmetry operation of a domain wall
(twin): a side reversal ð� ! ��Þ combined with an exchange of
domain states ½�ð�Þ ! ��ð�Þ� results in an identical wall profile.

A particular form of the wall profile �ð�Þ can be deduced from
Landau theory. In the simplest case, the dependence �ð�Þ of the
domain wall would minimize the free energy

Z 1

�1

�0 þ
1
2 �ðT � TcÞ�

2 þ 1
4 �

4 þ 1
2 �

d2�
d�2

� �2
� �

d�; ð3:4:4:25Þ

where �; ; � are phenomenological coefficients and T and Tc are
the temperature and the temperature of the phase transition,
respectively. The first three terms correspond to the homo-
geneous part of the Landau free energy (see Section 3.2.1) and
the last term expresses the energy of the spatially changing order
parameter. This variational task with boundary conditions
(3.4.4.23) has the following solution (see e.g. Salje, 1990, 2000b;
Ishibashi, 1990; Strukov & Levanyuk, 1998)

�ð�Þ ¼ �0 tanhð�=wÞ; ð3:4:4:26Þ

where the value w specifies one half of the effective thickness 2w
of the domain wall and is given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=�ðTc � TÞ

p
: ð3:4:4:27Þ

This dependence, expressed in relative dimensionless variables
�=w and �=�0, is displayed in Fig. 3.4.4.6.

The wall profile �ð�Þ expressed by solution (3.4.4.26) is an odd
function of �,

�ð��Þ ¼ �0 tanhð��=wÞ ¼ ��0 tanhð�=wÞ ¼ ��ð�Þ; ð3:4:4:28Þ

and fulfils thus the condition (3.4.4.24) of a symmetric wall.
The wall thickness can be estimated from electron microscopy

observations, or more precisely by a diffuse X-ray scattering

technique (Locherer et al., 1998). The effective thickness 2w [see
equation (3.4.4.26)] in units of crystallographic repetition length
A normal to the wall ranges from 2w=A ¼ 2 to 2w=A ¼ 12, i.e. 2w
is about 10–100 nm (Salje, 2000b). The temperature dependence
of the domain wall thickness expressed by equation (3.4.4.27) has
been experimentally verified, e.g. on LaAlO3 (Chrosch & Salje,
1999).

The energy � of the domain wall per unit area equals the
difference between the energy of the twin and the energy of the
single-domain crystal. For a one nonzero component order
parameter with the profile (3.4.4.26), the wall energy � is given by
(Strukov & Levanyuk, 1998)

� ¼

Z 1

�1

�ð�ð�ÞÞ ��ð�0Þ
	 


d� ¼
2

ffiffiffiffiffi
2�

p

3
½�ðTc � TÞ�3=2;

ð3:4:4:29Þ

where 2w is the effective thickness of the wall [see equation
(3.4.4.27)] and the coefficients are defined in equation (3.4.4.25).

The order of magnitude of the wall energy � of ferroelastic and
non-ferroelastic domain walls is typically several millijoule per
square metre (Salje, 2000b).

Example 3.4.4.3. In our example of a ferroelectric phase transi-
tion 4z=mzmxmxy � 2xmymz, one can identify � with the P1

component of spontaneous polarization and � with the axis y.
One can verify in Fig. 3.4.4.6 that the symmetry T12½010� ¼ 2?z=mz

of the twin ðS1½010�S2Þ with a zero-thickness domain wall is
retained in the domain wall with symmetric profile (3.4.4.26):
both non-trivial symmetry operations 2?z and �11

?
transform the

profile �ðyÞ into an identical function.

This example illustrates another feature of a symmetric wall:
All non-trivial symmetry operations of the wall are located at the
central plane � ¼ 0 of the finite-thickness wall. The sectional
group T12 of this plane thus expresses the symmetry of the central
layer and also the global symmetry of a symmetric wall (twin).
The local symmetry of the off-centre planes � 6¼ 0 is equal to the
face group bFF12 of the the layer group T12 (in our example
bFF12 ¼ f1;mzg).

The relation between a wall profile �ð�Þ of a symmetric rever-
sible (SR) wall and the profile �revð�Þ of the reversed wall is
illustrated in Fig. 3.4.4.7, where the the dotted curve is the wall
profile �revð�Þ of the reversed wall. The profile �revð�Þ of the
reversed wall is completely determined by the the profile �ð�Þ of
the initial wall, since both profiles are related by equations

�revð�Þ ¼ ��ð�Þ ¼ �ð��Þ: ð3:4:4:30Þ
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Fig. 3.4.4.6. Profile of the one-component order parameter �ð�Þ in a
symmetric wall (S). The effective thickness of the wall is 2w.
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The first part of the equation corresponds to a state-exchanging
operation r?12 (cf. point r

?A in Fig. 3.4.4.7) and the second one to a
side-reversing operation s12 (point sA in the same figure). In a
symmetric reversible wall, both types of reversing operations
exist (see Table 3.4.4.3).

In a symmetric irreversible (SI) wall both initial and reversed
wall profiles fulfil symmetry condition (3.4.4.24) but equations
(3.4.4.30) relating both profiles do not exist. The profiles �ð�Þ and
�revð�Þ may differ in shape and surface wall energy. Charged
domain walls are always irreversible.

A possible profile of an asymmetric domain wall is depicted in
Fig. 3.4.4.8 (full curve). There is no relation between the negative
part �ð�Þ< 0 and positive part �ð�Þ> 0 of the wall profile �ð�Þ.
Owing to the absence of non-trivial twin operations, there is no
central plane with higher symmetry. The local symmetry
(sectional layer group) at any location � within the wall is equal

to the face groupbFF12. This is also the global symmetry T12 of the

entire wall, T12 ¼
bFF12.

The dotted curve in Fig. 3.4.4.8 represents the reversed-wall
profile of an asymmetric state-reversible (AR?) wall that is related
to the initial wall by state-exchanging operations r?12

bFF12 (see Table
3.4.4.5),

�revð�Þ ¼ ��ð�Þ: ð3:4:4:31Þ

An example of an asymmetric side-reversible (AR) wall is
shown in Fig. 3.4.4.9. In this case, an asymmetric wall (full curve)
and reversed wall (dotted curve) are related by side-reversing
operations s12

bFF12:

�revð�Þ ¼ �ð��Þ: ð3:4:4:32Þ

In an asymmetric irreversible (AI) wall, both profiles �ð�Þ and
�revð�Þ are asymmetric and there is no relation between these two
profiles.

The symmetry T12ð�Þ of a finite-thickness wall with a profile �ð�Þ
is equal to or lower than the symmetry T12 of the corresponding
zero-thickness domain wall, T12 � T12ð�Þ. A symmetry descent
T12 � T12ð�Þ can be treated as a phase transition in the domain
wall (see e.g. Bul’bich & Gufan, 1989a,b; Sonin & Tagancev,
1989). There are nWð�Þ equivalent structural variants of the finite-
thickness domain wall with the same orientation and the same
energy but with different structures of the wall,

nWð�Þ ¼ ½T12 : T12ð�Þ� ¼ jT12j : jT12ð�Þj: ð3:4:4:33Þ

Domain-wall variants – two-dimensional analogues of domain
states – can coexist and meet along line defects – one-dimen-
sional analogues of a domain wall (Tagancev & Sonin, 1989).

Symmetry descent in domain walls of finite thickness may
occur if the order parameter � has more than one nonzero
component. We can demonstrate this on ferroic phases with an
order parameter with two components �1 and �2. The profiles
�1ð�Þ and �2ð�Þ can be found, as for a one-component order
parameter, from the corresponding Landau free energy (see e.g.
Cao & Barsch, 1990; Houchmandzadeh et al., 1991; Ishibashi,
1992, 1993; Rychetský & Schranz, 1993, 1994; Schranz, 1995;
Huang et al., 1997; Strukov & Levanyuk, 1998; Hatt & Hatch,
1999; Hatch & Cao, 1999).

Let us denote by T12ð�1Þ the symmetry of the profile �1ð�Þ and
by T12ð�2Þ the symmetry of the profile �2ð�Þ. Then the symmetry
of the entire wall T12ð�Þ is a common part of the symmetries
T12ð�1Þ and T12ð�2Þ,

T12ð�Þ ¼ T12ð�1Þ \ T12ð�2Þ: ð3:4:4:34Þ

Example 3.4.4.4. In our illustrative phase transition 4z=mzmxmxy

� 2xmymz, the order parameter has two components �1; �2 that
can be associated with the x and y components P1 and P2 of the
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Fig. 3.4.4.7. Profiles of the one-component order parameter �ð�Þ in a
symmetric wall (solid curve) and in the reversed wall (dotted curve). The wall
is symmetric and reversible (SR).

Fig. 3.4.4.8. Profiles of the one-component order parameter �ð�Þ in an
asymmetric wall (solid curve) and in the reversed asymmetric wall (dotted
curve). The wall is asymmetric and state-reversible (AR?).

Fig. 3.4.4.9. Profiles of the one-component order parameter �ð�Þ in an
asymmetric wall (solid curve) and in the reversed asymmetric wall (dotted
curve). The wall is asymmetric and side-reversible (AR).
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spontaneous polarization (see Table 3.1.3.1 and Fig. 3.4.2.2). We
have seen that the domain wall ½S1½010�S2� of zero thickness has
the symmetry T12 ¼ 2?z=mz. If one lets �1ðyÞ relax and keeps
�2ðyÞ ¼ 0 (a so-called linear structure), then T12ð�1Þ ¼ 2?z=mz (see
Fig. 3.4.4.2 with � ¼ y). If the last condition is lifted, a possible
profile of a relaxed �2ðyÞ is depicted by the full curve in Fig.
3.4.4.10. If both components �1ðyÞ and �2ðyÞ are nonzero within
the wall, one speaks about a rotational structure of domain wall.
In this relaxed domain wall the spontaneous polarization rotates
in the plane (001), resembling thus a Néel wall in magnetic
materials. The even profile �2ð�yÞ ¼ �2ðyÞ has the symmetry
T12ð�2Þ ¼ m?

x2
?
ymz. Hence, according to (3.4.4.34), the symmetry

of a relaxed wall with a rotational structure is T12ð�Þ ¼ 2?z=mz \

m?
x2
?
ymz ¼ f1;mzg. This is an asymmetric state-reversible (AR?)

wall with two chiral variants [see equation (3.4.4.33)] that are
related by 1? and 2?z; the profile �2ðyÞ of the second variant is
depicted in Fig. 3.4.4.10 by a dashed curve.

Similarly, one gets for a zero-thickness domain wall ½S1½001�S2�
perpendicular to z the symmetry T12 ¼ 2?y=my. For a relaxed
domain wall with profiles �1ðzÞ and �2ðzÞ, displayed in Figs. 3.4.4.6
and 3.4.4.10 with � ¼ z, one gets T12ð�1Þ ¼ 2?y=my, T12ð�2Þ
¼ m?

x2
?
ymz and T12ð�Þ ¼ f1; 2?yg. The relaxed domain wall with

rotational structure has lower symmetry than the zero-thickness
wall or the wall with linear structure, but remains a symmetric
and reversible (SR) domain wall in which spontaneous polar-
ization rotates in a plane (001), resembling thus a Bloch wall in
magnetic materials. Two chiral right-handed and left-handed
variants are related by operations mz and 1?. This example
illustrates that the structure of domain walls may differ with the
wall orientation.

We note that the stability of a domain wall with a rotational
structure and with a linear structure depends on the values of the
coefficients in the Landau free energy, on temperature and on
external fields. In favourable cases, a phase transition from a
symmetric linear structure to a less symmetric rotational struc-
ture can occur. Such phase transitions in domain walls have been
studied theoretically by Bul’bich & Gufan (1989a,b) and by Sonin
& Tagancev (1989).

3.4.4.7. Microscopic structure and symmetry of domain walls

The thermodynamic theory of domain walls outlined above is
efficient in providing quantitative results (wall thickness, energy)
in any specific material. However, since this is a continuum
theory, it is not able to treat local structural changes on a
microscopic level and, moreover, owing to the small thickness of
domain walls (several lattice constants), the reliability of its
conclusions is to some extent uncertain.

Discrete theories either use simplified models [e.g. pseudospin
ANNNI (axial next nearest neighbour Ising) model] that yield

quantitative results on profiles, energies and interaction energies
of walls but do not consider real crystal structures, or calculate
numerically for a certain structure the atomic positions within a
wall from interatomic potentials.

Symmetry analysis of domain walls provides useful qualitative
conclusions about the microscopic structure of walls. Layer
groups with discrete two-dimensional translations impose, via the
site symmetries, restrictions on possible displacements and/or
ordering of atoms or molecules. From these conclusions,
combined with a reasonable assumption that these shifts or
ordering vary continuously within a wall, one gets topological
constraints on the field of local displacements and/or ordering of
atoms or molecules in the wall. The advantage of this treatment is
its simplicity and general validity, since no approximations or
simplified models are needed. The analysis can also be applied to
domain walls of zero thickness, where thermodynamic theory
fails. However, this method does not yield any quantitative
results, such as values of displacements, wall thickness, energy etc.

The procedure is similar to that in the continuum description.
The main relations equations (3.4.4.12)–(3.4.4.17) and the clas-
sification given in Table 3.4.4.3 hold for a microscopic description
as well; one has only to replace point groups by space groups.

A significant difference is that the sectional layer groups and
the wall symmetry depend on the location of the plane p in the
crystal lattice. This position can by expressed by a vector sd,
where d is the scanning vector (see IT E, 2002 and the example
below) and s is a non-negative number smaller than 1, 0 � s< 1.
An extended symbol of a twin in the microscopic description,
corresponding to the symbol (3.4.4.1) in the continuum descrip-
tion, is

ðS1jn; sdjS2Þ � ðS2j�n; sdjS1Þ: ð3:4:4:35Þ

The main features of the analysis are demonstrated on the
following example.

