## С.М.Никольский

# КУРС МАТЕМАТИЧЕСКОГО АНАЛИЗА TOM 2

физических Учебник ДЛЯ студентов И механико-математических специальностей вузов. Написан на основе курса лекций, читаемого автором в Московском физико-техническом институте. Фактически принят кап учебное пособие в некоторых втузах с повышенной программой по математике.

Второй том содержит кратные интегралы, теорию поля, ряды Фурье и интеграл Фурье, обобщенные функции, дифференцируемые многообразия,

| дифференциальные формы, интеграл Лебега — Стилтьеса.                                        |    |
|---------------------------------------------------------------------------------------------|----|
| Содержание                                                                                  |    |
| Предисловие ко второму изданию                                                              | 7  |
| Предисловие к третьему изданию                                                              | 8  |
| Глава 12. Кратные интегралы                                                                 | 9  |
| 12.1. Введение                                                                              | 9  |
| 12.2. Квадрируемые по Жордану множества                                                     | 11 |
| 12.3. Важные примеры квадрируемых по Жордану множеств                                       | 18 |
| 12.4. Еще один критерий измеримости множества. Полярные координаты                          | 19 |
| 12.5. Измеримые по Жордану трехмерные и п-мерные множества                                  | 20 |
| 12.6. Понятие кратного интеграла                                                            | 24 |
| 12.7. Верхняя и нижняя интегральные суммы. Основная теорема                                 | 27 |
| 12.8. Интегрируемость непрерывной функции на замкнутом измеримом множестве. Другие критерии | 33 |
| 12.9. Множество лебеговой меры нуль                                                         | 34 |
| 12.10. Доказательство теоремы Лебега. Интегрируемость и ограниченность функции              | 36 |
| 12.11. Свойства кратных интегралов                                                          | 38 |
| 12.12. Сведение кратного интеграла к интегралам по отдельным переменным                     | 41 |
| 12.13. Непрерывность интеграла по параметру                                                 | 47 |
| 12.14. Геометрическая интерпретация знака определителя                                      | 49 |
| 12.15. Замена переменных в кратном интеграле. Простейший случай                             | 51 |
| 12.16. Замена переменных в кратном интеграле                                                | 53 |
| 12.17. Доказательство леммы 1 §12.16                                                        | 56 |
| 12.18. Полярные координаты в плоскости                                                      | 59 |
| 12.19. Полярные в цилиндрические координаты в пространстве                                  | 61 |
| 12.20. Общие свойства непрерывных операций                                                  | 63 |

12.21. Дополнение к теореме о замене переменных в кратном интеграле

64

| 12.22. Несобственный интеграл с особенностями вдоль границы области. Замена переменных          | 66  |  |
|-------------------------------------------------------------------------------------------------|-----|--|
| 12.23. Площадь поверхности                                                                      | 68  |  |
| Глава 13. Теория поля. Дифференцирование и интегрирование по параметру. Несобственные интегралы | 75  |  |
| 13.1. Криволинейный интеграл первого рода                                                       | 75  |  |
| 13.2. Криволинейный интеграл второго рода                                                       | 76  |  |
| 13.3. Поле потенциала                                                                           | 79  |  |
| 13.4. Ориентация плоской области                                                                | 86  |  |
| 13.5. Формула Грина. Выражение площади через криволинейный интеграл                             | 87  |  |
| 13.6. Интеграл по поверхности первого рода                                                      | 90  |  |
| 13.7. Ориентация поверхностей                                                                   | 93  |  |
| 13.8. Интеграл по ориентированной плоской области                                               |     |  |
| 13.9. Поток вектора через ориентированную поверхность                                           | 99  |  |
| 13.10. Дивергенция. Теорема Гаусса—Остроградского                                               | 102 |  |
| 13.11. Ротор вектора. Формула Стокса                                                            | 109 |  |
| 13.12. Дифференцирование интеграла по параметру                                                 | 113 |  |
| 13.13. Несобственный интеграл                                                                   | 115 |  |
| 13.14. Равномерная сходимость несобственного интеграла                                          | 122 |  |
| 13.15. Равномерно сходящийся интеграл для неограниченной области                                | 128 |  |
| 13.16. Равномерно сходящийся интеграл с псременнои особой точкой                                | 134 |  |
| Глава 14. Линейные нормированные пространства. Ортогональные                                    | 142 |  |
| системы                                                                                         |     |  |
| 14.1. Пространство С непрерывных функций                                                        | 142 |  |
| 14.2. Пространства $L', L'_p, L$ и $l_p$                                                        | 144 |  |
| 14.3. Пространство $L^{1}_{2}(L_{2})$                                                           | 148 |  |
| 14.4. Приближение финитными функциями                                                           | 151 |  |
| 14.5. Сведения из теории линейных множеств и линейных нормированных пространств                 | 157 |  |
| 14.6. Ортогональная система в пространстве со скалярным произведением                           | 164 |  |
| 14.7. Ортогонализация системы                                                                   | 175 |  |
| 14.8. Свойства пространств $L^1_2\left(\Omega\right)$ и $L_2\left(\Omega\right)$                | 178 |  |
| 14.9. Полнота системы функций в $C, L'_2$ и $L'(L_2, L)$                                        | 180 |  |
| Глара 15 Разги Фуру с Приблимомие функций на типомами                                           |     |  |
| Глава 15. Ряды Фурье. Приближение функций полиномами                                            | 182 |  |

| 15.2. Сумма Дирихле                                                                        | 188 |
|--------------------------------------------------------------------------------------------|-----|
| 15.3. Формулы для остатка ряда Фурье                                                       | 191 |
| 15.4. Леммы об осцилляции                                                                  | 193 |
| 15.5. Критерии сходимости рядов Фурье. Полнота тригонометрической системы функций          | 197 |
| 15.6. Комплексная форма записи ряда Фурье                                                  | 205 |
| 15.7. Дифференцирование и интегрирование рядов Фурье                                       | 207 |
| 15.8. Оценка остатка ряда Фурье                                                            | 210 |
| 15.9. Явление Гиббса                                                                       | 211 |
| 15.10. Сумма Фейера                                                                        | 215 |
| 15.11. Сведения из теории многомерных рядов Фурье                                          | 218 |
| 15.12. Алгебраические многочлены. Многочлены Чебышева                                      | 228 |
| 15.13. Теорема Вейерштрасса                                                                | 229 |
| 15.14. Многочлены Лежандра                                                                 | 230 |
| Глава 16. Интеграл Фурье. Обобщенные функции                                               | 233 |
| 16.1. Понятие интеграла Фурье                                                              | 233 |
| 16.2. Лемма об изменении порядка интегрирования                                            | 236 |
| 16.3. Сходимость простого интеграла Фурье к порождающей его функции                        | 237 |
| 16.4. Преобразование Фурье. Повторный интеграл Фурье. Косинус и синус преобразования Фурье | 239 |
| 16.5. Производная и преобразование Фурье                                                   | 244 |
| 16.6. Пространство $S$                                                                     | 245 |
| 16.7. Пространство $S$ обобщенных функций                                                  | 250 |
| 16.8. Многомерные интегралы Фурье и обобщенные функции                                     | 259 |
| 16.9. Ступенчатые финитные функции. Квадратические приближения                             | 267 |
| 16.10. Теорема Планшереля. Оценка сходимости простого интеграла                            | 272 |
| 16.11. Обобщенные периодические функции                                                    | 277 |
| Глава 17. Дифференцируемые многообразия и дифференциальные формы                           | 284 |
| 17.1. Дифференцируемые многообразия                                                        | 284 |
| 17.2. Край дифференцируемого многообразия и его ориентация                                 | 294 |
| 17.3. Дифференциальные формы                                                               | 305 |
| 17.4. Формула Стокса                                                                       | 315 |
| Глава 18. Дополнительные сведения                                                          | 321 |
| 18.1. Обобщенное неравенство Минковского                                                   | 321 |

| 18.2. Усреднение функции по Соболеву                               |                                                     | 323          |
|--------------------------------------------------------------------|-----------------------------------------------------|--------------|
| 18.3. Свертка                                                      |                                                     | 327          |
| 18.4. Разбиение единицы                                            |                                                     | 330          |
| Глава 19. Интеграл Лебега                                          |                                                     | 333          |
| 19.1. Мера Лебега                                                  |                                                     | 333          |
| 19.2. Измеримые функции                                            |                                                     | 343          |
| 19.3. Интеграл Лебега                                              |                                                     | 350          |
| 19.4. Интеграл Лебега па неограничениом м                          | иножества                                           | 387          |
| 19.5. Обобщенная производная по Соболеву                           | y                                                   | 390          |
| 19.6. Пространство обобщенных функций <i>L</i>                     | )'                                                  | 403          |
| 19.7. Неполнота пространства $L'_p$                                |                                                     | 406          |
| 19.8. Обобщение меры Жордана                                       |                                                     | 408          |
| 19.9. Интеграл Римана—Стилтьеса                                    |                                                     | 413          |
| 19.10. Интеграл Стилтьеса                                          |                                                     | 414          |
| 19.11. Обобщенный интеграл Лебега                                  |                                                     | 422          |
| 19.12. Интеграл Лебега—Стилтьеса                                   |                                                     | 423          |
| 19.13. Продолжение функции. Теорема Вейерштрасса                   |                                                     | 431          |
| Глава 20. Линейные операторы и функционалы                         |                                                     | 435          |
| 20.1. Линейные операторы                                           |                                                     | 435          |
| 20.2. Линейные функционалы                                         |                                                     | 437          |
| 20.3. Сопряженное пространство                                     |                                                     | 437          |
| 20.4. Линейный функционал в пространстве $C$ непрерывных функций   |                                                     | 437          |
| 20.5. Линейный функционал в пространстве $L$ интегрируемых функций |                                                     | 441          |
| 20.6. Линейный функционал в гильбертовом пространстве              |                                                     | 442          |
| Предметный указатель                                               |                                                     | 445          |
| Предметный у                                                       | указатель                                           |              |
| Абсолютно непрерывная функция 396                                  | Бернулли многочлен 210<br>Бесконечномерное линейное |              |
| - сходящийся интеграл 118                                          | множество 158                                       |              |
| Аддитивность интеграла Лобега 360                                  | Брауэра теорема 64                                  | ,            |
| Римана 33<br>- полная интеграла Лебега 365                         | Буняковского неравенство 147<br>Бэта-функция 127    |              |
| Амплитуды гармоника 187                                            | Вейерштрасса теорема 125, 19                        | 9 229        |
| Аппроксимация функции из $L_p$                                     | 431                                                 | , <b></b> >, |
| непрерывной финитной 151                                           | Верхний интеграл Римана 29                          |              |
| из <i>h</i> кусочно постоянной 151<br>Банахово пространство 142    | Верхняя интегральная сумма J 350                    | Іебега       |

| Римана 27                          | по Лебегу 338                      |
|------------------------------------|------------------------------------|
| Вихрь (ротор) 81                   | - по Лебегу пересечения 339        |
| Внутренняя мера Жордана 13         | суммы 339                          |
| Лебега 338                         | Инвариантное свойство интеграла по |
| Второго рода криволинейный         | многообразию 311, 314              |
| интеграл 78                        | Интеграл абсолютно сходящийся 118  |
| Гамма-функция 130                  | - Дирихле 189                      |
| Гармоника функции 186, 187         | - криволинейный второго рода 76    |
| Гаусса—Остроградского теорема 102  | первого рода 75                    |
| Геометрическая интерпретация знака | - Лебега 350                       |
| определителя 49                    | на неограниченном множество 387    |
| Гёльдера неравенство 147           | - Лебега—Стилтьеса 423             |
| Гиббса явление 211                 | - несобственный 115                |
| Гильбертово пространство 170       | - по ориентированной плоской       |
| Градиент функции 79                | области 97                         |
| Грина формула 87                   | - по поверхности первого рода 90   |
| Двумерная мера 8                   | - Римана верхний 29                |
| Двойной интеграл Римана 8          | нижний 29                          |
| Дельта-функция 252                 | - Римана—Стилтьеса 413             |
| Диаметр множества 7                | - Стилтьеса 415                    |
| Дивергенция вектора 102            | - сходящийся равномерно 122, 134   |
| Дирихле интеграл 189               | - Фурье 233, 259                   |
| - сумма 188                        | Интегрирование по параметру 123    |
| - ядро 189                         | - ряда Фурье 207                   |
| Дифференциальная форма 305         | Интегрируемость модуля 39          |
| (внешний дифференциал) 306         | - непрерывной функции 33           |
| Дифференциальный элемент           | - произведения 39                  |
| ориентированной поверхности        | Интегрируемость суммы 39           |
| 95                                 | - частного 39                      |
| Дифференцирование гамма-функции    | Квадратичное приближение 267       |
| 131                                | Квадрируемое по Жордану            |
| - интеграл по параметру, 113, 124  | множество 11, 18, 19               |
| - ряда Фурье 207                   | Колмогорова пример 203             |
| Дифференцируемые многообразия      | Комплексная форма ряда Фурье 205,  |
| 284                                | 219                                |
| Жорданова мера множества 13        | Косинус преобразования Фурье 239   |
| Замена переменных в интеграле      | Коши неравенство 147               |
| Лебега 379                         | Коэффициент Фурье 165, 186, 263,   |
| в кратном интеграле 51—59          | 278                                |
| в несобственном интеграле 66       | Край дифференцируемого             |
| Замкнутость ортонормированной      | многообразия 294                   |
| системы 170                        | Криволинейный интеграл второго     |
| Измеримость функции 343            | рода 76                            |
| - множества по Жордану 15, 20      | первого рода 75                    |
|                                    |                                    |

| Кусочно постоянная функция 151 Лежандра многочлены 230 Лемма об осцилляции 193 Линейно зависимая система 157 - независимая система 157 - независимая система 157 - нормированное пространство 142, | - линейное бесконечномерное 158 - плотное 159 - полное 159 Независимость криволинейного интеграла первого рода от ориентации кривой 7 от ориентации поверхности 91 Неполнота $L'_p$ 406 Непрерывность кратного интеграла по параметру 47 - равномерно сходящегося интеграла 123 Непрерывные операции 63 Неравенство Буняковского 147 - Гельдера 147 - Коши 147 - Парсеваля 167 Неравномерно сходящийся интеграл 125 Несобственные интегралы 66, 73, 115 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Локально интегрируемая функция<br>239                                                                                                                                                              | Нижний интеграл Рима на 29<br>Нижняя интегральная сумма Лебега                                                                                                                                                                                                                                                                                                                                                                                          |
| - кусочно гладкая функция 240                                                                                                                                                                      | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Мера Жордана 15, 408 - Жордана открытого ограниченного                                                                                                                                             | Римана 27                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| множества 334                                                                                                                                                                                      | - ступенчатая функция 354<br>Норма $L^\prime$ 144                                                                                                                                                                                                                                                                                                                                                                                                       |
| - Лебега 333, 338                                                                                                                                                                                  | - L' <sub>p</sub> 144                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - Лебега замкнутого ограниченного                                                                                                                                                                  | $-l_{p}^{P}$ 144                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| множества 334                                                                                                                                                                                      | Носитель функции 151                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Минковского неравенство 148                                                                                                                                                                        | <ul><li> компактный 151</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Многомерная сумма Фейера 219                                                                                                                                                                       | Ньютонов потенциал 135                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Фурье 218<br>Многообразие, заданное                                                                                                                                                                | Обобщенная производная по                                                                                                                                                                                                                                                                                                                                                                                                                               |
| параметрически 285                                                                                                                                                                                 | Соболеву 390                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - ориентированное 291                                                                                                                                                                              | - функция над <i>D</i> 403                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - ориентируемое 291                                                                                                                                                                                | над S 250<br>над S* 278                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Многочлены Бернулли 210                                                                                                                                                                            | -P1/x, 253                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - Лежандра 230                                                                                                                                                                                     | Обобщенное неравенство                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - Чебышова 228                                                                                                                                                                                     | Минковского 321                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Множество измеримое по Жордану<br>15                                                                                                                                                               | Обобщенные периодические функции 277                                                                                                                                                                                                                                                                                                                                                                                                                    |
| по Лебегу 338                                                                                                                                                                                      | Обратное преобразование Фурье 240                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - лебеговой меры пуль 34                                                                                                                                                                           | Объем 9                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Процесс ортогонализаций системы                    | - о полноте $L_p(E)$ 377                                          |
|----------------------------------------------------|-------------------------------------------------------------------|
| элементов 175                                      | - основная (для кратного интеграла)                               |
| Пуассона интеграл 134                              | 29                                                                |
| Равенство Парсеваля 167                            | - о среднем (интегральная) 40                                     |
| Равномерная сходимость интеграла                   | - Планшереля 272                                                  |
| Фурье 234                                          | - Фубини 370, 389                                                 |
| несобственного интеграла 122                       | Трехмерные множества, измеримые                                   |
| <ul><li> ряда Фурье 199</li></ul>                  | по Жордану 20                                                     |
| Разбиение единицы 330                              | Тригонометрический полином 184                                    |
| Разность дифференциальных форм                     | - ряд 190                                                         |
| 306                                                | Тройной интеграл Римана 10                                        |
| - элементарных фигур 12                            | Усреднения по Соболеву 323                                        |
| Ротор вектора 81, 100                              | Фаза гармоники 187                                                |
| Ряд Фурье 165, 182, 185                            | Фейера сумма 215                                                  |
| <ul> <li>- в комплексной форме 205, 219</li> </ul> | Фигура 11                                                         |
| многомерный 218                                    | Формула Грина 87                                                  |
| расходящийся всюду 203                             | - для остатка Фурье 191                                           |
| Свертка 249, 282, 327                              | - Стокса 109, 315                                                 |
| Сепарабельное пространство 159                     | Фубини теорема 370, 389                                           |
| Синус-преобразование Фурье 241                     | Функция абсолютно непрерывная                                     |
| Система элементов оргогональная                    | 396                                                               |
| 164                                                | - бэта 127                                                        |
| полная 159, 180<br>С                               | - гамма 130                                                       |
| Скалярное произведение 149                         | - измеримая 343                                                   |
| Согласованность ориентации 281                     | Функция интегрируемая по Лебегу                                   |
| Спектр функции 186                                 | 351                                                               |
| Стилтьеса интеграл 415                             | - интегрируемая по Риману 26, 349                                 |
| Стокса формула 109, 315<br>Ступенчатая функция 267 | - кусочно постоянная 151                                          |
| Сумма Дирихле 188                                  | - локально абсолютно непрерывная                                  |
| - дифференциальных форм 306                        | 397                                                               |
| - Фейера 215                                       | - кусочно гладкая 240                                             |
| - Фурье 188                                        | <ul><li>- периодическая 182</li><li>- полигональная 159</li></ul> |
| - элементарных фигур 12                            |                                                                   |
| Сходимость среднеквадратическая                    | <ul><li>- ступенчатая 351</li><li>- суммируемая 352</li></ul>     |
| 150                                                | - суммирусмая 332<br>- финитная 151                               |
| Сходимость по мере 348                             | - финитная 131<br>- Хевисайда 253                                 |
| - простого интеграла Фурье 238                     | $-\delta(x) 252$                                                  |
| - равномерная несобственного                       | Фурье интеграл 233                                                |
| интеграла 122                                      | - коэффициент 165, 186                                            |
| Теорема Брауэра 64                                 | - преобразование 239                                              |
| - Вейерштрасса 125, 229, 433                       | - ряд 182, 185                                                    |
| - Гаусса—Остроградского 102                        | - (частичная) сумма 189                                           |
| - Лебега 34, 418                                   | 7.7                                                               |
|                                                    |                                                                   |

Цилиндрические координаты 63 Циркуляция вектора 78 Частичная сумма Фурье 189 Частота гармоники 187 Чебышева многочлен 226 Член ряда Фурье 186 Элемент нормальный 164 - (поверхности) дифференциальный 72 Элементарная фигура 11 Явление Гиббса 188, 211 Ядро Дирихле 189 - Фейера 216

## предисловие ко второму изданию

Во втором издании тома II добавлены параграфы 19.8—19.12, посвященные интегралам Стилтьеса, Римана — Стилтьеса, Лебега — Стильтьеса. Некоторым изменениям подверглись §§ 12.13, 13.8, 13.14, 13.15, 13.16, 15.3, 15.9, 16.3.

Кроме лиц, уже отмеченных в предисловиях к тому I, я благодарю Р. В. Гамкрелидзе за полезное для меня обсуждение отдельных глав книги. Я благодарю также А. Н. Вейссенберга и Е. Л. Энгелсона, обративших мое винмание на некоторые неточности в 1-м издании книги.

1975 r.

С. М. Никольский

## ПРЕДИСЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ

В третьем издании тома II сделаны изменения и добавления в § 12.13, 13.8, 15.3, 15.4, 16.4, 19.3 (п. 22). В частности, в § 12.13 дано более простое доказательство непрерывности интеграла по параметру, которое сообщил мне О. В. Бесов. В § 16.4 разобрано много примеров на преобразовании Фурье. Я взял эти примеры из сборника задач и упражнений по математическому анализу Б. П. Демидовича («Наука», 1972).

С. М. Пикольский

1982 r.

#### КРАТНЫЕ ИНТЕГРАЛЫ

#### § 12.1. Введение

Пусть в трехмерном пространстве, в котором определена прямоугольная система координат (x, y, z), задана непрерывная поверхность

$$z = f(Q) = f(x, y) \qquad (Q = (x, y) \in \Omega),$$

гие  $\Omega$  есть некоторое ограниченное (двумерное) множество, для которого возможно определить понятие его площади (двумерной меры \*)). В качестве  $\Omega$  может быть взят круг, прямоугольник, эллипс и т. д. Будем считать, что функция f(x, y) положительна, и поставим задачу: требуется определить объем тела, ограниченного сверху нашей поверхностью, снизу плоскостью z=0 и с боков цилиндрической поверхностью, проходящей через грапицу у плосного множества  $\Omega$ , с образующей, параллельной оси z.

Искомый объем естественно определить следующим образом.

Разлелим Ω на конечное число частей

$$\Omega_1, \ldots, \Omega_N,$$
 (1)

перекрывающихся между собой разве что по своим границам. Однако эти части должны быть такими, чтобы можно было определить их площади (двумерные меры), которые мы обозначим соответственно через  $m\Omega_1, \ldots, m\Omega_N$ .

понятие диаметра множества A — это есть точная верхияя грань

$$d(A) = \sup_{P',P'' \in A} |P' - P''|.$$

В каждой части  $\Omega_i$  выберем по произвольной точке  $Q_i$  =  $= (\xi_i, \eta_i) \ (j = 1, ..., N)$  и составим сумму

$$V_N = \sum_{j=1}^N f(Q_j) \, m\Omega_j, \tag{2}$$

которую естественно считать приближенным выражением искомого объема V. Надо думать, что приближение  $V pprox V_N$  будет тем более точным, чем меньшими будут диаметры  $d(\Omega_i)$  частей  $\Omega_i$ .

<sup>\*)</sup> См. далее § 12.2.

Поэтому естественно *объем* нашего тела определить как предел суммы (2)

$$V = \lim_{\max_{d(\Omega_j) \to 0}} \sum_{j=1}^{N} f(Q_j) m\Omega,$$
 (3)

когда максимальный диаметр частичных множеств разбиения (1) стремится к нулю, если, конечно, этот предел существует и равен одному и тому же числу независимо от способа последова-

тельного разбиения  $\Omega$ .

Можно отвлечься от задачи о нахождении объема тела и смотреть на выражение (3) как на некоторую операцию, которая производится над функцией f, определенной на  $\Omega$ . Эта операция называется операцией двойного интегрирования по Риману функции f на множестве  $\Omega$ , а ее результат — определенным двойным интегралом (Римана) от f на  $\Omega$ , обозначаемым так:

$$V = \lim_{\max_{d}(\Omega_j) \to 0} \sum_{j=1}^{N} f(Q_j) \, m\Omega_j = \int_{\Omega} \int_{\Omega} f(x, y) \, dx \, dy = \int_{\Omega} f(Q) \, dQ = \int_{\Omega} f \, d\Omega.$$

Пусть теперь в трехмерном пространстве, где определена прямоугольная система координат (x, y, z), задано тело  $\Omega$  (множество) с неравномерно распределенной в нем массой с илотностью распределення  $\mu(x, y, z) = \mu(Q)$   $(Q = (x, y, z) \in \Omega)$ . Требуется определить общую массу тела  $\Omega$ .

Чтобы решить эту задачу, естественно произвести разбиение  $\Omega$  на части  $\Omega_1$ , ...,  $\Omega_N$ , объемы (трехмерные меры) которых (в предположении, что они существуют) пусть будут  $m\Omega_1$ , ...,  $m\Omega_N$ , выбрать произвольным образом в каждой части по точке  $(Q_j = (x_j, y_j, z_j) \in \Omega_j)$  и считать, что искомая масса равна

$$M = \lim_{\max_{d}(\Omega_{j}) \to 0} \sum_{j=1}^{N} \mu(Q_{j}) \, m\Omega_{j}. \tag{4}$$

Спова на выражение (4) можно смотреть как на определенную операцию над функцией  $\mu$ , заданной теперь на трехмерном множестве  $\Omega$ . Эта операция на этот раз называется операцией тройного интегрирования (по Риману), а результат ее — определенным тройным интегралом (Римана), обозначаемым так:

$$M = \lim_{\max d(\Omega_j) \to 0} \sum \mu(Q_j) \, m\Omega_j = \int_{\Omega} \mu(Q) \, dQ = \int \int_{\Omega} \int \mu(x, y, z) \, dx \, dy \, dz.$$

В этом же духе определяется понятие n-кратного интеграла Pимана.

Мы увидим, что часть теории кратного интегрирования, содержащая теоремы существования и теоремы об аддитивных свойствах интеграла, может быть изложена совершенно аналогично как в одномерном, так и в *n-мерном случае*. Однако в теории кратных интегралов возникают трудности, которых не было

у нас при изложении теории однократных интегралов.

Дело в том, что однократный интеграл Римана мы определили для очень простого множества — отрезка [a,b], который дробился снова на отрезки. Никаких трудностей в определении длины (одномерной меры) отрезков не возникало. Между тем в случае двойных и вообще n-кратных интегралов область интегрирования  $\Omega$  приходится делить на части с криволинейными границами и возникает вопрос об общем определении понятия площади или вообще n-мерной меры этих частей. Конечно, этот вопрос возник бы и при n=1, если бы мы определяли интеграл Римана не на отрезке, а на более или менее сложном одномерном множестве.

В связи с этим появляется необходимость в четком определении поиятия меры множества и выяснении ее свойств. Поэтому мы начинаем эту главу с изложения теории меры по Жордану, органически связанной с теорией интеграла Римана. На основе этой теории затем излагается теория кратного интеграла. Важным методом в этой последней является тот факт, что вычисление кратных интегралов может быть сведено к вычислению однократных по каждой переменной в отдельности, что дает возможность применять во многих случаях теорему Ньютона—Лейбница.

## § 12.2. Квадрируемые по Жордану множества

Рассмотрим плоскость  $R=R_2$ , где задана вполне определенная прямоугольная система координат (x, y), которую мы обозначим той же буквой R.

Ту же плоскость в другой, повернутой системе координат

 $(\xi, \eta)$  мы будем обозначать через R'.

Простейшим множеством на R мы будем считать прямоугольник  $\Delta$ . Аналитически его можно определить следующим образом: существует такая прямоугольная система координат R', в которой  $\Delta$  определяется как множество точек ( $\xi$ ,  $\eta$ ), удовлетворяющих неравенствам

$$a_1 \leqslant \xi \leqslant a_2, \quad b_1 \leqslant \eta \leqslant b_2,$$
 (1)

где  $a_1 < a_2$ ,  $b_1 < b_2$ . Система координат R' обладает тем свойством, что стороны  $\Delta$  параллельны ее осям. Чтобы подчеркнуть, что стороны  $\Delta$  параллельны осям системы R', мы будем писать  $\Delta = \Delta_{R'}$ . Заметим, что мы считаем  $\Delta$  замкнутыми множествами.

Мы вводим еще понятие элементарной фигуры о. Множество  $\sigma \subseteq R$  мы называем элементарной фигурой, если оно есть (теоретико-множествениая) сумма конечного числа прямоугольников  $\Delta \subseteq R$ , которые могут пересекаться только по частям своих гра-

ниц. Площадь о двумерной фигуры о определяется как сумма

нлощадей прямоугольников  $\Delta$ , из которых состоит  $\sigma$ .

Фигура о может быть бесконечным числом способов представлена как конечная сумма прямоугольников  $\Delta$ . Однако площадь о не зависит от способа представления. Это утверждение доказывается средствами элементарной геометрии. Мы не будем на этом останавливаться.

Пустое множество также считается фигурой, и мера его счи-

тается равной нулю.

Определяя прямоугольник при помощи неравенств (1), мы считали  $a_1 < a_2$ ,  $b_1 < b_2$ . Таким образом, мы не будем считать отдельные точки или отрезки прямоугольниками — в этом не будет надобности при изложении данной теории.

Среди фигур  $\sigma$  мы выделим такие, что все прямоугольники  $\Delta$ , из которых они состоят, суть  $\Delta \equiv \Delta_R$ , т. е. они имеют стороны, параллельные осям системы координат R. Такие фигуры мы будем обозначать символом  $\sigma_R$ .

Отметим ряд свойств фигур о. Доказательства их элементар-

ны, и мы не будем на них останавливаться.

a) Ecau  $\sigma_1 \subseteq \sigma_2$ , to  $|\sigma_1| \leq |\sigma_2|$ .

б) Сумма (творетико-множественная) фигур  $\sigma_R'$  и  $\sigma_R''$  есть фигура  $\sigma_R$ , и выполняется неравенство

$$|\sigma_R' + \sigma_R''| \leqslant |\sigma_R'| + |\sigma_R''|. \tag{2}$$

Оно обращается в равенство, если  $\sigma_R'$  и  $\sigma_R''$  пересекаются разве что по части их грании.

в) Разность  $\sigma_R' - \sigma_R''$  двух фигур  $\sigma_R'$ ,  $\sigma_R''$  не обязательно есть замкнутое множество, поэтому она не обязательно есть фигура. Она может стать фигурой (пустой), лишь если  $\sigma_R' \subset \sigma_R''$  или если  $\sigma_R''$  и  $\sigma_R''$  не пересекаются. Но замыкание  $\sigma_R'' - \sigma_R'''$  есть всегда фигура, и при этом выполняется неравенство

$$\left|\overline{\sigma_R' - \sigma_R''}\right| \geqslant \left|\sigma_R'\right| - \left|\sigma_R''\right|. \tag{3}$$

Оно обращается в равенство, если  $\sigma''_R \subset \sigma'_R$ .

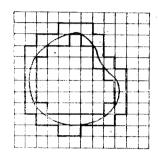
 $\Gamma$ ) Если фигуру  $\sigma_R$  рассечь прямой, параллельной одной из осей R, то она разделится на две фигуры  $\sigma_R'$  и  $\sigma_R''$ .

К этим свойствам нам придется еще добавить два, одно из

которых основано на понятии сетки.

Зададим натуральное числе N и построим два семейства прямых: x=kh и y=lh  $(h=2^{-N},\ k,\ l=0,\ \pm 1,\ \pm 2,\ \ldots)$ . Оба семейства определяют прямоугольную сетку  $S_N$ , разбивающую R на квадраты  $\Delta_h$  со сторонами длины h, нараллельными осям R. При переходе от сетки  $S_N$  к сетке  $S_{N+1}$  каждый квадрат сетки  $S_N$  делится на четыре равных квадрата.

Пусть  $G \subset R$  — произвольное непустое ограниченное множество. Обозначим через  $\omega_N(G) = \omega_N$  фигуру, состоящую из тех квадратов  $\Delta_h$  сетки  $S_N$ , которые полностью входят в G, и через  $\omega_N(G) = \omega_N$  — фигуру, состоящую из тех квадратов  $\Delta_h$  сетки  $S_N$ , каждый из которых содержит хотя бы одну точку множества G (рис. 12.1). Может, в частности, случиться, что  $\omega_N$  есть пустое множество, но мы условились считать такое множество фигурой (имеющей меру, равную нулю).



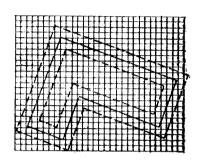


Рис. 12.1.

Рис. 12.2.

Очевидно, что

$$\omega_1 \subset \omega_2 \subset \ldots$$
,  $\omega_1 \supset \omega_2 \supset \ldots$ ,  $\omega_N(G) \subset G \subset \widetilde{\omega}_{N'}(G)$ ,

где N и N' — произвольные натуральные числа. Отсюда следует, что существуют конечные пределы

$$m_i G = \lim_{N \to \infty} |\omega_N|, \quad m_e G = \lim_{N \to \infty} |\widetilde{\omega}_N|, \quad m_i G \leqslant m_e G.$$

Число  $m_iG$  называется внутренней (двумерной) мерой Жордана множества G, а число  $m_eG$  называется внешней (двумерной) мерой Жордана множества G. Слово «Жордана» мы не всегда будем добавлять в целях краткости. В этом параграфе мы не всегда будем также в целях краткости добавлять слово «двумерный». Всюду в этом параграфе будет идти речь о двумерных мерах по Жордану.

Мы доказали, что произвольное ограниченное множество  $G \subseteq R$  имеет внутреннюю и внешнюю жордановы меры  $m_iG$  и  $m_eG$ , удовлетворяющие неравенству  $m_iG \leqslant m_eG$ .

Если для множества  $\hat{G} \subset R$   $m_iG = m_eG = mG$ , то G называется измеримым по Жордану и число mG называют жордановой двумерной мерой G. Двумерное (только двумерное) измеримое по Жордану множество называют также квадрируемым.

Теперь мы можем сформулировать нужное нам свойство фигур с: •

п) Фигира в (состоящая из прямоугольников, как угодно повернутых по отношению к системе координат Я) есть измеримое

по Жордану множество. При этом то = |0|.

На рис. 12.2 изображены фигура σ н еще две фигуры σ' н о" со сторонами, параллельными соответствующим сторонам о, такие, что о' ⊂ о ⊂ о". Ясно, что для данной фигуры о и данного  $\varepsilon > 0$  можно указать две фигуры  $\sigma'$  и  $\sigma''$  такие, что выполинются условия: 1)  $\sigma' \subseteq \sigma \subseteq \sigma''$ ,

2)  $|\sigma''| - |\sigma'| < \varepsilon$ ,

3) точки границ  $\sigma'$  и  $\sigma''$  отстоят от любой точки границы  $\sigma$ на расстоянии, большем некоторого положительного числа а.

Если теперь в системе координат R взять сетку  $S_{\scriptscriptstyle N}$ , где  $\sqrt{2}h = \sqrt{2} \cdot 2^{-N} < \alpha$ , то  $\sigma'' - \sigma'$  содержит любой квадрат сетки, нокрывающей хотя бы одну точку границы о. Поэтому сумма плопрадей всех квадратов сетки S, покрывающих границу с, не превышает  $|\overline{\sigma''} - \overline{\sigma'}| = |\sigma''| - |\sigma'| < \epsilon$ . Отсюда следует, что

$$|\widetilde{\omega}_N(\sigma)| - |\omega_N(\sigma)| < \varepsilon,$$
 (2)

п так как  $\epsilon$  как угодно мало, и  $|\omega_N(\sigma)| \leqslant |\sigma| \leqslant |\omega_N(\sigma)|$ , то  $m_i \sigma = m_e \sigma = m \sigma = |\sigma|$ .

Докажем следующие равенства, выражающие различные эквивалентные определения внутренней и внешней мер ограничеквого множества  $\emph{G}$ :

$$m_{i}G = \lim_{N \to \infty} |\omega_{N}(G)| = \sup_{N} |\omega_{N}(G)| = \sup_{\sigma_{R} \subset G} |\sigma_{R}| = \sup_{\sigma \subset G} |\sigma|, \quad (3)$$

$$m_{e}G = \lim_{N \to \infty} |\widetilde{\omega}_{N}(G)| = \inf_{N} |\widetilde{\omega}_{N}(G)| = \inf_{\sigma_{R} \supset G} |\sigma_{R}| = \inf_{\sigma \supset G} |\sigma|.$$
 (4)

Первое равенство в (3) есть уже данное выше определение  $m_iG$ . Оно дает эффективный способ получения  $m_iG$ . Однако опо связано с исходной системой координат R, потому что сетка связана с *R*.

Второе равенство очевидио, так как величина  $\{\omega_{N}(G)\}$  возрастает вместе с N.

Так как  $\omega_N(G)$  есть в то же время некоторая фигура  $\sigma_R$ , а  $\sigma_R$ есть некоторая о, то очевидно, что

$$\sup_{N} |\omega_{N}(G)| \leqslant \sup_{\sigma_{D} \subset G} |\sigma_{R}| \leqslant \sup_{\sigma \subset G} |\sigma|_{\epsilon}$$
 (5)

С другой стороны, если  $\sigma \subseteq G$  есть произвольная фигура и  $\varepsilon > 0$ , то в силу измеримости о можно указать N настолько большим, что

$$|\sigma| < |\omega_N(\sigma)| + \varepsilon \leqslant |\omega_N(G)| + \varepsilon \leqslant m_i G + \varepsilon$$
.

Отсюда 
$$\sup_{\sigma \subset G} |\sigma| \leqslant m_i G + \varepsilon$$
 и в силу произвольности  $\varepsilon$   $\sup_{\sigma \subset G} |\sigma| \leqslant m_i G$ . (6)

Из (5) и (6) следуют третье и четвертое равенства (3) (первые два уже доказаны).

Последний член в (3) показывает, что внутренняя мера mG инвариантна относительно любой системы координат, т. е. она не завиент от системы координат R, в которой она рассматринается.

Аналогично доказываются равенства (4).

Из равенств (3), (4) легко следует

Лемма 1. Для того чтобы множество G было измеримым, необходимо и достаточно, чтобы для любого  $\varepsilon > 0$  существовали две фигуры  $\sigma$  и  $\sigma(\sigma \subseteq G \subseteq \sigma)$  такие, что  $|\sigma| - |\sigma| < \varepsilon$ .

При этом можно считать, что  $\widetilde{\sigma} = \widetilde{\sigma}_R$ ,  $\sigma = \underline{\sigma}_R$ .

Действительно, если множество измеримо и R — заданная система координат, то найдутся такие  $\sigma = \sigma_R \subset G$  и  $\sigma = \sigma_R \supset G$ , что

$$mG - \frac{\epsilon}{2} < |\overset{\circ}{\sigma}| \leqslant |\overset{\circ}{\sigma}| < mG + \frac{\epsilon}{2}$$
 if  $|\overset{\circ}{\sigma}| - |\overset{\circ}{\sigma}| < \epsilon$ .

Наоборот, из того, что  $\sigma \subseteq G \subseteq \widetilde{\sigma}$ , следует, что  $|\sigma| \leqslant m_i G \leqslant m_e G \leqslant \leqslant |\widetilde{\sigma}|$ , а если  $|\widetilde{\sigma}| - |\sigma| \leqslant \epsilon$ , то  $m_e G - m_i G \leqslant \epsilon$ , и вследствие про-извольности  $\epsilon > 0$ -

$$m_eG=m_iG$$
.

Из леммы 1 следует, что измеримое множество ограничено. Пемма 2. Для того чтобы множество G было измеримым по Жордану, необходимо и достаточно, чтобы его граница  $\Gamma$  имела жорданову (плоскую) меру нуль,  $\tau$ . е. для всякого  $\epsilon > 0$  должна найтись покрывающая  $\Gamma$  фигура  $\sigma_0$ , имеющая меру  $|\sigma_0| < \epsilon$ .

Доказательство. Пусть множество G измеримо. Тогда для всякого  $\varepsilon > 0$  (см. рис. 12.1) найдутся две фигуры  $\sigma' = \sigma'_R$  и  $\sigma'' = \sigma'_R$ , такие, что  $\sigma' \subset G \subset \sigma''$  и  $|\sigma''| - |\sigma'| < \varepsilon$ . Всегда можно считать, что точки границы  $\Gamma$  множества G не лежат на границе  $\sigma''$ , так же как на границе  $\sigma'$ . Если бы это было для взятых  $\sigma'$  и  $\sigma''$  не так, то можно фигуру  $\sigma''$  увеличить (раздать), а  $\sigma'$  уменьшить в направлении оси x и оси y, однако настолько, чтобы написанное неравенство осталось не нарушенным. Тогда очевидно, что

$$\Gamma \subset \sigma'' - \sigma' \subset \overline{\sigma'' - \sigma'} = \sigma_0 \text{ if } |\sigma_0| = |\sigma''| - |\sigma'| < \epsilon,$$

т. е. удалось покрыть  $\Gamma$  фигурой  $\sigma_{\scriptscriptstyle 0}$ , имеющей площадь, меньшую чем  $\epsilon.$  Наоборот, пусть для любого  $\varepsilon > 0$  можно указать покрывающую  $\Gamma$  фигуру (см. рис. 12.1)  $\sigma_0 = \sigma_R^0$ ,  $|\sigma_0| < \varepsilon$ . Можно считать, что  $\Gamma$  не имеет общих точек с границей  $\sigma_0$ . Если это не так для выбранной фигуры, то ее можно дополнительно раздать, сохранив неравенство  $|\sigma_0| < \varepsilon$ .

Положим  $\sigma'' = G + \sigma_0$  и  $\sigma' = \overline{G - \sigma_0}$ . Нетрудно видеть, что  $\sigma'$  и  $\sigma''$  суть фигуры (см. рис. 12.1) и притом  $\sigma' = \sigma'_R$ ,  $\sigma'' = \sigma''_R$ ,  $\sigma' \subset G \subset \sigma''$ ,  $\sigma'' - \sigma' = \sigma_0$  и  $|\sigma''| - |\sigma'| = |\sigma_0| < \varepsilon$ . Это показывает, что G — измеримое множество.

Лемма  $\hat{3}$ . Сумма двух множеств  $G_i$  и  $G_2$ , имеющих жорда-

нову меру нуль, в свою очередь имеет жорданову меру нуль.

Действительно, по условию для всякого  $\varepsilon > 0$  существуют фигуры  $\sigma_R'$  и  $\sigma_R''$  такие, что  $\sigma_R' \supset G_1$ ,  $\sigma_R'' \supset G_2$  и  $|\sigma_R''| < \varepsilon/2$ ,  $|\sigma_R''| < \varepsilon/2$ . Тогда фигура  $\sigma_R = \sigma_R' + \sigma_R''$  будет обладать свойствами

$$\sigma_{\scriptscriptstyle R}\supset G_1+G_2, \quad |\sigma_{\scriptscriptstyle R}|\leqslant \big|\sigma_{\scriptscriptstyle R}'\big|+\big|\sigma_{\scriptscriptstyle R}''\big|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Лемма 4. Вместе с G и  $G_i \subseteq G$  есть множество экоро̂ановой меры нуль.

Лемма очевилна.

Теорема 1. Если два множества  $G_1$  и  $G_2$  измеримы по Жордану, то измеримы по Жордану также их сумма, разность и пересечение.

Доказательство. Будем обозначать через  $\Gamma(E)$  границу множества E. Имеют место легко проверяемые теоретико-мпожественные вложения

$$\Gamma(G_1 + G_2) \subset \Gamma(G_1) + \Gamma(G_2),$$
  

$$\Gamma(G_1 \cdot G_2) \subset \Gamma(G_1) + \Gamma(G_2),$$
  

$$\Gamma(G_1 - G_2) \subset \Gamma(G_1) + \Gamma(G_2).$$

Так как  $G_1$  и  $G_2$  измеримы, то по лемме 2  $m\Gamma(G_1)=0$ ,  $m\Gamma(G_2)=0$ . Но тогда по лемме 3 правые части написанных вложений имеют меру нуль, по лемме 4 и левые части имеют меру нуль. Отсюда, применяя снова лемму 2, получим, что множества, указанные в теореме, измеримы.

Пемма 5. Если измеримое по Жордану множество G рассечь на две части  $G_1$  и  $G_2$  при помощи куска кривой L (в частности прямой), имеющей жорданову меру нуль, то каждая часть в свою очередь измерима по Жордану.

Доказательство. Очевидно, что

$$\Gamma(G_1) \subset \Gamma(G) + L$$
,  $\Gamma(G_2) \subset \Gamma(G) + L$ ,

откуда на основании предыдущих лемм следует утверждение.

Таким образом, если G есть измеримое по Жордану множество, то любая сетка  $S_N$  (связанная с любой системой коорди-

нат R) дробит G на части, каждая из которых измерима по Жордану. Диаметр каждой из этих частей не превышает  $\sqrt{2} \, 2^{-N}$ . Таким образом, при  $N \to \infty$  диаметры частей равномерно стремятся к нулю.

Отметим еще одно свойство фигур о.

е) Если фигуру  $\sigma$  подвергнуть  $\epsilon$  R операции сдвига или вращения, то получим фигуру  $\sigma'$  и  $|\sigma|=|\sigma'|$ .

С помощью этого свойства и того факта, что при сдвиге и

вращении соотношение вложения  $A \subseteq B$  сохраняется, следует

Лемма 6. Если  $G_*$  есть множество, полученное из измеримого множества  $G \subseteq R$  посредством сдвига или вращения его в R, то  $G_*$  — измеримое множество и  $mG = mG_*$ .

Пример. Приведем пример неквадрируемого (не измеримого в двумерном смысле) множества. Пусть G — не пустое открытое ограниченное множество и E — множество всех его рациональных точек, т. е. имеющих рациональные координаты (x, y). Очевидно, что  $\omega_N(E)$  есть пустое множество для любого натурального N и  $m_i(E) = 0$ . С другой стороны, пусть точка  $\mathbf{x}^0 \in G$ , тогда найдется невырожденный прямоугольник  $\Delta$ , принадлежащий G и содержащий  $\mathbf{x}^0$ . Очевидно, что  $\omega_N(E) \supset \Delta$ ,  $|\omega_N(E)| \geqslant |\Delta| > 0$ ,  $m_e E \geqslant |\Delta| > 0$ .

Таким образом,  $m_i E < m_e E$  и E — неквадрируемое множество.

Покажем аддитивное свойство жордановой меры.

Теорема 2. Если множества  $G_1$  и  $G_2$  измеримы по Жордану и имеют общие точки, принадлежащие разве что их границам, то их (измеримая по теореме 1) сумма имеет меру, равную сумме их мер:

$$m(G_1 + G_2) = mG_1 + mG_2. (7)$$

Доказательство. Зададим  $\varepsilon>0$  и подберем фигуры  $\sigma_1^{'}=\sigma_{1,R}^{'},\;\sigma_1^{''}=\sigma_{1,R}^{''},\;\sigma_2^{''}=\sigma_{2,R}^{''}$  такие, что

$$\sigma_1' \subset G_1 \subset \sigma_1'', \quad \sigma_2' \subset G_2 \subset \sigma_2'',$$

$$mG_1-\epsilon<\left|\sigma_1'\right|<\left|\sigma_1''\right|< mG_1+\epsilon,\ mG_2-\epsilon<\left|\sigma_2'\right|<\left|\sigma_2''\right|< mG_2+\epsilon.$$

Положим  $\sigma' = \sigma_1' + \sigma_2''$ ,  $\sigma'' = \sigma_1'' + \sigma_2''$ . Очевидно, что  $\sigma'$  и  $\sigma'' - \Phi$ игуры, при этом  $\sigma' \subset G_1 + G_2 \subset \sigma''$  и

$$|\sigma''| \leqslant |\sigma_1''| + |\sigma_2''|, \quad |\sigma'| = |\sigma_1'| + |\sigma_2'|. \tag{8}$$

Равенство в (8) справедливо потому, что  $\sigma_1'$  и  $\sigma_2'$  вместе с  $G_1$  и  $G_2$  пересекаются разве что по своим границам.

Теперь очевидно, что

$$\begin{split} (mG_1-\varepsilon)+(mG_2-\varepsilon) &< \left|\sigma_1'\right|+\left|\sigma_2'\right|=\left|\sigma'\right| \leqslant m_i \left(G_1+G_2\right) \leqslant \\ &\leqslant m_e \left(G_1+G_2\right) \leqslant \left|\sigma''\right| \leqslant \left|\sigma_1''\right|+\left|\sigma_2''\right| < \left(mG_1+\varepsilon\right)+\left(mG_2+\varepsilon\right), \end{split}$$

откуда в силу произвольности  $\varepsilon > 0$  следует (7).

Теорема 3. Если  $G_1$  и  $G_2$  измеримы по Жордану и  $G_1 \subseteq G_2$ , то

 $m(G_2 - G_1) = mG_2 - mG_1. (9)$ 

Доказательство. Измеримость  $G_2-G_1$  доказана в теореме 1, поэтому измеримое множество  $G_2$  распадается на два пепересекающиеся измеримые множества:  $G_2=G_1+(G_2-G_1)$ . По тогда равенство (9) следует из предыдущей теоремы.

# § 12.3. Важные примеры квадрируемых по Жордану множеств

Пусть функция f(x) неотрицательна на отрезке [a, b] и интегрируема (в частности, непрерывна) на нем. Обозначим через  $\Gamma$  ее график — множество всех точек (x, f(x)), где  $a \le x \le b$ , и через  $\Omega$  — множество всех точек (x, y) плоскости, для которых выполняются неравенства

$$a \leqslant x \leqslant b$$
,  $0 \leqslant y \leqslant f(x)$ .

Теорема 1. Множество  $\Omega$  измеримо и его мера (двумерная) равна

$$m\Omega = \int_{a}^{b} f(x) dx = I_{\bullet}$$

В самом деле, в силу интегрируемости f на [a, b] для любого  $\varepsilon > 0$  найдется разбиение R отрезка [a, b] такое, что

$$I - \frac{\epsilon}{2} < \underline{S}_R \leqslant \overline{S}_R < I + \frac{\epsilon}{2}$$

где  $S_R$  и  $\overline{S}_R$ — соответствующие R нижняя и верхняя интегральные суммы функции f, равные площадям фигур, первая из которых принадлежит  $\Omega$ , а вторая содержит  $\Omega$ .

Это доказывает теорему.

Теорема 2. Непрерывная (плоская) кривая  $\Gamma$  на плоскости x, y, проектируемая взаимно однозначно на отрезок [a, b] некоторой прямой L, есть множество точек, имеющее двумерную меру нуль.

В самом деле, можно считать, что  $\Gamma$  находится по одну сторону от прямой L, иначе в качестве L можно взять другую ей параллельную прямую, удовлетворяющую этим свойствам. Построим прямоугольную систему координат x, y с осью x, совнадающей с L. Тогда  $\Gamma$  будет графиком пекоторой непрерывной функции f(x) на отрезке [a, b].

Множество  $\Omega$ , определенное для f как в теореме 1, на основании этой теоремы измеримо, а  $\Gamma$  как часть границы  $\Omega$  имеет двумерную меру нуль.

Теорема 3. Плоское ограниченное множество Ω измеримо (в двумерном смысле), если его граница состоит из конечного

числа точек и кусков непрерывных кривых, каждый из которых проектируется взаимно однозначно на одну из осей прямоугольной системы координат.

В самом деле, граница множества  $\Omega$  есть сумма конечного

числа множеств, имеющих двумерную меру нуль.

Заметим, что гладкий кусок кривой  $\Gamma$   $x = \varphi(t)$ ,  $y = \psi(t)$  ( $a \le t \le b$ ) ( $\varphi'$  и  $\psi'$  непрерывны и  $\varphi'^2 + \psi'^2 > 0$ ) всегда можно разбить на конечное число частей, проектирующихся на одну из осей координат. Ведь (см. § 6.5) каждую точку  $t \in [a, b]$  можно покрыть интервалом (t', t'') (в случае t = a или t = b — полуинтервалом) таким, что соответствующая ему часть нашей гладкой кривой проектируется на одну из осей, а на основании леммы Бореля среди этих интервалов можно выбрать конечное их числю, все же покрывающих отрезок  $\{a, b\}$ . Другое доказательство того факта, что гладкий кусок кривой имеет двумерную меру пуль, см. в § 12.5, теорема 3.

В заключение отметим, что произвольная плоская непрерывная кривая может и не иметь двумерной меры нуль. Вспомним о кривой Пеано, точки которой заполняют квадрат (см. § 6.5).

## § 12.4. Еще один критерий измеримости множества. Полярные координаты

Внутреннюю и внешнюю меры ограниченного множества  $\Omega$  можно еще определить так:

$$m_i \Omega = \sup_{\Omega' \subset \Omega} m\Omega', \quad m_e \Omega = \inf_{\Omega' \supset \Omega} m\Omega',$$
 (1)

где  $\Omega'$  обозначает произвольное измеримое множество, в нервом случае принадлежащее  $\Omega_i$  а во втором — содержащее  $\Omega_i$  В самом деле, с одной стороны,

$$m_i \Omega = \sup_{\sigma \subset \Omega} |\sigma| \leqslant \sup_{\Omega' \subset \Omega} m\Omega' = I,$$

нотому что фигуры  $\sigma$  измеримы, а с другой стороны, если  $\varepsilon > 0$  и  $\Omega'$  такое измеримое множество, что  $\Omega' \subset \Omega$  и  $I - \varepsilon < m\Omega'$ , то найдется также  $\sigma \subset \Omega'$ , так что  $m\Omega' < |\sigma| + \varepsilon$ . Следовательно,  $I - 2\varepsilon < |\sigma| \leqslant m_i\Omega$ , и вследствие произвольности  $\varepsilon$  имеет место  $I \leqslant m_i\Omega$ . Мы доказали первое равенство (1). Подобным образом доказывается и второе.

Из (1), очевидно, следует: для того чтобы множество  $\Omega$  было измеримым, необходимо и достаточно, чтобы, каково бы ни было  $\varepsilon > 0$ , нашлись два измеримых множества  $\Omega'$  и  $\Omega''$  таких, что  $\Omega' \subset \Omega \subset \Omega''$  и  $m\Omega'' -$ 

 $-m\Omega' < \epsilon$ .

Площадь (двумерная жорданова мера) фигуры  $\Omega$ , ограниченной полярными лучами  $\theta=\theta_1,\ \theta=\theta_2\ (\theta_1<\theta_2)$  и кривой  $\Gamma$ , определяемой в полярных координатах непрерывной функцией  $\rho=f(\theta)$ , равна (см. § 10.1 и вопрос, поставленный там)

$$S = \frac{1}{2} \int_{\theta_1}^{\theta_2} f(\theta)^2 d\theta. \tag{2}$$

Покажем, что  $m\Omega=S$ . В самом доле, произвольный круговой сектор есть измеремое множество, потому что его грапица есть непрерывная кусочно гладкая кривая. Далее, из существования интеграла (2) следует, что для всякого  $\varepsilon>0$  найдется такое разбиение отрезка  $[\theta_1, \theta_2]$ , что соответствующая ему верхияя интегральная сумма отличается от нижней менее чем на  $\varepsilon$ . Но верхияя сумма есть мера суммы конечного числа круговых секторов, содержащих  $\Omega$ , а вижняя есть мера суммы конечного числа круговых секторов, содержащихся в  $\Omega$ . Это и доказывает наше утверждение в силу (1).

## § 12.5. Измеримые по Жордану трехмерные и n-мерные множества

Теория, изложенная в предыдущих параграфах, легко переносится на случай любого числа измерений  $n=1, 2, 3, \ldots$ 

Остановим пока наше внимание на случае трех измерений. В этом случае мы вводим в качестве простейших фигур замкнутые прямоугольники (параллелепипеды) и обозначаем их символами  $\Delta$ . Теперь уже в качестве меры  $\Delta$  рассматривается объем  $\Delta$ , т. е. число  $|\Delta|$ , равное произведению длин трех ребер  $\Delta$  (ширины, длины, высоты). Рассматриваются только невырожденные прямоугольники, у которых все три ребра положительны.

Вводим понятие фигуры  $\sigma$  как множества точек, представляющего собой конечную сумму прямоугольников  $\Delta$ , которые

могут пересекаться только по частям своих границ.

Объем  $|\sigma|$  фигуры  $\sigma$  определяется как сумма объемов  $|\Delta|$  прямоугольников  $\Delta$ , из которых она состоит. Пустое множество считается фигурой с объемом, равным нулю.

Если R' есть какая-либо прямоугольная система координат, то прямоугольники и фигуры с ребрами, параллельными осям R', обозначаем еще через  $\Delta_{R'}$  и  $\sigma_{R'}$ . Вводим в R=R, для каждого натурального числа N сеть  $S_N$ , образуемую тремя семействами плоскостей

$$x = kh$$
,  $y = lh$ ,  $z = mh$   $(h = 2^{-N}, k, l, m = 0, \pm 1, \pm 2, ...)$ .

Сеть  $S_N$  разбивает пространство R на кубы  $\Delta_h$  с ребрами длины h, парадлельными осям координат. Определяем для любого ограниченного множества  $G \subseteq R$  множество  $\omega_N(G)$  как сумму тех  $\Delta_h$ , которые полностью принадлежат G, и множество  $\omega_N(G)$  как сумму всех тех кубов  $\Delta_h$ , каждый из которых содержит в себе хотя бы одну точку из G.

Аналогично § 12.2 внешнюю и внутреннюю меры G определяем как пределы монотонных последовательностей

$$m_{e}G = \lim_{N \to \infty} |\widetilde{\omega}_{N}(G)|, \quad m_{i}G = \lim_{N \to \infty} |\widetilde{\omega}_{N}(G)|$$

и называем множеством G измеримым по Жордану в трехмерном смысле, если  $m_iG=m_eG=mG$ . Число mG называется жордановой трехмерной мерой G.

Свойства трехмерной меры совершенно аналогичны свойствам двумерной меры, изложенным в § 12.2. Чтобы убедиться в этом, иужно только проверить справедливость свойств а) — е) фигур о, тенерь уже трехмерных. Это проверяется элементарными средствами. Теоремы в § 12.2 были доказаны исключительно на основе свойств а) — е), поэтому эти утверждения верны и в трехмерном случае. Несколько видоизменяется только лемма 5 из § 12.2. В трехмерном случае она гласит:

Лемма. Если измеримое множество G⊂R рассечь на части при помощи конечного числа поверхностей, имеющих (трехмерную) меру нуль, то эти части будут измеримы (в трехмерном

смысле).

Изложенная теория по аналогии переносится на n-мерный случай, где n есть любое натуральное число ( $n=1, 2, \ldots$ ). Теперь уже  $R=R_n$  есть n-мерное действительное пространство точек  $\mathbf{x}=(x_1,\ldots,x_n)$ . Мы считаем, что R также обозначает определенную прямоугольную систему координат  $R(x_1,\ldots,x_n)$ . Можно в R ввести другую прямоугольную систему координат  $R'(\xi_1,\ldots,\xi_n)$ . Формулы преобразования  $R \neq R'$  записываются при номощи равенств (ортогопальных преобразований)

$$x_{k} = \sum_{l=1}^{n} a_{kl} \xi_{l} \quad (k = 1, ..., n),$$

$$\sum_{l=1}^{n} a_{kl} a_{k_{1}l} = \begin{cases} 0 & (k \neq k_{1}), \\ 1 & (k = k_{1}). \end{cases}$$

По определению множество  $\Delta \subseteq R$  называется прямоугольным параллеленипедом, если можно указать такую прямоугольную систему коордипат  $R'(\xi_1, \ldots, \xi_n)$  и такие пары чисел  $a_i < b_i$   $(j = 1, \ldots, n)$ , что  $\Delta = \{a_i \leq \xi_i \leq b_i; j = 1, \ldots, n\}$ .

Нетрудно показать, что указанная система координат R' (для данного  $\Delta$ ) единственна. n-мерный объем  $\Delta$  определяется как

число

$$|\Delta| = \prod_{j=1}^n (b_j - a_j).$$

Естественно говорить в этом случае, что  $\Delta$  имеет ребра, параллельные осям координат системы R', и писать  $\Delta = \Delta_{R'}$ . Элементарная фигура  $\sigma$  в R определяется как конечная сумма примоугольных паравлеленинедов  $\Delta$ , пересекающихся разве что по своим границам, а мера  $\sigma$ — как число  $|\sigma|$ , равное сумме мер указанных  $\Delta$ .

Пустое множество в  $R_n$  считается фигурой, имеющей n-мер-

ный объем, равный нулю.

Вводится также для каждого натурального N сеть  $S_N$  как n семейств илоскостей

$$x_j = k_j h$$
  $(j = 1, ..., n; h = 2^{-N}; k_j = 0, \pm 1, \pm 2, ...),$ 

разбивающих  $R_n$  на n-мерные кубы

$$\Delta_h = \{k_j h \leqslant x_j \leqslant (k_j + 1)h\}.$$

Если G — ограниченное множество в R, то по определенню множество  $\omega_N(G)$  есть теоретико-множественная сумма кубов  $\Delta_h$ , нолностью содержащихся в G, и множество  $\omega_N(G)$  есть сумма кубов  $\Delta_h$ , каждый из которых содержит хотя бы одну точку  $\mathbf{x} \in G$ . Очевидно, что существуют пределы монотонных последовательностей

$$\lim_{N\to\infty}|\omega_{N}(G)|=m_{i}G, \quad \lim_{N\to\infty}|\widetilde{\omega}_{N}(G)|=m_{e}G,$$

которые и называются соответственно внутренней и внешней памерными мерами G по Жордану.

Далее, множество G называется измеримым по Жордану в смысле n-мерной меры, если для него  $m_iG = m_eG = mG$ . Число

тС называется п-мерной мерой С по Жордану.

Теория n-мерной меры по Жордану полностью аналогична теории двухмерной меры, изложенной в § 12.2. Чтобы убедиться в этом, надо только проверить справедливость свойств а) — е) для n-мерных фигур  $\sigma$ . Это несколько кропотливо, по может быть выполнено по аналогии  $\sigma$  тем, как это делается в трехмерном случае.

Следующая теорема обобщает теорему 2 § 12.3.

Теорема 1. Новерхность S

$$x_n = f(x_1, \ldots, x_{n-1}) = f(Q) \quad (Q = (x_1, \ldots, x_{n-1}) \in \Lambda)$$

в n-мерном пространстве, где f — непрерывная функция на замкинутом ограниченном множестве  $\Lambda$ , имеет n-мерную меру нуль.

Доказательство. Так как функция f равномерно непрерывна на  $\Lambda$ , то для любого  $\varepsilon > 0$  найдется  $\delta > 0$  такое, что

$$|f(Q) - f(Q')| < \varepsilon$$
,  $|Q - Q'| < \delta$ ;  $Q, Q' \in \Lambda$ .

Pассечем  $R_n$  сеткой

$$x_i = \alpha_i h, \ \alpha_i = 0, \pm 1, \pm 2, \ldots; \ i = 1, \ldots, n-1,$$
  
 $x_n = k\varepsilon, \ k = 0, \pm 1, \pm 2, \ldots$ 

на равные прямоугольники  $\Delta$  (прямоугольные параллеленинеды). Высота каждого  $\Delta$  (в направлении  $x_n$ ) равна  $\varepsilon$ , а основание  $\Delta'$  (проекция  $\Delta$  на  $R_{n-1}(x_1, \ldots, x_{n-1})$ ) есть куб со стороной k, подобранной так, чтобы его днаметр был меньше  $\delta$ . Тем самым сетка рассекает  $R_{n-1}$  на кубы  $\Delta'$ . Так как  $\Lambda$  ограничено, то  $\Lambda$  содержится в некотором (n-1)-мерпом кубе, и общая мера кубов  $\Delta'$ , содержащих в себе точки  $\Lambda$ , не превышает некоторую константу M. Рассмотрим один из таких кубов  $\Delta'$ . Среди прямоугольников  $\Delta$ , имеющих его своей проекцией, может быть, очевидно, не более чем три, содержащих в себе точки поверхно-

сти S. Их общий объем не превышает  $3\varepsilon |\Delta'|$ , где  $|\Delta'|$  есть (n-1)-мерная мера  $\Delta'$ . Но тогда общий объем кубов  $\Delta$ , нокрывающих S, не превышает  $3 \epsilon M$ , то есть может быть сделан как угодно малым.

 $\Pi$  ример. Пусть в прямоугольной системе координат R задан прямоугольный параллелепипед  $\Delta$  со сторонами, параллельными осям другой прямоугольной системы R'. Пусть S — одна из его граней. Она проектируется взаимно однозначно на одно из (n-1)-мерных координатных подпространств, для определенности пусть это будет подпространство ( $x_1, \ldots$  $(x_{n-1})$ , и описывается линейной функцией (непрерывной) вида  $x_n = (x_n - 1)$ 

 $=\sum_{j=1}^{n}d_{j}x_{j}$ , ваданной на некотором ограниченном замкнутом множестве. По теореме 1 mS = 0. Так как  $\Delta$  имеет конечное число граней, то  $\Delta$  есть из-

меримое множество. Теорема 2. Открытое ограниченное не пустое множество С в пространстве  $R_n = R$  можно представить как сумму счетного числа кубов:

$$G = \sum_{1}^{\infty} \Delta_{h} \tag{1}$$

(замкнутых, с ребрами, параллельными осям координат), пересекающихся попарно разве что по своим границам. При этом

$$m_i G = \sum_{1}^{\infty} |\Delta_h| \tag{2}$$

(хотя G может и не быть измеримым по Жордану, см. § 19.7). Доказательство. Последовательность сеток  $S_N$  ( $N=1,\ 2,\ \ldots$ ) определяет (замкнутые) фигуры

$$\omega_1(G) \subset \omega_2(G) \subset \omega_3(G) \subset \ldots \subset G.$$

Так как G — открытое, то любая точка  $\mathbf{x}^{0}$  может быть покрыта открытым нубом  $\Delta \subset G$  с центром в ней. По тогда при достаточно большом N куб сетки  $S_N$ , содержащий  $x^0$ , будет принадлежать  $\Delta$ , следовательно, и G, тем самым он войдет в фигуру  $\omega_N(G)$ . Это показывает, что имеет место равенство

$$G = \omega_1(G) + (\omega_2(G) - \omega_1(G)) + (\omega_3(G) - \omega_2(G)) + \dots$$

Перенумеруем кубы  $\omega_1(G)$ , если они есть, дальше последующими померами перенумеруем кубы замыкания  $\omega_2(G)-\omega_1(G)$ , затем кубы замыкания  $\omega_3(G) = \omega_2(G)$  и т. д. В результате получим последовательность  $\Delta_1, \Delta_2, \ldots$ такую, что выполняется (1). Она бесконечна потому, что при любом т

замкнутое множество  $\sum_{1}^{\infty} \Delta_{k}$  отлично от содержащего его ограниченного открытого множества G.

Hance, 
$$\sum_{1}^{\infty} |\Delta_{k}| = \lim_{N \to \infty} \omega_{N}(G) = m_{i}G.$$

Tеорема 3. Поверхность S (m-мерная, m < n)

$$x_i = \varphi_i(\mathbf{u}) = \varphi_i(u_1, \ldots, u_m) \qquad (i = 1, \ldots, n; \mathbf{u} \in \Omega), \tag{3}$$

 $oldsymbol{arphi} \hat{oldsymbol{arphi}} e$   $oldsymbol{arphi}_{oldsymbol{t}}$  непрерывны вместс со своими частными производными

(замыкании ограниченного т-мерного открытого выпуклого множества), имеет п-мерную меру нуль.

Доказательство. Пусть

$$K \geqslant \left| \frac{\partial \varphi_i}{\partial u_j} \right| \text{ na } \Omega \quad (i=1,\ldots,n; j=1,\ldots,m).$$

Пространство точек  $\mathbf{u} = (u_1, \ldots, u_m)$  обозначим через  $R_m$ , а пространство точек  $\mathbf{x} = (x_1, \ldots, x_n)$  — через  $R_n$ . Разрежем  $R_m$  в  $R_n$  прямоугольными сетками на кубики с длинами ребер соответственно h и g. Поместим  $\Omega$  в куб  $\Delta \subset R_m$  с гранями, принадлежащими граням сетки  $R_m$ .

Пусть  $\mathbf{u} = (u_1, ..., u_m)$  есть точка определенного кубика  $\omega$  сетки  $R_m$   $\mathbf{u}' = (u_1, ..., u_m)$  — другая точка этого кубика. Пусть точки  $\mathbf{x} = (x_1, ..., x_n)$ ,  $\mathbf{x}' = (x_1', ..., x_n')$  на поверхности S соответствуют при помощи уравнений (3) точкам  $\mathbf{u}, \mathbf{u}' \in \omega$ .

Па основании теоремы о среднем (см. § 7.13, (12))

$$|x_j'-x_j| = \left|\sum_{s=1}^m \left(\frac{\partial \varphi_j}{\partial u_s}\right)_1 (u_s'-u_s)\right| \leqslant Kmh.$$

Здесь ( ) обозначает, что в ( ) подставлена некоторая промежуточная точка между и и и'.

Будем считать, что g = Kmh.

Тогда, если х попала в некоторый кубик  $\sigma$  сетки  $R_n$ , то точка х' будет, очевидно, принадлежать либо тому же кубику  $\sigma$ , либо одному из соседних  $\sigma$  ним кубиков сетки  $R_n$ . Количество таких возможных кубиков не превымает  $3^n$ . Общий их объем равен

 $3^n g^n = (3mK)^n h^n.$ 

Но количество всех кубиков  $\omega \subset \Delta$  равно  $|\Delta|/h^m$ , где  $|\Delta|$  есть m-мерный объем  $\Delta$ . Поэтому общий объем покрывающих пашу поверхность S кубиков  $\sigma$  равеп

$$(3MK)^{n} |\Delta| h^{n-m} = ch^{n-m}, \qquad c = (3mK)^{n} |\Delta|.$$

Мы видим, что при m < n эта величина стремится к вулю при  $h \to 0$ . Это показывает, что для всякого  $\varepsilon > 0$  можно указать такое h, что для него общий n-мерный объем кубиков, покрывающих S будет меньшим, чем  $\varepsilon > 0$ , и, следовательно, mS = 0.

### § 12.6. Понятие кратного интеграла

Определим это понятие в *п*-мерном случае. Специально в двух- и трехмерном случае опо уже вводилось в § 12.1 схематически.

Пусть  $R = R_n$  есть n-мерное евклидово пространство точек  $\mathbf{x} = (x_1, \ldots, x_n), \ \Omega \subseteq R_n$  — измеримое (следовательно, ограниченное) множество и на  $\Omega$  задана функция f(P) ( $P \in \Omega$ ).

Введем разбиение  $\Omega$  на частичные множества, т. е. представим  $\Omega$  в виде суммы

$$\Omega = \Omega_1 + \ldots + \Omega_N \tag{1}$$

конечного числа измеримых в n-мерном смысле по Жордану множеств  $\Omega_i$ , которые могут попарно пересекаться только по ча-

стям своих грапиц. Различные разбиения  $\Omega$  мы будем обозна-

чать символами р, р, ...

В каждом частичном множестве  $\Omega_i$  ( $i=1,\ldots,N$ ) разбиения о выберем произвольную точку  $P_i \in \Omega_i$  и составим интегральную сумму (по Риману):

$$S_{\rho} = S_{\rho}(f) = \sum_{1}^{N} f(P_{j}) m\Omega_{j}, \qquad (2)$$

гне  $m\Omega_i$  — мера Жордана множества  $\Omega_i$ .

Надо иметь в виду, что  $S_o$  зависит от функции f, способа разбиения  $\Omega$  на части и выбора точек  $P_i$  в каждом из частичных множеств  $\Omega_i$  разбиения.

Обозначим через δ максимальный диаметр множеств Ω<sub>1</sub>;

$$\delta = \delta(\rho) = \max_{1 \le j \le N} d(\Omega_j).$$

По определению предел

$$\lim_{\delta \to 0} \sum_{i=1}^{N} f(P_i) m\Omega_i = I \tag{3}$$

интегральной суммы f называется определенным (п-кратным) интегралом в смысле Римана от функции f по множеству  $\Omega$ .

Таким образом, определенным интегралом от функции f по множеству  $\Omega$  называют предел,  $\kappa$  которому стремится ее интегральная сумма, соответствующая переменному разбиению  $\Omega$ , когда максимальный диаметр частичных множеств разбиения стремится  $\kappa$  нулю (независимо от выбора точек  $P_j \in \Omega_j$ ).

Как обычно в анализе, это определение можно понимать в двух (эквивалентных) смыслах: на языке є, б и на языке после-

довательностей.

На языке ε, δ оно формулируется так:

Интегралом Римана от функции f по множеству  $\Omega$  называют число I, удовлетворяющее следующему свойству: для всякого  $\varepsilon>0$  должно найтись такое  $\delta>0$ , зависящее от  $\varepsilon$ , что, каково бы ни было разбиение  $\Omega$  на части  $\Omega$ , с диаметрами, меньшими чем  $\delta$ , и каков бы ни был выбор точек  $P_j \in \Omega_j$   $(j=1,2,3,\ldots,n)$ , выполняется неравенство:

$$\left|I - \sum_{j=1}^{N} f(P_j) \, m \Omega_j \right| < \varepsilon. \tag{4}$$

На языке последовательностей оно формулируется так:

Интеграл Римана от функции f по множеству  $\Omega$  есть предел.  $\kappa$  которому стремится любая последовательность интегральных сумм.  $S_{\rm ph}$  функции f, соответствующих разбиениям  $\rho_{\rm h}$  ( $k=1,2,\ldots$ ), со стремящимся  $\kappa$  нулю максимальным диаметром

 $\delta_k$  частичных множеств:

$$I = \int_{\Omega} f \, d\mathbf{x} = \int_{\Omega} f \, d\Omega = \lim S_{\rho h} \quad (\delta_h \to 0), \tag{5}$$

Сейчас уже заметим, что если определенная на измеримом множестве  $\Omega$  функция f ограничена и если для нее при некоторой вполне определенной последовательности разбиений ок существует предел (5), равный I, не зависящий от выбора точек  $P_j =$  $\in \Omega$ , то этого, как будет доказано в дальнейшем, достаточно для того, чтобы сказать, что существует интеграл от f на  $\Omega$ , равный І, т. е. тогда автоматически выполняется равенство (5), какова бы ни была последовательность разбиений р, р2, ..., для которой  $\delta_h \to 0$  (см. § 12.7, теорема 2, 2)).

Папомним, что в § 12.2 (после леммы 5) было показапо, что измеримое множество всегда можно разбить на части, имеющие

диаметры, меньшие наперед заданного  $\varepsilon > 0$ .

Интеграл Римана от функции f по  $\Omega$ , если он существует, обозначается так:

$$I = \int_{\Omega} f(P) d\Omega = \int_{\Omega} f(P) dP. \tag{6}$$

В этом случае говорят еще, что f интегрируема по Риману на  $\Omega$ . Высказанное выше условие римановой интегрируемости f на Ω можно выразить еще на языке признака Коши: для всякого  $\varepsilon > 0$  существует такое  $\delta > 0$ , зависящее от  $\varepsilon$ , что для любых двух разбиений  $\rho'$  и  $\rho''$  множества  $\Omega$  на части с диаметрами частичных множеств, меньшими б, имеет место неравенство

$$|S_{\rho'} - S_{\rho''}| < \varepsilon$$
.

n-кратный интеграл от f на множестве  $\Omega$  записывают еще так:

$$I = \int \dots \int_{\Omega} f(x_1, \dots, x_n) dx_1 \dots dx_n.$$

Это обозначение удобно потому, что, как мы увидим в дальнейшем, вычисление кратного интеграла сводится к вычислению соответствующих однократных интегралов в отдельности по  $x_1$ ,  $x_2, \ldots, x_n$ 

Если функция f(P) = A = const на измеримом множестве  $\Omega$ , то се интегральная сумма равна числу

$$S_{\rho} = \sum_{j=1}^{N} Am\Omega_{j} = Am\Omega,$$

не зависящему от способа разбиения  $\Omega$  на части. Поэтому

$$\int_{\Omega} A \, d\Omega = A \int_{\Omega} d\Omega = Am\Omega, \tag{7}$$

Отметим еще, что если  $\Omega$  имеет жорданову меру нуль ( $m\Omega=0$ ), то

$$\int_{\mathbf{b}} f \, d\Omega = \lim_{\max d(\Omega_j) \to 0} \sum_{j=1}^{N} f(P_j) \, m\Omega_j = \lim_{\max d(\Omega_j) \to 0} 0 = 0$$

пля любой конечной на  $\Omega$  функции f, даже если она не ограничена. Таким образом, из интегрируемости f на  $\Omega$  не всегда следует ограниченность f на  $\Omega$ . При исследовании функции f, определенной на произвольном измеримом множестве  $\Omega$ , мы (см. сноску на стр. 38) заранее будем предполагать, что она ограничена на  $\Omega$ . Впрочем, если  $\Omega$  — открытое измеримое множество, то из интегрируемости функции f на  $\Omega$  следует ограниченность ее на  $\Omega$  (см. далее § 12.10).

В будущем, чтобы избежать лишних слов, согласимся, что если про функцию f мы будем говорить, что она интегрируема по Риману на множестве  $\Omega \subset R_n$ , то этим будет подразумеваться, что  $\Omega$  есть измеримое в n-мерном смысле по Жордану множество. Это соглашение вполне естественно, так как определение интеграла по Риману на  $\Omega$  тесно связано с измеримостью  $\Omega$  по Жордану.

## § 12.7. Верхняя и нижняя интегральные суммы. Основная теорема

Пусть R есть n-мерное пространство. При нервом чтении читатель может считать, что n=2 или n=3, но рассуждения и формулировки в этом параграфе вполне апалогичны и при любом натуральном n, в том числе и при n=1.

Пусть задано измеримое (следовательно, ограниченное) по Жордану (в n-мерном смысле) множество  $\Omega$ , на котором опре-

делена ограниченная функция:

$$|f(P)| \le K < \infty \quad (P \in \Omega).$$

Множество  $\Omega$  может быть разбито на части (измеримые по Жордану и пересекающиеся разве что по своим границам) различными способами. Пусть  $\rho$  и  $\rho'$  — два такие разбиения:

$$\Omega = \Omega_1 + \ldots + \Omega_N, \quad \Omega = \Omega'_1 + \ldots + \Omega'_N.$$

Условимся говорить, что  $\rho'$  есть продолжение  $\rho$ , и писать  $\rho \subset \rho'$ , если любое частичное множество  $\Omega'_k$  ( $k=1,\ldots,N'$ ) разбиения  $\rho'$  есть часть одного из частичных множеств  $\Omega_i$  разбиения  $\rho$ . Иначе говоря, разбиение  $\rho'$  получается из  $\rho$ , если некоторые множества  $\Omega_i$  разбиения  $\rho$  в свою очередь разбить на конечное число частей

$$\Omega_j = \sum_{k=1}^{l_j} \Omega_{jk} \quad (k = 1, ..., l_j; j = 1, ..., N).$$

Таким образом, разбиение р' состоит из слагаемых кратной суммы

$$\Omega = \sum_{j=1}^{N} \sum_{k=1}^{l_j} \Omega_{jk} \tag{1}$$

Зададим разбиение  $\rho$ . Ему соответствует интегральная сумма функции f

$$S_{\rho} = \sum_{j=1}^{N} f(P_{j}) m\Omega_{j} = \sum_{\rho} f(P_{j}) m\Omega_{j}$$

 $(P_j \in \Omega_j)$ . Мы будем пользоваться как первой, так и второй приведенными записями  $S_o$ .

Положим

$$M_{j} = \sup_{P \in \Omega_{j}} f(P), \quad m_{j} = \inf_{P \in \Omega_{j}} j(P),$$
  
 $\bar{S}_{\rho} = \sum_{\Omega} M_{j} m \Omega_{j}, \quad \underline{S}_{\rho} = \sum_{\Omega} m_{j} m \Omega_{j}.$ 

Суммы  $\overline{S}_{\rho}$ ,  $\underline{S}_{\rho}$  пазываются соответственно верхней и нижней интегральными суммами функции f (соответствующими разбиению  $\rho$ ).

Для произвольной точки  $P_j \subseteq \Omega_j$  справедливы неравенства  $m_j \le f(P_j) \le M_j$  ( $j=1,\ldots,N$ ). Поэтому, учитывая, что  $m\Omega_j \ge 0$ , имеем

$$m_j m \Omega_j \leqslant f(P_j) m \Omega_j \leqslant M_j m \Omega_j,$$

откуда

$$\underline{S}_{\rho} \leqslant S_{\rho} \leqslant \overline{S}_{\rho}.$$
 (2)

Таким образом, любая (независимо от выбора точек  $P_i$ ) интегральная сумма функции f, соответствующая разбиению  $\rho$ , находится между ее нижней и верхней интегральными суммами, соответствующими тому же разбиению  $\rho$ .

Другое важное свойство верхних и нижних сумм заключается

в том, что если  $\rho \subseteq \rho'$ , то имеют место перавенства

$$S_{\rho} \leqslant S_{\rho'} \leqslant \overline{S}_{\rho'} \leqslant \overline{S}_{\rho}.$$
 (3)

Второе из них уже доказано.

 $\hat{\mathbf{H}}$ тобы убедиться в справедливости, например, третьего неравенства, запишем  $\bar{S}_{\rho'}$  в виде

$$\bar{S}_{\rho'} = \sum_{j=1}^{N} \sum_{k=1}^{l_j} M_{jk} m \Omega_{jk},$$

где

$$M_{jh} = \sup_{P \in \Omega_{ib}} f(P).$$

Для сравнения сумму  $\bar{S}_{o}$  можно записать подобным образом:

$$\bar{S}_{p}^{\cdot} = \sum_{j=1}^{N} M_{j} m \Omega_{j} = \sum_{j=1}^{N} M_{j} \sum_{k=1}^{l_{j}} m \Omega_{jk} = \sum_{j=1}^{N} \sum_{k=1}^{l_{j}} M_{j} m \Omega_{jk}.$$

Теперь ясно, что  $\overline{S}_{\varrho'}\leqslant \overline{S}_{\varrho}$ , потому что из вложения  $\Omega_{jk}\subset\Omega_{j}$  следует что  $M_{jk}\leqslant M_{j}$ .

Пусть теперь  $\rho_1$  и  $\rho_2$  — разбиения  $\Omega$  и  $\rho = \rho_1 + \rho_2$  есть новое разбиение, полученное наложением  $\rho_1$  на  $\rho_2$ . Тогда  $\rho$  есть продолжение  $\rho_1$  и  $\rho_2$  и

$$\underline{S}_{\rho_1} \leqslant \underline{S}_{\rho} \leqslant \overline{S}_{\rho} \leqslant \overline{S}_{\rho_2}.$$

Таким образом,

$$S_{\varrho_1} \leqslant \bar{S}_{\varrho_2},$$
 (4)

каковы бы ни были разбиения р. и р.

Если зафиксировать  $\rho_2$  и менять произвольно  $\rho_4$  (которое мы желаем обозначить через  $\rho$ ), то получим

$$\underline{I}(f) = \sup_{\rho} \underline{S}_{\rho} \leqslant \overline{S}_{\rho_2}.$$

А теперь, варьируя разбиения  $\rho_2$  (обозначаемые через  $\rho$ ), получим

$$\underline{I}(f) \leqslant \overline{I}(f) = \inf_{\rho} \overline{S}_{\rho}.$$

Числа  $\bar{I}(f)=\bar{I}$  и  $\underline{I}(f)=\underline{I}$  называются соответственно верхним и нижним интегралами функции f на  $\Omega$ . Из приведенных рассуждений следует, что для произвольной ограниченной на  $\Omega$  функции нижний и верхний интегралы на  $\Omega$  существуют.

Докажем важную теорему.

Теорема 1 (основная). Пусть  $\Omega \subset R$  есть измеримое множество (т. е. измеримое в п-мерном смысле по Жордану), на котором определена ограниченная функция  $f(|f(x)| \leq K)$ .

Тогда следующие учверждения эквивалентны:

1)  $I=\bar{I}$ ;

2)  $\overline{\partial}_{\Lambda R}$  всякого  $\varepsilon > 0$  найдется такое разбиение  $\rho$ , что

$$\vec{S}_{o} - S_{o} < \varepsilon; \tag{5}$$

3) для всякого  $\varepsilon > 0$  найдется  $\delta > 0$  такое, что для всех разбиений  $\rho$  с диаметрами  $d(\Omega_i) < \delta$  имеет место неравенство (5);

4) существует интеграл

$$\int_{\Omega} f \, d\Omega = I. \tag{6}$$

При этом  $I = \underline{I} = \overline{I}$ .

Здесь, конечно, подразумевается, что I и I— нижний и верхний интегралы от f на G, а  $S_{\mathfrak{o}}$ ,  $\overline{S}_{\bullet}$ — нижняя и верхняя интегральные суммы f, соответствующие разбиению  $\rho$ .

Эту теорему можно перефразировать так: для того чтобы существовал интеграл от f на  $\Omega$ , необходимо и достаточно выполнение одного из условий 1)-3). При этом величина интеграла

равна  $I = \bar{I}$ .

Доказательство. 1)  $\rightarrow$  2). Для любого в найдутся разбиения  $\rho_1$  и  $\rho_2$  такие, что

$$\underline{I} - \frac{\epsilon}{2} < \underline{S}_{\theta_1}; \quad \overline{S}_{\theta_2} < \overline{I} + \frac{\epsilon}{2}.$$

Тогда для  $\rho = \rho_1 + \rho_2$ 

$$\underline{I} - \frac{\varepsilon}{2} < \underline{S}_{\rho_1} \leqslant \underline{S}_{\rho} \leqslant \overline{S}_{\rho} \leqslant \overline{S}_{\rho_2} \leqslant \overline{I} + \frac{\varepsilon}{2}$$

откуда из 1) следует (5), т. е. 2).

- 2)  $\to$  1). Пусть  $\rho$  разбиение, для которого верно (5). Тогда в силу неравенств  $S_{\rho} \leq I \leq \bar{I} \leq \bar{S}_{\rho}$  имеет место  $\bar{I} I < \varepsilon$ . Но  $\varepsilon > 0$  как угодно малое число, а I и  $\bar{I}$  определенные числа, не зависящие от  $\varepsilon$ , поэтому  $I = \bar{I}$ .
- $4) \rightarrow 3$ ). Пусть существует интеграл (6). Из определения интеграла следует, что для всякого  $\varepsilon > 0$  можно указать такое  $\delta > 0$ , что для любого разбиения  $\rho$ , у которого  $d(\Omega_i) < \delta$ , имеют место перавенства

$$I - \frac{\varepsilon}{2} < \sum_{j=1}^{N} f(P_j) |\Omega_j| < I + \frac{\varepsilon}{2},$$

каковы бы ни были точки  $P_i \subseteq \Omega_i$ . Отсюда, беря верхиюю и нижнюю грапи вкодящей в эти перавенства суммы по  $P_i \subseteq \Omega_i$ , получим

$$I - \frac{\varepsilon}{2} \leqslant \underline{S}_{\varrho} \leqslant \overline{S}_{\varrho} \leqslant I + \frac{\varepsilon}{2}$$

следовательно, справедливо 3).

 $3) \rightarrow 2)$  — это тривиально.

 $2) \rightarrow 3$ ). Это самая негривиальная часть теоремы, утверждающая, что если для любого  $\epsilon > 0$  найдется зависящее от него разбиение  $\rho_*$ :

$$\Omega = \sum_{j=1}^{N} \dot{\Omega}_{j}^{*}$$
,

для которого  $\overline{S}_{0*} - S_{0*} < \varepsilon$ , то также найдется  $\delta > 0$  такое, что для всех разбиений  $\rho$  с  $d(\Omega_i) < \delta$  выполняется неравенство (5).

Обозначим через  $\Gamma_*$  объединение всех граничных точек  $\Omega_j^*$ , каково бы ни было  $j=1,\ldots,N$ . Оно имеет меру нуль ( $\Omega_j^*$  измеримы), и потому можно определить фигуру  $\sigma'$ , покрывающую  $\Gamma_*$ , такую, что  $|\sigma'| < \varepsilon/2K$ . Введем еще новую фигуру  $\sigma$ , содержащую строго внутри себя  $\sigma'$ , но такую, что  $|\sigma| < \varepsilon/2K$ .

Пусть  $\delta > 0$  есть настолько малое положительное число, что расстояние между любыми двумя точками границ  $\sigma$  и  $\sigma'$  больше, чем  $\delta$ . Тем-более расстояние любой точки  $\Gamma_*$  до границы  $\sigma$  боль-

ше, чем б.

Зададим какое-нибудь разбиение  $\rho$ , на которое наложено единственное условие, что все его частичные множества  $\omega$  имеют диаметр  $d(\omega) < \delta$  (нам удобно будет их писать без индексов, так же как соответствующие им m и M). Имеем

$$\overline{S}_{\rho} - \underline{S}_{\rho} = \sum' (M - m) m\omega + \sum'' (M - m) m\omega,$$

где сумма  $\sum_{k=0}^{\infty}$  распространена на все частичные множества  $\omega$  разбиения  $\rho$ , каждое из которых содержит в себе одну из точек  $\Gamma_*$ . Так как  $d(\omega) < \delta$ , то все такие  $\omega \subseteq \sigma$  и их общая мера не превымает  $m\sigma < \varepsilon/2K$ . Поэтому

$$\sum' (M-m) \, m\omega \leqslant 2K \sum' m\omega \leqslant 2K \frac{\varepsilon}{2K} = \varepsilon.$$

Сумму  $\sum_{i}$  запишем в виде кратной суммы  $\sum_{i}$  =  $\sum_{i}$   $\sum_{i}$ , где  $\sum_{i}$  обозначает сумму слагаемых  $\sum_{i}$ , соответствующих частичным множествам  $\omega$  разбиения  $\rho$ , понавшим полностью в частичное множество  $\Omega_{i}^{*}$  старого разбиения  $\rho_{*}$ . Имеем

$$\sum_{i}^{m} (M-m) m\omega = \sum_{i} \sum_{i}^{i} (M-m) m\omega \leqslant$$

$$\leqslant \sum_{i} (M_{i}^{*} - m_{i}^{*}) \sum_{i}^{i} m\omega \leqslant \sum_{i} (M_{i}^{*} - m_{i}^{*}) m\Omega_{i}^{*} < \varepsilon.$$

Поэтому  $\vec{S}_{\rho} - \underline{S}_{\rho} < 2\varepsilon$  для всех разбиений  $\rho$  с  $d(\omega) < \delta$ , т. е. имеет место 3).

3)  $\rightarrow$  4). Пусть имеет место 3). Тогда, как уже доназано, имеет место и 1). Зададим  $\epsilon > 0$  и подберем  $\delta > 0$  так, как указано в 3). Тогда для разбиений  $\rho$ , о которых говорится в 3),

$$\underline{S}_{\rho} \leqslant \sum f(P_j) |\Omega_j| \leqslant \overline{S}_{\rho}, \quad \underline{S}_{\rho} \leqslant \underline{I} = \overline{I} \leqslant \overline{S}_{\rho},$$
 (7)

Отсюда, полагая  $I = \underline{I} = \overline{I}$ , получим

$$|I - \sum_{i} f(P_i) |\Omega_i| | < \varepsilon, \tag{8}$$

т. e. I есть интеграл от f на  $\Omega$ . Мы доказали 4). Теорема полностью доказана.

T е о р е м а  $\ 2$ . Пусть задана последовательность разбиений  $ho_{\bf k}$   $(k=1,\,2,\,\ldots)$  измеримого множества  $\Omega_{\bf k}$ 

$$\Omega = \sum_{j=1}^{N_h} \Omega_j^h \qquad (k = 1, 2, ...), \tag{9}$$

со стремящимся к нулю максимальным диаметром  $\delta_k$  частичных множеств.

Если для некоторой ограниченной на  $\Omega$  функции f(x) выполняется одно из условий

$$\lim_{h\to\infty} \left( \overline{S}_{\rho_k}(f) - \underline{S}_{\rho_k}(f) \right) = 0, \tag{10}$$

2) 
$$\lim_{h\to\infty}\sum_{j}f(\xi_{j}^{h})\,m\Omega_{j}^{h}=I\qquad (\xi_{j}^{h}\in\Omega_{j}^{h}),\tag{11}$$

3) 
$$\lim_{h \to \infty} S_{\rho_h}(f) = \lim_{h \to \infty} \overline{S}_{\rho_h}(f) = I,$$
 (12)

то это влечет существование интеграла от f на  $\Omega$ .

Наоборот, существование интеграла от f на  $\Omega$  влечет выполнение условий 1), 2), 3).

 $C_{yu}$ ествования одного только из пределов 3) недостаточно для существования интеграла от f на  $\Omega$ .

Доказательство этой теоремы полностью аналогично доказательству одномерной теоремы 2 в § 9.4.

Теорема 3. Пусть задана последовательность разбиений (9) измеримого множества  $\Omega$  с  $\delta_{\mathbf{p}_k} = \max_{j} d\left(\Omega_j^k\right) \rightarrow 0$ . Тогда сумма мер

$$\sum_{i}' m\Omega_{i}^{k} = m\Omega^{k}$$

тех частей разбиения, которые прилегают к границе  $\Gamma$  области  $\Omega$   $(\overline{\Omega}_1^k$  содержат точки  $\Gamma$ ), стремится к нулю при  $k \to \infty$ .

Доказательство. Зададим  $\varepsilon > 0$  и подберем покрывающую  $\Gamma$  фигуру  $\sigma$  такую, что  $|\sigma| < \varepsilon$ . Раздадим  $\sigma$  по направлениям всех осей координат, но так, чтобы новая фигура  $\sigma' \supset \sigma$  имела меру  $|\sigma'| < \varepsilon$ . Обозначим через  $\eta$  расстояние между границами  $\sigma'$  и  $\sigma$ . Найдется  $k_0$  такое, что  $\delta_{\rho_k} < \eta$  для  $k > k_0$ . Для таких k частичные множества  $\Omega_i^h$ , прилегающие к  $\Gamma$ , принадлежат  $\sigma'$ ,  $\tau$ .  $\varepsilon$ .

$$m\Omega^{k} = \sum_{j}' m\Omega^{k}_{j} < |\sigma'| < \epsilon.$$

Теорем а 4. Определенный интеграл от ограниченной на измеримом множестве  $\Omega$  функции f можно определить как предел

$$\lim_{\boldsymbol{\delta}_{\boldsymbol{\rho}_{h}} \to \boldsymbol{0}} \sum_{j}' f(P_{j}^{h}) m \Omega_{j}^{h} = \int_{\Omega} f d\mathbf{x}$$

для какой-нибудь (одной!) последовательности разбиений (9) с  $\delta_{\rho_k} \to 0$ , где интегральные суммы распространены только на частичные множества  $\Omega_i^k$ , не прилегающие к  $\Gamma$ .

В самом деле, часть интегральной суммы, приходящаяся на частицы  $\Omega_j^k$ , прилегающие к  $\Gamma$ , оценивается в силу предыдущей теоремы следующим образом:

$$\left|\sum_{j}' f(P_{j}^{k}) m \Omega_{j}^{k}\right| \leqslant K \sum_{j}' m \Omega_{j}^{k} \to 0, \quad k \to 0 \quad (K > |f(x)|)_{\bullet}$$

# § 12.8. Интегрируемость непрерывной функции на замкнутом измеримом множестве. Другие критерии

Теорема 1. Функция f(P), непрерывная на замкнутом измеримом по Жордану множестве  $\Omega$ , интегрируема по Риману на  $\Omega$ .

Доказательство. Так как множество  $\Omega$  измеримо, то оно ограничено. Кроме того, оно замкнуто, поэтому непрерывная на  $\Omega$  функция f равномерно непрерывна на  $\Omega$ . Это значит, что для любого  $\varepsilon > 0$  существует такое  $\delta > 0$ , что если P',  $P'' \in \Omega$  и  $|P'' - P'| < \delta$ , то  $|f(P'') - f(P')| < \varepsilon$ .

Пусть  $\rho$  есть произвольное разбиение  $\Omega = \sum_{i=1}^{N} \Omega_{j}$  на измеримые части с диаметром  $d(\Omega_{j}) < \delta$  и пусть, как всегда,  $M_{j} = \sup_{\mathbf{x} \in \Omega_{j}} f(\mathbf{x})$ ,  $m_{j} = \inf f(\mathbf{x})$ . Тогда

$$m_j = \min_{\mathbf{x} \in \Omega_j} f(\mathbf{x})$$
. 10гда

$$M_{j}-m_{j}=\sup_{P',P''\in\Omega_{j}}\left[f\left(P''\right)-f\left(P'\right)\right]\leqslant\varepsilon,$$

потому что расстояние между любыми точками P',  $P'' \in \Omega_j$  не превышает по условию  $\delta$ . Следовательно,

$$\overline{S}_{\rho} - S_{\rho} = \sum (M_j - m_j) \, m\Omega_j \leqslant \varepsilon \sum m\Omega_j = \varepsilon m\Omega = \eta_{\bullet}$$

Так как  $\eta > 0$  может быть как угодно малым, то по основной теореме интеграл от f на  $\Omega$  существует.

Теорема 2. Функция f, ограниченная на измеримом замкнутом множестве  $\Omega$  и иепрерывная на  $\Omega$ , за исключением точек, образующих множество  $\Lambda$  меры нуль, интегрируема на  $\Omega$ .

Например, если функция f ограничена на илоском замкнутом множестве  $\Omega$ , имеющем гладкую границу (см. рис. 12.3) и, кроме того, непрерывна на  $\Omega$ , за исключением изо-

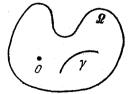


Рис. 12.3.

лированной точки O и гладкой дуги  $\gamma$ , то f интегрируема на  $\Omega$ . Доказательство. Пусть  $\varepsilon > 0$  и  $\sigma = \Lambda$  — открытая (без границы) фигура такая, что  $|\sigma| < \varepsilon$ . Тогда  $\Omega - \sigma$  есть измеримое

замкнутое множество, на котором f непрерывна, следовательно, интегрируема. Произведем разбиение  $\rho'$  множества  $\Omega - \sigma$ :  $\Omega - \sigma = \Omega_1 + \ldots + \Omega_N$  так, чтобы  $\overline{S}_{\rho'} - \underline{S}_{\rho'} < \varepsilon$ , и определим разбиение  $\rho$  множества  $\Omega$ :  $\Omega = \Omega_1 + \ldots + \Omega_N + \sigma\Omega$ . Положив  $M = \sup_{\alpha \in \sigma\Omega} f(\mathbf{x})$ ,  $m = \inf_{\alpha \in \sigma\Omega} f(\mathbf{x})$ , получим

$$\overline{S}_{\rho} - \underline{S}_{\rho} = (\overline{S}_{\rho'} - \underline{S}_{\rho'}) + (M - m) \, m \, (\sigma \Omega) < \varepsilon + 2K\varepsilon = \eta$$

$$(K > |f(\mathbf{x})|, \quad \mathbf{x} \in \Omega),$$

где  $\eta$  может быть как угодно малым. Но тогда согласно свойству 2) основной теоремы f интегрируема на  $\Omega$ .

Оказывается, что теорему 2 можно обобщить, считая, что множество  $\Lambda$  имеет лебегову меру нуль (вместо жордановой, как мы считали; см. ниже § 12.9).

В такой более общей формулировке теорема 2 становится

окончательной, потому что имеет место

Teopema (Лебега). Для того чтобы ограниченная на измеримом по Жордану замкнутом множестве  $\Omega$  функция  $f(\mathbf{x})$  была интегрируемой на  $\Omega$ , необходимо и достоточно, чтобы она была непрерывной на  $\Omega$ , за исключением множества точек, имеющих Лебегову меру нуль.

Пример. Рассмотрим функцию  $\psi(x,y)=\sin\frac{1}{xy}$  на полуоткрытом прямоугольнике  $\Delta'=\{0< x,\ y<\pi/2\}$ . Чтобы применить к ней теорему 2, будем рассуждать так. Доопределим  $\psi$  на отрезке  $0\leqslant x\leqslant\pi/2$  оси x и отрезке  $0\leqslant y\leqslant\pi/2$  оси y какими-нибудь значениями, однако ограниченными в совокупности. Продолженная таким образом на замкнутый прямоугольник  $\Delta=\Delta'$  функция  $\psi$  ограничена на  $\Delta$  и непрерывна всюду на  $\Delta$ , за исключением множества (состоящего из указанных двух отрезков) жордановой двумерной меры нуль. Но тогда по теореме 2 существует интеграл

$$\iint_{\Delta} \psi(x, y) dx dy = \iint_{\Delta'} \psi(x, y) dx dy$$

(см. далее § 12.11, теорема 1 и следствие из нее).

## § 12.9. Множество лебеговой меры нуль \*)

Произвольный открытый прямоугольный параллелепипед (прямоугольник)

 $\Delta = \{a_j < x_j < b_j; \quad j = 1, \ldots, n\}$ 

в n-мерном пространстве R называют еще uнrервалом (в R).

<sup>\*)</sup> Сведения, излагаемые в этом параграфе, содержатся в § 19.1,

Объем (п-мерная мера)  $\Delta$  равен

$$|\Delta| = \prod_{j=1}^n (b_j - a_j),$$

потому что замкнутый прямоугольник отличается от соответствующего открытого на множество меры (n-мерной) нуль.

По определению множество E имеет лебегову меру нуль, если для любого  $\varepsilon > 0$  можно указать конечное или счетное число интервалов  $\Delta^1$ ,  $\Delta^2$ , ..., покрывающих E ( $E \subset \Sigma \Delta^k$ ), сумма объемов которых меньше  $\varepsilon$ :  $\Sigma |\Delta^k| < \varepsilon$ .

В самом деле, зададим  $\varepsilon > 0$  и покроем наши множества следующим образом:  $E^h$  покроем счетной (или конечной) системой питервалов  $\Delta_j^h$ ,  $E^k \subset \sum_i \Delta_j^h$  таких, что  $\sum_i |\Delta_j^h| < \varepsilon/2^h$   $(k=1,2,\ldots)$ .

Так как интервалы  $\Delta_j^k$  (j, k = 1, 2, ...) можно заново перенумеровать и все они покрывают  $E = \sum_k E^k$  и сумма их объемов меньше  $\varepsilon = \sum_k (\varepsilon/2^k)$ , то в силу произвольности  $\varepsilon$  множество E имест лебегову меру нуль.

Если множество E имеет жорданову меру нуль, то это значит, что для всякого  $\varepsilon > 0$  его можно покрыть конечным числом интервалов с общим объемом, меньшим чем  $\varepsilon$ . Следовательно, E имеет также лебегову меру нуль. Этим объясняется, что мы пользуемся одним и тем же обозначением (mE=0) для жордановой и лебеговой меры. Впрочем, мы определили здесь только весьма частный случай меры Лебега, именно меры Лебега нуль.

Следует, однако, отметить, что множество может иметь лебегову меру нуль и в то же время не быть измеримым по Жордану. Например, множество рациональных чисел, содержащихся в отрезке [0, 1], имеет лебегову меру нуль, так как оно счетно. Но оно не измеримо (в одномерном смысле) по Жордану — верхняя жорданова его мера равна 1, а нижняя — нулю.

Отметим, что если множество F замкнуто, ограничено и имеет лебегову меру нуль, то для любого  $\varepsilon > 0$  можно указать счетную систему покрывающих F интервалов, общий объем которых меньше, чем  $\varepsilon > 0$ . Но согласно лемме Бореля в силу ограниченности и замкнутости F в этом покрытии можно оставить конечное число интервалов, все же покрывающих F. Их общий объем тем более меньше, чем  $\varepsilon$ . Но тогда F измеримо по Жордану. Мы доказали следующую лемму:

JI емма 2. Замкнутое ограниченное можество лебеговой меры нуль измеримо по Жордану и имеет, таким образом, жорданову меру нуль.

## § 12.10. Доказательство теоремы Лебега. Интегрируемость и ограниченность функции

В § 7.10 было введено понятие колебания  $\omega(\mathbf{x})$  ( $\omega(\mathbf{x}) \geqslant 0$ ) функции fна множестве  $\Omega$  в точке  $x \in \Omega$  и замечено, что (§ 7.10, теорема 5) функция непрерывна в точке тогда и только тогда, когда ее колебание в этой точке равно нулю ( $\omega(\mathbf{x}) = 0$ ). Таким образом, в точке разрыва функции ее колебание — заведомо положительная величина. Обозначим через  $E_{\lambda}$  множество всех точек  $x \in \Omega$ , где колебание f не менее  $\lambda > 0$  ( $\omega(\mathbf{x}) \geqslant \lambda$ ). Важно отметить, что если  $\Omega$  — замкнутое множество, то  $E_{\lambda}$  — множество, замкнутое при любом A (см. § 7.10, теорема 6).

Показательство достаточности условия теоремы. Пусть

функция f ограничена на замкнутом измеримом множестве  $\Omega$ .

$$|f(\mathbf{x})| \leqslant K \quad (\mathbf{x} \in \Omega), \tag{1}$$

и множество E ее точек разрыва имеет лебегову меру пуль  $(E \subset \Omega)$ .

Будем предполагать, что  $m\Omega>0$ , иначе утверждение тривиально. Зададим  $\varepsilon>0$ , и пусть  $\lambda>0$  удовлетворяет неравенству  $4\lambda m\Omega<\varepsilon$ . Так как лебегова мера mE=0, то и лебегова мера  $mE_\lambda=0$  при любом  $\lambda > 0$ . Но  $E_{\lambda}$  вамкнуто и ограничено, поэтому и жорданова мера  $mE_{\lambda} = 0$ . Но тогда для любого  $\varepsilon > 0$  можно указать покрывающее  $E_{\lambda}$  множество G, представляющее собой конечную систему интервалов меры  $|G| < \varepsilon/4K$ . G есть открытое измеримое множество, и так как множество  $\Omega$  замкнуто и ограничено, то  $\Omega$  можно записать в виде суммы непересекающихся измеримых по Жордану множеств  $\Omega = \Omega_1 + \Omega''$ , где  $\Omega_1 = G\Omega$ ,  $\Omega'' = \Omega - G$ ,  $m\Omega_1 \leqslant |G| < \varepsilon/4K$  и  $\Omega''$  к тому же — замкнутое ограниченное множество. Во всех точках  $\Omega''$  наша функция ѝмеет колебание, меньшее, чем  $\lambda$ . Но тогда, согласно теореме 3 § 7.10, можно указать такое  $\delta > 0$ , что каковы бы ии были точки  $P, P' \in \Omega''$ , такие, что  $|P-P'| < \delta$ , имеет место  $|f(P)-P'| < \delta$ 

$$-f(P')$$
|  $< 2\lambda$ . Произведем разбиение  $\Omega''$  на части  $\Omega'' = \sum_{j=1}^{N} \Omega_{j}$  диаметра,

меньшего, чем число б. Эти части вместе с уже определенным выше множеством  $\Omega_1$  образуют разбиение  $\rho$  всего множества  $\Omega$ . Для него, очевидно, имеют место оценки

$$\begin{split} \widetilde{S}_{p} - \underline{S}_{0} &= \left( M_{1} - m_{1} \right) m\Omega_{1} + \sum_{j=2}^{N} \left( M_{j} - m_{j} \right) m\Omega_{j} \leqslant \\ &\leqslant 2K \frac{\varepsilon}{4K} + 2\lambda \sum_{j=2}^{N} m\Omega_{j} < \frac{\varepsilon}{2} + 2\lambda m\Omega < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Следовательно, в силу произвольности є на основанни основной теоремы

функция f интегрируема на  $\Omega$ .

Доказательство необходимости условия теоремы. Пусть функция f ограничена на замкнутом измеримом множестве  $\Omega$  и интегрируема на нем. Тогда, согласно основной теореме, для любых  $\varepsilon>0$  и  $\lambda>0$ можно указать такое разбиение р множества  $\Omega$ , что (пояснения ниже)

$$\epsilon \lambda > \overline{S}_{\rho} - \underline{S}_{\rho} = \sum (M_j - m_j) m\Omega_j > \sum' (M_j - m_j) m\Omega_j \geqslant \lambda \sum' m\Omega_j.$$
 (2)

Сумма 2 распространена только на те слагаемые, которые соответствуют множествам  $\Omega_j$ , содержащим в себе хотя бы одну внутреннюю точку Pна  $E_{\lambda}$ . Такую точку можно покрыть принадлежащим к  $\Omega_{i}$  шаром  $V_{\delta}$  с центром в ней, и поэтому выполняются неравенства

$$M_{j} - m_{j} \geqslant M_{\delta} - m_{\delta} \geqslant \omega(P) \geqslant \lambda, \quad M_{\delta} = \sup_{\mathbf{x} \in V_{\delta}} f(\mathbf{x}), \quad m_{\delta} = \inf_{\mathbf{x} \in V_{\delta}} f(\mathbf{x}).$$

Из (2) после сокращения на λ получим неравенства

$$\epsilon > \sum' m\Omega_j = m \left(\sum' \Omega_j\right),$$

где  $\sum' \Omega_j$  содержит в себе точки  $E_\lambda$ , каждая из которых — внутренняя по отношению к какому-нибудь из множеств  $\Omega_j$  разбиения  $\rho$ . Остальные точки  $E_{\lambda_1}$  не попавшие в  $\sum_{i=1}^{k} \Omega_{i,j}$  могут оказаться только на границах множеств  $\Omega_j$   $(j=1,\ldots,N)$ , имеющих общую меру нуль. Таким образом, для любых  $\lambda>0$  и  $\epsilon>0$   $mE_\lambda<\epsilon$ , т. е.  $mE_\lambda=0$ . Но множество всех точек разрыва fможно записать в виде

$$E=\sum_{h=1}^{\infty}E_{1/h},$$

и так как  $mE_{1/k} = 0$  (k = 1, 2, ...), то и mE = 0.

Необходимость условия теоремы доказана.

Введем следующее полезное определение. Вудем говорить, что множество  $\Omega \subset R$  удовлетворяет свойству (A), если оно измеримо и если для

 $\Omega = \sum_{j} \Omega_{j}^{-}$  па измеримые части любого є > 0 можно указать разбиение положительной меры  $(m\Omega > 0)$  с диаметром  $d(\Omega_i) < \varepsilon$ .

Произвольное открытое измеримое множество Ω обладает своист-

BOM (A).

В самом деле, прямоугольная сетка с кубиками  $\Delta$  диаметра, меньшего arepsilon>0, разрезает  $\Omega$  на непустые измеримые части  $\Omega_{j}$ . Пусть  $\Omega_{j}$  есть часть  $\Delta, x^0 \subset \Omega_j \subset \Omega$ , тогда найдется шар  $V_{x^0}$  с центром в  $\mathbf{x}^0$ , содержащийся в  $\Omega$ , и пересечение  $V_{\downarrow 0} \Delta \subset \Omega_j$ . Но легко видеть, что мера  $m(V_{\downarrow 0}\Delta) > 0$ .

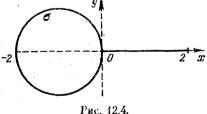
Конечно, вместе с открытым измеримым множеством  $\Omega$  обладает свой-

ством (A) и его замыкание  $\Omega$ .

Прямоугольник, круг, эллипс (точнее, его внутренность) — все это примеры двумерных множеств, обладающих свойством (А). Примерами одномерных множеств со свойством (А) могут служить отрезок, конечная система отрезков, интервал, а примерами трехмерных множеств со свойством

(А) — шар, куб, фигура, эллипсоид,

тор. С другой стороны, плоское множество О, изображенное на рис. 12.4, состоящее из круга о и отрезка [0, 2] на оси x, не обладает свойством (A). Оно измеримо, потому что его граница состоит из конечного числа гладких кусков. Однако, например, при  $\varepsilon < 1/2$  нельзя  $\Omega$  разбить на измеримые (в двухмерном смысле) части положительной меры с диаметром, меньшим чем с.



Теорема 1. Функция f, интегрируемая на множестве  $\Omega$  со свойством (A), ограничена на  $\Omega$ .

В самом деле, зададим  $\delta > 0$  и возьмем разбиение  $\rho$  множества  $\Omega$  на части  $\Omega_j$   $(j=1,\ldots,N)$  положительной меры с  $\delta_p=\max d$   $(\Omega_j)<\delta$ . Пусть функция f неограничена на  $\Omega$ ; тогда она неограничена по крайней мере на одном из множеств  $\Omega_j$  — пусть на  $\Omega_1$ . Соответствующую интегральную сумму запишем в виде

$$S_{\mathbf{p}} = f(p_{\mathbf{i}}) \, m\Omega_{\mathbf{i}} + \sum_{j=2}^{N} f(p_{j}) \, m\Omega_{\mathbf{j}}. \tag{3}$$

При данном  $\rho$  и фиксированных  $p_j$   $(j=2,\ldots,n-1)$  сумма  $\sum_{j=2}^N f\left(p_j\right) m\Omega_j$  ностоянна, а величина  $f(p_1)m\Omega_1$  при произвольном изменении  $p_1$  в пределах  $\Omega_1$  не ограничена (ведь  $m\Omega_1>0$ ). Но тогда интегральная сумма  $\mathcal{S}_\rho$  не ограничена. Это показывает, что  $\mathcal{S}_\rho$  для указанных  $\rho$  и  $\delta_\rho \to 0$  (при любых  $p_j \in \Omega_j$ !) не может стремиться ни к какому конечному пределу, и, сле-

довательно, наша функция f не интегрируема на  $\Omega$  (ср. с теоремой 1 § 9.2). Для множеств, обладающих свойством (A), теорему Лебега можно.

очевидно, сформулировать следующим образом:

T е о р е ма 2. Пусть  $\Omega$  есть замкнутое множество, обладающее свойством (A). Для того чтобы определенная на  $\Omega$  функция f была интегрируемой на  $\Omega$ , необходимо и достаточно, чтобы она была ограниченной на  $\Omega$  и непрерывной на  $\Omega$ , за исключением точек множества лебеговой меры нуль.

#### § 12.11, Свойства кратных интегралов

Теорема 1. Если функция f ограничена и интегрируема на  $\Omega=\Omega'+\Omega''$ , где  $\Omega'$  и  $\Omega''$  измеримы и пересекаются разве что по своим границам, то она также интегрируема на  $\Omega'$  и  $\Omega''$ , и наоборот. При этом\*)

$$\int_{\Omega} f d\mathbf{x} = \int_{\Omega'} f d\mathbf{x} + \int_{\Omega''} f d\mathbf{x}.$$
 (1)

Берем произвольную последовательность разбиений  $\rho_k$  ( $k=1,2,\ldots$ ) множества  $\Omega$ , содержащих в себе границы  $\Omega'$  и  $\Omega''$ . Они индуцируют на  $\Omega'$ ,  $\Omega''$  разбиения  $\rho_k'$  и  $\rho_k''$ . Дальше надо рассуждать в точности так же, как при доказательстве одномерной теоремы 1 из § 9.7, только теперь роль отрезков [a, c], [c, b] играют множества  $\Omega'$  и  $\Omega''$ .

Спедствие. Если ограниченную и интегрируемую на  $\Omega$  функцию f видоизменить на любом множестве  $E \subset \Omega$ , имеющем жорданову меру нуль, так что видоизмененная функция  $f_1$  останется ограниченной на  $\Omega$ , то  $f_1$  будет интегрируемой на  $\Omega$  и

$$\int_{\Omega} f \, d\Omega = \int_{\Omega} f_1 \, d\Omega.$$

<sup>\*)</sup> Для неограниченных f равенство (1) может нарушиться. Например, если f=0 на  $\sigma$  (рис. 12.4) и  $f=x^{-1}$  на полуинтервале  $\gamma=(0,\ 2]$  оси x, то  $\int_{\sigma}^{\infty} f \, dx \, dy = \int_{\mathbf{v}}^{\infty} f \, dx \, dy = 0$ . Но  $\int_{\sigma}^{\infty} f \, dx \, dy$  не существует,

В самом деле,  $\Omega-E$  измеримо вместе с  $\Omega$ , поэтому f интегрируема на  $\Omega-E$ , кроме того,

$$\int_E f \, d\Omega = \int_E f_1 \, d\Omega = 0.$$

Но тогда  $f_1$  интегрируема на  $\Omega$  и

$$\int_{\Omega} f_1 d\Omega = \int_{\Omega - E} f_1 d\Omega + \int_{E} f_1 d\Omega = \int_{\Omega - E} f d\Omega + \int_{E} f d\Omega = \int_{\Omega} f d\Omega.$$

В силу этого утверждения, если функция f ограничена на незамкнутом измеримом множестве  $\Omega$  и интегрируема на нем, то numyr

$$\int_{\Omega} f \, d\mathbf{x} = \int_{\overline{\Omega}} f \, d\mathbf{x},$$

хотя функция f могла не быть определенной на  $\overline{\Omega}-\Omega$ . Ведь все равно, если бы f была определена на  $\overline{\Omega}-\Omega$  так, что совокупность ее значений на  $\overline{\Omega}-\Omega$  ограничена, то интегралы от f на  $\Omega$  и  $\overline{\Omega}$  совнадают.

Теорема 2. Если  $f(\mathbf{x})$  и  $\phi(\mathbf{x})$  — ограниченные интегрируемые на  $\Omega$  функции и с — постоянная, то функции

1)  $f(\mathbf{x}) \pm \phi(\mathbf{x})$ , 2)  $cf(\mathbf{x})$ , 3)  $|f(\mathbf{x})|$ , 4)  $f(\mathbf{x})\phi(\mathbf{x})$ , 5)  $1/f(\mathbf{x})$ ,  $c\partial e |f(\mathbf{x})| > d > 0$ , интегрируемы на  $\Omega$ . При этом

$$\int_{\Omega} (f \pm \varphi) d\mathbf{x} = \int_{\Omega} f d\mathbf{x} \pm \int_{\Omega} \varphi d\mathbf{x}, \qquad (2)$$

$$\int_{\Omega} cf \, d\mathbf{x} = c \int_{\Omega} f \, d\mathbf{x},\tag{3}$$

Заметим, что факт интегрируемости указанных функций непосредственно следует из теоремы Лебега, если принять во внимание, что лебегова мера суммы двух множеств, имеющих лебегову меру пуль, очевидно, в свою очередь равна нулю.

Равенства (2) и (3) доказываются вполне аналогично тому, как это делалось в теореме 2 § 9.7. Существование интегралов от функций 1)—5) можно доказать и не прибегая к теореме Лебега, аналогично тому, как это было сделано в указанной одномерной теореме.

T е ор е м а 3. Если функции  $f_1$ ,  $f_2$  и  $\phi$  ограничены и интегрируемы на  $\Omega$  и

$$f_1(P) \leqslant f_2(P), \ \varphi(P) \geqslant 0 \quad (P \in \Omega),$$
 (4)

10

$$\int_{\Omega} f_1 \varphi \, dP \leqslant \int_{\Omega} f_2 \varphi \, dP. \tag{5}$$

В частности, если

$$A \leq f(P) \leq B, \quad \varphi(P) \geqslant 0, \tag{6}$$

 $e\partial e \Lambda u B - noctoshhe, to$ 

$$A \int_{\Omega} \varphi \, dP \leqslant \int_{\Omega} f \varphi \, dP \leqslant B \int_{\Omega} \varphi \, dP, \tag{7}$$

и при некотором С

$$\int_{\Omega} f \varphi \, dP = C \int_{\Omega} \varphi \, dP \quad (A \leqslant C \leqslant B). \tag{8}$$

Доказательство. Из (4) следует, что

$$f_1(P)\varphi(P) \leqslant f_2(P)\varphi(P) \quad (P \in \Omega),$$

откуда для любого разбиения р множества Ω

$$S_{\rho}(f_1\varphi) \leqslant S_{\rho}(f_2\varphi).$$

Переходя к пределу при  $\delta \to 0$ , где  $\delta$  — максимальный диаметр частичных множеств разбиения  $\rho$ , получим (5).

Равенство (8) называют теоремой о среднем для кратного ин-

теграла.

Примечание. Если  $\Omega$  — связное измеримое замкнутое множество и функция f непрерывна на  $\Omega$ , то

$$\int_{\Omega} f\varphi \, dP = f(Q) \int_{\Omega} \varphi \, dP,$$

где Q — некоторая точка  $\Omega$ .

В самом деле, из непрерывности f на замкнутом измеримом множестве  $\Omega$  следует, что f интегрируема на  $\Omega$ , кроме того, существуют на  $\Omega$  точки  $Q_1$  и  $Q_2$ , в которых f достигает соответственно минимума и максимума (на  $\Omega$ ):

$$\min_{P \in \Omega} f(P) = f(Q_1) = A, \quad \max_{P \in \Omega} f(P) = f(Q_2) = B.$$

В силу связности  $\Omega$  существует находящаяся в  $\Omega$  непрерывная кривая  $P=P(t)=\{\varphi_1(t),\ldots,\ \varphi_n(t)\}\ (t_1\leqslant t\leqslant t_2),$  соединяющая точки  $Q_1=P(t_1)$  и  $Q_2=P(t_2).$  Непрерывная на отрезке  $[t_1,\ t_2]$  функция

$$z = f(P(t)) = f(\varphi_1(t), \ldots, \varphi_n(t)) = \psi(t) \qquad [t_1 \leqslant t \leqslant t_2]$$

принимает для некоторого  $t_0 \in [t_1, t_2]$  значение  $\psi(t_0) = f(Q) = C$ , где  $Q = P(t_0)$ .

Теорема 4. Для ограниченной интегрируемой на Ω функции f выполняются неравенства

$$\left| \int_{\Omega} f \, d\mathbf{x} \right| \leqslant \int_{\Omega} |f| \, d\mathbf{x} \leqslant Km\Omega \quad \left( K = \sup_{\mathbf{x} \in \Omega} |f(\mathbf{x})| \right). \tag{9}$$

В самом деле, интегрируемость |f| доказана в теореме 2. Кроме того,

 $-|f(\mathbf{x})| \le f(\mathbf{x}) \le |f(\mathbf{x})| \quad (\mathbf{x} \in \Omega),$ 

откуда

$$-\int_{\Omega} |f| d\mathbf{x} \leqslant \int_{\Omega} f d\mathbf{x} \leqslant \int_{\Omega} |f| d\mathbf{x}.$$

Отметим, что в неравенстве (9) недостаточно предполагать интегрируемость  $|f(\mathbf{x})|$  (см. замечание в конце § 9.7).

# § 12.12. Сведение кратного интеграла к интегралам по отдельным переменным

На основании доказываемых ниже теорем вычисление кратного интеграла сводится к последовательному интегрированию по отдельным переменным  $x_1, x_2, x_3, \ldots$ 

Теорема 1. Пусть в плоскости переменных (u, v) задан прямоугольник  $\Delta = \{a \le u \le b; c \le v \le d\} = [a, b] \times [c, d]$ , и функция f(u, v) ограничена и интегрируема на нем. Тогда имеют место равенства

$$\int_{\Delta} \int f(u, v) \, du \, dv = \int_{a}^{b} du \left( \int_{a}^{d} f(u, v) \, dv \right) = \int_{c}^{d} dv \left( \int_{a}^{b} f(u, v) \, du \right), \quad (1)$$

где выражение

$$\int_{0}^{d} f(u, v) dv$$
 (2)

надо понимать как интеграл Римана по v при фиксированном u если он существует, если же он не существует,— то как произвольное число, находящееся между нижним u верхним интегралами функции f(u, v) по  $v \in [c, d]$ . Интеграл по u на [a, b] во втором члене s (1) существует s смысле Римана.

Если читатель ознакомился с § 12.10, то он знает, что прямоугольник  $\Delta$  есть множество, удовлетворяющее свойству (A), и следовательно, на самом деле из интегрируемости f на  $\Delta$  следует ее ограниченность на  $\Delta$ .

Если не только существует кратный интеграл от f по  $\Delta$ , но и существует интеграл (2) при любом u, то второй член в цепи (1) надо понимать как результат риманова интегрирования f сийчала по v, а затем по u.

Аналогичное утверждение имеет место для третьего члена непи (1).

Доказательство. Для любого  $u \in [a, b]$  будем рассматривать f(u, v) как функцию от v на [c, d]. Она ограничена, и следовательно, для нее существуют нижний и верхний интегралы  $I(u) \leq \bar{I}(u)$   $(a \leq u \leq b)$ . Пусть  $\Phi(u)$  — какая-либо функция, удов-

летворяющая неравенствам  $I(u) \leqslant \Phi(u) \leqslant \bar{I}(u)$  ( $a \leqslant u \leqslant b$ ). Надо доказать, что  $\Phi(u)$  интегрируема на [a,b] и имеет интеграл, равный кратному интегралу от f по  $\Delta$ . Для этого достаточно (см. теорему 2 § 9.4) произвести разбиение r отрезка [a,b] на равные части  $a=u_0 < u_1 < \ldots < u_N = b$ ,  $h=u_i-u_{i-1}=(b-a)/N$  и. показать существование предела

$$\lim_{h\to 0} S_r(\Phi) = \lim_{N\to\infty} \sum_{i=1}^N \Phi(\xi_i) h = \int_a^b \Phi(u) du = \int_A \int f du dv \qquad (3)$$

при любом выборе  $\xi_i \subset [u_{i-1}, u_i]$  (j = 1, ..., N).

Разделим еще отрезок [c,d] на N равных частей  $c=v_0 < < v_1 < \ldots < v_N = d$ ,  $k=v_j-v_{j-1}=(d-c)/N$  разбиением  $\rho$ . Это приводит к разбиению прямоугольника  $\Delta$  на равные прямоугольники  $\Delta_{ij}=[u_{i-1},\ u_i]\times [v_{j-1},\ v_j]$  и к верхней и нижней суммам f на  $\Delta$ :

$$\overline{S}_{r \times \rho}(f) = hk \sum_{i} \sum_{j} M_{ij}, \quad \underline{S}_{r \times \rho}(f) = hk \sum_{i} \sum_{j} m_{ij},$$

Так как

$$\Phi\left(\xi_{i}\right) \leqslant \widetilde{I}\left(\xi_{i}\right) \leqslant k \sum_{j} \sup_{v_{j-1} \leqslant v \leqslant v_{j}} f\left(\xi_{i}, v\right) \leqslant k \sum_{j} M_{ij},$$

и аналогично

$$\Phi\left(\xi_{i}\right) \geqslant k \sum_{i} m_{ij},$$

TO

$$S_{r \times \rho}(f) \leqslant \sum_{i=1}^{N} \Phi(\xi_i) h \leqslant \overline{S}_{r \times \rho}(f).$$

Но по условию f-интегрируема на  $\Delta$ , поэтому существуют пределы

$$\lim_{N\to\infty} \underline{S_{r\times\rho}}(f) = \lim_{N\to\infty} \overline{S_{r\times\rho}}(f) = \int_{\Delta} f \, du \, dv_{\bullet}$$

Поэтому существует предел (3), и мы доказали первое равенство

(1). Второе доказывается аналогично.

Рассмотрим тенерь n-мерный прямоугольник  $\Delta = \{a_i \le x_i \le b_i; j=1,\ldots,n\}$ . Обозначим через  $\Delta'$  проекцию  $\Delta$  на координатное подпространство точек  $\mathbf{u}=(x_1,\ldots,x_m)\colon \Delta'=\{a_i \le x_i \le b_i; j=1,\ldots,m\}$  ( $1\le m< n$ ), и через  $\Delta''$ — проекцию  $\Delta$  на координатное нодпространство точек  $\mathbf{v}=(x_{m+1},\ldots,x_n)\colon \Delta''=\{a_i \le x_i \le b_i; j=m+1,\ldots,n\}$ . Будем писать

$$x = (u, v), \quad \Delta = \Delta' \times \Delta''.$$

Имеет место теорема, обобщающая теорему 1:

Теорема 2. Пусть функция  $f(x_1, \ldots, x_n) = f(\mathbf{u}, \mathbf{v})$  интегрируема на прямоугольнике  $\Delta = \Delta' \times \Delta''$  ( $\mathbf{u} \in \Delta', \mathbf{v} \in \Delta''$ ). Тогда

справедливо равенство

$$\int_{\Delta} \int f(\mathbf{u}, \mathbf{v}) d\mathbf{u} d\mathbf{v} = \int_{\Delta'} d\mathbf{u} \int_{\Delta''} f(\mathbf{u}, \mathbf{v}) d\mathbf{v}, \tag{4}$$

где выражение  $\int_{\Delta''} f(\mathbf{u}, \mathbf{v}) d\mathbf{v}$  надо понимать как интеграл Римана по  $\mathbf{v}$  при фиксированном  $\mathbf{u}$  или, если он не существует, как произвольное число между нижним  $\mathbf{u}$  верхним интегралом от  $f(\mathbf{u}, \mathbf{v})$  по  $\mathbf{v} \in \Delta''$ . Интеграл по  $\mathbf{u}$  на  $\Delta'$  в правой части (4) существует в смысле Римана. Если, в частности, кроме условия теоремы, известно, что функция  $f(\mathbf{u}, \mathbf{v})$  интегрируема по  $\mathbf{v} \in \Delta''$  для любого  $\mathbf{u} \in \Delta'$ , то правая часть (4) без всяких оговорок есть результат последовательного интегрирования f по Риману сначала по  $\mathbf{v} \in \Delta''$ , а затем по  $\mathbf{u} \in \Delta'$ .

Доказательство совершенно аналогично доказательству теоремы 1. Производится разбиение r (m-мерного) прямоугольника  $\Delta'$  на  $N^m$  равных прямоугольников  $\Delta'_1$ ,  $\Delta'_2$ , ... с m-мерными мерами

$$h = |\Delta'_i|^m = h_1 \dots h_m = \frac{(b_1 - a_1) \dots (b_m - a_m)}{N^m}$$

и разбиение (n-m)-мерного прямоугольника  $\Delta''$  на  $N^{n-m}$  равных ирямоугольников  $\Delta_1''$ ,  $\Delta_2''$ , . . . . с (n-m)-мерными мерами

$$g = |\Delta_j''|^{n-m} = h_{m+1} \dots h_n = \frac{(b_{m+1} - a_{m+1}) \dots (b_n - a_n)}{N^{n-m}}.$$

В результате естественным образом получается разбиение  $r \times 
ho$ 

$$\Delta = \sum_{i} \sum_{j} \Delta'_{i} \times \Delta''_{j}.$$

Ему соответствуют верхняя и нижняя суммы  $\overline{S}_{r \times p}(f) = hg \sum_{i} \sum_{j} M_{ij}$ ,  $\underline{S}_{r \times p}(f) = hg \sum_{i} \sum_{j} m_{ij}$ .

Функция  $\Phi(\mathbf{u})$  определяется как любая функция, удовлетворяющая неравенствам  $I(\mathbf{u}) \leq \Phi(\mathbf{u}) \leq \overline{I}(\mathbf{u})$ , где  $I(\mathbf{u})$  и  $\overline{I}(\mathbf{u})$  — нижний и верхний интегралы от  $f(\mathbf{u}, \mathbf{v})$  по  $\mathbf{v} \in \Delta''$ .

Дальше мы должны рассуждать, как при доказательстве пре-

дыдущей теоремы, заменяя там  $\xi_i \in [u_{i-1}, u_i]$  на  $\xi_i \in \Delta_i$ .

Теорема 3. Пусть функция  $f(\mathbf{x}) = f(x_1, \ldots, x_n)$  не только интегрируема на прямоугольнике  $\Delta$ , но каково бы ни было натуральное  $k = 1, \ldots, n-1$  и при любых допустимых  $(x_1, \ldots, x_n)$  она интегрируема по  $\Delta^k$  — проекции  $\Delta$  на подпространство

 $\mathbf{u}^n = (x_{k+1}, \ldots, x_n)$ . Torda имеет место равенство  $(\Delta = \{a_j \leqslant x_j \leqslant b_j\})$ 

$$\int_{\Delta} \dots \int f \, dx_1 \dots dx_n = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_3} dx_2 \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) \, dx_n,$$

еде интегралы в правой части понимаются в смысле Римана.

В самом деле, применяя предыдущую теорему последовательно, получим

$$\int_{\Delta} f \, d\mathbf{x} = \int_{a_1}^{b_1} dx_1 \int_{\Delta'} f(x_1, \mathbf{u}^1) \, d\mathbf{u}' = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} dx_2 \int_{\Delta^2} f(x, x_2, \mathbf{u}^2) \, d\mathbf{u}^2 = \dots$$

$$= \int_{a_1}^{b_1} dx_1 \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) \, dx_n, \quad (5)$$

В общем случае сведение вычисления кратных интегралов к последовательному интегрированию по каждой переменной в отдельности основывается на лемме, доказываемой ниже.

Пусть  $\Omega$  — ограниченное множество. Обозначим через  $e_1$  его проекцию на ось  $x_i$ . В частности, если  $\Omega$  — область, то  $e_1$  — интервал, а если  $\Omega$  — замыкание области, то  $e_1$  — отрезок [a, b], где  $a = \min_{\mathbf{x} \in \Omega} x_i$ ,  $b = \max_{\mathbf{x} \in \Omega} x_i$ ,  $\mathbf{x} = (x_1, \ldots, x_n)$ . Обозначим еще через  $\Omega_{\mathbf{x}_1}$ 

сечение  $\Omega$  плоскостью  $x_1 = x_1^0$ , т. е. множество точек вида  $(x_1^0, x_2, \ldots, x_n) \in \Omega$ .

Лемма. Справедливо равенство

$$\int_{\Omega} \dots \int_{\Omega} f(x_1, \dots, x_n) dx_1 \dots dx_n = \int_{e_1} dx_1 \int_{\Omega_{x_1}} f(x_1, x_2, \dots, x_n) dx_2 \dots dx_n,$$
(6)

всегда верное, если f ограничена на  $\Omega$ ,  $e_1$  — измеримое одномерное множество и интегралы  $\int \dots \int \prod_{\Omega_{\mathbf{x}_1}} (\partial \Lambda \mathbf{x} \ \ \text{любого} \ \ \mathbf{x}_1 \equiv e_1)$  имеют

смысл.

Доказательство. Поместим  $\Omega$  в некоторый n-мерный прямоугольник  $\Delta=\{a_i,\ b_i\}\times\Delta'$ , где  $\Delta'=\{a_i\leqslant x_i\leqslant b_i;\ j=2,\ldots,\ n\}$ . Это возможно, потому что  $\Omega$  измеримо, следовательно, ограничено.

Продолжим функцию f с  $\Omega$  на  $\Delta$ , положив

$$\overline{f} = \begin{cases} f & \text{na } \Omega, \\ 0 & \text{na } \Delta - \Omega. \end{cases}$$

Теперь имеем (пояснения ниже)

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{\Delta} \overline{f}(\mathbf{x}) d\mathbf{x} = \int_{a_1}^{b_1} dx_1 \int_{\Delta'} \overline{f}(x_1, x_2, \dots, x_n) dx_2 \dots dx_n =$$

$$= \int_{a_1} dx_1 \int_{\Omega_{x_1}} f(x_1, x_2, \dots, x_n) dx_2 \dots dx_n.$$

Первое равенство в этой цепи верно в силу того, что  $\Omega$  и  $\Delta$ 

измеримы,  $\hat{f} = 0$  на  $\Delta - \Omega$ , и f интегрируема на  $\Delta$ .

Второе — по теореме 2. Ведь, кроме того, что функция f интегрируема на  $\Omega$ , она при фиксированных допустимых  $x_1$  как функция от  $(x_2, \ldots, x_n)$  интегрируема по  $\Omega_{x_1}$ , следовательно, и на  $\Delta'$ , потому что она равна нулю вне  $\Omega_{x_1}$ .

Третье равенство верно, потому что  $e_i$  измеримо, f=0 для  $x_1 \in e_i$  и для  $x_i \in e_i$ , когда  $(x_2, \ldots, x_n) \in \Omega_{x_1}$ .

Пример 1. Площадь S эллипса W:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1$  (a, b > 0) (рис. 12.5) вычисляется следующим образом (пояснения ниже):

$$S = \iint_{W} 1 dx \, dy = \int_{-a}^{a} dx \int_{-b\sqrt{1-(x^{2}/a^{2})}}^{b\sqrt{1-(x^{2}/a^{2})}} dy = \int_{-a}^{a} 2b \sqrt{1-\frac{x^{2}}{a^{2}}} \, dx =$$

$$= 4 \frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} \, dx = 2ab \left(\arcsin \frac{x}{a} + \frac{x}{a^{2}} \sqrt{a^{2}-x^{2}}\right)_{0}^{a} = \pi a b.$$

Первое равенство в этой цепи следует из того, что W — измеримее в двумерном смысле множество, ведь его граница — гладкая кривая.

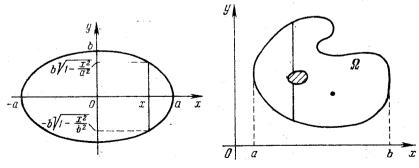


Рис. 12.5.

Рис. 12.6.

Второе — из доказанной выше леммы. Ведь [-a, a] есть измеримая проекция W на ось x, и сечение  $W_x$  эллипса прямой параллельной оси y, проходящей через точку  $x \in [a, b]$ , есть отрезок  $[-b\sqrt{1-(x^2/a^2)},$ 

 $b\sqrt{1-(x^2/a^2)}$ ], т. е. измеримое в одномерном смысле множество, на котором

функция, равная 1, интегрируема.

Пример 2. На рис. 12.6 изображено замкнутое множество  $\Omega$  с гранищей  $\Gamma$ , состоящей из двух кусочно гладких замкнутых контуров и точки.  $\Omega$ , таким образом, измеримое в двумерном смысле. Его проекция на ось x есть огрезок [a, b]. Любое его сечение  $\Omega_x$  примой, паравлельной оси y, проходящей через точку  $x \in [a, b]$ , есть отрезок или система двух етрезков, или точка,— все измеримые в одномерном смысле замкнутые множества. Пеэтому если f(x, y) непрерывна на  $\Omega$ , то она интегрируема на  $\Omega$  и на любом указанном сечении  $\Omega_x$ , и к f применима доказанная лемма

$$\int_{\Omega} \int f \, dx \, dy = \int_{a}^{b} dx \int_{\Omega_{x}} f \, dy.$$

Теперь мы можем попытаться применить нашу лемму к внутреннему интегралу правой части (6).

Пусть  $e_2(x)$  есть проекция сечения  $\Omega_{x_1}$  на ось  $x_2$ , а  $\Omega_{x_1x_2}$  — сечение ((n-1)-мерного множества)  $\Omega_{x_1}$  плоскостью  $x_2=x_2^0$ . Тогда

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{e_1} dx_1 \int_{e_2(x_1)} dx_2 \int_{\Omega_{x_1 x_2}} f(x_1, x_2, x_3, \ldots, x_n) dx_3 \ldots dx_n,$$

если все множества  $\Omega_{x_1x_2}(x_2 \in e_2(x_1))$  измеримы в (n-2)-мерном смысле, а функция  $f(x_1, x_2, x_3, \ldots, x_n)$  от  $(x_3, \ldots, x_n)$  интегрируема на  $\Omega_{x_1x_2}$ .

Продолжив этот процесс до конца, получим

$$\int_{\Omega} f \, d\mathbf{x} = \int_{e_1} dx_1 \int_{e_2(x_1)} dx_2 \int_{e_3(x_1, x_2)} dx_3 \dots \int_{e_n(x_1, \dots, x_{n-1})} f(x_1, \dots, x_n) \, dx_n.$$
(7)

Все множества  $e_1$ ,  $e_2(x_1)$ , ...,  $e_n(x_1, \ldots, x_{n-1})$  одномерны и предполагаются измеримыми, кроме того, предполагается, что интеграл в левой части (7), а также все внутренние интегралы в правой, существуют.

Пример 3. Объем  $|\Omega|$  эллипсоида  $\Omega$ :  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$  (a, b, c > 0) может быть вычислен следующим образом (пояснения ниже):

$$\Omega = \iiint_{\Omega} dx \, dy \, dz = \int_{-a}^{a} \int_{\Omega_{X}}^{a} dy \, dz = \int_{-a}^{a} \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, \frac{c \sqrt{1 - (x^{2}/a^{2}) - (y^{2}/b^{2})}}{c \sqrt{1 - (x^{2}/a^{2}) - (y^{2}/b^{2})}} \, dz = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, 2c \, \sqrt{1 - (x^{2}/a^{2}) - (y^{2}/b^{2})} \, dy = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-b}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}}} \, dx = \int_{-a}^{a} dx \int_{-a}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}} \, dx = \int_{-a}^{a} dx \int_{-a}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}}} \, dx = \int_{-a}^{a} dx \int_{-a}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}}} \, dx = \int_{-a}^{a} dx \int_{-a}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}}} \, dx = \int_{-a}^{a} dx \int_{-a}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}}} \, dx = \int_{-a}^{a} dx \int_{-a}^{b} \sqrt{\frac{1 - (x^{2}/a^{2})}{1 - (x^{2}/a^{2})}}} \, dx = \int_{-a}^{a} dx \int_{-a}^{a$$

$$= bc \int_{-a}^{a} \left[ \left( 1 - \frac{x^2}{a^2} \right) \arcsin \frac{y}{b\sqrt{1 - \frac{x^2}{a^2}}} + \frac{y}{b\left( 1 - \frac{x^2}{a^2} \right)} \right] \times \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} dx = bc \int_{-a}^{a} \left( 1 - \frac{x^2}{a^2} \right) dx = \frac{4}{3} \pi abc.$$

Множество  $\Omega$  измеримо, ведь граница  $\Gamma$  состоит из двух непрерывных кусков поверхности

$$z = \pm c \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \left( \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right),$$

каждый из которых проектируется взаимно однозначно на замкнутое огра-

ниченное множество плоскости х, у.

Измеримыми и замкнутыми являются также сечения Ω плоскостями и прямыми, параллельными осями координат соответственно в двумерном и одномерном смысле, ведь они, если они не пусты, представляют собой при сечении плоскостями эллипсы или точки, а при сечении прямыми — отрезки или точки.

Таким образом, функция 1 интегрируема на Ω и на всех указанных

сечениях О, и равенство (7) применимо.

Если функция f(x, y) ограничена и непрерывна на  $\Delta = [a, b] \times [c, d]$  за исключением конечного числа точек, то для нее на основании теоремы 1 имеет место

$$\int_{A} \int f(x, y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy,$$

потому что для любого  $x \in [a, b]$  функция f(x, y) по y ограничена и имеет на [c, d] разве что конечное число точек разрыва, следовательно, интегрируема на [c, d].

В частности, если  $\hat{f}(x, y) = \phi(x)\psi(y)$  и функции  $\phi(x)$  и  $\psi(y)$  ограничены и имеют конечное число точек разрыва соответ-

ственно на отрезках [a, b], [c, d], то

$$\int_{\Lambda} \int \varphi(x) \psi(y) dx dy = \int_{a}^{b} dx \int_{c}^{d} \varphi(x) \psi(y) dx dy = \int_{a}^{b} \varphi(x) dx \int_{c}^{d} \psi(y) dy.$$

Распространение этих фактов на многомерный случай не представляет труда.

## § 12.13. Непрерывность интеграла по параметру

Рассмотрим интеграл

$$F(\mathbf{x}) = F(x_1, \dots, x_m) = \int \dots \int_{\Omega} f(x_1, \dots, x_m; y_1, \dots, y_n) dy_1 \dots dy_n = \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}, \quad (1)$$

где  $\Omega$  — измеримое множество n-мерного пространства точек  $\mathbf{y} = (y_1, \ldots, y_n)$ , а функция  $f(\mathbf{x}, \mathbf{y})$  интегрируема по  $\mathbf{y}$  на  $\Omega$ . Тогда интеграл (1) есть функция F от точки  $\mathbf{x}$ .

Следующая теорема дает критерий непрерывности  $F(\mathbf{x})$ .

Tеорема 1. Eсли функция  $f(\mathbf{x}, \mathbf{y})$  непрерывна на множестве

$$G \times \Omega \qquad (\mathbf{x} \in G, \ \mathbf{y} \in \Omega)$$
 (2)

(n+m)-мерного пространства точек  $(\mathbf{x}, \mathbf{y}) = (x_1, \dots, x_m; y_1, \dots, y_n)$ , где G и  $\Omega$  — замкнутые ограниченные множества в соответствующих пространствах точек  $\mathbf{x}$  и  $\mathbf{y}$ , то интеграл (1)  $(\tau. e. F(\mathbf{x}))$  есть непрерывная функция от  $\mathbf{x} \in G$ .

Доказательство. Обозначим через  $\omega(\delta, f)$  модуль непрерывности функции f на множестве (2). Так как носледнее замкнуто и ограничено, а функция f непрерывна на нем, то  $\omega(\delta, f) \to 0$  ( $\delta \to 0$ ). Поэтому для  $x, x' \in G$ 

$$|F(\mathbf{x}') - F(\mathbf{x})| = \left| \int_{\Omega} [f(\mathbf{x}', \mathbf{y}) - f(\mathbf{x}, \mathbf{y})] d\mathbf{y} \right| \le$$

$$\le \int_{\Omega} |f(\mathbf{x}', \mathbf{y}) - f(\mathbf{x}, \mathbf{y})| d\mathbf{y} \le \int_{\Omega} \omega (|\mathbf{x}' - \mathbf{x}|, f) d\mathbf{y} =$$

$$= \omega (|\mathbf{x}' - \mathbf{x}|, f) |\Omega| \to 0 \quad (\mathbf{x}' \to \mathbf{x}),$$

и теорема доказана.

Теперь рассмотрим интеграл, обобщающий (1) только в случае, когда у есть переменное число (не вектор):

$$F(\mathbf{x}) = F(x_1, \dots, x_m) = \begin{pmatrix} \psi(x_1, \dots, x_m) & \mathbf{x} \\ \psi(x_1, \dots, x_m) & \mathbf{y} \end{pmatrix} = \begin{pmatrix} \psi(\mathbf{x}) \\ \psi(\mathbf{x}) & \mathbf{y} \end{pmatrix} f(\mathbf{x}, y) dy \quad (x \in G), \quad (3)$$

и докажем теорему.

Теорема 2. Если функция  $f(\mathbf{x}, y)$  непрерывна на множестве H точек  $(\mathbf{x}, y) = (x_1, \dots, x_m; y)$  (m+1)-мерного пространства, определяемых неравенствами  $\varphi(\mathbf{x}) \leq y \leq \psi(\mathbf{x})$   $(\mathbf{x} \in G)$ , где  $\varphi(\mathbf{x})$  и  $\psi(\mathbf{x})$  — непрерывные функции на замкнутом ограниченном m-мерном множестве G точек  $\mathbf{x} = (x_1, \dots, x_m)$ , то функция  $F(\mathbf{x})$  непрерывна на G.

Доказательство. Подстановка

$$y = \varphi(\mathbf{x}) + t[\psi(\mathbf{x}) - \varphi(\mathbf{x})] \quad (0 \le t \le 1),$$
  
$$dy = [\psi(\mathbf{x}) - \varphi(\mathbf{x})]dt,$$

приводит интеграл (3) к виду

$$F(\mathbf{x}) = [\psi(\mathbf{x}) - \varphi(\mathbf{x})] \int_{0}^{1} f(\mathbf{x}, \varphi(\mathbf{x}) + t[\psi(\mathbf{x}) - \varphi(\mathbf{x})]) dt. \tag{4}$$

Но  $\psi(\mathbf{x}) - \varphi(\mathbf{x})$  — непрерывная функция на G, а интеграл в (4) тоже есть непрерывная функция от  $\mathbf{x} \in G$ , что следует из теоремы 1. Ведь подынтегральная функция есть непрерывная функция от  $(x, t) \in G \times [0, 1]$ . Следовательно, F(x) непрерывна

Пример. Пусть на единичном шаре о задана непрерывная функция f(x, y, z). Интеграл от нее по  $\omega$  равен

$$\int_{\omega} f \, d\omega = \int_{-1}^{+1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{1-x^2-y^2}^{\sqrt{1-x^2-y^2}} f(x, y, z) \, dz.$$

Внутренний интеграл  $F\left( {x,y} \right) = \int\limits_{ - \sqrt {1 - {x^2} - {y^2}} }^{\sqrt {1 - {x^2} - {y^2}} } f\left( {x,y,z} \right)dz$  есть функ-

ция F от (x, y), определенная на круге  $\sigma$ :  $x^2 + y^2 \le 1$ . Она непрерывна на о. Действительно, f непрерывна на замкнутом шаре w; поверхности, его ограничивающие,  $z=-\sqrt{1-x^2-y^2}$  и  $z=\sqrt{1-x^2-y^2}$  ( $x^2+y^2\leqslant 1$ ), описываются непрерывными на круге  $\sigma$  функциями. Непрерывность F на  $\sigma$  вытекает из доказанной теоремы. Таким образом,

$$\int_{\omega} f d\omega = \int_{-1}^{1} dx \left( \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} F(x, y) dy \right)$$

Интеграл  $\Phi(x) = \int\limits_{-\infty}^{\infty} F(x, y) \, dy$  в свою очередь есть непре-

рывная функция от  $x \in [-1, +1]$  на основании этой же теоремы. Действительно, F(x, y) непрерывна на круге  $\sigma$  (замквутом ограниченном множестве точек x, y), а кривые  $y = -\sqrt{1-x^2}, \ y = \sqrt{1-x^2}$  ( $-1 \le x \le 1$ ), ограничивающие  $\sigma$ , непрерывны. По теореме  $\Phi(x)$  непрерывна на [-1, +1].

## § 12.14. Геометрическая интерпретация знака определителя

Зададим в плоскости прямоугольную систему координат  $(x_1, x_2)$ , как на рис. 12.7 и 12.8.

Мы предполагаем для определенности, что положительное направление оси  $\dot{x_2}$  получается из положительного направления оси  $x_1$  новоротом оси  $x_1$  на угол 90° против часовой стрелки (рис. 12.9). Зададим два не равных нулю вектора  $\mathbf{a} = (a_1, a_2)$ ,  $\mathbf{b} = (b_1, b_2)$ , выходящих из нулевой точки, с определителем

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0. \tag{1}$$

Если  $\Delta > 0$ , то чтобы получить направление вектора **b**, нужно повернуть (против часовой стрелки) а на угол, меньший чем п. а если  $\Delta < 0$ , то это связано с поворотом на угол, больший чем  $\pi$ . В самом деле, очевидно, что  $a = |a|(\cos \varphi_1, \sin \varphi_1)$  и  $b = |b|(\cos \varphi_2, \sin \varphi_2)$ , где  $\varphi_1$ ,  $\varphi_2$  — углы, образованные соответственно векторами **a**, **b c** осью x, откуда  $\Delta = |a| \cdot |b| \sin (\varphi_2 - \varphi_1)$ .

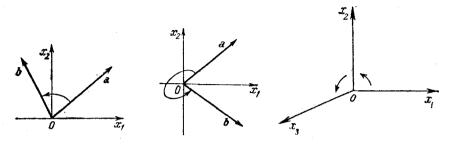


Рис. 12.7.

Рис. 12.8.

Pac. 12.9.

Рассмотрим теперь трехмерное пространство, где задана прямоугольная система координат  $(x_1, x_2, x_3)$  и три вектора  $\mathbf{a} = (a_1, a_2, a_3)$ ,  $\mathbf{b} = (b_1, b_2, b_3)$ ,  $\mathbf{c} = (c_1, c_2, c_3)$  с определителем

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0.$$

Пусть  $\mathbf{i}_1 = (1, 0, 0)$ ,  $\mathbf{i}_2 = (0, 1, 0)$ ,  $\mathbf{i}_3 = (0, 0, 1)$  — орты осей  $x_1$ ,  $x_2$ ,  $x_3$ . Их определитель

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \quad (>0).$$

Если  $\Delta > 0$ , то можно определить три непрерывные вектор-функции

$$\alpha(t) = (\alpha_1(t), \ \alpha_2(t), \ \alpha_3(t)),$$

$$\beta(t) = (\beta_1(t), \ \beta_2(t), \ \beta_3(t)),$$

$$\gamma(t) = (\gamma_1(t), \ \gamma_2(t), \ \gamma_3(t)) \quad (0 \le t \le 1)$$

такие, что будут удовлетворяться условия

$$\alpha(0) = \mathbf{a}, \quad \beta(0) = \mathbf{b}, \quad \gamma(0) = \mathbf{c}, \quad \alpha(1) = \mathbf{i}_1, \quad \beta(1) = \mathbf{i}_2, \quad \gamma(1) = \mathbf{i}_3$$

и при этом для любого  $t \in [0, 1]$  определитель

$$\Delta(t) = \begin{vmatrix} \alpha_1(t) & \alpha_2(t) & \alpha_3(t) \\ \beta_1(t) & \beta_2(t) & \beta_3(t) \\ \gamma_1(t) & \gamma_2(t) & \gamma_3(t) \end{vmatrix} > 0.$$
 (2)

Если же  $\Delta < 0$ , то невозможно построить три непрерывных вектор-функции с указанными свойствами.

В случае  $\Delta > 0$  говорят, что упорядоченная тройка векторов **a**, **b**, **c** ориентирована так же, как тройка  $\mathbf{i}_1$ ,  $\mathbf{i}_2$ ,  $\mathbf{i}_3$ , в то время как в случае  $\Delta < 0$  тройка, **a**, **b**, **c** ориентирована противоположно ориентации тройки  $\mathbf{i}_1$ ,  $\mathbf{i}_2$ ,  $\mathbf{i}_3$ .

Подобная характеристика (1-го и 2-го случаев) может быть дана и для пар векторов a, b на плоскости (см. еще далее § 13.8).

Чтобы обосновать сказанное, начнем с того, что на протяжении отрезка времени [0, 1/4] непрерывно деформируем векторы **a**, **b**, **c**, не изменяя их направления, так, чтобы в результате получились три единичных вектора. Иначе говоря, вводим вектор-функции  $\alpha(t) = \phi(t)$ **a**,  $\beta(t) = \psi(t)$ **b**,  $\gamma(t) = \chi(t)$ **c**, где  $\phi$ ,  $\psi$ ,  $\chi$  — непрерывные положительные на [0, 1/4] функции, удовлетворяющие условиям

$$\phi \left( 0 \right) = \psi \left( 0 \right) = \chi \left( 0 \right) = 1, \quad \phi \left( \frac{1}{4} \right) = |a|^{-1}, \quad \psi \left( \frac{1}{4} \right) = |b|^{-1}, \quad \chi \left( \frac{1}{4} \right) = |c|^{-1}.$$

Пусть L есть плоскость векторов а и **b**. Оставляя векторы  $\alpha(1/4)$  и  $\gamma(1/4)$  постоянными на протяжении отрезка времени [1/4, 1/2], поворачиваем вектор  $\beta(1/4)$  в плоскости L на кратчайший угол до положения, перпендикулярного вектору

 $\alpha(1/4) = \alpha(1/2).$ 

Теперь при фиксированных векторах  $\alpha(1/2)$ ,  $\beta(1/2)$ , поворачиваем в течение времени  $t \in [1/2, 3/4]$ , на кратчайший угол только вектор  $\gamma$  до положения, перпендикулярного плоскости L. В результате векторы  $\alpha(3/4)$ ,  $\beta(3/4)$ ,  $\gamma(3/4)$  образуют репер взаимно перпендикулярных единичных векторов. Теперь на нротяжении отрезка времени [3/4, 1] вращаем этот репер как твердое тело так, чтобы векторы  $\alpha(1)$ ,  $\beta(1)$ , соответственно, совпали с ортами  $i_1$ ,  $i_2$ . Тогда, очевидно,

$$\alpha(1) = i_1, \, \beta(1) = i_2, \, \gamma(1) = \pm i_3.$$

При этом будет знак «+», если  $\Delta > 0$ , и знак «-», если  $\Delta < 0$ . Ведь наш процесс описывается непрерывными не компланарными векторами  $\alpha(t)$ ,  $\beta(t)$ ,  $\gamma(t)$ , для которых определитель  $\Delta(t)$  (составленный по образцу (2)) не равен нулю при любом  $t \in [0, 1]$ . Но тогда знаки  $\Delta(0) = \Delta$  и  $\Delta(1)$  совпадают, что возможно лишь, если  $\gamma(1) = \mathbf{i}_3$  при  $\Delta > 0$  и  $\gamma(1) = -\mathbf{i}_3$  при  $\Delta < 0$ .

### § 12.15. Замена неременных в кратном интеграле. Простейший случай

Покажем, как видоизменяется интеграл

$$\int_{\Omega'} f(x_1', x_2') dx_1' dx_2', \tag{1}$$

если в нем произвести замену переменных

$$\begin{aligned}
x_1' &= ax_1 + bx_2, \\
x_2' &= cx_1 + dx_2
\end{aligned}
\left(D = \begin{vmatrix} a & b \\ z & d \end{vmatrix} \neq 0\right).$$
(2)

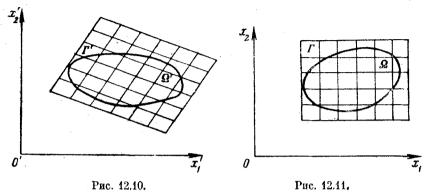
Будем считать, что  $\Omega'$  — область с непрерывной кусочно гладкой границей  $\Gamma'$  (рис. 12.10).

Преобразование, обратное к (2), отображает  $\Omega'$  на некоторую область  $\Omega$  плоскости  $(x_1, x_2)$  с кусочно гладкой границей  $\Gamma$ 

(рис. 12.11), и на Ω определена функция

$$F(x_1, x_2) = f(ax_1 + bx_2, cx_1 + dx_2)$$
  $((x_1, x_2) \in \Omega)$ .

Введем на плоскости  $(x_1, x_2)$  прямоугольную сетку со сторонами квадратов  $\Delta$  длины h. Она отображается при помощи уравнений (2), вообще говоря, в косоугольную сетку, делящую



плоскость  $(x_1', x_2')$  на равные параллелограммы  $\Delta'$  (образы  $\Delta$ ), имеющие площадь

$$|\Delta'| = |D| |\Delta| = |D| h^2, \quad D = \begin{vmatrix} a & b \\ c & d \end{vmatrix}. \tag{3}$$

Тем самым определены разбиения  $\rho$ ,  $\rho'$  соответственно областей  $\Omega$ ,  $\Omega'$ .

Имеем

$$S_{\rho'}(f) = \sum f(x_1', x_2') |\Delta'| =$$

$$= \sum F(x_1, x_2) |D| |\Delta| = S_{\rho}(|D|F) \quad ((x_1, x_2) \in \Delta). \quad (4)$$

Мы считаем, что вторая сумма в этой цепи распространена только на полные квадраты  $\Delta \subset \Omega$ , соответственно первая— на соответствующие им «полные» параллелограммы  $\Delta'$  (см. теорему 4 § 12.7). Переходя к пределу в (4) при  $h \to 0$ , получим формулу

$$\int_{\Omega'} f(x_1', x_2') dx_1' dx_2' = \int_{\Omega} F(x_1, x_2) |D| dx_1 dx_2 = 
= |D| \int_{\Omega} F(x_1, x_2) dx_1 dx_2.$$
(5)

В этом рассуждении можно считать, что функция f непрерывна на  $\overline{\Omega}'$ , и тогда функция F будет непрерывной на  $\overline{\Omega}$ , и оба интеграла (5) существуют, а выше доказан факт равенства (5). Достаточно, впрочем, считать, что функция f интегрируема на

 $\Omega'$ , и тогда первая сумма в (4) имеет предел, когда  $d(\Delta') \to 0$ , что автоматически влечет существование равного ему предела второй суммы, когда  $d(\Delta) \to 0$ , т. е. существование второго интеграла (5), равного первому.

В следующем параграфе дана более общая формула.

### § 12.16. Замена переменных в кратном интеграле

Теорема 1. Пусть в п-мерном пространстве R точек  $\mathbf{x} = (x_1, \ldots, x_n)$  задана измеримая область  $\Omega$  и рассматривается еще другое п-мерное пространство R' точек  $\mathbf{x}' = (x', \ldots, x'_n)$ , а в нем измеримая область  $\Omega'$ .

Предположим, что точки  $\mathbf{x} \in \overline{\Omega}$  переходят в точки  $\mathbf{x}' \in \overline{\Omega}'$  при помощи отображения (операции)

$$x'_{j} = \varphi_{j}(\mathbf{x}) = \varphi_{j}(x_{1}, \ldots, x_{n}) \quad (j = 1, \ldots, n; \mathbf{x} \in \overline{\Omega}),$$
 (1)

которое мы будем еще обозначать так:

$$\mathbf{x}' = A\mathbf{x}.\tag{1'}$$

Мы будем предполагать, что операция А обладает следующими свойствами:

1) Она взаимно однозначно охображает  $\Omega$  на  $\Omega'$  \*):

$$\Omega \neq \Omega' \tag{2}$$

(взаимно однозначное соответствие при отображении A между точками границ  $\Omega$  и  $\Omega'$  не требуется).

2) Функции  $\phi_i(\mathbf{x})$  непрерывны и имеют на  $\overline{\Omega}$  непрерывные частные производные с якобианом \*\*)

$$D(\mathbf{x}) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \varphi_n}{\partial x_1} & \cdots & \frac{\partial \varphi_n}{\partial x_n} \end{vmatrix}.$$
(3)

Пусть, далее, задана интегрируемая на  $\Omega'$  функция

$$f(\mathbf{x}')=f(x_1',\ldots,x_n'),$$

преобразующаяся при помощи подстановок (1) в функцию

$$F(\mathbf{x}) = f(A\mathbf{x}) = f[\varphi_1(\mathbf{x}), \dots, \varphi_n(\mathbf{x})] \quad (\mathbf{x} \in \Omega). \tag{4}$$

<sup>\*)</sup> Можно заранее не предполагать, что  $\Omega'$  есть область. Это следует из непрерывности Aх на  $\Omega$  и (2) (см. далее § 12.20, теорема 3).

<sup>\*\*)</sup> На знак D(x) никаких условий не накладывается. Однако на самом деле условия теоремы автоматически влекут либо неравенство  $D(x) \geqslant 0$  всюду на  $\Omega$ , либо неравенство  $D(x) \leqslant 0$  всюду на  $\Omega$  (см. § 12.21).

Тогда имеет место формула замены переменных в кратном интеграле

$$\int_{\Omega'} f(\mathbf{x}') d\mathbf{x}' = \int_{\Omega} F(\mathbf{x}) |D(\mathbf{x})| d\mathbf{x}$$
 (5)

(утверждающая существование интеграла в правой части (5) и равенство (5)).

В частности, если функция  $f(\mathbf{x}')$  непрерывна на  $\overline{\Omega}'$ , то непрерывна также функция F на  $\overline{\Omega}$  и оба интеграла в (5) существуют, а формула (5) утверждает их равенство.

Трудность теоремы заключается в лемме, которая будет доказана в § 12.17. Мы ее сформулируем и сразу же покажем, как

с ее помощью доказывается равенство (5).

Лемма 1. Пусть выполняются условия теоремы и  $\Delta \subset \Omega$  есть произвольный куб с ребром h, а  $\Delta' = A(\Delta)$  — его образ на  $\Omega'$  при помощи операции A. Тогда имеет место равенство

$$|\Delta'| = |D(\mathbf{x})| |\Delta| + O(h^n \omega(h)), \tag{6}$$

 $e\partial e\ D(\mathbf{x})$  — значение якобиана  $D\ e\ o\partial$ ной из точек  $\mathbf{x} \in \Delta$ , а

$$\omega(h) = \sup_{\substack{i,j=1,\ldots,n}} \omega_{ij}(h),$$

$$\omega_{ij}(h) = \sup_{\substack{|\mathbf{x}-\mathbf{y}| < h \\ \mathbf{x}, \mathbf{y} \in \Omega}} \left| \frac{\partial \varphi_i}{\partial x_j}(\mathbf{x}) - \frac{\partial \varphi_i}{\partial \varphi_j}(\mathbf{y}) \right|$$
(7)

Важно заметить, что так как частные производные  $\frac{\partial \varphi_4}{\partial x_j}$  по условию теоремы непрерывны на ограниченном замкнутом множестве  $\overline{\Omega}$ , то их модули непрерывности  $\omega_{ij}(h) \to 0$   $(h \to 0)$ , но тогда и

$$\omega(h) \to 0 \qquad (h \to 0). \tag{8}$$

Поэтому остаточный член в формуле (6) удевлетворяет неравенству  $|O(h^n\omega(h))| \le Ch^n\omega(h) = o(h^n) \qquad (h \to 0)$  (9)

и притом равномерно относительно  $\mathbf{x} \to \overline{\Omega}$ , потому что правая часть (9) не зависит от  $\mathbf{x} \in \overline{\Omega}$ . Что касается первого члена правой части (6), то он равен

$$|D(\mathbf{x})| |\Delta| = |D(\mathbf{x})| h^n$$
, r. e.  $|\Delta'| = |D(\mathbf{x})| h^n + o(h^n)$   $(h \to 0)$ .

Из этого равенства, в частности, следует, что для любого  $\mathbf{x} \in \Omega$  имеет место равенство ( $x \in \Delta \subset \Omega$ )

$$\lim_{h\to 0} \frac{|\Delta'|}{\Delta} = |D(\mathbf{x})| \quad (\mathbf{x} \in \Omega), \tag{10}$$

показывающее, что величина  $|D(\mathbf{x})|$  с точностью до бесконечно малых o (1),  $h \to 0$ , есть коэффициент увеличения элементарного объема, сконцентрированного возле точки  $\mathbf{x}$  при преобразовании его посредством операции  $A_{\bullet}$ 

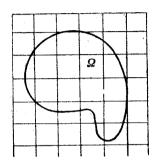


Рис. 12.12.

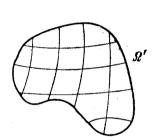


Рис. 12.13.

Разобьем  $\Omega$  h-сеткой, состоящей из кубов с ребрами длины h (рис. 12.12). Часть сетки, содержащаяся в  $\Omega$ , при помощи операции A переходит в криволинейную сетку поверхностей, разбивающую  $\Omega'$  на измеримые части (рис. 12.13) (см. теорему 3, § 12.5).

Обозначим через  $\Delta$  полные кубы сетки, входящие вместе со своими границами в  $\Omega$ . При помощи операции A открытое ядро  $\Delta$  переходит в открытое ядро  $\Delta'$ , а граница  $\Delta$  — в границу  $\Delta'$  (формально это утверждение требует доказательства, см. § 12.20, теорему 3 и замечание к ней). При этом, если  $h \to 0$ , то максимальный диаметр частичных множеств соответствующего разбиения  $\Omega'$  стремится к нулю, потому что в преобразовании (1) функции  $\phi_i(\mathbf{x})$  равномерно непрерывны на  $\overline{\Omega}$ .

На основании леммы 1

$$\sum f(\mathbf{x}') |\Delta'| = \sum F(\mathbf{x}) (|D(\mathbf{x})| |\Delta| + O(\omega(h)h^n)), \quad (11)$$

где  $\Delta' = A(\Delta)$ , сумма распространена на все  $\Delta$ , а  $f(\mathbf{x}')$  и  $F(\mathbf{x})$ ,  $D(\mathbf{x})$  обозначают значения f, F, D соответственно в одной из точек  $\Delta'$  или  $\Delta$ . Из (11) после нерехода к пределу при  $h \to 0$  получим равенство (5). В самом деле, входящая в O константа C одна и та же для всех слагаемых правой части (11), поэтому, учитывая ограниченность F на  $\Omega$  (|F| < K)

$$\sum F(\mathbf{x}) O(\omega(h)(h^n)) \leq KC\omega(h) \sum |\Delta| \leq KC\omega(h) |\Omega| \to 0 \quad (h \to 0).$$

Далее, в силу интегрируемости f на  $\Omega'$ 

$$\lim_{h\to 0} \sum f(\mathbf{x}') |\Delta'| = \lim_{\max|\Delta'|\to 0} \sum f(\mathbf{x}') |\Delta'| = \int_{\Omega'} f(\mathbf{x}') d\mathbf{x}'.$$

Но тогда существует равный этому интегралу предел

$$\lim_{h\to 0}\sum F(\mathbf{x})|D(\mathbf{x})||\Delta| = \int_{\Omega} F(\mathbf{x})|D(\mathbf{x})|d\mathbf{x}.$$

Таким образом, существует интеграл от  $F(\mathbf{x})|D(\mathbf{x})|$  на  $\Omega$ . Итак, формула (5) доказана.

