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Preface to the 2009 Reprint
At the time we wrote The Mathematical Theory of Symmetry in Solids we had both recently
been involved in working on the band structure of metals and we were acutely conscious
of the lack of a book of tables of the irreducible representations of space groups and of
the magnetic groups and their corepresentations. Before we had completed our book,
certain authors, named in the Bibliography, had published similar tables, but in very
different notations. What is unique about our book is that (i) it is complete, (ii) it covers,
in very great detail, the theory behind the tables of point group and space groups
representations and (iii) it also gives a set of matrix representatives and not just the
character tables, for each of the degenerate representations. The Mathematical Theory of
Symmetry in Solids went out of print a long time ago and secondhand copies had become
very difficult to obtain. So we are therefore very pleased, and indeed honoured, that Oxford
University Press has undertaken a reprint to provide readier access to the material involved
to the present generation.

There were a few errors that were found in the original version and the opportunity has
now been taken to correct them. However the number of these errors is very small and
that is a tribute to the very great care and attention to detail by the original typesetters and
proofreaders at the Press.

C. J. BRADLEY
A. P. CRACKNELL

June 2009



Preface
As the sub-title suggests, this book is devoted to the theory of the deduction of the
irreducible representations of point groups and space groups and to their tabulation,
together with some discussion of the determination of symmetry-adapted functions
that belong to these representations. Some consideration is also given to the co-
representations of magnetic point groups and space groups. Most of the theory of the
determination of space-group representations is, of course, available already in the
literature, but it is very scattered and different authors have used various sets of
notation. Two sets of tables of space-group representations have been published for
some time (Faddeyev 1964, Kovalev 1965), but neither included any very compre-
hensive account either of the theory or of the properties of these representations; at
a very late stage in the preparation of this manuscript the work of Miller and Love
(1967) was published and at the proof stage the work of Zak, Casher, Gluck, and Gur
(1969) also became available. We have made use of all these works in checking many
of our tables.

Complete tables are given of the single-valued and double-valued representations
of the group of k at each point of symmetry and along each line of symmetry in the
Brillouin zone of each of the 230 space groups. These tables include all the relevant
abstract finite groups (of order ^ 192) and we identify the group of each wave vector
k in terms of the appropriate abstract group. In these tables both the character tables
and the matrix representatives are given. Several of the tables have been derived or
checked by computer, specifically Tables 2.6, 5.1, 5.7, and 6.8, but we shall not give
any description of the computing techniques involved and refer the reader, for
example, to the review article on computers and group theory by Cannon (1969). The
compatibility of Table 6.13 with Table 5.7 has also been checked, by hand; see the foot-
note on p. 468. Comparison with existing sets of tables for some individual space
groups and with the tables of Faddeyev, Kovalev, Miller and Love, and Zak, Casher,
Gluck, and Gur has been made, but a completely exhaustive comparison with all the
existing work has proved impossible because of the many different notations and con-
ventions that have been used by different authors. It would be very remarkable indeed
if all the entries in these tables were correct, and we should be extremely grateful to
receive details of any errors that readers may find. An arrangement has been made with
the Institute of Physics for the publication of such errors that come to our notice in the
form of Letters to the Editor of Journal of Physics C: Solid State Physics.

We have included as much as seemed to be necessary of the description of the
mathematical crystallography of Bravais lattices, point groups, and space groups,
but the reader may find it profitable on occasions to refer either to one of the various
textbooks on crystallography or to the International tables for X-ray crystallography
(Henry and Lonsdale 1965). In Chapter 3 we give a partially complete account of
representation theory for space groups. The complete theory is presented in Chapter
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4 in which we treat the theory in a general notation so that we cover not only the
theory of space groups but also obtain a theory that is useful in other applications
outside the theory of solids. It is hoped, therefore, that parts of Chapter 4 will be of
use, as a preliminary study in the theory of induced and subduced representations,
to workers in a variety of fields and not just to solid-state physicists. We have assumed
that the reader has a basic working knowledge of the theory of groups and of group
representations; however, we have summarized the relevant parts of this theory in
sections 1.2 and 1.3.

Some omissions have necessarily been made. We have omitted any discussion of
the symmetry properties of tensors in crystals partly because it makes little use of
representation theory and partly because the subject of the symmetry properties of
tensors is already well-documented both for non-magnetic crystals (Nye 1957) and
for magnetic crystals (Birss 1964). Although we have given some careful consideration
in Chapter 7 to the theory of the corepresentations of magnetic space groups and
have given some examples, it has not been practicable, in the space available, to in-
clude tables of the irreducible corepresentations of all the 1191 black and white
magnetic space groups; these are all tabulated by Miller and Love (1967). We should
have liked to have included some detailed discussion of the fields in which the theory
and the tables that we have given can be applied. However, neither space nor time
was available to do this properly, since this would probably need a second large
volume; therefore, at appropriate points in the text we have simply indicated possible
physical applications and given references to suitable treatises or review articles.
Finally, we have omitted any discussion of the non-crystallographic point groups on
the grounds that they do not properly belong in a book that is concerned primarily
with solids rather than with molecules.

We are particularly grateful to Dr. S. L. Altmann, who provided much of the
original stimulus for the writing of this book and who has watched its progress with
considerable interest, and to the various people with whom we have had helpful
discussions or correspondence about either text or references at various stages;
Dr. J. S. Rousseau and Dr. N. B. Backhouse for a careful reading of various chapters
which led to the removal of a number of errors; Dr. B. L. Davies, for extending the
tables of cubic lattice harmonics in Chapter 2 from an accuracy of 8 to 11 decimal
places and for some general assistance with parts of Chapter 7 and some of the
Russian references; Dr. R. J. Elliott; Dr. G. Harbeke; Dr. K. L. Jiingst, who carried
out an independent check on the tables of lattice harmonics in Chapter 2 and subse-
quently provided a few corrections; Dr. D. Litvin; Prof. R. Loudon; Dr. W. Marzec,
for supplying a list of corrections to the tables of Kovalev (1965); Dr. K Olbrychski;
Dr. M. Schulz; Mr. J. Stanek, for some help with the indexing of chapter 7; Mr. D. E.
Wallis, for writing computer programs to check Table 5.1; Mr. R. H. Whittaker and
Prof. J. Zak. One of us (A.P.C.) would like to record the fact that most of his contribu-
tions to the writing of this book were made during his two previous appointments, in
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the Physics Departments of the University of Singapore and the University of Essex,
and he is grateful to his former colleagues for their interest and encouragement during
those times. We are grateful to the various authors, editors, and publishers who have
granted permission to reproduce copyright figures and tables, the sources of which are
indicated appropriately in situ. Finally, we are also grateful to the staffof the Clarendon
Press for the care with which the production has been handled.

C. J. BRADLEY
August 1969 A. P. CRACKNELL
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1
Symmetry and the solid state

1.1. Introduction

THE history of man's interest in symmetry goes back many centuries (Belov 19566,
Coxeter and Moser 1965, Steno 1669), but its study on a modern scientific basis can
be considered to have been started by the Abbe Haiiy. Haiiy studied the behaviour
of a specimen of calcite when it was cleaved and, by breaking it into smaller and
smaller pieces and studying the angles between the faces of the fragments, he con-
vinced himself that the crystal was made up by the repetition of a large number of
identical units. Haiiy (1815a-J) studied many other crystals as well and summarized
his conclusions in his so-called Loi de symmetric. The study of symmetry developed
through the nineteenth century with the formulation of ideas about point groups,
Bravais lattices, and space groups.

A point group is a set of symmetry operations acting at a point and obeying the
requirements that they should form a group in the mathematical sense; the crystal-
lographic point groups satisfy the extra requirement that they must be compatible
with a space lattice. Only a finite number of different combinations of symmetry
operations are observed to occur in real crystals. The derivation of these 32 point
groups was published by Hessel (1830) but his work was neglected for over 30 years
until they were derived again by Gadolin (1869). Since then the point groups have
been studied extensively, both in their original crystallographic context and, more
recently, in the context of group-theoretical studies of the physics and chemistry of
molecules and solids. There are useful crystallographic texts, for example, by
Buerger (1956) and Phillips (1963a). General discussions of the theory associated with
the applications of the group-theoretical studies of the point groups are given by
many authors (for example; Bhagavantam and Venkatarayudu 1962, Cracknell 19686,
Hamermesh 1962, Heine 1960, Tinkham 1964).

We can also consider another collection of groups, this time by considering trans-
lational symmetry operations. If we were to look at the internal structure of a crystal
we would find that it is made up of a large number of atoms or molecules regularly
arranged; it would be possible to find a set of points within the crystal which are
similar. That is, the crystal looks exactly the same if viewed from any one of these
points as it does if it is viewed from any other of them. If we consider such a set of
identical points they make up what the mathematicians call a lattice. It is possible
to show that there is only a small number of essentially different ways of arranging
a set of identical points so that the environment of each one is the same. This was
done by Bravais (1850) who showed that in a three-dimensional space there are only
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14 different lattices possible; consequently these are now known as Bravais lattices,
even though Frankenheim had deduced, incorrectly, 15 such lattices somewhat
earlier.

A point group is concerned with the symmetry of a finite object and for natural
crystals there are only 32 different point groups; a Bravais lattice is concerned with
the arrangement in space of a collection of mathematical points. To study fully the
internal structure of a crystal, that is, the exact detailed arrangement of the atoms
within the unit cell of a crystal, one needs a further development of symmetry studies
known as a space group. A space group takes into consideration the symmetry of an
arrangement of a set of identical objects, each of which is now not a point but is a
finite object or a collection of atoms having some symmetry of its own. The actual
operations present in a space group may be operations of the type which are present
in point groups, namely pure rotations, reflections, the inversion operation, and
roto-inversion or roto-reflection operations. But other operations are possible as well
in a space group: they are screw rotation—and glide reflection operations—of
symmetry. These are symmetry operations in which either a rotation axis or an
ordinary reflection plane has a bodily movement of the crystal combined with it.
In the descriptions of the derivation of the 230 space groups it is usually indicated
that we owe them to Fedorov and Schonflies and sometimes the name of Barlow is
added. A review of the history of the derivation of the space groups, together with
a list of the publications of Barlow, Fedorov, and Schonflies, is given in an article by
Burckhardt (1967). The derivation of the space groups has its origins in the works of
Jordan (1868, 1869) and of Sohncke (1879). Sohncke had derived those space groups,
of which there are 65, that contain only proper rotations and he noted that Jordan
had previously derived them mathematically but had not translated his results into
the more graphic terms of geometry. Schonflies re-derived these 65 space groups and
extended the theory to include the space groups containing reflection planes of
symmetry (Schonflies, 1887a, b, 1889, 1891). Similar results were derived by Fedorov
(1885, 1891a) but his work was written in Russian and has not become so well known
in western Europe; an account of the life and work of E. S. Fedorov and a list of his
publications is given (in Russian) in the book by Shafranovskii (1963). It is evident
that these two scientists began their works independently, one (Fedorov) as the
director of a mine in the Urals and the other (Schonflies) at the suggestion of F. Klein
at Gottingen, but in the course of time they heard of each other's work and compared
their results. Barlow (1883) was first concerned with spherical packings and then
starting with Sohncke's 65 groups he, too, obtained the remaining space groups by
including reflection operations of symmetry (Barlow 1894). Burckhardt (1967) con-
cludes that although Schonflies was not actually the first to establish the existence
of the 230 space groups his writings have been the means of making their enumeration
and identification generally known to the scientific world. His work, which is but
little later than that of Fedorov and is quite independent, culminates in the book
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Krystallsysteme und Krystallstructur (Schonflies 1891). A letter from Schonflies to
Fedorov, quoted by Burckhardt (1967), reads 'I express my great joy about the
agreement with your own views; I am particularly pleased, because I am no longer
alone with my theory; it will still take great efforts before we shall succeed in winning
over the crystallographers. I concede you the priority with pleasure, it is of no primary
importance to me.' A convenient detailed list of the space groups in modern notation
can be found in Volume 1 of the International tables for X-ray crystallography (Henry
and Lonsdale 1965). At the present time there are about 9000 compounds whose
space groups have been identified (for recent lists see Donnay, Donnay, Cox,
Kennard, and King (1963), Nowacki, Edenharter, and Matsumoto (1967), and
Wyckoff (1963, 1964, 1965, 1966, 1968)). The discovery of the two-dimensional space
groups, which are also listed in detail in Volume 1 of the International tables for
X-ray crystallography, is lost in the mists of antiquity because they arose in practice,
in many different civilizations, in the designs of wallpapers or tiled floors (see, for
example, Coxeter and Moser (1965), p. 33).

Although studies of a vast number of crystal structures had been undertaken by
X-ray methods and these crystals had been assigned to the appropriate space groups,
the study of the theory of symmetry seemed not to advance very much, after the
derivation of the 230 space groups in about 1890, until Shubnikov in 1951 published
a book called Symmetry and anti-symmetry of finite figures (in Russian, though this
work is now translated into English, together with a list of many references to other
works of Shubnikov (Shubnikov and Belov 1964)). A review of the developments in
the theory of symmetry over the last 50 years is given by Koptsik (1967a) and a brief
biography of A. V. Shubnikov is given at the beginning of volume 2 of Kristallografiya
(Soviet Phys. Crystallogr. (English transl.) (1957)). The new developments were con-
nected with introducing an operation of anti-symmetry. The classical theory of sym-
metry, point groups, Bravais lattices, and space groups, was essentially a 3-dimensional
study, that is, a point P would be specified by the vector r { = (x, y, z)}, and we
would consider the effect of symmetry operations on this point. Shubnikov's basic
idea was to say that in addition to the ordinary coordinates x, y, and z of a point we
now also give each point a fourth coordinate, s, which can only take one of two pos-
sible values. The coordinate s can be the spin of a particle and the two allowed values
will then correspond to spin up and spin down. Or, in purely abstract terms, they may
be two colours such as black and white. If we include the coordinate s and if the
values of s for the various atoms are randomly specified then the symmetry of the
lattice has been completely destroyed. But if the spins are all parallel to a particular
direction or if they are arranged in some regular fashion it is possible for some fraction
of the symmetry to survive. If we introduce a new operation, which we may calHhe
operation of anti-symmetry, 3%, and consider this in conjunction with all the ordinary
point-group and space-group operations it is possible to obtain a whole collection of
new point groups and space groups which are called black and white groups, or
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magnetic groups, or Shubnikov groups. The idea of black and white groups was
actually introduced long before Shubnikov's work, by Heesch (1929a, b, 1930a, b)
and also discussed by Woods (1935a-c), but at that time there seemed to be no very
great use for these groups in the description of physical systems. It was only with the
introduction of the use of neutron diffraction techniques that it became apparent
that these groups could be used in the description of magnetically ordered structures.
If we think of s as being the two allowed values of a magnet's direction, parallel and
anti-parallel to a particular direction, then 0fr is the operation that reverses a magnetic
moment. <% can then be thought of as being the operation of time-inversion.

The theory of finite groups dates from the time of Cauchyi who was responsible
for noticing that a number of apparently disconnected facts could be explained
simultaneously by introducing the concept of a group. Galois§ added to the theory
a number of new concepts, including that of an invariant subgroup, and part of his
work on the theory of equations was a first and most startling example of the power
of group theory in its applications. However, it is to Serret (1866) that we owe the
first connected account of group theory. Since then there has been an increasing flow
of literature on the subject and today abstract group theory still flourishes as a major
topic for research. Furthermore, the variety of applications of finite groups in a host
of mathematical situations as diverse as the theory of permutations, the study of
symmetry, and the theories of algebraic and differential equations, to mention just
a few, means that a study of groups is essential for those engaged in many disciplines
requiring mathematical techniques. The natural sciences are riddled with examples
of problems requiring a knowledge of group theory and it is a safe assumption that
the biological sciences and perhaps even the social sciences, as they become in-
creasingly mathematical, will produce further interesting applications.

In a mathematical theory it is often possible to pick out a number of famous
scholars who have been responsible for the major advances. Group theory is no ex-
ception. The only fear we have in mentioning certain names is that those of many
others who have made great advances are likely to be omitted. However, it is surely
no injustice to single out the names of Sylow, Frobenius, Burnside, Schur, Miller,
and Mackey (apologizing immediately to Noether, Brauer, Ito, and many others
who have made great contributions to the theory of abstract groups but whose work
is not so directly related to the applications in this book).

Sylow (1872) made considerable progress in describing the structure of a finite
group particularly in relation to its number of elements when this number is factor-
ized as a product of primes. Frobenius (1896a, b, 1898) originated and was largely
responsible for the theory of group representations and group characters, though
Burnside (1903, 1911) made such significant simplifications and was responsible for
so many original results that he also must be thought of as a group theoretician of
great influence.

±1789-1857. §1811-32.
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As a worker with a prodiguous output (of approximately 800 papers between
1894 and 1946) Miller (1894,1946) devoted considerable attention to the investigation
of the structures and properties of various groups of finite order. He was responsible
for determining the numbers of finite groups of various specific orders and studying
the interrelationships between the structures of these groups, as exemplified by their
generating relations.

The study of relations between representations of a group and those of an invariant
subgroup leads inevitably to projective representations. Schur was the first to notice
this and in an astounding sequence of definitive papers (1904, 1907, 1911) he not only
laid the foundations of the general theory of projective representations but established
most of the results that are regarded as being of particular significance. Again it was
Frobenius (1898) who was responsible for the first construction of what is now called
an induced representation. However, this particular notion, so important to applica-
tions in physics, was not developed significantly until after 1950 when Mackey in a
series of papers (1951, 1952, 1953a, b, 1958) made extremely important advances
that already find considerable application not only in the theory of space groups but
throughout the whole realm of theoretical physics (see also Mackey (1968)).

We have described the importance of point groups, Bravais lattices, and space
groups in specifying both the macroscopic symmetry of a crystal, as determined by
goniometry, and the symmetry of the internal structure of a crystal, as determined
by X-ray diffraction or neutron diffraction experiments. In classical physics there
are some applications of group theory, such as, for instance, the investigation of the
normal modes of vibration of a molecule or solid (Wigner 1930) or the determination,
for a crystal belonging to a given point group, of relationships that may exist between
the various components of a tensor describing some macroscopic property (see, for
example, Nye (1957)). However, it was with the advent of quantum mechanics that
all the powerful mathematics of group theory and representation theory really be-
came most useful in helping to understand physical systems. Much of the pioneer
work on the application of group theory in quantum mechanics was done by Weyl,
Wigner, and von Neumann (see Weyl (1931), the translation of the classic book by
Wigner (1959) and the collected works of von Neumann (1961, 1963)). In studying
a crystal at the microscopic level one has to remember that each of the individual
particles of which the crystal is composed obeys quantum mechanics rather than
classical mechanics and therefore has to be described by an appropriate wave function
il/. The key to the application of group theory to quantum mechanics lies in the result
that is expounded in Chapter 11 of Wigner's classic book (English translation, Wigner
(1959)). If a quantum-mechanical system is described by the appropriate Schrodinger
wave equation Wigner's theorem can be summarized as follows: 'the representation
of the group of the Schrodinger equation which belongs to a particular eigenvalue is
uniquely determined up to a similarity transformation.' Apart from accidental de-
generacies this representation will be irreducible. The irreducible representations are



6 S Y M M E T R Y AND THE SOLID STATE

therefore important because they can be used to label unambiguously the energy
levels of a quantum-mechanical system. The irreducible representations of the crystal-
lographic point groups and double point groups were determined a long time ago
(Bethe 1929) and have been used extensively in labelling the energy levels of molecules
(reviews and treatises include those of Eyring, Walter, and Kimball (1944), Nussbaum
(1968), Rosenthal and Murphy (1936), Slater (1963), and Wilson, Decius, and Cross
(1955)) in labelling the energy levels of ions or molecules in a crystal (reviews and
discussions include those of Herzfeld and Meijer (1961), Hutchings (1964), Judd
(1963), and McClure (1959a, b)~) and also in labelling excitons in a crystal (Overhauser
1956). A particularly useful summary of the important properties of the crystallo-
graphic point groups and their representations is given by Koster, Dimmock, Wheeler,
and Statz (1963).

The theory that underlies the determination of the irreducible representations of
a space group was studied by Seitz (19366) and first applied to symmorphic space
groups by Bouckaert, Smoluchowski, and Wigner (1936), to non-symmorphic space
groups by Herring (1942), and to double space groups by Elliott (19546). Subse-
quently, many authors have determined the irreducible representations of individual
space groups and, in doing so, have employed many different sets of notation. A
substantial review was written by Koster (1957) and there have recently been pub-
lished some sets of complete tables of the irreducible representations of all the 230
space groups (Faddeyev 1964, Kovalev 1965, Miller and Love 1967, Zak, Casher,
Gluck and Gur 1969). The importance of the irreducible representations of the space
groups lies in the fact that, as a result of Wigner's theorem, they can be used in
labelling the energy levels of a particle or quasi-particle in a crystal; they can therefore
be used in labelling the electronic energy band structure and the phonon dispersion
curves in a crystalline solid (for reviews see Blount (1962), Jones (1960), Nussbaum
(1966), Slater (19656, 1967) on electronic band structure, and Maradudin and Vosko
(1968), Warren (1968) on phonon dispersion curves). Similarly, the irreducible repre-
sentations of a space group can also be assigned to the magnon dispersion curves in a
magnetic crystal. However, there is an added complication because the black and
white Shubnikov space groups possess corepresentations rather than ordinary repre-
sentations (Dimmock and Wheeler 19626, Karavaev, Kudryavtseva, and Chaldyshev
1962, Loudon 1968, Wigner 1959, 1960a, 6).

It is doubtful whether all the effort that workers have expended on the determina-
tion of point-group and space-group irreducible representations would be considered
worth while if the only result was a scheme for labelling energy levels. However, the
irreducible representations also enable one to determine the exact way in which a wave
function i/^ will transform under the various operations of the Schrodinger group of
a molecule or crystal. This often enables some simplifications to be made when an
unknown wave function is expanded in terms of a set of known functions such as
spherical harmonics (Altmann 1957, Altmann and Bradley 19636, Bell 1954, Betts
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1959, Mclntosh 1963, von der Lage and Bethe 1947) or plane waves (Cornwell 1969,
Luehrmann 1968, Schlosser 1962, Slater 19656, 1967). By restricting the expansion of
an unknown if/t for an energy level Et to those functions that are known to belong to
the representation of £; considerable simplifications can very often be achieved in the
actual process of solving Schrodinger's equation to determine \l/t. The knowledge of
the transformation properties of the wave functions \jji is also of importance when
considering a transition of a system between two energy levels Et and Ej. It is then
possible to use the condition that the quantum-mechanical matrix element of the
transition is a pure number in order to determine, for any given perturbing potential,
whether a given transition is allowed or forbidden, that is, to determine selection rules.
The group-theoretical determination of selection rules for transitions in isolated mole-
cules and in ions or molecules in crystals involves the study of products of various
point-group representations and this is discussed in the references we have already
mentioned. To use the knowledge of the transformation properties of i//, to study
selection rules for transitions involving non-localized states in crystals is more compli-
cated and initial work has been done by several authors (Birman 19626, 1963, Elliott
and Loudon 1960, Lax and Hopfield 1961, Zak 1962).

1.2. Group theory
We begin the mathematical work of this book by giving a short account of the theory
of groups and their representations. We do not give proofs of theorems as these
appear in the first few chapters of many well-known books such as those by Hamer-
mesh (1962), Lomont (1959), Lyubarskii (1960), and Wigner (1959). For the sake of
clarity, however, we illustrate some of the definitions and theorems by means of an
example; for this purpose we use a group containing six elements which, as an ab-
stract group we call G^ (see Table 5.1) and which, in one of its realizations, is the
symmetry group of an equilateral triangle.

There are two good reasons for starting with a preliminary account such as this.
The first is that it makes clear what the background to the work is, and hence what
it is recommended that the reader should be familiar with before proceeding with
the rest of the book. The second reason is that it serves to introduce a large amount
of notation; furthermore, when this is done on topics that are relatively familiar,
then a reader can adjust himself more easily to the style and notation of the authors
than if he is plunged immediately into new work.

The following set of definitions and theorems forms, therefore, the group-theoreti-
cal background to the work of this book. In later chapters some of them will be used
as building blocks for further theorems that are either more advanced or more
directly related to the study of solids. The groups that occur in the theory of solids
have quite a complicated structure and, if the theorems needed for dealing with them
are established rigorously and in complete detail, the proofs of such theorems require
some advanced algebraic methods not commonly met in introductory courses on
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group theory. Some of these methods appear in Chapter 4 and they rest heavily for
their appreciation on the material in this section and the next.

D E F I N I T I O N 1.2.1. Group. A group G is a set of elements together with a binary
composition called a product such that

(i) the product of any two elements in the group is defined and is a member of
the group: if A, B e G then AB e G,

(ii) the product is associative: A(BC) = (AB)C for all A, B, C e G,
(iii) there exists a unique identity} E in the group: EA = AE = A for all A e G,

and
(iv) every element has a unique inverse} element: given A e G there exists a unique

element A ~~1 such that A A ~ : = A ~l A = E.

D E F I N I T I O N 1.2.2. Order of a group. The number of elements in a group, G,
is called the order of the group.

In what follows we shall be dealing only with groups of finite order. The symbol
|G| is often used to denote the order of G.

D E F I N I T I O N 1.2.3. Order of an element. The order of an element A e G is the least
positive integer s such that As = E.

From Definition 1.2.1 it follows that a group is completely defined by its multipli-
cation table. In fact, it is sufficient to give a set of relations involving certain elements
from which the whole multiplication table can be constructed. The elements Pl,
P2,. • ., Pm of a group G are called a set of generators (or sometimes generating
elements) if every element of G is expressible as a finite product of powers (including
negative powers) of P l 5 P2,. . ., Pm. The set of relations gk(P\, P2, • • ., Pm) =
E (k = 1, 2, . . ., s) satisfied by the generators, which are sufficient to determine the
whole multiplication table of G are called the defining relations (or sometimes
generating relations) of G. For a lengthy discussion of generators and generating
relations see, for example, the book by Coxeter and Moser (1965).

Example 1.2.1. In Table 1.1 we give the multiplication table for the group Gl of
order 6 whose generators are P and Q and whose defining relations are P3 = E,
Q2 = E, and QP = P2Q. P is of order 3 and Q is of order 2.

Sets of generators and defining relations are not by any means unique; in fact it is
often more straightforward to take more generators than are strictly necessary.
There is always, of course, a minimum number of generators without which one

J It is not necessary to postulate the uniqueness and two-sidedness of the identity and of the inverse
elements; for the existence of a right identity (AE = A) and right inverses (AA^1 = E) together with
axioms (i) and (ii) is sufficient to establish uniqueness and two-sidedness. However these properties are
so fundamental that many authors include them in their definition.
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T A B L E 1.1

The multiplication table for the group G^.

E
P
P2

Q
PQ
P2Q

P
P2

E
P2Q

Q
PQ

P2

E
P

PQ
P2Q
Q

Q
PQ
P2Q
E
P
P2

PQ
P2Q

Q
P2

E
P

P2Q
Q
PQ
P
P2

E

Notes to Table 1.1.
(i) The generating relations of this group are: P* = E; Q2 = £; QP = P2Q.

(ii) In order to obtain a product LM take the element in the row beginning with L and the column headed M.
Thus, for example, (PQ)(P2Q) = P2.

cannot generate the group, but if one uses such a minimal set the denning relations
can sometimes be extremely complicated and it is to avoid such complications that
one often takes an over-determined set of generators. However in the simple example
above we do have a minimal set.

A geometrical realization of the above group is the set of symmetry operations
that carry an equilateral triangle, /\ABC, into itself. If the intersection of the medians
of /\ABC is denoted by O then the operation P may be thought of as the 120° anti-
clockwise rotation about a line through O perpendicular to the plane ABC and Q
may be thought of as the reflection in the line AO. Equally well we could have taken
P to be a 120° clockwise rotation and Q to be the reflection in BO, or for that matter
in CO. In each case we would obtain the same group but with its elements labelled
differently. This is a simple example of the non-uniqueness of a set of generators.
In this example all six of the above sets of generators lead to the same denning
relations; as we shall see in the next few paragraphs this is no accident, but on the
other hand it must not be thought that different sets of generators always lead to
the same denning relations.

D E F I N I T I O N 1.2.4. Homomorphism, isomorphism. Given two groups G and G', a
mapping 0 of G onto G' which preserves multiplication is called a homomorphism.
Thus for a homomorphism 0 it follows that, for all G\, G2 e G,

(OG,)(BG2) = 0(0,0^. (1.2.1)

If in addition 0 is a one-to-one mapping it is called an isomorphism: G and G' are
then said to be isomorphic. If 0 is an isomorphism and G = G' then 6 is called an
automorphism.

Example 1.2.2. Let G = Gg and G' = G1
2, the cyclic group of order 2 composed

of elements E and P' with P'2 = E (E being the identity) (see Table 5.1). Then if
9 is defined so that 6E = E,6P = E,OP2 = E,OQ = P',9(PQ) = P',znd9(P2Q) =
P', then 6 is a homomorphism of Gg onto G^-

9



10 S Y M M E T R Y AND THE SOLID STATE

On the other hand, if it is given that 6 is a homomorphism of Gg onto G\ then, by
virtue of eqn. (1.2.1), it is sufficient in order to define 6 to specify its action only on
the generators of Gg. Thus, if 9 is a homomorphism, 9P = E and QQ = P' defines
6 completely.

Example 1.2.3. Let G = G = G2
6. Then if <£ is such that </>(£) = E, <j>(P) = P2,

(j)(P2) = P, 0(0 = Q, (j)(PQ) = P2Q, and 0(P20 = PQ, 0 is an automorphism
of Gg onto itself.

T H E O R E M 1.2.1. //"</>, and 4> 2 are two automorphisms ofa group G then the mapping
product 0!02 (where (0i02)(7 = 01(02G) for all G e G) is also an automorphism.
Further the set of all automorphisms of a group G is itself a group A(G) of which the
binary composition is the mapping product just defined.

Example 1.2.4. Consider A(Gg). It is a group of six elements. Its generators may
be taken to be 0, as defined in Example 1.2.3, and p, where p(P) = P and p(Q) =
P2Q. If the identity automorphism is denoted by e then 02 = e, p3 = e, and 0p = p20.

Let G = G2, and G' = A(G§). Then G and G' are isomorphic under the mapping
a: y.P = p and xQ = 0.

Example 1.2.5. G2, is isomorphic with S3, the group of permutations of three
identical objects.

Example 1.2.6. Example 1.2.4 explains the six possible sets of generators for Gg
mentioned at the end of Example 1.2.1, for each automorphism leads to a different
labelling of the group.

D E F I N I T I O N 1.2.5. Kernel. If OG = G' is a homomorphism of G onto G' then
the kernel of Q is the set of elements of G that is mapped onto the identity of G'.

Example 1.2.7. The kernel of an isomorphism consists of one element only, the
identity of G.

Example 1.2.8. The kernel of the homomorphism 9 defined in Example 1.2.2
consists of the elements E, P, and P2.

D E F I N I T I O N 1.2.6. Subgroup. A subset H of a group G that is itself a group
under the same binary composition as in G is called a subgroup of G.

Example 1.2.9. The following are subgroups of Gg: (i) Gg itself, (ii) G^, consisting
of E, P, and P2, (iii) G2 , consisting of E and Q, (iv) G2', consisting of E and PQ
(v) G\", consisting of E and P2Q, and (vi) G}, consisting of the identity E alone.

A group always has at least two subgroups, namely the group itself and the group
consisting of the identity alone. Such subgroups are called improper subgroups. Other
subgroups besides these two are called proper subgroups. Thus Gg has 4 proper sub-
groups.
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If H is a subset of G consisting of t elements (H1, H2,. . ., Ht) then by AH, A e G,
we mean the subset of t elements (AHl, AH2,. . ., AHt).

If K is a subset of G consisting of s elements (K^ , K2,. . ., Ks) then by KH we mean
the set of st elements KfHj(i = ItosJ = l t o ? ) ; b y H + K we mean the set of (t + s)
elements (Hl, H2,. . ., Ht, Kl, K2,. . ., K.).

D E F I N I T I O N 1.2.7. Conjugate elements. Two elements G1, G2 e G are said to be
conjugate if there exists an element G e G such that G2 = GGjG"1.

Example 1.2.10. In the group G§, P and P2 form a pair of conjugate elements.
For it follows immediately from the defining relations that P2 = QPQ~^ and P =
QP2Q-\

D E F I N I T I O N 1.2.8. Abelian group. If G is a group and GtG2 = G2Gl for all
G l 5 G2 e G then G is called an Abelian group (or sometimes a commutative group).

Example 1.2.11. The group G3 mentioned in Example 1.2.9 is an Abelian group.

THEOREM 1.2.2. A group G splits into 'conjugacy classes' C\, C2 , . . ., Cr such
that the following properties hold:

(i) every element of G is in some class, and no element of G is in more than one
class, so that G = C: + C2 + • • • + Cr,

(ii) all the elements in a given class are mutually conjugate and consequently have
the same order (though, of course, not all elements of the same order necessarily
belong to the same class),

(iii) an element that commutes with all elements of the group is in a class by itself
and is called a ' self-conjugate' element (the identity is always in a class by itself,
and, further, ifG is Abelian then every element ofG is in a class by itself),

(iv) the number of elements in a class is a divisor of the order of the group,

(v) (1.2.2)

where the coefficients htj k are called the 'class multiplication coefficients' and
are positive integers or zero. Also

(1.2.3)

Example 1.2.12. For the group G2
6 take Cl = E; C2 = P, P2; and C3 = Q, PQ,

P2Q. Then the conditions of Theorem 1.2.2 are satisfied with r = 3. Elements in C2

are of order 3, and elements in C3 are of order 2. The identity is the only element to
be in a class by itself. 1, 2, and 3, the numbers of elements in the classes Q, C2, and
C3 are divisors of 6, the order of G§. The values of the hijik can easily be evaluated
by using Table 1.1. They are /z i : : = 1, hl2<2 = 1, /2 1 3 > 3 = 1, h22 L = 2, /z 2 2 j 2 =
1, /z23 3 = 2, /z 3 3 j l = 3, h33 2 = 3, and all others not derived from these by eqn.
(1.2.3) are zero.
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D E F I N I T I O N 1.2.9. Coset. If H is a subgroup of G and A is any element of G
then the subset HA is called a right coset of H; similarly AH is called a left coset.
A is called the coset representative (and is not in any way special because if B e HA
then the coset HB = HA, so that any element of a coset can serve as the coset repre-
sentative).

T H E O R E M 1.2.3. A group G with a subgroup H splits up into 'left cosets' of H. The
following properties hold:

(i) every element ofG is in some left coset and no element ofG is in more than one
left coset,

(ii) every left coset contains the same number of elements, this number being equal
to the order ofH. Thus the order ofH is a divisor of the order ofG; the quotient
|G|/|H|, which is just the number, t, of left cosets o f H , is called the 'index' of
H in G

Example 1.2.13. Take G = G^ and H = G\, consisting of E, P, and P2. If we
write G§ = (EG\ + QG^) then this is a decomposition of G| satisfying the condi-
tions of Theorem 1.2.3 with t = 2.

Example 1.2.14. From Example 1.2.9 the orders of the subgroups of G^ are seen
to be 1, 2, 3, and 6, and these numbers are all divisors of 6, the order of G§. This
division property is called Lagrange's theorem.

D E F I N I T I O N 1.2.10. Invariant subgroup. If H is a subgroup o fG such that, for
all G e G and all H e H, GHG ~l e H, then H is said to be an invariant subgroup
(or sometimes a normal subgroup or a self-conjugate subgroup) of G.

T H E O R E M 1.2.4. If HisasubgroupofG thenH is invariant if and only if AH = HA
for all A e G; that is, if and only if all right and left cosets coincide.

Example 1.2.15. An immediate result from Theorem 1.2.4 is that all subgroups
of index 2 are invariant subgroups. In particular, we see from Example 1.2.13 that
G\ is invariant in G2

6.

D E F I N I T I O N 1.2.11. Inner automorphism. The mapping ft from G onto itself
such that fiG = BGB l for all G e G (and where B is a fixed element of G) is an
automorphism, and an automorphism produced by conjugation in this way is called
an inner automorphism (all others being called outer automorphisms).

Example 1.2.16. All automorphisms of Gg are inner. Indeed it can soon be veri-
fied from Example 1.2.4 and Table 1.1 that p corresponds to conjugation by P and <p
corresponds to conjugation by Q.

T H E O R E M 1.2.5. A subgroup H ofG is an invariant subgroup if and only if H is in-
variant under all inner automorphisms ofG.

T H E O R E M 1.2.6. A subgroup H of G is invariant if and only if H is composed of
entire conjugacy classes of G.
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Example 1.2.17. From Theorem 1.2.6 and Examples 1.2.9 and 1.2.13 it follows
at once that the subgroup G\ is the only proper invariant subgroup of G|.

D E F I N I T I O N 1.2.12. Simple groups. If a group G has no proper invariant sub-
group then it is said to be simple. If a group G has no proper invariant Abelian sub-
group it is said to be semi-simple.

Example 1.2.18. G^ is not simple. Nor is it even semi-simple, for its subgroup G\
is a proper invariant Abelian subgroup.

T H E O R E M 1.2.7.
(i) If H is an invariant subgroup ofG then the left cosets of H form a group with

binary composition defined by the equation

(G,.H)(G;H) = (G,.G;)H. (1.2.4)

This group is called the quotient group G/H and its order is equal to the index of
H in G. The identity o/G/H is the subgroup H itself.

(ii) If B is a homomorphism of G onto G' and H is the kernel of Q then H is an in-
variant subgroup ofG and G' is isomorphic to G/H.

(iii) Conversely, if H is an invariant subgroup of G and 9 is a mapping of G onto
G/H such that 9G = GH for all G e G, then 9 is a homomorphism and the
kernel of Q is H.

Example 1.2.19. Let G = G\ and H = G\. From Example 1.2.15 G^ is invariant
and so the quotient group G^/G\ is defined. From Example 1.2.13 it is seen to consist
of the two elements EG\ and QG\. From Example 1.2.2 and Theorem 1.2.7(ii) it
follows that this quotient group is isomorphic with G' = G{, the cyclic group of
order 2 denned in Example 1.2.2.

D E F I N I T I O N 1.2.13. Outer direct product. Let G be a group with subgroups H
and K such that

(i) if H e H, K e K then HK = KH,
(ii) all G e G can be expressed in the form G = HK with H e H and K e K, and
(iii) the intersection of H and K, H n K = {E}, the set consisting of the identity

element of G.
Then G is called the outer direct product of H and K and the factorization in (ii) is
unique. We write G = H®K = K ( x ) H .

T H E O R E M 1.2.8. IfG = H ® K then
(i) H and K are both invariant subgroups ofG, and

(ii) the number of classes in G is the product of the number of classes in H and the
number of classes in K.

If further, H and K are Abelian, then G is also Abelian.

Example 1.2.20. Given two groups H and K it is possible to form the outer direct
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product H (x) K = G by writing the elements of G in the form (H, K) with multi-
plication

(//!, KJ(H2, K2) = (H,H2, K,K2). (1.2.5)

Equation (1.2.5) ensures the validity of rules (i)-(iii) of Definition 1.2.134

D E F I N I T I O N 1.2.14. Inner direct product. The subgroup of elements of the outer
direct product H (x) H of the form (H, H) is a group G isomorphic to H called the
inner direct product of H with itself. We write G = H (x) H. The notation is specially
designed to distinguish between the outer direct product, H (g) H, and the inner
direct product, H [x] H, of two isomorphic groups.

D E F I N I T I O N 1.2.15. Normal series. A normal series of a group G = H0 is a
series of subgroups H0, H], . . ., Hs, G{ (G{ being the group consisting of the identity,
E, alone) such that H k + , is a proper invariant (normal) subgroup of Hk, k = 0 to
(s - 1).

Example 1.2.21. From Example 1.2.9 it follows that G\, G$, G\ forms a normal
series for Gg.

D E F I N I T I O N 1.2.16. Solvable groups. A group H0 is said to be solvable if and
only if it possesses a normal series H0, H l 5 . . ., Hs, G\ whose quotient groups
Ho/Hi, H1/H2, . . ., HS/G1 are Abelian.

Example 1.2.22. The group Gg is solvable, for G^/Gj is isomorphic with G\, and
both G] and G] are Abelian.

D E F I N I T I O N 1.2.17. Semi-direct product. Let G be a group with subgroups H
and K such that

(i) if K e K then KH = HK,
(ii) all G e G can be expressed in the form G = HK with H e H and K e K, and

(iii) the intersection of H and K, H n K = {E}, the set consisting of the identity
element of G.

Then G is called the semi-direct product of H and K and the factorization in (ii) is
unique. We write G = H A K. Note that in contrast to the symbol (g) the caret
symbol A is not commutative. H is invariant in G but K is not necessarily invariant
in G. In an expression such as H A K we always write the invariant subgroup first.

Example 1.2.23. Using the notation of Example 1.2.9, G% = G\ A G2. Note
that G2 is not invariant in G^, so that G^ is not the direct product of G\ and G^.

f The group H is isomorphic to the subgroup H' of G consisting of elements (H, E), all H e H. If K'
is similarly denned then according to Definition 1.2.13 what we really have is G = H' (x) K'; however
because of the isomorphism between H and H' and between K and K' it is customary to write G =
H ® K.



D E F I N I T I O N 1.2.18. Holomorph. The group G A A(G) is called the holomorph
ofG.

Example 1.2.24. The holomorph of G\ is isomorphic with G\. (Indeed every
semi-direct product is isomorphic with a subgroup of the holomorph of the invariant
subgroup out of which the semi-direct product is formed.) This follows because
Gj* = G\ A G2 and G2 is isomorphic with A(G^).

In some of the examples given above the reasoning is omitted or abbreviated. The
reader is recommended to fill in the gaps and to convince himself where statements
are made that seem to require further explanation.

1.3. Group representations

We now move on from the abstract theory of groups described in section 1.2 to
the more specialized topic of group representations, for our main concern in this
book is with the representations of groups that appear in the study of solids and not
with the development of the abstract theory of groups. It is true that for pure mathe-
maticians there are interesting topics from more advanced abstract group theory,
such as the theory of central extensions and cohomology groups, which throw con-
siderable light on the groups in which we are interested; but in a book for applied
mathematicians and theoretical physicists a study of these would be a long and
perhaps indigestible digression. In this section we continue to give some elementary
definitions and theorems, illustrated again, where possible, by examples using the
group Gl.

D E F I N I T I O N 1.3.1. Matrix group. A matrix group A is a group of non-singular
matrices. If all the matrices of the group are unitary then it is said to be a unitary
matrix group.

In what follows we shall be concerned with matrix groups of finite order and with
matrices of finite dimension.

D E F I N I T I O N 1.3.2. Equivalence. Two matrices D[ and D2 are said to be con-
jugate if there exists a non-singular matrix S such that D[ = SD2S~'.

Two matrix groups A : and A2 are said to be equivalent if there exists a non-singular
matrix S such that A : = SA2S~ :. Note that the matrices of the two groups not only
have to be conjugate in pairs but that the conjugation must be produced by using
the same matrix S for all pairs. This is a very strong condition, so strong that it
follows immediately that A j and A2 must be isomorphic. The converse is not true

(1.2.6)
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Let G be a group and A(G) its group of automorphisms. Then it is always possible
to form the semi-direct product G A A(G). It consists of ordered pairs (G, a) with
G e G and a e A(G) and with the product defined by
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because \{ and A2 can be isomorphic and yet have different dimensions and then
they are obviously not equivalent.

T H E O R E M 1.3.1. Every matrix group is equivalent to a unitary matrix group.
The following symbols will be used in dealing with matrices:

Dr for the transpose of D,
D* for the complex conjugate of D,
D| [= (D*)r] for the Hermitean conjugate of D,
D [= (D" !)T] for the contragredient of D,
dim D for the dimension of D.

D E F I N I T I O N 1.3.3. Trace, character. The trace of a matrix D is the sum of its
diagonal elements, written tr D.

The character of a matrix group A is the function % denned on all elements D e A
such that x(D) = tr D.

T H E O R E M 1.3.2. If A is a matrix group with identity E then ^(E) = dim E; and
further, ifC andD are in the same conjugacy class in A, then #(C) = #(D).

THEOREM 1.3.3. Two matrix groups are isomorphic and have the same character
if and only if they are equivalent.

D E F I N I T I O N 1.3.4. Representation of a group. A representation of a group G is a
homomorphism y of G onto a group T of non-singular linear operators acting on a
finite-dimensional Vector space V over the complex field. We write yG = TG, for all
G e G .

From Definition 1.3.4 it follows that when y is a representation then
(i) TGl(TG2x) = TGlG2x for all Glt G2 e G and for all x e V,

(ii) Tfix = x for all x e V; that is, T£ is the identity operator, and
(iii) T<f Jx - TG ,x for all G e G and for all x e V.
If y is an isomorphism the representation is said to be faithful.
Suppose now that we choose a basis <x| consisting of linearly independent vectors

x!, x 2 , . . ., xd spanning the space V, and let us define matrices FX(G) by the equations

(1.3.1)

then FX(G) is said to be the matrix representing G with respect to the basis <x| in
the representation y. The set of all distinct matrices FX(G) is a matrix group and it is
the homomorphic image of G under the mapping G > FX(G), the kernel of the
homomorphism being the elements of G mapped onto the unit matrix.

Example 1.3.1. Let G be the group G|, the multiplication table of which is given
in Table 1.1. A geometrical realization of this group was described in Example 1.2.1.



and so on. It can easily be checked that y is a faithful representation. However it
contains non-unitary matrices, y is of dimension 2. Thus if %y is the character of
y it follows from Theorem 1.3.2 and eqn. (1.3.2) that xy(£) = 2, %y(P) = %y(P

2) =
-1, and %y(Q) = Iy(PQ) = X.f(P

2Q) = 0.

Example 1.3.2. Corresponding to the homomorphism 0 defined in Example 1.2.2
there exists the 1 -dimensional matrix representation B in which B(/J) = 1 and B((?) =
— 1. This is because of the isomorphism between G{ and the multiplicative group of
order 2 consisting of the numbers 1 and — 1.

Example 1.3.3. There always exists, for any group G, the symmetric (or trivial)
1-dimensional representation A in which A(G) = 1 for all G e G.

From Examples 1.3.2 and 1.3.3 it can be seen that we can often find a matrix
representation of a group without specifying an underlying vector space and a choice
of basis. This is because an abstract group has homomorphisms that are matrix
groups, and are therefore matrix representations. However, as far as we are con-
cerned, the way representations arise out of Definition 1.3.4, as illustrated by Example
1.3.1, seems to be more natural. This is because all the groups in which we are in-
terested have geometrical realizations, and their representations are most easily con-
structed by considering the action of their elements within these realizations on
appropriate vector spaces.

T H E O R E M 1.3.4. Let <x| and <y| be two bases ofV defined so that

(1.3.4)
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This involved an equilateral triangle ABC with centroid O. Let OA = a, OB = b,
and OC = c; then a + b + c = 0, and the plane of the triangle forms a vector space
V of dimension 2. This we take to be the underlying vector space of the representation
y. Take as basis for this vector space x t = b and x2 = c. The representation y maps
P and Q onto elements T,, and TG which are respectively an anti-clockwise rotation
of 120° about O and a reflection in the line AO. The operators TP and TQ are operators
acting on V and from their definition TPb = c, TPc = a = — b —c, TQb = c, and
TQc = b. From eqn. (1.3.1) it follows that

Since y is a homomorphism the rest of the matrix group follows from multiplication.
Thus, for example,

(1.3.2)

(1.3.3)



That is to say, a change of basis leads to matrix groups FX(G) and Fy(G), which are
equivalent. Hence, using Theorem 1.3.1, it is possible to choose a basis <z in V
such that FZ(G) is a unitary matrix group.

Example 1.3.4. Using the same notation as in Example 1.3.1 we define the new
basis <z so that z1 = (^^/3)( — b + c) and z2 = — (b + c) then, since x t = b and
x2 = c,
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where S is non-singular, then

(1.3.5)

(1.3.6)

Hence, from Theorem 1.3.4,

where

(1.3.7)

(1.3.8)

It follows from eqns. (1.3.2), (1.3.7), and (1.3.8) that

(1.3.9)

so that with the new basis <z| the matrix representation FZ(G) is unitary. The geo-
metrical reason for this is that z1 and z2 are orthogonal and equal in length, and that
the operators TP and TQ are unitary, and therefore preserve angles and lengths. Note
that in accordance with Theorem 1.3.3 FZ(G) and FX(G) have the same characters.

We shall assume from now on that whenever we have a matrix representation F(G)
the basis in the vector space V has been chosen so that the matrices F(G) are unitary
and that we can therefore use the following relationship:

(1.3.10)

Because of Theorems 1.3.1 and 1.3.3 there is no loss of generality in considering in
this way only those matrix representations which are unitary.

D E F I N I T I O N 1.3.5. Invariant subspace. Let y be a representation of G so that
T = yG is a group of non-singular linear operators acting on a vector space V. U is
said to be an invariant subspace of V under T if

(i) U is a vector subspace of V, and
(ii) TGx e U for all TG e T and for all x e U.
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D E F I N I T I O N 1.3.6. Irreducible representation. If V has no proper invariant sub-
space under T (that is, no subspace invariant under T except V itself and the zero-
vector) then y is said to be an irreducible representation. If there exists a proper
invariant subspace under T then y is said to be reducible. If V can be split up into
the direct sum of subspaces each of which is invariant under T and each of which is
the carrier space for an irreducible representation of G then y is said to be completely
reducible.

T H E O R E M 1.3.5. All representations of a finite group G are completely reducible.

T H E O R E M 1.3.6. Schur's lemma. Let F(G) and F'(G) be two irreducible repre-
sentations ofG such that F(G)S = SF'(G)/or all G e G, then either S = 0 or S is a
non-singular matrix and F(G) is equivalent to F'(G).

The following criteria for irreducibility are useful.

THEOREM 1.3.7. A representation is irreducible if, and only if, the only matrices
which commute with all matrices of the representation are scalar multiples of the unit
matrix.

T H E O R E M 1.3.8. Let G be a group of order \G\ with elements G{, G2,. . ., G\c\.
Then F(G) is an irreducible representation if and only if

(1.3.11)

where %/G;) is the character 0/T(G;).

Example 1.3.5. The representations A, B, and FZ(G) of Gg, as defined in Examples
1.3.2-1.3.4 are irreducible.

It should now be clear from the theorems and remarks made in this section that
the task of finding all the representations of a finite group G can be limited to the task
of finding all the non-equivalent unitary irreducible representations of G. From now
on we shall abbreviate the phrase 'unitary irreducible representation" by the word 'rep\
In discussing the problem of the determination of the reps of a finite group, G, we
shall use the following symbols:

G a group,
|G| the order of G,
Gj j = 1 to |G|, the elements of G,
r the number of classes of G,
Ct t = 1 to r, the classes of G,
rt the number of elements in C,,
ri the label for the z'th rep of G,
dt or dim Fl the dimension of F!

V the underlying vector space (or carrier space) of F1



Example 1.3.6. The reps A, B, and FZ(G) of G| are all of the first kind.

T H E O R E M 1.3.10. The number of reps = the number of classes = r.

Example 1.3.7. There are three classes in Gg (see Example 1.2.12) and so the
three reps A, B, and TZ(G) are the only reps that exist for this group, in the sense that
any other rep must be equivalent to one or other of these three.

T H E O R E M 1.3.11

(1.3.13)

Example 1.3.8. As an example of Theorem 1.3.11 Gg is of order 6 and the dimen-
sions of its reps are 1, 1, and 2.

T H E O R E M 1.3.12. Orthogonality relationships for matrix elements.

(1.3.14)

D E F I N I T I O N 1.3.8. Character table. The character table of a group is an (r x r)
square array whose entries are #'(Ct) (z = 1 to r, / = 1 to r).

(1.3.12)
] if and only if V is of the first kind,

— 1 if and only if V is of the second kind,
0 if and only if F is of the third kind.
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a basis in V for the rep Y\
p = 1 to dh the elements of the basis <z' ,
the character of Gj in F',
the character of any element in the class Ct in F,
the (p, q) element of the matrix representative of Gj in the rep F
if/? = q,

tip * q,
if F is identical to Fk,

if F is not equivalent to F\

D E F I N I T I O N 1.3.7. Classification of reps
(i) A rep F is of the first kind if F is equivalent to a group of real matrices.

(ii) A rep F is of the second kind if F is equivalent to F* but not to any group of
real matrices,

(iii) A rep F is of the third kind if F is not equivalent to F*.

THEOREM 1.3.9
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Note that as a result of Theorems 1.3.3 and 1.3.4 the character table of a group is
invariant under changes of basis in the vector spaces V. However if, instead of a
character table, the full table of matrix elements T'(Gj)pq is given in a (|G| x |G|)
square array (i = 1 to r, p = 1 to dt, q = 1 to dt, j = 1 to |G|) then the bases <z'|
being used should be stated since this array is not invariant under a change of basis
in any V for which dt > 1.

If we consider as matrices (|G| x |G|) square arrays (with rows and columns
labelled (ipq) and j respectively and with meaning for the labels as above) then
Theorem 1.3.12 expresses the fact that the matrix whose entries are ^j(dil\G\)Y\G1)m

is a unitary matrix. Thus we have the immediate corollary:

(1.3.15)

Equation (1.3.14) provides the following orthogonality relationships for characters:

T H E O R E M 1.3.13. Orthogonality relationships for characters

(1.3.16)

Whereupon if we consider as matrices the (r x r) square arrays (with rows and
columns labelled / and t respectively) then Theorem 1.3.13 expresses the fact that the
matrix whose entries are *J(rt/\G\)x'(Ct) is a unitary matrix. Thus we have the im-
mediate corollary:

(1.3.17)

Example 1.3.9. For G2
6 let F1 = A, F2 = B, and F3 = r,(G). Also let G, = E,

G2 = P, G3 = P2, G4 = Q, G5 = PQ, and G6 = P2Q. Then C, = {G,}, C2 =
{G2, G3}, and C3 = {G4, G5 , G6} so that r{ = 1, r2 = 2, and r3 = 3. Further
dl = 1, d2 = 1, and J3 = 2. In what follows we use matrices for F3 given by eqn.
(1.3.9) with basis in V3 as defined in Example 1.3.4. For the ordering of the composite
labels (ipq) we use dictionary order: (111), (211), (311), (312), (321), (322). Then the
following (3 x 3) unitary matrix with elements ̂ (rt/\G\)x'(Ct) (with rows and columns
labelled i and t respectively) demonstrates the orthogonality relationships for charac-
ters given by eqns. (1.3.16) and (1.3.17):
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while the following (6 x 6) unitary matrix with elements ^J(di/\G\)Tl(Gj')M (with
rows and columns labelled (ipq) and j respectively) demonstrates the orthogonality
relationships for matrix elements given by eqns. (1.3.14) and (1.3.15):

where the / z f 5 j W are the class multiplication coefficients defined by eqn. (1.2.2).

Example 1.3.10. If we write /(C,) = xt and dt = d, and if we substitute the values
of the numbers rt and htsiW from Example 1.2.12 then for Gg eqn. (1.3.19) becomes
x\ =-- dxt, 2*i*2 = 1dx2, 3*1*3 = 3d*3, 4*2 = 2dx1 + 2dx2, 6*2*3 = 6dx3, and
9xj, = 3d*! + 6dx2 . From Theorem 1.3.11 it follows that d < 2. The three solutions
satisfying Theorem 1.3.13 as well are d = 1, *t = 1, *2 = 1, *3 = 1; d = 1, x{ = 1,
,x2 = 1, *3 = — 1; and rf = 2, *, = 2, *2 = — 1, *3 = 0. These correspond respec-
tively to the reps A, B, and FZ((J).

(1.3.19)

Theorems 1.3.11 and 1.3.13 help in the determination of character tables and to-
gether with the aid of the following theorem the task of calculating characters is made
a completely determinate problem.

T H E O R E M 1.3.15

(1.3.18)

T H E O R E M 1.3.14. Let F fee an arbitrary matrix representation ofG with character
X then when F has been completely reduced by suitable equivalence transformations to
block-diagonal form it becomes a direct sum of reps £ '= j c,T', where
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THEOREM 1.3.16. Outer direct product. Let G = H ® K; r/A1' (i = I to r) and
A' (/ = 1 to s) are the reps o/H andK respectively, then the reps ofG can be constructed
as follows.

If G = (H, K), we define Yii(G) = A;(#) ® \>(K), that is, the Kronecker matrix
product whose matrix elements are given by

(1.3.20)

and then PJ(G) is a rep ofG, and each of the rs reps ofG can be obtained in this way by
running through all pairs of values of i andj.

Also the basis for PJ is |z'tj) in the Cartesian product space V" = U1 (x) W, where
z'> is the basis for A' in U!, and |f> is the basis for A7 in WJ.

It follows also from eqn. (1.3.20) that the character of Yij is given by the following
rule:

(1.3.21)

and in particular

(1.3.22)

H [x] H, the inner direct product of H with itself, is the subgroup of elements of
H (x) H of the form (H, H). Using the notation of Theorem 1.3.16 we obtain for the
representatives of elements in this subgroup,

(1.3.23)

But on the inner direct product Tu is reducible and is equal to the direct sum
XU i Cij,k Afc (for, since H H H is isomorphic to H, its reps are just the same as the
reps of H). Also from Theorem 1.3.14 and eqn. (1.3.21) we obtain

(1.3.24)

where Hp, p = 1 to H , are the elements of H.

D E F I N I T I O N 1.3.9. Clebsch-Gordan decomposition. The decomposition

(1.3.25)

in which the symbol = means ' equivalent to' in the technical sense given in Definition
1.3.2 and in which the cijtk are given by eqn. (1.3.24), is called the Clebsch-Gordan
decomposition of the inner-direct product A' [x] AJ of the reps A! and Aj, and the
coefficients cij<k are called the Clebsch-Gordan coefficients, or sometimes Wigner
coefficients. Note that

(1.3.26)
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Example 1.3.11. Using the notation of Example 1.3.9, repeated use of eqn.
(1.3.24) leads to the following values of the Clebsch-Gordan coefficients for G|:
c n , i = i ; C i 2 , 2 = i ; C i 3 , 3 = i; C 2 2 , i = i ; £23 ,3 = i ; C 33, i — i ; £33,2 = i ;
C33,3 = 1; and all others not derived from these by eqn. (1.3.26) are zero.

1.4. Point groups

A 3-dimensional point group is a group of symmetry operators which act at a point
O (and therefore keep O fixed) and which also leave invariant all distances and angles
in a 3-dimensional Euclidean space, E(3). The symmetry operators having these
properties are the unitary operators acting at O, namely rotations about axes through
O or products of such rotations and the inversion. Such products include reflections
in planes through O.

If the group contains all possible rotations and no other elements it is called the
3-dimensional proper rotation group and it is isomorphic with the group SO(3) of all
(3 x 3) orthogonal matrices having determinant + 1. The reason for this is that under
a rotation R a point P with position vector r will be moved to a point P' with position
vector r' governed by an equation of the form

r' = Rr, (1.4.1)

where R is a (3 x 3) matrix. Since all distances and angles are to be left invariant it
follows that the equation

r.s = Rr.Rs = r'.s'. (1.4.2)

must be true for all possible pairs of vectors r, s. This holds if and only if R is an
orthogonal matrix. As is well known the determinant of any orthogonal matrix is
either +1 or — 1. In fact only those orthogonal matrices with determinant +1
correspond to rotations; this is because the rotation through zero angle is the identity
and its determinant is +1 and from requirements of continuity it follows that the
determinant of a matrix corresponding to any rotation is also + 1.

If the group contains all possible rotations and their products with the inversion
it is called the 3-dimensional rotation group and it is isomorphic with the group 0(3)
of all (3 x 3) orthogonal matrices. Operators that correspond to matrices with
determinant — 1 are called improper rotations and are products of a proper rotation
and the inversion. The inversion commutes with all rotations; this follows at once
from the fact that it is represented in 0(3) by minus the unit matrix.

It is important at this stage to make clear the convention we use when dealing with
unitary operators. From what has so far been written the convention may already
be clear, but, in case this is not so, it is worth emphasizing that we interpret unitary
operators as acting on the points of space and that the coordinates of these points
are always referred to a fixed set of axes. Operators that move the points of a space
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and leave the axes fixed are said to be active. Operators that move the axes and leave
the points fixed are said to be passive. In this book we shall always use the active
convention. The equation linking the two conventions is simply

R = R - 1 H 4 V\vactive ^passive' ^l.l-.^y

However, great care must be exercised in transferring from one convention to the
other because the correspondence between the two conventions is not an automor-
phism but rather an anti-automorphism; that is to say, if R, S, and T are the matrices
of three rotations such that in the active mode

R «s = T M 4 4"iAvactive '-'active * active v * - ^ * V

then the corresponding equation for passive operators is

^passive ^passive ^passive' ^ l .^r .J j

the order of multiplication of the operators on the left being reversed, rather than
preserved as would have been the case for an automorphism.

Every subgroup of the 3-dimensional rotation group is a point group. Subgroups
of the proper rotation group are called proper point groups. A proper point group
contains only rotations about axes through O. In what follows we are concerned
only with point groups of finite order.

We now classify the proper point groups of finite order. These are:

(i) The cyclic groups
The cyclic groups occur when there is only one axis of rotation, say Oz. Such groups
are denoted by n in the international notation and by Cn in the Schonflies notation.
For each positive integer n there is a well-defined cyclic group whose n elements are
rotations about the given axis through angles 2nq/n, where q — 0, 1, 2, . . .,(n — 1).
In the Schonflies notation the anti-clockwise rotation through an angle 2n/n about
the axis Oz is denoted by C*z; the corresponding clockwise rotation is denoted by
C~z. The superscript + is omitted when n = 2.

(ii) The dihedral groups
Dihedral groups consist of all rotations that transform a regular «-sided prism into
itself. Such groups are denoted in the international notation by nil, n even, and by
n2, n odd, and by Dtt in the Schonflies notation. For each positive integer n ^ 2 there
is a well-defined dihedral group whose 2n elements are: n rotations about the axis
of the prism parallel to its edges through angles 2nq/n, where 9 = 0, 1, 2, . . ., (n — 1),
the axis of these rotations being called the principal axis; and n further rotations each
of order 2 (that is, through an angle n)—each such rotation being about an axis called
a secondary axis, which is perpendicular to the principal axis. There are n secondary
axes and they are symmetrically placed within the prism so that the angle between
any two adjacent secondary axes is n/n. When n is even half the secondary axes pass
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through the centres of the faces of the prism and half through the mid-points of the
edges, and when n is odd each secondary axis passes both through the centre of a face
and through the mid-point of the opposite edge. In the Schonflies notation the n
rotations about the principal axis are labelled as in the cyclic group of order n, and a
rotation about a secondary axis Op is denoted by C2p.

(iii) The tetrahedral group
The tetrahedral group consists of all the rotations that transform a regular tetra-
hedron into itself. It is denoted by 23 in the international notation and by T in the
Schonflies notation. This group has four axes of order 3 passing through the vertices
of the tetrahedron, and three axes of order 2 that join the mid-points of its opposite
edges. The three axes of order 2 form a right triad and are therefore conveniently
labelled Ox, Oy, and Oz. If we denote the vertices of the tetrahedron by 1, 2, 3, and
4 then the four axes of order 3 are labelled 01, 02, 03, and 04 (see Fig. 1.3). Using the
Schonflies notation, as described above, the 12 elements of 23 (T) are therefore
E (the identity), C^ (j = 1, 2, 3, and 4) and C2m (m = x, y, and z).

(iv) The octahedral group
The octahedral or cubic group consists of all the pure rotations that transform a
cube into itself. It is denoted by 432 (sometimes abbreviated to 43) in the international
notation and by O in the Schonflies notation. A regular tetrahedron 1234 can be
inscribed in the cube so that its four vertices lie at four corners of the cube; in this
way the elements of the cubic group can be related to the elements of the tetrahedral
group—indeed 23 (T) is a subgroup of 432 (O). The axes 01, 02, 03, and 04 are still
of order 3, but now the axes Ox, Oy, and Oz are of order 4. There are in addition
six axes of order 2 which join the mid-points of opposite edges of the cube and which
we denote, as in Fig. 1.3, by Oa, Ob, Oc, Od, Oe, and Of. Using the Schonflies notation
the 24 elements of 432 (O) are therefore E, C^ (j = 1, 2, 3, and 4), C%m (m = x, y,
and z), C2m (m = x, y, and z), and C2p (p = a, b, c, d, e, and/).

(v) The icosahedral group
The icosahedral group consists of all rotations that transform either a pentagonal
dodecahedron or a regular cosahedron into itself. It has six axes of order 5, 10 axes of
order 3, and 15 axes of order 2 and it consists therefore of 60 elements (Cohan 1958,
Cotton 1963). This group is denoted by 532 in the international notation and by Y in
the Schonflies notation.

If we denote by T (or C,) the group consisting of the identity E and the inversion /,
then given a proper point group P it is always possible to construct the outer direct
product P (x) T (or P (x) C;), as explained in Definition 1.2.13. This process leads to
a new set of point groups that are subgroups of 0(3). These point groups, for which
we give the international notation followed in brackets by its Schonflies equivalent,
are as follows:
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(i) From n (Cn), n odd, we derive n (S2n); and from n (Cn), n even, we derive
n/m (Cnh). (In the Schonflies notation S2 is often replaced by C;.)

(ii) From n2 (£>„), n odd, we derive nm (Dnd); and from «22 (£)„), « even, we derive
n/mmm (Dnh). (When n = 2 the international symbol is usually given as mmm.)

(iii) From 23 (T) we derive m3 (Th).
(iv) From 432 (O) we derive m3m (OJ.
(v) From 532 (7) we derive 53m (Yh).

There is a second method of obtaining new point groups from a proper point group
P which is fruitful whenever P has an invariant subgroup Q of index 2. In this case we
can write

P = Q + RQ (1.4.6)

for some rotation R. Then the group

P = Q + IRQ, (1.4.7)

where 7 is the inversion, is also a point group. The point groups derived in this way
are as follows.

(i) From 2n (C2n), n odd, and its invariant subgroup n (Cn) we derive In (Cnh)
(except that 2 (Clh) is usually replaced by the symbols m (Cs)). From In (C2n),
n even, and its invariant subgroup n (Cn) we derive 2« (S2n).

(ii) From «22 or n2 (Dn) and its invariant subgroup n (Cn) we derive nmm or
nm (Cnv); and from (2«)2 (D2n) (n 5= 2) and its invariant subgroup «22 or «2
(£>„) we derive (2n)2m (Dnh), n odd, and (2n)2m (Dnd), n even,

(iii) 23 (T) has no invariant subgroup of index 2 and so no new group can be
derived in this way from 23 (T).

(iv) From 432 (O) and its invariant subgroup 23 (T) we derive 43m (Td).
(v) 532 (Y) has no invariant subgroups, and so no new group can be derived in

this way from 532 (Y).
These two methods of obtaining further point groups from the proper point

groups account for all the point groups of finite order which are subgroups of 0(3)
but which do not consist entirely of proper rotations. This therefore completes the
classification of the finite point groups. It will have been seen that there are at least
two rival notations in use for the labelling of the point groups and their symmetry
elements, the international notation and the Schonflies notation. For the labelling
of the point groups and space groups in this book we use both the international
notation and the Schonflies notation; the Schonflies label is always given in brackets
following the international label.

We now elaborate slightly on the meaning of the notations used. In the international
notation for the labelling of the point groups a number n implies the presence of a
rotation axis of order n, a bar over a number, n, implies the presence of a rotation-
inversion axis of order n and the letter m implies the presence of a reflection plane.
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Also, if the letter m is separated from a number by a solidus (/), then one plane of
symmetry is perpendicular to the principal rotation axis. Finally, in the Schonflies
notation for the point groups the subscripts h, v, and d stand for reflection planes
that are respectively horizontal, vertical, and diagonal which is, of course, meaning-
less except when the point group concerned is in some standard orientation. In many
cases we have to use settings of the point groups that are non-standard and this is
why we prefer the international notation for the label of the point group itself. How-
ever no confusion can arise because in such non-standard settings all the elements
will be given a definite label that the reader can identify by referring to Table 1.3.

We began this section by saying that a point group is a group of symmetry opera-
tions which act at a point O and also leave invariant all distances and angles in a
3-dimensional Euclidean space, £(3). In this book we are concerned with the theory
of the representations of the groups of symmetry operations of crystalline solids.
We therefore shall be restricting our discussion to the crystallographic point groups.
A crystallographic point group must satisfy the extra requirement that it be compat-
ible with the translational symmetry of some crystalline solid. The possible point-
group operations that may satisfy the extra requirement are the identity, the inversion,
reflections in certain planes, and rotations about certain axes of orders 1, 2, 3, 4, or 6.
It is possible to show that only a finite number of essentially different groups can be
constructed from these operations. In fact there are 32 different crystallographic
point groups and many books give discussions of various of their properties (for
example, Buerger (1956), Koster, Dimmock, Wheeler, and Statz (1963), Phillips
(1963a)). The 32 point groups can be classified into seven crystal systems (sometimes
called syngonies) according to the order of the principal axis. There are five crystal
systems for point groups with a single principal axis of order 1, 2, 3, 4, or 6, namely
the triclinic, monoclinic, trigonal, tetragonal, and hexagonal crystal systems respec-
tively. Two more systems also exist, to complete the seven, the orthorhombic system
which has three mutually perpendicular rotation axes of order 2, and the cubic system
which has four rotation axes directed towards the vertices of a regular tetrahedron,
each of order 3. Most of the point groups that have been described in this chapter
are crystallographic point groups. Examples of non-crystallographic point groups
that we have described are the icosahedral group and the cyclic and dihedral groups
of order n, where n takes any value except 1, 2, 3, 4, or 6.

Notation of point-group operations

There are, in fact, very many different notations to be found in the literature for the
labelling of the symmetry elements of the point groups; none of them is entirely
satisfactory (for a discussion of various notations see Warren (1968)). Some authors
(for example, Kovalev (1965), Miller and Love (1967), Slater (19656)), apparently
disconcerted by this lack of uniformity, have taken, for example, to labelling the
elements of the cubic group m3m (Oh) by Rl, R2,. . ., R^8 and of the hexagonal
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T A B L E 1.2

Symmetry elements for the seven crystal systems
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Notes to Table 1.2
(i) There is an alternative setting for the trigonal system using C2i instead of C'2i as a standard setting,

(ii) See Figs. 1.1, 1.2, and 1.3 for the positions of the following axes:
m = x, y, z; s = a, b; i = 1, 2, 3; j = 1, 2, 3, 4, and p = a, b, c,d,e,j.

group 6/mmm (D6h) by R±, R2,. . ., R24', this scheme is very convenient when com-
puters are being used. However, because the well-established notations, while far
from perfect, do carry some meaning (which is not the case for an arbitrary labelling)
we therefore use in this book the Schonflies notation for the actual symmetry opera-
tions of both point groups and space groups, elaborated so that each point-group

FIG. 1.1. Symmetry elements: triclinic, monoclinic, orthorhombic, and tetragonal systems. The point groups in
these systems are subgroups of m3m (Oh) and so the same notation is used, x, y, z form a right-handed set of axes.
The labels of the symmetry operations are placed on the figure in the position to which the letter E is taken by that

operation.
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<-6 , ^3
f-± c +
<- 3 . ->6

C2, ah

C'n, °<ti

c'2i, <->„>

Cubic

m3m

(0,)

E, I
C2m, °m
f-± o+
L3j, :>6j
t 'L, SL
Clp, "^
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operator can be separately identified. The notation for the proper rotations has
already been indicated in the classification of the proper point groups; the identi-
fication is made complete by reference to Tables 1.2 and 1.3 and to Figs. 1.1-1.3.

FIG. 1.2. Symmetry elements: trigonal and hexagonal systems. The z-axis is vertically upwards, out of the page.
The labels of the symmetry operations are placed on the figure in the position to which the letter E is taken by that

operation.

Many results depend for their usefulness on a complete identification of the symmetry
elements present and so we shall give some attention to this matter. To identify the
symmetry elements for point groups belonging to most crystal systems it is possible
to use a plane figure such as a stereogram, and we do this for the triclinic, monoclinic,
orthorhombic, and tetragonal systems in Fig. 1.1 and for the trigonal and hexagonal
systems in Fig. 1.2. Two-sided paper models have been used by Schiff(1954) to help
visualize the different non-cubic point groups. However, for the cubic system it is
easier to identify the symmetry elements from the figure of a cube; this is done in
Fig. 1.3. C^r is an anti-clockwise rotation of the points of space through 2n/n radians
about the axis labelled by r on the figure in question. Cm is a clockwise rotation of
the points of space through 2n/n radians about the same axis. E is the identity and /
is the inversion. In Table 1.2 the operators that appear in a given system are listed for
each of the seven crystal systems; in each part of the table there are two columns,
the elements in the right-hand column being the product of/with the corresponding
elements in the left-hand column. The elements given in this table are those that appear
when the appropriate point group is in the standard setting with respect to the x, y,
and z axes of the figure. Non-standard settings of certain point groups will sometimes
have to be used, but since each element is given a definite label this will be no cause
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for confusion. It should be noticed that reflection planes are always denoted by a
and other rotation reflections by S; it should also be noted that in the notation that
we are using IC2 = a, IC% = S%, fCf = S%, IC% = SJ (that is, 7CJ = S6~, and
so on). This is because 5M

+ denotes an anti-clockwise rotation by 2n/n followed by a
reflection in the plane perpendicular to the rotation and hence 1C* = aC2C* =
_ / / ^ + \ n + 2 / c + N \ « + 2
ff(C2n) = (^2n)

A final and very important point, which we have mentioned earlier, must be
stressed and that is that when dealing with a point-group operator it will be inter-
preted always as an active operator moving the points of space and leaving the axes
fixed; similarly, when dealing with a space-group operator written in the form {R \ \}
(see section 1.5) it too will be interpreted as active.

FIG. 1.3. Symmetry elements: cubic system (Altmann and Bradley 1963*).

In Table 1.3 we identify the symmetry operations that are present in each of the
32 crystallographic point groups. The point groups are arranged according to the
seven crystal systems and all the elements of each point group are given. Wherever
a point group has a principal axis this axis is set in the Oz direction and this is called
the standard setting, but of course many other settings are possible. In Fig. 1.4 are
shown stereograms for the 32 crystallographic point groups; for details of the theory
of stereographic projection see, for example, Phillips (1963). In any given crystal
system the point group that contains the largest number of symmetry operations is
called the holosymmetric point group of that system.

The multiplication of point-group operations

The result of the application of two point-group operations in succession is easily
obtained with the help of a stereogram for all point groups other than the cubic
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FIG. 1.4. Stereograms of poles of general equivalent directions and symmetry elements of each of the
(Henry and
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32 point groups (z-axis normal to the paper in all drawings; for «i3 and m3m only half the points are shown)
Lonsdale 1965).
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T A B L E 1.3

The 32 point groups

No. Label

Triclinic
1
2

1
T

Monoclinic
3
4
5

2
m
2/m

Orthorhombic
6
1
8

222
mm2
mmm

Tetragonal
9

10
11
12
13
14
15

4
4
4/m
422
4/ft m
42m
4/mmm

Trigonal
16
17
18
19
20

3
3
32
3m
3m

Hexagonal
21
22
23
24
25
26
27

6
6
6/m
622
6mm
62m
6/mmm

Cw&z'c
28
29
30
31
32

23
m3
432
43m
m3m

f-'i
C,

C2

cs, 6:lft
C2h

D2

C2v

D2H

C4

S4

cu
D4

C4u

£>2.

D4k

C3

C3i

£>3

C3u

DM

c.
C3h

C6(,

#6

C6,
£3*

£>„,,

r

ô
Ti
oh

Elements

£
E,I

E, 62z

E, az

E, C2z, I, a,

E, C2x, C2y, C2z

£, C2z, CTX, <Tj,

E, 6'2;e, C2y, 6'2z, /, (T.,-, a,,, crz

E, 64
+

z, 6'4z, C2z

£, S4z, S^, C2z

E, C4z, C4z, C2z, /, 54z, S4z, crz

E, C4z, C4z, C2z, C2x, C2y, (-2a, C2b

E, C4z, C4z, C2z, ax, ay, ada, adb

E, S4z, S4z, C2z, C2x, C2y, ada, adb

E, C4z> C4z, C2 2 , C2x, C2y, C2a, C2h

I, $4,, Stz, <TZ, ax, ay, ada, ndb

E,Cl,C;
E,C^,C3,f,S^,St
E, C. 3 , C '3 , C '2 1 , Cj 2 , C2 3

£, CJ . C7 , adi, "a2, Vd3
E, CJ, C3 , C2 1 , C22, C23, /, 57, 5^ , a,,,, od2, ad}

E, C 6 ' ,C 6 - ,C7,C 3 - ,C 2

^ 53 , S3 , CJ , C3 , ah

E, C«t, C7, C7 , 67, C2, /, SJ, S3
+, 56-, S6% <7t

^ t-fti c6 , c7, C7 , c2, c21 , c22, C23, c2'i , c22, C23
E, C£ , C^, CJ, C3 , C2, (Tj , , <7J2, <rd3, avl, CT,,2, a-,,3
^i $3 , ^3 , C-3 , ^3 i ^di t-21 i C-'lli C'21, (!„,, (T^j- CTi,3

^5 6(3 , 6(3 , 63 , 63 , 62, 6 2 j i 622 , 6. 2 3 , 6 2 j , 62 2 , 623

/, 5*3 , S^, S6 , 5,^, (Th, (7dl, (T^2, O"d3, (T,,!, (Tr2, (T^^

£, C2m, 63+, 67,
E, Clm, Clj, 63-,, I, am, 56-(, 5i
£, 6:2m, 6+, C7j, C2p, 64

+
m, C4m

£, C2ra, C3*j, C,-., aip, S4m, S4m

E, c2m, c;p c3j, c2p, c;m, 64m
A °m, •S'ej, 5^, CT,,,,, S4m, 54m

Notes to Table 1.3
(i) The arbitrary numbers in column 1 are those of Koster, Dimmock, Wheeler, and Statz (1963).

(ii) The labels of the symmetry operations can be identified from Figs. 1.1-1.3;./ = 1, 2, 3, and4;m = x,y,andz;
p = a, b, c, d, e, and/.

(iii) The principal axes have been set in the Oz direction but there are still possible alternative settings for some
of the point groups, for example 42m (D2i) may contain the elements, E, 54z, 6'2z, S4z, ax, <r,., C2a, and 6'2I); some-
times alternatives of this kind are important when one considers the space groups (see Chapter 3).
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groups. For example, the multiplication C2xC^z = C2h is illustrated in Fig. 1.5, in
which a dot represents a point above the plane of the drawing and a circle a point
below the plane of the drawing. The point A is taken into the point B by the operation
C£z; B is in turn taken into the point C by the operation C2x- The result is the operation
that takes A directly into the point C, namely C2b, as can be seen from Fig 1.1.

FIG. 1.5.

For a cubic point group the easiest way to obtain the group multiplication table
is to use the Jones' faithful representation of the operators given in Table 1.4(a).
The Jones symbol for the operator R is just the vector formed by the action of the
operator R on the vector (x, y, z); these symbols may be recognized as the coordinates
of equivalent positions in the unit cells of symmorphic cubic and hexagonal space
groups in Table 4.3 of Volume 1 of the International tables for X-ray crystallography
(Henry and Lonsdale 1965). If (x, y, z) is a vector referred to a basis of unit vectors
i, j, and k along the coordinate axes, then, for example, C^xi = xj, C^zy\ = —y\,
and C^zk = zk, so that we may write C%z(x, y, z) = (—y, x, z) or

(1.4.9)

and the Jones' faithful representation of C^z is then written as (yxz). The matrix
representing C£z with respect to the basis consisting of the row vector <i, j, k is

(1.4.8)
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and thus the Jones' symbol is an abbreviation for this matrix representative. Equation
(1.4.9) follows from the fact that

(1.4.10)

which illustrates why D is a faithful representation.
The multiplication rule for these symbols is easily derived from the multiplication

rule for matrices. Thus, for example,

(1.4.11)

There is no need to write out the matrices in full, for

(zxy)(yxz) = (z'x'y1), where (x'y'z1) = (yxz),

so that

(z'x'y') = (zyx).

Equation (1.4.11) is a representation equation reading

(1.4.12)

as can be seen from Table 1.4(a) in which the Jones' faithful representation symbol
is given for each of the 48 cubic point-group operations. Since D is a faithful repre-
sentation it follows at once that C^C^ = C2c. The Jones' symbols given in Table
1.4(a) can also be used for the elements of tetragonal or orthorhombic point groups
and for monoclinic or triclinic point groups where the vector (x, y, z) is referred to
a basis of unit vectors i, j, and k parallel to the axes of the crystal. A similar set of
symbols in Table 1.4(b) gives the effect of the operations of a hexagonal or trigonal
point group on a vector (x, y, z) where (x, y, z) is referred to a basis of unit vectors
i, j, and k, where i and j are at 120° to each other and are in the plane normal to k.

In Tables 1.5 and 1.6 we give the group multiplication tables for the two point
groups 432 (0) and 622 (Z>6) (Belov 19576, Belov and Tarkhova 1960, Hurley 1966,
Koptsik 1966). These two point groups consist only of pure rotations; all those other
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T A B L E 1.4

Jones'faithful representation symbols

37

(a) Cubic (b) Hexagonal

E xyz I xyz \ C'ix xzy S^x xzy E x, y, z I x, y, z
C2x xyz ax xyz j C^, zyx S4), zyx Cf, x - y, x, z S3 -x + y,x,z
C2v xyz <Jy xyz \ C£, yxz S^ yxz j C3 y, x - y. z St y, - x + y, z
C2, xyz (T- xyz C4x xzy S^x xzy C2 x, y, z a,, x, y, z
C31 zxy St,t zxy C'4). zyx £4,, zyx C3 -x + y,x,z S6

+ x - y, x, z
C32 zxy S^2 zxy C'4z yxz S4z yxz C6~ y,-x+y,z S3 y,x-y,z
C3, zxy S63 zxy J C2a yxz ada yxz \ C21 -x + y,y,z a<n x — y,y,z
C3"4 zxy SM zxy \ C2b yxz adh yxz i C22 x,x-y,z ad2 x,-x + y,z
CJi yzx S^i yzx } C2[. zyx rrdc zyx C'2^ y, x, z ad3 y, x, z
C32 yzx 56'2 yzx \ C2d xzy add xzy } C21 x~y,y,z tr,., -x + y,y,z
C,3 yzx S^ yzx C2f zyx ade zyx \ C22 x, -x + y, z a,,2 x, x — y, z
C34 yzx 5^4 yzx C2f xzy crdf xzy I C2'3 y,x,z <r,,3 y, x, z

Notes to Table 1.4
(i) As mentioned in the text the symbol next to an (active) operator R is just the vector formed from the vector

(x, y, z) by R.
(ii) In (a) the unit vectors i, j. and k are mutually orthogonal and are along the x, y, and z axes of Fig. 1.1. In

(b) the unit vectors i, j, and k are along the x, y, and z axes of Fig. 1.2, therefore i and j are at 120 to each other
and are in the plane normal to k.

(iii) Thus, for example, C4z has the symbol (yxz) so that

(iv) (a) is also to be used for the tetragonal, orthorhombic, monoclinic, and triclinic systems; for the monoclinic
and triclinic systems i, j, and k are parallel to the axes of the crystal, (b) is also to be used for the trigonal system.

(v) The symbols in (a) and (b) may be recognized as simply the coordinates of equivalent positions in the unit
cells of symmorphic cubic and hexagonal space groups in Table 4.3 of Volume 1 of the International tables for X-ray
crystallography (Henry and Lonsdale 1965).

point groups that consist only of pure rotations are subgroups of one or other of
these two point groups. Each of those remaining point groups that contain operations
that are not pure rotations is simply related to one of the point groups consisting of
pure rotations only. Thus, from Tables 1.5 and 1.6 it is possible to obtain very quickly
the group multiplication table of any of the 32 point groups.

1.5. Space groups

Before discussing the definition of a space group it is desirable to consider what is
meant by a Bravais lattice. A lattice is a collection of mathematical points arranged
in such a way that each lattice point has the same environment in the same orientation.
With reference to crystalline solids, the atoms or molecules of which such a solid is
composed are found to be arranged in a regular manner (Haiiy 1815a-6?). That is,
within a crystalline solid there is a set of mathematical lattice points. If a Maxwell
demon were to view such a crystal from any one of these points he would see an
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The group multiplication table for the point group 432 (O)

E ^-2x ^-2}' (-2z ^'4. .  ^4y ^~4z ^ 4.  ^4y ^'4z ^-*31 ^ 32 ^*33 ^-'34 ^-3 1 ^-32 ^ 3 3 ^34 ^-2 a -̂ ' 2b ^2i- ^2d ^'2e ^-2 /

(" ÍT /" *" ^1+ /" /" í^~ f" /^' (~'~ f— ("~ f'~ /"+ f*+ /"4 /" ' /"— l"+ i~ + f" f" " f *
^•2x *-- *~2z ^2y ^-4x *-2.  *-~ 2a ^-4x ^2c  L -2f c ^-32 ^'31 ^-3 4 ^33 ^34 L3,l *-32 c 3 1 *-4z ^4z ^4y ^-2 /  ^-4 .  L2d

•̂2 y ^2z ^ t-2x ^2d ^-4y ^-'2 b ^-'2 /  ^4y ^'2« ^33 ^34 ^31 ^32 ^-32 ^31 ^'34 ^ -3 3 ^4z ^-4 z *-2e ^ -4-х ^2c ^ 4x

12z C2y C2x E C 2 /  C 2 c C4z C2í¡ C2e C4z C34 C33 C32 C3 1 C33 C 3 4 C3 1 C3 2 С 21, C2a .  4,, C4, C4), С 4x

Cix Cis C2/  C'2i) C2x CJ2 C 31 £ C3
f4 .'. .  C2a C4z C 2f) C4z C4y C2l, C4}. C2c C72 C34 C 31 C 2v .̂ 3 C2z

C4), C 2c C4), C 2e C 3 I C2y C 33 C 34 £ C32 C2d C4l C4j. C2/ C4z C2a C2(, C4z C3 1 CJ4 C2 z C33 C2x C32
^-4z (~2b ^2a ^-4z ^-Í4 ^-"31 ^-2z ^-33 ^32 E ^-2c ^-'2 .  ^ 4y ^4y ^-4.Y ^'4.  ^-2d ^'2/  ^'2. : ^2y ^-3 4 ^-3 J ^-33 ^32

^-4.  ^'4.  ^*2íí í-2/ ¿ ^--33 ^32 ^2x ^31 ^-34 ^4.  ^2u ^-'4z ^2/ ) ^-2c ^4y ^2p ^-4 y ^-31 ^33 ^34 ^-2z ^-32 ^ ' 2y

^4y ^-2e ^-4y ^-2 t ^--3 3 '̂ ^34 ^32 ^2y ^3 1 ^4x ^ -2 /  ^-2tí ^ 4x ^2a ^-4.  *-4z ^ 2b ^-3 2 ^33 ^-2jc ^-3 1 ^ 2z ^-3 4

¿4z C2o C2I, C4z C32 C34 £ C 3 , C33 C2z C4j C4v C2¡, C2l. C2d C2/ C4i C4x C2j. C2j[ C3 1 C33 C32 C34

^31 ^-34 ^-32 (-33 (~2c ^2o ^-2i í ^4y ^4z ^4x ^ -31 ^ -33 ^-'34 ^32 E С 2x C2) . 2 .  С ¿x C2f C4r C4l. .  2Ъ С2е

^-3 2 f-3 3 ^31 C34 C.4}. C 4z C 2/  C 2 e С 2a C 4x C 3 4 C 32 C 3 1 C 33 C 2 x £ C2z C2), C4x C2d C2b C2c C4z C4y
^-33 ^-32 ^-34 ^ 3 1 ^2c ^4z ^4. : ^4y ^2h ^2d ^32 ^-'34 ^33 ^31 ^2y ^-2 .  ¿ ^--2. : ^ 2 /  ^4x ^ 2a ^-4y ^ 4z ^-2 c

^3 4 ^--3 1 ^-33 ^-32 ^-4y (*2b (~4x ^2t ^4z ^-2 /  ^--3 3 ^-'3 1 ^--3 2 ^-34 ^-2z ^2y ^-'2x E C2í¡ C¿x C4z C2t, C2a C4>,

^31 ^32 C33 C34 C4z C¿x C4j, C2a C2i C2c E C2). С2г C2x C 3 1 C 34 C 3 2 C 3 3 C4). C 2 e C 4x . 4.  C 2 /  .  . 2/ ,
^--3 2 ^31 ^-34 '--. .  ^-2 .  ^2 /  ^4y ^ 4z ^4x ^'2f ^2y ^ -̂ 2x ^ 2z ^3 3 ^-3 2 ^34 ^-3 1 ^-4 y ^ 2c ^ 2d ^2íí ^-4x ^4z

f^+ f'+ f"'+ í"+ l^'~ f f f í~'+ (— f~ f f f f— í— /"~ /"~ /" /" ' f Г'+ f*~ f ~
^33 *-34 *-31 ^32 L'4z L'2tí L'2<; L"2b ^-4.  ^4.  .^-22 L '2x -^ ^-2 .  ^-34 ^'31 ^'33 ^32 L-2 c *-4.  L 2/  *-4z *~4x *-2a

(-3 4 C 3 3 C 32 C 31 C 2 b C 4x C 2 c C 4z C 2/  C4}, C 2 t C 2z C 2). £ C32 C 3 1 C31 C34 C.2í .  4, C 4x C 2 o C 2 l / C 4z

C 2 o C 42 C 4z C 2|1 C 31 C 32 C 2v C32 C 31 C2x C4>. C4), C2í. C2(, C4x C4l C2/ C2(( £ C2z C33 C34 C34 C33

(~-2b ^4z ^'4z ^ 2u ^33 ^ -33 ^2x ^34 ^34 í-2y ^2? ^'2c ^-4y ^-4y ^'2/ ^'2á ^4x (-4-х ^-2z E C 3 2 C 3 2 C 3 1 C 3 1

^2c C 4y C 2 e C 4 y C 34 C2x Cjt i t-3 1 f 2.  ^34 ^4x ^2d ^2/  . 4. : C 4z C 2( J .  2o C 4z C 3 3 C 3 2 £ C32 C2y C33

f-2d C2{ C4x C4x C2z C31 C33 C2y C}} C3 1 . 4.  С21, (-4z ^2a (~4r ^2c ^-4y (-le ^ 34 ^32 ^32 E C 3 4 С 2х

(-2e. ^4y ^'2c (-4y ^-32 ^2z ^32 ^33 ^2x ^-33 ^2 /  ^4x (-4x ^-2d ^-2b (-4z ^4z ^2a ^--3 4 ^-3 1 ^2y ^34 £ ^-31

C2/ C2¿ C'4jc C4:c C2y C34 C34 C2z C32 C32 C2(l C4z C2o C4z C2 e C4), C2c C4v C33 C31 C33 C2.x C31 £
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T A B L E 1.6

The group multiplication table for the point aroup 622 (D6)

39

E

cv
C7
C2

C7
C7
C21

C22

C23

C'21

C22

C'23

C7
C3

C2

£3
C7
E

C23

C2,
C22

C23

C21

C22

C7
C2

C7
C7
E
c
C'22

C23

C21

C2'2
C23
C21

C2

C7
C7
£
c
C3

+

Q,
C22

C2'3
C2 1

C22

C23

c,
c6-
£
C6

+

c,+
C2
C23
C21

C22

C23

C21C22

Q
E

Q
c;
C2

c,
C22

C'23
C'2l

C22

C'23t'21

Ql
C22

C23
C2',
C'22

C'23

E

C3

t'J
C2

el
C6

C22

C2'3
C21
C22

C23

C21

t'r
E

cj
c6-C2c

C23

C21

C22

C23

Q,
C'22

C3

C3
(

£
c
C-7
C2

C21

C22

C2'3
C21

C'22

C'23

C'2
C7
c6-
£•
C'3

C7

C'22

C23

C'i'i
C22

C23

C'2I

C6

C'2cv:
C3

+

£

C7

C'23

C21
C22

C23

C'j,
C'22

C6
f

C'6

C'2
cv
C3

+

£

exactly similar array of atoms or molecules to the array that he would see if he were
to view the crystal from any other of these lattice points. Strictly speaking, in order
to obtain complete similarity of the environment of each lattice point it is necessary
that a mathematical lattice be of infinite extent. A real crystal clearly cannot contain
such an infinite lattice but, remembering the actual sizes of atoms, it will be a close
approximation to an infinite lattice. We may illustrate the idea of a lattice with a
2-dimensional example; if the set of points in Fig. 1.6, which are arranged at the

FIG. 1.6. The square 2-dimensional Bravais lattice, p.
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corners of squares, is imagined to continue off the diagram to infinity, then these
points constitute the simple square 2-dimensional Bravais lattice, p. There are five
different 2-dimensional Bravais lattices (Alexander 1929, Alexander and Herrmann
1929, Belov 19596) and they are described and illustrated in Volume 1 of the Inter-
national tables for X-ray crystallography (Henry and Lonsdale 1965). In a 3-dimen-
sional Euclidean space, £(3), there are 14 essentially different lattices possible and
these are called the (3-dimensional) Bravais lattices (Bravais 1849a, b, 1850). It should
perhaps be emphasized that there is not necessarily a Bravais lattice point at the
centre of every atom in a real crystal, nor is it necessary for Bravais lattice points to
be occupied by atoms.

If we choose one particular lattice point to be the origin, O, then we may write t,
the position vector of any other lattice point, as

t = Mi + "2*2 + «3t3 (1-5.1)

where nl, n2, and «3 are integers and t l 512 , and t3 are the fundamental translations
that join O to three of its (non-coplanar) nearest neighbours. The translation opera-
tions t defined by eqn. (1.5.1) form an infinite group which is called the translation
group of the Bravais lattice. In addition to the symmetry of the group of translations,
the Bravais lattice is also invariant under certain point-group operations acting at
the lattice points and, sometimes at least, at other points too. The point-group
operations at any lattice point form a point group P, which is in fact the holosym-
metric point group of one of the crystal systems or syngonies, i.e. P is the point group
with the largest number of symmetry operations in the crystal system in question.
In the example of the 2-dimensional Bravais lattice illustrated in Fig. 1.6 the lattice
has the symmetry of the point group 4mm (C4l!), or 4/mmm (D4h) if the dots are on
both the back and front of the page. The holosymmetric point groups, P, of the seven
crystal systems, the triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexa-
gonal, and cubic are T (Q), 2/m (C2h), mmm (D2h), 4/mmm (D4h), 3m (D3d), 6/mmm
(D6h), and m3m (Oh) respectively. The fact that the point group P is the holosym-
metric point group of the relevant crystal system arises from the following facts;
(i) P must contain the space-inversion operation because if t is a vector of the Bravais
lattice then so also is — t, and (ii) together with axes of orders 3, 4, and 6, P also con-
tains reflection planes that pass through these axes. It is therefore possible to assign
each of the 14 Bravais lattices to one of the seven crystal systems and these Bravais
lattices are illustrated in Fig. 1.7. Basically it is because the point-group symmetry
of a crystalline solid must be compatible with the symmetry of the Bravais lattice of
that solid that there are only 32 possible crystallographic point groups. Each of the
32 crystallographic point groups is either the point group of one of the Bravais
lattices, i.e., the holosymmetric point group of one of the seven crystal systems, or
else it is a subgroup of one of these seven point groups.

We have said that a Bravais lattice in three dimensions is an infinite array of points
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FIG. 1.7. The 14 Bravais lattices (Phillips 1963a).
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FIG. 1.8. (a) The rectangular 2-dimensional Bravais lattice, p, with unit cell marked, (b) The centred rectangular
2-dimensional Bravais lattice, c, with conventional unit cell shown with broken lines and fundamental unit cell

shown with continuous lines.
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such that each point has the same environment in the same orientation. A unit cell
may be defined in various ways and it will be specified by three non-coplanar vectors
which form the edges of a parallelepiped. The symbols a, b, and c are used to denote
these three vectors. It is usually convenient to select the unit-cell vectors in such a
way that the unit cell clearly exhibits the symmetry of the lattice. This conventional
choice of unit cell may then not be primitive, that is, it may contain the equivalent
of more than one lattice point. The parallelepiped constructed on the three basic
vectors t l 5 t2, and t3 of the Bravais lattice (eqn. (1.5.1)) is called the primitive unit
cell. In each Bravais lattice where the conventional unit cell and the primitive unit
cell are not identical it is possible to establish the relationship between them. This is
done for instance in Table 2.2.2 of Volume 1 of the International tables for X-ray
crystallography. The unit cells illustrated in Fig. 1.7 are the conventional unit cells.
The actual specification of t1, t2 , and t3 for each of the 14 Bravais lattices will be given
in Chapter 3 (Table 3.1). We can illustrate the distinction between conventional and
primitive unit cells with a 2-dimensional example. The 2-dimensional primitive
rectangular Bravais lattice, p, has its lattice points arranged on the corners of a set
of rectangles and the conventional unit cell is one such rectangle, see Fig. 1.8(a);
this is also a fundamental unit cell of this lattice. If a point is added to the centre of
each of these cells a new Bravais lattice is obtained, the centred rectangular Bravais
lattice, c, see Fig. 1.8(6). A conventional unit cell, which exhibits the rectangular
symmetry, is shown with broken lines and a primitive unit cell is shown with con-
tinuous lines. The conventional unit cell contains effectively two lattice points while
the primitive unit cell contains only one lattice point. Another unit cell that is some-
times used is the Wigner-Seitz unit cell (Wigner and Seitz 1933). The Wigner-Seitz
unit cell of a Bravais lattice is obtained by choosing as origin, O, any one of the
lattice points and drawing the planes that bisect perpendicularly the lines joining O
to its nearest (and sometimes to its next-nearest) neighbours. The unit cell bounded
by these planes is called the Wigner-Seitz unit cell; these unit cells are illustrated,
for example, by Delaunay (1932).

A Bravais lattice, as we have described it, is an array of mathematical points that
have position but no magnitude or shape. We now wish to include in our discussion
the atoms or molecules of which the crystal is constituted. We are then effectively
associating a similar collection of atoms with each Bravais lattice point and this set
of atoms or molecules must itself possess symmetry that is compatible with the point-
group symmetry of the Bravais lattice of the crystal. One type of symmetry operation
of the crystal will be a compound operation consisting of some point-group opera-
tion followed by a translation t (see eqn. (1.5.1)) of the Bravais lattice. Thus, an
especially simple type of space group arises by associating with each point of a
Bravais lattice one of the point groups belonging to the same crystal system. In this
way it is possible to obtain £/= 1 nipi space groups where n{ is the number of point
groups in a certain crystal system and p{ is the number of Bravais lattices in that
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system, the suffix z ranging over the seven crystal systems. For example, there are
three cubic Bravais lattices and five cubic point groups, so that there are 15 cubic
space groups that can be derived in this way. A space group of this form is said to
be symmorphic and it is a semi-direct product group of the translation group of the
Bravais lattice and a point group. The theory of semi-direct product groups will be
discussed in Chapter 4. The above formula does not at once account for all the sym-
morphic space groups; there are two reasons for this. First, it is possible to associate
a trigonal point group with the hexagonal Bravais lattice; so for the trigonal system
we must take/),. = 2 even though there is only one trigonal Bravais lattice. Secondly,
it does in fact happen that there can sometimes be two different and distinguishable
orientations of a point group possible on a Bravais lattice; this leads to a few extra
symmorphic space groups that occur irregularly as shown in column 6 of Table 1.7.
There are in fact 73 different symmorphic space groups.

In a symmorphic space group the point-group operations and the operations of
the translation group are essentially separable and the point-group operations that
are present are, on their own, symmetry operations of the crystal. A second type of
space group can arise by starting with a symmorphic space group and replacing some
of the reflection planes by glide reflection planes and some of the rotation axes by
screw rotation axes; these are commonly called glide planes and screw axes respec-
tively. A glide reflection symmetry operation is a compound operation that consists
of a reflection in a plane, ra, together with a translation v, which is often, but not
necessarily, in the plane m itself. The final result of two successive performances of
such a glide reflection operation is to produce a translation that must itself be a
member of the group of translations of the Bravais lattice of the crystal. In a similar
way we may have a screw axis of order n; a screw rotation symmetry operation
consists of a rotation through 2n/n about an axis, followed by a translation, v, which
is often, but not necessarily, along the axis of rotation. If this screw rotation operation
is performed n times in succession, the result is a pure translation that must again
be a member of the group of translations of the Bravais lattice of the crystal. By
including glide reflection planes and screw rotation axes it is possible to derive a
further 157 space groups that are called non-symmorphic space groups or asymmorphic
space groups. One can impose the condition that the translational part of each glide
reflection operation must be in the reflection plane itself and that the translational
part of each screw rotation operation should be along the axis of the rotation. If
this condition is imposed then, when there are glide reflection planes or screw rotation
axes present, the symmetry elements may not act all at one point in the crystal. When
this is so the operators can always be transformed to act at one point but then the
translations may lose their sense of being along the axis of the screw rotation or of
being in the plane of the glide reflection and may be in some strange direction. The
former viewpoint is visually more satisfying, but the latter viewpoint is essential for
a systematic mathematical treatment, and we shall therefore adopt the convention
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that all space-group operations act at one point. The 157 non-symmorphic space
groups together with the 73 symmorphic space groups make a total of 230 space
groups in all. They are distributed among the crystal systems as shown in Table 1.7.

T A B L E 1.7

The classification of the 230 space groups

Crystal system

Triclinic
Monoelinic
Orthorhombic
Tetragonal
Trigonal
Hexagonal
Cubic

Total

s

1
2

4
3
6
-

_

nl

2
3
3
7
5
7
5

32

Pi

1
2
4
2
2
1
3

15

n,Pi

2
6

12
14
10
7

15

66

col. 6

_
-
1
2
3
1
-

7

col. 7

2
6

13
16
13
8

15

73

col. 8

_

7
46
52
12
19
21

157

col. 9

2
13
59
68
25
27
36

230

Notes to Table 1.7
(i) s is the order of the principal axis in those cases where it exists. The operations about the principal axis can

be proper or improper rotations.
(ii) «, is the number of point groups of a given system. Note that 6 (C3ll) and 62m (D3h) must be allocated to the

hexagonal system. p: is the number of Bravais lattices of a given system, except for the trigonal system where p, = 2;
for as explained in the text each trigonal point group can be associated with the hexagonal Bravais lattice. This
lattice is therefore counted twice in the total.

(iii) Column 6 is the number of symmorphic space groups that occur because of alternative distinguishable settings
of certain point groups on their Bravais lattices. Columns 7 and 8 are the total numbers of symmorphic and non-
symmorphic space groups in a given system. Column 9 is the total number of space groups of either kind in a given
system.

Seitz notation for space-group operators

A convenient notation to represent a general space-group operation is to use the
symbol {R \ v} with the meaning that R is a point-group operator and v is the trans-
lation vector to be associated with it; the interpretation of this operator is that it
acts on the points of space and that these are always referred to a fixed set of axes,
that is, it is an active operator (see section 1.4). The symbols {R \ v} were introduced
by Seitz (19366) and they are called Seitz space-group symbols. Since these operators
are active, {R1 \{} operating on the vector r produces r', so that

(1.5.2)

where /?tr is the vector that is produced from r by the application of the active point-
group operator R{. There is a simple but important rule for the multiplication of
these operators:

(1.5.3)
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as can easily be verified by applying {R2 I V2J to both sides of eqn. (1.5.2). From
eqn. (1.5.3) it follows immediately that the inverse of [R^ \ V j } is {R^1 \ — -Rf1^}.
The Seitz operators for all the 230 space groups are identified by various authors
(Faddeyev 1964, Henry and Lonsdale 1965, Koptsik 1966, Kovalev 1965, Lyubarskii
1960, Miller and Love 1967) and they are listed in Chapter 3.

Notation for the labels of the space groups

A space group is classified first by the crystal system to which it belongs. Any second-
ary classification depends upon how much information one wants to convey. It is
possible to label the point group to which the space group is isogonal, that is, the point
group which is obtained by taking all the point-group operators present from amongst
the operations of the space-group. J This is the position that is adopted when using
the Schonflies notation (Hilton 1903). In this notation the space group is given the
Schonflies label of its isogonal point group and different space groups having the
same isogonal point group are given an arbitrary distinguishing superscript. This
represented merely the order in which Schonflies (1891) presented the derivation of
the space groups. There are, for example, 10 space groups isogonal to the cubic point
group Oh (m3m) and these are distributed among the three cubic Bravais lattices,
four primitive, four face-centred and two body-centred, and they are numbered
0,1, O%,. . ., Ol°. This notation has two disadvantages. First, it is not possible to
tell at a glance on which Bravais lattice the space group is based; for example, O% is
face-centred and Ol is body-centred. Secondly, there is no indication of whether the
space group is symmorphic or non-symmorphic. An even more arbitrary scheme in
which each space group is given a number between 1 and 230 was developed by
Astbury and Yardley (1924) and has been included in the International tables for
X-ray crystallography (Henry and Lonsdale 1965).

The two disadvantages of the Schonflies notation are overcome by using the inter-
national notation, which not only determines the two features just mentioned but
also gives some idea of the nature and orientation of the symmetry elements present
in the space group (Hermann 1928a, Mauguin 1931, Schiebold 1929). Starting with
the international point-group symbol, for example m3m, this is prefixed by the letter
describing the Bravais lattice, for example P, F, I, for primitive, face-centred, and
body-centred respectively, so that we obtain the symbols Pm3m, Fm3m, and Im3m.
These symbols denote the three symmorphic space groups isogonal to the point group
mini (Oh). When a point group can be situated on a Bravais lattice in more than one
orientation, as for instance 42m (D2d) in the tetragonal system, this is allowed for by
attaching significance to the ordering of the characters in the international space-
group symbol; thus P42m (D2d) and P4m2 (D2d) are distinct space groups. For non-
symmorphic space groups the symbol is modified as follows. For any reflection plane

t Some writers use the word isomorphous where we use the word isogonal.
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that has been replaced by a glide plane the appropriate part of the symbol is replaced
by another letter denoting a glide plane; thus Fd?>m (Ol), the space group of the dia-
mond structure, is face-centred and non-symmorphic, with glide planes in a diagonal
direction. Other letters used include the crystal axis directions a, b, and c. For a
screw axis the part of the space-group symbol denoting the order of such an axis,
for example 4 of P432, is replaced by the same symbol with an added suffix denoting
the size of the translation of the screw axis. Thus P4132 (O7), one of the cubic space
groups isogonal to the point group 432 (0), is primitive with the fourfold rotation
axis replaced by a fourfold screw axis so that a translation of one-quarter of a lattice
vector in that direction is associated with each of the fourfold rotations. The inter-
national notation is not perfect, but is well known, carefully identified (Henry and
Lonsdale 1965), and widely accepted. The original form of this notation is explained
in the old International tables for X-ray crystallography (Bragg, von Laue, and
Hermann 1935a, b) and the later modifications are explained in the new tables
(Henry and Lonsdale 1965); the use of these tables in the identification of space
groups will be discussed further in Chapter 3 (see section 3.5). In this book we always
refer to a point group or space group by its international symbol followed by its
Schonflies symbol in brackets.

Function space operators

If R is the rotational part of a Seitz space-group operator, that is, R is a point-group
operation, then each operator R acts on the points of space r by means of an equation
likeeqn. (1.4.8),

Rr = r . (1.5.4)

If a scalar function/(r) is defined then the movement of the points r will induce a
corresponding change in the function. This new function will be such that the new
function at the transformed point is equal in value to the old function at the original
point. That is to say,

<7(r')=/(0. (1.5.5)

It is customary to write g = Rf, so that to each operator R there is defined a corre-
sponding function space operator R. From eqns. (1.5.4) and (1.5.5) it follows that

Rf(T)=f(R-ir). (1

It is perhaps unfortunate, but nevertheless a fact, that most writers do not use a
separate symbol for R and indeed there is no need for a separate symbol provided
one distinguishes carefully whether the operator is acting on a function or on a vector.
Care must be taken to manipulate function space operators by means of eqn. (1.5.6).
The following examples should act as sufficient warning.

(1.5.6)
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Example 1.5.1. Letr = x'\ + y] + zk, and define/(r) = x,g(r) = y, and/z(r) = z,
the projections of the vector r in the three coordinate directions. Then

(1.5.7)

which is equal tof(yi — x\ + zk) (see Note (iii) to Table 1.4). The projection of the
argument in the direction i is y so that

(1.5.8)

Symbolically we have therefore both C^zi = j and C^f = g. Indeed the matrix
representing the operator C£z with respect to the basis <i, j, k| is the same as the
matrix representing the function space operator C£z with respect to the basis </, <7, h\.
After the warning to be careful this is a result that one would scarcely have dared to
expect to be true.

Example 1.5.2. Let 0 be the azimuthal angle (the angle between the x-axis and
the projection of the position vector onto the xv-plane). Then

(1.5.9)

but for C^z as a function space operator we must write

(1.5.10)

Equation (1.5.10) could have been deduced also from eqn. (1.5.8), because/(r) =
r sin 6 cos (j) and g(r) = r sin 9 sin 4>, and C^z leaves r and 6 unaltered. It should
be noted that, since cos (c/> + ^71) = — sin $, C%z cos 0 =£ cos (C±z </>).

Active and passive space-group operators

As we have already pointed out an active operator is one that moves the points or
position vectors of space, all vectors being referred to a fixed set of axes. The Seitz
space-group operators that we shall use in this book are active and have been denned
by eqn. (1.5.2). The definition is

(1.5.11)

where we use the subscript a to emphasize that we mean an active operator. That is
to say, an active rotation Ra is made first so that r —>- Rar and then a translation + v
is made to the new position vector, the result being (Rar + v). We have already
found the multiplication rule for the active Seitz space-group operators in eqn. (1.5.3),
namely

The inverse of {Ra | v} is

(1.5.12)

(1.5.13)
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A passive operator is one that moves the axes of space, all points of the space and
hence all vector positions being left unmoved, so that after each operation a vector
position is referred to a new set of axes. It is possible to define passive space-group
operators (Johnston 1960). To distinguish them from active Seitz operators we use
square brackets \_Rp v] and the rule of definition corresponding to eqn. (1.5.11) is

If X is an operator, whether active or passive, then along with X there is another
operator X where X is a function-space operator as defined in eqns. (1.5.4)-(1.5.6).
If /(r) is a scalar function of position then

Xf(r) = f(X-lr). (1.5.17)

It is important to realize that (Xf) is the symbol for a function just as/is also the sym-
bol for a function. Equation (1.5.17) is not arbitrary but states the fact that the value
of the transformed function (Xf) at the transformed point Xr is equal in value to/
at the point r. Another point, stressed by Wigner (1959), must again be emphasized,
and that is that if Z = YX then we require Zf = YXf because we want to preserve
an isomorphism between groups of operators and the corresponding groups of
function-space operators. The proof that this is true follows from repeated application
of eqn. (1.5.17). If we write Xf = g then

YXf(r) = Yg(r),
= g(Y~lr) (from eqn. (1.5.17)),
= X f ( Y ~ l r ) (since Xf = g ) ,
= f(X-lY-lr) (from eqn. (1.5.17)),
= /(Z"'r) (since Z = YX),
= Z/(r) (from eqn. (1.5.17) again).

Thus YXf = Zf as required. It is incorrect to operate directly on eqn. (1.5.17) with
Y since it is a numerical relationship between two functions for different values of
their arguments and operators cannot act on numbers (Altmann and Bradley 1965,
Slater 1965a).

(1.5.14)

That is to say a translation of axes by +v is made first so that r —> (r — v), and then a
rotation of the new axes is made, the final result being (Rpr — Rp\), where Rp is now
a passive rotation. The rule for the multiplication of these passive operators is

(1.5.15)

and the inverse of [/?p | v] is

(1.5.16)
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As a first example let us consider the effect of passive space-group operators on a
function \j/(r). From eqn. (1.5.17) it follows that

From the rule for multiplying function-space operators and from eqn. (1.5.19)

A derivation of eqn. (1.5.20) from eqn. (1.5.19) as follows would not be correct:

Equation (1.5.21) is incorrect because, as mentioned above, [Sp \ w] cannot be applied
directly to the numerical relationship [7?p | v]t/f(r) = ifj(Rp

lr + v); but just supposing
it could, then eqn. (1.5.22) is also at fault, and is directly contrary to mathematical
practice, because a function-space operator acts on the whole of the argument of a
function and not just the part r.

The equations corresponding to (1.5.19) and (1.5.20) for active space-group
operators are

Equations (1.5.19) and (1.5.23) plus the fact that Sp = S~l imply that [Sp \ w] =
{Sa | w}"1 a relationship that we should expect to hold between active and passive
operators.

Example 1.5.3.Let {E t} denote the translation t. Then

But if {E t} now acts on the function \J/(r) rather than on the vector r we have

As we have said before, we shall always use active point-group and space-group
operators in this book, except that we shall occasionally illustrate how our theoretical
discussions would have to be modified if one did choose to use passive operators.

(from eqn. (1.5.16)) (1.5.18)
(from eqn. (1.5.14)). (1.5.19)

(1.5.21)

(1.5.22)
(1.5.20)

(1.5.23)

and

(1.5.25)



Symmetry-adapted functions for the point groups

THE aim of this chapter is to derive the linear combinations of spherical harmonics
that belong to the various rows of the matrix representations of the crystallographic
point groups, and to give tables of these functions. Such functions as these have
been given the name, by Melvin (1956), of symmetry-adapted functions because they
have the correct properties required by the representations under transformation by
the group elements. Work on the determination of symmetry-adapted functions has
been done by Altmann (1956, 1957), Bell (1954), Bethe (1929), Betts (1959), Callen
and Callen (1963), Cohan (1958), Cornwell (1969), Flodmark (1963), Flower, March,
and Murray (1960), Mclntosh (1960a, 1963), Melvin (1956), Meyer (1954), Nesbet
(1961), Schiff (1955, 1956), and von der Lage and Bethe (1947). This chapter follows
quite closely the treatment given by Altmann (1957), Altmann and Bradley (1963a, b,
1965), and Altmann and Cracknell (1965). Given a particular matrix representation
of a group the problem is to find all possible bases that are symmetry-adapted to that
representation. Then any function that can be expanded in terms of spherical har-
monics and is to have the transformation properties of a given row of that repre-
sentation, will include only those linear combinations of spherical harmonics that
are symmetry-adapted to have the same transformation properties. We use the term
surface harmonic for such a linear combination of spherical harmonics that is
symmetry-adapted to one row of a point-group representation.

2.1. The matrix elements of the rotation group

During the course of determining symmetry-adapted functions it becomes necessary
to determine how the spherical harmonics transform under various rotations of the
3-dimensional rotation group. In this section we give the formulae and definitions
which are required for determining these transformation properties.

We use the following definition of the normalized spherical harmonics:

(2.1.1)

(2.1.2)

where P,m(cos 0) is the associated Legendre function:

2
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This is not the place for a lengthy discussion of the properties of the spherical har-
monics, these are considered in a very large number of books (for example, Condon
and Shortley (1935), Edmonds (1957), Gel'fand, Minlos, and Shapiro (1963), and
Wigner (1959), to name only a few).

We specify a pure rotation R by its Euler angles ex, ft, and y defined as follows:
we perform first an active rotation by an angle a(0 ^ a < 2n) about the z-axis,
secondly an active rotation by an angle fl(0 s^ [3 ^ n) about the _y-axis, and finally
an active rotation by an angle y(0 «S y < 2n) about the z-axis. Therefore, the first
rotation, through a, sends the point (r, 9, </>) to (r, 0, (j) + a), the second rotation,
through ft, sends the point (r, 9, 0) to (r, 9 + ft, 0) and the third rotation, through y,
sends the point (r, 6, $) to (r, 6, <j> + y) (see Fig. 2.1). Then R(y., ft, y) means the
product of these three rotations in succession. Note that, as always in this book, we
use the active convention; our operators R(a, ft, y) move the points of space and leave
the axes Oxyz fixed. Also, all positive rotations are taken to be in the conventional
anti-clockwise direction.

FIG. 2.1. The spherical polar coordinates (r, 0, 0).

With this definition for the Euler angles the law of transformation of the spherical
harmonics can be derived. The result (Altmann 1957, Wigner 1959) is

where

(2.1.3)

(2.1.4)
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Ineqn. (2.1.4)

(2.1.5)

(2.1.6)

and

where the summation over k goes from the larger of the numbers 0 and (m — n)
to the smaller of the numbers (/ — n) and (/ + m). To every rotation R(z, /?, y) of
the 3-dimensional rotation group there is one and only one matrix @l{R(a, /?, 7)}
for each integer value of/. For any given / the matrices &>l{R(y., /?, y)} form a (21 + 1)-
dimensional representation of the group of rotations R(tx, fi, y) as denned in Definition
1.3.4. Equation (2.1.3) expresses the fact that the functions Y!"(9, 0) (-/ s= m ^ /)
form a basis for this representation. The representations 3$j{R(a., /?, y)} where j is
half an odd integer will be discussed in Chapter 6.

The reduced matrix elements dl(fi)nm satisfy the following symmetry relations:

(2.1.7)

Because of the relations (2.1.7) it is only necessary to evaluate «(/?)„„, in the range
— l^m^l,\m\ < n ^ /. In this range Altmann and Bradley (1963a) have shown
that dl(P)nm is most easily calculated by means of the recurrence relation

with starting values

Equation (2.1.8) is only valid for integer values of/ , m, and n.
The cases & = 0, /J = n, and /? = ^K deserve special attention for two reasons.

First, as shown by Wigner (1959), the matrix representatives for arbitrary /? can be
obtained in terms of those for ft = ?n. Secondly, it is always possible (Altmann
1957) to choose axes so that the ft angle for any rotation in a crystallographic point
group takes one of the values 0, ̂ n, and n. If ft = 0 we have a rotation (a + y) about
the z-axis so that

If j8 = n then, as shown by Altmann (1957), the only non-zero elements are found
when n = — m and

(2.1.11)

(2.1.10)

[2.1.9)

(2.1.8)
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If ß — \n then no simple analytic formula exists for dl(^n)nm. However, tables of
these functions have been compiled by Bradley (1961) for all values of / up to / = 20.

In order to complete the study of the transformation properties of spherical har-
monics under point-group operations we include the extra relation for transformation
under the inversion, 7:

(2.1.12)

A table of the Euler angles for the crystallographic point-group operations introduced
in Chapter 1 is given in Table 2.1.

TABLE 2.1.

Euler angles for the point groups 432 (O) and 622 (i>6).

(a) 432 (O) (b) 622 (D6)

Element a ß y Element a ß y Element a ß y

E 0 0 0 C¿ 1-.  ¿.  ITC E 0 0 0
C2x n n O Ci, 0 |.  .  C¿ |-.  .  .
С2у 0 ж .  C¿ |. .  .  .  CJ §.  .  .
. 22 ж .  .  СЛх |.  {n 2-.  C2 7t .  .
. 3

+, 2-.  1-.  .  Q,  .  1-.  .  CJ fie .  .
. 3

+2 |. .  i* 7t .; .  ITI .  .  Q |. .  .  .
.  .*3 Т.П JTC .  . 2.  2-71 .  .  Q, .  .  .

. 3

+

4 |. .  |. .  .  . 2.  |. .  .  .  С'22 |. .  .  .
. 31 .  j71 i71 ^2.  .  |.  .  . 23 .' .  .  .
. 32 0 ¿.  |. .  C2¿ |.  |.  |. .  . 21 0 .  .
CJ3 0 ^.  2.  . 2.  0 ^.  .  . 2'2 §7t .  .
. 3"4 .  jTt |. .  C2f ITC jH |.  C 23 fie .  0

Notes to Table 2.1.
(i) The symmetr y operation s were defined in Chapte r 1 and are active.

(ii) The Euler angles are defined by a rotatio n a of the point s of space about the z-axis (positive being defined so
tha t a poin t on the x-axis moves toward s the >'-axis ) followed by a rotatio n ß about the _y-axis and followed by a
rotation у about the z-axis. a, ß, and у are restricte d so tha t 0 ^ a < 2.. , .  < ß ^ . , and 0 < у < 2.. .

2.2. The generation of symmetry-adapted functions

In this section we give genera l rules for obtainin g symmetry-adapte d function s tha t
belon g to the irreducibl e representation s of any finite group.

Suppose tha t G is a group of order |G| with element s R, S,. . ., etc. Suppose furthe r
tha t its reps are .{ .  —> Dl(R)}, and are known . Her e D'(A) is the matri x representa -
tive of R and is of dimension , say, d¡. The problem is to find a basis (ф\, ф1

2,. .., ф1^
such that

(2.2.1)

E 0 0 0
C2x 7.  .  O

C2y .  ж .
C 2z .  .  .
C3

+, fr fr O
C3

+

2 |.  ¿. .  .

. 3".  irr ITT .
CJ 4 ITC ¿. .  O

£31 к \ъ т.*-
C3-2 O ITT ITC
C3-3 O in  ITC
C 34 .  1..  ITC

C4

+

x ^ ^ |TCc;y .  |.  o
C¿ |.  .  .
С4х |. .  ,.  .. .
.; ,  .  ¿. .  .
с;г |тс о о
С2а ¿.  .  .
С2Ь |. .  .  .
. 2.  .  |.  .
. 2,  ITT ).  |. .
. 2.  0 ^.  .
. 2/  |. .  |. .  ITC
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for all R e G. <^s is then a symmetry-adapted function belonging to row s of the rep
P. Actually the problem is not to find just one basis, but a complete set of bases such
that the totality of functions </4 (for all s and all z) forms a complete set in the linear
space V in which the realization of the group operators act. The theory of the deter-
mination of such functions is a straightforward application of group theory.

We may define the elements Wts of the group ring as follows:

(2.2.2)

where the sum is over all Re G.

T H E O R E M 2.2.1. If4> is an arbitrary function of V such that W1
SS4> / 0 (s is fixed and

is a number in the range 1 to d^) then the functions Wls<$> = </>j, t = I to deform a
basis for the rep P.

</> may then be regarded as a generating function of the symmetry-adapted function
(j)'t and Wl

ss is a projection operator. The proof of this theorem is to verify that eqn.
(2.2.1) holds and it makes use of the unitary nature of the matrices D'(-R). The proof
is as follows.

Let S e G. Then, by definition,

(2.2.3)

Take S under the summation sign and write SR = T, then as R runs over all the group
elements so does Tand R = S~1T. Equation (2.2.3) then becomes

since P is both unitary and a representation. Thus

(2.2.4)

(2.2.5)

and since S was an arbitrary element of G eqn. (2.2.1) is verified and the theorem is
proved.

The power of this theorem for our purpose is immediate. All that we have to do is
to vary 0 in V and to apply the operators W\s systematically on each 4> until all re-
quired base functions $j have been obtained. The process is then repeated for each
representation P and the problem is then solved in principle. In practice the process
may well be lengthy and laborious. Indeed unless Rcj) can be evaluated analytically
for all 4> e V the process is interminable.

In our case G is a point group, and the linear space V is the Hilbert space spanned
by the spherical harmonics Yf(6, (f>). For the cyclic and dihedral groups the rotations
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R(OL, ft, y) are such that ft = 0 or n; for such rotations R(a, ft, y) Y™(0, </>) can be
evaluated analytically (see eqns. (2.1.10) and (2.1.11)). Hence for the cyclic and
dihedral groups complete sets of base functions can be obtained. For some elements
of the cubic groups, however, ft is equal to |TI (see Table 2.1), and so we can calculate
R(y., ft, y) Y™(9, </>) only for those / values for which dl(^n) is known. In fact, surface
harmonics belonging to the representations of the cubic groups have been evaluated
only for / values up to / = 12. But to have base functions up to / = 12 is sufficient for
all practical purposes at the present time.

For the sake of completeness, we quote two other theorems concerning the
operators Wt

l
s.

THEOREM 2.2.2

(2.2.6)

THEOREM 2.2.3

(2.2.7)

where the dagger denotes the adjoint operator in the space V.
The proofs of these theorems are given, for example, by Altmann (1962).

2.3. Application to the point groups

Suppose that we are given a point group G with elements R, S,. . ., and a matrix
representation D'(^), D'(5), . . . . For the generating functions we take the spherical
harmonics Y^(Q, </>). We require to evaluate W\s Y?(8, </>). Using eqn. (2.2.2) we obtain

(2.3.1)

In order to proceed further we need an expression for RY™(6, </>). Now R is either a
proper rotation or a product of the inversion, /, with a proper rotation, that is, an
improper rotation. If R is a proper rotation then we find its Euler angles (a, ft, y)
(see Table 2.1), and evaluate RY™(0, </>) directly by means of eqn. (2.1.3). On the other
hand, if R is improper we express R — IQ and use the Euler angles (a, ft, y) for the
proper rotation Q, evaluating QY™(9, $) by means of eqn. (2.1.3); to complete the
evaluation of RY?(B, (/>) we use eqn. (2.1.12) for the transforms of IY?(6, <£). This
simply adds an extra factor ( — 1)' if R is an improper rotation.

To summarize, eqn. (2.3.1) becomes

(2.3.2)
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where we sum over all the operations R of the group and, when R is improper, we
take in the right-hand side the quantities corresponding to the associated proper
rotation Q. Also PR is unity when R is proper and ( — 1)' when R is improper.

Before tabulating the results for all the point groups we deal with one further
theoretical problem. This is that the surface harmonics generated by means of eqn.
(2.3.2) for a given row of a given rep, that is for fixed / and t, are not necessarily
orthogonal. For practical purposes it is desirable that any two bases for the same
representation should consist of mutually orthogonal functions. All the expansions
given in the tables that follow have been orthogonalized with the help of Theorems
2.2.2 and 2.2.3.

2.4. Symmetry-adapted functions for the crystallographic point groups

In Table 2.2 we give the character tables of the (single-valued) reps of the 32 crystal-
lographic point groups. The reps are labelled in the notation of Mulliken (1933)
which we shall follow in this book, but the F labels, given for example by Koster,
Dimmock, Wheeler, and Statz (1963), are also included for reference. In Table 2.3
we give the matrices that we use for the degenerate point-group reps. The method of
section 2.3 can be applied to the determination of the surface harmonics for the
cyclic, dihedral, and cubic point groups and these functions are given in Tables 2.4-
2.6, respectively (Altmann 1957, Altmann and Bradley 19636, Altmann and Cracknell
1965). We give a few examples of the interpretation of these tables of surface har-
monics.

T A B L E 2.2

Character tables for the crystallographic point groups
(<a = exp (27ri/3))
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Notes to Table 2.2

(i) The names of the point groups are given in both the international and Schonflies notations. Sometimes two
or three point groups have identical characters; such groups are tabulated together.

(ii) For each point group the names of the representations appear in the column headed by the name of the point
group. The standard Mulliken notation for the representations is used (Margenau and Murphy 1956, Mulliken 1933).
The T notation of Koster, Dimmock, Wheeler, and Statz (1963) is also included for reference, though we shall not
actually use it in this book.

(iii) For each point group the names of the operators appear in the row begun by the name of that group. They
are to be identified with respect to axes Oxyz by means of Figs. 1.1-1.4 and Tables 1.2-1.6. Note that we have
taken the first setting of the International tables for X-ray crystallography (Henry and Lonsdale 1965) for the point
groups of the monoclinic system; the z-axis (being the polar axis) is more appropriate than the _y-axis in the study
of harmonic functions.

(r\0 We have not given the character tables of those groups that are direct products of some other point group
with T (Cf); the character tables of these direct product groups can be constructed as follows. If a group G' is given
as a direct product of the form G ® T then the reps of G' fall into pairs; each pair Afg and Mu arise out of a single
rep M of G and the characters of Mg and Mu obey the following rules. If R' = RI then for all R e G the character
of R in Ms and Mu is equal to the character of R in M; the character of R' in Ma is equal to the character of
R in M, but the character of R in Mu is minus the character of R in M. In the r notation of Koster, Dimmock,
Wheeler, and Statz (1963), if F = M in G, then F+ = Me and F~ = Mu in G'.

(v) By using Theorem 1.3.9 one can easily show that all the point-group reps are of the first kind, except reps with
complex characters and these are of the third kind.

(vi) The Kronecker products of the various reps of each point group and the compatibilities between the reps of
a point group and those of its subgroups are given in the tables of Koster, Dimmock, Wheeler, and Statz (1963).

T A B L E 2.3

Matrices for the degenerate representations of the crystallographic point groups
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Key:

Trigonal and hexagonal groups

77ie doubly-degenerate representations, E, of the cubic groups

432 (O), 43m (r,): E, C2,, C2)1, C2z £
432 (O), 43m (T,): C3

+,, C3
+

2, C^,, C3
+

4 a
432 (O), 43m (Td); C^, CJ2, C3'3, CJ4 /?
432(0): C2a, Ct, C;z, C2bl ^
43>m(Td): ada, 54z, S^, adh j

432 (O): C^, C^, C2/, C2i|
43m (rd): S^, S^, irdf, add j ^

432(0): c:y) Q,, C2c, C2J v

43m (Td): S^y, S£y, adc, ade j

See key to trigonal and hexagonal groups, above, for the identification of the matrices.
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The threefold degenerate representations of the cubic groups

Given a representation of 432 (O) or 43m (Ta), the representatives for the operations of these groups that do not
belong to 23 (T), which are listed under the headings 432 (O) and 43m (Td) in the first part of the table, are obtained
as follows: take the corresponding matrix from the first part of the table and post-multiply it with the matrix that
appears under the representation chosen at the bottom of the table.

23 (T), 432 (O) 432 (O) 43m (r,)
33m (/"„}

n o o]
E C2a ada 0 1 0

Lo o i J
F l 0 01

c2x QZ s;, o - i o
Lo o -i J

r - i o o]
c2y c;z s4z 0 1 0

L o o - iJ

r-i o 01
C2I Cu aib 0 - 1 0

L 0 0 i j

r o i ol
cj, ci s4x 0 0 1

L I o o j
r o i oi

c32 c^ s;x o o - i
L - i o o j
r o - i ol

C;3 C2f adf 0 0 1
L-l 0 O j

r o - i o l
C3-4 Cld odd 0 0 - 1

L 1 0 O j

ro o n
CJ, Q, s:y 1 0 0

Lo i o j
r o o - i i

CJ2 Ci, 54v 1 0 0
Lo -i o j

r o o - i ]
CJ3 C2c adc - 1 0 0

L 0 1 OJ

F 0 0 1]
C3

+
4 C2e ad, -1 0 0

L 0 -1 O j
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432 (0)

C2a

43m (Td)

r°
"*, 1

L O

T,

1
0
0

°1

°
- l j

r °-'L o

T*
— 1

0
0

°10
1 J

Note to Table 2.3
See Note (iv) to Table 2.2 concerning direct product groups. The note applies here with 'matrix representative'

substituted for ' character' wherever the word ' character' appears.

T A B L E 2.4

Surface harmonics for the cyclic groups

m (Cu)

A'

A"

I

0
1
2
1

m mod 2

0
1
1
0

6 (C3/j

A'

A"

1E'

2E'

1E"

*E"

I

0
3
1
4
1
2

i
2
2
3
2
3

m mod 6

0
3
0
3
1

__2
i
2
1

_ 2
-1

2

T(Q

As

A»

I

0
1

2(C2)

A
B

m mod 2

0
1

3(C3)

A
1E
*E

m mod 3

0
1
2

4(C4)

A
B
1E
2E

mmod 4

0
2
1
3

4(54)

A

B

1E

2E

I

0
3
1
2
1
2
1
2

m mod 4

0
2
0
2
1

-I
-1

1
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6(C6)

A
B

'£,
2E,
1E2
2E2

m mod 6

0
3
4
2
1
5

./Vo/e-s ;o Table 2.4
(i) The symmetry assignments for the surface harmonics that are given in this and the two following tables

depend on the choice of axes. We always use right-handed axes and we have already indicated in Figs. 1.1-1.3 how
they are oriented with respect to the symmetry elements of the groups.

(ii) The spherical harmonics Y™(d, </>) are denned by eqns. (2.1.1) and (2.1.2). We also use the following two
functions for m ^ 0:

(2.4.1)

(2.4.2)

which are real and have (^-dependence cos (m<j>) and sin (m</>) respectively.
(iii) The spherical harmonics that appear in Tables 2.4-2.6 (see Note (ii)) are normalized so that the integral

(2.4.3)

This implies that Y™'c{8, </>) and Y™-*(6, </>) are also normalized to unity.
(iv) In this table and Table 2.5 / is given mod (+ 2), except that if no value of / is specified it means that there is

no restriction on /; by / mod ( + 2) we mean that multiples of 2 can be added to, but not subtracted from, the
value of / given.

(v) Surface harmonics belonging to the reps Mg and Mu of a direct product group G' = G ® T (see Note (iv)
to Table 2.2) are those of even and odd order in /, respectively, that belong to the rep M of G. Because of this simple
rule the harmonics for such groups are not separately tabulated.

(vi) By m = 1, mod 2 (e.g. rep B of 2 (C2), Table 2.4), we mean the succession of values m = \, — 1, 3, -3, 5,
-5,.. . .

TABLE 2.5

Surface harmonics for the dihedral groups

222 (02)

A,

B,

B2

B,

1 mmod( + 2)

0
3
2
1
2
1
2
1

0
2
2
0
1
1
1
1

0-dep

c
s
s
c
c
s
s
c

mml (C2l,)

A,
A2

B,
B2

m mod ( + 2)

0
2
1
1

0-dep

c
s
c
s
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32 (D3)

A,

A2

E

! m mod ( + 6) 0-dep

0
4
3
7
1
3
4
6
1
2
3
2
5
4
5
6

0
3
3
6
0
3
3
6
1
1
2
2
4
4
5
5

c
s
c
s
c
s
c
s
(c,s)
(s, -c)
(s, c)
(c, -s)
(s, -c)
(c,s)
(C, -.5)

(s,c)

42m (D2d)

A,

Az

S,

B2

E

1 m mod ( + 4) 0-dep

0
3
4
3
2
5
2
1
1
2
3
4

0
2
4
2
2
4
2
0
1
1
3
3

c
s
s
c
c
s
s
c
(c,u
(c,
(s,

s)
c)

-*)
-c).

3m (C3v)

A,
A^
E

m mod ( + 3)

0
3
1
2

$-dep

c
j
(C,5)

(C, -S)

422 (D4) /

AI 0
5

^2 4
1

B, 2
3

#2 2
3

£ 1
2
3
4

m mod ( + 4)

0
4
4
0
2
2
2
2
1
1
3
3

0-dep

c
s
s
c
c
s
s
c
(c, s)
(s, -
(c, -
(s,c)

c)
s)

4mm (C4l))

Al

A2

B,
B2

E

m mod ( + 4)

0
4
2
2
1
3

</>-dep

c
*
c
s
(c,s)
(c, -s)

622 (Z>6)

A

A2

B,

B2

El

E2

/

0
7
6
1
4
3
4
3
1
2
5
6
2
3
4
5

m mod ( + 6)

0
6
6
0
3
3
3
3
1
1
5
5
2
2
4
4

(/>-dep

c
i
5
c
s
c
c
s
(c,s)
(S, -c)
(c, -s)
(s,c)
(c, s)
(s, -c)
(c, -s)
(s, c)

6mm (C6l))

^i
^2

#1
B2

E,

E2

m mod ( + 6)

0
6
3
3
1
5
2
4

0-dep

c
s
c
s
(c,s)
(c, -s)
(c,s)
(c, -S)

65
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§2m (D3h)

A',

A'2

Al

A2

E'

E"

1 mmod( + 6) 0-dep

0
3
6
3
4
7
4
1
1
2
4
5
2
3
5
6

0
3
6
3
3
6
3
0
1
2
4
5
1
2
4
5

c
c
s
s
s
s
c
c
(c,s)
(c, -s)
(c,s)
(c, ~s)
(c,s)
(c, -s)
(c,s)
(c, -s)

Notes to Table 2.5
(i) See Notes (i)~(v) to Table 2.4 which also apply to Table 2.5. The harmonics are tabulated in the same way

as for the cyclic groups, with the extra convention that the superscripts c and * of the allowed harmonics appear
under the heading '</>-dep'.

(ii) We use a slightly different notation for m from that used in Table 2.4. By m = 1, mod ( + 2) (e.g. rep B2 of
222 (D2)), we mean the succession of values 1, 3, 5, . . ., that is, multiples of 2 can be added to, but not subtracted
from, the value of m given.

(iii) The symbol (c, s) denotes a degenerate basis {Y"-c(9, (f>), K,m'!(0, </>)}. Note that (c, -s), for instance, means
{¥"•'(9, <t>), — y,m's(0, </>)}. The bases are given as row vectors abbreviated in the table with symbols of the form
(c, s). Their transformation properties are given by post-multiplying them by the matrices listed in Table 2.3, the
first function belonging to the first row of the representation and the second function to the second row.

T A B L E 2.6

Surface harmonics for the cubic groups

One-dimensional real representations of the cubic groups

23
(T)

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A

ml
(Th)

A,
Au

Ag

A*
As

Au

Aa

Au

Au

A,
A,
Aa

A9

Aa

Aa

43m
(Td)

A,
A,
At

At

A2

A,
A,
A,
A2

Al

A2

A,
Al

At

A2

432
(0)

A,
A2

At

A,
A2

A2

A,
A2

A,
Al

A2

A2

A,

At

A2

m3m
(O*)

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A

ig
2u

ig
IB
29
2u

ig
2u

lu

IB
2g
2u

ig

IB
2g

/

0
3
4
6
6
7
8
9
9

10
10
11
12

12
12

0-dep

-
s
c
c
c
s
c
s
s
c
c
s
c

c
c

Surface harmonic

1(0)
1(2)
0-76376261583(0)
0-35355339059(0)
0-82915619759(2)
0-73598007219(2)
0-71807033082(0)
0-43301270189(2)
0-84162541153(4)
0-41142536788(0)
0-80201568979(2)
0-66536330928(2)
0-69550266594(0)

0-55897937420(4)
0-21040635288(2)

+
-
-
+
+
-
-
-
+
+
+

-
-

0-64549722437(4)
0-93541434669(4)
0-55901699438(6)
0-67700320038(6)
0-38188130791(4)
0-90138781887(6)
0-54006172487(8)
0-58630196998(4)
0-15728821740(6)
0-45927932677(6)
0-31412556680(4)

0-80626750818(8)
0-82679728471(6)

+ 0-58184333516(8)

- 0-69783892602(8)
- 0-57622152858(10)
+ 0-58851862049(10)
+ 0-34844953759(8)
+ 0-54422797585(12)
+ 0-19358399848(12)
+ 0-52166600107(10)
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Complex representations of 23 (T) and m3 (Th)

The harmonics of 2E, 2Eg, and 2Ea are the complex conjugates of the expansions listed in this table.

23
(T)

'E
1E
'£•
'£
'£•
'£

'£•

'£•

'£•

'£

'£

'£

'£

'£•

m3
(r»)

'*.
'*.
'£„
'5,
'£„
'5,

'£,

'£„

^
'*.

'£„

'£„

'*.

'*.

/

2
4
5
6
7
8

8

9

10

10

11

11

12

12

(/>-dep

c
c
s
c
s
c

c

s

c

c

s

s

c

c

Surface harmonic

0-70710678119(0) - 0-707106781 19(2)i
0-45643546459(0) - 0-54006172487(4) + 0-7071 0678 119(2)i
0-70710678119(2) - 0-707106781 19(4)i
0-66143782777(0) + 0-25(4) - {0-39528470752(2) + 0-58630196998(6)}i
0-47871355388(2) - 0-52041649987(6) + 0-707106781 19(4)i
0-49212549213(0) - 0-27860539791(4) - 0-42448973163(8)

+ {0-46010167179(2) + 0-53694175812(6)}i
0-59115341967(4) - 0-38799179683(8)

+ {0-53694175812(2)- 0-46010167179(6)}i
0-38188130791(4) + 0-59511903571(8)

+ {0-63737743920(2)+ 0-30618621785(6)}i
0-64448784576(0) + 0-18714045988(4) + 0-22274170005(8)

- {0-31464779160(2) + 0-34379897770(6) + 0-53 17885201 6(1 0)}i
0-54139029200(4) - 0-45485882615(8)

- {0-28174844083(2) - 0-60780956826(6) + 0-22624178400(10)}i
0-52786914414(2) - 0-28945394530(6) - 0-37090508249(10)

+ {0-35023356693(4) + 0-61427717571(8)}i
0-55744745362(6) - 0-43503142007(10)

+ {0-61427717571(4) - 0-35023356693(8)}i
0-50807284993(0) - 0-21500378261(4) - 0-23849688325(8) - 0-37249777088(12)

+ {0-36487351840(2) + 0-38689303336(6) + 0-46602692660(10)}i
0-49820374066(4) + 0-23953506879(8) - 0-44092627911(12)

+ {0-58713873906(2) - 0-09228708327(6) - 0-383081 18638(10)}i

43m
(T,)

E

E

E*

E

E*

E

E

E*

432
(0)

E

E

E

E

E

E

E

E

m3m
(Ok)

E9

E,

Ea

E*

£u

Eg

Ea

EU

I

2

4

5

6

7

8

8

9

0-dep

c
c
c
c
s
s
c
c
s
s
c
c
c
c
s
s

Surface harmonic

1(0)
1(2)
0-64549722437(0) -
-H2)
1(4)
-1(2)
0-93541434670(0) +
0-55901699438(2) +
1(4)
0-67700320039(2) -
0-69597054536(0) -
-0-65068202432(2)
0-83601718355(4) -
-0-75935031654(2)
0-54006172487(4) +
-0-90138781887(2)

0-76376261583(4)

0-35355339059(4)
0-82915619759(6)

0-73598007219(6)
0-39400753227(4) -
- 0-75935031654(6)
0-54870326117(8)
+ 0-65068202432(6)
0-84162541153(8)
- 0-43301270189(6)

0-60031913556(8)

Two-dimensional representations of 43m (Ta), 432 (O) and m3m (Oh)

For the representations marked with an asterisk the partners must be interchanged and the sign of one of them
reversed.
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Two-dimensional representations of 43m (Td), 432 (O) and m3m (Oh)—(continued)

43m 432
(Td) (0)

E E

E E

E* E

E* E

E E

E E

m3m
(0,)

E*

Es

Eu

£„

Es

E,

I

10

10

11

11

12

12

0-dep

c
c
c
c
s
s
s
s
c

c
c
c

Surface harmonic

0-91144345226(0) +
0-4449791 7425(2) +
0-76564149349(4) -
0-39845246619(2) -
0-49530506035(4) +
0-74651970280(2) -
0-86871911295(4) -
0-78834974923(6) -
0-71852351504(0) -

-0-51600907827(2)
0-70456648687(4) +
-0-83033956777(2)

0-26465657643(4) +
0-48620517700(6) +
0-64326752090(8)
0-85957253477(6) +
0-86871911295(8)
0-40934969512(6) -
0-49530506035(8)
0-61522733432(10)
0-30406126533(4) -

- 0-54714937497(6)
0-33875374295(8) -
+ 0-13051364479(6)

0-31500433312(8)
0-75206253752(10)

0-31995419931(10)

0-52453899801(10)

0-33728552687(8)
- 0-52679139953(12)

- 0-65906160002(10)
0-62356392392(12)
+ 0-54175860926(10)

23
(T)

T

T

T

T

T

T

T

T

T

T

T

T

T

T

m3
(TJ

Ta

TJ o

T,

Ta

T,

Ts

TV

TV

Tu

Ts

T9

Ts

Tu

Tu

43m
(Td)

T2

T2

T2

Tl

T2

Tl

T2

T,

T2

T2

T,

T2

T2

Tt

432
(0)

T,

T2

T,

T2

T2

T,

T,

T2

T,

T2

T,

T2

T,

T2

m3m
(00

7\»

Tz,

Tlu

T2u

T2<l

T^

Tla

T2u

Tlu

T2,

rig

T29

TIU

T2a

I

1

2

3

3

4

4

5

5

5

6

6

6

7

7

0-dep

c, s
c
s, c
s
c, s
c
c, s
c
s, c
s
s, c
s
c, s
c
c, s
c
c, s
c
s, c
s
s, c
s
s, c
s
c, s

c
c, s

c

1(1)
1(0)

1(1)
1(2)
0-61237243570(1)

-1(0)
+ 0-79056941504(1)

1(2)
0-35355339059(1)

-1(2)
+ 0-93541434669(1)

1(4)
0-48412291828(1)
1(0)

±0-66143782777(1)
1(2)
0-57282196187(1)
1(4)
0-19764235376(1)
1(2)

+ 0-43301270189(1)
1(4)
0-87945295497(1)
1(6)
0-41339864235(1)

-1(0)
+ 0-57409915846(1)

1(2)

Surface harmonic

+ 0-79056941504(3)

- 0-61237243570(3)

+ 0-93541434669(3)

- 0-35355339059(3)

+ 0-52291251658(3) +

- 0-30618621785(3) +

+ 0-79549512883(3) +

+ 0-56250000000(3) +

- 0-68465319688(3) +

+ 0-46351240544(3) +

+ 0-42961647140(3) +

+ 0-41984465133(3) +

0-70156076002(5)

0-68465319688(5)

0-19764235376(5)

0-80282703617(5)

0-58630196998(5)

0-10825317547(5)

0-47495887980(5)
+ 0-64725984929(7)

0-07328774625(5)
- 0-69912054129(7)

Three-dimensional representations of the cubic groups



23
(T)

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

m3

(Tk)

Ta

Tu

T9

Ts

Ta

T,

TV

Tu

Tu

Tu

Tu

Ts

T,

Ts

Ts

Tg

43m
(Td)

T2

T,

T2

Tl

T2

r,

T2

Tl

T2

T,

T2

TI

T,

T2

T,

T^

432
(0)

T,

T2

T2

T,

T2

T!

T,

T2

T,

T2

T,

T2

T!

T2

T,

T2

m3m I
(Ok)

Tiu 7

T2u 1

T29 8

Tlg 8

T29 8

r,g 8

Tla 9

T2a 9

Tla 9

T2u 9

Tla 9

T2a 10

rls 10

T2a 10

Tls 10

TIS 10

i/>-dep

c, s

c
c, s

c
s, c

s
s, c

s
5, C

s
s, c

s
c, s

c
c, s

c
c, s

c
c, s

c
c, s

c
s, c

J
s, c

s
s, c

s
s, c

s
s, c

s

Surface harmonic

0-53855274811(1) + 0-10364452470(3) - 0-78125000000(5)
+ 0-29810600044(7)

-1(4)
+ 0-45768182862(1) - 0-79272818087(3) + 0-39836089950(5)

- 0-05846339667(7)
1(6)
0-13072812915(1) + 0-38081430022(3) + 0-59086470004(5)

+ 0-69912054129(7)
-1(2)
+ 0-27421763711(1) + 0-60515364784(3) +0-33802043208(5)

- 0-66658528149(7)
1(4)
0-45768182862(1) + 0-47134697278(3) - 0-70883101389(5)

+ 0-25674494883(7)
-1(6)
+ 0-83560887232(1) - 0-51633473881(3) + 0-18487749322(5)

-0-03125000000(7)

1(8)
0-36685490256(1) + 0-37548796377(3) + 0-39636409044(5)

+ 0-44314852503(7) + 0-60904939218(9)
1(0)

±0-51301422373(1) - 0-42961647140(3) + 0-25194555463(5)
+ 0-05633673868(7) + 0-69684697253(9)

1(2)
0-49435287561(1) + 0-13799626354(3) - 0-39218438744(5)

+ 0-67232906169(7) + 0-36157613954(9)
1(4)

+ 0-45768182862(1) + 0-29810600044(3) + 0-60515364784(5)
- 0-56832917123(7) + 0-11158481920(9)

1(6)
0-38519665736(1) + 0-75268075591(3) + 0-50931268791(5)

± 0-15944009088(7) + 0-01657281518(9)
1(8)
0-09472152854(1) + 0-27885262965(3) + 0-44538102543(5)

+ 0-57486942301(7) + 0-62002413795(9)
1(2)

±0-19515618745(1) - 0-48613591207(3) ± 0-49410588440(5)
- 0-09110862336(7) + 0-68785502197(9)

1(4)
0-31049159296(1) + 0-53906250000(3) - 0-01746928107(5)

± 0-69255289805(7) + 0-36479021288(9)
1(6)

+ 0-46456464835(1) - 0-31560952932(3) + 0-70572436192(5)
- 0-42100604954(7) + 0-09631896880(9)

1(8)
0-80044772018(1) + 0-54379714235(3) + 0-24319347525(5)

± 0-06594508991(7) + 0-00873464054(9)
1(10)

SYMMETRY-ADAPTED FUNCTIONS FOR THE POINT GROUPS 69

Three-dimensional representations of the cubic groups—(continued)
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Three-dimensional representations of the cubic groups—(continued)

23
(T)

T

T

T

T

T

T

T

T

T

T

T

T

ml

(T,)

Ta

Ta

Ta

T»

Tu

Ta

Ta

T,

Tg

Ta

Ts

T9

43m
(Tt)

T2

T,

T^

7",

T2

T,

T2

T,

T2

T,

T2

T,

432
(0)

T,

T2

T,

T2

T,

T2

T2

T,

T2

T,

T2

T,

m3m
(0*)

Tlu

7"2u

Tla

TI»

r,.

T2u

TIS

Ti,

T29

Tlg

T2,

Tls

/

11

11

11

11

11

11

12

12

12

12

12

12

<£-dep

c, s

c
c, s

c
c, s

c
c, s

c
c, s

c
c, s

c
s, c

s
s, c

s
s, c

s
s, c

s
s, c

s
s, c

s

Surface harmonic

0-33321251269(1) + 0-33846027668(3) + 0-35033967021(5)
+ 0-37296505975(7) + 0-41975832571(9) + 0-57997947393(11)
-1(0)
+ 0-46765007670(1) + 0-41655170126(3) + 0-31014124452(5)
+ 0-13689999148(7) + 0-13594928559(9) - 0-68875008419(11)
1(2)
0-45637974397(1) + 0-23534953643(3) - 0-13435455877(5)

+ 0-49510851971(7) - 0-55722625444(9) + 0-40329075444(11)
-1(4)
+ 0-43552935783(1) - 0-04764183952(3) ± 0-52272828294(5)
- 0-32425698664(7) + 0-63603688807(9) - 0-15847416019(11)
1(6)
0-40022386009(1) + 0-39401846317(3) - 0-40784785677(5)

+ 0-65553753643(7) - 0-29501240333(9) + 0-03832307983(11)
-1(8)
+ 0-33485130540(1) - 0-70641320968(3) + 0-56871666444(5)
- 0-24930093301(7) + 0-05695963504(9) - 0-00458048414(11)
1(10)
0-07271293152(1) + 0-21528718442(3) + 0-34870255999(5)

+ 0-46435521203(7) + 0-54718531932(7) + 0-55833076742(11)
-1(2)
+ 0-14842464994(1) + 0-39257812500(3) + 0-48401456158(5)
+ 0-34122999866(7) + 0-07446249039(9) - 0-68381274394(11)
1(4)
0-23130311098(1) + 0-49003980203(3) + 0-27404717188(5)

± 0-30237819269(7) - 0-58930833781(9) + 0-43879508023(11)
-1(6)
+ 0-32928552212(1) + 0-45497333155(3) ± 0-23408184792(5)
- 0-54296875000(7) + 0-55492127556(9) - 0-16438769854(11)
1(8)
0-46435521203(1) + 0-20164537722(3) - 0-65705604098(5)

+ 0-52110934256(7) - 0-19834078136(9) + 0-03311684562(11)
-1(10)
+ 0-77144481702(1) - 0-55833076742(3) + 0-28725880996(5)
- 0-10066649535(7) + 0-02196723023(9) - 0-00239207983(11)
1(12)

Notes to Table 2.6
(i) See Notes (i)-(iii) to Table 2.4, which also apply to Table 2.6.

(ii) Unlike Tables 2.4 and 2.5 the value o f / alongside a given harmonic is the only one that can be used and it
cannot therefore be modified.

(iii) The bases are to be understood as row vectors. Their transformation properties are obtained by postmultiply-
ing them with the matrix representatives listed in Table 2.3. The first function belongs to the first row of the repre-
sentation, the second function to the second row, and so on.

(iv) A surface harmonic such as aY^-c(9, 0) + bY"'c(d, 4>) + cYf-c(0, <j>) is given as follows: the values of / and
the superscript c (or s) appear under the headings / and </>-dep, respectively. The rest of the expansion appears on the
same line in the form a(m) \ b(n) + c(p). Degenerate representations are given in several lines, and they must be



E listed in Table 2.3.
It is instructive to consider the relation between crystal field theory and the functions

given in Tables 2.4-2.6. Crystal field theory, as initiated by Bethe (1929), concerns
itself with restricting the group of the Hamiltonian from the full rotation group,
0(3), in the case of an atomic electron to one of the crystallographic point groups
for an electron in a crystal. This restriction, or subduction as it is sometimes called
(Altmann and Cracknell 1965, Lomont 1959), often leads to a splitting of the atomic
energy levels. An electron in an atom is commonly assumed to experience an electro-
static potential which possesses spherical symmetry and, consequently, the angular
part of the electron's wave function, neglecting spin, belongs to one of the irreducible
representations of 0(3), namely 3>'{R(a, ft, y)}, where / is an integer. S>l{R(cn., ft, j)}
is (21 + l)-fold degenerate and the basis function of 3ll{R(a., /?, y)} is a vector whose
(21 + 1) components are the spherical harmonics Y™(Q, </>) ( — l^m^l). The
energy level corresponding to these wave functions is thus (21 + l)-fold degenerate.
On reducing the symmetry of an electron's environment from that of 0(3) to that of
one of the point groups, G, this (21 + l)-fold degenerate energy level generally splits
into several levels which now have to be labelled by the reps of G. Complete tables of
these splittings are given by various authors (see, for example, Koster, Dimmock,
Wheeler, and Statz (1963), Lomont (1959)), and are reproduced in Table 2.7.

T A B L E 2.7

Compatibility tables for reps o/O(3) and point-group reps

I

I

1

(21

(Ct)

+ I) A
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understood as row vectors, the successive lines corresponding to the successive columns of the vector. In the 3-dimen-
sional representations the first two partners are given in one line: the first letter under '^-dep' and the upper sign
in the expansion corresponding to the first partner. The expansions are given up to 11 decimal places and, as explained
in the text, are given only up to / = 12. The expansions given are normalized to unity and for every representation
they have been orthogonalized one to another.

(v) The surface harmonics for Alg of m3m (Oh) up to / = 30 are given by Mueller and Priestley (1966).

Example 2.4.1. We consider the rep A of 6 (C3h). From Table 2.4 the surface
harmonics belonging to it are

Example 2.4.2 For the Representation E of

Span the representation
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/

0
1

$2» + >.

2(C2)

A
A + 2B

m (Clt)

A'
2A' + A"

= In reg + S>'' (i = 0, 1)

1 222 (O2) mm2 (C2v)

0 A A!
1 B! + B2 + B3 ,4 , + .B, + S2

S2"" = «reg + @A 01 = 0,1)

/

0
1
2
3

4(C4)

^
^ + '£ + 2£

^ + 2B + '£• + 2£
4 + 2B + 2'£ + 22£

4(S4)

^
B + 1E + 2E

A + IB + '£ + 2E
2A + B + 2'£ + 22£

®4" + i = 2n reg + ®A (/I = 0, 1, 2, 3)

/

0
1
2
3

422 (£)4)

A,
A2 + E

At + B, + B2 + E
A2 + B, + B2 + IE

4mm (C4u)

-4,
Al + E

AI + B! + B2 +
^! + B! + £2 +

@*n+i- = nreg + ®* (;, = 0, 1

E
2E

42m CD2d)

A,
A,

, 2 , 3 )

A,
B2 + E

+ B! + B2

+ A2 + B2

+ E
+ 2E

72

ffl'

I

0
1 A
2 A -

1 + ;- = 2nreg +

3(C3)

A
+ 1E +

¥ 2*E +

^ (A

2E
22E

= 0, 1,2)
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/

0
1
2
3
4
5

A +
A + 'E

X + '£,
/I + 2'£,

A +
'£, +

i + 2E
+ 2E>
+ 22E

6(C6)

A
1El + 2E,,

2Et + 1E2 + 2E2

, + 2B + :£2 + 2£2

+ 2B + 21E2 + 22£2

, + 2B + 2'E2 + 22E2

t^6n + i _ In reg

A' +
/I" + '£

/!' + '£"
^" + 2J£'

+ Si1 (). = 0, 1,2, 3,

6

^" +
1E" +
+ 2E'

+ 2E"
+ 22E'

4,5)

(C3J

^'
'£' +
2£" +
+ 2/1'

+ 2A"
+ 2A'

2E
1E
+
+
+

' +
1E"

11E
2>E

2E'
+ 2E"
+ 22E'

" + 22E"

I

0
1
2
3
4
5

A!
A2 + Bl

AI + B,
A2 + «!

622 (D6)

A,
A2 + E!
+ £1 + E2

+ B2 + £, + E2

+ B2 + £, + 2£2

+ B2 + 2Ei + 2E2

A
A,

A>

<%6n + i. _
 n r£g

A
i + B
+ B
+ B,

+ ®>

6mm (C6

Al

At +£,
i + E, +
i + B2 +
+ B2 +

)

E2

E, +
£, +

+ B2 + 2Ei +

(A = 0, 1,2, 3

£2

2£2

2£2

A
A( + A
A[ + A

A', + A2

, 4 ,5 )

62m (Z)3h

A\
A2 + E

; + £' +
2 + A'i +

I + ^2 +

+ A'z +

)

£"
£'
2£"
2£'

+ £"
+ £"
+ 2£"

/

0
1
2
3
4
5

Qt.n + 1. _ 2nreg

32 (Z>3)

At
A2 + E
At + 2E

A i + 2A2 + 2E
2Ai + A2 + 3E
AI + 2A2 + 4E

+ 3>l U = 0, 1, 2, 3, 4, 5)

/

0
1
2

^3n + x _ n r£g

3m (C3B)

4,
A + E
Al + 2E

+ &>• a = o, 1,2)
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/

0
1
2
3
4 ^
5

^6-, + A _ nreg + ,

23 (D

/I
r

'£ + 2£ + r
A +2T

+ 1E + 2E + 2T
1E + 2E + 37"

•St1- (A = 0, 1, 2, 3, 4,5)

/

0
1
2
3
4
5

®" = reg -
®12" + A = nreg

432 (O)

^i
7\

E +
A2 4- ?\

^ j + £ +

£ +

®"-"O =
+ ®* a =

27\

= 6,
0, 1

7*2

+
7*i
+

7,8
,2,

^2

+

T2

1,9

7*2

, 10,
.,11)

11)

43m (rj: as 432 (O), except that for / odd Al -> A2, A2 -> ^^ rt -» T2 and T2 -. rt (note if / = 6, 7, 8,. . ., 11,
®' must first be found in 432 (O) and then this substitution made: the formula 2" + Si11'" = reg is only valid for
432 (O) and not for 43m (Td)).

Notes to Table 2.7
(i) The point-group reps may be identified from Table 2.2.

(ii) The character in S>'{R(a., /I, }')} where K(x, /?, y) is a proper rotation through 2n/n is given by Bethe
(1929),

For improper rotations there is an extra factor (— 1)', see eqn. (2.1.12).
(iii) For those point groups that are direct products of some other point group G with (E + I) one simply uses

the table given above for G and adds a subscript g if / is even and a subscript u if / is odd. These point groups are

1 = 1 <g> 1 (C, = G! <g> Q
2/m = 2 ® T (C2h = C2® Q

mmm = 222 ® 1 (Du = D2 ® Cf)
4/m = 4 ® I (C4h = C4 ® C,.)
_ 3 = 3 ® 1_(C3( = C3 g) Q
3m = 32 ® 1 (Did = D3 ® Q

6/m = 6 ® T (_C6A = C6 ® Q)
4/mmm = 422 ® 1 (Du = D^ ® Q
6/mmm = 622 ®_T (O6(l = £>6 ® Q

m3 = 23 ® T (r, = T ® Q
m3m = 432 ® T (Oh = O ® C,).

(iv) The compatibilities for higher / values can be found by using the formula at the foot of the appropriate entry
in the table, 'reg' denotes the regular representation which is the reducible representation which contains each of the
reps F dj times. Thus, for example, for 422 (D4) for / = 10,

reg = Al + A2 + Bt + B2 + 2E

and, using the table, we have

S>10 = 2 reg + ®2

= 2(Al + A2 + B! + B2 +2E) + At + Bt + B2 + E
= 3Ai + 2A2 + 3Bt + 3B2 + 5E.
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Example 2.4.3. We consider 1 = 2 (i.e. an atomic D term which is fivefold de-
generate) and the point group mrnl (C2v) as G. According to Table 2.7 this term
splits in mml (C2v) into five non-degenerate levels,

FIG. 2.2. Schematic splitting of atomic D term by a crystalline field with the symmetry of mml (C2l,).

Example 2.4.4. As a second example we consider 1 = 3, (i.e. an atomic F term
which is sevenfold degenerate), with a cubic point group 432 (O) as G. According
to Table 2.7 we have

(2.4.5)

A2 is a non-degenerate rep of 432 (O) and 7\ and T2 are threefold degenerate reps
of 432 (O). The angular parts of the wave functions that correspond to these levels
are linear combinations of F3°(0, (/>), Y$-e(0, </>), Y£'\6, <j>), F3

2'c(0, </>), Yj's(9, (/>),
Ff>c(0, 0), and Yj's(9, </>). From Table 2.6 we see that the relevant surface harmonic
for A2 is F3

2's(0, <£); for 7\ we have [{aY^c(0, </>) - 6F3
3'C(0, 0)}, {aYj-'(6, 0) +

6r3
3's(0, </>)}, {-y3°(0, ^)}] and for 72 we have l{-bY^e(6, <l>) - aY^c(9, <j>)},

(2.4.4)

The basis functions of ®2{£(oc, jS, y)} are {F2"2(fJ, </>), F^H^, 0), F2°(0, </>), 7^(9, <A),
7^(0, 0)} and from Table 2.5 we see that these functions distribute themselves among
the five reps of mm2 (C2v) in eqn. (2.4.4) according to

see Fig. 2.2.
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{bY£-\0, <j)) - aY*'s(6, 0)}, {F3
2'c(0, <£)}] where a = 0-612 372 435 7U and b =

0-790 569 415 04. The splitting of the atomic Fterm in the crystalline field of 432 (O)
is illustrated in Fig. 2.3.

FIG. 2.3. Schematic splitting of atomic Fterm by a crystalline Held with the symmetry of 432 (O). The degeneracy
is given for each level in brackets.

2.5. Active and passive operators

For completeness we mention the relationship between the base functions of the
representations of a group of active operations and the representations of the corre-
sponding group of passive operations.

Suppose that X,Y,Z,... are a group of operators, such as point-group operations,
and that considered in their active form XaYa = Za. Suppose further that we have
given a representation Yl

a of these active operations so that Dl
a(XJ>Dl

a( Ya) = DJ,(Za)
and that the base functions are denoted by <<#| so that, for example,

(2.5.1)

where Xa is an active function space operator (see section 1.5). Suppose now that one
wishes to use the operators in their passive form. First, Xp = X~l, so that the multi-
plication table of the group is different. For example, we now have YpXp = Zp. The
group is of course the same group; the multiplications differ because the mapping of
an element on to its inverse is an anti-automorphism.

T H E O R E M 2.5.1. If (4>\\ is the basis for a rep Yl
a of elements Xa, Ya, Za,. . . of a

group G then, if we set Dl
p(Xp) = Dl

a(X~ '), <$J| is also the basis for a rep Yl
p of elements

Xp, Yp, Zp>... ofG, where Xp = X~', Yp = Y~l, ZP = Z~1,..., etc.
This follows because

(2.5.2)



As an example of the use of this theorem consider the tables that have been given
in this chapter. In this chapter we use active operators and tabulate base functions
for various matrix representations that are also tabulated in full. If one is using
passive operators then one can use the same base functions provided one takes as
matrix representatives the inverses of those tabulated. That is to say, one writes X
(and means Xp) where we write X (and mean Xa). The multiplication table includes
YX = Z (meaning YpXp = Zp) in place of our multiplication table that includes
XY = Z (meaning XaYa = Z0). <$j| is a basis for a representation Fj, and
D'WD^X) = D;(Z) (meaning Dj,( Yp}Wp(Xp) = Dj,(Zp)) and we will have written
the same basis <<$ for a representation F^ and Dl(X)Dl(Y) = D'(Z) (meaning
Dfl(*"a)Dfl(7a) = Da(ZJ); the relation between the matrices of Fj, and FP is DP(Jf) =
DiCA""1) = {D&O} • We add one final word of warning: if D^) and DP(Jrp)
have different characters then the representations labelled by i, FP and Fa, will have
different labels in the character table although the base functions are the same.

2.6. Symmetrized and anti-symmetrized products of point-group reps

To conclude this chapter we give a brief account of the symmetrized and anti-sym-
metrized products of point-group reps. These products are of interest in their own
right, for example, in connection with molecular vibrations (Jahn and Teller 1937) or
with the Landau theory of second-order phase transitions (see, for example, Birman
(19666), Indenbom (1960a), Landau and Lifshitz (19586), Lyubarskii (I960)). In
addition to this, a study of these products for point-group reps forms a simple intro-
duction to the work on symmetrized and anti-symmetrized products of space-group
reps which will be discussed in section 4.8.

It is a well-known result in quantum mechanics that the wave function of a set of
identical particles must be either symmetric or anti-symmetric with respect to the
interchange of any pair of these identical particles (see any reputable book on quan-
tum mechanics). The total wave function must be symmetric for bosons such as, for
example, photons, cc-particles, phonons, magnons, etc. and anti-symmetric for fer-
mions such as, for example, electrons, protons, neutrons, etc.; the principle of anti-
symmetry for fermions may be more commonly recognized as the Pauli exclusion
principle. When there are two identical particles this leads to the concept of the
symmetrized and anti-symmetrized Kronecker squares of a representation; the idea
of a Kronecker product of two representations of a group has already been intro-
duced in section 1.3 (see eqn. (1.3.23)).

(2.5.3)
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and



Denoting the carrier space of the representation A by V we can consider the tensor
product of V with itself, V ® V, to be the vector space spanned by linear combina-
tions of ordered pairs of functions ($,., 0,), i = 1 to d,j = \ to d. The space V ® V
is of dimension d2, and is invariant under the outer direct product S ® S. Since the
inner direct product S [x] S is a subgroup of S (x) S isomorphic with S under the
natural mapping (s, s) *-> 5 we may therefore regard V ® F as being invariant under
S itself and the representation of S so defined is called the inner Kronecker square
of A. This is in keeping with the ideas and notation of section 1.3 and we denote this
representation by A [x] A. In order to obtain an explicit form for A [x] A we have

(2.6.2)

(2.6.3)

(2.6.4)

(2.6.5)

Hence

the Kronecker square of the matrix A(s); also from eqn. (2.6.3) the character of
A [x] A is seen to be

(2.6.6)

In general the representation A [x] A will be reducible over S even when A is itself
irreducible. When d > 1 a partial reduction can be achieved immediately separating
V (g) V into its symmetric and anti-symmetric parts, see for example Lyubarskii
(1960), Chapter 4. These subspaces of V (g> V, which we denote by [F <g) F] and
{V (x) V} respectively, are denned as follows: [ V (x) F] is the vector space of dimen-
sion ^d(d + 1) spanned by linear combinations of the symmetrized pairs ((/>;, <pj) +
(4>p 4>t), and [V (g) F} is the vector space of dimension ^d(d — 1) spanned by linear
combinations of the anti-symmetrized pairs (</>,-, $;) — (4>j, (/>;). In order to see that
these subspaces are invariant under S we consider the symmetrized space [ V (x> F]:

(2.6.7)

(2.6.1)
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Let S be a group and A a representation of S with basis <0| = <0 l 5 <f>2,..., c/)d\
so that for all s e S
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which on reversing the order of summation is seen to be equal to

(2.6.8)

and this sum clearly belongs to [F (x) V~\. The representation of S defined on \_V ® V\
is denoted by [A [x] A]. Similarly, {V ® V} is invariant under S and defines a repre-
sentation {A [x] A}. These representations are called respectively the symmetrized
and anti-symmetrized Kronecker squares of A and are sometimes denoted by [A]2

and {A}2, respectively.
In order to compute the character of the symmetrized square, [A [x] A] or [A]2,

we have from expression (2.6.8) that

(2.6.9)

Similarly, for the anti-symmetrized square, {A [x] A} or {A}2

Incidentally, eqn. (2.6.10) follows also from eqns. (2.6.6) and (2.6.9) and the fact that

(2.6.11)

The reader who is slightly confused by the relevance of the notation of the ordered
pair may like to think of the first member of the pair as referring to particle 1 and the
second to particle 2, so that an expression such as (4>h (/>,-) — (</>;, </>;) then corresponds
to the usual anti-symmetrized wave function 0;(l)</>/2) — ̂ .(l)^^). The meaning
of eqn. (2.6.2) in this context is also clear; the operator 5 acts simultaneously and in
the same manner on the spaces of both particles 1 and 2. Clearly the idea of symmet-
rized and anti-symmetrized squares of representations can be extended to higher
products of a representation of a group, see, for example, Lyubarskii (1960),
Chapter 4.

We illustrate the use of eqns. (2.6.9) and (2.6.10) in identifying symmetrized and
ariti-symmetrized products of A by considering the examples provided by the crystal-
lographic point groups. For a non-degenerate point-group rep eqns. (2.6.9) and
(2.6.10) can be simplified; eqn. (2.6.9) becomes

(2.6.12)

and eqn. (2.6.10) becomes

(2.6.13)

In other words, for a non-degenerate point-group rep the symmetrized square is
simply the ordinary Kronecker square of A and the anti-symmetrized square vanishes.
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For the degenerate point-group reps, [A]2 and {A}2 can be identified by using eqns.
(2.6.9) and (2.6.10) and Table 2.2.; for example, for the rep E of 32 (Z>3) we obtain

[£]2 = Ai + E (2.6.14)

and

{E}2 = A2. (2.6.15)

In Table 2.8 we identify [A]2 and {A}2 for the degenerate reps of each of the crystal-
lographic point groups, while the symmetrized cubes of the degenerate point-group
reps are given by Cracknell and Joshua (1968).

TABLE 2.8

[A]2 and {A}2 for the degenerate point-group reps

Point group

422 (D4) -)
4mm (C4t.) I
42m (D2d) }

32(£>3) I
3m (C3o) |

622 (D6) \
6mm (C6U) j

62m (C3t)

23(7)

432(0) I
43m (rd) {

rep A

E

E

£,
£2

E'
E"

T

E
T,
T^

[A]2

Al + BI + B2

Al + E

A i + E2

A! + E2

A', + E'
A\ + E'

A + '£ + 2E + T

Al + E
Al + E + T2

At + E + T2

{A}2

A!

A2

AI
A,

A'2
A*

T

A2

Tl

Tt

Note to Table 2.8
Groups that are direct products of a point group G with the point group T (Q) are not included in Table 2.8 since
their product representations can be found from those of G by adding g and u obeying the usual rules, see Note (iv)
to Table 2.2.
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Space groups

In section 1.5 we gave a descriptive account of the space groups and their labels and
we introduced the Seitz notation for the symmetry operations that constitute the
space group. In the present chapter we shall be concerned with the details of the
identification of the 230 space groups, with the construction of reciprocal lattices and
Brillouin zones and with an introduction to the problem of determining the irreducible
representations of the space groups.

3.1. Bravais lattices

Every space group G has a set of pure translations, {E \ t}, which forms an invariant
subgroup, T, of the space group, G. This is simply the group of the translational
symmetry operations of the Bravais lattice on which the crystal is based, t is given
by eqn. (1.5.1),

t = nlt1 + n2t2 + «3t3, (1.5.1)

where nv,n2, and n3 are integers and t:, t2, and t3 are the fundamental translations
of the Bravais lattice. As we saw in section 1.5 the points determined by the vectors
t are called the lattice points, and the parallelepiped constructed on the vectors t l 5

t2, and t3 is called the fundamental unit cell. The distinction between the fundamental
unit cell and the conventional unit cell was mentioned in section 1.5 and illustrated
in Fig. 1.8. The lattice as a whole is made up of a very large number of unit cells
separated from each other by vectors t of the lattice. Strictly speaking, a Bravais
lattice is of infinite extent. It would be possible to assume that a real crystal was of
infinite extent and then to consider the theory of the representations of its space
group and its translational subgroup. However, in practice one assumes that a crystal
is of finite extent and then applies periodic boundary conditions. We suppose that
there are Nf unit cells in direction t; (i = 1, 2, or 3), where JV; is a very large number.
In order that G shall still be a group we adopt the Born-von Karman periodicity
condition (Born and von Karman 1913a, b) that i f / , , /2, and /3 are integers then

(3.1.1)

The advantage of this is that the space group is then a finite group and so we can apply
to it the theory of finite groups. It is customary then to let Nt —> oo, the justification
for this being that in this way we obtain all results of physical significance. There is
no objection to dealing with infinite groups in the first place except that for infinite
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groups one has to reformulate many of the definitions and theorems on irreducible
representations.

Before passing on to a complete description of the various possible lattices we make
some general remarks. First, all primitive unit cells are of equal volume, V, given by

F = tr(t2 x t3). (3.1.2)

Secondly, the volume of a parallelepiped constructed on any three independent lattice
vectors of the Bravais lattice is not less than V. Thirdly, the basic vectors t l 51 2 , and
t3 characterizing the lattice can often be chosen in many different ways. We shall
make a definite choice (see Table 3.1) and from then on it may be assumed that we
shall adhere to that choice.

In section 1.5 we said that there are 14 possible different Bravais lattices and they
were illustrated in Fig. 1.7. Two Bravais lattices of the same crystal system are no
different if one can be obtained from the other by a continuous deformation that
does not involve the Bravais lattice passing through a crystal system of lower sym-
metry. For example, the face-centred cubic Bravais lattice, Yf

c, cannot be deformed
into a body-centred cubic Bravais lattice, Tl, without passing through the trigonal
Bravais lattice, Frh. In Table 3.1 we give the list of all the 14 Bravais lattices together
with the basic translations that we use, and the volumes of the corresponding unit
cells. The type of a crystal structure, or of a space group, is the Bravais lattice on which
it is based, denoted usually by the symbol in column 1 of Table 3.1. For the mono-
clinic system we use in Table 3.1 the first of the two alternative settings given in the

T A B L E 3.1

The 14 Bravais lattices

Bravais lattice

P

P

B

P

C

I

F

P

Triclinic
primitive

Monoclinic
primitive

Monoclinic
base-centred

Orthorhombic
primitive

Orthorhombic
base-centred

Orthorhombic
body-centred

Orthorhombic
face-centred

Tetragonal
primitive

r,

rm

r£,

r0

r*

r*

ri

r.

p

T (Q

2/m (C2ft

2/m (C2k

mmm (D

mmm (D

mmm (D

mmm (D

Basic vectors, t,, t2Jt3.

arbitrary

)

)

2*)

2»)

2*)

2.)

4/mmm (D4J

(0,

(0,

(0,

Ka,

i(«,

KO,

-b

-b

-b

,0)

,0)

,0)

; (a sin y, -

; |(a sin y,

; (a, 0,

-a cos y, 0); (0, 0, c)

— a cos y, — c);
j(a sin y, — a cos y, c)

0);(0, 0, c)

-b,0);l(a,b,0)

b,

0,

c);

c);

!(-«, -b,

j(0, -b,c)

(a, 0, 0);(0, a, 0) ;(o,

; (0, 0, c)

c);Ka, -b,-c)

;i(a, -b,0)

0,c)

V

t, . (t2 x t3)

abc sin y

\abc sin 7

abc

iabc

^abc

{abc

a2c
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Notes to Table 3.1
(i) Column 1 lists the Bravais lattice and the symbol used as its label; for diagrams of these lattices see Fig. 1.7,

in which, however, it should be remembered that the diagrams show the conventional unit cell that is not necessarily
the fundamental unit cell (see section 1.5).

(ii) Column 2 lists the holosymmetric point group of the crystal system to which the Bravais lattice belongs.
(iii) Column 3 lists the basic translations of the Bravais lattice referred to the right-handed orthogonal set of

axes Oxyz. For example, tt = (p, q, r) means t, = pi + <?j + rk, where i, j, and k are unit vectors in the x, y, and z
directions.

(iv) Column 4 gives, in terms of a, b, and c, which are the lengths of the sides of the conventional unit cell, the
volume of the fundamental unit cell (see eqn. (3.1.2)).

(v) An alternative orientation for the orthorhombic (C) base-centred Bravais lattice, rj, is used in the International
tables for X-ray crystallography (Henry and Lonsdale 1965) for certain space groups (see entries numbers 38-41 of
Table 3.7). This is denoted by A and has basic vectors t( = j(0, —b, c), t2 = (a, 0, 0) and t3 = j(0, b, c) referred to
axes Oxyz; we shall not use the A lattice in this book.

(vi) At this stage, in accordance with the International tables for X-ray crystallography, we impose no special
restrictions on the relative lengths of a, b, and c beyond those actually imposed by symmetry. However, when we
come to tabulate space-group representations we shall sometimes have occasion to impose restrictions on a, b, and c,
see Notes to Figs. 3.2-3.15 and Notes to Table 3.6.

(vii) For the monoclinic system we use the first of the two settings given in the International tables for X-ray
crystallography, that is, we take the twofold rotation axis of symmetry to be along the z-axis.

(viii) Alternative notations for the 14 Bravais lattices have been collected by Belov (1964) as follows.

Schonflies International Wilson Pearson

Triclinic
Monoclinic

Orthorhombic

Tetragonal

Trigonal
Hexagonal
Cubic

P
P
B
P
C(or^)
/
F
P
I
R
P
P
I
F

r,
rm
C
r0
r*
r*
r'
r.
Pq

rrh
rh
rc
TC

r^

p
p
B,C
P
C,A
I
F
P
I
R
P
P
I
F

T
2/m
2/m
mmm
mmm
mmm
mmm
4/mmm
4/mmm
3m
6/mmm
m3m
m3m
m3m

Z
M
X
O
u
V
w
T

Q
R
H
K
B
F

AP
MP
MC
OP
OC
01
OF
TP(C)
TI(F)
HR
HP
CP
CI
CF

/

R

P

P

F

I

Tetragonal
body-centred

Trigonal
primitive

Hexagonal
primitive

Cubic
primitive

Cubic
face-centred

Cubic
body-centred

H

rrh

rh

rc

rt

FC

4/mmm (Dth)

3m (03,)

6/mmm (D6h)

m3m (00

m3m (00

mlm (00

%-a

(0, -

(0, -

(a, 0,

,a,c)

a, c);

a, 0);

0);(0

;*<*,

i(«V

toV

— a

(3),

'(3),

, a, 0);(0

i(0, a, a); {(a, 0,

i(-a , a, a) ;i(a,

a);

— a

,c);^(a,a, -c)

a, 2c);K-aV(3).a. 2c)

a, 0);(0, 0, c)

, 0, a)

i(a, a, 0)

, a) ; j(a, a, - a)

\a2c

i3V(3)a2c

y(3)a2e

a3

i«3

^



84 SPACE GROUPS

International tables for X-ray crystallography (Henry and Lonsdale 1965). a, b, and
c are the vectors along adjacent edges of the conventional unit cell; in the International
tables for X-ray crystallography there are no restrictions on the relative magnitudes
of a, b, and c other than those required by the symmetry of the Bravais lattice.

In spite of the obvious importance of the 14 Bravais lattices there is, as yet, no
universally adopted notation that would describe each lattice succinctly and clearly.
The generally accepted letters, P, I, F, B, C, and R given in Table 3.1, which are used
in the International tables for X-ray crystallography merely establish the lattice as
being primitive or centred in some particular way. The letter F used in the Schonflies
symbol is superfluous and conveys no particularly useful information. The use of 14
different letters, one for each Bravais lattice, has been suggested by Wilson and the
use of a two-letter symbol for each Bravais lattice has been suggested by Pearson.
These alternative suggestions have been collated by Belov (1964) and are given in
Note (viii) to Table 3.1.

If certain particular relationships exist between the lengths a, b, and c in a Bravais
lattice of low symmetry they may make it into a Bravais lattice of higher symmetry.
For example, i f a = c/^'2 then Frh becomes Y[, if a = ^J(T)c then Frh becomes Fc and
if a = 2^/(2)c then Frh becomes F^. Thus all the cubic lattices are particular cases of
the trigonal lattice. Also, if a = c then Fq becomes Fc and F* becomes F*; and if
c = ^/(3)A then T* becomes Fh. Other such relationships can easily be deduced from
Table 3.1.

The symmetry elements for the seven crystal systems are given in Table 1.2. It is
useful to know what effect the point-group operations of the crystal systems have on
the lattice translations. These are given in Table 3.2.

T A B L E 3.2

Results of operators on the basic translations

Monoc/inic

Orthorhombic

E
C2x

C1}

C^I

r0

t i t2 t3
-ti t2 -t3

t, -t2 -t3
-t, -t2 t3

TO

t, t2 t3
*2 *1 -t3

-t2 -t, -t3

-t, -t2 t3

E

C2z

rm

ti t2 t3
-t, -t2 . t3

n,
t l t2

-t, -t3
t3-t2
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TO

tl (2 t3
t3 -t, t2 - 13 t,

-t, - 12 - 13 tj t2
t2 t; -tl - t2 - t3

Y[

t, t2 t3

t3 - t2 -tl t, - t2

-t, t3 - t, t2 - t,

tj - t3 tj - t3 -t3

Tetragonal

E
ct
C2z

Qz
C2,
C2>.
C2o

C2k

rq

tl t2 *3

tl ~t, t3

-t, -ti tj

-tl t, t3

tl -ti -t3

-t, t2 -t3

tl t, -t3

-tl -t, -t3

11

t, t2

-t3 ^ + t2 + tj

tl t,

tl + t2 + t3 -t3

t t - t2 - t3 t3

(3 -t, - t2 - t3

-t, -t2

-tl -t!

t3

-tl

-t, - t2 - t3

-t.

t2

t,

t, + ti + t3

-t3

Trigonal and hexagonal

E
r+
<-6

r,h

ti t2 t3
— -- —

C3
+ t2 t3 t,

rC2 [ — —

c3-
ci
Ci,
C'22

C23

Ci,
C2'2
r"V^2 3

t3 t, t2
— — —

-tL -t3 -t2
-t., -tz -t,
-t2 -t! -t3

rh

ti t2
t, + t2 -t,

tl -t! - t2

-tl -t2

-tl - t2 t,

-tl t, + t2

-t, t, + t2

tl + t2 -t2

-tl -t,

t, -t, - t2

-tl - t2 t j

tl t,

t3

tj

t3

t3

t3

t3

-t3

-t3

-t3

-t3

-t3

t3

Cubic

E
C2,
C2).
ciz
r*C31
r*
'-32

r*
<-33

t, t2 t3
tl -tl -tj

-t, t2 -t3-t, -t2 t3
t2 t3 t,
tl -t3 -t,

-tl t3 -t,

rfc

tl t2 t3
tl -tj + t3 -t, + t2

— tl + t3 — 12 t! — t2

tl - t3 t, - t3 -t3

tl t3 t,

-tl t, - t2 -t2 + t3

t, ~ t3 -t3 t2 - t3

r:

ti
-ti -t2 - 13

t3
t3
t2

-ti - t2 - t3
ti

t2 t3
t3 t2

-t, - t2 - t3 tj

t, -t, - t2 - t3

t3 t,

t, t3

-t: - t2 - t3 t2

r:
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Cubic—(continued)

. .  .  .

C3
+

4 -t2 -t3 t t -t, + t3 -t, + t2 -t, t3 t2 -t, - t2 - tj

C3~l tj t, t2 t3 t j t2 t3 t, t2

CJ2 -t3 t, -t2 -tj + t2 -t, -t, + t3 t2 -t, - t2 - t3 t3

Сзз -t3 -tt t2 t1 - t2 -t2 + t3 -t2 t, 3 -t! - t2 - t3

C3-4 t3 -t, -t2 -t3 t2 - t3 t, - t3 -t, - t2 - t3 2 t!

c;, I ! t3 -t2 t2 -13 -tt +12 t2 -t3 -, t, +12 +13
CÍ, | - 3 t2 t, t3 -t, + t3 -t2 + t3 t, + t2 + t3 - ! -t2c¿z 2 -t, t3 t, -13 t, t! -12 -t3 t, + 2 +13 -t2
Q* i -t3 t2 -t2 + t3 t3 -t, + t3 -t2 tt + 2 + t3 -t,
C4- 3 t2 -t, t, - t2 t, - t3 t, - 2 - 3 tj + t2 + t3
C4~ -2 t, t3 t2 t2 - t3 -t! + t2 t, + 2 + t3 -t3 -t,

C2a t2 t, -t3 -tt + t3 -t2 + t3 t3 - ! -t2 t; + t2 + tj

C2b -t2 -tt -t3 i -t2 -t, -t3 - 2 -t, -t3
C2r t3 -t2 t, | - t , + t 2 t2 t2 - t3 - ! t , + t 2 + t 3 -t3

C2i -t, t3 t2 t j t! - t2 tj - t3 t , + t2 + t3 -t2 -t3

C2P -t3 -t2 -t, -t3 -t2 -t, -t3 -t2 -t,
C2/ -t, -t3 -t2 -t, -t3 -t2 -t, -t3 -t2

.Votóí to .../ .  3.2
(i) To save space only the effects of the element s of the holosymmetri c poin t groups of the crystal systems are

tabulated . Since / t =  — t for all t the actio n of the inversion , / , and its produc t with each of the element s given,
is also omitted .

(ii) The point-grou p operation s are active and correspon d to symmetr y element s passing throug h the origin ,
(iii) The translation s t, , t 2, and t3 are given in Table 3.1.

3.2. Reciprocal lattices and Brillouin zones

If the basic translatio n vectors of a Bravais lattice are tb t2, and t3 it is possible to
define a set of reciproca l lattice vectors gb g2, and g3 where

grt, . =  2п6ц (ij = 1,2,3) . (3.2.1)

The reciproca l lattic e defined in this way is, of course , extensively used by X-ray
crystallographers . Some author s define g; withou t the factor 2n in this equatio n and
consequentl y have to use the unwieldy phrase ' 2n times a reciproca l lattic e vector '
in later theory . Fro m eqn. (3.2.1) g j 5 g2, and g3 can be written explicitly as

(3.2.2)
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I f t i , t 2 , andt3 are the basic vectors of a Bravais lattice then g l 5 g2, andg3 are usually
basic vectors of the same Bravais lattice in reciprocal space. However, in four cases
g j , g2, and g3 are basic vectors of another Bravais lattice in the same crystal system.
For example, if we consider the face-centred cubic lattice its basic vectors are, from
Table 3.1,

(3.2.4)

and by inspection of Table 3.1 these vectors can be seen to define a body-centred cubic
lattice. Thus the reciprocal lattice for the cubic face-centred lattice is the cubic body-
centred lattice, and vice versa. The reciprocal lattice for the orthorhombic face-
centred lattice is also the orthorhombic body-centred lattice, and vice versa. The
tetragonal body-centred lattice is its own reciprocal lattice because a tetragonal face-
centred lattice is at the same time a tetragonal body-centred lattice with a different
axial r-atio. As with the Bravais lattice in direct space we may write the position
vector, g, of any reciprocal lattice point in terms of g l 5 g2, and g3, and by analogy
witheqn. (1.5.1),

g = n1g1 + «2g2 + «3g3 (3.2.5)

where «,, «2, and «3 are integers.
We use x, y, and z for coordinates in direct space and kx, ky, and kz for coordinates

in reciprocal space. This is because a general vector in reciprocal space is customarily
denoted by k. It should be noted that if a diagram is drawn with the reciprocal lattice
superimposed on the direct lattice then g t , being perpendicular to t2 and t3, is not
necessarily in the direction of t1. The reason for the introduction of reciprocal space
at all in connection with representation theory for space groups will become apparent
in section 3.4, in which we discuss the representation theory of translation groups.

In Table 3.3 we give a list of the reciprocal lattice vectors for the 14 Bravais lattices.
The transformations of the basis vectors gi, g2, and g3 of the reciprocal lattice under
the point-group operations R of the appropriate crystal system can be seen from
diagrams in reciprocal space or alternatively worked out analytically by applying R

(3.2.3)

If these vectors are substituted into eqn. (3.2.2) we find that
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T A B L E 3.3

The reciprocal lattices

Bravais lattice

Triclinic primitive F,
Monoclinic primitive Fm

Monoclinic base-centred Fjj,
Orthorhombic primitive F0

Orthorhombic base-centred F'
Orthorhombic body-centred F*
Orthorhombic face-centred F[,
Tetragonal primitive Fq

Tetragonal body-centred F^
Trigonal primitive Frh

Hexagonal primitive Fh

Cubic primitive Fc

Cubic face-centred r[
Cubic body-centred F*

Reciprocal vectors, g l 5 g2, g3.

arbitrary
27i/6(-cot y, -1,0); 27t/a(cosec y, 0, 0); 2n/c(Q, 0, 1)
2?r/6( - cot y, -1,0); 2njac(c cosec y, 0, - a) ; 27t/«c(c cosec y, 0, a)
27r/6(0, -1,0); 27t/a(l, 0, 0); 2n/c(0, 0, 1)
2n/ba(b, -a, 0); 2n/ba(b, a, 0); 2n/c(0, 0, 1)
2jt/ca(c, 0, a); 2n/cb(Q, -c, b); 2n/ba(b, ~a, 0)
27t(l/o, 1/6, 1/c); 2n(-l/a, -1/6, 1/c); 27r(l/a, -1/6, - 1/c)
2n/a(l, 0, 0); 2;c/a(0, 1, 0); 2n/c(0, 0, 1)
2ji/ca(Q, c, a}; 2n/ca(c, 0, a); 2n/a(\, 1, 0)
27c(0, -2/3a, l/3c); 27r(l/v'(3)a, l/3a, l/3c);

27t(-l/v'(3)a, l/3a, l/3c)
271/0(1/^3, -1,0); 271/0(2/^3, 0, 0); 27t/c(0, 0, 1)
27i/a(l, 0, 0); 2jt/a(0, 1, 0); 27t/a(0, 0, 1)
27t/a(-l, 1, 1); 27t/a(l, -1, l);27t/a(l , 1, -1)
27i/a(0, 1, 1); 2jr/a(l, 0, 1); 27t/a(l, 1, 0)

^IV

g l - ( g 2 X 83)

8?t3/a6c sin y
Iftiv'labc sin y
87i3/«6c
167t3/a6c
167t3/a6c
327t3/aftc
87r3/a2c
16jr3/a2c

167c3/37(3)a2e
167I

3/7(3)a2c
8?r3/a3

32^3/a3

167t3/a3

Notes to Table 3.3
(i) Column 1 lists the Bravais lattice of the translation group, T, in direct space. The basic vectors of the Bravais

lattices are given in Table 3.1.
(ii) Column 2 lists the coordinates of the translations g t, g2, and g3 of reciprocal space with respect to the kx,

ks, kz axes. For example, gj = (p, q, r) means that g t = p\ + qm + ra, where 1, m, and n are unit vectors in the
k^,ky, and kz directions.

(iii) Column 3 gives (87r3/F), the volume of the Brillouin zone.

T A B L E 3.4

Results of operators on the reciprocal lattice vectors

Monoclinic

E
C2z

Fm

gi 82
-gi -82

83
83

Fb
1 m

gl

-gi

g2 83

-83 "82

Orthorhombic

E

C2x
C2>.
C2,

FO

gi
-gi

gi
-81

82
82

-82
-82

§3

-83

-83

83

-C

81 82
82 81

-82 -81
-gl -82

83
-83
-g3
83

88



SPACE GROUPS 89

rv

gi
-g2 + 83

-gl

82 - §3

82 83

-§2 gl - 82

-8l + 83 "Si + 82

8l - 83 "S3

TO

gl

g3 "I

~8l - 82 - 83

g2

82

!i - 82 - 83
83
gi -!

83
gi
82

It ~ 82 - 83

Tetragonal

E

c;z
C2z
Q;
C2l
cz,
C2a
C26

rq

81
g2

-gi
-82

gi
-gi
82

-g2

g2

-8l

-62

8l

-82

82

8l

-8l

83

83

83

83

-83

-83

-83

-83

1

8l

gl - g3

g2 - 83

g2

-gl

-82 + 83

-gl + 83

-g2

82

8l

8l ~ g3

g2 ~ 83

-8l + 83

-82

-82 + g3

-gl

83

8l ~ g2

-83

-8l + g2

-8l + 82

8l - 82

83

-83

Trigonal and hexagonal

E
c;
C3

+

C2
ci
C6
C2,
C22
C23
C'ii
C22

C23

rrh

81
—
82
—
83
—

-gi
-83
-g2
—
—
—

82 83
— —
83 81
— —
81 82
— —

-g3 -82
-82 -81
-gi -g3
— —

—
— —

rh

gi
82

-Si + 82
-gi
-82

gl - g2

-8l + g2

gl

-82

8l ~ 82

-gl

82

82

-81 + 82
-81
-82
81 - 82

gi
g2

8l - 82

-8l

-82

-8l + 82

8l

83

g3

g3

83

83

83

-83

-83

-83

-83

-83

-83

Cubic

E
C2x
Cz,
C2,
C3

+,
C3

+2

C33

C3
+4

C3'i

rc

81
81

-gi
-81
82
82

-82
-82
83

82
-82
82

-82
83

-s3
g3

-83
gi

. 83

-83

-83

83

8l

-8l

-8l

gl

82

r̂

81
-gi - g2 - 83

83
82
g2

-81 - 82 - gs

gl
83
83

82
83

-gl - 82 - 83
81 -gl
83
81

-gl - 82 - 83
82 -gl
gl

83
82
gl
- 82 - 83
81
83
82
- 82 - 83
82

rc

8l

-8l

-82 + 83

g2 - 83

82

-82

gl - g3

-8l + 83

g3

g2

-8l + 83

-82

gl ~ g3

83

8l - 82

-83

-gl + g2

gl

g3

-gl + 82

gl - 82

83

8l

-82 + 83

82 - g3

-8l

82
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Cubic—(continued)

CJj
C3~3

CJ«
c;,
c;.
Qz
c;*
Q,
Qz
C2a

C2t

C2c

C2d

C2e

C2f

rc

-gs
-g3

g3

gi
-S3

g2

gi
g3

-g2
g2

-g2

g3
-Bt
-g3

-gl

gl

-81
-gl

g3

82
-gl
-g3

82
gl
gl

-gl
-82

83
-82

-83

-82
82

-82
-82

Si
83
82

-81
83

-g3
-83

gl
82

-8.
-82

n
82
gl

-gl - 82 - 83
-83

81 + 82 + 83
-83
-82
-82

gl + g2 + 83

-gl
-82
-gl

gl + g2 + g3

-83

~8l

-Bt ~ 82 - 83
83
82

-81
-81

81 + 82 + 83
g, + g2 + g3

-83
-83
-82
-gi

81 + 82 + 83
-82
-82
-83

8s
-81 - 82 - 83

gi
81 + 82 + 83

-82
-82
-Bi

81 + 82 + 83
-gi

gi + 82 + g3

-83
-83
-83
-gi
-82

rc

-gl + 82
81 - 82
-83

82 - 83
83

81 - 83
-82 + 83
gl - g2

82

-8l + 83

-82

-gl + 82

8l

-83

-8l

-8l

-82 + g3

82 - 83

~8l + 82

-8l + 83

8l

83

8l - 83

82 - 83

-82 + 83

-gl

82

8l - 82

-82

-S3

-gl + 83

-82

gl - 83

82

-82 + 83

gl - 82

-gl + 83

8l

-8l + 82

83

-83

82 - 83

8l - 83

-8l

-82

Notes to Table 3.4
(i) To save space only the effects of the elements of the holosymmetric point groups of the crystal systems are

tabulated. Since /g = - g for all g the action of the inversion is also omitted,
(ii) The point-group operations are active,

(iii) The basic translations g t , g2, and g3 of the reciprocal lattices are exactly as in Table 3.3.

to both sides of eqn. (3.2.2). The results are given in Table 3.4. The transformation of
any reciprocal lattice vector g under R can then be found by applying R to eqn.
(3.2.5) and using Table 3.4.

We now proceed to the consideration of Brillouin zones (Brillouin 1930a-c, 1931,
1953). The first Brillouin zone is essentially a unit cell of the reciprocal lattice of a
crystal; this is a necessary condition if the Brillouin zone is to serve any useful purpose.
The particular unit cell that is conventionally chosen is the Wigner-Seitz unit cell (see
section 1.5) of the reciprocal lattice (Jones 1960, Slater 19656). In this case a Brillouin
zone is defined as follows:

D E F I N I T I O N 3.2.1. The set of all k vectors with one of the reciprocal lattice
points as origin and having the property that no vector of shorter length can be
reached from any of them by adding translation vectors of the reciprocal lattice forms
what is called the first Brillouin zone.

In practice we shall not use this definition for triclinic and monoclinic space groups
(see Definition 3.2.2 below).

To construct the first Brillouin zone using this definition we then choose one
particular reciprocal-lattice point as origin and construct the vectors g joining it to
the other reciprocal-lattice points. If the planes that are the perpendicular bisectors
of the reciprocal-lattice vectors, g, are drawn, then the first Brillouin zone is the
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smallest volume of space, surrounding the origin, that is enclosed by these planes.
The equation of the plane that is the perpendicular bisector of g is

Bravais lattice
of crystal

Triclinic P
Monoclinic P
Monoclinic B
Orthorhombic P
Orthorhombic C
Orthorhombic /
Orthorhombic F

2

J

J
J
/
y

X

J

3

X

X

X

y

X

—
X

Bravais lattice
of crystal

Tetragonal P
Tetragonal /
Trigonal R
Hexagonal P
Cubic P
Cubic F
Cubic /

2

y
X

/
X

y
X

X

3

/
—
X

—
v/

(3.2.6)

Each face of the first Brillouin zone is thus characterized by a reciprocal-lattice vector
g and is, of course, the perpendicular bisector of g. The reason for the choice of the
Wigner-Seitz unit cell, rather than some other unit cell, of reciprocal space is because
this unit cell exhibits the point-group symmetry of the reciprocal lattice (see, for
example, Delaunay (1932)). However, for crystals belonging to crystal systems of
low symmetry the application of eqn. (3.2.6) in the geometrical construction of the
Brillouin zone is exceedingly tedious.

Another unit cell that is worthy of some consideration in this context is the primitive
unit cell (see section 1.5) which is the parallelepiped that is centred at k = 0 and has
edges parallel to and equal in magnitude to g j , g2, and g3, where g l 5 g2, and g3 are
the basic vectors of the reciprocal lattice. The volume of the first Brillouin zone is
thus given by

(3.2.7)

where V is the volume of the primitive unit cell of the corresponding direct lattice;
the value of g[ -(g2 x g3) is given for each reciprocal lattice in Table 3.3. For some
reciprocal lattices (those of orthorhombic P, tetragonal P, and cubic P space groups)
a Brillouin zone defined by using the primitive unit cell of reciprocal space would be
identical with the conventional Brillouin zone defined by using the Wigner-Seitz
unit cell of reciprocal space. For some other reciprocal lattices (those of ortho-
rhombic 7, tetragonal /, hexagonal P, cubic F, and cubic / space groups) the primitive
unit cell does not exhibit the point-group symmetry of the Bravais lattice in the same

T A B L E 3.5

In column 2 we indicate whether the Brillouin zone defined by the primitive unit cell of reciprocal space possesses,
in the correct orientation, the point-group symmetry of the crystal. In column 3 we indicate those Bravais lattices
that satisfy the previous condition and for which the Wigner-Seitz and primitive unit cells of reciprocal space lead
to the same shape for the Brillouin zone.
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orientation as in the real space lattice. In these cases the primitive unit cell would
therefore not be acceptable as defining a Brillouin zone, see column 2 of Table 3.5.
These eight Bravais lattices include nearly all the crystals whose Brillouin zones have
been studied in practice and it is therefore not surprising that the choice of the
Wigner-Seitz unit cell of reciprocal space has usually been taken to be a necessary
part of the definition of the first Brillouin zone. However, for the remaining six
Bravais lattices (those of triclinic P, monoclinic P, monoclinic B, orthorhombic C,
orthorhombic F, and trigonal R space groups) one can establish by inspection that
the primitive unit cell of the reciprocal lattice also possesses the point-group sym-
metry of the Bravais lattice of the crystal in the correct orientation. However, it is
desirable, whenever possible, that surfaces of the Brillouin zone should be parallel to
planes of symmetry in the crystal. This means that for orthorhombic C and F space
groups it is desirable to retain the Wigner-Seitz cell in defining the Brillouin zone,
see Figs. 3.6 and 3.8. Also, for the trigonal R lattice there seems to be no particularly
strong argument in favour of replacing the conventional definition of the Brillouin
zone by the fundamental unit cell of reciprocal space. However, for the three remain-
ing lattices (triclinic P, monoclinic P, and monoclinic B space groups), as we have
already mentioned, eqn. (3.2.6) is very difficult to apply in practice, both to draw the
shape of the Brillouin zone and then, having drawn it, to visualize it. The details of
the shape depend very much on the actual values of the parameters of the unit cell of
the crystal in question. For monoclinic crystals some authors (Koster 1957, Sush-
kevich 1966) illustrate one particular example for each Bravais lattice, Luehrmann
(1968) shows two examples for the monoclinic B lattice, while the comprehensive
tables of Kovalev (1965) contain no diagrams at all of the Brillouin zones. The use
of the fundamental unit cell in defining the Brillouin zone for a monoclinic or tri-
clinic crystal would therefore have the advantage that the general shape, i.e. the
numbers of edges and faces, would be independent of the axial ratios and inter-axial
angles of the unit cell of the crystal.

We therefore suggest that, while the Wigner-Seitz unit cell of reciprocal space is
retained for defining the Brillouin zones of most crystals it should be replaced by the
use of the primitive unit cell of reciprocal space for monoclinic and triclinic space groups
(Bradley and Cracknell 1970). We have followed this procedure in constructing
Figs. 3.2-3.4.

D E F I N I T I O N 3.2.2. For a monoclinic or triclinic crystal the first Brillouin zone
is the primitive unit cell of the reciprocal lattice, that is, the parallelepiped that is
centred at k = 0 and has edges parallel to and equal in magnitude to gi , g2, and g3,
where g j , g2, and g3 are the basic vectors of the reciprocal lattice.

One final point should be mentioned. Equation (3.2.6) is sometimes said to be
specially related to the appearance of discontinuities in the curves of the energy of an
electron, phonon, or magnon, £(k), against k. This is, in fact, untrue because, both
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in the extended zone scheme and in the repeated zone scheme, £(k) is a quasi-
continuous function of k everywhere in reciprocal space (Koopmans' theorem).
The discontinuities that appear when zone boundaries are defined are simply the
separation of different curves -E(k). It is, of course, true that one can sometimes make
a careful choice of zone boundary, so that £(k) exhibits special degeneracies at the
zone boundary; however, this property is a result of the requirement that the Brillouin
zone should exhibit the correct point-group symmetry of the Bravais lattice, which
we have not abandoned, rather than a result of the use of the Wigner-Seitz cell and
eqn. (3.2.6).

In constructing the first Brillouin zone using eqn. (3.2.6) the reciprocal lattice
vectors g will be the vectors joining the origin to its first nearest neighbours and,
possibly, its second or higher nearest neighbours. It is possible to define the second
Brillouin zone by using further planes defined by eqn. (3.2.6) to enclose a volume
outside the first Brillouin zone that satisfies the following three conditions, (i) The
volume of the second Brillouin zone is equal to the volume of the first Brillouin zone,
(ii) For every k vector, k :, in the first Brillouin zone there is exactly one k vector, k2 ,
in the second Brillouin zone such that

k2 - k, = g, (3.2.8)

where g is a reciprocal lattice vector but is not necessarily the same for all kl. Every
point in the second Brillouin zone is thus equivalent, in a sense to be defined rather
more carefully in section 3.3, to some point in the first Brillouin zone, (iii) The k
vectors in the second Brillouin zone must be those of shortest length that satisfy
conditions (i) and (ii). It is possible similarly to define third, fourth, and higher
Brillouin zones.

In defining the Brillouin zone of any given crystal, care must be taken to ensure
that one uses the Bravais lattice describing the full translational symmetry of the
crystal and not some lattice of larger unit cell (Barron and Fischer 1959). Once the
full Bravais lattice has been correctly identified the reciprocal lattice and Brillouin
zone structure are determined uniquely; they are then completely independent of the
detailed configuration of the atoms within the unit cell. The Brillouin zones as defined
above have the following properties:

(i) They contain one state for each primitive unit cell of the Bravais lattice in the
crystal (for electrons the Pauli exclusion principle allows two electrons, one
with spin +\ and the other with spin — 3, to occupy each of these states; for
phonons or magnons there is, of course, no such exclusion principle) (see eqn.
(3.4.5)).

(ii) The energy of a particle or quasi-particle in the crystal is continuous through-
out each zone.

(iii) The pieces of each higher zone can be transferred into the first zone by moving
the separate regions by appropriate reciprocal lattice vectors, and the states
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of each zone then form a continuous energy band over the first zone; this is
called the reduced zone scheme.

(iv) Cells of the shape of the first Brillouin zone can be fitted together to fill
reciprocal space completely, i.e. leaving no empty spaces between neighbour-
ing cells. This is called the repeated zone scheme and is often useful.

An alternative method of defining zones in reciprocal space (Jones 1934a) is based
on saying that the only true zone boundaries are those planes that have a non-
vanishing structure-factor associated with the corresponding Bragg reflection. These
Jones' zones have been discussed in many standard textbooks (for example Jones
(1960), Kittel (1956), Mott and Jones (1936), Wilson (1953)), but they appear to be
used very little now.

FIG. 3.1. The first three Brillouin zones for the square 2-dimensional Bravais lattice, p.

We can illustrate the idea of first, second, and higher order Brillouin zones by a
2-dimensional example. The basic vectors of the 2-dimensional square Bravais lattice,
p, may be taken as

(3.2.9)ti = a\\
t2 = ojj
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where i and j are unit vectors in the x and y directions. The reciprocal lattice vectors
gj and g2 that satisfy equation (3.2.1) are thus

(3.2.10)

The first Brillouin zone is the region between the lines kx = +^ |g2| = +n/a and
ky = ±i Igi = ±n/a-, that is, the vectors g that go into eqn. (3.2.6) are +gi, — g i ,
+ g2, and — g2. The first Brillouin zone is thus the square that is shaded in Fig. 3.1.
The vectors that go into eqn. (3.2.6) for the second Brillouin zone are g: + g2,
— gi + §2> gi — g2> and — gi — g2

 a°d the second Brillouin zone is thus the region
marked with dots in Fig. 3.1. In fact, however, we only use the first Brillouin zone so
that from now on we shall omit the adjective 'first'.

According to Bouckaert, Smoluchowski, and Wigner (1936) the existence of these
zones was noticed by various authors almost simultaneously (Bloch 1928, Morse
1930, Peierls 1930, Strutt 1928(3, b) and it was Brillouin (1930a-c 1931) who pointed
out their connection with X-ray reflection. A textbook on Brillouin zones has been
written by Jones (1960).

3.3. The classification of points and lines of symmetry

For some lattices the shape of the Brillouin zone is unique, while for others there are
two or more possible shapes depending on the relative sizes of the basic translations
and the angles between them. The various Brillouin zones for the 14 Bravais lattices
in direct space are shown in Figs. 3.2-3.15.

Two vectors k j and k2 are said to be equivalent if (kj — k2) = a^ + a2g2 + ^ags
where al, a2, and a3 are integers. Because of its construction no two interior points
of a Brillouin zone can be equivalent; but a point on the surface of the zone may be
equivalent to one or more other points also on the surface of the zone. For example,
the mid-point of a face is always equivalent to the mid-point of the opposite face,
because opposite faces are always separated by a reciprocal lattice vector.

Given a Brillouin zone and a point k of the zone there exist certain elements of P,
the holosymmetric point group of the corresponding crystal system, which trans-
form k into itself or into some equivalent k vector. These elements form a subgroup
of P that we denote by P(k) and name the symmetry group o/k. We can now give the
definitions of a point of symmetry, a line of symmetry and a plane of symmetry.

D E F I N I T I O N 3.3.1. k is a point of symmetry if there exists a neighbourhood TV of
k in which no point except k has the symmetry group P(k).
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:

FIG. 3.2. The Brillouin zone for F,. F = (000); B = (£00); F = (0^0); G = (00{).

FIG. 3.3. The Brillouin zone for Fm. F = (000); B = (^00); r = (0^0); Z = (OOi); C = (0^); £> = (M); ^
(MO), (iiO), or (MO); £ = GM), (||i), or (±£).
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FIG. 3.5. The Brillouin zone for F0. F = (000); Y = (^00); X = (0^0); Z = (00^); f = (0^); r = (jOi);

S = (|JO);« = (Iy).

FIG. 3.4. The Brillouin zone for Tb
m. F = (000); A = (|00); Z = (0^); M = (iii); Z, = (|o^); K = (00|).
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FIG. 3.6. TheBrillouinzoneforr£.(a)a > b, Y = (000); Y = (^0);Z = (00^); T = (Mi);S = (OiO);« = (0|i);
(b) b > a, F = (000); Y = (||0); Z = (OOi); T = (&$); S = (0^0); R = (0^).
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See page 100 for caption.



100 SPACE GROUPS

FIG. 3.7. The Brillouin /one for r*. (a) a > b > c or a > c > b, F = (000); X = ({\i); R = (jOO); S = (±Q{);
T = (J-|0); W = (jH). (b) b > a > c or b > c > a, T = (000); X = ({M); K = (200); S = (io|); r = (iip_);
W = (IU); (c) c> ft > a or c > a > 6, r = (000); JT = G24); R = (iOO); 5 = (|0i); T = (ijo); ^ = (til).

See page 103 for caption.
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See page 103 for caption.
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See page 103 for caption.
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FIG.3.8. The Bri;llouin Zone for
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FIG. 3.9. The Brillouin zone for rg. F = (000); M = (^0); Z = (OOi); A = (Mi); R = (Oil); X = (0^0).
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FIG. 3.10. The Brillouin zone for r*. (a) a > c, r = (000); N = (0|0); X = (00^); Z = (^); P = (Hi); (b)
c > a, T = (000); N = (0^0); X = (00|); Z = (^i); P = (iil).
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FIG. 3.11. The Brillouin zone for Frh. (a) a > v'(2)c, r = (000): Z = (iM); L = (0|0); F = (Oji); (b) N/(2)c > a,
T = (000); Z = (ii|); L = (0^0); F = (^-0). In (a) I and Y are two complete lines of symmetry; in (b) Q and B
are simply related by a threefold rotation to Q' and B', respectively, which are continuations of the lines X and Y,

respectively (F = (O^) and is related to Fby a threefold rotation; see also Table 3.6).

FIG. 3.12. The Brillouin zone for F,,. F = (000); M = (0^0); A = (00|); L = (Oji); /f = GfO); W = (if J).



108 SPACE GROUPS

FIG. 3.13. The Brillouin zone for Tc. T = (000); X = (0^0); M = (^0); R = (Mi)-



SPACE GROUPS 109

FIG. 3.14. The Brillouin zone for T[. T =
(000); X = (K>i); L = (^); W = (^J). K
and {/, though often referred to as points of
symmetry, do not come within the definition
of a point of symmetry as given in Definition
3.3.1, as they possess no more symmetry
than the neighbouring lines 1 and S, respec-

tively.

FIG. 3.15. The Brillouin zone for r*. F = (000);
H = (M1);-P = (wi);N = (ooi).
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Notes to Figs. 3.2-3.15
(i) The axes rkxktk2 and the reciprocal lattice vectors, g,, g2, and g3 are drawn in their appropriate positions; see

Table 3.3. The origin is always denoted by F.
(ii) For the triclinic and monoclinic systems we use the primitive unit cell, rather than the Wigner-Seitz unit cell, of

reciprocal space to define the Brillouin zone (sec Definitions 3.2.1 and 3.2.2).
(hi) In each figure the basic domain (see Definition 3.3.3) is enclosed by continuous lines, except for F,. For F, the

basic domain is formed by three pyramids, each with a face of the cell as base and with vertex F.
(iv) In each figure the points of symmetry (see Definition 3.3.1) and the lines of symmetry (see Definition 3.3.2)

are named; the labels are, with a few exceptions, those of Miller and Love (1967). In the captions to the figures the
coordinates of the points of symmetry with respect to the vectors g1; g2, and g3 are given. For example, in Fj, we
haveM = — j g i - jg2 + igj- Points of symmetry are marked with solid black circles; linesof symmetry are marked
with open circles.

(v) The axes k^, ky, and kz are in the same orientation for each of the drawings of the Brillouin zones and there-
fore the vectors g1; g2, and g3 may appear in strange orientations. The points and lines of symmetry are these given
in Table 3.6 and they are all contained in one basic domain of the Brillouin zone.

That is to say, if k' e A" and k' ^ k then P(k') is always a proper subgroup of P(k).
We can say loosely that the point k has a higher symmetry than all surrounding points.

D E F I N I T I O N 3.3.2. If in any sufficiently small neighbourhood N of k there is
always a line (plane) in N passing through k, all points of which have the same sym-
metry group as that of k, then k is said to be a line (plane) of symmetry.

Finally, if in any sufficiently small neighbourhood N of k all points of N have the
same symmetry group then k is said to be a general point. For a general point, P(k)
consists of the identity element alone. For a plane of symmetry P(k) consists of the
identity element and one reflection plane and has just two elements.

D E F I N I T I O N 3.3.3. For each Brillouin zone there is a basic domain, Q, such that
(ZR/?Q) is equal to the whole Brillouin zone, where R are the elements of the holo-
symmetric point group, P, of the relevant crystal system.

Therefore,

(3.3.1)

where |P| is the order of P.
The points of symmetry are found by evaluating the coordinates of the centre of

each face and of each vertex, using eqn. (3.2.6) for each of the planes that meet at
that vertex, and then seeing whether, under the operations of the relevant holo-
symmetric point group P (see Table 3.1), these points possess extra symmetry opera-
tions that are lacking in all other points in the neighbourhood. A symmetry operation
in this context transforms a vector k into a vector k' which is either identical to k or
differs from k by a reciprocal lattice vector. A similar procedure can be used to
identify lines of symmetry. The various points and lines of symmetry for the Brillouin
zones of all the Bravais lattices are shown on the drawings in Figs. 3.2-3.15. The



SPACE GROUPS 111

letters that we have used in Figs. 3.2-3.15 for the points and lines of symmetry in the
Brillouin zones are almost standard and agree, as far as possible, with the notation
of previous authors (Bouckaert, Smoluchowski, and Wigner 1936, Herring 1942,
Koster 1955, Luehrmann 1968, Meijer and Bauer 1962, Miller and Love 1967).

For some Bravais lattices the shape of the Brillouin zone is unique, for example
for each of the three cubic Bravais lattices for which the Brillouin zones are illustrated
in Figs. 3.13-3.15. But for some of the Bravais lattices there are various shapes
possible depending on the axial ratios and the interaxial angles of the Bravais lattice.
For the triclinic Bravais lattice (Fig. 3.2) and each of the monoclinic Bravais lattices
(Figs. 3.3 and 3.4) we have followed Definition 3.2.2 and used the primitive unit cell
of reciprocal space to define the Brillouin zone. For some of the other Bravais lattices
there may be apparently different Brillouin zones (see, for example, Figs. 3.8 for r!

0,
3.10 for F*, and 3.11 for Frh). However, when two apparently different Brillouin
zones are possible there are only the same number of points of symmetry in each case.
Thus in Fig. 3.11 (a), for Frb with a > ^(2)c, the points of symmetry are F (k = 0),
L (k = ig2), F (k = ig2 - i§3), and Z (k = ̂  + ^g2 - ^g3) and in the alter-
native Brillouin zone in Fig. 3.11(b), when a < ^'(2)c, the points of symmetry
are F (k = 0), L (k = &2), F (k = &, + &2), and Z (k = igl + jg2 + ig3).
F and L appear with the same k in both Brillouin zones while F and Z in Fig. 3.11 (a)
have different, but equivalent, k vectors in Fig. 3.11(b). For certain other Bravais
lattices the Brillouin zone has the same appearance except that the orientation of the
faces with respect to the kx, ky, and kz axes is different, see Figs. 3.6, 3.7, and 3.8 for
FO, TI, and r* respectively. Once again, for a given Bravais lattice the same set of
points of symmetry, at least up to equivalence, will be obtained however many
different Brillouin zones actually appear in the relevant figure from Figs. 3.2-3.15.
When more than one shape of Brillouin zone is possible for a given Bravais lattice,
depending on the axial ratios, the relationship between lines of symmetry in the
various cases is more complicated. What may sometimes happen with lines of sym-
metry may be illustrated by considering an example. Two shapes of Brillouin zone
are possible for the orthorhombic base-centred lattice, Fjj; the Brillouin zone if
a > b is illustrated in Fig. 3.6(a) and the Brillouin zone if b > a is illustrated in
Fig. 3.6(b). The equivalence between the points of symmetry in the two cases can be
established by inspection of the captions to these two figures; thus for example T
in Fig. 3.6(a) is (±g] + i§2 + ig3) and T in Fig. 3.6(b) is (-|g, + J-g2 + J-g3). If
we consider the line of symmetry E in Fig. 3.6(b) its k vector is {( —i + a)gi +
(i + a)g2 + 183}, i.e.

k,. = kr + (agl + ag2). (3.3.2)

The corresponding line of symmetry in Fig. 3.6(a) will then have k vector \aK given
by eqn. (3.3.2), that is by the continuation of ZT; see Fig. 3.16. This line E is now
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outside the first Brillouin zone but it is equivalent to some line in the first Brillouin
zone, namely E' where

(3.3.3)

The line E' is simply related to the line A in Fig. 3.6(a) by symmetry and so does not
need to be considered separately from A. Looked at from the other way this means
that the line A in Fig. 3.6(a) becomes, in Fig. 3.6(b), separated into two pieces; one
piece, for some values of a is A of Fig. 3.6(a), while the other piece, for the remaining
values of a. is E of Fig. 3.6(b). Similarly, the line 2 in Fig. 3.6(a) becomes divided in
Fig. 3.6(b) into I. and C. Conversely, the line A in Fig. 3.6(b) becomes divided into
A and Fin Fig. 3.6(a) and the line B in Fig. 3.6(b) becomes divided into B and G in
Fig. 3.6(a).