Example 3.4.4.5. Ferroelastic domain wall in calomel. We
examine a ferroelastic compatible domain wall in a calomel
crystal (Janovec & Zikmund, 1993; IT E, 2002, Chapter 5). In
Section 3.4.2.5, Example 3.4.2.7, we found the microscopic
domain states (see Fig. 3.4.2.5) and, in Section 3.4.3.7, the
corresponding ordered domain pair ðS1;S3Þ and unordered
domain pair fS1;S3g (depicted in Fig. 3.4.3.10). These pairs have
symmetry groups F 13 ¼ Pnxynxymz and J 13 ¼ P4?2z=mznxym

?
x,

respectively. Both groups have an orthorhombic basis
ao ¼ at � bt; bo ¼ at þ bt; co ¼ ct, with a shift of origin bt=2 for
both groups.

Compatible domain walls in this ferroelastic domain pair have
orientations (100) and (010) in the tetragonal coordinate system
(see Table 3.4.3.6). We shall examine the former case – the latter
is crystallographically equivalent. Sectional layer groups of this
plane in groups F 13 and J 13 have a two-dimensional translation
group (net) with basic vectors as ¼ 2bt and bs ¼ ct, and the
scanning vector d ¼ 2at expresses the repetition period of the
layer structure (cf. Fig. 3.4.3.10a). From the diagram of symmetry
elements of the group F 13 and J 13, available in IT A (2002), one
can deduce the sectional layer groups at any location
sd; 0 � s< 1. These sectional layer groups are listed explicitly in
IT E (2002) in the scanning tables of the respective space groups.

The resulting sectional layer groups F 13 and J 13 are given in
Table 3.4.4.7 in two notations, in which the letter p signifies a two-
dimensional net with the basic translations as; bs introduced
above. Standard symbols are related to the basis as; bs; cs ¼ d.
Subscripts in non-coordinate notation specify the orientation of
symmetry elements in the reference Cartesian coordinate system
of the tetragonal phase, the partial translation in the glide plane a
and in the screw axis 21 is equal to

1
2 a

s ¼ bt, i.e. the symbols a and
21 are also related to the basis as; bs; cs. At special locations
sd ¼ 0d; 12 d and sd ¼ 1

4 d;
3
4 d, sectional groups contain both side-
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Fig. 3.4.4.10. A profile of the second order parameter component in a
degenerate domain wall.
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preserving and side-reversing operations, whereas for any other
location sd these layer groups are trivial (face) layer groups
consisting of side-preserving operations only and are, therefore,
also called floating groups in the direction d (IT E, 2002).

The wall (twin) symmetry T13 can be easily deduced from

sectional layer groups F 13 and J 13: the floating group bFF13 is just

the sectional layer group F 13 at a general location,
bFF13 ¼ F 13ðsdÞ ¼ pmz. Two other generators in the group symbol

of T13 are non-trivial twinning operations (underlined with a star)

of J 13. The classification in the last column of Table 3.4.4.7 is
defined in Table 3.4.4.3.

Local symmetry exerts constraints on possible displacements
of the atoms within a wall. The site symmetry of atoms in a wall of
zero thickness, or at the central plane of a finite-thickness domain
wall, are defined by the layer group T13. The site symmetry of the
off-centre atoms at 0< j�j<1 are determined by floating group
bFF 13 and the limiting structures at �! �1 and �! 1 by space
groups F 1 and F 3, respectively. A reasonable condition that the
displacements of atoms change continuously if one passes
through the wall from � ! �1 to � ! 1 allows one to deduce
a qualitative picture of the displacements within a wall.

Symmetry groups of domain pairs, sectional layer groups and
the twin symmetry have been derived in the parent clamping
approximation (PCA) (see Section 3.4.2.5). As can be seen from
Fig. 3.4.3.5, a relaxation process, accompanying a lifting of this
approximation, consists of a simple shear (shear vector parallel to
q) and an elongation (or contraction) in the domain wall along

the shear direction (change of the vector AB0

�!

into the vector

ABþ
1

�!

). These deformations influence neither the layer group T13

nor its floating group bFF13. Hence the wall (twin) symmetry T13

derived in the parent clamping approximation expresses also the
symmetry of a ferroelastic domain wall (twin) with nonzero
spontaneous shear unless the simple shear is accompanied by a
reshuffling of atoms or molecules in both domains. This useful
statement holds for any ferroelastic domain wall (twin).

A microscopic structure of the ferroelastic domain wall in two
symmetrically prominent positions is depicted in Fig. 3.4.4.11. For
better recognition, displacements of molecules are exaggerated

and the changes of the displacement lengths are neglected. Since
the symmetry of all groups involved contains a reflection mz, the
atomic shifts are confined to planes (001). It can be seen in the
figure that when one moves through the wall in the direction
[110] or ½1�110�, the vector of the molecular shift experiences
rotations through 1

2� about the ct direction in opposite senses for
the ‘black’ and ‘white’ molecules.

The ‘black’ molecules in the central layer at location 1
4 d or 3

4 d
[wall (a) on the left-hand side of Fig. 3.4.4.11] exhibit nearly
antiparallel displacements perpendicular to the wall. Strictly
perpendicular shifts would represent ‘averaged’ displacements
compatible with the layer symmetry J 13 ¼ p2?1ymza

?
x, which is,

however, broken by a simple shear that decreases the symmetry
to T13 ¼ p2?1ymza

?
x, which does not require perpendicular displa-

cements of ‘black’ molecules.
The wall with central plane location 0d or 1

4 d (Fig. 3.4.4.11b)
has symmetry T13 ¼ p2?ymzm

?
x, which restricts displacements of

‘white’ molecules of the central layer to the y direction only; the
‘averaged’ displacements compatible with J 13 ¼ pm?

ymzm
?
x

(origin shift bt=2) would have equal lengths of shifts in the þy
and �y directions, but the relaxed central layer with symmetry
T13 ¼ p2?ymzm

?
x allows unequal shifts in the�y andþy directions.

Walls (a) and (b) with two different prominent locations have
different layer symmetries and different structures of the central
layer. These two walls have extremal energy, but symmetry
cannot decide which one has the minimum energy. The two walls
have the same polar point-group symmetry m?

x2
?
ymz, which

permits a spontaneous polarization along y.

Similar analysis of the displacement and ordering fields in
domain walls has been performed for KSCN crystals (Janovec et
al., 1989), sodium superoxide NaO2 (Zieliński, 1990) and for the
simple cubic phase of fullerene C60 (Saint-Grégoire et al., 1997).

3.4.5. Glossary

Note: the correspondence between contracted Greek indices and
the Cartesian vector components used in Sections 3.1.3, in the
present chapter and in the software GI?KoBo-1, is defined in the
following way:

Cartesian components 11 22 33 23; 32 31; 13 12; 21
Contracted notation 1 2 3 4 5 6

In this designation, coefficients with contracted indices 4, 5, 6
appear two times, e.g. index 4 replaces yz in one coefficient and zy
in the other coefficient. With this convention, the coefficients
transform in tensor space as vector components, but some coef-
ficients differ from the usual matrix notation (Voigt matrices) by
numerical factors [see Section 1.1.4.10; Nye (1985); Sirotin &
Shaskolskaya, Appendix E (1982)].

(a) Objects
Bm domain region
d scanning vector (basis vector of a

scanning group)
DiðSk, BmÞ the ith domain, with domain state Sk in

the mth domain region Bm

GS1 G-orbit of principal single-domain states
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Table 3.4.4.7. Sectional layer groups and twin (wall) symmetries of the twin ðS1j½100�; sdjS3Þ in a calomel crystal

Location
F 13 J 13 T13

Classificationsd Standard Non-coordinate Standard Non-coordinate Standard Non-coordinate

1
4 d;

3
4 d p12=m1 p2z=mz pmma pm?

ymza
?
x p21ma p2?1ymza

?
x SR

0d; 14 d p12=m1† p2z=mz† pmmm† pm?
ymzm

?
x† p2mm p2?ymzm

?
x SR

sd p1m1 pmz pmm2 p2?xm
?
ymz p1m1 pmz AR?

† Shift of origin bt=2.

Fig. 3.4.4.11. Microscopic structure of a ferroelastic domain wall in calomel.
(a) and (b) show a domain wall at two different locations with two different
layer groups and two different structures of the central planes.
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GðS1; SjÞ G-orbit of domain pairs
GðS1jnjSjÞ G-orbit of simple domain twins
n normal to a plane p
p plane of a domain wall, domain wall

plane
R1; R2; . . . ; Ri; . . . secondary ferroic single-domain states
Rþ

1 ; R
�
1 ; R

þ
2 ;

R�
2 ; . . .

disoriented secondary ferroic domain
states

sd ð0 � s< 1Þ location of a plane in crystal lattice
S1; S2; . . . ; Si; . . . principal single-domain states

(orientation states, variants)
Sþ1 ; S

�
1 ; S

þ
2 ; S

�
2 ; . . . disoriented domain states

S1; S2; . . . ; Si; . . . basic (microscopic) single-domain states
(structural variants)

ðSi; SkÞ ordered domain pair ¼ ordered pair of
domain states Si and Sk

fSi; Skg unordered domain pair ¼ unordered
pair of domain states Si and Sk

ðSijnjSkÞ simple domain twin formed from single-
domain states

ðSþi jnjS
�
k Þ simple ferroelastic domain twin with a

compatible domain wall
½SijnjSk� domain wall in the simple twin ðSijnjSkÞ
TikðnÞ or Tik simple domain twin – short symbol
WikðnÞ or Wik domain wall – short symbol
’ shear angle, obliquity
� 1

2 ’ disorientation angle of a domain state

(b) Symmetry groups – point groups in a continuum description
and space groups in a microscopic description
F point-group symmetry of the ferroic phase

(domain state not specified)
F space-group symmetry of the ferroic phase

(domain state not specified)
Fi point-group symmetry of a principal domain

state Si
F i space-group symmetry of a basic (microscopic)

domain state Si

Fik point-group symmetry (stabilizer in G) of the
ordered domain pair ðSi; SkÞ

F ik space-group symmetry (stabilizer in G) of the
ordered domain pair ðSi;SkÞ

Fik sectional layer group of Fik

bFFik face group, trivial layer group, scanning group
of Fik

FamG crystal family of the group G
G point-group symmetry of the parent phase
G space-group symmetry of the parent phase
g point-group symmetry operation of the group

GðGÞ

g space-group symmetry operation of the group G

gik switching operation in domain pair ðSi; SkÞ,
transforms Si into Sk

g?ik transposing operation in domain pair ðSi; SkÞ,
exchanges Si and Sk, twinning operation of a
non-ferroelastic domain pair ðSi; SkÞ

IGðSiÞ stabilizer (isotropy group) of Si in G
IGðSiÞ stabilizer (isotropy group) of Si in G

Jik point-group symmetry (stabilizer in G) of the
unordered domain pair fSi; Skg

J?ik point-group symmetry (stabilizer in G) of a
completely transposable domain pair fSi; Skg

J ik space-group symmetry (stabilizer in G) of the
unordered domain pair fSi;Skg

Kik twinning group of the domain pair ðSi; SkÞ
K?

ik twinning group of a completely transposable
domain pair ðSi; SkÞ

Li intermediate group, Fi 2 Li 2 G

Jik sectional layer group of Jik
bJJik face group, trivial subgroup, floating subgroup

of sectional group of Jik

r?ik symmetry operation of Jik that exchanges Si
and Sk

sik symmetry operation of Jik that inverts n into
�n

t?ik symmetry operation of Jik that exchanges Si and
Sk and inverts n into �n

TikðnÞ symmetry group of the twin TikðnÞ
WikðnÞ symmetry group of the domain wall WikðnÞ
T i translational subgroup of F i

T ik translational subgroup of F ik

(c) Components of property tensors
" enantiomorphism
Pi polarization
u� strain
g� optical activity
di� piezoelectricity
Ai	 electrogyration
s�	 linear elasticity
Q�	 electrostriction

i ¼ 1; 2; 3;�; 	 ¼ 1; 2; :::; 6:

>>>>>>>>>>>>>>>>>>>>>

In the final period this work was supported by Ministry of
Education of the Czech Republic under project MCM242200002.

References

Aizu, K. (1969). Possible species of ‘ferroelastic’ crystals and of
simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc.
Jpn, 27, 387–396.

Aizu, K. (1970a). Possible species of ferromagnetic, ferroelectric and
ferroelastic crystals. Phys. Rev. B, 2, 754–772.

Aizu, K. (1970b). Determination of the state parameters and formulation
of spontaneous strain for ferroelastics. J. Phys. Soc. Jpn, 28, 706–716.

Aizu, K. (1972). Electrical, mechanical and electromechanical orders of
state shifts in nonmagnetic ferroic crystals. J. Phys. Soc. Jpn, 32, 1287–
1301.

Aizu, K. (1973). Second-order ferroic state shifts. J. Phys. Soc. Jpn, 34,
121–128.

Altmann, S. L. & Herzig, P. (1994). Point-group theory tables. Oxford:
Clarendon Press.

Amin, A. & Newnham, R. E. (1980). Tertiary ferroics. Phys. Status Solidi
A, 61, 215–219.

Barkley, J. R. & Jeitschko, W. (1973). Antiphase boundaries and their
interactions with domain walls in ferroelastic–ferroelectric
Gd2(MoO4)3. J. Appl. Phys. 44, 938–944.