## § 12.17. Показательство леммы 1 § 12.16

Все рассуждения проведем в двумерном случае

$$x'_{i} = \varphi_{i}(x_{1}, x_{2}) \quad (i = 1, 2).$$
 (1)

В п-мерном случае, как будет видно, они совершенно аналогичны.

Итак, пусть  $\Delta = \{x_i^0 < x_i < x_i^0 + h; i = 1, 2\}^*\}$  – квадрат  $PA_1CA_2$ (рис. 12.14) и  $\Delta'$  — его образ — криволинейный параллелограмм  $P'A_1'C'A_2'$  (рис. 12.15).  $\Delta'$  есть область, граница ее  $\gamma'$  есть образ

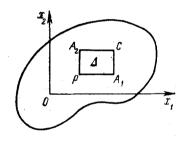


Рис. 12.14.

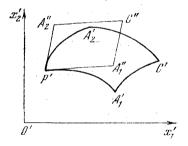


Рис. 12.15.

при помощи А границы у квадрата A (см. § 12.20, теорема 3). Например, сторона  $\Delta$ , имеющая уравнение  $x_2 = x_2^0$ , имеет в качестве своего образа кривую

$$x_1' = \varphi_1(x_1, x_2^0), \quad x_2' = \varphi_2(x_1, x_2^0) \quad (x_1^0 \leqslant x_1 \leqslant x_1^0 + h),$$

определяемую непрерывно дифференцируемыми функциями параметра  $x_1$  \*\*). Мы не называем эту кривую гладкой, потому что не исключаем, что для какого-либо значения  $x_1$  частные произ-

<sup>\*)</sup> В n-мерном случае  $\Delta = \{x_i^0 < x_i < x_i^0 + h; i = 1, \dots, n\}$ .

\*\*) В n-мерном случае кусок границы  $\Delta'$ , соответствующей грани  $x_i = x_j^0$ , определяется уравнениями  $x_i' = \varphi_i\left(x_1, \dots, x_{j-1}, x_j^0, x_{j+1}, \dots, x_n\right)$   $(i = 1, \dots, n)$ .

водные  $\frac{\partial \varphi_1}{\partial x_1}(x_1, x_2^0)$  и  $\frac{\partial \varphi_2}{\partial x_1}(x_1, x_2^0)$  могут одновременно равняться нулю. Все же она имеет меру нуль (см. теорему 3 § 12.5).

Нам предстоит доказать равенство

$$|\Delta'| = |D(\mathbf{x}^0)| |\Delta| + O(h^2 \omega(h)), \tag{2}$$

где константа в O це зависит от  $\mathbf{x}^0 \subseteq \Omega$ . Но тогда это равенство верно при замене в нем  $\mathbf{x}^0$  на произвольную точку  $\mathbf{x} \in \Delta^*$ ).

В силу непрерывной дифференцируемости ф, имеем

$$x_{i}' = x_{i}^{0'} + \left(\frac{\partial \varphi_{i}}{\partial x_{1}}\right)_{1} \left(x_{1} - x_{1}^{0}\right) + \left(\frac{\partial \varphi_{i}}{\partial x_{2}}\right)_{1} \left(x_{2} - x_{2}^{0}\right) \quad (i = 1, 2; \mathbf{x} \in \Delta),$$

$$(1')$$

где ( ) обозначает результат подстановки в ( ) некоторой определенной точки  $\mathbf{x}=(x_1,\,x_2)\in\Delta.$ 

Наряду с отображением (1), которое записано еще в виде (1'), мы рассматриваем линейное преобразование  $\mathbf{x}'' = A^*\mathbf{x}$ ,

$$x_{i}^{"}=x_{i}^{0'}+\left(\frac{\partial\varphi_{i}}{\partial x_{1}}\right)_{0}(x_{1}-x_{1}^{0})+\left(\frac{\partial\varphi_{i}}{\partial x_{2}}\right)_{0}(x_{2}-x_{2}^{0}) \quad (i=1,2), \quad (3)$$

с постоянными коэффициентами  $\left(\frac{\partial \phi_i}{\partial x_j}\right)_0$ — результат подстановки в  $\frac{\partial \phi_i}{\partial x_j}$  точки  $\mathbf{x}^0$ , отображающее  $\Delta$  на некоторый параллелограмм  $\Delta''$  с границей  $\gamma''$ . Стороны  $\Delta''$ , прилегающие к точке  $\mathbf{x}^0$ , суть (приложенные к  $\mathbf{x}^0$ ) векторы

$$P'A_i'' = \left(h\left(\frac{\partial \varphi_1}{\partial x_i}\right)_0, h\left(\frac{\partial \varphi_2}{\partial x_i}\right)_0\right) \quad (i = 1, 2).$$

Длина их

$$|P'A_i''| = ha_i, \quad a_i = \sqrt{\left(\frac{\partial \varphi_1}{\partial x_i}\right)_0^2 + \left(\frac{\partial \varphi_2}{\partial x_i}\right)_0^2}.$$
 (4)

Оценим расстояние между точками  ${\bf x}'$  и  ${\bf x}''$ , соответствующими одной и той же точке  ${\bf x} \in \Delta$ . Из равенства

$$x_{1}' - x_{i}'' = \left[ \left( \frac{\partial \varphi_{i}}{\partial x_{1}} \right)_{1} - \left( \frac{\partial \varphi_{i}}{\partial x_{1}} \right)_{0} \right] (x_{1} - x_{1}^{0}) + \left[ \left( \frac{\partial \varphi_{i}}{\partial x_{2}} \right)_{1} - \left( \frac{\partial \varphi_{i}}{\partial x_{2}} \right)_{0} \right] (x_{2} - x_{2}^{0}) \quad (i = 1, 2)$$

<sup>\*)</sup> В силу § 12.16, (7) имеем  $||D(\mathbf{x})| - |D(\mathbf{x}^0)|| \le |D(\mathbf{x}) - D(\mathbf{x}^0)| \le C\omega(h)\sqrt{2} \le 2C\omega(h)$ .

следует (см. (10), § 7.10)\*)

$$|x_i'' - x_i'| \leqslant \omega \left(\sqrt{2}h\right)h + \omega \left(\sqrt{2}h\right)h \leqslant 4\omega(h)h, \tag{5}$$

$$|\mathbf{x}'' - \mathbf{x}'| = \sqrt{(x'' - x_1')^2 + (x_2'' - x_2')^2} \leqslant 6\omega(h) h = \lambda.$$
 (6)

Таким образом, точка  ${\bf x'}$  находится внутри круга с центром в  ${\bf x''}$  радиуса  $\lambda$ .

Опишем из каждой точки  $\mathbf{x}'' \in \gamma''$  (границы  $\Delta''$ ) кружок  $v_{x''}$  радиуса  $\lambda$ . Объединение всех  $v_{x''}$ , соответствующих всем  $x \in \gamma$ ,

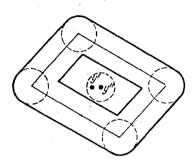


Рис. 12.16.

обозначим через e. Если параллелограмм  $\Delta''$  не слишком скошен, то получим картину, как на рис. 12.16.

Множество e имеет вид рамки с закругленными внешними углами, внутри нее имеется параллелограмм  $\Delta'' - e$ . Круг  $v_{y''}$ , где y'' - центр параллелограмма  $\Delta''$ , полностью содержится в  $\Delta'' - e$ . Так как центр y квадрата  $\Delta$  при помощи  $A^*$  переходит в y'', то  $y' \subset v_{y''} \subset \Delta'' - e$ .

Обозначим через  $H_i$  высоту  $\Delta''$ , перпендикулярную *i*-й стороне (длины  $a_ih$ : i=1, 2). Изображенная на рис. 12.16 картина во всяком

случае будет иметь место, если

$$H_i > 4\lambda \qquad (i = 1, 2). \tag{7}$$

Площадь рамки e не превышает, очевидно, сумму площадей четырех кружков радиуса  $\lambda$ , описанных из угловых точек  $\gamma''$  как из центров, плюс сумму площадей прямоугольников высоты  $2\lambda$  с основаниями, равными длинам сторон параллелограммов  $\Delta''$ .

Следовательно \*\*),

$$|e| \leqslant 4\pi\lambda^2 + 2\sum_{i=1}^{2} 2\lambda a_i h \leqslant Kh^2\omega(h). \tag{8}$$

 $\left(\varphi_i, \frac{\partial \varphi_i}{\partial x_j}\right)$  ограничены на  $\overline{\Omega}$ , поэтому и  $a_i$ , и  $\omega(h)!$ , где K— константа, не зависящая от h и положения  $\Delta$  на  $\Omega$ .

Так как  $\gamma'$  содержится в рамке e и  $\Delta'$  является ограниченным множеством (функции  $\varphi_i$  непрерывны, следовательно, ограничены на  $\overline{\Omega}$ ), то интуитивно ясно, что

$$\Delta'' - \mathbf{e} \subset \Delta' \subset \Delta'' + \mathbf{e}. \tag{9}$$

<sup>\*)</sup> В n-мерном случае в правых частях (5), (6) вместо чисел 4, 6 можно взять соответственно  $n(\sqrt{n}+1), \sqrt{n^3(\sqrt{n}+1)^2}$ .

<sup>\*\*)</sup> В n-мерном случае в правой части будет  $K\omega(h)h^n$ ,

Ниже мы докажем это утверждение аккуратно, а сейчас воспользуемся им, чтобы опенить  $|\Delta'|$ .

Из (9) вытекает, что 
$$|\Delta'| = |\Delta''| + \theta |e| (-1 \le \theta \le 1)$$
.

Следовательно, в силу (8) и учитывая, что площадь параллелограмма  $\Delta''$  равна абсолютной величине определителя, составленного по векторам, определяющим его стороны, получим

$$|\Delta'| = |D(\mathbf{x}^0)|h^2 + O(h^2\omega(h)),$$

где константа в O не зависит от  $\mathbf{x}^0$  и h.

Докажем (9). Вложение  $\Delta'' - e \subset \Delta'$  следует из того, что  $\Delta'' - e$  заведомо содержит одну точку  $y' \in \Delta'$  и ни одной граничной точки  $\Delta'$ , ведь все граничные точки  $\Delta'$  содержатся в е. Если бы в  $\Delta'' - e$  нашлась точка z, не принадлежащая  $\Delta'$ , то отрезок  $\overline{y'z}$  (соединяющий точку  $y' \in \Delta'$  с точкой  $z \in \Delta'$ ) содержал бы в себе граничную точку  $\Delta'$ .

Вложение же  $\Delta' \subset \Delta'' + e$  вытекает из следующих соображений. Допустим, что существует точка  $\mathbf{z}' \in \Delta' - (\Delta'' + e)$ . Выпустим из центра  $\Delta''$  луч, проходящий через  $\mathbf{z}'$ , и будем двигаться из  $\mathbf{z}'$  по этому лучу в бесконечность. Так как  $\Delta'$  — ограниченное множество (функции  $\phi_1$  и  $\phi_2$  ограничены на  $\overline{\Delta}$ ), то мы обязательно должны наткнуться на точку  $\gamma'$  (гранины  $\Delta'$ ). Но этого не может быть, потому что  $\gamma'$  ⊂ e.

Но еще надо рассмотреть случай, когда для некоторого i=1,2имеет место неравенство

$$H_i \leqslant 4\lambda$$
 (10)

(в частности, если  $D(\mathbf{x}^0) = 0$  и параллелограмм  $\Delta''$  вырождается). Тогда в силу (10), (6), (8) имеем

$$| |\Delta'| - |D(x^0)|h^2| = | |\Delta'| - |\Delta''| | \leq |\Delta'| + |\Delta''| \leq$$

$$\leq (|\Delta''| + |e|) + |\Delta''| = 2|\Delta''| + |e| \leq 2a_i h H_1 + |e| \leq$$

$$\leq O(h^2 \omega(h)) + O(h^2 \omega(h)) = O(h^2 \omega(h)).$$

Поэтому  $|\Delta'| - |D(x^0)|h^2 = O(h^2\omega(h))$ , и верно (2).

Итак, во всех возможных случаях имеет место равенство (2). При этом константа C, входящая в остаток правой его части, не зависит от h и  $\mathbf{x}^0 \in \Omega$ . Из примечаний, которые делались попутно, видно, что доказательство в общем случае n совершенно аналогично.

# § 12.18. Полярные координаты в плоскости

Система уравнений

$$x = \rho \cos \theta, \ y = \rho \sin \theta$$
 (1)

осуществляет преобразование полярных координат в декартовы. Правые части (1) — непрерывно дифференцируемые функции с **монаидо**жа

$$D = \frac{D(x, y)}{D(\rho, \theta)} = \begin{vmatrix} \cos \theta & \sin \theta \\ -\rho \sin \theta & \rho \cos \theta \end{vmatrix} = \rho \geqslant 0.$$
 (2)

Введем чисто формально новую плоскость с декартовой системой (р, д) и принадлежащую ей область

$$\Lambda = \{ \rho > 0, \ 0 < \theta < 2\pi \}. \tag{3}$$

Очевидно, преобразование (1) взаимно однозначно отображает  $\Lambda$  на  $\Lambda'$  — плоскость xy без луча  $\theta=0$ . К тому же на  $\Lambda$  якобиан D>0.

Пусть в плоскости x, y задана произвольная измеримая (в двумерном смысле) область, а на ее замыкании — непрерывная функция f(x, y). Выкинем из этой области точки луча  $\theta = 0$ , если они есть, и оставшееся множество обозначим через  $\Omega'$ . Будем считать, что  $\Omega'$  есть область или сумма конечного числа непересекающихся попарно областей. Множеству  $\Omega'$  соответствует в силу (1) некоторое множество  $\Omega \subseteq \Lambda$  (которое предполагается измеримым),  $\Omega \neq \Omega'$ . Справедливо равенство

$$\iint_{\Omega'} f(x, y) dx dy = \iint_{\Omega} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta, \tag{4}$$

нотому что мы находимся в условиях теоремы о замене перемен-

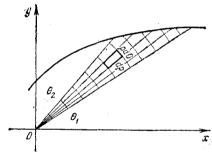


Рис. 12.17.

 $\theta = \theta_1, \quad \theta = \theta_2(\theta_1 < \theta_2 \le \theta_1 + 2\pi)$ =  $\psi(\theta)$ , to

ных в кратном интеграле (
$$f$$
 непрерывна на  $\Omega'$ , преобразование (1) непрерывно дифференцируемо на  $\overline{\Omega}$  с якобианом  $\rho > 0$  и  $\Omega \Rightarrow \Omega'$ ).

В полученной формуле (4) можно теперь заменить  $\Omega$ ,  $\Omega'$  соответственно на их замыкания  $\overline{\Omega}$ ,  $\overline{\Omega}'$ , потому что этим добавляются только множества двумерной меры пуль.

Если область  $\Omega$  имеет вид сектора, ограниченного лучами и непрерывной кривой  $\rho =$ 

$$\iint_{\Omega'} f(x, y) \, dx \, dy = \int_{\theta_1}^{\theta_2} d\theta \int_{\theta}^{\psi(\theta)} f(\rho \cos \theta, \rho \sin \theta) \, \rho \, d\rho, \tag{5}$$

Впрочем, формулу (4) можно получить из естественных геометрических соображений, не прибегая к искусственной декартовой илоскости ( $\rho$ ,  $\theta$ ). Плоскость x, y разбиваем на элементарные фигуры близкими концентрическими окружностями и выходящими из нулевой точки лучами (рис. 12.17). Площадь каждой такой элементарной фигуры (возле точки ( $\rho$ ,  $\theta$ )) или, как говорят, элемент площади в полярных координатах, равна с точностью до бесконечно малых высшего порядка  $\Delta S \sim \rho \ d\rho \ d\theta$ . Поэтому, если

наш интеграл просуммировать по этим элементам, то получим

$$\lim_{\Delta\rho,\Delta\theta\to e} \sum f_j \rho_j \Delta\rho \, \Delta\theta = \iint_{\Omega} f(\rho, \, \theta) \, \rho \, d\rho \, d\theta.$$

Пример:

$$\int_{\mathbf{R}^2 + y^2 \leqslant R^2} \int_{\mathbf{R}^2} e^{(x^2 + y^2)} dx \, dy = \int_{0}^{R} \int_{0}^{2\pi} e^{\rho^2} \rho \, d\rho \, d\theta = \pi \left( e^{R^2} - 1 \right).$$

Замечапие. Операция (1) непрерывна на замыкании  $\overline{\Lambda}$  области  $\Lambda = \{0 < \rho < 1; \ 0 < \theta < 2\pi\}$  и устанавливает взаимно однозначное соответствие  $\Lambda \rightleftharpoons \Lambda'$ , но при этом взаимно однозначного соответствия между границами  $\Lambda$  и  $\Lambda'$  нет (см. теорему 1, § 12.16).

## § 12.19. Полярные и цилиндрические координаты в пространстве

Система уравнений

$$x = \rho \cos \theta \cos \varphi$$
,  $y = \rho \cos \theta \sin \varphi$ ,  $z = \rho \sin \theta$  (1)

осуществляет переход от полярных координат в пространстве к декартовым (рис. 12.18). Здесь  $\rho$  — расстояние точки P(x, y, z)

до начала координат (полюса полярной системы),  $\theta$  — угол между радиус-вектором  $\rho$  точки P и его проекцией на плоскость (x, y),  $\varphi$  — угол между указанной проекцией и положительным направлением оси x. Его отсчитывают в том направлении, в котором надо вращать вокругоси z положительно направленную ось x, чтобы прийти  $\kappa$  положительно направленной оси y кратчайшим путем.

Функции справа в (1) непрерывно дифференцируемы с якобианом

$$D = \frac{D(x, y, z)}{D(\rho, \varphi, \theta)} = \rho^2 \cos \theta. \tag{2}$$

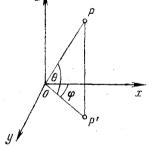


Рис. 12.18.

Введем формально новое трехмерное пространство с декартовой системой координат ( $\rho$ ,  $\theta$ ,  $\phi$ ) и в нем открытое множество

$$\Lambda = \left\{ 0 < \rho, -\frac{\pi}{2} < \theta < \frac{\pi}{2}, 0 < \phi < 2\pi \right\}. \tag{3}$$

Преобразования (1) взаимно однозначно отображают  $\Lambda$  на  $\Lambda'$ , **т.** е. на пространство xyz с выкинутой полуплоскостью  $\varphi = 0$  (множеством точек (x, 0, z), где  $x \ge 0$ ):

$$\Lambda \rightleftharpoons \Lambda'. \tag{4}$$

Пусть теперь в пространстве xyz задана произвольная измеримая в трехмерном смысле область, а па ее замыкании — непрерывная функция f(x, y, z). Выкинем из этой области точки полуплоскости  $\phi = 0$  и оставшееся множество обозначим через  $\Omega'$ . Будем считать, что  $\Omega'$  есть область или сумма конечного числа непересекающихся попарно областей. Множеству  $\Omega'$  соответствует в силу (4) некоторое множество  $\Omega \subseteq \Lambda$ , которое мы будем предполагать измеримым.

Справедливо равенство

$$\iint_{\Omega'} \int f(x, y, z) dx dy dz = \iint_{\Omega} \int F(\rho, \theta, \varphi) \rho^2 \cos \theta d\rho d\theta d\varphi, \quad (5)$$

где

$$F(\rho, \theta, \varphi) = f(\rho \cos \theta \cos \varphi, \rho \cos \theta \sin \varphi, \rho \sin \theta), \tag{6}$$

потому что мы находимся в условиях теоремы о замене переменных в кратном интеграле.

Теперь в (5) можно при желании заменить  $\Omega$ ,  $\Omega'$  на  $\overline{\Omega}$ ,  $\overline{\Omega}'$  потому, что эти множества отличаются соответственно на множества трехмерной меры пуль.

Пусть  $\sigma$  есть поверхность, описываемая в полярных координатах функцией  $\rho = \psi(\theta, \varphi)((\theta, \varphi) \in \omega)$ , непрерывной на замыкании области  $\omega$ , и пусть  $\Omega$  — трехмерная измеримая область пространства (x, y, z), ограниченная поверхностью  $\sigma$  и конической поверхностью, лучи которой выходят из нулевой точки и опираются на  $\sigma$ . Тогда для непрерывной на  $\sigma$  функции  $\sigma$ 0 имеет место

$$\int \int_{\Omega} \int f \, dx \, dy \, dz = \int \int_{\omega} d\theta \, d\phi \int_{0}^{\psi(\theta,\phi)} F \rho^{2} \cos \theta \, d\rho.$$

В частности, если ω соответствует всей единичной сфере, то последний интеграл равен

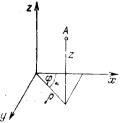


Рис. 12.19.

$$\int_{-\pi/2}^{\pi/2} \cos\theta \, d\theta \int_{0}^{2\pi} d\varphi \int_{0}^{\psi(\theta,\phi)} F\rho^{2} \, d\rho.$$

Чтобы наглядно получить элемент объема в полярных координатах, рассечем пространство на малые части концентрическими шаровыми поверхностями с центром в полярном полюсе (точке  $\rho=0$ ) плоскостями, проходящими через ось z, и круговыми коническими поверхностями, имеющими своей осью ось z.

Полученные ячейки имеют объем, равный с точностью до бесконечно малых высшего порядка  $\Delta v \sim \rho^2 \cos\theta \, d\rho \, d\theta \, d\phi$ , где  $(\rho, \, \theta, \, \phi)$  — одна из точек ячейки.

Замечание. Операция (1) непрерывна на замыкании  $\overline{\Lambda}$ области  $\Lambda = \{0 < \rho < 1, -\pi/2 < \theta < \pi/2, 0 < \phi < 2\pi\}$  и устанавливает взаимно однозначное соответствие  $\Lambda \rightleftharpoons \Lambda'$ . Однако при этом нет взаимно однозначного соответствия точек границ  $\Lambda$  и  $\Lambda'$ .

Цилиндрические координаты (р, в, г) связаны с декартовыми

координатами (x, y, z) равенствами (см. рис. 12.19)

$$x = \rho \cos \varphi, \ y = \rho \sin \varphi, \ z = z.$$
 (7)

Здесь ho — расстояние от проекции точки  $A=(x,\,y,\,z)$  на плоскость (x, y), до начала декартовой системы, а  $\phi$  — угол радиус-вектора указанной проекции с осью х. Якобиан преобразования (7) равен

$$\frac{D(x, y, z)}{D(\rho, \varphi, z)} = \rho_{\bullet}$$

#### § 12.20. Общие свойства непрерывных операций

Ниже мы будем изучать операцию

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x} = \left(x_1, \, \ldots, \, x_n\right) \in \Omega \subset R, \quad \mathbf{x}' = \left(x_1', \, \ldots, \, x_n'\right) \in \Omega' \subset R',$$

приводящую во взаимно однозначное соответствие  $\Omega 
ightleftharpoons \Omega'$  некоторые множества  $\Omega \subset R$  и  $\Omega' \subset R'$ .

Таким образом, существует обратная операция  $(\mathbf{x} = A^{-1}\mathbf{x}' \ (\mathbf{x}' \in \Omega'))$ . Условимся в обозначениях. Если некоторая точка Ω' обозначена черезx', то это значит, что x' = Ax ( $x \in \Omega$ ); e' = Ae, где  $e \subset \Omega$ ;  $\sigma_x$ ,  $\sigma_{x'}$  — шары в R, соответственно в R', с центрами в точках  $\mathbf{x} \ (\subseteq R), \ \mathbf{x}' \ (\subseteq R')$ .

Теорема 1. Если операция А отображает непрерывно и взаимно од-

нозначно замкнутое ограниченное множество F на множество F', то F' гоже ограничено и замкнуто и обратная операция  $A^{-1}$  непрерывна на F'. В самом деле, пусть  $\mathbf{x}_l' \subseteq F'$   $(l=1,2,\ldots),\ \mathbf{y}_0 \subseteq R'$  и  $\mathbf{x}_l' \to \mathbf{y}_0$ . Тогда существует подпоследовательность  $\mathbf{x}_{l_h}$  и точка  $\mathbf{x}_0 \subseteq F$  (ограниченность и вамкнутость F!) такая, что  $\mathbf{x}_{l_h} \to \mathbf{x}_0$ , и в силу непрерывности A на F имеет место  $\mathbf{x}'_{l_b} = A\mathbf{x}_{l_b} \to A\mathbf{x}_0$ . Следовательно,  $\mathbf{y}_0 = A\mathbf{x}_0$  и F' — замкнутое множество. Оно ограничено, иначе существовала бы последовательность  $\mathbf{x}_{l}^{\prime}$  с  $|\mathbf{x}_l'| \to \infty$ , что невозможно, потому что для некоторой подпоследовательности  $\mathbf{x}_{l_h}$  и некоторой точки  $\mathbf{x}_0 \in F$  должно было бы быть  $A\mathbf{x}_{l_h} \to A\mathbf{x}_0$ .

Пусть теперь  $x'_l, x'_0 \in F'$  (l = 1, 2, ...) и  $x'_l \to x'_0$ . Если бы точка  ${f x}_l$  не стремилась к  ${f x}_0$ , то нашлись бы подпоследовательность  ${f x}_{l_b}$  и точка  $\mathbf{x}_* \neq \mathbf{x}_0$  (ограниченность и замкнутость F!) такие, что  $\mathbf{x}_{l_b} \to \mathbf{x}_*$   $(k \to \infty)$ , но тогда  $\mathbf{x}'_{l_b} \rightarrow A\mathbf{x}_*$ , и так как  $\mathbf{x}'_{l_b} \rightarrow A\mathbf{x}_0$ , то  $A\mathbf{x}_0 = A\mathbf{x}_*$ , и вследствие предположенной взаимной однозначности получили бы  $x_0 = x_*$ , что

противоречит сделанному предположению. Теорема 2. В предположениях теоремы 1 образ  $(\sigma_x)'$  шара  $\sigma_x \subset F$ содержит в себе некоторый шар  $\sigma_{\mathbf{x}'}$ , r. е. если  $g \subset F$  — открытое множество (или область), то открыто также и множество в (соответственно

область).

Эта глубокая теорема (Брауэра) приводится без доказательства. Доказательство можно найти в книге: В. Гуревич и Г. Волмен. Теория размерности, ИЛ, 1948, стр. 64.

В случае, когда А — непрерывно дифференцируемая операция с не рав-

ным нулю на д якобианом, эта теорема доказана в § 7.18.

Teopema 3. Пусть  $\Omega$  — область, и непрерывная на  $\Omega$  операция  $\mathbf{x}'$  $=A\mathbf{x}$  приводит во взаимно однозначное соответствие множества  $\Omega$  и  $\Omega'$ :

$$\Omega \rightleftharpoons \Omega' \quad (\mathbf{x} \in \Omega, \ \mathbf{x}' \in \Omega').$$

Тогда

1) если  $g \subset \Omega$  — ограниченная область и  $\bar{g} \subset \Omega$ , то g имеет непустую

границу у: при этом в' - область, а ее граница есть у';

2) если  $g \subset \Omega$  — произвольная область, то g' — также область; в частности,  $\Omega'$  — область. Взаимно однозначного соответствия между границами g и g', в частности, между границами  $\Omega$  и  $\Omega'$  может и не быть (см. за-

мечания в конце §§ 12.18 и 12.19).

Так как по условию утверждения 1) непрерывная операция А взаимно однозначно отображает замкнутые ограниченные миожества  $\gamma$ ,  $g + \gamma$  соответственно на множества  $\gamma'$ ,  $g'+\gamma'$ , то последние по теореме 1 тоже ограничены и замкнуты, а g' как образ области  $g \subset g+\gamma$  по теореме 2 есть область. Очевидно, граница g' принадлежит  $\gamma'$ . С другой стороны, если  $v' \subset \Omega'$  есть шар с центром в  $\mathbf{x}'_0 \in \Upsilon'$ , то на основании сказанного его прообраз v есть область, содержащая  $\mathbf{x} \in \gamma$ . Но тогда v' содержит в себе точки, принадлежащие и не принадлежащие у, потому что и содержит точки, принадлежащие и не принадлежащие д. Мы доказали, что ү' есть граница д'.

Пусть теперь  $g \subset \Omega$  — произвольная область (не требуется ее ограниченность и принадлежность  $\bar{g}$  области  $\Omega!$ ),  $\mathbf{x}_0' \in \mathbf{g}'$  п  $\sigma_{\mathbf{x}_0} \subset \mathbf{g}$  — открытый шар (ограниченная область) такой, что  $\tilde{\sigma}_{x_0} \subset g$ . По доказанному $(\sigma_{x_0})'$  есть область, содержащая, таким образом, в себе некоторый шар  $\sigma$  , т. е. g' —

открытое множество. Связность в вытекает из связности в и непрерыв-

ности Aх.

Замечание. Пусть выполняются условия теоремы § 12.16 о замене

переменных в кратном интеграле. Тогда имеют место утверждения: 1) Если  $\Delta$  — (замкнутый) куб, содержащийся в  $\Omega$ , то его открытое ядро отображается операцией A на открытое ядро  $\Delta'$ , а граница  $\Delta$  — на гра-

ницу  $\Delta'$  (см. теорему 3, утверждение 1)).

2) Множество  $\Omega_0 = \{D(\mathbf{x}) = 0\}$  не содержит в себе ни одного куба, потому что если бы некоторый куб  $\Delta \subset \Omega_0$ , то его открытое ядро отображалось бы операцией A на непустое открытое множество, поэтому  $|\Delta'| > 0$ , но, с другой стороны,  $|\Delta'| = \int_{A} |D(\mathbf{x})| d\mathbf{x} = 0$ , и получилось бы противоречие.

### § 12.21. Дополнение к теореме о замене переменных в кратном интеграле

Пусть выполняются условия теоремы § 12.16, тогда не существует па-

ры точек  $y, z \in \Omega$  таких, что D(y) > 0, D(z) < 0.

Будем рассуждать от противного. Предположим, что такие точки существуют, тогда существует и куб  $\Delta \subset \Omega$ , где происходит перемена знака у *D*.

Чтобы доказать это, соединим у и z непрерывной кривой  $C \subset \Omega$ . Каждую точку C покроем принадлежащим  $\Omega$  открытым кубом (с ребрами, параллельными осям!) с центром в ней. Среди этих кубов оставим конечное число все же покрывающих C. Перенумеруем их  $\Delta_1, \Delta_2, \ldots, \Delta_N$  так, чтобы их центры следовали друг за другом вдоль ориентированной от у до z кривой C. Один из них обязательно удовлетворяет высказанному утверждению. В самом деле, если на  $\Delta_1$  имеет место перемена знака, то утверждение доказано. Если это не так, то пусть для определенности  $D(\mathbf{x}) \geqslant 0$  на  $\Delta_1$  и пусть k — наибольшее среди j, для которых  $D(\mathbf{x}) \geqslant 0$  па  $\Delta_j$  ( $j=1,\ldots,k$ ); тогда на  $\Delta_{h+1}$  может быть либо перемена знака  $D(\mathbf{x})$ , либо  $D(\mathbf{x}) \leqslant 0$ . Но последнее невозможно, потому что на непустом прямоугольнике  $\Delta_h \Delta_{h+1}$  было бы  $D(\mathbf{x}) \equiv 0$  (см. замечание 2, § 12.20). Утверждение доказано.

Если внутри прямоугольника  $\Delta$  имеет место перемена знака, т. е. сунсствуют внутренние в  $\Delta$  точки у, z, для которых D(y)>0, D(z)<0, то эти точки всегда можно считать находящимися на одной из плоскостей

 $x_i := \alpha$  при некотором числе  $\alpha$ .

В самом деле, определим состоящие из внутренних точек  $\Delta$  кубы  $\Delta'$ ,  $\Delta''$  с центрами соответственно в  $\mathbf{y}$ ,  $\mathbf{z}$  так, что  $D(\mathbf{x})>0$  на  $\Delta'$  и  $D(\mathbf{x})<0$  на  $\Delta''$ . Пусть нижняя и верхняя в направлении  $\mathbf{x}_1$  грани  $\Delta'$  будут  $\mathbf{x}_1=\alpha_1$ ,  $\mathbf{x}_1=\alpha_2$  ( $\alpha_1<\alpha_2$ ). Тогда, допуская, что высказанное утверждение неверно, придется заключить, что  $D(\mathbf{x})\geqslant 0$  на прямоугольнике  $\Delta_{\alpha_1\alpha_2}$ , состоящем из всех точек  $\mathbf{x}\in\Delta$ , у которых  $\alpha_1\leqslant \mathbf{x}_1\leqslant\alpha_2$ . Кроме того,  $D(\mathbf{x})\leqslant 0$  для всех точек  $\mathbf{x}\in\Delta$ , принадлежащих прямоугольнику  $\Pi$  с образующей, параллельной оси  $\mathbf{x}_1$ , опирающемуся на  $\Delta''$ . Но тогда  $D(\mathbf{x})=0$  на непустом пересечении  $\Pi\Delta_{\alpha_1\alpha_2}$ , содержащем в себе куб, что невозможно (см. замечание 2, § 12.20). На рис. 12.20 изображен плоский случай, где  $\mathbf{x}'$  соответствует точке  $\mathbf{y}$ , а  $\mathbf{x}''$ — точке  $\mathbf{z}$ .

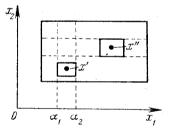


Рис. 12.20.

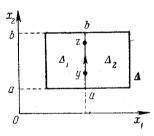


Рис. 12.21.

Перемены знака, о которой идет речь, вообще не может быть. Рассмотрим двумерный открытый прямоугольник  $\Delta$  (рис. 12.21).

Ориентированный от a до b отрезок [a, b] делит прямоугольник  $\Delta$  на два открытых прямоугольника  $\Delta = \Delta_1 + \Delta_2$ . При помощи операции A отрезок [a, b] переходит в ориентированный кусок непрерывной кривой \*) a', b', разрезающий  $\Delta'$  на две области  $\Lambda$  и  $\Omega$  (рис. 12.22).

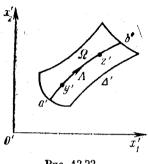
Таким образом, либо 1)  $\Delta_2' = \Lambda$ , либо 2)  $\Lambda_2' = \Omega$ . Но если допустить, что верно 1), то это противоречит перавенству  $D(\mathbf{z}) < 0$ , в силу которого точки  $\Delta_2$ , близкие к  $\mathbf{z}$ , должны при помощи операции A перейти в точки, находящиеся слева от ориентированной кривой a'b' по ее ходу, откуда бы следовало 2).

<sup>\*)</sup> Определяющие кусок кривой a'b' функции  $x_1' = \phi(x_1, x_2)$ ,  $x_2' = \psi(x_1, x_2)$  от  $x_2$  непрерывны вместе со своими первыми производными. Последние могут одновременно в некоторых точках  $x_2$  быть равными нулю, но это не влияет на ход дальнейших рассуждений.

Наоборот, 2) противоречит неравенству D(y) > 0, в силу которого точни  $\Delta_2$ , близкие к z, переходит при преобразовании A в точки, находящиеся справа по ходу кривой a'b'.

Этим наше утверждение в двумерном случае доказано.

В трехмерном случае  $\Delta$  есть трехмерный прямоугольник (прямоугольный параллелениед). Голь направленного отрезка [a, b] играет теперь прямоугольная площадка  $\sigma$ , вырезаемая из  $\Delta$ 



Puc. 12.22.

плоскостью  $x_1 = \alpha$ , о разрезает  $\Delta$  на две части с открытыми ядрами  $\Lambda_1$  и  $\Lambda_2$ . Ориентируем  $\sigma$ . Этим каждый гладкий замкнутый контур Г  $\subset$  о определенное направление получит и в этом смысле об будет тоже соответственно ориентирована. Однако в точках  $\sigma$ , где  $D(\mathbf{x}) =$ = 0, нормаль может и не существовать, и принятое определение ориентированности полностью неприменимо к о'. Пусть  $D(\mathbf{y})>0$ ,  $D(\mathbf{z})<<0$ , где  $\mathbf{y}$ ,  $\mathbf{z}$ —внутренние точки  $\Delta$ , лежащие на  $\sigma$ . На нормалях в точках y',  $z' \in \sigma'$  к  $\sigma'$  в  $\Lambda'_{r}$ выберем соответственно точки у", г" так, чтобы векторы y'y'', z'z'' (без начальных точек) полностью принадлежали Л'. Эти последние вместе с малыми, содержащими у', г', ориентирован-

ными площадками  $\sigma'_{y'}$ ,  $\sigma'_{z'}\subset\sigma'$  образуют штопоры. Штопор, выходящий из y', преобразованием  $A^{-1}$  переводится в одноименный (D(y)>0), а выходящий из z'-в разноименный (D(z)<0). Выходит, что  $\Lambda_1$  имеет вблизи y и z точки, лежащие по разные стороны от  $\sigma$ , что невозможно.

### § 12.22. Несобственный интеграл с особенностями вдоль границы области, Замена переменных

Иемма 1. Пусть задана последовательность открытых множеств  $\Omega_1$ ,  $\Omega_2$ ,  $\Omega_3$ , ... Тогда  $\Omega=\sum_{1}^{\infty}\Omega_h$  есть открытое множество.

Действительно, если точка  $\mathbf{x}^0 \in \Omega$ , то найдется k, при котором  $\mathbf{x}^0 \in \Omega_{h*}$ . Но  $\Omega_{h}$  — открытое множество, и потому найдется шар V с пентром в  $\mathbf{x}^0$ , содержащийся в  $\Omega_{h}$ , следовательно, и в  $\Omega$ .

 $ar{ exttt{JI}}$  ем м в 2. При условиях леммы 1, если еще  $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ , то, каково бы ни было вамкнутое ограниченное множество  $F \subset \Omega$ , найдется

такое k, при котором  $F \subset \Omega_k$ .

Действительно, если бы это было не так, то для любого  $k=1,2,\ldots$  нагилась бы точка  $\mathbf{x}_k$ , принадлежащая F, но не принадлежащая  $\Omega_k$ . Так как F — ограниченное замкнутое множество, то из принадлежащей ему последовательности  $\{\mathbf{x}_k\}$  можно выделить подпоследовательность  $\{x_{kj}\}$ , сходянуюся в некоторой точке  $\mathbf{x}_0 \in F\left(x_{kj} \to x_0\right)$ . Но  $\mathbf{x}_0 \in F \subset \Omega$ , следовательно,  $\mathbf{x}_0 \in \Omega_{k_0}$  при некотором  $k_0$ . Так как  $\Omega_{k_0}$  открыто, то найдется шар V с центром в  $\mathbf{x}^0$ , принадлежащий  $\Omega_{k_0}$ . Но шару V принадлежат точки  $x_{kj}$  при достаточно больших j. Возьмем одну из них с  $k_j > k_0$  для нее  $x_{kj} \in V \subset \Omega_{k_0} \subset \Omega_{k_j}$ , и мы пришли к противоречию.

**Лемма** 3. При условиях леммы 2, если еще  $\Omega$  и  $\Omega_h$  измерими, то

$$\lim_{k \to \infty} |\Omega_k| = |\Omega|. \tag{1}$$

Доказательство. Очевидно,  $|\Omega_k| \leqslant |\Omega_{k'}| \leqslant |\Omega|$  ( $k \leqslant k'$ ). С другой стороны, для любого  $\varepsilon > 0$  можно указать замкнутое измеримое множество  $F \subset \Omega$  такое, что  $|F| > |\Omega| - \varepsilon$ . В качестве F можно, например, взять фигуру, состоящую из кубиков  $\Delta \subset \Omega$  достаточно густой прямоугольной сетки. Согласно лемме 2 найдется  $k_0$ , для которого  $F \subset \Omega_{k_0}$ . Для него  $|\Omega| - \varepsilon < |F| < |\Omega_{k_0}| < |\Omega_k|$  ( $k \geqslant k_0$ ), и равенство (1) доказано.

Определение. Если на области  $\Omega$  (не обязательно измеримой) задана функция  $f(\mathbf{x})$ , непрерывная, но неограниченная, то несобственным интегралом от  $f(\mathbf{x})$  по  $\Omega$  назовем предел

$$\lim_{h\to\infty}\int_{\Omega_h}f(\mathbf{x})\,d\mathbf{x}=\int_{\Omega}f\,d\mathbf{x},\tag{2}$$

если он существует, где  $\{\Omega_k\}$  — произвольная последовательность измеримых областей, обладающих следующим свойством:

$$\overline{\Omega}_k \subset \Omega, \quad \Omega_1 \subset \Omega_2 \subset \dots, \Omega = \sum_{h=1}^{\infty} \Omega_h.$$
 (3)

Область  $\Omega_h$  имеют гладкие (кусочно гладкие границы).

Предел считается существующим, если он есть одно и то же число для любой указанной последовательности  $\{\Omega_h\}$ . Конечно, для неотрицательной на  $\Omega$  функции  $f(\mathbf{x})$ , если предел (2) существует для одной указанной последовательности  $\{\Omega_h\}$ , то он существует и для другой  $\{\Omega_h'\}$  и равен ему, потому что, каково бы ни было k, найдется по лемме 2 такое l=l(k), что  $\overline{\Omega}_h\subset\Omega_h'$ , и потому

$$\int_{\Omega_h} f \, d\mathbf{x} = \int_{\overline{\Omega}_h} f \, d\mathbf{x} \leqslant \int_{\Omega_I'} f \, d\mathbf{x},$$

откуда следует, что предел (2) по последовательности  $\{\Omega_k\}$  не превышает такой предел по последовательности  $\{\Omega_k'\}$ , но тогда и наоборот, потому что рассуждения можно обратить.

Теорема. Пусть преобразование

$$x = \varphi(u, v),$$

$$y = \psi(u, v)$$

$$((u, v) \in \Omega),$$
(4)

непрерывно дифференцируемое на замыкании  $\overline{\Omega}$  измеримой области с якобианом

$$D(u, v) = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \psi}{\partial u} & \frac{\partial \psi}{\partial v} \end{vmatrix} \neq 0 \quad ((u, v) \in \Omega),$$

отображает взаимно однозначно  $\Omega$  на  $\Omega'$ :

$$\Omega \rightleftharpoons \Omega'$$

u на  $\Omega'$  задана непрерывная, но неограниченная функция  $f(x,\ y)$  гакая, однако, что функция

$$F(u, v) |D(u, v)| = f[\varphi(u, v), \psi(u, v)] |D(u, v)|$$

равномерно непрерывна на  $\Omega$ ,  $\tau$ . e. может быть продолжена по непрерывности на  $\overline{\Omega}$ .

Тогда имеет место равенство

$$\int_{\Omega'} \int f(x, y) \, dx \, dy = \int_{\Omega} \int F(u, v) |D(u, v)| \, du \, dv, \tag{5}$$

где интеграл слева — несобственный в смысле введенного выше определения.

До казательство. Зададим произвольную последовательность областей  $\{\Omega_h'\}$ , удовлетворяющих условиям (3) (где надо всюду над  $\Omega$  поставить штрихи). Ей соответствует последовательность областей  $\{\Omega_h\}$ , которые в силу свойств непрерывных в обе стороны отображений тоже удовлетворяют условиям (3).

Имеем

$$\iint_{\Omega_{k}} f(x, y) dx dy = \iint_{\Omega_{k}} F(u, v) |D(u, v)| du dv \quad (k = 1, 2, ...)$$
 (6)

в силу основной теоремы о замене переменных (ведь f непрерывна на  $\widehat{\Omega}_b'$ ), но (см. лемму 3)

$$\begin{split} \left| \int_{\Omega} F(u, v) | D(u, v) | du dv - \int_{\Omega_{k}} F(u, v) | D(u, v) | du dv \right| &= \\ &= \left| \int_{\Omega - \Omega_{k}} F(u, v) | D(u, v) | du dv \right| \leqslant M | \Omega - \Omega_{k} | \to 0 \quad (k \to \infty) \\ &M \geqslant | F(u, v) D(u, v) | \quad ((u, v) \in \overline{\Omega}), \end{split}$$

и поэтому правая часть (6) сходится к правой части (5). Но тогда и левая часть (6) сходится к тому же числу, независимо от выбора последовательности  $\{\Omega_b'\}$ . Теорема доказана.

Заметим, что в силу свойств отображения (4) (с якобианом, не равным нулю на  $\Omega$ !) гладкая (кусочно гладкая) граница  $\Omega'_h$  переходит в гладжию (кусочно гладкую) границу  $\Omega_h$ , что обеспечивает измеримость  $\Omega_h$ .

Примеры см. в § 12.23, в частности, пример 1.

### § 12.23. Площадь поверхности

Зададим в трехмерном пространстве R, где определена прямоугольная система координат (x, y, z), поверхность S, описываемую уравнением

 $z = f(x, y) \quad ((x, y) \in \overline{G}). \tag{1}$ 

Мы предполагаем, что G есть измеримая открытая область, а функция f имеет непрерывные частные производные

$$p = \frac{\partial f}{\partial x}, \quad q = \frac{\partial f}{\partial y}$$

па G (см. § 7.11).

Согласно определению, введенному в § 7.19, наша поверхность есть гладкий кусок, проектируемый на плоскость z=0.

Произведем разбиение G на конечное число измеримых (в двумерном смысле) частей  $G = G_1 + G_2 + \ldots + G_N$ , пересекающихся попарно разве что по своим границам. Пусть  $(x_j, y_j)$  — произвольная точка  $G_i$   $(j = 1, \ldots, N)$ . Ей соответствует точка  $P_i \in S$  с координатами  $(x_j, y_j, f_j)$ , где  $f_i = f(x_j, y_j)$ . В точке  $P_i$  проведем плоскость  $L_i$ , касательную к S.

Обозначим через  $e_i$  кусок  $L_i$  ( $e_i \subset L_i$ ), проекцией которого на плоскость z=0 служит множество  $G_i$ . Площадь  $e_i$  обозначим че-

рез  $|e_j|$ .

По определению nлоща $\partial$ ью nоверхности S называется предел

$$|S| = \lim_{\max(G_j) \to \mathbf{0}} \sum_{j=1}^N |e_j|.$$

Косипус острого угла пормали  $n_j$  к S в точке  $P_j$  с осью z (см. § 7.5, (13)) равен  $\cos(n_j,z)=1/\sqrt{1+p_j^2+q_j^2}$ , где квадратный корень взят со знаком «+», а  $p_j$ ,  $q_j$  обозначают результаты подстановки в  $p_j$ ,  $q_j$  значений  $x_j$ ,  $y_j$ . Мера  $G_j$  равна  $|G_j|=|e_j|\cos(n_j,z)$ ,

$$|e_{j}| = |G_{j}| \sqrt{1 + p_{j}^{2} + q_{j}^{2}} (j = 1, ..., N)$$

$$|S| = \lim \sum_{j=1}^{N} |e_{j}| = \lim_{\max d(G_{j}) \to 0} \sum_{j=1}^{N} \sqrt{1 + p_{j}^{2} + q_{j}^{2}} |G_{j}| = \int_{G} \sqrt{1 + p^{2} + q^{2}} dx dy.$$
(2)

Мы получили формулу площади поверхности, заданной в явном виде (1).

Покажем, как преобразуется интеграл (2), если сделать в нем нодстановку

$$x = \varphi(u, v), \ y = \psi(u, v) \quad ((u, v) \in \overline{\Omega}), \tag{3}$$

приводящую во взаимно однозначное соответствие измеримые области  $\Omega$  и G в предположении, что  $\phi$  и  $\phi$  непрерывно дифференцируемы на  $\overline{\Omega}$  и якобиан

$$\frac{D(x, y)}{D(u, v)} \neq 0$$
 на  $\Omega$ . (4)

Положим  $z = f(\varphi, \psi) = \chi(u, v)$ . На основании теоремы о замене переменных в кратном интеграле получим равенство (см. § 7.26, (4))

$$\int_{G} \sqrt{1 + p^{2} + q^{2}} dx dy =$$

$$= \int_{G} \sqrt{1 + \left(\frac{D(y, z)}{D(u, v)} \middle/ \frac{D(x, y)}{D(u, v)}\right)^{2} + \left(\frac{D(z, x)}{D(u, v)} \middle/ \frac{D(x, y)}{D(u, v)}\right)^{2} \left| \frac{D(x, y)}{D(u, v)} \right| du dv,}$$

из которого следует, что площадь поверхности S выражается формулой

$$|S| = \iint_{\Omega} \sqrt{\left(\frac{D(x, y)}{D(u, v)}\right)^2 + \left(\frac{D(y, z)}{D(u, v)}\right)^2 + \left(\frac{D(z, x)}{D(u, v)}\right)^2} du dv =$$

$$= \iint_{\Omega} |\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v| du dv. \quad (5)$$

Отметим равенство

$$|r'_u \times r'_v|^2 = EF - G^2$$
,

где

$$E = \left(\frac{\partial x}{\partial u}\right)^{2} + \left(\frac{\partial y}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial u}\right)^{2},$$

$$F = \left(\frac{\partial x}{\partial v}\right)^{2} + \left(\frac{\partial y}{\partial v}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2},$$

$$G = \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} + \frac{\partial y}{\partial u} \frac{\partial y}{\partial v} + \frac{\partial z}{\partial u} \frac{\partial z}{\partial v}.$$

Формула (5) может служить основанием для определения понятия площади новерхности, заданной нараметрически, не обязательно проектирующейся в целом на одну из плоскостей координат.

Пусть задана гладкая поверхность S:

$$\mathbf{r} = \varphi(u, v)\mathbf{i} + \psi(u, v)\mathbf{j} + \chi(u, v)\mathbf{k}$$

$$(|\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v| > 0, (u, v) \in \Omega \rightleftharpoons S),$$
 (6)

где  $\Omega$  — измеримая область плоскости параметров (u, v), а  $\varphi$ ,  $\psi$ ,  $\chi$  имеют непрерывные частные производные на  $\overline{\Omega}$ . Знак  $\Omega = S$  указывает на тот факт, что равенство (6) устанавливает взаимно однозначное соответствие между точками  $\Omega$  и S.

Так как  $\Omega$  — измеримое множество, то оно ограничено и потому имеет не пустую границу  $\gamma$ . Она отображается при помощи равенства (6) на край  $\Gamma = \overline{S} - S$  нашей поверхности. Мы не требуем, чтобы отображение  $\gamma$  на  $\Gamma$  было взаимно однозначным. Имеется много важных примеров, когда этого нет (см. примеры ниже).

По определению назовем nлощаdью S (или S) величину

$$|S| = \int_{\Omega} \int |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| \, du \, dv. \tag{7}$$

Перечислим ряд свойств интеграла (7), показывающих естественность введенного определения.

1) Величина |S| инвариантна относительно допустимых преобразований нараметров, т. е., если

$$u = \lambda(u', v'), v = \mu(u', v') \quad ((u', v') \in \Omega' \Rightarrow \Omega),$$

где  $\lambda$ ,  $\mu$  непрерывно дифференцируемы на  $\overline{\Omega}'$  и

$$\frac{D(\lambda, \mu)}{D(u', v')} \neq 0 \qquad ((u', v') \in \Omega'),$$

 $\iint_{\Omega} |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| du dv = \iint_{\Omega} \left\{ \left( \frac{D(x, y)}{D(u, v)} \right)^{2} + \left( \frac{D(y, z)}{D(u, v)} \right)^{2} + \left( \frac{D(y, z)}{D(u, v)} \right)^{2} + \left( \frac{D(z, x)}{D(u, v)} \right)^{2} \right\}^{1/2} du dv = \iint_{\Omega} \left\{ \left( \frac{D(x, y)}{D(u', v')} \right)^{2} + \left( \frac{D(y, z)}{D(u', v')} \right)^{2} + \left( \frac{D(y, z)}{D(u', v')} \right)^{2} \right\}^{1/2} \left| \frac{D(u', v')}{D(u, v)} \right| \left| \frac{D(u, v)}{D(u', v')} \right| du' dv' = \iint_{\Omega} |\dot{\mathbf{r}}_{u'} \times \dot{\mathbf{r}}_{v'}| du' dv'.$ 

2) Пусть поверхность S проектируется на плоскость  $\mathbf{z} = 0$ . Точнее, пусть равенства

$$x = \varphi(u, v), \quad y = \psi(u, v) \quad (\Omega \Rightarrow G \ni (x, y))$$
 (8)

устанавливают взаимно однозначное соответствие между измеримыми областями  $\Omega$  и G с якобианом

$$\left| \frac{D(x, y)}{D(u, v)} \right| \neq 0. \tag{9}$$

Тогда для функции  $z=f(x,y)=\chi(u(x,y),v(x,y))$   $((x,y)\in G)$ , где u(x,y),v(x,y)— решения уравнений (8), в случае, если она имеет не только непрерывные (как это следует из теоремы о неявных функциях), но и равпомерно пепрерывные на G производные  $p=\frac{\partial f}{\partial x}$ ,  $q=\frac{\partial f}{\partial u}$ , имеет место равенство

$$|S| = \iint_{\Omega} |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| du dv = \iint_{\Omega} \sqrt{1 + p^{2} + q^{2}} dx dy.$$
 (10)

Оно уже было доказано выше (см. (5)).

Таким образом, новое определение площади поверхности совнадает с исходным определением, если имеет место ситуация, возможная для последнего.

Заметим, что если бы свойство равномерной непрерывности p и q на G не соблюдалось, а p и q были только непрерывными и ограниченными на G, то все равно выполнялось бы равенство (10), потому что все условия для замены переменных в интеграле и в этом случае соблюдаются.

Больше того, если p и q непрерывны, но неограничены на G (в то время как функции  $\phi$ ,  $\psi$  имеют непрерывные частные про-

изводные на  $\overline{\Omega}$ ), то все равно равенство (10) остается верным, если понимать интеграл в его правой части в несобственном смысле (см. § 12.22).

3) Если  $\omega$  есть произвольное открытое измервмое множество, содержащееся в  $\Omega(\omega \subset \Omega)$ , то соответствующая часть  $S(\omega)$  нашей гладкой поверхности, определенная равенством

$$\mathbf{r}(u, v) = \varphi \mathbf{i} + \psi \mathbf{j} + \chi \mathbf{k} \quad ((u, v) \in \omega \rightleftharpoons S(\omega)), \tag{11}$$

есть в свою очередь гладкая поверхность, площадь которой равна

$$|S(\omega)| = \iint_{\omega} |\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v| \, du \, dv. \tag{12}$$

Но интеграл справа в (12) имеет также смысл для произвольного измеримого подмножества  $\omega \subset \overline{\Omega}$ . Естественно считать, что его величина есть площадь части  $S(\omega)$  гладкой поверхности S, описываемой вектор-функцией (11).

Очевидно, что

$$|S(\overline{\omega})| = |S(\omega)|$$

и, в частности,

$$|S| = |S(\overline{\Omega})| = |S(\Omega)| = |S|. \tag{13}$$

Итак, па поверхности (множестве)  $\overline{S}$  можно различать некоторые ее части  $S(\omega)$ , которые соответствуют при помощи равенства (11) всевозможным измеримым подмножеством  $\omega \subset \Omega$ . Каждой такой части можно приписать неотрицательное число  $|S(\omega)|$ , площадь  $S(\omega)$ , определяемую интегралом (12). Эта зависимость (числа от подмножества)  $S(\omega)$  к тому же обладает аддитивным свойством:

$$|S(\omega_1 + \omega_2)| = |S(\omega_1)| + |S(\omega_2)|,$$

если ω1 и ω2 пересекаются разве что по своим границам.

Величина  $|S(\omega)|$  является конкретным примером важного в математике понятия  $a\partial\partial u r u s ho u$  функции множества. С одним таким примером — мерой (измеримого) множества — мы оперируем давно.

Выражение  $dS = |\mathbf{r}_u \times \mathbf{r}_v| du \, dv$  называется дифференциальным элементом поверхности S. Площадь части S, соответствующей изменению u от u до u+du и v от v до v+dv, равна

$$\Delta S = \int_{u}^{u+du} \int_{v}^{v+dv} |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| du dv = |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}|_{u=\xi}^{u=\xi} du dv =$$

$$= (|\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| + \varepsilon) du dv = dS + o (du dv) \quad (du, dv \to 0).$$

Во втором равенстве этой цепи применена теорема о среднем, в третьем в выражении  $|\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v|$  заменена точка ( $\xi$ ,  $\eta$ ) на (u, v) за счет прибавления слагаемого  $\varepsilon$ , которое в силу непрерывности функции  $|\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v|$  стремится к нулю при du,  $dv \to 0$ .

Таким образом, dS можно определить как (единственную!) величину вида A du dv, где A не зависит от du и dv, отличающую-

CH OT  $\Delta S$  Ha o(du dv)  $(du, dv \rightarrow 0)$ .

Пример 1. Площадь шаровой поверхности. Уравнения

$$x = \cos \theta \cos \varphi, \quad y = \cos \theta \sin \varphi, \quad z = \sin \theta \quad (|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}| = \cos \theta),$$

$$\Omega = \{0 < \varphi < 2\pi, -\pi/2 < \theta < \pi/2\} \tag{14}$$

определяют гладкую поверхность S — часть шара радиуса 1 с центром в нулевой точке, из которого выброшен меридиан  $\varphi = 0$ ,  $|\theta| \leqslant \pi/2$ . Условия (6) здесь выполняются. В частности, имеет место взаимно однозначное соответствие  $\Omega \rightleftharpoons S$ . Однако уравнения (14) не устанавливают взаимно одновначного соответствия между  $\gamma = \overline{\Omega} - \Omega$  и  $\Gamma = \overline{S} - S$ . Край  $\Gamma$  поверхности S есть указанный выше меридиан. Каждому из его концов в силу равенств (14) соответствует бесконечное множество точек  $\gamma$ , заполняющих противоножные стороны  $\Omega$ , а каждой прочей точке  $\Gamma$  соответствует пара точек  $\gamma$ , лежащих на пругих противоположных сторонах  $\gamma$ .

Поверхность единичного шара есть замыкание S поверхности S, описанной параметрически уравнепиями (14). На основании формулы (7)

$$|\overline{S}| = |S| = \iint_{Q} |\cos \theta| d\theta d\phi = 2\pi \cdot 2 \int_{0}^{\pi/2} \cos \theta d\theta = 4\pi.$$

Заметим, что площадь поверхности нашего единичного шара S можно рассматривать как сумму площадей восьми конгруэнтных кусков, вырезаемых из S координатными плоскостями. Один из них  $\sigma$ , находящийся в положительном октанте, описывается непрерывной функцией  $z=+\sqrt{1-x^2-y^2}$   $(x,\ y\geqslant 0,\ x^2+y^2\leqslant 1)$  с неограниченными частными производными

$$p = -x/\sqrt{1-x^2-y^2}, \qquad q = -y/\sqrt{1-x^2-y^2}.$$

Мы уже отмечали, что в этом случае можно вычислять площадь о по формуле (2) площади поверхности в декартовых координатах, понимая, однако, интеграл в несобственном смысле (см. конец § 13.13, замечание 1):

$$|\sigma| = \lim_{\rho \to 1} \int_{\alpha^2 + y^2 \le \rho^2 < 1} \sqrt{1 + p^2 + q^2} \, dx \, dy = \lim_{\rho \to 1} \int_{x^2 + y^2 \le \rho^2 < 1} \frac{dx \, dy}{\sqrt{1 - x^2 - y^2}},$$

$$x > 0, \quad y > 0.$$

Формулу для элемента площади сферической поверхности радпуса R можно усмотреть из геометрических соображений. Сеть близких друг к другу меридианов и параллелей разрезает нашу шаровую поверхность S на элементарные частицы. Площадь  $\Delta S$  такой частицы, близкой к точке  $A=(R, \theta, \phi)$  ( $\theta>0$ ), может быть, очевидно, оценена следующим образом:

$$R\cos(\theta + d\theta)d\varphi R d\theta < \Delta S < R\cos\theta d\varphi R d\theta$$
.

Отсюда  $(\theta < \theta' < \theta + d\theta)$ 

$$\Delta S = R^2 \cos \theta' \, d\varphi \, d\theta = R^2 \cos \theta \, d\varphi \, d\theta + d\varphi o(d\theta) \qquad (d\theta \to 0).$$

Пример 2. Площадь поверхности тора

$$x = (b + a\cos\theta)\cos\varphi, \quad y = a\sin\theta \quad (0 < a < b),$$

$$z = (b + a\cos\theta)\sin\varphi \quad (|\mathbf{r}_u \times \mathbf{r}_v| = a(b + a\cos\theta) > 0). \tag{15}$$

Чтобы воспользоваться приведенными выше рассуждениями, придется эту поверхность рассматривать как замыкание  $\overline{T}$  гладкой поверхности T, описываемой уравнениями (15), где  $(\theta, \varphi)$  пробегает область  $\Omega = \{0 < \theta, \varphi < 2\pi\}$ .

В этом случае соотношения (6) и сопровождающие их условия лепрерывной дифференцируемости будут выполняться, если считать T=S, поэтому

$$|\overline{T}| = |T| = \int_{0}^{2\pi} d\phi \int_{0}^{2\pi} a (b + a \cos \theta) d\theta = 2\pi a (2\pi b + 0) = 4\pi^{2}ab.$$

H р H м e p 3. Рассмотрим круговой цилиндр радиуса R и высоты H. Его боковую поверхность обозначим через о, а ее площадь через ор. Разрежем о равностоящими плоскостями, перпендикулярными оси цилиндра так, чтобы соседние плоскости находились на расстоянии, равном  $H/N^3$ . Эти плоскости пересекают  $\sigma$  по окружностям  $C_0, C_1, \ldots, C_{N^3}$ , которые мы перенумеровали по порядку снизу вверх по направлению оси. Окружность  $C_0$  разделим равноотстоящими точками на 2N равных частей. Эти точки мы тоже перенумеруем в порядке их следования по  $C_0$ , кроме того, через каждую из них проведем образующую нашей цилиндрической поверхности с. которая пересечет окружности  $C_h$  в некоторых точках. Полученные точки на  $C_h$ мы тоже занумеруем, руководствуясь правилом, что точки всех  $\mathcal{C}_k$ , лежащие на одной и той же образующей, имеют один и тот же номер. Теперь на окружностях  $oldsymbol{C}_k$  с четными k оставим только точки с четными номерами, а на окружностях  $\mathcal{C}_k$  с нечетными k — только точки с нечетными номерами. В результате на поверхности о нанесено некоторое конечное число точек. Каждые три соседние такие точки являются вершинами некоторого треугольника Д, а вся совокупность последних образует некоторую многогранную поверхность ол, вписанную в с. Чтобы не было недоразумений, отметим, что две из любых трех точек суть соседние точки, лежащие на  $C_{\scriptscriptstyle R}$ , а третья лежит на  $C_{k+1}$  или  $C_{k-1}$  и образующая, к которой она принадлежит, находится между (в меньшем центральном углу) образующими, к которым принаплежат первые две точки.

Число треугольников  $\Delta$ , очевидно, равно  $2N \cdot N^3 = 2N^4$ , площадь же

каждого 🛆 равна

$$\Delta \mid = \frac{1}{2} \cdot 2 \sin \frac{\pi}{N} R \sqrt{R^2 \left(1 - \cos \frac{\pi}{N}\right)^2 + \left(\frac{H}{N^3}\right)^2} \sim \frac{\pi}{N} RR \frac{1}{2} \left(\frac{\pi}{N}\right)^2 > cN^{-3}$$

$$(N \to \infty, c > 0).$$

Но тогда

$$|\sigma_N| > c_1 N^4 N^{-3} = c_1 N,$$

несмотря на то что при  $N \to \infty$  диаметр  $\Delta$  стремится к нулю.

Мы видим, что площадь поверхности нельзя определять как предел площади вписанной в нее многогранной поверхности со стремящимся к пулю максимальным диаметром ее грани. Такое определение неэффективно даже для очень простых поверхностей.

# ТЕОРИЯ ПОЛЯ. ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ ПО ПАРАМЕТРУ, НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

#### § 13.1. Криволинейный интеграл первого рода

Пусть в трехмерном пространстве E, где определена прямоугольная система координат (x, y, z), задана непрерывная кусочно гладкая кривая  $\Gamma$ 

$$x = \varphi(s), \quad y = \psi(s), \quad z = \chi(s) \quad (0 \le s \le \Lambda),$$
 (1)

где параметром служит длипа дуги s. Таким образом, функции  $\varphi$ ,  $\psi$ ,  $\chi$  непрерывны па  $[0,\Lambda]$  и отрезок  $[0,\Lambda]$  можно разбить на конечное число частей  $0=s_0 < s_1 < \ldots < s_N = \Lambda$  так, что на каждом (замкнутом) частичном отрезке  $[s_j, s_{j+1}]$  функции  $\varphi$ ,  $\psi$ ,  $\chi$  имеют непрерывные производные, удовлетворяющие условию

$$\varphi'(s)^2 + \psi'(s)^2 + \chi'(s)^2 = 1, \qquad (2)$$

считая, что в концевых точках  $s_j$ ,  $s_{j+1}$  они понимаются соответственно как правая и левая производные. Кривая  $\Gamma$  соответствен-

но делится на конечное число гладких кусков  $\Gamma = \sum_1 \Gamma_j$ . Пусть еще на  $\Gamma$  или на некотором множестве, содержащем  $\Gamma$ , вадана функция F(x,y,z), непрерывная на каждом гладком куске  $\Gamma_j$ ,  $\tau$ . е. функция  $F(\phi(s), \psi(s), \chi(s))$ , если имеет разрывы, то только в точках  $s_i$  и притом первого рода.

По определению, выражение

$$\int_{\Gamma} F(x, y, z) ds = \int_{0}^{\Lambda} F(\varphi(s), \psi(s), \chi(s)) ds$$
 (3)

называется криволинейным интегралом первого рода от функции F вдоль кривой  $\Gamma$  (или по  $\Gamma$ ).

Левая часть (3) есть обозначение криволинейного интеграла первого рода, а правая показывает, как его надо вычислять — это обычный риманов интеграл. Например, если кривая  $\Gamma$  обладает массой с плотностью распределения, равной F(x, y, z) в точках  $(x, y, z) \in \Gamma$ , то общая масса кривой вычисляется посредством интеграла (3).

Пусть гладкая кривая  $\Gamma$  задана через произвольный параметр  $t \in [a, b]$ :

$$x = \varphi_1(t), \quad y = \psi_1(t), \quad z = \chi_1(t) \quad [a \le t \le b],$$

где, таким образом,  $\phi_1$ ,  $\psi_1$ ,  $\chi_1$  — непрерывно дифференцируемые функции, удовлетворяющие условию  ${\phi_1'}^2+{\psi_1'}^2+{\chi_1'}^2>0$  на [a,b]. Параметр t выражается через длину дуги s кривой  $\Gamma$  при помощи некоторой функции  $t=\lambda(s)$ ,  $0 \le s \le \Lambda$ , имеющей не равную пулю непрерывную производную. Следовательно,

$$\int_{\Gamma} F(x, y, z) ds = \int_{0}^{\Lambda} F(\varphi(s), \psi(s), \chi(s)) ds =$$

$$= \int_{a}^{b} F(\varphi_{1}(t), \psi_{1}(t), \chi_{1}(t)) \sqrt{\varphi_{1}'(t)^{2} + \psi_{1}'(t)^{2} + \chi_{1}'(t)^{2}} dt,$$

$$\varphi_{1}(t) = \varphi[\lambda(t)], \quad \psi_{1}(t) = \psi[\lambda(t)], \quad \chi_{1}(t) = \chi[\lambda(t)],$$

$$ds = \sqrt{\varphi_{1}'(t)^{2} + \psi_{1}'(t)^{2} + \chi_{1}'(t)^{2}}.$$
(4)

Кривую  $\Gamma$  можно также задать уравнениями  $x=\varphi(\Lambda-s)$ ,  $y=\psi(\Lambda-s),\ z=\chi(\Lambda-s)$  ( $0\leqslant s\leqslant \Lambda$ ), но величина интеграла (3) от этого не меняется:

$$\int_{0}^{\Lambda} F(\varphi(\Lambda - s), \psi(\Lambda - s), \chi(\Lambda - s)) ds = -\int_{\Lambda}^{0} F(\varphi(s'), \psi(s'), \chi(s')) ds' =$$

$$= \int_{0}^{\Lambda} F(\varphi(s), \psi(s), \chi(s)) ds.$$

Таким образом, криволинейный интеграл первого рода но  $\Gamma$  не зависит от ориентации  $\Gamma$ .

#### § 13.2. Криволипейный интеграл второго рода

Пусть в пространстве E, где определена прямоугольная система координат (x, y, z), задана ориентированная непрерывная кусочно гладкая кривая  $\Gamma$  с начальной точкой  $A_0$  и конечной  $A_1$ . Если кривая замкнута, то  $A_1$  совпадает с  $A_0$ . Пусть

$$x = \varphi(s), \quad y = \psi(s), \quad z = \chi(s) \quad (0 \le s \le \Lambda)$$
 (1)

— уравнения  $\Gamma$ , где s — длина дуги  $\Gamma$  (см. § 10.3). При этом значению s=0 соответствует точка  $A_{\mathfrak{g}}$ , а значению  $s=\Lambda$  — точка  $A_{\mathfrak{g}}$  и возрастанию s соответствует ориентация  $\Gamma$ .

В каждой внутренней (не угловой) точке A любого гладкого куска  $\Gamma$  тогда однозначно определен единичный вектор  $\tau$ , касательный к  $\Gamma$  (в направлении возрастания s).

Пусть, кроме того, на  $\Gamma$  или на некотором открытом множестве  $\Omega$ , содержащем  $\Gamma$ , задано поле непрерывного вектора (или задан вектор)

 $\mathbf{a} = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k},$ 

где, таким образом, P, Q, R — непрерывные функции на  $\Gamma$  (или  $\Omega$ ),

По определению криволинейным интегралом от вектора а вдоль ориентированной кривой Г называется величина

$$\int_{\Gamma} (a ds) = \int_{\Gamma} (P dx + Q dy + R dz) = \int_{\Gamma} (a\tau) ds = \int_{0}^{\Lambda} (a\tau) ds. \quad (2)$$

Первый и второй члены в (2) — это обозначения криволинейного интеграла от а по  $\Gamma$ , а третий и четвертый являются его определением и указывают, как его вычислить. Функция (ат), вообщо говоря, кусочно непрерывна с разрывами первого рода в угловых точках  $\Gamma$ . Третий член есть интеграл первого рода от нее по  $\Gamma$ . Мы считаем  $d\mathbf{s} = \mathbf{\tau} d\mathbf{s}$ , где, таким образом,  $d\mathbf{s}$  есть вектор, имеющий длину  $d\mathbf{s}$  и направление  $\mathbf{\tau}$ . Это объясняет обозначение криволинейного интеграла, выражаемое первым членом в (2).

Если  $\Gamma_-$  — та же кривая, но с противоположной ориентацией, то единичный вектор ее касательной равен —  $\tau$ , поэтому  $\int_{\Gamma_-} (a \, ds) = \int_{\Gamma_-} (a \, ds)$ . Так как  $\cos(\tau, x) = \varphi'(s)$ ,  $\cos(\tau, y) = \psi'(s)$ ,  $\cos(\tau, z) = \chi'(s)$ , то криволинейный интеграл (2) может быть ваписан в виде

$$\int_{\mathbf{r}} \{a \, ds\} = \int_{\mathbf{r}} \{P \cos(\tau, x) + Q \cos(\tau, y) + R \cos(\tau, z)\} \, ds =$$

$$= \int_{\mathbf{0}}^{\Lambda} [P(\varphi(s), \psi(s), \chi(s)) \varphi'(s) + Q(\varphi(s), \psi(s), \chi(s)) \psi'(s) +$$

$$+ R(\varphi(s), \psi(s), \chi(s)) \chi'(s)] \, ds, \quad (3)$$

где правая часть представляет собой обычный определенный интеграл.

Ориентированную гладкую кривую  $\Gamma$  можно задать при помощи некоторого параметра t посредством уравнений

$$x = \varphi_1(t), \ y = \psi_1(t), \ z = \gamma_1(t) \ (t_0 \le t \le T_0).$$
 (4)

где  $t = \lambda(s)$  — функция, имеющая на  $[0, \Lambda]$  непрерывную производную  $\lambda'(s) > 0$ . Тогда интеграл (2) будет вычисляться по формуле

$$\int_{\mathbf{T}} (\mathbf{a} \, d\mathbf{s}) = \int_{t_0}^{T_0} \left[ P(\varphi_1(t), \psi_1(t), \chi_1(t)) \, \varphi_1'(t) + Q(\varphi_1(t), \psi_1(t), \chi_1(t)) \, \psi_1'(t) + R(\varphi_1(t), \psi_1(t), \chi_1(t)) \, \chi_1'(t) \right] dt. \quad (5)$$

Мы произвели замену переменной s на t в определенном интеграле, стоящем справа в (3). В силу этой замены, например,

$$\varphi'(s) ds = \left(\varphi'_1(t) \frac{dt}{ds}\right) \left(\frac{ds}{dt} dt\right) = \varphi'_1(t) dt.$$

Второе выражение в (2) считается удобным обозначением криволинейного интеграла от а по ориентированной кривой  $\Gamma$ . Его еще называют криволинейным интегралом второго рода. Оно пе только обозначает этот интеграл, но и указывает, что надо сделать, чтобы его вычислить. Нужно кривую  $\Gamma$  записать в виде уравнений (4) с параметром t, возрастающим соответственно ориентации  $\Gamma$ , положить в указанном выраженим  $x=\varphi_1(t),\ldots,dx=\varphi_1'(t)\,dt,\ldots$  и вычислить определенный интеграл от полученной функции от t по отрезку  $[t_0,T_0]$ .

Ориентированную кривую  $\Gamma$  можно рассматривать как сумму двух ориентированных кривых  $\Gamma_1$ ,  $\Gamma_2$ , соответствующих изменению параметра s на отрезках  $[0, s_*]$ ,  $[s_*, \Lambda]$   $(0 < s_* < \Lambda)$ . Тогда, оче-

видно

$$\int_{\Gamma} (P \, dx + Q \, dy + R \, dz) =$$

$$= \int_{\Gamma_1} (P \, dx + Q \, dy + R \, dz) + \int_{\Gamma_1} (P \, dx + Q \, dy + R \, dz),$$

Если ориентированный контур  $\Gamma$  замкнут, то взятый вдоль него криволинейный интеграл от а называют еще *циркуляцией вектора* а по  $\Gamma$ .

Бывает так, что имеется несколько ориентированных кривых  $C_1, \ldots, C_m$ , вовсе не связанных друг с другом, и удобно обозначить через  $C = C_1 + \ldots + C_m$  их объединение — тоже ориентированную кривую. Тогда по определению считают, что криволинейный интеграл от а по C равен сумме криволинейных интегралов от а по  $C_k$ :

$$\int_{C} = \sum_{1}^{m} \int_{C_{b}}.$$

Формула (5) верна не только для гладкой, но и для кусочно гладкой непрерывной кривой (4). Ведь тогда  $\Gamma$  есть конечная сумма гладких ориентированных кусков  $\Gamma_i$ , соответствующих отрезкам  $[s_i, s_{i+1}]$  или  $[t_i, t_{i+1}]$  изменения дуги s или параметра t. Поэтому

$$\int_{\Gamma} (a \ ds) = \sum_{i=1}^{N} \int_{\Gamma_{i}} (a \ ds) = \sum_{i=1}^{N} \int_{i_{j}}^{t_{j+1}} = \int_{0}^{T_{0}},$$

где под интегралом справа подразумевается такое же выражение, как под интегралом справа в (5).

Наконец, заметим, что если а есть поле некоторой силы, то интеграл (криволинейный) от а по  $\Gamma$  есть, очевидно, работа а вдоль ориентированного пути  $\Gamma$ .

#### § 13.3. Поле потенциала

Очень важным случаем поля вектора а является тот, когда на области G, где задано поле, существует функция U(x,y,z), имеющая непрерывные частные производные, для которых выполняются равенства

$$\frac{\partial U}{\partial x} = P$$
,  $\frac{\partial U}{\partial y} = Q$ ,  $\frac{\partial U}{\partial z} = R$  (11a G).

Такую функцию U называют потенциальной функцией вектора а. Говорят еще (см. § 7.6), что вектор а ссть градиент функции U, и пишут

grad 
$$U = \frac{\partial U}{\partial x} \mathbf{i} + \frac{\partial U}{\partial y} \mathbf{j} + \frac{\partial U}{\partial z} \mathbf{k} = \mathbf{a}.$$

Докажем теорему.

Теорема 1. Пусть на области  $G \subset E$  задано поле вектора **a**, непрерывного на G. Следующие утверждения эквивалентны:

1 Существует на G однозначная функция U = U(x, y, z), имеющая непрерывные частные производные, для которой на G выполняется равенство grad  $U = \mathbf{a}$ .

2) Интеграл от **a** по любому замкнутому непрерывному кусочно гладкому контуру С, принадлежащему к G, равен нулю:

$$\int_C (\mathbf{a} \ d\mathbf{s}) = 0.$$

3) Если  $A_0$  — определенная фиксированная точка G, то интеграл  $\int (\mathbf{a} \ d\mathbf{s})$  по любой ориентированной кусочно гладкой кри-

вой  $C_{A_0A} \subset G$  с началом в  $A_0$  и с концом в A зависит от  $A_0$  и A, но не зависит от ее формы. Таким образом, при фиксированной точке  $A_0$ 

$$\int_{C_{A_0A}} (\mathbf{a} \ d\mathbf{s}) = V(A) = V(x, y, z),$$

Функция V(x, y, z) есть потенциальная функция вектора а на G (однозначная). Она отличается от U на константу.

Доказательство. Из утверждения 1) следует 3). В самом деле, пусть на G существует функция U, потенциальная для a.

Зададим на G определенную точку  $A_0 = (x_0, y_0, z_0)$  и переменную точку A = (x, y, z). Соединим  $A_0$  с A непрерывной кусочно

гладкой кривой  $C=C_{A_0A}$ , определенной уравнениями

$$x = \varphi(\tau), \quad y = \psi(\tau), \quad z = \chi(\tau) \quad (t_0 \leqslant \tau \leqslant t).$$

Таким образом, значениям  $t_{ullet}$  и t параметра au соответствуют точки  $A_{ullet}$  и A.

Если подставить в U вместо x, y, z соответственно функции  $\varphi$ ,  $\psi$ ,  $\chi$ , то U будет непрерывной кусочно гладкой функцией от  $\tau$ . На основании теоремы о производной сложной функции в точках гладкости C (где C имеет касательную)

$$\frac{dU}{d\tau} = \frac{\partial U}{\partial x} \frac{d\varphi}{d\tau} + \frac{\partial U}{\partial y} \frac{d\psi}{d\tau} + \frac{\partial U}{\partial z} \frac{d\chi}{d\tau}.$$

Отсюда следует, что

$$\int_{C} (Pdx + Qdy + Rdz) = \int_{t_{0}}^{t} \frac{dU}{d\tau} d\tau = 
= U(\varphi(t), \psi(t), \chi(t)) - U(\varphi(t_{0}), \psi(t_{0}), \chi(t_{0})) = 
= U(x, y, z) - U(x_{0}, y_{0}, z_{0}) = U(A) - U(A_{0}) = V(A),$$

т. е. криволипейный интеграл при фиксированной точке  $A_0$  зависит только от положения точки  $A \subseteq G$ , но не от пути, но которому она достигается из точки  $A_0$ .

Наоборот, из 3) следует 1). В самом деле, зададим фиксированную точку  $A_0 \in G$ . Пусть известно, что данное поле вектора а таково, что криволинейный интеграл по любой кусочно гладкой кривой, соединяющей  $A_0$  с произвольной точкой  $A \in G$ , не зависит от этой кривой, а зависит только от точки A. Таким образом, существует функция V(A) такая, что

$$\int_{C_{A_0A}} (Pdx + Qdy + Rdz) = V(A) = V(x, y, z).$$

Чтобы доказать, что  $\frac{\partial V}{\partial x}=P$  в точке  $A=(x,\ y,\ z)$ , принадлежащей G, будем рассуждать следующим образом. В пределах области G проведем отрезок  $A_2A_1$ , параллельный оси x, где  $A_2=(x_2,\ y,\ z),\ A_1=(x,\ y,\ z),\ x_2\leqslant x\leqslant x_1$ . Соединим  $A_0$  с  $A_2=(x_2,\ y_1,\ z_1)$  произвольной непрерывной, кусочно гладкой, ориентированной в направлении от  $A_0$  к  $A_2$  кривой  $C_1$  и обозначим через C' отрезок  $A_2A_1$ , ориентированный от  $A_2$  к  $A\subseteq A_2A_1$ . Тогда  $C=C_1+C'$  (рис. 13.1) и

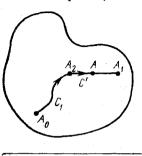
$$V(x, y_1, z_1) = \int_{C_1} (Pdx + Qdy + Rdz) + \int_{C_1} P dx,$$
 (1)

так как очевидно, что 
$$\int_{C'} Q \, dy = \int_{C'} R \, dz = 0$$
.

Кривая  $C_1$  в дальнейшем рассуждении не будет изменяться, и потому первый интеграл в правой части (1) можно считать константой, которую мы обозначим через K. Таким образом,

$$V(x, y, z) = K + \int_{x_2}^{\alpha} P(t, y, z) dt.$$

Функция P непрерывна, в частности, непрерывна по x, поэтому  $\frac{\partial V}{\partial x} = P(x, y, z)$  и мы доказали нужное равенство. Апалогично доказываются равенства



$$\frac{\partial V}{\partial y} = Q, \quad \frac{\partial V}{\partial z} = R,$$

строя специальные, соединяющие точки  $A_0$  и  $A_1$ , кривые, заканчивающиеся при подходе к  $A_1$  отрезками, в первом случае параллельными оси y, и во втором — оси z. Мы доказали 1) при U=V. Эквивалентность 2) и 3) тривиальна. В самом деле, пусть

Эквивалентность 2) и 3) тривиальна. В самом деле, пусть имеет место 2) и  $C' = C'_{A_0A}$ ,  $C'' = C'_{A_0A}$  — два принадлежащих к

G пути, соединяющих точки  $A_{\mathfrak{d}}$  и A. Тогда  $C' + C''_{-} -$  замкнутый контур и

$$0 = \int_{C'} + \int_{C''} = \int_{C'} - \int_{C''},$$

т. е. выполняется 3). Наоборот, если имеет место 3) и  $C \subset G$  — замкнутый контур, то, представив его в виде суммы C = C' + C'' каких-либо контуров, получим

$$\int_{C} = \int_{C'} + \int_{C''} = \int_{C'} - \int_{C''} = 0,$$

так как C' и C'' соединяют одну и ту же пару точек. Если определенный на открытом множестве G вектор

$$\mathbf{a} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$$

является не только непрерывным, но и имеет непрерывные частные производные, то имеет смысл вектор

$$\operatorname{rot} \mathbf{a} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k},$$

называемый ротором вектора а.

Если для вектора а выполняется одно из утверждений 2) или 3) предыдущей теоремы, то на основании этой теоремы на G

можно определить однозначную (потенциальную) функцию U(x,y,z), имеющую непрерывные частные производные, так что  $\frac{\partial U}{\partial x} = P, \ \frac{\partial U}{\partial y} = Q, \ \frac{\partial U}{\partial z} = R.$ 

В таком случае, если функции P, Q, R имеют на G непрерывные частные производные, то U имеет непрерывные частные производные второго порядка и имеют место равенства

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{\partial^2 U}{\partial x \, \partial y} - \frac{\partial^2 U}{\partial y \, \partial x} = 0,$$

$$\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = \frac{\partial^2 U}{\partial y \, \partial z} - \frac{\partial^2 U}{\partial z \, \partial y} = 0,$$

$$\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \doteq \frac{\partial^2 U}{\partial z \, \partial x} - \frac{\partial^2 U}{\partial x \, \partial z} = 0.$$

Мы пришли к следующей теореме.

Теорема 2. Если поле вектора а, имеющего на открытом множестве G непрерывные частные производные, обладает тем свойством, что для любого ориентированного кусочно гладкого замкнутого контура  $C \subset G$ 

$$\int_C (\mathbf{a} \, d\mathbf{s}) = 0,\tag{2}$$

TO

$$rot \mathbf{a} = \mathbf{0} \ ua \ G. \tag{3}$$

Обратиая теорема для произвольного, пусть даже связного, множества G пе верна. Но она верна во всяком случае, если  $G = \{a_1 \le x \le b_1, a_2 \le y \le b_2, a_3 \le z \le b_3\}$  есть прямоугольный параллеленинед). В этом случае для определенного на G непрерывно дифференцируемого вектора a, имеющего rot a = 0, эффективно строится его потенциал по формуле

$$U(x, y, z) = \int_{x_0}^{x} P(u, y_0, z_0) du + \int_{y_0}^{y} Q(x, v, z_0) dv + \int_{z_0}^{z} R(x, y, v) dv + U(x_0, y_0, z_0) \quad ((x, y, z) \in G), \quad (4)$$

где  $(x_0, y_0, z_0) \in G$  — произвольная фиксированная точка и  $U(x_0, y_0, z_0)$  — произвольная константа. В самом деле (пояспения пиже),

$$\frac{\partial U}{\partial x} = P\left(x, y_0, z_0\right) + \int_{y_0}^{y} \frac{\partial Q}{\partial x}\left(x, v, z_0\right) dv + \int_{z_0}^{z} \frac{\partial R}{\partial x}\left(x, y, w\right) dw =$$

$$= P(x, y_0, z_0) + \int_{y_0}^{y} \frac{\partial P}{\partial y}(x, v, z_0) dv + \int_{z_0}^{z} \frac{\partial P}{\partial z}(x, y, w) dw =$$

$$= P(x, y_0, z_0) + [P(x, y, z_0) - P(x, y_0, z_0)] +$$

$$+ [P(x, y, z) - P(x, y, z_0)] = P(x, y, z),$$

где мы применили формулу Ньютопа — Лейбница, свойство (3), и, кроме того, дифференцирование под знаком интеграла. То, что последнее в данном случае законно, будет обосновано позже (в § 13.12). Аналогично доказывается, что  $\frac{\partial U}{\partial y} = Q$ ,  $\frac{\partial U}{\partial z} = R$ . Таким образом, grad  $U = \mathbf{a}$  и, следовательно, выполняются равенства (2) для любого ориентированного (замкнутого) контура  $C \subseteq G$ .

Заметим, что правая часть (4) без последнего члена представляет собой криволинейный интеграл от вектора вдоль трехзвенной ломаной.

Но имеет место более общая

Теорема 3. Пусть область G односвязна,  $\tau$ . е. такова, что любой принадлежащий ей кусочно гладкий контур можно стянуть в точку  $P^0 \subset G$  так, что в процессе стягивания\*) он будет находиться в G. Тогда из того, что определенный на G непрерывно дифференцируемый вектор  $\mathbf{a}$  имеет  $\mathbf{rot} \mathbf{a} = \mathbf{0}$ , следует выполнение равенства (2) для любого ориентированного замкнутого контура  $C \subset G$ .

Доказательство ниже. Таким образом, из теоремы 3 следует существование определенной на G однозначной функции, потенциальной для вектора  $\mathbf a$  на G.

Область, находящаяся между двумя концентрическими шаровыми поверхностями, удовлетворяет условию теоремы, между тем нак область, представляющая собой все пространство без оси z, не удовлетворяет этому условию, и в этом последнем случае можно указать пример (см. ниже) поля вектора, для которого теорема 3 не верна.

В дальпейшем будут доказаны теоремы Грина и Стокса. Применение их приводит к неполному доказательству теоремы 3 и уж во всяком случае может служить неплохим наводящим соображением справедливости этой теоремы (см. замечание в конце § 13.11).

Все понятия и теоремы, о которых была речь выше, легко переносятся на плоский случай. В плоскости E рассматриваются произвольные кусочно гладкие ориентированные кривые

$$x = \varphi(t), y = \psi(t)$$
  $(a \le t \le b; a < b),$ 

<sup>\*)</sup> Математическое описание понятия «стягивание в одну точку» дается в конце этого параграфа мелким шрифтом.

принадлежащие заданной области G. На G задается поле непрерывного вектора  $\mathbf{a} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ .

Криволинейный интеграл от а по кривой С определяется в точности так же, как в трехмерном случае. Его можно рассматривать как частный случай § 13.2, (3), полагая

$$R \equiv 0$$
,  $P = P(x, y)$  a  $Q = Q(x, y)$ .

Таким образом,

$$\int_{\mathcal{C}} (\mathbf{a} \, d\mathbf{s}) = \int_{\mathcal{C}} (P \, dx + Q \, dy) =$$

$$= \int_{a}^{b} \left\{ P \left[ \varphi \left( t \right), \psi \left( t \right) \right] \varphi' \left( t \right) + Q \left[ \varphi \left( t \right), \psi \left( t \right) \right] \psi' \left( t \right) \right\} dt.$$

Теперь уже потенциальная функция U вектора  $\mathbf{a}$ , если она существует на G, есть однозначная определенная на G функция U=U(x,y) от двух переменных. Ее градиент

grad 
$$U = \frac{\partial U}{\partial x} \mathbf{i} + \frac{\partial U}{\partial y} \mathbf{j} = \mathbf{a}$$
.

Пример 1. Вектор а с компонентами

$$P(x, y) = -\frac{y}{x^2 + y^2}, \quad Q(x, y) = \frac{x}{x^2 + y^2}$$

имеет непрерывные частные производные на области G, представляющей собой плоскость с выкинутой нулевой точкой. Легко проверить, кроме того, что rot a=0 на G. Область G не удовлетворяет условию теоремы 3, и сама теорема в данном случае неверна.

В самом деле, введем область  $G^*$ , полученную из плоскости (x, y) выкидыванием из нее отрицательного луча x < 0 оси x. На  $G^*$  согласно теореме 3 существует функция U с grad  $U = \mathbf{a}$ . Ее можно определить в переменной точко (x, y), например, как криволинейный интеграл от  $\mathbf{a}$  по любому пути  $C \subset G^*$ , соединяющему фиксированную точку, пусть (1, 0) с (x, y):

$$U(x, y) = \int_C \frac{-y \, dx + x \, dy}{x^2 + y^2}.$$

Однако эта функция не может быть продолжена с G\* на всю плоскость так, чтобы она была там однозначной и непрерывной.

В самом деле, значение U(x, y) в произвольной точке (cos  $\theta$ , sin  $\theta$ )  $\in$   $G^*$  окружности радиуса 1 с центром в нулевой точке равно

$$U(\cos\theta,\sin\theta)=\int_{0}^{\theta}d\theta=\theta.$$

Чтобы прийти в точку (-1, 0) (лежащую на выкинутом луче), мы можем двигаться по нашей окружности, увеличивая  $\theta$  до  $\pi$  или уменьшая  $\theta$  до  $-\pi$ . В первом случае предельное значение U будет равно  $\pi$ , а во втором  $-\pi$ ,  $\tau$ . е. функция U не может быть продолжена нужным образом на всю плоскость.

Так как произвольная потенциальная для а на G функция должна отличаться от рассмотренной функции U(x, y) на постоянную, то доказано, что вообще не существует определенной на G однозначной функции, кото-

рая была бы потенциальной для вектора а (всюду на G).

Мы сознательно провели сравнительно длинное рассуждение, чтобы обосновать это утверждение. Его можно заменить следующим, более кратким. Существуют замкнутые, принадлежащие к G гладкие контуры такие. что интегралы от нашего вектора а по ним не равны нулю. Например, таким контуром является окружность радиуса 1 с центром в нулевой точке-

для нее  $\int (\mathbf{a} \, d\mathbf{s}) = \int d\theta = 2\pi$ . Но тогда на G не может быть определена

однозначная функция U, потенциальная для a (всюду на G!), потому что существование такой функции противоречило бы теореме 1.

Доказательство теоремы 3. Оно основано на том, что она верна, если G есть куб.

Западим произвольный замкнутый кусочно глапкий контур Г С:

$$x = \varphi(u), \quad y = \psi(u), \quad z = \chi(u), \quad 0 \le u \le 1,$$
  
 $\varphi(0) = \varphi(1), \quad \psi(0) = \psi(1), \quad \chi(0) = \chi(1).$ 

Здесь параметр и пробегает отрезок [0, 1] что, очевидно, не уменьшает общности. Тот факт, что контур Г указанным в теореме 3 образом стягивается в точку, описывается так: существует поверхность  $S \subset G$ , описываемая функциями

$$\begin{aligned}
\alpha &= \varphi (u, t), \quad y = \psi (u, t), \quad z = \chi (u, t), \\
\{0 \leqslant u \leqslant t, \quad 0 \leqslant t \leqslant 1\} &= \Delta, \\
\varphi (0, t) &= \varphi (t, t), \quad \psi (0, t) = \psi (t, t), \quad \chi (0, t) = \chi (t, t),
\end{aligned} (5)$$

непрерывными на треугольнике  $\Delta$  и кусочно гладкими по u на [0, t] и такими, что

$$\varphi(u, 1) = \varphi(u), \quad \psi(u, 1) = \psi(u), \quad \chi(u, 1) = \chi(u).$$

Так как S ограничена и замкнута, G открыто и  $S \subset G$ , то найдется число d>0 такое, что, какова бы ни была точка  $A\subseteq S$ , любой покрывающий ее куб с ребром длины d принадлежит G.

Будем обозначать через  $\sigma$  кубы, принадлежащие G.

Будем говорит, что множество  $e' \subset S$  есть образ множества  $e \subset \Lambda$ . если e' есть совокупность точек, полученных

как отображения точек е при помощи трех

функций (5).

прямоугольной Рассечем Δ (рис. 13.2), настолько густой, чтобы образы полученных частиц помещались в кубах о с

ребром d. Образ нижнего треугольника А1В1О принадлежит некоторому с. Так как образы точек  $A_1$  и  $B_1$  совпадают, т. е. есть одна точка S, то образ отрезка  $A_4B_1$  есть замкнутая кусочно гладкая кривая  $C_{A_1B_1}$  принадлежа-

щая кубу 
$$\sigma$$
, поэтому 
$$\int\limits_{C_{A_{1}B_{1}}} (\mathbf{a} \ d\mathbf{s}) = 0. \tag{6}$$

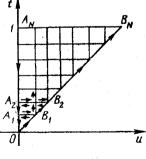


Рис. 13.2.

Ориентируем согласованио все частицы (их две) между  $A_1B_1$  и  $A_2B_2$  (см. рис. 13.2). Интеграл по образу этого сложного контура равен сумме интегралов по образам границ отдельных указанных частиц, каждый из которых равен нулю. Но интегралы по отрезкам, по которым соседние частицы граничат, компенсируют друг друга, кроме того, имеет место (6) и равенство

$$\int\limits_{C_{A_1A_2}}=\int\limits_{C_{B_1B_2}}$$

вотому что образы  $A_1A_2$  и  $B_1B_2$  совпадают.

Поэтому  $\int_{C_{A_2B_2}} = 0$ . Рассуждал аналогично, по индукции мы получим,

4TQ

$$\int_{C_{A_k B_k}} = 0 \qquad (k = 1, \ldots, N),$$

и так как  $C_{A_N B_N} = \Gamma$ , то  $\int\limits_{\Gamma} (\mathbf{a} \ d\mathbf{s}) = 0$ , что и требовалось доказать.

### § 13.4. Ориентация плоской области

В плоскости можно задать две прямоугольные системы координат, изображенные на рис. 13.3 и 13.4.

Они существенно отличны друг от друга в том смысле, что невозможно, передвигая обе геометрические системы в плоскости нак твердые тела, совместить их так, чтобы одновременно совпали ноложительные направления их осей x и положительные направления их осей y.

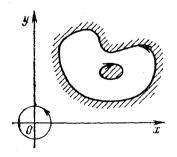


Рис. 13.3.

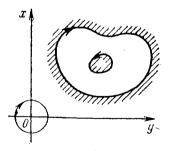


Рис. 13.4.

Зададим в обеих системах кооординат круги с центром в точнах 0. На окружностях кругов зададим положительные направления обхода так, что, двигаясь по ним, проходится кратчайшее расстояние от положительного направления оси x до положительного направления оси y (четверть окружности, а не три четверти). В случае системы, изображенной на рис. 13.3, для этого придется

взять направление обхода круга против часовой стрелки, а в слу-

чае рис. 13.4 — по часовой стрелке.

В первом случае, двигаясь по окружности в положительном направлении, мы оставляем внутренние точки обходимого круга слева, а во втором случае — справа. Это обстоятельство дает основание для дальнейших обобщений.

Пусть задана область  $\Omega$  с кусочно гладкой границей C, которая может состоять из конечного числа замкнутых, самонепересекающихся контуров, так что  $\Omega$  находится внутри одного из них и вне остальных. Зададим на C направление обхода так, чтобы при движении по C в этом направлении область оставалась слева (см. рнс. 13.3). Такое направление обхода в случае первой системы называется положительным, а противоположное — отрицательным. Если область  $\Omega$  задана во второй системе, положительное направление соответствует такому обходу, что при этом область остается справа (см. рис. 13.4).

# § 13.5. Формула Грина \*). Выражение площади через криволинейный интеграл

Для достаточно общих плоских областей Ω с положительно ориентированной границей Г справедлива формула

$$\iint\limits_{\Omega} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \iint\limits_{\Gamma} (P \, dx + Q \, dy), \tag{1}$$

называемая формулой Грина. Здесь преппологовател ито P  $O(\frac{\partial Q}{\partial u})$ ,  $\frac{\partial P}{\partial u}$  непрерывны на  $\overline{\Omega}$ .

Докажем формулу Грипа для прямоугольника (рис. 13.5)

$$\Delta = \{a < x < b; \ c < y < d\}.$$

$$\int_{\Delta} \int \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} \int_{a}^{b} \frac{\partial Q}{\partial x} dx dy =$$

$$= \int_{c}^{d} [Q(b, y) - Q(a, y)] dy = \left( \int_{\Gamma_{BC}} + \int_{\Gamma_{DA}} \right) Q(x, y) dy = \int_{\Gamma} Q(x, y) dy,$$

$$- \int_{\Delta} \int \frac{\partial P}{\partial y} dx dy = - \int_{a}^{b} [P(x, d) - P(x, c)] dx =$$

$$= \left( \int_{\Gamma_{CD}} + \int_{\Gamma_{AB}} \right) P(x, y) dx = \int_{\Gamma} P(x, y) dx,$$

и формула (1) доказана.

<sup>\*)</sup> Д. Грин (1793—1841) — английский математик. Другой вывод формулы Грина см. § 13.10.

Докажем теперь (1) для области  $\omega$ , изображенной па рис. 13.6, где дуга AC описывается непрерывной строго возрастающей па [a,b] функцией  $y=\lambda(x)$ . Обратную к ней функцию обозначим через  $x=\mu(y)$  ( $c\leqslant y\leqslant d$ ).

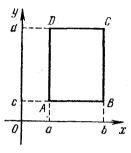
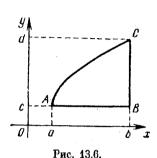


Рис. 13.5.



Имеем

$$\int_{\omega} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} [Q(b, y) - Q(\mu(y), y)] dy =$$

$$= \left( \int_{\Gamma_{BC}} - \int_{\Gamma_{AC}} Q(x, y) dy = \int_{\Gamma} Q(x, y) dy,$$

$$- \int_{\omega} \int_{c}^{\partial P} dx dy = - \int_{a}^{b\lambda(x)} \int_{c}^{\partial P} dy dx = - \int_{a}^{b} [P(x, \lambda(x)) - P(x, c)] dx =$$

$$= \left( \int_{\Gamma_{CA}} + \int_{\Gamma_{AB}} P(x, y) dx = \int_{\Gamma} P(x, y) dx,$$

откуда и следует (1).

Если повернуть область  $\omega$  как твердое тело вокруг пачала координат на угол  $\pi/2$ ,  $\pi$ ,  $3\pi/2$ , оставив систему координат ненеизменной, то мы получим еще три множества, которые вместе  $\omega$  мы будем называть множествами типа  $\omega$ . Заодно будем всякий прямоугольник называть областью типа  $\omega$ . По аналогии доказывается, что формула Грина имеет место для любого множества типа  $\omega$ .

Справедлива

Теорема. Пусть область  $\Omega$  с непрерывной кусочно гладкой границей  $\Gamma$  обладает тем свойством, что ее замыкание  $\overline{\Omega}$  может быть разрезано прямыми, параллельными осям координат (x,y), на конечное число частей, каждая из которых есть область типа  $\omega$ . Тогда для  $\Omega$  справедлива формула  $\Gamma$ рина.

Доказательство. Пусть  $\overline{\Omega} = \sum_{1}^{N} \omega_{k}$  есть разбиение  $\overline{\Omega}$  на части типа  $\omega$  и пусть  $\Gamma_{k}$  обозначает положительно ориентированный контур  $\omega_{k}$ . Тогда, в силу того, что для областей  $\omega_{k}$  формула Грина вериа, получим

$$\int_{\Omega} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \sum_{k=1}^{N} \int_{\omega_k} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \\
= \sum_{k=1}^{N} \int_{\Gamma_k} (P \, dx + Q \, dy) = \int_{\Gamma} (P \, dx + Q \, dy).$$

Поясним последнее равенство. Общая граница C всех  $\omega_k$  состоит из  $\Gamma$  и суммы конечного числа отрезков, каждый из которык

принадлежит  $\Omega$  и служит границей двух соседних областей типа  $\omega$ . При этом отрезок обходится два раза в противоположных направлениях, и поэтому криволинейные интегралы, соответствующие этим обходам, компенсируют друг друга. Остается только интеграл по  $\Gamma$ .

На рисупке 13.7 изображена область (двухсвязная), разбитая на конечное число областей типа ω.

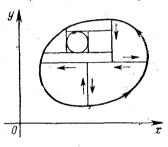


Рис. 13.7.

Замечание. На практике часто приходится иметь дело с формулой Грина в том случае, когда функции P и Q непрерывны на  $\overline{\Omega}$ , а их частиме производные  $\frac{\partial Q}{\partial x}$  и  $\frac{\partial P}{\partial y}$  непрерывны только на  $\Omega$ , и тогда обычно формула Грина (1) верна, только кратный интеграл в ее левой части надо понимать в несобственном смысле. Пусть в качестве примера  $\Omega$  есть круг  $x^2+y^2=1$ . Обозначим через  $\Omega_e$  концентрический с ним круг  $x^2+y^2=(1-\varepsilon)^2$  ( $\varepsilon>0$ ) с границей  $\Gamma_e$  (окружностью радиуса  $1-\varepsilon$ ). Тогда в силу уже доказанного

$$\int_{\Omega_{\varepsilon}} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int_{1-\varepsilon}^{-1+\varepsilon} P\left(x, \sqrt{(1-\varepsilon)^2 - x^2}\right) dx + + \int_{-1+\varepsilon}^{1-\varepsilon} P\left(x, -\sqrt{(1-\varepsilon)^2 - x^2}\right) dx + \int_{1-\varepsilon}^{-1+\varepsilon} Q\left(\sqrt{(1-\varepsilon)^2 - y^2}, y\right) dy + + \int_{1-\varepsilon}^{1-\varepsilon} Q\left(-\sqrt{(1-\varepsilon)^2 - y^2}, y^2\right) dy \quad (\varepsilon > 0). \quad (2)$$

Так как P(x, y) и Q(x, y) равномерно непрерывны на  $\Omega$ , то правая часть (2) при  $e \to 0$  стремится к пределу, равному результату подстановки в нее  $\varepsilon = 0$ , но тогда и левая часть стремится к пределу к несобственному

мратному интегралу (с особенностями на Г, см. § 13.13, замечание 1):

$$\iint_{\Omega} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int_{\Gamma} (P \, dx + Q \, dy).$$

Пусть  $\Omega$  есть плоская область, к которой применима формула Грина и  $\Gamma$  — положительно ориентированная ее граница. Тогда илощадь  $\Omega$  равна

$$\frac{1}{2} \int_{\Gamma} (x \, dy - y \, dx) = \frac{1}{2} \int_{\Omega} (1 + 1) \, dx \, dy = |\Omega|, \tag{3}$$

что следует из формулы Грина, если положить в ней  $P=-y, \ Q=x.$ 

Из формулы (3), очевидно, следует равенство

$$\frac{1}{2} \int_{\Gamma_{+}} (x \, dy - y \, dx) = \pm |\Omega|, \tag{4}$$

где плюс соответствует случаю, когда контур  $\Gamma$  ориентирован ноложительно ( $\Gamma = \Gamma_+$ ), а минус — когда контур  $\Gamma$  ориентирован отрицательно ( $\Gamma = \Gamma_-$ ).

Пример. Площадь эллипса, точнее, площадь внутренности эллипса, заданного параметрически уравнениями  $x=a\cos\theta,\ y=b\sin\theta,\ 0\leqslant \leqslant 0 < 2\pi$ , равна

$$|\Omega| = \frac{1}{2} \int_{0}^{2\pi} \left[ a \cos \theta \, b \cos \theta - b \sin \theta \, (-a \sin \theta) \right] d\theta = \frac{ab}{2} \int_{0}^{2\pi} d\theta = \pi ab.$$

#### § 13.6. Интеграл по новерхности первого рода

 $\mathbf{H}$ усть гладкая поверхность S определяется уравнениями

$$\mathbf{r}(u, v) = \varphi \mathbf{i} + \psi \mathbf{j} + \chi \mathbf{k}$$
  $((u, v) \in \Omega \neq S, |\mathbf{r}_u \times \mathbf{r}_v| > 0),$  (1)

где  $\Omega$  — измеримая область и  $\phi$ ,  $\psi$ ,  $\chi$  — непрерывно дифференцируемые на  $\overline{\Omega}$  функции.

Пусть, далее, на  $\overline{S}$  или в окрестности  $\overline{S}$  задана непрерывная

функция F(x, y, z).

Иптегралом первого рода функции F по поверхности S назы-вается выражение

$$\int_{S} F(x, y, z) ds = \int_{\Omega} F(\varphi(u, v), \psi(u, v), \chi(u, v)) | \dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v} | du dv. \quad (2)$$

Слева в (2) стоит обозначение интеграла первого рода от функции F по S, а справа — его определение. Чтобы вычислить этот интеграл, надо в выражение слева подставить вместо x, y, z соответственно функции  $\varphi(u, v)$ ,  $\psi(u, v)$ ,  $\chi(u, v)$  и считать, что

 $ds = |\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v| du \, dv$  — дифференциальный элемент поверхности S (см. § 12.23).

Очевидно, если бы S представляла собой материальную поверхность с плотностью распределения массы, равной

$$\rho = F(x, y, z) = F(\varphi(u, v), \psi(u, v), \chi(u, v)),$$

то при помощи интеграла (1) вычислялась бы масса поверхности S.

Если поверхность S задана при помощи другой нары параметров  $(u', v') \in \omega'$ :

$$r = \varphi_1(u', v')i + \psi_1(u', v')j + \chi_1(u', v')k$$

где

$$u = \lambda(u', v'), \quad v = \mu(u', v'), \quad (u', v') \in \Omega'$$

— непрерывно дифференцируемые функции, устанавливающие взаимно однозначное соответствие

$$(u, v) \rightleftharpoons (u', v')$$

с якобианом

$$\frac{D(u',v')}{D(u,v)}\neq 0, \quad (u,v)\in \omega,$$

то формула (1) остается инвариантной.

В самом деле, замена переменных (u, v) на (u', v') в интеграле (1) приводит к выражению

$$\int\limits_{S} F ds = \int\limits_{\Omega'} F(\varphi_1(u',v'), \psi_1(u',v'), \chi_1(u',v')) | r_{u'} \times r_{v'}| du' dv',$$

потому что

$$|\mathbf{r}_u \times \mathbf{r}_v| \left| \frac{D(u,v)}{D(u',v')} \right| =$$

$$= \sqrt{\left(\frac{D(y,z)}{D(u,v)} \cdot \frac{D(u,v)}{D(u',v')}\right)^2 + \left(\frac{D(z,x)}{D(u,v)} \cdot \frac{D(u,v)}{D(u',v')}\right)^2 + \left(\frac{D(x,y)}{D(u,v)} \cdot \frac{D(u,v)}{D(u',v')}\right)^2} =$$

$$= \sqrt{\left(\frac{D(y,z)}{D(u',v')}\right)^2 + \left(\frac{D(z,x)}{D(u',v')}\right)^2 + \left(\frac{D(x,y)}{D(u',v')}\right)^2} = |\mathbf{r}_{u'} \times \mathbf{r}_{v'}|.$$

Если гладкая поверхность S определяется уравнением z = f(x, y)  $((x, y) \in G)$ , где f непрерывна вместе со своими частными производными первого порядка на  $\overline{G}$ , то можно считать, что она задана параметрически через параметры x, y:

$$x = x, y = y, z = f(x, y).$$
 (3)

Тогда

$$|\dot{\mathbf{r}}_x \times \dot{\mathbf{r}}_y| = \sqrt{1 + p^2 + q^2} \left( p = \frac{\partial f}{\partial x}, q = \frac{\partial f}{\partial y} \right)$$

ы, следовательно,

$$\int_{S} F(x, y, z) ds = \int_{G} F(x, y, f(x, y)) \sqrt{1 + p^{2} + q^{2}} dx dy.$$
 (4)

Замечание. Если поверхность — гладкая, т. е. описывается нараметрически уравнениями (1) с указанными там свойствами функций  $\varphi$ ,  $\psi$ ,  $\chi$  и в то же время описывается уравнением вида (3), то часто функция z = f(x, y) непрерывна на  $\overline{G}$ , но ее частные производные непрерывны только на G и неограничены при подходе к границе G. Например, такое явление имеет место при вычислении интеграла от F по верхнему полушарию. В этом случае формула (4) для интеграла от F по S остается верной, по митеграл в правой ее части надо понимать в несобственном смысле (см. § 13.13, замечание).

Интеграл по поверхности S (первого рода) функции F можно спределить еще и следующим образом.

Разобьем  $\Omega$  на измеримые части, пересекающиеся попарно разве что по своим границам. Каждой части  $\Omega_i$  соответствует определенный кусок  $S_i$  поверхности S. Пусть  $A_i = (x_i, y_i, z_i)$  произвольная точка на  $S_i$ . Составляем сумму

$$\Pi_N = \sum_{j=1}^N F(A_j) |S_j|,$$

где  $|S_j|$  — площадь  $S_j$  (см. § 12.23). Предел ее равен интегралу от F по S:

$$\lim_{\max d(\Omega_j) \to 0} \sum_{j=1}^N F(A_j) |S_j| = \int_S F(x, y, z) dS, \tag{5}$$

В самом деле, пусть  $A_j=(x_j,\ y_j,\ z_j)$  и  $x_i=\phi(u_j,\ v_j),\ \phi_j=$   $=\psi(u_j,\ v_j),\ z_j=\chi(u_j,\ v_j),$ 

$$j=1,\ldots,N, (u_j,v_j)\in\Omega_j$$

Тогда

$$\begin{split} \mathbf{H}_{N} &= \sum_{j=1}^{N} F(A_{j}) \int_{\Omega_{j}} |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| \, du \, dv = \sum_{j=1}^{N} F(A_{j}) \, \mu_{j} \, |\Omega_{j}| = \\ &= \sum_{j=1}^{N} F(A_{j}) \, |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}|_{j} \, |\Omega_{j}| + \\ &+ \varepsilon_{N \, \overline{\max d(\Omega_{j}) \to 0}} \int_{\Omega} F(\varphi, \psi, \chi) \, |\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}| \, du \, dv, \end{split}$$

где знак  $| \ |_{j}$  обозначает, что в  $| \ | \ |$  подставлена точка  $A_{j}$ , а  $\mu_{j}$  есть возникающее при применении теоремы о среднем число

$$egin{aligned} (m_j \leqslant \mu_j \leqslant M_j - \mathrm{cm.} & \mathrm{нижe}). & \mathrm{Ведь} & \mathrm{очевидно, \ TTO} & (K > |F(A)|) \ |\epsilon_N| &= \left|\sum_{j=1}^N F\left(A_j\right) \left(\mu_j - |\dot{\mathbf{r}}_u \times \mathbf{r}_v|_j\right) |\Omega_j| \right| \leqslant \ &\leqslant K \sum_{j=1}^N \left(M_j - m_j\right) |\Omega_j| \to 0, & \max d\left(\Omega_j\right) \to 0, \ M_j &= \sup_{(u,v) \in \Omega_j} |\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v|, & m_j &= \inf_{(u,v) \in \Omega_j} |\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v|. \end{aligned}$$

#### § 13.7. Ориентация поверхностей

В трехмерном пространстве имеются две существенно различные прямоугольные системы координат, изображенные на рис. 13.8 и 13.9. Отличие их друг от друга заключается в том, что невозможно осуществить такое движение одной из систем, чтобы в результате его оказались совмещенными точки 0 и одноименные положительные полуоси x, y, z обеих систем.

Первую систему (рис. 13.8) называют правой, вторую (рис. 13.9) — левой. Если смотреть снизу вверх вдоль положительной оси z, то для совмещения положительной оси x с положительной осью y в кратчайшем направлении в случае рис. 13.8 нужно вращать ось x в плоскости x, y слева направо, а в случае рис. 13.9 — справа налево (против часовой стрелки).

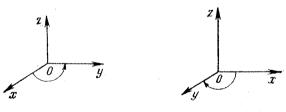


Рис. 13.8.

Рис. 13.9.

С каждой из рассматриваемых двух систем естественно связать «штопор» — комбинацию, состоящую из единичного, направненного в положительном направлении оси z вектора и перпендикулярного к оси z кружка (головки штопора), на границе которого (окружности) задано направление обхода от оси x к оси y в кратчайшем направлении.

Если в случае рис. 13.8 считать, что ось z есть ось винта (штопора), скрепленного с головкой и имеющего «правую нарезку», то вращая головку в направлении стрелки, мы заставим штопор двигаться в направлении положительной оси z. Того же эффекта мы достигнем в случае рис. 13.9, если ось z будет осью винта, имеющего левую нарезку.

Головка может быть искривлена, т. е. может представлять собой кусок гладкой поверхности, не обязательно плоской, но такой, что ось z есть нормаль к этому куску в точке 0. И в этом случае комбинация из такой головки, на которой задано направление обхода, и единичной пормали образует штопор — правый или левый.

Наконец, можно представить себе такой штопор (правый или левый) с нормальным вектором, идущим в произвольном паправлении, не обязательно совпадающим с осью z. Для дальнейшего будет важно представить себе следующую конструкцию. Пусть в трехмерном пространстве задана прямоугольная система координат (правая или левая) и ориентированная поверхность S. Таким образом, из каждой точки  $P \subseteq S$  выпущена единичная пормаль  $\mathbf{n}(P)$ , непрерывно зависящая от P. Шар V(P) достаточно малого радиуса с центром в точке P высекает из поверхности S некоторый связный кусок  $\mathbf{n}(P)$ , содержащий точку P. На контуре (па краю)  $\mathbf{n}(P)$  этого куска определим направление обходя так, чтобы вектор  $\mathbf{n}(P)$  и кусок  $\mathbf{n}(P)$  образовали штопор, ориентированный так же, как данная система координат,  $\mathbf{n}(P)$  сесям сисема координат — правая (левая), то и штопор должен быть правым (левым).

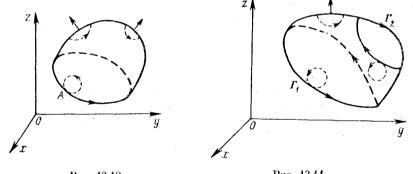


Рис. 13.10.

Рис. 13.11.

Если поверхность S имеет край  $\Gamma$ , то созданная конструкция естественным образом приводит к определенному направлению обхода на  $\Gamma$  (рис. 13.10). Обратим, например, внимание на точку A контура  $\Gamma$ . В ней направления обхода по  $\Gamma$  и по замкнутому искривленному принадлежащему S кружочку  $\gamma$  совпадают. Если бы данная поверхность была ориентирована противо-

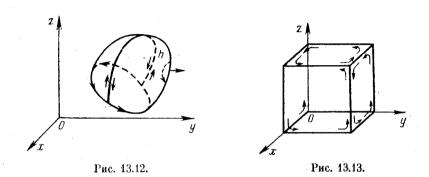
Если бы данная поверхность была ориентирована противоположным образом, а система координат осталась прежней, то определенные выше направления обхода нужно было бы заменить на противоположные.

На рис. 13.11 нарисована ориентированная поверхность с краем, состоящим из двух замкнутых гладких кривых  $\Gamma_1$  и  $\Gamma_2$ .

Отметим еще следующий факт. Пусть ориентированная гладная поверхность S разрезана на две ориентированные так же поверхности S<sub>1</sub>, S<sub>2</sub> гладкой дугой h (рис. 13.12). Тогда направления обхода контуров  $S_1$  и  $S_2$  вдоль дуги h противоположны.

Это замечание будет руководящим для того, чтобы правильно определить понятие ориентированной кусочно гладкой поверх-

пости.



Кисочно гладкая поверхность Ѕ называется ориентированной. если каждый из ее гладких кусков ориентирован и возникающие при этом направления обхода контуров этих кусков согласованы в том смысле, что вдоль каждой дуги, где два таких контура совнадают, направления их обхода противоположны.

На рис. 13.13 нарисован куб, поверхность которого ориенти-

рована при помощи ее внешней нормали.

Малые куски ориентированной поверхности (элементы по-

верхности) удобно считать векторами. Пусть S есть ориентированная гладкая поверхность, таким образом, из каждой точки  $A \in S$  выпущена единичная нормаль  $\mathbf{n}(A)$  к S в A, непрерывно зависящая от A. Пусть  $\sigma$  есть гладкий кусок S. Будем считать, что  $\sigma$  есть вектор, скалярная величина которого равна площади о куска о, а направление определяется вектором n(A), где A есть какая-либо точка  $\sigma$ . Таким образом,  $\sigma = |\sigma| \mathbf{n}(A)$ .

Этим, конечно, вектор о однозначно не определен. Однако, если диаметр  $d(\sigma)$  мал, то направление  $\mathbf{n}(A)$  не выходит за пределы некоторого малого конуса, и если о есть переменный кусок, постоянно содержащий фиксированную точку  $A_0$ , то, очевидно,  $\mathbf{n}(A) \to \mathbf{n}(A_0)$  ( $d(\sigma) \to 0$ ), где  $d(\sigma)$  есть диаметр  $\sigma$ , независимо от того, как выбиралась точка  $A \in \sigma$  для каждого  $\sigma$ .

Дифференциальный элемент ориентированной поверхности S, в точке  $A \in S$  естественно считать вектором  $d\mathbf{S} = \mathbf{n}(A)dS$ , который, таким образом, равен произведению дифференциального

C D TOWNS A TO TOWNS A

элемента илощади S в точке A на вектор единичной нормали  $\mathbf{n}(A)$ , определяющей ориентацию S.

Если S задана уравнением

$$\mathbf{r} = \mathbf{r}(u, v) = \varphi \mathbf{i} + \psi \mathbf{j} + \chi \mathbf{k}$$
  $((u, v) \in \overline{G}),$ 

то  $\mathbf{n}(A)$  определяется одним из двух равенств

$$\mathbf{n}\left(A\right) = \pm \frac{\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}}{\left|\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}\right|} \tag{1}$$

и  $dS = |\mathbf{r}_u \times \mathbf{r}_v| du dv$ . Отсюда

$$d\mathbf{S} = \pm (\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v) du \ dv. \tag{2}$$

В дальнейшем мы будем считать, что в (1), (2) выбран знак «+». Этого всегда можно достигнуть, поменяв в случае необходимости местами параметры u и v. Мы этим хотим сказать, что если задана определенная ориентированная гладкая поверхность S, то всегда можно считать, что она описывается такой вектор-функцией  $\mathbf{r} = \mathbf{r}(u, v)$ , что единичная нормаль  $\mathbf{n}(A)$  ( $A \subseteq S$ ), определяющая ориентацию S, выражается равенством

$$\mathbf{n}\left(A\right) = \frac{\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}}{\left|\dot{\mathbf{r}}_{u} \times \dot{\mathbf{r}}_{v}\right|} \tag{3}$$

и соответственно

$$d\mathbf{S} = (\mathbf{r}_u \times \mathbf{r}_v) du \, dv, \tag{4}$$

Если мы хотим, чтобы в этих выражениях при преобразовании параметров (u, v) в параметры (u', v') пе появился знак минус, то нужно, чтобы якобиан преобразования  $\frac{D(u, v)}{D(u', v')}$  был положительным. Действительно,

$$\mathbf{n}\left(A\right) = \frac{\left|\mathbf{\dot{r}}_{u}\times\mathbf{\dot{r}}_{v}\right|}{\left|\mathbf{\dot{r}}_{u}\times\mathbf{\dot{r}}_{v}\right|} = \frac{\frac{D\left(y,z\right)}{D\left(u,v\right)}\mathbf{i} + \frac{D\left(z,x\right)}{D\left(u,v\right)}\mathbf{j} + \frac{D\left(x,y\right)}{D\left(u,v\right)}\mathbf{k}}{\sqrt{\left(\frac{D\left(y,z\right)}{D\left(u,v\right)}\right)^{2} + \left(\frac{D\left(z,x\right)}{D\left(u,v\right)}\right)^{2} + \left(\frac{D\left(x,y\right)}{D\left(u,v\right)}\right)^{2}}} = \frac{\left(\frac{D\left(y,z\right)}{D\left(u',v'\right)}\mathbf{i} + \frac{D\left(z,x\right)}{D\left(u',v'\right)}\mathbf{j} + \frac{D\left(x,y\right)}{D\left(u',v'\right)}\mathbf{k}\right)}{\sqrt{\left(\frac{D\left(y,z\right)}{D\left(u',v'\right)}\right)^{2} + \left(\frac{D\left(z,x\right)}{D\left(u',v'\right)}\right)^{2} + \left(\frac{D\left(x,y\right)}{D\left(u',v'\right)}\right)^{2}} \cdot \frac{\frac{D\left(u',v'\right)}{D\left(u,v\right)}}{\left|\frac{D\left(u',v'\right)}{D\left(u,v\right)}\right|}} = \frac{\mathbf{\dot{r}}_{u'}\times\mathbf{\dot{r}}_{v'}}{\left|\mathbf{\dot{r}}_{u'}\times\mathbf{\dot{r}}_{v'}\right|} \cdot \operatorname{sign} \frac{D\left(u',v'\right)}{D\left(u,v\right)}.$$

Таким образом, формула (3) (со знаком «+»!) для единичпой пормали n(A) (а вместе с ней и формула (4)) инвариантна только по отношению к преобразованиям параметров, имеющим положительный якобиан. Поэтому следует рекомендовать преобразования с положительным якобианом.

Однако иногда мы вынуждены рассматривать преобразования с отрицательным якобианом. Тогда надо следить за правиль-

постью знаков.

Формальные основы ориентации поверхностей (многообразий) и их краев даны в §§ 17.1 и 17.2.

#### § 13.8. Интеграл по ориентированной плоской области

Пусть в плоскости, где задана прямоугольная система координат x, y, определена область G с кусочно гладкой границей  $\Gamma$  и на  $\Gamma$  задано направление обхода. Ориентированную таким образом область G обозначим через  $G_+$  или  $G_-$  в зависимости от того, ориентирован ли контур  $\Gamma$  положительно или отрицательно.

Пусть теперь на G задана интегрируемая функция f(x, y). Введем поинтие интеграла от f по ориентированной области.

Именно, положим

$$\int_{G_+} f \, dx \, dy = \int_{G} f \, dx \, dy = -\int_{G_-} f \, dx \, dy.$$

Полезность этих определений можно видеть из следующего факта. Зададим две плоскости, где заданы прямоугольные системы координат x, y и x', y', одинаково ориентированные. Пусть G обозначает ориентированную область плоскости x, y с кусочно гладкой (ориентированной) границей  $\Gamma$  и пусть непрерывно дифференцируемое преобразование

$$x' = \varphi(x, y), \quad y' = \psi(x, y) \quad ((x, y) \in \overline{G})$$
 (1)

отображает взаимно однозначно область G на область G' плоскости x', y' и  $\Gamma$  на границу  $\Gamma'$  области G'. Будем предполагать, что якобиан

$$D = \frac{D(x', u')}{D(x, y)} \neq 0 \quad \text{(Ha } G\text{).}$$

При этом преобразовании обход  $\Gamma$  индуцирует на  $\Gamma'$  вполне определенный обход и G' можно считать ориентированной областью.

Если D>0, то при переходе от  $\Gamma$  к  $\Gamma'$  ориентация  $\Gamma$  не меняется. Если же D<0, то обходы  $\Gamma$  и  $\Gamma'$  противоположны.

Докажем это утверждение в предположении, что  $\psi$  дважды непрерывно дифференцируема. Пусть ориентированный контур  $\Gamma$  определяется кусочно гладкими непрерывными функциями  $x=\lambda(s),\ y=\mu(s),\ 0\leqslant s\leqslant s_0,$  тогда соответствующий (тоже ориентированный) контур  $\Gamma'$  определяется функциями  $x'==\varphi(\lambda(s),\ \mu(s)),\ y'=\psi(\lambda(s),\ \mu(s)),\ 0\leqslant s\leqslant s_0.$ 

Будем для определенности считать, что контур  $\Gamma'$  ориентирован положительно, тогда (пояснения ниже)

$$0 < |G'| = \int_{\Gamma'} x' dy' =$$

$$= \int_{0}^{s_{0}} \varphi(\lambda(s), \mu(s)) \left[ \frac{\partial \psi}{\partial x} (\lambda(s), \mu(s)) \lambda'(s) + \frac{\partial \psi}{\partial y} (\lambda(s), \mu(s)) \mu'(s) \right] ds =$$

$$= \int_{\Gamma} \varphi(x, y) \left( \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy \right) = \pm \int_{G} \left( \frac{\partial \varphi}{\partial x} \frac{\partial \psi}{\partial y} - \frac{\partial \varphi}{\partial y} \frac{\partial \psi}{\partial x} \right) dx dy =$$

$$= \pm \int_{G} D dx dy.$$

В предпоследнем равенстве применена формула Грина, в силу которой перед кратным интегралом надо поставить +, если окажется, что  $\Gamma$  ориентировано положительно, или -, если  $\Gamma$  ориентировано отрицательно. Но это выражение в целом положительно, что может быть, лишь если D>0 и  $\Gamma$  ориентировано положительно или D<0 и  $\Gamma$  ориентировано отрицательно. Надо учесть, что  $\frac{\partial^2 \psi}{\partial x \, \partial y} = \frac{\partial^2 \psi}{\partial y \, \partial x}$ .

Из сказанного следует, что для любой функции f(x,y), непрерывной на замыкапии  $\overline{G}$  ориентированной измеримой области G,

$$\iint_G f \, dx \, dy = \iint_{G'} f \, \frac{D(x, y)}{D(x', y')} \, dx' \, dy',$$

где G' обозначает соответствующую G ориентированную область. В этой формуле замены переменных якобиан не пишется под знаком абсолютной величины.

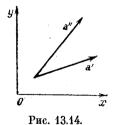


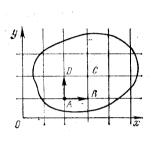
Рис. 13.15

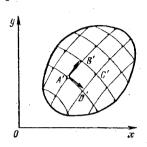
Остановимся еще на связи ориентации  $\Gamma$  со знаком D. В прямоугольной системе координат x, y зададим два неколлинеарных вектора  $\mathbf{a}'=(a_1',a_2')$  и  $\mathbf{a}''=(a_1'',a_2'')$ . Если определитель

$$\Delta = \begin{vmatrix} a_1' & a_1' \\ a_2' & a_2'' \end{vmatrix}$$

положителен (см. § 12.14), то это указывает на тот факт, что система  $\mathbf{a}'$ ,  $\mathbf{a}''$  ориентирована так же, как оси x, y (рис. 13.14). Если же  $\Delta < 0$ , то система  $\mathbf{a}'$ ,  $\mathbf{a}''$  ориентирована противоположно (рис. 13.15).

Преобразование (1) отображает прямоугольную сетку плоскости x, y в криволинейную (рис. 13.16-13.18). При этом могут иметь место два характерных случая отображений, изображенных на рис. 13.17 и на рис. 13.18.





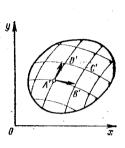


Рис. 13.16.

Рис. 13.17,

Рис. 13.18.

Квадрат ABCD переходит в криволинейный параллелограмм A'B'C'D', вектор  $\overrightarrow{AB}$  переходит с точностью до бесконечно малых высшего порядка в касательную к дуге  $\overrightarrow{A'B'}$  в точке A', определяемую вектором  $\left(\frac{\partial x'}{\partial x}, \frac{\partial y'}{\partial x}\right)$ , а вектор  $\overrightarrow{AD}$  — в касательную к дуге  $\overrightarrow{A'D'}$  в точке A', определяемую вектором  $\left(\frac{\partial x'}{\partial y}, \frac{\partial y'}{\partial y}\right)$ . Если определитель  $D' = \frac{D\left(x', y'\right)}{D\left(x, y\right)} > 0$ , то расположение этих векторов будет таким, как на рис. 13.17, а это приводит к тому, что направления обхода у ABCD и A'B'C'D' совпадают, а следовательно, и обхода  $\Gamma$  и  $\Gamma'$ .

Если же D' < 0, то расположение касательных векторов к A'B' и A'D' друг к другу меняется на противоположное, что влечет за собой (рис. 13.18) тот факт, что обходы у  $\Gamma$  и  $\Gamma'$  делаются противоположными.

Аналогично определяются интегралы для областей  $G_+$  и  $G_-$ , определенных на других координатных плоскостях yz, zx.

## § 13.9. Поток вектора через ориентированную поверхность

В трехмерном пространстве R, с прямоугольной системой координат x, y, z, дана область H и на ней определено поле непрерывного вектора

 $\mathbf{a}(x, y, z) = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ .

В H задана ориентированная гладкая поверхность  $S^*$ 

$$\mathbf{r} = \dot{\mathbf{r}}(u, v) = \phi \mathbf{i} + \psi \mathbf{j} + \chi \mathbf{k} \quad ((u, v) \in \Omega, |\dot{\mathbf{r}}_u \times \dot{\mathbf{r}}_v| > 0), \quad (1)$$

где  $\Omega$  — измеримая область в плоскости параметров (u, v) и  $\phi$ ,  $\psi$ ,  $\chi$  — непрерывно дифференцируемые на  $\Omega$  функции.

Будем считать, что единичная нормаль  $\hat{\kappa}$   $S^*$  определяется векторным равенством (см. сказанное в связи с § 13.7, (1), (3))

$$\mathbf{n}\left(A\right) = \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}.$$

Тогда косинусы углов  $\mathbf{n} = \mathbf{n}(A)$  с осями x, y, z выражаются равенствами  $\cos{(n, x)} = \varkappa \frac{D(y, z)}{D(x)}, \quad \cos{(n, y)} = \varkappa \frac{D(z, x)}{D(x)},$ 

$$\cos(n, x) = \varkappa \frac{D(y, z)}{D(u, v)}, \quad \cos(n, y) = \varkappa \frac{D(z, x)}{D(u, v)},$$

$$\cos(n, z) = \varkappa \frac{D(x, y)}{D(u, v)}, \qquad \varkappa = \frac{1}{|\dot{\mathbf{r}}_{\mathbf{u}} \times \dot{\mathbf{r}}_{v}|}.$$
(2)

Будем еще обозначать через S ту же поверхность, по не ориентированную — с нее сията ориентация.

Потоком вектора а через ориентированную поверхность  $S^*$  называется интеграл (первого рода) по S

$$\int_{S} (\mathbf{a} \, d\mathbf{S}^*) = \int_{S} (\mathbf{a}\mathbf{n}) \, dS \tag{3}$$

от скалярного произведения

$$(an) = P \cos(n, x) + Q \cos(n, y) + R \cos(n, z),$$

вектора а поля и единичной нормали  $\mathbf{n}$ , определяющей ориентацию  $S^*$ .

Так как (an) есть непрерывная функция от точки  $A \subseteq S$ , то интеграл (3) первого рода по S имеет смысл (см. § 13.6).

Например, пусть в ноле H имеет место стационарное течение жидкости, так что скорость ее  $\mathbf{a}$  в какой-либо точке  $A \subseteq H$  зависит от A, но не зависит от времени. Поток ее скорости через ориентированную поверхность  $S^*$  есть количество ее, проходищее в единицу времени через S в том же направлении, в котором ориентирована S.

Справедливо равенство

$$\int_{S} (\mathbf{an}) \, dS = \int_{S} (P \cos(n, x) + Q \cos(n, y) + R \cos(n, z)) \, ds = \int_{S} \left( P \frac{D(y, z)}{D(u, v)} + Q \frac{D(z, x)}{D(u, v)} + R \frac{D(x, y)}{D(u, v)} \right) du \, dv, \quad (4)$$

где в правой части стоит обычный кратный интеграл но G, в котором в P, Q и R надо поставить вместо x, y, z соответственно функции  $\varphi$ ,  $\psi$ ,  $\chi$  от u, v. Это равенство следует из (2) и формулы § 13.6, (3).

Часто удобпо вычислить интеграл (4) в декартовых координатах. Покажем, к каким вычислениям это приводит в предположении, что гладкий кусок  $\overline{S}$  поверхности взаимно однозначно проектируется на измеримые части всех трех плоскостей координат. Многие гладкие поверхности можно разбить на конечное число таких кусков.

Итак, пусть гладкий кусок  $\overline{S}$  описывается любой из трех

функций

$$x = f_1(y, z) \quad ((y, z) \in \overline{S}_x), \tag{4'}$$

$$y = f_2(z, x) \quad ((z, x) \in \bar{S}_y),$$
 (4")

$$z = f_3(x, y) \quad ((x, y) \in \overline{S}_z),$$
 (4''')

пепрерывных соответственно на проекциях  $\bar{S}$  на плоскости x=0,  $y=0,\ z=0$  и имеющих непрерывные частные производные, во-

обще говоря, только на открытых измеримых ядрах  $S_x$ ,  $S_y$ ,  $S_z$  этих проекций (т. е. па

проекциях без их границ).

Обозначим еще через  $S_x^*$ ,  $S_y^*$ ,  $S_z^*$  соответствующие ориентированные проекции ориентированной поверхности  $S^*$  на плоскости x=0, y=0, z=0. Обход контура  $S^*$  определяет при проектировании соответствующий обход площадок  $S_x$ ,  $S_y$ ,  $S_z$  (см. рис. 13.19). Нормаль в  $S_z$  образует угол с осью  $S_z$ , косипус которого равен

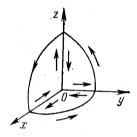


Рис. 13.19.

$$\cos(n,z) = \pm \frac{1}{\sqrt{1+p^2+q^2}} \left(p = \frac{\partial f_3}{\partial x}, \ q = \frac{\partial f_3}{\partial y}\right),$$

где надо взять «+» или «-» в зависимости от ориентации  $S^*$ . Имеем (см. § 13.6, (5))

$$\int_{S} R\cos(n,z) dS = \int_{S_{z}} R(x, y, f_{3}(x, y)) \frac{(\pm 1)}{\sqrt{1 + p^{2} + q^{2}}} \times \\
\times \sqrt{1 + p^{2} + q^{2}} dx dy = \pm \int_{S_{z}} R(x, y, f_{3}(x, y)) dx dy = \\
= \int_{S_{z}} R(x, y, f_{3}(x, y)) dx dy = \int_{S_{z}} R(x, y, z) dx dy, \quad (5)$$

где предпоследний интеграл взят по ориентированной площадке  $S_2^*$  (см. § 13.8). Что касается последнего интеграла в этой цепи,

то его надо рассматривать как обозначение предпоследнего. Это так называемый интеграл второго рода. Чтобы его вычислить, надо подставить  $f_s(x,y)$  вместо z и проинтегрировать по ориентированной проекции  $S_z^*$ . Из § 13.8 мы знаем, что  $\int_{S_z^*} = \pm \int_{S_z}$ 

где надо взять «+» или «-» в зависимости от того, будет ли площадка  $S_z^*$  ориентирована положительно или отрицательно. Аналогичные рассуждения могут быть проведены и в отношении остальных двух интегралов (рис. 13.19):

$$\int_{S} R \cos(n, x) dS = \int_{S_{x}^{*}} P(f_{1}(y, z), y, z) dy dz = \int_{S^{*}} P(x, y, z) dy dz,$$

$$\int_{S} Q \cos(n, y) dS = \int_{S_{y}^{*}} Q(x, f_{2}(z, x), z) dz dx = \int_{S^{*}} Q(x, y, z) dz dx.$$

Мы доказали, что поток вектора а через ориентированную поверхность  $S^*$ , определяемую нормалью  $\mathbf{n}$ , может быть вычислен по формуле

$$\int_{S} (an) dS = \int_{S^*} (P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy).$$
(5)

Если поверхность  $S^*$  может быть разрезана на конечное число частей,  $S^* = \sum S_k^*$ , каждая из которых проектируется на все три координатные плоскости, то чтобы вычислить поток а через  $S^*$ , можно вычислить потоки а через каждый из кусков  $S_k^*$  указанным способом и сложить их.

Шаровая поверхность с центром в нулевой точке естественно разрезывается плоскостями координат на 8 кусков, обладающих указанным свойством. Тор, рассмотренный в примере 3 § 7.20, разрезывается на шестнадцать таких кусков плоскостями координат и еще цилиндрической круговой поверхностью радиуса b с осью, идущей по оси y.

# § 13.10. Дивергенция. Теорема Гаусса — Остроградского \*)

Пусть E есть пространство, где задана прямоугольная система координат  $x, y, z, G \subseteq R$  — область с кусочно гладкой границей S и на G определено поле вектора

$$\mathbf{a}(x, y, z) = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k} \quad ((x, y, z) \in \overline{G}). \tag{1}$$

Мы будем предполагать, что  $P,Q,R,\frac{\partial P}{\partial x},\frac{\partial Q}{\partial y},\frac{\partial R}{\partial z}$  непрерывны на  $\overline{G}$ , откуда следует, что для вектора а имеет смысл непрерыв-

<sup>\*)</sup> К. Ф. Гаусс (1777—1855) — выдающийся немецкий математик. Остроградский — см. § 8.7.

ная функция

div 
$$\mathbf{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \quad ((x, y, z) \in \mathbf{G}),$$
 (2)

называемая дивергенцией вектора а.

Будем считать, что поверхность S ориентирована при помощи единичной нормали n, направленной во внешность G.

Целью нашей будет доказать равенство

$$\int_{G} \operatorname{div} \mathbf{a} \, dG = \int_{S} (\mathbf{an}) \, dS \tag{3}$$

при некоторых дополнительных условиях, палагаемых на G. Это равенство называют формулой  $\Gamma$ аусса — Остроградского по имени математиков, ее доказавших.

Формула Гаусса — Остроградского говорит, что объемный интеграл от дивергенции вектора по области G равен потоку вектора

через границу этой области, ориентированную в направлении е**є** внешней нормали.

Начнем с того, что рассмотрим область  $\Lambda$ , изображенную на рис. 13.20, которую мы будем называть элементарной  $H_z$ областью. Сверху и снизу  $\Lambda$  ограничена поверхностями  $\sigma_1$  и  $\sigma_2$  (с кусочно гладкими краями), определяемыми соответственно уравнениями

$$z = \lambda_1(x, y), z = \lambda_2(x, y), \lambda_1(x, y) \leqslant \lambda_2(x, y) \quad ((x \cdot y) \in \overline{\Lambda}_2),$$

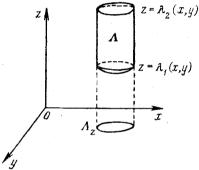


Рис. 13.20.

где  $\Lambda_z$  — плоская область с (кусочно гладкой) границей  $\gamma$ , а  $\lambda_1$ ,  $\lambda_2$  непрерывны на  $\overline{\Lambda}_z$  и имеют непрерывные частные производные на открытом множестве  $\Lambda_z$ . С боков  $\Lambda$  ограничена цилиндрической поверхностью  $\sigma^*$  с направляющей  $\gamma$  и образующей рараллельной оси z.

Пусть  $S^*$  есть грапица  $\Lambda$ , ориептированная при помощи внешней к  $\Lambda$  нормали. Тем самым нижний и верхний куски  $\sigma_1^*, \sigma_2^*$ , так же как боковая поверхность  $\sigma^*$  области  $\Lambda$ , соответственно ориентированы. Для области  $\Lambda$  имеют место равенства (пояспения ниже)

$$\int_{\Lambda} \frac{\partial R}{\partial z} d\Lambda = \int_{\Lambda_{z}} \int dx \, dy \int_{\lambda_{1}(x,y)}^{\lambda_{2}(x,y)} \frac{\partial R}{\partial z} \, dz =$$

$$= \int_{\Lambda_{z}} \left\{ R\left(x,y,\lambda_{2}(x,y)\right) - R\left(x,y,\lambda_{1}(x,y)\right) \right\} dx \, dy =$$

$$= \int_{\sigma_{2,z}^{*}} R((x, y, \lambda_{2}(x, y)) dx dy + \int_{\sigma_{1,z}^{*}} R(x, y, \lambda_{1}(x, y)) dx dy = \int_{S^{*}} R(x, y, z) dx dy.$$
(4)

Нормаль  $\mathbf{n}$  к  $\sigma_1^*$ ,  $\sigma_2^*$  образует с осью z соответственно тупой и острый углы, ноэтому проекции  $\sigma_{1,z}^*$ ,  $\sigma_{2,z}^*$  кусков  $\sigma_1^*$ ,  $\sigma_2^*$  на плоскость z=0 ориентированы первая отрицательно, а вторая положительно. Это обосновывает переход от третьего члена цени (4) к четвертому. К сумме, составляющей четвертый член, можно формально добавить интеграл

$$\iint_{a^*} R(x, y, z) dx dy = 0,$$

равный пулю, потому что  $\cos(n, z) = 0$  вдоль  $\sigma^*$ . Но тогда полученная сумма трех интегралов равна интегралу, стоящему в качестве последнего члена цепи (4) (потоку вектора (0, 0, R) через  $S^*$ ).

Этим мы доказали теорему Гаусса — Остроградского для эле-

ментарной  $H_z$ -области и вектора (0, 0, R).

Назовем теперь область G  $H_z$ -областью, если ее замыкание G можно разрезать на конечное число замыканий элементарных  $H_z$ -областей:

$$\overline{G} = \sum_{k=1}^{N} \overline{G}_k$$

так, что нижние и верхние куски границы  $G_k$  суть части ориентированной границы  $S^*$  области G, и докажем, что для G и вектора  $(0,\ 0,\ R)$  тоже справедлива теорема Гаусса — Остроградского.

В самом деле, обозначим соответственно через  $S_{1,h}$ ,  $S_{2,h}$  нижние и верхние куски границ  $\overline{G}_h$  и через  $S_h$  — боковые куски  $G_k$ . Тогда (пояснения ниже)

$$\begin{split} \int_{G} \frac{\partial R}{\partial z} dG &= \sum_{h=1}^{N} \int_{G_{h}} \frac{\partial R}{\partial z} dG = \\ &= \sum_{h=1}^{N} \left( \int_{S_{1,h}^{*}} R(x, y, z) dx dy + \int_{S_{2,h}^{*}} R(x, y, z) dx dy + \int_{S_{h}^{*}} R(x, y, z) dx dy \right) \\ &+ \int_{S_{h}^{*}} R(x, y, z) dx dy \bigg) = \int_{S^{*}} R(x, y, z) dx dy, \end{split}$$

потому что интегралы по  $S_h^*$ , очевидно, равны нулю, а куски  $S_{1,h}^*$  и  $S_{2,h}^*$  либо составляют в совокупности поверхность  $S^*$ ,

либо, если это не так, то множество

$$\sigma = S^* - \sum_{1}^{N} S_{1,h}^* - \sum_{1}^{N} S_{2,h}^*$$

есть часть  $S^*$ , нормаль в любой точке которой перпендикулярна оси z. Но тогда интеграл по  $\sigma$  равен нулю.

По аналогии можно ввести понятия  $H_x$ -области и  $H_v$ -области. Например,  $H_x$ -область обладает тем свойством, что ее замыкание можно разрезать на конечное число замыканий элементарных  $H_x$ -областей. Элементарная же  $H_x$ -область определяется так же, как элементарная  $H_z$ -область, только роль z теперь играет x. По аналогии доказывается, что для  $H_x$ -области G имеет место равенство

$$\int_{C} \frac{\partial P}{\partial x} dG = \int_{S*} P(x, y, z) dy dz,$$

т. е. формула Гаусса — Остроградского для вектора (P, 0, 0), а для  $H_{y}$ -области G — формула

$$\int_{C} \frac{\partial Q}{\partial y} dG = \int_{S_{*}} Q(x, y, z) dz dx.$$

Если теперь G есть одновременно  $H_x$ ,  $H_y$  и  $H_z$ -область, то для нее, очевидно, верна теорема Гаусса — Остроградского для произвольного непрерывно дифференцируемого на  $\overline{G}$  вектора  $\mathbf{a}=(P,\,Q,\,R)$ , т. е. верно равенство

$$\int \int_{G} \int \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \, dy \, dz = 
= \int \int_{G} \left( P(x, y, z) \, dy \, dz + Q(x, y, z) \, dz \, dx + R(x, y, z) \, dx \, dy \right), \quad (5)$$

где интеграл справа есть интеграл по поверхности  $S^*$ , ориентированной внешней пормалью к G.

Если в формуле Гаусса — Остроградского положить P = x, Q = y, R = z, то получим выражение для объема области G:

$$|G| = \frac{1}{3} \int_{S^*} \int_{S^*} (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy)$$

через интеграл по ее ориентированной (впешней пормалью) границе  $S^*$ .

Области, с которыми приходится обычно иметь дело, являются одновременно  $H_x$ ,  $H_y$  и  $H_z$ -областями.

Пример 1. Шар  $x^2+y^2+z^2\leqslant 1$  есть  $H_z$ -область, даже элементарная  $H_z$ -область, потому что вся его внутренность ограничена двумя лежащими друг над другом гладкими на  $x^2+y^2<1$  поверхностями  $z=\sqrt{1-x^2-y^2}$ ,

 $z=-\sqrt{1-x^2-y^2}$ , непрерывными на замкнутом круге  $x^2+y^2\leqslant 1$ , имеющем гладкую границу. Очевидно, шар есть также  $H_x$  и  $H_y$ -области.

Пример 2. Возьмем тор T, полученный вращением заданного в плоскости (x, y) круга  $(x-b)^2+y^2=a^2$  (0 < a < b) вокруг оси y. Чтобы убедиться в том, что T есть  $H_y$ -область, достаточно поверхность T разделить на две части плоскостью x, z. Далее, плоскости x=b-a, x=a-b рассекают T на четыре элементарные  $H_z$ -области, а плоскости z=b-a, z=a-b на четыре элементарные  $H_x$ -области.

Формула Гаусса — Остроградского преобразует объемный интеграл в интеграл по поверхности. В следующем параграфе доказывается формула Стокса, при помощи которой при определенных условиях интеграл по поверхности преобразуется в криволинейный интеграл.

Чтобы выяснить физическое значение понятия дивергенции, будем считать, что в G имеет место стационарное течение жидкости, скорость которой в произвольной точке (x, y, z) равна  $\mathbf{a} = \mathbf{a}(x, y, z)$ . Зададим произвольную, но фиксированную точку  $A = (x, y, z) \in G$  и окружим ее шаром  $V_s \subset G$  радиуса  $\varepsilon > 0$ . Пусть  $S_\varepsilon^*$  есть его граница (шаровая поверхность), ориентированная посредством внешней нормали. Тогда на основании формулы Гаусса — Остроградского

$$\iint_{S_E} (\mathbf{a} \ d\mathbf{s}) = \iiint_{V_E} \operatorname{div} \mathbf{a} \ dx \ dy \ dz.$$

Левая часть этого равенства выражает количество жидкости, вытекающее из  $V_{\varepsilon}$  (вовне  $S_{\varepsilon}$ ) за единицу времени.

Применяя к правой его части теорему о среднем, получим

$$\int_{S_{\varepsilon}} (\mathbf{a} \, d\mathbf{s}) = |V_{\varepsilon}| \operatorname{div} \mathbf{a}_{1}, \tag{6}$$

где  $|V_{\varepsilon}|$  есть объем  $V_{\varepsilon}$ , а  $\mathbf{a}_1$  — скорость жидкости в некоторой точке из  $V_{\varepsilon}$ . Разделив обе части полученного равенства на  $|V_{\varepsilon}|$  и перейдя к пределу при  $\varepsilon \to 0$ , получим, в силу непрерывности div a, что существует предел, равный дивергенции  $\mathbf{a}$ :

$$\operatorname{div} \mathbf{a} = \lim_{\epsilon \to 0} \frac{1}{|V_{\epsilon}|} \int_{S_{\epsilon}} \int_{S_{\epsilon}} (\mathbf{a} \, d\mathbf{s}) \tag{7}$$

в точке (x, y, z). Таким образом, div a представляет собой производительность источников, непрерывно распределенных по G, в точке A=(x, y, z). Если в точке A (или всюду на G) div a=0, то это значит, что в A (или всюду на G) производительность источников равна пулю. Если div a<0, то это означает, что на самом деле в соответствующей точке имеет место сток.

Из физических соображений ясно, что div a есть инвариант отчосительно любых преобразований прямоугольных координат: Но это заключение можно сделать и на основании математических соображений, если учесть, что поток вектора через поверхность  $S_{\epsilon}$  есть инвариант.

Этим доказано, что если одно и то же поле вектора определяется в двух прямоугольных системах координат (x, y, z), (x', y', z') соответственно функциями

$$\mathbf{a} = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k} = = P_1(x', y', z')\mathbf{i}_1 + Q_1(x', y', z')\mathbf{j}_1 + R_1(x', y', z')\mathbf{k}_1,$$

то в одной и той же точке

$$\operatorname{div} \mathbf{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \frac{\partial P_1}{\partial x'} + \frac{\partial Q_1}{\partial y'} + \frac{\partial R_1}{\partial z'}.$$

Конечно, это утверждение можно доказать непосредственно, не црибегая к теореме Гаусса — Остроградского.

Дивергенцию а можно рассматривать еще как (символическое) скалярное произведение оператора V Гамильтона на вектор а;

$$\operatorname{div} \mathbf{a} = \nabla \mathbf{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}.$$

С этой точки зрения указанную инвариантность можно доказать следующим образом.  $\nabla$  и  $\mathbf{a}$  — векторы, а скалярное произведение двух векторов инвариантно относительно преобразований прямоугольных координат, поэтому этим свойством обладает и дивергенция  $\nabla \mathbf{a}$ .

Формулу Гаусса — Остроградского можно записать в плоском случае, когда G есть область в плоскости (x, y) и  $\mathbf{a}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$  — определенное на ней поле. Если  $\mathbf{n}(A)$  есть внешняя нормаль к кусочно гладкому контуру  $\Gamma$  области G  $(A \in \Gamma)$ , то имеет место равенство

$$\iint_{G} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx \, dy = \iint_{\Gamma} (\mathbf{an}) \, ds,$$

где ds — дифференциал дуги  $\Gamma$ .

Если считать, что направление касательной в точке контура  $\Gamma$  совпадает с положительным направлением обхода по  $\Gamma$ , вдоль которого исчисляется также длина дуги контура  $\Gamma$ , то

$$\cos(n, x) = \cos(T, y) = \frac{dy}{ds}, \quad \cos(n, y) = -\cos(T, x) = -\frac{dx}{ds}.$$

 $\Pi$ оэтому (an) ds = P dy - Q dx,

$$\iint_{G} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx \, dy = \iint_{\Gamma} (P \, dy - Q \, dx).$$

Если в этой формуле заменить соответственно P, Q на Q, -P, то мы придем к формуле Грина, которая уже была получена в  $\S$  13.5.

Пусть G есть ограниченная область с гладкой дважды непрерывно дифференцируемой границей S и  $G_{\lambda}$  — часть G, ограниченная поверхность  $S_{\lambda}$ , точки которой отстоят от S по направлению нормали к S на расстоянии  $\lambda > 0$  (см. § 7.25). Пусть еще задано поле вектора a, непрерывного на G и имеющего пепрерывные частные производные на G. Вблизи границы G последние могут быть неограниченными. Будем считать, что область  $G_{\lambda}$  при достаточно малом  $\lambda$  удовлетворяет требованиям, которые предъявляются к областям, чтобы для них была верна теорема Гаусса — Остроградского.

Покажем, что в этом случае формула Гаусса — Остроградского (х =

 $=(x_1, x_2, x_3))$ 

$$\int_{G} \operatorname{div} \mathbf{a} \, d\mathbf{x} = \int_{S} (\mathbf{a}\mathbf{n}) \, ds \tag{8}$$

остается верной, если ее левую часть понимать в следующем несобственном смысле:

$$\int_{G} \operatorname{div} \mathbf{a} \, d\mathbf{x} = \lim_{\lambda \to 0} \int_{G_{\lambda}} \operatorname{div} \mathbf{a} \, d\mathbf{x}. \tag{9}$$

Что касается правой части (8), то это есть обычный интеграл второго рода по гладкой ориентированной в сторону внешней нормали поверхности S, потому что вектор а непрерывен на S.

В самом деле, на основании уже доказанной теоремы Гаусса - Остро-

градского

$$\int_{G_1} \operatorname{div} \mathbf{a} \, d\mathbf{x} = \int_{S_1} (\mathbf{a}\mathbf{n}) \, ds_{\lambda} \quad (0 < \lambda \leqslant \mu), \tag{10}$$

где  $\mu$  достаточно мало, потому что  $S_{\lambda}$  при достаточно малом  $\lambda$  есть гладкая поверхность (§ 7.25), а вектор а не только пепрерывен на  $G_{\lambda}$ , но и имеет там непрерывные частные производные.

Покажем, что

$$\lim_{\lambda \to 0} \int_{S_{\lambda}} (\mathbf{an}) \, ds_{\lambda} = \int_{S} (\mathbf{an}) \, ds, \tag{11}$$

откуда в силу (10) следует (8) и (9) в предположении, что S можно разрезать на конечное число элементарных гладких кусков:

$$S = \sum_{l=1}^{N} S^{l}. \tag{12}$$

Соответственно,  $S_{\lambda}$  разрезается на куски:

$$S_{\lambda} = \sum_{l=1}^{N} S_{\lambda}^{l},\tag{13}$$

где  $S^l_{\lambda}$  состоит из точек G, лежащих на нормалях к  $S^l$  на расстоянии  $\lambda$  до  $S^l$ . Пусть  $S^l$  определяется равенством  $z=f(x,y),\ (x,y)\in\Omega$ . Тогда декартовы координаты  $(\xi,\eta,\zeta)$  точек  $S^l_{\lambda}$  определяются уравнениями

$$\xi = \varphi(x, y, \lambda), \quad \eta = \psi(x, y, \lambda), \quad \zeta = \chi(x, y, \lambda) \quad (x, y) \in \Omega,$$

где  $\Omega$  — замыкание плоской ограниченной области с кусочно гладкой границей, а  $\varphi$ ,  $\psi$ ,  $\chi$  — непрерывно дифференцируемые функции от  $(x, y, \lambda)$ , описывающие на  $0 \leqslant \lambda \leqslant \mu$  при достаточно малом  $\mu$  гладкую поверхность  $S_{\lambda}^{1}$ . Эффективные выражения этих функций см. § 7.25 (5), n=3,  $t=\lambda$ .

Тогда имеем (пояснения ниже)

$$\int_{S_{\lambda}^{l}} (\mathbf{an}) dS_{\lambda}^{l} = \pm \int_{\Omega} \frac{\mathbf{a} \left( \dot{\mathbf{r}}_{x} \times \dot{\mathbf{r}}_{y} \right)}{\left| \dot{\mathbf{r}}_{x} \times \dot{\mathbf{r}}_{y} \right|} dx dy \rightarrow \int_{S_{\lambda}^{l}} (\mathbf{an}) ds (\lambda \rightarrow 0), \tag{14}$$

$$\dot{\mathbf{r}}_{x} \times \dot{\mathbf{r}}_{y} = \frac{D(\psi, \chi)}{D(x, y)} \mathbf{i} + \frac{D(\chi, \psi)}{D(x, y)} \mathbf{j} + \frac{D(\phi, \psi)}{D(x, y)} \mathbf{k},$$

где в  $\mathbf{a} = \mathbf{a}(\xi, \eta, \xi)$  надо  $\xi$ ,  $\eta$ ,  $\xi$  заменить соответственно, функциями  $\varphi$ ,  $\psi$ ,  $\chi$ . В самом деле, под интегралом во втором члене (14) стоит непрерывная функция от  $(x, y, \lambda)$  на замкнутом ограниченном множестве  $(x, y) \in \Omega$ ,  $0 \le \lambda \le \mu$ , и можно переходить к пределу при  $\lambda \to 0$  под знаком интеграла (см. § 12.13, теорема 1). Подобные факты имеют место, если  $S^k$  проектируется взаимно однозначно на плоскость x = 0 или y = 0. Из (14), (12) и (13) следует (9) и (8).

#### § 13.11. Ротор вектора. Формула Стокса \*)

Пусть в некоторой области пространства R задано поле непрерывно дифференцируемого вектора

$$a = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k.$$

Ротор вектора а

$$\operatorname{rot} \mathbf{a} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}.$$

Его можно рассматривать как векторное произведение оператора  $\Gamma$ амильтона  $\nabla$  и вектора **a**:

rot 
$$\mathbf{a} = \nabla \times \mathbf{a}$$
.

Из векторной алгебры известно, что векторное произведение двух векторов есть аксиальный вектор, т. е. опо инвариантно отпосительно преобразований прямоугольных систем координат, имеющих одну и ту же ориентацию, т. е. таких, что правая система переходит в правую, а левая — в левую. Но мы знаем (см. § 7.6), что символ  $\nabla$  можно рассматривать как вектор, потому что его компоненты  $\frac{\partial}{\partial x}$ ,  $\frac{\partial}{\partial y}$ ,  $\frac{\partial}{\partial z}$  преобразовываются при переходе от прямоугольной системы (x, y, z) к другой прямоугольной системе (x', y', z') по тем же правилам, по которым преобразовываются компоненты обычных векторов. Поэтому rot  $\mathbf{a} = \nabla \times \mathbf{a}$  есть аксиальный вектор, т. е. инвариантный относительно преобразований прямоугольных систем координат, не меняющих их ориентацию. Следовательно, мы можем, не вычисляя, сказать, что если наш вектор  $\mathbf{a}$  имеет в повой (также ориентированной) прямоугольной

<sup>\*)</sup> Д. Стокс (1819—1903) — английский физик и математик.

системе координат компоненты

$$\mathbf{a} = P_i(x', y', z')\mathbf{i}' + Q_i(x', y', z')\mathbf{j}' + R_i(x', y', z')\mathbf{k}',$$

то имеет место тожпество

$$\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k} = 
= \left(\frac{\partial R_{\mathbf{1}}}{\partial y'} - \frac{\partial Q_{\mathbf{1}}}{\partial z'}\right)\mathbf{i}' + \left(\frac{\partial P_{\mathbf{1}}}{\partial z'} - \frac{\partial R_{\mathbf{1}}}{\partial x'}\right)\mathbf{j}' + \left(\frac{\partial Q_{\mathbf{1}}}{\partial x'} - \frac{\partial P_{\mathbf{1}}}{\partial y'}\right)\mathbf{k}',$$

где  $\mathbf{i'}$ ,  $\mathbf{j'}$ ,  $\mathbf{k'}$  — единичные орты в системе (x', y', z'). Нам предстоит обосновать формулу Стокса \*)

$$\int_{S} \int (\mathbf{n} \operatorname{rot} \mathbf{a}) \, ds = \int_{\Gamma} (\mathbf{a} \, dl), \tag{1}$$

выражающую, что поток вектора rot a через ориентированную noверхность  $S^*$  равен циркуляции a по контуру  $\Gamma$  этой поверхности, ориентированному соответственно ориентации S\*.

Начнем с показательства теоремы Стокса для гладкого куска, однозначно проектируемого на все три координатные плоскости.

Зададим ориентированный гладкий кусок S\* поверхности с кусочно гладким краем Г, который можно записать тремя способами:

$$z = f(x, y) \quad (x, y) \in S_z, \quad x = \varphi(y, z) \quad (y, z) \in S_x,$$
$$y = \psi(z, x) \quad (z, x) \in S_y.$$

Предполагается, таким образом, что любое из этих уравнений разрешается относительно любой из переменных, а функции f,  $\phi$ ,  $\psi$ непрерывно дифференцируемы на соответствующих проекциях Sна координатные плоскости.

Имеем

$$\iint_{S} (\mathbf{n} \operatorname{rot} \mathbf{a}) ds = \iint_{S} \left\{ \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos(n, x) + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos(n, y) + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos(n, z) \right\} ds. \quad (2)$$

Выберем в правой части (2) члены, содержащие Р. Тогда (пояснения ниже)

$$-\int_{S} \left\{ \frac{\partial P}{\partial y} \cos(n, z) - \frac{\partial P}{\partial z} \cos(n, y) \right\} ds =$$

$$= -\int_{S} \left\{ \left( \frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \right) \frac{\partial f}{\partial y} \right\} \cos(n, z) ds = -\int_{S} \int_{S} \frac{\partial}{\partial y} P(x, y, f(x, y)) dx dy =$$

<sup>\*)</sup> Мы считаем, что  $S^*$  означает ориентированную посредством пормали и поверхность S. Левая часть (1) есть интеграл по поверхности 1-го рода,

$$= \int_{\Gamma_{z}} (P(x, y, f(x, y))) dx = \int_{0}^{s_{0}} P[\varphi(s), \psi(s), f(\varphi(s), \psi(s))] \varphi'(s) ds =$$

$$= \int_{0}^{s_{0}} P(\varphi(s), \psi(s), \chi(s)) \varphi'(s) ds = \int_{\Gamma} P(x, y, z) dx. \quad (3)$$

Из пропорции

$$\frac{\partial f}{\partial x}$$
:  $\frac{\partial f}{\partial y}$ :  $(-1) = \cos(n, x)$ :  $\cos(n, y)$ :  $\cos(n, z)$ 

следует, что

$$\cos(n, y) = -\frac{\partial f}{\partial y}\cos(n, z),$$

что влечет первое равенство в цепи (3). Второе равенство см. § 13.9, (5). Третье равенство следует из формулы Грина.

Последние три равенства в цепи (3) справедливы, если считать, что ориентированный контур  $\Gamma$  определяется кусочно гладкими функциями  $x = \varphi(s)$ ,  $y = \psi(s)$ ,  $z = \chi(s)$ ,  $0 \le s \le s_0$ .

Первые две из этих функций в свою очередь определяют  $\Gamma_z$  проекцию  $\Gamma$  на плоскость z=0, соответственно ориентированную. Надо учесть, что  $\Gamma$  есть край поверхности S, определяемой равенством z=f(x,y), и потому  $\chi(s)=f(\phi(s),\psi(s))$ ,  $0 \le s \le s_0$ .

По аналогии доказывается, что

$$\iint_{S} \left( \frac{\partial Q}{\partial x} \cos(n, z) - \frac{\partial Q}{\partial z} \cos(n, x) \right) ds = \int_{\Gamma} Q(x, y, z) dy, \qquad (4)$$

$$\int_{S} \left( \frac{\partial R}{\partial y} \cos(n, x) - \frac{\partial R}{\partial x} \cos(n, y) \right) ds = \int_{\Gamma} R(x, y, z) dz.$$
 (5)

Из (3), (4), (5) следует формула Стокса (1).

Мы доказали теорему Стокса для куска ориентированной поверхности, одновременно проектирующегося на все три плоскости координат. Имеется еще один важный простой случай, который непосредственно не охвачен нашими рассмотрениями. Мы имеем в виду тот случай, когда о\* есть кусок, принадлежащий некоторой плоскости, параллельной одной из осей координат. Для такого куска теорема Стокса тоже верна. В этом можно убедиться непосредственными вычислениями, подобными (3). Но можно рассуждать так. Интегралы, входящие в формулу Стокса, инвариантны относительно преобразований прямоугольных координат, не меняющих ориентацию последних. Всегда можно подобрать преобразование этого типа так, что о\* будет проектироваться на любую из плоскостей координат новой системы. А в этом случае теорема доказана.

Формула Стокса остается верной для любой ориентированной поверхности  $S^*$  с кусочно гладким краем  $\Gamma$ , которую можно разбить при помощи кусочно гладких линий на конечное число гладких кусков, проектирующихся на все три плоскости координат.

В самом деле, пусть  $S^* = \sigma_1^* + \sigma_2^* + \ldots + \sigma_N^*$  есть такое разбиение и пусть  $\Gamma_1, \ldots, \Gamma_N$ — соответственно ориентированные контуры  $\sigma_1^*, \ldots, \sigma_N^*$ . Тогда, согласно доказанному выше,

$$\int_{S} (\operatorname{rot} \mathbf{a} \, d\mathbf{\sigma}) = \sum_{j=1}^{N} \int_{\sigma_{j}} (\operatorname{rot} \mathbf{a} \, d\mathbf{\sigma}) = \sum_{j=1}^{N} \int_{\Gamma_{j}} (\mathbf{a} \, d\mathbf{s}) = \int_{\Gamma} (\mathbf{a} \, d\mathbf{s}),$$

потому что части интегралов  $\int_{\Gamma_j} (j=1,\ldots,N)$ , берущихся вдоль

внутренних кусков  $\Gamma_i$  (не принадлежащих  $\Gamma$ ), проходятся два раза в противоположном направлении и дают эффект, равный нулю.

Ориентированиая поверхность, которую можно разбить на конечное число треугольников (плоских), называется полиэдральной поверхностью и представляет собой пример простейшей поверхности, к которой применима формула Стокса.