FIG. 3.16. The Brillouin zone for Fj.

In the tables that appear later in this book it will only be necessary, because of the
equivalence that we have noted, to tabulate the points of symmetry for one Brillouin
zone for each of the 14 Bravais lattices. Also, it will usually only be necessary to
tabulate the lines of symmetry for one Brillouin zone for each of the 14 Bravais lattices.
However, for lines of symmetry on the surface of the Brillouin zone there are a few

kE = k£ - gi - 82
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exceptions. For example, although C in Fig. 3.6(b) is related to £ in Fig. 3.6(a) there
is a subtle difference between them that will become apparent later.

The group P(k), the symmetry group of k, for each point and line of symmetry in
the basic domain of each of the 14 Brillouin zones is given in Table 3.6. It will be noted
that many of the edges of the basic domains in Figs. 3.2-3.15 are not lines of sym-
metry, but are just, in the sense of Definition 3.3.2, planes of symmetry. The reason
for restricting ourselves to a single basic domain will become apparent later; see, for
example, section 5.5.

T A B L E 3.6

Symmetry groups P(k)

Bravais lattice

Triclinic, P, F,
(Fig. 3.2)

Monoclinic, P, Ym

(Fig. 3.3)

Monoclinic, B, F*
(Fig. 3.4)

Point

F
B
F
G

F
B
7
Z
C
D
A

E
A(FZ)
V(BD)
W(YC)
U(AE)

F
A
Z

M
L
V

A(FZ)
U(AM)

Coordinates

(000)
(iOO)
(OiO)
(OOi)

(000)
(100)
(OiO)
(00})
(OH)
Goi)
(Mo), (Ho), (MO)
(Mi), (Hi), (Ml)
(OOa)
(iOa)
(Oia)
(Ha), (H°0, (H«)

(000)
(iOO)

(Oii)
(HI)
(ioi)
(ooi)
(Oaa)
(J-aa)

P(k)

T (Q
HQ
HQ
1 (Cf)

2/m (C2h)
2/m (Cu)
2/m (C2,)
2/w (C2/1)
2/m (C2h)
2/m (C2J
2/m (C2J
2/m (C2ft)
2(C2)
2(C2)
2(C2)
2(C2)

2/m (C2h)
2/m (C2h)
2/m (C2J
2/m (C2h)
T (C,-)
HQ
2(C2)
2(C2)

Elements of P(k)

E,I
E, I
E,r
E,I

E, Clz,
E, C2z,
E, C22,
E, C2z,
E, C2z,
E, C2z,
E, C2z,
E, C22,
E,C2z

E,C2z

E,C2z

E,C2z

E, C2z,

E, C2z,

E, Clz,

E, C2z,
E,I
E, I
E,C2z

E,C2z

I, az

I,",
I,az

/, CTZ

I,",
I, a,
I,°t
I, (7Z

/, a,
I, a,
I,(!z

/, <JZ
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Bravais lattice

Orthorhombic, P, F0

(Fig. 3.5)

Orthorhombic, C, F|;
(Fig. 3.6)

j(a)j
j(b)j

((a)]
< >
I(b)j

f(a)l

lOOJ

(a)
(a)
(b)
(b)

Point

F
Y
X
z
V
T
S
R
A(FF)
D(XS)
P(UK)

B(ZT)
•L(TX)

C(YS)
E(TR)
A(ZU)
A(FZ)

ff(YT)
Q(SK)
G(XU)

F

f

Z

T

S
R
A(FZ)

H(YT)

D(SR)
A(ZT)
T.(TY)
A(FA)
B(ZB)
G(TG)
F(YF)
E(TE)
C(YC)

Coordinates

(000)

(iOO)
«HO)
(OOi)

«Hi)
(loi)
(MO)
(111)
(SOO)
(S-10)
(«M)
(50-1)
(OaO)
(1*0)
(i«i)
(0*1)
(OOa)

(10*)

(H»)
(Ola)

(000)
f(MO){
JGlo)j

(001)
f ( i i i i )< >
) (J-U-I ((\222J)

(010)

(Oji)
(OOa)

f(H«)l

l(Ii»)J
(Oi«)
(aa-1)
(aaO)
(aaO)
(Sal)
G - <x, 1 + a, i)
(i - a, i + a, 0)
(-1 + a, 1 + a, 1)
(-{ + a ,^ + a, 0)

P(k)

mmm (D2k)

mmm (D2ll)
mmm (D2ll)
mmm (D2h)
mmm (D2b)

mmm (D2h)
mmm (D2I:)

mmm {D2h)
mml (C2l,)
mm2 (C2c)
mm2 (C2v)
mm2 (C2l.)
mml (C2l.)

mm2 (C2l,)
mm2 (C2t,)
mml (C2a)
mml (C2u)

mm2 (C2l)
mml (C2J
mm2 (C2s)

mmm (D2k)

mmm (D2ll)

mmm (D2tl)

mmm (D2k)

2/ m (C2 „)
2/m (C2k)
mm2 (C2,,)

mm2 (C2v)

2(C2)
mm2 (C2v)
mm2 (C2,,)
mm2 (C2l.)
mm2 (C2J
mw2(C2 u)
mm2 (C2,,)
mm2(C2l.)
mm2 (C2J

Elements of P(k)

E> C2x< C2,, C2z,

F C C C£•> l-2n l-2j; ^2z'
f /" /" ^•^' *~2x* *~2y> °2z'
£,C2 x ,C2 y ,C2 2 ,

^' £-2x1 ^2y^ C2z,

&•> ^2x1 ^2y> ^2z->
E, C2x, C2y, C2l,
PC C Cr-*> *^2x> ^2y ^2z'

E, C2y, <rz, ax

E, C2 , (J2, a^
£, C2)1, (Tz, (7^

E, C2s, a,, ax

E, C2x, ay, a,

E, C2l, a,., az

E, C2x, ff,,, az

E, C2x, ay, a.
E, C2z, ax, <rf

E, C2z, (rx, av

E, C2l,(7x,ay

E, C2l, ax, iry

E, C2x, C2y, C2z,

E, C2s, C2y, C2z,

E, C2t, C2y, C2z,

E, C2x, C2y, C2z,

E, C2,, f, az

E, C2',, I, az

E, C2z, ax, oy

E, C2z, Ox, (7y

E,C2z

E, C2x, ny, az

E, C2x, <Ty, (7,

E, C2y, az, rrx

E, C2)., crz, a,

E, C2y, <TZ, ax

E, C2y, a,, nx

E, C2X, a,., a,

E, C2x, ay, <iz

A ̂  "y, °z
/, a,, ay, <7Z

/, ax, ay, <TZ

/, ax, ay, az

/, ax, ay, nz

/, ax, ay, az

/, ax, ay, az

1, ax, a az

/, ax, oy, nz

A "x, Oy, Oz

I, ax, a , <TZ

/, ox, ay, az
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Bravais lattice Point

Orthorhombic, I, F*
(Fig. 3.7) F

f(a)l f

i ( b )f x \
U)J I

«
S
T
W

j(a),(b) A(FA))

Kc) A(FJT)J
j(a)\ rvrri
i(b)| G(XG) \

P(TW)
(b), (c) i(ri) 1
' (a) I(FJr)j

S} ™ {
ZJ(S^)

(a), (c) A(FA) 1
' (b) A(00j

S} «H
Q(/{W)

Orthorhombic, F, r!
a

(Fig. 3.8)
F

(a), (b), (d)
(c) Y

'(a), (b), (c)
' (
(a), (c), (d)
(b)

L
f(a), (c), (d)AA(FZ)
{(b)AA(FA)

(a), (b) G(XG)
' (c) G(XY)
'(a), (b) H(ytf) -

' (d)HH( YX)
(b) G(Z6)
f(a), (b), (c)E(-L(YX)
{(d)EI(FE)

'(a),(d)CC(rC)
' (b) C(YZ)
'(a), (d) ,4(Z/I)
'(c)A/f (ZK)
(d)UU(XU)
j(a), (b), (d)AA(F7)
{(c)AA(FA)

(a), (c) D(XD)
' (b) D(XZ)
'(a), (c)BB(ZB)
' (d)BS(ZAT)
(c) R(YR)

Coordinates P(k)

(000) mmm (D2h)
/•iTu^,
\222l

(lii) > mmm (/)2k)
i - i i ^ l(222) J

(iOO) 2/m (C2fc)
(iOi) 2/m (C2ft)
(120) 2/m(C2h)

(Ui) 222 (Z)2)

(aa«) mm2 (C2l))

(j + a, - j- + a, 2 - a) ) . , „ ,;f f , > mm2 (C2J(i + a, -i + a, -i - a)j
(1 + a, -1 + a, -a) 2 (C2)

(aaa) mm2 (C2,,)

(j + a, -2 - a, -j + a)] , ,„ ,
,f , , V mm2 (C2l,)(1 + a, j- - a, -2 + a) j

"(i + a, -a, -i + a) 2 (C2)

(asa) mm2 (C2o)

"(l + a. -^ - a, 2 - z)1 . ,„ ,;f , f } mm2 (C2u)(2 + a, i - a, -1 - a)J
~(i + a, -a, -a) 2 (C2)

(000) mmm (Z)2 J

S?liJ »w"« (^2*)
I1 22^

S —(°-)
g in**^

\lOO) T (Q

> (astO) mm2 (C2J

(j + a, a, j) mm2 (C2J

(a, -j + a, -2) mm2(C2 c)

(i- + a, -i + a, 0) mm2(C2li)

> (xOa) mm2 (C2c)

.(a, -|, -i + x) mm2 (C2c)

•G + a, i 2) mm2 (C2C)

(2- + a, 0, —j + a) mm2(C2v)
)
> (055) mm2 (C2J

•( i -a , i - -a) mm2(C2,,)

. ( i^-a, -a) mm2(C2l.)

( 1 , 2 - x, i - a) mm2(C2l.)

Elements of P(k)

£, C2:<;, C2y, C2z, /, a.,-, CTJ,, trz

E, C2x, C2y, C2z, /, ax, ay, aI

E, C2r, I, cy

E, C2x, I, ax

E, C2i, I, rrz

^' ^-2x; ^-2y ^-2z

E, C2z, ax, ay

E, C2z, ax, ay

E,C2z

E, C2x, <7,, <7Z

£, C2j, <r y , az

£,C2,

£, C2y, <7Z, CT,

£, C2,., «rz, a,

£, c2,

£, C2., C2y, C2z, 1, (Jx, (Jy, ffz

E, C2x, C2y, C2z, /, ax, ay, a,

E, C2x, C2y, C2z, I, ax, ay, nz

E, C2x, C2y, C2z, I, ax, ay, az

E,l

E, C2z, ax, as

E, C2z, ax, ay

E, C2z, ax, ay

£, C2z, ax, ay

E, C2x, (Jy, <rz

E, C2x, ay, az

E, C2x, Oy, az

E, C2x, ay, ̂

E, C2v, az, ax

E, C2y, az, ax

E, C2y, (T2, af

E, C2y, az, ax

X

Z
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Bravais lattice

Tetragonal, P, F^
(Fig. 3.9)

Tetragonal, I, r*
(Fig. 3.10)

f(a)l
l(b)j

f(a)
j(b)

(a)

f(«)
\(b)

(b)

(b)
f(«)
|W

Point Coordinates

F (000)

M (MO)

Z (00 1)

^ (22I)
/? (Oii)
* (020)
A(FA-) (0x0)
0'(Z«) (Oc4)
A(FZ) (00<x)
V(MA) (ii«)
I (EM) (aoO)
S(Z.4) (aa2)
K(A'M) (x^O)
T(R/I) (xM)
W(A7J) (0|a)

F (000)

N (<HO)
A- (OOi)

Z j&'Hia-H)|
p r—J-ir U44J

A(FA)1
A(rz)j (aaa)

K(ZF) (-2
L + a,i + a,| - a)

W(A'P) (a, a, i - a)
S(FZ)]
I(FZ)} (aaa)

F(ZF) (-| - a,i + a, -i + a)
6(A7>) (a, 1 - a, a)
A(FA-) (OOa)
U(ZU) (ii -i + a)
y(A-Z)] ,
y(A-y)} (a> a' z)

p(k)

4/mmm (D4fc)

4/mmm (£>4h)

4/mmm (Du)

4/mmm (D4fl)

mmm (D2k)
mmm (D^)
mm2 (C2o)
mml (C2l,)
4mm (C4|.)
4mm (C4,,)
mm2 (C2l.)
mm2 (C2v)
mm2 (C2J
mm2 (C2c)
mm2 (C2t.)

4/mmm (D4(l)

2/m (C2h)
mmm (D2*)

4/mmm (/>4/l)

42m (D2d)

4mm (C4t.)

4mm (C4c)

mm2 (C2u)

mm2 (C2v.)

mm2 (C2t.)
2(C2)
mm2 (C2c)
mm2 (C2J

mm2 (C2b.)

Elements of P(k)

£> C4z, C2z, C2j, C2y, C2a, C2t,
/, S4+, az, IT.,, CT}., uda, aib

E, C|z, C2z, C2x, C2y, C20, C26,
/, S4

+
z, a,,as, <Jy, ada, adh

E, C/z, C22, C2x, C2y, C2a, C2h,
I, S£, az, ax, ay, ndll, adb

f C ' ± C C C C C&, ^4Z , *-2z, *~2x> *-2jo *-'2(J' ^2ft '

A Stz, az><*x> °"j' a«f"' ^t
E, C2x, C2y, C2z, /, ax, ay, az

£, C2x, C2y, C2z, /, CTJ, CTJ,, a.
E, C2y, o2, a^
E, C2y, az, ax

E, C^,, C2z, ax, ny, aia, adb

E, C£, C2z, ax, ay, aia, aib

E, C2a, frz , a ib

E, C2a, az, adll

E, C2x, ay, <TZ

E, C2x, 0^, ITZ

E, C2z, ax, ay

E, C/z, C2z, C2x, C2y, C2a, C2b,
I, S4

+
z, az,ax, <7,., ada, adb

E, C2y, I, ay

E, C2z, C2a, C2b, I, <rz, ada, adh

E, C4±, C2z, C2x, C2y, C2a, C2b,
I. 54

+
z, a,,ax, a,, ada, adb

E, C2x, C2y, C2z, ada, adb, S£

E, C£z, C2z, a x , t j y , nda, adb

E, C4~, C2z, ax, <sy, ada, adb

E, C2z, ada, adb

E, C2x, a,., ffz

E, C2x, CTV, ffz

E, C2y

E, C2a, <TZ, adb

E, C2a, crz, adb

E, C2b, <72, ado
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Bravais lattice

Trigonal, R, Frh

(Fig. 3.11)

{(0)1m
\(a)
\(b}
](«)
\(b)
(«)
(b)

/(«)
\(b)

(b)
f(«)
\(b)

Hexagonal, P, Th

(Fig. 3.12)

Point Coordinates

F (000)

z /<«*>!i(iii)}
L (OiO)

F (oil)
F (HO)
A(FA)) . .
A(FZ)} (aaa)

P(ZP) ( i - a , i -« , -i -a)
B(ZS) (1, 1- + a, i - a)

S3} <«
2(f 0 (i - a, i + a, 0)
y(LZ)l ,
r(iF)j(a^'a)

r (ooo)

M (OiO)
^ (ooi)

L (Oil-)

* (MO)

ft (Mi)

A(F/1) (OOa)

(/(ML) (Oia)

P(KH) (Ifa)
T(F^) (a, 2a, 0)
S(^//) (a, 2a, i)
T(MK) (2a, i + a, 0)
S'(i-H) (2a, i + a, i)
E(rM) (OaO)
,K(ylL) (0«i)

P(k)

3m (/)3d)

3m (03ll)

2/m (C2ft)

2/m (C2ft)
2/m (C2h)

3m (C3o)

3m (C3l.)
2(C2)

2(C2)

2(C2)

2(C2)

6/mmm (D6),)

mmm (-D2/j)
6/mmm (O6(l)

mmm (-D2)l)

62m (fl3h)

62m (/)3t)

6mm (C6J

mm2 (C2l))

3m (C3o)
mm2 (C2tl)
mm2 (C2tl)
mm2 (C2u)
mm2 (C2J
mm2 (C2c)
mm2 (C2J

Elements of P(k)

£,C3
±,C21,C22, C23,/,Sj,adl,

""dl. ffd3

£, Cj, C21, C'22, C23, /, S£ , adl,
CTd2. "dl

E,C'22, f, od2

E,C'2l,I,adt\
E, C23, 1, ad3^

E< C}, "dl, <*d2, ad3

E, C*, adi, od2, (rdi
E,C21

E,C2l

E,C23

E,C22

E,C*,C±,C2,C'21,C'22,C'23,C21,
C22, C23, /, S3

+, 56
+, <rh, <jdl, ad2,

adl, avl> av2, av3

E, C2, C21, C2l,I,ah,adi,aal

£ f ^ ± /^± /^ *-" /^' /-" r>"
, t-6 ' *^3 > ^-2' *-21' ^22' ^-23' ^21'

C22 C23, /, S^,S^, ak, a,,, ad2,

<*dl, ff,,l> "o2> °v3

E, C2, C'2l, C21, 1, ah, adl, avl

F C- C" C" C" rv t\±

^, ^3 , ^- 2 l5 *~22> *-23' °h' J3 '
adl, ffd2> °d3

E, C f , C2l, C22, C23, ah, Sf,
ad\, ad2> °d3

E, C£, C^, C2, o-Bl, av2, av3,
a

dl, °"<I2> ad3

E,C2,avt,adl

E, C3, adl, ad2, ad3

E, C22, 0-4, ad2

E, C22, ah, od2

E, C2l, ah, adl

E,C2t, ah, atl

E, C 2 1 ,<r h , <7pl

E, C 2 1 , f f h , avl

} In order to keep F within the chosen basic domain we have to allow the elements of P(k) in (b) to
be different from those of P(k) at F in (a), although the points are clearly related. We could preserve
P(k) = E, C'21,1, adl for(b)by allowing Fto be outside the chosen basic domain (i.e. at F'in Fig. 3.11(b))
but we prefer not to do this.
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Bravais lattice

Cubic, P, Tc

(Fig. 3.13)

Cubic, F, r[
(Fig. 3.14)

Cubic, I, H
(Fig. 3.15)

Point

r

X

M

R

A(FX)
i(rM)
A(r«)
S(XR)
Z(XM)
T(MR)

r

X

L

w
A(FA-)
A(FZ)
z(ri)
S(XS)
Z(XW)
Q(LW)

r

H

P
N
x(rAO
A(r//)
A(r/>)
D(NP)
G(HN)
F(PH)

Coordinates

(000)

(OfO)

(MO)

(iii)

(OaO)
(aaO)
(aaa)
(aJ-a)
(ai-0)
(**«)

(000)

(ioi)

(Hi)

(iH)
(aOa)
(aaa)
(a, a, 2a)
(2 + a, 2a, i + a)
(i «, i + a)
(i, 1 - a, 1 + »)

(000)

r 'T ' iU22J

/ i 1 1\
U44V

(OOi)
(OOa)
(aaa)
(aaa)
(a, a, 1 - a)
(aai)
(i + a, 1 - 3a, i + a)

P(k)

m3m (OJ

4/mmm (D4h)

4/mmm (D4h)

m3m (0,)

4wm (C4l.)
mm2 (C2l.)
3m (C3t.)
mm2 (C2v)
mml (C2t.)
4mm (C4,,)

m3m (0,)

4/mmm (D4h)

3m (£>3<j)

42m (£>2J)
4mm (C4li)
3m (C3J
mm2 (C2l.)
mm2 (C2J
mm2 (C2l,)
2(C2)

m3m (Oft)

m3m (0,)

43m (Td)
mmm (D2ll)
mml (C2J
4mm (C4l .)
3m (C3v)
mm2 (C2t.)
mm2 (C2l-.)
3m (C3,,)

Elements of P(k)

E> ^3j' Clm, C4m, C2p,
/, S*j, am, S+m, adp

E, C2y, Cfy, C2x, C2l, C2c, C2e,
1, ay, SZyvP^, az, adc, adf

E' Cl2> ^-*i> ^2i> (-2y> C2o, C2t,

/, <7Z, S4*, CTX, a,, ada, <7Jb

£, C3±., C2m> C^, C2p>

/, 56
Tj, <rm, 54

+
m, adp

£, C2y, C4*, ax, af, adc, ade

E, C2a, a,, adb

E, C^,, adb, ade, adf

E, C2c, ade, ay

E, C2x, as, az

E, C2z, C4rz, crx, ay, ada, ndh

E,C?,,CIm,Ctm,Clp,
/, S,?., <rm, S4

+
m, (TJp

E,C2,,C*y, C2x,C2z,C2c,C2f,
I, fy , $4y , ax , aic , ade

E, Cf, , C2b , C2e , C2f ,
I, S&+1 , adb . "ie , adf

E, C2x, C2d, C2f, ay, az, S^x

E, C2y, C4*, ax, az, (Tdc, aie

E, Cj, , nib, ait, ndf

E, C2a, <rz, adb

E, C2e, ade, ay

E, C2x, ay, az

E,C2f

E, C?,, C2m, C*m, C2p,
i, s^, <im, s;m, <%
E, C±, C2m,C?m, C2p,
I> S*j, <*m> S*m, adf

E, C}j, C2m, St, (7,,

E, C2a, C2z, C2b, I, (Tda, CTZ, adb

E, C2a, a adb

E, C2y, Cfy, ax, a,, oic, ad.
E, Cf, , adb, adf, adf

E, C2z, trda, adb

E, C2b, a,, oda

E, €3*4 , ada, add, aie

Notes to Table 3.6
(i) Column 1 lists the Bravais lattice in direct space, and indicates the appropriate part of Figs. 3.2-3.15 in which

the positions of the points and lines of symmetry are illustrated.
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(ii) Column 2 lists the points and lines of symmetry. These are to be identified from Figs. 3.2-3.15 or alternatively
from column 3, which lists the coordinates of the points and lines with respect to g,, g2, and g,. For example, ^in
Fm is a point on the line YC and its k vector is (Jg2 + aga), 0 < a < i. The labels used for the points and lines of
symmetry are, with a few exceptions, those of Miller and Love (1967).

(iii) Column 4 lists the name of the symmetry group, P(k), of each of the points and lines. For example, W in Fm

has the symmetry group 2 (C2). For the definition of symmetry group see the text of section 3.3. For the relative
orientation of the vectors g1; g2, and g3 with respect to the Cartesian axes Ykxkykz see Table 3.3.

(iv) Cofumn 5 lists the elements of the symmetry groups, P(k). These are to be identified by means of Figs. 1.1-1.3
with axes Oxyz coincident with axes Vkxkykz of Figs. 3.2-3.15 in every case.

3.4. The irreducible representations of the translation groups

Every space group has an invariant subgroup, T, consisting of the translational sym-
metry operations of the Bravais lattice on which the space group is based. In the
present section we consider the determination of the irreducible representations of
the group of the translational symmetry operations of a Bravais lattice.

T consists of elements {E \ rc^ + w2t2 + n3t3}, where n, is an integer that satisfies
0 5$ «; < TV,-, / = 1, 2, or 3 and where we apply Born-von Karman cyclic boundary
conditions (Born and von Karman 1913a, b). Because the multiplication rule is of
the form {E \ t}{E \ s} = {E t + s} and because of the periodicity imposed by eqn.
(3.1.1), T is the outer direct product of three cyclic groups of orders NI, N2, and N3

so that in an obvious notation T = Tj ® T2 ® T3. The reps of cyclic groups are well
known. For example, the reps A of T! are N{ in number and each is labelled by an
integer p^ (0 ^ p± < AT1) so that

(3.4.1)

The reps of T can now easily be deduced from Theorem (1.3.16) on direct product
groups. They are 1-dimensional and are N1N2N3 in number. Each rep is labelled by
three integers/^, p2, and ;?3 (0 «S p( < Nt). If we write ki = Pi/Nt then we can take
k = (kl,k2, A:3) to be a vector in reciprocal space, that is,

k = fcjg! + k2g2 + /c3g3. (3.4.2)

k can then be taken over as the label for the reps of T and these reps are

We can now see the reason for defining two k vectors to be equivalent if they differ
by a reciprocal lattice vector. For if k' = k + g then, since exp (- ig. t) = 1,

(3.4.4)

Hence we can take as allowed values of k any set of N1N2N3 non-equivalent k
vectors. One such set is defined above and they terminate either within or on the
surface of the primitive unit cell of reciprocal space (except for a change of origin)
which for triclinic and monoclinic Bravais lattices we took to define the Brillouin
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zone (see Definition 3.2.2). For all other Bravais lattices we may take as the set of
N^N2N3 non-equivalent k vectors the set of vectors which terminate either within
or on the surface of the Wigner-Seitz unit cell of reciprocal space (see Definition
3.2.2). Thus in every case we may therefore think of the reps of T as being defined by
points k of the Brillouin zone.

It will be useful to have a formula for the density of allowed k vectors. There are
N1N2N3 in a volume 87i3/K where Fis the volume of a unit cell of the crystal. The
density «(k) is therefore NlN2N3V/8n33= W/&TI* where W is the volume of the
crystal. Thus

(3.4.5)

This implies that in the limit of an infinite crystal the k values become arbitrarily close
together and so fill densely the whole of the Brillouin zone.

The basis functions for Ak can be taken to be exp (ik. r) because, see Example 1.5.3,

(3.4.6)

Instead of exp (ik.r) we can use any function of the form

(3.4.7)

where

for all t. That the basis functions of the translation group T are of the form defined
by eqns. (3.4.7) and (3.4.8) is commonly known as Block's theorem.

T H E O R E M 3.4.1. Bloch's theorem (Bloch 1928). The wave function of a particle or
quasi-particle that moves in a periodic potential, V(r), with periodicity defined by T,
can be written in the form

(3.4.7)

where wk(r) has the same periodicity as F(r) and where k is determined by eqn. (3.4.2).

We must emphasize, however, that the label k on the Bloch function ^(r), just
as with the reps themselves, is determined only up to equivalence and can be altered
by vectors g of the reciprocal lattice. This follows from the fact that exp (ig. r) satisfies
eqn. (3.4.8), so that any such factor can be absorbed into the wk(r) part of the Bloch
function. Modifications to the theory are necessary if the crystal under consideration
is placed in a uniform external electric or magnetic field (see, for example, Ashby and
Miller (1965)).

(3.4.8)
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3.5. The classification of the 230 3-dimensional space groups

So far in this chapter we have discussed the translational symmetry of space groups.
A space group G has a 3-dimensional subgroup of pure translations T; this determines
the Bravais lattice. The Bravais lattice has the symmetry of T, but in addition it is
invariant under operations of a point group P. In fact, if F is the full symmetry group
of the Bravais lattice, then F = T A P, the semi-direct product of T and P (see
Definition (1.2.17) for the meaning of semi-direct product). P determines the crystal
system of G. F is itself a space group. If G is symmorphic then G either coincides with
T or is a subgroup of T. This accounts for 73 space groups, see section 1.5. It is
clear that in this case G = T A Q where Q is a point group in the crystal system of P.
Q determines the point group of the crystal of which the space group is G.

We can account for the remaining 157 non-symmorphic space groups by replacing
some of the elements of Q by screw-axis rotations or glide-plane reflections. Q is then
no longer a group and one can no longer write G = T A Q; this is because if the
elements of the set Q could be chosen to form a group then it would be isomorphic
to a point group and G would in turn be isomorphic to one of the symmorphic space
groups.

Let us now consider the restrictions that must be placed on the elements {R \ v}
of Q so that G will be a space group. The following discussion applies trivially to
symmorphic space groups and may be taken therefore as a complete characteriza-
tion. First G must be a group. Hence, if {R v} is an element of G, its inverse
{R'1 | -/T Jv} must also be an element of G, see eqn. (1.5.3). Therefore, if {R \ w}
is in G as well, then so also is

(3.5.1)

(3.5.2)

Indeed, this must be an element of T, the translational subgroup, since its rotational
part is the identity. Secondly, G has a Bravais lattice that belongs to a crystal system
whose holosymmetric point group, P, must contain the operation R. So that if, as
eqn. (3.5.1) implies, R~1(w — v) is a translation of F then so is (w — v). This means
that the translational parts associated with any point-group operation are separated
by elements of T. It is therefore possible to write G in terms of left coset representa-
tives of T (see Definition 1.2.9),

whereby choice we can set/?! = £ and v, to be a vector associated with/?,-(z = I to /z)
of least possible magnitude. For a symmorphic space group all v, are therefore equal
to zero, but for a non-symmorphic space group there must be one or more v, non-zero.
Q consists of the coset representatives {Rt vj. The h elements Rv, /? , , . . . , Rh form
a point group F which is the isogonal point group of G (see section 1.5). F is a



122 SPACE GROUPS

subgroup of P. For a symmorphic space group F coincides with Q. h is said to be the
macroscopic order of G; it is the index of T in G.

In the above specification the non-zero vectors v are not arbitrary because of the
group requirements of G. For example, if R is of order n then [R \ v}" must belong
to T. That is, (v + R\ + • • • + R"~l\) must be a translation. This and other such
requirements limit the number of non-symmorphic space groups to 157 making a
total of 230 space groups in all.

THEOREM 3.5.1. T is an invariant subgroup of G. For if {R \ v} is an element of
G and if {E \ t} is an element of T then

(3.5.3)

which belongs to T since Rt is a translation of T.
The Seitz space-group symbols for the elements of each space group are given by

various authors (Faddeyev 1964, Koptsik 1966, Kovalev 1965, Lyubarskii 1960,
Miller and Love 1967) or they can be written down using the International tables for
X-ray crystallography (Henry and Lonsdale 1965). In section 4.3 of those tables there
is given, for each space group, a set of coordinates of equivalent positions in the unit
cell; for each of the non-cubic space groups there is also a diagram illustrating the
symmetry elements present. It is possible to use these tables not only to obtain the
elements of the space group in the form of the Seitz symbols, [Rt \ v;}, but also to
interpret these symmetry operations in their geometrical aspect; for a screw rotation
axis, for example, one can determine the direction of the axis and the magnitudes of
the rotation and the translation along the axis (Wondratschek and Neubiiser 1967).
We shall illustrate both these uses of the equivalent positions given in the International
Tables.

We show how to use the equivalent positions given in the International Tables to
determine the appropriate Seitz space-group symbols by considering one example,
that of the space group Pmmn (D\l) which is based on the primitive orthorhombic
Bravais lattice. These equivalent positions are given both for a completely general
point in the unit cell and also for points lying on the various symmetry elements. In
Fig. 3.17 we reproduce the two pages of section 4.3 of the first volume of the Inter-
national Tables relevant to the space group Pmmn (D^l). In Fig. 3.17(a) the first set
of equivalent positions corresponds to a general point (x, y, z) in the unit cell; the
remaining sets of equivalent positions correspond to points (x, y, z) that are situated
on some axis or plane of symmetry and these do not concern us here. Starting with
the point rl{=(x, y, z)} and performing the space-group operation denoted by
{R! I V j } we obtain from eqn. (1.5.2)

r; = Rltl + v t (3.5.4)
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and the resulting vectors r\ are given by

123

The fractions refer to fractions of the lengths of the edges, in the x, y, and z directions,
of the conventional unit cell that is drawn for each space group, except the cubic space

Number Wyckoff Point Coordinates of equivalent positions Conditions limiting
of notation symmetry possible reflections
positions

(a) Origin at mmn, at 5, {, 0 from T

General :

8 .9 1 x, y, z; x, y, z; j - x, | - y, z; { - x, j + y, z; hkl:~]
x, y, z; x, y, z; -j + x, -2 + y, z ; j + x, i — y, z. Ok!: > No conditions

hor.j
hkQ: h + k = 2n
hOO: (h = 2«)
OA:0: (k = 2n)
OO/'. No conditions

Special: as above, plus
4 / m x , 0 , z ; x , 0 , z ; | - x , i , z; } + x, \,z 1

V t\O (ix.tr ̂ . C-CNV^AN^NOJ^V^

\ hkl: h = 2n;k = 2n

> no extra conditions

4 e m

4

4

2

2 a

b

c

d

mm

mm

1

1
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(b) Origin at 1, at j, j, 0 from mmn

General :

8 g 1 x, y, z ; -j — x, y, z ; x, | - y, z ; \ — x, j - y
x, j>, z; i + x, y, z; x, | + j, z; { + x, i 

MM: J
MO: h + k = 2n
M)0: (A = 2n)
0«): (k = In)
001: No conditions

Special : as above, plus

4 / m x, |, z; x, f, z;i - x, i, z; j + x, f, z. 1
>• no extra conditions

4 e m y,y,z;l,y,z;l± - y , z ; l , l 2 + y,z. J

A f t T n n l - l n l - n l l - 1 1 1 ^4 « 1 0, 0, 2, ^, 0, J, U, 2, 1, 2, i> 2-

> AW: A = 2n;i = 2n
4 c T 0, 0, 0; 2 , 0 , 0 ; 0, 2

L, 0; i i 0. J

2 fr mm iJ, z;|,iz. "I
>• no extra conditions

2 a mm ii, z;|, |, z. j

FIG. 3.17. Excerpt from the International Tables (Henry and Lonsdale 1965) illustrating alternative settings for the
group

Pmmn (D^) (orthorhombic, mmm, P21/m2l/m2/n, No. 59).

groups, in the International Tables. We can identify Rt for each of the eight vectors
FI by making use of Table 1.4 from which we find

which gives the rotational parts of the space-group symbols. The translation vector
\! associated with each of the first four of these is clearly zero. Since t{ = (0, —b, 0)
and t2 = (a, 0, 0) for the primitive orthorhombic Bravais lattice (see Table 3.1), the
translation vector associated with each of the last four of these symbols is —jt : + jt2.
We can add an integer multiple of t l 512 , or t3 to the translation vector V ] so that we
choose v, = 4-^-tj + %t2 and the elements of the space group Pmmn (D\l) are
therefore

(E | 000}, {C2z | 000}, K I 000}, {a, \ 000},

hkl
0kl No conditions
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It is not necessary to list all these and in Table 3.7 we have listed only the generating
elements of each space group; under Pmmn (D2l) one can see that generating elements
{C2x iiO}, {C2y | #0}, and {/1 ̂ 0} have been chosen.

It is important to be able to see how the form of any given Seitz space-group
symbol {Rl \ \{} is affected if the origin of the coordinate system used to describe
the crystal is moved to a different point in the unit cell. Suppose that r, and ri are
the positions of a point before and after the performance of an active space-group
symmetry operation; this operation is denoted by {/?, \\i} in the first choice of
coordinate axes Oixiyiz{. Suppose now that a new choice of coordinate axes

FIG. 3.18. Change of origin by a translation.

02x2y2
z2 is made where the origin is displaced, without any rotation of the axes, by

a vector +t0 from the origin of the axes O1xlylz1, see Fig. 3.18. From this figure we
can see that

TI = t0 + r2 (3.5.5)

and

r', = t0 + r'2 (3.5.6)

and, from the definition of the space-group symbol {Rl \ v ,} which acts in the system
0^xlylzl, we have

r; = R^t + v , . (3.5.4)
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If this space-group operation is denoted by {R2 \ v2} in the coordinate system
O2x2y2z2 then r'2 and r2 are related by

r'2 = R2r2 + v2 (3.5.7)

and we can use all these equations to determine {R2 \ \2} in terms of {R{ vj. From
eqn. (3.5.7)

R2r2 + v2 = r2 ,

= r', - t0, from (3.5.6),

= Rlri + v, - t0, from (3.5.4),

= R^to + r2) + v, - t0, from (3.5.5),

= R,r2 + v t + tf,t0 - t0;
that is

R2r2 + ^2 = R,T2 + v , + tf,t0 - t0- (3.5.8)

Therefore comparing the two sides of eqn. (3.5.8) we see that the effect on the space-
group symbol {Rl v,} of a move of origin by +t0 is to produce [R2 v2} where

R2 = R, (3.5.9)
and

v2 = v, + /Mo - t0- (3.5.10)

That is, the effect on the space-group symbol {tf, | v ,} of moving the origin by +t0

is to produce {R2 \ v2) where

{*2 |v2} = { t f . l v , + /Mo -t0}. (3.5.11)

We can illustrate the effect on the space-group symbols of moving the origin by
considering the space group Pmmn (D\l) again. The International Tables give two
different positions for this space group, see Fig. 3.17. We have already used the first
setting (Fig. 3.17(a)) to write down the space-group elements. In the second setting,
see Fig. 3.17(b), the origin has been moved by {( — \ x the repeat distance along the
x-axis) + ( — \ x the repeat distance along the j-axis)}, that is, from Table 3.1, by

to = it, - it2. (3.5.12)

Therefore, if we make use of eqns. (3.5.9) and (3.5.10) we can convert the space-group
elements we obtained before to the second set of axes, for example, (C2z | 000} be-
comes replaced by [R2 \ v2} where, from eqn. (3.5.9), R2 = C2z and

(3.5.10)

(3.5.13)
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so that the element in the second coordinate system is {C2z — i^O} to which we may
add t j to obtain {C2z | iiO} as an element of the space group referred to the new
origin. This agrees with the equivalent positions shown in Fig. 3.17(b) whe
(C2z I ~~HO} acting on (x, y, z) produces (^ — x, ? — y, z) which is one of the eight
general equivalent positions given in Fig. 3.17(b). Repeating this use of eqns. (3.5.9)
and (3.5.10) with the same t0 = ^tt — ̂ t2 we obtain all the elements of the space
group Pmmn (D\l) referred to the new origin :

TABLE 3.7

The 230 space groups

Inter-
national
number

1
2
3
4
5
6
7
8
9

10
11

12
13

14

15

16
17

Inter-
national
symbol

PI
Pi
P2
P2,
B2
Pm
Pb
Bm
Bb
P2/m
P2Jm

B2/m
P2/b

P2t/b

B2/b

P222
P222,

Schonflies
symbol

r r1
1 ̂  !

r,c'
rmc2
rmci
rb

mcl
rmc;4
rmc^
rb /~3
1 m C , J l
r-b ,"4
1 m1-!!!

rmci,
rmc|t

pb ."3
1 m1-!/!

r <"4
' m L 2»

r r5
1 mL2/i

r^cs.

r./>i
roo^

Generating elements

{£ | 000}
{/ | 000}
{C2z | 000}
{C2z [ 001}
{C22 1 000}
{CTZ | 000}
{<jz | 100}
{a, | 000}

K 1 ioo}
{C2z | 000}, {/ | 000}
{C2z | OOi}, {/ j 00*},
{C2z | 00|}, {/ | 000}
(C2z | 000}, {/ | 000}
{C2z | 000}, {/ | 100},
{C22 | 1-00}, {/ | 000}
{C2z | ooi}, [i I io2},
{C2z |iOi},{/|000}
{C2z j 000}, {/ | iOO},
{C22 1 100}, {/ | 000}
{C2x | 000}, {C2y |000}
{C2* 1 001}, (C2, 1 000},
{C2x | 000}, {C2y I OOi}

to

0
0
0
0
0
0
0
0
0
0
&
0
it,

-it, + it3

it,
0
*

In this list we have added or subtracted vectors of the translation group of the primi-
tive orthorhombic Bravais lattice in certain cases to simplify the form of the space-
group elements.

The generating elements of each of the 230 space groups are listed in Table 3.7.
In the first three columns we identify the space groups using the international and
Schonflies symbols and in column 4 we give the Seitz space-group symbols of the
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Inter-
national
number

18
19

20
21
22
23
24

25
26
27
28

29

30

31

32

33

34

35
36

37
38

39

40

41

42
43

44

Inter-
national
symbol

P2,2,2
P2A2,

C222,
C222
F222
7222
72,2,2,

Pmrril
Pmc2l

Peel
Pma2

Peal,

Pnc2

Pmn2,

Pba2

Pna21

Pnn2

Cmm2
Cmc2l

Ccc2
Amm2\

Abm2%

Ama2\

Aba2\

Fmm2
Fdd2

Imm2

Schonflies
symbol

r07>!
rj%

rboi
T*D»2

**J>1
TID\
rj)l

r0c2l.
r.cL
r.cL
r0c*,.

r0cL

r0ci.

r0cit.

r r8
1 o'-ac

r0cL.

r0c2°

rjcii
ricj.2

rbcic
3

T-b^-14
* o^2v

rbc2l
5

rtcL6

rbcL"

r[cz
He,,9

r>/^20
1 ol-2ii

Generating elements

{C2X \ tiO}, {C2). | HO}

{C2.v|Oii},{C2vlli-0},
{C2l|iiO},{C2,liOi}
{C2, j 000}, {C2). I OOi}
{C2x | 000}, {C2). 1000}
(C2V | 000}, {C2y | 000}
{C2J 000}, {C2). 1000}
{C2v I Oi|}, {C2J. | 2i-0},
{C2JiiO},{C2v | |02}
{a, | 000}, {<7V 1 000}
K 1 000}, {a,. | 00|}
K. | OOi}, {a,. | OOi}
{<7X j iOO}, {a, | 000},
{a, | 02lQ}, {ff). | OiO}
{Ol | iOO}, {as | 00|},
{a, | OH}, {(7,. | 01-0}
K-lM}, {<7,,|ooi},
{̂  1 i<H}, {a,. | iOi}
{«jv | 20i}, {ar | 000},
i<r.x j 000}, {̂  j 0|2}
{ax | iOO}, {a,. | OiO},

KlMo},K) i io}
{̂  | |00}, {ay | OM),

i^ i m, {", i MO}
KljO]}, {<7,|02i},

{̂  1 Mi}, {<r, i IM}
{̂  | 000}, {ay \ 000}
{a, | OOi}, {°y \ 000},
{<TX | 000}, (a, | OOi}
{ax | 00|}, {a, | 00|}
{CTZ| 000}, {aJOOO},
{CT, | 000}, {CT, | 000}t
K 1 MO}, {a, | 220},
K 1 M}, {a, 1 ioijt
{as \ OOi}, K 1 00^},
{ax I OiO}, {a, | OiO}t

{̂  1 Mi}, K 1 Mi),
K 1 Ml}, K 1 Mi}t
K i ooo}, {a, | 000}
{ax \ OiO}, {a, | iOO},
< (3331 < „ \ 3 33\
(<7j 444), {^[544}

{IT, | 000}, {ff, | 000}

to

0
*

0
0
0
0
it,
0
0
0

-it,*
-it,*
-it,

*

-it, + it2

-it, + it2*
'f _1_ 1*

— 4ll + 412

0
*

0
*

*

*

*

0
it3

0

:[ In this book we do not use the A lattice for these space groups, see Note (v) to Table 3.1 and Note (iv)
to the present table.

t Referred to t l 512 , t3 in Note (v) to Table 3.1.

128
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Inter-
national
number

45
46

47
48
49

50
51

52

53

54

55
56

57

58

59
60

61

62

63
64

65
66

67

68

69
70

71
72

73

Inter-
national
symbol

Ibal
Imal

Pmmm
Pnnn
Pccm

Pban
Pmma

Pnna

Pmna

Pcca

Pbam
Pccn

Pbcm

Pnnm

Pmmn
Pbcn

Pbca

Pmna

Cmcm
Cmca

Cmmm
Cccm

Cmma

Ccca

Fmmm
Fddd

Immm
Ibam

Ibca

Schonflies
symbol

r'ci1
ricn

ryJl*
TO-DI*
r./>L

ryjS*
ry>i*

raD\*

r0£>L

r^S*

rj>l,,
r n10
1 aU2li

r n11
1

 0
JJ2h

r n12
' oL'2ll

r n13
1 «L)^k
T n14
1 aU2tl

r n15
1 oJJ2h

r n16
1 ou2h

rbr>17
1 oU2li
pbr)18
1 oU2h

rbn19
1 0^2*
I-br)20
1 oD2l,

rbr)21
1 oW2*

r^2\
2

rf
0^

3

rf n24
1 0^2*

rv n2 5
1 aU2h

r^2ft
6

r^i*7

Generating elements

K 1 HO}, K 1 MO}
fo 1 oil}, K 1 oil},
k,l*
(C2J
{C2xl
{C2J
{C2I|
{C2l|
{C2,l
{C2,j
{C2J
{C2J
{C2J
(C2J
{C2J
{C2x\
(C2J
{C2J
{C2J
{C2,l
{C2J
{C2J
{C2J
{C2, 1
{C2J
{C2J
{C2J
{C2J
{C2l !
{C2J
{C2J
{C2J
(C2j t |
\C2x \
{C2x\
{C2x \
{C2x\
{C2J
{C2J
{C2, 1
{C2,
{C2l 1
{C2,|
{C2J
{C2x \
r/-' 1
V C 2x 1

{C2J
{C2I|

to

0
*

oi}, {<7, 1 M}
000},
000},
000},
oo{},
000},
ooi},
OiO},
ooi},
ioi).
ooi},
000},
ooi},
oii},
iio},
i20},
oyj,
MO},
ioo},
1 1 ft\
IjO),
11112 2 2 ) ,
iio},
220},

iio},
oil},
iio},
oii},
liiK
000},
000},
000},
000},
000},
ooi},
000},
000},
000},
11U
2 2 2 J >

000},
000},
000},
000},
000},
MO},
oii},
iio},

{C2y

{C2y

(C2,
{C2y

[C2r

{Ci,
{C2,
{C2,

{C2y(/^
\^2y

{C2f

{C2y

{C2y

{C2y

(C2y

{C2y(/^
\L-2y

{C2,
{C2,

{C2
f

{C2,
{C2y

{C>2,

(C2,
{C2,
{C2>,
{C2>.
{C2y

{C2y

{C2y

{C2y

[C2y

(C2y

(C2y

{C2f
ir
t l-2y

{C2,
{C2>,
{C2,
{C2J

{C2y

{C2,
{C2),
Ir1
( l-2y

{C2,

1 ooo},
1 000},
1 000},
1 ooi},
1 000},
1 ooo},
1 000},

1 000},
1 1 1112 2 2 ) ,
1 ooo},
i oii},
1 ooo},
1 ooi},
1 MO},
i lln\2 2 U < >

1 lol},
1 MO},
I l o 2 } ,
liio},

1 Mi},
1 MO},
IMO},
1 ooi},
1 MO},

1 '0 ')1 2
U

2;,
I i in)i 220},

1 ioo},
1 ooi},
1 ooi},
nil},
1 000},
000},

I ooi},
1 ooo},
liio},
1 ooo},

1 ooi},
1 000},
1 ooo},
1 000},
1 000},
000},

\ MO},
liio},
lioi},

{/
{/
{/
{/
{/
{/
{'{I
[I
{'
[1
{I
{/
{/
{!
{I
{I
{/
{/
{/
{/
{/
{1
u{/
{1
{I
{I
{I{I
{/
{/
{/
(I
{/
{/
{/
{/
{/
{1{'
{/
{/
[I(I

I 000}
1 1 1111 2 2 2 )
1 ooi},
| 000}
liio}
! ooo},
[000}
liio},
| 000}
1 ioo},
I 000}
I O J O } ,
1000}
1000}
i -'-'-H1 2 2 2 1 ,

I 000}
1 oio},
I 000}
1 ooi},
| 000}
liio}
lioi},
I 000}
1 ooo},

I 000}
1 MO},
1000}
J O O O }
1 MO},
000}

|000}
1 ooi},
I 000}
1 MO},
I 000}
1 1 1 11
1 222|,

000}
I 000}
1 1 1 11
1 4 4 4 f ,3331

1 444J

000}
1 1 ni

1 2 2 O J ,

1000}
1 ooo},
i 000}

0
0
4*3

0
*

it, + it2*
-it,*

iV

0
-it, + i-t2 + 4t3

it2*

-it3

0
-it, + it.,*

*

1*- , U
3ft I + 412

0
it, + it2

0
i-t3

iti + it2

—it, + it2 + it3

0
*

0
it, + it2

1-tl
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Inter-
national
number

74

75

76
77
78
79
80
81
82
83
84

85
86
87
88
89
90

91

92

93
94

95

96

97
98

99
100
101
102

103
104
105
106
107
108
109
110
111

Inter-
national
symbol

Imma

P4

P4l

P42

P43
74
/4,
P4
14
P4/m
P42/m

P4/n
P42/n
J4/m
14, /a
P422
P4212

7M,22

7*4,2,2

P4222
P422,2

P4322

7>432,2

/422
74,22

P4mm
P4bm
P42cm
P42nm

P4cc
P4nc
P42mc
P42bc
74mm
74cm
74, md
74, cd
P42m

Schonflies
symbol

rvr,28
1 oLI2t,

r r1
1 qC*

r r2
1 q<-4

r r3
1 qL4

r r4
1 qc4
rvr5
> ,L4
pv/"6
1 q^4

r s1
1 q^4

rqS4
rqcl,
r r2
1

 q
L-4ll

r r3
1 q<-4J,

r r4
' q"-4li

rvr5
1 qL4Ji

TqCj,

rq£>i
rq^

rq7>!

rq7>;

r,7^
rq£S

rq7)i

rq7)J

rvn9
1 q-L>4

rvD'°1 q^4

r r1
1 q<-40

r r2
1

 q
l-4i;

r r3
1 qL4o

rqcju

rqci
r r16
1 ql-4i.

r r7
1 qL4l-

r r"*1 qL4c

rv,-9
1 ql-4o
rv."10
1 qL4c
rv^.1 1
1 qL4o

rqci2

rqr>L

Generating elements

{C2x

{C2x

{CL
{c;z
{C4

+
2

{C4
f
z

{c;z
{C4

+
z{ ẑ{s;z

{C4
+

z{c:,
{c:.
[CL
{c;z
{C4

+
z

(c;z{c;2{c;z
{c;z
{C4

+
z

{c;z
{Cz
(Cz
{C4

+
z

{C4
+

z

{C4
+

z

!C4
+

Z
{C4

+
z

{c;z
{C4

+
z

{c;z
{C4

+
z

(Cz

{C4
+

z

{C4
+

z

{c;z
{C4

+
z{c;z(Cz

{C4
+

z

{c;z
{C4

+
z

{C4
+

z

{c;z
{Q+

z
(CL
{SZ

|OM},{C 2 , |MO} ,{ / IHO} ,

»0

3* I !«-*ti + 4l2

I 000}, {C2J | 0|i}, {7 i 000}
I 000}

1 ooi}
|00i}
1 oo|}
I 000}
| 3 1 1 )
1 442/

| 000}
000}

1 000}, {7 |
1 oo|}, {/ 1
1 ooi}, {/ |
1 MO}, {7 |

l i H H / l
1 000}, {7 |

000}
ooi},
000}
MO}
Mi}
000}

llii}.{/l^}
1 000}, {C2

1 000}, {C2

! MO}, {C2
1 ooi}, {C2,
\ ooi}, {C2

, | 000}
1 1 1 fl\

< 1 2lO},
i 'n\

< 1 220|

1 000},
. ! ooi}

i ooi}, {C2x | Mo},
1 I 1 1 \ < /^
\ 2 2 4 J , {L2j

1 1 3 )
1 2 2 4 /

1 ooi}, {C2x\ 000}
1 ooi}, {C2
\ Mi}, (C2,
\ oo|}, {c2
! oof}, {c2
1 00|} , {C2

1 iii}, {c2
1 000}, {C2

i ' ln\c i 22 U / ,
1 1 1 1 )1 2 2 2 }

c i 000},

. ! ooi}
,liio},

1 1 1 1)
c 1 2 2 4 J

f I 000}
i 3 i i i r/^ i n 1 1 !
1 442), lC2j 1 022},
j 3111 (/-1

1 442/ , ll-2

1 000}, {ox

1 000}, {ffI

1 ooi}, {̂
I ooi}, {",
\ Mi}, {",
1 000}, {d^
1 000}, {a,
1 ooi}, {̂
t OOi}, {a,

1 000}, {<rx

1 000}, {a,

1 Hi}, K
1 Hi), {^

1 000}, {C2

| 3 1 1 )
( 1 442;
000}
MO}
ooi}
Mi},
Mi}
ooi}
1 1 11
2 2 2 /

000}
MO}
000}
1 lr\l
22 U )

000}
MO}
1000}

0

0
0
0
0
0
0
0
0
&
0
0
0
0
0

iti

it3

it, - |t3

0
it, + it.

it.
u u
2 l i S13

0
lt _1_ 1*
8*1 + fft2

0
0
0
it,

0
0
0
0
0
0
0
0
0
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Inter-
national
number

112
113
114
115
116
117
118
119
120
121
122

123
124

125

126

127

128

129

130

131
132

133

134
135

136

137

138

139
140

141

142

Inter-
national
symbol

P42c
P42itn
P42,c
P4m2
P4c2
P4b2
P4n2
I4m2
14c2
I42m
I42d

P4/mmm
P4/mcc

P4/nbm

P4/nnc

P4/mbm

P4/mnc

P4/nmm

P4/ncc

P42/mmc
P42/mcm

P42/nbc

P42/nnm
P42/mbc

P42/mnm

P42/nmc

P42/ncm

I4/mmm
I4jmcm

/4,/amrf

74,/ao/

Schonflies
symbol

rq-Did
r,/>L
rq/Jl,
rq/>I,
rq/>L
rq£>L
r,/>L
|-v r>9
1 nu2d
pv n lo
1 <t

L>2d

W
rq£»L2

rq£>4.
rq/>4*

rq£>4>

rq£>4*

rq/>tk

rqo^

rq£>4h

r DSJ ^4/1

r n9
1 1)̂ 411

r,01*°

r,£>4*

r,/>iZ
rq£>4*

3

r D14
1 <i

LJ4h

r n15
1 qUtl,

W

rq£>i,7
r;/>4h

8

rv n ' 91
 q^4li

rv n20
1

 q^4»

Generating elements

{S4
+
z | 000}, {C2l 1 00^}

{s:z \ ooo}, [C2x \ iio}
{s;z i ooo}, {c2x i Mi}
{5-4

+
z i 000}, {C2o | 000}

[S^ \ 000}, {C2a | OOi}
{siiooo}, {C2j|2o}
{54

+
z | 000}, {C2o j iH}

{54
+
2 I 000}, {C2o | 000}

{s;z j ooo}, {c2a \ MO}
{54

+
z | 000}, {C2:t | 000}

{54
+

z | 000}, {C2x | i!i},
{s;ziooo}, {c2liHI}
f r +
tC4z

{C4
+

z

{c;z
{C4

+
z

1C,
{c;z
{CL
\c:z
{C4

+
z{c;z

{c;.
{C4'z(c:,
{CL
{CL
[CL
{c;z
{C4

+
z

{C4z

{C4
+

z

(C,
{c;z
{C4

+
z

{c;z
{Ql

z

{c4;[c;x
[CL
{C4z{c;z
{c;z
{c4-z
{c;z
{C4

+
z

000}, {C2J 000}, {/ |
000}, {C2x \ 000}, {/ |
000}, {C2J | 002}, {/ |
Mo}, {C2x \ ooo}, {/ !
|00}, {C2x \ OiO}, {/
MO}, {C2,
000}, {C2x

iio}, {c2x
000}, {C2x

MO}, {C2,
000}, {C2l

000}, {C2x

MO}, {c2x
000}, [C2x

MO}, {c2;t
ooi}, {C2J
00^}, {C2i

oo|}, {C2,
Mi}, {c2x1 1 1 ) 1 /^
2 2 2 / s \C2x
l l l i r^
2 2 2 J ' t t-2^

Mi}, {C2i
ooi}, {c2,
M i l r<"
2 2 2 / 5 \ t-2x

Hi), {c2,
ooi}, {C2x
111) r."
222}, ic2*

ooi}, {Q,
iii}, {C2,
000}, {C2x

MO}, {C2:t

000}, {C2x

oio}, {c2:t
oio}, {c2x

ooo}, {/ 1
ooo}, {/
MO}, {/ 1
MO}, {/ i
MO}, {/
m,{n
MO}, {/
MO}, {/ 1
MO}, {/ 1
1 1 n / T I222} , \l \
000}, {/ |
000}, {/
ooi}, {/
OOOj, {/ |
ooi}, {/
000}, {/ |
MO}, {/ 1
MO}, {/ 1
MO}, {/ i
Mi}, {/
MO}, {/ 1
1 1 1 ) / / i
2 2 2 ) . {' \

MO}, {/ I
MO}, {/|
000}, {/ |
000}, {/
MO}, {/
MO}, {/
000}, {/

{C4
+

ziiOO},{C2jiiO}, {/[
{c4-z!o-io},{c2jMo},{/i

000}
ooi},
000}
1 'n\220) ,

000}
Mi},
Mi}
000},
000}
ooi},
000}
1 1 r,)2iO},
1 'nl
22°}

Mi},
MO}
000}
ooi},
000}
1 1 ni
2jO},
i i n
2 2 2 )
i i n
2 2 2 )
000},
000}
ooi},
000}
MO},
1 1 1 )
2 2 2 1
1 1 1 )222},
1 1 1 1
2221

000}
220},

000}
MO},
000}
000},
000}

to

0
0
0
0
0
0
0
0
0
0
*

0
&
it, - it2

it,
2*1

1* ^ U
I'l + 413

it,

iti + it 3

0
it3

&
0
it,
it3

it, + it.

it!

0
It, + It2 + It3

1* 1 i f .
4*1 + 4*2

#
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Inter-
national
number

143
144
145
146
147
148
149
150
151

152
153

154
155

156
157
158
159
160

161

162
163
164
165
166

167

168
169
170
171
172
173
174
175
176

177
178

179

180

Inter-
national
symbol

P3
P\
P32

R3
P3
R3
P312
P321
P3,12

P3,21
P3212

P322l
R32

Plml
P3\m
Plcl
Pile
R3m

R3c

P3\m
,P31c
P3m\
P3c\
R3m

R3c

P6
P6,
P65

P62

P64

P63

P6
P6fm
P63/m

P622
P6i22

P6522

P6222

Schonflies
symbol

r r1
1 h L 3

r r2
1 l,L3

rhc^
rrhc*
rhc3j
r r2
1 rhC3,

r,,/)^
rh£>?
r,,,D^

rho*
^DI

r,,/>!
rr,,/J?

r cl
1 I,1- 3u

rhcL
rhci.
rhct
rrhcL

rrhc|u

rho3d
rhfll,
r,̂ !.
r,,Dj,,
rrh/)L

r n6
1 rh^Sd

r r1
1 li»-6

r r2
1 1,^6

r r3
1 h L 6

rhcj
rhci
rhcs
r,,cjh
rhci.
rhc2,

r,X
rho

2

rh/)^

rhi>t

Generating elements

{C3
4

{C3
+

{C3
+

{C3
+

W lW l
{C3

+

{C3
f

{C3
+

{C3
+

{C3
+

{C3
+

{C3
+

{C3
+

{C3
+

{C3*
{C3

+

{c;
{C3

+

{C3
+

{C3
+

{C3
+

{C3
+

{C3
+

W l
W l
{•S6

+

W l
{56

+l
{5/
{5;
{̂
{C
{C
(Q{c;
//" +
1C6

{C
{53

+

{Q(

f r +
f-d

{C6
+

{C
{Q+

(C
{C6*
{Qf

{C

000}
ooi}
oof}
000}
000}
000}
000},
000},
ooi},
0<H},
ooi},
oof},
oof},
oof},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000}
oo|}
oof}
ooi}
oof}
00 J}
000}
000},
oo-i},
oo*},
000},
ooi},
ooi},
oof},
oof},
ooi},

{Q,
{C2\
{Qi
{Q,
{C2",
{Qj

{Q,
{Ca,
{Q,
{C2",
{ff.l
{ffdl
{ ,̂
{^dl
{ffjl
{"„!

{"dl{^,
{CTdl
{Tdl
{^,1
{^,
{ f fdl
{".,
{^Jl
{"..

Kl
K l
Kl
{Q,
{C21

{CJ,
{C21

{C2"t

{C21

| 000}
| 000}
1 oof},
1 oo]}
|00f}

1 ooi},
loot}
|00i}
1 ooo},
| 000}

]000}
1000}
|00i}
100*}
! ooo},
1000}
i 1 1 n1 2 2 2 ) ,
[ 1 1 1 1
1 222!

1000}
looi}
| 000}
1001}
1 ooo},
1000}
1 1 1 111 2 2 2 ) ,
1 1 1 111 212}

000}
000},
ooi}

I 000}
1 000},
| 000}
i 000},
iOOO}
| 000}

to

0
0
0
0
0
0
0
0

it,
0

-it3

0
*

0
0
0
0
*

*

0
0
0
0
*

*

0
0
0
0
0
0
0
0
it3

0
*

*

0
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Inter-
national
number

181
182

183
184
185
186
187
188

189
190

191
192
193
194
195
196
197
198
199
200

201

202

203

204

205

206

207

208

209

210

211

212

Inter-
national
symbol

P6422
P6322

P6mm
P6cc
P63cm
P63mc
P6m2
P6c2

P(,2m
P62c

P6/mmm
P6/mcc
P6}/mcm
P 63/mmc
P23
F23
123
P2ll
12,3
Pm3

Pn3

Fm3

Fd3

Im3

Pal

Ia3

P432

P4232

F432

F4,32

1432

P4332

Schonflies
symbol

r,,^
rj%

rhc>,
r c2
1 h^dr
r c31 it1- 1,,-
r,,c4,
r,,£>^
r^i,

rh/>L
rh/>l.

rhz>^
r.,02,
rh/&
rh£>^
rcr'
Hr2

r»r3

rcr
4

rir5

TcT;1

r T2
1 c ^ h

H*?

W

nr,?
rcr,

6

nr;
rco'

rco
2

r'o3

r'o4

r»o5

rco
6

Generating elements

{C6
+|

{C^i
{Q:I
{C6

+!
{Qi
{Q+!
{Q+l
{S3

f 1
{̂  1
W l
W l
W l
{53

+ l
{C«+ |
{C6

+ |
{Q+!
{C6

+|
{C2z|
{C2,|
{C2r|
{C2J
{C22|
{C2z|

{C2z|

{C2z|

{C2z|

{C2z|

{C2z|

{C2z|

{C2z!

{C22|

{C22|

{C2zl

{C2z |

{C2z|

00|},
ooi},
ooi},
000},
000},
ooi},
ooi},
000},
000},
OOi},
000},
000},
ooi},
000},
000},
ooi},
ooi},
000},
000},
000},
i n i l
2

U2,N
i n n
2°2J '

000},

000},

000},

000},

000},

ioi},

ioi},

000},

000},

000},

000},

000},

1 A 1\

20 2) ,

{C21|000}
{C21|000},
{C2\1000}
{acl 1 000}
{^i I OOi}
K.I ! ooi}
{^i ! 000}
{a vi I 000}
KL 1 OOi},
{°»i 1 OOi}
K, I 000}
K, I OOi}
{T,, ! OOi}
{C21|000},
{C21|00i},
{C21 ! ooo},
{C21 | OOi},
{C2JOOO},
{C2x I 000},
{C2x | 000},
{C2jiiO},
{C2x I iio},
{C2JOOO},
{/ 1 000}
{C2JOOO},

{/liii}
{C2JOOO},
{/ 1 000}
{C2x | 000},

[i\m
{C2x \ 000},
{/ 1 000}
{C2x 1 iiO},
{/ 1 000}
{C2JiiO},
{/ 1 000}
{C2JOOO},
{C3

+, I 000}
{C2jt | 000},
{C+! | 000}
{C2x | 000},
{C^ I 000}
{C2, ] 000},
{C3

+, ! 000}
{C2x | 000},
{C3

+, I 000}
{C2l I iiO},
{C3

+, ! 000}

{/ I 000}
{/ j 000}
{/ | 000}
{/ 1 000}
{C3

+, | 000}
{C3

+, I 000}
{C3

+, | 000}
{C3

+, | 000}
{C3

+, | 000}
{CM [ ooo},

{C+! | 000},

{C3
+, | 000},

{C3
+, ] 000},

{C3
+! | 000},

{CjMooo},

{C3
+! I 000},

{C2a 1 000},

( /" i 1 1 n
{<-2a 1 2221,

{C2a | 000},

t r i ' i n
C~2u I 444 />

{C2a \ 000},

1C I J33)X L 2 o I 4 4 4 / >

to

0
*

0
0
0
0
0

&
0
it,

0
0
0
0
0
0
0
0
0
0

0

0

0

0

0

0

0

0

0

0

0

0
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Inter-
national
number

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Inter-
national
symbol

/M,32

74,32

P43m

F43m

/43m

P43n

F43c

/43d

Pm3m

Pn3n

Pm3n

Pn3m

Fm3m

Fm3c

Fd3m

Fd3c

Im3m

laid

Schonflies
symbol

rco
7

r,0H

rcr;

HT?

nr,3

r.7?

nr,5

riT6

r.0,1

r.A2

rco
3

r,.o?

rfA5

rf
co«

no*7

^0?

no?

noi°

Generating elements

{C2z|

{C2z|

{C2,|

{C2z|

{C2z |

{C2z|

{C22|

{C2z|

{C2I|

{C22|

{C2 zl

{C2z |

{C2z

{C2z

{C2z

{C2z!

{C2z|

{C2z I

{C2z|

M},

M},

000},

000),

000},

000},

000},

i n i l
2 u 2 / >

000},

000},

000},

000},

000},

000},

000},

000},

000},

000),

i n n
202),

{C2J
{C3

+, 1
{C2J
{C3

+, I
{C2,!
{C3

+, I
{C2J
{C3

+! !
{C2J|
{C3

+,
{C2J
{CM t
{C2J[|
{C^ 1
{C2J
{CA !
{C2J
{CM !

{C2J
{CM 1
{C2J
{CM |

{C2x\
{CM !
{C2l|
{CJ, !
{C2J
{C3

(, 1
{C2I

{C3',
{C2J
{C3\
{C2J
{CM
{C2J
{C3

+, I
{C2J
{C3

+: I

l ln l
2 2

u / >
000}
iJo},
000}
000},
000}
000},
000}
000},
000}
000},
000}
000},
000}
MO},
000}
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000},
000),
000},
MO},
000},

{C2

!C2

{°ia

{°aa

{̂
{"to
{*«
{a*

{C2{ / I
{C2

{/!
(C2

{'1
{C2

{/!
{C2

{/
{C2{ / I

1 31 H
a \ 444V

J jOO},

I 000},

1 000},

I 000},

1 ' 'J-l1 2 2 2 J '

1 Mi),

,1*00},

„ | 000},
000}
, \ ooo},
Mi)1 1 n„ 1 2 2 2 ( ,
000}

[ 1 1 1 1
a \ 222h
1 1 1 1222!

„ 1 ooo},
000}
„ 1 ooo},
1 1 11
Hi!

to

0

0

0

0

0

0

0

0

0

0

0

0

0

it, + it 2 + it3
( f, 1 1 1 1 \

\(-2a 1 2 2 2 1 '

{l\
{C2

{/ I
{C2

{f\
(C2

U l
{C2

{/!

000}
1 -1-11),, | 444 J ,

1 1 1 1
444/

1 1 1 11
a \ 4 4 4 ) ,
3331
444;
„ 1 ooo},
000}
. \ iOO},
000}

0

0

0

0

/Veto to Table 3.7
(i) We give, for each space group, its international number, its international symbol and its Schonflies symbol in

columns 1, 2, and 3 respectively. The Schonflies symbol in column 3 is prefixed by the symbol for the appropriate
Bravais lattice (see Table 3.1).

(ii) The name of a space group, as given in columns 1,2, and 3 implies (a) the Bravais lattice on which it is situated
and (b) the isogonal point group. It is therefore unnecessary to tabulate separately the elements of the translation
group T (these are given in Table 3.1), or the elements of the isogonal point group F (these are given in Table 2.2).
It remains to give a number of coset representatives (elements of Q as described in section 3.5). We give enough to
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determine all the elements of the space group G; these are given in column 4 in which {R \ pqr] means {R \ pil +
qt2 + rt3} with t,, t2, and t3 as defined in Table 3.1. These operations are given as usual in the Seitz notation that
was explained in section 1.5 (see eqns. (1.5.2) and (1.5.3)).

(iii) For some space groups the elements that we have used differ in some way from those given in the International
Tables (Henry and Lonsdale 1965). In these cases we give, in the first row of column 4, the Seitz space-group symbols
that we have used for the elements of Q; in the second row we then give the elements used in the International Tables.

(iv) Although we retain the international labels for the space groups numbers 38^tl, Amm2 (C2*), Abrnl (C\l),
Amal (C2l) and Abal (C2l), we do not use the A lattice because this would require an extra block in Table 3.6,
under r£, and an extra figure to add to Fig. 3.6 (see Note (v) to Table 3.1). Instead, we use the C lattice throughout
for all monoclinic base-centred space groups and change the orientation of the point-group operations for space
groups 38^1 so that the twofold rotation axis is along the y-axis, whereas in the International Tables it is along the
z-axis.

(v) If a translation t0 is given in column 5, this is the translation of the origin that, substituted in eqn. (3.5.11),
changes the elements {R1 \ v,} that we use into the elements {R2 | v2} of the International Tables. An asterisk in
column 5 indicates that our origin coincides with that of the International Tables but that the orientations of the axes
are different. Where there is both a vector t0 and an asterisk in column 5 this means that the vector t0 changes the
elements [Rt \ v,} that we use into the elements {R2 | v2}, according to eqn. (3.5.11), where the {R2 \ v2} differ only
in orientation from the elements in the International Tables.

(vi) Modifications to the international symbols of certain space groups have been suggested by Buerger (1967). A
reversion is urged to the practice used in the old International Tables of always indicating the relative orientation of
lattice and symmetry axes entirely through the Bravais lattice part of the space-group symbol and not at all through
the point-group (or its substituent) part of the symbol. If the symbol E is used for an end-centred lattice without
implying orientation, then the permissible orientations of E for orthorhombic space groups are A, B, and C. If 5
and Z are the symbols used for simple and body-centred lattices without implying orientation the corresponding
symbols indicating orientation are as follows.

Orientation Orientation of axis of point-group symbol
symbol First symbol Second symbol

S

Z

P

D

R
I
J

[Oil]

[001]

[111]
[001]
[001]

in (100)
f[110] orthogonal
j [2 10] hexagonal

[101]
[100]
[110]

For tetragonal space groups we need to use alternative symbols for two permissible orientations of S (P and D) and
for two possible orientations of Z (/ and J). For trigonal crystals we need to use alternative symbols for three per-
missible orientations of S (P, D, and R). Buerger urges the adoption of these lattice symbols together with the out-
lawing of the use of the symbol ' 1' except in the point groups 1 (C,) and T (C,) and the space groups PI (C{) and
Pi (Cj). Only the following space groups would be affected by such changes:

Point
group

32 (£>3)

Number

149
150
151
152

Schonflies
symbol

D\
Dl
Dl
D^

Bragg, von Laue,
and Hermann
(1935a, b)

#32
C32
#3,2
C3,2

Henry and
Lonsdale
(1965)

P312
P321
P3,12
P3,21

Buerger
(1967)

D32
P32
,D3j2
P3;2
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Point
group

3m (C3v)

3m (D3d)

62m (D3,)

32m (D2d)

Number

153
154

156
157
158
159

162
163
164
165

187
188

115
116
117
118
119
120

Schonflies
symbol

Dl
D\

CL
c\.
c\.
cl.

D1
M

Dld

Dl*
D\d

D\k

Dlk

D\d

D^
o\t
D\d

Dlt

Dtf

Bragg, von Laue,
and Hermann
(1935o, b)

H322
C322

C3m
Him
C3e
H3c

Him
H3c
C3m
C3c

C6m2
C6c2

C42m
C42c
C42i
C42n
-F42m
F42c

Henry and
Lonsdale
(1965)

P3212
P3221

P3ml
P3lm
Plcl
P3\c

P3lm
P3\c
P3ml
P3c\

P6m2
P6c2

P4m2
P4c2
P4b2
P4n2
I4m2
74c2

Buerger
(1967)

£>322
P322

P3m
D3m
P3c
D3c

D3m
D3c
P3m
P3c

D62m
D62c

D42m
D42c
D42b
D42n
J42m
J42c

With these modifications introduced by Buerger (1967) the first symbol in any space-group label indicates the general
Bravais lattice type and its mutual orientation with respect to the symmetry axes. The remaining symbols in the
label are then either the symbols of a point group or substituents thereof. One result of these modifications would be
that for every space group these symbols would be in exactly the same sequence as in the standard sequence for the
corresponding point group.

generating elements. For some space groups we have used a unit cell that does not
coincide with the unit cell given in Volume 1 of the International tables for X-ray
crystallography (Henry and Lonsdale 1965); in these cases the vector t0 relating the
two origins is given in column 5. For a few space groups the orientation of the sym-
metry elements with respect to the Bravais lattice that we have used is different from
the orientation used in the International Tables; these cases are indicated by an asterisk
in column 5 of Table 3.7. Although the space groups themselves are officially define
in the International Tables the point that one chooses as the origin and the orientation
that one chooses for the coordinate axes are still open to some choice; the Inter-
national Tables themselves give two alternative settings for many space groups, as we
have seen for the example of Pmmn (D^)- To quote from p. 52 of the International
Tables 'No official importance is attached to the particular setting of the space group
adopted as standard

A brief description of the logic of the international space-group symbols was given
in section 1.5. These symbols were used in the first edition of the International Tables
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(Bragg, von Laue, and Hermann 1935a, b) and then came into common use. The
symbols used then were not entirely satisfactory in the Bravais lattice part of the
symbol and some changes were made when the new International Tables were com-
piled (Henry and Lonsdale 1965); the new version of the symbols is used in Table 3.7.
For example, the tetragonal point group 42m can be placed in the unit cell of the primi-
tive tetragonal Bravais lattice with the pure rotation axis parallel either to the x-axis
or to the line x = y. In the old International Tables these two orientations were indi-
cated by using the two different Bravais lattice symbols P and C. For the two orienta-
tions on the body-centred tetragonal lattice the two different symbols I and F were
used. In the new International Tables any given Bravais lattice is denoted by the same
symbol in each space group based on that Bravais lattice (with the exception of space
groups numbers 38-41, Amm2 (C\*), Abm2 (C^5), Amal (Cjjj), and Aba2 (CiJ)).
The problem of distinguishing between different orientations of a point group on a
Bravais lattice is then overcome either by reversing the order of the last two symbols
in the point-group symbols 42m and 62m (to give 4m2 and 6m2 respectively) or, for
trigonal space groups, by adding the symbol' 1' in different places in the space-group
symbol. As a consequence, the symmetry symbols are now often interpreted, in part,
as signifying not only which symmetry elements are present but also their orientations,
see Table 3.3.2 of Henry and Lonsdale (1965). This question of the identification of
the various parts of the international point-group labels will concern us again in
Chapter 7. For certain space groups the space-group symbols used in the new Inter-
national Tables (Henry and Lonsdale 1965) have been criticized by Buerger (1967).
The modifications suggested by Buerger are given in Note (vi) to Table 3.7 and, i
adopted, would only affect a small number of space groups.

To show how to use the equivalent positions given in the International Tables to
determine the geometrical description of the symmetry elements we follow the
method of Wondratschek and Neubiiser (1967). The distinction between a symmetry
element, such as a rotation axis or reflection plane of symmetry which is, loosely
speaking, a physical property of a crystal, and a symmetry operation, which is a
covering operation of the crystal and an element of the abstract mathematical group
of the point group or space group, should be apparent from sections 1.4 and 1.5.
The effect of one of the space-group symmetry operations {Rt r;} on the point
x, y, z is to produce one of the points in an equivalent position which may be specified
in the general form

x',y',z' = T! + an* + a12y + a13z,

r2 + a2lx + a22y + a23z, r3 + a31x + a32y + a33z (3.5.14)

where the r,- are rational numbers and the atj are +1, — 1 or 0.

Example 3.5.1. In Pmmn (D\l) one finds, among other equivalent positions,
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| + x, f — y, z; this means that 
and all other atj = 0.

Equation (3.5.14) can conveniently be written in matrix form,

(3.5.15)

given, in contracted form, in the Jones' symbols in Table 1.4. The determination of
the geometrical significance of the Rt part of {Rt \ r;} can of course be made by
inspection of Table 1.4. Alternatively, the character of A, #(A), and the determinant
of A, det (A), can be evaluated quite simply and these two quantities characterize the
nature of Rt completely (Bethe 1929) according to Table 3.8, where Cn indicates a
rotation through 2n/n.

TABLE 3.8
The determination of the form of R, from ^(A) and det (A)

Rt

X(A)
det (A)

c,

3
1

C2 C3

-1 0
1 1

Q

i
i

C6

2
1

1C,
I

— 3
-1

IC2 IC3
a Sb

1 0
-1 -1

7C4
St

-1
-1

/Q
s,

-2
1

If det (A) = +1 the symmetry element is either a pure rotation axis or a screw
rotation axis. We therefore seek to determine the direction of this axis and, for a
screw rotation axis, the screw vector, w, i.e. the component of the translation r,,
resolved along the axis. If q is a vector that passes through the origin and is parallel
to the screw axis then Aq = q so that q, which gives the direction of the screw axis,
can be found by solving

(A - E)q = 0. (3.5.16)

To determine w, for a screw rotation, we note that

(Ri \ rjq = Aq + r; = Eq + r; = q + r; (3.5.17)

Clearly the matrix a{] has already beenwhere M({/?; rj) acts on the vector
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therefore
(3.5.18)

and

(3.5.19)

since n applications of the screw rotation operation are equivalent to the pure trans-
lation «w. By rearranging eqn. (3.5.19) we obtain an explicit expression for the screw
vector w,

(3.5.20)

The direction of the screw axis is of course given by the direction of w, but this direc-
tion can be found more easily from eqn. (3.5.16). The localization of the screw axis
may be determined from the fact that a point x on the axis satisfies Ax + r, = x + w,
i.e.

(3.5.21)

where
(3.5.22)

If n = 2, eqn. (3.5.21) has a particularly simple solution, namely x = jr;.
If det (A) = — 1 there are three possible cases to be considered: (a) / ( = IC^)~,

(b) a ( = /C2); and (c) 56 ( = /C3); S4 ( = /C4), and S, ( = /C6).
(a) f( = IC1). The inversion centre x can be found from the fact that x — {/ rjx =

-x + r,- and therefore x = ^r;.
(b)o-( = /C2). The orientation of the plane can be specified by a vector q that passes

through the origin and is normal to the plane; q then satisfies Aq = — q, i.e.

(A + E)q = 0. (3.5.23)

For a glide plane the glide vector, w, can be found from the fact that two successive
applications of {Rt \ r;} to a point x in the plane moves it to x + 2w so that, from
eqn. (3.5.18),

(3.5.24)

(3.5.25)

Therefore

Any point x on the plane then obeys = Ax + r; = x + w so that x satisfies

(3.5.26)

which obviously has the special solution x = ^r,-.
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(c) S6 ( = IC3); S4 ( = /C4); S3 ( = /C6). If q is a vector through the origin and
parallel to one of these axes then Aq = — q and q is again given by solving

(A + E)q = 0. (3.5.23)

There are no screw vectors w. The inversion centre can be found from [Rt \ r;}x =
Ax + r, = x, i.e.

(E - A)x = r;. (3.5.27)

In the International Tables every matrix A belongs to one of four different types
that are shown in Table 3.9. Having determined the form of Rf and the type of A

T A B L E 3.9

The types of matrix A that arise from the International Tables for X-ray crystallography

f
(i) A =

[

1
(ii) (a) A =

1

(c) A =

' ±1
0
0

' +1
~°

[ o

r o0
L ±1
r °+1
L o

0
±1

0

0
0

±1

0
+ 1

0

+ 1
0
0

0 ]
o ;±1 J
o 1±1 ,
o J

±1 ]
0 ,
o j
0 1
0 ;±1 J

r °
(iii) (a) A = + 1

L o

r °
(b) A = 0

[ + 1

jXi
(iv) A = «21

[o

0
0

±1

±1
0
0

Oil
a22

0

±l 1
0 ,
o j

°1
±1 ;

o j

0 ~| with one of the aik = 0,
0 the other three aik = ± 1 ;

+ 1 J i, k = 1,2.

Note to Table 3.9
(i) It is assumed that a setting given by Henry and Lonsdale (1965) is being used; for other settings the appropriate

equations from eqns. (3.5.16)-(3.5.27) will have to be solved.

one can then use Table 3.10, which makes use of eqns. (3.5.16)-(3.5.27), to determine
the orientation and position of the symmetry element corresponding to each of the
equivalent positions for the space group in the International Tables.

Example 3.5.2. To illustrate the use of Table 3.10 we use the matrix (A, r) that was
determined in Example 3.5.1, namely

(3.5.28)
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Determination of the symmetry elements
(After Wondratschek and Neubuser (1967))

S
P

A
C

E
 

G
R

O
U

P
S

(i) C,

(i) /

(i) C2

Direction of axis given by
Screw vector
Coordinates of a point on
the axis

(i) a
Normal to symmetry plane
Glide vector
Coordinates of a point
on symmetry plane

(ii) C2

Direction of axis given by
Screw vector
Coordinates of a point
on the axis

(ii) c
Normal to symmetry plane
Glide vector
Coordinates of a point
on symmetry plane

(ii) C4

Direction of axis
Screw vector
Coordinates of a point
on the axis

Translation with components

Inversion centre in

(Remark: If the product (a) a^2f\ or (b) a13r2 or (c) a21r3 has the value (4n + l)/4, n integer, a 4, -axis is obtained; for (4» + 3)/4 one obtains a 43-axis, for
(4n + 2)/4 a 4,-axis.)
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(ii) S4

Direction of inversion axis
Coordinates of inversion point

(Remark: no translation components occur.)

(iii) C3

Direction of axis given by
Screw vector
Coordinates of point
on the axis

[Remark: The symmetry operation belongs to a 3raxis if in (a) the screw vector is [(3n + l)/3]q, in (b) [(3n + 2)/3]q, n integer. Similarly a screw vector
[(3n + 2)/3]q in (a) and [(3» + l)/3]q in (b) belongs to a 32-axis.)

(iii) S6( = IC3)
Direction of inversion axis
Coordinates of inversion centre

(Remark: no translation components occur.)

(iv) C2

Direction of axis given by
Screw vector
Coordinates of a point
on the axis

(iv) a
Direction of normal
to symmetry plane
Glide vector
Coordinates of a point
on the symmetry plane

(iv) C3

Direction of axis
Screw vector

S
P

A
C

E
 

G
R

O
U

P
S
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Coordinates of a point
on the axis

(Remark: If o2 1r3 = (3n + l)/3, n integer, a 3,-axis is obtained; for a2 1r3 = (3n + 2)/3 one obtains a 32-axis.)

(iv) C6

Direction of axis
Screw vector
Coordinates of a point on
the axis

(Remark: The symmetry operation belongs to a 6,-, 62-, 63-, 64-, 65-axis, if a2tr^ = (6n + l ) /6 ; (6n + 2)/6;(6« + 3)/6;(6« + 4)/6;(6« + 5)/6 respectively.)

( i v )S 6 ( = /C3)
Direction of inversion axis
Coordinates of inversion centre

(Remark: no translation components occur.)

(iv) S3( = /C6)
Direction of inversion axis
Coordinates of inversion point

(Remark: no translation components occur.)

Notes to Table 3.10
(i) As in the International Tables a. b, and c are the lengths of three edges of the conventional unit cell that meet at one vertex; a, b, and c are the vectors

along these edges.
(ii) The matrix A (at]) and the vector r, are denned in the text; see eqns. (3.5.14) and (3.5.15).
(iii) The type (i), (ii), (iii), or (iv) of A is to be determined by using Table 3.9.
(iv) Ca is a pure rotation through an angle of 2-n/n.
(v) This table is for settings of the unit cell given by Henry and Lonsdale (1965); for other settings the appropriate equations from eqns. (3.5.16)-(3.5.27)

will have to be solved.

S
P

A
C

E
 

G
R

O
U

P
S

143.
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so that

From T^ble 3.8 {Rt \ r;} is therefore a C2 type rotation and from Table 3.10 we see
that, since / = 1, it is along the x direction, i.e. is C2x . The direction of the screw
vector is thus r^ = ^a and the axis is located by the fact that it passes through the
point (irv, ^r2, {r3), i.e. through (^a, \b, 0).

3.6. The action of space-group operations on Bloch functions

We now discuss the effect of the application of space-group operators on Bloch
functions. Since we are using active operations in this book the discussion of function-
space operators in section 1.5 gives

(3.5.29)

(3.5.30)

(3.5.31)

and therefore

and

(3.6.1)

where we have dropped the subscript a and the bar from the function-space operator.
First we prove that

This follows because
3.6.2

(3.6.3)

since S0 is an orthogonal matrix. This means that from eqns. (3.6.1) and (3.6.2)

(3.6.4)

which is almost the same function except that it is labelled with reciprocal vector
Sk and is centred at r = w.

Similarly we may define

(3.6.5)

where «k(r) satisfies eqn. (3.4.8); that is, it has the periodicity of the lattice. Using
eqns. (3.6.4) and (3.6.5) together with the definition of a Bloch function,

(3.4.7)



This means that the right-hand side of eqn. (3.6.6) is a Bloch function. Thus the action
of {S w} on a Bloch function labelled with the wave vector k and centred at r = 0
is to transform it into a Bloch function labelled with the wave vector Sk and centred
at r = w. In spite of the similarity between eqns. (3.6.4) and (3.6.6) there is one
important difference. If 5k = k then {S \ w} exp (ik.r) = exp (ik.(r — w)} which
is exactly the same function but centred at r = w. Whereas if Sk = k it is not neces-
sarily true that {S \ w}i^k(r) = t/^k(r — w); this is because the label k on i/Vk(r) is
determined only up to equivalence. An example should help to make this clear.
Suppose k = 0 so that Sk = k trivially and let i//0(

r) = 1 + exP (ig-r); then from
eqn. (3.6.5) we have

SPACE GROUPS

we obtain
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(3.6.6)

(3.6.7)

say. Also from eqn. (1.5.24) it follows that

It should be noticed that usk also satisfies eqn. (3.4.8), because if t is a translation so
is t' = 5~4; therefore

(3.6.8)
(from eqn. (3.4.8))

(3.6.9)

But the right-hand side of eqn. (3.6.9) is equal to ^0(r - w) only if Sg = g. What is
true, however, is that because Sg is equivalent to g, which in turn is equivalent to
zero, the wave vector associated with the right-hand side of eqn. (3.6.9) is still the
zero vector.

T H E O R E M 3.6.1. If\l/k(r) is a Block function with wave vector k so that [ E \ t)i//k(r) =
exp ( — ik.t)i//k(r), then {S \ w}t^k(r) is a Block function with the wave vector Sk.

The reader should appreciate that this does not follow from applying {E \ t} to
both sides of eqn. (3.6.6) and the already known fact that i/'sk(r — w) is a Bloch
function with the wave vector Sk, because eqn. (3.6.6) is a numerical rather than a
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functional relation. To prove the theorem analytically it is necessary to go through
the following series of equations:

(3.6.10)

However, the theorem can of course be argued through by starting from eqn. (3.6.6)
and by using a geometrical notion of what is meant by Bloch periodicity. As a corol-
lary to the theorem, if 5k = k then {S \ w}t//k(r) is a Bloch function with wave vector k.
We use this theorem in the next section.

3.7. A descriptive account of the representation theory of space groups

In this section we describe how to obtain all the reps of a given space group. The
description given is not entirely rigorous; however the main gaps in the arguments
are mentioned in the text. These gaps will be filled in Chapter 4 in which a rigorous
and complete account is given of the representation theory of groups having a proper
invariant Abelian subgroup, of which space groups are a particular example. Many
readers will probably prefer to concentrate their attention on this section for their
basic understanding of the representation theory of space groups, and even omit
altogether or leave until much later the rather more abstract and mathematically
difficult work involved in the next chapter. For this reason the account given here is
made almost complete and is lacking only in that proofs of certain readily acceptable
results are postponed; however, the basic concepts of a star, and the little group (or
group of k) and its small representations are properly introduced, the need for the
introduction of projective representations is explained and their theory is described
in some detail. In section 3.8 two complete examples will be given, those of the face-
centred cubic structure and the diamond structure.

We consider then a space group G with a translational subgroup T. The reps of T
are given in section 3.4 and are characterized by the vectors k of the Brillouin zone
of the Bravais lattice F on which G is based. These reps Ak are such that (see eqn.
(3.4.3))

(3.7.1)

We can write G in terms of left coset representatives of T

in which, as always, we can choose Rt = E,\t = 0 and where \; is a vector associated
with Rt. The coset representatives form a set Q which is not necessarily a group.
The factor group G/T is, however, a group and it is isomorphic with the point group

(3.5.2)
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F consisting of the operators R I , R2, . . ., Rh. F is the isogonal point group of G. Its
order h is the macroscopic order of G.

D E F I N I T I O N 3.7.1. Representation domain. For any space group G there is a
representation domain <P, of the appropriate Brillouin zone, such that d^/?<X>) is
equal to the whole Brillouin zone, where the sum over R runs through the elements of
the group F, the isogonal point group of G.

It is helpful to compare this definition of the representation domain with that given
for the basic domain in Definition 3.3.3. If the space group G has as its isogonal point
group the holosymmetric point group of the relevant crystal system, that is, if F coin-
cides with P, then the representation domain <£ is of the same volume as the basic
domain Q and can be chosen to coincide with it. In general, however, F is a subgroup
of P; and if |P|/|F| = i, then the representation domain $ will have a volume equal
to i times that of the basic domain Q. Note also that whereas fi is fixed for each
Brillouin zone, d> depends on the space group under consideration. The reason for
introducing <I> for a given space group G is that it is of critical importance in the
prescription for deriving a complete set of reps of G.

As an abstract mathematical problem it is interesting to determine the reps of a
space group, G. However, much of the motivation behind the study of space-group
reps is connected with their usefulness in investigating the eigenfunctions and eigen-
values of the Hamiltonian of a quantum-mechanical particle or quasi-particle in a
regular crystalline solid. It is a well-known, and possibly trivial, statement to say that
if a system has a certain group of symmetry operations, G, then any physical observable
of that system must also possess these symmetry operations; this statement is some-
times known as Neumann's principle and is used, for instance, in simplifying the form
of a tensor that describes some physical property of a crystal (Birss 1964, Nye 1957).
However, a wave function \\i is not a physical observable of a system and therefore
one cannot necessarily expect that it will exhibit all the symmetry of G. It is, neverthe-
less, still possible to obtain some information about the transformation properties of
i// under the operations of the elements of G. The basic principle behind the applica-
tion of group theory to the study of a quantum-mechanical system lies in Wigner's
theorem which we mentioned in section 1.1; there are various ways of stating the
theorem, of which we give just one.

T H E O R E M 3.7.1. (Wigner's theorem). If R is a symmetry operation of the Hamil-
tonian operator, H, which describes a quantum-mechanical system and ifi// is an eigen-
function o/H, then RI/J is also an eigenfunction o/H which has the same eigenvalue E
as \j/.

For a discussion of the proof of this theorem we refer the reader to the classic
book on group theory and quantum mechanics by Wigner (English translation,
Wigner (1959)). An alternative statement of the result would be to say that the wave
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function \l> of a particle or quasi-particle must be one component of a basis of one
of the irreducible representations of G. In our present problem G is a space group so
that the wave function \j/ of a particle or quasi-particle in a crystal that is described
by a space group G must be one component of a basis of one of the reps of G.

The method we shall now follow is to suppose that we are given an arbitrary rep of
G so that we can discuss its properties. Then we shall assume that the properties we
find are not only necessary but sufficient to characterize the reps of G; this assumption
is one point that prevents this treatment from being entirely rigorous. Then, having
done this, we shall show how to build up all structures that have those required
properties. The assumption then implies that all such structures are in fact reps of G.
Another point that prevents the present treatment from being entirely complete is
that we shall not show how to write down the matrix elements of the reps in full;
this is left for the next chapter. We are more concerned here with the properties of
the reps and we shall not go all the way in describing how to write them down in
detail.

Suppose then that F is a rep of G acting in a vector space V of dimension d. If we
consider only those elements of F that represent translations then such elements
form a representation of T that in general is reducible. Suppose it reduces into reps
of T characterized by the vectors k l 5 k 2 , . . ., kd. These reps of T are 1-dimensional
and, as a result of the discussion in section 3.4, it follows that a basis can be found
in V which consists of Bloch functions iAkl(r), iK2(r), • • • , iAk«,(r)> and that with respect
to this basis the elements of T are represented by diagonal matrices; and from eqn.
(3.7.1) we see that the diagonal element T({E t})pp is exp ( —ikp . t ) . It may be that
the vectors k j , k 2 , . . ., kd are not all different; in that case we shall need a second
index on the functions i/^k ;(r) to distinguish between two functions labelled with the
same k vector. To see whether this is possible let us consider closely how the vectors
k 1; k 2 , . . . , kd arise in the first place. We make use of two facts: that V is irreducible
under G, and Theorem 3.6.1 that if i/fk(r) is a Bloch function with wave vector k
then {S | w}i/rk(r) is a Bloch function with a wave vector Sk. The fact that F is a
representation implies that if we start with i^kl(r) and generate the Bloch functions
{S \ w}i/Vkl(r) where {S \ w) is any member of G then we obtain some linear combina-
tion of the d Bloch functions in the basis; that is to say, using Theorem 3.6.1, Sk1

is one of the vectors k1, k2, . . ., kd. Moreover the irreducibility of V under G implies
that as we run over all elements of G operating on the iAkl(

r) we shall generate the
entire vector space V. That is, each of the vectors k l 5 k 2 , . . ., kd appears as the
transform of k t under some element of F.

D E F I N I T I O N 3.7.2. Star. A set of distinct k vectors chosen from the set k;

(;' = 1 to d) is called the star of F. (In this context remember that two k vectors are
not distinct if they are equivalent—see eqn. (3.4.4).)

Since the above discussion holds irrespective of whether we start with k, or with
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some other member of the star we have proved that a star can be generated from any
one of its members by operating on that member by elements of F.

D E F I N I T I O N 3.7.3. Little co-group. The set of elements of F which leave ki

invariant, that is elements R e F such that J?kj = k1; forms a subgroup of F called
the little co-group of k j and which we denote by Gk ' . (We are using here the symbol
= for equivalence, as denned in section 3.3.)

From Theorem 1.2.3(ii) the order of Gkl is a divisor of h, the order of F. Suppose
now that ̂ k: = k t and 51 is any fixed element such that 5k 1 = k2, ihenSRS'1^ =
£Rk, = 5k, = k2. This implies that each element of SG""^1 is contained in Gk2.
Therefore the order of Gk2 is greater than or equal to the order of Gkl. But k t = S~ !k2

so that each element of S~lGk2S is contained in Gkl. Thus the orders of the little
co-groups of the members of a star are equal and because of relations of the form
Gkl = SGklS~1 which must hold between all the little co-groups we find that the
little co-groups of the members of a star form a set of conjugate subgroups.

We determine next the number of elements P e F such that Pkj = k2. Let T be
any fixed element of F such that 7Tt2 = k,. Then TPkj = Tk2 = k j . Hence
TP e Gkl. Therefore P belongs to the left coset T' 1Gkl and so the number of such
elements P is equal to the order of the little co-group. We have proved that if we write
F as the sum of left cosets of the little co-group of any member of the star then these
cosets are in one-to-one correspondence with the members of the star. And as a
corollary, the product of the order of the little co-group and the number of members
of the star is equal to the order of F. The geometrical interpretation of these theorems
in terms of the symmetry properties of the Brillouin zone is made very clear by
Bouckaert, Smoluchowski, and Wigner (1936). The important geometrical fact from
our point of view is that without loss of generality the vector k1 out of which the star is
generated can always be chosen to lie within or on the surface of the representation
domain of the Brillouin zone. Indeed, careful consideration of Definitions 3.7.1 and
3.7.2 shows that the representation domain is defined specifically in order that it
should contain at least one k vector from each star.

When k t is in the basic domain the elements Gkl for all lines and points of sym-
metry for each of the space groups can now be read off from Table 3.6. In each case
the elements ofGkl are the elements ofPfoi) that are also members o/F, the isogonal
point group ofG.

In the case in which k! is in a part of the representation domain other than in the
basic domain, the elements of Gkl are very simply related to the elements of Gk,
where k is a point that lies in the basic domain and can be obtained from k: by
operating on it with some element R of the holosymmetric point group, P. Indeed
suppose R e P is such that /?k: = k, then it follows immediately that P(kj) =
R~lP(k)R. P(k) can be obtained from Table 3.6, and then P(kj) follows by con-
jugation with R. As before, Gkl is the intersection of P(kj) and F. We shall return to
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this whole question again in Chapter 5, for it is one that affects the completeness of
the tabulations of the reps of the space groups; indeed, we tabulate in detail only
those reps which arise when kj lies in the basic domain, but we shall demonstrate by
example how to proceed when this is not the case.

D E F I N I T I O N 3.7.4. The little group. Suppose now that the little co-group Gkl

consists of the b elements S±, S2,. . ., Sb. Then if we look at the factorization in eqn.
(3.5.2) of G into left cosets with respect to T, and form the set theoretical sum of the
b left cosets whose coset representatives have the rotational parts 5 l5 S2,. . ., Sb

then this sum is a subgroup of G called the little group of k j and which we denote
by Gkl. Just as Gkl is not necessarily an invariant subgroup of F so also Gkl is not
necessarily an invariant subgroup of G.

However, just as we can write F as a sum of left cosets with respect to Gk l:

(3.7.2)

where q = h/b is the number of elements in the star of F and where, if r,-k, = k;,
then all elements of the left coset r,Gkl transform k t into k; so that the left cosets
are in one-to-one correspondence with the vectors k t , k 2 , . . ., k, of the star, then we
can also write G as a sum of left cosets with respect to Gk l :

(3.7.3)

and maintain the same one-to-one correspondence. This follows from the fact that
any element of the coset {Tt xJG1" transforms a Bloch function with wave vector k t

into a Bloch function with wave vector k,. The proof of this is that an element of
{Tt | x;}Gkl can be written in the form {Tt \ x;}{,S | w} where {S \ w} e Gkl and from
eqn. (3.6.7)

which, on account of the fact that T^Sk, = 7^ = k; is a Bloch function with wave
vector k;. See now Theorem 3.6.1, which proves that the left-hand side has the same
property. The characteristic property of the little group Gkl is that each of its elements
transforms a Bloch function with wave vector k t into another Bloch function also
with wave vector k t .

We can now come back to our original question: is it possible that the vectors
k j , k 2 , . . ., kd characterizing the rep F are not all distinct or is dnecessarily equal to
q ? The answer, which we shall now obtain, is that d must be a fixed multiple of q:
d = tq where / is an integer, and the star k t , k 2 , . . ., kg is repeated exactly t times in
the set k l 5 k 2 , . . ., kd.

The proof of this assertion is as follows. From the discussion on little groups the
only elements of G that can possibly generate out of i/fk](r) a new Bloch function with
wave vector k] are the elements of Gkl, and since {E t } { S t \ w;} generates the same
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Bloch function out of </fk l(r) as {St \ w,-} (apart from a phase factor that can be
ignored) it follows that the number of Bloch functions with wave vector k: in the
basis tAk,(r)> >Ak2(

rX • • ••, iAkd(
r) is equal to the maximum number of linearly in-

dependent functions that can be chosen from the b functions {S{ Wi}i/fk l(r) ,
{S2 \ w2}(Akl(r),. . ., {Sb wft}i//kl(r). Suppose in fact that we find a maximum of t
independent functions i/rkl? j(r), tAkl,2(rX • • • , "AkuiOO' then we know that because of
the independence of these functions

then premultiplying by {7} | x^} 1 and using the relation (3.7.4) we see that /.,• = 0,
i — 1 to t. Hence the functions {7} Xj}i//kl_,-(r) (i = 1 to t) are linearly independent
Bloch functions with wave vectors kj. Also there are no others that can be generated
out of iAk,(r) because if there were then by reversing the argument we could find other
linearly independent functions with wave vector k j contrary to the assertion that we
have chosen already as many as possible.

Another important fact is that the t wave functions i/^kl t(r), iAk l > 2( r)> • - • , ^ki,t(
r)

form a basis for an irreducible representation of G k l . That they form a representation
follows from the way they were generated. The irreducibility of the subspace Fkl

spanned by these t vectors under Gkl follows from the irreducibility of the whole
space V under G: symbolically we can write V = £/• [Tj Xj}Fkl and if Kk l reduces
so that Fkl = t/kl © Wkl where Ukl and Wkl are proper subspaces of Fkl then V
also reduces so that V = U ® W where

and are proper subspaces of V. The details of this symbolic proof are left to the reader.
We have now characterized the basis of the rep r completely. Assuming the

sufficiency of this characterization we can now outline a scheme for obtaining all the
reps of G. Collecting all the results together the scheme is as follows.

(i) Choose a vector k1 out of the representation domain of the Brillouin zone.
(ii) Determine the little co-group of k[ , Gkl which consists of b elements Sj such

that Sykj = k, and from Gkl construct the little group of k t in G, Gkl.
(iii) Determine the star containing k t , or equivalently, write G in terms of its left

cosets with respect to Gk ' ; for we have shown that the vectors of the star are in one-
to-one correspondence with these left cosets. The factorization into left cosets is

(3.7.4)

implies A; = 0, i = 1 to /. Suppose now that
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given by eqn. (3.7.3). There are q elements in the star where q = h/b, and h is the
macroscopic order of the crystal.

(iv) Determine an irreducible representation F^1 of Gkl whose basis has the addi-
tional property that its elements are Bloch functions with wave vector k,, (eigen-
functions of the translation group T with eigenvalues for {E \ t) equal to exp (— ik:. t)).
Let this basis consist of the functions iAk l j l(r), iK l j2( rX • • •' *Ak1,t(r)- rkl is called a
small representation of the little group of k j .

(v) Form the vector space V consisting of the linear closure of all the functions
[Tj} Xj}(//kl ;(

r) j' = 1 to q, i = 1 to t. ({Tj} KJ} are any set of left coset representatives
of Gkl in G). Then the result is that the vector space V is irreducible under G and the
basis of a rep F may be chosen to consist of the d functions {Tj \ X;}^kljj(r), with
d = qt = ht/b.

(vi) Repeat the process from stage (iv) for all possible small representations Fkl

that have the extra property mentioned in (iv), thereby obtaining all the reps of G
having the star characterized by kl.

(vii) Repeat the whole process for each vector k! in the representation domain.
Then the result is that in this way we obtain all the reps of G.
From this scheme we see that each rep of G is characterized by a star containing
a vector k, of the representation domain of the Brillouin zone, and the label of one
of the small representations of the little group of k t .

There appears, at first sight, to be a conflict between the mathematical approach
that we have outlined above and the approach that is usually adopted in textbooks
of solid-state physics. In the approach that we have adopted we have used Wigner's
theorem which ascribes a wave function \l/ to one of the reps of the complete space
group, G; such a rep needs two labels to characterize it completely, k, and a label,p,
of one of the small reps of Gkl. That is, ij/ belongs to one of the reps induced in G by
Fp1, one of the small reps of the little group Gkl; the basis that is constructed in
(v) above is a basis of such an induced representation of G. (The theory of induced
representations will be discussed in Chapter 4.) The approach adopted in textbooks
of solid-state physics is usually to say that the wave function of a particle with wave
vector k t simply belongs to one of the components of a basis of the rep Fkl of the
little group Gkl of the wave vector kl. The point that we wish to emphasize at this
stage is that, strictly speaking mathematically, the wave function i// must belong to
a rep of G as a result of Wigner's theorem; it is only because these reps can in fact
all be constructed as the reps induced in G from the (small) reps of the little groups
G1" that it is permissible for practical purposes to regard ij/ as belonging to one of the
reps Fkl of the little group Gkl of the wave vector k j (Bouckaert, Smoluchowski, and
Wigner 1936, Herring 1942, Seitz 1936£). One does have to be careful when consider-
ing the problem of determining selection rules in crystals but, even then, so long as
one is prepared to consider all wave vectors in the star of kl and not just k j it is still
possible in practice to avoid the explicit use of induced representations if one so wishes.
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Our reason for expressing the theory in terms of induced representations of G, rather
than only in terms of representations of little groups Gkl, is that it is part of our aim
to expound the mathematical justification for the physical approach that is com-
monly used.

We can perhaps illustrate the significance of these remarks by a more pictorial
approach. Suppose that k t is some wave vector in the representation domain of the
Brillouin zone shown in Fig. 3.19. In both the mathematical and the physical

FIG. 3.19(a) The Brillouin zone and the vectors of a star determining a space group representation.

approaches that we have described one identifies Gkl and determines the small reps
Fkl of Gkl. We suppose that the order of Gk' is b, that the number of elements in the
star of k j is q and that Fkl is of dimension t. In the strict mathematical approach we
study the rep of G induced by Fkl. However, as will be shown in Chapter 4, this
induced rep Z)kl of G has a rather special structure; it has dimension equal to q times
the dimension of Fkl and it is formed by the ' sticking together' of q reps, one from
each member of the star of k :, where each of these reps has the same dimension as
Fkl and is very simply related to Fkl (see section 5.5).
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In the physical approach one would say that there was a set of t degenerate eigen-
functions, with eigenvalue }.l, at k t belonging to F^1 and that there was a similar
set o f / degenerate eigenfunctions (with the same eigenvalue /[) at each of the other
wave vectors 5k, in the star of k t . However, since each of these other members of
the star of k: is outside the representation domain, and since one is usually only
interested in the numerical values of the eigenvalues, which are the same in each
representation domain, we only consider the t eigenfunctions and t-fo\d degenerate

FIG. 3.19(b) The representation domain and the vector determining a small representation.

eigenvalues at k t . In the stricter mathematical approach there is a set of (qt) eigen-
functions with the eigenvalue A j and there is a set of t of these functions associated
with each wave vector of the star of k t . That is, a representation of G involves all
the wave vectors in the star of k, and therefore the use of reps of G involves using
the whole Brillouin zone, see Fig. 3.19(a). A (small) representation of the little group
Gkl is only associated with the single wave vector k, which will be in the representation
domain, see Fig. 3.19(b).
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Having produced a scheme for finding the reps of G we now consider how it works
in practice. The crucial step is the determination of the small representations; the
rest of the scheme is straightforward. Here we encounter a basic difficulty because
the group Gkl is itself a space group. It would seem that we are almost back where
we started! Fortunately this is not the case for, whereas in the reps of G [E t} is
represented by a diagonal matrix, in the reps of Gkl that we are looking for (E t} is
represented by a scalar matrix, exp ( — ikj .1)1. This implies as we shall see that the
matrices of Fkl obey certain very simple rules. To see this we factorize Gkl into left
cosets with respect to T:

(3.7.5)

and suppose that

(3.7.6)

where {E \ ti;-} e T and, from eqn. (3.7.6),

(3.7.7)

Because t,.- is a translation it follows that

(3.7.8)

If we now set, for all (R \ y] e Gkl,

(3.7.9)

then from eqn. (3.7.8) we obtain

(3.7.10)

where g,, remembering that S,-k, = k l 5 is a reciprocal lattice vector denned by the
equation

(3.7.11)

Also, if {£• | t} e T, then from eqn. (3.7.9)

(3.7.12)

It is also true that if {E t} e T then

(3.7.13)

Equations (3.7.12), (3.7.13), and (3.7.10) together imply that the matrices of Z>kl are
the same for all members of any fixed coset in eqn. (3.7.5). That is to say, Z>kl is a
matrix-valued function on the elements of the factor group Gk'/T. But this factor
group is isomorphic with the little co-group Gkl. Therefore Z)kl is a matrix-valued



156 SPACE GROUPS

function on the elements of the little co-group. Instead of studying the little group
which is a space group it is only necessary to study the properties of the little co-group.

We can therefore rewrite eqn. (3.7.10) in the form

(3.7.14)

where S^Sj = Sk and St
 ikl = k j + g;.

From (3.7.14) we see that £)£' is a homomorphism of Gkl onto a set of matrices in
two important cases:

(i) If Wj = 0 for all j = I to b. This is the case when the space group G is sym-
morphic.

(ii) If Sf x k j = k t (i.e. g; = 0) for all z = 1 to b. This is the case when k[ is an
interior point of the Brillouin zone, because then the only point of the
Brillouin zone equivalent to k j is k j itself.

When Z>p' is a homomorphism it is a representation of the little co-group and
moreover the irreducibility of F^1 implies that D£' must also be irreducible. Therefore,
in the two cases listed above, all we need to do is to find the irreducible representations
of the little co-group. Since this is a known point group we can pick up the required
reps from Table 2.2. The matrices for Fp1 can then be deduced immediately from
eqn. (3.7.9).

The only remaining case to discuss is when k j is on the surface of the Brillouin
zone and the space group is non-symmorphic.

If k t is a general point then the little co-group consists of the identity element
alone and we are back in case (ii). The only difficult cases then are for non-symmorphic
space groups when k j is a point of symmetry or when kL is on a line or plane of sym-
metry on the surface of the Brillouin zone.

To cover the difficult cases we need to introduce the concept of the projective
representations of a finite group.

D E F I N I T I O N 3.7.5. Projective representations. A non-singular matrix function A
on a group H consisting of elements Hh i = 1 to |H| is a projective representation of
H if it satisfies the following rule.

If for each group product HtHj = Hk there exists a scalar function y-(H(, H}) on
the ordered pair of group elements H;, H- such that

(3.7.15)

and if for all i, y, /

(3.7.16)

Equation (3.7.16) has to be imposed because of required associativity of matrix
multiplication.

The function ^(Ht, Hj) forms what is called a factor system for the projective
representation A. If [i(Hh Hj) = 1 for all i and j the projective representation A
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becomes an ordinary (vector) representation. If \fj.(H,, //;)| = 1 for all z and j it is
always possible to perform an equivalence transformation on the matrices A so that
they become unitary. In the same way that equivalence transformations are used to
reduce ordinary representations, so also they may be used to reduce projective
representations. We therefore have the concept of an irreducible projective repre-
sentation. The equation corresponding to eqn. (1.3.14) for irreducible unitary pro-
iective representations having the same factor system is

(3.7.17)

with the corresponding relations for characters,

(3.7.18)

Given a projective representation A with factor system n then if we set

(3.7.19)
where Ct is a complex number, then the equation corresponding to eqn. (3.7.15) is

(3.7.20)

If we now write

(3.7.21)

we see that A' is a projective representation of H with factor system v. Two factor
systems that are related by an equation of the form (3.7.21) are said to belong to the
same class. Because of the simple relationship (3.7.19) we need study only one factor
system from each class. To choose an appropriate factor system from a particular
class suppose we are given a projective representation A with factor system /z. Then
A(£)A(£) = fj.(E, E)\(E) so that

(3.7.22)

If we now set

(3.7.23)

Let a new factor system v be defined by eqn. (3.7.21) with 1/Q = n(E, E) for all i
then because

we must have

(3.7.24)



always belongs to the class corresponding to Mr where Mr = MpMq. Moreover, the
order of every element of M is a factor of the order of H. In particular, if Mp has
order ap then a representative factor system can be chosen from the class correspond-
ing to Mp whose values are all apth roots of unity. As we observed above, an equiva-
lence transformation can then be found so that the projective representation is
unitary. Therefore every projective representation is equivalent to a unitary one with
a factor system in the same class. The identity element Ml of M corresponds to the
class containing a factor system whose values are all equal to unity. Thus the reps of
H are the irreducible unitary projective representations of the class corresponding
to M:.

The theory developed by Schur then goes on to show that for every finite group H
of order |Hj, whose multiplier M is of order m, a group HM of order Hm can be
constructed so that M is isomorphic with a subgroup of the centre of HM. (The
centre of a group is the invariant subgroup of elements which commute with all
elements of the group, that is the set of all elements each of which is in a class by
itself.) And identifying M with its image in HM we also have HM/M isomorphic with
H. HM is said to be a central extension o/H with kernel M. We can now quote the most
important theorem of Schur on projective representations.

T H E O R E M 3.7.2. By running through all the reps o/HM we obtain on restriction to
elements o/H{ (up to equivalence} all possible unitary irreducible projective repre-
sentations of H.

J It is important to realize in connection with this theorem that although the elements of H can be
identified as the coset representatives of HM/M the construction of HM is such that, except in the trivial
case m = 1, the multiplication rule in HM for elements identified as elements of H is not the same as for
those elements considered as part of the group H. So that although H is a group with respect to its own
multiplication it is not a subgroup of HM.

158
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(3.7.25)

(It is of course true for any factor system n that n(Hh E) = n(E, H^) = ^(E, E) and
thatX/^tfr1) = /i(#T',#;)•)

We now quote without proof certain theorems due to Schur on projective repre-
sentations.

T H E O R E M 3.7.1. The number m of classes of factor systems of a finite group H is
finite; and the classes can be put in one-to-one correspondence with the elements of an
Abelian group M of order m, called the multiplier o/H.

The one-to-one correspondence is such that if we denote the elements of M by
A/i, A/2 , . . ., Mm and if p.p and uq are any factor systems chosen from the classes
corresponding to Mp and Mq then the factor system ur such that for all i and j

(3.7.26)



With respect to this multiplication rule H* is a group: closure is obvious; associa-
tivity follows from associativity in H and Z9, and eqn. (3.7.30); the identity element
of H* is (E, 0); and the inverse of (Hj, a) is (tfr1, -a _ a(H^ HJ '))• Note that the
set of g elements (E, cc) forms a subgroup of H* isomorphic with Z9, but that the set
of elements (//,, 0), though in one-to-one correspondence with elements of H, is
not a group (closure is not satisfied, as can be seen at once from eqn. (3.7.31)), and
H is therefore certainly not a subgroup of H*. (See also the footnote to Theorem
3.7.2.)

From eqns. (3.7.31) and (3.7.28) it follows that for all a, B, and k
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Since this theorem is rather stronger than we shall need we shall not show how to
construct HM. It will be remembered that we only require projective representations
belonging to a given factor system. Instead of constructing HM we shall show how to
construct another group H* that will give us not all the projective representations of
H but certainly those that we require.

Suppose then that we have a group H and that we want to find its unitary irreduc-
ible projective representations belonging to a given factor system jj.. From the dis-
cussion so far we know that we can choose fj. so that for allj, k

(3.7.27)

where g and a(Hj, Hk) are integers fixed by our knowledge of n(Hj, Hk) and the
condition 0 ^ a(Hj, Hk) ^ g - 1 and (see eqns. (3.7.24) and (3.7.25))

(3.7.28)

Also, since n(Hs, Hj J) = ju(#. ], Hj), then

(3.7.29)

and, from eqns. (3.7.16) and (3.7.27),
(3.7.30)

Let Zg be the cyclic group of integers 0, 1, . . ., (g — 1) with group product defined
as addition modulo g.

Let H* consist of the g |H elements that are pairs of elements (Hj, a) one from
H and one from Zg. Define a multiplication rule by the equation

(3.7.31)

(3.7.32)

Equation (3.7.32) implies that the subgroup of g elements (E, a) lies in the centre of
H*. Since (E, a) commutes with all the elements of H* it follows from Schur's lemma
(see Theorem 1.3.6) that if F is a rep of H* then T(E, a) is a scalar multiple of the unit
matrix.



From eqns. (3.7.35) and (3.7.27) it follows that A is a projective representation of H
with factor system fi. Moreover it is unitary (because F is unitary) and it is irreducible
(because if A is reducible then since (E, a) is represented by a scalar matrix for all a
then all the matrices of F are in the same reduced block-diagonal form as the matrices
of A, contrary to the hypothesis that F is irreducible).

Conversely, if A is a unitary irreducible projective representation of H and if we
set

(3.7.35)
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Suppose now that there exists a rep of H* such that for all a e Zq

(3.7.33)

Then

and writing we have

(3.7.34)

(3.7.36)

for all k and ft then F is a rep of H*. Thus in the language of the pure mathematician
all the irreducible projective representations of H can be lifted into H*, that is they
can be found from the ordinary vector reps of H*.

We can now go back to the little co-group and look at the factor system we are
interested in. We identify Gkl with H and DJJ1 with A. The factor system is given by

(3.7.37)

where
(3.7.11)

and Wj- is the translational part associated with Sj in the decomposition (3.7.5) of
Gkl into left cosets.

From eqn. (3.7.11) we see that g/ = 0 when 5,- = E, so that

And furthermore, because w^ is always a fractional part of a translation, then /x(S/> Sk}
is always of the form of (3.7.27) and what is more important, g is bound to be a small
number (in fact, either 2, 3, 4, or 6). Thus the factor system defined by eqn. (3.7.37)
is already in a form amenable to the treatment we have just given. This means that
to obtain all the reps of a space group it is only going to be necessary to find the reps
of a few groups of comparatively small order in addition to those of the point groups
that are already known.
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As a last point in this section, by analyzing the dimension numbers of the reps of
HM, and noting which of them become irreducible unitary projective representations
of a given factor system, one can prove a theorem that is the analogue of Theorem
1.3.11, namely that if the dimensions of the projective reps of a given factor system
are dt then £<• df = |H|. This allows eqn. (3.7.17) to be inverted to produce another
orthogonality relation for the matrix elements. Note, however, that the number of
values of i is not necessarily equal to the number of classes of H, as for the ordinary
vector representations.

3.8. Examples: cubic close-packed and diamond structures

In this section we give two examples to illustrate the theory of the preceding sections;
one example is a symmorphic space group, the cubic close-packed, Fm3m (OJJ) and
the other is a non-symmorphic space group, the space group of the diamond structure,
Fd3m (Oh). These space groups were first treated by Bouckaert, Smoluchowski, and
Wigner (1936) and Herring (1942), respectively.

They are based on the face-centred cubic, F, Bravais lattice r[ so that from Table
3.1 the lattice translations are in both cases

(3.8.1)

In both cases the isogonal point group F is m3m (Oh), the full cubic group.
The reciprocal lattice vectors are seen from Table 3.3 to be

(3.8.2)

and the Brillouin zone is shown in Fig. 3.14.
From Table 3.7 we see that for Fm3m (0%) each rotation operator of m3m (Oh) is

associated with pure lattice translations only, so that an appropriate decomposition
into left cosets with respect to the translation group T is

(3.8.3)

where the sum over R runs over all elements of m3m (Oh). But for Fd3m (O^) only
the operators belonging to the subgroup 43m (Td) are associated with pure lattice
translations and the corresponding decomposition into left cosets is

(3.8.4)
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where now the sums over R run over all elements of 43m (Td) and where, as usual,
/is the inversion. The coset representatives for those cosets corresponding to elements
of m3m(Oh) not in 43ra (Td) can always be taken to be equal to v = ^(^ + t2 + t3) =
^(a, a, a) when referred to axes Oxyz. The action of the operators R on a non-zero
translation (p, q, r) referred to axes Oxyz can be read off from Table 1.4. For example,
C±z(p, q, r) = (q, —p, r). The action of the operators R on the basic vectors t l 5 1 2 ,
and t3 of the Bravais lattice can be read off from Table 3.2. For example, for a cubic
Flattice C4zt1 = t2, C^t2 = *2 - t3 and C4zt3 = -tt + t2.

In Table 3.11 we list the points, lines, and planes of symmetry, together with a
general point, of the basic domain of the Brillouin zone which we snail need in the

T A B L E 3.11

The basic domain of the Brillouin zone of T[

Notes to Table 3.11
(i) In columns 1, 2, and 3 we list respectively in a given row of the table a point k[, its coordinates with respect to

axes rg!g2g3, and its coordinates in units of 2n/a with respect to axes Tkxkskz. The points k j are chosen to be
the generators of the stars of the reps.

(ii) In column 4 we list in the row corresponding to k t the number, q, of elements in the star of k, and a letter / or S
depending on whether the point k: is an internal or surface point of the Brillouin zone.

(iii) In column 5 we list, in the row corresponding to kj , the b elements of the little co-group Gkl. In all cases
bq — 48, the order of m3m (Oh).

(iv) This table is common to both space groups and indeed to all space groups based on T[ and with isogonal
point group mltm (Ok); see also the appropriate section of Table 3.6. The extra points in Table 3.11 not in Table 3.6
are the points on planes of symmetry and a general point. Except in this example we shall not tabulate the planes
because as we shall see they work out very easily.

k,

r

X

L

w

A
A
I.
S
z
Q
c
o
J
B
A

Coordinates
rgig2g3

(000)

(M)
(IM)

(IH)

(aOa)
(aaa)
(a, a, 2a)
(i + a, 2a, | + a)
(i «, i + «)
(i, i - a, i + a)
(a + p, a + [I, 2a)
(Ii, a, « + «
(a + P, 2a, a + /i)

(i + 0, a + M + «)
OS + y, 7 + a, a + P)

Ykxkykz

(000)

(010)

(III)

(|10)

(0, 2a, 0)
(aaa)
(2a, 2a, 0)
(2a, l ,2a)
(2a, 1,0)
(1, 1 + 2a, i - 2a)
(2a, 2a, 2/1)
(2a, 20, 0)
(2a, 2jg, 2a)
(2a, 1, 2ft
(2a, 2/J, 2y)

Star

17

35

4S

6S

67
87
127
12S
US
24S
247
247
247
24S
487 or S

Little co-group G1"

7?, Cj*., C2m, C±m, C2p,
7, S,?., (7m, S+m, aip

E, C2t, Cfy, C2x, C2,_, C2c, C2e

7, <7y) S ,̂ (T,, fT2, (7ic, Ode

E, C f t , C2b, C2e, C2[,

A ^6+l' "'ill. °"iie> °df

E, C2x, C2d, C2f,

",, "„ S?
E, C2y, Cfy, a,., crz, aic, ode

E, C^ltaM, ade, adf

E, C2a, <7Z, adb

E, C^, <Jd<;, (Jy

E, C2x, CTZ, ay

E,C2f

E, rrdb

E,az

E, ade

E,a>.
E
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determination of the reps of Fm3m (O^) and Fd3m (Ol). These are the points k t of
section 3.7. In both cases, since F is the holosymmetric point group of the Bravais
lattice, the representation domain coincides with the basic domain and is therefore
the region indicated in Fig. 3.14.

We now consider the factorization of the little group Gkl into left cosets with respect
to the translation group T. For Fmlrn we have

(3.8.5)

where the sum over S runs over all the elements of Gkl. (See Table 3.11 for these
groups.) But for Fdl>m we have

(3.8.6)

where the sum over P runs over all the elements common to Gkl and 43m (Td), and
where the sum over Q runs over the remaining elements of Gk l .

Fm3m

We can now dispose with Fm3m very quickly. Given any point k t we have to deter-
mine the projective reps of Gkl with factor system exp ( — ig;. Wj) where g; is given by
eqn. (3.7.11) and w; is the translation associated with S- in the decomposition (3.8.5).
We see at once that w; = 0 for ally. Therefore the factor system consists entirely of
units and belongs to the class corresponding to the identity element of the multiplier
of Gk l . Therefore the appropriate representations Z)kl of Gkl are just the ordinary
vector representations. And since Gkl is a point group (admittedly in some cases in a
non-standard setting) we can obtain the representations £>kl from Table 2.2.

The small representations Fkl of Gkl now follow immediately from eqn. (3.7.9).
The matrices of Fkl are in all cases related to those of Dkl by the equation

(3.8.7)

It is possible therefore to dismiss Fm3m by naming the point groups Gkl. These are
as follows: for F, m3m (0J; for X, 4/mmm (Z)4J; for L, 3m (D3d); for W, 42m (D2d);
for A, 4mm (C4l!); for A, 3m (C3v); for Z, mm2 (C2v); for S, mm2 (C2r); for Z, mm2
(C2t,); for Q, 2 (C2); for C, m (C l fc); for 0, m (C,,); for J, m (Clh) for B, m (C]h);
and for A, 1 (C,).

Fdlm
The case of diamond is not quite so easily dealt with. The first thing to notice is that
if in the decomposition (3.8.6) the rotational part P of the coset representative is one
of the elements E, C^,, C2m, oAp or S^m its translational part w,- = 0, but if its rota-
tional part Q is one of the elements /, 5^}, am, C2p, or C4

±
m its translational part
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Wj: = v = \(a, a, a). Therefore the factor system exp ( — ig,. w,) consists entirely of
units if g; = 0 for all /, or if the little group Gkl has all its elements of the form P
and none of the form Q. The former is the case if k j is an internal point of the
Brillouin zone {F, A, A, I, C, 0, J, A(I)}, and the latter is the case if Gkl is composed
entirely of elements in 43m (Td) {A, C, J, A(S)}. In these cases the required projective
representations Z>kl are just the ordinary reps of the point group Gkl.

Thus in Fd3m, if k1 = F, A, A, Z, C, O, J, or A all we have to do to find Z>kl is to
look up the reps of Gkl in Table 2.2. The names of the point groups Gkl correspond-
ing to these points are to be found above in the treatment of Fml>m. However, even
for these points there is an essential difference between Fd3m and Fm3m and that is,
having obtained Z)kl, the small representations Fkl do not follow quite in the same
way as for Fm3m. In this case we see from eqn. (3.7.9) that

(3.8.8)

but that

where P and Q have the same meaning as in the decomposition (3.8.6). Since it is
customary to tabulate the small representations Fkl rather than Z)kl, certain of the
elements appearing in the tables carry an extra factor exp ( — i k t . v ) that does not
appear in the character table for the corresponding point group. (It is worth while
noting that this factor is always unity for F so that the reps of a non-symmorphic space
group belonging to F are the same as for the reps of the corresponding symmorphic
space group.)

We now consider in detail each of the surface points of the Brillouin zone B, Q, Z,
S, L, W, and X. We shall use the notation of the later paragraphs of section 3.7
without further explanation.

B

Coset representatives of GB: (E | 000}, {CT}, | iJi}.
EB = B, so that g£ = 0.
ayB = B - gl - g3, sothatgC T y = -g, - g3 = (-1,0, -1).

Factor system: p.(E, E) = 1, p.(E, ay) = 1, n(ay, E) = 1, and fi(ay, ay) =
exp(27ii(i + 0 + £)) = -1.

The central extension GB* consists of the four elements (£, 0),(£,1), (ay, 0), (ay, 1),
with multiplication table:

(E, 0) (E, 1) (ay, 0) (<7y, 1)
(E, 1) (E, 0) (<7y, 1) (ay, 0)
(ay, 0) (ay, 1) (£,1) (E, 0)
( < V l ) ( f f , ,0) (£,0) (E,\)

(3.8.9)
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from which we see that GB* is isomorphic with C4. We are interested in those repre-
sentations of GB* for which D(E, 1) = -1 (see eqn. (3.7.33) with a = 1 and g = 2).
From Table 2.2 we see that these are the two 1-dimensional representations:

:£
2E

(£,0)

1
1

(<v o)
1

i

(£,1)

-1
-1

fry, 1)

i
— i

From eqns. (3.8.8) and (3.8.9) we see that the corresponding entries in the character
table for the small representations of GB are

B

1E
2E

{E \ 000}

1
1

K i m
' r— 14
iC

where £ = exp ( —ik[ .v).

The central extension GQ* consists of eight elements and is isomorphic with C8

in such a way that (C2/, O)8 = (E, 0) and (C2/, O)6 = (E, 1). We are interested in
those representations of GQ* such that D(E, 1) = il (see eqn. (3.7.33) with a = 1 and
g = 4). These are two 1-dimensional representations and in them the appropriate
entries in the character table are

1E3
2E,

(E,0)

I
1

(C2/, 0)

exp (3m/4)
exp (77ri/4)

Factor system

Coset representatives of
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Since exp ( — i k ] . v ) = exp ( — 3ni/4) we see that the corresponding entries in the
character table for the small representations of GQ are

Q

%
2E,

{£|000} {C2f
i i n
444J

1 +1
1 -1

The central extension Gz* consists of eight elements and is isomorphic with
422 (£>4) in such a way that (oy, O)4 = (az, O)2 = (E, 0) andjaz, 0)O,, 0) = (a,, O)3

(az, 0) = (C2x, 0).Weare interested in the representations of Gz* for which £>(£, 1) =
-1 and from Table 2.2 we see that this is the representation E whose characters are

with possible matrices:

Writing £ = exp ( — i k , .v), we obtain the corresponding entries in the matrix repre-
sentation table for the small representation of Gz.

The elements of the factor system are all equal to 1 except

Z

Coset representatives of Gz

E

(E, 0) (E, 1)

2 -2

Ov o)K, i)

0

(<T2, 0)(<TZ, 1)

0

(C2jc,0)(C23e, 1)

0

Z {E

E /,
lo

000} K | Hi} {̂  1 Hi)

o\ / o c\ /f o\
i j (_ C oj (0 -cj

{C2jt | 000}

/O 1\
I' oj



SPACE GROUPS 167

The central extension Gs* consists of eight elements and is isomorphic with 4/ra
(C4,) in such a way that ( a y , O)4 = (aie, O)2 = (E, 0) and (oy, OX^O) = (ode, 0)
(ay, 0) = (C2c, 0). We are interested in those representations of Gs* for which
D(E, 1) = — 1 and from Table 2.2 we see that these are four 1-dimensional repre-
sentations whose appropriate characters are

'£,
2E,
2E2
1E2

(£,0)

1
1
1
1

("*, 0)

1
1

-1
_ ]

(<V 0)

— i
i
i

— i

(C2c, 0)

— i
i

— i
i

and writing £ = exp ( — iki. v) we obtain for the corresponding entries in the character
table of the small representations of Gs

The methods we have used to obtain the small representations for the wave
vectors, k, on the surface of the Brillouin zone for non-symmorphic space groups
can of course be used for the points of symmetry also. However there is an alternative
method due to Herring (1942) which avoids the use of projective representations for
such points of symmetry and since it is rather more direct in its approach (it uses a
factor group of the little group rather than the little co-group) we shall describe it and
apply it as an example to the points W, X, and L for Fd3m (Ol). There is very little
to choose between the two methods because they both involve finding the characters
of a group of large order.

Herring's method is as follows. In any small representation

(3.8.10)

The elements of the factor system are all equal to 1 except

Coset representatives of Gs
S

s

'£,
2E,
2£2
'£2

{£|000} K.JOOO} {a,

1 1
1 1
1 -1
1 -1

1 1 i\ ( f^ i 1 1 1 1
444J 1^20 1 444)

iC -iC
i£ 1C
it -if
it it
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If k j is a point of symmetry then the phase factor exp ( —ik^t ) = 1 for a large
number of translations t. Denote the subgroup of T of elements that have this
property by Tkl. Then Tkl is an invariant subgroup of Gkl and the factor group
Gkl/Tkl, which we denote by HGkl, is of small order compared with that of Gkl.
(The maximum possible order of HGkl that occurs in determining the single-valued
reps of the space groups is 96.) Now because ^({E | t}) = 1 for all t e Tkl it follows
that each element of Gkl in a given coset of Tkl is represented by the same matrix.
Thus, since the cosets of Tkl are the elements of HGkl, it follows that Fkl can be taken
over as a representation of the factor group. Loosely speaking, we identify all the
elements of a given coset. Conversely, using this identification, we can also take the
reps of the factor group to be the reps of the little group. Of course only some of
them will be small reps because of the extra requirement imposed by eqn. (3.8.10);
but certainly all the small reps can be deduced in this way by lifting them from HGkl

into Gkl because a small rep always has the property that T^({E t}) = 1 for t e Tkl.
In order to make the working seem natural it is customary to use the coset repre-
sentatives as the symbols for the cosets. These symbols then form a group isomorphic
with the factor group provided, when working with them, we identify any two symbols
that only differ from each other by translations t e Tkl. Since this can be done at
sight, multiplications within the factor group can be deduced immediately from the
ordinary space-group multiplication rule.

Returning to the case of diamond we shall now show how Herring's method works
for the points W, X, and L.

W
Since W = ^gi + |g2 + fg3 the group GW/TW contains four translations {E 0},
{E\ t j}, {E\ t2}, {E\ t3}, represented respectively by 1, — 1, — il, and il. There are
therefore 32 elements in HGW, the products in Herring's sense of the eight elements
{E | 0}, {C2x \ 0}, {C2d | v}, {C2f | v}, {ay v}, {az \ v}, {££ 0}, {S4x \ 0} with the
four translations. This group of order 32 can be identified as G*2

 m Table 5.1 with
{S+x | 0} = P, {C2f I v} = R, and {E t3} = Q. (All one needs to do is to check
that the generating relations P4 = R2 = Q* = E, PQ = QP, RQ = QR, andRP =
Q3P3R are satisfied.) We require the reps in which {E \ 001} = Q is represented by il.
These are two 2-dimensional representations. The relevant section of the character
table of HGW is

W

lFt
1F2

{E|000} {£[001}

2 2i
2 2i

{E | 100}

-2
-2

{ E \ 010}

-2i
-2i

[C2x | 000}
{C2x \ 100}

0
0

{C2J001}
}C2J010}

0
0

{S^ 1 000}
{S4~, | 010}

1 - i
-1 + i
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w

1F,
1F2

{s:x
{Si,

i
-i

001}
000}

+ i
— i

\s;x
{Sic

-1
1

100}
001}

+ i
— i

<si,
{Si,

-i
i

!010}
1100}

— i
+ i

Klii!)
K I Hi}
{*, 1 iii}
{*, 1 tii}

0
0

K

K
{*,
{^

1111
444;
5 1 1 1
4441
1 151
444)
1 5 1 1
444}

0
0

I r 1 1 1 5 )
iC2/ 1 44 47
I f " 1 1 5 1 )
\*-2f 1 4441
<f" 1 1 1 11
XC2d \ 444J

{C2d | |ii}

0
0

< t~< i 1 1 n
}<-2/ I 444/
(C 1 511i\*-2/ 1 444J
If 1 ! ! 5\
lL2,i 1 444}
r /^ i l 5 n
tC2d 1 444}

0
0

Suitable matrices generating these representations are

X

Since X = (^0^), the group HGX contains two translations {E \ 0} and { E \ t l } repre-
sented respectively by 1 and — 1. There are therefore 32 elements in HGX, the products

x {£|ooo} {£|ioo} {C2j,|oooj {C2,1100} {/ ] iii} Kliii} Kjooo}
{/1 !H} is I !ii} {<?„<. i 000}

£
£

X {ndc |100} {C2p |iU} {C2Jlii} {C4
±

yliii} {Si I 000} {C2JOOO} {<7j -U}
{^lioo} {c2j|ii} {C2ciai} {c^il-U} {s+v | ioo} {C2l | ioo} {az| ii}

{C2JOOO} {0,| ii}
{C2x I 100} {vx I ii}

E 1
£2 0 2 -2 0 0 0 0
£3 I 2 0 0 0 0 0 0
£4 I 0 -22 2 0 0 0 0

'*•,
1F2

{C2/

(°
l l
(0ll

nn
444J

1 |̂
o j
1\
oj

{ î.
f
U -
/'
l » -

000}

o\
- i )
o\- i j

in Herring's sense of the 16 elements

with these two translations. This group of order 32 can be identified as G\2 in Table
5.1 with {ax v} = P, {Sfy \ 0} = Q, and {C2x \ 0} = R. We require the reps in
which {E | tj} = P2 is represented by — 1. These are four 2-dimensional representa-
tions. The relevant section of the character table of HG* is

2

2

2

2

-2

-2
-2

-2

-2
E2
E1 2

-2
2

-2

-2
2

-2
2

0
0
0
0

0
0
0
0

2
0
-2
0

- 2 0 0 0 0 0 0



170 SPAC E GROUP S

Suitabl e matrice s generatin g these representation s are

El

.

. >
V

£2

E,

4

(°
il
/ .11
/ 0

V'

1 1 1 1
444)

-"l
. )

-ô j
- .

. )

-1}
oj

{Sí,
/ .i l

( °1-1
/  .1-1

(°11

000}

.
o j
.
o j

- .
o j

-1}
oj

{. 2,

f°i l
(°i l
. .i'
/ .
M

000}

.
o j
.
o j
.
o j
.. ;

L

Since L =  (y^i), the group HG L contain s two translation s {E 0} and [E\ t j} repre -
sented respectively by 1 and —1. The group is of order 24 and is isomorphi c with
.. .  ® J (x) T! where 3m (C 3l)) contain s the six element s {E | 0}, {.. ^ | 0}, {adb \ 0},
{ade | 0}, {adf | 0}, where J contain s {E \ 0} and {/1 v} and where T t contain s the two
translation s {E \ 0} and {E t^}. Ther e are therefor e six small representation s and a
section of the characte r table of HG L can be seen from Table 2.2 to be as follows.

L ! {£¡000} {C3±!000} .„|000 } { / I Hi} .lHi } {C„|üi}
. ,  I 000} {c2e i Hi}
{adf | 000} {C2/  | Hi}

^ l e 1 1 1 1 1 1. 2 .  1 1 -1 1 1 -1

Ea 2 -1 0 2 -1 0

Alu 1 1 1 -1 -1 -1

. 2 .  1 1 -1 -1 -1 1

£u 2 -1 0 -2 1 0

Generating matrices for the 2-dimensional representations can be obtained from
Table 2.3. It will be seen that by chance the form of the reps belonging to Q and L
in Fd3m are just like those in РтЪт. The rules we gave for when this certainl y happen s
are therefor e sufficient but not necessary, and from this example we see tha t even if
k j is on the surface of the Brillouin zone and the space group is non-symmorphi c then
the small reps of Gk l occasionall y have the same form as the reps of Gk'.



The representations of a group in terms of the
representations of an invariant subgroup

IN the last two sections of Chapter 3 we gave only a partially complete account of the
representation theory of space groups. A number of arguments were presented only
in outline, while some statements were left unproved. There were several reasons for
presenting the work in this way. First, it was felt that for some readers the account
given in Chapter 3 would be sufficient. Indeed, the details of an entirely rigorous
account may often distract a reader from a central theme and thereby lose for him
in obscurity as much as it gains for him in accuracy. Secondly, the completely
rigorous scheme will be found to be valid in a wider group-theoretical context and is
of use not only for the classical space groups but in other applications also. It seemed
sensible, therefore, to present the complete group theory in a general notation that
is not restricted to space groups and is set apart from those particular considerations
involved in the last chapter.

The purpose of this chapter is, therefore, to treat in complete generality the repre-
sentation theory of groups with an invariant subgroup, of which space groups are a
particular example where the invariant subgroup is the 3-dimensional translation
group and hence is Abelian. The extra theory will enable us to fill in the gaps of the
last chapter, primarily to show that the scheme outlined for obtaining the reps of
space groups does in fact produce all of them, neither too few nor any spurious ones
that are equivalent to others, but also to show how to obtain in precise matrix form
complete representations from the tabulated small representations of little groups.
It also happens that this extra theory will enable us to discuss more easily further
points of interest in the theory of solids, such as the reality of the reps and their inner
direct products with each other. The reality is important because of its usefulness in
studying the degeneracy of individual particle or quasi-particle states in a crystal
as a result of time-reversal symmetry (Herring 1937a, Wigner 1932). The inner direct
products are important because of their usefulness in determining selection rules for
various processes involving electrons, phonons, magnons, etc. in solids (Elliott and
Loudon 1960).

4.1 Induced representations

Suppose that G is a group and that K: is a subgroup of G which is not necessarily
invariant. For example, G might be a space group and K t the little group of a vector

4
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ki of the Brillouin zone. We denote the elements of K! by ka (a = 1 to [KJ). Let us
factorize G into left cosets with respect to KL so that (compare with eqns. (3.7.2)-

(4.1.1)
(3.7.4))

where Pa are left coset representatives, which we shall suppose chosen once for all\\ for
example we always take pl = e, the identity, and whenever we write p^ we mean the
particular coset representative of the coset pji.l that occurs in the expansion (4.1.1),
and not just any element of the coset. In eqn. (4.1.1) the sum over a runs from 1 to
IGI/ IKJ , where G| is the order of G; this equation means that each element g e G is
expressible in the form p)ks where px is one of the chosen coset representatives and
where both/?A and kseK1 are uniquely determined by g.

T H E O R E M 4.1.1. Every element g e G is expressible in the form g = kbp^i where b
and h are uniquely determined by g.

For, by what we have just inferred from eqn. (4.1.1) g~: = plks where A and s are
uniquely determined by g ~1. Hence g = k~ V;T! = kbp^l, where since K: is a group
kh = k~1 e K t and where, moreover, b is uniquely determined. Notice that/?^1 is not
necessarily one of the chosen coset representatives. This is because the |G|/|K! coset
representatives pa do not necessarily form a group, even when K t is invariant.

Now let Qj be a vector space of dimension d-p irreducible under K! , and choose a
basis <0 r , r = 1 to d-, so that, for all ka e K,,

(4.1.2)

Denote the character of ka in the repy by ^'(^J- Furthermore, let Q denote the vector
space spanned by the d^GI/IKJ functions 4>xr where for all ex. and r

(4.1.3)
Equation (4.1.3) is a functional identity, so that for equal values of their arguments
</>„ and paL4>r have the same value. We met the same procedure in Chapter 3, section
3.7, when we defined functions of the form {Tt \ xj^k.

T H E O R E M 4.1.2. Q is invariant under G.
For writing g = p^ks, then gcf)rr = p^kspr(j)r = pykt<j)r, where y and t are uniquely

determined by g and T. Thus, using eqns. (4.1.2) and (4.1.3) we obtain

(4.1.4)

{ The results of the theory in no way depend upon the particular choice made. By this we mean that
all choices are equivalent in the sense that induced representations arising from different choices of
coset representatives are equivalent; however, once a choice is made it should not be altered because the
mathematical details, particularly in the proofs of theorems, are affected by the choice.
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Equation (4.1.4) defines what is called the induced representation of FJ in G, written
conveniently as FJ t G. We denote its character by %(g). It is of dimension d,|G|/ K, | .
What eqn. (4.1.4) means is that if gpT = pykt (so that kt = p~ lgpT) then for g the
(y, r) block matrix (of dimension dj) in FJ t G is Tj(p~ lgpj and furthermore, since y
is uniquely determined by g and i, it is the only non-zero block matrix in the column
labelled T. Similarly, it is the only non-zero block matrix in the row labelled y. It
follows at once that if P is a unitary representation then F71 G is also unitary.
However, although P is irreducible it does not follow that P t G is also irreducible.
We shall discuss conditions for irreducibility in due course.

It should now be clear that the reps of space groups are in fact the induced repre-
sentations of the small reps of little groups. So we have already completed part of our
task, that of showing how to obtain the detailed matrix form of the reps of space
groups from tabulated small reps of little groups. The steps involved are covered by
eqns. (4.1.1)-(4.1.4) with G identified as the space group, Kx as the little group Gkl

(eqn. (3.7.3)), and TJ as the small representation F£' (see item (iv) of the scheme in
section 3.7 for obtaining the reps of G). One important fact is that in a space group
|G| = NlN2N?lh and IKJ = N1N2N3b, so that given a small rep of dimension t the
dimension of the corresponding rep of the space group, d = th/b = qt — (number of
vectors in star) x (dimension of small rep), a formula in keeping with that derived
in Chapter 3 (summarized in item (v) of the scheme in section 3.7 for obtaining the
reps of G).

T H E O R E M 4.1.3. Define Qa to be the vector space spanned by the dj functions
0ar, r — 1 to dj. Then, for any fixed a, fia is irreducible under the subgroup Kx =
(/ '«*«,/ ' !r

1;fc«eKj).
For, using eqns. (4.1.2) and (4.1.3), we have

(4.1.5)

What eqn. (4.1.5) means is that the representative of p^p^ l with respect to the
basis <</>J is TJ(ka). But the group of matrices FJ(/O is irreducible (by definition) and
so the theorem is established.

The subgroups Ka may be written in the forro.paK1p^1. Therefore each one of the
subgroups Ka, a = 1 to [ G I / I K j l , has the following properties.

(i) It has the same order as Kl.
(ii) It is conjugate to Kj under G, and therefore to every other member of the set

Ka (because conjugacy is an equivalence relation),
(iii) Provided the subgroups are distinct each one is in direct correspondence with

one and only one of the cosets/^K^ in the decomposition (4.1.1).

We recognize that we have met this situation before. For if we identify G with the
isogonal point group F of a space group and K t with the little co-group of k t , then
we can identify Ka as the little co-group of ka, where k,, is the member of the star
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defined by k t such that/^kj = ka (see section 3.7, following Definitions 3.7.2 and
3.7.3). We leave it as an exercise for the reader to show that there are no subgroups
of G conjugate to K t under G other than those in the set Ka.

T H E O R E M 4.1.4. Johnston's irreducibility criterion. Denote the character of g in
Qa by %x(g) so that %(g), the character of g in P t G, is equal to ^a Za(#)> ^nen ^ *5

irreducible under G provided that

(4.1.6)

for all pairs a, /? such that a / /?, where for each choice a, /? the sum over t runs over
all the elements ofK.x n K^.

The proof of this useful theorem as given by Johnston (1960) is as follows.
From Theorem 1.3.8 fi is irreducible under G if and only if

(4.1.7)

where the sum over g runs over all elements of G. That is, if

(4.1.8)

Now from eqn. (4.1.4) it is clear that if g is expressible in the form pTktp^ 1 then

(4.1.9a)

but that if not then

(4.1.9b)

Thus
that

but is zero for all g not in K t. It follows

(Since P is irreducible under K: Theorem 1.3.8 holds and it has been applied in
evaluating the sum over a.)

P t G is therefore irreducible if and only if

(4.1.10:

In particular, if for all a, $ such that a i= j6

(4.1.11)

then P t G is irreducible.
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By virtue of eqn. (4.1.9) the only possibility of a non-zero term in the left-hand side
of eqn. (4.1.11) is for elements of G in both Ka and K f . This yields condition (4.1.6)
and the theorem is proved.

C O R O L L A R I E S
(i) If K j is invariant in G then Ka = K t for all a, and condition (4.1.6) becomes

(4.1.12)

for all ex, ft such that a ^ p. This is satisfied if the irreducible representations of K j
spanned by the bases <$„ , a = 1 to IGj/IKJ are mutually inequivalent.

(ii) The condition (4.1.6) involves for each pair oc, /? such that a / /? a sum over
all the elements of the group Ka n K^. The condition imposed is that this sum must
vanish. The sum will vanish as we shall prove shortly if for any subgroup Ha/3 of
Ka n K0 it can be established that

(4.1.13)

where the sum over h runs over all elements of Haj3. This is particularly useful if H^
can be chosen to be the same subgroup H of G for all pairs a, /?.

In order to prove that (4.1.13) is sufficient to imply (4.1.6) for a particular choice
of the pair a, jSlet us consider more closely the meaning of eqn. (4.1.13). What it means
is that the two representations of Ha/3 one with basis <</>„ and the other with basis
<$0r have, when reduced, no irreducible components in common; this is because
the orthogonality relationships for characters of the reps of Ha/J ensures that the sum
(4.1.13) contains only positive or zero terms and that non-zero terms occur when
and only when there are irreducible subspaces of O^ and Q^ one in Qa and one in Q^
which generate the same rep of Ha/J. The sum (4.1.13) is therefore equal to n |Ha/!|
where n is the number of pairs of such irreducible subspaces. n is sometimes called
the intertwining number of Qa and Qp under Hx/j. In this case n = 0. But Ha/, is a sub-
group of Ka n K^ so if Qa and Q^ have no pairs of irreducible subspaces under Ha/j

that generate the same rep, there certainly cannot be any under Ka n K^. Hence the
intertwining number of Qa and Qp under Ka n K^ is also zero and so if (4.1.13) holds
then so does (4.1.6). The important application of this corollary is when Ka, a = 1
to IGI / IKJ , are the little groups of a star and when Hx/j for all pairs a, ft is taken to be
the translation group T of the space group which, being a subgroup of all K^, is a
subgroup of all Ka n K^. Now different members of a star generate mutually in-
equivalent representations of T (the whole point of a star being that no two ka are
equivalent) so that in this case all sums (4.1.6) vanish. This ensures that T* t G, the
space group rep induced out of a small rep of the little group, is indeed irreducible.

T H E O R E M 4.1.5. The Frobenius reciprocity theorem. Let F be a rep ofG, char-
acter #r(#); then the number of times that T appears in the decomposition o/T"7 t G



which is an intertwining number representing the number of times YJ appears in
F •!• K j . In going from (4.1.14) to (4.1.15) we have used (4.1.9), and in going from
(4.1.15) to (4.1.16) we have used the fact that ka

l and p^k^p'1 are in the same
conjugacy class in G and so have the same character f(k~v) for all a = 1 to |G|/|Ki|.
The importance of this theorem should be emphasized because it provides the answer
to many counting problems. A word of warning is necessary however; the conditions
of the theorem that T should be irreducible under G and Yj should be irreducible
under K1 must not be forgotten.

4.2. Groups with an invariant subgroup

In this section we shall consider certain properties of a group G with a proper invariant
subgroup T. (If T is Abelian then G has a structure similar to that of a space group;
see for example equation (3.5.2).)

We expand G in terms of left cosets with respect to T:
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into irreducible representations ofG is equal to the number of times the rep Y1 appears
in F i K!- Here Y J Kj denotes the restriction ofY to elements ofK.^ and is commonly
called the representation o/K, subduced by Y; since Kj is a subgroup ofG it is clear that
r I Kj is a representation ofKi of the same dimension as Y.

The proof of this theorem is as follows. The number of times Y appears in YJ t G
is equal to the intertwining number (1/|G|) £9 l(g)y^(g~l)

(4.1.14)

(4.1.15)

(4.1.16)

(4.2.1)

where, as usual, the left coset representatives ra are assumed chosen once for all. We
always take rv = e, the identity of G, and we denote the identity of T by ti = e.

If it is possible to choose the left coset representatives to form a group F we shall
assume that such a choice has been made.J

} It is often possible that of all the choices of left coset representatives rx, some will form a group and
some will not. Thus the point group 432 (O) can be expanded for example as

ET + C3
+,T + C3-,T + C2bT + C2J + C2/T

where T is the point group 222 (D2) (= E + C2x + C2y + C2z); it can also be expanded as

ET+ C3
+,T + C31T + C2aT + C2J + C2dT.

In the first case the rt form the point group 32 (D3) (admittedly in a non-standard orientation) so that'
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D E F I N I T I O N 4.2.1. If the left coset representatives rx ot a group G with respect
to an invariant subgroup T can be chosen to form a subgroup F then G is said to be
the semi-direct product of T and F and we write G = T A F.
(See Definition 1.2.17 for an equivalent definition of semi-direct product.) The
contents of this section are true, however, whether G is a semi-direct product or not.

We denote an element of G by (raJa). (These symbols must not be confused with
the Seitz space-group operators.) Their multiplication rule is

(ra'oXVfc) = (>V«/jlAVfc), (4.2.2)

where [Jj^ = r^tjr^ e T since T is invariant, and where

V> = r^f, (4.2.3)

the right-hand side of eqn. (4.2.3) being the unique decomposition of the element
r/0 e G as the product of one of the chosen left coset representatives raf and an
element t^ e T. For a semi-direct product group tx/1 = t\ for all a, /J.

The identity of G is (r^j) and from eqns. (4.2.2) and (4.2.3) we obtain the following
relations:

E'Jj = ta, [/J, = /,, rxl = rlx = rf, and /„, = tlJL - /, : (4.2.4)

IXL1AL = CVbL (4-2.5)
and [ca^cor1- (4-2.6)

Associativity of the group G then implies that for all a, a, ft, y (using eqns. (4.2.2)
and (4.2.5)),

'«., = '..„ (4-2-7)
and

V ylt,p]yllQf}y = '., f^fytpy (4-2.8)

Note that from the above sets of equations

rz, pi = r*p, i = r*P = ri, ̂  = ri=", ft ~ r*, IP = r»i,,B ft (4-2.y)

but that, although

t..m = ti«,ii = *«.i* = '.i,* = *<*> '*!>. i = *!.*!> = f i - (4.2.10)
By putting a = 1 in eqn. (4.2.8) we obtain an important relation for all a, j8, y that

'./i. y['«/Jy = W*r (4'2-1])

432 = 32 A 222 (O = D3 A D2), but in the second case the r, do not form a group, since for example
£31 C2tt = C£x and the closure property is not satisfied. The point here is that if the coset representatives
can be chosen to form a group then they must be so chosen.
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The following points are worth noticing. The inverse of (r^J is (rita
l). Given rx

there exists a unique coset representative r= such that r,= = r^ = r,; the inverse of

(4.2.12)

(4.2.13)
and

And finally, it is easy to check that

(4.2.14)

The right-hand side of eqn. (4.2.14) we take to be the definition of [*„]„-1, which is
not otherwise defined since r~! is not necessarily one of the chosen coset repre-
sentatives.

THEOREM 4.2.1. The inverse of
For

which as a result of eqn. (4.2.5) and the fact that rai = rt is equal to the identity. We
leave it as an exercise to the reader to verify by using eqns. (4.2.12) and (4.2.13) that
(r&a ^aCs1) is also the left inverse of (rafj.

THEOREM 4.2.2. The suffices of the coset representatives form a group of order
|G|/|T|, which we denote by R. It is, of course, isomorphic to the factor group G/T.

The multiplication rule in R is <x/J = y ifrxrp e ryT. Closure follows by construction,
associativity from eqn. (4.2.7), the identity is 1 (see eqns. (4.2.4)) and the inverse of
a is a. The theorem is in fact nothing but another demonstration of the existence of
the factor group. Note that if G = T A F then F, R, and G/T are mutually iso-
morphic, the correspondence being ra <-> a «-* raT.

We now particularize the results of section 4.1 to the present case in which the
subgroup is invariant. To do this we identify K l 5 pa, and FJ of section 4.1 with the
symbols T, rx, and Dl in this section.

D' is a rep of T of dimension d{ with basis <$r| so that (see eqn. (4.1.2))

(4.2.15)

The functions (f)xp = r$p (a = 1 to |G|/|T|, p = I to rf;) span a vector space Q which
is invariant under G (see Theorem 4.1.2). The subgroup Ta = (r^tar~ 1; ta e T) is in
this case identical with T, since T is invariant. Theorem (4.1.3) then gives us the
following important result: Qa is irreducible under T. Let us see how the rep D'a of T
generated by fia is related to D'. We have

(4.2.16)
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Equation (4.2.16) implies that

(4.2.17)

Since this equation holds for all ta e T, D\ is said to be conjugate to Dl under G. The
set of representations D'a for a = 1 to |G|/|T| forms a set of conjugate representations.
Two conjugate representations may be equivalent. This does not, however, follow
in any way from eqn. (4.2.17) for although ta and [Zja are in the same class in G they
are not necessarily in the same class in T.

A maximal set of mutually inequivalent representations chosen from a set of
conjugate representations is called a star (or by some authors an orbit). It is quite
easy to see that this fits in with the definition already applied to space groups. If we
identify ta with a translation {E \ t} and ra with an operation {R \ v} e G, then

(4.2.18)

If we identify £>' with Ak then from eqns. (4.2.17), (4.2.18), (3.4.3), and (3.6.2)

(4.2.19)

The equivalence between the two definitions is now brought about by the fact that
if Rk = k then ARk = Ak , so that to choose a maximal set of mutually inequivalent
representations from a set of conjugate representations of the translation group T is
to form a star; whether we think of the star as consisting of a set of mutually in-
equivalent conjugate reps Ak or as the corresponding set of vectors k does not
matter, provided the reason for the correspondence is not obscured.

The set of suffices y e R for which D\ = Dl forms a group K' called the little co-
group of/)' in G. The correspondence with space group terminology (see Definition
3.7.3) is immediate; there the little co-group Gk of k in G is defined to consist of all
S e F such that Sk = k, that is Ask = Ak. To make the correspondence entirely
complete note that the group Kj, = (oeya; y e K'} is the little co-group of Dl

x in G.
This follows because, if we denote DJ,(fa) = D'((jfl]a) by A'(O then, for all y,

In space group theory the corresponding result is that G*k = {RSR * ; S e Gk}.
If all the members of a set of conjugate reps are inequivalent then the little co-group

consists of 1 alone. This corresponds to k being a general point of the Brillouin zone.
The group K' defined by the equation

(4.2.20)
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where 7 runs over the little co-group, is called the little group of / in G. The little co-
group is isomorphic with the factor group K'/T.

We now investigate the induced representation Dl t G determined by the space Q.
The equation corresponding to (4.1.4) is

(4.2.21)

where a = 0.1.
The equation corresponding to (4.1.9) is

(4.2.22)

That is, only the elements of T have non-zero character in Dl t G and in T each
element has a character that is a sum of its characters taken over a complete set of
reps conjugate to Dl.

Since T is invariant, Corollary (i) of Johnston's irreducibility criterion (Theorem
4.1.4) applies and asserts that if no two members of the set of reps conjugate to D'
are equivalent then Dl t G is irreducible. And so for a space group G if k is a general
point of the Brillouin zone Ak t G is irreducible.

From eqn. (4.2.22) we see that

(4.2.23)

In the case when Dl t G is irreducible all D\, T = 1 to |G|/|T|, are inequivalent and
the right-hand side of eqn. (4.2.23) is equal to the star containing D' (the star of/, for
short). And by the Frobenius reciprocity Theorem 4.1.5 it follows that D\ t G is
equivalent to D11 G, for by the theorem D\ t G contains D11 G once and since both
are irreducible and are of the same dimension they must be equivalent.

In the general case when D' t G is reducible the little co-group consists of elements
other than 1. From eqn. (4.2.20) we see that it consists of |K'|/|T| elements; this means
that in the sum £t D\ the star of / will appear |K'|/|T| times.

So far we have shown that when the little co-group consists of only one element
the representation Z)' t G is irreducible and that it can be induced not only from D1

but from any member of the star of /. Such an irreducible representation when
restricted to T contains each member of the star once and once only. Not every rep
of G can be obtained in this way because there exist sets of conjugate representations
of T which contain equivalent reps. This latter case holds when K' consists of more
than one element. In space-group theory this corresponds to the cases in which k is a
point of symmetry or lies on a line or plane of symmetry. In the following section
we give the theory to cover such cases and which, by the way, embraces the present
case as a particularly simple example.
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4.3 The theory of little groups
As in section 4.2 G is a group with an invariant subgroup T. The aim of this section
is to establish rigorously the scheme for obtaining all the reps of G, the same scheme
that was outlined for space groups in Chapter 3, section 3.7. The scheme is as follows,

(i) Distribute the reps of T into stars z.
(ii) Select arbitrarily one rep Dl from the star i.

(iii) Determine the little group K! of i in G; we remember that K' = Z/yT where
the sum over y ranges over the little co-group K' of elements such that D\ = Dl.

(iv) Expand G in terms of left cosets with respect to K'; as in section 4.1 we write
G = X^aK1 where the px are supposed chosen once for all, and by construc-
tion of the little group they have the property that D^, a = 1 to G|/|K', are
mutually inequivalent and form the star of £)'.

(v) Find the reps of K' and denote those by F^ which, when restricted to T, yield
multiples of Dl. These are called the small reps of K'.

(vi) Determine Fy t G for each j. This is to be done by the method established in
section 4.1 identifying K1 here with the group K1 of that section and Y'j here
with the rep F7 of that section,

(vii) Repeat (ii) to (vi) for each star i.
Steps (i) to (iv) of the above scheme have already been discussed in detail. In order

to justify step (v) we prove the following lemma.

L E M M A 4.3.1. If Y] is a rep of W such that T]j, T contains D1 then it contains only
D' but perhaps more than once.

First note, from the Frobenius reciprocity Theorem 4.1.5 that Fj i T contains Dl if
and only if Dl t K' contains Fj-.

Suppose then that D{ t K'' = £/ A]Y] = F. The theorem then states that Y] 4 T
contains D' just /.J times. To prove that it contains nothing else it is sufficient to
remember that K' = £y ryT where y e K'. Now T is invariant in K' so we may use
the result expressed by eqn. (4.2.23) that F I T = £y D\. But y e K' so that D\ = D1.
Hence F i T = (IK'I/ITDZ)1'. In particular, F}4 T = Xl-D\ which establishes the lemma.

Incidentally, we have proved further that (|K''|/|T|)JD
i = F I T = (£,. /}F}) \ T =

£; (ty2Dl so that £; (A})2 = |K'|/|T| = K;|, the order of the little co-group of / in G.
This very important fact means that the sum of the squares of the dimensions of the
small reps of K1 is £,. (Affl2 = d? |K', the square of the dimension of D* times the
order of the little co-group.

T H E O R E M 4.3.1. The representations Y] t G (all i, all j ) are all irreducible, and all
the reps ofG are obtained in this way once and once only.

Note, of course, that for those stars z for which K' consists of the identity alone,
K' = T; the only F} = D1 and £>' t G is irreducible so that Theorem 4.3.1 will include
the final result of section 4.2 as a trivial case.
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We first prove that F^ t G is irreducible. We remember that G = £a /?aK' where
the characteristic property of the px is that the set D\ forms the star of D', so that the
members of the set D'x are mutually inequivalent.

The irreducibility of FJ- t G follows at once from Corollary (ii) to Theorem 4.1.4.
We take H^ = T to be the common subgroup of KJ, n KJ, for all a. ^ ft and the
corollary asserts that if

(4.3.1)

then Fj t G is irreducible. Here %l(ta) is the character of ta in the representation
spanned by the space Qa, that is the (reducible) representation h]D\. Similarly, %l

e(ta)
is the character of ta in xJDJ,. Since Dj, and D}j are inequivalent the sum on the left-hand
side of eqn. (4.3.1) vanishes and Fj t G is therefore irreducible.

It remains to prove that by repeating the induction process for each star / and all
small repsy we obtain all reps of G once and once only. There are two things to take
into account; first, the possibility that by doing this we miss some rep of G altogether,
and secondly the possibility that we count some of the reps more than once. To
counter the second possibility we must prove that the reps F} t G are mutually in-
equivalent. To counter the first possibility we must then show that the sums of the
squares of their dimensions is equal to |G , which will prove that we have obtained
all the reps of G. In order to prove these facts it is necessary to establish certain
lemmas. In the following we shall denote F} t G by A}.

L E M M A 4.3.2. Transitivity of subduction

(4.3.2)

This follows because both sides consist of an identical set of matrices.

LEMMA 4.3.3. Transitivity of induction

(4.3.3)

From the text following eqn. (4.2.15) we recall that the basis spanning the repre-
sentation D' t G consists of the functions rz$p = $ap, a = 1 to |G|/|T|, p = 1 to dh

where <(/>p| is the basis for Dl and the rx are the left coset representatives in the de-
composition (4.2.1). Since K' = £!? r?T, where y ranges over K', the basis spanning
D* t K1 consists of the functions ry(j)p — 0yp, y = 1 to |Kl|/|T|, p = 1 to dt. Further,
since G = £/» pjL\ ft = 1 to |G|/|Ki, the basis of the representation (Dl t K1) t G
consists of a linear combination of the d;|G|/|T| functions Pp4>7p. Now the various^
can be chosen so that the set {ppfy} = {ra|. In this way the basis <p/)0vp| is identical
with the basis <</»ap |. The essential point is that however the coset representatives

the left-hand side of eqn. (4.3.3) is taken to meanwhere, since
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are chosen the representations of G on the two sides of eqn. (4.3.3.) both derive from
the space Q that is spanned by the <s?(|G|/|T| functions 4>xp. A different choice of coset
representatives will in neither case take us out of the space Q. The two representations
are therefore equivalent. An immediate corollary is that

This completes the proof of Theorem 4.3.1.

(4.3.4)

But Ay is irreducible in G. Therefore, from Frobenius' reciprocity theorem A} IT
contains Dl iust /I', times.

LEMMA 4.3.4

(4.3.5)

in which the set Deforms the star of D'.

We have shown above that Ay IT contains D' just ̂  times and since Ay is an induced
representation from K l into G it follows that it must contain all members of the star
of D1 an equal number of times.

We can now prove very easily that F^ t G = Ay, all /, ally are mutually inequivalent.
First, suppose we are given Aj| and A]^ with il ^ z'2 then from Lemma 4.3.4 and
from the fact that pairs of reps taken from two distinct stars are mutually inequivalent
it follows that Aj| 1 T and Aj* 4 T have no irreducible components in common. The
same argument that was used in Corollary (ii) to Theorem 4.1.4 can now be applied.
T is a subgroup of G: hence AjJ and Aj* have no irreducible components in common
and they are therefore inequivalent. Secondly suppose that z\ = z'2 = i but that
jl ^ /2, then since Fj, t G = A], is irreducible it follows from Frobenius' reciprocity
theorem that A^ 4 K1 contains F^ just once. Similarly Ay2 4 K' contains Fy2 just once.
Now if AJ-J = Ay2 then A^ i K1 must contain both F^ and Yl

h which by hypothesis
are inequivalent. Using Lemma 4.3.2 we see that A}t i T must contain both F], I T
and r'J21 T and must therefore contain D1 at least (A), + A}2) times. This is a con-
tradiction to Lemma 4.3.4. And so the inequivalence of the Aj- is finally established.
To see now that we have got all the reps of G we shall evaluate the sums of the squares
of the dimensions of the Ay. From Lemma 4.3.4 we see that dim A; = q^^ where
qt is the number of elements in the star of z. But qt = |G|/|K'. Therefore
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4.4 The small representations of little groups

We have established that, in the notation of the previous section, each rep of G is to
be obtained from some rep F, of K1 by the method of induction. Indeed each rep of
G is characterized by two labels: i, the label of the star, and j, the label of the small
rep. The method described in section 4.3 forms a practical scheme provided it is
possible to obtain the reps of K'. However we often meet the same difficulty, as
exemplified by space-group theory, that K' is not necessarily easy to analyse. Indeed
for some i we know that K' = G, the whole group. The purpose of this section is to
discuss a method of obtaining the small reps F^- of K' without necessarily obtaining
all reps of K1: for it must be realized that we are interested only in those reps F for
which F = F} where F$ IT = "^D\ some multiple of D\

With a suitable choice of basis we can therefore write

(4-4.1)

the direct sum of ̂  matrices D'(O- It is sufficient therefore to obtain matrix repre-
sentatives f}(ry) where 7 e K', For then matrix representatives of all elements of K1

can be obtained by forming all products of the form rj(ry)r|(?a).

Case (i). T Abelian

This covers the case of space groups and indeed the case of all finite groups with a
proper invariant subgroup that is a direct product of cyclic groups. Then Dl is 1-
dimensional and the dimension of F} is equal to K-r Furthermore rj(fa) is equal to
the A'J by A} matrix D'(/a)l, where D'(O is a known complex number of unit modulus.
Now Y'j is to be irreducible and the matrices for T are scalar matrices. This means
that the set of matrices F}(rv) must be irreducible.

We now recall that the following relations must hold for all /?, y, <5 e K':

(4.4.2)

(4.4.3)

(see eqns. (4.2.3) and (4.2.11)). In the rep F^- it follows therefore that we must have

(4.4.4)

(4.4.5)

(4.4.6)

and



Equations (4.4.8) and (4.4.9) imply that the complex numbers /j,1 are a factor system
for a projective representation of K'. Moreover this projective representation is of
dimension /l'; and is irreducible because r}(ry) = A';.(y) is to form an irreducible set
of matrices. Conversely if we have a projective rep Aj with factor system n' we
obtain a small rep Fj by setting rj(r7) = A';-(y). We thus obtain all allowed FJ of K'
by determining all non-equivalent projective reps of the little co-group K' with a
known factor system //(/?, -/) = D'(^y).

Incidentally we have verified that, since Y.J (ty2 = |K', the sum of the squares of
the dimensions of these projective reps of K1 is equal to the order of K1.

A simplification occurs when the elements ry can be chosen to form a group. For
then tyd = t1 = e for all y, 8 e K'. The factor system then consists of numbers all
equal to one and the projective reps become the ordinary vector reps. This always
happens for semi-direct product groups but (as we saw in the previous chapter) it
also happens for certain i when G is not expressible as a semi-direct product group.

Case (ii). T non-Abelian

If Dl is a 1-dimensional rep then the theory is precisely as in case (i). Indeed the only
place in case (i), in which the fact that T was Abelian was used, was at the beginning
where we remarked that Dl in that case was necessarily 1-dimensional. If Dl is of
dimension di > 1 then the following facts hold,

(i) F} is of dimension d^ where Fj I T = ^Dl.
(ii) The matrix form (4.4.1) for the representative Fj(/a) still holds, but D'(O is

now a di by di matrix and not a complex number,
(iii) Equations (4.4.5) and (4.4.7) are replaced by
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But Dl — Dl
d, since Dl is 1-dimensional and 5 e K' (equivalent 1-dimensional matrices

being equal). Hence eqn. (4.4.6) becomes

Consider now the group
(4.4.5) and (4.4.7) become

then eqns.

(4.4.8)

(4.4.9)
and

and

where TlJ(tyS) is given by eqn. (4.4.1), and where iys(tfy) = Dl(rd tfyrs). Note
now that although Dl

d = D' the equivalence cannot now be sharpened to an
equality.

(4.4.4)

(4.4.10)
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The problem from here does not have an easy solution. If G is a semi-direct
product group then tyS — t1 for all y, d and eqn. (4.4.4) reduces to

4.5 The point groups as semi-direct products

The method described in the previous sections of this chapter is very general and is
suitable for the classification and reduction of groups other than space groups. In
particular it brings out clearly the relations, which might appropriately be called
genealogical, between the symmetries of two point groups, one of which is a subgroup
of the other. These relationships may be illustrated diagrammatically as shown in
Fig. 4.1. The purpose of this section is therefore twofold. First we shall discuss the
representations of point groups in terms of those of their invariant subgroups and
we shall see how in this case it is possible to make certain simplifications of the general
theory of sections 4.1-4.4. Secondly, by doing this for these relatively small finite
groups, we shall be giving some simple examples of the use of the methods of sections
4.1-4.4. When the reader has practised on one or two simple examples of this sort
the scheme outlined at the beginning of section 4.3 should become quite clear and
the harder examples provided by the space groups should be easier to appreciate.

It is a fact that the point groups are solvable; that is, they admit of a composition
series

G = G l 5 G2, . . . , Gm (= E),

where Gi + l is a maximal invariant subgroup of G; and Gt/Gi + l is a cyclic group of
prime order. (An invariant subgroup is maximal if it is not a subgroup of another
proper invariant subgroup of larger order.) Note that this definition of solvability
might at first sight seem to be more restrictive than that given by Definition 1.2.16,
but the two definitions are easily shown to be equivalent. All groups of order less
than 60 are solvable, the icosahedral group being the group of least order that is not
solvable. This means that if we take a point group G and a maximal invariant sub-
group N then G/N is cyclic. It also happens, and this is a matter for direct verification,
that the coset representatives of N can in all cases be chosen to form a cyclic group C

(4.4.11)

That is, FJ is a vector representation of the little co-group of dimension dt/,'j. Since
Xj d? Xf = df\W\ > |K'| these representations are in general reducible under K'. A
procedure is given by Mackey (1958) for determining F^ in this case. This procedure
is rather complicated and since the theory of space groups rests entirely on case (i)
we omit the details. Case (ii), when G is a semi-direct product, is also discussed by
Jansen and Boon (1967).



FIG. 4.1. The genealogical relations between the point groups. A continuous line indicates that a subgroup is
invariant, (a) international notation, (b) Schonflies notation.
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tha t is isomorphi c with G/N . Thu s in all cases we arrive at a decompositio n of a
poin t group G as a semi-direc t produc t N .  . . (If G is cyclic and of prim e order then
N =  E and the decompositio n is trivial, but since the cyclic groups are so easy to
deal with we are intereste d only in the case in which G is non-cyclic. )

It is now very easy to form semi-direc t product s for all the poin t groups and this
has been considere d by Altman n (1963a, b). We shall restrict our discussion to the
non-cycli c prope r rotatio n groups. This is because the remainin g poin t groups are
eithe r cyclic groups, isomorphi c to prope r rotatio n groups or direct product s of
groups already considere d with the group Ï (C;). This leaves us with the six dihedral
and cubic groups 222 (£>2), 32 (03), 422 (Z)4), 622 (D6\ 23 (T\ and 432 (0). In
Table 4.1 we list these groups together with their maximal invariant subgroups and
the corresponding expressions as semi-direct products.

T A B L E 4.1

Point groups as semi-direct products

1222 2 2 .  2' =  2 ® 2'
\D2 C2 C2 .  C'2 =  C2 ®  C'2
Í32 3 З л 2'

\DI C3 C3 .  С'2
J422 4, 222 4 .  2', 222 .  2"
[£>4 C4, D2 C4 .  C2, D2 .  С'2
Í622 6, 32 6 .  2', 32 .  2
J06 C6,  £»3 C6 .  C2, D 3 .  С2

(23 222 222 .  3'
[Т D2 D2 .  . 3

Í432 23 23 .  2" =  222 .  32'
[О Т Т .  С2 = D2 .  £».

Notes to Table 4Л
(i) In each row of the table a group, its maxima l invarian t subgroups , and the correspondin g semi-direc t product s

are given in successive column s of the table. Fo r the two rows connecte d by a bracket , the second row is the Schönflies
version of the first row, in accordance with our convention of always giving both notations for a point group.

(ii) Primes on the name of a group indicate a non-standard setting. To obtain a full comprehension the reader
should use Table 2.2 to determine the names of the elements in all groups and subgroups that appear in the table.

(iii) For 222 (D2), the semi-direct product expression is in fact a direct product.
(iv) For 432 (O) the maximal invariant subgroup is not Abelian, as it is in all other cases. However, an expression

does exist in which the invariant subgroup is Abeiian though it is not maximal, but its partner in the factorization
is then non-cyclic.

We now give an example of the determination of the representations of semi-direct
product groups in terms of those of the invariant subgroup. The case we shall consider
is 422 = 4 .  2' (D 4 =  C4 .  С'2). An appropriat e factorizatio n into left cosets is

422 =  ЕЛ + C2XA

(¿>4 = E.C4 + C2x.C4).
(4.5.1)
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The reps of 4 (C4) are seen from Table 2.2 to be four 1-dimensional reps A, B, ^E,
and 2E in which C£z is represented by, 1, — 1, — i, and i respectively. The conjugacy
relations which establish 4 (C4) as an invariant subgroup are

C~1PC — F C 1C+C — C~ C~^C C — C anH C~1C~C — C +
L2x •c/^2x ~ •c' ^2x ^A-z^2x ~ °4z' ^2x ^2z^2x ~ *^2z> dllu ^2x L'4zt-2x ~~ L'4z-

The reps of 4 (C4) separate into three stars containing A alone, B alone, and 1E and
2E together. The fact that 1E and 2E come together follows from equations of the
form 1E(C2-x

1C4
h

zC2J = 1E(C4z) = i = 2E(C^Z), which imply that [E and 2E are
conjugate (whereas A and B are self-conjugate).

The little co-groups in the three cases are for stars A and B the group 2' (C2)
containing E and C2x, and for the remaining star, E, the group 1 (C\). Since we have
a semi-direct product the required reps of the little co-groups are their ordinary reps
and these are well known to be, for 2' (C2) the 1-dimensional reps A t and A2 with
A-i(C2x) = 1 and A2(C2,C) = — 1, and for 1 (C\) the trivial 1-dimensional rep A with
A(£) = 1. Using Definition 3.7.4 or eqn. (4.2.20) and the factorization of 422 (At)
in eqn. (4.5.1), it can be seen that the sum of the elements in those cosets that have
E and C2x as their coset representatives just makes up the group 422 (D4). Thus the
little group of A is the whole point group 422 (D4), and the small reps are two in
number, A? and A£. In these reps Af(C4+) = A£(C£) = A(C4

+
Z) = 1, and Af(C2J =

Ai(Q>*) = 1 and ^2(C2x) = A2(C2J = -1. Since the little group is the whole
group the corresponding reps of 422 (Z)4) coincide with the small reps. Similarly for
the star B there are 2 reps of 422 (D4) which we denote by Af and Af. In these reps
A?(C4

+
Z) = Af(C4

+
z) = B(C4

+
Z) = -1, and A?(C2x) = \,(C2x) = 1 and Af(C2J =

^2(^2*) = ~1- Again using the factorization of 422 (Z)4) in eqn. (4.5.1) the little
group of E can be seen to be 4 (C4). From the star Ewe choose arbitrarily one of the
reps, say 1E. Then the only small rep is A'£ with Al£(C^"z) = ^(C^) = — i. The
corresponding rep of422 (D4) is to be found by forming the induced rep A'E t 422 (Z>4).
Let us denote the basis function of A'£ by (j) so that

and therefore

Let us write C2x(f> = -\jj. Then <</>, \l/\ is a basis for the rep A'E t 422 (D4) = A. We
calculate the induced matrix reps of C%z and C2x. Now

(4.5.2)

(4.5.3)

From eqns. (4.5.2) and (4.5.3) we see that

(4.5.4)
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Also

In Table 4.3 we reproduce a summary of similar relations for the remaining semi-
direct products appearing in Table 4.1.

T A B L E 4.3

The relations between the reos ofooint arouos and those of their invariant subaroups (Altmann 1963a)

(4.5.5)

(4.5.6)

(4.5.7)

by definition, and so

and therefore

The above results are summarized in Table 4.2, in which to conform with Table 2.2
we make the identification

T A B L E 4.2

The reps of 422 (Dt) in relation to those of 4 (C4) (Altmann 1963a)
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222 (D г) Star

AI A

Bí

в, l в
^ }

Littl e E
co-grou p

32' (.'. ) 1

2' (Q) J 1

1 1

C 2z C2x C2, 432(0)