Bertagnolli, E., Kittinger, E. & Tichý, J. (1978). Observation of reversible
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Janovec, V., Richterová, L. & Litvin, D. B. (1993). Non-ferroelastic twin
laws and distinction of domains in non-ferroelastic phases. Ferro-
electrics, 140, 95–100.

Janovec, V., Schranz, W., Warhanek, H. & Zikmund, Z. (1989). Symmetry
analysis of domain structure in KSCN crystals. Ferroelectrics, 98, 171–
189.

Janovec, V. & Zikmund, Z. (1993).Microscopic structure of domain walls
and antiphase boundaries in calomel crystals. Ferroelectrics, 140, 89–93.

Jerphagnon, J., Chemla, D. & Bonneville, R. (1978). The description of
the physical properties of condensed matter using irreducible tensors.
Adv. Phys. 27, 609–650.

Jona, F. & Shirane, G. (1962). Ferroelectric crystals. Oxford: Pergamon
Press.

Kalonji, G. (1985). A roadmap for the use of interfacial symmetry groups.
J. Phys. (Paris) Colloq. 46, 49–556.

Känzig, W. (1957). Ferroelectrics and antiferroelectrics. In Solid state
physics IV, edited by F. Seitz & D. Turnbull, pp. 1–197. New York:
Academic Press.

Klassen-Neklyudova, M. V. (1964).Mechanical twinning of crystals. New
York: Consultants Bureau.

Knox, R. S. & Gold, A. (1967). Symmetry in the solid state. Introduction.
New York: W. A. Benjamin.

Koch, E. (1999). Twinning. In International tables for crystallography,
Vol. C,Mathematical, physical and chemical tables, 2nd edition, edited
by A. J. C. Wilson & E. Prince, Section 1.3. Dordrecht: Kluwer
Academic Publishers.
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List of terms and symbols used in this volume

(1) Vector spaces and tensor analysis

Basis vectors in direct space (covariant) ei, ai

Basis vectors in reciprocal space (contravariant) ei, a�i
Contravariant components of vectors in direct

space xi

Covariant components of vectors in reciprocal

space xi

Direction indices (of a lattice row) ½uvw�

Dual (or reciprocal) space (n dimensions) En (Chapter 1.1)

Element of 2

Euclidian space, direct space (n dimensions) En

Hermitian conjugate of matrix M Mþ

Integers (positive) Z
þ

Integers (ring of) Z

Kronecker symbol �j
i

Metric tensor gij

Miller indices (of a lattice plane) ðhklÞ

Nabla operator r

Orthogonal transformation R

Outer product
V

Partial derivative with respect to xi @i

Permutation tensor "ijk, êeijk

Position vector in reciprocal space G, k

Reciprocal lattice vector ghkl

Sum of spaces �

Tensor of rank n, p times covariant and q times

contravariant (n ¼ pþ q) t
j1 ... jq
i1 ... ip

Tensor product �

Transpose of matrix M MT

Unit transformation, matrix or element E

Vector in superspace asi

Vector in reciprocal superspace a�si

Vector product ^, �

Volume element d�

Volume of unit cell in direct (reciprocal) space V (V�)

(2) Group theory

Character �

Character (irreducible) ��
Character (value at R) � ðRÞ

Class multiplication constants cijk

Conjugacy class Ci

Cyclic group of order m Cm

Dihedral group of order 2n Dn

Dimension of irreducible representation � d�
Lattice translation subgroup TðnÞ

Matrix representation of point group K �ðKÞ

Multiplicity m�

Octahedral group O

Order of class Ci ni

Orthogonal group OðnÞ

Orthogonal group (special) SOðnÞ

Physically irreducible representation R-irep

Point group K (Chapter 1.2),

Go (Chapter 2.1),

G (Part 3)

Point group (order of) jKj, N

Representation of point group K DðKÞ

Space group G, G (Part 3)

Tetrahedral group T

(3) Physical properties

(a) Elastic properties

Bulk modulus (volume isothermal compressibility) �

Components of the displacement vector ui

Elastic compliances (second-order) sijkl

Elastic compliances (second-order adiabatic) ðsijklÞ
�

Elastic compliances (second-order reduced) s��
Elastic compliances (third-order) sijklmn

Elastic stiffnesses (second-order) cijkl, Cijkl

Elastic stiffnesses (second-order adiabatic) ðcijklÞ
�

Elastic stiffnesses (second-order reduced) c��
Elastic stiffnesses (third-order) cijklmn

Lamé coefficients 


Normal stress ~��

Poisson’s ratio �

Pressure p

Shear stress ~��

Strain tensor Sij, uij (Chapters

1.4, 1.5 and 3.1),

�ij (Chapter 2.3)

Strain Voigt matrix S�
Stress tensor Tij, �ij (Chapter

1.4), �ij (Chapters

2.1, 2.3, 2.4)

Stress Voigt matrix T�
Velocity of sound v

Volume V

Volumic mass �

Young’s modulus E

(b) Electric properties

Charge density �ðrÞ

Charge of the electron e

Current density jðrÞ, J

Dielectric impermeability �ij

Dielectric permittivity or constant "

Dielectric permittivity of vacuum "0

Dielectric permittivity tensor "ij

Dielectric permittivity tensor (adiabatic) ð"ijÞ
�

Dielectric susceptibility �e
ij, �ijk���

Dielectric susceptibility (nth-order) �ðnÞ

Effective mass of the electron m�

Electric dipole operator p̂p

Electric displacement D

Electric field E

Electric polarization P

Electric polarization (nth-order) Pn

Electric polarization (nonlinear) PNL

Electro-optic tensor rijk

Electrostriction tensor Qijkl

Electrostriction tensor (reduced) Q��

Hall constant RH ijk

Piezoelectric tensor dijk

Piezoelectric tensor at constant strain eijk
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Piezoelectric tensor (reduced) di�

Piezoelectric tensor (reduced adiabatic) ðdijkÞ
�

Piezoelectric tensor (reduced inverse) d�i

Pyroelectric tensor pi

(c) Magnetic properties

Antiferromagnetic vector Li

Bohr magneton �B

Constant describing magnetostriction 


Effective number of Bohr magnetons p (Section 1.6.1)

Landé g-factor g

Magnetic birefringence �n

Magnetic field H

Magnetic induction B

Magnetic moment l

Magnetic moment density mðrÞ

Magnetic permeability �ij

Magnetic permeability of vacuum �o

Magnetic susceptibility �ij, �
m
ij

Magnetization (= magnetic moment per unit

volume = ferromagnetic vector) M

Magnetoelastic energy Ume

Magnetoelectric tensor (linear) �ij

Magnetoelectric tensor (nonlinear) EHH �ijk

Magnetoelectric tensor (nonlinear) HEE �ijk

Magneto-optic tensor f

Néel temperature TN

Orbital angular momentum L (Section 1.6.1.1)

Piezomagnetic components �ijk

Piezomagnetic components (reduced) �i�

Piezomagnetoelectric tensor 	ijkl

Spin angular momentum (of an atom or ion) S

Spin density SðrÞ

Sum of the magnetic moments in a unit cell m

Sum of the magnetic moments in a unit cell, in

which some of the moments are taken with

opposite sign
li

Total angular momentum J

Weiss constant �

(d) Optical properties

Angle between optic axes 2V

Cyclic (or circular) frequency !

Elasto-optic (strain-optic) tensor pijkl

Elasto-optic (strain-optic) tensor, reduced p��
Electro-optic tensor rijk

Ellipticity of wave �

Gyration susceptibility �ijl

Gyration tensor gij, Gij

Gyration vector G

Optical rotatory power �

Phase difference of light �

Piezo-optic tensor 	ijkl

Piezo-optic tensor (reduced) 	��
Polarizability operator �̂�

Poynting vector S

Poynting vector (unit) s, ŝs

Raman tensor R jðqÞ

Rayleigh length Zr

Refractive index (extraordinary) ne

Refractive index of light n

Refractive index (ordinary) no

Refractive indices for biaxial indicatrix nx; n�; �; ny; n�; �;

nz; n� ; �

Velocity of light in a vacuum c

Velocity (group) vg

Wavelength of light 


Wavevector of light propagating in crystal k (jkj ¼ 2	=
)

(e) Thermodynamic properties

Anisotropy energy Ua

Atomic Debye–Waller factor (static) S�
Atomic Debye–Waller factor (thermal) T�
Boltzmann constant kB

Debye frequency !D

Debye temperature �D

Einstein frequency !E

Einstein temperature �E

Elastic energy Uel

Entropy �, S

Free energy G, F , F, A

Grüneisen parameter ���, �

Grüneisen parameter (averaged mode) �q;j

Grüneisen parameter (generalized mode) �qj;kl

Hamiltonian H

Heat current JQ

Internal energy U, U

Lattice energy Eph

Partition function Z

Phonon wavevector q

Seebeck coefficient S

Specific heat at constant strain (volume) c S, cV

Specific heat at constant stress (pressure) cT , cp

Specific heat at constant volume (according to the

Debye model) c
Debye
V

Specific heat at constant volume (according to the

Einstein model) cEinstein
V

Temperature �, T

Temperature-stress components 
ij

Thermal conductivity K

Thermal expansion �ij

Thermal expansion (volume) �

Thermodynamic potential �

Zero-point energy Eo

(4) Phase transformations: for details see Sections 3.1.7, 3.3.11
and 3.4.5

Aizu symbol of a ferroic phase transition GFH (Chapter

3.3)

Eigensymmetry of untwinned crystal or daughter

phase H (Chapter 3.3)

Order parameter (primary) �

Order parameter (secondary) 


Point group of ferroic (low-symmetry) phase F (Chapters 3.1

and 3.4)

Point group of parent (high-symmetry) phase G

Space group of ferroic (low-symmetry) phase F (Chapters 3.1

and 3.4)

Space group of parent (high-symmetry) phase G

Symmetry descent from G to F (point groups) G + F

Symmetry descent from G to F (space groups) G + F

Transition temperature, in particular: Curie

temperature

TC
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Brögger, W. C., 3.3
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Razé, G., 1.7
Read, W. T., 3.3
Rebane, L., 3.1
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rank 3, 168
rank 3 (unit), 168

Antisymmetry groups, 109
Approximate lattice coincidence, see pseudo-

coincidence
Aragonite (CaCO3), 153, 396–399, 408–409, 420, 424,

426, 428, 433–434, 435, 439
Aristotype, 415, 425
Arrott–Belov–Kouvel plots, 123
Arrowhead twin, 399
Asymmetry parameter, 308
Atom transformation table, 276, 279
Atomic displacement

contribution, 321, 325–326
ellipsoid (ORTEP ellipsoid), 239
parameters (ADPs), 228
Raman tensor, 326
tensors, 229, 232, 239
vector, 228

Atomic level, 299
Atomic orbitals, 299, 301, 305
Atomic sphere approximation, 299, 302
Aufbau principle, 300
Augmented plane wave (APW), 302, see also linear-

ized augmented plane wave (LAPW)
Axial force, 322
Axial plane, 154, 160, 163–166
Axial scalar, 14
Axial tensors, 5, 10, 13, 24, 29–30, 132, 138, 168, 322,

360
time-antisymmetric, 136

Axial vectors, 3, 10, 12–13, 106, 112, 120, 138, 168,
318, 324

Babinet compensator, 160
Back focal plane, 161
Band index, 298–299
Band structure, 220, 291, 294, 305, 310, 312
Barium boron oxide (BBO) (BaB2O4), 189, 210
Barium gallate (BaGa2O4), 449
Barium magnesium tetrafluoride (BaMgF4), 366
Barium sodium niobate (Ba2NaNb5O15), 206, 214,

367
Barium titanate (BaTiO3), 339, 361, 377, 411–412,

437, 442, 449, 457, 490
Basic structure, see aristotype
Baveno twin, 433
Becke line, 156, 161
Benzil [(C6H5CO)2], 422
Berek compensator, 160
Berlinite (AlPO4), 405
Bertrand lens, 154, 161
Biaxial classes, 160, 165, 185–186, 194–196, 200
Biaxial crystals, 154, 156, 160, 162, 165–166, 185–187,

189, 193–194, 196, 199–201, 212
negative, 154, 186, 191–192, 199
positive, 154, 186, 191–192, 199

Biaxial figure, 162, 163–165
Biaxial indicatrix, 154, 173, 176
Biaxial medium, 11
Bicrystallography, 378, 414, 417, 443, 450, 471, 473,

492, 494–495
Bicrystals, 378–379, 393–394, 397, 417, 437, 443, 492,

495
Bilinear forms, 7–8, 13
Biot–Fresnel construction, 162–163
Biotite, 156, 166
Birefringence, 3, 152–167, 170, 172–175, 185–186, 188,

199, 210–211, 315, 330–331, 367, 394
circular, 167, 170
determination of, 157, 160
linear, 153–154, 167, 170, 172, 174
magnetic, see Cotton–Mouton effect
strain or stress, 3, 174

Black and white symmetry groups, 109, 141, 378, 384,
399–401, 402, 403–404, 428, 430, 473, see also
antisymmetry groups, colour symmetry

Bloch condition, 296–297
Bloch function, 295–297, 299, 301, 303, 305–306
Bloch states, 296–299, 305
Bloch theorem, 295, 306
Bloch wall, 501

Bloch waves, 281
Block-diagonal form, 282, 284
Body forces, 76, 94
Bonding character, 306
Bonding states, 306, 309
Boracite, 130, 139, 142
Born–Oppenheimer approximation, 302
Born–von Karman boundary conditions, see periodic

boundary conditions
Bose factor, 271, 273
Bose–Einstein factor, 100, 221, 316
Boundary contrast, 433
Boundary energy, 413, 422, 426, 438, 442

minimization, 397, 433
Bravais lattices, 294, 298, 340, 347, 361

magnetic, 105, 113–114, 116, 121, 130, 140
Brazil twin, 398, 404–406, 412–413, 416, 422–423, 429,