Сделаем еще одно замечание. Пусть  $\sigma_{\epsilon}$  обозначает круглую определенным образом ориентированную площадку с центром в точке  $A=(x,\ y,\ z)$  радиуса  $\epsilon$  с ориентирующим ее единичным вектором  $\mathbf{n}$  и  $\gamma_{\epsilon}$  — ее ориентированный контур. Согласно формуле Стокса

$$\int_{\gamma_{\varepsilon}} (a \, dS) = \int_{\sigma_{\varepsilon}} (n \operatorname{rot} a) \, d\sigma_{\varepsilon} = \int_{\sigma_{\varepsilon}} \operatorname{rot}_n a \, d\sigma_{\varepsilon} = |\sigma_{\varepsilon}| \operatorname{rot}_n a_1,$$

где  ${\bf rot}_n$  а есть скалярная функция, равная проекции  ${\bf rot}$  а на направление  ${\bf n}$ , а  ${\bf rot}_n$   ${\bf a}_1$  есть значение этой функции в некоторой средней точке  ${\bf \sigma}_s$ . Отсюда следует, что значение функции  ${\bf rot}_n$  а в точке A равно

$$\operatorname{rot}_{n} \mathbf{a} = \lim_{\varepsilon \to 0} \frac{1}{|\sigma_{\varepsilon}|} \int_{\gamma_{\varepsilon}} (\mathbf{a} \, d\mathbf{S}), \tag{6}$$

где при предельном переходе при  $\varepsilon \to 0$  предполагается, что вектор  $\mathbf{n}$  — неизменный. В любой правой (левой) системе координат правая часть (6) есть одно и то же число. Однако при замене правой системы на левую и неизменном  $\mathbf{n}$  направление обхода  $\sigma_{\varepsilon}$  изменяется на противоположное, что влечет изменение знака в правой части (6). Таким образом, мы снова, но другим путем, убедились в инвариантности rot  $\mathbf{a}$  относительно преобразований прямочгольных координат, сохраняющих ориентацию последних.

Замечание. Пусть на области  $\Omega$  задано поле непрерывно дифференцируемого вектора а такого, что rot  $\mathbf{a}=0$ . Если на замкнутом контуре  $\Gamma \subseteq \Omega$  можно натянуть гладкую ориентированную

поверхность с (ориентированным) краем  $\Gamma$ , то согласно теореме Стокса интеграл от а по  $\Gamma$  равен

$$\int_{\Gamma} (\mathbf{a} \, d\mathbf{l}) = \int_{S} \int_{S} (\mathbf{n} \, \text{rot } \mathbf{a}) \, dS = 0$$

Это утверждение может служить основанием для доказательства теоремы 3 § 13.3. Но и на этом пути не избежать сложных рассуждений, потому что надо иметь в виду, что в любой области существуют замкнутые (заузливающиеся) контуры, на которые невозможно натянуть гладкую поверхность.

# § 13:12. Дифференцирование интеграла по параметру

Начнем с того, что докажем равенство

$$\frac{\partial}{\partial x} \int_{\Omega} f(x, \mathbf{y}) \, d\mathbf{y} = \int_{\Omega} \frac{\partial}{\partial x} f(x, \mathbf{y}) \, d\mathbf{y} \quad (a \leqslant x \leqslant b), \tag{1}$$

где предполагается, что  $\Omega$  — замкнутое измеримое множество пространства точек  $\mathbf{y} = (y_1, \ldots, y_m)$ , а f и  $\frac{\partial f}{\partial x}$  непрерывны на множестве  $H = [a, b] \times \Omega$  ( $x \in [a, b], \mathbf{y} \in \Omega$ ).

В частности, если  $\Omega$  есть отрезок [c,d], то формула (1) имеет вид

$$\frac{\partial}{\partial x} \int_{a}^{d} f(x, y) dy = \int_{a}^{d} \frac{\partial}{\partial x} f(x, y) dy$$
 (1')

в предположении, что f и  $\frac{\partial f}{\partial x}$  непрерывны на  $[a,\ b] \times [c,\ d]$ ,

В самом деле, пусть

$$F(x) = \int_{\Omega} f(x, y) dy,$$

тогда

$$\frac{F(x+h)-F(x)}{h} = \int_{\Omega} \frac{1}{h} [f(x+h, \mathbf{y}) - f(x, \mathbf{y})] d\mathbf{y} =$$

$$= \int_{\Omega} \frac{\partial f}{\partial x} (x+\theta h, \mathbf{y}) d\mathbf{y} \to \int_{\Omega} \frac{\partial f}{\partial x} (x, \mathbf{y}) d\mathbf{y} \quad (h \to 0, 0 < \theta < 1),$$

потому что

$$\left| \int_{\Omega} \left[ \frac{\partial f}{\partial x} \left( x + \theta h, \mathbf{y} \right) - \frac{\partial f}{\partial x} \left( x, \mathbf{y} \right) \right] d\mathbf{y} \right| \leq \int_{\Omega} \omega \left( |h|, \frac{\partial f}{\partial x} \right) d\mathbf{y} =$$

$$= |\Omega| \omega \left( |h|, \frac{\partial f}{\partial x} \right) \to 0 \quad (h \to 0),$$

где  $\omega\left(\delta, \frac{\partial f}{\partial x}\right)$  — модуль непрерывности  $\frac{\partial f}{\partial x}$  на (замкнутом ограниченном) множестве H.

Формулу (1) мы теперь обобщим, однако считая, что f(x, y) есть функция от двух переменных чисел x, y.

Рассмотрим интеграл

$$F(x) = \int_{\varphi(x)}^{\psi(x)} f(x, y) \, dy \quad (a \leqslant x \leqslant b), \tag{2}$$

где функции  $\varphi$  и  $\psi$  удовлетворяют неравенству  $\varphi(x) \leqslant \psi(x)$  ( $a \leqslant x \leqslant b$ ) и непрерывно дифференцируемы, а функция f(x, y) от числовых переменных x, y пепрерывна вместе со своей частной производной  $\frac{\partial f}{\partial x}$  на множестве точек (x, y) (см. еще § 7.11), удовлетворяющих неравенствам  $\varphi(x) \leqslant y \leqslant \psi(x)$ ,  $a \leqslant x \leqslant b$ . Покажем, что функция F(x) имеет производную на [a, b], определяемую по формуле

$$F'(x) = f(x, \psi(x)) \psi'(x) - f(x, \varphi(x)) \varphi'(x) + \int_{\varphi(x)}^{\psi(x)} \frac{\partial}{\partial x} f(x, y) dy.$$
(3)

Для этого введем вспомогательную функцию

$$\Phi(x, u, v) = \int_{0}^{v} f(x, y) dy, \qquad (4)$$

заданную на множестве H точек (x, u, v) определяемом неравенствами  $\varphi(x) \le u \le v \le \psi(x)$   $(a \le x \le b)$ .

Функцию z = F(x) можно рассматривать как сложную функцию  $z = \Phi(x, u, v), u = \varphi(x), v = \psi(x) \ (a \le x \le b),$  и ее производную можно вычислить по известной формуле

$$F'(x) = \frac{\partial z}{\partial x} = \frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial u} \varphi'(x) + \frac{\partial \Phi}{\partial v} \psi'(x), \tag{5}$$

где в правой части надо положить  $u = \varphi(x)$ ,  $v = \psi(x)$ .

Однако надо убедиться в том, что частные производные от  $\Phi$  — непрерывные функции от (x, u, v), и выразить их через f,  $\varphi$ ,  $\psi$ .

Так как f(x, y) непрерывна по y, то в силу теоремы о производной по верхнему и нижнему пределу интеграла из (4) следует

$$\frac{\partial \Phi}{\partial v} = f(x, v), \frac{\partial \Phi}{\partial u} = -f(x, u), \tag{6}$$

и при этом правые части (6) в силу непрерывности f непрерывны по (x, u, v), соответственно и левые.

Так как  $\frac{\partial f}{\partial x}$  непрерывна по условию, то в силу (1)

$$\frac{\partial \Phi}{\partial x} = \frac{\partial}{\partial x} \int_{y}^{y} f(x, y) \, dy = \int_{y}^{y} \frac{\partial}{\partial x} f(x, y) \, dy \tag{7}$$

(см., впрочем, замечание ииже). Далее, можно формально считать, что  $\frac{\partial}{\partial x} f(x,y) = \gamma(x,u,v;y)$  есть функция от переменных (x,u,v;y). Она, очевидно, зависит непрерывно от этих переменных, а u u v можно считать функциями от (x,u,v):

$$u = \lambda(x, u, v), v = \mu(x, u, v), (x, u, v) \in H,$$

тоже, очевидно, пепрерывными. Поэтому в этих обозначениях

$$\frac{\partial \Phi}{\partial x} = \int_{\Lambda(x,u,v)}^{\mu(x,u,v)} \gamma(x,u,v;y) \, dy.$$

Следовательно,  $\frac{\partial \Phi}{\partial x}$  есть непрерывная функция от (x, u, v) (см. § 12.13, теорему 2).

Мы обосновали равенство (5).

Подстановка (6) и (7) в (5) и замена  $u = \varphi(x)$ ,  $v = \psi(x)$  приводит к формуле (3).

Замечание. Равенство (7), строго говоря, доказано только в точках  $(x_0, u_0, v_0)$ , для которых

$$\varphi(x_0) < u_0 < v_0 < \psi(x_0).$$
 (8)

В этом случае можно указать достаточно малое число  $\delta>0$  такое, что прямоугольник  $\{|x-x_0|\leqslant \delta,\ u_0\leqslant y\leqslant v_0\}$  будет принадлежать области определения f(x,y). Это дает возможность применить формулу (1) (при  $c=u_0,d=v_0$ ). Если  $u_0=\varphi(x_0)$  или  $v_0=\psi(x_0)$ , то такого прямоугольника может и не быть при любом  $\delta>0$ . Однако правая часть (7) имеет смысл и непрерывна для всех точек  $\{x,u,v\}$  замкнутого множества H, поэтому частная производная  $\frac{\partial \Phi}{\partial x}$ , определенная только для точек  $\{x_0,u_0,v_0\}$  вида (8), продолжается пепрерывно на все множество H, если ее положить равной правой части (7). Этим определяется обобщенная производная  $\frac{\partial \Phi}{\partial x}$  на H. Теорема о производной сложной функции для обобщенных в этом смысле частных производных верна (см. § 7.11).

# § 13.13. Несобственный интеграл

Пусть G есть открытое измеримое множество n-мерного пространства и точка  $\mathbf{x}^{\circ} \in \overline{G}$ .

Обозначим через  $\omega(\varepsilon) = \{|\mathbf{x} - \mathbf{x}^o| \le \varepsilon\}$  шар (замкнутый с центром в  $\mathbf{x}^o$  радиуса  $\varepsilon > 0$ ) и введем множество (открытое)  $G_{\varepsilon} = G - \omega(\varepsilon)$ .

Согласимся говорить, что интеграл

$$\int_{C} f \, d\mathbf{x} \tag{1}$$

имеет единственную особенность в  $x^0$ , если функция f определена на G, не ограничена на G, по ограничена и интегрируема на  $G_{\epsilon}$ , как бы ни было мало  $\epsilon > 0$ .

Подчеркнем, что если интеграл (1) имеет (единственную) особенность в точке  $\mathbf{x}^0$ , то подынтегральная функция  $f(\mathbf{x})$  не интегрируема по Риману, ведь она не ограничена на измеримом открытом множестве G (см. теорему 1 § 12.10 и выше).

Eсли интеграл (1) имеет единственную особенность в точке  $\mathbf{x}^{\mathbf{o}}$ , то говорят, что он существует как несобственный интеграл, если

существует предел

$$\lim_{\varepsilon \to 0} \int_{G_{E}} f(\mathbf{x}) d\mathbf{x} = \int_{G} f(\mathbf{x}) d\mathbf{x}.$$
 (2)

При этом мы теперь уже приписываем выражению (1) число, равное этому пределу — несобственному интегралу от f по G.

Так как при  $0 < \delta_1 < \delta_2$ 

$$\int_{C_{\delta_1}} - \int_{C_{\delta_2}} = \int_{C_{\delta_1} - C_{\delta_2}},$$

то на основании условия Коши существования предела несобственный интеграл (2) при описанных выше условиях существует в том и только том случае, если для всякого  $\varepsilon > 0$  найдется  $\delta > 0$  такое, что для любых  $\delta_1$ ,  $\delta_2$ , где  $0 < \delta_1$ ,  $\delta_2 < \delta$ ,

$$\left|\int_{G_{\delta_1}-G_{\delta_2}} f \, d\mathbf{x}\right| < \varepsilon.$$

Отсюда ясно, что если  $\Omega$  есть произвольное открытое измеримое множество, содержащее в себе точку  $\mathbf{x}^{\mathbf{0}}$  и  $G_1=\Omega G$ , то интегралы  $\int\limits_G f\,dx$  и  $\int\limits_{G_1} f\,dx$  одновременно оба существуют или одновременно

оба не существуют (рис. 13.21 и 13.22), потому что условие Коний для них одно и то же.

Обратимся к одиомерному случаю. Пусть на интервале (одно-

мерном) (a, b) задана функция f(x) такая, что интеграл  $\int_a^b f(x) dx$  имеет единственную особенность в точке  $x^0 \in [a, b]$ .

Если  $x^0 = a$  или  $x^0 = b$ , то введенное здесь определение несобственного интеграла есть обычное его определение, с которым мы уже знакомы (см. § 9.12). Однако, если  $x^0 = (a, b)$ , т. е.  $x^0$  — впутренняя точка отрезка [a, b], то согласно введенному здесь опреде-

лению несобственный интеграл считается существующим, если существует предел

$$\lim_{B \to 0} \left( \int_{a}^{x^{0} - B} f \, dx + \int_{x^{0} + B}^{b} f \, dx \right) = \int_{a}^{b} f \, dx. \tag{3}$$

Но это есть определение одномерного интеграла (по Коши) в смысле главного значения (см. конец § 9.16), а не обычного (риманова) несобственного интеграла, в силу которого требуется существование пределов каждого из интегралов слева в (3) при в → 0.

Имеет место очевидное равенство

$$\int_{G} (Af(\mathbf{x}) + B\varphi(\mathbf{x})) d\mathbf{x} = A \int_{G} f(\mathbf{x}) d\mathbf{x} + B \int_{G} \varphi(\mathbf{x}) d\mathbf{x}$$
 (4)

 $(A\ u\ B-$  постоянные), которое, как обычно, надо читать так: вместе с несобственными интегралами в правой части равенства (4) существует также несобственный интеграл в левой его части, равный правой части (4).

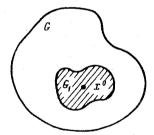


Рис. 13.21.

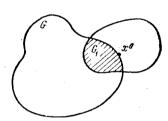


Рис. 13.22.

Если функция f неотрицательна на G, то предел (2), конечный или бесконечный, всегда существует, потому что выражение под знаком предела при монотонном стремлении  $\varepsilon$  к нулю не убывает.

В случае конечного предела принято писать:

$$\int_G f \, d\mathbf{x} < \infty,$$

а в случае бесконечного -

$$\int_G f \, d\mathbf{x} = \infty.$$

Ясно, что для неотрицательной функции одной переменной при  $x^0 \in (a, b)$  определения интеграла в смысле главного значения и несобственного риманова интегралов совпадают — из существова-

ния предела суммы слева в (3) следует существование пределов каждого из двух слагаемых этой суммы.

Можно еще, очевидно, сказать, что несобственный интеграл от неотрицательной на G описанной выше финкции сишествиет тогда и только тогда, когда выражение под знаком предела в (2) ограничено константой M, не зависящей от  $\varepsilon > 0$ .

Можно дать еще одно эквивалентное определение: несобственный интеграл по G от неотрицательной функции c единственной особенностью в точке  $\mathbf{x}^0 \in \overline{G}$  ects npedea

 $\int_{G} f \, dx = \lim_{n \to \infty} \int_{G-\lambda} f \, dx,$ (5)

где  $\lambda_n$  — области, обладающие следующими свойствами:

1)  $\mathbf{x}^0 \in \lambda_n$ , 2)  $\lambda_n \supset \lambda_{n+1}$ , 3)  $\partial uamerp\ d(\lambda_n) \to 0\ (n \to \infty)$ .

Если на G ваданы две неотрицательные функции f и  $\phi$ , интегралы от которых имеют единственную особенность в  $\mathbf{x}^0$ , и  $f(\mathbf{x}) \leq$  $\leq \varphi(\mathbf{x})$  ( $\mathbf{x} \in G$ ), то для любого  $\varepsilon > 0$ 

$$\int_{G_{E}} f \, d\mathbf{x} \leqslant \int_{G_{E}} \varphi \, d\mathbf{x}.$$

Обе части этого неравенства монотонно возрастают при убывании  $\epsilon$ , поэтому после перехода к пределу при  $\epsilon \to 0$  получим неравенство

$$\int_{G} f \, d\mathbf{x} \leqslant \int_{G} \varphi \, d\mathbf{x},\tag{6}$$

члены которого могут быть конечными и бесконечными. Из конечности интеграла справа в (6) следует конечность интеграла слева, а из бесконечности интеграла слева в (6) следует бесконечность интеграла справа.

Интеграл (1), имеющий единственную особенность в копечной точке  $\mathbf{x}^0$ , называется абсолютно сходящимся, если сходится инте-

грал

$$\int_{\mathcal{C}} |f| \, d\mathbf{x} < \infty \tag{7}$$

от абсолютной величины  $f(\mathbf{x})$ . Если интеграл (1) абсолютно сходится, то он сходится, потому что из (7) следует, что для любого  $\varepsilon > 0$  найдется такое  $\delta > 0$ , что

$$\varepsilon > \int_{G_{\delta_1} = G_{\delta_2}} |f| \, dx \geqslant \left| \int_{G_{\delta_1} = G_{\delta_2}} f \, dx \right|, \quad 0 < \delta_1 < \delta_2 < \delta_*$$

Пример 1. Рассмотрим интеграл

$$\int_{0}^{\infty} \frac{d\mathbf{x}}{r^{\alpha}},\tag{8}$$

где  $r = \sqrt{x_1^2 + \ldots + x_n^2}$  и  $\Omega$  — единичный шар в *n*-мерном пространстве с центром в начале координат.

 $\hat{\Pi}$ ри  $\alpha>0$  (8) есть, очевидно, несобственный интеграл с единственной особенностью в нулевой точке. Его величина определяется как предел

$$\int_{\Omega} \frac{d\mathbf{x}}{r^{\alpha}} = \lim_{\epsilon \to 0} \int_{\Omega_{\epsilon}} \frac{d\mathbf{x}}{r^{\alpha}}.$$

Переход к полярным координатам

$$x_1 = r \cos \varphi_1,$$
  

$$x_2 = r \sin \varphi_1 \cos \varphi_2,$$

$$x_{n-1} = r \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{n-2} \cos \varphi_{n-1},$$
  
$$x_n = r \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{n-2} \sin \varphi_{n-1}$$

с якобианом

$$I = r^{n-1} \sin \varphi_1^{n-2} \sin \varphi_2^{n-3} \dots \sin \varphi_{n-2}$$

приводит к равенству

$$I_{\alpha} = \sigma_n \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} r^{n-\alpha-1} dr, \qquad (9)$$

где  $\sigma_n = 2\pi^{n/2}/\Gamma(n/2)$  есть площадь поверхности сферы единичного шара в n-мерном пространстве.

Из (9) следует, что

$$I_{\alpha} < \infty$$
, если  $\alpha < n$ ,  $I_{\alpha} = \infty$ , если  $\alpha \geqslant n$ .

. Этот пример можно обобщить, рассматривая интеграл

$$\int_{\Omega} \frac{|\varphi(\mathbf{x})| d\mathbf{x}}{r^{\alpha}},\tag{10}$$

где ф — непрерывная функция на Ω. Положим

$$M = \max_{\mathbf{x} \in \Omega} |\varphi(\mathbf{x})|.$$

При  $\alpha < n$ 

$$\int_{\Omega} \frac{|\varphi(\mathbf{x})| d\mathbf{x}}{r^{\alpha}} \leq M \int_{\Omega} \frac{d\mathbf{x}}{r^{\alpha}} < \infty,$$

т. е. интеграл (10) абсолютно сходится.

Пусть теперь  $\alpha \geqslant n$  и  $|\phi(0)| > 0$ . Тогда существует шар  $\omega$  с центром в нулевой точке, настолько малый, что на нем  $|\phi(\mathbf{x})| > \frac{|\phi(0)|}{2} = m > 0$ . Поэтому

$$\left|\int_{\omega} \frac{\dot{\varphi}(\mathbf{x})}{r^{\alpha}} d\mathbf{x}\right| = \int_{\omega} \frac{|\varphi(\mathbf{x})|}{r^{\alpha}} d\mathbf{x} \geqslant m \int_{\omega} \frac{1}{r^{\alpha}} d\mathbf{x} = \infty,$$

и, следовательно, интеграл (10) при  $\alpha \ge n$  расходится.

Понятие кратного интеграла в смысле Римана определяется для измеримой, следовательно, ограниченной области. Если область неограничена, то при известных условиях можно ввести понятие несобственного интеграла.

Пусть в n-мерном пространстве задапо неограниченное множество G, обладающее тем свойством, что любой шар  $\omega(R)$  с центром в нулевой точке и радиуса R пересекается с G по измеримому множеству  $G(R)=G\omega(R)$ . Пусть, далее, на G определена функция  $f(\mathbf{x})$ , интегрируемая на G(R) для любого R. В этом случае будем говорить, что f имеет единственную особепность в бесконечно удаленной точке (или на бесконечности), и определим несобственный интеграл от f на G как предел

$$\lim_{R \to \infty} \int_{G(R)} f \, d\mathbf{x} = \int_{G} f \, d\mathbf{x}. \tag{11}$$

Все, что мы говорили о несобственном интеграле с единственной особенностью в конечной точке х<sup>0</sup>, можно повторить с попятными видоизменениями для несобственного интеграла, имеющего единственную особенность на бесконечности. Нет необходимости это делать.

Пример 2. Интеграл

$$I_{\alpha} = \int_{r>1} \frac{d\mathbf{x}}{r^{\alpha}} = \lim_{R \to \infty} \int_{1 < r < R} \frac{d\mathbf{x}}{r^{\alpha}}$$

с помощью введения полярных координат сводится к выражению

$$I_{\alpha} = \sigma_{n} \lim_{R \to \infty} \int_{1}^{R} r^{n-\alpha-1} dr = \begin{cases} \frac{\sigma_{n}}{n-\alpha}, & \alpha > n, \\ \infty, & \alpha \leqslant n. \end{cases}$$

Наконец, может быть более общий случай, когда замыкание области G, где задана функция f, может быть разбито на конечное число попарно пересекающихся разве что по своим границам замыканий открытых множеств

$$\overline{G} = \overline{G}_1 + \ldots + \overline{G}_N. \tag{12}$$

При этом каждый из интегралов  $\int\limits_{G_j} f \, d{\bf x}$  имеет единственную

особенность (особую точку  $\mathbf{x}^{j}$ ), и если G неограничена, то только один из них имеет в качестве особой точки бесконечно удаленную. Кроме того, все точки  $\mathbf{x}^{j}$  различны.

Несобственный интеграл or f на G определяется как сумма

$$\int_{G} f \, dx = \sum_{j=1}^{N} \int_{G_{j}} f \, dG. \tag{13}$$

Если хотя бы один интеграл, входящий в эту сумму, расходится, то интеграл слева в (13) считается расходящимся. Подоб-

ным образом этот последний считается абсолютно сходящимся тогда и только тогда, когда абсолютно сходятся все интегралы, входящие в сумму (13).

Мы не будем приводить простые рассуждения, показывающие, что сделанное определение приводит к результату (числу), независимому от возможных способов разбиения G на части.

Пример 3. Очевидно, что интеграл  $\int\limits_{R_n} \frac{d\mathbf{x}}{r^{\alpha}}$ , где  $R_n$  — все n-мерное

пространство, расходится при нюбом действительном с.

Пример 4. Интеграл

$$I = \int\limits_0^\infty \int\limits_0^\infty e^{-x^2 - y^2} \, dx \, dy$$

можно определить как предел

$$I = \lim_{N \to \infty} \int_{0}^{N} \int_{0}^{N} e^{-x^{2} - y^{2}} dx \, dy = \lim_{N \to \infty} \int_{0}^{N} e^{-x^{2}} dx \int_{0}^{N} e^{-y^{2}} dy = \left( \int_{0}^{\infty} e^{-x^{2}} dx \right)^{2}.$$

где несобственный интеграл от одной переменной справа сходится. Но ссли  $\Omega(N)$  есть четверть круга из первого квадранта с центром в начальной точке раднуса N и  $(\rho,\;\theta)$  — полярные координаты точек плоскости, то

$$I = \lim_{N \to \infty} \int_{\Omega} \int_{(N)} e^{-\rho^2} \rho \, d\rho \, d\theta = \lim_{N \to \infty} \int_{0}^{\pi/2} d\theta \, \frac{1}{2} \int_{0}^{N} e^{-\rho^2} d(\rho^2) = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{4}.$$

Отсюда

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Пример 5. Функция  $\psi(x)$ , равная  $e^{-|\mathbf{x}|}$  в точках  $\mathbf{x}=(x_1,\ldots,x_n)$  с иррациональными координатами и —  $e^{-|\mathbf{x}|}$  в остальных точках n-мерного пространства  $R_n$ , не является абсолютно интегрируемой, несмотря нато что интеграл

$$\int\limits_{R_n} |\psi| \, d\mathbf{x} < \infty$$

сходится. Ведь  $\psi(\mathbf{x})$  всюду разрывна на  $R_n$ .

Упражнение Проверить, сводя вопрос к полярным координатам, что для фундаментального решения уравнения теплопроводности v (§ 7.7, упражнение)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v \, dx \, dy \, dz = 1 \quad (t_0 > t).$$

Замечание. Пусть ограниченная область  $\Omega$  имеет дважды непрерывно, дифференцируемую гладкую границу S. Обозначим через  $S_{\lambda}$  принадлежащую  $\Omega$  поверхность, отстоящую по направ-

лению внутренних нормалей к S на расстоянии  $\lambda > 0$  (см. § 7.25), и пусть  $\Omega_{\lambda} \subset \Omega$  — область с границей  $S_{\lambda}$ .

Если на  $\Omega$  задана неограниченная функция  $f(\mathbf{x})$ , но интегрируемая на  $\Omega_{\lambda}$  при любом достаточно малом  $\lambda > 0$ , то можно определить несобственный интеграл от f на  $\Omega$  как предел

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \lim_{\lambda \to 0} \int_{\Omega_{\lambda}} f(\mathbf{x}) d\mathbf{x},$$

если он существует.

На основе этого определения можно ввести также понятие абсолютно сходящегося интеграла.

Данное определение несобственного интеграла для функции, имеющей особенности вдоль границы области, но идее соответствует определению (2), рассматриваемому в этом нараграфе. Более жесткое определение было дано в § 12.22. Для неотрицательной функции оба они для указанной здесь области, конечно, совнадают. Но данное определение является более общим, потому что можно показать, что если интеграл в смысле § 12.22 сходится, то он сходится абсолютно. Данное определение уже применялось при выводе обобщенной теоремы Гаусса — Остроградского (см. конец § 13.5, §§ 13.6, 13.10).

## § 13.14. Равномерная сходимость несобственного интеграла

Пусть  $\Omega \subset R_m$  и  $D \subset R_n$  — множества m- и n-мерных пространств, а D, кроме того, измерима. Пусть еще  $\mathbf{y}^{\mathbf{0}} \in \overline{D}$  и  $\omega_{\mathbf{0}}$  обозначает открытый шар радиуса  $\delta$  с центром в  $\mathbf{y}^{\mathbf{0}}$ .

Рассмотрим интеграл

$$F(\mathbf{x}) = \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad (\mathbf{x} \in \Omega), \tag{1}$$

имеющий едипственную особенность в точке  $y^0$ . Таким образом,  $f(\mathbf{x}, \mathbf{y})$  неограничена по  $\mathbf{y}$  на D, однако ограничена и интегрируема на  $D \setminus \omega_{\delta}$  при любом  $\delta > 0$ . По определению интеграл (1) равномерно сходится относительно  $\mathbf{x} \in \Omega$ , если он сходится для любого  $\mathbf{x} \in \Omega$  и для любого  $\varepsilon > 0$  можно указать  $\delta_0 > 0$  такое, что при любом  $\delta$ , удовлетворяющем неравенствам  $0 < \delta < \delta_0$ , имеет место  $(D\omega_{\delta} = D \cap \omega_{\delta})$ 

$$\left| \int_{D\omega_{\delta}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \right| \leqslant \varepsilon \tag{2}$$

для любого  $\mathbf{x} \in \Omega$ . Здесь важно, что  $\delta_0$  (и  $\delta$ ) не зависит от  $\mathbf{x} \in \Omega$ . Введем для положительного  $\delta > 0$  интеграл

$$F_{\delta}(\mathbf{x}) = \int_{\widetilde{D} \setminus \omega_{\delta}} f(\mathbf{x}, \mathbf{y}) d\mathbf{y},$$

очевидно, не имеющий особенностей. Неравенство (2) можно переписать так:

$$|F(\mathbf{x}) - F_{\delta}(\mathbf{x})| = \left| \int_{\omega_{\delta}} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right| < \varepsilon_{\bullet}$$

и мы получим, что для любого  $\varepsilon > 0$  можно подобрать такое  $\delta_{\epsilon}$ , что для всех  $\delta$ , удовлетворяющих неравенствам  $0 < \delta < \delta_a$ , и любых  $\mathbf{x} \in \Omega$ 

$$|F(\mathbf{x}) - F_{\delta}(\mathbf{x})| < \varepsilon$$
.

Но это свойство, как мы знаем, выражает, что

$$\lim_{\delta \to 0} F_{\delta}(x) = F(\mathbf{x}) \quad \text{равномерно на} \quad \Omega \tag{3}$$

Очевидно, и наоборот — из (3) следует (2).

Таким образом, равенство (3) можно рассматривать как другое эквивалентное определение равномерной сходимости интеграла (1) на Ω.

Справедлива теорема.

Теорема 1. Если функция  $f(\mathbf{x}, \mathbf{y})$  непрерывна на  $\overline{\Omega} \times \overline{D}$ , за исключением точек  $(\mathbf{x}, \mathbf{y}^0)$ , и интеграл (1) равномерно сходится относительно  $\mathbf{x} \in \overline{\Omega}$ , то он есть непрерывная функция от  $\mathbf{x} \in \Omega$ .

Доказательство. Из условия теоремы следует, что функция  $f(\mathbf{x}, \mathbf{y})$  непрерывна в точках  $(\mathbf{x}, \mathbf{y})$ , принадлежащих замкнутому ограниченному множеству

$$\overline{\Omega} \times (\overline{D} \setminus \omega_{\delta}).$$
 (4)

где  $\overline{D} \backslash \omega_{\delta}$  к тому же измеримо.

Поэтому функции  $F_{\mathfrak{d}}(\mathbf{x})$  непрерывны на  $\overline{\Omega}$  (см. теорему 1 § 12.13). Kpome toro,  $F_{\delta}(\mathbf{x}) \to F(\mathbf{x})$  при  $\delta \to 0$  равномерно на  $\overline{\Omega}$ . Но тогда на основании теоремы 2 §  $1\hat{1}.7$  функция  $F(\mathbf{x})$  непрерывна

Правда, эта теорема была доказана для последовательности функций  $\{f_n\}$ , зависящих от натурального параметра n, но она, очевидно, верна и доказательство ее аналогично, если считать, что n непрерывно стремится к некоторому числу  $n_0$ .

Теорема 2. При условиях теоремы 1 и если Ω измеримо

(в  $R_m$ ), функцию  $F(\mathbf{x})$ :

$$F(\mathbf{x}) = \int_{\Omega} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \quad (\mathbf{x} \in \overline{\Omega})$$
 (5)

можно интегрировать по  $\Omega$  под знаком интеграла:

$$\int_{\Omega} F(\mathbf{x}) d\mathbf{x} = \int_{\Omega} d\mathbf{y} \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{x}.$$
 (6)

Доказательство. Из доказательства теоремы 1 мы знаем, что при условиях этой теоремы функции  $F_0(\mathbf{x})$  и  $F(\mathbf{x})$  непрерывны на  $\Omega$  и  $F_{\delta}(\mathbf{x}) \to F(\mathbf{x})$ ,  $\delta \to 0$  равномерно на  $\Omega$ . Это значит, что  $\eta_{\delta} = \max_{\mathbf{x} \in \Omega} |F_{\delta}(\mathbf{x}) - F(\mathbf{x})| \to 0, \quad \delta \to 0. \tag{7}$ 

Но тогда

$$\int_{\Omega} F_{\delta}(\mathbf{x}) d\mathbf{x} \to \int_{\Omega} F(\mathbf{x}) d\mathbf{x}, \quad \delta \to 0, \tag{8}$$

потому что

$$\left| \int_{\Omega} F_{\delta}(\mathbf{x}) \, d\mathbf{x} - \int_{\Omega} F(\mathbf{x}) \, d\mathbf{x} \right| \leq \int_{\Omega} \left| F_{\delta}(\mathbf{x}) - F(\mathbf{x}) \right| \, d\mathbf{x} \leq \left| \eta_{\delta} \right| \Omega \right| \to 0, \quad \delta \to 0. \quad (9)$$

Из (7) следует:

$$\int_{D \setminus \omega_{\delta}} d\mathbf{y} \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} = \int_{\Omega} d\mathbf{x} \int_{D \setminus \omega_{\delta}} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} =$$

$$= \int_{\Omega} F_{\delta}(\mathbf{x}) d\mathbf{x} \to \int_{\Omega} F(\mathbf{x}) d\mathbf{x} = \int_{\Omega} d\mathbf{x} \int_{D} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}, \quad \delta \to 0, \quad (10)$$

что доказывает равенство (6).

Первое равенство в цени (10) при любом  $\delta > 0$  представляет собой обычную перестановку интегралов по **x** и **y** для функции  $f(\mathbf{x}, \mathbf{y})$  непрерывной на замкнутом измеримом множестве  $\Omega \times (\overline{D} \setminus \omega_{\delta})$  (см. § 12.12).

Заметим, что интеграл по у в правой части (6) есть несобственный интеграл с единственной особой точкой  $\mathbf{y}^0 \subseteq \overline{\Omega}$ . Существование его доказано.

Теорема 3. Пусть G есть открытое измеримое множество пространства  $R_n$ ,  $\mathbf{y}^0 \in \overline{G}$  и [a, b] — отрезок изменения числовой переменной x. Пусть, далее, функция  $f(x, \mathbf{y})$  непрерывна и имеет непрерывную частную производную  $\frac{\partial f}{\partial x}$  всюду на множестве  $[a, b] \times \overline{G}$  ( $x \in [a, b]$ ,  $\mathbf{y} \in \overline{G}$ ), за исключением, быть может, точек вида  $(x, \mathbf{y}^0)$ , в окрестности которых  $f(x, \mathbf{y})$  вообще неограничена.

Тогда, если интеграл

$$F(x) = \int_{G} f(x, \mathbf{y}) d\mathbf{y} \quad (a \leqslant x \leqslant b)$$
 (11)

сходится и интеграл

$$F_{1}(x) = \int_{G} \frac{\partial}{\partial x} f(x, \mathbf{y}) d\mathbf{y}$$
 (12)

равномерно сходится относительно  $x \in [a, b]$ , то интеграл (11) равномерно сходится на [a, b] и

$$F'(x) = F_1(x), \tag{13}$$

$$\frac{\partial}{\partial x} \int_{G} f(x, \mathbf{y}) d\mathbf{y} = \int_{G} \frac{\partial}{\partial x} f(x, \mathbf{y}) d\mathbf{y}. \tag{14}$$

Доназательство этой теоремы основано на следующей теореме,

которая уже была доказана (см. § 11.8, теорема 3). Теорема 4. Пусть задана последовательность непрерывно дифференцируемых на отрезке [a, b] функций  $S_n(x)$   $(n=1, 2, \ldots)$ , сходящаяся по крайней мере в одной точке этого отрезка, и писть последовательность производных  $S_n'(x)$  равномерно на [a,b]сходится к некоторой функции  $\varphi(x)$ . Тогда последовательность  $\{S_n(x)\}\ cxo\partial u r c s$  во всех точках  $[a, b]\ u$  притом равномерно на [a, b] к некоторой непрерывно дифференцируемой функции S(x) $u[S'(x) = \varphi(x)]$ 

В этой формулировке на самом деле можно считать, что п стремится пепрерывно к некоторому числу  $n_0$  или пробегая последовательность чисел  $n_h$ .

Доказательство теоремы 3. Для  $\delta > 0$  положим

$$F_{\delta}(x) = \int_{G \setminus \omega_{\delta}} f(x, y) dy.$$

Тогда (см. § 13.12)

$$\frac{\partial}{\partial x} F_{\delta}(x) = \int_{G \setminus \omega_{\delta}} \frac{\partial}{\partial x} f(x, \mathbf{y}) d\mathbf{y} = F_{1\delta}(x),$$

потому что f и  $\frac{\partial f}{\partial x}$  пепрерывны на  $\overline{G} \setminus \omega_0$ .

По условию для некоторого x

$$F_{\delta}(x) \to F(x), \ \delta \to 0, \ x \in [a, b].$$
 (15)

Кроме того, в силу равномерной сходимости интеграла (12),

$$\lim_{\delta \to 0} \frac{\partial}{\partial x} F_{\delta}(x) = \lim_{\delta \to 0} F_{1\delta}(x) = F_{1}(x) \tag{16}$$

равномерно на [a, b].

Из (15) и (16) на основании теоремы 4 следует, что F(x)имеет на [a, b] производную, равную  $F_i(x)$ .

Во всех доказанных теоремах существенную роль играло свойство несобственного интеграла быть равномерно сходящимся отпосительно параметра. Если это свойство не имеет места, то интеграл называется неравномерно сходящимся относительно параметра. Для неравномерно сходящихся интегралов, вообще говоря, указанные три теоремы не верны.

Важным критерием равномерной сходимости интеграла является критерий Вейерштрасса. Его можно сформулировать в ви-

де следующей теоремы:

Теорема 5. Пусть интеграл (1) имеет особенность в точке  $\mathbf{y}^{0} \in \overline{D}$  das  $\mathbf{gcex} \ \mathbf{x} \in \Omega$ . Hycth, knome toto, cywectbyet heotpuuaтельная функция  $\phi(y)$  такая, что

$$|f(\mathbf{x}, \mathbf{y})| \leq \varphi(\mathbf{y}) \ \partial_{\mathcal{A}} \mathbf{x} \ \mathbf{scex} \ (\mathbf{x}, \mathbf{y}) \in \Omega \times \overline{D},$$
 (17)

и при этом несобственный интеграл

$$\int_{D} \varphi (\mathbf{y}) \, d\mathbf{y} < \infty \tag{18}$$

существует. Тогда интеграл (1) равномерно сходится относительно  $\mathbf{x} \in G$ .

Доказательство. Из (18) следует, что для любого  $\varepsilon > 0$  можно указать такое  $\delta_0 > 0$ , что

$$\int\limits_{D\omega_{\delta}}\phi\left(\mathbf{y}\right)d\mathbf{y}<\mathbf{\epsilon}\quad\left(0<\delta<\delta_{\mathbf{0}}\right),$$

где о<sub>в</sub> — шар с центром в у прадиуса в. Поэтому в силу (17)

$$\left|\int_{D\omega_{\delta}} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}\right| \leqslant \int_{D\omega_{\delta}} \varphi(\mathbf{y}) d\mathbf{y} < \varepsilon$$

для всех  $\mathbf{x} \in \overline{G}$ . Теорема доказана.

Пример 1. Интеграл

$$\psi(a) = \int_{0}^{1} x^{a-1} dx \quad (a > 0)$$
 (19)

существует для любых a>0. При a>0 он, если имеет, то единственную особую точку x=0. Точнее, при 0< a<1 точка x=0— особая, а при a>1 на отреже [0,1] подынтегральная функция непрерывна и интегралникаких особенностей не имеет. Но при исследовании остатка интеграла на равномерную сходимость можно не думать о том, является ли точка x=0 на самом деле особой или нет. Здесь важно только знать, что если существует у интеграла особая точка, то она есть x=0.

Остаток интеграла, соответствующий точке x = 0, равен

$$\left|\int\limits_0^\delta x^{a-1}dx\right| = \frac{\delta^a}{a}.$$

Для произвольного  $\varepsilon>0$  невозможно подобрать.  $\delta>0$  так, чтобы остаток был меньшим  $\varepsilon$  для всех a>0, потому что при любом фиксированном  $\delta \lim_{n \to \infty} (\delta^a/a) = \infty \quad (a>0)$ . Поэтому интеграл (19) сходится неравномерно

относительно a > 0. Очевидно также, что он неравномерно сходится относительно  $a \in (0, a_0)$ , где  $a_0$  — произвольное фиксированное положительное число.

Однако на полупрямой  $a_0 \le a < \infty$   $(a_0 > 0)$ , и тем более на конечном отрезке  $[a_0, a_1]$ , интеграл (19) сходится равномерно, что может быть доказано с помощью признака Вейерштрасса. В самом деле, если  $a_0 \le a$ , то на отрезке  $[0, \delta]$ , где  $0 < \delta < 1$ ,  $x^{\alpha-1} \le x^{\alpha} e^{-1}$ , а интеграл

$$\int_{0}^{\delta} x^{\sigma_{\theta}-1} dx < \infty$$

Функция  $\psi(a)$  непрерывна для всех a>0. В самом деле, зададим произвольное  $a_0>0$ , и пусть

 $0 < a_1 < a_0 < a_2$ 

Подынтегральная функция  $x^{a-1} = \phi(x, a)$  непрерывна на прямоугольнике  $\Lambda = \{0 \leqslant x \leqslant 1, a_1 \leqslant a \leqslant a_2\}$ , за исключением, быть может, точек с x = 0, интеграл (19) равномерно сходится относительно  $a \in [a_1, a_2]$ . Тогда на основании теоремы 1  $\psi(a)$  непрерывна на  $[a_1, a_2]$  и, в частности, в точке  $a = a_0$ .

Если а > 0, то справедлива формула

$$\psi'(a) = \int_{0}^{1} \frac{\partial}{\partial a} x^{a-1} dx = \int_{0}^{1} x^{a-1} \ln x \, dx, \tag{20}$$

Снова, если мы хотим ее проверить для  $a=a_0>0$ , подбираем числа  $a_1$ ,  $a_2$  такие, что  $0< a_1< a_0< a_2$ , и, чтобы применить теорему 3, убеждаемся в равномерной сходимости интеграла (20) относительно  $a\in [a_1,\ a_2]$ . Здесь удобно применить признак Вейерштрасса.

Так как  $\lim x^{\lambda} \ln x = 0$  ( $\lambda > 0$ ) и функция  $x^{\lambda} \ln x$  непрерывна на (0, 1],

то существует положительная константа C такая, что  $|x^{\lambda} \ln x| \leqslant C$  (0 < <  $x \leqslant$  1). Поэтому при 0 <  $\lambda < a_1$  на отрезне [0, 1]

$$\left| \, x^{a-1} \ln x \, \right| = \left| \, x^{a-\lambda-1} x^{\lambda} \ln x \, \right| \leqslant C x^{a-\lambda-1} \leqslant C x^{a_1-\lambda-1}, \quad a \in [a_1, \ a_2],$$

интеграл справа в (20) равномерно сходится, так как интеграл

$$\int_{0}^{1} Cx^{a_{1}-\lambda-1} dx < \infty$$

сходится. Если еще учесть, что функция  $\frac{\partial}{\partial a} x^{a-1} = x^{a-1} \ln x$  непрерывна на нрямоугольнике  $[0, 1] \times [a_1, a_2]$ , за исключением, быть может, точек (0, a), то в силу теоремы 3 равенство (20) верно.

Пример 2. Бэта-фупкция. Функция

$$B(a, b) = \int_{a}^{1} x^{a-1} (1-x)^{b-1} dx$$
 (21)

называется бэта-функцией. Интеграл (21), если имеет осооенности, то только в точках x=0 и x=1. Поэтому при изучении равномерной сходимости этого интеграла удобно разложить его на два интеграла:

$$B_1(a, b) = \int_0^{1/2} x^{a-1} (1-x)^{b-1} dx,$$

$$B_2(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx.$$

Интеграл  $B_1$ , если имеет особую точку, то при x=0. Он сходится при a>0 и любом b, потому что

$$\int\limits_{0}^{1/2} x^{a-1} \, (1-x)^{b-1} \, dx \leqslant M_b \int\limits_{0}^{1/2} x^{a-1} dx < \infty, \quad M_b = \max_{0 < x < \frac{1}{2}} (1-x)^{b-1},$$

и расходится при  $a \le 0$ , потому что

$$\int\limits_{0}^{1/2} x^{a-1} (1-x)^{b-1} \, dx \geqslant m_b \int\limits_{0}^{1/2} x^{a-1} dx = \infty, \quad m_b = \min_{1 \leqslant x \leqslant 1/2} (1-x)^{b-1} > 0.$$

Аналогично интеграл  $B_2(a, b)$  сходится при b > 0 и расходится при  $b \le 0$ . Поэтому бэта-функция имеет смысл только при a > 0 и b > 0.

Чтобы показать, что  $B_1(a, b)$  непрерывна (относительно (a, b)) в точке  $(a_0, b_0)$   $(a_0 > 0, b_0 > 0)$ , определим прямоугольник  $\Delta = \{a_1 \leqslant a \leqslant a_2; b_1 \leqslant b \leqslant b_2\}$   $(a_1, b_1 > 0)$ , строго внутри которого находится точка  $(a_0, b_0)$ . Остаток интеграла можно оценить следующим образом:

$$\int_{0}^{\delta} x^{a-1} (1-x)^{b-1} dx \leqslant M_{b_1} \int_{0}^{\delta} x^{a-1} dx = M_{b_1} \frac{\delta^a}{a} \leqslant M_{b_1} \frac{\delta^{a_1}}{a_1}.$$

Можно для любого  $\varepsilon > 0$  указать такое  $\delta_0 > 0$ , что для  $0 < \delta < \delta_0$ 

$$M_{b_1} \frac{\delta^{a_1}}{a_1} \leqslant \frac{M_{b_1} \delta_0^{a_1}}{a_1} < \varepsilon$$
,

т. е. интеграл, определяющий  $B_1(a, b)$ , равномерно сходится относительно  $(a, b) \in \Delta$ :

$$\int_{0}^{\delta} x^{a-1} (1-x)^{b-1} dx < \varepsilon$$

для любых  $(a, b) \in \Delta$  и  $0 < \delta < \delta_0$ , и так как под интегралом стоит непрерывная функция от (x, a, b), x > 0,  $(a, b) \in \Delta$ , то  $B_1$  непрерывна в точко  $(a_0, b_0)$ . Аналогично устанавливается непрерывность  $B_2(a, b)$ .

Имеет место

$$\frac{\partial}{\partial a} \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = \int_{0}^{1} x^{a-1} \ln x (1-x)^{b-1} dx \quad (0 < a, b),$$

так как оба интеграла, входящие в это равенство, сходятся, второй же интеграл, как нетрудно показать, равномерно сходится в достаточно малой окрестности точки a, и, кроме того, подынтегральная функция в правой части равенства непрерывна отпосительно (x, a), за исключением точек (0, a). Легко установить, рассуждая аналогично, что существует непрерывная на [a, b] (a, b > 0) частная производная

$$\frac{\partial^{h+l} B}{\partial a^h \partial b^l} = \int_0^1 x^{a-1} \ln^h x (1-x)^{b-1} \ln^l (1-x) dx$$

при любых k, l = 0, 1, ...

## § 13.15. Равномерно сходящийся интеграл для неограниченной области

Будем рассматривать интеграл

$$F(x) = \int_{D} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \qquad (x \in G)$$
 (1)

на неограниченной области D такой, что при любом  $\mathbf{x} \in G$  он имеет бесконечно удаленную точку в качестве единственной особой точки. Говорят, что интеграл (1) равномерно сходится относительно  $\mathbf{x} \in G$ , если он сходится для всех  $\mathbf{x} \in G$ , и для любого  $\varepsilon > 0$  можно указать не зависящее от  $\mathbf{x}$  достаточно большое  $R_0$  такое, что для любого R, удовлетворяющего неравенству  $R > R_0$ ,

$$\left|\int_{D\setminus\omega_R}f(\mathbf{x},\,\mathbf{y})\,d\mathbf{y}\right|<\varepsilon,$$

где  $\omega_R$  — шар раднуса R с центром в нулевой точке.

Если функция  $f(\mathbf{x}, \mathbf{y})$  непрерывна на  $\overline{G} \times D$  и интеграл (1) равномерно сходится относительно  $\mathbf{x} \in \overline{G}$ , то функция  $F(\mathbf{x})$  непрерывна на  $\overline{G}$ . Если, кроме того, G — измеримое множество, то имеет место равенство

$$\int_{G} F(\mathbf{x}) d\mathbf{x} = \int_{G} d\mathbf{x} \int_{D} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \int_{D} d\mathbf{y} \int_{G} f(\mathbf{x}, \mathbf{y}) d\mathbf{x}.$$
 (2)

Если теперь x есть числовая переменная, пробегающая отрезок [a, b], и f(x, y) непрерывна вместе со своей частной производной  $\frac{\partial f}{\partial x}$  на  $[a, b] \times D$ , интеграл (1) сходится, а интеграл

$$F_1(x) = \int_D \frac{\partial}{\partial x} f(x, y) dy$$

равномерно сходится относительно  $x \in [a, b]$ , то  $F'(x) = F_1(x)$  или

$$\frac{\partial}{\partial x} \int_{D} f(x, \mathbf{y}) d\mathbf{y} = \int_{D} \frac{\partial}{\partial x} f(x, \mathbf{y}) d\mathbf{y}.$$
 (3)

Наконец, если для нашей функции  $f(\mathbf{x}, \mathbf{y})$  выполняется неравенство  $|f(\mathbf{x}, \mathbf{y})| \leq \phi(\mathbf{y})(\mathbf{x} \in G)$  и существует несобственный интеграл  $\int\limits_{D} \phi(\mathbf{y}) d\mathbf{y}$ , то интеграл (1) сходится для любого  $\mathbf{x} \in G$  и притом равномерно (признак Вейерштрасса).

Указанные утверждения аналогичны соответствующим теоремам 1—4 предыдущего нараграфа. Они и доказываются совершенно аналогично. Вообще эти утверждения аналогичны соответствующим теоремам о непрерывности, интегрируемости и дифференцируемости равномерно сходящихся рядов функций. Их можно доказать единым образом, вводя более общие несобственные интегралы (Стилтьеса), содержащие в себе как частные случан, с одной стороны, рассматриваемые здесь интегралы, а с другой — бесконечные ряды.

Пример 1. Гамма-функция. Интеграл

$$\Gamma\left(a\right) = \int_{0}^{\infty} x^{a-1} e^{-x} dx \tag{4}$$

называется гамма-функцией или эйлеровым интегралом первого рода. Он имеет особую точку  $x=\infty$ , при 0 < a < 1 еще особую точку x=0. Поэтому при исследовании его свойств удобно разложить его на два интеграла:

$$\Gamma\left(a\right) = \int_{0}^{1} x^{a-1}e^{-x}dx + \int_{1}^{\infty} x^{a-1}e^{-x}dx = \varphi_{1}\left(a\right) + \varphi_{2}\left(a\right).$$

Первый интеграл равномерно сходится для всех  $a \geqslant a_0 > 0$ , каково бы ни было положительное число  $a_0$ . В самом деле,

$$x^{a-1}e^{-x} \leqslant x^{a_0-1} \cdot 1 = x^{a_0-1} \quad (0 \leqslant x \leqslant 1),$$

и так как интеграл

$$\int_{0}^{1} x^{a_0 - 1} dx < \infty,$$

то наше утверждение вытекает из критерия Вейерштрасса. Относительно всех a>0 первый интеграл сходится перавномерно, потому что при любом  $\delta<1$ 

$$\int_{0}^{\delta} x^{a-1}e^{-x}dx \geqslant m \int_{0}^{\delta} x^{a-1}dx = \frac{m\delta^{a}}{a} \to \infty \quad (a \to 0), \quad m = \min_{0 \leqslant x \leqslant 1} e^{-x},$$

и, таким образом, невозможно для любого  $\varepsilon > 0$  подобрать такое  $\delta$ , чтобы остаток первого интеграла был меньше  $\varepsilon$  для всех a > 0.

Второй интеграл, очевидно, сходится для любого действительного a. Если  $a_0$  — любое число, то для  $a\leqslant a_0$ 

$$x^{a-1}e^{-x} \leqslant x^{a_0-1}e^{-x} \quad (1 \leqslant x < \infty),$$

и так как

$$\int_{1}^{\infty} x^{a_0 - 1} e^{-x} dx < \infty,$$

то по критерию Вейерштрасса второй питеграл равномерно сходится для всех  $a\leqslant a_0$ . Однако он не сходится равномерно для всех a, потому что для N>1 и a>1

$$\int_{N}^{\infty} x^{a-1}e^{-x}dx \geqslant N^{a-1} \int_{N}^{\infty} e^{-x}dx = N^{a-1}e^{-N} \to \infty \quad (a \to \infty)$$

при любом фиксированном N.

Во всяком случае, доказано, что если  $a_0 > 0$ , то на отрезке  $[a_1, a_2]$   $(0 < a_1 < a_0 < a_2)$  изменения a оба интеграда  $\phi_1$  (a) и  $\phi_2(a)$  равномерно сходятся и в силу очевидных непрерывных свойств подынтегральной функции гамма-функция непрерывна в  $a_0$  (для любых  $a_0 > 0$ ).

Легко проверяется, что интеграл

$$\int_{0}^{\infty} \frac{\partial}{\partial a} x^{a-1} e^{-x} dx = \int_{0}^{\infty} x^{a-1} \ln x e^{-x} dx$$
 (5)

распадается на два интеграла (от 0 до 1 и от 1 до  $\infty$ ), равномерно сходящихся на любом отрезке ( $a_1$ ,  $a_2$ ) изменения a, где  $a_1 > 0$ , откуда в силу непрерывности при x > 0 подынтегрального выражения (5)

$$\Gamma'(a) = \int_{0}^{\infty} x^{a-1} \ln x e^{-x} dx.$$

Подобным образом доказывается, что

$$\Gamma^{(h)}(a) = \int_{0}^{\infty} x^{a-1} (\ln x)^{h} e^{-x} dx$$

и, таким образом,  $\Gamma(a)$  бесконечно дифференцируема (a>0). На самом деле это аналитическая функция от a.

Заметим, что при a > 1.

$$\Gamma(a) = \int_{0}^{\infty} x^{a-1} e^{-x} dx = \lim_{N \to \infty} \left\{ -x^{a-1} e^{-x} \Big|_{0}^{N} + (a-1) \int_{0}^{N} x^{a-2} e^{-x} dx \right\} =$$

$$= (a-1) \Gamma(a-1). \quad (6)$$

Поэтому при a = n натуральном

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n!\Gamma(1) = n!\int_{0}^{\infty} e^{-x}dx = n!,$$
 (7)

откуда видно, что гамма-функцию естественно рассматривать как обобщение факториала.

Пример 2. Интеграл

$$A(\lambda) = \int_{0}^{\infty} \frac{\sin \lambda x}{x} dx \quad (-\infty < \lambda < \infty)$$
 (8)

имеет особенности в бескопечно удаленных точках  $(x=\pm\infty)$  и сходится для любого указанного  $\lambda$ . Однако он сходится равномерно на множестве  $\lambda_0 \leqslant |\lambda| < \infty \ (\lambda_0 > 0)$  и неравномерно на отрезке  $[0, \, \lambda_0]$ . В самом деле, при  $\lambda > 0$  его остаточный член

$$\begin{split} R_N\left(\lambda\right) &= \int\limits_N^\infty \frac{\sin \lambda x}{x} \, dx = \int\limits_N^\infty \frac{\sin \lambda x}{\lambda x} \, d\left(\lambda x\right) = \int\limits_{N\lambda}^\infty \frac{\sin z}{z} \, dz = \\ &= \lim_{M \to \infty} \left\{ -\frac{\cos z}{z} \left| \int\limits_{N\lambda}^M -\int\limits_{N\lambda}^M \frac{\cos z}{z^2} \, dz \right\} = \frac{\cos N\lambda}{N\lambda} - \int\limits_{N\lambda}^\infty \frac{\cos z \, dz}{z^2}, \end{split}$$

откуда

$$|R_N(\lambda)| \le \frac{1}{N\lambda} + \int_{N\lambda}^{\infty} \frac{dz}{z^2} = \frac{1}{N\lambda} + \frac{1}{N\lambda} = \frac{2}{N\lambda}$$

и (для  $\lambda_0 \leqslant \lambda < \infty$ )

$$\left|\,R_{N}\left(\lambda\right)\,\right|\leqslant\frac{2}{N\lambda_{0}}\rightarrow0,\quad\lambda_{0}\rightarrow\infty,$$

т. с. для любого  $\varepsilon>0$  можно указать такос  $N_0$ , что  $|R_N(\lambda)|<\varepsilon$  для всех  $N>N_0$ , каково бы ни было  $\lambda\in[\lambda_0,\infty)$ . С другой стороны, не может быть неравенства

$$\left|\int\limits_{N\lambda}^{\infty}\frac{\sin z}{z}\ dz\right|<\varepsilon$$

при финсированном, пусть очень большом, N и для всех  $\lambda \in [0, \lambda_0]$ , где  $\varepsilon > 0$ — любое наперед заданное число. Ведь при финсированном N и  $\lambda \to 0$  левая часть этого перавенства стремится к (см. ниже (10)) интегралу

$$A=\int\limits_{0}^{\infty}\frac{\sin z}{z}\;dz>0.$$

Имеют место равеиства

$$\Lambda(\lambda) = \begin{cases} A, & \lambda > 0, \\ 0, & \lambda = 0, \\ -A, & \lambda < 0. \end{cases}$$

Чтобы убедиться в этом, при  $\lambda \neq 0$  надо сделать в интеграле (8) подстановку  $u = \lambda x$ .

Йнтеграл (8) равномерно сходится для  $\lambda \in [N, N']$ , где 0 < N < N', поэтому, учитывая, что под интегралом стоит непрерывная функция от  $(\lambda, x) \in [N, N'] \times [0, \infty)$ , получим

$$\int_{N}^{N'} d\lambda \int_{0}^{\infty} \frac{\sin \lambda x}{x} dx = \int_{0}^{\infty} dx \int_{N}^{N'} \frac{\sin \lambda x}{x} d\lambda = \int_{0}^{\infty} \frac{\cos Nx - \cos N'x}{x^{2}} dx. \tag{9}$$

Мы считаем вдесь, что функция  $\frac{\sin \lambda u}{u}$  равна  $\lambda$  при u=0, и тогда очевид-

но, что функция  $\frac{\sin \lambda x}{x} = \frac{\sin \lambda x}{\lambda x} \lambda$  от  $(\lambda, x)$  непрерывна в любой точко  $(\lambda, 0)$ , где  $\lambda \in [0, \infty)$ .

Равенство (9) верно и при N=0, хотя оно пока не доказано, потому что интеграл (8) сходится неравномерно на [0, N']. Но его можно получить переходом к пределу в (9) при  $N\to 0$ , что законно — ведь разность между значением при N=0 интеграла, стоящего справа в (9), и значением его для какого-либо N равна

$$\int_{0}^{\infty} \frac{1 - \cos Nx}{x^{2}} dx = 2 \int_{0}^{1} \frac{\sin^{2} \frac{N}{2} x}{x^{2}} dx + 2 \int_{1}^{\infty} \frac{\sin^{2} \frac{N}{2} x}{x^{2}} dx = \psi_{1}(N) + \psi_{2}(N).$$

При этом  $\lim_{N\to 0} \psi_1(N) = \psi_1(0) = 0$  в силу непрерывности функции  $x^{-2}\sin^2\frac{N}{2}x$  в точках  $(N,x)\in[0,1]\times[0,1]$  (теорема 1 § 12.13) и  $\lim_{N\to 0} \psi_2(N) = \psi_2(0) = 0$  в силу непрерывности этой функции в точках

 $(N, x) \in [0, 1] \times [1, \infty]$  и равномерной сходимости интеграла  $\int_{1}^{\infty}$  относительно  $N \in [0, 1]$  (см. § 13.15).

Если положить в (9) N=0, N'=1 и учесть, что слева в (9) интеграл по x равен A, то получим

$$A = \int_{0}^{\infty} \frac{1 - \cos x}{x^{2}} dx = \int_{0}^{\infty} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2} d\left(\frac{x}{2}\right) = \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} dx.$$
 (10)

Пример 3. Докажем равенство

$$I(s) = \int_{0}^{\infty} e^{-x^{2}} \cos sx \, dx = \frac{\sqrt{\pi}}{2} e^{-\frac{s^{2}}{4}} \quad (-\infty < s < \infty). \tag{11}$$

В самом деле,

$$I'(s) = -\int_{0}^{\infty} e^{-x^{2}} x \sin sx \, dx. \tag{12}$$

Дифференцирование под знаком интеграла здесь законно, потому что песобственные интегралы (11), (12) подчиняются признаку Вейерштрасса

$$\left| e^{-x^2} \cos sx \right| \leqslant e^{-x^2}, \qquad \int\limits_0^\infty e^{-x^2} dx < \infty,$$

$$\left| e^{-x^2} x \sin sx \right| \leqslant x e^{-x^2}, \quad \int\limits_0^\infty x e^{-x^2} dx < \infty,$$

кроме того, подыцтегральные функции в (11), (12) непрерывны по (s, x),  $s \in (-\infty, \infty), x \in [0, \infty)$ . Интегрируя (12) по частям, получим

$$I'(s) = \frac{1}{2} e^{-x^2} \sin sx \Big|_{0}^{\infty} - \frac{s}{2} \int_{0}^{\infty} e^{-x^2} \cos sx \, dx = -\frac{s}{2} I(s).$$

Здесь  $\Big|_0^\infty = \lim_{\epsilon \to 0} \Big( \cdot \Big|_\epsilon^{1/\epsilon} \Big)$ .

Мы получили для I=I(s) дифференциальное уравнение

$$\frac{dI}{ds} = -\frac{s}{2}I,$$

решив которое, приняв во внимание, что

$$I(0) = \int\limits_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

(см. § 13.14, пример 4), получим

$$I(s) = \frac{\sqrt{\pi}}{2} e^{-s^2/4}$$

т. е. (11).

Пример 4. Справедливо равенство

$$\int_{0}^{\infty} xe^{-x^{2}} \sin sx \, dx \approx \frac{\sqrt{\pi}}{4} se^{-\frac{s^{2}}{4}}$$

(указание: проинтегрировать по частям интеграл и воспользоваться равенством (11)).

Упражнения.

1. Проверить, что интеграл (Пуассона для верхней полуплоскости)

$$U(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \varphi(t) \frac{ydt}{(x-t)^2 + y^2},$$

где  $\varphi(t)$  — граничная интегрируемая на любом конечном отрезке функция, равномерно сходится вместе со своими частными производными на любом ограниченном замкнутом множестве точек (x,y), принадлежащем верхней полуплоскости (y>0!). Доказать, что U — гармоническая в верхней полуплоскости функция. Учесть, что  $y/(x^2+y^2)$  есть гармоническая функция для  $x^2+y^2>0$ .

2. Проверить, что интеграл (Пуассона для круга)

$$U(\rho, \theta) = \frac{1}{\pi} \int_{0}^{2\pi} P_{\rho}(t - \theta) \varphi(t) dt$$

(см. § 11.8, пример 3), где  $\phi(t)$  — периода  $2\pi$  интегрируемая на периоде функция, равномерно сходится на любом круге  $\rho < \rho_0$  ( $\rho_0 < 1$ ) вместе со своими частными производными (по  $\rho$  и  $\theta$ ).

#### § 13.16. Равномерно сходящийся интеграл с переменной особой точкой

В §§ 13.14, 13.15 мы рассматривали несобственный интеграл

$$F(x) = \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad (\mathbf{x} \in \Omega)$$
 (1)

с фиксированной особой точкой  $y^0$ , не изменяющейся при изменении x. В общем случае особая точка зависит от x ( $y^0 = \alpha(x)$ ). Например, это явление имеет место в случае объемного

потенциала

$$F(\mathbf{x}) = \int_{D}^{\infty} \frac{\mu(\mathbf{y}) d\mathbf{y}}{r^{\lambda}} \quad (\mathbf{x} \in R_n), \tag{2}$$

$$0 < \lambda < n, \quad r = |\mathbf{x} - \mathbf{y}| = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$
.

где функция  $\mu$  непрерывна на  $\overline{D}$  — замыкании измеримой области D. Здесь

$$\alpha(\mathbf{x}) = \mathbf{x} \text{ при } \mathbf{x} \in \overline{D},$$

а если  $\mathbf{x} \notin \overline{D}$ , то интеграл вовсе не имеет особенностей.

Вот еще пример — логарифмический потенциал, представляющий собой криволипейный интеграл

$$\Phi(\mathbf{x}) = \int_{C} \lambda(\xi) \ln \frac{1}{r} ds,$$

$$\mathbf{x} = (x_1, x_2),$$
(3)

где C — гладкий самопепересекающийся контур в плоскости  $x_1$ ,  $x_2$ ,  $\lambda(\xi)$  — непрерывная функция на C, s — длина дуги C и

$$r = \sqrt{(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2}.$$

Подобным примером может также служить потенциал простого слоя

$$\psi(\mathbf{x}) = \int_{\mathcal{S}} \int \frac{\lambda}{r} dS. \tag{4}$$

Интеграл (4) взят по гладкой поверхности S, принадлежащей трехмерному пространству точек  $\mathbf{x} = (x_1, x_2, x_3)$ . Обычно S есть граница некоторой ограниченной области,  $\lambda$  — непрерывная функция, задаппая на S, r — расстояние от точки  $\mathbf{x}$  до точки  $\mathbf{u} \in S$ , но которой производится интегрирование.

Ниже мы исследуем несобственный интеграл с переменной особой точкой следующего вида:

$$F(\mathbf{x}) = \int_{\mathbf{D}} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \, \alpha(\mathbf{x}, \mathbf{u}) \, d\mathbf{u},$$

$$\mathbf{x} = (x_1, \dots, x_n) \in \Omega.$$
(5)

где  $\Omega \subset R_n$  — некоторая область, D — измеримая область, принадлежащая другому, вообще m-мерному пространству  $(1 \le m \le n, D \subset R_m)$ ,  $\alpha(\mathbf{x}, \mathbf{u})$  — непрерывная функция от  $\mathbf{x} \in \Omega$ ,  $\mathbf{u} \in D$ , а  $\mathbf{y} = \mathbf{y}(\mathbf{u})$  — непрерывно дифференцируемое отображение  $\mathbf{u} \in D$  в  $\mathbf{y} \in R_n$ , описывающее кусок S m-мерного дифференцируемого многообразия в  $R_n$  (см. § 17.1). Наконец,  $K(\mathbf{z}) = K(z_1, \ldots, z_n)$  —

функция от  $\mathbf{z} \in R_n$ , непрерывная всюду, за исключением точки  $\mathbf{z} = \mathbf{0}$ , в окрестности которой K неограничена.

Интегралы (2), (3), (4) суть частные случаи интеграла (5).

По определению будем говорить, что интеграл (5) равномерно сходится на  $\Omega$ , если для любого  $\varepsilon > 0$  можно указать такое  $\delta > 0$ , что \*)

$$\int_{|\mathbf{x}-y(\mathbf{u})|<\delta} |K(\mathbf{x}-\mathbf{y}(\mathbf{u})) \alpha(x,\mathbf{u})| d\mathbf{u} < \varepsilon \text{ для всех } \mathbf{x} \in \Omega.$$
 (6)

Здесь интегрирование производится по всем  $\mathbf{u} \in D$ , для которых выполняется перавенство винзу. Копечно, может случиться, что точка  $\mathbf{x}$  находится настолько далеко от многообразия S, что множество указанных  $\mathbf{u}$  — пустое, и тогда интеграл  $\mathbf{s}$  (6) равен пулю.

Например, интеграл (2) равномерно сходится, потому что  $(|\mu(y)| \leq M, y \in \overline{D}; \text{ здесь } y = u, \mu(y) = \alpha(x, y), K(z) = |z|^{-\lambda})$ 

$$\int_{|\mathbf{x}-\mathbf{y}|<\delta} \frac{|\mu(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|^{\lambda}} \, d\mathbf{y} \leqslant M \int_{|\mathbf{x}-\mathbf{y}|<\delta} \frac{d\mathbf{y}}{|\mathbf{x}-\mathbf{y}|^{\lambda}} = M \int_{|\mathbf{y}|<\delta} \frac{d\mathbf{y}}{|\mathbf{y}|^{\lambda}} < \varepsilon, \quad (7)$$

если в при избранном є достаточно мало. Равномерную сходимость интегралов (3), (4) см. ниже.

Теорема 1. Если интеграл (5) с указанными там условиями сходится равномерно на  $\Omega$ , то он сходится и абсолютно и F — непрерывная функция от  $\mathbf{x}$  на  $\Omega$ .

Доказательство. Зададим  $\varepsilon > 0$  и подберем  $\delta > 0$  так, чтобы выполнялось неравенство

$$\int_{|\mathbf{x}-y(\mathbf{u})|<3\delta} |K(\mathbf{x}-\mathbf{y}(\mathbf{u}))\alpha| d\mathbf{u} < \varepsilon \quad (\mathbf{x} \in \Omega).$$
 (8)

Затем, чтобы доказать непрерывность F в  $\mathbf{x}^{\mathfrak{g}}$ , ноложим

$$F(\mathbf{x}) = F_1(\mathbf{x}) + F_2(\mathbf{x}),$$

где

$$F_{1}(\mathbf{x}) = \int_{|\mathbf{x}^{0} - y(\mathbf{u})| < 2\delta} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \alpha d\mathbf{u},$$

$$F_{2}(\mathbf{x}) = \int_{|\mathbf{x}^{0} - y(\mathbf{u})| \geqslant 2\delta} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \alpha d\mathbf{u}$$
(9)

(интегралы распространены па  $\mathbf{u} \in \overline{D}$ , для которых выполняется неравенство випзу).

На шаре  $\overline{V}$ , заданном неравенством  $|\mathbf{x}_2 - \mathbf{x}^0| \le \delta$  функция  $F_2$  непрерывна, потому что интеграл, определяющий  $F_2$ , берется по

<sup>\*)</sup> Интеграл (6) берется по открытому множеству и во всяком случае определен корректно в смысле Лебега (см. гл. 19).

вамкнутому измеримому множеству  $\mathcal E$  точек u, а подынтегральная функция от  $(\mathbf x, u) \in V \times \mathcal E$  непрерывна вместе с функцией  $K(\mathbf x - y(u))$ . Ведь

$$|\mathbf{x} - y(u)| \ge |\mathbf{x}^0 - y(u)| - |\mathbf{x} - \mathbf{x}^0| \ge 2\delta - \delta = \delta > 0.$$

Далее  $F_i$  удовлетворяет на V неравенству

$$|F_1(\mathbf{x})| < \varepsilon$$
.

Ведь если

$$|\mathbf{x} - \mathbf{x}^0| < \delta, \quad |\mathbf{x}^0 - y(u)| < 2\delta,$$

TO

$$|\mathbf{x} - y(u)| < 3\delta$$
.

По тогда F, согласно лемме 1 § 11.7, непрерывна на шаре  $|x-x_0|<\delta$ .

Интеграл (5) абсолютно сходится вместе с интегралом (6). Из теоремы 1 и сказанного об объемном потенциале (2) следует, что он есть непрерывная функция от  $\mathbf{x} \in R_n$ .

Теорема 2. Справедливо равенство

$$\frac{\partial}{\partial x_{j}} \int_{D} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \, \mu(\mathbf{u}) \, d\mathbf{u} = \int_{D} \frac{\partial}{\partial x_{j}} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \, \mu(\mathbf{u}) \, d\mathbf{u}, \quad (10)$$

 $z\partial e$   $\mu(\mathbf{u})$  и ядро  $K(\mathbf{x})$ , так же как продифференцированное ядро

$$K_1(\mathbf{x}) = \frac{\partial}{\partial x_i} K(\mathbf{x}),$$

удовлетворяют условиям, изложенным выше (в связи c (5)), a  $\mu(\mathbf{u})$  — функция, непрерывная на  $\overline{D}$ .

При m=1 предполагается, что ядро  $K(\mathbf{x})$  непрерывно также и при  $\mathbf{x}=0$ .

Доказательство этой теоремы основывается на следующей лемме:

Иемма 1. Пусть  $\psi(x)$ , F(x),  $F_{\delta}(x)(0 < \delta < \delta_0)$  — функции, заданные на интервале (a, b) и  $x_{\delta} \in (a, b)$ . При этом  $F_{\delta}(x)$  пепрерывно дифференцируемы,  $\psi(x)$  непрерывна и выполняются свойства

$$F_{\delta}(x) \to F(x), \quad \delta \to 0, \quad x \in (a, b),$$
 (11)

и для любого  $\varepsilon > 0$  найдется  $\delta_0 > 0$  такое, что

$$|F_{\delta}'(x) - \psi(x)| < \varepsilon$$
 (12)

для всех х, б, удовлетворяющих неравенствам

$$|x - x_0| < \delta_0, \quad \delta < \delta_0. \tag{13}$$

Тогда

$$F'(x_0) = \psi(x_0),$$
 (14)

иначе говоря,

$$\left(\left(\lim_{\delta\to 0}F_{\delta}\left(x\right)\right)_{x=x_{0}}^{\prime}=\lim_{\delta\to 0}F_{\delta}^{\prime}\left(x_{0}\right)_{\bullet}$$
(14')

Доказательство леммы 1. Так как  $\psi(x)$  непрерывна, то из (12) следует, что для любого  $\varepsilon > 0$  найдется  $\delta_0$  такое, что  $|F_0'(x) - \psi(x_0)| \le |F_0'(x) - \psi(x)| + |\psi(x) - \psi(x_0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$  для  $\delta$ , x, удовлетворяющих (13).

Это показывает, что

$$\lim_{\delta \to 0, \mathbf{x} \to \mathbf{x}_0} F_{\delta}'(\mathbf{x}) = \psi(\mathbf{x}_0). \tag{15}$$

Далее, вследствие непрерывной дифференцируемости  $F_{\mathfrak{d}}(x)$ , при любых указанных  $\mathfrak{d}$ 

$$F_{\delta}(x) = F_{\delta}(x_0) + (x - x_0) F_{\delta}'(x_0 + \theta(x - x_0))$$
 (0 < 0 < 1), и в силу (15)

$$\frac{F_{\delta}(x) - F_{\delta}(x_0)}{x - x_0} = F'_{\delta}(x_0 + \theta(x - x_0)) \rightarrow \psi(x_0),$$

$$x \rightarrow x_0, \quad \delta \rightarrow 0.$$

Таким образом, для любого  $\varepsilon > 0$  найдется  $\delta_0 > 0$  такое, что для x,  $\delta_1$  удовлетворяющих (13),

$$\left|\frac{F_{\delta}(x)-F_{\delta}(x_{0})}{x-x_{0}}-\psi(x_{0})\right|<\varepsilon_{\bullet}$$

Теперь для указанных x перейдем к пределу при  $\delta \to 0$ :

$$\left|\frac{F(x) - F(x_0)}{x - x_0} - \psi(x_0)\right| \leq \varepsilon,$$

$$|x - x_0| < \delta.$$

Этим мы показали (14).

Примечание. Свойство (12) естественно пазвать свойством локальной равномерной сходимости  $F'_{\delta}(x)$  к  $\psi(x)$  ( $\delta \to 0$ ) в точке  $x_0$ . Если заменить в условии леммы 1 это свойство более сильным — равномерной сходимостью  $F'_{\delta}(x)$  к  $\psi(x)$  на  $\Omega$ , то получаем уже известную нам теорему 4 § 13.14.

Доказательство теоремы 2. Докажем равенство (10)

для точки

$$x = x \in \Omega$$
.

Положим

$$F_{\delta}(x) = \int_{|\mathbf{x}^0 - \mathbf{y}(\mathbf{u})| \ge 2\delta} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \,\mu(\mathbf{u}) \,d\mathbf{u}, \tag{16}$$

$$\frac{\partial}{\partial x_{j}} F_{\delta}(\mathbf{x}) = \int_{|\mathbf{x}^{0} - \mathbf{y}(\mathbf{u})| \ge 2\delta} \frac{\partial}{\partial x_{j}} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \mu(\mathbf{u}) d\mathbf{u}. \tag{17}$$

Мы уже знаем, что для

$$|\mathbf{x} - \mathbf{x}^0| < \delta, \quad |\mathbf{x}^0 - \mathbf{y}(\mathbf{u})| \ge 2\delta$$

имеет место неравенство

$$|x^0-y(u)| \geqslant \delta,$$

показывающее, что подынтегральные функции в (16), (17) непрерывны по x, u. Ведь ядра K и  $\frac{\partial K}{\partial x_j} = K_1$  имеют особенность только в нулевой точке пространства  $R_n$ . Итак, функции  $F_{\delta}$  (x) и  $\frac{\partial}{\partial x_i} F_{\delta}$  (x) непрерывны для

$$|\mathbf{x} - \mathbf{x}^0| < \delta$$

и дифференцирование под знаком интеграла в (17) законно. Для любого **х** ∈ Ω существуют также предельные функции

$$\lim_{\delta \to 0} F_{\delta}(\mathbf{x}) = \int_{D} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \, \mu(\mathbf{u}) \, d\mathbf{u} = F(\mathbf{x}),$$

$$\lim_{\delta \to 0} \frac{\partial}{\partial x_{j}} F_{\delta}(\mathbf{x}) = \int_{D} \frac{\partial}{\partial x_{j}} K(\mathbf{x} - \mathbf{y}(\mathbf{u})) \, \mu(\mathbf{u}) \, d\mathbf{u} = \psi(\mathbf{x}).$$

Они непрерывны на основании теоремы 1. В силу условий, наложенных на  $K_1$ , для любого  $\varepsilon > 0$  найдется  $\delta_0 > 0$  такое, что

$$\left| \psi \left( \mathbf{x} \right) - \frac{\partial}{\partial x_{j}} F_{\delta} \left( \mathbf{x} \right) \right| = \left| \int_{\left| \mathbf{x}^{0} - \mathbf{y} \left( \mathbf{u} \right) \right| < 2\delta} \frac{\partial}{\partial x_{j}} K \left( \mathbf{x} - \mathbf{y} \left( \mathbf{u} \right) \right) \mu \left( \mathbf{u} \right) d\mathbf{u} \right| < \varepsilon$$

для х, б, удовлетворяющих (13).

Мы видим, что функции  $F_{\mathfrak{d}}(\mathbf{x})$ , рассматриваемые как функции от  $x_i$  при фиксированных

$$x_k = x_k^0$$
  $(k = 1, ..., j - 1, j + 1, ..., n),$ 

удовлетворяют условиям леммы 1, и потому

$$\frac{\partial F}{\partial x_j}(\mathbf{x}^0) = \psi(\mathbf{x}^0).$$

Мы доказали (10) для любого

$$\mathbf{x} = \mathbf{x}^0 \in \Omega$$
.

Интеграл справа в (10) есть функция, непрерывная от х на  $\overline{\Omega}$ , таким образом, равномерно непрерывная на  $\Omega$ . Но тогда доказанное для  $\mathbf{x} \in \Omega$  равенство (10) можно распространить и на остальные точки  $\mathbf{x}$ , если понимать частные производные в обобщенном смысле (см. § 7.11).

И р и м е р 1. При  $\lambda < n-1$  объемный потенциал (2) законно дифференцировать под знаком интеграла:

$$F'_{x_{j}}(x) = \int_{D} \mu(\mathbf{y}) \frac{\partial}{\partial x_{j}} \frac{1}{r^{\lambda}} d\mathbf{y} = -\lambda \int_{D} \mu(\mathbf{y}) \frac{x_{j} - y_{j}}{r^{\lambda + 2}} d\mathbf{y}.$$
 (18)

Здесь наряду с установленными выше фактами, из которых вытекало, что  $F(\mathbf{x})$  — непрерывная функция, следует учесть, что подынтегральная функция в (18) имеет вид (5)  $(K(\mathbf{x}-\mathbf{y}) = |\mathbf{x}-\mathbf{y}|^{-\lambda-2}, \ m=n, \ \mathbf{y}(\mathbf{u}) = \mathbf{y})$  со всеми свойствами, которые там отмечались, и интеграл (18) равномерно сходится, нотому что

$$\int_{|\mathbf{x}-\mathbf{y}|<\delta} \left| \mu \frac{\partial}{\partial x_j} r^{-\lambda} \right| d\mathbf{y} \leqslant M \int_{|\mathbf{x}-\mathbf{y}|<\delta} \frac{d\mathbf{y}}{r^{\lambda+1}} < \varepsilon$$

для достаточно малого б.

Пример 2. Логарифмический потенциал (3) есть непрерывная функция от  $\mathbf{x} = (x_1, x_2)$ . При  $\mathbf{x} \not\in C$  это следует из простейшей теоремы о непрерывности интеграла по параметру. Поэтому интересно доказать непрерывность  $\Phi(\mathbf{x})$  в точках  $\mathbf{x} \in C$ . Пусть  $\mathbf{x}^0 \in C$ , не парушая общности, можно считать, что  $\mathbf{x}^0 = (0, 0)$  — начало координат, и при этом в начале координат касательная к C совпадает с осью  $x_1$ . Интеграл (3) представим в виде суммы интегралов по  $C_1$  и  $C_2$ :

$$F(x) = \int_{C_1} \mu(\xi) \ln \frac{1}{r} ds + \int_{C_2} \mu(\xi) \ln \frac{1}{r} ds,$$

где  $C_1$  — малый кусок  $C_2$  содержащий в себе нулевую точку, а

$$C_2 = C - C_1$$
.

Ясно, что интеграл по  $C_2$  непрерывен в пулевой точке, так как вблизи нее подынтегральная функция не имеет особенностей. Будем считать, что дуга  $C_1$  настолько мала, что ее уравнение можно записать в явном виде:

$$x_2 = f(x_1) \quad (|\mathbf{x}| \leqslant a).$$

Интеграл

$$F_{1}(\mathbf{x}) = \int_{C_{1}} \mu(\mathbf{x}) \ln \frac{1}{r} ds = \int_{-a}^{a} \ln \frac{1}{\sqrt{(x_{1} - \xi_{1})^{2} + (x_{2} - f(\xi))^{2}}} \lambda(\xi_{1}) d\xi_{1}, \quad (19)$$

$$\lambda(\xi_{1}) = \mu(\xi_{1}, f(\xi_{1})) \sqrt{1 + f'^{2}(\xi_{1})},$$

очевидно, вида (5)  $(u=x_1,\ m=1,\ n=2)$ . Его равномерная сходимость относительно точек  $(x_1,\ x_2)$ , принадлежащих некоторому шару V с центром в нулевой точке вытекает из следующих оценок  $(M\geqslant |\lambda(\xi_1)|,\ |\xi_1|< a)$ :

$$\left| \begin{array}{c} \int \int \int \left| \lambda \ln \frac{1}{\sqrt{\left(x_{1} - \xi_{1}\right)^{2} + \left(x_{2} - f_{2}(\xi_{1})\right)^{2}}} d\xi_{1} \right| \leq \\ \leq M \left| \int \int \int \int \left| \ln \frac{1}{\left|x_{1} - \xi_{1}\right|} d\xi_{1} \right| = M \left| \int \int \int \int \left| \ln \frac{1}{\left|\xi_{1}\right|} d\xi_{1} \right| < \varepsilon, \end{array} \right|$$

где δ достаточно мало.

Пример 3. Непрерывность потенциала простого слоя (4) в точке  $\mathbf{x}^0 \in S$  может быть установлена следующим образом. Не нарушая общиости, считаем, что  $\mathbf{x}^0 = (0, 0, 0)$  есть нулевая точка и при этом плоскость  $\mathbf{x}_3 = 0$  — касательная в ней к S. Больше того, как выше, рассматриваем интеграл

$$\psi(\mathbf{x}) = \iint_{C_1} \frac{\lambda}{r} ds = \iint_{\sigma} \frac{\mu(\xi_1, \xi_2) d\xi_1 d\xi_2}{\sqrt{(x - \xi_1)^2 + (x_2 - \xi_2)^2 + (x_3 - f(\xi_1, \xi_2))^2}},$$

$$\mu = \lambda \sqrt{1 + \left(\frac{\partial f}{\partial \xi_1}\right)^2 + \left(\frac{\partial f}{\partial \xi_2}\right)^2},$$

где  $\xi_3 = f(\xi_1, \xi_2)$ , описывающая  $C_1$ ,— непрерывно дифференцируемая функция на некоторой области  $\sigma$  плоскости ( $\xi_1, \xi_2$ ). Это интеграл типа (5). Его равномерная сходимость следует из того, что соответствующий интеграл, распространенный на точки ( $\xi_1, \xi_2$ ), для которых выполияется неравенство

$$\sqrt{(x_1-\xi_1)^2+(x_2-\xi_2)^2+(x_3-f_3)^2}<\delta,$$

не превышает

$$\begin{split} M & \underbrace{\int \int \int \frac{d\xi_1 d\xi_2}{\sqrt{(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2}} - \\ & = M \underbrace{\int \int \int \frac{d\xi_1 d\xi_2}{\sqrt{\xi_1^2 + \xi_2^2}} < \varepsilon. \end{split}$$

## ЛИНЕЙНЫЕ НОРМИРОВАННЫЕ ПРОСТРАНСТВА. ОРТОГОНАЛЬНЫЕ СИСТЕМЫ

## $\S$ 14.1. Пространство C непрерывных функций

Перед чтением этого параграфа рекомендуем еще раз прочесть §§ 6.1, 6.2 и 6.3. К этому мы сделаем добавление о полноте пространства.

Пусть E есть линейное нормированное пространство и последовательность элементов  $\mathbf{x}_n \in E$ , сходится к элементу  $\mathbf{x} \in E$ . Тогда для любого  $\varepsilon > 0$  можно указать такое N > 0, что выполняется неравенство

$$\|\mathbf{x}_n - \mathbf{x}\| < \frac{\varepsilon}{2} (n > N).$$

Поэтому, если n, m > N, то

$$\|\mathbf{x}_n - \mathbf{x}_m\| = \|\mathbf{x}_n - \mathbf{x} + \mathbf{x} - \mathbf{x}_m\| \leq \|\mathbf{x}_n - \mathbf{x}\| + \|\mathbf{x} - \mathbf{x}_m\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

И мы доказали: если последовательность элементов  $\mathbf{x}_n \in E$  сходится к некоторому элементу  $\mathbf{x} \in E$ , то она удовлетворяет условию Коши: для любого  $\varepsilon > 0$  можно указать такое N, что выполняется неравенство  $\|\mathbf{x}_n - \mathbf{x}_m\| < \varepsilon$  (n, m > N).

Обратное утверждение, вообще говоря, неверно. Имеются примеры таких линейных нормированных пространств, что в них можно указать последовательности элементов  $\{x_n\}$ , удовлетворяющие условию Коши, но не сходящиеся к какому-либо элементу E. С такими пространствами в будущем мы познакомимся (см. § 19.7), а сейчас сделаем следующее определение.

По определению линейное нормированное пространство E называется *полным*, если любая принадлежащая E последовательность  $\{\mathbf{x}_n\}$ , удовлетворяющая условию Коши, сходится к некоторому элементу  $\mathbf{x} \in E$ .

Полное линейное нормированное пространство называют еще банаховым пространством \*).

Один частный пример банахова пространства нам хорошо известен. Это есть пространство  $R_1$  действительных чисел.

Пространство C. Пусть  $\Omega$  есть замкнутое ограниченное множество пространства  $R_n$ . Совокупность всех непрерывных на  $\Omega$ 

<sup>\*)</sup> С. Банах (1892—1945) — польский математик, внесший большой вклад в изучение нормированных пространств.

действительных (комплексных\*)) функций  $f=f(\mathbf{x})$  ( $\mathbf{x} \in \Omega$ ) обозначают символом  $C=C(\Omega)$ . При этом каждой функции  $f\in C$  приводят в соответствие число

$$||f||_C = \max_{\mathbf{x} \in \Omega} |f(\mathbf{x})| \tag{1}$$

- норму f в метрике (пространства) C.

Пространство C непрерывных (на  $\Omega$ ) функций есть линейное пормированное действительное (комплексное) пространство c нулевым элементом  $\theta = \theta(\mathbf{x}) \equiv 0$ .

В самом деле, C есть линейное действительное (комплексное) множество (см. § 6.1). Кроме того (см. § 6.3),

1)  $||f||_c \ge 0$  и из равенства  $||f||_c = 0$  следует, что f = 0;

2)  $\|\alpha f\|_c = \max_{\alpha} \|\alpha f(\mathbf{x})\| = \|\alpha\| \max_{\alpha} \|f(\mathbf{x})\| = \|\alpha\| \|f\|_c;$ 

3)  $\|f + \varphi\|_{c} = \max_{\Omega} |f(\mathbf{x}) + \varphi(\mathbf{x})| \leq \max_{\Omega} |f(\mathbf{x})| + \max_{\Omega} |\varphi(\mathbf{x})| = \|f\|_{c} + \|\varphi\|_{c}$ 

По определению (1) для функций f,  $f_1$ ,  $f_2$ , ... из C имеют место равенства

$$||f - f_h||_c = \max_{\mathbf{x} \in \Omega} |f(\mathbf{x}) - f_h(\mathbf{x})| \quad (k = 1, 2, ...).$$
 (2)

Если правая часть (2) стремится к нулю при  $k \to \infty$ , то это вначит (см. § 11.7), что последовательность функций  $\{f_k\}$  равномерно сходится к f на  $\Omega$ . Таким образом, сходимость последовательности функций в пространстве (метрике) C эквивалентна равномерной ее сходимости на  $\Omega$ .

Пусть теперь последовательность функций  $f_k \in C$  удовлетворяет (в метрике C) условию Коши, т. е. для любого  $\varepsilon > 0$  найдется такое N, что

$$\varepsilon > \|f_h - f_l\|_c = \max_{\Omega} |f_h(\mathbf{x}) - f_l(\mathbf{x})|$$

для всех k, l > N. Тогда, как было доказано в § 11.7, последовательность  $\{f_k\}$  равномерно, а следовательно, и по норме в C сходится к некоторой функции  $f \in C$ :

$$||f_h - f||_c = \max_{\Omega} |f_h(\mathbf{x}) - f(\mathbf{x})| \to 0, \quad k \to \infty.$$

Таким образом, из того, что последовательность функций  $f_{\mathbf{k}} \in C$  удовлетворяет условию Коши, следует, что существует функция  $f \in C$ , к которой эта последовательность сходится в метрике C,  $\tau$ , e.

$$\lim_{k \to \infty} f_k = f \quad \text{(в метрике } C).$$

<sup>\*)</sup> Комплексная непрерывная функция определяется равенством  $f(\mathbf{x}) = \varphi(\mathbf{x}) + i\psi(\mathbf{x})$ , где  $\varphi$  и  $\psi$  действительные непрерывные функции. Следовательно,  $\max_{\mathbf{x} \in \Omega} |f(\mathbf{x})| = \max_{\mathbf{x} \in \Omega} (\varphi^2(\mathbf{x}) + \psi^2(\mathbf{x}))^{1/2}$ .

Мы доказали, что C есть линейное нормированное полное пространство, т. е. банахово пространство.

# § 14.2. Пространства L', $L'_n$ , L и $l_n$

Пусть  $\Omega \subset R_n$  — открытое множество. Через  $L' = L'(\Omega)$  мы обозначим совокупность (пространство) функций f (действительных или комплексных), абсолютно интегрируемых на  $\Omega$  в римановом, вообще говоря, не собственном смысле \*). Порма  $f \in L'$ определяется как интеграл

$$||f||_{\mathbf{L}} = \int\limits_{\Omega} |f(x)| \, dx. \tag{1}$$

Если  $f = \varphi + i\psi$  — комплексная функция, то

$$\int_{\Omega} |f| dx = \int_{\Omega} \sqrt{\varphi^2 + \psi^2} dx.$$

Tem самым автоматически предполагается, что  $\Omega$  — измеримое (по Жордану) множество, если оно ограничено, а если не ограничено, то  $\Omega$  — локально измеримое множество, т. е. такое. что измеримы множества  $\omega \Omega$ , где  $\omega \subset R_n$  — произвольный шар,

Но можно еще рассматривать пространство  $L = L(\Omega)$  измеримых в лебеговом смысле на  $\Omega$  функций f, имеющих конечную норму (1), где интеграл понимается в смысле Лебега (см. гл. 19)\*\*).

Многие факты, которые мы будем получать для функций  $t \in L'$ , верны или верны с небольшими видоизменениями и для функций  $f \in L$ . В ряде случаев по этому поводу мы будем делать краткие замечания без доказательств со ссылкой на гл. 19.

Раз уж мы назвали интеграл (1) нормой, то пулевым элементом в \*\*\*) L'(L) придется считать любую функцию  $\theta = \theta(x)$ , для которой

$$\int_{\Omega} |\theta(\mathbf{x})| d\mathbf{x} = 0. \tag{2}$$

Функция  $\theta(x) = 0$  есть пример такой функции, но не единственный (см. инже теорему 1). В пространстве  $L'(\Omega)(L(\Omega))$ , не различаются функции  $f_1(x)$  и  $f_2(x)$ , отличающиеся на  $\theta(\mathbf{x})$ . Как функции они тождественно не равны на Ω, но они определяют один и тот же элемент пространства  $L'(\Omega)$   $(f_1 = f_2)$ .

<sup>\*)</sup> Если  $f \in L'$ , то интеграл  $\int f \, dx$  имсет конечное число особенностей (см. § 13.13), а  $\int\limits_{\Omega} |f| dx < \infty$ . \*\*) В этом случае  $\Omega$  вообще измеримо или локально измеримо по Ле-

бегу. \*\*\*)  $f \in L'(L)$  обозначает, что  $f \in L'$  или  $f \in L$ .

Покажем, что  $L'(\Omega)$  ( $L(\Omega)$ ) есть линейное множество и интеграл (1) удовлетворяет всем свойствам пормы. В самом деле,

1)  $||f||_{L} \ge 0$ , а из равенства  $||f||_{L} = 0$  следует, что f = 0;

2) если  $f \in L'(L)$  и  $\alpha$  — число, то и  $\alpha f \in L'(L)$  и выполняется равенство

$$\|\alpha f\|_{L} = \int_{\Omega} |\alpha f(\mathbf{x})| d\mathbf{x} = |\alpha| \int_{\Omega} |f(\mathbf{x})| d\mathbf{x} = |\alpha| \|f\|_{L};$$

3) если  $f, \varphi \in L'(L)$ , то и  $f + \varphi \in L'(L)$  и

$$||f + \varphi||_{L} = \int_{\Omega} |f(\mathbf{x}) + \varphi(\mathbf{x})| d\mathbf{x} \leq \int_{\Omega} |f(\mathbf{x})| d\mathbf{x} + \int_{\Omega} |\varphi(\mathbf{x})| d\mathbf{x} =$$

$$= ||f||_{L} + ||\varphi||_{L}.$$

Если  $f, f_1, f_2, \ldots \in L'(L)$ , то

$$||f - f_h||_L = \int_{\Omega} |f(\mathbf{x}) - f_h(\mathbf{x})| d\mathbf{x} \quad (k = 1, 2, ...).$$
 (3)

Сходимость  $f_h \to f$  в метрике L, таким образом, эквивалентна стремлению к нулю интеграла в правой части (3). В этом случае еще говорят, что  $f_h$  стремится к f в среднем на  $\Omega$  (см. § 6.3).

Однако пространство L' не полно. Полным является пространство  $L=L(\Omega)$  функций, интегрируемых (суммируемых) по Лебегу на  $\Omega$  (см. § 19.3, свойство 20 н § 19.7).

T сорема 1. Пусть  $\theta=\theta\left(\mathbf{x}\right)\in L'(\Omega)$ . Для того чтобы выполнялось равенство

$$\int_{\Omega} |\theta(\mathbf{x})| d\mathbf{x} = 0, \tag{4}$$

пеобходимо и достаточно, чтобы  $\theta(\mathbf{x})=0$  во всех точках множества  $\Omega'\subset\Omega$ ,

 $z\partial e \theta(\mathbf{x})$  непрерывна.

Доказательство. Допустим, что выполняется равенство (4) и существует точка  $\mathbf{x}^0 \in \Omega'$  непрерывности  $\theta$  такая, что  $|\theta(\mathbf{x}^0)| > 0$ . Существует тогда шар  $\omega \subset \Omega$  с центром в  $\mathbf{x}^0$ , на котором  $|\theta(\mathbf{x})| > \eta > 0$ , и тогда получилось бы противоречие с (4):

$$\int_{\Omega} |\theta(\mathbf{x})| d\mathbf{x} \geqslant \int_{\Omega} |\theta(\mathbf{x})| d\mathbf{x} \geqslant \eta |\omega| > 0.$$

Пусть теперь  $0 \in L'(\Omega)$  и  $\theta(\mathbf{x}) = 0$  для всех  $\mathbf{x} \in \Omega'$ .

Определим множество  $\Omega_{\epsilon}$ , полученное выкидыванием из  $\Omega$  конечного

числа шаров радиуса  $\varepsilon > 0$  с центром в особых точках интеграла  $\int\limits_{\Omega} \theta \left( x \right) dx$ 

и выкидыванием внешности нара раднуса  $1/\varepsilon$  с центром в нулевой точке. По теореме Лебега  $\Omega \setminus \Omega'$  имеет лебегову меру пуль, поэтому  $\Omega'$  плотно в  $\Omega$ , и нижний интеграл, а следовательно, и сам интеграл по  $\Omega_\varepsilon$  от  $|0(\mathbf{x})|$ , равен пулю. Поэтому

$$\int_{\Omega} |0(\mathbf{x})| d\mathbf{x} = \lim_{\epsilon \to 0} \int_{\Omega_{\epsilon}} |\theta(\mathbf{x})| d\mathbf{x} = 0.$$

В лебеговом случае теореме 1 соответствует следующее утверждение

(см. § 19.3 свойства 1 и 16):

 $\H{H}$ усть  $\theta = \theta(\mathbf{x}) \in L(\Omega)$ . Для того чтобы имело место равенство (4), где интеграл понимается в смысле Лебега, необходимо и достаточно чтобы функция  $\theta(\mathbf{x})$  была равна нулю почти всюду на  $\Omega$ .

Пространства  $l_p$  и  $L_p$ . Пусть число p удовлетворяет неравенствам  $1 \le p < \infty$ . По определению последовательность  $\mathbf{a} = \{a_k\}$  чисел (действительных или комплексных) принадлежит пространству  $l_p$ , если конечна норма

$$\|\mathbf{a}\|_{l_p} = \left(\sum_{1}^{\infty} |\mathbf{a}_h|^p\right)^{1/p} < \infty. \tag{5}$$

По определению также функция  $f(\mathbf{x})$  (действительная или комплексная), определенная на области  $\Omega \subset R_n$ , принадлежит пространству  $L_p'(\Omega) \left( L_1'(\Omega) = L'(\Omega) \right)$ , если интеграл от f на  $\Omega$  имеет конечное число особенностей и норма

$$\|f\|_{L_{p}(\Omega)} = \left(\int_{\Omega} |f(\mathbf{x})|^{p} d\mathbf{x}\right)^{1/p} < \infty \tag{6}$$

конечна. Рассматривают также пространство  $L_p(\Omega)$  измеримых по Лебегу на  $\Omega$  функций с конечным лебеговым интегралом (6) (см. гл. 19).

Пусть  $\varphi(u)$ ,  $\psi(v)$   $(u,v\geqslant 0)$  — непрерывные функции, равные нулю соответственно при u=0, v=0, строго возрастающие и взаимно обратные. Рассматривая графики этих функций в илоскости (u,v), легко убедиться в справедливости перавенства

$$ab \leqslant \Phi(a) + \Psi(b) \quad (a, b \geqslant 0),$$

$$\Phi(x) = \int_{0}^{x} \varphi(t) dt, \quad \Psi(x) = \int_{0}^{x} \psi(t) dt,$$

которое обращается в равенство, лишь если  $\phi(a) = b$ .

В случае, когда  $\phi$   $(u)=u^{\alpha},\ \psi$   $(v)=v^{1/\alpha}$   $\Big(\alpha>0,\ 1+\alpha=p,\ \frac{1}{p}+\frac{1}{q}=1\Big),$  получим

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q} \quad (a, b \geqslant 0),$$

откуда следует, что если

$$\mathbf{a} = \{a_h\} \in l_p, \quad \mathbf{b} = \{b_h\} \in l_q,$$

TO

$$\sum_{1}^{\infty} |a_{k}b_{k}| \leq \frac{1}{p} \sum_{1}^{\infty} |a_{k}|^{p} + \frac{1}{q} \sum_{1}^{\infty} |b_{k}|^{q}, \tag{7}$$

а также если  $f(\mathbf{x}) \in L_{p}^{\prime}\left(\Omega\right)\left(L_{p}\left(\Omega\right)\right), \ \phi\left(x\right) \in L_{q}^{\prime}\left(\Omega\right), \ \left(L_{q}\left(\Omega\right)\right), \ \text{то}$ 

$$\int_{\Omega} |f(\mathbf{x}) \varphi(\mathbf{x})| d\mathbf{x} \leqslant \frac{1}{p} \int_{\Omega} |f(\mathbf{x})|^{p} d\mathbf{x} + \frac{1}{q} \int_{\Omega} |\varphi(\mathbf{x})|^{q} d\mathbf{x}.$$
 (8)

Если применить (7) к последовательностям  $(\|\mathbf{a}\|_{l_p}, \|\mathbf{b}\|_{l_p} > 0)$ 

$$\frac{\mathbf{a}}{\parallel \mathbf{a} \parallel_{l_p}} = \left\{ \!\! \frac{a_k}{\parallel \mathbf{a} \parallel_{l_p}} \!\! \right\}, \quad \!\! \frac{\mathbf{b}}{\parallel \mathbf{b} \parallel_{l_q}} = \!\! \left\{ \!\! \frac{b_k}{\parallel \mathbf{b} \parallel_{l_q}} \!\! \right\},$$

то получим

$$\frac{1}{\|\mathbf{a}\|_{l_p}\|\mathbf{b}\|_{l_p}}\sum_{1}^{\infty}|a_hb_h| \leqslant \frac{1}{p} + \frac{1}{q} = 1$$

или

$$\sum_{1}^{\infty} |a_h b_h| \leq \left(\sum_{1}^{\infty} |a_h|^p\right)^{1/p} \left(\sum_{1}^{\infty} |b_h|^q\right)^{1/q}, \tag{9}$$

где можно, очевидно, теперь считать также, что один или оба из множителей справа равны нулю.

Аналогично применение (8) к функциям

$$\frac{f(\mathbf{x})}{\|f\|_{L_{\mathcal{D}}(\Omega)}}, \quad \frac{\varphi(\mathbf{x})}{\|\varphi\|_{L_{\mathcal{O}}(\Omega)}}$$

 $\left(\|f\|_{L_p(\Omega)},\|\phi\|_{L_q(\Omega)}>0
ight)$  приводит к неравенству

$$\frac{1}{\|f\|_{L_p(\Omega)}\|\,\phi\,\|_{L_q(\Omega)}}\,\int\limits_{\Omega}|\,f\phi\,|\,dx\leqslant 1$$

или неравенству

$$\int_{\Omega} |f\varphi| dx \leq \left(\int_{\Omega} |f|^p dx\right)^{1/p} \left(\int_{\Omega} |\varphi|^q dx\right)^{1/q}, \tag{10}$$

верному и если один из множителей справа или оба равны нулю.

Неравенства (9), (10) называются неравенствами  $\Gamma$ ёльдера\*). В случае p=2 первое из них называется неравенством Коши, а второе — неравенством Буняковского \*\*) (см. § 6.2, (7), (9)).

Если  $\mathbf{a}, \mathbf{b} \in l_p$ , то

$$\begin{split} &\sum_{1}^{\infty} |\; a_{k} + b_{k} \;|^{p} \leqslant \sum_{1}^{\infty} |\; a_{k} + b_{k} \;|^{p-1} \;|\; a_{k} \;|\; + \sum_{1}^{\infty} |\; a_{k} + b_{k} \;|^{p-1} \;|\; b_{k} \;| \leqslant \\ &\leqslant \left( \sum_{1}^{\infty} |\; a_{k} + b_{k} \;|^{p} \right)^{(p-1)/p} \left( \sum_{1}^{\infty} |\; a_{k} \;|^{p} \right)^{1/p} + \left( \sum_{1}^{\infty} |\; a_{k} + b_{k} \;|^{p} \right)^{(p-1)/p} \left( \sum_{1}^{\infty} |\; b_{k} \;|^{p} \right)^{1/p} \end{split},$$

где мы применили неравенство Гёльдера к каждому слагаемому второго члена цепи. Отсюда

$$\left(\sum_{1}^{\infty} |a_{k} + b_{k}|^{p}\right)^{1/p} \leq \left(\sum_{1}^{\infty} |a_{k}|^{p}\right)^{1/p} + \left(\sum_{1}^{\infty} |b_{k}|^{p}\right)^{1/p} \tag{11}$$

<sup>\*)</sup> О. Л. Гельдер (1859—1937) — немецкий математик.

<sup>\*\*)</sup> В. Я. Буняковский (1804—1889) — русский математик, академик.

Аналогично

$$\int_{\Omega} |f + \varphi|^{p} d\mathbf{x} \leqslant \int_{\Omega} |f + \varphi|^{p-1} |f| d\mathbf{x} + \int_{\Omega} |f + \varphi|^{p-1} |\varphi| d\mathbf{x} \leqslant$$

$$\leqslant \left( \int_{\Omega} |f + \varphi|^{p} d\mathbf{x} \right)^{(p-1)/p} \left[ \left( \int_{\Omega} |f|^{p} d\mathbf{x} \right)^{1/p} + \left( \int_{\Omega} |\varphi|^{p} d\mathbf{x} \right)^{1/p} \right]$$

или

$$\left(\int_{\Omega} |f| - |\varphi|^p d\mathbf{x}\right)^{1/p} \le \left(\int_{\Omega} |f|^p d\mathbf{x}\right)^{1/p} - \left(\int_{\Omega} |\varphi|^p d\mathbf{x}\right)^{1/p} \tag{42}$$

Неравенства (11), (12) называются перавенствами Минковского\*). Соотношения (7)—(42) выражают также утверждение: вместе с правыми частями перавенств конечны и левые. Из них следует, что  $t_p$ ,  $L_p'(L_p)$ — липейные комплексные или действительные нормированные пространства.

Выражения (5), (6) суть банаховы пормы (см. § 6.3), потому что опи

наряду с (11), (12) обладают свойствами

$$\|\lambda\mathbf{a}\|_{l_p} = \|\lambda\| \|\mathbf{a}\|_{l_p}, \quad \|\lambda f\|_{L_p} = \|\lambda\| \|f\|_{L_p},$$

где  $\lambda$  — произвольное число, и из равенств  $\|\mathbf{a}\|_{l_p} = \|f\|_{L_p} = 0$  следует, что  $\mathbf{a} = 0$   $(a_h = 0)$ , а  $f(\mathbf{x}) = 0$  в точках непрерывности (в лебеговой же теорин почти всюду).

Таким образом,  $l_p$  и  $L_p'(L_p)$ —пормированные пространства. Нулевой элемент в  $l_p$  есть последовательность пулей  $(a_k=0,\,k=1,\,2,\,\ldots)$ , нулевой элемент в  $L_p'$  есть функция  $\theta(\mathbf{x}) \in L_p'$ , равная пулю в ес точках непрерывности, нулевой же элемент в  $L_p$  есть функция, почти всюду в смысле лебеговой меры равная пулю.

Отметим, что если  $f \in L_p'(\Omega)$  ( $L_p(\Omega)$ ), где  $\Omega$  — ограниченное (измеримое) множество, то  $f \in L'(\Omega)$  ( $L(\Omega)$ ) и имеет место неравенство (см. (10) при  $\varphi = 1$ )

$$\int_{\Omega} |f(\mathbf{x})| d\mathbf{x} = \int_{\Omega} |f(\mathbf{x}) \cdot \mathbf{1}| d\mathbf{x} \le |\Omega|^{1/q} \left( \int_{\Omega} |f(\mathbf{x})|^p d\mathbf{x} \right)^{1/p}$$

$$\left( 1$$

Пространства  $l_p$ ,  $L_p'(L_p)$  ири p=2 обладают особыми свойствами — в них можно ввести скалярное произведение. С этой точки зрения они специально изучаются в § 44.3 и еще в § 44.6 (пример 1), где, в частности, доказывается, что  $l_2$  — полное пространство. Совершению аналогично можно доказать, что  $l_p$  при любом p есть тоже полное пространство.

# § 14.3. Пространство $L_2^{'}(L_2)$

Пусть G есть измеримое (ограниченное) множество и  $L_{2,\,\,r}(G)$  — совокунность всевозможных интегрируемых по Риману на G функций (комплексных или действительных). Очевидно,  $L_{2,\,\,r}(G)$ 

<sup>\*)</sup> Г. Минковский (4864—1909) — немецкий математик и физик.

есть линейное (комплексное или действительное) множество. Любым припадлежащим к  $L_{2,r}(G)$  функциям  $\varphi$ ,  $\psi$  можно привести в соответствие число

$$(\varphi, \psi) = (\varphi, \psi)_G = \int_G \varphi(\mathbf{x}) \,\overline{\psi}(\mathbf{x}) \,d\mathbf{x},\tag{1}$$

представляющее собой обычный риманов (собственный) интеграл. Опо удовлетворяет трем свойствам скалярного произведения (см. § 6.2). В самом деле, для  $\varphi$ ,  $\psi$ ,  $\chi \in L_{2,r}(G)$ 

1)  $\overline{(\varphi,\psi)}_G = \int \overline{\varphi} \psi \, d\mathbf{x} = (\psi,\varphi)_G$ ,

2)  $(\alpha \phi + \beta \psi, \chi) = \alpha (\phi, \chi)_{\sigma} + \beta (\psi, \chi)_{\sigma},$ 3)  $(\phi, \phi)_{\sigma} \ge 0$  и из равенства  $(\phi, \phi)_{\sigma} = 0$  следует, что  $\phi(\mathbf{x}) = 0$  $=\theta(x)$  (см. § 14.2 (2)), где  $\theta$  — интегрируемая по Риману функния, интеграл от квадрата модуля которой равен нулю. Но тогда, как было показано в § 6.2 для любых двух функций ф, ф ∈  $\in L_{2,r}(G)$  имеет место неравенство

$$\int_{G} |\varphi(\mathbf{x}) \overline{\psi}(\mathbf{x})| d\mathbf{x} \leq \left(\int_{G} |\varphi(\mathbf{x})|^{2} d\mathbf{x}\right)^{1/2} \left(\int_{G} |\psi(\mathbf{x})|^{2} d\mathbf{x}\right)^{1/2}.$$
 (2)

Пусть теперь  $\Omega$  есть открытое множество, может быть неограниченное, но такое, что пересечение его с любым шаром есть измеримое множество. Обозначим через  $L_2' = L_2'\left(\Omega\right)$  совокупность определенных на Ω комплексных или действительных функций f, интегралы от которых  $\int f d\mathbf{x}$ , если имеют, то конечное число особенностей, причем  $|f(\mathbf{x})|^2 \in L'(\Omega) = L'$  (см. § 14.2).

Зададим две произвольные функции  $\varphi, \psi \in L_2'(\Omega)$ . множество  $\Omega_{\varepsilon}$  ( $\varepsilon > 0$ ), которое получается из  $\Omega$  выкилыванием из него конечной системы шаров радиуса є с центрами в точках, где интегралы от  $\varphi$  и  $\psi$  по  $\Omega$  имеют особенности, и, если  $\Omega$  неограничепо, выкидыванием также шара  $|\mathbf{x}| \ge \varepsilon^{-1}$ . Если интегралы от  $\varphi$  и  $\psi$  вовсе не имеют особых точек, то считаем  $\Omega_{\epsilon} = \Omega$ .

Таким образом,  $\varphi$ ,  $\psi \in L_{2,r}(\Omega_{\varepsilon})$  при любом  $\varepsilon > 0$  и  $\int_{\Omega_{\alpha}} |\varphi(\mathbf{x}) \overline{\psi}(\mathbf{x})| d\mathbf{x} \leqslant \left(\int_{\Omega_{\alpha}} |\varphi(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2} \left(\int_{\Omega_{\alpha}} |\psi(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2} \leqslant$  $\leqslant \left(\int_{\Omega} |\varphi(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2} \left(\int_{\Omega} |\psi(\mathbf{x})|^2 d\mathbf{x}\right)^{1/3},$ 

и так как  $\varepsilon > 0$  произвольно, то существует интеграл \*)

$$\int_{\Omega} |\varphi(\mathbf{x}) \overline{\psi}(\mathbf{x})| d\mathbf{x} \leqslant \left(\int_{\Omega} |\varphi|^2 d\mathbf{x}\right)^{1/2} \left(\int_{\Omega} |\psi|^2 d\mathbf{x}\right)^{1/2}$$
(3)

<sup>\*)</sup> Это неравенство следует также из  $\S 14.2 \ (10)$  при p=2, но здесь опо доказано совершенно другим путем,

Мы доказали, что если  $\varphi$ ,  $\psi \in L_2'(\Omega)$ , то  $\varphi \overline{\psi} \in L'(\Omega)$  и выполняется, неравенство (3). Таким образом, для любых  $\varphi$ ,  $\psi \in L_2'(\Omega)$  имеет смысл интеграл (абсолютно сходящийся)

$$(\varphi, \psi) = \int_{\Omega} \varphi(\mathbf{x}) \, \overline{\psi}(\mathbf{x}) \, d\mathbf{x}, \tag{4}$$

понимаемый в римановом, вообще несобственном, смысле. Легко проверяется, что он удовлетворяет трем свойствам скалярного произведения, если считать, что нулевой элемент есть функция  $\theta=\theta\left(\mathbf{x}\right) \in L_{2}^{\prime}$ , для которой

$$\int_{\Omega} |\theta(\mathbf{x})|^2 d\mathbf{x} = 0$$

(см. предыдущий параграф).

Теперь можно, как это пояснено в §§ 6.2, 6.3, ввести для функций  $f \in L_2'$  норму

$$\|f\|_{L_2} = \left(\int\limits_{\Omega} |f|^2 \, d\mathbf{x}\right)^{1/2}$$

с которой  $L_2'$  становится нормированным пространством. Если последовательность функций  $f_k \in L_2'$  сходится по норме к функции  $f \in L_2'$ , то это значит, что

$$\|f - f_k\|_{L_2} = \left(\int_{\Omega} |f(\mathbf{x}) - f_k(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2} \to 0, \quad k \to \infty.$$

Говорят в этом случае, что последовательность  $\{f_{\mathbf{h}}\}$  сходится  $\mathbf{n}$  f на  $\Omega$  в смысле среднего квадратического.

Пространство  $L_2'$  (так же как L') не полно. Полным является пространство  $L_2 = L_2(\Omega)$  измеримых по Лебегу на  $\Omega$  функций с интегрируемым по Лебегу квадратом их модуля. Пространство  $L_2$  называют гильбертовым пространством в честь Гильберта (1862—1943), одного из крупнейших немецких математиков.

Конечно, пространство  $L_2$  более совершенно, чем  $L_2'$ , но оперирование с  $L_2$  требует знання интеграла Лебега. С другой стороны,  $L_2'$  охватывает достаточно широкий класс функций, часто только и нужных.

Заметим, что если функция  $f \in L_2'(\Omega)$  и  $\Omega$  ограничено, то  $f \in L'(\Omega)$  (см. § 14.2, (13)). Например, функция  $x^{-\alpha} \in L_2'(0,1) \subset L'(0,1)$ , если  $\alpha < 1/2$ . При выполнении неравенств  $1/2 \le \alpha < 1$  функция  $x^{-\alpha}$  не принадлежит к  $L_2(0,1)$ , но принадлежит к L'(0,1). Далее,  $x^{-\alpha} \in L_2'(1,\infty)$ , если  $\alpha > 1/2$ , но  $x^{-\alpha} \in L'(1,\infty)$ , только если  $\alpha > 1$ .

## § 14.4. Приближение финитными функциями

Носителем функции  $\phi(\mathbf{x})$  называется замыкание множества точек  $\mathbf{x}$ , где  $\phi(\mathbf{x}) \neq 0$ .

Функция  $\phi(\mathbf{x})$  называется финитной в открытом множестве  $\Omega \subset R_n$ , если она определена на  $R_n$  и имеет ограниченный носитель F, принадлежащий к  $\Omega(F \subset \Omega)$ . Ограниченный носитель F часто называют компактным носителем, подчеркивая этим названием, что из всякой последовательности точек  $\mathbf{x}^h \in F \subset R_n$  можно выделить подпоследовательность, сходящуюся к некоторой точке  $\mathbf{x}^o \in F$ .

Функцию  $\phi(\mathbf{x})$  мы будем называть *кусочно постоянной*, если существует конечная система не пересекающихся попарно прямоугольников (прямоугольных параллелепипедов с ребрами, параллельными осями координат), на каждом из которых  $\phi$  постоянна и, кроме того,  $\phi = 0$  вне этих прямоугольников. Эти прямоугольники  $\Delta$  могут быть замкнутыми, открытыми и полуоткрытыми (одна грань  $\Delta$  может принадлежать, а другая не принадлежать к  $\Delta$ ).

Очевидно, кусочно постоянная функция финитна в  $R_n$ . Справедлива

Теорема 1. Для всякой функции  $f \in L_p(\Omega)(L_p(\Omega))$  и всякого  $\varepsilon > 0$  найдется финитная в  $\Omega$  кусочно постоянная или непрерывная\*) функция  $\varphi$  такая, что

$$\int_{\Omega} |f(\mathbf{x}) - \varphi(\mathbf{x})|^p d\mathbf{x} < \varepsilon \ (1 \leqslant p < \infty). \tag{1}$$

Доказательство теоремы 1 мы поясним сначала на графиках в случае p=1 и когда функция f(x) задана на оси x.

На рис. 14.1, а изображена функция f, имеющая особенности в точках  $-\infty$ , 0,  $+\infty$ , которую мы будем считать принадлежащей  $L'(-\infty,\infty)$ . При достаточно малом  $\delta>0$  и большом N для функции  $\psi(x)$ , изображенной на том же рис. 14.1, а жирной линией, справедливо

$$\int_{-\infty}^{\infty} |f(x) - \psi(x)| dx \leqslant \frac{\varepsilon}{3}.$$

На  $(-N, -\delta)$ ,  $(\delta, N)$  функция  $f(x) = \psi(x)$  изображена непрерывной, но она может быть и разрывной, однако интегрируемой, для нее можно указать ступенчатую функцию  $\chi(x)$  с конечным числом ступенек такую, что

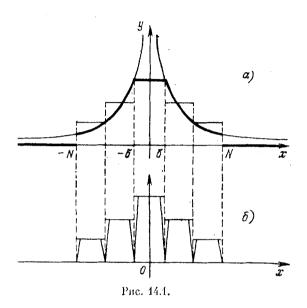
$$\int_{-\infty}^{\infty} |\psi(x) - \chi(x)| dx < \frac{\varepsilon}{3}.$$

<sup>\*)</sup> Непрерывная можно заменить на бесконечно дифференцируемая, см. свойство 4 § 18.2.

Остается приблизить  $\chi(x)$  непрерывной финитной функцией  $\phi(x)$ . Это сделано на рис. 14.1, б.

Формальное доказательство теоремы 1 следует из приводимых

пиже теорем 2, 3, 4 \*).



Теорема 2. Функцию  $f \in L'_p(\Omega)$ ,  $1 \le p < \infty$  (см. § 14.2, 14.3) можно приблизить в своей метрике  $L'_p(\Omega)$  (с любой степенью точности) ограниченной функцией  $\psi \in L'_p(\Omega)$  с компактным носителем.

Доказательство. Если  $\Omega$  — ограниченное множество и f ограничена на нем, то можно взять  $\psi = f$ .

В противном случае интеграл  $\int\limits_{\Omega}f\,d{\bf x}$  имеет особые точки. Пусть  $\Omega_n$  ( $\eta>0$ ) есть множество (ограниченное), получаемое из  $\Omega$  выкидыванием из него конечной системы шаров (замкнутых) раднуса  $\eta$  с центрами в особых точках интеграла  $\int\limits_{\Omega}f\,d{\bf x}$  и, если  $\Omega$  неограничено, выкидыванием еще

шара  $|\mathbf{x}| \geqslant \eta^{-1}$ . Положим

$$\psi\left(\mathbf{x}\right) = \begin{cases} f\left(\mathbf{x}\right) & \text{if } & \Omega_{\eta}, \\ 0 & \text{if } & \Omega - \Omega_{\eta}, \end{cases}$$

<sup>\*)</sup> Теорема 1 в случає L (следовательно, и L') вытекает из § 19.3 (свойство 18), а в случає  $L_p$  — из § 18.2 (свойство 4) и доказываемой ниже теоремы 4.

Очевидно,  $\psi$  есть ограниченная на  $\Omega$  функция с компактным посителем, принадлежащая к  $L_p'(\Omega)$  и, кроме того, при достаточно малом  $\eta$ 

$$\int_{\Omega} |f(\mathbf{x}) - \psi(\mathbf{x})|^p d\mathbf{x} = \int_{\Omega - \Omega_{\eta}} |f|^p d\mathbf{x} < \varepsilon.$$
 (2)

Теорема 3. Интегрируемую по Риману на открытом множестве  $\Omega$  функцию f можно приблизить с любой степенью точности в метрике  $L_p\left(\Omega\right)$  кусочно постоянной финитной в  $\Omega$  функцией  $\varphi$ , удовлетворяющей неравенству

$$| \varphi (\mathbf{x}) | \leqslant K = \sup_{\mathbf{x} \in \Omega} | f(\mathbf{x}) |,$$
 (3)

если ј действительна, и неравенству

$$|\varphi(\mathbf{x})| \leqslant 2K,\tag{4}$$

если і комплексна.

Доказательство. Пусть пока f— действительная функция. Так как она интегрируема на  $\Omega$ , то для произвольного  $\varepsilon>0$  можно указать прямоугольную h-сетку такую, что нижняя интегральная сумма f, распространенная на кубы  $\Delta_j$   $(j=1,\ldots,N)$  сетки, полностью принадлежащию к  $\Omega$ , отличается от интеграла  $\int f \, dx$  менее чем на  $\varepsilon$ :

$$\int_{\Omega} f d\mathbf{x} - \sum_{j=1}^{N} m_j |\Delta_j| < \frac{\varepsilon}{2}, \quad m_j = \inf_{\mathbf{x} \in \Delta_j} f(\mathbf{x}).$$

Определим кусочно постоянную функцию (очевидно, удовлетворяющую (3)):

$$\phi\left(\mathbf{x}
ight) = egin{cases} m_{j} & \text{fig. } & \Delta_{j}, \ 0 & \text{bhe} & \sum_{1}^{N} \Delta_{j} = G \end{cases}$$

(чтобы  $\phi$  была однозначной, можно определить ее на открытых или полуоткрытых  $\Delta$ ). Ясно, что  $\phi(\mathbf{x})$  имеет поситель, принадлежащий к G, и что выполняется неравенство (3). Учитывая, что  $\phi(x) \leqslant f(x)$  на G, получим

$$\int_{\Omega} |f(\mathbf{x}) - \varphi(\mathbf{x})| d\mathbf{x} = \int_{\Omega} (f(\mathbf{x}) - \varphi(\mathbf{x})) d\mathbf{x} + \int_{\Omega - G} |f| d\mathbf{x} =$$

$$= \left( \int_{\Omega} f d\mathbf{x} - \sum_{j} m_{j} |\Delta_{j}| \right) + \int_{\Omega - G} (|f| - f) d\mathbf{x} < \frac{\varepsilon}{2} - \frac{\varepsilon}{2},$$

если шаг h сетки взять достаточно малым, чтобы выполнялось неравенство

$$\int_{\Omega-G} (|f|-f) dx \leq 2 \int_{\Omega-G} |f| dx < \frac{\delta}{2}.$$

Это возможно, потому что f ограничена на  $\Omega$ , а мера  $|\Omega - G|$  может быть сделана как угодно малой при достаточно малом h.

Мы доказали теорему для действительной функции f и метрики  $L(\Omega)$ , докажем ее теперь в случае приближения действительной функции в  $L_p(\Omega)$  (1 ). Для этого, пользуясь уже доказанным для заданного

 $\varepsilon>0$ , подберем кусочно постояпную функцию  $\phi$  с носителем в  $\Omega$ , удовлетворяющую неравенству (3), так, чтобы

$$\left(\int_{\Omega} |f(\mathbf{x}) - \varphi(\mathbf{x})| d\mathbf{x}\right)^{1/p} < \frac{\varepsilon}{|\Omega|^{(p-1)/p} (2K)^{(p^2-1)/p}}.$$

Но тогда (см. § 14.2 (10))

$$\int_{\Omega} |f - \varphi|^{p} d\mathbf{x} = \int_{\Omega} |f - \varphi|^{1/p} |f - \varphi|^{(p^{2}-1)/p} d\mathbf{x} \leqslant$$

$$\leqslant \left( \int_{\Omega} |f - \varphi| d\mathbf{x} \right)^{1/p} \left( \int_{\Omega} |f - \varphi|^{p+1} d\mathbf{x} \right)^{(p-1)/p} \leqslant$$

$$\leqslant \frac{\varepsilon}{|\Omega|^{(p-1)/p} (2K)^{(p^{2}-1)/p}} \left( \int_{\Omega} (2K)^{p+1} d\mathbf{x} \right)^{(p-1)/p} = \varepsilon,$$

и теорема доказана и в случае  $L_{\wp}'\left(\Omega\right)$ .

Если  $f=f_1+if_2$  — комплексная функция, удовлетворяющая условиям теоремы, то ее действительная и мнимая компоненты  $f_1$  и  $f_2$  тоже удовлетворяют этим условиям. Но для последних уже доказано существование кусочно постоянных действительных функций  $\phi_{11}$ ,  $\phi_{2}$ , соответственно их приближающих (в метрике  $L_p(\Omega)$ ). Но тогда функция  $\phi = \phi_1 + i\phi_2$ , очевидье, кусочно постоянная и финитная в  $\Omega$ , приближает f, и выполняется неравенство (4).

T е o p е m а 4. K усочно постоянную функцию  $f(\mathbf{x})$  с носителем  $\Omega$  можно приблизить (с любой степенью точности) в метрике  $L_p(\Omega)$  непрерыв-

ной функции  $\varphi(\mathbf{x})$ , финитной в открытом ядре  $\Omega$ .

Заметим, что, согласно определению кусочно постоянной функции,  $\Omega$  есть сумма конечного числа прямоугольников со сторонами, параллельными осям координат.

Доказательство. Докажем сначала теорему для простейшей кусочно постоянной функции f(x), равной числу m на прямоугольнике  $\Delta$  и нулю вне его. Пусть  $\Delta' \subset \Delta'' \subset \Delta$ — прямоугольники, имеющие тот же центр, что и  $\Delta$ . Введем непрерывную функцию

$$\phi_{\Delta}(\mathbf{x}) = \begin{cases}
1 & \text{Ha} & \Delta', \\
0 & \text{BHe} & \Delta'',
\end{cases}$$
(5)

линейную на  $\Delta'' - \Delta'$  вдоль лучей, выходящих из центра  $\Delta$ .

Ясно, что  $\phi_{\Delta}(\mathbf{x})$  (а вместе с ней и  $\phi(\mathbf{x}) = m\phi_{\Delta}(\mathbf{x})$ ) есть непрерывная финитная в открытом ядре  $\Delta$  функция. Ясно также, что для всякого  $\epsilon > 0$  можно указать прямоугольник  $\Delta'$ , а вместе с ним и  $\Delta''$ , настолько близкий к  $\Delta$ , что

$$\left(\int\limits_{R_{n}}\left|f\left(\mathbf{x}\right)-\phi\left(\mathbf{x}\right)\right|^{p}d\mathbf{x}\right)^{1/p}<\varepsilon.$$

В общем случае кусочно постоянную функцию  $f(\mathbf{x})$ , равную соответственно числам  $m_1,\ldots,m_N$  на некоторых непересскающихся (открытых или полуоткрытых) прямоугольниках  $\Delta_1,\ldots,\Delta_N$ , можно представить в виде суммы

$$f(\mathbf{x}) = \sum_{1}^{N} f_{k}(\mathbf{x}), \quad f_{k}(\mathbf{x}) = m_{k} \chi_{\Delta_{k}}(\mathbf{x})$$

функций, где

$$\chi_{\Delta}(x) = \begin{cases} 1, & \mathbf{x} \in \Delta, \\ 0, & \mathbf{x} \notin \Delta. \end{cases}$$

По доказанному для любого  $\varepsilon > 0$  можно указать непрерывные финитные в открытых ядрах  $\Delta_k$  функции  $\phi_k$  (x) такие, что

$$\int\limits_{R_n} |f_k - \varphi_k|^p \, d\mathbf{x} < \frac{\varepsilon}{N}.$$

Но функция

$$\varphi\left(\mathbf{x}\right) = \sum_{1}^{N} \varphi_{k}\left(\mathbf{x}\right)$$

непрерывна и финитна в открытом ядре  $\sum_{1}^{N} \Delta_{h}$  и

$$\int\limits_{\Sigma\Delta_k} |f-\phi|^p \, d\mathbf{x} = \int\limits_{R_n} |f-\phi|^p \, d\mathbf{x} = \sum_{k=1}^N \int\limits_{R_n} |f_k-\phi_k|^p \, d\mathbf{x} < N \frac{\varepsilon}{N} = \varepsilon,$$

а это и требовалось доказать.

Это рассуждение одинаково как для действительных, так и для комилексных функций.

Итак, в частности, доказано, что всякую функцию  $f \in L_p'(\Omega)$  можно приблизить в соответствующей метрике кусочно постоянной функцией вида

$$\varphi\left(\mathbf{x}\right) = \begin{cases} m_{k} & \text{ha} & \Delta_{k} & (k = 1, \dots, N), \\ 0 & \text{bhe} & \sum_{k=1}^{N} \Delta_{k}, \end{cases} \tag{6}$$

где  $\Lambda_k$  — кубы, попарно не пересекающиеся между собой.

Каждая кусочно постоянная функция есть одна из семейства функций

$$\varphi(\mathbf{x}) = f(\mathbf{x}; \mathbf{x}', ..., \mathbf{x}^N, \eta_1, ..., \eta_N, m_1, ..., m_N),$$

пависящих от N векторных параметров  $x^1, \ldots, x^N$  и 2N числовых параметров  $\eta_1, \ldots, \eta_N; m_1, \ldots, m_N$ , где  $x^k$ — центры кубов,  $\eta_k$ — длины их сторон, а  $m_k$ — числа в равенстве (6). Легко видеть, что если уже имеется приближение

$$\left(\int\limits_{\Omega}|f(\mathbf{x})-\varphi_{1}(\mathbf{x})|^{p}d\mathbf{x}\right)^{1/p}=\varepsilon_{1}<\varepsilon$$

функции f при помощи некоторой функции  $\phi_1$  из указанного семейства, то всегда можно в последнем взять другую функцию  $\phi_1$  определяемую рациональными параметрами, так мало отличающимися от прежних, что

$$\left(\int_{\Omega} |\varphi_{1}(\mathbf{x}) - \varphi(\mathbf{x})|^{p} d\mathbf{x}\right)^{1/p} < \varepsilon - \varepsilon_{1}.$$

Но тогда для любой функции  $f \in L_p'(\Omega)$  и для любого  $\varepsilon > 0$  можно указать кусочно постоянную функцию  $\varphi$ , определяемую рациональными

параметрами и приближающую f в метрике  $L_{p}'(\Omega)$  с точностью до  $\epsilon$ :

$$\left(\int_{\Omega} |f(\mathbf{x}) - \varphi(\mathbf{x})|^p d\mathbf{x}\right)^{1/p} < \varepsilon.$$

Но все такие функции ф (определяемые рациональными параметрами) можно перепумеровать — их счетное множество.

Мы доказали принципиально важную теорему:

Теорема 5. В пространстве  $L_p'(\Omega)$  ( $L_p(\Omega)$ ) существует счетная последовательность (кусочно постоянных) функций  $\varphi_1(\mathbf{x})$ ,  $\varphi_2(\mathbf{x})$ ,  $\varphi_3(\mathbf{x})$ , ... таких, что какова бы ни была функция  $f(\mathbf{x}) \in L_p'(\Omega)$  и каково бы ни было  $\varepsilon > 0$ , найдется такой элемент  $\varphi_k(\mathbf{x})$  этой последовательности, что

$$\left(\int_{\Omega} |f - \varphi_h|^p dx\right)^{1/p} < \varepsilon. \tag{7}$$

Факт, который описывается в теореме 5, вполне аналогичен следующему факту: во множестве всех действительных (комплексных) чисел можно указать принадлежащее к нему всюду плотное (см. § 14.5) в нем счетное множество рациональных действительных (соответственно комплексных с рациональными компонентами) чисел.

Теорема 6. Пусть задана функция  $f \in L'_p(\Omega)$   $(L_p(\Omega))$ . Если  $\Omega$  — часть  $R_n = R$ , то будем считать, что f продолжена на R, полагая f = 0 вне  $\Omega$ . Тогда  $(1 \le p < \infty)$ 

$$\psi(t) = \left(\int_{R} |f(\mathbf{x} + \mathbf{t}) - f(\mathbf{x})|^{p} d\mathbf{x}\right)^{1/p} \to 0, \quad \mathbf{t} \to 0.$$
 (8)

Доказательство. Функция f, продолжающая, как указано в теореме, функцию  $f \in L_p'(\Omega)$  ( $L_p(\Omega)$ ), принадлежит, очевидно, к  $L_p' = L_p'(R)$  ( $L_p = L_p(R)$ ), и потому к ней применима теорема 1. Зададим  $\varepsilon > 0$  и подберем непрерывную финитную в  $R_p$  функцию ф такую, что

$$\left(\int_{R}\left|f\left(\mathbf{x}\right)-\varphi\left(\mathbf{x}\right)\right|^{p}d\mathbf{x}\right)^{1/p}<\frac{\varepsilon}{3}.$$

Поситель  $\phi$  — ограниченное множество  $F \subset g' \subset g$ , где g' и g — некоторые концентрические шары радиусов  $\phi' < \rho$ . Функция  $\phi$  непрерывна на замкнутом ограниченном шаре g и потому равномерно непрерывна на нем. Обозначим через  $(x', x'' \in g)$ 

$$\omega \left( \delta \right) = \sup_{\left| x' - x'' \right| < \delta} \left| \varphi \left( x' \right) - \varphi \left( x'' \right) \right|$$

модуль непрерывности ф на д.

Тогда получим (|g'| - мера g')

$$\left(\int_{R} |f(\mathbf{x}+\mathbf{t}) - f(\mathbf{x})|^{p} d\mathbf{x}\right)^{1/p} \leq \left(\int_{R} |f(\mathbf{x}+\mathbf{t}) - \varphi(\mathbf{x}+\mathbf{t})|^{p} d\mathbf{x}\right)^{1/p} + \left(\int_{g} |\varphi(\mathbf{x}+\mathbf{t}) - \varphi(\mathbf{x})|^{p} d\mathbf{x}\right)^{1/p} + \left(\int_{R} |\varphi(\mathbf{x} - f(\mathbf{x}))|^{p} d\mathbf{x}\right)^{1/p} < \left(\int_{g} |\varphi(\mathbf{x} - f(\mathbf{x}))|^{p} d\mathbf{x}\right)^{1/p} < \left(\int_{g}$$

если только в достаточно мало.

### § 14.5. Сведения из теории линейных множеств и линейных пормированных пространств

Пусть E — липейное множество (комплексное или действительное, см. § 6.1). Всякое множество  $E_1$ , принадлежащее E и солержащее вместе с элементом x элемент  $\alpha x$ , где  $\alpha$  — произвольное число (соответственно комплексное, действительное), и вместе с элементами x, y их сумму x+y, очевидно, есть в свою очередь линейное множество.

Конечная система элементов  $\mathbf{x}_1, \dots, \mathbf{x}_n \in E$  называется линейпо независимой, если из равенства

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = 0$$

следует, что  $\alpha_i = 0$  (i = 1, ..., n). В противном случае эта система называется линейно зависимой.

Линейное множество  $E^\prime$  пазывается конечномерным и при том п-мерным, если в нем имеется система из п линейно независимых элементов  $x_1, \ldots, x_n$ , а всякая система на n+1 элементов линейно зависима. Легко видеть, что в этом случае любой элемент  $\mathbf{x} \in E'$  единственным образом выражается в виде суммы

$$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{x}_k,\tag{1}$$

где  $\alpha_k$   $(k=1,\ldots,n)$  — некоторые числа (комплексиые, действительные).

Можно показать, что и, наоборот, если система элементов  ${\bf x}_1, \ldots, {\bf x}_n$  линейно независима, то линейное множество E' элементов вида (1) n-мерно. Для этого достаточно установить, что вся-кие n+1 элементов E' образуют линейно зависимую систему.

Система функций

1, 
$$x$$
,  $x^2$ , ...,  $x^{n-1}$   $(a \le x \le b)$  (2)

линейно независима в пространстве C(a, b), потому что нулевым элементом в C(a, b) является функция, тождественио равная нулю на [a, b], а из равенства

$$\sum_{h=0}^{n-1} \alpha_h x^h \equiv 0 \quad (a \leqslant x \leqslant b) \tag{3}$$

следует, что  $\alpha_0 = \alpha_1 = \ldots = \alpha_{n-1} = 0$ .

В пространствах  $L_p^{'}(a,b)$  система (2) также линейно независима, потому что для того, чтобы сумма  $\sum_{0}^{n-1} \alpha_n x^n$  была нулевым элементом, необходимо и достаточно выполнение равенства

$$\int_{a}^{b} \left| \sum_{k=0}^{n-1} \alpha_{k} x^{k} \right|^{p} dx = 0,$$

из которого, вследствие непрерывности (см. теорему 1, § 14.2) подынтегральной функции, следует (3) и потому равенство нулю всех  $\alpha_i$  (i = 0, 1, ..., n-1).

Поэтому совокупность всех многочленов  $P_{n-1}(x)$  ( $a \le x \le b$ ) данной степени\*) n-1 есть линейное n-мерное множество в C(a,b) и  $L_n'(a,b)$ .

Линейное множество E называется бесконечномерным, если в нем можно найти линейно независимую систему  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  элементов, как бы ни было велико n. Последовательность элементов

$$\mathbf{x}_1, \ \mathbf{x}_2, \ \mathbf{x}_3, \ \dots \tag{4}$$

называется линейно независимой, если любая ее подсистема, состоящая из конечного числа элементов, линейно независима. Такую (бесконечную) последовательность мы будем называть еще счетной линейно независимой системой элементов.

В бесконечномерном линейном множестве E существуют счетные линейно независимые системы элементов. В самом деле, любой элемент  $x_1 \neq 0$  образует линейно независимую систему, состоящую из одного элемента. Его будем считать первым элементом последовательности (4), которую мы построим по индукции. Допустим, что в E уже обнаружена линейно независимая система  $x_1, \ldots, x_n$ . (5)

Вследствие бесконечномерности E существует в E элемент  $\mathbf{x}_{n+1}$ , образующий вместе с элементами (5) линейно независимую систему, так как в противном случае любой элемент  $\mathbf{x} \in E$  мог бы быть

представлен в виде  $\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{x}_k$ , где  $\alpha_k$  — числа, и множество эле-

ментов вида  $\sum_{1}^{n} \alpha_{h} \mathbf{x}_{h}$  содержало бы только n линейно независимых элементов.

<sup>\*)</sup> Точнее, степени не выше n-1.

Продолжая этот процесс неограниченно, получим последовательность (4), очевидно, линейно независимую. Надо учесть, что если выхватить из последовательности (4) любые п элементов  $\mathbf{x}_{k_1}, \ldots, \mathbf{x}_{k_n}$   $(k_1 < k_2 < \ldots < k_n)$ , то они образуют линейно независимую систему; это следует из независимости более широкой системы  $X_1, X_2, \ldots, X_{k_n}$ .

Последовательность функций 1, x,  $x^2$ , ... может служить примером счетной линейно независимой системы в C(a, b) и  $L'_n(a, b)$ .

Пусть теперь E есть липейное нормированное пространство. Множество  $G \subseteq E$  называется плотным в  $\hat{E}$ , если для любого элемента  $\mathbf{x} \in E$  и любого положительного  $\varepsilon > 0$  найдется в G элемент у. для которого

$$\|\mathbf{x} - \mathbf{y}\| < \epsilon$$
.

В силу этого определения на основании теоремы 1 § 14.4 множество непрерывных (даже бесконечно дифференцируемых) финитных в  $\Omega$  функций плотно в  $L_p'(\Omega)$  (и в  $L_p(\Omega)$ ), также как плотно в этих пространствах множество кусочно постоянных функций, имеющих носитель в  $\Omega$ .

Вот еще пример. Функцию  $\varphi$ , заданную на отрезке [a, b], называется полигональной, если она непрерывна на этом отрезке  $(\phi \in C(a, b))$  и существует такое разбиение последнего, что на каждом его частичном отрезке ф - линейная функция. Для любой функции  $f \in C(a, b)$  в силу ее равномерной непрерывности для любого  $\varepsilon > 0$  можно указать такую полигональную функцию  $\varphi(x)$ , q To

$$||f-\varphi||_{C(a,b)}=\max_{x\in[a,b]}|f(x)-\varphi(x)|<\varepsilon.$$

Следовательно, полигональные функции, определенные на [a, b], образуют плотное в C(a, b) множество.

Пространство Е называется сепарабельным или счетномерным, если оно бесконечномерно и существует счетное плотное в нем множество. Пространство C(a, b) сепарабельно (см. ниже упражнения).

В силу теоремы 5 § 14.4 (бесконечномерные) пространства  $L_{p}^{'}(\Omega)$   $(L_{p'}(\Omega))$  сепарабельны, потому что они содержат в себе счетное плотное в них множество кусочно постоянных функций (см. ниже упражнение 5).

Множество  $M \subseteq E$  называется полным в E, если совокупность всевозможных линейных комбинаций вида  $\sum \alpha_k \mathbf{x}_k$ , где  $\alpha_k$  – числа, а  $x_k$  — элементы M, образуют множество, плотное в E.

Теорема 1. Если в Е имеется счетная полная в Е линейно независимая система элементов  $x_1, x_2, x_3, \ldots$ , то E сепарабельно. В самом деле, E бесконечномерно, потому что в E имеется линейно независимая система элементов  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ , состоящая из n элементов, каково бы ин было натуральное n.

Далее, множество M' сумм  $\sum_{i} r_h \mathbf{x}_h$ , где n — произвольное натуральное число, а  $r_h$  ( $k=1,\ldots,n$ ) — произвольные рациональные числа, счетно (эти суммы можно перенумеровать). С другой стороны, для любого элемента  $\mathbf{x} \in E$  и всякого  $\epsilon > 0$  в силу плот-

ности M в E можно указать такую сумму  $\sum_{k=1}^{n} \alpha_k x_k$ , что

$$\left\|\mathbf{x} - \sum_{1}^{n} \alpha_{h} x_{h}\right\| < \frac{\epsilon}{2},$$

а теперь можно взять рациональные числа  $r_k$ , настолько близкие к соответствующим  $\alpha_k$ , что

$$\left\| \sum_{1}^{n} \alpha_{h} \mathbf{x}_{h} - \sum_{1}^{n} r_{h} \mathbf{x}_{h} \right\| \leq \sum_{1}^{n} \|\alpha_{h} - r_{h}\| \|\mathbf{x}_{h}\| \leq K \sum_{1}^{n} \|\alpha_{h} - r_{h}\| < \frac{\varepsilon}{2},$$

$$K = \max_{1 \leq h \leq n} \|\mathbf{x}_{h}\|,$$

Ноэтому

$$\left\|\mathbf{x} - \sum_{1}^{n} r_{h} \mathbf{x}_{h}\right\| \leq \left\|\mathbf{x} - \sum_{1}^{n} \alpha_{h} \mathbf{x}_{h}\right\| + \left\|\sum_{1}^{n} \alpha_{h} \mathbf{x}_{h} - \sum_{1}^{n} r_{h} \mathbf{x}_{h}\right\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

и нам удалось любой элемент  $\mathbf{x} \in E$  приблизить (аппроксимировать) некоторым элементом из счетного множества M' с любой наперед заданной точностью. Это доказывает сепарабельность E.

Верна также обратная

Теорема 2. Если пространство Е сепарабельно, то в нем имеется счетная линейно независимая система элементов, полная в Е.

В самом деле, если E сепарабельно, то имеется счетная последовательность, плотная в нем. Тем более можно считать, что эта носледовательность полная в E.

Но из нолной счетной системы элементов  $\mathbf{x}_1, \mathbf{x}_2, \dots$  всегда можно выделить (вообще говоря, не единственную) линейно независимую последовательность элементов, образующих в свою очередь полную систему.

Папример, подпоследовательность

$$\mathbf{x}_{n_1}, \ \mathbf{x}_{n_2}, \ \mathbf{x}_{n_3}, \dots \tag{6}$$

удовлетворяет этому свойству, если индексы  $n_1, n_2, \ldots$  определить следующим образом. Пусть  $n_1$  есть наименьший индекс  $n_2$  для которого  $\mathbf{x}_n \neq \mathbf{0}$ . Элемент  $\mathbf{x}_{n_1}$  образует линейно независимую

систему, состоящую из одного элемента. Далее, если индексы  $n_1, \ldots, n_k$  определены, то  $n_{k+1}$  определяется как наименьшее натуральное n, для которого элементы  $\mathbf{x}_{n_1}, \ldots, \mathbf{x}_{n_k}, \mathbf{x}_{n_{k+1}}$  образуют линейно независимую систему. Важно, что при каждом k существует такое  $n_{k+1}$ , т. е. конструируемая линейно независимая система (6) бесконечна (счетна).

В самом деле, пусть при некотором k не существует  $n_{k+1}$ . Положим  $\mathbf{z}_1 = \mathbf{x}_{n_1}, \ldots, \mathbf{z}_k = \mathbf{x}_{n_k}$ . Тогда система

$$\mathbf{z}_1, \ldots, \mathbf{z}_h,$$
 (7)

где к фиксировано, будет обладать свойствами:

1) система (7) линейно независима;

2) для любого элемента  $\mathbf{x} \in E$  и любого  $\varepsilon > 0$  найдутся такие числа  $\alpha_1, \ldots, \alpha_k$ , что

$$\left\|\mathbf{x} - \sum_{i=1}^{k} \alpha_{i} \mathbf{z}_{i}\right\| < \varepsilon. \tag{8}$$

Справедлива

Лемма 1. Из свойств 1) и 2) следует, что каждому элементу  $\mathbf{x} \in E$  соответствует система чисел  $\beta_1, \ldots, \beta_k$  (единственная), для которой

$$\mathbf{x} = \sum_{1}^{k} \beta_{j} \mathbf{z}_{j}.$$

Но тогда E есть n-мерное пространство, и мы пришли в противоречие с предположением, что E счетномерно.

Лемма 1 особенно просто доказывается в случае, если E есть линейное пространство со скалярным произведением (см. теорему 3, § 14.7). В дальнейшем нам понадобится именно этот случай.

Доказательство леммы 1 базируется на следующей самой по себе интереспой лемме.

$$\lambda \sum_{j=1}^{n} |\alpha_{j}| \leq \|\sum \alpha_{j} \mathbf{y}_{j}\| \tag{9}$$

для любой системы чисел  $\alpha_i$ , ...,  $\alpha_n$  ( $\lambda$  вообще зависит от n). Доказательство. Введем функцию

$$\Phi\left(\boldsymbol{\alpha}\right) = \Phi\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}\right) = \left\|\sum_{1}^{n} \boldsymbol{\alpha}_{j} \mathbf{y}_{j}\right\|$$

от n переменных, определенную на всем n-мерном пространстве  $R_n$ . Опа непрерывна:

$$\begin{split} \|\Phi\left(\alpha\right) - \Phi\left(\alpha^{0}\right)\| &= \left\| \left\| \sum_{1}^{n} \alpha_{j} \mathbf{y}_{j} \right\| - \left\| \sum_{j}^{n} \alpha_{j}^{0} \mathbf{y}_{j} \right\| \right\| \leq \left\| \sum_{1}^{n} \alpha_{j} \mathbf{y}_{j} - \sum_{1}^{n} \alpha_{j}^{0} \mathbf{y}_{j} \right\| = \\ &= \left\| \sum_{1}^{n} \left(\alpha_{j} - \alpha_{j}^{0}\right) \mathbf{y}_{j} \right\| \leq \sum_{j=1}^{n} \left\| \alpha_{j} - \alpha_{j}^{0} \right\| \|\mathbf{y}_{j}\| \leq K \sum_{j=1}^{n} \left\| \alpha_{j} - \alpha_{j}^{0} \right\| \to 0, \quad \alpha \to \alpha^{0}, \end{split}$$

гдо

$$K = K_n = \max_{1 \le j \le n} \| \mathbf{y}_j \|.$$

Кроме того, функция Ф в силу линейной независимости системы элементов  $y_1, \ldots, y_n$  положительна, каковы бы ни были числа  $\alpha_1, \ldots, \alpha_n$ , за исключением того случая, когда  $\alpha_1 = \ldots = \alpha_n = 0$ . Введем еще в  $R_n$  миожество  $\Lambda$  точек  $\alpha = (\alpha_1, \ldots, \alpha_n)$ , координаты которых удовлетворяют равенству

$$\|\alpha\|^* = \sum_{1}^{n} |\alpha_j| = 1.$$

А ограничено, так как координаты его точек удовлетворяют перавелству

$$|\alpha_s| \leqslant \sum_{j=1}^n |\alpha_j| = 1.$$

Кроме того, оно замкнуто (см. пример 5, § 7.9). Поэтому функция  $\Phi(\alpha)$  достигает на множестве  $\Lambda$  в некоторой его точке  $\alpha^0$  своего минимума:

$$\lambda = \Phi(\alpha^0) = \min_{\alpha \in \Lambda} \Phi(\alpha).$$

При этом  $\lambda>0$ , потому что точки  $\alpha\in\Lambda$  заведомо не пулевые. Итак, имеет место неравенство

$$0 < \lambda \leqslant \left\| \sum_{j=1}^{n} \alpha_{j} y_{j} \right\|, \tag{10}$$

какова бы ни была точка  $\alpha = (\alpha_1, \ldots, \alpha_n) \in \Lambda$ . Мы, таким образом, докавали неравенство (9) в частном случае, когда  $\alpha \in \Lambda$ .

Докажем теперь, что оно верно для любой точки  $\alpha \in R_n$ . В самом деле, если  $\alpha = \theta(0, ..., 0)$ , то (9) тривнально. Пусть  $\alpha \neq \theta$ . Введем новую точку

$$\beta = \frac{\alpha}{\|\alpha\|^*} = \left(\frac{\alpha_1}{\|\alpha\|^*}, \dots, \frac{\alpha_n}{\|\alpha\|^*}\right).$$

Очевидно,  $\beta \in \Lambda$ , так как

$$\sum_{j=1}^n \left| \beta_j \right| = \sum_{j=1}^n \left| \frac{\alpha_j}{\|\alpha\|^*} \right| = 1,$$

и потому в силу (10)

$$\lambda \leqslant \left\| \sum_{1}^{n} \frac{\alpha_{j}}{\|\alpha\|^{*}} x_{j} \right\| = \frac{1}{\|\alpha\|^{*}} \left\| \sum_{j=1}^{n} \alpha_{j} x_{j} \right\|,$$

откуда следует (9).

Лемма 1 вытекает из следующих рассуждений. Пусть  $\mathbf{x} \in E$ . Если допустить, что элементы

$$\mathbf{x}, \ \mathbf{z}_{1}, \ \ldots, \ \mathbf{z}_{n} \tag{11}$$

образуют линейно независимую систему, то на основании леммы 2

для любых чисел  $\alpha_1, \ldots, \alpha_n$ 

$$1 \leq 1 + \sum_{1}^{n} |\alpha_{j}| \leq \frac{1}{\lambda} \left\| \mathbf{x} - \sum_{1}^{n} \alpha_{j} z_{j} \right\| \quad (\lambda > 0)$$
$$0 < \lambda \leq \left\| \mathbf{x} - \sum_{1}^{n} \alpha_{j} z_{j} \right\|.$$

И

Но это противоречит условию леммы 1, в силу которого при  $\varepsilon < \lambda$  можно указать систему чисел  $\alpha_1, \ldots, \alpha_n$ , для которой выполняется перавенство (8). Поэтому система (11) линейно зависима и существуют числа  $c, c_1, \ldots, c_n$ , одновременно не равные нулю, для которых

 $c\mathbf{x} + c_1\mathbf{z}_1 + \ldots + c_n\mathbf{z}_n = 0.$ 

В таком случае  $c \neq 0$ , так как иначе система  $\mathbf{z}_i$ , ...,  $\mathbf{z}_n$  была бы линейно зависимой; поэтому

$$\mathbf{x} = \sum_{j=1}^{n} \beta_j z_j \quad \left(\beta_j = -\frac{c_j}{c}\right),$$

и лемма 1 доказана.

Заметим, что имеет место в известном смысле обратное (9) перавенство

$$\left\| \sum_{1}^{p} \alpha_{j} \mathbf{y}_{j} \right\| \leqslant K \sum_{j=1}^{n} |\alpha_{j}|,$$

$$K = \max_{1 \leqslant j \leqslant n} \|\mathbf{y}_{j}\|,$$
(12)

где, таким образом, K не зависит от  $\alpha = (\alpha_1, \ldots, \alpha_n)$ .

Объединяя перавенства (9) и (12), получим (для линейно певависимой системы  $y_1, \ldots, y_n$ ) два неравенства

$$C_1 \sum_{j=1}^{n} |\alpha_j| \leqslant \left\| \sum_{j=1}^{n} \alpha_j \mathbf{y}_j \right\| \leqslant C_2 \sum_{j=1}^{n} |\alpha_j|, \tag{13}$$

где константы  $C_1$  и  $C_2$  ( $C_1 = \lambda$ ,  $C_2 = K$ ) не зависят от  $\alpha = (\alpha_1, \ldots, \alpha_n)$ . Однако надо иметь в виду, что константы  $C_1$  и  $C_2$  зависят от нормы, которая введена в пространстве E.

Упражнения.

Доказать следующие утверждения:

1. Множество всех определенных на [a, b] полигональных функций П', графики которых имеют угловые точки с рациональными коордипатами, счетно.

2. Каковы бы ни были непрерывная на [a, b] функция f(x) и  $\varepsilon > 0$ , найдется функция  $\varphi \in \Pi'$  такая, что

$$|f(x) - \varphi(x)| < \varepsilon.$$

Это свойство говорит, что  $\Pi'$  илотно в C(a, b). Если еще учесть, что в

 $C\left(a,\ b\right)$  имеется счетная линейно независимая система функций 1,  $x,\ x^2,\ldots$ , то  $C\left(a,\ b\right)$  сепарабельно.

3. П' плотно в  $L'_{n}(a, b)$  ( $L_{n}(a, b)$ ).

Воспользоваться тем, что непрерывные финитные в (a, b) функции образуют множество, плотное в этих пространствах, а также результатом предыдущего примера 2.

4. Пространства  $C(\overline{\Omega})$ ,  $L_p'(\Omega)$  ( $L_p(\Omega)$ ) ( $\Omega$  — открытое множество) бесконечномерны. Рассмотреть последовательность припадлежащих к  $\Omega$  понарно непересекающихся кубов  $\Delta_1$ ,  $\Delta_2$ ,  $\Delta_3$ ,  $\Delta_4$ , ..., и их характеристических функций (в случае  $C(\overline{\Omega})$  — функций вида § 14.4, (5), при этом  $\Omega$  ограничено)

 $\phi_{\Delta_k}\left(\mathbf{x}\right) = \begin{cases} \mathbf{1} & \text{na} & \Delta_k, \\ \mathbf{0} & \text{ha} & \Delta_k \end{cases} \quad (k=1,\,2,\,\ldots).$ 

#### § 14.6. Ортогональная система в пространстве со скалярным произведением

Пусть H есть линейное (комплексное или действительное) множество элементов  $\varphi$ ,  $\psi$ , f, ..., где введено скалярное произведение  $(\varphi, \psi)$   $(\varphi, \psi \in H)$ , подчиняющееся, таким образом, свойствам (1)—3) скалярного произведения (см. § 6.2).

Сначала наши рассуждения будут относиться к произвольному не обязательно полному пространству со скалярным произведением, каким является, как мы знаем, пространство  $L_2'(\Omega)$ . Элемент  $\varphi \in H$  называется нормальным, если  $\|\varphi\| = (\varphi, \varphi)^{1/2} = 1$ .

Элемент  $\varphi \in H$  называется нормальным, если  $\|\varphi\| = (\varphi, \varphi)^{1/2} = 1$ . Два элемента  $\varphi, \psi \in H$  называются ортогональными (друг к другу), если  $(\varphi, \psi) = 0$ .

Система элементов

$$\varphi_1, \varphi_2, \varphi_3, \ldots \tag{1}$$

(конечная или бесконечная) называется *ортогональной*, если ее элементы — не нулевые (имеют положительную порму) и попарно ортогональны.

Наконец, система (1) называется ортогональной и нормальной

или ортонормированной, если

$$(\varphi_k, \varphi_l) = \delta_{kl} = \begin{cases} 0, & k \neq l, \\ 1, & k = l, \end{cases}$$

т. е. она ортогональна и каждый ее элемент имеет единичную норму.

Всякая конечная ортогональная система  $\phi_1$ , ...,  $\phi_N$  линейно независима в H, т. е. из того, что

$$\sum_{1}^{n}\alpha_{k}\varphi_{k}=\theta,$$

где  $\alpha_k$  — числа, следует, что все  $\alpha_k = 0$ . В самом деле, если помножить обе части этого равенства скалярно на  $\varphi_l$   $(l=1,\ldots,N)$ ,

то на основации лицейных свойств скалярного произведения получим

$$\left(\sum_{1}^{N}\alpha_{k}\varphi_{k},\,\varphi_{l}\right)=\alpha_{l}\left(\varphi_{l},\,\varphi_{l}\right)=0,$$

и так как  $(\varphi_l, \varphi_l) > 0$ , то  $\alpha_l = 0 \ (l = 1, ..., n)$ .

Если  $f \in H$  — произвольный элемент, то число

$$\frac{1}{\|\varphi_{h}\|^{2}}(f, \varphi_{h}) \qquad (k = 1, 2, \ldots)$$

пазывается коэ $\phi$ фициентом Фурье f относительно элемента  $\phi_k$  ортогональной системы (1).

Ряд

$$f \sim \sum_{1}^{\infty} \frac{1}{\|\varphi_h\|^2} (f, \varphi_h) \varphi_h \tag{2}$$

(порождаемый элементом  $f \in H$ ) называется рядом Фурье элемента f по ортогональной системе (1) (в честь французского математика Ж. Б. Фурье (1768—1830), которому принадлежат первые фундаментальные исследования, относящиеся к представлению функций тригонометрическими рядами).

Если система (1) ортонормирована, то  $\|\phi_k\| = 1$  (k = 1, 2, ...)

и ряд Фурье  $f \in H$  записывается еще проще:

$$f \sim \sum_{i}^{\infty} (f, \varphi_{k}) \varphi_{k}. \tag{3}$$

Коэффициентами Фурье в этом случае являются числа  $(f, \varphi_h)$ . В дальнейшем мы будем рассматривать только ортонормированные системы (1). Переход от них к произвольным ортогональным системам носит технический характер.

Отметим уже сейчас, что тригонометрические функции

$$\frac{1}{2}$$
,  $\cos x$ ,  $\sin x$ ,  $\cos 2x$ ,  $\sin 2x$ , ...

образуют ортогональную систему в пространстве  $L_2'(0, 2\pi)$  (или  $L_2(0, 2\pi)$ ) функций с интегрируемым квадратом модуля на  $[0, 2\pi]$ . Ряды Фурье по этой конкретной системе будут специально изучаться нами в гл. 15. Пространство  $L_2'(0, 2\pi)$  ( $L_2(0, 2\pi)$ ) есть частный случай линейного пространства H со скалярным произведением, и все результаты, которые мы получим в этой главе для H, соответственно переносятся на  $L_2'(0, \pi)$  ( $L_2(0, 2\pi)$ ).

Итак, пусть задана ортонормированная система элементов (1) в H. Зададим еще элемент  $f \in H$  и поставим задачу: требуется среди всевозможных чисел  $\alpha_1, \alpha_2, \ldots, \alpha_N$  (комплексных или действительных соответственно в комплексном или действительном

пространстве Н) найти такие, для которых норма

$$\left\| f - \sum_{1}^{N} \alpha_{k} \varphi_{k} \right\| \tag{4}$$

обращается в минимум.

Имеем

$$\left\| f - \sum_{1}^{N} \alpha_{h} \varphi_{h} \right\|^{2} = \left( f - \sum_{h=1}^{N} \alpha_{h} \varphi_{h}, \ f - \sum_{l=1}^{N} \alpha_{l} \varphi_{l} \right) =$$

$$= (f, \ f) - \sum_{1}^{N} \left[ \overline{\alpha}_{l} (f, \ \varphi_{l}) + \alpha_{l} (\overline{f, \ \varphi_{l}}) \right] + \sum_{1}^{N} |\alpha_{l}|^{2} =$$

$$= (f, \ f) + \sum_{1}^{N} |\alpha_{l} - (f, \ \varphi_{l})|^{2} - \sum_{1}^{N} |f, \ \varphi_{l}|^{2} \geqslant (f, \ f) - \sum_{1}^{N} |(f, \ \varphi_{l}|)^{2}. \tag{5}$$

При этом оценка справа достигается, очевидно, для чисел

$$\alpha_l = (f, \varphi_l) \quad (l = 1, 2, ..., N)$$

н только для них. Эти числа  $(f, \varphi_t)$  мы назвали коэффициентами Фурье элемента f относительно элементов  $\varphi_t$  ортопормированной системы.

Полученный результат можно записать в виде цени равенств:

$$E_{N}(f)_{H} = \min_{\alpha_{h}} \left\| f - \sum_{1}^{N} \alpha_{h} \varphi_{h} \right\| = \left\| f - \sum_{1}^{N} (f, \varphi_{h}) \varphi_{h} \right\| = \left( (f, f) - \sum_{h=1}^{N} |(f, \varphi_{h})|^{2} \right)^{1/2}$$
(6)

Первый член этой цепи  $E_N(f)_H$  есть обозначение минимума по  $\alpha_k$ , записанного во втором члене. Его называют наилучшим приближением элемента  $f \in H$  (в метрике H) при помощи линейных

комбинаций вида  $\sum_{1}^{N} \alpha_k \varphi_k$ , где  $\alpha_k$  — произвольные числа (комплекстые, соответственно действительные). Третий член цепи выражает, что наилучшее приближение достигается, когда числа  $\alpha_k$  являются коэффициентами Фурье f относительно  $\varphi_k$ , т. е. при  $\alpha_k$  =  $(f, \varphi_k)$ . Наконец, последний, четвертый член дает явное выражение для наилучшего приближения f через (f, f) и коэффициенты Фурье  $(f, \varphi_k)$   $(k = 1, \ldots, N)$ .

Ясно, что  $E_N(f)_H \ge 0$ , так как это число есть минимум неотрицательной нормы. Ясно также, что  $E_N(f)_H$  не возрастает при возрастании N. Это видно из последнего члена формулы (6), но это видно и из второго члена:

$$E_{N}\left(f\right)_{H}=\min_{\alpha_{h}}\left\|f-\sum_{1}^{N}\alpha_{h}\phi_{h}\right\|\geqslant\min_{\alpha_{h}}\left\|f-\sum_{1}^{N+1}\alpha_{h}\phi_{h}\right\|=E_{N+1}\left(f\right)_{H},$$

потому что сумма  $\sum_{1}^{N}$  есть частный случай суммы  $\sum_{1}^{N+1}$  при  $\alpha_{N+1}=0$ .

Из сказанного следует, что для любого элемента  $f \in H$  существует предел

$$\lambda = \lim_{N \to \infty} E_N(f)_H =$$

$$= \sqrt{(f, f) - \sum_{1}^{\infty} |(f, \varphi_{h})|^{2}} = \lim_{N \to \infty} \left\| f - \sum_{k=1}^{N} (f, \varphi_{k}) \varphi_{k} \right\| \geqslant 0. \quad (7)$$

В частности, отсюда следует, что  $pя\partial$ , состоящий из квадратов модулей коэффициентов элемента  $f \in H$ , сходится и выполняется неравенство

$$\sum_{k=1}^{\infty} |(f, \varphi_k)|^2 \leqslant (f, f), \tag{8}$$

называемое неравенством Парсеваля для элемента f.

Термин неравенство здесь употребляется в том смысле, что утверждается, что левая часть (8) не превышает правую. На самом деле может оказаться, что для тех или иных элементов f, а может быть и для всех соотношение (8) есть точное равенство. Тогда оно называется равенством Парсеваля\*).

Условимся говорить, что ряд

$$u_0+u_1+u_2+\ldots$$

элементов  $u_n \in H$   $cxo\partial urca$  в метрике H к элементу  $f \in H$ , если для его n-й суммы  $s_n (\in H)$ 

$$s_n = u_0 + u_1 + \ldots + u_n \quad (n = 1, 2, \ldots)$$

имеет место соотношение

$$\lim_{n\to\infty} ||f-s_n|| = 0.$$

При этом пишут

$$t = u_0 + u_1 + u_2 + \dots = \sum_{h=0}^{\infty} u_h \tag{9}$$

и говорят, что f есть сумма ряда, сходящегося  $\kappa$  f g метрике H. Допустим, что в равенствах (7) для данного элемента f случилось, что  $\lambda = 0$ . Разберемся, что тогда выражает равенство нулю остальных трех членов (7).

1) Равенство нулю второго члена (7) может быть эквивалентно выражено на следующем языке: для любого є > 0 можно

<sup>\*)</sup> М. Парсеваль — французский математик, получивший это неравенство в 1805 г. для тригонометрических систем.

указать такое  $N_0$  и числа $\alpha_1, \ldots, \alpha_{N_0}$ , что

$$\left\| f - \sum_{1}^{N_0} \alpha_k \varphi_k \right\| < \varepsilon. \tag{10}$$

В самом деле, если указанные числа  $N_0, \alpha_1, \ldots, \alpha_{N_0}$  найдены, то зафиксируем  $N_0$  и возьмем минимум левой части по  $\alpha_{\rm A}$ . Тогда получим

$$\varepsilon > E_{N_0}(f)_H \geqslant E_N(f)_H \quad (N > N_0),$$

т. е.  $E_N(f) \to 0$   $(N \to \infty)$ . Наоборот, из этого последнего свойства следует, что для любого  $\varepsilon > 0$  можно указать N такое, что

$$\varepsilon > E_N(f)_H = \left\| f - \sum_{1}^{N} \alpha_h \varphi_h \right\| \quad (\alpha_h = (f, \varphi_h)).$$

- 2) Равенство нулю третьего члена (7) выражает, что для рассматриваемого элемента f имеет место точное равенство Парсеваля.
- 3) Равенство же нулю четвертого члена (7) выражает, что ряд Фурье f по системе (6) сходится к f в смысле метрики, определенной в H.

