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A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exc

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communicat
basis for such a theory is contained in the important papers of Nycanist Hartley on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of
in the channel, and the savings possible due to the statistical structure of the original message and d
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly
proximately a message selected at another point. Frequently the message®hairg) that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These s
aspects of communication are irrelevant to the engineering problem. The significant aspect is that th
message is ongelected from a seadf possible messages. The system must be designed to operate fo
possible selection, not just the one which will actually be chosen since this is unknown at the time of ¢

If the number of messages in the set is finite then this number or any monotonic function of this n
can be regarded as a measure of the information produced when one message is chosen from th
choices being equally likely. As was pointed out by Hartley the most natural choice is the logari
function. Although this definition must be generalized considerably when we consider the influence
statistics of the message and when we have a continuous range of messages, we will in all case
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. Itis practically more useful. Parameters of engineering importance such as time, bandwidth, r
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For exan
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the
logarithm of this number. Doubling the time roughly squares the number of possible messag
doubles the logarithm, etc.

2. Itis nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since
tuitively measures entities by linear comparison with common standards. One feels, for examp
two punched cards should have twice the capacity of one for information storage, and two ide
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information.
base 2 is used the resulting units may be called binary digits, or more Hrief\a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one
information.N such devices can stokebits, since the total number of possible states'ia@d log 2V = N.
If the base 10 is used the units may be called decimal digits. Since

log, M =log;oM/log, 2
= 3.32logpM,
INyquist, H., “Certain Factors Affecting Telegraph Spedggll System Technical Journapril 1924, p. 324; “Certain Topics il

Telegraph Transmission TheorA'l.E.E. Trans.y. 47, April 1928, p. 617.
2Hartley, R. V. L., “Transmission of InformationBell System Technical Journaluly 1928, p. 535.
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about—?bits. A digit wheel on a desk computing machine has ten stable positions
therefore has a storage capacity of one decimal digit. In analytical work where integration and differen
are involved the baseis sometimes useful. The resulting units of information will be called natural ut
Change from the baseto baseb merely requires multiplication by lgg.

By a communication system we will mean a system of the type indicated schematically in Fig.
consists of essentially five parts:

1.

5.

Aninformation sourcevhich produces a message or sequence of messages to be communicate
receiving terminal. The message may be of various types: (a) A sequence of letters as in a te
of teletype system; (b) A single function of timf&t) as in radio or telephony; (c) A function o
time and other variables as in black and white television — here the message may be thought
function f (x,y,t) of two space coordinates and time, the light intensity at peint) and timet on a
pickup tube plate; (d) Two or more functions of time, dd¥), g(t), h(t) — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual chan
multiplex; (e) Several functions of several variables — in color television the message consists ¢
functionsf(x,y,t), g(x,y,t), h(x,y,t) defined in a three-dimensional continuum — we may also th
of these three functions as components of a vector field defined in the region — similarly, s
black and white television sources would produce “messages” consisting of a number of fun
of three variables; (f) Various combinations also occur, for example in television with an asso
audio channel.

. A transmitterwhich operates on the message in some way to produce a signal suitable for

mission over the channel. In telephony this operation consists merely of changing sound pr
into a proportional electrical current. In telegraphy we have an encoding operation which pro
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a
PCM system the different speech functions must be sampled, compressed, quantized and e
and finally interleaved properly to construct the signal. Vocoder systems, television and freq
modulation are other examples of complex operations applied to the message to obtain the sig

. Thechannelis merely the medium used to transmit the signal from transmitter to receiver. It mé

a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

. Thereceiverordinarily performs the inverse operation of that done by the transmitter, reconstru

the message from the signal.

Thedestinationis the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it i
necessary to represent the various elements involved as mathematical entities, suitably idealized fr



physical counterparts. We may roughly classify communication systems into three main categories: ¢
continuous and mixed. By a discrete system we will mean one in which both the message and the
are a sequence of discrete symbols. A typical case is telegraphy where the message is a sequence
and the signal a sequence of dots, dashes and spaces. A continuous system is one in which the me
signal are both treated as continuous functions, e.g., radio or television. A mixed system is one in
both discrete and continuous variables appear, e.g., PCM transmission of speech.