431, 434, 444
Brillouin scattering, 88, 317, 326, 329
Brillouin zone, 47–50, 62, 121, 221, 223–224, 226, 249,

268, 270, 274, 277, 282, 286, 288–290, 294, 298, 303,
315, 317, 327

symmetry of, 298
Brookite (TiO2), 397, 437
Brugger constants, 93
Brugger stiffness coefficients, 93
Bulk modulus, 83
Burgers vector, 442–443
Burnside’s theorem, 39
Butterfly twin, 399

Cadmium sulfide (CdS), 223
Cadmium telluride (CdTe), 407
Calcite (CaCO3), 84, 103, 153, 155–156, 160–161, 398,

406, 412, 415–416, 418, 421–422, 429, 440, 443
Calcium gadolinium borate [CaGd4(BO3)3O], 214
Calomel (Hg2Cl2), 469, 491, 501–502
Capacitance method, 102, 103
Carlsbad twins, 398, 429, 439
Car–Parrinello method, 302
Cartesian coordinates, 92, 102, 118, 134, 138, 183, 200,

232, 249, 251, 266, 283, 304, 315, 351, 358, 361, 373,
453, 460–461

Cartesian product, 380
Cartesian tensors, 51, 249, 322, 351, 359, 458, 459
Cassiterite (SnO2), 399, 437
Cauchy relation, 77, 82
Ceramics, 393, 439, 442
Chalcopyrite, 415
Character tables, 40–41, 44–45, 56–58, 66–68, 251–

252, 256, 283, 291, 373
for quasicrystals, 256

Characters, 39–42, 44, 46, 54, 57, 62, 66, 68, 249, 282,
288–291

Charge density, 302–305, 307–309
nuclear, 308

Charged boundaries, 430–431
Chemical bonding, 299, 301, 305, 311
Chirality, 166–167, 352
Chirality relation, 394–395
Christoffel determinant, 86–88
Christoffel matrix, 86
Chromium oxide (Cr2O3), 117, 130, 139
Circular birefringence, 167, 170
Circularly polarized light, 160, 166–167, 170, 172

left, 166, 170
right, 166, 169–170

Clamping, 442
Class multiplication constants, 40
Class multiplication table, 373
Class structure, 373
Clebsch–Gordan coefficients, 52, 372
Clebsch–Gordan products, 372–373
Cobalt, 131, 143, 145
Co-elastic twins, 416
Coherence

of grain boundaries, 443
of twin boundaries, 442–444

Coherence length, 188, 193, 198, 212, 214, 243
Coherent domain walls, 451, 486, 492

Subject index
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Coherent interface, 443
Coincidence

one-dimensional, 417
three-dimensional, 417
two-dimensional, 417

Coincidence lattice, 417–418, 422
index, 417

Coincidence-site lattice (CSL), 379, 393, 398, 405,
417, 423

Coincidence-site sublattice, 417
Coincidence-site subset, 417
Colour-changing operations, 402–403
Colour-preserving operations, 402
Colour symmetry, 109, 402, see also black and white

symmetry groups, dichromatic groups
Commutator group, 41
Compatibility relations, 266, 289, 298, 305, 310, 317,

321, 323
Compatible planes, 426
Compensating gauge transformations, 248
Compensator

Babinet, 160
Berek, 160
Ehringhaus, 160
Sénarmont, 160

Complete twin, 402, 405, 412, 462
Complex twin, 396, 417
Component state, see orientation state
Composite pseudosymmetry, 409
Composite symmetry, 399–406, 408, 410, 415, 423–

425, 428
classification, 401
crystallographic, 401, 404, 408
extended, 402, 408–409, 411
noncrystallographic, 401, 402, 404, 415
pseudo-crystallographic, 402
reduced, 400–402, 404–405, 407–409, 411, 415,

428
Composition plane, 394, 397–400, 403, 405, 408–411,

417, 420, 426–428, 430–433, 443–444
Compressibility, 272

isothermal, 273
linear, 83
volume, 82–83, 100, 103

Condenser, 154, 157, 160
Conductivity

electrical, 5, 220, 223–224, 226, 431
ionic, 370
metallic, 306
thermal, 5, 9, 13, 220, 224

Conjugate subgroups, 359, 372–374, 379, 381, 383,
386–389

Conoscopic configuration, 154–155, 160–162
Contact plane, 397–398, 414, 426, 428, 432, 437–438,

444
initial, 414

Contact relations, 378, 394, 397, 426, 434
Contact twins, 377, 398, 405–406, 412, 414, 418, 422
Contracted product, 8, 9–10, 14, 24, 26, see also

contraction
Contraction, 8, 182, see also contracted product
Contragredient, 38
Contravariant, 5, 6–9, 13, see also contragredient
Conversion efficiency, 197, 198, 200–208, 210–212,

214
Conversion equations, 360, 374, 458–459, 474
Copper, 298, 306, 310, 312, 437
Cordierite (Mg2Al4Si5O18), 441–442
Core electrons, 297, 302, 305–306

spectra, 312
Co-representations, 55
Corundum (Al2O3), 406, 426
Coset composition, 399
Coset decomposition, 380, 388
Cosets, 382–384, 388, 454–455, 468, 471–474, 476,

494–495, see also double cosets
Cotton–Mouton effect, 137, 152
Coulomb energy, 300
Coulomb potential, 299–301, 309
Coulomb repulsion, 306
Coulombic term, 363, 368
Covariance, 9–10, 239
Covariant, 5–10, 13, 228–229, 239, see also tensorial

covariants

Critical phenomena, 340
Critical point, 327
60
 Cross, 411, 424, see also St Andrew’s cross
90
 Cross, 411, 424, 428, see also Greek cross
Cross wires, 155, 161
Crossed polars (Nicols), 156–157, 160, 166, 174
Crystal family, 415–416, 418, 422, 425
Crystal-field effects, 311
Crystal-field splitting, 141
Crystal harmonics, 303–304, 308, 311
Crystal optics, 152

classical, 150
Crystal system, 416
CuAu alloys, 244
Cubic dilatation, 72, 75–76, 82
Cumulants, 228, 229
Curie laws, 4, 11
Curie temperature, 123, 347, 362–363, 367–369, 372,

377
Curie–Weiss law, 106–107, 141
Current density, 220, 224
Cyclic twins, 396, 398, 399, 402, 428, 439

eightfold, 409
fivefold, 419, 438
sixfold, 409

Cylindrical symmetry, 11

Daughter phase, 378, 404, 414, 440
Dauphiné twins, 398, 404–406, 412–414, 416, 420, 422–

423, 429, 431, 433, 435, 480
Dauphiné–Brazil twin, 405, 406
Debye frequency, 272
Debye model, 90, 101, 223, 272
Debye temperature, 89–90, 221, 224–225, 272
Debye–Waller factor, 228, 232, 239

static, 228
thermal, 228

Debye–Waller temperature, 228
Deformation twins, 398, 415, 419, 421, 429–430, 440–

443, see also mechanical twins

3, 415–416

Degeneracy, 282–283, 286, 288–289
accidental, 286
of lattice vibrations, 286
time-reversal, 286, 289

Degenerate eigenvalues, 274, 282
Degenerate phonon branches, 268
Demagnetizing field, 125
Density functional theory (DFT), 294, 299–300, 302–

303, 305–306, 308
Density of states (DOS), 306, 312, 327
Detwinning, 416, 449–450, 480, see also switching
Dextrorotation, 166–168
Dextrorotatory solution, 169
Diamagnetic susceptibility, 106–107
Diamagnets, 105–107, 109, 115–116, 132, 138, 140
Diamond, 82, 103, 224–225, 338, 397–399
Dichalcogenides MeX2, 415, 424
Dichroism, 166

circular, 167
linear, 167

Dichromatic complex, 379, 471, 492, 494–495
Dichromatic groups, 378–379, 384, 402, 462, 471, 473,

477, 485, 492, see also black and white symmetry
groups

Dichromatic pattern, 379
Dielectric constant, 3–5, 8–9, 13, 31, 151
Dielectric displacement, 152, 168
Dielectric impermeability, 8, 26, 172–174

relative, 154
Dielectric impermeability tensor, 154, 172, 175
Dielectric permittivity, 137, 140–141, 340, 450, see also

dielectric constant
Dielectric (or electric) polarization, 3, 4, 8, 11–12, 24,

31, 54, 137–140, 151, 178, 340, 342, 349, 351, 358,
360, 362

spontaneous, see spontaneous polarization
third-order, 178

Dielectric susceptibility, 3–4, 151, 192, 314, 342–344,
347, 349, 351, see also susceptibility

linear, 180, 314, 323, 325
magnetic field dependence, 140
nonlinear, 179–180, 314, 316
nth order, 180–181

Dielectric susceptibility
second-order, 180–181, 316
tensor, see dielectric tensor

Dielectric tensor, 3, 38, 42, 152–154, 167–168,
178, 182–183, 187, 193, 195–196, 321, 324, 329–
330

effective, 167–168
effective, symmetry of, 168
second-order, 178
third-order, 178

Difference-frequency generation (DFG), 178, 189,
197, 208

Differential cross section, 315–316, 327
Diffraction pattern of a twinned crystal, 400, 417,

423
Diperiodic twins, 417, 422, 425
Direct inspection method, 14, 16, 18, 20
Dirichlet construction, 294
Dirichlet region, 46, 294
Discommensurations, 495, 498
Dislocation arrays, 379
Dislocation node, 443
Dislocation reactions, 443
Dislocations

perfect, 442, 444
stair-rod, 434
twinning, 429

Dispersion, 156, 166
birefringent, 167
directional, 321–322
optical rotatory, 167
phonon, 268, 281
spatial, 167, 322–323, 325
static, 228
volume, 82–83, 100, 103
X-ray anomalous, 167

Dispersion curves, 270, 321, 327
Dispersion relation, 314
Displacive modulation, 243–245
Dissymmetrization, 378, 379, 382, 450, 452, 454, see

also symmetry descent
Distorted phase, 426
Domain boundary, 394, 397, 426–427, 434
Domain pairs, 451, 462, 470, 492–495, 497–499, 501–

502
elasto-optic, 479
electro-optic, 479
electrostrictive, 479
ferroelastic, 451, 462, 470, 475, 477, 480–481,

486, 490
ferroelectric, 479
gyrotropic, 479
microscopic description of, 491
non-ferroelastic, 451, 462, 470, 474, 476–477,

480, 496
piezoelectric, 479

Domain states, 120, 136, 351, 358–361, 372–374, 377–
378, 386–388, 397–405, 420, 423, 426, 428, 430, 439,
451, 471, 501, see also orientation state

ferroelastic, 351, 356, 451–453, 455–457, 469,
471, 481

ferroelectric, 351, 356, 360, 452, 457, 490
ferroic, 351, 356, 358, 452, 455, 457–458, 460,

470, 475
non-ferroelastic, 451, 456–457, 470
non-ferroelectric, 457
tensor distinction, 355

Domain structures, 338, 340, 351, 359, 372, 377, 393–
394, 397, 400, 403, 408, 415, 422, 449

ferroelastic, 416, 449, 451, 456
ferroelectric, 377–378, 449, 451–452, 496
ferroic, 450–451, 453
non-ferroelastic, 378, 449, 453, 456

Domain switching, see switching
Domain texture, 416
Domain twins, 379–380, 384, 451, 462, 470, 471, 483,

486, 490–491
ferroelastic, 451, 462, 471, 483, 485, 490, 498
non-ferroelastic, 451, 462, 477, 496

Domain walls, 125–126, 377, 426, 429, 434, 449, 451,
470, 480, 484–486, 490–491

coherent, 451, 486, 492
ferroelastic, 451, 491, 498
non-ferroelastic, 451, 496
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Domains
180
, 105, 125, 127, 139
antiferromagnetic, 126, 136–137
antiphase, 394, 414, 434
anti-polar, 431
ferroelastic, 340, 378, 386, 412, 416, 425–426
ferroelectric, 368, 377, 412, 423, 449
ferroic, 127, 378, 386, 390, 453
ferromagnetic, 377
needle, 440, 442
S-, 126, 135, 139
T-, see twin domains

Doppler shift, 308
Double cosets, 379, 381, 384, 390, 454, 462, 476–477,

491
Double groups, 45, 55, 61
Double refraction, 10, 153, 155, 157, 178, 184–185,

187, 193
Double space groups, 50
Dovetail twin, 396, 399, 400, 401, 403–404, 412, 414,

420, 422, 426, 428, 433, 439
Druckzwillinge, see mechanical twins
Dual basis, 6–7, 47
Dual lattice, 62
Dual space, 6, 9, 37–38
Dual vectors, 38
Dummy index, 4, 13, 31, 72, 81
Dynamic elasticity, nonlinear, 94
Dynamical matrix, 86, 266–267, 270, 274, 284, 321

block-diagonalized, 284
eigenvalues, 268, 274
eigenvectors, 268, 274, 281
symmetry constraints, 276
transformation law, 275

Dzyaloshinskii–Moriya interaction, 128

Easy-axis magnetic, 119–120, 125–128, 131
Easy-plane magnetic, 119–120, 125–126, 128, 131
Edgeworth series, 229, 232
Effective charge

matrix, 315
tensor, 318, 324

Effective coefficient, 188, 193, 197–198, 201, 209, 214
Ehringhaus compensator, 160
Eigensymmetry, 386, 398–409, 411, 415, 423–424, 427–

428, 453
full, 401–402, 405, 408
monochromatic, 402
oriented, 400–401
reduced, 405, 407–408