Так как свойства 1), 2), 3) могут иметь место только одновременно, то выполнение одного из них для какого-нибудь элемента влечет за собой выполнение двух остальных.

Напомним, что свойство 1), если оно выполняется для всех элементов  $f \in H$ , выражает (см. § 14.5), что система элементов  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ , ... полна в H.

Из сказанного как следствие вытекает следующая важная

Теорема 1. Для того чтобы ортонормированная система элементов  $\varphi_1, \varphi_2, \varphi_3, \ldots$  была полной в H, необходимо и достаточно выполнение одного из следующих условий:

а) Ряд Фурье произвольного элемента  $f \in H$ 

$$f \sim \sum_{1}^{\infty} (f, \varphi_k) \varphi_k$$

 $cxo\partial urcs$   $\kappa$  f g метрике H (и в этом соотношении можно заменить  $\sim$  на =, см. (9)).

б) Для каждого элемента  $f \in H$  имеет место равенство Парсеваля;

$$(f, f) = \sum_{1}^{\infty} |(f, \varphi_h)|^2.$$

Отметим лемму:

Лемма 1. Пусть имеет место равенство

$$f = u_0 + u_1 + u_2 + \dots,$$

где f,  $u_{\mathbf{k}} \in H$  и ряд сходится в метрике  $H(\mathbf{k} \ f)$ . Тогда для любого элемента  $\mathbf{v} \in H$ 

$$(f, v) = (u_0, v) + (u_1, v) + (u_2, v) + \ldots,$$

 $e\partial e$ , таким образом, числовой ряд справа сходится  $\kappa$  (f, v). В самом деле,

$$\begin{split} \left| (f, v) - \sum_{0}^{N} (u_{h}, v) \right| &= \left| \left( f - \sum_{0}^{N} u_{h}, v \right) \right| \leqslant \\ &\leqslant \left\| f - \sum_{0}^{N} u_{h} \right\| \|v\| \to 0 \qquad (N \to \infty). \end{split}$$

Следствие. Если ряд

$$f = \sum_{k=1}^{\infty} \alpha_k \varphi_k, \tag{11}$$

где  $\alpha_k$  — числа, а  $\phi_1$ ,  $\phi_2$ , ... — ортонормированная система, сходится в метрике H к некоторому элементу  $f \in H$ , то числа  $\alpha_s$  — необходимо коэффициенты Фурье f:

$$\alpha_s = (f, \varphi_s) \quad (s = 1, 2, ...),$$
 (12)

т. е. разложение f в указанный ряд единственно.

Действительно, если умножить скалярно члены обеих частей равенства (11) на ф., то на основании леммы 1 получим (12).

Теорема 2. Ёсли ортогональная и нормальная система (1) полна в H, то для любых двух элементов f,  $\phi \in H$  имеет место числовое равенство

$$(f, \varphi) = \sum_{k=1}^{\infty} (f, \varphi_k) (\overline{\varphi, \varphi_k})$$
 (13)

 $e\partial e$ , таким образом, ряд справа сходится к числу  $(f, \varphi)$ .

В самом деле, из полноты системы (1) на основании теоремы 1 следует, что ряд

$$f = \sum_{1}^{\infty} (f, \, \varphi_h) \, \varphi_h \tag{14}$$

сходится к f в метрике H. Теперь (13) получается из (14), если скалярно умножить все члены левой и правой частей (14) на  $\varphi$ :

$$(f, \varphi) = \sum_{1}^{\infty} (f, \varphi_h) (\varphi_h, \varphi) = \sum_{1}^{\infty} (f, \varphi_h) (\overline{\varphi, \varphi_h}),$$

что законно в силу леммы 1.

Равенство (13) содержит в себе, в частности, при  $f = \varphi \in H$  равенство Парсеваля.

Введем еще определение. Ортонормированная система (1)  $sam \kappa \mu y \tau a$ , если из того, что для элемента  $\psi \in H$  выполняются равенства

 $(\psi, \varphi_k) = 0 \quad (k = 1, 2, \ldots),$  (15)

следует, что  $\psi$  есть нулевой элемент  $H(\psi = \theta)$ .

Из равенства Парсеваля для полной системы вытекает

Теорема 3. Из полноты ортонормированной системы следует ее замкнутость.

Все утверждения, доказанные в этом параграфе выше, верны как для полного, так и не полного \*) пространства H. В частности, они верны для пространства  $L_2'(\Omega)$ , которое, как мы знаем, не полно.

Ниже мы приводим ряд утверждений, где от H требуется

полнота.

Итак, пусть H есть полное липейное бесконечномерное пространство со скалярным произведением — гильбертово пространство (таким является пространство  $L_2(\Omega)$ ).

Теорема 4. Ряд по ортонормированой системе

$$\sum_{1}^{\infty} \alpha_{k} \varphi_{k},$$

где

$$\sum_{1}^{\infty} |\alpha_h|^2 < \infty, \tag{16}$$

сходится в метрике H к некоторому элементу  $\phi \in H$ .

Доказательство. Пусть

$$s_n = \sum_{k=1}^{n} \alpha_k \varphi_k \qquad (k = 1, 2, \ldots).$$

В силу сходимости ряда (16) для всякого  $\varepsilon > 0$  найдется такое N, что для n > N и всякого p

$$|\epsilon^2 > \sum_{n+1}^{n+p} |\alpha_h|^2 = \left\| \sum_{n+1}^{n+p} \alpha_h \varphi_h \right\|^2 = \|s_{n+p} - s_n\|^2.$$

Это показывает, что последовательность элементов  $s_n \in H$  удовлетворяет условию Коши и вследствие полноты H существует элемент  $\phi \in H$ , к которому эта последовательность сходится (в метрике H), что и доказывает теорему.

Теорема 5. *Ряд Фурье* 

$$\sum_{1}^{\infty} (f, \varphi_k) \varphi_k \tag{17}$$

произвольного элемента  $f \in H$  сходится (в метрике H) к некото-

<sup>\*)</sup> Полная система в H и полное пространство H — разные вещи. Например, система  $\phi_h$  может быть полной в неполном пространстве  $H_{\bullet}$ 

171

рому элементу  $\phi \in H$  и при этом элемент  $f - \phi$  ортогонален ко всем  $\phi_k$ :

 $(f - \varphi, \varphi_k) = 0$  (k = 1, 2, ...).

Доказательство. Согласно неравенству Парсеваля ряд

$$\sum_{1}^{\infty} |(f, \varphi_h)|^2 \leq (f, f)$$

сходится. Поэтому в силу предыдущей теоремы ряд (17) сходится к некоторому элементу  $\phi \in H$ :

$$\varphi = \sum_{1}^{\infty} (f, \varphi_{h}) \varphi_{h}.$$

Итак,

$$f-\varphi=f-\sum_{1}^{\infty}\left(f,\,\varphi_{k}\right)\varphi_{k},$$

где справа стоит ряд, сходящийся в метрике H. Помножим скалярно все члены последнего равенства на элемент  $\phi_s$ . Тогда получим

 $(f - \varphi_s, \varphi_s) = (f, \varphi_s) - (f, \varphi_s) = 0$  (s = 1, 2, ...)

Утверждение доказано.

Докажем обратную теорему к теореме 3 (при условии полпоты H).

Теорема 6. Если Н полно, то из замкнутости ортонорми-

рованной системы (1) следует её полнота.

Доказательство. Пусть система (1) замкнута, но не полпа. Тогда на основании теоремы 1 должен найтись элемент  $f \in H$  такой, что его ряд Фурье не сходится к нему. Но он сходится, как было доказано выше, к некоторому элементу  $\phi \in H$ , и элемент  $f - \phi$  ортогонален ко всем  $\phi_k$  ( $k = 1, 2, \ldots$ ). Но вследствие замкнутости системы в таком случае  $f - \phi = \theta$ , т. е.  $f = \phi$ , и мы пришли к противоречию.

Пример 1.  $l_2$  обозначает множество последовательностей  $\boldsymbol{\alpha} = (\alpha_1, \ \alpha_2, \ \dots)$ 

(комплексных или дествительных) чисел, для которых конечна порма

 $\|\alpha\| = \left(\sum_{1}^{\infty} |\alpha_{h}|^{2}\right)^{1/2}.$  (18)

Если  $\alpha \in l_2$  и  $\beta = (\beta_1, \ \beta_2, \ \ldots) \in l_2$ , то при любом натуральном n (см. § 6.2, (9))

 $\sum_{1}^{n} \left| \alpha_{j} \tilde{\beta}_{j} \right| \leq \left( \sum_{j=1}^{n} \left| \alpha_{j} \right|^{2} \right)^{1/2} \left( \sum_{1}^{n} \left| \beta_{j} \right|^{2} \right)^{1/2} \leq \|\alpha\| \|\beta\|;$ 

поэтому ряд  $(\alpha, \beta) = \sum_{j=1}^{\infty} \alpha_{j} \overline{\beta}_{j}$  абсолютно сходится.

Легко проверяется, что  $(\alpha, \beta)$  подчиняется условиям 1), 2), 3) скалярного произведения, порождающего норму (48) (см. § 6.2) с нулевым элементом  $\theta = (0, 0, 0, \ldots)$ . Следовательно,  $l_2$ — линейное пространство со скалярным произведением. Оно к тому же полно и бесконечномерно, таким образом, гильбертово. В самом деле, пусть дана последовательность элементов  $\alpha^k = (\alpha_1^k, \alpha_2^k, \ldots) \in l_2$   $(k = 1, 2, \ldots)$ , удовлетворяющая условию Кони, т. е. для всякого  $\epsilon > 0$  найдется N такое, что

$$\varepsilon > \|\alpha^k - \alpha^{k'}\| \geqslant |\alpha_j^k - \alpha_j^{k'}| \quad (k, k' > N).$$

Следовательно, при любом j  $\alpha_j^h \to \alpha_j$   $(k \to \infty)$ , и мы получили числовую последовательность  $\alpha = (\alpha_1, \alpha_2, \ldots)$ . Она принадлежит к  $l_2$ , потому что

$$\varepsilon \geqslant \left(\sum_{j=1}^{n} \left| \alpha_{j}^{k} - \alpha_{j} \right|^{2} \right)^{1/2} \quad (k > N),$$

каково бы ни было натуральное n. Поэтому

$$\varepsilon \geqslant \left(\sum_{j=1}^{\infty} |\alpha_j^k - \alpha_j|^2\right)^{1/2} = \|\alpha^k - \alpha\| \quad (k > N). \tag{19}$$

Таким образом,  $\alpha^k - \alpha \in l_2$ ; но  $\alpha^k \in l_2$ , поэтому и  $\alpha \in l_2$ . Наконец, неравенство (19) говорит, что наша последовательность элементов  $\alpha^1$ ,  $\alpha^2$ ,  $\alpha^3$ , ... сходится к  $\alpha \in l_2$  в метрике  $l_2$ . Этим полнота  $l_2$  доказана.

Определим в  $l_2$  элементы (множество их счетно)

$$e^k = (0, 0, ..., 0, 1, 0, 0, ...)$$
  $(k = 1, 2, ...),$ 

где 1 стоит на k-м месте, а на остальных местах стоят нули. Они образуют ортогональную и нормальную (следовательно, линейно независимую) систему:

$$(e^k, e^l) = \delta_{kl}$$
  $(k, l = 1, 2, ...).$ 

Если  $\alpha = (\alpha_1, \alpha_2, \alpha_3, \ldots)$  — произвольный элемент из  $l_2$ , то, очевидно  $\alpha_k = (\alpha, e^k)$   $(k = 1, 2, \ldots)$ 

и

$$lpha = \sum_{k=1}^{\infty} \left( lpha, e^k 
ight) e^k,$$

где ряд справа сходится к  $\alpha$  в метрике  $l_2$ , так как

$$\left\| \alpha - \sum_{k=1}^{N} (\alpha, e^{k}) e^{k} \right\| = \| (0, 0, \dots, 0, \alpha_{N+1}, \alpha_{N+2}, \dots) \| =$$

$$= \left( \sum_{N+1}^{\infty} |\alpha_{k}|^{2} \right)^{1/2} \to 0 \quad (N \to \infty).$$

Мы видим, что произвольный элемент  $\alpha \equiv l_2$  разлагается в сходящийся к нему в метрике  $l_2$  ряд Фурье по элементам ортогональной и нормальной системы  $\{e^k\}$ . Таким образом, система  $\{e^k\}$  полна в  $l_2$ .

Теорема 7. Пусть в линейном пространстве H со скалярным произведением имеется полная ортонормированная система элементов (бесконечная)

$$\varphi_1, \ \varphi_2, \ \varphi_3, \ \dots \tag{20}$$

и каждый элемент  $f \in H$  разложен в ряд Фурье по этой системе:

$$f = \sum_{h=1}^{\infty} \alpha_h \varphi_h, \tag{21}$$

$$\alpha_k = (f, \varphi_k) \quad (k = 1, 2, \ldots),$$
 (22)

сходящийся к f в метрике H (см. теорему 1). Тогда, если H полно, то равенство (21) осуществляет взаимно однозначное соответствие  $f \sim \alpha = (\alpha_1, \alpha_2, \ldots)$  между элементами H и  $l_2$ , изоморфное относительно операций сложения, умножения на число и скалярного произведения,  $\tau$ . е. если  $f \sim \alpha$ ,  $\phi \sim \beta$ , то  $f + \phi \sim \alpha + \beta$ ,  $cf \sim c\alpha$ ,

$$(f, \varphi)_H = \sum_{1}^{\infty} \alpha_j \overline{\beta}_j = (\alpha, \beta)_{l_2}. \tag{23}$$

Если же H не полно, то (21) осуществляет соответствие (линейное и изоморфное) между H и  $l_2'$ , где  $l_2'$ — некоторое линейное не полное подпространство  $l_2$ , однако такое, что замыкание  $l_2'$  есть  $l_2$  ( $\overline{l}_2' = l_2$ ).

Доказательство. Операцию (21), приводящую в соответствие каждому элементу  $f \in H$  числовую последовательность  $\alpha = (\alpha_1, \alpha_2, \ldots)$ , обозначим через A, при этом в силу полноты системы (20) имеет место равенство Парсеваля ( $Af = \alpha \in l_2$ )

$$||f||_{H} = ||Af||_{l_{o}}. (24)$$

Очевидно, А — линейная операция:

$$A(cf) = cAf, \quad A(f + \varphi) = Af + A\varphi$$

(с — числа, f,  $\phi \in H$ ). Больше того, на основании теоремы 2 имеет место равенство (23), более общее, чем (24).

Двум разным элементам f',  $f'' \in H$  при помощи операции A соответствуют разные элементы  $\alpha'$ ,  $\alpha'' \in l_2$ , так как из равенства  $Af' = Af'' = \alpha$  следует, что  $A(f' - f'') = \theta$ , и тогда ряд Фурье f' - f'' по системе (20) имеет вид

$$f'-f''=0\cdot\varphi_1+0\cdot\varphi_2+\ldots$$

Он в силу полноты системы (20) должен сходиться в метрике H к f'-f'', но тогда  $f'-f''=\theta$ , т. е. f'=f''. Пусть теперь H— полное пространство. Зададим произволь-

Пусть теперь H — полное пространство. Зададим произвольный элемент  $\alpha = (\alpha_1, \alpha_2, \ldots) \in l_2$  и составим формально ряд

$$\sum_{1}^{\infty} \alpha_h \varphi_h. \tag{25}$$

В силу сходимости ряда  $\sum_{1}^{\infty} |\alpha_{h}^{2}| < \infty$  й полноты H (теорема 4)

существует элемент  $\phi = H$  (единственный), к которому ряд (25) сходится:

$$\varphi = \sum_{1}^{\infty} \alpha_h \varphi_h, \tag{26}$$

Ряд (26) есть ряд Фурье ф (см. следствие к лемме 1).

Мы доказали, что каков бы пи был элемент  $\alpha \in l_2$ , существует единственный элемент  $\phi \in H$  такой, что  $A\phi = \alpha$ . Это свойство вместе с уже установленными выше свойствами A можно резомировать так: если H полно, то операция A устанавливает взанимо однозначное соответствие  $H \rightleftharpoons l_2$ , изоморфное относительно операций сложения, умножения на число и скалярного произведения. Этим доказана первая часть утверждения теоремы 7.

Пусть теперь H не полно. Обозначим через  $l_2'$  образ H при помощи операции  $A(l_2'=AH)$ . На основании доказанного выше A устанавливает взаимно однозначное соответствие  $H \rightleftarrows l_2'$ , изоморфное относительно сложения, умножения на число и скалярного произведения.

В  $\hat{H}$  имеется последовательность элементов  $f^1$ ,  $f^2$ ,  $f^3$ , ..., удовлетворяющая условию Коши, но не сходящаяся в H к какому бы то ни было элементу из H. Имеем, что для любого  $\varepsilon > 0$  выполняется перавенство

 $\varepsilon > ||f^h - f^l||_H = ||\alpha^h - \alpha^l||_{l_\alpha} \quad (\alpha^h = Af^h)$ 

для всех  $k,\ l>N$  при достаточно большом N, показывающее, что образы  $\pmb{\alpha}^k=Af^k$  удовлетворяют условию Коши в метрике числовых последовательностей  $l_2$ . Но пространство  $l_2$  полно, поэтому существует элемент  $\pmb{\alpha} = l_2$  такой, что  $\|\pmb{\alpha} - \pmb{\alpha}^h\|_{l_2} \to 0 \ (k \to \infty)$ . При этом среди элементов, принадлежащих к H, не может существовать элемента f, для которого бы  $Af = \alpha$ , ведь если бы он существовал, то было бы

 $\|\boldsymbol{\alpha} - \boldsymbol{\alpha}^{k}\|_{l_{\alpha}} = \|f - f^{k}\|_{H} \to 0 \quad (k \to \infty),$ 

и мы пришли бы к противоречию с предположением.

Это показывает, что  $l_2'$  есть не полное пространство. Но замыкание  $l_2'$  есть  $l_2(\bar{l}_2'=l_2)$ , потому что, каков бы ни был элемент  $\boldsymbol{\alpha}=(\alpha_1,\ \alpha_2,\ \ldots) \in l_2$ , элементы  $\boldsymbol{\alpha}^N=(\alpha_1,\ \alpha_2,\ \ldots,\ \alpha_N,\ 0,0,\ldots)$  при любом N принадлежат к  $l_2'$  и в то же время  $\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^N\|_{l_2}$ 

 $\rightarrow 0 \ (N \rightarrow \infty)(\alpha^N \in l_2' \text{ потому, что суммы } \sum_{1}^{N} \alpha_h \phi_h \in H$ , ведь  $\phi_h \in H$  пунка мужчаства

∈ *H*, а *H* — линейное множество).

Этим доказано и второе утверждение теоремы.

$$\varphi_{k}(\mathbf{x}) = \frac{1}{|\Delta_{k}|^{1/2}} \varphi_{\Delta_{k}}(\mathbf{x}) \quad (k = 1, 2, ...),$$
 (27)

где

$$\varphi_{\Delta_h}(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} \in \Delta_h, \\ 0, & \mathbf{x} \notin \Delta_h. \end{cases}$$

Система (27), очевидно, ортогональная и нормальная, но не полная в  $L_a'(\Omega)$ (и  $L_2(\Omega)!$ ), потому что, например, ряд Фурье функции

$$f\left(\mathbf{x}\right) = \begin{cases} \psi\left(\mathbf{x}\right) & \text{ha} & \Delta_{1}, \\ 0 & \text{she} & \Delta_{1}, \end{cases}$$

где  $\psi(x)$  — функция непрерывная, тождественно не равная никакой постоянной, имеет вид

$$f(\mathbf{x}) \sim \frac{1}{|\Delta_1|^{1/2}} \int_{\Delta_1} \psi(\mathbf{x}) d\mathbf{x} \phi_{\Delta_1}(\mathbf{x}) + 0 + 0 + \dots$$
 (28)

и правая часть (28) вовсе не сходится в смысле среднего квадратического к левой.

#### § 14.7. Ортогонализация системы

Теорема 1. Пусть в действительном линейном пространстве И со скалярным произведением задана линейно независимая система элементов

$$\psi_1, \psi_2, \psi_3, \ldots$$
 (1)

Существует и притом единственная, с точностью до знаков ортогональная и нормальная система элементов

$$\varphi_1, \ \varphi_2, \ \overline{\varphi}_3, \ \ldots,$$
 (2)

принадлежащих И, обладающая следующим свойством:  $\Pi$ ри любом натуральном k

$$\dot{\hat{\mathbf{\psi}}}_{k} = \sum_{j=1}^{k} \alpha_{j}^{(h)} \varphi_{j} \quad (\alpha_{k}^{(h)} \neq 0), \tag{3}$$

**и**, наоборот,

$$\varphi_h = \sum_{j=1}^h \beta_j^{(h)} \psi_j \quad (\beta_h^{(h)} \neq 0), \tag{4}$$

 $arphi\partial e \; lpha_j^{(h)}, \; eta_j^{(h)} -$  числа (действительные). Если система (1) конечна и состоит из n элементов, то и ортогональная система (2) обладает этим свойством.

Выражение «единственная система ф<sub>1</sub>, ф<sub>2</sub>, ... с точностью до знаков» надо понимать в том смысле, что если система (2), удовлетворяющая условиям теоремы, найдена и если все Фы помножить на  $\delta_k = \pm 1$ , где знаки  $\pm$  могут зависеть от k, то полученные системы, снова удовлетворяют условиям теоремы, по никаких других удовлетворяющих условиям теоремы систем нет.

Доказательство. Элемент  $\psi_i$  образует по условию линейно независимую систему; состоящую из одного элемента, и потому

 $\|\psi_i\|=(\psi_i,\,\psi_i)^{1/2}>0;$ 

так как должно быть  $\varphi_1 = \beta_1^{(1)} \psi_1$ ,  $\|\varphi_1\| = 1$ , то  $\beta_1^{(1)} = \pm \frac{1}{\|\psi_1\|} (\neq 0)$ . Тогда и  $\psi_1 = \alpha_1^{(1)} \varphi_1$ , где  $\alpha_1^{(1)} = \pm \|\psi_1\| (\neq 0)$ . Этим утверждение доказано при k = 1.

Пусть теперь известно, что можно построить ортогональную и пормальную систему элементов  $\varphi_1, \ldots, \varphi_k$  и притом единственным образом с точностью до знака, так что выполняются равенства (3) и (4). Покажем, что эту систему можно пополнить элементом  $\varphi_{k+1}$  и притом единственным образом с точностью до знака так, что полученная система  $\varphi_1, \ldots, \varphi_{k+1}$  будет ортогональной и нормальной и будет удовлетворять условиям (3) и (4), где надо заменить k на k+1.

Искомый элемент  $\phi_{h+1}$  должен иметь вид

$$\varphi_{k+1} = \sum_{j=1}^{k+1} \beta_j^{(k+1)} \psi_j = \beta_{k+1}^{(k+1)} \psi_{k+1} + \sum_{j=1}^k \gamma_j \varphi_j.$$
 (5)

Во втором равенстве мы заменили  $\psi_1, \ldots, \psi_k$  на равные им линейные комбинации из  $\varphi_j$  с индексами  $j \leq k$ , затем привели подобные при одинаковых  $\varphi_j$ . Это возможно потому, что утверждение верно при k. По условию элемент  $\varphi_{k+1}$  должен быть ортогональным ко всем  $\varphi_s$  ( $s=1,\ldots,k$ ); поэтому должно быть

$$(\varphi_{k+1}, \varphi_s) = \beta_{k+1}^{(k+1)}(\psi_{k+1}, \varphi_s) + \gamma_s = 0$$
  $(s = 1, \ldots, k).$ 

Но тогда, подставляя у в (5), получим

$$\varphi_{k+1} = \beta_{k+1}^{(k+1)} \left[ \psi_{k+1} - \sum_{j=1}^{k} (\psi_{k+1}, \varphi_j) \varphi_j \right].$$

Элемент

$$\psi_{k+1}^* = \psi_{k+1} - \sum_{j=1}^k (\psi_{k+1}, \, \varphi_j) \, \varphi_j$$

не может быть нулевым, потому что иначе элемент  $\psi_{k+1}$  был бы линейной комбинацией из элементов  $\varphi_j$   $(j=1,\ldots,k)$ ; но тогда на основании уже доказанного при k элемент  $\psi_{k+1}$  был бы также линейной комбинацией из элементов  $\psi_j$   $(j=1,\ldots,k)$ , что противоречило бы линейной независимости системы  $\psi_1,\ldots,\psi_{k+1}$ .

Итак,

$$\|\psi_{k+1}^*\| > 0.$$

Это позволяет удовлетворить требованию  $\|\phi_{k+1}\|=1$ , в силу кото-

рого число  $\beta_{k+1}^{(k+1)}$  определяется с точностью до знака:

$$\beta_{k+1}^{(k+1)} = \pm \frac{1}{\|\psi_{k+1}^*\|}.$$

Теорема доказана.

Процесс, при помощи которого строилась ортогональная и пормальная система (2), в указанном выше смысле эквивалентная линейно независимой системе (1), называется процессом ортогонализации (системы (1)).

Теорема 2. Системы элементов из Н

$$\varphi_1, \ \varphi_2, \ \varphi_3, \ \dots \tag{6}$$

u

$$\psi_1, \ \psi_2, \ \psi_3, \ \dots \tag{7}$$

связанные при любом  $k=1, 2, \ldots$  соотношениями (3) и (4), одновременно полны или же не полны в H.

Здесь H можно считать произвольным нормированным пространством, в котором может и не быть определено скалярное произведение.

В самом деле, пусть система (6) полна в H и f — произвольный элемент H. Тогда для любого  $\varepsilon > 0$  найдется сумма вида

$$\sum_{1}^{N} \alpha_{h} \varphi_{h}, \tag{8}$$

где  $\alpha_k$  — числа, такая, что

$$\varepsilon > \left| f - \sum_{1}^{N} \alpha_{k} \varphi_{k} \right|.$$

Но в силу равенств (4) сумма (8) есть некая сумма вида

$$\sum_{1}^{N}\beta_{k}\psi_{k},$$

где  $\beta_k$  — числа, поэтому система (7) полна в H.

Аналогично доказывается с помощью равенств (3), что полнота системы (7) влечет полноту системы (6).

Теорема 3. Пусть Н есть пространство со скалярным произведением, обладающее следующим свойством: существует в Н линейно независимая система элементов

$$\psi_1, \ \psi_2, \ \ldots, \ \psi_n \tag{9}$$

такая, что, каковы бы ни были элементы  $f \in H$  и положительное число  $\epsilon > 0$ , найдутся (зависящие от  $\epsilon$ ) числа  $\alpha_1, \ldots, \alpha_n$  такие, что

$$\left\| f - \sum_{1}^{n} \alpha_{k} \psi_{k} \right\| < \varepsilon. \tag{10}$$

Тогда найдутся также числа  $\beta_1, ..., \beta_n$  такие, что

$$f = \sum_{1}^{n} \beta_k \psi_k, \tag{11}$$

т. е. Н есть п-мерное пространство.

Доказательство. Ортогонализуем систему (9) и в результате получим ортогональную и нормальную систему

$$\varphi_1, \ldots, \varphi_n.$$
 (12)

Очевидно, что для всяких элемента  $f \in H$  и числа  $\varepsilon > 0$  найдутся числа  $a_1, \ldots, a_n$  такие, что

$$\varepsilon > \left\| f - \sum_{1}^{n} a_{h} \varphi_{h} \right\| \geqslant \left\| f - \sum_{1}^{n} (f, \varphi_{h}) \varphi_{h} \right\|, \tag{13}$$

где второе неравенство написано в силу минимального свойства ортогональной и нормальной системы (см. § 14.6, (6)). Но третий член в цепи (13) не зависит от в, которое произвольно. Поэтому он равен нулю, т. е.

$$f = \sum_{k=1}^{n} (f, \varphi_k) \varphi_k. \tag{14}$$

Чтобы получить (11), остается только  $\varphi_k$  в (14) заменить на соответствующие линейные комбинации из  $\psi_k$ .

Таким образом, мы доказали лемму 1  $\S$  14.5 в предположении, что E — пространство со скалирным произведением.

# § 14.8. Свойства пространств $L_{2}^{'}(\Omega)$ и $L_{2}(\Omega)$

Пространство  $L_2'(\Omega)$  было определено как пространство функций f(x) таких, что их интегралы  $\int\limits_{\Omega} f(\mathbf{x}) \, d\mathbf{x}$ , если имеют, то конечное число особых точек, и так, что норма

ю осооых точек, и так, что норма

$$||f||_{L_2} = \left(\int\limits_{\Omega} |f(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2} < \infty \tag{1}$$

конечна. Так как в этом определении интеграл мы понимаем в римановском (вообще несобственном) смысле, то пространство  $L'(\Omega)$  не полно (§ 19.7). Однако пространство  $L'_2(\Omega)$  обладает многими свойствами, которым обладает гильбертово (полное) пространство  $L_2(\Omega)$ , определение которого базируется на монятии интеграла Лебега. Перечислим основные из этих свойств, хотя почти обо всех них мы уже говорили.

1) Для любых двух функций  $f, \ \phi \in L_2^{'}(\Omega)$  имеет смысл скалярное произведение

$$(f, \varphi) = \int_{\Omega} f\overline{\varphi} d\mathbf{x},$$

порождающее норму (1).

2) В  $L_2'(\Omega)$  имеется счетная система функций

$$\lambda_1(\mathbf{x}), \ \lambda_2(\mathbf{x}), \ \lambda_3(\mathbf{x}), \dots$$
 (2)

(кусочно постоянных с рациональными параметрами), плотная в  $L_2'(\Omega)$  ( $L_2(\Omega)$ ) (теорема 5, § 14.4).

- 3)  $L_2'(\Omega)$  бесконечномерное пространство; в нем имеется бесконечная линейно независимая система функций (например, характеристических функций кубов  $\Delta \subseteq \Omega$ , см. пример 2, § 14.6),
- 4) Благодаря свойствам 2), 3) пространство  $L_2'(\Omega)$  называется сепарабельным (счетномерным). Из сепарабельности пространства  $L_2'(\Omega)$  следует, что из системы (2) (плотной в  $L_2'(\Omega)$ ) можно выбросить некоторые элементы так, что оставшаяся система

$$\psi_1(\mathbf{x}), \ \psi_2(\mathbf{x}), \ \psi_3(\mathbf{x}), \dots$$
 (3)

будет линейно независимой и полной в  $L_2'(\Omega)$  (см. доказательство теоремы 2, § 14.5).

5) Полную линейно независимую систему (3) можно ортогонализировать и получить снова полную в  $L_2'(\Omega)$ , но уже ортогональную и нормальную счетную систему функций

$$\varphi_1(\mathbf{x}), \ \varphi_2(\mathbf{x}), \ \varphi_3(\mathbf{x}), \ \dots$$
 (4)

(теоремы 1 и 2, § 14.7). Это показывает существование в  $L_2'(\Omega)$  полной ортогональной и нормальной системы функций. На самом деле таких систем имеется бесконечное множество, подобно тому как в трехмерном евклидовом пространстве имеется бесконечное число троек попарно перпендикулярных единичных векторов. С некоторыми такими важными системами мы еще будем иметь дело.

6) Всякую функцию  $f \in L_2'(\Omega)$  можно разложить в ряд Фурье по ортогональной и нормальной системе (4)

$$f(\mathbf{x}) = \sum_{1}^{\infty} \alpha_{k} \varphi_{k}(\mathbf{x}),$$

сходящийся вследствие ее полноты к  $f(\mathbf{x})$  в смысле среднего квадратического. При этом числа (коэффициенты Фурье f)

$$\alpha_k = (t, \ \varphi_k) \tag{5}$$

подчиняются равенству Парсеваля

$$(f, f) = \sum_{1}^{\infty} |\alpha_h|^2 < \infty \tag{6}$$

(теорема 1, § 14.6).

Равенства (5) устанавливают взаимно однозначное соответствие

$$L_2'(\Omega) \rightleftharpoons l_2' \tag{7}$$

между функциями  $f \in L_2'(\Omega)$  и числовыми последовательностями  $\alpha = (\alpha_1, \alpha_2, \ldots) \in l_2' \subset l_2$ , где  $l_2'$  есть некоторое не полное линейное подпространство  $l_2$ . При этом соответствие (7) есть изоморфизм отпосительно операций сложения, умножения на число и скалярного произведения (теорема 7, § 14.6).

В силу изоморфизма (7) неполному пространству  $L_2'(\Omega)$  соответствует тоже не полное подпространство  $l_2' \subset l_2$ . Однако замыкание  $l_2'$  есть  $l_2(\bar{l}_2' = l_2)$ .

Сделаем теперь соответствующие замечания относительно пространства  $L_2(\Omega)$  функций, квадраты модулей которых интег-

рируемы на Ω в лебеговом смысле.

Как уже отмечалось выше,  $L_2(\Omega)$  есть линейное полное пространство со скалярным произведением. Кусочно постоянные функции с рациональными параметрами (см. § 14.4) образуют в  $\hat{L}_2(\Omega)$  плотное множество, так же как они образуют плотное множество в  $L'_2(\Omega)$ . Но тогда ортогопальная и пормальная система (4) является полной не только в  $L'_2(\Omega)$ , но и в  $L_2(\Omega)$ .

Теперь на основании теоремы 7 § 14.6 можно сказать, что равенства (5) устанавливают взаимно однозначное и изоморфное (относительно операций сложения, умножения на число и скалярного произведения) соответствие

$$L_2(\Omega) \rightleftharpoons l_2$$
 (8)

между элементами  $L_2(\Omega)$  и всеми элементами  $l_2$ . Далее, замыкание  $L_2'(\Omega)$  в метрике  $L_2(\Omega)$  есть  $L_2(\Omega)$ , потому что если f есть произвольная функция из  $L_2(\Omega)$ , то ей в силу изоморфизма (8) соответствует элемент  $\alpha = (\alpha_1, \alpha_2, \ldots) \in l_2$  и

$$\int_{\Omega} \left| f(\mathbf{x}) - \sum_{1}^{N} \alpha_{h} \varphi_{h}(\mathbf{x}) \right|^{2} d\mathbf{x} = \sum_{N+1}^{\infty} |\alpha_{h}|^{2} \to 0 \quad (N \to \infty), \quad (9)$$

где суммы  $\sum_{1}^{N} \alpha_h \phi_h \in L_2'(\Omega)$ , а интеграл (9) понимается в лебеговом смысле.

# $\S$ 14.9. Полнота системы функций в $C,\ L_{2}^{'}$ и $L'(L_{2},\ L)$

T е о р е м а.  $\mathit{Пусть}\ \Omega$  — открытое измеримое (ограниченное) множество.

1) Если система функций

$$\varphi_1, \varphi_2, \varphi_3, \ldots$$

§ 14.9. HOTHOTA CHCIEMBI ФУНКЦИИ В  $C_1$   $L_2$  и L'  $(L_2, L)$ 

полна в  $C(\overline{\Omega})$ , то она полна и в  $L_2'(\Omega)$ . 2) Если же она полна в  $L_2'(\Omega)$ , то полна и в  $L'(\Omega)$ .

Доказательство. Имеют место очевидные перавенства

$$\left(\int_{\Omega} \left| f(\mathbf{x}) - \sum_{1}^{N} \boldsymbol{\alpha}_{h} \boldsymbol{\varphi}_{h}(\mathbf{x}) \right|^{2} d\mathbf{x} \right)^{1/2} \leqslant V |\overline{\Omega}| \max_{\mathbf{x}} \left| f(\mathbf{x}) - \sum_{1}^{N} \boldsymbol{\alpha}_{h} \boldsymbol{\varphi}_{h}(\mathbf{x}) \right|, (1)$$

$$\int_{\Omega} \left| f - \sum_{1}^{N} \boldsymbol{\alpha}_{h} \boldsymbol{\varphi}_{h} \right| d\mathbf{x} \leqslant V |\overline{\Omega}| \left( \int_{\Omega} \left| f - \sum_{1}^{N} \boldsymbol{\alpha}_{h} \boldsymbol{\varphi}_{h} \right|^{2} d\mathbf{x} \right)^{1/2}$$
(2)

(см. § 14.2 (13)). Первое из них верно в предположении, что  $\phi_{\bf k}$ ,  $f \in C(\Omega)$ , а второе — что  $\phi_{\bf k}$ ,  $f \in L_2'(\Omega)$   $(L_2)$ .

Если система  $\varphi_k$  полна в  $C(\Omega)$   $(L_2(\Omega))$  или  $L_2(\Omega)$ , то найдется конечная сумма  $\sum_{1}^{N} \alpha_k \varphi_k$ , для которой правая часть в (1) (соответственно в (2)) меньше  $\varepsilon$ . Но тогда и левая меньше  $\varepsilon$ .

Упражиение. 1. Доказать более общее утверждение: если система (1) полна в  $\mathcal{C}(\Omega)$ .

1. Доказать более общее утверждение: если система (1) полна в  $C(\Omega)$ , то и в  $L_p'(\Omega)$  ( $1 \le p < \infty$ ), если же она полна в  $L_{p'}'(\Omega)$  и  $1 \le p < p' < \infty$ , то полна также в  $L_p'(\Omega)$ , где  $\Omega$  — измеримое (ограниченное) множество.

## РЯДЫ ФУРЬЕ. ПРИБЛИЖЕНИЕ ФУНКЦИЙ ПОЛИНОМАМИ

#### § 15.1. Предварительные сведения

Система тригонометрических функций

$$\frac{1}{2}, \cos x, \sin x, \cos 2x, \sin 3x, \dots \tag{1}$$

ортогональна на отрезке  $[0,2\pi]$ , т. е. интеграл на  $[0,2\pi]$  от произведения двух разных функций этой системы равен нулю. Это вытекает из равенств

$$\int_{0}^{2\pi} \cos kx \cos lx \, dx = 0 \quad (k \neq l, k, k = 0, 1, ...),$$

$$\int_{0}^{2\pi} \sin kx \sin lx \, dx = 0 \quad (k \neq l, k, l = 1, 2, ...),$$

$$\int_{0}^{2\pi} \cos kx \sin lx \, dx = 0 \quad (k = 0, 1, ...; l = 1, 2, ...),$$

$$\int_{0}^{2\pi} \cos^{2} kx \, dx = \int_{0}^{2\pi} \sin^{2} kx \, dx = \pi \quad (k = 1, 2, ...),$$

$$\int_{0}^{2\pi} \left(\frac{1}{2}\right)^{2} dx = \frac{\pi}{2}.$$

Эта глава посвящена теории тригонометрических рядов и вопросам приближения функций тригонометрическими полиномами.

Функция f(x) называется периодической периода  $2\omega > 0$ , если она определена на всей действительной оси и для всякого x удовлетворяет условию

 $f(x+2\omega)=f(x).$ 

Если для такой функции существует интеграл (собственный или несобственный)

$$\int_{0}^{2\omega} f(x) dx,$$

то, каково бы ни было действительное число а,

$$\int_{a}^{a+2\omega} f(x) dx = \int_{0}^{2\omega} f(x) dx. \tag{2}$$

Это видио из рис. 15.1: одинаково затушеванные площади равны.

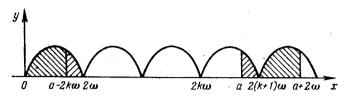


Рис. 15.1.

Но это можно доказать формально. Существует единственное натуральное число k такое, что  $2k\omega \leqslant a < 2(k+1)\omega$  и, очевидно,

$$\int_{a}^{2(k+1)\omega} f(x) dx = \int_{a}^{2(k+1)\omega} f(x-2k\omega) dx = \int_{a-2k\omega}^{2\omega} f(z) dz,$$

$$\int_{2(k+1)\omega}^{a+2\omega} f(x) dx = \int_{2(k+1)\omega}^{a+2\omega} f(x-2(k+1)\omega) dx = \int_{0}^{2\omega} f(z) dz.$$

Складывая эти равенства, получим (2).

Очень часто в случае функций периода 2ю приходится употреблять равенство

$$\int_{0}^{2\omega} f(t-x) dt = \int_{0}^{2\omega} f(t) dt, \qquad (2')$$

где x может быть любым значением. Действительно, воспользованиись (2), имеем

$$\int_{0}^{2\omega} f(t-x) dt = \int_{-x}^{2\omega-x} f(z) dz = \int_{0}^{2\omega} f(t) dt,$$

Это равенство будет часто употребляться без пояснений.

Функции системы (1) являются периодическими периода  $2\pi$ . При этом функции 1,  $\cos x$ ,  $\cos 2x$ , ...— четные и функции  $\sin x$ ,  $\sin 2x$ , ...— нечетные.

Для четпых функций f(x)

$$\int_{-b}^{b} f(x) dx = 2 \int_{0}^{b} f(x) dx$$

и для нечетных

$$\int_{-b}^{b} f(x) \, dx = 0.$$

Сумма вида

$$T_n(x) = \frac{a_0}{2} + \sum_{1}^{n} (a_n \cos kx + b_n \sin kx),$$

где  $a_k$ ,  $b_k$  — постоянные числа, называется тригонометрическим полиномом порядка (или степени) n.

Тригонометрические полиномы мы будем считать простейшими периодическими функциями периода  $2\pi$ . Ими мы будем приближать другие более или менее произвольные функции периода  $2\pi$ .

Функцию f(x) периода  $2\omega$  можно заменить функцией  $F(u) = f(u\omega/\pi)$  периода  $2\pi$  с помощью подстановки  $x = u\omega/\pi$ , приблизить эту вторую функцию некоторым тригонометрическим полиномом  $F(u) \sim T_n(u)$  и затем вернуться к переменной x:

$$f(x) \sim T_n \left(\frac{\pi}{\omega}x\right)$$
.

Условимся о некоторых обозначениях и терминологии. C(a, b) есть (§ 14.1) пространство (класс) пепрерывных на отрезке [a, b] функций f с нормой

$$|| f ||_{C(a,b)} = \max_{a \leqslant x \leqslant b} |f(x)|.$$

 $C^*$  есть пространство (класс) функций f, непрерывных на действительной оси и имеющих период  $2\pi$ , с нормой

$$|f||_{C^*} = \max_{0 \le x \le 2\pi} |f(x)| = \max_{a \le x \le a + 2\pi} |.$$

(а — произвольное действительное число).

Функцию  $f \in C^*$  можно считать принадлежащей  $C(0, 2\pi)$  ( $C^* \subset C(0, 2\pi)$ ), рассматривая ее только на отрезке  $[0, 2\pi]$ . Однако при этом получается не всякая функция пространства  $C(0, 2\pi)$ , а такая, что ее значения на концах периода равны между собой:

$$f(0) = f(2\pi). (3)$$

Наоборот, функция  $f \in C(0, 2\pi)$ , удовлетворяющая условию (3), после периодического продолжения с периодом  $2\pi$  превращается в функцию класса  $C^*$ .

 $\mathring{L}'^*$  есть пространство (класс) функций периода  $2\pi$ , которые, если их рассматривать на отрезке  $[0,2\pi]$ , принадлежат к  $L'(0,2\pi)$ 

с нормой (см. § 14.2)

$$||f||_{L^*} = ||f||_{L(0,2\pi)} = \int_0^{2\pi} |f(x)| dx,$$

Про функцию  $f(x) \in L'^*$  еще говорят, что она периодическая (периода  $2\pi$ ), абсолютно интегрируемая (на периоде) функция. Напомним, что функция  $f \in L'(0, 2\pi)$ , если ее интеграл

$$\int_{0}^{2\pi} f(x) dx \tag{4}$$

существует по Риману или имеет конечное число особых точек и сходится в несобственном смысле абсолютно (см. § 9.16).  $L_2^{\prime*}$  есть пространство (класс) функций f периода  $2\pi$ , которые если их рассматривать на отрезке  $[0,2\pi]$ , принадлежат к  $L_2^{\prime}(0,2\pi)$  с нормой (см. § 14.3)

$$||f||_{L_{2}^{\bullet}} = \left(\int_{0}^{2\pi} |f(x)|^{2} dx\right)^{1/2},$$

Про функцию  $f(x) \in L_2^{'*}$  говорят еще, что она периодическая (периода  $2\pi$ ) функция с интегрируемым квадратом модуля (на периоде) или еще, в действительном случае, с интегрируемым квадратом. Напомним, что функция  $f \in L_2'(0,2\pi)$  интегрируема по Риману на  $[0,2\pi]$  или, если ее интеграл (4) имеет конечное число особых точек, то квадрат ее модуля интегрируем в несобственном смысле. Подчеркнем еще, что  $L_2^{'*} \subset L'^*$  (см. § 14.2, (13)).

В теории рядов Фурье еще более естественно рассматривать классы (пространства)  $L^*$  и  $L_2^*$  функций периода  $2\pi$ , принадлежащих лебеговым пространствам  $L(0,2\pi)$  и соответственно  $L_2(0,2\pi)$ .

Читатель уже заметил, что в наших обозначениях звездочка указывает на периодичность (с периодом  $2\pi$ ) функций, составляющих класс.

Функции f указанных классов могут быть действительными и комплексными функциями  $f(x) = \varphi(x) + i \psi(x)$  от одной переменной x, поэтому, например, мы говорим «квадрат модуля» функции, а не просто «квадрат функции», что только в действительном случае одно и то же.

Система тригонометрических функций (1) ортогональна и, как мы узнаем в дальнейшем, полна в  $L_2'^*(L_2^*)$  (и даже в  $C^*$ ). Каждой функции  $f \in L_2'^*(L_2^*)$  можно привести в соответствие ее ряд Фурье (см. § 14.6, (2)) по системе (1)

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx),$$
 (5)

где

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos kt \, dt \quad (k = 0, 1, ...),$$
 (6)

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin kt \, dt \quad (k = 1, 2, \ldots). \tag{7}$$

Отдельные функции  $\frac{a_0}{2}$ ,  $(a_1 \cos x + b_1 \sin x)$ ,  $(a_2 \cos 2x + b_2 \sin 2x)$ , ..., входящие в правую часть (5) при условиях (6), (7), называются членами ряда Фурье функции f (гармониками f).

Заметим, что коэффициенты Фурье  $a_k$  и  $b_k$  (см. (6) и (7)) имеют на самом деле смысл не только для функций  $f \in L_2^{'*}$ , но и для функций  $f \in L'^*$  (вообще  $f \in L^*$ ). Ведь функции  $\cos kx$ ,  $\sin kx$  ограничены, а функции  $f \in L'^*$  абсолютно интегрируемы, но тогда и интегралы, определяющие коэффициенты Фурье  $f \in L'(0, 2\pi)$ , абсолютно сходятся:

$$\int_{0}^{2\pi} |f(x)\cos kx| dx \leq \int_{0}^{2\pi} |f(x)| dx,$$

$$\int_{0}^{2\pi} |f(x)\sin kx| dx \leq \int_{0}^{2\pi} |f(x)| dx.$$

Поэтому, имея в виду бо́льшую общность, мы будем по возможности рассматривать разложения в ряды Фурье функций, принадлежащих  $L'^*(L^*)$ .

Итак, каждой функции  $f \in L'^*$  (вообще  $f \in L^*$ ) соответствует се ряд Фурье, независимо от того, сходится он в каких-либо точках x или нет. Существенно заметить, что если функцию  $f \in L'^*$  видоизменить, прибавив к ней пулевую в  $L'^*(L^*)$  функцию  $\theta(x)$ , т. е. такую, что

$$\int_{0}^{2\pi} |\theta(x)| dz = 0,$$

например, видоизменить в конечном числе точек, то это не изменяет коэффициенты Фурье f, а следовательно, и сам ряд Фурье функции f. Совокупность коэффициентов Фурье функции называется ее спектром. Многие колебательные процессы (колебания) в физике и технике описываются периодическими функциями, вообще периода  $\omega$ , и тогда u есть время, а y = F(u) есть ордината колеблющейся точки, силы, скорости, силы тока, ... Если F есть тригонометрический полином, то

$$y = F(u) = \frac{a_0}{2} + \sum_{1}^{n} \left( a_h \cos \frac{k\pi}{\omega} u + b_h \sin \frac{k\pi}{\omega} u \right) = \frac{a_0}{2} + \sum_{1}^{n} A_h \cos \left( \frac{k\pi}{\omega} u - \varphi_h \right),$$

где  $A_k = \sqrt{a_k^2 + b_k^2}$ , а  $\varphi_k$  определяются из уравнений  $a_k = \cos \varphi_k$ ,  $b_k = \sin \varphi_k$ ,  $0 \le \varphi_k \le 2\pi$ .

В физике говорят, что колебательный процесс y = F(u) распадается на простейшие колебательные процессы — гармонические

колебания (гармоники)

$$A_k \cos\left(\frac{k\pi}{\omega}u - \varphi_k\right). \tag{8}$$

Гармоника (8) имеет частоту k, амилитуду  $A_k$  и начальную фазу  $\varphi_k$ . На рис. 15.2 изображены три периодические периода  $2\pi$  функции:  $S_2(x) = \sin x - \frac{\sin 2x}{2}$  (сплошной линией),  $S_3(x) = \sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3}$  (пунктиром) и  $S_4(x) = \sin x - \dots - \frac{\sin 4x}{4}$  (точками).

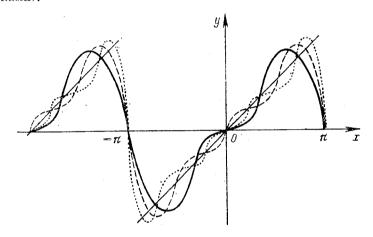


Рис. 15.2.

Для больших п график суммы

$$S_n(x) = \sum_{1}^{n} (-1)^{k-1} \frac{\sin kx}{k}$$
 (9)

схематически (не точно) изображен на рис. 15.3, что наводит на мысль, и это будет в дальнейшем обосновано, что предельная функция

 $S(x) = \lim_{n \to \infty} S_n(x) \tag{10}$ 

есть периодическая (периода 2π) функция, определяемая равепствами

$$S(x) = x \quad (-\pi < x < \pi), \quad S(\pi) = 0.$$
 (11)

Функция S(x) разрывна в точках  $x_k = (2k+1)\pi$ , и потому последовательность непрерывных функций  $\{S_n(x)\}$  не может равномерно сходиться к S(x), но она все же равномерно сходится на любом отрезке [a,b], принадлежащем интервалу  $(-\pi,\pi)$ , вообще любому отрезку оси x, принадлежащему интервалу, на котором S(x) имеет непрерывную производную (см. § 15.5).

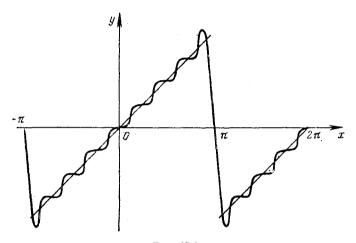


Рис. 15.3.

На рис. 15.3 еще показано, что график  $S_n(x)$  возле точек  $x_k$  разрыва предельной функции S(x) делает всплески. Это характерное явление для точек разрыва первого рода предельной кусочно гладкой функции, называемое явлением  $\Gamma$ иббса, будет изучаться в § 15.9.

#### § 15.2. Сумма Дирихле

Пусть задана функция  $f \in L'^*$  (вообще  $L^*$ ) и пусть

$$f(x) \sim \frac{a_0}{2} + \sum_{1}^{\infty} (a_k \cos kx + b_k \sin kx)$$
 (1)

есть ее ряд Фурье, где, таким образом,

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos kt \, dt \quad (k = 0, 1, 2, ...),$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin kt \, dt \quad (k = 1, 2, ...).$$

Частичная  $\emph{n}$ -я сумма этого ряда может быть преобразована так:

$$S_{n}(x) = \frac{a_{0}}{2} + \sum_{1}^{\infty} (a_{k} \cos kx + b_{k} \sin kx) =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt + \sum_{1}^{\infty} \frac{1}{\pi} \int_{0}^{2\pi} f(t) (\cos kt \cos kx + \sin kt \sin kx) dt =$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} \left\{ \frac{1}{2} + \sum_{1}^{\infty} \cos k(t - x) \right\} f(t) dt = \frac{1}{\pi} \int_{0}^{2\pi} D_{n}(t - x) f(t) dt, \quad (2)$$

где (см. § 8.2, (16))

$$D_n(x) = \frac{1}{2} + \sum_{1}^{n} \cos kx = \frac{1}{2} \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}}.$$
 (3)

Мы получили компактное выражение для n-й суммы Фурье функции f(x):

$$S_n(x) = \frac{1}{\pi} \int_0^{2\pi} D_n(t-x) f(t) dt = \frac{1}{\pi} \int_0^{2\pi} D_n(u) f(x+u) du.$$
 (4)

В последнем равенстве мы воспользовались периодичностью под-интегральной функции.

Интеграл (4) называется интегралом Дирихле порядка n, а полином  $D_n(x) = \mathfrak{s}\partial pom$  Дирихле порядка n. Заметим, что при любом x и  $n = 0, 1, 2, \ldots$ 

$$\frac{1}{\pi} \int_{0}^{2\pi} D_n (t - x) dt = \frac{1}{\pi} \int_{0}^{2\pi} \left\{ \frac{1}{2} + \sum_{1}^{n} \cos k (t - x) \right\} dt = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{2} dt = 1, \quad (5)$$

потому что

$$\int_{0}^{2\pi} \cos k (t - x) dt = \int_{0}^{2\pi} \cos kt dt = 0 \quad (k = 1, 2, ...).$$

В последнем равенстве использована периодичность (период  $2\pi$ ) функции  $\cos kt$  и тот факт, что она ортогональна на отрезке  $[0,2\pi]$  к функции, тождественно равной единице.

В лебеговой теории две функции из  $L^*$ , равные почти всюду, **имеют** один и тот же ряд Фурье, т. е. одни и те же соответствующие коэффициенты Фурье.

Всякий ряд вида

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (\alpha_k \cos kx + \beta_k \sin kx), \tag{6}$$

где  $\alpha_k$ ,  $\beta_k$  — постоянные числа (коэффициенты ряда), называется тригонометрическим рядом.

Тригонометрический ряд становится рядом Фурье только тогда, когда существует функция  $f \in L^*$ , коэффициентами Фурье которой являются соответственно числа  $a_k$ ,  $b_k$  ( $a_k = \alpha_k$ ,  $b_k = \beta_k$ ). Например, если установлено, что ряд (6) сходится в смысле среднего квадратического на  $[0, 2\pi]$  к некоторой функции  $f \in L_2^{\prime*}$  (или  $L_2^*$ ), то он есть ряд Фурье этой функции (см. следствие леммы 1, § 14.6).

Произведение двух четных или двух печетных функций есть функция четная, в то время как произведение четной на нечетную функцию есть функция нечетная. Поэтому, если функция  $f \in L'^*$  (или  $L^*$ ) — четная, то ее ряд Фурье имеет вид

$$f(x) \sim \frac{a_0}{2} + \sum_{1}^{\infty} a_k \cos kx \quad \left(a_k = \frac{2}{\pi} \int_{0}^{2\pi} f(t) \cos kt \, dt\right),$$

потому что ее коэффициенты  $b_k = 0$ , а если она нечетная, то се ряд Фурье имеет вид

$$f(x) \sim \sum_{k=1}^{\infty} b_k \sin x \quad \left(b_k = \frac{2}{\pi} \int_{0}^{\pi} f(t) \sin kt \ dt\right),$$

потому что тогда ее коэффициенты  $a_k = 0$ .

Если коэффициенты  $a_h$ ,  $b_h$  суммы Фурье n-го порядка функции f(x) периода  $2\pi$  вычислить приближенно по формуле прямоугольников (см. § 10.6), разделяя период на 2n+1 равных частей точками

$$x_k = \frac{2\pi k}{2n+1}$$
  $(k = 0, 1, ..., 2n),$  (7)

то получим сумму

$$S_n(f,x) = \frac{a_0^{(n)}}{2} + \sum_{1}^{n} \left( a_k^{(n)} \cos kx + b_k^{(n)} \sin kx \right),$$

$$a_k^{(n)} = \frac{2}{2n+1} \sum_{j=0}^{2n} f(x_j) \cos kx_j \quad (k=0, 1, \dots, n),$$

$$b_k^{(n)} = \frac{2}{2n+1} \sum_{j=0}^{2n} f(x_j) \sin kx_j \quad (k=0, 1, \dots, n),$$

замечательную тем, что она есть тригонометрический полипом порядка n, интерполирующий f в узлах (7). Таким образом,

$$f(x_i) = S_n(i, x_i) \quad (i = 0, 1, ..., 2n),$$

Легко проверить это утверждение, если учесть, что

$$\begin{split} &\frac{2}{2n+1} \sum_{j=0}^{2n} \cos kx_j \cos lx_j = \delta_{kl}, \\ &\frac{2}{2n+1} \sum_{j=0}^{2n} \sin kx_j \sin lx_j = \delta_{kl}, \\ &\frac{2}{2n+1} \sum_{i=0}^{2n} \sin kx_j \cos lx_j = 0 \quad (k, l = 0, 1, ..., n). \end{split}$$

#### § 15.3. Формулы для остатка ряда Фурье

Для функции  $f \in L'^*$  (вообще  $L^*$ ) из формул (4) и (5) предыдущего параграфа следует, что

$$S_{n}(x) - f(x) = \frac{1}{\pi} \int_{0}^{2\pi} D_{n}(u) [f(x+u) - f(x)] du =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(u) \Delta_{u} f(x) du, \quad (1)$$

гле

$$\Delta_u f(x) = f(x+u) - f(x) \tag{2}$$

(разность f в точке x с шагом u).

В этих преобразованиях мы воспользовались периодичностью подынтегральной функции.

Равенство (1) дает выражение для остаточного члена ряда Фурье. Выяснение вопроса, сходится или нет ряд Фурье функции f в данной точке x к ее значению f(x), и связанные с этим вопросом оценки сходимости сводятся к исследованию поведения интеграла (1) при  $n \to \infty$ .

Зададим положительное число  $\eta$ , удовлетворяющее перавенствам  $0 < \eta \leqslant \pi$ , и введем для удобства две функции

$$\mu(u) = \begin{cases} \frac{1}{u}, & |u| < \eta, \\ 0, & \eta \leqslant |u| \leqslant \pi, \end{cases}$$
 (3)

$$v(u) = \begin{cases} 0, & |u| < \eta, \\ \frac{1}{u}, & \eta \leqslant |u| \leqslant \pi. \end{cases}$$
 (4)

Очевидно,  $\frac{1}{u} = \mu(u) + \nu(u), -\pi < u < \pi$ , поэтому

$$D_n(u) = \frac{\sin nu}{2 \operatorname{tg} \frac{u}{2}} + \frac{1}{2} \cos nu = \frac{\sin nu}{u} + \left(\frac{1}{2 \operatorname{tg} \frac{u}{2}} - \frac{1}{u}\right) \sin nu + \frac{1}{2} \cos nu = \mu(u) \sin nu + g(u) \sin nu + \frac{1}{2} \cos nu, \quad (5)$$

где 
$$g(u) = v(u) + \frac{1}{2 \operatorname{tg} \frac{u}{2}} - \frac{1}{u}$$
.

Отметим перавенства

$$|g(u)| \leq \frac{1}{\eta} + \left| \frac{u - 2 \operatorname{tg} \frac{u}{2}}{2u \operatorname{tg} \frac{u}{2}} \right| \leq \frac{1}{\eta} + \frac{O(u^2)}{2 |\operatorname{tg} \frac{u}{2}|} \leq C$$

$$(-\pi < u < \pi),$$

показывающие, что функция g(u) ограничена на  $(-\pi, \pi)$ . Кроме того, она принадлежит, очевидно, к  $L'(-\pi, \pi)$ . Мы будем считать ее продолженной с периодом  $2\pi$  на всю действительную ось. Таким образом,  $g(u) \in L'_*$  и ограниченная функция.

Из (1) и (2) следует равенство

$$S_n(x) - f(x) = \frac{1}{\pi} \int_{-\pi}^{\eta} \frac{\sin nu}{u} \Delta_u f(x) du + \rho_n(x), \qquad (6)$$

где

$$\rho_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \sin nu \Delta_u f(x) du + \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos nu \Delta_u f(x) du.$$
 (7)

В § 15.4 (замечание 3) будет показано, что если функция  $f \in L_*'$ , то

$$\rho_n(x) = o(1), \quad n \to \infty \tag{8}$$

для любого x, где f(x) конечна и даже равномерно на любом отрезке [a, b], где функция f(x) ограничена.

Но тогда справедлива следующая важная лемма.

 $\Pi$  емма. Eсли функция  $f \in L_*$  и  $\eta- n$  роизвольное число, удовлетворяющее неравенствам  $0 < \eta \leqslant \pi$ , то

$$S_n(x) - f(x) = \frac{1}{\pi} \int_{-n}^{n} \frac{\sin nu}{u} \Delta_u f(x) du + o(1) \quad (n \to \infty) \quad (9)$$

(см. (2)) для любого x, где f(x) конечна, и притом равномерно на любом отрезке [a,b], где функция f(x) ограничена.

Для фиксированной точки x формула (9) всегда верна, лишь бы функция f была определена в этой точке. Для того чтобы узнать, стремится ли при  $n \to \infty$  к нулю разность  $S_n(x) - f(x)$  в этой точке, мы должны исследовать первый (главный) члеп в правой части (9). Второй член уже стремится к нулю.

Если известно, что на некотором отрезке [a, b] наша функция f ограничена, то вопрос о том, будет ли  $S_n(x)$  стремиться к f(x) при  $n \to \infty$  на этом отрезке или его части равномерно, зависит от решения этого вопроса для главного члена части (9), потому что второй член уже стремится к нулю и притом равномерно на [a, b].

Конечно, если функция f неограничена на отрезке [a, b], то она разрывна где-то на нем и ряд Фурье f, если и сходится на [a, b] к f, то заведомо неравномерно. Ведь его члены — равномер-

по непрерывные на (-∞,∞) функции.

Остановимся еще на важном свойстве рядов Фурье, называсмом принципом локализации. Если мы хотим узнать, сходится или нет ряд Фурье данной функции  $f \in L'^*(L^*)$  на отрезке [a', b'], достаточно знать ее свойства на каком-нибудь отрезке [a, b], строго внутри себя содержащем [a', b']. В самом деле, положим  $\eta = \min \{a' - a, b - b'\}$ . Тогда для точек  $x \in [a', b']$ , для которых мы хотим исследовать сходимость ряда Фурье, подынтегральное выражение в правой части (9) зависит от значений f только на [a, b] (ведь если  $x \in [a', b']$  и  $0 < |u| < \eta$ , то x, x + u,  $x - u \in [a, b]$ ).

#### § 15.4. Леммы об осцилляции

Пусть функция  $f \in L'(-\infty, \infty)$  (вообще  $L(-\infty, \infty)$ ), тогда при любом действительном  $\lambda$ 

$$\left| \int_{-\infty}^{\infty} f(x) \cos \lambda x \, dx \right| \leqslant \frac{1}{2} \int_{-\infty}^{\infty} \left| f\left(x + \frac{\pi}{\lambda}\right) - f(x) \right| dx,$$

$$\left| \int_{-\infty}^{\infty} f(x) \sin \lambda x \, dx \right| \leqslant \frac{1}{2} \int_{-\infty}^{\infty} \left| f\left(x + \frac{\pi}{\lambda}\right) - f(x) \right| dx.$$
(1)

В самом деле,

$$\int_{-\infty}^{\infty} f(x) \sin \lambda x \, dx = \int_{-\infty}^{\infty} f\left(u + \frac{\pi}{\lambda}\right) \sin \lambda \left(u + \frac{\pi}{\lambda}\right) du =$$

$$= -\int_{-\infty}^{\infty} f\left(u + \frac{\pi}{\lambda}\right) \sin \lambda u \, du = -\int_{-\infty}^{\infty} f\left(x + \frac{\pi}{\lambda}\right) \sin \lambda x \, dx.$$

Поэтому

$$\left| \int_{-\infty}^{\infty} f(x) \sin \lambda x \, dx \right| = \frac{1}{2} \left| \int_{-\infty}^{\infty} \left[ f(x) - f\left(x + \frac{\pi}{\lambda}\right) \right] \sin \lambda x \, dx \right| \leqslant$$

$$\leqslant \frac{1}{2} \int_{-\infty}^{\infty} \left| f\left(x + \frac{\pi}{\lambda}\right) - f(x) \right| dx.$$

Для косинуса рассуждение аналогично.

Пемма 1. Пусть  $f \in L'(-\infty, \infty)$  (или  $L(-\infty, \infty)$ ), g = orpa-ниченная измеримая (на любом отрезке) функция (|g(x)| < k). I огда

$$\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} \cos \lambda u \, g(u) \, f(x+u) \, du = 0,$$

$$\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} \sin \lambda u \, g(u) \, f(x+u) \, du = 0$$
(2)

равномерно относительно x, принадлежащих  $\kappa$  любому отрезку [a, b].

В частности,

$$\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} \cos \lambda u f(x+u) du = 0,$$

$$\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} \sin \lambda u f(x+u) du = 0.$$
(3)

Доказательство. Отметим, что равенства (3) непосредственно следуют из неравенств (1) и теоремы 6 § 14.4.

Чтобы доказать (2), зададим  $\varepsilon > 0$  и подберем непрерывную финитную функцию  $\varphi(u) \subseteq L'(-\infty, \infty)$  такую, что

$$\int_{-\infty}^{\infty} |f(u) - \varphi(u)| du < \frac{\varepsilon}{2K}$$
 (4)

(см. теорему 1, § 14.4 и рис. 14.1, а) и представим интеграл (2) в виде

$$\int_{-\infty}^{\infty} \cos \lambda u \, g(u) \, f(x+u) \, du = I_1 + I_2, \tag{5}$$

где

$$I_{1} = \int_{-\infty}^{\infty} \cos \lambda u \, g(u) \left[ f(x+u) - \varphi(x+u) \right] \, du,$$

$$I_{2} = \int_{-\infty}^{\infty} \cos \lambda u \, g(u) \, \varphi(x+u) \, du.$$

Но если считать, что |g(u)| < K,  $|\varphi(u)| < K_i$ , то для всех x

$$|I_1| \leqslant K \int_{-\infty}^{\infty} |f(x+u) - \varphi(x+u)| du = K \int_{-\infty}^{\infty} |f(t) - \varphi(t)| dt < \frac{\varepsilon}{2},$$
(6)

и (в силу (1)) при  $\lambda > \lambda_0$ , где  $\lambda_0$  достаточно велико,

$$|I_{2}| \leq \frac{1}{2} \int_{-\infty}^{\infty} \left| g\left(u + \frac{\pi}{\lambda}\right) \varphi\left(x + u + \frac{\pi}{\lambda}\right) - g\left(u\right) \varphi\left(x + u\right) \right| du \leq$$

$$\leq \frac{1}{2} \int_{-\infty}^{\infty} \left| g\left(u + \frac{\pi}{\lambda}\right) - g\left(u\right) \right| \left| \varphi\left(x + u + \frac{\pi}{\lambda}\right) \right| du +$$

$$+ \frac{1}{2} \int_{-\infty}^{\infty} \left| g\left(u\right) \right| \left| \varphi\left(x + u + \frac{\pi}{\lambda}\right) - \varphi\left(x + u\right) \right| du \leq$$

$$\leq \frac{K_{1}}{2} \int_{-\infty}^{\infty} \left| g\left(u + \frac{\pi}{\lambda}\right) - g\left(u\right) \right| du + \frac{K}{2} \int_{-\infty}^{\infty} \left| \varphi\left(t + \frac{\pi}{\lambda}\right) - \varphi\left(t\right) \right| dt < \frac{\varepsilon}{2}.$$
(7)

Из (5), (6), (7) следует первое равенство (2) и притом равномерно относительно  $x \in [a, b]$ .

Аналогично показывается второе равенство (2).

Пемма 2. Равенства (2) остаются верными в предположении, что  $f \in L'(L)$ , а  $g(u) = g(\alpha, u)$ — ограниченная функция  $(|g(\alpha, u)| < K, \alpha_1 \le \alpha \le \alpha_2)$ , непрерывно зависящая от  $(\alpha, u)$ , где  $\alpha$ — параметр. При этом они выполняются равномерно относительно  $\alpha \in [\alpha_1, \alpha_2)$  и  $x \in [a, b]$ , где [a, b]— произвъльный отрезок.

Лемма эта доказывается так же, как лемма 1. Надо учесть, что в правой части (7) для  $x \in [a, b]$  в силу финитности  $\phi$ 

можно вместо интеграла 
$$\int_{-\infty}^{\infty} \left| g\left(u+\frac{\pi}{\lambda}\right) - g\left(u\right) \right| du$$
 написать 
$$\int_{-N}^{N} \left| g\left(u+\frac{\pi}{\lambda}\right) - g\left(u\right) \right| du$$
 при достаточно большом  $N$ , и тогда 
$$\int_{-N}^{N} \left| g\left(\alpha,u+\frac{\pi}{\lambda}\right) - g\left(\alpha,u\right) \right| du \to 0 \quad (\lambda \to \infty)$$

равномерно относительно  $\alpha \in [\alpha_1, \alpha_2]$ , так как функция  $g(\alpha, u)$  равномерно непрерывна на  $[\alpha_1, \alpha_2] \times [-N, N]$ .

Замечание 1. Все утверждения, доказанные выше в этом параграфе, остаются верными, если считать, что функции f и g — периодические периода  $2\pi$ , принадлежащие  $L'_*$ , (или  $L_*$ ), а интегралы взяты по периоду. Теперь уже, впрочем, надо считать, что переменная  $\lambda$  пробегает натуральные числа ( $\lambda=1,2,3,\ldots$ ), чтобы функции  $\cos \lambda x$ ,  $\sin \lambda x$  были периодическими. Конечно, функцию  $\phi$  в (4) можно взять периодической периода  $2\pi$  (не обязательно финитной на периоде).

Ниже формулируются эти утверждения для периодических функций. В верности их читатель убедится, заменив всюду в при-

веденных выше рассуждениях  $\int_{-\infty}^{\infty}$  на  $\int_{-1}^{\pi}$ 

Для функции  $f \in L_*'$  выполняются неравенства

$$\left| \int_{-\pi}^{\pi} f(x) \frac{\cos \lambda x}{\sin \lambda x} dx \right| \leq \frac{1}{2} \int_{-\pi}^{\pi} \left| f\left(x + \frac{\pi}{\lambda}\right) - f(x) \right| dx. \tag{1'}$$

$$\lim_{\lambda \to \infty} \int_{-\sin \lambda u}^{\pi} \frac{\cos \lambda u}{\sin \lambda u} g(u) f(x+u) du = 0 \qquad (\lambda = 1, 2, \ldots)$$
 (2')

равномерно относительно всех  $x \in (-\infty, \infty)$ .

В частности, коэффициенты Фурье  $a_k$ ,  $b_k$  функции f стремятся k нулю при  $k \to \infty$ :

$$\lim_{k\to\infty} a_k = \lim_{k\to\infty} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt = 0,$$

$$\lim_{k\to\infty} b_k = \lim_{k\to\infty} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt = 0.$$

Замечание 2. Верен также аналог леммы 2, где надосчитать, что функция  $g(\alpha, u)$  припадлежит по u к  $L'_*$  (L) и непрерывна по  $(\alpha, u)$ , где  $\alpha \in [\alpha_1, \alpha_2]$ .

Замечание 3. Равенство (8) § 15.3 теперь вытекает из

следующих соображений.

Представим первое слагаемое правой части (7) § 15.3 подробнее:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \sin nu \Delta_u f(x) du = \frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \sin nu f(x+u) du - \frac{f(x)}{\pi} \int_{-\pi}^{\pi} g(u) \sin nu du.$$
 (8)

Первый интеграл правой части (8) стремится к нулю при  $n \to \infty$  равномерно относительно  $x \in (-\infty, \infty)$  на основании (2'). Второй интеграл на том же основании стремится к нулю для таких x, для которых f(x) — конечное число; при этом это стремление к нулю равномерно на любом отрезке изменения x, на котором функция f ограничена. Аналогичные утверждения имеют место и для второго слагаемого правой части (7) § 15.3.

Этим доказано, что  $\rho_n(x) \to 0$  при  $n \to \infty$  для любого x, для которого f(x) конечна и притом равномерно на любом отрезке. На

котором † ограничена.

Заметим еще, что если функция  $f \in L_2^{\prime *}$  (или  $L_2^*$ ), то тот факт, что ее коэффициенты Фурье  $a_k$ ,  $b_k$  стремятся к нулю, следует из неравенства Парсеваля

$$\sum_{1}^{\infty} (|a_{k}|^{2} + |b_{k}|^{2}) < \infty.$$

Стремление к нулю интеграла (3), соответствующего, например синусу, можно объяснить следующим образом. Несмотря на то, что функция  $f \in L'^*(L^*)$  может иметь много, даже (в случае L) бесконечное число разрывов, она все же обладает многими свойствами непрерывных функций. Это проявляется в доказанных выше леммах об осцилляции. Множитель  $\sin \lambda x$  изгибает график f(x) в график, состоящий из волн. Каждая из них состоит из двух нолуволн, которые в среднем хорошо компенсируют друг друга при интегрировании. Результат компенсации налицо: интеграл (3) стремится к нулю при  $\lambda \to \infty$ .

# § 15.5. Критерии сходимости рядов Фурье. Полнота тригонометрической системы функций

По определению функция f(x) удовлетворяет на отрезке [a,b] (интервале (a,b)), условию Липшица степени  $\alpha$   $(0<\alpha\leqslant 1)$ , если для любых  $x,x'\in [a,b]$  ((a,b)) выполняется неравенство

$$|f(x') - f(x)| \leq M|x' - x|^{\alpha},$$

**г**де M не зависит от x, x'. При  $\alpha = 1$  в этом случае просто говорят, что f удовлетворяет условию Липшица.

Если, например, f — непрерывная и кусочно гладкая на [a, b], то **она** удовлетворяет условию Липшица на [a, b], потому что

$$|f(x') - f(x)| = \left| \int_{x}^{x'} f'(t) dt \right| \leqslant M |x' - x| \quad (|f'(t)| \leqslant M).$$

Если функция f имеет на интервале (a, b) ограниченную проводную  $(|f'| \leq M)$  и непрерывна на [a, b], то и в этом случае

мы, применяя теорему Лагранжа, получим

$$|f(x') - f(x)| = |f'(\xi)(x' - x)| \le M|x' - x|, \quad \xi \in (x, x')$$

и убедимся, что f удовлетворяет на [a, b] условию Липшица.

Функция  $|x|^{\alpha}$   $(0 < \alpha \le 1)$  удовлетворяет условию Липшица степени  $\alpha$  на всей действительной оси (тем более на любом отрезке), потому что, если считать, что 0 < |x| < |x'| и |x'/x| = t,  $1 < t < \infty$ , то получим

$$\frac{\left|\left|\left|\left|x'\right|^{\alpha}-\left|\left|x\right|^{\alpha}\right|\right|}{\left|\left|\left|x'\right|-\left|x\right|\right|^{\alpha}} = \frac{t^{\alpha}-1}{\left(t-1\right)^{\alpha}} \leqslant 1 \quad (M=1).$$

При  $\alpha=1$  это неравенство очевидно. При  $\alpha<1$  это видно из того, что функция от t в его левой части имеет предел, равный нулю при  $t\to 1$  и равный 1 при  $t\to \infty$ , и она имеет положительную производную на  $(1, \infty)$  и, таким образом, она возрастает на  $(1, \infty)^*$ ).

Теорема 1. Пусть функция  $f \in L'^*$  (или  $L^*$ ) и, кроме того, она удовлетворяет условию Липшица степени  $\alpha$  на отрезке  $\{a, b\}$  (в частности, если f — непрерывная кусочно гладкая на [a, b]). Тогда, каковы бы ни были a', b', удовлетворяющие неравенствам a < a' < b' < b, ряд Фурье f сходится на [a', b'] к f и притом равномерно.

Доказательство. Пусть  $\delta = \min \{a'-a, b-b'\}$  и  $0 < \eta < \delta$ ,  $\pi$ . Тогда для  $x \in [a', b']$  и  $0 \le |u| \le \eta$  точки x, x+u принадлежат [a, b] и потому

$$|f(x+u) - f(x)| \le M|u|^{\alpha}. \tag{1}$$

При найденном η воспользуемся формулой § 15.3, (9):

$$S_n(x) - f(x) = \frac{1}{\pi} \int_{-n}^{n} \sin nu \, \frac{f(x+u) - f(x)}{u} \, du + o(1), \quad n \to \infty$$

имеющей место равномерно относительно  $x \in [a, b]$ . Тогда для любого  $\varepsilon > 0$  равномерно для всех  $x \in [a', b']$  получим в силу (1) оценку

$$|S_n(x) - f(x)| \leqslant \frac{1}{\pi} \int_{-\eta}^{\eta} \frac{M |u|^{\alpha}}{|u|} du + |o(1)| \leqslant \frac{2M}{\pi \alpha} \eta^{\alpha} + \frac{e}{2} < e$$

$$(n > N). \quad (2)$$

где  $\eta$  выбрано так, чтобы выполнялось неравенство  $2M\eta^{\alpha}/\pi\alpha < < \epsilon/2$  и затем N взято настолько большим, чтобы  $|o(1)| < \frac{\epsilon}{2}$  при n > N. Теорема доказана.

<sup>\*)</sup> В случае |x|=|x'| имеем  $|x'|^{\alpha}-|x|^{\alpha}=0\leqslant |x'-x|^{\alpha}$ .

Теорема 2. Если функция  $f \in C^*$  — непрерывная и кусочно гладкая на действительной оси, то ее ряд Фурье сходится к ней на всей действительной оси и притом равномерно.

В самом деле, на отрезке  $[-\varepsilon, 2\pi + \varepsilon]$ , где  $\varepsilon > 0$ , f— непрерывная и кусочно гладкая и потому ряд ее Фурье по предыдущей теореме равномерно сходится к ней на  $[0, 2\pi]$ , следовательно, вследствие периодичности f и членов ряда, и на всей действительной оси.

Теорема 3 (Вейерштрасса). Системы функций

$$1, \cos x, \sin x, \cos 2x, \sin 2x, \dots$$
 (3)

$$1, \cos x, \cos 2x, \ldots \tag{4}$$

$$\sin x, \sin 2x, \dots \tag{5}$$

полны соответственно

в пространстве С\*,

2) в подпространстве  $C^*$  четных функций, а также в  $C(0, \pi)$ ,

3) в подпространстве  $C^*$  нечетных функций, а также в классе функций, принадлежащих  $C(0, \pi)$  и удовлетворяющих условию  $f(0) = f(\pi) = 0$ .

Доказательство. В самом деле, пусть f — произвольная функция класса  $C^*$ . Она равномерно непрерывна на отрезке  $[-\pi, \pi]$  и имеет период  $2\pi$ . Поэтому для любого  $\varepsilon > 0$  можно указать полигональную функцию  $\Pi(x)$  периода  $2\pi$  такую, что

$$|f(x) - \Pi(x)| < \frac{\epsilon}{2} \tag{6}$$

для всех x. При этом, если f — четная или нечетная функция, то можно сделать так, что и  $\Pi(x)$  будет соответственно четная или нечетная. Например, если точки графика f с абсциссами  $x_i = jh$ ,  $j = 0, \pm 1, \pm 2, \ldots, h = \pi/N$ , где N — достаточно большое натуральное число, соединить отрезками, то получим ломаную, описываемую нужной функцией  $\Pi(x)$ . Функция  $\Pi(x)$  удовлетворяет условиям предыдущей теоремы потому n-я ее сумма Фурье при достаточно большом n удовлетворяет неравенству

$$|\Pi(x) - S_n(x)| < \frac{\varepsilon}{2}$$
 для всех  $x$ . (7)

При этом, если  $\Pi(x)$  — четная или нечетная функция, то и  $S_n(x)$  воответственно обладает одним из этих свойств.

Из (6) и (7) следует, что  $|f(x) - S_n(x)| < \varepsilon$  для всех x. Это доказывает теорему, потому что  $S_n(x)$  — тригонометрический полином — конечная линейная комбинация из функций соответственно систем (3), (4), (5). Отметим, что  $S_n$  есть сумма Фурье не f, а  $\Pi$ .

Это утверждение не противоречит тому факту, что существуют функции  $f \in C^*$ , ряды Фурье которых в отдельных точках расходятся (см. по этому поводу замечание в конце этого па-

parpaфa).

Надо еще иметь в виду, что если пепрерывную на  $[0, \pi]$  (принадлежащую  $C(0, \pi)$ ) функцию продолжить четным образом, а затем периодически с периодом  $2\pi$  продолжить на действительную ось, то получим четную функцию класса  $C^*$ . Если же функцию, непрерывную на  $[0, \pi]$ , удовлетворяющую условию  $f(0) = f(\pi) = 0$ , продолжить нечетным образом, а затем периодически, то получим нечетную функцию класса  $C^*$ .

Заметий, что из теоремы 3 следует, что для любой непрерывной периода  $2\pi$  функции f ( $f \in C^*$ ) существует равномерно сходящаяся к ней (на действительной оси) последовательность тригонометрических полиномов  $T_n(x)$  ( $n=1, 2, \ldots$ ), откуда следует, что функция f представима в виде равномерно сходящегося к ней

ряда тригонометрических полиномов

$$f(x) = \sum_{0}^{\infty} Q_h(x), \ Q_0 = T_0, \ Q_h = T_h - T_{h-1} \quad (k = 1, 2, \ldots).$$

Теорема 4. Ряд Фурье функции  $f \in L_2^{'*}$  (вообще  $L_2^*$ ) схо-дится к ней в смысле среднего квадратичного на периоде.

Доказательство. В самом деле, по предыдущей теореме система (3) тригонометрических функций полна в  $C^*$ . Тем более она полна в  $L_2^{\prime *}$  (см. теорему § 14.9). Но тогда теорема верна на основании теоремы 1 § 14.6 из общей теории ортогональных рядов.

В силу той же теоремы для полной ортогональной и нормальмальной системы тригонометрических функций § 15.1, (1) выпол-

няется равенство Парсеваля

$$\int_{-\pi}^{\pi} |f|^2 dx = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} f \, dx \right|^2 + \frac{1}{\pi} \sum_{k=1}^{\infty} \left( \left| \int_{-\pi}^{\pi} f(t) \cos kt \, dt \right|^2 + \left| \int_{-\pi}^{\pi} f(t) \sin nt \, dt \right|^2 \right),$$

или

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f|^2 dx = \frac{|a_0|^2}{2} + \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2), \tag{8}$$

какова бы ни была функция  $f \in L_2^{'*}$  (или, более общо,  $L_2^*$ ).

Пример 1. Функция  $\psi(x)$  периода  $2\pi$ , определяемая равенством \*)

$$\psi(x) = \begin{cases} \frac{\pi - x}{2}, & 0 < x < 2\pi, \\ 0, & x = 0, \end{cases} \tag{9}$$

очевидно, принадлежит  $L'^*$ . Ее ряд Фурье имеет вид

$$\psi(x) = \sum_{1}^{\infty} \frac{\sin kx}{k},\tag{10}$$

потому что она нечетная, а

$$b_k = \frac{2}{\pi} \int_0^{\pi} \frac{\pi - t}{2} \sin kt \, dt = \frac{1}{k} \quad (k = 1, 2, \ldots).$$

Любой отрезок [a', b'], не содержащий в себе точки  $x_k = 2k\pi$   $(k = 0, \pm 1, \pm 2, \ldots)$ , содержится сгрого внутри некоторого другого отрезка [a, b] (a < a' < b' < b), обладающего этим же свойством, и при этом на [a, b] функция  $\psi$  непрерывна вместе со своей производной, следовательно, — гладкая. Но тогда на основании теоремы 1 ряд Фурье (10) функции  $\psi$  сходится к ней равномерно на [a', b']. Он, таким образом, сходится в любой точке  $x \neq 2k\pi$   $(k = 0, \pm 1, \pm 2, \ldots)$ . Но и в этих исключительных точках  $2k\pi$  он тоже сходится к  $\psi$ , ведь в них  $\psi = 0$ , так же как равны нулю все члены ряда (10). Однако равномерной сходимости в любых окрестностях точек  $x_k = 2k\pi$  не может быть.

Кроме того, очевидно, что  $\psi \in {L_2'}^*$ , и потому на основании теоремы 4 ряд Фурье (10) функции  $\psi$  сходится к  $\psi$  в смысле среднего квадратического на  $[-\pi, \pi]$ :

$$\int_{-\pi}^{\pi} \left| \psi(x) - \sum_{1}^{n} \frac{\sin kx}{k} \right|^{2} dx \to 0 \quad (n \to \infty).$$

Функция  $\psi(x)$  представляет собой простейшую разрывную периода  $2\pi$  функцию, имеющую единственную точку разрыва (на периоде) первого рода. Ее скачок в точке разрыва равен  $\psi(0+0) - \psi(0-0) = \pi$ .

Очевидно, функция  $\psi(x-x_0)$ , график которой сдвинут на величину  $x_0$  в направлении оси x, имеет разрывы в точках  $x_0+2k\pi$  ( $k=0,\pm 1,\pm 2,\ldots$ ) со скачками, равными  $\pi$ . Она разлагается в тригонометрический ряд

$$\psi(x-x_0) = \sum_{k=0}^{\infty} \frac{\sin k (x-x_0)}{k} = \sum_{k=0}^{\infty} \left( \frac{(-\sin kx_0)}{k} \cos kx + \frac{\cos kx_0}{k} \sin kx \right),$$

который является ее рядом Фурье, потому что он сходится в смысле среднего квадратичного к  $\psi(x-x_0)$  на  $(0, 2\pi)$  (см. следствие леммы 1 § 14.6).

<sup>\*)</sup> Функция  $\psi(x)$  и функция S(x), о которой говорилось в § 15.1 (см. § 15.1, (11)), связаны равенством —  $\psi(x) = \frac{1}{2} S(x - \pi)$ , поэтому графики —  $\psi$  и  $\frac{1}{2} S$  и их частных сумм Фурье получаются один из другого слингом на  $\pi$ .

Замечание. Функция ф дает нам интересный пример функции, ряд Фурье которой сходится к ней не только в ее точках непрерывности, но и в ее точках разрыва.

Следующая теорема дает общий класс функций, ряды Фурье

которых сходятся к ним в их точках разрыва.

Теорема 5. Пусть функция  $f \in L'^*$  ( $L^*$ ) — кусочно гладкая на отрезке [a, b] и имеет на этом отрезке единственную точку разрыва  $x \subset (a, b)$ . Тогда ряд Фурье f сходится в точке  $x_0$  к среднему арифметическому правого и левого пределов в этой точке:

$$\frac{f(x_0+0)+f(x_0-0)}{2}=\frac{a_0}{2}+\sum_{k=0}^{\infty}(a_k\cos kx_0+b_k\sin kx_0). \quad (11)$$

Доказательство. Так как f — кусочно гладкая на отрезке [a, b] функция и точка  $x_0$  — внутренняя точка этого отрезка, то конечные пределы  $f(x_0+0)$  и  $f(x_0-0)$  существуют. Будем считать, что выполняется равенство

$$f(x_0) = \frac{1}{2} [f(x_0 - 0) + f(x_0 + 0)]$$

Иначе можно видоизменить f в  $x_0$  так, чтобы это равенство выполнилось, что, как мы знаем, не изменяет коэффициенты Фурье функции f, а следовательно, и ее ряд Фурье.

Положим

$$\varphi(x) = f(x) - \frac{f(x_0 + 0) - f(x_0 - 0)}{\pi} \psi(x - x_0).$$

На основании свойств функции ф

$$\varphi\left(x_{0}\right)=f\left(x_{0}\right),$$

$$\varphi(x_0 + 0) = f(x_0 + 0) - \frac{f(x_0 + 0) - f(x_0 - 0)}{2} = \frac{f(x_0 - 0) + f(x_0 + 0)}{2} = f(x_0),$$

$$\varphi(x_0 - 0) = f(x_0 - 0) + \frac{f(x_0 + 0) - f(x_0 - 0)}{2} = \frac{f(x_0 - 0) + f(x_0 + 0)}{2} = f(x_0).$$

Поэтому  $\varphi(x_0) = \varphi(x_0 - 0) = \varphi(x_0 + 0)$ . Это показывает, что функция  $\varphi$  непрерывна в точке  $x_0$ , и так как она есть разность кусочно гладких на [a, b] функций, непрерывных вне точки  $x_0$ , то она кусочно гладкая и непрерывная на [a, b], но тогда, как мы знаем, n-я сумма  $S_n(\varphi, x_0)$  функции  $\varphi$  в точке  $x_0$  стремится при  $n \to \infty$  к  $\varphi(x_0)$  и так как  $S_n(f, x_0) = S_n(\varphi, x_0)$ , то

$$\lim_{n\to\infty} S_n(f,x_0) = \lim_{n\to\infty} S_n(\varphi,x_0) = \varphi(x_0) = f(x_0),$$

что и требовалось доказать.

Ряд Фурье функции f, описанной в теореме 5 со скачком в точке  $x = x^0$ , хотя и сходится в этой точке и ее окрестности, но медленно и притом перавномерно. Ряд же Фурье  $\phi(x)$  сходится лучше и уже во всяком случае равномерно в некоторой окрестности  $x^0$ . С другой стороны, функция  $\alpha\psi(x-x_0)$  выражается очень простой формулой, и быть может, даже не будет необходимости разлагать ее в ряд Фурье. Во всяком случае, ряд Фурье функции  $\psi$  очень хорошо изучен в специальной литературе.

Отметим некоторые факты, относящиеся к вопросу о сходимо-

сти и расходимости рядов Фурье.

А. Н. Колмогоров \*) привел пример функции, принадлежащей лебегову классу  $L^*$ , ряд Фурье которой расходится всюду на действительной оси.

Карлсон\*\*) показал, что какова бы ни была функция, принадлежащая лебегову классу  $L_2^*$ , ее ряд Фурье сходится к ней почти всюду. Так как  $C^* \subset L_2^*$ , то это утверждение Карлсона имеет место и для всякой непрерывной на действительной оси функции периода  $2\pi$ . Утверждение Карлсона верно и для функций  $f \in L_p^* (1 ).$ 

С другой стороны, известны (Дюбуа Реймон, Фейер) примеры пепрерывных периодических функций  $f(f \in C^*)$ , ряды Фурье которых расходятся на множестве всех рациональных точек. Они показывают, что если про функцию f известно только, что она непрерывна, то этого не достаточно, чтобы сказать, что ее ряд Фурье сходится. Для сходимости нужно наложить на f еще некоторые добавочные условия. В доказанных выше теоремах таким добавочным условием было условие Липшица степени  $\alpha$ . В других более изысканных теориях это условие заменяется на более слабые достаточные признаки.

Полученные выше свойства рядов Фурье функций периода 2π автоматически переносятся на ряды функций периода 2ω:

$$f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} \left( a_h \cos \frac{k\pi}{\omega} x + b_h \sin \frac{k\pi}{\omega} x \right), \tag{12}$$

$$a_{k} = \frac{1}{\omega} \int_{0}^{2\omega} \cos \frac{k\pi}{\omega} t f(t) dt,$$
(13)

$$b_{h} = \frac{1}{\omega} \int_{0}^{2\omega} \sin \frac{k\pi}{\omega} t f(t) dt.$$

<sup>\*)</sup> А. Н. Колмогоров (родился в 1903 г.) — выдающийся советский математик, академик.

<sup>\*\*)</sup> Карлсон Л. А. Е.— выдающийся современный шведский математик.
\*\*\*) Это доказал американский математик Р. Хант.

Таким образом, если функция  $f \in L'(0, 2\omega)$  ( $L(0, 2\omega)$ ) периода  $2\omega$  и удовлетворяет на отрезке [a, b] условию Липшица степени  $\alpha$  ( $0 < \alpha \le 1$ ), то ее ряд Фурье (13) сходится к ней равномерно на любом отрезке  $[a', b'] \subset (a, b)$ , если же f — кусочно гладкая на [a, b], то в точках x ее разрыва, принадлежащих (a, b), ее ряд Фурье сходится к  $\frac{1}{2}$  [f(x+0)+f(x-0)].

Наконец, заметим, что если функция y=f(x) описывает физическое колебание, представляющее собой сумму конечного или бесконечного числа некоторых гармонических колебаний, соответствующих частотам  $k=0,\pm 1,\ldots$ , то k-е колебание  $u_k(x)=a_k\cos\frac{k\pi}{\omega}x+b_k\sin\frac{k\pi}{\omega}x$  можно легко получить, учитывая, что числа  $a_k,b_k$  суть коэффициенты Фурье f, вычисляемые по формулам (13). С другой стороны, эти колебания  $u_k(x)$  можно, как известно, физически получить из данного сложного реального колебания y=f(x) при помощи специальных физических приспособлений — резонаторов, и при этом соответствующие практические результаты хорошо согласуются с математическими.

Примеры. Приведенные здесь функции имеют период  $2\pi$ ,

1. 
$$f_1(x) = \operatorname{sign} x (|x| < \pi)$$
,  $f_1(x) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin(2k+1)x}{2k+1}$ .

2. 
$$f_2(x) = x(|x| < \pi), \quad f_2(x) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1} \sin kx}{k}.$$

3. 
$$f_3(x)$$
 — четная функция, равная  $\frac{\pi - x}{2}$  на  $[0, \pi]_r$ 

$$f_3(x) = \frac{\pi}{4} + \frac{2}{\pi} \sum_{0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2}$$

4.  $f_4(x)$  — четная функция, равная 1 в (0, h) и равная нулю в  $(h, \pi)_4$   $0 < h < \pi_1$ 

$$f_{4}\left(x\right)=\frac{2h}{\pi}\Bigg[\frac{1}{2}+\sum_{k=1}^{\infty}\left(\frac{\sin kh}{kh}\right)\cos kx\Bigg].$$

5.  $f_5(x)$  — непрерывная четная функция, равная нулю в  $(2h, \pi)$ ,  $0 < 1 < h \le \pi/2$ , равная 1 при x = 0 и линейная в (0, 2h),

$$f_{5}\left(x\right) = \frac{2h}{\pi} \left[ \frac{1}{2} + \sum_{h=1}^{\infty} \left( \frac{\sin kh}{kh} \right)^{2} \cos kx \right].$$

Упражнение. Выяснить, на каких отрезках или, может быть, на всей действительной оси сходятся равномерно ряды из примеров 1—5.

#### § 15.6. Комплексная форма записи ряда Фурье

Пусть  $a_k$  и  $b_k$  — коэффициенты Фурье функции  $f \in L'^*$  (или  $L^*$ ). На основании формулы Эйлера

$$a_h \cos kx + b_h \sin kx = a_h \frac{e^{ihx} + e^{-ihx}}{2} + b_h \frac{e^{ihx} - e^{-ihx}}{2i} = c_h e^{ihx} + c_{-h} e^{-ihx}.$$

где

$$c_h = \frac{a_h - ib_h}{2}, \quad c_{-h} = \frac{a_h + ib_h}{2}.$$
 (1)

Отсюда

$$c_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} (\cos kt - i \sin kt) f(t) dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{-ikt} dt,$$

$$c_{-k} = \frac{1}{2\pi} \int_{0}^{2\pi} (\cos kt + i \sin kt) f(t) dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{ikt} dt$$

и, таким образом, числа

$$c_k = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{-ikt} dt \quad (k = 0, \pm 1, \pm 2, \ldots)$$
 (2)

вычисляются по единой формуле для всех k (в том числе и k=0,  $c_0=a_0/2$ ).

Важно заметить, что если f — действительная функция, то  $a_k$  и  $b_k$  действительны, а числа  $c_k$  и  $c_{-k}$ , хотя вообще и комплексны, но взаимно сопряжены:

$$c_{-h} = \overline{c_{h^*}} \tag{3}$$

Наоборот, попарная комплексная сопряженность  $c_k$  и  $c_{-k}$  влечет за собой, очевидно, действительность коэффициентов Фурье  $a_k$  и  $b_k$  функции f, а если это имеет место для всех  $k=0,\ 1,\ \ldots$ , то и действительность f.

В самом деле, если, например,  $f \in L_2^{'*}$ , то ряд Фурье f сходится к f в смысле среднего квадратического. Но если его члены действительны, то и f(x) — действительная функция. В общем случае  $f \in L^{'*}$ , этот факт следует из теоремы 2 § 15.11.

Очевидно, *n-*я сумма ряда Фурье *f* может быть записана в виде

$$S_n(x) = \frac{a_0}{2} + \sum_{1}^{n} (a_k \cos kx + b_k \sin kx) = \sum_{n=0}^{n} c_k e^{ihx}, \tag{4}$$

а сам ряд Фурье f — в виде ряда

$$f(x) \sim \frac{a_0}{2} + \sum_{1}^{\infty} \left( a_k \cos kx + b_k \sin kx \right) \sim \sum_{-\infty}^{\infty} c_k e^{ikx} \tag{5}$$

с двумя входами.

Мы будем говорить, что ряд (5) сходится для данного значения x, если существует предел

$$\lim_{n\to\infty}\sum_{-n}^n c_k e^{ik\infty}$$

Таким образом, мы будем понимать сходимость ряда в правой части (5) в *смысле главного значения*. Ведь можно было бы считать его сходящимся, если существует предел

$$\lim_{n,m\to\infty}\sum_{-m}^n c_k e^{ikx},$$

когда *т* и *п* неограниченно возрастают независимо друг от друга. Функции (комплексные!)

$$\frac{1}{\sqrt{2\pi}}e^{ikx} \quad (k=0,\pm 1,\pm 2,\ldots)$$
 (6)

образуют ортогональную и нормальную систему на отрезке  $[0, 2\pi]$ , потому что

$$\int_{0}^{2\pi} \frac{1}{\sqrt{2\pi}} e^{ikx} \frac{1}{\sqrt{2\pi}} e^{-ilx} dx = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(k-l)x} dx = \delta_{kl}.$$

Так как тригонометрические функции  $\cos kx$ ,  $\sin kx$  ( $k=0,1,2,\ldots$ ) образуют полную систему в  $C^*$ , тем более в  $L_2^*$ ,  $L^*$  (теорема 3, § 15.5), то это же свойство имеет место и для системы  $e^{ikx}$  ( $k=0,\pm 1,\pm 2,\ldots$ ), потому что

$$\cos kx = \frac{1}{2} (e^{ihx} + e^{-ihx}), \sin kx = \frac{1}{2i} (e^{ihx} - e^{-ihx}).$$

Числа  $c_k$ , определяемые формулами (2), являются коэффициентами Фурье f относительно функций  $e^{ikx}$  (см. § 14.6(2)).

Из сказанного следует, что ряд

$$f(x) \sim \sum_{-\infty}^{\infty} c_h e^{ihx},$$

полученный в (5) из обычного тригонометрического ряда Фурье, есть сам по себе ряд Фурье функции f по функциям  $e^{i\kappa x}$ . Его называют тригонометрическим рядом Фурье функции f в комплексной форме.

В силу полноты системы (6) в  $L_2^*$  для любой функции  $f \in L_2^*$  имеет место равенство Парсеваля

$$\int_{0}^{2\pi} |f(x)|^{2} dx = \sum_{-\infty}^{\infty} \left( \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} f(t) e^{iht} dt \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} f(t) e^{-iht} dt \right)$$

или

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{2} dx = \sum_{-\infty}^{\infty} |c_{h}|^{2}. \tag{7}$$

## § 15.7. Дифференцирование и интегрирование рядов Фурье

Пусть f(x) есть непрерывная кусочно гладкая функция\*) периода  $2\pi$ . К ее ненулевым коэффициентам Фурье можно применить формулу интегрирования по частям:

$$c_{h} = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{-iht} dt = \frac{1}{2\pi} \left( f(t) \frac{e^{-iht}}{-ik} \Big|_{0}^{2\pi} + \frac{1}{ik} \int_{0}^{2\pi} f'(t) e^{-iht} dt \right) = \frac{1}{ik} c'_{h} \quad (k = \pm 1, \pm 2, \ldots), \quad (1)$$

где

$$c'_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} f'(t) e^{-ikt} dt, \qquad (2)$$

Мы воспользовались периодичностью функций f(t) и  $e^{i\hbar t}$ , в силу которой

$$f(t) e^{-ikt} \Big|_0^{2\pi} = 0.$$

Производная f'(t) есть кусочно непрерывная периода  $2\pi$  функция, возможно, разрывная с конечным числом разрывов первого рода на периоде. Она конечна, принадлежит  $L'^*$  и для нее имеют смысл числа  $c'_h$  — комплексные коэффициенты Фурье f'.

Если функция f(x) периода  $2\pi$  непрерывна и имеет непрерывную кусочно гладкую производную порядка l-1, то процесс (1) интегрирования по частям можно провести l раз. В результате получим равенство

$$c_k = \frac{1}{(ik)^l} c_k^{(l)} \quad (k = \pm 1, \pm 2, \ldots),$$
 (3)

тде

$$c_{k}^{(l)} = \frac{1}{2\pi} \int_{0}^{2\pi} f^{(l)}(t) e^{-iht} dt$$

— коэффициенты Фурье  $f^{(l)}(x)$  — производной от f порядка l.

<sup>\*)</sup> Или, более общо, пусть функция f периода 2л абсолютно непрерывна на любом отрезке (см. § 19.5, (11)).

Имеет место важная теорема.

Теорема 1. Если ряд Фурье непрерывной периода  $2\pi$  кусочно гладкой функции\*)

$$f(x) = \sum_{-\infty}^{\infty} c_k e^{ikx} \tag{4}$$

почленно продифференцировать, то получится ряд Фурье ее про-изводной

$$f'(x) \sim \sum_{-\infty}^{\infty} c'_{h} e^{ihx} = \sum_{-\infty}^{\infty} (ik) c_{h} e^{ihx}.$$
 (5)

 $3\partial ecb \Sigma'$  обозначает, что в ряде нет нулевого коэффициента.

Доказательство. В самом деле, f'(x) — вообще кусочно непрерывная функция, имеющая разрывы там, где f имеет разрывы производной, но в точках  $x_s$  разрыва f' существуют пределы  $f'(x_s \pm 0)$ . Такая функция может быть разложена в ряд Фурье

$$f'(x) \sim \sum' c'_h e^{ihx}, \tag{6}$$

возможно, и не сходящийся к ней во многих точках. При этом

$$c'_0 = \frac{1}{2\pi} \int_0^{2\pi} f'(t) dt = \frac{1}{2} [f(2\pi) - f(0)] = 0,$$

потому что f — непрерывная функция периода  $2\pi$ . С другой стороны, для всех  $k \neq 0$  имеет место равенство (1), и поэтому из (6) следует (5). Ряд (4) равномерно сходится к f(x) на основании теоремы 2 § 15.5.

 $\overline{\Gamma}$ еорема 2. Если ряд Фурье кусочно непрерывной функции (с разрывами первого рода!)

$$\varphi(x) \sim \sum' c_k' e^{ikx} \quad \left(c_0' = 0\right) \tag{7}$$

проинтегрировать почленно (считая, что интеграл от  $e^{ikx}$  равен  $(ik)^{-1}e^{ikx}$ ), то получим равномерно сходящийся ряд Фурье непрерывной кусочно гладкой функции

$$f(x) - \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx = \sum_{-\infty}^{\infty} c_{k} e^{ikx},$$
 (8)

$$c_h = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-iht} dt \quad (k = \pm 1, \pm 2, \ldots),$$

<sup>\*)</sup> Теорема верна для абсолютно непрерывной периода  $2\pi$  функции (§ 19.5, (11)). Ее ряд Фурье равномерно сходится к ней, как это доказывается в более полных курсах рядов Фурье.

где

$$f(x) = \int_{0}^{x} \varphi(t) dt.$$
 (9)

В самом деле, в силу (9) по теореме Ньютона — Лейбница функция f(x) — непрерывная и кусочно гладкая на  $[0, 2\pi]$ . Кроме того,

$$f(2\pi) - f(0) = \int_{0}^{x} \varphi(t) dt \Big|_{0}^{2\pi} = 0,$$

потому что

$$\frac{1}{2\pi}\int\limits_{0}^{2\pi}\varphi\left(t\right)dt=c_{\theta}'=0$$

и, следовательно, ряд Фурье f равномерно сходится к f, откуда следует (8). С другой стороны, правая часть (8) может быть в силу (1) рассматриваема как результат указанного почленного интегрирования правой части (7).

Заметим, что на основании теоремы 2, § 15.5 ряд Фурье куссчно гладкой функции  $f \in C^*$  сходится к ней на всей действительной оси и притом равномерно. Поэтому в (8) написан знак равенства. Что же касается функции f'(x), то она кусочно непрерывна (на отрезке  $[0, 2\pi]$ ). Ее ряд Фурье может расходиться (см. § 15.5 перед (12)). Поэтому в (5) написан знак  $\sim$ .

Замечание. Теоремы 1 и 2 значительно расширяют в случае рядов Фурье известные читателю из общей теории рядов критерии законности почленного их дифференцирования и интегрирования. Но возможно и дальнейшее расширение этих критериев, не только с помощью аппарата интеграла Лебега, но и еще путем введения понятия обобщенной функции (см. далее § 16.11).

У пражнение 1. Доказать, что если функция f(x) периода  $2\pi$  имеет непрерывную кусочно гладкую производную  $f^{(l-1)}(x)$  порядка (l-1), то

ее можно представить в виде

$$(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} B_l(t-x) f^{(l)}(t) dt,$$

где

$$B_l(u) = \sum_{l=1}^{\infty} \frac{\cos\left(ku + \frac{l\pi}{2}\right)}{k^l} \quad (l = 1, 2, \ldots).$$

Упражнение 2. Пользуясь тем, что

$$B_1(u) = \sum_{1}^{\infty} \frac{\sin ku}{k}$$

и, таким образом,  $B_1(u)=(u-\pi)/2$  (0  $< u < 2\pi$ ), ноказать, что при любом  $l=1,\ 2,\ 3,\ \ldots B_l(u)$  на отрезке  $[0,\ 2\pi]$  представляет собой многочлен степени l такой, что интеграл от него по  $[0,\ 2\pi]$  равен нулю и  $B'_{l+1}=-B_l$ ,

Эти многочлены называются многочленами Бернулли.

## § -15.8. Оценка остатка ряда Фурье.

T е о р е м а 1. Пусть функция f периода  $2\pi$  имеет на всей оси непрерывную кусочно гладкую производную  $f^{(l-1)}$  порядка l-1, а ее производная  $f^{(l)}$  подчиняется неравенству

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f^{(l)}|^2 dx \leqslant M^2. \tag{1}$$

Тогда уклонение функции f(x) от ее (N-1)-й суммы Фурье оценивается следующим образом:

$$|f(x) - S_{N-1}(x)| \le M \left(2 \sum_{N=1}^{\infty} \frac{1}{k^{2l}}\right)^{1/2} < \sqrt{\frac{2}{2l-1}} \frac{M}{(N-1)^{l-\frac{1}{2}}}$$
 (2)

Доказательство. Из условия теоремы следует, что ряд Фурье функции f(x) сходится к ней на действительной оси. Отклонение f(x) от  $S_{N-1}(x)$  может быть записано в виде

$$f\left( x\right) -S_{N-1}\left( x\right) =% \frac{1}{N}\left( x\right) -S_{N-1}\left( x\right) =S_{N-1}\left( x\right) -S_{N-1}\left( x\right) -S_{N-1}\left( x\right) =S_{N-1}\left( x\right) -S_{N-1}\left( x\right) -S_{N-1}\left$$

$$= \sum_{N}^{\infty} \left( c_{h} e^{ihx} + c_{-h} e^{-ihx} \right) = \sum_{N}^{\infty} \left[ \left( \frac{1}{ik} \right)^{l} c_{h}^{(l)} e^{ihx} + \left( \frac{1}{-ik} \right)^{l} c_{-h}^{(l)} e^{-ihx} \right], \quad (3)$$

где  $c_k$  — комплексные коэффициенты Фурье f, выраженные затем (в третьем члене цепи) через коэффициенты Фурье  $c_k^{(l)}$  производной  $f^{(l)}$  согласно формуле (3) предыдущего параграфа.

Если учесть, что

$$|e^{ikx}|=1$$

(ведь x — действительное), и равенство Парсеваля для  $f^{(i)}$ , то

$$|f(x) - S_{N-1}(x)| \leqslant$$

$$\leq \sum_{N=1}^{\infty} \frac{1}{k^{l}} (|c_{h}^{(l)}| + |c_{-h}^{(l)}|) \leq \left(2 \sum_{N=1}^{\infty} \frac{1}{k^{2l}}\right)^{1/2} \left(\sum_{N=1}^{\infty} (|c_{h}^{(l)}|^{2} + |c_{-h}^{(l)}|^{2})\right)^{1/2} \leq \left(2 \sum_{N=1}^{\infty} \frac{1}{k^{2l}}\right)^{1/2} \left(2 \sum_{N=1}^{\infty} \frac{1}{k^{2l}}\right)^{1/2} \left(2 \sum_{N=1}^{\infty} \frac{1}{k^{2l}}\right)^{1/2} \leq \left(2 \sum_{N=1}^{\infty} \frac{1}{k^{$$

$$\leqslant \left(2\sum_{N}^{\infty} \frac{1}{k^{2l}}\right)^{1/2} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f^{(l)}(x)|^2 dx\right)^{1/2} \leqslant M \left(2\sum_{N}^{\infty} \frac{1}{k^{2l}}\right)^{1/2}, \quad (4)$$

и мы получили цервую оценку в (2). Вторая же более грубая оценка вытекает из перавенства

$$\sum_{N=1}^{\infty} \frac{1}{k^{2l}} \leqslant \int_{N-1}^{\infty} \frac{dx}{x^{2l}} = \frac{1}{2l-1} \frac{1}{(N-1)^{2l-1}}.$$

Замечание. Оценка (2) при тех же рассуждениях остается верной в предположении, что периодическая функция f(x) имеет абсолютно непрерывную производную порядка l-1 и (почти всюду) производную порядка l, удовлетворяющую неравенству (1), где интеграл понимается в смысле Лебега (см. сноски к теоремам 1, 2 предыдущего параграфа).

Заметим, что можно доказать оценку

$$|f(x) - S_n(x)| < C \frac{\ln n}{n^l} \sup_{x} |f^{(l)}(x)|,$$

где C — константа, не зависящая от n, но это потребовало бы более сложных рассуждений.

Упражнение. Показать, ограничившись для простоты случаем, когда l делится на 4, что первая оценка в (2) — точная. Указание. Из (3) при x=0 следует

$$f(0) - S_n(0) = \sum_{n=1}^{\infty} \frac{1}{k^l} \left( c_k^{(l)} + c_{-k}^{(l)} \right)$$

и первое, так же как второе, неравенства (4) достижимы, если числа  $c_k^{(l)}$  подобрать пропорциональными соответственно  $1/k^l$  (см. замечание после  $\S$  6.2, (8)).

#### § 15.9. Явление Гиббса

Функция

$$\psi(x) = \sum_{1}^{\infty} \frac{\sin kx}{k} \tag{1}$$

равная

$$\frac{\pi - x}{2} = \sum_{k=1}^{\infty} \frac{\sin kx}{k} \tag{2}$$

на интервале  $(0, \pi)$ , имеет n-ю частную сумму

$$\psi_n(x) = \sum_{k=1}^{n} \frac{\sin kx}{k}.$$
 (3)

Пля нее при  $0 < x \le \pi$  имеет место (пояснения ниже)

$$\frac{x}{2} + \psi_n(x) = \int_0^x \left(\frac{1}{2} + \sum_1^n \cos kt\right) dt = \int_0^x \frac{\sin(n + \frac{1}{2})t}{2\sin\frac{t}{2}} dt = \int_0^x \frac{\sin nt}{2t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt = \int_0^x \frac{\sin nt}{t} dt + \frac{1}{2} \int_0^x \cos nt dt + \frac{1}{2} \int_0^x \sin nt dt + \frac{1}{2} \int_0^x \cos nt dt + \frac{1}{2} \int_0^x \sin nt dt$$

$$+\int_{0}^{x} \sin nt \left(\frac{1}{2 \operatorname{tg} \frac{t}{2}} - \frac{1}{t}\right) dt + \frac{1}{2} \int_{0}^{x} \cos nt \, dt = \int_{0}^{x} \frac{\sin nt}{t} \, dt + o(1)$$

$$(n \to \infty) \quad (4)$$

равномерно относительно  $x \in (0, \pi)$ . Пояспения требует только оценка второго и третьего слагаемого в предпоследнем члене цении. Например, второе слагаемое можно записать в виде

$$A_{n} = \int_{0}^{\infty} \sin nt \, g(t) \, dt =$$

$$= \frac{1}{2} \int_{0}^{\infty} \sin nt \, g(t) \, dt - \frac{1}{2} \int_{\pi/n}^{\infty} \sin nt \, g\left(t + \frac{\pi}{n}\right) dt =$$

$$= \frac{1}{2} \int_{0}^{\pi} \sin nt \, g(t) \, dt - \frac{1}{2} \int_{x}^{\infty} \sin nt \, g\left(t + \frac{\pi}{n}\right) dt +$$

$$+ \frac{1}{2} \int_{\pi/n}^{\infty} \sin nt \, \left[g(t) - g\left(t + \frac{\pi}{n}\right)\right] dt,$$

откуда ( $|g(t)| \le M$ , g(t) = 0 вне  $(0, \pi)$ , см. § 15.3, (7))

$$|A_n| \leqslant \frac{1}{2} \frac{\pi}{n} M + \frac{1}{2} \frac{\pi}{n} M + \frac{1}{2} \int_{-\infty}^{\infty} |g(t) - g\left(t + \frac{\pi}{n}\right)| dt \to 0, n \to \infty,$$
(5)

где правая часть не зависит от  $x \in (0, \pi)$ , поэтому левая стремится к нулю равномерно относительно указанных x.

Положив теперь в (4)  $x = \pi/n$  и перейдя к пределу при  $n \to \infty$ , получим (пояснения ниже)

$$d_{+} = \lim_{n \to \infty} \psi_{n} \left( \frac{\pi}{n} \right) = \int_{0}^{\pi} \frac{\sin t}{t} dt > \frac{\pi}{2}$$
 (6)

(см. ниже (9), (12)). Между тем

$$\psi(0+0) = \lim_{\substack{x>0\\x>0}} \frac{\pi-x}{2} = \frac{\pi}{2}.$$
 (7)

Вычисления показывают, что отношение

$$\frac{d_{+}}{\frac{1}{2}(\psi(0+0)-\psi(0-0))} = \frac{d_{+}}{\psi(0+0)} = \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} dt = 1,089490 \dots$$

Тот факт, что это отношение больше 1 (а не равно 1), называют явлением  $\Gamma u \delta \delta ca$ .

На рис. 15.3 изображен схематический график фупкции  $f(x) = -\psi(x-\pi)$  и ее n-й частной суммы  $S_n(x)$ . На  $[-\pi+\delta, \pi-\delta]$ , где  $\delta > 0$ , при достаточно большом n функция  $S_n(x)$  колеблется вблизи f(x). Ведь  $S_n(x) \to f(x)$  при  $n \to \infty$  равномерно на этом отрезке. С другой стороны, вблизи  $x = \pi$  график  $S_n(x)$  резко отклоняется от f(x) кверху — это и есть явление Гиббса. Затем он резко опускается к точке  $x = \pi$  на оси x. На отрезке  $[-\pi, 0]$  имеет место полобное явление.

Надо иметь в виду, что и для произвольной функции  $f \in L^*$ , непрерывной вместе со своей производной на полуинтервалах  $[a, x^0)$ ,  $(x^0, b]$ , имеющей вместе со своей производной разрыв первого рода в  $x^0$ , имеет место подобное явление в окрестности точки  $x^0$ . Это вытекает из возможности представления функции f в виде суммы  $f(x) = f_1(x) + f_2(x)$ , где  $f_1$  — непрерывная \*) кусочно гладкая на [a, b], а  $f_2(x) = \frac{\kappa}{\pi} \psi(x - x_0)$ , где  $\kappa$  — скачок f. Ряд Фурье  $f_1$  сходится к  $f_1$  равномерно на  $[a', b'] \subset (a, b)$ , функция же  $f_2$  есть всего лишь сдвинутая и умноженная на постоянную функция  $\psi$ . Для нее (а следовательно, и для f) имеет место явление Гиббса с тем же отношением (8)

$$\frac{d_{+}(x_{0})}{\frac{1}{2}(f(x_{0}+0)-f(x_{0}-0))} = \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} dt,$$

гле теперь

$$d_{+}(x^{0}) = \lim_{n \to \infty} \left[ S_{n} \left( x^{0} + \frac{\pi}{n} \right) - \frac{f(x^{0} + 0) + f(x^{0} - 0)}{2} \right],$$

а  $S_n$  — сумма Фурье f.

Явление Гиббса, так же как ряды Фурье, надо рассматривать как явление природы, да оно и обнаружено впервые чисто эмпирическим путем (Д. Ч. Гиббсом, американским физиком-теоретиком (1839—1903)).

Справедливы равенства

$$\frac{\pi}{2} = \int_{0}^{\infty} \frac{\sin x}{x} dx = \int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx. \tag{9}$$

Второе из них см. § 13.15 (8), (10) (A(1) = A), а первое можно получить из следующих соображений. Полагая в (4)  $x = \pi$  и учитывая, что  $\psi_n(\pi) = 0$  (см. (3)), будем иметь

$$\frac{\pi}{2} = \int_{0}^{\pi} \frac{\sin nt}{t} dt + o(1) \to \int_{0}^{\infty} \frac{\sin x}{x} dx \ (n \to \infty), \tag{10}$$

<sup>\*)</sup> Точнее,  $f_1$  имеет, быть может, устранимые разрывы.

и так как здесь первый член не зависит от n, то и получим первое равенство (9).

Йнтеграл справа в (10) можно еще записать в виде ряда

$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \sum_{0}^{\infty} \int_{k\pi}^{(k+1)\pi} \frac{\sin x}{x} dx = \sum_{0}^{\infty} \int_{0}^{\pi} \frac{\sin (k\pi + u) du}{k\pi + u} =$$

$$= \sum_{0}^{\infty} (-1)^{k} a_{k}, a_{k} = \int_{0}^{\pi} \frac{\sin u du}{k\pi + u}. \tag{11}$$

Ясно, что числа  $a_k$  неотрицательны и убывают к нулю, поэтому справа в (11) стоит ряд Лейбница.

В частности, отсюда следует, что

$$\frac{\pi}{2} = \int\limits_0^\infty \frac{\sin x}{x} \, dx < a_0 = \int\limits_0^\pi \frac{\sin x}{x} \, dx. \tag{12}$$

Примечание. Функция

$$\lambda_n(x) = \int_0^x \frac{\sin nt}{t} dt = \int_0^{nx} \frac{\sin u}{u} du$$
 (13)

достигает в точке  $\pi/n$  своего максимума, равного  $d_+$  (см. (6)), на  $[0, \infty)$ .

В самом деле, подынтегральная функция во втором интеграле непрерывна и положительна на интервале  $u \in (0, \pi)$ , и потому  $\lambda_n(x)$  строго возрастает на отрезке  $[0, \pi/n]$ . С другой стороны,  $\lambda_n(\pi/n) > \lambda_n(x)$  для  $x > \pi/n$ , потому что в этом случае

$$\int_{\pi/n}^{x} \frac{\sin nt}{t} dt = \sum_{k=1}^{k_0} \int_{k\pi}^{(k+1)\pi} \frac{\sin u}{u} du + \int_{(k_0+1)\pi}^{nx} \frac{\sin u}{u} du < 0$$

 $(k_0$  — наибольшее натуральное, для которого (k+1)  $\pi \le nx$ ). Ведь слагаемые этой суммы последовательно меняют знак, уменьшаясь по абсолютной величине, и при этом первое из них отрицательное.

В заключение докажем равенство

$$\overline{\lim_{\substack{n\to\infty\\x\to 0}}}\psi_n(x)=d_+,$$

выражающее, что 1) для любой последовательности значений  $x_n \to 0$  предел  $\lim_{x_n \to 0} \psi_n(x_n)$ , если он существует, не превышает  $d_+$  и

2) существует такая последовательность  $x_n \to 0$ , для которой этот предел равен  $d_+$ .

Как мы знаем, утверждение 2) верно при

$$x_n=\frac{\pi}{n},$$

утверждение же 1) следует из неравенств (см. (4))

$$\psi_n(x_n) \leqslant \lambda_n(x_n) + o(1) \leqslant d_+ + o(1) \to 0 \quad (n \to \infty).$$

### § 15.10. Сумма Фейера

В § 15.5 было отмечено, что существуют примеры непрерывных периода  $2\pi$  функций f ( $f \in C^*$ ), ряды Фурье которых расходятся в отдельных точках или даже в точках наперед заданного счетного множества, например, во всех рациональных точках. В связи с этим приобретает большое значение тот факт, что ряд Фурье произвольной функции  $f \in C^*$  суммируется к ней методом средних арифметических и притом равномерно на всей действительной оси (см. § 11.10).

Зададим функцию  $f \in L'^*$  (вообще  $L^*$ ) и составим для нее ряд

Фурье

$$f(x) \sim \frac{a_0}{2} + \sum_{1}^{\infty} (a_k \cos kx + b_k \sin kx),$$

$$a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos kt \, dt \quad (k = 0, 1, ...),$$

$$b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \sin kt \, dt \quad (k = 1, 2, ...).$$

Пусть

$$S_n = \frac{a_0}{2} + \sum_{1}^{n} (a_k \cos kx + b_k \sin kx)$$

$$\sigma_n = \frac{S_0 + S_1 + \dots + S_n}{n + 1}$$
(1)

M

п-я средняя арифметическая сумма Фурье функции f.

Первой нашей задачей будет получить компактное выражение для  $\sigma_n$ . Имеем

$$\sigma_{n} = \frac{1}{n+1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt + \sum_{k=1}^{n} \frac{1}{\pi} \int_{0}^{2\pi} D_{k}(t-x) f(t) dt \right\} =$$

$$= \frac{1}{(n+1)\pi} \int_{0}^{2\pi} \left\{ \frac{1}{2} + \sum_{k=1}^{n} D_{k}(t-x) \right\} f(t) dt.$$

Отделяя мнимую часть в равенстве

$$\sum_{k=0}^{n} e^{i\left(k+\frac{1}{2}\right)x} = \frac{e^{i\frac{x}{2}} - i\left(n+\frac{3}{2}\right)x}{1 - e^{ix}} = \frac{1 - e^{i(n+1)x}}{-i\frac{x}{2} - i\frac{x}{2}}$$
(2)

получим

$$\sum_{k=0}^{n} \sin\left(k + \frac{1}{2}\right) x = \frac{1 - \cos\left((n+1)x\right)}{2\sin\frac{x}{2}} = \frac{\sin^2\frac{n+1}{2}x}{\sin\frac{x}{2}}.$$
 (3)

Поэтому

$$\frac{1}{2} + \sum_{1}^{n} D_{h}(x) = \frac{1}{2} + \sum_{1}^{n} \frac{\sin\left(k + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} =$$

$$= \frac{1}{2\sin\frac{x}{2}} \sum_{0}^{n} \sin\left(k + \frac{1}{2}\right)x = \frac{1}{2} \left(\frac{\sin\frac{n+1}{2}x}{\sin\frac{x}{2}}\right)^{2},$$

и мы получили

$$\sigma_n(x) = \frac{1}{\pi} \int_{0}^{2\pi} F_n(t-x) f(t) dt = \frac{1}{\pi} \int_{0}^{2\pi} F_n(u) f(x+u) du, \quad (4)$$

где

$$F_n(x) = \frac{1}{2(n+1)} \left( \frac{\sin \frac{n+1}{2} x}{\sin \frac{x}{2}} \right)^2.$$
 (5)

В последнем равенстве (4) мы воспользовались периодичностью подинтегральной функции.

Функция  $\sigma_n(x)$  называется суммой Фейера порядка n, а функция  $F_n(x)$  — ядром Фейера порядка n в честь венгерского математика Фейера (1880—1959). Легко видеть, что

$$F_n(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{n+1-k}{n+1} \cos kx.$$
 (6)

Поэтому сумму  $\sigma_n(x)$  можно еще записать так:

$$\sigma_n(x) = \frac{a_0}{2} + \sum_{k=1}^n \frac{n+1-k}{n+1} \left( a_k \cos kx + b_k \sin kx \right). \tag{7}$$

Отметим следующие свойства ядра  $F_n(x)$ :

1)  $F_n(x)$  — неотрицательный четный тригонометрический поличном порядка n (см. (5) и (6));

2) 
$$\frac{1}{\pi} \int_{0}^{2\pi} F_{n}(x) dx = \frac{2}{\pi} \int_{0}^{\pi} F dt = 1$$
 (8)

(см. (6), учесть ортогональность  $\cos kx$  (k = 1, ..., n) к единице);

3) 
$$\int_{\delta}^{\pi} F_n(x) dx \leqslant \frac{1}{2(n+1)} \int_{\delta}^{\pi} \frac{dx}{\left(\sin\frac{\delta}{2}\right)^2} = \frac{\pi - \delta}{2(n+1)\left(\sin\frac{\delta}{2}\right)^2} \to 0 (n \to \infty).$$

На основании свойства 2) отклонение  $\sigma_n(x)$  от f(x) выражается формулой

$$\sigma_{n}(x) - f(x) = \frac{1}{\pi} \int_{0}^{2\pi} F_{n}(t - x) [f(t) - f(x)] dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} F_{n}(t) [f(x + t) - f(x)] dt. \quad (9)$$

В последнем равенстве мы воспользовались периодичностью подинтегральной функции.

Докажем теорему.

Теорема 1 (Фейера). Для любой непрерывной (на действительной оси) периода  $2\pi$  функции f(x) ( $\tau$ . e.  $f \in C^*$ ) ее сумма Фейера порядка п равномерно стремится к ней при  $n \to \infty$ ,  $\tau$ . e.

$$||f - \sigma_n||_{C(0, 2\pi)} = \max |f(x) - \sigma_n(x)| \to 0 \quad (n \to \infty). \tag{10}$$

Доказательство. Пусть  $\omega(\delta)$  обозначает модуль непрерывности функции f. Это непрерывная функция от  $\delta$  (см. § 7.10, пример 2). Тогда в силу (9) и свойств 1), 2), 3)

$$|\sigma_{n}(x) - f(x)| \leq \frac{1}{\pi} \int_{-\pi}^{\pi} F_{n}(t) \omega(|t|) dt = \frac{2}{\pi} \int_{0}^{\pi} F_{n}(t) \omega(|t|) dt =$$

$$= \frac{2}{\pi} \int_{0}^{\delta} F_{n}(t) \omega(|t|) dt + \frac{2}{\pi} \int_{\delta}^{\pi} F_{n}(t) \omega(|t|) dt \leq$$

$$\leq \omega(\delta) + K \frac{2}{\pi} \int_{\delta}^{\pi} F_{n}(t) dt \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad (n > n_{0}), \quad (11)$$

$$K \geq \omega(t),$$

если  $\delta$  взято достаточно малым, чтобы  $\omega(\delta) < \varepsilon/2$ , а затем  $n_0$  настолько большим, чтобы второе слагаемое в предыдущем члене цепи было при  $n > n_0$  меньшим  $\varepsilon/2$ .

Отметим еще теоремы 2 и 5 следующего § 15.11, в которых даны (в *п*-мерном случае) еще другие свойства сумм Фейера, важные для теории рядов Фурье.

Мы уже отмечали выше, что средние арифметические числового ряда могут стремиться к пределу, в то время как сам ряд может расходиться. Это явление как раз имеет место для рядов Фурье непрерывных функций. Существует непрерывная функция, ряд Фурье которой расходится на любом заданном счетном множестве, например, на множестве всех рациональных точек. Однако это не мешает тому, как мы видели, что средние арифметические суммы Фурье для любой непрерывной функции f сходятся к f и даже равномерно.

Заметим, что из теоремы Фейера следует полнота системы тригонометрических функций

$$1, \cos x, \sin x, \dots \tag{12}$$

в  $C^*$ . Ведь если  $f \in C^*$  и  $\varepsilon > 0$ , то найдется n такое, что выполняется неравенство (11), где  $\sigma_n(x)$  — тригонометрический полином, т. е. конечная линейная комбинация из функций системы (12).

# § 15.11. Сведения из теории многомерных рядов Фурье

Функции

$$\frac{1}{(2\pi)^{n/2}} e^{i\mathbf{k}\mathbf{x}}, \ \mathbf{k} = (k_1, \dots, k_n); \ \mathbf{k}\mathbf{x} = \sum_{i=1}^{n} k_i x_i;$$
$$k_i = 0, \pm 1, \pm 2, \dots; \ j = 0, \dots, n,$$
 (1)

имеют период  $2\pi$  по каждой из переменных  $x_i$ .

Они ортогональны и нормальны на кубе (п-мерном периоде)

$$\Delta_* = \{ -\pi \leqslant x_j \leqslant \pi; j = 1, \ldots, n \}$$
 (2)

(или любом кубе со сторонами длины 2л), потому что

$$\int_{\Delta_{*}}^{\frac{1}{(2\pi)^{n/2}}} e^{i\mathbf{k}\mathbf{x}} \frac{1}{(2\pi)^{n/2}} e^{-i\mathbf{i}\mathbf{x}} d\mathbf{x} =$$

$$= \frac{1}{(2\pi)^{n}} \int_{-\pi}^{\pi} e^{i(h_{1}-l_{1})x_{1}} dx_{1} \dots \int_{-\pi}^{\pi} e^{i(h_{n}-l_{n})x_{n}} dx_{n} = \begin{cases} 0 & (\mathbf{k} \neq \mathbf{i}), \\ 1 & (\mathbf{k} = \mathbf{i}). \end{cases}$$

Ведь если  $\mathbf{k} \neq \mathbf{I}$ , то найдется j, для которого  $k_j - l_j \neq 0$ , и тогда

$$\int_{-\pi}^{\pi} e^{i(h_j-l_j)dx_j} dx_j = 0,$$

а если k=1, то под всеми интегралами в произведении стоит единица.

Ясно, что система (1) счетна,

Введем классы (комплексных или действительных) функций периода  $2\pi$  (по каждой переменной  $x_i$ ), определенных на  $R_n$ .

С\* — класс непрерывных функций с нормой

$$||f||_{C^*} = \max_{\mathbf{x}} |f(\mathbf{x})|.$$

 $L^*$  — класс интегрируемых (по Лебегу) на периоде  $\Delta_*$  функций с нормой

$$||f||_{L^*} = \int_{\Lambda^*} |f(\mathbf{x})| d\mathbf{x}.$$

 $L_2^*$  — класс функций, измеримых по Лебегу и имеющих иптегрируемый (по Лебегу) квадрат модуля на периоде с нормой

$$||f||_{L_2^*} = \left(\int_{\Delta^*} |f(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2}.$$

Pяд Фурье в комплексной форме функции  $f \in L^*$  имеет вид

$$f(\mathbf{x}) \sim \sum c_k e^{i\mathbf{k}\cdot\mathbf{x}},$$
 (3)

$$c_{k} = \frac{1}{(2\pi)^{n}} \int f(\mathbf{t}) e^{-i\mathbf{k}\mathbf{t}} d\mathbf{t}, \qquad (4)$$

где сумма распространена на всевозможные целочисленные векторы  $\mathbf{k} = (k_1, \ldots, k_n)$   $(k_j = 0, \pm 1, \pm 2, \ldots; j = 1, \ldots, n)$ .

Числа с<sub>к</sub> суть коэффициенты Фурье f. N-я сумма Фурье f записывается в виле

$$S_{N}(\mathbf{x}) = \sum_{|h_{j}| \leq N} c_{h} e^{i\mathbf{k}\mathbf{x}} = \frac{1}{(2\pi)^{n}} \int_{\Delta_{+}|h_{j}| \leq N} e^{-i\mathbf{k}(\mathbf{t}-\mathbf{x})} f(\mathbf{t}) d\mathbf{t} =$$

$$= \frac{1}{(2\pi)^{n}} \int_{\Delta_{+}|h_{1}| \leq N} e^{-ih_{1}(t_{1}-x_{1})} \cdots \sum_{|h_{n}| \leq N} e^{-ih_{n}(t_{n}-x_{n})} f(\mathbf{t}) d\mathbf{t} =$$

$$= \frac{1}{\pi^{n}} \int \prod_{j=1}^{n} D_{N}(t_{j}-x_{j}) f(\mathbf{t}) d\mathbf{t}, \quad (5)$$

ГДО

$$D_N(u) = \frac{1}{2} + \sum_{1}^{N} \cos ku$$

— N-я сумма Дирихле.

Многомерный аналог N-й суммы Фейера имеет вид

$$\sigma_N(\mathbf{x}) = \frac{1}{\pi^n} \int_{\Delta_{\mathbf{x}}} \Phi_N(\mathbf{t} - \mathbf{x}) f(\mathbf{t}) d\mathbf{t} = \frac{1}{\pi^n} \int_{\Delta_{\mathbf{x}}} \Phi_N(\mathbf{u}) f(\mathbf{x} + \mathbf{u}) d\mathbf{u}, \quad (6)$$

$$\Phi_{N}(\mathbf{u}) = \prod_{j=1}^{n} F_{N}(u_{j}), \quad F_{N}(t) = \frac{1}{2(N+1)} \left( \frac{\sin \frac{N+1}{2} t}{\sin \frac{t}{2}} \right)^{2}.$$
(7)

Пусть

$$\Delta_{\varepsilon} = \{|u_j| \leq \varepsilon; \quad j = 1, \ldots, n\},\$$

тогда  $(\Phi_N(\mathbf{u}) \geqslant 0)$ 

$$\frac{1}{\pi^{n}} \int_{\Delta_{E}} \Phi_{N}(\mathbf{u}) d\mathbf{u} \leqslant \frac{1}{\pi^{n}} \int_{\Delta_{*}} \Phi_{N}(\mathbf{u}) d\mathbf{u} = 1, \tag{8}$$

$$\frac{1}{\pi^n} \int_{\Delta_* - \Delta_E} \Phi_N(\mathbf{u}) d\mathbf{u} \to 0 \quad (N \to \infty). \tag{9}$$

Ведь плоскости, продолжающие грани  $\Delta_{\epsilon}$ , рассекают  $\Delta_{*} - \Delta_{\epsilon}$  на конечное число прямоугольников (прямоугольных параллеленипедов с ребрами, параллельными осям координат), на каждом из которых хотя бы одна координата  $u_{j_0}$  удовлетворяет неравенству  $u_{j_0}| \geq \epsilon$ , поэтому, если интеграл от  $\Phi_N d\mathbf{u}$  записать в виде произведения интегралов от  $F_n(u_j)du_j$ , то один из множителей, соответствующий  $j=j_0$ , стремится при  $N\to\infty$  к нулю, в то время как остальные (они положительны) не превышают 1 (см. в § 15.10 свойства 1)—3) ядра  $F_N$ ).

Докажем теорему, обобщающую на п-мерный случай теоре-

му 1 § 15.10.

Теорема 1. Для функции  $f \in C^*$ 

$$||f - \sigma_N||_{C^*} \to 0 \quad (N \to \infty),$$

 $e\partial e$   $\sigma_N$  есть ее N-я сумма  $\Phi$ ейера f.

Доказательство. Учитывая (7)—(9), получим ( $\omega(\delta)$  — модуль непрерывности f)

$$|\sigma_{N}(\mathbf{x}) - f(\mathbf{x})| = \frac{1}{\pi^{n}} \left| \int_{\Delta_{\mathbf{x}}} \Phi_{N}(\mathbf{u}) [f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x})] d\mathbf{u} \right| \leq$$

$$\leq \frac{1}{\pi^{n}} \int_{\Delta_{\mathbf{x}}} \Phi_{N}(\mathbf{u}) \omega (|\mathbf{u}|) d\mathbf{u} \leq$$

$$\leq \frac{1}{\pi^{n}} \left( \omega (2\delta \sqrt[N]{n}) \int_{\Delta_{\delta}} \Phi_{N}(\mathbf{u}) d\mathbf{u} + \frac{K}{\pi^{n}} \int_{\Delta_{\mathbf{x}} - \Delta_{\delta}} \Phi_{N}(\mathbf{u}) d\mathbf{u} \right) \leq$$

$$\leq \omega (2\delta \sqrt[N]{n}) + \frac{K}{\pi^{n}} \int_{\Delta_{\mathbf{x}} - \Delta_{\delta}} \Phi_{N}(\mathbf{u}) d\mathbf{u} < \varepsilon \quad (N > N_{0}),$$

$$K = \max |\omega(t)|.$$

Сначала выбираем  $\delta$  так, чтобы  $\omega(2\delta\sqrt{n}) < \epsilon/2(2\delta\sqrt{n} - \text{диаметр } \Delta_{\delta})$ , а затем достаточно большое  $N_{0}$ , чтобы второе слагаемое в предпоследнем члене цепи оказалось меньшим, чем  $\epsilon/2$ .

Теорема 2. Для функции  $f \in L^*$ 

$$||f - \sigma_N||_{L^*} = \int_{\Lambda} |f(\mathbf{x}) - \sigma_N(\mathbf{x})| d\mathbf{x} \to 0 \quad (N \to \infty),$$

где  $\sigma_N$  — сумма Фейера f порядка N. Пействительно (пояснения ниже).

$$\|f - \sigma_{N}\|_{L^{*}} \leq \frac{1}{\pi^{n}} \int_{\Delta_{*}} d\mathbf{x} \left| \int_{\Delta_{*}} \Phi_{N}(\mathbf{u}) \left[ f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x}) \right] d\mathbf{u} \right| \leq \frac{1}{\pi^{n}} \int_{\Delta_{*}} \Phi_{N}(\mathbf{u}) d\mathbf{u} \int_{\Delta_{*}} |f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x})| d\mathbf{x} = \frac{1}{\pi^{n}} \int_{\Delta_{*}} \Phi_{N}(\mathbf{u}) \lambda(\mathbf{u}) d\mathbf{u} \to 0, \quad N \to \infty, \quad (10)$$

где

$$\lambda(\mathbf{u}) = \int_{\Delta_{\mathbf{u}}} |f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x})| d\mathbf{x}$$

— функция периода  $2\pi$ , непрерывная (см. ниже) и равная нулю при  $\mathbf{u} = 0$ . Для нее по теореме 1 последний интеграл в цепи (10) стремится к нулю при  $N \to \infty$ . Ведь этот интеграл есть значение в нулевой точке N-й суммы Фейера  $\lambda(\mathbf{u})$ .

Во втором соотношении в цепи (10) мы заменили порядок интегрирования— это законно, потому что в теории интеграла Лебега доказывается, что интегралы от неотрицательных измеримых функций, взятые последовательно по разным переменным, можно менять местами, не меняя результат (теорема Фубини § 19.3, свойство 19).

Непрерывность λ(u) вытекает из следующих рассуждений:

$$|\lambda(\mathbf{u}) - \lambda(\mathbf{u}^0)| \leq \int_{\Lambda} |f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x} + \mathbf{u}^0)| dx \to 0 \quad (\mathbf{u} \to \mathbf{u}^0).$$

Последнее соотношение (стремление к нулю) следует из теоремы 6 § 14.4, где надо считать, что f=0 вне некоторого конечного достаточно большого куба, содержащего в себе концентрический с ним куб  $\Delta_*$ .

Теорема 3. Система функций (1) полна в  $C^*$  (следовательно, в  $L^*$  и  $L_2^*$ , см. § 14.9).

Это следует из теоремы 1, если учесть, что при любом N сумма Фейера  $\sigma_N(\mathbf{x})$  есть сумма вида

$$\sum_{|h_i| \leqslant N} \alpha_k e^{i\mathbf{k}\mathbf{x}} = T_N(\mathbf{x}) \tag{11}$$

 $(\alpha_k$  — числа), т. е. конечная линейная комбинация из функций системы (1) (тригонометрический полином порядка N), Ведь од-

номерное ядро Фейера можно записать в виде (см. § 15.10, (6))

$$F_N(x) = \frac{1}{2} + \sum_{k=1}^{N} \frac{N+1-k}{N+1} \cos kx = \frac{1}{2} \left[ 1 + \sum_{k=1}^{N} \frac{N+1-k}{N+1} \left( e^{ikx} + e^{-ikx} \right) \right],$$

откуда видно, что ядро  $\Phi_N(\mathbf{t}-\mathbf{x})=\prod_{j=1}^n F_N(t_j-x_j)$  есть тригонометрический полином по  $\mathbf{x}$  порядка N с векторным параметром  $\mathbf{t}$ . Умножение  $\Phi_N(\mathbf{t}-\mathbf{x})$  на  $f(\mathbf{t})$  и интегрирование по параметру  $\mathbf{t} \in \Delta_*$  (см. (6)) приводит  $\mathbf{s}$  свою очередь  $\mathbf{k}$  тригонометрическому полиному от  $\mathbf{x}$  порядка N.

Теорема 4. Ряд Фурье (3) функции  $f \in L_2^*$  сходится  $\kappa$  f в смысле среднего квадратического  $(L_2(\Delta_*))$ .

Это следует из полноты в  $L_2^*$  ортогональной и нормальной на  $\Delta_*$  системы функций (1) и из теоремы 1 § 14.6 общей теории ортогональных рядов.

Всякий ряд вида

$$\sum c_k e^{i\mathbf{k}\cdot\mathbf{x}} \tag{12}$$

 $(c_k$  — числа), распространенный на всевозможные целочисленные векторы  $\mathbf{k}$ , называется тригонометрическим рядом (в комилексной форме).

Теорема 5. Если ряд (12) есть ряд Фурье некоторой функции f, принадлежащей  $L^*$ , то эта функция единственная c точностью до множества меры нуль.

В самом деле, пусть (12) есть ряд Фурье функции  $f \in L^*$ . Тогда

$$c_{h} = \frac{1}{(2\pi)^{n}} \int_{\Lambda_{+}} f(\mathbf{t}) e^{-i\mathbf{k}\mathbf{t}} d\mathbf{t}.$$

Этим для любого N определяется однозначно сумма Фейера  $\sigma_N(f,x)$  нашей функции f, так как ядро этой суммы  $\Phi_N(\mathbf{u})$  есть вполне определениая линейная комбинация из функций  $e^{-i\mathbf{k}\mathbf{u}}(\mid k_j \mid \leqslant N)$ . По теореме 2  $\sigma_N(\mathbf{x})$  стремится при  $N \to \infty$  к f(x) в смысле L  $(\Delta_*)$ . Но этим функция f определяется с точностью до множества меры нуль.

В конце § 15.5 уже отмечалась теорема Колмогорова, утверждающая существование функции  $f_0 \in L^*$  от одной переменной, ряд Фурье которой расходится всюду на действительной оси. Таким образом, ряд Фурье функции  $f_0$  совсем ее не представляет, если придавать значение только точечной сходимости ряда. Но это не мешает функции  $f_0$  и вообще функциям  $f \in L^*$  иметь тесную связь с их рядами Фурье по другим, так сказать, линиям. Ведь сумма Фейера тесно связана с рядами Фурье, а по теореме 2 сумма Фейера порядка N всякой функции  $f \in L^*$  сходится к f в метрике  $L^*$ . Прямая связь между функциями  $f \in L^*$  и их рядами Фурье устанавливается также и теоремой 5, в силу

которой две разные (не равные почти всюду) функции из  $L^*$  имеют разные ряды Фурье. Мы увидим в дальнейшем (см. § 16.11), что именно по этой «линии» оказывается возможным обобщить понятие функции класса  $L^*$  на более общие объскты (вещи) — обобщенные периодические функции.

Формулу (5) для N-й суммы ряда Фурье можно еще записать

в виде

$$S_{N}(\mathbf{x}) = \frac{1}{\pi^{n}} \int_{\Delta_{*}} \prod_{j=1}^{n} \left( \frac{1}{2} + \cos(t_{j} - x_{j}) + \dots + \cos N(t_{i} - x_{j}) \right) f(\mathbf{t}) d\mathbf{t} =$$

$$= \frac{1}{\pi^{n}} \int_{\Delta_{*}} \sum_{k_{1}=0}^{N'} \dots \sum_{k_{n}=0}^{N'} \cos k_{1}(t_{1} - x_{1}) \dots \cos k_{n}(t_{n} - x_{n}) f(\mathbf{t}) d\mathbf{t}, \quad (13)$$

где штрих означает, что всюду под знаком суммы при  $k_i = 0$  (i = 1, ..., n) надо заменить  $\cos k_i(t_i - x_i)$  на 1/2.

Дальнейшие преобразования (13) мы запишем только в дву-

мерном случае (n=2). При n>2 они аналогичны.

Если положить

$$a_{kl} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cos ku \cos lv \, f(u, v) \, du \, dv,$$

$$b_{kl} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sin ku \sin lv \, f(u, v) \, du \, dv,$$

$$c_{kl} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cos ku \sin lv \, f(u, v) \, du \, dv,$$

$$d_{kl} = \frac{1}{\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sin ku \cos lv \, f(u, v) \, du \, dv,$$
(14)

Ħ

$$A_{kl} = A_{kl}(x, y) = a_{kl}\cos kx \cos ly + b_{kl}\sin kx \sin ly + c_{kl}\cos kx \sin ly + d_{kl}\sin kx \cos ly, \quad (15)$$

10

$$S_N(x,y) = \frac{1}{\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sum_{k=0}^{N} \sum_{l=0}^{N} \cos k (u - x) \cos l (v - y) f(u,v) du dv =$$

$$= \sum_{0}^{N} \sum_{l}^{N'} A_{kl}(x, y), \quad (16)$$

где штрих во второй сумме обозначает, что на самом деле,

вместо  $A_{00}$ ,  $A_{k0}$ ,  $A_{0l}$  (k,  $l \neq 0$ ) надо писать  $A_{00}/4$ ,  $A_{k0}/2$ ,  $A_{0l}/2$  и соответствующее соглашение надо сделать в отношении первой сумы. Таким образом,

$$S_N(x, y) = \frac{a_{00}}{4} + \frac{1}{2} \sum_{1}^{N} (a_{k0} \cos kx + d_{k0} \sin kx) + \frac{1}{2} \sum_{1}^{N} (a_{0l} \cos ly + c_{0l} \sin ly) + \sum_{1}^{N} \sum_{1}^{N} A_{kl}(x, y). \quad (16')$$

Ряд Фурье (3) функции f по системе (1) преобразуется формально в ряд

$$f(x,y) \sim \frac{a_{00}}{4} + \frac{1}{2} \sum_{1}^{\infty} (a_{k0} \cos kx + d_{k0} \sin kx) + \frac{1}{2} \sum_{1}^{\infty} (a_{0l} \cos ly + c_{0l} \sin ly) + \sum_{1}^{\infty} \sum_{1}^{\infty} A_{kl}(x,y).$$
 (17)

Но надо иметь в виду, что к ряду (17) мы могли бы прийти и непосредственно. Дело в том, что тригонометрические функции

$$\cos kx \cos ly, \sin kx \sin ly, \cos kx \sin ly, \sin kx \cos ly$$

$$(k, l = 0, +1, +2, ...)$$
(18)

образуют, как легко проверяется, ортогональную систему на прямоугольнике  $\Delta_* = \{ -\pi \leqslant x, \ y \leqslant \pi \}.$ 

Если разложить по этой системе f в ряд Фурье, то мы как

раз получим ряд (17).

Таким образом, ряд (17), где числа  $a_{kl}$ ,  $b_{kl}$ ,  $c_{kl}$ ,  $d_{kl}$  вычисляются по формулам (14), есть ряд Фурье f по системе (18). Числа (14) — коэффициенты Фурье f по системе (18).

Из сказанного следует, что \*)

 $A_{kl} = a_{kl}\cos kx\cos ly + b_{kl}\sin kx\sin ly +$ 

$$+ c_{hl}\cos kx \sin ly + d_{hl}\sin kx \cos ly =$$

$$= c_{hl}^* e^{i(hx+ly)} + c_{h,-l}^* e^{i(hx-ly)} + c_{-h,l}^* e^{i(-hx+ly)} + c_{-h,-l}^* e^{-i(hx+ly)}.$$

Отметим еще, что система (18) полна в  $C^*$  (следовательно, в  $L^*$  или  $L_2^*$ ), что следует из полноты системы (1) и того факта, что функции системы (1) суть конечные линейные комбинации из функций системы (18).

 $\hat{H}$ аконец отметим, что, если  $f \subseteq L^*$  — действительная функция, то и ее коэффициенты Фурье  $a_{kl}$ ,  $b_{kl}$ ,  $c_{kl}$ ,  $d_{kl}$  действительны,

<sup>\*)</sup> На этот раз  $c_{kl}^{*}$  обозначает комплексный коэффициент Фурье, что-бы отличить его от  $c_{kl}$  в (14).

в то время как коэффициенты  $c_{hl}^*$ , вообще говоря, комплексны, по удовлетворяют условию сопряженности  $c_{-h,-l}^* = c_{h,l}^*$ .

Рассматривая спова n-мерный случай при прежних обозначениях, заметим, что если функция  $f \in C^*$  имеет частную производную  $\frac{\partial f}{\partial x_n} \in C^*$ , то любой коэффициент Фурье  $c_h$ , где  $k_n \neq 0$ , можно проинтегрировать по частям (см. § 15.7):

$$c_{h}(f) = \frac{1}{(2\pi)^{n}} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} e^{-i\sum_{1}^{n-1} h_{j}t_{j}} dt_{1} \dots dt_{n-1} \int_{0}^{2\pi} e^{-ik_{n}t_{n}} f(t_{1}, \dots, t_{n}) dt_{n} =$$

$$= \frac{1}{(2\pi)^{n}} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} e^{-i\sum_{1}^{n-1} h_{j}t_{j}} dt_{1} \dots dt_{n-1} \times$$

$$\times \frac{1}{ik_{n}} \int_{0}^{2\pi} e^{-ik_{n}t_{n}} \frac{\partial f}{\partial x_{n}}(t_{1}, \dots, t_{n}) dt_{n} = \frac{1}{ik_{n}} c_{h} \left(\frac{\partial f}{\partial x_{n}}\right).$$

Вообще, если  $\lambda = (\lambda_1, \ldots, \lambda_n)$ — заданный целый неотрицательный вектор и  $f^{(s)} \in C^*$  для любого неотрицательного целого вектора  $\mathbf{s} \leqslant \lambda^{-}(s_i \leqslant \lambda_i)$ , то после соответствующего применении процесса интегрирования по частям получим

$$c_{h}(f) = \frac{1}{\mathbf{i}^{[\lambda]} \mathbf{k}^{\lambda}} c_{h} \left( f^{(\lambda)} \right) \qquad \left( |\lambda| = \sum_{1}^{n} \lambda_{j}, \ k^{\lambda} = k_{1}^{\lambda_{1}} \dots k_{n}^{\lambda_{n}} \right), \quad (19)$$

где если  $\bar{k}_j = 0$ , то надо считать  $\lambda_j = 0$  и  $k_j^{\lambda_j} = 0^0 = 1$ . Что касается чисел  $c_k(f^{(\lambda)})$ , то это коэффициенты Фурье производной  $f^{(\lambda)}$ .

На самом деле формула (19) верна в предположении, что функция  $f \in L^*$  имеет обобщенные (по Соболеву) частные производные  $f^{(k)} \subseteq L^*$  ( $k_i \le \lambda_i$ , см. § 19.5).

Теорема 6. Пусть  $\lambda = (\lambda, \ldots, \lambda)$  — вектор с целыми положительными, равными между собой компонентами и функция  $f(\mathbf{x}) = f(x_1, \ldots, x_n)$  принадлежит  $C^*$  вместе со своими частными производными  $f^{(k)}$  порядка  $\mathbf{k} \leq \lambda$   $(k_j \leq \lambda)$  и выполняются неравенства

$$\frac{1}{(2\pi)^n} \int_{\Delta_n} |f^{(l)}(\mathbf{x})|^2 d\mathbf{x} \leqslant M^2 \tag{20}$$

для любого вектора  $\mathbf{l}=(l_1,\ldots,\ l_n)$ , имеющего компоненты  $l_i$ , равные 0 или  $\lambda>0$ . Тогда N-я сумма Фурье  $S_N(\mathbf{x})$  функции  $f(\mathbf{x})$  отклоняется от  $f(\mathbf{x})$  с оценкой

$$|f(\mathbf{x}) - S_N(\mathbf{x})| \leqslant \frac{CM}{\frac{\lambda - \frac{1}{2}}{N}},$$

 $e\partial e$  C зависит от  $\lambda$ , но не от M и N.

Доказательство. Остаток суммы  $S_N$  ряда Фурье f записывается в виде

$$\rho_N(x) = \sum_{\max|k_i| > N} c_k e^{ikx}.$$
 (21)

Зададим патуральное m, удовлетворяющее перавенствам  $0 \le m < n$ , и определим множество  $\Omega_m$  целочисленных векторов  $\mathbf{k} = (k_1, \ldots, k_n)$ , координаты которых удовлетворяют соотношениям

$$|k_j| = 0 \quad (j = 1, \dots, m, \text{ если } m > 0),$$
 $|k_{m+1}| > N, |k_j| \ge 1 \quad (j = m+2, \dots, n, \text{ если } m < n-1).$ 

Через  $\Omega_m$  мы также обозначим любое множество векторов  $\mathbf{k}_i$  которое может быть сведено к описанному путем соответствующей нерестановки индексов j. Очевидно, каждому m соответствует конечная система множеств  $\Omega_m$ , кроме того, множество всех  $\mathbf{k}_i$  на которые распространена сумма (21), равно

$$\{\mathbf{k}: \max |k_j| > N\} = \sum_{m=0}^{n-1} \sum \Omega_m, \tag{23}$$

где вторая сумма для каждого m распространена на все различные  $\Omega_m$ .

Оценим сумму модулей только тех членов ряда (21), которые соответствуют векторам  $\mathbf{k}$ , принадлежащим некоторому  $\Omega_m$ . Будем для определенности считать, что  $\Omega_m$  описывается, как в (22). Для других  $\Omega_m$  оценка аналогична. Имеем

$$\sum_{h \in \Omega_{m}} |c_{h}| = \sum_{h \in \Omega_{m}} \left| \frac{1}{k_{m+1}^{\lambda} \dots k_{n}^{\lambda}} c_{k} \left( \frac{\partial^{(n-m)\lambda_{f}}}{\partial x_{m+1}^{\lambda} \dots \partial x_{n}^{\lambda}} \right) \right| \leq$$

$$\leq \left( \sum_{h \in \Omega_{m}} \frac{1}{k_{m+1}^{2\lambda} \dots k_{n}^{2\lambda}} \right)^{1/2} \left( \sum_{k \in \Omega_{m}} \left| c_{h} \left( \frac{\partial^{(n-m)\lambda_{f}}}{\partial x_{m+1}^{\lambda} \dots \partial x_{n}^{\lambda}} \right) \right|^{2} \right)^{1/2} \leq$$

$$\leq c' M \left( \sum_{h=1}^{\infty} \frac{1}{k_{m+1}^{2\lambda}} \sum_{h=1}^{\infty} \frac{1}{k_{m+2}^{2\lambda}} \dots \sum_{h=1}^{\infty} \frac{1}{k_{n}^{2}} \right)^{1/2} \leq \frac{c'' M}{\lambda - \frac{1}{2}}$$

$$(24)$$

(см. (19), (20)). Следовательно,

$$|\rho_N(\mathbf{x})| \leqslant \frac{CM}{N^{\lambda - 1/2}},$$
 (25)

тле C не зависит от M и N.

Из (25) следует, что ряд Фурье функции f сходится равномерно, по он, как мы знаем, сходится к f в смысле среднего квадратического. В таком случае он сходится равномерно именно

 $\kappa f(x)$  (см. ниже лемму), и потому

$$|\rho_N(\mathbf{x})| = |f(\mathbf{x}) - S_N(\mathbf{x})| \leqslant \frac{CM}{\lambda - \frac{1}{2}}$$

что и требовалось доказать.

Лемма 1. Если ряд

$$u_0(\mathbf{x}) + u_1(\mathbf{x}) + u_2(\mathbf{x}) + \dots$$

непрерывных на области  $\Omega$  функций сходится в смысле среднего квадратического к непрерывной функции  $S(\mathbf{x})$  и в то же время он сходится равномерно на  $\Omega$  к  $\sigma(\mathbf{x})$ , то  $S(\mathbf{x}) = \sigma(\mathbf{x})$  на  $\Omega$ .

Доказательство. Пусть  $S_N(\mathbf{x})$  — сумма первых N членов ряда,  $V \subseteq \Omega$  — произвольный шар и

По услевию  $\varkappa_N \to 0$  (§ 11.7). Поэтому

$$\left(\int_{V} |S(\mathbf{x}) - \sigma(\mathbf{x})|^{2} d\mathbf{x}\right)^{1/2} \leqslant$$

$$\leqslant \left(\int_{V} |S(\mathbf{x}) - S_{N}(\mathbf{x})|^{2} d\mathbf{x}\right)^{1/2} + \left(\int_{V} |S_{N}(\mathbf{x}) - \sigma(\mathbf{x})|^{2} d\mathbf{x}\right)^{1/2} \leqslant$$

$$\leqslant \left(\int_{V} |S(\mathbf{x}) - S_{N}(\mathbf{x})|^{2} d\mathbf{x}\right)^{1/2} + \varkappa_{N} \sqrt{|V|} \to 0 \quad (N \to \infty).$$

Следовательно, левая часть в этих соотношениях равна нулю, а так как функцин  $S(\mathbf{x})$  и  $\sigma(\mathbf{x})$  непрерывны, то они тождественно равны.

Георема 6 доказана. На самом деле она верна при тех же рассуждениях в предположении, что частные производные в (20) понимаются в смысле Соболева.

Введем для положительного  $\eta > 0$  множество  $K_{\eta}$  (крест), являющееся объединением n множеств  $\{|u_j| < \eta\}$   $(j=1,\ldots,n)$ , и докажем теорему.

Теорема 7. Для функции  $f \in L' * (uли L*)$  при произвольном  $\eta > 0$  имеет место равенство

$$S_N(\mathbf{x}) - f(\mathbf{x}) = \frac{1}{\pi^n} \int_{K_n}^{\infty} \prod_{j=1}^n D_N(u_j) \left\{ f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x}) \right\} d\mathbf{u} + o(1) (N \to \infty)$$

(26)

равномерно на любой области  $\Omega$  точек x, где f ограничена.

Доказательство. Ограничимся рассмотрением двумерного случая. Имеем

$$\int_{\eta}^{\pi} \int_{\eta}^{\pi} D_N(u) D_N(v) \left[ f(x+u, y+v) - f(x, y) \right] du \, dv =$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin\left(N + \frac{1}{2}\right) ug(u) \sin\left(N + \frac{1}{2}\right) vg(v) \times \left[ f(x+u, y+v) - f(x, y) \right] du \, dv \to 0 \quad (N \to \infty)$$
(27)

равномерно на области О; где f ограничена. Здесь

$$g(u) = \begin{cases} \frac{1}{2\sin\frac{u}{2}}, & \eta < u < \pi, \\ 0 & \text{ bhe } [\eta, \pi]. \end{cases}$$

Свойство (27) следует из леммы, представляющей собой простов обобщение на двумерный случай леммы 2 § 15.4.

Свойство, подобное (27), очевидно, верно и для интеграла, стоящего в левой части (27), если его область интегрирования заменить на симметричные ей области относительно осей координат и начала координат.

Замечание. Более детальные исследования показали бы, что в формуле (26) крест  $K_{\eta}$  пельзя, вообще говоря, заменить на куб  $\Delta_{\eta} = \{|u_j| \leq \eta; j=1,\ldots,n\}$ , и в этом проявляется существенное различие между рядами Фурье функций многих переменных и одной переменной (ср. § 15.3, (8) и ниже § 16.8, (17)).

## § 15.12. Алгебранческие многочлены. Многочлены Чебыпсва

Чтобы выяснить связь алгебраических многочленов с тригопометрическими полиномами, точнее, с четными тригонометрическими полиномами, обратимся к равенству

$$\cos n\theta + i\sin n\theta = (\cos \theta + i\sin \theta)^n =$$

$$= (\cos \theta)^n + iC_n^1(\cos \theta)^{n-1}\sin \theta + i^2C_n^2(\cos \theta)^{n-2}\sin^2 \theta + \dots$$

Члены его правой части с четными степенями  $\cos \theta$  действительны, а с нечетными — мнимы. Кроме того,  $(\sin \theta)^{2m} = (1-\cos^2\theta)^m$  ( $m=1, 2, \ldots$ ). Из этого следует, что при любом натуральном n

$$\cos n\theta = Q_n(\cos \theta),$$

где  $Q_n(x) = \cos n \arccos x = \alpha_0^{(n)} + \alpha_1^{(n)}(x) + \ldots + \alpha_n^{(n)} x^n$ — алтебраический многочлен степени n с действительными коэффициентами. Он называется многочленом Чебышева степени n.

Очевидно,

$$Q_0(x) \equiv 1$$
,  
 $Q_1(x) = \cos \arccos x = x$ ,  
 $Q_2(x) = 2(\cos \arccos x)^2 - 1 = 2x^2 - 1$ ,

Из сказанного следует, что всякий четный тригонометрический полином

$$T_n(\theta) = \frac{\alpha_0}{2} + \sum_{i=1}^{n} \alpha_k \cos k\theta$$

ири помощи подстановки  $\theta = \arccos x$  (или  $x = \cos \theta$ ), гомеоморфио (т. е. взаимно однозначно и непрерывно) отображающей отрезок  $0 \le \theta \le \pi$  на отрезок  $-1 \le x \le 1$ , преобразуется в алгебраический многочлен степени n:

$$P_n(x) = T_n(\arccos x) = \frac{\alpha_0}{2} + \sum_{1}^{n} \alpha_n \cos k \arccos x.$$

Важно, что и наоборот, подстановка  $x=\cos\theta$  ( $0 \le \theta \le \pi$ ,  $-1 \le x \le 1$ ) преобразует произвольный алгебраический многочлен

$$P^n(x) = a_0 + a_1 x + \ldots + a_n x^n$$

степени n в четный тригонометрический полином (см. § 8.11, (8))

$$T_n(\theta) = P_n(\cos \theta) = \frac{\alpha_0}{2} + \sum_{1}^{n} \alpha_k \cos k\theta,$$

где числа  $\alpha_k$  (k=0,1,...,n) зависят от  $P_n$ .

### § 15.13. Теорема Вейерштрасса

Теорема 1 (Вейерштрасса). Система функций

1, 
$$x$$
,  $x^2$ , ... (1)

нолна в пространстве C(a, b) непрерывных функций. Иначе гокоря, для любой непрерывной на [a, b] функции f(x) и любого r>0 найдется алгебраический многочлен  $P_n(x)$  такой, что

$$|f(x) - P_n(x)| < \varepsilon$$
 для всех  $x \in [a, b]$ . (2)

Доказательство сначала проведем для отрезка [-1, +1]. Пусть на [-1, +1] задана непрерывная функция f(x). Тогда  $f(\cos t)$  есть непрерывная на отрезке  $[0, \pi]$  функция, и так как система функций

 $1, \cos t, \cos 2t, \ldots$ 

230

нолна в  $C(0, \pi)$  (см. теорему 3 § 15.5), то для любого  $\varepsilon > 0$  найдется четный тригонометрический полином  $T_n(t)$  такой, что  $|f(\cos t) - T_n(t)| < \varepsilon$ .

Ho  $T_n(t)$  можно записать в виде  $T_n(t) = P_n(\cos t)$ , где  $P_n$  есть

алгебраический многочлен степени п. Таким образом,

$$|f(\cos t) - P_n(\cos t)| < \varepsilon \quad (0 \le t \le \pi).$$

Но тогда

$$|f(x) - P_n(x)| < \varepsilon \quad (-1 \le x \le 1).$$

Теорема для отрезка [-1, +1] доказана.

Если теперь задана непрерывная функция f(x) на отрезке [a, b], то сделаем подстановку

$$x = a + \frac{b-a}{2}(z+1),$$

линейно и взаимно однозначно отображающую отрезок [-1, +1] изменения z на отрезок [a, b] изменения x. Тогда функция

 $F(z) = f\left(a + \frac{b-a}{2}(z+1)\right)$  пепрерывна на [-1, +1], и по докаванному выше для нее найдется многочлен  $P_n(z)$  такой, что

$$|F(z) - P_n(z)| < \varepsilon, z \in [-1, +1].$$

Обратная подстановка приводит к неравенству

$$|f(x) - R_n(x)| < \varepsilon, \quad x \in [a, b],$$

где  $R_n\left(x\right)=P_n\left(rac{2\left(x-a
ight)}{b-a}-1
ight)$  есть, очевидно, в свою очередь, многочлен.

Теорема доказана.

Заметим, что степень n многочлена  $P_n(x)$ , для которого по данному  $\varepsilon$  выполняется перавенство (2), зависит от  $\varepsilon$ . При  $\varepsilon \to 0$ , вообще говоря,  $n \to \infty$ .

#### § 15.14. Многочлены Лежандра

Рассмотрим функции

$$L_0(x) \equiv 1, \ L_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n} \quad (n = 1, 2, ...)$$
 (1)

на отрезке [-1, +1]. Ясно, что это многочлены степени n и притом строго степени n. Дифференцируя  $(x^2-1)^n=(x-1)^n(x+1)^n$  по правилу Лейбница n раз, получим

$$\frac{d^n (x^2 - 1)^n}{dx^n} = n! (x + 1)^n + \dots,$$

где не выписанные члены содержат множитель x-1. Поэтому

 $L_n(1) = 1$  ( $n = 0, 1, \ldots$ ). Полагая m < n и интегрируя по частям, получим

$$2^{n} n! \int_{-1}^{+1} L_{n}(x) x^{m} dx = \int_{-1}^{+1} x^{m} \frac{d^{n} (x^{2} - 1)^{n}}{dx^{n}} dx = x^{m} \frac{d^{n-1} (x^{2} - 1)^{n}}{dx^{n-1}} \Big|_{-1}^{1} - m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)^{n}}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} \frac{d^{n-1} (x^{2} - 1)}{dx^{n-1}} dx = -m \int_{-1}^{+1} x^{m-1} dx = -m \int_{-1$$

.. = 0.

Первое слагаемое в третьсм члене цени равно пулю, потому что  $(x^2-1)^n$  имеет числа +1 и -1 своими нулями кратности n и, следовательно, производная  $\frac{d^m}{dx^m}(x^2-1)^n$  ( $m=0,1,\ldots,n-1$ ) при подстановке в нее +1 или -1 обращается в пуль. К последнему явно написанному интегралу, содержащему  $x^{m-1}$  (вместо исходного  $x^m$ ), применяем снова интегрирование по частям, понижающее степень x еще на единицу, и т. д.— это, очевидно, приводит к пулю.

Полученное равенство показывает, что система (1) ортого-

иальна на [-1, +1].