i i i «̂  — A 2
~~~ ~E

1 -1 -1\  _
-1 1 -1^>^£2
-1 -1 1 / '

£

1
1
2

3
3

C2m

1
1
2

-1
-1

f1
C3J

1
1

_ j

0
0

Clé

1
-1

0

1
-1

r±
^-4.

1

-1

0

-1

1

Of the examples in Table 4.3 only the factorizatio n 432 =  222 .  32'(О = D2 л D'3)
is of any real difficulty. This is because it provides a first example of a case in which
the little group is neithe r the whole group nor the invarian t subgroup; in the star В
the little group is 422' (Z) 4) (the orientatio n of the little group depend s on whethe r
one starts from Blt B2, or B3) and the small reps are just two of the 1-dimensiona l
reps of 422' (Z) 4), and thi s is why one obtain s two 3-dimensiona l reps of 432 (0),
the order of 432 (0) being three times the order of 422' (D 4). The correspondin g
case in space-grou p theor y is when the point in k-space being considere d has more
symmetr y than just the translatio n group but does not have the whole symmetr y of
the space group.

It is interestin g to contras t the formatio n of the reps of the quaternio n group Q
(th e group Gg in Table 5.1) out of the cyclic group of order 4 (which we call G 4 as
we are not considerin g it as a poin t group) with the formatio n given above of the
reps oí 422 (D4) from the same cyclic group. If the elements of G4, the cyclic group of
order 4, are E, P, P2, and P3, (P corresponds to C4z when considering 422 (Z)4)),
then the quaternion group has 8 elements which form 5 classes, E; P2; P, P3; Q,
P2Q; and PQ, P3Q. Alternatively we can just say that the generating relations are
p4 = E,Q4 = E,P2 = Q2, and QP = P3Q. The factorization into left cosets is then

(4.5.8)

All elements of gG4 have order 4 so the group Q is not a semi-direct product. It is
analogous in space-group theory to a non-symmorphic space group. Just as before,
there are three stars, A, B, and E and the little groups are Q, Q, and G4 respectively.
The star E once again contains the two reps 1E and 2E. The little co-groups are, for
the stars A and В the cyclic group of order 2 which we call G\, and for the star E the
trivial group G i consistin g of just the identit y element . Since in thi s case we no longer
have a semi-direc t produc t the require d reps of the little co-group s requir e furthe r
investigation . Fo r the little co-grou p G^ consisting , say, of element s e and q we
requir e reps (possibly projective ) so tha t

(4.5.9)

A1
A2

T2
T1

B
1



and this is to be contrasted with eqn. (4.5.7) for A(C2x). Note, however, that in spite
of this the character tables of the two groups are the same. This demonstrates the
remarkable fact that two non-isomorphic groups can have identical character tables.

It has already been mentioned that every finite group G which is solvable has a
maximal invariant subgroup N of prime index. In particular every crystallographic
point group contains a maximal invariant subgroup of index either 2 or 3. As a
result of this it is possible to show that every space group also contains a maximal
invariant subgroup of index either 2 or 3 (Zak 1960). It is therefore appropriate to
investigate as a particular case of the theory in sections 4.1-4.4 how the representa-
tions of G derive from N in the case in which G/N is a cyclic group of prime order/?.
This theory formed the basis of the derivation originally given by Seitz (19366) in
showing how to reduce the space groups; more recently certain methods employed
by Zak (1960) have depended upon this theory. Of course the theory of section 4.4
covers perfectly well what happens when an invariant subgroup is Abelian (see case (i)
of that section); and this is quite sufficient for dealing with the space groups, for
which the invariant subgroup can be chosen to be the invariant subgroup of transla-
tions, T. However, the following theory is included not just as a mathematical
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and
(4.5.10)

However A(P2) = B(P2) = 1 so once again the small reps are the ordinary vector
reps. Hence the four 1-dimensional reps Af, A2, Af, and A2 have for Q exactly the
same structure as they do for 422 (Z)4). For the star E we form out of the rep 1E the
rep F = 1E t Q and this is the only rep of Q which derives from the star E. Denote
the basis function of 1E by (p so that

(4.5.11)

and let us write is a basis for F. Now

(4.5.12)

and so from eqns. (4.5.11) and (4.5.12) we see that

(4.5.13)

This is exactly as for 422 (Z>4) (see eqn. (4.5.4)). Also Q4> = ils, by definition, and so

(4.5.14)

Here at last is the only difference between the reps of Q and 422 (D4) for now

(4.5.15)
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exercise, nor merely because of its historical interest, but rather because it throws
further light on the structure of the groups with which we deal. For example, it
shows how to make use of a factorization such as 432 = 23 A 2" (O = T A C£)
(see Table 4.1) which, on account of the fact that 23 (T) is not Abelian, does not fall
within the scope of case (i) of section 4.4. Incidentally the theory shows that when
G/N is of prime order case (ii) of section 4.4 is not as intractable as it might seem at
first sight.

Suppose then that G is a group and that N is a maximal invariant subgroup of G
of prime index p. In this case we can factorize G into left cosets in the form

G = N + rN + r2N + • • • + r'^N (4.5.16)

where rp e N. When rp is equal to E, the identity, G is the semi-direct product of N and
the cyclic group of order p. More generally, however, suppose that rp = n e N and
that n is of order /. Then E = n1 = rlp. If 1 ^ / ^ p it follows, since p is prime, that
we can choose s = rl instead of r and form the alternative coset decomposition

G = N + sN + 52N + • • • + s"~^ (4.5.17)

where now s" = E. Hence with a value of / in the above range we can make a fresh
choice of r so that / = 1. On the other hand, if / = p no such alternative choice is
possible. Further arguments along these lines show that a choice of r can always be
made so that / has a value that is a power of p; that is, / = 1, p, p2,. . .. So in the
decomposition (4.5.16) we may assume without loss of generality that r(pm) = E
where m > 1.

We next consider the class structure of G relative to that of N. Suppose that C1,
C2,. . ., Cn are the classes of N. We can show that conjugation by r produces a
permutation of these classes. Suppose that nt e Ct and rn^"1 = HJ e Cj. Let n'{ be
any other element of C;. Then there exists n e N such that n', = nn^1 and r«£V~1 =
rnn^ lr~l. Now since N is invariant in G, rn = n'r for some n' e N. Hence, rn'tr~ ' =
n'm^r'^n''1 — rin^n'"1 = «j e Cj. This shows that rCfr~l <= Cj and consequently
that the number of elements s{ in Ct is less than or equal to the number of elements s} in
Cj. A similar argument using conjugation by r 1 shows that r ~ l C-r c C, and Sj ^ st.
It follows that rCf 1 = Cj and st = Sj. Let Ck be another class such that rCkr~1 = Cj
then Ct = r~1Cjr = Ck. Hence conjugation by r produces a permutation n(r) on the
classes of N. Similarly, it can be shown that conjugation by r3" produces a permutation
-n(rm) on the classes of N for m = 1 ,2 , . . .p. Since rp e N it follows that n(r") is the
identity permutation e. Also {n(r)}2 C, = n(r)rCir~l = r2Cir~2 = n(r2)Ct, so that
{n(r)}2 = 7i(r2). Similarly {n(r)}m = n(rm). Hence {n(r)}p = n(rp) = E. The order of
n(r) therefore divides p. Since p is prime it follows that n(r) is of order either 1 or p.
This means that if n(r) is decomposed into a product of disjoint cycles then the length
of any cycle is either 1 or p. Therefore the classes of N are of two kinds: those which
are self-conjugate under r(rCLr~l = C() and those which occur in cycles of length;?
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such that Cj, rC^\ r2Ctr~2,..., r^C/^"^ form p distinct classes of N. The
class structure of G relative to N is therefore determined as follows. The self-conjugate
classes o/N -under r are also classes of G. Those which are not self-conjugate under r
become linked with ( / ? — ! ) other classes in the manner described above to form a
single class in G.

We next show how to determine the reps of G in terms of those of N. Suppose that
A0 is a rep of N of dimension d and suppose that </>0j, z = 1 to d, is a basis for A0 so
that, for all n e N,

(4.5.18)

i — 1, 2,. . ., d. In the same manner as in section 4.1 we define the functions

(4.5.19)

m = 0, 1, . . ., (p — 1), i = 1, 2,. . ., d, then by analogy with eqn. (4.2.16) it follows
that for fixed m

(4.5.20)

i — \, 2,. . ., d. From the theory of section 4.2 we see that in this way we define p
reps Am of N such that

(4.5.21)

m = 0, 1,. . .(p — 1). Now in the present case the group G/N is isomorphic with Cp,
the cyclic group of order p. Since p is prime only two cases can occur. The order of
the little co-group of A0, being a factor of the order of G/N, must be either 1 or p
and the star of A0 contains respectively either p reps or 1 rep. Thus we have a result
analogous to that for the classes. Either A0 is self-conjugate under r, the Am are mutually
equivalent, and the little group is the whole group G. Or the Am are mutually inequivalent
and the little group is just the invariant subgroup N.

Case (i)
Suppose the Am, m = 0, 1,. . .(p — 1), are mutually inequivalent. Then it follows

immediately from the theory in section 4.2 that A0 t G is irreducible. The character
of A0 t G is found at once from eqn. (4.2.22)

(4.5.22)

(4.5.23)
and
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Case (ii)
Suppose the Am, m = 0, 1, . . . (p — 1) are mutually equivalent. Then A0 t G is

reducible. Since the Am have identical characters the character of A0 t G is given by

and
(4.5.24)

(4.5.25)

f = 1, 2 , . . . ( /» — ]). Thus the intertwining number of A0 t G with itself is

(4.5.26)

It is plausible therefore that in this case A0 t G is reducible into/? mutually inequivalent
reps of G each of dimension d. We next show that this is indeed the case and, in
particular, we show how to effect the reduction and how to obtain the characters of
the component reps. Since every element of G can be written in the form f n for some z
in the range Oto(p — 1) and for some n e N, it is sufficient, in order to reduce A0 t G,
to find a change of basis which simultaneously reduces the representatives of n and r
to the same block-diagonal form. Now with respect to the basis <0mi| = <</>0i>
( / > , . , . . ., < />(„_ nil the representative of « is clearly

where, in the last component, we have used the fact that rp e N. Therefore

(4.5.29)

Also, since it follows that

(4.5.28)

(4.5.27)
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Now we are given that A, and A0 are equivalent. Hence there exists a unitary matrix
P such that, for all n e N,

(4.5.32)

m = 0, 1,. . . , (p — 1) and / = 1, 2,. . ., d, then a short calculation shows that with
respect to this new basis

and

(4.5.33)

(4.5.34)

by repetition of the argument. Hence A0(rp)Pp commutes with the rep A0 of N and so
by Schur's lemma

(4.5.35)

(4.5.30)

(4.5.31)

m = 0, 1, 2, . . ., (p — 1). Let us therefore define a new basis

The next step is to show that A0(rp)Pp is a scalar multiple of the unit matrix. Let n be
any element of N then since rp e N we have

and, more generally,byduction that
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where / is a phase factor. From eqn. (4.5.30) one can see that the matrix P can be
modified by a phase factor and in particular it is possible to choose P so that A = 1.
Assuming this choice is made and writing P"1 = R the following equations then
hold:

(4.5.38)

with eqn. (4.5.33) still valid for (A0 t G)(«). The basis spanning this representation
may be denoted by <x0, X i > • • • •> X P - i l > where xm stands for the row vector (/ml,
Xm2, • • • i %md)- We now look for a further change of basis in an attempt to block-
diagonalize (A0 t G)(r) whilst keeping the same form for (A0 t G)(«). To see that this
is indeed possible we try

(4.5.40)

(4.5.41)

The question arises now as to whether it is possible to choose the am and a scalar s
so that

rr\ = tieR (4.5.42)

Comparing the right-hand sides of eqns. (4.5.41) and (4.5.42) we need to satisfy
simultaneously

(4.5.43)

(4.5.36)

(4.5.37)

Clearly, for any choice of the coefficients am,

Also, from eqn. (4.5.38),
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which allows p possible solutions e = sq = exp (2nqi/p) for q = 0, 1 , . . . , ( / ? — 1),
the pth roots of unity. This means that the vector space spanning A0 t G can be
reduced into p invariant subspaces each of dimension d, one for each of the pth
roots of unity. Also in the vector space determined by e = ea we have a vector TJO

defined by values of the am corresponding to e = e, found from eqns. (4.5.43) for
which

Hence, we determine p representations of G which we may label A0a such that

q = 0, 1 , . . . , ( / ? — 1). Finally since A0 is irreducible under N no further reductions
are possible and hence the A0g are irreducible under G. Also, as we have seen above
from eqn. (4.5.26), the intertwining number of A0 t G with itself is p. Since A0a is
equivalent to itself for q = 0 to (p — 1) this exhausts the p intertwinings and does
not allow for any further equivalences of the form A0ai = A0f l2, q^ + q2; thus it is
not possible for any two reps A0ai and A0a2 to be equivalent if qv =£ q2.

As an example of the use of the above theory we derive the reps of the point group
432 (0) in terms of those of 23 (T). We use the character table and matrix repre-
sentatives of the group 23 (7") given in Tables 2.2 and 2.3. Here G is the group
432 (O) and N is the group 23 (T) so that p = 2. The element r can be chosen to be
C2a, so that rp = C\a = E, the identity.

First take A0 = A of 23 (T). It is clearly self-conjugate since A(n) = 1 for all
n e 23 (T). Since A is 1-dimensional and we require R2 = 1 we can choose R = +1
and so A t 432 (O) decomposes into the two 1-dimensional reps of 432 (O) labelled
A i and A2 in Table 2.2. Furthermore, since the square roots of unity are +1 we have
Ai(C2a) = land^2(C2a) = - 1. Since A^ri) = A2(n) = A(n) for all n e 23 (T) these
equations determine entirely the characters of Ai and A2.

Next take A0 = 1E of 23 (T). Since C2aC3
+

1C2a = C3~2 (see Table 1.5) we have
A^) = A0(C2aC3

+
1C2a) = A0(C3-2) = ^(CJ,) = to* = 2E(C^). Hence A, = 2E.

Since 1E and 2E are inequivalent it follows that 1E t 432 (O) is irreducible. Thus 1E
and 2£come together to form the rep of 432 (O) labelled Em Table 2.2. The matrices
for E given in Table 2.3 differ from those obtained immediately from the induction
1E t 432 (O) by an equivalence transformation. It can easily be shown that the induced

(4.5.44)

(4.5.45)
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matrices are generated by the following three matrices:

Finally take A0 = T of 23 (T). Typical matrices for A0 are

(4.5.46)

(4.5.47)

From this we see that the character of A t is equal to that of A0 and hence that T is
self-conjugate. In order to reduce T t 432 (0) it is necessary to find a matrix R (see
eqns. (4.5.36) and (4.5.37)) such that

(4.5.49)
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Using eqns. (4.5.47)-(4.5.49) it can be shown that a matrix R satisfying these con-
ditions is

(4.5.50)

Hence T t 432 (0) decomposes into two 3-dimensional reps, A00 and A01, of 432 (0),
the matrices of which can be found by using eqn. (4.5.45). The matrix representatives
of C2a are then A00(C2fl) = +R and A01(C2a) = — R. A00 and A01 can then be
identified with the reps labelled T1 and T2 respectively in Table 2.2 and eqn. (4.5.45)
gives just the matrix representatives that were given in Table 2.3.

If the matrix R is not readily obtained by an ad hoc method it can be shown that a
matrix P that satisfies eqn. (4.5.30) is given by

where X is a matrix conveniently chosen so that P is unitary; X = 1 is not always a
suitable choice since this choice for X may cause the right-hand side of eqn. (4.5.51)
to vanish.

4.6 The reality of representations induced from little groups

We refer to Definition 1.3.7 and to Theorem 1.3.9 in which reps of G are seen to be
of three kinds according as the sum

(4.5.51)

(4.6.1)

We shall now apply this test to the rep A^ = FJr t G induced in G from a small rep
T'j of the little group K!. The notation is the same as in section 4.3. The elements of
K' are of the form (ryta) where y e Kl and ta e T. We denote the character of the small
rep of K' by x}- The aim is to reduce the condition (4.6.1) from a sum over all the
elements of G to a sum over a relatively small number of elements. To be able to do
this we must clearly make use of the formula for the character x of A^ in terms of the
the character x'j of P,.

We recall the decomposition of G into left cosets with respect to K1 (eqn. (4.1.1)),

(4.6.2)
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We also recall the content of eqn. (4.1.9), that

in which the sum over g is now restricted to elements such that g2 = prrytapr ' e K^.
Now if h2 e K', that is, if h2 = ryta for some 7, a then g = prhp~: is such that g2 =
prrytap~l with the same y, a. This means that the sum (4.6.5) splits into q' = |G|/|K'[
equal parts, one part for each member of the star of i. Thus performing the sum over
i, (4.6.5) becomes

(4.6.3)

and that

Then the sum (4.6.1) becomes

(4.6.4)

(4.6.5)

(4.6.6)

in which the sum over h is restricted to elements such that
The sum (4.6.6)

now becomes

(4.6.7)

We now remember that in Fj the matrix of the element / is the scalar matrix D'(t)l
so the sum (4.6.7) reduces to

(4.6.8)

Now from eqn. (4.2.17) D'd^jJJ = Dj,(fh) and the sum over b, £ft Dj,(fft)D''(^), will
vanish by virtue of the orthogonality relations unless a is such that DJ,(O = D'(O~ '•
Note that all such oc satisfy a2 e K1. When the sum over b does not vanish its value is
|T|. Writing |G|/|T| = h the sum (4.6.8) becomes

(4.6.9)

where in eqn. (4.6.9) the sum over a is restricted to those elements a e R (the group
of suffices of the coset representatives r^ of G with respect to T; see Theorem 4.2.2)

otherwiuse

now if h= then so that



(4.6.10)
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such that DC = CD') ~ ' . The classification of A} into kinds now depends upon whether
this sum is +1, — 1, or 0. We may summarize this result in

T H E O R E M 4.6.1. The rep A} = P,. t G induced in G from a small rep V] of the little
group K' is of the first, second, or third kind according as

where the sum over a. is restricted so that Dl
a = CD') '.

The advantage of using induced representations is that expression (4.6.10) involves
a summation over a much smaller number of elements than would be involved in
the direct use of eqn. (4.6.1). In section 2.4 we have already noted that eqns. (1.3.12)
or (4.6.1) can be applied directly to the reps of the crystallographic point groups
which were given in Table 2.2 (see Note (v) to Table 2.2); as a result it is found that
all the reps are of the first kind, except reps with complex characters and these are of
the third kind. This result is, of course, obtained without any use of the theory of
induced representations. However, they do provide convenient simple examples by
which we can illustrate the use of induced representations in determining the reality
of a representation. As an example of this use of Theorem 4.6.1 in determining the
reality of reps we consider the 2-dimensional reps of the point group 422 (£>4). We
determine the reality of E by using the fact that 422 (Z)4) can be written as

(4.5.1)

and E can be regarded as the representation induced by the rep E of 4 (C4) in
422 (D4), i.e. as 1E t 422; therefore h = 2. The star of E has two members ' E and
2E, see Table 4.2 and the text of section 4.5, so that qt = 2. The sum in expression
(4.6.10) is over those coset representatives r^ that satisfy the condition D'a = CD')"1;
in words this condition means that the result of conjugating the representation l E
with rx must be to produce the representation in which each element of 4 (C4) is
represented by the inverse of its representative in ' E. Thus for ' E we have

r*
rx

p

= C2x

D'
(DT1

D'a

&«

E

1
1
1
1

r+
C4z

— i
i

— i
i

C2z

-1
-1
-1
_]

C4z

i
— i

i
-t

and the condition is only satisfied for rx = C2x. The sum in expression (4.6.10)
therefore becomes (<7;//z)x'£(QL) = (2/2)z'£(£) = +1. The rep E of 422 (D4) is,
therefore, of the first kind, as we found earlier by the more direct method in section 2.4.
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A similar example is provided by the quaternion group which was discussed in
section 4.5, see eqns. (4.5.8)~(4.5.15). For Q the star of F — 1E t Q has two members
1E and 2E, h = 2, and the only ra that satisfies the condition D'x = (D')~ ' is Q. Now
Q2 = P2 and in the small rep % E ( P 2 ) = — 1. Hence the sum (4.6.10) becomes
(2/2). ( — 1) = — 1 and so the rep F of Q is of the second kind.

The simplification given in eqn. (4.6.10) of the condition to determine the reality
of a rep of G can be applied to space groups. If F^ is a small rep Fk of a little group Gk

then eqn. (4.6.10) can be used to determine the reality of the rep Ak induced by Fk

in G. Thus if G is a space group h is the macroscopic order of symmetry of G, qt = qk

is the number of elements in the star containing k, and the rx are elements {Rx \ \x} in
the decomposition of G into left cosets with respect to T, see eqn. (3.7.2). The con-
dition that the sum over a in eqn. (4.6.10) is restricted to those a for which D'x = (/)') ~ '
becomes, in this context, the condition on a that Rxk = — k. We should perhaps
clarify one point of notation, namely that although Ak has a superscript k it is a rep
of the whole space group G and not a rep of the little group Gk; the k superscript in
Ak merely indicates that it is induced from a rep of Gk. Therefore, making use of
eqn. (4.6.10) we have

T H E O R E M 4.6.2. is of the first, second, or third kind according as

(4.6.11)

where #k is the character of the small rep j of the little group of k in G and where the
sum is restricted to coset representatives {Rx va} of G with respect to T whose rota-
tional parts send k into a vector equivalent to — k.

As one might expect, the sum (4.6.11) is independent of which of the possible coset
representatives {/?a | vj is chosen for fixed a, because if t is a translation of the
Bravais lattice and Rak = -k it can be shown that %k({/?a | va + t}2) = xk({,Ra | vj2).
We consider this problem again in Chapter 5 and an example of the application of
Theorem 4.6.1 to space groups is given in section 5.4 where we derive the reality
of the reps of the space group F43c (rd

5).
The physical importance of determining the reality of the reps of a point group or

space group lies in the fact that it can be used to determine whether or not extra
degeneracies of energy levels are produced by the addition of Q, the operation of
time reversal symmetry, to the operations of the point group or space group (Herring
1937a; see also sections 5.4, 7.5, and 7.6).

4.7 Direct products of induced representations

We have seen in previous sections that if G is a group and T is an invariant Abelian
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subgroup of G then the reps of G can be determined from those of T. How this is
done is outlined at the beginning of section 4.3. In this section we shall show how to
determine the inner direct product of two reps of G. That is to say, if (T'p t G) and
(TJ

q t G) are any two reps of G, we shall show how to determine the coefficients
C'J-l

r in the Clebsch-Gordan decomposition

(4.7.1)

To make any progress with this problem it is necessary to reformulate some of the
results in section 1.3 and section 4.1, and to introduce some additional concepts,
notably that of double cosets.

DEFINITION 4.7.1. Complex conjugate representation. Let G be a group and F a
unitary representation of G. Then the representation F* denned by

(4.7.2)

is called the complex conjugate representation of F.

T H E O R E M 4.7.1. Let G be a group with reps F' and suppose F is equivalent to the
direct sum £'= l c,-F' then c{ is the frequency of A(G) (the totally symmetric rep ofG)
in F* [x] r (or F [x] F'*).

This is almost immediate. From eqn. (1.3.18)

(4.7.3)

(see eqn. (1.3.21) for the character of a direct product of reps). But%A(g) = 1 for all
g e G so that eqn. (4.7.4) becomes

(4.7.4)

(4.7.5)

which on using eqn. (1.3.18) in reverse is the frequency of A(G) in F* [x] F'.
From Theorem 4.7.1 it follows that Clj£r is the frequency of the totally symmetric

rep in the triple direct product

We shall therefore study this equivalent and, as it turns out, easier problem.
We next reformulate a result of section 4.1. If G is a group and K is any subgroup

with a representation A then the induced rep A t G is defined by eqn. (4.1.4):

(4.7.6)
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Here g is any element pxks in the left coset decomposition G = Z^K and km =
p^gpt- If we define pgr = py by virtue of the fact that gpT e pyK then we can rewrite
eqn. (4.7.6) in the block matrix form

Reversing the order of summation this becomes

Let the character of A be and that of A t G be % then

(4.7.7)

(4.7.8)

(4.7.9)

(4.7.10)

Note that the sum over a is over those cosets only for which pa 'gpn e K, that is those
a for which paKp~ ] = Ka contains g.

Incidentally the formula (4.7.10) justifies the footnote to the comment following
eqn. (4.1.1). For suppose we had chosen a different set of coset representatives
qa = paka where the ka e K, then the formula for the character of the induced rep
would be

(4.7.11)

But
same class in K and so have the same character, bxpression (4./ . l l) has therefore
the same value as the right-hand side of eqn. (4.7.10). This implies that two reps
induced using two choices of coset representatives are equivalent. It is in this sense
that the choice of coset representatives is immaterial.

Note that formula (4.7.10) holds whether or not A is irreducible under K. This is
important because we shall be concerned not only with the case in which K is a little
group and A is a small rep and therefore irreducible but also with cases in which A is
in general reducible and K is not necessarily a little group.

THEOREM 4.7.2. Frequency theorem. Using the above notation, the frequency of
A(G) in A t G is equal to the frequency ofA(K) in A.

are in the

We write/(F) | F for the frequency of F in F. Then, from eqns. (4.7.3) and (4.7.10),

(4.7.12)

(4.7.13)

(4.7.14)
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There are |G|/|K| cosets a so that this

(4.7.15)

(4.7.16)
which proves the theorem.

T H E O R E M 4.7.3. Let A be a representation ofK. with character \j/, and Y a repre-
sentation ofG with character %, where again K is a subgroup ofG, then

(4.7.17)

We establish the equivalence by showing that the characters of the two repre-
sentations coincide. The character of g in F [x] (A t G) is

and the character of g in

But g and pa
 1 gpa are in the same class in G so %(g) — j_(pa

 l gpa) for all a. The result
follows.

We now prove the theorem of Transitivity of induction under more general
circumstances than in Lemma 4.3.3.

T H E O R E M 4.7.4. Transitivity of induction. Let K. be a subgroup o/H and H a
subgroup ofG and let A be a representation ofK.. Then,

(4.7.18)

We establish the equivalence by showing that if F is a rep of G then its frequency in
(A I H) t G is the same as its frequency in A t G.

by Theorem 4.7.1,

by Theorem 4.7.3,
by Theorem 4.7.2.

by Theorem 4.7.1,

by Theorem 4.7.3,

by Theorem 4.7.2,

by Theorem 4.7.3,

by Theorem 4.7.2,
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and because of the transitivity of subduction (F* I H) IK = (F* I K), which is
obvious, both sides consisting of the same matrices. This proves the theorem.

D E F I N I T I O N 4.7.2. Let H and K be any two subgroups of G. Then

(4.7.19)

where in the complex H^K we count an element once only however many times it
may appear, is called the double coset decomposition of G with respect to H and K.
The dx are called double coset representatives.

The expansion (4.7.19) is unique in much the same way as is the ordinary single
coset decomposition. The double coset representatives are not unique: any element
of the double coset serves equally well as its representative. Suppose that g e H4,K
and HdpK, two different cosets. Then 3 /i l 5 h2 eH and Ar l 5 k2 eK such that g =
hi^ki = h2dfk2. This implies h1dxk1 e HdpK. Hence H^K c HHd^KK = H^K.
Similarly Hd^K <= H4,K. Therefore HdxK = Hd^K. Hence two double cosets are
either entirely distinct or their elements coincide (in which case only one would
appear in the expansion (4.7.19)). To see how many elements appear in a given double
coset we now prove a theorem of Frobenius.

THEOREM 4.7.5. The double coset H4,K contains |H|/mJ left cosets of K (and
therefore H |K|/|La elements), where La = H n Kg (i.e. the intersection o/H andK^
and therefore a subgroup of both H and K^) and K^ = dj^d"[ is a subgroup conjugate
toK.

The proof of this is as follows.

(4.7.20)

which in turn implies qa{ e ga2La, contrary to the hypothesis that q^\ and q^2 are
distinct coset representatives in eqn. (4.7.20). What we have proved is that Hd^K
contains an integral number of left cosets of K and that these are in one to one corre-
spondence with the left cosets of La in H. The number of such left cosets is therefore
|H!/|La. We note that if D is a representation of K and if A:,, e Ka (so that 3 A: e K such
that ka = djtd~{) then Da(&J = D(£) defines a representation Da of Ka. Using the
notation just defined we now prove an important theorem.

T H E O R E M 4.7.6. Mackey's subgroup theorem

(4.7.21)

Suppose h1 and h2 belong to

ire distinct left cosets or if not we would have, say,

vhere /
Then for an^ This follows

so tnat
Also the

tor amerem

Let

because we may write



and we note that because 01 1 neorem 4.7.5 we may choose pa = q^d^ and that as a
and /? run over all possible values so does a. To prove Theorem 4.7.6 we show that the
characters of the two representations coincide. From eqn. (4.7.10) the character of
h in (D t G) \ H is

where for a given a the sum over ft is restricted to those /? for which q^ hq^ e K^.
But q^ e H so q~ft

lhqaf e L,, is in fact the restriction. From eqn. (4.7.10) with h
replacing g, qx/l replacing pa, and La replacing K we see that the right-hand side of
eqn. (4.7.24) is just the character of £<* (Da I La) t H, which proves the theorem.

We are now in a position to prove a theorem on the direct product of two induced
representations.

T H E O R E M 4.7.7. Let D be a representation ofK. and C a representation ofU. then

THE REPRESENTATIONS OF AN I N V A R I A N T S U B G R O U P 209

We recall the decompositions G =

(4.7.22)

That is, the sum over a is restricted to those a for which h € K.a. Now
Hence

(4.7.23)

where the sum over a, B is restricted to those a, B for which

Now

Therefore
(4.7.:

(4.7.25)

From Theorem 4.7.3

which from Theorem 4.7.6 is equivalent to

Now C is a representation of H and (Da + LJ t H is a representation induced from
La into H so we may use Theorem 4.7.3 again to yield a representation equivalent to
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Now subduction is distributive with respect to the inner direct product and induction
is transitive (Theorem 4.7.4) and so we obtain finally

which proves the theorem.

We shall write this in the form £a Ex t G where Ea is a representation of La = H n Ka.
Suppose now that M is a subgroup of G and that B is a representation of M. If we
write G = Xjj W'plVl and let Na/J = La n Mp where M^ = b^Mb/, 1 and define a
representation Bf on M^ by the equation Ef(mp) = B(m) where mp = b^mb^1

(nip e Mp, m e M) then from Theorem 4.7.7

from which we conclude

Equation (4.7.26) can obviously be generalized by repeated application of Theorem
4.7.7 to give an expression for a direct product of as many induced representations
as we want. However, we are interested in the particular case in which M = K',
K = KJ and H = K' (i.e. little groups in G) and in which B = F;, D = YJ

q and C =
Yl

r* (i.e. small reps). What we want to know is the frequency of the rep A of G in
(rj, t G) 0 (Y{ t G) [x] (Yl* \ G). Using eqn. (4.7.26) and the frequency Theorem
4.7.2 this is the double sum over a and /? of the frequencies of the identity rep in
(rj,)/, S (rj,)a S Yl* on the intersection (Kj, n K'a n K').

In the case of a space group, G is the whole space group itself and K', KJ, and K'
are little groups Gk , Gk , and Gk|. Y''p, YJ

g, and Yl
r are reps of the little groups G k , Gk ,

and Gk| and (Yl
p t G), (YJ

q t G), and (Yl
r t G) are representations induced by r;, YJ

q, and
F' respectively, in G. We therefore see that the da are the double coset representatives
of G with respect to Gk !(= K' = H)andG k <(= Kj = K) (see eqn. (4.7.19)) and the bf

are the double coset representatives of G with respect to Gk' n Gkj (= L^ = H n KJ
and Gk- (= K; = M). If K; is the little group Gkl and bp is identified with {)8 | v} then
K'^ is the little group of/?k£ and (Yp)p is a small rep of K^. Remember that if (y | w} e K'^
then (r;)p ({y w}) = r;({0 | v}~ l{y | w}{j5 | v}), so that in evaluating the required
frequency we shall need only the characters of the tabulated small reps of Gk' (as
given in the tables in Chapter 5). Let the order of Kj; n K£ n K' be |Na/J| then putting
our various results together and writing %'p for the character of Y'p we obtain the



Since, in general, there are very few elements in N^/T and the restrictions on a and ft
are so severe that there is rarely more than one appropriate a and ft to survive the
triple summation the expression (4.7.29) is easy to calculate.

Therefore, summarizing, to evaluate Cl^r using eqn. (4.7.29) we must determine
the co-star o/k( with respect to Gk' (i.e. all possible ak,-) and the co-star o/k; with respect
to Gk/ n Gkj (i.e. all possible /?k,-), and find all triples of vectors, one vector from each
co-star, which together with kj satisfy eqn. (4.7.28).

To illustrate the results of this section we give an example using the space group
G = P23 (T1) (Bradley 1966). This example is chosen to produce cases in which
more than one term survives in the double summation in eqn. (4.7.29). To find
examples in which this summation over a and ft is not trivial it appears to be necessary
to consider a space group for which the representation domain of the Brillouin zone
(see Definition 3.7.1) is larger than the basic domain (see Definition 3.3.3), that is,
where the order of the isogonal point group is lower than the order of the holosym-
metric point group of the appropriate crystal system. The space group P23 (Tl) is
based on the simple cubic Bravais lattice. Details of this lattice and its Brillouin zone
appear in Chapter 3, the notation used for the operators being exactly the same as
defined in Chapter 1. The isogonal point group of P23 (T1) is the tetrahedral group
23 (T) which contains the 12 elements E, C2m, C*;- (m = x, y, z;j = 1, 2, 3, 4). We
consider only two points of the representation domain of the Brillouin zone (see Fig.
3.13): F = (0, 0, 0) and M = (^, \, 0). Coordinates here are given as usual in units of
the reciprocal lattice vectors gl, g2, and g3 which are in the kx,ky, and kz directions, see
Table 3.3. We define the points M+ = C^M = (0, }, £) and M- = C31M =
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following formulae for

where in eqn. (4.7.27) we identify {« | u} with dx. Performing the summation over
translations {E \ t} it is clear that C'^r vanishes unless 3 a, ft such that

(4.7.28)

Denoting this restriction by a prime on the summations and writing (y ] w} as typical
coset representatives of T with respect to Na/J we obtain

(4.7.29)
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(i> 0> i)- The star of F is just the point F by itself and the star of M consists of the
three points M, M+, and M~.

T A B L E 4.4

Tfe small reps ofGT and GM

Notes to Table 4.4
(i) at = exp(27ti/3).

(ii) All translations in G' are represented by the identity,
(iii) In Gw, {£ | t,} and {E \ t2} are represented by — 1 and {E j t3) is represented by + 1.

In Table 4.4 we list the characters of the small reps of the little groups Gr and GM'.
The little group of F is the whole space group, but the little group of M contains
multiples of the translations with just four rotation operators: E, C2x, C2y, and C2z-

For our example we consider the inner Kronecker products of pairs of reps induced
in G from GM. We write MA1 for A1 t G, etc. In the notation of the earlier part of
this section k^ = M = (^, ^, 0) and k, = M = (j, ^, 0). It is soon verified that with
this choice of k, and k; the only possible values of k; that can appear on the right-
hand side of eqn. (4.7.1) are k, = F = (0, 0, 0) and k, = M = (i, {, 0).

Consider first the case k; = F. From eqn. (4.7.19) with H = Gr and K = GM it is
soon verified that there is only one term in the first double coset decomposition and
the single representative da = {a. 0} may be chosen to be the identity {E 0}. Hence
K^ = GM and the group intersection La = Gr n GM = GM. Next we form the
second double coset decomposition: G = ̂  GM^GM, and this time it can be
verified that three terms survive, and the three representatives bft = [ft 0} may be
chosen to be {E 0}, {C^ | 0}, and {C^ 0}. Thus the set (ak,-) consists of the point
M alone and the set (/?k;) consists of the three points M, M +, and M~. The only
pair to survive the restriction of eqn. (4.7.28)

hasot = ft = E(\.Q.M + M~ F). The triple intersection group Nap = G M nG M = GM.
Consider now the case k, = M. This time the first double coset decomposition

consists of three terms and the corresponding values of a are E, C^,, and C^. Since
GM is invariant under these three operations the groups GM, GM + , and GM ~ coincide
so that in each case La = GM. In all three cases the second coset decomposition

Gr

A
'E
2£
T

r-
t-

1
1
1
3

3C2m 4Ci

1 1
1 CO*

1 (0

-1 0

4C,-,

1
OJ

CO*

0

GM

-4,
BL
B2

B3

E

1
1
1
1

C2x CIf C2z

1 1 1
-1 -1 1
-1 1 -1

1 -1 -1

(4.7.28)
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contains three terms and the corresponding values of /? are again E, C^, and C^. Of
the nine possible pairs of a, /? values, we now have two pairs that are compatible with
the restriction of eqn. (4.7.28).

(4.7.28)

•"•A"

Consider now in detail the product i Fhere are three cases to consider:

In both cases

From Table 4.4 the appropriate part of the sum (4.7.29) becomes

(i)

which is zero when r = A.: E, or 2E and unity when r = T.

(ii)

and on using theseNow
relations and Table 4.4 the appropriate part of the sum (4.7.29) is now \

which is zero when r = Bl, B2, B3 and unity when

T A B L E 4.5

The inner Kronecker products of representations belonging to M for P23

MA, E)
MA i a
MA, H
MAi 0
MB, S

MAi
MB,
MB2

MB3

MB,

= FA +
= TT +
= rr +
= rr +
= YA +

r'£
MB,
MB,
MB,
r'£

+ T2E + IMA i
+ MB3

+ MB,
+ MB2

+ F2£ + 2MB,

MB,
MB,
MB2

MB2

MB3

H
S
H
m
m

MB2 =
MB3 =
MB2 =
MB3 =
MB3 £

rr +
rr +
rA +
rr +
rA +

MB3

MB2

r'£
MB,
r'E

+ MA,
+ MA,
+ T2E +
+ MAi
+ r2E +

2MB2

2MB3

Notes to Table 4.5
(i) Each line of the table is an equation like eqn. (4.7.30).

(ii) To obtain a Clebsch-Gordan coefficient C'p^'r, select the number multiplying the symbol corresponding to r
on the right-hand side of the equation whose left-hand side contains the symbols/; and q. For example, C"";"i = 2.

(iii)

This time the appropriate part of the sum (4.7.29) is $&?(£) - %™(C2x) -
X™(C2y) + Z^(C2z)} which is zero when r = A I , B2, or 53 and unity when r = Bl.

Collecting these results together, the equation corresponding to (4.7.1) is

(4.7.30)

As a check on eqn. (4.7.30), note that the dimension of each side is 9, it being re-
membered that reps induced from GM in P23 are of dimension 3. In Table 4.5 we list
all 10 such products for the reps induced from GM.

when and andwhe and
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Space-group selection rules in crystals

The importance, in physical terms, of the theory described in this section lies in the
determination of selection rules for various quantum-mechanical processes in crystal-
line ionic, metallic, or semiconducting solids. One example of such a process might
be, for instance, the absorption of a photon by a specimen of a solid and the produc-
tion within the solid of two phonons (with wave vectors k and — k to conserve
momentum). Other processes might involve the absorption of a photon and the
production of two magnons (one at k and one at — k), or of one phonon (at k) and
one magnon (at — k) or of just one phonon (at k = 0) or of just one magnon (at
k = 0). Selection rules will also arise in studying the interactions between quantum-
mechanical particles or quasi-particles in solids, for example, electron-phonon
interactions or magnon-phonon interactions. The determination of the selection
rules that govern whether such a process is allowed or not involves the reduction of
Kronecker products of space-group reps (or, possibly, the reduction of symmetrized
Kronecker products of space-group reps, see section 4.8). Suppose that *¥'r is a wave
function belonging to row r of the rep F and that Wis a self-adjoint operator belong-
ing to the rep Yw. The transition between an initial state Tf and a final state *Pl

r under
the operator W is governed by the value of the matrix element

(4.7.31)

The transition is said to be forbidden by symmetry if the triple Kronecker product
pi* [x] r* [x] Yw does not contain the identity representation of G, for then Wik

vanishes identically (for proof of this result see Hamermesh (1962), Chapter 6).
Various authors have studied the problem of determining these selection rules in
crystalline solids (Balkanski and Nusimovici 1964, Birman 19626, 1963, 1966a,
Birman, Lax, and Loudon 1966, Bradley 1966, Burstein, Johnson, and Loudon 1965,
Chen and Hsieh 1965, Cornwell 1966, Elliott and Loudon 1960, Elliott and Thorpe
1967, Gorzkowski 19646, Hsieh and Chen 1964, Hsu and Hsieh 1965, Lax 1965, Lax
and Hopfield 1961, Loudon 1965, Winston and Halford 1949, Zak 1962).

In determining these selection rules the essential problem is to see whether it is
possible to show group-theoretically that the matrix element W% must vanish,
where W is the quantum-mechanical operator of the physical influence that causes
the transition. It is possible to assign *FJ.,II'JI, and Wio the various reps of the complete
space group G and to determine whether any particular process is forbidden by
showing that CFJ., PPFf), which is then a product of three space-group reps, does
not belong to the totally symmetrical rep of G; this is called the full-group method.
The analysis of such a triple product is best done in two stages, first by forming the
Kronecker product Yk \x\ Yw of the reps to which ^¥k and W belong. Since the
Kronecker product of the rep P* of G, to which *i"r* belongs, with the representation
Yk [xj Yw must contain the totally symmetrical representation of G if the process is
to be allowed, it follows that we have to determine whether or not Yk \x\ Yw contains



THE R E P R E S E N T A T I O N S OF AN I N V A R I A N T S U B G R O U P 215

P. The use of eqn. (4.7.29) will in fact determine exactly how many times Fk \x\ Tw

contains P. In practice one often wants to try several different operators W (for
example, electric dipole, magnetic dipole, electric quadrupole, etc.) between two
given states to see which physical interaction leads to an allowed transition between
these two states; in this situation one would form Tk @ P* first, rather than
rfc [x] Yw. Since the full-group method uses the complete space-group reps, that is
the induced reps (P£ t G), the following question will have been answered: ' Is the
transition allowed between 4** and *¥l

r, where 4*f is a Bloch function of given space-
group symmetry belonging to any vector from the star of kk, and 4*J. belongs to any
vector from the star of k( ?'

In an alternative method, the subgroup method, 4^, 4*,, and Ware assigned directly
to small reps of little groups Gkk, Gki, and Gkw (instead of to the reps induced in G
from these small reps) and the product of these reps is tested in a similar way (Elliott
and Loudon 1960). Since the subgroup method uses the reps of little groups the
following question will have been answered (after kw has been allowed to vary over
all vectors in its star): 'Is the transition allowed between 4*,* and 4/j., where 4^ is a
Bloch function of given space-group symmetry of precisely the wave vector k^ and
with a similar restriction for 4^?' The method to use will depend on which of the
two questions one wishes to answer. If one wished to use the subgroup method to
answer the full-group question it would be necessary to allow kk and k, to vary over
their respective stars, unless, of course, one has recourse to eqn. (4.7.28) and its
implications. Indeed this equation can be thought of as a device for reducing the
excessive labour that one would otherwise have in answering the full-group question
by recourse to subgroup methods. It turns out that the restrictions on a and j? over
which the summations of eqn. (4.7.29) are performed are so severe that in very many
cases only one set of a and /? survives, in which case one application of the subgroup
method is sufficient to answer the full-group question. This is not the case if eqn.
(4.7.28) is satisfied for more than one set of values of a and /?. It is in this more com-
plicated situation that a mistake can easily be made if one is proceeding by trial and
error rather than by strict use of eqn. (4.7.28). To see how this could happen, note
that the vector equations corresponding to the two allowed a, f! pairs in the above
example are M+ + M~ = M and M~ + M+ ~ M. Someone relying only on the
subgroup method, having discovered one of these equations, might well overlook
the possibility of a contribution from the other. If the precise value of the Clebsch-
Gordan coefficient is required it is imperative to use either the method of this section,
which in effect makes the subgroup technique precise by deriving it from first prin-
ciples, or an entirely full-group method such as that employed by Birman (19626,
1963).

4.8. Symmetrized and anti-symmetrized squares of induced representations

In section 2.6 we introduced the ideas of symmetrized and anti-symmetrized powers
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of a rep A; we illustrated the general theory by considering the symmetrized and
anti-symmetrized squares of the reps of the crystallographic point groups. In this
section we shall show how to decompose the space of the Kronecker square of an
induced representation into its symmetric and anti-symmetric parts. We shall then
apply the theory to space-group representations by extending the example of the
previous section to demonstrate the results. The symmetrized squares and cubes of
space-group reps for some points in the Brillouin zones of the diamond structure
(F<a?3ra, O7

h) and the zinc blende structure (F43m, Td
2) have been tabulated by Birman

(19626), while the symmetrized squares for the hexagonal close-packed (P63/mmc,
D%h) and wurtzite (P63mc, C^v) structures have been tabulated by Chen and Hsieh
(1965). The theory presented in this section is an amplification of the work of Mackey
(1952) presented from a somewhat different point of view (Bradley and Davies 1970);
in particular, our proofs are constructive in nature and lead to a definite prescription
for carrying out the decomposition.

We illustrate, briefly, the physical application of the ideas of symmetrized and anti-
symmetrized products to the study of quantum-mechanical selection rules. If we
suppose that the group of the unitary symmetry operations of the Hamiltonian of a
system is the space group G, then we have seen in the previous section how to deter-
mine selection rules for various processes that may occur in the system. If now the
group G is augmented by the addition of 9, the operation of time-reversal symmetry,
the product P [x] Yk of the initial and final states in the usual triple Kronecker product
used in section 4.7 may have to be replaced by a symmetrized or anti-symmetrized
product. This happens when the final state is related to the time-reverse of the initial
state and the effect is that extra selection rules may be provided. The original papers
demonstrating this were on the subject of the Jahn-Teller effect (Jahn 1938, Jahn
and Teller 1937) but the following piece of theory due to Lax (1962) seems to be all
that is really necessary. If the wave function fj. of the final state is related by time-
reversal symmetry to the initial state, that is, *PJ. = 0*¥*, then we consider the matrix
element

(4.8.1)

(4.8.2)

since 6 is anti-unitary (see Chapter 7). Now A(02) = to = ±1, and we make the not
very restrictive assumption that (9W9~1^ = a.W, where the dagger denotes the
adjoint operator, and where a = +1. Substituting these relations into eqn. (4.8.2)
we find that

(4.8.3)

Since both ¥* and <bk
r = (6V*)* belong to Yk we conclude from eqn. (4.8.3) that the

existence of a selection rule depends in this case on the behaviour of \{<bk
rW*¥k

t ±
OfPPFjf) dx under the operations of G. The invariance of the subspaces spanned by
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the functions (Oj*P* ± <!>J'XP,./C) taken together with the usual theory on selection rules
shows that in this case the transition is forbidden by symmetry if the product
([F* B rfc] H rw) in the case of the plus sign holding in eqn. (4.8.3) (or if the product
({F* \E\ r*} [x] F"') in the case of the minus sign holding in eqn. (4.8.3)), does not
contain the identity representation of G. An equivalent criterion is whether the
symmetrized (or anti-symmetrized) square of Tk contains any of the irreducible
components of r^*. The above theory can be extended from the case of *PJ. = Q*¥k

r

to the case of *FJ. = {R \ \}d*¥k where {R v) is any element of the space group G
(see Lax (1962)). Another physical application which requires for its analysis the
symmetrized and anti-symmetrized powers of a given rep is the Landau theory of
second-order phase transitions, which was mentioned at the beginning of section 2.6
(for references see section 2.6).

We now wish to study the symmetrized and anti-symmetrized squares of induced
representations of a group G. That is, we wish to consider what happens when S (in
the notation of section 2.6) is identified with a group G, H is a subgroup of G and A
(in the notation of section 2.6) is identified with the representation of G induced from
a representation D of H. The decomposition of the Kronecker square of D t G is
covered by the theory of the last section, the main result being that of eqn. (4.7.25)

(4.8.4)

Here the terms in the sum over a are in one-to-one correspondence with the double
coset decomposition

(4.8.5)

and La = H n Hx, where H^ = dxHda *. Also Dx is the representation of H^ such
that D^d^hd"l) = D(/z) for all h e H. We require to rearrange or to modify the
right-hand side of eqn. (4.8.4) so that one part can be identified with the symmetrized
square [(D t G) H (D t G)] and the other part with the anti-symmetrized square
{(D t G) [x] (D t G)}. We use the same notation as in the previous section: D is a
representation of H of dimension d with basis <$| = <0 l 5 $2, • • • , <t>d\> and Da is the
representation of H,, with basis d^\ = <<£J = <</> a l , <£a 2 ,• • • , <£«*!• Indeed

(4.8.6)

thereby checking the relation Da(<4/zt/a
 !) = D(/z). The representation (D t G) has

basis pa((j)\ for a = 1 to |G|/|H| where the^CT are the coset representatives in the de-
composition G = Xff/ ' ffH. Also, from the last section, we remember the coset
decomposition H = £y <7a7La and hence the basis for f_(Z)a [x] D) I LJ t G for fixed a
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is the set of functions paqay(4>zi> 0jX / = 1 to dj = 1 to d, y = 1 to |H|/|LJ, a = I to
|G|/|H|. By virtue of Theorem 4.7.7 the vector space V^ spanned by these rf2|G|/|La

functions is invariant under (D t G) [x] (D t G). We may write symbolically

The vector space V, which is the carrier space for the entire representation (D t G) [x]
(Z>tG) is, of course, already proved to be the direct sum Za Vx, where the sum
over a is taken over the distinct double cosets, as in eqn. (4.8.5). Thus no two vector
spaces Fa and V^ coincide unless dx and dp belong to the same double coset.

For reasons which will soon emerge, given a particular double coset representative
d^ it is useful to define <4~ ̂  = 4>xi and to write Lx = H n Hx = H n d~ 'lWa. Note
that Ls = d~ [Ladx and that because G = Za/>0H and H = £y qxyLx then G = Gdx =
Zn, y PaQxyLxd,,, = £„, y p^^d^. Hence as a and 7 run over all possible values the set
paqxydx forms a complete set of coset representatives of Ls in G. Thus if we define the
vector space W^ as the carrier space of [(D [x] Z)5) \ Ls] t G we find

(4.8.7)

where the right-hand side means the set of all linear combinations of the functions
paqxy((j)xi, (frj). The space V^ is independent of the particular double coset representa-
tive chosen, in the sense that if instead of dx we use dp = hadahb, ha, hb e H, then V^
coincides with Vx. This was implicit in section 4.7 but can be seen as follows:

(4.8.8)

(4.8.9)

Hence the vector spaces Ws and Vx coincide. Similarly Wa and V-d coincide. Now the
character of [(D [x] Dx) >, L J t G is clearly the same as that of [(Dx [x] D) IL J t G

and

hence Thus if then we also
have and so for each we amy choo and

then
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and since the first of these is defined on Wy = Vx and the second is defined on Ka it
follows that the representations defined on Vx and Va are equivalent. There are now
two cases which can occur: either Vx and Vx coincide (and trivially define equivalent
representations by some equivalence transformation) or Fa and Fs are distinct (but
nevertheless define equivalent representations). Now from what has gone previously
we know that Vx and Vx coincide if and only if HWaH = Hd~ 1H, so that which of
the two cases occurs depends critically upon whether the double coset HdaH is self-
inverse or not (for, of course, (Hdxll)~* = Hd~ 'H, since H = H.~').

Consider first the case in which Vx and Vs are distinct. Now Fa = Z f f , y . / , j
P<r&v(0«i, <£.;) and Vx = Wx = La,y,;, j P^-X^i-, <£*./)• These are distinct spaces and
define equivalent representations. Clearly it is possible to form the direct sum
(Vx + Fs) and to decompose this direct sum into an alternative one (Vx + V~) in
which F* are given by

with upper and lower signs corresponding. From the form of the right-hand side of
eqn. (4.8.10) it is also clear that Fa

+ is a subspace of V+ and V~ is a subspace of V~,
where V+ and V ~ are the symmetrized and anti-symmetrized subspaces of V itself.
Moreover, the representations on Ka

+, V~, Vx, Va are all of them equivalent, the
first two being derived from the last two by the simple equivalence transformation
expressed by eqn. (4.8.10). Thus if Fa and Vx are distinct, that is, if dx and dx

1 belong
to different double cosets, [(£> t G) m (D t G)] and {(D t G) S (D t G)} will both
contain a representation equivalent to (Dx [x] D); La) t G.

Now consider the case in which Fa = Vx. There are two possibilities which require
separate treatment, as the decomposition depends upon whether the carrier spaces
of Da and D are identical or distinct. These carrier spaces are identical if and only if
dx € H, in which case dx may be chosen to be the identity dc. The Hf = H and
L£ = H n Ht. = H. The term now under consideration in eqn. (4.8.4) is just
(D [x] D) t G and Vf = XCT,,-,, Pa(<t>i' </>;)• It is immediately clear that Fc decomposes
into the direct sum (FE

+ + V~} where

and that Vt
+ is a subspace of F A , and F£ is a subspace of F . From eqn. (4.8.11)

we see that FE
+ defines the representation [Z> [x] Z)] t G and V~ defines the repre-

sentation {D 0 D} t G, the dimensions of these representations being \d(d + l)k
and \d(d — \)k respectively with k = |G|/|H|. The difference in dimension between
these two representations is therefore equal to dk. Since [(Z) t G) [xj (D t G)] and
{(D t G) [x] (D t G)} are of dimension \dk(dk + 1) and ^dk(dk - 1), and also have a
difference in dimension equal to dk, it follows that this difference is entirely accounted
for by the decomposition of Vf. This makes it reasonable that any other space Fa for

(4.8.10)

(4.8.11)
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which V^ = Vd will somehow yield spaces of equal dimensionality in the final
decomposition of V. We now embark upon some fairly elaborate analysis to show
how this in fact occurs.

We are now considering the case in which Hc4H = Hd~ JH and da cannot be
chosen to be equal to the identity dt. Therefore there exist h{, hj, hk, ht e H such that
hjdjij = hkd~ 1hl; that is djifa' = /z;~ ̂ hkd^. Thus dxll n Hd~l is non empty. Let
z be any element of this intersection; then z is not in H and we may write z = dji =
h'd~ 1 where h, h' e H. Now

and furthermore

Thus we may construct the group

(4.8.12)

and La is an invariant subgroup of Ma of index 2. Starting from the representation
(Dx [x] D) on Lz with basis <0a| <^>| we can construct the induced representation
Ca = (Dx |x] D) t Ma with basis «^)a| <</>|, z^(j>a\ <</>|). The analysis is analogous to that
given in section 4.5 with p = 2 and r = z so we shall leave out the details, merely
quoting the result. If / e La, then the induced representation is given in block-matrix
form by the expressions

(4.8.13)

(4.8.14)

For convenience we shall write

and

so that

(4.8.15)

(4.8.16)

(4.8.17)

(4.8.18)
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Now from the analysis in section 4.5 we know that if we can find a matrix P such that

(4.8.19)

(4.8.20)
and

for all / e La, then ZNX and Nx are equivalent; and with respect to a transformed basis
(($J ($l> z^0aK0l P :) the representation Ca becomes transformed into the
equivalent representation C'a given by

(4.8.21)

(4.8.22)

A matrix P that satisfies eqns. (4.8.19) and (4.8.20) can be found and is given by

(4.8.23)

For example with this choice of P we can soon check that eqn. (4.8.19) holds

In order to verify eqn. (4.8.20) we compute P zNa(/) and show it to be equal to
*,(/)?:

(4.8.24)

(4.8.25)

In deriving eqns. (4.8.24) and (4.8.25) we have used the expressions z = dji = h'dx
 {
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and the fact that D is a homomorphism on the elements of H. All this analysis would be
fruitless if it were not for the fact that the basis for Q now takes on a particularly
simple form. To see this let us compute the (kl) element of the second member of the
basis:

(4.8.26)

(4.8.27)Also

Hence

(4.8.28)

Using as a new basis the two functions on the left-hand side of eqn. (4.8.28) the
representation C'x becomes transformed into the equivalent representation Cx given by

(4.8.29)

(4.8.30)

Thus, the symmetrized basis (4>ak, </>,) + (4>n 4>ak) yields a representation N* of Ma

given by

(4.8.31)

and the anti-symmetrized basis (0ak, </>() — ((/>,, </>rt) yields a representation Nx of
M, given by

(4.8.32)

Furthermore when the representations N* and Nx are induced from Ma into G
they are clearly defined respectively on the spaces V* and V~, where Vx = (V+ +
V~) is a direct sum decomposition of V^ into its symmetrized and anti-symmetrized
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parts. Thus [(£> t G) S (D t G)] contains N + t G, and {(£> t G) [xj (D t G)} contains
A^" t G, and these two representations are of equal dimension, as expected.

Also, from eqns. (4.8.23), (4.8.31), and (4.8.32) the characters of N+ and N~ are
easily calculated and are, for all / e La,

This completes the decomposition. On collecting together the various different cases
we are provided with the following theorem.

T H E O R E M 4.8.1. Let D be a representation of the subgroup H of the finite group G.
Let A be the set of all self-inverse double cosets HdxH — Hd~ :H except H itself. Let
B be the set of all sets of the form H^H u Hd^ 'H, where H^H is a non self-inverse
double coset. For each p" e B let Nf(l) be the representation D(djlldft) (x) D(/) of
Lp — H n dpHdp *. For each a e A, dxH n Hd~1 is non-empty. Let z be any one of
its members, say z = dji — h'd^1. Let L,, — H n daHd~ l and let Ma be the subgroup
generated by La andz. Then La is an invariant subgroup o/Ma of index 2. Let Na(/) be the
representation D(d~ 1lda[) ® D(/) of La and let P be the matrix given by PahiCd =
D(/z')hcD(/z)ad. Then there exist extensions N+ and N~ of Nx into the group M^ such
that Na

+(z) = P and N~(z) = -P. Finally we have

(4.8.33)

(4.8.34)

For example

(4.8.35)

As an example consider the application of the above theorem to the space group
G = P23(TI), the example of section 4.7. H is now the little group GM. The double
coset decomposition G = 5]A GMd^GM contains three terms with d^ = {E 0},
{C^ji | 0} and {C3l 10}. Hence the set A is empty and the set B contains the single term



224 THE R E P R E S E N T A T I O N S OF A GROUP

GM{C3
+

1 | 0}GM u GM{C3"1 | 0}GM. If we take D = Al then in the expansion (4.8.4)
the term with d^ = dt = {E 0} yields on induction to G the three reps YA, r*E,
and Y2E, the term with dx = {C^ \ 0} yields MAl, and likewise the term with
d). = {CM I 0} yields MAl (illustrating the fact that the reps coming from inverse
double cosets are equivalent)—see Table 4.5 to check these results. Also since A1 is
1-dimensional it follows that {A^ [x] At} is empty. The expansions (4.8.36) and
(4.8.37) can now be written down and are

(4.8.38)

(4.8.39)

Note particularly how little extra work is needed in practice to obtain the symmetrized
and anti-symmetrized Kronecker square decompositions when the decomposition
for the Kronecker square is already known; although it must be admitted that the
above case is very favourable in that there is no self-inverse double coset and in that
the rep A± is 1-dimensional so that {A{ [x] A^} vanishes.



The single-valued representations of the
230 space groups

IN this chapter we tabulate the reps of each of the 230 space groups at each point of
symmetry and along each line of symmetry in the basic domain of the appropriate
Brillouin zone. The theory that has been used in the derivation of these reps was
discussed in the later sections of Chapter 3 and, in more abstract terms, in Chapter 4.
In addition to tabulating the results we shall include, in section 5.4, some examples
to illustrate the extraction of information from the tables which are, of necessity, in
a relatively condensed form.

5.1 Abstract groups

For any wave vector k in the Brillouin zone of a space group, the little group Gk is
an infinite group. However, this infinite group can be related to a finite group
HGk = Gk/Tk (see section 3.8) for a point of symmetry, or Gk*, the central extension
of the little co-group (see Theorem 3.7.2) otherwise. One often finds that there are
several groups HGk or Gk*, perhaps for different wave vectors in the Brillouin zone of
one space group, or for the same wave vector in the Brillouin zones of different space
groups, or for different wave vectors in the Brillouin zones of different space groups,
which are all isomorphic to one abstract group. Because of the frequent recurrence
of the same abstract group for many different space groups we identify completely
in Table 5.1 all the irreducible representations of all the abstract groups that occur
among the (single-valued and double-valued) representations of the space groups.

Each abstract group is characterized by a set of generating elements P, Q, R,
S,. .., and each element of the group can be written in the form PaQliR7Sd.... Each
group is completely defined if its group multiplication table is given; to determine
this it is sufficient to have the set of defining relations or generating relations for the
elements /*, Q, R, S, etc., and they can be used to determine the group multiplication
table (Coxeter and Moser 1965, Hall and Senior 1964, Miller 1894, 1946). This was
illustrated for a very simple group in Example 1.2.1. In Table 5.1 we give the generating
relations, the division of the elements among the classes of the group and the character
table of the group. The representations of each abstract group are labelled R{,
R2,. . ., Rr and for each of the degenerate representations we give the matrix repre-
sentatives for the generating elements. The complete set of matrix representatives for

5
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all the elements of the group can then be determined for any given degenerate
representation.

T A B L E 5.1

Defining relations, classes, character tables, and matrix representatives for the abstract groups needed in the tabulation
of the reps oj the 230 space groups

G\ Gl

C, = E. P2 = E.
1 C, = £; C2 = P.

C, ,
c, c2

«, 1
! Ri 1 1

R* | 1 -1

GÏ G¿

P3 = E. P4 = E.
C, = E; C2 = P; C3 = P2. C, = E; C2 = P; C3 = P2; C4 = P3.

C, C2 C3 C, C2 C3 C4

« t i l l «i 1 1 1 1
y?2 i cu tu* «2 i i -i -i
R3 1 co* cu R3 1 -1 1 -1

1 «4 1 -i -1 i

G4 G¿

P2 = E; Q2 = £; gP = PQ. P6 = E.
Cl = E; C2 = P; C3 = g; C4 = PQ. C, = £; C2 = P; C3 = P2; C4 = P3; C5 = P4; C6 = P5.

C, C2 C3 C4 d C2 C3 C4 C5 C6

P., 1 1 1 1 P-! 1 1 1 1 1 1
P-2 1 1 - 1 - 1 R2 1 -CO* O) -1 ÍU* -CO

«3 1 -1 1 -1 K3 1 (O ft.* 1 CO CO*

Pv4 1 - 1 - 1 1 P.4 1 - 1 1 - 1 1 - 1

' Pi5 1 co* co 1 cu* co
Pi6 1 —CO CO* — 1 CO —CO*
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Gl

P3 = E: Q2 = E; QP = P2Q.
d = £; C2 = P, P2; C3 = Q, PQ, P1Q.

' j d c 2 c 3

R! 1 1 1
R2 1 1 - 1
«3 2 - 1 0

i

R¡: P = a; Q = /..

GÍ
P8 = £.
C, = E; C2 = P; C3 = P2; C4 = f3 ; C5 = P4; C6 = P5; C1 = P6; C8 = P\

C, C2 C3 C4 C5 C6 C7 C8

« , 1 1 1 1 1 1 1
R2 1 O i -0* - -0 -i O*
R3 1 i -1 -i i -1 -i
«4 ! i -o* -í o - e* i -e
«5 1 - 1 1 - 1 - 1 1 - 1

Rf, \ -e \ o* - o -í -o*
K, | 1 -i -l i -i -1 i
RS i e* -i - 0 - 1 -o* í o

r2
"8

P4 = E; Q2 = £; gP = Pg.
d = £; C2 = P; C3 = P2; C4 = P3; C5 = Q; C6 = Pg: C7 = P2Q; C8 = P3Q.

F C, C2 C3 C4 C5 C6 C7 C8

R ¡ 1 1 1 1 1 1 1
R2 i - -i 1 i -1 -i
^3 - 1 -1 1 - 1 1 - 1

R¿ -i i 1 -i -1 i
R5 | 1 1 - 1 - 1 - 1 - 1
R,, i i - -i -1 -i 1 i
RT \ -1 - 1 - 1 1 - 1 1

Rs I -i - i -1 i 1 -i
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G°8

P1 = E; Q2 = E; R2 = E; QP = PQ; RP = PR; RQ = QR.
C, = E; C2 = P; C3 = Q; C4 = PQ; Cs = R; C6 = PR; C, = £>«; C8 = Pgj?.

C, C2 C3 C4 C5 C6 C7 C8

RI 1 1 1 1 1 1 1
R2 1 - 1 1 - 1 1 1 - 1
R3 1 1 - 1 - 1 1 - 1 - 1
Rt 1 - 1 - 1 1 1 - -1
R5 1 1 1 1 -1 - -1 -
R6 1 - 1 1 - 1 - 1 1 - 1
R7 1 1 - 1 - 1 - 1 - 1 1
RB 1 - 1 - 1 1 - 1 1 1 -

G4
8

P4 = E; Q2 = E; QP = P3g.
C, = £; C2 = P2; C3 = P, P3; C4 = g, P2Q; C5 = PQ, P3Q.

C, C2 C3 C4 C5
/

/?! 1 1 1 1 1

«2 1 1 1 - 1 - 1
R3 I 1 - 1 1 - 1
R4 1 1 - 1 - 1 1
«5 2 -2 0 0 0

R5: P = K; Q = ;..

GÍ (The quaternion group.)

P4 = E; Q4 = £; QP = P3Q; Q2 = P2.
C¡ = £; C2 = P2; C3 = P, P3; C4 = Q, P2Q; C5 = Pg, P3Q.

C, C2 C3 C4 C5

« , 1 1 1 1 1
J?2 1 1 1 - 1 - 1

«3 1 1 - 1 1 - 1

R4 1 1 - 1 - 1 1
R5 2 -2 0 0 0

R5; P = K; Q = Í0.
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G¡2

P12 = E.
C¡ = E; C2 = P; C3 = P2; C4 = P3; C5 = P4; C6 = P5; C7 = Pb\ C8 = P7; C9 = Pa; C10 = P9;
f ^ p 1 0 . /-< p 1 1
LI 1 — r ' ( - 1 2 — ̂  •

^-1 ^2 ^3 C-4 C5 C-6 ^--7 C8 ^9 ^10 ^-11 ^-12

«1 1 1 1 1 1 1 1 1 1 1 1 1

R2 1 — ÍCO —CO* Í (O — ¡CO* — 1 ¡CO CO* — Í — CO ¡CO*

«3 1 —CO* CO — 1 CO* —CO 1 — CO* CO — 1 CO* —CO

«4 1 Í -1 -Í 1 Í -1 -Í 1 Í -1 -Í

«5 1 co co* 1 co co* 1 co co* 1 co co*
/?6 1 —ico* -co i co* —ico —1 ico* co — i —co* ico
R, 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1
Rs 1 ico —o;* — i ci; ico* — 1 —ico co* i — co —ico*
/?, 1 O)* CO 1 CO* CO 1 CO* CO 1 CO* CO

R,0 1 -i -1 i 1 -i -1 i 1 -i -1 i
Rlt 1 — co co* — 1 co — co* 1 — co co* — 1 co — co*
R12 1 ico* — co — i co* ico — 1 —ico* co i — co* —ico

/

G2
12

P3 = E; Q2 = E; R2 = E; QP = PQ; RQ = QR, RP = PR.
C, = E; C2 = P; C¡ = P2; C4 = Q; C5 = PQ; C6 = P2Q; C7 = R; C8 = PR; C9 = P2R; C10 = QR;
C¡¡ = PQR; CI2 = P2QR.

C-! C2 C3 C4 C5 C6 C7 C8 C9 C I Q ^ i i C12

« , 1 1 1 1 1 1 1 1 1 1 1
/?2 1 co (O* 1 co co* co co* 1 co co*
/?3 1 co* co 1 co* co co* co 1 co* co
«4 1 1 1 - 1 - 1 - 1 1 1 - 1 - 1 - 1
R5 1 a) co* — 1 — co — co* co co* — 1 — co — co*
R6 1 CO* CO — 1 — CO* — CO CO* Cu — 1 — CO* — CO

R7 1 1 1 1 1 1 - - 1 - 1 - 1 - 1 - 1
R8 1 O) CO* 1 CO CO* — — M —CO* — 1 —CO —CO*

Rg 1 CO* CO 1 CO* CO — —CO* —CO — 1 —CO* —CO

«10 1 1 1 -1 -1 -1 - -1 -1 1 1 1
RU 1 CO CO* -1 -CO —CO* -1 -CO —CO* 1 CO CO*

R¡2 1 CO* CO — 1 —CO* —0) — 1 — CO* — CO 1 CO* CO
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C3
2

P6 = E; Q2 = E; QP = P5Q.
C, = E; C2 = P3; C3 = P, P5: C4 = P2, P4; C5 = Q, P2Q, P4g; C6 = PQ, P3Q, P5Q.

C, C2 C3 C4 C5 C6

« , 1 1 1 1 1 1
R2 1 1 1 1 - 1 - 1
R} 1 - 1 - 1 1 1 - 1
P4 I 1 -1 -1 1 -1 1
Rs 1 2 - 1 - 1 0 0
R6 2 - 2 1 - 1 0 0

R5: P = a; Q = ¿. Rf,: P = ft; Q = L

G4
12

F6 = £; g4 = £; Q2 = P3; QP = P5g.
C: = £; C2 = P3; C3 = P, P5; Q = P2, P4; C5 = Q, P2Q, P4g; C6 = PQ, P3Q, P5Q.

C, C2 C3 C4 C5 C6

« , 1 1 1 1 1 1
R2 1 1 1 1 - 1 - 1
P.J 1 - 1 - 1 1 Í -Í

«4 1 - 1 - 1 1 -i i
P.5 2 2 - 1 - 1 O O
R6 2 - 2 1 - 1 O O

R5 : P = a; ó = A. R6: P = /}; Q = U.

G 5
12

P3 = E; Q2 = E; R2 = E; QP = PP.; «g = gP; «P = PgP.
C, = £; C2 = Q, R, QR; C3 = P, PQ, PR, PQR; C4 = P2, P2£>, P2R, P2gR.

C, C2 C3 C4

P,, 1 1 1 1
/?2 1 1 co o*
P3 1 1 CU* O)

P4 3 - 1 O O

R4: P = A; Q = B; R = C.
Note that « = P2gP.
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G6
12

P6 = E; Q2 = £; QP = PQ.
C, = E; C2 = P; C3 = P2; C4 = P3; C, = P4; C6 = P5; C7 = Q; C8 = Pg; C9 = P2Q; C10 = P3g;

CM = P42; c12 = P5g.

C, C2 C3 C4 C5 C6 C7 C8 C, C10 C,, C12

/?! 1 1 1 1 1 1 1 1 1 1

R2 -co* co — co* — I B 1 — ça* tu — 1 to* — u>
Pi3 CO CO* CO CO* 1 tO CO* 1 CO CO*

A4 - 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1

-R5 CO* (O CO* CO 1 CO* CO 1 CO* CO

R6 j —CD CO* — CO —CO* 1 —CO CO* — 1 CO —CO*

R7 \ 1 1 1 . 1 - 1 - 1 - 1 - 1 - 1 - 1
Rg -co* (a — co* -co -1 co* -co 1 -co* co
Rg CO CO* 1 CO CO* — 1 —CO —CO* — 1 —CO —CO*
RIO - 1 1 - 1 1 -1 -1 1 - 1 1 - 1 1
Rn CO* CO 1 CO* CO — 1 —CO* —CO —1 —CO* —CO
R12 —CO CO* — 1 CO —CO* — 1 CO —CO* 1 —CO CO*

G|6
P16 = E.
Cs = P'-\s = 1 to 16.

There are 16 reps /?,, R2, . . ., R16 such that the character in the rep R, of the element in C, is given by

X,(CJ = (jC-ui.-i^ í = l to lôand s = 1 to 16.

Note that information about all cyclic groups can be abbreviated in this way. As an example the reader should
form for himself a similar abbreviation for G¡2 and then check with the version tabulated above.

G?6

/>8 = E; Q2 = E; QP = PQ.
C, = E; C2 = P, C3 = P2; C4 = P3; C5 = P4; Cb = P3; C7 = P6; C8 = P7; C9 = Q; C10 = Pg;

C,, = P2Q; C12 = P3g; C13 = P46; C14 = P56; C15 = P6S; C16 = P7Q.

j C[ C2 C3 C4 C5 C6 C7 C8 C9 C10 CM C12 C13 C14 C15 C16

f i , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
«2 e i -o* -i -e -i e* i e i -e* -i -o -i e*
«3 Í -1 -i 1 Í -1 -Í 1 Í -1 -Í 1 i -1 -Í

R4 -o* -i e -i o* i -e i -e* -¡ o -i o* ¡ -o
P5 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1

R6 -e i e* -i e -i -e* i -o i o* -i e -¡ -o*
«7 -Í -1 Í 1 -Í -1 Í 1 -Í -1 Í 1 -i -1 Í

p-s o* - i -e -i -e* i o í e* - i -0 -i -o* i e
Ry 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

RIO O i -O* -1 -0 -i 0* -1 -0 -i 0* 1 0 i -0*
RII i -1 -i 1 i -1 -i -1 -i 1 i -1 -i 1 i
Rtz -0* -i 0 - 1 0* i -0 -1 0* i -0 1 -0* -i O
R13 - 1 1 - 1 1 - 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 1
RU -0 i 0* -i 0 -i -0* -i o -i -0* i _e i 9*
RIS -i -1 i 1 -i -1 i -1 i 1 -i -1 i 1 -i
R t f , 0* -i -0 -1 -0* i 0 -1 -0* i 0 1 0* -i -0
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Note that this can be abbreviated as follows:

d toC 8 C9 toC1 6

P., to Rs (G8) (G¿)
R , t o R 1 6 (G8) -(G¿)

Where (G8) stands for the array of complex numbers forming the character table of G|; this is because G?6 =
G8 ® G2. In the remainder of this table we shall use similar abbreviations for certain direct product groups. In
connection with such abbreviations it should be understood that any multiplying factor that precedes the symbol of
an array implies that every element in that array is to be multiplied by that factor.

G3
16

p* = E; g4 = E; QP = PQ.
Cl = E; C2 = P; C3 = P2; C4 = P3; C5 = Q; C6 = PQ; C7 = P2g; Cs = P3g; C9 = Q2; Clo = PQ2;
Cn = P2Q2; C12 = P3g2; C13 = g3; C14 = PQ3; C15 = P2Q3; C16 = P3g3.

C!toC4 C 5 toC 8 C 9 toC 1 2 C 1 3 toC, 6

Rita R,. (Gi) (G4) (G4) (G4)
«5 to7?8 (G4) i(G4) -(G4) -i(G4)
R 9 t o« 1 2 (G4) -(Gi) (Gi) -(Gi)
R 1 3 to« 1 ( , (Gi) -i(Gi) -(Gi) i(G4)

G4
16

/>* = £; g2 = £; «2 = E; QP = PQ; RP = P«; «g = g«.
C, = £; C2 = P; C3 = P2; C4 = P3; C5 = Q; C6 = Pg; C7 = P22; C8 = P3g; C9 = /?; C10 = PR;
Cu = P2«; C12 = P3R; C13 = QR; C14 = Pg«; C15 = P2QR; Clh = P3QR.

| C¡ to C8 C 9 toC 1 6
i

RitoR» (G2) (G2)
R 9 t o « 1 6 (Gi) -(GI)

G?6

P2 = E; Q2 = £; «2 = £; S"2 = £; gP = Pg; RP = PP; RQ = g«; SP = PS; SQ = QS; SR = RS.
Ci = E; C2 = P; C3 = Q: C4 = PQ; C5 = R; C6 = PP.; C7 = g«; C8 = Pg«; C9 = S; C10 = PS;
C, , = gS; C12 = PgS; C13 = «5; C14 = PPS; C15 = gR5; C16 = PgR5.

C, to C8 C9 to C16

R, to /{„ (G3) (G3)
R 9 t o « 1 6 (G3) -(G3)
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G6
16

p8 = E; Q2 = E; QP = P5Q
d = E; C2 = P2; C3 = P*; C4 = P6; C5 = P, P5; C6 = P3, P1 ;
Ci = Q, P*Q; C8 = P2Q, P"Q; d, = PQ, P5Q; do = P3Q, P7Q.

d d C3 C4 65 C6 C7 C8 C9 do

R, 1 1 1 1 ' 1 1 1 1 1 1

R2 1 1 1 1 1 1 - 1 - 1 - 1 - 1

R3 1 1 1 1 - 1 - 1 1 1 - 1 - 1

R4 1 1 1 - 1 - 1 - 1 - 1 1 1

R5 1 - 1 -1 i -i 1 -1 i -i

R6 1 - 1 -1 i -i -1 1 -i i
R1 1 - 1 -1 -i i 1 -1 -i i
K8 1 - 1 -1 -i i -1 1 i -i
Rg 2 2í -2 -2i O O O O O O
Ría 2 -2i -2 2i O O O O O O

«,: P = OÀ; Q = -ÍK. R , o - ^ = O*).; Q = -ÍK.

G?6

P4 = £; g2 = E; R2 = E; QP = PQ; RP = PR; RQ = P2QR.
C¡ = E; C2 = P; C3 = P2; C4 = P3; C5 = Q, P2Q; C6 = PQ, P3Q; C1 = R, P2R; Cs = PR, P*R;
C9 = QR, P2QR; C10 = PQR, P3QR.

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

«! 1 1 1 1 1 1 1

R2 ! 1 1 1 -1 -1 -1 -
R3 1 1 - 1 - 1 1 - 1 -
R4 1 1 -1 - -1 -1 1
«5 1 - 1 - 1 - 1 - 1 1 -

S 6 1 - 1 - 1 - - 1 1 - 1 1

J?, 1 - 1 - - 1 1 - 1 - 1 1

Rs 1 - 1 - - 1 1 - 1 1 1 - 1
Rg 2 2i -2 -2i O O O O O O
Rlo 2 -2i -2 2i O O O O O O

«9: P = ie; Q = <£; « = A. R¡0-P = -ic; Q = 4>; R = )..

G s
i f ,

P* = £; g* = £; g? = ,P3g.

d = £;C2 = P2 ;C3 = Q 2 ;C 4 = P 2g 2 ;C 5 = P, P3 ;C6 = PQ2,P3Q2;C1 = Q,P2Q;C% = PQ, P3Q;
C, = e3,^2e3; C10 = PQ3,P3Q3.

C¡ C2 C3 C4 C5 C6 C7 C8 C9 do

r
R2 1 1 1 1 1 1 - 1 - 1 - 1 - 1
R} 1 1 1 1 - 1 - 1 1 - 1 1 - 1
R4 1 1 1 1 - 1 - 1 - 1 1 - 1 1
«5 1 1 - 1 - 1 - 1 1 i -i -i i
R6 1 1 - 1 - 1 - 1 1 -i i i -i
R7 1 1 - 1 - 1 1 - 1 - i - i i i
Rs 1 1 - 1 - 1 1 - 1 i i - i - i
r
RIO 2 -2 -2 2 O O O O O O

R9: P = u; Q = <£. /{,„: /> = u; g = K.

1 1 1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0 0 0
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G 9
16

P4 = £; Q2 = E; R2 = E; QP = P3Q; RP = PR; RQ = QR.
Cl = E; C2 = P2; C3 = P, P3; C4 = Q, P2Q; C5 = PQ, P3Q; C6 = R; C7 = P2«; Ca = PR, P3R;
Cg = QR, P2QR; Clo = PQR, P3QR.

C,toC 5 C 6 toC 1 0

R^oR, (G4) (Gf.)
« 6 t o t f 1 0 (Gí) -(G*)

R5: P = K; Q = ¿; R = E. Rio: P = K; Q = A; R = -E.

G 10
16

p4 = £; g2 = £; R2 = E; QP = P2; «^ = PQR; RQ = QR
C, = £; C2 = g; C3 = P2; C4 = P2g; C5 = R, QR; C6 = P2R, PZQR; C7 = P, PQ; Cs = P\ P3Q;
C9 = PR, PQR; C10 = P3R, P*QR.

j d C2 C3 C4 C5 C6 C7 C8 C, C10

«! 1 1 1 1 1 1 1 1 1

R2 1 1 1 - 1 - 1 - 1 - 1 1 1
«3 1 1 1 1 1 - 1 - 1 - 1 - 1
R4 1 1 1 -1 - 1 1 - 1 - 1
R5 1 1 -1 - 1 - i -i i -i
R6 1 1 -1 - 1 - -i i -i i
R7 1 1 -1 - -1 -i i i -i
Rs 1 1 - 1 -1 -1 i -i -i i
Rg 2 -2 2 - 2 O O O O O O
R I O 2 -2 -2 2 O O O O O O

Rg: P = 4>; Q = -e; R = L Río: P = K; Q = -E; R = L

G i i
16

P4 = E; g4 = E; Q2 = P2; P.2 = E; QP = P3Q; RP = PR; RQ = QR.
Ct = E; C2 = P2; C3 = P, P3; Q = Q, P2Q; C5 = PQ, P3Q; C6 = R; C7 = P2R; C8 = PR, P3R;
C, = QR,P2QR; Cío = PQR, P3QR.

Cl to C5 C6 to C10

RltoR5 (G¡) (Gl)
R6íoR10 (G¡) -(G|)

R5 : P = K; Q = i</>; R = E. R10: P = K; Q = i<£; R = -E.
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p!2
«16

Pe = E; Q2 = E; QP = P'Q.
d = E; C2 = P4; C3 = P2, P6; C4 = P, P1 ; C5 = P\ P5; C6 = g, P2Q, P'Q, P6Q;
C7 = PQ,P3Q,P5Q,PJQ.

C, C2 C3 C4 C5 C6 C-

/?! 1 1 I 1 1 1 1

«2 1 1 1 1 1 - 1 - 1

R3 1 1 1 - 1 - 1 1 - 1
#4 1 1 1 - 1 - 1 - 1 1
S5 ; 2 2 - 2 0 0 0 0
/J6 2 - 2 0 v'

2 -v'2 » °
R- 2 - 2 0 -N/2 v'2 ° °

R,: P = K; Q = A. A6: P = à; g - /,
/?7: P = i,; 6 = ;..

G 13
16

Pa = E; Q2 = E; QP = P3Q.
d = E; C2 = P4; C3 = P2, P6; C4 = P, P3; C5 = P5, P7; C6 = g, P2g, P4g, PhQ;
C1 = PQ, P3Q, P5Q, P7g.

C, C2 C3 C4 C5 C6 C7

R, 1 1 1 1 1 1 1
R2 | 1 1 1 1 1 - 1 - 1
R3 ! 1 1 1 - 1 - 1 1 - 1
R¿ 1 1 1 - 1 - 1 - 1 1
«5 2 2 -2 0 0 0 0
R6 2 - 2 0 ix/2 -i^/2 0 0
R7 2 -2 O -iv'2 ¡V2 0 0

«5: P = K; g = /.. R6: P = f; Q = L
RT\ P = ç*; g = ;..

G 14
16

P8 = E; g4 = £; Q2 = P4; gP = P7<2-
d = £; C2 = P4; C3 = P2, P6; C4 = P, P7; C5 = P3, P5; C6 = g, P2Q, P*Q, P6g;

d = Pg, -P32, P5Q,P7Q-

C, C2 C3 C4 Cs C6 C7

R¡ I 1 1 1 1 1 1
R2 1 1 1 1 1 - 1 - 1
R3 1 1 1 - 1 - 1 1 - 1
R4 1 1 1 - 1 - 1 - 1 1
«5 2 2 -2 0 0 0 0
R6 2 -2 0 v'2 -v/2 0 0
«7 2 -2 O -V'2 V2 0 0

R5: P = K; Q = L R6: P = a; Q = i0.
R 7 : P = »;; 6 = ¡4>.
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G14

P4 = E; Q3 = E; R2 = E; QP = PQ2; RP = P3R; RQ = QR.
C, = E; C2 = P2; C3 = Q, Q2; C4 = P2Q, P2Q2; C5 = R, P2R; C6 = Q2R, P2QR; C-, = QR, P2Q2R;
C8 = P, PQ, PQ2, P3, P3Q, P3Q2; C, = PR, PQR, PQ2R, P3R, P3QR, P3Q2R.

Ci C2 C3 C4 C5 C6 C7 Cg C9

« t i l 1 1 1 1 1 1
R2 1 1 1 1 1 1 - 1 - 1
R3 \ 1 1 - 1 - 1 - 1 1 - 1
R4 1 1 1 - 1 - 1 - 1 - 1 1
R5 2 2 - - 1 - 2 1 1 0 0
R6 2 2 - - 1 2 - 1 - 1 0 0
R7 2 - 2 - 1 0 iv'3 -iv'3 0 0
K8 2 - 2 - 1 0 -¡73 ¡V3 0 0
« , 2 - 2 2 - 2 0 0 0 0 0

R5: P = 0; Q = n*; R = -e.. R6: P = $; Q = it*; R = e..
R7: P = -\(j>; Q = TI*; R = L Rs: P = 'vj>; Q = n; R = L
R9: P = i<£; g = e; « = A.

Gi.

p¡2 = E; Q2 = E; QP = P11Q.
C, = E; C2 = P6; C3 = P4, Ps; C4 = P2,P10; C5 = P3, P9; C6 = P, P1 1; C7 = F5, P7;
C8 = 0, P26, P4Q, P6g, P88, P>0Q; Cg = PQ, P3Q, P5Q, P7Q, P9Q, PnQ.

C, C2 C3 C4 C5 C6 C7 C8 C,

« , 1 1 1 1 1 1 1
R2 1 1 1 1 1 - 1 - 1
«3 1 1 - 1 - 1 - 1 1 - 1
RI 1 1 - 1 - 1 - 1 - 1 1
R5 2 2 - - -2 1 1 0 0
R6 2 2 - - 2 - 1 - 1 0 0
R7 2 -2 -1 0 v'3 -V3 ° °
«8 2 - 2 - 1 1 0 -v'3 v'3 0 0
Rg 2 -2 2 - 2 0 0 0 0 0

R,: P = -re*; Q = <t>. R6: P = n; Q = 0.
«7: /> = p; Q - 0. «8: P = -p*; g = 0.
«„: P = U; Q = 4>.

G3
24

p6 = E; g4 = £; g2 = P3; R2 = E; QP = P5Q; RP = PR; RQ = QR.
Cl = E; C2 = P3; C3 = P, P5; C4 = P2, P4; C5 = g, P2Q, P*Q; C6 = PQ, P3Q, P5Q; C-, = R;
C8 = P3R; C, = P«, P5«; C10 = P2«, P4«; Cn = g«, P2g«, P46«; C12 = PQR, P3QR, P5QR.

1
[ QtoC, C 7 t oC 1 2

« i t o « 6 | ~ (Gf2) (GÍ2)
R7loR,2 I (G*2) -(G4

2)

R5: P = a; Q = ;.; « = e. «6: P = /?; g = U; « = e.
^11: P =.<*; Q = ).; R = -e.. RÍ2: P = ft; Q = U; R = -E.
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G¿4

P3 = E; Q2 = E; R* = E; QP = P2Q; RP = PR; RQ = QR.
d = E; C2 = P, P2; C3 = Q, PQ, P2Q; C4 = R; C5 = PR, P2R; C6 = QR, PQR, P2QR; C1 = R2;
Cg = PR2, P2R2; C9 = QR2, PQR2, P2QR2; C10 = R3; C,, = PR3, P2R3; C12 = QR\ PQR3, P2QR3

Cl to C3 C4 toC6 C7 to C9 C 1 0 toC 1 2

/?,toJ?3 (G2) (G2
6) (G2

6) (G|)
RtloR, (G2) i(G2

6) -(G2) -i(G2)
R7toRg (G2) -(G2) (G2) -(G2)
RioloRl2 (G2) -i(G2) -(G2) i(G2

6)

R3: P = a; Q = A; R = e. R6: P = a; Q = A; « = ÍE.
R9: P = a; Q = i.; R = -e. _ S12: P = a; 6 = A; « = -ie.

G|,

P3 = E; Q2 = E; R2 = E; S2 = E; QP = P2Q; RP = PR; RQ = QR; SP = PS; SQ = QS; SR = RS.
C, = £; C2 = />, />2; C3 = g, Pg, P2g; C4 = «; C5 = PR, P2R; C6 = g«, PgR, P2g«; C7 = 51;
C8 = PS, P2S; C9 = QS, PQS, P2QS; C10 = RS; Ctl = P«S, P2«5; C12 = g^S1, Pg«S, P2QRS.

Ci to C3 C4toC6 C7toC, C l otoC12

/? , to«3 (G2) (G2) (G2) (G2)
RiioR6 (G2) -(G2

6) (G2) -(G|)
« 7 to« 9 (G2) (G2) -(G2) -(G|)
R10toRi2 (G2,) -(G2) ^(G2) (G2)

R3: P = at; Q = ).; R = E; S = e. R6; P = a; g = ;.; « = -E; S1 = E.
«9: P = a; Q = >.; R = e.; S = -R. R12: P = a; Q = A; R = -c; S = -E.

G6
24

P12 ='£; g2 = E; QP = P7Q.
C, = £; C2 = P, P7; C3 = P2; C4 = P3,P9; C5 = P4; C6 = P5, P"; C7 = P6; C8 = P8; C9 = P10;
Cío = Q,P6Q; Ctt = PQ,P7Q; C12 = P2Q, PSQ; C I 3 = P3Q, P'Q; C14 = P^Q,PWQ; C15 = P5Q,P"Q.

\ C¡ C2 C3 C4 C5 C6 C7 C8 C9 C10 C], C12 C13 C14 C15

^ , 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 I I I 1 1 1 1 1- - 1 - 1 - 1 - 1 - 1
R3 1 — <a* co — 1 to* — <y la w* —w*(a~l to* —a)
fi4 1 -cu* cu — 1 to* -co co co* - to* -co 1 -co* co
/Í5 1 CO CO* 1 CO Ci)* Oí* CO O) CO* 1 CO CO*

Rf, 1 CO CO* 1 CO CO* CO* CO — —CO —CO* — 1 —CO —CO*

R, 1 - 1 1 - 1 1 - 1 1 1 -1 1 - 1 1 - 1
RU 1 - 1 1 - 1 1 - 1 1 1 - 1 - 1 1 - 1 1

fi, 1 co* co 1 cu* co a) co* to* co 1 co* co

R,0 1 CO* CO 1 CO* CO CO CO* — 1 —CO* —CO — 1 —CO* —CO

R¡¡ 1 —co co* — 1 la —w* co* a) 1 — co co* — 1 co — co*
Rt2 1 -co co* — 1 co -co* co* co —1 co -co* 1 —co to*
R13 2 0 -2co* 0 2co 0 - 2 2co* -2co 0 0 0 0 0 0
fi , 4 I 2 0 - 2 0 2 0 - 2 2 - 2 0 0 0 0 0 0
RU 2 0 -2co 0 2co* 0 - 2 2co -2co* 0 0 0 0 0 0

RÍ3: P = -ico/l; Q - <j>. R¡4: P = U; Q = 4>.
Rls: P = ico*/t; Q = </..
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GL
P3 = E; Q2 = E; R2 = E; S2 = E; QP = PR; RP = PQR; RQ = QR; SP = P2RS; SQ = QS;
SR = QRS.
d = E; C2 = R, Q, QR; C3 = PS, RS, P2S, PQRS, QRS, P2RS; C4 = S, QS, PQS, PRS, P2QRS, P2QS;
Cs = P, P2, PQ, PR, PQR, P2QR, P2R, P2Q.

C, Ci C3 C4 C5

R, 1 1 1 1 1
R2 ! 1 1 -1 -1 1
R3 2 2 0 0 - 1
Rt 3 - 1 1 - 1 0
R5 3 - 1 - 1 1 0

R3: P = - f i ; Q = e; R = c; S = /.. R4: P = D; Q = B; R = G; S = F.
Rs: P = D; Q = B; R = G; S = H.

G8
24

P6 = E; Q2 = E; R1 = E; QP = PR; QP3 = P3Q; RP = P4QR; RQ = QR.
C, = E; C2 = P3; C3 = Q, R, P3QR; C4 = P3Q, P3R, QR; C5 = PQ, PR, P*, P*QR;
C6 = P4Q, P"-R, P, PQR; C-, = P2, P2QR, PkQ, P5R; C8 = P5, P5QR, P2Q, P2R.

I C, C2 C3 C4 C5 C6 C7 C8

RÍ 1 1 1 1 1 1 1
«2 1 1 1 CO CO G'J* CO*
«3 i 1 1 1 CO* CO* CO CO

«4 I 1 - 1 - 1 1 - 1 1 - 1

R5 1 - 1 - 1 co -co co* -co*
R6 1 - 1 - 1 co* -co* co -co
R1 ; 3 3 - 1 - 1 0 0 0 0
Rs 3 -3 1-1 0 0 0 0

R7: P = A; Q = G; R = B. Rs: P = L; Q = M; R = N.

e~a
«24

P6 = E; Q4 = E; R4 = E; P3 = Q2 = R2; QP = PR; RP = PQR; RQ = P3QR.
Ci = E; C2 = P3; C3 - Q, R, P3Q, P3R, QR, P3QR; C4 = P, PQ, PQR, PR; C5 = P4, P4Q, P4QR, P4R;
C6 = P-, P5R, P5QR, P5Q; C7 = P5, P2R, P2QR, P2Q.

I C, C2 C3 C4 C5 C6 C7

/?! 1 1 1 1 1 1 1

W2 1 1 1 fo (o to* <o*
«3 1 1 1 c;j* co* ta co
«4 2 - 2 0 1 - 1 - 1 1
R5 2 - 2 0 co -co -co* co*
R,, 2 - 2 0 ta* -co* -cu co
R7 3 3 - 1 0 0 0 0

«4: P = -TI'*; Q = -i0. R5: P = -con'*; 2 = -ic/>.
«„: P = -co*7t'*; Q = -ici. R7 : P = A; Q = B.
Note that R = P5gP.
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pío
"24

P6 = E; Q2 = E; R2 = E; QP = PQR; RP = PQ; RQ = QR.
C¡ = E; C2 = Q, R, QR, C3 = P2, P2Q, P2R, P2QR, C4 = P4, P4g, P4S, P4gS; C5 = P3;
C6 = P3g, P3R, P3QR; C1 = P5, P5g, P5,R, P5g«; C8 = P, PQ, PR, PQR.

C, C2 C3 C4 C5 C6 C7 C8

P-! 1 1 1 1 1 1 1
R2 1 co co* 1 1 co o>*
/¿3 1 co* co 1 1 o;* co
R4 3 - 0 0 3 - 1 0 0
R5 1 1 1 - 1 - 1 - 1 - 1
R6 1 1 co co* -1 -1 -a) -<u*
R7 1 1 co* co -1 -1 -co* -co
R» \ 3 -1 0 0 - 3 1 0 0

^________

S4: P = D; Q = B; R = C. Rs: P = J; Q = B; R = C.

G i i
24

P12 = £; <24 = E; Q2 = Ph; QP = P' 'g.
C, = E; C2 = P6; C3 = P, P"; C4 = P5, P7; C5 = P2, P10; C6 = P4, P8; C7 = P3, P9;
cs = e, ^2s, ̂ 4e, P'Q, PSQ, pi0Q-, c9 = pg, p3g, p5g, p7e, p"e, p1 IQ.

C, C2 C, C4 C5 C6 C7 C8 C,
I

RI 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 - 1 - 1
«3 1 1 -1 - 1 1 - 1 1 - 1
«4 1 1 -1 1 1 - 1 - 1 1
«s I 2 2 - 1 - - i - i 2 0 0
R6 \ 2 2 1 - 1 - 1 - 2 0 0
jR7 2 -2 0 0 - 2 2 0 0 0
RS \ 2 -2 v'3 - ^ ' 3 1 - 1 0 0 0
«9 2 -2 -x/3 v'3 1 -1 0 0 0

R5: P = -7t*; Q = 0. «6: P = 71; 2 = </>•
S7: P = p; g = ici. P,8: P = -p*; g = Í0.
R9: P = U; g = ici.

G 12
24

P12 = £; g2 = £; gP = Pg.
Ci = £; C, = P; C3 = P2; C4 = P3; C5 = P4; C6 = P5; C7 = P6; C8 = P7; C9 = P8; C10 = P";
Cn = P10; C12 = P"; C13 = g; C14 = Pg; C15 = P2g; C16 = P3g; C I7 = P4g; C18 = P5g;
C19 = P6g; C20 = P7g; C21 = P8g; C22 = P9g; C23 = P'°g; C24 = P"g.

C, toC 1 2 C 1 3 toC 2 4

RtloR12 (G|2) (G¡2)
R 1 3 t o « 2 4 (G¡2) -(G¡2)

I
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GJ2

P2 = E; Q4 = £; R4 = E; QP = PQ3 ; RP = PR; RQ = QR3.
C, = E; C2 = Q2; C3 = R2; C4 = Q2R2; C5 = R, R3; C6 = Q2R, Q2R3; C1 = PR, PQ2R3;
C8 = PQ2R, PR2; C, = P, PQ2; C10 = PR2, PQ2R2; Cn = PQ, PQ3, PQR2, PQ3R2;
C12 = PQR, PQR3, PQ3R, PQ3R3; C13 = Q, Q3, QR2, Q3R2; C14 = Q3R, QR, Q3R3, QR3.

C) C2 C3 C4 C5 C6 C7 C8 C9 C10 CH C12 C I3 C14

R, 1 1 1 1 1 1 1 1 1 1 1 1
R2 I 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1
R3 1 1 1 - - 1 - 1 - 1 1 1 1 - 1 1 - 1
R4 1 1 1 - - 1 - 1 - 1 1 1 - 1 1 - 1 1
R5 1 1 1 1 - 1 - 1 - 1 - 1 1 1 - 1 - 1
R6 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 1 1
/?, 1 1 1 1 - - 1 1 1 - 1 - 1 1 - 1 - 1 1
R8 1 1 1 1 - - 1 1 1 - 1 - 1 - 1 1 1 - 1
R9 2 2 - 2 - 2 0 0 0 0 2 - 2 0 0 0 0
RIO 2 -2 2 -2 2 -2 0 0 0 0 0 0 0 0
«n 2 -2 2 -2 -2 2 0 0 0 0 0 0 0 0
S12 2 -2 -2 2 0 0 2i -2i 0 0 0 0 0 0
R¡3 2 - 2 - 2 2 0 0 -2i 2i 0 0 0 0 0 0
«14 2 2 -2 -2 0 0 0 0 -2 2 0 0 0 0

/?9: P - e; g = 4>; R = -u. R10- P = -A; Q = K; R = z.
R I ¡ : P = -À; g = K; / ? = - £ . «12: P = -À; g = K; « = -U.
fl13: ? = -A; Q = K; R = U. «14: P = -E; Q = <t>; R = -U.

G 2
31

P4 = E; Q4 = E; R2 = E; QP = P3Q3; QP2 = P2Q; RP = P3R; RQ = Q3R.
Cl = E; Ci = Q2; C3 = P2; C4 = P2Q2; C5 = P3R, PR; C6 = P3Q2R, PQ2R; C1 = QR, Q3R;
Ca = P2Q3R,P2QR;C9 = PQ,P3Q3;Cio = PQ3, P 32;C, i = R,P2R,Q2R,P2Q2R;
C12 = P, P3, PQ2, P3Q2; C13 = Q, P2Q, Q3, P2Q3; C14 = PQR, P3QR, PQ3R, P3Q3R.

C, C2 C} C4 C5 C6 C7 C8 C9 C,0 Cu C12 C13 C!4

«! 1 1 1 1 1 1 1 1 1 1

«2 1 1 1 1 1 1 1 1 - 1 - - 1 -

/ ? 3 1 1 1 1 - 1 - 1 1 - - 1 1 - 1 -
«4 1 1 1 1 - 1 - 1 1 - - 1 - 1 - 1
S 5 1 1 1 1 1 - 1 - 1 - - 1 1 - 1 -
R6 1 1 1 1 1 - 1 - 1 - - 1 - 1 - 1
R1 1 1 1 1 - 1 - - 1 - 1 1 1 - - 1
Ra Í I I 1 - 1 - - 1 - 1 1 - 1 1 -
« , 2 - 2 2 - 2 2 - 2 0 0 0 0 0 0 0 0
R¡0 \ 2 2 - 2 - 2 0 0 2 - 2 0 0 0 0 0 0
RM | 2 -2 -2 2 0 0 0 0 2 - 2 0 0 0 0
Rt2 j 2 -2 2 - 2 - 2 2 0 0 0 0 0 0 0 0
«13 2 2 -2 -2 0 0 -2 2 0 0 0 0 0 0
RU 2 -2 -2 2 0 0 0 0 -2 2 0 0 0 0

R9: P = ct>; Q = K; R = <j). /?,„: P = -K; Q = <¿; « = <#>.
/? , , : P = -K; g = K; R = tj>. R 1 2 : P = -0; Q = K; R = <j>.
R13: P = -K; Q = -<£; R = <t>. R14: P = -K; g = -K; R = (j>.
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G¡2

P4 = E; Q2 = E; R2 = E; S2 = E; QP = P3g; RP = PR; RQ = QR; SP = PS; SQ = QS; SR = RS.
C, = E; C2 = P2; C3 = P, P3; C4 = Q, P2Q; C5 = PQ, P3g; C6 = R; C1 = P2R; CB = PR, P3R;
C, = QR, P2QR; C10 = Pg«, P3QR; Cu = 5; C,2 = P2S; C13 = PS, P3S; C14 = gS, P2gS;
C15 = PgS, P3gS; C16 = «5; C17 = P2/?S; C18 = PRS, P3RS; Ciq = QRS, P2QRS;
C20 = PQRS, P3QRS.

| C , toC 5 C6 toC1 0 C^toC, , C1 6 toC2 0

R,ioR, \ (G4
S) (Gi) (G*) (Gi)

«6toS10 (G£) -(G4.) (G|) -(Gf)
« n to« 1 5 i (G*) (G*) -(GJ) -(G*)
« 1 6 to« 2 0 (GJ) -(G» -(Gi) (Gi)

R5: P = K; Q = A; R = e; S = e. Rio: P = K; g = x; /? = -E; S = e.
/?15: P = K; g = / . ;« = e; 51 = ~s. R2 0 : P = K; g = À; « = -e; S = -E.

GJ2

P4 = £; g4 = E; R2 = E; QP = PQ; RP = P3Q3R; RP2 = P2Q2R; RP3 = PQR; RQ = QR.
d = E; C2 = Q; C3 = Q2; C4 = g3; C5 = P2, P2g2; C6 = P2g, P2g3; C7 = P, P3g3; C8 = Pg, P3;
C9 = Pg2, P3g; C10 = Pg3, P3g2; Cn = Pg«, P3«, Pg3«, P3g2«; C12 = P/?, Pg2«, P3gR, P3g3/?;
Cu = QR, Q3R, P2R, P2Q2R', C14 = R, Q2R, P2QR, P2Q3R.

! ^-1 i*2 ^-3 ^-4 ^5 ^6 ^7 ^-8 ^9 ^-10 ^-11 ^-12 ^-13 ^,4

P, 1 1 1 1 1 1 1 1 1 1 1 1

«2 1 1 1 1 1 1 1 1 1 - 1 -1 - - 1

«3 -1 1 -1 -1 1 Í -Í Í -Í -Í Í - 1

«4 ¡ -1 1 -1 -1 1 i -i Í -Í Í -Í -1

«5 1 1 1 1 1-1 -1 -1 -1 - 1 - 1 1

R6 1 1 1 1 1 - 1 - 1 - 1 - 1 1 1 - - 1

R, -1 1 -1 -1 1 -i i -i i i -i 1
RS I -1 1 -1 -1 1 -i i -i i -i i -1
£9 2 2 2 2 - 2 - 2 O O O O 0 0 0 0
«,„ 2 - 2 2 - 2 2 - 2 O O O O 0 0 0 0
Rn 2 2i -2 -2i O O 1 - i 1 + i -1 + i -1 - i O O O O
RÍ2 2 2i -2 -2i O O -1 + i -1 - i 1 - i 1 + i O O O O
P.13 2 -2i -2 2i O O 1 + i 1 - i -1 - i -1 + i O O O O
RU 2 -2i -2 2i O O -1- i - 1 + i 1 + i 1 - i O O O O

«t,: P = iA; g = e; R = </>. jR1 0 : P = A; Q = -E; R = $.
Rtl: P = v*; g = ie; « = 0. «12: P = iv; g = ie; R = <t>.
RI¡- P = v; g = -is; « = <^. «14: P = -iv*; g = -ic; « = </>.
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G|2
P4 = E; Q2 = £; R2 = E; S2 = £; gP = Pg; RP = PgR; Rg = QR; SP = PS1; 5g = QS; SR = RS.
C¡ = E; C2 = g; C3 = P2; C4 = P2g; C5 = P., QR; Cb = P2R,P2QR; C1 = P, Pg; C8 = P3, P3g;
C, = PR, PgR; C,0 = P3R, P3gR; Cn = S; C12 = gS; C13 = P2S; C14 = P2gS; C15 = RS. QRS;
C16 = P2RS, P2QRS; C17 = PS, PgS; C18 = P3S, P3gS; C19 = PRS, PQRS; C20 = P3RS, P3QRS.

C, to C,0 C,, to C2[)

«¡toP,!,, (G¡g) (GIS)
«..toP.,,, (Gig) - (Gjg)

p,9: P = 0; g = -e; /? = À; S = c. P10: P = K; g = -E; Pv = À; S = c.
P.,,: P = fli; g = -c; R = ).; S = -e. P,12: P = K; g = -c; « = À; 5 = -c.

Gft
32

P4 = £; g4 = £; P,2 = E; QP = P3g3; gP2 = P2g; P.P = PK; Rg = P2g«.
C, = E; C2 = P2; C3 = P, P3g2; C4 = P3, Pg2; C5 = g2; C6 = P2g2; C7 = «, P2P.; C8 = P^, Pg2P-;
Cg = P3R, P3Q2R; C10 = g2P-, P2g2P; Cu = Pg3, P3g3, Pg, P3g; C12 = g, g3, P2g, P2g3;
Cu = ^23^, P3Q3R, PQR, P3QR; C14 = gR, g3P-, P2gP-, P2Q3R.

C¡ C2 C? C4 C5 C6 C7 C8 C9 C10 Cu C¡2 C]3 C14

R! 1 1 1 1 1 1 1 1 1 1 1 1
R2 | 1 1 1 1 1 1 1 - 1 - 1 - -1
R 3 ; i - i - i i i - i - i i - i -i
R4 Í 1 -1 - 1 1 1 -1 1 - 1 1 -
R5 1 1 1 1 -1 -1 - -1 1 1 - -
R6 1 1 1 1 - 1 - 1 - - 1 - 1 - 1
R1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 -
Rs 1 -1 1 1 - 1 1 - 1 - 1 1
R9 2 -2 0 0 2 - 2 0 2i -2i 0 0 0 0 0
RU, 2 - 2 0 0 2 - 2 0 -2i 2i 0 0 0 0 0
R,i 2 2 0 0 - 2 - 2 2 0 0 - 2 0 0 0 0
P.12 2 2 0 0 -2 -2 -2 0 0 2 0 0 0 0
R,3 2 - 2 2i -2i -2 2 0 0 0 0 0 0 0 0
R14 2 -2 -2i 2i -2 2 0 0 0 0 0 0 0 0

R9 : P = ÍÁ; g = <t>; R = L «,„: P = - iÂ; g = <j>; R = L
RU: P = À; g = K; R = e. RÎ2: P = /; g = K; R = -E.
R I 3 : P = ¡c; g = K: R = À. R14: P = -ie; g = K; R = À.
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^32

P* = E; Q4 = E; R2 = E; QP = P3Q; RP = P3Q2R; RQ = QR
Ci = E; C2 = P2; C3 = Q2; C4 = P2Q2; C5 = P, P3, PQ2, P3Q2; Ch = Q, P2Q; C-, = Q3,P2Q3;
C8 = PQ, P3Q, PQ\ P3Q3; C, = R, P2Q2R; Cio = P2R, Q2R; C,, = PR, P3R, PQ2R, P3Q2R,
C12 = QR, Q3R; C1 3 = P2QR, P2Q3R; C14 = PQR, P3QR. PQ3R, P3Q3R.

Cj C2 C3 C4 C5 C6 C7 C8 C9 C10 C, ) C12 C13 C14

« , ¡ 1 1 1 1 1 1 1 1
«2 I 1 1 1 1 - 1 - - 1 - - 1 -

«3 j 1 1 1 1 - - - 1 - - 1 -

«4 1 1 1 _ _ _ _ 1 ^ _ 1

RS 1 1 -1 1 - 1 -
R6 \ 1 1 -1 1 - -1 - - -1
£7 1 1 - 1 - 1 - 1 1 _ _ _ i
Rs I I - 1 - 1 - 1 -1- 1 -
R9 I 2 -2 2 - 2 0 0 0 0 0 0 0 2 - 2 0
Rio 2 -2 2 -2 0 0 0 0 0 0 0 -2 2 0
«u 2 -2 -2 2 0 0 0 0 2 -2 0 0 0 0
RÍ2 2 -2 -2 2 0 0 0 0 -2 2 0 0 0 0
R13 2 2 - 2 - 2 0 2i -2i 0 0 0 0 0 0 0
RH 2 2 - 2 - 2 0 -2i 2i 0 0 0 0 0 0 0

I

R9: P = K; Q = A; R = ).. Rio: P = K; Q = ¿; R = -L
Rn: P = u; g = K; R = e. «12: P = u; g = ic; R = -c.
/?13: P = <£; g = is; « - /. «14: P = <t>; Q = -if;; « = ¿.

G8
32

P8 = £; g4 = £; 2^° = -P523; 2^2 = p26-
C, = £; C2 = P6Q2; C3 = P4; C4 = P2Q2; C5 = Q, P4g3; C6 = F"e3, P20; C7 = P, P522;
C8 = P'Q2, P3: Cc = PQ.P5Q3; C10 = P7g3, P3g; C,, = g2; C12 = P6; C13 = P4g2; C14 = P2;
C15 = Q\P*Q\ C16 = P"Q,P2Q3; C17 = PQ2,P5; C18 = P\P3Q2; C19 = PQ3,P5Q; C20 = P'Q,P3Q3.

C, C2 C3 C4 Q C6 C7 C8 C9 C10

R! 1 1 1 1 1 1 1 1
/?2 1 1 -1 - I 1 1 - 1 - 1
R3 1 1 1 1 - 1 - 1 - 1 - 1
R4 1 1 -1 - -1 -1 1 1
R5 1 - 1 - 1 i -i i -i
«(, 1 1 -1 i -i -i i
R7 i 1 1 - 1 - -i i -i i
Rs 1 1 - -1 -i i i -i
Rg 2 -2i -2 2i O O O O O O
R10 2 2i -2 -2i O O O O O O
RM i i -i -i i -i o -e* -e* -e
R¡2 i i -i -i i -i -0 e* e* e
R13 i -i -i i i i o* -e e e*
«14 i -¡ -i i i i -e* e -e -0*
#15 1 i -1 -i -i 1 O -O* O* O
RÍ6 i i -i -¡ -i i -e 0* -0* -0
Rn 1 -i -1 i -i -1 0* -0 -0 -0*
«18 i - i -i i - i -i - e * 0 0 0 *
R¡9 2 -2 2 - 2 O O O O O O
R20 2 2 2 2 0 0 0 0 0 0
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C l t C12 f ^ i 3 C14 C J 5 Ci6 C17 C j 8 C l g C2o

P.! 1 1 1 1 1 1 1 1

R2 1 1 1 -1 - 1 1 - 1 - 1
R3 1 1 1 1 - 1 - 1 - 1 - 1
«4 1 1 1 -1 - 1 - 1 1 1

P., I 1 - 1 1 - i -i i -i
R6 I - 1 - 1 - 1 i - i - i i
P.7 1 - 1 - 1 1 - -i i -i i
Rs 1 1 - 1 - 1 1 - i i i - i
R9 2 -2i -2 2i O O O O O O
R10 2 2i -2 -2i O O O O O O
«i, -i i -i i -e o* e* e
«12 -Í i -Í 1 0 -0* -0* -0

RÍ3 - i -i -i -1 -6* d -0 -0*
R14 i -i -i -i 0* -0 0 e*
P,15 -i i i -1 -0 0* -0* -0
P,16 - -i 1 i i -1 0 -0* 0* 0
P,17 i 1 - i i 1 - 0 * 0 0 0 *
RÍS i 1 - i i 1 0 * - 0 - 0 - 0 *
R,g -2 2 -2 2 O O O O O O
«20 - 2 - 2 - 2 - 2 O O O O O O

Rg: P = 0;.; Q = ~\K. RÍO: P = O*).; Q = -\K.
Rlg: P = <t>; Q = u. R20: P = K; Q = u.

G9
32

Ps = E; 24 = E; R2 = £; Q2 = P4; QP = P7Q; RP = ?R; RQ = QR.
C, = £; C2 = P4; C3 = P2, P6; C4 = P, P1 ; C5 = P3, P5; C6 = g, P2g, P*g, P6e;
C, = Pg, P3g, PSQ, P7Q; Ca = R; C9 = P4«; C10 = P2R, P6R; Cn = PR, P7R, C12 = P3«, P5«;
c,3 = e«, P2e«, p*e«, P6e«; c,4 = pg«, P3e«, PSQR, PJQR.

C, to C7 C8 to C14

P-! to R1 (G!4) (G¡4)
«8to« I4 (G¡4) -(G!4)

R 5 : P = K; 6 = A; « = E. «6: P = <5; Q = i<f>; R = E.
R7: P = r¡; Q = i<p; R = £. R,2: P = K; Q = A; « = -e.
*i3: P = á; 6 = i0; « = -e- «i4: P = n; Q = ><£; R = -«•
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G 10
32

P8 = E; g4 = E; QP = P7g.
d = E; C2 = P4; C3 = P2, P6; C4 = P, P1 ; C5 = P3, P5; C6 = g, P2g, P4g, P6g;
C1 = PQ, P3g, P5Q, P7g; C8 - g2; C9 = P4g2; C10 = P2g2, P6g2; Cu = Pg2, P7g2;
c,2 = p

3g2, psg2; c13 = g
3, P2g3, P4g3, P6g3; c14 = pg

3, P3g3, P5g3, P7g3.
C I C2 Cg Ü4 C 5 C6 C7 Cg C9 ^--10 ^ 1 1 ^12 ^13 ^14

/?, 1 1 1 1 1 1 1 1 1 1 1 1 1 1
«2 1 1 1 1 1 - 1 - 1 1 1 1 1 l - l - l
R3 1 1 1 - 1 - 1 1 - 1 1 1 1 - 1 - 1 1 - 1
R4 1 1 1 - 1 - 1 - 1 1 1 1 1 - 1 - 1 - 1 1
Rs 2 2 - 2 0 0 0 0 2 2 - 2 0 0 0 0
R6 2 -2 0 v'2 -v'2 0 0 2 -2 0 v'2 -^2 0 0
Rn 2 - 2 0 -v'2 V2 ° ° 2 - 2 0 -^2 v'2 ° °
P>8 1 1 1 1 1 Í Í -1 -1 -1 -1 -1 -Í -i

/?„ 1 1 1 - 1 - 1 i -i -1 - 1 - 1 1 1 -i i
«10 1 1 1 1 1 -i -i -1 -1 -1 - 1 - 1 i i
RH 1 1 1 -1 -1 -i i -1 -1 -1 1 1 i -i
«12 2 - 2 O V2 -,/2 0 0 - 2 2 0 -v/2 ^2 O O
RÍ3 2 - 2 O -v'2 V2 O 0 - 2 2 O v'2 -v

/2 ° °
R14 2 2 -2 O O O O -2 -2 2 O O O O

«5: P = K; g = À. Rb: P = e; Q = L
R-,: P = r¡; Q = A. R12: P = ó; Q = U.
Rn: P = r¡; Q = 'ü. R14: P = U; Q = K.

r"
«32

P8 = £; e4 = £; QP = P3g3; 22P = Pg2.
d = E; C2 = P4; C3 = P2, P6; C4 = g2; Cs = P4g2; C6 = P2g2, P6g2; C7 = P, P3g2;
C8 = PQ2, P3; C9 = P5, P7g2; C lo = P5g2, P7; C,, = PQ, P3Q3, P*Q, P7g3;
c,2 = PQ

3, P*Q, P5Q\ P7Q; C13 = Q, P
2Q3, P4e, P6e3; c14 = g

3, P2g, P4g3, P6g.

C, C2 C3 C4 C5 C6 C7 C8 Cq C10 Cn C]2 C13 C14

«! 1 1 1 1 1 1 1 1 1 1 1 1 1 1

«2 1 1 1 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1
R} 1 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 1 1
«4 1 1 1 1 1 1 - 1 - 1 - 1 - 1 1 1 - 1 - 1
R5 2 2 - 2 2 2 - 2 0 0 0 0 0 0 0 0
/{„ I 2 - 2 O 2 - 2 O iv'2 iv'2 -iv'2 -iv'2 0 0 0 0
R7 I 2 -2 O 2 - 2 O -ÍV2 -iv'2 y2 y2 O O O O
R, | 1 1 - 1 - 1 - 1 1 i -i i -i -1 1 i -i
fig 1 1 - 1 - 1 - 1 1 Í -Í Í -¡ 1 -1 -Í Í

R¡0 1 1 - 1 - 1 - 1 1 -i i -i i 1 - 1 i -i
RU 1 1 - 1 - 1 - 1 1 -i i -i i -1 1 -i i
«12 2 2 2 -2 -2 -2 O O O O O O O O
«n i 2 - 2 0 - 2 2 O -V'2 V2 V2 -V2 0 0 0 0
RU 2 - 2 0 - 2 2 O v'2 ~V'2 -V2 V2 ° ° ° °

R5: P = K; g = ;.. J?6: P = Í; g = /i.
«7: P = ¿* ;e = /i. «12: P = ÍK; g = ü.
«,3: P = i¿; g = U. R14: P = i£*; g = U-

245
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p l 2
"32

Ps = E; Q2 = E; R2 = E; QP = PQ; KP = PQR; RQ = QR.
d = E; C2 = Q; C\ = P2; C4 = P2Q; C5 = P4; C6 = P4Q; C7 = P6; C8 = P6Q; C, = R, QR,
C10 = P2R, P2QR; Cu = P4R, P4QR; C12 = P6«, P62«; C13 = P, PQ; C14 = P3, P3Q;
C15 = PR, PQR; CSf, = P3,R, P3QR; C17 = P5, /"g; C18 = ^7, /"8; C19 = P5K, /^gtf;
C20 = P7R. P7QR.

C, C2 C3 C4 C5 C6 C7 C8 C9 C10

/?! 1 1 1 1 1 ] 1 1 1 1

#2 1 1 I 1 1 1 1 1 - 1 - 1

« 3 1 1 1 1 1 1 1 1 1

R4 1 1 1 1 1 1 1 - 1 - 1
«5 1 1 -1 - 1 1 -1 -1 1 -1
Rf, 1 1 -1 - 1 1 -1 -1 1 -1
R7 1 1 -1 - 1 1 -1 -1 -1 1
Rs 1 1 -1 - 1 1 -1 -1 -1 1
Rg 2 - 2 2 - 2 2 - 2 2 - 2 0 0
R,0 2 - 2 - 2 2 2 - 2 - 2 2 0 0
RU I 1 i i -1 -1 -i -i i
R¡2 1 1 i i -1 -1 -i -i - -i
R¡¡ 1 Î i i -1 -1 -i -i i
S,4 1 1 Í Í -1 -1 -Í -¡ - -Í

#15 1 1 -Í -Í - 1 - 1 Í Í -Í

Ría 1 1 -i -i -1 -1 i i -i
«17 1 1 -i -i - 1 - 1 i i -1 i
RÍ8 1 1 -i -i -1 -1 i i -1 i
R,g 2 -2 2i -2i -2 2 -2i 2i O O
R20 2 -2 -2i 2i -2 2 2i -2i O O

Cu C12 C13 C14 C ) 5 C16 C17 C¡8 C19 C20

«1 1 1 1 1 1 1 1 1 1 1
«2 -1 -1 -1 -1 1 1 -1 -1 1 1
R3 1 1 -1 -1 -1 -1 -1 -1 -1 -1
R4 -1 -1 1 1 -1 -1 1 1 -1 -1
RS 1 — 1 i —i i —i i —i i —i
R6 1 -1 — i i — i i - i i — i i
R7 — 1 1 — i i i — i — i i i — i
Rg — 1 1 i — i — i i i — i — i i
R9 0 0 0 0 0 0 0 0 0 0
Rlo 0 0 0 0 0 0 0 0 0 0
R,, -i -i e -e* e -e* -e e* -e e*
RÍ2 i i ~e e* e -e* e -e* -e e*
RÍS -i -i -e e* -e e* e -e* e -e*
RÍ4 i i 0 -e* -e 9* -e e* e -e*
R15 -i i -e* e -e* e e* -e e* -e
R,6 -i i e* -e e* -e -e* e -e* e
R17 i -í o* -o -e* e -e* e e* -0
/?,„ i -i -e* e e* -e e* -0 -o* e
K!, 0 0 0 0 0 0 0 0 0 0
£20 0 0 0 0 0 0 0 0 0 0

R9: P = <f>; Q = -e; R = ).. R¡0: P = K; Q = -E; R = L
RÍ9: P = Q(j>; Q = -e; R = L R20: P = flic; Q = -e; R = ;..
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G i j
32

P4 = £; Ô4 = E; R2 = E; QP = PQ, RP = P3Q2R; RQ = QR.
C, = E; C2 = P,P3Q2; C3 = P2; C4 = P\PQ2; C5 = g; C6 = PQ,P3Q3; C1 = P2£>; C8 = P3g, Pg3;
C9 = Ô2; C10 = P2Q2; C t l = g3; C]2 = P2g3; C13 = R,P2Q2R; C,4 = P«, P3g2«; C,5 = P2R,Q2R;
c16 = p3«, pg2«; c17 = g«, P2e3«; c lg = pg«, P3e3«; c19 = p2e«, e3^; c20 - P3e«, pe3«.

^1 ^-2. ^-3 ^-4 ^-5 ^-6 ^-7 ^-8 ^-9 ^ 10

« , 1 1 1 1 1 1 1 1 1

P-2 1 1 1 1 1 1 1 1 1

R3 1 - 1 - 1 1 - 1 1 - 1 1 1
«4 1 - 1 -1 1 - 1 1 - 1 1

RS 1 i - -i i -1 -i 1 - 1
R6 1 i - -i i -1 -i 1 -1
R7 1 -i i i 1 -i -1 -1
«8 1 -Í - Í Í 1 -¡ -1 -1

R, I 1 1 1 - 1 - 1 - 1 - 1 1
/ ? ! ( , ! 1 1 - 1 - 1 - 1 - 1 1

Rn 1 - 1 - 1 - 1 1 - 1 1 1 1
«12 1 - 1 1 - 1 - 1 1 - 1 1 1 1

R¡3 1 i -1 -i -i 1 i -1 -1 1
RÍ4 1 i -1 -i -i 1 i -1 -1 1
P.,5 1 -Í -1 Í -i -i i 1 - 1 1

Rít 1 -i -1 i -i -1 i 1 - 1 1
Rn 2 0 - 2 O 2 0 - 2 O 2 -2
Rla 2 O 2 O 2i O 2i O -2 -2
/?i, 2 0 - 2 0 - 2 O 2 O 2 - 2
«20 2 O 2 O -2i O -2i O -2 -2

CM Ci2 C13 C14 C15 C'i6 C,7 C18 C19 C2()

« , 1 1 1 1 1 1 1 1 1
«2 1 1 - -1 -1 -1 -1 -1 -1 -1

«3 1 1 - 1 1 - 1 1 - 1 1 - 1

«4 1 1 - 1 - 1 1 - 1 1 - 1 1
«5 -i i i -1 -i i -1 -i 1

«6 -i i - -i 1 i -i 1 i -1
«7 -I 1 -i -1 i Í 1 -Í -1

« 8 - Í Í - Í 1 -Í -Í -1 Í 1

«, -1 -1 1 1 1 - 1 - 1 - 1 - 1
«10 I -1 -1 - -1 -i -1 1 1 1

«1 ,1 -1 -1 -1 1 - 1 1 - 1 1 -
« 1 2 I - 1 - 1 1 - 1 1 - 1 1 - 1

«,3 j Í — Í Í —1 — Í -) 1 Í

R14 i -i -1 -i 1 i i -1 -i -
«1 5 Í — Í 1 — Í — 1 Í — i — 1 ¡

«16 Í -Í —1 Í 1 -Í Í 1 — Í -

« , , 2 - 2 0 0 0 0 0 0 0 0

«,8 -2i -2i O O O O O O O O
«19 -2 2 O O O O O O O O
«20 2i 2i O O O O O O O O

«n: P = U; Q = e; R = (j>. «,8: P = /I; Q = ie; « = </>.
«,,: P = U; Q = -E; R = $. «20: P = A; Q = -ie; « = 0.

1
1
1
1
1
1
1
1
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G 14
32

P* = E; g4 = E; R2 = E; QP = P3g; RP = PR; RQ = QR.
d = E; C2 = P2; C3 = g2; C4 = P2Q2; C, = P, P3; C6 = PQ2,P3Q2; C7 = g, P2g; C8 = Pg, P3g;
C9 = Q3, P2Q3; Cio = PQ3, P3g3; Cu = R; C12 = P2R; C13 = g2R; C14 = P2Q2R; CÍ5 = PR, P3R;
Cíe = PQ2R,P3Q2R; C17 = QR, P2QR; C18 = PQR, P3QR; C19 = g3R, P2g3R; do = PQ3R,P3Q3R.

d todo CtltoC20

R, to R10 (G?6) (G?6)
R ^ t o R j o (G?6) -(G?6)

R9: P = u; Q = <j>; R = E. Rlo: P = Ü; Q = K; R = c.
R19: P = U; g = </>; R = -E. R20: ? = U; Q = K; R = -e.

G l 5
32

/>* = £; g4 = £; Q2 = P2; R2 = E; S2 = E; QP = P3g; RP = PR; RQ = g«; SP = PS;
SQ= QS; SR = RS.
C¡ = E; C2 = P2; C3 = P, P3; C4 = Q, P2Q; C5 = Pg, P3Q; C6 = R; C7 = P2R; C8 = PR, P3R;
C9 = QR,P2QR; C10 = PQR,P3QR, Cn = 51; C12 = P2S; C13 = PS,P3S; C14 = QS, P2QS;
C15 = PQS,P3QS; C16 = R5; C17 = P2RS; Clg = PRS,P3RS; C,9 = QRS,P2QRS;
C20 = PSRS, P3gRS.

Qtodo d i t oC 2 0

R, to R10 (GU) (Gli)
R n t o R 2 0 (Gl¿) -(G}¿)

R 5 : P = K; g = i(#>; R = e; S = c. R10: P = K; Q = i</>; R = -c; S1 = E.
R15: P = K; g = í<¡>; R = s; S = -£. R20: /> = K; Q = ¡0; R = ~e; 5 = -e.

G 16
32

P4 = £; g4 = £; R4 = E; QP = P3Q; Q2 = P2; RP = PR; RQ = QR.
d = E; d = P2'' C3 = P, p3; Q = 8, ^20; C5 = PQ, P3Q; C6 = R; C-, = P2R; C8 = PR, P3R;
C9 = QR,P2QR; do = PQR, P3QR; Cu = R2; d2 = ?2«2; Ci3 = PR2,P3R2; C14 = QR2,P2QR2;
C,s = PQR2,P3QR2; C16 = R3; d? = <P2^3; C18 = PR3,P3R3; C19 = QR3,P2QR3;
do = ^ 8-R3, p3e«3.

dtod Qtodo C u tod 5 C1 6 todo

R , t o R 5 (GÍ) (G|) (Gl) (G|)
R 6 t o R 1 0 (Gl) i(GD ~(G¡) -i(Gl)
R u t o R I 5 (G8

5) -(Gl) (Gl) -(Gl)
R 1 6 t o R 2 0 (Gl) -i(Gl) -(Gl) ¡(Gl)

R5: P = K; g = i0; R = E. R10: P = K; Q = i<¿>; R = is.
R,5 : P = K; g = i0; R = -£. R20: P = K; g = i^>; R = -ic.
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G l 7
32

Pa = E; g4 = E; QP = PQ.
C¡ = E; C2 = P; C3 = P2; C4 = P3; C5 = P4; C6 = P5; C7 = P6; C8 = P1 ; C9 = Q; C10 = PQ;
CM = P2o; C12 = P3g; C13 = P4g; C14 = P5Q; C15 = P'g; C16 = P7<2; C17 = g2; C18 = P£2;
C19 = P2Q2; C20 = P362; C21 = P4g2; C22 = P5Q2; C23 = P6Q2; C24 = P7g2; C25 = g3; C26 = PQ1

c21 = P2e3; c28 = P3e3
; c29 = P4e3

; c30 = P5c3
; c31 = P6e3

; c32 = />7e3.
CttoC, C9toC1 6 C17toC21 C2 5toC3 2

/ ? , t oR 8 (G8) (GJ) (G8) (G|)
«9 to/?1 6 (Gs) i(G8) -(G8) _i(Gj)
/?17to/?24 . (G8) -(G8) (G8) _(G¡)
«2 5 to/?3 2 (G8) -i(G¡) -(GJ) i(G8)

G i
48

P12 = E; Q2 = £; «2 = £; QP = PilQ; RP = P7/?; RQ = QR.
d = E; C2 = P6; C3 = P3/?, P9P>; C4 = P4, P8; C5 = P2, P10; C6 = P7?, PSR, P7/?, P11/?;
c, = PQ, p3Q, PSQ, p7g, p9g, PIIQ; c8 = e/?, p*eR, P*QR, c9 = p2e«, P6e«, PIOQR-, c10 = /?,p6/?;
C t l = P3, P9; C12 = P2«, P4R,PSR, P'°P,; C13 = P, P5, P7, P11 ; C14 = g, P2Q, P4g, P6g, P8g, P'°g;
cls = pg«, p3gp., p5g«, p7gR, p9e«, PI¡QR.

C j C2 C3 C4 C5 C6 C7 C8 C9 Cto Cn C12 C13 C14 C15

RÍ I 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 - 1 1 1 - 1 1 - - - 1 1 - 1 1 1 - 1
«3 1 1 - 1 1 1 - 1 - 1 - 1 1 - 1 - 1 1
P,4 1 1 1 1 1 1 - 1 - - 1 1 1 - 1 - 1
J?5 1 1 - 1 1 1 - 1 - 1 1 - 1 1 - 1 - 1

«6 1 1 1 1 1 1 - 1 - - - 1 - 1 - 1 - 1 1

«7 1 1 - 1 1 1 - 1 1 - 1 - 1 - 1 1 - - 1 1

Rs 1 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1

Rg 2 2 2 - 1 - 1 - 1 0 0 0 2 2 - 1 - 1 0 0
Rio 2 2 - 2 - 1 - 1 1 0 0 0 - 2 2 1 - 1 0 0
Ru 2 2 - 2 - 1 - 1 1 0 0 0 2 - 2 - 1 1 0 0
«i2 2 2 2 - 1 - 1 - 1 0 0 0 - 2 - 2 1 1 0 0
«,3 2 -2 0 2 -2 0 0 2 -2 0 0 0 0 0 0
#14 2 -2 0 2 -2 0 0 -2 2 0 0 0 0 0 0
«,s 4 - 4 0 - 2 2 0 0 0 0 0 0 0 0 0 0

R9: P = 7t; Q = <j>; R = K. Rlo: P = TÍ; Q = (/>; R = -E.
Rtl: P = -re*; Q = </>; R = c. RÍ2: P = -re*; Q = 4; R = -e.
Rn: P = U; Q = ( / > ; # = <t>. RÍ4: P = U; Q = <l>; R = -<t>.

(p \ 0 \ /</> I 0\ /O I <A

*":P=(H^): c-rh> *-(m)
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G48

P4 = E; Q3 = E; R2 = E; S2 = E; QP = PQ2; RP = P3R; Rg = QR; SP = PS; SQ = QS; SR = RS.
d = E; C2 = P2; C3 = Q, Q2; C4 = P2Q, P2Q2; C5 = R, P2R; C6 = Q2R, P2QR; C-, = QR, P2Q2R;
d = P, PQ, PQ2, P3, P3Q, P362; Cg = PR, PQR, PQ2R, P3R, P3QR, P3Q2R; do = S; Cu = P2S;
C12 = QS, Q2S; C13 = P2QS, P2Q2S; C14 = RS, P2RS; Cls = g2RS, P2QRS; C16 = QRS,P2Q2RS;
CÍ7 = PS, PQS, PQ2S, P3S, P3QS, P3Q2S; ds = PRS, PQRS, PQ1RS, P3RS, P3QRS, P3Q2RS.

| dtoC9 do tods

R, to R9 (G24) (G>4)
R 1 0 t o R 1 8 (G24) -(G>4)

R5: P = </>; g = TI*; « = -e; S = e. R6: P = <f; Q = n*; R = E; S = E.
RI: p = _i0 ; g = 7t*; R = A; 51 = e. R8: P = i<¿>; Q = n; R = ).; S = E.
«„: P = ¡0; Q = E; « = A; 5 = E. RÍ4: P = $; Q = TU*; R = -E; S = -e.
S15: P = <£; g = TI*; R = e; S = -E. S16: P = -i<f>; Q = TI*; « = A; S = -E.
RI~: P = i<t>; Q = n; R = 1; S = -e. /?18: P = i<¡>; Q = E; R = ¿; S = -E.

G3
48

P12 = E; Q2 = £; R2 = E; QP = PJR; QP3 = P3Q; RP = P10QR; RQ = P6QR.
d = £; d = P3', Q = ^6; Q = P9; C5 = Q, R, P6Q, P<1R, P3QR, P9QR;
C6 = QR, P3Q, P3R, P6QR, P9Q, P9R; d = P*, PQ, P1 R, P*QR; Ca = P7, P4Q, PÍOR, P7QR;
C, = P10, P7Q, PR, PÍOQR; do = P, P'°o, P4^, PQR', Cu = P8, Pn6, P5«, P2gR;
C12 = P", P2Q, PSR, P5QR; C13 = P2, Pse, P"«, PSQR; d* = ^5. ̂ 88, -P2^, PnOR.

Ci d G3 d C5 C6 d G8 Cg do Cu C12 C13 d4

RI 1 1 1 1 1 1 1 1 1 1 1 1 1
/?2 1 1 1 1 1 (u (a a> w tu* cu* tu* o)*
/{3 1 1 1 1 1 CO* CO* CO* CO* CO CO CO CO

Rt 1 - 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1
R5 1 -1 1 — 1 — 1 CO -CO CO -CO CO* -CO* CO* —CO*

R6 1 — 1 1 — 1 — 1 1 W* —CO* CO* —CO* CO —CO CO —CO

R1 1 2i -2 -2i 0 0 -1 -i 1 i -1 -i 1 i
R8 2 2i -2 -2i 0 0 -co -ico co ico -co* -ico* co* ico*
R9 2 2i — 2 — 2i 0 0 -co* —ico* co* ico* -co —ico co ico
R10 2 -2i -2 2i 0 0 - 1 i 1 -i -1 i 1 -i
Rn 2 -2i -2 2i 0 0 -co* ico* co* -ico* -co ico co -ico
R12 2 —2i — 2 2i 0 0 -co ico co —ico —co* ico* co* —icy*
R13 3 3 3 3 - 1 - 1 0 0 0 0 0 0 0 0
R14 3 -3 3 -3 1 -1 0 0 0 0 0 0 0 0

R7 : P = - k ; e = Z- R8: P = -ico*/i; g = X-
Rg; P=-in;Q = x. Rio: P = m*; Q = x*-
R,r. P = ¡COM*; S = x*. «i2: P = i//*; Q = /*.
R!3: P = ,4; g = S. R14: P = L; g = A?.
Note that R = P5gP.
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G48

p6 = E; Q* = E; R* = E; P3 = Q2 = R2; S1 = E; QP = PR; RP = PQR; RQ = P3QR; SP = PS;
SQ = QS; SR = RS.
C, = E; C2 = P3; C3 = 6, *, P3Q, P3R, QR, P*QR; C4 = P, PQ, PQR, PR; C5 = P4, P4Q, P*QR, P4R;
C6 = P2, P5R, P5QR, P5Q; C-, = P5, P2R, P2QR, P2Q; C8 = S; C9 = P3S;
C10 = QS, RS, P3QS, P3RS, QRS, P3QRS; Cu = PS, PQS, PQRS, PRS; C12 = P*S, P*QS, P*QRS, P4RS;
C13 = P2S, P5RS, P5QRS, P5QS; C14 = P5S, P2RS, P2QRS, P2QS.

C, to C7 C8 to C14

R , t o R 7 (G?4) (G14)
«8 to R14 (GÎJ ~(G14)

R4: P = -TE; g = ^; 5 = E. R5: P = -<a*n; Q = \l>; S = E.
/?6: P = -/¿; g = i/»; S1 = E. R7: P = A; Q = B; S = E.
RU-. P = -n; Q = ifi; S = -E. R12: P = -ÎU*M; g = i>; S = -8.
R13: P = -/¿; g = iA; 5 = -E. R14: P = A; Q = B; S = I.
Note that R = P5QP.

P5
"48

p6 = £; Q2 = £; R2 = £; 52 = £; gP = PR; QP3 = P3Q; RP = P*QR; RQ = QR; SP = PS;
SQ = QS; SR = RS.
C¡ = E; C2 = P3; C3 = Q, R, P3QR; C4 = P3Q, P3R, QR; C5 = PQ, PR, P*, P 4QR;
C6 = P4e, P4R, P, PgR; C7 = P2, P2QR, P5Q, P*R; C8 = P5, P5gR, P2e, P2R; C9 = S; C10 = P3S;
Cn = gS, RS, P3QRS; C12 = P3gS, P3RS, gRS; C13 = PgS, PRS, P4S, P'QRS;
CÍ4 = P*QS, P4RS, PS, PgRS; C1S = P2S, P2QRS, P5QS, P5RS; C16 = PSS, P5gRS, P2gS, P2RS.

C; to C8 C9 to C16

R, to R8 (Gl4) (G!4)
R 9 t oR 1 6 (Gf4) -(G14)

RT-. P = A; Q = G; R = B; S = E. R8: P = L; Q = M; R = N; S = E.
R15: P = A; Q = G; R = B; S = I. R16: P = L; Q = M; R = N; S = 7.
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G6
48

P4 = E; Q* = E; Q2 = P2; R3 = E; S2 = E; QP = P3Q; RP = P3QR; RQ = PR; SP = P2QS;
SQ = P3S; SR = R2S.
Ct = E; C2 = P2; C3 = P, Q, PQ, P3, P2Q, P3Q; C4 = R, R2, P3R, P2QR, PQR, QR2 PR2, P3QR2;
Cs = P2R, P2R2, PR, QR, P3QR, P2QR2, P3R2, PQR2; C6 = QS, P3S, P2QRS, P3QRS, PR2S, PQR2S;
C7 = P2QS, PS, QRS, PQRS, P3R2S, P3QR2S;
Cs = PQS, P3QS, RS, P2RS, R2S, P2R2S, S, P2S, P3RS, PRS, QR2S, P2QR2S.

C¡ C2 C3 C4 C5 C6 C7 Cs

« , 1 1 1 1 1 1 1 1
R2 I 1 1 1 1 - 1 - 1 - 1
«3 2 2 2 - 1 - 1 0 0 0
RI 2 - 2 0 - 1 1 -i^/2 ¡72 0
«5 2 - 2 0 - 1 1 \l]2 -Ljl 0
R6 3 3 - 1 0 0 1 1 - 1
R7 3 3 - 1 0 0 - 1 - 1 1
«8 4 -4 0 1 -1 0 0 0

R3: P = e,; Q = e; R = n; S = 0. Rt: P = {; Q = y; R = n; S = tj>.
RS P = Í*; Q = y*; R = n*; S = (¡>. R6. P = C; Q = G; R = K; S = F.
R7: P = C; Q = G; R = K; S = H.

«•"-£+7) «-044) '-^f7> -GH-3-

G7
48

P6 = £; Q2 = E; R2 = E; S2 = £; gP = PR; QP3 = P3Q; RP = P4QR; RQ = QR; SP = P2QS;
SQ = RS; SR = QS.
d = E; C2 = P3; C3 = Q, R, P3QR; C4 = P}Q, P3R, QR; C5 = PR, P4, PQ, P*QR, P5Q, P2, P2QR, P5R;
C6 = P*R, P, P*Q, PQR, P2Q, P5, P5QR, P2R; C7 = P*S, P5QS, P3QS, PRS, P2S, P3RS;
C8 = PS, P2QS, QS, P*RS, P5S, RS; Cg = S, QRS, P2QRS, P4QRS, P5RS, PQS;
C10 = P3S, P3QRS, P5QRS, PQRS, P2RS, P*QS.

C¡ C2 C3 C4 C5 C6 C7 Ca Cg C10

—I
Rl 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 - 1 - 1 - 1 - 1
«3 1 - 1 - 1 1 - 1 - 1 1 - 1 1
R4 1 - 1 - 1 1 - 1 1 - 1 1 - 1
« 5 2 2 2 2 - - l 0 0 0 0
R6 1 - 2 - 1 2 1 0 0 0 0
R7 3 3 - 1 - 1 0 0 1 1 - 1 - 1
Ra 3 3 - 1 - 1 0 0 - 1 - 1 1 1
R9 3 - 3 1 - 1 0 0 1 - 1 - 1 1
Rio 3 -3 1 - 1 0 0 - 1 1 1 -1

R5: P = a; Q = c; R = e; S = i. R6: P = -a; Q = -e; R = -E; S = i.
R7: P = A; Q = G; R = B; S = U. R8: P = A; Q = G; R = B; S = V.
R9: P = L; Q = M; R = N; S = U. R10: P = 1; Q = M; R = N; S = V.
Note that R = P5gP.
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r1»
"48

P4 = E; g4 = E; R3 = E; QP = PQR; QP2 = P3R; RP = P3Q2R2; RP2 = PQ; RQ = QR2.
C¡ = E; C2 = g2; C3 = P3g, Pg3, R, P2Q2R, PQ3R, P2Q2R2, R2, P3QR;
C4 = P3Q3, PQ, Q2R, P2R, PQR, P2R2, Q2P2, P3Q3R; C5 = P2Q2, P3QR2, PQ3R2;
C6 = P2, P3Q3R2, PQR2; C1 = Q, PR, QR, P2Q3R2, P3Q2R2, QR2;
C8 = g3, PQ2R, Q3R, P2QR2, P3R2, Q3R2; Cg = P, PR2, P2Q3, P3Q2, P2Q3R, P3Q2R;
Cio = PQ2, PQ2R2, P2Q, P3, P2QR, P3R.

C t C2 C3 C4 C5 C6 C7 C8 C9 C10

R¡ 1 1 1 1 1 1 1 1 1 1
«2 1 1 1 1 1 1 - 1 - 1 - 1 - 1
«3 1 - 1 1 - 1 1 - 1 i - i i - i
R4 1 -1 1 - 1 1 -1 -i i -i i
R5 2 2 - 1 - 1 2 2 O O O O
R6 2 -2 -1 1 2 - 2 O O O O
R7 3 3 O 0 - 1 - 1 1 1 - 1 - 1
R, 3 3 O 0 - 1 - 1 - 1 - 1 1 1
R9 3 -3 O O -1 1 i -i -i i
R¡0 3 -3 O 0 - 1 1 -i i i -i

RS'- P = "/; Q = <t>; R = n. R6: P = ó'; Q = K; R = n.
R7: P = W; Q = X; R = A. Rs: P = - W; Q = -X; R = A.
R9: P = \W; Q = iX; R = A. Rlo: P = -\W; Q = ~iX; R = A.

G9
48

p" = E; Q4 = E; R2 = E; QP = P50; RP = PR; RQ = P36«.
Ct = E; C2 = P3; C3 = P2, P4; C4 = P, P5; C5 = g2; C6 = P3Q2; C7 = P2Q2,P"Q2;
Cs = PQ2,P5Q2; C9 = R, P3J?; C10 = Q2R,P3Q2R; Cu = P2R,PR; C12 = P2Q2R,PQ2R;
C13 = P5«, P4/?; C,4 = P562«, P462R; C15 = g, Pg, P2g, P3g, P4g, P5g;
C.6 = Ó3, PQ1, P2Q3, P3Q}, P*Q3> P5Q3', CÍ7 = g«, Pg/í, P2g«, P3g«, P*QR, P5QR;
C18 = Q3R, PQ3R, P2Q3R, P3Q3R, P*Q3R, P""Q3R.

Ci C2 C3 C4 C5 C6 C7 C8 C9

R¡ 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1
J?3 1 1 1 1 1 1 1 1 -
R4 1 1 1 1 1 1 1 1
J?5 1 1 1 1 - 1 - 1 - 1 - 1
R6 1 1 1 1 - 1 - 1 - 1 - 1
R7 1 1 1 1 - 1 - 1 - 1 - 1 - 1
Rs 1 1 1 1 - 1 - 1 - 1 - 1 - 1
«, 2 - 2 2 - 2 2 - 2 2 - 2 O
RIO 2 - 2 2 - 2 - 2 2 - 2 2 O
/?!, 2 2 - 1 - 1 2 2 - 1 - 1 2
R12 2 2 - 1 - 1 2 2 -1 - -2
R13 2 - 2 - 1 1 2 - 2 - 1 O
R14\ 2 - 2 - 1 1 2 - 2 - 1 O
R15 2 2 - 1 - 1 - 2 - 2 1 2
£16 2 2 - 1 - 1 -2 -2 1 -2
#,7 2 -2 -1 1 - 2 2 1 - O
« l g 2 -2 -1 1 - 2 2 1 - O

i [continued on p. 254}
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(-10 (-11 (-12 (-13 (-i* (-is (-¡6 (-n (-\*

RI 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 - 1 - 1 - 1 - 1
«3 - -1 -1 -1 - I 1 1 - 1 - 1

R4 - -1 -1 -1 -1 - 1 - 1 1 1
R5 - 1 -1 1 -1 Í -Í i -Í

R6 1 - 1 1 -1 -i i -i i
R7 -1 1 - 1 1 i -i -i i
Rs -1 1 -1 1 -i i i -i
R g 0 0 O O O 0 0 0 0
R10 O O O O O 0 0 0 0
Rn 2-1 -1 -1 -1 O O O O
R12 - 2 \ 1 1 1 0 0 0 0
«i3 O -i^/3 -i^/3 ¡v'3 V3 0 0 0 0
R14 O iy/3 ¡V3 -¡V3 -V3 0 0 0 0
R15 -2 - 1 1 - 1 1 0 0 0 0
R16 2 1 - 1 1 - 1 0 0 0 0
R17 O -y"3 ¡V3 ¡v'3 -V'3 0 0 0 0
R18 O iv'3 -¡73 -i,}'3 ¡73 O O O O

R9: P = -e; Q = ¿; R = <£. «[0: P = -e; g = U; R = 0.
R l t : P = n; Q = 4>; R = E. R12: P = TI; 2 = <t>; R = -E.
R 1 3 : P = -TE; 6 = <¿>; « = A. R14: P = ~n; Q = <p; R = -L
K1 5 : P = n; Q = i4>; R = E. R16: P = ?r; g = i</>; 7? = -e.
«17: P = -TI; Q = \tj>; R = L Rla: P = -n; Q = i<t>; R = -A.

pío
"48

P8 = £; g3 = £; R4 = £; «2 = P4; gP = P6Q2R; QP2 = P3R; gP4 = P4g; g2P = P3g;
RP = P6g2; RP2 = Pg; RQ = Q2R.

C¡ = E; C2 = P4; C3 = P2, P5gR, P7QR, P6, PgP-, P3gP-;
Q = P4g, P6g, P5R, P'R, P4g2, Pg2«, P3g2R, P2g2; C5 = g, P2g, PK, P3«, g2, P5g2P-, P7g2P, P6g2;
C6 = P, P3g2, P6P-, P7, P2Q2R, P5g; C7 = P5, P7g2, P2R, P3, P6Q2R, Pg;
C8 = P3g, R, Pg2, P6gR, P4g2-R, P4gR, P7g, P4P,, P5g2, P2gP-, Q2R, QR.

C, C2 C3 C4 C5 C6 C7 C8

P., 1 1 1 1 1 1 1
R2 1 1 1 1 - 1 - 1 - 1
R3 2 2 2 - 1 - 0 0 0
P-4 2 - 2 O 1 72 -V2 O
«5 2 - 2 O 1 - -^2 72 O
P - 6 ¡ 3 3 - 1 O O 1 1 - 1
R-, 3 3 - 1 O 0 - 1 - 1 1
Ra 4 - 4 0 - 1 1 O O O

R3: P = /la; g = -0; R = A. P-4: P = -{'; g = n'*; R = Í'TI'.
R5: P = ç'; g = TI'*; R = -fu'. R6: P = Z; Q = D; R = -A'.
R7 : P = -Z; g = £>; R = A'.

R . p = ± / J-_^U«>\. 0 = 1 / ( -1+V I d- i )« 2 \ . = J_ /_0 (-1-im
"' v '2V-ua~| Aa /' ^ 2 V ( - 1 - i ) » 2 ! (-' -i)«2/ v'2 V(l - ¡M O /

Note that R = P5gP2.
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G i i
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P12 = E; Q2 = E; R2 = E; QP = P^QR; RP = PR; RQ = QR.
C, = £; C2 = P, P7R; C3 = P2; C4 = P3, P'jR; C5 = P4; C6 = P5, P11R; C7 = P6; C8 = P8; C9 = P10;
Cío = Q,P6QR; Cn = PQ,piQR; C,2 = P2Q,P*QR; C13 = P3Q, P9g£; C14 = P4g, P'°g«;
Cis = P5Q,P11QR; CI6 = P.; C17 = PR, P7; C18 = P2/?; C19 = P3S, P9; C20 = P4R; C21 = P5/?, P11;
C22 = P6R; C23 = P8«; C24 = P10R; C25 = g/?, P6g; C26 = PQR, P7g; C27 = P2QR, P»Q;
C28 = P3QR,P9Q; C29 = P4e«,P10e; C30 = P5QR,P11Q.

C¡ C2 C3 C4 C5 C6 C7 C8 C9 C10 Cu C12 Ci3 CM C15

R, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 11 1 1 1 1 1 1 1 - 1 - 1 -1 - 1 - 1 -1
7?3 1 -CO* (O — 1 CD* — QJ 1 CO CO* 1 — tU* ft) - CO* —ft)

R4 1 -CO* (0 — 1 CO* -CO 1 CO CO* -1 CO* —CO —ft)* CO

RS 1 ft) CO* 1 ft) CO* 1 CO* CO 1 CO CO* CO CO*

R6 1 CO CO* 1 CO CO* 1 CO* CO — 1 —CO —CO* - —CO —CO*

Rj 1 - 1 1 - 1 1 - 1 1 1 1 1 - 1 1 - 1 - 1
P - 8 J 1 - 1 1 -1 1 -1 1 1 1 -1 1 -1 -1 1

Rg 1 CO* CO 1 CO* CO 1 CO CO* 1 CO* CO 1 CO* CO

R¡0 1 CO* CO 1 CO* CO 1 CO ft)* — 1 —CO* —CO — 1 —CO* —CO

RU 1 -co co* — 1 co -co* 1 co* co 1 —co co* — 1 co —ft>*
R12 1 -co co* -1 co -co* 1 co* co — 1 co -co* 1 -ft) ft)*
R13 1 -i -1 i 1 -i -1 1 - 1 1 -i -1 i 1 -i
K14 1 -i -1 i 1 -i -1 1 -1 -1 i 1 -i -1 i
-S15 1 Íft>* —CU — Í CO* ÍCO —1 ft) —ft)* 1 ICO* —CO — Í CO* ICO

R¡6 1 ico* —co — i co* ico — 1 co —co* — 1 —ico* co i — co* —ico
Rn 1 —ico — co* i co —ico* — 1 co* — co 1 —ico — co* i co —ico*
R¡8 1 —ico —co* i co —ico* — 1 co* —co — 1 ico c o * — i —co icu*
Rig 1 i -1 -i 1 i -1 1 -1 1 i -1 -i 1 i
R2a 1 i -1 -i 1 i -1 1 -1 -1 -i 1 i -1 -i
R2í 1 —ÍCO* —CO Í C O * — Í C O — 1 CO — CO* 1 —ÍCO* —CU Í CO* — ICO

R22 1 —ÍCO* —CO Í CU* — ICO — 1 CO — C O * — 1 ÍCO* CO — Í - CO* ÍCO

/?23 1 ico — co* — i co ico* — 1 co* — co 1 ico —co* —i co ico*
R24 1 ico — co* — i co ico* — 1 co* — co — 1 —ico co* i — co —ico*
R25 2 O -2co* O 2co O - 2 2co* -2co 0 0 0 0 0 0
«26 2 O - 2 0 2 0 - 2 2 - 2 0 0 O 0 0 O
«27 2 O -2co O 2co* O - 2 2co -2co* 0 0 0 0 0 0
«28 2 O 2co* O 2co O 2 2co* 2co O O O 0 0 O
R29 2 0 2 0 2 0 2 2 2 0 0 0 0 0 0
R}0 2 0 2eu O 2eu* O 2 2co 2co* O O O 0 0 O

[continued on p. 256]
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£-16 £-17 £-18 £-19 £-20 £-21 £-22 £-23 £-24 £-25 £-26 £-27 £-28 £-29 £-30

Ri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 1 1 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1
«3 1 —03* 0> —1 CO* -CO 1 CO CO* 1 —CO* CO —1 CO* -CO

«4 1 —CO* CO — 1 CO* —CO 1 CO CO* — 1 CO* —CO 1 —CO* CO

«5 1 CO CO* 1 CO CO* 1 CO* CO 1 CO CO* 1 CO CO*

Rf, 1 CO CO* 1 CO CO* 1 CO* CO — 1 —CO —CO* -1 -CO -CO*

R1 1 - 1 1 - 1 1 - 1 1 1 1 1 - 1 1 - 1 1 - 1
«8 1 - 1 1 -1 1 -1 1 1 1 -1 1 -1 1-1 1

Rg 1 CO* CO 1 CO* CO 1 CO CO* 1 CO* CO 1 CO* CO

«10 1 CO* CO 1 CO* CO 1 CO CO* — 1 —CO* —CO — 1 —CO* —CO

«n 1 —co co* —1 co —co* 1 co* co 1 —co c o * — 1 c o — c o *
«12 1 —co co* —1 co —co* 1 co* co —1 co —co* 1 —co co*
«13 -1 i 1 -i -1 i 1 - 1 1 -1 i 1 -i -1 i
«14 -1 i 1 -i -1 i 1 - 1 1 1 -i -1 i 1 -i
«15 —1 —ico* co i —co* —ico 1 —co co* —1 —ico* co i —co* —ico
«16 —1 —ÍCO* CO Í —CO* —ÍCO 1 —CO CO* 1 ÍCO* —CO —Í CO* ÍCO

«17 -1 ico co* —i —co ico* 1 -co* co — 1 ico co* —i —co ico*
«18 —1 ÍCO CO* —Í —CO ÍCO* 1 — CO* CO 1 —ÍCO — CO* Í CO —ÍCO*

«19 -1 -i 1 i -1 -i 1 - 1 1 -1 -i 1 i -1 -i
«20 -1 -Í 1 Í -1 -Í 1 - 1 1 1 Í -1 -Í 1 Í

«21 — 1 ico* co — i — co* ico 1 — co co* — 1 ico* co — i — co* ico
R22 -1 ico* co — i -co* ico 1 —co co* 1 —ico* —co i co* -ico
«23 — 1 —tía co* i — co —ico* 1 — co* co — 1 —ico co* i —co —ico*
«24 — 1 —ico co* i — co —ico* 1 — co* co 1 ico — co* — i co ico*
«25 2 O -2co* O 2co O - 2 2co* -2co 0 0 O 0 0 0
«26 2 0 - 2 0 2 0 - 2 2 - 2 0 0 O 0 0 0
«27 2 O -2co O 2co* O - 2 2co -2co* 0 0 O 0 0 0
«28 - 2 O -2co* O -2co O - 2 -2co* -2co 0 0 O 0 0 0
«29 - 2 O - 2 0 - 2 0 - 2 - 2 - 2 0 0 O 0 0 0
«30 - 2 O -2co O -2co* O - 2 -2co -2co* 0 0 O 0 0 0

R2S p = -icoA; Q = 0; « = E.
«26 P = U; Q = < / > ; « = e.
R21 p = ico*^; Q = <¡>; R = E.
«28 P = col; Q = 4>; R = -E.
«29 P = -A; Q = 4>; R= -e.
«30 P = ~ca*¿; Q = 0; « = -e.
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P>2 = E; Q4 = E; QP = PnQ.
d = E; C2 = P6; C3 = P4, P8; C4 = P2,P10; C5 = P3, P9; C6 = P,P11; C7 = P5, P1,
Ca = Q, P2Q, P*Q, P6Q, PSQ, PWQ; C9 = PQ, P3Q, P5Q, PJQ, P9Q, PnQ; C10 = Q2; Cn = P"Q2;
Ci2 = P*e2,-P8E>2; C13 = P2Q2,PÍOQ2; C14 = P3Q2,P9Q2; C15 = PQ2,PilQ2; C16 = P5g2,P7e2;
Cn = Q3, P2Q3, P4Q3, P6Q3, PSQ3, P10Q3; Cis = PQ3, P3Q3, P5Q3, P^Q3, P9Q3, P^Q3.

Í-1 t-2 ^--3 ^-4 Í-5 ^6 ^-7 ^-8 ^-9

« , 1 1 1 1 1 1 1 1 1

R2 1 1 1 1 1 1 1 - 1 - 1
R3 1 1 1 1 - 1 - 1 - 1 1 - 1

R4 1 1 1 1 - 1 - 1 - 1 - 1 1
R, 2 2 - 1 - 1 - 2 1 1 0 0
R6 2 2 - 1 - 1 2 - 1 - 1 0 0
R-, 2 - 2 - 1 1 0 v'3 -73 0 0
Rs 2 - 2 - 1 1 0 -^3 V3 0 0
R, 2 -2 2 - 2 0 0 0 0 0
Rio 1 1 1 1 1 1 i i
«u 1 1 1 1 1 1 -i -i
£12 1 1 1 1 -1 -1 - i -i
R13 1 1 1 1 -1 -1 - -i i
RÍ4 2 2 - 1 - 1 - 2 1 0 0
R15 2 2 - 1 - 1 2 -1 O O
RÍ6 2 -2 -1 1 O v'3 -v'3 O O
Rn 2 - 2 - 1 1 O -V3 v'3 ° °
RÍS 2 -2 2 - 2 O O O O O

^•10 ^-11 ^-12 ^-13 (--14 ^-15 ^--16 £-17 £-18

«, 1 1 1 1 1 1 1 1 1

R2 1 1 1 1 1 1 1 - 1 - 1
^3 1 1 1 1 - 1 - 1 - 1 1 - 1

R4 1 1 1 1 - 1 - 1 - 1 - 1 1
R5 2 2 - 1 - 1 - 2 1 1 0 0
R6 2 2 - 1 - 1 2 - 1 - 1 0 0
R7 2 - 2 - 1 1 O v'3 -V/3 ° °
Rs 2 - 2 - 1 1 O -73 V'3 O O
R9 2 - 2 2 - 2 0 0 0 0 0
RÍO -1 -1 -1 -1 -1 -1 -1 -i -i
«n -1 -1 -1 -1 -1 - -1 Í Í

RÍ2 -1 -1 - 1 - 1 1 1 -i i
R¡3 -1 - 1 - 1 - 1 1 1 i - i
K14 -2 -2 1 1 2 - -1 O O
R15 - 2 - 2 1 1 - 2 1 0 0
RÍ6 -2 2 1 - 1 O -V3 V3 ° °
R,7 -2 2 1 - 1 O V3 -V3 ° °
« 1 8 - 2 2 - 2 2 0 0 0 0 0

¡
Rs: P = -TI"; Q = <t>. «6: P = n; Q = <t>.
R7: P = p; Q = <¡>. Rs: P = -p*; Q = 0.
«,: P = u; 6 = 0. «14: P = -7t*; g = i0.
«15: P = n; Q = i<l>. R{6: P = p; g = ¡<¿.
S17: P = -p*; Q = i0. «,8: P = U; 2 = i<^.
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G l 3
48

p6 = E; Q* = E; R4 = E; Q2 = P3; QP = P5Q; RP = PR; RQ = P3QR.
C¡ = E; C2 = P3; C3 = R2; C4 = P3R2; C5 = P, P5; C6 = P2, P4; C7 = PR2,P5R2;
Ca = P2R2,P*R2; C9 = R,P3R; C10 = R3,P3R}; C¡¡ = PR,P2R; C12 = P*R,P5R; C13 = PR3,P2R3;
C,4 = P4P,3, P5R3; C15 = Q, PQ, P2Q, P3Q, P4Q, P5g; C16 = QR2, PQR2, P2QR2, P3QR2, PÍQR2, P5QR2;
C17 = QR, PQR, P2QR, P3QR, P4QR, P*QR; C18 = QR3, PQR3, P2g«3, P3g«3, P4gfl3, P5QR3.

I Í-1 ^-2 ^--3 ^4 ^5 ^6 ^-7 ^-8 ^9

R! 1 1 1 1 1 1 1 1 1

R2 1 1 1 1 1 1 1 1 1

«3 1 1 1 1 1 1 1 - 1

R4 1 1 1 1 1 1 1 - 1

« 5 1 1 - 1 - 1 1 - 1 - 1 Í

R6 I 1 - 1 - 1 1 - 1 - 1 i
«7 1 1 -1 -1 1 -1 -1 -Í

«8 1 1 - 1 - 1 1 -1 -1 - i

Rg 2 2 2 2 - - 1 - 1 - 1 2
R10 2 2 2 2 - - 1 - 1 -1 -2
«,, 2 2 - 2 - 2 - 1 - 1 1 1 2i
R12 2 2 - 2 - 2 - 1 - 1 1 1 -2i
R13 2 - 2 2 - 2 - 2 2 - 2 2 0
«,4 ¡ 2 - 2 2 - 2 1 - 1 1 - 1 0
«15 2 - 2 2 - 2 1 - 1 1 - 1 0
R16 2 - 2 - 2 2 - 2 2 2 - 2 0
Rn 2 - 2 - 2 2 1 - 1 - 1 1 0
R1S 2 - 2 - 2 2 1 - 1 - 1 1 0

^10 ^-11 ^-12 ^-13 ^14 *--15 (-16 ^- -17 ^18

«, 1 1 1 1 1 1 1 1 1

R2 1 1 1 1 1 - 1 - 1 - 1 - 1
_R3 - 1 - 1 -1 -1 -1 1 1 - 1 - 1
«4 - 1 - 1 -1 -1 -1 - -1 1 1
R5 ! — i i i — i — i -1 i -í
R6 —i i i — i -i - 1 — i i
R-, i — i — i i i — 1 — i i
Rs i —i -i i i — 1 i —i
«9 2-1 -1 -1 -1 O O O O
RIO - 2 I 1 1 1 0 0 0 0
Ru - 2 i - i - i i i 0 0 0 0
RÍ2 2 i i i - i - i 0 0 0 0
« 1 3 0 0 O O O 0 0 0 0
R14 O iv'3 -iv'3 ¡v'3 -¡V3 ° ° ° °
R15 O -ÍV3 ¡v'3 -iv'3 ¡v'3 0 0 0 0
« 1 6 0 0 O O O 0 0 0 0
«17 o V3 -V'3 -V3 V3 o ° ° °
«18 O -V3 V3 v'3 -V3 0 0 0 0

R9: P = a; Q = A; R = e. « t o: P = a; g = A; « = -E.
«i , : P = a; g = A; « = ic. «12: P = a; Q = A; R = -ÍE.
Px 1 3 : P = -E; 0 = i$; « = /. «14: P = -a; S = ¡À; « = -ÍK.
«15: P = -a; g = U; R = k. «,6: P = -E; Q = i</>; R = u.
«17: P = -a; g = u; « = -K. P,18: P = -a; g = ¡Â; R = K.
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G 14
48

P4 = E; Q" = E; «4 = E; R2 = Q3; QP = Pg5; gP2 = ^2g; RP = -P3«; «g = g«.
Ci = E; C2 = P2; C3 = Q, g5; C4 = P2Q, P2g5; C5 = «, P2«; C6 = g2«, P2g4«; C7 = g«, P2g5«;
C8 = P, Pg4, Pg2, P3, P3g4, P3g2f Q = P«, Pg4«, Pg2«, P3P-, P3g*«, P3g2«; C10 = g3; Cn = P2g3;
C,2 = g4, g2; C13 = P2g4, P2g2; C14 = g3«,P2g3«; C1S = g5R,P2g«; C,6 = Q*R, P2Q2R;
C17 = Pg3, Pg, Pg5, P3g3, P3g, P3g5; C I8 = PQ3R,PQR,PQ5R,P3QÍR,P3QR,P3Q5R,

Cj C2 C3 C4 C5 C6 C7 C8 C9

R, 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 - -1
«3 1 1 1 - 1 - 1 -1 - 1

R4 1 1 1 - 1 - 1 -! - 1
«5 1 -1 -1 Í i -Í j

R6 1 - 1 - 1 i i -i -i
R7 1 -1 -1 -i -i i -i
_R8 1 -1 -1 -i -i i - i
Re, 2 2 - 1 - 1 2 - 1 - 1 O O
R I O 2 2 - 1 - 1 - 2 1 1 0 0
Rtl 2 2 1 1 2 i - i i 0 0
«12 2 2 1 1 - 2 i i - i 0 0
«i3 2 - 2 - 1 1 O iv/3 -v'3 O O
RU 2 -1 -1 1 O -iv'3 iv'3 O O
«i, 2 - 2 1 - 1 O v'3 V3 ° °
«16 2 -2 1 - 1 O -V'3 -v'3 O O
P.,, 2 - 2 2 - 2 O O O 0 0
«IB 2 - 2 - 2 2 O O O 0 0

Í \0 ^ - -11 ^12 ^13 ^-14 ^-15 ^-16 ^-17 £-18

«, 1 1 1 1 1 1 1

R2 I 1 1 1 1 1 1 - - 1
«3 1 1 1 - 1 - 1 - 1 - 1

«4 1 1 1 - 1 - 1 -1 - 1

«5 I - -1 1 1 -Í -Í j - -i

R6 -1 -1 1 1 -i -i i i
«7 -1 -1 1 1 i Í -Í -1 i

«8 -1 -1 1 1 Í Í -Í 1 -Í

«9 2 2 - 1 - 1 2 - 1 - 1 O O
R I O 2 2 - 1 - 1 - 2 1 1 0 0
«n -2 -2 -1 -1 -2i i -i O O
«12 - 2 - 2 - 1 - 1 2 i - i i 0 0
«13 2 - 2 - 1 1 O ¡V3 -H/3 O O
«14 2 - 2 - 1 1 O _ i / 3 V3 ° °
«,5 -2 2 - 1 1 O -v/3 -V3 ° °
«16 -2 2 - 1 1 O v'3 V3 ° °
Rn 2 - 2 2 - 2 O O O 0 0
« 1 8 - 2 2 2 - 2 0 0 O 0 0

«9: P = <t>; Q = K*; « = c. Río: P = 0; g = TU*; « = -E.
«M : P = 0; g = ~r*\ R = ¡E. R 1 2 : P = < ^ > ; g = -n*; « = -ip..
R13: P = -i<#); g = TI*; R = /. R14: P = i f / > ; g = TI; « = ;..
P.,5: P = -i(^>; g = -TI*; « = -U. «i6: P = i</>; g = -TT; « = -u.
«,7: P = i< /> ; g -= c; R = A. «i8: P = ¡0; g = -c; « = ¡A.
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G l 5
48

P12 = E; g4 = E; P.2 = E; Q2 = P6; QP = Png; RP = PR; RQ = QR.
C¡ = E; C2 = P6; C3 = P, P11; C4 = P5, P1 ; C5 = P2,Pl°; C6 = P4,PS; C1 = P3, P9;
C8 = Q, P2Q, P4g, P"Q, P8g, P10g; C, = PQ, P3g, P5Q, P7g, P9g, P11Q; CIO = «; C, L = P6«;
C12 = PR, PllR; C13 = P5P-, P7R; C14 = P2/?, Pl°R; C15 = P*R, PSR; C16 = P3R, P9«;
C17 = QR, P2QR, P*QR, P6g#, PSQR, P10QR; C18 = PQR, P3QR, P5QR, P1 QR, P9QR, PilQR.

C,toC, C1 0 toC1 8

«, to Rg (Gi\) (G2i)
/?,0 toj;1 8 I (G'l) -(GU)

R,\ P = -TI*; g = <t>;R = £• «6: P = Jt; g = < / > ; « = c.
«7: P = P', Q = i<t>; R = £- R8 : P = -p*; g = i<#>; P. = g.
R9: P = U; g = i</>; « = e. «14: P = -71*; Q = <f', K = -£.
«15: P = TC; e = 4>; « = -c. R I S - P = p; Q = i(t>; R = -E.
/?17: P = -p*; g = i</>; « = -s. Rls: P = U; g = i<?i; P = -e.

G i
64

P2 = £; g4 = £; Rs = E; QP = Pg3/?4; «P = P«; «g = QR1'.
Ci = E; C2 = P4; C3 = g2; C4 = g2P,4; C5 = «2, «6; C5 = Q2R2,Q2R6; C, = «, «7; Cg = R5, R3;
C9 = Q2R, Q2R1; C10 = g2P-5, Q2R3; C¡¡ = PR, PQ2R3; C12 = PR5, PQ2R7; C13 = Pg2P, PP.3;
Ci4 = PQ2R5, PR1; C15 = P, Pg2P.4; C16 = PP.4, Pg2; C17 = PR2, Pg2P2; C18 = PR6, Pg2P6;
C19 = Pg, PgR2, Pg3R4, Pg3P6, Pg«4, PgR6, Pg3, Pg3R2;
C20 = PgR, PgP3, PQ3R5, Pg3R7, Pg«5, PgR7, Pg3«, Pg3R3;
C21 = g, g«2, g3P-4, g3^6, g«4, QR6, Q3, Q3R2; C22 = QR3, QR, Q3R\ Q3R5, QR7, QR5, Q3R3, Q3R.

Cj C2 C3 C4 C5 C6 C7 C8 C9 C10 Cu

R! 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 1
R3 I 1 1 1 1 - 1 - 1 - 1 -
R4 \ } 1 1 1 -1 - -1 - -
R5 1 1 1 1 1 1 1
Rh 1 1 1 1 1 1 1
R7 1 1 1 1 1 -1 - 1 - 1
R8 1 1 1 1 1 1 -1 - - 1 - 1
P., 2 2 2 2 - 2 - 2 0 0 0 0 0
R10 2 2 - 2 - 2 2 - 2 2 2 - 2 - 2 0
Rn 2 2 - 2 - 2 2 - 2 - 2 - 2 2 2 0
R12 2 2 - 2 - 2 - 2 2 0 0 0 0 2i
P,13 2 2 - 2 - 2 - 2 2 0 0 0 0 -2i
«14 2 2 2 2 -2 -2 0 0 0 0 0
R¡5 2 - 2 - 2 2 0 0 V'2 ~V2 ~V2 V2 V2

P-16 2 - 2 - 2 2 0 0 V2 -x/2 -v'2 V2 -V'2

Rn 2 - 2 - 2 2 0 0 -^2 ^2 V2 "V2 "V2

«is 2 - 2 - 2 2 0 0 -v'2 V2 V'2 -V2 V2

«,9 2 - 2 2 - 2 0 0 V2 -V2 V2 ~V'2 W2

«20 2 - 2 2 - 2 0 0 V2 -V2 \/2 ~v'2 -'V2

P21 2 - 2 2 - 2 0 0 -v'2 v/2 ~V2 V/2 'V2

«22 2 -2 2 - 2 0 0 -v'2 V'2 W2 V2 'V2

[continued on p. 261~\
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Cl2 C1 3 Ci4 Cj5 C16 C17 C]8 C,g C20 C21 C22

«! 1 1 1 1 1 1 1 1 1 1

«j 1 1 1 1 1 1 - 1 - 1 - 1 - 1

« 3 - 1 - 1 - 1 1 1 1 - 1 1 - 1

«4 - 1 - 1 - 1 1 1 - 1 1 - 1 1

R5 -1 -1 -1 - - -1 -1 1 1 -1 -1

R6 -1 -1 -1 - - -1 -1 -1 -1 1 1

R7 1 1 1 - - - 1 - 1 1 - 1 - 1 1

R g I 1 1 - 1 - - 1 - 1 - 1 1 1 - 1
R9 0 0 0 2 2 - 2 - 2 0 0 0 0
Rlo 0 0 0 0 0 0 0 0 0 0 0
RU 0 0 0 0 0 0 0 0 0 0 0
R¡2 2i -2i -2i 0 0 0 0 0 0 0 0
«13 -2i 2i 2i 0 0 0 0 0 0 0 0
K,4 0 0 0 - 2 - 2 2 2 0 0 0 0
«is -^2 -v/2 ,/2 2 -2 0 0 0 0 0 0
R16 V2 v'2 -V2 - 2 2 0 0 0 0 0 0
f l , 7 v'2 v/2 -V2 2 - 2 0 0 0 0 0 0
«18 -^2 -v'2 v'2 -2 2 0 0 0 0 0 0
fi,9 -iv/2 ¡v'2 -i72 0 0 2i -2i 0 0 0 0
R20 ¡v'2 -iv'2 1^2 0 0 -2i 2i 0 0 0 0
R2i ¡V2 -i^/2 i^/2 0 0 2i -2i 0 0 0 0
R22 -ÍJ2 Í.J2 -i^/2 0 0 -2i 2i 0 0 0 0

fi,: P = E; Q = 0; R = -iÀ.
R,o P = -I; 0 = K; R = £.
«u P = -/; Q = K; R = -s.
RÍ2 P = -A; Q = K; R = -i/..
Rn P = -i; Q = K; R = u.
«14 P = -E; Q = (¡>; R = -U.
«is ^ = e; g = U; R = ô.
RÍÍ, P = -f.; Q = u; R = 5.
Rn P = e; Q = U; R = -a.
«is P = -E; 6 = U; R = -<5.
J{19 P = -ÍK; g = ).; R = a.
«20 P = \K; Q = A; R = &.
R2l P = -ÍK; Q = ¿; R = -6.
R22 P = \K; Q = A; R = -S.
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Git

ps = E; Q4 = E; R4 = E; R2 = P4; QP = P3Q3; QP2 = P6Q; RP = P1 R; RQ = P4Q3R.
C¡ = E; C2 = P*; C3 = P*Q2; C4 = Q2; C5 = P2, P6; C6 = P2Q2, P6Q2; C7 = P3R, PR, P7R, P5R;
C8 = P3Q2R, PQ2R, P7Q2R, P5Q2R; C9 = QR, P4Q3R; C,0 = P4QR, Q3R;
C,, = P2Q3R,P6QR,P6Q3R,P2QR; C12 = PQ, P1 Q3, P5Q, P3Q3; C13 = PQ3, P1 Q, P5Q3, P3Q;
C14 = R, P2R, P*Q2R, P6Q2R, P*R, P6R, Q2R, P2Q2R; C15 = P, P1, PSQ2, P3Q2;
C16 = P5, P\ PQ2, PJQ2; CÍ7 = Q, P'Q, P'Q3, P6Q\ P4Q, P"Q, Q3, P2Q3;
C18 = PQR, pTQR, P5Q3R, P3Q3R; C19 = P5QR, P3QR, PQ3R, P1Q3R.

Ci C2 C3 C4 C5 C6 C7 C8 C9 C I O

« , 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 1 1
R} 1 1 1 1 1 1 - 1 - 1 1 1
«4 1 1 1 1 1 1 - 1 - 1 1 1

R5 1 1 1 1 1 1 1 1 - 1 - 1
R6 1 1 1 1 1 1 1 1 - 1 - 1
R1 1 1 1 1 1 1 - 1 - 1 - 1 - 1
Rs I 1 1 1 1 1 - 1 - 1 - 1 - 1
«9 2 2 - 2 - 2 2 - 2 2 -2 0 0
R,0 2 2 2 2 - 2 - 2 0 0 2 2
«¡! 2 2 - 2 - 2 - 2 2 0 0 0 0
R1 2 2 2 - 2 - 2 2 - 2 - 2 2 0 0
R¡3 2 2 2 2 - 2 - 2 0 0 - 2 -2
J?14 2 2 - 2 - 2 - 2 2 0 0 0 0
RÍ5 | 2 -2 2 - 2 0 0 0 0 - 2 2
R16 2 -2 2 - 2 0 0 0 0 2 - 2
R17 2 -2 2 - 2 0 0 0 0 - 2 2
Rla 2 -2 2 - 2 0 0 0 0 2 - 2
^ , , 4 - 4 - 4 4 0 0 0 0 0 0

[continued on p. 263]
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( - • 1 1 (-12 ^-13 (-14 (-15 (-16 (-17' (-18 (-19

«! 1 1 1 1 1 1

R2 1 - 1 - 1 - 1 - 1 - - 1

« 3 1 - - 1 - 1 - 1 1 - - 1

«4 1 - - -1 1 1 - 1 1

«5 -1 - - 1 1 1 -1 -1

R6 -1 - - 1 - 1 - 1 1 1

R7 - 1 1 - 1 - 1 - 1 1

K8 -1 1 -1 1 1 1 - 1 - 1
R9 0 0 0 0 0 0 0 0 0
« 1 0 - 2 0 0 0 0 0 0 0 0
RU 0 2 - 2 0 0 0 0 0 0
RÍ2 0 0 0 0 0 0 0 0 0
R¡3 2 0 0 0 0 0 0 0 0
RÍ4 0 - 2 2 0 0 0 0 0 0
RÍ5 O O O O V2 -V2 O -V2 V2

«,6 o o o o v'
2 -V2 ° V2 -V2

Rn 0 0 0 0 -v'2 V2 ° V2 ~V2

«,8 o o o o -72 V2 ° -V2 V2

«,, 0 0 0 0 0 0 0 0 0

Rg: P = <t>\ Q = K; R = </>.
«10 P = -K; Q = tj>; R = <¡>.
Rtí P = -K; Q = K; R = <j>.
RÍ2 P = -(/,; Q = K; R = (/,.

RÍ3 P= -K; Q =-</>; R = $.
RÍ4 P = -K; Q = -K; R = <j>.
R¡5 P = ó; Q = i</>; R = ¡0.
«i6 P = <5; Q = -í</>; R = it-
K1 7 P = _¿; g = ¡0; R = ¡0.

«is í = -S; Q = -i</>; R = it-

'.."•(£-hr> »-(^HH?> -GH-n)-
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G3
64

P8 = E; Qs = E; QP = P3g7; QP* = P*Q; Q2P = PQ2.
C, = E; C2 = P

4; C3 = P
402; Q = Ô2; C5 = 2

4; C6 = P
4g4; C7 = P

4g6; C8 = g
6;

C9 = P
2, P6g4; C10 = P

6, P2g4; Cn = P
6g2, P2g6; C12 = P

2g2, P6Q6; C13 = P, P
3Q6;

C14 = P
5, P7g6; C15 = P

5Q2, P7; C16 = PQ
2, P3; C17 = Pg

4, P362; C18 = P
5g4, P7g2;

C19 = P
5Q6, P7g4; CM = Pg

6, P3g4; C21 = Q, P
4g5, P2g7, P6g3; C22 = P

4g, Qs, P6Q\ P2g3;

c23 = ^4e3, e7 ,^ '6,p2Q5- , c24 = e3, P4e7,P2e,P6e5; c25 = p5e3,pg7,P7e,P3e5;
c26 = PQ3' p5Q7, P3Q> P^Q5; c27 = PQS, p5Q, P3g3,P7e7; c28 = P5g5, pg, P7g3, P3e7.

G! C2 C3 C4 C5 C6 C7 C8 C9 C10 Cj! C12 C13 C ]4

R¡ 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
«3 1 1 - 1 - 1 1 -1 -1 - 1 - 1 1 1 -i -i
£4 1 1 - 1 - 1 1 -1 -1 - 1 - 1 1 1 -i -i
«5 1 1 1 1 1 1 1 1 1 1 1 - 1 - 1

R6 1 1 1 1 1 1 1 1 1 1 1 - 1 - 1
R7 1 1 - 1 - 1 1 - 1 - 1 - 1 - 1 1 1 i i
Rs 1 1 - 1 - 1 1 - 1 - 1 - 1 - 1 1 1 i i
Rg 1 -1 i -i -1 1 -i i -i i 1 -1 i0 -Í6
^10 i - i i -i -i i -i i -i i i - i \e -is
RU i - i i -i -i i -i ¡ - i i i - i -ie ie
R,2 1 - 1 i - i -1 1 - i i - i i 1 - 1 -Í0 i0
«13 i -i - i i -i i i - i i - i i - i e -0
RH 1 -1 - i i -1 1 i - i i - i 1 - 1 0 -0
RÍ5 1 -1 - i i - 1 1 i - i i - i 1 - 1 - 0 0
R,6 1 -1 - i i -1 1 i - i i - i 1 - 1 - 0 0
Rn 2 2 2 2 2 2 2 2 -2 -2 -2 -2 0 0
/?i8 2 2 - 2 - 2 2 2 - 2 - 2 2 2 - 2 - 2 0 0
R19 2 -2 2i -2i -2 2 -2i 2i 2i -2i - 2 2 0 0
«20 2 -2 -2i 2i -2 2 2i -2i -2i 2i -2 2 0 0
«21 2 2 -2i -2i -2 -2 2i 2i 0 0 0 0 1 + i 1 + i
«22 2 2 -2i -2i -2 -2 2i 2i 0 0 0 0 -1- i -1- i
«23 2 2 2i 2i -2 -2 -2i -2i 0 0 0 0 1 - i 1 - i
S24 2 2 2i 2i -2 -2 -2i -2i 0 0 0 0 - 1 + i - 1 + i
«25 2 -2 2 - 2 2 - 2 2 - 2 0 0 0 0 </2 -v'2
R26 2 -2 2 - 2 2 - 2 2 - 2 0 0 0 0 -J2 v'2
R21 2 -2 -2 2 2 - 2 - 2 2 0 0 0 0 i^2 -1^2
«28 2 -2 -2 2 2 - 2 - 2 2 0 0 0 0 -i,/2 i^/2

[continued on p. 265]
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^-15 ^-16 C-17 CIK ^19 ^-20 ^21 ^-22 ^-23 ^24 ^25 ^26 ^--27 ^--28

« , 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 1 1 1 1 1 1 - 1 - 1 - 1 - 1 - - 1 - 1 - 1

«3 i i — i — i i i i i -i —i — -1 1 1
«4 i i — i — i i i — i — i i i 1 — 1 — 1
R5 - 1 - 1 -1 -1 -1 -1 - 1 - 1 - 1 - 1 1 1 1
R6 - 1 - 1 -1 -1 -1 -1 1 1 1 1 - - 1 - 1 - 1
R7 — i — i i i — i — i — i — i i i — 1 — 1 1 1
RB - i — i i i - i — i i i - i - i 1 1 — 1 — 1
«9 -e e -i0 ¡0 e -o ¡e -¡e -e e i -i ¡ -¡
«10 -e e -ÏG ¡0 e -o ~¡e \o o -e -\ i -¡ ¡
R¡¡ e -e id -io -e e w -10 -e e -i i -¡ i
«,2 0 -9 i6 -i0 -8 8 -id í6 8 -0 1 -1 i -i
«13 -i0 ¡0 -0 0 i0 -i0 0 -0 -i0 ¡0 1 -1 -i i
«14 -:0 i0 -0 0 i0 -Í0 -0 0 i0 -i0 -1 1 i -i
«15 i0 -i0 0 -0 -i0 i0 0 -0 -i0 i0 -1 1 i -i
«16 ¡0 -i0 0 -6 -i0 i0 -0 0 ¡0 -i0 1 -1 -i i
«17 O O O O O O 0 0 0 0 0 0 0 0
«,g O O O O O O 0 0 0 0 0 0 0 0
« 1 9 0 0 O O O O 0 0 0 0 0 0 0 0
R 2 0 0 0 O O O O 0 0 0 0 0 0 0 0
R2i 1-i 1-i -1-i -1-i -1+i -1+i 0 0 0 0 0 0 0 0
«22 -1+i- l + i 1 + i 1 + i 1 - i 1 - i 0 0 0 0 0 0 0 0
«23 1 + i 1 + i -1+i -1+i -1-i -1-i 0 0 0 0 0 0 0 0
«24 -1-i-l-i 1 - i 1 - i 1 + i 1 + i 0 0 0 0 0 0 0 0
« 2 5 V2 -v'2 V2 ~V2 V2 "V2 o o o o o o o o
«26 -V2 V2 -V2 V2 -v'2 V2 o o o o o o o o
«27 -¡V2 ¡V2 V2 ~¡V2 ~¡V2 ¡ V 2 o o o o o o o o
«28 i^/2 -ij2 -\J2 iv'2 iv'

2 "¡V2 ° ° ° ° 0 0 0 0

«,, P = K; Q = ¿.
«18 P = 1; Q = K.
«19 P = 0/1; g = 0K.
«20 P = BK; Q = 0/1.
R21 P = iv*; g = i0v.
«22 p = -iv*; Q = ií^v.
«23 F = v*; 0 = 0v.
«24 ^ = -v*; 6 = 0v.
«25 P = ó; Q = \6<t>.
«26: P = -6; Q = \&<t>.
R21: P = iS; Q = -ó<f>.
«28: / > = -iá; 6 = -e<t>.

265
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G4
64

Ps = E; Q4 = E; R2 = E; QP = P3£>3; RP = PR; RQ = QR.
d = E; C2 = P4; C3 = P2, P6; C4 = g2; C5 = P4Q2; C6 = P2Q2, P6Q2; C-, = P, P3Q2;
C8 = PQ2,P3; Cg = P5,P7Q2; C,0 = P5Q2,P7; C,, = PQ, P3Q\ P5Q, P7Q3;
C12 = PQ3, P3Q, P5Q3, piQ; C13 = Q, P2Q3, P4Q, P6g3; C14 = Q3, P2Q, P4Q3, P6Q, C15 = R;
C16 = P4R; C17 = P2R, P6R; C18 = 62R; C19 = P4g2R; C20 = P2Q2R, P6Q2R; C21 = P«, P3g2«;
C22 = PQ2R,P3R; C23 = P5R, P7g2R; C24 = P5Q2R,P1R; C25 = PQR, P3Q3R, P5Q, P7Q3R;
C26 = PQ3R,P3QR,P5Q3R,P1QR, C27 = QR, P2Q3R, P4QR, P6Q3R, C28 = Q3R, P2QR, P"Q3R, P6QR.

C,toC1 4 C1 5 toC2 8

«ito*14 (GU) (GÜ)
«1 5 to/?2 8 (GU) -(GÜ)

R5: P = K; g = A; /{ = E. «6: P = Í; 6 = /" . ;« = E.
R7: P - {*; g = /; R = s. R12: P = i/c; g = iA; K = f..
R¡3: P = i f ; 2 = U; « = E. *i4: ^ = ¡Í*; C = U; /? = e.
Rlg: P = K; Q = h R = -«. «20: P = Í; 2 = A; « = -£.
R 2 i : ^ = £*; 6 = /I; R = -£• ^26: ^P = «; 8 = U; R = -E.
£27: p = i£; Q = U; « = -E. R28: P = ¡Í*; g = U; R = -e.

G¡*
P8 = E; Q4 = E; R2 = E; QP = P7Q; QP2 = P6Q; RP = P5Q2R; RQ = P4Q3R.
d = £; C2 = P4; C3 = P4g2; C4 = Q2; C5 = P7QR, PSQ3R, P3QR, PQ3R;
C6 = P3Q3R,PQR,P1QÍR,P*QR; C7 = P2, P6; C8 = P6g2, P2g2;
C9 = P4g3«, P6e3,R, QR, P2QR, Q3R, P2Q3R, P4QR, P"QR; CJO = P, P7, P5g2, P3g2;
Cn = P5,/13, Pg2,P7g2; C12 = R, P4g2/?; C13 = P4R, Q2R, C¡4 = P1 Q, PQ, P3Q, P5Q,
Ci5 = P3Qi,P5Q3,P7Q3,PQ3; C16 = P2R,P6R,P6Q2R,P2Q2R;
Cn = Q, P2Q, P*Q3, P6Q3, P4Q, P6Q, Q3, P2Q3; C18 = P5Q2R, P3Q2R, PR, P7R;
C19 = Pg2«, P702«, P5P-, P3R.

C] C2 C3 C4 C5 C6 C7 C8 C9 C I Q

R! 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 - 1 - 1
«3 1 1 1 1 - -1 1 1 - 1
R4 1 1 1 1 - -1 1 -1 1
R5 1 1 1 1 1 1 1 1
R6 1 1 1 1 1 1 - 1 - 1
R7 1 1 1 1 - -1 1 1 - 1
Rs 1 1 1 1 - 1 - 1 1 -1 1
R9 2 2 - 2 - 2 0 0 2 - 2 0 0
Rlo 2 2 - 2 - 2 0 0 2 - 2 0 0
R l t 2 2 2 2 0 0 - 2 - 2 0 0
R12 2 2 2 2 0 0 - 2 - 2 0 0
R13 2 2 - 2 - 2 2 i - 2 i - 2 2 0 0
R,4 2 2 - 2 - 2 -2i 2i -2 2 0 0
R15 2 -2 2 - 2 0 0 0 0 0 ^/2
R16 2 -2 2 - 2 O O O O O J2
Rn 2 -2 2 - 2 0 0 0 0 0 -^2
R18 2 -2 2 - 2 0 0 0 0 0 -v'2
K19 4 -4 -4 4 0 0 0 0 0 0

I [continued on p. 267]
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Cu (-12 Ci3 C14 C15 C16 C17 Cís CÍ9

RI 1 1 1 1 1 1 1 1 1
R2 -1 1 1 1 1 1 - 1 - 1 - 1
R¡ -1 1 1 - 1 - 1 1 1 - 1 - 1
«4 1 1 1 - 1 - 1 1 - 1 1 1

R5 1 -1 -1 -1 -1 -1 -1 -1 -1
R6 -1 -1 -1 -1 -1 -1 1 1 1
R7 - 1 - 1 - 1 1 1 - 1 - 1 1 1
«8 1 - 1 - 1 1 1 - 1 1 - 1 - 1

R9 0 0 0 2i -2i 0 0 0 0
R10 0 0 0 -2i 2i 0 0 0 0
RH 0 2 2 0 0 - 2 0 0 0
R!2 0 - 2 - 2 0 0 2 0 0 0
R13 0 0 0 0 0 0 0 0 0
RÍ4 0 0 0 0 0 0 0 0 0
RIS -v'2 2 -2 0 0 0 0 v/2 -^2
R16 -V2 - 2 2 0 0 0 0 -v'2 ^2
R,7 72 2 -2 0 0 0 0 -^2 V2

/?18 V2 - 2 2 0 0 0 0 V 2 -V2

«19 0 0 0 0 0 0 0 0 0

Rg: P = ÍK; Q = -K; R = L
R¡0 P = \K; Q = K; R = L
RH P = K; Q = A; R = c.
«12 /> = K; g = A; « = -E.
^13 i1 = «; g = U; « = <t>-
RU P = K; Q = U; R = -<t>.
RIS P = o; Q = U; R = e.
^16 ^ = S; Q = U; « = -£.
R17 p = -S; Q = u; R = E.
R1S P = -a; Q = U; R = ~e.

'••'-Gm> «-ty^) '-C-TÎ)
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P12 = E; Q2 = E; R2 = E; S* = E; S2 = P6R; QP = P1R; QP3 = P3Q; RP = P10QR;
RQ = P6QR; SP = P2RS; SQ = P3QRS; SR = RS.
C, = E; C2 = P3; C3 = P6; C4 = P9; C5 = Q, R, P9QR, P6Q, P6R, P3QR;
Cf, = P3Q, P9Q, P3K, P9R, QR, P6QR; C-, = P1 R, P*, PQ, P*QR, P8, P11Q, P2QR, PSR;
Ca = PlaR, P\ P4Q, PJQR, P", P2Q, P5QR, P*R; C9 = PR, P10, PJQ, P10QR, P2, P5Q, P*QR, P11R;
C10 = P4R,P,PÍOQ,PQR,P5,PSQ,P1ÍQR,P2R; Cn = S, PSQRS, P'°QRS, P3RS, P2S, PRS;
C I2 = P3S, P11QRS, PQRS, P"RS, P5S, P4RS; C13 = P6S, P2QRS, P*QRS, P9RS, PSS, P^S;
C I4 = P9S, PSQRS, P7QRS, RS, P1JS, Pl°RS;
C15 = P4S, Pl°S, P72S, PQS, P11QS, P5QS, P9QS, P3QS, P*RS, P^RS, P6QRS, QRS;
C16 = P7S, PS, Pl°QS, P*QS, P2QS, P*QS, QS, P"QS, PSRS, P2RS, P9QRS, P3QRS.

Ci C2 C3 C4 C5 Cf, C-j C8 C9 C I Q C]! C12 C13 C I 4 Ci5 C16

« , 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1
R2 11 1 1 1 1 1 1 1 -1 -1 -1 -1 - 1 - 1
R} 1 -1 1 - 1 - 1 1 1 - 1 1 - i -i i -i i -i
/J4 1 -1 1 - 1 - 1 1 1 - 1 1 - -i i -i i -i i
R, 2 2 2 2 1 2 - 1 - 1 - 1 - O O O O 0 0
R6 2 -2 2 -2 -2 2 -1 1 -1 1 O O O O 0 0
R1 2 2i -2 -2i O O -1 -i 1 i 1 - i 1 + i - 1 + i -1- i O O
RS 2 2i -2 -2i O O -1 -i 1 i - 1 + i - 1 - i 1 - i 1 + i O O
R9 2 -2i -2 2i O O -1 i 1 - i 1 + i 1 - i -1 - i -1 + i O O
RÍO 2 -2i -2 2i O O -1 i 1 -i -1 - i -1 + i 1 + i 1 - i O O
Rn 3 3 3 3 -1 -1 O O O O 1 1 1 1 - 1 - 1
R12 3 3 3 3 - 1 - 1 O O 0 0 - 1 - 1 - 1 - 1 1 1
R13 3 -3 3 -3 1 -1 O O O O i -i i -i -i i
«14 3 -3 3 -3 1 -1 O O O O -i i -i i i -i
K15 4 4i -4 -4i O O 1 i -1 -i O O O O 0 0
RÍ6 4 -4i -4 4Í O O 1 -i -1 i O O O O 0 0

I

R5: P = TI; Q = e; S = <j>.
R6: P = -7t; Q = -a; S = K.
«7: P = -in; Q = x; S = a'.
Rs: P = -i?r; Q = r, S = -"'-
Rg: P = ¡TI*; Q = X*; S = r.
R10: P = in*; Q = x*; S = -T'.
R,,: P = A; Q = B; S = Y.
R i 2 - P = -4; Q = B, S = -Y.
R13: P = L; Q = N; S = ir.
«,„: P = L; Q = N; S = -ir.

/Lr*' 7©^ u ¡ 0\ /v i o\Rl5:PH:7ñ7"^7; ; c = (m> S = (H^>\V(8> — */
/ i±J - /P"i -\
/ 4 * V W Z \ /</. ¡ 0\ /v I O \

*-=p = ^yr^TT: h fi= fh) s = (ô+^>\-vUJ* — v
Note that R = P5QP.
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^96

p6 = E; Q2 = E; R2 = E; S2 = E; T2 = E; QP = PR; RP = PQR; RQ = QR; SP = PSRS;
SQ = QS; SR = QRS; TP = PT; TQ = QT; TR = RT; TS = P3ST.
C¡ = E; C2 = P3; C3 = «, Q, QR; C4 = P3^ P3g, P3QR; C5 = r, P3T;
c6 = «r, 0r, e«r, P3RT, P3QT, P3QRT-, c^ = p1, p*, p2Q, P2R, P2QR, P*QR, P*R, P*Q-,
C8 = P, P\ P5Q, P5R, P5QR, PQR, PR, PQ;
C9 = PS, RS, P2S, PQRS, QRS, P2RS, P4S, P3RS, P5S, P*QRS, P3QRS, P5RS;
C10 = S, QS, PQS, PRS, P2QRS, P2QS, P3S, P3QS, P*QS, P4RS, P5QRS, PSQS;
Cu = P5T, PSQT, P5RT, P5QRT, P4T, P4QT, P*RT, P4QRT;
C12 = PT, PQT, PRT, PQRT, P2T, P2QT, P2RT, P2QRT;
C13 = PST, RST, P2ST, PQRST, QRST, P2RST, P4ST, P3RST, PSST, P*QRST, P3QRST, P5RST;
C14 = ST, QST, PQST, PRST, P2QRST, P2QST, P3ST, P3QST, P*QST, P*RST, P5QRST, P5QST.

Ci C2 C3 C4 C5 C6 C7 C8 C9 C l o C t i C12 C L 3 C14

/?! 1 1 1 1 1 1 1 1 I 1 1 1 1 1

,R2 1 1 1 1 - 1 - 1 1 1 1 1 - 1 - 1 - 1 - 1
R3 1 1 1 1 1 1 1 1 - 1 - 1 1 1 - 1 - 1
/?4 1 1 1 1 - 1 - 1 1 1 - 1 - 1 - 1 - 1 1 1
R5 2 2 2 2 2 2 - 1 - 1 0 0 - 1 - 1 0 0
R6 2 2 2 2 - 2 - 2 - 1 - 1 0 0 1 1 0 0
« , 2 - 2 2 - 2 0 0 2 - 2 0 0 0 0 0 0
Rs 2 - 2 2 - 2 0 0 - 1 1 0 0 ¡̂ 3 -i^/3 0 0
Rg 2 - 2 2 - 2 0 0 - 1 1 0 0 -iv'3 i^3 0 0
Rlo 3 3 - 1 - 1 3 - 1 0 0 1 - 1 0 0 1 - 1
«n 3 3 - 1 - 1 - 3 1 0 0 1 - 1 0 0 - 1 1
R,2 3 3 - 1 - 1 3 - 1 0 0 - 1 1 0 0 - 1 1
RÍ3 3 3 - 1 - 1 - 3 1 0 0 - 1 1 0 0 1 - 1
K14 6 - 6 - 2 2 0 0 0 0 0 0 0 0 0 0

.R5: P = 7t; Q = c; R = E; S = </>; T = e. R6: P = n; Q = E; R = e; S = <t>; T = -c.
R7 : P = -&; Q = E; R = e; S = </>; r = A. ^8: P = -n; Q = c; R = e; S = <t>; T = A.
R9: P = -n; g = e; /? = e; 5 = </>; T = -L R J O : P = D; Q = B; R = G; S = F; T = £.
/?,,: P = />; 0 = B; R = G; S = F; T = I. R,2: P = D; Q = B; R = G; S = H; T = £.
«13: P = D; Q = B; R = G; S = H; T = I. RS4: P = .rf; Q = a»; R = #; S = ®; T = .̂ .
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P6 = E; Q2 = E; R2 = E; S4 = E; S2 = P3; T2 = E; QP = PR; RP = PQR; RQ = QR,
SP = P5RS; SQ = QS; SR = QRS; TP = PT; TQ --= QT; TR = RT; TS = P3ST.
Cl = E; C-, = P3; C3 = «, g, gR; C4 = P3«, P3g, P3G«; C5 = T, P3T;
C6 = RT, QT, QRT, P3RT, P3QT, P3QRT; C7 = P2, P4, P2Q, P2R, P2QR, P4QR, P4R, P*Q;
C8 = P, P5, PSQ, P5R, P5QR, PQR, PR, PQ;
Cg = PS, RS, P2S, PQRS, QRS, P2RS, P4S, P3RS, P5S, P4QRS, P3QRS, P5RS;
C10 = S, QS, PQS, PRS, P2QRS, P2QS, P3S, P3QS, P<-QS, P^RS, P5QRS, P5QS;
C l t - P5T, P5QT, P5RT, P5QRT, P4T, P4QT, P4RT, P4QRT;
Cu = PT, PQT, PRT, PQRT, P2T, P2QT, P2RT, P2QRT;
C13 = PST, RST, P2ST, PQRST, Q.RST, P2RST, P4ST, P3RST, P*ST, P4QRST, P3QRST, P5RST,
CM. = ST, QST, PQST, PRST, P2QRST, P2QST, P3ST, P3QRST, P*QST, P4RST, P5QRST, P5QST.

(-\ Í-2 ^--3 ^4 C$ Cf, C7 Cg 69 C10 Ci i C1 2 C[3 Ci4

R¡ 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 - 1 - 1 1 1 1 1 - - 1 - 1 - 1
R3 1 1 1 1 1 1 1 1 - 1 - 1 1 - 1 - 1
«4 1 1 1 1 - 1 - 1 1 1 - 1 - 1 - -1 1 1

R5 2 2 2 2 2 2 - 1 - 1 0 0- -1 0 0
R6 2 2 2 2 - 2 - 2 - 1 - 1 0 0 1 0 0
R1 2 - 2 2 - 2 0 0 2 - 2 0 0 0 0 0 0
«8 2 - 2 2 - 2 0 0 - 1 1 0 0 i^3 -i^/3 0 0
R9 2 - 2 2 - 2 0 0 - 1 1 0 0 -i^/3 i^/3 0 0
«10 3 3 - 1 - 1 3 - 1 0 0 1 - 1 0 0 1 - 1
Rlt 3 3 - 1 - 1 - 3 1 0 0 1 - 1 0 0 - 1 1
R12 3 3 - 1 - 1 3 - 1 0 0 - 1 1 0 0 -1 1
«13 3 3 - 1 - 1 - 3 1 0 0 - 1 1 0 0 1 -1
«14 6 - 6 - 2 2 0 0 0 0 0 0 0 0 0 0

R5: P.= TI ; Q = E; R = E; S = </>; T = e. R6: P = n; Q = e; R = E; 5 = 0; T = -E.
«,: P = -s; Q = E; K = e; S = i<¿>; T = A. RB: P = -TC; g = E; R = E; S = i$; T = L
R9: P = -n; Q = K; R = e.; S = i</>; r = -A. Rlo: P = D; Q = B; R --= G; S = F; T = E.
R,i'. P = D; Q = B; R = G; S = F; T = /. #12: P = />; g = fi; R = G; S = W; T = £.
«13: P = D; Q = B; R = G; S = H; T = I. R14: P = tf; Q = ¿g; « = «; S = i®; r = J8".
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p* = E; Q2 = E; R2 = E; 5* = E; S2 = P3; T2 = E; QP = PR; QP3 = P3Q; RP = P4QR; RQ = g«;
SP = P2QS; SQ = RS; SR = QS; TP = PT; TQ = QT; TR = RT; TS = P3ST.
Ci = £; C2 = P3; C3 = P36, P3«, QR; C4 = Q, R, P3QR; C5 = T, P37";
C6 = 07", -R7, P3QRT, P3QT, P3RT, QRT; C1 = P2, P4, i>5g, P5«, ?2efl, P4QR, PQ, PR;
C8 = P, P5, P2Q, P2R, P5QR, PQR, P4Q, P4R;
Cg = PS, RS, P2S, P4S, P3RS, P5S, QS, P3QS, PRS, P4RS, P2QS, P5QS;
C10 = PQRS, QRS, P2RS, P*QRS, P3QRS, P*RS, S, P3S, PQS, P4QS, P2QRS, P5QRS;
Cn = P5T, P*T, P2QT, P2RT, P5QRT, P4QRT, PQT, PRT;
C12 = P2T, PT, PSQT, P5RT, P2QRT, PQRT, P4QT, P*RT;
C13 = PST, RST, P2ST, P4ST, P3RST, P5ST, QST, P3QST, PRST, P4RST, P2QST, P5QST;
CM = PQRST, QRST, P2RST, P4QRST, P3QRST, P5RST, ST, P3ST, P4QST, PQST, P2QRST, 1'SORST.

C± C2 C3 64 C5 C6 Cj C8 Cg C10 (-11 C12 C13 C14

R, 1 1 1 1 1 1 1 1 1 1 1 1 1 1
t f 2 1 1 1 1 - 1 - 1 1 1 1 1 - 1 - 1 - 1 - 1
R3 1 1 1 1 1 1 1 1 - 1 - 1 1 1 - 1 - 1
«4 1 1 1 1 - 1 - 1 1 1 - 1 - 1 - 1 - 1 1 1
R5 2 2 2 2 2 2 - 1 - 1 0 0 - 1 - 1 0 0
R6 2 2 2 2 - 2 - 2 - 1 - 1 0 0 1 1 0 0
R7 2 - 2 2 - 2 0 0 2 - 2 0 0 0 0 0 0
R8 2 -2 2 - 2 0 0 - 1 1 0 0 i^/3 -i^/3 0 0
R9 2 - 2 2 - 2 0 0 - 1 1 O O -Ú/3 1^/3 0 0
R 1 0 3 3 - 1 - 1 3 - 1 0 0 1 - 1 0 0 1 - 1
«,, 3 3 - 1 - 1 - 3 1 0 0 1 - 1 0 0 - 1 1
f i 1 2 3 3 - 1 - 1 3 - 1 0 0 - 1 1 0 0 - 1 1
R13 3 3 - 1 - 1 - 3 1 0 0 - 1 1 0 0 1 - 1
«14 6 - 6 - 2 2 0 0 0 0 0 0 0 0 0 0

R$: P = K; Q = E; R = e; S = <j>; T = E. «„: P - n; Q = e.; R = e.; S = tf>; T = -E.
R7 : P = -E; Q = -E; « = -e; S = -/t; r = <t>. R8: P = -n; Q = -E; « = -E; S = <¿>; T = )..
Rg: P = -it; Q - -E; R = -E; S = <j>; T = -L R10: P = A; Q = G; R = B; S = U; T = E.
RU-. P = A; Q = G; R = B; S = U; T = I. R12: P = A; Q = G; R = B; S = V; T = E.
Rn: P = A; Q = G; R = B; S = V; T = I. R14: P = a?; Q = Jf; R = &; S = \Jt; T = ,<V.



272 THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS

r'S
"96

P6 = E; Q4 = E; R4 = E; P3 = Q2 = R2; S4 = E; QP = PR; RP = PQR; RQ = P3QR; SP = PS;
SQ = QS; SR = RS.
d = E; C2 = P3; C3 = Q, R, P3Q, P3R, QR, P3QR; C4 = P, PQ, PQR, PR; C5 = P4, P4Q, P4QR, P4R;
C6 = P2, P5R, PSQR, P5Q; C1 = P5, P2R, P2QR, P2Q; C8 = S; C9 = P3S;
C10 = QS, RS, P3QS, P3RS, QRS, P3QRS; C^ = PS, PQS, PQRS, PRS;
C12 = P4S, P4QS, P4QRS, P4RS; C13 = P2S, P*RS, P*QRS, P*QS; C14 = P5S, P2RS, P2QRS, P2QS;
C15 = S2; C16 = P3S2; C17 = QS2, RS2, P3QS2, P3RS2, QRS2, P'QRS2;
Cls = PS1, PQS2, PQRS2, PRS2; C,9 = P4S2, P4QS2, P4QRS2, P4RS2;
C20 = P2S2,P5RS2,P5QRS2,P5QS2; C21 = P5S2, P2RS2, P2QRS2, P2QS2; C22 = S3; C23 = P3S3;
C2i = QS3, RS3, P3QS3, P3RS3, QRS3, P3QRS3; C25 = PS3, PQS3, PQRS3, PRS3;
C26 = P4S3, P4QS3, P4QRS3, P4RS3; C21 = P2S3, P5RS3, P5QRS3, P5QS3;
C28 = P5S3, P2RS3, P2QRS3, P2QS3.

Cj to C7 C8 to C14 C, 5 toC 2 1 C22 to C28

P- . t o t f , (G9
4) (G!4) (G9

4) (GlJ
R 8 t o R 1 4 (G»4) i(G^) -(G14) -i(G9

24)
R 1 5 t oR 2 1 (G9

4) -(G14) (G14) -(GL)
« 2 2 to /? 2 8 (G2

9
4) -i(G9

4) -(GL) i(G|4)

«4: P = -TC; Q = \l/; R = e. R5: P = ~ra*/¿; Q = i>; R = e.
R6: P = -n; Q = \j/; R = E. R7: P = A; Q = B; R = E.
Rlt P = -n; Q = <!/; R = k. R¡2 P = -to*n; Q = ^; R = IE.
R13 P = -M; Q = i>; R = if-- Ri4 P = A; Q = B; R = iE.
Rls P = -n; Q = \¡i; / ? = - £ . «19 P = -<M*ÍÍ; 2 = ^ ^ = ~£-
R20 P = -,i; g = i^; /? = -£. R2, P = A; Q = B; R = ~E.
R25 P = -n; Q = <li; R= -is. R26 P = -cu*¿i; Q = i¡/; R = -is.
R21 p = -n; Q = ,/,; R = -ÍE. «28 P = A; Q = B; R = -'¡E.

G9
6

6

P6 = £; g4 = £; R4 = E; P3 = g2 = R2; S2 = E; T2 = E; QP = PR; RP = PQR; RQ = P3QR;
SP = PS; SQ = QS; SR = RS; TP = PT; TQ = QT; TR = RT; TS = ST.
C, = E; C2 = P3; C3 = Q, R, P3Q, P3R, QR, P3QR; C4 = P, PQ, PQR, PR; C5 = P4, P4Q, P4QR, P4R;
C6 = P2, P5«, P5QR, P5Q; C1 = P5, P2R, P2QR, P2Q; C8 = S; C9 = P3S;
Clo = QS, RS, P3QS, P3RS, QRS, P3QRS; CM = PS, PgS, PQRS, PRS; C12 = P4S, P4gS, P4QRS, P4RS;
C13 = P2S, P5«S, P5QRS, P5QS; C14 = P5S, P2RS, P2QRS, P2QS; CI5 = T; C16 = P3T;
Cn = QT, RT, P3QT, P3RT, QRT, P3QRT; Cis = PT, PQT, PQRT, PRT;
Cig = P4T, P4QT, P*QRT, P4RT; C20 = P27, P5RT, P5QRT, P5QT; C2, = P5T, P2RT, P2QRT, P2QT;
C22 = sr; C23 = P3Sr; C24 = QST, RST, P3QST, P3RST, QRST, P3QRST;
C25 = PST, PQSr, PQRST, PRST; C26 = P4Sr, P4gSr, P4QRST, P4RST;
C27 = P2Sr, P5RST, P5QRST, P5QST; C28 = P5Sr, P2«sr, P2QRST, P2QST.

C, to C14 C I5 to C28

«i to R14 (G4
8) (G*8)

R 1 5 to« 2 8 (G4
8) -(G4

8)

R4: P = -n; Q = <jj; S = e; T = E. R5: P = -a)*n; Q = i¡/; S = e; T = a.
R6: P = -¿i; Q = i/i; S = E; T= £. R7: P = A; Q = B; S = E; T = E.
/?,, P = -TC; Q = iA; S = -E; T = t. R1 2 P = -<u*fi; 6 = iA; 5 = -E; T = e..
RÍ3 P = - f t ; Q = i/r; S = -c; T = E. Rlt P = A; Q = B; S = /; T = E.
RIS P = -n; Q = i /»; S = e.; T = -e. R19 P = -co*//; g = ^; S = s; 7 = -£.
R20 P = -/i; 6 = <l>; S = e; r = -e. S21 P = A; Q = B; S = E; T = I.
R25 P = ~n; Q = <j>; S = -E; T = -s. R26 P = -o)*/t; Q = i/r; S = -e; T = -E.
R27 P = -11; Q = i / f ; S = -c; T = -E. R28 P = ^; g = B; S = I; T = I.
Note that R = PSQP.
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P4 = E; Q4 = E; R" = E; S4 = E; Q2 = P2; S2 = R3; QP = P3g; RP = P3gR; RQ = PR4;
SP = P2QR3S; SQ = P3R3S; SR = R5S.
d = E; C2 = R3; C3 = P2R3; C4 = P2; C5 = P, P3, gR3, P2gR3, P3g, PQ;
C6 = PR3, P3R3, Q, P2Q, P3QR3, PQR3; C7 = R, P3R4, P2QR, PQR4, Rs, QR5, P3QR2, PR2;
C8 = R4, P3R, P2SR4, PQR, R2, QR2, P3C>R5, PR5; C, = P2R4, PR, QR4, P3QR, P2R2, P2QR2, PQRS, P3/?5;
C10 = P2R, PR4, QR, P3QR4, P2R5, P2QR5, PQR2, P3R2;
Cn = P2g5, PR3,?, QR4S, PQRS, P3R5S, P3QR5S; C12 = P2QR3S, PS, QRS, PQR4S, P3R2S, P3QR2S;
C13 = QR3S, P3S, P2QRS, P3QR4S, PR2S, PQR2S; C14 = QS, P3R3S, P2QR4S, P3QRS, PR5S, PQR5S;
C15 = P2R35, P3QS, P2QR5S, P2R5S, P3R4S, P2RS, R3S, PQS, QR*S, R5S, PR4S, RS;
C16 = P2S, P3QR3S, P2QR2S, P2R2S, P3RS, P2R4S, S, PQR3S, QR2S, R2S, PRS, R4S.

Ci (-2 C3 C4 C5 C6 C-i C8 C9 C10 Cn C )2 C13 C14 C15 C16

R! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 1-1 -1 -1 -1 - 1 - 1
R3 1 - 1 - 1 1-1 1-1 1 -1 i -i -i i -i i
R4 1 - 1 - 1 1 - 1 1 - 1 1 -1 -i i i -i i -i
R5 2 2 2 2 2 2 - 1 - 1 - - 1 0 O O O 0 0
R6 2 2 - 2 - 2 0 0 - 1 - 1 1 -iv/2 -i^/2 ¡̂ 2 i^/2 O O
R-, 2 2 - 2 - 2 0 0 - 1 - 1 1 V2 ¡V2 -¡V2 -'V2 ° °
Rs 2 - 2 - 2 2 - 2 2 1 - 1 - 1 0 O O O 0 0
R9 2 - 2 2 - 2 O O 1 - 1 -1 V2 ~V2 V2 --J2 ° °
R10 2 -2 2 -2 O O 1 -1 -1 -72 v'2 -^/2 V2 ° °
R, , 3 3 3 3 -1 -1 O O O O 1 1 1 1 - 1 - 1
R12 3 3 3 3 -1 -1 O O O O -1 -1 -1 -1 1 1
RÍ3 3 -3 -3 3 1 -1 O O O O i -i -i i i -i
R14 3 -3 -3 3 1 -1 O O O O -i i i -i -i i
«15 4 4 -4 -4 O O 1 1 -1 -1 O O O O 0 0
R¡6 4 -4 4 -4 O O -1 1 -1 1 O O O O 0 0

R5 : P = e; Q = E; R = n; S = <j>. R6: P = C*; Q = y*; R = n*; S = </>.
R 7 : P = C; Q = y; R = n; S = $. Ra: P = -E; Q = E; R = -n; S = itp.
R9: p = -f* ; Q = y*- R = - jt* ; S = i0. «10: P = - C; g = 7 ; R = - n; S = i<t>.
«„: P = C; Q = G; R = K; S = F. R12: P = C; Q = G; R = K; S = H.
RÍ3: P = -C; Q = G; R = -K; S = if. P-14: P = -C; Q = G; R = -K; S = iH.

•••"-(ff?) -m *-<H¿= '-e-T-3-
«..-(m> «-(î+î> '-(^í> -(^>
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96

P8 = E; Q3 = E; R4 = £; S2 = E; R2 = P4; QP = P(>Q2R; QP2 = P3R; QP4 = P4Q; Q2P = P3Q;
RP = P6Q2; RP2 = PQ; RQ = Q2R; SP = PS; SQ = QS; SR = RS.
d = E; C2 = P*; C3 = P2, P5QR, P1 QR, P6, PQR, P3QR;
C4 = P4g, P6Q, P5R, P7R, P4Q2, PQ2R, P3Q2R, P2Q2; C5 = Q, P2Q, PR, P3R, Q2, P5Q2R, P7Q2R, P6Q2;

C6 = P, P3Q2, P"R, P7, P2Q2R, P5Q; C, = P5, P7Q2, P2R, P2, P6Q2R, PQ;
C» = P3Q, R, PQ2, fQR, P4Q2R, P4QR, P7Q, P4R, PSQ2, P2QR, Q2R, QR; C9 = S; C,0 = P4S;
CM = P2S, P5QRS, P7QRS, P"S, PQRS, P3QRS;

Ci2 = P*QS, P6QS, P5RS, P7RS, P4Q2S, PQ2RS, P3Q2RS, P2Q2S;
C13 = QS, P2QS, PRS, P3RS, Q2S, PSQ2RS, P7Q2RS, P6Q2S;
C14 = PS, P3Q2S, P"RS, P7S, P2Q2RS, PSQS; C15 = P5S, P7Q2S, P2RS, P3S, P6Q2RS, PQS;
Ci6 = P3QS, RS, PQ2S, P6QRS, P4Q2RS, P4QRS, P7QS, P4RS, P5Q2S, P2QRS, Q2RS, QRS.

C, to C8 C9 to C16

R, to R, (Gig) (Gig)
R,toRls (GÍS) -(GiS)

R3: P = Aa; Q = - f t ; R = A; S = E. R4: P = 0; Q = K'; R = </)'; S = E.
R5: P = -à; g = K'; R = -0'; S = E. R6: P = Z; Q = D; R = -A'; S = E.
R7: P = -Z; Q = D; R = A'; S = E.

/W I 0 \ /A' I v'\ /AA' | Av'\ /E I 0\
« 3 : P = ; Q = ( ; R = i i ; S = ( — •3 v o \^TK) V7T7/ \w\wr \b I £/
Ru-. P = Âa; g = -^; R = A; S = -E. R12: P = o; Q = K'; R = </>'; S = -E.
J?13: P = -a; Q = K'; R = -<£'; S = -E. R14: P = Z; g = D; R = -/4'; S1 = -£.
R 1 5 : P = -Z; Q = D; R = A'; S = -E.

•••••'-(1+iï o-(H7> -'(^-i) -(TT^)'
Note that R = P5QP2.
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P4 = E; Q6 = E; R* = E\ S4 = E; Q3 = «2 = S2; QP = PQ5; /?/> = P3R; RQ = QR; SP = PQ3S;
SQ = QS; SR = RS.
C1 = E; C2 = Q3; C3 = P2; C4 = P2Q3; C5 = Q, Q5; C6 = Q4, Q2; C1 = P2Q,P2Q5;
Cg = P2Q4, P2Q2; C9 = R,P2R; C10 = Q3R,P2Q3R; Cn = Q2R,P2Q4R; C12 = Q5R,P2QR;
Cn = QR,P2QSR; C14 = Q4R,P2Q2R;
C15 = P, Pg, />62, P3, P3Q, P3Q2, PQ3, PQ4, PQ5, P3Q3, P3Q4, P3Qi;
C16 = PR, PQR, PQ2R, P3R, P3QR, P3Q2R, PQ3R, PQ4R, PQ5R, P3Q*R, P3Q4R, P3Q5R; C17 = S, Q3S;
C18 = P2S, P2Q3S; C19 = 25, ÇpS; C20 = Q4S, Q5S; C21 = P2QS, P2Q2S; C22 = />204S, P2Q5S;
C23 = «5, P2Q3RS; C24 = Q3RS, P2RS; C25 = Q2RS, P2QRS; C26 = Q5RS, P2Q4RS;
C27 = QRS, P2Q2RS; C28 = Q4RS, P2Q5RS;
C29 = PS, PQS, PQ2S, P3S, P3QS, P3Q2S, PQ3S, PQ4S, PQ5S, P3Q3S, P3Q4S, P3Q5S;
C30 = PRS, PQRS, PQ2RS, P3RS, P3QRS, P3Q2RS, PQ3RS, PQ4RS, PQ5RS, P3Q3RS, P3Q4RS, P3Q5RS.

Cj C2 63 C4 C5 C6 C7 C8 C9 C10 C-11 C [ 2 C I 3 C14 Cis

RI 1 1 1 1 1 1 1 1 1 1 1 1
P2 1 1 1 1 1 1 1 1 1 1 1 1

R} 1 1 1 1 1 1 1 1 1 1 1 - 1
Rt 1 1 1 1 1 1 1 1 1 1 1 - 1
«5 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 1

R6 I 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 1
K7 1 1 1 1 1 1 1 - 1 - 1 - 1 -1 -1 -1 -1
Rs 1 1 1 1 1 1 1 - 1 - 1 - 1 -1 -1 -1 -1
/{, 2 2 2 2 - 1 - 1 - 1 - 2 2 - 1 -1 -1 -1 0
Rlo 2 2 2 2 - 1 - 1 - 1 - 2 2-1 -1 -1 -1 0
fln 2 2 2 2 -1 -1 -1 -1 -2 -2 1 1 1 1 0
R¡2 2 2 2 2 - 1 -1 - 1 - 1 - 2 - 2 1 1 1 1 0
R13 2 2 -2 -2 2 2 -2 -2 0 0 0 0 0 0 0
/?14 2 2 -2 -2 2 2 -2 -2 0 0 0 0 0 0 0
RIS 2 2 - 2 - 2 - 1 - 1 1 1 O O ¡V3 ¡73 -!V'3 -¡^3 0
R¡6 1 2 - 2 - 2 - 1 - 1 1 1 0 0 v'3 ¡73 -iv'3 -i,/3 0
*n 2 2 - 2 - 2 - 1 - 1 1 1 0 0 -¡73 -¡v'3 v'3 ¡^3 0
RH 2 2 - 2 - 2 - 1 - 1 1 1 0 0 -iv'3 -1^3 iv'3 V3 0
/?,, 2 - 2 2 - 2 - 2 2 - 2 2 2 i -2i 2 i -2 i -2 i 2 i 0
R20 2 - 2 2 - 2 - 2 2 - 2 2 -2 i 2 i -2 i 2 i 2 i -2 i 0
R2i 2 - 2 2 - 2 1 - 1 1 - 1 2 i - 2 i - i i i - i O
R22 2 -2 2 - 2 1 - 1 1 - 1 2i -2i - i i i - i O
R23 2 - 2 2 - 2 1 -1 1 -1 -2i 2i i -i -i i O
R2Í 2 -2 2 -2 1 -1 1 -1 -2i 2i i -i -i i O
/J25 2 -2 -2 2 -2 2 2 -2 O O O O O O O
*26 2 -2 -2 2 -2 2 2 -2 O O O O O O O
R21 2 -2 -2 2 1 - 1 - 1 1 O O v73 ~V3 V3 -V3 °
R2S 2 -2 -2 2 1 - 1 - 1 1 O O v'3 -^3 v'3 W3 °
R29 2 -2 -2 2 1 - 1 - ] 1 O O -v'3 v'

3 "V3 V3 °
«30 2 -2 -2 2 1 - 1 - 1 1 O O -v'3 v'3 ~V 3 V3 °

[continued on p. 276}



276 THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS

C\6 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30

R! 1 1 1 1 1 1 1 1 1 1 1 1

«2 1- - 1 - 1 -1 - -1 - 1 - 1 - 1 -1 - - - 1 - 1
« 3 - 1 1 1 1 1 1 1 1 - 1 - 1

«4 - 1 - - 1 - 1 - 1 - - - 1 - - 1 -1 - - 1
« 5 - 1 1 1 1 - 1 - - 1 - - - - 1
/ ? 6 - l - - 1 - 1 - 1 - - 1 1 - 1
« 7 1 1 1 1 - 1 - - 1 - - 1 - - 1

«8 1 - - 1 - 1 - 1 - - 1 1 1 -1
Rg 0 2 2 - 1 - 1 - - 2 2 - 1 - - 1 - 0 0
R10 0 - 2 - 2 1 1 - 2 - 2 1 1 0 0
«n 0 2 2 -1 -1 - - -2 -2 1 1 0 0
RÍ2 0 - 2 - 2 1 1 2 2 - 1 - - 1 - 0 0
R¡3 0 2 - 2 2 2 - 2 - 2 0 0 0 O O O 0 0
«14 0 - 2 2 - 2 - 2 2 2 0 0 0 0 O O 0 0
«15 0 2 - 2 - 1 - 1 1 1 0 0 U/3 U/3 -U/3 -'V3 O O
«16 0 - 2 2 1 1 - 1 - 1 0 0 -U/3 -U/3 U/3 V3 ° °
«17 0 2 - 2 - 1 - 1 1 1 0 0 -U/3 -U/3 U/3 U/3 O O
«18 0 - 2 2 1 1 - 1 - 1 0 0 U/3 iv'3 -U/3 -U/3 O O
«19 0 0 0 0 0 0 0 0 0 0 O O O 0 0
«20 0 0 0 0 0 0 0 0 0 0 O O O 0 0
«21 0 0 0 v/3 -V'3 V3 -V3 ° ° K/3 -U/3 U/3 -V3 ° °
«22 o o 0 - 7 3 V3 ~V3 V3 o o -u/3 U/3 -V3 u/3 o o
«23 0 0 0 V'3 -V3 V'3 -V3 ° ° -V'3 'V3 -V3 ¡\/3 ° °
«24 O O O -v/3 V3 -V3 V3 ° ° U/3 -v'3 U/3 -V3 ° °
«25 0 0 0 0 0 0 0 2 - 2 2 - 2 - 2 2 0 0
«26 0 0 0 0 0 0 0 - 2 2 - 2 2 2 - 2 0 0
«27 0 0 0 -v'3 V3 v'3 -V3 2 - 2 - 1 1 1 - 1 0 0
«28 0 0 0 V3 -V3 -V3 v'3 -2 2 ! -1 -1 ! ° °
«29 0 0 0 7 3 -^3 -^3 V3 2 - 2 - 1 1 1 - 1 0 0
«30 0 0 0 -v/3 v'3 v'3 -V3 - 2 2 1 - 1 - 1 1 0 0

«9: P = </>; Q = ir*; « = e; S = e.
«10 ^ = 0; 2 = t*; « = E; s = -e.
«n « = 0; S = 7t*; « = -E; 5 = c.
«12 P = $; Q = TI*; « = -E; 5 = -e.
«13 p = i<£; Q = E; « = A; S = E.
«14 P = i</>; 2 = c; « = /I; S = -E.
«15 P = -i<t>; Q = TI*; R = ;.; S = t..
«16 P = -i^; Q = TI*; « = ;.; S = -£.
«,7 P = irfi; Q = n; R = A; 5 = E.
«18 « = i</>; 6 = n; « = A; 5 = -e.
«is P = <l>; Q = -e; « = ¡E; S = U.
«20 P = #; g = -E; « = -ÍE; S = -U.
«21 P = <t>; Q = -71*; « = ÍE; s = -u.
«22 P = <t>', Q = -t*; « = ¡E; s = u.
«23 P = <f>; Q = ~n; R = -ÍE; 5 = U.
«24 /> = 0; Q = -7t; « = -ÍE; S = -U.
«25 P = i</>; g = -E; « = U; 5 = -U.
«26 P = i</>; 6 = -e; « = U; S = u.
«27 P = \(t>; Q = -n; « = U; S1 = -u.
«28 P = i(j>; Q = -n; « = i/t; S = U.
«29 « = i<£; Q = -n; R = -U; S = U.
«30 P = i</>; g = -n; « = -U; S = -U.
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P11 = E; g4 = E; R2 = E; QP = Png; RP = P7Q2R; RQ = gP..
G! = £; C2 = P6; C3 = g2; C4 = P6Q2; Cs = P3R, P9R, P3Q2R, P9Q2R; C6 = P4, P8;
C7 = P4g2, P8g2; Cs = P2, P10; C9 = P2Q2, P'°g2; C10 = PR, P5Q2R, P1Q2R, P11R;
Cu = PQ2R,P5R,P1R,PllQ2R;
c12 = pg, p3g, psg, p7g, p9g, png, pg3, P3e3, P5e3, p?g3, ^ 9e3, p"e3;
C13 = QR, P"-QR, PSQR, Q3R, P*Q3R, PSQ3R; C14 = P2g«, P6gR, P'°QR, P2Q*R, P"Q3R, P'°g3«;
C15 = R, P6Q2R; C16 = g2«, P6«; C17 = P3, P9, P3g2, P9g2; C18 = P2«, P4g2R, P*Q2R, P'°R;
C,9 = P2g2«, P4«, P8«, P10,g2«; C20 = P, P5g2, P7g2, P11; C21 = Pg2, P5, P7, Png2;
C22 = Q, P

2Q, P*Q, P6Q, PSQ, P10Q; C23 = g
3, P2g3, P4g3, P6g3, P8g3, p'°g3;

C24 = PQR, P3QR, P5QR, P7gP-, P9gPx, PnQR, PQ3R, P3g3«, P5Q3R, P7Q3R, P9Q3R, P11Q3R.

Ci C2 C3 C4 C5 C6 C7 C8 C9 C¡o G!! C,2

P., 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 1
R3 1 1 1 1 1 1 1 1 - 1
Rt 1 1 1 1 1 1 1 - 1
RS 1 1 1 - 1 1 1 1 1
R6 \ 1 1 - 1 1 1 1 - - 1
R-, 1 1 1 - 1 1 1 1 - - -1
P,8 1 1 1 - 1 1 1 1 - - -1
«, 2 2 2 2 2 - 1 - - 1 - 1 - - 0
fl,o 2 2 2 2 2 -1 - -1 -1 - - 0
tfn 2 2 2 2 -2 -1 - -1 -1 0
Rt2 2 2 2 2 -2 -1 - -1 -1 0
Pv,3 2 -2 2 - 2 0 2 2 - 2 - 2 0 0 0
f l , 4 2 -2 2 - 2 0 2 2 - 2 - 2 0 0 0
f i , 5 2 2 - 2 - 2 0 2 - 2 2 - 2 0 0 0
R,6 2 2 - 2 - 2 0 2 - 2 2 - 2 0 0 0
Rn 2 -1 -2 2 0 2 - 2 - 2 2 0 0 0
R¡s 2 -2 -2 2 0 2 - 2 - 2 2 0 0 0
Rig 2 -2 -2 2 0 - 1 1 1 - 1 V3 -V3 °
fi2 0 2 -2 -2 2 0 - 1 1 1 - 1 v'3 -V3 °
«21 2 -2 -2 2 0 - 1 1 1 - 1 -v'3 v'3 °
R22 2 - 2 - 2 2 0 - 1 1 1 - 1 -v/3 V3 °
P-23 4 - 4 4 - 4 0 - 2 - 2 2 2 0 0 0
P.24 4 4 - 4 - 4 0 - 2 2 - 2 2 0 0 0

[continued on p. 278\
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I ^13 Cn C 1 5 C Í6 C17 C18 C19 C20 C2¡ C22 C2i C24

#! 1 1 1 1 1 1 1 1 1 1
R2 1 1 -1 -1 -1 -1 -1 -1 -1 - -1
« 3 - 1 - 1 1 1 1 1 1 1 - -1 -
«4 - 1 - 1 - - 1 - 1 - 1 - 1 - - 1 1
R5 - 1 - 1 1 - 1 1 1 - - 1 - - 1
R6 -1 -1 - -1 1 - 1 - 1 1 1 -
R7 1 1 1 - 1 1 1 - - 1 1 -
Rs 1 1 - 1 - 1 1 - 1 - 1 1 - 1 - 1 1
R9 0 0 2 2 2 - 1 - 1 - -1 0 0 0
RIO 0 0 - 2 - 2 - 2 1 1 1 0 0 0
R I , 0 0 2 2 - 2 - 1 - 1 1 1 0 0 0
R¡2 0 0 - 2 - 2 2 1 1 - 1 - 1 0 0 0
R¡3 2 - 2 0 0 0 0 0 0 0 0 0 0
R U - 2 2 0 0 0 0 0 0 0 0 0 0
RÍS O O O O O O O O O 2i -2i O
R¡f, 0 0 0 0 0 0 0 0 0 - 2 i 2 i O
Rn 0 0 2 - 2 0 - 2 2 0 0 0 0 0
R Í S 0 0 - 2 2 0 2 - 2 0 0 0 0 0
#19 O O 2 - 2 O 1 - 1 v'3 -v'3 0 0 0
R20 O 0 - 2 2 0 - 1 1 -V3 V 3 0 0 0
R2¡ O O 2 - 2 O 1 - 1 -v<3 v'3 0 0 0
R22 ¡ O 0 - 2 2 0 - 1 1 V3 -V3 0 0 0
R23 ¡ 0 0 0 0 0 0 0 0 0 0 0 0
# 2 4 l o o o o o o o o o o o o

/?,: P = n; Q = 0; R = e.
«10: p = _7t* ; Q = </>; R = _E.
«,,: /> = -TÍ*; g = < /> ; « = E.
/?12: P = n; Q = ¡t>; R = -e.
«,3: P = i/.; Q = <t>; R = ij>.
R I 4 : P =-- u; Q = r¡>; R = -</>.
«15: F = À; g = ic; /f = <¿>.
«,„: P = A; Q = -ie; « = <#>.
Rtl: P = u; g = i<¡!>; R = c.
« i a : P = ¡À; g = i$; « = -E.
/? I 9 : P = -Un; g = i<¿>; « = E.
Jíj,,: P = UTT; g = it/>; R = -E.
R 2 1 : F = UTT; Q = i0; /? = c.
«22: ^ = -¡ATT; Q = i</>; -R = -e.

«23: /> - Í^L---); Q = f^[-°); * - f°-4-|vo i -P*/ Vo i 0; \</- oy
/7t I O \ fié \ 0\ / O í /\

R24; P = ^ — ; Q = -V—L ; R = 1 •
VO -TI/ V O \ ¡0,7 VA S O/
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P12 = E; g4 = £; «4 = E; S* = E; Q2 = R2; S2 = P"Q2R; QP = P1Q2R; QP3 = P3Q;
RP = Pl°QR; KQ = P*-Q3R; SP = P2RS; SQ = P3Q3RS; SR = RS.
C, = E; C2 = P3g2; C, = P6; C4 = P'g2; C, = P6R, g3, P9Q3R, Q2R, P"Q, P3QR;
c6 = ̂ 'g

2«, P3g, e«, P3#, P9Q3, P^Q^R-, c, = png, p*Q2, P5Q2R, P2Q3R, P7R, p*Q2, P*QR, PQ3;
Cs = P2Q\ P", PSR, P5QR, P>0Q2R, P7, P1Q3R, P*Q;
C9 = P5Q, P2Q2, PliQ2R, P8Q3R, PR, P10Q2, PlaQR, P7Q3;
Cío = P8Q\ P", P2R, P'1QR, P*Q2R, P, PQ3R, P10Q; C t , = S, PSQ3RS, P'°QRS, P3Q2RS, P2Q2S, PRS;
C12 = P3Q2S, P"QRS, PQ3RS, P^RS, P5S, P*Q2RS; C,3 = P6S, P2Q3RS, P4QRS, P9Q2RS, P*Q2S, P7RS;
Ci4 = f>Q2S, P5QRS, P7Q3RS, RS, P>¡S, P10Q2RS;
C¡5 = P4Q2S, P7QS,PnQS,P'iQ3S,PsQ2RS,PAQ3RS,PioS,PQ3S,P'iQ3S, P3QS,PllRS, QRS;
C,6 = P7S, Pl°Q3S, P2Q3S, QS, PSRS, P9QRS, PQ2S, P*QS, PSQS, P6Q3S, P2Q2RS, P3Q3RS;
Cn = Q2, C18 = P3; C,, = P6Q2; C20 = P9; C21 = P*Q2R, g, P9QR, R, P6Q3, P3Q3R;
C22 = P9R, P3Q3, Q3R,P3Q2R, P9Q,P6QR; C23 = P>1Q}, P8, P*R, P2QR, P7Q2R, -P4, P4Q3R,PQ;
C24 = P2Q, P Í I Q 2 , P*Q2R, P'Q¡R, P"'R, P7Q2, P7QR, P*Q3;
C25 = P5Q3, P2, PltR, P^QR, PQ2R, P'°, Pl"Q3R, P7Q;
C2b = PSQ, P5Q2, P2Q2R, P'1Q3R, P*R, PQ2, PQR, P>0Q3;
C27 = g2.1?, PSQRS, PlnQ3RS, P3RS, P2S, PQ2RS; C28 = P3S, P11Q3RS, PQRS, P6Q2RS, P5Q2S, P4RS;
CM = P6Q2S, P2QRS, P*Q¡RS, P"RS, PSS, P7Q2RS; CM = P9S, P*Q3RS, P7QRS, Q2RS, P11Q2S, P>0RS;
C3i = P4S, P7Q3S,PÍ1Q3S, P"QS, P5RS, PhQRS, PÍOQ2S, PQS, P5QS, P3Q3S, PUQ2RS, Q3RS;
Cji = P1Q2S, Pl°QS, P2QS, Q3S, PSQ2RS, P9Q3RS, PS, P*Q3S, PSQ3S, P"QS, P2RS, P3QRS.

j Cl C2 C3 C4 C5 C 6 L--, C$ Ct) C!0 Cu C]2 C ]3 C;4 C ] 5 C16