Einstein convention, 4–5, 8, 72
Einstein model, 90, 271
Einstein temperature, 272
Elastic coefficients, 81, 331, see also elastic stiffnesses

in piezoelectric materials, 331
Elastic compliances, 26–27, 31, 81–82, 84, 143, 480

fourth-order, 81
second-order, 93
third-order, 81

Elastic constants, 3–5, 13–14, 26, 81–82, 88, 450
adiabatic, 90
dynamic, 88
fifth-order, 91
fourth-order, 91
frequency dependence of, 88
higher-order, 91, 94
higher-order, measure of, 97
in icosahedral quasicrystals, 255
in octagonal quasicrystals, 254
in quasiperiodic structures, 252
measure of, 86, 88
pressure dependence of, 89–91
second-order, 93
static, 88
temperature dependence of, 89–90
third-order, 81, 91, 93, 94
third-order, measure of, 97

Elastic energy, 142–143, 145
Elastic limit, 80
Elastic moduli, 81, see also elastic compliances
Elastic stiffnesses, 3, 26–27, 32, 80–82, 84, 86–87, 89,

91, 143, 145–146, 174, 250, 270, 273, 288, 325
adiabatic, 88
dynamic, 86

Elastic stiffnesses
fourth-order, 81
higher-order, 93
in piezoelectric media, 330
isentropic, 93
isothermal, 88, 93
pressure dependence of, 89, 91
relation with velocity of waves, 87
second-order, 93
temperature dependence of, 89
third-order, 81, 93

Elastic strain energy, 82, 91, 93–95
Elastic waves, 86, 94, 329–330

in piezoelectric media, 329
Elasticity

dynamic, 86
linear, 80, 91, 93
nonlinear, 91

Elasto-optic domain pairs, 479
Elasto-optic effect, 26–27, 152, 172, 174–175, see also

photoelastic effect
Elasto-optic material, 152
Elasto-optic tensor, 174, 324–325

linear, 174
Elbow twins, 399, 408
Electric dipole operator, 167
Electric effect

linear, 151
quadratic, 151

Electric field, 3–4, 38, 220, 223–224
crystalline, 106–108
symmetry of, 11

Electric field gradient (EFG), 294, 302, 305, 307, 308–
310

in quasiperiodic structures, 252–253
lattice, 309

Electrical conductivity, 5, 220, 224, 226, 431
intrinsic, 223

Electrical constraints, 430
Electrical resistivity, 220

intrinsic, 221
Electrocalorific effect, 3–4, 31
Electrogyration, 352, 503
Electronic structure, 294–295, 298–303, 305–307, 309,

312
Electro-optic contribution, 321–323, 325–326
Electro-optic domain pairs, 479
Electro-optic effect, 3, 31, 150, 172, 173, 330

linear, 150–151, 172, 175, 323
nonlinear, 150
quadratic, 151–152, 323

Electro-optic materials, 172
Electro-optic tensor, 172

linear, 172–173
quadratic, 326
rank 3, 330

Electrostriction, 3, 24, 26–27, 31, 475, 503
Electrostrictive domain pairs, 479
Ellipticity, 170, 172
Elongations, 73, 75, 83, 86

principal, 74
quadric of, 73, 75–76, 83
simple, 75–76

Enantiomorphic groups, 31, 422, 470
Enantiomorphism, 352, 360, 387, 404, 479
Enantiomorphous crystals, 385, 394, 449
Energy bands, 294, 298, 305, 308
Energy density, 79, 94
Energy gap, 301
Entropy, 3–4, 31
Epikernel, 350–351, 356, 359, 361, 373
Equitranslational phase transitions, 350–361, 453,

458–459, 461
Equitranslational subgroups, 350, 358, 360–361, 372,

374, 414, 468, 470
Equivalence class, 39, 42, 53, 379, 380–381, 387,

493
Equivalence relation, 381–383, 387
Esterel twin, 420–421
Euclidean group, 46, 51, 53
Euclidean space, 46, 51
Euclidean transformation, 50–51, 53–54, 248, 382
Eulerian description, 92
Even parity, 319–320, 323, 325–326

Exchange
energy, 108, 116, 118, 125–126
interaction, 107–108, 119, 122–123, 129
symmetry, 116, 122

Exchange–correlation
energy, 300–301
potential, 300
treatment, 299, 303

Excitations, 314–316, 320–323, 326–328
vibrational, 314

Extended zone scheme, 288
Extensive quantity (parameter), 3–5, 31
External forces, 322
Extinction

straight, 165
symmetrical, 165

Extinction position, 156–157, 159, 165–166
Eyepiece, 154–155, 160–161

Fabry–Perot interferometer, 205, 329, 332
planar, 331
spherical, 332

Faraday rotation, 152
Fast ray, 155–156, 159–160, 166
Fault vector, 394, 397, 414, 432–433, 435–437,

444
determination, 434

Fe4Al13, 408, 433
Feldspars, 398, 410, 433, 442

K-, 441
monoclinic, 412
Na-, 440
triclinic, 428

Fermi energy, 305, 307–309
Fermi exclusion principle, 301
Fermi golden rule, 220, 225, 312
Fermi hole, 301
Fermi surface, 220, 222, 224, 226
Fermi velocity, 221

Fermi–Dirac statistics, 107, 226
Ferrimagnetism, 109, 141
Ferrimagnets, 105–107, 112, 122, 125, 139–141,

306
Ferrobielastic switching, 413
Ferrobielastic twinning, 416
Ferrobielastic twins, 404, 439
Ferrobielasticity, 416, 480
Ferroelastic domain pairs, 451, 462, 470, 475, 477,

480–481, 486, 490
Ferroelastic domain states, 351, 356, 451–453, 455–

457, 469, 471, 481
Ferroelastic domain structure, 416, 449, 451, 456
Ferroelastic domain twins, 451, 462, 471, 483, 485,

490, 498
Ferroelastic domain walls, 451, 491, 498
Ferroelastic domains, 340, 378, 386, 412, 416, 425–426
Ferroelastic–ferroelectric phases, 416, 423, 483
Ferroelastic materials, 72, 339, 349, 378, 415–416,

428–429, 443, 475
fully, 127, 456, 475
improper, 456
partial, 456, 475

Ferroelastic phase, 174, 415, 426, 449, 475, 491
full, 351, 358, 360–361
partial, 355, 358, 360–361, 449
potentially, 415

Ferroelastic single-domain states, 360, 386, 462, 481,
498

Ferroelastic transition, 174, 339, 351, 362, 404, 423,
427–428, 442, 455–456, 468

improper, 351, 358
proper, 351, 358

Ferroelastic twins, 414–415, 425, 427, 439–442, 444,
471, see also mechanical twins

Ferroelasticity, 415–416, 425
Ferroelectric antiferromagnets, 106, 130, 141–142
Ferroelectric domain pairs, 479
Ferroelectric domain states, 351, 356, 360, 452, 457,

490
Ferroelectric domain structure, 377–378, 449, 451–

452, 496

Ferroelectric domains, 368, 377, 412, 423, 449
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Ferroelectric materials, 10, 12, 72, 88, 130, 141, 151,
174, 193, 349, 362–363, 367–368, 377–378, 416, 426,
430–442, 450, 475

low-temperature, 372
potentially, 403

Ferroelectric phase, 351, 368, 377, 412, 431, 434, 449,
457, 475, 477

full, 351, 358, 360–361, 457, 462, 475, 490
improper, 457
partial, 355, 358, 361, 457, 475
proper, 361

Ferroelectric single-domain states, 360, 462
Ferroelectric transition, 339, 351, 362–363, 368, 399,

429, 431, 434, 449, 499
improper, 351, 358
low-temperature, 372
proper, 351, 358, 360

Ferroelectricity, 412, 416
Ferrogyrotropic phase, 479
Ferroic classes, 339–340, 349
Ferroic crystals, 378
Ferroic domain states, 351, 356, 358, 452, 455, 457–

458, 460, 470, 475
Ferroic domain structure, 450–451, 453
Ferroic domains, 127, 378, 386, 390, 453
Ferroic materials, 378, 451, 481
Ferroic phase, 339, 350–351, 358–361, 378–379, 387,

449, 452–453, 455–458, 461–462, 468–470, 475–477,
482, 500

low-symmetry, 359–360
Ferroic single-domain states, 351, 360
Ferroic species, 127
Ferroic symmetry, 350, 356
Ferroic transition, 338–340, 350, 372–373, 450–454,

456–461, 468
Ferromagnetic domains, 377
Ferromagnetic ferroelectrics, 105, 141
Ferromagnetic helical structure, 108, 122
Ferromagnetic materials, 72, 105, 306, 325, 377–378,

442, 450
Ferromagnetic phase, 118
Ferromagnetic structure, 118, 123
Ferromagnetic vector, 105, 118–119, 122, 129, 142
Ferromagnetism, 109, 112, 114, 116, 122, 127, 141,

151, 377
weak, 109, 117–118, 127–132, 135–137, 140–142

Ferromagnetoelectrics, 141–142
Ferromagnets, 105–107, 112, 114, 116, 119, 122, 125,

127, 131–132, 137, 139–141, 144–146, 362
nuclear, 108
uniaxial, 123
weak, 108, 128, 130–132

Fick’s law, 5
Field tensors, 4, 13, 178, 193–197, 214
Figure of merit, 197, 198, 206

for acousto-optic materials, 176
Fivefold rotation, 397
Fizeau interferometer, 102
Flash figure, 156, 162, 165–166

uniaxial, 165
Fluorite (CaF2), 398, 407
Focal plane (back), 161
Force constants, 266–267, 272, 274, 286

matrix of, 266–268, 270, 274–275
Four-wave mixing, 151
Fourier module, 243–246, 248–250, 253
Fourier’s law, 5
Free-electron model, 297, 299
Free energy, 31, 340–344, 346–349, 358, 362, 368–369
Fresnel equation, 184
Friedel’s lattice theory, 417
Fringe contrast, 433–434
Fringe counting, 158
Full-potential methods, 299, 302–304

linearized augmented plane wave (LAPW), 303
Fullerene (C60), 502

Gadolinium molybdate (GMO) [Gd2(MoO4)3], 347,
349–351, 469–470

Galena (PbS), 407, 415, 419, 422, 430
Gallium arsenide (GaAs), 175–176, 223, 225, 272, 407
Gallium phosphate (GaPO4), 405, 422
Garnet twin, 418
Garnets, 141

Gaussian beams, 197, 201, 202, 205
Gaussian system of units, 106, 139, 146
Generalized gradient approximation, 301
Germanium, 82, 223, 225, 419, 438
Gibbs function, 31–32
Gibbsite [Al(OH)3], 396, 402, 409, 426
Glide twin, 437
Grain boundaries, 378–379, 393
Gram–Charlier series, 229, 232
Graphite, 103, 338
Greek cross, 411, see also 90
 cross
Ground state, 294, 301, 308, 312
Group calculator, 373
Growth face, 413
Growth morphology, 414
Growth-sector boundary, 393, 431
Growth-sector twins, 408, 412
Growth sectors, 393
Growth twins, 378, 397–400, 412–416, 423–426, 428–

431, 436, 439, 444, 471
pseudo-hexagonal, 423

Grüneisen model, 90
Grüneisen parameter, 101, 272

averaged-mode, 273
generalized-mode, 273
mean, 273

Grüneisen relation, 100, 103
Gypsum (CaSO4�2H2O), 396, 398–401, 403, 412, 414,

420, 422, 425–426, 428, 433, 439
Gyration, 151, 166, 168

tensor, 14, 30, 168, 170, 172
vector, 168, 170

Gyrotropic domain pair, 479
Gyrotropic materials, 14, 30–31, 166, 168, see also

optical activity
Gyrotropic transition, 479

Habit modification, 414
Haematite (Fe2O3), 117, 127, 131, 135–137
Hall constant, 14, 224
Hall effect, 14, 220, 223, 224
Hamiltonian, 266, 270
Harmonic approximation, 266
Harmonic generation (ultrasonic) 94, 96–97
Harmonic oscillators, 270, 273
Harmotome twin, 399, 439
Hartree–Fock (HF) methods, 299, 301, 305–306
Head-to-head boundaries, 431
Heat capacity, 271–272, 274
Heat current, 220
Heat flow, 220, 224
Helical structure, 108, 122, 130–131

antiferromagnetic, 108, 109, 122
Helmholtz free energy, 273
Hermann–Mauguin symbols, 111, 134, 358–359, 373–

374
Hexagonal crystals, 397, 405, 408, 418, 424, 430–431,

435–437
Hg3�xAsF6, 244
High-order twins, 419
High-resolution transmission electron microscopy

(HRTEM), 398, 413, 419, 426, 433–434, 437, 438,
498

High-symmetry phase, 340, 343, 350, 360–361, 366
High-temperature superconductors, see super-

conductors
Holmium, 244
Holohedral groups, 49, 62, 404, 412, 422
Homogeneous deformation, 72
Homogeneous shear, 415
Hooke’s law, 3, 80, 91–92, 270

generalized, 81
Huang conditions, 267
Hydrargillite, see gibbsite [Al(OH)3]
Hyperfine interactions, 307
Hypersthene [(Mg,Fe)2Si2O6], 166
Hysteresis, 415, 449–450, 475

Icosahedral quasicrystals, 246, 252, 255
Icosahedral tensors, 252
Incoherence of twin boundaries, 442, 444
Incoherent interfaces, 443
Incommensurate composite structures, 244
Incommensurate crystal (IC), 243–248, 251, 253

Incommensurate magnetic system, 244
Incommensurate structure, 108–109, 115–116, 121–