Вычислим интеграл от квадрата  $L_n(x)$  на [-1, +1]. Положим  $u_n(x) = (x^2-1)^n$ . Тогда

$$\int_{-1}^{+1} u_n^{(n)}(x) u_n^{(n)}(x) dx = -\int_{-1}^{+1} u_n^{(n-1)}(x) u_n^{(n+1)}(x) dx =$$

$$= \int_{-1}^{+1} u_n^{(n-2)}(x) u_n^{(n+2)}(x) dx = \dots = (-1)^n \int_{-1}^{+1} u_n u_n^{(2n)} dx =$$

$$= (2n)! \int_{-1}^{+1} (1-x)^n (1+x)^n dx.$$

Ho
$$\int_{-1}^{1} (1-x)^n (1+x)^n dx = \frac{n}{n+1} \int_{-1}^{1} (1-x)^{n-1} (1+x)^{n+1} dx = \dots$$

$$\dots = \frac{n(n-1) \dots 1}{(n+1)(n+2) \dots 2n} \int_{-1}^{1} (1+x)^{2n} dx = \frac{(n!)^2}{(2n)!(2n+1)} 2^{2n+1}.$$

Ноэтому  $\int_{-1}^{+1} L_n^2(x) dx = \frac{2}{2n+1}$  и, следовательно, нормированные

мпогочлены имеют вид

$$\varphi_n(x) = \sqrt{\frac{2n+1}{2}} L_n(x) = \sqrt{\frac{2n+1}{2}} \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n} (n = 0, 1, ...).$$
(2)

С другой стороны, если произвести процесс ортогонализации системы 1, x,  $x^2$ , ... на отрезке [-1, +1], как это делалось в § 14.7, то мы получим полную ортогональную и нормальную на [-1, +1] систему  $P_0(x)$ ,  $P_1(x)$ ,  $P_2(x)$ , ...

В этом процессе на n-м его этапе многочлен  $P_n(x)$  степени n

вадавался как, во-первых, нормальный  $\begin{pmatrix} +1 \\ -1 \end{pmatrix} P_n^2 dx = 1$ , а во-вторых, ортогональный к  $P_0$ ,  $P_1$ , ...,  $P_{n-1}$ , и этим он определялся с точностью до знака. Но многочлен  $\phi_n(x)$  обладает всеми указанными свойствами и потому он тождественно равен одному из многочленов  $P_n$   $(+P_n$  или  $-P_n$ ), именно тому, который имеет положительный коэффициент при  $x^n$ , потому что  $\phi_n(x)$  обладает этим свойством.

Так как система  $P_0$ ,  $P_1$ , ... нолна в C(-1, +1), то мы докавали, что система функций

$$\varphi_0, \varphi_1, \varphi_2, \ldots$$
 (3)

пе только ортогональна и нермальна на [-1, +1], но и нолна в C(-1, +1) (тем более в  $L_2(-1, +1)$ ).

Функции  $\phi_n(x)$  называются многочленами (или полиномами) Лежандра, нормальными на отрезке [-1, +1]. Функции  $L_n(x)$  также называются многочленами Лежандра, нормированиыми условием  $L_n(1) = 1$   $(n = 0, 1, \ldots)$ .

Таким образом, к полиномам Лежандра применима общая теория ортогональных систем функций. В частности, любая

функция  $f(x) \in L_2(-1, +1)$  разлагается в ряд Фурье

$$f(x) = \sum_{0}^{\infty} (f, \varphi_h) \varphi_h(x)$$

по многочленам Лежандра  $\varphi_k$ , сходящийся  $\kappa$  f на [-1, +1]  $\epsilon$  смысле среднего квадратического.

Для рядов по многочленам Лежандра возможно исследование вопроса об обычной или равномерной схдимости их к функциям, как это делалось нами для тригонометрических рядов Фурье. Например, известио, что если функция f имеет на отрезке [-1, +1] непрерывную вторую производную, то ее ряд по многочленам Лежандра равномерно на этом отрезке сходится к ней. Как и для рядов Фурье, оценка остаточного члена разложения f по многочленам Лежандра зависит от дифференциальных свойств f. Вообще, если функция лучше, то и оценка лучше. Отметим еще, что, как правило, сходимость рядов по полиномам Лежандра лучше строго внутри отрезка [-1, +1] и хуже на концах его.

# ИНТЕГРАЛ ФУРЬЕ. ОБОБЩЕННЫЕ ФУНКЦИИ

#### § 16.1. Понятие интеграла Фурье

В предыдущей главе мы рассматривали функции пернода  $2\pi$ , принадлежащие классу  $L'^*$  (вообще  $L^*$ ). Для любой такой функции имеет смысл ее ряд Фурье

$$f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} (a_h \cos kx + b_h \sin kx) = \sum_{-\infty}^{\infty} c_h e^{ihx}$$
 (1)

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt \quad (k = 0, 1, ...),$$
 (2)

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt \quad (k = 1, 2, ...),$$
 (3)

$$c_h = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-iht} dt \quad (k = 0, \pm 1, \pm 2, \ldots), \tag{4}$$

$$c_h = \frac{a_h - ib_h}{2}, \quad c_{-h} = \frac{a_h + ib_h}{2} \quad (k = 0, 1, 2, \ldots; b_0 = 0).$$

Нас теперь будут интересовать, вообще говоря, непериодические функции, заданные на действительной оси, принадлежащие классу  $L' = L'(-\infty, \infty)$  или более общему классу  $L = L(-\infty, \infty)$  функций, интегрируемых на  $(-\infty, \infty)$  по Лебегу.

Каждая функция  $f \in L'$  абсолютно интегрируема в римановом несобственном смысле (см. § 14.2) на  $(-\infty, \infty)$ , функции же  $f \in L$  абсолютно интегрируемы в лебеговом смысле на действительной оси. Все, что мы будем получать для  $f \in L'$ , верно и для  $f \in L$ , но для полного обоснования требует знания интеграла Лебега. Если  $f \in L'$ , то при любом действительном s имеют смысл интегралы

$$a(s) = \frac{1}{\pi} \int_{-\pi}^{\infty} f(t) \cos st \, dt, \tag{5}$$

$$\dot{b}(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin st \, dt, \tag{6}$$

$$c(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-ist} dt, \qquad (7)$$

ведь, папример,

$$|f(t)\cos st| \le |f(t)| \in L'_{\bullet} \tag{8}$$

Функции a(s), b(s), c(s) непрерывны. Если f имеет копечное число точек разрыва, то этот факт следует из равномерной сходимости интегралов (5), (6), (7), потому что функции, стоящие под их знаком, непрерывны но (s, t), за исключением тех t, где f разрывна. В общем же случае см. ниже лемму 1 § 16.2.

Функции a(s), b(s), c(s) являются аналогами соответственно коэффициентов Фурье  $a_k$ ,  $b_k$ ,  $c_k$  периодической функции, по последние определены для дискретных значений k, в то время как функции a(s), b(s), c(s) — для пепрерывных s.

Имеют место свойства (см. лемму 1 § 15.4)

$$a(s) \to 0, b(s) \to 0, c(s) \to 0$$
  $(s \to \infty),$ 

апалогичные соответствующим свойствам коэффициентов Фурье. Функции a(s), b(s), c(s) естественно было бы назвать соот-

ветственно косинус-, синус-преобразованием Фурье и комплексным преобразованием Фурье функции f, по из соображений симметрии принято эти названия применять к интегралам, отличающимся от указанных на некоторые коэффициенты.

Аналогом члена ряда Фурье естественно считать функцию (от x и нараметра s)

$$a(s)\cos sx + b(s)\sin sx = \frac{1}{\pi}\int_{-\pi}^{\infty} f(t)\cos s(t-x) dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) \left[ e^{is(t-x)} + e^{-is(t-x)} \right] dt = c(s) e^{isx} + c(-s) e^{-isx}.$$

При этом, если f(t) действительна, то  $c(-s) = \overline{c(s)}$ .

Аналогом суммы Фурье порядка N является простой интеграл Фурье (пояснения ниже):

$$S_N(x) = \int_0^N (a(s)\cos sx + b(s)\sin sx) ds =$$

$$= \frac{1}{\pi} \int_0^N ds \int_0^\infty f(t)\cos s (t-x) dt = \frac{1}{\pi} \int_0^\infty f(t) dt \int_0^N \cos s (t-x) ds =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\infty} f(t) \frac{\sin N(t-x)}{t-x} dt = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+t) \frac{\sin Nt}{t} dt =$$

$$= \frac{1}{\pi} \int_{-\eta}^{\eta} f(x+t) \frac{\sin Nt}{t} dt + \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+t) g(t) \sin Nt dt =$$

$$= \frac{1}{\pi} \int_{-\eta}^{\eta} f(x+t) \frac{\sin Nt}{t} dt + o(1) \quad (N \to \infty, \eta > 0), \quad (9)$$

где  $o(1) \to 0$  равномерно относительно x, принадлежащих любому отрезку [a, b] и

$$g(t) = \begin{cases} 0, & |t| \leq \eta, \\ \frac{1}{t}, & |t| > \eta. \end{cases}$$

Первый интеграл в цепи (9) существует, потому что подынтегральная функция непрерывна по s. В третьем равенстве (9) изменен порядок интегрирования. В случае, если f имеет конечное число точек разрыва, это следует из теоремы 2 § 13.14, потому что интеграл

$$\int_{-\infty}^{\infty} f(t) \cos s (t - x) dt$$

равномерно сходится относительно  $s \in [0, N]$ , а подынтегральная функция непрерывна относительно (t, s), за исключением конечного числа точек t. В общем случае см. ниже лемму § 16.2. Наконец, в последнем равенстве остаток равен

$$\frac{1}{\pi} \int_{-\infty}^{\infty} f(x+t) g(t) \sin Nt \, dt. \tag{10}$$

Здесь g(t) — очевидно, ограниченная на действительной осн, измеримая на любом конечном отрезке функция. На основании (2), § 15.4

$$\lim_{N\to\infty}\int_{-\infty}^{\infty}f(x+t)\,g(t)\sin\left(N\,t\right)dt=0\tag{11}$$

равномерно на любом отрезке [a, b], что дает последнее равен-

Функцию  $S_N(x)$  можно еще записать в комплексной форме

$$S_{N}(x) = \int_{0}^{N} (c(s) e^{isx} + c(-s) e^{-isx}) ds = \int_{-N}^{N} c(s) e^{isx} ds =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{isx} ds \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-ist} dt. \quad (12)$$

# § 16.2. Лемма об изменении порядка интегрирования

Иемма 1. Пусть функции  $f, \varphi \in L'(0, \infty)$  (или  $L(0, \infty)$ ) и  $\lambda(s, t)$   $(0 \le s, t < \infty)$  — непрерывная ограниченная функция  $(|\lambda(s, t)| \le K)$ . Тогда интеграл

$$\mu(s) = \int_{0}^{\infty} \lambda(s, t) f(t) dt$$
 (1)

есть непрерывная ограниченная функция от s, и имеет место равенство

$$\int_{0}^{\infty} \varphi(s) ds \int_{0}^{\infty} \lambda(s, t) f(t) dt = \int_{0}^{\infty} f(t) dt \int_{0}^{\infty} \lambda(s, t) \varphi(s) ds.$$
 (2)

Доказательство. Для  $\varepsilon > 0$  подберем финитные пепрерывные функции  $f_1$ ,  $\phi_1$ , для которых

$$\int_{0}^{\infty} |f(t) - f_{1}(t)| dt < \frac{\varepsilon}{K}, \quad \int_{0}^{\infty} |\varphi(t) - \varphi_{1}(t)| dt < \frac{\varepsilon}{K}.$$

Тогда, полагая

$$\mu(s) = \int_{0}^{N} \lambda(s, t) f_{1}(t) dt + \eta(s),$$
 (3)

где N настолько велико, чтобы отрезок [0, N] содержал носитель  $f_1$ , получим

$$|\eta(s)| = \left| \int_{0}^{\infty} [f(t) - f_1(t)] \lambda(s, t) dt \right| \leqslant K \int_{0}^{\infty} |f(t) - f_1(t)| dt < \varepsilon. \quad (4)$$

Так как интеграл в правой части (3) есть непрерывная функция от s и ограниченая, то по лемме 1 § 12.13  $\mu(s)$  непрерывна и к тому же ограничена  $(|\mu(s)| \leq NK \max |f_i(t)| + \epsilon)$ . Следовательно, внешний интеграл (по s) в левой части (2) имеет смысл. Подобным образом доказывается существование интеграла справа в (2).

Теперь имеем (пояснения пиже)

$$\int_{0}^{\infty} \varphi(s) ds \int_{0}^{\infty} \lambda(s, t) f(t) dt = \int_{0}^{N} \varphi(s) ds \int_{0}^{N} \lambda(s, t) f(t) dt + o(1) =$$

$$= \int_{0}^{N} f(t) dt \int_{0}^{N} \varphi(s) \lambda(s, t) ds + o(1) = \int_{0}^{\infty} f(t) dt \int_{0}^{\infty} \varphi(s) \lambda(s, t) dt (N \to \infty).$$

Первое равенство в цени имеет место, потому что остаток нашем кратном интеграле оценивается следующим образом:

$$\left| \int_{N}^{\infty} \int_{0}^{N} + \int_{0}^{N} \int_{N}^{\infty} + \int_{N}^{\infty} \varphi(s) \, ds \int_{N}^{\infty} f(t) \, \lambda(s, t) \, dt \right| \leq$$

$$\leq K \left( \int_{N}^{\infty} \int_{0}^{N} + \int_{0}^{N} \int_{N}^{\infty} + \int_{N}^{\infty} |\varphi(s)| \, ds \int_{N}^{\infty} |f(t)| \, dt \right)' = o(1) \quad (N \to \infty).$$

Подобным образом доказывается и последнее равенство. Надо учесть, что третий член в нашей цепи есть постоянная и в то же время он стремится к четвертому (тоже постоянному числу), но тогда они равны.

Замечание 1. В лемме 1 переменные s, t могут иметь векторный характер (s =  $(s_1, \ldots, s_m)$ ,  $\mathbf{t} = (t_1, \ldots, t_n)$ ,  $0 \le s_j, t_k < \infty$ ).

Замечание 2. Равенство (2) следует также из теоремы Фубини в лебеговой теории (см. §§ 19.3, 19.4, свойство 19).

## § 16.3. Сходимость простого интеграла Фурье к порождающей его функции

Важнейшим свойством простого интеграла Фурье является тот факт, что при весьма общих условиях, налагаемых на порождающую его функцию f, он сходится к последней при  $N \to \infty$ , т. е.

$$f(x) = \lim_{N \to \infty} S_N(x) = \lim_{N \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} f(t+x) \frac{\sin Nt}{t} dt.$$
 (1)

Это вытекает из следующей важной леммы, устанавливающей глубокую связь между интегралами и рядами Фурье.

Лемма 1. Пусть заданы две функции  $f \in L' = L' (-\infty, \infty)$ (или L) и  $f_* \in {L'}^*$  (или  $L^*$ ,  $f_*$ , таким образом, периода  $2\pi$ ) и nyers obe onu pasni na orpeske [a, b]  $(f(x) = f_*(x), x \in [a, b])$ .

Tогда для любого  $x \in (a, b)$  имеет место

$$\lim_{N \to \infty} \left[ S_N(x) - S_N^*(x) \right] = 0 \tag{2}$$

равномерно относительно х, принадлежащих любому отрезку

 $[a', b'] \subset (a, b),$  где  $S_N(x) = n$ ростой интеграл  $\Phi$ урьг f, а  $S_N^*(x) = N$ -я частичная сумма  $\Phi$ урье функции  $f_*$ .

Доказательство. Зададим  $x \in (a, b)$  и пусть отрезок

 $[a', b'] \subset (a, b)$  содержит x. Положим

$$\eta = \min \{a' - a, b - b'\}.$$

С одной стороны (см. § 16.1, (9)), равпомерно относительно  $x \in [a, b]$ 

$$S_N(x) = \frac{1}{\pi} \int_{-\eta}^{\eta} f(x + t) \frac{\sin Nt}{t} dt + o(1) \quad (N \to \infty), \tag{3}$$

а  ${f c}$  другой, равномерно относительно всех x

$$S_N^*(x) = \frac{1}{\pi} \int_{-\eta}^{\eta} f_*(x - t) \frac{\sin Nt}{t} dt + o(1) \quad (N \to \infty)$$
 (4)

(см. § 15.3 (8), где заменить  $S_n$ , f на  $S_n^*$ ,  $f^*$ ). И так как в интегралах (3) и (4)  $x+t\in [a,\ b]$ , то в силу условия леммы  $f(x+t)=f_*(x+t)$ , и потому

$$S_{N}(x) - S_{N}^{*}(x) = o(1) - o(1) = o(1) \quad (N \to \infty)$$

и притом равномерно на [a', b'].

Будем называть определенную на оси  $(-\infty, \infty)$  действительную или комплексную функцию f(x) локально кусочно гладкай, если она кусочно гладкай, т. е. имеет вместе со своей производной конечное число точек разрыва первого рода на любом конечном отрезке [a, b]. Нам будет удобно еще считать, что для всех x вынолняется условие 2f(x) = f(x+0) + f(x-0), хотя по обычной терминологии локально кусочно гладкай функции не обязательно должна удовлетворять этому дополнительному условию.

Имеет место

Теорема 1. Простой интеграл Фурье локально кусочно гладкой функции  $f \in L'(L)$  при  $N \to \infty$  сходится к ней и притом равномерно на любом отрезке [a',b'], содержащемся строго вну-

три отрезка [a, b] (a < a' < b' < b), где f непрерывна.

Доказательство. Зададим  $x = (-\infty, \infty)$  и нусть [a, b] сеть содержащий x отрезок, где нока  $b-a < 2\pi$ . Поместим этот отрезок внутрь какого-либо интервала  $(\alpha, \alpha+2\pi)$   $(\alpha < a < b < \alpha+2\pi)$ . Построим наряду с f функцию  $f_*$  периода  $2\pi$ , равиую f на  $[\alpha, \alpha+2\pi)$ . Очевидио,  $f_* = L'^*$  есть кусочно гладкам периодическая функция. Для ее N-й суммы Фурье  $S_N^*$  имеет место

$$S_N^*(x) \to f_*(x), \quad x \in [a, b]. \tag{5}$$

Поэтому для простого интеграла Фурье функции f в силу леммы 1 имеет место

$$\lim_{N \to \infty} S_N(x) = \lim_{N \to \infty} S_N^*(x) + \lim_{N \to \infty} \left[ S_N(x) - S_N^*(x) \right] = f_*(x) = f(x).$$
(6)

Из теории рядов Фурье мы также знаем, что свойство (5) имеет место равиомерно на  $[a', b'] \subset (a, b)$ , если f непрерывна на [a, b]. Но тогда в силу леммы 1 и свойство (6) имеет место равномерно на [a', b']. В случае, если  $b-a \ge 2\pi$ , делим [a', b'] на отрезки длины меньшей, чем  $2\pi$ . На каждом из них  $S_N(x) \rightarrow f(x)$  равномерно, следовательно, равномерно и на [a', b'].

Равенство (6) доказано для случая, когда  $N \to \infty$ , пробегая натуральные числа. Но если N = [N] + a — положительное число, где [N] — целая часть N, то

$$\int_{-\infty}^{\infty} \frac{\sin Nt}{t} f(x+t) dt - \int_{-\infty}^{\infty} \frac{\sin [N] t}{t} f(x+t) dt =$$

$$= 2 \int_{-\infty}^{\infty} \cos \left( [N] + \frac{\alpha}{2} \right) t \frac{\sin \frac{\alpha}{2} t}{t} f(x+t) dt \to 0 \qquad (N \to \infty)$$

равномерно относительно x, принадлежащих любому конечному отрезку. Это следует из § 15.4, леммы 2, где надо положить

$$g(\alpha, t) = \frac{\sin \frac{\alpha}{2} t}{t} \quad (0 \le \alpha < 1).$$

## § 16.4. Преобразование Фурье. Повторный интеграл Фурье. Косинус и синус преобразования Фурье

Заданная на действительной оси действительная или комплексная функция f(x) называется локально интегрируемой, если  $f \in L'(a, b)$  (L(a, b)), каков бы ни был конечный отрезок [a, b].

Если  $f \in L' = L'(-\infty, \infty)$ , то  $f \in L'(a, b)$ , но, вообще говоря, не наоборот. Например, непрерывная на действительной оси функция локально интегрируема, но не обязательно принадлежит  $L'(-\infty, \infty)$ .

Если f локально интегрируема, то для нее для любого действительного x и любого N>0 имеют смысл интегралы

$$\widehat{f}^{N}(x) = \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} f(t) e^{-ixt} dt, \quad \widehat{f}^{N}(x) = \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} f(t) e^{ixt} dt. \quad (1)$$

Пределы

$$\lim_{N \to \infty} \widetilde{f}^N(x) = \widetilde{f}(x)_{\bullet} \quad \lim_{N \to \infty} \widehat{f}^N(x) = \widehat{f}(x)_{\bullet} \tag{2}$$

если они существуют, мы будем называть преобразованиями Фурье функции f, соответственно прямым и обратным. Мы их будем записывать в виде

$$\widetilde{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-ixt} dt, \quad \widehat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{ixt} dt, \quad (3)$$

но помнить, что интегралы в (3) надо понимать вообще в смысие главного значения  $\begin{pmatrix} \lim_{N\to\infty} \int_{-N}^{N} \end{pmatrix}$ .

Для функций  $f \in L'$  (или L) их преобразования Фурье всегда имеют смысл и интегралы (3) суть обычные абсолютно сходящиеся песобственные интегралы и их можно понимать как

 $\lim_{N,N' o\infty}\int\limits_{-N}$ , где  $N,\ N'$  независимы между собой.

В силу сделанных определений (см. § 16.1, (9), (12)) справедливо равенство

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} ds \int_{-\infty}^{\infty} f(t) \cos s (t - x) dt = \widehat{f}(x). \tag{4}$$

Оно во всяком случае, как это было доказано в § 16.3, верно для локально кусочно гладкой функции  $f \in L'$ . Причем внутренний интеграл (по t) абсолютно сходится, а внешний (по s) сходится, но, может быть, не абсолютно.

Кратный интеграл в (4) называется повторным интегралом Фурье функции t.

Таким образом, повторный интеграл Фурье локально кусоч-

но гладкой функции  $f \in L'$  равен самой функции f.

Что касается третьего члена (4), то он указывает, что f можно рассматривать как результат двух операций — преобразования Фурье и затем обратного преобразования Фурье, т. е.  $\hat{f}$ .

Верно также равенство  $f(x) = \widehat{f}(x)$  при тех же условиях на f, нотому что

$$\widetilde{\widehat{f}}(x) = \lim_{N \to \infty} \frac{1}{2\pi} \int_{-N}^{N} e^{-isx} \, ds \int_{-\infty}^{\infty} f(t) \, e^{ist} \, dt =$$

$$= \lim_{N \to \infty} \frac{1}{2\pi} \int_{-N}^{N} e^{isx} \, ds \int_{-\infty}^{\infty} f(t) \, e^{-ist} \, dt = \widehat{\widehat{f}}(x)$$

(замена в интеграле s на -s).

Равепства

$$f(x) = \widehat{f}(x) = \widehat{f}(x) \tag{5}$$

на самом деле верпы при более общих условиях, налагаемых на /, в особенности если соответствующим образом обобщить операции ~ и \( \Lambda \) преобразований Фурье (см. далее).

Из (4) следует равенство

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos sx \, ds \int_{-\infty}^{\infty} f(t) \cos st \, dt + \frac{1}{\pi} \int_{0}^{\infty} \sin sx \, ds \int_{-\infty}^{\infty} f(t) \sin st \, dt \quad (4')$$

для локально кусочно гладкой функции  $f \in L'(-\infty, \infty)$ . Если при этом f(x) четная, то

$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \cos sx \, ds \int_{0}^{\infty} \cos st \, f(t) \, dt, \tag{6}$$

ссли же нечетная, то

$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \sin sx \, ds \int_{0}^{\infty} \sin st \, f(t) \, dt. \tag{7}$$

В формулах (6) и (7) можно считать, что  $x \ge 0$ , а f(t) есть произвольная локально кусочно гладкая функция, принадлежаная  $L'(0, \infty)$ . Ведь в этих формулах используются только вначения f на полуоси  $[0, \infty)$ . Поясним это замечание подробнее.

Пусть задана локально кусочно гладкая функция  $f \in L'(0, \infty)$  такая, что f(0) = f(0+0). Продолжив ее на всю действительную ссь четным образом, получим четную локально кусочно гладкую функцию  $f \in L'(-\infty, \infty)$ , для которой верна формула (6); в частвости, она верна для  $x \ge 0$ .

Будем теперь считать, что для нашей локально кусочно гладкой функции  $(f \in L'(0, \infty))$  выполняется равенство f(0) = 0 (вобые  $f(0+0) \neq f(0)$ ). Продолжив f нечетным образом на  $(-\infty, \infty)$ , получим нечетную локально кусочно гладкую функцию  $f \in L'(-\infty, \infty)$ , для которой верна формула (7); в частности, она верна для  $x \geq 0$ . Подчеркнем, что в формуле (7) f(0) = 0, в то время как в формуле (6) значение f(0) = f(0+0) может быть любым.

Питегралы

$$\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos st \, dt, \quad \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin st \, dt$$

называются соответственно косинус- и синус-преобразованиями Фурьс. Из формул (6) и (7) непосредственно следует, что если

к локально кусочно гладкой функции  $f \in L'(0, \infty)$  (или L) применить последовательно два раза косппус- (или синус-) преобравование Фурье, то получим исходную функцию f. В этом смысле косинус- (синус-) преобразование Фурье является обратным самому себе.

Упражнеция. Доказать следующие формулы для локально кусочно гладких функций  $f \in L'(-\infty, \infty)$ . Например.

$$e^{i\mu t} \widehat{f} = \frac{1}{\sqrt{2\pi}} \int e^{i\mu t} e^{ixt} dt \frac{1}{\sqrt{2\pi}} \int f(u) e^{-iut} du =$$

$$= \frac{1}{\sqrt{2\pi}} \int e^{i(\mu+x)t} dt \frac{1}{\sqrt{2\pi}} \int f(u) e^{-iut} du = \widehat{f}(\mu+x) = f(\mu+x).$$
1.  $\widehat{f}(-t) = \widehat{f}(t)$ . 2.  $\widehat{f}(-x) = \widehat{f}(x)$ . 3.  $\widehat{f}(at) = \frac{1}{|a|} \widehat{f}(\frac{x}{a})$ .
4.  $\widehat{f}(at) = \frac{1}{|a|} \widehat{f}(\frac{x}{a}) (a \neq 0)$ .

Примеры.

Справедливы равенства (поясиения пиже)

 $\int_{0}^{\infty} e^{i\mu t} \widetilde{f} = e^{-i\mu t} \widehat{f} = f(x - |-\mu) (\mu - действительное).$ 

1) 
$$f(x) = \begin{cases} 1, & 0 \le |x| \le a \\ 0, & a \le |x| \end{cases} = \frac{2}{\pi} \int_{s}^{\infty} \cos sx \frac{\sin as}{s} ds,$$

2) 
$$f(x) = \begin{cases} sign x, & |x| < 1 \\ 0, & 1 < |x| \end{cases} = \frac{2}{\pi} \int_{0}^{\infty} sin sx \frac{1 - cos s}{s} ds,$$

3) 
$$f(x) = \begin{cases} 1, & a < x \le b \\ 0, & x < a, b < x \end{cases} = \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin s(x-a) - \sin s(x-b)}{s} ds,$$

4) 
$$\frac{1}{a} \int_{0}^{\infty} e^{-a\lambda} \cos \lambda x \, d\lambda = \frac{1}{a^2 + x^2},$$

5) 
$$\int_{0}^{\infty} e^{-a\lambda} \sin \lambda x \, d\lambda = \frac{x}{a^2 + x^2},$$

6) 
$$e^{-as} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos sx \, dx}{a^2 + x^2} \quad (a > 0, \ 0 \le s < \infty),$$

7) 
$$e^{-as} = \frac{2}{\pi} \int_{0}^{\infty} \frac{x}{a^2 + x^2} \sin sx \, ds$$
  $(0 < s < \infty)$ ,

8) 
$$f(x) = \begin{cases} \sin x, & |x| \leq \pi \\ 0, & |x| > \pi \end{cases} = \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin s\pi}{1 - s^2} \sin sx \, ds,$$

9) 
$$f(x) = \begin{cases} \cos x, & |x| \leq \frac{\pi}{2} \\ 0, & |x| > \frac{\pi}{2} \end{cases} = \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \frac{\lambda \pi}{2}}{1 - \lambda^{2}} \cos \lambda x \, d\lambda,$$

10) 
$$f(x) = e^{-\alpha |x|} \cos \beta x = \frac{\alpha}{\pi} \int_{0}^{\infty} \cos sx \left[ \frac{1}{(s-\beta)^{2} + \alpha^{2}} + \frac{1}{(s+\beta)^{2} + \alpha^{2}} \right] ds$$

 $(\alpha > 0)$ ,

11) 
$$f(x) = e^{-\alpha |x|} \sin \beta x = \frac{4\alpha\beta}{\pi} \int_{0}^{\infty} \frac{s \sin sx}{\left[(s-\beta)^{2} + \alpha^{2}\right] \left[(\alpha + \beta)^{2} + \alpha^{2}\right]} ds$$

$$(\alpha > 0),$$

12) 
$$f(x) = e^{-x^2} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \cos sx e^{-s^2/4} ds$$
,

43) 
$$f(x) = xe^{-x^2} = \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} \lambda \sin \lambda x e^{-\lambda^2/4} d\lambda.$$

При пользовании обычными методами теории неопределенных интегралов, не видно, как можно вычислить интегралы, стоящие в правых частях равенств 1)-3). С другой стороны, функции 1)-3) кусочно гладкие и принадлежат  $L'(-\infty, \infty)$  ( $f \in L'(-\infty, \infty)$ ). Поэтому к ним применима формула (4'). Эта формула упрощается и имеет вид (6), если f—четная функция, а, если f—нечетная, то она имеет вид (7), например, функция (7)0 четная, и нотому

$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \cos sx \, dx \int_{0}^{a} \cos st \, dt = \frac{2}{\pi} \int_{0}^{\infty} \cos sx \, \frac{\sin sa}{s} \, ds,$$

име надо считать, что в точках разрыва f выполняется равенство  $f(x) = \frac{1}{2}[f(x-0) + f(x+0)]$ . Интегралы 4), 5) вычислямится интегрированием по частям.

Умножив 4) на  $\frac{2a}{\pi}\cos sx$  и проинтегрировав во x на  $(0, \infty)$ , получим

$$\frac{2a}{\pi}\int_{0}^{\pi}\frac{\cos sx}{a^{2}+x^{2}}dx=\frac{2}{\pi}\int_{0}^{\infty}\cos sx\,dx\int_{0}^{\infty}e^{-a\lambda}\cos\lambda x\,d\lambda=e^{-a|s|},$$

где последнее равенство имеет место в силу формулы (6), применимой, потому что  $e^{-a\lambda} \in L'(0, \infty)$  — гладкая функция.

Подобными рассуждениями получается формула 7) из 5),

если применить формулу (7).

Функция 8) нечетная кусочно гладкая. Чтобы получить нужный интеграл, представляем ее по формуле (7), где внутренний митеграл равен

$$\int_{0}^{\infty} \sin st f(t) dt = \int_{0}^{\pi} \sin st \sin t dt = \frac{\sin s\pi}{1 - s^{2}}.$$

Этот интеграл удобно вычислить интегрированием по частям два раза.

Представление функции 9) получается аналогично примене-

нием формулы (6).

Функция 10) четная. Чтобы получить пужный интеграл, представляем ее по формуле (6), где внутренний интеграл

$$\int_{0}^{\infty} e^{-\alpha t} \cos \beta t \cos st \, dt = \frac{1}{2} \int_{0}^{\infty} e^{-\alpha t} \cos (\beta + s) \, \tilde{t} \, dt + \frac{1}{2} \int_{0}^{\infty} e^{-\alpha t} \cos (\beta - s) \, t \, dt = \frac{\alpha}{2} \left[ \frac{1}{(\beta + s)^{2} + \alpha^{2}} + \frac{1}{(\beta - s)^{2} + \alpha^{2}} \right].$$

Это получается интегрированием по частям два раза.

Апалогичные рассуждения проходят для функции 11), если воспользоваться формулой (7).

Функция 12) четная и для нее верна формула (6):

$$e^{-x^2} = \frac{2}{\pi} \int_0^\infty \cos sx \, ds \int_0^\infty \cos st e^{-t^2} \, dt.$$

Но (см. § 13.16, пример 3)

$$\int_{0}^{\infty} \cos st e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2} e^{-s^{2}/4},$$

откуда следует представление 12).

Представление 13) получается аналогично по формуле (7), если учесть § 13.15, уравнение 3.

## § 16.5. Производная и преобразование Фурье

Теорема. Пусть f — непрерывная локально кусочно гладкая функция u f,  $t\tilde{f}(t) \equiv L' = L'(-\infty, \infty)$  (или L). Тогда f имеет непрерывную производную (r, e, ha) самом деле она гладкая), равную

$$f'(x) = i\widehat{f}(x) \tag{1}$$

 $(\kappa o p o \tau \kappa o f' = i \widehat{tf}).$ 

Доказательство. Так как  $f \in L'$ , то функция  $\tilde{f}$  всюду пепрерывна. Далее из того, что  $t\tilde{f} \in L'$ , следует, что  $\tilde{f} \in L'$  ( $|t| \ge 1$ ), но тогда  $\tilde{f} \in L' = L'(-\infty, \infty)$ ,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widetilde{f}(u) e^{ixu} du$$
 (2)

31

$$f'(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} iu\widetilde{f}(u) e^{ixu} du.$$
 (3)

Дифференцирование под знаком интеграла законно, потому что в силу неравенства

$$|iuf(u)e^{-ixu}| \leq |uf(u)| \in L'$$

интеграл (3) равномерно сходится относительно x и, кроме того, подынтегральная функция в (3) непрерывна по x, u. Теорема доказана.

### $\S$ 16.6. Пространство S

По определению функция  $\varphi = \varphi(x)$  от одной переменной принадлежит пространству S (Лорана Шварца\*)), если она комплекснозначна ( $\varphi = \varphi_1 + i\varphi_2$ ,  $\varphi_1$ ,  $\varphi_2$  действительны), бесконечно дифференцируема на действительной оси и для любой пары неотрицательных чисел l, k (k целое)

$$\sup_{x} (1 + |x|^{i}) |\varphi^{(k)}(x)| = \varkappa(l, k, \varphi) < \infty.$$
 (1)

Из этого определения следует, что производная  $\varphi^{(k)}(x)$  при любом k ограничена, стремится к нулю при  $x \to \infty$  и принадлежит  $L_p'(1 \leqslant p < \infty)$ , потому что  $|\varphi^{(k)}(x)| \leqslant \frac{\varkappa(2, k, \varphi)}{1 + |x|^2}$ . Заметим, что всякая бесконечно дифференцируемая финитная функция, очевидно, принадлежит S.

Если функции  $\phi_m$ ,  $\phi \in S$  ( $m=1, 2, \ldots$ ), и для любой указанной нары (l, k)

$$\varkappa(l, k, \varphi_m - \varphi) \to 0 \quad (m \to \infty),$$

то будем писать  $\phi_m \to \phi$  (S) и говорить, что  $\phi_m$  стремится  $\kappa$   $\phi$  в смысле (S) (в топологии (S)).

<sup>\*)</sup> Л. Шварц — французский математик.

Нам придется иметь дело с *операциями*  $A\phi = \psi$ , приводящими в соответствие каждой функции  $\phi \in S$  некоторую функцию  $\psi \in S$ . Очевидно, S — линейное множество.

Операция А называется линейной, если

$$A(\alpha\varphi_1 + \beta\varphi_2) = \alpha A\varphi_1 + \beta A\varphi_2,$$

каковы бы ни были комплексные числа  $\alpha$ ,  $\beta$  и функции  $\phi_i$ ,  $\phi_2 \in S$ .

Операция A называется непрерывной, если, какова бы ни была последовательность функции  $\phi_k \in S$ , сходящаяся к некоторой функции  $\phi \in S$  в смысле (S), имеет место

$$A\varphi_h \to A\varphi$$
 (S).

Следующее утверждение может служить достаточным \* критерием непрерывности линейной операции: если, какова бы ни была пара (l, k) (неотрицательных целых чисел), найдется зависящая от нее система пар  $(l_1, k_1), \ldots, (l_m, k_m)$  такая, что

$$\varkappa(l, k, A\varphi) \leqslant C_{l,h} \sum_{j=1}^{m} \varkappa(l_j, k_j, \varphi)$$

для всех  $\varphi \in S$ , где  $C_{l,h}$  не зависит от  $\varphi$ , то операция A непрерывна.

В самом деле, если  $\varphi_v \to \varphi(S)$ , то для любой пары (l, k)

$$\varkappa(l, k, A(\varphi_{\mathbf{v}} - \varphi)) \leqslant C_{l,h} \sum_{j=1}^{m} \varkappa(l_j, k_j; \varphi_{\mathbf{v}} - \varphi) \to 0 \quad (\mathbf{v} \to \infty).$$

Операция дифференцирования  $\phi^{(\mu)}$   $\mu$  раз функции  $\phi$  отображает S в S линейно. Она также непрерывна, потому что

$$\varkappa(l, k, \varphi^{(\mu)}) = \varkappa(l, k + \mu, \varphi)$$

для любой пары (l, k).

Про функцию  $\lambda = \lambda(x)$ , бескопечно дифференцируемую на  $(-\infty, \infty)$ , будем говорить, что она (вместе со своими производными) имеет полиномиальный рост, если для любого целого неотрицательного k найдется неотрицательное число l(k) = l и такая константа C, что

$$|\lambda^{(h)}(x)| \leqslant C(1+|x|^i).$$

Например, функция  $(ix)^s$ , где s — неотрицательное целое, очевидно, бесконечно дифференцируема и имеет полиномиальный рост.

Произведение  $\lambda \hat{\phi} = \lambda(x) \hat{\phi}(x)$  есть линейная непрерывная операция, отображающая S в S. Тот факт, что она отображает S

<sup>\*)</sup> На самом деле этот критерий является также необходимым, по мы гдесь это не будем доказывать.

в S, и ее непрерывность вытекают из неравенства

$$(1+|x|^{l})|(\lambda\varphi)^{(h)}| = (1+|x|^{l})\left|\sum_{j=0}^{h} C_{h}^{j}\lambda^{(j)}\varphi^{(h-j)}\right| \leqslant$$

$$\leqslant C\sum_{0}^{h} \frac{|\lambda^{(j)}(x)|}{1+|x|^{l(j)}} (1+|x|^{l(j)})(1+|x|^{l})|\varphi^{(h-j)}(x)| \leqslant$$

$$\leqslant C_{1}\sum_{0}^{h} (1+|x|^{l+l(j)})|\varphi^{(h-j)}|,$$

из которых следует

$$\mathbf{x}(l, k, \lambda \varphi) \leqslant C_1 \sum_{n=1}^{k} \dot{\mathbf{x}}(l+l(j), k-j, \varphi).$$

Липейность операции дф очевидна.

Покажем, что преобразование Фурье

$$\widetilde{\varphi}(x) = \frac{1}{\sqrt{2\pi}} \int \varphi(t) e^{-ixt} dt \quad \left( \int = \int_{-\infty}^{\infty} \right)$$
 (2)

есть линейная непрерывная операция, отображающая S на S и притом взаимно однозначно.

В самом деле, если  $\phi \in S$ , то  $\phi \in L'$ , и преобразование  $\overset{\sim}{\phi}$  есть во всяком случае непрерывная функция. Далее,

$$\widetilde{\varphi}^{(h)}(x) = \int \psi(t) e^{-ixt} dt,$$

$$\psi(t) = \frac{1}{\sqrt{2\pi}} \varphi(t) (-it)^h = A\varphi.$$
(3)

При этом  $\psi(t) \in S$  как произведение функции  $\phi \in S$  на бескопечно дифференцируемую функцию полиномиального роста. Так как  $\psi \in L'$ , то интеграл (3) при любом k равномерно сходится и дифференцирование (2) по x под знаком интеграла законно. Имеем, интегрируя по частям,

$$\widetilde{\psi}^{(h)}(x) = \int \psi(t) e^{-ixt} dt = \frac{1}{ix} \int \psi'(t) e^{-ixt} dt = \dots =$$

$$= \frac{1}{(ix)^l} \int \psi^{(l)}(t) e^{-ixt} dt,$$

HOTOMY TO  $\psi^{(s)}(t) \to 0 \ (t \to \pm \infty)$ .

По тогда

$$|x|^{l}|\widehat{\varphi}^{(h)}(x)| \leq \int \frac{|\psi^{(l)}(t)|(1+t^{2})}{1+t^{2}}dt \leq \varkappa(2, l, \psi) \int \frac{dt}{1+t^{2}} = c\varkappa(2, l, \psi).$$

 $\mathbb{R}$  частвости,  $|\widetilde{\varphi}^{(k)}(x)| \leq c \kappa(2, 0, \psi)$  и нотому

$$\varkappa(l, k, \widetilde{\varphi}) = \sup (1 + |x|^l) \widetilde{\varphi}^{(k)}(x) | \leq c(\varkappa(2, l, A\varphi) + \varkappa(2, 0, A\varphi)).$$

Следовательно,  $\varphi \in S$  и  $\varphi$  непрерывно зависит от  $A\varphi$ . Но  $A\varphi$  непрерывно зависит от  $\varphi$ , и потому  $\varphi$  пепрерывно зависит от  $\varphi \in S$ . Линейность операции  $\varphi$  очевидиа. Мы пока доказали, что она отображает S в S. Но если  $\chi$  — произвольная функция из S, то в силу того, что она гладкая и принадлежит L', ее можно рассматривать как преобразование  $\Phi$ урье от  $\hat{\chi} \in S$ . Это показывает, что на самом деле преобразование  $\varphi$  отображает S на S.

Наконец, из равенства  $\widetilde{\phi}_1 = \widetilde{\phi}_2(\phi_1, \phi_2 \in S)$  следует  $\phi_1 - \phi_2 = 0$  п  $\phi_1 - \phi_2 = \widehat{0} = 0$ , т. е.  $\phi_1 = \phi_2$ , что показывает, что операция  $\widetilde{\phi}$  отображает S на S взаимно однозначно.

Для двух функций  $\varphi$ ,  $\psi \in S$  введем выражение

$$(\varphi, \psi) = \int \varphi(x) \psi(x) dx$$

(без знака сопряжения пад ф!).

Справедливо (см. лемму 1 § 16.2)

$$(\varphi, \widetilde{\psi}) = \int \varphi(x) \, \widetilde{\psi}(x) \, dx = \int \varphi(x) \frac{dx}{\sqrt{2\pi}} \int \psi(t) \, e^{-ixt} dt =$$

$$= \int \psi(t) \, dt \, \frac{1}{\sqrt{2\pi}} \int \varphi(x) \, e^{-ixt} dx = (\psi, \widetilde{\varphi}) = (\widetilde{\varphi}, \psi),$$

и мы получили первое из равенств

$$(\varphi, \widetilde{\psi}) = (\widetilde{\varphi}, \psi), \quad (\varphi, \widehat{\psi}) = (\widehat{\varphi}, \psi),$$
 (4)

являющихся аналогами равенства Парсеваля в теории рядов Фурье\*). Второе равенство доказывается аналогично.

Отметим еще равенства

$$(\varphi', \psi) = \int \varphi'(t) \, \psi(t) \, dt = \varphi(t) \, \psi(t) \big|_{-\infty}^{\infty} - \int \varphi(t) \, \psi'(t) \, dt = -(\varphi, \psi')$$

$$(\varphi, \psi \in S), \tag{5}$$

ведь  $\varphi(t),\ \psi(t)\to 0$  при  $t\to\pm\infty$ . Наконец, еще отметим важные равенства

$$\varphi'(x) = \widehat{il\varphi} = (-it)\widehat{\varphi} \quad (\varphi \in S). \tag{6}$$

Надо учесть, что если  $\varphi \in S$ , то  $\widetilde{\varphi} \in S$ , и так как ix— бесконечно дифференцируемая функция полиномиального роста, то  $ix\varphi \in S$ . Но тогда  $\varphi$ ,  $ix\widetilde{\varphi} \in L'$  и законно применить теорему § 16.5. Второе равенство (6) доказывается аналогично.

Для функций  $\phi$  ∈ S, очевидно, верны утверждения 1)—5) в

конце § 16.4 (упражнения).

<sup>\*)</sup> Если бы мы считали, что  $(\varphi, \psi) = \int \varphi(x) \overline{\psi(x)}' dx$ , то тогда было бы  $(\varphi, \overline{\psi}) = (\widehat{\varphi}, \psi)$ .

Пусть  $K \in L'$  (или L), а  $\phi \in S$ . Операция

$$K * \varphi = \frac{1}{\sqrt{2\pi}} \int K(x-t) \varphi(t) dt = \frac{1}{\sqrt{2\pi}} \int \varphi(x-t) K(t) dt = \varphi * K$$

пазывается сверткой функций K u  $\phi$  (или  $\phi$  u K). Справедливы важные равенства

$$\widehat{\widetilde{K}\widetilde{\varphi}} = \widehat{\widetilde{K}\widetilde{\varphi}} = K * \varphi \quad (K \in L', \, \varphi \in S), \tag{7}$$

потому что, например (пояснения ниже),

$$\begin{split} \widehat{K\varphi} &= \frac{1}{(2\pi)^{3/2}} \int e^{ixs} ds \int K(u) \, e^{-isu} du \int \varphi(v) \, e^{-isv} dv = \\ &= \frac{1}{(2\pi)^{3/2}} \int e^{ixs} ds \int K(u) \, du \int \varphi(v) \, e^{-is(u+v)} dv = \\ &= \frac{1}{(2\pi)^{3/2}} \int e^{ixs} ds \int K(u) \, du \int \varphi(\xi-u) \, e^{-i\xi} d\xi = \\ &= \frac{1}{(2\pi)^{3/2}} \int e^{ixs} ds \int e^{-is\xi} d\xi \int K(u) \, \varphi(\xi-u) \, du = \\ &= \frac{1}{\sqrt{2\pi}} \int K(u) \, \varphi(x-u) \, du. \end{split}$$

Первый член в этой цели имеет смысл, потому что  $\varphi \in S$ ,  $\widetilde{\varphi} \in S \in L'$ ,  $K \in L'$ , K— ограниченная непрерывная функция, и потому  $\widetilde{K\varphi} \in L'$ — непрерывная функция. В третьем равенстве произведена замена v на  $\xi = u + v$ , в четвертом интегралы по u и  $\xi$  мы поменяли местами (см. лемму 1  $\S$  16.2 или теорему Фубини). Последнее пятое равенство верио, потому что интеграл

$$\varkappa(\xi) = \int K(u) \varphi(\xi - u) du$$

есть функция, принадлежащая L',— ведь

$$\int |\varkappa(\xi)| d\xi \leqslant \int d\xi \int |K(u)| |\varphi(\xi - u)| du = \int |\varphi(t)| dt \int |K(u)| du < \infty,$$

н имеющая непрерывную производную

$$\kappa'(\xi) = \int K(u) \, \varphi'(\xi - u) \, du$$

(интеграл равномерно сходится!),

Имеем далее

$$\widetilde{\widetilde{K\varphi}} = \widetilde{K}(-t)\widetilde{\varphi}(-t) = \frac{1}{\sqrt{2\pi}} \int \widetilde{K}(-t)\widetilde{\varphi}(-t) e^{-ixt} dt = 
= \frac{1}{\sqrt{2\pi}} \int \widetilde{K}(u)\widetilde{\varphi}(u) e^{ixu} du = \widetilde{K\varphi}.$$

Упражнения. Показать, что следующие функции принадлежат S:

1. 
$$e^{-x^2}$$
. 2.  $\psi(x) = \begin{cases} \frac{1}{x^2 - 1}, & |x| < 1 \pmod{\$ 5.11, (8)}, \\ 0, & |x| \geqslant 1 \end{cases}$ 

### $\S$ 16.7. Пространство S' обобщенных функций

Если каждой функции  $\phi \in S$  в силу некоторого закона приведено в соответствие число  $(F, \phi)$ , зависящее от  $\phi$  липейно и непрерывно (в смысле S), то говорят, что этим определен линейный функционал или обобщенная функция F над S.

Функционал F обладает следующими двумя свойствами:

1) F — линейный функционал, т. е. для любой нары  $\alpha$ ,  $\beta$  комилексных чисел и пары функций  $\phi$ ,  $\psi \in S$ 

$$(F, \alpha \varphi + \beta \psi) = \alpha(F, \varphi) + \beta(F, \psi),$$

2) F — непрерывный функционал:

$$(F, \varphi_N) \to (F, \varphi) \quad (\text{если } \varphi_N \to \varphi) \quad (S).$$

Совокупность всех указапных функционалов (обобщенных

функций) F принято обозначать через S'.

Обычно не представляет труда установить, что конкретный функционал  $(F, \varphi)$  над S является линейным. Что же касается непрерывности, то здесь очень важным является следующий достаточный критерий \*).

Пусть найдется константа  $\mathit{C}$  и конечная система пар

 $(k_1, l_1), \ldots, (k_m, l_m)$  такая, что выполняется неравенство

$$|(F, \varphi)| \leqslant C \sum_{j=1}^{m} \varkappa(l_j, k_j, \varphi)$$
 (1)

для всех функций  $\varphi \in S$ . Тогда функционал  $(F, \varphi)$  непрерывен, потому что из того, что  $\varphi_N \to \varphi$  (S), следует

$$|(F, \varphi_N) - (F, \varphi)| = |(F, \varphi_N - \varphi)| \leqslant$$

$$\leq C \sum_{j=1}^{m} \kappa(l_j, k_j, \varphi_N - \varphi) \to 0 \quad (N \to \infty).$$

Рассмотрим пример. Пусть F(x) есть локально интегрируемая, определенная на действительной оси комплексиозначная функция такая, что для нее можно указать число  $l \ge 0$ , для которого  $|F(x)| \le C(1+|x|^l)$ , где C не зависит от x. Интеграл

$$(F, \varphi) = \int F(x) \varphi(x) dx \qquad \left( \varphi \in S, \int = \int_{-\infty}^{\infty} \right)$$
 (2)

<sup>\*)</sup> Можно доказать, что этот критерий также и необходим.

есть функционал (обобщенная функция)  $F \in S'$ . В самом деле, ведь

$$|(F\varphi)| \leq \int |F(x) \varphi(x)| dx \leq C \int \frac{1+|x|^{l}}{1+|x|^{l+2}} \varkappa(l+2, 0, \varphi) dx \leq C_{1} \varkappa(l+2, 0, \varphi),$$

откуда видно, что функционал (2) определен для всех  $\phi \in S$  и

непрерывен. Линейность его очевидна.

Рабенство (2) определяет функционал  $F \in S'$  также в случаях, когда функция  $F(x) \in L_p'$  (или  $L_p$ ),  $1 \le p < \infty$ . Если  $F(x) \in L'$ , то непрерывность  $(F, \varphi)$  следует из неравенств  $|(F, \varphi)| \le \int |F(x) \varphi(x)| \, dx \le \int |F(x)| \, \varkappa (0, 0, \varphi) \, dx \le C \varkappa (0, 0, \varphi)$ , а если

 $F(x) \in L_p'(1 , то на неравенств$ 

$$|(F, \varphi)| \leq \int |F(x) \varphi(x)| \leq \int |F(x)| \frac{1}{1+|x|} \kappa(1, 0, \varphi) dx \leq$$

$$\leq \left(\int |F|^p dx\right)^{1/p} \left(\int \frac{dx}{(1+|x|)^q}\right)^{1/q} \kappa(1, 0, \varphi) = C\kappa(1, 0, \varphi) \left(\frac{1}{p} + \frac{1}{q} = 1\right).$$

Важно отметить, что для того чтобы две локально интегрируемые (в римановом смысле) функции  $F_1(x)$  и  $F_2(x)$  представляли при помощи равенств вида (2) равные обобщенные функции  $F_1 = F_2 \subset S'$ , необходимо и достаточно, чтобы имело место равенство  $F_1(x) = F_2(x)$  во всех точках непрерывности  $F_1(x)$  и  $F_2(x)$ .

Достаточность условия очевидна. Опо также необходимо, потому что если имеет место равенство

$$\int F_1(x) \varphi(x) dx = \int F_2(x) \varphi(x) dx$$
 для всех  $\varphi \in S$ , (3)

и при этом допустить, например, что в некоторой точке  $x_0$  непрерывности функций  $F_1$  и  $F_2$  имеет место

$$\psi(x_0) = F_1(x_0) - F_2(x_0) > 0,$$

то найдется интервал  $(x_0 - \delta, x_0 + \delta)$ , на котором

$$\psi(x) > \eta > 0.$$

По существует неотрицательная функция  $\phi \in S$  с носителем на  $[x_0 - \delta, x_0 + \delta]$  (например, функция  $\psi((x - x_0)/\delta)$  в упражнении 2 § 16.6). Для нее имеет место

$$(F_1, \varphi) - (F_2, \varphi) = \int \psi(x) \varphi(x) dx > \eta \int_{x_0 - \delta}^{x_0 + \delta} \varphi(x) dx > 0,$$

и мы пришли к противоречию с (3).

Более общее утверждение (см. § 19.6, теорема 1) гласит: две локально интегрируемые в лебеговом смысле функции, если представляют, то один и тот же линейный функционал тогда и только тогда, когда на любом конечном отрежке [a, b] они равны между собой, за исключением множества лебеговой меры нуль.

Обобщенную функцию, представляемую при помощи интеграла (2) обычной локально интегрируемой функцией F(x), о то ждеств ляют с этой последней. Например,  $\sin x$ ,  $(\sin x)/x$ ,  $e^{-x^2}$ ,  $\ln |x|$ ,  $\sum_{0}^{n} a_k x$ , — это обычные функции, по и обобщенные, принадлежащие S'.

С другой стороны, функция  $e^{x^2}$  не принадлежит S' (не представляет при помощи интеграла (2) линейный функционал на (S)), потому что для нее, например, не существует интеграл (2) при  $\varphi(x) = e^{-x^2} \in S$ .

Пример 1. Функционал

$$\delta = (\delta, \varphi) = \varphi(0) \quad (\varphi \in S) \tag{4}$$

называется  $\delta$ -функцией (дельта-функцией). Очевидно,  $\delta \in S'$ , ведь

$$|\varphi(0)| \leqslant \sup_{x} |\varphi(x)| = \varkappa(0, 0, \varphi).$$

Не существует локально интегрируемой функции, которая представляла  $\delta$  ы  $\delta$ -функцию. В этом смысле  $\delta$  есть подлиниая (не обычная) обобщенная функция.

В самом деле, допустим вопреки утверждению, что такая локально интегрируемая функция F(x) существует, и пусть  $x_0 \neq 0$  есть се точка непрерывности, где  $F(x_0) > 0$ . Тогда на некотором не содержащем нуль интервале  $(x_0 - \delta, x_0 + \delta)$  выполнялось бы неравенство  $F(x) > \eta > 0$  и можго было бы подобрать неотрицательную функцию  $\phi \in S$  с носителем  $[x_0 - \delta, x_0 + \delta]$ , откуда

$$(F, \varphi) = \int_{x_0 - \delta}^{x_0 + \delta} F(x) \varphi(x) dx > \eta \int_{x_0 - \delta}^{x_0 + \delta} \varphi(x) dx > 0.$$

Но этого не может быть, потому что для функции  $\varphi$  с носителем, не содержащим точку 0, функционал  $(\delta, \varphi) = \varphi(0) = 0$ . Итак, наша функция F(x) не может быть положительной в ее точках непрерывности, отличных от нулевой.

Аналогично доказывается, что F(x) не может быть отрицательной в таких точках, и тогда, очевидно,

$$\int F(x) \varphi(x) dx = 0 \text{ для всех } \varphi \in S.$$

Но это невозможно, ведь имеются же функции  $\varphi \in S$ , для которых  $\varphi(0) \neq 0$ .

Можно доказать более общее утверждение: функционал (4) не представляется в виде интеграла (2), где F(x) — какая-либо локально интегрируемая в лебеговом смысле функция.

Однако функционал ( $\delta$ ,  $\phi$ ) можно записать в виде интеграла Стилтье-

$$(\delta, \varphi) = \varphi(0) = \int_{-\infty}^{\infty} \varphi(x) d\theta(x) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} \varphi(x) d\theta(x),$$

TRO

$$\theta(x) = \begin{cases} 0, & x \leq 0, \\ 1, & x > 0, \end{cases}$$

--- функция, которую еще называют функцией Хевисайда. По определению

$$\int_{a}^{b} \varphi(x) d\theta(x) = \lim_{\max(x_{j}-x_{j-1})\to 0} \sum_{1}^{N} \varphi(\xi_{j}) \left[\theta(x_{j}) - \theta(x_{j-1})\right],$$

где отрезок [a,b] разделен на части точками  $a=x_0 < x_1 < \ldots < x_N=b$  и  $x_{j-1} \leqslant \xi_j \leqslant x_j$   $(j=1,\ldots,N)$ . Очевидно, если нулевая точка x=0 принадлежит отрезку  $[x_{l-1},x_l]$  и не является его правым концом, то

$$\sum_{i} \varphi\left(\xi_{j}\right) \left[\theta\left(x_{j}\right) - \theta\left(x_{j-1}\right)\right] = \varphi\left(\xi_{l}\right) \left[\theta\left(x_{l}\right) - \theta\left(x_{l-1}\right)\right] =$$

$$= \varphi\left(\xi_{l}\right) \rightarrow \varphi\left(0\right) \left(\max\left\{x_{i} - x_{i-1}\right\} \rightarrow 0\right).$$

Если же точка 0 есть правый конец  $[x_{l-1}, x_l]$ , то наша сумма равляется  $\phi(\xi_{l+1}) \to \phi(0)$ , что дает тот же результат.

**Пример** 2. Обобщенная функция P.  $\frac{1}{x}$  определяется как предел

$$\left(P. \frac{1}{x}, \varphi\right) = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \left\{ \int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right\} = V. P. \int_{-\infty}^{\infty} \frac{\varphi(x)}{x} dx (\varphi \in S), \quad (5)$$

т. с. инвеграл справа в (5) понимается в смысле главного вначения (V. P.— vales principal — главное значение). В обычном римановом (и добеговом) смысле этот интеграл в случае, если  $\varphi(0) \neq 0$ , не существует. С другой стороны, предел (5) можно записать в виде обычного риманового (несобственного) интеграла  $(\varphi(x) - \varphi(-x) = O(x), x \rightarrow 0)$ 

$$\lim_{x \to 0} \left\{ \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right\} =$$

$$= \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} dx = \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} dx.$$

<sup>\*)</sup> Т. И. Стилтьес (1856—1894) — голландский математик.

Ясно, что этот функционал линейный. Непрерывность же его вытекает из перавенства

$$\left| \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} dx \right| = \left| \int_{0}^{1} \int_{-x}^{x} \varphi'(t) dt + \int_{1}^{\infty} \frac{x \left[ \varphi(x) - \varphi(-x) \right]}{x^{2}} dx \right| \le$$

$$\leq \int_{0}^{1} \frac{2x \varkappa (0, 1, \varphi)}{x} dx + \int_{1}^{\infty} \frac{2\varkappa (1, 0, \varphi)}{x^{2}} dx < C[\varkappa (0, 1, \varphi) + \varkappa (1, 0, \varphi)].$$

Введем ряд важных операций над обобщенными функциями. Если  $\lambda = \lambda(x)$  есть бесконечно дифференцируемая функция полиномиального роста, то произведение ее на обобщенную функцию  $F \in S'$  записывается в виде  $\lambda F = \lambda(x)F(x)$  и определяется при помощи равенства

$$(\lambda F, \ \varphi) = (F, \ \lambda \varphi). \tag{6}$$

Это определение корректно, ведь  $\lambda \varphi$  есть операция, непрерывная относительно  $\varphi \in S$ , а  $(F, \lambda \varphi)$  есть функционал, непрерывный относительно  $\lambda \varphi$ , следовательно, и относительно  $\varphi$ . Линейность  $(F, \lambda \varphi)$  но  $\varphi$  очевидна.

Это определение также естественно, потому что, если функционал  $F \subseteq S'$  представляется локально интегрируемой функцией F(x), то функция  $\lambda(x)F(x)$  тоже, очевидно, представляет функционал  $\lambda F \subseteq S'$  и

$$(\lambda F, \varphi) = \int \lambda(x) F(x) \varphi(x) dx = \int F(x) \lambda(x) \varphi(x) dx = (F, \lambda \varphi).$$

H роизводная от обобщенной функции  $F \in S'$  по определению есть обобщенная функция F', определяемая равенством

$$(F', \varphi) = -(F, \varphi') \quad (\varphi \in S). \tag{7}$$

Так как  $\phi' \in S$  и есть непрерывная относительно  $\phi$  операция и так как  $(F, \phi')$  есть непрерывный функционал относительно  $\phi'$ , то  $(F', \phi)$  есть непрерывный функционал относительно  $\phi$ . Линейность его очевидна.

Определение (7) естественно, потому что если, например, функция F(x) пепрерывна вместе со своей производной и  $F, F' \in L'$ , то

$$(F', \varphi) = \int F'(x) \varphi(x) dx = F(x) \varphi(x) \Big|_{-\infty}^{\infty} - \int F(x) \varphi'(x) dx = -(F, \varphi').$$

Ведь F(x),  $\varphi(x) \to 0$   $(x \to \infty)$ , так как, например,

$$F(x') - F(x) = \int_{0}^{x'} F'(t) dt \to 0 \quad (x, x' \to \infty)$$

и существует  $\lim_{\substack{x\to\infty\\ \text{из}}} F(x)$ , который не может быть отличным от нуля, нотому что  $F \in L'$ .

Очевидно, что любая обобщенная функция  $F \subseteq S'$  имеет производную (обобщенную) какого угодно порядка, определяемую ио индукцин  $F^{(k)} = (F^{(k-1)})'$ . Таким образом,

$$(F^{(h)}, \varphi) = (-1)^h (F, \varphi^{(h)}).$$

Например,

$$(\delta^{(h)}, \varphi) = (-1)^h (\delta, \varphi^h) = (-1)^h \varphi^{(h)}(0) \quad (k = 1, 2, ...),$$
  
$$(\theta', \varphi) = -(\theta, \varphi') = -\int_0^\infty \varphi'(t) dt = \varphi(0),$$

τ. e.  $\theta' = \delta$ .

По определению последовательность обобщенных функций  $F_N \in S'$  (N=1, 2, ...) сходится к функции  $F \in S'$   $(F_N \to F(S'))$ , если\*)

$$\lim_{N\to\infty} (F_N, \varphi) = (F, \varphi) \quad \text{для всех } \varphi \in S.$$
 (8)

Отсюда автоматически следует также, что последовательность производных  $F'_N$  сходится к производной F', потому что

$$(F'_N, \varphi) = -(F_N, \varphi') \rightarrow -(F, \varphi') = (F', \varphi), \quad N \rightarrow \infty.$$

Можно рассматривать  $pn\partial$ 

$$F = u_1 + u_2 + u_3 + \dots {9}$$

функций  $u_k \in S'$ , имеющий своей суммой функцию  $F \in S'$ , что надо понимать в том смысле, что

$$\sum_{1}^{N} u_h \to F(S'), \quad N \to \infty.$$

Из сказапного, очевидно, следует, что ряд (9) можно почленно дифференцировать:

$$F' = u_1' + u_2' + u_3' + \dots$$

Пример 3. Рассмотрим обычную функцию

$$f_{\varepsilon}(x) = \begin{cases} \frac{1}{\varepsilon}, & 0 < x < \varepsilon, \\ 0, & x \notin (0, \varepsilon), \end{cases}$$

рависящую от параметра  $\varepsilon > 0$ . Она есть в то же время и обобщенная функция  $f_{\theta}$ .

<sup>\*)</sup> Можно доказать, что если последовательность функций  $F_N \in S'$  такова, что для любой  $\phi \in S$  последовательность чисел  $(F_N, \phi)$  удовлетворяет условию Коши, то существует, и притом единственная, функция  $F \in S'$ , для которой выполняется (8).

Очевидно,

$$(f_{\varepsilon}, \varphi) = \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \varphi(x) dx \rightarrow \varphi(0), \quad \varepsilon \rightarrow 0 \quad (\text{для всех } \varphi \in S),$$

откуда следует, что

$$\lim_{\varepsilon \to 0} f_{\varepsilon} = \delta \quad (S').$$

Преобразованием (соответственно обратным преобразованием) Фурье обобщенной функции  $F \subseteq S'$  называется обобщенная функция  $\widetilde{F}(\widehat{F})$ , определяемая равенством

$$(\widetilde{F}, \varphi) = (F, \widetilde{\varphi}) \quad ((\widehat{F}, \varphi) = (F, \widehat{\varphi})) \quad (\varphi \in S).$$
 (10)

Это определение корректно:  $\widetilde{\phi} \in S$  и непрерывно зависит от  $\phi$ , а  $(F,\widetilde{\phi})$  непрерывно зависит от  $\phi$ , поэтому и от  $\phi$ ; линейность  $(F,\widetilde{\phi})$  по  $\phi$  очевидна. Оно естественно, так как согласуется, например, с равенством  $(\widetilde{\phi},\psi)=(\phi,\widetilde{\psi})$  для  $\phi,\psi\in S$ . Далее,  $\widetilde{F}=F$ , так как  $(\widetilde{F},\phi)=(F,\widetilde{\phi})=(F,\widetilde{\phi})=(F,\phi)$ .

Иреобразование  $\widetilde{F}(\widehat{F})$  непрерывно зависит от  $F \subseteq S'$ . Это значит, что если последовательность  $F_N \subseteq S'$  сходится к  $F \subseteq S'$  ( $F_N \to F(S')$ ), то и  $F_N$  сходится к F ( $F_N \to F(S')$ ). В самом деле,

$$(\widetilde{F}_{N}, \varphi) = (F_{N}, \widetilde{\varphi}) \to (F, \widetilde{\varphi}) = (\widetilde{F}, \varphi), N \to \infty,$$

Отметим еще, что преобразование  $\widetilde{F}(\widehat{F})$  отображает S' на S' взаимно однозначно. То, что имеет место отображение S' в S', мы уже знаем, но если  $\Phi \subseteq S'$ — произвольная обобщенная функция, то ее можно представить в виде  $\Phi = \widetilde{\Phi}$ , что доказывает, что на самом деле наше преобразование отображает S' на S'.

Наконен, если  $F_1$ ,  $F_2 \in S'$  и  $\widetilde{F}_1 = \widetilde{F}_2$ , то  $F_1 - F_2 = 0$ ,  $F_1 - F_2 = \widehat{0} = 0$  и  $F_1 = F_2$ , что показывает взаимную однозначность отображения.

Из (10) следует

$$F' = ix\widetilde{F} = -ix\widehat{F},\tag{11}$$

потому что, например (см. § 16.6, (6)),

$$(-ix\widehat{F},\varphi) = (-ix\widehat{F},\widetilde{\varphi}) = (\widehat{F},-ix\widetilde{\varphi}) = (F,-ix\widetilde{\varphi}) = (F,\varphi') = (F',\varphi).$$

$$= -(F,\varphi') = (F',\varphi).$$

Из (11) легко следует по индукции общая формула для про-изводной k-го порядка

$$F^{(h)} = (ix)^h \widetilde{F} = (-ix)^h \widetilde{F} \quad (k = 0, 1, 2, \ldots). \tag{12}$$

Если K = S' есть обобщенная функция, преобразование K которой есть обычная функция и притом бесконечно дифференцируемая полиномиального роста, то корректно определяется свертка K с произвольной функцией F = S' при помощи равенства

$$K * F = \widehat{\widetilde{KF}} = \widehat{\widehat{KF}}. \tag{43}$$

Это определение пересекается с введенным в предыдущем параграфе определением свертки.

Пример 4.  $\widetilde{\delta} = \widehat{\delta} = \frac{1}{1/2\pi}$ , нотому что, например,

$$(\widetilde{\delta}, \varphi) = (\delta, \widetilde{\varphi}) = \frac{1}{\sqrt{2\pi}} \int \varphi(t) dt.$$

Спедовательно, 
$$\delta^{(k)} = (-ix)^k \hat{\delta} = \frac{1}{\sqrt{2\pi}} (-ix)^k \mathbf{1} = \frac{1}{\sqrt{2\pi}} (-ix)^k \quad (k = 0, 1, 2, \ldots),$$

поэтому

$$F^{(k)} = (-ix)^k \widehat{F} = \sqrt{2\pi} \, \widehat{\delta^{(k)}} \widehat{F} = \sqrt{2\pi} \, (\delta^{(k)} *F).$$

Пример 5. Имеем (пояснения ниже)

$$(\operatorname{sign} x, \varphi) = (\operatorname{sign} x, \widehat{\varphi}) = \frac{1}{\sqrt{2\pi}} \int \operatorname{sign} u \, du \int e^{iut} \varphi(t) \, dt =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} du \int \varphi(t) \left( e^{iut} - e^{-iut} \right) dt = \sqrt{\frac{2}{\pi}} i \lim_{N \to \infty} \int \varphi(t) dt \int_{0}^{\infty} \sin ut \, du =$$

$$= \sqrt{\frac{2}{\pi}} i \lim_{N \to \infty} \int \varphi(t) \frac{1 - \cos Nt}{t} dt =$$

$$=\sqrt{\frac{2}{\pi}}i\lim_{N\to\infty}\int_{0}^{\infty}\left[\varphi\left(t\right)-\varphi\left(-t\right)\right]\frac{1-\cos Nt}{t}dt=$$

$$= \sqrt{\frac{2}{\pi}} i \int_{0}^{\infty} \frac{\varphi(t) - \varphi(-t)}{t} dt = \sqrt{\frac{2}{\pi}} i V. P. \int_{-\infty}^{\infty} \frac{\varphi(t)}{t} dt, \quad (14)$$

и мы получили формулу

$$sign x = \sqrt{\frac{2}{\pi}} iV. P. \frac{1}{t}.$$
 (15)

Функция sign x — локально интегрируемая и ограниченная и, следовательно, принадлежит S', поэтому имеет смысл нервый члон цепи (14), а вместе с ним второй и третий. При переходе к пятому члену изменен перядок интегрирования (при конечном N, см. § 13.15). При переходе к пред-

последнему члену заметим, что

$$\lim_{N\to\infty}\int_{0}^{\infty}\frac{\varphi(t)-\varphi(-t)}{t}\cos Nt\,dt=0,$$

потому что гладкая функция  $(\phi(t)-\phi(-t))/t \in L'(0,\infty)$ . Последний член записан в виде сингулярного интеграла в смысле главного значения.

Отметим еще, что если  $F(x) \in S'$  и  $a \neq 0$  — действительное число, то обобщенные функции F(a-x) и F(ax) определяются при номощи равенств

$$(F(a-x), \varphi(x)) = (F(x), \varphi(a-x)), (F(ax), \varphi(x)) =$$
  
=  $|a|^{-1}(F(x), \varphi(x/a)).$ 

Корректность этих определений следует из того, что операция перехода от  $\varphi(x) \in S$  к  $\varphi(x-a)$  или  $\varphi(x/a)$  пепрерывна в смысле (S), а естественность легко выясняется на обычных локально интегрируемых функциях F(x), являющихся в то же время обобщенными.

Упражнения. Доказать, что

1. 
$$\frac{1}{\pi} \frac{\sin Nx}{x} \xrightarrow[N \to \infty]{} \delta(x)$$
 (S). 2.  $\frac{1}{\varepsilon \sqrt{\pi}} e^{-x^2/\varepsilon^2} \xrightarrow[\varepsilon \to 0]{} \delta(x)$  (S).

Указания. Интеграл 
$$\frac{1}{\varepsilon\sqrt{\pi}}\int\limits_{-\infty}^{\infty}e^{-x^2/\varepsilon^2}\,\phi\left(x\right)\,dx$$
 представить в ви-

де суммы  $I_1 + I_2$  интегралов по областям |x| < 1 и |x| > 1. В первом интеграле положить  $\varphi(x) = \varphi(0) + \psi(x)$  и учесть, что  $|\psi(x)| \le c|x|$ , во втором учесть, что  $\varphi(x)$  ограничена  $(|\varphi(x)| \le M)$ .

3. 
$$\frac{1}{x+i\varepsilon} \to \mp i\pi\delta(x) + P.\frac{1}{x}, \quad \varepsilon \to 0(S).$$

Указание. 
$$\left(P, \frac{1}{x}, \varphi(x)\right) = V. P. \int_{-\infty}^{\infty} \frac{\varphi(x)}{x} dx$$
 (см. (5)).

Если  $F \in S'$ , то

**4.** 
$$\widehat{F}(-x) = \widehat{F}(x)$$
. **5.**  $\widehat{F}(-x) = \widehat{F}(x)$ .

**6.** 
$$F(ax) = \frac{1}{|a|} \widetilde{F}\left(\frac{x}{a}\right)$$
. **7.**  $F(ax) = \frac{1}{|a|} \widehat{F}\left(\frac{x}{a}\right) \quad (a \neq 0)$ .

8. 
$$e^{i\mu t}\widetilde{F}=e^{-i\mu t}\widehat{F}=F\left(x+\mu\right)$$
 ( $\mu$  — действительное; учесть, что  $e^{i\mu t}$  — бесконечно дифференцируемая функция полиномиального роста).

9. Доказать, что функция  $P(x)f(x) \in S'$ , если  $P(x) = \sum_{k=0}^{n} a_k x^k$  — произ-

вольный многочлен степени n, а  $f(x) \in L'_p$  (или  $L_p$ ,  $1 \le p < \infty$ ), или если f(x) — локально интегрируемая ограниченная функция.

## § 16.8. Многомерные интегралы Фурье и обобщенные функции

Пусть  $R_n = R$  есть n-мерное пространство точек  $\mathbf{x} = (x_1, \ldots, x_n)$  и  $\Delta_N = \Delta_N^{(n)} = \{ \mid x_j \mid \leq N; \ j = 1, \ldots, n \} \ (N > 0)$  припадлежащий ему куб.

На R зададим локально интегрируемую, вообще говоря, комилексиозначную функцию  $f(\mathbf{x})$  (т. е.  $f \in L'(\Delta_N)$  или  $f \in L(\Delta_N)$  при знобом N). Иля нее имеют смысл интегралы

$$\widetilde{f}^{N}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\Delta_{N}} f(\mathbf{u}) e^{-i\mathbf{x}\mathbf{u}} d\mathbf{u},$$

$$\widetilde{f}^{N}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\Delta_{N}} f(\mathbf{u}) e^{i\mathbf{x}\mathbf{u}} d\mathbf{u} \quad \left(\mathbf{x}\mathbf{u} = \sum_{1}^{n} x_{j} u_{j}\right), \tag{1}$$

иредставляющие собой пепрерывные функции от  $\mathbf{x}$  (см. лемму § 16.2 и замечание 1 к пей), стремящиеся к нулю, когда  $|\mathbf{x}|^2 = \sum_{i=1}^{n} x_i^2 \to \infty$  (см. ниже теорему 1).

Преобразованием Фурье f, соответственно обратным преобрагованием Фурье назовем функции:

$$\widetilde{f}(\mathbf{x}) = \lim_{N \to \infty} \widetilde{f}^N(\mathbf{x}), \quad \widehat{f}(\mathbf{x}) = \lim_{N \to \infty} \widehat{f}^N(\mathbf{x}).$$
 (2)

Эти пределы пногда рассматриваются в смысле среднего квадратического ( $\|\widetilde{f}-\widetilde{f}^N\|_{L_2}\to 0,\ N\to\infty$ ).

Теорема 1. Если  $f \in L' = L'(R)$  (или L = L(R)), то пределы (2) существуют в обычном смысле и определяют непрерывные ограниченные функции  $\widetilde{f}(\mathbf{x})$ ,  $\widehat{f}(\mathbf{x})$ , обладающие свойством

$$\lim_{|x|\to\infty} \widetilde{f}(\mathbf{x}) = \lim_{|x|\to\infty} \widehat{f}(\mathbf{x}) = 0.$$

Доказательство. Непрерывность и ограниченность  $\tilde{f}$ ,  $\hat{f}$  следует из леммы § 16.2 и замечания 1 к ней. Далее, если  $\epsilon_k$  есть единичный вектор, направленный по оси  $x_k$ , то (см. § 14.4, теорема 6)

$$\left| (2\pi)^{n/2} \widetilde{f}(\mathbf{x}) \right| = \frac{1}{2} \left| \int f(\mathbf{u}) e^{-i\mathbf{x}\mathbf{u}} d\mathbf{u} + \int f\left(\mathbf{u} + \frac{\pi e_k}{x_k}\right) e^{-i(\mathbf{x}\mathbf{u} + \pi)} d\mathbf{u} \right| \le$$

$$\le \frac{1}{2} \int \left| f\left(\mathbf{u} + \frac{\pi e_k}{x_k}\right) - f(\mathbf{u}) \right| d\mathbf{u} \to 0 \ (x_k \to \infty).$$

Если же  $|\mathbf{x}^2| = \sum_{1}^{n} x_h^2 \to \infty$ , то  $\max_{h} |x_h| \to \infty$  и  $\widetilde{f}(\mathbf{x}) \to 0$ , но тогда и  $\widehat{f}(\mathbf{x}) = \widetilde{f}(-\mathbf{x}) \to 0$ .  $\left(\int = \int_{R_n} \right)$ .

Простым интегралом Фурье функции  $f \in L'$  (или L) называется функция

$$S_{N}(\mathbf{x}) = \int_{f}^{\infty} \mathbf{x}$$

$$= \frac{1}{(2\pi)^{n}} \int_{\Delta_{N}} e^{i\mathbf{x}\mathbf{v}} d\mathbf{v} \int f(\mathbf{u}) e^{-i\mathbf{v}\mathbf{u}} d\mathbf{u} = \frac{1}{(2\pi)^{n}} \int f(\mathbf{u}) d\mathbf{u} \int_{\Delta_{N}} e^{i\mathbf{v}(\mathbf{x}-\mathbf{u})} d\mathbf{v} =$$

$$= \frac{1}{\pi^{n}} \int \prod_{j=1}^{n} \frac{\sin N(x_{j} - u_{j})}{x_{j} - u_{j}} f(\mathbf{u}) d\mathbf{u} = \frac{1}{\pi^{n}} \int \prod_{j=1}^{n} \frac{\sin Nu_{j}}{u_{j}} f(\mathbf{x} + \mathbf{u}) d\mathbf{u}.$$
(3)

Изменение порядка интегрирования следует из леммы § 16.2 и замечания 1 к ней.

При достаточно общих условиях, налагаемых на свойства функции f (см., например, ниже §§ 16.9, 16.10), можно утверждать, что

$$f(\mathbf{x}) = \lim_{N \to \infty} S_N(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{(2\pi)^n} \int_{\Delta_N} e^{i\mathbf{x}\mathbf{v}} d\mathbf{v} \int f(\mathbf{u}) e^{-i\mathbf{v}\mathbf{u}} d\mathbf{u} =$$

$$= \frac{1}{(2\pi)^n} \int e^{i\mathbf{x}\mathbf{v}} d\mathbf{v} \int f(\mathbf{u}) e^{-i\mathbf{v}\mathbf{u}} d\mathbf{u}, \quad (4)$$

где внешний интеграл понимается вообще в сингулярном смысле (утверждается существование предела при  $N \to \infty$  для областей  $\Delta_N$ , а не каких-либо других).

Таким образом, при определенных условиях, налагаемых на f, справедливы равенства

$$f(\mathbf{x}) = \widehat{f}(\mathbf{x}) = \widehat{f}(\mathbf{x}). \tag{5}$$

Дальнейшие факты излагаются в двумерном случае. На *п*мерный случай они распространяются очевидным образом.

Пусть f(x) и  $\varphi(y)$  — локально интегрируемые функции от одной переменной, т. е. принадлежащие  $L'\left(\Delta_N^{(1)}\right)\left(L\left(\Delta_N^{(1)}\right)\right)$  при любом  $N\left(\Delta_N^{(1)} = (-N,N)\right)$ , Тогда, очевидно.

$$f(x) \varphi(y) \in L'(\Delta_N^{(2)}), \ \Delta_N^{(2)} = \{|x|, |y| < N\} = \Delta_N^{(1)} \times \Delta_N^{(1)}$$

17

$$\widetilde{f}\varphi^{N}(x,y) = \frac{1}{2\pi} \int_{\Delta_{N}^{(2)}} \int f(u) \varphi(v) e^{-i(xu+yv)} du dv = 
= \frac{1}{V^{2\pi}} \int_{\Delta_{N}^{(1)}} f(u) e^{-ixu} du \frac{1}{V^{2\pi}} \int_{\Delta_{N}^{(1)}} \varphi(v) e^{-iyv} dv = \widetilde{f}^{N}(x) \widetilde{\varphi}^{N}(y).$$
(6)

Поэтому, если

$$\widetilde{f}^{N}(x) \to \widetilde{f}(x), \quad \widetilde{\varphi}^{N}(y) \to \widetilde{\varphi}(y) \quad (N \to \infty),$$
 (7)

TO

$$\widetilde{f}(x)\widetilde{\varphi}(y) = \widetilde{f\varphi}(x, y).$$
 (8)

При этом, если соотношения (7) имеют место в метрике  $L_2$ , то и соотношение (8) имеет место в метрике  $L_2$ :

$$\begin{split} \|\widetilde{f}\left(x\right)\widetilde{\varphi}\left(y\right) &- \widetilde{f}\widetilde{\varphi}^{N}\|_{L_{2}(R_{2})} = \|\widetilde{f}\left(x\right)\widetilde{\varphi}\left(y\right) - \widetilde{f}^{N}\left(x\right)\widetilde{\varphi}^{N}\left(y\right)\|_{L_{2}(R_{2})} \leqslant \\ &\leqslant \|\widetilde{f}\left(x\right)\left(\widetilde{\varphi}\left(y\right) - \widetilde{\varphi}^{N}\left(y\right)\right)\|_{L_{2}(R_{2})} + \|\left(\widetilde{f}\left(x\right) - \widetilde{f}^{N}\left(x\right)\right)\widetilde{\varphi}^{N}\left(y\right)\|_{L_{2}(R_{2})} = \\ &= \|\widetilde{f}\|_{L_{2}(R_{1})} \|\widetilde{\varphi} - \widetilde{\varphi}^{N}\|_{L_{2}(R_{1})} + \|\widetilde{f} - \widetilde{f}^{N}\|_{L_{2}(R_{1})} \|\widetilde{\varphi}^{N}\|_{L_{2}(R_{1})} \to 0 \quad (N \to \infty). \end{split}$$

Из сказанного следует, что если функции f(x),  $\varphi(y)$  таковы,

$$f(x) = \widehat{\widetilde{f}}(x) = \widetilde{\widetilde{f}}(x), \quad \varphi(y) = \widehat{\widetilde{\varphi}}(y) = \widetilde{\widetilde{\varphi}}(y)$$

в смысле обычной сходимости или в среднем, то в том жесмысле

$$\widehat{\widehat{f\varphi}}(x, y) = \widehat{\widehat{f}}(x)\widehat{\widehat{\varphi}}(y) = f(x)\varphi(y) = \widehat{\widehat{f\varphi}}(x, y).$$

Рассматривая снова n-мерный случай, будем говорить, что функция  $\phi(\mathbf{x}) \in S$ , если она комплекснозначна, бесконечно дифференцируема на  $R = R_n$  и такова, что для любой пары целого числа  $l \ge 0$  и целочисленного вектора  $\mathbf{k} = (k_1, \ldots, k_n) \ge \mathbf{0}$   $(k_1 \ge 0)$ 

$$\sup_{\mathbf{x}} \left( 1 + |\mathbf{x}|^{l} \right) \left| \varphi^{(h)}(\mathbf{x}) \right| = \varkappa(l, \mathbf{k}, \varphi) < \infty \quad \left( |\mathbf{x}| = \left( \sum_{i=1}^{n} x_{i}^{2} \right)^{1/2} \right).$$

Так как при любом указапном k

$$\left| \varphi^{(h)} \left( \mathbf{x} \right) \right| \leqslant \frac{\varkappa \left( n + 1, \mathbf{k}, \varphi \right)}{1 + \left| x \right|^{n+1}},$$

то, очевидио, частная производная  $\varphi^{(k)}$  — ограниченная функция, припадлежащая к  $L_p(R)$   $(1\leqslant p<\infty)$ .

Если функции  $\phi_m, \ \phi \in S \ (m=1,\ 2,\ \ldots)$  и для любой (указанюй) пары  $(l,\ \mathbf{k})$ 

$$\kappa(l, \mathbf{k}; \varphi_m - \varphi) \to 0 \ (m \to \infty),$$

то будем писать  $\phi_m \to \phi(S)$  и говорить, что  $\phi_m$  стремится  $\kappa$   $\phi$  в топологии (S) (в смысле (S)).

Операция  $A\varphi$ , отображающая S в S, называется линейной, если  $A(\alpha\varphi + \beta\psi) = \alpha A\varphi + \beta A\psi$ , где  $\varphi$ ,  $\psi \in S$  и  $\alpha$ ,  $\beta$  — комплексные числа, и непрерывной, если из  $\varphi_N \to \varphi$  (S) следует  $A\varphi_N \to A\varphi$  (S).

Для того чтобы линейная операция  $A \varphi$  была непрерывной, достаточно\*), чтобы для любой пары  $(l, \mathbf{k})$  существовала константа  $C_{l, \mathbf{k}}$  и зависящая от  $(l, \mathbf{k})$  конечная система пар  $(l_i, \mathbf{k}')$   $(j = 1, \ldots, m)$ , так что

$$\varkappa(l, \mathbf{k}, A\varphi) \leqslant C_{l, \mathbf{k}} \sum_{j=1}^{m} \varkappa(l_j, \mathbf{k}^j, \varphi)$$
 (для всех  $\varphi \in S$ ),

потому что, если  $\varphi_v \to \varphi(S)$ , то

$$\varkappa(l, \mathbf{k}, A(\varphi_{\mathbf{v}} - \varphi)) \leqslant C_{l, \mathbf{k}} \sum_{j=1}^{m} \varkappa(l_j, \mathbf{k}^j, \varphi_{\mathbf{v}} - \varphi) \to 0 \ (\mathbf{v} \to \infty).$$

Важными линейными пепрерывными операциями  $A\phi(\phi \in S, A\phi \in S)$  являются:

1) Операция взятия производной от ф

$$\varphi^{(\mu)} = \frac{\partial^{|\mu|} \varphi}{\partial x_1^{\mu_1} \dots \partial x_n^{\mu_n} n} \bigg( |\mu| = \sum_1^n \mu_j \bigg).$$

Ведь

$$\varkappa(l, \mathbf{k}, \varphi^{(\mu)}) = \varkappa(l, \mathbf{k} + \mu, \varphi).$$

2) Операция умножения  $\varphi$  на бескопечно дифференцируемую функцию  $\lambda(\mathbf{x})$  полиномиального роста ( $\lambda \varphi = \lambda(\mathbf{x}) \varphi(\mathbf{x})$ ), т. е. такую, что для любого  $\mathbf{k}$  (целого неотрицательного) найдется целое число  $l(\mathbf{k})$ , для которого

 $|\lambda^{(\mathbf{k})}(\mathbf{x})| \leq C(1+|\mathbf{x}|^{l(\mathbf{k})}),$ 

где C не зависит от  $\mathbf{x}$ . Ведь

$$\begin{split} \left| \left( 1 + \left| \mathbf{x} \right|^{l} \right) (\lambda \varphi)^{(\mathbf{k})} \right| &= \left( 1 + \left| \mathbf{x} \right|^{l} \right) \left| \sum_{0 \leq \mathbf{s} \leq \mathbf{k}} C_{\mathbf{k}}^{\mathbf{s}} \lambda^{(\mathbf{s})} \varphi^{(\mathbf{k} - \mathbf{s})} \right| \leq \\ &\leq C \sum_{0 \leq \mathbf{s} \leq \mathbf{k}} \left( 1 + \left| \mathbf{x} \right|^{l} \right) \left( 1 + \left| \mathbf{x} \right|^{l(\mathbf{s})} \right) \left| \varphi^{(\mathbf{k} - \mathbf{s})} \right| \leq \\ &\leq C_{1} \sum_{0 \leq \mathbf{s} \leq \mathbf{k}} \varkappa \left( l + l(\mathbf{s}), \mathbf{k} - \mathbf{s}, \varphi \right), \\ C_{\mathbf{k}}^{\mathbf{s}} &= \frac{\mathbf{k}! (\mathbf{k} - \mathbf{s})!}{\mathbf{s}!} = \frac{k_{1}! \dots k_{n}! (k_{1} - s_{1})! \dots (k_{n} - s_{n})!}{s_{1}! \dots s_{n}!}. \end{split}$$

3) Операции преобразования Фурье  $\widetilde{\phi}$  и обратного преобразования Фурье  $\phi$ .

Если учесть, что ( $\phi \in S$ )

$$\widetilde{\varphi} = \frac{1}{(2\pi)^{n/2}} \int \varphi \left( \mathbf{u} \right) e^{-i\mathbf{x}\mathbf{u}} d\mathbf{u} =$$

$$= \frac{1}{(2\pi)^{n/2}} \int e^{-ix_1 u_1} du_1 \dots \int e^{-ix_n u_n} \varphi \left( \mathbf{u} \right) du_n = {}^{\mathbf{1} \sim \dots n} \widetilde{\varphi}, \quad (9)$$

<sup>\*)</sup> На самом деле не только достаточно, но и необходимо.

иде  $j \sim -$  знак операции преобразования Фурье только по переменной  $x_i$ , то непрерывность операции  $\sim$  сводится к непрерывности операций  $j \sim (j = 1, \ldots, n)$ .

Покажем, что линейная операция  $i\widetilde{\phi}$  отображает S на S непрерывно и взаимно однозначно.

Ограничимся при доказательстве двумерным случаем:

$$\psi(x,y) = \frac{1}{\sqrt{2\pi}} \int \varphi(t,y) e^{-ixt} dt \quad (\varphi(x,y) \in S).$$

Положив (пояснения ниже)

$$g(t, y) = \frac{1}{\sqrt{2\pi}} (-it)^{k_1} \frac{\partial \varphi^{k_2}}{\partial y^{k_2}} (t, y),$$

получим (интегрируя по частям)

$$\frac{e^{h_1+h_2}\psi}{e^{l_1}x^{h_1}\partial y^{h_2}} = \int g(t,y) e^{-ixt} dt = \frac{1}{ix} \int \frac{\partial g}{\partial x}(t,y) e^{-ixt} dt = \dots$$

$$\dots = \frac{1}{(ix)^l} \int \frac{\partial^l g}{\partial x^l}(t,y) e^{-ixt} dt. \quad (10)$$

Так как  $t^{h_1}$ — бесконечно дифференцируемая функция полиномиального роста  $(k_i \ge 0 - \text{цслое})$ , то  $g(t, y) \in \hat{S}$  и непрерывно (is embicne (S)) зависит от  $\varphi$ . Поэтому, в частности,  $g(t, y) \to 0$  $(t \to \pm \infty)$ , откуда следует цепочка равенств (10).

Из (10) следует

$$\left|x^{l} \frac{\partial^{h_{1}+h_{2}} \psi}{\partial x^{h_{1}} \partial y^{h_{2}}}\right| \leqslant \int \frac{dt}{1+t^{2}} \, \varkappa \left(2; \, l, \, 0; \, g\right) \leqslant C \varkappa \left(2; \, l, \, 0; \, g\right),$$

и нотому (применив (10) еще при l=0) получим

$$(1+|x|^l)\left|\frac{\partial^{h_1+h_2}\psi}{\partial x^{h_1}\partial y^{h_2}}\right| \leqslant C_1(\varkappa(2;0,0;g)+\varkappa(2;l,0;g)),$$

следовательно,  $\psi$  непрерывно (в смысле (S)) зависит от g, но тогда вместе с g — и от  $\phi$ .

Если  $\psi(x, y) \in S$  — произвольная функция, то  $\widehat{\psi} \in S$  и  $\psi =$ 

 $(x\widehat{\psi})$ , и операция  $x\sim$  отображает S не только e, по и на S. Накопец, из равенства  $x\widehat{\varphi}_1=x\widehat{\varphi}_2$  следует  $x(\widehat{\varphi}_1-\widehat{\varphi}_2)=0$ , откуда  $\varphi_1 - \varphi_2 = {}^x \widehat{0} = 0$ , и мы доказали взаимную однозначность, осуществляемую отображением  $\overset{x}{\varphi}(S)$  на S).

Тенерь из (9) следует, что и операция ф отображает S на S взаимно однозначно и непрерывно.

Отметим, что любые две из операций

$$1 \sim, \ldots, n \sim, 1 \wedge, \ldots, n \wedge$$

нерестановочны между собой. Для всякой функции  $\phi \in S$  имеют место равенства

$$\varphi = \widehat{\varphi} = \widehat{\varphi} \tag{11}$$

в любой точке  $x \in R$ . Папример, в двумерном случае  $\varphi(x, y)$ 

$$\stackrel{\circ}{\varphi} = \stackrel{x \sim y \sim y \sim x}{\varphi} = \stackrel{x \sim x}{\varphi} = \varphi.$$

Отметим на примере функции  $\phi(x,\,y)$  двух переменных еще следующий факт:

$$\lambda (x) \widetilde{\varphi}(x, y) = \lambda (x)^{x} \widetilde{\varphi}(x, y), \tag{12}$$

где  $\lambda(x)$  — бесконечно дифференцируемая функция нолипомиального роста. В самом деле,

$$\lambda(x)\widetilde{\varphi} = \lambda(x)^{y \sim x}\widetilde{\varphi} = v^{\sim}(\lambda(x)^{x}\widetilde{\varphi}) = \lambda(x)^{x}\widetilde{\varphi},$$

ведь, например,  $x \wedge y \wedge y \sim = x \wedge$ .

Имеют также место равенства ( $\phi$ ,  $\psi \in S$ )

$$(\widetilde{\varphi}, \psi) = (\varphi, \widetilde{\psi}), \ (\varphi, \psi) = \int_{R} \varphi(\mathfrak{t}) \, \psi(\mathfrak{t}) \, d\mathfrak{t}^*),$$
 (13)

$$\left(\varphi^{(\mathbf{k})}, \psi\right) = (-1)^{|\mathbf{k}|} \left(\varphi, \psi^{(\mathbf{k})}\right), \tag{14}$$

$$\varphi^{(k)}(\mathbf{x}) = (i\mathbf{x})^{k} \widehat{\varphi} = (-ix)^{k} \widehat{\widehat{\varphi}} \quad \left( (ix)^{k} = |i|^{|k|} x_{1}^{h_{1}} \dots x_{n}^{h_{n}} \right), \quad (15)$$

$$\widehat{\widetilde{K}\widetilde{\varphi}} = \widehat{\widetilde{K}}\widehat{\varphi} = K * \varphi = \frac{1}{(2\pi)^{n/2}} \int K(\mathbf{u}) \, \varphi(\mathbf{x} - \mathbf{u}) \, d\mathbf{u} \quad (K \in L' \text{ или } L).$$
(46)

Они обобщают соответствующие равенства § 16.6, (4), (5), (6), (7) и доказывается аналогично.

Над S строится пространство S' обобщенных функций n переменных аналогично соответствующему одномерному пространству.

Таним образом, обобщенной функцией  $F \in S'$  пазывается липейный непрерывный функционал  $(F, \varphi)$   $(\varphi \in S)$ .

Для того чтобы линейный функционал  $(F, \varphi)$  был непрерывным, достаточно, чтобы нашлась зависящая от него система пар  $(l_1, \mathbf{k}^4), \ldots, (l_m, \mathbf{k}^m)$  и константа C такие, что  $(cm. \S 16.7, (1))$ 

$$|(F,\varphi)| \leqslant C \sum_{i=1}^m \varkappa(l_j,\mathbf{k}^l,\varphi)$$
 (для всех  $\varphi \in S$ ).

Функция  $F(\mathbf{x}) \in L_p'$  (или  $L_p$ )  $(1 \le p < \infty)$  или локально интегрируемая функция  $F(\mathbf{x})$  полиномиального роста  $(|F(\mathbf{x})| \le C(1+|\mathbf{x}'|))$ 

<sup>\*)</sup> Функция ф под знаком интеграла здесь взята без знака соприжении.

при некотором l) представляет обобщенную функцию

$$(F, \varphi) = \int F(\mathbf{x}) \varphi(\mathbf{x}) d\mathbf{x} \left( \int = \int_{R_n} \varphi \in S \right),$$

н при этом две такие функции, отличающиеся хотя бы в одной точке их непрерывности (или в лебеговом случае на множестве положительной меры), представляют разные обобщенные функции, что доказывается, как в случае одной переменной, но с номощью функции  $\psi(|(\mathbf{x}-\mathbf{x}^0)/\delta)|)$  от n переменных (см. ниже упражнение 1).

Функционал ( $\delta$ ,  $\varphi$ ) =  $\varphi(0)$  есть n-мерная  $\delta$ -функция — обобщенная функция от  $\mathbf{x} = (x_1, \dots, x_n)$ , не представляемая локально интегрируемой функцией. Операции  $\lambda F$ , гле  $\lambda$  — бесконечно дифференцируемая функция полиномиального роста (вместе со своими производными!),  $F^{(h)}$ ,  $\widehat{F}$ ,  $\widehat{F}$ ,  $\widehat{F}$ ,  $\widehat{F}$ ,  $\widehat{F}$  определяется при помощи равенств:

$$(\lambda F, \varphi) = (F, \lambda \varphi), (F^{(k)}, \varphi) = (-1)^{(k)}(F, \varphi^{(k)}),$$

$$(\widetilde{F}, \varphi) = (F, \widetilde{\varphi}), (\widehat{F}, \varphi) = (F, \widehat{\varphi}), (\widetilde{F}, \varphi) = (F, \widetilde{\varphi}), (\widetilde{F}, \varphi) = (F, \widehat{\varphi}),$$

откуда, в частности, следует

$$F^{(\mathbf{k})} = (i\mathbf{x})^{\mathbf{k}}\widetilde{F} = (-i\mathbf{x})^{(\mathbf{k})}\widetilde{F}.$$

Сходимость  $F_N \to F(S')$  понимается в том смысле, что  $(F_N, \varphi) \to (F, \varphi)(N \to \infty)$  для всех  $\varphi \in S$ . Наконец, как в одномерном случае, вводится свертка

$$K*F = \widehat{K}\widehat{F} = \widehat{K}\widehat{F} \quad (F \in S'),$$

где  $K \subseteq S'$  и при этом K — бескопечно дифференцируемая функция полиномиального роста (см. еще § 18.3).

Двумерный простой интеграл Фурье для функции  $f(x, y) \in L' = L'(R_2)$  (или  $L(R_2)$ ) и для любого  $\eta > 0$  может быть записан в виде

$$S_N(x,y) = \frac{1}{\pi^2} \int \int_{\mathcal{H}_{\eta}} \frac{\sin Nv}{u} \frac{\sin Nv}{v} f(x+u, y+v) \, du \, dv + o(1) \quad (N \to \infty),$$
(17)

где  $K_{\eta}$  —  $\eta$ -крест, т. е. множество точек (u, v), удовлетворяющих одному из неравенств

$$|u| < \eta$$
,  $|v| < \eta$ .

Это следует из соотношения

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\sin Nu}{u} \frac{\sin Nv}{v} f(x+u, y+v) du dv \to 0 \quad (N \to \infty),$$

представляющего собой простое обобщение леммы 1 § 15.4 на двумерный случай, и подобных соотношений для интегралов, распространенных на области, симметричные  $\{\eta \leq x, y\}$  относительно осей координат и нулевой точки (0, 0).

Подчеркием, что в (17) нельзя заменить крест  $K_{\eta}$  на квадрат

$$\Delta_{\eta} = \{|u|, |v| \leqslant \eta\}.$$

В этом существенное отличие многомерного случая от одномерного. В то время как в одномерном случае сходимость в точке x простого интеграла Фурье функции  $f \in L'(L_1)$  или суммы Фурье периодической функции  $f \in L'(L_1)$  всецело зависит от поведения f в любой малой окрестности x, в двумерном (многомерном) случае это уже и так: функции  $f \in L'(L'^*)$  может быть равна нулю в окрестности точки (x, y), но ее простой интеграл (или сумма Фурье) может не сходиться при  $N \to \infty$   $\kappa f(x, y)$ .

Чтобы пояснить, от чего зависит это явление, введем множество  $C_{\vartheta}(\Delta')$  всевозможных непрерывных финитных функций f(u,v) с носителем,

принадлежащим к прямоугольнику

$$\Delta' = \{0 < u < \eta, \quad \eta < v < 2\eta, \quad \eta > 0\},$$

с нормой

$$\|f\|_{C_0(\Delta')} = \max_{(u,v) \in \Delta'} |f(u,v)|.$$

Каждой функции  $f \in C_0(\Delta')$  приведем в соответствие ее простой интеграл

$$S_N(f) = S_N(f, 0, 0) = \frac{1}{\pi^2} \int_{\Lambda'} \int \frac{\sin Nu}{u} \frac{\sin Nv}{v} f(u, v) du dv$$

в точке (0, 0).

Верхиян грань этого интеграла, распространенцая на всевозможные функции  $f \in C_0(\Delta')$  с  $\|f\| \leqslant 1$ , равна

 $\Lambda_N = \sup S_N(f, 0, 0) =$ 

$$=\frac{1}{\pi^2}\int_{\Delta'}\int \left|\frac{\sin Nu}{u}\frac{\sin Nv}{v}\right|du\,dv=\frac{1}{\pi^2}\int\limits_0^{N\eta}\left|\frac{\sin u}{u}\right|du\int\limits_{\eta N}^{2\eta N}\left|\frac{\sin v}{v}\right|dv.$$

Легко доказать, что

$$\Lambda_N \to \infty$$
,  $N \to \infty$ 

(воспользоваться рассуждениями теоремы 3 § 9.45).

С точки зрения функционального анализа  $\Lambda_N$  есть норма функционала  $S_N(f,0,0)$ , определенного в пространстве  $C_0(\Delta')$ . Из того, что  $\Lambda_N \to \infty$ , следует (как это доказывается в функциональном анализе) существование функции  $f \in C_0(\Delta')$  такой, что для нее функционал  $S_N(f,0,0)$  неограничен (на множестве  $N=1,2,\ldots$ ).

Упражнения. 1. Доказать, что

 $\left(|\mathbf{x}|^2 = \sum_{j=1}^n x_j^2\right) e^{-|\mathbf{x}|^2} \in S, \quad \psi\left(\left|\frac{\mathbf{x} - \mathbf{x}^0}{\delta}\right|\right) \in S$ 

 $(\delta > 0, \text{ см. упражнение 2 § 16.6}).$ 

2. Показать, что 
$$f(\mathbf{x} + \mathbf{\mu}) = e^{i\mathbf{\mu}t} \widehat{f} = e^{-i\mathbf{\mu}t} \widehat{f}$$
  $\left(\mathbf{\mu} = (\mu_1, \dots, \mu_n), \ t = e^{-i\mathbf{\mu}t} \widehat{f} \right)$ 

$$= (t_1 \dots t_n), \quad \mu \mathbf{t} = \sum_{j=1}^{n} \mu_j t_j.$$

3. Показать, что верхняя грань сумм Фурье  $S_n(f, 0)$ , порядка n в точке x=0, распространенная на все функции  $f \in C_*$  от одной переменной с  $\|f\|_{C_*} \leqslant 1$ , равна

$$\sup_{\left\Vert f\right\Vert C_{\ast}\leqslant1}\left\Vert S_{n}\left(f,0\right)\right\Vert =\frac{2}{\pi}\int\limits_{0}^{\pi}\left\vert D_{n}\left(t\right)\right\vert dt\rightarrow\infty,\quad n\rightarrow\infty,$$

где  $D_n(t)$  — ядро Дприхле. Отсюда в силу упомянутой выше теоремы функционального апализа следует существование функции  $f \in C_*$ , ряд Фурьо которой в точке x=0 расходится.

#### § 16.9. Ступенчатые финитные функции. Квадратические приближения

Рассмотрим сначала простейшую ступенчатую финитную функцию ( $\delta > 0$ ) от одной переменной

$$\varphi_{a,\delta}(x) = \begin{cases} 1, & x \in (a - \delta, a + \delta), \\ 0, & x \notin [a - \delta, a + \delta], \\ \frac{1}{2}, & x = a - \delta, a + \delta. \end{cases}$$
 (1)

Ее преобразование Фурье равно

$$\widetilde{q}_{a,\delta}(x) = \frac{1}{\sqrt{2\pi}} \int_{a-\delta}^{a+\delta} e^{-ixt} dt = \sqrt{\frac{2}{\pi}} e^{-ixa} \frac{e^{ix\delta} - e^{-ix\delta}}{2ix} = \sqrt{\frac{2}{\pi}} e^{-ixa} \frac{\sin x\delta}{x},$$
(2)

и потому, учитывая, что  $\phi_{\alpha, \delta} \in L'$  есть локально кусочно гладкая функция, получим

$$\varphi_{a,\delta}(x) = \sqrt{\frac{2}{\pi}} e^{-ixa} \frac{\sin x\delta}{x}.$$
 (3)

Функция  $\phi_{a, b}$  принадлежит, очевидно,  $L_2'$ . Из формулы (2) также видно, что  $\phi_{a, b}$  не принадлежит  $L_2'$  (вообще  $L_p'$ , 1 ) и при этом

$$\begin{split} &\| \varphi_{a,\delta} \|_{L_2}^2 = 2\delta, \\ &\| \widehat{\varphi}_{a,\delta} \|_{L_2}^2 = \| \widetilde{\varphi}_{a,\delta} \|_{L_2}^2 = \frac{2}{\pi} \int_{-\infty}^{\infty} \left( \frac{\sin x \delta}{x} \right)^2 dx = 2\delta \end{split}$$

(см. § 15.9, (9)). Таким образом, справедливы равенства

$$\|\varphi_{a,\delta}\|_{L_2} = \|\widetilde{\varphi}_{a,\delta}\|_{L_2} = \|\widehat{\varphi}_{a,\delta}\|_{L_2}. \tag{4}$$

Мы увидим, что они имеют место для всех функций  $\varphi \in L_2$ . В силу определения (см. § 16.4) операций  $\sim$ ,  $\sim$ ,  $\sim N$ ,  $\sim N$  и -того факта, что  $\varphi_{a,b} \in L'$  — локально кусочно гладкая функция, справедливы соотношения

$$\widehat{\varphi}_{a,\delta}^{N}(x) \to \widehat{\varphi}_{a,\delta}(x) (N \to \infty) 
\widehat{\varphi}_{a,\delta}(x) \to \varphi_{a,\delta}(x)$$
(5)

для любого действительного x.

Важно отметить, что имеет место не только поточечная сходимость, но и сходимость в метрике  $L_2 = L_2(-\infty, \infty)$ , т. е.

$$\|\widetilde{\varphi}_{a,\delta}^N - \widetilde{\varphi}_{a,\delta}\|_{L_2} \to 0 \ (N \to \infty),$$
 (6)

$$\left\|\widehat{\varphi}_{a,\delta}^{N} - \varphi_{a,\delta}\right\|_{L_{2}} \to 0. \tag{7}$$

Соотношение (6) тривиально, потому что для достаточно больших N отрезок  $[a-\delta, a+\delta]$  принадлежит к [-N, N], откуда

$$\widetilde{\varphi}_{a,\delta}(x) = \frac{1}{\sqrt{2\pi}} \int_{N}^{N} \varphi_{a,\delta}(t) e^{-ixt} dt = \widetilde{\varphi}_{a,\delta}^{N}(x).$$

Более сложно доказывается (7). Имеем

$$\begin{split} \widehat{\widehat{\mathbf{q}}}_{a,\delta}^{N}\left(x\right) &= \frac{1}{\pi} \int_{a-\delta}^{a+\delta} \frac{\sin N\left(t-x\right)}{t-x} \, dt = \frac{1}{\pi} \int_{N\left(a-\delta-x\right)}^{N\left(a+\delta-x\right)} \frac{\sin z}{z} \, dz = \\ &= 1 - \frac{1}{\pi} \int_{N\left(a+\delta-x\right)}^{\infty} \frac{\sin z}{z} \, dz - \frac{1}{\pi} \int_{-\infty}^{N\left(a-\delta-x\right)} \frac{\sin z}{z} \, dz, \end{split}$$

потому что

$$\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\sin z}{z}\,dz=1.$$

Поэтому, учитывая (1), получим

$$\int_{-\infty}^{\infty} \left| \varphi_{a,\delta} \left( x \right) - \widehat{\varphi}_{a,\delta}^{N} \left( x \right) \right|^{2} dx \leqslant I_{1} + I_{2} + I_{3} + I_{4}, \tag{8}$$

17(0

$$I_{1} = \left(\int_{a-\delta}^{a+\delta} \left(\frac{1}{\pi} \int_{N(a+\delta-x)}^{\infty} \frac{\sin z}{z} dz\right)^{2} dx\right)^{1/2},$$

$$I_{2} = \left(\int_{a-\delta}^{a+\delta} \left(\frac{1}{\pi} \int_{-\infty}^{N(a-\delta-x)} \frac{\sin z}{z} dz\right)^{2} dx\right)^{1/2},$$

$$I_{3} = \left(\int_{-\infty}^{a-\delta} \left(\frac{1}{\pi} \int_{N(a-\delta-x)}^{N(a+\delta-x)} \frac{\sin z}{z} dz\right)^{2} dx\right)^{1/2},$$

$$I_{4} = \left(\int_{a+\delta}^{\infty} \left(\frac{1}{\pi} \int_{N(a-\delta-x)}^{N(a+\delta-x)} \frac{\sin z}{z} dz\right)^{2} dx\right)^{1/2}.$$

Полагая  $u = N(a + \delta - x)$ , получим

$$(\pi I_1)^2 = \frac{1}{N} \int_0^{2\delta N} du \left( \int_u^{\infty} \frac{\sin z}{z} dz \right)^2.$$

Ho

$$\int_{u}^{\infty} \frac{\sin z}{z} dz = -\frac{\cos z}{z} \Big|_{u}^{\infty} - \int_{u}^{\infty} \frac{\cos z}{z^{2}} dz;$$

ноэтому

$$\left|\int_{u}^{\infty} \frac{\sin z}{z} \, dz\right| \leqslant \frac{1}{u} + \frac{1}{u} = \frac{2}{u}.$$

Этой оценкой воспользуемся для u > 1. Для u < 1 нам будет достаточно принять во внимание, что

$$\left|\int\limits_{u}^{\infty}\frac{\sin z}{z}\,dz\right| < K,$$

 $_{1/10}$ е K — константа, не зависящая от u. Тогда из (9) следует, что

$$(\pi I_1)^2 \leqslant \frac{1}{N} \left( \int_0^1 K^2 du + \int_1^\infty \frac{4 du}{u^2} \right) \leqslant \frac{C}{N} \to 0 \ (N \to \infty).$$

По аналогии доказывается, что

$$I_2 \to 0 \quad (N \to \infty)$$

Далее (подстановка  $u = N(x - a - \delta)$  и затем z = -z')

$$(\pi I_4)^2 = \frac{1}{N} \int_0^\infty du \left( \int_{-u-2N\delta}^{-u} \frac{\sin z}{z} dz \right)^2 = \frac{1}{N} \int_0^\infty du \left( \int_u^{u+2N\delta} \frac{\sin z}{z} dz \right)^2.$$

Поэтому

$$(\pi I_4)^2 \leqslant \frac{1}{N} \left( \int_0^1 (2K)^2 dz + \int_1^\infty \frac{4}{z^2} dz \right) < \frac{C_1}{N} \to 0 \ (N \to \infty).$$

Аналогично доказывается, что

$$I_3 \to 0 \quad (N \to \infty).$$

Этим соотношение (7) доказано.

Конечно, в (5), (6), (7) можно поменять местами  $\sim$  и  $\wedge$ .

Отметим, что если интервалы  $(a-\delta, a+\delta)$  и  $(b-\sigma, b+\sigma)$  не пересекаются, то наряду с очевидным равенством

$$\int \varphi_{a,\delta}(x)\,\varphi_{b,\sigma}(x)\,dx=0$$

справедливы также следующие важные равенства:

$$\int \widetilde{\varphi}_{a,\delta}(x) \, \overline{\widetilde{\varphi}}_{b,\sigma}(x) \, dx = \int \widehat{\varphi}_{a,\delta} \overline{\widehat{\varphi}}_{b,\sigma} \, dx = 0.$$

В самом деле,  $\tilde{\varphi}_{a,\delta}$ ,  $\tilde{\varphi}_{b,\sigma} \in L_2$ , и потому существует абсолютно сходящийся интеграл (пояснение ниже, см. сноску на стр. 272)

$$\int \widetilde{\varphi}_{a,\delta} \widetilde{\overline{\varphi}}_{b,\sigma} dx = \lim_{N \to \infty} \int_{-N}^{N} \widetilde{\varphi}_{a,\delta} \widetilde{\overline{\varphi}}_{b,\sigma} dx =$$

$$= \lim_{N \to \infty} \frac{1}{2\pi} \int_{-N}^{N} \int e^{-ixu} \varphi_{a,\delta}(u) du \int e^{ixv} \varphi_{b,\sigma}(v) dv dx =$$

$$= \lim_{N \to \infty} \int \varphi_{a,\delta}(u) \left( \frac{1}{\pi} \int \varphi_{b,\sigma}(v) \frac{\sin N(u-v)}{u-v} dv \right) du =$$

$$= \lim_{N \to \infty} \int \varphi_{a,\delta}(u) \widetilde{\varphi}_{b,\sigma}^{N}(u) du = \int \varphi_{a,\delta} \varphi_{b,\sigma} du.$$

Все три интеграла в третьем члене цепи имеют конечные пределы, и законна перестановка порядка интегрирования, ириводящая после интегрирования по x к четвертому члену. Переход от пятого члена цепи к шестому (предпоследнему) следует из того, что  $\widehat{\phi}_{b,\sigma}^{N} \to \widehat{\phi}_{b,\sigma}$  в смысле  $L_{2}$ .

Произвольная финитная ступенчатая функция от одной пере-

менной может быть записана в виде

$$f(x) = \sum_{1}^{m} c_{k} \varphi_{a_{k}, \delta_{k}}(x),$$

где  $c_k$  — постоянные коэффициенты, вообще комплексные, и интервалы  $(a_k - \delta_k, \ a_k + \delta_k)$  и  $(a_l - \delta_l, \ a_l + \delta_l)$  при  $k \neq l$  не пересекалотся.

Дальнейшие факты излагаются в двумерном случае. Приводимые формулировки и доказательство распространяются на *n*-мерный случай очевидным образом.

В двумерном случае простейшая финитная ступецчатая функ-

ция имеет вид

$$\varphi_{\Delta}(x,y) = \begin{cases} 1 & ((x,y) \in \Delta), \\ 0 & ((x,y) \in \Delta), \end{cases}$$

1740

$$\Delta = \{a - \delta \le x < a + \delta, \ b - \sigma \le y < b + \sigma\}.$$

- прямоугольник. Во всех ее точках непрерывности

$$\varphi_{\Delta}(x,y) = \varphi_{a,\delta}(x)\varphi_{b,\sigma}(y). \tag{10}$$

Произвольная финитная ступенчатая функция f от переменных (x,y) может быть записана в виде конечной суммы

$$f(x,y) = \sum_{1}^{m} c_{h} \varphi_{\Delta h}(x,y) = \sum_{1}^{m} c_{h} \varphi_{a_{h}}, \delta_{h}(x) \varphi_{b_{h}}, \sigma_{h}(y), \tag{11}$$

где  $c_k$  — постоянные числа, вообще комплексные, а прямоугольники

$$\Delta^1, \ldots, \Delta^m \tag{12}$$

попарио не пересекаются.

Из сказанного выше следует, что

$$\widetilde{f}^{N}(x,y) \to \widetilde{f}(x,y) = \sum_{1}^{m} \widetilde{c}_{h} \widetilde{\varphi}_{a_{h},\delta_{h}}(x) \widetilde{\varphi}_{b_{h},\sigma_{h}}(y) \quad (N \to \infty), \quad (13)$$

$$\widehat{\widehat{f}}^{N} = \sum_{1}^{m} c_{h} \widehat{\widehat{\varphi}}_{a_{h}, \delta_{h}}^{N}(x) \widehat{\widehat{\varphi}}_{b_{h}, \sigma_{h}}^{N}(y) \rightarrow \sum_{1}^{m} c_{h} \varphi_{a_{h}, \delta_{h}}(x) \varphi_{b_{h}, \sigma_{h}}(y) = f(x, y) \quad (N \rightarrow \infty),$$

где сходимость поточечная (во втором соотношении, в точках непрерывности функций  $\varphi_{a_h,\delta_h}(x)\,\varphi_{b_h,\sigma_h}(y)$ ), а также в смысле среднего квадратического.

Множество всех ступенчатых финитных функций обозначим через Ж.

Если паряду с  $f \in \mathfrak{M}$  задана другая функция  $\psi \in \mathfrak{M}$ , то можно считать, что

$$\psi(x,y) = \sum_{1}^{m} c'_{h} \varphi_{\Delta h}(x,y), \qquad (14)$$

и система прямоугольников  $\Delta^*$  — та же, что и в (12), потому что

объединение двух систем прямоугольников, определяющих f и  $\psi$ , можно, очевидно, представить как сумму конечного числа прямоугольников, пересекающихся попарно разве что по своим гранидам.

Важно отметить, что \*)

$$(f, \varphi) = \int \int f(x, y) \, \overline{\varphi(x, y)} \, dx \, dy =$$

$$= \sum_{1}^{m} c_{h} \overline{c}'_{h} \int \int \varphi_{a_{h}, \delta_{h}}(x) \, \varphi_{b_{h}, \sigma_{h}}(y) \, \overline{\varphi_{a_{h}, \delta_{h}}(x) \, \varphi_{b_{h}, \sigma_{h}}(y)} \, dx \, dy =$$

$$= \sum_{1}^{m} c_{h} \overline{c}'_{h} \int |\varphi_{a_{h}, \delta_{h}}(x)|^{2} \, dx \int |\varphi_{b_{h}, \sigma_{h}}(y)|^{2} \, dy =$$

$$= \sum_{1}^{m} c_{h} \overline{c}'_{h} \int |\widetilde{\varphi}_{a_{h}, \delta_{h}}(x)|^{2} \, dx \int |\widetilde{\varphi}_{b_{h}, \sigma_{h}}(y)|^{2} \, dy = (\widetilde{f}, \widetilde{\varphi}), \quad (15)$$

потому что, очевидно, функции  $\varphi_{\Delta^h}(x,y)$  и  $\varphi_{\Delta^l}(x,y)$  для  $k \neq l$  ортогональны на плоскости и в одномерном случае верны равенства (4).

Последнее равенство цепи доказывается как равенство первого и четвертого ее членов, если в них заменить f,  $\varphi$  соответственно на f,  $\varphi$  и учесть ортогональность  $\varphi_{a_h}$ ,  $\delta_h$  с  $\varphi_{a_i}$ ,  $\delta_i$ ,  $k \neq i$ . Из (15) следует, в частности,

$$(f,f)=(\tilde{f},\tilde{f})$$
 для всех  $f\in\mathfrak{M}.$ 

### § 16.10. Теорема Планшереля. Оценка сходимости простого интеграла

Эта теорема носит законченный характер, если ее формулировать на языке лебегова пространства  $L_2$ , имеющего то преимущество перед  $L_2$ , что оно полно (см. свойство 20, § 19.3). Мы сформулируем эту теорему и даем ее доказательство, основанное на том факте (см. свойство 18, § 19.3), что множество ступенчатых финитных функций плотно в  $L_2$ .

Теорема 1 (Планшереля). Для каждой функции  $f \in L_2 = L_2(R_n)$  существуют ее преобразования Фурье  $\widehat{f}$ ,  $\widehat{f} \in L_2$ :

$$\widetilde{f}(\mathbf{x}) = \lim_{N \to \infty} \widetilde{f}^{N}(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{(2\pi)^{n/2}} \int_{\Delta_N} f(\mathbf{u}) e^{-i\mathbf{x}\mathbf{u}} d\mathbf{u}, \tag{1}$$

$$\widehat{f}(\mathbf{x}) = \lim_{N \to \infty} \widehat{f}^{N}(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{(2\pi)^{n/2}} \int_{\Delta_{N}} f(\mathbf{u}) e^{i\mathbf{x}\mathbf{u}} d\mathbf{u}, \quad (1')$$

<sup>\*)</sup> В этих рассуждениях рассматривается скалярное произведение f и ф (со знаком комплексного сопряжения над φ), имея в виду применение формулы (15) в следующем параграфе (см. сноску к (4) § 16.6).

FIGURE 
$$u = (u_1, \ldots, u_n), \ \mathbf{x} = (x_1, \ldots, x_n), \ \mathbf{u}\mathbf{x} = \sum_{i=1}^n u_i x_i,$$

$$\Delta_N = \{|x_j| \le N; \ j = 1, \ldots, n\},$$

и сходимость понимается в смысле  $L_2$ .

Преобразования  $\widetilde{f}$ ,  $\widehat{f}$ 

линейны;

2) отображают  $L_2$  на  $L_2$  взаимно однозначно;

3) взаимнообратимы  $(f = \widehat{f} = \widehat{f}, f \in L_2);$ 

4) сохраняют скалярное произведение:  $(f_n, \psi) = (\widetilde{f}, \widetilde{\psi}) = (\widehat{f}, \widehat{\psi}),$   $(f_n, \psi \in L_2)$ , таким образом, изометричны  $(\|f\| = \|f\| = \|\widehat{f}\|),$ 

$$(f, \varphi) = \int f(\mathbf{u}) \overline{\varphi(\mathbf{u})} d\mathbf{u}, \int_{R_n} = \int_{\mathbf{u}}$$

Доказательство. В предыдущем параграфе было доказапо, что ступенчатые финитные функции  $f(f \in \mathfrak{M})$  не только принадлежат  $L_2$ , но и отображаются при помощи операций  $\tilde{f}$ ,  $\hat{f}$  в  $L_2$ , и для них выполняется свойство 4).

Пусть теперь функция  $f \in L_2$  и пока финитиа. Тогда при довтаточно большом N ее носитель принадлежит  $\Delta_N$  и

$$\widetilde{f}(\mathbf{x}) = \widetilde{f}^{N}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\Lambda_{N}} f(\mathbf{u}) e^{-i\mathbf{x}\mathbf{u}} d\mathbf{u}.$$
 (2)

В этом случае  $f \in L$  и потому (см. § 16.2)  $\tilde{f}$  — непрерывная функация на  $R = R_n$ . Докажем, что она принадлежит к  $L_2$  и что

$$\|\widetilde{f}\| = \|f\| \quad (\| \| = \| \| \|_{L_2}). \tag{3}$$

В самом деле, существует последовательность финитных ступенчатых функций  $f_v(f_v = \mathfrak{M})$  с посителями, припадлежащими  $\Delta_N$ , таких, что

$$||f - f_{\nu}|| \to 0 \quad (\nu \to \infty). \tag{4}$$

Отсюда

$$|\widetilde{f}(x) - \widetilde{f}_{v}(x)| = \frac{1}{(2\pi)^{n/2}} \left| \int_{\Delta_{N}} [f(t) - f_{v}(t)] e^{-ixt} dt \right| \leq \frac{1}{(2\pi)^{n/2}} ||f - f_{v}|| (2N)^{n/2} \to 0 \quad (v \to \infty).$$

Таким образом,  $f_{\nu}(x) \to f(x)$  равномерно на  $R_n$ . Зададим  $\varepsilon > 0$ . В силу (4) и свойства 4), уже проверенного для функций  $f_{\nu} \in \mathfrak{M}$ , для достаточно большого s

$$\varepsilon > \|f_p - f_q\| = \|\widetilde{f}_p - \widetilde{f}_q\| \geqslant \|\widetilde{f}_p - \widetilde{f}_q\|_{L_2(\Delta_1)}, \ p, q > s, \tag{5}$$

где  $\lambda > 0$  — произвольное число. Но в силу равномерной сходимости  $\tilde{f}_q \to \tilde{f}$  и конечности прямоугольника  $\Delta_\lambda$  можно перейти при  $q \to \infty$  к пределу под знаком нормы (интеграла) и получить перавенство

$$\varepsilon \geqslant \|\widetilde{f}_{\mathbf{p}} - \widetilde{f}\|_{L_2(\Delta_{\lambda})} \ (p > s).$$

Если теперь при фиксированном p увеличить до бескопечности  $\lambda$ , то получим в пределе перавенство

$$\varepsilon \geqslant \|\tilde{f}_p - \tilde{f}\| \geqslant \|\|\tilde{f}_p\| - \|\tilde{f}\|\| \quad (p > s),$$

которое мы дополнили еще вторым очевидным перавенством. Поэтому

$$\|\widetilde{f}\| = \lim_{p \to \infty} \|\widetilde{f}_p\| = \lim_{p \to \infty} \|f_p\| = \|f\|,$$

и мы доказали, что  $\tilde{f} \in L_2$ , а также справедливость равенства (3).

Справедливость соотношения (1) для рассматриваемой функции  $f \in L_2$  (с компактным посителем) тривиальным образом следует из равенства (2) для достаточно больших N.

Пусть теперь  $f \in L_2$  — произвольная функция. Тогда для любых положительных N и N' (N < N') имеет место (пояспение ниже)

$$||f^{N'} - f^{N}|| = \left| \frac{1}{(2\pi)^{n/2}} \int_{\Delta_{N'} - \Delta_{N}} f(u) e^{-i\mathbf{x}\mathbf{u}} d\mathbf{u} \right| =$$

$$= ||f||_{L_{\infty}(\Delta_{N'} - \Delta_{N})} \to 0, \quad N, N' \to \infty, \quad (6)$$

и вследствие полноты  $L_2$  существует в  $L_2$  функция, которую мы обозначим через  $\tilde{f}$ , такая, что

$$\|\tilde{f} - \tilde{f}^N\| \to 0 \quad (N \to \infty),\tag{7}$$

т. е. имеет место (1).

Фупкцию  $\widetilde{f}^{N'} - \widetilde{f}^N$  можно рассматривать как преобразование Фурье функции, имеющей компактный носитель, равной  $f(\mathbf{x})$  на  $\Delta_{N'} - \Delta_N$  и пулю в остальных точках. Для такой функции свойство сохранения нормы ее преобразования Фурье уже доказано. Это объясияет (6).

Из (7) следует:

$$\|\widetilde{f}\|=\lim_{N\to\infty}\|\widetilde{f}^N\|=\lim_{N\to\infty}\|f\|_{L_2(\Delta_N)}=\|f\|.$$

Линейность операции  $\sim$  очевидиа. Имеет также место ее пепрерывность

$$\|f_k - f\| = \|f_k - f\| = \|f_k - f\| \to 0 \ (k \to \infty).$$

В силу того, что  $\tilde{f}(-x) = \hat{f}(x)$ , полученные результаты верны и для операции  $\wedge$ .

Тенерь нетрудно доказать равенства

$$f = \widehat{f} = \widehat{f}, \ f \in L_2. \tag{8}$$

Ведь для функций  $f \in \mathfrak{M}$  они верны, и так как для  $f \in L_2$  найдется последовательность функций  $f_v \in \mathfrak{M}$  такая, что  $\|f_v - f\| \to 0$ , то в силу непрерывности операций  $\sim$ ,  $\sim$  равенство (8) можно получить из равенств

 $f_{\mathbf{v}} = \widehat{\widetilde{f}}_{\mathbf{v}} = \widehat{\widetilde{f}}_{\mathbf{v}}$ 

переходом к пределу при  $v \to \infty$ .

Если  $\psi \in L_2$ , то  $\psi \in L_2$  и  $\psi = \widehat{\psi}$ . Это показывает, что операция  $\sim$  отображает  $L_2$  на  $L_2$  и притом взаимно однозначно, так как из

$$\widetilde{\psi}_1 = \widetilde{\psi}_2$$
 следует  $\psi_1 - \psi_2 = \widetilde{\psi}_1 - \widetilde{\psi}_2 = \widehat{0} = 0$ .

В этих рассуждениях символ ~ можно поменять местами с символом ^ Мы доказали свойство 2).

Наконец, если

$$\|f - f_{\nu}\|, \|\varphi - \varphi_{\nu}\| \to 0 \ (\nu \to \infty, f_{\nu}, \varphi_{\nu} \in \mathfrak{M}),$$

то из равенств

$$(f_{v}, \varphi_{v}) = (\widetilde{f}_{v}, \widetilde{\varphi_{v}})$$

следует путем перехода к пределу

$$(f, \varphi) = (\tilde{f}, \widetilde{\varphi}).$$

Ведь

$$|(f, \varphi) - (f_{\nu}, \varphi_{\nu})| = |((f - f_{\nu}), \varphi) - (f_{\nu}, \varphi_{\nu} - \varphi)| \le$$

$$\le ||f - f_{\nu}|| ||\varphi|| + ||f_{\nu}|| ||\varphi_{\nu} - \varphi|| \to 0 \ (\nu \to \infty).$$

Теорема доказана.

Теорема 2 (аналог теоремы 6 § 15.11). Пусть  $\lambda = (\lambda, \ldots, \lambda)$ — вектор, где  $\lambda$ — натуральное число, и пусть для любого неотрицательного целого вектора  $\mathbf{k} \leq \lambda$  частная производная  $f^{(k)}$  (в частности, f) непрерывна и выполняются нераченства

$$\frac{1}{(2\pi)^n}\int |f^{(l)}(\mathbf{x})|^2 d\mathbf{x} \leqslant M^2$$

для любого  $\mathbf{l}=(l_1,\ldots,\ l_n)$  с координатами  $l_i$ , равными 0 или  $\lambda$ . Тогда простой интеграл  $S_N(\mathbf{x})$  функции  $f(\mathbf{x})$  отклоняется от нее с оценкой

$$|f(\mathbf{x}) - S_N(\mathbf{x})| \leqslant \frac{CM}{N^{-\frac{1}{2}}},$$
 (9)

 $e\partial e$  C зависит от  $\lambda$ , но не от M и N.

Доказательство. Оценим функцию

$$\rho_N(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\Delta_N} \widetilde{f}(\mathbf{u}) e^{i\mathbf{x}\mathbf{u}} d\mathbf{u},$$

где

$$\Delta_N'=R_n-\Delta_N.$$

Можно еще сказать, что  $\Delta'_N$  есть множество точек  ${\bf u}=(u_1,\ldots,u_n)$  таких, что max  $|u_i|\geqslant N$ .

Так как  $f \in L_2$ , то по теореме Планшереля  $f \in L_2$  и  $\rho_N(\mathbf{x})$  можно рассматривать как предел (в среднем)

$$\rho_{N}(\mathbf{x}) = \lim_{N_{1} \to \infty} \frac{1}{(2\pi)^{n/2}} \int_{\Delta_{N_{1}} - \Delta_{N}} \widetilde{f}(\mathbf{u}) e^{i\mathbf{x}\mathbf{u}} d$$

Для целого m, удовлетворяющего неравенствам  $0 \le m < n$ , определим множество  $\Omega_m$  точек  $\mathbf{u} = (u_1, \ldots, u_n)$  таких, что

$$|u_j| \le 1$$
  $(j = 1, ..., m, \text{ если } m > 0),$   
 $|u_{m+1}| \ge N, |u_j| \ge 1$   $(j = m + 2, ..., n, \text{ если } n > m + 1).$  (10)

Буквой  $\Omega_m$  будем также обозначать всякое множество, сводящееся к определенному выше множеству после соответствующей перенумерации координат.

Очевидно,

$$\Delta_N' = \sum_{m=0}^{n-1} \sum \Omega_m,$$

где вторая сумма распространяется на всевозможные различные  $\Omega_m$ . Если перенумеровать все ее слагаемые  $(\Lambda_1, \Lambda_2, \ldots, \Lambda_p)$  и затем положить

$$E_1 = \Lambda_1, \ E_2 = \Lambda_2 - E_1, \ldots, E_p = \Lambda_p - \sum_{1}^{p-1} E_h,$$

то получим

$$\Delta'_{N} = \sum_{1}^{p} E_{h}, \quad E_{h} E_{s} = 0 \quad (k \neq s),$$

и при этом каждое  $E_{\kappa}$  принадлежит к некоторому  $\Omega_{m}$ . Имеем пока формально (пояснения ниже)

$$\rho_N(x) = \frac{1}{(2\pi)^{n/2}} \sum_{k=1}^p \int_{E_k} \widetilde{f}(\mathbf{u}) e^{i\mathbf{x}\mathbf{u}} d\mathbf{u}.$$
 (11)

Оценим один из интегралов  $\int\limits_{E_h}$ , считая для определенности,

что  $E_{\mathbf{k}} \subset \Omega_m$ , где  $\Omega_m$  определено именно неравенствами (10).

В силу равенства

$$\frac{\partial^{(n-m)\lambda_f}}{\partial x_{m+1}^{\lambda} \dots \partial x_n^{\lambda}} = i^{(n-m)\lambda_u} u_{m+1}^{\lambda} \dots u_n^{\lambda_f}$$
(12)

пли

$$\widetilde{f}(\mathbf{u}) = \frac{1}{i^{(n-m)\lambda}u_{m+1}^{\lambda} \dots u_n^{\lambda}} \frac{\overbrace{\partial^{(n-m)\lambda_f}}^{\partial (n-m)\lambda_f}}{\partial x_{m+1}^{\lambda} \dots \partial x_n^{\lambda}} (\mathbf{u})$$

нолучим

$$\int_{E_{R}} \left| \widetilde{f}(\mathbf{u}) e^{i\alpha u} \right| d\mathbf{u} \leqslant \int_{E_{R}} \left| \frac{1}{u_{m+1}^{\lambda} \dots u_{n}^{\lambda}} \frac{\partial^{(n-m)\lambda_{f}}(\mathbf{u})}{\partial x_{m+1}^{\lambda} \dots \partial x_{n}^{\lambda}} \right| d\mathbf{u} \leqslant \left( \int_{E_{R}} \frac{du}{u_{m+1}^{2\lambda} \dots u_{n}^{2\lambda}} \right)^{1/2} \left( \int_{R_{R}} \left| \frac{\partial^{(n-m)\lambda_{f}}}{\partial x_{m+1}^{\lambda} \dots \partial x_{n}^{\lambda}} \right|^{2} d\mathbf{u} \right)^{1/2} \leqslant \frac{C'M}{N^{\lambda - \frac{1}{2}}}.$$
(13)

Отсюда следует, что

$$|\rho_N(\mathbf{x})| \leq \frac{CM}{N^{\lambda - \frac{1}{2}}},$$
 (14)

где C, так же, как и C', не зависит от M и N.

Оценки (13) ноказывают, что интегралы (11) сходятся, и притом абсолютно, для любого х. Мало того, при  $N \to \infty$  они, а вместе с ними и  $\rho_N(\mathbf{x})$ , равномерно сходятся к нулю. Таким образом, функция

$$S_N(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\Delta_N} \widetilde{f}(\mathbf{u}) e^{i\mathbf{x}\mathbf{u}} d\mathbf{u}$$

равномерно сходится при  $N\to\infty$ . Но в то же время в силу того, что  $f\in L_2$ , по теореме Планшереля  $S_N(\mathbf{x})$  при  $N\to\infty$  стремится к  $f(\mathbf{x})$  в смысле среднего квадратического, поэтому (см. лемму 1 § 15.11)  $S_N(\mathbf{x})$  стремится равномерно именно к  $f(\mathbf{x})$  и, следовательно,

$$\rho_N(\mathbf{x}) = f(\mathbf{x}) - S_N(\mathbf{x}), \tag{15}$$

11з (14) и (15) следует (9).

### § 16.11. Обобщенные периодические функции

Пусть  $S^*$  — множество бесконечно дифференцируемых периода  $2\pi$  функций  $\phi$  от одной переменной x. Каждую функцию  $\phi \in S^*$  можно записать в виде сходящегося к ней равномерно ее

ряда Фурье (см. теорему 2 § 15.5)

$$\varphi(x) = \sum_{-\infty}^{\infty} c_k e^{ikx}, \quad c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(t) e^{-ikt} dt$$
 (1)
$$(k = 0, \pm 1, \pm 2, \dots).$$

Его можно почленно дифференцировать сколько угодно раз (см. § 15.7)

$$\varphi^{(s)}(x) = \sum_{-\infty}^{\infty} (ik)^s c_k e^{ikx} \qquad (s = 1, 2, ...),$$
 (2)

и при этом при любом натуральном s ряд справа в (2) равномерно сходится к  $\varphi^{(s)}(x)$ .

Будем писать

$$\varphi_n \to \varphi \quad (S^*),$$

если  $\varphi_n$ ,  $\varphi \in S^*$  (n=1, 2, ...) и  $\varphi_n^{(s)}(x) \to \varphi^{(s)}(x)$   $(n \to \infty)$  равномерно при любом целом  $s \ge 0$ .

В частности, очевидно, что если функция  $\phi \in S^*$  и  $S_N(x) =$ 

$$=\sum_{N}^{N}c_{h}e^{ihx}$$
 — ее  $N$ -я сумма Фурье, то  $S_{N}$   $ightarrow$   $\phi$  ( $S^{*}$ ).

Обозначим через  $S'^*$  совокупность линейных функционалов f пад  $S^*$  (обобщенных функций). Обычная функция  $f \in L'^*(L^*)$  при помощи равенства (без черты над  $\phi$ !)

$$(f, \varphi) = \int_{0}^{2\pi} f(t) \varphi(t) dt \qquad (\varphi \in S^*)$$
 (3)

определяет обобщенную функцию из  $S'^*$ , которую обозначают тоже через f. Нет необходимости повторять рассуждение, приведенное в § 16.7 в случае S, о том, что два функционала вида (3), определяемые функциями  $f_1$ ,  $f_2 \in L'^*$ , тождественно равны на  $S^*$  тогда и только тогда, если  $f_1(x) = f_2(x)$  в точках непрерывности  $f_1$  и  $f_2$  (в случае  $L^*$  почти всюду).

Так как функции  $e^{ihx}(k=0,\pm 1,\pm 2,\ldots)$  принадлежат к  $S^*$ , то любому функционалу  $f \in S'^*$  можно привести в соответствие числа

$$c_h = \frac{1}{2\pi} (f, e^{-iht})$$
  $(k = 0, \pm 1 \pm 2, ...),$ 

называемые коэффициентами Фурье ј..

Докажем, что имеет место равенство

$$\frac{1}{2\pi} (f, \varphi) = \lim_{N \to \infty} \frac{1}{2\pi} \left( \sum_{-N}^{N} c_h e^{ihx}, \varphi \right) = \sum_{-\infty}^{\infty} c_h c'_{-h}, \tag{4}$$

$$2\pi c'_{-h} = (e^{ihx}, \varphi),$$

выражающее, что ряд

$$f(x) = \sum_{-\infty}^{\infty} c_h e^{ihx}, \tag{5}$$

пазываемый рядом Фурье обобщенной функции 1, сходится к ней в смысле S'\*.

В самом деле,

$$\begin{split} \left(\sum_{-N}^{N} c_{k} e^{ihx}, \, \varphi\right) &= \sum_{-N}^{N} c_{k} \left(e^{ihx}, \, \varphi\right) = \frac{1}{2\pi} \sum_{-N}^{N} \left(f, \, e^{-ihx}\right) \left(e^{ihx}, \, \varphi\right) \\ &= \frac{1}{2\pi} \sum_{-N}^{N} \left(f, \, \left(e^{ihx}, \, \varphi\right) e^{-ihx}\right) = \left(f, \, \frac{1}{2\pi} \sum_{-N}^{N} \left(e^{ihx}, \, \varphi\right) e^{-ihx}\right) = \\ &= \left(f, \, S_{N} \left(x\right)\right) \to \left(f, \, \varphi\right) \qquad (N \to \infty), \end{split}$$

HOTOMY TTO  $S_N(x) \to \varphi(x)(S^*)$ .

Заметим, что в силу ортогональных свойств функций  $e^{ikx}$ 

$$(f, e^{ilx}) = \lim_{N \to \infty} \sum_{-N}^{N} c_h \left( e^{ihx}, e^{ilx} \right) = 2\pi c_{-l}.$$

Отсюда следует, что представление функции  $f \in S'^*$  в виде сходящегося (в смысле  $S'^*$ ) ряда (5) с постоянными коэффициентами единствению.

Покажем, что для любой функции  $f \in S'^*$  найдется зависящее от f (но не от k) натуральное  $\lambda$  и константа A такие, что

$$|c_k| \le A |k|^{\lambda} (k = \pm 1, \pm 2, \dots).$$
 (6)

В самом деле, если бы это было не так, то каждому  $\lambda = 1, 2, \dots$  нашлось бы  $k_{\lambda}$  такое, что

$$|c_{k_{\lambda}}| \geqslant |k_{\lambda}|^{\lambda} \text{ if } |k_{1}| < |k_{2}| < \dots$$

Положим

$$\varphi_{\lambda}(x) = \frac{e^{-ih_{\lambda}x}}{|h_{\lambda}|^{\lambda}} \qquad (\lambda = 1, 2, \ldots).$$

Очевидно, что  $\phi_{\lambda} \in S^*$  и при любом неотрицательном целом s

$$\varphi_{\lambda}^{(s)}(x) = \frac{(-ik_{\lambda})^s e^{-ih_{\lambda}x}}{|k_{\lambda}|^{\lambda}} \to 0 \qquad (\lambda \to \infty)$$

равномерно; поэтому

$$\varphi_{\lambda} \to 0 \ (S^*)$$

11

$$(f, \, \phi_{\lambda}) \to 0 \quad (\lambda \to \infty).$$

По, с другой стороны, в силу (4) и ортогональных свойств

 $\phi$ ункций  $e^{ikx}$ 

$$\frac{1}{2\pi} |(f, \varphi_{\lambda})| = |c_{h\lambda}c'_{-h\lambda}| \geqslant |h_{\lambda}|^{\lambda} \frac{1}{|h_{\lambda}|^{\lambda}} = 1 \qquad (\lambda = 1, 2, \ldots),$$

и мы получили противоречие.

Наоборот, если числа  $c_k$  ( $k=\pm 1,\,\pm 2,\, \dots$ ) подчиняются при некоторых  $A,\,\lambda>0$  перавенству (6) для всех k, то функционал

$$\frac{1}{2\pi}(f,\,\varphi) = \sum_{-\infty}^{\infty} c_h c'_{-h}, \quad 2\pi c'_{-h} = (\varphi,\,e^{ihx}) \tag{7}$$

есть обобщенная функция  $f \in S'^*$ . В самом деле, при  $k \neq 0$ 

$$c'_{h} = \frac{1}{2\pi (ik)^{s}} \int_{0}^{2\pi} e^{-iht} \varphi^{(s)}(t) dt,$$

откуда

$$|c'_{h}| \leq \frac{\|\varphi^{(s)}\|_{C}}{k^{s}}, \quad \|\varphi^{(s)}\|_{C} = \max_{t} |\varphi^{(s)}(t)|$$

и при  $s = \lambda + 2$ 

$$\left| \frac{1}{2\pi} \sum_{-\infty}^{\infty'} c_k c_k' \right| \leqslant \frac{1}{2\pi} \sum_{-\infty}^{\infty'} A k^{\lambda - s} \| \varphi^{(s)} \|_C = \frac{A}{2\pi} \sum_{-\infty}^{\infty'} k^{-2} \| \varphi^{(s)} \|_C$$

(интрих обозначает, что  $\Sigma$  не распространяется на k=0). С другой стороны,

$$\frac{1}{2\pi} |c_0 c_0'| \leqslant \frac{|c_0|}{2\pi} \|\varphi\|_C.$$

Таким образом,

$$|(f, \varphi)| \leq B(\|\varphi^{(s)}\|_c + \|\varphi\|_c),$$

где B — константа, не зависящая от  $\phi$ ; поэтому если  $\phi_n \to \phi(S^*)$ , то

$$(f, \varphi) - (f, \varphi_n)| = |(f, \varphi - \varphi_n)| \leq$$

$$\leq B(\|\varphi^{(s)} - \varphi_n^{(s)}\|_C + \|\varphi - \varphi_n\|_C) \to 0 \qquad (n \to \infty)$$

откуда  $f \in S'^*$ .

Конечно, функционал (7) можно записать еще в виде (5), но

об этом уже говорилось выше.

Из сказанного следует, что  $S'^*$  можно определить как совокунность формальных рядов

$$f(x) = \sum_{-\infty}^{\infty} c_h e^{ihx}$$

с коэффициентами, удовлетворяющими перавенствам (6), где A,  $\lambda > 0$ — постоянные, зависящие от ряда, а значения f на  $\varphi \in S^*$  определяются при помощи равенства (4). Функция  $\delta(x)$  в  $S^{**}$  определяется в виде ряда

$$\delta(x) = \frac{1}{2\pi} \sum_{n=0}^{\infty} e^{ihx} = \frac{1}{\pi} \left( \frac{1}{2} + \cos x + \cos 2x + \ldots \right).$$

Для каждой функции  $\phi \in S^*$  имеет место

$$(\delta, \varphi) = \lim_{N \to \infty} \frac{1}{\pi} \int_{-\pi}^{\pi} \left( \frac{1}{2} + \sum_{1}^{N} \cos kt \right) \varphi(t) dt = \lim_{N \to \infty} S_{N}(\varphi, 0) = \varphi(0),$$

где  $S_N(\phi,\ 0)$  — зпачение при x=0 N-й частичной суммы ряда Фурье  $\phi.$ 

Как и в случае S' (см. § 16.7, (7)), назовем производной от  $F \subseteq S'^*$  функционал F', равный

$$(F', \varphi) = -(F, \varphi').$$

Покажем, что если

$$F(x) = \sum_{-\infty}^{\infty} c_k e^{ikx},$$

 $\mathbf{T}\mathbf{0}$ 

$$F'(x) = \sum_{-\infty}^{\infty} (ih) c_h e^{inx}.$$
 (8)

Заметим, что в силу неравенства  $|c_k| \le A|k|^{\lambda}$   $(k=\pm 1, \pm 2, \ldots)$  верного при некоторых  $A, \lambda > 0$ , верно также неравенство

$$|ikc_k| \leq A|k|^{\lambda+1}$$

из которого следует, как мы знаем, что ряд (8) сходится в смысле  $S'^*$  к некоторой функции  $\Phi \in S'^*$ . Равенство  $\Phi = F'$  справедляво в силу следующих выкладок:

$$(\Phi, \varphi) = \lim_{N \to \infty} \int_{-\pi}^{\pi} \sum_{-N}^{N} (ik) c_k e^{ikx} \varphi(x) dx =$$

$$= -\lim_{N \to \infty} \int_{-\pi}^{\pi} \sum_{-N}^{N} c_k e^{ikx} \varphi'(x) dx = -(F, \varphi')$$

(yuech, the 
$$\int_{-\pi}^{\pi} \varphi'(x) dx = 0$$
).

Этот результат представляет собой обобщение теоремы 1 \$ 15.7 о почленном дифференцировании обычных рядов Фурье.

Если функция  $f \in L^{2*}(L^*)$ , то она принадлежит и к  $S'^*$  и ее коэффициенты Фурье в обычном смысле и в смысле  $S'^*$  совпадают. Ряд Фурье функции  $f \in L^*$  не обязательно сходится к ней; существует пример функции  $f \in L^*$ , ряд Фурье которой расходится всюду на действительной оси (пример Колмогорова, см. § 15.5). С другой стороны, из сказанного выше в этом параграфе следует, что ряд Фурье функции  $f \in L'^*(L^*)$  сходится к f в смысле  $S'^*$ .

Остановимся еще на представлении свертки  $\Phi * f$  двух функций  $\Phi, f \in L^*$  через их коэффициенты Фурье. Пусть

$$\Phi\left(x\right) = \sum_{-\infty}^{\infty} \lambda_{h} e^{ihx}, \quad f\left(x\right) = \sum_{-\infty}^{\infty} c_{h} e^{ihx}.$$

Тогда (см. § 18.3)

$$\psi(x) = \Phi * f = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi(x - t) f(t) dt \qquad (\psi \in L^*).$$

При этом коэффициент Фурье функции ф, если воспользоваться теоремой Фубини, может быть преобразован следующим образом:

$$\mu_{\mathbf{v}} = \frac{1}{2\pi} \int_{0}^{\pi} \psi(x) e^{-ivx} dx =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \Phi(x-t) e^{-iv(x-t)} f(t) e^{-ivt} dt \right\} dx =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{+ivt} dt \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \Phi(x-t) e^{-iv(x-t)} dx \right\} = c_{\mathbf{v}} \lambda_{\mathbf{v}}.$$

Следовательно,

$$\Phi * f = \sum_{-\infty}^{\infty} c_h \lambda_h e^{ihx}. \tag{9}$$

Естественно определить свертку двух произвольных функций  $\Phi$ ,  $f \in S'^*$  при помощи равенства (9). Ведь вместе с коэффициентами  $c_h$  и  $\lambda_h$  удовлетворяют неравенствам типа (6) также и их произведения  $c_h\lambda_h$ .

Замечание. Если функция f(x) — обычная функция периода  $2\pi$ , принадлежащая  $L'^*(L^*)$ , то она определяет на  $S^*$  линейный функционал по формуле (3) и, следовательно, на основа-

нии сказанного выше функции f соответствует ее ряд Фурье

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}, \quad c_k = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{-ikt} dt,$$

сходящийся к ней в смысле S\*, т. е. обладающий свойством

$$\int_{0}^{2\pi} f(t) \varphi(t) dt = \lim_{n \to \infty} \int_{0}^{2\pi} \sum_{-n}^{n} c_{h} e^{iht} \varphi(t) dt =$$

$$= \sum_{k=-\infty}^{\infty} c_{k} c'_{-k}, \ c'_{-k} = \frac{1}{2\pi} \int_{0}^{2\pi} \varphi(t) e^{iht} dt$$

для всех  $\phi \in S^*$ .

# **ДИФФЕРЕНЦИРУЕМЫЕ МНОГООБРАЗИЯ** И **ДИФФЕРЕНЦИАЛЬНЫЕ ФОРМЫ**

#### § 17.1. Дифференцируемые многообразия

Дифференцируемым k-мерным многообразием (0 < k < n) в n-мерном пространстве  $R = R_n$  называется множество  $S \subseteq R_n = R$  такое, что, какова бы ни была его точка  $\mathbf{x}^0$ , найдется перестановка  $j_1, \ldots, j_n$  натуральных чисел  $1, \ldots, n$  и прямоугольник

$$\Delta = \{ |x_{j_s} - x_{j_s}^0| < \delta, \ s = 1, \dots, k; \ |x_{j_l} - x_{j_l}^0| < \sigma, \ l = k+1, \dots, n \},$$

который вырезает из S кусок  $S\Delta$ , описываемый уравнениями

$$x_{j_{l}} = f_{l}(x_{j_{1}}, \ldots, x_{j_{k}}), \quad l = k + 1, \ldots, n; \quad (x_{j_{1}}, \ldots, x_{j_{k}}) \subseteq \Delta',$$

$$\Delta' = \{ |x_{j_{s}} - x_{j_{s}}^{0}| < \delta, \quad s = 1, \ldots, k \},$$
(1)

где  $f_t$  — непрерывно дифференцируемые на  $\Delta'$  функции.

n-мерным (дифференцируемым) многообразием в R называется произвольное открытое множество  $S \subseteq R_n$ .

Если число  $\delta > 0$ , требуемое в определении, найдено, то его, очевидно, можно как угодно уменьшить с сохранением сформулированного свойства. Можно, например, в качестве  $\Delta$  взять прямо-угольник

$$\Delta = \{ |x_{j_s} - x_{j_s}^0| < \delta_s, \ s = 1, \dots, k, \ |x_{j_l} - x_{j_l}^0| < \sigma, \ l = k - 1, \dots, n \},$$

где  $\delta_s \le \delta$ . Можно еще задать любое число  $\sigma_0 < \sigma$  и, воснользовавнийсь непрерывностью  $f_l$ , подобрать  $\delta_0 \le \delta$  так, чтобы для  $\left|x_{j_s} - x_{j_s}^0\right| < \delta_0$ ,  $s = 1, \ldots, k$ , функции  $f_l$  отличались соответственно от  $x_{j_l}^0$  менее, чем на  $\sigma_0$ , и тогда очевидно, что прямоугольник  $\Delta^0 = \left\{\left|x_{j_s} - x_{j_s}^0\right| < \delta_0$ ,  $s = 1, \ldots, k$ ,  $\left|x_{j_l} - x_{j_l}^0\right| < \sigma_0$ ,  $l = k + 1, \ldots, n\right\}$ 

тоже будет удовлетворять сформулированным в определении требованиям.

Таким образом, в данном определении выражение «найдется прямоугольник  $\Delta$ » можно заменить выражением «для любого  $\varepsilon > 0$  можно подобрать прямоугольник  $\Delta$  диаметра меньшего, чем  $\varepsilon$ », и определение останется эквивалентным исходному.

Система уравнений (1) есть частный случай системы

$$x_i = F_i(\mathbf{u}) = F_i(u_1, \dots, u_k), \ \mathbf{u} \in \omega, \ i = 1, \dots, n,$$
 (2)

где  $\omega$  — область, в k-мерном пространстве точек  $\mathbf{u} = (u_1, \ldots, u_k)$ , и функции  $F_i$  непрерывно дифференцируемы на  $\omega$  с матрицей  $\left\| \frac{\partial F_i}{\partial u_j} \right\|$  ранга k. Когда точка  $\mathbf{u}$  пробегает  $\omega$ , точка  $\mathbf{x}$  пробегает пекоторое множество  $S \subseteq R$ , которое естественно назвать k-мерной поверхностью. При этом соответствие (2) предполагается взаимно однозначным:  $\omega \supseteq \mathbf{u} \neq \mathbf{x} \subseteq S$  (коротко  $\mathbf{u} \rightleftharpoons \mathbf{x}$  или  $\omega \rightleftharpoons S$ ).

Краткости ради будем говорить о поверхности S, описываемой функциями или уравнениями (2), не перечисляя каждый раз

указанные их свойства.

Пусть  $\mathbf{u} = (u_1, \ldots, u_h)$  связано с  $\mathbf{u}' = (u_1', \ldots, u_h')$  при помощи взаимно однозначного непрерывно дифференцируемого отображения

$$u'_{\mathbf{j}} = \varphi_{\mathbf{j}}(u_1, \dots, u_k), \quad \mathbf{u} \in \omega \rightleftharpoons \omega' \ni \mathbf{u}',$$
 (3)

имеющего на ю не равный нулю якобиан. В таком случае мы будем говорить, что отображение (3) непрерывно дифференцируемо в обе стороны, считая, что эти слова уже выражают взаимную однозначность отображения и неравенство нулю якобиана, ведь равный 1 якобиан перехода от и к и есть произведение якобианов перехода от и к и' и от и' к и, которые, таким образом, не равны нулю.

Решая уравнения (3), получим

$$u_j = \psi_j(u'_1, \ldots, u'_k), \quad \mathbf{u}' \in \omega'.$$

Подставляя  $u_j$  в (2), получим новое описание S:

$$x_i = \Phi_i(\mathbf{u}') = \Phi_i(u_1', \dots, u_k') = F_i(\psi_1, \dots, \psi_k), \ \mathbf{u}' \in \omega^*, \ t = 1, \dots, n_*$$

где  $\Phi_i$  удовлетворяют свойствам, подобным свойствам  $F_{i\bullet}$ 

Определяемая уравнениями (2) поверхность S не всегда есть k-мерное дифференцируемое многообразие в том смысле, как опо определено выше (см. § 6.5, рис. 6.1). Но, с другой стороны, следующая лемма дает достаточный критерий того, что S есть k-мерное дифференцируемое многообразие.

Пемма 1. Пусть поверхность S описывается функциями  $F_i$  из (2) (с перечисленными там свойствами), где  $\omega$  — ограниченная область, и функции  $F_i$  заданы не только на  $\omega$ , но u на  $\omega$  и осуществляют гомеоморфизм  $\omega \neq \overline{S}$ ,  $\tau$ . е. отображают  $\omega$  на  $\overline{S}$  непрегывно и однозначно.

Тогда S есть к-мерное дифференцируемое многообразие.

M оказательство. Пусть точка  $\mathbf{x}^0 \in S$  соответствует значению  $\mathbf{u} = \mathbf{u}^0$ , тогда в  $\omega$  существует достаточно малый открытый куб  $\lambda$  с центром в  $\mathbf{u}^0$  такой, что на нем один из определителей k го порядка матрицы  $\left\| \frac{\partial F_i}{\partial u_j} \right\|$ , пусть  $\frac{D\left(x_1,\ldots,x_h\right)}{D\left(u_1,\ldots,u_k\right)}$ , не равен

нулю и разрешимы первые k уравнений (2) (j = 1, ..., k):

$$u_j = \psi_j(x_1, \ldots, x_k), (x_1, \ldots, x_k) \in \mu \rightleftharpoons \lambda.$$

Таким образом, некоторый кусок  $S' \subseteq S$  записывается непрерывно дифференцирусмыми функциями

$$x_i = \Phi_i(x_1, \ldots, x_k), (x_1, \ldots, x_k) \in \mu, i = k + 1, \ldots, n,$$
 (4)

которые мы получим, подставив  $u_i = \psi_i$  в (2).

В силу  $\overline{S} \rightleftharpoons \omega$  образ компакта (замкнутого ограниченного множества)  $\omega - \lambda$  есть компакт F, не содержащий точку  $\mathbf{x}^0$ , а вместе с ней не содержащий некоторый прямоугольник  $\Delta$  с центром в  $\mathbf{x}^1$  и сторонами, парадлельными осям. В силу непрерывности функций  $\Phi_i$  проекцию  $\Delta'$  прямоугольника  $\Delta$  на подпространство  $x_1, \ldots, x_k$  можно уменьщить (сохранив обозначение  $\Delta$ ) так, что для всех  $(x_1, \ldots, x_k) \subseteq \Delta' \subset \mu$  точки  $(x_1, \ldots, x_k, \Phi_{k+1}, \ldots, \Phi_n)$  будут принадлежать  $\Delta$ . Но тогда  $S\Delta$  описывается уравнениями

$$x_i = \Phi_i(x_1, ..., x_k), (x_1, ..., x_k) \in \Delta', i = k + 1, ..., n.$$

Ведь описываемые ими точки х принадлежат  $S\Delta$ , других же точек S в  $\Delta$  нет, потому что либо это точки вида (4), где  $(x_1, \ldots, x_k) \in \mu - \Delta'$ , либо точки F.

Пемма 2. Пусть поверхность S, описываемая функциями (2) (с указанными там свойствами), содержит в себе поверхность о, описываемую функциями

$$x_i = \Phi_i(\mathbf{v}), \ \mathbf{v} = (v_1, \ldots, v_k) \in G, \ i = 1, \ldots, n$$
 (5)

(с подобными свойствами, G — область).

Тогда определенное системами (2), (5) очевидное взаимно одновначное соответствие

$$G \ni \mathbf{v} \rightleftharpoons \mathbf{u} \in \mathbf{\omega}' \subset \mathbf{\omega} \tag{6}$$

непрерывно дифференцируемо в обе стороны и, таким образом в описывается функциями (2)

$$x_i = F_i(\mathbf{u}), \mathbf{u} \in \omega', i = 1, \ldots, n,$$

 $e\partial e$   $\omega'$  — область.

Кроме того, если S есть k-мерное дифференцируемое многообразие, то и σ — k-мерное дифференцируемое многообразие.

В частности, если  $\sigma$  описывается функциями (2), где  $u \in G \subset \omega$ , то  $\sigma$  вместе с S есть k-мерное дифференцируемое многообразие.

Доказательство основано на следующем утверждении (см. § 7.18).

Пусть заданы непрерывно дифференцируемые операции

$$\mathbf{v} = \alpha(\mathbf{u}), \quad \mathbf{u} \in g \subset R_h, \quad \mathbf{w} = \beta(\mathbf{v}), \quad \mathbf{v} \in g' \in R_h,$$

отображающие области g и g' пространства  $R_k$  в  $R_k$  и при этом  $\mathbf{u}^0 \subseteq g$ ,  $\mathbf{v}^0 = \alpha(\mathbf{u}^0) \subseteq g'$ . Тогда операция  $\mathbf{w} = \beta \alpha(\mathbf{u})$  имеет смысл в достаточно малой окрестности  $\omega \subseteq g$  точки  $\mathbf{u}^0$ , она там непрерывно дифференцируема и ее якобиан (перехода от  $\mathbf{u}$  к  $\mathbf{w}$ ) равен произведению якобианов операций  $\alpha$  и  $\beta$ .

В частности, если якобиан от **u** к **w** на ω не равен нулю, то не равен пулю также якобиан от **u** к **v** и образ области ω при

номощи операции α есть тоже область.

Произвольной точке  $\mathbf{v} \in G$  посредством (5) ставится в соответствие определениая точка  $\mathbf{x} = (x_1, \ldots, x_n) \in \sigma \subset S$ , которой в силу (2) по условию соответствует единственная точка  $\mathbf{u} \in \omega'$ . Но для нее ранг матрицы  $\left\| \frac{\partial F_i}{\partial u_j} \right\|$  равен k, и потому для некоторых различных номеров  $i = i_1, \ldots, i_k$ , уравнения (2) разрешимы относительно  $u_1, \ldots u_k$ . В результате мы получим два следующие друг за другом непрерывно дифференцируемые отображения

$$G \Longrightarrow v \to (x_{i_1}, \ldots, x_{i_k}) \to \mathbf{u} \in \omega',$$

имеющие место не только для исходной точки v, но и для некоторой ее окрестности.

Таким же рассуждением обнаружим, что полученной точке  $\mathbf{u} \in \mathbf{o}'$  при помощи двух следующих друг за другом непрерывно дифференцируемых отображений ставится в соответствие исходная точка  $\mathbf{v} \in G$ .

Мы доказали непрерывную дифференцируемость соответствия (6) в обе стороны, и так как по условию G — область, то и  $\omega'$  — область.

Пусть S есть k-мерпое дифференцируемое мпогообразие (2) и  $\mathbf{x}^0 \in \sigma$ . Как сказано в определении S, можно заново перенумеровать координаты и подобрать открытый прямоугольник  $\Delta$  с центром в  $\mathbf{x}^0$  так, чтобы  $S\Delta$  описывалось некоторыми непрерывно дифференцируемыми функциями

$$x_i = f_i(x_1, \ldots, x_k), i = k+1, \ldots, n, (x_1, \ldots, x_k) \in \Delta',$$
 (7)

где  $\Delta'$  — проекция  $\Delta$  на координатное подпространство  $(x_1, \ldots, x_k)$ . На основании уже доказанного имеется непрерывно дифференцируемое в обе стороны соответствие

$$\Delta' \ni (x_1, \ldots, x_k) \rightleftharpoons \mathbf{u} \in \omega' \subseteq \omega,$$

где ω' — некоторая область.

Таким образом,  $S\Delta$  описывается не только уравнениями (7), но и уравнениями

$$x_i = F_i(\mathbf{u}), \mathbf{u} \in \omega', i = 1, \ldots, n.$$

 ${f J}$  е м м а  ${f 3}$ . Пересечение двух k-мерных (дифференцируемых) многообразий

$$\sigma_i = \{\mathbf{x} : x_i = \varphi_i(\mathbf{u}), i = 1, ..., n, \mathbf{u} \in U\},\$$
  
 $\sigma_2 = \{\mathbf{x} : x_i = \psi_i(\mathbf{v}), i = 1, ..., n, \mathbf{v} \in V\},\$ 

принадлежащих к-мерному многообразию

$$S = \{x : x_i = f_i(\mathbf{w}), i = 1, ..., n, \mathbf{w} \in W\},\$$

есть к-мерное многообразие

$$\sigma_1 \sigma_2 = \{ \mathbf{x} : x_i = f_i(\mathbf{w}), i = 1, \dots, n, \mathbf{w} \in W_* \}, W_* \subset W,$$

еде $W_*$ , вообще говоря, открытое множество, даже если  $U,\ V,\ W$  — области.

Доказательство. Так как  $\sigma_1, \, \sigma_2 \subset S$ , то по лемме 2

$$\sigma_{i} = \{\mathbf{x} : x_{i} = f_{i}(\mathbf{w}), i = 1, ..., n, \mathbf{w} \in W_{i}\}, W_{i} \subset W,$$
  
 $\sigma_{2} = \{\mathbf{x} : x_{i} = f_{i}(\mathbf{w}), i = 1, ..., n, \mathbf{w} \in W_{2}\}, W_{2} \subset W,$ 

где  $W_4$ ,  $W_2$  вместе с U, V, W — области. Но тогда верна лемма, гле  $W_* = W_1 W_2$ .

Покажем теперь, что наряду с введенным в начале параграфа определением k-мерного дифференцируемого многообразия S можно дать и следующее эквивалентное ему определение: это такое множество  $S \subseteq R_n$ , что какова бы ни была его точка  $\mathbf{x}^\bullet$  и каково бы ни было  $\varepsilon > 0$ , найдется ее n-мерная окрестность  $\Omega$  диаметра  $d(\Omega) < \varepsilon$  такая, что  $S\Omega$  описывается функциями (2) с указанными там свойствами, где только S надо заменить на  $S\Omega$ . В самом деле, если в первом определении положить  $\Delta = \Omega$ ,  $\Delta' = \omega$ ,

$$a_{js} = u_s = F_{js}(u_1, \dots, u_k), \quad s = 1, 2, \dots, k,$$
  
 $a_{is} = f_{js}(u_1, \dots, u_k) = F_{is}(u_1, \dots, u_k), \quad s = k + 1, \dots, n,$ 

где, как мы знаем, можно считать  $d(\Delta) < \epsilon$  для любого  $\epsilon > 0$ , то получим систему функций  $F_i$  с указанными во втором определении свойствами.

Пусть теперь S подчиняется второму определению и точка  $\mathbf{x}^{\mathbf{0}} \in S$ . Тогда найдется ее окрестность  $\Omega$  диаметра  $d(\Omega) < 1$  такая, что  $S\Omega$  описывается функциями (2) с указанными там свойствами. Будем считать, что точка  $\mathbf{x}^{\mathbf{0}}$  соответствует точке  $\mathbf{u}^{\mathbf{0}} \in \omega$  и подберем  $\delta > 0$  настолько малым, чтобы шар  $|\mathbf{u} - \mathbf{u}^{\mathbf{0}}| \le \delta$  принадлежал  $\omega$ . Шаровая поверхность  $|\mathbf{u} - \mathbf{u}^{\mathbf{0}}| = \delta$  отображается при номощи уравнений (2) на множество  $\Gamma \subseteq S$ , замкнутое и ограниченное. Так как оно не содержит точку  $\mathbf{x}^{\mathbf{0}}$ , то

$$\min_{\mathbf{x}\in\Gamma}|\mathbf{x}-\mathbf{x}^{\scriptscriptstyle 0}|=m>0.$$

Определим теперь, пользуясь вторым определением, вторую окрестность  $\Omega_1$  точки х<sup>0</sup> диаметра  $d(\Omega_1) < m/2$  так, чтобы  $S\Omega_4$ 

описывалось функциями

$$x_i = \Phi_i(\mathbf{v}), \quad \mathbf{v} \in G, \quad i = 1, \ldots, k,$$

где G — область. На основании леммы 2  $S\Omega_1$  описывается также при помощи уравнений

$$x_i = F_i(\mathbf{u}), \ \mathbf{u} \in \omega' \subset \omega,$$
 (8)

где ω' — область.