We first consider the discrete case. This case has applications not only in communication thec
also in the theory of computing machines, the design of telephone exchanges and other fields. In ¢
the discrete case forms a foundation for the continuous and mixed cases which will be treated in the
half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. THE DISCRETENOISELESSCHANNEL

Teletype and telegraphy are two simple examples of a discrete channel for transmitting information
erally, a discrete channel will mean a system whereby a sequence of choices from a finite set of elel
symbolsS, ..., S, can be transmitted from one point to another. Each of the synSidsassumed to have
a certain duration in timg seconds (not necessarily the same for diffei@nfor example the dots anc
dashes in telegraphy). It is not required that all possible sequences &flikecapable of transmission o
the system; certain sequences only may be allowed. These will be possible signals for the channe
in telegraphy suppose the symbols are: (1) A dot, consisting of line closure for a unit of time and the
open for a unit of time; (2) A dash, consisting of three time units of closure and one unit open; (3) A
space consisting of, say, three units of line open; (4) A word space of six units of line open. We might
the restriction on allowable sequences that no spaces follow each other (for if two letter spaces are a
it is identical with a word space). The question we now consider is how one can measure the cap:
such a channel to transmit information.

In the teletype case where all symbols are of the same duration, and any sequence of the 32
is allowed the answer is easy. Each symbol represents five bits of information. If the system tran:
symbols per second it is natural to say that the channel has a capacitpité per second. This does nc
mean that the teletype channel will always be transmitting information at this rate — this is the max
possible rate and whether or not the actual rate reaches this maximum depends on the source of infi
which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and constraints on the allowed sequen
make the following definition:

Definition: The capacit{ of a discrete channel is given by
T T
whereN(T) is the number of allowed signals of duration

Itis easily seen that in the teletype case this reduces to the previous result. It can be shown that 1
in question will exist as a finite number in most cases of interest. Suppose all sequences of the ¢
Si,...,S are allowed and these symbols have duratians.,t,. What is the channel capacity? Nft)
represents the number of sequences of duraties have

N(t) =Nt —t1) + Nt —t2) +--- + N(t —tp).

The total number is equal to the sum of the numbers of sequences endsagSin. .., S, and these are
N(t —t1),N(t —t2),...,N(t —tn), respectively. According to a well-known result in finite differendeg,)
is then asymptotic for largeto X}, whereXy is the largest real solution of the characteristic equation:

XMpX g pX =1



and therefore
C =logXo.

In case there are restrictions on allowed sequences we may still often obtain a difference equatiol
type and findC from the characteristic equation. In the telegraphy case mentioned above

N(t) =Nt —2)+N({t—4)+N({t—-5 +N({t—7)+N({t—8)+N(t—10)

as we see by counting sequences of symbols according to the last or next to the last symbol oc
HenceC is —loguo whereyyg is the positive root of = p? + u* + p® + pu” + p® + 0. Solving this we find
C=0.539.

A very general type of restriction which may be placed on allowed sequences is the following
imagine a number of possible statasay, . .., am. For each state only certain symbols from theSset. .| S,
can be transmitted (different subsets for the different states). When one of these has been transm
state changes to a new state depending both on the old state and the particular symbol transmitt
telegraph case is a simple example of this. There are two states depending on whether or not a sy
the last symbol transmitted. If so, then only a dot or a dash can be sent next and the state always ¢
If not, any symbol can be transmitted and the state changes if a space is sent, otherwise it remains t
The conditions can be indicated in a linear graph as shown in Fig. 2. The junction points corresponc

WORD SPACE
Fig. 2—Graphical representation of the constraints on telegraph symbols.

states and the lines indicate the symbols possible in a state and the resulting state. In Appendix 1 iti
that if the conditions on allowed sequences can be described in thiforithexist and can be calculatec
in accordance with the following result:

Theorem 1:Letbi(js) be the duration of the! symbol which is allowable in stateand leads to state

Then the channel capaclyis equal tdogW whereW is the largest real root of the determinant equatio

szbff) —5ij‘ =0
S

wheredij = 1if i = j and is zero otherwise.
For example, in the telegraph case (Fig. 2) the determinant is:

-1 W=2+W=4) |
W=34+wW=8) (wW24w-4-1)|

On expansion this leads to the equation given above for this case.

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logarithm of the number of possible signals in a:
channel increases linearly with time. The capacity to transmit information can be specified by givir
rate of increase, the number of bits per second required to specify the particular signal used.