122, 131, 243, 495, 497–498
Index of a group–subgroup relation, 399, 414
Index of refraction, 9, see also refractive index
Index surface, 183, 186–187, 189, 194, 197, 211
Indicatrix, 9, 11, 17, 153, 154–155, 160–162, 165–166,

172, 174, 176
biaxial, 154, 173, 176
uniaxial, 154, 174, see also uniaxial ellipsoid

Indium phosphide (InP), 414
Inelastic scattering, 314, 318, 326–327
Infrared absorption, 290
Infrared activity, 290, 318, 320–321, 324, 326
Infrared spectroscopy, 290
Inner symmetry, 232
Integrity bases, 358, 373

extended, 372–373
Intensive quantity (parameter), 3, 4–5, 24, 31
Interface energy, 426
Interference figures, 160, 165–166
Interferometers

Fabry–Perot, see Fabry–Perot interferometer
Fizeau, 102
Michelson, 102

Interferometry, 88, 102
Intergrowths, 393

arbitrary, 393
oriented, 397
parallel, 393

Intermediate group, 351, 358, 361
Internal energy, 271
Intersection group, 401
Intersection symmetry, 400–401
Intrinsic electrical conductivity, 223
Intrinsic electrical resistivity, 221
Intrinsic mobility, 222, 223–224
Intrinsic symmetry, 13, 26
Invariance

rotational, 267
time-reversal, 286, 288
translational, 267, 269

Invariant tensors, 34, 52, 67–68
Invariants, 52, 229, 239
Inversion, 277, 281
Inversion boundaries, 434
Inversion operator, 297
Inversion twins, 396, 403–405, 417, 423, 429, 431–432,

434
Ionization potential, 301
Ireps, 373, see also irreducible representations
Iron, 143–144
Iron borate (FeBO3), 127, 406, 412, 418, 422–423
Iron-cross twin, 399, 423, 433
Irreducible multiplier representation, 282–283, 288–

289, 291
Irreducible representations, 36–42, 49, 67, 122, 276,

283–291, 296–298, 317–319, 328, 347–348, 355, 372–
374, 458–459, 479–480

in quasiperiodic structures, 251, 255
of lattice translation groups, 47
of space groups, 47, 105, 120–122, 248, 289–290,

327, 361
of tensors, 51, 179, 251
physically, 41–42, 57, 350, 356, 358, 361, 458, 461
tables, 57–61, 63, 122, 255, 258, 289–290, 348,

352, 358
Irreducible tensors, 51
Irreducible vector space, 284
Irreducible wedge, 298
Isogyres, 161, 162–166
Isostructural crystals, 422
Itinerant electrons, 306

Jahn–Teller phase transition, 91
Japanese twins, 404, 405, 421, 444, see also La Gard-

ette twins
Jones matrix, 169

Kantennormalengesetz, 377, 396, 417
Kernel, 350, 359, 373
Kerr effect, 151, see also electro-optic effect (quad-

ratic)
Klassengleiche subgroup, 414
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Klockmannite (CuSe), 418
Knee twin, 408
Kohn–Sham equations, 301, 303
Kohn–Sham orbitals, 302
Koopman’s theorem, 301
Korringa–Kohn–Rostocker (KKR) method, 302, 305,

307
Kronecker products, 373
Kronecker symbol, 5
Kund tube, 88

La Gardette twins, 405, 420
Laevorotation, 166, 168
Lagrangian description, 92
Lagrangian strain, 92–95
Lamé constants

second-order, 85, 94
third-order, 93

Lamellar twinning, 398
Landau condition, 358–359
Landau polynomial expansion, 345
Landau problem

direct, 358
inverse, 356, 358, 361

Landau theory, 105, 118, 120, 122–123, 340, 347, 350,
361, 377, 450, 458, 499

Landau–Devonshire theory, 361
Landé g-factor, 106–107, 137
Langbeinite [K2Mg2(SO4)3], 402, 427, 490
Lanthanum aluminate (LaAlO3), 365, 441
Lanthanum pentaphosphate (LaP5O14), 365
Latent heat, 342, 344
Lattice coincidence, 394, 417, 419, 425, 430
Lattice concept of twinning, 416
Lattice dynamics, 228, 266
Lattice index, 417
Lattice pseudosymmetry, 420
Lattice translation subgroup, 35, 46–48, 295–296, 298
Lattice vibrations, see phonons
Lattices of subgroups, 351, 356, 358, 360–361, 372–374
Laue class, 15, 16, 82, 329, 331
Layer groups, 451, 462, 485, 490–495, 497–502

dichromatic, 379, 471
sectional, 492–495, 500–502

Lead germanate (Pb5Ge3O11), 480
Lead phosphate [Pb3(PO4)2], 449
Leucite (KAlSi2O6), 440, 456, 481
Leydolt twins, 404, 406, 412, 422–423, see also

Dauphiné–Brazil twin
Liebisch twins, 404, see also Dauphiné–Brazil twin
Lifshitz condition, 358–359
Ligand-field theory, 305
Linear birefringence, 153–154, 167, 170, 172, 174
Linear combination of atomic orbitals (LCAO), 299,

301, 305, 310, 312
Linear combination of muffin-tin orbitals (LMTO),

299, 302, 305, 307
Linear forms, 7–8
Linearized augmented plane wave (LAPW), 302, 303,

304–308, 310, 312
Lineshape function, 316
Lithium formate monohydrate [Li(CHO2)�H2O], 403,

429, 431
Lithium niobate (LiNbO3), 172, 193, 211, 214, 431
Local coordinate system, 303, 304, 305–307, 310–

311
Local density approximation, 300
Local orbitals, 303, 310
Localized electrons, 306
Longitudinal optic mode (LO), 316, 321, 363, 372
Low-energy boundaries, 395, 422, 426
Low-symmetry phase, 338, 340, 343, 347, 349–350,

360–361, 363

Macles, 394, 471, see also twins
dipériodiques, 416, see also diperiodic twins
monopériodiques, 416, see also monoperiodic

twins
par mériédrie, 377, 417, 422, see also twinning by

merohedry
par mériédrie réticulaire, 377, 417, see also

twinning by reticular merohedry
par pseudo-mériédrie, 377, 422, see also

twinning by pseudo-merohedry

Macles
par pseudo-mériédrie réticulaire, 377, see also

twinning by reticular pseudo-merohedry
tripériodiques, 416, see also triperiodic twins

Magnetic anisotropy energy, 118
Magnetic birefringence, 137, see also Cotton–Mouton

effect
Magnetic Bravais lattices, 105, 113–114, 116, 121, 130,

140
Magnetic cell, 113, 116
Magnetic field, 3–4, 12, 54, 106, 220, 223–224
Magnetic induction, 3–4, 106, 152

symmetry of, 12
Magnetic lattices, 112
Magnetic moment density, 105
Magnetic permeability, 106
Magnetic point groups, 53, 55, 62, 66, 109

grey, 109
white, 109

Magnetic space groups, 53, 115
Magnetic spin–spin interaction, 119
Magnetic sublattice, 107
Magnetic susceptibility, 4, 13, 54, 106–107, 124, 130,

140–141
Magnetic symmetry, 105, 109, 116, 131–132

linear, 137
Magnetite (Fe3O4), 107, 419
Magnetization, 3
Magnetocalorific effect, 4
Magnetoelastic energy, 120, 132, 135, 142–143, 145
Magnetoelectric effect, 4, 117, 137

linear, 126, 138
nonlinear, 140

Magnetoelectric susceptibility, 141
Magneto-optic effect, 3, 150

linear, 150
nonlinear, 150
quadratic, 152

Magneto-optic tensor, 324–325
Magnetostatic energy, 125
Magnetostriction, 3, 136, 142, 144

linear, 126, 132, 136–137
spontaneous, 142–145

Magnons, 314, 318
Maker fringes, 212, 214
Mallard pseudo-cube, 411
Manley–Rowe relations, 182, 188, 204
Many-body problem, 300
Mappings, 380, 382
Martensitic transformation, 338
Material tensors, 4, 351, 378, 474, see also physical

property tensors (or property tensors)
Matrix of physical properties, 4, 13, 31

symmetry of, 4
Matrix method, 14, 16, 18
Matter tensors, see material tensors
Matthiessen’s rule, 220, 224
Maxwell’s equations, 152, 178, 183
Mean-square displacements, 228, 239
Mechanical twins, 377–378, 412, 415–416, 428–429, see

also deformation twins
Median law, 396, 410
Mediangesetz, see median law
Mériédrie réticulaire, 423
Merohedral twins, 378, 404–406, 412–414, 417–418,

420, 422, 423, 425, 429–430, 433, 435–436, 439, 442–
444

of lattice index [j] = 1, 423
Merohedry, 422

of translation groups (lattices), 423
Metric tensor, 5, 6, 9, 13, 35, 67, 249–250

for a quasicrystal, 253
tensor nature of, 9

Mica, 425
Michelson interferometer, 102
Microcline (KAlSi3O8), 429
Microtwins, 410
Mimetic twins, 399
Mobility, 222, 223–224

intrinsic, 222, 223–224
Modulated structures, 243, 249
Modulation

composition, 244
displacive, see displacive modulation

Modulation wavevector, 243, 244–246, 249
Moiré pattern, 420
Moments, 228–229
Momentum of the electron, 297
Monoperiodic twins, 417, 422, 425
Montmartre twin, 403–404, 422, 426, 428, 433
Morphic effects, 143, 322, 325, 327, 351, 359–360
Morphic properties, 455, 459
Morphic tensor components, 452–453, 455, 458–459,

475, 480
Morphological classification, 398
Mosaic crystal, 393
Mössbauer spectroscopy, 307–308
Muffin-tin approximation (MTA), 299, 302–304
Muffin-tin orbitals, 299
Multilinear forms, 7
Multiple twins, 396, 398, 399–400, 402–403, 408, 413,

420, 422, 428
fivefold, 439

Multiplicator group, 43–44
Multiplicity, 282, 289
Multiplier co-representation, 277
Multiplier representation, 276
Murnaghan constants, 93–94
Mutual exclusion rule, 320

Nanocrystalline materials, 413, 419, 438
Needle domains, 440, 442
Néel temperature, 124, 126, 130, 140
Neumann’s principle, 11, 13–15
Neutron inelastic scattering, 269, 271, 290
Nickel, 120, 144
Niobium dioxide (NbO2), 339
Nonbonding states, 306, 310
Non-crossing rule, 310
Noncrystallographic symmetry, 244, 250
Non-equitranslational phase transitions, 358, 361,

469, 491
Non-ferroelastic domain pairs, 451, 462, 470, 474,

476–477, 480, 496
Non-ferroelastic domain states, 451, 456–457, 470
Non-ferroelastic domain structure, 378, 449, 453, 456
Non-ferroelastic domain twins, 451, 462, 477, 496
Non-ferroelastic domain walls, 451, 496
Non-ferroelastic materials, 340, 416, 456
Non-ferroelastic phase, 355, 360, 449, 462
Non-ferroelastic transitions, 423, 442, 456
Non-ferroelastic twins, 414, 416, 439, 444, 471
Non-ferroelectric domain states, 457
Non-ferroelectric phase, 360, 364, 457
Non-ferroic transition, 338–339
Nonlinear crystals, 178, 187, 188, 198–200, 202, 204–

206, 208–212, 214
Nonlinear elasticity, 31
Nonlinear optics, 10, 15, 31, 150, 152, 178, 314
Nonlinear polarization, 178, 181, 187–188, 193, 212
Nonlinear susceptibility, 192, 212
Non-merohedral twins, 404, 414, 427, 428, 431, 439–

440, 442, 444
Non-pyroelectric acentric crystals, 431
Non-symmorphic space group, 48, 50, 277, 288, 295,

311
Normal coordinates, 270, 314–318, 321, 324–327
Normalizer, 379, 383, 384, 387–388, 390, 457, 461
Nuclear antiferromagnets, 108
Nuclear charge density, 308
Nuclear quadrupole moment, 307, 308
Nuclear spin quantum number, 307
Numerical aperture, 154

Objective lens, 154
Obtuse bisectrix figure, 165
Octagonal quasicrystals, 253–254
Octagonal tiling, 244, 246, 254
Odd parity, 319–320, 323
Off-site contribution, 310, 312
Ohm’s law, 5
Olivine, 156
Onsager relations, 5, 220, 324
Optic axes, 154, 156–157, 160–162, 164–166, 169–170,

172
Optic axial plane, see axial plane
Optic axis figure, 161, 164, 166

uniaxial, 161–162, 165
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Optic branches, 269, 315
Optic modes, 323

longitudinal, LO, 316, 321, 363, 372
polar, 316
Raman-active, 326
transverse, TO, 316, 321, 363

Optical activity, 11, 14, 151, 166–167, 352, 423, 503, see
also gyration

Optical anisotropy, 153
Optical anomaly, 394
Optical indicatrix, see indicatrix
Optical microscope, see polarizing microscope
Optical parametric oscillation, 178, 197, 208
Optical path difference, 157
Optical phonons, 223, 225, 314, 318, 321–324, 327
Optical rectification, 151
Optical rotation, 14, 151, 161, 168, 170, see also

gyration
Optical rotatory dispersion, 167
Optical rotatory power, 14, 30, 168–169
Optical spectroscopy, 269, 290
Optics

linear, 150, 152
nonlinear, see nonlinear optics

Orbit, 379–381, 385–386, 387, 388, 390, 453–455, 462,
468, 470, 472–477, 480, 483, 486, 491, 493, 495, 497–
498

Orbital magnetic moment, 105
Order parameter, 120–121, 139, 340, 341, 342–351,

359, 361–363, 366, 373, 386
fluctuations, 123
primary, 350–351, 356, 358–360, 373, 387
principal, 388, 390
secondary, 351, 358, 387, 389–390