Важно отметить, что на самом деле

$$\omega' \subset \overline{\omega}' \subset \omega.$$
 (9)

Ведь  $\omega'$  принадлежит замкнутому шару  $|\mathbf{u}-\mathbf{u}^\circ| \leq \delta$ , который по определению принадлежит  $\omega$ . Но тогда равенства (8) устанавливают не только взаимно однозначное соответствие  $S\Omega_1 \rightleftarrows \omega'$ , но п  $\overline{S\Omega_1} \rightleftarrows \overline{\omega}'$ , а это указывает вследствие леммы 1 на то, что  $S\Omega_1$  есть k-мерное дифференцируемое многообразие (в смысле первого определения!). Можно, таким образом, указать прямоугольник  $\Delta \subset \Omega_1$  с центром в  $\mathbf{x}^0$ , для которого выполняются свойства, фигурирующие в первом определении для  $S\Omega_1$  (вместо S), но тогда и для S, потому что  $S\Delta = S\Omega_1\Delta$ .

Заметим, что второе определение k-мерного дифференцируемого многообразия нельзя (не в пример первому) формулировать: «Какова бы ни была точка  $\mathbf{x}^0 \subseteq S$ , найдется ее n-мерная окрестность  $\Omega$  такая, что...» без упоминания, что должна существовать указанная окрестность как угодно малого диаметра. Ведь если, например, функции  $F_i(\mathbf{u})$ , определяющие посредством (2) поверхность S, ограничены на  $\omega$ , S можно поместить в некоторый куб  $\Delta$  и тогда  $S\Delta = S$ , между тем S может и не быть k-мерным дифференцируемым многообразием.

Наконец отметим, что из эквивалентности двух указанных определений следует, что если множество S подчиняется первому определению в одной прямоугольной системе координат, то оно подчиняется ему и во всякой другой.

Лемма 4\*). Непустое пересечение к-мерных (дифференци-

руемых) многообразий  $(i=1,\ldots,n)$ 

$$\sigma_1 = \{\mathbf{x} : x_i = \varphi_i(\mathbf{u}), \mathbf{u} \in \omega\},\$$

$$\sigma_2 = \{\mathbf{x} : x_i = \psi_i(\mathbf{v}), \mathbf{v} \in g\},\$$

принадлежащих k-мерному же многообразию S (все равно какому), есть k-мерное многообразие  $\sigma_1\sigma_2$ . Между его параметрами u v имеет место непрерывно дифференцируемая в обе стороны зависимость

$$U^{0} \ni \mathbf{u} \rightleftharpoons \mathbf{v} \in V^{0}, \tag{10}$$

 $e\partial e\ U^{\scriptscriptstyle 0},\ V^{\scriptscriptstyle 0}$  — открытые множества.

<sup>\*)</sup> Лемма 3 обобщается леммой 4, которая далее обобщается леммой 5.

Доказательство. Пусть  $\mathbf{x}^0 \in \sigma_1 \sigma_2$ . Таким образом  $x_i^0 = \phi_i(\mathbf{u}^0) = \phi_i(\mathbf{v}^0)(i=1,\ldots,n)$ . Существует n-мерная окрестность  $\Delta$  точки  $\mathbf{x}^0$  такая, что

$$S\Delta = \{\mathbf{x} : x_i = f_i(u), \ w \in W\}. \tag{11}$$

Существуют также n-мерные прямоугольники  $\Omega_1$ ,  $\Omega_2 \subset \Delta$  **с** центром в  $\mathbf{x}^0$  с достаточно малым днаметром такце, что

$$\sigma_{i}\Omega_{i} = \{\mathbf{x} : x_{i} = \varphi_{i}(\mathbf{u}), \ \mathbf{u} \subset U_{i} \subset \omega\}, \tag{12}$$

$$\sigma_2\Omega_2 = \{\mathbf{x} : x_i = \psi_i(\mathbf{v}), \ \mathbf{v} \in V_1 \subset g\}. \tag{13}$$

Но тогда  $\sigma_1\Omega_1$ ,  $\sigma_2\Omega_2 \subset S\Delta$ , и в силу леммы 2 имеют место непрерывно дифференцируемые в обе стороны соответствия  $U_1 \rightleftharpoons U_1' \subset W$ ,  $V_1 \rightleftharpoons V_1' \subset W$ .

Пусть  $W' = U_1' V_1'$  (открытое множество). Указанные соответствия индуцируют соответствия

$$U_1 \supset U_* \rightleftharpoons W' \rightleftharpoons V_* \subset V_1,$$
 (14)

где  $U_*$ ,  $V_*$  — открытые множества.

Заметим еще, что уравнения

$$x_i = \varphi_i(\mathbf{u}), \ \mathbf{u} \in U_*,$$

так же как уравнения

$$x_i = \psi_i(\mathbf{v}), \quad \mathbf{v} \in V_*,$$

описывают кусок  $\sigma_1\sigma_2\Omega_1\Omega_2$ , что показывает ввиду произвольности точки  $\mathbf{x}^0 \in \sigma_1\sigma_2$ , что  $\sigma_1\sigma_2$  есть k-мерное многообразие. Мы доказали также, что какова бы ни была точка  $\mathbf{x}^0 \in \sigma_1\sigma_2$ ,  $x_i^0 = \varphi_i(\mathbf{u}^0) = \psi_i(\mathbf{v}^0)$  ( $i=1,\ldots,n$ ), можно указать открытые множества  $U_* \equiv \mathbf{u}^0$ ,  $V_* \equiv \mathbf{v}^0$ , между точками  $\mathbf{u}$ ,  $\mathbf{v}$  которых имеет место непрерывно дифференцируемое в обе стороны соответствие. Но тогда, очевидно, все  $\mathbf{u}$ ,  $\mathbf{v}$ , которым соответствуют точки  $\sigma_1\sigma_2$  и между которыми в силу тривпальных соображений имеется взаимно однозначное соответствие, на самом деле находятся в непрерывно дифференцируемой в обе стороны связи  $\mathbf{u}$ , кроме того, их множества открытые.

Лемма 5. Если  $\sigma_1$ ,  $\sigma_2$ , S-n роизвольные k-мерные многообразия u  $\sigma_1$ ,  $\sigma_2 \in S$ , то непустое пересечение  $\sigma_1\sigma_2$  есть тоже k-мер-

ное многообразие.

Доказательство. Пусть  $\mathbf{x}^0 \equiv \sigma_1 \sigma_2$ . Рассуждая, как при доказательстве предыдущей леммы, определим многообразия  $\sigma_1 \Omega_1$ ,  $\sigma_2 \Omega_2 \subseteq S\Delta$  (см. (11), (12), (13)), и тогда, как там объясиено, окажется, что  $\sigma_1 \sigma_2 \Omega_1 \Omega_2$  есть k-мерное многообразие, а вместе с ним и  $\sigma_1 \sigma_2$ .

Если k-мерное многообразие  $\sigma$  описывается уравнениями  $(i=1,\ldots,n)$ 

 $x_i = f_i(\mathbf{u}) = f_i(u_1, \ldots, u_k), \quad u \in \omega, \tag{15}$ 

то говорят, что оно задано параметрически (через параметр и). Тем самым в (по определению) считается ориентированным.

Замена и на и' при помощи отображения

$$u_j = \psi_j(u'_1, \ldots, u'_k)$$
  $(\mathbf{u}' \in \omega', j = 1, \ldots, k),$ 

непрерывно дифференцируемого в обе стороны на области  $\omega'$ , приводит к другому параметрическому описанию S:

$$x_i = F_i(\mathbf{u}') = f_i(\psi_i, \ldots, \psi_h), \quad \mathbf{u}' \in \omega',$$

по определению *ориентирующему* о так же, как описание (15), ими противоположным образом в зависимости от того, будет ли икобиан перехода от **u** к **u** положительным или отрицательным.

k-мерное многообразне S называется ориентируемым, если все какие бы то ни было описания S (описания его частичных многообразий) можно разбить на два класса  $\mathfrak{M}_+$  и  $\mathfrak{M}_-$  так, что если два описания  $\mathfrak{c}$  параметрами  $\mathfrak{u}$  и  $\mathfrak{u}'$  принадлежат одному  $\mathfrak{u}$  тому же классу и многообразия  $\mathfrak{o}_1$  и  $\mathfrak{o}_2$ , которые они описывают, пересекаются, то якобиан перехода от  $\mathfrak{u}$  к  $\mathfrak{u}'$  на  $\mathfrak{o}_1\mathfrak{o}_2$  положителен.

Описания, принадлежащие  $\mathfrak{M}_+$ , определяют одну ориентацию S, а описания, принадлежащие  $\mathfrak{M}_-$ ,— другую ориентацию S, противоположную первой. Но приходится считаться с тем фактом, что существуют k-мерные (дифференцируемые) многообразия, по ориентируемые, т. е. такие, что все их описания нельзя разбить на два класса  $\mathfrak{M}_+$  и  $\mathfrak{M}_-$  с указанными свойствами (лист Мёбиуса, n=3, k=2).

Описание (через параметр  $\mathbf{u} = (u_1, \dots, u_k)$ ) можно перевести из одного из классов  $\mathfrak{M}_+$ ,  $\mathfrak{M}_-$  в другой путем изменения знака у  $u_1$ , т. е. при помощи подстановки  $u_1 = -u_1$ ,  $u_2 = u_2, \dots, u_k = u_k$ .

Заметим, что k-мерное ориентированное дифференцируемое многообразие  $L_k$  при k=1 есть очевидно\*) гладкая ориентированная кривая (см. § 6.5), а при k=2, n=3 определение  $L_k$  полностью согласуется с определением ориентированной гладкой новерхности. В самом деле, все описания  $\mathbf{r}(u, v) = \mathbf{\phi}\mathbf{i} + \mathbf{\psi}\mathbf{j} + \chi\mathbf{k}$  гладкой поверхности S (двумерного дифференцируемого многообразия), принадлежащие одному и тому же классу  $\mathfrak{M}_+$ , таковы, что если по ним единым способом вычислять вектор

$$\mathbf{n}\left(\mathbf{x}\right) = \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{|\mathbf{r}_{u} \times \mathbf{r}_{v}|}$$

единичной нормали в точке  $\mathbf{x} = \mathbf{r}(u, v)$ , то результат не зависит от того, будем ли мы вычислять  $\mathbf{n}$  через праметры (u, v) или через другие, связанные с ними непрерывно дифференцируемым в обе стороны отображением параметры (u', v'), ведь якобиан

<sup>\*)</sup> Наоборот, гладкая кривая может не быть дифференцируемым многообразием  $L_1$  (см. рассуждения к рис. 6.1).

 $\frac{D(u,v)}{D(u',v')} > 0$ . Но тогда единичная нормаль  $\mathbf{n}(x)$  пепрерывно зависит от  $\mathbf{x}$  и поверхность S ориентирована в смысле определения § 7.20. Если же применить эти рассуждения к описаниям, составляющим класс  $\mathfrak{M}_{-}$ , то придем к противоположной ориентации S в смысле § 7.20.

Пусть G есть область в пространстве  $R_n$  точек  $\mathbf{x} = (x_1, \ldots, x_n)$ .

Уравпения

$$x_i = u_i, \quad i = 1, ..., n, \quad \mathbf{u} = (u_1, ..., u_n) \in G,$$

где, таким образом,  $x_i$  являются не только координатами  $\mathbf{x} = (x_i, \ldots, x_n)$ , но и параметрами, описывают определенно ориентированное n-мерное многообразие S. В свою очередь уравнения

$$x_i = f_i(w_i, \ldots, w_n), \mathbf{w} = (w_i, \ldots, w_n) \in \omega \rightleftharpoons G,$$

где имеет место непрерывно дифференцируемое в обс стороны соответствие  $\mathbf{x} \rightleftharpoons \mathbf{w}$ , определяет то же ориентированное многообразие S или ориентированное противоположно в зависимости от того, будет ли якобиан перехода положительным или отрицательным.

Полезна лемма

Лемма в. Пусть для k-мерного многообразия S существует класс M его описаний

$$x_i = f_i(\mathbf{u}), \quad \mathbf{u} \in w, \quad i = 1, \dots, n \tag{16}$$

со следующими свойствами.

1) Многообразия  $\sigma \subset S$ , определяемые описаниями из класса

 $\mathfrak{M}$ , покрывают S.

2) Любые два описания из  $\mathfrak{M}$ , определяющие многообразия  $\sigma$ ,  $\sigma' \subseteq S$ , с непустым пересечением, таковы, что их параметры  $\mathbf{u}$ ,  $\mathbf{u}'$  на  $\sigma\sigma'$  переходят друг в друга с положительным якобианом (см. лемму 4).

 $\mathfrak{M}$  определяет ориентацию S.

Доказательство. Пусть дано описание (16) (через параметр и) некоторого многообразия  $\sigma \subset S$  и точка  $\mathbf{x}^o \in \sigma$ . В силу свойства 1) класса  $\mathfrak{M}$  в  $\mathfrak{M}$  найдется описание  $\sigma'$ , пусть выражаемое через параметр  $\mathbf{v}$ , покрывающее  $\mathbf{x}^o$ . Отнесем  $\sigma$  к  $\mathfrak{M}_+$  или  $\mathfrak{M}_-$  в зависимости от того, будет ли на  $\sigma\sigma'$  в малой окрестности  $\mathbf{x}^o$  якобиан перехода от  $\mathbf{u}$  к  $\mathbf{v}$  положительным или отрицательным. Однако надо убедиться в том, что высказанное правило не содержит противоречий,  $\mathbf{r}$ . е. оно не зависит от точки  $\mathbf{x}^o \in \sigma$  и описания  $\sigma' \in \mathfrak{M}$ , покрывающего  $\mathbf{x}^o$ .

Пусть для определенности в малой окрестности рассматриваемой точки х<sup>о</sup> якобиан перехода от и к v положительный, т. е., согласно высказанному правилу  $\sigma \in \mathfrak{M}_+$ . Но точка  $\mathbf{x}^{\sigma}$  может быть покрыта и другим многообразием  $\sigma'' \in \mathfrak{M}$ , выражаемым пусть через параметр w. Так как на б'б" переход от v к w имеет положительный якобиан, то якобиан перехода от и к w (равный произведению якобианов перехода от и к v и от v к w) положительный, и наше правило приводит к тому же результату о ∈ №. Условимся далее через от обозначать какое-либо покрывающее х многообразие, описание которого принадлежит к М, а его параметр — через  $\mathbf{v}_x$ . Пусть теперь  $\mathbf{y}^o \in \sigma$  и  $\mathbf{y} \neq \mathbf{x}^o$ . Предположим, что наше правило некорректно и в малой окрестности у пкобиан перехода от **u** к **y**<sub>00</sub> отрицательный. Соединим **x**<sup>0</sup> и **y**<sup>0</sup> непрерывной кривой  $\Gamma \subset \sigma$  ( $\mathbf{x} = \mathbf{x}(t)$ ,  $0 \leqslant t \leqslant 1$ ,  $\mathbf{x}(0) = \mathbf{x}^0$ ,  $\mathbf{x}(1) = \mathbf{y}^0$ ). Тогда должно найтись  $t_0$  ( $0 < t_0 < 1$ ) такое, что в любой его близости имеются значения t', t'' такие, что в малых окрестностях точек  $\mathbf{x}(t')$ ,  $\mathbf{x}(t'')$  якобианы перехода от  $\mathbf{u}$  к  $\mathbf{v}_{x(t')}$  и к  $\mathbf{v}_{x(t'')}$  имеют противоположные знаки. Но это противоречит тому факту, что в некоторой окрестности точки  $\mathbf{x}(t_0)$  наш якобиан должен сохранять знак. Этим доказано, что высказанное правило корректно.

Но тогда и переход  $\mathbf{u}' \to \mathbf{u}''$  имеет положительный якобиан. Аналогичное рассуждение можно провести и для  $\mathfrak{M}_-$ . Очевидно также, что  $\mathfrak{M} \subset \mathfrak{M}_+$ , и всякое локальное описание S принадлежит одному и только одному из классов  $\mathfrak{M}_+$ ,  $\mathfrak{M}_-$ .

Отметим еще, что ориентированное многообразие можно очевидно еще определить как многообразие S, для которого существует класс  $\mathfrak{M}$  его описаний, удовлетворяющих условиям 1), 2)

леммы 6.

Замечание. Любое замкнутое ограниченное дифференцируемое многообразие S (папример, окружность, поверхность шара или эллипсоида) в целом не описывается уравнениями вида (2) (подразумевается взаимная однозначность  $S \rightleftharpoons \omega!$ ). В самом деле, пусть S описывается уравнениями вида (2). Рассмотрим последовательность точек  $\mathbf{u}^{\mathsf{v}} \in \omega$ , стремящуюся к некоторой точке  $\mathbf{u}^{\mathsf{o}}$ границы у области  $\omega$  или, если у пусто ( $\omega = R_k$ ), стремящуюся в бесконечность ( $|\mathbf{u}^{\mathsf{v}}| \to \infty$ ). Так как S ограничена и замкнута, найнется подпоследовательность этой последовательности обозначаемых снова через и, такая, что для соответствующих ири отображении (2) точек  $\mathbf{x}^{\mathsf{v}} \in S$  имеет место  $\mathbf{x}^{\mathsf{v}} \to \mathbf{x}^{\mathsf{o}}$ , где  $\mathbf{x}^{\mathsf{o}} \leftarrow$ некоторая точка S, которая, таким образом, соответствует при помощи (2) определенной точке  $\mathbf{u}' \in \omega$ . Пусть  $V \in \omega$  — замкнутый шар с центром в и'. При помощи (2) он непрерывно отображается на замкнутое множество  $\sigma \subset S$ , и следовательно, это отображение непрерывно также в обратную сторону (см. § 12.20, теорема 1), и из того, что  $\mathbf{x}^{\mathsf{v}} \to \mathbf{x}^{\mathsf{o}}$ , следует, что  $\mathbf{u}^{\mathsf{v}} \to \mathbf{u}'$ , т. е.  $\mathbf{u}' = \mathbf{u}^{\mathsf{o}}$ . Но этого не может быть, так как  $\mathbf{u}^{\mathsf{o}} \leftarrow$  граничная точка  $\omega$ или бесконечно удаленная точка, а и - внутренняя (конечная) точка о.

# § 17.2. Край дифференцируемого многообразия и его ориентация

Если E — множество в пространстве  $R_n$ , то условимся через  $E^{(k)}$  обозначать его проекцию на координатное подпространство  $(x_1, \ldots, x_k)$ .

Теорема 1. Если  $\Gamma \subset S$ , где  $\Gamma$ , S— соответственно k- u (k+1)-мерные дифференцируемые многообразия u  $\mathbf{x}^0 \subseteq \Gamma$ , то можно перенумеровать координаты u подобрать прямоугольник

$$\Delta = \{ |x_i - x_i^0| < \delta_1, \ t = 1, \dots, k; \ |x_{h+1} - x_{h+1}^0| < \delta_2; \\ |x_j - x_j^0| < \sigma, \ j = k+2, \dots, n \},$$
 (1)

auак, чтобы  $S\Delta$  описывалось непрерывно дифференцируемыми функциями

$$x_j = f_j(x_1, \ldots, x_{k+1}), \ j = k+2, \ldots, n, \ (x_1, \ldots, x_{k+1}) \in \Delta^{(k+1)}, \ (2)$$

а ГА — непрерывно дифференцируемыми функциями

$$x_{h+1} = \varphi(x_1, \dots, x_h), (x_1, \dots, x_h) \in \Delta^{(h)},$$
  

$$x_j = f_j(x_1, \dots, x_h, \varphi(x_1, \dots, x_h)), j = k + 2, \dots, n.$$
(3)

Доказательство. Рассматриваемые функции будут пепрерывно дифференцируемы, и мы их будем просто называть функциями.

Зададим точку  $\mathbf{x}^0 \subseteq \Gamma \subset S$ . Будем предполагать, что многообравие S в окрестности  $\mathbf{x}^0$  проектируется (взаимно однозначно) на часть подпространства  $R_{k+1}$  точек  $(x_1, \ldots, x_{k+1}, 0, \ldots, 0)$ , чего можно достичь соответствующей перепумерацией координат. Ниже будет доказано, что так как  $\Gamma \subset S$ , то  $\Gamma$  необходимо проектируется на k-мерное координатное подпространство подпростра в  $\Gamma$  координат, можно сделать так, что это будет подпространство  $\Gamma$  точек  $\Gamma$  точек  $\Gamma$  ,  $\Gamma$  ,

Итак, существует прямоугольник  $\Delta_1 = \{ |x_j - x_j^0| < \delta_1, j = 1, ..., k; |x_{k+1} - x_{k+1}^0| < \mu; |x_j - x_j^0| < \nu, j = k+2, ..., n \}$  такой, что кусок  $S\Delta_1$  описывается уравненнями

$$x_j = f_j(x_1, \ldots, x_{h+1}), \ j = k+2, \ldots, n, \ (x_1, \ldots, x_{h+1}) \in \Delta_1^{(h+1)}$$
(4)

Будем пользоваться замечанием, сделанным в начале §17.1 сразу же после определения k-мерного многообразия, в силу которого, коль скоро числа  $\delta_i$ ,  $\mu$  найдены, их можно как угодно уменьнить \*), а уравнения (4) все же будут описывать  $S\Delta_i$ .

<sup>\*)</sup> Уменьшая  $\delta_i$ ,  $\mu$ , если это нужно, мы часто будем позволять себе сохранять их обозначение  $\delta_i$ ,  $\mu$ .

Существует также в силу определения Г прямоугольник

$$\Delta_2 = \{ |x_j - x_j^0| < \delta_1, j = 1, ..., k; |x_j - x_j^0| < \sigma, j = k+1, ..., n \},$$

принадлежащий  $\Delta_1$  (т. е.  $\sigma \leq \mu$ ,  $\nu$ , а  $\delta_1$  в  $\Delta_1$ , возможно, потребуется соответственно уменьшить), такой, что  $\Gamma\Delta_2$  описывается уравнениями

$$x_{h+1} = \varphi(x_1, \ldots, x_h), \quad x_j = F_j(x_1, \ldots, x_h),$$
  
 $j = k+2, \ldots, n, (x_1, \ldots, x_h) \in \Delta_2^{(h)}.$ 

Tak kak  $\Gamma \Delta_2 \subset S\Delta_1$ , to

$$F_j(x_1, \ldots, x_h) = f_j(x_1, \ldots, x_h, \varphi),$$
  
 $(x_1, \ldots, x_h) \in \Delta_2^{(h)}, \varphi = \varphi(x_1, \ldots, x_h),$ 

и уравнения  $\Gamma\Delta_2$  можно записать в виде

$$x_{h+1} = \varphi(x_1, \ldots, x_h), \quad (x_1, \ldots, x_h) \in \Delta_2^{(h)},$$
  
 $x_j = f_j(x_1, \ldots, x_h, \varphi), \quad j = k+2, \ldots, n.$ 

Теперь, пользуясь указанным замечанием, вводим прямоугольник  $\Delta \subseteq \Delta_2$  (см. (1)) так, что  $S\Delta$  описывается уравнениями (2), где  $f_i$  — уже найденные выше (для  $\Delta_1$ ) функции. При этом, возможно,  $\delta_1$  в  $\Delta_1$  и  $\Delta_2$  придется уменьшить; кроме того,  $\delta_1$  выбираем так, чтобы

$$|\varphi(x_1,\ldots,x_k)-x_{k+1}^0|<\delta_2,\ (x_1,\ldots,x_k)\in\Delta^{(k)}.$$
 (5)

Итак,  $S\Delta$  описывается уравпениями (2). Пусть теперь точка  $\mathbf{x} = (x_1, \ldots, x_n) \in \Gamma\Delta$ , тогда $(x_1, \ldots, x_k) \in \Delta^{(k)} \subset \Delta^{(k)}_2$ ,  $x \in \Gamma\Delta_2$  и  $\mathbf{x}$ , следовательно, записывается в виде

$$x_{k+1} = \varphi(x_1, \ldots, x_k),$$

$$x_j = f_j(x_1, \ldots, x_k, \varphi), \quad (x_1, \ldots, x_k) \in \Delta^{(k)}, \quad j = k+2, \ldots, n.$$
(6)

Наоборот, если точка **x** записывается в виде (6), то в силу (5)  $(x_1, \ldots, x_{k+1}) \in \Delta^{(k+1)}$ , и потому  $\mathbf{x} \in S\Delta$ . С другой стороны,  $(x_1, \ldots, x_k) \in \Delta^{(k)} \subset \Delta_2^{(k)}$ , и потому  $x \in \Gamma\Delta_2 \subset \Gamma$ . Итак,  $x \in \Gamma S\Delta = \Gamma\Delta$ .

Перейдем теперь к доказательству того, что если  $\Gamma \subseteq S$ , то в окрестности точки  $\mathbf{x}^0 \subseteq \Gamma$  миогообразие  $\Gamma$  заведомо проектируется на некоторое k-мерное подпространство того (k+1)-мерного подпространства, на которое проектируется S. Пусть в некоторой окрестности  $\mathbf{x}^0 \subseteq \Gamma$  многообразие S описывается функциями

$$x_i = t_i(x_1, \dots, x_{k+1}), \quad i = k+2, \dots, n.$$
 (7)

а многообразие Г — функциями

$$x_j = \varphi_j(u_1, \ldots, u_k), \quad j = 1, \ldots, n,$$
 (8)

 ${f c}$  рангом матрицы $\left\|rac{\partial {f \phi}_j}{\partial u_j}
ight\|$ , равным k. Так как  $\Gamma \subseteq S$ , то в малой окрестности точки u

$$x_{s} = \varphi_{s}(\mathbf{u}), \quad s = 1, ..., k+1,$$
  
$$x_{j} = \varphi_{j}(\mathbf{u}) = f_{j}(\varphi_{1}(\mathbf{u}), ..., \varphi_{k+1}(\mathbf{u})), \quad j = k+2, ..., n.$$

Ноэтому

$$\left\| \frac{\partial \varphi_j}{\partial u_l} \right\| = \left\| \frac{\partial \varphi_1}{\partial u_1} \cdots \frac{\partial \varphi_{h+1}}{\partial u_1} \sum_{s=1}^{h+1} \frac{\partial f_{h+2}}{\partial x_s} \frac{\partial \varphi_s}{\partial u_1} \cdots \sum_{s=1}^{h+1} \frac{\partial f_n}{\partial x_s} \frac{\partial \varphi_s}{\partial u_1} \right\|$$

$$\frac{\partial \varphi_1}{\partial u_h} \cdots \frac{\partial \varphi_{h+1}}{\partial u_h} \sum_{s=1}^{h+1} \frac{\partial f_{h+2}}{\partial x_s} \frac{\partial \varphi_s}{\partial u_h} \cdots \sum_{s=1}^{h+1} \frac{\partial f_n}{\partial x_s} \frac{\partial \varphi_s}{\partial u_h} \right\|$$

Так как ранг этой матрицы равен k, то легко видеть, рассуждая от противного, что ранг матрицы

$$\begin{bmatrix} \frac{\partial \varphi_1}{\partial u_1} & \cdots & \frac{\partial \varphi_{k+1}}{\partial u_k} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial \varphi_1}{\partial u_k} & \cdots & \frac{\partial \varphi_{k+1}}{\partial u_k} \end{bmatrix},$$

тоже равен к и существует не равный нулю порожденный ею определитель порядка k. Пусть это будет определитель  $\left|\frac{\partial \phi_j}{\partial u}\right|, j,$  $l=1,\ldots,k$ . Но тогда в малой окрестности  $\mathbf{u}^0$  первые k уравпений (8) можно решить относительно  $u_1, \ldots, u_h$ , что показывает, что многообразие  $\Gamma$  в окрестности точки  $\mathbf{x}^{\mathtt{o}}$  проектируется на координатное подпространство  $R_k$  точек  $(x_1, \ldots, x_k, 0, \ldots, 0)$ .

 $\mathit{Kpaem}$   $\mathit{k}$ -мерного многообразия  $\mathit{L_k}$  называется множество

 $\partial L_h = \overline{L}_h - L_h$ . Конечно, если  $L_h$  замкнуто, то оно не имеет края. Теорема 2. Пусть  $L_{h+1}$  и  $L'_{h+1} - (k+1)$ -мерные дифференцируемые многообразия,  $\overline{L}_{h+1} \subset L'_{h+1}$ ,  $L'_{h+1}$  связно и  $L_{h+1}$  имеет непустой связный край  $\partial L_{k+1} = L_k$ , являющийся k-мерным многообразием.

Tогда, какова бы ни была точка  $\mathbf{x}^{\scriptscriptstyle 0} \in L_{\scriptscriptstyle h}$ , найдется перестановка  $j_1, j_2, \ldots, j_n$  натуральных чисел  $1, \ldots, n$  и прямоугольник

$$\Delta = \{ |x_{j_s} - x_{j_s}^0| < \delta_1, \ s = 1, \dots, k; \ |x_{j_{k+1}} - x_{j_{k+1}}^0| < \delta_2, \\ |x_{j_s} - x_{j_s}^0| < \delta, \ s = k+2, \dots, n \}$$

такие, что кусок  $L_{k+1}^{'}$   $\Delta$  описывается непрерывно дифференцируемыми на  $\overline{\Delta^{(k+1)}}$  функциями

$$\mathbf{x}_{j_{\bullet}} = f_{j_{s}}(x_{j_{1}}, \dots, x_{j_{k+1}}), (x_{j_{1}}, \dots, x_{j_{k+1}}) \in \Delta^{(k+1)},$$

$$s = k + 2, \dots, n,$$
(9)

и кусок  $L_h\Delta$  — теми же функциями, но где

$$x_{j_{k+1}} = \varphi(x_{j_1}, \dots, x_{j_k}), (x_{j_1}, \dots, x_{j_k}) \in \Delta^{(k)}$$
 (10)

— непрерывно дифференцируемая на  $\overline{\Delta^{(h)}}$  функция. При помощи уравнений (9) точки  $\Delta^{(h+1)}$ , принадлежащие области

$$\Delta_{+}^{(k+1)} = \left\{ x_{j_{k+1}} > \phi\left(x_{j_1}, \ldots, x_{j_k}\right), \left(x_{j_1}, \ldots, x_{j_k}\right) \in \Delta^{(k)} \right\},\,$$

отображаются целиком на один из кусков  $L_{h+1}\Delta$  или  $(L'_{h+1}-L_{h+1})\Delta$ , а точки  $\Delta^{(h+1)}$ , принадлежащие области

$$\Delta^{(k+1)} = \{x_{j_{k+1}} < \varphi(x_{j_1}, \ldots, x_{j_k}), (x_{j_1}, \ldots, x_{j_k}) \in \Delta^{(k)} \},$$

- на другой из этих кусков.

Доказательство. Так как  $L_{\mathbf{k}}$  есть k-мерное многообразие. принадлежащее (k+1)-мерному многообразию  $L'_{k+1}$ , то первая часть теоремы есть теорема 1, записанная в несколько другой форме. Остается доказать вторую часть, где используется то обстоятельство, что  $L_k$  есть край  $L_{k+1}$  и  $L_k$  и  $L'_{k+1}$  — связные многообразия.

Прямоугольник  $\Delta^{(h+1)}$  разрезается поверхностью (10) на две области, не содержащие точек, отображаемых при помощи преобразований (10) в  $L_{\rm h}$ . Следовательно, каждая область отображается целиком на один и только один кусок  $L_{k+1}\Delta$ ,  $(L'_{k+1}-ar{L}_{k+1})\Delta$ . При этом не может случиться, что обе эти области отображаются на кусок  $(L'_{k+1} - \bar{L}_{k+1})\Delta$ , ведь тогда  $L_{k+1}\Delta$  было бы пустым множеством и в  $\Delta$  не было бы точек  $L_k$ . Не может также случиться, что обе области отображаются на  $L_{k+1}\Delta$ . В самом деле, назовем точку  $\mathbf{x}^{\scriptscriptstyle 0} \in L_{\scriptscriptstyle k}$  регулярной, если для нее разные области  $\Delta_+^{(k+1)}, \Delta_-^{(k+1)}$ отображаются на разные куски  $L_{k+1}\Delta, (L'_{k+1}-\overline{L}_{k+1})\Delta$ . Наша задача показать, что множество всех нерегулярных точек пусто. Начнем с того, что заметим, что не могут существовать на  $L_{h}$  две точки  ${\bf x}^0$ ,  ${\bf y}^0$  такие, что одна из них регулярная, а другая — нет, ведь вследствие связности  $L_h$  существует принадлежащая  $L_h$  соединяющая х° и у° кривая Г, и тогда метод дедекиндова сечения на Г привел бы к существованию на Г точки z<sup>0</sup>, в любой малой окрестности которой имелись бы как регуляриая, так и нерегулярная точки. Но это очевидно невозможно. Допустим теперь, что все  $\mathbf{x}^0 \in L'_{k+1} - \overline{L}_{k+1}$  и точки  $L_{\scriptscriptstyle R}$  не регулярны. Зададим две точки  $\mathbf{y}^0$  $\in$  $L_{k+1}$  и, пользуясь связностью  $L_{k+1}'$ , соединим их принадлежащей  $L'_{k+1}$  непрерывной кривой

$$\mathbf{x}(t), \ 0 \le t \le 1, \ \mathbf{x}(0) = \mathbf{x}^0, \ \mathbf{x}(1) = \mathbf{y}^0.$$

Применив метод дедекиндова сечения, найдем наибольшее значе-

ние  $t=t_0$ , при котором  $x(t) \in L'_{k+1} - \bar{L}_{k+1}$ ,  $t < t_0$ . Точка  $\mathbf{z}^0 = \mathbf{x}(t_0)$ , очевидно, принадлежит  $L_k$ , она не регулярна и для нее обе области  $\Delta_+^{(k+1)}$ ,  $\Delta_-^{(k+1)}$  на основании сказанного выше должно отобразиться на  $L_{k+1}\Delta$ , т. е. в окрестности  $\mathbf{z}^0$  не должно быть точек  $(L'_{k+1} - \bar{L}_{k+1})\Delta$ , но такие точки для  $t < t_0$ , близких к  $t_0$ , есть, и мы пришли к противоречию.

Итак, любая точка  $\mathbf{x}^0 \in L_k$  регулярна, т. е. области  $\Delta_+^{(k+1)}$  и  $\Delta_-^{(k+1)}$  при помощи преобразований (9) отображаются на разные куски  $L_{k+1}\Delta$ ,  $(L'_{k+1}-\overline{L}_{k+1})\Delta$ .

Замечание. Пользуясь тем, что ф непрерывна и удовлетворяет равенству  $x_{j_k+1}^0 = \phi\left(x_{j_1}^0, \ldots, x_{j_k}^0\right)$  и что диаметр  $\Delta^{(k)}$  можно как угодно уменьшить, легко заключим, что существует такое  $\lambda > 0$ , что область  $(\Lambda = \tilde{\Lambda}^{(k+1)})$ 

$$\Lambda = \{(x_{j_1}, \ldots, x_{j_k}) \in \Delta^{(h)}, \ \varphi(x_{j_1}, \ldots, x_{j_k}) - \lambda < x_{j_{k+1}} < < \varphi(x_{j_1}, \ldots, x_{j_k}) + \lambda, \ | x_{j_s} - x_{j_s}^0 | < \delta, \quad s = k+2, \ldots, n \}$$
 (11) вырезает из  $L'_{k+1}$  кусок  $L'_{k+1}\Lambda$ , описываемый функциями ( $s = 1$ )

$$= \hat{k} + 2, \dots, n$$

$$x_{j_s} = f_{j_s}(x_{j_1}, \dots, x_{j_{k+1}}), (x_{j_1}, \dots, x_{j_{k+1}}) \in \Lambda^{(k+1)}$$

При этом поверхность (10) разрезает  $\Lambda^{(h+1)}$  на две части

$$\Lambda_{+}^{(h+1)} = \left\{ \left( x_{j_1}, \ldots, x_{j_k} \right) \in \Delta^{(h)}, \ \varphi \left( x_{j_1}, \ldots, x_{j_k} \right) \leqslant \\ \leqslant x_{j_{k+1}} < \varphi \left( x_{j_1}, \ldots, x_{j_k} \right) + \lambda \right\}, \quad (12)$$

$$\Lambda^{(h+1)} = \{ (x_{j_1}, \ldots, x_{j_k}) \in \Delta^{(h)}, \\ \varphi(x_{j_1}, \ldots, x_{j_k}) - \lambda \leqslant x_{j_{k+1}} < \varphi(x_{j_1}, \ldots, x_{j_k}) \}.$$

Одна из них отображается посредством (9) на  $\overline{L}_{k+1}\Lambda$ , а другая— на  $(L'_{k+1}-L_{k+1})\Lambda$ .

Если  $\Lambda_+^{(h+1)}$  отображается на  $(L_{h+1}'-L_{h+1})\Lambda$ , то введем переменные

$$u_1 = x_{j_1}, \ldots, u_k = x_{j_k}, \quad u_{k+1} = x_{j_{k+1}} - \varphi(x_{j_1}, \ldots, x_{j_k}), \quad (13)$$

связанные непрерывно дифференцируемо в обе стороны с  $(x_{j_1},\dots,x_{j_{k+1}})$ . Тогда функции

$$x_{j_s} = F_{j_s}(u_1, \dots, u_{k+1}) = u_s, \quad s = 1, \dots, k,$$

$$x_{j_{k+1}} = F_{j_{k+1}}(u_1, \dots, u_{k+1}) = u_{k+1} + \varphi(u_1, \dots, u_k),$$

$$x_{j_s} = F_{j_s}(u_1, \dots; u_{k+1}) = f_{j_s}(u_1, \dots, u_k, u_{k+1} + \varphi(u_1, \dots, u_k)),$$

$$s = k + 2, \dots, n,$$

$$|u_s - u_s^0| \leq \delta_1, \quad s = 1, \dots, k, |u_{k+1}| \leq \lambda$$

описывают  $L'_{k+1}\Lambda$ , при этом точки  $(u_1,\ldots,u_{k+1})$  с координатами  $u_{k+1}>0$ ,  $u_{k+1}<0$ ,  $u_{k+1}=0$  преобразуются соответственно в  $(L'_{k+1}-\overline{L}_{k+1})\Lambda$ ,  $L_{k+1}\Lambda$ ,  $L_{k}\Lambda$ .

Если  $\Lambda_{+}^{(k+1)}$  отображается на  $L_{k+1}\Lambda$ , то к тем же результатам мы придем, если в уравнениях (13), (14) заменим  $u_{k+1}$  на  $-u_{k+1}$ .

Наконец, заметим, что замена параметра  $u_i$  на  $-u_i$  не изменяет очевидно эти результаты, т. е. после такой замены точки  $(u_i, \ldots, u_{k+1})$  с  $u_{k+1} > 0$  по-прежнему будут переходить в  $(L'_{k+1} - \overline{L}_{k+1}) \Lambda$ . Этим доказана теорема.

Теорема 3. При условиях теоремы 2 какова бы ни была точка  $\mathbf{x}^0 \in L_h$ , найдется ее окрестность (п-мерная)  $\Lambda$  такая, что  $L'_{h+1}\Lambda$ описывается непрерывно дифференцируемыми функциями ( $i = 1, \ldots, n$ )

$$x_i = F_i(\mathbf{u}) = F_i(u_1, \dots, u_{h+1}), \quad \mathbf{u} \in \omega,$$
 (15)

где  $\omega$  — область в пространстве  $R_{\mathtt{h+1}}$  точек  $\mathbf{u},$  а  $L_{\mathtt{h}}\Lambda$  описывается уравнениями

 $x_i = F_i(u_1, ..., u_k, 0), (u_1, ..., u_k) \in \lambda,$  (16)

где  $\lambda$  — сечение  $\omega$  плоскостью  $u_{k+1}=0$  в  $R_{k+1}$ , делящев  $\omega$  на двв непустые области. При помощи уравнений (15) точки  $\mathbf{u} \in \omega$  с координатой  $u_{k+1}>0$  или  $u_{k+1}<0$  отображаются соответственно на  $(L'_{k+1}-\overline{L}_{k+1})\Lambda$ ,  $L_{k+1}\Lambda$ .

Наконец, если  $L'_{k+1}$ — ориентированное многообразие, то можно функции  $F_i$  с указанными свойствами задать так, чтобы они определями ориентацию  $L'_{k+1}$ .

Последнее утверждение поясняется так: если функции  $F_i$ , полученные следуя указанным процессам, определяют ориентацию, противоположную  $L'_{k+1}$ , то достаточно в них заменить  $u_1$  на  $-u_4$ .

Теорема 4. Если выполняются условия теоремы 2 (или, что все равно, теоремы 3), то из того, что  $L'_{h+1}$  ориентируемо, следует ориентируемость  $L_h$  и существует правило согласования этих ориентаций.

Доказательство. Каждой точке  $\mathbf{x}^0 \in L_h$  приведем в соответствие ее окрестность  $\Lambda$  и описывающие  $L'_{h+1}\Lambda$  (вместе с ориентацией) функции  $F_i$  так, чтобы удовлетворялись условия теоремы 3. Уравнения (16) представляют собой некоторое описание многообразия  $L_h$ , пока неориентированного.

Совокупность всех описаний вида (16) обозначим через  $\mathfrak{M}$ . Так как с каждой точкой  $\mathbf{x}^{\circ} \in L_k$  связано хотя бы одно описание  $L_k$  вида (16), определяющее многообразие  $L_k\Lambda$ , покрывающее  $\mathbf{x}^{\circ}$ , то  $\mathfrak{M}$  удовлетворяет условию 1) леммы 6 предыдущего параграфа. Чтобы доказать, что  $\mathfrak{M}$  удовлетворяет также условию 2) этой леммы, рассмотрим наряду с (16) другое какое-либо описание  $L_k$ , иринадлежащее  $\mathfrak{M}$ . Таким образом, мы считаем, что  $\Omega$  — некоторая

n-мерная окрестность точки  $\mathbf{y}^{\scriptscriptstyle 0} \in L_{\scriptscriptstyle k}$ , такая, что функции ( $i=1,\ldots,n$ )

$$x_i = \Phi_i(v_1, \ldots, v_{k+1}), (v_1, \ldots, v_{k+1}) \in \varkappa$$

определяют ориентированное многообразие  $L'_{k+1}\Omega$ , а функции  $x_i = \Phi_i(v_1, \ldots, v_k, 0), \ (v_1, \ldots, v_k) \in \mu$ 

определяют  $L_k\Omega$ , где  $\mu$  — сечение  $\varkappa$  плоскостью  $v_{k+1}=0$ . При этом моложительным  $v_{k+1}$  соответствуют точки  $x \in (L'_{k+1} - \overline{L}_{k+1})\Lambda$ . Предположим, что многообразия  $L_k\Lambda$  и  $L_k\Omega$  имеют непустое пересечение  $L_k\Lambda\Omega$ . На нем в силу леммы 4 предыдущего параграфа имеет место непрерывно дифференцируемое в обе стороны соответствие

$$U_k^0 \Longrightarrow (u_1, \ldots, u_k) \rightleftarrows (v_1, \ldots, v_k) \Subset V_k^0$$

где  $U_h^0$ ,  $V_h^0$  — открытые множества. Но тогда многообразия  $L_{k+1}'\Lambda$  и  $L_{k+1}'\Omega$  тоже имеют непустое пересечение  $L_{k+1}'\Lambda\Omega$ , на котором в свою очередь имеет место непрерывно дифференцируемое в обе стороны соответствие

$$U_{k+1}^0 \Rightarrow (u_1, \ldots, u_{k+1}) \rightleftarrows (v_1, \ldots, v_{k+1}) \rightleftharpoons V_{k+1}^0$$

Заметим, что в данном случае при  $v_{h+1} = 0$ , или, что все равно,

$$u_{k+1} = 0, \quad \frac{\partial v_{k+1}}{\partial u_j} = 0 \quad (j = 1, \dots, k), \text{ и потому при } u_{k+1} = 0$$

$$\frac{D(v_1, \dots, v_{k+1})}{D(u_1, \dots, u_{k+1})} = \frac{\partial v_{k+1}}{\partial u_{k+1}} \frac{D(v_1, \dots, v_k)}{D(u_1, \dots, u_k)}. \tag{17}$$

Но якобиан слева — положительный, потому что функции  $F_i(u_1, \ldots, u_{k+1})$  и  $\Phi_i(v_1, \ldots, v_{k+1})$  определяют ориентированные куски  $L'_{k+1}$ , и на их пересечении переход от  $(u_1, \ldots, u_{k+1})$  к  $(v_1, \ldots, v_{k+1})$  имеет положительный якобиан. Множитель  $\frac{\partial v_{k+1}}{\partial u_{k+1}}$ — тоже положительный для  $(u_{k+1} = 0)$ , потому что параметры **u** и **v** так подобраны, что при  $u_{k+1} > 0$  **x**  $\in (L'_{k+1} - \overline{L}_{k+1}) \Lambda \Omega$ , но тогда и  $v_{k+1} > 0$ . В таком случае якобиан в правой части (17) — положительный, и мы доказали, что описания вида (16) удовлетворяют условию (17)0 леммы (17)1 (параметры таких описаний на пересечениях многообразий, которые они описывают, переходят друг в друга с положительным якобианом).

Итак, описания вида (16) образуют согласно терминологии леммы 6 предыдущего параграфа класс  $\mathfrak{M}$ . Следовательно,  $L_k$  ориентируемое многообразие и в качестве определяющего его ориентацию можно взять класс  $\mathfrak{M}_+$ . Метод его ностроения дан в укаванной лемме ( $\mathfrak{M} \subset \mathfrak{M}_+$ ).

Теорема 4 утверждает возможность установить правило согласования ориентаций  $L_{k+1}$  и  $L_k$ . При этом при ее доказательстве дано такое правило. Однако в дальнейшем нам будет удобнее пользоваться другим правилом, ниже формулируемым.

Правило согласования ориентаций  $L_{k+1}$  и  $L_k$ : если, при условии теоремы 2 в окрестности  $\Omega$  точки  $\mathbf{x}^0 \in L_k \subset L'_{k+1}$  кусок  $\Omega L_{k+1}$  описывается уравнениями

$$x_i = f_i(u_1, \dots, u_{h+1}), \quad i = 1, \dots, n,$$
 (18)

 $\tau a \kappa$ , что при  $u_1 = 0$  получаются уравнения

$$x_i = f_i(0, u_2, \dots, u_{k+1}), \quad i = 1, \dots, n,$$
 (19)

куска  $\Omega L_k$ , и при этом точки  $\mathbf{u} = (u_1, \ldots, u_{k+1})$  с  $u_1 > 0$  при помощи преобразования (18) переходят во вне  $L_{k+1}$ , то по определению уравнения (19) определяют ориентацию  $L_k$ , согласованную с ориентацией  $L_{k+1}$ .

Чтобы убедиться в корректности этого нового правила, достаточно в исходном правиле, о котором шла речь в теореме 4, произвести замену  $u_1' = u_{k+1}, u_2' = u_1, \ldots, u_k' = u_{k-1}, u_{k+1}' = (-1)^k u_k$ , а затем опустить штрихи.

Это правило, которое мы еще будем называть формальным, хорошо тем, что оно естественно согласуется с наглядными правилами согласования ориентаций фигур, которые были даны при элементарном выводе формул Грина, Гаусса — Остроградского и Стокса.

Наряду с  $L_k$  введем еще  $L_{\tilde{k}}$  — то же многообразие, но ориентированное противоположно. Очевидно,  $L_{\tilde{k}}$  есть край многообразия  $L'_{k+1} - \overline{L}_{k+1}$  или, может быть, его часть, и ориентации этих двух многообразий согласованы согласно формальному правилу.

Замсчание. Пусть  $L_{k+1}$ ,  $L'_{k+1}$  и  $L_k$  имеют прежний смысл и, кроме того,  $L_{1,k+1}$ , ...,  $L_{s,k+1}-(k+1)$ -мерные многообразия, замыкания которых принадлежат  $L_{k+1}$  и попарно ие пересекаются. Пусть эти многообразия имеют согласованно ориентированные с ними связные края  $L_{i,k}$ , ...,  $L_{s,k}$ . Тогда многообразие (s-связное)

$$L_{k+1} - \sum_{j=1}^{s} \bar{L}_{j,k+1} \tag{20}$$

имеет, очевидно, согласованно ориентированный с ним край

$$L_h + \sum_{i=1}^{s} L_{\bar{j},h}. \tag{21}$$

Пример 1. В плоскости (x,y) задана выпуклая область G с гладкой границей  $\Gamma$ , изображенная на рис. 17.1. Обозначим через  $\Pi$  полосу  $a < x < b, -\infty < y < \infty$ , которую будем рассматривать как ориентированное

(положительно) двумерное многообразие

$$x = x, \quad y = y, \quad (x, y) \in \Pi, \tag{22}$$

Таким образом, G есть соответственно ориентированное многообразие. Но П можно задать еще уравнениями

$$x = x, y = -v + \varphi(x), a < x < b, -\infty < v < \infty,$$
 (23)

устанавливающими (пепрерывно дифференцируемое в обе стороны) соответствие  $(x, y) \rightleftharpoons (v, x)$  с якобианом

$$\frac{D(x, y)}{D(v, x)} = \begin{vmatrix} 0 & 1 \\ -1 & \varphi'(x) \end{vmatrix} = 1,$$

или еще уравнениями.

$$x = -x', y = v + \psi(-x'), -b < x' < -a, -\infty < v < \infty,$$
 (24)

устанавливающими соответствие  $(x, y) \rightleftharpoons (v, x')$  с якобианом

$$\frac{D(x, y)}{D(v, x')} = \begin{vmatrix} 0 & -1 \\ 1 & -\psi'(-x') \end{vmatrix} = 1.$$

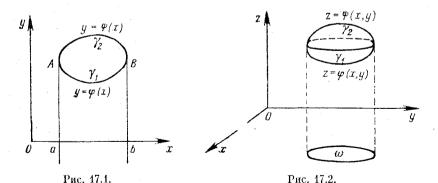
Так как к тому же в окрестностях  $\gamma_1$  и  $\gamma_2$  точки (v, x), соответственно (v, x') с v > 0 переходят вовне G, то согласно правилу согласования ориентаций полученные из (23) и (24) при v = 0 уравнения

$$x = x$$
,  $y = \varphi(x)$ ,  $a < x < b$ ,  
 $x = -x'$ ,  $y = \psi(-x')$ ,  $-b < x' < -a$ ,

кусков  $\gamma_1$  и  $\gamma_2$  определяют ориентацию  $\Gamma$ , согласованную с ориентацией G. Мы видим, что при непрерывном возрастании параметров  $x,\ x'$  соответ-

ственно куски  $\gamma_1$ ,  $\gamma_2 \subset \Gamma$  проходятся точкой (x,y) так, что область G эстается слева,  $\tau$ , с. что  $\Gamma$  обходится против часовой стрелки.

Так как естественно ориентацию G, определяемую уравнениями (22), называть положительной, то мы получим, что формальное правило согласования, примененное к G и  $\Gamma$ , согласуется с известным геометрическим правилом согласования ориентаций G и  $\Gamma$ .



Впрочем, для полного обоснования данного вывода надо указанные рассмотрения провести еще для некоторых дуг  $\lambda_4$ ,  $\lambda_2 \in \Gamma$ , содержащих соответственно внутри себя точки A,  $B \in \Gamma$  (см. рис. 47.1).

Нример 2. Пусть теперь в пространстве (x, y, z) задана выпуклая область G с гладкой границей  $\Gamma$ , изображенная на рис. 17.2. Будем считать, что  $\omega$  есть проекция G на плоскость (x, y). Поместям G внутри цилиндри-

ческого тела  $\Pi = \{(x, y, z): (x, y) \in \omega\}$ , которое (вместе с G) будем считать ориентируемым многообразием

$$x = x$$
,  $y = y$ ,  $z = z$ ,  $(x, y, z) \in \Pi$ .

Последнее можно записать еще через параметры  $(v, x', y) \rightleftarrows (x, y, z)$  при помощи уравлений

$$x = -x', \quad y = y, \quad z = -v + \varphi(-x', y),$$
$$(x', y) \in \omega', \quad -\infty < v < \infty,$$

гле ω' — соответствующая область, с якобианом

$$\frac{D(x, y, z)}{D(v, x', y)} = \begin{vmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -\varphi'_x(-x', y) & \varphi'_y(-x', y) \end{vmatrix} = 1$$

или через параметры  $(v, x, y) \rightleftharpoons (x, y, z)$  при помощи уравнений

$$x = x$$
,  $y = y$ ,  $z = v + \psi(x, y)$ ,  $(x, y) \in \omega$ ,  $-\infty < v < \infty$ ,

с якобианом

$$\frac{D(x, y, z)}{D(v, x, y)} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & \psi'_x & \psi'_y \end{vmatrix} = 1.$$

Так как к тому же в окрестностях  $\gamma_1$  и  $\gamma_2$  точки (v, x', y), соответственно (v, x, y) с v > 0 переходят вовне G, то уравнения

$$x = -x', \quad y = y, \quad z = \varphi(-x', y), \quad (x', y) \in \omega',$$
  
 $x = x, \quad y = y, \quad z = \psi(x, y), \quad (x, y) \in \omega,$ 

определяют соответственно куски  $\gamma_1$  и  $\gamma_2$  границы  $\Gamma$  вместе с их ориентаци-

ей, согласованной с ориентацией G по нашему правилу.

Условимся нормаль п (вообще не единичную) к поверхности  $\mathbf{r}(u, \nu)$  определять по формуле  $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v$ . Тогда для куска  $\gamma_1$   $n_z = -1$ , а для куска  $\gamma_2$   $n_z = 1$ , т. е. в обоих случаях нормаль направлена вовне G. Мы пришли к выводу, что формальное правило согласования ориентаций, примененное к данному конкретному случаю G.  $\Gamma$ , свелось к тому, что надо считать, что положительно ориентированной трехмерной области G соответствует ее поверхность  $\Gamma$ , ориентированная внешней пормалью.

Впрочем, полное обоснование данного вывода требует подобного рассмотрения еще кусков Г, покрывающих край  $\gamma_1$  (в данном случае см. рис.

17.2, являющийся также краем ү2)...

Пример 3. Рассмотрим гладкую поверхность S', определяемую уравнением

$$z = f(x, y), \quad (x, y) \in \Omega, \tag{25}$$

где  $\Omega$  — плоская область, и принадлежащую ей поверхность S,

$$z = f(x, y), (x, y) \in \omega \subset \overline{\omega} \subset \Omega,$$

где  $\omega$  — область (возможно, многосвязная) с гладкой границей ү. Край S,  $\mathbf{r}$ . е.  $\Gamma = \partial S = S - S$ , есть очевидно, гладкая кривая. Будем считать, что поверхность S' (следовательно, и S) ориентирована уравнением (25). Тогда проекция па ось  $\mathbf{z}$  ее нормали  $\mathbf{n} = \mathbf{r}_x \times \mathbf{r}_y$  ( $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + f\mathbf{k}$ ) равна 1,  $\mathbf{r}$ . е.  $\mathbf{S}$  ориентирована нормалью, образующей острый угол с положительным направлением оси  $\mathbf{z}$ . Если применить правило штопора, то в правой системе координат (x, y, z) ориентация S индуцирует ориентацию  $\Gamma$  и ее проекции

 $\Gamma_z$  на z=0, выражающую, что точка, движущаяся по  $\Gamma_z$  в направлении обхода  $\Gamma_z$ , оставляет  $\omega$  слева. К этому же выводу придем, если будем согла-

совывать ориентации S и Г, пользуясь формальным правилом.

В самом деле, в окрестности произвольной точки кривая  $\Gamma$  имеет вид  $y = \varphi(x)$  или  $x = \psi(y)$ , z = f(x, y). Пусть для определенности это будет  $y = \varphi(x)$ . Поверхность с сохранением ориентации может быть записана также через параметры  $(v, x) \rightleftharpoons (x, y)$ , связанные с (x, y) уравнениями

$$x = x$$
,  $y = -v + \varphi(x)$ ,  $\frac{D(x, y)}{D(v, x)} = \begin{vmatrix} 0 & 1 \\ -1 & \varphi'(x) \end{vmatrix} = 1$ .

Пусть точкам (v,x) с малым v>0 соответствуют точки S'-S. Тогда уравнения  $x=x,\ y=\varphi(x)$  определяют ориентацию  $\Gamma_z$ , и при возрастании параметра x мы будем двигаться по  $\Gamma_z$  в направлении ориентации  $\Gamma_z$ . Ясно, что при этом точки  $(x,y)\in\omega$ , которые соответствуют v>0, будут оставаться слева.

Замечание. Пусть k-мерное многообразие S принадлежит области  $\Omega \subset R_n$  точек  $\mathbf{x}=(x_1,\ldots,x_n)$ , которая переходит на область  $\Omega' \subset R'_n$  точек  $\mathbf{\xi}=(\xi_1,\ldots,\xi_n)$  при номощи взаимно однозначного и непрерывно дифференцируемого в обе стороны преобразования

$$\xi_i = \psi_i(x_1, \dots, x_n) = \psi_i(\mathbf{x}), \quad \mathbf{x} \in \Omega, \quad t = 1, \dots, n.$$
 (26)

Тогда если

$$x_i = \varphi_i(u_1, \ldots, u_k) = \varphi_i(\mathbf{u}), \quad \mathbf{u} \in \omega, \quad i = 1, \ldots, n,$$
 (27)

есть описание некоторого куска  $\sigma \subset S$  в пространстве  $R_n$ , то

$$\xi_i = \psi_i(\varphi_i(\mathbf{u}), \dots, \varphi_n(\mathbf{u})) = F_i(\mathbf{u}), \quad \mathbf{u} \in \omega, \quad i = 1, \dots, n, (28)$$

— его описание в пространстве  $R'_n$ . Ведь уравнения (28) устанавливают взаимно однозначное соответствие  $\xi = \mathbf{u}$ , функции  $F_i(u)$  непрерывно дифференцируемы вместе  $\mathbf{c}$   $\phi_s$  и  $\psi_i$  и ранг матрицы  $\left\|\frac{\partial F_1}{\partial u_j}\right\|$  равен k, потому что k ее строк  $\left\{\frac{\partial F_1}{\partial u_j}, \ldots, \frac{\partial F_n}{\partial u_j}\right\}$ ,  $j=1,\ldots,k$ , можно рассматривать как k n-мерных векторов, полученных при помощи невырожденного линейного преобразования. ( $\mathbf{c}$  определителем  $\left|\frac{\partial \psi_i}{\partial u_j}\right| \neq 0$ ) из k динейно независимых между собой векто-

телем  $\left|\frac{\partial \psi_i}{\partial x_s}\right| \neq 0$ ) из k линейно независимых между собой векторов  $\left\{\frac{\partial \varphi_1}{\partial u_j}, \ldots, \frac{\partial \varphi_n}{\partial u_j}\right\}$ .

Легко видеть, что если S ориентировано в  $R_n$  и локальное описание S вида (27) преобразовать в описание вида (28), то последнее задает определенную (соответствующую) ориентацию S в  $R'_n$ . Далее, если  $L_h$  есть край ориентированного многообразия  $L_{h+1}$ , то высказанное выше правило передачи ориентации с  $L_{h+1}$  на  $L_h$ , применимое как в  $R_n$ , так и в  $R'_n$ , таково, что опо не нарушает это соответствие.

### § 17.3. Дифференциальные формы

Дифференциальной формой (короче формой) k-го порядка ( $k=1,\,2,\,\ldots$ ), определенной на открытом множестве  $\Omega \subseteq R_n$ , называется конечная сумма

$$\mathfrak{A} = \sum a(\mathbf{x}) dx_{i_1} \dots dx_{i_k}, \quad \mathbf{x} \in \Omega,$$
 (1)

где  $a(\mathbf{x})$  — функции — коэффициенты формы, а  $dx_{i_1},\ldots,dx_{i_h}$  — символы, дифференциалы, соответствующие индексам  $i_1,\ldots,i_h$  удовлетворяющим неравенствам  $1 \le i_s \le n$ , если эта сумма подчиняется специальным условиям, излагаемым ниже.

Формой нулевого порядка на Ω называют произвольную функ-

цию  $a(\mathbf{x})$ , определенную на  $\Omega$ .

Будем считать коэффициенты  $a(\mathbf{x})$  непрерывными или пепрерывно дифференцируемыми столько раз, сколько будет нужно. Конечно, в каждом члене  $a(\mathbf{x}) dx_{i_1}, \ldots, dx_{i_k}$  коэффициенты  $a(\mathbf{x})$ , вообще говоря, различны так же, как, вообще говоря, различны системы индексов  $i_1, \ldots, i_k$ , но они могут и совнадать.

1. Следующие операции над формой Я, называемые допусти-

мыми, по определению не изменяют ее:

а) Перемена местами слагаемых в сумме (1).

б) Замена слагаемого

$$a(\mathbf{x}) dx_{i_1} \dots dx_{i_h} \tag{2}$$

суммой

$$a_1(\mathbf{x}) dx_{i_1} \dots dx_{i_h} + a_2(\mathbf{x}) dx_{i_1} \dots dx_{i_h}, \ a(\mathbf{x}) = a_1(\mathbf{x}) + a_2(\mathbf{x})$$
 (3)

или, наоборот, замена (3) на (2).

в) Выбрасывание из (1) слагаемого, содержащего два равных дифференциала  $(i_r = i_s, r \neq s)$  или коэффициент  $a(\mathbf{x}) \equiv 0$  (см. ниже д)).

г) Перемена местами двух дифференциалов в каком-либо чле-

пе суммы (1), сопровождаемая изменением знака  $a(\mathbf{x})$ .

д) Если в результате применения операций а)—г) над  $\mathfrak A$  в конечном числе все члены  $\mathfrak A$  исчезнут, то форма  $\mathfrak A$  называется нулевой и обозначается через  $\mathfrak G$ . В частности, это будет в случае, если все слагаемые  $\mathfrak A$  имеют два равные дифференциала, как это имеет место при k > n, или в случае, если все коэффициенты формы  $a(\mathbf x) = 0$  на  $\Omega$ .

Очевидно, что форму  $\mathfrak A$  порядка k, применяя к ней допустимые операции, можно свести к каноническому  $\varepsilon u\partial y$ 

$$\mathfrak{A} = \sum_{i_1 < \dots < i_k} a_{i_1, \dots, i_k}(x) \, dx_{i_1} \dots \, dx_{i_k}, \tag{1'}$$

где сумма распространена на все сочетания по k из чисел  $1, \ldots, n$ , расположенных в скалярном порядке.

Для данной формы 4 ее каноническое выражение очевидио единственно, если не считать порядок расположения ее слагаемых.

2. Если  $\mathfrak A$  и  $\mathfrak B$  — формы порядка k, то сумма  $\mathfrak A+\mathfrak B$  есть форма, получаемая, если слагаемые  $\mathfrak A$  и  $\mathfrak B$  объединить и считать слагаемыми  $\mathfrak A+\mathfrak B$ , а разность  $\mathfrak A-\mathfrak B$  есть сумма  $\mathfrak A+(-\mathfrak B)$ , где  $-\mathfrak B$  есть форма, получаемая из формы  $\mathfrak B$ , если коэффициенты  $a(\mathbf x)$  последней заменить па  $-a(\mathbf x)$ . В частности, если каноническое выражение  $\mathfrak A$  определяется суммой (1'), а каноническое выражение  $\mathfrak B$  — суммой

$$\mathfrak{B} = \sum_{i_1 < \ldots < i_h} b_{i_1, \ldots, i_h}(\mathbf{x}) \, dx_{i_1} \ldots dx_{i_h}, \tag{4}$$

To 
$$\mathfrak{A}\pm\mathfrak{B}=\sum_{\mathbf{i}_1<\ldots<\mathbf{i}_k} \left(a_{i_1,\ldots,i_k}\pm b_{i_1,\ldots,i_k}\right) dx_{i_1}\ldots dx_{i_k}.$$

Мы уже не будем останавливаться на формальном доказательстве того факта, что указанные определения суммы и разности не зависят от (допустимых) способов задания  $\mathfrak A$  и  $\mathfrak B$ .

3. Произведение УУ двух форм\*)

$$\mathfrak{A} = \sum a \, dx_{i_1} \dots dx_{i_h}, \tag{5}$$

$$\mathfrak{B} = \sum b \, dx_{j_1} \dots dx_{j_s},\tag{6}$$

вообще говоря, разных измерений k и s определяется как результат почленного перемножения буквенных выражений, стоящих справа в (5), (6), однако с сохранением порядка следования дифференциалов. При этом коэффициенты a и b считаются перестановочными с дифференциалами. В частности, в случае канонических записей  $\mathfrak{A}$  (см. 1') и  $\mathfrak{B} = \sum_{j_1 < \dots < j_s} b_{j_1, \dots, j_s} dx_{j_1} \dots dx_{j_s}$ 

$$\mathfrak{AB} = \sum_{i_1 < \dots < i_k, j_1 < \dots < j_s} \sum_{a_{i_1}, \dots, i_k, b_{j_1}, \dots, j_s} dx_{i_1} \dots dx_{i_k} dx_{j_1} \dots dx_{j_s}.$$
 (6')

В частности,  $\mathfrak{AB} = \theta$  при k+s > n.

Мы не останавливаемся на формальном доказательстве того факта, что при любых исходных видах форм И и В (получаемых один из другого с помощью конечного числа допустимых операций) их произведение дает сумму, которая допустимыми преобразованиями приводится к виду (6').

4. Дифференциалом формы \*\*) (1) называется форма

$$d\mathfrak{A} = \sum_{j=1}^{n} \frac{\partial a(x)}{\partial x_{j}} dx_{j} dx_{i_{1}} \dots dx_{i_{k}}$$
 (7)

<sup>\*)</sup> Произведение форм называют еще внешним произведением форм.
\*\*) Дифференциал формы называют еще внешним дифференциалом
формы.

порядка k+1. Можно проверить, что это определение не зависит от способа задания  $\mathfrak A$ .

Ясно, что

$$d d\mathfrak{A} = d^2\mathfrak{A} = \sum_{s,j} \frac{\partial^2 a}{\partial x_s \partial x_j} dx_s dx_j dx_{i_1} \dots dx_{i_h} = \theta,$$

нотому что эта сумма состоит из цар слагаемых

$$\frac{\partial^2 a}{\partial x_s \partial x_j} dx_s dx_j dx_{i_1} \dots dx_{i_k} + \frac{\partial^2 a}{\partial x_j \partial x_s} dx_j dx_s dx_{i_1} \dots dx_{i_k}.$$

Полезно ввести символическую дифференциальную форму первого порядка (операцию)

$$d = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} dx_i.$$

Тогда, очевидно,  $d\mathfrak{A}$  есть (символическое) произведение форм d и  $\mathfrak{A}$ . Естественно считать, что

$$d^{2} = dd = \sum_{i,j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j} = 0$$

и тогда  $d^2\mathfrak{A}=dd\mathfrak{A}=0$  можно рассматривать как произведение символической формы  $d^2$  на  $\mathfrak{A}$ .

5. Преобразование формы  $\mathfrak A$  (1) к новой переменной  $\mathbf u = (u,\dots,u_n)$  при помощи пепрерывно дифференцируемых функций

$$x_i = \psi_i(u_1, ..., u_n)$$
  $(i = 1, ..., n)$ 

производится согласно следующему правилу (пояснения пиже):

$$\mathfrak{A} = \sum a(\mathbf{x}) dx_{i_1} \dots dx_{i_k} = \sum a(\mathbf{u}) \sum_{j_1=1}^n \frac{\partial x_{i_1}}{\partial u_{j_1}} du_{j_1} \dots \sum_{j_k=1}^n \frac{\partial x_{i_k}}{\partial u_{j_k}} du_{j_k} =$$

$$= \sum a(\mathbf{u}) \sum_{j_1,\dots,j_k} \frac{\partial x_{i_1}}{\partial u_{j_1}} \dots \frac{\partial x_{i_k}}{\partial u_{j_k}} du_{j_1} \dots du_{j_k} =$$

$$= \sum a(\mathbf{u}) \sum_{s_1 < \dots < s_k} \frac{D(x_{i_1}, \dots, x_{i_k})}{D(u_{s_1}, \dots, u_{s_k})} du_{s_1} \dots du_{s_k}. \quad (8)$$

В коэффициентах a произведена замена  $x_i = \psi_i(\mathbf{u})$  (i = 1, ..., n)

и результат обозначен через  $a(\mathbf{u})$ .

Определение преобразования переменной от **x** к **u** дано вторым равенством цени: объявляется, что полученное выражение есть дифференциальная форма порядка *k* по **u**. Дальнейшие равенства автоматически следуют из этого определения. В четвертом члене

нени функции  $\frac{\partial x_{i_s}}{\partial u_{j_r}}$  (множители коэффициентов формы) вынесены

неред дифференциалами. В четвертом выражении (члене) цепи члены суммы  $\sum_{j_1,\ldots,j_k}$ , соответствующие системам  $j_1,\ldots,j_k$ , содержащим равные  $j_s=j_r$  ( $s\neq r$ ), можно выбросить, потому что это выражение есть форма. Далее, задается произвольная система из k индексов  $1\leqslant s_1\leqslant s_2\leqslant\ldots\leqslant s_k\leqslant n$ , и из суммы  $\sum_{j_1,\ldots,j_k}$  выбира-

ются только те слагаемые, которые соответствуют всевозможным перестановкам элементов  $(s_1, \ldots, s_k)$ . В этих слагаемых упорядочиваются дифференциалы в порядке возрастания индексов  $(s_1 < < s_2 < \ldots < s_k)$ , в результате в силу свойств формы перед этими слагаемыми возникнут соответствующие знаки  $\pm$ , как раз такие, что после вынесения из всех этих слагаемых за скобки множителя  $du_{s_1} \ldots du_{s_k}$  выражение в скобках объединяется в определитель

$$\frac{D\left(x_{i_1},\ldots,x_{i_k}\right)}{D\left(u_{s_1},\ldots,u_{s_k}\right)}.$$
(9)

Этим объясняется последнее равенство цени.

Заметим, что если

$$a(x) dx_{i_1} \dots dx_{i_k} = a_1(x) dx_{i_1} \dots dx_{i_k} + a_2(x) dx_{i_1} \dots dx_{i_k}$$
 (10)  
$$(a = a_1 + a_2),$$

то преобразование от **x** к **u** по правилу (8) левой части (10) и преобразование слагаемых правой части (10) находятся в аналогичной связи:

$$a(\mathbf{u}) \sum_{j_{1} < \dots < j_{k}} \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(u_{j_{1}}, \dots, u_{j_{k}})} du_{j_{1}} \dots du_{j_{k}} =$$

$$= a_{1}(\mathbf{u}) \sum_{j_{1} < \dots < j_{k}} \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(u_{j_{1}}, \dots, u_{j_{k}})} du_{j_{1}} \dots du_{j_{k}} +$$

$$+ a_{2}(\mathbf{u}) \sum_{j_{1} < \dots < j_{k}} \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(u_{j_{1}}, \dots, u_{j_{k}})} du_{j_{1}} \dots du_{j_{k}}. \quad (11)$$

Далее, если левая часть (10) содержит два равных дифференциала, то все определители, входящие в левую часть (11), равны нулю; если же в левой части (10) поменять местами два дифференциала, то она приобретает знак минус, а ее преобразование тоже приобретает знак минус. Ведь у всех определителей в левой части (11) поменяются местами две разные строки. Это замечание показывает, что правило (8) замены х на и приводит к одной и той же дифференциальной форме (по и), независимо от того, в каком (допустимом) виде задана форма  $\mathfrak A$  (по х).

Заметим, что переход от  $\mathbf{x}$  к  $\mathbf{u}$ , а затем от  $\mathbf{u}$  к  $\mathbf{u}' = (u_1', \ldots, u_n')$  (по правилу (8)) приводит к тому же результату, что и непосредственный переход от  $\mathbf{x}$  к  $\mathbf{u}'$ . В самом деле, воспользовавшись формой перехода, записанной в четвертом члене (8), будем иметь

$$\mathfrak{A} = \sum a \left( \mathbf{u} \right) \sum_{j_1, \dots, j_k} \frac{\partial x_{i_1}}{\partial u_{j_1}} \dots \frac{\partial x_{i_k}}{\partial u_{j_k}} du_{j_1} \dots du_{j_k} =$$

$$= \sum a \left( \mathbf{u}' \right) \sum_{j_1, \dots, j_k} \sum_{s_1, \dots, s_k} \frac{\partial x_{i_1}}{\partial u_{j_1}} \dots \frac{\partial x_{i_k}}{\partial u_{j_k}} \frac{\partial u_{j_1}}{\partial u_{s_1}'} \dots \frac{\partial u_{j_k}}{\partial u_{s_k}'} du_{s_1}' \dots du_{s_k}' =$$

$$= \sum a \left( \mathbf{u}' \right) \sum_{s_1, \dots, s_k} \frac{\partial x_{i_1}}{\partial u_{s_1}'} \dots \frac{\partial x_{i_k}}{\partial u_{s_k}'} du_{s_1}' \dots du_{s_k}'$$

потому что

$$\frac{\partial x_{i_m}}{\partial u'_{s_m}} = \sum_{j_{m-1}}^{n} \frac{\partial x_{i_m}}{\partial u_{j_m}} \frac{\partial u_{j_m}}{\partial u'_{s_m}}.$$

Правило (8) инвариантно по отношению к операциям  $\mathfrak{A} \pm \mathfrak{D}$ ,  $\mathfrak{AB}$ ,  $\mathfrak{AB}$ . Это утверждение, например, в случае  $\mathfrak{AB}$ , надо понимать в том смысле, что произведение преобразований  $\mathfrak{A}$  и  $\mathfrak{B}$  по правилу (8) есть преобразование  $\mathfrak{AB}$  по этому правилу. Снова, чтобы убедиться в справедливости этого утверждения, применим правило в виде четвертого члена цепи (8), при этом достаточно взять исходные формы в каноническом виде. Имеем (пояснение ниже)

$$\sum_{i_1 < \dots < i_k} a_{i_1, \dots, i_k}(u) \sum_{\mu_1, \dots, \mu_k} \frac{\partial x_{i_1}}{\partial u_{\mu_1}} \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} du_{\mu_1} \dots du_{\mu_k} \times \\ \times \sum_{\hat{\jmath}_1 < \dots < j_s} b_{j_1, \dots, j_s}(\mathbf{u}) \sum_{\mathbf{v}_1, \dots, \mathbf{v}_s} \frac{\partial x_{j_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{j_s}}{\partial u_{\mathbf{v}_s}} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ = \sum_{i_1 < \dots < i_k \ \hat{\jmath}_1 < \dots < \hat{\jmath}_s} \sum_{a_{i_1, \dots, i_k}} a_{i_1, \dots, i_k}(\mathbf{u}) b_{j_1, \dots, j_s}(\mathbf{u}) \sum_{\mu_1, \dots, \mu_k \ \mathbf{v}_1, \dots, \mathbf{v}_s} \frac{\partial x_{i_1}}{\partial u_{\mu_1}} \dots \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{j_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{j_s}}{\partial u_{\mathbf{v}_s}} du_{\mu_1} \dots du_{\mu_k} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{j_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{j_s}}{\partial u_{\mathbf{v}_s}} du_{\mu_1} \dots du_{\mu_k} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{j_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{j_s}}{\partial u_{\mathbf{v}_s}} du_{\mu_1} \dots du_{\mu_k} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_s}} du_{\mu_1} \dots du_{\mu_k} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_s}} du_{\mu_1} \dots du_{\mu_k} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_s}} du_{\mu_1} \dots du_{\mu_k} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mu_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_1}} \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_s}} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_k}} \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_k}} du_{\mathbf{v}_1} \dots du_{\mathbf{v}_s} = \\ \dots \frac{\partial x_{i_k}}{\partial u_{\mathbf{v}_k}} \frac{\partial x_{i_1}}{\partial u_{\mathbf{v}_k}} \frac{\partial x_{i_2}}{\partial u_{\mathbf{v}_k}} \frac{\partial x_$$

В первом члене цепи написано произведение форм  $\mathfrak A$  и  $\mathfrak B$  по  $\mathfrak u$ , во втором фактически произведено почленное перемножение слачаемых  $\mathfrak A$  и  $\mathfrak B$  согласно правилу умножения форм (по  $\mathfrak u$ ). Полученный результат согласно (8) (см. второй член цепи (8)) есть форма

норядка k+s по  $\mathbf{u}$ , являющаяся преобразованием от  $\mathbf{x}$  к  $\mathbf{u}$  (по правилу (8)) формы, записанной в предпоследнем члене цеци, т. е.  $\mathfrak{AB}$ .

Пусть еще

$$\mathfrak{A} \stackrel{=}{=} \sum a \, dx_{i_1} \dots dx_{i_h}, \quad \mathfrak{B} = \sum b \, dx_{i_1} \dots dx_{i_l}$$

- формы, причем первая порядка k, а порядок второй не имеет значения. Тогда

$$d(\mathfrak{A}\mathfrak{B}) = d\mathfrak{A} \cdot \mathfrak{B} + (-1)^{h} \mathfrak{A} d\mathfrak{B}. \tag{12}$$

Действительно,

$$d(\mathfrak{A}\mathfrak{B}) = \sum_{j} \sum_{j} \frac{\partial (ab)}{\partial x_{j}} dx_{j} dx_{i_{1}} \dots dx_{i_{k}} dx_{j_{1}} \dots dx_{j_{l}} =$$

$$= \sum_{j} \sum_{j} \frac{\partial a}{\partial x_{j}} dx_{j} dx_{i_{1}} \dots dx_{i_{k}} b dx_{j_{1}} \dots dx_{j_{l}} +$$

$$+ (-1)^{h} \sum_{j} \sum_{j} a dx_{i_{1}} \dots dx_{i_{k}} \frac{\partial b}{\partial x_{j}} dx_{j} dx_{j_{1}} \dots dx_{j_{l}} =$$

$$= d\mathfrak{A} \cdot \mathfrak{B} + (-1)^{h} \mathfrak{A} \cdot d\mathfrak{B}.$$

Теперь уже петрудно доказать еще один важный факт, заключающийся в том, что введенное выше определение (см. (7)) дифференциала формы  $\mathfrak A$  инвариантно по отношению к любым переменным  $\mathbf u(x_i=\psi_i(u_1,\ldots,u_n),\ i=1,\ldots,n)$ . Иначе говоря, преобразование к  $\mathbf u$  заданной по  $\mathbf x$  формы  $d\mathfrak A$  приводит к выражению

$$d\mathfrak{A} = \sum_{j_1} \dots \sum_{j_k} \sum_{j_l} \frac{\partial}{\partial u_l} \left( a \frac{\partial x_{i_1}}{\partial u_{j_1}} \dots \frac{\partial x_{i_k}}{\partial u_{j_k}} \right) du_l du_{j_1} \dots d_{j_k}.$$

При k = 0 инвариантность тривиальна:

$$\mathfrak{A}=f(\mathbf{x})=f(x_1,\ldots,x_n),$$

$$d\mathfrak{A} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} dx_{j} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \sum_{s=1}^{n} \frac{\partial x_{j}}{\partial u_{s}} du_{s} =$$

$$= \sum_{s=1}^{n} \left( \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \frac{\partial x_{j}}{\partial u_{s}} \right) du_{s} = \sum_{s=1}^{m} \frac{\partial f}{\partial u_{s}} du_{s}.$$

Пусть тенерь инвариантность  $d\mathfrak{A}$  установлена для  $k=0,1,\ldots$  докажем ее для k+1. Достаточно рассмотреть простейшую форму (k+1)-го порядка (пояснения инже):

$$\mathfrak{A} = a(\mathbf{x}) dx_{i_1} \dots dx_{i_{k+1}} = a(\mathbf{x}) dx_{i_1} \dots dx_{i_k} dx_{i_{k+1}}.$$

Cогласно формуле (12) ( $d^2 = \theta$ )

$$d\mathfrak{A} = d\left(a\left(\mathbf{x}\right) dx_{i_1} \dots dx_{i_k}\right) dx_{i_{k+1}} +$$

+ 
$$(-1)^h a(\mathbf{x}) dx_{i_1} \dots dx_{i_k} d(dx_{i_{k+1}}) = d(a(\mathbf{x}) dx_{i_1} \dots dx_{i_k}) dx_{i_{k+1}},$$

и мы представили  $d\mathfrak{A}$  в виде произведения дифференциала формы порядка k па дифференциал формы  $(x_{i_{k+1}})$  порядка k. Оба множителя инвариантны, но произведение любых форм тоже, как мы внаем, инвариантно.

Пусть  $L_k$  есть k-мерное ориентированное дифференцируемое

мпогообразие, описываемое функциями ( $i=1,\ldots,n$ )

$$x_i = f_i(u_1, ..., u_k), \quad (u_1, ..., u_k) \in G \neq L_k,$$
 (13)

имеющими равномерно пепрерывные частные производные на ограниченном открытом множестве G. Будем предполагать, что  $L_k \subseteq \Omega \subseteq R_n$ , где  $\Omega$  — область, на которой задана дифференциальная форма  $\mathfrak A$  порядка k (см. (1), a(x) непрерывны на  $\overline{\Omega}$ ).

Интеграл от формы  $\mathfrak A$  по  $L_h$  определяется как обычный крат-

ный интеграл

$$\int_{L_h} \mathfrak{A} = \sum \int_G a(\mathbf{u}) \frac{D(x_{i_1}, \dots, x_{i_h})}{D(u_1, \dots, u_h)} du_1 \dots du_h,$$

$$a(\mathbf{u}) = a(f_1(\mathbf{u}), \dots, f_n(\mathbf{u})),$$
(14)

который, вообще говоря, придется понимать в лебеговом смысле,

а если С измеримо по Жордану, то и в римановом.

Это определение не зависит от выбора допустимых (не меняющих ориентацию  $L_k$ ) параметров  $\mathbf{u}'=(u_{\mathbf{u}}',\ldots,u_{k}') \equiv G' \rightleftarrows G$ , т. е. связанных с  $\mathbf{u}$  непрерывно дифференцируемо в обе стороны  $\mathbf{u}$  с положительным якобианом  $\left(\frac{\partial u_j'}{\partial u_*}\right)$  равномерно непрерыв-

пы на G), потому что

$$\int_{G'} a(\mathbf{u}') \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(u'_{1}, \dots, u'_{k})} du'_{1} \dots du'_{k} =$$

$$= \int_{G} a(\mathbf{u}) \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(u'_{1}, \dots, u'_{k})} \frac{D(u'_{1}, \dots, u'_{k})}{D(u_{1}, \dots, u_{k})} du_{1} \dots du_{k} =$$

$$= \int_{G} a(\mathbf{u}) \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(u_{1}, \dots, u_{k})} du_{1} \dots du_{k} \quad (15)$$

(см. теорему 4 § 12.16 и в общем случае § 19.3, свойство 22). Если же якобиан отрицательный, то во втором члене (15), а за ним и в третьем, появится знак минус, поэтому при перемене ориситации  $L_b$  интеграл от  $\mathfrak A$  по  $L_b$  меняет знак на противоположный.

Важно еще заметить, что если в  $\mathfrak A$  произвести замену переменных  $\mathbf x \rightleftarrows \mathbf x'$  при помощи непрерывно дифференцируемого в обе

стороны преобразования, то интеграл  $\int_{L_k} \mathfrak{A}$ , выраженный в терминах  $\mathbf{x}'$ , остается инвариантным, т. е. равным правой части (14). В самом деле, в переменных  $\mathbf{x}'$  форма  $\mathfrak A$  имеет вид

$$\mathfrak{A} = \sum a\left(\mathbf{x}'\right) \sum_{j_1 < \ldots < j_h} \frac{D\left(x_{i_k}, \ldots, x_{i_h}\right)}{D\left(x_{j_1}', \ldots, x_{j_h}'\right)} \, dx_{j_1}' \ldots \, dx_{j_h}',$$

и интеграл от нее по  $L_k$  (в переменных  $\mathbf{x}'$ ) равен

$$\sum_{G} a(\mathbf{u}) \sum_{j_1 < \ldots < j_h} \frac{D(x_{i_1}, \ldots, x_{i_1})}{D(x'_{j_1}, \ldots, x'_{j_h})} \frac{D(x'_{j_1}, \ldots, x'_{j_h})}{D(u_1, \ldots, u_k)} du_1 \ldots du_h =$$

$$= \sum_{G} a(\mathbf{u}) \frac{D(x_{i_1}, \ldots, x_{i_h})}{D(u_1, \ldots, u_h)} du_1, \ldots, du_h,$$

т. е. он равен интегралу от а в переменных х.

Можно еще рассматривать кусок  $\sigma \subseteq L_k$ , описываемый функциями (13), когда нараметр **u** пробегает измеримое множество  $e \subseteq G$ , и интеграл от формы  $\mathfrak A$  порядка k по  $\sigma$  определить по формуле, аналогичной (14):

$$\int_{\sigma} \mathfrak{A} = \sum \int_{e} a\left(\mathbf{u}\right) \frac{D\left(x_{i_1}, \dots, x_{i_k}\right)}{D\left(u_1, \dots, u_k\right)} du_1, \dots, du_k. \tag{16}$$

Это определение очевидно тоже инвариантно относительно замены переменных  $\mathbf{x} \rightleftharpoons \mathbf{x}'$  при помощи непрерывно дифференцируемого в обе стороны преобразования и не зависит от допустимых параметров (см. § 19.3, свойство 22). Естественно назвать  $\sigma$  ориентированным (согласовано с  $L_k$ ) измеримым куском  $L_k$ .

Пусть теперь ориентированное многообразие  $L_h$  может быть нокрыто конечным числом (согласовано с  $L_h$ ) ориентированных многообразий  $\sigma_s$ :

$$L_h = \sum_{s=1}^N \sigma_s,$$

каждое из которых описывается функциями

$$x_i = f_i^s(\mathbf{u}^s), \quad \mathbf{u}^s \in G^s; \quad i = 1, ..., n, \ s = 1, ..., N,$$

имеющими равномерно непрерывные частные производные на ограниченной области  $G^s$ . Тогда интеграл от формы  $\mathfrak A$  (порядка k) по  $L_k$  можно определить следующим образом: вводим попарно непересекающиеся ориентированные согласованно (с  $\sigma_s$  или, что все равно, с  $L_k$ ) измеримые куски  $\lambda_s \subset \sigma_s$ , сумма которых равна  $L_k =$ 

 $=\sum_{s=1}^{N} \lambda_{s'}$  и нолагаем

$$\int\limits_{L_h} \mathfrak{A} = \sum_{s=1}^N \int\limits_{\lambda_s} \mathfrak{A}_s$$

Куски да можно определить равенствами

$$\lambda_1 = \sigma_1, \ \lambda_2 = \sigma_2 - \sigma_2 \sigma_1, \dots, \lambda_N = \sigma_N - \sigma_N \sigma_1 - \dots - \sigma_N \sigma_{N-1}.$$

Например, ясно, что  $\lambda_2 \subseteq \sigma_2$  и  $\sigma_1\sigma_2$  есть многообразие, описываемое нараметром  $\mathbf{u}^2 \subseteq \omega$ , где  $\omega \subseteq G^2$  — открытое множество (см. лемму 4 § 17.1). Но тогда  $\lambda_2$  описывается параметром  $\mathbf{u}^2 \subseteq G^2 - \omega$ , где  $G^2 - \omega$  — принадлежащее  $G^2$  измеримое множество и  $\lambda_2$  есть кусок  $L_k$  (измеримый и ориентированный согласованно с  $L_k$ ).

При любом другом указанном представлении

$$\begin{split} L_h &= \sum_{j=1}^M \lambda_j', \quad \lambda_j' \lambda_i' = 0, \quad j \neq i, \\ \sum_{s=1}^N \int\limits_{\lambda_s} \mathfrak{A} &= \sum_{s=1}^N \sum_{j=1}^M \int\limits_{\lambda_s \lambda_j'} \mathfrak{A} = \sum_{j=1}^M \int\limits_{\lambda_j'} \mathfrak{A}. \end{split}$$

Надо учесть, что если куски  $\lambda_s$  и  $\lambda_j'$  пересекаются, то они соответственно принадлежат пересекающимся многообразиям  $\sigma_s$ ,  $\sigma_j'$ , описываемым параметрами  $\mathbf{u}^s \in G^s$ ,  $\mathbf{u}^{j'} \in G^{j'}$ . При этом сами куски  $\lambda_s$ ,  $\lambda_j'$  описываются через  $\mathbf{u}^s \in e^s \subset G^s$ ,  $\mathbf{u}^{j'} \in e^{j'} \subset G^{j'}$ , где  $e^s$ ,  $e^{j'}$  измеримы. В силу упомянутой леммы многообразие  $\sigma_s\sigma_j'$  описывается параметром  $\mathbf{u}^s \in \omega^s$ , либо параметром  $\mathbf{u}^{j'} \in \omega^{j'}$ . Оба параметра находятся во взаимно однозначном непрерывно дифференцируемом (равномерно) в обе стороны соответствии с положительным якобианом ( $\sigma^s$  и  $\sigma^{j'}$  ориентированы согласованно!).

Пересечение  $e^s\omega^s$  есть измеримое множество точек  $\mathbf{u}^s$ , переходящее при номощи этого соответствия на измеримое же (см. § 19.3, свойство 22) множество ( $e^s\omega^s$ )' точек  $\mathbf{u}^{j'}$ . Пересечение последнего  $\mathbf{c}$   $e^{j'}$  есть в свою очередь измеримое множество точек  $\mathbf{u}^{j'}$ , которому, очевидно, соответствует множество  $\lambda_s\lambda^{j'} \subset L_h$ . Но тогда  $\lambda_s\lambda^{j'}$  есть кусок  $L_h$ .

В заключение отметим очевидное равенство

$$\int_{L_{k}} (\alpha \mathfrak{A} + \beta \mathfrak{B}) = \alpha \int_{L_{k}} \mathfrak{A} + \beta \int_{L_{k}} \mathfrak{B},$$

где  $\alpha$ ,  $\beta$  — числа и  $\mathfrak{A}$ ,  $\mathfrak{B}$  — формы порядка k.

Замечание. Отметим, что определенный выше интеграл  $\int\limits_{L_b} \mathfrak{A}$  от k-мерной формы  $\mathfrak{A}$  по ориентируемому k-мерному много-

образию инвариантен по отношению к преобразованию координат x = x', непрерывно дифференцируемому в обе стороны. Это следует из инвариантности составляющих этот интеграл слагаемых  $\int_{\lambda_2} \mathfrak{A}$ .

Подчеркием, что указанное инвариантное свойство интеграла  $\int_{L_h} \mathfrak{A}$  есть одно из фундаментальнейших свойств дифференциальных форм.

Пример 4. Интеграл от одномерной формы

$$\mathfrak{A} = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

в трехмерном пространстве по ориентированному одномерному дифференцируемому многообразию  $L_1$ :

$$x = \varphi(t), \quad y = \psi(t), \quad z = \chi(t) \quad (0 < t < l),$$

где  $\phi'$ ,  $\psi'$ ,  $\chi'$  непрерывны на [0, l], равен

$$\int_{L_1} \mathfrak{A} = \int_0^I \left( P\left( \varphi, \psi, \chi \right) \varphi' - \mid Q\left( \varphi, \psi, \varkappa \right) \psi' \mid R\left( \varphi, \psi, \chi \right) \chi' \right) dt =$$

$$= \int_{L_1} (P dx + Q dy + R dz),$$

т. е. есть криволинейный интеграл от вектора  $\mathbf{a} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$  вдоль ори-ентированной кривой  $L_1$ .

Пример 2. Интеграл от двумерной формы

$$\mathfrak{D} = P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

в трехмерном пространстве по ориентированному двумерному многообравию  $L_2$ :

$$x = \varphi(u, v), \quad y = \psi(u, v), \quad z = \chi(u, v), \quad (u, v) \in \omega,$$

где ф, ф, х имеют непрерывные на ю частные производные, равен

$$\int_{\mathcal{L}_{2}} \mathfrak{D} = \int_{\mathcal{Q}} \left[ P(\varphi, \psi, \chi) \frac{D(u, z)}{D(u, v)} + Q(\varphi, \psi, \chi) \frac{D(z, x)}{D(u, v)} + \right]$$

$$+R\left(\varphi,\psi,\chi\right)\frac{D\left(x,y\right)}{D\left(u,v\right)}du\ dv=\int_{L_{2}}\int\left(Pdy\ dz+Qdz\ dx+Rdx\ dy\right),$$

т. е. интеграл по поверхности, ориентированной нормалью  $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v$ . Пример 3. Кратный интеграл

$$\int_{G} f(x, y, z) dx dy dz = \int_{L_{3}} \mathfrak{B}$$

ло трехмерной области G можно трактовать как интеграл от трехмерной формы  $\mathfrak{B} = f(x,y,z) dx dy dz$ 

по трехмерному многообразию  $L_3 = G$ , ориентированному положительно (x = x, y = y, z = z).

#### § 17.4. Формула Стокса

Теорема Стокса. Пусть  $L'_{k+1}$ —(k+1)-мерное связноеориентированное многообразие,  $L_{k+1} \subset L_{k+1} \subset L'_{k+1}$ — его часть, тоже (k+1)-мерное многообразие, ограниченное, имеющее край,  $\partial L_{k+1} = L_k - k$ -мерное связное многообразие, ориентированное соеласованно с  $L_{k+1}$  (см. правило согласования § 17.2, (18), (19))\*).

Тогда для произвольной определенной в области  $\Omega \subseteq R_n$  ( $\mathcal{L}_{n+1} \subseteq \Omega$ ) k-мерной дифференциальной формы  $\mathfrak A$  имеет место

формула Стокса;

$$\int_{L_{k+1}} d\mathfrak{A} = \int_{\partial L_{k+1}} \mathfrak{A}. \tag{1}$$

Доказательство.

1. Рассмотрим сначала простейший случай, когда ориентированный кусок  $\vec{L}_{h+1}$  представляет собой (k+1)-мерный куб, определяемый функциями от переменных  $x_1, \ldots, x_{h+1}$ , записанных в указанном ниже порядке:

$$x_j = x_j, 0 \le x_j \le \xi, j = 1, \ldots, k+1; x_j = 0, j = k+2, \ldots, n.$$
 (2) Для прямоугольника доказательство аналогично.

Край  $\partial \hat{L}_{k+1}$  состоит из 2(k+1) ориентированных кусков:

$$L_h = \sum_{s=1}^{h+1} (L_0^s + L_\delta^s),$$

которые с точностью до ориентации совнадают с кусками, определяемыми функциями

$$L_0^{*s} = \{x_j = x_j, \ 0 \le x_j \le \delta, \ j = 1, \dots, s - 1, s + 1, \dots \\ \dots, k + 1; \ x_j = 0, \ j = s, \ k + 2, \dots, m\},$$

$$L_0^{*s} = \{x_j = x_j, \ 0 \le x_j \le \delta, \ j = 1, \dots, s - 1, \ s + 1, \dots, k + 1, \dots \\ x_s = \delta, \ x_j = 0, \ j = k + 2, \dots, n\}.$$

$$(3)$$

Чтобы выяснить, как связаны между собой орнентации этих кусков, перенумеруем переменные  $x_s, x_1, \ldots, x_{s-1}, x_{s+1}, \ldots, x_n$ , обозначив их соответственно через  $x_1, \ldots, x_n$ . Якобиан этого преобразования равен  $(-1)^{s-1}$ . С другой стороны, уравнения (2), где  $x_j$  с  $j=1,\ldots,k+1$  произвольны, при  $x_i < \delta$  определяют

<sup>\*)</sup>  $L_{k+1}$  может быть многосвязным, § 17.2, (20), (21).

точки  $L_{h+1}$ , а при  $x_s > \delta$  — точки внешности  $L_{h+1}$ , поэтому куски  $L_0^s$  и  $L_0^{*s}$  ориентированы одинаково или противоположно в зависимости от того, будет ли s-1 четным или нечетным. Рассуждая аналогично, получим, что куски  $L_0^s$  и  $L_0^{*s}$  ориентированы одинаково при нечетном s-1 и противоположно при четном s-1. Достаточно провести рассуждения для простейшей формы

$$\mathfrak{A} = a(\mathbf{x}) dx_{i_1}, \ldots, dx_{i_h} \quad (1 \leqslant i_s \leqslant n).$$

В силу сказанного, равенство (1), которое нам надо доказать, сводится к следующему равенству между обыкновенными кратными интегралами \*):

$$\int_{\Delta} \sum_{j=1}^{n} \left( \frac{\partial a}{\partial x_{j}} \right)_{0} \frac{D(x_{j}, x_{i_{1}}, \dots, x_{i_{k}})}{D(x_{1}, \dots, x_{k+1})} dx_{1}, \dots, dx_{k+1} =$$

$$= \sum_{s=1}^{k+1} (-1)^{s+1} \left( \int_{L_{0}^{*}} a_{0} \frac{D(x_{i_{1}}, \dots, x_{i_{k}})}{D(x_{1}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{1}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{1}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{i_{k+1}}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{s-1}, x_{s+1}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{i_{k+1}}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} - \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{i_{k+1}}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{i_{k+1}}, \dots, x_{k+1})} dx_{1} \dots dx_{k+1} + \int_{L_{0}^{*}} a_{0} (\mathbf{x}) \frac{D(x_{i_{1}}, \dots, x_{i_{k+1}}, \dots, x_{i_{k+1}}, \dots, x_{k+1})}{D(x_{i_{1}}, \dots, x_{i_{k+1}}, \dots, x_{i_{k+$$

где

$$a_0 = a\ (x_1,\ \dots,\ x_{k+1},\ 0,\ \dots,\ 0),\ \left(\frac{\partial a}{\partial x_j}\right)_0 = \frac{\partial a}{\partial x_j}\ (x_1,\ \dots,\ x_{k+1},\ 0,\ \dots,\ 0)$$
 и  $\Delta = \{0 \leqslant x_j \leqslant \delta;\ j=1,\ \dots,\ k+1\}$ — куб в пространстве  $(x_1,\ \dots,\ x_{k+1}).$  Совершенно очевидио, что формула (4) верна в следующих случаях:

1) если для некоторой пары (m, l),  $m \neq l$  имеет место  $t_m = t_l$ , потому что тогда все якобианы, входящие в (4), равны нулю,

2) если  $i_m > k+1$  хотя бы для одного m, потому что тогда  $x_{i_m} \equiv 0$  или  $x_{i_m} = \delta$  (см. (2) и (3)).

ралам по проекции  $L_0^{*s}$  на плоскость  $x_1, \ldots, x_{s-1}, x_{s+1}, \ldots, x_{h+1}$ , полагая, таким образом, в  $a_0$   $x_s = \delta$ , соответственно  $x_s = 0$ .

<sup>\*)</sup> Интегралы  $\int_{L_{\delta}^{*S}}$ ,  $\int_{L_{0}^{'S}}$  сводятся (см. § 17.3, (14)) к кратным интег-

Поэтому надо доказать (4) при разных индексах  $i_m$ , удовлетворяющих неравенствам  $1 \le i_m \le k+1$ . Далее, равенство (4) не изменится, если в нем эти индексы переставить местами, расположив в скалярном порядке, ведь тогда все три якобиана в (4) либо не изменят свою величину одновременно, либо одновременно переменят знак. Поэтому достаточно (4) доказать, например, для такого расположения индексов  $i_s$ : 1, 2, ..., l-1, l+1, ..., ..., k+1. В этом случае все слагаемые суммы слева в (4), соответствующие индексам  $j \ne l$ , равны нулю, потому что для них якобиан слева равен нулю, и потому левая часть (4) еще более упрощается:

$$\int_{L_{k+1}} d\mathfrak{A} = (-1)^{l-1} \int_{\Delta} \left(\frac{\partial a}{\partial x_{l}}\right)_{0} dx_{1} \dots dx_{k+1} =$$

$$= (-1)^{l-1} \int_{0}^{\delta} \dots \int_{0}^{\delta} \left(\frac{\partial a}{\partial x_{l}}\right)_{0} dx_{1} \dots dx_{k+1} =$$

$$= (-1)^{l-1} \int_{0}^{\delta} \dots \int_{0}^{\delta} \left[a\left(x_{1}, \dots, x_{l-1}, \delta, x_{i+1}, \dots, x_{k+1}, 0, \dots, 0\right) - a\left(x_{1}, \dots, x_{l-1}, 0, x_{l+1}, \dots, x_{k+1}, 0, \dots, 0\right)\right] dx_{1} \dots$$

$$\dots dx_{l-1} dx_{l+1} \dots dx_{k+1} = \int_{L_{\delta}} \mathfrak{A} + \int_{L_{\delta}} \mathfrak{A} = \int_{L_{\delta}} \mathfrak{A}, \quad (5)$$

где последнее равецство верно, потому что при  $j \neq l$ 

$$\int_{I_0^{\frac{1}{2}}} \mathfrak{A} = \int_{L_0^{\frac{1}{2}}} a \, dx_1 \dots dx_{l-1} dx_{l+1} \dots dx_{h+1} =$$

$$= \int_{0}^{\delta} \dots \int_{0}^{\delta} a \, \frac{D(x_1, \dots, x_{l-1}, x_{l+1}, \dots, x_{h+1})}{D(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_{h+1})} \, dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_{h+1} = 0$$

п аналогично  $\int\limits_{\mathcal{L}_0^j}\mathfrak{A}=0$ . Ведь в якобиан правой части входит

столбец  $\frac{\partial x_j}{\partial x_1}, \dots, \frac{\partial x_j}{\partial x_{j-1}}, \frac{\partial x_j}{\partial x_{j+1}}, \dots, \frac{\partial x_j}{\partial x_{h+1}},$  элементы которого равны пулю.

2. Будем непрерывно дифференцируемые функции и непрерывно дифференцируемые в обе стороны отображения называть просто функциями, соответственно — отображениями.

а) Пусть точка  $\mathbf{x}^0 \in L_{h+1}$ . Тогда после соответствующей перепумерации координат можно определить прямоугольник

$$\Lambda = \{ |x_j - x_j^0| < \delta, j = 1, ..., k+1; |x_j - x_j^0| < \sigma, j = k+2, ..., n \}$$

п функции  $x_j = f_j(x^{k+1}), \ j = k+2, \ldots, n, \ \mathbf{x}^{k+1} = (x_1, \ldots, x_{k+1}) \in \Delta^{(k+1)} = \{ |x_j - x_j^0| < \delta, \ j = 1, \ldots, k+1 \},$  описывающие кусок  $L_{k+1}\Delta$ . Таким образом,  $|x_j - f_j(x^{k+1})| < \sigma$ , а если  $\delta$  уменьшить, то ваведомо

$$|x_j^0 - f_j(\mathbf{x}^{k+1})| < \sigma, \ \mathbf{x}^{k+1} \in \overline{\Delta^{(k+1)}}, \quad j = k+2, \dots, n.$$

Левые части последних перавенств в силу замкнутости и ограниченности  $\overline{\Delta^{(k+1)}}$  на самом деле не превышают некоторого перажительного числа  $\sigma_1 < \sigma$  и потому, если  $\lambda = \sigma - \sigma_1$ , то точки **х** вида

$$x_j = x_j, j = 1, \dots, k+1; x_j = z_j + f_j(\mathbf{x}^{k+1}),$$
 (6)  
 $\mathbf{x}^{k+1} \in \Delta^{(k+1)}, |z_j| < \lambda, j = k+2, \dots, n,$  (6')

образуют множество  $\Lambda \subseteq \Delta$ . При номощи (6) открытый прямоугольник (6'), обозначаемый нами через  $\Lambda'$ , отображается на  $\Lambda$ , а  $\overline{\Lambda'}$  — на  $\overline{\Lambda}$ . При этом, принадлежащий  $\Lambda'$  (k+1)-мерный прямоугольник  $\Delta^{(k+1)}$  ( $z_j=0$ ) отображается на  $L_{k+1}\Delta = L_{k+1}\Lambda$ , а  $\overline{\Delta^{(k+1)}}$  — на  $\overline{L_{k+1}\Lambda}$ . Замена переменных  $x_j-x_j^0=\delta u_j,\ j=1,\ldots,k+1;\ z_j=\lambda u_j,\ j=k+1,\ldots,n$  отображает  $\Lambda'$  на единичный куб точек  $\mathbf{u}$ . Отметим еще, что перенумерация координат сводится к отображению  $x_j'=x_{s_j}$  ( $j=1,\ldots,n;\ 1\leqslant s_j\leqslant n$ ).

б) Пусть теперь  $\mathbf{x}^0 \in L_h$ . Тогда выполняется теорема 1 § 17.2, где надо считать  $\Gamma = L_h$ ,  $S = L_{h+1}$ . Рассуждая, как выше, если число  $\delta_2$  в § 17.2, (1) уменьшить и соответственно подобрать  $\delta_1$  (меньшее—чем было), то получим прямоугольник, обозначаемый снова через  $\Delta$ , со следующим свойством. Существуют числа  $\lambda$ ,  $\mu > 0$  такие, что множество  $\Lambda$  точек  $\mathbf{x}$  вида

$$x_{j} = x_{j}, j = 1, ..., k; \mathbf{x}^{k} \in \Delta^{(k)},$$
  
 $x_{k+1} = v + \varphi(\mathbf{x}^{k}), |v| < \lambda,$  (7)

$$x_j = z_j + f_j(x_1, \ldots, x_k, v + \varphi(\mathbf{x}^k)), |z_j| < \mu, j = k + 2, \ldots, n,$$

припадлежит  $\Delta$ .

При помощи уравнений (7) прямоугольник  $\Lambda'(\mathbf{x}^k \in \Delta^{(k)}, |v| < < \lambda, |z_j| < \mu$ ) пространства  $(x_1, \ldots, x_k, v, z_{k+1}, \ldots, z_n)$  отображается на область  $\Lambda$ , а  $\overline{\Lambda'}$ — на  $\overline{\Lambda}$  непрерывно дифференцируемо в обе стороны. При этом один из прямоугольников  $(\mathbf{x}^k \in \Delta^{(k)}, 0 < v < \lambda)$ ,  $(\mathbf{x}^k \in \Delta^{(k)}, -\lambda < v < 0)$  переходит на  $L_{k+1}\Delta = L_{k+1}\Lambda$  (см. § 17.2, (11), (12)). Его можно простым преобразованием отобразить на куб.

Из а) и б) следует, что произвольную точку  $\mathbf{x}^0 \in \overline{L_{n+1}}$  можно покрыть областью  $G_{\mathbf{x}^0} = \Lambda$ , которая отображается на некоторую область  $\Lambda'$  другого n-мерного пространства  $R'_n$ , а ее замыкание

 $\overline{\Lambda}$  — на  $\overline{\Lambda'}$ , и так, что  $\overline{L_{h+1}\Lambda}$  отображается на некоторый (k+1)-мерный куб  $\overline{\omega} \in R'_n$ . Но тогда (см. замечание в конце § 17.3) для куска  $L_{h+1}\Lambda$  верна теорема Стокса

$$\int\limits_{L_{k+1}\Lambda}d\mathfrak{A}=\int\limits_{\partial(L_{k+1}\Lambda)}\mathfrak{A},$$

потому что она верна для куба.

Заметим, что в рассматриваемых случаях край  $L_h$  многообразия  $L_{h+1}$  представляет собой не многообразие, а замыкание суммы конечного числа не пересекающихся попарно соответственно ориентированных многообразий, и интеграл  $\int\limits_{L_b}^{\mathfrak{A}}$  естественным

образом определяется как сумма интегралов от Я по этим многообразиям. Это замечание надо иметь в виду и в дальнейшем.

Так как  $L_{h+1}$  — ограниченное замкнутое множество, то существует его консиное покрытие  $G_1, \ldots, G_N$  указанными множествами  $G_{x^0}$ . В силу леммы о разбиении единицы (см. далее § 18.4) существует система бесконечно дифференцируемых финитных функций  $\varphi_1(\mathbf{x}), \ldots, \varphi_N(\mathbf{x})$ , обладающих следующими свойствами:

- 1)  $0 \leqslant \varphi_j(\mathbf{x}) \leqslant 1$ ,
- 2) носитель  $\varphi_i$  есть (замкнутое) множество, принадлежащее (открытому)  $G_i$ ,

3) 
$$\sum_{1}^{N} \varphi_{j}(x) = 1$$
 на  $\overline{L}_{k+1}$ .

Но тогда (пояснения ниже)

$$\int_{L_{k+1}} d\mathfrak{A} = \int_{L_{k+1}} d\left(\sum_{1}^{N} \varphi_{j} \mathfrak{A}\right) = \sum_{1}^{N} \int_{L_{k+1}} d\left(\varphi_{j} \mathfrak{A}\right) = \sum_{1}^{N} \int_{L_{k+1}G_{j}} d\left(\varphi_{j} \mathfrak{A}\right) = \\
= \sum_{1}^{N} \int_{\partial(L_{k+1}G_{j})} \varphi_{j} \mathfrak{A} = \sum_{1}^{N} \int_{L_{k}G_{j}} \varphi_{j} \mathfrak{A} = \sum_{1}^{N} \int_{L_{k}} \varphi_{j} \mathfrak{A} = \int_{L_{k}} \sum_{1}^{N} \varphi_{j} \mathfrak{A} = \int_{L_{k}} \mathfrak{A}.$$

В первом равенстве этой цепи мы воспользовались свойством 3), второе равенство очевидно, третье верпо, потому что форма  $\phi$ ,  $\mathfrak{A}$ , а вместе с пей и  $d(\phi_{\mathfrak{A}})$  равна пулю вне  $G_{\mathfrak{i}}$ , четвертое верпо в силу уже доказаппой для элементарных кусков  $L_{k+1}G_{\mathfrak{j}}$  теоремы Стокса, пятое верно, потому что там, где множество  $\partial(L_{k+1}G_{\mathfrak{j}})$  не пересекается с  $L_k$ , форма  $\phi_{\mathfrak{A}}$  равна нулю, предпредпоследнее верно, потому что форма  $\phi_{\mathfrak{A}}$  равна нулю вне  $G_{\mathfrak{i}}$ , предпоследнее очевидно, а последнее верно в силу 3).

Примеры. Из общей теоремы Стокса (1) как частные случаи вытекают следующие формулы (пояснения ниже):

$$\iint_{L_2} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \iint_{\partial L_2} (P \, dx + Q \, dy), \tag{8}$$

$$\iint_{L_3} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \, dy \, dz = \iint_{\partial L_3} \left( P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy \right), \quad (9)$$

$$\int_{L_2} \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \ dz + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \ dx +$$

$$+\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\partial L_2} (P dx + Q dy + R dz).$$
 (10)

Здесь  $L_2$  — двумерное ограниченное многообразие в (8) плоское, а в (10) в пространстве  $x,\ y,\ z,\ L_3$  — трехмерное ограниченное многообразие в трехмерном пространстве  $x,\ y,\ z,\ L_2$  и  $\partial L_2$ , а также  $L_3$  и  $\partial L_3$  подчиняются условиям теоремы 2 § 17.2 или более общим условиям (см. § 17.2, (20), (21)), разрешающим  $L_2$  и  $L_3$  быть многосвязными. Справедливость равенств (8), (9), (10) следует из общей теоремы Стокса и того факта, что подынтегральная форма в левой части одного из этих равенств есть дифференциал от подынтегральной формы соответствующей правой части, папример,

 $d\left(P\ dx + Q\ dy\right) =$ 

$$= \left(\frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy\right) dx + \left(\frac{\partial Q}{\partial x} dx + \frac{\partial Q}{\partial y} dy\right) dy =$$

$$= \frac{\partial P}{\partial y} dy dx + \frac{\partial Q}{\partial x} dx dy = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy.$$

С другой сторопы, слева в (8) стоит обычный интеграл по ориентированной области  $L_2$ , а справа — обычный криволинейный интеграл по контуру  $\partial L_2$ , согласованно ориентированному с  $L_2$  (см. § 17.3, примеры), и мы получили известную формулу Грина. Подобные рассуждения показывают, что (9) есть формула Гаусса — Остроградского для области  $L_3$  с гладкой согласованно ориентированной грапицей, а (10) — обычная формула Стокса для гладкого ориентированного куска поверхности  $L_2$  в трехмерном пространстве.

аметим, что при элементарном выводе в §§ 13.5, 13.10, 13.11 формул Грина, Гаусса — Остроградского и Стокса предполагалось, что соответствующие области или поверхность могут быть разрезаны на куски специального вида. В данном выводе этого не требуется, так что в этом смысле полученные здесь результаты являются более общими, чем те, которые были

получены там.

Теорему Стокса можно распространить на многообразие  $L_{h+1} \subset \overline{L}_{h+1} \subset L'_{h+1}$ , замыкание которого может быть разрезано гладкими поверхностями на конечное число кусков, каждый из которых можно рассматривать как деформированный посредством непрерывно дифференцируемого в обестороны преобразования куб. Ориентации их должны быть согласованы, как объяснено в § 13.7 для частного случая кусочно гладкой поверхности.

Мы считали Р, Q, R непрерывно дифференцируемыми функциями на со-

ответствующей области, содержащей  $L_2$  или  $L_3$ ,

# дополнительные сведения

## § 18.1. Обобщенное неравенство Минковского

Если E — линейное нормированное пространство и  $\mathbf{x}^{t}$ ,  $\mathbf{x}^{2}$ , ... -- его элементы, то имеет место неравенство

$$\left\| \sum_{h=1}^{N} \mathbf{x}^{h} \right\| \leqslant \sum_{h=1}^{N} \| \mathbf{x}^{h} \|, \tag{1}$$

получаемое по индукции при любом натуральном N из основного перавенства  $\|\mathbf{x}+\mathbf{y}\| \leqslant \|\mathbf{x}\|+\|\mathbf{y}\|$ ,  $(\mathbf{x},\ \mathbf{y}\in E)$ . Далее, если  $\mathbf{x}$  есть сумма ряда

$$\mathbf{x} = \mathbf{x}^1 + \mathbf{x}^2 + \ldots = \sum_{1}^{\infty} \mathbf{x}^h,$$

т. е. если  $||\mathbf{x} - \sum_{1}^{N} \mathbf{x}^{k}|| \to 0 \quad (N \to \infty)$ , то (см. § 6.3)

$$\|\mathbf{x}\| = \lim_{N \to \infty} \left\| \sum_{1}^{N} \mathbf{x}^{h} \right\| \le \lim_{N \to \infty} \sum_{1}^{N} \|\mathbf{x}^{h}\| = \sum_{1}^{\infty} \|\mathbf{x}^{h}\|,$$

$$\|\mathbf{x}\| \le \|\mathbf{x}'\| + \|\mathbf{x}^{2}\| + \dots,$$
(2)

тде ряд справа может и расходиться.

Применяя (1), (2) к элементам пространств  $l_p$  и  $L_p'$  (или  $L_p$ ), получим неравенства (Минковского):

$$\left(\sum_{k=1}^{\infty} \left| \sum_{l=1}^{m} a_{kl} \right|^{p} \right)^{1/p} \leqslant \sum_{l=1}^{m} \left( \sum_{k=1}^{\infty} |a_{kl}|^{p} \right)^{1/p}, \tag{3}$$

$$\left(\int_{\Omega}\left|\sum_{l=1}^{m}f_{1}\left(\mathbf{x}\right)\right|^{p}d\mathbf{x}\right)^{1/p} \leqslant \sum_{l=1}^{m}\left(\int_{\Omega}\left|f_{l}\left(\mathbf{x}\right)\right|^{p}dx\right)^{1/p} \tag{4}$$

$$(1 \leqslant p \leqslant \infty),$$

где можно считать  $m=\infty$ , и тогда под суммами  $\sum_{l=1}^{\infty}a_{kl}=a_k$  надо

понимать такие числа  $a_k$ , что  $\sum_{l=1}^{\infty} \left| a_k - \sum_{l=1}^{m} a_{kl} \right|^p \to 0 \quad (m \to \infty)$ , так

же как под суммой  $\sum_{l=1}^{\infty}f_l(\mathbf{x})$  надо понимать функцию  $F\left(\mathbf{x}\right) \in L_p'(L_p)$ ,

к которой стремится при  $m o \infty$  конечная сумма  $\sum_{l=1}^m f_l(\mathbf{x})$  в мет-

pure 
$$L_p: \int_{\Omega} \left| F(\mathbf{x}) - \sum_{l=1}^{m} f_l(\mathbf{x}) \right|^p dx \to 0 \quad (m \to \infty).$$

В неравенстве (4) суммирование  $f_l(\mathbf{x})$  происходит по дискретному индексу  $l=1,\ 2,\ 3,\ \dots$  Аналогом его является обобщенное перавенство Минковского

$$\left(\int_{G} \left(\int_{\Omega} |F(\mathbf{x}, \mathbf{y})| d\mathbf{y}\right)^{p} d\mathbf{x}\right)^{1/p} \leqslant \int_{\Omega} \left(\int_{G} |F(\mathbf{x}, \mathbf{y})|^{p} d\mathbf{x}\right)^{1/p} d\mathbf{y} \qquad (5)$$

$$(\Omega \subset R_{n}, G \subset R_{m})$$

или, что все равно (если считать, что  $F(\mathbf{x}, \mathbf{y}) = 0$  вне  $\Omega \times G$ ), неравенство

$$\left(\int_{R_m} \left(\int_{R_n} |F(\mathbf{x}, \mathbf{y})| d\mathbf{y}\right)^p d\mathbf{x}\right)^{1/p} \leqslant \int_{R_n} \left(\int_{R_m} |F(\mathbf{x}, \mathbf{y})|^p d\mathbf{x}\right)^{1/p} d\mathbf{y}, \quad (6)$$

В обобщенном перавенстве Минковского роль индекса l (в (4)) играет непрерывный нараметр у, по которому и происходит суммирование (интегрирование).

В самом общем виде перавенство (6) имеет место, когда интегралы попимаются в лебеговом смысле, и тогда, если имеет смысл правая часть (6), то и левая имеет смысл, и выполняется само перавенство.

Ограничимся для простоты случаем функцин F(x, y) от двух (скалярных) перемепных x, y. Не нарушая общности, можно считать, что  $F(x, y) \ge 0$ . Будем пока считать, что F(x, y) есть ограниченная, определенная на квадрате  $\Delta_N = \{|x|, |y| \le N\}$  функция, интегрируемая по Лебегу или Риману на  $\Delta_N$ .

Тогда (пояснения пиже, 
$$\int_{-N}^{N} = \int$$
)
$$\int \left( \int F(x,y) \, dy \right)^p dx = \int \left( \int F(x,y) \, dy \right)^{p-1} \int F(x,y) \, dy \, dx =$$

$$= \int \int \left( \int F(x,y) \, dy \right)^{p-1} F(x,y) \, dy \, dx =$$

$$= \int \left[ \int \left( \int F(x,y) \, dy \right)^{p-1} F(x,y) \, dx \right] dy \leqslant$$

$$\leqslant \int \left( \int \left( \int F(x,y) \, dy \right)^p dx \right)^{(p-1)/p} \left( \int F(x,y)^p dx \right)^{1/p} dy =$$

$$= \left( \int \left( \int F(x,y) \, dy \right)^p dx \right)^{(p-1)/p} \int \left( \int F(x,y)^p dx \right)^{1/p} dy, \quad (7)$$

откуда получим требуемое неравенство

$$\left(\int \left(\int F(x,y)\,dy\right)^p dx\right)^{1/p} \leqslant \int \left(\int F(x,y)^p dx\right)^{1/p} dy. \tag{8}$$

Во втором равенстве (7) интеграл  $\int F \, dy \Big)^{p-1}$ , не зависящий от y, внесен под знак интеграла  $\int F \, (x,y) \, dy$ . В третьем произведена замена порядка интегрирования. При интегрировании по Лебегу неотрицательных (измеримых) функций это законно (см. § 19.3, свойство 19, теорема Фубини). Если F интегрируема на  $\Delta_N$  по Риману, то это тоже законно, потому что тогда интеграл \*)  $\int F \, (x,y) \, dy$  есть интегрируемая функция по x на  $\{-N,N\}$ , а вместе с ней интегрируема на  $\{-N,N\}$ , следовательно, на  $\Delta_N$ , (p-1)-я степень ее модуля, которая умножается на F(x,y) — интегрируемую на  $\Delta_N$  функцию. Таким образом, в третьем члене (7) под знаком  $\int \int$  стоит интегрируемая по Риману функция, и можно менять порядок интегрирования. В четвертом соотношении (неравенстве) в (7) применяется неравенство  $\Gamma$ ёльдера по x.

В дальпейшем будем рассуждать в терминах интеграла Лебета. Пусть задана произвольная измеримая неотрицательная функция F(x, y), вообще говоря, неограниченная, для которой имеет

смысл конечный интеграл справа в (8). Положим

$$F_N\left(x,y
ight) = egin{cases} F\left(x,y
ight), & ext{если } (x,y) \in \Delta_N \text{ и } F \leqslant N, \ 0 & ext{для остальных } (x,y). \end{cases}$$

Функция  $F_N$  — пеотрицательная, ограниченная, измеримая, перавная пулю разве что на  $\Delta_N$ . Для нее при любом N уже доказана справедливость неравенства

$$\left(\int \left(\int F_N(x,y)\,dy\right)^p\,dx\right)^{1/p} \leqslant \int \left(\int \left[F_N(x,y)\right]^p\,dx\right)^{1/p}\,dy,$$

из которого в силу монотонности стремления (см. § 19.3, свойство 14)

 $F_N(x, y) \to F(x, y) \quad (N \to \infty, F_N \leqslant F)$ 

следует, как это доказывается в лебеговой теории, справедливость (8).

# § 18.2. Усреднение функции по Соболеву \*\*)

Обозначим через

$$\sigma_{\varepsilon} = \{|x| \leq \varepsilon\}, \quad \sigma_{1} = \sigma$$

шар в  $R_n = R$  с центром в нулевой точке.

Пусть  $\psi(t)$  есть бесконечно дифференцируемая четная неотрицательная функция от одной переменной t ( $-\infty < t < \infty$ ), равная

<sup>\*)</sup> Либо, например, нижний интеграл (см. теорему 1 § 12.12).

<sup>\*\*)</sup> С. Л. Соболев (род. в 1908 г.) — выдающийся советский математик, академик.

нулю для  $|t| \ge 1$ , такая, что n-кратный интеграл

$$\int \psi(|\mathbf{x}|) d\mathbf{x} = \int_{|\mathbf{x}|<1} \psi(|\mathbf{x}|) d\mathbf{x} = 1,$$

$$\mathbf{x} = (x_1, \dots, x_n), |\mathbf{x}|^2 = \sum_{i=1}^n x_i^2, \quad \int = \int_{1}^n x_i^2 d\mathbf{x}$$
(1)

В качестве ф можно взять функцию

$$\psi(t) = \begin{cases} \frac{1}{\lambda_n} e^{1/(t^2-1)}, & 0 \leq |t| < 1, \\ 0, & |t| \geq 1 \end{cases}$$

(см. § 16.6, упражнение 2), где константа  $\lambda_n$  подобрана так, что-бы выполнялось условие (1).

 $\Phi$ ункция (бесконечно дифферепцируемая на R)

$$\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi\left(\frac{x}{\varepsilon}\right), \quad \varphi(x) = \psi(|x|), \quad \varepsilon > 0,$$
(2)

имеет носитель на о. и удовлетворяет условию

$$\int \varphi_{\varepsilon}(\mathbf{x}) d\mathbf{x} = \frac{1}{\varepsilon^{n}} \int \varphi\left(\frac{\mathbf{x}}{\varepsilon}\right) d\mathbf{x} = \int \varphi\left(\mathbf{u}\right) d\mathbf{u} = \int \psi\left(|\mathbf{u}|\right) d\mathbf{u} = 1. \quad (3)$$

Пусть  $\Omega \subset R$  — открытое множество и  $f \in L_p(\Omega)$   $(1 \le p \le \infty)*)$ . Положим f = 0 на  $R - \Omega$ . Функция

$$f_{\varepsilon}(\mathbf{x}) = f_{\Omega,\varepsilon} = \int \varphi_{\varepsilon}(\mathbf{x} - \mathbf{u}) f(\mathbf{u}) d\mathbf{u} = \int \varphi_{\varepsilon}(\mathbf{u}) f(\mathbf{x} - \mathbf{u}) d\mathbf{u}$$
 (4)

называется  $\varepsilon$ -усреднением f по Соболеву. В силу финитности  $\phi$  вычисление интегралов (3) и (4) сводится к интегрированию по n-мерным шарам. Например, первый интеграл в (4) достаточно распространить на шар  $|\mathbf{x} - \mathbf{u}| \le \varepsilon$ , а второй—на шар  $|\mathbf{u}| \le \varepsilon$ .

Остановимся на свойствах је. Условимся в обозначении

$$\|\cdot\|_p = \|\cdot\|_{L_p(R)}, \quad 1 \leqslant p \leqslant \infty.$$

1) Ecau 
$$f \in L_p(R)$$
,  $1 \le p < \infty$ , to
$$\|f_{\varepsilon} - f\|_p \to 0, \quad \varepsilon \to 0. \tag{5}$$

Доказательство.

$$f_{\varepsilon}(\mathbf{x}) - f(\mathbf{x}) = \frac{1}{\varepsilon^{n}} \int \varphi\left(\frac{\mathbf{x} - \mathbf{u}}{\varepsilon}\right) [f(\mathbf{u}) - f(\mathbf{x})] d\mathbf{u} =$$

$$= \int \varphi(\mathbf{v}) [f(\mathbf{x} - \varepsilon \mathbf{v}) - f(\mathbf{x})] d\mathbf{v},$$

<sup>\*)</sup>  $L_{\infty}(\Omega)$  есть множество измеримых на  $\Omega$  функций с нормой  $\|f\|_{\infty}=\sup_{x\in\Omega}\|f(x)\|$  или  $\|f\|_{\infty}=\sup_{x\in\Omega}\|f(x)\|$  (см. сноску на стр. 328 § 18.3).

откуда, применив обобщенное перавенство Минковского и учитывая, что  $\phi \ge 0$  и имеет место (3), получим

$$\|f(\mathbf{x} - f)\|_{\nu} \leq \int \varphi(\nu) \|f(\mathbf{x} - \varepsilon \nu) - f(\mathbf{x})\|_{\rho} d\mathbf{v} \leq \sup_{\|v\| \leq \varepsilon} \|f(\mathbf{x} - \mathbf{v}) - f(\mathbf{x})\|_{\rho} \to 0, \quad \varepsilon \to 0.$$
 (6)

В случае  $p=\infty$  свойство 1) не выполняется. Однако, если считать, что  $\Omega=R$  и  $f(\mathbf{x})$  равномерно непрерывна на R, то (6) запишется в виде

$$||f_{\varepsilon} - f||_{\infty} \leq \sup_{|v| < \varepsilon} |f(\mathbf{x} - \mathbf{v}) - f(\mathbf{x})| \to 0, \quad \varepsilon \to 0.$$

2) Ecau  $f \in L_p(R)$ ,  $1 \le p \le \infty$ , to

$$||f_{\varepsilon}||_{p} \leqslant \int \varphi_{\varepsilon} (\mathbf{x} - \mathbf{u}) ||f||_{p} d\mathbf{u} = ||f||_{p}.$$
 (7)

3) Если f — локально интегрируемая на R функция,  $\tau$ . е.  $f \in L(V)$  для любого шара  $V \subset R$ , то  $f_{\epsilon}$  — бесконечно дифференцируемая функция на R и для любого целочисленного неотрицательного вектора  $\mathbf{s} = (s_1, \ldots, s_n)$ 

$$f_{\varepsilon}^{(s)}(\mathbf{x}) = \int \varphi_{\varepsilon}^{(s)}(\mathbf{x} - \mathbf{u}) f(\mathbf{u}) d\mathbf{u}.$$

Доказательство. Если f — непрерывная финитная (в R) функция, то это утверждение непосредственно следует из классических теорем о непрерывности интеграла по нараметру и дифференцируемости под знаком интеграла. Надо учесть, что  $\varphi_{\varepsilon}(x-u)$  — бесконечно дифференцируемая финитная по u функция.

Пусть теперь f локально интегрируема и  $V \subset \overline{V} \subset V_1$  — два произвольных концентрических открытых шара. Будем считать, что радиус  $V_1$  больше радиуса V на  $\delta > 0$ . Тогда при  $\varepsilon < \delta$ 

$$f_{\varepsilon}(\mathbf{x}) = \int_{V_1} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{u}) f(\mathbf{u}) d\mathbf{u}.$$

Положим

$$\psi_{\varepsilon}(x) = \int_{V_1} \frac{\partial}{\partial x_1} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{u}) f(\mathbf{u}) d\mathbf{u}.$$

Так как  $f \in L(V_1)$ , то существует (см. свойство 18 § 19.3, где  $\psi \in L'$ ; для L' — теорему 1, § 14.4) последовательность непрерывных финитных в  $V_1$  функций  $f_h$  такая, что

$$||f_k - f||_{L(V_1)} \to 0, \quad k \to \infty.$$

Имеем

$$f_{k\varepsilon}(\mathbf{x}) = \int_{V_1} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{u}) f_k(\mathbf{u}) d\mathbf{u}, \quad \frac{\partial}{\partial x_1} f_{k\varepsilon}(\mathbf{x}) = \int_{V_1} \frac{\partial}{\partial x_1} \varphi_{\varepsilon}(x - \mathbf{u}) f_k(\mathbf{u}) d\mathbf{u}.$$

Далее, только для  $\mathbf{x} \in V$ 

$$|f_{\varepsilon}(\mathbf{x}) - f_{h\varepsilon}(\mathbf{x})| = \left| \int_{V_{\mathbf{1}}} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{u}) [f(\mathbf{u}) - f_{h}(\mathbf{u})] d\mathbf{u} \right| \le M_{\varepsilon} ||f - f_{h}||_{L(V_{\mathbf{1}})} \to 0, \quad k \to \infty, \quad (8)$$

$$|\psi_{\varepsilon}(\mathbf{x}) - \frac{\partial}{\partial x_{\mathbf{1}}} f_{h\varepsilon}(\mathbf{x})| \le M_{h}' ||f - f_{h}||_{L(V_{\mathbf{1}})} \to 0, \quad k \to \infty,$$

$$M_{\varepsilon} = \max_{\mathbf{u}} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{u}) = \max_{\mathbf{u}} \varphi_{\varepsilon}(\mathbf{u}), \quad M_{\varepsilon}' = \max_{\mathbf{x}} \left| \frac{\partial}{\partial x_{\mathbf{1}}} \varphi_{\varepsilon}(\mathbf{x}) \right|.$$

Из (8) следует, что функции  $f_{k\varepsilon}(\mathbf{x})$  и  $\frac{\partial}{\partial x_1} f_{k\varepsilon}(\mathbf{x})$  при  $k \to \infty$  равномерно на V стремятся соответственно к  $f_{\varepsilon}$  и  $\psi_{\varepsilon}$ . Но тогда на основании классической теории  $f_{\varepsilon}$  и  $\psi_{\varepsilon}$  непрерывны и  $\psi_{\varepsilon} = \frac{\partial}{\partial x_1} f_{\varepsilon}$  па V, следовательно, в силу произвольности V, и на R (см. теорему 3, § 11.8 сформулированную на языке последовательностей). Этим свойство 3) доказано для  $\mathbf{s} = (1, 0, \ldots, 0)$ . Общий случай доказывается по индукции.

4) Если  $f \in L_p(\Omega)$   $(1 \le p < \infty)$ , то существует последовательность бесконечно дифференцируемых финитных в  $\Omega$  функций  $\psi_k$ , для которых

 $||f - \psi_h||_{\rho} \to 0, \quad k \to \infty,$  $|\psi_h(\mathbf{x}) \leqslant \sup_{\mathbf{x} = 0} |f(\mathbf{x})|.$ 

Доказательство. Зададим  $\eta>0$  и подберем открытое ограниченное множество  $g\subseteq \bar{g}\subseteq\Omega$  такое, чтобы

$$\|f\|_{L_p(\Omega-g)} < \frac{\eta}{2}.$$

Обозначим через d расстояние от g до границы  $\Omega$  (d>0; если  $\Omega=R_n$ , то  $d=\infty$ ). Введем еще функцию

$$f_g(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \mathbf{x} \in g, \\ 0, & \mathbf{x} \notin g, \end{cases}$$

ее  $\epsilon$ -усреднение  $f_{s,\;\epsilon}=\psi$  при  $\epsilon < d$  есть бесконечно дифференцируемая финитная в  $\Omega$  функция, для которой

$$\begin{split} \|f-f_{g,\epsilon}\|_{L_p(\Omega)} &\leqslant \|f-f_g\|_{L_p(\Omega)} + \|f_g-f_{g,\epsilon}\|_{L_p(\Omega)} = \\ &= \|f\|_{L_p(\Omega-g)} + \|f_g-f_{g,\epsilon}\|_{L_p(\Omega)} < \frac{\eta}{2} + \frac{\eta}{2} = \eta, \end{split}$$

если только є достаточно мало.

Далее (см. (7))

$$|f_{g,\varepsilon}(\mathbf{x})| \leq \sup_{\mathbf{x} \in R} |f_g(\mathbf{x})| \leq \sup_{\mathbf{x} \in R} |f(\mathbf{x})|.$$

Поэтому, если  $\eta = \eta_h \to 0$ , то, считая  $\varepsilon = \varepsilon_h$ ,  $g = g_h$ , мы получим, что функции  $\psi_h = f_{g_h, \varepsilon_h}$  удовлетворяют требования теоремы.

Свойство 4) усиливает теоремы 3, 4 из § 14.4. Первое его утверждение выражает, что множество бесконечно дифференцируемых финитных в  $\Omega$  функций плотно в  $L_r(\Omega)$   $(1 \le p < \infty)$ .

5) Hеубывающую на [a, b] функцию f(x) можно приблизить с любой степенью точности в метрике  $L_p(a, b)$  неубывающей же бесконечно дифференцируемой функцией (вообще говоря, не финитной).

В самом деле, продолжим f(x) на всю действительную ось, положив

$$f(x) = \begin{cases} 0, & x < a - \varepsilon, b + \varepsilon < x, \\ f(a), & a - \varepsilon \le x < a, \\ f(b), & b < x \le b + \varepsilon. \end{cases}$$

Тогда є-усреднение  $f_{\varepsilon}(x)$  для  $x \in [a, b]$  есть функция неубывающая. Ведь для  $a \le x < x_1 \le b$ , если учесть четность и неотрицательность  $\varphi_{\varepsilon}(u)$ , имеет место

$$f_{\varepsilon}(x) = \int_{x-\varepsilon}^{x+\varepsilon} \varphi_{\varepsilon}(u-x) f(u) du = \int_{-\varepsilon}^{\varepsilon} \varphi_{\varepsilon}(t) f(x+t) dt \leqslant$$

$$\leqslant \int_{-\varepsilon}^{\varepsilon} \varphi_{\varepsilon}(t) f(x_{1}+t) dt = f_{\varepsilon}(x_{1}),$$

потому что при  $t \in (-\varepsilon, \varepsilon)$  выполняется неравенство  $f(x+t) \le f(x_1+t)$ . Бескопечная дифференцируемость  $f_{\varepsilon}(x)$  доказана в 3). Далее, учитывая (1), при n=1

$$\|f(x) - f_{\varepsilon}(x)\|_{L_{p}(a,b)} \leqslant \int_{-\varepsilon}^{\varepsilon} \varphi_{\varepsilon}(t) \|f(x) - f(x+t)\|_{L_{p}(a,b)} dt \leqslant$$

$$\leqslant \sup_{\|t\| \leqslant \varepsilon} \|f(x) - f(x+t)\|_{L_{p}(-\infty,\infty)} \to 0, \quad \varepsilon \to \infty$$

и мы доказали, что  $f_{\varepsilon}$  есть приближающая f функция, удовлетворяющая свойству 5).

### § 18.3. Свертка

Эти рассуждения будут проведены в терминах лебеговой теории. Мы будем оперировать с функциями, принадлежащими пространству  $L_p = L_p(R_n)$   $(1 \le p \le \infty)$ . При конечном p функция  $f \in L_p$ , если она измерима в лебеговом смысле и для нее копечна

норма

$$\|f\|_{L_{\rho}} = \left(\int\limits_{R_{n}} |f(\mathbf{x})|^{p} d\mathbf{x}\right)^{1/p} \quad \left(\int\limits_{R_{n}} = \int\limits_{R_{n}}\right).$$

Далее по определению измеримые и ограниченные на  $R_n$  функции f с нормой \*)

$$\|f\|_{L_{\infty}} = \sup_{\mathbf{x} \in R} |f(\mathbf{x})|$$

составляют пространство  $L_{\infty}$ .

Если функция  $K(\mathbf{x}) = K(x_1, \ldots, x_n) \in L = L_1$ , то для нее имеет смысл свертка, определяемая при помощи интеграла Лебега (см. § 16.8. (16))

$$K * f = \frac{1}{(2\pi)^{n/2}} \int K(\mathbf{u}) f(\mathbf{x} - \mathbf{u}) d\mathbf{u} = \frac{1}{(2\pi)^{n/2}} \int K(\mathbf{x} - \mathbf{u}) f(\mathbf{u}) d\mathbf{u}.$$
 (1)

Интеграл (1), существующий почти для всех  $\mathbf{x} \in R_n$ , есть функция от  $\mathbf{x}$ , принадлежащая  $L_p$ , и для нее вынолняется обобщенное перавенство Минковского (см. § 18.1, (6))

$$\|K * f\|_{L_p} \le \frac{1}{(2\pi)^{n/2}} \int |K(\mathbf{u})| \|f(\mathbf{x} - \mathbf{u})\|_{L_p} d\mathbf{u} = \frac{1}{(2\pi)^{n/2}} \|K\|_L \|f\|_{L_p}, \quad (2)$$

где порма  $||f(\mathbf{x} - \mathbf{u})||_{L_p} = ||f(\mathbf{x})||_{L_p}$  берется по  $\mathbf{x}$ . Неравенство (2) при  $p = \infty$  очевидно.

К функции  $K * f \subseteq L_p$  можно в свою очередь применить операцию свертки ее с какой-либо функцией  $K_i \subseteq L$ , и при этом имеет место коммутативность:

$$K_1 * K * f = K * K_1 * f \quad (K, K_1 \in L, f \in L_p)$$
 (3)

(вытекающая из теоремы Фубини, относящейся к лебеговой теории).

Мы определили понятие свертки двух обычных измеримых функций  $K \in L$  и  $f \in L_p$ , и притом в терминах обычных функций: свертка K \* f есть снова обычная функция, припадлежащая  $L_p$ , вычисляемая при номощи интеграла Лебега (1).

Но K, f и K\*f суть также обобщенные функции (принадлежащие S'). Таким образом, имеют смысл обобщенные функции

K \* f,  $K * f \in S'$ , которые не обязательно являются обычными функциями. Но это обстоятельство дает основание по определе-

$$||f||_{\infty} = \text{vrai } \sup_{\mathbf{x} \in R} |f(\mathbf{x})|,$$

<sup>\*)</sup> Впрочем, чаще под  $L_{\infty}$  понимают совокупность так называемых существенно ограниченных измеримых на  $R_n$  функций с (конечной) нормой

где справа стоит наименьшее число M, для которого множество  $\{x: M < |f(x)|\}$  имеет лебегову меру нуль,

нию положить

$$\widetilde{K}\widetilde{f} = K * \widetilde{f} \qquad \widehat{K}\widehat{f} = K * \widetilde{f}. \tag{4}$$

Отметим, что  $\widetilde{K}$  и  $\widehat{K}$  — непрерывные функции (ведь  $K \in L$ ).

При помощи первого равенства (4) определяется произведение  $\tilde{K}$  на обобщенную функцию  $\tilde{f}$ , если  $f \in L_p$ .

Из определений (4) автоматически слепуют равенства

$$K * f = \widehat{K}\widehat{f} = \widehat{K}\widehat{f}$$
  $(K \in L, f \in L_p)$ 

(обобщающие § 16.8, (16), где предполагалось, что  $f \in L'$ ,  $\varphi \in S$ ).

Заметим, что, если  $\hat{\mu} = K \in L$  и в то же время  $\mu$  — бесконечно дифференцируемая функция полиномиального роста, то в нашем распоряжении имеется два определения произведения  $\mu \tilde{f}(f \in L_p)$ . С одной стороны, это функционал

$$(\widehat{\mu}f, \varphi) = (\widehat{f}, \mu\varphi) \quad (\varphi \in S),$$

а с другой — функционал  $\mu \tilde{f} = \hat{\mu} * f$ , как он определен в (4). Покажем, что эти функционалы равны. Если  $f \in S$ , то равенство

$$(f, \mu \varphi) = (\widehat{\mu} * f, \varphi) \quad (\varphi \in S)$$
 (5)

есть равенство между интегралами от обычных функций, доказываемое как в § 16.8, (16). Если же  $f \in L_p$  — произвольная функция, то найдется сходящаяся к ней в смысле  $L_p$ , тем более в смысле (S'), последовательность финитных функций  $f_i \in S$  (см. § 18.2, свойство 4). Для каждого  $l=1,\ 2,\ \dots$  имеет место

 $(f_i, \mu \varphi) = (\hat{\mu} * f_i, \varphi) \ (\varphi \in S)$ . Перейдя к пределу при  $l \to \infty$ , получим (5). Ведь  $f_l \to f(L_p)$  влечет  $\widehat{\mu} * f_l \to \widehat{\mu} * f(L_p)$ , тем более в смысле (S'), но тогда и  $\widehat{\mu} * f_l \to \widehat{\mu} * f(S')$ .

Часто приходится иметь дело со сверткой обобщенной функции  $P. \frac{1}{r} \in S'$  и  $f \in L_p$  (1 <  $p < \infty$ , см. пример 2, § 16.7). Она определяется как предел

$$F(x) = P. \frac{1}{t} * f = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \frac{1}{\sqrt{2\pi}} \int_{\varepsilon < |t| < \frac{1}{\kappa}} \frac{f(x-t)}{t} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{f(x-t)}{t} dt$$

в смысле  $L_p = L_p(-\infty, \infty)$ . Таким образом.

$$\lim_{\varepsilon \to 0} \left\| F(x) - \left( \mathbf{P}_{\varepsilon} \cdot \frac{1}{t} * f \right) \right\|_{\mathbf{L}_{p}} = \lim \left\| (\mathbf{P}_{\bullet} - \mathbf{P}_{\varepsilon}) \cdot \frac{1}{t} * f \right\|_{\mathbf{L}_{p}} = 0,$$

где

$$\mathbf{P}_{\varepsilon} \cdot \frac{1}{t} = \begin{cases} \frac{1}{t} & \left( \varepsilon < |t| < \frac{1}{\varepsilon} \right), \\ 0 & (\text{для остальных } t). \end{cases}$$

Можно доказать, что этот предел для любой функции  $f \in L_p$  существует, откуда следует, что  $F \in L_p$ . Больше того, существует константа  $C_p$ , зависящая от p(1 , но не от <math>f, такая, что выполняется перавенство

 $||F||_{L_p} \leqslant C_p ||f||_{L_p}$ 

Важно отметить, что имеет место коммутативность

$$K*P. \frac{1}{t}*f = P. \frac{1}{t}*K*f \quad (K \in L, f \in L_p, 1 (6)$$

Это следует из равенства

$$K*P_{\varepsilon}\cdot\frac{1}{t}*f=P_{\varepsilon}\cdot\frac{1}{t}*K*f\quad (\varepsilon>0)$$
  $\left(\mathbf{P}_{\varepsilon}\cdot\frac{1}{t}\in L\right)$  путем перехода к пределу в смысле  $L_{p}$ . Ведь 
$$\left\|\left(K*\mathbf{P}\cdot\frac{1}{t}*f\right)-\left(K\mathbf{P}*_{\varepsilon}\cdot\frac{1}{t}*f\right)\right\|_{L_{p}}=$$
 
$$=\left\|K*\left(\mathbf{P}\cdot\mathbf{P}_{\varepsilon}\cdot\right)\cdot\frac{1}{t}*f\right\|_{L_{p}}\leqslant C_{p}\left\|\left(\mathbf{P}\cdot\mathbf{P}_{\varepsilon}\cdot\right)\cdot\frac{1}{t}*f\right\|_{L_{p}}\to0,$$
 
$$\left\|\left(\mathbf{P}\cdot\frac{1}{t}*K*f\right)-\left(\mathbf{P}_{\varepsilon}\cdot\frac{1}{t}*K*f\right)\right\|_{L_{p}}=$$

$$= \left\| (\mathbf{P}_{\cdot} - \mathbf{P}_{\varepsilon}) \frac{1}{t} * (K * f) \right\|_{L_p} \to 0 \quad (\varepsilon \to 0).$$

## § 18.4. Разбиение единицы

Пемма 1. Для любых двух ограниченных открытых множеств g и g' таких, что  $g \subseteq \overline{g} \subseteq g'$ , существует бесконечно дифференцируемая финитная в g' функция  $\mu(x)$ , равная 1 на g и удовлетворяющая неравенствам  $0 \le \varphi(x) \le 1$ .

Доказательство. Обозначим через  $g^{\delta}$  множество всех точек  $\mathbf{x}$ , расстояние которых до  $\bar{g}$  не превышает  $\delta(r(\mathbf{x}, \bar{g}) \leq \delta)$ . Это очевидно замкнутое множество и при этом  $g \subseteq g^{\delta} \subseteq g^{2\delta} \subseteq g'$ , если  $\delta$  достаточно мало. Положим

$$\psi(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} \in g^{\delta}, \\ 0, & \mathbf{x} \notin g^{\delta}. \end{cases} \tag{1}$$

$$\mu(\mathbf{x}) = \psi_{\delta}(\mathbf{x}) = \int \varphi_{\delta}(\mathbf{y} - \mathbf{x}) \, \psi(\mathbf{y}) \, d\mathbf{y}, \tag{2}$$

где, таким образом,  $\mu = \psi_{\delta}$  есть  $\delta$ -усреднение функции  $\psi$ .

Функция  $\mu(\mathbf{x})$ , как мы знаем, бесконечно дифференцируема. Кроме того, в силу (1) и того факта, что интеграл (2) фактически берется по шару радиуса  $\delta$  с центром в  $\mathbf{x}$ ,

$$\mu\left(\mathbf{x}\right) = \begin{cases} 1 & \text{ha } g, \\ 0 & \text{bhe } g^{2\delta}. \end{cases}$$

Заметим, что интеграл (2) имеет всегда смысл по Лебегу, по Риману же не всегда, ведь множество  $g^{\delta}$  и его пересечение с шаром может оказаться неизмеримым по Жордану.

Учитывая неравенство  $0 \leqslant \psi(\mathbf{x}) \leqslant 1$  и неотрицательность  $\phi_0$ ,

получим, наконец,

$$0 \leqslant \mu(\mathbf{x}) \leqslant \int \varphi_{\delta}(\mathbf{y} - \mathbf{x}) d\mathbf{y} = 1.$$

Чтобы доказать лемму в терминах интеграла Римана, можно взять сетку, рассекающую  $R_n$  на равные кубики диаметра  $\delta$ , и через  $\Lambda$  обозначить множество кубиков, каждый из которых содержит хотя бы одну точку  $\mathbf{x} \in g$ . При достаточно малом  $\delta$  будет  $g \subset \Lambda \subset g'$ . Дальше можно рассуждать, как выше, заменяя всюду g на  $\Lambda$ . Множество  $\Lambda^{\delta}$  очевидно измеримо по Жордану.

Лемма 2 (о разбиении единицы). Пусть замкнутов ограниченное множество  $F \subseteq R_n$  покрыто открытыми множества-

 $\dot{M}u g_1, \ldots, g_N.$ 

Тогда существует система бесконечно дифференцируемых функций  $\varphi_1(\mathbf{x}), \ldots, \varphi_N(\mathbf{x})$  со свойствами:

1)  $0 \leqslant \varphi_j(x) \leqslant 1$ ,

2)  $\varphi_i$  финитна в  $g_i$ ,

3) 
$$\sum_{i=1}^{n} \varphi_{i}(x) = 1 \text{ } \mu a \text{ } F.$$

Доказательство. Строим открытые множества  $g_1',\ldots,g_N'$  такие, что

$$g_j'\subset \overline{g_j}\subset g_j, \quad \sum_1^N g_j'=G'\supset F;$$

пользуясь предыдущей леммой, определяем бесконечно дифференцируемые неотрицательные функции  $\lambda_i(\mathbf{x})$ , финитные в  $g_i$ , равные 1 на  $g_j$ , и полагаем

$$\psi_{j}(\mathbf{x}) = \frac{\lambda_{j}(\mathbf{x})}{\lambda_{1}(\mathbf{x}) + \ldots + \lambda_{N}(\mathbf{x})}.$$

Очевидно, что функции  $\psi_i$  бесконечно дифференцируемы на G' и удовлетворяют условиям  $0 \leqslant \psi_i(\mathbf{x}) \leqslant 1$  и  $\sum_1^N \psi_i(\mathbf{x}) = 1$  на G'. Однако они не определены в точках  $\mathbf{x}$ , в которых обращаются в пуль все  $\lambda_i$ . Пользуясь тем, что F — замкнутое ограниченное множе-

ство, а  $G' \supset F$  — открыто, вводим еще второе открытое множество G'' такое, что  $G' \supset \overline{G}'' \supset G'' \supset F$ , и бесконечно дифференцируемую функцию  $\kappa(\mathbf{x})$ , финитную в G', равную 1 на G'' и удовлетворяющую неравенствам  $0 \leqslant \kappa(\mathbf{x}) \leqslant 1$ . Теперь нетрудно проверить, что функции

 $\varphi_j(\mathbf{x}) = \varkappa(\mathbf{x})\psi_j(\mathbf{x}) \quad (j = 1, ..., N)$ 

удовлетворяют условиям леммы, если считать, что  $\varphi_i(x) = 0$  там, где  $\varkappa(\mathbf{x}) = 0$ , даже если  $\psi_i(x)$  не определена. Свойства 1), 2), 3) легко проверяются. Если  $x \in \overline{G}'$ , то  $x \in \overline{g}'_{j_0}$  при некотором  $j_0$  и  $\lambda_{j_0}(\mathbf{x}) = 1$ , но тогда в некоторой окрестности x функция  $\psi_i$ , а вместе с ней и  $\varphi_i$ , бесконечно дифференцируема. Если же  $x \notin \overline{G}'$ , то существует окрестность x, где  $\varkappa$  тождественно равна нулю, следовательно,  $\varphi_i$  бесконечно дифференцируемы в этой окрестности.

#### ИНТЕГРАЛ ЛЕБЕГА

### § 19.1. Мера Лебега

Нашей целью будет ввести понятие (п-мерной) меры Лебега для ограниченных множеств некоторого класса (измеримых по Лебегу множеств). Оно обобщает понятие меры Жордана, потому что всякое измеримое в жордановом смысле множество измеримо по Лебегу и соответствующие меры равны между собой.

В §§ 12.2 и 12.5 были определены понятия mE = |E|,  $m_i E$ ,  $m_c E$  — меры, внутренией меры и внешней меры по Жордану. В частности, доказано существование и инвариантность (относительно любых прямоугольных систем координат) внутренней и внешней меры Жордана произвольного ограниченного множества \*). Для лебеговой меры внутренней и внешней меры условимся употреблять обозначения  $\mu E = |E|$ ,  $\mu_i E$ ,  $\mu_c E$ .

Мы будем позволять себе в ходе рассуждений употреблять знак |E| для таких множеств E, для которых уже выяснено, что их лебегова и жорданова меры, если они обе существуют, равны.

Мы будем рассматривать ограниченные множества, принадлежащие n-мерному пространству  $R_n$ ; поэтому будем говорить о множествах, подразумевая, что они принадлежат  $R_n$  и ограничены, и делая соответствующие оговорки, если это не так или если а priori может быть не так.

Так же, как в случае жордановой меры, каждому (ограниченному) множеству E (из  $R_n$ ) принисывается два числа  $\mu_i E$  и  $\mu_e E$  — внутренняя и внешняя лебеговы меры E. В случае равенства их число  $\mu E = \mu_i E = \mu_e E$  называется лебеговой мерой E, а множество E называется измеримым в лебеговом смысле. Однако мы начнем с того, что определим понятие лебеговой меры для открытых и замкнутых множеств, минуя пока определение их внешней и внутренней лебеговой меры.

Символами G,  $G_1$ , G',  $G_2$ , ..., будем обозначать только открытые, а символами F,  $F_1$ , F',  $F_2$ , ...— только замкнутые множества. Это соглашение дает нам право не всегда оговаривать, что множества, обозначаемые этими символами, открыты или замкнуты. Подобным образом мы будем обозначать через  $\Delta$  и  $\sigma$  кубы

<sup>\*)</sup> Только эти свойства жордановой меры нам будут нужны в этом параграфе.

и соответственно фигуры с ребрами, параллельными осям данной прямоугольной системы координат (см. § 12.2).

Лебегова мера открытого (ограниченного) множества G по

определению равна

$$\mu G = m_i G = \sup_{\sigma \in G} |\sigma|,$$

т. е. верхней грани объемов фигур  $\sigma$ , принадлежащих G.

Открытое множество G можно представить как счетную сумму замкнутых кубов, пересекающихся попарно разве что по своим границам (см. § 12.5, теорема 2),

$$G = \sum_{1}^{\infty} \Delta_{k} = \sum_{1} \Delta_{k}, \tag{1}$$

и тогда

$$\mu G = m_i G = \sum |\Delta_k|, \tag{2}$$

где  $|\Delta_k|$  — объем  $\Delta_k$ . Из доказываемой ниже леммы 2 следует, что это число не зависит от способа представления G в виде (1). где  $\Delta_k$  пересекаются попарно разве что по своим границам.

Лебегова мера замкнутого ограниченного множества F по оп-

ределению равна

$$\mu F = m_c F = \inf_{\sigma \supset F} |\sigma| \tag{2'}$$

— нижней грани объемов фигур  $\sigma$ , содержащих F.

Оба числа иG и иF инвариантны относительно любой системы прямоугольных координат, потому что числа  $m_i G$  и  $m_e F$  обладают этим свойством (см. § 12.2 после (6)), откуда, как будет видно ниже, следует инвариантность  $\mu_i E$ ,  $\mu_e E$  для произвольного ограниченного множества E, а тогда и  $\mu E$ , если E измеримо в лебеговом смысле.

Докажем несколько простых лемм, устанавливающих некоторые свойства мер замкнутых и открытых множеств.

 $\Pi$  емма 1.  $\Pi$ усть  $\sigma_{k}(k=1,\,2,\,\ldots)$  — замкнутые фигуры, пересекающиеся попарно разве что по своим границам, а  $\sigma_b'(k) =$ = 1, 2, ... ) — замкнутые фигуры такие, что

$$\sum \sigma_k \subset \sum \sigma_k'. \tag{3}$$

Тогда

$$\sum |\sigma_k| \leqslant \sum |\sigma_k'|, \tag{4}$$

и неравенство обращается в равенство тогда и только тогда, когда  $\sum \sigma_h = \sum \sigma_h'$  и фигуры  $\sigma_h'$  пересекаются разве что по своим

Доказательство. Будем считать, что правая часть неравенства (4) конечна, иначе опо тривиально. Зададим  $\epsilon > 0$  и введем открытые фигуры  $\sigma_k'' \supset \sigma_k'$  такие, что

это множество, и следовательно,

$$\sum |\sigma_k''| < \sum |\sigma_k'| + \epsilon.$$

Для любого N замкнутое ограниченное множество  $\sum_{1}^{N} \sigma_{k}$  покрывается открытыми фигурами  $\sigma_{k}^{''}$  и потому среди них можно отобрать конечное их число,  $\sigma_{k_{1}}^{''}, \ldots, \sigma_{k_{s}}^{''}$ , все же покрывающих

$$\sum_{k=1}^{N} |\sigma_{k}| = \left| \sum_{1}^{N} \sigma_{k} \right| \leqslant \sum_{i=1}^{n} |\sigma''_{k_{i}}| < \sum |\sigma'_{k}| + \epsilon, \tag{5}$$

где в первом соотношении (равенстве) учтен тот факт, что фигуры  $\sigma_h$  пересекаются попарно разве что по своим границам. Так как правая часть (5) пе зависит от N, то

$$\sum_{1}^{\infty} |\sigma_{k}| \leqslant \sum_{1}^{\infty} |\sigma_{k}'| +$$

откуда в силу произвольности  $\varepsilon > 0$  получим (4).

Если фигуры  $\sigma_k'$  пересекаются попарно разве что по своим границам и  $\sum \sigma_k = \sum \sigma_k'$ , то в этом рассуждении можно переменить местами  $\sigma_k$  и  $\sigma_k'$ , и тогда очевидно, что (4) есть на самом деле точное равенство. Если же какие-либо фигуры  $\sigma_k'$  и  $\sigma_l'$  пересекаются по невырожденному прямоугольнику, то в этом рассуждении можно заменить  $\sigma_l'(k < l)$  на фигуру  $\sigma_l' - \sigma_k'\sigma_l'$  и все равно получить (4), откуда видно, что соотношение (4) тогда есть на самом деле строгое перавенство.

Мы будем говорить, что задано открытое (ограниченное) множество

$$G = \sum_{h} \sigma_{h}, \ \mu G = \sum_{h} |\sigma_{h}|,$$

где  $\sigma_k$  — замкнутые фигуры (чаще всего  $\sigma_k = \Delta_k$  — кубы), и в силу леммы 1 это будет значить, что фигуры  $\sigma_k$ , если пересекаются, то по своим границам. Возможность указанного представления G доказана в § 12.5 (теорема 2). Любые другие представления  $G = \sum \sigma_k'$ , где  $\sigma_k'$  — фигуры, попарно пересекающиеся разве что по своим границам, приводят в силу леммы 1 к равенству  $\mu G = \sum_k |\sigma_k'|$ .

Лемма 2. Пусть  $G^j$ ,  $j=1, 2, \ldots, -$  конечная или счетная система открытых множеств, принадлежащих некоторому кубу  $\Delta$ . Тогда сумма  $G=\sum_j G^j$  есть открытое множество, для которого выполняется неравенство

$$\mu G \leqslant \sum_{i} \mu G^{i},$$
(6)

обращающееся в равенство тогда и только тогда, когда  $G^{j}$  попарно не пересекаются.

Доказательство. Тот факт, что G открыто, очевиден.

Имеют место представления

$$G = \sum_{k} \Delta_{k}, \ \mu G = \sum_{k} |\Delta_{k}|, \quad G^{j} = \sum_{k} \Delta_{k}^{j}, \ \mu G^{j} = \sum_{k} |\Delta_{k}^{j}|,$$

где  $\Delta_k$  и  $\Delta_k^j$  — замкнутые кубы. Но тогда  $\sum \Delta_k = \sum_j \sum_k \Delta_k^j$ , и

вследствие леммы 1

$$\mu G = \sum |\Delta_h| \leqslant \sum_j \sum_k |\Delta_h^j| = \sum_j \mu G^j. \tag{7}$$

Если  $G^j$  попарно не пересекаются, то и все  $\Delta_k^j$  могут пересекаться разве что по своим границам, и вследствие леммы 1 имеет место равенство

 $\sum |\Delta_h| = \sum_j \sum_k |\Delta_h^j|,$ 

и тогда (6) есть на самом деле равенство. Если же при некоторых  $s,\ j(s\neq j)$  пересечение  $G^sG^j$  пепусто, то найдутся кубы  $\Delta_{\mu}^s,$   $\Delta_{\nu}^j,$  существенно пересекающиеся, и по лемме 1 соотношение « $\leqslant$ » в (7) на самом деле есть строгое неравенство («<»), но тогда оно строгое и в (6).

Иемма 3. Для непересекающихся замкнутых множеств  $F_4, F_2$ 

$$\mu(F_1 + F_2) = \mu F_1 + \mu F_2. \tag{8}$$

Доказательство. В силу замкнутости и ограниченности множеств  $F_1$  и  $F_2$  и того факта, что они не пересекаются (см.  $\S$  7.10, упражнение 5), расстояние между ними положительно:

$$\rho = \rho(F_1, F_2) > 0.$$

Покроем каждую точку  $\mathbf{x} \in F_1$  кубом  $\Delta_x$  c центром в  $\mathbf{x}$ , замкнутым или открытым, с диаметром меньшим, чем  $\rho/2$ , и выберем из этих кубов конечное их число все же нокрывающих  $F_1$ . Сумма этих кубов есть фигура  $\sigma_1'$ , покрывающая  $F_1$ . Подобным образом ностроим фигуру  $\sigma_2'$ , покрывающую  $F_2$ . Фигуры  $\sigma_1'$  и  $\sigma_2'$  очевидно не пересекаются. Теперь зададим  $\varepsilon > 0$  и подберем такие две фигуры  $\sigma_1''$ ,  $\sigma_2''$ , что

$$F_1 \subset \sigma_1'', F_2 \subset \sigma_2'', |\sigma_1''| \leqslant |\mu F_1| + \varepsilon, |\sigma_2''| \leqslant |\mu F_2| + \varepsilon.$$

Для фигур  $\sigma_1 = \sigma_1^{'}\sigma_1^{''}$  и  $\sigma_2 = \sigma_2^{'}\sigma_2^{''}$  очевидно выполняются те же соотношения

$$F_1 \subset \sigma_1, \quad F_2 \subset \sigma_2, \quad |\sigma_1| \leqslant \mu F_1 + \varepsilon, \ |\sigma_2| \leqslant \mu F_2 + \varepsilon$$

и, кроме того, они не пересекаются,

Так как  $\sigma_1 + \sigma_2$  — фигура, содержащая замкнутое множество  $F_1 + F_2$ , то

$$\mu(F_1 + F_2) \le |\sigma_1 + \sigma_2| = |\sigma_1| + |\sigma_2| \le \mu F_1 + \mu F_2 + 2\varepsilon.$$
 (9)

Теперь подберем фигуру  $\sigma \supset F_1 + F_2$  такую, что  $\mu(F_1 + F_2) + \varepsilon > |\sigma|$ , откуда

$$\mu(F_1 + F_2) + \varepsilon > |\sigma| \ge |\sigma(\sigma_1 + \sigma_2)| = |\sigma\sigma_1| + |\sigma\sigma_2| \ge \mu F_1 + \mu F_2, \quad (10)$$

где использован тот факт, что фигуры  $\sigma_1$  и  $\sigma_2$  не пересекаются и содержат в себе соответственно  $F_1$  и  $F_2$ . Учитывая, что  $\epsilon > 0$  произвольно, из (9) и (10) получаем (8).

Иемма 4. Если F и G,  $F \subset G$ ,— непустые множества, F — замкнутое ограничение, а G открытое не обязательно ограниченное, то существует фигура  $\sigma$  (замкнутая или открытая) такая, что

$$F \subseteq \sigma \subseteq G, \quad \mu F < |\sigma| < \mu G.$$
 (11)

Доказательство. Каждую точку  $\mathbf{x} \in F$  покроем кубами  $\Delta_{\mathbf{x}}^{(1)} \subset \Delta_{\mathbf{x}}^{(2)} \subset \Delta_{\mathbf{x}}^{(3)} \subset G$  с параллельными гранями и с центром в  $\mathbf{x}$ , длины ребер которых находятся в отпошении  $\delta_{\mathbf{x}}^{(1)} < \delta_{\mathbf{x}}^{(2)} < \delta_{\mathbf{x}}^{(3)}$ . При этом  $\Delta_{\mathbf{x}}^{(1)}$ — открытые кубы, а $\Delta_{\mathbf{x}}^{(2)}$ —замкнутые. По лемме Бореля существует копечное число кубов  $\Delta_{\mathbf{x}}^{(1)}$ , покрывающих F. Пусть это будут кубы  $\Delta_{\mathbf{x},1}^{(1)}$ , ...,  $\Delta_{\mathbf{x},N}^{(1)}$ . Тогда (замкнутая) фигура

$$\sigma = \sum_{h=1}^{N} \Delta_{x,h}^{(2)} \tag{12}$$

очевидно удовлетворяет требованиям (11), так же как открытая фигура, получаемая из  $\sigma$  выбрасыванием из пее ее границы. Надо

учесть, что  $\sigma$  строго внутри себя содержит  $\sum_{\mathbf{1}}^{n} \Delta_{\mathbf{x},\,h}^{(\mathbf{1})} \supset F$  и содер-

жится строго внутри  $\sum_{1}^{N} \Delta_{\mathbf{x},h}^{(3)} \subset G$ .

Иемма 5. Для замкнутого множества F, принадлежащего открытому ограниченному множеству G,

$$\mu(G - F) = \mu G - \mu F. \tag{13}$$

Доказательство. Открытые множества G и G'=G-F представим в виде сумм

$$G = \sum_h \Delta_h, \; G' = \sum \Delta_h', \; \mu G = \sum |\Delta_h|, \; \mu G' = \sum |\Delta_h'|$$

замкнутых кубов. Пусть  $\sigma \subset G$  — произвольная фигура, пекрывающая F. Тогда  $G = \sum \Delta_h \subset \sigma + \sum \Delta_h'$  и в силу леммы 1

$$\mu G = \sum |\Delta_k| \leq |\sigma| + \sum |\Delta'_k| = |\sigma| + \mu G'.$$

Отсюда, беря нижнюю грань правой части по всем  $\sigma \supset F$ , получим

$$\mu G \leqslant \mu F + \mu G'$$

С другой стороны, множества F и  $\sum_{k=1}^{N} \Delta_{k}'$  замкнуты и не пересекаются, и потому в силу лемм 1 и 4

$$\mu \mathit{F} + \sum_{1}^{\mathit{N}} |\Delta_{\mathit{h}}^{\prime}| = \mu \mathit{F} + \mu \sum_{1}^{\mathit{N}} \Delta_{\mathit{h}}^{\prime} = \mu \left(\mathit{F} + \sum_{1}^{\mathit{N}} \Delta_{\mathit{h}}^{\prime}\right) \leqslant \mu \mathit{G},$$

откуда

$$\mu F + \mu G' = \mu F + \sum_{1}^{\infty} |\Delta'_{h}| \leqslant \mu G,$$

и мы доказали (13).

 $\mathbf{H}$ усть теперь E есть произвольное (ограниченное) множество. По определению внутренняя лебегова мера Е есть верхняя

грань  $\mu_i E = \sup_{F \in E} \mu F$  лебеговых мер принадлежащих E замкнутых

множеств. Существование этой верхней грани вытекает из того, что E можно поместить в замкнутый куб  $\Delta$ , и тогда  $F \subset E \subset \Delta$ .

$$\mu F = m_e F \leqslant |\Delta|.$$

По определению внешняя лебегова мера Е есть пижияя грань  $\mu_e E = \inf \mu G$  лебеговых мер открытых мпожеств, содержащих E. Существование  $\mu_e E \ge 0$  очевидно, потому что  $\mu G \ge 0$ .

По определению мпожество E называется измеримым по Лебегу, если его внутренняя и внешняя меры равны между собой, и в этом случае число  $\mu E = \mu_i E = \mu_e E$  называется лебеговой мерой Eили мерой Е в смысле Лебега.