RI 1 1 ] 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 1 - 1 -1 -1 -1 " 1 - 1
R3 1 -1 1 - 1 - 1 1 1 - 1 -1 i -i i -i i -i
«4 1 - 1 1 - 1 - 1 1 1 - 1 -1 -i i -i i -i i
R5 2 2 2 2 2 2 - 1 - - 1 - 1 0 O O O 0 0
^6 2 - 2 2 - 2 - 2 2 - 1 - 1 1 0 O O O 0 0
R1 2 2i -2 -2i O O -1 -i 1 i 0\/2 0V2 -8*^*2 -0^2 O O
£8 2 2i -2 -2i O O -1 -i 1 i -flV2 -0V2 °*V2 6V2 ° °
fi, 2 -2i -2 2i O 0 - 1 i 1 -i 0^/2 0*N/2 -É)v/2 -0\/2 O O
R10 2 -2i -2 2i O 0 - 1 i 1 -i -0^/2 -0*v'2 fl^'2 0*v/2 ° °
fin 3 3 3 3 -1 -1 O O O O 1 1 1 1 - 1 - 1
, R , 2 3 3 3 3 - 1 - 1 0 0 0 0 - 1 - 1 - 1 - 1 1 1
RÍ3 3 -3 3 -3 1 -1 O O O O i -i i -i -i i
RU 3 -3 3 -3 1 -1 O O O O -i i -i i i -i
R¡5 4 4i -4 -4i O O 1 i -1 -i O O O O 0 0
R)6 4 -4i -4 4i O O 1 -i -1 i O O O O 0 0
Rn 1 -i -1 i -i -1 -1 i 1 -i -0 -0* O 9* 0 0*

Rut 1 -i -1 i -i -1 -1 i 1 -i 0 0* -0 -0* -0 -0*
K1 9 1 i -1 -i i -1 -1 -i 1 i -0* -0 0* 0 0* 0
«20 1 i -1 -i i -1 -1 -i 1 i 0* 0 -0* -6 -0* -0
R2Í I 2 -2i -2 2i -2i -2 1 -i -1 i O O O O 0 0
R2 2 ¡ 2 2i -2 -2i 2i -2 1 i -1 -i O O O O 0 0

[continued on p. 280~\
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C3 C2 C3 C4 Cg C6 C7 C8 Cy C10 Cn C12 Ci3 C14 C i5 C16

«23 2 -2 2 - 2 0 0 1 - 1 1 - 1 -¡72 iv'2 -V2 ¡V2 0 0
R24 2 -2 2 - 2 0 0 1 - 1 1 - 1 iv'2 -iv'2 i^/2 -i^/2 0 0
«25 2 2 2 2 0 0 1 1 1 1 -^/2 -^'2 -V'2 "V2 ° °
«26 2 2 2 2 0 0 1 1 1 1 v'2 ,/2 V2 V2 ° °
«27 3 -3i -3 3i i 1 0 0 0 0 - 0 -0* 0 0* -0 -0*
R2S 3 -3 i -3 3 i i 1 0 0 0 0 0 0* -0 -0* 0 0*
/?29 3 3i -3 -3i - i ) 0 0 0 0 -0* -0 0* 0 -0* -0
«30 3 3 i -3 -3 i - i 1 0 0 0 0 0 * 0 -0* -0 0* 8
«31 4 -4 4 -4 0 0 -1 1 -1 1 0 0 0 0 0 0
«32 4 4 4 4 0 0 - 1 - 1 - 1 - 1 0 0 0 0 0 0

Note that for Rl to «16 z(Cn, 16) = x(Cn) and for «17 to R32 /(Cn+ 16) = ~i(Cn).
«5: P = TI ; g = F.; S = </>. R6: P = -n; Q = -E; S = K.
«7: P = -ÍTI; g = *; 5 = <7'. «8: P = -iit; g = r, S = -a'.
R9: P = ¡TI*; Q = %*; S = i'. Rio: P = i;r*; g = /*; S = -t'.
RU: P = A; Q = B; S = Y. R12: P = A; Q = B; S = - Y.
R¡3: P = L; Q = N, S = iY. R14: P = L; Q ^ N; S = -lY.

-•r-(^A} e"(^> "(H^>wuj* — */
/ l±i • /H A
/ 4 7 V W \ /</> I 0\ /v I 0 \*-=p=KW^^T ; fl=(H^: s=(4^/V-S/lsJ' -rz/

«21: P = -in; Q = ie; S = 0^>. «22: /> = ¡7t; g = -if,; S = 0K.
RI3: P = TT; g = -i/; S = -Í0<r'. «24: ^ = 7t; g = -iz; 51 = i8a'.
R25: P = -7c*; Q = -i^*; 5 = i0t'. «26: ^ = -"*; Q = ~h*\ S = -iOi'.
R21: P = -iA; Q = \B; S = -BY. R2S: P = -iA; Q = \B\ S = 07.
«29: P = -\L; Q = iN; S = iBY. R30: P = -\L; Q = iN; S = -iôY.

( 1 - i //3\ \

~*' VUJ^l /* I 0\ /v* 0 \

~W\^'~^\ ^"'vm) s=fl-(^-h^}s/lsj* — v
/ 1 +i , //3\ \

I 4 X V W * 1 /«A I 0\ /v I 0 \

^'•M-T^—rrr- : ^-'o-h) s = fl*(r-h;>
\-v(5jz -rz7

Note that « = P5Q3P.
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G?92

P8 = E; Q4 = E; R6 = E; S2 = E; Q2 = P4; QP = P7Q; RP = P3R5; RQ = P"R; SP = PR*S;
SQ = QS; SR = RS.
C, = E; C2 = P4; C3 = R3; C¿ = P4R3; C5 = Q, P2Q, P2, P4Q, P"Q, P6;
C6 = QR3, P2QR3, P2R3, P4QR3, P6QRS, P6R3; C7 = S, R3S; C8 = P4S, P4R3S;
C9 = QS, P2QS, P2S, P4QS, P6QS, P6S, QR3S, P2QR3S, P2R3S, P4QR3S, P6QR3S, P6R3S;
C10 = P4R4, P4QR4, P2QR4, P2R4, P4R2, P6QR2, P6R2, QR2 ;
Cu = R4, QR4, P6QR4, P6R4, R2,P2QR2,P2R2,P4QR2;
C12 = P4R, P4QR, P2QR, P2R, P4R5, P6QR5, P"R5, QR5;
C13 = R, QR, P6QR, P6R, R5, P2QRS, P2R5, P4QR5;
Clt = P, P1, P3R4, P3QR4, P7QR2, P5R2, PR3, P7R3, P3R, P3QR, P7QR5, P5R5;
C15 = P5, P3, P7R4, P7QR4, P3QR2, PR2, PSR3, P3R3, P7R, P7QR, P3QR5, PR5;
C16 = PQ, P3Q, P5R4, P5QR4, P7R2, P5QR2, PQR3, P3QR3, PSR, P5QR, P7R5, P5QR5, P5Q, P7Q, PR4,
PQR4, P3R2, PQR2, P5QR3, P7QR3, PR, PQR, P3R5, PQR5;
C17 = P4R4S, P*QR4S, P2QR4S, P2R4S, P4R5S, P6QR5S, P"RSS, QR5S;
C18 = R4S, QR4S, P6QR4S, P6R*S, R5S, P2QR5S, P2R5S, P4QR5S;
C,g = P4RS, P4QRS, P2QRS, P2RS, P4R2S, P6QR2S, P6R2S, QR2S;
C20 = RS, QRS, P"QRS, P"RS, R2S, P2QR2S, P2R2S, P4QR2S;
C2l = PR3S, P7R3S, P3RS, P3QRS, P5R5S, P7QR5S, PRSS, P7S, P3R4S, P3QR4S, P5R2S, P7QR2S;
C22 = P5R3S, P3R3S, P7RS, P7QRS, PR5S, P3QR*S, P5R5S, P3S, P7R4S, P7QR4S, PR2S, P3QR2S;
C23 = PQR3S, P3QR3S, P5RS, P5QRS, P7R5S, P5QR5S, PQS, P3QS, P5R4S, PSQR4S, P7R2S, P5QR2S,
P5QR3S, P7QR3S, PRS, PQRS, P3R5S, PQR5S, P5QS, P7QS, PR4S, P2QR4S, P3R2S, PQR2S.

C¡ C2 C3 C4 C5 C6 C-, C8 C9 C10 Cu C12

«! 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 - 1 - 1 - 1 1 1 1
R} 1 1 1 1 1 1 1 1 1 1 1 1
R4 1 1 1 1 1 1 - 1 - 1 - 1 1 1 1
R5 1 2 2 2 2 2 2 2 2 - 1 - 1 - 1
R6 2 2 2 2 2 2 - 2 - 2 - 2 - 1 - 1 -1
R7 2 2 - 2 - 2 2 - 2 0 0 0 2 2 - 2
«s 2 2 - 2 - 2 2 - 2 0 0 0 - 1 - 1 1
R9 2 2 - 2 - 2 2 - 2 0 0 0 - 1 - 1 1
R,0 2 - 2 2 - 2 0 0 2 - 2 0 1 - 1 1
«u 2 -2 2 - 2 0 0 - 2 2 0 1 - 1 1
R,i 2 - 2 2 - 2 0 0 2 - 2 0 1 - 1 1
f i , 3 2 - 2 2 - 2 0 0 - 2 2 0 1 - 1 1
Ku 3 3 3 3 - 1 - 1 3 3 - 1 0 0 0
RIS 3 3 3 3 - 1 - 1 - 3 - 3 1 0 0 0
RIS 3 3 3 3 - 1 - 1 3 3 - 1 0 0 0
R¡7 3 3 3 3 - 1 - 1 - 3 - 3 1 O O O
£18 4 -4 -4 4 O O O O O 2 - 2 - 2
/?19 4 -4 4 -4 O O 4 -4 O -1 1 -1
R2a 4 -4 4 - 4 O 0 - 4 4 0 - 1 1 -1
«2, 4 -4 -4 4 O O O O 0 - 1 1 1
R22 4 -4 -4 4 O O O O 0 - 1 1 1
R23 6 6 - 6 - 6 - 2 2 O O O O O O

[continued on p. 2S2\
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C 1 3 C 1 4 C [ 5 C ) 6 C ] 7 C l g C1 9 C2o (-21 (--22 (-23

R¡ 1 1 1 1 1 1 1 1 1 1 1
«2 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
«3 1 - 1 - 1 - 1 1 1 1 1 - 1 - 1 - 1

^4 1 -1 -1 -1 -1 -1 -1 -1 1 1 1

«5 -1 0 0 0 - 1 - 1 - 1 - 1 0 0 0
R6 - 1 0 0 0 1 1 1 1 0 0 0
« 7 - 2 0 0 0 0 0 0 0 0 0 0
Rs 1 0 0 0 ¡V'3 iv'3 -¡V3 -V3 0 0 0
R9 1 O O 0 - Í V 3 -i,/3 iv'3 iv'3 0 0 0
«,„ -1 x/2 -V'2 0 1 - 1 1 - 1 v'2 -v/2 0
«i, -i V2 -V2 o - i i - i i -v-'2 72 °
*12 -1 -v'2 72 0 1 - 1 1 -! -v'2 v'2 °
«,3 -1 -V2 v'2 0 -1 1 - 1 1 x/

2 -N/2 0
«14 0 1 1 - 1 0 0 0 0 1 1 - 1
#15 0 1 1 - 1 0 0 0 0 - 1 - 1 1
«16 0 - 1 - 1 1 0 0 0 0 - 1 - 1 1
R,7 0 - 1 - 1 1 0 0 0 0 1 1 - 1
R1S 2 0 0 0 0 0 0 0 0 0 0
R,, 1 0 0 0 - 1 1 - 1 1 0 0 0
#20 1 0 0 0 1-1 1-1 0 0 0
«21 -1 0 0 0 i^/3 -iv'3 -iv'3 ix/3 0 0 0
R22 -1 0 0 0 -iv3 iv'3 ¡V3 -i%/3 0 0 0
R23 0 0 0 0 0 0 0 0 0 0 0

«5: P = /*; Q = E; R = n; S = E.
K6: p = -/*; Q = K; R = n; S = -£.
R7: P = 4>; Q = e; R = -e; S = Â.
^8: P = Ï*; Q = K; R = -n; S = À.
«,: /> = y'*; Q = R; R = -n; S = -L
R10: P = -Z'; Q = K; R = x; S = e.
«,,: P = -¿'; g = K; R = TT'; S = -E.
Ki2- P = í'; Q = K; R = n'; S = E.
R13: P = i'; Q = K; R = n'\ S = -(..
RÍ4: P = B'; Q = B; R = C"; S = E.
RÍ5: P = B'; Q = B; R = C; S = -E.
Rlf>: P = -B', Q = B; R = C; S = E.
RIT'. P = -B'; Q = B; R = C'; S = -E.

/£' I 0\ /i(/> I 0\ /-a" i 0 \ / 0 I c\
Ria:P = [-— ; Q = — -\ ; R = [ ; S = { 4 •

V 0 | 7 / ^ U I ¡W V 0 \^a"/' \ - E | O/

-'-m fi-(?+s> '-(Hr> '-frfS-
«=—(HI> »-(ffS> "(m> -(^H)
•••••'-^ «-(Hs> «-(^H> s-(H^)-
--(H-i) -(m> -(^H> -(^°)
«23: P = a»; 6 = ̂ ; « = ̂ ; s = &.
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Notes to Table 5.1
(i) The name of the group has the following significance. G"C| is the nth group of order |G| in the table.
(ii) The names of the elements of the groups have no special significance except that E is always the identity;

P,Q,R,..., etc. are used for other elements. No concerted attempt is made to link a group with any of its subgroups
so that, for example, an element labelled P in one group bears in general no relation to an element labelled P in
another.

(iii) The reps and the classes are numbered and are put in such an order as to make the character tables of the
groups look tidy. For example rep RI is always the identity rep, and class Cl always contains the identity element
alone.

(iv) Each group is completely characterized by certain generating relations put immediately under the name of
the group and they serve amongst other things to distinguish groups of the same order one from another.

(v) The elements of a given class are tabulated underneath the defining relations in terms of the generators.
Note that it has not always been convenient to use a minimum set of such generators; indeed, for some groups the
algebraic manipulations involved in the use of a minimum set of generators are very laborious. We have always used
sufficient generators to make the algebra relatively easy.

(vi) The character tables are given, as usual, as square arrays of complex numbers. Each row refers to a given
rep R and each column to a given class C.

(vii) In order to save space the matrix representatives of the degenerate reps are given for generating elements
only. These are listed just below the character table concerned. A key to the letters used for various matrices and for
all complex numbers is given below.

(viii) An asterisk always denotes the complex conjugate.
(ix) The character tables of certain direct product groups are given in an abbreviated form explained in the table

under group Gi6, where the method of abbreviation is first used.

Key to Table 5.1

(i) Complex numbers

' i ' is, as usual, the square root of minus one, with argument equal to jjr.

(ii) Two-dimensional matrices
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(iii) Three-dimensional matrices

Abbreviated symbols are used: for example K = (cab) stands for the matrix the first letter of the

symbol referring to the first row and so on.

(iv) Four-dimensional matrices

These are listed as 2-by-2 block matrices, each entry being a 2-by-2 matrix to be found in the key, (ii), above.

(v) Six-dimensional matrices

Abbreviated symbols are used: for example j/ = (cedafb) stands for the matrix



The identification of the elements has of course to be made with proper regard to the
isomorphism between the abstract group and its realization as a point group, for
example, PQ = C4zC2x = C2h (by using the Jones' symbols or Table 1.5).

The identification of each of the crystallographic point groups as a manifestation
of one of the abstract groups of Table 5.1 is given in Table 5.2; the identification is
not always uniquely determined and in some cases the matrix representatives differ
from those given in Chapter 2 by a unitary transformation between the two groups.

5.2. The single-valued representations of the 230 space groups

In compiling tables of all the space-group reps we have used the theory that was
described in detail in section 3.7 and illustrated in section 3.8 for the examples of the
cubic close-packed structure (Fm3m, Ol) and the diamond structure (Fd3m, Ol). We
wish to determine the reps of Gk, the little group of the wave vector k for all wave
vectors in the basic domain of the appropriate Brillouin zone. Gk is, of course, an
infinite group. For a point of symmetry the problem simplifies to the determination
of the reps of Herring's little group HGk = Gk/Tk, where Tk is the group of all those
symmetry operations, {E\ tj, of the Bravais lattice for which exp ( —ik . t ; ) = +1.
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It is possible to identify each of the crystallographic point groups, whose character
tables were given in Table 2.2, with one of these abstract groups (Belova, Belov, and
Shubnikov 1948). For example, the abstract group Gg is isomorphic with the point
group 422 (Z)4). By inspection it is fairly easy to see which elements of the point group
422 (Z>4) correspond to the generating elements of Gf, particularly as the choice of
P and Q is restricted by the matrices of the representation E, which are, from the key
to Table 5.1,

From Table 2.3 P must therefore be C4z and Q must be C2x, and the complete corre-
spondence between the two groups is

c,
c*
C3

C4

C5

422 (£>4)

£
C2z
C4-c:.
C2*
c*y
C2k

C2a

G4
8

E
P2

P
P3

Q
P2Q

PQ
P3Q
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T A B L E 5.2

The identification of the point groups in terms of the abstract groups

Point
group

UQ)
1(C ()
2 (C2)
m(C l f t)
2/m (C2h)
222 (D2)
rnrnl (C2v)
mmm (D2k)
4(C4)

«(S4)
4/m (C4t)
422 (£>4)
4mm (C4_)
42m (£>2,)
4/mmm (D4h)
3(C3)
3 (C3I.)
32 (£>3)
3m (C3b.)
3m (,D3,)
6(C6)
5 (C3fc)
6/m (C6h)
622 (Z>6)
6mm (C6t,)
62m (£»3h)
6/mmm (D6fc)
23 (D
m3 (rt)
432 (0)
43m (Td)
m3m (0,,)

Abstract
group

G!
G^
Gi
Gi
GJ
GJ
G 2

4

G|
Gi
G4

G^
Gt
Gt
Gl
G9

16

Gi
G^
G^
Gi
G?2

G
i
6

CJ
G?2
GJ2

G\2

G?2

G5
24

G5
12

G 10
24

G24
G^4

G48

Identification of generating elements

P =
P =
D

P =
p =

P =
P =--
P =
P =
P =
n

P =
P =
P =
P =
P =
P =
P =
P =
P —
P =
P =
P —
P =
P =
P
p =

P =
P —
P =
P =
p =

E
I

C2z

crz

c22,e
C2;, Q

C2,,Q
C2l,Qc:z
s;,
Q'z, QC:,,Q
c;,, Q
s;,, Q
c;:, Q
C3

+

s,
C1,Q
c3

+,e
S6\Qc;
s3-
C^Q
C:,Q
c6

+,e
sj.e
CtQ
c3\, es6

+,,e
c3

+!, e
c3

4,, e
56-,,e

= /
= C2,
= (Ty

= C2y, « = /

— y

= C2x

= aT
= C2l

= C2j[, « = /

= C21

= <^dl
= C21

= C2, R = /
= C21

= CTdl
= C21

= C'2l,K = C2,S = I
= C2x, R = C2z

= C2x, R = C2z

— C2x, R = C2z, S — C2d

= C2x,R = C2z,S = aM

= ax, R = <TZ > S = C2c

Tk will be a subgroup of T, the group of all the translational symmetry operations of
the Bravais lattice. The elements of the group HGk can be determined from Tables 3.6
and 3.7. The group multiplication table of HGk can then be determined by direct
multiplication of the Seitz space-group symbols, replacing {E t;} by {E \ 0} when-
ever exp ( — ik. t;) = +1. We call HGk Herring's little group since this method of
dealing with the points of symmetry was first applied by Herring (1942) to determine
the character tables for the space groups of the hexagonal close-packed and diamond
structures. This group can then be identified with one of the abstract groups G"G! in
Table 5.1 and the appropriate reps of Gl^i that form small reps (that is, reps for



with a(Hj, Hk) given by eqns. (3.7.27) and (3.7.37). Gk* can then also be identified
with one of the abstract groups Gjq in Table 5.1 and the reps of G"G| tested with
eqn. (3.7.33) to determine which of them can be lifted by means of eqn. (3.7.9) into
small reps of Gk.

The above method has been applied separately ab initio for each point of symmetry
and each line of symmetry in the basic domain of the Brillouin zone of each of the 230
space groups. This procedure was applied to both symmorphic and non-symmorphic
space groups in the manner illustrated in section 3.8 for the two space groups
Fm3m (O%) and Fd3m (Ol). That is, the group-multiplication table of Herring's little
group HGk, or of the central extension Gk*, has been determined separately each time
and then identified with one of the abstract groups whose representations are given in
Table 5.1. To go from the allowed reps of HGk or Gk* to the small reps of Gk is very
straightforward; the small reps of HGk immediately become small reps of Gk by repre-
senting all elements of Tk by 1, and the allowed reps of Gk* become small reps of Gk

once they have been lifted into Gk by means of eqn. (3.7.9). While the details of the
algebra are often more complicated for non-symmorphic space groups, there is no
essential difference between the basic theory for symmorphic and non-symmorphic
space groups. Other authors have sometimes used slightly different methods to deduce
these reps. For instance Zak (1960) was able to show that it was only necessary to
determine ab initio the reps of Gk for the symmorphic space groups (see also Klauder
and Gay 1968). This is a fairly easy process because HGk or Gk* for a symmorphic
space group is isomorphic either with one of the 32 crystallographic point groups or
with a direct product of Tn (an Abelian group of small order, «) with one of these
point groups. The reps of HGk or Gk* for any non-symmorphic space group can then
be found, from those of HGk or Gk* in some suitably chosen symmorphic space
group, by making use of the theory of induced representations which we have
described in Chapter 4. In section 4.5 we illustrated the use of the theory of induced
representations to determine the reps of one of the point groups, 432 (0), from those
of one of its invariant subgroups, 23 (T), see p. 199. This theory can also be applied
to space groups to determine the reps of larger space groups from those of smaller
space groups. It can be verified fairly easily, for example by inspection of Fig. 4.1,
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which the elements of the translation group of the Bravais lattice satisfy eqn. (3.4.3))
can easily be identified. For lines of symmetry we have to obtain the reps of Gk by
finding projective reps of Gk*, the central extension. For such k, T/Tk does not contain
a finite number of elements, so that in an attempt to determine the small reps of Gk

from the reps of a finite group we cannot profitably use Gk/Tk, since this group is now
infinite. Instead, to find a suitable finite group we have to use the central extension
Gk*. The group multiplication table of the elements of Gk* is determined by using the
multiplication rule

(3.7.31)



In a symmorphic group we are able to choose the coset representatives {R: \ vj,
{^2 I V2}> • • • , {Rh I v/,} in such a way that they are the elements of a point group, i.e.
v l 5 v 2 , . . ., Vj, are all zero; however, for a non-symmorphic space group at least one
of the \j will have to be non-zero. The space-group reps of a symmorphic space group
can be determined very easily; this was illustrated for Fra3ra (0|) as the first example
in section 3.8. Zak's technique for a given non-symmorphic space group, G, begins
by finding an invariant subgroup H, of G, of index 2 or 3. Let us suppose that we are
fortunate and that H is a symmorphic space group. This means that for a given
HGk, for a point of symmetry, we obtain an invariant subgroup "IP consisting only
of space-group elements with translation vectors equal to zero. For a given Gk*, for
a line of symmetry, we obtain a group Hk* of elements (Rt, <x;) such that all the a; are
zero. The reps of HHk or of Hk* can be determined very easily as was illustrated for
Fm3m (OjJ) in section 3.8. Zak's method then consists of applying the method of
induced representations, which we have described in Chapter 4, to determining the
reps of HGk or Gk* from the reps of HHk or Hk* respectively. The character tables of
symmorphic space groups can be obtained very simply, so that if a non-symmorphic
space group, G, contains an invariant subgroup, H, of index 2 or 3 the problem of
determining the reps of G can be solved immediately by this method. A very large
number of non-symmorphic space groups do in fact contain an invariant sym-
morphic subgroup of index 2 or 3. To show how to use this method for the remaining
non-symmorphic space groups when H is non-symmorphic, we note that all non-
trivial space groups contain some invariant subgroup of index 2 or 3, even if they do
not contain an invariant symmorphic subgroup of index 2 or 3. Therefore, in using
Zak's method, if an invariant subgroup, H, of a non-symmorphic space group, G, is
also non-symmorphic we have first to find the character tables of the non-symmorphic
subgroup, H. This can easily be done if the non-symmorphic subgroup H has an
invariant symmorphic subgroup of index 2 or 3 itself. If not, this process is repeated
until an invariant subgroup of index 2 or 3 which is symmorphic is obtained.

We illustrate this method of determining the space-group reps by considering the
example of Pnln (O%) (Zak 1960). The space group Pn3n (Ol) has an invariant sub-
group of index 2, namely the space group P432 (O1), which is a symmorphic space
group (see Table 3.7). If P is the space-group element {/1 ̂ {} then the left coset
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that every point group contains an invariant subgroup of index either 2 or 3. As a
result, it is possible to show that every space group also contains an invariant'sub-
group of index either 2 or 3. As we saw in section 4.5, when a finite group G contains
an invariant subgroup of prime index the theory of induced representations is quite
easy to apply.

Any space group can be written in terms of left coset representatives of the transla-
tion group, T, of its Bravais lattice

(3.5.2)
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representatives of Pn3n (O%) in an expansion of the form of eqn. (3.5.2) consist of all
the elements of the point group 432 (O), associated with zero translations, together
with the products of these elements with P. The Brillouin zone for the space group
Pn3n (Ol) was illustrated in Fig. 3.13 and it is re-drawn in Fig. 5.1. The elements of
the little group of k at the points of symmetry can be found from Table 3.6 and
they are given again in Table 5.3. The space-group representations at the points
of symmetry can now be found. At F HGk is isomorphic with the point group

FIG. 5.1. The Brillouin zone for Fc. r = (000); X = (0^0); M = (i|0); R = (f^).

m3m (Oh) and its representations can therefore be found directly from Chapter 2.
At R the coset representatives of the symmorphic subgroup are of the form {Rt \ 0}
where the rotational parts 7?, make up the point group 432 (O) whose character table
is given in Table 2.2; this is reproduced in Table 5.4. In order to determine which of
the representations are conjugate and which are self-conjugate we proceed in a
similar way to the examples considered in section 4.5. We examine the characters of
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{Ri | 000}

{E I 000}
{C3

+, | 000}
{C2J 000}
{Cla 1 000}

{c;x 1 000}

{/i m{R> iooo}{/i
{E | 000}
{C7, 1 000}
{C2J011}
f C j J O O l }
}Ctx 1 010}

1 1 n2 2 2 }

and

(5.2.1)

(5.2.2)

(5.2.3)

Therefore the reps A± and A2 are conjugate, Ti and T2 are conjugate, and £ is self-
conjugate ; that is, the reps of the symmorphic subgroup of HGR separate into three
stars containing Al and A2, Tl and T2, and E alone. Therefore At and A2 stick
together to form a 2-dimensional rep of HGR, T{ and T2 stick together to form a
6-dimensional rep of HGR, while E leads to two 2-dimensional reps of HGR charac-
terized by x({/ | iii}) = +2 and — 2 respectively. The character table of HGR can
therefore be constructed and it is given in Table 5.5. In this table the character of a
class of the representation derived from A^ and A2 is the sum of the characters of the
same class in A^ and A2; similarly for the representation derived from 7\ and T2.
The characters of the two representations derived from E are equal to the characters
of E for the elements of the symmorphic subgroup; for the remaining elements we
have, from eqn. (4.5.45),

(5.2.4)

The character tables for the reps of the other special points of symmetry, X and M,
can be found in a similar way; the results are given in Table 5.6.

Another example, that of the space group F2j3 (T4), has also been considered by
Zak (1960). This example is slightly more complicated because at some points of
symmetry the method has to be used two, or even three, times to relate HGk to a
symmorphic subgroup. We refer the reader to Zak's original work for the details of
this example.

elements ol each class one obtains
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T A B L E 5.3

The elements o/Gk at the points of symmetry in Pn3n (O%)

Notes to Table 5.3

(i) The points F, X, M, and R are shown in Fig. 5.1.
(ii) Column 2 gives the k vector in terms of g1; g2, and gv

(iii) Column 3 identifies the elements in Gk.

TABLE 5.4

Character table o/"Hs/or P432 (O1), the invariant symmorphic subgroup of Pn3n (0jf)

Note to Table 5.4

T A B L E 5.5

Character table of"GRfor Pnln (Ol)

(n) The last row of the table identifies the classes in terms ot those ot the abstract group G^, and the last column
identifies the reps in terms of those of G|6 (see Tables 5.1 and 5.7).

Notes to Table 5.5
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T A B L E 5.6

The character tables for "Gx and "G" of Pnln (O$)

(a) X

Notes to Table 5.6

(i) The translational parts of the space-group elements are given in terms of t , , t2, and t3 (see Table 3.1).
(ii) In (a) the numbering of the classes of "Gx is that of the abstract group G\2 and the last column identifies the

reps in terms of those of G\2 (see Tables 5.1 and 5.7).
(iii) In (b) the numbering of the classes of "GM is that of the abstract group G\2 and the last column identifies the

reps in terms of those of Gj2 (see Tables 5.1 and 5.7).
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In Table 5.7 we list for each point of symmetry and line of symmetry in the basic
domain of each of the 230 space groups the identification of HGk or Gk* in terms of
one of the abstract groups G"G| of Table 5.1, together with the elements that are to
be taken as the generating elements of G"G]. The rules for constructing the small reps
of Gk for those wave vectors, k, that are in the representation domain but not in the
basic domain will be given in section 5.5. The space groups are listed in the order
given in Volume 1 of the International tables for X-ray crystallography (Henry and
Lonsdale 1965) which was also the order we used in Table 3.7. For each space group
we also give references to the work of other authors on the determination of the reps
of that space group. In some cases HGk is a direct product of a smaller group with
an Abelian group Ts, of order s, whose elements are pure translation operations such
as {£|t;}, {E t;}

2, . . . , (E\ii}
s-\ where {E t;}

s is equivalent to {E\0}, i.e.,
exp { — ik.(st;)} = +1. Not all the reps of the abstract group G"G| are necessarily
allowable as small reps of Gk. This is because the representations of HGk, = Gk/Tk,
must be compatible with the representations of the translational subgroup T. There-
fore, if HGk contains any elements that are pure translations of the Bravais lattice of
the space group only those reps of G"G| which satisfy eqn. (3.4.3)

T A B L E 5.7

The single-valued reps oj the 230 space groups

(3.4.3)

are allowed as small reps. This means that, sometimes, in different manifestations of
the same abstract group a different set of its irreducible representations may actually
be allowed as small reps. For example, when G^ appears at F of P4 (C^) all four reps
Rl,R2,R3, and R4 are allowable, but when G\ appears at Zof P2^ (C|) only R2 and
R4 are allowable. This is because at Z the group HGk contains the element P2 =
{C2z it3}

2 = {E t3} (from Table 3.2) which must be represented by exp { —ik . t 3 } =
— 1 (from Table 3.6) and therefore only the representations in which %(P2) = — 1
are compatible with the representations of the translational subgroup of the Bravais
lattice of the crystal. In Table 5.7 we list only those reps of G"G\ that do satisfy eqn.
(3.4.3).
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2 Pl Cl

(F\; Kl; M5; Zl.)

f G 2 : {/|000}: 1 ,1 ; 2, 1: a.
B G 2 ® T2: {/| 000}; t¡: 1, 1; 2, 1: a.
F G 2 ® T,: {/| 000}; t2 : 1, 1; 2, 1: a.
G G 2 ® T2: {/) 000}; t3: 1, 1; 2, 1: a.

3 P2 C2

(fl; AT7; M5; 515; Zl.)

T G2 : {C2z | 000}: 1, 1; 2, 1: b.
B G2 ® T2: {C2z|000}; t 4 : 1, 1; 2, 1: 6.
F G2 ® T2: {C,z| 000}; t2: 1, 1; 2, 1: 6.
Z G2 ® T2: {C2z|000}; t3: 1, 1; 2, 1: ¿>.
C G2 ® T2: {C2z| 000}; t2 or t 3 : 1, 1; 2, 1: ¿.
D G2 ® T2: [C2 z] 000}; t¡ o r t j : 1, 1; 2, 1: 6.
/4 G2 ® T2: {C2z| 000); t, ort2: 1,1; 2, !: 6.
£ G| ® T2: {C2z| 000}; t, or t2 or t 3 : 1 ,1 ; 2,1: b.

A* G2: (C2l,0): l , x ; 2, x: b.
V* G2 : (C2 z ,0): I , x; 2,x. b.
W* G2: (C2z ,0): \,x; 2,x: b.
U" G2 : (C2z ,0): I , x; 2,x: b.

4 f2, Cj

(Fl; A:?; A/5; 515; Zl.)

T G2 : {C2z| OOi}: 1, 1; 2, 1: b.
B G2 ® T2: {C22 |002}; t t : 1 ,1 ; 2, 1: 6.
Y G2 ® T2: {C2z | OOi}; t 2 : 1, 1; 2, 1: 6.
Z G¿: {C2z| OOj}: 2 ,3 ; 4,3: a.
C G¿: {C 2 _¡00 2 }: 2 ,3 ; 4 ,3: a.
D G¿: {C2z |00i}: 2,3; 4 ,3: a.
A G1

2 ® T2: ¡C2z) OOf}; t, or t 2 : 1 , 1 ; 2, 1: b.
E G{: {C2z| OOi}: 2, 3; 4, 3: a.

A* G 2 : (C2z ,0): 1, x; 2,x: b.
V* G2: (C2 z ,0): \,x; 2, x: b.
Wx G2: (C2 z ,0): l,.x; 2,x: b.
U* G¡: (C 2 2 ,0) : l , x ; 2, x: b.
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5 B2 C\

( F \ ; Kl; JW5; S15; Zl.)

F G2: {C2z|000}: 1, 1; 2, 1: b.
A Gi ® T2: {C2z| 000}; t i : 1, 1; 2, 1: b.
Z G2 ® T2: {C2z | 000}; t 2 or t 3 : 1 ,1; 2, 1: 6.
M G2 ® T2: {C2z¡ 000}; tt or t2 or t 3 : 1,1; 2, 1: 6.
£ G¡ ® T2: {£| 000}; t! or t 3 : 1, 1 : a.
K G¡ ® T2: {£|000}; t3: 1, 1: a.

A* G2: (C2z,0): l , x ; 2,*: b.
U* G2 : (C2z,0): 1, x; 2,x: b.

6 Pm C\h

(Fl; Kl; M5; 515; Zl.)

T G2 : {<7 Z | 000}: 1, 1; 2, 1: c.
B G2 ® T2 {<r z | 000}; t^ 1 , 1 ; 2, 1: c.
y G2 ® T2 {<7Z |000}; 12: 1, 1; 2, 1: c.
Z G2 ® T2 {aJOOO}; t3 : 1 , 1 ; 2, 1: c.
C G2 ® T2 {<rz | 000}; t 2 or t 3 : 1, 1; 2, 1: c.
0 G 2 ® T 2 {<r z | 000}; t t or t 3 : 1, 1; 2, 1: c.
^ G2 ® T2 { (7 Z |OOOJ; t, ort2 : 1, 1; 2, 1: c.
E G2 ® T2 {<7Z |000}; t! o r t 2 or t 3 : 1, 1; 2, 1: c.

A* G¡: (£,0): 1 , 1 : a.
V* G\: (£,0); 1 ,1 : a.
H7" G¡: (£,0): 1 , 1 : a.
U' G J : (£,0): 1, 1: a.

7 Pe C?,,

(£1; /Í7; M5; 515; Zl.)

T G^: (a z | i-00}: 1 ,1 ; 2, 1: c.
B Gi: {aj 200}: 2, 3; 4, 3: a.
I' G'2 ® T2: {<7z | iOO}; t2: 1, 1; 2, 1: c.
Z G2 ® T2: {CTZ | |-00}; t3: 1, 1; 2, 1: c.
C G2 ?) T2: {(72| 200}; t 2 o r t 3 : 1 , 1 ; 2, 1: c.
£l Gi. {<rz |100}: 2 ,3; 4, 3: a.
A Gi: {trz|iOO}: 2,3; 4,3: a.
E Gi: {<T Z | ¡00}: 2 ,3; 4,3: a.

A' G¡: (£,0): 1, 1: a.
V G\: (£,0): 1,2: a.
Wx G¡: (£,0): 1 , 1 : a.
Ux G¡: (£,0): 1 ,2 : a.
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8 Bm C\h

(Fl; Kl\ M5; 515; Zl.)

r G2: {<rj 000}: 1 , 1 ; 2,1: c.
A G 2 ® T2: { < T Z | 000}; t,: 1, 1; 2,1: c.
Z G2 ® T2: {<r2 |000}; t 2 or t 3 : 1 ,1 ; 2, 1: c.
M G2 ® T2: {az | 000}; tt or t2 or t3: 1 ,1 ; 2, 1: c.
L G\ ® T2: {£|000}; t¡ ort3 : 1, 1: a.
V G¡ ® T2: {£|000}; t3: 1,1: a.

A* G|: (£,0): 1 , 1 : a.
t/* G j : (£,0): 1, 1: a.

9 g¿ Ct>

(M; ¿T7; A/5; 515; Zl.)

F G2: {<TZ|{00}: 1 , 1 ; 2, 1: c.
^ G¡: {aJi-00}: 2 ,3; 4,3: a.
Z G2 ® T2: {az| iOO}; t 2 o r t 3 : 1 ,1 ; 2, 1: c.
M G'4: {o-J j-00}: 2,3; 4,3: a.
L G¡ ® T2: {£| 000} t t ort3 : 1, 1: a.
V G¡ ® T2: {£|000} t3: 1,1: a.

A1 G j : (£,0): 1 , 1 : a.
U* G¡: (£,0): 1 ,2 : a.

10 f2/m C2ft

(£1; Kl; M5; S15; Zl.)

F Gj: {C2z|000}, {/| 000}: 1,1; 2, 1; 3, 1; 4, 1: a.
B G| ® T2 : {C2z| 000}, {/1 000}; t t : 1, 1; 2, 1; 3, 1; 4, 1: a.
V G| ® T2: {C2z¡ 000}, {/1 000}; t2: 1 , 1 ; 2, 1; 3, 1; 4, 1: a.
Z Gi ® T2: {C2z| 000}, {/1 000}; t3: 1, 1; 2, 1; 3, 1; 4, 1: a.
C Gi ® T2: {C2z| 000}, {/1 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1: a.
0 Gj ® T2: {C2z| 000}, {/ i 000}; t¡ or t 3 : 1 ,1; 2, 1; 3, 1; 4, 1: a.
/I G^ ® T2: {C2z| 000}, j / | 000}; t, or t 2 : 1 ,1 ; 2, 1; 3, 1; 4, 1: a.
E Gi ® T2: {C2z| 000}, j/| 000}; t t or t2 or(3: 1,1; 2, 1; 3, 1; 4, 1: a.

A' G2: (C22,0): 1 ,1 ; 2, 1: b.
V* G2: (C2 z ,0): 1, 1; 2, 1: ¿>.
W* G2: (C2 z ,0): 1, 1; 2, 1: ¿>.
(/' G2: (C2z,0): 1, 1; 2, 1: b.
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11 njm C\k

(Fl; Kl; M5; S I S ; Z\.)

F GJ: {C2z|00}}, {/IDO}}: 1,1; 2 ,1; 3, 1; 4 ,1: a.
B Gl ® T2: {C2z|00}}, {/|00}}; t,: 1, 1; 2, 1; 3, 1; 4, 1: a.
Y Gl ® T2: {C2z|00|},}/|00}}; t2: 1, 1; 2, 1; 3, 1; 4, 1: a.
Z G* {C2z|00|},{/|00i}: 5, 1: a.
C Gl {C22| 00}}, {/| 00}}: 5, 1: a.
D Gl {C2z¡00}},{/|00}}: 5, 1: a.
A G\ ®T 2 : {C2z|00i},{/|00i}; t j O r t , : 1, 1; 2, 1; 3, 1; 4, 1: a.
E Gl {C2z|00}}, {/| 00}}: 5, 1: a.

A* Gl (C22,0): 1, 1; 2, 1: b.
V* Gl (C2z ,0): 1, 1; 2, 1: fe.
W* Gl (C2 z ,0): 1 ,1 ; 2, 1: b.
V Gl (C2z,0): 1, 1; 2, 1: b.

12 12/m Cj,,

(Fl; Kl; M5; 515; Zl.)

F Gj: {C2z | 000}, {/| 000}: 1 , 1 ; 2, 1; 3, 1; 4, 1: a.
A Gl ® T2: {C2z| 000}, {/|000}; t j : 1, 1; 2, 1; 3, 1; 4, 1: a.
Z Gl®T2: {C2z\ 000}, {/1 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1: a.
M Gl ® T2: {C2z|000}, {/1 000}; t¡ o r t 2 or t 3 : 1,1; 2, 1; 3, 1; 4, 1: a.
L G2 ® T2: {/| 000}; t t or t 3 : 1, 1; 2, 1: a.
V G2 ® T2: {/| 000}; t3: 1, 1; 2, 1: a.

Ax G2 : (C2z ,0): 1, 1; 2, 1: b.
Ux G2: (C2 z ,0): 1, 1; 2, 1: 6.

13 P2/b C*lh

(Fl; Kl; M5; 515; Zl.)

F GJ: {C2z| 000}, {/liOO}: 1,1; 2, 1; 3, 1; 4, 1: a.
B G^KI^OO}, {/liOO}: 5, 1: a.
y Gí ® T2: {C2z|000}, {/| 200}; t2: 1 , 1 ; 2, 1; 3, 1; 4, 1: a.
Z Gl ® T2: {C22|000}, {/i}00}; t3: 1, 1; 2, 1; 3, 1; 4, 1: a.
C Gl ® T2: {C2z| 000}, j/||00}; t 2 o r t 3 : 1 ,1 ; 2, 1; 3, 1; 4, 1: a.
D Gl: {<rz | 2-00}, {/ l iOO}: 5, 1: a.
A Gl: {aJiOOJ, {/liOO}: 5, 1: a.
£ GJ: {<7z | iOO}, {/IlOO}: 5 ,1 : a.

A' G 2 : (C2z ,0): 1, 1; 2, 1: 6.
V Gl: (C2z,0): 1 ,3 ; 2 ,3: 6.
»" Gl: (C2 z ,0): 1, 1; 2, 1: ¿.
C/' Gl: (C2z,0): 1,3; 2,3: b.
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14 P2Jb C5
2h

(F\; J2; K7; M S ; S I S ; Zl.)

F Gl: {C2z|00i},{/|i0i}: 1 ,1 ; 2, 1 ; 3, 1; 4,1: a.
B G*: {aJiOOM/ii-Ol-}: 5, 1 : a.
Y Gl ®T 2 : {CzJOOz-}, {/|£0£}; t2: 1, 1; 2 ,1 ; 3.1; 4,1: a.
Z G$: {C2z|00i-}, {/liOi}: 5, 1 : a.
C G*: {C2z]00|-}, {/liOi}: 5, 1 : a.
D G2

K: {C2z|00j}, {/|jO£}: 2,3; 4,3; 6 ,3; 8,3: a.
A G¿: {a,\ 200}, {/| |0i}: 5, 1 : a.
£ Gi: {C2z|002}, {/|M}: 2,3; 4,3; 6,3; 8,3: a.

A* G2 : (C2z,0): 1 , 1 ; 2, 1 : A.
V G2: (C2 z >0): 1,3; 2 ,3 : b.
Wx GÍ: (C2z,0): 1, 1; 2, 1: 6.
U* G2: (C2z,0): 1, 3; 2, 3: 6.

15 B2/¿> Cl*

(C8; D l ; Fl ; AT7; M5; 515; Zl.)

T Gj: {C2z| 000}, {/|ÍOO}: 1,1; 2, 1 ; 3, 1; 4, 1 : a.
A G¿: {<T Z I ÍOO}, { / l eOO}: 5, 1 : a.
Z Gl ® T2 : {C2z | 000}, {/ | |00} ; t2 or t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : a.
M G|: {(TjjOO}, {/IÍOO}: 5, 1 : a.
L G2 ® T2: { / l eOO}; Í! ort3 : 1, 1; 2, 1: a.
V G2 ® T2: {/I £00}; t3: 1, 1; 2, 1: a.

A' G2: (C2z,0): 1, 1; 2, 1 : b.
U* G2: (C2z,0): 1,3; 2 ,3 : b.

16 P222 D\

(f\; Kl; M5; T\; Zl.)

T Gj: {C2z| 000}, {C2,| 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
Y G| ® T2 {C2z| 000}, {C2v| 000}; t j : 1, 1; 2, 1; 3, 1; 4, 1: 6.
^ Gl ® T2 {C2z| 000}, {C2v | 000}; t2 : 1, 1; 2, 1; 3, 1; 4, 1: 6.
Z Gi ® T2 {C2z| 000}, {C2,| 000}; t3 : 1, 1; 2, 1; 3, 1; 4, 1: b.
U G l ® T 2 {C2z| 000}, {C2y 000}; t2 o r t 3 : 1, 1; 2, 1; 3, 1; 4, 1: b.
T G ^ ® T 2 {C2z |000},{C2y |000}; t, or t 3 : 1 ,1; 2, 1; 3, 1; 4, 1: b.
S Gl <g> T2 {C2z| 000}, {C2y| 000}; t! o r t 2 : 1, 1; 2, 1; 3, 1; 4, 1: è.
R Gi ® T2: {C2z| 000}, {C2y| 000}; t, or t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.

A" G2: (C2 v ,0): 1 , 1 2, 1 b.
D* G2 : (C2 v ,0): 1,1 2, 1 b.
Px G2 : (C2 v ,0): 1 , 1 2, 1 b.
Bx G2: (C2v.,0): 1 ,1 2, 1 b.
Z* G2 : (C2l,0): 1, 2, 1 b.
Cx Gl: (C2x,0): 1, 2, 1 6.
£* G2: (C2j t,0): 1, 2, b.
A" G2 : (C2l,0): 1, 2, 6.
A1 G 2 : (C2= ,0): 1, 2, 6.
#x G2: (C2z ,0): 1, 1 2, è.
Q* G1

2: (C2 z ,0): 1 ,1 2, 6.
G* G2: (C2 z ,0): 1, 1 2, 6.
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17 f222i D\

(F\\ K7; MS; Tl ; Z\.)

Y G2.: {C22|00i}, {C2y|000}: 1, 1; 2, 1; 3, 1; 4, 1: 6.
Y G2. ®T 2 : {C2z| 00^}, {C2y| 000}; t, : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
X Gl ® T2: (C2z | OOi}, {C2y| 000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
Z Gi {C2z¡00i}, {C2),|000}: 5, 1 : a.
U Gt {C2z | OOj}, {C2,1 000} : 5 , 1 : a.
T Gg

4 {C22|00i}, {C2),|000}: 5 , 1 : a.
S Gl ® T2: {C2z| OOj}, {C2JOOO}; t t o r t 2 : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; b.
R Gl {C2z1 00!}, {C2J | 000} : 5, 1 : a.

Ax G, (C2v ,0): 1,1 2, 1 b.
Dx Gi (C2 y ,0): 1 ,1 2, 1 b.
P v G^ (C2 v ,0): 1,3 2 ,3 b.
Bx G2 (C2,,,0): 1,3 2,3 b.
I." G¡ (C2l,0): 1 ,1 2, 1 t.
C* G2 (C2,,0): 1 ,1 2, 1 ¿>.
£J Gi (C2.x,0): 2 ,3 4,3 a.
/T Gi (C2l,0): 2 ,3 4,3 a.
A' G^ (C22 ,0): 1,1 2 ,1 b.
Hx G^ (C2z, 0): 1 ,1 2, 1 b.
Qx GÍ (C2l, 0): 1 ,1 2, i b.
G" G\ (C2 2 ,0): 1 , 1 2 ,1 6.

18 /J21212 Pj

(F\\ Kl; M5; ri ; Zl.)

F G^: {C2z|000}, {C2 v |MO}: 1 ,1 ; 2, 1; 3, 1; 4, 1: b.
y GJ: {C2y | MO}, {C2_. | 000} : 5 , 1 : a.
^ G*: {C2J22-0}, {C2z |000}: 5 ,1 : a.
Z 64 ® T2 : {C2z | 000}, {C2, | ÜOJ ; t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
V G*: {C2Ji|0}, {C2z |000}: 5 ,1 : a.
T G\: {C2y |UO}, {C22|000}: 5,1: a.
S GS: {C2y | HO}, {C2z|000}: 2, 3; 4, 3; 6, 3; 8, 3: d.
R G¡- {C23,lijO},{C2z |000}: 2, 3; 4, 3; 6, 3; 8, 3: d.

A1 G2 : (C2v,,0): 1,1; 2, 1 : h.
D* G\: (C2v, 0): 2 ,3; 4,3: a.
P' Gi: (C2v ,0): 2,3; 4,3: a.
Bx G2: (C2 y ,0): 1, 1; 2, 1 : b.
I1 GJ: (C2,,0): 1 ,1 ; 2 ,1 : ¿.
C* Gi: (C2,,0): 2 ,3 ; 4 ,3: a.
Ex Gi: (C2i.,0): 2,3; 4,3: a.
Ax G2 : (C2l,0): 1, 1; 2, 1: ft.
A' G2: (C22,0): 1 ,1 ; 2, 1 : b.
Hx G2 : (C2 2 ,0): 1, 3; 2 ,3: 6.
g1 G2: (C2 z ,0): 1,2; 2 ,2 : b.
Gx G2 : (C2z ,0): 1,3; 2 ,3 : b.
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19 P212,2, D\

( F \ ; Kl; M5; T\; Zl.)

T Gl {C2z iOi},{C2y |iiO}: 1 , 1 ; 2, 1; 3, 1; 4, I: b.
Y Gl {C2y iiO},{C2zJiOi}: 5 ,1 : a.
X Gl {C2x OÜ}, {C2z|iOi}: 5 , 1 : a.
Z Gl {C22 i02},{C2;JOii}: 5 , 1 : a.
U Gl {C2z iOi},{C2y||iO}: 2, 3; 4, 3; 6, 3; 8, 3: d.
T GB {C2z |0|}, {C2;t|0i|}: 2, 3; 4, 3; 6, 3; 8, 3: d.
S G¡, {C2x 0|i}, {C2z¡iOi}: 2, 3; 4, 3; 6, 3; 8, 3: d.
R G¡ {C27||0i}, {C2y|i|0}: 5 ,2: a.

A1 Gi (C2v, 0): 1, 1; 2, 1 : è.
D* Gi (C2y, 0): 2 ,3; 4 ,3: a.
P* Gi (CIy, 0): 2 ,2 ; 4 ,2: a.
fi* G| (C2y, 0): 1,3; 2,3: b.
X* G2 (C2l, 0): 1, 1; 2, 1: 6.
C* G2 (C2;t, 0): 1 ,3; 2 ,3: b.
E" G\ (C2x, 0): 2 ,2; 4 ,2: a.
A* G¿ (Clx, 0): 2 ,3; 4 ,3: a.
A* G2 (C2z, 0): 1, 1; 2, 1: 6.
H" Gl (C2z, 0): 2 ,3; 4 ,3: a.
Q* Gi (C 2 2 ,0) : 2 ,2 ; 4,2: a.
G" G2 (C2z, 0): 1, 3; 2 ,3 : b.

20 C222t Jj

(Fl; AT7; A/5; T3; Zl.)

T G^: {C2z| OOi}, {C2y| OOi}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
Y Gl ® T2: {C2z| 00{}, {C2,| 00|}; t j or t2 : 1, 1; 2, 1 ; 3, 1; 4, 1 : b.
Z Gl: {C2z |002}, {C2x |000}: 5, 1 : a.
r G»: {C2z | OOi}, {C2l| 000}: 5, 1: a.
S G2 ® T2 : {C2z| OOi}; t2: 1, 1; 2, 1: ¿.
« Gi: {C2z | OOi}: 2 ,3; 4 ,3: a.

A" Gi: (C2z, 0): 1, 1 2, 1 : b.
Hx Gi: (C2z, 0): 1, 1 2 , 1 : b.
Dx Gi: (C2z. 0): \,x 2, x b.
A" Gi: (C2 J ,0) : 1, 3 2,3 b.
I.* Gi: (C2x, 0): 1, 1 2, 1 ¿.
Ax Gi: (C2y, 0): 1 ,1 2,1 è.
S1 Gi: (C2y, 0): 2, 3 4,3 a.
G* Gi: (C2y, 0): 2, 3 4,3 a.
F* Gi: (C2y, 0): 1, 1 2, 1 b.
E* G2 : (C2x, 0): 1 ,3 2 ,3 6.
C' Gi: (C2_v, 0): 1, 1 2, 1 b.
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21 C222 D\

( F l ; Kl; MS; 73; Zl.)

F Gi: {C2z\ 000}, {C2y| 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
Y Gl ® T2: {C2z|000}, {C2JOOO}; tt or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : ft.
Z G2

4® T2: {C2z|000}, {C2y ¡000}; t3: 1, 1; 2 ,1 ; 3,1; 4 ,1 : ft.
T Gl® T2: {C2ztOOO¡, {C2y(OOOJ; (¡ or (2 or(3: I , 1; Z, I , 3, I; 4, 1: 0.
S G2 ®T 2 : {C2z| 000}; t2: 1, 1; 2, 1: ft.
R G¡ ®T 2 : {C2z| 000}; t2 o r t 3 : 1 ,1; 2, 1 : ft.

Ax G\ (C22, 0): 1, 1 2, 1: ft.
#* G\ (C2z, 0): 1, 1 2, 1: ft.
/>* G^ (C2z, 0): \,x 2,x ft.
A" G1

2 (C2x, 0): 1, 2, 1 ft.
E1 GI (C2l, 0): 1, 2, 1 ft.
A' G2 (C2y, 0): 1, 2, 1 ft.
B* G2 (C2y, 0): 1, 2,1 ft.
G1 G^ (C2y, 0): 1, 2, 1 ft.
F* G\ (C2y, 0): 1, 1 2, 1 ft.
£* Gl (C2,, 0): 1, 1 2, 1 ft.
C* G^ (C2;(, 0): 1, 1 2, 1 ft.

22 F222 Dl

(F\; Kl; M5; 514; Zl.)

F Gj: {C2z | 000}, {C2),|000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : ft.
y G2

4 ®T 2 : {C2z| 000}, {C2y| 000}; t 2 o r t 3 : 1 , 1 ; 2, 1 ; 3, 1; 4, 1 : ft.
X G J ® T2: {C2z| 000}, {C2y |000}; t, or t3: 1, 1; 2, 1; 3, 1 ; 4, 1 : ft.
Z G¿ ®T 2 : {C2z|000}, {C2y|000}; t, or t2: 1, 1 ; 2, 1; 3, 1 ; 4, 1: 6.
L G\ ® T2: {£|000}; ^ : 1, 1: a.

Ax Gl (C22, 0): 1, 1 2, 1 ft.
G* G^ (C2z, 0): 1, 1 2, 1 ft.
^ G2 (C22, 0): 1, 1 2, 1 ft.
2* G^ (C2z, 0): ,1 2, ft.
Ï* G^ (C2x, 0): , 1 2 , ft.
C1 G1

2 (C2x, 0): , 1 2, ft.
X" Gi (C2x, 0): , 1 2, ft.
i/* Gj (C2x, 0): , 1 2 , ft .
A" G¡ (C2y, 0): , 1 2, ft.
U* GJ (C2y, 0): 1, 1 2, 1 6.
Bx G\ (C2y, 0): 1 ,1 2, 1 ft.
.R' G^ (C2,, 0): 1, 1; 2, 1 ft.
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23 7222 £>j

(FI; Kl; M5; Zl.)

T Gl. {C2JOOO}, {C2y\ 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
X Gl ® T2: {C2JOOO}, {C2y \ 000}; t j or t 2ort 3 : 1,1; 2, 1 ; 3, 1; 4, 1 : b.
R G l ® T 2 : {C2y|000}; t , : 1 , 1 ; 2 ,1 : 6.
S Gl ® T2: {C2l| 000}; t, ort3: 1, 1; 2, 1: b.
T G¡ ® T2: {C2,\ 000}; ^ ort2 : 1, 1; 2, 1: b.
W Gl ® T4: {C2l| 000}, {C2). | 000}; t, or t2 or t3 ; 1, x; 2,x; 3, x; 4, x: b.

A" Gl (C2z, 0): 1 , 1 2, 1: b.
Gx Gl (C2z, 0): 1, 1 2, 1: 6.
P* G2 (C2z, 0): l , x 2, x: b.
I.* G\ (C2l, 0): 1,1 2, 1: 6.
F* G*2 (C2x, 0): 1 , 1 2, 1: b.
D* G1

2 (C2x, 0): l,x 2,x: b.
Ax G2 (C2y, 0): 1, 1 2, 1: 6.
[/' Gl (C2,, 0): 1, 1 2, 1: 6.
g* G2 (C2,, 0): l , x 2, x: b.

24 72,2,2, Z)l

(FI; Kl; M5; Zl.)

F GJ: {C2z | iOi}, {C2J | MO} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
X Gl ® T2: {C2JM}, {C2,| ÜO}; t t o r t 2 o r t 3 : 1,1; 2, 1 ; 3, 1 ; 4. 1 ; 6.
« G 2 ® T 2 : {C2j,!MO}; t, : 1, 1 ; 2, 1 : ¿.
S G2 ® T2: {C2x\ 0{i}; t, ort3 : 1,1; 2, 1 : b.
T G2 ®T 2 : {C2JiOij; t t ort2 : 1 , 1 ; 2, 1: 6.
W GÏ6: {£¡100}, {C2z|M}, {C2,|MO}: 9, x: f.

A" Gl (C2z, 0): 1 ,1 ; 2 ,1 : b.
G* G1

2 (C2t, 0): 1,1; 2 ,1 : ft.
-P* Gi (C2z, 0): 2, x; 4, x: a.
Z' Gl (C2x, 0): 1, 1; 2, 1: 6.
F* Gl (C2;[, 0): 1,1; 2, 1 : ft.
D* Gi (C2,, 0): 2, x; 4, x: a.
A1 Gl (C2,, 0): 1 ,1 ; 2 ,1 : ft.
i^1 G2 (C2>> 0): 1, 1; 2, 1: ft.
Q* G\ (C2j,, 0): 2, x; 4, x: a.
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25 Pmml C2,

(F\; Kl; MS; Tl; Zl.)

F Gl: {C2z)000}, {CT, I 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Y G i ® T 2 {C2z| 000}, {(7,1 000}; t t : 1, 1; 2, 1; 3, 1; 4, : c.
X Gl®12 {C2z| 000}, {CT,| 000}; t2: 1, 1; 2, 1; 3, 1; 4, : c.
Z G |®T 2 {C2z| 000}, {CT, | 000}; 3: 1, 1 ; 2, 1 ; 3, 1 ; 4, : c.
C/ Gj ® T2 {C2z|000}, {a, \ 000}; 2 or t3: 1, 1 ; 2, 1 ; 3, ; 4, 1 : c.
T Gl ® T2 {C2J 000}, {(7,|000}; , or t3: 1, 1 ; 2, 1 ; 3, ; 4, 1 : c.
S G i ® T 2 {C2z| 000}, {(7,| 000}; ! or t2: 1, 1 ; 2, 1 ; 3, ; 4, 1 : c.
« Gj ® T2 {C2z| 000}, {<7,| 000}; , or t2 or t3: 1, 1 ; 2, 1; 3, 1; 4, 1 : c.

A* G 2 : (CT,, 0): 1, 1 2, 1 c.
Z>* G2: (CT,, 0): 1 ,1 2, 1 c.
P* G2: (o-,, 0): 1, 1 2, 1 c.
B" G2 : (CT,, 0): 1, 1 2, 1 c.
27 G2: (CT,, 0): 1, 1 2, 1 c.
C* G2: (CT,, 0): 1, 1 2, 1 c.
£* G2: (ay, 0): 1 , 1 2, 1 c.
XI G2: (a,, 0): 1 ,1 2, 1 c.
A' Gl: (C2z, 0), (CT,, 0): 1, x; 2,x; 3, jc; 4, A;: c.
H' Gl: (C2z, 0), (CT,, 0): l , x ; 2, x; 3,x; 4, x: c.
Q* G2

4: (C2z, 0), ((7,, 0) : l ,x ; 2 ,^; 3, x; 4, x: c.
G* Gl: (C2z, 0), (a,, 0): l , j c ; 2, x; 3, jt; 4, x: c.

26 /*mc2i Cj,

(FI; /f7; M5; Tl; Zl.)

F G^: {C2JOOi}, KIOOj}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Y G¡4®T 2 : {C2z|00i}, {CT, |00i}; t: : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
X G\®12: {C22| 002-}, {CT, | 00^}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G|: {C2 z |OOi},{ffJOOO}: 2 ,3; 4,3; 6,3; 8,3: c.
I/ G¿: {C2 z |OOi},{CTjOOO}: 2,3; 4 ,3; 6,3; 8 ,3 : c.
T Gl: {C2z|00i}, {CT,|000}: 2 ,3 ; 4 ,3; 6,3; 8,3: c.
S G i®T 2 : {C2 2 |OOi},{CT,|OOe}; t, or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
R Gl: {C22|00i}, {CTX |000}: 2,3; 4,3; 6,3; 8 ,3 : c.

A' G2 K, 0): 1 ,1 2, 1: c.
D* G¡ (CT,, 0): 1, 1 2, 1 : c.
Px Gi (CTX, 0): 1,2 2 ,2: c.
Bx Gl (CT,, 0): 1, 2 2,2: c.
I* G2 (CT,, 0): 1 ,1 2, 1: c.
C' G\ (CT,, 0): 1, 1 2, 1 : c.
£* G2 (CT,, 0): 1,3 2,3: c.
^x Gi (CT,, 0): 1,3 2, 3: c.
A' G£ (C2z, 0), (<7y, 0) : l , x ; 2, x; 3, .x; 4, x: c.
#* Gl (C2z, 0), (CT,, 0) : l , x ; 2, x; 3, x; 4, x: c.
Qx Gl (C2z, 0), (CT,, 0): \,x; 2,x; 3, x; 4, x: c.
G" Gl (C2z, 0), (CT,, 0): l , x ; 2, x; 3, x; 4, x: c.
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27 Peel C\v

(FI; Kl; M5; Tl; 21.)

F 64: {C2z|000}, {ff j IOOi}: 1, 1; 2, 1; 3, 1; 4, 1: c.
Y G¡ ® T2: {C2z | 000}, {<7,1 001} ; t, : 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
X Gl ® T2: {C22|000}, {tTy |OOi}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z Gl {<7, | COI}, {C2z| 000}: 2, 3; 4, 3; 6, 3; 8, 3: d.
V Gl {<7y |OOij,{C2z |000}: 2, 3; 4, 3; 6, 3; 8, 3: d.
T Gl {<T,|0<H}, {C2i]000}: 2, 3; 4, 3; 6, 3; 8, 3: d.
S Gl ® T2: {C2z| 000}, {<7y | 00^}; t j or t2: 1, 1 ; 2, 1 ; 3, 1; 4, 1 : c.
« G* {<7y|00i}, {C2JOOO}: 2, 3; 4, 3; 6, 3; 8, 3: d.

A* Gl (ax, 0): 1, 1; 2, 1: c.
D* Gl (<7», 0): 1, 1; 2, 1: c.
í" Gl (<r,, 0): 1,3; 2,3: c.
5* Gl (<7X, 0): 1,3; 2 ,3 : c.
Ix G| (CT,, 0): 1 ,1 ; 2 ,1 : c.
C' G¿ (<7,, 0): 1 , 1 ; 2, 1: c.
E* G1

2 (a,, 0): 1,3; 2,3: c.
A' G\ (af, 0): 1,3; 2,3: c.
A' G4 (C22, 0), (a,, 0): l ,x ; 2, x; 3, x; 4, x: c.
H* Gl (Clt, 0), («7,, 0): 1, *; 2, x; 3, AT; 4, AT: c.
Q' Gl (C2i,0),(trs,0):l,x;2,x;3,x;4,x:c.
G' G* (C2,,0),(ay,0): l,x; 2,x; 3, x; 4, x: c.

28 fma2 Cjp

(Fl; *:?; M5; ri; Zl.)

T G|: {C2JiOO}, {(7,1 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Y G¿: {<7jiOO}, {a,|000}: 5 ,1 : a.
X G j ® T2: {C2JiOO}, {ff,|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
Z G 4 ® T 2 : {C2zliOO},{a r |000}; t3: 1, 1; 2, 1 ; 3, 1 ; 4, 1 : c.
U G 4 ® T2: {C2z|iOO}, {(r,,|000}; t2 ort3 : 1,1; 2, 1 ; 3, 1; 4, 1: c.
r G|: {(rJiOO}, {ay|000}: 5 ,1 : a.
5 G¿ {«7, | ¿00}, {<r, | 000}: 5, 1 : a.
« G\ {a, | ¿00}, {«7, | 000} : 5 ,1 : a.

A" Gl (CT,, 0): 1, 1 2, 1: c.
D* GJ (<7X, 0): 1, 1 2, 1: c.
P* Gl (ax, 0): 1,1 2, 1: c.
B* Gl (ffx, 0): 1 ,1 2 ,1 : c.
I* Gl (<7V, 0): 1, 1 2, 1: c.
C" Gl (CT,, 0): 1,3 2,3; c.
£* Gl (ay ,0): 1,3 2 ,3 : c.
A* Gl (^,0): 1 ,1 2, 1: c.
A' Gl (C2z, 0), (<7y , 0): l , x ; 2, x; 3, x; 4, x: c.
/P G* (C2z ,0), (s, 0): 5,x: a.
Qx Gl (C2,,0),(<r,, 0): 5,x: a.
G* Gl (C2jr, 0), (a,,, 0): l , x ; 2, x; 3, x; 4, x: c.
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29 Pca2i Cj,,

( F l ; Kl; MS; Tl; Zl.)

F Gl: {C2z|iO|}, {<ry|00i}: 1,1; 2, 1 ; 3, 1; 4, 1 : c.
y G f : {aJiOO}, {C2z¡M}: 5,1: a.

X G J ® T 2 : {C22|iOi}, KlOOi-}; t2: 1, 1; 2, 1; 3, 1; 4, 1 : c.
Z G|: {C2z| M}, { C T ^ I iOO}: 2,3; 4, 3; 6,3; 8,3: c.
U G¡: {C2z | Í-OÍ-}, {CTX | |00} : 2 ,3; 4,3; 6,3; 8,3: c.
T G»: {C2z|i0i},{ff,|00i}: 5,2: a.
5 G*: foliOO}, {C2,|*0i}: 5, 1: a.
R G¡: {C2zli0i},{s|00i}: 5 ,2: a.

A* G2: (a,, 0): 1, 1; 2, 1: c.
fl* G1

2: (ox, 0): 1, 1; 2, 1: c.
P* GÍ: (ax, 0): 1,2; 2 ,2 : c.
B* G^: (ax, 0): 1,2; 2,2: c.
£* Gj: (<Ty, 0): 1 ,1 ; 2, 1: c.
C' G2: (<ry, 0): 1,3; 2,3: c.
E* G'2: (ay, 0): 1,2; 2,2: c.
A* G¡

2: (ay, 0): 1,3; 2,3: c.
A* G^: (C2z,0), (ay,0): \,x; 2,x; 3,x; 4,x: c.
H* G*: (C2z,0), (<ry,0): 5,x: a.
Q* G¿: (C2z>0),(c7,, 0): 5, x: a.
G1 G|: (C2z,0), (CT, ,O) : l,x; 2,x; 3,x; 4,x: c.

30 Pnc2 C6
2v

(Fl; ÍT7; M S ; T\; Zl.)

F GJ {CjJ^OO}, {trJOOi}: 1,1; 2, 1; 3, 1; 4, 1: c.
y «s {^IjOi}, {a, | 00|} : 5,1: a.

JST G^ ® T2: {C2z||00}, {o-jlOOi}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G¿ {ff^iOi}, {C2z |iOO}: 2, 3; 4, 3; 6, 3; 8, 3: d.
U Gl {<T, |jO|}, {C2z|iOO}: 2, 3; 4, 3; 6, 3; 8, 3: d.
T Gl KlOOi}, {CjJi-00}: 5, 1 : a.
S Gl Klè0è},{ay |00i}: 5 ,1 : a.
R G* KlOOi}, {C2z||00}: 5, 1 : a.

A* G¡ (ax, 0) : , 1 ; 2, 1 : c.
D' G\ (a,, 0) : , 1 ; 2, 1 : c.
P* G2 K, 0): , 3; 2 ,3 : c.
B* G, (o-x,0): , 3 ; 2,3: c.
Z' Gj (ff,,,0): , 1; 2, 1: c.
C1 Gi (af, 0): ,3 ; 2,3: c.
£x G2 (<ry, 0): 1, 1; 2, 1: c.
A* G2 (CT,,, 0): 1,3; 2,3: c.
A1 Gl (C22,0), (<7y, 0): I,*; 2, jc; 3, x; 4, x: c.
H* Gt (C2z,0), (<7y, 0): 5,x: a.
2X G* (C2z,0), (<ry)0): 5,x: a.
G1 Gj (C2z, 0), (<ry, 0): l ,x ; 2, x; 3, x; 4,x: c.
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31 Pmn2i C\,

(FI; Kl M5; Tl, Zl.)

F Gl {C2z¡ M}, {ti, | 000}: 1, 1; 2, 1; 3, 1; 4, 1: c.
Y G$ {aJiOi},{<T,|000}: 5, 1 : a.
X Gl® T2: {C2z| iOi}, {<7,| 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
Z G| {C2Ji<H}, {<7,|000}: 2, 3; 4, 3; 6, 3; 8, 3: c.
£7 Gl {C2z iOi), {(7,1000): 2, 3; 4, 3; 6, 3; 8, 3: e.
7 G* {C27|iOi}, {(7y| 000}: 5 ,1 : a.
S G* KIM), K I O O O ) : 5, 1: a.
« G» {C2z | iOi}, {a, | 000} : 5, 1 : a.

A* Gi K, 0): , 1; 2, 1: c.
D* Gl (af, 0): , 1; 2, 1: c.
/>' Gl (a,, 0): ,3; 2,3: c.
B* Gi (a,, 0): , 3; 2, 3: c.
17 Gl (<7,, 0): , 1; 2, 1: e.
C' Gl (a,, 0): ,3 ; 2, 3: c.
£" Gi (a,, 0): ,3 ; 2 , 3 : c.
^* G2 (a,, 0): , 2 ; 2 , 2 : c.
A' GJ (C2z, 0), (a,, 0): l , x ; 2, x; 3, x; 4, x: e.
f/' C* (C2 z ,0), (<7,, 0): 5,x: a.
Q" G* (C2z ,0), (a,, 0): 5,x: a.
Gx G2

4 (Clt,0),(a,,,Q):l,x;2,x;3,x;4,x:c.

32 Pbal C\v

(FI; Kl; M5; T\; Zl.)

F GJ: {C2z | HO), {«7,10^0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
7 G^: KÜOO}, {C2z¡iiO}: 5, 1 : a.

JT G*: {ay |OiO},{C2 z |MO}: 5, 1 : a.
Z G i ® T 2 : {C2z | ̂ 0), {(7,1 0^0}; t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
U G*: {a,! OiO}, {C2z|iiO}: 5, 1 : a.
T G«: KliOO), {C2 llHO}: 5, 1 : a.
S Gi : {«7, | 200}, {C2z | f|0} : 2 ,3; 4. 3 ; 6 ,3; 8,3: d.
R Gl: {cr.li-OO}, {C2z|UO}: 2 ,3; 4 ,3; 6,3; 8,3: d.

a" G 2 : K, 0): ,1 ; 2, 1: c.
D* Gi: (a,, 0): , 3; 2 ,3: c.
P* Gl: («7,, 0): ,3 ; 2 ,3 : c.
Bx Gj : (af, 0): , 1 ; 2, 1 : c.
I* Gl: (a,, 0): , 1 ; 2, 1 : c.
C* Gl: (CT,, 0): 1,3; 2 ,3 : c.
£* Gl: (a,, 0): 1, 3; 2, 3: e.
/T Gi: (a,, 0): 1, 1; 2, 1: c.
A* Gî: (C2z, 0), (a,., 0): l , .x ; 2, ;c; 3, x; 4, x: c.
H* G*: (C2z, 0), («7,,0): 5, x: a.
Q' G¡: (C2z, 0), (CT,, 0), (£,1): 5, x; 6, x; l,x; 8, x: a.
G* Gl: (C2z, 0), ((7,,0): 5,x: a.
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33 Pndli C\,

(F\\ Kl; MS; T\; Zl.)

r G*: {C2z|iM}, KlOil}: 1 ,1 ; 2 ,1; 3,1; 4 ,1: c.
Y G f : KÜOO}, {C2z||ii}: 5, 1 : a.
X G*: K¡0||},{C22|iü}: 5, 1 : a.
Z GJJ: {C2z| 222}, {dJiOO}: 2, 3; 4, 3; 6,3; 8,3: c.
ji r1*- íf i 1 ' 1 ! ÍXT- i n 1 1 ! - ç i - uV G8 . {C2z I ÎÎ2-}, (<7y | UTIÏ- J. !• a-
r /"15. r/-* i 1 ! 1 ) r „ i n 1 1 ! - ç o • /i«s- t.t,2z I 2ji}, {<?,, I Uj-i}. 5,2. a.

S G¡: K¡Oii},{C2 zjMi}: 2,3; 4,3; 6,3; 8,3: d.
R Gl: {C2JHÍ}, KI°B}: 2 '3; 4 ,3 ; 6,3; 8 ,3: c.

A* G|: (trx, 0): 1 ,1; 2, 1 : c.
O" G2 : (a,, 0): 1, 3; 2,3: c.
P* G 2 : K, 0): 1,3; 2,3: c.
S* G2: (a,, 0): 1,2; 2,2: c.
I* G 2 : (s,,, 0): 1, 1; 2, 1 : c.
C1 G2: (or,, 0): 1,3; 2,3: c.
£* GJ: (ff,,, 0): 1 ,2 ; 2,2: c.
/I* G2 : (a,, 0): 1,3; 2,3: c.
A* G£: (C2z, 0), (a,, 0): 1, x; 2, x; 3, x; 4, x: c.
H* G\: (C2z, 0),(<7y, 0): 5,x: a.
Qx Gl: (C2l, 0), (a,, 0), (£, 1): 5, x; 6, x: 7, x; 8, x: a.
G* G£: (C22, 0), (<7,,0): 5,x: a.

34 Pnnl C2°

(Fl; Kl MS; Tl; Zl.)

T GJ {C2z |MO}, KIOM}: 1,1; 2, 1; 3, 1; 4, 1: c.
Y G| K¡iOi},{C2z |HO}: 5,1: a.

A- GJ {<Ty |OM},{C2 , | i iO}: 5 ,1: a.
Z G^ {as|0ii}, {C2 z |UO}: 2, 3; 4 ,3 ; 6,3; 8, 3: d.
V G| KliOi},{C2z | iiO}: 5,1: a.
r GJ K|Oie},{C2z |UO}: 5,1: a.
5 G^ {aJOii}, {C2JiiO}: 2, 3; 4, 3; 6, 3; 8, 3: d.
R Gl ®T 2 : {C2z|^0}, {(T,|0ii-}; t t or t2 or t3: 1, 1 ; 2, 1 ; 3 , 1 ; 4, 1 : c.

&" G2 (ax, 0): 1,1; 2,1: c.
D* G\ (ax, 0): 1,3; 2,3: c.
Px G2 (a,, 0): 1, 1; 2, 1: c.
5* G2 (at, 0): 1, 3; 2,3: c,
V G2 K, °): 1, 1; 2, 1: c.
Cx G2 (<7,,0): 1,3; 2,3: c.
E* G2 (Oy, 0): 1, 1; 2, 1: c.

A* G2 (S- °): ]>3; 2'3: c-
A' Gl (C2z, 0), (<TV, 0): l,x; 2, x; 3, x; 4, x: c.
H' G| (C2z, 0), (a',,0): 5,x: a.
Q* Gl (C2z, 0), (<ry. 0), (£, 1): 5, x; 6, x; 7, x; 8, x: a.
Gx G* (C2z, 0), (ffy,0): 5,x: a.
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35 Cmml C\\

(Fl; Kl; M5; T3; Zl.)

F G4 : {C2z| 000}, {(7,1 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Y G 4 < x ) T 2 : {C 2 z jOOO}, {ay |000}; t, or t2 : 1, 1; 2, 1; 3, 1 ; 4, 1 : c.
Z G4 ® T2: {C2z| 000}, {CT, | 000}; t3: 1 ,1 ; 2, 1 ; 3, 1; 4, 1 : c.
T Gl <g> T2: {C2z| 000}, {a, | 000}; t t or t2 ort3 : 1 ,1 ; 2, 1 ; 3, 1; 4, 1 : c.
5 Gi ® T2: {C2z|000}; t2: 1, 1; 2, 1: 6.
« G2 ® T2 : {C2z| 000}; t 2 o r t 3 : 1 ,1 ; 2, 1: 6.

A" Gl (C2z, 0), (<7y, 0): l , x ; 2, x; 3, x; 4, x: c.
Hx Gl (C2z, 0), (a,, 0): l , x ; 2, x; 3, x; 4, x: c.
£>* GJ (C2z, 0): l ,x ; 2, x: b.
A* G\ (ay, 0): 1, 1; 2, 1 c.
Z1 G^ (<r,, 0): 1, 1; 2, 1 c.
A* GJ (a,, 0): 1, 1; 2, 1 c.
B' G\ (ax, 0): 1, 1; 2, 1 c.
G' G2 K, 0): 1, 1; 2, 1 e.
F* G1

2 K, 0): 1, 1; 2, 1 c.
Ex GJ («TJ,, 0): 1, 1; 2, 1 c.
C1 Gl (ay, 0): 1, 1; 2, 1 c.

36 Cmc2, C2;

(Fl; Kl; M5; T3; Zl.)

F Gl {C2z|00|}, {ff,! 000}: 1, 1; 2, 1; 3, 1; 4, 1: c.
y G ^ ® T 2 : {C221 OOè}, {.rJOOO}; t, or t2: 1, 1; 2, 1; 3, 1; 4, 1 : c
Z G¿ {C2z | OOi}, {ff, i 000}: 2, 3; 4, 3; 6, 3; 8, 3: c.
T Gl {C22|00$}, {<r,|000}: 2, 3; 4, 3; 6, 3; 8, 3: c.
S G, ® T 2 : {C2z|00i}; t2: 1 ,1 ; 2 ,1 : e.
R Gl {C2z|00i}: 2,3; 4,3: a.

A* G4 (C2z, 0), (a,, 0): l , x ; 2, x; 3, x; 4, x: c.
//* 64 (C2z, 0), (<7,, 0): l , x ; 2, x; 3, x; 4, x: c.
D* G2 (C2z, 0): l , x ; 2, x: A.
A* Gl (ay, 0): 1,2; 2 ,2 : c.
S* G2 (a,, 0): 1 , 1 ; 2 ,1: c.
A* G1

2 (CTX, 0): 1, 1; 2, 1: c.
B" G2 K, 0): 1,3; 2,3: c.
G" G¡ (ax, 0): 1,3; 2 ,3: c.
F" G\ (ax, 0): 1, 1; 2, 1: c.
£x G^ (a,, 0): 1,2; 2 ,2 : c.
Cx G2 : (a,, 0): 1, 1; 2, 1: c.



THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS 309

37 Ceci C\l

( F l ; Kl; A/5; 73; Zl.)

F Gl: {C221 000}, {a, ¡ OOi} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Y G ï ® T 2 : {C221 000}, {(7, | 00^} ; t, or t2 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G f : {<r, |00i), {C2z| 000}: 2,3; 4, 3; 6,3; 8,3: d.
T G¡: {a, lOOi). {C2z| 000}: 2, 3; 4 ,3 ; 6,3; 8,3: d.
S G\ ®T 2 : {C2z| 000}; t2 : 1, 1; 2, 1: 6.
tf G2 ® T2: JC22|000}; t2 ort3: 1 ,1 ; 2, 1 : b.

A* 64 (C2z, 0), K, 0): l ,x ; 2, x; 3, x; 4,x: c.
H* Gl (C2z, 0), (CT,, 0): l , x ; 2,x; 3,x; 4,x: c.
D* G2 (C22, 0): l,x; 2,x: b.
A" Gl (a,, 0): 1,3; 2 ,3 c.
£' Gj (ay, 0): 1, 1; 2, 1 c.
A* G2 ( f f , , 0 ) : 1 ,1 ; 2 ,1 e.
S" G2 («T,, 0): 1,3; 2 ,3 c.
G" G2 (o-,, 0): 1,3; 2 ,3 c.
Fx G2 K, 0): 1, 1; 2, 1 c.
£* Gi (ff,, 0): 1,3; 2,3 c.
Cx G¡ (ay, 0): 1, 1; 2, 1 c.

38 Amm2 C{*

(Fl; Kl; MS; T3; Zl.)

F Gj: {C2y|000}, {«7,1 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
7 G j ® T2 : {C2y| 000}, {¡7,1000}; t, or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G ^ ® T 2 : {C2, | 000), {a,|000}; t3: 1, 1; 2, 1 ; 3, 1 ; 4, 1 : c.
r Gl ® T2 : {C2, |000}, {(7,|000}; ^ o r t 2 o r t 3 : 1 , 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
S G2 ® T2: {ffj 000}; t2: 1, 1 ; 2, 1 : c.
R G2 ® T2: {ffj 000); t 2 or t 3 : 1 , 1 ; 2, 1 : c.

A* G2: (ff,, 0): 1, 1; 2, 1: c.
W* Gl: K, 0): 1 ,1 ; 2, 1 : c.
¿>x G j : (£, 0): 1 , 1 : a.
A' G\; (a,, 0) : 1, 1 ; 2, 1 : c.
£* G2: ((72, 0): 1, 1; 2, 1: c.
A1 Gj: (C2>, 0), (CT,, 0): 1, x; 2, x; 3, x; 4, x: c.
B' Gl: (C2y, 0), («r,, 0): l , x ; 2, x; 3, x; 4, x: c.
G1 G|: (C2,, 0), K, 0) : l , x ; 2, x; 3, x; 4, x: c.
Fx Gl: (C2y, 0), K, 0): l , x ; 2, x; 3, x; 4, x: c.
E* G2: (az, 0): 1 , 1 ; 2, 1 : c.
C" G2: (nz, 0): 1, 1; 2, 1: e.
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39 Abm2 C'2
5
V

( F l ; Kl; M5; T3; Zl.)

F G|: {C 2 v j 000}, K! MO}: 1, 1 ; 2, I ; 3, 1 ; 4, 1 : c.
y G £ ® T2: {C2y ! 000}, {ffJiîO}; t t or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G ¿ ® T2: {C2),iOOO}, {crJiiO}; t3: 1 ,1 ; 2, 1 ; 3, 1; 4, 1 : c.
T GJ ® T2: {C2, ! 000}, {aj MO}; t ( o r t 2 or t 3 : 1 , 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
S Gi: {aJMO}: 2 ,3 ; 4,3: a.
R GÍ: {ffJjiO}: 2, 3; 4 ,3: a.

A* G 2 : K, 0): 1, 1; 2, 1: c.
tf1 G 2 : ( f f x , 0): 1, 1; 2, 1: c.
£>* G j : (£, 0): 1 ,2 : a.
^ G2 : (CTZ, 0): 1 ,1 ; 2, 1: c.
Z* Gj: (ffz, 0): 1 , 1 ; 2, 1 : c.
A' Gj: (C2y, 0), (<7X, 0): l , x ; 2, x; 3, x; 4, x: c.
B" Gj: (C2y, 0), (IT,, 0): l , x ; 2, x; 3, ,x; 4, x: c.
C?* G|: (C2}, 0), (a,, 0): 1, x; 2, x; 3, jc; 4, x: c.
i" GÎ: (C2y, 0), (a,, 0): 1, x; 2, x; 3, x; 4, x: c.
Ex G2 : (<rz, 0): 1 , 1 ; 2, 1 : c.
Cx G2 : (<rz, 0): 1, 1; 2, 1: c.

40_ ^«702 C2p
6

(/"I; AT7; M5; 7"3; Zl.)

F Gj: {C2, 1000}, {(TjOOi}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Y Gj ® T2: {C2 y i 000}, {aj 00|}; t, o r t 2 : 1 ,1; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G¿: {aJOOi},{C2,|000}: 5, 1 : a.
T Gj: {ffJOOe}, {C2). |000}: 5, 1 : a.
S G2 <g) T2: {<rz|00i}; t2: 1, 1; 2, 1; c.
« G^ ® T2: {a, | 002}; t2 o r t 3 : 1, 1; 2, 1: c.

A* Gi K, 0): 1, 1; 2, 1: c.
/^ G^ (ax, 0): 1, 1; 2, 1 : c.
i>* GJ (£, 0): 1, 1: a.
Ax Gi (a,, 0): 2, 3; 4, 3: a.
I* G] (az,0): 1, ) ; 2, 1 : c.
A* Gi (C2v, 0), (af, 0): l , x ; 2, x; 3, x; 4, x: c.
B* Gj (<rz, 0), (C2>., 0): 5, x: a.
Gx G^ (CTZ, 0), (C2),, 0): 5, x: a.
F* Gi (C2y,0), (a,, 0): 1, x; 2, x; 3, x; 4, x: c.
£* Gi (<rz, 0): 2,3; 4,3: a.
C* G\ (a,, 0): 1, 1; 2, 1: c.
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41 Abal C\l

(F\; Kl MS; T3; Zl.)

F Gl {C2>,|000}, {<7Ji||}: 1 ,1 ; 2, 1; 3, 1; 4, 1: c.
Y Gl ® T2: {C2, |000}, Kl ÎM}; t, or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Z G| Kliu}, {C2j,|000}: 5, 1 : a.
71 G| KHM},{C2J,|000}: 5 ,1 : a.
S Gl KlHi}: 2,3; 4,3: a.
R Gl Kliii}: 2,3; 4,3: a.

A" G2 (a,, 0): 1 ,1; 2, 1: c.
#* G2 K, 0): 1, 1; 2, 1: c.
D* G\ (E, 0): 1,2: a.
A" Gi (<T2, 0): 2,3; 4,3: a.
I* G2 (CTZ, 0): 1, 1; 2, 1: c.
A' Gl (C2y,0), (ffx , 0): l , x ; 2, x; 3, x; 4, x: c.
B" Gj (ffz , 0), (C2y, 0): 5, x: a.
G* Gl (a,, 0), (C2y, 0): 5, x: a.
F' Gl (C2y,0),(aJC,0):l,x;2,x;-},x;4,x:c.
E" Gl (<rz, 0): 2,3; 4, 3: a.
e GÍ (az, 0): 1, 1; 2, 1: c.

42 fmm2 C2g

(Fl; AT7; M5; S14; Zl.)

F Gj: {C2J 000}, {CTJ 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : e.
y Gj ® T2: {C2z| 000}, {a,\ 000}; t 2 or t 3 : 1, 1; 2, 1 ; 3, 1 ; 4, 1 : c.
X Gl ® T2: {C2J 000}, {ay \ 000}; t, ort3: 1, 1; 2, 1 ; 3, 1 ; 4, 1 : c.
Z Gl ® T2: {C22| 000}, {a, | 000}; t t or t2: 1, 1; 2, 1; 3, 1 ; 4, 1 : c.
i G¡ ® T2: {E\ 000}; t , : 1, 1: a.

A" Gi (C22, 0), (oy, 0): l , x ; 2, x; 3, x; 4, x: c.
G1 G^ (C2,, 0), (ay, 0): 1, x; 2, x; 3, x; 4, x: c.
ff* Gl (C22, 0), (CTJ., 0): l , x ; 2, x; 3, x; 4, x: c.
g* Gl (C2z, 0), (a,, 0): l , x ; 2, x; 3, x; 4, x: c.
I* G2 (ay, 0): 1, 2, c.
C' G2 (ay, 0): 1, 2, c.
^x G^ (a y, 0): 1, 2, c.
Ux G¡ (a,, 0): 1, 2, c.
A* Gj K, 0): 1, 2, c.
Z>* Gj K, 0): 1,1 2, c.
B' G2 (a,, 0): 1, 1 2, c.
«x G2 (ax, 0): 1, 1 2, c.
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43 Fddl C\l

( F l ; Kl; Mí; S14; Zl.)

T Gj {C2z|OQi}, {<7, |iQO}: 1, 1; 2 ,1 ; 3, 1; 4, 1 : c.
K G* KIOjO},{C2z |00-i}: 5, 1 : a.
A- G| {<r, | iOO},{C2 2 |OOi}: 5, 1 : a.
Z Gi KlOiO}, {C2z |0<H}: 2, 3; 4, 3; 6,3; 8, 3: d.
L G{® T2: {£|000}; t t : 1, 1: a.

Ax Gj (C2z, 0), (tr,, 0): l , x ; 2, x; 3, x; 4, x: c.
Gx G* (C2z, 0), (a,, 0): 5,x: a.
tf* G¿ (C2,,0), (CT,., 0): 5, x: a.
Qx Gl (C2,,0),(ay, 0),(£, 1): 5,x; 6,x; l,x; 8, x: a.
E1 G^ (ay, 0): 1, 1; 2, 1: c.
C* G\ (a,, 0): 1,3; 2,3: c.
A* G\ (a,, 0): 1,3; 2 ,3 : c.
[/* G\ (<Ty, 0): 1, 1; 2, 1: c.
A' G>2 (ax, 0): 1, 1; 2, 1: c.
Dx G\ (ax, 0): 1,3; 2,3: c.
B" G2 (<rx, 0): 1, 3; 2, 3: c.
fl* Gi K, 0): 1, 1; 2, 1: c.

44 /mm2 Cjg

( F l ; Kl; MS; Zl.)

F G|: {C2z | 000}, {cr, | 000} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
X Gl ®T 2 : {C2z| 000}, {ay\ 000}; t j or t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
R G1

2 ® T2: {<7,| 000}; t,: 1, 1; 2, 1: c.
S1 Gi 8 T2: {(?, | 000}; t t ort3: 1 ,1 ; 2, 1 : c.
J G2 ®T 2 : {C2z| 000}; tt ort2: 1 ,1 ; 2, 1 : *.
W G\ ® T4: {C2z| 000}; t, or t2 ort3 : 1, 1; 2, 1: ¿>.

A* G| (C2z, 0), (a,, 0): 1, x; 2, x; 3, x; 4, x; c.
Gx Gj (C2z, 0), (a,, 0): l , x ; 2, x; 3, x; 4, x: c.
P* G| (C2z, 0): l , x ; 2, x: b.
I* G^ ((7,, 0): 1, 1; 2, 1: c.
Fx Gi ((7,, 0): 1, 1; 2, 1: c.
Dx G| (Ê, 0): 1,1: a.
A* Gi (a,, 0): 1, 1; 2, 1: c.
f/x G2 K,0): 1, 1; 2, 1: c.
g* G¡ (E, 0): 1, 1: a.



THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS 313

45 Ibal CH

(F\; Kl; M5; Zl.)

T G|: {C2,\ 000}, {<7y | jiO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : e.
X Gl ® T2: {C2z|000}, {<ry |MO}; tt or t2 ort3: 1 ,1; 2, 1 ; 3, 1 ; 4, 1 : c.
R G¿: KleiO}: 2,3; 4,3: a.
S G\. {aJUO}: 2,3; 4,3: a.
T G| ® T2: {C2z| 000}; t, ort2 : 1, 1; 2, 1 : b.
W G{ ® T4: {C2z| 000}; t¡ o r t 2 or t 3 : 1,2; 2,2: b.

A* Gl (C2z, 0), (ay, 0): l,x; 2, x; 3,x; 4, jc: c.
G1 G| (C2z, 0),((7,, 0): l ,x; 2, x; 3, x; 4, x: c.
P* G\ (C22 ,0): l,x; 2,x: b.
Ix Gi (<7 y ,0 ) : 1,1; 2, 1: c.
F* G^ (<ry, 0): 1, 1; 2, 1: c.
O* Gj (£, 0): 1,2: a.
A" GJ K, 0): 1, 1; 2, 1: c.
C/1 G| (<T X , 0 ) : 1,1; 2, 1 : c.
g* G! (E, 0): 1,2: a.

46 Imaï. C\l

<f\\ Kl; MS; Zl.)

F GJ: {C22|000}, KlOii}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
X G\ ® T2: {C2z| 000}, {<7y |0ii}; t t o r t 2 or t 3 : 1,1; 2, 1 ; 3, 1; 4, 1 : c.
R G i ® T 2 : {ay|0|e}; t,: 1 , 1 ; 2 ,1: c.
5 Gi: {ax|0ii}: 2,3; 4 ,3: a.
r G2 ® T2: {C2z|000}; t t ort2 : 1 ,1 ; 2, 1 : b.
W G2 ® T4: {C2z| 000}; t, or t2 ort3 : 1, 3; 2,3: b.

A' Gl (C2z,0), (<7y, 0): l , x ; 2, jc; 3, x; 4, x: c.
G* G^ (C2z>0), (o-y, 0): \,x; 2, x; 3, x; 4, x: c.
/" G, (C2z, 0): l , j c ; 2,jc: ¿>.
I* G^ (<r y ,0) : 1, 1; 2, 1: c.
Fx G^ (ay, 0): 1 ,1 ; 2, 1 : c.
D" G¡ (E, 0): 1,2: a.
A' G^ (alt 0): 1, 1; 2, 1: c.
U* G\ K,0): 1, 1; 2, 1: e.
6* G} (£,0): 1,1: a.
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47 Pmmm D\h

(F\; Kl; MS; T\; Zl.)

F G\: {C2z|000}, {C2J,|000},{/|000}: 1,1; 2 ,1 ; 3 ,1; 4 ,1; 5,1; 6,1; 7,1; 8 ,1 : b.
Y Gl ® T2: {C2z| 000}, {C2y \ 000}, {/| 000}; t,: 1, 1 ; 2, 1; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
X Gl ®T 2 : {C2z|000}, {C2y|000}, {/|000}; t2: 1,1; 2, 1; 3,1; 4,1; 5,1; 6,1; 7,1; 8 ,1 : b.
Z G\ ®T 2 : {C2z| 000}, {C2y \ 000}, {/| 000}; t3: 1, 1 ; 2, 1; 3, 1; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
U G¿ ® T2: {C2z| 000}, {C2y | 000}, {/| 000}; t2 ort3 : 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1: b.
T Gl ® T2 : {C2z1 000}, {C2y | 000}, {/1 000} ; tl or t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, I ; 7, 1 ; 8, 1 : b.
S G¡ ® T2: {C2z|000}, {C2y\000}, { I \ 000}; t, or t 2 : 1, 1; 2, 1 ; 3, 1; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
R Gl ® T2: {C2z|000}, {C2y | 000}, {/1 000}; t, o r t 2 o r t 3 : 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1: b.

A* Gl: (C2y, 0), (CTX, 0): 1, 1 2 ,1 ; 3 ,1 4,1 c.
Dx Gl: (C2y ,0), (a,, 0): 1,1 2, 1 ; 3, 1 4,1 c.
P* GJ: (C2,, 0), («T,, 0): 1,1 2 ,1; 3 ,1 4 ,1 c.
S1 GJ: (C2,, 0), (a,, 0): 1,1 2, 1 ; 3, 1 4 ,1 c.
£* G*: (C2x, 0), (CTZ, 0): 1, 1 2, 1; 3, 1 4, 1 c.
C" GJ: (C2,,0), (<rz , 0): 1, 1 2, 1 ; 3, 1 4 ,1 c.
£* GJ: (C2l, 0), (<72, 0): 1, 1 2, 1 ; 3, 1 4,1 c.
^* GJ: (C2,, 0), (<7Z, 0): 1, 1 2, 1 ; 3, 1 4 ,1 c.
A1 GJ: (C2z, 0), ((T,, 0): 1,1 2, 1 ; 3, 1 4 ,1 c.
#* GJ: (C22, 0), (a,, 0): 1,1 2, 1 ; 3, 1 4,1 c.
Q* G*: (C2z,0),(ay, 0): 1,1 2,1; 3,1 4 ,1 c.
G* GJ: (C2r, 0), (<7,, 0): 1, 1 2, 1 ; 3, 1 4,1 c.

48 Pram D2
2k

(F\; Kl; M5; Tl; Zl.)

F G^: {C22|000}, {C2y| 000}, {/lui}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G?6 {ffJui}, {/lMi},{C2y |000}: 5, 1 10, 1 : a.
X G?6 KlîiîH'lïiî}, {C2l|000}: 5, 1 10, 1 : a.
2 G?6 {<TjuiU7|^},{C22|000}: 5, 1 10,1: a.
í/ G'Í6 (a, i ¿M}, {/I ill}, {C2y | 000} : 5, 1 10, 1 : a.
T G\6 K!ÍÍÍ},{/¡ÍM},{C2l|000}: 5, 1 10, l : a .
5 G?6 {a, | |M}, {/1 Mi}, {C2z | 000} : 5, 1 10, 1 : a.
R Gl ® T2: {C2z| 000}, {C2l. | 000}, {/I Mí}; ti ort2 ort3 : 1 , 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1: b.

A* Gl: (C2y, 0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
D* G*: (a,,0),(C2,, 0):5, 1: a.
P* G| : (<rz, 0), (C2y, 0) : 2, 1 ; 4, 1 ; 6, J ; 8, 1 : d.
B' G's: (az, 0), (C2y, 0) : 5, 1 : a.
£x Gj: (C2l, 0), (<7,,0): 1, 1; 2, 1 ; 3, 1; 4, 1 : c.
C' G*: (<7,, 0), (C2x, 0): 5 ,1: a.
£* G| : (az, 0), (C2l, 0) : 2, 1 ; 4, 1 ; 6, 1 ; 8, 1 : d.
/Í* Gj: (az ,0), (C2JC, 0) : 5, 1 : a.
A1 Gj: (C2z, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
H* Gi: (a,, 0), (C2z, 0 ) :5 , 1: a.
g1 G|: (as, 0), (C2z, 0): 2, 1 ; 4, 1 ; 6, 1 ; 8, 1 : d.
G* G*: K,0), (C22, 0 ) :5 , 1: a.
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49 Pccm D3
2h

(F\; Kl; M5; Tl; Zl.)

F G¡: {C2z|000}, [C2y\ 000}, {/iOOi}: 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G¡ ® T2: {C2z\ 000}, {C2, | 000}, {/]00i}; t L : 1, 1; 2, 1 ; 3, 1; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
X Gl ® T2: {C2z| 000}, {C2,| 000}, {/|00i}; t2: 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
Z G?6: {ffJOOi}, {/|00i}, {C2z]000}: 5 ,1 ; 10, 1: a.
U G?6 : {a, | 00|}, {/1 OOi}, {C2z | 000} : 5, 1 ; 10, 1 : a.
T G?6: K 1 00!}, {/I OOi}, {C2z|000}: 5, 1 ; 10, 1 : a.
S Gl ®T 2 : {C2z|000}, {C2y 000}, {/| 00|}; ^or t^ 1 , 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 :
R G?6: {dj OOi}, {/|00!}, {C2z|000}: 5 ,1 ; 10, 1: a.

A1 G J: (C2,, 0), K, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
£>* GI (C2)1, 0), K, 0) ; I, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
P* G¿ (az, 0), (C2y, 0): 5 ,1 : a.
5* G¿ ((T2 ,0), (C2y, 0): 5,1: a.
£* Gi (C2x, 0), (CT2, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
C' G£ (C2x,0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
£' Gj ( f f z , 0), (C2x, 0): 5, 1: a.
A" G| (<TZ, 0),(C2l, 0): 5 ,1 : a.
A' G^ (C22, 0), (a,, 0): 1 ,1 ; 2, 1; 3, 1; 4, 1: c.
#* GU (C2z, 0), ((T,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
2* GJ (C2z, 0), (IT,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
G* Gl (C2Z. °). (CT,> °): !> ! ; 2. ' ; 3. * ; 4- ': c-

50 P¿a« Z>ít

(FI; Kl; MS; Tl; Zl.)

r G¡: {C2z| 000}, {C2y|000}, {/| 2ÍO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G?6 {a, | ÜO}, {/1 MO}, {C2y | 000} : 5, 1 ; 10, 1 : a.
X G?6 {aJièOU/lM.OUCjJOOO}: 5, 1; 10, 1: a.
Z G s ® T2: {C2z| 000}, {C2y|000}, {/HÎO}; t3: 1 , 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
U G?6 {aJ^O}, {/|MO},{C2x |000}: 5, 1; 10,1: a.
T G?6 KIHO}, {/liiO},{C2,|000}: 5,1; 10,1: a.
^ G?6 {aJMO}, {/¡MO}, {C2z|000}: 5, 1; 10, 1: a.
R G?6 Kl MO}, {/IMO}, {C2z|000}: 5 ,1 ; 10,1: a.

A* Gl (C2y,0), (<rx, 0): 1, ; 2, 1; 3, 1; 4, 1: c.
D* G4

S (ax, 0),(C2y, 0): 5, : a.
P* G* K, 0),(C2y, 0): 5, : a.
B* Gl (C2,,0), (<r x ,0) : 1, ; 2, 1; 3, 1; 4, 1: c.
£* GJ (C2x,0), (ff z , 0): 1, ; 2, 1; 3, 1; 4, 1: c.
C" G* (<7y, 0),(C2x, 0): 5, : a.
E" GJ (ay, 0),(C2x, 0): 5, : a.
^* G! (C2x,0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A1 Gl (C2z, 0), (<7,, 0) : 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
#* GJ (^,0), (C2z, 0): 5,1: a.
Q* G^ («TJ,, 0), (C2z, 0): 2, 1; 4, 1; 6, 1; 8, 1: d.
G* Gl ( f fx ,o), (C2z, 0): 5 ,1 : a.
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52 Pnna D\h

(FI; Kl; M5; Tl; Zl.)

F G|: {CjJOOi}, {C2y|000}, {/IÜO}: 1,1; 2 ,1; 3 ,1; 4 ,1 ; 5 ,1 ; 6,1; 7 ,1 ; 8,1: b.
Y G?6 {ajMi}, {/|MO},{C2y|000}: 5, 1; 10, 1: a.
A- G?6 KIMO}, {/| HO}, {C2i|00|}: 5, 1; 10, 1: a.
Z G\6 {ax ÍM},{/IMO},KIÍÍO}: 5,1; 10,1: b.
U G\6 {az Mi}, {C2y I 000}, {/| MO}: 9, 3; 10,3: a.
7- G?6 {„, Mi}, {a, I MO}, {/| MO}: 5, 1 ; 10, 1 : c.
S GL K Mi}, {/1 HO}, {C2z | OOi} : 5, 1 ; 10, 1 : a.
« G?6 {a, MO}, {/1 MO}, {TX I Mi} : 5, 1 ; 10, 1: 6.

Ax Gl: (C2y, 0), (a,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
D* Gj: (er.,0), (C2,, 0): 5,1: a.
/" G|: (az ,0), (C2y, 0); 2 ,3; 4,3; 6,3; 8,3: d.
B* G*: (<TZ ,0), (C2y, 0) : 5, 1: a.
Z' Gl: (C2x, 0), (<rz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
C' G*: (<7y, 0 ) , (C 2 J C ,0) : 5, 1 : a.
E* G¡: (ay, 0), (<rz, 0): 5, 1 : a.
-4* G|: (C2l, 0), (a,,, 0): 2,3; 4,3; 6,3; 8, 3: c.
A" Gj: (C22, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
H' G*: (ay,0), (C 2 z ,0) : 5, 1 : a.
Q* G¡ : (a,, 0), (C2z, 0) : 2, 1 ; 4, 1 ; 6, 1 ; 8, 1 : d.
G* G*: K,0), (C2z, 0): 5,1: a.

51 Pmma D\k

(F\; Kl; MS; Tl; Zl.)

F Gl : {C2z | OOi}, {C2y | 000}, {/1 000} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y Gl <g> T2: {C2z|00¿}, {C2y | 000}, {/| 000}; t, : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
X Gl <g> T2: {C2z|00^}, {C2),|000}, {/| 000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Z G\6 : (C2z | OOj}, {/1 000}, {a, \ 000} : 5 ,1; 10, 1 : b.
U G?6: {C2JOOl}, {/| 000}, { a y \ 000}: 5,1; 10,1:6.
T G?6: { C ^ I O O i - j . j / I O O O J . ^ I O O O } : 5,1; 10, 1 : ¿>.
5 G|j ® T2: {C2J OOi}, {C2,| 000}, {/| 000}; tt ort2: 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5,1; 6 , 1 ; 7, 1 ; 8, 1 : b.
R G?6: {C2,|00|}, {/| 000}, {a, | 000}: 5, 1; 10, 1: b.

A' G|: (C2,, 0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
D* GJ: (C2y, 0), (ax, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
/» G*: (a,,0), (C2y, 0) : 5, 1: a.
B* GJ: (<rz> 0), (C2y> 0): 5 ,1: a.
X* GJ: (C2J[, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
C* G^: (C2x,0), (a,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
E* Gl: (C2x, 0), (a,, 0): 2, 3; 4, 3; 6, 3; 8, 3: e.
A* Gl- (C2,, 0), (<7y, 0): 2,3; 4,3; 6,3; 8, 3: c.
A* GJ: (C2z, 0), (ffy, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
/P Gl: (C2z, 0), (a,, 0): 1,1; 2, 1 ; 3, 1 ; 4, 1 : c.
Q* Gl- (C2z, 0), (ffy , 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
G" G2

4: (C2z, 0), (<ry, 0) : 1 ,1; 2, 1 ; 3, 1 ; 4, 1 : c.



THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS

53 Pmna Dlh

(Fl; Kl; A/5; Jl; Zl.)

f G\: {C22|00i}, {C2y|000}, {/IÍOO}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1 : ¿>.
Y G?6 {<rziiO|}, {/liOO}, {C2,1000}: 5, 1 10, 1 : a.
X Gl ® T2: {C2z| 00|}, {C2,|000},{/|iOO}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
Z G?6 {C2z|OOi},{/|iOO}, {S|J-00}: 5, 10,1:6.
U G?6 {C2z|00i}, {/liOO}, {trJiOO}: 5, 10,1:6.
r G?6 {C221 OOi}, {<r, I ¿00}, {/||00}: 5, 10, 1 : c.
5 G?6 {<rJe<H},{/liOO},{C2,|000}: 5, 10, 1 : a.
« G?6 {C2JOO|}, {<T,,|iOO},{/|iOO}: 5, 10,l:c.

A* GJ (C2y,0), K,0): 1, ; 2, 1; 3, 1; 4, 1: c.
D* Gl (C2y,0), (o-,, 0): 1, ; 2, 1; 3, 1; 4, 1: c.
F* G* (az,0), (C2J ,0): 5, : a.
B' GJ (<rz,0), (C2y,0): 5, : a.
Z* Gl (Clx, 0), (<T 2 ,0) : 1, ; 2, 1; 3, 1; 4, 1: c.
C' G* ( f f , ,0),(C2 l ,0): 5,1: a.
£' Gl (<r,,0), (C2x,0): 5,1: a.
yi1 Gl (C2,,0), (o,,0): 2,3; 4,3; 6,3; 8,3: c.
A1 Gi (C2z> 0), (ff , ,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
ff" G* (ff,,0), (C2z,0): 5 ,1 : a.
Q* G* (<r,,0), (C22,0): 5,1: a.
G* Gi (C2z,0), (<7y ,0): 1,1; 2, 1; 3, 1; 4, 1: c.

317

54 Peca D\h

(F\; Kl; M5; T\ ; Zl.)

F G^: {C2z|OOi},{C2y|000},{/|OiO}: 1, 1 ; 2, 1; 3, 1; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1: 6.
7 G¿ ®T 2 : {C2z|00}}, {C2y|000}, {/|0|-0}; t,: 1, 1; 2, 1; 3, 1; 4, 1 ; 5, 1 ; 6, 1; 7, 1; 8, 1: b,
X G?6: KIOÍO}, {/|0|0}, {CjJOOi-}: 5,1; 10,1: a.
Z G?6: {C22|00i}, {/|OiO},{<7,|OiO}: 5 ,1 ; 10,1:6.
V G]6: {<T2|0|i}; {C2y|000}; {/|OiO}: 9, 3; 10, 3: a.
T G?6: {C2z|OQi}; {/1 0|0}; {a, \ 0^0}: 5 ,1; 10,1:6.
S G?6: {a, |0|0}; {/|0|0}; {C2x\00^}: 5,1; 10,1: a.
R G;6: {<T2 |OH}; {C2y|000}; {/|OiQ}: 9,3; 10,3: a.

A' G¿ (C2 y ,0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Dx G| (CTX, 0), (C2y, 0): 5 , 1 : a.
P* G\ (af, 0), (C2y, 0): 2, 3; 4, 3; 6, 3; 8, 3: d.
W G| (CTZ, 0), (C2y, 0): 5, 1: a.
S* Gl (C2JC,0), (o-2 ,0) : 1,1; 2 ,1 ; 3, 1; 4, 1: c.
C1 Gj (C2x,0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
£* G| (C2l,0), (<Ty , 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
^ G^ (C2x,0), («7 y ,0) : 2, 3; 4, 3; 6, 3; 8, 3: c.
A' GJ (C2z, 0), (<ry, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
ff* GJ (C2z, 0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Q' G» K, 0), (C2 z ,0): 5,1: a.
G* GJ (u,, 0), (C22, 0): 5, 1: a.
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55 Pbam D9
2h

(FI; Kl; M5; T\; Zl.)

F G|: {C2z | 000}, {C2y | MO}, {/|000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : ¿.
Y G?6 {ax | MO}, {/ | 000}, {<TZ | 000} : 5, 1 ; 10, 1 : b.
^ G?6 {a, I MO}, {/1 000}, {az1 000} : 5, 1 ; 10, 1 : b.
Z G¡ ®T2 : {C2z |000}, {C2y |MO}, {/|000¡; t3: 1 , 1 ; 2, 1 ; 3,1; 4,1; 5 ,1 ; 6,1; 7 ,1 ; 8,1: b.
U Gi6 {a,\ TÍO}, {/|000}, {trj 000}: 5, 1; 10, 1: b.
T G?6 {ax | MO}, {/ ! 000}, {az | 000} : 5 ,1 ; 10, 1 : b.
S GÍ6 {C2x |MO}, {C22|000}, {/| 000}: 2, 3; 4, 3; 6,3; 8,3; 10, 3; 12,3; 14,3; 16,3: a.
R G16 {C2x\ MO}, {C2z| 000}, {/| 000}: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3; 14, 3; 16, 3: a.

A* Gl (C2y, 0), (af, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
O* G¿ (C2y, 0), (az, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
Px G¡ (C2y, 0), (az, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
B* Gi (C2y, 0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: e.
Z* G^ (C2J(,0), (az, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
C* Gl (C2x, 0), (<iz, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
E* Gl (C2x, 0), (<rz, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
^* G| (C2j(, 0), (az, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A1 G j (C2z, 0), (try, 0): 1, 1; 2, 1; 3, ]; 4, 1 : c.
H* Gi (ay, 0), (C2z, 0): 5, 1 : a.
Q* Gl (<r,,0), (C2z, 0): 2, 3; 4, 3; 6, 3; 8, 3: d.
G* G* K,0), (C2z, 0): 5,1: a.

56 fcc« ¿)2t°

(/•I; A7; M5; ri; Zl.)

F G|: {C2z| 000}, {C2),|MO}, {/!Mi}: 1, 1; 2, 1; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G9

16 {a,\ MÎ}, {/1 ÍM}, K I OOJ} : 5, 1 ; 10, 1 : b.
^ G\h K | Mí}, {/I Mi}, KiOOi}: 5 ,1; 10,1: è.
Z G?6 K|OOi},{/!Mi},{C2z|000}: 5, 1; 10, 1: a.
U GJ6 {aJOOÍ},{C2z|000},{/¡MÍ}: 9,3; 10,3: «.
T G?6 {ay|00i}, {C2z|000}, {/|Mï}: 9, 3; 10, 3: a.
-S G?6 {C2j|MO},{/iMI},{C2z|000}: 5, 1; 10, 1: a.
« GÎ6 {C2, |M«}, {C2z|000}, {/|Mï}: 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: a.

A* G¿: (C2y, 0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
If Gl: (C2y, 0), (a,, 0): 5, 1: a.
P* Gl: (C2!, 0), (<rx, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
B- G*: (< r z , 0 ) , (C2>, 0): 5, 1: a.
L* GJ: (C2x, 0), (az, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
C* G*: (C2ï, 0), (CTZ, 0): 5, 1 : a.
£" Gl (C2x, 0), (<T,, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
A* G¿: O2 ,0), (C2x, 0): 5, 1 : a.
A1 GJ: (C2z, 0), (ay, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
H* Gl: (C2,, 0), (ay, 0): 1, 3; 2, 3; 3, 3; 4, 3: c.
6* GJ: (C2z, 0), (a,, 0): 1,3; 2,3; 3,3; 4,3: c.
G* GJ: (C,z, 0), (a,, 0): 1, 3; 2, 3; 3, 3; 4, 3: c.
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57 Pbcm Dû

(Fl; Kl; MS; 7*1; Zl.)

F Gl: {C2z1000}, {C2y| JiiO}, {/|0}0}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G?6 {a, | ÍOO}, {/| 0^0}, {<rz1 OiO} : 5, 1 ; 10, 1 : b.
X G"16 {a, \ OiO}, {/| OiO}, {ff, | ¿00}: 5, 1 ; 10, 1 : fc.
Z G u ® T 2 : {C2z|000},{C2y|iiO}, {/|OiO}; 13: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
U G?6 {<rz|OiO}, {/ |OÍO},{<T,| 100} : 5, 1; 10, 1: ¿>.
7* G?6 {CT, | 100}, {/1 O^O}, {az I 0|0} : 5,1; 10, 1 : b.
S &16 {C2JïîO}, {C2z|000}, {/|OJO}: 9,3; 10,3: b.
R GÏ6 {C^IUO}, {C2z|000}, {/iOl-0}: 9,3; 10,3: />.

A' GJ: (C2y, 0), fo, 0): 1, 1 2, 1 ; 3, 1 ; 4, 1 : c.
7)' G*: (C2,,0), K, 0): 5,1 a.
-» G¿: (C2,, 0), K, 0): 5 , 1 a.
fl* G|: (C2,,0), (a,, 0): 1, 1 2, 1 ; 3, 1 ; 4, 1 c.
I* GJ: (C2I, 0), (ÍTZ, 0): 1,1 2, 1 ; 3, 1 ; 4, 1 c.
C" GÜ: (C2x, 0), ( f f z , 0): 2, 3 4, 3; 6, 3; 8, 3 c.
E" G|: (C2l, 0), ( < T 2 , 0 ) : 2, 3 4, 3; 6, 3; 8, 3 c.
^* GJ: (C2l, 0), (<TZ, 0): 1, 1 2,1; 3,1; 4 ,1 c.
A" Gj: (C22, 0), (ay ,0): 1,1 2, 1 ; 3, 1 ; 4, 1 c.
H' G*: (a,,0), (C2z, 0): 5,1 a.
Q" G\: (<r,,0), (C22,0): 5,2 a.
G* Gl: (C2z, 0), (ay, 0): 1, 3; 2, 3; 3, 3; 4, 3: c.

58 Pnnm D\l

(C7; O2; Fl; Gl; Kl; M5; 71; Zl.)

f Gj|: {CjJOOO}, {C2,|^0}, {/|00i}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G16 KluiU/IOOi}, KlOOi}: 5, 1; 10, 1: b.
X G?6 K I ÎÎT}, UI OOi}, K I OOi} : 5, 1 ; 10, 1 : b.
Z G?6 {a, | Mi}, {/IOOÍ}, {C2z|000}: 5, 1; 10, 1: a.
U G?6 {cx | ÍM}, {C2z | 000}, {/| OOi}: 5, 1 ; 10, 1 : c.
T G?6 {ay \ Mi}, {C2z | 000}, {/1 001} : 5, 1 ; 10, 1 : c.
S GÏ6 {«7, lui}, {C2z]000}, {7|00i}: 2 ,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: a.
R G9

Í6 {C2y\ ÜO}, {/|00i}, {C2z|000}:5, 1; 10, 1: a.

A* G^: (C2,, 0), (u,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
0* G¡: (C2y, 0), (<r2, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
?' G Ü : (C2y, 0), (<T2, 0): 5,1: a.
B« Gj: (<rz, 0), (C2y, 0): 5,1: a.
Z« Gj: (C2l) 0), (CTZ, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
C* Gi: (C2,, 0), (<TZ, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
E* G|: (C2l,0), (<TZ, 0): 5, 1 : a.
X* G¿: (<T7, 0), (C2l, 0): 5, 1 : a.
A* Gj: (C2z, 0), (<7y, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
//" G*: (a,,,0),(C2z, 0): 5,1: a.
gx G^: (a,, 0), (C2z, 0): 2,3; 4, 3; 6,3; 8, 3: d.
G' G*: K,0), (C2z, 0): 5,1: a.
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59 Pmmn D\l

( F l ; Kl; MS; Tl; Zl.)

T G¡: {C2z| 000}, {C2),|MO}, {/I MO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G?6: KlMO}, {/| MO}, {(7, | 000}: 5,1; 10,1: b.
X Gl6: KIMO}, {/I MO}, {(7,1 000}: 5,1; 10,1: b.
Z Gl ® T2: {C2z|000}, {C2),|MO}, {/IMO}; t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
U G?6 : {az | MO}, {/1 MO}, K I 000} : 5, 1 ; 10, 1 : b.
T G?6 : {<TZ | MO}, {/1 MO}, K I 000}, 5, 1 ; 10, 1 : b.
S G*6: {C2,|MO}, {/I MO}, {C2z|000}: 5 ,1; 10,1: a.
R G?6: {C2,|MO}, {/I MO}, {C2z|000}: 5,1; 10, 1: a.

A* Gi (C2y ,0), K,0): 1, ; 2, 1; 3, 1; 4, 1: c.
D" Gi (C2y,0), (^,0): 5, : a.
/» G| (C2y ,0), (^,0): 5, : a.
B* Gl (C2y, 0), ((7^,0): 1, ; 2, 1; 3, 1; 4, 1: c.
£* Gl (C2l,0), (az ,0): 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.
C' G| (C2,,0), (az ,0): 5, : a.
E* Gl (C2x,f>), ( (r z ,0) : 5, 1: a.
^' Gi (C2»,0), ( f f z , 0 ) : 1, 1; 2, 1; 3, 1; 4, 1: c.
A31 GJ (C2z ,0), ( a y , 0 ) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
H* G4 (C2z,0), (<7,,0): 1,3; 2, 3; 3,3; 4, 3: c.
g' Gj (C2z,0), Oy ,0): 1,3; 2, 3; 3,3; 4, 3: c.
Gx Gj (C2z, 0), (<r,, 0): 1,3; 2, 3; 3, 3; 4,3: c.

60 Pbcn D\l

(Fl; Kl; MS; Tl; Zl.)

r G3
S: {C2z 1 000}, {C2, | MO}, {/1 ÎOl}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.

Y G?6: {az|iOe}, {/|iOi}, {aJOM}: 5 ,1; 10, 1 : b.
X G?6: KIOMU/lM},KIÍOi}: 5, 1; 10, 1: b.
Z G?6: {aJOM}, {/IM}, {C2z | 000}: 5 ,1; 10, 1 : a.
U G?6: {ffJOM}, {C2z|000}, {/liQi}: 5 ,1; 10,1: c.
T Gl,: {ff, |OM}, {C2r|000},{/|iO|}: 9,3; 10,3: a.
S G]6: {C2y |MO}, {C2z|000},{/|iOi}: 9,3; 10,3: ft.
« GÏ6 : {C2j[|MO}, {C2z|000}, {/¡M}: 9,3; 10,3: ft.

A* Gî: (C2y, 0), (<ix, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
D* G\: (C2y, 0), (<7Z, 0): 2, 3 4, 3; 6, 3; 8, 3: c.
P* GÍ: (C2y,0), (a,, 0): 5 , 1 a.
B' G¿: (a,,0),(C2y, 0) : 5, 1 a.
S" GJ: (C2l, 0), (az, 0): 1, 1 2, 1 ; 3, 1 ; 4, 1 : c.
C' G*: (C2,, 0),((TZ , 0): 5 ,1 a.
E* G2

S: (C2x, 0), (ay, 0): 2, 3 4, 3; 6, 3; 8, 3: c.
^ GJ: (<rz, 0), (C2x, 0): 5 ,1 a.
A' GJ: (C2z, 0), (ay, 0) : 1, 1 2, 1 ; 3, 1 ; 4, 1 : c.
H* Gl. (C2z, 0),((7y , 0): 1,3 2, 3; 3, 3; 4, 3: c.
g* G*: (as, 0), (C2z, 0): 5, 2 a.
G* Gl: (<jx, 0), (C2z, 0): 5, 1: a.
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61 Pbca D\l

(F\; JO; Kl; A/5; T\; T2; Zl.)

F G\: {C2z|iOi}, {C2y |HO},{/|000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y GÏ, KÜOi},{/|000},KIOH}: 5, 1; 10, 1: b.
X G?6 {<r,|HO}, {/1000}, {az|iQi}: 5, U 10, 1: é.
Z G?6 {a, | OH}, {/| 000}, {a, \ HO}: 5, 1 ; 10, 1: 6.
tf GÏ6 {C2;c | OH}, {C2y I MO}, {/! 000}: 9, 3; 10, 3: b.
T G], {C2z |MK {C2JOH}, {/IOOO}: 9, 3; 10, 3: ¿.
S Gl6 {C2JHO}, {C2z|-iOi}, {/|000}: 9,3; 10,3: b.
R G¡¿ {C2JC |OHUC2, |HO},{/|000}: 5,2; 10,2: a.

A* Gl: (Cly, 0), (<7X, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
£>* Gl: (C2y, 0), (<rz, 0): 2,3; 4, 3; 6,3; 8,3: c.
P* G|: (C2y, 0), (ax, 0): 5,2: a.
fl* G|: (<rz, 0), (C2,, 0): 5 ,1 : a.
I* G¿: (C2j[, 0), (<rz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
C" G¿: (<r,,0), (C2,,0): 5, 1 : a.
Ex G¡: (C2¡[, 0), (CTZ, 0): 5 ,2 : a.
A" G2

S: (C2l, 0), (a,,, 0): 2, 3; 4,3; 6,3; 8,3: e.
A1 Gj: (C2z, 0), ((iy, 0) : 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
H' G2

S: (C2z, 0), (ax, 0): 2,3; 4, 3; 6,3; 8, 3: c.
y G\. (C2z, 0),(<r,, 0): 5,2: a.
G* Gl: (<7,, 0), (C2z, 0): 5, 1: a.

62 Pnma D^

(F\; Gl; K2; Kl ; MS; T\; 58; Zl.)

T G^: {C2zh|0i}, {C2,| èîO}, {/IMO}: 1,1; 2, 1 ; 3, 1; 4, 1 ; 5, 1 ; 6, 1; 7, 1; 8, 1: b.
Y G?6 KlMUmiO},{<7zjOii}: 5, 1; 10, 1: b.
X G?6 {az 1 OH}, {/1 HO}, {<r, | 000} : 5, 1 ; 10, 1 : b.
Z G?6 {dJMM/liiOMslOOO}: 5, 1; 10, 1: 6.
t7 GÏ6 {C2JOi}}, {C2JUO}, {/IÜO}: 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: a.
r G^6 {C2, | HO}, {/1 HO}, {C2I | OH} : 5, 1 ; 10, 1 : a.
S Gif, {C2;JOH}, K 1000}, {/| HO}: 9, 3; 10, 3: è.
« G]6 {<TZ | OH}, {,7, I 000}, {/1 HO} : 9, 3 ; 10, 3 : a.

A* Gj: (C2y, 0), (CT,, 0): 1, 1; 2, 1 ; 3, 1; 4, 1 : c.
Dx Gt: (C2y,0), (a,, 0): 5 ,1: a.
P* G¡: (C2y,0), (a,, 0): 2,3; 4 ,3; 6,3; 8,3: c.
B* G|: (<7Z ,0) , (C2) , ,0): 5, 1 : a.
Xx Gj: (C2l, 0), (az, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
C' Gj: (C2x, 0), (<7Z, 0): 1,3; 2, 3; 3 ,3 ; 4, 3; c.
£* G¿: (C2x, 0), (a,, 0): 2,3; 4, 3; 6,3; 8,3: c.
Ax G¡: (C2x ,0), (a,, 0): 2,3; 4, 3; 6,3; 8, 3: e.
A* Gj: (C2z, 0), (<jy, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
H* G*: (C 2 z ,0) , (^,0): 5, 1 : a.
Q" Gl: (C2 z ,0) , (<7 , ,0 ) : 5 ,2 : a.
Gx Gl: (C2z, 0), (cry, 0): 1, 3; 2, 3; 3, 3; 4, 3: c.
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64 Cmca D2¡¡

(F\; Kl; A/5; S8; S9; T3; W\; Zl.)

F Gl {C2z|00|}, {C2,|00i}, {/| HO}: 1, 1; 2,1; 3, 1; 4, 1; 5, 1; 6,1; 7 ,1 ; 8 ,1 : b.
Y G¡ ® T2: {C2z|(XH}, {C2y|00i}, {/|HO}; t , o r t 2 : 1,1; 2, 1 ; 3 ,1; 4,1; 5,1; 6,1; 7, 1; 8,1: b.
Z G?6: {C2l|00i}, {/|HO}, {ajHO}: 5,1; 10,1: ¿>.
T G?6: {C2z|00i}, {/| HO}, {«T, | HO}: 5,1; 10,1: b.
S Gt KIHIU/IHO}: 5,1: a.
« G¿ {«7, | MÎM/I HO}: 2,3; 4,3; 6,3; 8,3: a.

A* Gl (C22, 0), («v 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Hx Gl (C2z,0), (ay, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
O1 Gl (C2z ,0): 1, 3; 2,3: ¿>.
A' Gl (<7Z ,0) , (C2>, 0): 5,1: a.
I* Gl (C2l, 0), Oz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A" Gj (C2)1, 0), (<rx, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
B' Gi (C2s,0), (ax, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
G' Gi (C2j,, 0), (ax, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
f" Gl (C2,,0), (<7X, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
£x Gt (<7Z, 0), (C2,,0): 5,1: a.
C' Gl (C2x, 0), (<rz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.

63 Cmcm J2>
7

CF1; 71; Kl; M5; 512; T3; Zl.)

T G^: {C2z|00|}, {C2y| 00^}, {/| 000}: 1, 1; 2, 1 ; 3, 1; 4, 1 ; 5, 1 ; 6,1; 7, 1 ; 8, 1: 6.
7 G¿ ® T2: {C2z|00i}, {C2y| 00|}, {/| 000}; t t or t 2 : 1, 1; 2,1; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Z G?6: {C2JOOi},{71 000}, {«7,1000}: 5,1; 10,1: b.
T G?6: {C22|00ij, {/|000}, {a^lOOO}: 5,1; 10,1: b.
S G|®T 2 : {C2z|00i}, { / JOOO}; t2: 1,1; 2, 1; 3, 1; 4,1: a.
R G% : {C2z | OOi), {/1 000} : 5, 1 : a.

A* Gl: (C2z,0),(ay,0): I , ; 2, 1 ; 3, 1 ; 4, 1 : c.
H* Gl: (C2z, 0), ( < T y , 0 ) : 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.
D* G 2 : (C2z, 0): 1, 1; 2, 1: b.
A" G*: ((7Z,0), (C2x, 0): 5, : a.
I* G£: (C2x,0), (crz, 0): 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.
A1 G2

t: (C2y, 0), («7,, 0): 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.
B* G|: (C2)1, 0), («7,, 0): 2 ,3; 4,3; 6,3; 8,3: c.
G* G¡: (C2y, 0), (a,, 0): 2,3; 4, 3; 6 ,3; 8,3: c.
F1 Gl: (C2y, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
E' G*: (CTz ,0), (C2l,0): 5 ,1: a.
C* Gj: (C2x, 0), («7r, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
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65 Cmmm Dfi

(FI; Kl; M5 Tl; Z\.)

F G¡: {C2z|000}, {C2y|000}, {/| 000}: 1 ,1 ; 2, 1 ; 3,1; 4,1; 5,1; 6, 1 ; 7 ,1; 8,1: b.
Y G ü < g ) T 2 {C2z I 000}, {C2y ¡ 000}, {/|000}; t , o r t 2 : 1 ,1; 2 ,1 ; 3,1; 4,1; 5,1; 6,1; 7,1; 8, 1 : b.
Z G¡ ® T2 {C2z| 000}, {C2y|000}, {/| 000}; t3: 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
T G i < g ) T 2 {C2z|000},{C2,]000}, {/|000}; t, o r t 2 or t 3 : 1,1; 2 ,1 ; 3,1; 4,1; 5,1; 6, 1 ; 7 ,1 ; 8,1: b.
S G|g>T 2 {C2z| 000}, j / | 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: a.
R Gl ® T2 {C2z| 000}, {/|000}; t 2 o r t 3 : 1, 1; 2, !; 3, 1; 4, 1: a.

A* Gj: (C2z, 0),(<7,, 0): 1, 1; 2, 1 3, 1 ; 4, 1 : c.
H* Gl: (C2z, 0), (a,, 0): 1, 1; 2, 1 3, 1 ; 4, 1 : c.
Dx G2 : (C2z) 0): 1, 1; 2, 1: b.
A* Gj: (C2l, 0), (<7Z, 0): 1, 1; 2, 1 3, 1 ; 4, : c.
I* Gj: (C2x, 0), (a,, 0): 1, 1; 2, 1 3, 1 ; 4, : c.
A* Gj: (C2,, 0), (<rx, 0): 1, 1; 2, 1 3, 1 ; 4, : c.
fi* Gl: (C2,, 0), K, 0): 1, 1; 2, 1 3,1; 4, : c.
G* Gl: (C2>,, 0), (ax, 0): 1, 1; 2, 1 3, 1 ; 4, : c.
F* Gj: (C2y, 0), (a*, 0): 1, 1; 2, I 3, 1 ; 4, 1 : c.
£' G^: (C2x, 0), (<rz, 0) : 1 ,1; 2, 1 ; 3, 1 ; 4, 1 : c.
C' GÎ: (C2x, 0), (tr,, 0) : 1,1; 2, 1 ; 3, 1 ; 4, 1 : c.

66 Cccm DU

(F\; Kl; M5; T3; Z\.)

F G¡: {C2z|000}, {C2,|000}, {/|00i}: 1,1; 2, 1 ; 3, 1; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y G | j®T 2 : {C2z|000}, {C2JOOO}, {/lOOi}; t l O r t 2 : 1 ,1 ; 2, 1 ; 3,1; 4, 1 ; 5, 1 ; 6,1; 7,1; 8,1: b.
Z G?6: {aj OOi},{/|OOi},{C2z | 000}: 5,1; 10, 1: a.
T Gg

i6 : \ax \ 00^}, {/1 00|}, {C2z | 000} : 5, 1 ; 10, 1 : a.
S G ^ ® T 2 : {C2z|000}, {/|00i}; t2: 1, 1; 2, 1; 3, 1 ; 4, 1 : a.
R Gl ® T2: {C2z|000}, {/|00i}; t2 ort3: 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 : a.

A" Gl (C2z, 0), (<r,,0): , 1; 2, 1; 3, 1; 4, 1: c.
#* GJ (C2z,0), (a,,0): , 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
D* G2 (C2z, 0): 1, 1; 2, : b.
A' Gl (a,, 0), (C2x, 0): 5, 1 : a.
X* G£ (C2,,,0), (ff2 , 0): , 1; 2, 1; 3, 1; 4, 1: c.
A' GÎ (C2,,0), (<7X, 0): , 1; 2, 1; 3, 1; 4, 1: c.
B* Gl (az,0), (C2,,0): 5, 1 : a. .
G1 G¿ (<r z ,0), (C2y) 0): 5, 1: a.
F* Gl (C2y, 0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
£* Gj (d z >0), (C2x, 0): 5, 1: a.
C* Gj (Cj,, 0), (<i z ,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
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A* GJ: (C2z, 0), (a,, 0): , 1 ; 2, ; 3, 1 ; 4, 1 : c.
Hx Gl: (C2z, 0), (a,, 0) : , 1 ; 2, ; 3, 1 ; 4, 1 : c.
0* G > : (C2z) 0): 1,3; 2 ,3 : 6.
A* Gl- (C2l,0), (<72, 0): , 1 ; 2 , ; 3, 1 ; 4, 1 : c.
£* GJ: (C2l,0), (<rz, 0): , 1 ; 2 , ; 3, 1 ; 4, 1 : c.
A' Gl: (C2j,,0), K, 0): , 1 ; 2, ; 3, 1 ; 4, 1 : c.
«* Gi: (C2),, 0), (ax, 0): , 1 ; 2, ; 3, 1 ; 4, 1 : c.
G* GJ: (C2y ,0), (a*, 0): , 1 ; 2, ; 3, 1 ; 4, 1 : c.
F* G4: (C2y, 0), K, 0): , 1 ; 2, ; 3, 1 ; 4, 1 : c.
£* Gl- (C2x,0), (<rz, 0): , 1 ; 2 , ; 3, 1 ; 4, 1 : c.
Cx GJ: (C2l,0), (<7Z, 0): , 1 ; 2, ; 3, 1 ; 4, 1 : c.

68 Ceca D\l

(F\; Kl; M5; T3; Zl.)

F G¡ {C2z|000}, {C2j,|000}, {/|Mî}: 1 ,1 ; 2, I ; 3,1; 4, 1 ; 5,1; 6, 1 ; 7, 1 ; 8, 1: 6.
Y G¡ <g> T2: {C2z| 000}, {C2y \ 000}, {/(Mi}; ^ or t 2 : 1 ,1 ; 2, 1 ; 3, 1; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
Z Gl : K | Mi}, {/1 Mi}, {C2z | 000} : 5, 1 ; 10, 1 : a.
T G? : K ¡ Mi}, {/1 Mi}, {C2z | 000} : 5, 1 ; 10, 1 : a.
S Ci {a, I Ml}, {/I m- 5 , 1 : a.
p /^4 f _ [ 1 1 1 \ f r l l i n . ç i . ,̂« G8 {(Tz | 22I}, {/ | 2 2 2 } - 5, 1. a.

A1 Gj (C2z ,0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
H* Gl (C2z,0), (CT,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
fl* Gl (C2 z ,0): 1, 3; 2 ,3: b.
A" Gl (<r z ,0) , (C2s, 0): 5, : a.
Sx Gl (C2l,0), (ffz , 0): 1, ; 2, 1; 3, 1; 4, 1: c.
A' G| (C2,,0), (<7X, 0): 1, ; 2, 1; 3, 1; 4, 1: c.
fl' G* (<rz, 0), (C2,, 0): 5, : a.
G" G| (az ,0), (C2,, 0): 5, : a.
F1 Gj (C2y, 0), K, 0): 1, ; 2, 1; 3, 1; 4, 1: c.
£' G^ (az, 0), (C2jc, 0): 5, : a.
Cx Gl (C2x, 0), (az, 0): 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.

67 Cmma J2fc'

(Fl; Kl; MS; T3; Zl.)

F G¡: {C2z|000}, {C2v|000}, {/| MO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Y Gl ® T2: {C2z| 000}, [C2y \ 000}, { / IMO}; ^ or t 2 : 1 ,1 ; 2,1; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1: 6.
Z G¡ ® T2: {C2z| 000}, {C2, \ 000}, {/|MO}; t3: 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 : b.
T Gs ® T2: {C2z| 000}, {C2),|000}, {/|MO}; t! o r t 2 o r t 3 : 1 ,1 ; 2, 1 ; 3, 1; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
S G¿: K| MO}, {/IMO}: 5, 1 : a.
R Gt: {az|MO}, {/IMO}: 5, 1 : a.
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69 Fmmm D\l

(F\; Kl; M5; S14; Zl.)

T G|: {C2, | 000}, {C2J 000}, {/| 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1; 7, 1 ; 8, 1 : b.
Y G¡> ® T2": {C2z| 000}, {C2y \ 000}, {/|000}; t2 or t 3 : 1, 1; 2, 1; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
X Gl ®T 2 : {C2z|000}, {C2),|000},{/|000}; ^o r t j : 1,1; 2,1; 3,1; 4,1; 5 ,1 ; 6 ,1 ; 7, 1 ; 8, 1 : b.
Z G¡ ® T2: {C2JOOO}, {C2y| 000}, {/|000}; t, ort2 : 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
L G2 ® T2: {/| 000}; t , : 1, 1 ; 2, 1 : a.

A* G2
4 (C2z, 0), (<ry, 0): 1, 2 ,1 ; 3 ,1 4, : c.

G* Gj (C22, 0), (or,, 0): 1, 2 ,1; 3 ,1 4, : c.
H* Gl (C2z, 0), (a,, 0): 1, 2 ,1 ; 3 ,1 4, : c.
6* G4 (C22, 0), (ery, 0): 1, 2,1; 3 ,1 4, : c.
Zx Gl (C2I, 0), (<rz, 0): 1, 2, ; 3, 1 4, : c.
C1 G* (C2x ,0), (a,, 0): 1, 2, ; 3, 1 4, : c.
^* G* (Cj,, 0), (ff2 , 0): , 1 2, ; 3, 1 4, c.
tf* G* (C2ï,0), (<T2, 0): , 1 2, ; 3,1 4, 1 c.
Ax Gl (C2f, 0), K, 0): , 1 2, ; 3, 1 4,1 c.
0' Gl (C2y, 0), K, 0): , 1 2, ; 3, 1 4 ,1 c.
S* Gj (C2y, 0), K, 0): ,1 2, ; 3,1 4,1 c.
** G|: (C2y) 0), (ff,, 0): , 1 2, ; 3, 1 4 ,1 c.

70 Fddd Dlî

(Fl; Kl; M5; 514; Zl.)

F Gi: {C2,|000}, {C2),|000}, {/liii}: 1,1; 2,1; 3,1; 4,1; 5,1; 6,1; 7 ,1 ; 8,1: b.
Y G?6: {aJiUU/lui-}, {C2,|000}: 5, 1; 10, 1: a.
X G?6: {aJiU},{/IÍH},{C2x|000}: 5 ,1 ; 10,1: a.
Z G?6 : {a, | U¿}, {/1 Ui}, {C2z | 000} : 5, 1 ; 10, 1 : a.
L G 2 «T 2 :{ / |¿4Í}; t, : 1 , 1 ; 2 , 1 : a.

A1 Gl (C2 z ,0), (CT,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
G* G| (<7X, 0) , (C 2 z ,0) : 5, 1: a.
ff' Gj (ay, 0), (C2z, 0): 5, 1 : a.
Q* G\ (CTX, 0), (C2z ,0): 2, 1; 4, 1; 6, 1; 8, 1: rf.
Ï* G| (C2;(,0), (o- z ,0): 1, 1; 2, 1; 3, 1; 4. 1: c.
C' G* (a,, 0),(C2 i ,0): 5, 1 : a.
A' Gl (<T2, 0) ,(C2 x ,0): 5 ,1 : a.
Í7* Gl (<ry, 0), (C2x, 0): 2, 1; 4, 1; 6, 1; 8, 1: d.
A* Gj (C2v ,0), K,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
D' Gl (a.,0), (C2 , ,0): 5, 1 : a.
fi1 Gj (az, 0), (C2,,0): 5, 1 : a.
Rx G¡ (as, 0), (C2>., 0): 2, 1; 4, 1; 6, 1; 8, 1: d.



326 THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS

71 Immm D^

(Fl; Kl; MS; Zl.)

F G|: {C2z |000},{C2y |000},{/1000}: 1 ,1 ; 2,1; 3,1; 4,1; 5,1; 6,1; 7, 1 ; 8,1: b.
X Gl ®T 2 : {C2z|000}, {C2y\OQO}, {/|000}; tiort2OTt,: 1 ,1 ; 2 ,1 ; 3,1; 4 ,1 ; 5,1; 6, 1 ; 7 ,1 ; 8,1: b.
R Gl ® T2: {C2y\QOO}, {/| 000}; t, : 1, 1; 2, 1 ; 3, 1 ; 4, 1 : a.
S Gl ® T2: {C2JOOO}, {/ lOOOf; t ,or t 3 : ], 1 ; 2, 1 ; 3, 1 ; 4, I : a.
T Gl ® T2: {C2z|000}, {/|000}; t, or t 2 : 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 : a.
W G4 ® T4: {C2z|000}, {C2j,|000}; t, ort2ort3 : 1, 1; 2, 1; 3, 1; 4, 1 : b.

A* GJ: (C2z )0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
G* G4: (C2l, 0), (<r, , ,0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
?* G 2 : (C2z, 0): 1 ,1 ; 2, 1 : b.
E* G4: (C2JO 0), (<TZ, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
F* Gl: (C2x, 0), ( f f z > 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
D" G2 : (C2;[, 0): 1, 1; 2, 1: 6.
A* GJ: (C2j,, 0), (^,0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
U* GJ: (C2y,0), K,0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
g" G2: (C2J ,0): 1,1; 2, 1: b.

72 ftam fljg

CF1; ÍT7; M5; Zl.)

F G^: {C2z|000}, {C2y|000}, {/| MO}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1 ; 6, 1; 7, 1 ; 8, 1 : ¿>.
X G| ® T2: {C2z| 000}, {C2), | 000}, {/] ÜO}; t j o r t 2 o r t 3 : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
R Gl: K I MO}, {/| MO}: 5, 1 : a.
S G¿: Kl MO}, {/l MO}: 5, 1 : a.
T Gl ® T2: {C2z|000}, {/IM«}; t, or t2: 1, 1; 2, 1; 3, 1; 4, 1 : a.
W Gj ® T4: {C2z|000}, {C2y|000}; t, or t2 ort3 : 1,3; 2 ,3; 3, 3; 4,3: b.

A' G4 (C2z, 0), (<7,,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Gx G4 (C2z,0), (<7,,0): 1,1; 2, 1; 3,1; 4,1: c.
Í* G2 (C2z, 0): 1, 1; 2, 1: b.
17 G4 (C2l, 0), (az,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
F* G4 (C2x,0), (CT Z ,O) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
-0* G2 (C2l, 0): 1,3; 2 ,3 : b.
A1 GJ (C2,,0), (a,,0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
Í7* Gj (C2y, 0), (<rx ,0): 1 ,1 ; 2 ,1; 3,1; 4,1: c.
S* G2 (C2,,0): 1,3; 2,3: fc.
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73 Ibca D\l

(FI; Kl M5; Zl.)

r G| {C2z|}0}}, {C2j,|HO}, {/|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
X Gl ®T 2 : {C2z | iOj-}, {C2j,|MO}, {/| 000}; t, or t2 ort3: 1 ,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1: 6.
R Gf {a, |^0}, {/| 000}: 5,1: a.
S G* {<7X | OÜ}, {/ | 000} : 5, 1 : a.
T Gl {<rz | iOi}, {/| 000} : 5,1: a.
W GJ6 : {£¡100}, {C2z|eOi},{C2y|iiO}: 9, 2:/.

A" G£ (C22, 0), (<T, ,0 ) : 1, 1; 2, 1; 3, 1; 4, 1: c.
G* Gl (C2z, 0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
P* G i (C2l, 0): 2,3; 4,3: a.
L* GJ (C2x, 0), (<72, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
F* GJ (C2x, 0), (<T2, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
O* G¿ (C2x, 0): 2,3; 4,3: a.
A* G£ (C2y, 0), (<7 X , 0 ) : 1, 1; 2, 1; 3, 1; 4, 1: c.
£^* GJ (C2y, 0), (<7 X ,0) : 1, 1; 2, 1; 3, 1; 4, 1: c.
g* Gi (C2y, 0): 2,3; 4,3: a.

74 Imma D\l

(FI; AT?; M5; Zl.)

r GÜ: {C22|iOi}, {C2,|MO}, {/|MO}: 1, 1 ; 2, 1; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
X C.\ ®T2 : {C2z | iOi}, {C2, | |iO}, {/ ÜO}; t i O r t j O r t j . - 1,1; 2 ,1; 3, 1 ; 4,1; 5,1; 6, 1 ; 7,1; 8,1: b.
R Gl ®T 2 : {C2,| ÜO}, {/1MO}; t,: 1,1; 2, 1 ; 3, 1; 4, 1 : a.
S Gl ® T2: {C2x|0|i}, {/| MO}; t, or t3: 1, 1; 2, 1; 3, 1; 4, 1: a.
r G* K I O U h f / l H O } : 5,1: «.
W GI6 : {£ | 100}, {C221 ¿OÍ}, {C2y | ÜO} : 9, 1 : /.

A" G| (C2l, 0), (ff,, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
G1 G^ (C22, 0), (ay, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
P* Gi (C2 z ,0): 2, 3; 4,3: a.
I* Gl (C2x, 0), (<7 Z , 0 ) : , 1 ; 2, 1; 3, 1; 4, 1: c.
F* G^ (C2x,0), (<T2, 0): , 1; 2, 1; 3, 1; 4, 1: c.
Z)x G\ (C2 x ,0): 2, 1; 4, : a.
A" G^ (C2,,0), (<TX, 0): , 1 ; 2, 1; 3, 1; 4, 1: c.
U* Gl (C2y, 0), K,0): , 1; 2, 1; 3, 1; 4, 1: c.
g' Gi (C2>.,0): 2,1; 4, : a.
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75 P4 Cj

(F\; Kl; M 5 Zl.)

F Gi: {C¿ I 000}: 1, 1; 2, 3; 3, 1; 4, 3: b.
M G i®T 2 {C¿|000}; , or t2: 1, 1 ; 2, 3; 3, 1 ; 4, 3: b.
Z G i ® T 2 {C¿|000}; 3: 1, 1 ; 2, 3; 3, 1; 4, 3: b.
A G\ ® T2 {C¿|000}; , or t2 or t3: 1, 1 ; 2, 3; 3, 1 ; 4, 3: 6
R G2 ® T2 {C 2 z jOOO}; 2 or t3: 1, 1 ; 2, 1 : b.
X G2 ® T2 {C2z|000}; 2: 1, 1; 2, 1 : ¿>.

A* G¡ (E, 0): 1, 1: a.
U' G¡ (E, 0): 1, 1: a.
A' Gi (C¿,0): l , x ; 2,x; 3,x; 4, x: b.
V Gi (C¿,0): l , X ; 2, x; 3, x; 4, x: b.
I.x G{ (E, 0): 1,1: a.
S* Gl (E, 0): 1, 1: a.
Y* G{ (£, 0): 1, 1: a.
T* G¡ (£, 0): 1, 1; a.
W G2 : (C2 z ,0): l , x ; 2, x: b.

76 P4) C4

(Fl; Jf7; MS; Zl.)

T G¿: {C4
+

z| 00¿}: 1, 1; 2, 3; 3, 1; 4 ,3: b.
M Gi ® T2: {C¿| 00¿}; t, or t 2 : 1 , 1 ; 2,3; 3, 1 ; 4, 3: 6.
Z Gj : {C¿|00i}: 2 ,3; 4 ,3; 6 ,3 ; 8,3: a.
A G¡: {C4

+
z | 00¿}: 2, 3; 4, 3; 6, 3; 8, 3: a.

R Gi: {C2z| 00!}: 2,3; 4,3: a.
* G2 ®T 2 : {C2z|00|}; t2: 1, 1 ; 2, 1 ; b.

A' G¡: (E, 0): 1, 1: a.
Ux G\: (E, 0): 1,2: a.
A1 G4: (C¿, 0): l , x ; 2, x; 3, x; 4, jc: 6.
K1 Gi: (C¿,0): l ,x ; 2,x; 3, x; 4, x: b.
Z31 Gl: (E, 0): 1, 1: a.
S* G}: (E, 0): 1,2: a.
Y" G{: (E, 0): 1, 1: a.
T" G J : (E, 0): 1,2: a.
W* GJ: (C 2 z ,0) : 1, x; 2, x: i.
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77 P42 C\

(Fl; Kl; M S ; Zl.)

r Gi: {C¿|00|}: 1, 1; 2, 3; 3, 1; 4,3: b.
M Gi ® T2: {C¿| OOi}; t, ort2 : 1 , 1 ; 2 ,3; 3, 1 ; 4,3: 6.
Z Gi ®T 2 : {C£|0<H}; t3: 1 ,1 ; 2,3; 3, 1 ; 4, 3: b.
A Gi ® T2: {C4

+
z| 00|}; ti o r t 2 o r t 3 : 1 ,1; 2,3; 3, 1 ; 4,3: ¿.

/? G| ® T2: {C2z| 000}; t2 or t3 : 1 ,1 ; 2, 1 : b.
X G¡ ® T2: {C2z|000}; t2: 1, 1; 2, 1: ¿».

A" G} (E, 0): 1, 1 a.
£/* G¡ (E, 0): 1 ,1 a.
A* Gi (C¿, 0): l ,x ; 2, jt; 3, x; 4, x: ¿».
K* Gi (C4

+
z,0): l , x ; 2, x; 3, x; 4, x: b.

Z* G j (£, 0): 1, 1 a.
S* G1, (£, 0): 1,1 a.
Yx G\ (E, 0): 1, 1 a.
Tx G| (E, 0): 1 ,1 a.
W* G2 (C22 ,0): l , x ; 2, x: b.

78 f43 CÎ

(Fl; Kl; M5; Zl.)

F G4: {C£| 00|}: 1 , 1 ; 2, 3; 3, 1 ; 4,3: è.
Ai G4 ®T 2 : {CÍJOOIJ; t, ort2 : 1 , 1 ; 2 ,3 ; 3, 1 ; 4, 3: 6.
Z G¿: {C4

+
z|00|}: 2,3; 4,3; 6,3; 8,3: a.

/I G¡: {C^IOOl}: 2,3; 4 ,3; 6, 3; 8, 3: a.
« Gi: {C2z| 00|}: 2, 3; 4 ,3: a.
X G\ ®T 2 : {C2JOOi}; t2: 1 ,1 ; 2, 1: ¿.

A" Gi: (E, 0): 1, 1: a.
U* G J : (£, 0): 1, 2: a.
A' Gi: (C4

+
z ,0): \,x; 2, x; 3, x; 4, x: b.

V* Gi: (C¿,0): 1, x; 2, x; 3, x; 4, x: è.
I* G j : (E, 0): 1, 1: a.
5* G J : (E, 0): 1,2: a.
Y* G J : (£, 0): 1 ,1 : a.
Tx G J : (£, 0): 1,2: a.
W* G 2 : (C2z,0): l , x ; 2, x: 6.
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79 74 C\

(Fl; Kl; MS; Zl.)

T Gi: {C¿| 000}: 1,1; 2 ,3; 3, 1 ; 4,3: b.
N G\ ® T2: {£|000}; t2: 1 ,1 : a.
X G i ® T 2 : {C2z|000}; t3: 1, 1; 2, 1: b.
Z Gi ® T2: {C¿|000}; tt o r t 2 or t 3 : 1,1; 2,3; 3, 1 ; 4,3: b.
P G2 ® T4: {C2J 000}; ^ or t2 ort3 : 1, 1; 2 ,2 : b.

A' Gi: (C¿,0): \,x; 2, x; 3, x; 4,x: b.
V G i (C¿, 0): I,*; 2,x; 3, x; 4, x: b.
W* Gi (C2z, 0): l , x ; 2,x: b.
Zx G! (£, 0): 1, 1: a.
F* G; (E, 0): 1, 1: a.
Q* G\ (E, 0): l,x: a.
A" G{ (E, 0): 1 , 1 : a.
U* G{ (E, 0): 1, 1: a.
Y* G\ (E, 0): 1 ,1 : a.

80 14, C|

CF1; Kl; M S ; Zl.)

r Gi: {C¿|üi}: 1,1; 2,3; 3, 1; 4,3: b.
N Gi ® T2: {£1000}; t2: 1,1: a.
X G2 ® T2: {C22|000}; t3: 1, 1; 2, 1: b.
Z G 4 ® T2: {C4

+
z[|ii}; t 1 o r t 2 o r t 3 : 1,1; 2 ,3 ; 3, 1 ; 4 ,3: b.

P G2 ® T4: {C2z| 000}; t t or t2 ort3 : 1, 3; 2, 3: A.

Ax Gi (C¿,0): l , x ; 2, x; 3, x; 4, x: b.
V Gi (C¿,0), (£, 1): 5, x; 6, x; 7, x; 8, *:6.
W* G| (C22 ,0): l ,x ; 2,x: b.
S* G¡ (E, 0): 1, 1 a.
F* G\ (E, 0): 1 ,1 a.
Q* G! (E, 0): l ,x a.
A1 Gi (E, 0): 1, 1 a.
I/* G} (£, 0): 1,1 a.
F* G¡ (£, 0): 1,1 a.

81 P4 5j

(Fl; /C7; M5 Zl.)

F Gi: {S4z|000}: 1,1; 2,3; 3, 1; 4,3: b.
M Gi ® T2 {S^ | 000}; t t ort2 : 1, 1; 2, 3; 3, 1; 4, 3: b.
Z G i ® T 2 {54

+
z|000}; t3: 1, 1; 2, 3; 3, 1; 4, 3: b.

A G i ® T 2 {S4z| 000}; t, o r t 2 or t 3 : 1, 1; 2 ,3; 3, 1; 4 ,3: b.
R G2 ® T2 {C2z|000}; t 2 or t 3 : 1, 1; 2, 1: b.
X Gi ® T2 {C2z| 000}; t2: 1, 1; 2, 1: b.

A* G1, (E, 0): 1, 1: a.
U* G\ (E, 0): 1, 1: a.
A' C2 (C2z, 0): 1 , 1 ; 2 ,2: b.
V* Gi (C2 z ,0): 1, I; 2,2: b.
I* G! (E, 0): 1,1: a.
S* G¡ (E, 0): 1, 1: a.
Y* G\ (E, 0): 1 ,1: a.
T* G\ (E, 0): 1, 1: a.
W* Gi (C2z, 0): l , x ; 2,x: b.
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K_J±J%

(F\; Kl; MS; Zl.)

F Gi: {£¿,1000}: 1 , 1 ; 2,3; 3, 1; 4,3: b.
N G\ ® T2: {£|000}; t2: 1,1: a.
* G2 ® T2: {C2z|000}; t3: 1, 1; 2, 1: 6.
2 G i ® T2: {S/JOOO}; t t or t2 or t 3 : 1 , 1 ; 2 ,3; 3, 1 ; 4,3: 6.
f Gi ® T4: {S¿| 000); t t or t2 ort3 : \,x; 2,x; 3, x; 4, x: b.

A* Gj (C2z, 0): 1, 1; 2 ,2 : b.
V G2 (C2z, 0): 1,1; 2,2: b.
Wx G\ (C2z, 0): 1, x; 2, x: 6.
I* G¡ (£, 0): 1, 1: a.
F* Gj (E, 0): 1, 1: a.
g* Gl (E, 0): l , x : a.
A* Gi (E, 0): 1, 1: a.
U* G¡ (£, 0): 1, 1: a.
Y" Gj (£, 0): 1, 1: a.

83 P4/m Cjfc

(FI; AT7; MS; Zl.)

r Gj|: {C¿ | 000}, {/| 000}: 1 ,1; 2, 3; 3, 1 ; 4, 3; 5, 1 ; 6, 3; 7, 1 ; 8, 3: e.
M Gl ® T2: {C¿|000}, {/|000}; , o r t 2 : 1,1; 2 ,3; 3, 1 ; 4,3; 5, 1 ; 6, 3; 7, 1 ; 8,3: e.
Z G| ®T 2 : {C4

+JOOO}, {/|000}; 3: 1, 1 ; 2, 3; 3, 1 ; 4, 3; 5, 1 ; 6, 3; 7, 1 ; 8, 3: e.
A Gl ® T2: {C4+JOOO}, {/|000}; , o r t 2 o r t 3 : 1,1; 2,3; 3, 1 ; 4,3; 5, 1 ; 6,3; 7, 1 ; 8,3: e.
R G4 ® T2: {C2JOOO}, {/|000}; 2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : a.
X G4 ® T2: {C2JOOO},{/| 000}; 2: 1, 1; 2, 1 ; 3, 1; 4, 1 : a.

A" G1
2 (az, 0): 1, 1 2, 1 : c.

V Gl (a,, 0): 1, 1 2, 1 : c.
Ax Gi (C£, 0): 1, 1; 2, 3; 3, 1; 4, 3: b.
V* Gi (C£, 0): 1, 1; 2, 3; 3, 1; 4, 3: 6.
S1 G2 (a,, 0): 1 , 1 2, 1 : c.
S* G2 (<72, 0): 1, 1 2, 1: c.
Y' G>2 (az, 0): 1,1 2, 1: c.
Tx G\ (a,, 0): 1 , 1 2, 1: c.
W* Gi (C2z ,0): 1, 1; 2, 1: ¿».

84 f42/m Cl,

(Fl; X7; M5; Zl.)

F G¡: {C¿|00i}, {/|00j}: 1, 1 ; 2, 3; 3, 1 ; 4, 3; 5, 1 ; 6, 3; 7, 1 ; 8, 3: e.
M Gl ® T2: {C¿|00i}, {/|00l}; tt ort2: 1,1; 2,3; 3, 1 ; 4,3; 5,1; 6,3; 7, 1 ; 8,3: e.
Z Gi i> : {C4

+
2|OOi},{£|001}, {/|00i}: 9 ,1; 10,1: d.

A Gig : {C¿|00i},{£|001}, {/|00i}: 9,1; 10,1: d.
R G4 ® T2: {C2z| 000}, {/| OOj-}; t2 ort3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : a.
^ G 4 ® T2: {C2z|000}, {/|00i}; t2: 1 ,1; 2,1; 3,1; 4 ,1: a.

A* Gj (CTZ, 0): 1, 1 2, 1 : c.
U* Gi ( f f z , 0 ) : 2, 1 4, 1: a.
A' Gi (C¿,0): 1 ,1 ; 2,3; 3,1; 4,3: b.
V Gi (C¿,0): 1, 1; 2,3; 3,1; 4,3: b.
I1 G2 (<r z ,0): 1,1 2, 1: e.
S* Gi (<r z ,0): 2 ,1 4,1: a.
Y* G2 ( f f z , 0 ) : 1,1 2, 1: c.
T* Gi (a,,0): 2,1 4, 1 : a.
W* G2 (C2z,0): 1, 1; 2,1: b.
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85 P4/n_Cli

( F I ; Kl; M5; Zl.)

T G|: {C4
+

Z|MO}, {/| HO}: 1 , 1 ; 2, 3; 3 ,1 ; 4,3; 5 ,1 ; 6, 3; 7 , 1 ; 8 ,3: e.
M G¡«: {C4

+JMO}, {£|010}, {/|MO}: 9 ,1 ; 10,1: d.
Z G |®T 2 : {C¿|MO}, U! MO}; t3: 1, 1; 2 ,3; 3 ,1 ; 4,3; 5, 1 ; 6,3; 7 ,1 ; 8,3: e.
A G!«: {C¿ | MO}, {£ I 010}, {/ MO}: 9, 1 ; 10, 1 : d.
R G|: KIMO}, {/I MO}: 5, 1 : a.
X Gl: K | MO}, {/¡MO}: 5, 1 : a.

A* G 2 : (<TZ, 0): 1, 1; 2, 1: c.
I/' G 2 : (<72, 0): 1, 1; 2, 1: c.
A* G4: (C¿, 0): 1, 1; 2,3; 3 ,1 ; 4 ,3 : b.
V G¡: (C4

+
z, 0), (£, 1): 5, 3; 6, 1; 7, 3; 8, 1 : b.

X* G 2 : (< r z , 0 ) : 1, 1; 2, 1: c.
5* G ^ : (<J2, 0): 1,1; 2, 1 : c.
1" G2: (az, 0): 1, 1; 2, 1: c.
T* G 2 : (<r z ,0) : 1, 1; 2, 1: c.
»" G2 : (C2z, 0): 1,3; 2,3: b.

86 f42/« C*t

(fl; /C7; M5; Zl.)

T G^ : {c;z|Mî},{/IÎM}: 1 ,1 ; 2 ,3; 3 ,1; 4,3; 5 ,1 ; 6,3; 7 ,1 ; 8,3: e.
M G¡°: {C;z|Mi}, {£ I 010}, {/I MÍ}'- 9,1; 10,1: d.
Z Gil: {C¿|MÍ}, {£1001}, {/| MÍ}: 9, 1; 1 0 , l : r f .
A Gl ® T2: {C¿|ííí}, {/IMÍ}; t, o r t 2 o r t 3 : 1 , 1 ; 2,3; 3, 1 ; 4,3; 5, 1 ; 6,3; 7, 1 ; 8, 3: e.
R GS: {*,! MÍ}, {/I Mí}: 5 ,1 : a.

X G4, {a.lüiH/líü}: 5, 1: a.

A1 G2 (<7Z, 0): 1, 1; 2, 1: a.
U* G i ( < T Z , 0 ) : 2 ,1 ; 4, 1: a.
Ax Gl (C/z,0): 1, 1; 2, 3; 3, 1; 4, 3: b.
V* G\ (C4

+
z,0), (E, 1): 5, 3; 6, 1; 7, 3; 8, 1: b.

£* G2 (az, 0): 1, 1; 2, 1: c.
5" G\ (a,, 0): 2, 1; 4, 1: a.
Y* Gi (<JZ, 0): 1, 1; 2, 1: c.
Tx Gi (<72, 0): 2, 1; 4, 1: a.
H/x G\ (C2z, 0): 1,3; 2,3: ¿>.

87 74/m Cjft

(FI; Kl; M5; Zl.)

T G g : {C¿ | 000}, {/( 000}: 1 ,1; 2 ,3; 3,1; 4,3; 5,1; 6,3; 7, 1; 8, 3: t.
N Gj ® T2: {/I 000}; t2: 1, 1; 2, 1: a.
Jf Gj ®T 2 : {C22|000},{/|000}; t3: 1,1; 2 ,1 ; 3,1; 4 ,1: a.
Z G¡ ®T 2 : {C¿ | 000}, {/| 000}; t t O r t . o r t a : 1 ,1 ; 2,3; 3,1; 4,3; 5 ,1 ; 6,3; 7 ,1 ; 8,3: e.
P G\ ® T4: {S4

+
z|000}; t, or t 2 or t } : 1 ,1 ; 2,3; 3, 1 ; 4 ,3: b.

A* G4: (C¿, 0): 1, 1; 2, 3; 3, 1; 4, 3: 6.
V* G4: (C4

+
z ,0) : 1,1; 2 ,3; 3 ,1; 4,3: b.

W* G2 : (C2z, 0): 1, 1; 2, 1: b.
Zx G2 : (<y2 , 0): I, 1; 2, 1: c.
Fx G1

2: (az, 0): 1, 1; 2, 1: c.
Q* G\: (E, 0): 1, 1: a.
Ax G J : (a,, 0): 1, 1; 2, 1: c.
t/* G 2 : (o-z, 0): 1, 1; 2, 1 : c.
7* G^: (o-z, 0): 1, 1; 2, 1: c.
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88 74,/a C4»

( F l ; Kl; MS; Zl.)

r G|: {C/Jfii}, {/liu}: 1,1; 2, 3; 3,1; 4, 3; 5,1; 6, 3; 7,1; 8, 3: e.
N G>2 ®T2 : {/luí}; t2: 1 ,1 ; 2 ,1: a.
X Cl: K HUM/| tu}: 5, 1: a.
Z G¡°: {C¿| H|}, {£|001}, {/lui}: 9, 1 ; 10, 1 : A
f G' ® T4: {5¿| 000}; t t or t2 ort3 : 1,3; 2,3; 3,3; 4,3: ¿.

A* G4: (C¿,0): 1,1; 2,3; 3, 1; 4,3: b.
V G\: (C¿, 0), (£, 1): 5 ,3; 6,1; 7,3; 8,1: ¿>.
W" G2 : (C2z,0): 1,3; 2 ,3 : è.
I* G2 : (a-z,0): 1,1; 2, 1 : c.
F* G4: ( t j z ,0 ) : 2, 1 ; 4, 1 : a.
Q* G}: (£, 0): 1, 1: a.
A1 G2: (<7Z, 0): 1, 1; 2, 1 : c.
I/1 Gi: (CTZ, 0): 2, 1; 4, 1: a.
r* G2: (o,,Q): 1, 1; 2, 1: c.

89 P422 D\

( F l ; Kl; M5; Zl.)

r G¿: {C¿|000}, {C2JOOO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G¿ ® T2: {C¿|000}, {C2;t|000}; t t ort2 : 1 ,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
Z G£ ® T2: {C4

+
z|000}, {C2l|000}; t3: 1 ,1 ; 2, 1 ; 3, 1; 4, 1 ; 5, 1 : b.

A Gf ®T2 : {C4
+JOOO}, {C2x |000}; tt or t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.

R G4 ® T2: {C2z|000}, {C2y | 000}; t 2 or t 3 : 1,1; 2, 1 ; 3, 1 ; 4, 1 : b.
X G 4 ® T 2 : {C2l|000}, {C2,|000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.

A1 G 2 : ( C 2 f , 0): 1,1 2, 1 b.
U* GJ (C2,, 0): 1,1 2,1 b.
A1 G} (C4

+
z, 0): 1,1 2 ,1 3,1; 4,1: 6.

V G^ (C*,, 0): 1, 1 2,1 3, 1; 4 ,1 : 6.
£* G2 (Cla, 0): 1 , 1 2,1 b.
S* G2 (C2l,,0): 1,1 2 ,1 b.
Y" G\ (C2l, 0): 1 ,1 2,1 b.
T* G>2 (C2,,0): 1 ,1 2,1 b.
W* G2 (C2z, 0): 1, 1 2, 1 b.

90 P42.2 Dl

(Fl; Kl; M5; Zl.)

F G|: {C4
+

z|000},(C2x|i|0}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G\°: {C4

+JOOO}, {C2z|010},{C2i,|i|0}: 5,3; 6,3; 7,3; 8,3; 9 ,1: a.
Z Gf ®T 2 : {C^IOOO}, (C2jc|ÍÍO}; t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
A G¡°: {C4

+
ziOOO},{C22¡010},{C2b | i iO}: 5,3; 6,3; 7,3; 8,3; 9,1: a.

R GJ {C2,|-H0}, {C2JMO}: 5 ,1 : a.
X Gi {C2,|i|0},{C2jc||iO}: 5,1: a.

A1 G2 (C2,, 0): 1, 1 2,1: b.
U* G2 (C2>, 0): 1, 1 2,1: b.
Ax Gi (C¿, 0): 1, 1 2, 1; 3, 1; 4, 1: 6.
K* Gi (C¿, O): 1,3 2,3; 3,3; 4,3: b.
£* G2 (C2o, 0): 1, 1 2, 1: 6.
S* G2 (C2o, 0): 1, 1 2, 1: b.
Y* G¡ (C2,, 0): 2, 3 4, 3: a.
7" Gi (C2l, 0): 2, 3 4, 3: a.
Wx G2 (C2z, 0): 1,3 2,3: b.
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91 P4i22 Dl

( F \ ; Kl; MS; Zl.)

T G|: {C¿|00¿}, {C2l|000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M Gf ®T 2 : {C¿| Oui}, {C2J 000}; t, or t2: 1, 1; 2, 1; 3, 1 ; 4, 1 ; 5, 1: 6.
Z G|¡: {C4

+
z|OOi},{C2¡JOOO}: 6, 1 ; 7, 1 : a.

A G\l: {C¿¡00i}, {C2x\(m}: 6, 1 ; 7, 1 : a.
R GJ: {C2z|00i}, {C2;e|000}: 5, 1: a.
* G* ® T2: {C2z |OOi},{C2y |OOi}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1: 6.

A* G2: (C2,, 0): 1 ,1 ; 2 ,1 ¿>.
Í/1 Gi: (C2,,0): 2, 3; 4, 3 a.
A' G¿: (C¿, 0): 1, 1; 2, 1 3, 1 ; 4, 1 : b.
V* Gi: (C£, 0): 1, 1; 2, 1 3, 1 ; 4, 1: 6.
^ G2: (C2o, 0): 1, 1; 2,1 6.
5" G¿: (C2a, 0): 2, 3; 6,3 ¿>.
Y" G2: (C2l, 0): 1, 1; 2, 1 6.
3™ G2: (C2j, 0): 1,3; 2,3 b.
W* G2: (C2z, 0): 1, 1; 2, 1 Í».

92 P4,2i2 D4

(f l ; A:?; M5; Zl.)

F Gf: {C¿ | 00¿}, {C2 J HO} : 1, 1; 2, 1; 3, 1 ; 4, 1 ; 5, 1: 6.
M G¡°: {C¿|00¿}, {C2z|01i}, {C2t|2i|}: 5,3; 6 ,3 ; 7 ,3 ; 8 ,3; 9, 1 : a.
Z G\l: {c;z I OOi}, {C2, i ÜO}: 6, 1 ; 7, 1 : a.
A G\¡: {C¿|00¿},{C2.|üi}: 6,3; 7 ,3: a.
R Gi: {C2z|0<H}, {C2l|HO}: 2,3; 4,3; 6 ,3 ; 8,3: d.
X Gt- {C2jM2-},{C2l|eiO}: 5 ,1 : a.

A' G2 : (C2j, 0): 1, 1; 2, 1: 6.
C/x G¿: (C2y, 0): 2, 3; 4,3: a.
A* G¿: (C¿, 0): 1, 1; 2, 1; 3, 1; 4, 1: fe.
y G\: (C4

+
z, 0): 1 ,3; 2,3; 3,3; 4,3: b.

I31 G2: (C2o, 0): 1, 1; 2, 1: 6.
Sx G¿: (C2o, 0): 2,3; 6,3: b.
Y* Gi: (C2x, 0): 2, 3; 4 ,3: a.
T" Gi: (C2j(, 0): 2 ,2; 4,2: a.
W" G^: (C2z, 0): 1 ,3; 2 ,3 : b.

93__P4222_D|

(/"l; A:7; A/5; Zl.)

T Gj: {C¿|00i}, {C2JOOO}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: 6.
M Gt ® T2: {C4

+
z|OOi}, {C2:JOOO}; t j or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.

Z G?6: {C¿|0(H}, {C2x|000}, {C2z|000}: 5, 1; 6, 1 ; 7, 1 ; 8, 1; 9, 1 : /.
A G?6: {C¿ | OOi}, {C2x \ 000}, {C2z | 000}: 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : /.
R G j ® T 2 : {C2z | 000}, {C2, |000}; t 2 o r t 3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
X Gl® T2: {C2z |000}, {C2y |000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.

A' Gi: (C2) , ,0): 1,1 2, 6.
U* G 2 : (C 2 y ) 0) : 1,1 2, b.
A1 Gi: (C¿, 0): 1, 1 2, 3, 1 ; 4, 1 : b.
V Gi: (C¿,0): 1, 1 2, 3, 1 ; 4, 1 : ¿>.
Ix G 2 : (C2o, 0): 1 ,1 2, 6.
5* Gi: (C2o, 0): 2, 1 4, 1 a.
r1 G î : (C2;c, 0): 1,1 2, 1 b.
T* G 2 : (C2^,0): 1,1 2, 1 b.
Wx G2 : (C2z, 0): 1 , 1 2, 1 é.
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94 P42212 D6
4

( F \ ; Kl; M5; Z Ï . )

F G|: {C4+|OOi}, {C2 ,IMO}: 1, 1; 2, 1; 3, 1; 4, 1 ; 5, 1 : b.
M G\l: {C¿|00i}, {C2z|010}, {C2b |Hi}: 5,3; 6,3; 7 ,3 ; 8,3; 9, 1 : a.
Z G?6: {C;z|00i}, {C2 , lHO},{C2 z[000}: 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : /.
A G\l: {C4

+
z|OOi}, {C2z|000}, {C2Ji|4}: 5,3; 6,3; 7 ,3 ; 8,3; 9,1: a.

R G| {C2,|MO},{C2z|000}: 5,1: a.
X GJ {C2, |HO},{C2JOOO}: 5, 1 : a.

A* G¡ (C2y, 0): 1, 1; 2, 1: b.
C/x G2 (C2y, 0): 1, 1; 2, 1: ¿>.
A" G4 (C¿, 0): 1, 1; 2, 1; 3, 1; 4, 1: 6.
f7* G4 (C4

+
z, 0): 1,3; 2, 3; 3, 3; 4, 3: b.

2* G2 (C2o, 0)-: 1, 1; 2, 1: 6.
S" G4 (C2o, 0): 2, 1; 4, 1: a.
i" G4 (C2x, 0): 2 ,3; 4,3: a.
r* G4 (C2l, 0): 2,3; 4,3: a.
W* G2 (C2z, 0): 1,3; 2 ,3: ¿.

95 f4322 Dl

( F \ ; Kl; MS; Zl.)

F G^: {C¿|00|}, {C2JOOO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M Gs ® T2: {C4z|00|}, [C2x | 000}; t, or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
Z G ¡U : {C¿ I OOf}, {C2l | 000} : 6, 1 ; 7, 1 : a.
A G\l\ {C42|00|}, {C2l ]000}: 6,1; 7 ,1: a.
« G¿: {C2,|00i}, {C2I|000}: 5, 1 : a.
X Gl ® T2: {C2z| 00|}, {C2>, ¡OOi}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1: 6.

A* G2 : (C2,, 0): 1, 1 2, 1 ¿.
Í/1 Gl: (C2y, 0): 2, 3 4,3 a.
A* G4: (C¿, 0): 1, 1 2, 1 3, i ; 4, 1 : b.
V* G\: (C¿, 0): 1,1 2,1 3,1; 4, 1 : b.
S" G2: (C2o, 0): 1 ,1 2, 1 6.
Sx G¡: (C2a, 0): 4, 3 8,3 c.
Y* G2 : (C2,, 0): 1, 1 2, 1 b.
Tx G2: (C2l,Q): 1 ,3 2,3 b.
W* G 2 : (C2z, 0): 1, 1 2, 1 ¿>.

96 _P4j2i2_^Dj

(F\; Kl; M5; Zl.)

r G^: {C¿|00|}, {C2JÍÍO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G{°6: {C4

+
z|00|}, {C22 |OH},{C2(,|iii}: 5,3; 6 ,3 ; 7,3; 8,3; 9, 1 : a.

Z G{¡: {C¿|00|}, {C2JMO}: 6, 1 ; 7, 1 : a.
A G\l. {C¿|00|}, {C2JM!}: 6,3; 7 ,3: a.
« Gg: {C2z|00i}, {C2JiiO}: 2 ,3; 4,3; 6,3; 8 ,3: d.
X Gt- {C2,lMÎ},{C2JiiO}: 5, I : a.

A* G2 : (C2y, 0): 1, 1; 2 ,1 : b.
U* G4: (C2)r, 0): 2,3; 4 ,3: a.
A* G4: (C¿, 0): 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
V* G4: (C¿, O): 1,3; 2 ,3; 3,3; 4,3: 6.
Ï* G2 : (C2o, 0): 1, 1; 2, 1: b.
S* G¿: (C2o, 0): 4, 3; 8,3: c.
r1 G4: (C2;[, 0): 2,3; 4,3: a.
Tx G\: (C2 x ,0): 2 ,2; 4,2: a.
W* G¡: (C2z, 0): 1,3; 2,3: b.
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97 7422 Dl

(F\; Kl; M S ; Zl.)

F G*: {C¿|000}, {C2x(000}: 1, 1; 2, 1; 3, 1; 4, 1 ; 5, 1: b.
N Gi ® T2: {C2y|000}; t2: 1, 1; 2, 1: b.
X G 4 ® T2: {C2z|000}, {CjJOOO}; t3: 1, 1; 2, 1; 3, 1; 4, 1 : b.
Z G* ® T2: {C4z| 000}, {C2x|000}; t, or t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
P G4 ® T4: {C2z| 000}, {C2,1000}; t, o r t 2 or t 3 : 1,1; 2, 1 ; 3,3; 4,3: b.

A* G4 (C¿, 0): 1, 1 2, 1; 3, 1; 4, 1: 6.
K* G4 (C4

+
z, 0): 1, 1 2, 1; 3, 1; 4, 1: ¿.

W1 Gi (C2z, 0): 1, 1 2, 1: b.
V G¡ (C2l, 0): 1, 1 2, 1: 6.
Fx Gi (C2x, 0): 1 , 1 2,1: b.
Q* Gi (C2y, 0): \,x 2,x: b.
A* Gi (C2a, 0): 1, 1 2, 1: 6.
U" Gi (C2a, 0): 1 , 1 2 , 1 : b.
Y* Gi (C2b, 0): 1 ,1 2 ,1 : 6.

98 74,22 ¿)4°

(FI; A7; MS; Zl.)

T GJ: {C¿||H}, {C2l|0&}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
N Gi ®T 2 : {C2j. Oii}; t2: 1 , 1 ; 2, 1: 6.
X G 4 ® T 2 : {C2z |000},{C2b |HO}; t3: 1 ,1 ; 2 ,1 ; 3 ,1; 4 ,1 : é.
Z G* ® T2: {C4

+
z| |^j, {C2, |0ii}; t, ort, ort3: 1 , 1 ; 2, 1 ; 3, 1; 4, 1 ; 5, 1 : b.

P G}6: {£|001}, {C2z|000}, {C2 , jOU}: 10, 1 : e.

Ax Gi (C¿, 0)-. 1, 1; 2, 1; 3, 1 ; 4, 1: 6.
K* Gg (C¿, 0), (£, 1): 5, 1; 6, 1; 7, 1; 8, 1: b.
Wx G¡ (C22, 0): 1, 1; 2, 1 ¿>.
Z1 Gj (C2x, 0): 1, 1; 2, 1 ¿>.
f" G2 (C2x, 0): 1, 1; 2, 1 b.
Q* Gl ( C 2 f , 0): 2,x; 4, x a.
A* Gi (C2a, 0): 1,1; 2,1 b.
V G4 (C2o, 0): 2, 1; 4, 1 a.
Fv Gj (C2i, 0): 1, 1; 2, 1 6.

99 P4mm C4u

(Fl; Í7; M5; Zl.)

T G^: {C¿|000}, { a y \ 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M Gi ® T2: {C4

+
z| 000}, {ay \ 000}; t, or t 2 : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.

Z Gl ® T2 : {C¿ | 000}, {ay ] 000} ; t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
A G% ® T2: {C¿| 000}, {(7,1000}; t j or t2 ort3 : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1: 6.
« Gi ® T2: {C2z|000}, {tr^OOO}; t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
X G4 ® T2: {C2z|000}, {a, | 000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.

A* G2 K, 0): 1, 1; 2, 1: c.
U" G2 K, 0): 1, 1; 2, 1: c.
A1 G« (C¿, 0), (<T,, 0): l,x; 2, x; 3, x; 4, x; 5, x: b.
Ve Gt (C^,0),(ay,0):l,x;2,x;3,x;4,x;S,x:b.
^ Gi (<rdb, 0): 1,1; 2 ,1 : c.
S* Gi ((7di,, 0): 1,1; 2,1: c.
Kx Gi (a,, 0): 1,1; 2, 1 : c.
r* Gi (a,, 0): 1,1; 2 ,1: c.
ffx G4 (C2z, 0), (ff,, 0): l , j c ; 2, x; 3, x; 4, x: c.
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100 P4bm Cjv

(F\; Kl; M5; Zl.)

T G¿: {C¿ | 000}, {<Ty |MO}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
M Gig : {C4

+
z|000}, {C22|010}, fotolMO}: 5,3; 6,3; 7 ,3 ; 8,3; 9 ,1: 6.

Z G£ <g> T2: {C¿|000}, {^luO}; t3: 1,1; 2 , 1 ; 3, 1 ; 4, 1 ; 5, 1: b.
A G ig : {C¿|000}, {C2z|010}, {adb\£Q}: 5,3; 6,3; 7,3; 8,3; 9, 1 : b.
R G* K!MO},{C22 |000}: 5,1: a.
X G* {<rjMO},{C22 |000}: 5 ,1 : a.

Ax G^ K,0): 1, 1; 2, 1: c.
[/" G2 O,, 0): 1, 1; 2, 1: c.
Ax Gl (C¿, 0), (CTJ,, 0): 1, x; 2, x; 3, x; 4, x; 5, x: è.
V G} : (C¿, 0), (C2z, 1), ((7^,0): 5, x; 6, x; 7, x; 8, x; 9, x: b.
Z' G2 (ffdb, 0): 1,1; 2,1: c.
S' G¡ (<rdb, 0): 1,1; 2 ,1 : c.
Y* G\ (er,, 0): 2,3; 4,3: a.
7" Gi (<ry, 0): 2,3; 4,3: a.
W* Gl (ay, 0), (C2 z ,0): 5, x: a.

101 f42cm C\,

(F\; Kl; M5; Zl.)

F G|: {C¿|002}, {a, 1001}: 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G £ ® T 2 : {C4

+
2|00|}, {ff.lOOi}; t , o r t 2 : 1,1; 2,1; 3,1; 4,1; 5, 1 : b.

Z Gig: {C4
+

21 OOi}, {C2z | 000}, {<7dn, | 000} : 5 ,3; 6,3; 7,3; 8,3; 9 ,1: b.
A Gig: {C¿ ] 00l¡}, {C2z | 000}, {adt \ 000}: 5, 3; 6, 3; 7, 3; 8, 3; 9, 1 : b.
R G¡: {ffJOOi}, {CjJOOO}: 2,3; 4,3; 6,3; 8,3: d.
X G\ ® T2: {C2z|000}, (a, |00i}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.

A1 GJ: (af, 0): 1, 1; 2, 1 : c.
{/* G2 : (<rx, 0): 1,3; 2,3: c.
Ax G¿: (C42,0), (ar, 0): l ,x; 2, x; 3, x; 4, x; 5, x: b.
V* G|: (C¿, 0), (i7y, 0): l ,x ; 2, x; 3, x; 4, x; 5, x: b.
I.' G¡

2. ( a d b , 0 ) : 1 ,1 ; 2 ,1 : c.
S' G1

2. (adb,0): 1 ,1 ; 2,1: c.
Y* G2: (ff),, 0): 1,1; 2, 1 : c.
7" GJ: ((jy, 0): 1,3; 2 ,3: c.
HK* G4: (C2z,0), ( < r y , 0 ) : l , x ; 2, x; 3, x; 4, x: c.

102 P42nm C\v

(FI; Kl; M5; Zl.)

f G¿: {C¿]00i}, KI24i}: 1 , 1 ; 2 ,1 ; 3,1; 4,1; 5,1: b.
M G ig : {C¿|00e}, {C2z | 010}, {afilio}: 5,3; 6,3; 7,3; 8,3; 9, 1 : b.
^ G ig : {C4

+
2| 00^}, {C22| 000}, {ff^HiO}: 5,3; 6,3; 7,3; 8,3; 9,1: b.

A G\ ® T2: {C^IOOi}, {<rd t lMO}; t! o r t 2 o r t 3 : 1 ,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
R G¿: (s | |ü}, {C2z|000}: 5, 1 : a.
X G|: KUM}, {C22|000}: 5,1: a.

A* G2: K, 0): 1, 1; 2, 1: c.
Uf G2 : K, 0): 1,3; 2 ,3: c.
A* G|: (C4

+
z, 0), (ffy, 0): I, x; 2, x; 3, x; 4, x; 5, x: b.

V Gig: (C4
+

z, 0), (C2z, 1), (aia,Q)\ 5, x; 6, x; 7, x; 8, x; 9, x: b.
Z* G2: (adb, 0): 1, 1; 2, 1: c.
S' G2: (ff,t, 0): 1,1; 2,1: c.
Yx Gl- (a,, 0): 2,3; 4,3: a.
T' G4 : (<ry, 0): 2, 1 ; 4, 1 : a.
W Gl: (<r y ,0) , (C2z, 0): 5,x: a.
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103 P4cc Cl,

(F\; HI; MS; Zl.)

F G£: {C4
+JOOO}, {ay |00|}: 1,1; 2 ,1 ; 3, 1; 4 ,1; 5,1: b.

M G* ® T2: {C¿| 000}, {a, | 002}; t, or t 2 : ' l , 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : ft.
Z G*6: {C¿ | 000}, {aib \ 00^} : 5,3; 6,3; 7,3; 8,3; 10,2: a.
A GS

16: {C¿ | 000}, {<7 i61 00^}: 5, 3; 6, 3; 7, 3; 8, 3; 10, 2: a.
R G¡ {<rJOOi},{C2z |000}: 2, 3; 4, 3; 6, 3; 8, 3: d.
X G 4 ® T 2 : {C2z|000}, (a, |00i}; t2: 1, 1 ; 2, 1 ; 3, 1; 4, 1 : c.

Ax Gi K, 0): 1, 1; 2, 1: c.
{/* G2 (<TX, 0): 1,3; 2,3: c.
A* G^ (C¿., 0), (<r,, 0): \,x; 2, x; 3, x; 4, x; 5, x: 6.
F* Gj (C¿, 0), (a,, 0): l,x; 2,x; 3, x; 4,x; 5, x: b.
Z* G2 (<^,0): 1, 1; 2, 1: c.
S* Gj (adt, 0): 1,3; 2,3: c.
rx Gi: K.OV- LI ' , 2,1-. c.
7* G|: (IT,, 0): 1 ,3; 2 ,3 : c.
W G^: (C2z,0), (d,,0): l,x; 2,x; 3, x; 4, x: c.

104 P4nc Ct

(Fl; ÍT7; MS; Zl.)

T G*: {C¿ 000}, {crjili-}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: ft.
M GJ°: {C4

+
z|000},{C2z|010},{<7a(,|Me}: 5,3; 6, 3; 7, 3; 8,3; 9 ,1: b.

Z G« 6 : {C¿|000}, {^JIM}: 5,3; 6,3; 7 ,3 ; 8,3; 10,2: a.
^ Gig: {C4

+JOOO}, {C2J010}, {o-JiM}: 5,3; 6,3; 7,3; 8,3; 9,1: ft.
« Gs: Klïîï}, {C2z|000}: 5, 1 : a.
A- G|: Kliu}, {C2z|000}: 5, 1 : a.

A* G2: (ax, 0): 1, 1; 2, 1: c.
i/x G2: (a,, 0): 1,3; 2,3: c.

A* GJ: (C¿,0), (<7y,0): 1,^; 2,x; 3,x; 4, x; S, x: b.
V G ig : (C¿,0), (C2z, 1), (ff , a ,0): 5, x; 6, x; 7, x; 8, x; 9, x: ft.
I-1 G2: (<rib, 0): 1,1; 2,1: c.
S' G¡: (adb, 0): 1,3; 2 ,3: c.
Y" G4: (a,, 0): 2,3; 4,3: a.
T* Gi: (<7y, 0): 2, 1; 4, 1: a.
PFX G*: (ay, 0), (C2 z ,0): 5, AT: a.

105 P42mc Clv

(F\; Kl; MS; Zl.)

T GJ: {C¿|00i}, {<r,|000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : ft.
M G| ® T2 : {C¿ | 00|}, {ffy | 000} ; t, or t2 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1: 6.
2 G\l: {C^IOOi}, {C2z|000}, KIOOO}: 5,3; 6,3; 7,3; 8,3; 9, 1 : ft.
A G!°: {C¿ OOi}, {C221 000}, {a, | 000} : 5,3; 6,3; 7,3; 8,3; 9, 1 : ft.
R Gi. ®T 2 : {C2z | 000}, {0,1000}; t 2 or t 3 : 1 ,1 ; 2, 1; 3, 1; 4, 1: c.
X G 4 ® T 2 : {C2z | 000}, {ay \ 000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.

A* G2 : K, 0): 1, 1; 2, 1: c.
Í/* Gi: K, 0): 1 ,1 ; 2, 1: c.
A1 Gf: (C4

+
2>0), (d,,0): l , x ; 2,x; 3,x; 4,x; 5,x: ft.

V* Gl: (C¿, 0), (<7,,0): l , x ; 2, x; 3, x; 4, x; 5, x: ft.
V G\ ("ib, 0): 1 ,1; 2 ,1 : c.
S* Gi: (cr,,,,, 0): 1, 3; 2,3: c.
Y* Gi: (<7, ,0): 1 , 1 ; 2, 1: c.
T* GÍ: (IT,, 0): 1, 1; 2, 1: c.
W* G4: (C22, 0), (a,, 0): l , x ; 2, A:; 3, .x; 4, x: c.



THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS 339

106 P42bc Cl,

(FI; Kl; M5; Zl.)

F Gf: {C¿|002}, Kl îiO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G\°: {C4

+
z|OOi}, {C2z|010}, {<TdJiii}: 5 ,3; 6,3; 7 ,3; 8,3; 9,1: b.

Z G ig : {C¿|00i}, {C2z| 000}, {ffjii°} : 5 ,3; 6,3; 7,3; 8,3; 9, 1 : b.
A G*6: {CÍJOOÍ-}, {^Iffi}: 5, 3; 6, 3; 7, 3; 8, 3; 10, 2: a.
R G*: KIÎÎO}, {C2z|000}: 5, 1 : a.
X G|: KIÜO}, {C2z|000}: 5, 1 : a.

A* G2 : K, 0): 1 ,1; 2 ,1 : c.
Í/1 G2: K, 0): 1, 1; 2,1: c.
A* G|: (C£, 0), (d,,0): 1, x; 2,x; 3, x; 4, x; 5, x: b.
V* G{°6: (C4

+
z, 0), (C2z, 1), (ada, 0): 5, x; 6, x; 7, x; 8, x; 9, x: b.

Z* G2: (<7d6, 0): 1,1; 2,1: c.
5" G2: (aib, 0): 1,3; 2,3: c.
Y* G\: (<7,, 0): 2,3; 4,3: a.
7" G¿: (<T,, 0): 2,3; 4,3: a.
W* Gl: (ay, 0) , (C 2 z ,0) : 5, x: a.

107 74mm Cl.

(Fl; AT7; M5; Zl.)

F G^: {C4
+

z| 000}, {a, | 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
N G2 <g> T2: {fj^OOO}; t2: 1, 1; 2, 1: c.
* G 4 ® T 2 : {C2z|000}, {ffjJOOO}; t3: 1, 1; 2,1; 3,1; 4, 1: c.
Z G£ ® T2: {C4

+
z| 000}, {(7,1 000}; t¡ o r t 2 o r t 3 : 1,1; 2,1; 3, 1 ; 4, 1 ; 5, 1 : b.

P G4 ®T4 : {C2z| 000}, {adb\ 000}; t, or t2 ort3: 1 ,1 ; 2, 1 ; 3,3; 4, 3: c.

A* Gt (C4
+

z, 0), (er,, 0): l ,x ; 2, x; 3, x; 4, x; 5, x: b.
y Gl (C¿,0), (a,,0): l ,x ; 2, x; 3, x; 4, x; 5, x: b.
W G4 (C2z,0), (adb, 0): l ,x ; 2, x; 3, x; 4, x: c.
I* G2 (CT,, 0): 1, 1; 2, 1: c.
F1 G2 (a,, 0): 1,1; 2, 1 : c.
g* GS (F, 0): 1, 1: a.
A" G2 (CTd4, 0): 1,1; 2, 1: c.
V G2 ( f f ^ . O ) : 1,1; 2,1: c.
Y' G 2 : (ff,,,,, 0): 1, 1; 2, 1: c.

108 74cm C4°

(Fl; AT7; A/5; Zl.)

T Gj: {C¿ | 000}, {ay \ ̂ 0} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : ¿.
# G4: {(T, i|0}: 2,3; 4,3: a.
X G 4 ® T 2 : {C2z|000}, {adb\^0}; t3: 1 ,1; 2,1; 3 ,1; 4 ,1: c.
Z G£ ® T2: {C4

+
z| 000}, {a, IÎÎO}; t j o r t 2 o r t 3 : 1,1; 2, 1 ; 3, 1; 4, 1 ; 5, 1 : b.

P G 4 ® T 4 : {<7dl) | |iO}, {C2JOOO}; t, o r t 2 o r t 3 : 1, 3; 2, 2; 3, 3; 4, 2: c.

A* G¿ (C4z, 0), (o-v, 0): l , x ; 2, x; 3, x; 4, x; 5, x: b.
V GS (C4

+
z,0), (a-y, 0): l , x ; 2, x; 3, x; 4, x; 5 ,x: ft.

Wx G4 ( C 2 z , Q ) , ( < r d b , Q ) : l ,x; 2, x; 3, x; 4, x: c.
L* Gi ((7,, 0): 1,1; 2,1: c.
F* G2 (a,, 0): 1,1; 2, 1 : c.
Q* Gl (£, 0): 1,2: a.
A' Gl (ff^, 0): 1,1; 2, 1: c.
V G2 (^,0): 1 ,1 ; 2 ,1: c.
Î" G2 ((7Jfl, 0): 1, 1; 2, 1: c.
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109 14¡md C\l

f f l ; Kl; M S ; Zl.)

r GJ: {C¿||ü}, {<ry |000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
N G¡ ®T 2 : {ff,,|000}; t2: 1, 1; 2, 1: c.
* G|: KJlB}, {C2z|000}: 5, 1 : a.
2 Gig: {C¿| ÎH), (C2z | 000}, {oj 000}: 5, 3; 6, 3; 7, 3; 8, 3; 9, 1: b.
P Gf6 : KJIÜ}, {C2JOOO}: 10,1: a.

A* G¿: (C¿, 0), (ay, 0): l , x ; 2, x; 3, x; 4, x; 5, x: 6.
K* G}?: (C¿,0), (C2z,0), (<r,,0): 5, x; 6,x; 7, x; 8, x; 9, x: 6.
W" G¿: (ado,0), (C2z,0): 5, x: a.
X' G2 : (a,, 0): 1,1; 2, 1 : c.
F* G 2 : ((ry, 0): 1, 1; 2, 1: c.
Q" G|: (£, 0): 1,1: a.
A1 G > : (^,0): 1,1; 2,1: c.
U* G 2 : (ad l , ,0): 1,3; 2,3: c.
Y" GÍ: (CTdo, 0): 2,3; 4,3: a.

110 /4te¿ Clg

(fl; A:7; M5; Zl.)

r G^ {C¿l!ü}, {CT),|iiO}: 1,1; 2 ,1 ; 3,1; 4,1; 5,1: b.
X Gi KliîO}: 2,3; 4,3: a.
X Gl {aib | Hi}, {C2l | 000} : 5, 1 : a.
Z G! : {C¿||H}, {C2z|000}, KIÜO}: 5,3; 6,3; 7,3; 8,3; 9, 1: 6.
P G\ : {ffjJHj}, {C2z|000}: 10,2: a.

A^ G| (C¿, 0), (<7y, 0): 1, x; 2, x; 3, x; 4, x; 5, x: 6.
V G\ : (C¿,0), (C2z, 0), (at, 0): 5, x; 6, x; 7,x; 8, x; 9,x: b.
W* Gf (<r,0,0), (C2z ,0): 5, x: a.
S* GJ (ay, 0): 1, 1; 2, 1: c.
F' G^ (ay, 0): 1,1; 2 ,1 : c.
g1 Gi (£, 0): 1,2: a.
A* G¡ (aM, 0): 1,1; 2 ,1 : c.
U" G¡ (adb, 0): 1,3; 2,3: c.
Y" Gl (ala, 0): 2 ,3; 4,3: a.

\ 11 P42m D\d

(F\; G8; K.1; M5; Zl.)

I" G«: {̂  I 000}, {C2x | 000} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G * ® T 2 : {S¿|000}, {C2jt|000}; tt or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
Z G* ® T2 : {S¿ | 000}, {C2x \ 000} ; t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
A G* ® T2: {S4

+
z| 000}, {C2x \ 000}; ^ or t2 ort3: 1 ,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1: />.

R G|® T2: {C2z|000}, {C2, |000}; t2 or t3: 1, 1 ; 2, 1 ; 3, 1; 4, 1 : b.
X G2

4 ® T2: {C2z|000},{C2),|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: b.

A' G^ (C2 , ,0): 1,1; 2 , 1 : ft.
Ux G\ (Cly, 0): 1, 1; 2, 1: ft.
A' G* (C2z, 0), (ffjt, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
V Gl (C2z, 0), (fl^, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
^ G^ (adt, 0): 1 ,1 ; 2 ,1 : c.
5" G2 (ff.,5, 0): 1,1; 2 ,1 : c.
1" G2 (C2l, 0): 1, 1; 2,1: 6.
Î"' G2 (C2x, 0): 1, 1; 2, 1: b.
W* G\: (C2z, 0): 1, 1; 2, 1: ft.
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112 P42c D\

(Fl; Kl; M S ; Zl.)

F G|-, {S4
+

z|000},{C2JOOi}: 1,1; 2,1; 3,1; 4,1; 5,1: b.
M Gl ® Tj : {S¿ | 000}, {C2i | OOj} ; t, or t2 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
Z GS°: (SÍ | 000}, {C2z|001}, {C2,|00i}: 5,3; 6,3; 7, 3; 8,3; 9,1: a.
A G;°: {SÍ I 000}, {C2z|001}, {C2x|00i}: 5,3; 6,3; 7, 3; 8, 3; 9 ,1: a.
R Gl <g> T2 : {C2z | 000}, (C2). | OOi} ; t2 or t3 : 1, 1 ; 2, 1 ; 3, 1' ; 4, 1 : b.
X Gl ®T2: {C2JOOO}, {C2y|00i}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.

A* G 2 : (C2v, 0): 1, 1; 2, 1: ¿>.
tf* G¿: (C2y, 0): 2, 1 ; 4, 1 : a.
A* Gl: (C2z, 0), (CTi(,, 0): 1,1; 2,1; 3,3; 4,3: c.
V Gl. (C22,0), (adi, 0): 1, 1; 2, 1; 3,3; 4,3: c.
X* G2 : («T.,, 0): 1,1; 2,1: c.
S* G2 : (adb,0): 1,3; 2 ,3 : c.
y G 2 : (C2l) 0): 1, 1; 2, 1: />.
r1 G^: (C2x, 0): 2, 1 ; 4, 1 : a.
^* G2 : (C2z, 0): 1, 1; 2,1: b.

113 .P42i/K ¿)|j

(Fl; Kl MS; Zl.)

F G^ {S¿|000}, {C2l | ¿¿O}: 1,1; 2 ,1; 3 ,1 ; 4 ,1 ; 5 ,1 : 6.
M Gl : {StIOOO}, {C2z|010}, {adí,|MO}: 5,3; 6,3; 7,3; 8,3; 9 ,1: 6.
Z G£ ® T2: {54

+
2| 000}, {C2JUO}; t3: 1, 1; 2, 1; 3, 1 ; 4, 1; 5, 1 : b.

A G\ : {S¿|000}, {C2z |010}, {oM\^0}: 5,3; 6,3; 7,3; 8, 3; 9,1: b.
R «s {C2y | MO}, {C2l | 000} : 5 ,1 : a.
^ G^ {C2JMO},{C2JOOO}: 5,1: a.

A' G2 (C2y, 0): 1 ,1 ; 2, 1 : b.
V G2 (C2y, 0): 1 ,1 ; 2, 1 : *.
A' Gl (C2z, Q),(aM, 0): 1,1; 2, 1; 3, 3; 4, 3: c.
F* G| (C2z, 0),(CTdt, 0): 1,3; 2, 3; 3,2; 4,2: c.
Z' G¡ (VM, 0): 1 ,1 ; 2, 1 : c.
5' G^ (ais, 0): 1 , 1 ; 2,1: c.
Y" Gl (C2l, 0): 2, 3; 4 ,3: a.
T* GÍ (C2,, 0): 2,3; 4,3: a.
W Gi (C2z, 0): 1,3; 2,3: b.

114 P42,c gj,

(Fl; ÍT7; M5; Zl.)

F G* {5¿|000}, {C2x|Mi}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: 6.
W GJ : {S4

+
z|000}, {C2z|010}, {<r i tlMj}: 5 ,3 ; 6,3; 7,3; 8,3; 9 ,1: b.

Z GJ : {S¿|000}, {C2l|001}, {C2x|Mi}: 5,3; 6,3; 7,3; 8, 3; 9, 1 : a.
A G? : {Si | 000}, {adb | Mi}: 5, 3; 6, 3; 7, 3; 8, 3; 10, 2: a.
« Gt {C2,lMi}, {C2z|000}: 5 ,1 : a.
^ G* {C2,lMi},{C2JOOO}: 5,1: a.

A* G, (C2y, 0): 1, 1; 2, 1: 6.
I/" G; (C2y, 0): 2, 1; 4, 1: a.
A1 Gl (C2z, 0), (CT,,,,, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
K* Gl (C2z, 0) , (<7 d i , ,0) : 1,3; 2, 3; 3, 2; 4 ,2: c.
I* G» (<rdl>, 0): 1,1; 2, 1: c.
5" Gl (adb, 0): 1,3; 2,3: c.
Y' Gi (C2I, 0): 2,3; 4,3: a.
T* G^ (C2,, 0): 1,3; 2,3: b.
W Gl (C2z, 0): 1 ,3; 2,3: b.
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115 P4m2 D\a

( F l ; Kl; A/5; Zl.)

F GJ: {S¿| 000}, {C2a 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
M Gi ® T2: {S'il 000}, {C2JOOO}; t, or t2: 1, 1 ; 2, I ; 3, 1 ; 4, 1 ; 5, 1: 6.
Z G j ® T2: {SÍJ 000}, {C2J 000}; t3: 1, 1; 2, 1; 3, 1 ; 4, 1; 5, 1 ; ¿>.
A Gi ® T2 : {S4

+J 000}, {C2a \ 000}; t[ o r t 2 o r t 3 : 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1: 6.
R G 2 ® T2: {C2z|000}, {<7, | 000}; t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
1- G ^ ® T2: {C2z[000},{ay |000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.

A1 G2 (a,, 0): 1, 1; 2, 1: c.
Ux G2 (ax, 0): 1, 1; 2, 1; c.
A* G^ (C22, 0), (<7,, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
V Gl (C2z, 0), ( f f , , 0 ) : 1, 1; 2, 1; 3, 3; 4, 3: c.
I* G2 (C2a, 0): 1, 1; 2, 1: b.
S* G2 (C2a, 0): 1 ,1 ; 2, 1 : b.
Yx G 2 (a,, 0): 1, 1; 2, 1: c.
T" G2 (ay, 0): 1, 1; 2, 1: c.
W* Gl (C2 z ,0), (<7y, 0); l , x ; 2, x; 3, x; 4,x: c.

116 /Mc2 fl^

( F l ; Kl; M5; Zl.)

F G*: {S4+ j 000}, {C2 J OOi} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
M G* ®T 2 : {S4

+
z|000},{C2JOOi}; t t or t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; b.

Z GJ° : {5¿ | 000}, {C2z | 001}, {C2« | 00^}: 5, 3; 6, 3; 7, 3; 8, 3; 9, 1 : a.
A GJ° : {S¿|000}, {C22|001}, {C2JOO|}: 5,3; 6,3; 7,3; 8,3; 9,1: a.
72 G Ü : {aj 00|}, {C2z|000}: 2,3; 4,3; 6,3; 8 ,3: d.
X Gl ® T2 : {C2z 1 000}, {a, \ 00|} ; t2 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.

A* G 2 : (CTX, 0): 1, 1; 2, 1: c.
C/' G2 (a,, 0): 1,3; 2,3: c.
A1 Gj (C2z, 0), (<7V, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
F* Gj (C2z, 0), (<ry, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
Ix G2 (C2a, 0): 1, 1; 2 ,1: b.
S* G4 (C2o) 0): 2, 1; 4, 1: a.
7* GJ (<r,, 0): 1, 1; 2, 1: c.
7" G2 (CTy, 0): 1,3; 2,3: c.
PF* G4 (C2z,0), (<T,,,0): l , x ; 2, x; 3, x; 4, x: c.

117 P462 D2d

CF1; A:?; A/5; Zl.)

T Gj: {54
+

z| 000}, {C2J^O}: 1, 1; 2, 1; 3, 1 ; 4, 1; 5, 1 : b.
M G\°: {S4

+
z|000}, {C2z|010}, {C2J240}: 5,3; 6,3; 7,3; 8,3; 9 ,1: a.

Z Gi ® T2: {£¿1 000}, {C2J ÜO}; t3: 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
A Gl°6: {SilOOO^fCjJOlO}, {C2JUO}: 5,3; 6,3; 7,3; 8 ,3; 9 ,1: a.
R GÍ {ffJîîO}, {C2z| 000}: 5, 1: a.
X G* {aJÜO}, {C22|000}: 5, 1 : a.

A" G2 K, 0): 1, I; 2, 1: c.
Í/1 Gj (a,, 0): 1, 1; 2, 1: c.
A' G4 (C2z,0), (CT,, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
F* G¿ K, 0), (C2l, 0): 2,1; 4,1; 6,3; 8, 3: d.
E* G2 (C2 o ,0): 1, 1; 2 ,1: fc.
•S1 Gi (C2l,,0): 1, 1; 2 ,1 : 6.
Y" G4 (ÍT,, 0): 2,3; 4 ,3 : a.
T' G{ O v ,0 ) : 2 ,3; 4,3: a.
W G¿ (ff j . ,0) , (C2z, 0): 5, x: a.
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118 P4n2 D\d

(F\; Kl; M5; Zl.)

F G¿: {S£ | 000}, {C2a ( Mi} : 1, 1 ; 2, 1 ; 3. 1 ; 4, 1 ; 5, 1: 6.
M G¡°: {S4

+
z|000}, {C2z|010}, {C2a||ii}: 5,3; 6,3; 7,3; 8,3; 9, 1 : a.

Z G\l: {S¿|000}, {C22|001}, {C2o|Hï}: 5,3; 6,3; 7,3; 8,3; 9,1: a.
A Gj ® T2: {S¿| 000}, {C2J ill}; t t or t2 ort3: 1 ,1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
R G*: KliM}, {C2z|000}: 5, 1 : a.
* Gf: {ffJue}, {C2z|000}: 5, 1 : a.

A* GJ: ((7,, 0): 1, 1; 2, 1: c.
t/1 GJ: (<T,, 0): 1,3; 2, 3: c.

A* G4: (C2z, 0), (ay, 0): 1, 1; 2, 1; 3,3; 4, 3: c.
F1 G¡: ( a f , 0 ) , (C2z, 0): 2, 1 ; 4, 1 ; 6,3; 8,3: d.
Z1 GJ: (C2o ,0): 1, 1; 2 ,1: 6.
5" G4: (C2a, 0): 2, 1; 4, 1: a.
7* G4: (<7y, 0): 2,3; 4,3: a.
r* Gi: (ay, 0): 2, 1; 4, 1: a.
W G*: (a,, 0),(C2z, 0): 5 ,x: a.

119 /4m2 /?|d

(/"I; A"7; M5; Zl.)

F G¿: {5¿ | 000}, {C2a | 000} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
N G 2 ® T 2 {d,|000}; t2: 1, 1; 2, 1 : c.
* Gj ® T2 {C2z| 000}, {Clb\ 000}; t3: 1, 1; 2, 1; 3, 1; 4, 1: 6.
Z G|®T2 {S£|000}, {CjJOOO}; ^ o r t j o r t j : 1, 1; 2,1; 3, 1; 4, 1; 5, 1: 6.
P G i ® T 4 {5¿|000}; t t or t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1: 6.

A* G4 (C2z,0), (a,, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
P* G4 (C2z, 0), (<7,, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
H" GJ (C2z ,0): 1, 1; 2, 1: b.
I" GJ (<7 f, 0): 1, 1; 2, 1: c.
F* GJ (<ry, 0): 1, 1; 2, 1: c.
Q' G\ (E, 0): 1, 1: a.
A1 GJ (C2a, 0): 1 , 1 ; 2,1: b.
U* GJ (C2o, 0): 1, 1; 2 ,1 : b.
Y* GJ (C2b, 0): 1 , 1 ; 2 ,1 : b.

120 /4"c2 D2°d

(fl; A-7; AÍ5; Zl.)

T G^: {S4
+

z I 000}. {C2a | iJ-0} : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
N G4: {CT,| HO}: 2,3; 4,3: a.
AT G 4 ® T 2 : {C2z|000}, {C2JHO}; t3: 1 ,1; 2, 1 ; 3,1; 4 ,1: b.
Z Gf ® T2: {S¿ | 000}, {C2o | 220}; t¡ or t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1: 6.
P G¿ ® T4: {54z| 000}; t, or t2 or t 3 : 1,3; 2, 3; 3,3; 4,3: b.

A* G4 (C2z,0), (ay, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
K* Gj (C2z,0), (a,, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
»" GJ (C2z,0): 1,1; 2, 1: b.
Z* GJ ( a y , Q ) : 1,1; 2 ,1: c.
F1 GJ (CT,, 0): 1, 1; 2, 1: c.
Q' G\ (E, 0): 1,2: a.
A" GJ (C2a, 0): 1, 1; 2, I: ¿>.
V Gi (C2a, 0): 1,1; 2,1: 6.
Î" GJ (C2 t ,0): 1 , 1 ; 2 ,1 : 6.
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121 /42m D^

(F\; K7; M5; Z\.)

F G¿: {S4
+

z| 000}, {C2x|000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1; 5, 1 : b.
N G2 ® T2: {C2y|000}; t2: 1, 1; 2, 1: b.
X G 4 ( g > T 2 : {C2z|000}, KJOOO}; t3: 1, 1; 2, 1; 3, 1 ; 4, 1: c.
Z Gl ® T2 : {5¿1 000}, {C2x | 000} ; t, or t2 or t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : e.
P G\ <g> T4: {S¿|000}, {C2l|000}; t j o r t 2 o r t 3 : l ,x ; 2, x; 3, x; 4, x; 5, x: ¿».

A* G2
4 (C2z,0), (<rdb, 0): 1,1; 2, 1; 3, 3; 4, 3: c.

F' GJ (C2,,Q),(aib,Q): 1 ,1 ; 2 ,1 ; 3,3; 4 ,3 : c.
W G^ (C2z,0), (<7,,,,0): l , j c ; 2, x; 3, x; 4, x: c.
2* G2 (C2,,0): 1 ,1 ; 2, 1: b.
Fx G\ (C2x,0): 1,1; 2 ,1 : b.
Q* G\ (C2,,0): l ,x ; 2,x: 6.
A' G2 (aib,0): 1 ,1 ; 2,1: c.
¿7* G2 ((?„„, 0): 1 ,1 ; 2 ,1: c.
I" G2 ((7^,0): 1,1; 2 ,1 : c.

122 I42d D\l

(C2; Fl K7; MS; SI; SI; Z\.)

F Gj {54
+
z | 000}, {C2x Hi} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.

N G 2 ® T 2 : {C2j|||i}; t2: 1 ,1; 2 ,1 : 6.
* G¿ {adb | i|i}, {C2z | 000} : 5, 1 : a.
Z G\l: {5-4z|000}, {C2z| 100}, {C2l|Hi}: 5,3; 6,3; 7 ,3; 8,3; 9 ,1: a.
P G*2: {S¿|000}, {ÊI100}, {C2JÍH}: 13, x; 14, x: a.

A* Gi (C2z, 0), (adb, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
K* G^ (ada,0), (C2z, 0): 2, 1; 4, 1; 6, 3; 8, 3: d.
W* Gl (ada,0), (C2z, 0): 5,x: a.
'Z* G2 (C2x, 0): 1, 1; 2, 1: 6.
Fx G4 (C2x, 0): 2, 1; 4 ,1: a.
61 G¡ (C2y, 0): 4, x; 8, x: c.
A1 G| (adfc, 0): 1,1; 2 ,1 : c.
C/* G2 (odb, 0): 1,3; 2,3: c.
I" Gi (ada, 0): 2,3; 4,3: a.
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123 P4/mmm Dl
ih

(F\; Kl; MS; O2; Zl.)

r G?6: {C¿ | 000}, {C2, | 000}, {/| 000}: 1, 1; 2,1; 3,1; 4,1; 5,1; 6,1; 7,1; 8,1; 9, 1 ; 10,1: e.
M G ? 6 ® T 2 : {C4

+
z|000}, {C2x | 000}, {/|000}; t, or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1: e.
Z G?6 ® T2: {C¿|000}, {C2x|000}, {/|000}; t3: 1, 1; 2, 1 ; 3, 1 ; 4, 1; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1;

10, 1 : e.
A G ? 6 ® T 2 : {C¿|000}, {C2x | 000}, {/|000}; t , o r t 2 o r t 3 : 1,1; 2,1; 3,1; 4, 1 ; 5, 1; 6,1; 7,1; 8,1;

9, 1; 10, 1: e.
R Gl ® T2: (Cl2\ 000}, {C2y | 000}, {/|000}; t2 ort3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
X G i®T 2 : {C2z|000}, {C2j, | 000}, {/|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.

A* Gl (Cly, 0), (CTX, 0): 1, 1; 2, ; 3, 1 ; 4, 1 : c.
U' Gl (C2j,,0), (ax, 0): 1, 1; 2, ; 3, 1 ; 4, 1 : c.
A1 Gá (C¿, 0), («7,', 0): 1, 1; 2, ; 3, 1; 4, 1; 5, 1 : b.
V* Gl (C4

+
2,0), (<r,, 0): 1, ; 2, ; 3, 1; 4, 1; 5, 1 : b.

£* Gl (C2a, 0), (erz, 0): 1, ; 2, ; 3, 1 ; 4, : c.
S" Gí (C2a, 0), (a,, 0): 1, ; 2, ; 3, 1 ; 4, : c.
Y* Gl (C2,,0), (CTZ, 0): 1, ; 2, 1 ; 3, 1 ; 4, : c.
T* Gl (C2J,0), (<T2, 0): 1, ; 2, 1;3, 1;4, : c.
W* Gl (C2l, 0), (<7,, 0): 1, 1; 2, 1; 3,1; 4, : c.

124 f4/mcc Olt

(Fl; )C7; A/5; O2; Zl.)

F G?6: {CJOOO}, {C2jt|000}, {/| 00^}: 1,1; 2, 1; 3, 1 ; 4, 1; 5, 1 ; 6, 1; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1: e.
M G?6 g> T2: {C4

+
2|000}, {C2x \ 000}, {/|00i}; t, or t2: 1, 1 ; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1: e.
Z G32: {/|00i}, {ff^JOOi}, {C4

+
r|000}: 10,1; 11 ,1 ; 12,3; 13,3: a.

A G32: {/|00i}, {oTjJOOi}, {C¿|000}: 10,1; 11,1; 12,3; 13, 3: a.
R G?6 : {<TX | 00|}, {C2y | 000}, {C2z | 000} : 5, 1 ; 10, 1 : a.
X Gl <g> T2: {C2z| 000}, {C2),|000}, {/|00|}; t2: 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1; 6, 1; 7, 1 ; 8, 1 : b.

A* G4: (C2v,0), K, 0): 1,1; 2,1; 3,1; 4, 1: c.
U* G*. (<r,,Q),(C2,, 0): 5,1: a.
\* G*: (C¿,0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
Vs G*: (C4

+
z,0), (IT,, 0): 1,1; 2, 1; 3,1; 4,1; 5,1: è.

Ï1 Gl (C2.,Q), (<7Z, 0): 1,1; 2, 1; 3,1; 4,1: c.
5* G|: (<rz ,0), (C2o, 0): 5, 1 : a.
Y* Gl: (C2x, 0), (<T2, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
r* Gf: («rz ,0), (C2,,0): 5, 1 : a.
W* Gl: (C2z,0), (a,, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
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125 P4/nbm Dlh

( F l ; K7; M5; O2; Zl.)

F G\6: {C¿|ÜO}, {C2l|000}, {/l ï jO}: 1 ,1 ; 2,1; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1: e.
M G^ 2 : {C£|^0}, KliîO}, {C2l|000}: 9, 1; 11,1; 12,1; 14,1: a.
Z G ? 6 ® T 2 : {C4

+JiiO}, {C2l|000}, {/IliO}; t3: 1, 1 ; 2, 1 ; 3, 1; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ;
10, 1: e.

A G2
32: {Q+IÜO}, KIÜO}, {C2;[|000}: 9,1; 11,1; 12, 1; 14,1: a.

« G?6: KIMO}, KI&O}, {C2y|000}: 5 ,1 ; 10,1: a.
X G?6: {ff, | ¿¿O}, {<T,|&0}, {C2y|000}: 5,1; 10,1: a.

A' G* (C2y, 0), (a,, 0): 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.
£/* Gj (C2,,0), K,0): 1, ; 2, 1; 3, 1; 4, 1: c.
Ax GÍ (C¿, 0), (o y ,0) : 1, ; 2, 1; 3, 1; 4, 1; 5, 1: b.
V G\°: (C¿,0), (C2z,0), (<rd o ,0): 5 ,1 ; 6 ,1 ; 7,1; 8 ,1; 9,1: ¿>.
Sx GÍ (C2 o ,0), (<7 Z , 0 ) : 1, ; 2, 1; 3, 1; 4, 1: c.
5* GJ (C2o, 0), (az, 0): 1, ; 2, 1 ; 3, 1 ; 4, 1 : c.
I" G* (a,,0), (C2x, 0): 5, : a.
T* G* (a,,o), (C2,,0): 5,1: a.
^* G* («r,,0), (C2 I >0): 5,1: a.

126 P4/nnc D^

( F l ; Kl; M S ; O2; Zl.)

r G?6 {C¿ ! MO}, {C2x | 000}, {/ | $1$} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.
M G\2 {C¿ | #0}, K I *&}, {C2JOOO}: 9, 1; 11, 1; 12, 1; 14, 1: a.
Z G > 2 {/| Hi), {^dblOOi}, {C¿|MO}: 10,1; 11,1; 12,3; 13,3: a.
^ Gh {C;2|ul}, {<7J6 |OOi},{C21,|Hl}: 9, 1; 11,1; 12, 1; 14, 1: a.
R G?6 {a, | ¿MMC2,1 000}, {C2, | 000}: 5,1; 10,1: a.
X G?6 {a, I iu}, {a, | ui}, {C2), | 000} : 5, 1 ; 10, 1 : a.

Ax Gj: (C2>., 0), (CTX, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
C/x G*: (az,0),(C2y,0): 5 , 1 : a.
A1 G^: (C¿, 0), (<ry, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
Vx Gig: (C4

+
2, 0), (C2z,0), (<7do, 0): 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : b.

I* Gl: (C2a, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
S* G*: (<r z ,0 ) , (C2a, 0): 5,1: a.
Yx GÍ: (,ry, 0), (C2l, 0): 5, 1 : a.
7" G|: (ay,Q), (C2x, 0): 2, 1 ; 4, 1; 6, 1; 8, 1 : d.
W G*: (<ry ,0), (C2z, 0): 5, 1 : a.
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127 P4/mbm Dlh

( F l ; K4; K7; M5; O2; Zl.)

T G?6: {C¿|iiO}, {C2l||^0}, {/| 000}: 1, 1; 2,1; 3 , 1 ; 4,1; 5 , 1 ; 6,1; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.
M Gl2: {C2l\^Q}, {C22| 000), {adb \ 000}, {/|000}: 5,3; 6,3; 7,3; 8,3; 10, 1 ; 15,3; 16,3; 17,3;

18,3; 20, 1: a.
Z G?6 ® T2: {C¿||iO}, {C2X |MO}, {/|000}; t3: 1, 1; 2, 1; 3, 1 ; 4, 1 ; 5, 1; 6, 1; 7, 1 ; 8, 1 ; 9, 1 ;

10, 1: e.
A G|2: {C2l|i|0}, {C22]000}, {aíb\ 000}, {/1 000}: 5 ,3; 6,3; 7,3; 8,3; 10, 1; 15,3; 16,3; 17,3;

18,3; 20, 1: a.
R G?6 : {a, \ ÜO}, {a, \ ̂ 0}, {a, | 000} : 5, 1 ; 10, 1 : b.
X G?6: {<7,|UO}, KIMO}, KIOOO}: 5, 1; 10, 1: b.

A* G4: (C2,,0), K,0): 1,1; 2, 1; 3,1; 4, 1: c.
[/* G\: (C2y,0), (CT,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
A' G¡|: (C4+,0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, ! : b.
V G\l\ (<rx, 0), (C2z,0), (ada,Q): 5 ,3 ; 6,3; 7,3; 8,3; 10,1: c.
S* G4: (C2a, 0), (CTZ, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
S" G4: (C2o,0), ( C T Z , O ) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
7X G^: (ffj . ,0), (o-z, 0): 2, 3; 4,3; 6, 3; 8,3: c.
r* G¿: (C T y ,0), (az, 0): 2,3; 4,3; 6,3; 8,3: c.
W G|: (er,,0), (C2 z ,0): 5, 1 : a.

128 P4/m»c /)4ft

(Fl; Kl; M5; O2; Zl.)

r G?6 {C4
+

z | ejO}, {C2:t | iiO}, {/ ! 00|} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.
M G¡2 {C2l|iiO}, {C2JOOO}, {ujJOOi}, {/ |<MH}: 5,3; 6,3; 7 ,3 ; 8,3; 10,1; 15,3; 16,3; 17,3;

18,3; 20, 1: a.
Z G¡2 {/¡OOi}, {^lOOi}, {C¿¡^0}: 10, 1; 11,1; 12,3; 13,3: a.
A G\2 {/100i},{,Tdb|OOi},{5¿|iii}: 10,1; 11,1; 12,3; 13,3: a.
R G?6 {C2y | ̂ 0}, {C2z | 000}, {/ | OQi} : 5, 1 ; 10, 1 : c.
X G?6 {CTx | &$}, {ay | iu}, {az | OOi} : 5, 1 ; 10, 1 : b.

A* G4 (C2y,0), K,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Í/* Gi ((7Z ,0), (C2y ,0): 5,1: a.
Ax G^ (C¿, 0), (ny, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: ¿.
VI Gil: (a,, 0), (C22, 0), (ada,0): 5, 3; 6,3; 7, 3; 8,3; 10, 1: c.
E1 G* (C2o, 0), (CTZ, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Sx G¿ (<rz ,0), (C2,,0): 5, 1 : a.
Y* G¡ (<r,,0), (<r z ,0) : 2, 3; 4, 3; 6, 3; 8, 3: c.
r' G| (C2x,0), (S,0): 5,1: a.
«" G* (CT>,,0), (C2z ,0): 5 ,1 : a.
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129 P4/nmm Dlh

(F\; Kl; M5; O2; Zl.)

r G?6: {C¿|000}, {C2j|440}, {/lijO}: 1,1; 2,1; 3,1; 4,1; 5,1; 6,1; 7, 1 ; 8,1; 9,1; 10,1: e.
M G|2: {C¿|000}, {C2j[|440}, {(7,1000): 9, 1; 11, ; 12, 1 ; 14, 1 : ft.
Z G?6 ® T2: {CÍJ 000}, {C2,|440}, {/|440}; t3: , 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ;

10, 1: e.
^ G?2 : {C¿|000}, {C2, | 440), {(7,1000): 9,1; 11, ; 12,1; 14,1: b.
R G?6: {C2,|4iO}, {C2, |440},{(7,|000}: 5,1; 10, : b.
^ C?6: {C2y|440}, {C2I|MO),{<7,|000}: 5, 1; 10, : b.

A* Gi: (C2y, 0), ((7,, 0): 1,1; 2, 1; 3, 1; 4, : c.
t/* Gl: (C2y, 0), ((T,, 0): 1, 1; 2, 1; 3, 1; 4, : c.
A' GJ : (C¿, 0), (a,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, ; 5, 1 : b.
V* G|: (C¿, 0), (ffy , 0): 1,3; 2, 3; 3, 3; 4, ; 5, 1 : b.
Z* Gj: (C2a, 0), (ffz, 0): 1, 1; 2, 1; 3, 1; 4, : c.
S* Gj: (C2o, 0), ((72, 0): 1, 1; 2, 1; 3, 1; 4, : c.
y* Gf: (C2,, 0), (a,, 0): 5, 1 : a.
7" GJ: (C2,,0), ((7,, 0): 5, 1: u.
W* G\: (C2z, 0), (CT,, 0): 1,3; 2,3; 3,3; 4,3: c.

130 f4/ncc fl|t

(F\; Kl; M S ; O2; Zl.)

T G?6 {C¿|000}, {C2x|iiO}, {/| Mi): 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.
M GÍ2 {C£|000}, {C2JHO}, Kl 00^}: 9, 1; 11, 1; 12, 1; 14, 1: b.
Z G¡

32 {/liü}, {<7Jb|OOi},{C¿|000}: 10,1; 11,1; 12,3; 13,3: a.
A Gj2 {C2x\ HO), {C¿ | 000), {/lui}: 9,3; 10,3; 13,3; 14,3: a.
« G]6 K|OOi},{C2j( |MO}, {/lèM}: 9,3; 10,3: d.
X G?6 {C2y | ÜO), {C2> | MO}, {a, | 004}: 5, 1 ; 10, 1 : b.

A' Gj: (C2,,0), (t7,, 0): 1,1; 2,1; 3,1; 4, 1: c.
I/' Gf: ( f f z ,0),(C2 , ,0): 5, 1 : a.
A* G¿: (C¿, 0), (ay, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
Vx Gi: (C¿, 0), (a,, 0): 1,3; 2,3; 3,3; 4,3; 5,1: b.
Z* Gl: (C2a, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
S* Gi: (a,, 0), (C2o, 0): 5, 1: a.
Y* Gl: (C2l, 0), (<7, ,0): 5, 1 : a.
r* G§: (C2l) 0), (a,, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
W* Gj: (C2z, 0), (a,, 0): 1,3; 2,3; 3,3; 4,3: c.W
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131 P42/mmc D\h

(FI; Kl; M5; 02; S»l; Zl.)

F G?6: {c;z|OOi},{C2JOOO}, {/IOOO}: 1,1; 2,1; 3,1; 4,1; 5,1; 6,1; 7,1; 8,1; 9,1; 10, 1: e.
M G? 6 ®T 2 : {C4+IOOÍ}, {C2JOOO}, {/|000}; t t or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1 : e.
Z G¡2: {C¿|00|}, {a,b|OOi},{C21,|00|}: 9, 1; 11,1; 12,1; 14, 1 : a.
A G|2: {C¿|00i}, {^lOOi}, {C2JOOi}: 9, 1 ; 11, 1 ; 12, 1 ; 14,1: a.
R G| <g> T2: {C22|000}, {C2),|000}, {/]000}; t 2ort 3 : 1, 1; 2, 1; 3, 1; 4, 1 ; 5,1; 6,1; 7, 1 ; 8, 1 : b.
X G| <g)T2: {C2z|000}, {C2ï | 000}, {/|000}; t2: 1,1; 2,1; 3,1; 4,1; 5,1; 6,1; 7,1; 8,1: b.

A* G4: (C2f, 0), K, 0): 1,1; 2,1; 3,1; 4,1: c.
V G4: (C2y, 0), (CT,, 0) : 1,1; 2, 1 ; 3, 1 ; 4, 1 : c.
A* Gj: (C4

+
z,0), (a,, 0): 1, 1; 2, 1 ; 3, 1; 4, 1 ; 5, 1 : b.

V G*: (C¿, 0), (<r,,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
Z* GI. (C2a, 0), (<7Z, 0): 1,1; 2, 1 ; 3,1; 4 ,1: c.
5" G*: (C2(,,0), (ffz, 0): 5,1: a.
I" GJ: (C2l>0), (ffz, 0): 1,1; 2 ,1; 3,1; 4,1: c.
r1 GJ: (C2,,0), (a,, 0): 1,1; 2, 1; 3,1; 4, 1: c.
W* G\. (C2z, 0), (ffy, 0): 1,1; 2,1; 3,1; 4,1: c.

132 P42/mcm ¿>|°

(Fl; .K7; AÍ5; O2; Zl.)

T G9
16: {C¿|00i}, {C2;t|000}, {/|00i}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.

M G9¡6 ® T2: {C¿|00i}, {C2ï|000}, {/|00|}; tt or t2: 1, 1; 2, 1; 3, 1; 4, 1 ; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1 : e.

^ G^2 : {C4
+

z|00|}, {aJOOi}, {C2ï|000}: 9,1; 11,1; 12, 1; 14,1: a.
A G¡2: {C¿|00i}, {aJOOi}, {C2JOOO}: 9, 1; 11,1; 12,1; 14, 1: a.
R G9

Í6: {(T^IOOi), {C2y|000}, {C2z|000}: 5,1; 10, 1: a.
X G |®T 2 : {C2z|000}, {C2JOOO}, {/¡OOi}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: ¿>.

A1 Gl (C2y, 0), (a,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
£/' Gi (<7Z, 0), (C2y, 0): 5,1: a.
A' G£ (C4

+
z, 0), (CT),, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

y G¿ (C4
+

z, 0), (ay, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: 6.
£* G4 (C2o, 0), (ff2, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
5" G¡ (C2a, 0), (<ri(,, 0) : 2, 1 ; 4, 1 ; 6, 1 ; 8, 1 : c.
Y' Gi (C2x, 0), (<rz, 0) : 1,1; 2, 1 ; 3, 1 ; 4, 1 : c.
7" G* (<TZ, 0), (C2,,0): 5,1: a.
W* G4 (C2z, 0), (<ry, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.

The tables given by Slater (19656) for P42/mnm (Dtf) in fact apply to P42/mmc(Dlh)
(see Gay, Albers, and Arlinghaus (1968)).
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133 P42/nbc DJJ

(FI; Kl; M5; 02; Zl.)

T G?6 {C4
+JMi}, {C2JOOO},{/(MO}: 1,1; 2 ,1 ; 3 ,1; 4 ,1 ; 5, 1 ; 6,1; 7, 1 ; 8,1; 9,1; 10,1: e.

M G^2 {C4
+JMi}, KIMO}, {C2i|000}: 9, 1; 11,1; 12, 1; 14, 1: a.

Z G2
32 {C¿|MÍ}, {^lOOiUC^lMÎ}: 9, 1; 11 ,1 ; 12, 1; 14, 1: a.

A G^ 2 {/iMOUtrjMOMCilMI}: 10,1; H , l ; 12,3; 13,3: «.
R G16 [a, | MO}, K I nO}, {C2y 000} : 5, 1 ; 10, 1 : a
X G?6 (a, ¡ MO}, {«7, | MO}, {C2y | 000} : 5, I ; 10, 1 : a.

a* Gl (C2,, 0), («T,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
tf* Gj (C2y, 0), (a,, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
A1 Gl (C¿, 0), (<T,, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
V* G\°: (C¿,0), (C22,0), K,,0): 5, 1 ; 6, 1; 7, 1; 8, 1; 9, 1: 6.
S1 G^ (C2a, 0), (ffz, 0): 1,1; 2 ,1; 3, 1; 4, 1: c.
S* G¿ (C2o,0), (CTz, 0): 5,1: a.
y^ G* (ay,Q), (C2x,0): 5 , 1 : a.
T' G4

S (ay, 0), (C2x, 0) : 5, 1 : a.
fF* Gj: (<r,,0), (C2z, 0): 5, 1 : a.

134 P42/nnm D%

( F l ; Kl; MS; O2; Zl.)

T G?6: {C¿lHi}. Í c 2xl 000}, {/I Mi}: 1, 1 ; 2, 1; 3, 1; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1; 8, 1 ; 9, 1 ; 10, 1 : e.
M G2

3 2: {Cilèîî},Klïîï},{C2,|000}: 9, 1 ; 11, 1 ; 12, 1 ; 14, 1 : a.
Z G2

32: {C4
+

Z||M}, {<TxliM},{C2,|000}: 9,1; 11,1; 12,1; 14,1: a.
A G ? 6 ® T 2 : {C¿|iM},{C2¡c|000}, {/IÍM}; t, or t2 or t3: 1, 1; 2, 1; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1; 7, 1; 8, 1 ;

9, 1; 10, 1: e.
« G?6: {a,lMe},{C2,|000},{C2jc|000}: 5 ,1; 10, 1: a.
X G?6 : {af | ÍM}, {ay | Mi}, {C2y I 000} : 5, 1 ; 10, 1 : a.

A* Gl. (C2y, 0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Í7* G¿: (CTz,0), (C2,,0): 5, 1 : a.
Ax Gj : (C¿, 0), (u,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
V G\l: (C¿,0), (C22,0), K,a>0): 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : b.
I* G¿: (C2o, 0), (a,, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
S* G¿ : (C2o, 0), (aa,, 0) : 2, 1 ; 4, 1 ; 6, 1 ; 8, 1 : c.
Y* G*: (<7,,0),(C2 l ,0): 5, 1 : a.
T* Gl : (ay, 0), (C2l, 0) : 2, 1 ; 4, 1 ; 6, 1 ; 8, 1 : d.
W* Gt: (ay, 0), (C2 z ,0): 5, 1 : a.
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135 P^/mbc D\l

(F\; Kl; M S ; O2; Zl.)

F G?6 {C4
+

z | HÏ}, {C2l 1 HO}, {/1 000} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6,1; 1,1; 8, 1 ; 9, 1 ; 10, 1 : e.
M G5

32 {C2J&0}, {C2i|000}, {ffjJOOi}, {/|000}: 5,3; 6,3; 7,3; 8,3; 10,1; 15,3; 16,3; 17,3;
18,3; 20, 1: a.

Z G12 {C4+|Hi}, {<Tdt|OOi}, {C2JOOi}: 9, 1; 11, 1; 12, 1; 14, 1: a.
A G*2 {CjjH-0}, {C4

+JiH}, {/| 000}: 9,3; 10,3; 13,3; 14,3: a.
« G?6 {o-, | HO}, {<7, | HO}, {a, | 000} : 5 ,1 ; 10, 1 : b.
^ G?6 {a, ¡ HO}, K | HO}, {a, \ 000} : 5, 1 ; 10, 1 : b.

A* G4: (C2,, 0), (tr,, 0): 1, 1 ; 2, 1; 3, 1 ; 4, 1 : c.
l/x G4: (C2y, 0), («T», 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A" Gf : (C£, 0), (IT,, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
V Gig: (o-,,0),(C22,0), (<rdu, 0): 5 ,3; 6,3; 7 ,3; 8,3; 10, 1: c.
I* G4: (C2a, 0), (<rz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
5* G*: (C2a, 0), (<TZ, 0): 5,1: a.
r1 G|: (C2x)0), (a,,Q): 2 ,3; 4,3; 6,3; 8,3: c.
7" G|: (C2J, 0), (a,, 0): 2,3; 4,3; 6,3; 8,3: c.
W* G*: (ff,, 0), (C2z, 0): 5,1: a.

136 P42/mnm D\%

(D2; Fl; G3; Kl ; M5; O\; Oí; S8J; Zl.)

r G?6 {C4
+

2|Hî}, {C2x|HO}, {/|00i}: 1,1; 2,1; 3,1; 4,1; 5,1; 6,1; 7,1; 8,1; 9,1; 10, 1: e.
M G5

32 {C2,|HO}, {C22|000}, {ffjJOOO}, {/IOOÍ}: 5, 3; 6, 3; 7, 3; 8,3; 10,1; 15,3; 16,3; 17,3;
18,3; 20, 1: a.

Z G|2 {C¿|Hí}, KlHï}, {C2,lHO}: 9,1; 11,1; 12,1; 14, 1: a.
^ G¡2 {C4

+JHÍ},{C2JI|HO},KIÍH}.- 9, 1; 11, 1; 12, 1; 14, 1: b.
R G9

16 {C2y|HO}, {C22|000}, {/|00i}: 5, 1; 10, 1: c.
X G?6 {<7, | |H}, {<T, I Hi}, K I OOi} : 5, 1 ; 10, 1 : b.

A* G4 (C2j, 0), K,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
t/* G¿ (<7Z,0), (C2y, 0): 5,1: a.
A' G¿ (C¿,0), (ay, 0): 1,1; 2, 1; 3, 1; 4, 1; 5, 1: b.
V* G'°: (<7,,0), (C2 l ,0),(<T.a ,0): 5,3; 6,3; 7,3; 8,3; 10,1: c.
£* Gj (C2o, 0), (<r2 ,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
5" G| (C2o, 0), (a^, 0): 2, 1; 4, 1; 6, 1; 8, 1: c.
F' G| (C2i,0), ( f f 2 , 0 ) : 2, 3; 4, 3; 6, 3; 8, 3: c.
T" G| (C2l, 0), K.O): 5 ,1 : a.
W G* (ff,,0), (C2l, 0): 5,1: a.

t The tables given by Slater (19656) for P41/mnm (D\$) do not in fact apply to this space group but to P42/mmc (Z)|k)
(see Gay, Albers, and Arlinghaus (1968)).
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137 P42/nmc Dj¡

( F l ; Kl; M5; 02; Zl.)

T G?6 {C4
+

z|OOj}, {C2 i |MO},{/lMO}: 1, 1; 2,1; 3,1; 4,1; 5,1; 6,1; 7,1; 8,1; 9,1; 10,1: e.
M G|2 {C¿|00i}, {C2JMO}, tolOOO}: 9,1; 11,1; 12,1; 14,1: b.
Z G12 {C4

+
z|OOi}, toJOOi}, {C2(,|Mi}: 9, 1; 11,1; 12, 1; 14, 1: a.

^ G\2 {/| MO}, to» I 00*}, {S¿|*M}: 10,1; 11,1; 12,3; 13,3: a.
« G?6 {C2y ! MO}, {C2, MO}, K I 000} : 5, 1 ; 10, 1 : b.
^ G?6 {C2, | MO}, {C2, | MO}, {a, | 000} : 5, 1 ; 10, 1 : b.

A* G4 (C2y,0), to, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
Í/1 G4 (C2,,0), to, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A* Gj (C£,0), to, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
V Gl (C¿,0), to, 0): 1,3; 2, 3; 3, 3; 4, 3; 5, 1: b.
£* G4 (C2o,0), to, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
S* Gf (C2.,0), to, 0): 5,1: a.
y* Gt (C2x,Q), to, 0): 5,1: a.
T51 G¿ (C2,,0), to, 0): 5,1: a.
W £4 (C2z, 0), to, 0): 1,3; 2, 3; 3, 3; 4, 3: c.

138 P42/ncm Dtf

(F\; Kl; M5; O2; Zl.)
r G?6 {C4

+
z | OOi}, {C2x | M»}, UIÎM}: I, U 2. I ; 3, I ; 4, 1; 5, 1; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.

M G2
}2 {Q+

z I 00|}, {C2x | MO}, {CT, I OOj} : 9, 1 ; 11, 1 ; 12, 1 ; 14, 1 : b.
Z G|2 {C+JOOi}, tolOOi}, {C2je |MO}: 9, 1; 11,1; 12, 1; 14, 1: a.
A G,2 {C2l|MO}, {C2z | 000}, {<T,I, | 000}, {/iMi}: 5,3; 6,3; 7,3; 8,3; 10, 1; 15,3; 16,3; 17,3;

18,3; 20, 1: a.
R G16 to|OOi},{C2JMO}, {/IMi}: 9,3; 10,3: d.
X G?6 {C2, | MO}, {C2x | MO}, K I OOj} : 5, 1 ; 10, 1 : b.

A* Gl (C2y, 0), to,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
U* Gl to,0), (C2,,0): 5, 1: a.
A* GJ (C4

+
z, 0), ((Tv, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.

V Gl (C£, 0), to, 0): 1,3; 2, 3; 3, 3; 4, 3; 5, 1: e.
£* G4 (C2a,0), to, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
S* GI (C2a,0), tot,0): 2, 1; 4, 1; 6, 1; 8, 1: c.
Y* GÍ (C2x, 0), to, 0): 5, 1: a.
T* Gl (C2jo 0), to, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
JP* Gj (C2z, 0), to, 0): 1 ,3; 2, 3; 3, 3; 4, 3: c.
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139 I4/mmm D^

(F\; Kl; MS; S5; Kl; Zl.)

F G?6: {C4
+

Z|000},{C2,|000}, {/| 000}: 1 , 1 ; 2,1; 3 ,1; 4,1; 5,1; 6,1; 7,1; 8,1; 9,1; 10,1: e.
N G J ® T 2 : {C2, | 000}, {/| 000}; t2: 1,1; 2,1; 3,1; 4,1; a.
X Gi ® T2: {C2z| 000}, {C2a | 000}, {/|000}; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1 : b.
Z G?6 ® T2: {C¿|000}, {C2;c | 000}, {/| 000}; t, o r t 2 or t 3 : 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ;

9, 1; 10, 1: e.
P Gl ®T4 : {S4+| 000}, {C2JOOO}; t¡ o r t 2 or t 3 : 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.

A* G¿ (C¿,0), (ay, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
V Gl (C¿,0), (ay, 0): 1,1; 2, 1; 3, 1; 4, 1; 5, 1: b.
W* Gl (C2l )0), (a j(,,0): 1,1; 2 ,1 ; 3, 1; 4, 1: c.
£* Gl (C2x, 0), (CT2, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
i* G| (C2,,0), (ffz, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
2" G^ (C2 y ,0): 1,1; 2,1: b.
A* Gl (C2o, 0), (CTZ, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
i/x Gj (C2o,0), (CT2, 0): 1 ,1 ; 2, 1; 3, 1; 4, 1: c.
J" Gl (C2h,0), (a.,,,0): 1,1; 2, 1; 3, 1; 4, 1: c.

140 /4/mcm J4t
8

(Fl; G2; /Í7; M5; S5; Kl; Zl.)

T G?6: {C¿ iiO}, {C2,|000}, {/|MO}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.
N G¿: KliiO},{C2,|000}: 5, 1 : a.
X G i ® T 2 : {C2JOOO}, {C2JMO}, {/|MO}; t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : b.
Z G ? 6 ® T 2 : {C4

+Ji|0}, {C2l|000},{/|i|0}; t 1 o r t 2 o r t 3 : 1,1; 2 ,1 ; 3 ,1; 4 ,1; 5,1; 6,1; 7 ,1 ; 8,1;
9, 1; 10, 1: e.

P Gs ® T4: {S¿|000}, {C2l| 000}; t, o r t 2 o r t 3 : 1,3; 2,3; 3,3; 4,3; 5, 1 : b.

A' Gs (C4
+

z,0), (Oy, 0): 1,1; 2, 1; 3, 1; 4, 1; 5 ,1 : b.
y Gl (C¿,0), (ay, 0): 1,1; 2, 1; 3, 1; 4, 1; 5, 1: b.
W* Gl (C2z,0), (aib,0): 1,1; 2 ,1 ; 3 ,1; 4, 1: c.
I* GÍ (C2,,0), (r7z> 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
i" Gl (C2l,0), (<7Z, 0): 1,1; 2, 1; 3, 1; 4, 1: e.
2* GÍ (C2,,0): 1 ,3; 2 ,3 : b.
A* Gj (C2o,0), (<T2 , 0): 1,1; 2, 1; 3, 1; 4, 1: c.
Î/* Gl (C2o, 0), (<rz, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
Fx G4 (C2b, 0), (a,,,, 0): 1, 1; 2, 1; 3, 1; 4, 1: e.
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141 MJamd D±l

(C3; F\; Kl; M2; M4; M5; O3; S5; S13; V\; Zl.)

F G?6 : {C¿ | 0|0}, {C2, I MO}, {/| MO} : 1, 1 ; 2, 1; 3, 1 ; 4, 1 ; 5, 1; 6, 1 ; 7, 1; 8, 1 ; 9, 1 ; 10, 1 : e.
N G j ® T 2 : {C2,|OHU/liiO}; t2: 1 ,1; 2,1; 3,1; 4,1: a.
X G ?6 : K | OM}, {a,,. | 0*0}, {C2o 1100} : 5, 1 ; 10, 1 : a.
Z Gi 2 : {C¿ I 0¿0}, {<7J61 00}}, }C2JiQO}: 9, 1; 11, 1 ; 12, 1; 14, 1 : a.
P GjV {S4-|}00}, {£|100}, {C2y|OH}: 13,1; 14,1: a.

A* Gg: (C¿, 0), (ay, 0): 1, 1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 : b.
V G?6: (C¿, 0), K,0), (£, 1): 6,1; 7 ,1 ; 8,1; 9,1; 10, 1: d.
W* Gj: (C2z,0), (ait,0): 5 , 1 : a.
I* G| : (C2l, 0), (az, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
F* Gj: (C2jt, 0), (<T2, 0): 1,1; 2, 1 ; 3, 1 ; 4, 1 : c.
g* G¿: (C2y, 0): 2, 1; 4, 1 : a.
A* G4: (C2a, 0), (<rz, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
C/x G^: (C2o, 0), ((T z ,0): 5 ,1 : a.
^ Gj: (C2b,0), (a.,,,,0): 5, 1 : a.

142 /4t/acrf fljg

(/•!; A:?; M5; S5; Kl; Zl.)

T G?6: {C4
+JiOO},{C2J[|iiO}, {/| 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 10, 1 : e.

N G¿: {<7y <)&},{/1 000}: 5,1: a.
X G?6 : K | iOi}, {C221 iOè}, {C2o | 0^0} : 5, 1 ; 10, 1 : a.
Z G¡2: {C¿|iOO}, {<7di|00i}, {C2JOOi}: 9, 1 ; 11, 1 ; 12, 1 ; 14, 1 : a.
P Gf2 : {54- IÍOO}, {£|100},{C2j|OU}: 13,3; 14,3: a.

A* Gj: (C¿,0), ((7y, 0): 1,1; 2, 1; 3, 1; 4, 1; 5, 1: b.
V G9

¡6: (C4
+

z,0), (^,0), (E, 1): 6,1; 7 ,1 ; 8, 1; 9, 1; 10, 1: d.
W* G¿: (C2z, 0), (<7 ia,0): 5, 1 : a.
Zx Gj: (Cj,,0), (at, 0) : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : c.
F' Gj: (C2l, 0), (ff,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
g* G¿: (C2,,0): 2,3; 4,3: a.
A' G|: (C2a, 0), (CTZ, 0): 1, 1 ; 2, 1 ; 3, 1 ; 4, 1: c.
U* G¿: (C2o, 0), (a,, 0): 5,1: a.
y G¿: (Cïb,0),(aia, 0): 5, 1: a.

143 P3 C^

(Fl; AT6; AT7; M5; Zl.)

T GJ: {C3
+ |000}: 1, 1; 2,3; 3,3: a.

M GJ ® T2: {£|000}; t2: 1, 1: a.
^ GJ ® T2: {C3

+ | 000}; t3: 1, 1; 2,3; 3,3: a.
£ GJ ® T2: {£| 000}; t2 ort3: 1, 1: a.
K G3 ® T3: {C3

+ |000}; t, ort2: \,x; 2,x; 3, x: a.
H G1, ® T3 ® T2: {C3

+ |000}; ti ort2 ; t3: l , x ; 2, x; 3,x: a.

A1 GJ: (C3
+, 0): l , x ; 2, x; 3, x: a.

i/x G}: (E, 0): l , j c : a.
/" G¡: (C3

+ ,0): l , x ; 2, x; 3, A:: a.
T* G{: (£, 0): l ,x : a.
S* Gj : (£, 0): l ,x : a.
7"1 G¡: (£, 0): l ,x : a.
5"* GJ: (E, 0): l ,x : a.
I.' G\: (E, 0): l , x : a.
R* G{: (£, 0): l , x : a.
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144 P3, Cl

( F \ ; K6; Kl; M 5 ; Zl.)

F Gl: {Cí |00|}: 1, 1; 2 ,3; 3, 3: a.
M G\ ® T2: {£|000}; t2: 1, 1: a.
A G l ® T 2 : {C3~ | 00|}; t3: 1 , 1 ; 2 ,3; 3,3: a.
L G! ® T2: {£|000}; t2 ort3 : 1, 1: a.
K Gl ® T3: {C3

+ ! 00^}; t¡ ort2 : 1, x; 2, x; 3, x: a.
# Gl ® T3 ® T2: {C3" | OOf}; t t ort2 ; t3: 1, x; 2, x; 3, x: a.

A* Gl (C3
+ ,0) : l,x; 2, x; 3, x: a.

U* GJ (£, 0): l , x : a.
P* Gl (C3\ 0): l ,x; 2, x; 3, x: a.
T* G! (£, 0): l , x : a.
5* Gl (£, 0): l , x : a.
T" G\ (E, 0): l , x : a.
S" Gj (£, 0): l ,x : a.
Z* Gj (£, 0): l , x : a.
R* G1, (£, 0): l,x: a.

145 P32 C^

( f l ; X6; K7; MS; Zl.)

T Gl: {C3
+ | OOf}: 1, 1; 2,3; 3, 3: a.

M G\ ® T2: {£¡000}; t2: 1, 1: a.
A G 3 ® T 2 : {C3

+|00|}; t3: 1 ,1 ; 2 ,3 ; 3 ,3 : a.
L G\ ® T2: {£|000}; t2ort3 : 1, I: a.
K G3 ® T3: {C3

+ | OOf}; t, ort2 : l ,x ; 2,x; 3,x: a.
H G3 ® T3 ® T2: {Cj* |00f}; t, or t 2 ; t3: l , x ; 2, x; 3, x: a.

A' G3 (C3
+, 0): l ,x; 2, x; 3, x: a.

i/x Gi (£,0): \,x: a.
Px Gl (C3

+, 0): l ,x ; 2, x; 3, x: a.
T' G\ (E, 0): l , x : a.
S* G\ (E, 0): l , x : a.
r* G¡ (£, 0): l ,x: a.
S" G¡ (£, 0): l , x : a.
I1 GJ (£, 0): l ,x: a.
«" G¡ (£, 0): l , x : a.

146 «3 Cj

(f l ; K6; Kl; M5; Zl.)

F Gl: {C3
+ |000}: 1,1; 2 ,3; 3 ,3: a.

Z Gl ® T2: {C3
+ | 000}; t t o r t 2 or t 3 : 1 ,1 ; 2,3; 3,3: a.

L G\ ®T 2 : {£|000}; t2: 1,1: a.
F G¡ ® T2: {£|000}; t 2 ort 3 : 1, 1: a.|
F G! ® T2: {£|000}; t j ort2 : 1, 1: a.j

A* Gl (C¿ 0): l ,x ; 2, x; 3, x: a.
P' Gl (C3

+, 0): l , x ; 2, x; 3, x: a.
B' G\ (E, 0): l ,x : a.
I* G| (E, 0): l , x : a.
Q1 G! (£, 0): \,x: a.
Y* Gl (£, 0): l , x : a.

355
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147 P3 C\¡

(F 1; K6- Kl; MS; Zl.)

T G1
6: {S¿ I 000}: 1, 1; 2 ,3; 3,3; 4, 1; 5, 3; 6,3: a.

M G1
2 ® T2: {7)000}; t2: 1, 1; 2, 1: a.

A Gl ® T2: {S6
+ | 000}; t3: 1, 1; 2,3; 3, 3; 4, 1; 5,3; 6,3: a.

£ G 2 ® T2: {/| 000}; t 2 o r t 3 : 1, 1; 2, 1 : a.
K G] ® T3: {C3

+ | 000}; t¡ ort2: 1 , 1 ; 2, 3; 3, 3: a.
H G3 ® T3 ® T2: {C3

+ | 000}; t t ort2 ; t3: 1, 1 ; 2, 3; 3, 3: a.

Ax G3: (C3
+, 0): 1, 1; 2,3; 3,3: a.

U* G\: (.E, 0): 1 ,1: a.
P* G3: (C3

+, 0): 1, 1; 2, 3; 3, 3: a.
T* G¡: (£, 0): 1, 1: a.
S' G\: (E, 0): 1, 1: a.
Fx G{: (£, 0): 1, 1: a.
5" G j : (£•, 0): 1, 1: a.
I* G¡: (E, 0): 1,1: a.
«* GJ: (E, 0): 1, 1: a.

148 RÏ Clt

( F l ; K6; Kl; MS; S8; Zl.)

F G¿: {S6
+ | 000}: 1, 1; 2 ,3; 3,3; 4, 1; 5, 3; 6 ,3: a.

Z G¿ ® T2: {S6
+ |000}; t, or t2 ort3: 1, 1; 2,3; 3,3; 4, 1; 5,3; 6,3: a.

L G2 ® T2: {/| 000}; t2: 1, 1; 2, 1: a.
f(a) F Gi ® T2: {/|000}; t 2 o r t 3 : 1, 1; 2, 1: a.)
}(b)F G^ ®T 2 : {/| 000}; t ,o r t 2 : 1, 1; 2, 1: a.j

A1 G3: (C3
+, 0): 1 ,1; 2,3; 3,3: a.

P* G1
3: (C3

+, 0): 1, 1; 2, 3; 3, 3: a.
B* G{: (E, 0): 1, 1: a.
£x G¡: (E, 0): 1, 1: a.
g* G;.- (£•, 0): 1, 1: a.
Y* G\: (E, 0): 1, 1: a.

149 P312 D¡

(F\; K6; Kl; MS; Zl.)

F G^: {C3
+|000}, {C21|000}: 1, 1 ; 2, 1 ; 3, 1 : a.

M G2 ® T2: {C21 |000}; t2: 1, 1; 2, 1: ¿.
A G2

6 ® T2: {C3
+ | 000}, {C21 |000}; t3: 1, 1; 2, 1; 3, 1: a.

L Gl ® T2: {C21 | 000}; t 2 or t 3 : 1 , 1 ; 2,1: b.
K G¡ ® T3: {C3

+ | 000}; t !Or t 2 : 1, 1 ; 2, 1 ; 3, 1 : a.
H G3 ® T3 ® T2: {C3

+ | 000}; t t or t 2 ; t3: 1, 1 ; 2, 1 ; 3, 1 : a.

Ax G^ (C3
+, 0): 1, 1; 2, 1; 3, 1: a.

U' Gl (E, 0): 1, 1: a.
P* Gl (C3

+, 0): 1, 1; 2, 1; 3, 1: a.
r* G¡ (£, 0): 1, 1: a.
S' G\ (E, 0): 1, 1: a.
T" G\ (E, 0): 1, 1: a.
S" G¡ (£, 0): 1, 1: a.
I* Gi (C21, 0): \,x; 2,x: b.
R* G1

2 (C21, 0): l,x; 2, x: b.
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150 P321 Dl

(F\; K6; Kl; MS; Zl.)

T Gl: {CÍ, | 000}, {C'it | 000}: 1, 1; 2, 1; 3, 1: a.
M G 2 ® T2: {Ci', |000}; t2: 1,1; 2,1: 6.
A Gl® T2: {C3

+ | 000}, {C"2i \ 000}; t3: 1, 1; 2, 1; 3, 1: a.
L G2 ® T2: {CÏ, |000}; t 2 or t 3 : 1, 1; 2, 1: 6.
K Gl ® T3: {C3

+ | 000}, {C21 |000}; t, or t 2 : l , x ; 2, x; 3, x: a.
ff G ¿ ® T 3 ® T 2 : {C3

+ |000}, {Ci', | 000}; t , o r t 2 ; t3: l ,x ; 2, x; 3, x: a.

A" G3 (C3
+, 0): 1, 1; 2, 1; 3, 1: a.

U* G} (£,0): 1, 1: a.
/" G3 (C3

+, 0): l ,x ; 1,x\ 3, x: a.
r* G2 (C2'2, 0): l ,x ; 2, x: 6.
5" G2 (C2'2, 0): l , x ; 2, x: b.
T" G\ (C;,,0): l ,x ; 2, x: b.
S" G2 (C21, 0): l ,x; 2, x: ¿.
Z* Gl (£, 0): 1,1: a.
R* G¡ (£, 0): 1, 1: a.

151 f3 t!2 Jj

(^5; f l ; F4; /?5; /Í6; AT7; MS; Zl.)

F G¿: {CÍIOOI}, {C21|00f}: 1,1; 2 ,1; 3 , 1 : a.
M G\ ®T 2 : {C21|00f}; t2: 1, 1; 2, 1: 6.
^ G ^ ® T 2 : {C3-|OOf}, {C21|00f}; t3: 1,1; 2 ,1 ; 3, 1 : a.
L Gi ® T2: {C21 | OOf}; t 2 or t 3 : 1,1; 2, 1 : b.
K G3 ® T3: {C3

+ | 00|}; t t ort2 : 1,1; 2, 1 ; 3, 1 : a.
H G 3 ® T3 ® T2: {C3~ | 00|}; t t ort2 ; t3: 1, 1 ; 2, 1; 3, 1: a.

A' G3 (C3
+,0): 1 ,1 ; 2,1; 3, 1 : a.

U' Gl (£,0): 1, 1: a.
Px Gl (C3

+, 0): 1 ,1; 2 ,1 ; 3, 1: a.
T' G{ (E, 0): 1, 1: a.
S" Gl (E, 0): 1, 1: a.
r* Gl (E, 0): 1, 1: a.
5"' Gl (E, 0): 1, 1: o.
T.* G2 (C2i, 0): l ,x ; 2, x: b.
R* G¿ (C2l, 0): 3,x; 6, x: b.

152 P3t21 Of

(^46; F\; F5; FT; FS; K6; Kl ; MS; N2; N3; P2; Rl; «4; S8; T6; Zl.)

T G2
6: {C3

+ |00i}, {C21100|}: 1, 1 ; 2, 1 ; 3, 1 : a.
M G2 ®T 2 : {C^IOOf}; t2: 1, 1; 2, 1: 6.
^ G ^ ® T 2 : {C3-|OOf}, {CiMOOf}; t3: 1,1; 2,1; 3,1: a.
L G2 ® T2: {C21 | OOf} ; t2 or t3: 1, 1 ; 2, 1: 6.
# G ¿ ® T 3 : {C3

+|OOi-}, {Cï,|00f}; t l 0 r t 2 : 1, x; 2, x; 3, x: a.
H Gl ® T 3 ® T 2 : {C3-|OOf}, {C2',|00f}; t l O r t 2 ; t3: l , x ; 2, x; 3, x: a.

A* G3: (C3
+, 0): 1,1; 2, 1 ; 3, 1 : a.

U* G[ ( E , 0 ) : 1, 1: a.
P* G3 (C3

+, 0): l ,x; 2, x; 3, x: a.
T' G\ (C'Í2, 0): l , x ; 2, x: 6.
5" GJ (Ci'2, 0): 2,x; 5,x: c.
F* Gj (C2'1; 0): l , x ; 2, x: b.
S" G¿ (Ci',, 0): 3, x; 6, x: ¿>.
S1 G1, (£, 0): 1, 1: a.
R' G] (E, 0): 1, 1: a.
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153 P3212 Z>|

(fl ; ÍT6; AT7; MS; Zl.)

F G|: {C3
+ |OOf},{C21 |00|}: 1, 1 ; 2, 1 ; 3, 1 : a.

M G2 ®T 2 : {C21|00¿}; t2: 1 ,1; 2, 1: 6.
A G * ® T 2 : {C3

+ |OOf}, {C21|00|}; t3: 1 ,1; 2 ,1 ; 3, 1 : a.
L Gi ®T 2 : {C21 | OOf}; t 2 or t 3 : 1 ,1 ; 2, 1 : b.
K G3 ® T3: {C3

+ | OOf}; t, or t 2 : 1,1; 2, 1 ; 3, 1 : a.
H G\ ® T3 ® T2: {C3

+ |00f}; t! or t 2 ; t3: 1, 1; 2, 1; 3, 1: a.

A* G^ (C3
+, 0); 1,1; 2, 1 ; 3, 1 : a.

U* G¡ (E, 0): 1, 1: a.
P* G3 (C3

+, 0): 1, 1; 2, 1; 3, 1: a.
T* G¡ (E, 0): 1,1: a.
5" Gí (E, 0): 1,1: a.
T" G\ (E, 0): 1, 1: a.
5" Gi (E, 0): 1 ,1 : a.
I* G^ (Cji, 0): l ,x ; 2, x: b.
R' G¿ (C2i, 0): 2, x; 5, x: c.

154 P3221 Dl

(A6; Fl; F5; FT; F8; K6; Kl; M5; N2; N3; PI; Rl; Zl.)

T G§: (C3
+ | OOf}, {C21 | OOi}: 1, 1 ; 2, 1 ; 3, 1 : a.

M G 2 ® T2: {C21 | 00^}; t2: 1, 1; 2, 1: 6.
A G § ® T 2 : {C3

+ |OOf}, {C2l |00i}; t3: 1,1; 2,1; 3,1: a.
L G 2 ® T2: {C'ii | OOi}; t2 ort3 : 1 ,1 ; 2, 1 : b.
K Gl ® T3: {C3

+ | OOf}, {C21 \00j}; t t ort2: l ,x ; 2, x; 3, x: a.
H G;; ® T3 ® T2: {C3

+ | OOf}, (C21 | 00^}; Í! or t 2 ; t3: l , x ; 2, x; 3, x: o.

A' G3 (C3
+, 0): 1, 1; 2, 1; 3, 1: a.

C/1 G} (E, 0): 1, 1: a.
/" G^ (C3

+, 0): l , x ; 2, x; 3, x: a.
T* Gj- (C2'2, 0): l , x ; 2, x: b.
Sx G¡ (C2'2, 0): 3,x; 6, x: b.
T" G¡ (C2'lf 0): l ,x ; 2, x: 6.
S'x G¿ (C2\, 0): 2, x; 5, x: c.
I1 G; (£, 0): 1, 1: a.
/?* G¡ (E, 0): 1, 1: fl.

155 R12 Dl

( F l ; AT6; Kl; M5; S8; Zl.)

F G^ ; {C3
+ |000}, {C21|000}: 1,1; 2, 1 ; 3,1: a.

Z G*® T2: {C3
+ | 000}, {C21 | 000}; t, or t2 ort3: 1 ,1 ; 2, 1 ; 3, 1 : a.