Orientation relation, 394–395
crystallographic, 393–394, 396–397, 417, 426
noncrystallographic, 394

Orientation state, 378, 386, 395, 396, 398–402, 404–
406, 408–409, 412, 414–416, 427–429, 440, 451, 453

ORTEP, 232, 239
Orthochromites, 129, 131, 136
Orthoclase (KAlSi3O8), 398, 412, 429, 439, 441–442
Orthoferrites, 118, 129–131, 136, 141
Orthogonality, 301, 303, 310
Orthogonality relations, 38, 39–41, 44, 52, 56
Orthoscopic configuration, 154, 160, 161–162, 164–

165
Outer product, 9, 41
Outer symmetry, 232
Overtones, 327

Paraelectric phase, 377
Parallel-lattice twins, 404
Paramagnetic susceptibility, 106–107
Paramagnetoelectric effect, 141
Paramagnets, 105, 106, 107, 109, 115–116, 138, 140–

141
Parametric amplification, 151, 178, 197, 208
Parent clamping approximation, 453, 468, 469–470,

491, 498, 502
Parent phase, 339, 350–351, 358, 361–362, 378–379,

386–387, 414–415, 434–435, 449, 461–463, see also
prototype (or high-symmetry) phase

Parent symmetry, 352–358, 440, 452, 454
Partial charges, 306, 307, 309–310
Partition (of a set), 380–381, 383–384, 387–388, 390,

455
Partition function, 273
Passive representation, 359
Penetration trillings, 411
Penetration twins, 377, 397–399, 406, 411–412, 414,

418, 422–423, 429–430
Penrose tiling, 244

icosahedral, 247
Pentagonal–decagonal twins, 408
Pericline, 442

twin law, 410, 428–429
Periodic boundary conditions, 267, 296, 298–299
Permissible boundaries, 427, 429–430
Permissible composition planes, 427
Permissible domain boundaries, 427
Permissible domain walls, 428
Permissible planes, 426
Permissible twin boundaries, 400, 428

Permittivity of vacuum, 152, 183
Permutation tensor, 10, 14, 70, 77, 168
Perovskites, 141, 174, 363, 399, 411, 414–415, 437,

441–442, 457, 462, 477, 490
Phase conjugation, 152
Phase jump, 433–434
Phase matching, 178, 184, 188, 193–194, 196–212,

214
Phase mismatch, 187, 188, 197–199, 202–204, 206–207,

209, 214
Phase transformation (polymorphic), 414
Phase transitions

antiferromagnetic, 91
continuous, 120, 340, 343, 346–347, 350–351,

361–362, 369
diffusion-assisted, 338
diffusionless, 338
discontinuous, 340, 344, 347, 350, 356, 362
displacive, 273, 338, 361, 363, 365–366, 368–369,

414–415
equitranslational, 350–361, 453, 458–459, 461
first-order, 344, 350, 362
magnetic, 116
non-equitranslational, 358, 361, 469, 491
non-reconstructive, 338
order–disorder, 338, 368–369, 414
reconstructive, 338
second-order, 340, 350, 361–362
second-order magnetic, 116, 128
structural, 338–340, 361

Phason, 250–251, 255
degrees of freedom, 250, 252
elasticity tensor, 252, 255
strain tensor, 254–255

Phillipsite twin, 399, 439
Phonon bands (or branches), 221

degenerate, 268
LA, 222, 329, 331
LO, 222, 316, 321–322, 326, 363, 372
TA, 222, 329, 331
TO, 222, 316, 321–322, 326

Phonon contribution to elastic constants, 250, 254
Phonon degrees of freedom, 250, 252
Phonon density of states, 271
Phonon dispersion, 268, 281
Phonon drag, 222, 224
Phonon scattering, 223–224
Phonons, 266, 314–316, 318, 321, 326–327

acoustic, 91, 223–225, 270, 314, 326, 329–330
E, 322
electron scattering by, 221, 223
optical, 223, 225, 314, 318, 321–324, 327
Raman-active, 320

Photoelastic effect, 3, 26, 150, see also piezo-optic
effect

linear, 152, 173
Photoelasticity, 78
Physical irreducibility, 350
Physical property tensors (or property tensors), 4, 13,

14, 31, 350, 351–352, 358–360, 450–452, 458, 461,
470, 474, 479–480, 503, see also material tensors

Piezocalorific effect, 3–4, 31
Piezoelectric constants, 24, 32, 450
Piezoelectric crystals, 223, 321, 324, 326, 329–331
Piezoelectric domain pairs, 479
Piezoelectric effect, 4–5, 8, 24, 31–32, 172, 323
Piezoelectric resonators, 32
Piezoelectric stress coefficients, 32
Piezoelectric tensor, 24, 26, 151, 172, 321, 323, 329,

352, 475, 480
in octagonal quasicrystals, 254
in quasiperiodic structures, 251

Piezoelectric transducer, 86, 88–89
Piezoelectricity, 3–4, 11–12, 15, 78, 223, 412, 503
Piezomagnetic effect, 4, 29, 126, 132, 137
Piezomagnetism, 3, 15
Piezomagnetoelectric effect, 141
Piezo-optic effect, 8, 31, 152, 173, 330, see also

photoelastic effect
Piezo-optic tensor, 26, 27, 174, 325, 330, 352
Plagioclase, 156, 166, 429
Plagioclase twins, 410
Planes of strain compatibility, 426
Plasmons, 314, 317, 326

Pleochroism, 155–156, 166
Plesiotwins, 398
PMN-PT, 490
Pockels effect, 331, see also electro-optic effect

(linear)
Pockels tensor, 331, see also piezo-optic tensor
Point-charge model, 307, 309
Point groups for quasicrystals, 251
Poisson’s ratio, 3, 83
Polar force, 322
Polar tensors, 24, 25–26, 317–319, 321–323, 326
Polar vectors, 10, 12, 317–319, 321, 324, 326
Polaritons, 314, 321
Polarizability, 290
Polarizability operator, 167
Polarization

acoustic, 14
circular, 169–170
dielectric, see dielectric (or electric) polarization
elliptical, 170
of elastic waves, 86
nonlinear, 178, 181, 187–188, 193, 212
nth order, 179
rotatory, 3
spontaneous, see spontaneous polarization

Polarization colours, 156–160, 166
Polarization selection rules, 317, 320, 322, 326
Polarization vector, 267
Polarizer, 154–156, 159–161
Polarizing microscope, 154–155, 160, 166
Polycrystalline aggregates, 437, 442
Polycrystalline materials, 99–100, 393, 414, 439
Polymorphs, 397, 433, 435–437, 441
Polysynthetic twins, 398, 409, 412–413, 428, 434, 436,

439–440
Potassium dihydrogen phosphate (KDP) (KH2PO4),

202, 214, 368, 377, 450
Potassium lithium sulfate (KLiSO4), 397, 412–413,

423, 430–431, 436, 441
Potassium nickel fluoride (KNiF3), 91
Potassium niobate (KNbO3), 209
Potassium nitrate (KNO3), 365
Potassium selenate (K2SeO4), 243
Potassium sulfate (K2SO4), 408, 415–416, 424, 439
Potassium thiocyanate (KSCN), 502
Potassium titanyl phosphate (KTP) (KTiOPO4), 200–

201, 205–206, 210–211, 214, 403, 423, 431
Potassium trihydrogen selenite [KH3(SeO3)2], 423
Potassium zinc fluoride (KZnF3), 89, 91
Poynting vector, 184, 200–201
Praeseodymium sulfide (PrS2), 424
Principle of superposition, 170
Probability density function (p.d.f.), 229, 239
Projection operator, 283–286
Propagation tensor, 270
Prototype (or high-symmetry) phase, 127, 144–145,

339, 350, 365, 416, 422, 427, 429, see also parent
phase

Prototype structure, 339, 365
Pseudo-coincidence, 418–419, 422–423, 425
Pseudo-fivefold axis, 408
Pseudo-mériédrie réticulaire, 423
Pseudo-merohedral twins, 420, 422, 423, 425, 442

of lattice index [j] = 1, 423
Pseudo-merohedry, 425
Pseudomomentum, 297, 299
Pseudo-potential, 299, 302
Pseudoscalar, 14, 30
Pseudosymmetry, 395

composite, 409
Pseudotensors, 54, 64, 67, see also axial tensors
Pseudovectors, 10, 13–14, 51, 54, see also axial

vectors
Pulse-echo technique, 88
Pulse-superposition method, 89
Pure deformation, 73
Pushrod dilatometry, 102, 103
Pyrite (FeS2), 399, 423, 433
Pyroelectric coefficients, 32
Pyroelectric effect, 4, 12, 31–32
Pyroelectric materials, 367
Pyroelectricity, 3–4, 12, 412, 423, 430–431
Pyromagnetic effect, 4, 13
PZN-PT, 490
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q-dependent terms, 322, 326
Quadrilinear forms, 8
Quantum-mechanical treatment, 294–295, 299, 312
Quartz, 155, 160, 168, 170, 172, 178, 214, 269, 393, 398,

412–414, 416, 420–421, 423, 429, 431, 434, 444, 480,
497

alpha- (high-temperature), 404, 433, 435
beta- (low-temperature), 405, 414, 433
X-cut, 88
Y-cut, 88

Quartz wedge, 154, 158–160
Quasicrystals, 244–247, 251–255

icosahedral, 246, 252, 255
Quasi-harmonic approximation, 90, 100, 273, 316
Quasi-harmonic model, 266, 272
Quasimoments, 229
Quasiparticles, 270
Quasiperiodic structures, 243
Quasi phase matching, 192, 198, 210–211
Quasi-static limit, 317, 327

R-irreducible representations (R-ireps), 351, 358–
359, 459, see also irreducible representations
(physically)

Raman activity, 290–291, 317, 318, 320, 323, 327, 358,
363

field-induced, 323
force-induced, 322–323
intrinsic, 324

Raman scattering, 178, 314
antisymmetric, 318, 320
electric-field-induced, 323
first-order, 315, 322, 327
forbidden, 326
force-induced, 322–323
higher-order, 326
in a magnetic field, 324
magnetic-field-induced, 324
second-order, 326–327
strain-induced, 325
stress-induced, 325
symmetric, 320, 323, 325

Raman shift, 314–315
Raman spectral line shape, 316
Raman spectroscopy, 290, 361, 363–365, 367, 370
Raman tensor, 314, 316, 317, 318, 321–323, 325–327

electric-field-induced, 324–326
field-induced, 323–325
first-order, 316
force-induced, 322–323
intrinsic, 322, 324–326
magnetic-field-induced, 324–325
q-induced, 325
strain-induced, 325
symmetry of, 317–318
zero-field, 325

Rare-earth metals, 106, 108, 129, 143
Rayleigh length, 200, 202
Reciprocal basis, 6–7, 38, 62, 243, 245–247, 249
Reciprocal cell, 7
Reciprocal lattice, 10, 47, 49, 243–248, 294, 296–298,

303
Reciprocal space, 6–7, 10, 38, 245, 249
Recrystallization twins, see annealing twins
Reducible representations, 36, 118, 350, 356
Reduction of tensor components, 15–16

rank 2, 15–16
rank 2 axial tensors, 29
rank 3, 15, 17
rank 3 reduced polar tensors, 24
rank 4, 15, 20
rank 4 reduced polar tensors, 26

Reflection twins, 395–398, 404–405, 409–410, 416–
422, 424–426, 431–434, 436

Refractive index, 151–152
calculation of, 167
changes due to strain, 174
extraordinary, 153
measurement of, 156
ordinary, 153
real and imaginary components, 167
variation with wavelength, 166

Relativistic effects, 300, 302
Relativistic interactions, 108, 119, 122–123

Relief, 156, 161
Reorientation transition (magnetic), 131, 136
Repetitive twins, 398
Representation quadric, 99
Representation surface, 8, 99, 232, 239
Representations, 34, 297

active, 359
contragredient, 38
gerade, 41
irreducible, see irreducible representations
of double groups, 45, 61
of double space groups, 50
of point groups, 40, 49, 61
of space groups, 49
of the first kind, 287
of the second kind, 288
of the third kind, 288
projective, 43, 62
reducible, see reducible representations
regular, 36
small, 298
spin, 61
tensor, 42, 291, 305, 310
ungerade, 41
vector, 290

Resonance technique, 88
Response function, 316, 327
Retardation, 157, 160

effective, 160
relative, 157, 159–160

Reticular merohedry, 425
Reticular pseudo-merohedry, 423
Rhombic section, 410, 428
Rhombohedral crystals, 406, 416, 418, 420, 423, 430
Rigidity modulus, 82
Ripening process, 441
Rochelle salt, 377–378, 416, 423, 425, 440
Rotating stage, 154
Rotation matrix, 5
Rotation twins, 396–397, 410, 413, 417–418, 420, 424,

426, 431–432, 434
Ru5Ni25Al77, 408
Rutile (TiO2), 305, 310–311, 397–399, 408, 421–422,

425–426, 437
to anatase phase transition, 437

Saccharine, 433
Sanidine, 429
Sapriel approach, 427
Satellites, 243–244, 247
Scattering angle, 314
Scattering cross section, 330
Scattering cross section (Raman), 314, 317–318, 320–

322
first-order, 316–317
second-order, 327
symmetry properties, 316

Scattering frequency, 314, 317
Scattering geometry, 315, 317, 321–322, 326
Scattering wavevector, 314–315, 317, 321–322
Schoenflies symbols, 110–111, 358–359, 373–374
Schrödinger equation, 295, 297, 299–300, 303
Schrödinger group, 295
Schur’s lemma, 37, 38, 41, 44, 53, 55
S-domains, 126, 135, 139
Second harmonic generation (SHG), 151, 178, 181–