Имеют место неравенства

$$m_i E \leqslant \mu_i E \leqslant \mu_c E \leqslant m_c E$$
. (14)

Чтобы обосновать их, заметим, что жорданова внешняя мера  $m_c E$  может быть рассматриваема как нижняя грань объемов открытых фигур  $\sigma 
ightharpoonup E$ . Результат будет тот же, будем ли мы при вычислении внешней меры Жордана  $m_e E$  варьировать открытыми или замкнутыми  $\sigma \supset E$ . Но открытые  $\sigma \supset E$  суть частные случаи открытых множеств  $G \supset E$ , поэтому  $\mu_e E \leqslant m_e E$ . Внутреннюю меру Жордана  $m_i E$  мы уже будем рассматривнать как верхнюю грань объемов замкиутых  $\sigma \subseteq E$ , и так как такие  $\sigma$  суть частные случаи замкнутых множеств  $F \subset E$ , то  $m_i E \leqslant \mu_i E$ .

Из (14) следует, что если Е измеримо по Жордану, то Е изме-

римо и по Лебегу и  $mE = \mu E$ .

Теперь нетрудно видеть, что множества F и G измеримы в лебеговом смысле \*). Это следует из (14) и равенств \*\*)

$$m_iG = \mu G = \mu_e G$$
,  $\mu_iF = \mu F = m_e F$ .

В § 12.3 были рассмотрены важные примеры множеств жордановой, следовательно, и лебеговой, меры нуль.

T е о р е м а  $\ 1.$  Миожество  $\ E$  измеримо тогда и только тогда, когда для любого  $\ \varepsilon > 0$  существуют множества  $\ F,\ G$  такие, что

$$F \subset E \subset G, \quad \mu G - \mu F < \varepsilon.$$
 (15)

Доказательство. Из существования указанных множеств  $F,\ G$  следует, что

$$\mu F \leqslant \mu_i E \leqslant \mu_e E \leqslant \mu G$$
,

откуда  $\varepsilon > \mu_e E - m_i E$ , и так как  $\varepsilon > 0$  произвольно, то  $\mu_i E = \mu_e E$ . Наоборот, если E измеримо, то для любого  $\varepsilon > 0$  найдутся множества F и G такие, что

$$F \subset E \subset G$$
,  $\mu E - \frac{\varepsilon}{2} < \mu F \leqslant \mu E \leqslant \mu G < \mu E + \frac{\varepsilon}{2}$ ,

откуда выполняется (15).

Tеорема 2. Bместе с  $E_1$  и  $E_2$  измеримы по Лебегу также

их сумма, разность и пересечение.

Доказательство. Зададим  $\varepsilon > 0$  и подберем множества  $F_1$ ,  $F_2$ ,  $G_3$ ,  $G_4$ , так, чтобы выполнялись соотношения (см. теорему 1 и немму 5)

$$F_1 \subset E_1 \subset G_1, \ \mu G_1 - \mu F_1 = \mu (G_1 - F_1) < \varepsilon,$$
  
$$F_2 \subset E_2 \subset G_2, \ \mu G_2 - \mu F_2 = \mu (G_2 - F_2) < \varepsilon.$$

Отсюда

$$F_1 + F_2 \subset E_1 + E_2 \subset G_1 + G_2,$$

$$F_1 - G_2 \subset E_1 - E_2 \subset G_1 - F_2, F_1 F_2 \subset E_1 E_2 \subset G_1 G_2.$$
(16)

Теперь утверждения теоремы вытекают из следующих выкладок (пояснения ниже):

$$\begin{split} \mu(G_1+G_2) - \mu(F_1+F_2) &= \mu((G_1+G_2) - (F_1+F_2)) \leqslant \\ &\leqslant \mu((G_1-F_1) + (G_2-F_2)) \leqslant \mu(G_1-F_1) + \mu(G_2-F_2) < 2\epsilon, \\ \mu(G_1-F_2) - \mu(F_1-G_2) &= \mu((G_1-F_2) - (F_1-G_2)) \leqslant \\ &\leqslant \mu((G_1-F_1) + (G_2-F_2)) \leqslant \mu(G_1-F_1) + \mu(G_2-F_2) < 2\epsilon, \\ \mu(G_1G_2 - \mu F_1F_2) &= \mu(G_1G_2 - F_1F_2) \leqslant \mu(G_1(G_2-F_2)) + \\ &+ \mu(F_2(G_1-F_1)) \leqslant \mu(G_2-F_2) + \mu(G_1-E_1) < 2\epsilon. \end{split}$$

<sup>\*)</sup> Хотя множества F и G не обязательно измеримы по Жордану (см.  $\{0,7\}$ ).

<sup>\*\*)</sup> Ведь, например,  $\mu G_0 = m_i G_0$ ,  $\mu_e G_0 = \inf_{G = G_0} \mu G$ .

Первые соотношения (равенства) в этих цепях справедливы на основании леммы 5, если учесть, что правые части (16) суть открытые множества, а левые — замкнутые. Вторые соотношения (неравенства) в этих цепях следуют соответственно из леммы 2 и следующих множественных вложений \*):

a) 
$$G_1 + G_2 - (F_1 + F_2)$$
  
b)  $G_1 - F_2 - (F_1 - G_2)$   
c)  $G_1 - F_2 - (F_1 - G_2)$   
c)  $G_1 - F_2 - (F_1 - G_2)$ 

Заметим впрочем, что измеримость  $E_1E_2$  вытекает из измеримости  $E_1+E_2$  и  $E_1-E_2$ . Ведь если  $\Delta$  — куб, содержащий  $E_1+E_2$ , то

$$E_1E_2 = \Delta - [(\Delta - E_1) + (\Delta - E_2)].$$

Теорема 3. Если множества  $E_1$  и  $E_2$  измеримы по Лебегу и пересечение их пусто \*\*) ( $E_1E_2=0$ ), то

$$\mu(E_1 + E_2) = \mu E_1 + \mu E_2. \tag{17}$$

Доказательство. Зададим  $\varepsilon > 0$  и подберем множества  $F_1, F_2, G_1, G_2$  так, что

$$F_1 \subset E_1 \subset G_1$$
,  $F_2 \subset E_2 \subset G_2$ ,  
 $\mu E_1 - \varepsilon < \mu F_1$ ,  $\mu G_1 < \mu E_1 + \varepsilon$ ,  
 $\mu E_2 - \varepsilon < \mu F_2$ ,  $\mu G_2 < \mu E_2 + \varepsilon$ .

Так как  $F_1 + F_2 \subset E_1 + E_2 \subset G_1 + G_2$ , то (см. лемму 2)

$$\mu(E_1 + E_2) \leqslant \mu(G_1 + G_2) \leqslant \mu G_1 + \mu G_2 \leqslant \mu E_1 + \mu E_2 + 2\epsilon. \tag{18}$$

Далее,

$$\mu E_1 + \mu E_2 \le \mu F_1 + \mu F_2 + 2\varepsilon = \mu(F_1 + F_2) + 2\varepsilon \le \mu(E_1 + E_2) + 2\varepsilon$$
 (19) (ведь  $F_1$  и  $F_2$  замкнуты и  $F_1 F_2 = 0$ ; см. лемму 3).

Из (18), (19) в силу произвольности  $\varepsilon > 0$  вытекает (17),

<sup>\*)</sup> Чтобы доказать эти вложения обозначим через A, B соответственно их левую, правую части.

а) Пусть  $x\in A$ , тогда  $x\in G_1+G_2$  и одновременно  $x\notin F_1,\ x\notin F_2$ . Поэтому, если  $x\in G_1$ , то  $x\in G_1-F_1\subset B$ , а если  $x\in G_2$ , то  $x\in G_2-F_2\subset B$ . б) Пусть  $x\in A$ , тогда  $x\in G_1,\ x\notin F_2,\ x\notin F_1-G_2$ . Поэтому при  $x\in G_2$ 

б) Пусть  $x \in A$ , тогда  $x \in G_1$ ,  $x \notin F_2$ ,  $x \notin F_1 - G_2$ . Поэтому при  $x \in G_2$  имеем  $x \in G_2 - F_2 \subset B$ , а при  $x \notin G_2$  в силу условия  $x \notin F_1 - G_2$  придется заключить, что  $x \notin F_1$  и тогда  $x \in G_1 - F_1 \subset B$ .

в) Пусть  $x \in A$ , тогда  $x \in G_1G_2$ ,  $x \notin F_1F_2$ , т. е. во всяком случае верно

в) Пусть  $x \in A$ , тогда  $x \in G_1G_2$ ,  $x \notin F_1F_2$ , т. е. во всяком случае верно одно из соотношений  $x \notin F_1$ ,  $x \notin F_2$ . Если верно первое, то  $x \in G_1 - F_1 \subset F_2$ 

 $<sup>\</sup>subset B$ , если же второе, то  $x \in G_2 - F_2 \subset B$ .

\*\*) Равенство (17) верно и в случае, когда  $E_1E_2$  хотя и не пусто, по  $\mu(E_1E_2) = 0$ . Ведь тогда  $\mu(E_1 + E_2) = \mu(E_1 + (E_2 - E_1E_2)) = \mu E_1 + \mu(E_2 - E_1E_2) = \mu E_1 + \mu E_2 - \mu(E_1E_2) = \mu E_1 + \mu E_2$  (см. теорему 3 и далее теорему 4).

По индукции с помощью теорем 2 и 3 легко доказывается, что если  $e_1, \ldots, e_N$  — измеримые в лебеговом смысле попарно не пересекающиеся множества, то их сумма тоже измерима по Лебегу и

$$\mu(e_1+\ldots+e_N)=\mu e_1+\ldots+\mu e_N.$$

Теорема 4. Если  $E_1$  и  $E_2$  измеримы по Лебегу и  $E_1 \supset E_2$ , то  $\mu(E_1 - E_2) = \mu E_1 - \mu E_2. \tag{20}$ 

Доказательство. Измеримость  $E_1-E_2$  уже установлена в теореме 2. Само же по себе равенство (20) следует вз теоремы 3.

Теорема 5. Ограниченное множество

$$E = \bigcup_{k=1}^{\infty} e_k = e_1 + e_2 + e_3 + \dots, \tag{21}$$

где en измеримы по Лебегу и попарно не пересекаются, измеримо в лебеговом смысле и

$$\mu E = \sum_{k=1}^{\infty} \mu e_k, \tag{22}$$

Доказательство. Так как множество E ограничено, то для него имеют смысл его внутренняя и внешняя меры  $\mu_i E$ ,  $\mu_e E$ . Поэтому при любом натуральном N

$$\sum_{1}^{N}\mu e_{h}=\mu\left(\sum_{1}^{N}e_{h}\right)=\mu_{i}\left(\sum_{1}^{N}e_{h}\right)\leqslant\mu_{i}E$$

 $\left( \text{ведь } \sum_{1}^{N} e_{h} \subset E \right)$ . Отсюда следуют сходимость ряда (22) и неравенство

$$\sum_{1}^{\infty} \bar{\mu} e_h \leqslant \mu_i E. \tag{23}$$

С другой стороны, так как E ограничено, то можно считать, что оно принадлежит некоторому открытому кубу  $\Delta$ , и для всякого  $\varepsilon > 0$  и любого натурального k найдется множество  $G_{\mathbf{k}} \subset \Delta$  такое, что

$$e_h \subset G_h$$
,  $\mu G_h < \mu e_h + \varepsilon \cdot 2^{-h}$   $(k = 1, 2, \ldots)$ .

Отсюда в силу того, что  $\sum_{1}^{\infty} G_k \subset \Delta$  есть открытое множество, получим (см. лемму 2)

$$\mu_e E \leqslant \mu \left(\sum_{1}^{\infty} G_h\right) \leqslant \sum_{1}^{\infty} \mu G_h \leqslant \sum_{1}^{\infty} \mu e_h + \varepsilon \sum_{1}^{\infty} 2^{-h} = \sum_{1}^{\infty} \mu e_h + \varepsilon.$$

И так как  $\varepsilon > 0$  произвольно, то (см. 23))

$$\mu_e E \leqslant \sum_{1}^{\infty} \mu e_e \leqslant \mu_i E$$
.

Но тогда, учитывая, что  $\mu_i E \leq \mu_c E$ , мы доказали измеримость E и равенство (22).

Теореме 5 можно придать другую эквивалентную формули-

ровку.

 ${
m Teopema~6.}~\Pi y$ сть задана (неубывающая) последовательность измеримых множеств ,

$$E_1 \subset E_2 \subset E_3 \subset \ldots, E = \bigcup_{k=1}^{\infty} E_k,$$

сумма которых E ограничена. Тогда E — измеримое множество и  $\lim_{k\to\infty}\mu E_k=\mu E.$ 

Доказательство. Положим  $e_1 = E_1$ ,  $e_N = E_N - E_{N-1}$  ( $N = 2, 3, \ldots$ ), логда  $e_k$  измеримы, попарно не пересекаются и

$$\bigcup_{k=1}^{\infty} e_k = E.$$

Но тогда по теореме 5 множество Е измеримо и

$$\mu E_N = \mu \left( e_1 + \ldots + e_N \right) = \sum_{h=1}^N \mu e_h \to \mu E, \ N \to \infty.$$

Отметим еще одну теорему, сводящуюся к теоремам 6 и 4. Теорема 7. Пусть задана (невозрастающая) последовательность измеримых множеств:

$$E_1 \supset E_2 \supset \ldots, E = \bigcap_{k=1}^{\infty} E_k.$$

Tогда E измеримо и  $\mu E = \lim \mu E_n$ .

Доказательство. В самом деле,

$$E = \bigcap_{k=1}^{\infty} E_k = E_1 - \bigcup_{k=1}^{\infty} (E_1 - E_k),$$

и тогда (пояснения ниже)

$$\mu E = \mu E_1 - \mu \bigcup_{k=1}^{\infty} (E_1 - E_k) = \mu E_1 - \lim_{k \to \infty} \mu (E_1 - E_k) = \lim_{k \to \infty} \mu E_k.$$

Ведь множества  $E_1 - E_k \subset E_1$  измеримы и не убывают, и сумма их по теореме 6 измерима, а ее лебегова мера есть

$$\lim_{k\to\infty}\mu(E_1-E_k)=\mu E_1-\lim_{k\to\infty}\mu E_k.$$

При этом из существования предела слева следует существование предела справа.

Теорема 8. Конечная или счетная ограниченная сумма измеримых множеств  $E_1, E_2, \ldots$  измерима и

$$\mu\left(\bigcup_{k} E_{k}\right) \leqslant \sum_{k} \mu E_{k}. \tag{24}$$

Доказательство. Измеримость суммы (24) следует из. равенства

$$\bigcup_{b} E_{h} = E_{1} + (E_{2} - E_{1}) + (E_{3} - E_{1} - E_{2}) + \dots,$$
 (25)

где справа слагаемые — измеримые попарно не пересекающиеся множества. Далее, мы знаем, что мера множества слева в (25) в точности равна сумме мер множеств, входящих в ряд справа, но мера k-го такого множества, очевидно, не превышает  $\mu E_k$ , откуда следует (24).

Теорема 9. Пересечение конечного или счетного числа

измеримых множеств  $E_1, E_2, \dots$  измеримо.

Доказательство. Это следует из теорем 2 и 8, если учесть, что

$$\bigcap_{k} E_{k} = E_{1} - \bigcup_{k} (E_{1} - E_{k}).$$

Отметим, что множество, состоящее из одной точки (пространства  $R_n$ ), измеримо в жордановом и лебеговом смысле и имеет меру нудь. Счетное ограниченное множество (точек  $R_n$ ) на основании теоремы 5 есть измеримое множество по Лебегу (меры нуль), но, вообще говоря, не по Жордану. Например, множество  $\Delta'$  рациональных точек, принадлежащих кубу  $\Delta$ , имеет Лебегову меру нуль, но оно не измеримо в жордановом смысле. Множество точек  $\mathbf{x} = (x_1, \ldots, x_n) \in \Delta$ , не все координаты которых рациональны, имеет, очевидно, лебегову меру, равную  $|\Delta|$ .

Отметим еще, что если множество E измеримо по Жордану, то присоединение к нему его границы сохраняет меру ( $mE=m\bar{E}$ ), по это уже не так в случае лебеговой меры, папример, для рассмотренных выше множеств  $\Delta'$  и  $\Delta$  имеет место  $\mu\Delta'=0$ ,

 $\Delta = \overline{\Delta}', |\Delta| > 0.$ 

### § 19.2. Измеримые функции

Мы будем называть измеримые по Лебегу множества E ( $E \subset R_a$ ) просто измеримыми. Опи всегда ограничены.

Но определению функция  $f = f(\mathbf{x}) = f(x_1, \ldots, x_n)$  называется измеримой на множестве  $E \in (E \subset R_n)$ , если E измеримо.

f копечна \*) на E и для любого (действительного) числа A множество

$$\{x: x \in E, f(x) < A\} = \{f < A\}$$
 (1)

(точек  $\mathbf{x} \in E$ , где  $f(\mathbf{x}) < A$ ) измеримо.

Запись справа в (1) не выражает явно, что речь идет о точках  $\mathbf{x} \in E$ ,— это подразумевается. В этом духе надо понимать и другие подобные приводимые ниже записи.

Пусть A < B — произвольные числа. Имеют место очевидные

множественные равенства:

$$\{f \leqslant A\} = \bigcap_{k=1}^{\infty} \left\{ f < A + \frac{1}{k} \right\},\tag{2}$$

$$\{f = A\} = \{f \le A\} - \{f < \widetilde{A}\},$$
 (3)

$$\{A \leqslant f\} = E - \{f \leqslant A\},\tag{4}$$

$${A < f} = {A \le f} - {A = f},$$
 (5)

$${A < f < B} = {f < B} - {f \le A},$$
 (6)

$${A \le f < B} = {f < B} - {f < A},$$
 (7)

$$\{A \leqslant f \leqslant B\} = \{A \leqslant f \leqslant B\} + \{f = B\},\tag{8}$$

$$\{A < t \le B\} = \{A < t < B\} + \{t = B\}. \tag{9}$$

Измеримость f на E влечет измеримость любого из множеств, фигурирующих в левых частях этих неравенств. В самом деле, из измеримости каждого из множеств

$${f < A + \frac{1}{k}} = {x : x \in E, f(x) < A + \frac{1}{k}} (k = 1, 2, ...)$$

следует в силу (2) измеримость их пересечения, равного  $\{f \le A\}$ . Теперь уже измеримы уменьшаемое и вычитаемое в (3), поэтому измерима разность. Так постепенно доказываются (4), ..., (9).

Важно отметить, что измеримость любого из множеств (при произвольных A и B), фигурирующих в левых частях соотношений (2)-(9), кроме (3), влечет измеримость f на E (если E измеримо). Например, пусть известно, что E измеримо, и для любого числа A множество  $\{f\leqslant A\}$  измеримо. Тогда очевидно, что измеримо множество

$$\{f < A\} = \bigcup_{k=1}^{\infty} \left\{ f \leqslant A - \frac{1}{k} \right\}.$$

<sup>\*)</sup> Мы считаем, что  $f(\mathbf{x})$  для любого  $\mathbf{x} \in E$  есть число (конечное число). Случай, когда функции f разрешается принимать значения  $\pm \infty$  (или  $\infty$ ), интересен, когда f есть предел или верхний или нижний предел последовательности конечных на E функций. Этот случай разбирается ниже в теореме 2. Если в каком-либо вопросе удобно приписывать  $f(\mathbf{x})$ ,  $\mathbf{x} \in E$ , пе только конечные значения, но и бесконечные  $+\infty$ ,  $-\infty$  (или  $\infty$ ), то тогда естественно считать функцию f измеримой на E, если в отдельности измеримы множества  $\{f = +\infty\}$ ,  $\{f = -\infty\}$  {или  $f = \infty$ }, а на оставшейся части E конечная функция f измерима в уназанном выше смысле,

Или, например, пусть E измеримо и измеримы все множества  $\{A < f < B\}$ , каковы бы ни были A, B, A < B. Тогда множество

$$\{f < A\} = \bigcup_{k=1}^{\infty} \{A - k < f < A\}$$

измеримо как сумма счетного числа измеримых множеств.

Функция f, непрерывная на замкнутом ограниченном множестве F или открытом ограниченном множестве G, измерима на нем.

В самом деле, F и G измеримы. Кроме того, для любого A множество  $\{x: x \in F, f(x) \le A\}$  замкнуто и ограничено, следовательно, измеримо, а множество  $\{x: x \in G, f(x) < A\}$  открыто и ограничено, следовательно, измеримо.

Справедливы следующие утверждения:

Если  $e \subseteq E$  измеримо и f измерима на E, то f измерима и на e.

Ведь множество  $\{x: x \in e, f(x) < A\}$  есть пересечение двух измеримых множеств e и  $\{x: x \in E, f(x) < A\}$ .

Если f измерима на каждом из множеств  $e_k$   $(k=1, 2, \ldots)$  и сумма  $E=\sum_k e_k$  ограничена, то f также измерима на E.

Ведь E измеримо как ограниченная сумма измеримых  $e_{\bf a}$ . Кроме того, множество  $\{{\bf x}:\ {\bf x}\in E,\ f({\bf x})< A\}$  ограничено и есть сумма измеримых множеств  $\{{\bf x}:\ {\bf x}\in e_{\bf a},\ f({\bf x})< A\}$   $(k=1,\ 2,\ \ldots)$ .

Теорема 1. Вместе с f и ф измеримы на Е функции

1) 
$$f + \varphi$$
, 2)  $-\varphi$ , 3)  $f\varphi$ , 4)  $1/\varphi$ ,

в предположении в случае 4), что  $\varphi(x) \neq 0$  для всех  $\mathbf{x} \in E$ .

Доказательство. 1) Зададим число А. Имеет место равенство

$$\{f + \varphi < A\} = \bigcup_{r+\rho < A} \{f < r\} \{\varphi < \rho\},$$
 (10)

где сумма распространена на все пары рациональных чисел r,  $\rho$ , сумма которых меньше A. В самом деле, если  $\mathbf{x} \in E$ ,  $f(\mathbf{x}) < r$ ,  $\phi(\mathbf{x}) < \rho$ ,  $r + \rho < A$ , то  $f(\mathbf{x}) + \phi(\mathbf{x}) < A$  и правая часть (10) принадлежит к левой. Если же  $\mathbf{x} \in E$ ,  $f(\mathbf{x}) + \phi(\mathbf{x}) < A$  и  $\delta = A - f(\mathbf{x}) - \phi(\mathbf{x})$ , то существуют рациональные числа r и  $\rho$ , большие соответственно, чем  $f(\mathbf{x})$  и  $\phi(\mathbf{x})$ , на величину меньшую, чем  $\delta/2$ , и тогда  $f(\mathbf{x}) + \phi(\mathbf{x}) < r + \rho < A$ , т. е. левая часть (10) содержится в правой. Так как пары  $(r, \rho)$  рациональных чисел, для которых  $r + \rho < A$ , образуют счетное множество, то из измеримости f и  $\phi$  на E следует, что правая часть (10) есть измеримое множество, таким образом, и левая есть измеримое множество.

2) Следует из равенства  $\{-\phi < A\} = \{\phi > -A\}$ .

3) Пусть  $f(\mathbf{x})$ ,  $\varphi(\mathbf{x}) \geqslant 0$  для всех  $\mathbf{x} \in E$ . Если  $A \leqslant 0$ , то множество  $\{ / \varphi < A \}$  пусто, следовательно, измеримо. Пусть теперь

A>0. Если  $f(\mathbf{x}) < r$ ,  $\phi(\mathbf{x}) < \rho$ ,  $r\rho < A$ , то  $f(\mathbf{x})\phi(\mathbf{x}) < A$ . Наоборот, если  $f(\mathbf{x})\phi(\mathbf{x}) < A$ , то можно подобрать рациональные r,  $\rho > 0$  такие, что  $r\rho < A$  и  $f(\mathbf{x}) < r$ ,  $\phi(\mathbf{x}) < \rho$ . Поэтому

$$\{f\varphi < A\} = \bigcup_{\substack{r\rho < A \\ r, \rho > 0}} \{f < r\} \{\varphi < \rho\},$$
 (11)

и правая часть (11), а с ней и левая, измеримы,

Отсюда легко следует измеримость  $\{f\varphi < A\}$ , если каждая из функций f,  $\varphi$  сохраняет знак на E.

Общий случай сводится к указанным четырем путем пред-

ставления

$$\{f\varphi < A\} = \{f\varphi < A; \ f, \ \varphi \ge 0\} + \{f\varphi < A; \ f \ge 0, \ \varphi \le 0\} + \{f\varphi < A; \ f \le 0, \ \varphi \ge 0\} + \{f\varphi < A; \ f, \ \varphi \le 0\}.$$

4) Если  $\varphi(\mathbf{x}) > 0$  для всех  $\mathbf{x} \in E$ , то при  $A \le 0$  множество  $\{1/\varphi < A\}$  пусто, таким образом, измеримо, а при A > 0 это следует из равенства  $\{1/\varphi < A\} = \{1/A < \varphi\}$ . Подобным образом рассматривается случай, когда  $\varphi(\mathbf{x}) < 0$  на E. Общий случай сводится к этим двум путем представления

$$\left\{\frac{1}{\varphi} < A\right\} = \left\{\frac{1}{\varphi} < A; \, \varphi > 0\right\} + \left\{\frac{1}{\varphi} < A; \, \varphi < 0\right\}.$$

Теорема 2. Верхний предел последовательности  $f_n(x)$  измеримых на E конечных функций

$$\psi(\mathbf{x}) = \overline{\lim}_{n \to \infty} f_n(\mathbf{x}), \quad \mathbf{x} \in E, \tag{12}$$

есть функция, измеримая на E в смысле приведенного в ссылке в начале этого параграфа определения.

Доказательство. Множество E распадается на три попарно не пересекающиеся множества

$$E = E_0 + E_+ + E_-, \tag{13}$$

где

$$\psi\left(\mathbf{x}\right) = \begin{cases} \text{конечна на } E_{0i} \\ + \infty \text{ на } E_{+i} \\ - \infty \text{ на } E_{-i} \end{cases} \tag{14}$$

Пусть  $\psi(\mathbf{x})$  конечна на E (т. е.  $E_+ = E_- = 0$ ). Тогда для любого действительного числа A и натурального k имеют место вложения

$$\left\{\psi < A - \frac{1}{k}\right\} \subset \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{f_n < A - \frac{1}{k}\right\} \subset \left\{\psi \leqslant A - \frac{1}{k}\right\}. \quad (15)$$

Ведь если  $\mathbf{x} \in \left\{ \psi < A - \frac{1}{k} \right\}$ , то, в силу (12), для некоторого N

выполняется перавенство

$$f_n(x) < A - \frac{1}{k}, \ n \geqslant N, \tag{16}$$

и потому

$$\mathbf{x} \in \bigcap_{n=N}^{\infty} \left\{ f_n < A - \frac{1}{k} \right\}. \tag{17}$$

Тем более х принадлежит множеству, стоящему в середине цепи (15). Далее, если х принадлежит этому последнему множеству, то для некоторого N для него выполняется (17), т. е. (16), и так как имеет место (12), то  $\psi(\mathbf{x}) \leqslant A - \frac{1}{k}$ , и мы доказали, что х принадлежит множеству, стоящему в правой части (15).

Легко видеть, что (см. (15))

$$\{\psi < A\} = \bigcup_{k} \left\{ \psi < A - \frac{1}{k} \right\} = \bigcup_{k} \left\{ \psi \leqslant A - \frac{1}{k} \right\} =$$

$$= \bigcup_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ f_n < A - \frac{1}{k} \right\}. \quad (18)$$

Но вследствие измеримости функций  $f_n$  на E правая часть (18)—измеримое множество, значит, и левая—измеримое множество.

Перейдем к общему случаю, когда  $E_+$ ,  $E_-$ , вообще говоря, пенусты. Для  $x \in E_-$ 

$$\overline{\lim}_{n\to\infty} f_n(\mathbf{x}) = \lim_{n\to\infty} f_n(\mathbf{x}) = -\infty, \tag{19}$$

откуда следует равенство

$$E_{-} = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{f_n < -k\},\tag{20}$$

показывающее, что  $E_-$  измеримо. В самом деле, если  $\mathbf{x} \in E_-$ , то для любого натурального k найдется натуральное N такое, что

$$f_n(\mathbf{x}) < -k, \quad n \geqslant N \tag{21}$$

т. е.

$$\mathbf{x} \in \bigcap_{n=-N}^{\infty} \{ f_n < -k \}, \tag{22}$$

тем более

$$\mathbf{x} \in \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{ f_n < -k \}, \tag{23}$$

и так как этот факт имеет место при любом k, то  $\mathbf{x}$  принадлежит правой части (20). Наоборот, из принадлежности  $\mathbf{x}$  правой части (20) следует, что при любом k имеет место (23), а при некотором N-и (22), т. е. (21), таким образом, (19), и правая часть (20) принадлежит левой.

Наконец, имеет место равенство

$$E_{+} = \bigcap_{k=1}^{\infty} \bigcap_{s=1}^{\infty} \bigcup_{n=s}^{\infty} \{f_{n} > k\}, \tag{24}$$

показывающее, что  $E_+$  измеримо. Действительно, если  $\mathbf{x} \in E_+$ , тодля любого k найдется N такое, что

$$f_n(\mathbf{x}) > k \tag{25}$$

для бесконечного числа значений n > N, тогда

$$\mathbf{x} \in \bigcap_{n=1}^{\infty} \bigcup_{n=1}^{\infty} \{f_n > k\} \tag{26}$$

для любого k, т. е. х принадлежит правой части (24). Наоборот, если имеет место это последнее свойство, то справедливо и (26) при любом k, поэтому при любом k выполняется неравенство (25) для бесконечного числа значений n, т. е. х  $\subseteq E_+$ .

Итак,  $E_+$  и  $E_-$  измеримы, но тогда  $E_0=E-E_+-E_-$  измеримо, и так как функция  $\psi$  на  $E_0$  конечна, то  $\psi$  измерима в смысле введенного выше определения, и теорема доказана.

Замечание. В теореме 2 можно верхний предел заменить на нижний предел, потому что

$$\varphi\left(\mathbf{x}\right) = \lim_{n \to \infty} f_n\left(\mathbf{x}\right) = -\overline{\lim}_{n \to \infty} \left(-f_n\left(\mathbf{x}\right)\right).$$

а функции h(x) и -h(x) измеримы одновременно.

Пусть  $E_0$  имеет прежний смысл, а  $E_0'$  — множество, где  $\phi$  конечна. Функция  $\psi(\mathbf{x}) - \phi(\mathbf{x})$  измерима на множестве  $E_0 E_0'$ , из которого можно выделить важное измеримое подмножество

$$E_* = \{ \psi(\mathbf{x}) - \varphi(\mathbf{x}) = 0 \}$$

точек  $x \in E$ , для которых существует конечный предел

$$\lim_{n\to\infty}f_n(\mathbf{x})=\varphi(\mathbf{x})=\psi(\mathbf{x}).$$

Определение. Последовательность конечных измеримых на E функций  $f_h$  сходится к измеримой на E функции f по мере, если для любого  $\delta > 0$  мера множества

$$e_b = \{ \mathbf{x} \in E : |f(\mathbf{x}) - f_b(\mathbf{x})| > \delta \}$$
 (27)

стремится к нулю ( $\mu e_k \to 0, k \to \infty$ ).

Теорема 3. Если последовательность конечных измеримых на E функций  $f_k$  сходится на E к конечной функции f, то она сходится также  $\kappa$  f по мере.

Доказательство. В самом деле, если бы это было не так, то для некоторого  $\delta > 0$  нашлись бы число  $\lambda > 0$  и последо-

вательность индексов  $k_1, k_2, \ldots$  такие, что  $\mu e_{k_1} \geqslant \lambda$ . Положим

$$e=\bigcap_{s=1}^{\infty}(e_{h_s}+e_{h_{s+1}}+\ldots),$$

тогда

$$\mu e = \lim_{s \to \infty} \mu(e_{h_s} + e_{h_{s+1}} + \dots) \geqslant \lim_{s \to \infty} \mu e_{h_s} \geqslant \lambda,$$

и, таким образом, e — непустое множество. Но точка  $\mathbf{x} \in e$  принадлежит, очевидно, бесконечной последовательности множеств  $e_{v_1}, e_{v_2}, e_{v_3}, \ldots (v_1 < v_2 < \ldots)$ , и потому

$$|f_{\mathbf{v}_{\delta}}(\mathbf{x}) - f(\mathbf{x})| > \delta.$$

Но это противоречит тому, что

$$\lim_{k\to\infty}f_k(\mathbf{x})=f(\mathbf{x}).$$

Теорема 4. Функция f, интегрируемая по Риману на множестве E, измерима по Лебегу на E.

Доказательство. Условие теоремы автоматически влечет измеримость E по Жордану, поэтому и измеримость по Лебегу. Пусть E'' — мпожество точек непрерывности f. По теореме Лебега (см. §§ 12.8 и 12.10)  $\mu E'' = \mu E$ . Зададим  $\varepsilon > 0$  и определим для любого натурального k замкнутые множества  $F_k \subset E''$  так, что  $\mu F_k > \mu E - \varepsilon \cdot 2^{-k}$  ( $F_k \subset F_{k+1}$ ). Функция f непрерывна на множестве  $F_k$ , следовательно, измерима на нем. Определим функции

$$f_{k} = \begin{cases} f, & \mathbf{x} \in F_{k}, \\ 0, & \mathbf{x} \in E - F_{k}, \end{cases}$$

которые очевидно измеримы на E. Имеем

$$\lim_{h\to\infty} f_h(\mathbf{x}) = f(\mathbf{x}) \text{ Ha } E' = \bigcup_h F_h, \mu E' = \mu E''.$$

Следовательно, f измерима на E', и так как  $E' \subseteq E'' \subseteq E$ ,  $\mu(E-E')=0$ , то f измерима и на E.

Теорема 5. Если функция f измерима и положительна на множестве E положительной меры, то найдутся положительное число  $\lambda$  и множество  $e \subseteq E$  положительной меры, на котором  $f(\mathbf{x}) \geqslant \lambda$ .

Доказательство. В самом деле, зададим множества

$$e_0 = \{ \mathbf{x} : \mathbf{x} \in E, \ 1 \le f \}, \ e_k = \{ \mathbf{x} : \mathbf{x} \in E_c \frac{1}{k+1} \le f < \frac{1}{k} \}, \ k=1, 2, \ldots, \}$$

очевидно попарно не пересекающиеся и такие, что

$$E = \sum_{n=0}^{\infty} e_{n}, \ \mu E = \sum_{n=0}^{\infty} \mu e_{n}.$$

Так как  $\mu E>0$ , то пайдется k, для которого  $\mu e_k>0$ . Для этого k можно положить  $e=e_k$ ,  $\lambda=1/(k+1)$ , чтобы удовлетворить теореме.

### § 19.3. Интеграл Лебега

Последовательность действительных чисел с двумя входами  $\ldots < p_{-2} < p_{-1} < p_0 < p_1 < p_2 < \ldots, p_k \to \infty, p_{-k} \to -\infty, k \to +\infty,$  (1)

удовлетворяющую условию

$$\sup_{h} (p_{k+1} - p_k) = \delta_R < \infty, \tag{2}$$

будем называть разбиением R (действительной оси).

Пусть на (измеримом) множестве E (пространства  $R_n$ ) задана измеримая конечная функция f. Введем множества (измеримые)

$$e_k = \{ \mathbf{x} : \ \mathbf{x} \in E, \ p_k \leq f(\mathbf{x}) < p_{k+1} \} = \{ p_k \leq f(\mathbf{x}) < p_{k+1} \},$$
  
 $k = 0, \pm 1, \pm 2, \dots$ 

и два ряда (с двумя входами)

$$\underline{S}_{R}(f) = \sum_{-\infty}^{\infty} p_{h} \mu e_{h} = \sum_{k} p_{k} \mu e_{k}, \ \overline{S}_{R}(f) = \sum_{-\infty}^{\infty} p_{k+1} \mu e_{k} = \sum_{k} p_{k+1} \mu e_{k},$$
 (3)

называемые соответственно нижней и верхней (лебеговыми) интегральными суммами f (соответствующими разбиению R).

Условимся считать, что  $S_R(f)$  и  $\overline{S}_R(f)$  суть обозначения указанных рядов, а если эти ряды сходятся\*), то пусть  $S_R(f)$  и  $\overline{S}_R(f)$  обозначают также суммы этих рядов (числа).

Если f— ограниченная функция на E, то для достаточно больших N все множества  $e_k$  с |k| > N— пустые и ряды (3) представляют собой конечные суммы. Другое дело, если f не ограничена на E, тогда ряды (3) могут сходиться и расходиться.

Лебег доказал, что если для какого-либо разбиения R один из двух рядов (3) сходится, то сходится и другой; мало того, эти ряды тогда уже автоматически сходятся для любого другого разбиения R и существуют конечные пределы

$$\lim_{\delta_R \to 0} \underline{S}_R(f) = \lim_{\delta_R \to 0} \overline{S}_R(f) = \int_E f(\mathbf{x}) d\mathbf{x}, \tag{4}$$

сходятся (абсолютно сходятся) отдельно ряды  $\sum_{-\infty}^{-1} u_h$  и  $\sum_{0}^{\infty} u_h$ . Сумма

их сумм называется суммой ряда  $\sum_{-\infty}^{\infty} u_k$ . В силу свойства (1) и того обстоятельства, что  $\mu e_k \geqslant 0$ , ряды (3), если сходятся, то абсолютно,

<sup>\*)</sup> Ряд  $\sum_{-\infty}^{\infty}u_k$  по определению сходится (абсолютно сходится), если

равные одному и тому же числу, которое мы называем интегралом Лебега от функции f на множестве E.

Таким образом, в частности, существует интеграл Лебега от

любой измеримой ограниченной на Е функции.

Первый член цепи (4), так же как второй, есть определение\*) интеграла Лебега от f на E, третий же есть обозначение интеграла Лебега. Оно не отличается от обозначения интеграла Римана. Путаницы здесь не происходит, потому что, если функция f интегрируема на E в римановом смысле или даже абсолютно интегрируема в несобственном римановом смысле, то она интегрируема и в смысле Лебега, причем оба интеграла равны между собой. Впрочем, если несобственный интеграл Римана от f на E хотя и сходится, по не абсолютно, то f не интегрируема на E по Лебегу, и в этом только случае могут нотребоваться нояснения, чтобы избежать путаницы.

Эти утверждения будут обоснованы и будут даны еще два других эквивалентных определения интеграла Лебега, одно из которых мы сформулируем уже сейчас.

Будем называть функцию  $\phi$  ступенчатой на измеримом миожестве E (с конечным или счетным числом ступенек), если она определена равенствами

$$\varphi(\mathbf{x}) = c_i, \quad x \in \alpha_i, \quad j = 1, 2, \ldots, \tag{5}$$

где.  $c_i$  — постоянные (действительные) числа и  $\alpha_i$  — измеримые попарно не пересекающиеся множества, сумма которых равна E.

Ступепчатая функция ф называется интегрируемой в лебего-

вом смысле, если ряд

$$\sum_{j} c_{j} \mu \alpha_{j} = \int_{E} \varphi(x) dx$$
 (6)

абсолютно сходится. Его сумма называется интегралом Лебега и обозначается, как указано в (6).

По второму определению функция f называется интегрируемой по Лебегу на E, если существует последовательность ступенчатых интегрируемых (в смысле (6)) на E функций  $f_k(\mathbf{x})$ , равномерно сходящаяся к  $f(\mathbf{x})$  на E. Доказывается, что при этом автоматически существует предел

$$\lim_{h \to \infty} \int_{E} f_{h}(\mathbf{x}) d\mathbf{x} = \int_{E} f(\mathbf{x}) d\mathbf{x}, \tag{7}$$

не зависящий от указанной последовательности  $\{f_k\}$ , называемый интегралом Лебега от f на E (слева в (7) интеграл  $\int\limits_E f_k dx$  попимается в смысле (6)).

<sup>\*)</sup> В дальнейшем возникнут и другие определения, эквивалентные приведенному. При сравнении их между собой будем считать данное определение первым.

Эквивалентность первого и второго определений интеграла Лебега будет доказана ниже. Она заключается в том, что если функция f удовлетворяет одному из них, то она удовлетворяет и другому, и соответствующие пределы (4) и (7) равны между собой.

Иптегрируемые \*) по Лебегу функции называют еще суммируемыми. Более детальная терминология, которой придерживал-

ся сам Лебег, заключается в следующем.

Только ограниченные измеримые на E функции Лебег называл интегрируемыми на E. Для каждой из них существуют (числа) конечные суммы  $S_R(f)$ ,  $\bar{S}_R(f)$ , каково бы ни было разбиение R, и существует конечный предел (4) — интеграл Лебега от f на E. Таким образом, вычисление интеграла Лебега от ограниченной измеримой функции сводится к одному пределу (при  $\delta_R \to 0$ ).

Что же касается неограниченных функций, для которых существуют пределы (4), то именно их Лебег назвал суммируемыми, чтобы нодчеркнуть, что для их определения требуется двойной переход к пределу, во-нервых, при вычислении сумм бесконечных рядов  $S_R(f)$ ,  $S_R(f)$ , а во-вторых, при нахождении пределов (4).

В связи с этим можно сказать, что интеграл Лебега от неограниченной функции есть несобственный интеграл, при этом естественно считать, что это абсолютно сходящийся несобственный интеграл.

Прежде чем перейти к обоснованию высказанных утверждений, остановимся на некоторых свойствах ступенчатых функций.

Произвольная ступенчатая на Е функция

$$\varphi(\mathbf{x}) = c_i, \quad \mathbf{x} \in \alpha_i, \quad \sum \alpha_i = E, \quad \alpha_i \alpha_j = 0 \ (i \neq j)$$
 (8)

измерима па E, потому что для любого действительного числа A множество

$$\{ \varphi < A \} = \sum_{c_i < A} \alpha_i$$

измеримо как конечная или счетная сумма измеримых множеств.

Определение интегрируемой (в смысле (6)) ступенчатой функции  $\phi$  и величина ее интеграла не зависит от способа ее задания. Если, например, функция  $\phi$  задана еще при помощи равенств  $\phi$  ( $\mathbf{x}$ ) =  $c_j$ ,  $\mathbf{x} \in \alpha_j$ ,  $\sum_j \alpha_j' = E$ ,  $\alpha_i' \alpha_j' = 0$  ( $i \neq j$ ), то тем самым

автоматически выполняются условия

$$c_i \mu (\alpha_i \alpha_i') = c_i' \mu (\alpha_i \alpha_i'),$$
 (9)

<sup>\*)</sup> Впрочем, понятие интегрируемости (суммируемости) будет далее распространено на функции, конечные почти всюду на E. Пока мы рассматриваем функции, конечные всюду на E.

потому что либо  $\mu(\alpha_i\alpha_j')=0$ , либо, если для данной нары (i,j) вто не так, то найдется  $\mathbf{x} \in \alpha_i\alpha_j'$ , и тогда для него  $\phi(\mathbf{x})=c_i=c_j'$ . Поэтому, если ряд  $\sum_j c_i\mu\alpha_i$  абсолютно сходится то, сходятся также абсолютно следующие ряды, имеющие ту же сумму (поясиения ниже):

$$\sum_{i} c_{i} \mu \alpha_{i} = \sum_{i} \sum_{j} c_{i} \mu \left( \alpha_{i} \alpha_{j}' \right) = \sum_{j} \sum_{i} c_{j}' \mu \left( \alpha_{i} \alpha_{j}' \right) = \sum_{j} c_{j}' \mu \alpha_{j}'$$

(см. § 11.9). Абсолютная сходимость кратного ряда во втором члене цепи и первое равенство следуют из абсолютной сходимости ряда в первом члене и того факта, что  $|c_i\mu\alpha_i|=\sum_i|c_i\mu\left(\alpha_i\alpha_j'\right)|$ .

Второе равенство цепи верно, потому что в кратном абсолютно сходящемся ряду индексы i и j законно переставить местами, и имеет место (9). Третье же равенство цепи объясняется так же, как первое.

Если, кроме функции ф, определенной равенствами (8), задана еще другая ступенчатая функция

$$\psi(\mathbf{x}) = d_j, \quad \mathbf{x} \in \beta_j, \quad \sum_j \beta_j = E, \quad \beta_j \beta_s = 0 \ (j \neq s),$$

то часто удобно унифицировать их задания, считая, что

$$\varphi(\mathbf{x}) = c_i, \quad \mathbf{x} \in \alpha_i \beta_j, \quad \psi(\mathbf{x}) = d_j, \quad \mathbf{x} \in \alpha_i \beta_j.$$

Тогда измеримые множества  $\alpha_i \beta_j$  попарио не пересекаются, и их сумма равна E (конечно, пустое множество не пересекается с любым множеством).

Очевидно также, что если  $\phi$  и  $\psi$  интегрируемы и A и B — действительные числа, то интегрируема также ступенчатая функция

$$A\varphi(\mathbf{x}) + B\psi(\mathbf{x}) = Ac_i + Bd_j, \mathbf{x} \in (\alpha_i, \beta_i),$$

и выполняются равенства

$$\int_{\mathbf{E}} (A\varphi + B\psi) d\mathbf{x} = \sum_{i} \sum_{j} (Ac_{i} + Bd_{j}) \, \mu \, (\alpha_{i}\beta_{j}) =$$

$$= A \sum_{i} c_{i} \sum_{j} \mu \, (\alpha_{i}\beta_{j}) + B \sum_{j} d_{j} \sum_{i} \mu \, (\alpha_{i}\beta_{j}) =$$

$$= A \sum_{i} c_{i}\mu\alpha_{i} + B \sum_{j} d_{j}\mu\beta_{j} = A \int_{\mathbf{E}} \varphi \, dx + B \int_{\mathbf{E}} \psi \, dx. \quad (10)$$

Далее, если  $\phi$  и  $\psi$ — ступенчатые функции, удовлетворяющие перавенству  $\phi(\mathbf{x}) \leqslant \psi(\mathbf{x})$ , то  $c_i \mu(\alpha_i \beta_j) \leqslant d_j \mu(\alpha_i \beta_j)$ , и потому, если  $\phi$  и  $\psi$  интегрируемы, то

$$\int_{E} \varphi \, d\mathbf{x} \leqslant \int_{E} \psi \, d\mathbf{x} \qquad (\varphi \, (\mathbf{x}) \leqslant \psi \, (\mathbf{x})), \tag{11}$$

а если  $\phi(x) \ge 0$  и ф интегрируема, то автоматически интегрируема ф.

Заметим, что для интегрируемой ступенчатой функции ф вы-

полняется неравенство (см. (6))

$$\left|\int_{E}^{c} \varphi \, d\mathbf{x}\right| = \left|\sum_{k} c_{k} \mu e_{k}\right| \leqslant \sum_{k} |c_{k}| \mu e_{k} = \int_{E} |\varphi| \, d\mathbf{x}.$$

Важно отметить также, что если ступенчатая функция  $\phi$  ограничена ( $|c_i| \leq M$ ), то она интегрируема, и для ее интеграла выполняется перавенство

$$\left| \int_{E} \varphi \, d\mathbf{x} \right| \leqslant \int_{E} |\varphi| \, d\mathbf{x} \leqslant \sum_{h} |c_{h}| \, \mu e_{h} \leqslant M \mu E. \tag{12}$$

Обратим внимание на следующий важный для дальнейшего факт. Пусть на E задана измеримая функция f и для некоторого разбиения R действительной оси введены множества

$$e_k = \{p_k \le f(\mathbf{x}) < p_{k+1}\}, k = 0, \pm 1, \pm 2, \dots$$

С помощью их ностроим две ступенчатые функции, называемые нижней и верхней для f, соответствующей разбиению R:

$$f_R(\mathbf{x}) = p_h, \quad \mathbf{x} \in e_h, \quad f_R(\mathbf{x}) = p_{h+1}, \quad \mathbf{x} \in e_h.$$

Очевидно, что  $f_R(\mathbf{x}) \leqslant f(\mathbf{x}) < \bar{f}_R(\mathbf{x})$  и (см. (2))

$$|\bar{f}_R(\mathbf{x}) - f_R(\mathbf{x})| \leq \delta_R$$

для всех  $\mathbf{x} \in E$ , поэтому также

$$|f(\mathbf{x}) - \underline{f}_R(\mathbf{x})| \leq \delta_R, |f(\mathbf{x}) - \overline{f}_R(\mathbf{x})| < \delta_R.$$

Отсюда следует, что как нижняя, так и верхняя функции (соответствующие разбиению R) стремятся к  $f(\mathbf{x})$  равномерно на E при  $\delta_R \to 0$ :

$$\lim_{\delta_R \to 0} f_R(\mathbf{x}) = \lim_{\delta_R \to 0} f_R(\mathbf{x}) = f(\mathbf{x}),$$

какова бы ни была функция f, измеримая на E.

Заметим, что функции  $\underline{f}_R(x)$  и  $\overline{f}_R(x)$  интегрируемы (в смысле (6)) если соответствующие им ряды, т. е. нижияя и верхияя интегральные суммы

$$\underline{S}_{R}(f) = \sum_{h} p_{h} \mu e_{h} = \int_{E} \underline{f}_{R}(\mathbf{x}) dx,$$

$$\overline{S}_{R}(f) = \sum_{h} p_{h+1} \mu e_{h} = \int_{E} \overline{f}_{R}(\mathbf{x}) d\mathbf{x}$$

абсолютно сходятся.

В связи с этим сформулированное выше предложение Лебега, которое доказывается ниже в теореме 1, можно переформулировать еще следующим образом: если для какого-либо разбиения R одна из ступенчатых функций  $f_R(\mathbf{x})$  или  $f_R(\mathbf{x})$  интегрируема на E (в смысле (6)), то интегрируема и другая, мало того, тогда все такие функции для любого R интегрируемы на E и существуют пределы

$$\lim_{\delta_R\to 0}\int_E f_R(\mathbf{x})\,d\mathbf{x} = \lim_{\delta_R\to 0}\int_E \overline{f}_R(\mathbf{x})\,d\mathbf{x} = \int_E f(\mathbf{x})\,d\mathbf{x},$$

равные одному и тому же числу, называемому интегралом Лебега от f на E.

T е о р е м а 1. II усть f измерима на E и для некоторого разбиения R действительной оси сходится одна из сумм (3), ниж-

няя\_или верхняя.

Тогда сходится к тому же пределу и другая сумма, так же как сходятся подобные суммы для любого другого разбиения R'. Кроме того, существуют равные пределы (4).

Доказательство. Введем нижнюю и верхнюю ступенчатые функции для разбиения *R* 

$$\underline{f_R}(\mathbf{x}) = p_k, \quad \mathbf{x} \in e_k = \{p_k \leq f(\mathbf{x}) < p_{k+1}\},$$

$$\overline{f_R}(\mathbf{x}) = p_{k+1}, \quad \mathbf{x} \in e_k,$$

где  $p_k$  — точки R, и еще пижнюю ступенчатую функцию  $f_{R'}$  (x), соответствующую какому-либо другому разбиению R'.

Допустим для определенности, что именно ряд  $S_R(f)$  сходится. Так как он автоматически сходится абсолютно, то существует интеграл на E от  $f_R(\mathbf{x})$  (в смысле (6)), равный

$$\underline{S}_{R}(f) = \sum_{k} p_{k} \mu e_{k} = \int_{E} \underline{f}_{R}(\mathbf{x}) d\mathbf{x}.$$

По в силу перавенств

$$\left| f_{R}(\mathbf{x}) - \underline{f}_{R}(\mathbf{x}) \right| \leq \delta_{R},$$

$$\left| \underline{f}_{R'}(\mathbf{x}) - \underline{f}_{R}(\mathbf{x}) \right| \leq \left| \underline{f}_{R'}(\mathbf{x}) - f(\mathbf{x}) \right| + \left| f(\mathbf{x}) - \underline{f}_{R}(\mathbf{x}) \right| < \delta_{R'} + \delta_{R},$$

ступенчатые функцин  $f_R(\mathbf{x}) - f_R(\mathbf{x})$  и  $f_{R'}(\mathbf{x}) - f_R(\mathbf{x})$  ограничены и потому интегрируемы. Но тогда интегрируема функция (как сумма двух ступенчатых интегрируемых функций)

$$f_R(\mathbf{x}) = \underline{f}_R(\mathbf{x}) + [\overline{f}_R(\mathbf{x}) - \underline{f}_R(\mathbf{x})],$$

так же как функция

$$\underline{f}_{R'}(\mathbf{x}) = \underline{f}_{R}(\mathbf{x}) + [\underline{f}_{R'}(\mathbf{x}) - \underline{f}_{R}(\mathbf{x})],$$

т. е. имеют смысл числа  $\bar{S}_R(f)$  и  $\underline{S}_{R'}(\mathbf{x})$ . Этим первая часть теоремы показана.

Далее, выполняется условие Кони (см. (12))

$$\left| \underline{S}_{R} \left( f \right) - \underline{S}_{R'} \left( f \right) \right| \leqslant \int_{E} \left| f_{R} \left( x \right) - \underline{f}_{R'} \left( x \right) \right| dx \leqslant$$

$$\leqslant \left( \delta_{R} + \delta_{R'} \right) \mu E \to 0 \qquad (\delta_{R}, \, \delta_{R'} \to 0),$$

и мы убедились в существовании нервого предела (4).

Наконец,

$$|\overline{S}_R(f) - S_R(f)| = \int_E |\overline{S}_R(\mathbf{x}) - S_R(\mathbf{x})| d\mathbf{x} \leqslant \delta_R \mu E \to 0$$
  $(\delta_R \to 0),$ 

поэтому существует также равный первому второй предел (4), и теорема доказана.

Выше было приведено второе определение понятия интеграла Лебега, основанное на приближении интегрируемой функции произвольными ступенчатыми интегрируемыми функциями, не обязательно нижними или верхними. Оно вытекает из следующей теоремы:

Теорема 2. Функция f интегрируема по Лебегу на E тогда и только тогда, когда возможно определить равномерно сходящуюся  $\kappa$  ней на E последовательность интегрируемых ступенчатых функций  $\lambda_k(\mathbf{x})$  ( $k=1,\ 2,\ \ldots$ ). При этом автоматически окажется, что

$$\lim_{k\to\infty}\int_{E}\lambda_{k}(\mathbf{x})\,d\mathbf{x}=\int_{E}f\,d\mathbf{x}.$$

Таким образом, этот предел не зависит от индивидуальной последовательности  $\{\lambda_n\}$ .

Доказательство. В самом деле, пусть функция f интегрируема по Лебегу на E и  $f_{R_m}(\mathbf{x})$  — нижняя ее ступенчатая функция, соответствующая разбиению  $R_m$  с  $\delta_{R_m} < 1/m$  ( $m = 1, 2, \ldots$ ). Тогда

$$\left| f_{R_m}(\mathbf{x}) - f(\mathbf{x}) \right| < \frac{1}{m} \to 0, \quad m \to \infty,$$

т. е. последовательность  $f_{R_m}(\mathbf{x})$  равномерно на E сходится к  $f(\mathbf{x})$  и, кроме того, как мы знаем из теоремы 1,

$$\int_{E} f_{R_{m}}(\mathbf{x}) d\mathbf{x} = S_{R_{m}}(f) \to \int_{E} f d\mathbf{x} \qquad (m \to \infty).$$

Этим доказано для любой интегрируемой по Лебегу функции f, что если положить  $\lambda_m(\mathbf{x}) = f_{R_m}(\mathbf{x})$ , то будут удовлетворяться требования, указанные в теореме.

Наоборот, если последовательность ступенчатых интегрируемых на E (в смысле (6)) функций  $\lambda_m(\mathbf{x})$  равномерно на E сходится к некоторой функции  $f(\mathbf{x})$ , т. е.

$$|\lambda_m(\mathbf{x}) - f(\mathbf{x})| < \varepsilon_m \to 0, \quad m \to \infty$$

( $\varepsilon_m$  не зависят от  $\mathbf{x} \in E$ ), то f измерима и конечна на E (см. § 19.2, теорема 2) и ее определенная, как выше, нижняя ступенчатая функция  $f_{R_m}(\mathbf{x})$  тоже равномерно сходится к f:

$$|f(\mathbf{x}) - \underline{f}_{R_m}(\mathbf{x})| < \frac{1}{m} \to 0, \quad m \to \infty.$$

Отсюда

$$\left|\lambda_{m}(\mathbf{x}) - \underline{f}_{R_{m}}(\mathbf{x})\right| < \left|\lambda_{m}(\mathbf{x}) - f(\mathbf{x})\right| + \left|f(\mathbf{x}) - \underline{f}_{R_{m}}(\mathbf{x})\right| \leq \varepsilon_{m} + \frac{1}{m} \to 0, \quad m \to \infty, \quad (13)$$

При любом m функция  $f_{R_m}(\mathbf{x})$  интегрируема (в смысле (6)), нотому что она представляется как сумма

$$\underline{f}_{R_m}(\mathbf{x}) = \lambda_m(\mathbf{x}) + (\underline{f}_{R_m}(\mathbf{x}) - \lambda_m(\mathbf{x}))$$

двух ступенчатых интегрируемых функций. Ведь  $\lambda_m$  интегрируема по условию, а  $f_{R_m} - \lambda_m$  ограничена. Но интегрируемость  $f_{R_m}$  (в смысле (6)) выражает существование нижней интегральной суммы f для разбиения  $R_m$ , и в силу теоремы 1 можно заключить, что наша функция интегрируема по Лебегу на E и что

$$\int_{\mathbf{E}} \underline{f}_{R_m}(\mathbf{x}) d\mathbf{x} = \underline{S}_{R_m}(f) \to \int_{\mathbf{E}} f d\mathbf{x},$$

где слева стоит интеграл от ступенчатой функции  $f_{R_m}(\mathbf{x})$  в смысле (6), а справа — интеграл в смысле первого определения (4). Наконец, учитывая еще, что (см. (13))

$$\left|\int_{E} \left[\lambda_{m}(\mathbf{x}) - \underline{f}_{R_{m}}(\mathbf{x})\right] d\mathbf{x}\right| < \left(\varepsilon_{m} + \frac{1}{m}\right) \mu E,$$

получим (см. (10))

$$\int_{E} \lambda_{m} d\mathbf{x} = \int_{E} \underline{f}_{R_{m}} d\mathbf{x} + \int_{E} (\lambda_{m} - \underline{f}_{R_{m}}) d\mathbf{x} \to \int_{E} f d\mathbf{x}.$$

Интеграл в смысле (6) для ступенчатой интегрируемой функции  $\varphi(\mathbf{x})$  совпадает с интегралом в смысле первого определения, потому что можно считать в теореме 2, что  $\varphi$  приближается функциями  $\lambda_m = \varphi$  ( $m=1,2,\ldots$ ).

Перейдем к основным свойствам интеграла Лебега.

1. Eсли функция f интегрируема по  $\hat{\mathcal{A}}$ ебегу на E, то она будет обладать этим свойством, если ее видоизменить любым обравом на множестве лебеговой меры нуль или, как говорят, если заменить ее равной ей почти всюду функцией  $f_1$ . При этом

$$\int_{E}^{T} f \, d\mathbf{x} = \int_{E} f_{1} \, d\mathbf{x},$$

f, называют функцией, эквивалентной f.

Это свойство очевидно, нотому что  $S_{\scriptscriptstyle R}(f) = S_{\scriptscriptstyle R}(f_{\scriptscriptstyle A})$  для любого

разбиения R.

Когда мы говорили, что функция f интегрируема (по Лебегу) на E, то мы считали, что она конечна на E, т. е. приводит в соответствие каждой точке  $x \in E$  число (конечное число). Но при оперировании с интегралом Лебега полезно ввести попятие интегрируемости по Лебегу функции f, заданной (конечной) почти всюду на E, то есть всюду на E, за исключением множества лебеговой меры нуль. В остальных же точках  $\mathbf{x} \in E$  она не определена, в частности, это могут оказаться точки, где естественно считать  $f(\mathbf{x}) = \infty$ .

По определению функция, заданная (конечная) почти всюду на множестве E, называется интегрируемой по Лебегу на E, если она интегрируема по Пебегу на множестве E', где она ко-

печна. При этом полагают

$$\int_{E} f \, d\mathbf{x} = \int_{E'} f \, d\mathbf{x}.$$

Таким образом, E' — измеримое миожество, а вместе с иим и E

(вель  $\mu(E - E') = 0$ ).

Совокупность всех почти всюду конечных интегрируемых по Лебегу на E функций принято обозначать через L(E). В частности, она содержит в себе как часть совокупность конечных на E интегрируемых по Лебегу функций, которая в свою очередь содержит в себе как часть множество ограниченных измеримых на E функций.

Папример, если E есть (одномерный) отрезок [0, 1], то можно сказать, что функция  $1/\sqrt{x}$  конечна ночти всюду на [0, 1], потому что она конечна на полунитервале (0, 1], отличающемся от [0, 1] на множество меры пуль, состоящее из одной пулевый точки. Мы увидим в дальнейшем (см. свойство (15)), что интеграл от этой функции в смысле Лебега существует и совпадает с несобственным интегралом Римана от нее:

$$\int_{[0,1]} \frac{dx}{\sqrt{x}} = \int_{[0,1]} \frac{dx}{\sqrt{x}} = \int_{0}^{1} \frac{dx}{\sqrt{x}} = 2.$$

Таким образом, рассматриваемая функция принадлежит L([0,1]) так же, как L((0,1]).

Целесообразность введения понятия почти всюду конечной измеримой функции возникает также в следующей ситуации. Последовательность измеримых конечных на E функций  $f_k(\mathbf{x})$  может оказаться сходящейся к некоторой конечной функции только почти всюду на E. В остальных же точках E, составляющих множество лебеговой меры нуль, либо существует (песобственный) предел, равный  $\infty$ , либо пикакой предел, конечный или бескопечный, не существует.

Eсли F и  $\Phi$  — nочти всюду конечные измеримые на E функции, а A и B — числа, то функция  $AF+B\Phi$  определяется следующим образом. Пусть E', E'' — соответственно множества, где F и  $\Phi$  конечны, они будут конечны и на (измеримом) пересечении  $E_*=E'E''$ . Определяем функцию  $AF+B\Phi$  на  $E_*$  обычным образом, этим она будет определена почти всюду на E. Вель  $\mu(E-E_*)=0$ .

2. Ecau F,  $\Phi \in L(E)$  u  $F(\mathbf{x}) \leqslant \Phi(\mathbf{x})$  noutu всюду на E, то

$$\int_{E} F \, d\mathbf{x} \leqslant \int_{E} \Phi \, d\mathbf{x}. \tag{14}$$

Доказательство. Пусть пока F и  $\Phi$  конечны на E. Для любого разбиения R

$$F_R(\mathbf{x}) \leqslant F(\mathbf{x}) \leqslant \Phi(\mathbf{x}) \leqslant \overline{\Phi}_R(\mathbf{x}), \quad \mathbf{x} \in E.$$

При этом из того, что F,  $\Phi \in L(E)$ , следует, что ступенчатые функции  $F_R$  и  $\overline{\Phi}_R$  интегрируемы на E, и так как  $\overline{F}_R(\mathbf{x}) \leqslant \overline{\Phi}_R(\mathbf{x})$ , то (см. (11))

$$\int_{E} F_{R}(\mathbf{x}) d\mathbf{x} \leqslant \int_{E} \overline{\Phi}_{R}(\mathbf{x}) d\mathbf{x}.$$

Переходя в этом неравенстве к пределу при  $\delta_R \to 0$ , нолучим (14).

В общем случае вводим наибольнее множество  $E' \subset E$ , где F и  $\Phi$  конечны и выполняется неравенство  $F \leqslant \Phi$ . Для него доказываем неравенство (14) с E' вместо E, по так как  $\mu E' = \mu E$ , то (14) верно и для E, нотому что мы решили формально в этих случаях считать, что

$$\int_{E} F \, d\mathbf{x} = \int_{E'} F \, d\mathbf{x}, \quad \int_{E} \Phi \, d\mathbf{x} = \int_{E'} \Phi \, d\mathbf{x}.$$

3. Если F,  $\Phi \in L(E)$  и A и  $B - \partial$ ействительные числа, то  $AF + B\Phi \in L(E)$  и

$$\int_{E} (AF + B\Phi) d\mathbf{x} = A \int_{E} F d\mathbf{x} + B \int_{E} \Phi d\mathbf{x}.$$
 (15)

Доказательство. Пусть E' ( $\mu E' = \mu E$ ) — наибольшее множество, на котором F и  $\Phi$  конечны. По теореме 2 существуют равномерно сходящиеся соответственно к F и  $\Phi$  последова-

тельности ступенчатых интегрируемых на E' функций  $F_k$ ,  $\Phi_k(k=1,2,\ldots)$ . В силу (10) для них имеет место

$$\int_{E'} (AF_h + B\Phi_h) d\mathbf{x} = A \int_{E'} F_h d\mathbf{x} + B \int_{E'} \Phi_h d\mathbf{x}, \tag{16}$$

и так как  $F_k$ ,  $\Phi_k$ ,  $AF_k + B\Phi_k$  — ступенчатые интегрируемые функции, сходящиеся равномерно соответственно к конечным функциям F,  $\Phi$ ,  $AF + B\Phi$ , то не только F и  $\Phi$ , но и  $AF + B\Phi \equiv L(E')$ , и в равенстве (16) законно перейти к пределу при  $k \to \infty$  под знаком интеграла. Наконец, так как  $\mu E = \mu E'$ , то имеет место (15).

В частности, из (15) при A=1,  $B=\pm 1$  следует, что

$$\int_{E} (F \pm \Phi) d\mathbf{x} = \int_{E} F d\mathbf{x} \pm \int_{E} \Phi d\mathbf{x}$$

(существование интегралов в правой части равенства влечет существование интеграла слева).

По индукции доказывается, что

$$\int_{F} \sum_{1}^{l} f_{h} dx = \sum_{1}^{l} \int_{F} f_{h} dx \quad (l = 1, 2, ...).$$

4. Если  $E_1 \subset E$ ,  $E_1$  измеримо и функция  $f \in L(E)$ , то  $f \in L(E_1)$ ,  $\tau$ . е. f есть почти всюду на  $E_1$  конечная интегрируемая по Лебегу функция.

Доказательство. Пусть E' — наибольшее множество, на котором f конечна и  $E'_1 = E'E_1$ . Тогда для любого разбиения R (см. (1))

$$e'_{h} = \{\mathbf{x} : \mathbf{x} \in E'_{1}, \quad p_{h} \leqslant f(\mathbf{x}) < p_{h+1}\} \subset \{\mathbf{x} : \mathbf{x} \in E', \quad p_{h} \leqslant f(\mathbf{x}) < p_{h+1}\} = e_{h}.$$

Поэтому в силу того, что конечная на E' функция  $f \in L(E')$ ,

$$\sum_{k} |p_{k}| \mu e_{k}' \leqslant \sum_{k} |p_{k}| \mu e_{k} < \infty.$$

Но тогда по теореме 1  $f \in L(E_1')$ . Следовательно,  $f \in L(E_1)$ , ведь  $\mu E_1 = \mu E_1'$ .

5. Ecau  $f \in L(E_1), f \in L(E_2)$   $u \ \mu(E_1 E_2) = 0, \ ro \ f \in L(E_1 + E_2)$  u

$$\int_{E_1 + E_2} f \, d\mathbf{x} = \int_{E_1} f \, d\mathbf{x} + \int_{E_2} f \, d\mathbf{x}. \tag{17}$$

Доказательство. Пусть пока f конечна на  $E_1+E_2$ . Для произвольного разбиения R определим множества

$$\begin{aligned} e_{h}' &= \{\mathbf{x} : \mathbf{x} \in E_{1}, & p_{h} \leq f(\mathbf{x}) < p_{h+1} \}, \\ e_{h}'' &= \{\mathbf{x} : \mathbf{x} \in E_{2}, & p_{h} \leq f(\mathbf{x}) < p_{h+1} \}, \\ e_{h} &= \{\mathbf{x} : \mathbf{x} \in E_{1} + E_{2}, & p_{h} \leq f(\mathbf{x}) < p_{h+1} \}. \end{aligned}$$

Если учесть, что  $\mu(E_1E_2)=0$ , то очевидно  $\mu e_h=\mu e_h'+\mu e_h''$ . Отсюда для нижних интегральных сумм f относительно множеств  $E_1+E_2$ ,  $E_1$ ,  $E_2$  выполняется равенство

$$\sum_{k} p_{k} \mu e_{k} = \sum_{k} p_{k} \mu e'_{k} + \sum_{k} p_{k} \mu e''_{k}.$$

В силу условий теоремы ряды справа сходятся, а с ними сходится и ряд слева, отсюда  $f \in L(E_1 + E_2)$ . После перехода к пределу при  $\delta_R \to 0$  из этого равенства следует (17).

В общем случае вводим множества  $E_1' \subset E_1$ ,  $E_2' \subset E_2$ ,  $\mu E_1' = \mu E_1$ ,  $\mu E_2' = \mu E_2$ , на которых f конечна. Для них верно равенство (47), но тогда оно верно и для  $E_1$ ,  $E_2$ .

По индукции доказывается, что ( $\mu(E_k E_l) = 0, k \neq l$ )

$$\int\limits_{\bigcup\limits_{1}^{N}E_{h}}f\,d\mathbf{x}=\sum\limits_{h=1}^{N}\int\limits_{E_{h}}f\,d\mathbf{x}.$$

6. Если ограниченная функция f интегрируема по Риману на множестве E, то она интегрируема и по Лебегу и интегралы от f по E в обоих смыслах равны.

Действительно, ограниченная интегрируемая на E по Риману функция измерима (см. теорему 4, § 19.2), поэтому интегрируема по Лебегу. Если теперь E представить в виде суммы  $E = \bigcup E_h$ 

конечного числа измеримых по Жордану (следовательно, и по Лебегу) множеств, пересекающихся попарно разве что по своим границам (жордановой, следовательно, и лебеговой меры нуль), то для лебегова интеграла от f по E получим (см. свойство 2)

$$\sum_{h} m_{h} |E_{h}| \leqslant \int_{E} f dx = \sum_{h} \int_{E_{h}} f dx \leqslant \sum_{h} M_{h} |E_{h}|,$$

и так как левая и правая части этой цепи стремятся при  $\max_k d(E_k) \to 0$  к риманову интегралу от f по E, то последний равен соответствующему лебегову. Здесь  $m_k$ ,  $M_k$ — соответственно пижняя и верхняя грани f на  $E_k$ .

7. Пусть f — измеримая на E неотрицательная функция не обязательно конечная ( $f(\mathbf{x}) \leq +\infty$ ,  $\mathbf{x} \in E$ ) и

$$(f)_{N} = \begin{cases} f(\mathbf{x}), & 0 \leq f(\mathbf{x}) \leq N, \\ N, & N < f(\mathbf{x}). \end{cases}$$
(18)

Тогда, если  $f \in L(E)$ , то

$$\lim_{N\to\infty} \int_{\mathbb{R}} (f)_N d\mathbf{x} = \int_{\mathbb{R}} f d\mathbf{x}. \tag{19}$$

Наоборот, если существует предел слева в (19), то f ∈ L(E).

Доказательство. Пусть  $f \in L(E)$ , тогда множество  $\{x: f(x) = +\infty\}$  имеет лебегову меру нуль, и  $\{f\}_N$  измерима и ограничена на E, потому что при  $A \leq N$   $\{(f)_N < A\} = \{f < A\}$  и при A > N  $\{(f)_N < A\} = E$ . Таким образом,  $(f)_N \in L(E)$  и, кроме того,  $(f)_N(x) \leq (f)_{N+1}(x) \leq f(x)$ . Поэтому для любого разбиения K (cm. (1))

$$\sum_{p_{k+1} \leqslant N} p_k \mu e_k \leqslant \int_E (f)_N \, d\mathbf{x} \leqslant \int_E f \, d\mathbf{x}$$
 (20)

и после перехода к пределу при  $N 
ightarrow \infty$  получим

$$\underline{S}_{R}(f) \leqslant \lim_{N \to \infty} \int_{E} (f_{N}) dx \leqslant \int_{E} f d\mathbf{x}. \tag{21}$$

Но первый член в этой цепи можно взять как угодно мало отличающимся от третьего, и потому верно равенство (19).

Если теперь предположить существование конечного предела слева в (19), то множество  $e = \{x: x \in E, f(x) = +\infty\}$  автоматически будет иметь меру нуль. Ведь имеет место перавенство

$$\int_{E} (f)_{N} d\mathbf{x} \geqslant \int_{e} (f)_{N} d\mathbf{x} = N\mu e,$$

левая часть которого имеет при  $N \to \infty$  конечный предел, что возможно лишь если  $\mu e = 0$ . Но из первого перавенства в (24) тогда еще получим (синтая  $p_0 = 0$ )

$$\underline{S}_{R}(f) = \sum_{k=1}^{\infty} p_{k} \mu e_{k} \leqslant \lim_{N \to \infty} \int (f)_{N} d\mathbf{x}.$$

Следовательно, функция f интегрируется на миожестве E', где она конечна, т. е.  $f \in L(E')$ , или, что все равно,  $f \in L(E)$ .

Отметим, что интегрируемость f па E' уже предполагает авто-

матически измеримость E', таким образом, и E.

Из сказанного следует, что интеграл Лебега от неотрицательной измеримой на E (не обязательно конечной) функции можно определить как предел (19).

В некоторых изложениях теории интеграла Лебега начинают с этой теории для ограниченных измеримых функций, а затем вводят ноинтие суммируемой (неограниченной, по принадлежащей L(E)), неотрицательной функции, определяя ее как измеримую на E функцию f, для которой существует конечный предел (19). Этот предел и объявляется по определению интегралом Лебега от f на E.

Из свойства 7 следует, что совокупность всех таким образом определенных функций в точности совпадает с совокупностью неограниченных неотрицательных функций, принадлежащих L(E).

Измеримая неограниченная копечная на E функция произвольного знака называется суммируемой на E, если ее можно предславить в виде разности двух конечных неотрицательных

суммируемых или ограниченных измеримых функций. Всякая такая разность, очевидно, принадлежит к L(E). Ниже будет показано, что и, наоборот, всякая конечная на E функция  $f \in L(E)$ может быть представлена в виде разности двух неотрицательных конечных функций, принадлежащих L(E), т. е. в другой терминологии \*), каждая из этих функций либо измерима и ограничена, либо суммируема на E.

Произвольная, заданная почти всюду на E функция f называется суммируемой на E, если она суммируема на множество  $E' \subseteq E$ , где f конечна и  $\mu E' = \mu E$ .

Пусть функция f конечна и измерима на E. Определим дл $\mathfrak{g}$  нее две неотрицательные, тоже очевидио измеримые конечные на E функции

$$f_{+}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & (f(\mathbf{x}) > 0), \\ 0 & (f(\mathbf{x}) \leqslant 0), \end{cases} \qquad f_{-}(\mathbf{x}) = \begin{cases} 0 & (f(\mathbf{x}) \geqslant 0), \\ -f(\mathbf{x}) & (f(\mathbf{x}) \leqslant 0). \end{cases}$$
(22)

Очевидно, что

$$f(\mathbf{x}) = f_{+}(\mathbf{x}) - f_{-}(\mathbf{x}), \quad |f(\mathbf{x})| = f_{+}(\mathbf{x}) + f_{-}(\mathbf{x}).$$
 (23)

Если  $f_+$ ,  $f_- \in L(E)$ , то и  $f \in L(E)$  (см. свойство 3), и выполниется равенство

$$\int_{E} f(\mathbf{x}) d\mathbf{x} = \int_{E} f_{+}(\mathbf{x}) d\mathbf{x} - \int_{E} f_{-}(\mathbf{x}) d\mathbf{x}.$$
 (24)

Ио верио и обратное утверждение: если  $f \in L(E)$ , то также  $f_+, f_- \in L(E)$ . В самом деле (пояснения ниже),

$$\int_{E} f_{+}(\mathbf{x}) d\mathbf{x} = \int_{f(\mathbf{x})>0} f(\mathbf{x}) d\mathbf{x} + \int_{f(\mathbf{x})<0} 0 d\mathbf{x} = \int_{f(\mathbf{x})>0} f(\mathbf{x}) d\mathbf{x}.$$

Третий член в этой цепи имеет смысл, потому что множество  $\{j>0\} \subset E$  измеримо и из интегрируемости f на E следует интегрируемость f на этом множестве (см. свойство 4). Переход от третьего члена цепи ко второму тривпален, потому что множество  $\{f\leqslant 0\}$  измеримо и интеграл от функции, тождественно равной пулю на нем, равен очевидно нулю. Наконец, переход от второго члена цепи к первому и утверждение, что  $f_+ \in L(E)$ , следуют из свойства 5. Аналогично доказывается, что  $f_- \in L(E)$ .

8. Если F и  $\Phi$  — измеримые функции на E (могущие быть равными  $+\infty$ ),  $0 \le F(\mathbf{x}) \le \Phi(\mathbf{x})$  и  $\Phi \in L(E)$ , то  $F \in L(E)$ .

В самом деле, из условия следует, что  $(F)_N \leq (\Phi)_N$  на E при любом N, и так как  $(F)_N$ ,  $(\Phi)_N$ ,  $\Phi \in L(E)$ , то (см. свойство 2)

$$\int_{E} (F_{N}) d\mathbf{x} \leqslant \int_{E} (\Phi)_{N} d\mathbf{x} \leqslant \int_{E} \Phi d\mathbf{x}.$$

<sup>\*)</sup> Впрочем, при употреблении этой терминологии обычно соглашаются называть все функции  $f \in L(E)$ , как ограниченные, так и неограниченные, суммируемыми.

К тому же первый член этой цепи при неограниченном возрастании N не убывает и, таким образом, стремится к конечному пределу. Но тогда в силу свойства  $7 F \subseteq L(E)$ .

9. Ecau  $f \in L(E)$ , to  $|f| \in L(E)$  u

$$\left| \int_{E} f \, d\mathbf{x} \right| \leqslant \int_{E} |f| \, d\mathbf{x}. \tag{25}$$

Обратное утверждение верно только в такой формулировке: если функция, заданная почти всюду на E, измерима на E и  $|f| \in L(E)$ , то и  $f \in L(E)$ .

Доказательство. Пусть  $E' \subset E$ ,  $\mu E' = \mu E$  — множество, на котором f конечна. На нем можно определить, как мы знаем, неотрицательные функции  $f_+$ ,  $f_- \in L(E')$ , для которых

$$|f(\mathbf{x})| = f_{+}(\mathbf{x}) + f_{-}(\mathbf{x}), \quad f(\mathbf{x}) = f_{+}(\mathbf{x}) - f_{-}(\mathbf{x}).$$

Отсюда  $|f| \in L(E')$ , следовательно, также  $|f| \in L(E)$ . Кроме того, выполняются равенства

$$\int_{E'} |f| dx = \int_{E'} f_{+} dx + \int_{E'} f_{-} dx, \quad \int_{E'} f dx = \int_{E'} f_{+} dx - \int_{E'} f_{-} dx,$$

из которых, если учесть, что интегралы от  $f_+$  и  $f_-$  суть неотрицательные числа, непосредственно следует неравенство (25) с E' вместо E, но тогда это неравенство верно и для E.

Пусть определенная почти всюду на E функция f измерима на E и  $|f| \in L(E)$ . Тогда на E' (где f конечна) имеют смысл измеримые неотрицательные функции  $f_+$  и  $f_-$  и выполняются неравенства  $|f(\mathbf{x})| \ge f_+(x)$ ,  $f_-(x)$ , откуда следует в силу свойства 8, что  $f_+$ ,  $f_- \in L(E')$ , и тогда  $f = f_+ - f_- \in L(E')$ .

Отметим, что существуют множества, не измеримые в лебеговом смысле, но мы слишком бы уклонились от цели, если бы остановились на этом вопросе. Пусть все же e есть неизмеримое множество, принадлежащее кубу  $\Delta$ , и функция  $\psi(\mathbf{x})$  равна 1 на e и -1 на  $\Delta - e$ . Она очевидно не измерима, и потому не может быть речи о принадлежности ее к  $L(\Delta)$ . Между тем,  $|\psi(\mathbf{x})| = 1$  и  $|\psi| = L(\Delta)$ .

10. Если  $f \in L(E)$  и  $\phi$  — измеримая ограниченная функция

 $\kappa a \ E(|\varphi(\mathbf{x})| \leq M), \ \tau o \ f \varphi \in L(E) \ u$ 

$$\int_{\mathbf{E}} |\varphi f| \, d\mathbf{x} \leqslant \int_{\mathbf{E}} M |f| \, d\mathbf{x} = M \int_{\mathbf{E}} |f| \, d\mathbf{x}. \tag{26}$$

Это следует из свойства 2 и (15) при B=0.

11. Если функция  $f \in L(E)$ , то для любого  $\varepsilon > 0$  существует  $\delta > 0$  такое, что для любого множества  $e \subset E$  меры  $\mu e < \delta$  выполняется неравенство

$$\int |f| d\mathbf{x} < \varepsilon. \tag{27}$$

Доказательство. Будем нока считать f неотрицательной на E. Зададим  $\varepsilon > 0$  н подберем N так, чтобы

$$\int_E (f-(f)_N) d\mathbf{x} = \int_E f d\mathbf{x} - \int_E (f)_N d\mathbf{x} < \frac{e}{2}.$$

Теперь, учитывая, что  $f-(f)_N\geqslant 0$  на E, для множества  $e\subseteq E$  с  $\mu e < \varepsilon/2N$  получим

$$\int_{\varepsilon} f d\mathbf{x} = \int_{\varepsilon} (f)_N d\mathbf{x} + \int_{\varepsilon} (f - (f)_N) d\mathbf{x} \le \int_{\varepsilon} (f)_N d\mathbf{x} + \int_{\varepsilon} (f - (f)_N) d\mathbf{x} \le N\mu e + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.$$

В общем случае, когда  $f \in L(E)$  любого знака и задана только почти всюду на E, вводим наибольшее множество  $E' \subset E$ , где f конечна, тогда конечная на E' функция  $|f| \in L(E')$ , и в силу доказанного для любого  $\varepsilon > 0$  можно указать  $\delta > 0$  такое, что выполняется неравенство (27), каково бы ни было множество  $e' \subset E'$ ,  $\mu e' < \delta$ , заменяющее нока e. Но тогда справедливо также утверждение теоремы, ведь если  $e \subset E$  и  $\mu e < \delta$ , то  $eE' \subset E'$  и  $\mu(eE') = \mu e$ .

Свойство 11 можно еще выразить так: если  $f \in L(E)$ , то какова бы ни была последовательность измеримых множеств  $e_k$  с  $\mu e_k \to 0$ , имеет место

$$\left| \int_{e_h} f \, dx \right| \leqslant \int_{e_h} |f| \, dx \to 0, \quad k \to \infty.$$
 (28)

12. Если

$$e = e_1 + e_2 \dotplus \ldots \subset E$$

— измеримые множества,  $\mu(e_k e_l) = 0$ ,  $k \neq l$  и  $f \in L(E)$ , то

$$\int_{e} f dx = \int_{e_1} f dx + \int_{e_2} f dx + \dots$$

В самом деле, существование интегралов, входящих в правую часть этого равенства, следует из свойства 4. Далее, в силу свойства 11

$$\int_{e} f d\mathbf{x} - \sum_{1}^{N} \int_{e_{h}} f d\mathbf{x} = \int_{e} \int_{e} f d\mathbf{x} \to 0, \quad N \to \infty,$$

$$e - \sum_{1}^{N} e_{h}$$

потому что (§ 19.1, теорема 5)

$$\mu\left(e-\sum_{1}^{N}e_{h}\right)\rightarrow0, N\rightarrow\infty.$$

13. Теорема Лебега. Если последовательность функций  $f_k \in L(E)$  сходится почти всюду на E к функции f и почти всюду на E выполняется перавенство  $|f_k(\mathbf{x})| \leq \Phi(\mathbf{x})$   $(k=1,\ 2,\ \ldots)$ , где  $\Phi \in L(E)$ , то  $f \in L(E)$  и

$$\lim_{\mathbf{k}\to\infty}\int_{E}f_{k}(\mathbf{x})\,d\mathbf{x}=\int_{E}f(\mathbf{x})\,d\mathbf{x},\tag{29}$$

т. е. при указанных условиях можно переходить к пределу под знаком интеграла.

В частности, равенство (29) верно для сходящейся к f(x) огра-

ниченной последовательности  $f_k(\mathbf{x})$ .

Доказательство. Пусть  $E' \subseteq E$  есть наибольшее множество, на котором функции  $\Phi$  и  $f_k$  конечны, удовлетворяется перавенство  $|f_k| \le \Phi$  и, кроме того,  $f_k(\mathbf{x}) \to f(\mathbf{x})$ . Очевидно,  $\mu E' = \mu E$ , f измерима на E' и  $|f(\mathbf{x})| \le \Phi(\mathbf{x})$  на E', и так как  $\Phi \in L(E)$ , то  $|f| \in L(E')$  и  $f \in L(E)$ . Положим  $E' = E'_h + E'_k$ , где

$$E'_{h} = \{\mathbf{x}: \ \mathbf{x} \in E', \ |f(\mathbf{x}) - f_{h}(\mathbf{x})| > \delta\},$$
  
$$E''_{h} = \{\mathbf{x}: \ \mathbf{x} \in E', \ |f(\mathbf{x}) - f_{h}(\mathbf{x})| \leq \delta\}.$$

Тогда  $\mu E_h' \rightarrow 0$ ,  $k \rightarrow \infty$  (см. теорему 3, § 49.2), и

$$\left| \int_{E} f \, d\mathbf{x} - \int_{E} f_{h} \, d\mathbf{x} \right| = \left| \int_{E'} (f - f_{h}) \, d\mathbf{x} \right| \leq$$

$$\leq \int_{E'_{h}} |f| \, d\mathbf{x} + \int_{E'_{h}} |f_{h}| \, d\mathbf{x} + \int_{E'_{h}} |f - f_{h}| \, d\mathbf{x} \leq$$

$$\leq 2 \int_{E'_{h}} \Phi \, d\mathbf{x} + \delta \mu E < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad (k > k_{0}),$$

где  $\delta>0$  взято так, чтобы  $\delta\mu E<\epsilon/2$ , и затем (см. свойство 11), нользуясь тем, что  $\mu E_h'\to 0$ , подобрано достаточно большое  $k_0$ , чтобы  $\int\limits_{-r}^{r}\Phi\,dx<\frac{\epsilon}{2}$   $(k>k_0).$ 

14. Пусть последовательность неотрицательных (принимающих значения конечные или  $+\infty$ ) на E функций  $f_{\bullet} \in L(E)$  не убывает. Тогда для предельной функции

$$\lim_{h\to\infty}f_h(\mathbf{x})=f(\mathbf{x})$$

имеет место равенство.

$$\lim_{h\to\infty}\int_{\mathbf{E}}f_h(\mathbf{x})\,d\mathbf{x}=\int_{\mathbf{E}}f(\mathbf{x})\,d\mathbf{x},\tag{30}$$

еде правая часть есть интеграл Лебега от f на E, если  $f \in L(E)$ ,

u есть  $+\infty$ , если  $f \notin L(E)$ .

Доказательство. Пусть  $f \in L(E)$ . Тогда функция f, а вместе с ней и  $f_k$ , конечны на множестве  $E' \subset E$  меры  $\mu E' = \mu E$ , и на E' выполняется теорема Лебега (свойство 13), где  $\Phi = f$ . Поэтому имеет место (30), если заменить E на E', но тогда и для E. Таким образом, существует предел слева в (30), равный лебегову интегралу от f на E.

Обратно, пусть существует конечный предел

$$\lim_{h\to\infty}\int\limits_E f_h\,d\mathbf{x}=A<\infty.$$

Так как  $(f_k)_N \leqslant f_k$  на E, то (см. свойство 2)

$$\int_{E} (f_h)_N d\mathbf{x} \leqslant \int_{E} f_h d\mathbf{x} \leqslant A_{\bullet}$$

**T.** e. 
$$\int_E (f_h)_N d\mathbf{x} \leqslant A.$$

Учитывая еще, что  $(f_k)_N \to (f)_N$ ,  $k \to \infty$  па E, после перехода к пределу под знаком интеграла (см. свойство 13) получим

$$\int_E (f)_N dx \leqslant A,$$

каково бы ни было N > 0. Но тогда  $f \in L(E)$  (см. свойство 7).

15. Пусть функция f интегрируема несобственно в смысле Римана на E. Для того чтобы она была абсолютно интегрируемой на E (в римановом смысле), необходимо и достаточно, чтобы  $f \in L(E)$ , и тогда риманов несобственный интеграл от f на E равен лебегову интегралу от f на E.

При доказательстве ограничимся случаем, когда риманов несобственный интеграл от f имеет единственную особенность в

точке  $\mathbf{x}^{\scriptscriptstyle 0} \subseteq E$ .

Если ввести для любого натурального N функцию

$$f_{N}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & x \in E - V_{N}, \\ 0, & x \in EV_{N}, \end{cases}$$

где  $V_N$  — шар радиуса 1/N с центром в  $\mathbf{x}^o$ , то рассматриваемый интеграл можно записать как предел

$$\lim_{N\to\infty} \int_E f_N d\mathbf{x} = \lim_{N\to\infty} \int_{E-V_N} f d\mathbf{x} = \int_E f d\mathbf{x}.$$

Если f к тому же принадлежит L(E), то этот интеграл можно рассматривать как лебегов, что вытекает из теоремы Лебега (см. свойство 13), потому что  $f_N \to f$  и  $|f_N| \le |f| = L(E)$ . Кроме того,

в силу свойства 11

$$\int_{EV_N} |f| d\mathbf{x} \to 0, \quad N \to \infty,$$

и потому

$$\int_{E(V_N - V_{N'})} |f| d\mathbf{x} \to 0, \quad N, \quad N' \to \infty, \quad N < N',$$

что показывает, что риманов несобственный интеграл от f абсолютно сходится. Надо еще учесть, что интеграл- $\int_{E(V_N-V_{N'})} f \, dx$ 

можно рассматривать как в смысле Лебега, так и в смысле Римана.

Наоборот, из абсолютной сходимости риманова интеграла следует существование предела

$$\lim_{N\to\infty}\int_{E}|f_{N}|d\mathbf{x}=\lim_{N\to\infty}\int_{E-V_{N}}|f|d\mathbf{x},$$

но тогда, учитывая, что  $|f_N| \le |f_{N+1}|$ , в силу свойства 14 |f| = E(E), следовательно, f = L(E), потому что f измерима по Лебету на E.

16. Если для почти всюду неотрицательной на Е функции

 $f \in L(E)$  выполняется равенство

$$\int_{E} f \, d\mathbf{x} = 0,\tag{31}$$

 $To f(\mathbf{x}) = 0$  почти всюду на E.

В самом деле, допустим, что существует множество  $e \subset E$  положительной меры, на котором  $0 < f(\mathbf{x}) < \infty$ . Функция измерима на нем, и в силу теоремы 5, § 19.2 существует множество  $e' \subset e$  положительной меры, на котором  $f(\mathbf{x}) \geqslant \lambda$ , где  $\lambda$  — некоторое положительное число. Но тогда было бы

$$\int_{E} f \, d\mathbf{x} \geqslant \int_{e'} f \, d\mathbf{x} \geqslant \lambda \mu e' > 0,$$

что противоречит равенству (31).

17. Пусть  $f \in \hat{L}(E)$ . Для любого  $\varepsilon > 0$  найдется ступенчатая функция

$$\varphi(\mathbf{x}) = \begin{cases} c_j, & \mathbf{x} \in F_j \subset E & (j = 1, ..., N), \\ 0 & \partial \Lambda s \text{ остальных } \mathbf{x} \in E \end{cases}$$
(32)

с конечным числом ступенек, где  $F_j$  — замкнутые попарно непересекающиеся множества, так что

$$\int_{\mathbb{R}} |f(\mathbf{x}) - \varphi(\mathbf{x})| \, d\mathbf{x} < \varepsilon. \tag{33}$$

При этом, если  $f(\mathbf{x}) \ge 0$ , то и  $\varphi(\mathbf{x}) \ge 0$ .

Доказательство. Вводим множество  $E' \subset E$ ,  $\mu E' = \mu E$ , тде f конечна, и определяем нижнюю интегральную функцию

$$\varphi_{\mathbf{i}}(\mathbf{x}) = p_{\mathbf{k}}, \quad \mathbf{x} \in e_{\mathbf{k}} = \{\mathbf{x} : \mathbf{x} \in E, \quad p_{\mathbf{k}} \leq f(\mathbf{x}) < p_{\mathbf{k}+\mathbf{i}}\}$$

с  $p_0=0$  и  $\delta_R<\varepsilon/3\mu E$  (случай  $\mu E=0$  тривиален). Тогда

$$\int_{E} |f - \varphi_1| d\mathbf{x} = \int_{E'} |f - \varphi_1| d\mathbf{x} < \delta_R \mu E < \frac{\epsilon}{3}.$$

Определяем далее функцию

$$\varphi_{\mathbf{2}}(\mathbf{x}) = \begin{cases} p_{h}, & \mathbf{x} \in e_{h}, |k| \leq N, \\ 0 & \text{для остальных } \mathbf{x} \in E, \end{cases}$$

где N выбирается настолько большим, что

$$\int\limits_{\mathbb{R}} |\varphi_1 - \varphi_2| \ dx = \sum_{|h| > N} |p_h| \ \mu e_h < \frac{\varepsilon}{3}.$$

Наконец, определяем вамкнутые множества  $F_{\mathtt{k}} \subset e_{\mathtt{k}}$ , а с ними функцию

$$\varphi(\mathbf{x}) = \begin{cases} p_h, & \mathbf{x} \in F_h, & |k| \leq N, \\ 0 & \text{для остальных } \mathbf{x}, \end{cases}$$

так, чтобы

$$\int_{\mathbb{R}} |\varphi_2 - \varphi| dx = \sum_{|h| \leq N} |p_h| \mu(e_h - F_h) < \frac{\varepsilon}{3}.$$

Очевидно, функция  $\varphi$  удовлетворяет условиям утверждения, пужно только  $p_h$ ,  $F_h$  заново перенумеровать. Так как мы положили  $p_0 = 0$ , то  $\varphi(\mathbf{x})$  неотрицательна вместе  $\mathbf{c} f(\mathbf{x})$ .

18. Пусть  $f \in L(G)$ , где G — ограниченное открытое множество. Для любого  $\varepsilon > 0$  найдется ступенчатая финитная e G функция.

$$\psi(\mathbf{x}) = \begin{cases} a_i, & \mathbf{x} \in \Delta_i, & i = 1, \dots, m, \\ 0 & \partial AB \text{ остальных } \mathbf{x}, \end{cases}$$

где  $\Delta_i \subseteq G$  — попарно непересекающиеся кубы с гранями, параллельными осям координат, так что

$$\int_{G} |f(\mathbf{x}) - \psi(\mathbf{x})| d\mathbf{x} < \varepsilon.$$

Доказательство. Определяем сначала ступенчатую функцию  $\phi$  (32), удовлетворяющую неравенству (33) (см. свойство 17), где надо положить E=G. Определяем далее фигуры  $\sigma_h \subseteq G$ , не

пересекающиеся попарно и покрывающие  $F_h^*$ ), и вместе с ними ступенчатую функцию

$$\psi_1(\mathbf{x}) = \begin{cases} c_j, & \mathbf{x} \in \sigma_j \quad (k = 1, \dots, N), \\ 0 & \text{для остальных } \mathbf{x}, \end{cases}$$

и притом так, чтобы

$$\int_{G} |\varphi(\mathbf{x}) - \psi_1(\mathbf{x})| d\mathbf{x} = \sum_{i=1}^{N} |c_i| \mu(\sigma_i - F_i) < \varepsilon,$$

что в силу того, что  $F_i$  — попарно не пересекающиеся, ограниченные, замкнутые, таким образом, измеримые, множества, возможно. Каждую фитуру  $\sigma_k$  можно считать суммой конечного числа кубов, пересекающихся разве что по своим границам. Вместо  $\sigma_k$  можно определить фигуры  $\sigma_k' \subset \sigma_k$ , каждая из которых есть сумма непересекающихся кубов, и ввести ступенчатую функцию

$$\psi(\mathbf{x}) = \begin{cases} c_k, & \mathbf{x} \in \sigma_k', \\ 0 & \text{для остальных } \mathbf{x}, \end{cases}$$

и притом так, чтобы

$$\int_{C} |\psi_{1} - \psi| dx = \sum_{1}^{N} |c_{h}| |\sigma_{h} - \sigma'_{h}| < \varepsilon.$$

Очевидно, что

$$\int_{G} |f - \psi| \, d\mathbf{x} \leq \int_{G} |f - \varphi| \, d\mathbf{x} + \int_{G} |\varphi - \psi_{1}| \, d\mathbf{x} + \int_{G} |\psi_{1} - \psi| \, d\mathbf{x} < 3\varepsilon,$$

что доказывает утверждение.

19. Теорема Фубини\*\*). Для измеримой на кубе

$$\Delta = \{0 \leqslant x_i \leqslant a, \quad j = 1, \ldots, n\}$$

функции  $f(\mathbf{x}) = f(x_1, ..., x_n) = f(x_1, \mathbf{y}), \mathbf{y} = (x_2, ..., x_n)$  имеет место равенство

$$\int_{\Delta} f(\mathbf{x}) d\mathbf{x} = \int_{0}^{a} dx_{1} \int_{\Delta'} f(x_{1}, \mathbf{y}) d\mathbf{y}, \ \Delta' = \{0 \leqslant x_{j} \leqslant a, \ j = 2, \ldots, n\},$$
(34)

которое надо понимать следующим образом.

 $E_{\mathcal{C}\mathcal{A}\mathcal{U}}$   $f(\mathbf{x}) \in L(\Delta),$  то почти для всех  $x_i$  существует лебегов интеграл

$$\int_{\Lambda'} f(x_1, \mathbf{y}) \, d\mathbf{y},\tag{35}$$

\*\*) Г. Фубини (1879—1943) — итальянский математик.

<sup>\*)</sup> Чтобы достичь этого, можно воспользоваться прямоугольной сеткой S, разбивающей  $R_n$  на кубы с ребрами длины  $2^{-N}$  (см. § 12.2) при достаточно большом N, положив  $\sigma_k = \widetilde{\omega}(F_k)$ .

представляющий собою функцию от  $x_1$  интегрируемую (в лебеговом смысле) на отрезке [0, a]. При этом выполняется равенство (34). Но также, если  $f(\mathbf{x})$  измерима и неотрицательна на  $\Delta$  и почти для всех  $x_1 \in [0, a]$  существует интеграл (35), в свою очередь интегрируемый по  $x_1$  на [0, a], то  $f \in L(\Delta)$ .

Другая формулировка теоремы заключается в следующем:

Пусть  $E \subseteq R_n$ —измеримое множество,  $E\left(x_1^0\right)$ — его сечение плоскостью  $x_1 = x_1^0$ , т. е. множество всех y, для которых  $\left(x_1^0, y\right) \subseteq E$  и  $|E\left(x_1^0\right)|_*$ — мера ((n-1)-мерная) множества  $E\left(x_1^0\right)$  (если последнее измеримо). Пусть еще G—множество тех значений  $x_1$ , для которых  $|E\left(x_1\right)|_* > 0$ .

Тогда справедливо равенство

$$\int_{E} f(\mathbf{x}) d\mathbf{x} = \int_{G} dx_{1} \int_{E(x_{1})} f(x_{1}, \mathbf{y}) d\mathbf{y}, \qquad (34')$$

которое надо понимать следующим образом. Если  $f \in L(E)$ , то G — измеримое одномерное множество, почти для всех  $x_i \in G$  существует внутренний интеграл справа в (34'), представляющий собой интегрируемую по  $x_i \in G$  функцию, и верно равенство (34'). Кроме того, если  $f(\mathbf{x})$  — измеримая неотрицательная (не обязательно всюду конечная) на E функция, для которой существует повторный интеграл справа в (34'), то  $f \in L(E)$ .

Доказательство. Назовем характеристической функцией

множества Е функцию

$$\varphi_E(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} \in E, \\ 0, & \mathbf{x} \notin E. \end{cases}$$
 (36)

Если  $E \subset \Delta$  измеримо, то очевидно, что

$$\int_{A} \varphi_{E}(\mathbf{x}) d\mathbf{x} = \int_{E} d\mathbf{x} = \mu E.$$

Пусть еще  $|E(x_1^0)|_*$  есть (n-1)-мерная мера сечения E пло-скостью  $x_1 = x_1^0$ .

Теорема очевидна для характеристической функции множества  $\sigma_N = \sum_{1}^{N} \Delta_h \subset \Delta$ ,  $\mu \sigma_N = \sum_{1}^{N} |\Delta_h|$ , состоящего из конечного числа кубов (пересекающихся разве что по своим границам). В этом случае равенство (34) сводится к следующему:

$$\mu \sigma_{N} = \int_{0}^{a} dx_{1} \int_{\sigma_{N}(x_{1})} d\mathbf{y} = \int_{0}^{a} |\sigma_{N}(x_{1})|_{*} dx_{1}.$$
 (37)

Докажем лемму..

Лемма 1. Пусть f,  $f_N$  ( $N=1,\,2,\,\ldots$ ) — неотрицательные (принимающие значения конечные или  $+\infty$ ) функции на  $\Delta$  такие, что

$$f_N \in L(\Delta), \quad N = 1, 2, ...,$$
 (38)

$$f_N \to f \tag{39}$$

монотонно и для всех N верна теорема Фубини

$$\int_{\Delta} f_N dx = \int_{0}^{a} dx_1 \int_{\Delta'} f_N(x_1, \mathbf{y}) d\mathbf{y}. \tag{40}$$

Тогда существование лебегова интеграла в левой части (34) влечет существование равного ему повторного интеграла в правой части (34) и наоборот.

Справедливость леммы следует из равенств (пояснения пиже)

$$\int_{\Delta} f \, d\mathbf{x} = \lim_{N \to \infty} \int_{\Delta} f_N \, d\mathbf{x} = \lim_{N \to \infty} \int_{0}^{a} dx_1 \int_{\Delta'} f_N \left( x_1, \mathbf{y} \right) d\mathbf{y} =$$

$$= \int_{0}^{a} dx_1 \lim_{N \to \infty} \int_{\Delta'} f_N \left( x_1, \mathbf{y} \right) d\mathbf{y} = \int_{0}^{a} dx_1 \int_{\Delta'} f \left( x_1, \mathbf{y} \right) d\mathbf{y}, \tag{41}$$

верных в предположении, что существует любой из членов цени (41). Первое из них следует из (39) (в случае убывания  $f_N$  по теореме Лебега и в случае возрастания по свойству 14)). Второе — из (40), третье — снова из (39), потому что интеграл

$$\int_{\Lambda'} f_N(x_1, \mathbf{y}) d\mathbf{y}$$

изменяется монотонно при возрастании N, четвертое тоже следует из (39). В самом деле, если существует четвертый член цени, то почти для всех  $x_1 \in [0, a]$  существует предел

$$\lim_{\Delta'} \int_{\Lambda'} f_N(x_1, \mathbf{y}) d\mathbf{y} \tag{42}$$

и в силу (39) этот предел равен

$$\int_{\Delta'} f(x_1, \mathbf{y}) \, d\mathbf{y}. \tag{43}$$

Наоборот, если существует пятый (последний) член цепи, то почти для всех  $x_i \in [0, a]$  существует интеграл (43), поэтому в силу (39) он равен пределу (42). Этим лемма доказана.

 $\Pi$ емма  $\hat{2}$ . Теорема Фубини верна для характеристических функций  $\varphi_{G}(x)$ ,  $\varphi_{F}(x)$  произвольного ограниченного открытого или замкнутого множества  $G, F \subseteq \Delta$ .

Доказательство. В самом деле, пусть

$$G = \sum_{1}^{\infty} \Delta_{h}, \quad |G| = \sum_{1} |\Delta_{h}|,$$

где  $\Delta_h$  — замкнутые кубы. Для характеристических функций  $\phi_{\sigma_N}(\mathbf{x})$  фигур  $\sigma_N = \sum_1^N \Delta_h$ , как мы знаем, теорема Фубини верна, но тогда, в силу леммы 1, она верна и для  $\phi_G(\mathbf{x})$ , потому что  $\phi_{\sigma_N}, \phi_G \in L(\Delta)$ ;  $\phi_{\rho_N}(\mathbf{x}) \to \phi_G(\mathbf{x})$ , не убывая.

Заметим, что в доказанном равенстве

$$\int_{\Delta} \varphi_G(\mathbf{x}) d\mathbf{x} = \int_{0}^{a} dx_1 \int_{\Delta'} \varphi_G(x_1, \mathbf{y}) d\mathbf{y}$$

внутренний интеграл справа существует для всех  $x_i \in [0, a]$ , потому что сечение  $G(x_i)$  при любом  $x_i$  есть открытое ограниченное, таким образом, измеримое (в (n-1)-мерном смысле) множество.

Пусть теперь  $F \subset \Delta$  — замкнутое множество. Поместим F в некоторый открытый куб  $\Delta$ . Тогда  $\Delta - F = G$  — открытое множество и  $\phi_F(\mathbf{x}) = \phi_\Delta(\mathbf{x}) - \phi_\sigma(\mathbf{x})$ . В силу очевидных аддитивных свойств интегралов, входящих в равенство (34), верность теоремы Фубини для  $\phi_F$  следует из ее верности для  $\phi_\Delta$  и  $\phi_\sigma$ .

J е м м а J. Теорема Фубини верна для характеристической функции  $\phi_e(x)$  произвольного измеримого множества  $e \subseteq \Delta$ . В частности, если |e| = 0, то почти для всех  $x_i \in [0, a]$  сечение  $e(x_i)$  имеет (n-1)-мерную меру нуль; наоборот, если е измеримо и почти для всех  $x_i$  сечение  $e(x_i)$  имеет (n-1)-мерную меру нуль, то |e| = 0.

Доказательство. В самом деле, пусть  $e \subseteq \Delta$  измеримо. Определим две последовательности открытых и замкнутых множеств

$$G_1 \supset G_2 \supset \ldots \supset F_2 \supset F_1$$

так, что  $|G_k|$ ,  $|F_k| \to |e|$ ,  $k \to \infty$ , и положим

$$\bigcap_{k=0}^{\infty} G_{k} = \overline{e} \supset e \supset \underline{e} = \bigcup_{k=0}^{\infty} F_{k},$$

где очевидно  $|G_k| \rightarrow |\bar{e}| = |e|, |F_k| \rightarrow |e| = |e|.$ 

Так как для функций  $\varphi_{GN}(\mathbf{x})$  и  $\varphi_{FN}(\mathbf{x})$  при любом  $N=1,2,\ldots$  по лемме 2 теорема Фубини верна и они неотрицательны и монотонно стремятся соответственно к  $\varphi_{\varepsilon}(\mathbf{x})$  и  $\varphi_{\varepsilon}(\mathbf{x})$ , то в силу леммы 1 верна также теорема Фубини и для этих последних двух

функций:

$$\int_{\Delta} \varphi_{e}(\mathbf{x}) d\mathbf{x} = \int_{\Delta} \varphi_{\overline{e}}(\mathbf{x}) d\mathbf{x} = \int_{0}^{a} dx_{1} \int_{\Delta'} \varphi_{\overline{e}}(x_{1}, \mathbf{y}) d\mathbf{y}, \tag{44}$$

$$\int_{\Delta} \varphi_{e}(\mathbf{x}) d\mathbf{x} = \int_{\Delta} \varphi_{e}(\mathbf{x}) d\mathbf{x} = \int_{0}^{a} dx_{1} \int_{\Delta'} \varphi_{e}(x_{1}, \mathbf{y}) d\mathbf{y}.$$
 (45)

Если теперь |e|=0, то равны также пулю все члены цепи (44), и тогда почти для всех  $x_1 \in [0, a]$  равен пулю также внутренний интеграл справа в (44). Но

$$\varphi_{\tilde{e}}(\mathbf{x}) \geqslant \varphi_{e}(\mathbf{x}) \geqslant 0,$$

и поэтому для указанных  $x_i$  очевидно, что существует и равен нулю интеграл

$$\int_{\Lambda'} \varphi_e(x_1, \mathbf{y}) d\mathbf{y} = 0.$$

Следовательно, для таких  $x_i$  функция  $\varphi_e(x_i, \mathbf{y})$  по  $\mathbf{y}$  измерима  $\mathbf{p}$  множество  $e(x_i) = \{\mathbf{y}: \varphi_e(x_i, \mathbf{y}) = 1\}$  имеет (n-1)-мерную меру  $\{e(x_i)|_{\mathbf{x}} = 0$ .

Наоборот, если e измеримо и почти для всех  $x_i \in [0, a]$ 

$$|e(x_1)|_* = \int_{\Delta'} \varphi_e(x_1, \mathbf{y}) d\mathbf{y} = 0,$$

то существует равный нулю повторный интеграл

$$\int_{0}^{a} dx_{1} \int_{\Delta'} \varphi_{e} (x_{1}, \mathbf{y}) d\mathbf{y}$$

и в силу неравенств

$$\varphi_e(\mathbf{x}) \geqslant \varphi_e(\mathbf{x}) \geqslant 0$$

существует и равен пулю повторный интеграл справа в (45), по тогда существует и равен пулю интеграл слева, следовательно, |e|=0.

Если теперь e — произвольное измеримое множество, то, в силу аддитивных свойств повторных интегралов справа в (44), (45), в них можно заменить  $\bar{e}$  и e на e, потому что  $|\bar{e}-e|=|e-e|=0$ . Далее, если повторный интеграл

$$\int_{0}^{a} dx_{1} \int_{\Delta'} \varphi_{e}(x_{1}, \mathbf{y}) d\mathbf{y}$$

существует, то по той же причине существует равный ему интеграл, состоящий в правой части (44). Этим теорема Фубини для  $\phi_e(\mathbf{x})$ , где e — измеримое множество, доказана.

Лемму 3 можно еще выразить при номощи следующих равенств:

$$|e| = \int_{0}^{a} |e(x_1)|_{*} dx_1 = \int_{\omega} |e(x_1)|_{*} dx_1, \quad \omega = \{x_1 : |e(x_1)|_{*} > 0\}, \quad (46)$$

где  $e \subseteq \Delta$  — произвольное измеримое множество.

Пемма 4. Теорема Фубини верна для множества е лебеговой меры нуль и какой угодно функции f (конечной, бесконечной и даже неопределенной на е):

$$\int_{e}^{\infty} f \, dx = \int_{0}^{\alpha} dx_{1} \int_{e(\mathbf{x}_{1})}^{\alpha} f(x_{1}, \mathbf{y}) \, d\mathbf{y}. \tag{47.}$$

Эта лемма есть непосредственное следствие предыдущей леммы 3 и того факта, что интеграл по множеству e меры нуль от любой функции равен нулю. В самом деле, левая часть равенства равна нулю. Кроме того, в силу леммы 3 почти для всех  $x_1 \in [0,1]$  мера  $|\Delta(x_1)|_* = 0$ , а это показывает, что правая часть (47) равна нулю.

Покажем теперь последовательно, что теорема Фубини верна

в следующих случаях.

а) f — ступенчатая (конечная) на  $\Delta$  неотрицательная функция:

$$f(\mathbf{x}) = c_h, \quad \mathbf{x} \in e_h, \quad \sum_{k=1}^{\infty} e_k = \Delta, \quad e_k e_s = 0 \quad (k \neq s).$$

Ведь в силу леммы 3 функции

$$f_N(\mathbf{x}) = \begin{cases} c_h, & \mathbf{x} \in e_h, k = 1, ..., N_s \\ 0 & \text{для остальных } \mathbf{x} \in \Delta \end{cases}$$

очевидно подчиняются условиям леммы 1.

Таким образом, если ступенчатая неотрицательная функция  $f \in L(\Delta)$ , то существует повторный интеграл справа в (34), равный левой части (34). Наоборот, если для ступенчатой неотрицательной функции существует указанный повторный интеграл, то  $f \in L(\Delta)$ .

б) f— неотрицательная копечная измеримая на  $\Delta$  функция. В самом деле, введем последовательность разбиений  $R_N$  ( $N=1,2,\ldots$ ), делящих правую полуось точками  $p_k^{(N)}=k\ 2^{-N}$  ( $k=0,1,2,\ldots$ ). Соответствующие этим разбиениям нижние ступенчатые функции  $f_N(\mathbf{x})$  очевидно удовлетворяют условиям леммы 1.

В данном случае (для неотрицательной конечной f) из того, что функция  $f \in L(E)$ , следует существование для нее новторного интеграла справа в (34) и наоборот.

Докажем теперь теорему в общем случае. Пусть  $f \subset L(\Delta)$  и e — множество (меры нуль), на котором f бесконечна или не определена. Положим

$$f_1(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in e, \\ f(\mathbf{x}), & \mathbf{x} \in \Delta - e, \end{cases} \quad f = f_{1+} - f_{1-} + f_2,$$

где  $f_{1+}$ ,  $f_{1-}$  определены по  $f_{1+}$ , как обычно (см. § 19.3, (22)), а  $f_{2+}$ таким образом, равна нулю почти всюду на А. Учитывая очевидные аддитивные свойства интегралов, входящих в (34), и тот факт, что теорема верна для  $f_{1+}$ ,  $f_{1-}$  (см. б) и лемму 4), получим, что она верна для f, т. е. существует повторный интеграл справа в (34) и верно равенство (34).

Пусть теперь f — измеримая неотрицательная на  $\Delta$ , вообще говоря, не конечная функция и для нее повторный интеграл спра-

ва в (34) существует.

В силу того, что f измерима (см. ссылку в начале § 19.2), множество e, где  $f=+\infty$ , измеримо. Положим  $f=f_1+f_2$ , где  $f_1$ ,  $f_2$  имеют определенный выше смысл. Таким образом,  $f_1$  неотрицательна и конечна па  $\Delta$ , а  $f_2 = 0$  вне e. По условию ночти для всех  $x_1 \in [0, a]$  интеграл  $\int f(x_1, y) \, dy$  конечен, и нотому для

таких  $x_i$  сечение  $e(x_i)$  имеет (n-1)-мериую меру нуль. Но тогда |e| = 0 (см. лемму 3) и для  $f_2$  справедлива теорема Фубини. Следовательно, существует повторный интеграл справа в (34) для функции  $f_1 = f - f_2$ , ведь такой интеграл существует для f и  $f_2$ .  $\hat{H}$ о тогда (см. б))  $f_i \in L(\Delta)$  и для  $f_i$  верно равенство (34), следовательно,  $f \in L(\Delta)$  и верно равенство (34).

Теорема в первой ее формулировке доказана.

Ясно, что из второй формулировки при  $E=\Delta$  следует первая. Но и наоборот. В самом деле, пусть  $f \in L(E)$ . Положим

$$\bar{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \mathbf{x} \in E, \\ 0, & \mathbf{x} \in \Delta - E, \end{cases}$$
(48)

тогда (пояснения ниже)
$$\int_{\mathbf{R}} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{A}} \bar{f}(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{0}}^{\mathbf{a}} dx_1 \int_{\mathbf{A}'} \bar{f}(x_1, \mathbf{y}) d\mathbf{y} = \int_{\mathbf{G}} dx_1 \int_{\mathbf{E}(\mathbf{x_1})} f(x_1, \mathbf{y}) d\mathbf{y}.$$
(49)

Первое равенство цепи следует из того, что  $f \in L(E)$ , и нотому E измеримо и f=0 на измеримом множестве  $\Delta-E$ . Второе равенство следует из (34). Третье равенство следует из (48) и из того, что G есть измеримое одномерное множество (лемма 3) и  $E(x_i)$  измеримо в (n-1)-мерном смысле почти для всех  $x_i \subset G$ . Аналогично, рассуждая подобным образом и двигаясь по цени (49) справа налево, получим и вторую часть теоремы, относящуюся к случаю, когда  $t \ge 0$ .

Надо иметь в виду, что функция f может быть такой, что для нее имеет смысл повторный интеграл справа в (34), в то время как она не принадлежит  $L(\Delta)$ . Конечно, такая функция не сохраняет на  $\Delta$  знак.

Например, определенная на прямоугольнике  $\Delta = \{-1 \leqslant y \leqslant 1,$ 

 $0 < x \le 1$ } функция

$$f(x, y) =$$

$$\begin{cases} \frac{1}{y^3}, & x \leq |y| \leq 1, \ 0 < x \leq 1, \\ 0 & \text{в остальных точках } \Delta \end{cases}$$

обладает тем свойством, что для нее повторный интеграл на  $\Delta$ 

справа в (34) равен пулю, между тем  $f \notin L(\Delta)$ .

20. Теорема о полноте  $L_p(E)$ . Пусть последовательность функций  $f_h \in L_p(E)$   $(1 \le p < \infty *)$ ) удовлетворяет условию Коши в смысле  $L_p(E)$ : для всякого  $\varepsilon > 0$  существует N > 0 такое, что

$$\int_{E} |f_{k} - f_{l}|^{p} d\mathbf{x} < \varepsilon, \qquad k, l > N.$$
(50)

Тогда существует, и притом единственная с точностью до множества лебеговой меры нуль, функция  $f \in L_p(E)$ , для которой

$$\int_{E} |f - f_{h}|^{p} d\mathbf{x} \to 0, \qquad k \to \infty.$$
 (51)

Доказательство. Достаточно рассмотреть случай, когда все функции  $f_k$  конечны на E, ведь в общем случае множество, где это может не иметь места, имеет лебегову меру нуль.

Зададим числа  $\varepsilon_s > 0$  (s = 1, 2, ...) так, чтобы сходился ряд  $\sum_{1}^{\infty} \varepsilon_s < \infty$ , и, пользуясь условием теоремы, подберем подпоследовательность натуральных чисел  $k_1 < k_2 < ...$  такую, что

$$\left(\int_{E} \left| f_{h_{s+1}} - f_{h_s} \right|^p dx \right)^{1/p} < \varepsilon_s, \qquad s = 1, 2, \dots$$
 (52)

Справедлива цепь соотношений (пояснения ниже)

$$\sum_{N}^{\infty} \varepsilon_{s} \geqslant \lim_{m \to \infty} \sum_{N}^{N+m} \left( \int_{E} \left| f_{h_{s+1}} - f_{h_{s}} \right|^{p} d\mathbf{x} \right)^{1/p} \geqslant$$

$$\geqslant \lim_{m \to \infty} \left( \int_{E} \left( \sum_{N}^{N+m} \left| f_{h_{s+1}} - f_{h_{s}} \right| \right)^{p} d\mathbf{x} \right)^{1/p} =$$

<sup>\*)</sup> В случае  $p = \infty$  считают, что  $\left(\int\limits_{E} |\psi|^p dx\right)^{1/p} = \sup_{\mathbf{x} \in E} |\psi(\mathbf{x})|$  (вли sur vrai $|\psi(\mathbf{x})|$ ; см. сноску на стр. 328 § 18.3), и тогда теорема также верна тривыальным образом).

$$= \left( \int_{E} \left( \sum_{N}^{\infty} |f_{h_{s+1}} - f_{h_{s}}| \right)^{p} d\mathbf{x} \right)^{1/p} \geqslant$$

$$\geqslant \left( \int_{E} \left| \sum_{N}^{\infty} \left( f_{h_{s+1}} - f_{h_{s}} \right) \right|^{p} d\mathbf{x} \right)^{1/p} = \left( \int_{E} |f - f_{h_{N}}|^{p} d\mathbf{x} \right)^{1/p}, \tag{53}$$

где

$$f(\mathbf{x}) = \lim_{s \to \infty} f_{h_s}(\mathbf{x})$$
 почти всюду на  $E$ . (54)

Первое соотношение в этой цени следует из (52), второе — из неравенства Минковского (см. § 14.2, (12)). Третье (равенство) верно на основании свойства 14, ведь функция  $\left(\sum_{N}^{N+m} \left|f_{k_{s+1}} - f_{k_{s}}\right|\right)^{p}$  неотрицательна и при возрастании m не убывает, поэтому ее предел

$$\left(\sum_{N}^{\infty}\left|f_{h_{s+1}}-f_{h_{s}}\right|\right)^{p} \Subset L\left(E\right)$$

есть почти всюду конечная, интегрируемая на E функция. Четвертое (перавенство) следует из неравенства

$$\sum_{N}^{\infty} |f_{h_{s+1}} - f_{h_{s}}| \geqslant \left| \sum_{N}^{\infty} (f_{h_{s+1}} - f_{h_{s}}) \right| = \\
= \lim_{m \to \infty} \left| \sum_{N}^{N+m} (f_{h_{s+1}} - f_{h_{s}}) \right| = \lim_{m \to \infty} (f_{h_{N+m}} - f_{h_{N}}) = f - f_{h_{N}}, \quad (55)$$

где ряд под знаком  $| \cdot |$  во втором члене почти всюду на E сходится. Это обосновывает существование почти всюду на E предела (54), и последнее соотношение (равенство) в (55), таким образом, обосновывает также последнее соотношение (равенство) в (53).

Мы доказали существование функции f, принадлежащей, очевидно,  $L_{\mathfrak{p}}(E)$ , для которой

$$\left(\int_{E} |f - f_{k_N}|^p d\mathbf{x}\right)^{1/p} < \sum_{N=0}^{\infty} \varepsilon_s \to 0, \qquad N \to \infty.$$
 (56)

С помощью (50) также следует, что

$$\left(\int_{E} |f - f_{m}|^{p} d\mathbf{x}\right)^{1/p} \leqslant$$

$$\leqslant \left(\int_{E} |f - f_{k_{m}}|^{p} d\mathbf{x}\right)^{1/p} + \left(\int_{E} |f_{k_{m}} - f_{m}|^{p} d\mathbf{x}\right)^{1/p} \to 0, \quad m \to \infty.$$

Наконец, если допустить, что существует еще одпа функция  $f_* \in L_p(E)$ , для которой  $\int\limits_E |f_* - f_m|^p d\mathbf{x} \to 0, \ m \to \infty$ , то

$$\left(\int_{E} |f - f_{*}|^{p} d\mathbf{x}\right)^{1/p} \leqslant$$

$$\leqslant \left(\int_{E} |f - f_{m}|^{p} d\mathbf{x}\right)^{1/p} + \left(\int_{E} |f_{m} - f_{*}|^{p} d\mathbf{x}\right)^{1/p} \to 0, \quad m \to \infty,$$

откуда  $\int_{E} |f - f_*| d\mathbf{x} = 0$ , по тогда (см. свойство 16)  $f(\mathbf{x}) = f_*(\mathbf{x})$  почти всюду на E.

21. Из соотношения

$$\int_{E} \left| f - f_{h} \right|^{p} d\mathbf{x} \to 0, \qquad f, f_{h} \in L_{p}(E)$$
 (57)

следует существование подпоследовательности  $k_1,\ k_2,\ \ldots,\$ для которой

$$\lim_{s \to \infty} f_{h_s}(\mathbf{x}) = f(\mathbf{x}) \quad \text{nouru всюду на } \mathbf{E}. \tag{58}$$

Доказательство. Так как величина

$$||f||_{L_{p(E)}} = \left(\int_{E} |f|^{p} d\mathbf{x}\right)^{1/p}$$

есть норма в линейном нормированном пространстве  $L_p(E)$  (см. § 14.2), то из (57) следует, что  $\|f-f_h\|_{L_p(E)} \to 0$ ,  $k \to \infty$ . Поэтому выполняется условие Коши: для всякого  $\varepsilon > 0$  найдется N такое, что

$$||f_{h}-f_{l}||_{L_{p(E)}} \to 0, \qquad k, l > N,$$

т. е. выполняется условие свойства 20. При доказательстве этой теоремы было доказано существование указанной подпоследовательности  $\{k_s\}$ , для которой выполняется (54) (учесть, что функция t, о которой идет речь в свойстве 20, единственна).

22. Пусть удовлетворяются условия теоремы 1, § 12.16 о замене переменных в кратном интеграле, где, впрочем, теперь предполагается, что  $\Omega$  есть произвольная ограниченная область, таким образом, измеримая по Лебегу (но не обязательно по Жордану).

 $\mathring{1}$ ) Тогда любое измеримое по Лебегу множество  $e \subseteq \Omega$  отображается при помощи операции  $\Lambda$  на измеримое же множество  $e' = Ac \subseteq \Omega'$  и выполняется перавенство

$$|e'| \le \varkappa |e|,\tag{59}$$

где к — не зависящая от е константа.

2) Имеет место также равенство (лебеговых) интегралов

$$\int_{\Omega'} f(\mathbf{x}') d\mathbf{x}' = \int_{\Omega} F(\mathbf{x}) |D(\mathbf{x})| d\mathbf{x}, \tag{60}$$

$$F(\mathbf{x}) = f(A\mathbf{x}), \quad D(\mathbf{x}) = \frac{D(x_1', \dots, x_n')}{D(x_1, \dots, x_n)}, \tag{61}$$

верное, если один из них существует.

3) Eсли  $E \subseteq \Omega$  — произвольное измеримое множество, то

$$\int_{E'} f(x') \, dx' = \int_{E} F(x) |D(x)| \, dx \tag{62}$$

при условии, что существует один из интегралов (62).

Замечание 1. Пусть  $E \subset \Omega$  — измеримое множество. Из сформулированного утверждения следует, что измеримо также  $E' \subset \Omega'$ .

Зададим функцию  $f(x') \in L(\Omega')$  и положим

$$f_{E'}(x') = \begin{cases} f(x'), & x' \in E', \\ 0, & x' \notin E'. \end{cases}$$

Очевидно,  $f_{E'}(x') \in L(\Omega')$ . Поэтому из (60) следует

$$\int_{E'} f(x') dx' = \int_{\Omega} f_{E'}(x') dx' = \int_{\Omega} f_{E'}(Ax) |D(x)| dx =$$

$$= \int_{E} F(x) |D(x)| dx.$$

В частности, множество  $\Omega_0=\{x\colon D(x)=0\}$  измеримо, с ним измеримо  $\Omega_0'$  и, полагая в (60) f(x')=1 на  $\Omega_0'$  и f(x')=0 вне  $\Omega_0'$ , получим равенство:

$$\left|\Omega_{0}^{'}\right| = \int_{\Omega_{0}} \left|D\left(x\right)\right| dx = 0. \tag{63}$$

Показательство. Согласно § 12.16, (6),

$$|\Lambda'| = |D(x)||\Lambda| + O(\omega(h)|\Lambda|), \tag{64}$$

где  $\Delta \subset \Omega$  — произвольный куб, h — длина его ребра,  $\mathbf{x} \subseteq \Delta$ ,  $\omega(h)$  — непрерывная функция от  $h \ge 0$  такая, что  $\omega(h) \to 0$ ,  $h \to 0$ , и константа, входящая в O, не вависит от  $\Delta$  и  $\mathbf{x}$ . Если учесть, что  $D(\mathbf{x})$  ограничена на  $\Omega$ , то из (64) следует неравенство  $|\Delta'| \le \varkappa |\Delta|$ , где  $\varkappa$  не зависит от  $\Delta \subset \Omega$ . Поэтому, если  $G \subset \Omega$  — открытое множество, то представляя его в виде счетной суммы

 $G=\sum \Delta_h,\;|G|=\sum |\Delta_h|,\;$  кубов  $\Delta_h,\;$  получим, что его образ G' имеет меру

$$|G'| = \sum |\Delta'_h| \leqslant \varkappa \sum |\Delta_h| = \varkappa |G|.$$

Если же  $e \subset \Omega$  измеримо, то для любого  $\varepsilon > 0$  найдутся замкнутое и открытое множества F, G такие, что  $F \subset e \subset G \subset \Omega$  и  $|G-F| < \varepsilon$ . Но (G-F) открыто, поэтому

$$|G'-F'|=|(G-F)'|\leqslant \varkappa\varepsilon,$$

и так как F' замкнуто \*), а G' открыто и  $F' \subset e' \subset G'$ , то e' измеримо. К тому же

$$|e'| = \inf_{e' \subset G'} |G'| \leqslant \kappa \inf_{e \subset G} |G| = \kappa |e|,$$

и мы показали утверждение 1), в частности (59).

Пусть теперь  $f \in L(\Omega')$ . Существует (см. § 18.2, 4) последовательность непрерывных финитных в  $\Omega'$  функций  $f_p(\mathbf{x}')$  ( $p = 1, 2, \ldots$ ) таких, что

$$\int_{\Omega'} |f(\mathbf{x}') - f_p(\mathbf{x}')| d\mathbf{x}' \to 0, \qquad p \to \infty.$$
 (65)

На основании теоремы 1, § 12.16 верны соотношения

$$\int_{\Omega'} f_{p}(\mathbf{x}') d\mathbf{x}' = \int_{\Omega} f_{p}(A\mathbf{x}) |D(\mathbf{x})| d\mathbf{x} \qquad (p = 1, 2, ...),$$
 (66)

$$\int_{\Omega} |f_p(A\mathbf{x})| D(\mathbf{x}) | - f_q(A\mathbf{x}) |D(\mathbf{x})| |d\mathbf{x} =$$

$$= \int_{\Omega} |f_p(A\mathbf{x}) - f_q(A\mathbf{x})| |D(\mathbf{x})| d\mathbf{x} = \int_{\Omega'} |f_p(\mathbf{x}') - f_q(\mathbf{x}')| d\mathbf{x}' \to 0,$$

$$p, q \to \infty, \quad (67)$$

из которых следует (см. свойство 20) существование функции  $\Phi(\mathbf{x}) \in L(\Omega)$  такой, что

$$\int_{0} |f_{p}(A\mathbf{x})| D(\mathbf{x}) | - \Phi(\mathbf{x}) | d\mathbf{x} \to 0, \qquad p \to \infty.$$
 (68)

Но тогда из (65), (66) и (68) следует, что

$$\int_{\Omega'} f(\mathbf{x}') d\mathbf{x}' = \int_{\Omega} \Phi(\mathbf{x}) d\mathbf{x}. \tag{69}$$

 $W_3$  (65) и (68), кроме того, следует еще существование подпоследовательности значений p, которые мы будем считать заново

<sup>\*)</sup> См. § 7.18, если  $D(\mathbf{x}) \neq 0$  на  $\Omega$ ; в общем случае — § 12.20, теоремы 1, 2.

перенумерованными, так что будут выполняться равенства

$$\lim_{p \to \infty} f_p(\mathbf{x}') = f(\mathbf{x}')$$
 почти всюду на  $\Omega'$ ,  $\lim_{p \to \infty} f_p(A\mathbf{x}) |D(\mathbf{x})| = \Phi(\mathbf{x})$  почти всюду на  $\Omega$ .

Докажем, что

$$\Phi(\mathbf{x}) = f(A\mathbf{x})|D(\mathbf{x})|$$
 почти всюду на  $\Omega$ , (70)

тогда нз (69) будет следовать требуемое равенство (60).

Заметим, что множество точек  $\mathbf{x}'$ , для которых существует предел  $\lim_{n\to\infty} f_p(\mathbf{x}')$ , отличный от  $f(\mathbf{x}')$ , имеет меру нуль. Видоизме-

ним f в таких точках, так чтобы видоизмененное значение  $f(\mathbf{x}')$  было равно этому пределу. В результате получим тот же элемент f пространства  $L(\Omega')$ .

.Итак мы считаем, что для тех х', для которых существует

предел  $\lim f_p(\mathbf{x}')$ , этот предел равен  $f(\mathbf{x}')$ .

Множество  $\Omega$  представим в виде суммы трех непересевающихся попарио измеримых множеств

$$\Omega = e_1 + e_2 + e_3$$

следующим образом.

Множество  $e_1$  состоит из точек x, для которых верно равенство

$$\lim_{n \to \infty} [f_p(A\mathbf{x})|D(\mathbf{x})|] = \Phi(\mathbf{x}) \tag{71}$$

и  $D(\mathbf{x}) = 0$ . Для таких точек, очевидно,

$$\Phi(\mathbf{x}) = f(\mathbf{x}')|D(\mathbf{x})| = 0.$$

Множество  $e_2$  состоит из точек **x**, для которых верно равенство (71) и |D(x)| > 0. Для таких точек из существования предела (71) следует существование предела

$$\lim_{p\to\infty}f_p(A\mathbf{x})=\lim_{p\to\infty}f_p(\mathbf{x}')=f(\mathbf{x}'),$$

а это показывает, что

$$\Phi(\mathbf{x}) = f(\mathbf{x}')|D(\mathbf{x})|.$$

Наконец,  $e_3$  состоит из точек, для которых не выполняется равенство (71), но  $|e_3|=0$ .

Этим равенство (70) доказано, а с ним (в силу (69)), доказано

равенство (60) в предположении, что  $f(\mathbf{x}') \in L(\mathring{\Omega}')$ .

Замечание 2. Конечно, если  $|D(\mathbf{x})| \ge m > 0$  на  $\Omega$ , то существует обратное к A непрерывно дифференцируемое на  $\Omega'$  преобразование и приведенные рассуждения сохраняются при вамене местами  $\mathbf{x}$  и  $\mathbf{x}'$ , а также  $\Omega$  и  $\Omega'$ . Таким образом, в этом

случае надо считать доказанным равенство (60) и в предположении, что в нем правый интеграл имеет смысл.

Если  $E \subset \Omega$  измеримо, то в силу (59) измеримо также и множество  $E' \subset \Omega'$ , и потому, если функция  $f(\mathbf{x}') \in L(E')$ , то она носле ее продолжения на  $\Omega'$ , если считать, что  $f(\mathbf{x}') = 0$ ,  $\mathbf{x}' \not\in E'$ , будет припадлежать  $L(\Omega')$ , и на основании уже доказанного

$$\int_{\mathbf{E}'} f(\mathbf{x}') d\mathbf{x}' = \int_{\Omega'} f(\mathbf{x}') d\mathbf{x}' = \int_{\Omega} f(A\mathbf{x}) |D(\mathbf{x})| d\mathbf{x} =$$

$$= \int_{\mathbf{E}} f(A\mathbf{x}) |D(\mathbf{x})| d\mathbf{x}, \quad (72)$$

т. е. справедливо (62).

Докажем теперь равенство (60) в предположении, что  $F(\mathbf{x})[D(\mathbf{x})] \subset L(\Omega)$ .

Множество  $\Omega$  представим в виде суммы измеримых непересекающихся множеств.

$$\Omega = \Omega_0 + \Omega_1,$$

$$\Omega_0 = \{\mathbf{x} : \mathbf{x} \in \Omega, \ D(\mathbf{x}) = 0\},$$

$$\Omega_1 = \{\mathbf{x} : \mathbf{x} \in \Omega, \ |D(\mathbf{x})| > 0\}.$$
(73)

Множество  $\Omega_1$  открыто. Представим его как сумму счетного числа замкнутых кубов  $\overline{\Delta}_h$ , пересекающихся разве что по своим границам:

$$\Omega_1 = \bigcup_{k=1}^{\infty} \overline{\Delta}_k. \tag{74}$$

Здесь  $\Delta_k$  есть открытое ядро  $\overline{\Delta}_k$ . Так как  $\overline{\Delta}_k$ — замкнутые кубы, принадлежащие  $\Omega_4$ , то на каждом из них  $|D(\mathbf{x})|>0$  и, следовательно, существует число  $\eta_k>0$  такое, что  $|D(\mathbf{x})|\geqslant \eta_k>0$  на  $\overline{\Delta}_k$   $(k=4,\,2,\,\ldots)$ .

Поэтому на основании замечания 1, которое надо применить к  $\Delta_k$  (вместо  $\Omega$ ),

$$\int_{\Delta_{h}^{\prime}} f(\mathbf{x}^{\prime}) d\mathbf{x}^{\prime} = \int_{\Delta_{h}} f(A\mathbf{x}) |D(\mathbf{x})| d\mathbf{x}$$
 (75)

в предположении, что  $f(\mathbf{x}') \in L(\Delta_k')$  или  $f(A\mathbf{x})|D(\mathbf{x})| \in L(\overline{\Delta_k})$ .

Отметим, что  $\Delta_k$  есть область, се образ  $\Delta_k' = A\left(\Delta_k\right)$  есть тоже область (см. § 7.18), при этом измеримая по Жордану область (см. теорему 3 § 12.5), граница ее, таким образом, имеет меру 0. Это показывает, что в (72) интегралы по  $\Delta_k$ ,  $\Delta_k'$  можно заменить ца равные им соответственно интегралы по  $\overline{\Delta}_k$ ,  $\overline{\Delta}_k'$ .

Пусть теперь  $F(\mathbf{x})|D(\mathbf{x})| \in L(\Omega)$ . Тогда (пояснения ниже)

$$\int_{\Omega} F(\mathbf{x}) |D(\mathbf{x})| d\mathbf{x} = \int_{\Omega_0} F(\mathbf{x}) |D(\mathbf{x})| d\mathbf{x} + \sum_{h=1}^{\infty} \int_{\Delta_h} F(\mathbf{x}) |D(\mathbf{x})| d\mathbf{x} =$$

$$= \int_{\Omega_0} f(\mathbf{x}') d\mathbf{x}' + \sum_{h=1}^{\infty} \int_{\Delta_h'} f(\mathbf{x}') d\mathbf{x}' = \int_{\Omega'} f(\mathbf{x}') d\mathbf{x}', \quad (76)$$

и имеет место (60).

Первое равенство в (76) верно в силу (73) и (74). Второе верно потому, что интегралы

$$\int_{\Omega_0} F(\mathbf{x}) |D(\mathbf{x})| = 0, \quad \int_{\Omega_0'} f(\mathbf{x}') d\mathbf{x}' = 0$$

равны нулю. Ведь  $D(\mathbf{x}) = 0$  на измеримом множестве  $\Omega_0$ , и

 $|\Omega_{\bullet}'| = 0$  в силу уже доказанного равенства (63).

Докажем наконец (63). Вместе с Е измеримо и Е', Пусть  $f(\mathbf{x}') \in L(E')$ . Продолжим функцию  $f(\mathbf{x}')$  на  $\Omega'$ , считая ее равной нулю вне E', и применим к ней уже доказанное равенство (59). Из него в данном случае следует (63), потому что  $F(\mathbf{x})|D(\mathbf{x})|=0$  вне E. Аналогично, если  $F(\mathbf{x})|D(\mathbf{x})| \in L(E)$ , продолжим  $F(\mathbf{x})$  на  $\Omega$ , считая  $F(\mathbf{x})$  равным нулю вне E, и применим к  $F(\mathbf{x})$  равенство (60), которое влечет за собой в данном случае (63).

Замечание 3. Равенство (62) было доказано в предположении, вопервых, что один из интегралов, входящих в него, существует и, во-вторых, что Е измеримо. Конечно, измеримость Е входит в требование существования правого интеграла (по x на E).

Однако, когда мы исходим из существования левого интеграла в (62) (по x' на E'), дополнительное условие, что множество E должно быть измеримым, вообще говоря, необходимо. Точнее, если множество  $\Omega_0$  (см. (73)) имеет меру нуль ( $|\Omega_0|=0$ ), то из измеримости  $E'\subset\Omega'$  следует измеримость E, если же мера  $|\Omega_0|>0$ , то это, вообще говоря, не так. В самом деле, пусть  $|\Omega_0|=0$  и  $E'\subset\Omega'$  — измеримое множество. Запи-

mем E в виде

$$E = E\Omega_0 + \bigcup_{k=1}^{\infty} (E\overline{\Delta}_k).$$

Tak kak  $|\Omega_0|=0$ , to  $|E\Omega_0|=0$ . Что же касается множеств  $E\overline{\Lambda}_k$ ,

$$E\overline{\Delta}_k = A^{-1}((E\overline{\Delta}_k)')$$
  $(k = 1, 2, \ldots),$ 

то они измеримы, потому что они являются образами измеримых множеств  $(E\overline{\Delta}_h)' = E'(\overline{\Delta}_h)'$  при помощи непрерывно дифференцируемой (соответственно на  $\overline{\Delta}_{b}^{\prime}$ ) операции  $A^{-1}$ . Это поназывает, что E измеримо.

Случай  $|\Omega_0| > 0$  придется пояснить примером. Мы ограничиваемся едномерным случаем.

Пример. Рациональные точки отрезка [0, 1] перенумеруем  $(x_i,$  $x_2,\ldots$ ) и покроем k-ю из них интервалом  $\sigma_k$  с центром в ней, имеющим длину  $\epsilon 2^{-k}$  (0 <  $\epsilon$  <1, k = 1, 2, ...). Множество  $\mathit{G} = \sum_{l=1}^{\infty} \sigma_{l}$  открытое. Не-

которые интервалы  $\sigma_{\ell}$  пересекаются между собой, но всегда можно G представить в виде суммы уже не пересекающихся между собой интервалов (см. § 7.9, теорема 4)

$$G = \bigcup_{k=1}^{\infty} \lambda_{l}$$
.

Дополнение к G до отрезка [0, 1] есть замкнутое множество (см. § 7.9), которое мы обозначим через F ( $F = [0, 1] \setminus G$ ). Лебегова мера F оценивается следующим образом:

$$|F| \geqslant 1 - \sum_{k=1}^{\infty} |\delta_k| = 1 - \varepsilon > 0.$$

Для нас важно, что F имеет положительную меру. Но несмотря на это любой отрезок  $\sigma \subset [0,\ 1]$  содержит в себе точки множества G, ведь на  $\sigma$ имеются рациональные точки, покрытые пекоторыми интервалами од, которые принадлежат G.

Определим на (0, 1) непрерывную функцию  $\psi(x)$ , равную пулю на Fи положительную на интервалах  $\lambda = \lambda_l$  (смежности к F). Например, график ф на каком-либо интервале д может представлять собой верхнюю по- $\hat{\mathbf{n}}$ уокружность радиуса  $|\lambda|/2$  с центром в середине  $\lambda$ , где  $|\lambda|$  — длина  $\lambda$ .

Функция

$$\varphi(x) = \int_{0}^{\infty} \psi(t) dt \quad (0 \le x \le 1)$$

пепрерывно дифференцируема и строго возрастает на [0, 1]:

$$\varphi\left(x_{2}\right)-\varphi\left(x_{1}\right)=\int_{x_{1}}^{x_{2}}\psi\left(t\right)dt>0 \quad \left(0\leqslant x_{1}< x_{2}\leqslant 1\right).$$

Ведь  $\psi(t)\geqslant 0$  на  $[0,\ 1]$ , и любой отрезок  $[x_1,\ x_2]\subset [0,\ 1]$  содержит в себе

интервалы  $\lambda$ , на которых  $\psi(t)>0$ . Таким образом, функция  $x'=\varphi(x)$  отображает отрезок [0, 1] на отре-

иок  $[0,\ A]$   $\left(A=\int\limits_{-\infty}^{1}\psi\left(t
ight)dt>0
ight)$  взаимно однозначно и непрерывно в обе

стороны, однако пепрерывно дифференцируемо только в сторону  $x \to x'$ . Множество

$$\Omega_0 = \{x: x \in [0, 1], \varphi'(x) = 0\} = F$$

положительной меры  $(|\Omega_0|=|F|>0)$ . Его образ  $\Omega_0'=\phi\left(\Omega_0\right)$ , получаемый посредством функции ф, имеет меру нуль:

$$\left|\Omega_0'\right| = \int_{\Omega_0'} 1 dx' = \int_{\Omega_0} \varphi'(x) dx = 0.$$

Fсли e  $\subset$  [0, 1] — произвольное измеримое множество, то множество  $e' = \varphi(e)$  тоже измеримо и

$$|e'| = \int_{a}^{b} \varphi'(x) dx \quad (\varphi'(x) = \psi(x) \geqslant 0).$$

Однако существуют измеримые множества  $e' \subset [0, A]$  такие, что e не-

измеримы  $(e' = \varphi(e))$ .

В самом деле, так как |F| > 0, то среди множеств  $e \subset F$  найдутся, как это можно доказать, неизмеримые, а им соответствующие множества  $e' \subseteq \Omega'_0 = F'$  имеют меру нуль, т. е. они измеримы.

Замечание 4. Рассмотренное выше множество G может служить примером ограниченного открытого неизмеримого в смысле Жордана множества. Поясним последнее свойство. Внутренняя жорданова мера G равна его лебеговой мере (см. § 19.1, (2)):

$$mG = |G| < \varepsilon$$
.

С другой стороны, если отрезок [0, 1] разделить на части точками  $0=x_0 < x_2 < \ldots < x_N=1$ , то любая часть  $[x_h, x_{h+1}]$  содержит в себе рациональные точки и, следовательно, точки G. Поэтому внешняя жорданова мера G

$$m_e G = 1 > \varepsilon > m_i G$$
.

Пусть E есть измеримое по Жордану множество, и  $\overline{E}$  — его вамыкание (тоже, очевидно, измеримое по Жордану!). Если функция интегрируема по Риману на  $\overline{E}$ , то справедливо равенство

$$\int_{E} f \, dx = \int_{\overline{E}} f \, dx,\tag{77}$$

так как  $ar{E}ar{E}$  принадлежит  $\Gamma$  — границе E, а  $\Gamma$  имеет жорданову

меру поль.

Для интеграла Лебега равенство (77) не всегда выполняется, и в этом смысле интеграл Римана имеет преимущество перед интегралом Лебега. Например, пусть  $\overline{E}$  есть отрезок [0, 1], а E — множество принадлежащих ему рациональных чисел. Оба эти множества измеримы по Лебегу, и  $m(\overline{E}\setminus E)=1$ , поэтому, если функция f интегрируема по Лебегу на  $[0, 1]=\overline{E}$  и положительна на  $\overline{E}\setminus E$ , то (см. § 49.2, теорема 5)

$$\int_{\overline{E}/E} f \, dx > 0$$

и равенство (77) не выполняется.

Итак, для рассматриваемого нами открытого множества  ${\it E}$  лебегова мера

$$m(\overline{E}\backslash E) = m\Gamma > 0$$
,

и для интегрируемых по Лебегу на  $\overline{E}$  функций, положительных на  $\overline{E} \setminus E$ , равенство (77) не выполняется.

Конечно, если E измеримо по Жордану, то (77) выполняется для любой функции  $f \in L(\overline{E})$ , потому что в этом случае мера  $E \setminus E$  в жордановом смысле, а следовательно, и в лебеговом смысле равна пулю.

## § 19.4. Интеграл Лебега на неограниченном множестве

Обобщая введенное в предыдущем параграфе понятие интеграла Лебега, говорят, что функция  $f \in L(E)$ , и называют ее интегрируемой по Лебегу на E, если  $f \in L(VE)$  в смысле уже известного из предыдущего нараграфа определения, каков бы ин был шар  $V \in R_n$ , и если существует предел

$$\lim_{N\to\infty} \int_{EV_N} |f(\mathbf{x})| d\mathbf{x} = \int_{E} |f(\mathbf{x})| d\mathbf{x}$$
 (1)

для произвольной последовательности шаров  $V_N \subseteq R_n$  радиуса N с центром в нулевой точке.

В этом определении, очевидно, шары V можно считать как замкнутыми, так и открытыми, и все равно оно выражает одно и то же понятие; очевидно, что существование предела (1) для одной какой-либо указанной последовательности шаров  $V_N$  влечет существование его для другой, и эти пределы равны между собой.

Символ справа в (1) есть обозначение интеграла Лебега от |f| на E. Интеграл же от f на E определяется как предел

$$\lim_{N\to\infty} \int_{EV_N} f(\mathbf{x}) d\mathbf{x} = \int_E f(\mathbf{x}) d\mathbf{x}.$$
 (2)

Он существует, ведь из (1) следует, что для любого  $\varepsilon > 0$  можно указать такое N, что для любых n' > n > N

$$\left| \int_{EV_{n'}} f \, d\mathbf{x} - \int_{EV_{n}} f \, d\mathbf{x} \right| = \left| \int_{E(V_{n'} - V_{n})} f \, d\mathbf{x} \right| \le$$

$$\le \int_{E(V_{n'} - V_{n})} |f| \, d\mathbf{x} = \left| \int_{EV_{n'}} |f| \, d\mathbf{x} - \int_{EV_{n}} |f| \, d\mathbf{x} \right| < \varepsilon.$$

Впрочем, эти рассуждения вполне аналогичны тем, которые приводились в своем месте для обоснования сходимости абсолютно сходящихся несобственных римановых интегралов.

Ясно, что если E есть ограниченное миожество, то приведенное здесь определение функции  $f \in L(E)$  совпадает с уже известным нам из предыдущего параграфа определением интегрируемой по Лебегу функции. Обобщение возникает, если E есть неограниченное множество, однако такое, что EV измеримо для любого шара V. Примерами таких множеств могут служить пронзвольные замкнутые или открытые множества. Ведь пересечение замкнутого множества с замкнутым шаром есть замкнутов (измеримое) множество, а пересечение открытого множества с открытым же шаром есть открытое (измеримое) множество.

Доказанные в предыдущем параграфе свойства 1—21 интеграла Лебега сохраняются и для введенных здесь интегралов.

Соответствующие утверждения могут быть усилены тем, что под множеством меры нуль теперь можно понимать множество E такое, что EV для любого шара V имеет меру нуль в прежнем понимании этого термина. (См., например, § 19.3, свойства 1, 2, 4, 5.) Впрочем, в предносылках соответствующих утверждений надо ваменять термины «измеримое множество E» или «измеримая на E функция» соответственно на следующие термины: «множество E такое, что VE измеримо для любого шара V» или «функция f, измеримая на VE для любого шара V».

Функция f называется локально измеримой на E, если она

измерима на EV, каков бы ни был шар V.

Доказательство каждого из указанных свойств сводится к тому, что мы устанавливаем его верность для множества  $EV_N$  при любом N (радиусе  $V_N$ ), а затем убеждаемся в сохранении этого свойства после перехода к пределу при  $N \to \infty$ . Впрочем, свойство 6, § 19.3 не имеет отношения к рассматриваемым обобщениям.

Приведем несколько примеров таких рассуждений.

Свойство 4. Если  $\hat{E}_{f i} \subset \hat{E}, \ VE_{f i}$  измеримо для любого шара

 $V u f \in L(E)$ , to  $f \in L(E_1)$ .

В самом деле, тогда  $VE_i \subset VE$ ,  $VE_i$  измеримо и  $f \in L(VE)$ , и потому в силу свойства 4 из § 19.3  $f \in L(VE_i)$  при любом  $V_i$  Кроме того,

$$\lim_{N\to\infty_{V}}\int_{V_{N}E}|f|\,d\mathbf{x}<\infty,$$

но тогда в силу неравенств

$$\int_{V_N E_1} |f| d\mathbf{x} \leqslant \int_{V_N E} |f| d\mathbf{x} \leqslant \int_{E} |f| d\mathbf{x}$$

и монотонного пеубывания его левой части при возрастании *N* существует предел

$$\lim_{N\to\infty} \int_{V_N E_1} |f| \, d\mathbf{x} < \infty$$

 $\mathbf{m} f \in L(E_i).$ 

Свойство 8. Если F измерима на VE для любого шара V,  $0 \le F(\mathbf{x}) \le \Phi(\mathbf{x})$ ,  $\Phi \in L(E)$ , то  $F \in L(E)$ .

Доказательство. В силу свойства 8 из § 19.3, данное утверждение верно, если заменить в нем E на VE. Таким образом,  $\Phi \in L(VE)$  при любом V. Кроме этого,

$$\int_{EV_N} F(\mathbf{x}) d\mathbf{x} \leqslant \int_{EV_N} \Phi(\mathbf{x}) d\mathbf{x}$$
 (3)

при любом N, и так как предел правой части (3) при  $N\to\infty$  по условию конечен, то конечен  $(F(x)\geqslant 0)$  и предел левой, и мы доказали, что  $F\in L(F)_*$ 

Свойство 13. Теорема Лебега (формулировку см. свойство 13 из § 19.3).

Доказательство. В силу доказанного уже для измеримого множества свойства 13 из § 19.3 очевидно, что

$$\lim_{h \to \infty} \int_{EV} f_k(\mathbf{x}) d\mathbf{x} = \int_{EV} f(\mathbf{x}) d\mathbf{x}$$
 (4)

и  $f \in L(VE)$  при любом шаре V, следовательно,  $f \in L(E)$ , потому что  $|f| \leqslant \Phi$  на E и  $\Phi \in L(E)$ .

Зададим  $\varepsilon > 0$  и подберем  $V = V_N$  так, чтобы  $\int\limits_{E-V} \Phi \, d\mathbf{x} < \frac{\varepsilon}{2}$ .

Тогда в силу (4)

$$\left| \int_{E} f \, d\mathbf{x} - \int_{E} f_{k} d\mathbf{x} \right| \leqslant \int_{E-V} |f| \, d\mathbf{x} + \int_{E-V} |f_{k}| \, d\mathbf{x} + \int_{E-V} |f| \, d\mathbf{x} + \int_{E-V} |f| \, d\mathbf{x} + \frac{e}{2} < \frac{3e}{2}, \quad k > k_{0},$$

где  $k_0$  достаточно велико.

Свойство 17. Формулировку см. свойство 17 из § 19.3. Доказательство. Подберем V так, чтобы

$$\int_{E-V} |f| d\mathbf{x} < \varepsilon,$$

и определяем функцию

$$f_1(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} \in E - V, & \int_{E - V} |f - f_1| \, d\mathbf{x} < \varepsilon. \end{cases}$$

К последней применимо свойство 17 из § 19.3.

Свойство 18. Формулировка такая же, как в свойстве 18 из  $\S$  19.3, но теперь G — произвольное открытое, не обязательно ограниченное множество. Доказательство такое же, как в свойстве 17.

Свойство 19. Теорема Фубини. Справедливо равенство

$$\int_{R_n} f \, d\mathbf{x} = \int_{-\infty}^{\infty} dx_1 \int_{R'} f(x_1, \mathbf{y}) \, d\mathbf{y},\tag{5}$$

где R' = (n-1)-мерное пространство точек  $\mathbf{y} = (x_2, \dots, x_n)$  при условиях, изложенных в свойстве 19 из § 19.3, где надо считать f локально измеримой на  $R_n$ .

Доказательство. Пусть пока  $f(x) \ge 0$ , положим

$$\Delta_N = \{ |x_j| < N : \quad j = 1, \ldots, n \},$$
  
 $\Delta'_N = \{ |x_j| < N ; \quad j = 2, \ldots, n \}, \quad N = 1, 2, \ldots$ 

и

$$f_N(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \mathbf{x} \in \Delta_N, \\ 0 & \text{для других } \mathbf{x}. \end{cases}$$

В силу свойства 19 из § 19.3 для  $f_N$  имеет место теорема  $\Phi$ убини:

$$\int_{R_n} f_N d\mathbf{x} = \int_{\Delta_N} f d\mathbf{x} = \int_{-N}^N dx_1 \int_{\Delta_N'} f(x_1, \mathbf{y}) d\mathbf{y} = \int_{-\infty}^\infty dx_1 \int_{R'} f_N(x_1, \mathbf{y}) d\mathbf{y}$$

(в двух указанных там смыслах) и, кроме того,

1)  $f_N \in L(R_n), N = 1, 2, \ldots,$ 

 $2) f_N \leqslant f \text{ Ha } R_n,$ 

3)  $f_N \rightarrow f$  на  $R_n$ , не убывая.

Но тогда имеет место и равенство (5) в силу леммы 1 в 19 из § 19.3, где надо заменить  $\Delta$ ,  $\Delta'$  соответственно на  $R_n$ , R'. При такой замене доказательство ее аналогично.

Случай функции ƒ произвольного знака рассматривается, как

в 19 из § 19.3, полагая  $f = f_+ - f_-$ .

Свойство 20. Теорема о полноте  $L_p(E)$ . Формулировка такая же как в 20 из § 19.3.

Доказательство. Пусть  $V \subset R_n$  — произвольный шар и  $\varepsilon > 0$ . В силу условия теоремы найдется N > 0 такое, что

$$\varepsilon > \int_{E} |f_k - f_l|^p d\mathbf{x} \geqslant \int_{EV} |f_k - f_l|^p d\mathbf{x}, \quad k, l > N.$$

Но тогда по свойству 20 § 19.3 на EV, а в силу произвольности V и на всем пространстве  $R_n$  существует (с точностью до эквивалентности на  $R_n$ ) единственная функция f такая, что

$$\int_{FV} |f_h(\mathbf{x}) - f(\mathbf{x})|^p d\mathbf{x} \to 0.$$

Для пее  $\varepsilon \geqslant \int\limits_{EV} |f_k - f|^p d\mathbf{x}, \ k > N$ , каково бы им было V. Но тогда  $|f_k - f|^p \in L(E)$  и

$$\varepsilon \geqslant \int_{E} |f_{k} - f|^{p} d\mathbf{x}, \quad k > N.$$

При этом  $f \in L_p(E)$ , потому что  $f_h \in L_p(E)$  и  $f_h - f \in L_p(E)$ .

## § 19.5. Обобщенная производная по Соболеву

Пусть  $G \subset R_n$  область. Обозначим через D множество всех бесконечно дифференцируемых финитных в G функций  $\varphi$ .

Говорят, что функция локально интегрируема на G, если она определена на G и интегрируема (по Лебегу) на любом замкнутом шаре, принадлежащем к G.

По определению (Соболева) функция F имеет на G обобщенную частную производную f по переменной  $x_1$ , обозначаемую через  $\frac{\partial F}{\partial x_1}$ , если обе функции F и f локально интегрируемы на G и если выполняется равенство

$$\int F \frac{\partial \varphi}{\partial x_1} d\mathbf{x} = - \int f \varphi \, d\mathbf{x} \quad \text{для всех } \varphi \in D. \tag{1}$$

Здесь можно считать, что интегралы берутся по носителю функции  $\phi$  (замкнутому ограниченному множеству), или по области G, даже по всему пространству  $R_n$ , если считать, что F и f как-то продолжены на  $R_n$ , папример, положено f=F=0 на  $R_n-G$ .

Если f есть обобщенная производная на G по  $x_i$  от F и  $f_i$ ,  $F_i$  эквивалентны соответственно f, F, то и  $f_i$  есть обобщенная производная на G по  $x_i$  от  $F_i$ . Ведь изменение f и F на множестве меры нуль не нарушает равенство (1). G может быть неограниченным.

Чтобы оправдать эту терминологию, достаточно отметить, что если функция F непрерывна на G вместе со своей частной производной  $\frac{\partial F}{\partial x_1} = f$ , то для нее равенство (1) выполняется  $\mathbf{u}$ , следовательно, f является не только обычной, но и обобщенной производной от F по  $x_1$  на G. Ведь если функция  $\varphi \subseteq D$ , то ее носитель есть ограниченное замкнутое множество, принадлежащее G; его можно покрыть фигурой  $\sigma \subseteq G$  (конечной системой замкнутых кубов) и, пользуясь классическими теоремами о сведенни кратного интеграла (Римана) к повторному, интегрироваимем по частям и тем фактом, что  $\varphi = 0$  на границе  $\sigma$ , получить

$$\int F \frac{\partial \varphi}{\partial x_1} d\mathbf{x} = \int \int F \frac{\partial \varphi}{\partial x_1} d\mathbf{x} = \int d\mathbf{y} \int F \frac{\partial \varphi}{\partial x_1} dx_1 = -\int d\mathbf{y} \int \frac{\partial F}{\partial x_1} \varphi dx_1,$$

где  $\mathbf{x} = (x_1, \mathbf{y}) = (x_1, x_2, \dots, x_n)$ . Мы не расставили в третьем и четвертом членах этой цени пределы интегрирования, чтобы не усложнять запись.

Теорема 1. Пусть f есть обобщенная производная от F по  $x_1$  на G.

 $\dot{T}$ огда є — усреднение  $F_{m{e}}$  (см. § 18.2) функции F — обладае $m{r}$  свойствами

$$||F_{\varepsilon} - F||_{L(\varepsilon)} \to 0, \quad \left\| \frac{\partial}{\partial x} F_{\varepsilon} - f \right\|_{L(\varepsilon)} \to 0 \quad (\varepsilon \to 0),$$
 (2)

каково бы ни было замкнутое ограниченное множество  $e \subset G$ . Доказательство. Первое свойство (2) выражает обычное свойство усреднения (см. § 18.2 (5))

$$F_{\varepsilon}(\mathbf{x}) = \int \varphi_{\varepsilon}(\mathbf{x} - \mathbf{t}) F(\mathbf{t}) d\mathbf{t}$$

Пусть  $G_{\bullet}$  — множество точек  $\mathbf{x} \in G$ , отстоящих на расстоянии не меньшем, чем  $\varepsilon > 0$ , до границы G, и  $\varepsilon$  настолько мало, что  $G_{\bullet} \supset \varepsilon$ . Тогда для  $\mathbf{x} \in e$ 

$$\begin{aligned} F_{\mathfrak{s}}' &= \frac{\partial}{\partial x_{1}} F_{\varepsilon}(\mathbf{x}) = \int \frac{\partial}{\partial x_{1}} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{t}) F(\mathbf{t}) d\mathbf{x} = \\ &= -\int \frac{\partial}{\partial t_{1}} \varphi_{\varepsilon}(\mathbf{x} - \mathbf{t}) F(\mathbf{t}) d\mathbf{t} = \int \varphi_{\varepsilon}(\mathbf{x} - \mathbf{t}) f(\mathbf{t}) d\mathbf{t} = f_{\varepsilon}(\mathbf{x}), \end{aligned}$$

где предпоследнее равенство справедливо в силу того, что f есть обобщенная производная от F по  $\mathbf{x}_1$ , и того, что  $\phi_{\varepsilon}(\mathbf{x}-\mathbf{t})$  по t при фиксированном  $\mathbf{x} \in c \subset G_{\varepsilon}$  есть функция класса D. Поэтому верно и второе свойство (2).

Из теоремы 1 пеносредственно вытекает

Следствие. Функция F может иметь на G единственную обобщенную производную f (с точностью до эквивалентности).

Ведь  $f=\lim_{\epsilon\to 0}F_\epsilon'$  в смысле  $L(\Delta)$  для любого замкнутого куба  $\Lambda\subset G.$ 

Теорема 2. Пусть F и f — функции, локально интегрируемые на области G. Для того чтобы f была обобщенной производной  $\frac{\partial F}{\partial x_1}$  на G, необходимо и достаточно существование последовательности функций  $\Phi_k$  ( $k=1,\ 2,\ \ldots$ ), непрерывных на G вместе со своими частными производными  $\frac{\partial \Phi_k}{\partial x_1}$ , таких, что для любого замкнутого куба  $\Delta \subset G$ , или, что все равно, для любого ограниченного замкнутого множества, принадлежащего  $\kappa$  G, имеют место соотношения

$$||F - \Phi_h||_{L(\Delta)} \to 0, \quad ||f - \frac{\partial \Phi_h}{\partial x_1}||_{L(\Delta)} \to 0 \quad (k \to \infty).$$
 (3)

Докавательство. Пусть  $f=\frac{\partial F}{\partial x_1}$  на G. В силу теоремы 1 соотношения (3) будут вынолнены, если положить  $\Phi_k=F_{1/k}$ , где  $F_s$  есть ε-усреднение F.

Пусть, наоборот, для функций  $\Phi_k$ , непрерывных на G вместе со своими производными  $\frac{\partial \Phi_k}{\partial x_1}$ , выполняются соотношения (3) для любых замкнутых кубов  $\Delta \subseteq G$ . Тогда, очевидно, эти соотношения будут выполняться, если считать, что  $\Delta$  есть произвольное, принадлежащее к G замкнутое множество, потому что его можно покрыть фигурой — конечным числом замкнутых кубов, принадлежащих к G.

Зададим произвольную функцию  $\phi \in D$ . Для функций  $\Phi_h$ , как мы знаем, выполняется равенство

$$\int_{\sigma} \Phi_{h} \frac{\partial \varphi}{\partial x_{1}} d\mathbf{x} = -\int_{\sigma} \frac{\partial \Phi_{h}}{\partial x_{1}} \varphi d\mathbf{x}, \tag{4}$$

где  $\sigma$  есть фигура, покрывающая носитель  $\phi$ . Переходя к пределу в этом равенстве при  $k \to \infty$ , получим (пояснения ниже)

$$\int F \frac{\partial \varphi}{\partial x_1} d\mathbf{x} = -\int f \varphi \, d\mathbf{x} \tag{5}$$

(где о под знаком интеграла опущено). Это доказывает, что  $m{f}$  есть обобщенная частная производная по  $m{x}_i$  на  $m{G}$  от  $m{F}_i$ 

есть обобщенная частная производная по  $x_1$  на G от F. Интегралы в (5) имеют смысл по Лебегу, потому что F,  $f \in L(\sigma)$ , а функции  $\varphi$ ,  $\frac{\partial \varphi}{\partial x_1}$  непрерывны и ограничены  $\left( \mid \varphi \mid, \left| \frac{\partial \varphi}{\partial x_1} \right| \leqslant M \right)$ . Кроме того в силу (3), где надо заменить  $\Delta$  на  $\sigma$ ,

$$\left| \int \Phi_{k} \frac{\partial \varphi}{\partial x_{1}} d\mathbf{x} - \int F \frac{\partial \varphi}{\partial x_{1}} d\mathbf{x} \right| \leqslant M \int_{\sigma} |\Phi_{k} - F| d\mathbf{x} \to 0 \quad (k \to \infty),$$

$$\left| \int \frac{\partial \Phi_{k}}{\partial x_{1}} \varphi d\mathbf{x} - \int f \frac{\partial \varphi}{\partial x_{1}} d\mathbf{x} \right| \leqslant M \int_{\sigma} \left| \frac{\partial \Phi_{k}}{\partial x_{1}} - f \right| d\mathbf{x} \to 0 \quad (k \to \infty);$$

поэтому из (4) следует (5).

Теорема 3. Пусть f и F — функции, локально интегрируемые на области G. Для того чтобы f была обобщенной производной по  $x_i$  на G от F, необходимо и достаточно, чтобы, каков бы ни был принадлежащий  $\kappa$  G замкнутый прямоугольник  $\Delta = \{a_i \leq x_i \leq b_i; i=1, \ldots, n\}$  с проекцией  $\Delta' = \{a_i \leq x_i \leq b_i; i=2, \ldots, n\}$ , функция F после возможного видоизменения ее на множестве n-мерной меры нуль представлялась g виде

$$F(\mathbf{x}) = F(x_1, \mathbf{y}) = \lambda(\mathbf{y}) + \int_{a_1}^{x_1} f(t, \mathbf{y}) dt$$
 (6)

почти для всех  $\mathbf{y} = (x_2, \ldots, x_n) \in \Delta'$  (в смысле (n-1)-мерной меры) и любого  $x_1 \in [a_1, b_1)$ , где  $\lambda \in L(\Delta')$  — некоторая единственная\*) функция от  $\mathbf{y}$ .

В одномерном случае, когда f и F локально интегрируемы на (c, d) = G, и для того чтобы f была обобщенной производной

<sup>\*)</sup> Из равенства (6), верного почти всюду (в n-мерном смысле) для  $\lambda(\mathbf{y})$ , равного  $\lambda_1(\mathbf{y})$  или  $\lambda_2(\mathbf{y})$ , следует, что  $\lambda_1(\mathbf{y}) = \lambda_2(\mathbf{y})$  почти всюду в n-мерном, но тогда и в (n-1)-мерном смысле.