L G\ ® T2: {C22| 000}; t2: 1, 1; 2, 1: b.
"(a) F G 2 ® T 2 : { C 2 1 000}; t2 or t3: 1, 1 ; 2, 1 : b.\
(b) F G2 ® T2: {C23 | 000}; t j ort2: 1,1; 2, 1 : b.\

A* Gj (C3
+, 0): 1,1; 2, 1 ; 3, 1 : a.

P' Gl (C3
+, 0): 1, 1; 2, 1; 3, 1: a.

B' G¡ (C21, 0): l ,x ; 2, x: b.
I* G2 (C21, 0): l,x; 2, x: 6.
g* G\ (C23, 0): l , x ; 2, x: b.
Y' G>2 (C22, 0): l ,x ; 2, x: b.
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156 P3m1 Ci,

(FI; K6; Kl; MS; Zl.)

f Gi: {C3
+ | 000), K! | 000} : 1,1; 2,1; 3, 1 : a.

M GJ ® T2: {or^lOOO}; t2: 1, 1; 2, 1: c.
A GÍ ® T2: {C3

+ ! 000}, {a,i \ 000}; t3: 1, 1; 2, 1; 3, 1: a.
L G 2 ® T 2 : {(T.,,1 000}; t 2 or t 3 : 1,1; 2,1: c.
K G¡ ® T3: {C3

+ | 000}; t, ort2 : 1,1; 2, 1; 3, 1: a.
H G> ® T3 ® T2: {C3

+ | 000}; t, ort2 ; t3: 1, 1; 2, 1; 3, 1: a.

A* Gi (C3
+, 0), (avl, 0): 1, x; 2, x; 3, x: a.

U' G\ (aal, 0): 1.x; 2, x: c.
P* Gi (C3

+, 0): \,x; 2,x; 3, x: a.
T* Ci (E, 0): 1 ,1: a.
Sx G¡ (£, 0): 1,1: a.
T" G\ (E, 0): 1,1: a.
S" Gl (£, 0): 1,1: a.
£* Gj Ki, 0): l ,x ; 2, x: c.
R* G2 (CTD,, 0): l , x ; 2,x: c.

157 P31m Cjp

(FI; K6; Kl; M5; Zl.)

T G2
6: {C3

+ | 000}, {(T,,! | 000}: 1, 1; 2, 1; 3, 1 : a.
M G2 ®T2 : {<rdl |000}; t2: 1, 1; 2,1: c.
A Gi ® T2: {C3

+ |000}, {aai \ 000}; t3: 1, 1 ; 2, 1 ; 3, 1 : a.
L G1

2 ®T 2 : {CT^IOOO}; t 2 or t 3 : 1,1; 2, 1 : c.
K G i ® T 3 : {C3

+ |000}, {ff,, | 000}; t, ort2: \,x; 2, x; 3, x: a.
H Gl ® T3 ® T2: {C3

+ | 000}, {<7dl |000}; t, ort2 ; t3: l,x; 2,x; 3,x: a.

A* G|: (C3
+, 0), (ffj j , 0): 1, x; 2, x; 3, x: a.

Ux G2: (<rdl, 0): \,x; 2, x: c.
P* Gi: (C3

+, 0), (adl, 0): 1, x; 2,x; 3,x: a.
T* G2 : (aa, 0): l ,x ; 2, x: c.
S* G2 : (<rd2, 0): \,x; 2,x: c.
T'x G2: (ffdl, 0): l ,x ; 2, x: c.
S" G2: (<rdl, 0): l ,x; 2, x: c.
I* G{: (£, 0): 1, 1: a.
Rx G¡: (£, 0): 1, 1: a.

158 f3cl Cjc

(Fl; K6; K7; MS; Zl.)

T Gi {C3
+|000}, {ff^lOOi}: 1,1; 2, 1; 3, 1: a.

M G 2 ® T 2 : {<rol|00i}; t2: 1,1; 2, 1: c.
^ GÍ2: {C3

+ | 001}, {av¡ |00i}: 3,3; 4,3; 6,2: a.
I Gi K,|00i}: 2,3; 4,3: a.
K G l®T 3 : {C3

+|000}; ^ort , : 1,1; 2,1; 3,1: a.
H G3 ® T3 ® T2: {C¡ |000}; t, ort2 ; t3: 1,2; 2,2; 3,2: a.

A* Gi (C3
+, 0), (avl, 0): 1, x; 2, x; 3, x: a.

U* G| (ffo l , 0): l ,x; 2, x: c.
P' G\ (C3

+, 0): l ,x ; 2, x; 3, x: a.
T* G{ (E, 0): 1,1: a.
Sx G} (E, 0): 1,2: a.
r* G! (£, 0): 1,1: a.
S'* G\ (E, 0): 1,2: a.
Z1 GJ (a,,i, 0): 1, x; 2,x: c.
R* G[ ( a f l , 0): l , x ; 2, x: c.
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159 P31c CÍ

(F\; K6; Kl; MS; Z\.)

T G¡: {C3
+|000}, {CTd l |<XH}: 1 ,1; 2, 1 ; 3,1: a.

M G¡
2 ® T2: {adl \ 00^}; t2: 1, 1; 2, 1: c.

/I GÍ2: {C3
+ | 001), {adí \ OOÍ}: 3, 3; 4, 3; 6, 2: a.

£ G¿: {tfdi|00i}: 2 ,3; 4,3: a.
ÍT Gj? ® T3: {C3

+ | 000}, {adi \ OOi}; t t ort2 : l ,x ; 2,x; 3, x: a.
H GÍ2 ® T3: {C3

+ | 001}, {adl |00i}; t¡ ort2 : 3, x; 4, x; 6,x: a.

A* G2
6 (C3

+,0), (^,,0): l ,x ; 2, x; 3,x: a.
U* G2 (<7dl, 0): l ,x; 2,x: c.
P* G2

6 (CÎ, 0), (adi, 0) : 1, x; 2, x; 3, x: a.
rx G^ (CTJZ, 0): 1, x; 2, x: c.
5* G^ ((T.,2, 0): l , x ; 2, x: c.
T" G2 (crdl, 0): l ,x ; 2, x: c.
S" G2 (ddl, 0): l ,x; 2,x: c.
~LX G¡ (E, 0): 1, 1: a.
R* G\ (E, 0): 1,2: a.

160 R3m C|p

(Fl; /Í6; A'V; M5; Zl.)

F GJ: {C3
+ |000}, {adl 1000}: 1, 1; 2,1; 3,1: a.

Z Gj; ® T2: {C3
+ | 000}, {adt \ 000}; t t or t2 ort3: 1 ,1; 2, 1 ; 3, 1 : a.

L G\ ® T2: {ff^l 000}; t2: 1, 1; 2, 1: c.
(a) F G1

2 ® T2 : {adl \ 000} ; t2 or t3 : 1, 1 ; 2, 1 : c.l
(b) F G > ® T2 : {a,3 | 000} ; t, or t2 : 1, 1 ; 2, 1 : c.j

A' G¿: (C3
+, 0), (adl, 0): 1, x; 2, x; 3, x: a.

P* G¡: (C3
+, 0), (adl, 0): l , x ; 2, x; 3,x: a.

B' G}: (£, 0): 1, 1: a.
I,' G\: (E, 0): 1, 1: a.
Q* G\: (E, 0): 1, 1: a.
y* GJ: (£, 0): 1, 1: a.

161 R3c C\a

(F\; K6; Kl; M5; Zl.)

F G ^ : {C3
+|000}, {^lui}: 1 ,1 ; 2 ,1 ; 3 ,1 : a.

Z GÍ2 : {C3
+¡ 100}, {(T,, I ̂ }: 3 ,3 ; 4,3; 6 ,2: a.

£ G¿: K2|Mï}: 2 ,3; 4,3: a.
'(a) F G2 ® T2: {ad, |̂ }; t 2 or t 3 : 1, 1; 2, 1 : c.l
(b)F G 2 ® T 2 : {<Td3 |Mi}; t t or t2: 1, 1 ; 2, 1 : c.J

A* Gs (C3
+, 0), (ff j , , 0): l , x ; 2, x; 3, x: a.

P* G¡ (C3
+, 0), (adl, 0): l ,x ; 2, x; 3, x: a.

B' G¡ (£, 0): 1,2: a.
S* Gl (E, 0): 1 , 1 : a.
Q' Gj (£, 0): 1,2: a.
7' Gl (E, 0): 1,2: a.
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162 fl\m D'M

( F \ ; K6; Kl; M5; Zl.)

361

F G?2: {S6
+|000}, {Cit | 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : a.

M GJ ® T2: {Ci, | 000}, {/|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1 : a.
A G3

12 ® T2: {S¿ | 000}, {Ci, |000}; t3: 1, 1 ; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1 : a.
L Gl ® T2: {Ci, |000}, {/| 000} ; t 2ort 3 : 1,1; 2, 1 ; 3, 1 ; 4, 1 : a.
K Gl ® T3: {C3

+ | 000}, {adl |000}; t, ort2: 1 ,1; 2, 1 ; 3, 1 : a.
H Gl ®T3 ® T2: {C3

+ | 000}, {adi 000}; t, or t2; t3: 1, 1 ; 2, 1 ; 3, 1 : a.

A* G| : (C3
+, 0), (adi, 0) : 1,1; 2, 1 ; 3, 1 : a.

U' G2: (ff,,,, 0): 1,1; 2,1: c.
P* G|: (C3

+, 0), (CTd , ,0): 1,1; 2 ,1 ; 3,1: a.
7" G\ (atl, 0): 1, 1; 2, 1: c.
5" -G2 (<7J2, 0): 1,1; 2 ,1 : c.
7"" G^ (adl, 0): 1,1; 2, 1 : c.
S" G2 (<7d,, 0): 1, 1; 2, 1: c.
I1 G2 (Ci,, 0): 1, 1; 2, 1: A.
«* G¡ (Ci,, 0): 1, 1; 2, 1: ¿>.

163 P31c O^

(Fl; #6; /T7; M5; Zl.)

F G?2 : {S¿ | 000}, {Ci, | OOi} : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : a.
M G i ® T 2 : {C21|00i}, {/|000}; t2: 1,1; 2,1; 3,1; 4,1: a.
A G24: {ad¡ \ 00^}, {C3

+ | 000}, {/| 000}: 7 ,3; 8,3; 9,1: a.
L Gt {^,1001}, {/| 000}: 5,1: a.
K G ¿ ® T 3 : {C3

+|000}, {(7dl|00i}; ^ort , : 1,1; 2 ,1; 3,1: a.
H G|2 ® T3: {C3

+ | 001}, [adl |00|}; t, ort2 : 3, 1; 4, 1; 6, 1: a.

A" Gj; (C3
+, 0), (adl, 0) : 1, 1 ; 2, 1 ; 3, 1 : a.

Vs G\ (<7,,,0): 1, 1; 2, 1: c.
P* G¡ (C3

+, 0), (<7dl, 0): , 1 ; 2 ,1; 3 ,1: a.
7" GJ (<rd2, 0): 1, 1; 2, : c.
S" GJ (ffJ2, 0): 1, 1; 2, : c.
F* GJ (<rdl, 0): 1,1; 2, : c.
S" G¡ (adí, 0): 1, 1; 2, : c.
I.* G¡

2 (Ci, ,0): 1,1; 2,1: b.
fix Gi (Ci,, 0): 2 ,3; 4,3: a.

164 P3ml Dld

(Fl; K6; Kl; MS; S8; Zl.)

f G? 2 : {S¿ | 000}, {C21 | 000}: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : a.
M Gl ® T2: {Ci', | 000}, {/|000}; t2: 1, 1; 2, 1; 3, 1 ; 4, 1 : a.
A G\2 ® T2: {56

+ | 000}, {C21 | 000}; t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : a.
L Gl ®T 2 : {Ci', |000}, {/]000}; t2 or t3: 1, 1 ; 2, 1 ; 3, 1; 4, 1 : a.
K Gl ® T3: {C3

+ | 000}, {Ci', | 000}; t, ort2: 1, 1 ; 2, 1 ; 3, 1 : a.
H &l ® T3 ® T2: {C3

+ |000}, {CÏ, 1000}; t, or t 2 ; t3: 1,1; 2, 1 ; 3, 1 : a.

A" Gj; (C3
+, 0), (<7ol, 0) : 1,1; 2, 1 ; 3 ,1 : a.

U* G2 (acl, 0): 1, 1; 2, 1: c.
P* G\ (CÍ, 0): 1, 1; 2,3; 3, 3: a.
T" G2 (Ci'2, 0): 1, 1; 2, 1: 6.
S" G\ (C2'2, 0): 1, 1; 2, 1: ¿>.
r* GJ (Ci',, 0): 1,1; 2,1: b.
S" G¡

2 (Ci',, 0): 1, 1; 2, 1: b.
I" G2 (<!„„ 0): 1, 1; 2, 1: c.
«* G2 (<TBl, 0): 1, 1; 2, 1: c.
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165 P3cl D\d

(F\; K6; Kl; M S ; Zl.)

T Gl2: {S¿ |000}, {C21|00i}: 1,1; 2, 1; 3,1; 4,1; 5,1; 6,1: a.
M Gl ® T2: {C21 | 00^}, {/] 000}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : a.
A G24: {<r01 | OOi}, {C3

+| 000}, {/|000}: 7,3; 8,3; 9,1: a.
L G* {<jul | 00^}, {/| 000} : 5,1: a.
K Gl ® T3: {C3

+ | 000}, {CÏ, |00i}; t, ort2: 1, 1; 2, 1; 3, 1: a.
H G3

12 ® T3: {C3
+ | 001}, {C^ |00i}; t, ort2 : 3,3; 4,3; 6,2: b.

A* G2
6 (C3

+, 0), (o01, 0): 1, 1; 2, 1; 3, 1 : a.
U* G1

2 (aal, 0): 1, 1; 2, 1: c.
P* G3 (C3

+, 0): 1, 1; 2,3; 3,3: a.
T' G2 (C2'2> 0): 1, 1; 2, 1: ft.
s* G4 (C2'2, 0): 2,3; 4,3: a.
r* G2 (CÏ,, 0): 1,1; 2,1: b.
S'* Gl (C21, 0): 2,3; 4,3: a.
£* G2 (aol, 0): 1, 1; 2, 1: c.
Rx G^ K t ,0): 1,1; 2,1: c.

166 J?3m J)^d

(F\; F3; K6; Kl; L2; Ml; M5; S8; Y2; Zl.)

F G?2: {S6
+|000}, {C21|000}: 1,1; 2, 1; 3,1; 4,1; 5,1; 6,1: a.

Z G ? 2 ® T 2 : {S6
+ |000}, {C2i| 000}; t l O r t 2 o r t 3 : 1,1; 2,1; 3,1; 4,1; 5,1; 6,1: a.

L Gl ®T2: {C22|000}, {/|000}; t2: 1, 1; 2, 1; 3, 1 ; 4, 1 : a.
f(a) F Gl ® T2: {C21 | 000}, {/|000}; t 2 or t 3 : 1, 1; 2, 1; 3, 1; 4, 1: a.)
((b)F Gi ®T2 : {C23 | 000}, {/| 000}; t, or t2: 1, 1; 2, 1; 3, 1; 4, 1 : a.j

A* G^ (C3
+, 0), (adl, 0): 1, 1; 2, 1; 3, 1: a.

P1 Gl (CZ 0), (adl, 0): 1, 1 ; 2, 1 ; 3, 1 : a.
B" G¡ (C21, 0): 1, 1; 2, 1: b.
£* G2 (C21, 0): 1, 1; 2, 1: b.
Q" G2 (C23, 0): 1,1; 2,1: b.
Yx G2 (C22, 0): 1,1; 2, 1: 6.

167 R5c Dl¿

(F\; K6; Kl; M5; S8; Zl.)

T G?2: {S6
+|000}, {C21 | Mi): 1, 1 ; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: a.

Z G24: {(Tdi Mi}, {C3
+ |000}, {/| 000}: 7, 3; 8, 3; 9, 1: a.

L G| {(T Í 2 | ÍM},UIOOO}: 5,1: a.
J(a)F G j ® T 2 : {Ci, | HJ), {/1 000}; t 2 or t 3 : 1,1; 2,1; 3,1; 4,1: a.l
|_(b)F G J ® T 2 : {C2 3 | iM},UIOOO}; t , o r t 2 : 1,1; 2,1; 3,1; 4,1: a.}

A* G2
6 (C3

+, 0), (adl, 0) : 1, 1 ; 2, 1 ; 3, 1 : a.
P' G¡ (C3

+, 0), (adl, 0): 1, 1 ; 2, 1 ; 3, 1 : a.
B* G\ (Ci,, 0): 2,3; 4,3: a.
Z* G2 (Ci,, 0): 1, 1; 2, 1: ft.
0* Gl (C23, 0): 1, 1; 2, 1: b.
Y* Gi (C22, 0): 2,3; 4,3: a.
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168 P6 Ci

(FI; K6; Kl; M S ; Zl.)

T G¿: {C6
+ |000}: 1,1; 2,3; 3,3; 4,1; 5,3; 6,3: d.

M G2 (g>T 2 : {C2|000}; t2: 1, 1; 2, 1: ft.
X G¿ ® T2: {C6

f | 000}; t3: 1, 1; 2,3; 3,3; 4, 1; 5,3; 6,3: d.
L G2 ® T2: {C2 | 000}; t2 ort3: 1 ,1; 2, 1 : b.
K G¡ ® T3: {C3

+ | 000}; t, or t 2 : 1,1; 2, 3; 3, 3: a.
H G\ ® T3 ® T2: {C3

+ |000}; t! ort2; t3: 1, 1; 2,3; 3,3: a.

A* G1
6 (C6

+, 0): \,x; 2,x; 3, x; 4, x; 5,x; 6,x: d.
U* G1

2 (C2, 0): l,x; 2, x: b.
P* G3 (C3

+, 0): \,x; 2, x; 3, x: a.
T" Gl (E, 0): 1,1 a.
Sx Gi (E, 0): 1,1 a.
T" G! (£, 0): 1,1 a.
S"* Cl (£, 0): 1,1 a.
Ix Gl CE, 0): 1, 1 a.
R* G\ (E, 0): 1,1 a.

169 P6¡ Cj

(Fl; K6; Kl; M5; Zl.)

T GJ: {C6
+ |00i}: 1,1; 2,3; 3,3; 4,1; 5,3; 6,3: d.

M G2 ®T 2 : {C2|00|}; t2: 1, 1; 2, 1: ft.
X G}2: {C6

+ | 00|}: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: a.
L Gi: {C2|00|}: 2,3; 4,3: a.
K G3 ®T 3 : {C3

+|OOi}; ^ort , : 1,1; 2,3; 3,3: a.
H G3 ® T3 ® T2: {C3~ | OOf); t t ort2 ; t3: 1,2; 2, 3; 3, 3: a.

A' G¿ (C6
+, 0): l,x; 2,x; 3, x; 4,x; 5,x; 6, x: d.

U' G\ (C2, 0): l,x; 2, x: b.
P' G3 (C3

+, 0): l,x; 2,x; 3,x: a.
T* Gj (E, 0): 1,1: a.
S' G{ (E, 0): 1,2: a.
T" G\ (E, 0): 1,1: a.
S01 GJ (£, 0): 1,2: a.
1* G\ (E, 0): 1 ,1 : a.
R* G\: (E, 0): 1,2: a.

170 P65 c-;
(Fl; ÍT6; JC7; M5; Zl.)

F G¡: {C6
+ | OOf}: 1, 1; 2,3; 3,3; 4,1; 5,3; 6,3: d.

M G2 ® T2: {C2| 00|}; t2: 1, 1; 2, 1: b.
A G\2: {C6

+ | 00|}: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: a.
L G1

4: {C2|00}}: 2 ,3; 4 ,3 : a.
K G3 ® T3: {C3

+|00|}; t t or t2: 1, 1 ; 2, 3; 3, 3: a.
H G3 ® T3 ®T 2 : {C3

+ |OOf}; t j o r t 2 ; t3: 1,2; 2,3; 3,3: a.

A* G¿ (C6
+, 0): \,x; 2, x; 3, x; 4, x; 5, x; 6, x: d.

V G2 (C2, 0): \,x; 2,x: b.
P" G1

3 (C3
+, 0): \,x; 2,x; 3,x: a.

Tx G\ (E, 0): 1 ,1 a.
S1 G\ (E, 0): 1,2 a.
T" Gl (£, 0): 1,1 a.
S"* Gj (E, 0): 1,2 a.
2' GJ (£, 0): 1,1 a.
R* G\ (E, 0): 1,2 a.
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171 P62 C%

(f\\ K6; Kl; MS; Zl.)

F G¿: {C6
+ |0<H}: 1, 1; 2,3; 3,3; 4, 1; 5,3; 6,3: d.

M G¡
2 ®T 2 : {C2|000}; t2: 1,1; 2, 1: b.

A G¡ ® T2: {C6
+|OOi}; t3: 1,1; 2 ,3; 3,3; 4,1; 5,3; 6,3: d.

L G2 ® T2: {C2 | 000}; t2 or t 3 : 1, 1; 2, 1 : b.
K G\ ® T3: {C3

+ | OOf}; t l 0 r t 2 : 1,1; 2,3; 3,3: a.
H G 3 ® T 3 ® T 2 : {C3

+|OOf}; t l O r t 2 ; t3: 1,1; 2,3; 3,3: a.

A* G¿ (C6
+, 0): \,x; 2, x; 3, x; 4, x; 5, x; 6, x: d.

U* G2 (C2, 0): \,x; 2, x: b.
P" G¡, (C3

+, 0): \,x; 2,x; 3, x: a.
T* G{ (£, 0): 1, a.
S* G\ (E, 0): 1, a.
T" G\ (E, 0): 1, a.
S" G\ (E, 0): 1, a.
Z1 Gi (E, 0): 1, iz.
R* G\ (E, 0): 1, a.

172 P64 C^

(Fl; K6; Kl; M5; Zl.)

F G¡: {C6
+|00|}: 1,1; 2,3; 3,3; 4,1; 5,3; 6,3: d.

M G2 ®T2 : {C2 |000}; t2: 1,1; 2 ,1 : b.
A Gi ® T2: {C6

+ | OOf}; t3: 1, 1; 2,3; 3,3; 4, 1; 5,3; 6,3: d.
L G2 ® T2: {C2|000}; t 2 or t 3 : 1, 1; 2, 1: b.
K G 3 ® T 3 : {C3

+|OOj-}; t l O r t 2 : 1,1; 2,3; 3,3: a.
H G3 ® T3 ® T2: {C, \ OOf}; t! or t 2 ; t3: 1, 1; 2, 3; 3, 3: a.

A* G¿ (C6
+, 0): \,x; 2,x; 3, x; 4, x; 5, x; 6, x: d.

U* G\ (C2, 0): \,x\ 2,x: b.
P' Gi (C3

+, 0): l , j t ; 2,x; 3, x: a.
T' G\ (E, 0): 1, 1: a.
5* G¡ (E, 0): 1, 1: a.
T'* G\ (E, 0): 1, 1: a.
S'x G{ (E, 0): 1,1: a.
I* GJ (E, 0): 1, 1: a.
R* G¡ (E, 0): 1, 1: a.
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173 P6, Cl

365

(FI; K6; Kl; MS; Zl.)

F GJ: {C6
+|OOi}: 1,1; 2 ,3; 3,3; 4,1; 5,3; 6,3: d.

M G\ ® T2: {C2|00i}; t2: 1, 1; 2, 1: b.
A G¡2: {C6

+ | OOi}: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: a.
L G > : {C2|00i}: 2,3; 4,3: a.
K G3 ® T3: {C3

+ | 000}; tt ort2 : 1, 1; 2,3; 3,3: a.
H G¡ ® T3 <g>T 2 : {C3

+ |000}; ti or t 2 ; t3: 1,2; 2,3; 3,3: a.

A* G¿ (C6
+, 0): \,x; 2, x; 3, x; 4, x; 5, x; 6, x: d.

U* G\ (C2, 0): \,x; 2,x: b.
P* G\ (C3

+, 0): l,x; 2, x; 3, x: a.
T* G¡ (E, 0): 1,1: a.
S" G\ (E, 0): 1,2: a.
7"* GJ (£, 0): 1,1: a.
S"* G¡ (£, 0): 1,2: a.
I' G! (.E, O): 1 ,1 ; a.
«* G¡ (E, 0): 1,2: a.

174 P6 C3h

(Fl; ÍT6; Kl; MS; Zl.)

F G¿: {S3
+ |000}: 1,1; 2,3; 3,3; 4,1; 5,3; 6,3: e.

A/ Gj ® T2: {o-JOOO}; t2: 1, 1; 2, 1: c.
A G ¿ ® T 2 : {S3

+|000}; t3: 1,1; 2,3; 3,3; 4,1; 5,3; 6,3: e.
I G2 ® T2: {ffJOOO}; t 2 or t 3 : 1, 1; 2, 1: c.
Jf G¿ ® T3: {S3

+ | 000}; t¡ or t 2 : l , x ; 2,x; 3,x; 4,x; S,x; 6,x: e.
H Gè ® T3 ® T2: {S3

+ | 000}; t t ort2 ; t3: 1, x; 2, x; 3, x; 4, x; 5, x; 6, x: e.

Ax G3 (C3
+, 0): 1, 1; 2,3; 3,3: a.

C/* G} (£, 0): 1,1: a.
/" G^ (C3

+, 0): \,x; 2, x; 3, x: a.
T* G2 ((Th, 0): l , x ; 2, x: c.
S* G2 (<7j, 0): l,x; 2,x: c.
T'x Gi (ah, 0): l ,x ; 2, x: e.
S" G2 (<7h, 0): \,x; 2,x: c.
I' G2 (a,,, 0): l , x ; 2, x: c.
R* G2 K, 0): l ,x ; 2, x: c.
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175 P6/m C\,h

(F\; K6; Kl; MS; Zl.)

F G?2: {Ci | 000}, {C2 | 000}, {/| 000}: 1, 1; 2, 3; 3, 3; 4, 1 ; 5,3; 6,3; 7, 1 ; 8,3; 9,3; 10, 1 ; 11, 3;
12,3: a.

M G J ® T 2 : {C2 | 000}, {/1 000}; t2 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : a.
A G2

!2 ®T 2 : {C3
+|000}, {C2 | 000}, {/|000}; t3: 1,1; 2,3; 3,3; 4, 1; 5 ,3; 6,3; 7 ,1 ; 8,3; 9,3; 10, 1

11,3; 12,3: a.
L GI ®T 2 : {C2 | 000}, {/| 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1 : a.
K G' ® T3: {Sí | 000}; t t ort2 : 1, 1; 2,3; 3,3; 4, 1; 5,3; 6,3: e.
H G¡ ® T3 ® T2: {Sí \ 000}; ^ or t 2 ; t3: 1, 1; 2,3; 3,3; 4, 1 ; 5,3; 6,3: e.

A* G¿ (C6
+, 0): 1, 1; 2, 3; 3, 3; 4, 1; 5, 3; 6, 3: ¿.

Í7* G^ (C2, 0): 1, 1; 2, 1: è.
/>* G3 (C3

+, 0): 1, 1; 2,3; 3,3: a.
T" G2 (ah, 0): 1, 1; 2, 1: c.
S1 G2 (<rt, 0): 1, 1; 2, 1: c.
T" G' (CT,,, 0): 1, 1; 2, 1: c.
S" G1

2 (ak, 0): 1 ,1; 2, 1: c.
I.' G2 (ah, 0): 1, 1; 2, 1: c.
R* G2 (ah, 0): 1, 1; 2, 1: c.

176 P63/m Clh

(F\; K6; Kl; MS; M8; Zl.)

F G?2: {C3
+ |000}, {C2|00i},{/|00i}: 1 ,1 ; 2,3; 3,3; 4, 1 ; 5 ,3 ; 6,3; 7, 1 ; 8,3; 9,3; 10, 1; 11,3;

12,3: a.
M G|®T 2 : {C2|00|}, {/|00i}; t2: 1, 1; 2,1; 3,1; 4 ,1: a.
A Gf 4 : {C6

+|00|},{/|00i}: 13,3; 14,1; 15, 3: a.
L Gl\ {C2|00i}, {/|00|}: 5, 1: a.
K G¡ ® T3: {Si | 000}; t t ort2 : 1, 1; 2, 3; 3, 3; 4, 1; 5, 3; 6, 3: e.
H G¿ ® T3 ® T2: {Si |000}; t, or t 2 ; t3: 1,3; 2 ,3; 3,3; 4,3; 5, 3; 6,3: e.

A* G¿ (Cl 0): 1, 1; 2, 3; 3, 3; 4, 1; 5, 3; 6, 3: d.
U' G2 (C2, 0): 1, 1; 2, 1 : b.
Px G\ (CÍ, 0): 1, 1; 2 ,3; 3,3: a.
T* G\ (<T f c ,0 ) : 1,1; 2,1: c.
S* G2 K, 0): ,3 ; 2,3: c.
rx Gj K, 0): ,1 ; 2, 1: c.
S" G^ (ffh , 0): ,3; 2, 3: c.
I1 Gl K, 0): , 1; 2, 1: c.
R* G\ (aH, 0): , 3; 2, 3: c.
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177 P622 Dl

(F\; K6; Kl; Af5; Zl.)

F G3
12: {C6

+|000}, {C21|000}: 1,1; 2,1; 3,1; 4,1; 5,1; 6,1: c.
M Gl® T2: {C2|000},{C2'!|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: b.
A G12 ® T2 : {C6

+ | 000}, {C21 ] 000} ; t3 : 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : c.
L Gi ® T2: {C2 | 000}, {C21 | 000}; t2 or t3: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : *.
K Gl ® T3 : {C3

+ | 000}, {C21 | 000} ; t, or t2 : 1, 1 ; 2, 1 ; 3, 1 : a.
H Gj ;®T 3 ®T 2 : {C3

+|000}, {C2i|000}; ^ort,; t3: 1, 1 ; 2, 1; 3, 1 : a.

A* G¿ (C¿ 0) : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : d.
U' G2 (C2, 0): 1, 1; 2, 1: b.
P* G3 (C3

+, 0)-. 1,1; 2,1; 3,1; a.
T* G2 (C2'2, 0): 1,1 2,1: 6.
S' G2 (C2'2, 0): 1,1 2,1: ft.
T" G¡

2 (C"2l, 0): 1,1 2,1: b.
S" G2 (C2',, 0): 1, 1 2, 1: b.
I* Gi (Ci,, 0): 1,1 2,1: b.
R* G2 (C21, 0): 1, 1 2, 1: 6.

178 P6t22 Dj

(FI; K6; Kl; MS; Zl.)

T G-;2: {C6
+ | 00¿}, {C21 |000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: c.

M G|®T 2 : {CalOOi}, {C^IOOi}; t2: 1, 1 ; 2, 1 ; 3, 1 ; 4, 1 : b.
A Gl*-- [Ce |00i}, {C21|000}: 7,1; 8, 1; 9,1: a.
L Gl: {C2|00i}, {C21|00i}: 5,1: a.
K G2

6 ® T3: {C} |00|}, {C21 |00i}; ti ort2 : 1, 1; 2, 1 ; 3, 1 : a.
H G ¿ ® T 3 ® T 2 : {C3-|OOf}, {Ci',100}}; t l O r t 2 ; t3: 1 ,3; 2,3; 3,1: a.

A" G¿ (C¡, 0) : 1,1; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 : d.
U' G\ (C2, 0): 1 ,1; 2,1: b.
P" G3 (C3

+, 0): 1, 1; 2, 1; 3, 1: a.
T' Gj (C22, 0): 1, 1; 2, 1: b.
Sx G\ : (C22, 0): 2,3; 8,3: c.
T" G2 (C21, 0): 1,1; 2,1: è.
5" Gi (C21, 0): 2,3; 4,3: a.
I* G2 (C21, 0): 1, 1; 2, 1 : b.
R* Gi (C2I, 0): 1 ,3; 2 ,3 : b.
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179 f6522 D*

( F l ; K6; Kl; M S ; Zl.)

T G?2: {C6
+ | OOf}, {Cit | 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: c.

M Gl ® T2: {C2|00i}, {C21 |00|}; t2: 1, 1; 2, 1; 3, 1; 4, 1: b.
A G24: {C6

+ | OOf}, {C21 |000}: 7, 1; 8, 1; 9, 1: a.
L Gl: {C2|00|}, {Q'.IOOi}: 5,1: a.
JC Gl ® T3: (C3

+ | OOf}, {C21 | 00^}; t, or t2: 1, 1; 2, 1; 3, 1: a.
H Gl ® T3 <g> T2: {C3

+ | OOf}, {CJ, |00|}; t! ort2 ; 13: 1,3; 2,3; 3, 1: a.

Ax G^ (C6
+, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.

V G\ (C2, 0): 1 , 1 ; 2,1: b.
P* G\ (C3

+, 0): 1,1; 2, 1; 3, 1: a.
T* G\ (C22, 0): 1 ,1 ; 2, 1: b.
S* G{ : (C2'2, 0): 6,3; 12,3: b.
T" G2 (C21, 0): 1, 1; 2, 1: b.
S" Gl (C21, 0): 2,3; 4,3: a.
Zx G^ (C2i, 0): 1,1; 2, 1: b.
&* G2 (C21> 0): 1,3; 2,3: b.

180 P6222 O|

(fl; Fl; FS; K6; Kl; M S ; Zl.)

F G?2: {C6
+ | OOi}, {C2I|000}: 1,1; 2, 1; 3,1; 4,1; 5, 1; 6, 1: c.

M GJ ® T2: {C2 | 000}, {C2, | 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: 6.
A G3

12 ®T 2 : {C6
+ |00|}, {C21|000}; t3: 1,1; 2,1; 3,1; 4,1; 5, 1; 6,1: c.

L G J ® T 2 : {C2|000}, {C^IOOO}; t 2 or t 3 : 1, 1; 2, 1; 3, 1; 4, 1: ft.
K G2

6 ®T 3 : {C3
+ |OOf}, {CJ.IOOO}; t l 0 r t 2 : 1,1; 2 ,1; 3 ,1: a.

H G j > ® T 3 ® T 2 : {C3
+ | OOf}, (C^ | 000}; t l O r t 2 ; t3: 1, 1; 2, 1; 3, 1: a.

A* G1
6 (C6

+, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.
U* G\ (C2, 0): 1, 1; 2, 1: b.
P' G3 (C3

+, 0): 1,1; 2,1; 3, 1: a.
T* G2 (C22, 0): 1,1; 2, 6.
Sx GJ (C22, 0): 2 ,1 ; 5, c.
T" G2 (C21, 0): 1,1; 2, 6.
S'x GJ (C'ii, 0): 1,1; 2, ft.
£x G^ (C21, 0): 1, 1; 2, ft.
R" Gi

2 (C'n, 0): 1, 1; 2, ft.

181 P6422 P|

(Fl; Fl F8; K6; Kl; M5; Zl.)

T G\2: {C6
+|OOf}, {C2l|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: c.

M Gl ® T2: {C2 | 000}, {C21 |000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: ft.
A G ? 2 ® T 2 : (C6

+ | OOf}, {C21|000}; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: c.
£ Gj ® T2: {C2 | 000}, {C21 ] 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1: ft.
tf G| ® T3: {Cf | OOf}, {C^ | 000}; t, or t2: 1, 1; 2, 1; 3, 1: a.
ff G^ ® T3 ® T2: {C3~ | 00|}, (C^ | 000}; t! ort2 ; t3: 1, 1; 2, 1; 3, 1: a.

A* G^ (C6
+, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.

U* G2 (C2, 0): 1, 1; 2, 1: ft.
P* G3 (C3

+, 0): 1, 1; 2, 1; 3, 1: a.
7" G| (C22, 0): 1, 1; 2, 1 ft.
S' Gl (C22, 0): 3, 1; 6, 1 ft.
T" G2 (C21, 0): 1, 1; 2, 1 ft.
5"' G2 (C21,0): 1,1; 2,1 ft.
•L* G1

2 (C21, 0): 1, 1; 2, 1 ft.
R* G2 (C21, 0): 1, 1; 2, 1 ft.



THE SINGLE-VALUED R E P R E S E N T A T I O N S OF THE 230 SPACE GROUPS 369

182 P6322 Dl

(F\; K6; Kl; M5; Zl.)

T G3
i2: {C6

+ | 00}}, {C21 |000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: c.
M Gl® T2: {C2 | 00}}, {C21 | 00}}; t2: 1, 1; 2, 1; 3, 1; 4, 1: b.
A GJv {C6

+ |00}}, {Cii |000}: 7, 1; 8, 1; 9, 1: a.
L G*: {C2|00}}, {C2',|00}}: 5, 1: a.
K Gl ® T3: {C3

+ | 000}, {C21 | 00}}; t[ or t 2 : 1,1; 2,1; 3, 1: a.
H Gl ® T3 ® T2: {C3

+ | 000}, {C21 |00}}; t, ort2; t3: 1,3; 2,3; 3, 1: a.

A* Gl (C6
+, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.

Ux G2 (C2, 0): 1, 1; 2, 1: b.
P* G'3 (C3

+, 0): 1, 1; 2, 1; 3, 1: a.
T" G > (C2'2, 0): 1, 1; 2,1: 6.
S1 Gi (C22, 0): 2,3; 4,3: a.
T" G2 (C21, 0): 1 ,1 ; 2, 1: b.
S'* Gi (C21, 0): 2, 3; 4, 3: a.
I* GJ (C21, 0): 1, 1; 2, 1: b.
R* G2 (C21, 0): 1, 3; 2,3: b.

183 P6mm Cl
6a

(F\; K6; Kl; MS; Zl.)

F G3
12: {C6

+|000}, {i7cl|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.
M Gl ® T2: {C2| 000}, {avl |000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
A G?2 ® T2: {C6

+ | 000}, {avl |000}; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.
L Gi® T2: {C2| 000}, {aal \ 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1: c.
K G ^ ® T 3 : {C3

+|000}, {ff^lOOO}; t l O r t 2 : 1, 1; 2, 1; 3,1: a.
H Gl ® T3 ® T2: {C3

+ | 000}, {<Tdl | 000}; t, o r t 2 ; t3: 1, 1; 2, 1; 3, 1: a.

A' G?2: (C<t, 0), (<!„!, 0): l , x ; 2, x; 3,x; 4, x; 5,x; 6,x: d.
U* Gl (C2, 0), (<7ol> 0): , x; 2, x; 3, x; 4, x: c.
P* Gl (C3

+, 0), (<T,,, 0): , x; 2, x; 3, x: a.
7" G^ (od2, 0): , 1; 2, c.
S* G2 (ff«, 0): , 1; 2, c.
rx G2 (ffd l , 0): , 1; 2, c.
5"* GI (CT,,,, 0): , 1; 2, 1 c.
I* G2 (<!„„ 0): , 1; 2, 1 c.
R* G2 (<rBl, 0): 1, 1; 2, 1 c.

184 P6cc Cjp

(Fl; K6; Kl; M5; Zl.)

T GJ2 : {C6
+ | 000}, {aal ] 00|}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: rf.

M G^ ®T 2 : {C2|000}, {(7Bl100i}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
A G|4: {C3

+ |001}, {ffcl |00i}, {C2|000}: 3,3; 4,3; 6,2; 9,3; 10,3; 12,2: a.
I GJh {<TO, | 00}}, {C2 | 000}: 2, 3; 4, 3; 6, 3; 8, 3: d.
K Gl ®T3 : {C3

+|000}, {<rrfl|00|}; t l 0 r t 2 : 1,1; 2,1; 3,1: a.
H G*2 ®T3 : {C3

+|001}, {adl\Q02}; t, ort2 : 3,3; 4,3; 6,2: a.

A" G?2: (C6
+, 0), (avl 0): l,jc; 2, x; 3, x; 4,x; 5,x; 6,x: d.

U* Gl (C2, 0), (<r01, 0): l,x; 2, x; 3, x; 4, x: c.
P1 G? (C3

+,0), (<7,,,0): l,x; 2, x; 3, x: a.
T' G12 (ad2, 0): 1, 1; 2, 1: c.
51 G2 (adl, 0): 1,3; 2,3: c.
T" G2 (adl, 0): 1,1; 2,1: c.
S" Gl (adl, 0): 1,3; 2,3: c.
•£.* G12 (avl, 0): 1,1; 2,1: c.
R* G2: (avl, 0): 1,3; 2,3: c.
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185 P6}cm Cl,

( F l ; K6; Kl; MS; Zl.)

F G\2: {C6
+ |00|}, K,|00i}: 1, 1; 2, 1; 3 ,1; 4,1; 5,1; 6,1: d.

M G j ® T 2 : {C2|00i}, {<rcl|00i}; t2: 1,1; 2,1; 3, 1; 4,1: c.
A G*24: {C3

+|000}, {a,i|000},{C2 |OOi}: 4,3; 5 ,3 ; 6,3; 10,3; 11,3; 12,3: a.
L Gi: {*„! I OOi}, {a,! | 000}: 2, 3; 4, 3; 6, 3; 8, 3: c.
K Gl ® T3: {C3

+ 1000}, {ffd, |000}; t, or t 2 : 1,1; 2, 1; 3, 1: a.
H Gi ® T3 ® T2: {C3

+ ] 000}, {<rdl |000}; t! or t 2 ; t3: 1,2; 2,2; 3,2: a.

A* Gl2: (C6
+, 0), (aol, 0): l , x ; 2, ;c; 3, x; 4, x; 5, x; 6,x: d.

U" Gl (C2,0), ( a v i , ( ) ) : l,x; 2,x; 3,x; 4,x: c.
P* Gl (C3

+, 0), (adl, 0): l ,x ; 2, x; 3, x: a.
T* G\ (<rJ2, 0): 1 ,1 ; 2 ,1 : c.
S* G| (<rd2, 0): 1,2; 2,2: c.
T" Gi (<7d l , 0): 1,1; 2 ,1 : c.
S"" G2 (<rdl, 0): 1,2; 2,2: c.
I1 Gi ((Tcl, 0): 1,1; 2,1: c.
«x G2 K!, 0): 1,3; 2,3: c.

186 P63mc Ct

041; S3; B4; Cl; Fl; G4; #2; /T6; A'7; M5; JV1; P3; P4; R2; «3; S8; S10; Zl.)

T Gf 2 : {C6
+ |00i}, {<rt,,|000}: 1,1; 2, 1; 3 ,1; 4 ,1 ; 5,1; 6 ,1 : d.

M Gl® T2: {C2 | OOi}, {ael \ 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
A G**: {C3

+ 000}, {o-ol | 000}, {C2 | 00^}: 4, 3; 5, 3; 6, 3; 10, 3; 11, 3; 12, 3: a.
L G\: {a,, | 00^}, {<rv, | 000}: 2 ,3 ; 4,3; 6,3; 8,3: c.
K G J j ® T 3 : {C3

+|000}, {<rdl |00i}; t, or t2: 1, 1; 2, 1; 3, 1: a.
H G?2 ® T3: {C3

+ | 001}, {adl \ 00|}; t t or t 2 : 3,3; 4,3; 6, 1: a.

A' G?2: (C6
+, 0), (avl, 0): l,x; 2,x; 3,x; 4,x; 5,x; 6,x: d.

V Gl (C2, 0), (avl, 0): l,x; 2, x; 3, x; 4, x: c.
P' Gl (C3

+, 0), (<Tdl, 0): \,x; 2,x; 3,x: a.
T* G\ (ad2, 0): 1,1; 2,1: c.
S* G2 (adl, 0): 1,3; 2,3: c.
T" G2 (<7dl, 0): 1 ,1; 2 ,1 : c.
S'x Gj ((7dl, 0): 1,3; 2,3: c.
I* Gj (CTCI, 0): 1, 1; 2, 1: c.
R* G\ (a,,!, 0): 1,2; 2,2: c.

187 P6m2 D\h

(Fl; A:6; *:7; M5; Zl.)

I" G?2: {S3
+ |000}, {C21 |000}: 1,1; 2, 1; 3,1; 4, 1; 5, 1; 6,1: e.

M Gl ® T2: {C21 | 000}, {cr,,, |000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
A Gl2 ® T2: {S3

+ | 000}, {C21 | 000}; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
L Gl ® T2: {C21 | 000}, {avl \ 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1: c.
K Gi® T3: {53

+ | 000}; t, or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
H G1

6 ® T3 ® T2: {S3
+ | 000}; t, or t 2 ; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.

A" G2
6 (C3

+, 0), (acl, 0): 1, 1; 2, 1; 3, 1: a.
U* G2 (aol, 0): 1, 1; 2, 1: c.
P* G^ (C3+ 0): 1, 1; 2, 1; 3, 1: a.
r- G2 (<TJ, 0): 1 ,1 ; 2, 1: c.
5* G2 K, 0): 1,1; 2, 1: c.
T" G2 (a,, 0): 1 ,1 ; 2 ,1: c.
S" G2 (ah, 0): 1,1; 2, 1: c.
I* G| (C21,0), (ayl, 0): l,x; 2, x; 3, x; 4,x: c.
R* Gl (C21,0), (<7vi, 0): l , x ; 2, x; 3, x; 4, x: c.
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188 P6c2 Djh

(Fl; K6; Kl; MS; Zl.)

T G3
12: {S, | 000}, {C21 |00i}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.

M G ^ ® T 2 : {C21|(XH}, KJOOi}; t2: 1,1; 2,1; 3,1; 4,1: c.
A G24: {ael \ 00^}, {C3

+ | 000}, {o-J 000}: 7 ,3; 8,3; 9, 1: b.
L G£: {*„, | 00^}, {<7h | 000}: 5, 1: a.
K G1

6 ® T3: {S3
+ |000}; t t or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.

H G> ® T 3 ® T 2 : {S + |000}; t , o r t 2 ; t3: 1 ,3; 2 ,3; 3,3; 4,3; 5,3; 6,3: e.

A* Gi (Ci 0), (<7ul, 0): 1, 1; 2, 1; 3, 1: a.
U" Gj (<!„!, 0): 1,1; 2, 1: c.
P* G3 (C3

+, 0): 1, 1; 2, 1; 3, 1: a.
T' G\ (ah, 0): 1,1; 2, 1: c.
S* Gj (a*, 0): 1,3; 2 ,3 : c.
r> G2 (a», 0): 1 ,1; 2 ,1 : c.
S"* G^ (a-,,, 0): 1,3; 2,3: c.
I* G^ (C21, 0), (>„.,, 0): l , x ; 2, x; 3, x; 4,x: c.
fi* Gf (C21,0), (a f c ,0) : 5, x: a.

189 P62m D^

(Fl; K6; Kl; M S ; Zl.)

T Gf 2 : {S3
+ | 000}, {C2', | 000}: 1,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.

M Gl ® T2: {C21 | 000}, {adl | 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
A G\2 ® T2: {̂  | 000}, {C2i | 000}; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
L Gl ®T 2 : {CzilOOO}, { f f ^ lOOO}; t 2 o r t 3 : 1, 1; 2, 1; 3, 1; 4, 1: c.
K G3

12 <g> T3: {53
+ | 000}, {C2'i | 000}; t t ort2 : I ,* ; 2, x; 3, x; 4, x; 5, x; 6, x: e.

H G?2 ® T3 ® T2: {Sf | 000}, {C2', |000}; t: or t 2 ; t3: l , x ; 2, x; 3, x; 4, x, 5, x; 6, x: e.

A" GJh (C3
+, 0), (crdl, 0): 1,1; 2, 1; 3, 1: a.

C/1 GJ (a,,!, 0): 1 ,1 ; 2, 1: c.
P* Gi (C3

+, 0), (adl, 0): 1, x; 2, x; 3, x: a.
7"' G£ (C22, 0), (ad2, 0): l ,x ; 2, x; 3, x; 4, x: c.
S* G2

4 (C22, 0), (ad2, 0): l , x ; 2, x; 3, x; 4, x: c.
F* Gj (C2'i, 0), (o-dl, 0): l , x ; 2, x; 3, x; 4, x: c.
S'1 Gl (C2',, 0), (adl, 0): l , x ; 2, x; 3, x; 4, x: c.
I* G2 (CTJ, 0): 1 ,1; 2,1: c.
«* GJ K, 0): 1, 1; 2, 1: c.

190 P62c P^h

(Fl; AT6; A'V; A/5; Zl.)

T G}
12: {53

+ | 000}, {C21 | 00^}: 1,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
M G2

t® T2: {C2', | 00^}, {<7dl | 00^}; t2: 1, 1; 2, 1; 3, 1; 4, 1: c.
A Gi4: {adi { 00^}, {C3

+ | 000}, {ah\ 000}: 7, 3; 8, 3; 9, 1: a.
L Gt; {tr,! I OOi-}, KIOOO}: 5, 1: a.
K G\2 ® T3: {S3

+ |000},{C21|OOi}; t ,or t 2 : l , x ; 2,x; 3, x; 4, x; 5, x; 6, x: e.
H G1

24 ® T3: {CT^ | 00^}, {C3
+ | 000}, {at | 000}; t t or t 2 : 7, x; 8, x; 9, x: a.

A' G| (C3
+, 0), ( a d l , 0 ) : 1, 1; 2, 1; 3, 1: a.

U* G2 (adi, 0): 1,1; 2, 1: c.
P1 Gl (C3

+, 0), (<rdl, 0): l , x ; 2, x; 3, x: a.
Tx Gl (C22, 0), (ad2, 0) : l , x ; 2, x; 3, x; 4, x: c.
S* Gt (C2'2, 0), K, 0): 5,x: a.
rx Gj (C21, 0), (<rdl, 0): l , x ; 2, x; 3, x; 4, x: c.
S" Gt (CJj, 0), (trh, 0): 5,x: a.
Z1 Gj (ah, 0): 1 ,1; 2, 1: c.
j?* G^ (<7», 0): 1,3; 2,3: c.
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191 P6/mmm D^h

( F l ; K6; Kl; MS; Zl.)

F G24: {C3
+ | 000}, {C21 | 000}, {C2 | 000}, {/| 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1; 11, 1; 12, 1: a.
M Gjj <g> T2: (C2 | 000}, {C21 \ 000}, {/| 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
A G i 4 ®T 2 : {C3

+|000}, {C21 | 000}, {C2 | 000}, {/|000}; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1;
8, 1; 9, 1; 10, 1; 11, 1; 12, 1: a.

L Gl ® T2: {C2 | 000}, (C21 | 000}, {/| 000}; t 2 or t 3 : 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
K G\2 ® T3: {S3

+ | 000}, {C21 | 000}; t t or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
H G?2 ® T3 ® T2: {53

+ | 000}, {C21 | 000}; t t or t 2 ; t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.

A* G\2: (C6
+, 0), (aal, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.

U* Gl: (C2, 0), (a,i, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
P* Gl: (C3

+, 0), (adl, 0): 1 ,1 ; 2 ,1 ; 3,1: a.
T* G4: (C22, 0), (CTd2, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
S* G4: (C2'2, 0), (<Td2, 0): 1,1; 2 ,1; 3 ,1; 4 ,1: c.
T" Gl: (C21, 0), (<7dl, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
S" Gl: (C21, 0), (adl, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
I* GJ: (C21, 0), (<rcl, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
R" Gl (C21, 0), (<TOI, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.

192 P6/mcc 0^t

(Fl; K6- Kl; M S ; Zl.)

F G|V {C3
+ | 000}, {C21 | OOi}, {C2 [ 000}, {/1 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1; 11, 1; 12, 1: a.
M Gl® T2: {C2 | 000}, (C21 | 00|}, {/ 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
A G48: {adt | 00^}, {C3

+ | 000}, {ah\ 000}, {C2 | 000}: 7,3; 8,3; 9, 1; 16,3; 17,3; 18,1: a.
L G?6: {a^ | 00^}, {/ | 000}, {C2 |000}: 5, 1; 10, 1: a.
K G\2 ® T3: {S3

+ | 000}, {C21 | 00^}; tt or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
H G24 ® T3: {adl \ OOi}, {C3

+ | 000}, {ah \ 000}; t t or t2: 7, 3; 8, 3; 9, 1: a.

A1 G?2: (C6
+, 0), (<rcl, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.

Ux Gl (C2, 0), (aei, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
/» G^ (C3

+, 0), (<Tdl, 0): 1,1; 2,1; 3,1: a.
T' Gl (C2'2, 0), (ad2, 0): 1, 1; 2, 1; 3, 1; 4, 1: e.
S* G* (C2'2, 0), (ak,0): 5 ,1: a.
r" Gl (C2i, 0), (adl,0): 1,1; 2, 1; 3, 1; 4, 1: c.
S" G* (C2',, 0), (ak ,0): 5,1: a.
Z' G4 (C21, 0), K!,O): 1, 1; 2, 1; 3, 1; 4, 1: c.
«' Gt (C21, 0), (^,0): 5,1: a.
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193 P(,3/mcm D\h

( F \ ; K6; Kl; M5; Zl.)

F GiV {C3
+ |000}, {C21|000}, {C2|00i},{/|000}: 1 ,1 ; 2 ,1 ; 3,1; 4, 1; 5, 1; 6, 1; 7 ,1; 8, 1; 9 ,1 ;

10, 1; 11, 1; 12, 1: a.
M G| ® T2: {C2 | 00|-}, {C21 | 00^}, {/| 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
A G48: {C6

+jOOi}, {Cjt | 000}, {/| 000}: 13,1; 14,1; 15, 1: a.
L G?6: {C2 | OOi}, {/| 000}, {adl \ 000}: 5, 1; 10, 1: b.
K G?2 ® T3: {53

+ | 00|}, {C21 | OOj}; t t or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.
H G\2 ® T3 ® T2: {S3

+ | 00^}, {C21 |00i}; ^ort;,; t3: 1,3; 2,3; 3, 3; 4, 3; 5, 3; 6,3: e.

A* G?2: (Ct 0), (<r01> 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.
U* Gl (C2, 0), (avl, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
P* Gl (C3

+, 0), (<7 d l ) 0) : 1,1; 2,1; 3,1: a.
T* Gj (C22, 0), ((7,2, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
S" Gg (C22, 0), (<id2, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
7"* Gj (C21, 0), (o-dl, 0): 1, 1; 2, 1; 3, 1; 4, 1: e.
S" G2

S (C2't, 0), (adl, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
!•" Gl (C21, 0), (ffo l , 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
R* G^ K.O), (C21, 0): 5,1: a.

194 P63/mmc Dth

(A2; A3; AS; B2; C5; El; E3; F\; F2; F4; H I ; H2; Jl; K5; K6; Kl; M3; M5; 52; S3; S8; Zl.)

F G^4: {C3
+ | 000}, {C21 |OOi},{C2 |OOi},{/|000}: 1,1; 2,1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1; 11, 1; 12, 1: a.
M G3

S ® T2: {C2|00i}, {C21 |000},{/i 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
A G48: {C6

+ |00i}, {C2, | 000}, {/1 000}: 13,1; 14,1; 15, 1: a.
L G?6: {C2|00i}, {/|000},{(Tcl |000}: 5,1; 10,1: 6.
K G3

12 ® T3: {53
+ |00|}, {C21 |000}; ^ or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: e.

H G24 ® T3: {Oil | OOi}, {C3
+ | 000}, {aft | 00|}; t, or t2: 7, 1; 8, 1; 9, 1: a.

A1 G?2: (C6
+, 0), (a,,, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: d.

U* G4: (C2, 0), (ff.,1,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
f G^: (C3

+, 0), (^,,0): 1, 1; 2, 1; 3, 1: a.
T* G4: (C22, 0), (ad2, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
S' G*: (<7», 0), (C2'2, 0): 5, 1: a.
T" Gl: (C2i, 0), ( a d l , Q ) : 1, 1; 2, 1; 3,1; 4, 1: c.
5" G£: (<r», 0), (C21, 0): 5, 1: a.
Z* Gl: (C21, 0), ((701, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
.R* G^: (ak, 0), (a,i, 0): 2, 3; 4 ,3; 6,3; 8, 3: c.
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195 P23 T1

(Fl; Kl; M5; T5; Zl.)

T G5
12: {C3

+! | 000}, {C 2 z j 000}, {C2y\ 000}: 1, 1; 2, 3; 3,3; 4, 1: a.
X Gl ® T2: {C2z| 000}, {C2y | 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1: 6.
M Gi® T2: {C2z| 000}, {C2y | 000}; t t or t2: 1, 1; 2, 1; 3, 1; 4, 1: b.
R GS

12 ® T2: {C3
+! | 000}, {C2z | 000}, {C2J 000}; t t or t2 or t3: 1, 1; 2, 3; 3, 3; 4, 1: a.

A* Gl: (C2y, 0): 1 ,1 ; 2 ,1 : b.
I* Gj: (£,0): 1, : a.
A' G3: (C3

+
1; 0): , x; 2,x; 3, x: a.

S" Gl: (£, 0): 1, : a.
Z* G2: (C2i, 0): , 1; 2, 1: 6.
Tx G2: (C2z, 0): , 1; 2, 1: 6.

196 F23 T2

(Fl; Kl; M5; T5; Zl.)

F G f 2 : {C3
+! | 000}, {C2z| 000}, {C2j,|000}: 1, 1; 2,3; 3,3; 4, 1: a.

X Gl < g > T 2 : {C2z|000}, {C^IOOO}; t, ort3 : 1, 1; 2, 1; 3, 1; 4, 1: b.
L G\® T2: {C3

+, | 000}; t j or t2 or t 3 : 1, 1; 2, 3; 3, 3: a.
W Gj- ® T4: {C2JOOO}; t2 or t3: 1, 1; 2, 1: 6.

Ax G2: (C2 y ,0) : 1, 1; 2 ,1: b.
A1 G3 : (Cj+^O): l ,x ; 2,x; 3, x: a.
£x G j : (E, 0): 1, 1: a.
5" G}: (E, 0): 1, 1: a.
Z* G^: (C2x, 0): 1 , 1 ; 2,1: b.
Q* G\: (E, 0): l ,x: a.

197 723 T3

(Fl; JC7; M5; T5; Zl.)

T GJ2 : {C3
+, | 000}, {C2z|000}, {C2),]000}: 1,1; 2,3; 3,3; 4, 1: a.

H G?2 ® T2: {C3+, | 000}, {C2z | 000}, {C2, [ 000}; t, or t2 or t3 : 1 ,1; 2, 3; 3, 3; 4, 1: a.
P Gf 2 ® T4: {C3

+! | 000}, {C2z j 000}, {C2, | 000}; tl or t2 ort3 : 1, x; 1, x; 3, x; 4, x: a.
N G2 ® T2: {C2z| 000}; t3: 1, 1; 2, 1: b.

Z* G\ (E, 0): 1, 1: a.
A* G2 (C2y, 0): 1 , 1 ; 2, 1: b.
Ax G3 (C3

+!, 0): 1, x; 2,x; 3,x: a.
D" G2 (C2z, 0): l,x; 2, x: b.
Gx G\ (E, 0): 1, 1: a.
f* G\ (C3

+
4, 0): l , x ; 2,x; 3,x: a.
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198 ^2,3 T4

(Fl; Kl MS; T5; Zl.)

F G!2: {C3MOOO}, {C2z|iOi}, {C2,|0;B}: 1,1; 2,3; 3 ,3 ; 4,1: a.
X Gl {C2,]OH}, {C2z|MV- 5,1: a.
M Gl {C2y |OM},{C2z | |Oi}: 2,3; 4,3; 6,3; 8,3: d.
R G14: {C3-, 010}, {C^lifO}, {C2,|0fi}: 4, 2; 5, 3; 6,3: a.

A* G2 (C2y, 0): 1, 1; 2, 1: 6.
Sx Gj (£, 0): 1, 1: a.
A* G\ (C3

+i, 0): \,x; 2,x; 3, x: a.
S* G\ (E, 0): 1,2: a.
Z* Gi (C2j, 0): 2, 3; 4, 3: a.
7" Gi (C2z, 0): 2 ,2; 4,2: a.

199 72 t3 r5

(C6; Fl; Kl; M5; T5; Zl.)

T G5
i2: {C3

+
1|000},{C2JiOi}, {C2y |OM}: 1,1; 2,3; 3,3; 4, 1: a.

H G!4: {C^\lll},{C2x\^0},{C2y\0^}: 4 ,1 ; 5,3; 6,3; 8,1: a.
P Gl,: {C^l lOO}, {C2,|MO}, {C2J1U}: 7, x; 8,x; 9,x: a.
N G 2 ® T 2 : {C2z |iOi}; t3: 1 ,1 ; 2,1: b.

I* G; (£,0): 1, 1: a.
A' G2 (C2y, 0): 1, 1; 2, 1: b.
A' G3 (CA, 0): l , j c ; 2, x; 3, jc: a.
/>* Gi (C2z, 0): 2,x; 4,x; a.
Gx G[ (E, 0): 1 ,1: a.
F' Gl (C}4, 0) : 2,x; 4, x; 6, x: /.

200 Pm3 TV

(Fl; ^7; M5; T5; Zl.)

T G2^: {S6
+, 000}, {C22| 000}, {C2,|000}: 1,1; 2,3; 3,3; 4, 1; 5, 1; 6,3; 7,3; 8, 1: a.

X Gl® T2: {C2z| 000}, {C2y \ 000}, {/| 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: A.
M Gl ® T2: {C2z| 000}, {C2y \ 000}, {/|000}; t, or t 2 : 1 ,1 ; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
R G\l ® T2: {56

+! |000}, {C2z | 000}, {C2y | 000}; t t o r t 2 or t 3 : 1, 1; 2 ,3; 3,3; 4, 1; 5, 1; 6, 3; 7,3;
8, 1: a.

A* G| (C2>.,0), K,0): 1, 1; 2, 1; 3, 1; 4, 1: c
27 G2 (<rz, 0): 1, 1; 2, 1: c.
A1 GJ (CjY 0): 1, 1; 2 ,3; 3,3: a.
S* G2 (d,,0): 1,1; 2, 1: c.
2" Gj (C2t, 0), (az, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
7" G^ (C2z,0), (a-,,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
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201 Pn3 Tj

(F\; Kl; MS; T5; Zl.)

F GJJ: {S6
+, liii}, {C2z| 000}, {C2,| 000}: 1, 1; 2 ,3; 3,3; 4, 1; 5, 1; 6, 3; 7,3; 8, 1: a.

X G?6: {<TZ | iM}, K I iM}, {C2y I 000}: 5, 1; 10, 1: a.
M G?6: {a, | iM}, {CTZ | |M}, {C2z I 000}: 5, 1; 10, 1: a.
R G^ ® T2: {S6\ |iii}, {C2z| 000}, {C2y | 000}; t j o r t 2 or t 3 : 1, 1; 2 ,3; 3,3; 4, 1; 5, 1; 6 ,3; 7,3;

8, 1: a.

A* Gl (C2y,Q), K,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
X* G2 (<rz, 0): 1, 1; 2, 1: c.
A* G^ (C3

+
1;0): 1, 1; 2,3; 3,3: a.

S* Gi (<T,,0): 2 ,1 ; 4, 1: a.
Z1 Gj (< r y , 0 ) , (C2l,0): 5, 1: a.
T" Gl (a,,0), (C2z, 0): 2, 1; 4, 1; 6, 1; 8, 1: d.

202 Fm3 T?

(Fl; ^7; M5; T5; Zl.)

r Gi2: {S6
+, | 000}, {C2z|000},{C2j,|000}: 1,1; 2,3; 3, 3; 4,1; 5 ,1 ; 6,3; 7,3; 8,1: a.

X Gl ® T2: {C2z| 000}, {C2y \ 000}, {/| 000}; t, or t 3 : 1, 1; 2, 1: 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.
L Gl ® T2: {S6

+
t | 000}; t! or t2 ort3: 1, 1; 2, 3; 3, 3; 4, 1; 5, 3; 6, 3: a.

W Gl ® T4: {C2JOOO}, {<jz|000}; t 2 ort 3 : 1, 1; 2, 1; 3, 1; 4, 1: c.

A* Gj (C2,,0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A* G^ (C3

+!, 0): 1, 1; 2,3; 3, 3: a.
Z* G1

2 ( f f z , 0 ) : 1, 1; 2, 1: c.
S* G2 (cr,,0): 1, 1; 2, 1: c.
Z' G^ (C2j, 0 ) , ( < 7 Z ) 0 ) : 1,1; 2, 1; 3, 1; 4 ,1: c.
Q* Gl (£, 0): 1, 1: a.

203 Fd3 T*

(Fl; Kl; MS; T5; Zl.)

T G2°: {S6
+! fiii}, {C2z| 000}, {C2 ) , iOOO}: 1, 1; 2, 3; 3, 3; 4, 1; 5, 1; 6,3; 7, 3; 8, 1: a.

X G?6: Kliii}, {a,|iii}, {C2y|000}: 5 ,1 ; 10,1: a.
L Gl ®T 2 : {56

+,|iii}; t , o r t 2 o r t 3 : 1 ,1; 2 ,3; 3,3; 4 ,1; 5 ,3; 6,3: a.
W G^: {az|iii},{C2je|000}: 9,1: b.

A* Gl (C2j,,0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Ax G^ (€3+! , 0): 1, 1; 2,3; 3, 3: a.
I." G2 (cr z ,0) : 1 ,1 ; 2, 1: c.
Sx G1

4 (ay,0): 2,1; 4, 1: a.
Z« G* (<r,,0), (C2 x ,0): 5 ,1: a.
/^.v /~< l / IT n\ . i i - ^
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204 7m3 Tf,

(F\; Kl; M5; T5; Zl.)

T G12: {56
+i |000}, {C2z|000}, [C2y \ 000}: 1, 1; 2,3; 3,3; 4, 1; 5, 1; 6,3; 7,3; 8, 1: a.

H G\l ® T2: {£<+! | 000}, {C2z | 000}, {C2,| 000}; t: o r t 2 or t 3 : 1,1; 2,3; 3,3; 4, 1; 5, 1; 6,3; 7,3;
8, 1: a.

P Gl2 ® T4: {C3
+! | 000}, {C2z| 000}, {C2y | 000}; t, o r t 2 or t 3 : 1, 1; 2,3; 3,3; 4, 1: a.

N Gi® T2: {C22|000}, {/|000}; t3: 1, 1; 2, 1; 3, 1; 4, 1: a.

I* G2: (<rz, 0): 1,1; 2, 1: c.
A* G4: (C2,,0), (er,, 0): 1, 1; 2 ,1; 3, 1; 4, 1: c.
A* G3: (C3

+i, 0): 1, 1; 2,3; 3,3: a.
D* G2: (C2z, 0): 1, 1; 2, 1: A.
Gx G2: (<r z ,0): 1,1; 2, 1: c.
fx G^: (C3

+
4, 0): 1, 1; 2,3; 3,3: a.

205 Pa3 7t

(Fl; G5; ^T7; M5; S8; 7"5; Zl; see also Table 5.11 and text of section 5.5.)

F G2J: {S6
+, | 000}, {C22 | M}, {C2,|OH}: 1,1; 2, 3; 3, 3; 4 ,1 ; 5,1; 6, 3; 7, 3; 8,1: a.

X G?6: {C2y | 0#}, {C2z | M}, {az | iOi}: 5, 1; 10, 1: b.
M GI6: {C2x | HO}, {C2z | iO|}, {/1 000}: 9, 3; 10, 3: d.
R G*8: {C^IOIO}, {C2l|i|0}, {C2,|0|i}, {/|000}: 4,2; 5,3; 6,3; 11,2; 12,3; 13,3: a.

A' G^ (C2y, 0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Z* G2 (<r z ,0 ) : 1 ,1; 2, 1: c.
A* G3 (C3

+,, 0): 1, 1; 2, 3; 3, 3: a.
S' G\ (<r , ,0) : 2, 3; 4, 3: a.
Z* G§ (C2x, 0), (t7z, 0): 2, 3; 4, 3; 6, 3; 8, 3: c.
T' Gl (C22,0), (^,0): 5, 2: a.

206 7a3 Tl

(C6; Fl; /f7; A/5; S8; T5; Zl.)

T G2°: {S^ |000}, {C2z|iOi-}, {C2y|0|i}: 1,1; 2,3; 3,3; 4, 1; 5, 1; 6,3; 7,3; 8, 1: a.
H GJ8: {CM | 111}, {C2Ji|0},{C2, |OM}, {/I 000}: 4, 1; 5,3; 6,3; 8, 1; 12, 1; 13,3; 14,3; 16, 1: a.
P G|8: {C3M100}, {C2JHO}, {C2z||li}: 7,2; 8,3; 9,3: a.
N G*: {aJ^Oi}, {/| 000}: 5,1: a.

Zx G^ (<r z ,0) : 1,1; 2, 1: c.
A* G^ (C2,,0), (ax,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A* Gj- (C3

+,, 0): 1, 1; 2, 3; 3, 3: a.
D' Gi (C2z ,0): 2,3; 4,3: a.
Gx G2 (<r z ,0 ) : 1,1; 2, 1: c.
F1 G^ (C3+

4, 0): 2, 3; 4, 1; 6, 3: /.
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207 P432 Ol

(F\; Kl; M5; T5; Zl.)

T G7
24: {C,! | 000}, {C2z | 000}, {C2J | 000}, {C2a | 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.

X Gi ® T2: {C4
+

y| 000}, {C2z | 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5,1: b.
M G£ ® T2: {C4

+
z| 000}, {C2l|000}; t, or t 2 : 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

R G]4 ® T2: {C3", |000}, {C2z| 000}, {C2x\ 000}, {C2JOOO}; t, or t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.

A* G4 (C^., 0)-. 1, 1; 2, ; 3, 1; 4, 1: b.
** G2 (C2a, 0): 1, 1; 2, : b.
A* G3 (C3

+i, 0): 1, 1; 2, ; 3, 1: a.
S' G2 (C2c, 0): 1,1; 2, : b.
Z* G2 (C2x, 0): 1, 1; 2, : 6.
7" G4 (C^, 0): 1, 1; 2, 1; 3, 1; 4, 1: b.

208 P4232 O2

CF1; Kl; MS; T5; Zl.)

T Gl4: {Cj! |000}, {C2z|000}, {C2JOOO}, {C2a\^}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
X GJ ® T2: {C4

+
y | Mi}, {C2z | 000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

M G*®T 2 : {C4
+

Z|M}}, {C2,|000}; t l O r t 2 : 1,1; 2,1; 3,1; 4,1; 5,1: b.
K G724 ® T2: {C31 | 000}, {C22 | 000}, {C2, \ 000}, {C2JiM}; t j or t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.

A* Gi (C4
+

y, 0): 1, 1; 2, 1; 3, 1; 4, 1: b.
X* G2 (C2o, 0): 1,1; 2, 1: b.
A* G3 (C3Y 0): 1, 1; 2, 1; 3, 1: a.
511 G4 (C2c, 0): 2, 1; 4, 1: a.
Z* G^ (C2x, 0): 1,1; 2,1: b.
T' G2

8 (C4
+

z, 0), (£,1): 5, 1; 6, 1; 7, 1; 8, 1: b.

209 F432 O3

(Fl; /:?; M5; T5; Zl.)

T Gl4: {C3-1|000}, {C2JOOO}, {C2l|000}, {C2(,|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
X Gt ® T2: {C4+|000}, {C2z|000}; t! or t 3 : 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
L Gl ® T2: {C3

+! |000},{C2i,|000}; t t o r t 2 o r t 3 : 1, 1; 2, 1; 3, 1: a.
W G 4 ® T 4 : {C2x|000}, {C2<1|000}; t 2 o r t 3 : 1, 1; 2, 1; 3,3; 4,3: b.

A1 G4 (C;,, 0): 1, 1; 2,1; 3, 1; 4 ,1: b.
A* G3 (C3

+!, 0): 1, 1; 2, 1; 3, 1: a.
£* G^ (C2a, 0): 1,1; 2,1: b.
S' G2 (C2c, 0): 1, 1; 2, 1: b.
Z* G2 (C2x, 0): 1, 1; 2, 1: 6.
Q* G\ (C2/,0): l,x; 2,x: b.
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210 jF4t32 O4

( F l ; Kl; M5; T5; Zl.)

F G24: {C3~i | 000}, {C2z 1 000}, {C2x | 000}, {C2a | Hi}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
X G4 ® T2: {C4y|Hi}>{C2z|000}; t, or t3: 1, I ; 2, 1; 3, 1; 4, 1; 5, 1: 6.
i G ? ® T 2 : {C3

+,|000}, {C2t|Hi}; t i O r t j O r t j : 1, 1; 2, 1; 3, 1: a.
W GI6: {£ | 010}, {C2x | 000}, {C2/ | Hi}: 10, 1: c.

A* G\ (C4+, 0): 1, 1; 2, 1; 3, 1; 4, 1: b.
A* Gj (C3

+!, 0): 1, 1; 2, 1; 3, 1: a.
£* G2 (C2o, 0): 1, 1; 2, 1: 6.
S* G} (C2c, 0): 2, 1; 4, 1: a.
Zx G2 (C2,,0): 1,1; 2, 1: b.
Q* Gj (C2/, 0): 4, x; 8,jc: c.

211 7432 O5

(Fl; Kl; MS; T5; Zl.)

F G24: {Cj"! | 000}, {C2r | 000}, [C2x | 000}, {C2, | 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
H G24 ® T2: {C3~! | 000}, {C221 000}, {C2x|000}, {C2JOOO}; t, or t2 or t3: 1, 1; 2, I; 3, 1; 4, 1; 5, 1: a.
P G f 2 ® T4: {C^IOOO}, {C2z|000}, {C2y|000}; t, or t2 or t3: 1, 1; 2, 3; 3, 3; 4, 1: a.
# G4 ® T2: {C2z|000}, {C2J 000}; t3: 1, 1; 2, 1; 3, 1; 4, 1: b.

-L* G2 (C2a, 0): 1, 1; 2,1: ft.
A1 Gi (C4

+,, 0): 1, 1; 2, 1; 3, 1; 4, 1: b.
Ax G3 (C3

+!, 0): 1,1; 2, 1; 3, 1: a.
O' G2 (C2z, 0): 1,1; 2,1: b.
G' G2 (C2b, 0): 1, 1; 2, 1: 6.
F" G3 (C3

+
4, 0): 1, 1; 2, 1; 3, 1: a.

212 P4332 O6

CF1; Kl; M5; T5; Zl.)

F GI4: {C3-1|000},{C22|iOi},{C2l|iiO},{C2jH!}: 1 ,1 ; 2 ,1 ; 3,1; 4,1; 5,1: fl.
X G\l: {C4,lHi},{C2,lttO}: 6,1; 7,1: a.
M G|°: {C4z|lH}, {C2JiOi}, {C2Ji||}: 5,3; 6,3; 7,3; 8,3; 9,1: a.
R G48: {C2;c | HO}, {C2y | OH}, {CM | 000}, (C2b | Hi}: 4, 3; 5, 3; 8, 1: a.

A' G4: (C4
+

y, 0): 1, 1; 2, 1; 3, 1; 4, 1: b.
£* G2: (C2o, 0): 1, 1; 2, 1: 6.
A' G.,: (C3

+,,0): 1,1; 2, 1; 3, 1: a.
Sx Gj: (C2c, 0): 4,3; 8,3: c.
Z* G4: (C2,,0): 2,3; 4,3: a.
T* G3

16: (Ci, 0), (£, 1): 5, 3; 6, 3; 7, 3; 8, 3: a.
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213 P4t32 O1

(F\; Kl; M S ; TS; Zl.)

F G]4: {Cj-,1000}, {C2z||0|}, {C^liiOUC.JlH}: 1,1; 2,1; 3,1; 4 ,1 ; 5,1: a.
X G\\: {C4-|Hi},{C2JiiO}: 6, 1; 7, 1: a.
M G!°: {C4- | H|}, {C221 il|}, {C2t HI}: 5,3; 6,3; 7,3; 8,3; 9,1: a.
R G£8: {C2,|MO}, {C2,|OM}, {C3-1|000}, {C2(,||||}: 4,3; 5,3; 8 ,1 : a.

A* G4: (C4+, 0): 1, 1; 2,1; 3,1; 4, 1: ft.
Z* G2 : (C2a, 0): 1, 1; 2, 1: b.
A* G3: (C3

+,, 0): ], 1; 2, 1; 3, 1: a.
Sx Gj: (C2c, 0): 2,3; 6, 3: b.
Z* G4: (C2x, 0): 2,3; 4,3: a.
T* G?6: (C4

+
z, 0), (£, 1): 5, 3; 6, 3; 7, 3; 8, 3: a.

214 74t32 O8

(-F1; ^7; M5; T5; Zl.)

F G7
24: {Cf.lOOO}, {C2l|iOi}, {C2J MO},{C2JiOO}: 1,1; 2,1; 3,1; 4,1; 5,1: a.

H Gl8: [C32 | MO}, {C2x I MO}, {C2y | 0^}, {C2a I JOO}: 2, 1; 3, 1; 6, 1; 9, 1; 10, 1: b.
P G|8: {C3

+
1 |100},{C2JMO},{C2z |fli}: 7, 1; 8, 1; 9, 1: a.

N G J ® T 2 : {CjJiOO}, {C2JiM}; t3: 1, 1; 2, 1; 3, 1; 4, 1: 6.

^x G! (C2o, 0): 1, 2, 1: A.
A* G4 (C^,, 0): 1, 2, 1; 3, 1; 4, 1: b.
Ax Gj (C3

+
15 0): 1, 2, 1; 3, 1: a.

D* G4 (C2z, 0): 2, 4,1: a.
G* G4 (C2i,, 0): 2, 4,1: a.
F" G1

6 (C3
+

4, 0): 2, 4 ,1; 6, I:/.

215 P43m n

(F]; Kl; M5; T5; Zl.)

r G24: {Cf, |000}, {C2z|000}, {C2,|000}, {adj 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
X Gs ®T 2 : {S^IOOO}, {C2z|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: 6.
M G £ ® T 2 : {S4

+
2 | 000}, {C2l|000}; t, or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

R G24 ® T2: {Cf, | 000}, {C2z | 000}, {C2x \ 000}, {<TdJOOO}; t j o r t 2 or t 3 : 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.

A* Gj: (C2>.,0), (adc, 0): 1,1; 2,1; 3,3; 4,3: c.
X* G2. (adb, 0): 1, 1; 2, 1: c.
A' G^: (C3

+,, 0), (adb, 0): 1, x; 2, x; 3, x: a.
5" G2: (ade, 0): 1, 1; 2, 1: c.
Z* G|: (C2x, 0): 1, 1; 2, 1: 6.
T* Gl\ (C2z,0), (dda ,0): 1, 1; 2, 1; 3,3; 4,3: c.
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216 F43m Tj

( A l ; B3; B4; BS; B6; C2; D4; Fl; K5; K.1; M S ; M6; PI ; SI; S6; S8; TS; Zl.)

T G7
24: {C3~! | 000}, {C2z | 000}, {C^ | 000}, {ada \ 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.

X Gj ® T2: {Si | 000}, { C 2 f \ 000}; t, or t3 : 1 ,1 ; 2, 1; 3, 1; 4, 1; 5, 1: b.
L Gl ® T2: {C3

+! |000}, {<7dJOOO}; t, o r t 2 or t 3 : 1 ,1 ; 2, 1; 3, 1: a.
W G ' < g ) T 4 : {S4

+, | 000}; t'2 or t3: 1 ,1; 2 ,1 ; 3, 1; 4,1: b.

A* Gj: (C2y) 0), (adc, 0): 1 ,1 ; 2, 1; 3,3; 4,3: c.
A' Gi: (C3

+,,0), (adh, 0): 1, x; 2, x; 3, x: a.
£* Gi: (adb, 0): 1, 1; 2,1: c.
S* Gi: (<jde, 0): 1, 1; 2, 1: c.
Zx Gi: (C2l, 0): 1, 1; 2, 1: ft.
g* G}: (E, 0): 1, 1: a.

217 743m Tl

( F l ; Jl; Kl; MS; T5; Zl.)

T GJ4: {Cf, |000}, {C2z |000}, {C2x |000}, {ada \ 000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
H G ^ 4 ® T 2 : (C3-, 1000}, {C2s |000}, {C2l |000}, {<7to| 000}; t: or t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
P G14 <g) T4: {CM |000}, {C2z| 000}, {C2x \ 000}, {<rdJOOO}; t, o r t 2 or t 3 : l,x; 2, x; 3, x; 4, x; 5, x: a.
AT G4 ® T2: {C2J 000}, {<r^ | 000}; t3: 1, 1; 2, 1; 3, 1; 4, 1: c.

Z* G2: (a j t )0): 1,1; 2 ,1: e.
A' G^: (C2y, 0), Ode, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
A" G^: (C,\, 0), (a,,, 0): 1, x; 2, x; 3, x: a.
Dx Gj: (C2z, 0),((Td6 , 0): l , x ; 2, x; 3, x; 4, x: c.
Gx G2: (<7do, 0): 1,1; 2, 1: c.
F* G^: (C3

+
4, 0), (a^, 0): 1, x; 2, x; 3,x: a.

218 P43n T\

( F l ; Kl; MS; TS; Zl.)

T G^4: {C^IOOO}, {C2z|000}, {C2I|000}, {ada}^}: 1,1; 2,1; 3,1; 4,1; 5,1: a.
X G}g: {S4

+,,|iM},{C2y|010},{C2z|000}: 5,3; 6,3; 7,3; 8,3; 9,1: a.
M G* ® T2: {S4

+
z|Hi}, {C2* I 000}: t t or t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

K Gtv {S4+ | ii|}, {<Tda | |ii}, {C3-3 | 000}: 3, 3; 4, 3; 6, 2; 9, 3; 10, 3: a.

A' G4: (C2>., 0), (<74c, 0): 1,1; 2, 1; 3, 3; 4, 3: c.
I* G2: (<7di , ,0): 1,1; 2 ,1 : c.
A" Gj|: (C3

+!,0), (a*, 0): l , x ; 2, x; 3, x: a.
S* G|: (ade, 0): 1,3; 2, 3: c.
Z* Gi: (C2;c, 0): 1 ,1 ; 2, 1: b.
T* Gj: (C2z ,0), ( f f d o ,0 ) : 1 ,3; 2,3; 3 ,1; 4, 1: c.
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219 F43c T\

( F l ; K7; M5; T5; Zl; see also section 5.4.)

T G24: {C3-, | 000}, {C2z | 000}, {C2JOOO}, KJiii}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
X G£ ® T2: {S4

+
}. | Hi}, {C2x| 000} ; t , or t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: 6.

£ G|2: {£31 I 001}, {^IIM}: 3,3; 4,3; 6,2: a.
W Gi ® T4: {S£ Mi}; t 2 or t 3 : 1, 3; 2,3; 3, 3; 4,3: b.

A* Gl (C2,,0), (a,,,, 0): 1 ,1; 2, 1; 3, 3; 4, 3: c.
A' Gj| (C3+, 0), (adt,0): 1.x; 2, x; 3,x: a.
X' G\ (<rib,0): 1,1; 2, 1: c.
5" G2 (aie, 0): 1, 1; 2, 1: c.
Z* G2 (C2j, 0): 1, 1; 2, 1: b.
Q* G\ (E, 0): 1,2: a.

220 743rf T^

(F\; K\; Kl; MS; T5; Zl.)

T GJ4: {Cj-JOOO}, {C2z|iOi},{C2x|iiO},{a,JiOO}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: a.
H GI8: {S£ I JOO}, {ada \ ̂ 00}, {C3^3 | 1^}: 3, 3; 4, 3; 6, 2; 9, 3; 10, 3: a.
P Gl,6: {C3

+
2 | Oii}, {C2). i OM}, {C2:[ | ||0}, {S4

+
x 1^11}: 9, x; 10, x; 16, x: a.

W GJ: {aJb |iM},{C2lliOi}: 5 , 1 = 0 .

I1 G2: (^,0): 1 , 1 ; 2 ,1 : c.
A* G|: (C2y, 0), (ff je, 0): 1, 1; 2, 1; 3, 3; 4, 3: c.
A1 G;|: (C3

+,,0), (adb, 0): l , x ; 2, x; 3,x: a.
Z)' G*: (C2,,0),(adb, 0): 5,x: a.
G' Gl (<ria,0): 1,3; 2,3: c.
/" GJ2 : (C3

+
4, 0), (ffda, 0): 3, x; 4, x; 6, x: /.

221 fm3m O^

(^4; B2; B8; £1; Fl; /73; J\; K5; Kl; MS; N2; N3; S4; S$; T4; TS; Y\; Zl.)

T GJ8: { î I 000}, {ax\ 000}, {a, \ 000}, {C2c|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: a.

X G ? 6 ® T 2 : {C4
+, | 000}, {C2z | 000}, {/|000}; t2: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1: e.
M G?6 ® T2: {C4

+
zj 000}, {C2J 000}, {/1 000}; t! or t 2 : 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;

10, 1: e.
R G48 ® T2: {S6~! | 000}, {a, \ 000}, {a,\ 000}, {C2c | 000}; t t or t2 ort3: 1 ,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1;

7, 1; 8, 1; 9, 1; 10, 1: a.

A' Gi (C4
+,,0), K, 0): 1,1; 2, 1; 3, 1; 4, 1; 5, 1: b.

2* Gl (C2o, 0), (az, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
A' G^ (C^,0),(adl,,0): 1, 1; 2, 1; 3, 1: a.
S* G2

4 (C2c, 0), (<7,,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Z* Gl (C2j, 0), ( f f z , 0 ) : 1, 1; 2, 1; 3, 1; 4, 1: c.
7" G£ (C4

+
z, 0), (a,, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
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222 Pnln Ol

(F\; H I ; Kl\ M S ; T4; T5; Zl.)

T G4S: {S^liil}, {<7,!Mi}, KiMi}, {C2c|000}: 1,1; 2 ,1 ; 3,1; 4,1; 5,1; 6,1; 7 ,1 ; 8,1; 9 ,1;
10, 1: a.

X G32: {/liii},{^liM},{C4), 1000}: 10,1; 11,1; 12,3; 13,3: a.
M G2

32: {C^JOOO}, KlMi), {C2j[|000}: 9, 1; 11,1; 12, 1; 14,1: a.
R G2

6: {C3-2|010}, {C2x|000}, {C2j,|000},{C2/|000}, {/|Mi}: 7, 1; 8, 3; 9, 3; 14, 1: a.

A' Gj: (C4
+

y, 0), (af, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
I.* Gl: (C2a, 0), (<rz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A* G2

6: (C3
+

1; 0), (adb, 0): 1, 1; 2, 1; 3, 1: a.
S* Gl: (<ry ,0), (C2c, 0): 5, 1: a.
Z* GS": (<r,,0), (C2j, 0): 5,1: a.
T' G>°: (C4

+
z, 0), (C22, 1), (<T,a, 0): 5, 1; 6, 1; 7, 1; 8, 1; 9, 1: b.

223 Pmln Ol

( F l ; G6; #3; Kl'; MS; T4; TS; Zl.)

T G48: {S6-, | 000}, {a, | 000}, {a, | 000}, {C2c | iM}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: a.

A- Gi2: {54
+,|^},KlHi},{C2c|iH}: 9,1; 11,1; 12,1; 14,1: A.

M G ? 6 < g > T 2 : {C^lHi}, {C2x|000}, {/|000}; t l O r t 2 : 1,1; 2, 1; 3 ,1; 4 ,1; 5,1; 6,1; 7,1; 8,1; 9,1;
10, 1: e.

R G2
96: {C3-2|010}, {C2JOOO}, {C2>|000}, {C2/lHi-}, UIOOO}: 7 ,1; 8,3; 9,3; 14,1: a.

A1 G£: (C4*, 0), (<rx, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
£* G|: (C2fl, 0), ( f f z , 0 ) : 1, 1; 2, 1; 3, 1; 4, 1: c.
A" G§: (C3

+!, 0), (udb, 0): 1,1; 2, 1; 3, 1: a.
S* Gl: (C2c,0), (<ry,0): 5, 1: a.
Zx Gl: (C2x, 0), (<r2 ,0) : 1, 1; 2, 1; 3, 1; 4, 1: c.
T' G?6: (C4

+
z, 0), (a,, 0), (£, 1): 6, 1; 7, 1; 8, 1; 9, 1; 10, 1: d.

(Bl; Fl; H3; Kl; MS; Ml; T4; T5; Zl.)

r f^l . f o - i l l l ) f„ i l l l l I _ r l l l l </-< j l l l \ . i i . T i . T i . ,f T . t i . /: i . -7 i . o 1 . n i .G48- {iei I Til/' l°*l III)' tCT2 I III). l C 2c l Til)- 1, I , 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1,
10, 1: a.

X G2
32: {C4-|iii}, KlTii}, {C2x|000}: 9, 1; 11, 1; 12, 1; 14, 1: a.

M Gf 2 : {C4-z|Mi}, K|Mi}'{C2y|000}: 9, 1; 11, 1; 12, 1; 14, 1: a.
« G 4 8 ® T 2 : {S^liM}, K I iM}'K I ill}, {C2cliiT}; t 1 o r t 2 o r t 3 : 1,1; 2,1; 3,1; 4,1; 5,1; 6,1;

7, 1; 8, 1; 9, 1; 10, 1: a.

A* Gf: (C4
+,,,0), (<!„ 0): 1, 1; 2, 1; 3, 1; 4,1; 5, 1; b.

X' Gl: (C2o, 0),(<rz , 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A' GJh (C^OU^O): 1,1; 2 ,1; 3,1: a.
S* G\: ( C 2 c , Q ) , ( a d e , Q ) : 2,1; 4, 1; 6,1; 8, 1: c.
Z* Gl: ( a y , 0 ) , ( C 2 l f , 0 ) : S , l : a .
T' G\%: (<?„ 0), (C22, 0), (adb, 0): 5, 1; 6, 1; 7, 1; 8, 1; 10, 1: e.

224 pn3m 04b
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225 Fm3m Oj

(See section 3.8; A4; B2; B8; C4; C5; £1; F\; F4; F6; #3; /I ; *5; Kl; M5; P I ; S4; 58; T4;
7*5; K3; Zl.)

F G48: {56-,|000}, KIOOO}, {ffJOOO}, {C2e|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, I ; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: a.

X G?6 ® T2: {C4
+, I 000), {C2x \ 000}, {/ | 000}; t, or t3: 1,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, I ; 9, 1;

10, 1: e.
i G?2 ®T2 : {S^IOOO}, {C2b|000}; t , o r t 2 o r t 3 : 1,1; 2,1; 3 ,1; 4, 1; 5, 1; 6,1: a.
W G* ® T4: {Si, | 000}, {C2d \ 000}; t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

A* GJ (C4+,0), (CT,, 0): 1,1; 2,1; 3,1; 4,1; 5,1: b.
A* G| (C3\,a\(adb,0): 1, 1; 2, 1; 3, 1: a.
£* Gl (C2a, 0), (CTZ, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
S1* G2

t (C2c, 0),(ay, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Z* G£ (C2jc> O) , (<T Z , 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
2* G^ (C2/, 0): 1,1; 2, 1: b.

226 Fm3c Q£

(Fl; H3; JC7; MS; T4; T5; Zl.)

r G48: {S^li^j.K iii}, {ffjMi}, {C2c|000}: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: a.

X G?6 ® T2: {C4+ | 000}, {C2:r 000}, {/|Mi}; t t ort3 : 1 ,1 ; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: e.

L G24: {adb\2^}, {CM | 000}, {/| iM}: 7, 3; 8, 3; 9, 1: a.
W G3 2> : {S^l&i}, {£|010}, {C2J|000}: 13,3; 14,3; 15,3; 16,3; 20,1: a.

A* G£ (C4+, 0), (<rx, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; b.
A1 G* (Cj+.O), (ffd i , ,0): 1,1; 2 , 1 ; 3,1: a.
2* Gj (C2a,0), (CTZ, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
5" Gl (C2c, 0), (cr y ,0) : 1,1; 2, 1; 3, 1; 4, 1: c.
Zx G| (Cj,, 0), (<J Z , 0 ) : 1, 1; 2, 1; 3, 1; 4, 1: c.
g* G^ (C2/, 0): 1, 3; 2,3: b.

227 Fdlm Ol

(See section 3.8; B5; Bf,; D3; El; E2; Fl; H I ; H3; Jl; K3; K5; Kl; LI; M2; M5; M6; ^3; P I ;
P4; 58; 51); T4; T5; Y3; Zl.)

r G48: {s6-,iUi}, {^li«}, KliH},{c2c|iH}-- 1, J ; 2, i ; 3, i ; 4, i ; 5, i ; e, i ; 7, i ; 8, i ; ,9, i ;
10, 1: a.

X G\2: {ax\ £*}, [St, I 000}, {C2x | 000}: 10,1; 11,1; 13,1; 14,1: c.
L G ? 2 ® T 2 : {S6

+i!Ui}, {C2feliU}; t, or t2 or t3: 1, 1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1: a.
W G3V WJOOO}, {£|001}, {C2/|44i}: 11,1; 12,1: b.

A* G* (C4+, 0), (CTX, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: 6.
A' G^ (C3

t
1,0),(adi,,0): 1, 1; 2, 1; 3, 1: a.

Z* G4 (C2o, 0), (CTZ, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
S' G^ (a,,, 0), (<rde, 0): 2, 1; 4, 1; 6, 1; 8, 1: c.
Z* GJ (S, 0) , (a z ,0 ) : 5, 1: a.
g* GJ (C2/, 0): 4, 1; 8, 1: c.



THE SINGLE-VALUED REPRESENTATIONS OF THE 230 SPACE GROUPS 38

228 Fd3c Ot

(Fl; H3; Kl; M5; T4; T5; Zl.)

T G48: {S6-,||H}, {^IIH}, Kl f f f} , {C2c|H*}: 1 ,1 ; 2 ,1 ; 3,1; 4,1; 5,1; 6,1; 7,1; 8,1; 9,1;
10, 1: a.

X G2
32: {C4- Hi}, K I Hi}, {C2x|000}: 9 ,1 ; 11,1; 12, 1; 14, 1: a.

i G24: {a,,, | Mi}, {C3-, | 000}, {/ 11||}: 7, 3; 8, 3; 9, 1: a.
W G\2: {s:x\222},{E\QlO},{C2d\iU}: 13,3; 14,3: a.

Ax Gj: (C4+, 0), K, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.
A' G|: (C31,, 0), (<7db, 0): 1 ,1 ; 2 ,1; 3 ,1: a.
£* G4: (C2o, 0), (<rz ,0): 1, 1; 2, 1; 3, 1; 4, 1: c.
Sx G2

S: (ay, 0), (ff.,,,0): 2, 1; 4, 1; 6, 1; 8, 1: d.
Zx Gj: (ay, 0), (<rz, 0): 5, 1: a.
Q* G\: (C2f, 0): 4,3; 8,3: c.

229 /m3m Ol

(A4; Bl; B2; B8; C5; El; Fl; F4; H3; 71; K5; Kl; M5; S4; S8; T4; T5; Zl.)

T G48: {561 | 000}, {(7,1 000}, {a, \ 000}, {C2c | 000}: 1,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: a.

H G48 ®T 2 : {S6l )000}, {ax\ 000}, {ffz | 000}, {C2c | 000}; t t o r t 2 o r t 3 : 1,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1;
7, 1; 8, 1; 9, 1; 10, 1: a.

P G24 <g> T4: {C3~! | 000}, {C 2 z jOOO}, {C2x\ 000}, {ada\ 000}; t, or t2 ort3 : 1,1; 2, 1; 3, 1; 4, 1; 5, 1: a.
N Gl ® T2: {C22| 000},{C2t| 000}, {/1 000}; t3: 1,1; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1: b.

E* G4: (C2o, 0), (<rz, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A* GJ: (C4

+
y, 0), (ax, 0): 1, 1; 2, 1; 3, 1; 4, 1; 5, 1: b.

\x Gl. (C^,0), (adb, 0): 1,1; 2 ,1; 3 ,1: a.
D' G4: (C2z, 0), (<rib, 0): 1 ,1 ; 2 ,1 ; 3 ,1 ; 4 ,1: c.
G* Gl: (C2b, 0), («•„„, 0): 1,1; 2, 1; 3, 1; 4, 1: c.
Fx G2

6: (C3
+

4, 0), (ada, 0): 1, 1; 2, 1; 3, 1: a.

230 Ia3,d Oyj"

(Fl; H3; Kl; MS; S8; T4; T5; Zl.)

T Gls: {S6-, 000}, {a, | MO}, {<rz iOi}, {C2c |00i}: 1 ,1 ; 2, 1; 3, 1; 4, 1; 5, 1; 6, 1; 7, 1; 8, 1; 9, 1;
10, 1: a.

H G*6: {C3-2||iO},{C2;t|iiO}, {C2v|0ii}, {ada\±00}, {/1 000}: 7 ,1 ; 8,3; 9,3; 14,1: a.
P GJ6: {C3

+
2|OM}, {C2,|OM}, {C2x|||0}, {S4

+
x |ill}: 9,3; 10,3; 16,1: a.

N G?6: foJMi}, {C26|Mi},{C2JiOO}: 5,1; 10, 1: a.

Z* G4: (C2o, 0), (CTZ, 0): 1, 1; 2, 1; 3, 1; 4, 1: c.
A' G*: (Ci, 0), (ax, 0): 1,1; 2, 1; 3, 1; 4, 1; 5, 1: b.
\> G2

6: (C3
+!,0), ( a M , 0 ) : 1, 1; 2, 1; 3, 1: a.

D' Gl: (C2z, 0), (<7dt, 0): 5 , 1 : a.
G* G|: (C2b ,0), (<jdo, 0): 5,1: a.
Fx G\2: (C3\,0),(^a,0): 3, 1; 4, 1; 6, 1: /

385
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Notes to Table 5.7

(i) The space groups are arranged in the order and notation used in Volume 1 of the International tables for
X-ray crystallography (Henry and Lonsdale 1965) and in Table 3.7 of this book.

(ii) The Brillouin zone for any space group can be identified from Table 3.7 and Figs. 3.2-3.15.
(iii) The first column lists the special points of symmetry and the lines of symmetry in the basic domain of the

Brillouin zone (see section 3.3); their positions in the Brillouin zone can be identified from Table 3.6. A superscript x
is used to indicate a line of symmetry, for example, in the case of F43c (IT/) A, A, Z, S, Z, and Q are lines of symmetry
while F, X, L, and W are points of symmetry.

Points of symmetry

(iv) Following the label of a point of symmetry the little group "Gk (in the sense of Herring (1942), see sections
3.8 and 5.2) is identified. This is done as follows: the abstract group Gjq (see Table 5.1) is given and the space-group
elements following G"C| are to be identified with P,Q,R,..., the generators of G"C| in the order in which they occur.
For example, for F43c (Tj) at the point F, "Gk is G^ and the generators of "Gk are, in terms of the generators of G24,

{CM | 000} = P,

{C2z | 000} = Q,

{C^ | 000} = R,

and {aia \ ij|} = S.

The rest of the elements of "Gk can then be constructed and assigned to the five classes of G24 using Tables 1.5, 1.6,
3.2, and 5.1. The recognition of an element, e.g. P2RS, the last element in the class C3,

= {C3-1|000}2{C2JOOO}{adJiii},

and its identification as a single space-group element can be made by using the multiplication rule for the Seitz space-
group symbols (see sections 1.4 and 1.5). In this case

P2RS = {C^ | 000}2{C2, | 000}{ada \ jji} = {C^ \ 000}{S4
+

Z | -|M} = {S4~ I i -ti}.

The multiplication of the rotational parts of the Seitz space-group symbols can be done with the help of Tables 1.5
and 1.6.

(v) In some cases for points of symmetry HGk is written as G"C| ® Tm, a direct product of some group G"C| with
Tm, an Abelian group of small order, m, consisting only of translation operations of the form {E \ t}. In these cases
a suitable generating element of the Abelian group is indicated after the generators of G"G| by giving the translation
t of {£ | t}. For example, in the case of F43c (71/) at the point W, "Gk is the direct product of the groups G4 (with
P = {S** I iii}) and T4 (with {£ 11} = {E \ t2} or {£ | t3}). T4 is the Abelian group of order 4 whose elements are
thus {E | 0}, {E | t,}, {E | 2t,}, and {E \ 3t;}, with ;' = 2 or 3 and with the actual form oft, being identified from Table
3.1. In a few cases HGk takes the form G"G| (g) Tm ® Ts where Tm and Ts are two Abelian groups with generating
elements {E \ tm] and {E \ t,} respectively; tm and ts are then listed following the generators of G"G| (see, for example,
P63/mcm (£>!„) at the point H).

(vi) After the above information, and separated from it by a colon, is the identification of the labelling assigned
to the reps of "Gk and of the reality of the induced space-group reps (Fk t G) (see sections 4.6, 5.2, and 7.6). Between
one pair of semicolons is the code 'p, q' which is to be understood as meaning that the rep Rp of G"C| corresponds
to a small (allowed) rep, Fk, of Gk, and that (Fk t G) is of the q\h kind (q = 1, 2, or 3). The usefulness of the reality
of (Fk t G) lies in determining whether or not extra degeneracies occur if the crystal described by the space group G
also possesses time-inversion symmetry. The relation between the reality of (Fk 1 G) and these extra degeneracies
described in the text of section 5.2 (see p. 388) is

Reality Degeneracy
1 a
2 b
3 c

When there is no element in the space group that transforms k into — k the addition of time-inversion symmetry
produces a type (x) degeneracy (see p. 389 and p. 652) and in this case the symbol x is used in the table in place of the
reality 1, 2, or 3.
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(vii) In the cases where "Gk contains one or more elements of the form {E \ t} only those reps of HGk are included
that are compatible with the requirement of eqn (3.4.3) Ak({£ 11}) = exp ( —ik.t) l for a representation of the
translation group T of which {E \ t} is a member; that is, only reps of "Gk which lead to small reps of Gk are included.

(viii) The labels used for the space-group reps derived from «,, R2, R3,.. ., etc., the reps of the abstract group
G"G| are indicated by the small letter a, b, c, .. ., etc., at the end of the entry for the point of symmetry in question.
The letters a, b, c, . . ., etc., refer the reader to the relevant part of Table 5.8 (see the notes to Table 5.8).

Lines of symmetry
(ix) Following the label of the line of symmetry the central extension Gk* (see sections 3.7 and 3.8) is identified;

the elements of Gk* are of the form (Hj, a) where //,. is the point-group operation part of a space-group element and
a is a member of the cyclic group Z9 (see eqn (3.7.31)). The (Hj, a) form the abstract group which is specified and
the elements that are given are to be identified with P, Q, R, .. ., the generators of G"G! in the order in which they
occur. Where alternative values of k for a line of symmetry were given in Table 3.6 we have used the first entry in
deriving this table.

(x) After the generators of Gk* and separated from them by a colon is the labelling of those reps of Gk* that
satisfy eqn (3.7.33) and therefore lead to small reps of Gk; the reality of the induced space-group reps (Fk t G) is
also indicated. Between one pair of semicolons is the code '/?, q' which is to be understood as meaning that the rep
(Fk t G) derived from Rp of G"C| is of the qth kind (q = 1, 2, or 3); see Note (vi) above. Reps that do not satisfy
eqn (3.7.33) are not included. The letters a, b, c,. . . , etc. refer the reader to the relevant part of Table 5.8 for the
letters used to label the space-group reps (see the notes to Table 5.8).

(xi) References to work on the representations of individual space groups are given in the table, in coded form,
under the appropriate space group according to the following key:

A\ Adler 1962. F3
A2 Altmann 1956. F4
A3 Altmann and Bradley 1965. F5
A4 Altmann and Cracknell 1965. F6
A5 Antoncik and Trlifaj 1952. Fl
Ad Asendorf 1957. F8
B\ Bates and Stevens 1961. Gl
B2 Bell 1954. G2
B3 Birman 1959a G3
B4 Birman 19596. G4
B5 Birman 1962o. G5
B6 Birman 19626, 1963. G6
Bl Bordure, Lecoy, and Savelli 1963a, b. Gl
B8 Bouckaert, Smoluchowski, and Wigner 1936. G8
Cl Casella 1959. H\
C2 Chaldyshev and Karavaev 1963. H2
C3 Chen 1967. #3
C4 Chen, Berenson and Birman 1968. J\
C5 Cornwell 1969. 72
C6 Cracknell 1965. K\
Cl Cracknell 1967c.
C8 Cracknell and Joshua 1969a. K2
D\ Daniel and Cracknell 1969. A3
D2 Dimmockand Wheeler 19626. K4
03 Doring and Zehler 1953. K5
D4 Dresselhaus 1955. K6
El Elliott 19546. Kl
El Elliott and Loudon 1960. L\
£3 Erdman 1960. L2
Fl Faddeyev 1964. Ml
F2 Falicov and Cohen 1963. M 2

Falicov and Golin 1965.
Falicov and Ruvalds 1968.
Firsov 1957.
Flower, March, and Murray 1960.
Frei 1967a.
Frei 19676.
Gashimzade 1960a.
Gashimzade 19606.
Gay, Albers, and Arlinghaus 1968.
Glasser 1959.
Gorzkowski 1963a.
Gorzkowski 19636, 19646.
Gorzkowski 1964a.
Gubanov and Gashimzade 1959.
Herring 1942.
Hsieh and Chen 1964.
Hurley 1966a.
Jones 1960.
Joshua and Cracknell 1969.
Karavaev, Kudryavtseva, and Chaldyshev
1962.
Karpus and Batarunas 1961.
Khartsiev 1962.
Kitz 1965a.
Koster 1957.
Kovalev 1961a, 6.
Kovalev 1965.
Lax and Hopfield 1961.
Lee and Pincherle 1963.
Mase 1958, 1959o.
Masc 19596; Mia,sck 1960, 1963, 1966.
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55 Sek 1963.
56 Sheka 1960.
SI Shur 1966.
58 Slater 19656.
59 Slater, Koster, and Wood 1962; Koster 1962.
510 Slechta 1966.
511 Streitwolf 1964.
512 Suffczynski 1960.
513 Suffczynski 1961.
514 Sushkevich 1965.
515 Sushkevich 1966.
7T Tovstyuk and Bercha 1964.
T2 Tovstyuk and Gemus 1963.
T3 Tovstyuk and Sushkevich 1964.
T4 Tovstyuk and Tarnavskaya 1963.
T5 Tovstyuk and Tarnavskaya 1964.
T6 Treusch and Sandrock 1966.
V\ Van Huong and Olbrychski 1964.
W\ Waeber 1969.
71 Yamazaki 1957a.
72 Yamazaki 19576.
73 Yanagawa 1953.
Zl Zak, Casher, Glttck, and Gur 1969.

M3 Mia,sek 1957a, b, 1958.
M4 Miqsek and Suffczynski 1961fl, b, c.
MS Miller and Love 1967.
M6 Montgomery 1969.
Ml Moskalenko 1960.
M8 Murphy, Caspers, and Buchanan 1964.
N\ Nusimovici 1965.
N2 Nussbaum 1962.
N3 Nussbaum 1966.
01 Olbrychski 1961.
02 Olbrychski 19636.
03 Olbrychski and Van Huong 1970.
PI Parmenter 1955.
PI Pikus 1961a.
PI, Pikus 19616.
P4 Pikus 1961c.
R\ Rabotnikov 1960.
R2 Rashba 1959.
R3 Rashba and Sheka 1959.
#4 Rudra 19656.
51 Sandrock and Treusch 1964.
52 Schiff 1955.
53 Schiff 1956.
54 Schlosser 1962.

In Table 5.7 we give, effectively, the reps of Gk, say Fk, and hence the degeneracies
of energy levels E* of particles or quasi-particles with wave vector k are available;
they are just the degeneracies of the Fk. However, if we are considering a crystal in
which no magnetic ordering exists the crystal will possess time-reversal symmetry
in addition to all the spatial symmetry operations of G. The complete group of the
crystal is then the direct product G (x) (E + 6) where 9 is the operation of time-
inversion. The addition of the extra symmetry operation, 0, may cause some extra
degeneracies in the energy levels of a particle or quasi-particle with wave vector k.
If Ef is an energy level belonging to the rep Fk of Gk then there are three possibilities,
(a) there is no change in the degeneracy of E*,
(b) the degeneracy of E* becomes doubled, that is two different energy levels, both

described by the same rep Fk, become degenerate, and
(c) the degeneracy of £k becomes doubled but, unlike (b), two different (i.e. in-

equivalent) reps Fk and Fk of Gk become degenerate because of the addition of 9
to the space group of the crystal.

In Table 5.7 we indicate for each small rep whether it belongs to case (a), case (b),
or case (c) and hence it is possible to see whether or not the addition of time-reversal
symmetry causes any extra degeneracy in the spectrum of the energy eigenvalues at
k. However, it is convenient to postpone until section 7.6 the discussion of the theory
of the determination, for any given rep Fk whether it belongs to (a), (b), or (c); this
makes use of the theory of the reality of the induced space-group representations
Ak = Fk t G (see section 4.6).
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In addition to the possibility of causing some extra degeneracies in the spectrum
of the energy eigenvalues at k, the inclusion of time-reversal symmetry will always
cause degeneracies between k and — k when these two vectors do not appear in the
same star. Of course, if k and — k do appear in the same star, as for example when
the crystal has a centre of inversion symmetry so that {/ | v} is in G, the spectrum of
the energy eigenvalues at k is the same as at — k even in the absence of time-reversal
symmetry. This extra degeneracy is very easy to notice as it occurs when time-reversal
symmetry is present and there are no space-group elements that transform k into — k;
we call this a type (x) degeneracy. This degeneracy is rather different from the types
(a), (b), and (c) mentioned above, which govern what happens at the point k, due to
time-reversal symmetry, when k and — k are in the same star although, as we shall see
in section 7.6, the mathematical origins of case (c) and case (x) degeneracies are very
similar. Degeneracies of type (b) or (c) are extra degeneracies at the point k, the
spectra at k and — k already being identical. A degeneracy of type (x) has the property
of making the spectra at k and — k identical, when they are not already required by
the space-group symmetry to be identical. Proofs of all these assertions will be given
in Chapter 7.

Finally, in Table 5.7 we indicate for each point or line of symmetry the part of
Table 5.8 that contains the labels that we use for the reps of G"G| in their particular
manifestation as space-group reps of HGk or Gk*. The assignment of labels to the
space-group reps is a complicated problem and we leave this discussion to the next
section.

5.3. The labels of space-group representations
In Table 5.8 we give the labels used for the reps of HGk or Gk*. We use an extension
of the two notations used for point-group representations in Table 2.2, namely the
Mulliken (1933) notation with A, B, E, T, etc., and the F l5 T2, F3, etc. notation of
Koster, Dimmock, Wheeler, and Statz (1963). For many space groups HG" or Gk* is
isomorphic to one of the 32 point groups and in this case we simply use the labels used
for that point group in Table 2.2. Where HGk or Gk* is not isomorphic to a point
group the notation has been extended as follows, where by ' real' we mean that all the
characters are real and by' complex' we mean that some of the characters are complex.

Rep Dimension Label

real
complex
real
complex
real
complex
real
complex
real

1
1
2
2
3
3
4
4
6

A or B
1-£, 2E (conjugate pair)
E
1 F, 2F (conjugate pair)
T
^H, 2H (conjugate pair)
F
1J, 2J (conjugate pair)
H
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Subscripts 1, 2, 3, etc., subscripts g and u, and superscript primes and double primes
are used to distinguish between reps of the same dimension in a similar way to that
used in the point-group lavels. If HGk is a direct product of ({E | 0} + {/1 0}) with
some group G then Rg and Ru are used to denote the two reps derived from the rep
R of G; in Rg y_(I \ 0} is +%{E 0} and in Ru %(I \ 0} is ~x{E\Q}. Primes and
double primes are used to distinguish between two reps R- and R-' which differ only
in the sign of the character of an important reflection plane. In the F notation the
reps are labelled F,, F2, F3, etc.; superscripts + and — are usually used for the reps
of direct product groups in the same way as g and u above (except by Miller and
Love (1967)). At any point of symmetry other than F or along any line of symmetry
F is replaced by the letter denoting that point or line of symmetry; therefore, for
example, at M of P4332 (O6) the space-group reps that are identified with the reps
R5, R6, R-,, Rs, and R9 of the abstract group G}° are labelled either as 2£'1,

 1El,
 1E2,

2E2, and E or as M1? M2, M3, M4, and M5 respectively, from entry 'a' under G\° of
Table 5.8, where F; has been replaced by M(.

It is impossible in either of these two notations to be completely logical in defining
a set of labels. It is also not practical to adopt a synthesis of all those labels used by
the various authors who have studied individual space groups or small collections of
space groups.

TABLE 5.8

The labelling of the space-group reps
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Notes to Table 5.8

397

(i) Fora point of symmetry HGk was identified in Table 5.7 with one of the abstract groups G"C| and the labelling
of the reps indicated by a small arabic letter a, b, c,. . ., etc. The labels given to the space-group reps can then be
found by consulting the entry under Gjq in Table 5.8. The entry corresponding to this small arabic letter gives the
labels assigned to the reps Rit R2, R3,. . ., etc. of G"G| as the reps of "Gk for this space group.

(ii) For a line of symmetry the interpretation of the labelling is similar except that the reps Rlt R2, R3, .. ., etc.
of the abstract group now correspond to the space-group reps derived from the reps of Gk*.

(iii) The space-group reps are labelled, as explained in the text of section 5.3, in an extended version both of the
notation of Mulliken (1933) and of the F notation introduced by Bouckaert, Smoluchowski, and Wigner (1936). In
the latter notation F is replaced by the letter denoting the relevant point or line of symmetry in the Brillouin zone.
For example, at M of .P4332 (O6) the space-group reps that are identified with the reps Rs, R6, R7, Rg, and R<, of
the abstract group G}° are labelled as Af t , M2, M3, M4, and M5 respectively, where M replaces F under entry 'a '
for GJS! in Table 5.8.

5.4 Example of the use of the tables of the space-group representations

The space-group reps for the cubic close-packed and diamond structures (FmZm
(Oh) and Fd3m (O7

h)) were deduced in section 3.8 in illustration of the theory of the

FIG. 5.2. The Brillouin zone for Ff
c. F = (000); X = (iOi); L = (̂ }); W = (|i|). X and U though often referred

to as points of symmetry, do not come within the definition of a point of symmetry as given in Definition 3.3.1, as they
possess no more symmetry than the neighbouring lines £ and S, respectively.
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deduction of the space-group reps. We now give an example to show how to use
Tables 5.7 and 5.8 to retrieve similar information for any of the 230 space groups.
We leave it to the reader as an additional example to see how the space-group reps of
Fm3m (Of) and Fd^m (Ol) considered in section 3.8 can be obtained from Tables
5.7 and 5.8.

The space group F43c (Tj) was used on one or two occasions by way of illustration
in the notes to Table 5.7, and it is a suitable choice for further illustrating the use
of that table. F43c (71/) is a cubic space group related to the point group 43m (Td)
and based on the face-centred cubic Bravais lattice F£ whose basic vectors are given
in Table 3.1 as

(5.4.1)
and

The reciprocal lattice is therefore a body-centred cubic lattice (see Table 3.3), and
its Brillouin zone is illustrated in Fig. 3.14 and reproduced in Fig. 5.2. The special
points of symmetry in this Brillouin zone are, from either Table 3.6, under the
heading r£, or Table 5.7 F, X, L, and W; some authors regard K as a point of sym-
metry but, as indicated in the caption to Fig. 3.14, it does not come within our defini-
tion of a point of symmetry (see Definition 3.3.1). Similarly the lines of symmetry
are seen to be A, A, X, 5, Z, and Q. Planes of symmetry are not considered. The
k vectors of each of the points and lines of symmetry are given in Table 3.6 in terms
of g l 5 g2, and g3: Point or [ine K

We consider the points of symmetry in turn.

F: k = (000).
HGr is 624 which is isomorphic to the point group 43m (Td) and its generating

elements are

and
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The five classes (see Table 5.1) are

To identify which of the elements of G]4 corresponds to a particular space-group
element is rather laborious. It has to be done by direct multiplication, see Note (iv)
to Table 5.7 where it is shown that P2RS of Gj4 corresponds to {S^y | \ — fi} or, 
F, to {S^y | j^i}. This identification must of course be made if one wishes to find the
actual matrix representatives and not just the characters in the cases of degenerate
representations. The character table for HGr can thus be found from Table 5.1 under
G7

24, but rather than labelling the reps as Rlt R2, R3, R4, and R5 they are labelled
according to the entry 'a' under Gl4 in Table 5.8

The space-group reps can be seen from Table 5.7 to be all of the first kind so that the
character table for HGr is (with the reality of the corresponding space-group reps
shown in the right-hand column)

and there are no extra degeneracies if time-reversal symmetry is included.
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X: k = (iO£)
HGX is the direct product of Gf, with generating elements

and T2, with elements {E \ 0} and [E \ ts} where s = 1 or 3. The elements of Gg are
therefore

and from Table 5.1 these can be assigned to the classes C\, C2,. . ., C5. The five reps
are labelled, from Table 5.8, as A^ A2, B1, B2, and E (or X±, X2, X3, X±, and Jf5)
respectively. Thus the character table for HGX is (with the reality of the corresponding
space-group reps shown in the right-hand column)

and if time-reversal symmetry is included there will be no extra degeneracies. If the
matrices for the representation E(X5) are required they are also available from R5 of
Gf in Table 5.1.

and

and the twelve members of HGL are
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These can be assigned to the classes of G*2 and the character table of HGL constructed:

The matrices for E (L3) are available from R6 of Gf 2 in Table 5.1. The reality included
in the extreme right-hand column indicates that if time-reversal symmetry is included
there is an extra degeneracy between the reps 1E and 2E (L2 and L t) and also an
extra degeneracy between two different sets of basis functions belonging to the
rep E (L3).
W: k = (H!)

HGW is the direct product of G4 and T4, where T4 consists of [ E \ 0}, {E t2},
{E \ 2t2}, and {E \ 3t2} and G4 has as its generating element P = {S^x \ ill}- Each of
the elements of G4 is in a class by itself and the character table of HGW is thus

The reality included in the extreme right-hand column indicates that if time-reversal
symmetry is included there is an extra degeneracy between pairs of eigenfunctions
belonging to different reps; in fact reps A(Wi) and B(W3) become degenerate and
reps 1E(W4) and 2E(W2) become degenerate (see sections 7.6 and 7.7).

This completes the consideration of the points of symmetry for this space group
and we now proceed to the consideration of the lines of symmetry which involves
the theory of projective representations which was described in section 3.7. For each
line of symmetry we first identify the central extension Gk* and then from this obtain
the representations of the little group Gk. The elements of Gk* take the form (//,-, a)
where H} is the point-group operation part of a space-group element and a is a small
whole number which is a member of the cyclic group Z9 defined in eqn. (3.7.27).
The group Gk* is specified in Table 5.7 and its generating elements P, Q,. . ., in that
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order, are given in the form (//,, a). Thus the character table and matrix representa-
tives of Gk* can be identified from Table 5.1 and the reps of Gk can be found for each
element {R \ v) by multiplying the matrix representative of (R, 0) by the factor
exp ( —ik .v ) (see eqns. (3.8.8) and (3.8.9)). The labels of the reps can be found by
consulting the part of Table 5.8 indicated in the relevant line of Table 5.7. It will be
noted that reps of Gk* are omitted when they are not compatible with the allowed
representations of the cyclic group Zg generated by (E, 1) (see eqn. (3.7.33)). It
should be noted that, in general, the class structure of Gk may differ from that of
Gk* and that, since Gk is infinite, it may be quite a complicated process to determine
the class structure of Gk. The realities of the corresponding space-group reps, and
therefore the extra degeneracies due to the inclusion of time-reversal symmetry, are
also available from Table 5.7. We now illustrate this for the lines of symmetry in our
chosen space group F43c (Tj).
A: k = (aOa)

The central extension GA* is the group G| and its generating elements are

P = (C2y, 0)

Q = Ode, 0).
Since G| is of order 4 (which is the same as the order of the point group containing,
E, C2y, ffdci and Qde) it is clear that g must be equal to 1 so that the four elements of
GA* are, in their classes,

The character table of GA* is thus, from Table 5.1,

using Table 5.8 to give the labels of the reps. The small reps of GA are the above but
with each entry multiplied by the factor exp ( — ik. v):
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where A = exp ( — 2ma.). The inclusion of time-reversal symmetry leads to no extra
degeneracy in the reps ^i(Ai) and A2(A.3) but causes the reps #i(A2) and 52(A4) to
become degenerate.
A: k = (aaa)

GA* is Gg which is of order 6, g = 1, and its generating elements are

and

and its elements are, in classes,

The character table of GA* is thus

and the matrices for the representation £ can also be found from Table 5.1. The small
reps of GA are therefore

where B = exp ( —Syria). The addition of time-reversal symmetry leads to a case (x)
degeneracy, that is, the spectrum of the eigenvalues of a particle or quasi-particle
is the same at k and — k.
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I: k = (a, a, 2a)
G1* is G] which is of order 2, g = 1, and its character table is

so that the small reps of Gr are

where C = exp (- 4nitx). From the reality of the reps we see that there is no extra
degeneracy at Z if time-reversal symmetry is included.
S: k = (| + a, 2<x, i + a)

G5* is G\, which is of order 2, g = 1, and its character table is

so that the small reps of Gs are

where D = exp( —7ii(l + 4ot)). From the reality we see that there is no extra
degeneracy at S if time-reversal symmetry is included.
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Z:_k = (i«,i + a)
Gz* is G\, g = 1, and its character table is

405

and since v = 0 for both these elements {R \} then the small reps of Gz are

From the reality we see that there is no extra degeneracy at Z if time-reversal symmetry
is included.
2Lk = & i - a, £ + a)

GQ* is Gj so that the rep of GQ is

and from the reality we see that the addition of time-reversal symmetry causes the
eigenfunctions belonging to A(Q^ to become degenerate in pairs.

This example of F43c (Tf), together with those in section 3.8 (which include
examples in which g / 1) should make it clear how to use Table 5.7 and the associated
Tables 5.1 and 5.8 to construct the reps of any of the 230 space groups, for any of the
points of symmetry or lines of symmetry in the basic domain of the appropriate
Brillouin zone, and to determine the extra degeneracies that will arise if time-reversal
symmetry is added to the space group.

The physical significance of space-group reps

The importance of determining the reps of the space groups lies in the application
of Wigner's theorem that we have already mentioned in sections 1.1 and 3.7 (see
Theorem 3.7.1). The result of this theorem may be expressed in physical terms by
saying that if \j/ is the wave function of a particle or quasi-particle within a crystal,
whose symmetry is described by a space group G, then t// must transform under the
operations of G like one component of a basis of one of the reps of G. These reps are
uniquely identified by the small reps of the various little groups Gk, so that i// may be
regarded as belonging to a basis of one of the small reps of Gk. In other words, we
may regard the eigenvalues of the Hamiltonian, H, of the crystal, together with their
associated eigenfunctions, as being distributed among all the allowed wave vectors k
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(defined by eqn. (3.4.2)) in the Brillouin zone. The space-group reps can therefore be
used in providing a scheme for classifying and labelling the eigenfunctions of H;
the degeneracies of the space-group reps will specify the essential degeneracies of the
corresponding eigenvalues of H. This is similar to the use of the point-group reps in
labelling the electronic or vibrational energy levels of a molecule.

The use of the space-group reps to label the eigenvalues and eigenfunctions of the
electronic band structure of a crystal was introduced by Bouckaert, Smoluchowski,
and Wigner (1936); these labels have been used extensively ever since then. Let us
suppose that i/^,,, the wave function of an electron with wave vector k, belongs to
some particular small rep F£ and that ij/*iq has been expanded in terms of some
standard functions, such as spherical harmonics or plane waves. It is then possible
to determine linear combinations of the spherical harmonics, or of the plane waves,
which are symmetry-adapted to the rep F*. These symmetry-adapted functions can
be determined by the use of the operator W}s which was described in section 2.2.
For any wave vector k for which Gk is non-trivial t/£, can be expanded in terms of
these symmetry-adapted functions and there will then be fewer arbitrary coefficients
(for any given order of accuracy) than if the expansion were performed directly in
terms of spherical harmonics or plane waves. The use of such symmetry-adapted
functions has led to a considerable simplification of band-structure calculations,
which was very valuable in the days when computer technology did not allow large
expansions for general wave vectors, k, to be used (Altmann and Bradley 1965;
Altmann and Cracknell 1965, Bell 1954, Cornwell 1969, Howarth and Jones 1952,
Jones 1960, Mase 1958, 1959a, von der Lage and Bethe 1947). A list of references on
the determination of symmetry-adapted functions for some particular space groups
is given in Appendix 3 of the book by Cornwell (1969). In relativistic band-structure
calculations it is necessary to use the double-valued space-group reps which will be
discussed in Chapter 6.

The use of space-group reps has now been extended to the labelling of the normal
modes of vibration of a crystal lattice, that is, of the phonon dispersion curves
(Johnson and Loudon 1964; for reviews see Maradudin and Vosko (1968) and
Warren (1968)) and also to the labelling of the spin-wave dispersion relations in a
magnetic crystal (Dimmock and Wheeler 19626, Joshua and Cracknell 1969, Loudon
1968). Originally the experimental measurement of phonon dispersion curves had
been confined to directions of high symmetry in elemental cubic materials; for such
situations the normal modes could be classified and labelled quite adequately as
pure longitudinal acoustic (LA), transverse acoustic (TA), longitudinal optic (LO),
or transverse optic (TO). However, this simple scheme is inadequate for directions
of low symmetry or for more complicated crystals so that the normal modes are now
usually labelled by the use of the space-group reps. In the same way that the normal
modes of vibration of a molecule can be investigated group-theoretically and as-
signed to the various reps of the point group of that molecule (see, for example,
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Cotton (1963), Cracknell (19686), Leech and Newman (1969)) so also the normal
modes of vibration of a crystal with any given wave vector k can be assigned to the
various reps of the space group G of the crystal. This can be done by studying the
transformation properties, under the operations of the space group G, of a general
displacement x, of the atoms in the unit cell of the crystal. In this way a representation
F will be obtained of which x; is a basis and, in general, this representation will be
reducible. The small reps of Gk to which the normal modes at k belong can then be
obtained from the reduction of F and the labels of the small reps are then used to
label the phonon dispersion relations for the k vectors in the Brillouin zone. Alter-
natively, the symmetry properties of a normal mode with wave vector k can be
determined by studying the transformation properties of the creation and annihila-
tion operators a[ and ak under the operations of the space group G and assigning
them to the appropriate small reps of Gk; ak

 and ak are the operators which create
and annihilate, respectively, a phonon with wave vector k and their form is given by,
for example, Kittel (1963). The labelling of the spin-wave dispersion relations for
a magnetic crystal in terms of space-group reps can be determined by studying the
transformation properties, under the operations of G, of the appropriate operators,
similar to a[ and ak, that create and annihilate magnons (Loudon 1968).

5.5. Representation domain and basic domain

In Table 5.7 (and also in the tables of Miller and Love (1967)) the space-group reps
are only tabulated for the special points of symmetry and lines of symmetry in just
one basic domain (see Definition 3.3.3) of the Brillouin zone of each of the 230 space
groups. It will be recalled that the basic domain, Q, has the property that C£R RQ)
is equal to the whole Brillouin zone, where the operators R are the elements of the
holosymmetric point group, P, of the appropriate crystal system. Thus, for example,
for a cubic crystal the basic domain is only one-fortyeighth of the Brillouin zone.
Since they may be required in the discussion of physical problems, it is necessary for
completeness to consider how to determine the small reps associated with other
points or lines of symmetry in the Brillouin zone, given those in just one basic domain.
It will be remembered that the representation domain, <I> (see Definition 3.7.1), has
the property that (Zs 5<I>) is equal to the whole Brillouin zone, where the operators
S are the elements of the isogonal point group, F, of the space group, G, under
consideration. Thus, for example, for the space group Pa3 (T^), the isogonal point
group is w3 (Th), which contains 24 symmetry operations, and 3> is therefore one-
twentyfourth of the Brillouin zone; the basic domain, Q, is determined by the holo-
symmetric cubic point group m3m (Oh), which contains 48 symmetry operations, and
fi is one-fortyeighth of the Brillouin zone. So in this case the size of the representation
domain is twice that of the basic domain. In general, since F is either equal to P or
is a proper subgroup of P, the representation domain $ is either the same as IQ or is
the sum of an integral number of volumes congruent to Q.
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There are thus two situations to consider, the first when the representation domain
is the same size as the basic domain, and the second when it is larger. If the representa-
tion domain, <!>, is the same size as the basic domain, Q, that is, F = P, then any
wave vector kB that is outside the basic domain is related to some wave vector k^
within the basic domain by an expression

(5.5.1)

where R e P. Since P = F, this means that in this case there is always some wave
vector kA in the star of kB, which is in the basic domain of the Brillouin zone. This
means that any physical observable associated with a particle or quasi-particle with
wave vector kB will have the same values as those possessed by a particle or quasi-
particle with wave vector k^,. Therefore, if the representation domain, (D, is the same
size as the basic domain, Q, no new physical insight is obtained by studying any wave
vector outside the basic domain. It is, probably, because most of the space groups
that have actually been used in band structure calculations or studies of phonon
dispersion relations, come into this classification, that there can arise the mistaken
assumption that it is always adequate to consider only wave vectors within the basic
domain of the Brillouin zone.

In the second situation the volume of the representation domain, cD, is some small
integral multiple of the volume of the basic domain, Q. But now, for a vector kfl in
O but not in Q, there is no operation R e F that relates kB by means of eqn. (5.5.1)
to any vector k^ within the basic domain. In this case the operations R that satisfy
eqn. (5.5.1) are in P but not in F. What remains true however is that all significantly
different wave vectors, from a physical point of view, will be obtained by considering
all the wave vectors in the representation domain, $. For example, in all cases, the
energy eigenvalue surfaces E(k) = E of a band structure calculation will possess the
point-group symmetry of the isogonal point group, F. Wave vectors that are outside
the representation domain still do not need to be considered, but it is necessary to be
able to determine the space-group reps for wave vectors kB which are within <I> but
outside Q and which are therefore not immediately available from Table 5.7. In this
connection we note first the following theorem.

THEOREM 5.5.1. 7/F is a point group of a given crystal system and P is the holo-
symmetric point group of that crystal system then F is an invariant subgroup of P.

The proof is most simply performed by enumeration and inspection. We have
noted previously that every non-trivial space group possesses an invariant subgroup
of index either 2 or 3 (Zak (1960), see section 5.2). A related result in which we shall
be interested in the present connection is that nearly every space group, G, whose
isogonal point group, F, is of lower order than the order of P (the holosymmetric
point group of that crystal system), is an invariant subgroup of some parent space
group GO, where G0 is based on the same Bravais lattice as G and the isogonal point
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group of G0 is P. This too can be verified by enumeration and inspection of the
various space groups and it is found that there are only 24 exceptions to this rule:

 (5.5.2)

These 24 space groups comprise the 11 isomorphic but crystallographically distin-
guishable pairs together with two exceptional space groups P2^ (T4) and Pa3 (T%).

Suppose that kfl is a wave vector in <I> but not in Q. Then there exists a wave vector
kA in the basic domain, Q, and a point-group operation R which is not in F, the
isogonal point group of G, but which is in P, the holosymmetric point group of the
appropriate crystal system, such that

(5.5.1)

Since k^ is in Q, the little group GkA and the small reps of GkA are available and can
be identified from Table 5.7.

THEOREM 5.5.2. „ is the little co-group o/kx, then the little co-group ofkB

is given by Gk» = RGk*R ~l.

This theorem can be proved as follows. Let S e Gkx, then

(5.5.3)

which, from eqn. (5.5.1), may be written as

(5.5.4)

and therefore

(5-5.5)

Now 5* e Gkx c F and R e P. Since F is invariant in P (see Theorem 5.5.1) it follows
that RSR'1 e F. This fact and eqn. (5.5.5) together imply that RSR~l e Gkfl. Since
this is true for all S e Gk^, it follows that RGkAR"1 c GkB. Starting from an_element
Te Gkfl, it can be proved similarly that R~lTRe G*A, and hence that R~lGkBR c
Gkx, or Gkfl c RG^R"1. Thus the reverse inclusion also holds, and therefore

(5.5.6)
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The little co-group Gkfl is therefore conjugate to the little co-group Gkji with respect
to P. There is clearly an isomorphism between Gkj* and GkA, because, if S:, Sj e GkA

and
(5.5.7)

then, writing Tt = etc., it follows that

(5.5.8)

Very often the little co-group Gkfl will coincide with Gk".
The question now arises as to whether the little group Gkfl is conjugate to the little

group Gk^ with respect to the parent space group G0 (whose isogonal point group
is P, the holosymmetric point group of the crystal system of G), where the space
group G is an invariant subgroup of G0.

THEOREM 5.5.3. Gkfl is conjugate to GkA with respect to the parent space group
G0 (provided G0 exists).

The proof of this theorem is trivial. If G0 exists it will contain an operation {R \ v}
whose rotational part R satisfies eqn. (5.5.1). Then, since G is invariant in G0, it
follows exactly as in the proof of Theorem 5.5.2 that

(5.5.9)

A word of warning is perhaps necessary at this stage, and that is that the setting
of G0 may have to be adapted from its form in the tables before the selection of
{R | v} is made. This is because in any set of tables a space group stands for a whole
class of crystallographically indistinguishable groups, and naturally only one setting
will have been chosen for the purposes of tabulation. Thus the setting of G0 may
have to be altered so that it contains G properly, and not just an isomorphic image
ofG.

Now let D*A\_{S | w}] be a small rep of GkA, then DkA is available from Table 5.7.
It will be remembered that a small rep has to satisfy two properties: (i) it must be
an irreducible representation of the little group, and (ii) it must be compatible with
the representations of the translational symmetry operations [E \ t} of the Bravais
lattice. Thus

(5.5.10)
for all t.

T H E O R E M 5.5.4. The representation DkB o/GkB defined by

(5.5.11)

is a small rep ofGks.
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That property (i) is satisfied is clear enough and follows immediately from the
fact that DkA is an irreducible representation. To verify property (ii) we evaluate
Dk

p
B\_{E \ t}]. From eqn. (5.5.11)

from eqn. (5.5.10). Hence from eqn. (5.5.1) it follows that

(5.5.12)

which demonstrates that D^B is a small rep as required. We therefore conclude that
if the small reps D*A of GkA are known then the small reps D*B of Gkfl can be con-
structed by using eqn. (5.5.11) where {R \ vj is in G0 but not in G (provided G0 exists).

FIG. 5.3. The representation domain, <D, of the Brillouin zone r[ of H,32 (O4).

It should be noted that if more than one G0 exists there is no contradiction. Any G0

that contains G as an invariant subgroup is satisfactory for the purpose. We thus
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have a rule for constructing all the reps of a space group for which the order of F
is less than the order of P, except for the 24 space groups in (5.5.2) for which no G0

exist. We illustrate this now with an example.
An example of a space group in which F is of lower order than P, and therefore <I>

is larger than Q, is the space group F4j32 (04). Since F is the point group 432 (O)
which is of order 24 and P is the point group ra3m (Oh) which is of order 48, the volume
of <I> is |P|/|F| times the volume of Q, i.e. is twice the volume of Q. Either of the space
groups Fd3m (O^) and Fd3c (Of) could be chosen as the parent space group G0; we
choose Fd!>m (Ol) as G0 and we choose [adh \ 000} as {R \ v}. The Brillouin zone of
F4t32 (O4) is illustrated in Fig. 3.14 and the basic domain is shown. The represen-
tation domain O is illustrated in Fig. 5.3 and consists of Q, the basic domain used
in Fig. 3.14, together with a region which we may denote by erdbQ. The special points
and lines of symmetry in £7dbQ can be obtained from those in Q which are given in
Table 3.6 by using the fact that, from Table 3.4, <rdbgi = g2, c^gi = gi> and ^dbgs =
g3. These points and lines of symmetry are listed in Table 5.9. Some of them, namely
T, L, A, and £, are unaltered by adh, while the remainder are taken out of Q. We
therefore use equation (5.5.11) to determine the character tables for X', W, A', 5",
Z', and Q' from the character tables for X, W, A, S, Z, and Q in Table 5.7 and we find:

JT' :k = (0,ii)
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A': k = (0, a, a)
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where A = exp ( — ma)

S':k = (2a, i + a, i + a)

where B = exp ( —|7ii(l + 4ot))

Z':k = (a,ii + a) fi':k = (ii + a,i- a)

Although we have given the small reps for all those points and lines of symmetry
that occur in adbQ but not in Q, they do not necessarily all lead to new induced reps
AP

B ( = Z>pB t G) of the space group G. New reps A£flof G will only be obtained from
those points and lines of symmetry kB for which kB is not in the star of the correspond-
ing wave vector k^ in Q. Therefore in this example of F4j32 (O4) only Q' leads to
new induced reps ApB that could not be obtained by using only the basic domain Q.

TABLE 5.9

The points and lines of symmetry in aibQ o/F4132 (O4)
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We have to consider separately the derivation of the small reps of Gkfl for the
24 space groups listed in (5.5.2). We divide these into four sets:

(a) P213(r4);
(b) {P4, (d), P43 (d)},

{P3l(C
2

3),P32(Cl)},
{P3il2 (D3

3), P3212 (/)*)}, {P3,2l (D*), P3221 (D$)},
{P6, (CD, P65 (Cl)}, {P62 (C*), P64 (Cf)};

(c) (P4122 (D\\ P4.22 (Dl)}, {P4,2,2 (/)*), P432,2 (/>«)},
{P6122 (D\), P6522 (D3

6)}, {P6222 (/>*), P6422 (/>*)},
{P4332(06),P4132(07)};

(d) Pfl3(rfc
6);

where isomorphic pairs are enclosed in brackets { }. None of the groups listed under
(c) and (d) is an invariant subgroup of any larger space group. The groups listed
under (a) and (b), though not invariant subgroups of a parent group G0, with
isogonal point group P, are, however, invariant subgroups of some other space
group (or space groups) G', where the order of the isogonal point group of G' is inter-
mediate between the order of F and the order of P. The groups G' are indicated in
Table 5.10.

T A B L E 5.10

Invariance properties of 13 space groups

G G

Note to Table 5.10
The space groups listed in a given row and in the first column of the table are invariant subgroups of the space

groups listed in the same row and in the second column.

Before making use of these invariance properties we discuss the eleven isomorphic
pairs. We assume that these are being treated in a standard setting, so that if G1 and
G2 are an isomorphic pair then given {S w} e GI its image in G2 under the isomor-
phism may be written as {S \ — w}. Now suppose that k is a vector of the basic
domain, Q. In no case with the eleven pairs under consideration is there a centre of
inversion, so that we may choose the representation domain, O, so that it contains
the vector — k. From the tables of space group reps (Table 5.7) we already have at
our disposal the little groups G^ and G2, and the small reps D\p and D\p, for the
point k e Q.
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THEOREM 5.5.5. The little groups and small reps for — k are given by

(5.5.13)
and

(5.5.14)

Equation (5.5.13) follows immediately from the fact that if a rotation operator S
leaves k invariant then it also leaves — k invariant, and conversely. That D^ denned
by eqn. (5.5.14) is an irreducible representation, follows immediately from the two
facts: (i) that Dk

p is an irreducible representation and (ii) that Gj and G2 are iso-
morphic. That Z);~

k is a small rep is also easily checked. From eqn. (5.5.14)

(5.5.15)

as required.
We now have sufficient information to give rules for obtaining the small reps for

k vectors in $ but not in Q for the space groups listed under (a), (b), and (c). For
groups listed under (b) and (c) we first use eqn. (5.5.14). Groups in list (c) are thereby
disposed of, and for groups in list (b) we shall have obtained all small reps appropriate
to the volume (Q + 7Q), where / is the inversion. The groups in lists (a) and (b) can
now be completed by using eqn. (5.5.11) and the invariance properties listed in
Table 5.10. In connection with this second step two explanatory comments are
necessary. First, for the groups in list (b) the vector k^ is in (Q + 7Q) rather than Q;
but this is acceptable in view of eqn. (5.5.14). Secondly, for the group of list (a),
P2^ (r4), it must be pointed out that its invariance in both P4312 (06) or P4t32 (07)
and Pa3 (T£) compensates for the lack of a parent space group G0 in the sense
described before. Its representation domain <5 is four times the size of the basic
domain Q and for any vector kB within $ but outside Q there will be an element R
belonging either to 432 (O) or m3 (Th) such that eqn. (5.5.1) holds with k^ in fi. The
invariance properties in Table 5.10 and the analysis given previously is then sufficient
to dispose of this group.

It appears that the group in list (d), Pal (T%), the pyrite structure, is exceptional;
neither is it an invariant subgroup of any larger space group based on the same
Bravais lattice, nor is it a member of a pair of isomorphic space groups. Therefore,
neither of the methods described so far in this section can be used to construct the
small reps of Gk" given those of GkA. It seems that for completeness of our prescription
for finding the small reps of Gk for all vectors k throughout the representation
domain of any space group, it is necessary, just for this one space group Pal> (T£),
to consider k vectors throughout the whole representation domain. Restriction to a
single basic domain, reasonable as this is for 229 out of the 230 space groups, is in
the one remaining case invalid. Indeed our results show that the remaining case
provides a rather interesting group-theoretical anomaly that should be capable of
physical observation.
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FIG. 5.4. The representation domain, Q + rrdbfl, of Pa3 (T£).

Pa3 ( T b ) is based on the simple cubic lattice and its Brillouin zone is shown in
Fig. 3.13 and reproduced in Fig. 5.1. Figure 5.1 illustrates the basic domain that we
have used in Tables 3.6 and 5.7 and Fig. 5.4 illustrates the representation domain O.
We choose O = (Q + adbQ), where adb is the reflection in the plane YMR. The
points and lines of symmetry F, M, R, £, A, and T are left invariant by the operation
adb, so that we only need to identify the small reps of the little group of k for X',
A', S', and Z' which are generated by the action of adb on X, A, S, and Z respectively.
The k vectors of these additional points or lines of symmetry can easily be determined
using Tables 3.4 and 3.6 and are

X': (iO, 0)
A': (a, 0,0)
5": ( i<x ,a)
Z. (ioc, 0),

where g l 5 g2, and g3 are defined in Table 3.3. X', A', and S' are in the stars of X, A,
and S, respectively, being related to those points by the threefold rotation axis
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TABLE 5.11

The additional space-group rep for the representation domain of Pa3 (T%)

Note to Table 5.11

The notation is that of Table 5.7 (see Notes to Table 5.7).

through TR which is an operation of ra3 (Th). There is therefore no difference, in any
physically observable sense, between the small reps at X', A', and 5" and those at
X, A, and S, respectively. If we deal only with points and lines of symmetry it
remains to compare the points Z' and Z, see Table 5.11. While Miller and Love
(1967) tabulate Z and not Z', Slater (1965) in his treatment of this space group
tabulates Z' and not Z (through using an alternative setting of the basic domain).
The interesting point is that the character tables for Z and Z' are very dissimilar;
while at Z' there is one twofold degenerate rep there are four non-degenerate
reps at Z. This difference between the degeneracies at Z and Z' is a useful demonstra-
tion of the importance of considering the representation domain and this difference
should manifest itself in the energy eigenvalues of electrons or phonons at Z' and
Z. The inclusion of time-reversal symmetry does cause the non-degenerate reps at
Z to stick together in pairs (see Table 5.7), but still does not remove the anomaly
completely (see also section 6.5).



6
The double-valued representations of the 32 point

groups and the 230 space groups

6.1. The double-valued representations of the point groups

IN section 2.1 the representation @l{R(y., ft, 7)} of the 3-dimensional rotation group,
0(3), was considered, where / was assumed to be an integer. The basis of this repre-
sentation is the vector whose components are the spherical harmonics F;

m(0, </>),
( — / ^ m ^ /). The irreducible representations of the point groups which were listed
in Chapter 2, see Tables 2.2 and 2.3, can be thought of as being obtained from these
representations by subduction, that is, by restricting the representation £)'{R(a, ft, 7)}
to the elements of a point group, see under Theorem 4.1.5. This was done, for instance,
by Bethe (1929). These representations of the point groups are called the single-valued
representations of the point groups since they are derived from the representations
&>'{R(a, ft, y)} of the 3-dimensional rotation group, where / is an integer, which are
themselves single-valued (that is, with one matrix representative for each operator).

The definition of Euler's angles a, ft, and y that we use was given in section 2.1. To
every rotation R(ix, ft, 7) of the 3-dimensional rotation group there is one and only
one matrix 3il{R(ct, ft, 7)} for each integer value of / and for any given / the matrices
<2>'{R(ot., ft, 7)} form a representation of the group of rotations R(a., ft, 7) as denned
in Definition 1.3.4. The spherical harmonics Y™(6, (/>) are well known to be the eigen-
functions of the quantum-mechanical angular momentum operators so that, for
instance, the angular part of the wave function of an electron in an atom contains a
factor Y"(9, </>) and the magnitude and z component of the orbital angular momen-
tum of such an electron are ^J{l(l + 1)} h and mh.

However, it is often necessary to take into account the existence of the spin of an
electron due to the introduction of relativistic effects into band structure calculations
or to the inclusion of spin-orbit coupling in crystal field theory. Then, instead of con-
sidering the representations @l{R(a., ft, 7)} where / is an integer it is necessary to
consider a second set of representations S>J{R(<x, ft, 7)} where 7' is half an odd integer.
The basis of such a representation is then a spinor rather than a vector. The simplest
of these representations is &^{R(a, ft, j)} which is given by
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as we shall see in section 6.2 (eqn (6.2.13)). The + signs indicate that there are two
matrices corresponding to each rotation R(z, ß, y) and the homomorphism of the
matrices 3}j{R(a., ß, y)} onto the rotations R(a., ß, y) is a two to one homomorphism;
the matrices Q>J{Ä(oc, ß, y)} only form a group at all if both matrices are included for
each set of a, ß, and y. The matrix elements of &iJ{R(ct, ß, y)} can be written as

(6.1.2)

where dj(ß)nm is given by replacing / by j in eqn (2.1.6). The factor Cnm which was used
in Chapter 2 is not necessary here because for the spinors we are using the phase
factors used by Condon and Shortley (1935) although for the spherical harmonics we
used different phase factors from those of Condon and Shortley. If we allow a, ß,
and y to take all the allowed values so that the operations R(oi, ß, y) include all the
members of the group of pure rotations in three dimensions then the matrices
±u{Ä(a, ß, y)} will include all the unitary unimodular matrices in two dimensions,
that is all the members of the group 5(7(2). These representations are thus often
called double-valued representations. From these double-valued representations of
the rotation group it is then also possible to obtain double-valued representations of
the point groups by the process of subduction; these double-valued representations
of the point groups were considered by Bethe (1929) and Opechowski (1940).

Any member of a point group is either a pure rotation operation R(a, ß, y) or it
can be expressed as the product of some such pure rotation operation with the
inversion operation. A point group may thus be made up entirely of pure rotations
or it may be such that half of its elements are expressible as a product of the inversion
operation and a pure rotation. In the second case the point group is either isomorphic
to a point group consisting only of pure rotations or else it is a direct product of a
point group consisting only of pure rotations with the group Ï(C;) which contains
the identity and the inversion operations. Thus it should be clear that it is really only
necessary to obtain the reps of those point groups that consist only of pure rotations
and the reps of the remaining point groups follow immediately.

Suppose that G is a point group, of order |G|, which consists of pure rotations
R(a., ß, y), then to every rotation R(a., ß, y) in the point group there correspond two
matrices 3>*{R(ix, ß, y)} given by eqn. (6.1.1). These matrices form a group of order
2|G|, called the 'double group' of G and denoted by G t.

D E F I N I T I O N 6.1.1 (Opechowski 1940). The double group G1 of a group G of
order |G|, which is a subgroup of O(3), the 3-dimensional rotation group, is the
abstract group of order 2|G| having the same group multiplication table as the
2|G| matrices of SU(2) which correspond to the elements of the group G.

Although the double group is defined in terms of <2<^{R(y., ß, y)} exactly the same
abstract group would be obtained by using @ij{R(ut., ß, y)} where j has any other
half-odd-integer value. It is possible to find the irreducible representations of this
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group by the ordinar y method s using Theorem s 1.3.8, 1.3.10, 1.3.11, 1.3.13, and
1.3.15. G is a subgroup of the group of rotation s in thre e dimension s while G T is a
subgroup of SU(2), the group of all two by two unitar y unimodula r matrices ; it will
be remembere d tha t ther e is a two to one homomorphis m between the group SU(2)
and the group of pure rotation s in three dimensions .

Ther e is a set of rules derived by Opechowsk i (1940) which make it possible to
simplify the separatio n of the group G f into classes and the evaluatio n of the charac -
ter table of G f. However these rules are of somewha t limited application ; they are
useful in finding the characte r table of the double group but they are of little use if
one wishes to go beyond tha t and deduc e the actua l matri x representative s themselve s
and not just thei r characters . We shall simply quot e the more importan t of these
result s which are sometime s referred to as ' Opechowski s rules', before proceeding .

THEORE M 6.1.1. To each class C{ of the point group G  which is not a class of
rotations through n there correspond exactly two classes o/  G f, C-, and C-'.

THEORE M 6.1.2. To each class Сж of the point group G  which is a class of rotations
through n there correspond either one or two classes ofG*. If in G there is no rotation
through л about an axis at right angles to the axis of one of the rotations of Cn then
there will be two classes in G f corresponding to Cn. But if in G  there does exist a rotation
through n about an axis at right angles to the axis of one of the rotations of Cn there
will only be one class in G f corresponding to Cn.

T H E O R E M 6.1.3. Each rep of G is also a rep ofG\ where x(C,") =  +#(C,') ; it is
called a single-valued rep ofG.

T H E O R E M 6.1.4. The remaining reps o/G 1 are called double-valued reps of G and
are such that %(C'-) = — z(Q)-

It is customar y to thin k of the representation s of the group G f as representation s
of the poin t group G itself as in Theorem s 6.1.3 and 6.1.4; tha t is, they are called
single-value d representation s of G if the character s of the matri x representative s of
the two element s of G f derived from an elemen t /?(a , ß, y) are always the same and
they are called double-valued representations of G if the characters of the matrix
representatives of these two elements of Gt always differ by a factor of — 1. But it
should be noted that strictly in the sense in which we defined the representation of a
group in section 1.3 and in which we have used it so far these are not really repre-
sentations of G but of G f.

We now consider the deduction of the double groups of the point groups, and
then by finding their reps we thereby determine the double-valued representations
of the point groups. The procedure that is adopted can be outlined as follows. The
Euler angles a, ß, and y are first determined for each of the elements of the point
group G; from these the matrices 3)â {R(a, ß, y)} can be found and hence Gf can be
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constructed. The irreducible representations of Gf can be found in the usual way and
sorted into single-valued and double-valued representations of the point group G.
In deducing the Euler angles of all the operations that may occur in any of these point
groups consisting of pure rotations we need consider the elements of only two point
groups 432 (O) and 622 (D6); the triclinic, monoclinic, orthorhombic, and tetragonal
point groups are subgroups of the cubic point group 432 (0) while the trigonal point
groups are subgroups of the hexagonal point group 622 (D6). The Euler angles of
the elements of the point groups were given in Table 2.1. The values of ex., ß, and y
given in Table 2.1 can be substituted into the right-hand side of eqn (6.1.1). The
matrices @*{R(ot., ß, y)} obtained in this way are listed for the two point groups
432 (O) and 622 (Z)6) in Table 6.1. There is, of course, the choice of + or — sign in
eqn (6.1.1) and we have only given one matrix for each point-group element. In
addition to all the matrices given in Table 6.1 there is an equal number of matrices
that are just the negatives of those listed. It is not possible to obtain a group by using
just the matrices in Table 6.1(a) or 6.1(b). The matrices in Table 6.1(a) or 6.1(b)
together with their negatives form (71, the double group of the point group 432 (O)
or 622 (.D6). One-quarter of the group multiplication table for each of these double
groups is given in Table 6.2. It is easy enough to form the other three-quarters of
each of the group multiplication tables by inspection. The theory of section 6.2 which
leads to eqn (6.1.1) ensures that the elements appearing in the matrix ®*{.(.. , ß, .) }
are such tha t Tables 6.2(a) and 6.2(b) coincid e exactly with Tables 1.5 and 1.6 when
barred and unbarre d operator s in Table 6.2 are identified . Tha t is, the two to one
homomorphis m between 5(7(2) and 50(3) automaticall y ensure s tha t the symbols
here have the same geometrica l significance in 3-dimensiona l Euclidea n space as the
correspondin g symbols in previous chapters .

We can illustrat e the assertion which we made tha t the double group G f of any
poin t group consistin g only of pure rotatio n operation s could be obtaine d easily
from Table 6.2. We consider , for example , the poin t group 422 (Z) 4) which , from
Table 2.2, consists of the following elements :

Cl E
C2 C2z

С . 1"1" C~
*--3 ^4zi *-4z

C 4 t -2x > ^2y

. 5 C2a, C2h.

The element s in the double group of 422 (D4) are

E, C 2 z , C 4 z, C4z, C 2x, C2;v, C 2a, C 2b,
E, C2z, C 4z, C 4z, C2x, C2y, C2a, C2h.

Since this double group is a subgroup of the double group of 432 (O) its multiplicatio n
table can easily be found by selecting the product s of these element s from the large
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T A B L E 6.1

The matrices of SU(2) corresponding to the point groups 432 (O) and 622 (D6)

(E = exp(2m/12))



The double groups of 432 (O) and 622 (D6)

(a) mi (U) 

E C2x C2y C2z C4x Ciy C4l C4x C4y C4, C31 C32 C33 C34 C31 C32 C33 C34 C2ll C26 C2c C2d C2e C2f 
(-2* E C2z C2y C4;t C2e C2o C4jc C2c C2i) C32 C31 C34 C33 C34 C33 C32 C3, C4z C4z C4y C2f C4y C2d 
(-"2y (-2z £ C2, C2d Cij, C2k C2j C4y C2o C33 C34 C31 C32 C3 2 C3J C34 C33 C4z C4z C2e C4x C2c C4;t 
(-2z C2y C2x E C2f C2c C4z C2d C2e C4z C34 C33 C32 C3, C33 C34 C31 C32 C26 C2a C4}, C4x C4y C4x 
(-4x C4jt C2y C2rf C2x C32 C31 E C34 C33 C2fl C4z C2b C4z C4), C2e C4y C2c C32 C34 C31 C2>, C33 C2z 
/"~ c c + r c~ c c+ c~ F c^ c c+ c~ c r+ c c c~ r+ c + c c~ r c~ 
^-4? *-2c ^4y L2e ^ 31 ^2y L33 *"34 c ^32 ^2d ^4x *"4x L'2/ *-4z ^2a ^2b ^4z *"31 ^-34 ^2z ^33 ^2x ^32

^ 4z ^-2fc C2a ^4Z ^-34 ^31 ^-2z (-33 ^32 ^ ^2c ^ 2e ^ 4y ^4-y (-4-x ^-A-x ^-2d ^-2/ ^2jc ^-2y ^34 ^31 ^-33 ^32 

C 

+ f^- t^ 7* c f~'+ f^- t^ r^+ f*~ (~<- f^ f^+ f^ c f^~ t^ /^+ /"~ c~ /"+ r r~+ /^ 
4^: ^-4jt L2d *"2/ *-* *-33 L32 L2x ^31 *-34 ^4z ^2a L'4z ^2ft ^2c *-4>- *-2e ^4y ^31 *-33 ^34 ^2r ^32 ^2y 

^•4}' ^2e (-4y ^2c ^-33 E C34 C32 C2y C 3 1 C4x C2j C2d C4:( C2a C4z C 4z C2b C3 2 C3 3 C2;c C31 C2z C34 

Ctz C2a C2b C4z C32 C34 E C31 C33 C2z C4y C4y C2e C2c C2i C2f C4x C4x C2y C2x C31 C33 C32 C34 

C3i C34 C32 C33 C2c C2a C2d C4>. C4z C4x C31 C33 C34 C32 E C2x C2y C2z C4x C2j C42 C4), C2ft C2e 
C32 C33 C31 C34 C4y C4z C2y C2e C2o C4x C34 C32 C3i C33 C2:t -B C2z C2y C4x C2d C2h C2c C4z C4j 

^33 ^32 ^-34 ^31 ^2e ^4z ^-4x ^4y ^2b ^2d ^32 ^-34 ^33 ^-31 ^2y ^2z ^ (-2x ^2/ ^- 4x ^2« ^4y ^-4z ^2c

^34 ^31 ^33 (-32 ^4-y ^2b ^-4x (-2c ^4z ^~2f ^33 (-31 ^-32 (-34 ^2z (-2y (-2^ ^ (^2d (-4* ^-4Z (-2e (-2« (-4y 

(-31 C32 C33 C34 C4z C4l C4}, C2o C2(j C2c £ C2>. C2z C2x C31 C34 C32 C33 C4v C2e C4x C4z C2^ C2(l 
(-32 C31 C34 C33 C2o C2J- C4y C42 C4j C2e C2y £ C2je C2z C33 C32 C34 C31 C4y C2c C2d C2i> C4x C4z 
(-33 (-34 C31 C32 C4z C2d C2e C2b C4l C4y C2z C2, £ C2). C34 C31 C33 C32 C2c C4). C2/ C4, C4jc C2o 

(-34 ^-33 (-32 (-31 (-26 (-4* (-2e (-4z (-2/ (-4y (-2x (-2z (-2y ^ (-32 (-33 ^'31 (-34 (-2e (-4? (-4^ (-2« (-2d (-4z 

(-20 C4z C4z C2t C31 C32 C2y C32 C31 C2x C4}. C4y C2c C2e C4x C4j( C2y C2d £ C2z C33 C34 C34 C33 
(-2t (-4Z (-4z C2o C33 C33 C2x C34 C34 C2y C2c C2e C4y C4), C2f C2d C4x C4x C2z E C32 C32 C31 C31 
Czc (-4, C2e C4y C34 C2x C31 C3l C2z C34 C4l C2d C2y C4:v. C4z C2b C2a C4z C33 C32 £ C32 C2y C33

(-2d (-2/ (-4x (-4x (^2z (-31 (-33 (-2y (-33 (-31 (-4z (-26 (-4z (-2a (-4y (-2c (-4y (-2e (-34 (-32 (-32 ^ (-34 (-2x 

(--2e (-4y (- 2e (-4y (-32 (-2z (-32 (-33 (-2x (-33 (-2/ (-4x (-4x (-2d (-26 (-4Z (-4z (-2a (-34 (-31 (-2y (-34 -̂  (-31 

(-2/ (-2<( C4x (-4x C2y C~34 C34 C2z C32 C32 C2b C4z C2a C4z C2(, C4y C2c C4y C33 C31 C33 C2x C31 £ 

(b) 622 (£>6)

^ (-6 C3 C2 C3 C6 C21 C22 C23 C2'i C22 C23 C21 C23 C22 C2i C23 C22 £ C3 C3 C2 C6 C6

Ct, C3 C2 C3 C6 £ C22 C23 C2'i C22 C23 C21 C22 C21 C23 C22 C21 C23 C3 £ C3 C6 C2 C6

(-3 (-2 (-3 (-6 ^ (-6 ^23 (-21 (-22 (-23 (-21 (-22 (-23 (-22 (-21 (-23 (-22 (-21 (-3 (-3 ^ (-6 (^6 (-2

^2 (-3 C6 E C6 C3 C21 C22 C23 C21 C22 C23 C21 C23 C22 C21 C23 C22 C2 C6 C6 £ C3 C3

(-3 Ce ^ C6 C3 C2 C22 C23 C21 C22 C23 C21 C22 C2i C23 C22 C21 C23 C6 C2 C6 C3 £ C3

C6 £ C6 C3 C2 C3 C23 C2i C22 C23 C21 C22 C23 C22 C21 C23 C22 C21 C6 C6 C2 C3 C3 £

Notes to Table 6.2

(i) The elements in the table are such that Tables 6.2(a) and 6.2(b) coincide exactly with Tables 1.5 and 1.6, respectively, when barred and unbarred opera-
tors are identified. A bar above an entry indicates that the matrix is -1 times the matrix indicated in Table 6.1, e.g. for the group 432 (O) C2d denotes

(ii) Only one-quarter of the group multiplication table is included; the other three-quarters can be determined by inspection,
(iii) Column 1 of Table 6.2(b) is continued in column 13, and so on.
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T A B L E 6.3

The double group of '422 (. 4)

E C4z C 2z C 4z C2x C2y C2a (-2ь
C4 C 2z C4z E C2a C2b C2y C2x

С 2 C4z E C4z C2y C2x C2t C2a

C4 E C4z C2z C2b C2a C2x C2y

C2 C2b C2y C2a E C2z C4z C4z

C2 C2a C2x C2b C 2z £ C4z C4z

C2 C2x C2b C2), C4z C4z Ё C22

C2 C2y C2a C2x C4z c;z C2z E

Note to Table 6.3
Only one-quarte r of the group multiplicatio n table is given, the remainde r follows from the fact tha t E commute s

with every elemen t of the group.

group multiplicatio n table for 432 (0) in Table 6.2; the result is shown in Table 6.3.
It is possible to use Opechowski' s rules, Theorem s 6.1.1-6.1.4 , to determin e the

numbe r of classes in the double group of 422 (D4). Usin g Theore m 6.1.1 it is clear
tha t classes Cl and C3 each lead to two classes in the double group. Fro m Theore m
6.1.2 each of the classes C2, C4, and C5 is a class of rotation s throug h n and such
tha t ther e are twofold rotation s at right angles to them and therefor e each of these
classes leads to only one class in the double group. Therefor e this double group has
seven classes which contai n the following number s of element s :

It is obvious, from inspection , to which classes most of the element s of the double
group belong, tha t is C'2 consist s of C2z and C 2z, C4 consist s of C 2x, C2y, C2x and
C2y and C'5 consist s of C2a, C2b, C2a and C2b. By definitio n C( consist s of E and
C'{ of £, but it is not immediately obvious from Opechowski's rules which two of the
four elements C4

+
z, C4~ , C^z and C4~ belong to С'ъ and which two belong to С"ъ. One

is not justified in assumin g tha t С'г contain s C£z and C4~ while C% contains C^z and
C4z. To determine this, one has to use the ordinary methods for finding the classes
of a group, that is to form the products X~l C±ZX where X ranges over the elements
of the group. If one does this it does so happen that C4z and C4z are in one class,
which we can call C'3 and therefore C4z and C4z are in the other class which we can
call ..' . We repea t tha t this need not have happene d because for each entr y in Table
6.1 an arbitrar y choic e was mad e as to whethe r to take the +  or — sign of eqn (6.1.1) ;
in othe r cases one could , in principle , have a class C; leadin g to two classes C- and
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C'î in which C- contains a mixture of elements such as A, B, C, and D so that C-'
therefore contains a similar mixture A, B, C, and D. Thus the classes in the double
group of 422 (D4) are

Since ther e are seven classes ther e will be seven reps of the double group G f. Of these
seven, five will form single-valued representation s of the poin t group 422 (Z> 4) and
two will form double-value d representation s of 422 (D4). The five tha t form single-
valued representation s of 422 (O4) can easily be determine d from the characte r table
oftha t group in Table 2.2, and in these, see Theore m 6.1.3, %(C- ) =  +jf(C-') .

Fo r the othe r two representations , those tha t form double-value d representation s of
422 (Z> 4), %(C- ) =  — x(CD from Theore m 6.1.4; thu s the character s of the classes
C2, C 4, and C'5 are all zero. These two representation s must be of dimensio n equal to
two, from Theore m 1.3.11. Therefor e %(Ci) =  2 and #(Cï) = — 2, and then also,
using eqn (1.3.11), it follows that %(C'3) = +^/2 and .(..' ) =  +  ^2. Therefor e the
rest of the characte r table is

Ther e are othe r ways of finding the reps of the doubl e group G 1 tha n by using
Opechowski' s rules, i.e. Theorem s 6.1.1-6.1.4 . It is possible, having separate d the
doubl e group G f into classes to work out the class-multiplicatio n coefficient s hijtk,
see eqn (1.2.2) , and use them in eqn (1.3.19) to work out the characte r table of G f

and henc e to find the double-value d reps of G. Yet anothe r way to find the reps of G f

is to establish an isomorphis m between G t and one of the abstrac t groups G"G| in
Table 5.1. To establish this isomorphis m is not as difficult as may appear at first
sight. First |G|, the order of the require d abstrac t group G"G|, is the order of G t

which , in any particula r case is known . Then if there is to be an isomorphis m between
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G"C| and Gf the number of classes in G"G\ the abstract group must be the same as the
number of classes in Gt and this is also known; this enables most of the abstract
groups of the correct order to be rejected. By this stage there is probably only one
abstract group remaining that can possibly be isomorphic to Gf and at most there will
only be a small number of groups left as possibilities. To distinguish between such
possibilities and to identify the generating elements of the correct abstract group
G"C| with suitable elements of the double group Gf it is best to proceed by inspection.
Having made this identification the isomorphism is completely determined and the
reps of G1 are just the reps of G"G| whose character table and matrix representatives, in
the case of degenerate representations, are given in Table 5.1. Although Table 5.1
does not contain all the abstract groups of all the various orders it does contain all the
abstract groups that are encountered in the double groups of the point groups and
space groups.

We can illustrate this procedure for the double group of 422 (Z)4) which we have
already considered and whose multiplication table is given in Table 6.3. This group
is of order 16 and has seven classes, and therefore of all the groups of order 16 only
G\l, G\l, and GÎ6 can possibly be isomorphic to the double group of 422 (Z>4).
Each of these three abstract groups has the required class structure, i.e. two classes
of one element each, three classes of two elements each and two classes of four
elements each. If we examine Table 6.3 we can determine the order of each of the
elements in the double group, for example C2x, C2y, and C2z are of order 4 while
C4z and C4z are of order 8, and the total numbers of elements of each order are

Order 1 2 4 8

Number of elements 1 1 10 4

and doing the same for G}g, G}g, and G}£ we obtain

G12
"16

r13
"16

G14
16

Order

Number of elements

Order

Number of elements

Order

Number of elements

1 2

1 9

1 2

1 5

1 2

1 1

4

2

4

6

4

10

8

4

8

4

8

4

It is thus clear that G}g and G\\ cannot be isomorphic to the double group of 422 (Z)4),
and therefore it is G}£ that is required. It then remains to identify the generating
elements P and Q of G}* with two suitable elements of the double group of 422 (£>4).
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P can be identified with any of the elements C4z, C4z, C^2, and C4z of the double
group, and we choose C4

f
z. Q will then be one of the elements of order 4 which

satisfies the generating relations, in this case just Q2 = P4,QP = P 7Q, and a possible
choice is Q = C2x as can easily be verified. Thus we arrive at the conclusion that the
double group of 422 (Z)4) is G}£, with its generating elements, P and Q being

and

The character table of the double group can be constructed immediately from that of
G{* and this is shown below where the labels of the classes used in the previous
treatment are also given.

It is clear that this is the same as was obtained previously by using Opechowski's
rules, Theorems 6.1.1-6.1.4. The single-valued reps of G, i.e. 422 (D4), are clearly
R I , R2, R3, R4, and jR5 for which .(. 2) =  x(Ci) and /(C 5) =  ^(C4) while the
double-value d reps are R6 and R7 for which #(C 2) =  — x(Ci) and /(C 5) =  — x(C4).

Nothin g has been said explicitly abou t the double-value d reps of those poin t groups
tha t contai n imprope r rotations , for each of these poin t groups is boun d to be simply
relate d to one of those poin t groups that consists only of pure rotations . Suppose
tha t G is a poin t group consistin g only of pure rotation s then ther e are two ways in
which a poin t group G' containin g imprope r rotation s can be derived from it, eithe r

G =  G +  IG (6.1.3)
where / i s the inversion operation , so tha t G' is a direct produc t group, or

G =  H +  /( G - H) (6.1.4)

where H is a halving subgroup of G, tha t is a subgroup of G of index 2. In each of
these two cases the reps of G' are simply related to the reps of G. Therefore , since we
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have already shown what methods are available for the deduction of the double-
valued representations of those point groups consisting only of pure rotations it is
straightforward to deduce the double-valued representations of all the crystallo-
graphic point groups. In Table 6.4 we identify each of the double point groups as a
manifestation of one of the abstract groups that were given in Table 5.1. The character

TABLE 6.4

The identification of the double point groups in terms of the abstract groups

Point group Abstract group, Identification of generating elements
see Table 5.1

1 1(C,) G2 P = Ë
2 1 (C;) G4 P = I,Q = E
3 2(C2) G4 P=C2l

4 m(C l h ) G 4 P = az

5 2/m(C2k) Gi P = C2z,Q = I
6 222 (02) GI P=C2,,Q = C2,
1 mm2(C2v) Gl P=C2,,Q = <ry

8 mmm(D2h) G}' P = С2г, Q = C2y, R = I
9 4(C 4) G J P= Ct

10 4(S4) G ' P = S;t

11 4/m(C 4fc) G? 6 P = C^,Q = I
12 422 (Z> 4) G1 J P =  C4

+
z,ß = C2x

13 4mm (C4„) GJ* P = C£, ß = a„
14 42w (ß2d) Gl* P = S4z, ß = C2x

15 4/mmm (D4„) G^2 P = . £, ß = C2„ .  =  /
16 3(C 3) G ' P = C 3

+

17 3(C 3 i) G? 2 P =  5'6
+,ß = /

18 32 (D3) G*2 ^ = C 3
+ , ß = C21

19 3m(C3„) GÎ2 ^ = C 3
+ , ß = adl

20 3m(D3d) G^4 P = C3
+ ,ß = C2 1 ,Ä = /

21 6(C6) G!2 P = C 6
+

22 6(C3h) G[2 ^ = 53
23 6/m(C6f t) G'J p = C 6

+ , ß = /
24 622 (D„) Gü P = C6

+ ,ß = C21

25 6mm (C6„) Gü P = C6
+, ß = <rdl

26 62m (D3„) G'i P = Sä, ß = C21

27 6/mmm (D6h) СЦ P = C6

+ , ß = C21> .  =  /
28 23 (T) G' 24 P =  CJ„  ß = C2„ R = C2,
29 ..(.„ ) GJ 8 P =  C3-„ß = C2 l ,Ä = CZy, S = l
30 432 (O) GJg P = C4

+„ ß = CJ,, R = C2b

31 43m (Td) G'g P = S4x, ß = C31, R = adb

32 m3m(0h) G«6 P = C4
+„ ß = CJ,, Ä = C2t, 5 = /

tables of the double point groups are given in Table 6.5 (Cracknell and Wong 1967,
Pick 1957, Hamermesh 1962, Kitz 1965a, Koster, Dimmock, Wheeler and Statz
1963, Opechowski 1940).



TH E 32 POIN T GROUP S AN D TH E 230 SPAC E GROUP S 429

T A B L E 6.5

The double-valued representations of the crystallographic point groups

(со =  exp (2../3) ; w = J2 + i; .  =  (1 +  i)/ v'2)
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Notes to Table 6.5

(i) The name s of the point groups are given in the top left-han d blocks of the tables and, where appropriate ,
several poin t groups are tabulate d together .

(ii) The character s of the single-value d reps, which were given in Table 2.2 are include d for reference .
(iii ) The matri x representative s for the generatin g element s are given for the degenerat e double-value d reps. The

matrice s of the othe r element s can be foun d by using the group multiplicatio n tables in Table 6.2.
(iv) The element s of the poin t groups can be identifie d by referenc e to Figs. 1.1-1.4 and Tables 1.2-1.6 .
(v) The scheme used in Table 2.2 for labelling the single-value d reps of the poin t groups has been extende d to

cover the double-value d reps as well. Each double-value d point-grou p rep is labelled eithe r by an extension of the
Mullike n (1933) notatio n or by the .  notatio n of Koster , Dimmock , Wheeler, and Statz (1963). In the extende d
Mullike n notatio n the symbols labellin g the double-value d reps have a bar placed over them .

(vi) We have not given the characte r tables of those groups tha t are direct product s of some othe r poin t group
with .  (.,) ; the characte r tables of these direct produc t groups can be constructe d as follows. If a group G' is given
as a direc t produc t of the form G ® .  then the reps of G' fall into pairs; each pair Мя and Mu arise out of a single

rep M of G and the character s of Me and Mu obey the following rules. If A' =  RI then for all R e G the characte r
of R in Mg and Mu is equa l to the characte r of R in M ; the characte r of A' in Mg is equal to the characte r of R in M,
but the characte r of R' in Mu is minu s the characte r of R in M. In the .  notatio n of Koster , Dimmock , Wheeler,
and Statz (1963), if .  =  M in G, then . +  =  Mg and . ~ =  Mu in G' .

(vu) The reality (see Definitio n 1.3.7) of the double-value d point-grou p reps is as follows:

non-degenerate , all character s real
degenerate , all character s real
non-degenerate , some character s comple x
degenerate , some character s comple x

first kind
second kind

thir d kind

In Table 6.6 we give the compatibilit y tables between the double-value d repre-
sentation s 3)* {R(a., ß, y)} (j = half odd integer) of the 3-dimensional rotation group,
0(3), and the double-valued point-group reps. This table, like Table 2.7, is relevant
to the study of the splitting of an energy level of a free atom, characterized by a
half-odd-integer total angular momentum quantum number j, in the presence of an
electrostatic field with the symmetry of any one of the crystallographic point groups
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TABLE 6.6

Compatibility tables for double-valued reps o/O(3) and point-group reps
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Notes to Table 6.6

(i) The double-valued point-group reps may be identified from Table 6.5.
(ii) The character in @J{Ä(a, ß, >•)} where R(x, ß, y) is a proper rotation through 2n/n is given by Bethe (1929),

The parity of the spin functions can be taken to be +1 so that 9>'(I) = + 1.
(iii) For those point groups that are direct products of some other point group G with (E + /) one simply uses

the table given above for G and adds a subscript g, since we have assumed that the parity of the spin functions is
+ 1. These point groups are:

(iv) The compatibilitie s for higher y values can be found by using the formul a at the foot of the appropriat e entr y
in the table, see also Table 2.7.

G . In crystal field theor y one can study various differen t situation s and the relation s
between them ; they are

(1) free atom , neglectin g spin-orbi t coupling ,
(2) free atom , with spin-orbi t coupling ,
(3) stron g spin-orbi t couplin g and weak crystal field,
(4) weak spin-orbi t couplin g and stron g crystal field,
(5) crystal field (no spin-orbi t coupling) .
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The procedur e for determinin g the splittin g of any given term for various relative
strength s of spin-orbi t couplin g and of the crystalline field is well known and a
particularl y clear descriptio n is given in Chapte r 4 of the book by Tinkha m (1964).
(1) and (2) are not confine d to crystal field theor y but belong to the genera l theor y of
fine structure . The sequenc e in which crystal field theor y proceed s is usually eithe r
from (1) to (5) and then back to (4), or from (1) to (2) and then on to (3). Each of
these two sequences involves two steps, one is the subductio n of an irreducibl e
representatio n of one group onto a smaller group and the othe r is the reductio n of
the inne r Kronecke r produc t of two representations . The inner Kronecke r produc t
will either involve two single-valued representations , if S in an integer , or one single-
valued and one double-value d representatio n if S is half an odd integer . Tables of
these Kronecke r product s are given for all the thirty-tw o crystallographi c poin t
groups by Koster , Dimmock , Wheeler, and Statz (1963) and Cracknel l (1968o). In
the first sequenc e the subductio n is performe d first.

A: (1) —> (5), subductio n of the rep 3iL of 0(3) onto the poin t group G,
B: (5) —> (4). reduction of Ibe Kronecker product of the rep 0s ana the reps of

G obtaine d in A.
In the second sequenc e the reductio n of the Kronecke r produc t is performe d first :

C: (I) —> (2), reduction of the Kronecker produc t of the reps 2>L and 2s of 0(3),
correspondin g to the orbita l and spin angula r momenta , to give the reps 3>J of 0(3),

D : (2) —> (3), subductio n of the rep Q>3 of 0(3) ont o the poin t group G (these reps
will be single-valued or double-value d dependin g on the value of/) .

The continuit y of (3) and (4), from strong spin-orbi t couplin g and weak crystal
field to weak spin-orbi t couplin g and stron g crystal field is established by inspectio n
of the splittin g in the two cases and makin g the two fit togethe r as the relative strength s
of the spin-orbi t couplin g and the crystal field are varied.

6.2. Symmetry-adapted functions for double point groups

In Chapte r 2 we considere d the derivatio n of symmetry-adapte d function s for the
poin t groups; these function s were listed explicitly in Tables 2.4-2.6. Such a functio n
is eithe r an individua l spherica l harmoni c ./ . (0, ф) or else some linear combinatio n
of spherica l harmonic s with various m values but with a fixed /value . These symmetry -
adapte d function s are of use in calculation s on molecule s and solids in the approxi -
matio n in which spin is neglected . If one wishes to includ e a prope r consideratio n of
spin it is necessary, as we have already mentione d earlier in this chapter , to conside r
the double-value d reps of the poin t groups. The problem of determinin g the basis
function s of these double-value d reps has been considere d by various author s
(Cracknel l 1969a, Cracknel l and Joshua 1970, Onoder a and Okazaki 1966, Telema n
andGlodean u 1967).

The spherica l harmonic s . ;

.(0, ф) defined in eqn (2.1.1) are eigenfunction s of the
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quantum-mechanica l operator s L2, the square of the orbita l angular momentu m
and Lz, the z componen t of the angular momentum . These function s correspon d to
eigenvalues /( /  +  \)h2 and mh for L2 and Lz. The set of spherica l harmonic s Y™(9, ф)
( — l ^ m ^ +  / ) for a given integer value of /  form a vector which is a basis of the
rep 2l{R(a., ß, y)} of the 3-dimensional rotation group. In considering these
3il{R(aL, ß, y)}, / is an integer. In this section we shall be concerned with reps
^J{R(oi, ß, y)} of the 3-dimensional rotation group where j is half an odd integer.

FIG. 6.1.

One example, that withy = ^, was given in eqn. (6.1.1). The basis of one of these
double-valued reps is not a vector whose components are the spherical harmonics
Y™(6, ф) but is a spinor . The theor y of the deductio n of the bases of the double -
valued representation s of the 3-dimensiona l rotatio n group and therefor e also of the
double-value d representation s of the poin t groups is given by various author s
(see, for example , Hamermes h (1962), Hein e (1960), Tinkha m (1964), Wigner (1959)
(Chapter s 15 and 20), while an extensive set of furthe r reference s on the quantu m
mechanic s of angula r momentu m is given by Biedenhar n and van Dam (1965)).

A rotatio n in 3-dimensiona l space can be specified by thre e Euler angles a, ß, and
y which we have already defined (see section 2.1) by first a rotation through a about
the z-axis, secondly, a rotation through ß about the y-axis and finally a rotation
through y about the z-axis. The restrictions on these angles are 0 =S ot < 2. , 0 ^ ß ^ n
and 0 ^ .  < 2.  and all rotation s are active, i.e. act on the point s of space rathe r
tha n the axes, and anticlockwis e rotation s are positive. It is therefor e clear tha t the
rotatio n (a, 0, 0) moves the poin t P, with spherica l polar coordinate s r, 0, and ф to
P' with coordinate s r, 0, and (ф + a) (see Fig. 6.1) and the rotatio n (0, 0, y) moves
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r, 0, ф to г, в, (ф + y), where (ф + a) and (ф +  y) are both mod In. Similarly, the
rotatio n (0, ß, 0) moves the point (r, 9, 0) to (r, 0 + ß, 0) if 0 + ß «S n and to
(r, In - 9 - ß, . ) if 9 + ß > n.

In section 2.1 we saw that the fact that the spherical harmonics Y™(9, ф) form a
basis of the representatio n of dimensio n (21 + 1) of the rotatio n group 0(3) mean s
tha t

(6.2.1)

Thi s equatio n gives the effect of R(x, ß, у) on the spherica l harmoni c .)"(. , ф) and
was muc h used in the productio n of symmetry-adapte d function s by the applicatio n
of projectio n operators . If ß = 0 or n, @'{R(ot., ß, .)}„ .  takes the particularl y simple
forms

(2.1.10)

and

(2.1.11)

The 2-dimensiona l representatio n &{R(a, ß, .) } of the 3-dimensiona l rotatio n
group may be determine d as follows (Wigner (1959), Chapte r 15). Suppos e tha t u is
an y unitar y unimodula r 2 x 2 matrix , then it can be written as

(6.2.2)

where \a\2 + \b\2 = 1. Given the Paul i matrice s

we can express any Hermitea n matri x of trace zero, say

(6.2.3)

in the form h =  xsx + ysy + zsz (x, y, z real) . If h is now transforme d by the unitar y
transformatio n u, we obtain a matri x h =  uhu""1, which is also Hermitea n and of
trac e zero. Thu s ther e will exist real number s x', y', and z such tha t h =  x'sx +
y'sy + z'sz and

(6.2.4)
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It is therefore possible to express x', y', and z' in terms of x, y, and z,

x' = ±(a2 + a*2 - b2 - b*2)x + ±i(a2 - a*2 + b2 - b*2)y
+ (a*b* + ab)z,

y' = ii(a*2 - a2 + b2 - b*2)x + ^(a2 + a*2 + b2 + b*2)y           (6.2.5)
+ i(a*b* - ab)z,

z' = -(a*b + ab*)x + i(a*b - ab*)y + (aa* - bb*)z,

and, because det h = det h we also have

(6.2.6)

As a consequence of eqns. (6.2.5) and (6.2.6) it follows that the unitary transforma-
tion in eqn. (6.2.4) is equivalent to a rotation, Ru, of the point (x, y, z) to the position
(x', y', z'). Since the determinant of the orthogonal transformation (6.2.5) is + 1 it
follows that every 2-dimensional unitary unimodular matrix u corresponds to a
3-dimensional rotation Ru. The relationship between u and Ru is given by eqn (6.2.4)
or by eqn (6.2.5). As we have noted in the previous section of this chapter the corre-
spondence between u and Ru is such that the matrices u form a double-valued repre-
sentation of SO(3), the group of pure rotations in three dimensions.

We now seek to determine explicit expressions for the matrix elements a and b of
u explicitly in terms of «, ß, and y, the Euler angles of the rotation Ru to which u
corresponds. We write

(6.2.7)

The expression for the components of the vector OP' ( = (x', y', z')) that is produced
from OP ( = (x, y, z)) by the performance of the three rotations a, ß, and y can be
shown to be

(6.2.8)

We therefore have to choose values of a and b which when substituted in eqn (6.2.5)
produce eqn (6.2.8). By substituting in eqn (6.2.5) one can check that the values of
a and b are

(6.2.9)
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so that

(6.2.10)

(6.2.11)

and

(6.2.12)

Therefore, substituting in eqn (6.2.2) or (6.2.7) we have

(6.2.13)

the + sign appearing because if the signs of both a and b are changed simultaneously
eqn (6.2.5) remains unaltered. From here it is not difficult to show that the mapping
u —> Ru defined by eqns (6.2.2) and (6.2.5) is a 2 to 1 homomorphism of SU(2) onto
SO(3) (Wigner 1959 (Chapter 15)). That is, there are two matrices u and — u corre-
sponding to any given rotation Ru and the matrices u form a double-valued represen-
tation of SO(3). This means that if u tu2 = u then RUIRU2 = /?„ but that if RUlRU2 = Ru

then one may have either
(6.2.14)

or
(6.2.15)

Which one of eqns (6.2.14) and (6.2.15) in fact holds can only be determined by actually
multiplying together the matrices ut and u2. If we take all the sets of values a, ß, and y
of the elements of SO(3) and always take the + sign in eqn. (6.2.13) we shall find that
sooner or later a product of U j and u2 that follows eqn (6.2.15) will arise and conse-
quently it is found that it is only possible to satisfy the condition of closure by includ-
ing for each (a, ß, y) both the matrices given in eqn (6.2.13).

To determine symmetry adapted functions for the double-valued reps of the point
groups we make use of group operators. In section 2.2 we described the use of these
operators for determining basis functions, or symmetry-adapted functions, for the
single-valued reps of the point groups. Suppose that R is an element of a point group
G and that ф(х, у, z, s) is some functio n of the space and spin coordinates . Then if
the rep £)' has dimension equal to dt we defined in eqn (2.2.2) the operator

(2.2.2)
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The operato r Wl

ts can then be used as a result of Theore m 2.2.1 to determin e
symmetry-adapte d function s for the rep Dl. This theore m states tha t if ф is an arbi-
trar y functio n such tha t Wl

s$ Ф 0 (where s is any given numbe r in the range 1 to J;)
the n the function s Wl

ts<$) = ф\(1 =  1,2, . . .,*/; ) form a basis for the rep Dl. If
ф(х, у, z, s) is assumed to be of the form of a produc t of a space functio n and a spin
function , i.e.

(6.2.16)

then the operato r R can also be written as a produc t of two operator s

R = Rr . Rs, (6.2.17)

where Rr acts only on the space functio n ф\(х, у, z) and Rs acts only on the spin
functio n ф2(з). Therefor e

(6.2.18)

The space functio n ф{(х, у, z) is, as in Chapte r 2, eithe r an individua l spherica l har-
moni c or a linear combinatio n of spherica l harmonic s while the spin functio n . 2(

5) is

u_ =  if the spin coordinat e s is —\ and is u+ =  if s is +  j. The effect of the

operato r Rr, one of the point-grou p operations , on the spherica l harmoni c F,m(o, ф)
was considere d in Chapte r 2,

(6.2.19)

from eqn (2.1.3) , it being remembere d of course tha t Rr is a function-spac e operato r
in this equation . It therefor e remains , if we are to use the operato r Wl

tu, to determin e
the effect of the operato r Rs on ф2(з)- To do this we need to study the theor y of
spinor s themselve s in a little mor e detai l (see, for example , Bade and Jehle (1953),
Templ e (1960), Wigner (1959)). If R is the matri x correspondin g to a rotatio n in
3-dimensiona l space then R has only one real eigenvalue and one real eigenvector ;
thi s eigenvecto r is directe d along the axis of rotation . If one tries to determin e the
eigenvalues and eigenvector s of R by simply solving Rx = . .  one can find two other ,
complex , eigenvalues and eigenvectors . The comple x eigenvector s form a comple x
conjugat e pair and they are called Isotropie vectors. The absolut e magnitud e of an
isotropi c vector is zero. For example , using as R the matri x correspondin g to (a, 0, 0)
in eqn (6.2.8) we have

(6.2.20)

which on solution gives eigenvalues A =  1, e1" and e~ ia and the correspondin g eigen-
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vectors are (0, 0, !),(!, — i, 0), and (1, i, 0) respectively. The magnitude over the real
numbers of each of the pair of complex conjugate eigenvectors of R is clearly equal
to zero. If we write an isotropic vector v ( =(vx, vy, vz)) then

(6.2.21)

and we write the components of v in terms of a parameter £, where
~\

(6.2.22)

and £ is called the isotropic parameter (£ is a complex number so that there is no
difficulty about vz = 0, which corresponds in the complex plane to the point Ç = oc).
If we perform a rotation operation R on the isotropic vector v specified by £ it will
be turned into an isotropic vector v' specified by £'. To obtain an expression for £'
in terms of £ it is convenient to regard the rotation R as the successive reflection in
two planes M and N (Temple 1960). For the reflection of v in the plane M the vector
v is produced,

v = v - 2m(v . m) (6.2.23)

where m is the (real) unit vector normal to M and from this we find

(6.2.24)

(6.2.25)

where a = — mz and ß = mx + \my. For the second reflection, in the plane N, v is
reflected to v' and similarly

(6.2.26)

where y = -nz and 0 = nx + iny and n is the unit vector normal to N. We may
rewrite % in terms of £,,

(6.2.27)

where

(6.2.28)
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If we write the Isotropie parameter Ç as a quotient

(6.2.29)

eqn (6.2.27), which gives the effect on £ of the rotation R, can be replaced by

(6.2.30)

A spinor is then defined as an ordered pair of numbers which have the property

that they transform under R according to eqn. (6.2.30), or under a reflection
according to eqn (6.2.25). By writing the space-inversion operation / as oxayaz and
using eqn (6.2.25) three times one can prove that 1C = + £.

The 2 x 2 matrix obtained when eqn. (6.2.30) is written in matrix form, i.e.

(6.2.31)

is in fact the same as the matrix @*{R(at., ß, y)} given in eqn. (6.2.13). In other words

if Rs acts on the spinoi the effect is to produce which we may write as

(6.2.32)

where 2*{R(a., ß, y)} is given in Table 6.1. We can illustrate that the matrix in eqn
(6.2.31) is &{R(oc, ß, y)} with an example.

The rotation C£z can be written as the product of two reflections,

(6.2.33)

see Table 1.5. Thus m = (0, 1, 0) and n = (-1, 1, 0)./ 2 and therefor e

(6.2.34)

and from eqn (6.2.28)

(6.2.35)

Thu s the matri x in eqn (6.2.31) is ' which is, from Table 6.1,

just the matri x . The double-value d propertie s arise by notin g tha t p and a
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can be replaced by — p and — a, by choosing , for example , m =  (0, — 1, 0) and
n =  (— 1, 1, 0)7^/2 . We can therefor e simply use eqn (6.2.32) to determin e the effect

of Rs on the two spinor s w_ and u+ = If we write

(6.2.36)

then

(6.2.37)

and

(6.2.38)

We can thin k of the two spinor s . _ and u+ as the component s of a colum n vector
and therefor e

(6.2.39)

Or if we have a row vector <.„ , и+\ then

(6.2.40)

Equation s (6.2.37) and (6.2.38) or (6.2.39) or (6.2.40) can be used to give the effect
of the point-grou p operatio n R on the spin functio n . 2(

5)- In Table 6.7 we give the
effect of the point-grou p operation s on the two spin function s ._( =  ф2( — i)) and

.+ ( =  . 2( +  .)) .
Thu s with the knowledge of the transformatio n propertie s of the spherica l har-

monic s Y™(9, ф) which were studied in detai l in Chapte r 2, togethe r with the trans -
formatio n propertie s of the spin function s w_ and u+ given in Table 6.7 it is possible to
use Theore m 2.2.1 to determin e symmetry-adapte d function s for the double poin t
groups. Fo r the non-cubi c poin t groups the use of this theore m and the group
operato r Wt

l

u is quit e straightforwar d and the results are given in Table 6.8 ; the actua l
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TABLE 6.7

The effect of the point-group operations on the spin functions

(c = exp (rci/6))

«+«_ +

E, I U- u +

C2x, ax —\u+ — in_

C2y,(r, u + ~u_
C2z, PZ — \u_  iw +

CJi, S6~i K(l + 0"- + (-1 - 0« + ) i((l - i)«- + (1 - i)» + )
CJz, S6-2 Kd + 0«- + (1 + i)« + ) i((-l + 0«- + (1 - i)«+)
C3

+
3, S;3 K(l - 0«- + (1 - 0« + ) i((-l - >)«- + (1 + i)"+)

C3
+4, SM |((1 - i)«_ + (-1 + i)M+) }((! + 0«- + (1 + J)» + )

C31, % i((l - i)M_ + (1 + i)«+) i((-l + i)«. + (1 + i)«.)
Q2, S6

+
2 i((l - i)M_ + (-1 - i)« + ) |((1 - i)«- - (1 + 0«+)

C3-3,56
+3 K(l + i)«- + (-1 + i)« + ) i((l + i)«- + (1 - OM + )

C3~4,S6
+

4 i((l + i)«- + (1 - 1)«+) i((-l - 0«- + (1 - i)« + )

M_ W +  U _ M +

C4»,^4i («- - i"4-)/V2 (-iu_ + w+)/V2 £.-^ «- "4
C,,S4y (M_ - u + )/V'2 («_ + w+)/v'2 C,SJ EM_ E*« +

C^.S^ (1 + i)«_/V2 (1 - i)Mj./V2  C3
+,56~ £2»_ £*2w +

Qi^4x («- + i»+)/v'2 (i«- + « + )/V2 C2,ff/,  -i"- i" +
C^.SX,, («_ + M+)/V2 (-«- + «+)/v'2 C3-,56

+ £*2w._ <;2w+
Q~z, ̂  (1 - i)«_/72 (1 + i)K+/V2 Cg.Sj E*W- ew +

C2a,ada (1 + i)w+/V2 ( - l + i ) w - / v ' 2  C^, a,, -iw+ -iu_
C2b,odb (1 - i)u+/y2 (-1 - i)n_/,/2  C22,ffjj  £*«+ EW_
C2 c ,<jd c ( - iw_ + iw+)/v'2 (i«_ + in + y.,/2 C23, <rd3 £M t -£*«_
^2^,^ (-iu_ + w+)/V2 (-«- + i»+)/v'2 C 2 , ,<7 B , w+ ~ w _
C*,,°t. (-m_ - i»+)/V2 (-iu- + iw + )/V2  C 2'2, ao2 £ 2w+ -£*2u_
C2f,

ais (i«- + » + )/V2 (-"- - i« + )/V2  C2'3, cru3 £*2u+ - f i 2H^

matrix representatives can be identified from Tables 6.2 and 6.5. This table may be
compared with Tables 2.4 and 2.5, which give the symmetry-adapted functions for
the single-valued reps of the non-cubic point groups.

For the cubic groups, however, the direct use of the group operators is cumber-
some. This is because some of the members of a cubic point group have their second
Euler angle jS not equal to 0 or n but equal to ^n, see Table 2.1, and the matrix repre-
sentatives dl

m,m(\Ti) are very complicated (Bradley 1961). For the single-valued
representations of the cubic point groups this difficulty manifests itself in the tables
of symmetry-adapted functions in Table 2.6 which are relatively more complicated
than Tables 2.4 and 2.5 for non-cubic point groups. Since tables of symmetry-adapted
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TABLE 6.8
Symmetry-adapted functions for the non-cubic double point groups

Point group Rep Symmetry-adapted function m m mod
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Point group Rep Symmetry-adapted function m m mod
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Notes to Table 6.8

(i) In the first three column s we identif y a non-cubi c poin t group G and in the next two column s we identify a
double-value d rep .  of G . In colum n 6 we identif y function s tha t belon g to .  and in column s 7 and 8 we give the
restriction s tha t apply to the values of m for the rep . .

(ii) Fo r degenerat e reps the basis function s are given as row vectors and the matri x representative s are available
from Table 6.5.

function s for the single-value d reps of the cubic poin t groups have been given already
it is easier to obtain the bases for the double-value d reps by the reductio n of Kronecke r
product s of &{R(y., ß, 7)} with the single-valued reps rather than to apply the
group operator W\u to the functions . _ Y™(6, ф) and u+ Y™(Q, ф) ab initia.

Suppose tha t F' is а single-valued rep of one of the poin t groups, then the bases of
. ' are available from Tables 2.4-2.6 ; we write (ф'р\ = (ф\, ф'2, . . ., ф^\ for a basis
of .' . The bases used in Chapte r 2 were for row representation s so tha t

(6.2.41)

and the matri x representative s D'(R)qp were given in Chapte r 2 for each point-grou p
rep .' . Fro m eqn. (6.2.40) we see tha t < ._ , u+\ is a basis of &{R(a, ß, 7)} and the
transformation properties of the spin functions u_ and . + were given in eqn . (6.2.40) ,

(6.2.42)

When 2*{R(o., ß, 7)} is restricted from the 3-dimensional rotation group, O(3), to
one of the point groups, G, i.e. is subduced onto G, it forms a representation of G