182, 191, 197, 206–207
electric-field induced, 151
non-resonant, 197, 202–203
resonant, 205
ultrasonic, 96

Sector twins, 398, 399, 402, 408–409, 412, 439
Seebeck coefficient, 220, 226
Seignettoelectrics, 377
Seitz operator, 295, 297
Sel de Seignette, 377
Selection rules, 312

for Brillouin scattering, 329
optical, 290
polarization, 317, 320, 322, 326
Raman scattering, 319, 322, 327
Raman tensor, 317

Self-interaction, 299, 301
Sellmeier equations, 184, 211, 212

Semiconductors, 14, 222, 224, 226, 299, 317, 326
Semi-core states, 303, 305–306, 310
Sénarmont compensator, 160
Sensitive tint, 157, 159
Sensitive tint plate, 154, 157, 159, 161, 164, 166
Sets, 380
Shear

homogeneous, 415
pure, 76
simple, 76

Shear strain, 101, 349, 426
Short-range force, 363
Shubnikov group, 53
Shubnikov symbols, 111, 373
SI units, 146
Sigma notation, 417–418

1 twins, 418, 422

2 twins, 418

3 bicrystal boundaries, 437

3 twin interface, 437

3 twins, 415–416, 418–419, 422, 430

 > 3 twins, 418

5 twins, 424–425, 430

7 twins, 424

9 twins, 419

27 twins, 419

33 twins, 419, 430

81 twins, 419
Silicon, 82, 103, 222–223, 225
Silicon tricrystal, 419
Silver, 437
Simple twins, 398, 400, 402
Sing around method, 89
Single particle approach, 295
Sinusoidal structures, 109
Site symmetry, 229, 232, 386
Site-symmetry restrictions, 232
Slater’s transition state, 301
Slow ray, 155, 159–160, 166
Small representations, 298, 305, 310
SmS1.9, 418, 424
Sodium chloride (NaCl), 84, 88
Sodium nitrate (NaNO3), 412, 422
Sodium nitrite (NaNO2), 244, 369
Sodium sulfate (Na2SO4), 415
Sodium superoxide (NaO2), 502
Soft modes, 338, 350, 358, 361
Sommerfeld model, 303, see also free-electron model
Specific heat, 3–4, 31
Spectral differential cross section, 314–316
Sphalerite (ZnS), 407, 422
Spherical harmonics, 302–309
Spherical symmetry, 11
Spin density waves, 109
Spin flip, 124, 127
Spin flop, 124, 132, 139
Spinel, 393, 398, 407
Spinel law, 398, 407, 412, 414, 430
Spinel twins, 398, 407, 414, 416, 418, 422, 431
Spin–orbit coupling, 119, 142, 300, 306
Spin representations, 61
Spontaneous magnetization, 107, 109, 116, 119, 125,

127, 131, 140
Spontaneous magnetostriction, 120, 127, 143
Spontaneous nucleation, 412
Spontaneous parametric emission, 209
Spontaneous polarization, 12, 140–142, 151, 193, 351,

362, 393, 430, 449, 452, 472, 490, 495–499, 501
Spontaneous properties, 452, 455, see also morphic

properties
Spontaneous shear, 415, 427, 440, 449, 502
Spontaneous strain, 72, 127, 174, 340, 351, 378, 452,

455–456, 458, 470, 489–491
St Andrew’s cross, 411, see also 60
 cross
Stabilizers, 379, 386, 453, 455–459, 470–472, 474, 476–

477, 493, 495
Stacking fault contrast, 433
Stacking faults, 394, 397, 419, 433
Standard variables, 359–360
Star, 47, 48–50, 121, 130, 297–298, 305–306
Static disorder, 228
Static displacements, 228
Staurolite, 410, 421, 424–425
Stokes process, 316–317, 327
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Strain (spontaneous), see spontaneous strain
Strain birefringence, 3, 174
Strain ellipsoid, 99
Strain field, 72
Strain tensor, 4, 13, 24, 72, 78, 81–85, 90–93, 99, 101,

250–251, 272–273, 349, 351
Strain-optic tensor, 174
Stress quadric, 79
Stress relaxation, see stress relief
Stress relief, 442
Stress tensor, 4, 13, 24, 76, 81–82, 84, 90–92, 250,

273
local properties, 79
Piola–Kirchoff, 95
special forms, 78
symmetry of, 77
Voigt notation, 78

Strontium bismuth tantalate (SrxBi3�xTa2O9), 452
Strontium titanate (SrTiO3), 351, 363
Structural twins, 415
Sublattice index, 418
Sum-frequency generation (SFG), 178, 182, 189, 197,

206–208
Superconductors, 268, 307, 309, 370, 416, 428, 440
Superlattice reflections, 338, 348–349
Supersaturation twins, 412
Superspace, 244–246, 250–251
Superspace groups, 247–249, 252–253
Susceptibility, 151–152, 168, see also dielectric

susceptibility
electro-optic, third-order, 151
higher-order, 150
nonlinear, 192, 212
optical, third-order, 151
paramagnetic, 106–107

Susceptibility derivatives, 314, 317, 322, 324, 327
first-order, 326
higher-order, 322
second-order, 324

Susceptibility tensor, 173
Switching, 373, 450, 470
Switching of domains, 127, 415–416, 442, 449
Symmetric tensors, 5, 13, 24, 30, 34, 38, 42, 51

rank 2, 17, 26, 34, 42, 51–52
rank 4, 22

Symmetry-adapted bases, 372
Symmetry-breaking increments, 351, 359–360
Symmetry descent, 350–351, 378, 382, 384, 452, 470,

477, 500
equitranslational 350, 356

Symmetry species, 318, 320–322, 324–325
Symmorphic space groups, 48–49, 277, 282, 288,

295
Systematic extinctions, 248

Tail-to-tail boundaries, 431
T-domains, see twin domains
Temperature factor, see Debye–Waller factor
Temperature-stress constants, 32
Tenfold rotation, 397
Tensor contraction, 229
Tensor derivatives, 10
Tensor expansion, 229
Tensor parameter, 350, 358, 374, 452, 459

principal, 351, 356, 358–361, 373, 387–388, 453,
455, 458–459, 461, 474, 479–480

secondary, 351, 355, 358, 360–361, 373, 387,
458–459, 474, 481

Tensor product, 7–10, 24, 37–38, 41–42, 51–52, 68,
178, 193, 251, 254

Tensor product space, 42–43, 52–53, 253
Tensor representation, 42, 291, 305, 310
Tensorial covariants, 351, 359–360, 372–374, 458–459,

479
Tensors

in higher-dimensional spaces, 249
in quasiperiodic structures, 243
in superspace, 250–251
mathematical definition, 7
transformation properties of, 38, 42, 51
transformation rules, 7

Tetragonal crystals, 430
Thermal conductivity, 5, 9, 13, 220, 224
Thermal diffusion, 5

Thermal displacements, 228
Thermal expansion, 3–4, 9, 12, 31, 72, 90, 99, 221, 225,

272–273
negative, 103
volume, 99

Thermal motion, 228–229, 232
ellipsoid, 239

Thermal resistance, 224–226
Thermal resistivity, 224–225
Third harmonic generation (THG), 178, 181–182,

196–197, 206, 207
Threshold oscillation intensity, 209–210
Tight binding, 301
Tilings, 244
Time inversion, 105, 109, 114, 138–139
Time-reversal degeneracy, 286, 289
Time-reversal group, 53
Time-reversal operator, 53–54, 56
Tin, 84
TO–LO splitting, 321, 326
Toroidal moment, 138
Total cross section, 315
Tourmaline, 12
Transformation microcline, 410, 429, 442
Transformation twins, 378, 397–398, 408, 410–411,

414, 416, 427, 436, 439–440
Transition-metal carbonates, 117, 127
Transition-metal fluorides, 128, 132, 134–137
Transition-metal oxides, 107, 117, 119, 127
Transition metals, 106–107, 129
Transition probability, 312
Transition region, 433
Transition susceptibility, 314–315, 317, 321, 325–

327
first-order, 322

Transition susceptibility tensor, 315
Transition temperature, 342, 346, 349–350, 362, 364–

365
Translation boundary, 397, 414
Translation domains, 394, 397, 414
Translation group, 423
Translation twins (T-twins), 397, 414
Translational symmetry, 294–295, 298–299, 301,

305
Translationengleiche subgroups, see equitranslational

subgroups
Transverse optic mode (TO), 316, 321, 363
Triaxial ellipsoid, 154
Trichroic crystals, 166
Tricritical point, 362, 369–370
Triglycine sulfate (TGS), 339, 360, 429, 449–450
Trilinear forms, 7–8, 14
Triperiodic twins, 417, 418, 420, 422–423, 425
Triple scalar product, 6, 14, 73
Tris-sarcosine calcium chloride (TSCC), 363, 367,

369
Tropochemical cell twinning, 397
Tungsten, 84
Tweed microstructure, 441
Twin axes, 396

of order n > 2, 420
n-fold, 395, 420
pseudo-fivefold, 399
pseudo n-fold, 428
sixfold, 396
threefold, 424
twofold, 395–397, 399, 418, 428
with noncrystallographic multiplicities,

408
Twin boundaries, 372, 393–394, 397–398, 403, 413–

414, 421–422, 426, 430, 432–433
coherent, 443
compatible, 429–430, 443, see also permissible

boundaries
incompatible, 429, 443
irrational, 433
rational, 427
structural model, 434
three-dimensional structure, 438

Twin component, 394
Twin displacement vector, 394, 397, 426, 432,

437
Twin domains, 126, 174, 394, 400, 403, 405, 412–415,

420, 428, 430–431, 433, 435, 439–440, 442

Twin elements, 395
binary, 395, 396
irrational, 397
rational, 397

Twin formation
by nucleation, 412
during crystal growth, 413

Twin inserts, 413
Twin interface, 394–395, 397, 422, 426, 430, 436–437,

439
coherent, 443
incoherent, 443
irrational, 413
rational, 433

Twin inversion centre, 395, 434
Twin lamellae, 413–414, 419, 429–431, 434, 436, 440–

443
Twin lattice index, 417
Twin law, 394, 395, 399, 405, 409, 451, 462, 470–471,

477–478, 480, 483, 485–486, 490, 498
Twin microstructure, 72
Twin mirror plane, 395
Twin obliquity, 420
Twin operations, 395, 397

alternative, 399–400, 402–403, 407–408
binary, 395–396, 401–402

Twin partner, 394, 398, 401, 405, 408, 417, 423, 425,
432–433

Twin pattern, 439
Twin planes, 162, 165
Twin rotations

noncrystallographic, 402
pseudo n-fold, 396, 402

Twin textures, 439
Twin with lattice index [j] > 1, 430
Twinkling, 156
Twinning, 174, 338–339, 377, 393

by high-order merohedry, 410
by lattice merohedry, 417
by merohedry, 377, 416–417, 422, 480
by pseudo-merohedry, 377, 422
by reticular merohedry, 377, 417, 423–424
by reticular pseudo-merohedry, 377, 411
by twin-lattice pseudo-symmetry, 422
by twin-lattice symmetry, 422
definition of, 394
lattice aspects of, 416
mirror plane, 397
with a change of form, 416
with partial lattice coincidence (lattice index

[j] > 1), 423
with partial lattice pseudo-coincidence (lattice

index [j] > 1), 424
without a change of form, 416

Twinning dislocations, 429, 442, 444
Twinning group, 374, 451, 462, 470, 473, 477, 480, 484,

486, 490, 498
Twinning pattern, 339
Twins, 338, 377, 394, 451

genetic classification of, 412
with inclined axes, 404–405

Twins of twins, 412
Two-dimensional nucleus, 413
Two-wave mixing, 151

Undepleted pump approximation, 196, 197, 202, 205–
207

Uniaxial antiferromagnets, 123–124, 137
Uniaxial classes, 160, 165, 185, 194–195
Uniaxial crystals, 11, 118, 153, 155–156, 165–166, 168,

170, 185–186, 189, 196, 199–201, 212, 318
Uniaxial ellipsoid, 153
Uniaxial figure, 161, 165
Uniaxial negative, 161
Uniaxial positive, 161
Unit-cell twinning, 397
Universal stage, 166

Valence electrons, 297, 299, 302, 305–307, 312
Valence states, 300, 303, 305, 312
Variants, see domain states
Variational principle, 300–301, 303
Vector product, 9–10, 12–13
Vector representation, 290
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Vector spaces, 5, 7
Velocity of elastic waves, 270
Velocity of sound, 176
Vibration direction, 154, 155, 156

fast, 159
slow, 159

Voigt effect, see Cotton–Mouton effect
Voigt matrix, 24, 502
Voigt notation, 24, 78–79, 81–82, 172–173
Voigt strain matrix, 24–27, 75
Voigt stress matrix, 24, 78
Voronoi cell, 46–47, 294

W boundary, 427–428
W0 boundary, 427–428
Walk-off, 184–187, 194, 197, 200–203, 206–208, 211–

212
Wigner–Seitz cell, 46, 294
Wurtzite, 223
Wyckoff position, 49, 62, 232

X-ray absorption spectra, 312
X-ray anomalous dispersion, 167
X-ray emission spectra, 312
X-ray topography, 423, 429, 433, 436, 443

Young’s modulus, 3, 80–81, 83, 416
variation with orientation, 83

Yttrium aluminium borate [YAl(BO3)4], 214
Yttrium barium copper oxide (YBaCuO), 309–310,

370, 416, 428, 440–441, 443, 449, 484
Yttrium manganese oxide (YMnO3), 142

Zero-point motion, 228
Zinc, 84
Zinc oxide, 223
Zwilling, see twins
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