 $f(\mathbf{x}) = F'(\mathbf{x})$  на (c, d), необходимо и достаточно, чтобы для любого отрезка  $[a, b] \subset (c, d)$  имело место представление

$$F(x) = A + \int_{a}^{\infty} f(t) dt, \quad f \in L(a, b), \tag{6'}$$

где A — константа.

Доказательство. Пусть f есть обобщенная производная от F по  $x_i$  на G. Тогда в силу предыдущей теоремы существует последовательность функций  $F_k$ , непрерывных вместе со своими частными производными  $\frac{\partial F_k}{\partial x_1}$ , такая, что каков бы ни был указанный прямоугольник  $\Delta$ ,

$$\|F - F_k\|_{L(\Delta)} \to 0, \quad \|f - \frac{\partial F_k}{\partial x_1}\|_{L(\Delta)} \to 0 \quad (k \to \infty).$$
 (7)

Имеют место классические равенства

$$F_{h}(x, \mathbf{y}) = F_{h}(a_{1}, \mathbf{y}) + \int_{a_{1}}^{\kappa_{1}} \frac{\partial F_{h}}{\partial x_{1}}(t, \mathbf{y}) dt,$$
 (8)

а в одномерном случае

$$F_h(x) = A + \int_a^\infty F_h'(t) dt. \tag{8'}$$

Из них и следует (6), соответственно (6'), после перехода к пределу при  $k \to \infty$  в метрике  $L(\Delta)$ .

Чтобы доказать это утверждение, заметим, что так как по условню интеграл  $\int\limits_{\Delta'} d\mathbf{y} \int\limits_{a_1} |f(t,\mathbf{y})| \, dt = \|f\|_{L(\Delta)}$  существует, то существует также (см. свойство 4 из § 19.3) интеграл

$$\int_{\Delta'} dy \int_{a_1}^{x_1} |f(t, \mathbf{y})| dt,$$

к тому же представляющий собой непрерывную функцию от  $x_1$  (см. § 19.3, свойство 11). Поэтому существует трехкратный интеграл

$$\int\limits_{a_{1}}^{b_{1}}dx_{1}\int\limits_{\Delta^{\prime}}d\mathbf{y}\int\limits_{a_{1}}^{x_{1}}|f\left( t,\;\mathbf{y}\right) |\;dt,$$

а вместе с ним и трехкратный интеграл

$$\int_{a_1}^{b_1} dx_1 \int_{\Delta'} d\mathbf{y} \int_{a_1}^{x_1} f(t, \mathbf{y}) dt.$$

Следовательно, в силу теоремы Фубини

$$\Phi\left(x_{1},\mathbf{y}\right)=\int_{a_{1}}^{x_{1}}f\left(t,\mathbf{y}\right)dt\in L\left(\Delta\right).$$

Так как интеграл  $\int\limits_{a_1}^{b_1} f(t,\mathbf{y}) \, dt$  существует почти для всех  $\mathbf{y} \in \Delta'$ ,

то  $\Phi(x_1, \mathbf{y})$  существует для этих  $\mathbf{y}$  и любого  $x_1 \in [a_1, b_1]$ .

В одномерном случае это утверждение упрощается — функция

$$\Phi\left(x\right) = \int_{a}^{\infty} f\left(t\right) dt$$

иепрерывна на [a, b] и, следовательно, принадлежит к L(a, b). Имеем

$$\left\| \int_{a_{1}}^{x_{1}} \frac{\partial F_{h}}{\partial x_{1}}(t, \mathbf{y}) dt - \int_{a_{1}}^{x_{1}} f(t, \mathbf{y}) dt \right\|_{L(\Delta)} \leqslant \int_{a_{1}}^{b_{1}} dx_{1} \int_{\Delta'} d\mathbf{y} \int_{a_{1}}^{b_{1}} \left| \frac{\partial F_{h}}{\partial x_{1}} - f \right| dt =$$

$$= (b_{1} - a_{1}) \left\| \frac{\partial F_{h}}{\partial x_{1}} - f \right\|_{L(\Delta)} \to 0, \quad k \to \infty. \quad (9)$$

Кроме того, по условию  $\|F_h - F\|_{L(\Delta)} \to 0$ ,  $k \to \infty$ . Но тогда (см. (8)) функция  $F_h(a_1, \mathbf{y})$  тоже стремится в метрике  $L(\Delta)$  а, следовательно, и  $L(\Delta')$  к некоторой функции  $\lambda(\mathbf{y}) \in L(\Delta')$ , и мы получили равенство (6), верное почти для всех  $\mathbf{x} \in \Delta$ . При этом правая часть (6) определена почти для всех  $\mathbf{y} \in \Delta'$  и любых  $x_1 \in [a_1, b_1]$ .

В одномерном случае

$$\left\| \int_{a}^{x} F_{k}'(t) dt - \int_{a}^{x} f_{k}(t) dt \right\|_{L(a,b)} \leq (b-a) \int_{a}^{b} |F_{k}'(t) - f(t)| dt \to 0 \quad (k \to \infty),$$

и  $\lambda(y)$  превращается в некоторую константу A, что приводит  $\kappa$  (6').

В одпу сторону теорема доказана.

Пусть теперь локально суммируемые на G функции f и F таковы, что после возможного видоизменения F на множестве n-мерной меры нуль на любом указанном прямоугольнике  $\Delta$ 

**имеет** место представление (6) почти для всех  $\mathbf{y} \in \Delta'$  и любого  $\mathbf{x}_i \in [a_i, b_i]$ , в одномерном случае — (6').

Определим последовательность непрерывных на  $\Delta'$  функций  $\lambda_h(y)$  (в одномерном случае  $\lambda_h = A$ ) и другую последовательность непрерывных на  $\Delta$  функций  $f_h(x_1, y)$  так, чтобы

$$\|\lambda - \lambda_h\|_{L(\Delta')} \to 0, \quad \|f - f_h\|_{L(\Delta)} \to 0 \quad (k \to \infty).$$
 (10)

Положим

$$F_k(x_1, y) = \lambda_k(y) + \int_a^{x_1} f_k(t, y) dt$$
  $(k = 1, 2, ...).$ 

Очевидно; что  $F_k$  непрерывны на  $\Delta$  и имеют там непрерывную производную  $\frac{\partial F_k}{\partial x_1} = f_k$  и выполняются свойства (7) (см. (9), (10)). Но тогда в силу предыдущей теоремы ввиду произвольности  $\Delta \subset G$  функция f есть обобщенная производная от F по  $x_1$  на G. Этим теорема доказана и в другую сторону.

Функция  $\Phi(x)$  от одной переменной x называется абсолютно непрерывной на отрезке [a, b], если ее можно представить в виде

$$\Phi(x) = A + \int_{a}^{x} f(t) dx, \quad x \in [a, b], \tag{11}$$

где c — точка отрезка [a, b], A — некоторая константа и  $f \in L(a, b)$ .

Ясно, что  $\Phi$  непрерывна на отрезке [a, b], потому что для  $x, x + h \in [a, b]$ 

$$\Phi(x+h) - \Phi(x) = \int_{x}^{x+h} f(t) dt \to 0 \quad (h \to 0)$$

(см. § 19.3, свойство 11). Константа A имеет простой смысл  $A = \Phi(c)$ 

$$\left( \text{ведь} \int\limits_{a}^{c} f \, dt = 0 \right)$$
. Если Ф уже представлена в виде

$$\Phi(x) = \Phi(c) + \int_{c}^{\infty} f(t) dt$$
 (12)

для данной точки  $c \in [a, b]$ , то соответствующее ее представление для другой точки  $c_i \in [a, b]$  будет иметь вид

$$\Phi(x) = \Phi(c_1) + \int_{c_1}^{\infty} f(t) dx,$$

потому что в силу (12)

$$\Phi(c_1) + \int_{c_1}^{x} f \, dt = \Phi(c) + \int_{c}^{c_1} f \, dt + \int_{c_1}^{x} f \, dt = \Phi(c) + \int_{c}^{x} f \, dt$$

тождественно для всех  $x \in [a, b]$ .

Назовем еще определенную на одномерном открытом множестве G функцию локально абсолютно непрерывной, если она абсолютно пепрерывна на каждом принадлежащем G отрезке.

Если функция  $\Phi(x)$  локально абсолютно непрерывна на интервале (a, b), то она, очевидно, представима на цем в виде

$$\Phi(x) = A + \int_{c}^{x} f(t) dt, \quad c \in (a, b),$$
 (13)

где f локально интегрируема на (a, b), но не обязательно интегрируема на (a, b) (см. теорему 3, (6')).

Теорему 3 в одномерном случае можно сформулировать так:

Теорема 4. Для того чтобы функция имела обобщенную производную на открытом одномерном множестве G (в частности, на интервале), необходимо и достаточно, чтобы после возможного ее видоизменения на множестве меры нуль она оказалась локально абсолютно непрерывной на G.

В представлении (13) локально абсолютно непрерывной функции  $\Phi(x)$  на интервале единственна не только константа A, но и функция  $f \in L(a, b)$ , во всяком случае с точностью до эквивалентности. Ведь, как это следует из теоремы 3, функция f есть обобщенная производная от F(F'(x) = f(x)), и потому с точностью до эквивалентности — единственная (см. следствие из теоремы 1).

Мы уже отмечали, что абсолютно непрерывная на отрезке [a, b] функция Ф непрерывна на нем. Но на самом деле абсолютно пепрерывная функция на отрезке [a, b] (вообще не на интервале!) обладает более сильным свойством. Именно, для любого  $\varepsilon > 0$  найдется  $\delta > 0$  такое, что каково бы ни было принадлежащее к [a, b] множество

$$\Omega = \bigcup_{i=1}^{N} (x_i, x_i'),$$

состоящее из любого числа не налегающих друг на друга интервалов  $(x_i, x_i')$ , сумма длин которых

$$\sum_{1}^{N}(x_{j}^{\prime}-x_{j})<\delta,$$

справедливо неравенство

$$\sum_{j=1}^{N} |\Phi(x_{j}') - \Phi(x_{j})| < \varepsilon.$$

Если учесть, что из (11) следует

$$\sum_{j=1}^{N} |\Phi(x_{j}') - \Phi(x_{j})| \leqslant \sum_{j=1}^{N} \int_{x_{j}}^{\alpha_{j}'} |f(t)| dt = \int_{\Omega} |f(t)| dt,$$

то мы видим, что это свойство непосредственно вытекает из свойства 11, § 19.3.

Важно отметить, что это свойство является характерным для абсолютно непрерывной функции, потому что можно доказать, что и обратно — из того, что какая-нибудь определенная на [a, b] функция  $\Phi$  обладает этим свойством, следует, что  $\Phi$  представимо на [a, b] по формуле (11), где A — некоторая константа, а f — некоторая определенная на [a, b] почти всюду функция, принадлежащая к L(a, b).

Таким образом, мы имеем два эквивалентные определения абсолютно непрерывной функции. Мы не будем здесь доказывать их эквивалентность, отсылая читателя к полным курсам теории функций действительного переменного. В приложениях обычно пользуются на самом деле первым определением.

В полных курсах теории функций действительного переменного доказывается также, что определяемая по формуле (11) абсолютно пепрерывная функция  $\Phi$  имеет почти для всех  $x \in [a, b]$  обычную производную, равную f(x):

$$\Phi'(x) = \lim_{h \to 0} \frac{\Phi(x+h) - \Phi(x)}{h} = f(x).$$
 (14)

Это показывает, что обобщенная производная от абсолютно непрерывной функции эквивалентна обычной.

Мы здесь отказываемся от доказательства также и этого утверждения. Отметим только, что равенство (14) тривиально, если x есть точка непрерывности функции  $f \in L(a, b)$ . Ведь для такой точки и любого  $\varepsilon > 0$  можно подобрать  $\delta > 0$  так, что  $|f(t) - f(x)| < \varepsilon$ , если  $|t - x| < \delta$ ; поэтому

$$\left| \frac{\Phi(x+h) - \Phi(x)}{h} - f(x) \right| =$$

$$= \left| \frac{1}{h} \int_{x}^{x+h} f(t) dt - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt \right| < \varepsilon$$

для всех  $h c |h| < \delta$ .

Теорема 5. Справедлива формула интегрирования по частям

$$\int_{a}^{b} F(x) \Phi'(x) dx = F(b) \Phi(b) - F(a) \Phi(a) - \int_{a}^{b} F'(x) \Phi(x) dx, \quad (15)$$

где F и  $\Phi$  — абсолютно непрерывные на отрезке [a, b] функции.

Доказательство. Положим F'=f,  $\Phi'=\varphi$  и построим последовательности непрерывно дифференцируемых на [a, b] функций  $f_N$ ,  $\varphi_N$  такие, что (см. § 18.2, свойство 4)

$$||f-f_N||_{L(a,b)}, \quad ||\varphi-\varphi_N||_{L(a,b)} \to 0, \quad N \to \infty.$$

В силу условия теоремы

$$F(x) = A + \int_{a}^{\infty} f(t) dt$$
,  $\Phi(x) = B + \int_{a}^{\infty} \varphi(t) dt$ ,  $x \in [a, b]$ ,

где A, B — константы. Положим

$$F_N(x) = A + \int_a^\infty f_N(t) dt$$
,  $\Phi_N(x) = B + \int_a^\infty \varphi_N(t) dt$ ,  $x \in [a, b]$ .

Тогда

$$|F(x) - E_N(x)| \leqslant \int_a^b |f - f_N| dt \to 0, \quad N \to \infty,$$

$$|\Phi(x) - \Phi_N(x)| \leqslant \int_a^b |\varphi - \varphi_N| dt \to 0, \quad N \to \infty, \quad x \in [a, b],$$

и, следовательно,  $F_N$  и  $\Phi_N$  стремятся при неограниченном возрастании N соответственно к F и  $\Phi$  равномерно на [a, b]. Так как  $f_N$ ,  $\phi_N$  являются непрерывными производными соответственно от  $F_N$ ,  $\phi_N$ , то имеют место классические формулы интегрирования по частям

$$\int_{a}^{b} F_{N} \Phi_{N} dx = F_{N}(b) \Phi_{N}(b) - F_{N}(a) \Phi_{N}(a) - \int_{a}^{b} f_{N} \Phi_{N} dx,$$

из которых переходом к пределу при  $N \to \infty$  можно получить (15). Например,

$$\left| \int_{a}^{b} F \varphi dx - \int_{a}^{b} F_{N} \varphi_{N} dx \right| \leq \int_{a}^{b} |F - F_{N}| |\varphi| dx + \int_{a}^{b} |F_{N}| |\varphi - \varphi_{N}| dx \leq$$

$$\leq \int_{a}^{b} |\varphi| dx \max_{x} |F(x) - F_{N}(x)| + K \int_{a}^{b} |\varphi - \varphi_{N}| dx \to 0, \quad N \to \infty$$

Здесь K — константа, превышающая  $|F_N|$  для всех N и x, существующая, потому что последовательность непрерывных функций  $F_N$  сходится равномерно.

Теорема 6. Пусть f и F — локально интегрируемые функции на области G. Для того чтобы f была обобщенной производной от F по  $x_1$  на G, необходимо и достаточно, чтобы функция F

после возможного ее видоизменения на множестве п-мерной меры нуль была локально абсолютно непрерывной по  $x_1$  на G почти для всех точек  $\mathbf{y}=(x_2,\dots,x_n)$ , принадлежащих к проекции G' области G на плоскость  $x_1=0$ , и чтобы для указанных у производная  $\frac{\partial F}{\partial x_1}$  была равна  $f(x_1,\mathbf{y})$  почти всюду в одномерном смысле.

Доказательство. Условимся в обозначениях: если множество  $e \subset G$ , то e' есть его проекция на плоскость  $x_1 = 0$  и  $e_y$  — пересечение e с прямой, параллельной оси  $x_1$ , проходящей через точку (0, y). Далее, фигурой  $\sigma$  мы называем множество, состоящее из конечного числа прямоугольников со сторонами, параллельными осям координат.

Начнем с доказательства достаточности условия теоремы. Пусть функция F видоизменена, как указано в формулировке, и  $\varphi \in D$ . Носитель  $\varphi$  есть ограниченное вамкнутое множество, принадлежащее к G, и его можно покрыть фигурой  $\sigma \subset G$ . Поэтому (пояснения ниже)

$$\int F \frac{\partial \varphi}{\partial x_1} d\mathbf{x} = \int_{\sigma'} d\mathbf{y} \int_{\sigma_y} F \frac{\partial \varphi}{\partial x_1} dx_1 = -\int_{\sigma'} d\mathbf{y} \int_{\sigma_y} \frac{\partial F}{\partial x_1} \varphi dx_1 = -\int_{\sigma'} d\mathbf{y} \int_{\sigma_y} f(x_1, \mathbf{y}) \varphi dx_1 = -\int_{\sigma} f \varphi d\mathbf{x}. \quad (16)$$

В первом равенстве цепи применена теорема Фубини к функции  $F\frac{\partial \phi}{\partial x_1} \in L(\sigma)$  (равной пулю вне  $\sigma$ ). Внутренний интеграл по  $x_1$  (только для тех y, для которых  $F(x_1, y)$  абсолютно пепрерывна) представляется как сумма соответствующих интегралов по отрезкам, из которых состоит  $\sigma_y$ . К этим последним интегралам применяется интегрирование по частям, законное в силу предыдущей теоремы.

Третье равенство следует из условия теоремы, но которому почти для всех у  $\frac{\partial F}{\partial x_1} = f$  почти для всех  $x_1$  в одномерном смысле.

Наконец, четвертое равенство, выражающее переход от последовательного к кратному интегрированию, верно по теореме Фубини, так как  $f \in L(\sigma)$ .

Так как (16) верно для любых  $\phi \in D$ , то достаточность условия теоремы доказана.

Переходим к доказательству необходимости условия теоремы. Пусть f есть обобщениая производная от F по  $x_1$  на G.

Пусть

$$G = \sum_{1}^{\infty} \Delta_{h}, \quad |G| = \sum_{1}^{\infty} |\Delta_{h}|, \quad \Delta_{h} = \{a_{i}^{(h)} \leqslant x_{i} \leqslant b_{i}^{(h)}, \quad i = 1, \ldots, n\}$$

 счетная сумма кубов, пересекающихся попарно разве что по своим границам.

По теореме 3 функцию F можно видоизменить на множестве n-мерной меры нуль и в видоизмененном виде записать при помощи равенств

$$F(\mathbf{x}) = F(x_1, \mathbf{y}) = \lambda_k(\mathbf{y}) + \int_{a_1^{(k)}}^{x_1} f(t, \mathbf{y}) dt \quad (k = 1, 2, ...),$$

$$\mathbf{x} = (x_1, \mathbf{y}) \in \Delta_k, \quad y \in \Delta_k' - e_k, \quad |e_k|_* = 0,$$
(17)

где  $\lambda_k(\mathbf{y}) \in L(\Delta_h')$ — единственная с точностью до (n-1)-мерной меры нуль конечная функция. Так как ((n-1)-мерная) мера множества  $\sum_{1}^{\infty} e_k$  равна нулю, то равенства (17) определяют (видонзмененную) функцию F почти всюду на G. Непосредственно видно, что F для указанных  $\mathbf{y}$  по  $x_1$  абсолютно непрерывна, по в пределах каждого куба  $\Delta_k$ . Покажем, что множества  $e_k$  могут быть увеличены с сохранением свойства  $|e_k|_* = 0$  так, что определяемая равенствами (17) функция F по  $x_1$  будет локально

абсолютно непрерывна на G для всех  $\mathbf{y} \in G' - e$ ,  $e = \sum_{1}^{\infty} e_h$  ( $|e|_* = 0$ ).

Рассмотрим два куба  $\Delta_{i}$  и  $\Delta_{i}$ , имеющие в направлении  $x_{i}$  общую границу, представляющую собой некоторый прямоугольник

$$\Delta' = \{\alpha_j \leqslant x_j \leqslant \beta_j; \quad j = 2, \ldots, n\}.$$

Будем считать, что  $\Delta_l$  находится правее  $\Delta_k$ . Нас будут интересовать те части  $\Delta_* \subset \Delta_k$ ,  $\Delta_{**} \subset \Delta_l$ , которые имеют указанную общую проекцию  $\Delta'$ . Итак, пусть

$$\begin{split} & \boldsymbol{\Lambda}_{*} = [\boldsymbol{\alpha}, \boldsymbol{\beta}] \times \boldsymbol{\Delta}', \quad \boldsymbol{\Lambda}_{**} = [\boldsymbol{\beta}, \boldsymbol{\gamma}] \times \boldsymbol{\Delta}', \\ & \boldsymbol{\alpha} = a_{1}^{(k)}, \quad \boldsymbol{\beta} = b_{1}^{(k)} = a_{1}^{(l)}, \quad \boldsymbol{\gamma} = b_{1}^{(l)}, \quad \boldsymbol{\alpha} < \boldsymbol{\beta} < \boldsymbol{\gamma}. \end{split}$$

Имеем

По можно также, применяя теорему 3 к прямоугольнику  $\Delta = \Delta_* + \Delta_{**}$ , установить существование функции  $F_0$ , равной F

почти всюду на  $\Delta$ , и функции  $\lambda(y) \in L(\Delta')$  такой, что

$$F_0(x_1, \mathbf{y}) = \lambda(\mathbf{y}) + \int_{\alpha}^{\alpha_1} f(t, \mathbf{y}) dt \text{ Ha } \Delta, \quad \mathbf{y} \in \Delta' - e_{kl}, \quad (19)$$

$$|e_{kl}|_{\mathbf{x}} = 0.$$

Так как  $F=F_0$  почти всюду на  $\Delta_*$ , то  $\lambda_k(\mathbf{y})=\lambda(\mathbf{y})$  почти всюду на  $\Delta'$  в смысле (n-1)-мерной меры, и так как  $F_{\mathfrak{g}} = F$  почти всюду на  $\Delta_{**}$ , то почти всюду на  $\hat{\Delta}'$  в смысле (n-1)-мерной меры выполняется равенство

$$\lambda_l(\mathbf{y}) = \lambda(\mathbf{y}) + \int_{\alpha}^{\beta} f(t, \mathbf{y}) dt.$$

Это показывает, что  $e_{kl}$  можно увеличить, сохраняя меру  $[e_{kl}]_*$ , так что для всех  $\mathbf{y} \in \Delta' - e_{il}$  имеют место тождества  $F = F_{\mathfrak{o}}$  на  $\Delta_{*},\ F=F_{0}$  на  $\Delta_{**},\$ н таким образом, функция F для указанных у вместе с  $F_0$  абсолютно непрерывна на  $\Delta$  по  $x_i$ .

Пусть теперь

$$e = \sum e_{hl}, \quad |e|_* = 0,$$

где сумма распространена на всевозможные нары (k, l), для которых  $\Delta_t$  граничит с  $\Delta_h$  справа от  $\Delta_h$ . Нетрудно видеть, что для всех  $y \in G' - e$  наша функция F по  $x_4$  на G локально абсолютно пепрерывна.

Отметим, что так как теоремы 2, 3, 6 дают необходимые и достаточные условия для того, чтобы функция / была обобщенной производной по  $x_i$  от F на G, то эти условия могут быть взяты ва исходное определение обобщенной функции.

Мы определили обобщенную производную  $\frac{\partial F}{\partial x}$ . По аналогии

определяются обобщенные производные  $\frac{\partial F}{\partial x_i}$  ( $j=2,\ldots,n$ ).

Обобщенные производные высшего порядка определяются по индукции, например, вторая обобщепная производная

$$\frac{\partial^2 F}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_1} \left( \frac{\partial F}{\partial x_2} \right)$$

есть обобщенная производная по  $x_i$  от обобщенной производной  $\frac{\partial F}{\partial x_a}$ .

Заметим, что если данная функция F имеет на G обобщенные производные  $\frac{\partial F}{\partial x_1}$ ,  $\frac{\partial F}{\partial x_2}$ ,  $\frac{\partial^2 F}{\partial x_1 \partial x_2}$ , то автоматически существует обобщенная производная  $\frac{\partial^2 F}{\partial x_2 \partial x_1}$ , равная почти всюду  $\frac{\partial^2 F}{\partial x_1 \partial x_2}$ .

В самом деле, для любой функции  $\mathfrak{q} \in D$  имеет место

$$\begin{split} \int \frac{\partial^2 F}{\partial x_1 \partial x_2} \, \phi \, dx &= - \int \frac{\partial F}{\partial x_2} \, \frac{\partial \phi}{\partial x_1} \, dx = \int F \, \frac{\partial^2 \phi}{\partial x_2 \partial x_1} \, dx = \\ &= \int F \, \frac{\partial^2 \phi}{\partial x_1 \partial x_2} = - \int \frac{\partial F}{\partial x_1} \, \frac{\partial \phi}{\partial x_2} \, dx, \end{split}$$

т. е. показано, локально интегрируемые функции  $\frac{\partial^2 F}{\partial x_1 \partial x_2}$  и  $\frac{\partial F}{\partial x_2}$ удовлетворяют равенству

$$\int \frac{\partial^2 F}{\partial x_1 \partial x_2} \, \varphi \, dx = - \int \frac{\partial F}{\partial x_1} \, \frac{\partial \varphi}{\partial x_2} \, dx,$$

Но это значит, что первая из них есть обобщенная производная по  $x_2$  от второй, т. е.  $\frac{\partial^2 F}{\partial x_1 \partial x_2} = \frac{\partial^2 F}{\partial x_2 \partial x_1}$  почти всюду на  $G_{ullet}$ 

Эти факты легко обобщаются на смешанные производные более высокого порядка.

### $\S$ 19.6. Пространство обобщенных функций $D^*$

Мы снова будем рассматривать пространство D бесконечно дифференцируемых финитных в некоторой области  $\Omega \subset R_n$  функций ф (действительных или комплексных) и поставим своей целью определить пад D пространство  $D^\prime$  обобщенных функций, подобно тому как в § 16.7 было определено пространство  $\hat{S}'$  над S.

Говорят, что последовательность функций  $\phi_k \in D$  сходится к

 $\varphi \in D$  в смысле (D), и пишут

$$\varphi_h \to \varphi (D)$$
,

если носители ф, принадлежат к одному и тому же компакту  $F \subset \Omega$  и если равномерно (на  $R_n$ )

$$\lim_{h\to\infty}\varphi_h^{(s)}(\mathbf{x})=\varphi^{(s)}(\mathbf{x}), \quad \varphi^{(0)}=\varphi,$$

какова бы ни была частная производная  $\phi^{(s)}$  порядка  $\mathbf{s} =$  $=(s_1,\ldots,s_n).$ 

Множество D называют пространством D (в связи с тем, что в нем определена сходимость — топодогия).

По определению обобщенной функцией  $f \in D'$  называется липейный и непрерывный функционал  $(f, \varphi)$ , определенный нап D, т. е. такой функционал, для которого выполняются следующие два свойства:

1)  $f(\alpha \varphi + \beta \psi) = \alpha f(\varphi) + \beta f(\psi)$  для любых чисел (действительных, комплексных)  $\alpha$ ,  $\beta$  и функций  $\phi$ ,  $\psi \in D$ ,  $(f(\phi) = (f, \phi))$ ,  $(f(\phi) = (f, \phi))$ ,  $(f(\phi) \to f(\phi), \phi_h \to \phi$  (D).

Очевидно, что  $D \subset S$ , где S — определенное в § 16.6 пространство бесконечно дифференцируемых на  $R_n$  функций, стремящихся к нулю на бесконечности вместе со своими частными производными быстрее любой степени |x|. Кроме того, сходимость  $\varphi_k \to \varphi(D)$  является в то же время сходимостью  $\varphi_k \to \varphi(S)$ . Поэтому линейный непрерывный функционал f на S, если его рассматривать только для  $\varphi \in D$ , автоматически есть линейный непрерывный функционал на D. Говорят, что первый функционал  $u \mapsto \partial y \psi u p y e \tau$  второй на D. В этом смысле можно считать, что  $S' \subset D'$ .

Например,  $\delta$ -функция, определенная как функционал ( $\delta$ ,  $\phi$ ) =  $\phi(0)$ ,  $\phi \in S$ , индуцирует функционал ( $\delta$ ,  $\phi$ ) =  $\phi(0)$ ,  $\phi \in D$ , на-

вываемый тоже  $\delta$ -функцией (определенной на D).

Производная от  $f \in D'$  порядка  $\mathbf{k} = (k_1, \ldots, k_n)$  определяется как функционал  $(f^{(k)}, \varphi) = (-1)^{|k|} (f, \varphi^{(k)}), \varphi \in D$ . Но это же равенство, верное для всех  $\varphi \in S$ , определяет производную  $f^{(k)}$  от  $f \in S'$ . Поэтому, если  $f \in S'$ , то производную  $f^{(k)}$  в смысле (D) можно определить как функционал, индуцируемый на D функционалом  $f^{(k)}$ , определенным в смысле (S).

Если  $f(\mathbf{x})$  есть функция, локально интегрируемая на  $\Omega$ , то она представляет обобщенную функцию  $f \in D'$  при помощи интеграла

$$(f, \varphi) = \int f(\mathbf{x}) \, \varphi(\mathbf{x}) \, d\mathbf{x}, \quad \varphi \in D.$$

Непрерывность этого функционала следует из того, что если  $\phi_k \to \phi(D)$ , то  $\phi_k \to \phi$  равномерно на  $R_n$ , и существует компакт  $F \subset \Omega$ , содержащий в себе носители  $\phi$  и всех функций  $\phi_k$ , и потому

$$|(f,\varphi)-(f,\varphi_h)| \leq \int_{F} |f(\mathbf{x})| |\varphi(\mathbf{x})-\varphi_h(\mathbf{x})| d\mathbf{x} \leq \max_{\mathbf{x}} |\varphi(\mathbf{x})-\varphi_h(\mathbf{x})| \int_{F} |f| d\mathbf{x} \to 0, \quad k \to \infty.$$

Справедлива следующая важная теорема:

Теорема 1. Две локально интегрируемые ћа  $\Omega$  функции  $f_1$  и  $f_2$  представляют один и тот же функционал тогда и только тогда, если они равны почти всюду на  $\Omega$ .

Доказательство. Положим  $f(x)=f_1(\mathbf{x})-f_2(\mathbf{x})$ . Очевидно, что теорема сводится к установлению того факта, что для выполнения равенства

$$\int f(\mathbf{x}) \varphi(\mathbf{x}) d\mathbf{x} = 0 \quad \text{для всех } \varphi \in D$$
 (1)

необходимо и достаточно, чтобы

$$f(\mathbf{x}) \equiv 0$$
 почти для всех  $\mathbf{x} \in \Omega$ . (2)

Из (2) тривиально следует (1). Доказать обратное нам поможет лемма.

Пемма. Если функция  $\psi(x)$  локально измерима\*) и ограничена на открытом множестве G, то существует последовательность бесконечно дифференцируемых финитных в G функций  $\varphi_h \in D$ , удовлетворяющая условиям

$$\lim_{h\to\infty} \varphi_h(\mathbf{x}) = \psi(\mathbf{x}) \quad \text{nouru } ecn\partial y \text{ na } G,$$
 (3)

$$|\varphi_h(\mathbf{x})| \leqslant \sup_{\mathbf{x} \in G} |\psi(\mathbf{x})|.$$
 (4)

В самом деле, обозначим через  $G_N$  пересечение G с шаром  $|\mathbf{x}| \leq N$  и пусть  $\eta_N$  убывает к нулю. Так как  $\psi \in L(G_N)$ , то можно указать бесконечно дифференцируемую финитную в  $G_N$ , следовательно, в G, функцию  $\psi_N$  такую, что (§ 18.2, свойство 4)

$$\|\psi - \psi_N\|_{L(G_N)} \leqslant \eta_N, \tag{5}$$

$$|\psi_N(x)| \leq \sup_{x \in G} |\psi(\mathbf{x})|.$$
 (6)

Из (5) и (6) (см. § 19.3, свойство 21)\*\*) следует, что из последовательности  $\{\psi_N\}$  можно выделить подпоследовательность, нодчиняющуюся условиям леммы.

Пусть теперь верно (1). Положим

$$\psi(\mathbf{x}) = \operatorname{sign} f(\mathbf{x}) \tag{7}$$

и нусть  $G \subset \overline{G} \subset \Omega$  есть произвольное открытое ограниченное множество. Подберем для  $\psi$  последовательность бесконечно дифференцируемых финитных в G функций  $\varphi_k$  так, чтобы выполнялись условия (3), (4) доказанной леммы. Так как  $\varphi_k \in D$ , то в силу (1)  $\int f(\mathbf{x}) \varphi_k(x) dx = 0$  (k = 1, 2, ...), и потому (пояснения пиже)

$$0 = \lim_{h \to \infty} \int_{G} f(\mathbf{x}) \, \varphi_h(\mathbf{x}) \, d\mathbf{x} = \int_{G} f(\mathbf{x}) \, \psi(\mathbf{x}) \, d\mathbf{x} = \int_{G} |f(\mathbf{x})| \, d\mathbf{x}, \quad (8)$$

т. е.  $f(\mathbf{x}) = 0$  почти всюду на G и в силу произвольности G также ночти всюду на  $\Omega$ , и мы доказали (1).

таблицу подпоследовательности  $N_1^k, N_2^k, \dots$   $(k=1, 2, \dots)$ , каждая из которых есть подпоследовательность предыдущей. Легко видеть, что для диагональной подпоследовательности  $N_1^k, N_2^k, \dots$  будет  $\psi_{N_h^k} \to \psi$  почти

<sup>\*)</sup> Т. е. измерима на VG, где V — произвольный шар.

\*\*) Из свойства 21, § 19.3 непосредственно следует, что так как  $\|\psi-\psi_N\|_{L(G_1)}<\eta_N$ , то найдется подпоследовательность (первая) $N_1^1$ ,  $N_2^1$ , ..., такая, что  $\psi_N^1 \to \psi$  почти всюду на  $\Omega_1$ . Далее,  $\|\psi-\psi_N^1\|_{L(G_2)}<\eta_N^1$ , и можно из первой подпоследовательности выделить вторую  $N_1^2$ ,  $N_2^2$ , ..., для которой  $\psi_N^2 \to \psi$ почти всюду на  $G_2$ . Продолжая этот процесс, получим таблицу полноследовательности  $N_2^k$ ,  $N_2^k$ , ...,  $N_2^k$ , ...,  $N_2^k$ , ...

Во втором члене цепи можно интегрировать только по G, потому что носитель  $\phi_k$  принадлежит к G. Переход к третьему члену осуществлен на основании теоремы Лебега, применимой потому, что в силу (4) и (7) и локальной интегрируемости f

$$|f(\mathbf{x})\varphi_h(\mathbf{x})| \leq |f(\mathbf{x})| \leq L(G)$$
.

В ваключение отметим теорему.

Теорема 2. Пусть f и F — локально интегрируемые на  $\Omega$  функции (таким образом,  $f, F \in D'$ ). Если

$$f(\mathbf{x}) = \frac{\partial F}{\partial x_1} \quad \text{ha } \Omega \text{ no Coboncey,} \tag{9}$$

TO:-

$$f = \frac{\partial F}{\partial x_1} \quad \text{s смысле (D)}, \tag{10}$$

и наоборот.

Ведь для локально интегрируемых на  $\Omega$  функций F и f оба равенства (9), (10) эквивалентны следующему:

$$\int f(\mathbf{x}) \, \varphi(\mathbf{x}) \, d\mathbf{x} = -\int F(\mathbf{x}) \, \frac{\partial \varphi}{\partial x_1} \, dx$$
 для всех  $\varphi \in D$ .

# § 19.7. Неполнота пространства $L_p$

Рациональные точки (0,1) перенумеруем  $(r_1,r_2,\ldots)$  и покроем k-ю из них интервалом  $\sigma_k$  с центром в ней, принадлежащим к (0,1) и имеющим длину меньшую, чем  $\epsilon 2^{-k}$   $(0<\epsilon<1,k=1,2,3,\ldots)$ . Пусть  $G=\sum_1^{\infty}\sigma_k$  — множество (открытое), принадлежащее к (0,1), и

$$f(x) = \begin{cases} 1, & x \in G, \\ 0, & x \in [0, 1] - G = F, \end{cases}$$

т. е.  $f = f_a$  есть характеристическая функция множества G. Пусть, далее,  $f_i$  — функция, эквивалентная f (равная f почти всюду),

Лебегова мера множества G удовлетворяет неравенству

$$\mu G \leqslant \sum_{1}^{\infty} |\sigma_h| < \varepsilon < 1,$$

Поэтому дополнительное к нему множество (замкнутое) F имеет положительную лебегову меру. Обозначим через e то множество (лебеговой меры нуль), на котором f и  $f_1$  различаются, и положим  $G' = G \setminus e$ ,  $F' = F \setminus e$ . Если  $x \in F'$ , то  $f_1(x) = 0$ . Но в любой окрестности G точки G имеется некоторая рациональная точка  $G \setminus G$  но рая покрыта интервалом  $G \setminus G$  но этом пересечение  $G \setminus G \setminus G$ 

>0!) ваведомо содержит точки G', в которых  $f_1 = 1$ . Это показывает, что  $f_1$  разрывна на множестве F' положительной меры, и потому по теореме Лебега (см. § 12.10)  $f_1$  не интегрируема по Риману на [0, 1]. Она также не принадлежит к L'(0, 1). Ведь не только ограниченные (интегрируемые по Риману), но и неограниченные функции из L'(0, 1) непрерывны почти всюду на [0, 1]. Это легко вытекает из того, что если функция  $f_1 = L'(0, 1)$  не ограничена, то для нее существует на [0, 1] только конечное число точек  $x_0, \ldots, x_N$  таких, что на любом отрезке [a, b], принадлежащем к [0, 1] и не содержащем в себе ни одной из этих точек,  $f_1$  интегрируема в римановом (собственном) смысле.

Таким образом, функция f может служить примером ограниченной на [0, 1] функции, не интегрируемой по Риману и такой,

что любая, ей эквивалентная функция  $f_1 \neq L'$  (0, 1).

Отметим еще, что так как  $f = f_a$  есть характеристическая функция множества G, то последнее может служить примером ограниченного открытого множества, не измеримого по Жордану, так же как, очевидно, F может служить примером ограниченного замкнутого множества, не измеримого по Жордану.

Не, конечно, множества G и F измеримы по Лебегу, потому что любое открытое и любое замкнутое ограниченное множество обладает этим свойством. Поэтому функция f интегрируема по

Лебегу на (0, 1) и ее интеграл равен

$$\int_G f \, dx = \int_G f_1 dx \doteq \mu G.$$

Пусть  $f_k(x)$  есть характеристическая функция множества  $\omega_k = \sigma_1 + \ldots + \sigma_k$ . Очевидно, что

$$\int_{0}^{1} |f(x) - f_{h}(x)| dx = \int_{G - \omega_{h}} |f(x)| dx = \mu(G - \omega_{h}) \to 0 \quad (k \to \infty).$$

Но тогда удовлетворяется условие Коши, т. е. для всякого  $\eta>0$  можно указать N такое, что

$$\int_{0}^{1} |f_{h}(x) - f_{l}(x)| dx < \eta, \quad k, l > N.$$
 (1)

Всюду выше интегралы понимались в лебеговом смысле. Однако интегралы (1) можно понимать также и в римановом смысле, потому что функции  $f_k(x)$  интегрируемы по Риману на [0, 1].

Итак, имеется следующая ситуация: последовательность функций  $f_h \in L'(0,1)$  удовлетворяет условию Коши в смысле L(0,1), но не существует функции  $\phi \in L'(0,1)$ , к которой  $f_h$  стремится в смысле L(0,1).

Ведь если бы такая функция  $\phi$  существовала, то она принадлежала бы также к L (0, 1) (см. § 19.3, свойство 20), но тогда в силу единственности с точностью до эквивалентности функции f,

для которой лебегов интеграл

$$\int_{0}^{1} |f - f_{h}| dx \to 0, \quad k \to \infty,$$

стремится к нулю,  $\phi$  должна равняться одной из функций  $f_i$ , эквивалентных  $f_i$ , и мы пришли к противоречию, потому что  $f_i \not \in L'(0,1)$ .

Этим доказано, что пространство L'(0,1) не полно. Применяя ту же функцию f, читатель, аналогично рассуждая, докажет, что и пространство  $L'_p(0,1)$  не полно.

## § 19.8. Обобщение меры Жордана

Мы будем рассматривать полуоткрытые (ограниченные) прямоугольники

 $\Delta = \{c_i \leqslant \xi_i < d_i; \ j = 1, \dots, n\}$ 

и фигуры (полуоткрытые)

$$\sigma = \sum_{j=1}^{N} \Delta^{j}$$

— конечные суммы попарно непересекающихся полуоткрытых прямоугольников.

Иногда будем говорить просто о фигурах о, подразумевая, что они полуоткрыты. Если же появится необходимость говорить о замкнутой или открытой фигуре (прямоугольнике), то это будет всякий раз оговариваться.

Пусть  $G = \{a_j \leq \xi_j < b_j; j = 1, ..., n\}$  — фиксированный прямоугольник и каждому  $\Delta \subseteq G$ , в том числе и G, приведено в соответствие неотринательное число  $\alpha(\Delta)$  такое, что  $\alpha(\Delta)$  есть аддитивная

функция от  $\Delta$ , т. е. если  $\Delta = \sum_{j=1}^N \Delta^j$ , где  $\Delta^j$  — попарно пепересекающиеся прямоугольники, то

$$\alpha\left(\Delta\right) = \sum_{j=1}^{N} \alpha\left(\Delta^{j}\right). \tag{1}$$

Функцию  $\alpha(\Delta)$  будем считать продолженной на произвольные  $\Delta \subseteq R_n$ , положив

$$\alpha(\Delta) = \alpha(G\Delta)$$
.

Мы слитаем  $\alpha(\Delta) = 0$  для любого прямоугольника  $\Delta$  не пересекающегося с G. Продолженная функция, очевидно, неотрицательна и аддитивна.

Распространим  $\alpha(\Delta)$  на все фигуры  $\sigma \subseteq G$ , положив

$$\alpha\left(\sigma\right) = \sum_{j=1}^{N} \alpha\left(\Delta^{j}\right), \quad \sigma = \sum_{j=1}^{n} \Delta^{j},$$

где  $\Delta^{i}$ — попарно непересекающиеся прямоугольники.

Легко видеть, что  $\alpha(\sigma)$  есть аддитивная неотрицательная функция от  $\sigma \subset G$ . Таким образом,

$$\alpha(\sigma') + \alpha(\sigma'') = \alpha(\sigma' + \sigma'')$$

для непересекающихся  $\sigma'$ ,  $\sigma'' \subset G$ .

Пустое множество  $\varnothing$  мы тоже называем фигурой и полагаем  $\alpha(\varnothing)=0$ . Тогда для любой  $\sigma \subset G$ 

$$\alpha(\sigma + \emptyset) = \alpha(\sigma) = \alpha(\sigma) + \alpha(\emptyset)$$
.

Очевидно,  $\sigma' - \sigma$  есть фигура вместе с  $\sigma$  и  $\sigma'$ , и если  $\sigma \subseteq \sigma'$ , то  $0 \le \alpha(\sigma' - \sigma) = \alpha(\sigma') - \alpha(\sigma)$ ,

откуда  $\alpha(\sigma) \leq \alpha(\sigma')$ .

Условимся, что  $A \subset \subset B$  обозначает, что  $\overline{A} \subset \overline{B}$ , где  $\overline{B}$  — открытое ядро B, т. е. совокупность внутренних точек B. Таким обравом, границы A и B не пересекаются.

Пусть  $\Omega \subset G$  — произвольное множество.

По определению его внутренняя мера (относительно  $\alpha(\Delta)$  в духе Жордана) есть верхняя грань

$$m_i \Omega = \sup_{\sigma \subset \subset \Omega} \alpha(\sigma).$$

Отметим, что в случае меры Жордана ( $\alpha(\Delta)=|\Delta|$ ) справедливо равенство

$$\sup_{\sigma \subset \Omega} |\sigma| = \sup_{\sigma \subset \subset \Omega} |\sigma|,$$

которое не изменится, если под  $\sigma$  попимать замкнутые фигуры вместо полуоткрытых, как это считалось при определении внутренней меры Жордана (см. § 12.5). Для произвольной меры  $\alpha(\Delta)$  это равенство вообще неверно (см. ниже примеры 1, 2).

 $\Gamma$ ак как  $0 \leqslant \alpha(\sigma) \leqslant \alpha(G)$  для всех  $\sigma \subset \subset \Omega$ , то (конечное) число

 $m_i\Omega$  существует и неотрицательно.

Конечно, если  $\Omega$ , кроме пустого мпожества, пе содержит в себе ни одного прямоугольника, то  $m_i\Omega=0$ .

По определению внешняя мера (относительно  $\alpha(\Delta)$  в духе Жордана) есть нижняя грань

$$m_e\Omega = \inf_{\sigma \supset \supset \Omega} \alpha (\sigma).$$

Если замыкание  $\overline{\Omega}$  имеет общие точки с границей G, то для того, чтобы это определение было корректным, мы считаем, что  $\alpha(\Delta)$  продолжена на все  $\Delta \subseteq R_n$ .

Так как  $\alpha(\sigma) \geqslant 0$  для любой  $\sigma$ , то число  $m_c\Omega$  существует для любого  $\Omega \subseteq G$  и не отрицательно.

Очевидно, что  $m_i\Omega \leq m_e\Omega$ . В случае равенства мы будем говорить, что множество  $\Omega$  измеримо (относительно  $\alpha(\Delta)$  в духе Жордана) и его мера есть

 $m\Omega = m_i\Omega = m_e\Omega.$ 

Рассматриваемая вдесь мера превращается в меру Жордана, если  $\alpha(\Delta)$  равна  $|\Delta|$  — n-мерному объему  $\Delta$ . Да и основные ее свойства аналогичны и доказываются аналогично (см. § 12.5). Ниже мы их перечисляем.

Вместе с  $\Omega_1$  и  $\Omega_2$  измеримы также множества  $\Omega_1 \pm \Omega_2$  и  $\Omega_1 \Omega_2$ , а если  $\Omega_1$  и  $\Omega_2$  не пересекаются, то  $m(\Omega_1 + \Omega_2) = m\Omega_1 + m\Omega_2$ ; таким образом, если  $\Omega_1 \supset \Omega_2$ , то  $m(\Omega_1 - \Omega_2) = m\Omega_1 - m\Omega_2$ .

Множество Ω измеримо тогда и только тогда, когда его грани-

ца имеет меру (относительно α(Δ) в духе Жордана) нуль.

Мы видим, что, так же как в случае меры Жордана, чтобы распознать измеримое множество, достаточно установить, что его граница  $\Gamma$  имеет меру нуль в смысле  $\alpha(\Delta)$ . В случае жордановой меры этот вопрос всецело зависит от геометрических свойств  $\Gamma$ . В общем же случае это не всегда так.

Пример 1. Пусть масса, равная 2, распределена на отрезке [0, 1] следующим образом. Половина ее, равная 1, распределена на [0, 1] равномерно, а другая половина скопцентрирована в точке x=1/2. Функция  $\alpha(\Delta)$ , где  $\Delta \subset [0, 1]$  — произвольный полуинтервал, равна массо  $\Delta$ . Иначе говоря,

$$\alpha (\Delta) = \begin{cases} |\Delta|, & \text{ecan } \frac{1}{2} \equiv \Delta, \\ |\Delta| + 1, & \text{ecan } \frac{1}{2} \in \Delta, \end{cases}$$

 $\hat{\mathbf{r}}$ де  $|\Delta|$  — длина  $\Delta$ .

Легко видеть, что, исключая точку x=1/2, любая точка, рассматриваемая как множество, имеет меру в смысле  $\alpha(\Delta)$ , равную нулю. Множество же e, состоящее из исключительной точки x=1/2, неизмеримо в смысле  $\alpha(\Delta)$ , ведь  $m_ie=0$ ,  $m_ee=1$ . Очевидно, внутренняя мера отрезка [1/2, 1] равна  $m_i[1/2, 1]=\sup_{\Delta\subset [1/2, 1]} |\Delta|=1/2$ , между тем  $\sup_{\Delta\subset [1/2, 1]} \alpha(\Delta)=1/2$ 

 $= \alpha[1/2, 4] = 3/2.$  Пример 2. Пусть масса, равная 3, распределена на квадрате  $\overline{G} = \{0 \le x, y \le 1\}$  следующим образом. Единица распределена на G равномерно, другая единица равномерно распределена на наибольшем принадлежащем G полуинтервале  $\gamma$  прямой x = 1/2, наконец, третья единица сконцентрирована в точке (1/2, 1/2). Функция  $\alpha(\Delta)$  равна по определению массе  $\Delta$ . Иначе говоря,

$$\alpha\left(\Delta\right) = \begin{cases} \mid \Delta\mid, & \text{если } \Delta\gamma = 0, \\ \mid \Delta\mid +\mid \Delta'\mid, & \text{если } \Delta \text{ пересекается с } \gamma, \text{ но не с точкой } (1/2,1/2), \\ \mid \Delta\mid +\mid \Delta'\mid +1 \text{ в остальных случаях.} \end{cases}$$

Здесь  $|\Delta|$  — площадь  $\Delta$ , а  $|\Delta'|$  — длина проекции  $\Delta$  на ось y. В этом примере, если не считать точку (1/2, 1/2) каждая точка G, рассматриваемая как множество, имеет меру нуль (относительно  $\alpha(\Delta)$ ). Любой

принадлежащий интервалу у отрезок неизмерим. С другой стороны, непрерывная кривая  $\Gamma$ ,  $y = \varphi(x)$   $0 \leqslant x \leqslant 1$ , удовлетворяющая условию  $0 \leqslant$  $\leqslant \varphi(x) \leqslant 1$ ,  $\varphi(1/2) \neq 1/2$ , как нетрудно видеть, имеет меру нуль относительно  $\alpha(\Delta)$ , несмотря на то что она пересекает у.

Приведенные примеры показывают, что неотрицательная аддитивная функция  $\alpha(\Delta)$  может быть такой, что в G будут существовать отдельные точки и отрезки, представляющие собой неизмеримые относительно α(Δ) в духе Жордана множества.

Ввелем прямоугольник (для данного i = 1, ..., n)

$$\Delta_t^i = \{ \xi : a_i \leqslant \xi_i < t; \ a_j \leqslant \xi_j < b_j; \ j \neq i \}$$

и функцию  $\beta_i(t) = \alpha(\Delta_t^i), a_i < t \leq b_i, \beta_i(a_i) = 0$ .

Зафиксируем  $t \in (a_i, b_i)$  и обозначим через  $G_i(t)$  сечение G плоскостью  $x_i = t$ . Пусть  $a_i < t' < t < t'' < b_i$ . Если задать прямоугольник  $\Delta \supset G$ , то фигура  $\sigma = (\Delta - G) + (\Delta_{t''}^i - \Delta_{t'}^i)$  содержит строго внутри себя  $G_i(t)$ . При этом  $\alpha(\Delta - G) = 0$  в силу соглашеиня о прополжении  $\alpha(\Delta)$  (см. (1)), и потому

$$\alpha(\sigma) = \alpha(\Delta_{t''}^{i}) - \alpha(\Delta_{t'}^{i}) = \beta_{i}(t'') - \beta_{i}(t').$$
 (2)

Предел левой, а следовательно, и правой части (2), при t'' —  $-t' \rightarrow 0$  равен нулю тогда и только тогда, когда сечение  $G_i(t)$ имеет меру  $m(G_i(t)) = 0$ , или, что все равно, если функция  $\beta_i$ пепрерывна в точке t. Сечение  $G_i(t)$  в этом случае мы будем называть регулярным сечением G ( $a_i < t < b_i$ !).

Конечная система регулярных сечений (вообще для разных i = 1, ..., n) определяет некоторое разбиение G на попарно непересскающиеся прямоугольники, которое мы будем называть ре-

гулярным.

Tак как функции  $\beta_i(t)$  не убывают и, следовательно, если имеют точки разрыва, то самое большое счетное число, то для всякого  $\varepsilon > 0$  найдется регулярное разбиение G с частичными прямоугольниками диаметра меньшего чем є.

В одномерном случае  $G = \{a \leq \xi < b\}$ ,

$$\Delta_x = \{a \leqslant \xi < x\}, \quad \beta(x) = \alpha(\Delta_x), \quad a < x \leqslant b, \quad \beta(a) = 0.$$
 (3)

Поэтому, если  $\Delta = \{x \le \xi < y\} \subset G$  — произвольный полуинтервал, TO

$$\alpha(\Delta) = \beta(y) - \beta(x). \tag{4}$$

Итак, всякая аддитивная неотрицательная функция  $\alpha(\Delta)$ ,  $\Delta \subset$  $\subset G$ , определяет при помощи равенств (3) обычную неотрицательную неубывающую на [a, b] функцию  $\beta(x)$  такую, что для любого  $\Delta \subset G$  выполняется соотношение (4).

Наоборот, очевидно, что каждой неубывающей функции  $\beta(x)$ ,  $\beta(a) = 0$ , при помощи равенств (3), (4) ставится в соответствие неотрицательная аддитивная функция  $\alpha(\Delta)$ ,  $\Delta \subset G$ .

В двумерном случае  $G = \{a \le \xi < b, c \le \eta < d\}$ . В этом случае имеет смысл ввести полуоткрытые прямоугольники

$$\Delta_{xy} = \{ a \leqslant \xi < x, \quad c \leqslant \eta < y \}$$

и функцию

$$F(x, y) = \alpha(\Delta_{xy}), \quad a < x \le b, \quad c < y \le d, \tag{5}$$

$$F(a, y) = F(x, c) = 0, \quad a \le x \le b, \ c \le y \le d, \tag{5'}$$

удовлетворяющую, очевидно, свойству

$$0 \leqslant F(x, y) \leqslant F(x', y'), \quad x \leqslant x', \ y \leqslant y', \tag{6}$$

Кроме того, если (x > a, y > c),

$$\Delta = \{x \leq \xi < x', \quad y \leq \eta < y'\}, \quad \Delta_1 = \{x \leq \xi < x', \quad 0 \leq \eta < y\},$$
$$\Delta_2 = \{0 \leq \xi < x, \quad y \leq \eta < y'\},$$

то  $\Delta_{x'y'} = \Delta_{xy} + \Delta_1 + \Delta_2 + \Delta$ , где прямоугольники справа попарно не пересекаются, и потому

$$\alpha \left( \Delta_{x'y'} \right) = \alpha \left( \Delta_{xy} + \Delta_1 \right) + \alpha \left( \Delta_{xy} + \Delta_2 \right) - \alpha \left( \Delta_{xy} \right) + \alpha \left( \Delta \right).$$

Отсюда справедливо равенство

$$\alpha(\Delta) = F(x', y') - F(x', y) - F(x, y') + F(x, y), \tag{7}$$

верное (см. (5')) и при  $x=a,\ c\leqslant y\leqslant d$  и при  $y=c,\ a\leqslant x\leqslant b$ . Следовательно  $(x\leqslant x',y\leqslant y'),$ 

$$F(x', y') - F(x', y) - F(x, y') + F(x, y) \ge 0.$$
 (8)

Таким образом, неотрицательная аддитивная функция  $\alpha(\Delta)$  определяет при помощи равенств (5), (5'), (7) функцию F(x, y), удовлетворяющую условиям (6) и (8). Очевидно, что и наоборот, функция F(x, y) со свойствами (5'), (6), (8) определяет при помощи (5), (7) неотрицательную аддитивную функцию  $\alpha(\Delta)$ .

Если F непрерывна в точках (x,y), (x',y), (x,y'), (x',y'), то, очевидно, для всякого  $\varepsilon > 0$  можно указать такие  $\Delta'$  и  $\Delta''$ ,  $\Delta' \subseteq \Delta \subseteq \Delta''$ , что  $\alpha(\Delta'') - \alpha(\Delta') < \varepsilon$ , и тогда прямоугольник  $\Delta$  (полуоткрытый или замкнутый или открытый) есть измеримое множество в смысле  $\alpha(\Delta)$ .

Заметим, что если F имеет на  $\overline{G}$  непрерывные частные производные  $F_x'$ ,  $F_y'$ ,  $F_{xy}''$ , то правую часть (8) можно записать (см. § 7.7) в виде  $F_{xy}''(x'-x)(y'-y)$ , где вторая производная  $F_{xy}''$  соответствует некоторой внутренней точке открытого прямоугольника  $\{x < \xi < x', y < \eta < y'\}$ .

По аналогии эти рассуждения распространяются на n-мерный случай, где роль выражения (8) играет разность  $\Delta^n F = \Delta_1 \Delta_2 \dots \Delta_n F$ , представляющая собой результат последовательного при-

менения к F(x) операций  $\Delta_i$  первой разности по переменным  $x_i$  с шагом  $x_i'-x_i$ . Теперь уже вместо  $F_{xy}''$  будет фигурировать смешанная производная  $F_{x_1...x_n}^{(n)}$ .

# § 19.9. Интеграл Римана — Стилтьеса

Пусть  $\Omega \subset G$  — измеримое (отпосительно  $\alpha(\Delta)$  в духе Жордана) мпожество и  $f(\mathbf{x})$  — определенная на нем функция. Каждому разбиению  $\rho$  множества  $\Omega\left(\Omega = \sum_{j=0}^{N-1} \Omega_j\right)$  на конечное число измеримых частей, пересекающихся попарно разве что по своим границам, приведем в соответствие сумму (Pumana - Crunteca)

$$S_{\rho}(f) = \sum_{j=0}^{N-1} f(\xi^{j}) m \Omega_{j}, \quad \xi^{j} \in \Omega_{j}. \tag{1}$$

Интегралом Римана — Стилтьеса от f на  $\Omega$  (относительно  $\alpha(\Delta)$ ) называется предел

$$\lim S_{\rho}(f) = \int_{\Omega} f(x) dm, \quad \max d(\Omega_{j}) \to 0, \tag{2}$$

когда максимальный диаметр  $d(\Omega_i)$  стремится к нулю.

Как обычно, этот предел не должен зависеть от выбора последовательности разбиений и точек  $\xi^j \subseteq \Omega_i$ .

Если  $\alpha(\Delta) = |\Delta| - n$ -мерный объем  $\Delta$ , то (2) есть интеграл Римана от f на  $\Omega$ .

Вообще, неограриченная функция может оказаться интегрируемой в смысле Римана — Стилтьеса, но если для любого  $\varepsilon > 0$  можно указать разбиение  $\Omega$  на части положительной меры диаметра меньшего  $\varepsilon$ , то, так же как в случае интеграла Римана (см. теорему 1 § 12.10), из того, что  $f(\mathbf{x})$  интегрируема на  $\Omega$  (относительно  $\alpha(\Delta)$ ) следует ее ограниченность на  $\Omega$ .

Основные свойства интеграла Римана — Стилтьеса полностью аналогичны соответствующим свойствам интеграла Римана. Как для последнего можно ввести для ограниченной функции  $f(\mathbf{x})$  верхнюю и нижнюю интегральные суммы

$$\overline{S}_{\rho} = \sum_{0}^{N-1} M_{j} m \Omega_{j}, \quad \underline{S}_{\rho} = \sum_{0}^{N-1} m_{j} m \Omega_{j}, 
m_{j} = \inf_{\mathbf{x} \in \Omega_{j}} f(\mathbf{x}), \quad M_{j} = \sup_{\mathbf{x} \in \Omega_{j}} f(\mathbf{x})$$

и на их основе построить верхний и нижний интегралы I и I. Теоремы переносятся на общий случай без изменений в доказательстве.

Верна и теорема Лебега (см. §§ 12.8, 12.10): для того чтобы ограниченная на замкнутом измеримом (относительно  $\alpha(\Delta)$  в духе Жордана) множестве  $\Omega$  функция f была интегрируемой в смысле

Римана — Стилтьеса, необходимо и достаточно, чтобы ее точки разрыва составляли множество e лебеговой (относительно  $\alpha(\Delta)$ )

меры нуль (µe = 0, см. пиже § 19.12).

Понятие интеграла Римана — Стилтьеса обобщают еще на так называемые функции  $\gamma(\Delta)$  ограниченной вариации, каждая из которых есть разпость  $\gamma(\Delta) = \alpha_1(\Delta) - \alpha_2(\Delta)$  двух неотрицательных аддитивных функций от  $\Delta \subseteq G$ .

Если  $m_1$ ,  $m_2$  суть соответственно меры (в духе Жордана), порождаемые пеотрицательными аддитивными функциями  $\alpha_1(\Delta)$ ,  $\alpha_2(\Delta)$ , то интеграл Римана — Стилтьеса относительно  $\gamma(\Delta)$  определяется как разность интегралов

$$\int_{\Omega} f(x) d\gamma = \int_{\Omega} f(x) dm_1 - \int_{\Omega} f(x) dm_2.$$
 (3)

Конечно, Ω здесь есть множество, измеримое (в духе Жордана)

относительно как  $\alpha_1(\Delta)$ , так и  $\alpha_2(\Delta)$ .

Подобным образом на функции  $\gamma(\Delta)$  ограниченной вариации обобщают интеграл Стилтьеса (см. ниже § 19.10, заменить  $m_1$ ,  $m_2$ ,  $\Omega$  соответственно на  $\alpha_1$ ,  $\alpha_2$ , G), а также интеграл Лебега — Стилтьеса (см. инже § 19.12, заменить  $m_1$ ,  $m_2$  соответственно на  $\mu_1$ ,  $\mu_2$ ).

#### § 19.10. Интеграл Стилтьеса

В этом параграфе мы определяем классический -интеграл Стилтьеса и выясняем его связь с интегралом Римана — Стилтьеса. Областью, для которой задается интеграл Стилтьеса, является прямоугольник.

Пусть функция  $f(\mathbf{x})$  задана на замыкании  $\overline{G}$  полуоткрытого

прямоугольника

$$G = \{a_i \le x_i < b_i; \quad i = 1, \dots, n\},\tag{1}$$

где определена неотрицательная аддитивная функция  $\alpha(\Delta)$  от  $\Delta \subset G$  (полуоткрытого прямоугольника).

Произвольная прямоугольная сетка дробит G на открытые прямоугольники, которые мы перенумеруем при помощи одного индекса:  $\Delta_1, \ldots, \Delta_{N-1}$ .

Интегралом Стилтьеса от функции  $f(\mathbf{x})$  на G называется

предел

$$\lim \sum_{0}^{N-\mathbf{L}} f(\xi^{j}) \alpha (\Delta_{j}) = \int_{G} f(\mathbf{x}) d\alpha, \quad \xi^{j} \in \overline{\Delta}_{j},$$

$$\max d(\Delta^{j}) \to 0.$$
(2)

Это определение отличается от определения интеграла Римана — Стилтьеса. Теперь множество  $\Omega = G$  и входящие в его разбиения частичные множества  $\Delta_j$  — прямоугольники, но не обявательно измеримые (отпосительно  $\alpha(\Delta)$  в духе Жордана).

Конечно, выражения  $\alpha(\Delta_i)$  в (2) можно записать на языко обычной функции, производящей заданную неотрицательную аддитивную функцию  $\alpha(\Delta)$ .

Например, в одномерном случае

$$\alpha(\Delta) = \beta(y) - \beta(x), \quad \Delta = [x, y), \quad a \le x < y \le b,$$
 (3)

где  $\beta(x) = \alpha(\Delta_x)$ ,  $\Delta_x = [a, x)$ ,  $\beta(a) = 0$  — неотрицательная неубывающая на  $\overline{G} = [a, b]$  функция. Если положить  $a = x_0 < x_1 < \ldots < x_N = b$ ,  $\Delta_j = [x_j, x_{j+1})$ , то предел (2) записывается в следующей эквивалентной форме:

$$\lim \sum_{0}^{N-1} f(\xi^{j}) [\beta(x_{j+1})] - \beta(x_{j})] = \int_{a}^{b} f(x) d\beta(x),$$

$$\max (x_{j+1} - x_{j}) \to 0,$$
(4)

которая, кстати, является более употребительной, чем (2) и исторически первой (данной самим Стилтьесом).

Соответствующее эквивалентное выражение для интеграла (2)

в двумерном случае записывается через функцию

$$F(x, y) = \alpha(\Delta_{xy}), \quad \Delta_{xy} = \{a \leq \xi < x, \quad c \leq \eta < y\},$$

$$F(x, c) = F(a, y) = 0, \quad (x, y) \in \overline{G},$$

обладающую свойствами

$$\alpha(\Delta) = F(x', y') - F(x, y') - F(x', y) + F(x, y) \ge 0,$$
  

$$\Delta = \{x \le \xi < x', \quad y \le \eta < y'\}.$$

Таким образом, если  $a = x_0 < x_1 < ... < x_M = b$ ,

$$c = y_0 < y_1 < \ldots < y_N = d$$
,

$$\Delta_{ij} = \{x_i \leq \xi < x_{i+1}, \quad y_j \leq \eta < y_{j+1}\}, \quad (\xi_i, \eta_j) \in \vec{\Delta}_{ij}, \\ \alpha(\Delta_{ij}) = F(x_{i+1}, y_{j+1}) - F(x_i, y_{i+1}) - F(x_{i+1}, y_i) + F(x_i, y_i),$$

то предел (2) можно записать в виде

$$\lim \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f(\xi_i, \eta_i) \alpha(\Delta_{ij}) = \int_a^b \int_c^d f(x, y) d^2 F(x, y), \tag{6}$$

 $\max \left[ (x_{i+1} - x_i)^2 + (y_{j+1} - y_j)^2 \right] \to 0.$ 

Зададим ограниченную на  $\overline{G}$  функцию и для произвольного разбиения ho

$$\overline{G} = \sum_{0}^{N-1} \Delta_{j}$$

(на полуоткрытые попарно непересекающиеся прямоугольники)

составим сумму Стилтьеса

$$S_{\rho} = \sum_{i=0}^{N-1} f(\xi^{i}) \alpha(\Delta_{i}) \quad (\xi^{i} \in \overline{\Delta}_{i}),$$

а также вижнюю и верхнюю суммы

$$\underline{S}_{\rho} = \sum_{i=0}^{N-1} m_i \alpha (\Delta_i), \quad \overline{S}_{\rho} = \sum_{i=0}^{N-1} M_i \alpha (\Delta_i)$$

и нижний и верхний интегралы

$$\underline{I} = \sup_{\rho} \underline{S}_{\rho}, \quad \overline{I} = \inf_{\rho} \overline{S}_{\rho}.$$

Теорема 1. Для ограниченной на прямоугольнике  $\overline{G}$  функции  $f(\mathbf{x})$  ( $f(\mathbf{x}) \leq K$ ) следующие утверждения эквивалентны:

2') Для всякого  $\varepsilon > 0$  найдется регулярное разбиение  $\rho_*$  прямоугольника G (на частичные попарно непересекающиеся полуоткрытые прямоугольники  $\Delta_j^*$ ) такое, что

$$\overline{S}_{\rho*} - S_{\rho*} < \varepsilon.$$

3') Для всякого  $\varepsilon > 0$  найдется  $\delta > 0$  такое, что для всех разбиений (регулярных и нерегулярных) с диаметром  $d(\Delta_i) < \delta$ 

$$\bar{S}_{\rho} - S_{\rho} < \varepsilon$$
.

4') Существует интеграл Стилтьеса (2).

Доказательство  $2') \rightarrow 3'$ ). Пусть  $\Gamma_*$  есть общая граница всех  $\Delta_j^*$ , из которой выброшена граница G. Так как  $\rho_*$  — регулярное разбиение, то  $m\Gamma_*=0$  и потому существуют фигуры  $\sigma \supset D \supset D' \supset D'$ , такие, что  $\alpha(\sigma) < \varepsilon/2K$ . Пусть  $\delta$  — расстояние между границами  $\sigma$  и  $\sigma'$  и  $\rho$  — разбиение G с частичными прямоугольниками  $\omega$  диаметра меньшего чем  $\delta$  (мы пишем их без индексов). Имеем

$$\bar{S}_{\rho} - S_{\rho} = \Sigma'(M - m)\alpha(\omega) + \Sigma''(M - m)\alpha(\omega),$$

где сумма  $\Sigma'$  распространена на все  $\omega$ , каждый из которых имеет общую точку с  $\Gamma_*$ , а  $\Sigma''$  — на остальные  $\omega$ .

Дальнейшая оценка ведется точно так же, как в теореме 1  $\{12.7 \text{ при доказательстве } 2) \rightarrow 3\}$ , где надо заменить  $\omega$  на  $\alpha(\omega)$ .

3')  $\rightarrow 2'$ ). Это тривиально.

 $3') \rightarrow 4'$ ). Надо рассуждать, как при доказательстве  $3) \rightarrow 4$ ) в теореме 1 § 12.7, если заменить  $\Omega_i$  на  $\Delta_i$  и считать, что I есть интеграл (2).

4')  $\rightarrow$  3'). Существование интеграла Стилтьеса I влечет нера-

венство  $|I-S_{o}| < \varepsilon/2$  или

$$I - \frac{\varepsilon}{2} < S_{\rho} < I + \frac{\varepsilon}{2}$$

для всех  $\rho$  с  $d(\Delta_i) < \delta$ . Но тогда также  $I - \frac{\varepsilon}{2} \leqslant \underline{S}_{\rho} \leqslant \overline{S} \leqslant I + \frac{\varepsilon}{2}$ , откуда  $\overline{S}_{\rho} - S_{\rho} < \varepsilon$ .

Замечание. Теорема 1 неверна, если в 2') вычеркнуть слово «регулярно» (см. ниже пример 1). Это показывает, что в теорему 1 нельзя ввести свойство 1'), выражающее, то  $\underline{I} = I$  (см. доказательство 1)  $\rightleftharpoons$  2) в теореме 1 § 12.7). Из 2') следует 1'), но из 1') не следует 2').

T е о р е м а 2. Для непрерывной на  $\overline{G}$  функции f(x) интеграл Стилтьеса (2) существует.

В самом деле, пусть  $\omega(t)$  — модуль непрерывности f(x) на  $\overline{G}$ . Тогда, если  $\delta = \max d(\Delta_i)$ , где  $G = \sum \Delta_i$  — некоторое разбиение  $\rho$  прямоугольника G (в частности, регулярное), то

$$\overline{S}_{\rho} - \underline{S}_{\rho} = \sum (M_i - m_i) \alpha (\Delta_i) \leqslant \omega (\delta) \sum \alpha (\Delta_i) = \omega (\delta) \alpha (G) < \varepsilon, \delta < \delta_0,$$
 если  $\delta_0$  достаточно мало. Но тогда существование интеграла Стилтьеса (2) следует из теоремы 1.

Теорема 3. Если  $\mathbf{x}^o$  есть точка разрыва ограниченной на G функции  $f(\mathbf{x})$  и множество  $\mathbf{v}$ , состоящее только из этой точки, имеет внешнюю меру  $m_e(\mathbf{v}) > 0$ , то интеграл Стилтьеса (2) не существует.

В самом деле, колебание  $\omega(\mathbf{x}^0)$  функции f в точке  $\mathbf{x}^0$  положительно (см. теорему 5 § 7.10).

Пусть  $\rho$  есть разбиение G на частичные прямоугольники  $\Delta_{i}$  такое, что  $x^{0}$  находится строго внутри некоторого  $\Delta_{i}$ .

Тогла

$$\overline{S}_{\rho} - \underline{S}_{\rho} = \sum_{i} (M_{i} - m_{i}) \alpha (\Delta_{i}) \geqslant (M_{i} - m_{i}) \alpha (\Delta_{i}) \geqslant \omega (\mathbf{x}^{0}) m_{e} (\mathbf{v}),$$

где правая часть положительна и не зависит от указанного разбиения, и так как последнее может состоять из прямоугольников  $\Delta_i$  как угодно малого диаметра, то в силу теоремы 1 интеграл (2) не существует.

Пример 1. Пусть

$$f(x) = \begin{cases} 0, & -1 \leqslant x < 0 \\ 1, & 0 \leqslant x \leqslant 1, \end{cases} \quad \beta(x) = \begin{cases} 0, & -1 \leqslant x \leqslant 0 \\ 1, & 0 < x \leqslant 1. \end{cases}$$

Для (перегулярного) разбиения -1 < 0 < 1 отрезка  $\overline{G} = [-1, +1]$ , которое обозначим через  $\rho$ , имеет место  $S_{\rho} = \overline{S}_{\rho} = 1$ , поэтому  $\overline{I} = \overline{I}$ . Однако

интеграл Стилтьеса  $\int_{-1}^{1} f(x) d\beta(x)$  не существует, потому что x = 0 есть точка разрыва как f, так и  $\beta$  (см. теорему 3).

Утверждение  $2') \rightarrow 3')$  в теореме 1 можно выразить еще так. Теорема 4. Если для некоторой последовательности регулярных разбиений  $\rho_h$  существует предел

$$I = \lim_{h \to \infty} S_{\rho_k} = \lim_{h \to \infty} \sum_{j=1}^{N_k} f(\xi_k^j) \alpha(\Delta_j^k)$$
 (7)

при любом выборе  $\xi_k^j \subseteq \overline{\Delta}_1^k$ , то существует интеграл Стилтьеса (2), равный I (см. § 12.7 теорему 2).

Ведь из (7) следует, что  $\overline{S}_{\rho_k} - \underline{S}_{\rho_k} \to 0$   $(k \to \infty)$ , т. е. 2'). Но  $2') \to 3'$ ), следовательно, существует интеграл, равный, очевидно, I.

T е о р е м а 5. Для измеримого прямоугольника G интеграл Cтилтьеса (2) и интеграл Pимана — Cтилтьеса (2) от ограниченной функции  $f(\mathbf{x})$  существуют одновременно и равны между собой.

В самом деле, зададим последовательность регулярных разбиений  $\rho_k$  прямоугольника G на частичные прямоугольники  $\Delta_j^k$  с  $\max_j d(\Delta_j^k) \to 0 \ (k \to \infty)$ . Все  $\Delta_j^k$ , даже прилегающие к граням G, теперь измеримы, потому что G измерим.

Существование предела (7) необходимо и достаточно для существования как интеграла Стилтьеса (теорема 4), так и интегра-

ла Римана — Стилтьеса (в силу аналога теоремы 2 § 12.7).

Таким образом, при измеримом G свойства интеграла Римана — Стилтьеса, о которых шла речь в § 19.9, автоматически переносятся на интеграл Стилтьеса. В частности, справедлива для измеримого G.

Теорема 6 (Лебега). Для того чтобы для ограниченной на  $\overline{G}$  функции  $f(\mathbf{x})$  существовал интеграл Стилтьеса (2), необходимо и достаточно, чтобы лебегова (в смысле  $\alpha(\Delta)$ ) мера множе-

ства е ее точек разрыва была равной нулю (µе = 0).

На самом деле теорема 6 верпа и для неизмеримого G. Опа

содержит как частный случай теоремы 2 и 3. Докажем это.

Введем произвольный измеримый прямоугольник  $G'\supset G$ . Функцию  $\alpha(\Delta)$  будем считать продолженной на G', как в (1) § 19.6. Что же касается функции f, то продолжим ее на G' следующим образом. Пусть точка  $\xi' \in G' - G$ . Отрезок, соединяющий ее с центром G, пересекает границу  $\Gamma$  прямоугольника G в точке, которую обозначим через  $\xi$ . Положим  $f(\xi') = f(\xi)$ . Таким образом, продолженная функция постоянна на принадлежащих к G' - G отрезках лучей, выходящих из центра G.

Продолженная функция f, очевидно, ограничена на G'. Кроме того, функция f непрерывна в точке  $\xi'$ , если она непрерывна в ней относительно  $\overline{G}$ . Далее, если  $\Delta' \subset G'$  есть прямоугольник, пересекающий  $\Gamma$ , и  $\xi' \in \overline{\Delta}'$ , то можно указать на  $\overline{\Delta}'$ , где  $\Delta = G\Delta'$ ,

точку ξ такую, что

$$f(\xi')\alpha(\Delta') = f(\xi)\alpha(\Delta). \tag{8}$$

Действительно,  $\alpha(\Delta') = \alpha(\Delta)$  (см. (1) § 19.6). Если  $\xi' \in \Delta$ , то полагаем  $\xi = \xi'$ , а если  $\xi' \in \Delta$ , то в качестве  $\xi$  берем точку пересечения с  $\Gamma$  отрезка, соединяющего  $\xi'$  с центром G.

Если  $\rho'$  есть произвольное регулярное разбиение прямоугольника G', то оно индуцирует регулярное же разбиение  $\rho$  прямоугольника G. При этом каждой интегральной сумме  $S_{\rho'}$  можно при-

вести в соответствие равную ей интегральную сумму  $S_{
ho}$ ,

$$S_{\rho'} = \sum f(\xi') \alpha(\Delta') = \sum f(\xi) \alpha(\Delta) = S_{\rho},$$

руководствуясь следующими соображениями.

Если  $\Delta'$  не пересекается с G, то соответствующее слагаемое  $S_{\rho'}$  выбрасываем — оно все равно нулю. Если же  $\Delta'$  пересекается с G, то к соответствующему слагаемому применяем равенство (8).

Наоборот, если задано регулярное разбиение  $\rho$  прямоугольника G, то, продолжив составляющие его регулярные сечения G ((n-4)-мерные плоскости) и выбросив грани G, получим регулярное же разбиение  $\rho'$  прямоугольника G' и, рассуждая, как выше, в обратном порядке (даже не передвигая точки  $\xi$ ), получим, что каждой интегральной сумме  $S_{\rho}$  соответствует равная ей сумма  $S_{0'}$ .

Из сказанного следует равепство интегралов Стилтьеса

$$\int_{G} f(x) d\alpha = \int_{G'} f(x) d\alpha, \qquad (9)$$

(существование одного из них влечет существование другого).

Но второй из пих есть также интеграл Римана — Стилтьеса (G' измеримо!), и потому он существует тогда и только тогда, когда множество e' точек разрыва f на  $\bar{G}'$  имеет лебегову (относительно  $\alpha(\Delta)$ ) меру

 $\mu e' = 0 \tag{10}$ 

или, что все равно, если множество e точек разрыва f на  $\overline{G}$  имеет лебегову (относительно  $\alpha(\Delta)$ ) меру

$$\mu e = 0. \tag{11}$$

В самом деле, существование левого интеграла в (9) влечет существование правого и равенство (10), следовательно (11), так как  $e \subset e'$ .

Наоборот, из (11) следует, что для любого  $\varepsilon > 0$  существует счетная система прямоугольников  $\Delta_i$ ,  $\Delta_2$ , ... такая, что  $\sum \Delta_j \supset e$  и  $\sum \alpha (\Delta_j) < \varepsilon$ . Прибавим к ней систему (конечную) полуоткрытых прямоугольников, составляющих множество G' - G. Для полученной системы, которую мы заново перенумеруем  $-\Delta_1'$ ,  $\Delta_2'$ , ..., будет выполняться  $\sum \Delta_j' \supset e'$  и  $\sum \alpha (\Delta_j') < \varepsilon$ , потому что  $\alpha(G' - G) = 0$ , т. е. (10). Но тогда существует правый интеграл в (9), а вместе с ним и левый.

Теорема 7. Пусть для полуинтервалов, принадлежащих [a, b) и [c, d), заданы соответственно неотрицательные полуаддитивные функции  $\alpha_1(\Delta_1)$ ,  $\alpha_2(\Delta_2)$ , порождающие функцию

$$lpha(\Delta) = lpha_1(\Delta_1) \cdot lpha_2(\Delta_2),$$
 $\Delta_1 = \{\lambda \leqslant x < \mu\}, \ \Delta_2 = \{v \leqslant y < \omega\},$ 

 $\Delta = \{\lambda \leqslant x \leqslant u, \ v \leqslant u \leqslant \omega\} = \Delta, \times \Delta, \subset G, \ G = [a, b) \times [c, d].$ 

Tогда для ограниченной функции f(x, y) справедливо равенство

$$\iint_{G} f(x, y) d\alpha = \int_{c}^{d} d\alpha_{2} \int_{a}^{b} f(x, y) d\alpha_{1}$$

в предположении, что интеграл слева существует, и тогда автоматически следует существование повторного интеграла справа, где, впрочем, для каждого  $y \in [c, d)$  внутренний интеграл (по x) понимается либо в обычном смысле как интеграл Стилтьеса, если он существует, либо как любое число, находящееся между нижним и верхним интегралами Стилтьеса от f(x, y) относительно  $\alpha_1$  на [a, b].

Доказательство этой теоремы вполне аналогично доказательству теоремы 1 § 12.12.

Для интеграла Стилтьеса справедливы теоремы, аналогичные теоремам для Риманова интеграла и применимо замечание к равенству (3) § 19.7.

Упражнения.

1. Показать, что

$$\int_{a}^{b} f(x) d\beta(x) = \int_{a}^{b} f(x) \beta'(x) dx,$$

где  $\beta(x)$  имеет на [a, b] непрерывную производную  $\beta'(x) \geqslant 0$ .

2. Пусть f(x) непрерывна на  $[a, b], c_0, c_1, \ldots,$  — последовательность неотрицательных чисел, для которой  $\sum c_j < \infty$ , точки  $x_j \in [a, b], j = 1, 2, \ldots,$  и

$$\beta(x) = \sum_{x_j \in [a,x)} c_j. \tag{12}$$

Показать, что

$$\int_{a}^{b} f(x) d\beta(x) = \sum_{x_{i} \in [a,x)} f(x_{i}) c_{j}.$$

3. Показать, что функция, определенная формулой (12), где  $c_j$  — числа любого знака, но такие, что  $\sum |c_j| < \infty$ , есть функция ограниченной вариации, т. е. представляется как разность двух неубывающих на [a, b] функций.

4. Пусть f(x) и  $\varphi(x)$  вепрерывны и не убывают (или ограниченной вариации). Доказать формулу

$$\int_{a}^{b} f(x) d\varphi(x) + \int_{a}^{b} \varphi(x) df(x) = f(b) \varphi(b) - f(a) \varphi(a).$$

5. Иногда уславливаются считать функцию f(x), заданную на прямоугольнике G, интегрируемой относительно  $\alpha(\Delta)$ , если ее верхний интеграл I (относительно  $\alpha(\Delta)$ ) равен нижнему — I, и полагают

$$I=I\left(f\right)=\int\limits_{C}f\left(\mathbf{x}\right)d\alpha,\quad\text{где }I=\underline{I}=\overline{I}.$$

Это обобщение интеграла Стилтьеса (см. выше пример 1). Чтобы разобраться в нем, отметим, что для ограниченной функции f следующие утверждения эквивалентны:

1 \*)  $I = \bar{I} = I$ ;

2\*) существует последовательность разбиений  $ho_k\left(G=\sum_j \Delta_k^j
ight)$ , для ко-

торой

$$\overline{S}_{\rho_k} - \underline{S}_{\rho_k} \to 0, \quad k \to \infty;$$

3\*) существует последовательность разбиений од, для которой

$$\lim_{k\to\infty} S_{\rho_k} = I$$
 при любых  $\xi_k^j \in \Delta_k^j$ .

В самом деле, из 2\*) и неравенств  $\underline{S}_{\rho_k} \leqslant \underline{I} \leqslant \overline{I} \leqslant \underline{\widetilde{S}}_{\rho_k}$ ,  $\underline{S}_{\rho_k} \leqslant S_{\rho_k} \leqslant \overline{S}_{\rho_k}$  следует 3\*) (при тех же  $\rho_k$ ). Далее, из 3\*) следует, что

$$\lim \underline{S}_{\rho_k} = \lim \overline{S}_{\rho_k} = I. \tag{13}$$

Если теперь  $\rho$  — произвольное разбиение и  $\rho_k^* = \rho + \rho_k$ , то  $S_\rho \leqslant S_{\rho_k}^* \leqslant \overline{S}_{\rho_k} \Leftrightarrow \overline{S}_{\rho_k} \to I$ ,  $k \to \infty$ , т. е.  $S_\rho \leqslant I$ , поэтому, учитывая (13), получим I = I. Аналогично устанавливается, что  $3^*$ ) влечет I = I. Этим доказано, что  $3^*$ )  $\to 1^*$ ). Далее, если  $\varepsilon_k > 0$ ,  $\varepsilon_k \to 0$ , то из  $1^*$ ) следует существование разбиений  $\rho_k'$ ,  $\rho_k''$  таких, что  $I - \varepsilon_k < S_{\rho_k}'$ ,  $\overline{S}_{\rho_k}' < I + \varepsilon_k$ , поэтому для  $\rho_k = \rho_k' + \rho_k''$  будем иметь  $I - \varepsilon_k < S_{\rho_k} \leqslant \overline{S}_{\rho_k} \leqslant \overline{S}_{\rho_k} \leqslant \overline{S}_{\rho_k} \leqslant \overline{S}_{\rho_k}' < I + \varepsilon_k$ , что до-

казывает 2 \*).

Таким образом, обобщенный интеграл Стилтьеса можно также определить как число I, для которого имеет место 3\*) для некоторой последова-

тельности разбиений од.

Если эту последовательность можно взять состоящей из регулярных  $\rho_k$ , то, согласно теореме 4, число I есть обычный интеграл Стилтьеса. В противном случае мы будем иметь дело с новым понятием — обобщенным интегралом Стилтьеса. Это понятие может оказаться полезным для функций, не удовлетворяющих условию Лебега в смысле  $\alpha(\Delta)$  (см. теорему 6).

не удовлетворяющих условию Лебега в смысле  $\alpha(\Delta)$  (см. теорему 6). Пользуясь свойствами 2\*) и 3\*), читатель сам докажет (см. теоремы 1, 2, 4  $\S$  12.11) что вместе с f и  $\phi$  интегрируемы в указанном смысле Af +

 $+B\varphi$ , |f|,  $f\varphi$ ,  $\varphi^{-1}$  ( $|\varphi(x)| > a > 0$ ), и справедливы соотношения

$$I(Af + B\varphi) = AI(f) + BI(\varphi),$$
  

$$|I(f)| \leqslant K \sup_{x \in G} |f(x)|,$$

характеризующие линейные и непрерывные свойства функционала I(f). Здесь A, B — произвольные числа, а K — константа, зависящая от обобщенной меры  $\alpha(\Lambda)$ , а I(f) — обобщенный интеграл Стилтьеса.

В одномерном случае  $K = \beta(b) - \beta(a)$ , в двумерном K = F(b, d)

-F(a, d) - F(b, c) + F(a, c).

Предлагается также доказать равенство

$$\int_{G} f(x) d\alpha = \sum_{i=1}^{N} \int_{\Delta_{i}} f(x) dx,$$

где  $G = \sum_{j=1}^{n} \Delta^{j}$  и  $\Delta^{j}$  — попарно непересекающиеся прямоугольники, в предноложении, что интеграл слева существует.

### § 19.11. Обобщенный интеграл Лебега

Понятие интеграла Лебега может быть обобщено следующим

образом.

Пусть X есть множество элементов  $\mathbf{x}$  любой природы и  $\mathfrak{M}$  есть некоторая система его нодмножеств e ( $e \subset X$ ), образующая кольцо. Это значит, что вместе с подмножествами  $e_1$  и  $e_2$  припадлежит  $\mathfrak{M}$  их сумма  $e_1 + e_2$ , разность  $e_1 - e_2$  и пересечение  $e_1e_2$ . По индукции доказывается, что конечная сумма  $e = \sum e_k$ ,  $e_k \in \mathfrak{M}$  принадлежит  $\mathfrak{M}$ .

На кольцо  $\mathfrak{M}$  накладывается еще дополнительное условие: если  $e_k \in \mathfrak{M}$  для любого  $k=1,\ 2,\ \dots$  и  $e=\sum_{e_k}$ — счетная сумма, принадлежащая к некоторому множеству  $\mathscr{E} \in \mathfrak{M}(e \subset \mathscr{E})$ , то  $e \in \mathfrak{M}$ .

Пусть теперь каждому множеству  $e \in \mathfrak{M}$  приведено в соответствие неотрицательное (конечное) число  $\mu e$ , обладающее тем свойством, что если множество  $e \in \mathfrak{M}$  представляется в виде конечной или счетной суммы  $e = \sum e_k$  попарно непересекающихся множеств  $e_k \in \mathfrak{M}$ , то

$$\mu e = \sum \mu e_k. \tag{1}$$

Определенная таким образом неотрицательная функция множества  $\mu e$  ( $e \in \mathfrak{M}$ ) называется мерой Лебега. Мы ее еще называем обобщенной мерой Лебега, чтобы отличать ее от ее частного случая, рассмотренного в § 19.3, где роль X играет n-мерное пространство, а  $\mathfrak{M}$  — совокупность определенных там измеримых множеств.

Множества  $e \in \mathbb{M}$  мы будем называть измеримыми. Если какое-либо множество  $\mathcal{E} \subseteq X$  есть часть измеримого множества  $e \in \mathcal{E}$ , то будем его называть ограниченным.

В силу этих соглашений для обобщенной меры Лебега верны теоремы 3—9 § 19.1. Теоремы 3, 4, 5 верны просто по определению (см. равенство (1)), теоремы же 6—9 доказываются без каких-либо изменений.

На основе введенной меры определяется понятие измеримой функции, как в § 19.2. Вообще все сказанное в § 19.2 полностью переносится на случай обобщенной меры Лебега, за исключением теоремы 4 и утверждения (па стр. 345) о непрерывной функции. Мы не ввели топологии в X (системы окрестностей и т. д.), и в общем случае не имеет смысла говорить о непрерывной функции, заданной на X.

Интеграл Лебега на множестве E, измеримом в смысле обобщенной меры, от функции  $f(\mathbf{x})$ , измеримой в смысле этой меры,

определяется как предел

$$\lim_{\delta_k \to 0} \sum_{-\infty}^{\infty} p_k m e_k = \int_E f(x) \, \mu(d\mathbf{x}),$$

где  $p_k$ ,  $e_k$ ,  $\delta_k$  определяются, как в § 19.3 (см. (2), (3), (4) § 19.3) и мера  $e_k$  понимается в рассматриваемом обобщенном смысле.

Свойства интеграла Лебега, перечисленные в § 19.3, за исключением быть может свойства 19 (теорема Фубини) и свойства 22, переносятся на рассматриваемый случай без изменения доказательств.

Важным примером рассмотренного обобщенного интеграла является интеграл Лебега — Стилтьеса.

### § 19.12. Интеграл Лебега — Стилтьеса

Пусть задан полуоткрытый прямоугольник

$$G = \{a_i \leq x_i < b_i; i = 1, ..., m\}$$

и для принадлежащих к нему прямоугольников  $\Delta$  определена неотрицательная аддитивная функция  $\alpha(\Delta)$ . В § 19.8 на основе  $\alpha(\Delta)$  была построена мера в духе жордановой меры. В этом нараграфе будет определена на основе  $\alpha(\Delta)$  для некоторых миожеств  $\mathcal{E} \subset G$  мера в духе Лебега. Мы ее будем называть мерой относительно  $\alpha(\Delta)$ , коротко — мерой и обозначать  $\mu\mathcal{E}$  (так же как мы обозначали лебегову меру!).

Мы будем пользоваться введенными в § 19.8 понятиями  $m_i\mathcal{E}$ ,  $m_e\mathcal{E}$ ,  $m\mathcal{E}$ , внутренней, внешней меры и меры в духе Жордана

относительно  $\alpha(\Delta)$ .

Называя  $\mathscr E$  множеством, мы будем подразумевать, что  $\mathscr E \subset G$ , и как всегда через F, G обозначать соответственно замкнутые и открытые множества. Кроме того, по-прежнему будем пользоваться обозначением  $A \subset \subset B$ , выражающим, что  $\overline{A} \subset \overline{B}$ , где  $\overline{A}$  — замыкание A, а  $\overline{B}$  — открытое ядро B (множество внутренних точек B).

Для открытого множества g по определению полагаем (пояспения ниже)

$$\mu g = m_i g = \sup_{\sigma \subset \subset g} \alpha(\sigma) = \sum_{k=1}^{\infty} \alpha(\Delta_k), \tag{1}$$

где

$$g = \sum_{1}^{\infty} \Delta_{k}, \ \Delta_{k} \subset \subset g \tag{2}$$

— сумма полуоткрытых пепересекающихся попарно прямоугольников  $\Delta_{\mathbf{k}}$ , каждый из которых имеет границу, пе имеющую общих точек с границей g.

Заметим, что открытое ядро  $\widetilde{\sigma}$  фигуры  $\sigma$  можно представить в виде суммы  $\widetilde{\sigma} = \sum_{1}^{\infty} \Delta_h$  пепересекающихся попарно  $\Delta_h \subset \subset \sigma$ , и так как  $\sum_{1}^{N} \Delta_h \subset \sigma$ , то  $\sum_{1}^{N} \alpha \left( \Delta_h \right) \leqslant \alpha \left( \sigma \right)$  при любом N и, следовательно,

$$\mu\left(\widetilde{\sigma}\right) = \sum_{1}^{\infty} \alpha\left(\Delta_{k}\right) \leqslant \alpha\left(\sigma\right). \tag{3}$$

Для замкнутого множества F по определению (пояснения ниже)

 $\mu F = \alpha_e F = \inf_{\sigma \supset \supset F} \alpha(\sigma) = \inf_{g \supset F} \mu g. \tag{4}$ 

Чтобы объяснить последнее равенство, обозначим левую его часть через I', а через I'' правую. Так как  $\sigma \supset F$ , то  $\overset{\sim}{\sigma} \supset F$ . Но  $\overset{\sim}{\sigma}$  открыто, поэтому  $\alpha(\sigma) \geqslant \mu(\overset{\sim}{\sigma}) \geqslant I''$ , т. е.  $I' \geqslant I''$ .

С другой стороны, если представить любое  $g \supset F$  в виде суммы

вида (2), то в силу замкнутости F найдется N такое, что

$$\sigma = \sum_{1}^{N} \Delta_{h} \supset \supset F,$$

откуда  $\mu(g) \geqslant \alpha(\sigma) \geqslant I'$ , т. е.  $I'' \geqslant I'$ .

Следовательно, I' = I''.

Докажем для любой полуоткрытой фигуры о неравенство

$$\alpha(\sigma) \leqslant \mu(\overline{\sigma}).$$
 (5)

Пусть  $g \supset \overline{\sigma}$  — произвольное открытое множество, представленное в виде (2). Вследствие замкнутости  $\overline{\sigma}$  найдется N такое, что

$$\sigma \subset \overline{\sigma} \subset \sum_{1}^{N} \Delta_{k} \subset g$$
.

Но тогда

$$\alpha (\sigma) \leqslant \sum_{1}^{N} \alpha (\Delta_{k}) \leqslant \mu g,$$

и так как нижняя грань всех рассматриваемых  $\mu g$  равна  $\mu(\overline{\sigma})$ , то получим (5).

Йз введенных определений легко следует, что если  $F \subseteq F'$   $g \subseteq g'$ , то  $\mu F \leqslant \mu F'$ ,  $\mu g \leqslant \mu g'$ . Кроме того, так как  $F \subseteq F$  и верно (4). то

$$\mu F = \sup_{F' \subset F} \mu F' = \inf_{g \supset F} \mu g. \tag{6}$$

Но справедливы также равенства

$$\mu g = \sup_{F \subset g} \mu F = \inf_{g' \supset g} \mu g'. \tag{7}$$

Второе из них очевидно, потому что  $g \supset g$ . Чтобы обосновать первое, обозначим второй член этой цени через I. Так как  $\mu F \leqslant \mu g$  (см. (4)), то  $I \leqslant \mu g$ . С другой стороны, представим g в виде (2) и положим  $\sigma_N = \sum_1 \Delta_h$ . Тогда для любого  $\varepsilon > 0$  найдется такое N, что  $(\sigma_N \subset g)$ 

$$\mu g - \varepsilon < \sum_{1}^{N} \alpha (\Delta_{k}) = \alpha (\sigma_{N}) \leqslant \mu (\overline{\sigma}_{N}) \leqslant I,$$

и так как є произвольно, то  $\mu g \leq I$ . Следовательно,  $\mu g = I$ .

По определению внутренней мерой относительно  $\alpha(\Delta)$  множества  $\mathscr E$  будем называть

$$\mu_i\mathscr{E}=\sup_{F\subset\mathscr{E}}\mu F$$

и внешней мерой относительно  $\alpha(\Delta)$  множества  ${\mathscr E}$  будем называть

$$\mu_e\mathscr{E}=\inf_{g\supset\mathscr{E}}\mu g.$$

Если  $\mu_i \mathcal{E} = \mu_e \mathcal{E}$ , то будем говорить, что множество  $\mathcal{E}$  измеримо (в смысле меры относительно  $\alpha(\Delta)$ ) и число  $\mu \mathcal{E} = \mu_i \mathcal{E} = \mu_e \mathcal{E}$  называть обобщенной мерой или мерой  $\mathcal{E}$  относительно  $\alpha(\Delta)$ .

Из равенств (6) и (7) следует, что замкнутое и открытое (принадлежащие G) множества измеримы (в указанном смысле).

Рассматриваемые здесь измеримые (в обобщенном смысле) множества имеют основные свойства, аналогичные соответствующим свойствам классических измеримых по Лебегу множеств. Ниже мы их перечисляем.

Вместе с  $\mathcal{E}_1$  и  $\mathcal{E}_2$  измеримы также их сумма, разность и пересечение, к тому же, если  $\mathcal{E}_1$  и  $\mathcal{E}_2$  не пересекаются, то

$$\mu(\mathscr{E}_1+\mathscr{E}_2)=\mu\mathscr{E}_1+\mu\mathscr{E}_2.$$

Сумма e счетного числа (принадлежащих к G) измеримых множеств  $e_1, e_2, \ldots$  измерима, и если они не пересекаются, то

$$\mu e = \sum_{1}^{\infty} \mu e_{k}.$$

Пересечение счетного числа измеримых множеств измеримо. Перечисленные утверждения и другие вытекающие из них в случае лебеговой меры составляют теоремы 1—9 § 19.1. Их доказательство в общем случае совершенно апалогично.

Эти теоремы базировались на леммах 1—5. Они тоже доказываются аналогично. Надо заменить в них  $|\Delta_h|$ ,  $|\sigma_h|$  соответственно на  $\alpha(\Delta_h)$ ,  $\alpha(\sigma_h)$ , а в остальном учесть следующие замечания.

Формулировку леммы 1 надо заменить на следующую: из (3) следует (4), где  $\sigma_k$  и  $\sigma_k'$  — полуоткрытые фигуры, из коих  $\sigma_k$  попарно не пересекаются. В формулировке леммы 2 выбросить последнее выражение: «обращающееся в равенство...»

Отметим еще неравенства, апалогичные (14) § 19.1:

$$m_i \mathcal{E} \leqslant \mu_i \mathcal{E} \leqslant \mu_e \mathcal{E} \leqslant m_e \mathcal{E}$$
. (8)

Они следуют из того, что (см. (3), (5))

$$\sup_{\sigma \subset \subset \mathscr{E}} \alpha(\sigma) \leqslant \sup_{\overline{\sigma} \subset \subset \mathscr{E}} \mu \overline{\sigma} \leqslant \sup_{F \subset \mathscr{E}} \mu F,$$
$$\inf_{\sigma \supset \supset \mathscr{E}} \alpha(\sigma) \geqslant \inf_{\overline{\sigma} \supset \supset \mathscr{E}} \mu \overline{\sigma} = \inf_{g \supset \mathscr{E}} \mu g.$$

Из (8) вытекает, что если множество  $\mathcal E$  измеримо (в смысле  $\alpha(\Delta)$ ) в жордановом духе, то и в лебеговом.

Отметим, что в жордановой теории (в смысле  $\alpha(\Delta)$ ) нам пришлось считаться с фактом, что некоторые прямоугольники могли быть неизмеримыми. В рассматриваемой же здесь теории этого недостатка нет. Замкнутые и открытые прямоугольники измеримы, ведь они суть соответственно замкнутые и открытые множества. Произвольный полуоткрытый прямоугольник

$$\Delta = \{\lambda_i \leq x_i < \mu_i; \quad i = 1, \ldots, n\}$$

тоже измерим, ведь он есть разность двух замкнутых множеств. Однако не нужо думать, что  $\mu\Delta$  обязательно равна  $\alpha(\Delta)$  (см. ниже упражнения 1, 2).

Множество  $\omega$ , состоящее из одной точки, в жордановой теории (в смысле  $\alpha(\Delta)$ ) имеет внутреннюю меру  $m_i\omega=0$  и, таким образом, измеримо тогда и только тогда, когда  $m_e\omega=0$ . В рассматриваемой же здесь теории  $\omega$  измеримо при любой  $\alpha(\Delta)$ , ведь оно замкнуто. Его мера равна внешней жордановой мере:  $\mu\omega=m_e\omega$ .

В классической теории Лебега на основе меры Лебега вводится понятие измеримой функции. В точности также вводится нонятие измеримой функции на основе меры относительно  $\alpha(\Delta)$ . Все, что изложено по этому поводу в § 19.2, полностью и без всяких изменений перепосится на общий случай, нужно только меру Лебега встречающихся там множеств заменить соответственно на их меру в смысле  $\alpha(\Delta)$ . Впрочем, в теореме 4 выражение «интегрируемая по Риману функция» надо заменить на «интегрируемая по Риману — Стилтьесу функция».

Наконец, в точности так же как вводится интеграл Лебега на основе понятия измеримой (по Лебегу) функции, вводится интеграл Лебега — Стилтьеса, но только уже на основе понятия измеримой в обобщенном смысле функции (в смысле  $\alpha(\Delta)$ ).

Таким образом, интеграл Лебега— Стилтьеса может быть определен как один из пределов

$$\int_{\mathcal{E}} f(x) d\mu = \lim_{\delta_R \to 0} \underline{S}_R(f) = \lim_{\delta_R \to 0} \overline{S}_R(f). \tag{9}$$

Здесь  $f(\mathbf{x})$  измеримая (в смысле  $\mu$  или относительно  $\alpha(\Delta)$ ) на множестве  $\mathcal{E}$  функция, а  $S_R(f)$  и  $S_R(f)$  нижняя и верхняя интегральные суммы, определяемые в точности так же, как они определялись в § 19.3 в случае классического интеграла Лебега, но теперь множества  $e_k$  (см. начало § 19.3) измеримы в смысле  $\mu$  и их меры  $\mu e_k$  понимаются в смысле  $\mu$  (или относительно  $\alpha(\Delta)$ ).

Определения справа в (9) приведены только для примера. Вообще весь § 19.3 со всеми формулировками и доказательства-

ми переносится на интеграл Лебега — Стилтьеса.

Конечно, всюду в написанных там интегралах надо dx заменить на  $d\mu$  и термин «интеграл Лебега» заменить на «интеграл Лебега — Стилтьеса». В свойстве 6 выражения «f интегрируема по Риману», «жорданова мера», «пересекаются попарно разве что по своим границам» надо соответственно заменить на «f интегрируема но Риману — Стилтьесу», «жорданова мера относительно  $\alpha(\Delta)$ », «попарно не пересекаются по множествам меры нуль». Свойство 15, утверждающее равенство несобственного абсолютно сходящегося интеграла Римана от f и интеграла Лебега от f, тоже переносится на общий случай, если по аналогии определить несобственный интеграл Римана — Стилтьеса.

Свойство 19 (теорема Фубини) непосредственно переносится на общий случай, если считать, что заданы две неотрицательные аддитивные функции  $\alpha_1(\delta_1)$ ,  $\alpha'(\delta')$  полуинтервала  $\delta_1 = \{0 \le x_1 < < a\}$  и полуоткрытого прямоугольника  $\delta' = \{0 \le x_i < a, i = 2, \ldots, n\}$ , которые порождают функцию  $\alpha(\delta) = \alpha(\delta_1) \ \alpha(\delta')$ ,  $\delta = \delta_1 \times \delta' = \Delta$  (см. свойство 19 из § 19.3). Тогда, если обозначить определяемые этими тремя функциями меры соответственно через  $\mu$ ,  $\mu_1$ ,  $\mu'$ , то верна формула (34) с приведенными к ней пояснениями, где надо только заменить dx,  $dx_1$ , dy соответственно на  $d\mu$ ,  $d\mu_1$ ,  $d\mu'$ .

Доказательство этой повой формулы такое же, как доказательство (34) § 19.3.

Остановимся еще на одном вопросе, который может дать представление о связи между интегралами Лебега и Лебега — Стилтьеса.

Пусть на отрезке [a, b] задана неотрицательная интегрируемая на нем по Лебегу функция  $\beta(x)$ . Положим

$$\beta(x) = \int_{a}^{x} \beta'(t) dt, \quad x \in [a, b].$$

1 01. 18. MILLEL PAGE SEEDELA

Тогда, как мы знаем (см. § 19.5 (11))  $\beta(x)$  есть абсолютно непрерывная функция, а  $\beta'(x)$  — ее обобщенная производная (на [a, b]). К тому же в силу условия  $\beta'(x) \ge 0$  функция  $\beta(x)$  не убывает на [a, b] и может рассматриваться как производящая функция для неотрицательной аддитивной функции полуинтервала  $\alpha(\Delta) = \beta(d) - \beta(c)$ ,  $\Delta = [c, d) \subset G = [a, b)$ .

Заметим, что можно было бы исходить от неубывающей абсолютно непрерывной на [a, b] функции  $\beta(x)$  и показать, что ее обобщенная производная  $\beta'(x)$  неотрицательна почти всюду

на [a, b].

Функция  $\alpha(\Delta)$  определяет меру.

Если  $g \subset [a, b]$  — открытое множество, т. е. е́сть сумма не более чем счетного числа интервалов  $(c_k, d_k), k = 1, 2, \ldots$ , то оно измеримо как в смысле Лебега, так и в смысле Лебега относительно  $\alpha(\Delta)$ , и его мера во втором смысле равна

$$\mu g = \int_{g} d\mu = \sum_{k=1}^{\infty} [\beta(d_{k}) - \beta(c_{k})] = \sum_{k=1}^{\infty} \int_{c_{k}}^{d_{k}} \beta'(t) dt = \int_{g} \beta'(t) dt,$$

и мы доказали формулу

$$\int_{\mathcal{S}} d\mu = \int_{\mathcal{S}} \beta'(t) dt. \tag{10}$$

Эта формула легко обобщается на любое множество  $\mathcal{E}$ , измеримое одновременно в обоих смыслах:

$$\int_{\mathscr{B}} d\mu = \int_{\mathscr{B}} \beta'(t) dt. \tag{11}$$

Для этого достаточно взять нижнюю грань от обеих частей (10) по всем  $g \supset \mathcal{E}$ . Ведь

$$\int_{\mathcal{B}} d\mu = \mu \mathcal{B} = \inf_{g \supset \mathcal{B}} \mu g = \inf_{g \supset \mathcal{B}} \int_{g} d\mu.$$

С другой стороны, в силу неотрицательности  $\beta'(x)$ 

$$\int_{\mathcal{S}} \beta'(t) dt \geqslant \int_{\mathcal{R}} \beta'(t) dt, \quad g \supset \mathcal{E},$$

и в силу измеримости  $\mathscr E$  для любого  $\varepsilon>0$  найдется такое g, что (см. § 19.3 свойство 11 интеграла Лебега)

$$\int_{\mathcal{S}} \beta'(t) dt = \int_{\mathcal{S}} \beta'(t) dt + \int_{\mathcal{S}-\mathcal{S}} \beta'(t) dt < \int_{\mathcal{S}} \beta'(t) dt + \varepsilon.$$

Но равенство (11) можно обобщить.

Пусть мера  $\mu$  такова, что всякий раз, как некоторое множество  $e \subset [a, b]$  измеримо в смысле  $\mu$ , оно измеримо и в смысле

Лебега. Тогда имеет место равенство

$$\int_{\mathcal{E}} f(x) d\mu = \int_{\mathcal{E}} f(x) \beta'(x) dx, \qquad (12)$$

если существует интеграл слева.

В самом деле, пусть существует интеграл слева в (12). Тогда в силу свойства 17 из § 19.3 интеграла Лебега — Стилтьеса относительно  $\alpha(\Delta)$  существует носледовательность ступенчатых функций  $\sigma_p(\mathbf{x})$  такая, что

$$\sigma_p(\mathbf{x}) \to f(\mathbf{x})$$
 почти всюду на  $[a, b]$ , 
$$\iint_{\mathcal{B}} |f(\mathbf{x}) - \sigma_p(\mathbf{x})| d\mu \to 0, \quad p \to \infty. \tag{13}$$

Но тогда (пояснения ниже)

$$\begin{split} \int_{\mathcal{E}} \left| \sigma_{p} \left( \mathbf{x} \right) \beta' \left( \mathbf{x} \right) - \sigma_{q} \left( \mathbf{x} \right) \beta' \left( \mathbf{x} \right) \right| d\mathbf{x} &= \int_{\mathcal{E}} \left| \sigma_{p} \left( \mathbf{x} \right) - \sigma_{q} \left( \mathbf{x} \right) \right| \beta' \left( \mathbf{x} \right) d\mathbf{x} &= \\ &= \int_{\mathcal{E}} \left| \sigma_{p} \left( \mathbf{x} \right) - \sigma_{q} \left( \mathbf{x} \right) \right| d\mu \rightarrow 0, \quad p, q \rightarrow \infty, \end{split}$$

тде второе соотношение (равенство) верно в силу (11), потому что функции  $|\sigma_p(\mathbf{x}) - \sigma_q(\mathbf{x})|$  ступенчатые, а третье — в силу (13). На основании свойства 20 из § 19.3 полноты пространства L(a, b) существует функция, к которой  $\sigma_p(\mathbf{x})\beta'(\mathbf{x})$  стремится в смысле L(a, b). Но так как  $\sigma_p(\mathbf{x})\beta'(\mathbf{x}) \rightarrow f(\mathbf{x})\beta'(\mathbf{x})$  почти всюду, то этой функцией должна быть  $f(\mathbf{x})\beta'(\mathbf{x})$  (см. свойство 21 из § 19.3). Итак,

$$\int_{\mathcal{R}} |\sigma_p(\mathbf{x}) - f(\mathbf{x})| \, \beta'(\mathbf{x}) \, d\mathbf{x} \to 0, \quad p \to \infty.$$
 (14)

 $M_3$  (13) и (14) и того факта, что для ступенчатых функций  $\sigma_p(\mathbf{x})$ 

$$\int_{\mathcal{B}} \sigma_{p}(\mathbf{x}) d\mu = \int_{\mathcal{B}} \sigma_{p}(\mathbf{x}) \beta'(\mathbf{x}) d\mathbf{x},$$

**с**ледует (12).

Наоборот, если f(x), измеримая на  $\mathcal{E}$  по Лебегу почти всюду конечная функция, и всякий раз, как некоторое множество  $e \subset [a, b]$  измеримо по Лебегу, оно также измеримо в смысле  $\mu$ , то существование интеграла справа в (12) влечет существование интеграла слева и равенство (12).

Доказательство этого утверждения проводится, как выше, в обратном норядке. Существование интеграла справа в (12) и неравенство  $\beta'(\mathbf{x}) \geqslant 0$  влечет существование последовательности ступенчатых функций  $\sigma_p(\mathbf{x})$ , для которой  $\sigma_p(\mathbf{x}) \rightarrow f(\mathbf{x})$  почти

всюду на [a, b] и

$$\int_{\mathcal{R}} |f(\mathbf{x}) - \sigma_p(\mathbf{x})| \, \beta'(x) \, d\mathbf{x} \to 0, \quad p \to \infty,$$

что доказывается подобно тому, как доказывалось свойство 17 из  $\S$  19.3, где надо всюду под интегралами заменить dx на  $\mu'(x)dx$ .

Отметим следующее утверждение.

Если неубывающая функция β(x) удовлетворяет условию Липшица

$$|\beta(x') - \beta(x)| \le M|x' - x|, \quad a \le x, \quad x' \le b, \tag{14}$$

(M не зависит от x, x'), то из того, что какое-либо множество  $e \subset [a, b]$  измеримо по Лебегу, следует измеримость его в смысле

меры  $\mu_{\beta}$ , порождаемой функцией  $\beta(x)$ .

Наоборот, если функция  $y = \beta(x)$  имеет на [a, b] обратную  $x = \beta^{-1}(y)$ , удовлетворяющую условию Липшица, то из того, что какое-либо множество  $e \subset [a, b]$  измеримо в смысле  $\mu_{\mathfrak{b}}$ , следует его измеримость по Лебегу.

В самом деле, произвольное открытое множество  $g \subset la$ , bl есть сумма самое большее счетного числа попарно непересекающихся интервалов  $(c_k, d_k)$ , и потому, обозначая через  $\mu$  меру Лебега, из (14) будем иметь

$$\mu_{\beta}g = \sum \left[\beta\left(d_{h}\right) - \beta\left(c_{h}\right)\right] \leqslant M \sum \left(d_{h} - c_{h}\right) = M\mu g. \tag{15}$$

Далее, если  $\mathcal{E} \subset [a, b]$  — измеримое множество, то для любого  $\varepsilon > 0$  найдутся F и g такие, что  $F \subset \mathcal{E} \subset g$ ,  $\mu(g-F) < \mathcal{E}$ . Но g-F открыто, поэтому, примепяя к нему (14), получим

$$\mu_{\beta}(g-F) \leqslant M\mu(g-F) < M\varepsilon.$$

Таким бразом, и в смысле  $\beta$  мера g-F может быть сделана как угодно малой. Но тогда  $\mathscr E$  измеримо в смысле  $\beta$ .

Обратная часть утверждения доказывается аналогично.

В заключение напомним замечание к (3) в § 19.9.

Упражнения.

1. Пусть  $\beta(x)$  — неубывающая на [a, b] функция, порождающая пеотрицательную аддитивную функцию

$$\alpha(\Delta) = \beta(d) - \beta(c), \quad \Delta = [c, d) \subset G = [a, b).$$

Показать, что, если  $\beta(x)$  продолжить, положив  $\beta(x) = \beta(a), x < a$  и  $\beta(x) = \beta(b), x > b$ , то продолженная функция порождает продолжение  $\alpha(\Delta)$ , полученное по правилу 19.8 (1).

Доказать равенства ( $\mu$  лебегова мера относительно  $\alpha(\Delta)$ )

$$\mu(c, d) = \beta(d-0) - \beta(c+0),$$
  

$$\mu[c, d] = \beta(d+0) - \beta(c-0),$$
  

$$\mu[c, d) = \beta(d-0) - \beta(c-0),$$
  

$$\mu(c, d] = \beta(d+0) - \beta(c+0).$$

Таким образом,  $\mu(\Delta) = \alpha(\Delta)$  тогда и только тогда, когда  $\beta(c) = \beta(c-0)$ .

2. Пусть  $G = \{a_i \leqslant x_i < b_i; i = 1, ..., n\}, \Delta = \{c \leqslant x_i < d_i; i = 1, ..., n\} \in G, \Delta_{\varepsilon} = \{c_i - \varepsilon \leqslant x_i < d_i, i = 1, ..., n\}, \varepsilon > 0.$  Доказать равенства

$$\mu\widetilde{\Delta} = \lim_{\substack{\Delta' \subset \subset \Delta \\ \Delta' \to \Delta}} (\alpha \Delta'), \quad \mu\overline{\Delta} = \lim_{\substack{\Delta' \supset \supset \Delta \\ \Delta' \to \Delta}} \alpha \ (\Delta'), \quad \mu\Delta = \lim_{\epsilon \to 0} \alpha \ \big(\Delta_\epsilon\big).$$

### § 19.13. Продолжение функции. Теорема Вейерштрасса

Точки n-мерного пространства  $R_n$  будем обозначать через  $\mathbf{v} = (v_1, \dots$ 

 $\dots, v_n$ .

Пусть  $\Omega \subset R_n$  есть ограниченная область с границей  $\Gamma$ , представляющей собой гладкую поверхность (дифференцируемое (n-1)-мерное замкнутое многообразие, см. 47.1)). Будем считать, что  $\Gamma$  есть сумма конечного числа связанных многообразий.

Точки  $\Gamma$  будем обозначать через  $\mathbf{x}$ . Нормаль  $\kappa$   $\Gamma$  в точке  $\mathbf{x}$  состоит из двух выходящих из  $\mathbf{x}$  лучей  $N_1$  и  $N_2$ . Луч  $N_1$  содержит достаточно малый интервал  $\mathbf{c}$  концом  $\mathbf{x}$ , полностью принадлежащий  $\Omega$ , луч же  $N_2$  содержит  $\mathbf{g}$  себе некоторый интервал  $\mathbf{c}$  концом  $\mathbf{x}$ , не имеющий общих точек  $\mathbf{c}$   $\Omega$ . Лучи  $N_1$  и  $N_2$  называются соответственно внутренней и внешней нормалями  $\mathbf{k}$   $\Gamma$  в точке  $\mathbf{x}$  (см. § 17.2).

Пусть  $\mathbf{v} = \mathbf{v}(\mathbf{x})$  есть выпущенный из  $\mathbf{x} \in \Gamma$  единичный вектор внешней

нормали к Г. Он непрерывно зависит от х на Г.

В самом деле,  $\Omega$  есть n-мерное дифференцируемое связное многообразие, замыкание которого принадлежит связному же n-мерному многообразию, ориентированному уравнениями  $v_1=v_1,\ldots,v_n=v_n$ . Поэтому (см. § 17.2, в частности, теорему 4 и дальше)  $\Gamma$  тоже есть ориентируемое многообразие, и можно высказать правило согласования ориентаций  $\Omega$  и  $\Gamma$ , заключающееся в следующем.

Какова бы ни была точка  $\mathbf{x}^0 \in \Gamma$ , существует ее (n-мерная) окрестность  $W_{\mathbf{x}^0}$  и определенное на ней локальное описание ориентированного

многообразия  $R_n$  (см. 17.2 (18), (19))

$$v_i = \varphi_i(\mathbf{u}) = \varphi_i(u_1, \ldots, u_n), \quad i = 1, \ldots, n, \quad \mathbf{u} \in \Omega, \tag{1}$$

со следующими свойствами:

1) Якобиан описания (1) (перехода от и к v) — положительный.

2) При достаточно малом  $\delta > 0$  точки у являются внешними или внутрепними по отношению к  $\overline{\Omega}$  в зависимости от того, будет ли у них  $u_1 > 0$  или  $u_1 < 0$ , где  $|u_1| < \delta$ .

3) Уравнения

$$x_i = \varphi_i(0, u_2, ..., u_n), i = 1, ..., n,$$
 (2)

описывают (в рассматриваемой окрестности) Г.

Совокупность всех получаемых таким образом описаний (2) многообразия  $\Gamma$ , ориентирует  $\Gamma$ , иначе говоря, любые два такие описания пересекающихся кусков  $\sigma$ ,  $\sigma' \subset \Gamma$  таковы, что на  $\sigma\sigma'$  якобиан перехода друг в друга определяющих их параметров  $(u_2, \ldots, u_n)$  и  $(u_2', \ldots, u_n')$ — положительный.

Введем единичный нормальный к  $\Gamma$  в точке  $\mathbf{x} \in \Gamma$  вектор  $\mathbf{v} = \mathbf{v}(\mathbf{x})$ , определяемый в пределах  $W_{\mathbf{x}^0}$  формулами § 7.25, (3), где надо только заменить  $(u_1,\ldots,u_{n-1})$  на  $(u_2,\ldots,u_n)$  и t на h. Из этих формул непосредственно видно, что в пределах окрестности  $W_{\mathbf{x}^0}$  произвольной точки  $\mathbf{x}^0 \in \Gamma$  вектор  $\mathbf{v}(\mathbf{x})$  непрерывно зависит от  $\mathbf{x} \in \Gamma$ . Но он непрерывен также и

на всем многообразии Г. Это видно из тех же формул — на пересечении указанных кусков  $\sigma$  и  $\sigma'$  вектор v — один и тот же, независимо от того, будем ли мы его вычислять, пользуясь параметрами  $(u_2, \ldots, u_n)$  куска  $\sigma$  или параметрами  $(u_2', \ldots, u_n')$  куска  $\sigma'$ . Здесь существенно, что якобиан перехода от одних из этих параметров к другим — положительный.

Отметим, что вектор  $\nu$  направлен вовне  $\Omega$ . Ведь на  $\Gamma$ 

$$0 < \frac{D(\varphi_1, \ldots, \varphi_n)}{D(u_1, \ldots, u_n)} = \sum_{i=1}^{n} \frac{\partial \varphi_i}{\partial u_i} A_i,$$

а вектор  $\left(\frac{\partial \phi_1}{\partial u_1}, \dots, \frac{\partial \phi_n}{\partial u_1}\right)$  заведомо направлен вовне  $\Omega.$ 

Пусть теперь  $\Gamma$  есть многообразие класса  $C^{r+1}$ , т. е. функции  $\varphi_i$ , описывающие его локально, непрерывно дифференцируемы r+1 раз. Тогда существует достаточно малое  $\delta>0$  такое, что равенство

$$\mathbf{v} = \mathbf{x} + h\mathbf{v}(\mathbf{x}), \quad \mathbf{x} \in \Gamma, \quad |h| \leqslant \delta,$$
 (3)

устанавливает взаимно однозначное соответствие

$$\mathbf{v} \rightleftharpoons (\mathbf{x}, h), \quad \mathbf{x} \in \Gamma, \quad |h| \leqslant \delta,$$
 (4)

непрерывно дифференцируемое r раз. Это надо понимать в том смысле, что если локально равенство (3) при помощи подстановки (2) записать в виде

$$\mathbf{v} \rightleftharpoons (u_2, \ldots, u_n, h), \quad |h| \leqslant \delta, \tag{5}$$

то полученное соответствие (5) непрерывно дифференцируемо r раз.

Тот факт, что такое соответствие (5) действительно имеет место в некоторой окрестности произвольной точки  $\mathbf{x}^0 \in \Gamma$ , доказан в § 7.25 (5). Воспользовавшись леммой Бореля, можно выбрать конечное число таких окрестностей, полностью покрывающих замкнутое ограниченное множество  $\Gamma$ , но тогда при достаточно малом  $\delta > 0$  будет иметь место (4) для всех  $\mathbf{x} \in \Gamma$ .

Множество точек v, определенных при помощи соотношений (3), обо-

значим через  $\Pi(\delta)$  и положим  $\Omega^{\delta} = \Omega + \Pi(\delta)$ .

Теорема 1. Пусть  $\Omega$  — ограниченное множество, граница которого есть (n-1)-мерное дифференцируемое многообразие класса  $C^2$ . Функцию  $f(\mathbf{v})$ , непрерывную на  $\overline{\Omega}$ , можно продолжить с  $\overline{\Omega}$  на  $R_n$  так, что продолженная функция  $f(\mathbf{v})$  будет непрерывна на  $R_n$  и финитна в  $\Omega^\delta$  и будет выполняться неравенство

$$\begin{vmatrix} \overline{f}(\mathbf{v}) \\ \mathbf{v} \in R_n \end{vmatrix} \leq \max_{\mathbf{v} \in \overline{\Omega}} |f(\mathbf{v})|.$$
(6)

Доказательство. На  $\Omega\Pi(\delta)$  нашу функцию можно рассматривать как непрерывную функцию от  ${\bf v}$  и от  $({\bf x},\,h)\,(f({\bf v})=f({\bf x},\,h),\,{\bf x}\in\Gamma)$ .

Функция

$$f^{*}(\mathbf{v}) = \begin{cases} f(\mathbf{v}), & \mathbf{v} \in \Omega \setminus \Pi(\delta), \\ f(\mathbf{v}) = f(\mathbf{x}, h), & \mathbf{x} \in \Gamma, -\delta \leqslant h \leqslant 0, \\ f(\mathbf{x}, h), & \mathbf{x} \in \Gamma, 0 \leqslant h \leqslant \delta, \\ 0, & \mathbf{v} \notin \Omega^{\delta}, \end{cases}$$
(7)

очевидно, непрерывна на  $\Omega^\delta$  и продолжает f с  $\overline{\Omega}$  на  $R_n$ .

Введем теперь непрерывную финитную в  $\Omega^6$  функцию  $\psi(\mathbf{v})$ , удовлетворяющую неравенствам  $0 \leqslant \psi(\mathbf{v}) \leqslant 1$  и равную 1 на  $\Omega$  (см. § 18.4, лемма 1). Очевидно, функция  $f(\mathbf{v}) = \psi(\mathbf{v})f^*(\mathbf{v})$  удовлетворяет условиям теоремы.

Теорема 2 (Вейерштрасса). Пусть на вамыкании области, удовлетворяющий условиям теоремы 1, вадана непрерывная функция  $f(\mathbf{x})$  ( $\mathbf{x} \in \overline{\Omega}$ ). Для любого  $\epsilon > 0$  можно определить многочлен (см. 7.3, (2))

$$P\left(\mathbf{x}\right) = \sum_{0 < k_{1}^{\star} < N} a_{k} \mathbf{x}^{k} \quad \left(\mathbf{k} = (k_{1}, \, \ldots, \, k_{n}), \, \, \mathbf{x}^{k} = (x_{1}^{k1} \, \ldots \, x_{n}^{k_{n}})\right),$$

такой, что выполняется неравенство

$$|f(\mathbf{x}) - P(\mathbf{x})| < \varepsilon, \quad \mathbf{x} \in \overline{\Omega}.$$
 (8)

Доказательство. Рассмотрим продолжающую  $f(\mathbf{x})$  (с  $\overline{\Omega}$ ) функцию  $f(\mathbf{x})$ , непрерывную и финитную в  $\Omega^{\mathfrak{d}}$ . Так как множество  $\Omega^{\mathfrak{d}}$  ограничено, то можно указать такое l>0, что  $\Delta=\{|x_j|\leqslant l,\ j=1,\ \ldots,\ n\}$  содержит в себе  $\Omega^{\mathfrak{d}}$ . Если ввести подстановки

$$x_j = l \cos t_j, \quad 0 \leqslant t_j \leqslant \pi, \quad j = 1, \dots, n, \tag{9}$$

то получим функцию

$$F(t) = \bar{f}(l\cos t_1, ..., l\cos t_n),$$

которую можно считать определенной для любых  $\mathbf{t} = (t_1, \ldots, t_n)$ . Она непрерывна по  $\mathbf{t}$  и четная периода  $2\pi$  по каждой переменной  $t_j$ .

Сумма Фейера функции  $F(\mathbf{t})$  есть некоторый четный тригонометриче-

ский полином

$$\sigma_{N}\left(t\right) = \sum_{0 \leqslant k_{1} \leqslant N} \alpha_{k} \cos k_{1} t_{1} \ldots \cos k_{n} t_{n}, \quad \mathbf{k} = \left(k_{1}, \ldots, k_{n}\right),$$

равномерно при  $N \to \infty$  сходящийся к  $F(\mathbf{t})$  (см. § 15.11, теорема 1). Следовательно, для любого  $\varepsilon > 0$  можно указать такое N, что выполняется неравенство  $|F(\mathbf{t}) - \sigma_N(\mathbf{t})| < \varepsilon$  для всех  $\mathbf{t}$ .

Если в этом неравенстве обратно перейти от t к х (см. (9)), то по-

лучим

$$|f(\mathbf{x}) - P(\mathbf{x})| < \varepsilon$$
,

rде P(x) есть многочлен

$$P\left(\mathbf{x}\right) = \sum_{0 \leqslant h_{j} \leqslant N} \alpha_{k} \cos k_{1} \arccos \frac{x_{1}}{l} \ldots \cos k_{n} \arccos \frac{x_{n}}{l}$$

(см. § 15.12). Тем более верно неравенство (8), ведь  $f(x) = \overline{f}(x)$  на  $\overline{\Omega}$ .

Теорема 3. Пусть область  $\Omega$  точек  $\mathbf{v}=(v_1,\ldots,v_n)$  удовлетворяет условиям теоремы 1, но с границей класса  $C^{r+1}$ , и на  $\overline{\Omega}$  задана функция  $f(\mathbf{v}) \in C^r(\Omega)$ , r. е. имеющая на  $\overline{\Omega}$  непрерывные частные производные до порядка r включительно. Тогда  $f(\mathbf{v})$  можно продолжить с  $\overline{\Omega}$  на  $R_n$  так, что продолженная функция  $f(\mathbf{v})$  принадлежит  $C^r(R_n)$ , финитна в  $\Omega^\delta$  и удовлетворяет неравенству

$$\left| f^{(\mathbf{k})}(\mathbf{v}) \right| \leqslant C \sum_{|\mathbf{s}| \leqslant r} \max_{\mathbf{v} \in \overline{\Omega}} \left| f^{(s)}(\mathbf{v}) \right|, \quad |\mathbf{k}| \leqslant r,$$

где C не зависит от f и  $\mathbf{v}$ .

Доказательство. Определяем на Ω<sup>8</sup> функцию

$$f_{*}(\mathbf{v}) = \begin{cases} f(\mathbf{v}), & \mathbf{v} \in \Omega \setminus \Pi(\delta), \\ f(\mathbf{v}) = f(\mathbf{x}, h), & -\delta \leqslant h \leqslant 0, \\ \sum_{s=0}^{l} \lambda_{s} f\left(\mathbf{x}, -\frac{h}{s+1}\right), & 0 \leqslant h \leqslant \delta, \\ 0, & \mathbf{v} \notin \Omega^{\delta}, \end{cases}$$
(10)

где числа λ, одновременно удовлетворяют уравнениям

$$\sum_{s=0}^{l} \lambda_{s} \left( -\frac{1}{s+1} \right)^{h} = 1 \quad (k = 0, 1, \dots, r).$$

Легко проверить, что  $f^*(\mathbf{v})$  имеет на  $\Omega^{\mathfrak{d}}$  непрерывные частные производные порядков вплоть до r включительно. А функция

$$\bar{f}(\mathbf{v}) = \psi(\mathbf{v}) f^*(\mathbf{v})$$

удовлетворяет условиям теоремы, если за  $\psi(\mathbf{v})$  взять r раз непрерывно дифференцируемую на  $R_n$  функцию, финитную в  $\Omega^{\mathfrak{o}}$  и такую, что  $\psi(\mathbf{v}) = 1$  на  $\Omega$  и  $0 \leq \psi(\mathbf{v}) \leq 1$  на  $R_n$  (см. § 18.4. лемма 1).

на  $\Omega$  и  $0 \leqslant \psi(\mathbf{v}) \leqslant 1$  на  $R_n$  (см. § 18.4, лемма 1). За мечание. Теоремы 1—3 можно доказать при менее ограничительных условиях на  $\Omega$ , но тогда продолжения  $f^*(\mathbf{v})$  пришлось бы строить путями, отличными от (7) и (10).

# линейные операторы и функционалы

### § 20.1. Линейные операторы

Пусть E и E' обозначают линейные нормированные пространства и каждому элементу x из E, в силу некоторого закона, соответствует элемент

$$y = u(x),$$

припадлежащий E'; тогда говорят, что u есть оператор, определенный в E и отображающий E в E'.

Оператор называется  $a\partial\partial u \tau u s n \omega m$ , если для любых элементов x и y из E справедливо

$$u(x+y) = u(x) + u(y).$$

Если  $\theta$  и  $\theta'$  соответственно обозначают нулевые элементы пространств E и E' и  $x \in E$ , то для аддитивного оператора справедливо

$$u(0) = \theta', \quad u(-x) = -u(x).$$
 (1)

Действительно,

$$u(\theta) = u(2\theta) = 2u(\theta),$$

откуда следует первое равенство. Далее,

$$0' = u(x - x) = u(x) + u(-x),$$

что влечет второе.

Оператор называется однородным, если для любого действительного (комплексного) числа  $\alpha$  и любого элемента  $x \in E$  имсет место

$$u(\alpha x) = \alpha u(x).$$

Оператор называется nenpepывным в  $x_0 \in E$ , если для любой последовательности  $x_k$  ( $k=1,\ 2,\ \ldots$ ), припадлежащей E и сходящейся к  $x_0$ , справедливо

$$\lim_{h\to\infty}u(x_h)=u(x_0).$$

Оператор называется nenpepывным, если он непрерывен в любом элементе  $x \in E$ .

Из аддитивности оператора и непрерывности его в одном из элементов  $x_0 \in E$  следует его непрерывность. Действительно, если  $y_0 \in E$ ,  $y_k \in E$  (k = 1, 2, ...) и  $y_k \to y_0$ , то

$$\lim_{h \to \infty} u(y_h) = \lim u[(y_h - y_0 + x_0) - (x_0 - y_0)] =$$

$$= u(x_0) - u(x_0 - y_0) = u(y_0).$$

Далее, из аддитивности оператора и непрерывности его следует однородность относительно умножения на вещественное число\*). В самом

<sup>\*)</sup> В комплексном пространстве однородность оператора относительно умпожения на комплексное число вытекает из его аддитивности, непрерывности и свойства u(ix) = iu(x)

деле, если  $\alpha = 0, 1, 2, ...,$  то равенство

$$u(\alpha x) = \alpha u(x) \tag{2}$$

является непосредственным следствием аддитивности оператора u. Если p и q — целые положительные числа, то

$$qu\left(\frac{1}{q}x\right)=u(x),$$

откуда

$$u\left(\frac{1}{q}x\right) = \frac{1}{q}u(x), \quad u\left(\frac{p}{q}x\right) = pu\left(\frac{1}{q}x\right) = \frac{p}{q}u(x).$$

Пусть теперь  $\alpha$  — произвольное положительное число и последовательность рациональных чисел  $r_k$  сходится к  $\alpha$ ; тогда вследствие доказанного и непрерывности оператора

$$u(\alpha x) = \lim_{h\to\infty} u(r_h x) = \lim_{h\to\infty} r_h u(x) = \alpha u(x).$$

Это равенство на основании (1) сохраняется, очевидно, также и для отрицательных  $\alpha$ .

Теорема 1. Для того чтобы аддитивный оператор и был непрерывным, необходимо и достаточно существование положительной константы M такой, что для всех  $x \in E$  выполняется неравенство

$$||u(x)|| \leqslant M||x||. \tag{3}$$

Доказательство. Условие (3) достаточно, так как если последовательность элементов  $x_h$  ( $k=1,\ 2,\ \ldots$ ) из E сходится к  $x_0 \not \in E$ , то из неравенства

$$||u(x_h-x_0)|| \leq M||x_h-x_0|| \quad (k=1, 2, \ldots)$$

следует

$$\lim_{k\to\infty}u(x_k)=u(x_0).$$

Оно необходимо, так как в противном случае существует в E последовательность элементов  $x_n$  ( $n=1,\ 2,\ \ldots$ ), для которой  $\|u(x_n)\|\geqslant n\|x_n\|$ , и следовательно,

$$\|u\left(z_{n}\right)\|>1,\quad z_{n}=\frac{x_{n}}{n\left\|x_{n}\right\|},\quad z_{n}\rightarrow0\quad\text{при }n\rightarrow\infty,$$

что противоречит непрерывности оператора и.

Аддитивный непрерывный оператор и называется линейным или еще

линейным ограниченным.

Наименьшая положительная константа M, при которой выполняется неравенство (3) для всех  $x \in E$ , надывается нормой линейного оператора u и обозначается  $\|u\|$ . Легко видеть, что норму u можно еще определить как верхнюю грань норм элементов u(x), распространенную на множество всех  $x \in E$  с  $\|x\| \le 1$  или с  $\|x\| = 1$ :

$$\|u\| = \sup_{\|x\| \leqslant 1} \|u(x)\| = \sup_{\|x\| = 1} \|u(x)\|.$$

Банахово, т. е. линейное нормированное полпое пространство будем называть еще пространством типа (В).

Если u и v — линейные операторы, отображающие пространство E типа (B) в пространство E' типа (B), и  $\alpha$  — произвольное число, то очевидно

$$||u+v|| \le ||u|| + ||v||, ||\alpha u|| = |\alpha| ||u||.$$

### § 20.2. Линейные функционалы

Множество R всех действительных чисел c обычным определением сложения и умпожения, где норма числа равна абсолютному его значению,

есть, очевидно, пространство типа (B).

Если оператор F отображает нормированное пространство E в R, он называется функционалом, определенным в E. Аддитивный и непрерывный функционал, определенный в пространстве E типа (B), называется линейным функционалом. Свойства, установленные для линейных операторов, остаются, очевидно, справедливыми и для липейных функционалов.

### § 20.3. Сопряженное пространство

Совокупность всех определенных на E линейных функционалов образует пространство  $\vec{E}$ , называемое сопряженным к E, если в качестве нормы элемента этого пространства — функционала F — взять определенную уже норму  $\|F\| = \sup_{\|x\| \le 1} |F(x)|$ .  $\vec{E}$  есть пространство типа (B), таким обра-

зом, полное (независимо от того, E полное или нет). В самом деле, если последовательность линейных функционалов  $F_n$  ( $n=1,2,\ldots$ ) удовлетворяет условию Коши: для всякого  $\varepsilon>0$  найдется такое N, что для всех p,q>N  $\|F_p-F_q\|<\varepsilon$ , то очевидно,  $F_n(x)$  сходится равномерно на сфере  $\|x\|\leqslant 1$  к некоторому линейному функционалу F, определенному в E, и таким образом,  $\|F_n-F\|\to 0$  при  $n\to\infty$ .

Сформулируем без доказательства теорему.

Теорема (о продолжении линейного функционала). Пусть Е — бана-

хово пространство и  $E_1$  его линейное подпространство  $(E_1 \subset E)$ .

Линейный функционал f(x), определенный на  $E_1$ , можно продолжить на E с сохранением нормы, r. е. определить на  $E_1$  такой линейный функционал  $f_1(x)$ , что будут выполняться свойства

$$f_1(x) = f(x), \quad x \in E_1, \quad \sup_{\|x\| \le 1} |f_1(x)| = \sup_{\|x\| \le 1} |f(x)|.$$

# § 20.4. Линейный функционал в пространстве С непрерывных функций

T е о р е м а (Рисса\*)). Для всякого линейного функционала F, определенного в пространстве C действительных непрерывных функций x=x(t), заданных на отрезке [a, b], существует на этом отрезке и притом единственная действительная функция g(t), удовлетворяющая условиям:

1) g(t) ограниченной вариации на  $[a,\ b]$  и непрерывна справа для a < t < b,

(2) g(a) = 0,

3) функционал F для всех x=x(t) из C представляется в виде интеграла C тилтьеса

$$F(x) = \int_{a}^{b} x(t) dg(t), \qquad (1)$$

4) норма функционала F равна полной вариации функции д на [a, b]:

$$||F|| = \underset{a \leqslant t \leqslant b}{\text{var}} g. \tag{2}$$

<sup>\*)</sup> Ф. Рисс (1880—19 ) выдающийся венгерский математик.

Наоборот, функция g(t), удовлетворяющая названным свойствам, опре-

деляет с помощью (1) линейный функционал в пространстве С.

Доказательство. Пусть задан линейный функционал на пространстве C. Последнее можно рассматривать, как подпространство пространства  $L_{\infty} = L_{\infty} \ [a, \ b]$  ограниченных функций, определенных на сегменте  $[a, \ b]$  (стр. 377, сноска). Продолжим линейный функционал F на пространство  $L_{\infty}$  с сохранением нормы, что всегда возможно (см. § 20.3).

Определим далее на  $[a, \ b]$  семейство функций  $x_s = x_s(t)$  следующим

образом:

$$x_{s}\left(t\right) = \begin{cases} 0, & s < t \leqslant b, \\ 1, & a \leqslant t \leqslant s, \end{cases} \quad a < s \leqslant b, \quad x_{a}\left(t\right) \equiv 0, \quad a \leqslant t \leqslant b.$$

Очевидно,  $x_s \in L_{\infty}$ . Положим

$$g(s) = F(x_s), \quad a \leqslant s \leqslant b,$$

и покажем, что функция g(s) ограниченной вариации на [a, b]. Действительно, пусть  $a=s_0 < s_1 < \ldots < s_n = b$ — произвольное разбиение сегмента [a, b]. Тогда

$$\begin{split} \sum_{i=1}^{n} |g\left(s_{i}\right) - g\left(s_{i-1}\right)| &= \sum_{i=1}^{n} |F\left(x_{s_{i}}\right) - F\left(x_{s_{i-1}}\right)| = \sum_{i=1}^{n} |F\left(x_{s_{i}} - x_{s_{i-1}}\right)| = \\ &= \sum_{i=1}^{n} F\left[\eta_{i}\left(x_{s_{i}} - x_{s_{i-1}}\right)\right] = F\left[\sum_{i=1}^{n} \eta_{i}\left(x_{s_{i}} - x_{s_{i-1}}\right)\right], \end{split}$$

где

$$\eta_i = \operatorname{sign} F(x_{s_i} - x_{s_{i-1}})$$
  $(i = 1, 2, ..., n)$ .

Но функция

$$\sum_{i=1}^n \eta_i \left( x_{s_i} - x_{s_{i-1}} \right)$$

представляет, очевидно, ступенчатую функцию с пормой, не превышающей единицы. Поэтому

$$\sum_{i=1}^{n} |g(s_i) - g(s_{i-1})| \leqslant ||F||,$$

следовательно,

Легко видеть, что функция

$$x(t) = \sum_{i=1}^{n} \alpha_{i} \left[ x_{s_{i}}(t) - x_{s_{i-1}}(t) \right] \quad (a = s_{0} < s_{1} < \dots < s_{n} = b)$$

является ступенчатой функцией, определенной равенствами

$$x\left(t\right) = \begin{cases} \alpha_{1}, & s_{0} \leqslant t \leqslant s_{1}, \\ \alpha_{i}, & s_{i-1} < t \leqslant s_{i} \end{cases} (i = 1, 2, \ldots, n).$$

Для пее очевидно

$$F(x) = \sum_{i=1}^{n} \alpha_{i} [g(s_{i}) - g(s_{i-1})].$$

Если тенерь x = x(t) — произвольная непрерывная функция, то можно рассматривать как предел равномерно сходящейся к ней последовательности ступенчатых функций вида

$$x_{n} = x_{n}(t) = \sum_{i=1}^{n} x(s_{i}) [x_{s_{i}}(t) - x_{s_{i-1}}(t)],$$

когда  $\max |s_i - s_{i-1}|$  (i = 1, 2, ..., n) стремится к нулю. Таким образом,  $\|x - x_n\| \to 0$  при  $n \to \infty$  и, вследствие непрерывностя линейного функционала F,

$$F(x) = \lim_{n \to \infty} F(x_n) = \lim_{\max|s_i - s_{i-1}| \to 0} \left\{ \sum_{i=1}^n x(s_i) (x_{s_i} - x_{s-1}) \right\} =$$

$$= \lim_{s_i - s_{i-1} \to 0} \sum_{i=1}^n x(s_i) [g(s_i) - g(s_{i-1})] = \int_a^b x(t) dg(t) \quad (4)$$

для всех  $x \in C$ . Очевидно,

$$|F(x)| = \left|\int_{a}^{b} x(t) dg(t)\right| \leqslant \operatorname{var} g ||x||,$$

какова бы ни была функция  $x \in C$ . Поэтому

$$F \parallel \leqslant \underset{g < t < h}{\text{var}} g. \tag{5}$$

Из (5) и (3) тогда следует (2). Далее, очевидно,

$$g(a) = F(x_a) = 0.$$

Мы, таким образом, показали существование функции д ограниченной вариации на [a, b], удовлетворяющей условиям (a, b) теоремы.

g\*, определенную следую-Введем теперь в рассмотрение функцию

щим образом:

$$g_*(a) = g(a) = 0, \quad g_*(b) = g(b),$$
  $g_*(t) = g(t+0)$  для  $a < t < b.$ 

Эта функция, таким образом, непрерывна справа для a < t < b и отличается от у на счетном множестве значений t, удовлетворяющих неравенству a < t < b. Поэтому на основании свойств интеграла Стилтьеса

$$\int_{a}^{b} x(t) dg_{*}(t) = \int_{a}^{b} x(t) dg(t).$$

Очевидно, далее,

$$\underset{a \leqslant t \leqslant b}{\operatorname{var}} g_* \leqslant \underset{a \leqslant t \leqslant b}{\operatorname{var}} g = ||F||.$$
 (6)

С другой стороны,

$$|F(x)| = \left| \int_{a}^{b} x(t) dg_{*}(t) \right| \leqslant \underset{a \leqslant t \leqslant b}{\operatorname{var}} g_{*} ||x||,$$

откуда

$$||F|| \leqslant \underset{a \leqslant t \leqslant b}{\text{var }} g_*, \tag{7}$$

Неравенства (6) и (7) влекут за собой

$$||F|| = \underset{a \leqslant t \leqslant b}{\operatorname{var}} g_*.$$

Таким образом, функция  $g_*$  удовлетворяет всем условиям теоремы. Такая функция может быть только одна. В самом деле, допустим, что функции  $g_1(t)$  и  $g_2(t)$  удовлетворяют всем условиям теоремы и  $g_1(t_0) \neq g_2(t_0)$ . Тогда разность

$$h(t) = g_1(t) - g_2(t)$$

есть функция ограниченной вариации, непрерывная справа для a < t < b и удовлетвориющая условиям

$$h(a) = 0, \quad \int_{a}^{b} x(t) dh(t) = 0$$
 для всех  $x \in C$ , (8)  $h(t_0) \neq 0, \quad t_0 > a$ .

Но это невозможно, так как если  $t_0 = b$ , то для x(t) = 1

$$\int_{a}^{b} x(t) dh(t) = h(b) \neq 0,$$

и если  $t_0 < b$ , то в силу непрерывности справа функции h можно подобрать достаточно малое положительное  $\delta$  такое, что

$$\underset{t_{0}\leqslant t\leqslant t_{0}+\delta}{\operatorname{var}}\,h<\big|\,h\left(t_{0}\right)\big|.$$

Тогда для непрерывной функции x(t), определяемой условиями

$$x\left(t\right) = \begin{cases} 1 & \text{для} & a \leqslant t \leqslant t_0, \\ \text{линейна} & \text{для} & t_0 \leqslant t \leqslant t_0 + \delta, \\ 0 & \text{для} & \delta + t_0 \leqslant t \leqslant b, \end{cases}$$

мы имели бы

$$\left|\int_{a}^{b}x\left(t\right)dh\right|=\left|\int_{a}^{t_{0}}x\left(t\right)dh+\int_{t_{0}}^{t_{0}+\delta}x\left(t\right)dh\right|\geqslant\left|h\left(t_{0}\right)\right|-\underset{t_{0}< t< t_{0}+\delta}{\operatorname{var}}h>0,$$

что противоречит (8).

Итак, первая часть теоремы доказана. Вторая часть (обратная) очевидна.

$$\Pi$$
 ример. Интеграл  $F\left( f \right) = \int\limits_{a}^{b} K\left( t \right) f\left( t \right) dt,$  где  $K(t)$  — суммируемая,

а f — непрерывная на сегменте [a, b] функция, представляет собой линейный функционал, определенный в пространстве C непрерывных функций, определенных на [a, b] с нормой

$$||F|| = \int_{a}^{b} |K(t)| dt.$$

В этом нетрудно убедиться непосредственно или прибегая к теореме 2.1, если принять во внимание, что для всех  $f \in \mathcal{C}$ 

$$F(f) = \int_{a}^{b} f(t) dg(t),$$

тде

$$g(t) = \int_{a}^{t} K(u) du,$$

а также, что

$$\underset{a \leqslant t \leqslant b}{\operatorname{var}} g = \int_{a}^{b} |K(t)| dt.$$

Пример 2. Пусть  $a \leqslant t_0 < t_1 < \ldots < t_n \leqslant b$  и  $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_n$  вещественные числа; тогда

$$F(f) = \sum_{i=0}^{n} \alpha_{i} f(t_{i}),$$

тде  $f \in \mathcal{C}$ , есть липейный функционал, определенный в  $\mathcal{C}$  с нормой

$$||F|| = \sum_{i=0}^{n} |\alpha_i|.$$

Его можно представить в виде интеграла Стилтьеса 20.4 (1), где g(t) — функция, непрерывная справа на (a, b), равная нулю для t=a, постоянная в каждом из интервалов  $(t_i, t_{i+1})$  (i=0, 1, 2, ..., n-1), а в точках  $t_i$  тернит скачки, равные  $\alpha_i$ , иначе говоря

$$g(t_0 + 0) - g(t_0) = \alpha_0,$$
  

$$g(t_i + 0) - g(t_i - 0) = \alpha_i (i = 1, 2, ..., n).$$

# § 20.5. Линейный функционал в пространстве *L* интегрируемых функций

Теорема 1. Всякому линейному функционалу F, определенному в пространстве L функций f, интегрируемых на [a, b] по Лебегу, соответствует единственная с точностью до меры нуль измеримая и ограниченная на [a, b] действительная функция  $\alpha(t)$  такая, что

$$F(f) = \int_{a}^{b} \alpha(t) f(t) dt$$
 (1)

и (см. стр. 377, сноску)

$$||F|| = \underset{\alpha \le t \le b}{\operatorname{vrai}} \max |\alpha(t)|. \tag{2}$$

Доказательство. Определим функцию

$$G_{t}\left(u\right)=\begin{cases}1, & a\leqslant u\leqslant t,\\ 0, & t\leqslant u\leqslant b\end{cases}$$

и положим  $g(t) = F(G_t)$ . Пусть  $a \leqslant t < t' \leqslant b$  и  $\varepsilon = \text{sign } [g(t') - g(t)]$ .

Тогла

$$\mid g\left(t'\right) - g\left(t\right) \mid = \varepsilon \left\{g\left(t'\right) - g\left(t\right)\right\} = \varepsilon F\left(G_{t'} - G_{t}\right) \leqslant \parallel F \parallel \parallel G_{t'} - G_{t} \parallel.$$

Но функция  $G_{t'} - G_t$  равна единице на интервале (t, t') и нулю вне его, поэтому  $\|G_{t'} - G_t\| = \|t' - t\|$ ,  $\|g(t') - g(t)\| \le \|F\| \|t' - t\|$ .

Следовательно, g(t) удовлетворяет на [a, b] условию Липшица с колстантой  $\|F\|$ , что, как можно доказать, влечет за собой существование почти всюду на [a, b] производной  $g'(t) = \alpha(t)$  с

Кроме этого, в силу того, что  $F(G_a) = 0$ ,

$$g(t) = \int_{a}^{t} \alpha(u) du,$$

откуда

$$F(G_t) = g(t) = \int_a^b \alpha(u) G_t(u) du.$$

Если f есть ступенчатая функция, определенная на [a,b], то она представляет собой некоторую конечную линейную комбинацию из функций  $G_t$  и потому

$$F(b) = \int_{a}^{b} \alpha(u) f(u) du.$$

Пусть теперь f — произвольная функция из L. Существует последовательность ступенчатых  $f_n$  ( $n=4,\ 2,\ \ldots$ ), сходящаяся по норме к f, откуда

$$F(f) = \lim_{n \to \infty} F(f_n) = \lim_{n \to \infty} \int_a^b \alpha(u) f_n(u) du = \int_a^b \alpha(u) f(u) du,$$

что и требовалось доказать.

Из последнего равенства следует

$$|F(f)| \leq \underset{\alpha \leq t \leq b}{\operatorname{vrai}} \max |\alpha(t)| \cdot ||f||,$$

что вместе с (3) влечет (2).

Не может быть двух функций  $\alpha(t)$  и  $\alpha_1(t)$ , удовлетворяющих условию теоремы и отличающихся на множестве положительной меры, потому что, полагая  $\beta(t) = \alpha(t) - \alpha_i(t)$ , мы имели бы, с одной стороны,

$$\int_{a}^{b} \beta(t) f(t) dt = 0$$

для всех  $f \in L$ , а с другой — для  $f_*(t) = \operatorname{sign} \beta(t)$ 

$$\int_{a}^{b} f(t) f_{*}(t) dt = \int_{a}^{b} \beta(t) \operatorname{sign} \beta(t) dt = \int_{a}^{b} |\beta(t)| dt > 0.$$

### § 20.6. Линейный функционал в гильбертовом пространстве

Пусть H есть гильбертово пространство, **т**. е. линейное нормированное полное пространство, в котором введено скалярное произведение  $(\varphi, \psi)$   $(\varphi, \psi \in H)$  с нормой  $\|\varphi\|_H = (\varphi, \varphi)^{1/2}$ .

В данном случае считаем, что H есть сепарабельное пространство. В нем, таким образом, имеется счетная полная ортопормированная система элементов  $\phi_1, \phi_2, \phi_3, \ldots H$  может быть комплексным или действительным.

Теорема 1. Для всякого линейного функционала  $F=F(\phi)$ , определенного над H, существует единственный элемент  $\psi \in H$  такой, что \*)

$$F(\varphi) = (\varphi, \psi) \quad (\varphi \in H) \tag{1}$$

 $\partial$ ля всех  $\varphi \in H$ .

При этом имеет место равенство

$$||F|| = ||\psi||_H. \tag{2}$$

Доказательство. Произвольный элемент  $\phi \in H$  разложим в ряд Фурье по полной ортонормированной системе:

$$\varphi = \sum_{k=1}^{\infty} (\varphi, \varphi_k) \varphi_k.$$

Но тогда, учитывая непрерывность линейного функционала F, получим:

$$F(\varphi) = \lim_{N \to \infty} F\left(\sum_{k=1}^{N} (\varphi, \varphi_k) \varphi_k\right) = \lim_{N \to \infty} \sum_{k=1}^{N} (\varphi, \varphi_k) F(\varphi_k) =$$

$$= \sum_{k=1}^{\infty} c_k (\varphi, \varphi_k), \quad c_k = F(\varphi_k) \quad (k = 1, 2, \ldots). \quad (3)$$

Мы доказали, что заданный линейный функционал F может быть описан равенством

$$F\left(\varphi\right) = \sum_{k=1}^{\infty} c_{k}\left(\varphi, \varphi_{k}\right),\,$$

где числа  $c_k$  определяются равенствами (3). Очевидно, справедливо также неравенство

$$\left|\sum_{k=1}^{\infty} c_k \left(\varphi, \varphi_k\right)\right| \leqslant \|F\| \|\varphi\|_H \quad (\varphi \in H). \tag{4}$$

Элемент  $\phi = \sum_{j=1}^{N} c_j^{-} \phi_j$  для любого натурального N принадлежит H. Подставив его выражение в (4), получим

$$\sum_{k=1}^{N} c_{k} \overline{c_{k}} \leqslant \|F\| \left(\sum_{k=1}^{N} |c_{k}|^{2}\right)^{1/2}$$

Откуда

$$\sum_{k=1}^{N} |c_k|^2 \leqslant |F|^2$$

при любом N. Но тогда имеет место

$$\sum_{k=1}^{\infty} |c_k|^2 \leqslant ||F||^2. \tag{5}$$

<sup>\*)</sup> В комплексном H скалярное произведение ( $\phi$ ,  $\psi$ ) есть линейный функционал по  $\phi$ , потому что он не однороден по  $\psi$ .

Но  $|\bar{c}_k| = |c_k|$ , поэтому справедливо также неравенство

$$\sum_{k=1}^{\infty} \left| \tilde{c}_k \right|^2 \leqslant \| F \|, \tag{5'}$$

откуда вытекает (см. § 14.6, теорема 4) существование элемента  $\psi \in H$  такого, что

$$\psi = \sum_{k=1}^{\infty} \vec{c}_k \varphi_k,$$

где ряд справа сходится к  $\psi$ , в смысле H. При этом

$$\|\psi\|_{H} = \left(\sum_{k=1}^{\infty} |c_{k}|^{2}\right)^{1/2}.$$
 (6)

Теперь имеем для любого  $\phi \in H$ 

$$(\varphi, \psi) = \left(\varphi, \sum_{k=1}^{\infty} \overline{c}_k \varphi_k\right) = \sum_{k=1}^{\infty} c_k (\varphi, \varphi_k) = F(\varphi),$$

т. е. равенство (1).

Далее из (5) и (6) следует

$$\|\psi\|_H \leqslant \|F\|,\tag{7}$$

а из (1) следует

$$|F(\varphi)| = |(\varphi, \psi)| \le ||\psi||_H ||\varphi||_H, \quad ||F|| \le ||\psi||_H.$$
 (8)

Но тогда имеет место равенство (2).

Единственность элемента  $\psi \in H$ , для которого выполняется равенство (1) для всех  $\phi \in H$ , вытекает из следующих соображений.

Если бы существовал еще один элемент  $\psi_1 \in H$ , для которого выполнялось бы равенство  $F(\varphi) = (\varphi, \psi_1)$  для всех  $\varphi \in H$ , то для всех  $\varphi \in H$  выполнялось бы равенство

$$(\varphi,\,\psi-\psi_1)=0,$$

и в частности для  $\phi = \psi - \psi_1$ 

$$(\psi - \psi_1, \quad \psi - \psi_1) = 0.$$

Но тогда  $\psi - \psi_i = 0$  или  $\psi = \psi_i$ .

## ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Абсолютно непрерывная функция сходящийся интеграл 118 Аддитивность интеграла Лебега 360 **— —** Римана 33 — полная интеграла Лебега 365 Амплитуды гармоника 187 Аппроксимация функции из  $L_{\,p}$  непрерывной финитной 151 из h кусочно постоянной 151 Банахово пространство 142 Бернулли многочлен 210 Бесконечномерное линейное множество 158 Брауэра теорема 64 Буняковского перавенство 147 Бэта-функция 127 Вейерштрасса теорема 125, 199, 229, Верхний интеграл Римана 29 Верхняя интегральная сумма Лебега 350 **— —** Римана 27 Вихрь (ротор) 81 Внутрепняя мера Жордана 13 — — Лебега 338 Второго рода криволинейный интеграл 78

Гамма-функция 130
Гармоника функции 186, 187
Гаусса — Остроградского теорема 102
Геометрическая интерпретация зна-ка определителя 49
Гёльдера неравенство 147
Гиббса явление 211
Гильбертово пространство 170
Градиент функции 79
Грина формула 87

Двумерная мера 8 Двойной интеграл Римана 8 Дельта-функция 252 Диаметр множества 7 Дивергенция вектора 102 Дирихле интеграл 189 — сумма 188

— сумма 10 — ядро 189 Дифференциальная форма 305
— (внешний дифференциал) 306Дифференциальный элемент ориентированной поверхности 95
Дифференцирование гамма-функции 131
— интеграл по параметру 113, 124
— ряда Фурье 207

многообразия

Жорданова мера множества 13

Замена переменных в интеграле Лебега 379

— в кратном интеграле 51 — 59

— в несобственном интеграле 66Замкнутость ортонормированной

Измеримость функции 343

— множества по Жордану 15, 20

— по Лебегу 338

системы 170

Дифференцирусмые

— по Лебегу пересечения 339

— — — суммы 339 Инвариантное свойство

Инвариантное свойство интеграла по многообразию 311, 314 Интеграл абсолютно сходящийся 118

— Дирихле 189

- криволинейный второго рода 76

— — первого рода 75

— Лебега 350

- — па неограниченном множество 387
- Лебега Стилтьеса 423

несобственный 115

- по ориентированной плоской области 97
- по поверхности первого рода 90
- Римана верхний 29

— нижний 29

— Римана — Стилтьеса 413

— Стилтьеса 415. — сходящийся ра

сходящийся равномерно 122, 134.

— Фурье 233, 259

Интегрирование по параметру 123 — ряда Фурье 207

Интегрируемость модуля 39 — непрерывной функции 33

— произведения 39

Интегрируемость суммы 39 — частного 39

Квадратичное приближение 267 Квадрируемое по Жордану множество 11, 18, 19

Колмогорова пример 203

Комплексиая форма ряда Фурье 205,

Косинус преобразования Фурье 239 Коши неравенство 147

Коэффициент Фурье 165, 186, 263, 278

Край дифференцируемого многообразия 294

Криволинейный интеграл второго рода 76

- — нервого рода 75

Кусочно постоянная функция 151

Лежандра многочлены 230 **Лемма об осцилляции 193** 

Линейно зависимая система 157 независимая система 157

— — — элементов 157

Линейное множество 157 пормированное пространство 142,

157 **— — —** полпое 142

свойство интеграла Лебега 359

**— — Римана** 39

Липейный фупкционал пад D (обобщенная функция) 403 — над \$\hat{S}\$ 250

— — над S<sub>\*</sub> 278

Липшица условие 197

Лист Мёбиуса 291

Логарифмический потенциал **1**35, 140

Локально интегрируемая функция 239

кусочно гладкая функция 240

Мера Жордана 15, 408

— Жордана открытого ограничеппого множества 334

— Лебега 333, 338

 Лебега замкнутого ограниченного множества 334

Минковского неравенство 148

Многомерная сумма Фейера 219

— Фурье 218

Мпогообразие, заданное нараметрически 285

ориентированное 291

— ориентируемое 291

Мпогочлены Бернулли 210

— Лежандра 230

— Чебышева 228

Множество измеримое по Жордану

. — — по Лебегу 338

— лебеговой меры нуль 34

лицейное бесконечномерное 158.

— плотное 159

полное 159

Независимость криволинейного интеграла первого рода от ориентации кривой 7

--- от ориентации поверхности 91

Неполиота  $L_p'$  406

Непрерывность кратного интеграла по параметру 47

- равномерно сходящегося интеграла 123

Непрерывные операции 63

Неравенство Буняковского 147

 Гёльдера 147 — Коши 147

— Парсеваля 167

Неравномерно сходящийся интеграл

Несобственные интегралы 66,

Нижний интеграл Римана 29 Нижияя интегральная сумма Лебега 350

— — Римана 2**7** 

— ступенчатая фупкция 354

Hорма L' 144

 $-L'_{p}$  144  $-l_{p}$  144

Носитель функции 151 — — компактный 151

Ньютопов потенциал 135

Обобщенная производная по Соболеву 390

— функция над D 403

— — над *S* 250 — — пад  $S_*$  278

 $-P \cdot \frac{1}{x}$  253

Обобщенное неравенство Минковского 321

Обобщенные периодические функпии 277

Обратное преобразование Фурье 240 Объем 9

Объемный потенциал 135, 140

Ограниченность интегрируемой по Риману функции 36

Операция интегрирования по Римаny 10

Описание поверхности 68, 69, 285

Определенный интеграл Римана 10 Орментация плоской области 86

— поверхности 93 Ориентированное многообразие 291 Ориентируемое многообразие 291 Ортогонализация 175

Ортогональная система элементов 164

Ортопормированная система элементов 164

— — — замкпутая 176

— — полная 168

Особенность интеграла 116 Оценка остатка ряда Фурье 210, 225

Парсеваля неравенство 167 — равенство 167 Планшереля теорема 272

Илощадь в полярных координатах 59

поверхности 68

— тора 73.

.— — шара 73

Поверхностный интеграл первого рода 90

Повторное интегрирование 41 Повторный интеграл Фурье 240 Полигональная функция 159 Полная аддитивность интеграла Ле-

бега 365

— система в пространстве 159 Полное линейное нормированное пространство 142

Полнота системы тригонометрических функций 197, 221

Полярные координаты в пространстве 61, 119

– на плоскости 19, 59

Потенциал логарифмический 135, 140

— объемный 135, 140

— простого слоя 135, 141

Потенциальная функция вектора 79 Поток вектора через ориентированную поверхность 99

Правило согласования ориептаций 301

Преобразование переменных в дифференциальной форме 307

— Фурье 239

— — обратное 240, 256

— прямое 240, 256

Приближение в  $L_p'$  непрерывными функциями 151

- в L' непрерывными кусочно постоянными функциями 151

Признак Вейерштрасса равномерной сходимости несобственного интеграла 125 Пример Колмогорова 203

 неизмеримого по Жордану множества 17

Продолжение функции в метрико С 431

Произведение дифференциальных форм 306

Производная по Соболеву. 244 — преобразования Фурье 244

Пространство Банаха 142

— полное 142

— сепарабельное 159

- C 142- D' 403

-L'(L) 144

 $-L_{p}^{'}(L_{p})$  144

 $-L_2'(L_2)$  148, 178

 $-l_p$  144 -S 245

 $-\tilde{S}'\,250$ 

 $-C_*, L'_p^*$   $(L_p^*)$  185

Процесс ортогонализаций системы элементов 175

Пуассона интеграл 134

Равенство Парсеваля 167

Равномерная сходимость интеграла Фурье 234

— — несобственного интеграла 122 — — ряда Фурье 199

Разбиение единицы 330

Разность дифференциальных форм 306

элементарных фигур 12
 Ротор вектора 81, 100

Ряд Фурье 165, 182, 185

— — в комплексной форме 205, 219

— — многомерный 218

— — расходящийся всюду 203

Свертка 249, 282, 327

Сепарабельное пространство 159 Синус-преобразование Фурье 241

Система элементов ортогональная 164

— — полцая 159, 180

Скалярное произведение 149 Согласованность ориентаций 281 Спектр функции 186

Стилтьеса интеграл 415 Стокса формула 109, 315

Ступенчатая функция 267 Сумма Дирихле 188

— дифференциальных форм 306

Фейера 215

— Фурье 188

— элементарных фигур 12 Сходимость средне квадратическая:

150

Сходимость по мере 348

простого интеграла Фурье 238

- равномерная несобственного интеграла 122

Теорема Брауэра 64

Вейерштрасса 125, 229, 433

Гаусса — Остроградского 102

— Лебега 34, 418

— о полноте  $L_p(E)$  377

 основная (для кратного интеграла) 29

о среднем (интегральная) 40

— Планшереля 272

— Фубини 370, 389

Трехмерные множества, измеримые по Жордану 20

Тригонометрический полином 184 — ряд 190

Тройной интеграл Римана 10 Усреднения по Соболеву 323

Фаза гармоники 187 Фейера сумма 215

Фигура 11

Формула Грина 87 для остатка Фурье 191

Стокса 109, 315

Фубини теорема 370, 389 Функция абсолютно непрерывная

396 — бэта 127

— гамма 130

— измеримая 343

Функция интегрируемая по Лебегу 351

— интегрируемая по Риману 26, 349 кусочно постоянная 151

 локально абсолютно непрерывная 397

кусочно гладкая 240

периодическая 182

— полигональная 159

ступенчатая 351 — суммируемая 352

🛶 финитная 151 Хевисайда 253

 $-\delta(x)$  252

Фурье интеграл 233

 коэффициент 165, 186 преобразование 239

— ряд 182, 185

(частичная) сумма 189

Цилиндрические координаты 63 Циркуляция вектора 78

Частичная сумма Фурье 189 Частота гармоники 187 Чебышева многочлен 226 Член ряда Фурье 186

Элемент нормальный 164

(поверхности) дифференциальный 72

Элементарная фигура 11

Явление Гиббса 188, 211

Ядро Дирихле 189

— Фейера 216

### Сергей Михайлович Никольский

#### КУРС МАТЕМАТИЧЕСКОГО АНАЛИЗА

#### TOM II

Редактор М. М. Горячая Технический редактор Л. В. Лихачева Корректоры Е. В. Сидоркина, В. П. Сорокина

иб № 11784

Сдано в набор 15.12.82. Подписано к печати 13.09.83, Формат 60×90<sup>4</sup>/16. Бумага тип. № 3. Обыкновенная гарии-тура. Высокая печать. Условн. печ. л. 28. Уч.-изд. л. 29.6, Тираж 40 000 экз. Заказ № 520. Цена 1 р. 30 к.

Издательство «Наука» ая редакция физико-математической литературы 117071, Москва, В-71, Ленинский проспект, 15 Главная редакция

4-я типография издательства «Наука». 630077, Новосибирск, 77, ул. Станиславского, 25