that may be reducible or irreducible. If we write down the function

(6.2.43)

this forms a basis of the Kronecker product representation . * where

(6.2.44)

Poin t group Rep Symmetry-adapte d functio n m m mod
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which is the Kronecke r produc t of the single-value d rep . ' of G with the representa -
tion 2* of G to which the spin function s belong. The matri x representativ e Dk(R) can
the n be constructe d by using eqns (6.2.41)-(6.2.43) ,

(6.2.45)

rk is a double-value d representatio n of G tha t may be reducibl e or irreducible . If . *
is irreducibl e then it can be identifie d with one of the double-value d irreducibl e
representation s of G in Table 6.5 and, because we know <. .  from Tables 2.4-2.6,
the n eqn (6.2.43) immediatel y gives function s tha t are bases of .* . On the othe r
hand , if F fc is a reducibl e representatio n of G it can be transforme d by some unitar y
transformatio n into a sum of irreducibl e double-value d representation s of G. If R is
an elemen t of G then we may apply a unitar y transformatio n to reduc e .* ,

(6.2.46)
where

(6.2.47)

and some direct sum of irreducibl e double-value d representation s of G will be pro-
duced . By inspectio n of the sequenc e in which these irreducibl e representation s of G
appea r we can assign the various component s of the basis of F k to the appropriat e
representation . If <i//£| is a basis of Ffe then the transformed basis of Yk' is given by

(6.2.48)

where M is given by eqn (6.2.46).
When ®* of 0(3) is subduced onto one of the point groups it can be identified from

Tables 6.1 and 6.5. The compatibilities between ^* of 0(3) and the double-valued
reps of the cubic point groups are given in Table 6.9. For each of the cubic point
groups we therefore form the Kronecker product of the appropriate rep in Table 6.9
with each of the single-valued reps F! of that point group. The reduction of each of
these Kronecker products is given in Table 6.10. Therefore if <0j,| is a function from
Table 2.6 that belongs to A, 1E, or 2Eof 23 (T) or Аъ A2, or E of 432 (0) we can use
eqn (6.2.43) to write down

(6.2.49)

which forms a basis of the correspondin g double-value d representatio n F fc listed on
the right in Table 6.10 and which is irreducible . The only cases for which F* is
reducibl e are then T m E for 23 (T) and Tl m Et and T2 0 EY for 432 (0). For
these representation s it is necessary to find a matri x M tha t can be used in eqn
(6.2.46) to reduc e F fc. M can be determine d by writing down the matri x representa -
tives in F k using eqn (6.2.45) and Tables 2.3 and 6.1 and by finding the matri x whose
column s are the normalize d eigenvector s of the matri x which is the sum of the
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matrices Dk(R) for all the elements in one class of G. For T fxj E of 23 (T) the matrix
Mis

(6.2.51)

(6.2.52)

By applying the matrix Mj in eqn. (6.2.48) to the function <^*| = <«_</>£, и + ф^,\,
where <<£p| is a basis of the rep Т of 23 (. ) determine d from Table 2.6, one obtain s
a transforme d basis <i^p| ; the component s of <i^p | can then be assigned to the
double-value d reps Ё, 1F, and 2F of 23 (.) . When M, is applied to the matrice s
D k(jR) for .  [x] £ one finds that the reps appear down the leading diagonal in the
order Ё, 1F, and 2F respectively so tha t the first two component s of <i/^' | belon g to

where w = exp (2../3) ; for 7\  H  El of 432 (O) the matri x M is

and for T2 m E1 of 432 (O) the matri x M is
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E, the second two components belong to 1F and the third two components belong
to 2F. When M2 is applied to 7\ [x] E^ of 432 (0) one finds that £j appears in the
top left-hand corner of Dk\R) and F in the lower right-hand corner, so that the first
two components of <i/^'| given by eqn (6.2.48) belong to E1 and the last four com-
ponents belong to F. Similarly, when M3 is applied to T2 0 El of 432 (0) the first
two components of <i/^| given by eqn (6.2.48) belong to E2 and the last four com-
ponents belong to F. The matrix representatives obtained in the ways just described
are given in Table 6.11.

TABLE 6.9

The compatibilities o/®* o/O(3) and the reps of the double cubic point groups

Point group ®*

TABLE 6.10

Tkfor the cubic point groups

Point group Kronecker product . *

28 23 .  E .  ;
29 m3 Т„ Ев . 5

+

30 432 О Е, . 6

31 43.  Та Е! . 6

32 .. .  Oh £1.  .̂ "
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TABL E 6.11

Matrix representatives for bases of cubic double point groups

23 (. )

432 (O)

Notes to Table 6.11

(ii) Only the matrice s for the generatin g element s are given; the matrice s for the othe r element s can be found by
using Table 6.2.

(iii) In the reduction s of .  @ £ of 23 (7) and of Tl [x] £j and T2 [x] El of 432 (O) the representations appear
down the leading diagonal in the following order :

In Table 6.12 we give the expressions for the symmetry-adapted functions for the
cubic point groups in terms of <. .  where (ф1

р\ is a basis of one of the single-valued
reps . ' oftha t poin t group and can be found from Table 2.6.
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TABL E 6.12

Symmetry-adapted functions for the cubic double point groups

(to = exp (2m/3) )

Poin t group Rep .  . ' Basis of .

432 (О)

Notes to Table 6.12

(i) <0p| is a basis of the single-value d representatio n listed in colum n 3 and can be found from Table 2.6.
(ii) Table 6.11 gives, for the generatin g element s of the group, the matrice s accordin g to which the row vector in

colum n 4 transforms .
(iii) Only the poin t groups 23 (T) and 432 (O) are include d in the table.
(iv) Fo r the poin t group 43m (Td) the set of rules for constructin g the bases of the double-value d reps is exactly

the same as the set of rules for 432 (O) which is given in the table. This does not , of course , imply tha t the actua l
bases of the double-value d reps are the same for the two poin t groups; thi s is because the bases <0jJ of the single-
valued rep . ' of 432 (0) are not necessaril y the same as those of the rep . ' of 43m (Td).

(v) mli (Th) and m3m (Oh) are direc t produc t groups and the rules for these groups can very easily be foun d since
the parit y of the spin function s is taken to be +  1. Therefor e the rules for these groups can be found for m3 (Th) by
addin g the same subscript , eithe r g or u, to the labels in both colum n 2 and colum n 3 of the table for 23 (T), and for
тЪт (O h) by addin g the same subscript , again eithe r g or u, to the labels in both colum n 2 and colum n 3 of the table
for 432 (O).

(vi) Some of the function s in the table have been denormalized ; to normaliz e them again each basis should be
divided by the square root of the sum of the squares of the magnitude s of the coefficient s of the contribution s to
any one component , e.g. for E of 23 (T) the basis derived from A is alread y normalize d but the basis shown in the
table derived from T should be divided by ^/ 3 to normaliz e it.

6.3. The double-valued representations of the space groups

We have seen in the previous two section s how an entit y with half-odd-integra l spin
and in a system with the symmetr y of one of the poin t groups, G, require s the use
of the double group Gf or the double-value d representation s of G. In a similar way
if we study an entit y with half-odd-integra l spin and in a system with the symmetr y
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of one of the 230 space groups it is necessary to study the double-valued representa-
tions of the space groups. The double-valued space-group reps are, therefore, impor-
tant when spin-dependent terms are included in the Hamiltonian used in the determi-
nation of the electronic band structure of a crystalline solid (Elliott 1954e). It is
necessary to extend the scope of Definition 6.1.1 to cover space groups. A space
group G is made up of elements {R \ \} which obey the multiplication rule

(1.5.3)

and form a group ; G can be expressed in terms of left coset representatives of T, the
translation group of one of the Bravais lattices

(3.5.2)

The rotational parts /?b R2, . . ., Rh form one of the 32 crystallographic point groups
and the rule for constructing its double group was given in Definition 6.1.1. Corre-
sponding to every element Rt of this point group there are two elements, say R{ and
Rj , in the double point group. In considering a double space group the Rt and Rt are
both to be regarded as having the same effect on a vector v;. That is,

(6.3.1)

When forming group products R( and ß; multiply according to the multiplication
rule for the double point group, that is R{ and Rt correspond to +u and — u respec-
tively in the isomorphism of the double point group with the subgroup of SU(2). It
is then possible to define a double space group as follows,

D E F I N I T I O N 6.3.1. The double group G! of a space group G, defined by eqn.
(3.5.2) is given by

(6.3.2)

where Rt and R{ are the elements of the double point group corresponding to the
element Rt in the point group of RL, R2,. . ., Rh, and T is the translation group of
the Bravais lattice of the space group G.

The multiplication rule for the members of the double space group GT is, by
analogy with eqn (1.5.3)

(6.3.3)

Similar products involving the barred elements can also be written down,

(6.3.4)

(6.3.5)

(6.3.6)
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It is possible to construct the double space group Gf for each of the 230 space groups
by making use of the list of the generating elements of the space groups in Table 3.7
together with the group multiplication tables for the double point groups in Table 6.2.
Any desired part of the group multiplication table can thus be constructed, but the
mere construction of the group multiplication table on its own is not very illuminating.
It is with the irreducible representations of Gf that we are concerned, and in par-
ticular those which lead to the double-valued reps of G. The theory given in section
3.7 and in Chapter 4 of the representation of a space group G is immediately appli-
cable to finding the representations of G f, the double space group. We emphasize
once again that one can either talk about the single-valued and double-valued
representations of a space group G, in which case the single-valued representations
have already been given in Chapter 5, or alternatively one can simply talk about the
reps of the double group G f. In the second case they are ordinary single-valued reps
of Gf which therefore possess all those properties of irreducible representations which
were given in section 1.3. We can apply the theory of section 3.7 and Chapter 4 to
the double space groups Gf in a way exactly similar to what was done in Chapter 5
for the space groups G. When this has been done the reps of Gf can be divided into
two sets, first those for which %({E \ 000}) = +%({E \ 000}) and which therefore
make up single-valued reps of G and secondly those for which #({£ | 000}) =
— %({E | 000}) and which therefore make up double-valued reps of G.

The task of finding the reps of the complete double group GT involves determining
the small reps of the little group Gtk, see Definition 3.7.4, for each wave vector k in
the Brillouin zone of that space group. The problem of identifying the elements
which are present in Gtk presents no difficulty because if we choose a particular
space group and a particular point in its Brillouin zone we can read off from the
appropriate part of Table 5.7 the generating elements of the space group G and then
identify HGk or Gk* in terms of one of the abstract groups in Table 5.1. When we
attempt to construct the double space group Gf and the corresponding little group
Gtk this is less difficult than might appear at first sight. Suppose that in G

(6.3.7)

then from eqn (6.3.3) in the double group Gf

(6.3.8)

where v3 is exactly the same as before. X may be either R3 or R3 and which one it
is can be determined by inspection of Table 6.2.

Having constructed HGtk or Gtk*, depending on whether it is a point of symmetry
or a line of symmetry that is being studied, it then remains to identify this group as
one of the abstract groups in Table 5.1 in a similar way to that described for point
groups in section 6.1 and illustrated for the double group of 422 (Z)4). To simplify
this identification it is advisable to separate HGtk or Gtk* into classes and it is not
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unreasonable to suppose that the classes of a double space group are simply related
to the classes of the ordinary space group from which it has been derived. For a
symmorphic space group, HGtk or Gtk* is always one of the 32 double point groups
so that Opechowski's rules, Theorems 6.1.1-6.1.4 still apply to them. But for non-
symmorphic space groups some adaptation of Opechowski's rules is necessary
(Elliott 19546, Glück, Gur, and Zak 1967). Theorem 6.1.1 is still valid for HGtk for
double space groups although it needs to be formulated slightly differently :

T H E O R E M 6.3.1. To each class Ci of elements, [R{ \ v,-}, of the group HGk in which
the R{ are not rotations through n there correspond exactly two classes o/HGtk, C/,
and C-'.

There is no simple theorem which really corresponds to Theorem 6.1.2 for space
groups although the following theorem is sometimes quoted ; however it is little more
than a re-statement of the definition of a class.

T H E O R E M 6.3.2. To each class Cn of the group HGk the rotational parts of whose
elements are rotations through n there correspond either one or two classes o/HGtk. If
there is no rotation through n about an axis at right angles to the axis of one of the rota-
tions ofCn then there will be two classes in HGtk corresponding to Cn. But if {A,- | vj is
an element of Cn and there exists an element {Rf \ \j} where Rj is a rotation about an
axis at right angles to the axis of Rt then there will only be one class in HGtk correspond-
ing to Cn if

(6.3.9)
that is, if

(6.3.10)

Theorems 6.1.1 and 6.1.2 could also be adapted to Gfk* instead of to HGtk. The
remaining two theorems, Theorems 6.1.3 and 6.1.4, simply constitute the definition
of single-valued and double-valued representations of a point group G and are
equally valid for a space group G.

We have discussed earlier, in section 5.2, the effect on the energy levels £k if a
crystal possesses time-reversal symmetry in addition to all the spatial symmetry
operations of G. In a similar way it is possible to consider the effect on the small
reps of Gtk if 9, the operation of time inversion, is present as a symmetry operation
of a crystal. For the present we simply note that the presence of 0 may cause some
extra degeneracies in the energy levels Ef that belong to the rep Fk of G tk (see section
5.2, p. 388):

(a) there is no change in the degeneracy of Ef,
(b) the degeneracy of Ef becomes doubled, that is two different energy levels, both

described by the same rep Fk, become degenerate,
(c) the degeneracy of Ef becomes doubled but, unlike (b), two different (i.e., in-

equivalent) reps Fk and Fk of Gtk become degenerate, and
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(d) when k and — k are not in the same star, the spectru m of the eigenvalues at
— k become s identica l with the spectru m of the eigenvalues at +k .

Once again it is convenien t to postpon e unti l Chapte r 7 the theor y of the determi -
nation , for any given rep . ^ which of the above situation s applies (see section 7.6);
thi s theor y involves the realit y of the induce d rep (. * î G1), see Note (vii) to Table
6.13.

6.4. An example of the deduction of the representations of a double space group

In section 5.4 we illustrated the use of Table 5.7 by showing how to obtain from it
the single-valued reps of the space group F43c (./) . We now show how it is possible
to use tha t table to deduc e the double-value d reps of the same space group F43c (.|) .

The Brillouin zone of the space group F43c (7^5) is illustrate d in Fig. 3.14 and in
Fig. 5.2. The k vectors of each of the point s and lines of symmetr y are, from Table 3.6,
in term s of gl 5 g2, andg 3 :

Point or line k

We conside r first the point s of symmetr y in turn .

. : k =  (0,0,0 )
HG r is 624 which is just the poin t group 43m (. .  see section 5.4, and therefor e
HG t r is the double group of 43m (Ta) which is given in Table 6.5. This group can also
be identified as the abstract group G 4g and its generatin g element s identified as

The eight classes of this group are thu s
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•>

and the thre e representation s which correspon d to double-value d reps of HG r are

The matrice s for these representation s can be found from Table 5.1 or Table 6.5.
Fro m the realities in the extreme right-han d colum n it follows tha t the additio n of
time-reversa l symmetr y causes no extra degenerac y of the small reps of G r.

X: k =  (i 0, i)
HGX was identifie d in detai l with the direct produc t Gg ® T2 in section 5.4:

where the symbols in the last column s are used as a shorthan d notation , the prime
being used to distinguish between {/?; | v;} with the same Rt and differen t v;.

Ther e are, therefore , 32 element s in the Herrin g little group HG^X and using
Table 6.2 and the generatin g relation s of the group Gf, tha t is

we can easily construc t the group multiplicatio n table. Par t of it is shown here :

E В С D_ T U_ V_ W
B E D C V W T U _
С D E B U_ Т_ W V
D C B E _ W F U T
T W U V_ £ С D B
U V T W C E B ^ D
V V W T B D C E
W T V U D B E C

E B C D T U _ V ^ W
B E D C V W T U _
С D E B U_ T_ W V
D C B E ^ W F U T
T W U V_ £ С D B
U V T W C E B ^ D
V V W T B D C E
W T V U D B E C
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and the rest can readily be constructed from this since E', E, and E' commute with
all the elements of the group. We can then identify this with one of the groups of
order 32 in Table 5.1 ; the number of elements of the various orders are

Order 1 2 4 8

Number of elements 1 3 20 8

and by separating the elements into classes we find that there are 14 classes. By
inspection, using information such as the order of each element, the number of classes
and the fact that the representations of HGtx must be related to those of HGX we can
identify HGtx with Gf 2 where

and

which is also a direct product group, G\* ® T2. Identifying the classes of Gj* we find

The double-valued reps of HGX are then those reps of Gj£ for which #(C2) = — %(Ci),
i.e. R6 and R7:

The matrices for these reps can be identified from Table 5.1 and from the realities
included in the right-hand column we see that if the crystal possesses time-reversal
symmetry the degeneracies of the reps Et and E2 (Х6 and Z7) are not changed .

HGL for this poin t was identifie d in detai l with the abstrac t group G*2 in section 5.4 :

Order 1 2 4 8

Numbe r of element s 1 3 20 8



TH E 32 POIN T GROUP S AN D TH E 230 SPAC E GROUP S 461

where again the symbols in the last column s are used as a shorthan d notation . It is
the n easy to construc t the group multiplicatio n table for H G tL :

E
F
К

Q
U
I

F
К
E
U
î

Q

К
E
F
I

Q
U

Q
i
и
E'
К'
F'

U

Q
I
F'
E'
К'

I
и
Q
К'
F'
£'

The rest of this group multiplication table can readily be constructed since E', E,
and E ' commute with all the members of the group. Separating the 24 elements of
the group HG tL into classes we obtain 12 classes and by inspection this group can
be identified with the abstract group G|4 with

and

which is a direct product group G\2 ® T2. Identifying the classes of G\2
 we nnd

and the reps that lead to double-valued reps of HGL are those of G?2 f°r which
x(Cj) = + x(C2); this means that only R±, R2, and R5 are acceptable:
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The matrices for E (L6) can be found from Table 5.1. From the realities included in
the extreme right-hand column we can see that the addition of time-reversal symmetry
causes the degeneracy of each of the reps Ät (L4), Ä2 (L5) and £ (L6) to be doubled.
W- k — (i A £\yy • K — \2> 4> 4J

HGW is the direct product of G4 and T4, that is, of the point group 4 (S4) and T4 ;
HG^W is therefore also a direct product, that of the double group of 4 (54) and the
group T4. The double group of 4 (S4) in this case is actually different from the
4 (S4) of Table 6.5 because the axis of symmetry is along the x-axis rather than the
z-axis ; the elements of 4 (54) are

and the group multiplication table for the corresponding double group HGfW is

E B X_ Y
В E_ Y X
X Y B E
Y X E В

which is isomorphi c with Gg where

and the classes are thu s

The reps which lead to double-value d small reps of Gw are those for which
Z({£|000}) = -X({E 000}), i.e.

The realities included in the extreme right-hand column indicate that the addition
of time-reversal symmetry causes the double-valued small reps of G"' to stick together
in pairs, each pair consisting of two complex conjugate reps of Gw.
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We now conside r the lines of symmetr y and as in the case of the study of the single-
valued reps in section 5.4 this involves the theor y of projective representations . We
have to identif y the centra l extension G tk* and its representation s as the major step
toward s findin g the reps of G t k and henc e the double-value d small reps of G k. G t k

will, of course , contai n twice as man y element s as G k. The multiplicatio n rule of
pk* •

(3.7.31)

and if we proceed to the double group then the value of a(Hj, Hk) is unaltered . This
is because a(Hp Hk) is determine d by

(3.7.27)

where n(Hj, Hk~), see eqn . (3.7.37) , depend s only on the spatial propertie s of the
space-grou p element s {Sj \ Wj} and { S k } wk}. Thi s mean s tha t

a(Hj, Hk) = a(Hj, Hk) = a(Hj, Hk) = a(HJ} Hk) (6.4.1)

where ., ,  H/, Hk, and Hk derive from the element s {Sj \ w_,-}, {Sj ] w;}, {Sk \ wk} and
{Sk | wj respectively of the double space group G f. The multiplicatio n rule of eqn
(3.7.31) therefor e become s modified in G tk* to

(6.4.2)

(6.4.3)

(6.4.4)
(6.4.5)

The evaluatio n of the product s HjHk, HjHk, etc. has to be done using the known
multiplicatio n propertie s of the element s of the space group togethe r with the
multiplicatio n tables for the double groups given in Table 6.2.

We can now procee d to the consideratio n of the lines of symmetr y for the example
tha t we have chosen , namel y the double group of F43c (Td

5).

A: k =  (a, 0, a)

Fro m section 5.4 we can see tha t G A* is isomorphi c to G^ with element s

so tha t G M* contain s the eight element s
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Fro m Table 6.2 its group multiplicatio n table is

E С Т U
С E_ U T
T U E_ С
U T С E.

The rest of the table can readily be constructe d from this since E commute s with all
the element s of the group. Thi s group is therefor e isomorphi c to G g with

and

so tha t the classes of G tA* are

Ther e are five irreducibl e representation s of this group of which only one leads to a
double-value d representatio n of G A*; thi s is

the matrice s of which are given in Table 5.1. The double-value d small reps of G A

can thu s be found by multiplyin g each matri x representativ e by a factor exp ( — ik . v)
which gives

as before, but where the matrice s for
must all be multiplie d by a factor A =  exp ( — 2..) . Fro m the reality in the extrem e
right-han d colum n the additio n of time-reversa l symmetr y causes no extra degenerac y
of the double-value d small reps of G A.

. : k =  (a, a, a)

In section 5.4 G A* was shown to be isomorphi c to G§ and the complet e identificatio n



THE 32 POINT GROUPS AND THE 230 SPACE GROUPS 465

of the elements was given there. The elements in Gf A* are thus :

The group multiplication table for GtA* is thus

E F K Q U I_
F K E l Q U
K E F U I_ Q
Q U I E_ F_ K
U I Q K E F
I Q Û F K E

where the other three-quarters of the table can readily be constructed since E com-
mutes with all the other elements. This group can be seen by inspection to be iso-
morphic to G*2 with

P = F = (C3-15 0)
and 0 = 0 = (adb, 0)

and the classes are

The reps of G\2 that lead to double-valued reps of GA are those for which #(C2) =
-%(Ci), i.e. R3, R4, and R6.

The matrices for the 2-dimensional representation can be found from Table 5.1. The
double-valued small reps of GA can thus be found by multiplying each matrix rep-



466 TH E DOUBLE-VALUE D REPRESENTATION S OF

resentativ e by a factor exp ( — ik. v) which is + 1 for classes C : to C4 and is В =
exp ( — .... ) for classes C5 and C6 :

The additio n of time-reversa l symmetr y leads to a case (x) degeneracy , tha t is, the
spectru m of the eigenvalues of a particl e or quasi-particlè is the same at k and — k.

I: k = (. , . , 2.. )
Fro m section 5.4 we can see tha t G1* is isomorphi c to G\ so tha t G f l* contain s the

four element s

Th e group multiplicatio n table is

E Q E_ Q
Q E_ Q E
E_ Q E Q
Q E Q E

which is clearly isomorphi c to G\ with P = Q = (adh, 0) and the representation s
tha t lead to double-value d small reps of G E are thu s R2 and R4, tha t is

The double-value d small reps of Gs are therefor e

i L

where .  =  exp ( — 4..) . The additio n of time-reversa l symmetr y leads to no extra
degenerac y of the double-value d small reps of G E.

S: k =

Thi s is similar to the case of Z with replacin g so tha t the
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double-valued small reps of Gs are

where D = exp ( — 7n(l + 4oc)). The addition of time-reversal symmetry causes no
extra degeneracy of the double-valued small reps of Gs.

Z: k =

This again is similar to the case of TL with { r e p l a c i n g s o that
the double-valued small reps of Gz are

The addition of time-reversal symmetry causes no extra degeneracy of the double-
valued small reps of Gz.

fi: k =

GtQ* is G\ so that the allowed double-valued small rep of GQ is

and the addition of time-reversal symmetry causes the eigenfunctions belonging to
A («22) to become degenerate in pairs.

This completes the discussion of the example of the derivation of the double-
valued reps of the space group F43c (7"d

5). It is possible by working in a similar
fashion to obtain the double-valued reps of any of the 230 space groups.

6.5. The double-valued representations of the 230 space groups

This section is devoted to the tabulation of the doubJe-vaJued reps of the 3-dimen-
sional space groups and their classification into kinds as given in Definition 1.3.7
and for which the test in section 4.6 has been used. It is analogous to section 5.2
which presented similar tables for the single-valued reps. The tabulation of the
double-valued reps and their labels is presented in Tables 6.13 and 6.14 in a similar
way to that of the single-valued reps. Table 6.13 is analogous to Table 5.7 and
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Table 6.14 is analogou s to Table 5.8, tha t is, Table 6.13 identifie s the double-value d
reps in term s of one of the abstrac t groups of Table 5.1 and Table 6.14 identifie s the
labels used for the various double-value d reps of the space groups. With the note s
to these tables, togethe r with the example of the use of Tables 5.7 and 5.8 considere d
in section 5.4 and the example already considere d in section 6.4 it should be fairly
easy for the reader to obtain the double-value d small reps of G k for any wave vector
k in the basic domai n of any one of the 230 space groups. We give again in Table 6.13,
in coded form, reference s to the work of othe r author s on each space group. The
space-grou p reps are labelled both in an extension of the Mullike n (1933) notatio n
and an extensio n of the .  notatio n used by various authors . The extra degeneracie s
tha t may arise if time-reversa l symmetr y is presen t in a crystal can also be identifie d
from Table 6.13 (see Not e (vii) to Table 6.13).

In deriving the double-value d reps of HG k or G k* for a poin t or line of symmetry ,
respectively, we have used the reps of some abstrac t group G 2 whose order is twice
the order of the abstrac t group G j tha t was used in Chapte r 5 for finding the single-
valued reps of HG k or G k*. We have already note d tha t the single-value d reps of
HG k or G k* are also containe d amon g the reps of G 2. We have not , however, in
Table 6.13 identifie d explicitly the reps of G 2 tha t lead to single-valued small reps of
G k, because this would duplicat e the results already given in Table 5.7 and would
considerabl y enlarge Table 6.13.J On the othe r hand , we chose to identif y the single-
valued small reps of G k separatel y in Chapte r 5 so tha t those reader s who only requir e
the single-value d small reps of G k would not have to handl e abstrac t groups G 2 of
twice the necessary order . Thu s the reader who needs only the single-value d space-
group reps profit s at the slight expense of the reader who need s both the single-value d
and double-value d space-grou p reps.

To obtain all physically significant double-value d space-grou p reps it is necessary
to conside r all k vectors in the representatio n domai n rathe r tha n just the basic
domain . The rules for constructin g the small reps of G ks, where kfl is within the
representatio n domai n but outside the basic domai n have already been discussed
completel y in section 5.5; they can be applied directl y to double-value d space-grou p
reps. It is only necessary to provide additiona l discussion here of the one exceptiona l
space group Pcß (. .

6). The representatio n domai n of the space group РаЪ (. .

. ) was
identifie d in Fig. 5.4. In Table 6.15 we present , in a table similar to Table 5.11, the
identificatio n of the double-value d small reps of G k for the additiona l special k
vector Z' which is in the representatio n domai n but lies outside the basic domai n
and is not in the star of any k vector in the basic domain . As was found for the single-
valued reps considere d in Chapte r 5, we also find for the double-value d reps tha t
ther e is a differenc e between the degeneracie s at Z and Z'. Whilst at Z' ther e are
four non-degenerat e double-value d reps ther e is one twofold degenerat e double -

+  We have, however, used thi s compatibilit y to check the derivatio n of table 6.13.
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valued rep at Z. Once again this difference between the degeneracie s at Z and at Z'
is a useful demonstratio n of the importanc e of considerin g the whole representatio n
domain , . , and not just the basic domain , Q. This example appear s to be the only
case where the small reps of GkA and GkB have different dimensionalities . It can be
seen from Tables 5.7, 5.11, 6.13, and 6.15 tha t the anomal y is not removed when
time-reversa l symmetr y is added to the space group symmetry . When time-reversa l
symmetr y is include d the degenerac y of the twofold degenerat e double-value d rep at
Z is double d again (see Table 6.13) and at Z' the additio n of time-reversa l symmetr y
causes the four non-degenerat e reps to stick togethe r in pairs (see Table 6.15).

T A B L E 6.13

The double-valued reps of the 230 space groups

1 PI C\

(F\; Kl; MS; Z\.)

Г G1

2 : {E | 000} : 2 , 1 : a.
В G1

2 ® T 2: {£ |000}; t j : 2, 1 : a.
F Gl ® T2: {£|000}; t2: 2,1: a.
G G2 ® T2: {E | 000}; t3: 2, 1 : a.

2 Pi C\

( F \ ; K l ; MS; Zl.)

.  Gl: {I | 000}, {£ | 000] : 2, 1 ; 4, 1 : a.
В Gi ® T 2: { / I 000}, {£ | 000}; t t : 2, 1 ; 4, 1 : a.
F Gl ® T2: {/I 000}, {E | 000}; t2: 2,1; 4,1: a.
G Gl ® T2: {/I 000}, {E | 000}; t3: 2, 1 ; 4, 1 : a.

3 P2 Cj

( F \ ; Kl; MS; 515; Zl.)

.  Gi : {C22| 000}: 2,3 ; 4,3 : b.
В G I ® T 2 {C2z|000}; , : 2,3 ; 4, 3 :6 .
.  G i ® T2 {C22|000}; 2 : 2 , 3; 4 , 3 : 6 .
Z G i ® T 2 {C2 z |000}; 3: 2, 3; 4, 3 :6.
.  Gi ® T2 {C2z|000}; 2 o r t 3 2,3 ; 4, 3 : 6 .
D Gi ® T2 {C2z 000}; l or t3 2,3 ; 4, 3 : 6 .
.  G i ® T 2 {C2z|000}; !or t 2 2,3 ; 4, 3 :6 .
E G i ® T 2 {C2z|000}; t ! o r t 2 o r t 3 : 2,3 ; 4,3 : 6.

\* Gi: (C 2z, 0): 2, x; 4,x: b.
V Gi : (C 2z, 0): 2,x; 4,x: b.
W* Gi : (C 2z, 0): 2, x; 4, x: b.
U* Gi : (C 2z, 0): 2, x; 4, x: b.
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4 P2l C\

(Fl; Kl; MS; S I S ; Zl.)

F Gi: {CjJOOi}: 2,3; 4,3: b.
B G i®T 2 : {CjJOOi}; t,: 2, 3; 4, 3: A.
Y G i®T 2 : {CjJOOft; t2: 2,3; 4,3: A.
Z G^ {C2z|00i}, {EJOOO}: 5, 1; 7, 1: a.
C Gl {C2z1 OOi}, {£ | 000}: 5, 1; 7, 1: a.
£> G^ {C2z| OOi}, {E|000}: 5, 1; 7, 1: a.
/4 Gi ® T2: {C2z| OOi}; t, or t 2 : 2, 3; 4, 3: b.
E G\ {CjJOOi}, {£|000}: 5,1; 7 ,1: a.

A* Gi (C2l, 0): 2, x; 4, x: 6.
K* Gi (C2z, 0): 2, x; 4,x: b.
W* Gi (C2z> 0): 2,x; 4, x: b.
U* Gi (C2z, 0): 2, x; 4,x: b.

5 B2 Cj

( F l ; Kl; M5; S I S ; Zl.)

T Gi: {C2z|000}: 2,3; 4,3: b.
A Gi ® T2: {C2z|000}; t t : 2,3; 4,3: b.
Z Gi ®T 2 : {C2z|000}; t 2 or t 3 : 2,3; 4,3: b.
M Gi ®T2 : {CjJOOO}; tt or t2 ort3: 2,3; 4,3: b.
L G\ ® T2: {£|000}; t, ort3 : 2, 1: a.
V G2 ® T2: {£ |000}; t3: 2, 1: a.

A* Gi: (C2z, 0): 2,x; 4, x: b.
U* Gi: (C2,, 0): 2, x; 4, x: 6.

6 Pm C}t

(Fl; Kl; M5; 515; Zl.)

F Gi: {aJOOOj: 2 ,3; 4,3: b.
B Gi ®T 2 : {ffJOOO}; t t : 2, 3; 4, 3: A.
y G i ® T 2 : {<rJOOO}; 2: 2,3; 4,3: 6.
Z Gi ® T2: {<rz | 000}; 3: 2,3; 4,3: b.
C Gi ® T2: {CTZ | 000}; 2 or t3: 2, 3; 4, 3: 6.
D Gi ® T2: {<7Z |000}; t or t3: 2, 3; 4, 3: 6.
/< Gi ® T2: {CTZ | 000}; t or t2: 2, 3; 4, 3: *.
£ Gi ® T2: {o-z I 000}; t t or t2 or t3: 2, 3; 4, 3: b.

A' G2: (£, 0): 2,2: a.
Kx G2: (£, 0): 2,2: a.
Wx G2: (E, 0): 2 ,2: a.
J/1 G2: (£, 0): 2,2: a.
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7 Pb C2

n

(Fl ; Kl; MS; S 1 5 ; Zl.)

.  Gl: {aJiOO}: 2 3 ; 4,3: b.
8 Gl: {aJiOO}, {£| 000}: 5, 1; 7, 1: a.
Y G i®T 2 : KliOO}; t2: 2, 3; 4,3: b.
Z G i®T 2 : {aJiOO}; t3: 2, 3; 4, 3: è.
.  Gi ® T 2: {<7. |{00}; t 2 or t 3 : 2,3 ; 4,3 : b.
D Gl {<72|}00}, {£|000}: 5, 1; 7, 1: a.
.  G^ {<. 7 $00}, {£ | 000}: 5, 1 ; 7, 1 : a.
£ G| KlïOO}, {£|000}: 5, 1; 7, 1: a.

. * G 2 (£, 0): 2 ,2 : a.
K* G^ (£, 0) : 2, 1 : a.
W* G\ (£, 0): 2 ,2 : a.
U* G\ (E, 0) : 2, 1 : a.

8 Вт C\h

( F l ; Kl; M5; 515; Zl. )

Г Gi: {«rJOOO}: 2,3; 4,3: 6.
^ Gi ®T 2 : {<rz |000}; t, : 2,3 ; 4,3 : i.
Z G ' ® T 2: {.. . |000}; t 2 or t 3 : 2,3 ; 4,3 : i.
M  Gi ® T2 : {(7Z | 000} ; t j or t2 or t3 : 2, 3 ; 4, 3 : b.
L G ' ® T 2: {£|000}; tt ort3: 2, 1: a.
.  G ' ® T 2: {£ |000}; t3: 2, 1 : a.

\* G'2: (E, 0): 2 ,2 : a.
U* G2: (£, 0): 2,2: a.

9 ДА Cl,

(Fl ; Kl; M5; SIS; Zl. )

Г Gi: {<rj*00}: 2,3; 4,3: b.
A Gi ® T 2: {ffJ^OO}; t, : 1, 1; 3, 1: c.
Z Gl ® T 2: {<jz 1100}; t2 ort 3: 2, 3; 4, 3: b.
M G i ® T 2: {«rj 2-00}; t j ort 2 ort 3 : 1 ,1 ; 3, 1 : c.
L G j ® T 2: {£ | 000}; tt or t3: 2, 1 : a.
V G2 ® T2 : {£ | 000} ; t3 : 2, 1 : a.

. ' G 2 : (E, 0): 2,2 : a.
U" G 2: (£, 0): 2, 1 : a.

471
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10 P2/m Cj,,

(Fl ; Kl; MS; SIS; Zl.)

.  Gi : {C2z|000}, {/I 000}: 2,3; 4,3 ; 6,3; 8,3 : b.
В G i ® T 2 {C2z| 000},{/|000}; t , : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
Y Gi ® T2 {C2z|000}, { / I 000}; 2: 2, 3; 4, 3; 6, 3; 8, 3: b.
Z G i ® T 2 {C2z|000}, {/|000}; 3: 2, 3; 4, 3; 6, 3; 8, 3: b.
С G i ® T 2 {C2z 000}, {/ I 000}; 2 or t 3: 2, 3; 4, 3; 6, 3; 8, 3: b.
D G i ® T 2 {C2z|000}, {/|000}; , or t3: 2, 3; 4, 3; 6, 3; 8, 3: b.
A G i ® T 2 {C2z| 000}, { / I 000}; l or t 2: 2, 3; 4, 3; 6, 3; 8, 3: 6.
E G i ® T 2 {C2z|000}, {/|000}; t or t2 or t3: 2, 3; 4, 3; 6, 3; 8, 3: b.

. * G i (C 2z, 0): 2,3; 4,3 : b.
V Gi (C 2l, 0): 2,3 ; 4,3 : 6.
W* G i (C 2z, 0): 2,3 ; 4,3 : 6.
t/ x Gl (C 2z, 0): 2,3 ; 4,3 : b.

11 P2Jm C2

2h

( F l ; Kl; M5; 515; Zl.)

Г Gi : {C2z|00i}, {/|00i}: 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
В G% ® T 2: {C2z| 00|}, {/|00i}; t, : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
Y G i ® T 2: {C2z| OOi}, {/|00i}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3: b.
Z Gï°6: {C2z|00i},{£|001}, {/|00i}: 9,1: a.
С Gl°: {C2z|00|}, {£|001},{/|00|}: 9,1: a.
D G}°: {C2z|00i},{/-|001}, {/|00i}: 9,1: a.
A Gi ® T2: {C2z| OOi}, {/|00|}; ^ ort2 : 2 ,3; 4,3; 6,3; 8,3: b.
E G\l\ {C2z|00i}, {.|001} , {/|00i}: 9,1 : a.

. * Gi : (C 2z, 0): 2,3 ; 4,3 : b.
V G1

4: (C 2z, 0): 2,3; 4,3: b.
W* G\: (C 2z, 0): 2,3 ; 4,3 : b.
Ux Gi : (C 2z, 0): 2,3 ; 4,3 : b.

12 B2/m Cl„

( F l ; Kl; M5; SIS; Zl.)

.  Gi : {C2J 000}, {/|000}: 2,3; 4,3; 6,3; 8,3: b.
A G i ® T 2 : {C2z|000}, {/|000}; t, : 2,3 ; 4,3 ; 6,3; 8,3: b.
Z G2

S ® T 2: {C2z|000}, {/|000}; t 2 o r t 3 : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
M G i ® T 2: {C2z|000}, {/1000}; t t o r t 2 o r t 3 : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
L G j ® T 2: { / I 000}, {E | 000}; t, or t 3 : 2, 1 ; 4, 1 : a.
V Gl ® T2 : {/1 000},  {E | 000} ; t3 : 2, 1 ; 4, 1 : a.

. * Gi : (C 2z, 0): 2,3 ; 4,3 : b.
f/ x Gi : (C 2z, 0): 2, 3; 4,3 : b.
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13 P2/b C*h

( F l ; Kl; M5; S15; Zl. )

.  G| : {C2JOOO},{/|iOO}: 2,3 ; 4,3 ; 6,3 ; 8,3: b.
В Git- (a, |00}, {£| 100}, {/|iOO}: 9, 1 : a.
Y G\ ® T2: {C2z|000}, {/|iOO}; t2: 2,3; 4,3; 6,3; 8,3: b.
Z G\ ® T2: {C2z|000}, {/! iOO}; t3: 2 ,3; 4,3; 6,3; 8,3: b.
С G ^ ® T 2 : {C2z|000}, {/liOO}; t 2 or t 3 : 2,3 ; 4,3; 6,3; 8,3 : b.
D G'°: {«TZ | iOO}, {£ | 100}, {/ i iOO} : 9, 1 : a.
A G}° : {<rz | iOO}, [E | 100}, {/ | ̂ 00} : 9, 1 : a.
E GJ° : {<rz | iOO}, {£ | 100}, {/ | ^00} : 9, 1 : a.

. * G\. (. 2. , .) : 2,3 ; 4,3: b.
V* G\: (C 2z, 0): 2,1 ; 4,1 : b.
W* Gl : (C 2z, 0): 2, 3; 4,3: b.
U* G\. (C 2z, 0): 2, 1; 4, 1: b.

14 P2 t/f e . 2>

(Fl; J2; Kl; M5; S 1 5 ; Zl.)

Г Gf : {C2z|00i}, {/ l iOi}: 2,3 ; 4,3 ; 6,3 ; 8,3 : 6.
В G\° : {az \ iOO}, {E | 100}, {/  [ iOi} : 9, 1 : a.
Y G| ®T 2 : {. 2.  | OOi}, {/1 iO|}; t2: 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
Z G jg : {C2z|00|}, {.|001} , {/|M}: 9, 1 : a.
С Gj°: {C2z|00i}, {£|001}, {/liOi}: 9,1: a.
D Gl ® T2: {C2z|00i}, {/IM}; t, ort3: 1 , 1 ; 3 , 1 ; 5, 1 ; 7, 1 : c.
A G!° : .  | iOO}, {£ | 100}, {/ | iO|} : 9, 1 : a.
E Gl <g> T2: {C2z|00i}, {/ l iOi}; t ! or t 2 or t 3 : 1, 1; 3, 1; 5, 1; 7, 1: c.

. * Gi : (C 2z, 0):2 , 3; 4,3 : b.
V Gl: (C2l, 0):2, 1; 4 ,1 : b.
W* G\: (C 2z, 0): 2,3 ; 4,3: *.
V G\: (C 2z, 0):2 , 1; 4, 1: b.

15 .2/ .  Cl,

(C8 ; 01; Fl; Kl; M5; S 1 5 ; Zl.)

.  G^ : {C2z|000}, {/l iOO}: 2,3 ; 4,3; 6,3 ; 8,3: *.
Л G\l : {a, | iOO}, {£ | 100}, {/ | ̂ 00} : 9, 1 : a.
Z G| ® T2: {C2z| 000}, {/I iOO}; t 2 or t 3 : 2,3; 4,3; 6,3; 8,3: b.
M Gi° : {CTZ I iOO}, {E | 100}, {/ | iOO} : 9, 1 : a.
L Gl® T2: {/IÎOO}, {.  | 000}; t t ort 3 : 2, 1 ; 4, 1 : a.
F GJ ® T 2: { / I iOO}, {£|000}; t3: 2, 1 ; 4, 1 : a.

. * G1

4: (C 2z< 0): 2,3 ; 4,3 : b.
U* Gi : (C 2z, 0): 2, 1; 4, 1: b.
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16 P222 D2

(F\; Kl; MS; . ; Zl. )

.  C|: {C2z \ 000}, {C2y | 000}: 5, 2: a.
Y G j j < g ) T 2 {C2,|000},{C2,|000}; , : 5 , 2 : a .
X G l ® T 2 {C22| 000}, {C2y|000}; 2: 5, 2: a.
Z G |®T 2 {C2,|000},{C2y|000}; 3:5,2:a.
U G |®T 2 {C2,|000},{C2,|000}; 2 o r t 3 : 5 , 2 : a .
T G |®T 2 {C2z|000}, {C2y,|000}; i o r t 3 : 5 , 2 : a.
S G |®T 2 {C2z|000}, {C2y|000}; ! o r t 2 : 5 , 2: a.
.  G| ® T2 {C2z|000}, {C2y|000}; t, o r t 2 o r t 3 : 5, 2: a.

. * G i (C2,, 0): 2,2; 4,2 : b.
D" G ' (C2,, 0): 2,2 ; 4,2 : b.
P* G\ (C2y, 0): 2,2 ; 4,2 : b.
B* G ' (C2,, 0):2 , 2; 4,2 : 6.
XI Gi (C 2l, 0): 2,2; 4,2 : b.
C* G ' (C2,, 0): 2,2 ; 4,2: *.
E' G ' (C 2x> 0): 2,2 ; 4,2 : b.
A* G i (C 2l, 0): 2,2 ; 4,2 : 6.
. * Gi (C 2z, 0): 2,2 ; 4,2 : b.
H* G ' (C 2z, 0): 2,2; 4,2: b.
Q* G i (C2l, 0): 2,2 ; 4,2: ft.
G* G ' (C 2z, 0): 2,2 ; 4,2 : b.

17 P222 t Oj

(Fl; Kl; MS; Tl; Zl. )

.  G|: {C2z|00|}, {C2),|000}: 5,2 : a.
.  G |®T 2 : {C2JOOi-}, {C2,|000}; ta : 5,2 : a.
X G |®T 2 : {C2z|00i}, {C2y|000}; t 2: 5,2 : a.
2 G? 6: {C2z|00i}, {C2),|000}: 5,3; 6,3 ; 7,3 ; 8,3: a.
£/ G?6: {C2z|00i}, {C2j|000}: 5,3; 6,3; 7 ,3; 8,3: a.
Т G? 6: {C2z|00l}, {. 2. |000}: 5,3; 6,3; 7,3 ; 8,3 : a.
S G | ® T 2: {C2z| OOi}, {C2, | 000}; t j ort 2 : 5, 2: a.
« G? 6: {C2z|00i}, {C2J|000}: 5,3; 6,3; 7,3 ; 8,3 : a.

A' G{ (C 2y, 0): 2,2 ; 4,2 : b.
D" G\ (. 2„ .) : 2,2 ; 4,2 : ft.
'* Gi (C2,, 0): 2,3; 4,3 : ft.
B* Gl (C2r, 0): 2,3 ; 4,3: ft.
£* GJ (C2t, 0): 2,2; 4,2: ft.
C* Gi (C2x, 0): 2,2; 4,2: ft.
£* G^ (C2,,0), (£, 0): 5,3; 7,3: a.
. 1 G | (С2„ 0),(Е, 0): 5,3; 7,3 : a.
. * G i (C 2z, 0): 2,2 ; 4,2 : ft.
# x Gi (C 22, 0): 2,2 ; 4,2 : ft.
6* Gi (C 2z, 0): 2,2; 4,2 : ft.
G * G i (C 2z, 0): 2,2 ; 4,2 : ft.
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18 P2,2,2 Dl

(Fl ; Kl; MS; T\; ZI. )

.  G^ : {C2l|000},{C2,|HO}: 5,2: a.
Y Gf 6 {C2, | HO}, {C2,1000}: 5,3 ; 6,3 ; 7,3 ; 8,3: a.
X G? 6 {C2x|HO}, {C2z|000}: 5, 3; 6, 3; 1, 3; 8,3: a.
2 G I ® T 2 : {C2l|000},{C2,|HO}; t3: 5,2: a.
tf G?, {C2x |..},{. 2.  1000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
T G!„ {C2y I HO}, {C2,1 000}: 5,3; 6,3; 7,3; 8,3 : a.
S G? 6 {C2Z |000},{C2JHO}: 9, 1 : é.
A G*6 {C2z|000},{C2x|HO}: 9,1: b.

V Gi (C2,, 0): 2,2; 4,2: è.
O* Gi (C2„ 0),(£, 0): 5,3; 7,3: a.
?* Gi (C2,, 0),(£,0): 5,3; 7,3: a.
S" Gi (C2„ 0): 2,2; 4,2: h.
ï* Gi (C 2 x > 0): 2,2; 4,2: 6.
C* G^ (C2l, 0), (£, 0): 5, 3; 7, 3: a.
£* Gi (C2t, 0), (£, 0): 5,3; 7,3: a.
A" Gi (C2l, 0): 2,2; 4,2: b.
\x Gi (C2z, 0): 2,2; 4,2: b.
H' Gi (. 2„  .) : 2,3 ; 4,3 : 6.
ß* Gi (C22, 0): 2,1; 4,1: b.
G' Gi (C2l, 0): 2,3; 4,3: b.

19 P212.21 . *

(Fl ; Kl; M5; T\; Zl. )

.  G|: {CjJiOi}, {C2,|HO}: 5,2 : a.
.  G? 6 {C2y|UO}, {C2z M}: 5,3; 6,3; 7,3; 8,3: a.
X G? 6 {C2x | ..) , (. 2.  iOi} : 5, 3 ; 6, 3 ; 7, 3 ; 8, 3 : a.
Z Gf 6 {C221 i-0-l}, {C2y ÜO}: 5,3; 6,3; 7,3; 8,3: a.
.  G? 6 {C2, | ..} , {C2z .} : 9,1 : 6.
T G? 6 {C2I | Ou}, {Q,  HO}: 9,1: b.
S G? 6 {C2z|iOi}, {C2l OH}: 9,1 : b.
R G\e {C2, I OH}, {C2y HO}, {£ | 000} : 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : a.

. " Gi : (. 2„  .) : 2,2 ; 4,2 : é.
D* G|: (C2y, 0),(£, 0): 5,3; 7,3: a.
/" G^: (C2y, 0),(£, 0): 5, 1; 7,1: a.
B* Gi: (C2y, 0): 2,3; 4,3: b.
I* Gi: (C2i, 0): 2,2; 4,2: b.
C' Gi: (C2l, 0): 2,3; 4,3: b.
E* Gl: (C2x, 0),(£, 0): 5, 1; 7, 1 : a.
. * G^ : (C2l, 0),(£, 0): 5,3; 7,3: a.
. * Gi : (C 2z, 0): 2,2 ; 4,2 : b.
H* Gi : (C 2z, 0),(£, 0): 5,3; 7,3: a.
ß' G|: (. 2. , 0),(£, 0): 5,1; 7,1: a.
G' Gi: (C2z, 0): 2,3; 4,3: b.



476 TH E DOUBLE-VALUE D REPRESENTATION S OF

20 C222 t D\

(F\; Kl; M5; .. ; Zl. )

.  Gl : {C22|<XH},{C2,|00!}: 5,2 : a.
Y G j > ® T 2 : {C2z|00i}, {C2),|00i}; t , o r t 2 : 5,2 : a.
Z G? 6: {C2z]00i}, {C2),|00|}: 5,3; 6,3; 7,3; 8,3: a.
.  G? 6: {C2z|00|}, {C2j|00i}: 5,3 ; 6,3 ; 7,3; 8,3 : a.
5 G ' ® T 2 : {C2z|0pi}; t 2: 2, 3; 4, 3: b.
R Gl {C2z | OOi}, {£ | 000} : 5, 1 ; 7, 1 : . .

. -  Gi (C 2r, 0): 2,2 ; 4,2 : 6.
H* Gi (C 2z, 0): 2,2 ; 4,2 : b.
D* G\ (C 2z, 0): 2,x; 4,x: b.
A' G\ (C2x, 0): 2,3; 4,3: b.
Z* Gi (C 2l, 0): 2,2 ; 4,2 : 6.
. * Gi (C2,, 0): 2,2 ; 4,2 : o.
B" G l (C 2y, 0),(£, 0): 5,3; 7,3: a.
G* G^ (C2,, 0),(£, 0): 5,3; 7,3: a.
F* Gi (Cj,, 0): 2 ,2; 4,2: u.
£x Gi (C2;t, 0): 2,3; 4,3: *.
C* Gl (C2x, 0): 2,2; 4,2: ft.

21 C222 Df

(fl; Ä7; ./ 5 .. ; Zl. )

.  G| : {. 2 . |000},{. 2 . |000}: 5,2 : a.
Y G 5

8 ®T 2 {C2z|000}, {C2> |000}; t ,or t 2 : 5, 2: a.
Z G l ® T 2 {C22 |000},{C2y|000}; t3: 5, 2: a.
T Gl®12 {C2z|000}, {C2y|000}; t j o r t 2 o r t 3 : 5, 2: a.
5 G i®T 2 {C2z|000}; t 2: 2, 3; 4, 3: ft.
.  G{®T 2 {C2JOOO}; t 2 or t 3 : 2, 3; 4, 3: ft.

Л* Gi (C2z, 0): 2,2; 4,2: 6.
#* Gi (C2z, 0): 2,2; 4,2: ft.
/>* Gi (C2z, 0): 2,x; 4,x: ft.
X* Gi (C2x, 0): 2,2; 4,2: ft.
I* Gi (C2x, 0): 2,2; 4,2: ft.
Л* Gl (C2y, 0): 2,2; 4,2: ft.
ß* Gi (Cj,, 0): 2,2; 4,2: ft.
G« Gi (C2y, 0): 2,2; 4,2: ft.
F* G' (Сг,, 0): 2,2; 4,2: ft.
£* Gi (Сг„ 0): 2,2; 4,2: ft.
C* Gi (C2x, 0): 2,2; 4,2: ft.
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22 F222 Dl22 F222 Dl

(F\; Kl; M5; S14; Zl. )

.  Gf: {C2l|000}, {CjJOOO}: 5, 2: e.
Y G| ®T 2 : {C2z|000}, {. 2. |000}; t 2 or t 3 : 5,2 : a.
X GI ® T2 : {C2z | 000}, {C2j, | 000} ; t, or t3 : 5, 2 : a.
Z G^ ® T 2: {C2z|000}, {C2),|000}; t, ort 2 : 5,2 : a.
L G 2 ® T 2: {£|000}; t,: 2, 1: a.

. * Gi : (C 2z, 0): 2,2 ; 4,2: è.
G* Gi: (C22, 0): 2 ,2; 4,2: b.
H* G': (C2z, 0): 2,2; 4,2: b.
Q* G': (C22, 0): 2,2; 4,2: 6.
£* G': (C2l) 0): 2,2; 4,2: b.
C* G': (C2l, 0): 2,2; 4,2: b.
А" .' : (. 2„0) : 2,2; 4,2: b.
V Gj : (Clx, 0): 2,2 ; 4,2 : b.
A1 G' : (C 2y, 0): 2,2 ; 4,2 : b.
D' G' : (C2„ 0): 2,2; 4,2 : é.
. .  G' : (C2„ 0): 2,2; 4,2 : . .
Ä* G}: (C2„, 0): 2,2; 4,2: 6.

23 /222 Dl

(F\; Kl; M5 ZI.)

Г GJ h {. 2. |000}, {. 2. |000}: 5,2 : a.
X G ^ ® T 2 {C2z|000},{C2),|000}; t t o r t 2 or t 3 : 5,2 : a.
R Gi®T 2 {C2),|000}; t, : 2, 3; 4, 3: b.
S G}®T 2 {C2I |000}; ^or t j : 2, 3; 4, 3: ft.
.  G j ® T 2 {C2JOOO}; t , o r t 2 : 2, 3; 4, 3: *.
W G|®T 4 {C2z|000}, {C2),|000}; t t ort 2ort 3: 5, x: a.

. * G i (C 2z, 0): 2,2 ; 4,2 : b.
Gx G i (C 2z, 0): 2,2 ; 4,2 : b.
P' Gi (C 2z, 0): 2,x; 4, x: b.
I1 G i (C 2x, 0): 2,2 ; 4,2 : b.
F' G i (C 2l, 0): 2,2 ; 4,2 : 6.
O* Gi (C 2x, 0): 2, x; 4,x: b.
. 1 G i (C2„  0): 2,2 ; 4,2 : ft.
£/' Gi (Cj,, 0): 2,2; 4,2: 6.
ß1 Gi (C2,, 0): 2, x; 4, x: b.
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24 /2.2.2 . D\

( F l ; KT; MS; Zl. )

.  GÎ: {. 2 2 |.},{. 2,|..} : 5,2 : a.
X Gl ®T 2 : {C2 l|iOi},{C2,|HO}; t l 0 r t 2 o r t 3 : 5,2 : a.
A Gi®T 2 : {C2y|MO}; t, : 2,3; 4,3: b.
S G i ® T 2 : {C2JOM}; t l O r t 3 : 2,3 ; 4,3 : b.
Т G i ® T 2 : {C2z|iOi-}; t , o r t 2 : 2,3 ; 4,3 : b.
W G |®T 4 : {C2z | -M}, {C2, | -ÜO}; t l O r t 2 o r t 3 : l , x ; 2, x; 3, x; 4,x: b.

A* Gi: (C2z, 0): 2 ,2; 4,2: b.
G* Gi: (C22, 0): 2,2; 4,2: b.
P* Gl (C2z, 0),(E, 0): 5, x; 7, x: a.
I* Gl (C2:(, 0): 2 ,2; 4,2: A.
f Gl (C2x, 0): 2 ,2; 4,2: b.
D* Gl (C2x, 0), (£, 0) : 5, x; l,x: a.
A* Gi (C2y, 0): 2 ,2; 4,2: b.
U* Gi (C2y, 0): 2,2; 4,2: b.
Q' G2

S (С2„ 0), (E, 0): 5, .: ; 7, x: a.

25 Pmm2 C2,

(Fl ; ..7 ; M5 T\; Zl.)

Г GJ : {C2z|000}, {ff,|000}: 5, 2: . .
.  G ^ ® T 2 {C2z|000}, {<r,|000}; t, : 5, 2: a.
A- G j j ® T 2 {C2z|000}, {..,, [ 000}; t2: 5, 2: a.
Z G|®T 2 {C2z|000}, K | 000}; t3: 5,2: a.
. /  G |®T 2 {C2z|000}, {a, | 000}; t 2 or t 3 : 5, 2: a.
.  G | ® T 2 {C2,|000}, {ff,|000}; t! or t 3 : 5, 2: a.
5 G l ® T 2 {C2z|000}, {CT.IOOO} ; t, o r t 2 : 5, 2: a.
R G j j ® T 2 {C2z|000}, {<7y|000}; t t o r t 2 or t 3 : 5, 2: a.

A* Gi: K, 0): 2,2; 4,2: и.
D* G\ (a„ 0): 2,2; 4,2: b.
P* Gi (<т„ О): 2,2; 4,2: b.
B' Gi K, 0): 2,2; 4,2: b.
2* Gl (<r,, 0): 2,2; 4,2: b.
C* Gi (a,, 0): 2,2; 4,2: i.
E' Gi (tr,, 0): 2,2; 4,2: b.
A" Gi (CT,, 0): 2,2; 4,2: b.
A* G| (C2z, 0), (<ry, 0): 5,x: a.
Я' G| (C2z,0), (*„<)): 5,x: a.
0« G| (C2z, 0), (cy, 0): 5, x: a.
G« G| (C2z, 0), (<ry, 0): 5,x: a.
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26 Prncl^ C\,

(. ; Kl; M5; T\; Zl. )

.  Gl : {C2,|00i}, KlOOi}: 5,2 : a.
Y G l<g)T 2 : {C2z|00l}, Kl«**}; t t: 5,2 : a.
A- G |®T 2 : {C2,|00# , .100. ; t 2: 5,2 : a.
Z G? 6: {<7jOOO},{<7,|00#: 9, ) : 6.
£/ G?6: {«rj 000}, .  | 001}: 9,  1 : b.
Т G!6: {ffJOOOM^IOOi} : 9 , 1 : b.
S G l ® T 2 : {C2z|00i}, KIOOl} ; t , o r t 2 : 5,2: a.
R G? 6: {<TjOOO},K|OOi}: 9,1: b.

. * Gi (<7„ .) : 2,2 ; 4,2 : é.
D* Gi . , 0): 2,2 ; 4,2 : b.
P" Gi (af, 0) : 2, l ; 4, l : i.
B* Gi K, 0) : 2, l ; 4, l : b.
£' Gi (CT,, 0): 2,2; 4,2: 6.
C* Gi (<r„ 0): 2,2; 4,2: b.
E* Gi (o,, 0): 2,3; 4,3: b.
A* Gi (a„, 0): 2,3; 4,3: è.
. * G| (C2„ 0),(ff „ 0): S,x: a.
H' Gl (C 27, 0),( ff„ 0): 5,x: a.
Q' G | (C 2l,0),(d „ 0): 5,x: . .
G 1 G^ (C 2I, 0), («r,, 0): 5,x: a.

27 Pcc2 Cj„

(Fl ; .:? ; .5 ; .1 ; ZI. )

.  Gl : {C2,|000},{<r,|00i}: 5,2 : a.
Y Gi<g>T 2 : {C2l|000},{<T,|OOi}; t, : 5,2 : a.
X G1®T 2 : {C2z|000}, KlOOi}; t2: 5,2: a.
Z Gf 6 : {C2l|000}, {<7jOOi}: 9, 1: b.
U G? 6: {C2JOOO},{ffxlOOi}: 9, l : b.
T G? 6: {C2z|000}, {aJOOi}: 9, 1: fr.
S G1®T 2: {CjJOOObKlOOi} ; t ,ort 2 : 5,2: a.
Ä Gf6 : {C2JOOO}, {aJOOi}: 9, l : b.

. * G i (ax, 0): 2,2 ; 4,2 : b.
У Gi (<. „ 0): 2,2; 4,2: b.
Г G i (ff,, 0): 2,3 ; 4,3 : b.
B" Gi K,  0): 2,3; 4, 3: b.
I' Gi (a,, 0): 2,2 ; 4,2 : b.
C' Gi (a„ 0): 2,2; 4,2: i.
E' G i (ff„  0): 2,3; 4,3 : b.
A' Gi (<r„ 0): 2,3; 4,3 : b.
V Gl (C 2„0),(ff„0) : 5,x: a.
. * G| (C2„  0), (CTy, 0): 5,  .- , a.
ß* G| (C2z, 0), (a„ 0): 5,x: a.
G* Gl (C2I, 0),(<r„ 0): 5,x: a.



28 Pmal C$v

( F l ; Kl; MS; T\; Zl.)

.  Gl : {C2z|iOO}, {a, | 000}: 5,2 : a.
У G? 6: {<r, | j-00}, {<T,| 000}: 5,3; 6,3; 7,3; 8,3: a.
JST G i ®T 2 : {C2l|iOO}, {<r,|000}; t 2: 5,2 : a.
Z G5

S <g> T 2: {C2JiOO}, {<r,|000}; t3: 5,2 : a.
[/  G i ® T 2 : { C 2 z iOO}, {<7,| 000}; t 2 or t 3 : 5, 2: a.
.  G? 6: {a, I i-00}, {ff, | 000} : 5,3; 6,3 ; 7,3 ; 8,3 : a.
5 G? 6: {crJi-00}, .  | 000}: 5,3 ; 6,3 ; 7,3 ; 8,3: a.
R G? 6: {crJlOO}, {(7,1000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

. * Gi (a,, 0): 2,2 ; 4,2 : ft.
O* Gi K,0) : 2,2 ; 4,2 : ft.
P* G i K,0) : 2,2 ; 4,2 : . .
B* Gi (a,, 0): 2,2 ; 4,2 : 6.
L* G ' (<7 y, 0): 2,2 ; 4,2 : b.
С* G ' (ay, 0): 2,3 ; 4,3 : i.
£* Gi (<Ty, 0): 2 ,3; 4,3: b.
A' G' ( f fy, 0): 2,2; 4,2: b.
. ' G | (C 22, 0), K, 0) : 5,x: a.
. 1 G? : (C 2z, 0), ((7y, 0) : 5, . ; 6, x; 7, x; 8, x: a.
Qx Gf : (C2t, 0), (<r y, 0): 5, x; 6, x; 7, x; 8, x: a.
G' G | (C 2z,0) , (<r y, 0): 5,x: a.

29 fca2t .| „

( F l ; Kl; MS; T\; Zl.)

.  Gi : {C2JiOi}, K|00i}: 5,2 : a.

.  G?6 {<7x|j-00}, (C 2z | jO|}: 5, 3; 6, 3; 7,3 ; 8, 3: e.
A- G i ® T 2 : {C2Ji-Oi}, {ay|00i}; t 2: 5,2 : a.
Z G? 6 {aJi-00}, KlOOi}: 9, 1 : ft.
C/  G? 6 KliOO}, {<7y|00i}: 9,1: ft.
T G\l {ax 1100}, {ay \ 00^},  {E \ 000} : 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : ft.
5 G? 6 {..^...} , {C2z|M}: 5, 3; 6, 3; 7, 3; 8, 3: a.
К G\'6 {ax | }00}, {ay \ 00^},  {E 000} : 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 : ft.

. .  Gi : (ax, 0): 2,2 ; 4,2 : ft.
Dx Gi : (<r x, 0): 2,2 ; 4,2 : ft.
7" Gi: (a^, 0): 2, 1; 4, 1: ft.
ßx Gi: K, 0): 2, 1; 4, 1: ft.
Z* Gi: (a,, 0): 2,2; 4,2: ft.
C* Gi: ((. . , 0): 2,3 ; 4,3 : ft.
£* GJ: (a,, 0) : 2, 1 ; 4, 1 : ft.
. * Gi : (ay, 0): 2,3 ; 4,3 : ft.
. * Gl : (C 2z,0) , (..„0) : 5, x: a.
H* G? 6: (C 2z, 0), (a,, 0) : 5, x; 6, x; 7, x; 8, x: a.
ß* G?6: (C2z, 0), (ay, 0) : 5, x; 6, x; 7, x; 8, x: a.
G* Gl: (C2t, 0), (a,, 0) : 5, x: a.

THE DOUBLE-VALUED REPRESENTATIONS OF480
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30 Pnc2 C6

2v

(F\; Kl; M5; .1 ; Zl. )

.  G| : {C2 z |iOO}, KlOOi}: 5,2 : a.
У GÎ6 {.. * 1Mb K l 00|} : 5,3; 6,3; 7,3; 8,3: a.
A- G | ® T 2 : {C2z |iOO}, {(7y|00i}; t 2: 5,2 : a.
Z G? 6 {C2z |iOO}, KliOi}: 9, 1: i.
^ G? 6 {C2z iOO}, {a, iOi}: 9, 1: b.
T G\6 {CTylOOi}, {C2JiOO}: 5, 3; 6, 3; 7, 3; 8, 3: a.
S G?6 {tfJiO}}, {(., | 00|}: 5, 3; 6, 3; 7, 3; 8, 3: a.
R G« 6 {<Ty|OOi}, {C2 z |iOO}: 5, 3; 6, 3; 7, 3; 8, 3: a.

. * G i (.. . , 0): 2,2 ; 4,2 : i.
Z>* G i K, 0): 2,2 ; 4,2 : b.
P* G i (a,, 0): 2,3 ; 4,3 : b.
B* Gi (ax, 0): 2,3; 4,3: b.
1s G\ (ay, 0): 2,2 ; 4,2 : b.
C* Gi (ay, 0): 2,3 ; 4,3 : b.
E* Gi (ay, 0): 2,2 ; 4,2 : b.
A" G\ (ay, 0): 2,3 ; 4,3 : b.
. 1 Gi (C 2z, 0), («7,, 0): 5 ,x : a.
H" G? : (C 2z, 0), ((. . , 0): 5, . ; 6, x; 7, x; 8, x: a.
Q* G? : (C 2z, 0), (a,, 0) : 5, x; 6, x; 7, x; 8, x: a.
G ' G i (C 2z, 0), («., , 0): 5 ,x : a.

31 Pm«2! CL

(Fl ; Kl; MS; . ; Zl. )

.  G^ : {C2z|}0i}, .  | 000}: 5,2 : a.
î' G?6 {a,! |0i}, {a, | 000}: 5,3; 6,3; 7,3; 8,3: a.
A- G ^ ® T 2 : {C2JiOi}, {a, | 000}; t2: 5,2: a.
Z G*s K|000},{C2JiOi}: 9,1: b.
U G?6 {s|000},{C2z|M}: 9,1: b.
T G?6 {C2z|iOi}, {(7,1000}: 5, 3; 6, 3; 7, 3; 8, 3: a.
S G?6 {aJ^Oi}, {a, | 000}: 5,3; 6,3; 7,3; 8 ,3: a.
« G?6 {C2z | M}, {<Ty | 000}: 5,3; 6,3; 7 ,3; 8,3: a.

. * Gi : K, 0): 2,2 ; 4,2 : b.
D' Gi : K, 0): 2,2 ; 4,2 : b.
P* Gi : K, 0): 2,3 ; 4,3 : b.
B* Gi : (ax, 0): 2,3 ; 4,3 : 6.
I .  Gi : (a,, 0): 2,2 ; 4 ,2 : b.
Cx Gi : (<Ty , 0): 2,3 ; 4,3 : b.
E" Gi : (ay, 0): 2,3; 4,3: b.
A* Gi : (s,  0): 2 ,1 ; 4 ,1 : 6.
. " G|: (C 2 z,0) , (<7,,0) : 5, x: a.
. .  G? 6: (C 2z, 0), (., , 0): 5, x; 6, x; 7, x; 8, x: a.
Qx G? 6: (C 2 z ,0) , (<7,,0) : 5, x; 6, x; 7, x; 8, x: a.
G" GI: (C 2z, 0), . „ 0): 5,x: a.

.
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32 Pba2 Cl,

(FI; Kl; M5; 7. ; Zl. )

.  Gl : {C2 z |MO},K|OiO}: 5,2 : a.
Y G? 6 {crJiOO}, {. 2,|..} : 5,3 ; 6,3; 7,3 ; 8,3 : a.
A' G? 6 {ff, |OiO}, {C2z iiO}: 5, 3; 6, 3; 7, 3; 8, 3: a.
Z G\ ® T2 : {C2z | MO}, (s I <H<) } ; t3 : 5, 2 : a.
I/  Gf 6 KlOiO},{C 2 z |HO}: 5,3; 6,3 ; 7,3 ; 8,3 : a.
T G? 6 {<7jîOO},{C2z|MO}: 5,3; 6,3; 7,3; 8,3: a.
S G?6 {C2JMO}, KlïOO}: 9,1: è.
« G?6 {C2z|UO}, KliOO}: 9,1: 6.

. * Gi : (.., , 0): 2,2 ; 4,2 : b.
D* Gi : (.. . , 0): 2,3; 4,3: b.
P" G' : (<r„ 0): 2,3; 4,3 : è.
. * G' : (a,, 0): 2,2 ; 4,2 : b.
S» G' : ((., , 0): 2,2 ; 4,2 : b.
C* G' : (a,, 0): 2,3 ; 4,3 : b.
E* G' : (<7 r, 0): 2,3 ; 4,3 : *.
A* G' : (<r y, 0): 2,2 ; 4,2 : è.
. ' G? : (C 2z,0) , ( f f j )0) : 5,x: a.
H* G? 6: (C 2l, 0), (o-, , 0): 5, x; 6, je; 7, x; 8, x: a.
ß' GU: K, 0), (<r,, 0), (. , 1): 10, x: rf.
G* G? 6: (. 2. ,0) , (., , 0): 5,x; 6, x; 7, x; 8, x: a.

33 Pna2l Cl

(FI; Kl; MS; Tl; Zl.)

.  GI : {. 2. |.},...} : 5,2: a.
Y Gf 6 {<7JiOO},{C2JiM}: 5,3 ; 6,3 ; 7,3 ; 8,3: a.
. - Gf 6 {<.,..},{. 21|.} : 5,3; 6,3; 7,3 ; 8,3 : e.
Z G? 6 {trJiOO}, {<7,|0^}: 9, 1: b.
U G? 6 {. 2,|.},{(.,|.. : 5,3; 6,3 ; 7,3; 8,3: a.
.  G[ ^ {o-JiOO}, {<.,|..} , {EIOOO}: 6, 1; 7, 1; 8, 1; 9, 1: b.
S G? 6 {CblHtf .Kl iOO} : 9 ,1 : é.
A G?6 {<.,|..},{.„1.} : 9,1 : 6.

A* Gi (<. „ .) : 2,2 ; 4,2 : i.
D* Gi (<. „ .) : 2,3 ; 4,3 : b.
P* G ' (<. „ .) : 2,3 ; 4,3: b.
B* Gi (ax, 0): 2, 1; 4, 1 : b.
S" Gi (<r y, 0): 2,2; 4,2 : b.
C' G i (<.„ , 0): 2,3; 4,3 : . .
£" Gi («., , 0): 2,1 ; 4 ,1 : b.
A' Gi (<v 0): 2,3; 4,3: b.
. * G| (C 2z,0) , ((7y, 0): 5, x: a.
. * Gf 6: (. 2. , 0), (<r y, 0): 5, x; 6, x; 7, x; 8,x: a.
ß* G\l: (<. „ 0), (<r y, 0), (£, 1): 10, x: rf.
G' G?6: (C2z, 0), (<r,, 0): 5, x; 6, x; 7, x; 8, x: a.

THE DOUBLE-VALUED REPRESENTATIONS OF482
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34 Pnnl C\l

(Fl; Kl; MS; T\; Zl. )

.  Ci: {. 2, |..},.|..} : 5,2 : a.
Y G? 6 KIM) , {. 2 2)..} : 5,3; 6,3; 7,3; 8,3: a.
X G? 6 {<7,|. .  {C2JMO}: 5,3; 6,3 ; 7,3 ; 8,3: e.
2 Gl6 {C2, | ..} , .1..} : 9, 1: b.
U G? 6 KIM}, {C2JMO}: 5,3; 6,3 ; 7,3 ; 8,3 : a.
T G? 6 ...} , {C2JMO}: 5, 3; 6,3; 7,3; 8,3: a.
S G? 6 {C2, | MO}, KIM} : 9,1 : 6.
A G i ® T 2 : {. 2 . |..} , {<7,|OM}; t , o r t 2 o r t 3 : 5,2 : a.

A1 G i (cr x, 0): 2,2; 4,2 : ft.
0* Gi (.-, , 0): 2,3 ; 4,3 : b.
P* G i (ax, 0): 2,2 ; 4,2 : b.
B' G i (a,, 0): 2,3 ; 4,3 : b.
I* Gi (a,, 0): 2,2 ; 4,2 : 6.
C1 G i ((jr, 0): 2,3 ; 4,3 : b.
E* G; (ff,, 0): 2,2; 4,2: 6.
A" Gi (a,, 0): 2,3 ; 4,3 : b.
. * G | (C 22, 0), (a,, 0): 5, x: a.
. * G? 6: (C 2z, 0), (<r, , 0): 5, x; 6, x; 7, x; 8, x: a.
Q* G\l: K, 0), (^.O) , (£,1): 10, x: </.
G1 G?6: (C22,0), (ff,, 0): 5, x; 6, x; l,x; 8, x: a.

35 Onm2 C2j

(Fl; Kl; M5 .. ; Zl. )

.  G|: {C22|000}, {ay\000}: 5, 2: a.
У G ^ ® T 2 {. 2. |000}, {<7y|000}; t l 0 r t 2 : 5, 2: a.
Z Gi ® T2 {C2z | 000}, {..^...} ; t 3: 5, 2: a.
.  G i ® T 2 {. 2. [000}, {.. . |000}; t! ort 2 ort 3: 5, 2: a.
S G i ® T 2 {C2z|000}; t 2: 2, 3; 4, 3: 6.
.  Gi®T 2 {C22|000}; t z ort 3 : 2,3; 4,3 : b.

Л" G^ (C2z, 0), (tr,, 0): 5, x: e.
Я' GÜ (С2г, 0), (<г„ 0): 5,x: a.
D* G; (C2z,0): 2, x; 4, x: b.
A" Gi (ay, 0): 2,2; 4,2: é.
Z' G't (a„ 0): 2,2; 4,2: b.
Л* G1

4 (<7X, 0): 2,2; 4,2: *.
Я* Gi K,0): 2,2; 4,2: Й.
G" Gi (a,, 0): 2,2; 4,2: b.
F* Gi (<тх, О): 2,2; 4,2: b.
E' Gi (ert, 0): 2,2; 4,2: b.
C* Gi (a,, 0): 2,2; 4,2: b.
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36 Cmc2l C2;

(Fl; Kl; MS; .. ; Zl. )

Г Gl {C2z OOibî^lOOO}: 5,2: a.
Y Gl ®T 2 : {C2z|00i}, {si 000}; t , o r t 2 : 5,2: a.
Z G*6: .  I 000}, {C2JOOi}: 9, 1 : e.
.  .?, : . |000},{. 2 , |00#:9,1: . .
S G i ® T 2 : {. 2,|... ; t2: 2,3 ; 4,3 : b.
R Gl {C2z|00i}, {£ 000}: 5, 1; 7, 1: a.

. 1 G| (C 2z, 0), (a,, 0): 5,x: a.
H* Gl (C2l, 0), (ay, 0): 5,x: a.
D* Gi (C 2z, 0): 2,x; 4, x: b.
Ax G i (a,, 0): 2 ,1 ; 4 ,1 : b.
X* Gi (ff„, 0): 2,2 ; 4,2 : ft.
. * Gi (ax, 0): 2,2; 4,2 : 6.
B* Gi (а„ .) : 2,3 ; 4,3 : è.
Gx Gi (<7„ 0): 2,3; 4,3: b.
F* G'4 (..„0) : 2,2 ; 4,2 : ft.
E" Gi (ay, 0): 2,1 ; 4 ,1 : b.
C" G i (a,, 0): 2 ,2 ; 4,2 : b.

37 Ccc2 CL3

(Fl ; A:?; M5; .. ; Zl. )

.  G 5

8: {C2z |000},{slOOi}: 5,2 : a.
Y G| ®T 2 : {C2z|000}, {<7y|00i}; t l O r t 2 : 5,2 : a.
Z G? 6: {C2z|000}, {<Tx |OOi}: 9, 1: b.
T G? 6 : {C221 000}, {<7X | OOi} : 9, 1 : b.
S G\ ® T 2: {C2z|000}; t2: 2, 3; 4, 3: b.
R G i ® T 2: {C2z| 000}; t 2 or t 3 : 2,3 ; 4,3 : 6.

. ' GI (C 2z, 0), (<r y, 0): 5,x: a.
H* Gl (C 2z, 0), (ay, 0): 5, x: a.
O* G' (C 2z, 0): 2, x; 4,x: b.
A* G\ (ay, 0): 2,3 ; 4,3 : b.
I .  G i (a,, 0): 2,2 ; 4,2 : 6.
. * Gi (.. „ .) : 2,2 ; 4,2 : b.
B* G i (af, 0): 2,3 ; 4,3 : b.
G* G i (<r x, 0): 2,3 ; 4,3 : b.
F* Gi (ax, 0): 2,2 ; 4,2 : 6.
E* G i (a,, 0): 2,3 ; 4,3 : b.
C* G i (IT, , 0): 2,2 ; 4,2 : b.
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38 Amm2 C\*

(. ; Kl; M5; .. ; Zl. )

Г Gl: [C2y | 000), {(7,1000}: 5, 2: a.
Y G i ® T 2 : {C2, |000}, {a, | 000} ; t t or t2: 5, 2: a.
Z  G 8

5 ® T2 : {C2), | 000}, {ax \ 000} ; t3 : 5, 2 : a.
T Gl ® T 2: {C2JOOO}, {(7,1 000}; t( or t2 ort 3 : 5,2 : a.
S G i ® T 2 : {ffJOOO}; t2: 2, 3; 4, 3: 6.
.  G i ® T 2: {a, | 000}; t 2 o r t 3 : 2,3 ; 4,3 : b.

A* G i (<T X, 0): 2,2 ; 4,2 : A.
. * G i (<rx, 0): 2,2 ; 4,2 : ft.
D* G 2 (£, 0): 2 ,2: a.
A* Gi (az, 0): 2,2; 4,2: b.
E* Gi (<rz, 0): 2 ,2; 4,2: ft.
A' Gl (C2!, 0), K, 0): 5,x: a.
A" G^ (C2,,0), (ax, 0): 5, x: a.
G* G^ (C2,,0), K, 0): 5,x: a.
F* Gl (C2y,0), (ax, 0): 5, x: a.
£* Gi (<72> 0): 2,2; 4,2: b.
C* G\ (a,, 0): 2 ,2; 4,2: b.

39 .6. 2 . 2.

5

(Fl ; iT7; MS ; .. ; Zl. )

.  G^ : {C2,|000}, {OHO}: 5,2 : a.
.  G | ® T 2 : {C2y|000}, {aJiiO}; l O r t 2 : 5 , 2 : a .
Z G |®T 2 : {. 2 . |000},{. . |..} ; 3 : 5 , 2 : . .
.  G g ® T 2: {C2y\ 000}, {.. , IÜO}; i or t2 or t3: 5, 2: a.
S Gl: K I MO}, {£|000}: 5, 1; 7, : a.
R G2

S: {^|..},{ £|000}: 5,1; 7, : a.

A* Gl («7,, 0): 2,2; 4,2: i.
H* Gi (a,, 0): 2,2; 4,2: b.
D* G2 (£, 0) : 2, 1 : a.
. .  G i (.. 2, 0): 2,2 ; 4,2 : b.
E* Gi (<7Z, 0): 2,2 ; 4,2 : b.
. * G| (C 2,,0) , (a,, 0): S,x: a.
B* Gl (C 2y,0) , K, 0): 5,x: a.
G ' G^ (C 2,,0) , (<7X, 0): 5, .. : a.
F* Gl (C 2,,0) , ( ffjc, 0): 5,x: a.
£* Gi (<7Z, 0): 2,2; 4,2: b.
Cx Gi: (<72, 0): 2 ,2; 4,2: b.

485
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40 Amai C\l

( f \ ; Kl; M5; .. ; Zl. )

Г Gj j : {C2 yjOOO}, {<r, |00|}: 5, 2: a.
Y Gü ®T 2 : {C2J| 000}, .  | 00^}; t, or t 2 : 5,2: a.
Z G? 6: {<rx | 00|}, {C2y | 000} : 5,3 ; 6,3 ; 7,3 ; 8,3: a.
.  G? 6: {(TjOOi), {C2y|000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
S Gi ®T 2 : {aJOOi-}; t t : 2, 3; 4, 3: 6.
« Gi ®T 2: {<rz|00|}; t2 ort 3: 2, 3; 4,3: b.

A* Gl («., , 0): 2,2 ; 4 ,2 : b.
H' Gl (af, 0): 2,2 ; 4,2 : b.
D* Gl (E,0): 2,2 : a.
A* G l (<T Z, 0), (£, 0): 5,3; 7,3: a.
Z* Gl (a,,Q): 2 ,2; 4,2: b.
a* G| (C2„0), (ff„ 0): 5, x: 0.
B' G?6: ( f f z ,0) , (C2y, 0): 5, x; 6, x; 7, x; 8, x: a.
G* G?6: (CTZ, 0), (C2,, 0): 5,x; 6,x; 7,x; 8,x: a.
F* G| (C 2 y ,0) ,K,0) : 5 ,x : a.
£' G^ (a,,0),(E, 0): 5,3; 7,3: a.
C* Gl ( f f z , 0 ) : 2 ,2; 4,2: b.

41 .6. 2 . 2;

(fl ; Kl; MS; T3; Zl. )

.  Gl. {. 2,|000},.1.} : 5,2 : a.
Y G|(g)T 2 : {. 2,|000},.1.} ; ^ort, : 5,2 : a.
Z G? 6: {aJui}, {C2y|000}: 5,3 ; 6,3; 7,3 ; 8,3 : a.
T G? 6: {«7JÜI-}, {_. 2„|000}: 5, 3; 6, 3; 7, 3; 8, 3: a.
5 Gi : {<T2|||i},{£|000}: 5 ,1; 7 ,1: a.
« G8

2 •' {ffz I ill}, {E I 000} : 5, 1 ; 7, 1 : a.

. * G^ : (. . , 0): 2,2 ; 4,2 : b.
H' Gl: (ax, 0): 2,2 ; 4,2 : b.
D' G\ : (E, 0) : 2 1 : a.
A* Gl : (<. . > 0) , (£, 0): 5,3; 7,3: a.
Ï* G': (<rz, 0): 2,2; 4,2: 6.
A* G|: (C2,,0), (<rx, 0): 5, x: a.
B" G*6: (a„0), (C2„ 0): 5, x; 6,x; 7, x; 8, x: a.
G* G?6: (<rz, 0), (C2y, 0): 5,x; 6, x; 7, x; 8,x: a.
F1 G^: (C2>,,0),K, 0): 5,x: a.
E* G|: (<TZ, 0), (£, 0): 5,3; 7,3: a.
C* Gl: (CTZ, 0): 2 ,2; 4,2: b.
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42 Fmm2 C\42 Fmm2 Cg

( F l ; Kl; M5; S14; Zl. )

.  Gl : {C22|000}, {<ry|000}: 5,2 : a.
.  G i ® T2: {. 2. |000},{<. . |000}; t 2ort 3: 5,2: a.
. .  G | ®T 2 : {CjJOOO}, {<7y|000}; ^ ort 3: 5,2 : a.
Z G i < 8 > T 2 : {C2z|000}, {.. . |000}; t , o r t 2 : 5,2 : a.
L G 2 ® T 2: {£ JOOO}; tl : 2, 1: a.

. * Gi (C 2z, 0), (., , 0): 5,x: a.
G -  Gl (C 2z, 0), (a,, 0): 5, . . : a.
. * Gl (C 22, 0), (a,, 0): 5,x: a.
Q" Gi (C 2z, 0), (ay, 0): S,x: a.
I* G» (a,, 0): 2,2; 4,2 : 6.
C* G| (a,, 0): 2,2 ; 4,2 : b.
A' G' (ff,, 0): 2,2; 4,2: b.
Vх Gl (ay, 0): 2,2 ; 4,2 : b.
. * Gi (.. „ 0): 2,2 ; 4,2 : b.
D' Gi (a,, 0): 2,2 ; 4,2 : 6.
B1 G i K,  0): 2,2 ; 4,2 : b.
R* G i (<r x, 0): 2,2 ; 4,2 : b,

43 Fddl CJl

( F l ; Kl; M5; S14; Zl. )

.  Gi' . {C2l |OOi},{<r,lîOO}: 5,2: a.
.  Gf 6 : {..»|0|0}, {C2z|00i}: 5,3 ; 6,3; 7,3 ; 8,3: a.
JT G5 6: {<ry | iOO}, {. 2. | OOi} : 5,3 ; 6,3 ; 7,3 ; 8,3: a.
Z G? 6: {C22|00!},{<rJOiO}: 9, 1 : b.
L G 2 ® T2: {£ |000}; tr- 2, 1: a.

. * Gl : (C 22, 0), (<.„0) : 5,x: a.
G ' G? 6: (C 2z,0) , (<r,,0) : 5,.: ; 6, .: ; 7, x; Ъ,х: а.
. 1 G? 6: (C 22,0) , (<r y )0) : 5, . ; 6, x; 7,. . ; 8,x: a.
ß* Gi': (C2z,0),(ay,0),(£, 1): 5,x: e.
I* Gi (<ry, 0): 2,2; 4,2: b.
C* Gi (a,, 0): 2,3; 4,3: b.
A" Gi (<. „ .) : 2,3 ; 4,3 : b.
U' Gi K, 0): 2,2 ; 4,2 : 6.
A' G i (CTI , 0): 2,2 ; 4,2: b.
D" Gi (a,, 0): 2,3 ; 4,3 : *.
B' Gi (°x, 0): 2,3 ; 4,3 : b.
R* G i (<7X, 0): 2,2; 4,2 : b.
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44 Imml Cj°

( F l ; Kl; MS Zl. )

.  G| : {C2z|000}, {0,1000}: 5, 2: a.
^ G u ® T 2 {C2z | 000}, {a, | 000}; t 1 o r t 2 o r t 3 : 5, 2: a.
R G i ® T 2 {a, | 000}; t, : 2,2 ; 4,2 : 6.
S G i ® T 2 {(7,1000}; t, or t 3 : 2,2 ; 4,2 : ft.
T G i ® T 2 {C22| 000}; t t or t 2 : 2, 2; 4, 2: b.
W G i®T 4 {C2z |000}; t , o r t 2 o r t 3 : 2,2 ; 4,2 : ft.

. 1 G | (C 2z,0) , (o-, , 0): 5, x: a.
G* Gl (C 2 z,0) , (0^,0) : 5,х: a.
P* Gi (C 2z,0) : 2,x; 4,x: ft.
£* Gi (a,, 0): 2,2; 4 ,2 : ft.
F1 Gi (ff,, 0): 2,2; 4,2: ft.
£>* Gi (£, 0): 2 ,2 : a.
&' Gl (a,, 0): 2 ,2; 4,2: ft.
£/* Gi K, 0): 2 ,2; 4,2: ft.
Q* G\ (f, 0): 2 ,2 : a.

45 /fea2 Cjj

(fl; X7; M S ; Zl.)

.  Gü : {C2z|000}, {a, l î îO}: 5 ,2 : a.
A- GJi ®T 2 : {C2z|000}, {<.„| . .} ; t l O r t 2 o r t 3 : 5,2 : a.
« Gl : .  I MO}, {£1000}: 5, 1 ; 7, 1 : a.
S G^: K|MO},{£|000}: 5, 1 ; 7, 1 : a.
Т G i ® T 2: {C2z | 000}; t, or t 2 : 2,3 ; 4,3 : ft.
.  G\ ® T4: {C2z |000}; t j o r t 2 o r t 3 : 2, 1 ; 4, 1 : ft.

. 1 Gl (C 2z, 0), (a,, 0): 5,x: a.
G" Gl (C 2z, 0), (ff,, 0): 5,x: a.
P* G i (C 22, 0): 2,x; 4,x : ft.
I1 G 4 (ff„, 0): 2 ,2 ; 4 ,2 : ft.
F* G i (ff,, 0): 2,2 ; 4 ,2 : ft.
D* Gi (£, 0): 2, 1: a.
. * G i K,0) : 2,2 ; 4,2 : 6.
[7* Gi (<. „ 0): 2,2 ; 4,2 : ft.
ß* Gj: (. , 0): 2, 1 : a.
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46 Imal C\l

(Fl ; K7; MS; Zl. )

.  Gl {C2z|000}, KlOii}: 5,2 : a.
X Gl®12: {C2z|000}, {<7,|0ii}; t l O r t 2 or t , : 5,2: b.
R G i ® T 2 : {<jy|0^}; t, : 2,2 ; 4,2 : ft.
S Gl: KIOM} , {£|000}: 5,1; 7,1: e.
.  G j ® T 2: {C2z| 000}; t j ort 2 : 2,3 ; 4,3 : b.
W Gl ® T4: {C2z|000}; t j or t2 or t 3 : 2, 3; 4,3 : 6.

. * Gl (C 2z,0) , (a,, 0): 5,x: a.
G * G| (C 2z, 0), (<r y, .) : 5, x: a.
P* G\ (C 2z,0) : 2,x; 4, x: b.
E' Gl (ay, 0): 2,2 ; 4,2 : b.
F* Gl (a,, 0): 2,2 ; 4,2 : b.
D* G' (E, 0) : 2, 1 : a.
.*  G ' (ax, 0): 2,2 ; 4,2 : 6.
V Gl (ax, 0): 2,2 ; 4,2 : b.
Q' G ' (E, 0): 2,2 : a.

47 Pmwm O2t

(Fl ; Kl; MS; .1 ; Zl. )

.  GJJ : {C2z| 000}, {C2y| 000}, {/|000}: 5, 2; 10,2 : e.
Y . .  ® T2 {C2z | 000}, {C2y | 000}, {/  I 000}; t t : 5, 2; 10, 2: c.
^ .1 .  ®  T2 {C2z | 000}, {C2y| 000}, {/ I 000}; t 2: 5, 2; 10, 2: c.
Z G ! '®T 2 {C2z I 000}, {C2y I 000}, {/|000}; t3: 5, 2; 10, 2: c.
U . . ® . 2 {C2z|000},{C2y|000}, {/|000}; t 2 or t 3 : 5, 2; 10, 2: c.
T GJ J ® T2 {C2z | 000}, {C2, | 000}, {/ I 000}; t, ort 3 : 5, 2; 10, 2: c.
S G |^®T 2 {C2z| 000}, {C2y| 000}, { / I 000}; t t or t 2 : 5, 2; 10, 2: c.
A G i ' ® T 2 {C2z |000},{C2y|000},{/|000}; t , o r t 2 o r t 3 : 5,2 ; 10,2: c.

. " Gf : (C 2,,0) , (a,, 0): 5,2 : a.
D' G5

S. (C 2y,0) , K, 0): 5,2 : a.
/ " G^ : (. 2„0) , (<. „ .) : 5, 2: a.
. " G 8

5: (C 2y,0) , K, 0): 5,2 : a.
£* G|: (. 2. ,0) , (CT Z , 0): 5,2 : a.
C* G^ : (C 2,,0) , (a,, 0) : 5,2 : a.
E' Gl: (C2x,0), (a,, 0): 5,2 : a.
. * G^ : (C 2l,0) , (<7 Z, 0): 5,2 : a.
. ' G 8

5: (C 2z,0) , (<7 y, 0): 5,2 : a.
. * G' : (C 2z,0) , (<7 y, 0): 5,2 : a.
ß* G-|: (C2z,0), (ay, 0): 5,2: a.
G' Gjj: (C2z ,0), (<ry, 0): 5,2: a.
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48 Pnnn D2

U

( F l ; Kl; MS; .1 ; Zl. )

Г G j ' : {C221 000}, {C2y | 000}, {/  | . } : 5 , 2 ; 10,2: c.
Y Cl,: KUii},KlHiM'lHi} : 13,3; 14,3: a.
X G12: {*, | Hi}, .  I Hi}, {'I Hi} = 13,3; 14,3: a.
Z GJ 2: to  I Hi},  to  I Hi},  { / I Hi} = 13,3; 14,3: a.
f G^ 2: to  I Hi}, to  I Hi},  {/I Hi}: 13,3; 14,3: e.
T G12: {*, |. .  to  I Hi},  {/I Hi}: 13,3; 14,3: a.
S GJ 2: to | Hi}, to  I Hi}, {'I Hi} = 13,3; 14,3: a.
R GU ®T 2 : {C2l|000}, {C2,|000},{/liii}; t l 0 r t 2 o r t 3 : 5,2; 10,2: c.

A' G5

S: (C 2y, 0), (<r x, 0) : 5,2 : a.
O* G? 6: (a,, 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
P* Gf 6 : (C 2 y ,0) ,(<T z ,0) : 9,2 : i.
B* G? 6: (<r z,0) , (C 2y,0) : 5,3 ; 6,3; 7,3 ; 8,3 : a.
I* G|: (C 2l, 0), (<.,>°> : 5,2 : a.
C* Gf 6: (<7 y, 0), (C 2l> 0): 5,3 ; 6,3; 7,3 ; 8,3: a.
. * G? 6: (C 2 l > 0),(ff,,0) : 9,2 : 6.
. ' G? 6: (CT Z, 0), (ff,, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
. * G*: (C 22, 0), (<r y,0) : 5, 2: a.
. * G? 6: (<r y; 0), (C 2z> 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
ß* G?6: (. 2. , 0), K,  0): 9,2 : b.
G* G? 6: (..„0) , (. 2„ 0): 5,3; 6,3 ; 7,3 ; 8,3 : a.

49 Pccm £>^

(Fl; K7; MS; T\; Zl.)

Г GH: {C2z|000}, {C2y|000}, {/|00i}: 5,2; 10,2: c.
Y G l J ® T 2 : {C2z|000}, {. 2. |000}, {/lOOi-} ; t, : 5,2; 10,2: c.
X G U ® T 2 : {C2z|000}, {C2y|000}, {/|00i}; t2: 5,2 ; 10,2: c.
Z G] 2: KlOOi}, {<rz|00i}, {/|00i}: 13,3; 14,3: a.
U G7

32: KlOOi}, {«rJOOiJ, {/|00i}: 13,3; 14, 3: a.
.  GJ 2: KlOOi}, {<rz|00i}, {/ lOOi}: 13,3; 14, 3: a.
5 G j £ ® T 2 : {C2z|000}, {C2y|000}, {/|00|}; t ,or t 2 : 5,2; 10,2: c.
A GJ2: {<r,\aO$},{o,\OOft,{I\00$}: 13,3; 14,3: a.

. -  Gl : (. 2„0),(<7 „ 0 ) :5 ,2 : a.
D* G|: (C 2y,0) , K, 0): 5,2 : a.
P* G? 6: (<7Z, 0), (C 2y, 0): 5,3; 6,3; 7,3 ; 8,3: a.
5' G? 6: (a,, 0), (C 2y, 0): 5,3; 6,3; 7,3 ; 8,3 : a.
S> Gf: (C 2l, 0), (a,, 0): 5,2: a.
C-  Gi : (C 2l, 0), (a,, 0): 5 , 2 : a.
E* G? 6: (a,, 0), (<.„ , .) : 5,3 ; 6,3; 7,3; 8,3 : a.
A* G? 6: (.. . ,0) , (<r, , 0): 5,3; 6,3; 7,3 ; 8,3: a.
. * Gl : (C 2z,0) , (<7 y, 0): 5,2 : a.
H* Gl. (C 2,,0) , (<r,,0) : 5,2 : a.
0' G' : (C 2z,0) , (a,, 0) : 5,2 : a.
G * G|: (C 2z,0) , (<.„0) : 5,2 : a.
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50 Pban D°jh

(FI ; Kl; M5; T\; Zl. )

.  G J ' {C2z|000}, {C2y\<№}, { / IMO} : 5,2 ; 10,2: c.
^ G] 2 {aJMO}, KIMO} , { / I HO}: 13,3; 14,3: a.
* G 32 ...} , KIMO} , {/IMO} : 13,3; 14,3: a.
Z G J J ® T 2: {C2z|000}, {C2y|000}, {/IMO} ; t3: 5,2 ; 10,2: c.
tf Gl2 KIMO} , K I M O } , { / I M O } : 13,3; 14,3: a.
Т Щ2 .  I ..} , .  I ..} , {/ I ..} : 13,3; 14,3: . .
5 G^ 2 KIMO} , K I MO}, {/ I MO}: 13,3 ; 14,3: a.
R G L Kl î ïO},KlMO},{ / lMO}: 13,3; 14,3: a.

A* G5
8: (C^OU^.O): 5,2: a.

D1 G?6 . , 0),(. 2„,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
/ " G? 6 K, 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
. ' G|: (C 2y)0), (<r x, 0): 5,2 : a.
Z* G^ : (C 2I,0) , K, 0): 5,2 : a.
C" Gf 6 : (ff,, 0), (C 2l, 0): 5,3; 6,3 ; 7,3 ; 8,3: a.
E' G? 6: (i7„0) , (C2„ 0): 5,3; 6,3 ; 7,3 ; 8,3: a.
A* Gl : (C 2x, 0), (o,,0) : 5,2: a.
. ^ Gl : (C 2l, 0), (<r y, 0): 5,2 : a.
H* Gf 6 : (<. „ 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Q" G? 6: (C 2z,0) , (<. „ 0): 9,2 : Ъ.
G" G? 6: (ff„ 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: . .

51 Pmma Dl,,

(Fl ; ..7 ; ./5 ; .1 ; ZI. )

.  G}': {C2JOO|}, {C2„|000}, {/]000}: 5,2 ; 10,2: c.
7 G ' ' ® T 2 : {C2z|00i}, {C2y | 000}, {/|000}; t, : 5,2; 10,2: c.
X G S ' ® T 2 : {C2z|00i}, {C2„|000}, {/1000}; t 2: 5,2 ; 10,2: c.
Z G 3 2: {C2z|00i}, {C2 yjOOO},{/|000}: 13,3; 14,3: a.
t/  GJ 2: {C2z|00|},{C2),|000}, {/|000}: 13,3; 14,3: . .
.  G^ 2: {C2z|00j}, {C2y|000},{/|000}: 13,3; 14, 3: a.
S G1 '®T 2 : {CjJOOe}, {C2y|000}, {/1000}; t, ort 2 : 5,2; 10,2: c.
Ä G52: {C2z | 00|}, {C2„ | 000}, {/|000}: 13,3; 14,3: a.

. * GJ : (C 2,,0) , K, 0): 5,2 : a.

. 1 Gl: (C 2y,0) , K, 0): 5,2: . .
P' G? 6: (<7 Z, 0), (C 2 y > 0) : 5,3 ; 6,3 ; 7,3 ; 8,3 : . .
. * G? 6: (.. . , 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
£* Gi: (C2„ 0), (<7y> 0): 5,2: . .
. « G|: (C 2„0) , (<7„ 0): 5,2: a.
£* GÎ6: (ay,0), (<7Z, 0): 9, 1: 6.
A* G?6: (<ry, 0), (<. . > 0): 9, l : b.
. * G|: (C 2z, 0), (a,, 0): 5,2 : a.
H" Gl : (C 2z,0) , (ay, 0): 5,2 : . .
ß* G|: (C22, 0), (<7y, 0): 5,2: a.
G« G|h (. 2. ,0) , (<7 y > 0) : 5,2: . .
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52 Pnna D6

U

(F\; Kl; M5; Tl; Zl.)

.  G}': {C2z|00i}, {C2y|000}, {...} : 5,2; 10,2: с.
Y G12: K l MiU s I ..} , {/ | . .} : 13,3; 14,3: a.
X G12: KlMO},{a x | iM},{ / (MO} : 13,3; 14,3: a.
Z G12 .11. , {C2y|000}, {/ |MO}: 13,3; 14,3: a.
U G12 {C2y | 000}, {a, | Mi}, {/  | MO} : 9,  1 ; 10,  1 : b.
T G' * {aJuï}, K l M O } , R l T ï O } : 5,3; 6,3; 7,3; 8,3; 15,3; 16,3; 17,3; 18,3: a.
S G12 {(MHiU'.IttiM'IiiO}: 13,3; 14,3: a.
R GJ

32 KlMOUCj.lOOiU/lïiO}: 13,3; 14,3: a.

. * Gf : (C 2y, 0),K , 0): 5,2 : a.
Z> * G? 6 (<. „ .) , (C 2y,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
P* G? 6 (C 2y,0) , (a,, 0): 9, 1 : b.
B" G? 6 (<. 2, 0), (C 2 y > 0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
£* G|: (C2x, 0), (<ry, 0): 5,2: a.
Cx G?6 (ffy, 0), (C2x, 0): 5, 3; 6, 3: 7, 3; 8, 3: a.
£x G|J (ff,, 0), (a,, 0), (£, 0): 6, 3; 7, 3; 8, 3; 9, 3: b.
A* G*6 ( a f , 0 ) , ( a t , Q ) : 9,1: b.
\* G|: (C 2 2 ,0) , (<j , ,0) : 5,2: a.
. * G? 6 (a,, 0), (C 22, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
ß* G?6 (C2z, 0),K, 0): 9 ,2: b.
G* G?6 (CT,, 0), (C2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

53 ... .  . ^

(FI ; Kl; M5; Tl; Zl.)

Г G!» {C2z|00i}, {C2y 1000}, {/l iOO}: 5,2 ; 10,2: c.
Y G12 KliOèH^lïOO}, {/|*00}: 13,3; 14,3: a.
^ G{' ®T 2 : {C2z|00i}, {C2,|000}, {/liOO}; t2: 5 ,2; 10,2: c.
Z G12 {C2JOOi}, {C2),|000}, {/liOO}: 13, 3; 14, 3: a.
U G32 {C2z|00|}, {C2y | 000}, {/| jOO}: 13,3; 14,3: a.
T G£ {C2z|00*}, {ay\ *00}, {/liOO}: 5,3; 6,3; 7,3; 8,3; 15,3; 16,3; 17,3; 18,3: a.
S G12 KIM}, {ff, 1*00}, {/1*00}: 13,3; 14,3: a.
R G'* {C2,|00i}, {<ry|*00}, {/lîOO}: 5,3; 6,3; 7,3; 8,3; 15,3; 16,3; 17,3; 18,3: a.

. * Gj|: (C 2y, 0), (a,, 0): 5,2 : a.
D" G|: (C 2y, 0),(<7 X, 0): 5,2 : a.
/ " Gf 6 : (<r z, 0), (C 2y, 0): 5,3 ; 6,3; 7,3; 8,3 : a.
B' G? 6: (a,,0) , (C 2y, 0): 5,3 ; 6,3 ; 7,3; 8,3 : a.
I* G^ : (C 2l, 0), (<r z ,0) : 5,2 : a.
C x G? 6: (<r y> 0), (C 2l> 0): 5 3; 6, 3; 7, 3; 8, 3: a.
E* G\1

6: (<7 y )0) , (C 2l, 0), (£, 0): 6, 3; 7,3; 8,3; 9,3: b.
A' G?6: (<v 0), (a,, 0) : 9, 1 : b.
\' Gl. (C2z, 0) ,((Ty ,0): 5,2: a.
. .  G? 6: (<7 y) 0), (C 2l, 0): 5,3 ; 6, 3; 7,3 ; 8,3 : a.
ß* G?6: (<T y ,0 ) , (C2 z ,0): 5,3; 6,3; 7,3; 8,3: a.
G' G5

S: (C2z, 0), (<ry, 0): 5,2: a.
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54 Pcca Pi,,

( F \ ; Kl; M5; T\; Zl. )

.  G}' {C2 z |OOi},{C2 y |000}, {/ |OiO}: 5,2 ; 10, 2: c.
Y G i e ® T 2 : {C^IOOi-} , {C2, |000},{/|<HO}; tr- 5,2 ; 10,2: c.
X G7

32 {<7y | 0|0}, K l OÜ}, {/|OiO}: 13,3; 14,3: a.
Z G12 {C2z!00|-}, {C2y| 000}, {/|0i4)} : 13,3; 14,3: a.
U G12 {C2y | 000}, {<rz | ..} , {/|0|0}: 9, 1; 10, 1: b.
T Gl2 {C2z|00i}, {C2y |000}, {/|OiO}: 13, 3; 14, 3: a.
S G12 .  0}0}, {aJOM},{/ |OiO}: 13,3 ; 14,3: a.
R G12 {C2y 000}, {az | OÜ}, {/ | 0|-0} : 9, 1 ; 10, 1 : b.

A* G|: (C2y, 0), K,0): 5 ,2 : a.
D* G?6 (<.„0),(. 2„ , .) : 5, 3; 6,3 ; 7, 3; 8, 3: a.
P' G? 6 (C 2y, 0), (<r z, 0): 9 ,1 : ft-
. * G? 6 (CT Z, 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
X* G f : (C 2l, 0), (<r z, 0): 5,2 : a.
. ' GI : (C 2l,0) , (oy, 0): 5,2 : 0.
. * G? 6: (..„0) , (a z, 0): 9,1 : b.
A' G\6: (<r, , 0), (<T Z, 0): 9,1 : . .
Ax Gi : (C 2z)0), (<r, , 0): 5,2 : a.
H" Gl: (C 22,0) , (<7,,0) : 5,2 : a.
2* G? 6: K, 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
G* G? 6: (a,, 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

55 ... .  Р\ъ

( F \ ; Kl\ MS; T\; Zl. )

.  G' J {C2z|000}, {. 2. |..},{/|000} : 5,2; 10,2: . .
.  G] 2 {CTxl i2-0}, {C2z|000}, { / I 000}: 13, 3; 14, 3: a.
X G12 {ay\ ÜO}, {C2z| 000}, {/I 000}: 13,3; 14,3: a.
Z G J ' ® T 2 : {C2z|000}, {C2),|MO},{/|000}; t3: 5,2; 10,2: c.
V G12 {a, jiiQ}, {C2z|000}, {/I 000}: 13, 3; 14, 3: a.
.  GL {ffJiiO}, {C2z|000}, {/|000}: 13, 3; 14, 3: a.
S G 32 {C2z I 000}, {C2, | l-jO}, {/  | 000} : 9, 1 ; 19, 1 : b.
R G' * {C2z | 000}, {C2x | ijO}, {/  | 000} : 9, 1 ; 19, 1 : ft.

A' Gi : (C 2y, 0), K,0) : 5,2 : a.
D" G\a (a,,0), (ax, 0): 9 ,1 : b.
P' G? 6 (a z,0) , (<7 X, 0): 9 ,1 : ft.
. * G^ : (C2„  0), . , 0): 5,2 : a.
S> GÜ: (C2x,0), (<ry, 0): 5,2: a.
C' G?6: (ff z , 0),(C2 , ,0): 9, 1: ft-
£* G«6: (<7Z, 0),(C2x, 0): 9> i : ft.
A' Gl: (Cj,, 0), (<ry, 0): 5 ,2: a.
\* Gl: (C2z, 0), (<r„ 0): 5 ,2 : a.
H" G?6: (.., , 0), (C22, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
ß* G?6: (C2 z ,0) , (o-x ,0) : 9, 1: ft.
G* Gf 6 : K, 0),(C2z, 0): 5,3; 6,3; 7 ,3 ; 8,3: a.



494 TH E DOUBLE-VALUE D REPRESENTATION S OF

56 Pccn D2%

(FI; Kl; M5; Tl; Zl. )

.  G\'6 {. 2 . |000},{. 2 . | . .},{/1.} : 5,2 ; 10,2 : с.
Y G12 .  I ...Q , I MO}, {/ I Mi}: 13,3; 14,3: a.
X GJ

32 . I Mi) , {£2,1 MO}, {/I Mi}: 13,3; 14,3: a.
Z Gl2 KIOOibKl iMM/lMi}: 13,3; 14,3: a.
U Gl2 {C2z | 000}, (a, | OOi}, {/1 Mi} : 9, 1 ; 10, 1 : b.
T Gl2 {C2z | 000}, {<ry | OOi}, {/1 Mi} : 9, 1 ; 10, 1 : b.
S Gl2 {C2y |MO},{az |Mi},{/liM}: 13,3; 14,3: a.
R GÜ {C2z|000},{C2JiiO},{/|Mi}: 9, 1; 19,1: 6.

. * Gl : (C 2>,0),(^ , 0): 5,2 : a.
D* G? 6 (C 2y, 0), (a,, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
P* G? 6 (<7„0) , (C 2y, 0): 9 ,1 : ft.
B" G? 6 (CT Z, 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
2* G|: (C 2x, .) , (<.„0) : 5,2 : a.
C* G? 6 (C2,, 0),(<7 Z ,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
E" Gf 6 (<7 y, 0), (a,, 0): 9 ,1 : ft.
. * G? 6 (a,,0), (tr,, 0): 5,3 ; 6,3 ; 7,3 ; 8, 3: a.
\* Gl. (С1г,0),(ау, .) : 5,2 : a.
H* G|: (C 22,0) , K, 0): 5, 1 : a.
Q* G|: (C 2z,0) , (<r, , 0): 5, 1 : a.
G* G|: (C 22> 0), (.„0) : 5, 1 : a.

57 Pbcm D2j

(FI; Kl; M5; Tl; Zl. )

.  GU {. 2.  | 000}, {C2y | ÜO}, {/I OiO}: 5, 2; 10, 2: c.
.  G^ 2 {a, liOO}, {C2z 000}, {/I 0^0}: 13, 3; 14, 3: a.
X G12 {aJOiO}, {. 2,|..} , {/ |OiO}: 13,3; 14,3: a.
Z G [ ' ® T 2 : {C2z|000}, {C2JUO}, {/|OiO}; t3: 5,2 ; 10,2: c.
U G12 {<7jOeO},{C2 , |MO},RIOiO} : 13,3; 14,3: a.
T G 7

32 {ox|iOO}, {C2 z |000},{/|OiO}: 13,3; 14,3: a.
S G12 {C2z I 000}, {C2x | ..} , {/1 0^0} : 9, 1 ; 10, 1 : b.
R G12 {C2z | 000}, (C2, | ..} , {/1 0^0} : 9, 1 ; 10, 1 : b.

A1 Gl : (C 2,,0) , K,0) : 5,2 : a.
. * .! .  (. 2„0) , K,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
P* G? 6 (C2,, 0), (<r x, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
B" Gl. (Clr,0),(a,,0): 5,2 : a.
I" Gl : (C 2,,0) , (<7, , 0): 5,2 : a.
C* G? 6: (<r z,0) , (C 2»,0) : 9, 1: 6.
E* G? 6: ( ffl, 0),(C 2J, 0): 9, 1 : b.
A' Gl: (C2x, 0),  (a-,, 0): 5,2 : a.
. * Gl : (C 2z, 0),(«r y> 0): 5,2 : a.
H* G? 6: (<r y, 0),(C 2z, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
Q* G? 6: (ay, 0), (C 2z, 0): 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : a.
G 1 Gl: (C 2z, 0), (<. „ 0) : 5, 1 : a.
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58 Pnnm D\l

(Cl; D2; F l ; Gl; Kl; M5; T l ; Zl. )

.  G!' : {C2z|000}, {. 2 . |^0},{/| . . . : 5,2 ; 10,2: c.
Y G12: {а, .) , {^2,1 000}, {/|00i}: 13,3; 14,3 : a.
X Gl2: {ay lu}, {C2z|000}, {/|00|}: 13,3; 14,3: a.
Z G12: {a, Hi}, {<7z|00i}, {/|00i}: 13,3; 14,3: a.
^ Gi$ : {a, ÎM}, {C2z|000}, {/ lOOJr}: 5,3; 6,3; 7,3; 8,3; 15,3; 16,3; 17,3; 18,3: a.
.  G^ : {a, iiî}, {C2z |000}, {/lOOi}: 5,3; 6,3; 7,3; 8,3; 15,3; 16,3; 17,3; 18,3: a.
S G'*: {C271 000}, {a, l eÜ}, {/l 00*}: 9 ,1 ; 19,1: b.
R G7

32: {C2y |MO}, {<7z|00i},{/|00i}: 13,3; 14,3: a.

A* G|: (C2y, 0), (<r„ 0): 5,2: a.
0* G?6: (<r z ,0), fo.O): 9, 1: b.
P* G}£ : (C2y, 0), (<rx, 0), (I, 0) : 6, 3 ; 7,3; 8,3; 9, 3 : b.
B' G?6: (<7Z, 0), (C2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
I* G|: (C2l, 0), (a,, 0): 5, 2: a.
C- G?6: (<TZ, 0),(C2,,0): 9, 1: b.
£" G!£: (C2l, 0), (<rz, 0),(£, 0) : 6,3; 7,3; 8,3; 9,3: b.
A* G?6: (a,, 0), (cr,, 0) : 5,3; 6,3; 7,3; 8,3: a.
. * Gl : (C 2z, 0),( C T ) ( ,0) : 5,2 : a.
H' G? 6: (ci, , 0), (С1г, 0): 5,3 ; 6,3 ; 7,3 ; 8,3: a.
ß' G?6: (C2z,0), (ff,, 0): 9, 1: b.
G* G?6: ((7,, 0), (C2z ,0): 5,3; 6,3; 7,3; 8,3: a.

59 Pmmn Dl
2l

(Fl; Kl; M5; Tl; Zl.)

Г G[l {C2z | 000}, {C2, ^0}, { / I HO}: 5,2 ; 10,2: c.
Y G7

32 {a2 |MO}, {C2JUO}, {/ÜiO}: 13,3; 14,3: a.
A- G7

32 . |^0},{. 2, |..},{/1...} : 13,3; 14,3 : a.
Z G i ' ® T 2 : {C2z|000}, {C2y|^0}, {/l i iO}; t3: 5,2; 10,2: c.
U Gl2 {<rz lHO}, {C2 y |UO},{/!iiO}: 13,3; 14,3 : a.
T Gl2 .1 . .} ,{. 2 ,1 . .} ,{/1. .} : 13,3; 14 ,3 :e .
51 G? 2 {C2JiiO}, {aJUO},{/|iiO}: 13,3; 14,3: a.
.  GL {C2x|i|0}, KliiO}, {/1^0}: 13,3; 14,3: a.

A* G|: (C^.OM^.O) : 5,2 : a.
0* G? 6 (C 2y,0) , (a,, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
P' G? 6 (C 2y,0) , K, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
B' GJ : (C 2y, 0), (ffx, 0): 5,2 : a.
I' Gi : (C 2l,0) , («. „ 0): 5,2 : a.
C x G? 6: (C 2,,0) , (<r z,0) : 5,3 ; 6,3; 7,3 ; 8,3 : a.
£' G^6: (C2l,0), (a,, 0): 5,3; 6,3; 7,3; 8,3: a.
A* Gl. (C2l, 0), (a,, 0): 5,2: a.
. ' GJ : (C 2z, 0),((. . , 0): 5,2 : a.
. .  GJ : (C 22, 0), (ay, 0): 5, 1: a.
ß* G|: (. 2 . ) 0),(<7 . , 0): 5 ,1 : a.
G ' Gl : (C 2z,0) , (<7 y, 0): 5, 1 : a.
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60 Pbcn D2t

(F\; Kl; M5; .1 ; Zl. )

Г G'J : {C2 z |000},{C2 , |HO},{/liOi} : 5,2 ; 10,2: c.
Y G12 {^iMMC^lHOM/liOi} : 13,3; 14,3: a.
X G\2 {<7,|..} , {C2JOOO}, {/ l iOi}: 13,3 ; 14,3 : a.
Z G12 {<7X|OH}, {^IjOiU/liOi} : 13,3; 14,3: a.
I/  G3* fax ..} , {C2z|000}, {/liOi}: 5,3; 6,3; 7,3; 8,3; 15,3; 16,3; 17,3; 18,3: a.
Т Cl-, {C2z | 000}, fa, | OH}, {/  | iOi} : 9, 1 ; 10, 1 : b.
S G12 {C2z | 000}, {C2, | ..} , {/1 iOi} : 9, 1 ; 10, 1 : b.
R G12 {C2z | 000}, {C2x | MO}, {/  I iO|} : 9, 1 ; 10,  1 : b.

. * GI : (C 2j, 0), (ax, 0): 5 ,2 : a.
D" G? 6 (<r z, 0), K,0) : 9 ,1 : b.
P* G{£ (C2,,0), (ax, 0), (E, 0): 6, 3; 7, 3; 8, 3; 9, 3: 6.
S* G?6 (<7Z, 0), (C2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Z* Gl: (C2l, 0 ) , ( < j y ) 0 ) : 5,2: a.
C* G?6 (C2x, 0), (<rz, 0): 5, 3; 6, 3; 7, 3; 8,3: a.
£* G?6 (a,, 0), (<. . , 0) :9 , 1: 6.
. 1 G? 6 (a,, 0), (<.„ , . ) : 5, 3; 6, 3; 7, 3; 8, 3: a.
. * G 8

5: (C 2z, 0), (a,, 0): 5,2 : a.
. 1 G|: (.C 2z, 0), (a,, 0) : 5, 1 : a.
Q* G? 6 : (a,, 0), (C 2z, 0) : 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : a.
G " G?„ : K, 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

61 ffeeo DU

( F l ; КЗ; Kl; M5; T\; .2 ; Z I . )

Г . .  {C2z!|0i}, {C2,|HO}, {/1000}: 5,2 ; 10,2: с.
Y GÏ2 {az I }0i}, {C2l OH}, {/1000}: 13,3; 14,3: a.
X G7

32 {slHO}, {C22IÎOi}, {/|000}: 13, 3; 14, 3: a.
Z Gl2 .  ..} , {. 2„|.<>} , {/|000}: 13,3 ; 14,3 : a.
U Gl2 {C2y ! HO}, {C2x \ OH}, {/  ! 000} : 9, 1 ; 10, 1 : b.
T Gl2 {C2x | OH}, {C2z | iOi}, {/  | 000} : 9, 1 ; 10, 1 : b.
S Gl2 {C2, | 202}, {C2y | HO}, {/  | 000} : 9,  1 ; 10,  1 : b.
R Gît {C2x I OH}, {C2y | HO}, {E | 000}, {/ | 000} : 6, 1 ; 7, 1 ; 8, 1 ; 9, 1 ; 16, 1 ; 17, 1 ; 18, 1 ; 19, 1 : a.

A' G|: (C2y, 0), (<rx, 0) : 5,2: a.
D* G?6 (<rz, 0),K, 0): 9,_1: b.
P* G\1

6 (C2y, 0), (.. . , 0), (E, 0): 6, 1; 7, 1; 8, 1; 9, 1: b.
Bx GS

16 (a,,0) , (C 2,,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
I' Gl: (C2„ 0), (a,, 0) : 5, 2: a.
C' G? 6 (.. }„ 0), (C 2x, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
E" G|£ (C2„ 0), (<r z ,0), (E, 0): 6, 1; 7, 1; 8, 1; 9, 1: 6.
. * G? 6 (ay,0),(a,,0): 9 , 1 : b.
A* G= : (C 2z, OU^.O) : 5,2 : a.
H" G? 6 (<r„ 0) ,(<7 y ,0) : 9,_1: 6.
ô1 G\l (C2z, 0), (cr,, 0), (£, 0): 6, 1; 7, 1; 8, 1; 9, 1: b.
G" G?6 (<. „ 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
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62 Pnma D\l

( F l ; Gl; K2; K1 ; M5; Tl; 58; Zl. )

.  G j > {C2, |iOi},{C2, |#0},{/|&0}: 5,2 ; 10,2: c.
^ GL .  I M}, {C221 M}, {/  I ÎÎO}: 13, 3; 14, 3: a.
A- G]2 ...} , {. 2 . |..} , { / ( . . ) : 13,3 ; 14,3 : a.
.  G] 2 KIM}, {C^IMO}, {/ l i iO}: 13,3 ; 14,3: a.
U G' * {C2y | ..} , {C2z [ iOi}, {/  | .. } : 9, 1 ; 19, 1 : ft.
Т G 7

32 {C2ï[MO}, KIM}, {/|MO}: 13j3; 14i3. a
S Gb K, | 000}, {C2, Ou}, {/ | 2iO} : 9, 1 ; 10, 1 : b.
R G12 {a, | 000}, {a, \ . .  {/1 ^0} : 9,  1 ; 10, 1 : ft.

A" G Ü : (C2),, 0), («., , 0): 5,2 : . .
. 1 G? 6 (C 2y, 0), (a,, 0): 5, 3; 6, 3; 7, 3; 8,3 : a.
P' G? 6 (a x,0),(<r z,0) : 9, 1 : ft.
S1 G? 6 (<r z, 0), (. 2„ .) : 5, 3; 6, 3; 7, 3; 8, 3: . .
I" GI : (. 2 . ,0),(<.,,0) : 5,2 : a.
C* Gl : (C^.OX^.O) : 5,1 : a.
E' G? 6: (.„0),(. . ,0) : 9, 1: 6.
^ G? 6: ((.,,0),(^,0) : 9, 1 : ft.
A' GJ : (C 2 l > 0),(ff,,0) : 5,2 : a.
H* Gl6: (C 2z,0) , ( f fy ,0) : 5,3; 6,3 ; 7,3 ; 8,3 : a.
Q* G? 6: (. 2. ,0) , (ff,,0) : 5, 1 ; 6, 1 ; 7, 1 ; 8, 1 : a.
G ' Gl : (C 2z,0) , (ff,,0) : 5 ,1 : a.

63 Cmcw D^

( F l ; Jl; Kl; M5; S12; T3; Zl. )

.  G!è: {C2z|00ij, {C2y|00i},{/|000}: 5,2; 10,2: c.
î' G! '®T 2 : {C2z|00|}, {C2,100i}, {/1000}; t l 0 r t 2 : 5,2; 10, 2: c.
^ G|2: {C2z|00i}, {C2l|000}, {/|000}: 13,3; 14,3: a.
Т G^ 2: {C2z|00i}, {C2x|000}, {/|000}: 13,3; 14,3 : a.
S G! ®T 2: {C2z|00i}, {/|000}; t2: 2,3; 4,3; 6,3; 8,3: ft.
R G 1,?: {C2z|00|}, {£|001}, {/|000}: 9,1: a.

\* Gl: (C2z ,0), (ff,, 0): 5,2: a.
. * G^ : (C 2z,0) , (ff,, 0): 5,2 : a.
0* G^ : (C 2z, 0): 2,3 ; 4,3 : ft.
/1 " G? 6: (<r z, 0), (ffy , 0): 5, 3; 6,3; 7,3 ; 8,3 : a.
S1 G^ : (C 2x, 0), (a,, 0): 5,2 : a.
A* G|: (C 2y, 0), (ax, 0): 5,2 : a.
. * G? 6: (^,0) , (o- z,0) : 9, 1 : ft.
G* G? 6: (<7X,0), (<r z,0) : 9, 1 : ft.
F" Gl : (C 2 y > 0),(<7,,0) : 5,2 : a.
£' G?6: (ffz, 0), (ffy , 0): 5,3; 6 ,3 ; 7 ,3; 8 ,3: a.
C' Gl: (C2„ 0) , (<r v , 0): 5,2: a.
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64 Cmca Dj%

(F\; Kl; ./5 ; 58; 59; .. ; W\; ZI. )

.  G! ' : {C2z|00i}, {C2y|00i}, {/ | . .} : 5,2 ; 10,2: c.
Y G J â ® T 2 : {C2JOOi},{C2y |OOi-},{/lMO}; t l O r t 2 : 5, 2; 10, 2: c.
Z G12: {C2z|00i}, {C2JOOO}, {/IÜO}: 13,3; 14,3: a.
T G7

32: {C2z|00i}, {C2JOOO}, {/IMO}: 13,3; 14,3: a.
S G\°: {a, | .) , {£ I 010}, {/ | i}0): 9, 1 : a.
R Gj |®T2 : {. . |.} , RlîiO}; t2ort3: 1, 1 ; 3, 1 ; 5, 1 ; 7, 1 : c.

. * G|: (C 2z, 0),(<7,. , 0): 5,2 : a.
H' Gf : (C 2z,0) , (<7 . , .) : 5,2 : . .
. ' Gi: (C 2z,0) : 2, 1 ; 4, 1 : ft.
A' G? 6: (a,,0), (<.„,0) : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
I* G^ : (C 2I, 0), (<7„ .) : 5,2 : a.
A* G|: (C 2y, 0),(<. . > 0): 5, 2: a.
B* G? 6: ...^^..) : 9, 1: ft.
G* G? 6: .,0),(<. . ,0) : 9, 1: ft.
F" G|: (C 2y> 0), (<7,,0) : 5,2 : a.
£' G?6: (CTZ, 0), (.. . , 0): 5 ,3 ; 6,3 ; 7,3 ; 8,3 : a.
C' G|: (C 2,,0),( S, 0): 5,2 : a.

TH E DOUBLE-VALUE D REPRESENTATION S OF

65 Cmmm Dl

2l

(FI ; /.7 ; A/5 ; .. ; Zl. )

.  GJJ : (. 2.  i 000}, {C2, | 000}, {/  | 000} : 5, 2; 10, 2: c.
Y G\l ® T 2: {C2JOOO}, {C2y | 000}, {/|000}; t, or t 2 : 5,2 ; 10,2: c.
Z Gj£ ® T2: {C2z | 000}, {C2y | 000}, {/|000}; t3: 5,2; 10,2: c.
T G\l ®T 2 : {. 2. |000}, {C2y|000}, {/|000}; t, o r t 2 o r t 3 : 5,2 ; 10,2: c.
5 G | ® T 2: {C2z|000}, {/|000}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3 : h.
R Gi ® T 2: {C2z |000},{/|000}; t2 ort 3: 2,3 ; 4,3 ; 6,3 ; 8,3: ft.

. ^ Gi (C 2z, 0), (<7, , 0): 5,2 : a.
Hx GI (C 2z, 0), (ay, 0): 5,2 : a.
D* G i (C 2z, 0): 2,3 ; 4,3 : è.
. * G I (. 2„0) , (a r,0) : 5,2 : a.
X* G| (C 2,,0) , (a y,0) : 5,2 : a.
. -  G i (. 2„0) , (.„0) : 5,2 : a.
B* G i (C 2y, 0), (ax, 0): 5,2 : a.
G 1 G i (C 2,,0) , (a,,0) : 5,2 : a.
F* Gi (C 2y, 0), .,0) : 5,2 : a.
£' Gi (. 2„ 0), (<7„ 0) : 5,2 : a.
. * Gi (. 2„ 0), (<7„ , 0) : 5,2 : a.
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66 Cccm D\l

(FI; Kl; M5; .. ; Zl. )

.  GiJ : {C22]000}, {C2y|000}, { / lOOi}: 5,2 ; 10,2: c.
.  . .® . 2 : {C2z|000}, {C2J|000}, {/|00|}; t ,ort 2 : 5,2 ; 10,2: c.
Z GJ 2 : {er^lOOi}, {ffJOOi}, {/|00i}: 13,3; 14,3: a.
T Glz: KlOOi}, {<T2 |OOi},{/ |OOi}: 13,3; 14,3: a.
S GS ® T 2: {C2_,|000}, { / I 00}}; t2: 2,3 ; 4,3 ; 6,3; 8,3 : b.
R Gl ® T 2: {C22|000}, {/|00|}; t 2 or t 3 : 2, 3; 4,3 ; 6,3; 8,3: b.

. * G|: (C 22,0) , (ff,, 0): 5,2 : a.

. * G|: (C 2z, 0), Or,, 0): 5,2 : a.
D' Gi : (C 2z,0) : 2,3 ; 4,3 : b.
A* G? 6: (CT Z ,0) , (<r, , 0): 5,3 ; 6,3; 7,3 ; 8,3 : a.
I* Gl : (. 2„ 0), (a,, 0): 5,2 : a.
. * G|: (. 2„0) , . , 0): 5,2 : a.
. * G? 6: (.. 2, 0), (C 2y, 0): 5,3; 6,3; 7, 3; 8,3 : a.
G* G? 6: (<. „ 0), (C2y, 0): 5,3 ; 6,3 ; 7,3 ; 8,3: a.

F' Gl : (C 2>, 0), K,  0): 5, 2: a.
E' G? 6: (.. 2, 0), (a (,,0) : 5, 3; 6,3; 7,3 ; 8,3 : a.
C' Gl : (C 2l, 0), (ff, ,0) : 5,2 : a.

499

67 Cmm a D|/ |

(Fl ; K7; MS; Tl; Zl. )

.  G!^: {C2z | 000}, {C2S | 000}, {/| MO} : 5,2 ; 10,2: c.
Y G U ® T 2 : {C22|000}, {C2j,|000}, {/liiO}; t , o r t 2 : 5,2 ; 10,2: c.
Z G ! ' ® T 2 : {C2z|000}, {C2y|000}, { / l i iO}; t3: 5,2 ; 10,2: c.
.  G } J ® T 2 : {C22|000}, {C2y|000}, {/liiO}; t l 0 r t 2 o r t 3 : 5,2 ; 10,2: c.
S Gi°: {<rz l i iO}, {£ 010}, {/I MO}: 9, 1: u.
A GJ° : {<7Z | i|0}, {£ | 010}, {/ MO} : 9, 1 : a.

Л* Gl (C2z, 0), (a,,0): 5,2: a.
H' G| (C22, 0), (<ry, 0): 5,2: a.
O1 Gi (C2z, 0) : 2, 1 ; 4, 1 : b.
A* Gl (C2,,0), K,0): 5,2: a.
I« G* (C2„0), (a,,0): 5,2: a.
Д' Gl (C2y, 0), K, 0) : 5,2: a.
Й- Gl (C2,, 0), K,0): 5,2: a.
G' Gl (C2y>0), (a,, 0): 5,2: a.
F' Gl (С2„ 0), K,0): 5,2: a.
E' Gl (C2l,0), (<7,,0): 5,2: a.
C' Gl (C2f, 0), (a,, 0) : 5,2: a.



500 TH E DOUBLE-VALUE D REPRESENTATION S OF

68 Ccca D\l

( F l ; Kl; M5; .. ; Zl. )

.  G! ' : {C2z|000}, {C2y|000},{mM}: 5,2 ; 10,2 : c.
Y . '1®. 2 : {C2JOOO},{C2,|000}, {/1. .  t i o r t 2 : 5,2; 10,2: . .
Z G12: . | . . .1.},{ '1.} : 13,3; 14,3: a.
Т G12: ...* . ««,{'lui}: '3,3 ; 14,3: fl.
5 G!°: KlMi},{£|010},{/|iM}: 9, 1 : a.

K G!?: K l Mi), {£1010}, {/|.} : ». : . -

. 1 G|: (C 2z, 0), (a,, 0): 5,2 : a.
H" G|: (C 22,0) , (.. „ .) : 5,2: a.
O1 G' : (C 2r, 0) : 2 , 1 ; 4 , 1 : b.
A* G? 6: (ffz , 0), («7,, 0): 5, 3; 6,3 ; 7,3 ; 8,3 : a.
I1 Gl: (C2,,0), (a,, 0): 5,2: a.
A* G|: (C 2y, 0), (ax, 0): 5,2 : a.
S' G? 6: (<. . , 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
G' G? 6: (az, 0), (C 2,,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
F' G§ : (C 2j,,0),K , 0): 5,2 : 0.
£" G?6: (a,,0), (a,, 0) : 5 ,3 ; 6,3; 7,3; 8,3: a.
C1 G^: (C2l) 0), (oy, 0) : 5,2: a.

69 fmmm /ffi

(Fl; . .7 ; M5; 514; Zl. )

.  .. : {C2z I 000}, {C2, |000}, {/|000}: 5,2; 10,2: . .
У G l £ ® T 2 : {C2 z j 000}, {C2,1 000}, {/|000}; t 2 or t 3 : 5,2; 10,2: c.
X . .  ® T 2: {C2z | 000},{C2y| 000}, {/|000}; t t o r t 3 : 5,2; 10,2 : c.
Z G U ® T 2 : {C2z|000}, {C2),|000}, {/1 000}; t, ort 2 : 5,2; 10,2: c.
L Gl ® T2 : {/1 000}, {£ | 000} ; t, : 2, 1 ; 4, 1 : a.

. 1 Gu (C 2z, 0), (a,,0) : 5,2 : a.
G' Gl (C2z,0),(ay,0): 5,2: a.
H' Gl (C 2z,0) , (a,,0) : 5,2 : a.
Q* G i (C 2z,0) , («., , . ) : 5 ,2 : a.
S' GÜ (C2j,0), (az, 0): 5,2: a.
C* G| (C2je, 0), (<7Z, 0): 5 ,2 : a..
. * G | (C 2x,0) , (<. 2 ,0) : 5,2 : a.
f/ x G^ (C 2l,0) , (<T Z, 0): 5,2 : a.
. .  G^ (C 2y,0) , K, 0): 5,2 : a.
. * G| (C 2y,0) , (a,, 0): 5, 2: a.
Bx Gl (C 2 > ,0) , K, 0): 5,2 : a.
. * Gl (C 2 y >0) , (ax, 0): 5,2 : a.
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70 Fddd D\l

( F l ; Kl; MS; 514; Zl. )

.  G! ' : {C2z|000}, {C2„|000}, {/lUi}- . 5,2; 10,2: c.
Y Gh : {<..} , KüiiM'liii}: 13,3; 14,3: a.
X G'l2: Kliii},KluiMmii}: 13,3; 14,3: a.
Z G12: .  | Hi}, {*, I .} , {/  I iu}: 13, 3; 14, 3: a.
L Gl ® T2 : {/  | Щ}, {E | 000} ; t, : 2, 1 ; 4, 1 : a.

. * Gl : (C 2z, 0),( CT> ., 0): 5, 2: a.
G * G? 6: (<тх, 0), (C 2z, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
. * G? 6 (a,, 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
ß* G?„ (C2 z ,0), K,0): 9,2: 6.
Z' G|: (C2x, 0), (<. 2, 0): 5,2 : a.
C' G? 6 (ay, 0), (C2x, 0): 5, 3; 6, 3; 7,3 ; 8, 3: a.
/4 * G? 6 (<r z,0) , (<7,,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
Vх G? 6 (C2x, 0) ,(<. . . ) : 9, 2: b.
&* Gl : (C2,, 0),^ , 0): 5,2 : a.
. * G? 6 (a,, 0), (C2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
fi" G? 6 (CT Z, 0), (C 2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
A' G? 6 (C 2y, 0) , (<T Z ,0) : 9,2 : . .

71 /mm/ .  jP2^

( F l ; Kl; M5; Zl.)

.  G 1,^ : {C2z |000}, {C2y|000}, {/| 000} : 5,2 ; 10,2 : c.
X C['6 ® T 2: {C2 z | 000},{C2y| 000}, {/ | 000}; t, or t2 or t3 : 5,2 ; 10,2: c.
R G l ® T 2: {C2y| 000}, { / I 000}; t! : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
S Gl ® T 2: {C2JOOO}, {/|000}; t t o r t 3 : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
T Gl ® T 2: {C2z | 000}, { / I 000}; t, ort 2 : 2, 3; 4, 3; 6, 3; 8, 3: . .
W G ü ® T 4 : {C2z| 000}, {C2j, I 000}; t j o r t 2 or t 3 : 5, 2: a.

. " G^ (C 2z, 0), ((T, , 0): 5,2 : a.
G 1 G l (C 2z, 0), (a,, 0): 5,2 : a.
P* Gi (C 2z, 0): 2,3 ; 4,3 : b.
I.* Gl (C2x, 0), K, 0): 5,2 : a.
F* G5

S (C 2l, 0), (az, 0): 5,2 : a.
D* Gi (Clt, 0): 2,3 ; 4,3 : 6.
A' G l (C 2y, O),^, , 0): 5,2 : a.
U' Gl (C 2y, 0),K , 0): 5,2 : a.
Q' G i (C 2>, 0): 2,3 ; 4,3 : b.
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72 Ibam РЦ

( F \ ; Kl; M S ; Zl. )

.  G}': {C2z|000}, {C2,|000}, { / i i i O }: 5,2 ; 10,2 : c.
X G| ' ®T 2 : {C2 z |000},{C2,|000}, {/|^0}; t l 0 r t 2 o r t 3 : 5,2 ; 10,2 : c.
R G}g: K | MO}, {£|100}, {/I HO}: 9, 1: a.
S Gl° : {<rx | ..} , {£ | 100}, {/ | ÜO} : 9, 1 : a.
Т Cl ®T 2 : {C2z|000}, {/1..} ; t, o r t 2 : 2,3 ; 4 ,3 ; 6,3 ; 8,3 : b.
W Gl ® T4: {C2 z j 000}, {C2 y|000}; t : or t2 or t3 : 5, 1 : a.

. ' Gl (C 2z, 0), (<7, , 0): 5,2 : a.
G* Gj j (C 2z, 0), (a,, 0): 5,2 : a.
P* G j (C 2z, 0): 2, 3; 4,3 : b.
Z* Gl (C2x, 0), ((7Z, 0): 5,2 : a.
Fx G5

S (C2x, 0), (<T Z, 0): 5,2 : a.
O* Gi (C 2l, 0): 2, 1; 4, 1 : è.
. ' G^ (. 2„ 0),(^ , 0): 5,2 : a.
C/ * GÜ (C2y, 0 ) , (<r» , 0): 5 ,2: a.
0" Gi (C2l„ 0) : 2, 1 ; 4, 1 : b.

73 ftca Z)^7

(Fl; ..7 ; M5; Zl. )

.  G J J : {C2z|iOi}, {C2>. IÜO}, {/|000}: 5 ,2 ; 10,2: c.
X G } J ® T 2 : {C2z|M}, {C2,|MO}, {/|000}: t l O r t 2 o r t 3 : 5 ,2 ; 10,2: c.
R G\l : {ay | ..} , {£ | 100}, {/ 000} : 9, 1 : a.
S G\l : {<rt | ..} , {£ j 100}, {/ | 000} : 9, 1 : a.
T G>° : {CTz | iOi}, {£ | 100}, {/ | 000} : 9, 1 : a.
W Gl ® T4: {C2x| 0-H}, {C2). l i -20}; t, o r t 2 or t 3 : 1,1; 2, 1 ; 3, 1 ; 4, 1: 6.

. 1 G| (C 2z, 0), (a y,0) : 5, 2: 0.
G' Gl (C 2z, 0), (^,0) : 5,2 : a.
P* Gs (C 2z, 0), (£, 0): 5, 1; 7, 1 : a.
I.' Gl (C2x, 0), (a z ,0): 5,2: a.
Fx G| (C2l, 0), (a,, 0): 5,2: a.
O* Gjj (Clx, 0), (£, 0): 5, 1; 7, 1: a.
A" Gi (C2y, 0), (a,, 0): 5 ,2 : a.
t/' GÜ (C2y ,0), K, 0): 5,2: a.
6* G^ (C2,,0), (£,0): 5 ,1 ; 7 ,1 : a.
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74 Imma РЦ

(F\; Kl; M5; Zl. )

.  G!' : {C2 z | iOi},{C2 ï l i iO},{/liïO}: 5, 2; 10,2: с.
X G!' ®. 2 : {. 2. |. , {C2J,JÜO}, {/I HO}; t l o r t 2 o r t 3 : 5 ,2 ; 10,2: c.
.  Cl ® T2: {Cjyl^O}, {/IHO} ; t, : 2,3; 4,3; 6,3; 8,3: b.
S G l ® T 2: {C2 x| OH}, U I MO}; t, ort 3 : 2,3 ; 4,3 ; 6,3; 8,3 : 6.
.  GJ° : {aj Oi|}, {£ | 100}, {/liiO}: 9, 1: a.
W Gl ® T4: {CjJO-M}, {C2j,|i-iO}; t, o r t 2 or t 3 : 1,3; 2,3; 3,3; 4,3: b.

\* G|: (C22, 0),(S, 0): 5,2: a.
G" Gjj: (C2z, 0), (<r,,0): 5,2: a.
/" G^: (C22, 0),(£, 0): 5, 1; 7, 1: a.
£* Gl: (C2I)0), (a z ,0): 5 ,2: a.
F' G|: (C2ï, 0), (<7 . ,0) : 5,2 : a.
D* Gl: (C2x, 0), (£, 0): 5,3; 7,3: a.
. * Gl : (C 2 y )0) , (<7X, 0): 5,2 : a.
t/ " G^ : (C 2,,0) , (a x > 0) : 5,2 : a.
Q" Gl. (C2S,Q), (£, 0): 5,3; 7,3: o.

75 P4 Cj,

(FI; Kl; M5; Zl.)

Г Gl: {CÜ 000}: 2 ,3; 4,3; 6, 3; 8,3: a.
M G'g ® T2: {C^l 000}; t t o r t 2 : 2,3; 4,3; 6,3; 8,3: a.
Z Gl ® T2: {C^l 000}; t3: 2,3; 4,3; 6, 3; 8,3: a.
A G£ ®T 2 : {Cil 000}; t! o r t 2 o r t 3 : 2,3; 4,3; 6,3; 8,3: a.
R Gl ® T2 : {C221 000} ; t2 or t3 : 2, 3; 4, 3 : b.
X G\ <g> T2: {. 2. |000}; t2: 2, 3; 4, 3: b.

A* G 2 (£, 0): 2 ,2: a.
[/* G^ (£, 0): 2 ,2: a.
\* Gl (Ci, 0): 2, .v; 4, x; 6, x; S, x: a.
V Gl (Ci, 0): 2, .: ; 4, x; 6, x; 8, x: a.
I.' G\ (£, 0): 2 ,2 : a.
S* G| (1,0): 2 ,2 : a.
.  G 2 (£, 0): 2 ,2 : a.
T' G2 (£, 0): 2 ,2 : a.
»" Gl (C2 z ,0): 2, x; 4, x: è.



504 TH E DOUBLE-VALUE D REPRESENTATION S OF

76 P4i Cj

(F\; Kl; M5; Zl. )

.  Gj : {C^IOOi}: 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
M G j ® T 2 : { C^ OOi}; t t or t 2 : 2, 3; 4, 3; 6, 3; 8, 3: a.
Z G£ ® T2: {C4+ OOi}; t3: 1,1; 3,3; 5 ,1 ; 7,3: b.
A G^ <g> T2: {C4

+
2 OOi}; ^ or t2 ort3 : 1, 1; 3, 3; 5, 1 ; 7, 3: 6.

R Gi ® T2: {C2z 00!}; t 2 or t 3 : 1, 1; 3, 1 : c.
A- Gi ® T2: {. 2.  OOi}; t 2: 2, 3; 4, 3: e.

. " G j (E, 0): 2,2 : a.
C/ x Gi (E, 0) : 2, 1 : a.
. * G J (C z, 0): 2, x; 4, x; 6, x; 8, x: a.
Vх G\ (C£, 0): 2, x; 4, x; 6, x; %,x: a.
?.* G2 (£, 0): 2 ,2: a.
Sx G*2 (E, 0): 2, 1: a.
K* G^ (£,0): 2 ,2 : a.
. .  Gi (E, 0) : 2, 1 : a.
." =  Gi (C 2 z ,0) : 2, x; 4, x: 6.

77 P42 C\

(Fl ; X7; M5 Zl. )

.  G^ : {C^IOOi}: 2,3 ; 4,3 ; 6, 3; 8,3 : a.
M G J ® T 2 {C£|00i}; t t or t 2 : 2 ,3 ; 4,3; 6,3; 8,3: a.
Z G £ ® T 2 {C^ I 00^}; t3: 2, 3; 4, 3; 6, 3; 8, 3: a.
^ G ' ® T 2 {CJOOi}; t! ort2 ort3: 2, 3; 4, 3; 6, 3; 8, 3: a.
R G ^ ® T 2 {C2z| 000}; t 2 o r t 3 : 2, 3; 4, 3: b.
X G i ® T 2 {. 2 . |000}; t 2: 2, 3; 4, 3: 6.

A* G 2 (£, 0): 2,2: a.
Vх G i (£, 0): 2 ,2 : a.
. * G j (C+ z, 0): 2, x; 4, x; 6, x; 8, x: a.
V G J (C4

+

z, 0): 2, x; 4, x; 6, x; 8, x: a.
I* G| (£, 0): 2 ,2 : a.
Sx Gi (£, 0): 2 ,2 : a.
Y* Gi (£, 0): 2 ,2: a.
T* Gi (£, 0): 2 ,2 : a.
W* Gi (C2z, 0): 2, x; 4, x: 6.
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78 P4} Q

(FI ; Kl; M5; Zl. )

.  G' : {Cil OOf}: 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
M GJ ® T 2: {C/JOOf}; t t or t 2 : 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
Z Gi ®T 2 : {C4

+

z|OOf}; t3: 1,1; 3,3; 5,1; 7,3: 6.
/1 GJ ® T 2: {C4

+

z| OOf}; t j o r t 2 or t 3 : 1,1 ; 3,3; 5, 1 ; 7, 3: b.
R G 4 ® T 2: {C2z|00}}; t 2 or t 3 : 1, 1; 3, 1: c.
X G 4 ® T 2 : {C2z|00i}; t 2: 2, 3; 4, 3: *.

A* G 2 (E, 0): 2,2 : a.
U* G1

2 (E, 0) : 2, 1 : a.
. " G^ (C£, 0): 2,x; 4,x; 6,x; S, x: a.
Vх G\ (CÏ;, 0): 2,x; 4,x; 6,x; $,x: a.
Z* G*2 (E, 0) :2 , 2: a.
S* G2 (E, 0) : 2, 1 : a.
Y* G2 (E, 0): 2,2: a.
. * G 2 (£, 0): 2,1: a.
W* G4 (C2 z ,0): 2, x; 4, .: : b.

79 /4 C4

(Fl ; Kl; M5; Zl. )

.  G' : {C^IOOO}: 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
N G| ® T2 : {E | 000} ; t2 : 2, 1 : a.
X G 4 <g> T 2: {C2J 000}; t3: 2, 3; 4, 3: A.
Z G' <g) T 2: {. £|000}; t! or t2 ort3: 2,3; 4,3; 6,3; 8,3: a.
P G4 (g) T4: {C2JOOO}; t! o r t 2 or t 3 : 2,3; 4,3: i.

. 1 Gg (C^, 0): 2, x; 4, je; 6, x; 8, x: a.
V* G« (C^, 0): 2, x; 4, x; 6, x; 8, x: 0.
W* Gi (C 2z, 0): 2, x; 4, x: b.
X.  Gi (£, 0): 2 ,2: a.
F* G\ (E, 0): 2,2: a.
Q* G2 (E, 0): 2, x: a.
A' G1

2 (E, 0): 2 ,2: a.
f/x Gj (£, 0): 2 ,2 : a.
Y* Gi (E, 0): 2,2: a.
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80 141 C\

( F \ ; Kl; M5; Z\.)

.  G j : {CÜtü}: 2,3; 4,3; 6,3; 8,3: a.
N GJ ®T 2 : {£|000}; t2: 2 ,1: a.
X G4 ® T2: {C2z| 000}; t3: 2, 3; 4, 3: 6.
Z G' ®T2 : {CÜtü}; t l O r t 2 o r t 3 : 2 ,3; 4,3; 6,3; 8,3: a.
P G4 ® T4: {C2z| 000}; t, ort2 ort3: 2 ,2; 4, 1 : b.

. * G j (C 4

+

z,0) : 2,_x; 4, x; 6, x; 8, x: a.
У G? 6: (C4

+

z, 0), (£, 1): 2, x; 4, x; 6, x; 8, x: f.
W* G4 (C2z, 0): 2,x; 4,x: b.
I' G2 (£, 0): 2,2: a.
f* G\ (E, 0): 2,2: a.
Q" G2 (£, 0): 2, x: a.
. * G| (£, 0): 2 ,2: a.
U" G\ (£, 0): 2,2: a.
. 1 G 2 (£, 0): 2,2: a.

81 P4 S1
4

( F l ; Kl; M5; Zl.)

.  G^ : {5Ü 000}: 2,3; 4,3; 6,3; 8,3: a.
M Gl ®T 2 : {5ÜOOO}; t l O r t 2 : 2,3; 4 ,3; 6,3; 8,3: a.
Z G£ ® T2: {Si | 000}; t3: 2,3; 4,3; 6,3; 8,3: a.
A G j®T 2 : {5 i 000}; t, or t2 ort3: 2, 3; 4, 3; 6, 3; 8, 3: a.
A G4 ® T2: {C2z| 000}; t 2 o r t 3 : 2,3; 4,3: b.
X G 4 ® T 2 : {C2z |000}; t2: 2 ,3; 4,3: b.

. ' G^ (£, 0): 2 ,2 : a.
U* G2 (£, 0): 2,2: a.
. 1 Gi (C 2z, 0): 2,3 ; 4,3 : è.
V G4 (C2z, 0): 2,3; 4,3: b.
S1 G2 (£, 0): 2,2: a.
Sx G^ (£, 0): 2 ,2: a.
.  G 2 (£, 0): 2 ,2 : a.
T* Gi (£, 0): 2 ,2 : a.
W G4 (. 2. ,0) : 2, x; 4, x: . .
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82 14 Si

(Fl; Kl; MS; Zl.)

F Gj: {S£ | 000}: 2, 3; 4, 3; 6 ,3; 8, 3: a.
N G 2 ® T 2 : {£|000}; t2: 2, 1: a.
X G i ® T 2 : {C2z|000}; t3: 2, 3; 4, 3: b.
Z Gl

s ® T2: {S£| 000}; t, o r t 2 or t 3 : 2 ,3; 4,3; 6,3; 8,3: a.
P Gl

s ® T4: {S£|000}; tt or t2 ort3 : 2, x; 4, x; 6, x; 8, x: a.

A* Gi (C2z, 0): 2,3; 4,3: b.
V* G* (C2,, 0): 2,3; 4,3: b.
W* G} (C2z, 0): 2 ,x; 4, x: b.
I* Gi (£, 0): 2 ,2 : a.
F" Gl (E, 0): 2,2: a.
g' G^ (E, 0): 2,x: a.
A* G]- (£, 0): 2,2: a.
U' G1

2 (E, 0): 2,2: a.
Y* G2: (E, 0 ) : 2 , 2 : a.

83 P4/m C^

(Fl; Kl; M5; Zl.)

F G?6: {Ci | 000}, {/| 000}: 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: d.
M G?6 ® T2: {CJOOO}, {/ 000}; t t ort2 : 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: d.
Z G? 6 (x )T 2 : {C^ 000}, {/| 000}; t3: 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: d.
A G\6 ® T2: {c;,\ 000}, {/1 000}; t, o r t 2 or t 3 : 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: d.
R G| ® T2: {C2l|000}, {/|000}; t 2 or t 3 : 2,3; 4,3; 6,3; 8,3: b.
X G| ® T2: {C2JOOO}, {/|000}; t2: 2,3; 4,3; 6,3; 8,3: b.

Ax Gi (a,, 0): 2,3; 4,3: b.
U' GJ (a,, 0): 2 ,3; 4,3: b.
A" GJ (C£, 0): 2, 3; 4, 3; 6, 3; 8, 3: a.
Kx GJ (CJZ, 0): 2, 3; 4, 3; 6, 3; 8, 3: a.
£' Gi (ffz, 0): 2,3; 4,3: b.
S* Gl (a,, 0): 2,3; 4,3: b.
Y* G} (a,, 0): 2,3; 4,3: b.
T* Gi (a,, 0): 2,3; 4,3: b.
W* Gi (C2l, 0): 2,3; 4,3: 6.
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84 P42/m C2

th

(F\; Kl; M5; Zl. )

.  G? 6: {C^JOOi}, {/|00i}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3 ; 14,3; 16,3: d.
M G? 6 ® T 2: {C^\ OOi}, { / I OOi}; t t or t 2 : 2,3 ; 4,3 ; 6,3 ; 8,3; 10,3; 12,3; 14,3; 16,3: d.
Z G£: {Ci | OOi}, {£|001}, {/I 00|}: 19,3; 20, 7: a.
A G\2

2: {. , OOi}, {£ | 001}, {/I OOi}: 19,3; 20,3: a.
R Gl ® T2: {C2z|000},{/|00i}; t 2 or t 3 : 2,3; 4,3; 6,3; 8,3: b.
X Gl ®T 2 : {C2z|000}, {/I OOi}; ̂  2,3; 4,3; 6,3; 8,3: b.

. * G l (CT Z, 0): 2,3 ; 4,3 : b.
U* Gl (<r z, 0), (E, 1): 5,3 ; 7, 3: a.
. * G j (C z, 0): 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
P1* G£ (C£, 0): 2, 3; 4, 3; 6, 3; 8, 3: a.
X .  G 4 (<r z, 0): 2,3 ; 4,3 : b.
S* G2

S (az, 0),(£, 1): 5,3; 7,3: a.
. .  G 4 (CT Z, 0): 2,3 ; 4,3: b.
T* Gl (a,, 0), (E, 1): 5,3 ; 7, 3: a.
W* G\ (С2г, .) : 2,3 ; 4,3 : b.

85 P4/n Cl„

(FI; Kl; M5; Zl. )

.  Gf 6 : {C|Z |UO}, {/iiiO}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3; 14,3 ; 16,3: d.
M Gil: {CJJiiO}, {£|010}, {/liiO}: 19,3; 20,3: a.
Z G2

t6 ® T2: {C4
+

z| ÜO}, {/liiO}; t3: 2,3; 4,3; 6,3; 8, 3; 10,3; 12,3; 14,3; 16,3: d.
A G\2

2: {C^liiO}, {£|010}, {/liiO}: 19,3; 20,3: a.
K Gl°6: KIÜO}, {£|001},{/|UO}: 9,1: a.
^ G}?: {az |UO},{£|010},{/!iiO}: 9, 1 : a.

A* G^: (CTZ, 0): 2 ,3; 4,3: b.
U* G\: (<rz, 0): 2,3; 4,3: b.
. * G\. (C 4

+

z,0) : 2,3 ; 4,3 ; 6,3; 8,3 : a.
Vх G2

16: (C 4+ , 0), (E, 1): 10, 3; 12, 3; 14, 3; 16, 3: b.
Z* G 4: (<r z, 0): 2,3; 4,3 : b.
Sx Gl: (<T Z, 0): 2,3 ; 4,3 : b.
Y* G 4: (<7 Z ,0) : 2,3 ; 4,3 : b.
T' G 4: (<r z,0) : 2,3 ; 4,3 : b.
W* G 4: (C 2z,0) : 2, 1 ; 4, 1 : b.

86 P42/ n Ct,,

(FI ; Kl; M5; Zl. )

.  G? 6: {C^liii}, {/lui}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3 ; 14,3 ; 16,3: d.
M Gl2: {CÎ, | ui}, \E\ 010}, {/I ui}: 19, 3; 20, 3: a.
Z GH: {C4

+
z | . ,  {E 001}, {/  Mi}: 19, 3; 20, 3: a.

Л G? 6 ®T 2 : {C^liii}, {/lui}; t, or t2 or t 3: 2, 3; 4, 3; 6, 3; 8, 3; 10,3 ; 12,3 ; 14,3; 16,3: d.
R G\°6: .  lui}, {£1001}, {/lui}: 9 ,1 : a.
X G\l: .  lui}, {£-1010}, {/lui}: 9, l : a.

. .  G 4 (<T Z, 0): 2,3 ; 4,3 : b.
U* Gl (<r z, 0),(£, 1): 5,3; 7,3: a.
. * G^ (C 4

+

z, 0): 2, 3; 4, 3; 6, 3; 8, 3: a.
Vх G? 6: (C 4

+

z,0) , (£, 1): 10,3; 12,3; 14,3; 16,3: b.
X" G4 (<rz, 0): 2 ,3; 4,3: b.
S* G2

8 (a,, 0), (£, 1): 5,3; 7,3: a.
Y' G4 (ffz , 0): 2 ,3; 4,3: b.
T" Gl (<rz, 0),(£, 1): 5,3; 7,3: a.
W G4 (C2z, 0) : 2, 1 ; 4, 1 : b.
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87 /4/ m C4>

(Fl ; *:?; M5; Zl. )

.  G? 6: {Ci | 000}, {/ I 000}: 2,3 ; 4,3 ; 6,3 ; 8,3; 10,3; 12,3; 14,3; 16,3: d.
N Gl® T 2: { / I 000}, {E | 000}; t 2: 2, 1 ; 4, 1 : a.
A- Gl ® T 2: {C2JOOO}, {/|000}; t 3: 2,3 ; 4,3 ; 6,3; 8,3: b.
Z G\6 ®T 2 : {Ci | 000}, {/I 000}; t, o r t 2 or t 3 : 2,3 ; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: d.
P Gl ® T4: {Si |000}; t t o r t 2 or t 3 : 2, 3; 4, 3; 6, 3 ; 8, 3: a.

. * G J (C^, 0): 2,3 ; 4,3 ; 6,3; 8,3 : a.
V Gl (Ci, 0): 2,3; 4,3 ; 6,3; 8,3 : a.
W G i (C 2z, 0): 2,3 ; 4,3: b.
E* G i (<r z, 0): 2,3 ; 4,3 : ft.
F* G i (a 0): 2,3 ; 4,3 : b.
Q* G 2 (£, 0) : 2, 1 : a.
. * G ' (a,, 0): 2,3 ; 4,3 : ft.
U* G' ((7Z, 0): 2,3; 4,3 : b.
Y* Gi (CT Z, 0): 2,3 ; 4,3 : b.

88 /4i/ a C|t

(FI ; JST7; MS ; Zl. )

.
JV
JT
Z
p

. 1

. 1

W*
I .

F'

о*
."
t/*
r*

G? 6: {CilHïU/Iwi}: 2,3; 4,3; 6,3; 8,3; 10,3; 12,3; 14,3; 16,3: a.
G j ® T 2 : {/I Hi}, (E 000}; t2: 2,1; 4,1: a.
Giï: .  I Hi}, {.  I 001}, { / I Hi}: 9,1 : a.
.. : (Ci | Hi}, {£ I 001}, {/I Hi}: 19,3; 20,3: a.
Gs ® T4: (Si | 000}; tt o r t 2 or t 3 : 2,3; 4, 1 ; 6,3; 8, 1 : a.

Gj: (C/,, 0): 2,3; 4,3; 6,3; 8,3: a.
G?6: (C4

+
z, 0), (F,, 1): 10,3; 12,3; 14,3; 16, 3 : f t .

Gi: (C2z ,0): 2, 1; 4, 1: . .
G 4: (a,, 0): 2,3 ; 4,3 : b.
G2

S: (a,, 0), (E, 1): 5,3; 7,3 : a.
G 2: (£,0): 2, 1 : a.
G4: (.. . , 0): 2,3 ; 4,3 : b.
Gl: (<r z)0), (F,, 1): 5,3; 7,3 : a.
G 4: (CT Z, 0): 2,3 ; 4,3 : *.

89 P422 . 4

(FI ; Kl; M5; Zl. )

.  Gl*: {C4

+

z|000},{C2x|000}: 6,2 ; 7,2 : a.
M G[i ® T 2: {Ci | 000}, {. 2,|000}; t t ort 2 : 6,2 ; 7,2 : a.
Z  G{J ®T 2 : {Ci | 000}, {C2l I 000}; t3: 6,2; 7,2 : a.
^ G!J ® T 2: {Ci | 000}, {C2JOOO}; t! o r t 2 or t 3 : 6,2; 7,2 : a.
R G| ®T 2 : {C22|000}, {C2y|000}; t 2 or t 3 : 5,2 : a.
X G l ®T 2 : {C2z|000}, {C2,|000}; t 2: 5,2 : a.

A* G 4 (C2,, 0): 2,2 ; 4,2 : 6.
£/* G4 (C2,,0): 2,2; 4,2: b.
\' Gl

s (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
Vх G^ (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
£* G' (C2o, 0): 2,2; 4,2: . .
S" G 4 (C2„, 0): 2,2 ; 4,2 : b.
Y* G i (C2„ 0): 2,2 ; 4,2 : b.
T* G i (C2x, 0): 2,2 ; 4,2 : i.
W G i (C 2z, 0): 2,2 ; 4,2 : b.
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90 Р42г2 Dl

(FI; Kl; M5; Zl. )

.  G'* : {Ci | 000}, {C2, I MO}: 6, 2; 1,2: a.
M GJJ : {C4

+

z | 000}, {C2x | ÜO}: 6, 3; 7, 3: a.
Z G |*®T 2 : {Ci |000}, {C2x\220}; t3 : 6,2; 7 ,2: a.
A G' ' : {C4

+
z | 000}, {C2x &0}: 6,3; 7,3: a.

.  G? 6: {. 2. |..} , {C2JMO}: 5,3 ; 6,3; 7,3 ; 8,3 : a.
X G? 6: {. 2 . |..} , {C2 x |HO}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

A* G 4: (C 2y, 0): 2,2 ; 4,2 : i.
U* G 4: (C 2jl, 0): 2,2 ; 4,2 : u.
. * GJ : (. 4

+

., 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
Vх Gl

s: (Ci, 0): 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
£* G4: (C2o, 0): 2 ,2; 4,2: b.
S* G4 : (C2o, 0): 2 ,2; 4,2: b.
Y* Gl: (C2x, Q ) , ( E , 1): 5,3; 7,3: a.
T* G2

S: (C2t, 0), (£, 1): 5,3; 7 ,3: a.
W* G4: (C2z, 0):2, 3; 4 ,3: b.

91 P4,22 Dl

(FI; Kl; M5; Zl.)

.  Gl£: {CilOOi}, {C2JOOO}: 6,2; 7 ,2 : a.
M G i £ ® T 2 : {CilOOi}, {. 2,|000}; t , o r t 2 : 6,2 ; 7,2 : a.
2 G\l: {Ci| OOi}, {C2x |000}: 8,3 ; 9,3 ; 10,3; 11,3 ; 14,2: a.
A G\l\ {CilOOi}, {C2JOOOJ : 8,3 ; 9,3 ; 10,3; 11,3 ; 14,2: a.
R G? 6: {C2 z |00ij, {C2),|00|}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
X Gl ® T 2: {C2z OOi}, {C2y | 00|}; t 2: 5, 2: a.

&' G 4: (C 2y, 0): 2,2 ; 4,2 : b.
Ux Gl: (C2y, Q),(E, 1): 5,3; 7,3 : a.
. .  G j : (Ci, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
V GJ : (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
Z* G 4: (C 2a, 0): 2,_2 ; 4,2 : b.
S' G? 6: (C2a ,0),(£, 0): 12,3; 16,3: a.
Y" G4: (. 2„ .) : 2,2 ; 4,2 : b.
T* G' : (C2x, 0): 2,3 ; 4,3 : b.
W* G\: (C 2z, 0): 2,2 ; 4,2 : b.

92 f4i2 t 2 . ^

(FI ; S7; M5; Zl. )

.  Gît {Ci | OOi}, {C2, | HO}: 6, 2; 7, 2: a.
M GH {C4

+
z | OOi}, {C2, | MO}: 6, 3; 7, 3: a.

2 GJ? {Ci|00|},{C2J{iO}: 8, 3; 9, 3; 10, 3; 11,3; 14, 2: a.
A G\\ {Ci OOi}, {C2b | u|} : 8-3; 9,3; 10,3; 11,3; 12,1: b.
R G\e {. 2,1..},{. 2,1.} : 9,1 : b.
X G» 6 {C2 yiMi},{C2 ,liiO}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

. * G 4 (C2,, 0): 2,2 ; 4,2 : b.
U' Gl (C 2y, 0), (E, 1): 5,3 ; 7,3 : a.
. * GJ (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
^* G j (Ci, 0): 2,3 ; 4,3 ; 6,3; 8,3 : a.
S* G 4 (C 2o, 0): 2,2 ; 4,2 : b.
S' Gl : (C 2o,0) , (E, 0): 12,3; 16,3 : a.
.  Gi ( C 2 f , Q ) , ( E , 1): 5 ,3 ; 7 ,3 : a.
T' Gl (C 2x, 0), (£, 1): 5, 1; 7, 1: a.
W* G\ (C2 z ,0): 2,3; 4,3: b.
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93 P4222 Dl

(FI ; Kl; MS; Zl. )

.  G|*: {C:z | OOi}, {C2I | 000}: 6, 2; 7, 2: a,
M GÎ 4 ®T 2 : {Ci I OOi}, {C2, I 000}; ^ort,: 6,2; 7,2: a.
Z GJ* ® T2: {Ci | OOi}, {C2, I 000}; t3: 6, 2; 7, 2: a.
.  G{£®T 2 : {Cil OOi}, {C2x | 000}; ^ o r t j o r t j : 6,2; 7,2: a.
.  G| ® T2 : {C2z | 000}, {C2, | 000} ; t2 or t3 : 5, 2: a.
* Gi ® T 2: [C2t | 000}, (C 2y | 000}; t2: 5, 2: a.

A* Gi : (C 2y, 0): 2,2 ; 4,2 : 6.
£/* Gi: (C2y, 0): 2 ,2; 4,2: A.
. 1 G j : (C^ z, 0): 2,2 ; 4,2; 6,2; 8,2: a.
Vх G\: (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
S* Gi: (C2o, 0): 2,2; 4,2: 6.
S* G^ : (. 2„, 0), (E, 1): 5,2; 7,2 : a.
Y* Gi : (C 2»,0): 2,2 ; 4,2 : b.
.  Gi : (C 2l, 0): 2,2; 4,2 : b.
W G|: (C 2z, 0): 2,2 ; 4,2: b.

94 P4 22t2 Dl

(F\; Kl; Af5; Zl. )

.  Gi* : {C4

+

z|OOi},{C2:( |iiO}: 6,2; 7,2 : a.
U G\\: {C4

+

z | OOi}, {C2x| ÜO}: 6, 3; 7, 3: e.
Z Gl* ® T2: {C4

+
z | OOi}, {C2, I iiO}; t3: 6, 2; 7, 2: a.

X GH: {Ci I OOi}, {C2,| iiO}: 6, 3; 7, 3: a.
R G?6: {C2y|iiO},{C22|000}: 5,3; 6,3; 7,3; 8,3: a.
^ Gf 6 : {C2J|UO}, {C22|000}: 5,3; 6,3; 7,3; 8,3: a.

A* Gi (C2„ 0): 2,2; 4,2: b.
£/' Gi (C2y, 0): 2,2; 4,2: 6.
. * G J (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
K1 G^ (Ci, 0): 2,3 ; 4,3 ; 6,3; 8,3: a.
£* Gi (C2o, 0): 2,2; 4,2: 6.
5' G| (C2o, 0),(£, 1): 5,2; 7,2: a.
Y* G| (C2„ 0),(£, 1): 5,3; 7,3: a.
T' Gi (C2x, 0), (£, 1): 5 ,3; 7 ,3: a.
»" G' (C22, 0): 2,3; 4,3: b.

95 f4322 01

(Fl; Kl; MS; Zl.)

.  G!*: {CilOOÎ}, {CjJOOO}: 6,2; 7,2: a.
M G!*®T2: {CilOOj}, {C2JOOO}; t l O r t 2 : 6,2; 7,2: a.
Z G\°: {./ 2|00!}, {C2i|000}: 8,3; 9,3; 10,3; 11,3 ; 14,2: a.
A G 3°: {Ci|OOj},{C2JOOO}: 8,3; 9,3; 10,3; 11,3; 14,2: a.
R G\6: {C2z|OOi},{C2),|OOi}: 5,3 ; 6,3; 7,3; 8,3: a.
X Gi ® T2 : {C2z | OOi}, (C2y | OOi}'; t2 : 5, 2 : a.

. * Gi : (C 2 y > 0) : 2,2 ; 4,2 : b.
U* Gl : (C2„ 0), (. , 1): 5,3; 7,3 : a.
. ' G' : (Ci, 0): 2, 2; 4,2; 6, 2; 8,2: a.
.  G' : (Ci, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
E* Gi : (C2., 0): 2,2; 4,2: é.
5* G2

16: (C2 j>0), (£, 0): 10,3; 14,3: e.
. * Gi : (C2I, 0): 2,2 ; 4, 2: 6.
.  Gi : (. 2„ .) : 2,3; 4,3 : b.
W Gi : (C 2z, 0): 2,2 ; 4,2 : b.
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96 P4 32t2 D\

(F\; K7; M5; Zl. )

.  GI S {Ci | 00|}, {Clx \ MO}: 6, 2; 7, 2: a.
M Gi l {CilOOf}, {C2l MO}: 6,3; 7,3 : a.
z £32 {Ci I OOf}, {C2JMO}: 8,3; 9,3; 10,3; 11,3; 14,2: a.
A G32 {Ci | OOf}, {C2b | .} : 8,3 ; 9,3 ; 10, 3; 11,3 ; 12, 1: ft.
« G? 6 {. 21 |..},{. 2,|.} : 9 ,1 : ft-
X G? 6 {. 2 . | .}>{. 2, |..} : 5,3; 6,3; 7,3 ; 8,3 : a.

A* Gi : (C 2y, 0): 2,2 ; 4,2 : ft.
V Gl- (C 2y, 0), (£, 1): 5,3; 7,3: a.
. .  Gg : (Ci, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
F* Gg. (C^, 0): 2,3 ; 4,3 ; 6,3 ; 8,3 : a.
S1 Gi : (. 2. , 0): 2,_2 ; 4,2 : b.
S" G? 6: (C 2„, 0), (I , 0): 10,3; 14,3: . .
. * G|: (C 2jc, 0),(£, 1): 5,3; 7,3: a.
T' Gi: (C2l, 0), (£, 1): 5, 1 ; 7, 1 : a.
W" G\: (C22, 0): 2 ,3; 4,3: b.

97 /422 . ?

(FI ; Kl; M5; Zl. )

.  G}J: {Ci | 000}, {C2l | 000}: 6,2; 7,2 : a.
JV Gi ® T 2: {C2, | 000}; t 2: 2, 3; 4, 3: b.
X G i ® T 2 : {C2 z |000},{C2 b |000}; t3: 5,2 : a.
Z G^®T 2 : {C/JOOO} , {C2l|000}; t, o r t 2 o r t 3 : 6, 2; 7, 2: a.
P G i <g> T 4: {C2z|000}, {C2,|000}; t t or t2 or t 3 : 5,2 : a.

. ' GJ : (Ci, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
f GJ : (Ci, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
W Gi : (C 2z, 0): 2,2 ; 4,2 : b.
I* Gi : (Clx, 0): 2,2 ; 4,2 : ft.
F* Gi : (C 2%, 0): 2,2 ; 4,2 : 6.
ß* Gi: (C2,, 0): 2, x; 4, x: ft.
A1 Gi: (C2o, 0): 2 ,2; 4,2: ft.
t/* Gi: (C2a, 0): 2,2; 4,2: ft.
X.  Gi : (C 2b, 0): 2,2 ; 4,2: ft.

98 /4 t22 Oj°

(FI ; Kl; M5; Zl. )

.  G!^: {Ci|Hi},{C2 ; t |Oii}: 6,2 ; 7,2 : a.
W G i ® T 2 : {C2y |OÜ}; t2: 2, 3; 4, 3: ft.
A- G| ® T2 : {C2z I 000}, {C2b | HO} ; t3 : 5, 2 : a.
Z G S * ® T 2 : {. 4

+

2|.}.. 2,..} ; t l 0 r t 2 o r t 3 : 6,2 ; 7,2 : a.
P G |®T 4 : {C2JOU}, {C2J1M}; t l 0 r t 2 o r t 3 : 1,3 ; 2,2 ; 3,2 ; 4,3 : ft.

. 1 G|: (Ci, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
V G? 6: (Ci,0) , (£, 1): 10,2; 12,2; 14,2; 16,2: ft.
W Gi: (C2z, 0): 2,2; 4,2: ft.
I* Gi: (. 2„ .) : 2 ,2 ; 4,2 : ft.
FX G i: (C2,, 0): 2,2 ; 4 ,2 : ft.
ß* G|: (C2y, 0),(£, 1): 5, .: ; 1,х: a.
A" G i: (C 2o, 0): 2,2 ; 4,2 : b.
Vх G\: (C2a, 0),(£, 1): 5,2; 7 ,2 : a.
. * Gi : (C 2b, 0): 2,2 ; 4,2 : ft.

512
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99 P4mm C\,

(FI; Kl; M5; Zl. )

.  Gi t : {CilOOO}, {ery |000}: 6,2 ; 7,2 : a.
M Gi t ® T 2: {CilOOO}, {o, |000}; t t or t 2 : 6,2 ; 7,2 : a.
Z Gi t ®T 2 : {Ci | 000}, {aj 000}; t 3: 6,2 ; 7,2 : a.
.  Gi t ® T 2: {CilOOO}, {er, | 000}; t j o r t 2 o r t 3 : 6,2 ; 7,2 : a.
R Gl ® T2 : {C2z | 000}, {tr, | 000} ; t2 or t3 : 5 ,2 : a.
X Gi ® T2 : {C2z1 000}, {ery \ 000} ; t,  : 5, 2 : a.

A* Gi : (cr, , 0): 2,2 ; 4,2 : 6.
£/* Gi: (er,, 0): 2,2; 4,2: b.
A' G1J: (Ci, 0), (a,, 0) : 6, x; 7,x: a.
Vх GJJ : (Ci, 0), (er y, 0): 6, x; 7, . : a.
I .  Gi : (^„,0) : 2,2 ; 4,2 : ft.
5' Gi : (adb,0): 2,2 ; 4,2 : 6.
Y* Gi : (.. „ 0): 2,2 ; 4,2 : b.
Т" Gi : (<. . , 0): 2,2 ; 4,2 : b.
W Gf : (C 2z, 0),( S, 0): 5, x: a.

100 P4bm Cl,

(F\; Kl; M5; Zl. )

.  Gi t : {Ci | 000}, (S l M»}: 6,2; 7,2 : a.
M G 3 2: {Ci | 000}, .  | MO}: 6,3 ; 7,3 : a.
Z G\i ® T 2: {Ci | 000}, {<7, | i^O}; t3: 6, 2; 7, 2: a.
/1 Gi 2 : {Ci | 000}, {. , | HO}: 6,3 ; 7,3 : a.
R G? 6: {aj HO}, {C2z | 000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
X Gf 6 : {o-jHO}. {C2z |000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

A' Gi : (<.„0) : 2 ,2 ; 4,2 : b.
Vх Gi : K,0) : 2,2 ; 4,2 : ft.
A1 G',t : (Ci, 0), (<. . , 0): 6, x; 7, x: a.
K' G 3 2: (Ci, 0), . , 0): 6, x; 7, x: a.
X .  Gi : K,,0) : 2,2 ; 4,2 : ft.
S1 Gi : (ff.,,,,0) : 2,2 ; 4,2 : 6.
. * G^ : (<7 y, 0), (£, 1): 5,3; 7, 3: a.
. * Gj; : (ffy, 0), (£,1): 5 ,3; 7,3: a.
. " G? 6: (.. . , 0), (. 2. , 0): 5,x; 6, x; 7, x; 8, x: a.

101 P42cm Cj

(Fl ; ^7; MS ; Zl. )

.  GiJ : {Ci I 00^}, {<. .  | 00|} : 6, 2; 7, 2: a.
M Gît ® T2: {Cil 00i},{ff,,| 00^}; t t or t 2 : 6 ,2 ; 7 ,2: a.
Z G3 2 : {CUOOi}, {aJOOi}: 6,3; 7,3: 0.
X G3 2 : {CilOOi}, {<rj OOi}: 6,3; 7,3: a.
R G*„ : {C2z ] 000}, {er, | 00{} : 9, 1 : ft.
X Gl ® T2: {C2z| 000}, {cry | OOi}; t2: 5 ,2: a.

A* Gi: (er,, 0): 2 ,2 ; 4,2: ft.
Ux Gi: (<. „ .) : 2,3 ; 4, 3: ft.
A* Gj t : (C 4

+

z, 0), (er y, 0) : 6, x; 7, x: a.
Vх Gî t : (Ci, 0 ) , ( ( T y , 0 ) : 6 ,x; 7,x: a.
£* Gi: (aib, 0): 2 ,2; 4,2: ft.
Sx Gi: (erjb, 0): 2 ,2 ; 4 ,2: 6.
1" Gi: (cry, 0): 2 ,2 ; 4 ,2 : ft.
Tx Gi: (er,,0): 2,3; 4,3: b.
W Gjh (C2z, 0) ,(ery , 0): 5, x: a.
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102 P42nm Ç*c

( F l ; Kl; MS; Zl.)

.  G\ï: {Ct I OOi}, .  I üi}: 6, 2; l, 2: а.
M GH : {CUOOibKiii i} : 6,3 ; 7,3 : . .
Z GH : {Ci I 00|}, {a, lui}: 6,3 ; 7,3 : a.
A G\i ® T 2: {Cil OOi}, {a* lui}; t, o r t 2 o r t 3 : 6,2 ; 7,2 : a.
« G? 6: KlîiîMCzJOOO}: 5,3. 6;3; 7 ,3 . 8 > 3 : a.
* G?6: Kliu}, ( C 2zl 000}: 5,3; 6,3; 7 ,3 ; 8,3: a.

. * G i (ax, 0): 2,2 ; 4,2 : 6.
I/ * G i (tr x, 0): 2,3 ; 4,3 : 6.
. * GJt - (. 4

+

., 0), (<7„ 0): 6,x; 7,x: a.
V* G\ : (Qz, 0), (a,, 0): 6, x; l,x: a.
£* Gi (<7„ ., .) : 2,2; 4,2: è.
S' Gi ((.,, , 0): 2,2 ; 4,2 : b.
Y" Gl (ay, 0), (£,1): 5,3; 7 ,3 : a.
T* Gl (a,, 0), (£, 1): 5,2; 7 ,2: a.
W* G?6: (a,, 0), (C2z, 0): 5, x; 6,x; l,x; &, x: a.

103 P4cc C5
4c

( F l ; Kl; M5; Zl.)

Г G 1^: {Ĉ  ! 000}, {a, | OOi}: 6, 2; 7, 2: a.
M G i £ ® T 2 : {Ci | 000}, {<7y|00i}; t l O r t 2 : 6,2; 7 ,2: a.
Z G£ : {C^ | 000}, {<rdb | OOi} : 6, 1 ; 7, 1: 6.
-4 G]° : {. 4

+

. | 000}, {adb | OOi} : 6, 1 ; 7, 1 : è.
R G?6 : {. 2.  I 000}, {a, \ 00^} : 9, 1 : b.
X G\ ® T 2: {C2J 000}, {(7,| 00^}; *2: 5,2 : a.

. * Gi (a,, 0): 2,2 ; 4,2 : è.
.  Gi (<7„ 0): 2,3; 4, 3: . .
. " Gl£: (Ci,0), (a,, 0): 6, x; l,x: a.
V Gi*: (Ci,0), ((7,,0): 6,x; 7,x: a.
Z1 Gi (<7„ . , .) : 2,2 ; 4,2 : b.
S* G i (<7 . , .) : 2,3 ; 4,3 : b.
Y* G i (a,, 0): 2,2 ; 4,2 : 6.
. * Gi ((7,, 0): 2,3 ; 4,3 : b.
W* Gl (C 2z, 0), (a,, 0) : 5, x: a.

104 P4nc .2 „

(Fl ; ..7 ; M5; Zl. )

.  G|t {Ci | 000}, .  | Hi}: 6,2 ; 7,2 : a.
M GH {Ci I 000}, {ff, lui}: 6,3 ; 7,3 : . .
Z GH {Ci i 000}, (ad„ \ iü} : 6, l ; 7, l : b.
A G'2 {Ci | 000}, {aäb | iü} : 6, 3; 7, 3: a.
R G?6 {asliü},{C22|000}: 5, 3; 6,3; 7, 3; 8,3: a.
X G?6 {aJiü}, {C2z|000}: 5, 3; 6, 3; 7 ,3 ; 8, 3: a.

. * Gi : (<r„, 0): 2,2 ; 4,2 : b.
U' Gi : K,0) : 2,3 ; 4,3 : b.
\* G\i: (Ci,0) , (a„0) : 6,x; l,x: a.
V G\\: (Ci,0) , (ff„ 0): 6, x; 7, x: a.
I' Gi : ((7db, 0): 2,2 ; 4,2 : b.
S' Gi : (o,,,,, 0): 2,3 ; 4,3 : 0.
K« Gg: (a,, 0),(£, 1): 5,3; 7,3: a.
. * G^ : (a„ 0), (£, 1): 5 ,2; 7,2: a.
W G?6: ((7,,0),(C2z,0): 5, x; 6,x; 7, x; 8, x: a.

THE DOUBLE-VALUED REPRESENTATIONS OF
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105 P42mc Cl,

(F\; Kl; MS; Zl. )

.  Git : {CilOO^}, {«., | 000}: 6,2 ; 7,2 : a.
M Gi J ® T 2: {Ci|002-}, {(7,|000}; t, or t 2 : 6,2 ; 7,2 : a.
Z G 3 2 : {Ci | OOi}, {<rdl, | 00|}: 6, 3; 7, 3: a.
A G 3 2: {Ci | OOi}, {adk \ 00^}: 6, 3; 7, 3: 0.
R G | ® T 2: {C2z ( 000}, {.. „ | 000}; t 2 o r t 3 : 5,2 : a.
A-  GÜ <g) T2: {C2z | 000}, {«7, | 000}; t2: 5, 2: a.

A" Gi: K, 0): 2, 2; 4 ,2: 6.
t/* Gi: (ax, 0): 2 ,2; 4 ,2: ft.
. * Gi t : (Ci, 0), (a,., 0): 6, x; 7,x: a.
V G i t : (Ci,0) ,  ( a f , 0): 6, x; 7, x: a.
X* Gi : (adb, 0): 2,2 : 4,2 : b.
S* Gi : (adk, 0): 2 ,3 ; 4,3 : 6.
Y' Gi : (a,, 0): 2,2 ; 4 ,2 : b.
Г Gi : ((7V, 0): 2,2 ; 4,2 : b.
W* G|: (C2z,0),(a,,0): 5, x: a.

106 P42bc Clv

( F \ ; Kl; M5; Zl. )

.  G|*: {C;2|00i},{s|ii0}: 6,2 ; 7,2 : a.
M GJI'- {Ct ! Oui}, {ax \ i- 20}: 6, 3; 7, 3: a.
Z GH : {. .  I OOi}, {adb | iii}: 6, 3; 7, 3: a.
A G'°: {C;z|00i}, KJMi}: 6, 1 ; 7, 1 : b.
K GV. KiiiO},{C2 z |000}: 5,3 ; 6 ,3 ; 7,3 ; 8,3 : a.
X G? 6 : .  ! MO}, {C22| 000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

A' Gi : K, 0): 2,2 ; 4,2 : b.
Vх Gi : (a,, 0): 2,2 ; 4 ,2 : A.
. " Git . (C^, 0), (a,,0) : 6, x; 7, x: a.
V G\\: (C^, 0), . , 0): 6, .: ; 7, x: . .
I* Gi : (<T d b ,0) : 2 ,2 ; 4,2 : b.
S* Gi : (<rdb,Q): 2 ,3 ; 4,3 : 6.
K* G^ : (ay, 0), (£, 1): 5,3; 7 ,3: a.
. .  G^ : (<r,,0) , (£, 1): 5 ,3; 7 ,3 : a.
»" G?6: (.. .  0), (C 2z, 0): 5, x; 6, x; 7, x; 8, x: a.

107 /4wffl C^t.

( F \ ; Kl; MS; Zl. )

.  G i£ : {C^l 000}, {a, | 000}: 6 ,2 ; 7,2: a.
N Gi ®T 2 : {.- , | 000}; t 2: 2, 3; 4, 3: 6.
A- G i ® T 2 : {C2z|000}, {<Td s |000}; t 3: 5,2 : a.
Z G\î ® T2: {Ci) 000}, {(. . | 000}; t, or t2 or t 3 : 6,2 ; 7 ,2 : a.
/ > G| ® T4: {C2 z |000j, {ad( ,|000}; t t o r t 2 o r t 3 : 5,2 : a.

. " Git : (Ci,0) , (a,, 0): 6, x; 7,x: a.
K' Gi^ : (Ci,0) , («r,., 0): 6, x; 7, x: a.
W" G f : (C 2 z,0) , (̂ ,  0): 5,.r : a.
X .  Gi : (<j s, 0): 2,2 ; 4,2 : 6.
f Gi : (a,, , 0): 2,2 ; 4 ,2 : b.
g« G 2 : (E , 0): 2 ,2 : a.
A' Gi : (CM, 0): 2 ,2 ; 4,2 : A.
V* Gi : (a, 6, 0): 2 ,2 ; 4,2 : b.
Y* Gi : (<r da, 0): 2,2 ; 4,2 : b.
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108 /4c m C4°

(FI; Kl; M5; Zl. )

.  G\l\ {CilOOO}, {< . . | . . } : 6,2 ; 7,2 : a.
N G2

S : {ay \ &0}, {£ | 000} : 5, 1 ; 7, 1 : a.
X G| ® T2: {C221 000}, {(7.  | ÜO}; 13: 5, 2: a.
Z G i * ® T 2 : {C4

+
z|000}, K | MO}; t , o r t 2 o r t 3 : 6,2; 7 ,2: a.

P G| ®T4 : {C2z]000}, {«TjjMO}; ti o r t 2 o r t 3 : 5, 1 : a.

A* G'*: (C4+, 0),(<.,,0) : 6, x; l,x: a.
V G\l: (C 4

+

z, 0), (<7 V, 0): 6,x; l,x: a.
W G\. (C 2z, 0),(<r d i ,,0) : S , x : a.
•L* G 4: (ay, 0): 2,2 ; 4,2 : b.
F" G}: (ffy, 0): 2,2 ; 4,2 : 6.
2* G 2: (£, 0): 2, 1: a.
A- G4: (ff^, 0): 2 ,2; 4 ,2: b.
U* G|: (<7W, 0): 2, 2; 4,2: . .
.  Ci: (ado, 0): 2,2 ; 4,2 : b.

109 /4,.< /  . 4„'

(fl; Kl; M5; Zl. )

.  GiJ : {.; . |.},.1°0°} : 6,2 ; 7,2 : a.
TV Gi ®T 2 : {.. . |000}; t 2: 2, 3; 4, 3: 6.
A- G? 6: .„|.} , {. 2 . |000}: 5, 3; 6, 3; 7, 3; 8, 3: a.
Z G1

3\: {С:,\Ш},{*»\Ш}-- 6,3 ; 7,3 : a.
? Ch- ' {o-jbllii}. {C2z |000}: 13,2 ; 14,2; 17,3; 18,3: a.

A* Gi£ : (Ci, 0), (<. . , 0): 6, x; 7, x: a.
F* G 3 2: (C4

+

z, 0), (<r d b ,0) : 6, x; 7,x: a.
W G? 6: (ada,0), (C 2z,0) : 5, x; 6, x; l,x; 8,x : a.
S" G 4: (at, 0): 2,2 ; 4,2 : 6.
F' G 4: («r,, 0): 2,2 ; 4,2 : b.
Q* G^. (E, 0): 2,2 : a.
. * G ' : (aib,0): 2,2 ; 4,2 : 6.
J7* G' : (.- . ,0) : 2,3 ; 4,3 : 6.
Y' G2

g: (ada,0), (E, 1): 5,3 : 7,3 : a.

no /4tcrf c4;
(Fl ; /.? ; .5 ; Zl. )

.  Gi t {az |fu},_K!MO}: 6,2 ; 7,2 : a.
N Gi : {«., | iiO}, {£ | 000} : 5, 1 ; 7, 1 : a.
^ G?6 {^Ji|i},{C2z|000}: 5, 3; 6, 3; 7, 3; 8, 3: a.
Z GH {. £|.} , bJHi}: 6,3 ; 7,3 : a.
P G? 2 {a^lilî}, {C2z|000}: 13,3; 14,3; 17, 1; 18, 1: a.

A* GJt (C4
+

z, 0), (ay, 0) : 6, x; 7,x: a.
Vх G\\ (C 4

+

z,0),(,r db ,0) : 6,x; 7 ,x : a.
. " G? 6 (ada, 0), (C 2z, 0): 5, x; 6, x; 7, x; 8, x: a.
I .  G 4: (ay, 0): 2,2 ; 4,2 : e.
F* G 4: (<T, , 0): 2,2 ; 4,2 : b.
Q* G 2 : (£, 0): 2, 1 : a.
A' G4: (ам,0): 2,2 ; 4,2 : 6.
t/ ' G 4: (ffd6, 0): 2,3 ; 4,3 : . .
Y* G\: (<7„„,0) , (£,1): 5,3; 7,3: a.
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111 P42m D{d

(F\; GS; Kl; MS; Zl. )

.  G!£: {Si|000},{C2x|000}: 6,2; 7,2: a.
M Gi£ ® T2: {Si | 000}, {C2x\000}; t t ort2: 6,2; 7,2: a.
Z G'iJ ® T2: {Si | 000}, {Cjs | 000}; t3: 6, 2; 7, 2: a.
A G\l ® T2: {Si | 000}, {CjJOOO}; t t or t2 or t 3 : 6,2; 7,2: a.
R Gl® T2: {C2z | 000}, {C2y | 000}; t2 or t3: 5, 2: a.
A- G i ® T 2 : {C2JOOO}, {C2y|000}; t2: 5 ,2: a.

A* Gi (C2y, 0): 2,2; 4,2: b.
U* Gi (C2y, 0): 2,2; 4,2: e.
. * G* (C2z,0),(adb,0): 5 , 2 : a.
Vх Gl (C 2z,0) , (<7 J( ,,0) : 5,2 : a.
2* G i (<r ft, 0): 2,2 ; 4 ,2 : 6.
5" Gi (aa,, 0): 2,2 ; 4,2 : b.
Yx G i (C 2l, 0): 2,2 ; 4,2 : b.
T* Gi (C 2l, 0): 2,2 ; 4,2 : b.
Wx G\ (C 2z, 0): 2,2 ; 4,2 : b.

112 P32c D2

2d

(Fl ; Kl; MS; Zl. )

.  G[J : {St|000},{C2JOOi}: 6,2; 7 ,2 : a.
M G l £ ® T2: {5i|000},{Cj,|OOi}; t l O r t 2 : 6,2; 7 ,2: a.
Z GU : {St | 000}, {<7,ft | 00|} : 6,3; 7,3: a.
A G3| : {Si | 000}, {<Tdt | OOi} : 6, 3; 7, 3 : a.
R Gl ® T2: {C2z| 000}, {C2, |00i}; t 2 or t 3 : 5,2: a.
X G i ® T 2 : {C2,[000}, {C2,|00i}; t2: 5,2: a.

A' Gi (C2 y )0): 2 ,2; 4,2: b.
U' G| (C2,,0),(E,l): 5,2; 7 ,2: a.
. ' G i (C 2z, 0), (<r db,0) : 5,2 : a.
K* G5

S (C 22, 0), (<7,, b, 0) : 5,2 : a.
£* Gi (<. . ,0) : 2,2 ; 4,2 : b.
S* G i (aib, 0): 2,3 ; 4,3 : 6.
Y" G i (C 2j[, 0): 2,2 ; 4,2 : b.
T* Gl (C2x, 0), (£, 1): 5, 2; 7, 2: a.
W Gi (C2z ,0): 2,2; 4,2: b.

113 P42!m Djd

(Fl; . .7 ; M5; Zl. )

.  Gi£: {Si | 000}, {C2x|UO}: 6,2; 7,2: a.
M G32: {Si | 000}, {C2s|iiO}: 6,3; 7,3: a.
Z G ! £ ® T 2 : {S4

+
z|000},{C2x|MO}; t3: 6,2; 7,2: a.

A G32: {SJZ|000},{C2;C|HO}: 6,3; 7,3: a.
R G?6: {C2j,|^0},{C2z|000}: 5,3; 6,3; 7,3; 8,3: a.
A- G?6: {C2,|UO}, {C2Z|000}: 5,3; 6,3; 7,3; 8,3: a.

a* Gi: (C2,,0): 2,2; 4,2: b.
U* Gi: (C2y, 0): 2,2; 4,2: 6.
. * G | (C 2z,0) , (<. . ,0) : 5,2 : a.
Vх Gl (C 2z,0) , (a.,,,0) : 5, 1 : a.
I* Gi («r,», 0): 2,2 ; 4,2 : b.
S" G i (<T d »,0) : 2,2 ; 4,2 : 6.
.  G? (C 2x, 0), (. , 1): 5,3 ; 7,3 : a.
Т Gl (C2l, 0), (E, 1): 5,3 ; 7 ,3 : a.
W* G i (C 2z,0) : 2,3 ; 4,3 : è.
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114 f42 t c DU

(FI; Kl; M5; ZI. )

.  G\î, {S^ | 000}, {C2x lui}: 6, 2; 7, 2: a.
M G 3> {S4

+JOOO}, {C^liü}: 6,3; 7,3: a.
Z G32 {S4

+
z i 000}, {adb ! uî} : 6, 3 ; 7, 3 : a.

A G'° {S;z|000},{^blMï}: 6 ,1 ; 7 , 1 : 6.
A G?6 {C2,|iii}, {C2z|000}: 5, 3; 6, 3; 7, 3; 8, 3: a.
X G?6 {. 2, | ÜI}, {C2z|000}: 5, 3; 6, 3; 7, 3; 8, 3: a.

A' Gi: (C2y, 0): 2 ,2 ; 4,2: i.
I/* G^: (. 2„ 0), (E, 1): 5,2 ; 7,2 : a.
. " Gi : (C 2z, 0), (a d b ,0) : 5,2 : a.
. * Gi : (C 2z, 0), (<r d b ,0) : 5, 1 : a.
I1 Gi : (. . ,0) : 2,2 ; 4,2 : è.
5" Gi: (adb, 0) : 2 ,3; 4 ,3: 6.
.  Gi : (C 2,,0) , (£,1): 5 ,3; 7 ,3: a.
Tx Gi: (. 21, .) : 2,3 ; 4,3 : b.
Wx Gi : (C 2z, 0): 2,3 ; 4,3 : b.

115 P4m2 0^d

(FI ; Â7; M5; Zl.)

.  G!^: {S4

+

z | 000}, {C2a | 000}: 6, 2; 7, 2: a.
M  G\\ ®T 2 : {SU 000}, {C2J 000}; ^ or t 2 : 6,2 ; 7 ,2 : a.
Z G\l® T 2: {S^IOOO}, {C2JOOO}; t 3: 6,2 ; 7,2 : a.
^ G\l ® T 2: {S |̂ 000}, {C2J 000}; t t or t2 o r t 3 : 6,2 ; 7,2 : a.
R Gl (g) T 2: {C2z | 000}, {<. .  | 000}; t2 o r t 3 : 5,2 : a.
X G | ® T 2: {C2z | 000}, {<ry | 000}; t 2: 5,2 : a.

A* Gi : K, 0): 2,2 ; 4,2 : b.
u* G.1^ c<s, , <xv. ...- . 4..- , . .
. ' G^ : (. 2. , 0), . , 0): 5,2 : . .
^ . ^ (. 2. , 0), (<7,,0) : 5,2 : a.
I* G i (C 2a, 0): 2,2 ; 4,2 : b.
S* G i (C 2o, 0): 2,2 ; 4,2 : b.
Г G i (ay, 0): 2,2 ; 4,2 : b.
T* G i (<r, , 0): 2,2 ; 4,2 : b.
W* GI (C 2 z,0),( C T ) ,,0) : 5 , x : a.

116 f4c2 gjj

(Fl ; K7; M5; Zl. )

.  Gl£: {Si | 000}, {C2J 00^}: 6 ,2; 7 ,2: a.
M Gl£ ® T2: {Si | 000}, {C2J 00^}; ^ ort2 : 6 ,2 ; 7 ,2: a.
Z G.U : {Si | 000}, {a, \ 00^} : 6, 3 ; 7, 3 : a.
.  GH  : {S£ I 000}, {a, | OOi} : 6, 3 ; 7, 3 : a.
R G?6: {C2z | 000}, {a x\ OOi} : 9 ,1: b.
X G i ® T 2 : {C2z|000},{<7,|00i}; t2: 5,2: a.

A" Gi K, 0): 2 ,2; 4 ,2 : b.
Ux Gi K, 0): 2 ,3; 4 ,3 : b.
V G| (C2z, 0), (a,, 0): 5 ,2: a.
V Gi (C2z, 0), (a,, 0): 5,2: a.
Z* Gi (C2a, 0): 2 ,2; 4,2: b.
Sx Gi (C2o, 0), (E, 1): 5 ,2; 7 ,2 : a.
VI Gi (cry, 0): 2 ,2; 4,2: b.
T Gi (a,, 0): 2,3; 4,3: 6.
W Gi (C2z, 0),(ay , 0): 5,*: a.
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117 P№ Dlj

( F \ ; Kl; M5; Zl. )

.  G}*: {54

+JOOO}, {C2JMO}: 6,2 ; 7,2 : a.
M G' ' : {St I 000}, {a,  l MO}: 6,3; 7,3: . .
Z G j * < x ) T 2 : {S4

+JOOO}, {C2JMO}; t3: 6,2; 7,2 : a.
.  G 3 2 : {5 |̂ 000}, {a, | MO}: 6,3 ; 7,3 : a.
« G? 6: {ffJMO}, {C2JOOO}: 5,3 ; 6,3 ; 7,3 ; 8,3: a.
X G? 6: .  | MO}, {C2z|000}: 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

. * Gi : (a,, 0): 2,2 ; 4,2 : b.
Vх Gi : K,  0): 2,2 ; 4,2 : ft.
. * G|: (C 2z, 0), (ff,, 0) : 5,2 : a.
K* G? 6: (C 2 z,0),(<7,,0) : 9,2 : b.
I.* Gi : (C 20, 0): 2,2 ; 4,2 : b.
S* Gi : (C 2o, 0): 2,2 ; 4,2 : ft.
Y* GI: (a,, 0), (£,1): 5,3; 7,3: a.
. " Gl : (ff,, 0), (E, 1): 5,3 ; 7,3: a.
»" G? 6: (.,,0) , (C 2z, 0): 5, x; 6,x; 7, x; 8, .: : a.

118 P4n2 D\d

(FI; Kl; M5; Zl.)

Г G\t: {5i | 000}, {. 2„ | .} =  6, 2; 7, 2: a.
Af G' i : {St | 000}, {<rx | Mi} : 6, 3 ; 7, 3 : a.
Z Gl

3l : {St | 000}, {cr, | . .  : 6, 3; 7, 3 : a.
A G '*®T 2 : {5^1000}, {C2o | MÎ}; t l O r t 2 o r t 3 : 6,2; 7 ,2 : a.
R G?6: K!Mi},{C22|000}: 5,3; 6,3; 7,3; 8,3: a.
X G?6: {<.,|.} , {C2z|000}: 5,3 ; 6,3; 7,3; 8,3 : a.

. * Gi : K,  0): 2,2 ; 4,2 : ft.
U" Gl: (a,, 0): 2,3 ; 4,3 : b.
. * G|: (C 2z,0) , (S, 0): 5,2 : a.
K- G? 6: (. 2„0),(<.„0) : 9,2 : ft.
X.  Gi : (C 2a> 0): 2,2 ; 4,2 : ft.
5.  G|: (C 2a, 0),  (E, 1): 5,2 ; 7,2 : a.
Y' Gi : (., , 0),(£, 1): 5,3; 7,3: a.
T Gl: (а„ .) , (. , 1): 5,2; 7,2: a.
W* G? 6: (ff,, 0), (C 2z, 0): 5, x; 6, x; 7, x; 8, x: e.

119 ./. 2 . ^

(FI ; Kl; M5; ZL)

Г G\*6: {5^1000}, {Cj. I 000}: 6,2 ; 7,2 : a.
N Gi ® T 2: {<.,,|000}; t2: 2, 3; 4, 3: ft.
X G| ® T 2: {C2z|000}, {C2ft|000}; t3: 5,2 : a.
Z G\i ® T2: {Stl 000}, {C2JOOO}; t t o r t 2 o r t 3 : 6,2; 7,2 : a.
P G J ® T4: {S^|000}; t, o r t 2 o r t s : 2,2; 4,2 ; 6,2; 8,2 : a.

. * G| (C 2z, 0), (<r y, 0): 5,2 : a.
Vх Gl (C 2z, 0), (a,, 0): 5,2 : e.
W G i (C 2z, 0): 2,2 ; 4,2 : ft.
Z' G i («r,, 0): 2,2 ; 4,2 : ft.
F* Gi (ff,, 0): 2,2; 4,2: ft.
Q> G| (E, 0): 2,2 : a.

A* Gi (C2-, °): 2'2' 4'2: *•
[/ ' Gi (C2a, 0): 2,2 ; 4,2 : ft.
.  Gi (C 2t, 0): 2,2 ; 4,2: fe.
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120 /4c 2 O2g

(FI; Kl; M5; Zl. )

.  G|t : {S4z| 000}, {C2J 2-^0}: 6,2 ; 7,2 : a.
N G f : K | MO}, {E |000}: 5, 1; 7, 1: a.
X G i ® T 2 : {C2z|000}, {C2 b IMO} ; t3: 5,2 : a.
Z Gi t ® T 2: {SJZ |000},{C2JUO}; t, o r t 2 o r t 3 : 6,2 ; 7,2 : a.
/ > G j ® T4: {S4

+

z | 000}; t! or t2 or t 3 : 2, 3; 4, 3; 6, 3; 8, 3: a.

. * G|: (. 2. , 0), (<.„ , 0): 5,2 : a.
F« Gl : (. 2. , 0),(<7 „ 0): 5,2 : a.
tt " G 4: (C 2z, 0): 2,2 ; 4,2 : 6.
I .  G 4: (CTj.,0) : 2,2 ; 4,2 : b.
Fx G 4: (ff,,0) : 2,2 ; 4,2 : b.
Q* G 2: (£,0): 2,1: a.
. 1 G 4: (C 2o,0) : 2,2 ; 4,2 : b.
U* G 4: (C 2o,0) : 2,2 ; 4,2 : b.
Y* G 4: (C 2b,0) : 2,2 ; 4,2 : b.

121 /42 m  D\\

(F\; Kl; M5; Zl.)

.  G i t : {S^JOOO}, {C2JOOO}: 6,2 ; 7 ,2 : a.
N G 4 ® T 2: {C2J, | 000}; t 2: 2, 3; 4, 3: 6.
* GÜ ®T 2 : {C2z |000},{<rdb |000} ; t3: 5 ,2: a.
Z Git ® T2: {S'il 000}, {C 2 x j 000}; t, or t2 ort3 : 6,2; 7 ,2 : a.
P Git ® T4: {S4

+
z I 000}, {C2J 000}; t 1 o r t 2 o r t 3 : 6,x; l,x: a.

\* G|: (C2z, 0), (<7db, 0): 5, 2: a.
V Gl: (C2z,0), (adl,,0): 5 ,2 : a.
W G|: (C2z,0), (a,„,0): 5 ,x: a.
Z1 G4 : (C2I ,0): 2 ,2; 4,2: b.
F" G4: (C2l,0): 2,2; 4,2: b.
Q" G 4 : (C2,,0): 2, x; 4, x: . .
. .  Gi : (aib, 0): 2,2 ; 4,2 : b.
U* G 4 : (<7 Jb, 0): 2,2 ; 4,2 : b.
Y* G 4 : (ada, 0) : 2 ,2 ; 4,2 : o.

122 Kid D\l

(C2 ; Fl ; ^7; M5; SI ; 57; Zl. )

.  Git : {S4+ z | 000}, {C2x | Hi}: 6, 2; 7, 2: a.

. 1 G ' ® T 2 : {. 2 . |.} ; t 2: 2,3 ; 4,3 : è.
^ G» 6 : {<7 JblHï}, {CiJOOO}: 5,3; 6,3; 7 ,3; 8 ,3: a.
Z G3 2 : {St | 000}, bJHi}: 6,3 ; 7,3: a.
/> G;>4: {S4+ | 000}, {<T,J . } : 13, x; 14, jc; 15, x; 16, x; 20, x: a.

. ' Gi : (С2г,0),(ам,0): 5 , 2 : a.
Vх G? 6: (C 2z,0) , (adb,0): 9 , 2 : b.
W* G? 6: (a.,,, , 0), (C 2z, 0) : 5, .: ; 6, x; 7, x; 8, x: a.
£x G4 : (C2l, 0): 2 ,2 ; 4 ,2: b.
Fx G\: (C2x, 0), (£, 1): 5 ,2 ; 7 ,2 : a.
Q* Gif,: (C2y,0), (£, 0): 10, x; 14, x: . .
A' Gi : (<r ib, 0): 2,2 ; 4,2 : 6.
U* G 4: (a,, , 0 ) :2 , 3; 4,3 : b.
Y* G\: (ada, 0), (£, 1): 5,3; 7,3: a.
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123 РЛ/ттт O4I,

(Fl ; Kl; M5; O2; Zl. )

.  G4

32: {Ĉ  1000}, {C2l|000}, {/1 000}: 6,2; 7,2 ; 13,2 ; 14,2: a.
M Gl2 ® T 2: {Ci| 000}, {C2;( | 000}, { /1 000}; t j ort 2 : 6,2 ; 7,2 ; 13,2 ; 14,2: a.
Z G9

32 ® T 2: {Ci| 000}, {C2.J 000}, {/1 000}; t3: 6,2 ; 7,2 ; 13,2; 14,2 : a.
A Gl2 ® T 2: {Ci| 000}, {C2J 000}, {/| 000} ; t ,o r t 2 or t 3 : 6,2; 7,2; 13,2; 14,2: a
R G ' ' ® T 2 : {C2 z |000},{C2 yiOOO},{/ |000}; t 2 or t 3 : 5,2 ; 10,2 : c.
X G}1 ® T 2: {C2z | 000}, {C2, | 000}, {/  | 000}; t 2: 5, 2; 10, 2: c.

A* Gl (C2,, 0), (ax, 0): 5,2 : a.
Ux Gl (C2y, 0),(ax, 0): 5,2 : a.
. * G}£: (C4

+
z, 0), (<ry, 0): 6, 2; 7, 2: a.

V GiJ: (Ci, 0),(<. . , 0): 6, 2; 7,2 : a.
I* G| (C 2e, 0), (az, 0): 5,2 : a.
•S * G^ (C 2a,0) , (ffz, 0): 5, 2: a.
Y* Gl (C 2X, 0),(a z ,0) : 5,2 : a.
T* Gl (C 2l, 0), ((T Z, 0): 5,2 : a.
. " Gl (C2z, 0), («. „ 0): 5,2: a.

124 f4/wc c . ^

(Fl ; A"7; M5; O2; Zl. )

.  GL : {Ci | 000}, {C2,|000},{/|00^}: 6,2 ; 7,2 ; 13,2 ; 14,2 : a.
M Gl2 ® T2: {Ci| 000}, {C2x|000}, {/1 00^} ; t, ort 2: 6,2 ; 7,2 ; 13,2; 14,2 : a.
Z GM'. { / I OOi}, {.. .  | OOi}, {Ci I 000}: 19, 3; 20, 3; 21, 3; 22, 3: a.
A G^ : {/|00i},{<7d t |00i}, {Ci | 000}: 19,3; 20,3 ; 21,3 ; 22,3: a.
R G 3 2: { f f JOOi} ,KI OOi}, {/|00i}: 13,3; 14,3: a.
X G ! J ® T 2 : {C2z |000}, {C2),|000},{/|00i}; t 2: 5,2 ; 10,2: c.

. -  G|: (C2r, 0), («rx. 0): 5,2 : a.
I7X G? 6: (<. . , 0), (C 2,,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
. 1 Gi£: (Ci,0), (a,,0): 6,2; 7 ,2 : a.
V G\*: (Ci, 0), (<7,, 0): 6 ,2; 7,2: a.
E* Gf: (C2a, 0 ) , ( < T Z , 0 ) : 5, 2: a.
S* GS

16: (<rz, 0), (C2e, 0): 5,3; 6,3; 7,3; 8,3: a.
Y* G|: (C2f, 0), (<72, 0): 5 ,2: a.
T' GS

16: (a,,0),(C2x,Q): 5, 3; 6,3; 7,3; 8,3: a.
W* Gl: (C2z,0),(CT),,0): 5,2: a.

125 P4/nem .| „

(Fl ; Kl; MS ; O2; Zl. )

.  G\2: {CilllO}, {C2jt|000}, {/|ijO}: 6,2; 7,2; 13,2; 14,2: a.
M G 2

64: {Ci | HO}, {a, | ̂ 0}, {C2x | 000}: 19, 2: a.
Z G^®T 2 : {CiliiO}, {C2JOOO}, {/ l i iO}; t3: 6, 2; 7, 2; 13,2 ; 14, 2: a.
A GJU : {Ci|liO},{(TjMO},{C2JOOO}: 19,2 : a.
R Gl2: K l MO}, K I MO}, { / l i iO}: 13, 3; 14,3: a.
. .  G] 2: {<Tji|0}, {.rJiiO}, {/ |MO}: 13,3 ; 14,3: a.

. * Gl : (C 2,, 0), (at, 0): 5,2 : a.
U* Gl : (C2,, 0), fo, 0): 5,2 : a.
. ' G!*: (Ci,0) , («., , 0): 6,2 ; 7, 2: a.
. ' G 3 i: (Ci. 0), (<. . , 0): 6,2 ; 7,2 : a.
£* Gl: (C2o, 0), (<rz, 0): 5 ,2: a.
5" Gl: (C2e, 0), (a,, 0): 5, 2: a.
Y' G\6: (ay,0), (C2x, 0): 5,3; 6,3; 7 ,3 ; 8,3: a.
T G\6: (a,,0), (C2l, 0): 5,3; 6,3; 7,3; 8,3: a.
W* G16: (ay, 0), (C2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
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126 P4/nnc Dl„

(Fl ; ..7 ; MS; O2; Zl. )

.  CL {. £|..},{. 2,|000},{/|.} : 6;2; 7;2 ; ) 3 j 2 ; 1 4 ; 2 : a

M G> 4 {C4+ z | i|0}, .  I .) , {C2, I 000} : 19, 2: a.
Z G' 4 {/|Mï}, ..,|00|} , {C4

+

Z |MO}: 19, 3; 20, 3; 21,3 ; 22, 3: a.
Л G*4 {C4+ z | ÜO}, {a,, | OOi}, {C2b I MO}: 19, 2: a.
R G7

32 .|.},{^1.},{/1.} : 13,3; 14,3: e.
* G^ 2 {^\m,{^\m,{i\m-13,3 ; .,. : ö.
A* G|: (C2y> 0), (<7X, 0): 5 ,2: a.
£/' Gf6 (.. 2, 0), (C2y, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
. * Gi t (C4

+

z, 0), (s,  0): 6,2 ; 7,2 : a.
K* GU (Ci, 0), («r,, 0): 6,2 ; 7,2 : a.
£* G|: (CZu, 0), (<rz, 0): 5,2: a.
S" G?6 (o-2, 0), (C2e, 0): 5, 3; 6, 3; 7, 3; g, 3: a.
. * G? 6 (o-,,0) , (. 21, .) : 5, 3; 6, 3; 7, 3; 8, 3: a.
T* G*6 (C2,,0),(a,,0): 9,2 : b.
W G*6 (<.„0),(. 2. , 0): 5,3 ; 6,3 ; 7,3 ; 8,3: a.

127 P4/mbm O4ft

(Fl ; .4 ; Kl; MS; O2; Zl. )

Г G^ 2: {C^IÜO}, {C2;e|iiO}, {/|000}: 6,2; 7 ,2; 13,2; 14,2: a.
M GJ4: {C4

+
z|iiO},{C2,|MO},{/|000}: 6,3; 7,3; 20,3; 21,3: a.

Z G1 2 ®T 2 : {CJiiO}, {. 2,|..} , {/1000}; t 3: 6,2; 7,2; 13,2; 14,2 : a.
A G£4: {C^liiO}, {C2x|iiO}, {/I 000}: 6,3; 7,3; 20,3; 21,3: a.
A G]2: {<rx|iiO}, {C2z|000}, {/|000}: 13,3; 14,3: a.
* G^2: {(7,1^0}, {C2l | 000}, {/1000}: 13,3; 14,3: a.

. * G|: (C2„ 0), (a,, 0) : 5,2: a.
U" Gi : (C 2„, 0), (.-, , 0) : 5,2 : a.
. * Git : (C4

+

z, 0), (<. „ 0): 6,2 ; 7,2 : a.
. * G 32: (Ci, 0), (а„ 0): 6, 3; 7, 3: . .
I* G|: (. 2. , 0), (.-, , 0): 5,2: a.
5' Gi : (. 2„,0) , (<7 . , 0): 5,2 : a.
Y' G? 6: (er z, 0), (C 2x, 0): 9,1: b.
Г G? 6: (<7Z, 0),(C 2„ 0): 9, 1: b.
W* G? 6: (o-, , 0), (C 2z, 0): 5,3; 6,3; 7, 3; 8,3 : a.
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128 P4/mnc D6

4h

( F l ; Kl; MS; O2; Zl.)

.  Gl2 {CilHO},{C2 x | i40}, {/|00i}: 6,2 ; 7,2 ; 13,2 ; 14,2 : a.
M G*M {CilHO},{C2 j elHO}, {/|00e}: 6,3; 7,3; 20,3; 21,3 : a.
Z G1

M {/|OOi},H„,|OOi} , {CiliiO}: 19, 3; 20, 3; 21,3 ; 22, 3: a.
A G1

M { / I OOi}, {adb | OOi}, {Si | Ш}- 19, 3; 20, 3; 21, 3; 22, 3: a.
К G\\ {C2 v|UO}, {C2z|000}, {/|00i}: 5,3 ; 6,3 ; 7,3 ; 8,3 ; 15,3 ; 16,3; 17,3 ; 18,3: a.
X Gl2 ...} , {C2 z |000},{/|00i}: 13, 3; 14, 3: a.

A* G\: (C 2y, 0), (<r x, 0) : 5,2 : a.
U* G? 6 (tr z> 0), (. 2)„ .) : 5, 3; 6, 3; 7, 3; 8, 3: a.
. * Gl£ (CiZ, 0), (ay, 0): 6, 2; 7, 2: a.
K* GU (Ci, 0), (^,0): 6,3; 7,3: a.
Zs G|: (C2 j ,0) ,(a z , 0) : 5 ,2: a.
Sx G?6 (CTZ, 0), (C2a, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Y* Git, (а„ 0), (C2x, 0): 9, 1: 6.
. * Gl J (. 21, 0), (.., „ 0), (E, 1): 6, 3; 7, 3; 8, 3; 9, 3: Ь.
W* G? 6: (.-„ , 0), (C 2z, 0) : 5 ,3 ; 6,3 ; 7,3 ; 8,3 : а.

129 P4/nmm Dlh

(Fl ; A'7; M5; O2; ZI. )

.  G^ 2: {C^IOOO}, {C2,\tiQ},{I\ÜQ}: 6,2; 7 ,2; 13,2; 14,2: a.
M G2

64: {Ci | 000}, {C^Üi-OJ.j^lOOO}: 19,2: a.
Z G^2 ® T2: {C4

+
z|000},{C2;t|iiO},{/|MO}; t3: 6,2; 7 ,2; 13,2; 14,2: a.

A G2
M: {CXZ|000}, {C2l|iiO},K l 000} : 19,2: a.

R Gl2: {C2JMO}, {C 2 X |MO},{/IÜO}: 13,3; 14,3: a.
X G12: {C2,|HO}, {C2XIÜO}, {/ l HO}: 13,3; 14,3: a.

. * Gl : (C 2„0) , (a„ 0): 5,2 : a.
U' Gl: (C2f, 0), K, 0): 5,2 : . .
. .  G}J: (Ci, 0), (ay, 0): 6, 2; 7, 2: a.
. * Gî t : (Ci, 0), (<. „ 0): 6,3 ; 7 ,3 : a.
I* G|: (C 2o, 0), (<r z, 0): 5,2 : a.
S* Gl (Cla, 0), (<. . , .) : 5,2 : a.
F* G? 6: (C 2;[, 0), (a,, 0): 5,3; 6,3 ; 7,3 ; 8,3 : a.
7" Gf 6 : (C2x, 0), (a,, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
. " Gl : (. 2. , 0), (o- y,0) : 5, 1 : a.



524 TH E DOUBLE-VALUE D REPRESENTATION S OF

130 P4/ncc Dl„

(. ; Kl; M5; 02; ZI. )

.  G9

32 {. £ I 000}, {C2x I i|0}, {/lui}: 6, 2; 7, 2; 13, 2; 14, 2: a.
M Gj<4 {C4

+
z|000}, {C2x|UO}, .  OOi}: 19,2: a.

2 G' 4 {/lui}, KiJOOi}, {C4

+

z|000}: 19, 3; 20,3; 21,3 ; 22, 3: a.
A G' 4 {C4

+

z | 000},  {<rdb | OOi}, {/  | ui} : 19, 1 : a.
« GL {C2x | MO}, {a, I OOi}, {/  | iii} : 9, 1 ; 10,  1 : b.
X G12 {C2r | ÜO}, {C2x | ÜO}, {/ | Hi} : 13,3; 14, 3 : a.

A' G|: (C2j?, 0), (.. . , 0): 5,2 : a.
U" G? 6 (CT Z, 0), (. 2„, .) : 5, 3; 6, 3; 7, 3; 8, 3: a.
A' G!* (C4

+

z, 0), (a,, 0): 6,2 ; 7,2 : a.
V* G\l (C4

+

2, 0),( S, 0): 6,3; 7,3 : a.
I* Gi : (C 2o, 0), (<r z, 0): 5,2 : a.
S' G? 6 (a,, 0), (C 2a, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
I" G? 6 (C 2l, 0), (ff,,0) : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
. * G? 6 (<r,,0),( CTz , 0): 9 , 1 =  6-
W GI : (C22, 0), (<r„ 0) : 5, 1 : a.

131 P42/mm c P4>

(fl; Kl; MS; O2; S8J; Zl. )

.  Gl2: {Ci|OOi},{C2, |000}, {/1000}: 6,2 ; 7,2 ; 13,2; 14,2: a.
M Gg

32 ®T 2 : {C^l OOi}, {C2x| 000}, {/1 000}; tt ort 2 : 6,2 ; 7,2 ; 13,2 ; 14,2: a.
Z Gi 4: {C4

+

21 OOi}, b, | 00*}, {C2b \ 00}}: 19, 2: a.
.  Gi, : {Cil OOi}, . .  I 00i}, {. 2.  OOi}: 19,2: a.
R G{1

6 ®T 2 : {C2z | 000}, {C2, | 000}, {/[000}; t 2 or t 3 : 5,2; 10,2: c.
A- G U ® T 2 : {C2z| 000}, {C2j, |000}, {/|000} ; t 2: 5,2 ; 10,2: c.

. * Gi : (C 2,,0),(ffx , 0): 5,2 : a.
t/ ' GI : (C 2>, 0), (.. „ .) : 5,2 : a.
A* G!*: (C4

+

z, 0), (<. „ .) : 6,2; 7,2 : a.
F' GlJ : (C4

+

2, 0), (er, , 0): 6,2; 7, 2: a.
Z* Gl : (C 2o, 0), (<r z, 0): 5,2 : a.
S" G? 6: (C 2o, 0), (.. 2, 0) : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
î" Gi: (C2l, 0), (ffz ) 0): 5, 2: a.
. * Gl : (C 2x, 0), (az, 0): 5,2 : a.
W G|: (C 2z, 0),(^ , 0): 5,2 : a.

J The tables given by Slater (1965b) for P4 2/mn m (Z) 4J) in fact apply to P42/mmc (Dlh) (see Gay, Albers, and
Arlinghau s (1968)).
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132 P42/mcm />j g

(. ; Kl; M5; 02; Zl. )

.  GL : {Ĉ  OOi}, {. 2, | 000}, { / I OOi}: 6,2; 7,2 ; 13,2; 14,2: a.
M G f 2 ® T 2 : {CilOOj}, {C2x\000}, {/|00|}; t , o r t 2 : 6,2 ; 7,2 ; 13,2; 14,2: a.
Z G? 4: {Ci1 OOi}, .  I OOi}, {C2, I 000} : 19, 2: a.
A G|4: {CilOOi}, KlOOi}, {C2JJOOO}: 19,2 : a.
A GL : {af | OOi}, {<. . | OOi}, U I OOi} : 13,3; 14, 3 : a.
X G ' ' ® T 2 : {C2z|000}, {C2y |000}, {/1 OOi}; t 2: 5,2 ; 10,2: c.

A' Gl : (C 2 y lO) , (<r,,0) : 5,2 : a.
17* G? 6: (.. . , 0),(C 2y, 0): 5,3 ; 6,3 ; 7,3 ; 8,3: a.
V Gît: (C^, 0), (а„ 0): 6, 2; 7, 2: a.
.  Gi£: (. ., 0),(<. „ 0): 6,2 ; 7,2 : a.
S' G|: (C 2o,0) , (<7 ., .) : 5,2 : a.
S1 G? 6: (. . , 0), (C 2o, 0): 9, 2:*.
.  G|: (C2ï)0), (ff.,0): 5,2: a.
. * Gf 6 : (CT Z, 0), (C2x, 0) : 5,3 ; 6,3; 7,3 ; 8,3 : a.
W* Gl (C2f, 0), (<7,,0) : 5,2 : a.

133 P4 2/nfe c O^

(. ; A"7; M5; O2; Zl. )

.  GL {Ci | Mi}, {C2J 000}, {/liiO}: 6,2; 7,2 ; 13,2; 14,2: a.
M G2

M {Ci ! iu}, {a, | iiO}, {C,, | 000} : 19, 2: a.
Z GL {Ci | iu},  {adb \ OOi}, {C2 41 ui}: 19, 2: a.
A G1

64 {/i i iO}, KliiO},{Ciliii}: 19,3; 20,3; 21,3 ; 22,3 : a.
« GL {<rJiiO}, .  IiiO}, {/IÜO}: 13,3; 14,3: a.
X GL ...} , Kli iOU/UiO} : 13,3 ; 14,3: a.

A* G|: (C2f, 0), (CT, , 0): 5,2 : a.
U" G|: (C2,, 0), («7,, 0): 5,2: a.
A* G 1,*: (Ci, 0), (a,, 0): 6,2; 7,2: a.
K* GJ 2 : (Ci, 0), (<T X, 0): 6, 2; 7, 2: a.
S' G|: (C2a, 0),((j z,0) : 5,2 : a.
S1 G? 6: (C 2o, O),(CT Z , 0): 5,3; 6,3 ; 7,3 ; 8,3 : a.
.  G? 6: ((., , 0),(. 2„ .) : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
. * Gf 6 : (a,, 0), (C 2l, 0): 5,3; 6,3; 7,3 ; 8,3 : a.
W* Gf 6: (a,, 0),(C 2z, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.

525
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134 P42/nnm D£

(F\; Kl; M S ; 02; Zl.)

.  G? 2: {с;г\Ш}, {C2JOOO},{/|MÎ}: 6,2; 7,2; 13,2; 14,2: a.
M GL: {Ci | .} ,  {a* I HÎ}, {C2x I 000} : 19, 2: a.
Z G2

M: {.^.. , KlbHMC^IOOO} : 19,2: a.
.  Gs 2 ® T 2: {C£| .. , {C2JOOO}, { / I Ma}; t, o r t 2 o r t 3 : 6,2 ; 7,2 ; 13,2; 14,2: a.
R GJ 2 : .  I iM}, .  .}} , {/UM} : 13,3 ; 14,3 : a.
X Gl2: .  I Hi}, {*,  I Hi}, { / I Hi}: 13,3 ; 14,3 : a.

. * G|: (C 2y, 0), (<. „ .) : 5,2 : a.
Ux G? 6 (a,, 0), (C 2)1, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
A1 Gl£ (Ct, 0), (a,, 0): 6,2; 7, 2: a.
l7* GÜ (C4

+
z, 0), K, 0): 6, 2; 7, 2: a.

I1 G|: (C2a, 0), ((jz, 0) : 5, 2: a.
5' G?6 (aa,, 0),(C2e, 0): 9,2: 6.
. " G? 6 (a,, 0), (. 2„ 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Tx G\b (C 2l>0), (<7 2,0) : 9,2 : 6.
»" GÏ6 (<7,, 0), (C2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

135 P42/m6c P^

(FI; X7; ./5 ; .2 ; Zl. )

.  G? 2 {Ci | .. , {C2J HO}, {/1000}: 6,2 ; 7,2 ; 13,2 ; 14,2 : a.
M G4

M {.: 2|.} , {. 2,1..} , {/|000}: 6, 3; 7,3; 20, 3; 21,3 : a.
Z GL {Cl I .} , {adk I 00}}, {C261 OOi} : 19, 2: a.
A G5

M {C4

+

2 ! iM}, {adb | OOi}, {/  | 000} : 19, 1 : a.
R G12 KliîO}, {C2z|000}, {/|000}: 13, 3; 14, 3: a.
X .. 2 KlïiO}, {C2z| 000}, {/I 000}: 13, 3; 14, 3: a.

. * GJ : (C 2y, 0), ((7X, 0): 5,2 : a.
C/ 1 G|: (C 2),, 0), (<7„ .) : 5,2 : a.
. 1 G^ : (C 4

+

z,0) , (<r y, 0): 6,2 ; 7 ,2 : a.
K" GÜ: (C4

+
z, 0), (ax, 0): 6, 3; 7, 3: a.

Z* G|: (C2e,0), (<7„ 0): 5, 2: a.
5* G?6: (C2a, 0), (.. 2, 0): 5 ,3 ; 6,3 ; 7,3 ; 8,3 : a.
K* G? 6: (<r z, 0), (. 2„ 0): 9, 1: b.
T' G? 6: (az, 0), (. 2„ 0) : 9, 1: 6.
»" G? 6: (o-, , 0), (C 2z, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
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136 P42/mnm D\l

(D2; Fl; G3 ; Kl; MS; Ol; O2; 58J; Zl. )

.  G? 2 {C4

+

z | Ml}, {., , M0},{/|00i}: 6,2 ; 7,2 ; 13,2 ; 14,2 : 0.
M  G4

M {C;z | Mi}- {Q,  I IT«}, {/! OOi}: 6, 3; 7, 3; 20, 3; 21, 3: a.
Z CL {Ci | .. , .  ! . .  {C2, I WO}: 19, 2: a.
.  G*4 {CLim, {C.jM-ObKliM} : 19,2 : . .
.  Gàî {C2),| MO}, {C2z|000}, { / I OOi}: 5,3; 6,3; 7 ,3; 8 ,3; 15,3; 16,3; 17,3; 18,3: . .
X G}2 .  | Ml}, {C2 z |000},{/|00i}: 13,3; 14,3 : a.

. * G|: (C 2y> 0), K, 0): 5, 2: a.
I/ 1 Gf 6 (<r z,0) , (. 2„, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
\" G\l (C 4

+

2,0) , (or, , 0): 6,2 ; 7,2 : a.
F x G^ 2 (C z, 0),^ , 0): 6, 3; 7, 3: a.
I.* G|: (C2., 0), (<r z > 0) : 5, 2: a.
S* G?6 (^i,,0),(C2a,0): 9,2: 6.
. " G? 6 (.. . > 0), (. 2„ 0) : 9 1 : ft.
T" G\1

6 (C2l, 0), (<r z, 0), .. , .) : 6, 3; 7, 3; 8, 3; 9, 3: ft.
. " G? 6 (<7 y, 0), (C 2z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

137 P42/nmc D^

(Fl ; ..7 ; M5; O2; Zl. )

.  Gb {. 4

+

2 | . . . ,{. 2 1 | . .},{.. .} : 6,2 ; 7,2 ; 13,2 ; 14,2 : a.
Af GL {Q+z I 00|}, {C2,  | MO}, {a, \ 000} : 19, 2: a.
Z G2

M {Ct | OOi}, {adb | ... , {. 2.  | .} : 19, 2: a.
^4 G,U {/ lMO},{<T d i , |OOi}, {SilMî}: 19,3; 20,3; 21 ,3 ; 22,3: a.
« GJ2 {C2y|MO}, {C2JMO},{/IMO}: 13,3; 14,3: a.
A- GL {C2y|MO}, {C2JMO}, {/|HO}: 13,3; 14,3: a.

Д' Gjj: (C2y, 0), K, 0): 5,2: a.
{/' G|: (C2y, 0),K, 0): 5,2: a.
A' G]*: (Ci,0), (<r,, 0): 6,2 ; 7 ,2: a.
Г G|*: (C4

+

z,0), (a,, 0): 6,3; 7,3: a.
I1 G|: (C 2„,0) , (ff„0) : 5,2 : a.
5* G? 6: (C 2„, 0), (o- z, 0): 5,3; 6,3 ; 7,3 ; 8,3 : a.
Y' G? 6: (C 2l, 0), (<7 2, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
T* G8

I6: (C2x,0), (a,, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
W GI: (C2z, 0), (<т„0): 5, 1 : a.

Î The tables given by Slater (1965e) for P42/mnm (D^) do not in fact apply to this space group but to P42/mmc
(O4ft) (see Gay, Albers, and Arlinghaus (1968)).
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138 P42/ncm D\l

(f\; Kl; MS; O2; Zl. )

.  G§ 2 {C+ | OOi}, {C2x | MO}, {/  | Mi} : 6, 2; 7, 2; 13, 2; 14, 2: a.
M Gi 4 {C4

+

z | OOi}, {. 2, | ..} , .  I OOi}: 19, 2: a.
Z G2

64 {C4

+

z1 OOi}, {̂  I OOi}, {C2x | MO}: 19, 2: a.
.  G*4 {C4

+

z|OOi}, {C2 , |MO},{'liM}: 6,3 ; 7,3 ; 20,3; 21,3 : a.
R GL {C2,|MO}, {a, | 00|}, { / I Mi}: 9, 1;10, 1: b.
X Gl2 {C2 y|MO}, {C2;c |iiO}, {/|Mi}: 13,3; 14,3 : a.

. * G|: (C 2,,0),(^,0) : 5,2 : a.
C/ x G? 6 (cr z, 0), (C 2),,0) : 5, 3; 6, 3; 7, 3; 8, 3: a.
. * Gl* (C 4

+

z,0) , (<7 y, 0): 6,2; 7,2 : a.
K* Gi 4. (. £, 0), (ay, 0): 6,3; 7,3: a.
T.* G|: (C2a, 0), (CTZ, 0) : 5,2: a.
5' G?6 (adb, 0),(C2o, 0): 9,2: *.
F1 G?6 (C2j, 0), (.. 2, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
T' G? 6 (ff„0) , K, 0): 9 ,1 : 6.
W G|: (C 2z, 0), (ay, 0) : 5, 1 : a.

139 I4/mmm РЦ

(F\; Kl; MS; S5; V\; Zl. )

.  G1 2: {Ĉ  | 000}, {C2x | 000}, {/ | 000}: 6,2 ; 7,2 ; 13,2; 14,2: a.
N G2

S ®T 2 : {C2JOOO}, {/|000}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
X G ^ ® T 2 : {C2z|000}, {C2JOOO}, {/|000}; t 3: 5,2 ; 10,2: c.
Z G12 ® T 2: {C4

+

z|000}, {C2JOOO}, {/|000}; t l O r t 2 o r t 3 : 6,2 ; 7,2 ; 13,2; 14,2: a.
P G\l ® T4: {S4

+

z i 000}, {C2x\ 000}; t, or t2 or t 3 : 6, 2; 7, 2: a.

. * GlJ : (C4

+

z, 0), (<7„ 0); 6, 2; 7, 2: . .
F* GSJ : (C4

+

z, 0),( S, 0): 6,2 ; 7,2 : a.
W Gl (C 2z, 0), (a, b,0) : 5,2 : a.
I* Gi (C 2l>0), (<i z, 0): 5, 2: a.
F" Gl (C2x,0), (at, 0): 5,2 : a.
Q* G 4 (C 2,,0) : 2,3 ; 4,3: b.
A* G^ (C 2o, 0), (CT Z, 0): 5,2 : a.
Ux Gl (C2a, 0), (az, 0): 5,2 : a.
.  G|: (C 2b, 0),(<7, a,0) : 5,2 : a.

140 I4/mcm O4>

8

(FI ; G2 ; ..7 ; MS; SS; VI; Zl. )

.  GlV {Ci I MO}, {C2x I 000}, {/1 MO} : 6,2 ; 7,2 ; 13,2; 14,2: a.
tf G' ° : {a, | MO}, {£ I 010}, {/1 MO} : 9, 1. a.
X G { ' ® T 2 : {C2z|000}, {C2JMO}, {/IMO}; t3: 5, 2; 10, 2: c.
Z G1 2 ®T 2 : {Ct MO}, {C2x| 000}, {/|MO}; t! o r t 2 o r t 3 : 6, 2; 7, 2; 13,2; 14, 2: a.
P G J * ® T 4 : {5̂  | 000}, {C2x | 000}; t l O r t 2 o r t 3 : 6,3; 7,3: a.

. « G!*: (C^, 0), (<7„ .) : 6,2 ; 7,2 : a.
K* Gi*: (Ci, 0), (a,, 0): 6,2 ; 7,2 : a.
. " G | (C 2z, 0),((. . ,0) : 5,2 : . .
I' GÜ (C2I, 0), (<jz, 0): 5 ,2: a.
Fx G| (C2l, 0), (CTZ, 0): 5,2: a.
ö" G' (C2„0): 2 ,1 ; 4 ,1: b.
&* GI (C2o, 0), („„ 0): 5 ,2: a.
t/' Gl (. 2. ,0) , (<. 7, 0): 5,2 : a.
. * G| (C 2b, 0),(<7, a, 0): 5, 2: . .
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141 I4Jamd РЦ

(C3 ; Fl; Kl; M2; M4; M5; O3; S5; S13; V\; Zl. )

.  G12 {Ci | 0^0}, {C^IUO}, { / I MO}: 6,2 ; 7,2 ; 13,2 ; 14,2: a.

. .  G i ® T 2 : {. 2„| . .},{/! . .} ; t 2: 2,3 ; 4,3 ; 6,3; 8,3 : b.
X G 7

32 {^JOOi}, bJOiO}, {/|. .} : 13,3; 14,3 : a.
Z G2

M {Ci | 0|0}, {a,,,1 OOi}, {C2b I №}: 19, 2: a.
P G;U {Si | .} , {CT<«, I 10^}: 9, 3; 10,3 ; 11,3 ; 12,3; 19, 2: ft.

. 1 G!£ (Ci, 0), (a,, 0): 6,2; 7 ,2: a.
^* G?2 (Ci, 0), (ff,, 0), (E, 1): 13, 2; 14, 2: ft.
»" G?6 (C2z, 0),(CTdb , 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Z* G|: (C2x, 0), (a,, 0): 5,2: a.
F' Gl: ( C 2 I , 0 ) , ( < J 2 , 0): 5,2: a.
Q' Gl (C2y, 0), (E, 1): 5,3; 7,3: a.
. * Gl : (. 2„, .) , (...,0) : 5,2 : a.
J/ x G? 6: (C 2e, 0), (<r z, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
5" G? 6: (. 2. , .) , (a,., 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

142 /4!/flcr f fl|g

(Fl ; Kl; M5; S5; Kl; Zl. )

.  G§ 2 {C4

+

z||00}, {C2JM-0}, {/(000}: 6,2 ; 7,2 ; 13,2; 14,2: a.
. .  Gi g {C2>. ! .. , {£ | 010}, {/ | 000} : 10, 1 : ft.
X Gl2 {<rJiO|}, {<TdJOiO}, {/|000}: 13, 3; 14, 3: a.
Z GL {С:г I iOO}, {ffdb | OOi}, {C2b | OOi} : 19, 2: a.
^ Gl 4 .lMi} , K„|10i}: 9, 3; 10, 3; 11 ,3 ; 12, 3; 19, 1: ft.

. 1 Gl£ (Ci, 0), (a,, 0): 6, 2; 7, 2: a.
K* Gf2 (Cz, 0), (ax, 0), (£, 1): 13, 2; 14, 2: 6.
. " Gf 6 (C 2z, 0),(o-*, , 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Z* G|: (C 2J, 0), (CT Z, 0): 5,2 : a.
F* G^ : (. 2. , .) , (CT Z, 0): 5,2 : a.
6* G|: (C 2j) 0), (E, 1): 5, 1 ; 7, 1 : a.
A' GjS : (C 2o,0) , ( f f z , 0 ) : 5,2 : a.
V G? 6: (C 2e> 0), (a,, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
.  Gf 6 : (C 2b, 0), (a,,, , 0): 5, 3; 6, 3; 7, 3; 8, 3: a.

143 P3 C\

(Fl ; K6; Kl; M5; Zl. )

.  G^ : {CJ | 000}: 2,3; 4, 1 ; 6,3 : a.
Af G j ®T 2 : {£ |000}; t2: 2, 1 : a.
^ Gl ® T2: {CJ | 000}; t3: 2,3; 4, 1; 6,3: a.
L G2 ®T 2 : {£ |000}; I 2 or t 3 : 2, 1: a.
£ G^ ® T3: {C3

+ | 000}; t, or t 2 : 2, x; 4,x; 6,x: a.
H G^ ® T3 ®T 2 : {C3

+ I 000}; t, or t 2 ; t3: 2, x; 4, x; 6, x: a.

A* G1
6: ( C j - , 0 ) : 2,x; 4,x; 6,x: a.

U* G2: (£, 0): 2,x: a.
P" G1

6: (C3
+,0): 2,x; 4,x; 6,x: a.

T' G2 : (E, 0): 2,x: a.
Sx G2 : (£, 0): 2,x: a.
T'x G2: (E, 0): 2,x: a.
S'x G2: (£, 0): 2, x: a.
57 G2 : (£, 0): 2, x: a.
Rx G2: (£, 0): 2, x: a.

529
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144 P3i C\

(F\; Kb; Kl; MS; Zl. )

.  G^ : {C3

+ |00j}: 2,3 ; 4,1 ; 6,3 : a.
M G l ® T 2: {£|000}; t2: 2, 1 : a.
A Gl ® T2: {CJ | OOf}; t3: 2,3; 4, 1; 6,3: a.
L Gl ® T2 : {£ | 000} ; t2 or t3 : 2, 1 : a.
# Gè ® T3: {CJ ]00i}; t j ort2 : 2, x; 4, x; 6,x: a.
H Gè ® T3 ® T2: {CJ | OOf}; ^ or t 2 ; t3: 2, x; 4, x; 6,x: a.

. * G£: (C3
+, 0): 2, x; 4, x; 6,x: a.

Vх Gl : (£, 0): 2, x: a.
/>* Gl: (C3

+ ,0): 2, x; 4 ,x; 6, x: a.
T* G2 : (E, 0): 2, x: a.
S* G2: (£, 0): 2,x: a.
T" G2 : (£, 0): 2, x: a.
5" G': (E, 0): 2, x: a.
£* G2: (£, 0): 2, x: a.
A* G2: (£, 0): 2, x: a.

145 P32 C^

CF1; X6; X7; M5; Zl.)

.  G1

6: {C3

+  OOf}: 2,3 ; 4, 1; 6,3 : a.
M  G\ <g> T 2: {£ |000}; t2: 2, 1: a.
,4 G£ ® T2: {C3

+ | OOf}; t3: 2 ,3; 4, 1 ; 6, 3: a.
L G2 ® T2: {£|000}; t 2 or t 3 : 2, 1: a.
. : G£ ® T3: {C3

+ I OOf}; ^ ort2 : 2, x; 4, x; 6, x: a.
.  G^ ® T3 ® T 2: {C3

+ | OOf}; t! or t 2 ; t 3: 2, x; 4, x; 6, x: a.

. * G j (C 3

+, 0): 2, x; 4, x; 6, x: a.
U* G 2 (£.0): 2, x: a.
P* Gl (C3

+, 0): 2, x; 4, x; 6, x: a.
. * Gi (£, 0): 2, x: a.
5* G^ (£, 0): 2, x: a.
T" G' (£, 0): 2, x: a.
5" GJ (£, 0): 2, x: a.
I1 G2 (£, 0): 2, x: a.
A" Gl (£, 0): 2, x: a.

146 R3 C$

(Fl; /f6; ..7 ; M5; Zl. )

.  G^ : {C3

+ | 000}: 2,3 ; 4, 1 ; 6, 3: a.
Z G' ® T 2: {C3

+ | 000}; t t or t2 or t 3 : 2, 3; 4, 1 ; 6, 3: a.
/ . G 2 ® T 2: {£ |000}; t2: 2, 1 : a.

f(a) F G' ®T 2 : {£|000}; t 2 or t 3 : 2 ,1 : a.)
|(b) F G' ® T2: {£| 000}; tt or t 2 : 2, 1: a.j

. * G£ (C3
+, 0): 2, x; 4,x; 6, x: a.

P* G1
6 (CJ, 0): 2, x; 4, x; 6, x: a.

Bx Gl (£, 0): 2, x: a.
I* Gl (£, 0): 2, x: a.
ß* Gl (£, 0): 2, x: a.
. * Gl (E, 0): 2, x: a.
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147 P3 C 3i

(F\; K6; Kl; MS; Zl. )

.  G f 2 : {S£ | 000}, {/] 000}: 2 ,3; 4, I ; 6,3; 7,1; 9,3; 11, 3: c.
M Gl® T2: {/I 000}, {£ | 000}; t2: 2, 1 ; 4, 1 : a.
A G\2 ® T2: {St | 000}, {/1 000}; t3: 2, 3; 4, 1 ; 6,3; 7, 1 ; 9,3; 11,3: c.
L Gl ® T2: {/I 000}, {£ | 000}; t2 or t 3 : 2, 1 ; 4, 1 : a.
tf Gi ® T3: {C3

f | 000}; t t ort2 : 2,3; 4, 1 ; 6, 3: a.
H Gl ® T3 ® T2: {CJ | 000}; t, or t 2 ; t3: 2, 3; 4, 1; 6, 3: a.

.*  G£: (CJ, 0): 2 ,3; 4, 1; 6,3: a.
Vх G 2 : (£, 0): 2, 1: a.
P* G£: (C3, 0): 2 ,3; 4, 1; 6 ,3: a.
. " G 2 : (£, 0): 2, a.
Sx G1

2: (E, 0): 2, a.
. " G 2 : (£, 0): 2, a.
5" G 2 : (£, 0): 2, a.
I* G2 : (E, 0): 2, a.
«' G 2 : (£, 0): 2, a.

148 .  Cj.

(Fl ; ..6 ; Kl; MS; 58; Zl. )

.  G? 2 : {S6

+ |000}, {/|000}: 2 ,3 ; 4, 1 ; 6,3 ; 7 ,1 ; 9,3 ; 11,3 : c.
Z G* 2 ® T 2: {5e | 000}, {/1 000}; t t or t2 ort 3 : 2, 3; 4, 1 ; 6, 3; 7, 1 ; 9, 3; 11, 3: c.
t Gl ® T 2: { / I 000}, {£ | 000}; t2: 2, 1 ; 4, 1 : a.

|(a) F Gl ® T2 : {7 | 000}, {£ | 000}; t2 or t3 : 2, 1 ; 4, 1 : a.)
[(b) F Gl ® T2: {/[ 000}, {£ | 000}; t, or t 2 : 2, 1 ; 4, 1 : a .J

. * G^ : (C 3

+ , 0): 2, 3; 4, 1 ; 6,3 : a.
P* G],: (C 3

+ , 0): 2 ,3 ; 4 ,1 ; 6,3 : a.
Bx G 2 : (£, 0): 2, 1: a.
I .  G 2 : (£, 0): 2, 1: a.
Ö1 G 2 : (£, 0): 2, 1: a.
. * G^ : (£, 0): 2, 1 : a.

149 P312 . ^

(Fl ; K6; Kl; M5; Zl. )

.  G|2: {C3

+  |000}, {C2 1 |000}: 3,3 ; 4,3 ; 6 ,2 : a.
. /  Gî ® T2: {C21 | 000}; t2: 2, 3; 4, 3: b.
A G4

12 ® T2: {CJ | 000}, {C21 |000}; t3: 3,3; 4,3; 6,2: a.
I G l ® T 2 : { C 2 1 000}; t 2 or t 3 : 2, 3; 4, 3: 6.
.  G i ® T 3: {C3

+ |000}; t, ort 2 : 2,2 ; 4,2 ; 6,2 : a.
H G j ® T3 ® T 2: {C3

+ |000}; t j o r t 2 ; t 3: 2,2 ; 4,2 ; 6,2 : a.

.*  G1

6: (C 3

+, 0): 2,2 ; 4,2 ; 6,2 : a.
V G 2: (£,0): 2,2: a.
P* G\: (C3

+, 0): 2,2; 4,2; 6,2: a.
T" G2: (E, 0): 2,2: a.
5* G2: (£, 0): 2 ,2 : a.
. * G 2 : (£, 0): 2 ,2 : a.
S" G2 : (£, 0): 2 ,2 : a.
I* Gi: (C21, 0): 2, x; 4, x: b.
R* Gi: (C2I, 0): 2, x; 4, x: i.

1"
1:
1:
1:
1:
1:
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150 P321 Dl

( F l ; K6; Kl; M5; Zl )

.  Gt 2: {CJ |000}, (C 21 | 000}: 3,3 ; 4,3; 6,2: a.
M G i ® T 2 : { C 2 1 000}; t 2: 2,3 ; 4,3 : i.
.  Gf 2 ® T 2: {CJ 1000}, {C21|000}; t3: 3,3 ; 4,3 ; 6,2 : a.
L Gi  ® T2 : {C2! | 000} ; t2 or t3 : 2, 3 ; 4, 3 : b.
К G f j ® T 3: {C3

+ |000}, {C21 | 000}; t t or t 2 : 3, x; 4, x; 6,x: a.
H Gf 2 ® T3 ® T 2: {CJ | 000}, {C21 |000}; t, o r t 2 o r t 3 : 3, x; 4, x; 6, x: a.

. * G£: (C3
+, 0): 2 ,2; 4 ,2 ; 6,2: a.

U' G2: (£, 0): 2 ,2 : a.
P* GJ: (C3

+,0): 2, x; 4, x; 6, x: a.
T* Gi: (C'ù, 0): 2, x; 4, x: b.
S* Gi: (C22, 0): 2, x; 4, x: 6.
T" Gi: (C2'j, 0): 2, x; 4,x: b.
S'x Gi: (C2I, 0): 2, x; 4,x: b.
Z* G2: (£, 0 ) :2 , 2: a.
A* G2: (£, 0): 2 ,2 : a.

151 .. . 12 flj

(.5 ; Fl; F4; F 5 ; K6; Kl; M S ; Zl. )

.  G4

12: {C3

+ | 00|}, {C21 I OOf}: 3, 3; 4, 3; 6, 2: a.
M  G i ® T 2: {C21 | OOf}; t 2: 2, 3; 4, 3: 6.
A G*12 ® T 2: {CJ | OOf}, {C21 | OOf}; t3: 3,3 ; 4,3 ; 6,2 : a.
i G } ® T 2 : {C2 1 |00fi; t 2 or t 3 : 2,3; 4,3 : b.
К G'6 ® T3: {C3

+ |00i}; t, or t 2 : 2,2 ; 4,2 ; 6,2 : a.
H G^ ® T3 ® T 2: {CJ | OOf}; t, ort 2 ; t3: 2,2 ; 4,2 ; 6,2 : a.

A" Gj : (C 3

+ ,0) : 2,2 ; 4,2 ; 6,2 : a.
£/" G2: (£, 0): 2 ,2: a.
P* Gj: (C3

+, 0): 2 ,2; 4,2; 6,2: a.
Г GJ : (£, 0): 2 ,2: a.
5' G 2 : (£, 0): 2,2: a.
T" G2: (£, 0): 2 ,2 : a.
S" G2: (£, 0): 2 ,2 : a.
S1 Gi: (C21, 0): 2, x; 4, x: b.
R* G\2: (C21, 0): 2, x; 8, x: 6.

152 P3t21 D\

(A6; Fl; F5; Fl; F&; K6; Kl; MS; N2; N3; P2; Rl; A4; S8; T6; Zl.)

.  GÎ2: {C3
+ |00i}, {C21 |00f}: 3, 3; 4, 3; 6, 2: a.

M Gi® T2: {C21 ! OOf}; t2: 2, 3; 4, 3: b.
A G*2 ® T2: {CJ | OOf}, {C21 | OOf}; t3: 3, 3; 4, 3; 6, 2: a.
L G| ® T2: {C21 | OOf}; t2 ort3: 2, 3; 4, 3: b.
К Gf 2 ® T 3: {C3

+ |00i}, {C21 | OOf}; t t or t 2 : 3 , x ; 4, x; 6, x: a.
.  G? 2 ® T3 ® T 2: {C3- | OOf}, {C21 |00f}; t! or t 2 ; t 3: 3, x; 4, x; 6, x: a.

A" Gj : (C 3

+ ,0) : 2,2 ; 4,2 ; 6,2 : a.
U' G 2: (1,0) : 2,2 : a.
/ " Gj : (C 3

+, 0): 2, x; 4,x; 6, x: a.
T* Gi: (C22, 0): 2, x; 4, x: b.
Sx G}2: (C 2'2, 0): 6, x; 12, x: a.
. * Gi: (C21, 0): 2, x; 4, x: b.
S'* G\2: (C21, 0): 2, x; 8, x: 6.
I* G 2: (£, 0): 2 ,2 : a.
R* G2: (E, 0): 2 ,2 : a.
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153 P3212 D\

( F \ ; K6; Kl; MS; Zl.)

.  G? 2: {C3

+  I OOf}, {C2 J |OOi}: 3,3; 4,3 ; 6,2 : a.
M Gi ® T 2: {C21 |00|}; t2: 2, 3; 4, 3: ft.
.  G? 2 ® T 2: {CJ | OOf}, {C21 | OOf}; t3: 3,3 ; 4, 3; 6,2 : a.
£ Gi® T2: {. 2 1 |00.-} ; t 2 or t 3 : 2,3; 4,3 : i.
X G£ ® T3: {CJ | OOf}; t 4 o r t 2 : 2,2; 4,2; 6,2: a.
H Gl ® T3 ® T2: {C3

+ ]00f}; t t ort2 ; t3: 2 ,2; 4,2; 6,2: a.

A* G£ (C3
+, 0): 2 ,2; 4,2; 6,2: a.

.  G 2 (£, 0): 2 ,2: 0.
P* G^ (C3

+,0): 2,2; 4,2; 6,2: a.
Г G 2 (£, 0): 2,2: a.
5' G2 (£, 0): 2 ,2 : a.
. " G j (£, 0): 2, 2: a.
S" G2 (£, 0): 2, 2: a.
2* Gi (C21, 0): 2,x; 4, x: b.
R* GJ 2 : (C2 1 ,0): 6, .: ; 12, x: a.

154 P3221 . |

.6 ; Fl ; F5; F7 ; F8; X6; X7; MS; N2; N 3 ; P2; R\; Zl. )

.  G? 2: (C3

+  | OOf}, {CJi I 00^}: 3,3 ; 4,3 ; 6,2 : a.
M G i ® T 2 : {Cj,|00i}; t 2: 2, 3; 4, 3: é.
A GÎ2 ® T2: {C3

+ | OOf}, {C21 |00|}; t3: 3,3; 4,3; 6,2: a.
L G\ ® T2: {Cj'j | 00^}; t2 ort3 : 2, 3; 4, 3: b.
К Gf 2 ® T 3: {CJ | OOf}, {C21 |00|}; tt or t 2 : 3, .: ; 4, x; 6, x: a.
H GÎ2 ® T3 ® T2: {CJ | OOf}, {C21 lOOi}; t! or t 2 ; t3: 3,x; 4,x; 6,x: a.

A* G£: (C3
+, 0): 2 ,2 ; 4,2; 6,2: a.

V G\: (E, 0): 2 ,2 : a.
Px Gl: (C3

+, 0): 2,x; 4,x; 6, x: a.
T' Gi: (C2'2, 0): 2,x; 4,x: b.
S* C;2: (C22, 0): 2, x; 8,*: b.
. * Gi: (Ci'j.O) : 2, .: ; 4, ;c: 6.
S" GJ 2 : (C 21, 0): 6, x; 12, x: a.
I* G 2: (£, 0): 2,2: a.
A' G2: (£, 0): 2 ,2 : a.

155 .3 2 Dl

( F \ ; K6; Kl; MS; 58; Zl. )

.  Gf 2 : {C3 1000}, {C21 | 000}: 3,3 ; 4,3 ; 6,2 : a.
Z Gt 2 ® T 2 ^ {Ci |000}, {C21 | 000}; t, o r t 2 o r t 3 : 3 ,3 ; 4,3 ; 6,2 : a.
L Gi ® T 2: {C22 | 000}; t2 : 2, 3; 4, 3: 6.

f(a) F G i ® T 2: {C21 | 000}; t2 or t3 : 2, 3; 4, 3: b.}
{(b) f G i ® T 2: {C2 3 |000}; t v o r t 2 : 2,3 ; 4,3 : b.\

\x Gl (CJ , 0): 2,2 ; 4,2 ; 6,2 : a.
Px Gl (Cj , 0): 2 ,2 ; 4 ,2 ; 6 ,2 : a.
B" Gl (C 21, 0): 2,x; 4,x: b.
S' Gi (C 21, 0): 2, x; 4, x: 6.
ß1 Gi (C23, 0): 2, x; 4, x: b.
У Gi (C 22, 0): 2, x; 4, x: b.
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156 P3m l C3l.

(FI; K6; Kl; MS; Zl. )

.  Gf 2 : {CJ |000}, {..„ , | 000} : 3, 3; 4, 3; 6, 2: a.
M G i ® T 2: K! | 000}; t 2: 2, 3; 4, 3: ft.
.  GJ 2 ® T 2: {C3

+ ! 000}, K, |000}; t 3: 3, 3; 4,3 ; 6,2 : a.
L Gi ® T 2: K., | 000}; t2 or t3 : 2, 3; 4, 3: ft.
AT Gè ® T3: {C3

+ |000}; ^ o r t 2 ; 2 ,2 ; 4 ,2; 6,2: a.
H G l ® T3 ® T2: {C3+ | 000}; t, o r t 2 ; t3: 2 ,2 ; 4 ,2 ; 6 ,2 : a.

Л' Gf 2 : (C3

+, 0), (<T UI , 0): 3, x; 4, .x; 6, x: 0.
(7.  Gi ((?„!, 0): 2, x; 4, x: b.
P* Gl (C 3

+ , 0): 2, x; 4, x; 6, x: a.
T" G l (£, 0): 2 , 2 : a.
Sx Gj (£, 0): 2 ,2 : a.
7"' Gi (£, 0): 2 , 2 : a.
S" G 2 (E, 0): 2 ,2 : a.
X* G| (<rul, 0): 2, x; 4, x: A.
. * G i ( f f „ i , 0): 2, x; 4, x: b.

157 P31m Cj

(Fl ; /C6 ; Ä7; M5; Zl.)

.  Gt 2: {C3

+ | 000}, {adi \ 000}: 3,3 ; 4, 3; 6,2 : a.
M G i ® T 2: {<rdl 1000}; t 2: 2, 3; 4, 3: ft.
.  Gt i ® T 2: {CJ | 000},  {(Jdi | 000}; t 3: 3,3 ; 4,3 ; 6,2 : a.
L G i ® T 2: {adl \ 000}; t 2 o r t 3 : 2, 3; 4, 3: ft.
A: Gt 2 ® T 3: {CJ | 000}, {a ,̂ j 000}; t, or t 2 : 3, x; 4, x; 6, x: 0.
.  Gf 2 ® T3 ® T 2: {C3

+ | 000}, {adl \ 000}; t j o r t 2 ; t 3: 3, x; 4, x; 6, x: a.

. * Gt 2: (C 3

+ ,0) , (iT d l , 0): 3, x; 4, x; 6, x: a.
U* Gi : (<r d l ,0) : 2, x; 4, x; b.
P" Gf 2 : (C 3

+ , 0), (a dl, 0): 3, x; 4, x; 6, x: a.
T* Gi : (a J2, 0): 2, x; 4, x: ft.
S* Gi : (<rd2, 0): 2, x; 4, x: ft.
T" Gi : (<!„!, 0): 2, x; 4 ,x : ft.
5"" Gi : (a,,, , 0): 2, x; 4, x: ft.
1* G 2 : (£, 0): 2 , 2 : a.
Rx G2: (£, 0): 2 ,2: a.

158 P3cl Cj,.

(Fl; K6; Kl; M5; Zl.)

.  G{2: {C3" | 000}, {a,,, | OOi}: 3, 3; 4, 3; 6, 2: a.
M G i ® T 2: {<.„ , | 002}; t 2 : 2, 3; 4, 3: ft.
/1 Gf 2 ® T 2: {C, | 001}, {.-,. , |002}; t3 : 1, i ; 2, 1 ; 5, 1 : ft.
£ Gi ® T2: {<.„ , | 002}; t2 or t3 : 1 , 1 ; 3, 1 : c.
A: G,i ® T 3: {Cj" | 000}; t, o r t 2 : 2,2 ; 4,2 ; 6,2 : a.
H Gl ® T3 ® T2 : {C3

+  | 000} ; t j or t2 ; t3 : 2, 1 ; 4, 1 ; 6, 1 : a.

Ax GÎ2: (C3
+, 0), (avl, 0) : 3, x; 4, x; 6, x: a.

[/" Gi: (<.„ 1; 0): 2, x; 4, x: ft.
P x Gj : (C 3

+ , 0): 2, x; 4, x; 6, x: a.
. * G 2 : (£, 0): 2 ,2 : a.
Sx G2 : (£, 0): 2, 1: a.
. " G 2 : (£, 0): 2 ,2 : a.
S'x G2: (£, 0): 2, 1 : a.
I-x Gi: ((7„1? 0): 2, x; 4, x: ft.
. .  Gi : (..^ , 0): 2, x; 4, x: ft.
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159 P3\c Cj„

(FI ; K6; Kl; M5; Zl. )

.  Gf 2 : {C3

f | 000}, {a,,, | OOi}: 3,3; 4,3 ; 6,2 : a.
. /  G i ® T 2: {ff j, | OOi}; t 2: 2, 3; 4, 3: b.
A GÎ2 ® T2: {C3

+ |001}, {<7„ | OOi}; t3: 1, 1 ; 2, 1 ; 5, 1 : fc.
L Gi ® T2: {o-dl | OOi}; t 2 o r t 3 : 1 , 1 ; 3, 1 : c.
К GÎ2 ® T3: {C3

+ ! 000}, {<rdl |00i}; t t o r t 2 : 3, x; 4, x; 6, x: a.
H G?2 ® T3 ® T2 : {C3+ | 001}, {«.,! | OOi}; t : o r t 2 ; t 3: 1, x; 2,x; 5 , x : b.

A* G4

12 : (C 3

+, 0), («Tj,, 0) : 3, x; 4, x; 6,x: a.
U f Gi : (..,,! , 0): 2, x; 4, x: . .
P* GÎ2: (C3

+,0), (<rdl, 0): 3, x; 4, x; 6, x: a.
Tx Gi: (<Tj2. 0): 2,x; 4, x: 6.
S* Gi: (adl, 0): 2, x; 4, x: b.
T" Gi: (<7d) , 0): 2, x; 4, x: *.
S!* Gi: (a„i, 0): 2, x; 4, x: 6.
Iх G\: (£, 0): 2 ,2: a.
«x G2 : (£, 0): 2, 1: a.

160 Ют .| „

( f l ; . .6 ; K7; A/5 ; Zl. )

.  Gf 2 : {CJ I 000}, {o-dl |000}: 3,3 ; 4,3 ; 6,2 : a.
Z Gt 2 ® T 2: {C3

+ | 000}, {adi | 000}; t, or t2 o r t 3 ; 3, 3; 4,3 ; 6, 2: a.
t Gi ® T 2: {ad2 | 000}; t 2: 2, 3; 4, 3: b.

f(a) f Gi ® T z: {<7„ [ 000}; t2 or t3 : 2, 3; 4, 3: 6.1
[(b) F Gi ® T 2 : {<T, 3|000}; t, or t 2 : 2,3 ; 4 ,3 : b]

\x Gf 2 : (C 3, 0), (adi, 0): 3, x; 4, x; 6, x: a.
P* Gt 2: (C 3, 0), (adl, 0): 3, x; 4, x; 6, x: a.
B* G|: (£, 0): 2 ,2 : a.
1' G 2 : (£, 0): 2 ,2 : a.
Qx G 2 : (I, 0): 2,2: a.
. * G 2 : (£. 0): 2 ,2 : a.

16! R3c C|r

(Fl; K6; X7; M5; Zl.)

.  Gf 2 : {C, 1000}, K, l Mi}: 3,3 ; 4 ,3 ; 6,2 : a.
Z G t 2 ® T 2 : {CJ! 100}, {<7d l l i i i}; t l O r t 2 o r t 3 : 1, 1 ; 2, 1 ; 5, 1 : b.
L G i ® T 2 : {<. . 2 | .} ; t 2: 1 , 1 ; 3 ,1 : c.

J(a) F G i ® T 2 : .,|1. ; t 2 o r t 3 : 2,3 ; 4 ,3 : b.l
\(b)F Gi ® T 2: {a,3 ! Mi}; t! or t2 : 2,3; 4,3: b.\

\x G| 2: (C 3, 0), (..,,, , 0): 3, x; 4, x; 6, x: a.
/ " Gt 2: (C 3

+ , 0), (ad, , 0): 3, x; 4, x; 6, x: a.
. * G 2 : (£, 0): 2, 1: u.
X' G 2 : (£, 0): 2 ,2: a.
Q' G 2 : (£, 0): 2 , 2 : a.
Yx G2 : (£, 0): 2, 1 : a.
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162 P31m . 3„

( F l ; Kb; Kl; M5; Zl. )

.  GI V {C3

+ | 000}, (Q, 1000}, {/|000}: 3,3; 4,3; 6,2; 9,3; 10,3; 12,2 : ft.
M Gl® T 2 : {C'2l | 000}, { / I 000}; t 2: 2,3 ; 4, 3; 6,3 ; 8,3 : b.
A Gi 4 ® T 2: {C3

+ | 000}, {C21 | 000}, {/ | 000}; t3: 3,3 ; 4,3 ; 6,2 ; 9, 3; 10,3; 12,2 : ft.
L G i ® T 2: {C21 | 000}, {/|000}; t 2 or t 3 : 2,3 ; 4,3 ; 6,3; 8,3 : b.
К G\2 ® T 3: (C 3

+ | 000}, {adl | 000}; t t or t 2 : 3, 3; 4, 3; 6,2 : a.
.  G|2 ® T3 ® T 2: {C3

+ | 000}, {ad, |000}; t j or t 2 ; t 3: 3, 3; 4,3 ; 6 ,2 : a.

. * Gf 2 : (C 3

+ ,0) , (<7. , .) : 3,3 ; 4, 3; 6,2 : a.
Ux Gi (<7 dl, 0): 2, 3; 4, 3: 6.
/ " G? 2: (C 3

+, 0), (ffd l , 0): 3, 3; 4, 3; 6, 2: a.
. .  G i (aJ2, 0): 2,3 ; 4,3 : b.
S* G i (<.„ 2, 0): 2,3 ; 4,3 : b.
T'x Gi (<rdl, 0): 2,3 ; 4,3 : b.
S" G1

4 (adl, 0): 2, 3; 4,3 : b.
£* Gi (C21, 0): 2, 3; 4,3: b.
Rx Gi (C21, 0): 2, 3; 4,3: ft.

163 P31c D2
3i

( F l ; K6; Kl; M5; Zl.)

.  G3

24: {C3

+  I 000}, {C21 | OOi}, {/ | 000}: 3, 3; 4, 3; 6, 2; 9, 3; 10, 3; 12, 2: ft.
M Ci ® T 2: {C21 lOOi}, { / I 000}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3 : ft.
^ G^ 8: {C3

+ |001}, {C2i |00i}, { / I 000}: 10, 1; 17,3; 18,3: a.
L G!J> : {C2I |00i}, {£-|001},{/|000}: 10 ,1 :0 .
K G t 2 ® T 3 : {C3

+ |000}, {<rdl!00i}; t t o r t , : 3,3; 4 ,3; 6 ,2: a.
.  Gf 2 ® T3 ® T 2: {C; ! 001}, {adl \ 00|}; t t o r t 2 ; t 3: 1, 3; 2, 3; 5 ,2 : ft.

. * Gt 2: (C 3

+ ,0) , (adl, 0): 3,3 ; 4, 3; 6 ,2 : a.
Ux Gi: (adl, 0): 2, 3; 4,3 : ft.
P* G^ 2: (C3

+, 0), («.,,! , 0): 3, 3; 4, 3; 6, 2: a.
. * Gi : (ud2, 0): 2, 3; 4,3 : ft.
5" Gi : (<7 J2> 0): 2,3 ; 4,3 : ft.
7"* Gi : (<7 dl, 0): 2,3 ; 4,3 : ft.
S" Gi : (<r dl, 0): 2, 3; 4,3 : 6.
I .  Gi : (C 2 1 ,0) : 2,3 ; 4,3 : ft.
A* G^ : (C 21, 0), (£, 1): 5, 1 ; 7, 1 : a.

164 P3ml . ^

(Fl ; X6; A:?; MS ; S8; Zl. )

.  Gi V {C3

+ i 000}, {C21 |000}, {/|000}: 3,3 ; 4,3 ; 6,2 ; 9,3 ; 10,3 ; 12 ,2 : ft.
M  Gi ® T 2: {C21 ] 000}, {/|000}; t 2: 2,3 ; 4, 3; 6,3 ; 8,3 : 6.
.  G 2 4 ® T 2: {C3

+ | 000}, {C21 | 000}, { / 1 000}; t3: 3, 3; 4,3 ; 6,2 ; 9, 3; 10, 3; 12,2 : ft.
/ . G « ® T 2: {C21 | 000}, { / I 000}; t2 o r t 3 : 2, 3; 4,3 ; 6, 3; 8, 3: ft.
* GÎ2 ® T3: {C3

+ |000}, {C2 'i |000}; t i O r t , : 3,3; 4,3; 6,2: a.
.  GÎ2 ® T3 ® T2: {C3

f | 000}, {C21 | 000}; t, o r t 2 ; t3: 3, 3; 4, 3; 6,2: a.

. .  .? 2: (. 3

+, 0), (<7 ol, 0): 3,3 ; 4, 3; 6,2 : a.
Ux G i (<.„, , .) : 2,3 ; 4,3 : ft.
/ " . .  (Сз, 0): 2, 3; 4, 1; 6,3 : a.
Г G i (C 22, 0): 2,3 ; 4,3 : ft.
Sx Gi (C 22, 0): 2, 3; 4, 3: ft.
. * G i (C 2 1 ,0) : 2,3 ; 4,3 : ft.
S'x G i (Cj'i , 0): 2,3 ; 4,3 : ft.
Z* G i (a,, , 0): 2,3 ; 4,3 : ft.
A* G i (a cl, 0): 2, 3; 4,3 : ft.
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165 P3c\ D\d

( F l ; Kb; Kl; M5; Zl. )

.  G| 4: {CJ |000}, {C2',100i}, {/|000}: 3,3 ; 4,3 ; 6,2 ; 9,3 ; 10,3; 12,2: ft.
M Gj| (g) T 2: {Ci', |00i}, {/j 000}; t 2: 2, 3; 4,3 ; 6,3 ; 8,3 : 6.
.  G 48: {C3

+  1001), {CjMOOi}, {/| 000} : 10,1; 17,3; 18, 3: a.
L G\°6: {C'2l\00±},{E |001}, {/|000}: 10 ,1 :*.
A" GÎ2 ® T3: {C3

+ |000}, {C21 | 00^}; t, or t 2 : 3,3; 4,3; 6,2: a,
H Gîj (g) T3 ® T2: {C3

+ | 000}, {C21 | 00^}; t, ort2 ; t3: 3, 1 ; 4, 1 ; 6, 1 : a.

. * Gt 2: (C 3

+ ,0) , (<r„i,0) : 3,3; 4,3 ; 6,2 : a.
U* G i (<r„, , 0): 2,3 ; 4,3 : b.
Px G1

6 (CJ , 0): 2, 3; 4, 1; 6,3 : a.
T* Gi (C 22, 0): 2, 3; 4,3 : b.
S' G2

S (C 22, 0), (£,1): 5, 1; 7, 1 : a.
. * G ' (C 2 1,0) : 2,3 ; 4,3 : b.
5" G| (C 21,0) , (£,1): 5 ,1 ; 7 ,1 : a.
£* G^ ( f f c l , 0): 2 ,3; 4,3: b.
Rx Gl (a,,, 0): 2, 3; 4,3: b.

166 R3m O|d

( F l ; F3; *:6; Ä7; L2; Ml; M5; 58; .2 ; Zl. )

.  GlV {C3

+  1000}, {C^,|000}, {/|000}: 3,3 ; 4,3 ; 6,2 ; 9,3 ; 10,3; 12,2 : b.
Z G3

24 ® T 2: {C3

+ |000}, {C21 | 000}, {/|000}; t, or t2 or t 3 : 3,3 ; 4,3 ; 6,2; 9,3 ; 10,3; 12,2 : b.
L Gl ® T 2: {C22]000}, {/1 000}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3: b.

|(a) F Gl ® T 2: {C21 | 000}, { /1 000}; t 2 or t 3 : 2,3; 4,3 ; 6,3 ; 8,3 : b.\
\(b ) F  G2

S ® T 2: |C23 |000}, {/1000}; t t or t 2 : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.\

\* G f 2 : (C 3

+ ,0) , ((r,,,0) : 3,3 ; 4,3 ; 6,2 : a.
P* Gt 2: (Cj.O) , (ff.,,,0) : 3,3 ; 4,3 ; 6,2 : a.
B* G{: (C 21, 0): 2, 3; 4,3 : é.
I .  Gi : (C 21, 0): 2,3 ; 4,3 : 6.
Q' G4: (C 23, 0): 2, 3; 4,3 : b.
Y' Gi : (C 22, 0): 2,3 ; 4,3 : 6.

167 R3c D\d

(Fl ; X6; ..7 ; M5; S8; Zl. )
.  G^ : {C3

+  1000}, {C2, | Mi}, {/|000}: 3,3 ; 4,3 ; 6,2 ; 9,3 ; 10,3; 12,2: b.
Z Gls: {C3

+ | 001}, {С'21\Щ},{11000}: 10,1; 17,3; 18,3 : a.
L G\l: {C22 | Ш], {E \ 010}, {/  | 000} : 10, 1 : b.

f(a) F G ^ ® T 2 : {C21 | Mi}, {/1 000}; t 2 or t 3 : 2,3 ; 4,3 ; 6,3 ; 8,3 : 6.1
{(b) F G\® T 2: {C23 | fâ}, {/| 000}; t t or t 2 : 2, 3; 4, 3; 6, 3; 8, 3: b.]

. * GÎ2: (C3
+, 0),(<rd l , 0): 3 ,3 ; 4,3; 6,2: a.

P" GÎ2: (C3
+, 0),(a„i, 0): 3,3; 4 ,3; 6,2: a.

Bx G|: (C21, 0), (E, 1): 5 ,1 ; 7 ,1 : a.
I* Gi: (C21, 0): 2,3; 4,3: b.
Q' Gi: (C23, 0): 2, 3; 4 ,3: b.
Y' G\: (C22, 0), (E, 1): 5, 1 ; 7, 1 : a.
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)68 P6 Cl

(F\; K6; Kl; M5; Zl. )

.  G J 2 : (C6

+ | 000}: 2, 3; 4,3 ; 6,3 ; 8, 3; 10,3; 12,3: c.
M Gi ® T 2: {C2 | 000}; t 2: 2, 3; 4, 3: è.
A G\2 ® T2: {C6

+ | 000}; t3: 2,3; 4,3; 6,3; 8,3; 10,3; 12,3: c.
L Gi ® T2 : {C2 | 000} ; t2 or t3 : 2, 3 ; 4, 3 : ft.
К GI ® T 3: {C3

+ | 000}; t j ort 2 : 2,3 ; 4,2 ; 6,3 : a.
.  G' ® T3 ® T 2: {C3

+ | 000}; tt ort 2 ; t3: 2,3 ; 4,2 ; 6,3 : a.

A' Gi 2 : (C6

+, 0): 2, x; 4, x; 6, x; 8, x; 10, x; 12, .: : . .
f Gi (C 2, 0): 2, x; 4, x: b.
P* Gl (C3

+, 0): 2,x; 4, x; 6, x: a.
T* G i (E, 0): 2,2 : a.
5* Gi (£, 0): 2,2: a.
. * G i (£, 0): 2 ,2: a.
S" G2 (£, 0): 2,2: a.
Z* G| (£, 0): 2 ,2: a.
. * G 2 (£, 0): 2 ,2: a.

169 P6t Cj

( F \ ; K6; Kl; MS; Zl.)

.  G J 2 : {C6

+  | 00|}: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: c.
M G i ® T 2: {C2|00i}; t 2: 2, 3; 4, 3: b.
A G\2 ® T2: (C6

+ | 00^}; t3: 1, 1; 3,3 ; 5,3; 7, 1; 9,3 ; 11 ,3 : rf.
L G i ® T 2: {C2 | 00|}; t2 ort 3 : 1, 1; 3, 1: c.
К Glf, ® T 3: {C3

+  ! OOj-}; t t or t 2 : 2,3 ; 4,2 ; 6,3: a.
H G'6 ® T3 ® T 2: {Cj1 | OOf}; t, or t 2 ; t3: 2,3 ; 4, 1; 6,3 : a.

. * GJ 2 : (C 6

+ ,0) : 2,x; 4, x; 6,x; 8, x; 10, x; 12,x: c.
Vх Gi : (C 2, 0): 2, x; 4, x: £.
P* Gl (C3

+, 0): 2, x; 4, x; 6, x: a.
. * G 2 (£, 0): 2,2: a.
S* Gl (£, 0) : 2, 1 : a.
. .  G 2 (£, 0): 2 ,2: a.
S" G2 (£, 0): 2, 1: a.
I* G2 (£, 0): 2 ,2 : a.
R* G2 (£, 0): 2, 1: a.

170 P65 C^

(Fl; ^6; A:?; M5; Zl.)

.  G i 2 : {C6

+ | 00|}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3: c.
M Gi ® T 2: {C2 | 00|}; t 2: 2, 3; 4, 3: b.
Л G l 2 ® T 2: {C6

+  | 00|}; t3: 1, 1; 3, 3; 5, 3; 7, 1 ; 9, 3; 11, 3: d.
L Gi ® T 2: {C2 | 00|}; t2 ort 3 : 1, 1; 3, 1 : c.
K G J , ® T 3 : {C3

+ |OOf}; ^ort , : 2,3 ; 4,2 ; 6,3 : a.
H Gi ® T3 ® T 2: {C3

+ | OOf}; t t o r t 2 ; t 3: 2,3 ; 4, 1; 6,3 : a.

. * G! 2: (C6

+, 0): 2, x; 4,x; 6, x; 8, x; 10, x; 12, x: c.
U* G i (C 2, 0): 2, x; 4, x: b.
P* G1

6 (C3

+, 0): 2, x; 4, x; 6, x: a.
Tx G 2 (£, 0): 2 ,2 : a.
S1 G2 (£, 0): 2, 1: a.
T" G2 (£, 0): 2, 2: a.
S" Gi (£, 0): 2, 1: a.
Z' Gi (£, 0): 2 ,2: a.
Rx Gi (£, 0): 2, 1: a.
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171 P62 Cl

(F\; K6; Kl; M5; Zl. )

.  G1 2: {C6

+ |00i}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12 ,3 : c.
M G i ® T 2 : {C2|000}; t2: 2, 3; 4, 3: 6.
A G\2 ® T 2: (C6

+ | 00|}; t 3: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: c.
L G i ® T 2: {C2 |000}; t 2 or t 3 : 2,3; 4,3: 6.
K G ' ®T 3 : {C3

+ |OOf}; t , o r t 2 : 2,3 ; 4,2 ; 6,3 : a.
H G ' ® T 3 ® T 2 : {C3

+ |OOf}; t , o r t 2 ; t3: 2,3 ; 4,2 ; 6,3 : a.

. * G{2: (C6

+, 0): 2, x; 4, x; 6, x; 8, x; 10, x; 12, x: c.
Ux Gi (C 2, 0): 2, .: ; 4, x: 6.
P* GJ, (C3

+, 0): 2, x; 4, x; 6, x: a.
T* G i (E, 0): 2,2 : a.
S* G i (E, 0): 2,2 : a.
T'x G\ (E, 0): 2,2 : a.
S" G i (E, 0): 2,2 : a.
I* G i (£, 0): 2 ,2: a.
Rx Gi (£, 0): 2,2: a.

172 P64 CS
6

( F l ; K6 K7; M5; Zl.)

.  G! 2: {C6

+ |OOf}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3: c.
M Gi ® T 2: {C2|000}; t 2: 2, 3; 4, 3: b.
A GJ 2 ® T 2: (C6

+  I OOf}; t 3: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: c.
L Gi ® T 2: {C2|000}; t 2 or t 3 : 2,3 ; 4,3 : b.
K G!, ® T 3: {C3

+ |00^}; ti or t 2 : 2,3 ; 4,2 ; 6,3 : a.
H Gl ® T3 ® T 2: {C3- | OOf}; t !o r t 2 ; t3: 2,3 ; 4,2 ; 6,3 : a.

. * G\2: (C6

+, 0): 2, x; 4, x; 6, x; 8, x; 10, x; 12, x: c.
C/ 1 Gi (C 2, 0): 2, x; 4, x: b.
Px Gl (C3

+, 0): 2, x; 4, x; 6, x: a.
. * G\ (E, 0): 2,2 : a.
S* G i (£, 0): 2,2: a.
T'x G\ (E, 0): 2 ,2 : a.
S"* Gi (I, 0): 2,2: a.
Z* G*2 (E, 0): 2 ,2: a.
R* Gi (E, 0): 2 ,2: a.

173 P63 Cg

(Fl; .. 6 .:? ; ./5 ; Zl. )

.  G! 2: {C6

+  | OOÎ}: 2 ,3; 4,3; 6,3; 8, 3; 10,3; 12,3: c.
M Gl ® T2: {C2 | 00^}; t2: 2, 3; 4, 3: 6.
X G ' 2 ® T2: {C6

+[OOi}; t3: 1, 1; 3,3; 5,3; 7 ,1 ; 9,3; 11,3: d.
L G\ ® T2: {C2 | 00|}; t 2 or t 3 : 1,1; 3, 1 : c.
K Gl ®T 3 : {C3

+ 1000}; t^oT^: 2 ,3 ; 4 ,2; 6,3: a.
.  G£ ® T3 ® T2 : {C3

+ | 000} ; t j or t2 ; t3 : 2, 3 ; 4, 1 ; 6, 3 : a.

. * G J 2 : (C 6

+ ,0) : 2, x; 4, x; 6, x; 8, x; 10, x; 12, x: c.
U* G\ (C 2, 0): 2,x; 4, x: b.
Px G£ (C3

+, 0): 2, x; 4, x; 6, x: a.
. * G i (E, 0): 2,2 a.
5" Gi (E, 0): 2, 1 a.
. * G i (E, 0): 2, 2 a.
S" G i (£, 0): 2 ,1 a.
I* Gi (£, 0): 2, 2 a.
R' Gi (£, 0): 2, 1 a.
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174 P6 C3I,

(FI; K6; Kl; M5; Zl.)

T G\2: {S3

+  | 000}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3: c.
M Gi ® T 2: {erJ 000}; t 2: 2, 3; 4, 3: b.
A G\2 ® T 2: {S3

+  | 000}; t3: 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: c.
L G i ® T 2: {<. . |000}; t2 ort 3: 2,3 ; 4,3 : A.
* GJ 2 ® T 3: {S3

+  I 000}; t, or t 2 : 2,x ; 4, x; 6, x; 8,x; 10, x; 12, x: c.
.  Gl 2 ® T3 ® T 2: {S3

+  | 000}; t, or t 2 ; t 3: 2, x; 4, x; 6, x; 8, .: ; 10, x; 12, x: c.

. * G£: (C3
+ ,0): 2, 3; 4,2; 6,3: a.

U* G2: (£, 0): 2,2: a.
P* Gl: (C3

+, 0): 2, x; 4, x; 6, x: a.
T* Gi: K, 0): 2, x; 4, x: i.
5" Gi: (a», 0): 2, x; 4, x: 6.
. * Gi : (ffh , 0): 2, x; 4, x: b.
S'x Gi : (fff t, 0): 2, x; 4, x: b.
I* Gi : (at, 0): 2, x; 4, x: b.
Rx Gi : . , 0): 2, x; 4, x: b.

175 ../ .  .; „
(FI ; JT6; #7; M5; Zl. )

.  G 2J : {C6

+ |000}, {/|000}: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3; 14,3; 16,3; 18,3 ; 20,3; 22,3 ; 24,3 : a.
M G\ ® T 2: {C2]000}, { / I 000}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
A Gi l ®T 2 : {C6

+ 1000}, {/|000}; t 3: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3 ; 14,3 ; 16,3; 18,3; 20,3;
22,3 ; 24,3 : a.

L G i ® T 2: {C2 | 000}, {/1 000}; t 2 or t 3 : 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
К G\2 ® T 3: {S3

+ |000}; t t o r t 2 : 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12, 3: c.
H G{2 ® T3 ® T 2: {S3

+  I 000}; t, or t 2 ; t 3: 2, 3; 4, 3; 6, 3; 8, 3; JO, 3; 12, 3: c.

. * G! 2 : (C6

+, 0): 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3 : c.
Ux Gi : (C 2, 0): 2,3 ; 4,3 : b.
P* G£: (C3

+. 0): 2,3; 4, 1; 6,3: a.
Tx Gi: K, 0): 2,3; 4 ,3: b.
S* Gi: K, 0): 2,3; 4,3: b.
T'* Gi: (<7„ .) : 2,3 ; 4,3 : 6.
5" Gi : K, 0): 2,3 ; 4,3 : b.
X* Gi : K, 0): 2, 3; 4,3: i.
R' Gi : («.» , 0): 2,3 ; 4,3 : b.

176 P63/ m C;;, ,

(fl ; K6; Kl; M5; MS; Zl. )

.  G 2|: {C6

+ |00i}, {/|00^}: 2,3 ; 4,3 ; 6, 3; 8,3 ; 10,3; 12,3 ; 14,3 ; 16,3; 18,3; 20,3; 22,3 ; 24,3: a.
M Gl ® T 2: {C2|00i}, {/|00i}; t 2: 2,3 ; 4,3 ; 6,3 ; 8,3 : b.
A GiJ : {C6

+  | OOi}, { / I 00|},{£ | 000}: 28, 3; 29, 1 ; 30, 3: a.
L G\l: {aJOOO}, {£1001}, {/|00£}: 10,1: b.
К G\2 ® T3: {S3

+  | 000}; t, ort 2: 2,3 ; 4, 3; 6,3 ; 8,3 ; 10,3; 12, 3: c.
.  G1 2 ® T3 ® T 2: {53

+  | 000}; t, ort 2 ; t3: 2, 3; 4, 1 ; 6, 3; 8, 3; 10, 1; 12, 3: c.

. * G! 2 : (C6

+, 0): 2, 3; 4, 3; 6, 3; 8, 3; 10, 3; 12, 3: c.
U* Gi : (C 2, 0): 2,3 ; 4,3 : b.
Px GJ : (C3

+, 0): 2,3 ; 4, 1; 6,3: a.
Tx Gi : (<r,,,0) : 2,3 4,3: b.
Sx Gi : (a h, 0): 2, 1 4, 1: 6.
. * Gi : (<.„0) : 2,3 4,3 : 6.
S'* Gi : K,0) : 2, 1 4, 1: 6.
S* Gi: (ff,, 0): 2,3 4,3: 6.
R' Gi : K, 0): 2, 1 4, 1: 6.

TH E DOUBLE-VALUE D REPRESENTATION S OF
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177 P622 Dj

( F \ ; K6; Kl; MS; Zl.)

Г G 2 i : {C6

+ | 000}, {Ci, | 000}: 7,2 ; 8,2 ; 9,2 : a.
M Gi ® T 2: {C2 | 000}, {Ci', | 000}; t 2: S, 2: a.
A G 2i ® T 2: {C6

+ | 000}, {Ci, |000}; t3: 7,2 ; 8,2; 9,2 : a.
L Gi ® T 2: {C2|000}, {C21 |000}; t2 ort 3 : 5,2 : a.
К G|2 ® T 3: {C3

+ | 000}, {C21 |000}; t, or t 2 : 3,2; 4,2 ; 6,2; a.
.  G|2 ® T3 ® T 2: {C3

+ |000}, {C21 |000}; t, ort 2 ; t3: 3,2 ; 4,2 ; 6,2 : a.

. .  G! 2: (C6

+, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 ; 10,2; 12,2: c.
U* Gi : (C2, 0): 2,2 ; 4,2 : b.
P* G'6: (€3, 0): 2,2; 4,2; 6,2: a.
T* Gi: (C22, 0): 2,2; 4,2: b.
S* Gi: (C2'2, 0): 2,2; 4,2: b.
T" Gi: (C2',, 0): 2 ,2; 4,2: b.
S'* Gi: (Ci',,0): 2 ,2; 4,2: b.
I* Gi: (Ci,, 0): 2 ,2; 4,2: 6.
R* Gi: (C21,0): 2,2; 4,2: 6.

178 P6,22 Z^

(Fl; K6; Kl; MS; Zl.)

.  G 2i: {C6

+ |00i}, {C21 |000}: 7,2 ; 8,2 ; 9,2 : a.
W G Ü ® T 2 : {CjlOOi}, {Cï.lOOi}; t2: 5,2: a.
А СЦ: {C6

+ |00i}, {C21 | 000}: 10,3; 11 ,3 ; 12,3; 13,3 ; 14,2; 15, 2: a.
L G» 6: {C2 | 00£}, {CÏ, I OOi}: 5, 3; 6, 3; 7, 3; 8, 3: a.
AT G*2 ® T3: {C3

+ | OOi}, {Ci'i |00|}; ti or t 2 : 3,2; 4 ,2; 6,2: a.
.  G|2 ® T3 ® T 2: {C3- | OOf}, {Ci', | OO^}; t t ort 2 ; t 3: 3,3; 4,3; 6,2 : a.

A* G! 2: (C6

+, 0): 2,2 ; 4,2 ; 6,2 ; 8,2; 10,2; 12,2: c.
£/* Gi: (C2> 0): 2,2; 4,2: b.
P" Gl\ (C3

+,0): 2 ,2; 4 ,2; 6,2: a.
T* Gi: (C22, 0): 2 ,2; 4,2: b.
S' G\l: (C"22, 0),(E, 0): 17,3; 23,3: b.
T" Gi: (CÏ,, 0): 2,2; 4,2: b.
S" G|: (C2'j, 0), (£, 0): 5, 3; 7, 3: a.
I1 Gi: (C21, 0): 2 ,2; 4,2: b.
R* Gi: (Ci,, 0): 2, 3; 4,3: i.

179 P6S22 Dl

(FI; K6; Kl; MS; Zl.)

.  G'i : {C6

+ | OOf}, {Ci, I 000}: 7, 2; 8, 2; 9, 2: a.
. /  G i ® T 2: {C2 | ... , {C21 | OOi}; t 2: 5, 2: a.
A Gijj : {C6

+  I OOf}, {Ci, |000}: 10,3; 11,3 ; 12,3; 13,3 ; 14,2; 15,2 : a.
L G* 6: {C2 | OOi}, {Ci, | OOi}: 5, 3; 6, 3; 7, 3; 8, 3: a.
К Gf 2 ® T 3: {C3

+  | 00|}, {Ci', I OOi}; t, or t 2 : 3,2 ; 4,2 ; 6,2 : a.
.  GÎ2 ® T3 ® T2: {C3

+ | OOf}, {Ci, |00i}; t, or t 2 ; t3: 3,3; 4,3; 6,2: a.

. 1 G!2: (C6

+, 0): 2,2 ; 4,2 ; 6,2 ; 8,2; 10,2; 12,2: c.
U' Gi : (C 2, 0): 2,2 ; 4,2 : b.
Px G1

6: (C3

+, 0): 2,2 ; 4,2 ; 6,2: a.
T' Gi : (C 2'2, 0): 2,2 ; 4,2 : b.
Sx Gl

2l: (Ci' 2, 0), (£,0): 15,3; 21,3: c.
T" Gi: (C2 ' , ,0): 2 2 ; 4,2: 6.
S" Gi: (Ci'„ 0), (£,0): 5,3; 7,3: a.
I' Gi: (Ci,, 0): 2 ,2; 4,2: b.
R* Gi: (Ci,, 0): 2,3; 4,3: b.



542 TH E DOUBLE-VALUE D REPRESENTATION S OF

180 P6222 Dl

(F\; Fl; F8; K6; Kl; MS; Zl. )

.  G 2i: {C6

+  I OOf}, {C21 I 000}: 7,2 ; 8,2 ; 9,2 : a.
M  G l ® T 2: {C2 | 000}, {C21 t 000}; t 2: 5, 2: a.
A G 2 i ® T 2 : {C6

+  |OOi},{C2 1 |000}; t 3: 7,2 ; 8,2 ; 9,2 : a.
L G| ®T 2 : {C2 |000},{C2 1!000}; t 2 or t 3 : 5,2 : a.
К Gt z ® T 3: {C3

+  | OOf}, {C21 J O O O } ; t j o r t 2 : 3,2 ; 4,2 ; 6,2 : a.
.  GÎ2 ® T3 ® T2: {C3

+ ] OOf}, {C21 |000}; t j or t 2 ; t3: 3,2; 4,2; 6 ,2: a.

. * G{ 2 : (C6

+, 0): 2 ,2 ; 4,2 ; 6,2 ; 8,2 ; 10,2; 12,2 : c.
Vх G i (C 2, 0): 2,2 ; 4,2 : . .
/> * G i (C3

+, 0): 2,2 ; 4 ,2 ; 6,2 : a.
Tx G i (C 2'2, 0): 2,2 ; 4,2 : b.
S* G\2: (C 2 2 ,0) : 6,2 ; 12,2 : a.
T" Gi (C 21, 0): 2 ,2 ; 4 ,2 : b.
S" G i (C 2\ , 0): 2,2 ; 4,2 : . .
I1 Gi (C 21, 0): 2,2; 4,2: b.
Rx G i (C 21, 0): 2,2 ; 4,2 : b.

181 f6422 D5

6

( F l ; Fl; F8; /f6 ; Kl; MS; Zl. )

.  G 2 i : (C 6

+  |OOf} ,{C2 1 |000}: 7,2 ; 8,2 ; 9,2 : a.
M  G i ® T 2: {C2 | 000}, {C2, | 000}; t 2: 5, 2: a.
A G 2i ® T 2: {C6

+ | 00|},{C21 |000}; t 3: 7,2 ; 8,2 ; 9,2 : a.
L G i ® T 2: { C2 j 000}, {C21 | 000}; t 2 o r t 3 : 5 ,2 : a.
^ Gt 2 ® T 3: {C3- | OOf}, {C21 ] 000}; t, o r t 2 : 3,2 ; 4,2 ; 6,2 : a.
.  Gt 2 ® T3 ® T 2: {C3- | OOf}, {C21 ]000}; tt ort 2; t3: 3,2; 4,2; 6,2: a.

. * G! 2: (C6

+, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 ; 10,2; 12,2 : c.
U< G i (C 2, 0): 2,2 ; 4 ,2 : b.
Px G1

6 (C3

+, 0): 2,2 ; 4,2 ; 6,2 : a.
7" Gi (C 22, 0): 2,2 ; 4,2 : b.
S* G\ : (C 22,0) : 2,2 ; 8,2 : b.
T" G i (C 21, 0): 2 ,2 ; 4,2 : b.
S'x G i (C 21, 0): 2,2; 4,2: b.
I* G i (C 21, 0): 2,2 ; 4,2 : b.
R* G i (C 21, 0): 2,2 ; 4,2 : b.

182 P6322 . ^

(Fl ; K6; Kl; MS; Zl. )

.  G 2i: {C6

+ | OOi}, {C2, |000}: 7,2 ; 8,2 ; 9,2 : a.
M  G f ® T 2: {C2 | OOi}, {C21 | OOi}; t 2: 5, 2: a.
.4 Gil : {C6

+ | OOÎ},{C21 | 000}: 10,3; 11,3; 12,3; 13,3; 14,2; 15, 2: a.
L G?6: {C2| OOi}, {C21 !00i}: 5,3; 6,3; 7,3; 8, 3: a.
К G\2 ® T3: {C3

+ | 000}, {CJ, |00|}; t, ort 2 : 3,2; 4,2; 6,2 : a.
H Gf 2 ® T3 ® T 2: {C3

+ | 000}, {C21 | 00^}; t, or t 2 ; t 3: 3, 3; 4, 3; 6,2 : a.

A* Gi2: (C6
+, 0): 2,2; 4,2; 6,2; 8,2; 10,2; 12,2: c.

U* Gi (C2, 0): 2,2; 4,2: 6.
P* Gl

b (C3
+, 0): 2,2; 4,2; 6,2: a.

Гх Gi (C22, 0): 2,2; 4,2: b.
S' Gl (C22, 0), (E, 1): 5,3; 7,3: a.
Г* Gi (C21, 0): 2,2; 4,2: b.
S'x G2

S (C21, 0), (E, 1): 5, 3; 7,3: a.
Z* Gi (C21, 0): 2,2; 4,2: b.
Rx Gi (C21, 0): 2,3; 4,3: b.
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183 P6mm C^

(F\; Kb; Kl; M5; Zl. )

.  G 2i: {C6

+ |000},{ffd l |000}: 7,2; 8,2 ; 9,2 : a.
M Gl ® T 2: {C2|000}, {aul |000}; tz: 5 , 2 : a.
А . .  ® T 2: {C6

+ | 000}, {a n | 000}; t 3: 7, 2; 8, 2; 9, 2: a.
L Gü ® T2: {C2| 000}, {<r01|000}; t 2 or t 3 : 5,2: a.
.  Gîz ® T3: {C3

+ |000}, {an \ 000}; t j or t 2 : 3,2; 4,2; 6,2: . .
.  GÎ2 ® T3 ® T2: {C3

+ | 000}, {aäl \ 000}; ^ ort2 ; t3: 3,2; 4,2; 6,2: a.

. * GÜ: (C6
+,0), (<7d l ,0): 7, x; 8, x; 9, x: a.

t/* G| (C2, 0), (avi, 0): 5, x: a.
P* Gf2: (C3

+,0), («.«, 0): 3, x; 4, x; 6, x: a.
7" Gi (<7 d2, 0): 2,2 ; 4,2 : b.
S* G i ((T d2, 0): 2,2 ; 4,2 : b.
T" G i (...,,,0) : 2,2 ; 4,2 : 6.
5" Gi (adl, 0): 2,2 ; 4,2 : b.
I1 G i (<!„, , 0): 2,2 ; 4,2 : b.
R* G i K.,,0) : 2,2 ; 4,2 : . .

184 Рбсс Cj,

(FI ; X6; ^7; M5; Zl. )

.  G 2i: {C6

+ | 000}, {adl \ 00^} : 7,2; 8,2 ; 9,2 : a.
M Gi ®T 2 : {C2|000}, {<rc l |00i}; t 2: 5,2 : a.
A Gil : {Q+  I 000}, {ff,! | .. .  : 7, 1 ; 8, 1 ; 9, 1 : b.
L G? 6: {C2|000}, Ki lOOi}: 9, 1: 6.
К GÎ2 ® T3: {C3

+ | 000}, {adl \QO$}; ti ort2 : 3,2; 4,2; 6,2: a.
H G*12 ® T3 ® T2: {C3

+ |001},{<rdl |00i); t! or t 2 ; t3: 1 ,3; 2 ,3; 5, 1 : b.

A' GÜ: (C6
+,0), (<..,0) : 7, x; 8, x; 9, x: a.

£/' G|: (C2, 0), (<7„i, 0): 5, x: a.
P' G4

12: (C3
+, 0), (.. , 0): 3, x; 4, x; 6, x: a.

T" Gi : (...,2 , 0): 2,2 ; 4,2 : b.
S* Gi : (ffJ2, 0): 2,3 ; 4,3 : b.
T" Gi : (<7„„0) : 2,2 ; 4,2 : 6.
5"* Gi : (CTJ, , 0): 2,3; 4,3 : b.
I* Gi : (<r c l ) 0) : 2,2 ; 4,2 : 6.
A* Gi : («.,,, , 0): 2,3; 4,3 : b.

185 P63cm C\v

( F I ; Кб; К7; ./5 ; Zl. )

.  G 2i: {C6

+ |OOi}, {<rd l |000}: 7,2 ; 8,2 ; 9,2 : a.
M G i ® T 2 : {Cj lOOi-U^i lOOi} ; t 2: 5,2 : a.
A Gi|: {C3

+ |000}, {<rdl |000}, {C2 |00i}: 13,1 ; 14,3; 15,3 : a.
L G? 6: {odi\OOQ},{aat\OQb}: 9,1 : b.
К G*12 ® T3: {C3

+ | 000}, {ad, |000}; ^ or t 2 : 3,2 ; 4,2 ; 6,2 : a.
H Gf 2 ® T3 ® T 2: {C3

+ | 000}, {(.,» | 000}; t t o r t 2 ; t 3: 3, 1 ; 4, 1 ; 6, 1 : a.

A* G^i : (Q + ,0) , (adl,0): 7, x; 8, x; 9, x: a.
U* G|: (C 2 > 0) , (..„,,0) : 5, x: a.
P1 G|2: (C 3

+, 0), (<7 .1 , 0): 3, x; 4, x; 6, x: a.
T' Gi : (<7 J2, 0): 2,2 ; 4,2 : b.
Sx Gl (ad2, 0): 2, 1; 4, 1: b.
T" Gl (afi, 0): 2,2; 4,2 : b.
S" Gl (adi, 0): 2, 1 ; 4, 1 : b.
I1 Gi : Ki, 0): 2,2 ; 4,2 : *.
R* Gl (<T„I , 0): 2,3; 4,3: è.
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186 P63mc Cjv

(Al; B3; B4; Cl; F I ; G4 ; .2 ; Кб; Kl; М5; N\; РЗ; Р4; R2; A3; 58; S10; Zl. )

.  G 2i: {. 6

+ |<..} , KJOOi}: 7,2 ; 8,2 ; 9,2 : . .
M G i ® T 2: {C2 | OOi}, {f f^ lOOO}; t2: 5,2 : a.
.  GÜ: {C3

+ | 000}, K! | 000}, {C2 | 00^}: 13, 1; 14, 3; 15, 3: a.
L G?6 : K! | 000}, {<7dl ! OOi} : 9, 1 : fc.
K G|2 ® T3: {C3

+ |000}, {(7dl |00|}; t t o r t 2 : 3,2; 4,2; 6,2: a.
.  Gt 2 ® T3 ® T 2: {C3

+ | 001}, {<7dl | 00^}; t, or t 2 ; t 3: 1,3 ; 2,3; 5,2 : b.

. * G 2i: (C 6

+ ,0) , (tr d l ,0) : 7, x; 8, x; 9, x: . .
£/" Gl: (C2, 0), K!,O): 5,x: a.
P* G|2: (C3

+,0), ((.. , 0): 3, x; 4, x; 6, x: a.
T" Gi (<T d2, 0): 2,2 ; 4,2 : b.
S' Gi (<r d2, 0): 2,3 ; 4,3 : b.
T" G\ (adi, 0): 2,2 ; 4,2 : b.
S'x Gl (adi, 0): 2,3 ; 4,3 : b.
S" Gi (<7 ol, 0): 2,2 ; 4,2 : b.
R' Gi (..„ „ 0): 2, 1; 4, 1 : b.

187 P6m2 03>

(FI; K6; Kl; M5; Zl. )

.  G 2i: {53

+  | 000}, {C21 | 000}: 7, 2; 8, 2; 9, 2: a.
M Gi ® T 2: {C21 |000}, {a„j | 000}; t 2: 5,2 : a.
A G 2i ® T 2: {53

+  |000}, {C21 | 000}; t 3: 7,2 ; 8,2 ; 9,2 : a.
L Gl ® T 2: {C21 | 000}, {a„, |000}; t2 ort 3 : 5,2 : a.
К G\2 ® T 3: {S3

+ |000}; t! or t 2 : 2,2 ; 4,2 ; 6,2 ; 8,2 ; 10,2; 12,2 : c.
.  G!2 ® T3 ® T 2: {53

+  |000}; ^ ort 2 ; t 3: 2,2 ; 4,2 ; 6,2 ; 8,2 ; 10,2; 12,2 : c.

. * G? 2: (C 3

+, 0), K,, 0): 3,2 ; 4,2 ; 6,2 : a.
C/ * Gi (<.„ „ 0): 2,2 ; 4,2 : b.
P* G\ (C 3

+, 0): 2,2 ; 4,2 ; 6,2 : a.
T" Gi (ah, 0): 2,2 ; 4,2 : b.
S" G i (ah, 0): 2,2 ; 4,2 : è.
T" Gi (ak, 0): 2,2; 4,2: b.
S" Gi K, 0): 2 ,2; 4,2: b.
I* Gi (C21,0), ( a„ t , 0 ) : 5,x: a.
R* Gl (C21,0), (<.„ „ .) : 5,. : a.

188 P6c2 .| >

(fl ; K6; Kl; M5; Zl. )

.  G 2i: {S3

+ | 000}, {C21 |00i}: 7,2 ; 8,2 ; 9,2 : a.
M G i ® T 2 : {C2 1 |00i},{<7„i |00l}; t 2: 5,2 : a.
A Gît: {ff„i ! OOi}, {C3

+ |000}, (ff, 1000}: 5,3; 6,3; 7,3; 8,3; 11,3; 12,3: a.
L G?„: {<7„, I OOi}, {ah|000}: 5,3; 6,3; 7,3; 8,3: . .
. : G} 2 ®T 3 :{S3

+  000}; t, or t 2 : 2, 2; 4, 2; 6, 2; 8, 2; 10, 2; 12, 2: . .
.  GJ 2 ® . 3 ® . 2: {S3

+ |000}; t t or t 2 ; t 3: 2,3 ; 4,3 ; 6,3 ; 8,3 ; 10,3; 12,3: . .

A* Gf 2 : (C 3

+, 0), (.. .1 , 0): 3,2 ; 4,2 ; 6,2 : a.
U* G i (avl, 0): 2,2 ; 4,2 : b.
P* Gl, (C 3

+, 0): 2,2 ; 4,2 ; 6,2 : a.
T" G i K, 0): 2,2 ; 4,2 : b.
Sx G i (..„ , 0): 2,3 ; 4,3 : b.
T" G i (ah, 0): 2,2 ; 4,2 : b.
S'x G i (a», 0): 2,3 ; 4,3 : b.
I* Gi (C 2 1,0) , (a,,!, 0): 5,x: a.
R* G s

l f > : (C 21, 0), (ah, 0): 5, x; 6, x; 7, x; 8, x: a.
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189 P62m Dl,,

(FI; K6; Kl; MS; Zl.)

.  Gii: {S3

+  |000}, {C21 | 000}: 7,2 ; 8,2 ; 9,2 : a.
M Ci ® T 2: {C21 I 000}, {ffd l | 000}; t 2: 5, 2: a.
A G 2i ® T 2: {S3

+  | 000}, {C21 | 000}; t 3: 7,2 ; 8,2 ; 9,2 : a.
L Gi ® T 2: {C21 | 000}, {adl 000}; t2 or t3 : 5, 2: a.
К G 2i ® T 3: {S3

+  |000}, {C21 |000}; t, or t 2 : 7, x; 8, x; 9, x: a.
.  G 2i ® T3 ® T 2: {Sf 1000}, {C2', | 000} ; t, or t 2 ; t3: 7, x; 8,x; 9,x: a.

A* GÎ2: (C3
+,0), Ki, 0): 3,2; 4 ,2; 6,2: a.

U' Gi: K1; 0): 2 ,2; 4,2: i.
P* Gt2: (C3

+, 0), K!,O): 3, x; 4, x; 6, x: a.
. * G f : (C 2'2, 0), K 2,0) : 5,x: a.
S* Gi : (C 22, 0), K 2,0) : 5,x: a.
. * G^ : (C 2 1,0) , (a,,,0) : 5,x: a.
5"' G|: (C 21,0) , K,,0) : 5,x : a.
I" Gi : (a», 0): 2,2 ; 4 ,2 : b.
Rx Gi : K, 0): 2,2 ; 4,2 : 6.

190 P62c Dj t

(Fl ; A:6; Kl\ M5; Zl. )

.  G 2 i : {S3

+ |000},{C2', |00i}: 7,2 ; 8,2 ; 9,2 : a.
M G i ® T 2 : {CiMOOi}, {a^lOOè}; t2: 5,2: a.
A GiJ: {<;,„ |00i}, {C3

+ | 000}, {o-JOOO}: 5 ,3; 6,3; 7,3; 8,3; 11,3; 12,3: a.
L G\„: {<7dl lOO^ j , jaJOOO}: 5,3; 6,3; 7, 3; 8,3: a.
К G 2i ® T3 : {53

+  | 000}, {C21 | 00|} ; t t or t2 : 7, x; 8, x; 9, x: a.
.  GiS ® T 3: {o-dl | 00^}, {C3

+ | 000}, {dJOOO}; t, o r t 2 : 5, x; 6, x; l,x; 8, x; II, x; 12, x: a.

A' G? 2: (C 3

+ ,0) , ( f fd l , 0): 3,2 ; 4,2 ; 6,2 : a.
£/* Gi: Kj,0): 2 ,2 ; 4,2: b.
P* Gt2: (C3

+, 0), (adl, 0) : 3, x; 4, x; 6, x: a.
T" Gi: (CL, 0), (<Td2) 0): 5,x: a.
S* GS

16: (C22, 0), (ah, 0): 5, x; 6, x; 7, x; 8, x: a.
. " Gi : (Ci',,0),Ki , 0): 5, x: a.
S" Gsi„: (C'ii, 0), (ak, 0 ) : 5, x; 6, x; 7, x; 8, x: a.
I .  Gi : (ah, 0): 2,2 ; 4,2 : 6.
R* Gi : (a ft, 0): 2,3 ; 4,3 : b.

191 P6/mmm Dl

bh

( F l ; K6; Kl; M5; Zl. )

.  Gii : {C6

+  [000}, {C21 | 000}, { / | 000}: 7,2 ; 8,2 ; 9,2 ; 16,2 ; 17,2 ; 18,2 : a.
M G J J ® T 2 : {C2 000}, {C21 000}, {/  000}; t 2: 5,2 ; 10,2 : c.
A Gi i ® T 2: {C6

f |000}, {C2, | 000}, {/ | 000}; t3: 7,2 ; 8,2 ; 9,2 ; 16,2 ; 17,2 ; 18,2 : a.
L G U ® T 2 : {C2 |000}, {C2', | 000}, { /1 000}; t 2 o r t 3 : 5,2 ; 10,2 : c.
* G 2i ® T 3: {SÏ | 000}, {C21 | 000}; t t or t2 : 7 ,2 ; 8,2; 9 ,2 : a.
.  G 2i ® T3 ® T 2: {S3

+  ] 000}, {C21 | 000}; t t o r t 2 ; t 3: 7,2 ; 8, 2; 9, 2: a.

A* GÜ: (C6
+ ,0), (.. , 0): 7,2 ; 8,2 ; 9 ,2 : a.

C/ 1 Gi : (C 2, 0),K,,0) : 5,2 : a.
P* G| 2: (C3

+, 0), (adl, 0): 3, 3; 4, 3; 6, 2: a.
7" G' : (C 22, 0), (<7 i2, 0): 5, 2: a.
Sx Gi : (C 22, 0), (<., 2! .) : 5,2 : a.
T" Gi : (C 21, 0), (<7 dl, 0): 5,2 : a.
S" Gi : (C 21, 0), Ki , 0): 5, 2: a.
I' Gi : (C 21, 0), (<!„, , 0): 5,2 : a.
A' Gi : (C 2 I ,0) , K,,0) : 5,2 : a.
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192 P6/mcc D2
'eh

( F l ; Kb; Kl; M5; Zl. )

.  Gig : {Ce 1000}, {Ci, I OOi}, { / 1 000}: 7,2 ; 8,2 ; 9,2 ; 16,2 ; 17,2 ; 18,2: a.
M G\l ® T 2: {C2 | 000}, {C21 | 00^}, {/|000}; t 2: 5,2 ; 10,2 : c.
-4 G' 6: {<rdl | 00|}, {C3

+ | 000}, {«rj 000}, {C2 | 000}: 19, 3; 20, 3; 21, 3; 22, 3; 23, 3; 24, 3: a.
L G 3 2 : {°ai I ... , {<jj 000}, { / I 000}: 13,3; 14, 3: a.
K G 2 i®T 3 : {S3

+ !000}, {C21|00|}; t , o r t 2 : 7,2 ; 8,2; 9,2 : a.
H GH ® T 3: (<7 dl |00i}, {C3

+ | 000}, {aj 000}; t, o r t 2 : 5,3 ; 6,3 ; 7, 3; 8,3; 11, 3; 12,3 : a.

. * Gil : ( . 6

+ ,0),(<.„,0) : 7,2 ; 8,2 ; 9,2 : a.
U* Gl (C 2, 0), (<r c l ,0) : 5 ,2 : a.
P* G*,2: (C 3

+, 0), (a di, 0): 3, 3; 4,3 ; 6,2 : a.
T* Gl (C"21,0),(ai2,Q): 5,2 : a.
Sx Gf 6 : (C; 2, 0), K, 0): 5 ,3 ; 6,3 ; 7,3 ; 8,3 : a.
. * Gl : (CJ u O),(<T d l ,0) : 5,2 : a.
5" G? 6:(Ci',,0) , (ak, 0) : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
£* G^: (C2 1 ,0) ,K,,0): 5 ,2 : a.
. ' G? 6: (C 21, 0), (CT h, 0): 5,3 ; 6,3 ; 7, 3; 8,3 : a.

193 P63/mcm Dlh

( F l ; ..6 ; Kl; MS; Zl. )

.  Giü: {C6
+ |00i}, {C2i | 000}, {/| 000}: 7,2; 8,2; 9,2; 16,2; 17,2; 18,2: a.

M G\l ®T 2 : {C2|00|}, {C21[00}}, {/|000}; t2: 5,2; 10,2: c.
A G'»: {C6

+ |00|}, {Ci! | 000}, {/1 000} : 15,3; 16, 3; 24, 2: a.
L GJ2 : {<.„ , | OOi}, {C21 |000}, {/ | 000} : 13,3; 14, 3: a.
K G 2 i ® T 3: {Sj+IOOi}, {CiMOOi}; t , o r t 2 : 7,2 ; 8,2; 9,2 : a.
H G 2i ® T3 ® T 2: {S3

+  | OOi}, {C21 |00i}; t, or t 2 ; t 3: 7, 1; 8,3 ; 9,3 : a.

. * GU : (C 6

+ ,0) , (adi,Vi): 7,2 ; 8,2 ; 9,2 : a.
U' G|: (C 2, 0), (<7 Bl) 0): 5 ,2 : a.
P* Gf 2 : (C 3

+ ,0),( CT , 1 ;0): 3,3 ; 4,3 ; 6,2 : a.
T' Gl. (C22, 0), (<7 d2, 0) : 5, 2: a.
5' G? 6: (ad2, 0), (C 22, 0) : 9, 1: b.
Г* G5

S: (C 21, 0), (adl, 0) : 5, 2: a.
S"* G? 6:(a d l , 0),(.^,0) : 9, 1: 6.
I* Gl : (C 21,0) , (<>•„ „ 0): 5,2 : a.
R" GS

16: (ah,0), (C 2 1,0) : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
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194 P63/mmc D%h

(A2; A3; A S ; B2; C5; El; E3; F\; F 2 ; F4; H I ; H I ; J\; K 5 ; K6; Kl; M3; MS ; S2; S3; 58; Zl. )

.  Gil : {C6

+ |00i}, {C21 |002 },{/ |000}: 7,2 ; 8,2 ; 9,2 ; 16,2 ; 17,2 ; 18,2 : a.
M G\l ® T 2: {C2\002},{C'21 |000}, { / I 000}; t2: 5,2; 10,2: c.
.  GJ2 : {Q I OOj}, {C2', j 000}, { / I 000}: 15, 3; 16, 3; 24, 2: a.
L G 3 2 : {adl j OOJ}, {C2

;, | 000}, {/ |000}: 13,3 ; 14,3 : a.
K G 2 i ® T 3: {S3

+  lOOi}, {C2', |000}; t l O r t 2 : 7,2 ; 8,2 ; 9 ,2 : a.
.  GiJ ® T 3: {<7dl |002}, {C3

+ | 000}, {<ik | OOi} ; ^ or t 2 : 5,3 ; 6, 3; 7,3 ; 8,3 ; 11 ,2 ; 12,2 : a.

A* G 2i: (C 6

+ ,0) , (CT d l , 0 ) : 7,2 ; 8,2 ; 9,2 : a.
£/* G|: (C2, 0), ( a v l > 0 ) : 5 ,2: a.
/>* Gt2: (C3

+, 0), (<rdl, 0): 3 , 3 ; 4,3; 6,2: a.
T* Gl: (C2'2, 0), (ad2, 0) : 5, 2: a.
5 .  G? 6: K, 0), (Ci' 2, 0): 5,3 ; 6 ,3 ; 7 ,3 ; 8,3 : a.
T" Gl. (C2 b O),(^i ,0) : 5 ,2 : a.
5"' G? 6: (<7 t, 0), (C 2', , 0): 5,3 ; 6,3 ; 7,3 ; 8, 3: a.
I' Gl : (. 2 1,0),.„,0) : 5,2 : a.
Rx G? 6 : (a u l , 0), (<r h, 0): 9, 1 : . .

195 P23 . 1

(F l ; ^7; MS; TS; Zl. )

.  G 2 4: {Q! |000},{C2 x|000},{C2 > , |000}: 4,2 ; 5,3 ; 6,3 : a.
X Gl ® T 2 : {C2z | 000}, {C2, j 000}; t2 : 5 ,2 : a.
M G5

S ® T 2: {C2z | 000}, {C2}. | 000}; t, or t2 : 5,2 : a.
R G9

24 ® T 2: {Cf, | 000}, {C2J 000}, {C2>. | 000}; t, or t2 o r t 3 : 4,2 ; 5, 3; 6, 3: a.

. * G 4: (C 2y, 0): 2,2 ; 4,2 : i.
S" G 2 : (£,0): 2 ,2 : a.
. * GJ : (..! , . ) : 2,х; 4,x; 6,x: a.
Sx G 2 : (E, 0): 2,2 : a.
Z* G 4: (C 2l, 0): 2,2 ; 4,2 : b.
T' G 4: (C 2z, 0): 2 ,2 ; 4 ,2 : b.

196 F23 T1

( F l ; Kl; MS; TS; Zl.)

r Gli- {Cii I 000}, {. 2, 000}, {C2}. | 000}: 4, 2; 5, 3: 6, 3: a.
X Gl <g> T 2: {C2z|000}, {C2 J |000}; t, or t3 : 5 ,2 : a.
L G1

6 ® T 2 : {C3

f, | 000}; t, or t2 o r t 3 : 2, 3; 4, 1; 6, 3: a.
W G 4 ® T4: {C2 l |000}; t 2 or t 3 : 2,2 ; 4 ,2 : b.

&' G 4 : (. 2. „ 0): 2,2 ; 4 ,2 : b.
. .  Ci. (C 3-,,0) : 2. „Y; 4.x; 6, .x: a.
I .  G 2 : (£, 0): 2 ,2 : a.
Sx G2: (E, 0): 2 , 2 : a.
Zx G4: (. 2„ 0): 2 ,2 ; 4 ,2 : b.
Q* G 2: (E, 0): 2, .: : . .
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197 /23 T3

( F \ ; Kl; M5; T5; Zl. )

.  Gi V {C3-,  I 000}, {C2x | 000}, {C2y \ 000}: 4, 2; 5, 3; 6, 3: a.

.  G 2 4 ® . 2: {Cj, ! 000}, {C2J 000}, {C2j, | 000}; ^ or t2 or t 3 : 4, 2; 5, 3; 6, 3: 0.
? Git ® T4: {CJ! | 000}, {C2x | 000}, {C2>, | 000}; t! or t2 or t3: 4, x\ 5, x; 6, x: a.
W G 4 ® T 2: {C2 z |000}; t 3: 2, 3; 4, 3: è.

£* G2 (Ë, 0): 2,2: . .
A* Gi (C 2y, 0): 2,2 ; 4,2 : b.
A' Gé (C3-,,0): 2, x; 4, x; 6, x: a.
O1 Gi (C2 z ,0): 2, x; 4,x: b.
Gx G\ (£, 0): 2 ,2 : a.
Fx G^ (C3

+
4, 0) : 2, jc; 4, x; 6, x: a.

198 P2t3 . 4

(Fl ; /<:? ; M5; T5; Zl. )

.  G^ 4: {......} , {C2JHO},{C 2, |OM}: 4,2 ; 5,3 ; 6,3 : a.
-*" G? 6: {C2JOM}, {.2*1..} : 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
M GS

16: !C2 z | iOi},{C2 x | iiO}: 9, 1: b.
R G ' 4 ®T 2 : {CfJOlO}, {C2JifO}, {C2 j |0fi}; t l O r t 2 o r t 3 : 1 ,1 ; 2,3 ; 3,3; 7,1 : b.

A* G 4 (C 2,,0) : 2,2 ; 4,2 : b.
I .  G 2 (£, 0): 2 ,2 : a.
A' G^ (Си, 0): 2, x; 4, x; 6, x: a.
S" G 2 (£, 0) : 2, 1 : a.
Zx Gl (C2l, 0), (£, 0): 5, 3; 7, 3: a.
. * G i (C 2z, 0), (£, 0): 5, 1; 7, 1: a.

199 /2 t3 . 5

(C6 ; Fl ; ..7 ; M5; .5 ; Zl. )

.  Git: {C3-, | 000}, {C2;c t MO}, {C2y | .. : 4, 2; 5, 3; 6, 3: a.

.  G! 4 ®T 2 : {C3-,|000}, {. 2 . |..} , {C2 L llOf}; t l O r t 2 or t 3 : 4,2 ; 5,3; 6,3 : a.
/> G' 4 ®T 4 : {Cj-, 101},{C2x| -MO}, {C^IOi-i}; t l O r t 2 o r t 3 : l , j c ; 2,x; 3, x; 7,x: 6.
TV G 4 ® T 2 : {C2 z iM}; t 3: 2,3 ; 4,3 : b.

2* G 2 : (£, 0): 2 ,2 : a.
A' G4: (C2y, 0): 2 ,2; 4,2: b.
A' G£: (Cf,, 0): 2, x; 4, x; 6,x: a.
D* G\: (C2z, 0), (£, 0): 5, x; 7, x: a.
G' G2 : (£, 0): 2, 2: 0.
Fx G?2: (C3

+
4, 0), (£, 0): 7, x; 9, x; 11, jc: rf.
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200 РтЪ Т£

(FI; Kl; M5; T5; Zl.)

.  G*48: {. . |000}, {C2JOOO}, {C2y|000}, {/1000}: 4,2 ; 5,3 ; 6,3 ; 11,2 ; 12,3; 13,3: с.
X G ^ ® T 2 : {. 2.  000}, {. 2), | 000}, {/|000}; t2: 5,2 ; 10,2 : с.
M G\1

6 ® . 2: {. 2;(|000}, {. 2),|000}, {/]000}; t t o r t 2 : 5,2 ; 10,2 : . .
.  GÎ8 ® . 2: {Сз1 |000}, {C2J 000}, {. 2.  | 000}, {/|000}; t ( o r t 2 o r t 3 : 4,2 ; 5,3 ; 6,3; 11,2; 12,3;

13,3 : . .

. * GÜ (. 2,,0) , 0^,0) : 5,2 : . .
I' Gi (CT Z, 0): 2,3 ; 4,3 : Ь.
. ' GJ (. 3-, , 0): 2,3 ; 4, 1; 6,3 : а.
S* G\ (<j y,0) : 2,3 ; 4,3 : ft.
Z' G l (C 2I,0) , (a„ 0): 5,2 : . .
. * Gi (C 2z,0) , (. „ 0): 5,2 : . .

201 РпЪ Tl

(FI ; Kl; M5; T5; Zl. )

.  GÎ8: {C3-,|000}, {C2, |000}, {C2y |000}, {/lui}: 4 ,2; 5,3; 6,3; 11,2; 12,3; 13,3: c.
X Gl2: .1.},{»,1.},{'1.} : 13,3 ; 14,3: . .
W G^ 2: Kliü}, {ffz|îîi}, KlMï}: 1_3, 3; 14,3: a.
Ä G $ 8 ® T 2 : {C3~, |000},{C2>|000}, {C2y|000}, {/IM}}; t! o r t 2 o r t 3 : 4, 2; 5, 3; 6, 3; 11,2; 12,3;

13,3: c.

A' G|: (C2y,0), (<r,,0): 5,2: a.
I* G^: (CTZ, 0): 2,3; 4,3: ft.
. * G£: (C3-1;0):_2, 3; 4, 1 ; 6,3: a.
S* G|: (ff,, 0), (£, 0): 5, 3; 7,3: a.
Z* G?6: (<ry, 0), (C2x, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
. * G? 6: (C 2z, 0),( f f l,0) : 9,2 : . .

202 Fw3 Tft

3

(FI ; ..7 ; M5; .5 ; Zl. )

.  G«: {C3~, |000}, {C2x\ 000}, {C2y | 000}, {/|000} : 4,2 ; 5,3 ; 6,3 ; 11,2 ; 12,3; 13,3 : c.
X G l £ ® T 2 : {C2f\ 000}, {C2,| 000}, {/|000}; t t ort3: 5,2; 10,2: c.
L G6i2 ® T2: {56

+, | 000}, {£ | 000}; tt or t2 ort3 : 7, 1 ; 8, 3; 9, 3; 10, 1; 11, 3; 12, 3: b.
W G| ® T4: (Сг„ \ 000}, {a, \ 000}; t2 ort 3 : 5, 2: a.

. * G| (C 2y,0),K , 0): 5,2 : a.

. * Gl (C3-b 0): 2,3; 4, 1; 6,3 : a.
I .  Gi (a,, 0): 2,3 ; 4,3 : ft.
S* Gl (<r,,0) : 2,3 ; 4,3 : 6.
Z1 G l (C 2j[, 0), (a,, 0): 5,2 : a.
g' G^ (£, 0) : 2, 1 : a.
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203 Fdl T£

( F \ ; Kl; M S ; T5; Zl.)

.  GJ 8 : {Cj-JOOO}, {C2x|000}, {C2, | 000}, { / I iii}: 4,2 ; 5,3 ; 6,3 ; 11,2 ; 12,3 ; 13,3 : c.
X Gl2: [а,\Ш], KÜHM/liH}: 13,3; 14,3: a.
i G?2 ® T2: {S6

+! | Hi}, {£ 1 000}; t t or t2 ort3 : 7, 1 ; 8, 3; 9, 3; 10, 1; 11, 3; 12, 3: b.
W Gl2: { f f 2 1 Hi}, {CjJOOOJ: 13,3; 14,3; 17,3; 18,3: a.

b? G|: (C2 y ,0), K,0) : 5,2: a.
A* G£: (. 3-„ 0): 2,3; 4, 1; 6,3 : a.
I1 Gi : (<r z ,0) : 2 3; 4, 3: 6.
S* Gi : ( a y , 0 ) , ( E , 0) : 5,3 ; 7,3 : a.
Z* G? 6: (<7„ , 0),(C 2l,0) : 5, 3; 6, 3; 7,3 ; 8,3 : a.
ßx G2 : (E, 0) : 2, 1 : a.

204 /m3 rt
5

(-F1; Kl; MS; TS; Zl.)

.  Gj 8: {C3-, | 000}, {Cj.,1 000}, {C2y | 000}, {/[000}: 4,2 ; 5, 3; 6, 3; 11 ,2 ; 12,3; 13, 3: c.
H GÎS ® T2: {C3-, |000}, {C2x|000}, {C2y \ 000}, {/|000}; t t o r t 2 o r t 3 : 4 ,2; 5,3; 6,3; 11,2; 12, 3;

13,3: c.
P G^4 ® T4: {C3"i I 000}, {C2x| 000}, {C2), | 000}; t j or t2 ort3: 4, 2; 5, 3; 6, 3: a.
. .  G i (g) T 2: {C2z| 000}, {/1 000}; t 3: 2, 3; 4,3 ; 6,3 ; 8,3 : b.

S* Gi (<. 2, 0): 2,3 ; 4,3 : b.
A' Gl (C 2y, 0), (<j x,0) : 5, 2: a.
A1 G ' (C 3-,,0) : 2,3 ; 4 ,1 ; 6,3 : a.
£>* Gi (C22, 0): 2, 3; 4, 3: 6.
G* GJ (a,, 0): 2 ,3; 4,3: b.
F* Gj (C3

+
4, 0): 2 ,3; 4, 1; 6,3: a.

205 РаЗ Т£

(F\; G5; Kl ; M S ; S8; TS; Zl.)

.  GJ 8: {CM |000}, {CjJ^O}, {C2y | 0^}, { / 1 000} : 4,2 ; 5,3 ; 6,3 ; 1 1 , 2 ; 12,3; 13 ,3 : c.
X Gl2: { . 2 . | . .} ,{. 2 . | .} ,{7|000} : 13,3 ; 14,3 : a.
M G12 : {. 2.  | lOi}, {C2x I ..} , {/  I 000} : 9, 1 ; 10, 1 : b.
R GJ 8 ®T 2 : {Cfj 1010},{C2, |i|0}, {C2, |0fi}, {/1000}; t 1 o r t 2 o r t 3 : 1 , 1 ; 2 ,3 ; 3,3; 7 ,1 ; 8, 1 ; 9,3 ;

10,3 ; 14, 1: d.

A' Gl : (C 2>, 0), K, 0): 5,2 : a.
I' Gi : (a,, 0): 2,3 ; 4,3 : b.
Ax G' : (C M ,0):_2 , 3; 4,1 ; 6 ,3 : a.
5" Gi: (ay, 0), (£, 0) : 5, 1; 7, 1: a.
Z" G?6: (<. . , 0),(. 2„ 0):_9 , 1: b.
T* G l J : K, 0), (ay, 0), (£, 0) : 6, 1 ; 7, 1 ; 8 ,1 ; 9, 1 : a.
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206 Ia3 ТЦ

(C6 ; F\; K7; M5; S8; T5\ Zl. )

.  Gls: {C3~! |000}, {C2 j c |MO}, {C2),|OM}, {/|000}: 4,2 ; 5,3; 6,3 ; 11,2 ; 12,3 ; 13,3: c.

.  G^ 8 ®T 2 : {Cj-iiOOO},{C 2 y |Oi|},{C2 z l iO!},{/1000}; t ! o r t 2 o r t 3 : 4,2 ; 5,3 ; 6,3 ; 11,2 ; 12,3;
13,3 : c.

P .!! 4®. 4: {.., | 101},{C2x| -MO}, {C2 y|0i-i}; t l O r t 2 o r t 3 : 1 ,1 ; 2,3 ; 3,3; 7 ,1 : b.
N G\°6: {CjJiOi}, {£|001}, {/| 000} : 10 ,1 :6 .

Is Gi: (< r z > 0) : 2,3; 4,3: 6.
. 1 G|: (C 2y, 0), (<.,,0) : 5, 2: a.
. * G£: (C3-i, 0): 2 ,3; 4, 1; 6,3: a.
D" Gl: (C2z, 0), (£.0): 5, 1 ; 7, 1 : a.
G* Gi: (<. 2, 0): 2,3 ; 4,3 : b.
F* G? 2: (C3

+

4, 0), (£, 0): 7 ,1 ; 9,3; 11,3: d.

207 P432 Q'

(Fl; . .7 ; M5; .5 ; Zl. )

.  Gi g : {C4

+

x | 000}, {C,i \ 000}, {C261 000} : 4, 2; 5, 2; 8, 2: a.
* G ] * ® T 2 : {C4

+, |000}, {C2z|000}; t 2: 6,2 ; 7,2 : a.
M Gi£ ® T2: {C4

+
z| 000}, {C2,|000}; t, ort2 : 6,2; 7,2: a.

R Gil ® T2: {Q+, I 000}, {Cj"! | 000}, {. 2.  | 000}; t! ort 2 ort 3: 4, 2; 5, 2; 8, 2: a.

. " Gl: (C 4

+

y,0) : 2,2 ; 4,2 ; 6,2; 8,2 : a.
I* Gi : (C 2e, 0): 2,2 ; 4,2 : b.
. * Gj : (Cj^.O) : 2,2 ; 4,2 ; 6,2 : a.
5' Gi : (C 2c, 0): 2,2 ; 4,2 : 6.
Z" Gi : (C 2,,0) : 2,2 ; 4,2 : 6.
. * Gj : (. 4. , 0): 2,2; 4,2 ; 6,2 ; 8,2 : a.

208 P4232 O2

(FI; Kl; M5; 75; Zl. )

.  Gi» : {C4

+

x | .. , {.. , I 000}, {C2b \ . } : 4, 2; 5, 2; 8, 2: a.
A- G ! J ® T 2 : {CÜ1-M}, {C2JOOO}; t2: 6,2; 7,2: a.
M G!*®T 2 : {C4

+
z|iM}, {C2y|000}; t , o r t 2 : 6,2; 7,2: a.

R Gi» ® T2: {C4
+, | Hi}, {C3-t I 000}, {C2b | Mi}; t, or t2 or t3: 4, 2; 5, 2; 8, 2: a.

. * G^ : (C4

+

y, 0): 2,2 ; 4,2 ; 6,2 ; 8,2: a.
£* Gi: (. 2„, .) : 2,2 ; 4,2 : 6.
. * G£: (Cj-,,0): 2,2; 4,2; 6,2: a.
5' G|: (C2e, 0), (E, 0): 5, 2; 7, 2: a.
Z* Gi: (C2x, 0): 2 ,2; 4,2: b.
Tx G2

6: (C4
+

z, 0),(£, 1): 2 ,2; 4 ,2; 6,2; 8,2: /.
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209 F432 O3

( F l ; Kl; M5; .5 ; Zl. )

.  G 4°: {Ci | 000}, {C3-, | 000}, {С2Ь \ 000}: 4, 2; 5, 2; 8, 2: a.
X Gl 4 ® T 2: {C4

+

y| 000}, {C2z| 000}; t j or t 3 : 6,2 ; 7,2 : a.
L Gf 2 ® T 2: {C3

+, | 000}, {. 2.  | 000}; tl o r t 2 o r t 3 : 3, 3; 4, 3; 6,2 : a,
W Gü ® T4: {. 2, | 000}, {C2J 000}; t2 ort 3 : 5 ,2 : a.

. * GJ : (C 4

+

y,0) : 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
\* Gl: (C M ,0) : 2,2 ; 4 ,2 ; 6,2 : a.
E* G' : (C 2o ,0) : 2,2 ; 4,2 : b.
S* G 4: (C 2c, 0): 2,2 ; 4,2 : 6.
Z* G 4: (C 2,,0) : 2,2 ; 4,2 : b.
Qx G' : (C 2/ ,0) : 2, x; 4, x: b.

210 F4.32 O4

(Fl ; . . . ; .5 ; .5 ; Zl. )

.  G 4°: {c;,  I iU}, {CM | 000}, {C2b | .} : 4, 2; 5, 2; 8, 2: a.
JT G i * ® T 2 : {C4- lUi}, {C2,|000}; t l O r t 3 : 6,2 ; 7 ,2 : 0.
L G 4

2 ® T 2 : {......} , {. 2 . | .} ; t , o r t 2 o r t 3 : 3,3 ; 4,3 ; 6,2 : a.
W Gl ®T 4 : {. 2„|.} , {C2,!010}; t 2 or t 3 : 1,3 ; 2,2 ; 3,3 ; 4,2 : b.

&* Gj : (C^, 0): 2,2 ; 4,2 ; 6,2; 8,2: a.
. * G j : (C3^, 0): 2,2 ; 4,2 ; 6,2 : a.
E* G 4: (C 2o, 0): 2 ,2 ; 4,2 : b.
S" G2

S: (C 2c,0) , (£, 0): 5,2; 7 ,2: a.
Z* G4: (C2I, 0): 2,_2; 4 ,2 : b.
Q* G2

16: ( C 2 f , 0 ) , ( E , 0): 10, j:; 14, x: e.

211 /432 O5

(fl ; Kl; M5; T5; Zl.)

.  G4£: {C4
+, | 000}, {C3", | 000}, {С2Ь \ 000}: 4, 2; 5, 2; 8, 2: a.

.  G4£ ® T2: {C^l 000}, (CM | 000}, {. 2.  | 000}; t t or t2 ort 3 : 4,2 ; 5,2 ; 8,2 : a.
P G^ 4 ® T4: {C3~! | 000}, {C2l| 000}, {C2, | 000}; t t or t2 or t 3 : 4,2 ; 5,2 ; 6,2 : a.
N Gl ® T 2: {C2 2 | 000}, {C2JOOO}; t 3: 5,2 : a.

I .  G 4: (C 2o, 0): 2 ,2 ; 4,2 : b.
A1 G j : (C 4J, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
A* G^ : (. 3-„ .) : 2,2 ; 4,2 ; 6,2 : a.
£)' G4 : (C22, 0): 2 ,2; 4,2: b.
G* G4: (C2b, 0): 2,2; 4,2: 6.
Fx Gl: (C3

+
4, 0): 2 ,2 ; 4,2; 6,2: a.
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212 f4332 O6

(Fl ; Kl; MS; T5; Zl. )

.  Gi°: {C^lffi}, {C3-, 1000}, {C2,|Hï}: 4,2; 5,2; 8,2: a.
X G\°2: {C4- | .} , {C2 ,\ ÜO} : 8,3; 9,3; 10,3; 11,3; 14,2: a.
M G32 : {C42 I JH}, {., , | MO} : 6, 3 ; 7, 3 : a.
R Gl6: {C2JiiO},{C2),|Oii}, {Cj-JOOO}, {. 2 . |.} : 3, 3; 4, 3; 8,2 ; 13,3; 14,3 : a.

. * Gj : (C£, 0): 2, 2; 4, 2; 6, 2; 8, 2: a.
I* Gi: (C2a, 0): 2 ,2; 4,2: i.
. * G£: (C3-,,0): 2,2; 4,2; 6,2: a.
5.  G? 6: (C 2c, 0), (£, 0): 10,3; 14,3: e.
Z" Gl\ (C2x, 0), (E, 0): 5, 3; 7, 3: a.
. * GiJ : (C 4

+

z,0) , (£, 3): 10,3; 12,3; 14,3; 16,3: a.

213 P4t32 O7

(Fl; Kl; M5; T5; Zl.)

.  G ' g : {Ci I a|}, {. .  I 000}, {. 2. ||.} : 4,2 ; 5,2 ; 8,2 : a.
A- Gig : {C4- lui}, {C2JJUO}: 8 > 3; 9,3 ; 10,3; 11,3 ; 14,2 : a.
M G>32: {C4- |iH}, {C2JMO}: 6,3 ; 7,3 : o.
« G^ 6: {. 2 . | ..},{. 2, |.. . {. 3~1|000},{. 2..}- - 3,3 ; 4,3 ; 8,2 ; 13,3 ; 14,3 : a.

. * GJ : (C/ y, 0): 2,2 ; 4,2 ; 6,2 ; 8,2 : a.
Z" Gi : (C 2o,0) : 2,2 ; 4,2 : b.
. * G^ : (..! , .) : 2,2 ; 4,2 ; 6,2 : a.
S* G2

16: (C 2c, 0), (£, 0): 12,3; 16,3: a.
Z* Gjh (C2x, 0), (£, 0): 5, 3; 7, 3: a.
. ' G 3 2: (C 4

+

Z ,0),(E , 3): 10,3; 12,3; 14,3 ; 16,3 : a.

214 /4 t32 O8

(Fl ; Kl; M5; T5; Zl. )

.  Gig : {CilOOi}, {C3-, 1000}, {C2i,|iH}: 4,2 ; 5,2 ; 8,2 : a.
.  Gi g ® T 2: {C4+  ! 00|}, {C3~! ! 000}, {C2b | fj}}; t t or t2 ort 3 : 4, 2; 5, 2; 8, 2: a.
P G^ 4 ®T 4 : {C3-, | 101}, {C2x \ -UO},{C 2> ,!Oi-i}; t 1 o r t 2 o r t 3 : 1 ,2 ; 2,2 ; 3,2 ; 7,2 : b.
N G i ® T 2 : {C2J|00}, {C2 b |iM}; t 3: 5,2 : a.

X" Gi : (C 2o, 0): 2,2 ; 4,2 : b.
. * G j : (C 4+ , 0): 2,2 ; 4,2 ; 6,2 ; 8 ,2 : a.
. * G^ : (C3-, , 0): 2,2 ; 4,2 ; 6,2 : a.
D" G2

S: (C2x, 0), (£, 0): 5, 2; 7, 2: 0.
G' G^: (C2b, 0), (£, 0): 5 ,2 ; 7 ,2 : a.
F" G?2: (C3

+
4, 0), (£, 0) : 7,2; 9,2; 11,2: d.
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215 P43m T $

(FI; K7; MS; T5; ZI. )

.  G1

4°S: {Stx I 000}, {C3-, I 000}, {adb \ 000}: 4, 2; 5, 2; 8, 2: o.
X G l £ ® T 2 : {S+, | 000}, {C2z \ 000}; t2: 6,2; 7,2: a.
M G i J ® T 2 : {54

+
z|000},{C2;(|000}; t , o r t 2 : 6,2; 7,2: a.

Ä GiJj (g) T2: {54
+, | 000}, {Cf, | 000}, {ам\ 000}; t, o r t 2 o r t 3 : 4,2; 5,2; 8,2 : a.

A* GI : (. 2 . ,0),(<.„ . ,0) : 5,2 : a.
£* G}: (<Td i ,0) : 2 ,2; 4,2: b.
\* G4

i2: (C3-„ 0), (. .> 0): 3,x; 4,x; 6,x: a.
5* G 4: (<r dp, 0): 2,2 ; 4,2 : . .
Z' G}: (C 2l, 0): 2,2 ; 4,2: b.
T' G\ (C 2z, 0),(<7 d o ,0) : 5,2 : a.

217 /4 3 w . /

(Fl ; . ; JC7; M5; .5 ; ZI. )

.  Gü : {S4, | 000}, {C3l | 000}, {ad„ | 000} : 4, 2; 5, 2; 8, 2: a.

.  G 4 °®T 2 : {S^JOOO}, {C3-,|000}, {<rdJOOO}; t 1 o r t 2 o r t 3 : 4, 2; 5, 2; 8, 2: a.
P G 4? ® T4: {5^1000}, {Cft | 000}, {ffd t | 000}; t, o r t 2 or t 3 : 4, .: ; 5,x; 8, .: : a.
N G l ® T2.: {C2z | 000}, [adb \ 000} ; t3 : 5, 2: a.

E1 G 4: (<.,„„0) : 2,2 ; 4,2 : b.
A» G|: (C 2y, 0),(<T de , 0): 5,2 : a.
. * Gt 2: (C^.O) , (aa,, 0) : 3, .. ; 4,jc ; 6, x: a.
D" G\: (C2„ Q),(adb, 0): 5, x: a.
G * G 4: («TU, , 0): 2,2 ; 4,2 : 6.
F* G\2: (C 3

+

4> 0), (<r da, 0): 3, x; 4, x; 6, x: a.

216 F43m Tl

(A\; S3; 54; .5 ; B6; C2; 04; Fl ; ..5 ; Kl; M5; M6; Pl ; 51; 56; 58; .5 ; ZI. )

.  G 4g: {5̂  | 000}, {Cf, | 000}, {adb \ 000}: 4, 2; 5, 2; 8, 2: a.
A" G |£® T2: {5ÜOOO}, {C2, |000}; t i O r t , : 6,2; 7,2: a.
L GÎ2 ® T2: {C3

+, | 000}, {<7dt | 000}; t[ o r t 2 or t 3 : 3,3; 4,3; 6,2: a.
W Gl® T4: {5ÜOOO}; t 2 or t 3 : 2,2; 4,2; 6,2; 8,2: a.

A* Gl: (C2y,0),(adc, 0) : 5, 2: . .
. * GÎ2: (C3~,, 0), (.. . , 0): 3, x; 4, x; 6, x: a.
S1 G 4: (aib,0): 2,2 ; 4,2 : t.
5" G 4: (<r, e,0) : 2,2 ; 4,2 : 6.
z* G4- (C2f, 0): 2,2 ; 4,2 : b.
ß* Gl: (£, 0): 2 ,2 : a.
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218 P43n T}

( F l ; Kl\ MS; T5; Zl. )

.  Gig : {S4-  | Mib {C3"i I 000}, fo„  \ Mi}: 4, 2; 5, 2; 8, 2: a.
X G 32 : W, \ Mi}, Kc I Mi} : 6, 3 ; 7, 3 : a.
M G | £ ® T 2 : {S£|Mï}, {C2JOOO}; t, от t2: 6,2 ; 7 ,2 : a.
A G16: {C2,|001}, {C2y 1000}, {CJ, 1001}, foj Mi}: 6,3 ; 7,3 ; 15, 1: b.

A" G| : (C 2y) 0), foc, 0) : 5,2 : a.
E* Gi : fo„,0) : 2,2 ; 4 ,2 : 6.
. * Gf 2 : (..-,,0) , fob, 0): 3, x; 4, x; 6.x: 0.
S* Gi: fo,,0): 2,3; 4,3: b.
Z* Gi : (С2„ 0): 2,2 ; 4,2 : i.
T' G|: (C 2 z,0) , (<7„ ., 0): 5, 2: a.

219 f43c Tl

( F l ; Kl; M5; T5; Zl. )

.  Gi°: {S4~x | .} , {C3-, I 000}, {adb \ Ш] • 4, 2; 5, 2; 8, 2: a.
X G ! * ® T 2 : {S^lïMM^lOOO}; t .ort , : 6,2; 7,2: a.
L G* 2 ®T 2 : {C3

+,| 100}, fob I Mi}; t 1 o r t 2 o r t 3 : 1, 1 ; 2, 1 ; 5, 1 : b.
W Gl® T4: {S4

+J .} ; t2 or t 3 : 2, 3; 4, 3; 6, 3; 8, 3: a.

A' Gi : (. 2„0) , (<.„ . ,0) : 5,2 : a.
. * Gt 2: (C3~, , 0), (. . , .) : 3, x; 4,x; 6,x: a.
Z* Gi : (adb,0): 2 ,2 ; 4 ,2 : 6.
Sx Gi : (<T de, 0): 2,2 ; 4 ,2 : 6.
Z* Gi : (C 2x, 0): 2,2 ; 4,2 : b.
Qx G 2 : (£, 0): 2, 1 : a.

220 /43rf ., "

(Fl ; A T I ; ..7 ; M5; .5 ; Zl. )

.  Gi»: {S4; | iOO}, {Cf. | 000}, fob | Mi}: 4, 2; 5, 2; 8, 2: a.
H Gl6: {C2JMO},{C 2 , |OM K {..-JOOl} , fob I Mi}: 6,3 ; 7,3 ; 15,1 : b.
P GI« : {C3

+

2|OM}, {C2,|0ii}, {C2 ; c lMO},{S4

+ Jill}: 17, x; 18, x; 21, x; 27, x; 28, x: a.
. .  G? 6: fojMi}, {C2JiOi}: 5,3; 6,3 ; 7,3 ; 8,3 : a.

S* Gi : fob, 0): 2,2 ; 4,2 : 6.
. * G|: (C 2> ,0),fo e, 0): 5, 2: a.
\* G|2: (. 3- 1;0), fo,, , 0): 3, x; 4, x; 6,x: a.
0' G? 6: (C 2 z ,0),fo b , 0): 5,x; 6,x; 7, x; 8,x: a.
G* Gi : fo.,0) : 2,3 ; 4,3 : b.
F* Gi 4: (C3

+

4, 1), (adu, 0),(E, 1): 9, x; 10, x; 12, x: c.
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221 РтЗт Öl

THE DOUBLE-VALUED REPRESENTATIONS OF

(A4; B2; B$; El; Fl; .. ; /1 ; K5; Kl; M5; N2; 7V3; 54; 58; .4 ; T5; Yl; Zl. )

Г GS

46: {C^IOOO}, {Cj, | 000}, {C261 000}, {/|000}: 4,2 ; 5,2 ; 8,2 ; 12,2 ; 13,2; 16,2 : b.
X G ^ 2 ® T 2: {C4+  |000}, {C2z|000}, {/|000}; t 2: 6,2 ; 7,2 ; 13,2; 14,2: a.
M G">32 ® T 2: {. 4+|000},{. 2,|000}, {/1 000}; tl ort 2 : 6,2; 7,2; 13,2; 14,2: a.
R G? 6 ® T 2: {C^IOOO}, {Cj", | 000}, {C2JOOO}, {/|000}; t[ o r t 2 o r t 3 : 4,2 ; 5,2 ; 8,2 ; 12,2; 13,2 ;

16,2 : b.

A* G\4

6: (. 4

+„0) , (<r x, 0): 6,2; 7,2 : a.
Z* G|: (C 2a, 0), (<r z,0) : 5,2 : a.
. * G* 2: (Cj-!, 0), (adb, 0): 3, 3; 4, 3; 6, 2: a.
S* G|: (C 2[, 0),( S,0) : 5,2 : a.
Z* Gl : (C 2,,0),(<7 Z , 0): 5,2 : a.
. * GJJ : (C4

+

z, 0), (ffy, 0): 6, 2; 7, 2: a.

222 ... .  P;

( F l ; .. ; /.7 ; .5 ; .4 ; .5 ; Z1.)

.  G|6 {CilOOO}, {C3", 1000}, {С2Ь\ 000}, !/|.} : 4,2 ; 5,2 ; 8,2; 12,2 ; 13,2 ; 16,2 : b.
X G' 4 {/|Mï}, Klïïib {Q,|000}: 19,3; 20,3; 21,3; 22,3: a.
M G2

M {C4z | 000}, {<JK | .} , {C2 | 000} : 19, 2: a.
« G? 9 : {C4- z|000}, {. 2.000} , {C3~i 1010}, {/1.} : 18,2; 21,3 ; 22,3 : a.

A* GJ * (. 4

+

. ,0),( . . „0) : 6,2 ; 7,2 : a.
•L" G|: (C 2o, 0), (<7 r, 0) : 5,2 : a.
. * G|2 (C^, 0), (aib, 0): 3, 3; 4, 3; 6,2 : a.
51 G? 6 (.., , 0), (C 2c, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Z* G? 6 (a,, 0), (C 2x, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
T* G' ' (C4-z, 0),( CTjt , 0): 6,2 ; 7, 2: a.

223 РтЪп О\

(Fl ; G6 ; .. ; Kl; M5; .4 ; .5 ; Zl. )

.  G^, : {C;, | Hi}, {C3-, | 000}, {С2Ь\Ш},{11000}: 4,2 ; 5,2 ; 8,2 ; 12,2; 13,2 ; 16,2 : b.
X GL : {. ,  | Mi}, {*„  I u# , {C2e | Mi}: 19, 2: a.
M G ? 2 ® T 2 : {C4

+

21 Mi}, {C2y | 000}, {/|000}; t, or t 2 : 6, 2; 7, 2; 13,2; 14, 2: a.
A G? 9 2: {C4z|Mi}, {C2, |000}, {Cj-, |010}, {/|000}: 18,2; 21,3 ; 22,3 : a.

. * G!£: (C4
+

y, 0), (af, 0): 6, 2; 7, 2: a.
Zx G|: (C2a, 0), (<r,,0): 5,2: a.
. .  Gf 2 : (C 3- 1S0), (ff*, 0): 3,3 ; 4,3 ; 6,2 : a.
S' G? 6: (C 2c, 0), ((7,, 0): 5,3 ; 6,3 ; 7,3 ; 8, 3: a.
Z' Gl. (C 2x,0),( CTz , 0): 5,2 : a.
T* Gl2: (C4

+

z, 0), (<7X, 0), (. , 1): 13, 2; 14, 2: 6.
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224 РпЪт Ol

(Bl; F\; .. ; Kl; M5; Ml; T4; T5; Zl. )

.  G| 6: {. 4

+

. | .},{..1|000},{. 2 . | .},{/!.} : 4,2 ; 5,2 ; 8,2 ; 12,2 ; 13,2 ; 16,2 : b.
X G> 4: {C4; | .} ,  {<** \ m, {C2,  I 000}: 19, 2: a.
M Glt: {C421 Mi), K | M i }> {C2i! 000}: 19> 2: fl

A G | 6 ® T 2 : {Cili-. , {C3-, 1000}, {C2b |Mïb Ulî î î}; t j o r t z o r t j : 4,2; 5 ,2; 8 ,2 ; 12,2; 13,2;
16,2: Ь.

. " Git : (C 4+ , 0), (... , 0): 6, 2; 7, 2: a.
I.' G|: (. 2„, 0), (<r z,0) : 5 ,2 : a.
. * GÎ2: (C3-1; 0), (adb, 0): 3, 3; 4, 3; 6, 2: a.
S' G?6: (<., . ,0) , (C 2c> 0) : 9,2: b.
Z* G? 6: (.., , 0), (C 2l, 0): 5,3 ; 6,3 ; 7,3 ; 8,3 : a.
T* GH : (C 4-,0) , (o-,,0) : 6,2 ; 7 ,2 : a.

225 Fmlm Ol

(See section 3.8; ^4; Ä2; 58; C4; C5; £1; Fl; F4; F6; .. ; . 1 ; X5; Kl ; M5; P\, S4; S8; .4 ; .5 ;
. . ; Zl. )

.  G» 6: {C4, |000}, {Cf, |000}, {С2Ь \ 000}, {/|000}: 4,2 ; 5,2 ; 8,2 ; 12,2 ; 13,2 ; 16,2 : b.
X G|2 ® T 2: {C4

+

y | 000}, {C2, | 000}, {/  | 000}; t, or t 3 : 6, 2; 7, 2; 13, 2; 14, 2: a.
L G^ 4 ®T 2 : {Cf, | 000}, {C2b \ 000}, { / 1 000}; ^ or t2 or t 3 : 3,3 ; 4, 3; 6,2 ; 9, 3; 10,3; 12,2 : b.
W G\l ® T4: {S4t I 000}, {C2d I 000}; t2 ort 3 : 6, 2; 7, 2: a.

. 1 G!*: (C 4+ , 0), K, 0): 6,2 ; 7 ,2 : a.

. * G* 2: (C3-1; 0), (<. . , 0): 3, 3; 4, 3; 6, 2: a.
S' G Ü : (C2o, 0),(az, 0): 5 ,2: a.
S* G|: (C2c, 0) > (<7 y , 0 ) : 5 , 2 : a.
Z' G5

S: (C2l,0),(a,,0): 5,2: a.
Q* G4: (C2/,0): 2, 3; 4, 3: i.

226 Fmlc Ob
h

( F l ; .. ; A:7; M5; .4 ; .5 ; Zl. )

.  G^ 6: {C4l| 000}, {C^ | 000}, {C2 b | 000}, { / I ÎM}: 4,2; 5,2; 8,2; 12,2; 13,2; 16,2: b.
X G? 2 ® T2: {C4

+JOOO}, {C2JOOO},{/lui} ; t , o r t 3 : 6,2; 7,2; 13,2; 14,2: a.
L G|8: {C3

+, 1010}, {C2JOOO}, { I \ j j j } - 10,1; 17,3; 18,3: a.
. 7 G l ^ ® T 4 : {S4Ji|i}, {C2/ |000}; t 2 o r t 3 : 6,3 ; 7,3 : a.

. 1 Git : (C 4

+

y, 0),K,0) : 6,2 ; 7 ,2 : a.
. * G* 2: (C3-b 0), (a, b, 0) : 3,3 ; 4,3 ; 6,2 : a.
I* G>: (C2a, 0), K, 0): 5,2 : a.
S' G| : (C 2c, 0),(s , 0 ) : 5 , 2 : a.
Z* G^ : ( C 2 f , 0 ) , (a z, 0): 5,2 : a.
g« G 4: (C 2/ ,0) : 2, 1 ; 4, 1 : . .
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227 Fd3m Ol

(See section 3.8; 05; B6; D3; £1; E2; F\; H I ; .. ; Л; КЪ; K 5 ; Kl; L I ; M2; MS; Me; N3; Pi; P4;
SS; S l l ; .4 ; .5 ; 73; Zl. )

.  G» 6 : {C;jiii}, {C3-,|000}, {C2 6 | i i i},{/liii}: 4,2 ; 5,2 ; 8,2 ; 12,2 ; 13,2 ; 16,2 : b.
X G2

M: {C:y | Hi}, .  ! .} , {C2, ! 000}: 19, 2: 0.
L G1 4 ®T 2 : {Cj-.IOOO} , {C2Jiii}, {/ l i i i}: t , o r t 2 o r t 3 : 3,3 ; 4,3 ; 6,2 ; 9,3 ; 10,3; 12,2 : b.
W Gl4: {Ŝ  | 000}, {ay\ iu}: 13,3 ; 14,3 ; 15,3 ; 16,3 ; 20,2 : a.

. " G}J: (C 4

+„0) , (<.„0) : 6,2 ; 7 ,2 : a.
. * Gt 2: (C M, 0), (<7, ., .) : 3 ,3 ; 4,3 ; 6,2 : a.
£* Gl: (C2o, 0), (<7 Z ,0) : 5,2: a.
S" G?6: (<r,e,0), (a,., 0): 9 ,2 : 6.
Z* G?6: ( (7 ),,0),(ffzlO): 5,3; 6,3; 7,3; 8,3: a.
Q* Gf 6 : (C2/, 0), (£, 0): 10,3; 14,3: e.

228 /. .  Ol

( F \ ; .. ; ..7 ; M5; .4 ; .5 ; Zl. )

.  G!6 {Ci | ui}, {C3-, | 000}, {C2b | iii}, { / I H|}: 4, 2; 5, 2; 8, 2; 12, 2; 13, 2; 16, 2: 6.
A- G^ 4 {./ , | Hi}, .  | H|}, {C2x | 000}: 19, 2: a.
L G 48 {C^IOIO} , {C2JiH}, {/Illl}: 10,1 ; 17,3 ; 18,3: a.
W G^ 4 {54

+J Mi}, {<7Z  I H|} : 13,3; 14,3 ; 15,3 ; 16,3; 20,1 : a.

. -  G\l (. 4

+ .„0) , (<. . , 0): 6,2; 7,2: a.
A" G4

12 (..,0) , (<. . ,0) : 3, 3; 4, 3; 6, 2: a.
Z 1 Gl : (C 2o, 0), (az, 0): 5,2 : a.
S> G? 6 (ade,0), ((7,,0) : 9 ,2 : i.
Z* G? 6 (<r y, 0), (cr z, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
Of <^ 2^.., 5.\.'...^\.\^..\\. . . .

229 Imlm Ol

( A 4 ; Bl; B2; B S ; C5; E\; F\; F4; .. ; 71; ^5; Kl; MS; 54; S8; T4; T5; Zl. )

.  G^ 6: {C4

+JOOO}, {C3-, | 000}, {C2t | 000}, {/|000}: 4,2 ; 5,2 ; 8,2 ; 12,2 ; 13,2 ; 16,2 : b.
H Gif, <x> T2: {C4

+JOOO},  { C j i \ 000}, {C2J 000}, {/1 000}; t, ort 2 ort 3 : 4,2 ; 5,2; 8,2; 12,2; 13,2;
16,2 : b.

P GiS ® T4: {SÏ,, | 000}, {Сз! 000}, {adb | 000}; t, or t2 o r t 3 : 4, 2; 5, 2; 8, 2: a.
W . ! . ® . 2 : {C2J 000}, {. 2. | 000}, {/|000}; t 3: 5, 2; 10, 2: c.

I' G|: (Cla, 0), K, 0): 5,2 : a.
. * GÎJ : (C4+, 0), K, 0): 6, 2; 7, 2: a.
. * G|2: (..-,,0) , ((7 . , 0): 3 ,3 ; 4,3 ; 6,2 : a.
D' Gl : (C 2z) 0), (adt, 0): 5,2 : a.
G * Gl : (С2Ь, .) , (<7 .<1 , 0): 5,2 : a.
F* G* 2: (C 3

+

4, 0), (cr d o ,0) : 3, 3; 4, 3; 6, 2: a.
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230 laid 01°

(F\; .. ; K7; MS; S8; T4; .5 ; Zl. )

.  Gi 6: {C£ | 00}}, {.. \  | 000}, {C2t | .} , { / I 000}: 4,2 ; 5,2 ; 8,2 ; 12,2 ; 13,2; 16,2 : b.
H G?„ : {C4

+

z|OiO}, {C2, | 1.-{C 3

+ , l HI} , {/1000}: 18,2; 21,3 ; 22,3: a.
P Gi„ : {C3

+

2|OM}, {C2,|0ii}, {C2 l | f fO}, {££ I ill}: 17,3; 18,3; 21,2; 27,3; 28,3: a.
N Gl2: {<г„ь\Ш}, {^JjOO}, {/1000}: 13,3; 14,3 : a.

E* CJ : (C 2 o ,0),(a z ,0) : 5,2 : a.
. * Gi£: (C4

+
y, 0), (CT,, 0): 6,2; 7 ,2 : a.

A' Gt2: (C3-,,0), ((7^,0): 3,3; 4,3; 6,2: a.
D' G»16: (C2z, 0), (oib, 0): 5, 3; 6, 3; 7, 3; 8, 3: a.
G" G?6: (C2b, 0), (a,,, 0) : 5,3; 6,3; 7,3; 8,3: a.
F* GiV (C3

+
4, 1), (ada, 0), (£, 1): 9, 3; 10, 3; 12, 2: c.

Woto îo Table 6.13

(i) This table is arranged in a similar way to Table 5.7 for the single-valued representations of the space-groups
(q.v.).

(ii) The space groups are arranged in the order and notation used in the International tables for X-ray crystallog-
raphy (Henry and Lonsdale 1965) and in Tables 3.7 and 5.7 of this book.

(iii) The Brillouin zone for any space group can be identified from Table 3.7 and Figs. 3.2-3.15.
(iv) The first column lists the special points of symmetry and the lines of symmetry in the basic domain of the

Brillouin zone (see section 3.3) and their positions in the Brillouin zone can be identified from Table 3.6. A superscript x
is used to denote a line of symmetry.

Points of symmetry

(v) Following the label of a point of symmetry the little group HGtk in the sense of Herring (1942) is identified.
This is done as follows: the abstract group Gjq (see Table 5.1) is given and the space-group elements following Gjq
are to be identified with P, Q, R,. . ., the generators of G"C| in the order in which they occur.

(vi) In some cases for points of symmetry HGtk is written as G"C| ® Tm, a direct product of some group Gjq
with Tm, an Abelian group of small order, m, consisting only of translation operations of the form {E \ t}. In these
cases a suitable generating element of the Abelian group is indicated after the generators of G"C| by giving the trans-
lation t of {E | t}. In a few cases "Gtk takes the form G"G| ® Tm ® Ts where Tm and Ts are two Abelian groups with
generating elements {E \ t„} and {E \ t,} respectively; tm and ts are then listed following the generators of G"G|.

(vii) After the above information, and separated from it by a colon, is the identification of the labelling assigned
to the reps of HG tk and of the reality of the induced space-group reps (Fk t G f) (see sections 4.6, 5.2, 6.3, and 7.6).
Between one pair of semicolons is the code 'p, q ' which is to be understood as meaning that the rep Rp of G"C| corre-
sponds to a small (allowed) rep, Fk, of Gtk, and that (Fk t Gf) is of the q\h kind (q = 1, 2, or 3). The usefulness of the
reality of (Fk t GT) lies in determining whether or not extra degeneracies occur if the crystal described by the space
group Gf also possesses time-inversion symmetry. The relation between the reality of (Fk T G*) and these extra
degeneracies described in the text of section 6.3 (see p. 459) is

Reality Degeneracy
1 b
2 a
3 .

When ther e is no elemen t in the space group tha t transform s k into — k the additio n of time-reversa l symmetr y
produce s a type (x) degenerac y (see p. 460) and in this case the symbol x is used in the table in place of 1, 2, or 3.

(viii) In the cases where HG tk contain s one or more element s of the form {E \ t}, only those reps of "G tk are include d
which are compatibl e with the requiremen t of eqn (3.4.3) tf({E \ t}) =  exp ( — ik . t)l , for a representatio n of the
translatio n group T of which {E | t} is a member ; tha t is, only the reps of "G tk which lead to small reps of G t k are
included .

(ix) Only the double-value d reps of "G tk are included , tha t is, those reps for which A({£ | 0}) is negative. The



560 TH E DOUBLE-VALUE D REPRESENTATION S OF

single-value d reps of HG tk will of course also be found amon g the reps of G"C| in this table but since these have been
identified previously in Tables 5.7 and 5.8 we do not repeat them here.

(x) The labels used for the space-group reps derived from Rit R2, R), • . -, etc., the reps of the abstract group
G"C| are indicated by the small letter a, b, c,. .., etc., at the end of the entry for the point of symmetry in question.
The letters a, b, c,. .., etc. refer the reader to the relevant part of Table 6.14 (see the Notes to Table 6.14).

Lines of symmetry

(xi) Following the label of the line of symmetry the central extension Gtk* (see sections 3.7 and 3.8) is identified;
the elements of Gtk* are of the form {Hj, a) where Hj is the point-group operation part of a space-group element
and a is a member of the cyclic group Z9 (see eqn (3.7.31)). The (Hj, a) form the abstract group which is specified
and the elements that are given are to be identified with P, Q, R,. . ., the generators of G"G|, in the order in which
they occur. Where alternative values of k for a line of symmetry were given in Table 3.6 we have used the first entry
in deriving this table.

(xii) After the generators of Gtk* and separated from them by a colon is the labelling of those reps of G"C| that
satisfy eqn (3.7.33) and therefore lead to small reps of Gtk ; the reality of the induced space-group reps (Fk t G f) is
also indicated. Between one pair of semicolons is the code 'p, q ' which is to be understood as meaning that the double-
valued rep (Fk t G*) derived from Rp of G"C| is of the cth kind (q = 1, 2, 3) (see Note (vii) above). Reps that do not
satisfy eqn (3.7.33) are not included and, again, the single-valued reps are not included. The letters a, b, c,..., etc.,
refer the reader to the relevant part of Table 6.14 for the letters used to label the space-group reps (see the Notes to
Table 6.14).

(xiii) References to work on the representations of individual space groups are given in the table, in coded form,
under the appropriate space group according to the following key :

A l Adler 1962. F2
A2 Altmann 1956. F3
A3 Altmann and Bradley 1965. F4
A4 Altmann and Cracknell 1965. F5
AS Antoncik and Trlifaj 1952. F6
A6 Asendorf 1957. F7
B l Bates and Stevens 1961. F8
Й2 Bell 1954. G\
B3 Birman 1959a. G2
B4 Birman 1959fr. G3
B5 Birman 1962a. G4
B6 Birman 19626, 1963. G5
Bl Bordure, Lecoy, and Savelli 1963a, fr. G6
Й8 Bouckaert, Smoluchowski, and Wigner 1936. G7
Cl Casella 1959. G8
C2 Chaldyshev and Karavaev 1963. Я1
C3 Chen 1967. Я2
C4 Chen, Berenson, and Birman 1968. ЯЗ
C5 Cornwell 1969. Л
С 6 Cracknell 1965. J2
Cl Cracknell 1967e. Kl
C8 Cracknell and Joshua 1969a.
Dl Daniel and Cracknell 1969. K2
D2 Dimmock and Wheeler 1962fr. КЗ
D3 Döring and Zehler 1953. K4
D4 Dresselhaus 1955. К 5
E\ Elliott 1954fr. Кб
E2 Elliott and Loudon 1960. Kl
E3 Erdman 1960. LI
F\ Faddeyev 1964. £2

Falicov and Cohen 1963.
Falicov and Golin 1965.
Falicov and Ruvalds 1968.
Firsov 1957.
Flower, March, and Murray 1960.
Frei 1967a.
Frei 1967fr.
Gashimzade 1960a.
Gashimzade I960*.
Gay, Albers, and Arlinghaus 1968.
Classer 1959.
Gorzkowski 1963a.
Gorzkowski 1963fr, 1964fr.
Gorzkowski 1964a.
Gubanov and Gashimzade 1959.
Herring 1942.
Hsieh and Chen 1964.
Hurley 1966.
Jones 1960.
Joshua and Cracknell 1969.
Karavaev, Kudryavtseva, and Chaldyshev
1962.
Karpus and Batarunas 1961.
Khartsiev 1962.
Kitz 1965a.
Koster 1957.
Kovalev 1961a, fr.
Kovalev 1965. .
Lax and Hopfield 1961.
Lee and Pincherle 1963.
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Ml Mase 1958, 1959a.
M2 Mase 19596; Mia,sek 1960, 1963, 1966.
M3 Miqsek 1957a, b, 1958.
M4 Mi^sek and Suffczynski 196la, b, c.
MS Miller and Love 1967.
M6 Montgomery 1969.
Ml Moskaienko 1960.
M8 Murphy, Caspers, and Buchanan 1964.
j V l Nusimovici 1965.
N2 Nussbaum 1962.
N3 Nussbaum 1966.
01 Olbrychski 1961.
02 Olbryehski 19636.
03 Olbrychski and Van Huong 1970.
PI Parmenter 1955.
P2 Pikus 1961 a.
P3 Pikus 19616.
P4 Pikus 1961e.
R\ Rabotnikov 1960.
R2 Rashba 1959.
A3 Rashba and Sheka 1959.
R4 Rudra 1965*.
51 Sandrock and Treusch 1964.
52 Schiff 1955.
53 Schiff 1956.

54 Schlosser 1962.
55 Sek 1963.
56 Sheka 1960.
57 Shur 1966.
58 Slater 19656.
59 Slater, Koster, and Wood 1962; Koster 1962.
510 Slechta 1966.
511 Streitwolf 1964.
512 Suffczynski 1960.
513 Suffczynski 1961.
514 Sushkevich 1965.
515 Sushkevich 1966.
Tl Tovstyuk and Bercha 1964.
T2 Tovstyuk and Gemus 1963.
7"3 Tovstyuk and Sushkevich 1964.
T4 Tovstyuk and Tarnavskaya 1963.
Г 5 Tovstyuk and Tarnavskaya 1964.
T6 Treusch and Sandrock 1966.
V\ Van Huong and Olbrychski 1964.
W\ Waeber 1969.
Yl Yamazaki 1957a.
Y2 Yamazaki 19576.
Y3 Yanagawa 1953.
ZI Zak, Casher, Glück, and Gur 1969.

TABLE 6.14

The labelling of the double-valued space-group reps



THE DOUBLE-VALUED REPRESENTATIONS OF562



THE 32 POINT GROUPS AND THE 230 SPACE GROUPS

Gf

563



THE DOUBLE-VALUED REPRESENTATIONS OF564



THE 32 POINT GROUPS AND THE 230 SPACE GROUPS 565



566 T H E D O U B L E - V A L U E D R E P R E S E N T A T I O N S O F



THE 32 POINT GROUPS AND THE 230 SPACE GROUPS 567



568 DOUBLE-VALUED REPRESENTATIONS

Notes to Table 6.14

(i) Fora point of symmetry HGft was identified in Table 6.12 with one of the abstract groups Gjq and the labelling
of the reps indicated by a small arabic letter a, b, c, . . ., etc. The labels given to the space-group reps can then be
found by consulting the entry under G"G| in Table 6.13. The row of the entry corresponding to this small arabic
letter gives the labels assigned to the reps R{, R2,R3..., etc. of the group G"C| as the reps of HGTk for this space group,

(ii) For a line of symmetry the interpretation of the labelling is similar except that the reps A,, R2, R$, etc.
of the abstract group now correspond to the space-group reps derived from the reps of Gtk*.

(iii) The double-valued space-group reps are labelled in a similar way to that used in Table 5.8 for the single-
valued reps; extended forms of both the notation of Mulliken (1933) and the Г notation of Bouckaert, Smoluchowski,
and Wigner (1936) are used. In the latter notation Г is replaced by the letter denoting the relevant point or line
of symmetry in the Brillouin zone, see section 5.3 and, especially, Note (iii) to Table 5.8.

T A B L E 6.15

The additional double-valued space-group reps for the representation domain of РаЗ (T£)

Z'x G*6: K,0), (C2y,0): 5, 3; 6, 3; 7, 3; 8, 3: a.

Note to Table 6.\5

The notation is that of Table 6.13 (see Notes to Table 6.13).



7
The magnetic groups and their corepresentations

7.1 The Shubnikov groups and their derivation

THE 230 space groups (Fedorov groups) were discussed in Chapter 1 and a detailed
classification of them was given in section 3.5. These groups were regarded as the
ultimate development in the study of the symmetry of a crystal until Shubnikov in
1951 introduced the idea of operations of anti-symmetry. By considering an extra
coordinate, with only two possible values, in addition to the ordinary position
coordinates in a crystal, for example colour (black or white), sign (+ or — ), or
direction of magnetic moment (parallel or anti-parallel to a given direction) it is
possible to define the operation of anti-symmetry as the operation which changes
the value of this coordinate, i.e. black to white and white to black for example. If
this operation of anti-symmetry is denoted by Я it is possible to have compound
operations of anti-symmetry corresponding to the performance of both an ordinary
point-group or space-group operation {R \ v} together with the operation of anti-
symmetry J" ; this is analogous to an improper point-group operation that consists
of the performance of a pure rotation operation together with the inversion opera-
tion. Allowing operations of this type it is possible to derive the black and white or
magnetic point groups of which there are 58, and the black and white or magnetic
space groups of which there are 1191. The magnetic point groups were derived by
Shubnikov (1951) and have been conveniently tabulated by Tavger and Zaitsev
(1956), and the magnetic space groups were derived in a thesis by Z'amorzaev in
1953 and by Belov, Neronova, and Smirnova (1955). Two-dimensional black and
white space groups were discussed by Cochran (1952). If we include the 'all white'
groups and the ' grey ' groups the inclusion of the operation of anti-symmetry leads
to 58 + 32 + 32 point groups, = 122 point groups, and 1191 + 230 + 230 space
groups, = 1651 space groups. In this chapter we use the term Shubnikov groups to
include all these, it being clear from the context whether a point group or space
group is meant. Much of the important early Russian literature on these groups has
now been translated into English (Shubnikov and Belov 1964) and is readily avail-
able. An extensive account is given by Birss (1963, 1964) of the form of various tensor
properties for those crystals that have to be described by one of the Shubnikov point
groups. It is a matter for experimentation, usually using neutron diffraction tech-
niques, to determine the structure of a given magnetic crystal and the orientation of
its spins; it can then be assigned to the appropriate Shubnikov group.

The idea of anti-symmetry had been discussed by Heesch (1929a, b, 1930a, b) and
Woods (1935a-c) long before Shubnikov's work but its importance was not realized
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at that time. Heesch's work was probably ignored because at that time it did not seem
to have any immediate application to the description of the physical world. But more
recently new kinds of magnetism have been discovered so that there are now known
to be various kinds of magnetism distinguished: paramagnetism, diamagnetism,
ferromagnetism, anti-ferromagnetism, ferrimagnetism, and more complicated kinds
such as canted anti-ferromagnetism; also, the introduction of the technique of
neutron diffraction (see, for example, Egelstaff (1965), Lomer (1966a, b)) has made
it possible to determine the orientations of the spins of the various atoms in a mag-
netically ordered crystal. These developments have made it clear that the concept of
anti-symmetry and the use of magnetic point groups and space groups are relevant
to the proper crystallographic description of a large number of crystals.

7.2. The classification of Shubnikov groups

We consider point groups first. If G is one of the ordinary point groups discussed in
the early sections of this book then there are three types of Shubnikov group corre-
sponding to it which are denoted by I, II, or III as follows:

type I, the ordinary point groups (32),
type II, the grey point groups (32), and
type III, the black and white or magnetic point groups (58).

The numbers in brackets give the number of point groups of each type, and the total
number of these Shubnikov point groups is 122.

In type I groups the operation of anti-symmetry 3% is not present; these groups,
G, have already been listed in Table 1.3 and nothing further need be said about them
here.

The extra coordinate, s, which we have introduced and allowed to take one of two
values is assumed to take both values simultaneously in type II groups so that any
operation of G leaves s unchanged and ̂  times any operation of G changes black
into white and white into black thereby also leaving s unchanged. Thus ?Л times any
operation of G is also an element of this type II group and the term grey group derives
from the fact that s takes both values such as black and white simultaneously.

D E F I N I T I O N 7.2.1. A type II Shubnikov point group, M, is given by

(7.2.1)

where G is any (ordinary) point group.
There are clearly 32 of these groups. The difference between the ordinary point

groups and the grey point groups is that in the former the anti-symmetry operation
'M is not present at all, whereas in the latter it is an operation of the group, and has
the effect of doubling the order of the group. Since M2 = E and 3% commutes with
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all the elements of G the grey groups are therefore direct product groups of the form
M = G ® {E + at].

In the type III Shubnikov point groups, the genuine black and white point groups,
M on its own is not an element of the group, but, of the elements in a point group G,
half of them are now multiplied by the operation of anti-symmetry, 2%. The other
half of the elements of G form a group on their own, i.e. form a halving subgroup of
G. It may be possible to choose the halving subgroup of G in several different ways
so that from the 32 point groups, substantially more than 32 black and white groups
will be obtained; in fact there are 58 of them.

D E F I N I T I O N 7.2.2. A type III Shubnikov point group, M, is given by

(7.2.2)

where H is a halving subgroup of the (ordinary) point group G.
We illustrate the derivation of type III (black and white) Shubnikov point grpups

from the ordinary point groups G by considering the example of the black and white
point groups that are derived from 4mm (C4v) the point group of the symmetry
operations of a square. If a square is drawn on a piece of paper it has the symmetry

FIG. 7.1. The symmetry operations of a square.

operations E, C4
+

z, C4"z, C2z, ax, ay, (jda, and adb, see Table 1.3 and Fig. 7.1. If irregular
black and white patches are drawn at random on the square these symmetry opera-
tions, other than E, will be destroyed. However, if half the square is coloured black
and the other half is coloured white in some regular way, such as in Fig. 7.2(a) for
example, then four of these eight symmetry operations may still survive and be sym-
metry operations of the coloured square. Thus E, C2z, ox, and ay are still symmetry
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operations of the square in Fig. 7.2(a); but the other four operations are no longer
symmetry operations, for instance C£z rotates the square by 90° and leaves a black
patch where there was a white one before, and vice versa. But if each of these four
operations is combined with M, to produce aHC4z, .^C4~z, 3%ada, and 3%odb, we have four
colour-changing operations that are now symmetry operations of the coloured square ;
for example $C£Z rotates the square through 90° and turns black to white and white
to black so that the combined effect is to leave the square indistinguishable from its
initial state. Therefore instead of the original group of uncoloured operations we
have four uncoloured elements and four coloured elements, so that exactly half of
the original group elements remain uncoloured and exactly half of them have been
combined with $. The symmetry elements of Fig. 7.2(a) are therefore

FIG. 7.2. Black and white squares to illustrate (a) 4'mm' and (b) 4m'm'.

operations and the four coloured operations are 3№,ox, 0iey, äßada, and 0£adb. The
symbol for this point group is 4m'm'. Therefore, from the group of the eight sym-
metry operations of the square, that is from the point group 4mm (C4v), we have
produced two magnetic point groups, namely

and

t Some authors underline the parts of the point-group symbol that denote coloured elements instead of using
primes.

which still form a group and the group is denoted by 4'mm'. The primes indicate the
symmetry elements that are now associated with 3%. J We could have made a different
choice for the four uncoloured elements by considering the square shown in Fig.
7.2(b). For this square the four operations E, C4z, C4z, and C2z are still symmetry

A third magnetic point group that contains the elements
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differs only from the first of these two groups in the orientation of the symmetry
elements; the two groups are related by a 45° rotation about the z-axis.

It is possible to perform a similar analysis to the above by starting from any other
of the 32 point groups and, in all, 58 different type III Shubnikov point groups can
be obtained; they were listed by Tavger and Zaitsev (1956) and are reproduced in
Table 7.1. Stereographic projections of the black and white point groups have been
given by Koptsik (1966) and McMillan (1967). The subgroups of the black and white
point groups have been investigated in detail by Ascher and Janner (1965«).

TABLE 7.1

The magnetic point groups

No. M H (G - H) A

1 T ' 1 (C\) / l a
2 2' 1 (C,) C2z C2z a
3 m' 1 (C,) az az a
4 2/m' 2(C2) /; <rz I b
5 2'/m m(Clk) /; C2z / b
6 2'/m' T(Q C2z; <rz C2z b
7 2'2'2 2(C2) C2l; C2y C2x b
8 m'm'2 2 (C2) ax', ay ax b
9 m'm2' m(Cu) C2z; ax C2z b

10 m'm'm' 222 (D2) /; ax; <jy; <jz / c
11 mmrri mm2(C2v) C2x; C2y; /; <rz I c
12 m'm'm 2/m(C2k) C2x; C2y; ax; ay C2x c
13 4' 2(C2) C4

+
2; C4- C4

+
z 6

14 4' 2(C2) S1^; S4
+

z 54z 6
15 42'2' 4(C4) C2l, C2,; C2a, C2h C2, e
16 4'22' 222 (/>2) C4

+
2> C42; C2a, C2(I C2a e

17 4/m' 4(C4) /; S1^; CTZ; S^ / e
18 4'/m' 4(S4) 7; C4z; oz; C4z / e
19 47m 2/m(C2J C4

+
2; C4z; S4

+
z; 54z C4

+
z c

20 4m'm' 4 (C4) tr^, <7y; oda,adt ax e
21 4'mm' mm2(C2ll) C4z, C4z; a^a^ ada c
22 42'm' 4(S4) C2x, C2y; adu, adb C2x e
23 4'2m' 222 (Z>2) S42, S4

+
z; aia, adb ada c

24 4'm2' mm2(Clv) S4z, S4
+

z; C2a, Cu C2a c
25 4/m'm'm 422 (D4) /; az; S4z, S4

+
z; ax, a,; nda, aib I g

26 4/m'mm 4mm(C4c) I; a,; S4z, S^; C2x, C2y; C2a,C2b I g
27 4'/mmm' mmm(D2h) C^, C^2; C2a, C2b; S^, S^; ada, adb C2a d
28 4'/m'm'm 42m (D2d) I; <rz; C4

+
z, C4z; <rI, ay; C2a, C2b I g

29 4.mm'm 4/m (C4J C2jt, C2y; C2a, C2fc; <TX , <;,; <7J(I, a,b C2x /
30 32 3(C3) C21,C22, C23 C21 h
31 3m' 3 (C3) odl,ad2,ad3 adl h
32 6' 3(C3) <jk; S3~; S3

+ aft h
33 6m'2' 5(C3A) C2',, C2'2, C2'3; < r p l ) < 7 c 2 , < 7 o 3 C21 /
34 6'm2' 3w(C3o) <r t; S,",S^; C21, C22, C23 t?fc J
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No. M H (G - H) A

35 6'm'2 32(£>3) ah; S3, S3 ; <г„,, а„г, <т„3 ah j
36 6' 3 (C3) C6

+ ; C6- ; C2 C2 A
37 3' 3(C3) /; S6-; S6

+ / h
38 3m' 3 (C3i) C'2i,C'22,C'23;adl,ai2,ai3 C21 г
39 3'm 3m(C3„) /; S6- S6

+ ; C21, C22, C23 / y
40 3'm' 32 (03) /; S6~ S6

+; а„„ <7„, <т„3 / y
41 62'2' 6(C6) C 2 1,C 2 2, C23; C 2 1 ,C 2 2 ,C 2 3 C21 /
42 6'2'2 32 (03) C2; C6

+, C6-; C 2 1 ,C 2 2 ,C 2 3 C2 y
43 6/m' 6(C6) /; S3" ; 53

+; Sg ; S6

+; ст„ / /
44 б'/m' 3(C3i) C6

+; C6-; C2; S3

+; S3-; a, С2 /
45 б'/m 6(C3h) /; S« ; S6

+ ; C2; C6

+; C6" 7 /
46 6m'm' 6(C6) adl, ad2, ad3; avl, av2, a„3 <rdl /
47 6'm'm 3m (С3„) C2; C6

+, C6~ ; сг„„ <т„2, <т„3 С2 у
48 б'/mmm' 62m (D3h) I; C2; 56

+, S6- ; C+ C6~ ; <T d l, ad2, ad3; C2',, C22, C23 / n
49 G/m'm'm lm(D3d) C2; ah; C6

+, C«T ; S3, S3

+ ; C2 1, Ci'z, C23; avl, a„2, av3 C2 k
50 6/m'm'm' 622 (Z)6) /; <rh; S6

+, S1,," ; S3

+, S3" ; <rdl, стй2, ст„3; <т с 1, <т„2, а„3 / л
51 6/т'тт бтт (С6„) /; ak; S6

+, S1^ ; S3

+, S3" ; C21, C22, C23; C2 1, C22, C23 / n
52 6/mm'm' 6/m (C6h) C2 1, C22, C2 3; C2'b C2'2> C2 3; adl, ad2, ad3; avl, a»2, av3 C21 m
53 m'3 23 (Г) I; ax,ay,az; S^,S^,S63,SM; S^,S^2,S^3,S;4 I о
54 4'3m' 23(7) ada, adb, adc, add, ade, adf; S ,̂ S^y, S4

+

2, S4x, S4y, 5*z <rda о
55 4'32' 23 (Г) C2a, Clb, Clc, C2d, C2e, C2f; C4

+

x, C4+, C4

+

z, C4l, C4,, C4z C2o 0

56 m'3m' 432(0) /; S6

+,, S6

+

2,56

+

3, S6

+

4, S ,̂ S6~2, 56~3, S6~4; <т„ а„ az; / g

"da, °db, "de, °dd, °de, adl', Sïx, Sïy, Sfz, Sïx, S^y, Sîz

57 m'3m 43m (Td) I; S6
+,, S6

+
2,56

+
3, 56

+
4, S6l, S62, S;3, S^; a ay, az; 1 q

C2a, C2b, C2c, C2d, C2e, C2f; C4x, C4y, C4z, C4x, C4!, C4z

58 m3m' m3 (T,) C2a, C2b, C2c, C2d, C2e, C2/; C4x, Cty, C4
+

z, C^, C4~, C4z; C2a p
Gda> Gdb> Gdc> Gdd> adei Gdf'i ^4x> ^4у *^4z) ^4je' ^4y ^4z

Жо/е^ /о Table 1Л

(i) The type III Shubnikov point groups are arranged according to the crystal systems and an arbitrary number,
from 1 to 58, is assigned to each of them in column 1. The magnetic group M is identified in column 2 in the notation
of Shubnikov and Belov (1964). In column 3 we identify H, the halving subgroup of uncoloured elements, in the
Hermann-Mauguin notation with the Schönflies notation in brackets. The actual symmetry elements in H can be
identified from Table 1.3, except that for m'm2' (9) the elements of H are E and ay instead of the conventional E
and CTZ in Table 1.3. In column 4 we identify the coloured elements, that is the elements of the coset 3t(G - H), see
eqn (7.2.2); these elements are arranged in classes with commas between elements in the same class and with semi-
colons separating one class from the next. The elements in column 4 are to be understood to be multiplied by <#.
The information in the last two columns will be used later (see Table 7.15).

(ii) In attaching the primes to the appropriate parts of the point-group symbol in column 2 it is necessary to relate
the various positions in the point-group symbols with the appropriate symmetry elements (see Table 3.3.2 of the
International tables for X-ray crystallography (Henry and Lonsdale 1965)).

(iii) An adaptation of the Schönflies notation has sometimes been used to label the type III Shubnikov point
groups; this takes the form G(H) so that, for example, 4'32' would be denoted by O(T). These groups can also be
labelled by using an adaptation of the Shubnikov point-group labels (see, for example, Shubnikov and Belov (1964)

p. 142).

We now turn to the Shubnikov space groups. It is convenient to subdivide the
Shubnikov space groups into four types rather than three. The first two types are
directly analogous to the first two types of point group already discussed. The sub-



THE MAGNETIC GROUPS AND THEIR COREPRESENTATIONS 575

division of the remaining (black and white) space groups into two types is dictated
by a feature that has no direct analogy in dealing with the point groups; that is,
whether or not the space group has a pure translation associated with the operation
of anti-symmetry. The four types of Shubnikov space group are denoted by I, II,
III, and IV as follows:

type I, the Fedorov (ordinary) space groups.(230),
type II, the grey space groups (230),
type III, black and white space groups based on ordinary Bravais lattices (674),

and
type IV, black and white space groups based on black and white Bravais lattices

(517).
The total number of these Shubnikov space groups is then 1651 ; illustrations of the
symmetry operations of each of the Shubnikov space groups will be found in the book
by Koptsik (1966).

The type I groups have been discussed in earlier chapters, and the generating
elements of each one were listed in Table 3.7. The operation of anti-symmetry is not
present in any of these groups.

Each type II group is a direct product of one of the Fedorov groups, G, and the
group consisting of the identity operation, E, and the operation of anti-symmetry, 3%.
The grey group is readily given in terms of G by

D E F I N I T I O N 7.2.3. A type II Shubnikov space group, M, is given by

(7.2.3)

where G is any Fedorov group.
This should be compared with Definition 7.2.1. Nothing further need be said about

the grey space groups at the moment, there are 230 of them and they are included in
Table 7.4.

For a type III group there is again a direct analogy with the case of the point
groups, Definition 7.2.2.

D E F I N I T I O N 7.2.4. A type III Shubnikov space group, M, is given by

(7.2.4)

where H is a halving subgroup of the Fedorov space group G and (G — H) contains
no pure translations.

It is generally possible, as in the case of the point groups to choose a halving
subgroup, H, in one of several ways for any given Fedorov group, G, so that there
are substantially more than 230 of this type of Shubnikov space group. The total
number of such type HI space groups is 674 and they are listed in Table 7.2 where the
halving subgroup H is also identified.
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T A B L E 7.2

Type HI Shubnikov space groups

Fedorov Shubnikov 'Coloured' Fedorov Shubnikov 'Coloured'
group group generating group group generating

elements elements

P\(\) — — Pmc2, (26) Pm'c2\ (68) a,
PI (2) P\' (6) / Pmc'2'i (69) ay

7*2(3) JP2'(3) C2z Pm'c'2t(10) ax,a,
P2l (4) P2\ (9) C2z Peel (27) Pc'cZ (80) a,
52(5) B2'(15) C2z Pc'c'2(81) <тх, ст,
Pm (6) TW (20) <7Z Pmai (28) 7>m'a2' (89) «т,
Pb (7) W (26) <72 Pma'2' (90) <ry

Sm(8) 7W(34) crz Pwi'a'2 (91) <rx, ffy

Я* (9) Bb' (39) az Pca2, (29) Pc'a2\ (101) стх

P2/m(10) Р2'//и(44) C2z, 7 Pca'2i (102) a,
P2/m'(45) 7 Pc'a'2, (103) <т х,<т у

P2'/m'(46) C2z Pnc2(30) Рп'с2'(ПЗ) <тх

^ i / m f l l ) P2\/m(52) C 2 z > / Pnc'2'(114) <7,
P2!/m'(53) 7 /Vc'2(115) «т,, a,
Р2;/т' (54) C2z Pmn2, (31) Pm'n2i (125) <r,

B2/m(l2) B2'/m(60) C2z, / Pmn'2\ (\26) a,
S2/m' (61) / Pm'n'2] (127) ^, a,
B2'/m'(62) C2z Pba2(32) Pb'a2'(\3T) ax

P2/b(\3) P2'/b(61) C 2 z,7 P6'a'2(138) <rx, a,
Р2/Й' (68) 7 Лю2, (33) 7Jn'a2'1 (146) af

P2'/b' (69) C2z 7>na'2'i (147) ay

P 2 i / b ( \ 4 ) P2\/b(ll) C2 z,7 fti'a'2, (148) at,ay

P2,/fc(78) / Рип2(34) Рп'п2' (158) <т,
Р2\/Ь'П9) C2z Pn'n'2(159) a,, ст,,

Я2/6(15) В2'/Ь(%Т) C2 z,7 Cmra2(35) Cm'm2'(167) a,
B2/*'(88) 7 Cm'm'2(168)  <7,
B2'/b' (89) C2z Cmc2l (36) Cm'c2; (174) a,

P222 (16) P2'2'2 (3) C2l, C2, Cmc'2', (175) ay

P222, (17) />2'2'21 (9) C2j[, C2, Cm'c'2, (176) o-x, <г„
Р22'2', (10) C2j Ccc2(37) Cc'c2' (182) a,

P2,2,2(18) P2'12'12(18) C2x, C2>. Cc'c'2(183) ax, ст,
P212'12'(19) C2y ^mm2(38)î Am'm2'(\Щ ах

7J2,2121 (19) P2'12',21 (27) C2;(, C2>, Amm'2'(\90) ay

C222l (20) C2'2'2! (33) C2jc, C2>. ^m'm'2 (191)  
C22'2\ (34) С2„ ^èm2 (39)î Ab'mZ (197) a,

C222 (21) C2'2'2 (40) C2x, C2, Abm'2' (198) a,
C22'2'(41) C2y Ab'm'2(\99) ax,a,

F222 (22) F2'2'2 (47) C2x, C2, /Ima2 (40)t Am'a2' (205) ffx

7222(23) 72'2'2(51) C2x, Cly Ama'2' (206) <ry

72^^, (24) 72',2',21 (55) C2,, C2> ^m'a'2 (207) ax, a,
7Jmm2(25) Pmm2 (59) ax Abdl (41)t Ab'a2'(213) ax

Pm'm'2(60) ax,ay Aba'2' (214) a,

t In Table 3.1 we listed the translations suitable for С (Г*). Those for Л (Г£) are t! = i(0, -è, с),
t2 = (a, 0, 0), t3 = i(0, и, с) referred to axes Oxyz.

Pn'a'2z

ox,

ox,oy
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Fedorov Shubnikov 'Coloured' Fedorov Shubnikov 'Coloured'
group group generating group group generating

elements elements

A b ' a ' 2 ( 2 l 5 ) P m ' n a ' (328)
Fmrnl (42) Fm'm2' ( 2 2 1 ) P m ' n ' a ' (329)

Fm'm'2 ( 2 2 2 ) P c c a (54) Pc'ca (339)
Fdd2 (43) Fd'd2' ( 2 2 6 ) P e c ' a (340)

Fd'd'2 ( 2 2 7 ) - P c c a ' (341)
Imm2(44) Im'm2' ( 2 3 1 ) P c ' c ' a (342)

/m'm'2 ( 2 3 2 ) P c c ' a ' (343)
f t a 2 (45) A'a2' ( 2 3 7 ) P c ' c a ' (344)

Л'а'2 ( 2 3 8 ) P c ' c ' a ' (345)
/ma2(46) Im'aZ ( 2 4 3 ) P b a m (55) Pb'am (355)

/ma'2' ( 2 4 4 ) M a m ' (356)
/m'a'2 ( 2 4 5 ) P i ' a ' m (357)

Pmmm(47) P m ' m m ( 2 5 1 ) P è ' a m ' (358)
Pm'm'm ( 2 5 2 ) P f e ' a ' m ' (359)
Pm'm'rri ( 2 5 3 ) P c c n (56) Pc'cn (367)

Pnnn (48) Pn'nn ( 2 5 9 ) P c c n ' (368)
Pririn ( 2 6 0 ) P c ' c ' n (369)
Pn'n'ri ( 2 6 \ ) P c 1 ' c r i (370)

Pccm(49) Pc'cm ( 2 6 7 ) P c ' c V (371)
Pccw' ( 2 6 8 ) - P e c m (57) Pe'cm (379)
Pc'c'm ( 2 6 9 ) P b c ' m (380)
Pc'cm' ( 2 7 0 ) P b c m ' (381)
Pc'c'w' ( 2 7 1 ) Р б ' с ' т (382)

Pban (50) Pe'an ( 2 7 9 ) P b c ' m ' (383)
P&m' ( 2 8 0 ) W e m ' (384)
Р Ь ' а ' п ( 2 % \ ) P b ' c ' m ' ( 3 & 5 )
Pb'ari ( 2 8 2 ) P n n m (58) Р«'пт (395)
Рй'а'и' ( 2 8 3 ) P n n m ' (396)

Лита (51) Pm'ma ( 2 9 1 ) P n ' n ' m ( 3 9 7 )
Pmm'a ( 2 9 2 ) Л ш ' т ' (398)
Pmma' ( 2 9 3 ) Р п ' л ' т ' (399)
Pm'm'a ( 2 9 4 ) P m m n (59) Pm'mn (407)
Pmm'a' ( 2 9 5 ) P m w « ' (408)
Pm'ma' ( 2 9 6 ) P m ' m ' n (409)
Pm'm'a' ( 2 9 7 ) P m m V (410)

Рипа(52) P « ' n a ( 3 0 7 ) P m ' m ' n ' ( 4 1 1 )
Pnria ( 3 0 8 ) P * c n (60) Pb'cn (419)
Рта' ( 3 0 9 ) P i c ' n (420)
P n V a ( 3 1 0 ) Р * с я ' ( 4 2 1 )
Р л п ' а ' ( З И ) P è ' c ' n ( 4 2 2 )
Pn'na' ( 3 1 2 ) Р й с ' и ' ( 4 2 3 )
P n ' n V ( 3 1 3 ) P b ' c n ' ( 4 2 4 )

Pmna (53) Pm'na ( 3 2 3 ) P e V n ' (425)
P m n ' a ( 3 2 4 ) P è c a (61) Pe'ca (435)
Pm«a' ( 3 2 5 ) P b ' c ' a (436)
Pm'n'a ( 3 2 6 ) P b ' c ' a ' (437)
Pmn'a' (327) Pnma (62) Pn'ma (443)



THE M A G N E T I C GROUPS AND THEIR C O R E P R E S E N T A T I O N S 577

Fedorov
group

Fmm2 (42)

Fdd2 (43)

Imm2 (44)

Ibal (45)

Ima2 (46)

Pmmm (47)

Pnnn (48)

Pccm (49)

Man (50)

Pmma(51)

Pnna (52)

Pmna (53)

Shubnikov
group

Ab'a'2(2l5)
Fm'm2' (221)
Fm'm'2 (222)
WaT (226)
FrfW'2 (227)
M ml (231)
/m'm'2 (232)
Ib'aZ (237)
/e'a'2 (238)
/m'a2' (243)
Ima'2' (244)
/m'a'2 (245)
Pm'mm(251)
Pmm'm (252)
Pm'm'rri (253)
Pn'nn (259)
Pn'n'n (260)
Рл'л'л' (261)
Pc' cm (267)
Pccm' (268)
Pc' cm (269)
Pc'cm' (270)
Pc'c'm' (271)
Pb'an (2*79)
P&m' (280)
Р*'а'л(281)
Pfc'an' (282)
Pè'aV (283)
Pm'ma (291)
Pmm'a (292)
Pmma' (293)
Pm'm'a (294)
Pmm'a' (295)
Pm'ma' (296)
Pm'm'a' (297)
Prc'na (307)
Pnria (308)
Рила' (309)
Рп'л'а(ЗЮ)
Рии'а'(ЗИ)
Рл'ла'(312)
Pn'n'a' (313)
Pm'na (323)
Pmn'a (324)
Pmna' (325)
Pm'n'a (326)
Pmn'a' (327)

' Coloured '
generating
elements

ax,ay

ax

ax,ay

ax

ax,ay

ax

ax, <7,
ffx

ак, а у
ax

a,
a,,<7y

C2y,I
C2x, C2y

I
C2y,I
C2x, C2y

I
C2y,I
C2x, C2y, I
сгх, c2y
C2x

I
С 2,,!
C2x, C2y, I
C2x, C2y

C2x

I
C2y,I
C2x,I
C2x, C2y, I
C2x, C2y

Сг,
C2x

I
C2yJ
C2x,I
C2x, C2y, I
C2x, C2y

C2y

C2x

I
C2y,I
C2x,I
C2x, C2y, I

C2x, C2r

Сгу

Fedorov Shubnikov
group group

Pm'na' (328)
Pm'n'a' (329)

Pcca (54) Pc'ca (339)
Pcc'a (340)
Pcca' (341)
Pc'c'a (342)
Pcc'a' (343)
Pc'ca' (344)
Pc'c'a' (345)

Pbam (55) Pé'am (355)
Peam' (356)
Pb'a'm (357)
Pb'am' (358)
Pb'a'm' (359)

Рссл (56) Pc'cn (367)
Pccn' (368)
Pc'c'« (369)
Pc'cn' (370)
Pc'cV (371)

Pbcm (57) Pe'cm (379)
Pec'm (380)
Pbcm' (381)
Рб'с'т (382)
Pbc'm' (383)
P*'cm' (384)
Pb'c'm' (385)

Pnnm (58) Pn'nm (395)
Рллт' (396)
Pn'n'm (397)
Pnrim' (398)
Pn'n'm' (399)

Pmmn (59) Pm'mn (407)
Pmmn' (408)
Pm'm'n (409)
PmmV (410)
Pm'm'n' (411)

Pbcn (60) Pb'cn (419)
Pbc'n (420)
Р*ся' (421)
РЬ'с'п (422)
Pbc'n' (423)
Pb'cri (424)
Pb'c'ri (425)

Pèca(61) Pè'ca(435)
Pb'c'a (436)
Pb'c'a' (437)

Pnma (62) Pn'ma (443)

' Coloured '
generating
elements

C2x
I
C2y,I
C2x,I
C2x, C2y, I
C2x, C2y

C2y

C2x

I
C2y,I
C2x,C2y,I
C2x, C2y

C2x
I
C2y,I
C2x, C2y, I
C2x, C2y

C2x

I
C2y,I
C2XJ
C2x,C2y,I
C2x, C2y

C2y

C2x

I
C2y,I
C2x, C2y, I
C2x, C2y

C2y
I
C2y,I
C2x, C2f, I
C2x, C2y

C2y

I
C2yJ
C2x,I
C2x,C2y,I
C2x, C2,
C2y

C2x

I
C2,,l
^2x> (*2y

I
C2y,I
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Fedorov
group

/M, 22 (91)

P4,2,2(92)

P4222 (93)

P422,2 (94)

P4322 (95)

P432,2(96)

/422 (97)

/4,22(98)

P4mm (99)

P46m(100)

P42cm (101)

P42nm(102)

P4cc(103)

P4nc(104)

P42mc(105)

P42ec(106)

Shubnikov
group

P4', 22' (105)
P4,2'2' (106)
P4',2'2(107)
P4'12,2'(113)
P4,2',2'(114)
P4'12'12(115)
P4222'(12I)
P422'2'(122)
P422'2 (123)
P422,2'(129)
P422'12' (130)
Р422',2(13!)
P4'322'(137)
/)432'2' (138)
P4'32'2(139)
P4'32,2'(145)
P432',2'(146)
P4'32i2 (147)
/4'22'(153)
/42'2'(154)
/4'2'2(155)
/4; 22' (159)
/4,2'2'(160)
/4',2'2 (161)
P4'm'm(165)
P 4' mm' (166)
P4m'm' (167)
P4'6'm(173)
P4'ftm'(174)
P46'm'(175)
P42c'm(181)
P42cm' (182)
P42c'm'(183)
P42n'm(189)
P42«m' (190)
P42n'm' (191)
P4'c'c(197)
P4'cc'(198)
P4e'c'(199)
P4'n'c (205)
P4'«c' (206)
Р4и'с' (207)
P42m'c(213)
P4'2mc' (214)
P42m'e'(215)
P4'2b'c(22l)

'Coloured'
generating
elements

Fedorov
group

«
C2xс:„ с2хc;z
C2I
Г1 f /"
^4E' ^2x

с;г
C2x
Г"+ СL-43> °2х

Q4,
C2,
c;z, c2xс:г
C2xc;,, c2xc;z
C2x

CL, C2xci
C2,
Q+

z, c2xc;2
C2;e

Q+

z, Q,
Q+,, ̂
c;z
<JX

c;2, «т»
r+
C4z

ax

C4

+

z, (Т,
ci
(Т,

ci, <т.
Г"1"L4z

(7,

ci, axci
°v
Ci, a,
ci

/4mm (107)

/4cm (108)

/4,mrf(109)

/4, cd (110)

/ M 2 m ( l l l )

P42c(112)

Р42,т(113)

P42,c(114)

P4m2(115)

P4c2(116)

P4è2(117)

P4n2(118)

/4m2(119)

ax /4c2(120)
ci, ax
c+
^4z
ax

Ci, a,
/42m (121)

Shubnikov
group

P42èc' (222)
/M2é'c' (223)
/4'm'm (229)
/4'mm' (230)
/4m'm'(231)
/4'c'm (235)
/4'cm' (236)
/4c'm' (237)
/4; w W (241)
/4',mrf' (242)
/4,т'сГ (243)
/4', с W (247)
/4', erf' (248)
/4,cW'(249)
P4'2'm (253)
/M'2m' (254)
P42'm' (255)
P4'2'c(261)
P4'2c' (262)
P42'c' (263)
P4'2',m(269)
P4'2,m'(270)
Р42\т' (271)
P4'2',c(277)
P4'2lC' (278)
P42',c'(279)
P4'm'2 (285)
P4'm2' (286)
P4m'2' (287)
P4'c'2 (293)
P4'c2' (294)
P4c'2' (295)
P4'e'2(301)
P4'e2' (302)
Р4Ь'2' (303)
P4W2 (309)
Р4'и2' (310)
P4«'2'(311)
/4'm'2(317)
/4'm2'(318)
/4m'2'(319)
/4'c'2 (323)
/4'c2' (323)
/4c'2' (325)
/4'2'm (329)
/4'2m' (330)

' Coloured '
generating
elements

ci
ax

ci, a,
ci
ax

C4

+

2, ax

г +
L4z

ax

ci,<T,
Ci
ax

Ci, ax
Г +C4z

ax

si, c2j
s:,
C2xsi, c2x
si
C2,
Si, C2x

Si
C2,si, c2xsi
C2ï

si
si, c2o
C2asi
si, c2o
С2яsi
si, c2a
C2o

si
si, с2„
C2o

si
si, c2o
C2o

si
si, c2a
C2o
e+ r
J4z, {~2X

v+
J4z
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Fedorov
group

/42^(122)

P4/mmm(123)

P4/mcc(124)

Р4/л6т(125)

P4/nnc (126)

P4/mim(127)

P4/mm:(128)

P4/nmm(129)

Shubnikov
group

/42W (331)
/4'2W(335)
/4'2rf' (336)
/42W (337)
P4/m'mm(341)
P4'/mm'm (342)
P4'/mmm' (343)
P4'/m'm'm (344)
P4/mm'm' (345)
P4'/m'mm' (346)
P4/m'm'm' (347)
P4/m'cc (353)
P4'/mc'c (354)
P4'/mcc' (355)
P4'/m'c'c (356)
P4/mc'c' (357)
P4'/m'cc' (358)
P4/m'c'c' (359)
P4/n'bm (365)
P4'/nb'm (366)
P4'/nbm' (367)
P4'/n'b'm (368)
P4/nb'm' (369)
P4'/n'bm' (370)
P4/n'b'm' (371)
Р4/п'лс (377)
Р4'/пл'с (378)
P4'/nnc' (379)
P4'/n'n'c (380)
Р4Дш'с' (381)
P4'/n'nc' (382)
P4/n'n'c' (383)
P4/m'bm (389)
P4'/mb'm (390)
Р4'/тЬт'(391)
Р4'/т'Ь'т (392)
P4/mb'm' (393)
P4'/m'bm' (394)
P4/m'b'm' (395)
Р4/т'лс(401)
P4'/mn'c (402)
P4'/mnc' (403)
РЛ'/т'п'с (404)
P4/mn'c' (405)
P4'/m'nc' (406)
P4/m'n'c' (407)
P4/n'mm(413)

' Coloured '
generating
elements

С2л

Si, C2I

si
C2,
C 2 x,/
Ci, C2,
Ci
C4

+

z, /
C2x

ci, /, c2x
/
C 2 x,/
C42, C2,
C4

+

z

ci, /
C2Ici, /, c2x/
С2„/
ci, c2xci
ci,/
C2,ci,/,c2x/
С2„/
ci, с2хci
ci,/
C2.ci, /, с2х/
С2„/
ci, c2xci
ci, /
C2xci,/, c2l/
C2x, /
ci, c2x(" +C4z

ci, /
C2xci, /, c2x/
C2«, /

Fedorov Shubnikov
group group

Р4'/пт'т (414)
P4'/nmm' (415)
P4'/n'm'm (416)
P4/nm'm'(417)
P4'/n'mm'(418)
P4/n'm'm'(419)

P4/ncc (130) P4/n'cc (425)
/М'/нс'с (426)
P4'/ncc' (427)
P4'/n'c'c (428)
/>4/nc'c' (429)
P4'/n'cc' (430)
P4/n'c'c'(431)

P42/mmc (131) P42/m'mc (437)
P4'2(mm'c (438)
P4'2/mmc' (439)
P42/m'm'c (440)
P42/mm'c' (441)
P4'2/m'mc' (442)
P42/m'm'c' (443)

P42/mcm(132) P42/m'cm (449)
P4'2/mc'm (450)
P42/mcm'(451)
P4'2/m'c'm (452)
P42/mc'm' (453)
P4'2/m'cm' (454)
P42/m'c'm' (455)

P42/«ic(133) P42/n'bc (461)
P4'2/nb'c (462)
P4'2/nbc' (463)
P4'2/n'b'c (464)
P42/nb'c' (465)
P4'2/n'bc' (466)
P42/n'b'c' (467)

P42/nnm (134) P42/n'nm (473)
P4'2/nn'm (474)
P4'2/nnm' (475)
P4'2/n'n'm (476)
P42/nn'm' (477)
P4'2/rinm' (478)
P42/n'n'm' (479)

P42/mic(135) P42/m'bc (485)
P42/mb'c (486)
P4'2/mbc' (487)
P4'2/m'b'c (488)
P42/mb'c' (489)
P4'2/m'bc' (490)

' Coloured '
generating
elements

ci, c2,ci
ci, /
C2,ci,/,c2jt/
C 2 x,/
ci, c2j,ci
ci, /
C2,ci, /, c2l/
С2„/
ci, c2jt
r^ +
L4z

ci, /
C2xci, /, c2l/
C2 l,/
Г"+ /"
^4z> ("2х

ci
ci,/
C2,
ci, /, c2x/
С2„/
ci, c2lci
ci,/
C2,ci,/, c2x/
C 2 x,/
ci, c2xci
ci,/
C2xci, /, c2x/
C2 x,/
ci, c2x
/° +
L4z

ci, /
C2xci,/, c2x
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Fedorov
group

/>42/mnm(136)

P42/nmc(137)

P42/ncm(138)

14/mmm (139)

/4/mcm (140)

I4Jamd(\4l)

I4Jacd(\42)

Shubnikov
group

P42/m'b'c' (491)
P42/m'nm (497)
P4'2/mn'm (498)
P4'2/mnm' (499)
P4'2/m'n'm (500)
P42/mrim' (501)
P4'2/m'nm' (502)
P42/m'n'm' (503)
P42/n'mc (509)
P4'2/nm'c (510)
/>42/nmc'(511)
P42/n'm'c(512)
P42/nm'c' (513)
P4'2/n'mc' (514)
/M2/«'m'c'(515)
P42/n'cm (521)
P4'2/nc'm (522)
P4'2/ncm' (523)
P4'2/n'c'm (524)
P42/nc'm' (525)
P4'2/n'cm' (526)
P42/n'c'm' (527)
I4/m'mm (533)
I4'/mm'm (534)
I4'/mmm' (535)
I4'/m'm'm (536)
/4/mm'm' (537)
I4'/mjmm' (538)
I4/m'm'm' (539)
/4/m'cm (543)
I4'/mc'm (544)
I4'/mcm' (545)
/4'/m'c'm (546)
/4/mc'm' (547)
I4'/m'cm' (548)
/4/m'c'm' (549)
/4!/a'md(553)
I4'i/am'd (554)
14\/amd' (555)
/4i/a'm'rf(556)
HJam'd' (557)
/4',/aW (558)
/4,/a'mW (559)
/4t/a'cd(563)
/4\/ac'd(564)
I4\/acd' (565)
14'Ja'c'd (566)

' Coloured '
generating
elements

/

C 2 I > /
Ci, C2l

Ci
Ci,/
C2,
ci, /, c2j(
/
С,,,/
Ci, C2x

ci
Ci, /
C2l

Ci, /, C2JC

/
C 2 l ) /
Г"+ Г1

*~-4z> ^2x

C4

+

zci,/
C2»
C4

+z, /, C2l

/
C 2 x,/
c;2, c2x
C4

+

z

C4

+

z,/
C2,
C4

+

z, /, C2x

/
С2„/
ci, c2x
Г"*"
*-4г

ci, /
C2Ici,/, c2l
/
C 2 I,/
ci, c2;cci
ci, /
C2,ci, /, c2,
/
C 2 x,/
ci, c2x
c+
L4z

Fedorov
group

P3 (143)
P3, (144)
/•32 (145)
A3 (146)
j°3 (147)
A3 (148)
P312(149)
P321 (150)
/ ) 3jl2(151)
PS^l (152)
P3212(153)
P3221 (154)
«32(155)
/4ml (156)
P31m(157)
/>3cl (158)
,Р31с(159)
Ä3m(160)
/?3c(161)
P3~lm (162)

P31c(163)

P 3ml (164)

P3cl (165)

R3m (166)

A3c(167)

P6(168)
PÔ! (169)

P65 (170)
P62(171)
P64(172)
P63(173)

Ci,/ ; P6(174)

Shubnikov
group

I4Jac'd' (567)
14'Ja'cd' (568)
Ï4i/a'c'd' (569)
—
—
—
—
РУ (15)
A3' (19)
P312'(23)
F32'l (27)
P3,12'(31)
P3 t2'l (35)
/>3212' (39)
/>322'1 (43)
Й32' (47)
P3m'l (51)
P31m'(55)
P3e'l (59)
P31c' (63)
Ют' (67)
/?3c' (71)
P3'lm (75)
РЪ'\т (76)
Pîlm' (77)
/)3'lc(81)
^3'lc'(82)
P31c' (83)
РУт\ (87)
Р3'т'1 (88)
P3m'l (89)
P3'cl (93)
/>3'c'l (94)
P3c'l (95)
АЗ'т (99)
Rjm' (100)
R3m' (101)
R3'c(105)
R3'c' (106)
A3c' (107)
P6'(H1)
P6\(US)
P6'5(U9)
P6'2 (123)
P6i(127)
P6'3 (131)
P6'(135)

' Coloured '
generating
elements

C2x

ci,/, c2x
I
—
—
—
—
S6

+

S6

+

C'2l

C21

C'21

C'21

Ci,
C21

C2l

a,i
"n
°vl

"dl
v„i
"„1

v+

•Je
^6. ad\
<*di
<> +
J6
^6+, CTdi
<*di
st
S t <7„,

ffl>l
S6

+

^ а„,
ffol

S6

+

SI apl
CT»i
S6

+

56

+, <TOI

!̂C6

+

C6

+

C6

+

C6

+

C6

+

C6

+

S3

+
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Fedorov

group

P6/m(175)

P63/m(176)

P622(177)

P6,22(178)

P6522(179)

P6222 (180)

P6422(181)

P6322(182)

P6mm (183)

P6cc(184)

P63cm (185)

P63mc(186)

P6m2 (187)

P6c2(188)

P62m(189)

P62c(190)

Shubnikov

group

P6'/m(139)

P6/m' (140)

P6'/m' (141)

P63/m (145)

P63/m' (146)

P63/m'(147)

P6'2'2(151)

P6'22'(152)

P62'2' (153)

P6',2'2(157)

P6',22'(158)

P6,2'2' (159)

P6'52'2(163)

P6'522' (164)

P652'2' (165)

P6i2'2 (169)

P6'222' (170)

P622'2'(171)

P642'2 (175)

P6422' (176)

P642'2'(177)

P632'2(181)

P6322' (182)

P632'2' (183)

P6'm'm(187)

P6'mm' (188)

Рбт'т' (189)

P6'c'c(193)

P6'cc'(194)

Рбс'с' (195)
P63c'm(199)

P63cm' (200)

P63c'w' (201)

P63m'c (205)

P6'3mc' (206)

P63m'c' (207)

P6'm'2(211)

P6'm2' (212)

P6m'2' (213)

P6'c'2 (217)

P6'c2' (218)

P6c'2' (219)

P6'2'm (223)

P6'2m' (224)

P62'w' (225)

P6'2'c (229)

P6'2c' (230)

'Coloured'

generating

elements

C6

+

ffj,

Q+, °>
C6

+

°h
C6

+, ch

С t C2l

C6

+

Ci,
et ci,
C6

+

Ci,
C6

+, Ci,
с:
Ci,
С6

+, Ci,
С6

+

Ci,
С6

+, Ci,
С6

+

Ci,
С6

+, Ci,
С6

+

Ci,
С6

+

С6

+, <rvl

av\

С6

+

С6

+, <7Г1

avl

С6

+

С6

+, <т„,
ff»l
С6

+

С6

+, а„,
^„i
53

+, сг„,
S3

+

ff.i
53

+, <7„,

S3

+

ст„1
5С
^3+- CTdl
"disi
$3, G dl

Fedorov

group

P6/mmm (191)

P6/mcc (192)

P63/mcm(193)

P63/mmc (194)

P23(195)

F23 (196)

/23
P2, 3(198)

/2,3 (199)

Pm3 (200)

РиЗ (201)

Fm3 (202)

Fdl (203)

/m3 (204)

РяЗ (205)

/аЗ (206)
P432 (207)

P4232 (208)

F432 (209)

F4,32 (210)
/432(211)

P4332 (212)

Shubnikov

group

Р62У (231)

P6/m'mm (235)

Рб'/тт'т (236)

Рб'/wmm' (237)

P6'/m'm'm (238)

P6'/m'mm' (239)
P6/mm'm' (240)

P6/m'm'm' (241)

Pd/'m'cc (245)

P6'/mc'c (246)

P6'/mcc' (247)

P6'/m'c'c (248)

P6'/m'cc' (249)

P6/mc'c' (250)

P6/m'c'c' (251)
P63/m'cm (255)

P63/mc'm (256)

P6'3/mcm' (257)

P6'3/m'c'm (258)

P63/m'cm' (259)

P63/mc'm' (260)

P63/m'c'm' (261)

P63/m'mc (265)

P6'3/mm'c (266)
P6'3/mmc' (267)

P6'3/m'm'c (268)

P6'3/m'mc' (269)
P63/mmV (270)

P63/m'm'c' (271)

—
—
—
—
—
Pm'3 (16)

Pn'3 (20)

fm'3 (24)

ЯП (28)

/m'3 (32)

Ра'З (35)

/а'З (39)
P4'32' (42)

P4i32' (46)

F4'32' (50)

F4i32' (54)

/4'32' (58)

P4332' (61)

' Coloured '

generating

elements

«г* i
Ci,,/
C6

+,/
Ce, Ci,, /
Г'+ Г"
*^6» ^21

C6

+

Ci,
/
Ci,,/
C6

+,/
Ce, Ci,,/
C + y--/

6' ^21

C6

+

Ci,
/
Ci,,/
C6U
Ce^Ci,,/
C6

+, Ci,
C6

+

Ci,
/
Ci,,/
C6

+,/
C6

+,Ci„/
^+ Г"*-6> L21

C6

+

Ci,
/
—
—
—
—
—
/
/
/
/
/
/
/
C2a

C2a

C2a

C2a

C2a

C2a
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Fedorov
group

/M,32(213)
/4,32(214)
P43m(215)
F43m (216)
/43m (2 17)
/M3n(218)
F43c(219)
/43rf(220)
РтЗт (221)

РпЗп (222)

РтЗп (223)

РпЗт (224)

Shubnikov
group

P4',32'(65)
/4; 32' (69)
/M'3m' (72)
F4'3m' (76)
/4'3m' (80)
/M'3n' (83)
F4'3c' (87)
I4'3d'(9\)
Рт'Зт (94)
Pm3m' (95)
/>w'3m' (96)
Рп'Зп (100)
РиЗп' (101)
/V3n'(102)
/)m'3n(106)
РтЗм'(107)
Рт'Зи' (108)
Рп'Ът(\П)
РпЗт'(ИЗ)

' Coloured '
generating
elements

C2a

cla

Cia

ada

Oda

Via

Cda

Gda

C2a,I
C2a

I
C2a,I
C2a

I
C2a,I
Ç

I
C2a,I
C2a

Fedorov
group

Fmlm (225)

Fm3c (226)

Fdlm (227)

Fdlc (228)

/m3m (229)

/a3(/(230)

Shubnikov
group

Pn'lm' (114)
Fm'3m(118)
Fm3m'(119)
Fm'3m'(120)
Fm'3c(124)
Fm3c'(125)
Fm'3c'(126)
Frf'3m(130)
/У3т'(131)
W3m'(132)
W3c(136)
Fd3c'(137)
ft/'3c' (138)
/m'3m(142)
/m3m' (143)
/m'3m'(144)
/a'3rf(147)
/a3rf'(148)
/a'3rf' (149)

'Coloured'
generating
elements

/
C2aJ
C2a

I

C2a,I
C2a

I
C2a,I
C2a

I
C2a,I
C2a

I
C2a,f
C2a

I
C2a,I
C2a

I

Wo(e^ Го /аб/е 7.2

(i) The groups are listed in the notation given by Belov, Neronova, and Smirnova (1955) as corrected by Shubnikov
and Belov (1964), and are arranged according to their crystal system and, within a given crystal system, according to
their isogonal point group (see also Table 7.4).

(ii) The international space group symbols of the Fedorov groups and their numbers, as given by Henry and
Lonsdale (1965), are listed in column 1 ; the type III Shubnikov groups derived from each Fedorov group are listed
in column 2, together with a somewhat arbitrary number assigned to the group by Belov, Neronova, and Smirnova
(1955). Column 3 identifies those of the generating elements of the Fedorov group (see Table 3.7 and Miller and
Love (1967)) which have been replaced by ̂  times the element of the Fedorov group, i.e. which have become coloured
elements ; i.e. those of the generating elements which occur in A(G — H) of eqn (7.2.4). A shorthand notation has been
adopted in column 3 ; only the rotational part of the full Seitz space-group operator is given, the complete operator can
be identified by reference to Table 3.7.

(iii) The invariant spin structures associated with the various magnetic space groups are given by Opechowski and
Guccione (1965).

Type IV Shubnikov space groups are based on black and white Bravais lattices
and just consist of all the operations of a Fedorov group G plus an equal number of
coloured operations, each one being an operation in G, multiplied by the operation
of anti-symmetry and also multiplied by an operation corresponding to a translation
t0 of the black and white Bravais lattice. The derivation of a black and white Bravais
lattice is illustrated in Fig. 7.3. If we start with an ordinary primitive cubic Bravais
lattice with black lattice points and add a white lattice point to the body-centre of
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each unit cell we obtain the black and white cubic Bravais lattice Pt. This consists
of two interpenetrating sublattices, each of which on its own would be an ordinary
primitive cubic Bravais lattice, P. The black and white lattice PI therefore has all the
symmetry operations of an ordinary primitive cubic Bravais lattice, together with
the product of each of those operations with 3%{E \ t0} where t0 is the vector con-
sisting of half the body-diagonal of the cube. The black and white Bravais lattices

FIG. 7.3. The unit cell of the black and white (cubic) Bravais lattice, P,.

were derived by Belov, Neronova, and Smirnova (1955), who found there to be 22
black and white lattices in addition to the 14 ordinary Bravais lattices. These black
and white Bravais lattices are given in Table 7.3 together with the vector t0, and they
are illustrated in Fig. 7.4.

D E F I N I T I O N 7.2.5. A type IV Shubnikov space group, M, is given by

(7.2.5)

where G is a Fedorov group and t0 is the extra translation introduced when deriving
the black and white Bravais lattice from the appropriate ordinary Bravais lattice.

The type IV Shubnikov space groups can be derived fairly readily from the Fedorov
space groups. Each Fedorov space group, G, is based on one of the 14 Bravais
lattices, and if from this lattice there can be derived some number, x, of black and
white Bravais lattices then there will be at least x type IV Shubnikov groups corre-
sponding to the Fedorov group G. There may be more than x type IV Shubnikov
groups derived from G if we allow for the possibility of different orientations which
can occur in the orthorhombic system. The ordinary Bravais-lattice symbol in the
international space-group symbol is replaced by the symbol of the relevant black and
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T A B L E 7.3

The black and white Bravais lattices

Crystal Ordinary Black and t0

system lattice white lattice

Triclinic P(Tt) P,
Monoclinic Р(Гт) Рь

Pa

PC
Monoclinic С(Г£,) Сс

Ca

Orthorhombic Р(Г„) Рс

{.P.
PC

1Рл
P,

Orthorhombic С(Г*) Сс

Ca

CA

[Л(Г0

Ь)] [A,
ГА

{.AC
Orthorhombic F(T[) Fs

Orthorhombic /(П) /с

Tetragonal Р(ГЧ) Рс

PC
P,

Tetragonal /(Ц) Ic

Trigonal «(ГгЬ) R,
Hexagonal P(Th) Pc

Cubic Р(ГС) P,
Cubic F(Ff

c) Fs

Cubic /(ГЭ —

Notes to Table 7.3

(i) To label the black and white Bravais lattices we use the International notation adapted to the Shubnikov
groups.

(ii) Column 1 lists the crystal system, column 2 the ordinary (uncoloured) Bravais lattice from which the black
and white one is derived, column 3 gives the symbol of the black and white Bravais lattice and column 4 gives t0, in
terms of the relevant tb t2, and t3 of Table 3.1, except for Au, Ac, and Ac for which t0 is defined in terms of the trans-
lations for A(Tl) given in Note (iv) below.

(iii) No restrictions are understood to be imposed on the axial ratios.
(iv) In making a total count of the different Bravais lattices it must be remembered that identifications can be

made between the pair (C, A) of Orthorhombic ordinary Bravais lattices and between the pairs (Pc, Pa), (Pc, PA),
(Cc, Aa), (Ca, AL) and (CA, Ac) of Orthorhombic black and white Bravais lattices, see Fig. 7.4. One member of each
of these pairs is enclosed in square brackets in Table 7.3. In Table 3.1 we listed the translations suitable for С(Г^).
Those for A(Yl) are t j = j(0, -e, с), t2 = (a, 0, 0), t3 = |(0, b, c) referred to axes Oxyz.



586 THE MAGNETIC GROUPS AND THEIR COREPRESENTATIONS

FIG. 7.4. The black and white Bravais lattices.
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white Bravais lattice. For example, the tetragonal space group P4^2 (Dl) is based
on the primitive tetragonal lattice and from Table 7.3 one can see that there are three
black and white Bravais lattices derived from it, namely Pc, Pc, and Pj so that there
are three type IV Shubnikov groups derived from the Fedorov group P4±22, and
they are written as Pc4j22, РС4^2, and Pfi^ïl. There are 517 of these type IV
Shubnikov groups and they were listed by Belov, Neronova, and Smirnova (1955,
1957) and Shubnikov and Belov (1964). They are listed in Table 7.4 and can be
distinguished from the type III Shubnikov space groups by the fact that the type IV
space groups have the symbol of one of the black and white Bravais lattices in
Table 7.3, wh;le the type III space groups have the symbol of an ordinary Bravais
lattice, see Table 3.1. The type I and type II Shubnikov groups are also given in
Table 7.4. In Table 7.4 which is basically the same as the table given by Belov,

TABLE 7.4

List of Shubnikov space groups (after Belov, Neronova, and Smirnova (1957))

Triclinic 10. P,2l 35. Ccm 60. C2'/m
system 11. P„21 36. Cam 61. C2/m'

c,

(1) L PI
2. PV
3. Ps\

c,

(2) 4. Pi

5. />Tl'
6. PV
1. PJ

Monoclinic
systemf

C2

(3) 1. P2

2. P2V
3. P2'
4. Pa2
5. P„2
6. PC2

(*>) 1. P2l

8. P2,l '
9. P2\

12. Pl:2l

(5) 13. C2

14. С2Г
15. C2'
16. CC2
17. Ca1

С,ь

(6) 18. Pm

19. Ли Г
20. Pm'
21. Pam
22. Р„т
23. Pl:m

(7) 24. Pc

25. PcV
26. Pc'
21. Pac
28. Pcc
29. Pbc
30. Pcc
31. PAc

(8) 32. Cm

33. Cm Г
34. Cm

(9) 37. Cc

38. Ccl'
39. Cc'
40. Ccc
41. C.c

С2„

(10) 42. P2/m

43. P2/m\'
44. P2'/m
45. P2/m'
46. P2'/m'
47. Р„2/т
48. Р„2/т
49. Pc2/m

(11) 50. P2, /т

51. P2Jml'
52. P2\/m
53. P2Jm'
54. P2\/m'
55. Pcljm
56. Pb2Jm
57. Pc2Jm

(12) 58. C2/m

59. C2/ml'

62. C2'/m'
63. Cc2/m
64. Ca2/m

(13) 65. P2/c

66. P2/cl'
67. P2'/c
68. ?2/c'
69. P2'/c'
70. P02/c
71. Л2/с
72. Pc2/c
73. Px2/c
74. Pc2/c

^4; 75. P2t/c
76. P2,/el :

77. Я2',/с
78. P2,/c'
79. P2\/c'
80. /'„Zi/e
81. P„2Jc
82. Рс2!/с
83. ^2,/c
84. Pc2Jc

(15) 85. C2/c

86. С2/сГ

J The monoclinic space groups are given in the second of the two settings used in the International tables for X-ray
crystallography whereas previously we have used the first setting.
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87.
88.
89.
90.
91.

C2'/c
C2/c'
C2'/c'
Cc2/c
Ca2/c

(21) 38.

39.
40.
41.
42.
43.
44.

Orthorhombic
system

(16)

(17)

(18)

(19)

(20)

1.

2.
3.
4.
5.
6.

7.

8.
9.

10.
11.
12.
13.
14.
15.

16.

17.
18.
19.
20.
21.
22.
23.
24.

25.

26.
27.
28.
29.
30.

31.

32.
33.
34.
35.
36.
37.

D2

P222

Р222Г
P2'2'2
Pa222
PC222
P,222

/»222,

/»222, Г
P2'2'2,
P22'2\
P „222,
Pc222i
PA222,
PC2221

P,222,

/»2,2,2

/»2,2,21'
P2\2\2
/>2,2',2'
Л.2,2,2
/>C2,2,2
Л.2,2,2
/»C2,2,2
/»,2,2,2

/»2,2,2,

/»2,2,2,1'
Р2',2',2,
/»„2,2,2,
Pc2,2,2,
Л2,2,2,

С222,

C222,l'
С2'2'2,
С22'2',
Q222,
С„222,
СЛ222,

(22) 45.

46.
47.
48.

(23) 49.

50.
51.
52.

(24) 53.

54.
55.
56.

(25) 57.

58.
59.
60.
61.
62.
63.
64.
65.

(26) 66.

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

(27) 78.

79.
80.
81.
82.

С222

С222Г
С2'2'2
С22'2'
Q222
С„222
С.,222

/222

F2221'
F2'2'2
F,222

1222

/222!'
/2'2'2
/С222

/2,2,2,

/2,2,2,1'
/2', 2', 2,
/С2,2,2,

С2„

РттЪ

Ртт2\'
Рт'т2'
Рт'т'2
Рстт2
Ратт2
Р(-тт2
РАтт2
Р,тт2

Ртс21

Ртс21\'
Рт'с2\
Ртс'2\
Лп'с'2,
Ратс21

Рьтс2,
Рстс2,
Рлтс2 ,
PBmc2t

Рстс2 1

Р,тс2 !

Рсс2

Рсс2Г
Рс'с2'
Рс'с'2
Р,сс2

83.
84.
85.
86.

(28) 87.

88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.

(29) 99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
ПО.

(30) 111.

112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

(31) 123.

124.
125.
126.
127.
128.
129.
130.
131.

Расс2
Рссс2
РАсс2
Р,сс2

Pmaï

PmdlV
Рт'а2'
Рта'2'
Рта 2
Р„та2
Рьта2
Рста2
Рлта1
Рвта2
Рста2
Р,та2

Pca2t

/»со2,Г
Рс'а2\
Pca'2'i
Рс'а'2,
Раса11

Р„са2,
Рсеа2,
PAca2t

PBca2t

Рсса2,
Р,са21

Рпс2

Рпс2Г
Рп'с2'
Рпс'2'
Рп'с'2
Р„пс2
Рьпс2
Рспс2
РАпс2
PRnc2
Рспс2
Р,пс2

Ртп21

Ртп2 1 1 '
Рт'п2\
Pmn'2't
Pm'n'2t

Pamn2i
Рьтп2,
Pcmn2l

РАтп21

132.
133.
134.

(32) 135.

136.
137.
138.
139.
140.
141.
142.
143.

(33) 144.

145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

(34) 156.

157.
158.
159.
160.
161.
162.
163.
164.

(35) 165.

166.
167.
168.
169.
170.
171.

(36) 172.

173.
174.
175.
176.
177.
178.
179.

Рвтп2 ,
Рстп2 ,
P,mn2i

РЬа2

РЬа2Г
Pb'al
Pb'a'2
PJaäl
Paba2
Pcba2
PAbdl
P,ba2

Pna21

Pna2i\'
Pn'a2\
Pna'2\
Pn'ö'2,
Pana2,
Pbna2l

P,na2l

PAna2t

PBna2i
Pcna2i
Pcna2l

Pnn2

PnnlV
Prin2'
Pn'n'2
Pann2
Pcnn2
PAnn2
Pcnn2
P,nn2

Cmm2

CmmlV
Cm'm2'
Cm'm'2
Ccmm2
Camm2
CAmm2

Cmcii

Cmc2il'
Cm'c2\
Cmc'2'i
Cm'c'2,
Ccmc2l

C„mc2i
CAmc2t
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(37) 180. Ccc2

181. Ccc2\'
182. Cc'c2'
183. Cc'c'2
184. Cccc2
185. Cacc2
186. Слсс2

(38) 187. Лтт2
188. Amm2\'
189. Am'm2'
190. Amm'2
191. Am'm'2
192. /f0mm2
193. Лстт2
194. Acmm2

(39) 195. Л*т2

196. Лйт21'
197. Лй'т2'
198. Лет'2'
199. Л6'т'2
200. A„bm2
201. Лсет2
202. Acbm2

(40) 203. Лта2

204. Ama2l'
205. Лт'о2'
206. Лта'2'
207. Ат'а'2
208. Л0та2
209. Аста2
210. Лста2

W 211. АЬа2

212. Леа2Г
213. Ле'а2'
214. АЬа'2'
215. Лб'а'2
216. А„Ьа2
217. Л,Аа2
218. Лсйа2

(42) 219. Лши2

220. Fmm2\'
221. Fm'm2'
222. Fm'm'2
223. F/nm2

(43) 224. ЛМ2

225. Fdd2V
226. ft/W2'

227. Fa"a"2
228. Fsdd2

(44) 229. /mm2

230. Imm2\'
231. /m'm2'
232. lm'm'2
233. /Cmm2
234. /Omm2

(45) 235. /*a2

236. Ла2Г
237. Ib'a2
238. ft'a'2
239. Icba2
240. /flèa2

('-/б; 241. Ima2

242. /ma21'
243. /т'а2'
244. Ima'2'
245. /т'а'2
246. Ijna2
247. /ama2
248. /Ьта2

D2„

(47) 249. Рттт

250. PmmmV
251. Рт'тт
252. Рт'т'т
253. Рт'т'т'
254. Pjmnm
255. Рсттт
256. Р,ттт

(48) 257. Рлля

258. ЛтиГ
259. Рп'лп
260. Рп'п'и
261. Рл'п'п'
262. ?„илл
263. РСЛИЛ
264. Р,ии«

f49j 265. Реет

266. РсстГ
267. Pc' cm
268. Реет'
269. Рс'е'т
270. Pc' cm'
271. Pc' с' т'

272. Р„сст
273. Рссст
274. Рлсст
275. Ргсет
276. Р,сст

(50) 211. РЬап
978 PhnnVZ. / о. luilll 1

279. ДЬ'ал
280. Pbari
281. Pi'a'n
282. Pb'an'
283. Рб'а'п'
284. РОЙЙП
285. PJban
286. Рхйап
287. Pcban
TCO p Алиii.OO. 1 jlJUrl

(51) 289. Pmma

290. РттаГ
291. Prrima
292. POTW'Ö
293. Pmwa'
294. Pm'm'a
295. Pmm'a'
296. Pm'md
297. Pm'm'à
298. P„mma
299. />ьтта
300. Pcmma
301. PAmma
302. PBmma
303. Pcmma
304. Р,тта

f52j 305. Рлла

306. РляаГ
307. Ри'ла
308. Р«л'а
309. Лта'
310. Рл'л'а
311. PnnV
312. />nW
313. Дп'л'а'
314. Раппа
315. Рьпла
316. Pc™a
317. Рлппа
318. Рв«ла
319. Рсппа
320. ^лла

Г53; 321. Ртпа

322. РтпаУ
323. Рт'иа
324. Ртп'а
325. Ртпа'
326. Рт'п'а
327. Ртп'а'
328. Рт'иа'
329. Рт'п'а'
330. Р0тла
331. Рьтпа
332. Рстиа
333. РАтпа
334. Рвтпа
335. Рстпа
336. Р,тпа

(54) 337. Рсся

338. РссаГ
339. Ре'са
340. Рсс'и
341. Рееа'
342. Ре'е'а
343. Рсс'а'
344. Рс'еа'

345. Pc' с' а'
346. Р„сса
347. Рьсса
348. Рссеа
349. Рлсса
350. Рвсса
351. Рссса
352. Р7сса

(55) 353. РЬат

354. Рйат!'
355. Рй'ат
356. РЬат'
357. Рй'я'т
358. РЪ'ат'
359. Рй'а'т'
360. Р„еат
361. Рс6ат
362. РАЪат
363. Рс.еат
364. Р,Ьат

(56) 365. Рссп

366. РеслГ
367. Pc' en
368. Рссп'
369. Рс'с'п
370. Pc' си'
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371. Pc' cri
372. Paccn
373. Pcccn
374. Рлссп
375. Pcccn
376. P,ccn

(57) 377. Pbcm

378. Pbcml'
379. Pb'cm
380. Pec'm
381. Pftcm'
382. Pb'cm
383. Pfec'm'
384. Pb'cm
385. Pft'c'm'
386. P0*cm
387. PJbcm
388. Pcecm
389. PAbcm
390. PB*cm
391. Рсйст
392. Pjbcm

(58) 393. Pimm

394. PnnmV
395. /Vnm
396. Pnnm'
397. PnVm
398. Pnn'm'
399. Prin'm'
400. Pannm
401. Pcnnm
402. Рлппт
403. Pcnnm
404. P,nnm

f5Pj 405. P/nmn

406. PmmnV
407. Pm'mn
408. Рттл'
409. Pm'm'n
410. Pmm'ri
411. Pm'm'ri
412. Pammn
413. Pcmmn
414. PAmmn
415. Pcmmn
416. P,mmn

(60) 417. РАся

418. РеспГ
419. Рй'сл

420. Pèc'n
421. Picn'
422. Pfe'c'n
423. PècV
424. Pè'cn'
425. Pft'cV
426. Р„йс"
427. P,,*cn
428. PJbcn
429. Рлесн
430. PBbcn
431. Pcècn
432. P,/>cn

(61) 433. PAce

434. Pècal'
435. Pb'ca
436. Pft'c'a
437. Pb'c'a'
438. P0èca
439. Pcéca
440. P,bca

(62) 441 . Pnma

442. Pnma\'
443. Prima
444. Pnnia
445. Pnma'
446. Pn'm'a
447. Pnm'a'
448. Pn'ma'
449. Pn'm'a'
450. /Virna
451. Pbnma
452. Pfima
453. PAnma
454. Pgtima
455. Pc«ma
456. Prnma

(63) 457. Cmcm

458. Cmcml'
459. Cm'cm
460. Cmc'm
461. Cmcm'
462. Cm'c'm
463. Cme'm'
464. Cm'cm'
465. Cm'cm'
466. Cjncm
467. Camcm
468. Cxmcm

^64; 469. Cmca

470. Cmcal'
471. Cm' ça
472. Cmc'ö
473. Cmca'
474. Cm'c'a
475. Cmc'a'
476. Cm'ca'
477. Cm'c'a'
478. Ccmca
479. Camca
480. Слтса

("65 J 481. Cmmm

482. Cmmm Г
483. Cm'mm
484. Cmmm
485. Cm'mm
486. Cmm'm'
487. Cmm'm
488. C/nmm
489. Cjnmm
490. CAmmm

(66) 491. Cccm

492. СсстГ
493. Cc'cm
494. Cccm'
495. Cc'c'm
496. Ccc'm'
497. Cc'c'm'
498. Ccccm
499. С„сст
500. C^ccm

^67; 501. Cmma

502. Cmmal'
503. Cm'ma
504. Cmma'
505. Cm' m' a
506. Cmm'a'
507. Cm'm'a'
508. Cjnma
509. C0mma
510. С Amma

(68) 511. Ccca

512. Cccal'
513. Cc'ca
514. Ccca'
515. Cc'c'a
516. Ccc'a'
517. Cc'c'a'

518. Cccca
519. C0cca
520. Сдсса

(69) 521. Fm/nm

522. FmmmV
523. Fm'mm
524. Fm'm'm
525. Fm'm'm'
526. F/nmm

(70) 527. /V/rfrf

528. Frfrfrfl '
529. fi/W
530. ft/WW
531. FrfWW
532. FsaWd

Г7^ 533. /mmm

534. ImmmV
535. Im'mm
536. Im'm'm
537. Im'm'm
538. Irmmm

(72) 539. /earn

540. /iam Г
541. Ä'am
542. Дет'
543. ÄVm
544. Iba'm'
545. Д'а'т'
546. /с*ат
547. /„earn

f7JJ 548. Ihca

549. ДсаГ
550. IV ca
551. Д'с'а
SS7 Ih'r'fi'JJZ.. / W С u

553. IJbca

(74) 554. /mma

555. /mmal'
556. Im'ma
557. /mm«'
558. Im'm'a
559. /mm'a'
560. Im'm'a'
561. /cmma
562. Iamma
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Tetragonal
system

Q

(75) \. P4

(76)

(77)

(78)

(79)

(80)

(81)

2.
3.
4.
5.
6.

7.

8.
9.

i n1 U.

11.
12.

13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.

25.
26.
27.
28.

29.

30.
31.
32.

33.

34.
35.
36.
37.
38.

P4\'
P4'
PA
PC4
P,4

/M,

P4l\'
P4\
P A"c^l

P,A,C 1

PAl

P42

PA2\'
P4'2
PA2
PC42

P,*2

P43

P43r
P4'3
PC43

P<43

P,43

14

741'
14'
JC4

H,
74,r
74;
44,

S4

P4

P4\'
P4'
PC4
PC4
P,4

(82) 39.

40.
41.
42.

(83) 43.
44.
45.
46.
47.
48.
49.
50.

(84) 51.

52.
53.
54.
55.
56.
57.
58.

(85) 59.
60.
61.
62.
63.
64.
65.
66.

(86) 67.
68.
69.
70.
71.
72.
73.
74.

(87) 75.

76.
77.
78.
79.
80.

(88) 81.
82.
83.

14

741'
74'

&

Q*

P4/m

P4/m\'
P4'/m
P4/m'
P4'/m'
Pc4/m
Pf-4/m
P,4/m

P42/m

P42/m\'
P4'2/m
P42/m'
P4'2/m'
Pc42/m
PLA2/m
P,42/m

P4/n
P4/n\'
P4'/n
P4/n'
P4'/n'
Pc4/n

PC*/"
P,4/n

P42/n

P42/n\'
P4'2/n
P42/n'
P4'2/n'

PA2/"
Pc42/n

P,42/n

I4/m

74/ml'
I4'/m
74/m'
14' /m'
IA/m

/4,/a

74,/al'
74', fa

84.
85.
86.

(89) 87.
88.
89.
90.
91.
92.
93.
94.

(90) 95.

96.
97.
98.
99.

100.
101.
102.

(91) 103.
104.
105.
106.
107.
108.
109.
110.

(92) 111.
112.
113.
114.
115.
116.
117.
118.

(93) 119.

120.
121.
122.
123.
124.
125.
126.

(94) 127.

128.

lAJa'
74',/a'
7,4,/a

D*

paii
P422V
P4'22'
P42'2'
7M'2'2
P422
PC422
P,422

P4212'

P42l2l'
P4'2^'
P42\2'
P4'2',2
PC42,2
^42,2
P,42,2

P4,22

7^4,221'
TM',22'
T'4,2'2'
P4',2'2
7J

C4,22
PC4,22
7>A22

1-4,2,2

P41212\'
7'4'1212'
P4t2\2
P4\2\2
^4,2,2
^4,2,2
^,4,2,2

P4222

P4222\'
P4'222'
P422'2
P4'22'2
PC4222
PC4222
P,4222

P422S2

P42212\'

129.
130.
131.
132.
133.
134.

(95) 135.

136.
137.
138.
139.
140.
141.
142.

(96) 143.
144.
145.
146.
147.
148.
149.
150.

(97) 151.
152.
153.
154.
155.
156.

(98) 157.

158.
159.
160.
161.
162.

(99) 163.

164.
165.
166.
167.
168.
169.
170.

(100) 171.
172.
173.

7^2,2'
7M22i2'
P4^2',2
^422L2
M22.2
7^22,2

P4322

7M3221'
P4'322'
P432'2'
TM',2'2
^322
7>C4322
P,4322

P432,2

7-4,2,21'
/J4'32,2'
P432',2'
P4'32',2
^432,2
^432,2
^32,2

7422

74221'
74'22'
742'2'
74'2'2
7C422

74,22

74,221'
74', 22'
74j2'2'
74i2'2
44,22

cta

P4mm

P4mm\'
P4'm'm
P4'mm'
P4m'm'
PAmm
Pc4mm
PAmm

P4bm

P4bm\'
P4'b'm
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174. P4'bm'
175. P W m
176. Pc4bm
177. Р,АЬт
178. P,4bm

(101) 179. P42cm

180. P4 2cml'
181. P4'2c'm
182. P4'2cm'
183. P42c'm'
184. Pc42cm
185. Pc42cm
186. />,42cm

f;02j 187. P42nm

188. P42nmV
189. P4'2n'm
190. Р42лт'
191. P42n'm'
192. Ре42лт
193. Pc42nm
194. р,42лт

(103) 195. P4cc

196. Р4ссГ
197. P4'c'c
198. P4'cc'
199. P4c'c'
200. Pt.4cc
201. Pt.4cc
202. P,4cc

f/WJ 203. P4nc

204. Р4лс1'
205. Р4'л'с
206. P4'nc'
207. P4n'c'
208. P£4nc
209. Рс4ис
210. Р,4ис

C/05J 211. P42mc

212. P42mc\:

213. /M2m'c
214. P4>c
215. P42m'c'
216. Pc42mc
217. P (42mc
218. P,42mc

(106) 219. P42ec

220. Р426сГ

221. Р4'2й'с
222. P42èc'
223. P42b'c'
224. Рс42Ьс
225. Pc42èc
226. Р742йс

(107) 227. /4mm

228. /4mm Г
229. 14' m m
230. /4'mm'
231. /4m'm'
232. Ic4mm

(108) 233. /4em

234. /4cm Г
235. /4'c'm
236. /4'cm'
237. /4c'm'
238. /C4cm

(109) 239. ^mrf

240. M! пи/ Г
241. /4',m'rf
242. /4imrf'
243. 14^'d'
244. /C4,mrf

f//0; 245. I4icd

246. /4 !(?£/!'
247. /4'jcW
248. I4\cd'
249. 14lc'd'
250. /C4,o/

»2.

Г / / / ; 251. P42m

252. P42ml'
253. P4'2'm
254. P4'2m'
255. P42'm'
256. Pc42m
257. Pc42m
258. P,42m

(112) 259. P42c

260. P42cl'
261. P4'2'c
262. P4'2c'
263. P42'c'
264. Pc42c
265. P£.42c
266. P,42c

(113) 267. P42!m

268. Р42,тГ
269. Р4'2;т
270. P4'2,m'
271. P42',m'
272. Pc42 tm
273. Pc421m
274. P742,m

(114) 275. P42,c

276. P42iC
277. P4'2ic
278. P4'2,c
279. P42;c'
280. /\42iC
281. Pc42,c
282. P742,c

(115) 283. P4m2

284. Р4т2Г
285. P4'm'2
286. P4'm2'
287. P4m'2'
288. Pc4m2
289. P(.4»î2
290. P,4m2

(116)291. P4c2

292. P4c21'
293. P4'c'2
294. P4'c2'
295. P4V2'
296. Pc4c2
297. P[:4c2
298. P,4c2

(117) 299. Р4Й2

300. Р4ИГ
301. P4'b'2
302. P47>2'
303. P4b'2'
304. PC4W
305. РС4Ь2
306. Р,4й2

(118) 307. Р4~л2

308. Р4л2Г
309. P4V2
310. Р4'л2'
311. Р4л'2'
312. Рс4л2
313. Рс4л2
314. Р,4п2

(119) 315. /4т2

316. /4т2Г
317. /З'т'2
318. /4'т2'
319. 14т'2'
320. 1с4т2

(120) 321. 14с2

322. /4с2Г
323. 74У2
324. /4V2'
325. /Зс'2'
326. 1с4с2

(121) 327. /42т

328. /32т Г
329. /4'2'т
330. /4'2т'
331. /42'т'
332. /С42т

(122) 333. /42</

334. /42<П'
335. /4'2W
336. 14'2cl'
337. /42W
338. Ic42d

Û4*

(123) 339. Р4/ттт

340. Р4/ттт\'
341. Р4/т'тт
342. Р4'/тт'т
343. Р4'/ттт'
344. Р4'/т'т'т
345. Р4/тт'т'
346. Р4'1т'тт'
347. Р4/т'т'т'
348. Рс4/ттт
349. Рс4/ттт
350. Р,4/ттт

(124) 351. Р4/тсс

352. Р4/тсс1'
353.' Р4/т'сс
354. Р4'/тс'с
355. Р4'/тсс'
356. Р4'/т'с'с
357. Р4/тс'с'
358. Р4'/т'сс'
359. Р4/т'с'с'
360. Рс4/тсс
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361.
362.

(125) 363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.

(126) 375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.

(127) 387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.

(128) 399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.

Pc4/mcc
P,4/mcc

P4/nbm

P4/nbm\'
P4/n'bm
P4'/nb'm
P4'/nbm'
P4'/n'b'm
P4/nb'm'
P4'/ribm'
P4/n'b'm'
Pc4/nbm
Pc4/nbm
P,4/nbm

P4/nnc

P4/nnc\'
P4/n'nc
P4'/nn'c
P4'/nnc'
P4'/n'n'c
P4/nn'c'
P4'/n'nc'
P4/n'n'c'
Pc4/nnc
Pc4,'nnc
P,4/nnc

P4/mbm

P4/mbmï
P4/m'bm
P4'/mb'm
P4'/mbm'
P4'/m'b'm
P4/mb'm'
P4'/m'bm'
P4/m'b'm'
Pc4/mbm
Pc4/mbm
P,4/mbm

P4/mnc

P4/mnc\'
P4/m'nc
P4'imn'c
P4'/mnc'
P4'/m'n'c
P4/mn'c'
P4'/m'nc'
P4/m'n'c'
Pc4/mnc
Pc4jmnc
P,4/mnc

(129) 411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.

(130) 423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.

(131) 435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.

(132) 447.

448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.

P4/nmm

Р4/пттГ
P4/n'mm
P4'/nm'm
P4'/nmm'
P4'/rim'm
P4/nm'm'
P4'/n'mm'
P4/n'm'm'
Pc4/nmm
Pc4/nmm
P,4/nmm

P4/ncc

P4/ncc\'
P4/n'cc
P4'/nc'c
P4'/ncc'
P4'/n'c'c
P4/nc'c'
P4'/n'cc'
P4/n'c'c'
Pc4jncc
Pc4/ncc
P,4/ncc

P42/mmc

P42/mmc\'
P42/m'mc
P4'2!mm'c
P4'2/mmc'
P4'2/m'm'c
P42/mm'c'
P4'2/m'mc'
P42/m'm'c'
Pc42/mmc
Pc42/mmc
P,42/mmc

P42/mcm

P42/mcm\'
P42/m'cm
P4'2/mc'tn
P4'2/mcm'
P4'2/m'c'm
P42/mc'm'
P4'2/m'cm'
P42/m'c'm'
Pc42/mcm
Pc42/mcm
PI42lmcm

(133) 459.

460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.

(134) 471.

472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.

(135) 483.

484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.

(136) 495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.

P42/nbc

P42/nbc\'
P42/n'bc
P4'2/nb'c
P4'2/nbc'
P4'2/n'b'c
P42/nb'c'
P4'2/n'bc'
P42/n'b'c'
Pc42/nbc
Pc42/nbc
P,42/nbc

P42/nnm

P42/nnm\'
P42/n'nm
P4'2/nn'm
P4'2jnnm'
P4'2/n'n'm
P42/nn'm'
P4'2/n'nm'
P42/n'n'm'
Pc42/nnm
Pc42/nnm
P,42/nnm

P42/mbc

P42/mbc\'
P42/m'bc
P4'2/mb'c
P4'2/mbc'
P4'2/m'b'c
P42/mb'c'
P4'2/m'bc'
P42/m'b'c'
Pf42/mbc
Pc42/mbc
P,42/mbc

P42/mnm
P42/mnml'
P42/m'nm
f4'2/mn'm
P4'2/mnm'
P4'2/m'n'm
P42/mn'm'
P4'2/m'nm'
P42/m'n'm'
Pc42/mnm
Pc42/mnm
P,42/mnm

(137) 507.

508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.

(138) 519.

520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.

(139) 531.

532.
533.
534.
535.
536.
537.
538.
539.
540.

(140) 541

542.
543.
544.
545.
546.
547.
548.
549.
550.

(141) 551.

552.
553.
554.
555.

P42/nmc

Р42/птсГ
P42/n'mc
P4'2/nm'c
P4'2/nmc'
P4'2/n'm'c
P42/nm'c'
P4'2/n'mc'
P42/n'm'c'
Pc42/nmc
Pc42/nmc
Pj42/nmc

P42/ncm

P42/ncm\'
P42/n'cm
P4'2/nc'm
P4'2/ncm'
P4'2/n'c'm
P42/nc'm'
P4'2/n'an'
P42/n'c'm'
Pc42/ncm
Pc42/ncm
P,42/ncm

14/mmm

I4/mmm 1 '
14/m'mm
I4'/mm'm
!4'/mmm'
14' /m'm'm
14/mm'rri
14' /m'mm
/4/m'm'm'
Ic4/mmm

I4/mcm

I4/mcm \ '
I4/m'cm
I4'/mc'm
J4'/mcm'
14' [m'c'm
14/mc'm'
I4'lm'cm'
I4/m'c'm'
Ic4/mcm

/4L/am</

/4!^«?^!'
I4l/a'md
I4\/am'd
I4't/amd'
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(142)

556.
557.
558.
559.
560.

561.

562.
563.
564.
565.
566.
567.
568.
569.
570.

I4\/a'm'd
I41/am'd'
l4\/a'md'
I4l/a'm'd'
Ic4i/amd

/4,/W
/4, /acd Г
/4 Ja 'cd
I4\/ac'd
Щ/acd'
14't/a'c'd
/4,/flcW
/4'i/a'cd'
/4,/a'cW
Wilacd

Hexagonal
system

A.

(143)

(144)

(145)

(146)

(147)

(148)

Rhombohedral
sub-system

1.
2.
3.

4.

5.
6.

7.

8.
9.

10.

11.
12.

13.

14.
15.
16.

17.

18.
19.
20.

C3

P3

P31'
ЛЗ

P3,

P3H'

ЛЗ,

«2

P321'
PC32

A3
«31'
я,з

C3i

P3
P3T
P3'
PC3~

A3
«ЗГ
A3'
«,3

(149) 21.

22.
23.
24.

/7.50J 25.

26.
27.
28.

(151) 29.

30.
31.
32.

(152) 33.

34.
35.
36.

(153) 37.

38.
39.
40.

(154) 41.

42.
43.
44.

(155) 45.

46.
47.
48.

(156) 49.

50.
51.
52.

(157) 53.

54.
55.
56.

(158) 57.

58.
59.
60.

»3

P312

/»31 '2
P312'
PC312

P321

Р32Г
P32'l
PC321

P3,12
/>3,1'2
P3,12'
Р.ЗП2

ЯЗ^!

РЗ,2Г
РЗ^'1
PC3!21

P3212

P321'2
P3212'
^A 12

P3221

P3221'
P322'l
PC3221

«32

«321'
Ä32'
«,32

С3„

P3ml

РЪт\'

РЗга'1
Pc3ml

P31m

P31'm
P31m'
Pr31w

P3cl

РЗсГ
P3c'l
Pc3cl

(159) 61.

62.
63.
64.

(160) 65.

66.
67.
68.

(161) 69.

70.
71.
72.

(462J 73.

74.
75.
76.
77.
78.

(163) 79.

80.
81.
82.
83.
84.

(164) 85.

86.
87.
88.
89.
90.

(165) 91.

92.
93.
94.
95.
96.

(166) 97.

98.
99.

100.
101.
102.

(167) 103.

P31c

РЗГс
P3U-'
Яс31с

Ä3m

«ЗтГ
«3m'
R,3m

R3c

ЛЗсГ
Юс'
R,3c

DK

P31m

P31'm
P3'lm
P3'lm'
P31m'
Pc31m

P31c

РЗГс
P3'lc
P3'lc :

P3lc'
Pc31c

P3ml

P3m!'
P3'ml
РЗ'от'1
P3m'l
Pc3ml

P3cl

РЗсГ
P3'cl
P3'c'l
P3c'l
Pc3cl

Ä3m

«3ml'
Ä3'm
«3'm'
«3m'
Л/Зт

Ä3c

104.
105.
106.
107.
108.

«3el'
«3'c
«3V
«ЗУ
Л,3с

B. Hexagonal
sub-system

(168) 109

ПО
111
112

(169) ИЗ

114
115
116

Q
. P6
. Р6Г
. P6'
. PC6

P6,
. Pbi\'
. P6',
. Рсб!

(170) 117. P65

118 "' "P65I

119. P6'5
120. PC65

f / 7 / j 121.

122.
123.
124.

(172) 125.

126.
127.
128.

(173) 129.

130.
131.
132.

(174) 133.

134.
135.
136.

(175) 137.

138.

P62

Р62ГP6i
PC62

P64
P641'
P64PC64

/•63
P631'
P6'l
Pßl
cîk

P6
Р6Г
P6'
PC6
сы

P6/m
Рб/тГ
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(176)

(177)

(178)

(179)

(180)

(181)

(182)

139.
140.
141.
142.

143.

144.
145.
146.
147.
148.

149.

150.
151.
152.
153.
154.

155.

156.
157.
158.
159.
160.

161.

162.
163.
164.
165.
166.

167.

168.
169.
170.
171.
172.

173.

174.
175.
176.
177.
178.

179.

180.
181.
182.

P6'/m
P6/m'
P6'/m'
Pc6/m

P63/m

Р63/тГ
Рб'з/m
P63/m'
P6'3/m'
Pc63/m

/>6

/>622

Р622Г
P6'2'2
P6'22'
P62'2'
Pß22

P6,22
P6i22l'
P6\2'2
P(,\22'
P6^2'2'
Pc6t22

P6522

Рб.,221'
P6'52'2
P6'522'
P652'2'
PC6522

P6222

P6222\'
P6'22'2
P6'222'
P622'2'
PC6222

/>6422

P64221'
/>642'2
Р6'Л22'
P642'2'
PC6422

P6322

Р6322Г
P6'32'2
P6322'

183.
184.

(183) 185.

186.
187.
188.
189.
190.

(184) 191.

192.
193.
194.
195.
196.

(185) 197.

198.
199.
200.
201.
202.

(186) 203.

204.
205.
206.
207.
208.

(187) 209.

210.
211.
212.
213.
214.

(188) 215.

216.
217.
218.
219.
220.

(189) 221.

222.
223.
224.

P632'2'
PC6322

C6,

Pfsmm

PbmmV
Рб'т'т
Рб'тт'
Pèm'm'
Pc6mm

Рбсс

РбссГ
Рб'с'с
Рб'сс'
Рбс'с'
Pßcc

P63cm

Р63стГ
Р6'3с'т
Р6'3ст'
Р63с'т'
Рс63ст

Р(,3тс

Р63тс\'
Р6'3т'с
Р6'3тс'
Р63т'с'
Рс63тс

D3„

Р6т2

Р6т2Г
Р6'т'2
Р6'т2'
РЪт'2'
Рс6т2

Р6с2

Р6е2Г
Р6'с'2
Р6'с2'
РЬс'2'
Pßc2

Р62т

РЬ2т\'
Р6'2'т
Р6'2т'

225.
226.

(190) 227.

228.
229.
230.
231.
232.

(191) 233.

234.
235.
236.
237.
238.
239.
240.
241.
242.

(192) 243.

244.
245.
246.
247.
248.
249.
250.
251.
252.

(193) 253.

254.
255.
256.
257.
258.
259.
260.
261.
262.

(194) 263.

264.
265.
266.
267.
268.
269.
270.

Р62'т'
Рс62т

РЪ2с

Р(,2с\'
Р6'2'с
Р6'2с'
Р62'с'
Pß2c

Об*

Рб/ттт

Р6/ттт1'
Рб/т'тт
РЬ'/тт'т
Рб'/ттт'
Рб'/т'т'т
Рб'/т'тт'
Р6/тт'т'
Pdjm'm'm'
Pß/mmm

Р6/тсс

Рб/тссГ
Рб/т'сс
P 6' /тс' с
Рб'/тсс'
Рб'/т'с'с
Рб'/т'сс'
Рб/тс'с'
Р6/т'с'с'
Pß/mcc

Р63/тст

P63/mcml'
Р63/т'ст
Р6'3/тс'т
Р6'3/тст'
Р6'3/т'с'т
Р6'ъ/т'ст'
Р63/тс'т'
Р63/т'с'т'
Рс63/тст

Р63/ттс

P63/mmcl'
Р63/т'тс
Рб'з/тт'с
Р6'3/ттс'
Р6'3/т'т'с
Р6'3/т'тс'
Р63/тт'с'

271.
272.

P63/m'm'c'
Pc63/mmc

Cubic
system

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

1.

2.
3.

4.

5.
6.

7.

8.

9.

10.
11.

12.

13.

14.

15.
16.
17.

18.

19.
20.
21.

22.

23.
24.
25.

26.

27.
28.
29.

30.

31.
32.

33.

T

P23

P23'
P,23

F23

F23'
FS23

/23

/23'

P2,3

P2j3'
P, 2,3

/2,3

/2,3'

T„

Pm3

РтЗ'
Рт'З
Р,тЗ

РпЗ

РпУ
Рп'З
Р,пЗ

Fm3

ртУ
Fm'3
F,m3

Fd3

Fd3'
Fd'3
F„d3

Im3

1тУ
/m'3

Pa3



(206)

(207)

(208)

(209)

(210)

(211)

(212)

34.
35.
36.

37.

38.
39.

40.

41.
42.
43.

44.

45.
46.
47.

48.

49.
50.
51.

52.

53.
54.
55.

56.

57.
58.

59.

60.
61.

Pa3'
Pa'3
P,a3

Ia3

/аЗ'
Ia'3

О

P432

P43'2
P4'32'
P,432

/>4232

P423'2
P4'232'
P,4232

F432

F43'2
F4'32'
FS432

F4i32

F4,3'2
F4;32'
FS4,32

/432

/43'2
/4'32'

/>4332

P433'2
/>4332'

62.

(213) 63.

64.
65.
66.

(214) 67.

68.
69.

(215) 70.

71.
72.
73.

(216) 74.

75.
76.
77.

(217) 78.

79.
80.

(218) 81.

82.
83.
84.

(219) 85.

86.
87.
88.

P,4332

/>4,32

P4t3'2
P4[32'
Л4,32

/4j32

/4,3'2
/4', 32'

Td

P43m

P43'm
P4'3m'
P,43m

F43m

F43'm
F4'3m'
F,43m

/43m

/43'm
/4'3m'

P43n

P43'n
P4'3n'
P,43n

F43c

F43'c
F4'3c'
F„43c

(220) 89.

90.
91.

(221) 92.

93.
94.
95.
96.
97.

(222) 98.

99.
100.
101.
102.
103.

(223) 104.

105.
106.
107.
108.
109.

(224) 110.

1 1 1 .
112.
113.
114.
115.

(225) 116.

117.

/43d

143' d

I4'3d'

0,

РтЗт

РтЗ'т
Рт'Зт
РтЗт'
Рт'Зт'
Р,тЗт

РпЗп

РпЗ'п
Рп'Зп
РпЗп'
Рп'Зп'
Р,пЗп

РтЗп

РтЗ'п
Рт'Зп
РтЗп'
Рт'Зп'
Р,тЗп

РпЗт

РпЗ'т
Рп'Зт
РпЗт'
Рп'Зт'
Р,пЗт

Fm3m

Fm3'm

118.
119.
120.
121.

(226) 122.

123.
124.
125.
126.
127.

Г227; 128.

129.
130.
131.
132.
133.

(228) 134.

135.
136.
137.
138.
139.

Г229; 140.

141.
142.
143.
144.

(230) 145.

146.
147.
148.
149.

Рт'Зт
РтЗт'
Рт'Зт'
F/пЗт

РтЗс

РтЗ'с
Рт'Зс
РтЗс'
Рт'Зс'
F/пЗс

Fä3m

Fd3'm
Fd'3m
Fd3m'
Fd'3m'
Fß3m

Fd3c

Fd3'c
Fd'3c
Fd3c'
Fd'3c'
F,d3c

Im3m

Im3'm
/т'Зт
Im3m'
Im'3m'

Ia3d

Ia3'd
Ia'3d
Ia3d'
la'3d'

Notes to Table 7.4

(i) The 1651 Shubnikov space groups are listed in the order and notation of Belov, Neronova, and Smirnova
(1957).

(ii) The Shubnikov space groups M that are related to a given Fedorov space group G (see Definitions 7.2.3-
7.2.5) are listed together following G in the table. The 230 Fedorov space groups themselves are arranged in the order
given in Volume 1 of the Internationa! tables for X-ray crystallography (Henry and Lonsdale 1965) which was also
used in our Table 3.7. Immediately following each Fedorov space group G is the grey space group derived from G
according to Définition 7.2.3. These are followed by the type III Shubnikov space groups derived according to
Definition 7.2.4 which are themselves followed by the type IV Shubnikov space groups derived according to Definition
7.2.5.

(iii) The elements of any given type III Shubnikov space group can be deduced by reference to Tables 7.2 and 3.7.
The elements of any given type IV Shubnikov space group can be deduced by reference to Tables 7.3 and 3.7.

(iv) Within each crystal system the Shubnikov space groups have been assigned an arbitrary number, e.g. between
1 and 91 in the monoclinic system.
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Neronova, and Smirnova (1957), all the 1651 Shubnikov space groups are listed; a
complete table is also given by Opechowski and Guccione (1965). Extensive graphical
representations of Shubnikov space groups have been discussed by Atoji (1965). The
symmetry elements and equivalent positions for each of the type III and type IV
Shubnikov groups are illustrated by Koptsik (1966) with (two-coloured) diagrams
similar to those used for the ordinary space groups (type I Shubnikov space groups)
in the International tables for X-ray crystallography (Henry and Lonsdale 1965). There
are alternatives to the adaptation of the international space-group labels used in
Table 7.4. There is an adaptation of the Schönflies notation for type III Shubnikov
space groups; this takes the form G(H) so that, for example, P4'2/mnm' would be
written as D\l(D2l). For any (type I, II, III, or IV) Shubnikov space group Koptsik
(1966) uses a label of the form 1Щ where x is the number (from 1 to 230) of the
related ordinary space group and y is the number given to that Shubnikov space
group in Table 7.4; in this notation, for example, P4'2/mnm' would be IIT^g.

It is possible to derive the type III Shubnikov groups by considering the repre-
sentations of the ordinary point groups and space groups, that is, of the type I
Shubnikov groups (Alexander 1962, Bertaut 1968). From the point of view of
representation theory, the statements that a crystal structure has a space group G
and that a crystal transforms according to the identity representation of the space
group G are equivalent statements. In the same way, when a magnetic crystal structure
can be described by the Shubnikov group M it belongs to the identity representation
(strictly the identity corepresentation, see section 7.3 below) of M. If we consider
some ordinary point group G then the type III Shubnikov point groups which are
derived from G by eqn. (7.2.2) can be determined by studying the 1-dimensional
representations of G. If the identity representation of G is regarded as synonymous
with the type I Shubnikov group G itself, the remaining real 1-dimensional repre-
sentations of G can be related to the type III Shubnikov groups M that are derived
from G (Indenbom 1959). Thus (Bertaut 1968) the number of magnetic groups is
equal to the number of 1 -dimensional representations that are distinct in the abstract
sense and have characters + 1 or — 1 only. Two representations are said to be 'distinct
in the abstract sense ' if they cannot be transformed into each other by altering the
orientation of the axes.

We may illustrate this by considering again the example that was considered earlier
in this section of the type III Shubnikov point groups derived from 4mm (C4v), the
group of the symmetry operations of a square. The character table of the point
group 4mm (C4v) can be found from Table 2.2 and it is shown in Table 7.5. A t is the
identity representation and corresponds to G, that is, to 4mm (C4l)) itself. The repre-
sentation E is degenerate and therefore is not relevant to the present discussion. In
A2 the elements E, C2z, C4z, and C4z are represented by +1 while ax, ay, ada. and
adb are represented by — 1. The elements that are represented by +1 are then un-
coloured in M while the elements represented by — 1 become coloured in M; A2
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T A B L E 7.5

Representations and magnetic groups derived from 4mm ( C4llj

A,
Аг

BI

2
E

E

1
1
1
1

2

г±

<~4z

1

1

-1

-1

__ 2

С2г

1
1
1
1
0

a*, a,

1
_ ]

1
-1

0

Ida, °db

1

-1

_ ]

1

0

4mm
4m' m'
4'mm'
4'm'm
—

therefore corresponds to the magnetic point group, or type III Shubnikov point
group 4m'm' that was discussed earlier. In a similar way the representation B{ has
the elements C£z, C^z, ada, and adb represented by — 1 so that it corresponds to the
type III Shubnikov point group 4'mm' that was also considered earlier in this section.
In a similar way B2 leads to the magnetic point group 4'm'm in which the coloured
elements are $C£Z, ^C4z, 3%ax, and $ay. However, 4'mm', derived from B{ and
4'm'm, derived from B2 are not essentially different because one of them can be
turned into the other by rotating the x and y axes by 45° about the z-axis. Therefore
as described earlier it is possible to derive two type III Shubnikov point groups from
the ordinary point group 4mm (C4J. By repeating this process for each of the 32
point groups in turn all the 58 black and white point groups which were identified
in Table 7.1 could be derived.

A similar argument can be applied to the determination of the type III Shubnikov
space groups derived from the ordinary space group G, by using the character table
of the little group of the wave vector, Gk, at k = 0. The restriction to k = 0 has to

T A B L E 7.6

Representations and magnetic groups in Pbam (D\k) (k = 0)

Representa-
tion
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1
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1
-1

1
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1
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1
-1
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1
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B
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be imposed in order to ensure that the halving subgroup H contains all the pure
translations of G. Each of the 1-dimensional small representations of this little group,
other than the identity representation, which are distinct in the abstract sense and
have real characters corresponds to one of the type III Shubnikov space groups
derived from G. As an example we consider the space group Pbam (Df/,) and the
type III (black and white) Shubnikov space groups derived from it. From Tables 5.1
and 5.7 the small representations can be written down and they are given in Table 7.6.
The characters of the generating elements (C2z | 000}, {C2y ^0}, and {/ | 000} are
given for each representation. The three reflection planes occur in the order {ax \ yjO},
{ffy l ïîO}> {.az 000} in the symbol of the space group Pbam (D^h) so that the symbol
of the magnetic space group derived from each of the representations R2, R3,. . ., R8

can easily be written down and it is given in the last column of Table 7.6. Not all the
seven type III Shubnikov space groups are distinct. Pba'm' and Pb'am' differ only in
the setting of the axes and can be transformed into each other by a rotation of
90° about the z-axis ; the same is also true for Pb'am and Pba'm. We therefore have
derived five type III Shubnikov space groups from the Fedorov space group Pbam;
from Table 7.4 one can see that these are all the type III Shubnikov space groups
that can be derived from Pbam. It is also possible to derive the type IV Shubnikov
groups by repeating what we have done at k = 0 for all the other wave vectors k in
the Brillouin zone for which Gk coincides with G; only such k vectors can yield
1 -dimensional reps of G.

Shubnikov groups and magnetic crystals

In physical terms we can now discuss the relevance of Shubnikov groups to the descrip-
tion of the structures of real magnetic crystals. In discussing the symmetry of mag-
netic crystals, the operation Я is the operation that reverses a magnetic moment. ̂  is
then thought of as being the operation of time inversion. Alternatively we can think of
fM as reversing the direction of an electric current, since change of magnetic moment
can be caused by a reversal of the direction of the electric current which gives rise
to the magnetic moment. This reversal of the direction of the electric current is then
equivalent to a reversal of the sense of the direction of the time variable since i = dq/dt.
Neutron diffraction crystallographers classify magnetic crystals into the following
types :

(i) paramagnetic, magnetic moments randomly oriented, a net moment develops
in the presence of an applied magnetic field,

(ii) ferromagnetic, all magnetic moments parallel to one particular direction within
a domain,

(iii) anti-ferromagnetic, all magnetic moments either parallel or antiparallel to one
particular direction and arranged so that there is no net magnetic moment,

(iv) ferrimagnetic, all magnetic moments either parallel or anti-parallel to one
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particular direction, but there is a net magnetic moment because the two do
not cancel completely, and

(v) canted anti-ferromagnetic and other complicated forms of anti-ferromagnetic
structures.

We have not made any mention of diamagnetism ; all the cases that we have mentioned
are cases in which the orientation of a magnetic moment, which can in theory at
least be either a spin or orbital magnetic moment, is under consideration and the
crystal is therefore paramagnetic, ferromagnetic, or anti-ferromagnetic, etc. Dia-
magnetism arises from a distortion of the orbits of the electrons in the atoms of the
crystal as a result of an applied magnetic field; it can therefore be regarded as being
due to a current in a loop within an atom rather than to the alignment of a small
permanent magnetic moment associated with the atom. But diamagnetism is weak
and is always swamped by any other form of magnetism that may be present. In
considerations of the symmetry of a diamagnetic crystal and its relation to the
Shubnikov groups the same conditions apply as for paramagnetic crystals and so
for our purposes diamagnetic crystals can be included in (i) with paramagnetic
crystals.

The grey space groups, or type II Shubnikov space groups, possess the operation
of time inversion, 0, itself as a symmetry operation; therefore, if a spontaneous
internal magnetic field, which is described by an axial vector B, were to develop at
some point within the crystal, the presence of 0 would require that an equal and
opposite magnetic field should also appear at the same point. Consequently no
spontaneous magnetic field can exist anywhere in the crystal. Therefore, either the
individual atoms or ions within the crystal have no magnetic moments, in which case
the crystal can only exhibit diamagnetism, or they do possess spontaneous magnetic
moments but these spontaneous magnetic moments are randomly oriented so that
they produce, on average, no magnetic field anywhere in the crystal, in which case
the crystal exhibits paramagnetism.

If the operation of antisymmetry is absent, as in the case of a type I Shubnikov
space group, or if it is only present in combination with rotation, reflection or trans-
lation operations of symmetry, as is the case for a type III or type IV Shubnikov space
group, there are two possibilities. It may be possible for a crystal to possess a net
magnetic moment, in which case it is either a ferromagnetic or a ferrimagnetic
crystal; alternatively, it may be possible to have half the magnetic moments of the
individual magnetic atoms or ions in the crystal arranged parallel to one particular
direction and the other half anti-parallel to that direction, in which case the crystal
does not possess a spontaneous magnetic moment and it is an anti-ferromagnetic
crystal. It requires careful analysis of the effect of the various operations of the
Shubnikov group of the crystal to determine whether a crystal with the symmetry of
that group is ferromagnetic or antiferromagnetic (Neronova and Belov 19596,
Opechowski and Guccione 1965). The result is that a crystal described by any type I,
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III, or IV Shubnikov space group is not prevented by symmetry considerations from
exhibiting anti-ferromagnetism. However, of the type I and type III Shubnikov space
groups only a limited number can exhibit ferromagnetism (275 in fact) and they are
listed by Neronova and Belov (19596) and Opechowski and Guccione (1965). A
type IV Shubnikov space group cannot exhibit ferromagnetism because any spon-
taneous magnetic moment that may develop on one sublattice will necessarily be
exactly cancelled by an equal and opposite magnetic moment that will be required
by symmetry to appear on the other sublattice. Ferrimagnetic crystals satisfy exactly
the same group-theoretical conditions that we have just described for ferromagnetic
crystals, so that we do not need to consider ferrimagnetic crystals separately. If one
investigates the point groups of all the 275 Shubnikov space groups which describe
structures that may exhibit ferromagnetism they will be found to be those type I and
type III Shubnikov point groups given in Table 7.7.

T A B L E 7.7

Ferromagnetic Shubnikov point groups

Type I

1(C,)
1(Q
2(C2)
m(Clh)
2/m (C2ft)

4(C4)
4(S4)
4/m (C4J)

Type III

2'
m
2/m'
2'2'2
m'ml' m'm"2
m'trim

42'2'
4mm1

42' m'
4/mm'm'

Type I

3(C3)
3 (c3i)

6(C6)
6 (Сзл)
6/m (C6k)

Type III

32'
3m'
3m'

62'2'
6m'm'
6m'2'
6/mm'm'

The Brillouin zones of magnetic crystals

Let us consider some crystal that is paramagnetic above some temperature TN, the
Néel temperature, and is anti-ferromagnetic below rN. That is, above TN the magnetic
moments of the individual atoms are randomly arranged but below TN these magnetic
moments are arranged in some regular fashion. It is assumed that no crystallographic
distortion occurs at 7"N although below TN some distortion may occur as a result of
the lower symmetry of the anti-ferromagnetic phase. For some crystals the Brillouin
zone in the anti-ferromagnetic phase is exactly the same as the Brillouin zone in the
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paramagnetic phase. But for some other crystals the size and shape of the Brillouin
zone will change as the crystal passes from the paramagnetic phase in which the spins
are randomly oriented to the anti-ferromagnetic phase in which the spins are in an
ordered array.

FIG. 7.5. The unit cell of anti-ferromagnetic MnF2 . • Mn O F.

As an example of a crystal in which there is no change in the size of the Brillouin
zone we consider MnF2 which exhibits the rutile structure (Dimmock and Wheeler
1962e). The unit cell of MnF2 is shown in Fig. 7.5. In the paramagnetic phase it
belongs to one of the primitive tetragonal space groups (P42/mnm (D1^)) and has
the equivalent of two Mn atoms per unit cell ; the basic vectors of its Bravais lattice
are therefore tt = ai, t2 = aj, and t3 = ck, see Table 3.1. In the anti-ferromagnetic
phase it belongs to a primitive tetragonal type III Shubnikov space group (P4'2/mnm')
and has two Mn atoms per unit cell, with one Mn atom on each of the two sublattices.
The basic vectors of this Bravais lattice are exactly the same as those of the crystal in
its paramagnetic phase and so the Brillouin zone is also exactly the same as in the
paramagnetic phase; this Brillouin zone is illustrated in Fig. 3.9.

As an example of a crystal in which a change in the size and shape of the Brillouin
zone does occur as the crystal passes from the paramagnetic phase to the anti-
ferromagnetic phase we consider UO2 (Cowley and Dolling 1968). In the para-
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magnetic phase UO2 has the structure shown in Fig. 7.6 in which the U4+ ions lie
on the points of a face-centred cubic Bravais lattice and the Brillouin zone is therefore
the truncated octahedron shown in Fig. 3.14. In the antiferromagnetic phase the
magnetic moments of the U4+ ions within each horizontal sheet are all arranged

FIG. 7.6. The structure of UO2. In the paramagnetic phase the crystal has the cubic fluorite structure. In the anti-
ferromagnetic phase the U*+ ions labelled 1 belong to one sublattice while those labelled 2 belong to the other
sublattice. The unit cell of anti-ferromagnetic UO2 with U4+ ions at its corners is indicated by broken lines. eU, OO.

parallel to one particular direction; in successive sheets the actual direction of magne-
tization is reversed. Unlike the example of MnF2 the two sublattices are therefore
arranged so that the basic vectors of either sublattice are different from the basic
vectors of the paramagnetic structure. In the paramagnetic structure we choose basic
vectors

and

(7.2.6)

(for pedagogic convenience we have taken slightly different basic vectors from those
used in Table 3.1). In the anti-ferromagnetic phase t: and t2 are still basic vectors of
sublattice 1 but t3 now joins a point on sublattice 1 to a point on sublattice 2 and is
no longer a basic vector of the Bravais lattice of the crystal ; a suitable choice of
Bravais lattice vectors for the anti-ferromagnetic phase is

and

(7.2.7)
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where t'3 is equal to twice t3. These are in fact the basic vectors of a primitive tetragonal
Bravais lattice, the unit cell of which is shown with broken lines in Fig. 7.6. The
shape of the Brillouin zone of the anti-ferromagnetic crystal can then be found by
using eqn. (3.2.2) to evaluate gb g2, and g3. The volume of the fundamental anti-
ferromagnetic unit cell ( = f, . (t'2 x t'3)) is twice the volume of the paramagnetic
unit cell because t3 has been doubled. The volume of the anti-ferromagnetic Brillouin
zone is therefore equal to one-half of the volume of the Brillouin zone in the para-
magnetic phase; these two Brillouin zones are illustrated in Fig. 7.7.

FIG. 7.7. The Brillouin zone of UO2, continuous lines indicate the Brillouin zone of the anti-ferromagnetic structure
and broken lines the paramagnetic structure.

7.3. Anti-unitary operations and the coreprcsentations of magnetic groups

The reps of Shubnikov groups belonging to type I were discussed in Chapters 3 and
4 and given in detail in Chapters 5 and 6. By introducing an operation of anti-
symmetry, ,̂ we have derived a whole new collection of groups, the type II, III, and
IV Shubnikov groups. Type II Shubnikov groups, defined by eqns (7.2.1) and
(7.2.3) are direct product groups. If &, the operation of anti-symmetry, were a
unitary operator in the case where it is regarded as reversing the direction of a mag-
netic moment, there would be little difficulty in determining the representations of
these groups. But in studying magnetic symmetry the operator 01 is the operation of
time-inversion which we shall call в and which is anti-unitary. It is therefore necessary
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to be able to extend representation theory to groups which contain anti-unitary
operators. The theory was originally given by Wigner in 1932 and the most readily
accessible account of this work is in the English translation of Wigner's classic book
(Wigner 1959 (Chapter 26)). The development of the theory has also been discussed
by Dimmock and Wheeler (1962a, 19626) (see also Dimmock (1963e)) by Bradley
and Davies (1968) and in an extensive series of papers by Chaldyshev, Kudryavtseva,
and Karavaev (Chaldyshev 1961, Chaldyshev and Kudryavtseva 1962, Chaldyshev,
Kudryavtseva, and Karavaev 1963, Karavaev, Kudryavtseva, and Chaldyshev 1962,
Kudryavtseva 1965, 1967a, Kudryavtseva and Chaldyshev 1962a, b, 1965a, b, 1968).
Whereas for a unitary group there are representations and irreducible representations,
for a non-unitary group, that is, a group in which half the elements are unitary and the
other half are anti-unitary, there are corepresentations and irreducible corepresenta-
tions. In this section we present the basic theory of corepresentations. For the reader
who does not wish to follow all the detailed proofs the main results will be summarized
at the end of the section (from eqn. (7.3.45) onwards).

Before proceeding any further it is perhaps as well to say a little more about the
statement that the operation of time-inversion is anti-unitary (see Wigner (1959)
Chapter 26). A crude picture of the origin of the magnetic moment of an atom is
obtained by saying that according to Bohr's theory the electrons are moving in orbits
within the atom; these orbiting electrons are then similar to small loops or coils
carrying an electric current and therefore they produce a magnetic moment. A
reversal of the sign of the time coordinate, i.e. t —> —t, would cause the electrons to
orbit in the opposite sense and therefore would reverse the direction of the resultant
magnetic moment. If the idea of time-inversion produces philosophical difficulties or
conjures up ideas of science fiction then it may be more helpful to regard the operation
as the reversal of the direction of motion of an electron in its orbit. When it comes
to the inclusion of the spin angular momentum of the electrons this simple pictorial
approach is not possible.

We wish to examine the effect of 0, the operation of time-inversion, on a wave
function \l/. The behaviour of \ii as a function of/ is determined by the time-dependent
Schrödinger equation

(7.3.1)

where H is the Hamiltonian operator of the system. Suppose that Ek and i//k are the
eigenvalues and eigenfunctions of H, that is, they are the solutions of the time-
independent Schrödinger equation Нф = E\\i. The wave function \l/(t), at any time
t, can be expanded in terms of the \j/k, so that we may write i/^(/) = Xk ok(t)i//k, where
ak(0) are constants determined by the boundary conditions applicable to the system
at t = 0. ak(t) can be determined by substitution into eqn (7.3.1), thus

(7.3.2)
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Therefore, using the fact that H\\ik = Ek\l>k, we have

so that, equating coefficients of

and therefore

flt(0 = u t(0)exp(-i£k//ft). (7.3.5)

We may therefore write

k

and this is the wave function of the system at any desired time, t.
Let us now consider the effect of various operations on this wave function. If we

start at t — 0 and perform the operation of time-inversion (1) followed by the
operation of making a time displacement of +t (2) the result is +t, see Fig. 7.8. If
we start again at t = 0 and make a displacement of — t (3) followed by the operation
of time-inversion (4) the result is again +t, see Fig. 7.8. It is then not unreasonable
to expect that the effect on i/^(0) of the operations (1) and (2) should be the same as
the effect of the operations (3) and (4). The effect of operation (1) is to produce oi//(0)
and there are two possibilities; either, if в is a linear operator,

or, if 0 is anti-linear,

(7.3.3)

(7.3.6)

(7.3.7a)

or, if в is an anti-linear operator,

(7.3.7b)

We now wish to investigate the effect on 9ij/(Qi) of the operation Г which corresponds
to a displacement of +t. We assume that the state öiKO also satisfies the time-
dependent Schrödinger equation, that is eqn (7.3.1), so that the state 0^(0) also
develops in time according to eqn (7.3.5), that is, with factors exp ( — iEkt/h) rather
than exp ( + iEkt/ti). Therefore, if в is linear we have

(7.3.8a)

(7.3.8b)

(7.3.4)
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If we now start again with i//(0) and perform operation (3) we obtain

k

Equations (7.3.8) and (7.3.10) then must both give the wave function at the point P
in Fig. 7.8 and must therefore be the same. Equations (7.3.8a) and (7.3.10a) are
clearly not the same but eqns (7.3.8b) and (7.3.10b) are the same, and therefore we
conclude that 0, the operation of time-inversion, must be anti-linear rather than
linear. It then follows from the conservation of probability amplitudes that 0 must be
not only anti-linear but also anti-unitary.

It is perhaps as well to emphasize that it is not an intrinsic property of the Shub-
nikov groups that they should be non-unitary groups; they are only non-unitary
groups when they are used in the description of magnetic structures, when the colour-
changing operation becomes identified with the operation of time-inversion.

Let M be a magnetic group and G its unitary subgroup of index 2 and suppose
that, when we express M in terms of left cosets with respect to G,

M = G + AG. (7.3.11)

Then all the elements of the coset AG are anti-unitary. All magnetic groups whether
they are of type II, III, or IV can be factorized in this way, so that the following
analysis is suitable for any magnetic group irrespective of its type. A, of course, can
be any of the anti-unitary elements of the group M, but once chosen we shall suppose
that it is fixed once for all as coset representative. The group G is an invariant sub-
group as indeed are all subgroups of index 2 of any group. The product of any two

FIG. 7.8.

(7.3.9)

(7.3.Юа)

and when operation (4) is performed on this we obtain either, if 0 is linear

or, if 0 is anti-linear,

(7.3.10b)
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elements of the coset AG is an element of G: this follows from the homomorphism
of M onto the quotient group M/G of order 2. In particular A2 eG.

We now seek to determine the modifications that are necessary to the representa-
tion theory that we have already considered if it is to be appropriate to the non-
unitary group M. Let Г be a unitary irreducible representation (i.e. a 'rep'), with
dimension d, of G and let (ф = <1^ь i//2, . .. , ̂ d I be a basis for Г. Then for any
element R in the group G

(7.3.12)

where A(7?) is the matrix representative of R in Г. We shall write eqn (7.3.12) for
short in the form

(7.3.13)

Let us now introduce another set of functions ф{, i = 1 to d, where <</>| is produced
by the action of A on <i//|, that is,

(7.3.14)

THEOREM 7.3.1. The vector space spanned by the functions \l/h ф{ (i = 1 to d) is
invariant under M.

This can be proved fairly readily. If we consider the action of R, some element in
G, on the (/>; then

Hence

(7.3.15)

since A~1RA e G,
from eqn (7.3.14) and the fact that A is anti-linear.

for all R e G. We often write \*(A 1RA) = \(R), which is the matrix representative
of R in a rep Г of G. Now suppose we let В be any element of AG, say AR, then

from eqn (7.3.13)
from eqn (7.3.14) and the fact that A is anti-linear,
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Also
from eqn (7.3.14)
from eqn (7.3.13) since В A e G.

Therefore, combining these two equations we obtain

(7.3.16)

This proves the invariance.
Using eqns (7.3.15) and (7.3.16) we can write

(7.3.17)

This set of matrices forms what is called the corepresentation of M derived from
Г (Dimmock 1963è, Wigner 1959, 1960a, b), which we denote by DY. They do not
obey the ordinary equation for a representation

DGR)D(S) = D(AS) (7.3.18)

where R and S are any members of the group, see section 1.3. But they do obey a more
complicated set of equations,

DCR)D(S) = D(RS) (7.3.19a)

D(R)D(B) = D(RB) (7.3.19b)

DCB)D*(A) = D(AR) (7.3.19с)

DC8)D*(C) = D(BC) (7.3.19d)

where R and S e G and В and С e AG, that is if the first element of the pair in the
product is from AG then a complex conjugate appears on the second element. These
equations can be checked using eqn (7.3.17). It should be noted that M —> DY is
not a homomorphism, but that since Г is unitary all the matrices of DY are unitary.

Let us now perform a unitary transformation U on the basis (ф, ф\ = (x\ such
that

Then

(7.3.20)
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and

so that

(7.3.21)

And

but

so that
(7.3.22)

This enables us to define two corepresentations of M to be unitarily equivalent if
there exists a unitary matrix U such that

(7.3.23)

In particular, if we had chosen another anti-unitary operator A' = TA where
T e G instead of A as coset representative the resulting corepresentation would
have had as basis (ф, ф'\ where

Then by choosing

we see that U is unitary and the two corepresentations unitarily equivalent. This is
why the choice of A in defining the corepresentation of M derived from Г is im-
material : different choices lead to corepresentations which are unitarily equivalent.
We can therefore speak of the corepresentation DY of M derived from Г without
ambiguity.

Once the concept of equivalence is defined it is possible to define reducibility and
irreducibility of corepresentations. This is done exactly as for ordinary representa-
tions. If the basis <#| can be transformed by a unitary transformation U so that the
resulting basis <#' = <%| U becomes the direct sum of two spaces both invariant
under M then DY is said to be reducible. If not then DY is said to be irreducible. Or in
matrix language the question of reducibility is whether there is a corepresentation
.DT unitarily equivalent to DY such that all the matrices of D'Y are in the same block
diagonal form. In order to answer this question it is first necessary to discuss the

(7.3.24)
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relationship between the two representations Г with matrices A(A) and Г with
matrices \*(A~1RA) of the subgroup G.

First if we write \*(A -: Д/П = \(R) then \*(A~1RA) = \(A'2RA2) =
which is equivalent to A(A). From this it

follows that the corepresentation of M derived from Г is equivalent to the corepre-
sentation of M derived from Г. This means that when we consider the collection of
all reps of G some of them fall into pairs Г and Г which are mutually inequivalent
and which come together to form single corepresentations of M; as far as we know
yet these corepresentations may be reducible though we shall in fact prove shortly
that such corepresentations are irreducible. The remainder of the reps of G are such
that Г = Г and then the corepresentation of M contains Г twice ; we shall prove
shortly that such corepresentations may or may not be reducible according to a
criterion that we shall establish.

Take first the case in which Г and Г are mutually inequivalent. We suppose there
exists a unitary matrix U which reduces D. Since D(R), R e G is the direct sum of

irreducibles \(R) and А*(Л ~ ̂ RA) the only reduced form of D(A) is

where X(7?) is equivalent to \(R) and Y(A) is equivalent to Then if

from which

and
(a being non-singular since it provides
the equivalence transformation
between \(R) and Х(Я))

so that

But A(A) and are inequivalent so that by Schur's l e m m a a n d

hence b = 0. Similarly с = 0, and hence U"1 is of the form . But no such

diagonal block matrix is capable of reducing matrices of the form

AT/ri f l/n = \(R) \*(A~1RA) = \(A-2RA2) =

eqn (7.3.23) impliesU-1=
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because U^D^U* will still be in off-diagonal block form. Thus if \(R) and
\*(A ~ 1RA) are inequivalent the corepresentation of M derived from Г is irreducible.

Suppose next that \(R) and \*(A ~ 1RA) are equivalent. Then there exists a unitary
matrix N such that

(7.3.28)

and taking the complex conjugate

Hence substituting for \(A2) and А*(Л2) in eqn (7.3.26) we have

(7.3.30)

From which we see that A and A* must be identical. Now N and А(Л2) are unitary
so that from eqn (7.3.28) |A | = 1. Hence Я = ±1 are the only possible cases. It
therefore follows that eqn (7.3.28) reduces to

NN* = ±А(Л2). (7.3.31)

(7.3.25)

and in particular

(7.3.26)

Now

therefore

So from eqn (7.3.25) we have

(7.3.27)

Equation (7.3.27) holds for all R e G and since Г is irreducible it follows from
Schur's lemma that

where / is a constant. Thus NN* = /,\(A2) or

(7.3.29)
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We now prove that which of these two cases holds governs whether or not the
corepresentation of M derived from Г is irreducible. We use the fact that DY is reduc-
ible if and only if the matrices for D(A) and D(A) can be expressed simultaneously in
the same block-diagonal form; every element of M is of the form R or RA for some
R e G, and D(RA) = D(R)D(A) is in block-diagonal form if this is true for both
D(A) and D(/4).

Now D(R) is already in reduced form but first it is convenient to apply a trans-

formation s o that D(A) i s i n t h e form

for then

(7.3.32)

Also

(7.3.33)

Suppose next that we try to find some unitary transformation V which will reduce
O'(A) to block-diagonal form and of course leave Г)'(Я) unaltered. This means that

V must commute with then the relation '

implies, on using eqn (7.3.32), that

(7.3.34)

Since \(R) is irreducible it follows from Schur's lemma that
and о = pi, where А, /л, v, and p are constants. Hence

(7.3.35)

The required unitary matrix is
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where, since V" 1 is unitary and hence det д the c o n s t a n t s a n d / must
satisfy

(7.3.36)

Then, if we apply the transformation with V to D'(A) we obtain

(7.3.37)

(V is unitary, so that V* = V ir). On expanding the right-hand side of eqn. (7.3.37)
we find that the condition for the off-diagonal terms to vanish is

(7.3.38)

Equations (7.3.36) and (7.3.38) taken together imply that reduction is possible only
if Thus of the two possibilities allowed by eqn (7.3.31) reduction is
possible when but is not possible when When
' we can choose, and \ and then from
eqn (7.3.37)

(7.3.39)

But NN* = А(Л2), so AG^N'1* = N, giving finally

(7.3.40)

In the other case when NN* = — А(Л2) eqn (7.3.33) gives

(7.3.41)

If we wish to find the corepresentative of В = RA then we can use eqn (7.3.19b)

(7.3.42)

Thus, from eqns (7.3.32) and (7.3.40), since D"(A) = D'(/Z),

(7.3.43)
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and, from eqns (7.3.32) and (7.3.41),

We can now summarize the three cases :

Case (a)

(7.3.44)

(7.3.45)

Note that the corepresentation that has the + sign is equivalent to the one that has
the — sign.

Case (Ы

Case (c)

(7.3.46)

\(R) is not equivalent to \*(A ~ l RA) = \(R).

(7.3.47)

Therefore starting with a rep Г of the unitary subgroup G it is possible by using
the appropriate one of eqns (7.3.45)-(7.3.47) to determine an irreducible corepre-
sentation DY of M. If one considers all the reps of G then one obtains a collection
of irreducible corepresentations ('coreps') of M and, in fact, all the possible in-
equivalent irreducible corepresentations of M can be determined in this way (Wigner
1959). What is usually important is to know which of these three cases is appropriate
for a given irreducible representation Г of G. For this Dimmock and Wheeler (1962a)
give a very simple test using the characters of Г. If Г' and Г' are two unitary irreduc-
ible representations of G then from eqn (1.3.14)

(7.3.48)
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where |G| is the order of G and di the dimension of Г'. Now if В e AG we have

In cases (a) and (b) the sum is

(7.3.49)

In the simplification we have used eqns (7.3.25) and (7.3.48) and the fact that Г is
unitary and of dimension d, so that the character of the identity is d.

In case (c) the sum is

(7.3.50)

This follows from eqn (7.3.48), Г and Г being inequivalent. Collecting these results
and writing i for the character of Г we have

(7.3.51)

For the magnetic point groups it is then a relatively straightforward matter to deter-
mine their coreps (Cracknell 1966a, Cracknell and Wong 1967, Dimmock and
Wheeler 1962o). The type I magnetic point groups are unitary groups and their reps,
both single-valued and double-valued, have been tabulated already in earlier chap-
ters. For a type II magnetic point group, M, the reps of the unitary subgroup G are
immediately available from eqn (7.2.1). For a type III magnetic point group, M, the
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reps of the unitary subgroup may be found by consulting Table 7.1 to identify the
unitary subgroup of M, and thus its reps. In either case, choosing a particular anti-
unitary element to be A the coreps of M can be determined by seeing whether the
reps Г and Г are equivalent. If they are not equivalent then the coreps of M are given
by eqn (7.3.47). If Г and Г are equivalent and NN* = + A(^42) where N is a unitary
matrix such that, from eqn (7.3.25),

7.4. The Kronecker products of corepresentations

In this section we consider the definition and reduction of the inner Kronecker pro-
duct of any two irreducible corepresentations of a non-unitary group M. In keeping
with the notation of section 7.3 we shall write Г1 for an irreducible representation of
the unitary subgroup G and for notational convenience later we define Г' where

(7.3.52)

then the corep of M derived from A(A) is given by eqn (7.3.45) and if NN* = — А(Л2)
the corep of M derived from \(R) is given by eqn (7.3.46). The deduction of the
coreps of the magnetic space groups is complicated by the fact that they are infinite
groups; we shall consider them in section 7.6. Rather than examine the matrices of
Г and Г in detail one would use the test given in eqn (7.3.51) to determine whether
the corep of M derived from Г belongs to case (a), case (b), or case (c). Then only if
it became necessary to find explicitly the matrices in eqn (7.3.45) or eqn (7.3.46)
would one actually study the matrices of Г and Г and use eqn (7.3.25) to determine
the matrix N. If the form of N is not immediately obvious it can be obtained (see
eqn (4.5.51)) from the expression

(7.3.53)

where X is a matrix conveniently chosen so that N is unitary; X = 1 is not always a
suitable choice since this choice for X may cause the right-hand side of eqn (7.3.53)
to vanish.

(7.4.1)

We denote by DY' the irreducible corepresentation of M derived from Г1.
We assume that the decompositions of inner Kronecker products within the unitary

subgroup are known. That is to say, the Clebsch-Gordan coefficients cy>fc in the
reduction

(7.4.2)
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are supposed known. Writing ф' for the character of Г' the formula for c;j k is, from
eqn (1.3.24),

A detailed analysis of how to obtain cij<k from this formula in the case in which G is a
crystal space group has already been given in section 4.7 using the method of little
groups.

Suppose we define, for all elements m e M, and for any two irreducible corepre-
sentations Z)F and DTJ the matrix Di; whose elements are

(7.4.3)

(7.4.4)

so that the matrix D'J is the Kronecker product of the matrices D' and DJ,

(7.4.5)

Then it can be fairly easily verified that the D'J(m) form a corepresentation, which
we call DP', of M. That is to say, the matrices DIJ'(m) satisfy equations of the form
(7.3.19).

We know from section 7.3 that a corepresentation is uniquely determined (up to
equivalence) by the characters of the elements of the unitary subgroup. Writing #'
for the character of DT1 (when restricted to G), then from eqn (7.4.4) we obtain, for
all R e G,

(7.4.6)

and these values characterize completely the corepresentation DYli. In general the
corepresentation DT'j will be reducible. Suppose therefore that

(7.4.7)

Then our problem is to determine d^^. The first step is to relate dijk to the characters
%', xj, and %k of the unitary subgroup. This comes as a very simple generalization of
eqn (7.4.3) (bearing in mind that DYk is possibly reducible under G), and the formula
(Karavaev 1964) is

(7.4.8)

We now show how this formula may be simplified. If DYk is of type (a), (b), or (c)
then the denominator of eqn (7.4.8) is 1, 4, or 2 respectively. This follows from
eqns (7.3.45)-(7.3.47) and is a consequence of the fact that DTk contains, in case (a)
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just one irreducible representation of G, in case (b) one irreducible representation
twice, and in case (c) two inequivalent irreducible representations once. That is,

(7.4.9)

Then, using the orthogonality relations for characters,

1 in case (a), 1

4 in case (b), Y

2 in case (c). J

in case (a), 1

in case (b), У

in case (c). J

(7.4.10)

The second step is to convert eqn (7.4.8) into a relationship between dijk and the
Cfj;ik of eqn (7.4.2). A laborious evaluation of the numerator of eqn (7.4.8) for each
particular case is then unnecessary. Since the c0 k are known the problem of the
reduction of the inner Kronecker product of any two irreducible corepresentations
is then solved for any non-unitary group M ; in particular for magnetic space groups
the values for cijtk are first derived using the formulae of section 4.7. There are, taking
into account the relation

(7.4.11)

eighteen different possibilities to consider according to whether DY\ DY}, and Drk

are of types (a), (b), or (c). The formulae are quite straightforward to establish ; o
has to substitute eqns (7.4.9) and (7.4.10) into eqn (7.4.8) and to express the result
in terms of ciitk, etc. using eqn (7.4.3). It is also necessary to use the fact that if DYk

is of type (c) then if a corepresentation DY>J contains Г* it contains Г*' an equal
number of times. The values of the dijtk are given in Table 7.8.

As an example of the use of Table 7.8 we consider the magnetic point group
4'mm. For this group G, the subgroup of anti-unitary elements, consists of the point
group mm2 (C2tl), that is

G = E, C2z, ах, ау (7.4.12)

and the set AG of anti-unitary elements consists of the elements

where 0 is the operation of time inversion (see Table 7.1). The group G in this case
therefore has four irreducible representations Аъ А2, Въ and B2 (see Table 2.2). To
make the notation coincide with that of this section we denote the representations
At, A2, 5b and B2 of G by Гь Г2, Г3, and Ц respectively. It can be shown by
using eqn (7.3.51) that the irreducible corepresentations derived from Г1 and Г2

(7.4.13)
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T A B L E 7.8

Clebsch-Gordan coefficients for Kronecker products of irreducible corepresentations
(Bradley and Davis 1968)

-DP

a
a
a
a
a
a
a
a
a
b
b
b
b
b
b
с
с
с

Z)P

a
a
a
b
b
b
с
с
с
b
b
b
с
с
с
с
с
с

ПГ"

а
b
с
а
b
с
а
b
с
а
b
с
а
b
с
а
b
с

4м

с.-мк*
cij.k
2'уд
со-л
2%.
cü,* + С

К',* +
С УД + е

4=о-д
2cu.t

4^од
2са* +
сал + с

2cH.k +
ca,k + с

Км +

ii'.k

К-л
i/Д

2^,уд
УД

2с,тд
iï.k + t'i'i.k + Ci'j'.k

icü',k + îc,-j.* + ici>r,t

СУД + Cij',k + Cj.j.k + С,,гл

Notes to Table 7.8

(i) The formulae are for irreducible corepresentations only.
(ii) Each row of the table supplies a formula for diik, as defined by eqn (7.4.7).

(iii) The appropriate row of the table to use depends on the type of the corepresentations involved. The first three
entries in each row are respectively the types of DT', DT', and DTk (as denned by eqns (7.3.45)-(7.3.47).

(iv) The fourth entry in each row is the value of di]Jt in terms of the cij-k as defined by eqn (7.4.2).
(v) Primed suffices refer to primed representations, see eqn (7.4.1). Thus cif k is the number of times that Г*

appears in the decomposition of Г' [x] TJ

are of type (a) and the irreducible corepresentation derived from Г3 and Г'3 is of
type (c). We denote these corepresentations DA±, DA2, and D B by ОГЪ DY2, and
DT3 respectively.

We assume the Clebsch Gordan coefficients for the Kronecker products of
mm2 (C2„) are known; they are given, for instance, by Koster, Dimmock, Wheeler,
and Statz (1963). In fact

c l l , l = C12,2 = C13,3 = C13',3' = C22,l = C23,3' = C23',3

= сзз,1 = с'зз-,2 = c3'3-,i = 1 (7.4.14)

and all other cijrk not derived from these by the relation

Cij,k = c j i jk (7.4.15)
are zero.
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We can then use the appropriate lines of Table 7.8 to obtain

"11,1 = cn,i = l j
"12,2 = C12,2 = lj

^13,3 = Cl3,3 + C13',3 = 1)

<*22.1 = С22Л = L

"23,3 — C23,3 + C23',3 — 1'

3̂3,1 = C33,l + C33',l + C3'3,l + C3'3',l = 2,

"33,2 = C33,2 + C33',2 + C3'3,2 + C3'3',2 = 2,

and all other dijtk not derived from these by eqn (7.4.11) vanish. Thus the Clebsch-
Gordan decomposition for 4'mm' is

DAj. m DAi = DAj_

DAi m DA2 = DA2

DAl®DB =DB

DA2 m DA2 = ОА^

DA2 m DB = DB

DB m DB = 2DAi + 2DA2.

The results of applying this theory to all the 58 type III magnetic point groups and
the application of these results to crystal field theory have been reviewed by Cracknell
(1968a).

7.5. The corepresentations of the magnetic point groups

The grey point groups; the consequences of invariance under time-inversion

It has already been mentioned that the effect of the operation of time inversion is to
reverse the magnetic moment of an atom or ion. Thus for an ion in a paramagnetic or
diamagnetic crystal, in the absence of an external magnetic field, the crystal is invari-
ant under the operation of time inversion so that we can say that the ordinary point
groups, or type I Shubnikov point groups, do not adequately describe the symmetry
of the local environment of the ion and it is better described by one of the correspond-
ing type II Shubnikov groups, the grey point groups. It is fairly straightforward to
consider these groups and to derive their coreps and hence to see if any extra degener-
acies are introduced by considering the invariance of the crystal under the operation
of time inversion (Cracknell 1966д, Cracknell and Wong 1967, Dimmock and
Wheeler 1962,2, 1964).

For each of the 32 grey point groups we can choose A to be the element 0, the
operation of time inversion itself; this means that A(A) = \(6~l R9)* = \(R)*. The

(7.4.16)

(7.4.17)
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reps &(R) for G for each of the grey point groups are available from Tables 2.2 and
6.5. There are several different possibilities to consider. First, we may consider the
single-valued representations; these are used in the description of particles with zero
or integer spin and for these it can be shown (Wigner 1959) that А(Л2) = A(02) = +1.
For the real non-degenerate reps of G, A(A) is not only equivalent but also identical
to А(Л) so that we may choose N = 1. The coreps of M can therefore be found by
using eqn (7.3.45), case (a). For complex non-degenerate reps of G, \(R) = \(K)*
and is inequivalent to A(A), so that the coreps of M can be found by using eqn
(7.3.47), case (c). For degenerate single-valued reps it so happens that the matrices
\(R) can all be chosen to have real elements, as can be seen from Table 2.3, and
therefore once again \(R) is not only equivalent but also identical to \(R) so that the
coreps of M can be found using eqn (7.3.45), case (a), with N = 1. This covers all
possible cases for single-valued reps.

It thus remains to consider the double-valued reps; these are used in the description
of particles with half-odd-integer spin and for these it can be shown (Wigner 1959)
that А(Л2) = A(02) — — 1. The various possible general forms of A(A) and the
coreps of the grey point group M to which they lead can be examined one by one just
as for the single-valued reps. The results for both single-valued and double-valued
reps are given in Tables 7.9 and 7.11. Except in the case of degenerate reps \(R) with
real characters but with some matrices necessarily complex the coreps can be written
down immediately using Table 7.9 and the matrices \(R) themselves. For this one
remaining case the characters of A(A) and A(A) must be the same so that coreps
derived from А(Я) must belong to either case (a) or case (b); which of these actually
happens can be found by determining N either by direct inspection of A(A) and

T A B L E 7.9

Rules for constructing coreps of grey point groups

A(/?) Corep Equation N

(/') Single-valued:
Non-degenerate, real a (7.3.45) 1
Non-degenerate, complex с (7.3.47)
Degenerate, real a (7.3.45) 1
(ii) Double-valued:
Non-degenerate, complex с (7.3.47)
Non-degenerate, real b (7.3.46) 1
Degenerate, some characters complex с (7.3.47)
Degenerate, all characters real a (7.3.45) see Table 7.11

Note to Table 7.9
The entry in column 2 indicates whether the corep derived from A(A) belongs to case (a), case (b), or case (c) ;

the entry in column 3 gives the equations to be used in determining the coreps of M and column 4 gives N.
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A(7?) or from eqn (7.3.53). Alternatively, one can use the test given in eqn (7.3.51)
to determine whether the corep derived from A(A) belongs to case (a) or case (b);
however, this does not achieve very much saving of effort if one actually wishes to
write down the matrices in the coreps because the matrix N still has to be found. In
fact all coreps of this type belong to case (a).

As an example we consider the grey point group 222 Г which is derived from
222 (O2); in Table 7.10 we list \(R) and \(R) for the rep E. By inspection it can easily

be seen that N must be the matrix I j so that NN* = — 1 = + А(Л2) since

this is a double-valued rep of G and A = 0. The corep of the grey point group G + ÖG
derived from the rep £ of G can thus be written down using eqn (7.3.45) and the
matrix N that we have just found.

T A B L E 7.10

2221', A(A), and Ä(R)for E of 222 (D2)

In Table 7.11 we give the information that enables those coreps of the grey point
groups that are derived from degenerate double-valued reps of the point groups to
be written down. This completes the derivation of the double-valued coreps of the
grey point groups; the rules for all forms of \(K) except one have been given in
Table 7.9 and for this one exception the coreps can be found using Table 7.11.

In fact one can see what extra degeneracies are present due to the presence of time-
inversion symmetry without any explicit reference to the theory of corepresentations
of type II Shubnikov groups. This was done by Herring (1937a) by considering the
reality of the representations, following the earlier version of the work on time-
inversion by Wigner (1932). It was to enable the reader to see at a glance whether or
not invariance under the operation of time inversion would cause a particular rep of
a Fedorov space group to have its degeneracy doubled, that we considered the theory
of the reality of these reps in section 4.6 and stated the reality of each rep in Tables
5.7 and 6.13. The theory was illustrated in section 5.4 for the space group F43c (T%).

We shall now show that the application of the theory of the corepresentations of
the type II Shubnikov groups leads to exactly the same conclusions as to the relation
between the reality of the reps and the extra degeneracies to be expected in a crystal
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which is invariant under the operation of time inversion. The type II Shubnikov
group M is given by eqns (7.2.1) or (7.2.3)

M = G + 0G (7.5.1)

so that it is natural to choose as A the operation of time inversion itself.
For a system with half-odd-integer spin, A(02) = — 1, and therefore

(7.5.2)

T A B L E 7.11

The degenerate double-valued coreps of the grey point groups

( ° Mк = \
V - i o/

(Direct products are not included)

1
G Rep of G Corep of M N G Rep of G CorepofM N

mm1(C2l) E а к 6mm (С6„) Ё1,Е2,Ё3 а к
222 (D2) E а к 62m(D3ll) £,, £2, £3 а к
32 (Л3) E а к 23 (Т) Е_ а к
3/я (С3„) £ а к '£, 2F с —
422 (D4) Ё!, £2 а к 432 (О) Е,,£2 а к
4mm (С4„) £;,£;, а к F a /к (Л
42т (£>2„) £1;£2 _ а к _ _ (0 к)
622 (D6) Е,,£2 , Е3 а к 43m (rd) £1? £2 a к

F a /к 0\

U J
I __,

Note to Table 1.11

\(R) is listed in column 2, in column 3 the letter a, b, or с indicates that the corep of G + OG derived from that rep
of G belongs to case (a), case (b), or case (c) respectively; the actual matrices will then be given by eqn (7.3.45),
(7.3.46), or (7.3.47) respectively, and column 4 gives N for those cases for which it exists.

The reps A(7?) of the unitary subgroup G are just the ordinary reps, and there are
thus three possibilities to consider:

(г) Y is real,
(ii) Y is equivalent to Г* but not to any group of real matrices,

(Hi) Y is not equivalent to Г*;
that is, in the sense of Definition 1.3.7 the rep Г is of the first, second, or third kind
respectively. In (г) the reps Г and Г (in which A(A) = A(A)*) are obviously not only
equivalent but also identical so that we may choose N = 1 and therefore NN* = 1 ;
hence from eqn (7.5.2)

NN* = -\(A2) (7.5.3)
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and the corep of M belongs to case (b), which shows that there is an extra degeneracy.
In (//) Г and Г are equivalent but not identical and the corep of M depends on NN*.
In this case Wigner (1959) has shown that NN* = — 1, so that using eqn (7.5.2)

NN* = -1 = b(A2). (7.5.4)

The coreps of M therefore belong to case (a) and there is thus no extra degeneracy.
Finally in (ш) the corep of M obviously belongs to case (c) and leads to an extra
degeneracy. Summarizing then, for particles with half-odd-integer spin, we have

(z) extra degeneracy (case (b)),
(») no extra degeneracy (case (a)), and

(ш) extra degeneracy (case (c)).
This is the same as the results of Wigner (1932) and Herring (1937a).

For a system with zero or integer spin, eqn (7.5.2) becomes replaced by, see Wigner
(1959),

\(A2) = +1 (7.5.5)

and the results for cases (/) and (») are interchanged, while the result for case (ш)
remains unaltered. This is also in agreement with the conclusions of Wigner and
Herring, see sections 4.6 and 5.4, so that, for particles with zero or integer spin, we
have

(z) no extra degeneracy (case (a)),
(ii) extra degeneracy (case (b)), and

(Hi) extra degeneracy (case (c)).
In the above discussion, by an extra degeneracy we always mean a doubling of the

degeneracy that would have resulted had G been the appropriate symmetry group
rather than M(= G + OG). This is because the corep DY derived from Г has twice
the dimension of Г in cases (b) and (c); on the other hand DY has the same dimension
as Г in case (a) which is the case of no extra degeneracy. We have already specified
the realities of the single-valued reps of the crystallographic point groups in Note (v)
to Table 2.2, while the realities of the double-valued point-group reps were given in
Note (vii) to Table 6.5; in both cases this gives the same results as the direct use of
Table 7.9 for determining the extra degeneracies that arise if в is added to the sym-
metry operations of the point group G.

The black and white point groups, an example m'3

We now turn to the problem of the tabulation of the coreps of the type III Shubnikov
point groups, or the black and white magnetic point groups. We illustrate the deduc-
tion of these coreps with the example of the magnetic point group т'Ъ (Cracknell
1966a).

From Table 7.1 it can be seen that for the group m'3 the unitary subgroup H of
Definition 7.2.2 is the point group 23 (T) and the character table for the single-valued
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representations of this group is given in Table 7.12. The fact that elements of (G — H)
have been multiplied by 0 does not alter the division of the group into classes, thus
since m3 (Th) is a direct product group 23 (g) \(T (x) C;), and has 8 classes, we can
write

m'3 = 23 + 0/23

( = T + BIT). (7.5.6)

T A B L E 7.12

The character table of the point group 23 (T)

H of m'3 E C2m C^j Cj-j

А Г, 1 1 1 1
'£' Г2 l l (o (a*
2 E Г3 1 l ш* ш
T Г4 3 -l 0 0

ш = exp (2;ci/3).

This magnetic group is also a direct product of 23 (T) and the group (E + 01), and
it has 8 classes also :

E

^2x5 ^ 2 y > £-2z

Г1" Г*~ Г1^ Г1

^31> *-32> *-33' <-34

/^ + /^+ c+ C +

*^31> °32> °335 *-34

We make the simplest possible choice of A, namely 91, and apply the results of
section 7.3 in turn to each of the reps of 23 (Г), the unitary subgroup H of the mag-
netic group m'3. For reps A and T, A(Ä) is real, and since 01 commutes with every
element, A(/?) = \(R)* = A(A) and therefore \(R) and \(R) are not only equivalent
but also identical so that NN* = 1; therefore

NN* = +1 = +А(Л 2) (7.5.7)

and therefore the coreps of M derived from A and Г belong to case (a). For the
complex conjugate reps 1E and 2E, A(R) = A(A)* and thus a(K) and A(R) are in-
equivalent and the coreps derived from 1E and 2E belong to case (c). Using eqn.
(7.3.47) we find

(7.5.8)



w = exp (2тп/3).

We can still use 0/as A so that once more \(R) = A(A)*. For the representation E,
A(7?) must be equivalent to A(A). To determine the coreps derived from E it is neces-
sary to find N; this can be done using
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so that, using 1E, the matrices are

By using 2E one would deduce a corep equivalent to this.
It remains to find the double-valued coreps of this group. The characters of the

double-valued reps of H were given in Table 6.5 and are reproduced in Table 7.13.

T A B L E 7.13

The double-valued representations of the point group 23 (Г)

: «

E E ~2*i Ç2y, C2z, C3i, C32, C31, C32, C31, C32, C3
f
1, CJ2,

Cjx, C2y, C2z C33, C34 C33, C34 C33, C34 С^3, CJ4

£ 2 - 2 0 1 - 1 - 1 1
'F 2 -2 0 со -со -со* со*
2 F 2 -2 0 со* -со* -со со

(7.3.25)

and it is fairly easy to show that N = so that

(7.5.9)

Since when we use the double-valued representations we are dealing with an odd
number of electrons А(Л2) = A((0/)2) = A(02) = - land therefore NN* = +\(A2)
and the double-valued corep of m'3 derived from E belongs to case (a), with

(7.5.10)
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1F and 2F, however, are complex conjugate representations so that A(A)( = A(A)*)
and A(A) are inequivalent and the double-valued coreps of m'3 derived from 'F and
2 F belong to case (c). Thus we can summarize the coreps of m'3 derived from the reps
of 23 (I*) as shown in Table 7.14. Rather than use the method of inspection which we
have described it is possible to use eqn (7.3.51) to see whether a corep belongs to
case (a), (b), or (c), that is

Note to Table 7.14

For case (a) the coreps can be found using eqn (7.3.45) and the value of N in column 3, for case (b) they can be
found using eqn (7.3.46) and the value of N in column 3, and for case (c) they can be found using eqn (7.3.47).

spinless particle or a particle with integer spin, while the second part is relevant to the
wave function of a particle with a spin of half an odd integer. However, if one is
using the common first approximation of neglecting the spin of a particle, for example
as in the simple consideration of atoms neglecting spin-orbit coupling, it is the first
part of the table that will be used. The fact that it was possible to choose as A an
element that commutes with every element of H simplifies this analysis because then

(7.5.11)

whereas in general no such simplification of \(R) is possible.

+ G in case (a),
= — |G| in case (b), >

0 in case (c). I

(7.3.51)

The coreps in the first part of Table 7.14 are single-valued and those in the second
part are double-valued. That is, the first part is relevant to the wave function of a

T A B L E 7.14

The coreps of the magnetic point group m'3

Rep of H, 23 (Г) Case (a), (b), or (c)

A a
1E с
2E с

Г а

E a

'F c
2F с
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In Table 7.1 we identified for each magnetic point group M the unitary subgroup
H, the classes of the set of elements ,^(G — H) and the element A chosen for deducing
the coreps of M. As Wigner (1959) demonstrates, the actual choice of A does not
affect the coreps when they are finally derived but does involve differences in the
algebra of their derivation. In Table 7.15 are listed the single-valued and double-
valued reps of the unitary subgroup H of each magnetic group M together with the
data which enables the coreps of M to be written down immediately, as in the case of
m'3 in Table 7.14, using eqns (7.3.45)-(7.3.47). The characters, and in the case of
degenerate representations the matrix representatives as well, can be found from
Tables 2.2 and 2.3 for the single-valued reps and from Table 6.5 for the double-valued
reps.

TABLE 7.15

The ce/représentations of the magnetic point groups

(a)

M T ' ( l ) 2'(2) т'(У)
H 1 (С,) l (С,) l (С,)

Rep of H A A A A A A
Corep of Ma b a a a a
N а а а я к а

(b)

M 2/m'(4) 2'/m(5) 2'/m' (6) 2'2'2 (7)
H 2(C2) m(C l f t ) T(Q 2(C2)

1 1

Rep of H А В '£ 2E A' A" '£ 2E As Au Ая Аи А В 1Е 2E
Corep of Ма а с с а а с с i a a a a a a a a
N а я - - а а - - я а я а а а а а

1 I I

M | m'm'2(8) m'm2'(9) 4'(13) 4'(14)
H 2(C2) m(Cu)î 2(C2) 2(C2)

Rep of H Л В '£ 2£ Л' ^" '£ 2£ ^ S 'Я 2£ Л и '£ 2£
Corep o f M a a a a a a a a a b c c a b c c
N а а а а а а а я а а — — а а - -

\ 1 \ \

Î The elements of H are E, E, ау, and er,, instead of the conventional E, E, az, and oz.Î The elements of H are E, E, ay, and ffy instead of the conventional E, E, az, and oz.
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(c)

M m'm'm'(Щ 4'22' (16) 4'2m' (23)
H 222 (D2) 222 (D2) 222 (D2)

Rep of H А Въ B2 Bl E A B3 B2 B, £ A B3 B2 Bl E
Corep o f M a a a a a a c c a a a c c a a
N а я а л р а — - « a c t — — a a

| 1

M mmm'(H) 4'mm' (21) 4'm2' (24)
H mm2(C2„) mml (С2ь.) mm2 (С2„)

Rep of H /^ Л2 fi, S2 E Al A2 В, Вг Е Л, A2 Bl B2 E
Corep o f M a a a a a a a c c a a a c c a
N я а а а р а а - - с т а с ( - - < 7

M m'm'm (U) 4'/m(19)
H 2/m (C2„) 2/m (C2ft)

R e p o f H Лд Au Bg Ba

 lEg

 2Eg

 1EU

 2Ea Ag Au Bg B^ '£g
 2£a '£„ 2£u

Corep o f M a a a a a a a a a a b b c c c c
N а а я а а а а а а я а а - — - -

(d)

M 4'/mmm' (27)
H mmm (D2h)

R e p o f H ^g B3g B2e Blg A„ B3a B2a Bla Eg £„
Corep o f M a c c a a c c a a a
N а - - а з - - а < т ( т

(e)

M 42'2'(15) 4/m'(17)
H 4 (C4) 4 (C4)

RepofH A B '£ 2£ '£, 2£, '£2
 2£2 ^ S '£ 2£ '£, 2£, '£2

 2£2

Corep o f M a a a a a a a a a a c c c c c c
N а а а а я а а а а а - - - — - —

M 4m'w' (20) 4'/m' (18)
H 4 (C4) 4 (S4)

RepofH A B 'E 2E 'Et

 2£, '£2
 2£2 Л ß '£ 2£ '£, 2£, '£2

 2£2

Corep o f M a a a a a a a a a a c c c c c c
N а а а а а а а а а « - - - - - -
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M 42'm' (22)
H 4 (S4)

Rep of H A B 1E 2£ '£, 2£, 1E2
 2£2

Corep of Ma a a a a a a a
N а а а я я а а а

I

(f)

M 4/mm'm' (29)
H 4/m (C4ft)

Rep of H Лд Sg '£g
 2£g Лц ßu '£„ 2£u '£ lg

 2£,a '£2д

 2£2e '£,„ 2£ lu '£2u
 2£2u

Corep o f M a a a a a a a a a a a a a a a a
N а а а а а а а а а я а а а а я а

(g)

M 4/m'm'm' (25) 4/.-и'/ит (26)
H 422 (Ö4) 4mm (C4„)

Rep of H AI A2 Ä! ß2 £ £, £2 /4 t Л2 В, B2 E £, £2

Corep o f M a a a a a a a a a a a a a a
N я а а а е р р а а а а с р р

M 4'/m'm'm (28)
H 42m (02d)

RepofH Al A2 Bj B2 E E, E2

Corep of Ma a a a a a a
N а а а а е р р

(h)

M 32' (30) 3m' (31)
H 3 (C3) 3 (C3)

RepofH A '£ 2£ Л '£ 2£ Л 1Е 2£ Л '£ 2£
Corep o f M a a a a a a a a a a a a
N а а а а а я а а а а а а
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M 6' (32) 6' (36)
H 3 (C3) 3 (C3)

Rep of H A 1E 2E À 1E 2E A 1E 2E A 1E 2E
Corep o f M a c c a c c a c c a c c
N a — -a — — a - — a — —

M 3' (37)
H 3 (C3)

Rep of H A 1E 2E A '£ 2E
Corep o f M h c с а с с
N a - - a

(i)

M 3m' (38)
H 3 (C3i)

Rep of H Ag

 lEg

 2Eg Au

 lEa

 2EU Aa

 lEg

 2Eg Au '£„ 2EU

Corep о Г М а а а а а а а а а а а а
N a a a a a a a a a a a a

M 6'/m: (44)
H 3 (C3/)

Rep of H Ая

 lEg

 2Eg Aa

 1EU

 2EU Ag

 1Eg

 2Eg Aa '£„ 2£u

Corep o f M a c c a c c a c c a c c
N я - - а - - а - - а - -

(j)

M 6'm2' (34) 3'm (39)
H 3m (С3„) 3m (С3„)

Rep of H AI A2 E 1E 2E E, Al A2 E 1E 2E £,
Corep o f M a a a a a a a a a c c a
N а а £ а а Е а а Е - - р

[ ]
M 6'm'm (47) 6'm'2 (35)
H 3m (C3v) 32 (/J3)

Rep of H ' A , A2 E 1E 2E £, A, A2 E 1E 2E £,
Corep o f ' M a a a a a a a a a a a a
N а а е а а с а а е а а е

633
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M 3'm' (40) 6'2'2 (42)
H 32 (Ö3) 32 (D3)

Rep of H AI A2 E 1E 2E £, Л, A2 E 1E 2E £,
Corep o f M a a a c c a a a a a a a
N a a e - - p a a e a a £

(k)

M d'/m'm'm (49)
H 3m (D,d)

Rep of H Alg Л2д £g Alu A2u Eu
 1Eg

 2£g Elg '£„ 2EU £ lu

Corep of Ma a a a a a a a a a a a
N a a e a a e a a e a a s

(1)

M 6m'2' (33)
H 6 (C30

Rep of H Л' '£"' 2£" Л" '£' 2£" 1£1
 2£t % 2£2 '£3

 2£3

Corep of Ma a a a a a a a a a a a
N я а а а я а а а я о с а а

I

M 6'/m (45)
H 6 (C3h)

Rep of H Л' 1Е" 2Е" A" 1E' 2E' '£, 2£, '£2
 2£2 '£3

 2£3

Corep o f M a c c a c c c c c c c c
N а - - а - - - - - - - -

M 62'2' (41)
H 6 (C6)

Rep of H A >Ei 2£t В '£2
 2Е2 Ч, 2£, '£2

 2£2 '£3
 2£3

Corep o f M a a a a a a a a a a a a
N а а а а а а а а а а а а

M 6/m' (43)
H 6 (C6)

Rep of H A 1E, 2E, В 1E2

 2E2

 >El

 2E, 1E2

 2E2

 1E3

 2£3

Corep o f M a c с а с с с с с с с с
N а _ - а _ _ _ _ _ _ _ _
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M 6m'm' (46)
H 6 (C6)

Rep of H A J£j 2E, В '£2
 2E2 *E, 2£, 1E2

 2E2 % 2E3

Corep of Ma a a a a a a a a a a a
N a a a a a a c t a a a a a

(m)

M 6/mm'm' (52)
H 6/m (C6ft)

Rep of H Л9

 lEia

 2£ lg B9 > E2g
 2E2g Au '£,„ 2£ lu Вц '£2ц

 2Я2„
Corep о Г М а а а а а а а а а а а а
N a a a a a a a a a a a a

(m) cont.

M 6/mm'm' (52)
H 6/m (C6ft)

Rep of H '£ lg
 2£,B

 !£2g
 2£2g '£3g

 z£3g '£ lu
 2£u '£,„ 2£2o '£3u

 2£3u

Corep о Г М а а а а а а а а а а а а
N a a a a a a a a a a a a

(n)

1
M 6'/mmm' (48)
H 62m (ЛЗЙ)

Rep of H A\ A'2 A'[ A'2 £' E" Et £2 E3

Corep of Ma a a a a a a a a
N X t X O I . Q l £ £ p p p

M 6/m'm'm' (50)
H 622 (06)

Rep of H X j A2 B! B2 E, E2 £\ £2 £3

Corep of Ma a a a a a a a a
N a a s t a e e p p p

M 6/m'mm(51)
H 6mw (С6„)

Rep of H X j Л2 5j Л2 £, £2 £, £2 £3

Corep of Ma a a a a a a a a
N a o c a a e c p p p
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(o)

M m'3 (53) 4'3m' (54)
H 23 (T) 23 (Г)

Rep of H Л 1E 2E T E 1F 2F A 1E 2E T E 1F 2F
Corep o f M a c c a a c c a a a a a a a
N а - - £ р - - а а я £ о о с т

M 4'32' (55)
H 23 (Г)

Rep of H A 1E 2E T E '£ 2F
Corep of Ma a a a a a a
N а я я £ а а а

(P)

M m3m' (58)
H m3 (Г„)

Rep of H Лв

 2£g '£„ Гд Л„ 2£u '£ц Ги £g 'Fg
 2Fg £„ 1FU

 2FU

Corep o f M a a a a a a a a a a a a a a
N a a a f s c a a f o a a a a a

(q)

M m'3m' (56) m'3m (57)
H 432 (О) 43m (Г„)

Rep of H /4, Л2 £ Т, T2 Ël E2 F А, Аг E Tl T2 £, £2 F
Corep o f M a a a a a a a a a a a a a a a a
N я а е Е Е р р ф я я Е Е Е р р ф

Notes to Table 7.15

(i) The last but one row of the table specifies whether the coreps of M derived from the reps of H follow case
(a), case (b), or case (c) when they are given by eqn (7.3.45), eqn (7.3.46), or eqn (7.3.47) respectively,

(ii) The matrices N given in the last row of each entry can be found from the following key.

/ 1 0\ / 0 1\
a = l ; e={ ; p = ( ;

VO 1/ V - l 0/

1 /1 -i 0 \
a = — b

^2 \ 0 1 + i/

1 /(v

;3 + 1) + i(V3 - 1) 4i \
X~2J6\ 4i (v'3 + 1) - i(v'3 - 1)/'
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It is necessary to introduce a scheme for labelling the coreps of the magnetic point
groups. The use of primes, bars, subscripts, and superscripts is already excessive so
that rather than use a further modification of this nature an alternative will be
adopted. We adopt the following scheme for the labelling of the coreps of the mag-
netic point groups (Cracknell 1968a). If X is the label of a given rep of the unitary
subgroup (see Tables 2.2 and 6.5) then DX is used to denote the corep of M that is

T A B L E 7.16

Notation for single-valued coreps belonging to case (c)

M

4'22'
4/m'
4'/m'
4'mm'
4'2m'
4'm2'
4'/mmm'

(,'

Reps of H

B2,B3
1E,2E
1Е,гЕ
B,,B2

B2,B3

Bl,B2

В2я,В3я

В2а,ВЪа

'E,2E

Coreps of M

DB
DE
DE
DB
DB
DB
DBg

DBa

DE

M

6'
У
6/m'

6'/m'

6'/m

m'3

Reps of H

1E, 2E
*E,2E

'El, 'E,
1 Г 2 r*E2, Е2
1F 2Eßa, ßa
lE„,2Ea

'E',2E'
1E", 2E"
^E,2E

Coreps of M

DE
DE
ОЕ^
DE2

DEg

DEU

DE'
DE"
DE

Notes to Table 7.16

(i) In column l the magnetic groups which have coreps belonging to case (c) are listed.
(ii) In column 3 we show the label that is used for the case (c) corep which is derived by the sticking together of the

two reps of H which are shown in column 2.
(iii) The single-valued reps in column 2 can be identified from Tables 7.1 and 2.2.

derived from X, if the corep belongs to case (a) or case (b) (see Table 7.15). When the
corep of M derived from X belongs to case (c) there will in fact be two reps X and Y
which ' stick together ' to form one corep of M. Starting for example with either of
the reps Вг or B2 of the halving subgroup H of the magnetic group 4'mm' we obtain
a corep of 4'mm' belonging to case (c) and the two coreps thus obtained are equiva-
lent. It is therefore not necessary to distinguish between the two coreps thus derived
and we denote either of them simply by DB. For all the coreps given in Table 7.15
which belong to case (c) we use the notation given in Tables 7.16 and 7.17; for all the
other coreps the rule that the corep of M derived from the rep X of H is denoted by
DX is perfectly adequate. The Г notation for the labels of the reps of H has already
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been given in Tables 2.2 and 6.5 (Koster, Dimmock, Wheeler, and Statz, 1963). Once
again the corep of M derived from the rep Г; of H can be labelled as DYi. Where two
reps Г; and Г7 of H 'stick together' to form a case (c) corep of M this may be labelled
as DYij. DYt j and DYjL will then be equivalent, but not identical coreps of M.
Therefore, for example, the case (c) corep of 4'22' derived from Г2 and Г4 would be
called DT-,2,4-

T A B L E 7.17

Notation for double-valued coreps belonging to case (c)

M

2/m'

2' /m
4'
4'
4/m'

4'/m'

4'/m

6'
6'

Reps of H

1E, 2E
1£, 2E
1E, 2E
1E,2E
1F 2F£.,, £,,

%, 2E2

'B,,2!,
ip 2pC2> C2
I P 2p

C 9 > E9

'£u,2£u

>E, 2E
'£, 2E

Coreps of M

DE
DE
DE
DE
DE,
DË2

DE,
DË2

DEg

DEU

DE
DE

M

3'
3'm
3'm'
(,/m

6'/m'

è'/m

m'3

Reps of H

1E, 2E
'E,2E
'£, 2E
l p 2jf
ßli Cl

l u 2 p
t-2, E2

1 F 2 с
^3. t-3

'F 2FC9' ^S

^u, '-Eu
1 P 2Ё=£,!, È!
IP 2p£,2, £2

'F 2FC3> C3

'F, 2F

Coreps of M

DE
DE
DE
DE,
DE,
DE3

DE,
DEa
DE,
DE2

DE3

DE

Notes to Table 7.17

(i) In column I the magnetic groups which have coreps belonging to case (c) are listed.
(ii) In column 3 we show the label that is used for the case (c) corep which is derived by the sticking together of tl

two reps of H that are shown in column 2.
(iii) The double-valued reps in column 2 can be identified from Tables 7.1 and 6.5.

7.6. The corepresentations of the magnetic space groups

The relationship between the problems of determining the coreps of the magnetic
space groups and determining those of the magnetic point groups is very similar to
the relationship between the problems of determining the reps of the Fedorov groups
and of the ordinary point groups. The theory of the determination of the reps of the
Fedorov groups, that is, of the ordinary space groups, from the reps of the point
groups has been considered in sections 3.7 and 3.8 and, more rigorously, in Chapter 4.
It will be remembered that, using the theory of induced representations in Chapter 4,
it was possible to show that the problem of determining the reps of a space group
could be simplified. For each wave vector k in the representation domain it was
found to be necessary to deduce the projective reps of the little co-group Gk having
a factor system depending upon the k vector under consideration. Each projective
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rep of Gk determined a small rep of Gk. Each small rep of Gk, when induced into the
space group G, yielded a rep of G. All the reps of G were found by allowing k to vary
over the representation domain. For k a general point or on a line or plane of sym-
metry (see section 3.3) the projective reps of Gk were found as reps of a suitable
central extension Gk*. For points of symmetry (see also section 3.3) this method,
though still applicable, was replaced by a more direct method due to Herring (1942),
which provided the small reps of Gk without first considering the little co-group.
Examples of both methods were given in section 3.8. In the tabulations in Chapters
5 and 6 Herring's method was used for the points of symmetry and the central
extension method for the remaining points. This theory was all for unitary groups
and we now have to see how it must be modified to cover the case of the magnetic
space groups that are non-unitary groups.

Suppose that the group M is a magnetic space group defined by

M = G + AG. (7.3.11)

If we wish to follow the procedure similar to that used in section 7.5 for magnetic
point groups in order to determine the irreducible corepresentations of M, the first
step would be to obtain the irreducible representations Д of G. G is clearly one of
the ordinary space groups, or Fedorov groups, and it is a unitary group; its single-
valued and double-valued representations are available from Chapters 5 and 6. The
next step would be to take characters of A, and to evaluate the sum Хвелс %(В2)',
the result would determine, according to eqn (7.3.51), the type of the corepresenta-
tion of M derived from A,

+ |G| in case (a),

£ X(B2) = -\G\ in case (b), \ (7.3.51)
В e AG

0 in case (c).

In principle given A, the induced representation of the whole space group G, this
sum could be calculated, but it turns out that this would be a matter of doing more
than is necessary. Indeed we have seen how A is determined by the small representa-
tion Г of the little group K. It would obviously be better to simplify, if possible, the
criterion of eqn (7.3.51) so that it involves only the characters of Г and fewer of the
group elements; in other words to determine the type of corepresentation from
the small representation Г rather than from A, which is a representation of the whole
space group G.

To achieve a simplification of the left-hand side of eqn (7.3.51) we start by writing

(4.2.1)
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where T is the invariant subgroup of G that consists of the group of lattice translations
of one of the Bravais lattices. We introduce, for short, the quantity / given by

(7.6.1)

Using eqn (4.7.10) we obtain

(7.6.2)

where the ra are the left coset representatives in the decomposition of G with respect
to the little group K, i.e. given by eqn (4.1.1)

(7.6.3)

and the prime means that for fixed R the sum over a is restricted to those a for which
Kff = raK.r~ l contains ARAR. Reversing the order of summation eqn (7.6.2) be-
comes

(7.6.4)

in which the prime now means that for fixed a the sum over R is restricted to those
R for which ARAR e K". Now if AS is such that AS AS e К then raASra

 l = AR
(for some R e G) is such that ARAR = r„ASASr~l e K f f. Furthermore, for this a,
ф(г~ ^ARARr^ = \j/(ASAS). This means that J splits up into |G|/|K| equal parts, one
part for each cr; that is, one part for each member of the star. Thus

(7.6.5)

in which the prime now means that the sum over S is restricted to those S for which
ASAS e K. We now make use of the fact that Т is not only an invariant subgroup of
G but also an invariant subgroup of M. We can write Агл = ra,, for all a, so that
from eqn (7.3.11)

(7.6.6)

and further the suffices a, ß,. . ., a', /?',. . . form a group isomorphic with M/T. With
this proviso we can extend the notation of eqns (4.2.2) et seq. to include the primed
suffices. Suppose we select an irreducible representation F of T appropriate to the
little group К (F is, of course, 1-dimensional since Т is Abelian); by this we mean
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that out of all the irreducible representations Fx of T defined by

(7.6.7)

the set of all those unprimed suffices 7 for which Fy(ta~) = F(t^, for all ta e T, forms
a subgroup of G/T which is just the little co-group K. We know further that any unitary
irreducible representation Y{: of К for which

(7.6.8)

(i.e. whose restriction to Т yields an integral multiple Ai of the representation F) is
then a small (or allowed) representation of K, see Chapter 4. From eqn (7.6.8) we
see that

(7.6.9)

where \}

F is the unit matrix of dimension A{-. This means that we know YS

F for all
elements of К once rj

F(ry) is known for all 7 e K. We have already shown in Chapter 4
how the problem of finding all the irreducible representations of G can be simplified
to that of finding all the irreducible projective representations of the little co-groups
К of all the various stars. Now if AS = ra>ta then AS AS = r^-WlAL'^ so that
ASAS б К if a'2 e K, the little co-group. Equation (7.6.4) now becomes

(7.6.10)

Using eqn (7.6.9) this yields

(7.6.11)

Now F([ta]X') = Рл,(1а) and the sum over ta in eqn (7.6.11) will vanish by virtue of
orthogonality relations unless a' is such that F^(ta) = F(ta)~ '. Note that all such a'
satisfy a'2 e K. When the sum over ta does not vanish its value is |T|, the order of T.
Hence

(7.6.12)

in which the sum over a' is restricted to those a' such that Fx, = F'^, and |K| is the
order of the little co-group. Of course it could be that no such a' exist in which case
7 = 0 immediately from eqn (7.6.11).

To summarize : in order to determine to which of the three cases the irreducible
corepresentation of M derived from Д belongs, it is necessary to determine those
coset representatives rK. in eqn (7.6.6) which satisfy FK, = F' ' and evaluate the sum
ZK' "K^'), where i/> is the character of Г in K. Then restricting the sum to those к' the
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criterion for the type of corepresentation is

+ K in case (a), "1

5>(£) = -|K| in case (b), [ (7.6.13)
к'

0 in case (c), J

where we include the special case that if no such к' exist then the sum is zero.
The similarity between the criteria of eqn (7.6.13) and eqn (7.3.51) gives us the

clue to the définition of the magnetic little group.

D E F I N I T I O N 7.6.1. The magnetic little co-group Q is the group of all unprimed
suffices y for which Fy = F together with all primed suffices к' for which FK, = F~l.

Two cases occur, either no such к' exist at all and then Q = K, or there exist an
equal number of primed and unprimed suffices so that К is a subgroup of Q of index 2.
The magnetic little group Q is then defined to have the same relation to Q as К has
toK.

D E F I N I T I O N 7.6.2. If no к' exists the magnetic little group is given by Q = K,
but in the alternative case when both sets of suffices appear in equal numbers the
magnetic little group Q is given by

Q = Z ',Т + £ гк.Т. (7.6.14)
у е К к' б С К

In the case in which the magnetic little group coincides with the little group the
significant point of interest is that we are bound to be in case (c). The appropriate
corepresentation DA is derived from the small representation Г by first using Theorem
4.3.1 to find Л, and then by eqn (7.3.47) to find DA.

The same method is of course open to us in the alternative case also where we use
eqns (7.3.45)-(7.3.47) in the final step as appropriate. What is interesting is that in
this case an alternative method for obtaining the irreducible corepresentation of M
derived from Д presents itself. Qualitatively what happens is that we can give a
geometrical interpretation to the magnetic little group and the magnetic little co-
group similar to the geometrical interpretation of the little group and little co-group
of an ordinary space group G (see section 3.7). It is possible then to proceed from the
small reps of the little group of G to the coreps of M via the small coreps of the
magnetic little group of M. Thus instead of proceeding by the route

small reps of little group of G —» induced reps of G
1

coreps of M

+ К

£«Kr*) = -|K|
о I

Q = Z ',т + £ гк.т.
у е К к' б Q К
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we can proceed by the route :

small reps of little group of G
!

small coreps of little group of M —> induced coreps of M.

The reader who is prepared to accept the geometrical interpretation of the magnetic
little co-group and is not interested in justifying the steps involved in obtaining the
induced coreps of M from the small coreps of the magnetic little group may omit the
next few paragraphs and proceed to the sub-section on p. 646 entitled ' A geometrical
account of magnetic little groups'.

In order to see how this method works we first note that Q is a magnetic group and
that К is its unitary subgroup. Г is an irreducible representation of K. So it is possible
to form an irreducible corepresentation DY of Q derived from Г. According to
eqn (7.3.51) the type of DY depends on the sum SßeQ-к 'M^2)- Indeed the criterion is

in case (a),

in case (b), \ (7.6.15)

in case (c),

which on performing the sum over the elements of Т reduces to

(7.6.16)

But this is exactly the same criterion as eqn (7.6.13) which governs the type of the
irreducible corepresentation of M derived from Д.

It seems appropriate to call DY a small corepresentation of the magnetic little
group Q. The alternative method for determining the irreducible corepresentation of
M derived from Л should now be clear : it can also be derived by inducing the small
corepresentation DY into M. It may not be entirely clear what is meant by an induced
corepresentation since this is a new concept. What it means here is as follows. We
are given a corepresentation DY of Q. Since M is to Q as G is to К we can write

(7.6.17)

where the ra that appear in eqn (7.6.17) are the same as the ra in eqn (7.6.3) and are
therefore unitary. Let the basis of DY be <<x| ; then, for all q e Q,

9<<x| = <ot| ОВД. (7.6.18)
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Furthermore, since DY is a corepresentation, we have, from eqn (7.3.19), for fcb

(7.6.19a)

(7.6.19b)

(7.6.19с)

(7.6.19d)

We can define for each a in eqn (7.6.17) the set of functions

(7.6.20)

Then the set of all such sets of functions, as a varies over the star of F, forms the
basis of a vector space which is invariant under M. To see this we suppose that
m e M and that

(7.6.21)

where q e Q ; then

(7.6.22)

in which we have made use of eqns (7.6.18), (7.6.20), and (7.6.21). In keeping with
eqn (7.6.22) we define for all m e M the block matrix

(7.6.23)

where <57;mr = 1 if mrl e ryQ and is zero otherwise. (Notice the exact parallel between
these ideas and those of induced representations as discussed in Chapter 4.) Note
that m and r~lmrr are both unitary or both anti-unitary. Using this fact it soon
follows from eqns (7.6.19) and (7.6.23) that the eqns (7.3.19) hold for (DY ; M) for
all R, S e G and for all В, С e M — G. This means that (DY t M) is a corepresentation
of M and is said to be induced from DY.

We now have to establish our assertion that (DY î M) is equivalent to the irre-
ducible corepresentation DA. of M derived from Д.

First we remember that Д and Y are of the same type. Since Д = (Г î G) it follows
at once that (DY t M) and Z)A are of the same dimension. Secondly the induction
(DY î M) is performed using exactly the same ra as the induction (Г t G), see eqns
(7.6.3) and (7.6.17). And since DY contains Г it follows immediately that (DY t M)
contains Д. But we have proved that (DY t M) is a corepresentation of M. Further-
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more it contains A and is of the same dimension as DA, which is irreducible and also
contains A. Hence (DF t M) is also irreducible and is equivalent to DA, the unique
irreducible corepresentation of M derived from A.

Not until this point in the analysis is the definition of the magnetic little group Q
justified. But now it is seen to be as fundamentally significant for magnetic groups,
which have an invariant Abelian subgroup of unitary elements, as is the little group
for non-magnetic groups with the same property. Indeed we have proved that the
irreducible corepresentations of such magnetic groups are induced from the small
corepresentations of the magnetic little groups and this can be made to include the
special case in which the magnetic little group Q is nothing more than the little
group K, for then Q contains no anti-unitary elements, the small corepresentations
become small representations and, since we are in case (c), the required results are
obtained by inducing them straight into M, the intermediate step to G being un-
necessary.

Finally we study the form of the small corepresentations DF of Q and prove a
result analogous to the fact that the small representations of К are the irreducible
projective representations of the little co-group K. Suppose that F is an irreducible
representation of T. In case (a), from eqns (7.3.45) and (7.6.9)

(7.6.24)

In case (b), from eqns (7.3.46) and (7.6.9)

(7.6.25)

And in case (c), from eqn (7.3.47), for some fixed к'

(7.6.26)

Now where we have
used the fact that, since Hence in case (c) also

(7.6.27)

Thus in all cases (DF I T) is a scalar matrix. This means that we know the matrix
representatives in DF for all elements of Q once DF(ry) is known for all у е К and
DF(/v) for all Also from eqn (4.2.3) and the fact that DF is a corepre-
sentation it follows that for 7, о е К and

(7.6.28a)

(7.6.28b)

(7.6.28с)

(7.6.28d)
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Furthermore, by virtue of eqn (4.2.11) the complex numbers F satisfy

(7.6.29a)

for all

(7.6.29b)

for all
The equs ^/.o.za; aiiu ^/.o.z?) imply that DY considered as a function on the

elements of Q forms an irreducible projective corepresentation of Q with factor
system F. The deduction of the irreducible projective corepresentations for the
magnetic point groups has been made by Karavaev, Kudryavtseva, and Chaldyshev
(1962), Kudryavtseva (1965), and Murthy (1966). Each such irreducible projective
corepresentation of Q can be derived from an irreducible projective representation
of the unitary subgroup K, of character, say, ф and once more there are three cases
according to the criterion of eqn (7.6.13). In the present context these results follow
immediately from the preceding theory; however to discuss projective corepresenta-
tions out of the present context would demand an analysis similar to that in section
7.3 but for projective representations and we do not propose to consider it here.

A geometrical account of magnetic little groups

We now interpret the above theory rather more pictorially for the case in which the
group M is a magnetic space group or Shubnikov group. G is then one of the 230
crystal space groups and Т is the subgroup of lattice translations. Elements of Т are
of the form {E t}, where t is a lattice translation. An element ra e G is of the form
[Rx | vj where Rx is a point-group operation. An element гл, e M — G is of the
form 0{5з- wa-} where 0 is the time-reversal operator and Sa, is a point-group opera-
tion; va and \v are either zero or are non-lattice translations. From eqn (7.6.5) it
will be seen that we are writing

(7.6.30)

This very general nomenclature permits us to deal simultaneously with all types of
magnetic space groups; that is, no distinctions need to be drawn between types II,
III, and IV Shubnikov groups.

Each irreducible representation Fk of Т is labelled with a vector k from the
Brillouin zone and is such that

(7.6.31)

Now forming the conjugate of {E \ t} with the element {Ra \ \x} we obtain

{Rx \^}~1{E\ *}{R* | v.} - {E | R- 4}, (7.6.32)
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so that from eqn (7.6.7)

(7.6.33)

The little co-group of Fk, denoted by Gk in the notation of earlier chapters, is therefore
to be thought of as consisting of all those point-group operations Ry such that
FR,k = Fb that js which satisfy

(7.6.34)

where exp( —ig . t) = 1 for all t. The vectors g are reciprocal lattice vectors as
denned in Chapter 3 and vectors of the form (k + g) are equivalent to k. The condition
(7.6.34) is therefore that 7?yk should be equivalent to k. The little group of Fk in G,
often called the group of k and denoted in previous chapters by Gk, can then be
written as

(7.6.35)

If we decompose G with respect to Gk

(7.6.36)

then it follows immediately that the set of representations FR"k forms the star of
Fk. Geometrically one may interpret the star as consisting of all vectors Rak appro-
priate to this decomposition.

We now proceed to consider the magnetic little group, see Définition 7.6.2, and to
see how to obtain a geometrical interpretation of it similar to this geometrical
interpretation of the little group of an ordinary space group G. Since 0, the operation
of time-reversal, commutes with all space-group operations the conjugate of {E \ t}
formed with Hence it follows, exactly as with eqn (7.6.33),
that

(7.6.37)

In order that Sa, should belong to the magnetic little co-group Mk it is necessary for
this to be equal to (T-*)"1 = F~k. Hence in addition to the Ry e Gk the magnetic
little co-group consists of all SK- such that SKk is equivalent to — k. If no such SK-
exist then Mk = Gk. Finally the magnetic little group Mk can be written as

(7.6.38)



648 THE MAGNETIC GROUPS AND THEIR C O R E P R E S E N T A T I O N S

It will be seen that we have given the definition of Mk without reference to the action
of 0 on the vector k itself. A number of authors write

(7.6.39)
This equation has nothing at all to do with representation theory which as we have
seen is concerned only with the action of the operators Rx and Sx, on k. Indeed in
the present context eqn (7.6.39) is misleading because 9~1{E t}0 = {E t} and
hence F$({E t}) = Е\в~1{Е t}0) = F\{E t}) and not F~\{E t}) as eqn.
(7.6.39) might lead us to suppose. This does not mean that eqn (7.6.39) has no
meaning; what it means is that

(7.6.40)

that is, it transforms a wave function of quasi-momentum ftk into a wave function
with quasi-momentum — hk.. The meaning is connected with the physical interpreta-
tion of hk as a momentum rather than the geometrical interpretation of k as a
reciprocal length.

Finally, if Fk is a small representation of Gk with character ф* and Ak is the irre-
ducible representation of G induced from Fk then the type of corepresentation of
M derived from Ak depends on the following criterion

in case (a), 1

in case (b), I (7.6.41)

in case (c), J

where, as Wigner (1932) has shown,

for an even number of fermions!
for an odd number of fermions J (7.6.42)

and К is the order of Gk, and in which the sum over SK> is restricted to those point-
group operations SK, in the set (Mk — Gk) for which 5КЖ is equivalent to — k, and
where for purposes of evaluation one chooses for each SK, any one element {SK- \ W K -}
such that 9{SK, \ WK.} e M. In the case in which M = G + 0G it reduces to the well-
known criterion given originally by Herring (1937fl) and which we have given in
eqn (4.6.11) for time-reversal degeneracies in non-magnetic space groups. Thus the
consideration of the theory of the corepresentations of the type II Shubnikov groups
to find the degeneracies of eigenvalues is equivalent to the treatment given in section
4.6 of the reality of the representations of the ordinary space groups. Since this
reality of the space-group representations was included in the tables in Chapter 5
and Chapter 6 there is little need to say much more about the corepresentations of
the type II Shubnikov space groups. The basis functions of these corepresentations
could be found by using the theory of section 7.3. It should perhaps be remarked that
if one works with the magnetic little co-group the operators Ry must be taken as
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being unitary and the operators SK- as being anti-unitary. Alternatively one could
maintain the unitarity of SK. and write 0SK, for SK- in the magnetic little co-group.

We may summarize what has been done for the Shubnikov space groups. For the
Shubnikov groups of types II, III, and IV we have shown that it is possible to define
a magnetic little group Mk, see Definition 7.6.2, which consists of all the unitary
elements of M whose rotational parts turn k into k + g and of all the anti-unitary
elements of M whose rotational parts turn k into —k + g, see eqn (7.6.38). The
number of anti-unitary elements in Mk is equal either to the number of unitary ele-
ments or to zero. If the set of anti-unitary elements in Mk is void Mk is a unitary
group, so that the reps of Mk and therefore the reps of G, the halving subgroup of
unitary elements of M, can be found by the methods usually employed for ordinary
(Fedorov) space groups. The theory of section 7.3 can then be used to determine the
induced coreps of M from the induced reps of G. If the set of anti-unitary elements in
Mk is not void, theory similar to the theory of sections 3.7 and 3.8 and Chapter 4
shows that the corepresentations of M are available from the small corepresentations
of Mk and that, in turn, these small corepresentations can easily be found from the
projective corepresentations of the magnetic little co-group Mk, see eqns (7.6.28) and
(7.6.29). The identification of the elements in Mk can be made by inspection of the
structure of M and of the detail of its relationship to various Fedorov groups or
ordinary space groups which have been discussed in the earlier chapters of this book.
The problem of determining the required projective corepresentations DL of Mk

is not a difficult task since the projective representations L of Gk from which they are
derived are known (and can be obtained from the tables in Chapters 5 and 6). These
corepresentations have been tabulated for all the magnetic space groups by Miller and
Love (1967). An analogous theory to that given in section 7.3 for ordinary corepresen-
tations can be developed. Alternatively, it can be shown that the projective corepre-
sentations of Mk can be obtained as the ordinary corepresentations of a suitable
central extension, Mk*. It is fairly easy to see that Mk* contains Gk* as a unitary sub-
group of index 2. The representations Л of Gk* yield projective representations L of
Gk (as explained in section 3.7). Given Л it is possible to use the theory of section 7.3
to find the corepresentations DA of Mk*. It is these ordinary corepresentations which
yield the required projective corepresentations DL of Mk. Therefore, for general
points in k-space and for lines and planes of symmetry a simple development of the
theory in section 3.7 is all that is required. For points of symmetry this method is still
applicable, but can be replaced by a straightforward development of Herring's
method, which provides the small corepresentations of Mk without first considering
the magnetic little co-group. All one needs to do is to use the theory of section 7.3
on the known small representations of Gk. We shall not consider the precise details
of these developments here. However, an example of the use of the theory developed
in this section to find the corepresentations of a magnetic space group will be given
in section 7.7.
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The grey space groups: the consequences of invariance under time-inversion

In section 5.2 we mentioned that a crystal in which there is no magnetic ordering
possesses time-reversal symmetry in addition to all the spatial operations of G. The
complete group of the crystal is then the direct product group M = G (g) (E + О),
that is, the grey space group M derived from G. It was also mentioned that the
addition of the extra symmetry operation 6 may cause some extra degeneracies
among the small reps of Gk. That is, in physical terms, the addition of 9 may cause
some extra degeneracies among the eigenvalues of a particle or quasi-particle at k.
We also mentioned that the spectra at k and — k become identical whenever time-
reversal symmetry is present. We are now in a position to justify these statements.

We use the notation that Fk is a small rep of Gk and that Ak = Fk t G. For the
grey space group the magnetic little group Mk, for a given k-vector,
can take one of three forms

(7.6.43)

(7.6.44)

(7.6.45)

where A is some anti-unitary element which is a product of 0 and some space-group
element other than a translation (i.e. A cannot be chosen to be 0 [E \ t}). When we
identified a rep in Tables 5.7 or 6.13 by (a), with no extra degeneracy, or (b) or (c),
with an extra double-degeneracy, we were in fact prematurely using the notation,
introduced in eqns (7.3.45)-(7.3.47), that coreps of Mk must belong to case (a),
case (b), or case (c).

If Mk is given by eqn (7.6.43) there are no elements in G which transform k into
—k. This only happens for k vectors for which — k does not appear in the star of k.
Clearly Mk contains no anti-unitary operators and the degeneracies of the eigen-
values in Mk are the same as in Gk. That is, there are no additional degeneracies at
the point k due to the inclusion of time-reversal symmetry. However, since the set
(Mk — Gk) is void, the induced corep Z)Ak is of type (c), (since the sum in eqn
(7.6.16) is trivially zero), and there is an extra degeneracy. To locate this extra
degeneracy we note that Z)Ak must contain both Ak and Ak ; but since M = G + 0G
it follows that Ak = Ak* and since Ak = Tk t G it follows that Ak* = Fk* t G. But
Fk* is a small rep of G~k. Hence the extra degeneracy produced in this case is between
eigenvalues at k and — k. This justifies the statement that if +k and — k are not in
the same star time-reversal symmetry will nevertheless, if it is present in the crystal,
cause the spectra of eigenvalues at k and — k to be identical. We call this degeneracy
a degeneracy of type (x).

If Mk is given by eqns (7.6.44) or (7.6.45) then there exist elements in G which
transform k into —k. So that in these cases —k appears in the star of k. If eqn (7.6.44)
holds it is the elements of Gk themselves which transform k into — k ; but by definition
these elements leave k invariant. This implies k = — k, which happens for those
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points of symmetry for which k is zero or half a reciprocal-lattice vector. If eqn
(7.6.45) holds — k appears in the star of k but is not equivalent to it. In both cases it
is clear that even without time-reversal symmetry the spectra of eigenvalues at k and
— k are identical, as all k vectors in a star have identical spectra. Both these cases
can be considered together as far as degeneracies are concerned. Because the spectra
of eigenvalues at k and — k are already identical when only the symmetry of G is
considered, the only additional degeneracy that can arise because of the presence of
the additional elements ÖG in M will involve extra degeneracies among the various
eigenvalues at k. If the symmetry of a crystal is described by G the degeneracies of
the eigenvalues for particles or quasi-particles with wave vector k will be determined
by the reps Fk of Gk; if the symmetry of the crystal is described by the grey group
M = G + 0G the degeneracies of the eigenvalues will be determined by the coreps
Z)Fk of Mk. We see, therefore, that to determine the extra degeneracies that arise due
to the inclusion of time-reversal symmetry (see section 5.2) and when — k is in the
star of k (i.e. eqn (7.6.44) or (7.6.45) applies), we have to determine whether the
coreps of Mk belong to case (a), case (b), or case (c). In case (a) there is no increase in
degeneracy at k, but in cases (b) and (c) a doubling of the degeneracy occurs. In
case (b) DFk contains Fk twice (see eqn (7.3.46)) and this implies that at k the extra
degeneracy is between two sets of eigenvalues both belonging to the same rep Fk. In
case (c) Z)Fk contains Fk and Fk; Fk is not equivalent to Fk and must, therefore, be
equivalent to some other rep, Fk-, of Gk (pf ф p). Thus, in case (c) the extra degeneracy
is between two sets of eigenvalues belonging to different reps Fk and Fk, of Gk

(P' * P\
The equivalence of the criteria in eqns (7.6.13) and (7.6.16) implies that the type

of the corep Z)Fk of Mk is the same as the type of the induced corep DAk of M. In
case (b) Z)Ak contains Ak twice and in case (c) Z)Ak contains Ak and Ak* ( = Ak). Since
Ak* is not equivalent to Ak, Ak* cannot be induced from Fk but it must be induced
from Fk. (p' =£ p) as we would expect. In practice, because M is necessarily a grey
group whereas Mk is not necessarily a grey group (see eqn (7.6.45)), it is more
convenient to determine the type of the corep Z)Ak than of Z)Fk. Because M is a grey
group the condition which determines the type of the corep DAk, which is a corep of
M and not of Mk (see eqn (7.3.51)), involves evaluating an expression which simpli-
fies to a summation over the elements of G :

(7.6.46)

where y = +1 for particles with zero or integer spin and y = — 1 for particles with
half-odd-integer spin, that is, when one uses single-valued and double-valued reps,
respectively. The expression £к,= сЯ(^2) is Just the expression used in Definition
1.3.7 to define the reality of the rep Ak of G. Thus, when -k = k (i.e. Mk is given by
eqn (7.6.44)) or when — k^ k but -k is in the star of k (i.e. M* is given by eqn
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(7.6.45)) the degeneracies at k produced by the existence of time-reversal symmetry in
the crystal may be investigated by determining the realities of the induced reps Ak of
G. The determination of the reality of Ak can be reduced to the evaluation of a sum-
mation over a finite number of terms, by means of Theorem 4.6.2; this test was first
devised by Herring (1937a). Thus we have case (a), case (b), or case (c) according to
the following pattern :

single-valued double-valued
reality corep reality corep
of A* £>Fk ofAk Z>Fk

l a 1 b
2 b 2 a
3 с 3 с

where the distinction between single-valued and double-valued reps arises from the
7 in eqn (7.6.46).

It must be emphasized that these extra degeneracies which occur at k when — k is
in the star of k are governed by the reality of the full space group rep Ak and it is
these realities that are given in Tables 5.7 and 6.13. Of course, when k = —k, so
that Mk = Gk + OGk (eqn (7.6.44)), the reality of Ak is the same as the reality of
Fk ; but it is only in this situation that the reality of the small rep Fk has any physical
significance. Finally, whenever — k is not in the star of k, so that Mk = Gk, Ak is
trivially of reality 3 and Z)Ak belongs to case (c) (see the above discussion relating to
eqn (7.6.43)); we then have for both single-valued and double-valued reps'a de-
generacy of type (x). This is indicated in Tables 5.7 and 6.13 by using the symbol x
rather than 3.

7.7. Example: the space-group corepresentations of P4'2/mnm' and their Kronecker
products

As an illustration of the application of the theory of the previous sections we consider
the deduction of the coreps of the type III Shubnikov space group P4'2/mnm'; this
is the group of antiferromagnetic MnF2. This space group has been considered by
Dimmock and Wheeler (19626) and Cracknell (1967c). The structure is illustrated in
Fig. 7.5 and the elements of the space group can be identified from Tables 7.2 and
3.7. It is clearly related to the ordinary space group P42/mnm (D\l) and from Table
7.2 we see that it has the same generating elements as P42/mnm except that {C^l^iî}
has to be multiplied by в. It is convenient in dealing with the structure of MnF2 to
use the origin and the setting of the axes given in the International tables for X-ray
crystallography (Henry and Lonsdale 1965). The second set of entries in Table 3.7
is therefore appropriate and the generating elements are {/|000}, {C2x | üib
and 0{C^Z | TU}- Coset representatives of M in a decomposition relative to T, the

single-valued
reality
ofAk

1
2
3

corep
£>Fk

a
b
с

double-valued
reality
ofA k

1
2
3

corep
z>rk

b
a
с
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translation group of the primitive tetragonal lattice (see Table 3.1) may therefore be
taken as

The Brillouin zone of P4'2/mnm' is illustrated in Fig. 3.9 and reproduced in Fig. 7.9.
The points and lines of symmetry can be found from Table 3.6, together with P(k),
the set of point-group elements that transform k into an equivalent wave vector. The
appropriate part of Table 3.6 is reproduced in Table 7.18, in which wave vectors of
points and lines of symmetry are given in terms of g1, g2, and g3.

The first stage in determining the coreps of P4'2/mnm' lies in finding the space-group
reps of the unitary subgroup, G. Coset representatives of G relative to T are the
elements from the above list which are not associated with в :

FIG. 7.9. The Brillouin zone for
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T A B L E 7.18

The points and lines of symmetry of P4'2/mnm'

Point k
or line

Г

M

Z

A

R
X

(000)

(MO)

(OOi)

(Mi)

(ОМ)
(OiO)

P(k)

E, C£
f , s l .
E, C±z

i, si,
E, Cl
i,sl,
E, C4±
/, si,
E,C2x

E,C2x

,C2„
crz, at

,C2z,
CTZ, ax

,C2z,
az,ax

,С2„
ffz, 0\,c2y:
,C 2 ï >

C2«,
, <v
C2»,

, "y,

C2x,

,ay.
C2x,

,°y,

C2z,
C2z,

C2y

&da,

, C2a, C2b,
"db-

C2y. C2a, C2b,

a da,

C2y

"da,

C2y

"da,

I,o

"db-

' C2a, C2b,

"a,-
, C2a, C2b,

°db-

x, "y, a*.

Point k
or line

A (OaO)
U (Oai)
Л (OOa)
V (Ma)
S (aaO)
5 (aaè)
K (a|0)
r (*M)
W (Oja)

P(k)

£,
E,
E,
E,
E,
E,
E,
E,
E,

C2y,
C2y,

et,
ci,
C2a,
C2a,
C2x,

C2l,
C2z,

(T2,

(Iz,
C2z

C2z
<JZ,
CT2,

"j,,
^,
al<

ax.

Vf

, ax, "y, fda, adb.
, crx, ay, ada, adb.

°db-

°db-

az.
at.
a,.

I,(7x,ay,az. \

Note to Tablet.U

This table contains all the point-group operations that send k into +k + g where g is a vector of the reciprocal
lattice ; there will not necessarily be uncoloured space-group operations present in P4'2/mnm' corresponding to all the
point-group operations listed in the table.

TABLE 7.19

The Brillouin zones for Pnnm and P4'2/mnm'

P4'2/mnm' Pnnm P4', I noon' Pnnm

Point

Г

M

Z

A

R

X

д
и

k

(000)

(МО)
(00-i)

(Ш)
(ОМ)
«НО)

(ОяО)

(Оае)

Point

Г

S

Z
R

Т

Y

А

В

k

(000)

(Mo)
(00|)

(Mi)
(loi)
ЙОО)

(аОО)

(аО|)

Point

Л

V

T.

s
Y

T

W

k

(OOa)

(Ma)

(aaO)

(<*4)
(alO)

(aM)
(Oia)

Point

Л

ß
—
—

С

E

H

k

(OOa)

(M«)
(aoO)
(aai)

(îaO)

Ö«i)

(ÎOa)

Notes to Table 1.19

(i) For the primitive tetragonal lattice

while for the primitive orthorhombic lattice

where in this particular case a = b.
(ii) (ааО) and (aaj) are only planes of symmetry in Pnnm and are therefore not given in previous tables.
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T A B L E 7.20

"Gtk/or the points of symmetry of Pnnm

(а) Г HGtk for Г of Pnnm = G\l

Ci E
C2 P2

C3 P
P3

С* ß
P2Q

C5 PQ
P3Q

{ E \ 000};
{£ \ 000} ;
{C2z 1 000},
{C2z|000};
i r 1 1 1 H
{<-2y ! ïîïb
/^ 1 ! 1 1 \ •
tC2y 1 22ïb
f r 5 l i i H
1^21 1 22îb
(/-- 1 1 1 11 .
iC2* ! 22 l ) .

C6 R
С-, P2R
Cs PR

P3R
C9 QR

P2QR
C,o PQR

P3QR

{ / 1 000};
{/ | 000} ;
{CTZ | 000},
( C T Z | 000};

K 1 üi}.
KUH};
K 1 Mi),
K lui}-

(Ь)У,

C, £
C2 P2

C3 ß2

c4 p2ß2

Q P
n3.r
Pg2

p3ß2

C6 ß
P2ß

C7 Ö3

p2g3

ca Pß
p3ß
pß3
p3ß3

C9 «
P2ß2«

C10 Р2Я
o2 R

Cu PR
P3R
PQ2R
P3Q2R

C12 QR
Q3R

C13 P2QR
P2Q3R

C14 PQR
P3QR
PQ3R
P3Q3R

Z, Ä "Gtk for

Y

{E \ 000} ;
{ E \ 100};
{£ | 000} ;
{ E \ 100};
{a, \ не).
( - 1 l i n{стх ! -m},
{^ I Mi),
Ы-Ш};
{C2z ! 000},
{C2 z | 100};
{C2z I 000},
{C2 z |100};

{sy \ kti},
Kl -Hi),
K l i i i b
Kl -Mi};
{/ 1 000},
{/1 100};
{/ | 100},
{/ | 000} ;
Г f^ I 1 1 1 1
{t-2, | TÏT},

S r \ 1 1 ' \
1^2« ! -22ï}>
//^ 1 1 1 1*1
\L-2x 1 ïïl).
f /" ! 1 1 1 ) .
{t-2i 1 — ÎÏ2J'

(az \ 000},
{S 2 iOOO};
{CTZ | 100},
{<rz | 100};
{C2, ! ui},
{С 2 У ! -Ш},
tr 1 1 1 H
{<-2y \ Tïîb
/^ 1 1 1 1 1 .
|L2y | -ni},

Y, Z, and R of Pnnm = G^2

Z

{E 1000};
J£ | 001};
{£ 1 000};
{£|001};
{̂  1 Ш},
( - 1 1 1 П
(^ 1 Î2 -1),

{e, ! üi},
Klü-i};
K looi},
{CTZ | 000};
{ст г |001},
K 1000};
t Г 1 1 ! П
(L2y | ÏÏ -j),

//" 1 1 ! 11
1^-2, 1 T7TJ,
//" i l l 11
(Ü2, 1 ÏI — 1/>
f ̂  l 1 1 i l .
{t-2, ] ïïï} ,

{/|001},
{/ ! 000} ;
{/ ! 000},
{/| 001};
/ Г 1 1 ! 1\
\<-2x \ T.T. -ï),
1Г 1 1 ! 1\
(<-2х 1 212),
( r- i l l П{L2x 1 ц -i),
{C2llüi};
{C2z | 000},
{C2z|000};
{C2z|001},
{C2z|001};

{*, ! üi}.
K 1 ü -Й,
K lüi},
Klü-i};

R

{£|000};
{£| 100};
{£| 000};
{£| 100};
r /^ i 1 1 1)
(t-2, | m},
r ̂  ( 1111
iL2y 1 — III/>
//^ 1 1 ! H
iL2y 1 2ÏÏ/,
/Г' 1 1 1 1 1 .
\ C 2y 1 — 2ÏÏ/,

{az|001},
K 1 000} ;
{CTZ |001},
{trz | 000} ;
{̂  l ü -i},
K 1 üi},
Klü-i},
K lui};
{/i 001},
{/ 1 000} ;
{I 1 000},
{/1001};

K l ü -i},
K lüi}.
Kl M -i},
K lüi};
{C2z | 000},
{C2z|000};
{C2z|001},
{C2z |001};
//" i l ! 4.
\(-2x 1 TTTJ'

{C2jü-i},
{С21 1 üi}.
$ Г1 \ ! ! !1
\ L 2x 1 TT ~2J-
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(c) S, T HGtk for S and T of Pnnm = Gjf

c,
C2

C3

C4

C5

C6

C7

c„

сч

C,o

E
P2

Q2

P2Q2

p
P3

PQ2

plQ2

Q
P2Q

PQ
P3Q

Q3

p2Ql

PQ3

p3g3

(E

(Ê
(E
{E
{C2

{C2

{C2

{C2

К
{*,
К
{*,
К
К
К
К

S

000};
000};
100};
100};

z 1 ooo},
z ! 000} ;

z | 100},

J 100};
i 1 1 n
1 2 2 2 ) >

111) .
1 1 2 2 / .
1 1 1 1 1

2 2 2 b
1 1 1 1 .222),

1 1 1 1 11 -222},
1 1 1 1 .

-22Tb
1111

"222 h
1 1 1 1 .

-îïîb

{£1
{£1
{El
{*!
К!
{*,!
K l
K l
{C2z

{C2z

К
K l
{C22

{C2zKl
к

r

000} ;
001};
000};
001};
11 n
2 2 2 / >
1 1 11 .
22 — ïb
1111
ïïîj.
1 1 11 .
11—2).
1 ooo},
1001};
i i i i
2 2 2 ) ,
11 n .
22 -'il,

1 000},
1 001};
i i i i
222},
11 n .
22 -11,

S

c,,
c,2
C13
C,4

C15

C,6

C,7

C,8

Ci,

C20

A
P2R
Q2R
P2Q2R
PR
P3R
PQ2R
P3Q2R

QR
P2QR
PQR
P3QR
Q3R
P2Q3R
PQ3R
P3Q3R

{/ j 000} ;
{/1 000};
{/|100};
{/1 100};
{<rz | 000},
{ f f z | 000};
{CTZ | 100},
{a,\ 100};
{C2x

{C2,
{C2J

{C2y

{C2x

{C2l

{C2,
{C2,

1111212},
1 1 1 1 .
222 Ь
1 1 1 1
2Iî),
l l l l .
222J ,

1 1 1 1
-JÏ2b

l l l l .
~22îb

l l l l
-22îb

l l l l .
- 222! >

Т

{Л 001};
{J | 000} ;
{/1001};
{/| 000};
//" i i i i i
(C

2y 1 ~2ï2b
/ Г 1 1 ' U •
\L2y 1 222l,
1 Г 1 l l l l
t (-2y 1 ~2227>
f /" [ l l l l .
t C 2y 1 22lb

{oz |001},
\âz\ 000};
//" i i i i i
iC

2* ! -22ï},
(/^ I 1 1 11 .
i C

2 x l HZ/ ,

{ст2]001},
K l 000};
! Г \ 1 1 П
t t - J j c l -222),
( /^ ( l l l l
1(-2X\ 2 2 2 Ï -

A'o/ei (о Гай/г 7.20

(i) The groups have been determined from Table 6.7. In making the correspondence a change of origin of co-
ordinates has been made, using eqns (3.5.9) and (3.5.10), so that the elements correspond to the second setting given
in Table 3.7 ; this is the more natural setting when dealing with the structure of MnF2.

(ii) The translational parts of the Seitz space-group symbols are expressed in terms of tb t2, and t3 for the primitive
orthorhombic Bravais lattice, Г0, see Table 3.1.

These elements can be recognized from Table 3.7 as constituting the primitive
orthorhombic space group Pnnm(using once again the second origin and
setting of the axes given in Table 3. /)', the generating elements of the group Pnnm
are then We can now find the reps of the
unitary subgroup of P4'2/mnm' very easily since they are just the reps of the space
group Pnnm given in the tables in Chapters 5 and 6. The Brillouin zone of Pnnm is
the Brillouin zone of the primitive orthorhombic Bravais lattice (see Fig. 3.5) whose
notation differs somewhat from that of the primitive tetragonal Bravais lattice (see
Fig. 7.9). It is therefore necessary to establish the relationship between the notations
used for these two Brillouin zones before we can use the representations of Pnnm
given in Chapters 5 and 6 as representations of the unitary subgroup of P4'2/mnm' ;
the correspondence between these two Brillouin zones is given in Table 7.19. We can,
therefore, use Tables 5.7 and 6.13 to write down the character tables of the repre-
sentations of Pnnm at Г, S, Z, R, T, and Y. We can use Table 6.13 to give both the
single-valued and double-valued reps of Pnnm ; HGtk (since we are using the double
group this replaces HGk) is to be identified with the abstract group Gjg for Г, with
632 for Y, Z, and R and with G^ for 5 and T. The identification of these abstract
groups with HGtk proceeds in the way that we illustrated in the example in section 5.4.
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It is, therefore, not necessary to include all the details here. We simply give in Table
7.20 the identification of all the elements in HGtk in terms of the elements of the
abstract groups and we list in Table 7.21 the single-valued and double-valued reps of
HGtk from Tables 5.7 and 6.13 together with the space-group rep labels from Tables
5,8 and 6.14. We are of course, as always in this book, using Herring's method for
the tabulation of the small reps of little groups of points of symmetry. A point that
must be emphasized is that the representation domain of P4'2/mnm' is only half the
size of the representation domain of its unitary subgroup (since it contains twice as
many elements). Hence in making the correspondence between their Brillouin zones
we are at liberty to choose one for the tetragonal lattice which contains either of two
halves of the representation domain suitable for the unitary subgroup based on the
orthorhombic lattice. That is, it may contain Г, Z, R, S, Y, and T or Г, Z, R, S, X,
and U. However, in this example of P4'2/mnm' we are only concerned with the ortho-
rhombic space group Pnnm as a subgroup of a tetragonal space group so that X and
U are not essentially different from F and T respectively. We may therefore identify
the points of symmetry in our notation with that used by Dimmock and Wheeler
(19626) as follows,

This book Г Z R S T Y
Dimmock and Wheeler (1962e) Г Z A M R X.

The labels given to the representations by Dimmock and Wheeler (19626) are
included in Table 7.21 ; the translation element [E 100} that we have in HGtk at T
and Y is replaced by [E \ 010} at X and U in the work of Dimmock and Wheeler
because of the different choice of representation domain of the Brillouin zone that
was made.

It now remains to use the space-group representations of Pnnm to determine the
corepresentations of the magnetic space group P4'2/mnm'. For all the points of
symmetry that we have considered, k is equivalent to — k so that the magnetic little
co-group simply consists of all the elements of P4'2/mnm' that send k into itself.
From Tables 7.18 and 7.19 we see that for Y and T there will be no anti-unitary
elements in Mtk ; Mtk is therefore unitary and is just equal to Gtk. There are, therefore,
no small coreps to be determined for these points. The coreps of P4'2/mnm' obtained
by inducing the small reps of G t r and G t r into P4'2/mnm' can be seen from the
application of the test in eqn (7.6.41) to belong trivially to case (c). Each of these
case (c) coreps is formed by the sticking together of two small reps with different k
vectors and this is therefore similar to the type (x) degeneracy in grey space groups
discussed at the end of the previous section. For Г, Z, R, and S the magnetic little
group contains all the elements of P4'2/mnm', so that HMtk consists in each case of
all the elements of HGtk given for that point in Table 7.20, together with an equal
number of anti-unitary elements which may be found by multiplying HGtk by, for
example, 0{C^Z \ iü}. The coreps of HMtk which derive from each of the small reps
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of HGtk can then be found for each of the points Г, Z, R, and S by using eqn (7.3.45),
(7.3.46), or (7.3.47) as appropriate from the test given by eqn (7.6.41). The results of
applying this test are given in Table 7.22. Since the magnetic little group is (for each
of the four points) the entire magnetic group, these small coreps are already coreps of
P4'2/mnm' and no further induction is necessary.

T A B L E 7.21

The character tables for the points of symmetry of Pnnm

(а) Г

Ci
Сг
C3

Q
с,
Q
с.
CR

C9

C,o

я,
A„
rr

1
1
1
1
1
1
1
1
1
1

R2

*..
r2

+

1
1
1

-1
-1

1
1
1

-1
-1

«3

«29n
1
1

-1
1

-1
1
1
1

1
-1

Ä4

«Эр

Г3

+

1
1

-1
-1

1
1
1

-1
-1

1

Ä5 Ä6 Л7

£g Л 1 и Й1и

г? гг гг

2 1

-2 1

0 1
0 -1
0 -1
2 - -1

-2 - -1
0 -1 -1
0 -1 1
0 -1 1

Rs
B2u

rz

1
1

-1
1

-1
_ J

-1
1

-1
1

Rg

Яз„
rj

-
-

-
-1

1
1

-1

^10

E*

г?

2
-2

0
0
0

-2
2
0
0
0

(b) Y, Z, R

Y

Z

R

с,
C2

C3

C4

C5

Q
C7

R9

E'
Y,
xt

EI
Zi
z,

£1
-R t
Л,

2
-2

2
-2

0
0
0

«10

£"
Y2

X2

E2

Z2

Z2

E2

R2

A2

2
-2

2
-2

0
0
0

«13

'F
Y3

X3

'F
Z3
Z4

'F
«3

^4

2
2

-2
-2

0
2t

-2i

Ä14

2F
5^4

T4

2F
Z4

z,
2F
«4

^3

2
2

-2
-2

0
-2i

2i

R9

Y E'
Y,
X,

Z £,
Z,

^

Л £,
Л,
А

C8 0
C9 0

C,o 0
c,, o
C12 2

C,3 -2
C14 0

^10

E"
Y2

X2

E2

Z2

Z2

E2

R2
A2

0
0
0
0

-2
2
0

*13

'F
Y3

*з

'F
Z3

Z4

JF
A3

Ал

0
0
0
0
0
0
0

Ä14

2F
^4

ДГ4

2F
Z4

г3

2F
A4

Лз

0
0
0
0
0
0
0
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(c) S, T

S

т

с,
С2

С3

С4

С5

С6

с,
С8

с,
С10

См
С12

С,з
С,4

С15

с,6
С17

С, 8

С19

С20

«5

2£28
S3

+

М +

2я;
Г+

А2"

1
1

_ 1
_ 1

-1
1
i

— i
— i

i
1
1

-1
-1
-1

1
i

— i
-i

i

Rf,

%.s:
M:
'£;
n
R;
i
i

-i
-i
-i

i
— i

i
i

— i
1
1

-1
-1
— 1

1
— i

i
i

— i

R-,

'Ets
s;
MÎ
lE'a
n
RÏ
1
1

-1
-1

1
t

— i
-i

i
i
1
1

-1
_ }

1
-1
— i
— i

i
i

«8

2Ele

s;
MÎ

2Z»
n
R;
1
1

-1
_ 1

1
-1

i
i

— i
— i

1
1

-1
-1

1
_ j

i
i

— i
— i

Rg

Ee
s?
M5

+

EUn
R T

2
-2

2
_2

0
0
0

'0
0
0
2

-2
2

-2
0
0
0
0
0
0

«15

%„
S4

M;
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Notes to Table 7.21
The representations are labelled as follows. The first row gives the label used in the abstract group in Table 5.1 ; the

second and third rows give the space-group representation labels obtained from Table 5.8 (single-valued) and Table
6.14 (double-valued) ; the fourth row gives the space-group representation labels used by Dimmock and Wheeler
(1962e) (at Г the fourth row is omitted since it is the same as the third row). Where the same abstract group occurs
at several points of symmetry the abstract-group representation labels are not repeated.

T A B L E 7.22

The coreps ofP4'2/mnm'
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Notes to Table 7.22

The representations can be identified from Table 7.21 and the third row of each entry indicates whether the corep
derived from the representation above it belongs to case (a), case (b), or case (c). The matrices of the corepresentations
can be written down using eqns (7.3.45), (7.3.46), and (7.3.47) for cases (a), (b), and (c) respectively.

We use the example of P42/mnm' to show how the theory of the Kronecker pro-
ducts of corepresentations given in section 7.4 applies to space-group corepresenta-
tions. This is relevant, for example, to the determination of selection rules for phonon
or magnon processes in crystals belonging to one of the magnetic space groups,
where it is necessary to be able to reduce the Kronecker products of the corepresen-
tations of non-unitary groups. We require to bring together the theory of the reduc-
tion of the direct, or Kronecker, products of induced representations described in
section 4.7 and the theory of the reduction of the direct products of corepresentations
described in section 7.4 (Cracknell 1967c).

Suppose that M is a magnetic space group, then it can be written as

(7.3.11)

where G is the halving subgroup of unitary elements and A is some anti-unitary
element. If Г', P, and Г* are reps induced in G by various small reps of little groups
Gk, then the Clebsch-Gordan coefficients cijtk in the reduction of the inner Kronecker
product

(7.7.1)

can be evaluated, see eqn (4.7.29). It is then a relatively simple matter to obtain the
Clebsch-Gordan coefficients in the reduction of the inner Kronecker product of the
coreps of M derived from Г1 and rj. If the coreps derived from Г', rj, and Г* are
denoted by DY1, DTJ, and DYk respectively, then we may write

(7.7.2)
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where the coefficients dijk can be expressed in terms of the known Clebsch-Gordan
coefficients c i j f c . The actual relationship between the dijk and the cijk depends in
detail on the properties of the coreps DT1, DFJ, and DTk, that is, on whether these
coreps belong to case (a), case (b), or case (c). Each of these coreps may belong to
either case (a), case (b), or case (c) and expressions for dijk for all the various possible
combinations which can arise were given in Table 7.8.

The reduction of the Kronecker products of the irreducible corepresentations of
M can be divided into four stages, which we may call A, B, C, and D ; we shall discuss
briefly each of these in turn and then we shall illustrate them for MnF2.

(A) The determination of the reps of G

G is one of the 230 Fedorov space groups and the deduction of the reps (Fk t G) of
these space groups is a well-established process, see Chapters 3-6.

(B) The reduction of the Kronecker products of the reps of G

This process, the determination of the Clebsch-Gordan coefficients in equations of
the type of eqn (7.7.1), where the reps Г1, FJ, and rk are induced reps of G of the form
(Fk t G), is also well established; it has been adequately described in section 4.7.

(C) The determination of the coreps of M

The coreps of M can all be determined from the reps of G and the theory has been
described in section 7.6. As shown in section 7.6, it is enough to determine the small
coreps of the magnetic little group MTk for each k vector in the Brillouin zone to be
able to characterize completely all the (induced) coreps of the magnetic space group
M. For a magnetic space group the magnetic little group M tk consists of

(i) those unitary elements of the magnetic space group whose rotational parts R
transform k into k + g, where g is any vector of the reciprocal lattice, and

(ii) those anti-unitary elements of the magnetic space group whose rotational
parts S transform k into — k + g.

The actual identification of the elements in Mtk can be made by inspection of the
structure of M and of the detail of its relationship to various ordinary space groups.
The magnetic little group can therefore be written as

(7.7.3)

where the first summation is over the elements in (i) and the second summation is
over the elements in (ii), {R \ v} and {S w} are Seitz space-group symbols, and T is the
group of unitary translation operations of the Bravais lattice on which the magnetic
space group is based, see eqn (7.6.38). It is only at the points of symmetry in the
Brillouin zone that one can use Herring's method (see section 3.8) and factor out
from Mtk the group Tk of all those translations t for which exp ( — ik . t) = 1. The
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quotient group Mtk/Tk then forms a finite group which, by a typical process of
identification, may be thought of as consisting of the coset representatives {R v} and
9{S | w} together with their products with a finite number of translations. Since ele-
ments of Tk are always represented by the identity the coreps of Mtk/Tk lead immedi-
ately to the small coreps of Mtk. For other k-vectors Herring's method is not suitable
and as explained at the end of section 7.6 it is necessary, in order to obtain the small
coreps of M tk, to consider the projective coreps of a suitable extension Mtk* of the
magnetic little co-group Mtk. However, we shall be concerned here only with points
of symmetry and we shall denote Mfk/Tk by HMtk and similarly for other quotients
relative to Tk.

When Tk has been factored out of eqn (7.7.3) we obtain the following equation:

(7.7.4)

for a type II or type III magnetic space group, and

(7.7.5)

where t0 is some translation operation, for a type IV magnetic space group. The
identification of the elements in the unitary subgroup HGtk and in the set of anti-
unitary elements 0HGjk can be performed by inspection. The problems of determining
the small coreps of the (infinite) little group Mtk therefore reduces, for the points of
symmetry in the Brillouin zone, to the determination of the coreps of the (finite)
group HM tk; specific examples have been considered before (Bradley and Cracknell
1966; Cracknell 1965; Daniel and Cracknell 1969; Dimmock and Wheeler 19626;
Joshua and Cracknell 1969; Karavaev, Kudryavtseva, and Chaldyshev 1962).

(D) The reduction of the Kronecker products of the coreps o/M

We assume that the Clebsch-Gordan coefficients cij<k for the reps of the unitary sub-
group G have been determined by the method just described under B. The Clebsch-
Gordan coefficient dijtk can be found from cij<k by using Table 7.8 and the knowledge
of whether each of the coreps DP, DP, and DYk belongs to case (a), case (b), or
case (c), which can be determined by the process described under (C).

We now illustrate the procedure for determining the Clebsch-Gordan coefficients
dij<k in eqn (7.7.2) for the reduction of the Kronecker products of the coreps of the
magnetic space group P4'2/mnm' of anti-ferromagnetic MnF2 (Cracknell 1967c). The
coreps themselves have already been identified in Tables 7.18-7.22; the unit cell and
Brillouin zone are illustrated in Figs. 7.5 and 7.9.

(A) The reps of Pnnm

The reps of the Herring little group HG tk for each of the points of symmetry of the
Brillouin zone for the space group Pnnm were given in Tables 7.20 and 7.21. These
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tables do not explicitly give the reps of HGtk for the two points X (=ig2) and
U ( = 182 + iga) because they are related by symmetry considerations to Y and T
respectively in tetragonal space groups, but not in general orthorhombic space groups.
Because reps of f/Gtk at these two points appear in the reduction of the Kronecker
products of reps of Pnnm we would therefore need the character tables of these two
points for a complete discussion of the Kronecker products of reps of Pnnm ; these
additional character tables can also be found from Tables 5.7 and 6.13.

(B) Kronecker products for Pnnm

We have just considered the reps of HGTk for the points of symmetry in the Brillouin
zone of Pnnm. We now utilize the general theory given in section 4.7 to determine the
reduction of the Kronecker products for this space group. That is, we require to
determine the coefficients C£™;.h in

(7.7.6)

where k, m, and h are the wave vectors of three points in the Brillouin zone.
The first step is to identify the star of each of the points of symmetry; the star of k

can be found by writing G, the complete space group, in terms of left cosets with
respect to G tk, the group of k. Thus from eqn (7.6.36)

(7.7.7)

and the vectors /?,k (/ = 1 to d) form the star of k. We can therefore easily determine
the star of each of the points of symmetry in Pnnm ; in fact it can easily be shown that
for each of the eight points of symmetry Г, R, S, T, U, X, Y, and Z the star of k is just
k itself.

Equation (4.7.19) shows how to determine the costar of a wave vector k with
respect to the little group G t h; G is expanded into double cosets

(7.7.8)

The vectors ka = RJs. make up the costar of k with respect to G th. In our particular
example of Pnnm it can easily be shown that for each k and h this costar is just equal
to k itself. The rules given in section 4.7 for determining the coefficients C^™;h in
eqn (7.7.6) also require that we determine the costar of m with respect of G th n Gjk.
G*k is the group of k,,. In this example of Pnnm ka is always just equal to k so that

(7.7.9)

since both little groups contain the same elements. The costar of m with respect to
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G th n Gjk is therefore simply m and we can summarize :
(i) the costar of k with respect to G th is just k, and

(ii) the costar of m with respect to Gth n Gjk is also just m.
The condition given in section 4.7 (see eqns (4.7.27) and (4.7.28)) becomes simply
that the terms in the summation expression for Ck™^h vanish unless

k + m = h. (7.7.10)

The sets of values of k, m, and h which satisfy this condition are given in Table 7.23.

T A B L E 7.23

Triples of vectors k, m, and h

k

Г

m

Г
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Г
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Г
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R
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R
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S
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X
R
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T
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The actual formula for C^™;h is given by eqn (4.7.27) and it is now clear that for
our example of Pnnm the summations over a and ß in that expression are reduced
to one term and all the Clebsch-Gordan coefficients vanish except for the triples of
vectors given in Table 7.23. We can therefore simplify eqns (4.7.27) and (4.7.29) to
give

(7.7.11)

where the summation over {S w} ranges over the coset representatives of T (the
group of translations of the Bravais lattice) in Gtk.

It would be very lengthy and probably not very profitable to obtain the reduction
of every possible Kronecker product and so we simply consider one or two examples
that will illustrate how the reductions of the others may also be obtained. We consider
the product of a rep of Y with a rep of Z, when from Table 7.23 we can see that
C^™? is only non-zero if h is the wave vector of T. That is, the product of one rep of
HG t r and one rep of HGtz can only lead to reps of HGtr, and which reps actually
occur will be determined by the coefficients С*,™;11. There are four space-group reps
for Y and four space-group reps for Z so that there are 16 possible product reps.
Suppose we take the reps Yi and Zj then we have to determine the coefficients
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C\*'J for all the space-group reps of T, i.e. for Tf, T$,T$,Tl, Г5

+, 77, 77, 77,
77, and 77 by using eqn (7.7.11). This is most easily done by tabulation and is
illustrated for 77 in Table 7.24. The Clebsch-Gordan coefficient is therefore equal
to 1 for J7 and it is straightforward to show that it is also equal to 1 for 77 and zero
for all the other reps of T. We can therefore conclude that

Total

TABLE 7.24

Evaluation o/Cff'^/or Tf

(7.7.12)

{5 |w}

{£|0}
{C2Jt}
{C2>. 1 t}
{C2z I 0}
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0
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0
0
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8
0
0
0
0
0
0
0

16

t с = z!({S l w})xf({S l w})Zr

T({5 | w})*.

It is then possible to evaluate the coefficients C™t'r
T for all the other choices of p and

q and the result of doing this is given in Table 7.25.

T A B L E 7.25

Kronecker products for Y and Z in Pnnm
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+
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As a second example we consider the products of reps of HGtA and reps of HGtz.
From Table 7.23 it can be seen that h must correspond to the point S for the coeffi-
cient Cp™;h not to vanish. The values of these coefficients can then be determined
in a similar way to the previous example. The resulting reductions of the Kronecker
products of the reps of HGtJ? and HGtz are given in Table 7.26.
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T A B L E 7.26

Kronecker products for R and Z in Pnnm
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(С) Г/ге coreps ofP4'2/mnm'

The determination of the corep of M which is derived from the rep A(P) of G is made
by considering the relationship between the reps A(P) and A(P) = \*(A ~1PA) of G.
We have already mentioned that for some points in the Brillouin zone the magnetic
little group is a unitary group (i.e. HGfk = 0). In these cases M tk is the same as Gtk

for the unitary subgroup G. In our particular example Mtk is unitary for the points
Fand Г in P4'2/mnm' and it is just equal to Gtk for these points in Pnnm. The coreps
of M induced by the small reps of Gtk belong to case (c) and each corep arises by the
sticking together of two small reps with different k vectors; this is similar to the type
(x) degeneracy in the grey space groups which was discussed in the previous section.
However, unlike the grey space groups, the two different k vectors are now not
necessarily equal and opposite; in fact induced coreps of P4'2/mnm' are formed by
the sticking together of one small rep of Gtk at X and one small rep of Gtk at Y and
by the sticking together of one small rep of Gtk at T and one small rep of Gtk at U.

For the remaining points, Г, 5, Z, and R, HMtk is a non-unitary group. Each of
the reps of HGtk for these points in Pnnm, which were determined above, leads to a
corep of HMtk in P4'2/mnm' and all the coreps can be obtained in this way. For each
rep of Pnnm it is therefore necessary to determine whether the corep of P4'2/mnm'
derived from it belongs to case (a), case (b), or case (c) ; this has already been done
and the results were given in Table 7.22. A scheme for labelling the coreps of M tk,
following the scheme we used previously for the point groups, has also been used to
label the coreps in Table 7.22. If one wishes to study the transformation properties of
wave functions then one actually needs to determine the matrices of the coreps of
M. This has to be done for case (a) and case (b) by a detailed inspection of A(P) and
A(P), in order to find the unitary transformation relating \(P) and A(P), i.e. to find
a matrix N such that

A(P) = NA*(/i-1P^)N"1. (7.7.13)
Since this determination of N is not strictly necessary for the present problem of the
reduction of the Kronecker products of the coreps of M it is not included in Table
7.22.
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(D) The Kronecker products of the coreps of P4'2/mnm'

We have already noted that for certain k vectors the magnetic little group happens
to be unitary. In this situation one can still make use of Table 7.8 because the corre-
sponding induced corep of M belongs to case (c), there being a type (x) degeneracy
produced between two reps, one at X and one at Y, or one at T and one at U.

It would need a great amount of space to list all the possible Kronecker products
of coreps of M and it would also not be very profitable to do so. We therefore only
consider the examples that were produced in Tables 7.25 and 7.26 for Pnnm and
show how the reduction of the Kronecker products of coreps of P4'2/mnm' can be
determined from the Kronecker products of reps of Pnnm.

In Table 7.25 we listed the reductions of the Kronecker products of the reps of Y
and Z in Pnnm, such as

(7.7.12)

We noted that the magnetic little group at F or Г in P4'2/mnm is unitary and there-
fore is equal to HGtk for that point in Pnnm. The induced coreps of M derived from
small coreps of HGT Y or HGtr therefore belong to case (c) as explained before (type (x)
degeneracy). At Z, HMtz is a non-unitary group and therefore, using the fact that
DZ^ (= Drj) belongs to case (a), we have

(.7.7.14)

If cijik refers to a rep at Y then сгм refers to the rep at X which becomes degenerate
with that rep at Y to form a case (c) corep of M. In this example C;.j,k is therefore
equal to 0 (see Table 7.23) and so

(7.7.15)

where the numbers in brackets indicate the degeneracies of the coreps. Since all the
coreps of HMÎZ, i.e. DZt, DZ2, DZ3, and DZ4, belong to case (a), eqn (7.7.14) holds
for all of them and the Kronecker products for the coreps of P4'2/mnm' induced by
the coreps of HM t r and HM tz can be written down very easily; this is done in Table
7.27.

TABLE 7.27

Kronecker products for Y and Z in P4'2/mnm'

DY,№ DZl = 077 + 077
DY, S DZ2 = ОП + DT,
DY, В DZ3 = 077 + O77 + DT2 + ОГ5

+

DY, S DZ4 = DT г + DT; + 077 + ОГ4

4

DY2 ® DZ, = 077 + 077
DY2\x\ DZ2 = O77 + 077
DY2m ÖZ3 = 077 + DT; + DT} + DT£
072 S OZ4 = 077 + 077 + 077 + OT5

+

0/3 (x) DZ, = 077 + DTl + DTi + DTs
DY3 [x] DZ2 = O?7 + DTI + ОГз + DTl
DY3 S DZ} = DT, + DT,
О / з И OZ4 = 077 + DT,
ОУ4 @ DZ, = 077 + 077 + DT\ + 077
ОГ4 S OZ2 = 077 + OTs + DT\ + O77
074 0 OZ3 = 077 + 027
DY4 ® DZ4 = DT? + 077
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We now consider the second example. In Table 7.26 we listed the reduction of the
Kronecker products of reps of Pnnm induced by the reps of HGtA and HGtz. R, Z,
and S are all points in the Brillouin zone at which HMtk is a non-unitary group and
the coreps of HMtk were identified in Table 7.22. An example of such a product is

(7.7.16)

This is like eqn (7.7.1) and we seek to obtain the coefficients dijtk in the reduction
(eqn (7.7.2)) of the Kronecker products of the coreps of P4'2/mnm' induced by the
coreps of HMtR and HMtz. From Table 7.22 the coreps DR3, DZ3, DS3, and DS±
derived from R^,, Z^ S^, and 57 respectively belong to case (a) while the two reps
S* and S2 stick together to form one corep DS2,\ of P4'2/mnm' which belongs to
case (c). Then for S3 and 57 we have to use line 1 of Table 7.8 and for Sf and S2

we have to use line 3 of that table. These all have

and therefore eqn (7.7.2) becomes

(7.7.17)

(7.7.18)

where the numbers in brackets indicate the degeneracies of the coreps. In Table 7.28
we give the reduction of the Kronecker products of all the coreps of P4'2/mnm'
induced by the coreps of "MtR and HMtz.

TABLE 7.28

Kronecker products for R and Z in P4'2/mnm'

DR, m DZ, = DS2., + DS2,
DRi 0 DZ2 = OS3

+ + DSt + DSj + DS4

DR, 0 Z)Z3 = OS5
+ + DSs

DR, m DZ4 = DSf + DSs
DR2 @ DZ, = DSj + DSÏ + DSj + DS4

DR2 ® DZ2 = DS^i + DSi ,
DR2 @ DZ3 = DSÏ + DSs
DR2 a /)Z4 = DSÏ + DSs

DR3 № DZ, = DSs + DSf
DR3 И DZ2 = DSÏ + DSs
DR3 И £)Z3 = DSJ,! + DSJ + DSÏ
DR3 0 DZ4 = DS3

+ + DSÏ + DS2tl

DRi S DZ, = £»55
+ + DSs

OA4 (x] DZ2 = DSf + DS;
DÄ4 S £Z3 = OS3

+ + DSZ + DS2,,
DRt S ÖZ4 = 052

+

Д + 053 + DS4

We have been concerned with the reduction of the Kronecker products of single-
valued and double-valued coreps of magnetic space groups. One application of this
theory lies in extending the well-established group-theoretical treatment of selection
rules for electron or phonon processes in ordinary space groups to cover similar
processes in crystals belonging to magnetic space groups. In dealing with selection
rules for processes in a crystal of a particular space group we are concerned with
investigating whether it is possible to show group-theoretically that some matrix
element <i/4, ^Ф^У must vanish, where ф'г and i/'f are the wave functions of the final
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and initial states and W is some operator. In general, t/4, \l/k
t, and W belong to coreps

of the magnetic space group M but can be regarded, for convenience, as belonging
to coreps of (usually) different magnetic little groups. The theory of selection rules
in ordinary space groups has been discussed earlier, see section 4.7. Because each rep
of the unitary subgroup, G, leads to a corep of the magnetic group M and all the
coreps of M can be obtained in this way, it is possible to do all the complicated part
of the reduction of the Kronecker products of coreps by considering the products of
the rçps of little groups of G in the conventional way. The reduction of the Kronecker
products of the coreps of M can then be determined by using the theory of section 7.4.
As a result of this, if one only requires a yes or no type answer to the question of
whether a particular transition is allowed or not it is only really necessary to deter-
mine the selection rules for electron, phonon or magnon processes in G, the halving
subgroup of unitary elements, and the selection rules in M follow immediately. For
simple selection-rule questions it is then not necessary to perform the detailed
analysis of the type considered above. However, if one wishes to evaluate for non-zero
matrix elements the actual transition probabilities then it is necessary to consider
the detailed analysis of the relationship between the decompositions of Kronecker
products of the coreps of M and the decompositions of Kronecker products of the
reps of G.

We have said before, in section 4.7, that to all intents and purposes one can con-
sider the small reps Fk of the little group G fk rather than consider the induced reps
(Гр î G) of the full space group G. There is, however, one important point arising
from the fact that the set 0HGjk in eqn (7.7.4) or (7.7.5) may contain no elements at
all. If this is so then the magnetic little group Mtk contains no anti-unitary elements
at all. We have already encountered this possibility in connection with the grey space
groups in section 7.6 and it means that the presence of the anti-unitary elements in
M causes a type (x) degeneracy, that is, the spectrum of the eigenvalues of the Hamil-
tonian of a crystal is the same at two inequivalent k vectors which are unrelated in the
unitary subgroup. In this situation, when Mtk contains no anti-unitary elements, it
is necessary to recall that, strictly speaking, it is to the corep of M induced by one of
the reps of Mtk that \j/l

r, W, or ф? belongs; therefore, in using Table 7.8 it must be
remembered that such a corep belongs to case (c).

7.8 Spin-space groups

The concept of a magnetic point group or magnetic space group as it has been
described in this chapter is based on the assumption that an operator acts simul-
taneously on the space coordinates and the spin coordinate of a particle. The result
of such an operation, if it is to be a symmetry operation of the crystal, leaves the
atomic positions and spins indistinguishable from their starting values. However, if
one makes certain simplifying assumptions concerning the form of the spin Hamil-



670 THE MAGNETIC GROUPS AND T H E I R COREPRESENTATIONS

tonian of a magnetic crystal it may possess more symmetry than is described by the
magnetic space groups. It is then possible to define and use a spin-space group, Gs,
which has considerably more symmetry than the magnetic space group of the
crystal (Brinkman 1967, Brinkman and Elliott 1966a, b). The details of the exact
form of the Hamiltonian, together with a consideration of the physical meaning of
the approximations involved is given by Brinkman and Elliott. The gross features of,
for example, the spin-wave dispersion relations can then be determined from Gs

while the finer details may be studied by considering the appropriate magnetic space
group.

For the purpose of defining a spin-space group of, for instance, a two-sublattice
anti-ferromagnetic crystal we assume that the symmetry operations act separately on
the space coordinates and on the spins. Atoms of the same element but with different
spins are considered to be distinct while the operations that change the atomic posi-
tions do not affect the spins. We define first a group G' that consists of all those
operations which, acting on the atomic positions but not affecting the spins, take
each sublattice into itself. The spin-space group, Gs, of the crystal then consists of
the sum of all those products of the elements of G' with the elements of a set of sym-
metry operations S, where S consists of all those operations which, acting on the
spins alone, are symmetry operations of the spin system. It is possible for some of the
elements of S to contain a space operation that is not in G'. Therefore we may write

(7.8.1)

where S1, S2, S3, • • • , Sn are the members of S.
In the tables of the space-group representations given in Chapter 5 the existence

of spin was virtually ignored. If one is considering the motions of electrons in crystals
in the approximation of neglecting spin-orbit coupling this is a valid approach; it
amounts to saying that, in the absence of an external magnetic field, there is no
restriction on the orientations of the electrons' spins. The spin parts of the wave
functions of such electrons then must belong to the representation &{R(tx, ß, y)} of
the full rotation group, see section 6.1. The full group of this situation, which we may
call Г, is then the direct product of the ordinary space group for the position co-
ordinates and the full rotation group for the spins. If A,(r) represents a point-group
operation Rt applied to the space coordinates x, y, and z only and Rp(s) represents a
point-group operation Rp applied to the spin coordinate only, we may then denote a
complete space-group operation by the modified Seitz symbol {R(x, y, z, s) \ v}
where

(7.8.2)

It is possible for the space-group element denoted by these symbols to include the
operation of time-inversion. The group Г may then be written as

(7.8.3)
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by analogy with eqn (3.5.2) for an ordinary space group, where T is the translation
group of the Bravais lattice of the crystal. If spin-orbit coupling is introduced we
obtain the double-valued space-group representations which were discussed in Chap-
ter 6 ; in this case the spins are no longer entirely free and the operations Rp(s) do not
comprise all the operations of the 3-dimensional rotation group but are restricted to
the same operations /?;(r) as act on the space coordinates. This group we may call G
and it can be written as

(7.8.4)

where, again, T is the translation group of the Bravais lattice of the crystal. If the
crystal that we are considering now has some magnetic ordering these two groups
Г and G are replaced by Gs, a spin-space group, and M, a magnetic space group as
defined in section 7.2. The spin-space group Gs may be written as

(7.8.5)

where the /?,'(r) are the symmetry operations of one magnetic sublattice and TM is the
translation group of the Bravais lattice of the crystal. TM may be an ordinary Bravais
lattice or it may be one of the black and white Bravais lattices described in section 7.2.
The operations R'p(s) in eqn (7.8.5) of course do not now consist of all the elements
of the 3-dimensional rotation group but only the actual symmetry operations of the
ordered spin system. The presence of the second subscript p on the vip arises because
the set of operations S used to derive Gs from G' may contain some non-zero trans-
lation operation. It is possible to write v;p in the form v,- + тр where the v; can be
regarded as originating from /?;(r) and тр can be regarded as being associated with
Rp(s). In M the addition of anisotropic exchange and other interactions means that
the total effect of a symmetry operation on the space coordinates and the spins has to
be considered, so that we may write M as

(7.8.6)

A diagram may best illustrate the inter-relationship that exists between Г, G, Gs,
and M :

spin-lattice coupling

M
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These subgroup relations mean that it is possible to deduce compatibility relations
between the representations (or corepresentations) of Gs and M. The details of these
compatibility relations vary considerably from one magnetic crystal to another and
some examples are given by Brinkman and Elliott.

We have already in this book considered the problem of determining the irreducible
representations of Г and G and the irreducible corepresentations of M. Therefore we
now give some little consideration to the modification of representation theory
appropriate to Gs as well as the compatibility relations which must exist between Gs

and M. The equation

(3.5.2)

which expresses an ordinary space group G in terms of left coset representatives of Т
and was much used in the development of the theory of the representations of space
groups, can be rewritten as

(7.8.7)

This has been replaced by a similar expansion in terms of left coset representatives

GS = I X {вдед v;p}TM (7.8.5)
ofTM,

for a spin-space group G s. The multiplication rule for the coset representatives that
appear in eqn (7.8.7) is, of course, from section 1.5,

(1.5.3)

The corresponding multiplication rule for the symbols for the elements of the spin-
space group Gs is by analogy

(7.8.8)

where Rp(s) and Rq(s) act only on the spin coordinates and do not affect v l p and \2q

and where the suffices p and q correspond to any pair of elements in the set S. It is
instructive to write down the effect of the operator (R^R^s) \ V;P} on the spinor wave
function i/f/г), where у takes one of two values corresponding to s = ±i; by analogy
with eqns (1.5.23) and (6.2.39) we have

(7.8.9)

There is a considerable similarity between the multiplication rule in eqn (7.8.8)
and that in eqn (1.5.3); it is therefore not surprising that most of the formal theory
of space-group representations should still apply to Gs. The theory of the deduction
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of the corepresentations of Gs, assuming that it contains some anti-unitary elements,
via the deduction of the representations of its halving subgroup of unitary elements
is formally very similar to the theory that we have considered in Chapters 3 and 4.
The inclusion of the extra set of anti-unitary operations each of which contains the
operation of time-inversion and the determination of the corepresentations of Gs

from the representations of its halving subgroup is again formally similar to the theory
that we have been considering earlier in this chapter. But rather than work completely
ab initia in determining the corepresentations of the spin-space group of any given
magnetic crystal it is often preferable to determine the relationships that exist between
the unitary subgroup of Gs and one of the ordinary space groups whose little groups
and their representations have been identified and tabulated in Chapters 5 and 6.
The details of such relationships vary considerably according to the actual nature of
the crystal in question, particularly that is on the elements in the set S. We shall
simply note a few general points and then consider an example by way of illustration.

Equation (7.8.5) is of a similar form to eqn (3.5.2) and as a result the theory of
little groups, see section 3.7, can be applied to Gs. If TM corresponds to an ordinary
Bravais lattice then its representations are available from section 3.4. But if TM

corresponds to a black and white Bravais lattice then it is a non-unitary group; how-
ever there is always a simple relationship between a black and white Bravais lattice
and one of the ordinary Bravais lattices, Table 7.3, so, if they are required, the coreps
of TM can be written down without difficulty. It then only remains at points of
symmetry to determine the irreducible representations or irreducible corepresenta-
tions of the magnetic little co-group Mk, see section 7.6; along lines of symmetry or
on planes one has to determine the projective representations or projective corepre-
sentations of the central extension Mk*. In Г, since the operations on the spin coordi-
nate do not affect k, the little group Gk at a general point in the Brillouin zone which
contains no space operations Rt(x, y, z) will still contain all the spin operations Rj(x)
of the rotation group in 3 dimensions. In Г this leads to a double degeneracy every-
where in the Brillouin zone, as we have already mentioned, so long as spin-orbit
coupling is neglected. In Gs the spin operations /?/.?) are more restricted in number
since they are just the members of S, the set of the symmetry operations of the
ordered spin system. For a general point in the Brillouin zone in a space group lacking
the inversion operation, /, the little group Mk can be written as

(7.8.10)

since the only space-group operation {/?;(r) | v,-} that leaves k invariant is the identity
operation while the spin operations Rp(s) do not affect k at all. The relationship
between the matrix representatives of {E(r)Rp(s) \ tp} and {E(r)Rp(s) \ 0} is, by analogy
with eqn (3.8.8),

(7.8.11)

and D{E(r)Rp(s) | 0} is just D{Rp(s)}, the matrix representative of one of the members
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of the point group of the spin rotations Rp(s). The problem of determining the space-
group representations or corepresentations of Gs at a general point in the Brillouin
zone therefore becomes simply a matter of determining the representations of the
point group Rp(s). The situation is only a little more complicated if the space group
contains the inversion operation, /. For lines of symmetry and planes of symmetry
that are completely within the Brillouin zone the space-group representations of Gs

can be found by relating them to the representations of some ordinary space group.
To illustrate the derivation of the representations of Gs at a point of symmetry

suppose that we consider a simple anti-ferromagnet which can be thought of as
having two interpenetrating sublattices and in which the directions of sublattice
magnetization are parallel and antiparallel, respectively, to the z axis. The group G' of
one of the sublattices is one of the ordinary (Fedorov) space groups whose represen-
tations are available from the tables in Chapters 5 and 6. The set S then contains the
operations that leave the position of a spin unchanged, that is the point group oo
which consists of all rotations about the spin axis. In addition S contains all the
operations that consist of a rotation through n about any axis at right angles to the
spin axis together with some operation that involves a translation т which sends one
sublattice into the other. One example of such an operation is {Ri(r)C2y(s) \ т), where,
in the paramagnetic phase, {RfâR^s) \ т} is an element of f . In the case where there
is a change of Bravais lattice when magnetic ordering occurs so that {E \ t} is one of
the elements of T, then we can choose Rt = E. Finally S contains the product of each
of the above elements with {E(r)I(s) \ 0}. The space group of one sublattice is G' and
therefore Gs contains a subgroup of operations which leave one of the spins unmoved,
that is the black and white non-crystallographic point group
That is

(7.8.12)

GS, the little group of Gs at the point of symmetry k, therefore contains the subgroup
whose reps can therefore be determined from the appropriate parts of

Chapters 5 and 6 for G'k and from the reps of oo/ra which, being the axial rotation
group (with the inversion 7), are characterized by an m value. The small reps of the
unitary subgroup Hk of Gk are then completely determined by considering the effect
of which reverses the spin and exchanges the sublattices,

(7.8.13)

The reps of Hk are then most easily determined by using the theory of induced repre-
sentations as described and illustrated in section 4.5. The addition of the anti-unitary
elements to H£ produces the little group Gk and the corepresentations of Gk can then
be determined from the representations of Hk in exactly the way that we have
described already in sections 7.6 and 7.7 for determining the corepresentations of
Mk from the representations of Gk, the unitary subgroup of Mk.
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As an illustration of a spin-space group we consider the example of the structure
which is possessed by anti-ferromagnetic MnF2. The unit cell of this structure was
illustrated in Fig. 7.5. The magnetic space group of this structure is P4'2/mnm' and
we have already considered the determination of the irreducible corepresentations of
this magnetic space group in section 7.7. The application of the theory of spin-space
groups to MnF2 was considered by Brinkman and Elliott (19666). The space group
of the paramagnetic structure of MnF2, i.e. the structure shown in Fig. 7.5 without
the ordering of the spins, is P42/mnm. The generating elements of P42/mnm are, from
Table 3.7, However, it is more convenient if
we move the origin of the coordinate system so that it is at one of the corners of the
unit cell, i.e. by + ̂ t3, so that the generating elements become
and and the origin is now at one of the Mn2+ ions. If we use т to denote the
vector we may write the elements of P42/mnm as

In considering the spin-space group of MnF2 we need first of all to identify G', the
space group of one sublattice. The elements of G are of the form {Ri(r)E(s) tj where
{Ri \ 0} is one of the elements of (X± + X2) and t; is a translation of the primitive
tetragonal Bravais lattice, P. Therefore we may write

(7.8.14)

w h e r e a n d Т i s t h e group o f t h e translational symmetry opera-
tions ol P. The set S ot the symmetry operations of the spin system contains rotations
through any angle about the spin axis, products of the operation of time-inversion
with a rotation through n about any axis normal to the spin axis, products of

with a rotation through any angle about the spin axis, and products
of with a rotation through я about any axis normal to the spin axis.
Gs may therefore be written as

(7.8.15)

where cc/m'm is the black and white non-crystallographic point group with elements
of the form {E(r)Rp(s) \ 0} where the Rp(s) may be either an uncoloured rotation
through any angle about the z-axis or a coloured rotation through n about any axis
normal to the z-axis, or the product of / with either of these two types of operation.
It will be noted that there is an isomorphism between G' and one of the symmorphic
space groups so that the representations at the points of symmetry in G' can easily
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be found. At each point of symmetry G'k is simply related, therefore, to one of the
point groups and its representations are immediately available from Table 2.2. In
deducing the representations of Hk from those of G'k we study the properties of the
reps of G'k under conjugation with since

(7.8.16)

If two reps Г; and Г, of G'k are conjugate then they stick together to form one irreduc-
ible representation of Hk but if a rep Г; of G'k is self-conjugate then it leads to two
reps of Hk (see section 4.5). At the point Г each rep of G'k is self-conjugate so that
each rep of G'k leads to two reps of H| in which the character of is
+ n or — n. At other points the situation is a little more complicated. For example, at
Z, G'k contains the elements

T A B L E 7.29

The character table at Z in G'k in the spin-space group o/MnF2

z,+

7-г
zî
z:
z,
z2-
Z3
Z4

E

-
-

-
-

^2„

-

С2Ь

1
1

-

-
-

Clz I (

1 1
1
1
1

-1
-1
-1
-1

т t.

-

Tib GZ

\

-1

-1

1

-1

1

1

l -1

J i { E \ t 3 } = -1.
Note to Table 7.29

The elements of G'k are of the form {Ri(r)E(s) \ v f} where the й; are given in the first row of the table and vf = 0.

The representations of G'k are therefore as shown in Table 7.29 where only those
representations i n which ; a r e considered. T h e result o f t h e conjugation
of these elements with is to produce
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respectively, which means that the representations are conjugate in pairs :
the character table is given in Table 7.30. Each rep

of H^ at Z is therefore characterized by one of the reps in Table 7.30 together with a
value of m, denoting one of the reps of the axial rotation group (with is
constructed by the addition of the anti-unitary element The
corepresentations of G£ can be determined by using eqns (7.3.45)-(7.3.47) and the
test given in eqn (7.3.51) or eqn (7.6.16). The argument that we have outlined for Z
can also be applied to the other special points of symmetry in the Brillouin zone.

TABLE 7.30

The character table at Z in H* in the spin-space qroup o/MnF2

E C2a C2b C2z / а ̂  ndb <rz

z;, z4
z2, z2zi, z3z:, z,-

2
2
2
2

0
2

-2
0

0
-2

2
0

2
-2
-2

2

0
0
0
0

2
0
0

_2

2
0
0

-2

0
0
0
0

Note to Table 7.30

The characters of the remaining elements are zero. The elements given above are of the same form as those in
Table 7.29.

In practice the spin Hamiltonian that is used for MnF2 is unlikely to contain any
terms that involve the F~ ions. If these F~ ions are neglected the order of the spin-
space group, Gs, will be larger than if they are included (Brinkman and Elliott \966a,
19660); for example Gs will also contain elements of the form {Rt(r)E(s) \ 0} where
{Rt | т} e [X3 + XJ. However, if the F~ ions are neglected it must be remembered
that the orders of the other groups Г, G, and M are also likely to be increased; unless
this fact is remembered the subgroup relations between Г, G, Gs, and M which were
indicated just below eqn (7.8.6) might appear to be invalid.

7.9. Polychromatic point groups and space groups

The Shubnikov groups, or black and white groups, are derived by adding to the
position coordinates x, y, and z an extra coordinate s, which takes either of two
possible values. This can be extended further if the extra coordinate, s, is not now
two-valued but three-valued, four-valued, or six-valued. In the same way that the
two-coloured point groups and space groups were derived it is possible to derive the
three-coloured, four-coloured, or six-coloured point groups or space groups. Con-
sider the case generally of the /7-coloured point group with p = 2, 3, 4, or 6. If we
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suppose that we have p colours arranged in some order, e.g. three colours, red, green,
and yellow, then it is possible to define a colour-changing operation, 3$, which per-
mutes these three colours cyclically, e.g. 3ft turns red into green, green into yellow,
and yellow into red (see Fig. 7.10). There will be three types of p-coloured point group.
A type I p-coloured point group (or space group) is simply an ordinary point group
(or space group) G. A type II, or grey, point group can be denned by (see Definition
7.2.1):

FIG. 7.10.

D E F I N I T I O N 7.9.1. A type II polychromatic point group (or space group), C, is
given by

(7.9.1)

where G is any ordinary point group (or space group).

There are thus 32 type II polychromatic point groups and 230 type II polychro-
matic space groups for each value of p (= 2, 3, 4, or 6). In a similar way Definition
7.2.2 can be extended to define a type III p-coloured point group or space group.

D E F I N I T I O N 7.9.2. A type III polychromatic group, C, is given by

(7.9.2)

where H is a subgroup of some ordinary point group or space group G and is of order
(l/p) x the order of G, a n d a r e the left coset representatives in the
expansion of G,

(7.9.3)

where a t is the identity element.
By deriving polychromatic Bravais lattices (p = 3, 4, or 6) Definition 7.2.5 could

be extended to define /»-coloured polychromatic space groups of type IV.
The procedure involved in a detailed derivation of the coloured groups with

p = 3, 4, or 6 should be fairly clear from what has been done already with the black
and white groups; they can readily be determined by inspection from the ordinary
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point groups or space groups by using Definition 7.9.2. Alternatively, in section 7.2
we noted that the 58 black and white point groups could be derived by studying the
real 1-dimensional reps of the ordinary point groups and multiplying any element
whose character is — 1 by the colour-changing operation. In a similar way it is
possible to use the complex 1-dimensional reps of the ordinary point groups to
derive the three-coloured, four-coloured, and six-coloured point groups (Indenbom,
Belov, and Neronova 1960). The complex numbers со (= е27"/3), i (= e2m/4) and
— со* (= e2"1/6) can then be associated with colour-changing operations for three-
coloured, four-coloured, and six-coloured point groups respectively. The two mem-
bers of a pair of complex conjugate representations of an ordinary point group both
lead to the same polychromatic point group. From Table 2.2 one can see that there
are, in all, 18 pairs of complex conjugate representations so that there are 18 poly-
chromatic point groups.

T A B L E 7.31

The complex reps o/4/m (C4k)

[E,
2En
lEa

2E»

E

1
1
1
1

r+

*-4z

— i
i

— i
i

C2z

-1
-1
-1
-1

c4;

i
— i

i
— i

/

1
1

-1
-1

S4z аг S^z

-i -1 i

i -1 -i

i 1 -i

-i 1 i

• 4(4)X

• 4(4)/m

We illustrate this derivation by considering the point group 4/m (C4J. The com-
plex conjugate 1-dimensional reps of this point group can be obtained from Table 2.2
and are reproduced in Table 7.31. Each of the two reps 1Eg and 2Eg leads to a four-
coloured point group in which C£z is associated with Й?4, the four-colour-changing
operator, and /is uncoloured; this point group is denoted by 4w/m'.. Each of the two
reps 1EU and 2EU leads to a four-coloured point group in which C4

+

z is associated with
a?4 and /is associated with <%2, the two-colour-changing operator; this point group is
called 4w/m. The elements of these two point groups are therefore

where we have used the fact that Sfc\ — Я2\ these two point groups are represented
diagrammatically in Fig. 7.11. The remaining polychromatic point groups can be
derived in a similar way and they are also included in Fig. 7.11 ; their elements are
identified in Table 7.32.
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FIG. 7.11. Polychromatic point groups (Indenbom, Belov, and Neronova 1960).
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Notes to Table 7.32
(i) The numbers 1 to 18 are those of Indenbom, Belov, and Neronova (1960).

(ii) For numbers 16, 17, and 18 the subscript m takes the values x, y, and z and the subscript j takes the values
1,2, 3, and 4.

As yet there is no definite indication of there being any use for the polychromatic
groups and so we do not intend to consider their representations here. The poly-
chromatic plane groups (2-dimensional space groups) were considered by Belov and
Belova (1957), Belov, Belova, and Tarkhova (1958), and Belov and Tarkhova
(1956й, с) and a corrected, translated, and edited derivation of the three-coloured,
four-coloured, and six-coloured plane groups, i.e. with p = 3, 4, and 6, is given by
Shubnikov and Belov (1964); a general discussion of polychromatic groups is given
by Mackay (1957).



Appendix
After the notation that we have used for the point-group operations had been

developed and after the tables contained in this book had been derived, the books
by Miller and Love (1967) and Zak, Casher, Glück, and Gur (1969) were published.
For the benefit of readers we therefore give the correspondence between our notation
for the point-group operations and the notations used by these authors as well as
that used by Kovalev (1965).

(i) т3т(0н)

This book Kovalev Miller and Zak, Casher, This book Kovalev Miller and Zak, Casher,
(1965) Love (1967) Glück, and (1965) Love (1967) Glück, and

Gur (1969) Gur (1969)

E ft, l E 1 H25 25 J

C2x h2 2 < J X h2h 2 6
C2y h3 3 a , h21 2 7
C2z h4 4 < s , h2B 2 8

C3
+, Л, 9 S 6 - , hn 3 3

C3

+

2 A u И S 6 - 2 A 3 5 3 5
C3

+

3 A 1 2 1 2 % Азе 3 6
C3

+

4 A 1 0 1 0 S 6 - 4 A3 4 3 4
Сз~! hs 5 S 6

+ ! A 2 9 2 9
C3-2 hb 6 S 6

+

2 Й3 0 3 0
C3-3 A 7 7 5 6

+

3 A 3 1 3 1
C3-4 A 8 8 5 6

+

4 /!32 3 2

C4^ A 1 9 1 9 S 4 ; A43 4 3
C4

+, A2 4 2 4 S 4 - A48 4 8
C£ A 1 4 1 4 5 4 ~ A38 3 8
C4, A20 2 0 5 4

+ , Й44 4 4
C4, A 2 2 2 2 5 4

+

} , A4 6 4 6
C4z A 1 5 1 5 S 4

+

z A3 9 3 9

C2o A 1 6 1 6 f f d a A40 4 0
C2b A 1 3 1 3 a d b A 3 7 3 7
C2c A 2 3 2 3 f f d c A 47 4 7
C2d A 1 8 1 8 a d i Й4 2 4 2
C2e A 2 1 2 1 a & A4 5 4 5
C2/ A , 7 17 <7d/ A4 1 41 a>*
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(ii) 6/mmm(D6h)

This book
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Love (1967)
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6
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9

Zak, Casher,
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Q
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This book
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numbers, 283
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representation, 17, 19, 20, 23, 54,153,161, 173,
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Direct product of groups, see Inner direct product
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Direct (Kronecker) product of representations,
see Inner direct (Kronecker) product of
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representations and Outer direct (Kro-
necker) product of representations

Direct sum (addition) of representations, 22-3,
184,205,219,222,450

Double coset, 205, 208, 212, 217-19, 223, 663
representative, 208, 210, 218

Double point group, 6, 419, 420, 422, 423, 424,
426-7, 428-36, 445, 447-9, 452, 454-8,
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Double space group, 6, 426, 455, 456-67, 469-
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Double-valued representations of the point
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436, 437-8, 440-1, 449-50, 452-4, 457,
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space groups, 225, 406, 418, 454-5, 456, 458,
459-67, 468, 469-561, 568, 651-2, 656-7,
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Eigenfunction, Eigenvalue, 5, 147, 152-3, 405-6,
408, 418, 437-8, 442-3, 450, 458, 467,
606, 650-1, 669

Eigenvector, see Eigenfunction
Electronic band structure, 6, 406, 408, 417-18
Element of a basis, see Basis vector
Element of a group, 4, 8-14, 16-17, 19, 23, 51,

54-6, 110, 121-2, 127, 147-8, 156, 158-9,
168, 172, 201-2, 208, 211, 285-7, 289, 291,
387, 401-3, 420, 422^1, 426, 441, 450,
453, 455-7, 460-1, 463-5, 560, 571, 574,
598

Elements of abstract groups, 226-84
point groups, 29-31
space groups, 127-35

Energy band, Energy level, 6, 7, 73, 94-6, 388-9,
408, 434, 457

Equivalence relation, 171
Equivalent k vectors, 93, 95, 110-12, 119, 145,

148-9, 154, 653
Equivalent matrix groups, 15, 16, 18-19, 185
Equivalent positions (in a unit cell), 35, 37, 122,

123-4. 127, 137, 140
Equivalent corepresentations, Equivalent repre-

sentations, 18, 20, 22, 158, 171, 179-80,
183, 185, 195-7, 199, 205-7, 209, 219,
221-2,612-13,616-17, 625

Euler angles, 52, 54, 56, 418, 420, 423, 438, 446
Extended zone scheme, 93

Factor group, 13, 14, 146, 155, 167-8, 178, 180
Factor system (for projective representation),

156, 157-61, 163-7, 185, 638, 646
Faithful representation, 16, 17, 36
Fedorov space group, 569, 575, 576-83, 584,

588, 600, 624, 638-9, 649, 661, 674, see
also Space group

Ferrimagnetism, 570, 600, 601-2
Ferromagnetism, 570, 600, 601, 602
Finite group, 4, 5, 8, 19, 25, 27, 54, 81, 156, 158,

184, 186, 193, 223, 225, 287-8, 662
First nearest neighbour, 93
Frequency theorem, 206, 210
Frobenius reciprocity theorem, 175, 180-1, 183
Full-group method, 214, 215
Function space operator, 47, 48-50, 76, 144, 442
Fundamental unit cell, 42, 43, 81, 83, 92, see also

Primitive unit cell and Wigner-Seitz unit
cell

General point (of a Brillouin zone), 110
Generating element (generator) of a group, 8,

9-10, 125, 127-34, 136, 225, 226-84, 285,
286, 293, 386-7, 398-9, 401-3, 425-6, 428,
434, 453-4, 456, 458-9, 559-60, 575, 576-
583, 599, 600, 652, 656, 675

Generating relation, 5, 8, 9, 11, 168, 192, 225,
226-**, 426

Glide reflection plane, 2, 44, 47, 121, 139, 141-2
Glide vector, 139, 141-3
Goniometry, 5
Grey group, 569, 570, 571, 575, 597, 601, 622,

625-5, 649-51, 657, 666, 669
Group, see Abelian group, Abstract group,

Black and white group, Centre of a group,
Cohomology group, Coloured group,
Cubic group, Cyclic group, Dihedral
group, Double point group, Double space
group, Factor group, Finite group, Gen-
erating element (generator) of a group,
Grey group, Hexagonal group, Holo-
morph of a group, Holosymmetric point
group, Icosahedral group, Infinite group,
Inverse of a group element, Isogonal point
group, Isomorphic groups, Magnetic
group, Matrix group, Monoclinic group,
Multiplier group, Non-unitary group,
Order of a group, Orthorhombic group,
Point group, Polychromatic group, Qua-
ternion group, Semi-simple group, Shub-
nikov group, Simple group, Solvable
group, Space group, Spin-space group,
Tetragonal group, Three-dimensional
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Group (cont.)
rotation group, Translation group,
Triclinic group, Trigonal group, and
Unitary unimodular group

Group axioms, see Axioms for a group
character, see Character (of a group element or

representation)
element, see Element of a group
of the Hamiltonian, see Schrödinger group
of the Schrödinger equation, see Schrödinger

group
of the wave vector (group of k), see Little group
multiplication table, 8, 9, 35-9, 76-7, 286-7,

419, 422-4, 426, 456, 459, 461-2, 464-6
representation, see Representation (of a group)

Hamiltonian (operator), 147, 216, 406, 455, 606,
669-70, 677

Harmonic function, 60, 66-7, 70, see also
Spherical harmonic лил? Surface harmonic

Hermann-Mauguin notation, 574
Hermitean conjugate matrix, 16
Herring's little group, 285, 287, 386, 459, 559
Herring's method, 167-8, 169-70, 639, 648-9,

652, 657, 661-2
Hexagonal Bravais lattice, 41, 44-5, 83, 85, 88-9,

91, 107, 117,585,587
crystal system, 28, 29-30, 33^, 37, 40, 45, 585,

587, 595
group, 34, 35-6, 37, 39, 45, 54, 61, 132-3, 216,

354-73, 409, 421-2, 423, 529-47, 581-2,
Hubert space, 55 [595-6, 634-5, 681
Holomorph of a group, 15
Holosymmetric point group, 31, 40, 83, 86, 90,

95, 110, 121, 147, 149, 163, 211, 407-10
Homomorphism, 9, 10, 13, 16-17, 156, 222, 419,

441, 609-10

Icosahedral group, 26, 28, 186
Identity element (operation), 8, 9-11, 13-14, 16,

24, 26, 28, 30, 110, 158-9, 163, 172, 176-8,
181, 194, 212, 219-20, 283, 419, 575, 678

Identity representation, see Totally symmetric
representation

Improper rotation, 24, 45, 56-7, 74, 427, see also
Proper rotation, Reflection, and Rotation
reflection operation

subgroup, 10, see also Proper subgroup and
Subgroup

Index (of a subgroup), 12, 13, 27, 122, 193^t,
287, 408, 427, 608

Induced corep, induced corepresentation, 643-4,
661, 666-8

Induced rep, induced representation, 5, 152-3,
171, 172-3, 175, 180-4, 189, 790-2, 199-
206, 209-13, 215-17, 220, 222, 224, 287-8,
386-8, 413, 458, 559-60, 638-9, 642, 644,
651, 660-1, 669, 674

Infinite group, 40, 81-2, 225, 285, 287, 402, 618,
662

Inner automorphism, 12, see also Outer auto-
morphism and Automorphism

Inner direct product of a group with itself, 14,
23,78

(Kronecker) product of representations, or of
corepresentations, 23, 60, 77, 171, 204-5,
209-10, 212, 213, 214-17, 437, 449-
50, 452, 618, 620, 621, 652, 660-4, 665 ,̂
669

International notation 25-8, 46-7, 60, 187
space group numbers, 127-36

symbols, 127-36
Intertwining number, 175, 176, 196, 199
Invariant subgroup, 4, 5, 12, 13-15, 27, 81, 119,

122, 146, 150, 158, 168, 171-2, 175-8,
180-1, 184, 186-9, 790-2, 193-5, 204, 212,
219, 223, 287-8, 408-10, 411,414-15, 608,
640, 645

subspace, 18, 19, 78-9, 178, 216
Inverse of a group element, 8, 121, 178

matrix, 77
Inversion centre, 139^3, 389, 414-15

operation, 2, 24, 26-8, 30, 40, 54, 56, 86, 90,
139, 162, 419, 444, 569, 673^

Irreducible corepresentation, see Corep
Irreducible projective corepresentation, see Pro-

jective (ray) corep
Irreducible projective representation, see Pro-

jective (ray) Rep
Irreducible representation, see Rep
Isogonal point group, 46, 47, 121, 134, 147, 149,

161, 173,211,407-12,414, 583
Isomorphic groups, Isomorphism, 9, 10, 13-17,

23 ,̂ 49, 78, 121, 146, 155, 158-9, 165-8,
170, 178, 188, 195, 225, 285, 287, 289, 389,
398, 400. 409-10, 414-15, 419, 425-6, 455,
462-6, 640, 675

Isomorphous point group, see Isogonal point
group

Isotropie parameter, 443^t
vector, 442-3

Johnston's irreducibility criterion, 174, 180
Jones' faithful representation symbols, 35-6, 37,

138, 285
zones, 94
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k vector, see Wave vector
Kernel (of a homomorphism), 10, 13, 18, 158
Koopmans' theorem, 93
Kronecker product of matrices 23, 78, 619

representations, see Inner direct (Kronecker)
product of representations

Kronecker square of a representation, 77-9,
214-15, 222, see also Antisymmetrized
square (and higher products) of a repre-
sentation and Symmetrized square (and
higher products) of a representation

Labelling of space-group reps, 390-6, 561-8
Lagrange's theorem, 12
Left coset, 12, 13, 149-51, 155, 160-1, 163,

172, 176, 181, 188, 192, 194, 201, 206,
208, 608, 663, see also Coset and Right
coset

representative, 121, 152, 172, 176-7, 455,
640, 672, 678, see also Coset representa-
tive

Lifted representation, 160, 168
Line of symmetry, 95, 96-109, 110, 111-12, 113-

18, 149, 156, 162, 167, 180, 225, 287-8,
293, 386-7, 389, 397-8, 401-2, 405, 407,
412, 413, 416-17, 456, 458, 463, 468, 559-
560, 568, 653-7, 673^1

Little cogroup, 149, 150-1, 153, 155-6, 160, 762,
163^4, 167, 173, 179, 180-1, 185-6, 189,
/90-2, 195, 225, 409-10, 638-9, 641-2,
647

group, 146, 150, 151 ,̂ 156, 163, 167-8, 171,
173, 175, 180, 181, 184, 189, 192, 195, 201,
203^, 206, 210, 212, 215, 223, 225, 285,
289, 386, 401, 409-10, 414-16, 456, 600,
619, 639-40, 642-3, 645, 647, 657, 660-1,
663, 669, 673-4

Mackey's subgroup theorem, 208-9
Macroscopic order of a crystal (or of a space

group), 122, 147, 152,204
Magnetic group, 3, 569, 608, 618, see also Mag-

netic point group, Magnetic space group,
Non-unitary group, and Shubnikov group

Magnetic little co-group, 642, 643, 647, 649, 657,
662, 673

group, 642, 645-6, 649-50, 658, 661, 666-7,
669

Magnetic point group, 569, 570, 572-4, 599, 617,
620, 622, 626-7, 629, 630-6, 637-9, 646,
669, see also Shubnikov point group

Magnetic space group, 569, 570, 575,576-83,584,
588-97, 599, 600, 618, 620, 638-9, 646,

649, 657, 661-2, 668-71, 675, see also
Non-unitary group and Shubnikov space
group

Magnetically ordered crystal structure, 4, 388,
406-7, 598, 671

Magnons, Magnon dispersion curves, 6, 77,92-3,
407, 660, 669

Mapping, 10, 12-13
Matrix, 15-19, 21-2, 36, 53, 62, 66, 77, 138, 140,

155-7, 163, 168, 171, 173, 182, 184-5,
198-202, 208, 220-1, 223, 419-23, 440-2,
444, 450-1, 453, 459-60, 462, 464, 610-12,
614, 618-19, 623-5, 628, 636, 644-5, 660,
666, 669

elements, 7, 20-2, 51, 147, 214, 216, 440, 668
group, 15, 16-18
representative, 23, 36, 48, 51, 53-4, 60-3, 70,

77, 184, 199, 201, 225-6, 285, 399, 402-3,
418, 420, 426, 434, 446, 449-50, 452, 453,
454, 464-5, 609, 630, 673-4

representatives (matrices) for degenerate repre-
sentation, 57, 60-3, 166, 169-70, 283-4,
400-1

Maximal invariant subgroup, 186, 188, 193—4
Member of a group, see Element of a group
Molecule, 1, 5-7, 37, 39, 43, 77, 404, 437
Monoclinic Bravais lattice, 41, 45, 82-^4, 88, 91,

92,96-7, 111, 113,585-6
crystal system, 28, 29, 30, 32, 34, 37, 40, 45, 60,

110, 585-6, 588
group, 34, 36, 45, 60, 90, 127, 135, 294-8, 420,

469-73, 576, 588-9
Mulliken notation, 57, 60, 389, 397, 434, 468, 568
Multiplier group, 158, 163

Neumann's principle, 147
Neutron, Neutron diffraction, 4, 5, 77, 569-70,

600
Non-singular matrix, 15, 18-19
Non-symmorphic space group, 6, 44, 45-7,

121-2, 156, 161, 164, 167, 170, 192,287-8,
457

Non-unitary group, 606, 608-9, 618, 620, 639,
660, 666-8, 673, see also Magnetic group
and Shubnikov group

Normal mode of vibration, 5, 406-7
Normal series, 14
Normal subgroup, see Invariant subgroup

Opechowski's rules, 419-20, 423-5, 427, 457
Orbit, 179, see also Star
Order of a group, 5, 8, 12-13, 19-20, 54, 149, 152,

158, 160, 162, 167-8, 181, 186, 188, 193-5,
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Order of a group (cont.)
211, 283, 293, 386, 402-4, 412, 419, 425-6,
462, 470, 570

of a group element, 8, 11, 158, 192, 194, 426
of a rotation axis, 25-8, 40, 44, 47, 121

Orthogonal group, see Three-dimensional rota-
tion group

matrix, 24, 144
vectors (functions), 18, 37, 57

Orthogonality relationships for characters, 21,
157, 175, 620, 641

matrix elements, 20-2, 157, 161, 202
Orthorhombic Bravais lattice, 41, 45, 82-5, 87,

88-9, 91, 92, 97-103, 112, 114-15, 122,
124, 127, 5*5-7, 654, 657

crystal system, 28, 29, 30, 32, 37, 40, 45, 584,
585-7, 589

group, 34, 36, 45, 114-15, 122, 123-4, 126,
127-30, 135-7, 298-327, 420, 474-503,
573, 576-8, 589-91, 630-1, 654-6, 657,
658-60, 663, 665-6

Outer automorphism, 12, see also Inner auto-
morphism and Automorphism

Outer direct product of groups, 13, 14, 23, 26, 60,
63-4, 74, 78, 80, 119, 184, 188, 283, 293,
386, 388, 390, 401, 419, 427, 434, 436,
454, 462, 559, 571, 575, 605, 625, 627,
649

Outer direct (Kronecker) product of representa-
tions, 23, 60, 63 ,̂ 80

Paramagnetism, 570, 600, 601-3, 604, 605, 622,
674-5

Parent space group, 408, 410, 412, 414
Parity, 436, 454
Passive operation, Passive operator, 25, 48-50,

76-7
Pauli exclusion principle, 77, 93

matrices, 439
Permutations, 4, 194
Phonons, Phonon dispersion curves, 6, 406-8,

417, 660, 668-9
Plane of symmetry, 95, 110, 112, 156, 162, 167,

180, 398, 639, 654, 674
Point group, 1-3, 5-7, 24, 25-31, 32-4, 35-6,

57-9, 40, 43-7, 54-6,57-74, 75, 77, 79, 80,
91-3, 121, 133-5, 146, 156, 160, 163-4,
176, 186, 187-8, 190-2, 199, 203^4, 285,
286, 287-9, 389-90, 398, 402, 406, 408,
412, 418-21, 423, 427, 428, 434, 436-7,
441, 447-9, 450, 452, 454, 455-6, 458, 462,
569-75, 598-9, 602, 620, 622-8, 638, 653,
666, 674, 676-9

operation, 3, 28, 29-34, 36, 40, 43-6, 50, 54,
84-6, 87, 88-90, 113-18, 121, 135, 141-3,
387, 401, 409, 422-3, 434, 442, 445,
446, 560, 569, 573-^t, 646-8, 654, 670,
682-3

Point of symmetry, 95, 96-709, 110-12, 113-18,
149,156,162,167-8,180,225,285,287-91,
293, 386, 389-90, 397-8, 401, 405-7, 412-
413, 416-17, 456, 458, 468, 559-60, 568,
639, 650, 653-5, 657-9, 661-3, 673-7

Polychromatic group 677, 678, 679, 680, 681,
see also Coloured group

Position vector, 3, 24, 40, 45, 48-50, 143, 440
Primitive unit cell, 43, 81, 91, 92-3, 110, 119, see

also Fundamental unit cell and Wigner-
Seitz unit cell

Principal axis, 25, 26-8, 31, 34-5
Projection operator, 55, 439
Projective (ray) corep, 646

corepresentation, 646, 649, 673
rep, irreducible projective representation, 157-

61, 609, 620, 638-41, 643, 645-6, 648-9,
672-3, 676

representation, 5, 146, 156, 157-60, 163-4,
167, 185, 192, 287, 401, 463, 646, 649, 673

Proper rotation, Pure rotation, 2, 24, 26, 30,
36-7, 45, 52-3, 56-7, 74, 143, 419, 423,
427, 569, see also Improper rotation and
Rotation operator

Proper subgroup, 10, 110, 184, 407, see also
Improper subgroup and Subgroup

Pyrite structure, 415

Quaternion group, 192-3, 204, 228
Quotient group, see Factor group

Ray representation, see Projective (ray) repre-
sentation

Reality of representation, 171, 201, 203-4, 386,
388, 400-2, 404-5, 434, 458-60, 462, 464,
559-60, 624, 626, 648, 651-2, see also
Classification of representations into
kinds and Representations of the first,
second, and third kinds

Reciprocal lattice, 81, 86, 87, 88, 90-3, 96-110,
398

vector, 86-7, 88, 90-1, 93, 95, 110, 119-20, 144,
155, 161,211,647,650, 654, 661

Reduced matrix elements, 53
Reduced zone scheme, 94
Reducible corepresentation, 611, 619
Reducible representation, 19, 23, 74, 78, 147,

160, 182, 186, 196, 206, 407, 449-50, 611-



INDEX 743

612, see also Completely reducible repre-
sentation

Reflection, 2, 9, 17, 24, 28, 31, 44, 443^, 601,
see also Improper rotation and Glide
reflection plane

Reflection plane, 2, 27-8, 31, 40, 44, 46, 110, 137,
139, 390, 600, see also Glide reflection

Regular representation, 74 [plane
Rep, 5, 6, 19, 20, 23, 54-5, 57, 60, 66, 71, 74-82,

119-20,146-8, 150-2,154-60, 162-^t, 168-
169, 171-6, 180-5, 189, 192-3, 195-7, 199,
201, 203-7, 210, 212, 214-17, 224-6, 283,
285-8, 290-3, 386-90, 397^03, 405-8,
410-11, 415, 419-20, 425-7, 434-8, 441-2,
449-51, 454-8, 460-5, 468, 559-60, 568,
600, 605, 609, 612, 616-18, 620, 623-7,
629, 631^1, 643, 646, 648, 650-2, 656,
661-9, 672^t, 676-7

Repeated zone scheme, 93, 94
Representation (of a group), 4, 5, 7, 15,16,17-19,

22, 28, 53, 55-6, 66, 76-9, 164-6, 199, 205,
207-10, 213, 217-20, 223, 225, 289-90,
293, 387, 401, 407, 410, 418, 420, 425,
439, 453, 459-60, 463, 466, 598-9, 605,
610, 672, 676, see also Basis (of a repre-
sentation), Carrier space (of a repre-
sentation), Character (of a group element
or representation), Classification of
representations into kinds, Completely
reducible representation, Complex con-
jugate representations, Conjugate repre-
sentations, Degeneracy of representation,
Direct sum (addition) of representations,
Double-valued representations of the
point groups, Double-valued representa-
tions of the space groups, Equivalent
corepresentations, Faithful representa-
tion, Induced rep, Inner direct (Kronecker)
product of representations, Kronecker
square of a representation, Lifted repre-
sentation, Outer direct (Kronecker) pro-
duct of representations, Projective (ray)
representation, Reality of representation,
Reducible representation, Rep, Self-con-
jugate representation, Single-valued re-
presentations of the point groups, Single-
valued representations of the space
groups, Small (allowed) representation,
Subduced representation, Symmetrized
square (and higher products) of a repre-
sentation, Totally symmetric representa-
tion, Unitary representation, and Vector
representation

Representation domain, 147, 149, 151-3, 154,
163, 211, 293, 407-8, 411, 412, 414-15,
416-17, 568, 638-9, 657

Representations of the first, second, and third
kinds, 20, 60, 203^1, 386-7, 399, 434,
559-60, 625, see also Classification of
representations into kinds and Reality of
representation

Rhombohedral Bravais lattice (or crystal system,
or space group), see Trigonal Bravais
lattice (or crystal system, or space group)

Right coset, 12, see also Coset and Left coset
Rotation axis, 2, 25-8, 44, 47, 83, 135, 137-8,

141-3, 420, 457, 599, 674-5, see also Screw
rotation axis

group, see Three-dimensional rotation group
operator (operation), 2, 24-6, 28, 31, 44, 48,

51, 53, 55-6, 105, 138, 144, 161, 212, 415,
419-20, 423, 438-40, 442, 444, 457, 601,
see also Screw rotation operator

Rotation reflection (roto-reflection) operator, 2,
31, 140

Schönflies notation, 25-9, 46-7, 60, 84, 127-34,
135-6, 187, 188, 574, 598

Schrödinger group, group of the Hamiltonian,
group of the Schrödinger equation, 5, 6,
71, 606-7

Schur's lemma, 19, 159, 197, 612-14
Screw axis rotation, see Screw rotation operator
Screw rotation axis, 2, 44, 47, 122, 138-9, 141-4,

see also Rotation axis
operator, 44, 121, 138-9

Screw vector, 138; 140-3, 144
Second order phase transition, 77
Secondary axis, 25, 26
Seitz space group symbols (operators), 45, 46-9,

81, 122, 125-6, 135, 177, 286, 386, 583,
656, 661, 670

Selection rules, 7, 152, 171, 214, 216-17, 660,
668-9

Self-conjugate class, 194-5
Self-conjugate element of a group, 11
Self-conjugate representation, 195, 199, 200,

289-90, 676
Self-conjugate subgroup, see Invariant subgroup
Self inverse double coset, 219, 223^
Semi-direct product of groups, 14, 15, 44, 121,

177, 185-6,188, 189-92, 194
Semi-simple group, 13
Shubnikov group, 3, 6, 569, 570, 585, 600, 605,

608, 677, see also Magnetic group and
Non-unitary group
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Shubnikov group (cont.)
point group, 570-1. 573-4, 598-9, 602, 622,

624—6, see also Magnetic point group
space group, 574, 575, 576-83, 584, 588-97,

598-603, 646, 648-9, 652, see also Mag-
netic space group

Simple group, 13
Single-valued corepresentation, 612, 629, 637,

652, 668
Single-valued representations of the point groups,

57-63, 418, 420, 425, 427, 434, 437, 441,
446, 449-50, 453^, 457, 599, 617, 623,
626, 630, 637, 679, see also Character
tables for crystallographic point groups

space groups, 225, 285, 293-388, 456, 458,
463, 467-8, 559-60, 599, 652, 656-7, see
also Character tables for crystallographic
space groups

Small (allowed) corepresentation, small corep,
642-3, 645, 649, 652, 657-8, 661-2

Small (allowed) representation, small rep, 146,
152, 154, 155, 163-71, 173, 175, 181, 182,
184-5, 189, 192-3, 201, 203^t, 206, 210-
211, 212, 215, 286-7, 293, 387-8, 403-5,
407, 409-11, 413-16, 417, 456-7, 459-69,
559-60, 600, 639, 641-3, 645, 648-50;
652-3, 657, 660, 665-6, 669, 674

Solids, 1, 5-7, 37, 40, 147, 171, 214, 437
Solvable group, 14, 186, 193
Space group, 1-3, 5, 6, 27, 29, 34, 37, 43, 44, 45,

46-7, 77, 81, 83, 121-2, 125, 127-36, 137,
146-7, 149-50, 155-6, 160, 162, 168, 171,
173, 175-6, 179-81, 184, 186, 192-3, 204,
210-12, 214-16, 223, 225-6, 287-9, 292,
293-388, 390-6, 397-8, 401, 405-10, 412,
414, 415-16, 417, 418, 455-7, 467-8, 471-
568, 569-70, 575-6, 583-4, 588, 598-600,
603, 619, 624-5, 638-9, 642, 646-8, 652,
656-7, 659-61, 663, 668-74, 677-9, see
also Double space group, Fedorov space
group, Non-symmorphic space group, and
Symmorphic space group

Space group operation (element), 3, 31, 45-6, 49,
50, 122, 125-6, 144, 288, 386-7, 389-401,
407, 463. 559, 569, 647, 654, 670, 673

Spectrum, 388-9, 403, 458, 466, 650, 669
Spherical harmonic, 6, 51-2, 54-6, 64, 71, 406,

418, 437-9, 442, 445, see also Harmonic
function and Surface harmonic

Spin, 3, 71, 93, 418, 436-7, 442, 445-6, 449,
454-5, 569-70, 583, 601, 603, 606, 623,
625-6, 629, 651, 669-75

Spin-lattice coupling, 671

Spin-orbit coupling, 418, 436-7, 629, 670-1, 673
Spin-space group, 669, 670, 671-5, 676
Spin waves, 406-7, 670
Spinor, 418, 438, 442, 444-5
Splitting of spectral lines, 75-6
Standard setting of point group, 28-30, 31
Star, 146, 148, 149-52, 153, 154, 162, 173, 175,

179, 180-4, 189, 790-2, 193, 195, 202-4,
212, 215, 290, 389, 408, 413, 416, 458,
640-1, 647, 650-2, 663

Stereogram, Stereographic projection, 30-1, 32-
33, 573

Structure factor, 94
Subduced representation, subduction (of repre-

sentations), 71, 176, 182, 210, 418-19,
437, 449-50

Subgroup, 10, 12-15, 23, 25-6, 37, 40, 60, 121,
147, 158-9, 161, 168, 171, 173-8, 182,
186-7, 205-8, 210, 217, 223, 283, 286, 288,
419-20, 423, 427, 455, 571, 573-4, 600,
608, 612, 620, 637, 641-2, 646, 657, 660,
672, 674, 677-8, see also Invariant sub-
group and Unitary subgroup

Subgroup method, 215
Surface harmonic, 51, 56-7, 63-71, 75, see also

Harmonic function and Spherical har-
monic

Symmetric representation, see Totally symmetric
representation

Symmetrized square (and higher products) of a
representation, 77-8, 79, 80, 214-24

Symmetry-adapted function, 51, 54—5, 57, 406,
437, 439, 441-2, 445-6, 447-9, 454

Symmetry group of k, 95, 113-18, 149
Symmorphic space group, 6, 35, 37, 44, 45-6,

121-2, 156, 161, 164, 287-90, 457, 675,
see also Non-symmorphic space group
and Space group

Syngony, 28, 40

Tetragonal Bravais lattice, 41, 45-6, 82-3, 85, 87,
88-9, 91, 104-5, 116, 137, 585, 587, 588,
605, 653-4, 656-7

crystal system, 28, 29, 30, 32, 34, 37, 40, 45,
585, 587, 592

group, 34, 36, 45, 60, 130-1, 135, 137, 328-54,
409, 420, 424, 426-7, 503-29, 578-81,
588, 592-5, 603, 654, 657, 659, 667-«, 681

Three-dimensional rotation group, 24, 25, 51,
53, 71^4, 418-19, 434, 435-6, 438-41,
449-51,452,671,673

Time inversion, Time reversal, 4, 171, 204, 216,
386, 388-9, 399-405, 417, 457, 459-60,
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462, 464, 466-9, 559, 600-1, 605, 606, 607,
608, 620, 622, 624-5, 646-51, 670, 673,
675

Totally symmetric representation, identity re-
presentation, trivial representation, 17,
205, 210, 214, 217, 283, 598, 600

Trace (of a matrix), 16, 439
Transitivity of induction, 182, 207

subduction, 182, 208
Translation operator (operation), 1, 40, 43-4, 50,

81-3, 86, 95, 119, 121, 125, 138-9, 141-3,
147, 155, 161, 163, 168, 179, 193, 202, 204,
210-2, 289, 293, 386, 410, 559, 575, 601,
640, 646, 661-2, 674-5

Translation group, 40, 44, 81, 87-8, 93, 119-22,
127, 134, 146, 152, 161, 163, 171, 175, 179,
192, 287-8, 293, 387, 455, 559, 653, 671

Transpose of a matrix, 16
Triclinic Bravais lattice, 41, 82, 83, 88. 91, 96,

113, 585-6
crystal system, 28, 29, 30, 32, 34, 37, 40, 45,

110, 585-6, 588
group, 34, 36, 45, 90, 127, 293^f, 420, 469,

576, 588
Trigonal (rhombohedral) Bravais lattice, 41, 83,

85, 88-9, 91, 106-7, 117, 585, 587
crystal system, 28, 29, 30, 33, 34, 37, 40, 44,

45, 585, 587, 595
group, 34, 36, 44, 45, 61, 132, 137, 355-6, 358,

360, 362, 407, 420, 530-1, 533, 535, 537,
581, 595, 681

Trivial representation, see Totally symmetric
representation

Two-dimensional Bravais lattice, 39, 40, 42, 43,
94, 670

space group, 3, 569

Unitary matrix, 15-16, 18, 21-2, 157, 197, 201,
611-14, 618

operators, 24,216, 605, 649
representation, 18, 19, 55, 158, 160, 173, 609,

611,616, 641, 644

subgroup, 608, 616-19, 625-7, 630, 637, 643,
646, 649, 653, 656-7, 662, 666, 669,
673^t

Unitary unimodular group, 441, 455
matrices, 419, 421, 439^0

Unit cell, 2, 42, 43, 81-2, 90-3, 120, 122, 125,
136-7, 143, 407, 603-5, 662, 675, see also
Conventional unit cell, Fundamental unit
cell, Primitive unit cell, and Wigner-Seitz
unit cell

Unit vector, 35-7

Vector, 71, 84, 122, 124-5, 138-9,146,198-9,418,
438, 445, 454, 584, 601, 675, see also
Basic vector (of a Bravais lattice), Glide
vector, Isotropie vector, Position vector,
Reciprocal lattice vector, Screw vector,
Unit vector, and Wave vector

Vectors of a star, or costar, 151-4, 173, 179,211,
647, 651, 663, 664

Vector representation, 157, 160-3, 185-6, 193
Vector space, 16-19, 21, 55, 78, 148, 151-2,

172-3, 178, 183, 199, 218, 609, 644

Wave function, 5-7, 71, 75, 77, 79, 120, 147-8,
151-2, 214, 216, 405-6, 418, 606-8, 629,
648, 666, 668, 670, 672

vector, 90, 93, 95, 119-20, 145-6, 148-54, 171,
179, 204, 214-15, 225, 285, 291, 293, 388-
389, 398, 406-9, 413-16, 458, 468, 599,
600, 638, 646, 648, 650-1, 653, 657, 661-4,
666-7, 669

Wigner coefficient, see Clebsch-Gordan co-
efficient

Wigner-Seitz unit cell, 43, 90, 91, 92-3, see also
Fundamental unit cell and Primitive unit
cell

Wigner's theorem, 5, 147, 152, 405, 606
Wyckoff notation, 123

X-ray diffraction, 5
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