We now consider the information source. How is an information source to be described mathema
and how much information in bits per second is produced in a given source? The main point at issu
effect of statistical knowledge about the source in reducing the required capacity of the channel, by



of proper encoding of the information. In telegraphy, for example, the messages to be transmitted co
sequences of letters. These sequences, however, are not completely random. In general, they form s
and have the statistical structure of, say, English. The letter E occurs more frequently than Q, the se
TH more frequently than XP, etc. The existence of this structure allows one to make a saving in ti
channel capacity) by properly encoding the message sequences into signal sequences. This is alre
to a limited extent in telegraphy by using the shortest channel symbol, a dot, for the most common E
letter E; while the infrequent letters, Q, X, Z are represented by longer sequences of dots and dash
idea is carried still further in certain commercial codes where common words and phrases are repr
by four- or five-letter code groups with a considerable saving in average time. The standardized g
and anniversary telegrams now in use extend this to the point of encoding a sentence or two into a re
short sequence of numbers.

We can think of a discrete source as generating the message, symbol by symbol. It will choose
sive symbols according to certain probabilities depending, in general, on preceding choices as wel
particular symbols in question. A physical system, or a mathematical model of a system which pre
such a sequence of symbols governed by a set of probabilities, is known as a stochastic’pvdeesay
consider a discrete source, therefore, to be represented by a stochastic process. Conversely, any ¢
process which produces a discrete sequence of symbols chosen from a finite set may be considered
source. This will include such cases as:

1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered discrete by some quantizing proce
example, the quantized speech from a PCM transmitter, or a quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic process which general
guence of symbols. The following are examples of this last type of source.

(A) Suppose we have five letters A, B, C, D, E which are chosen each with probability .2, succ
choices being independent. This would lead to a sequence of which the following is a t
example.

BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD.

This was constructed with the use of a table of random nunfbers.

(B) Using the same five letters let the probabilities be .4, .1, .2, .2, .1, respectively, with succ
choices independent. A typical message from this source is then:

AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD.

(C) A more complicated structure is obtained if successive symbols are not chosen indepelt
but their probabilities depend on preceding letters. In the simplest case of this type a ¢
depends only on the preceding letter and not on ones before that. The statistical structt
then be described by a set of transition probabilifigs), the probability that letteris followed
by letterj. The indices andj range over all the possible symbols. A second equivalent wa
specifying the structure is to give the “digram” probabilitis, ), i.e., the relative frequency o
the digrami j. The letter frequencigs(i), (the probability of letter), the transition probabilities

3See, for example, S. Chandrasekhar, “Stochastic Problems in Physics and AstrdRevigys of Modern Physics 15, No. 1,
January 1943, p. 1.
4Kendall and SmithTables of Random Sampling NumbeZambridge, 1939.



pi(j) and the digram probabilitigs(i, j) are related by the following formulas:
p(i) = 3 p(i.i) = 3 p(i.)) = Y P(D)pi()
] ] ]
p(,J) = p()pi(j)

Y P =Y pi) = pli.i) =1

J I 1)

As a specific example suppose there are three letters A, B, C with the probability tables:

pi(j) J i | p(i) p(, j) ]

A B C A B C
I L A I S L
Cls £ 1 Cl » Cles 1= 1™

A typical message from this source is the following:

ABBABABABABABABBBABBBBBABABABABABBBACACAB
BABBBBABBABACBBBABA.

The next increase in complexity would involve trigram frequencies but no more. The choi
a letter would depend on the preceding two letters but not on the message before that p
set of trigram frequencies(i, j, k) or equivalently a set of transition probabilitipg (k) would
be required. Continuing in this way one obtains successively more complicated stochast
cesses. In the genenalgram case a set afgram probabilitie(iy,iz,...,in) or of transition
probabilitiespi, ;,....i,; (in) iS required to specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text consisting of a sequ
“words.” Suppose there are five letters A, B, C, D, E and 16 “words” in the language
associated probabilities:

10A .16 BEBE .11 CABED .04 DEB
.04 ADEB .04 BED .05 CEED .15 DEED
.O5 ADEE .02BEED .08 DAB .01 EAB
.01BADD .05CA .04 DAD .05 EE

Suppose successive “words” are chosen independently and are separated by a space. /
message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE BED DEEI
DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED DAB DEED ADEB.

If all the words are of finite length this process is equivalent to one of the preceding type
the description may be simpler in terms of the word structure and probabilities. We may
generalize here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and examples to illustrat
ous possibilities. We can also approximate to a natural language by means of a series of simple ¢
languages. The zero-order approximation is obtained by choosing all letters with the same probabi
independently. The first-order approximation is obtained by choosing successive letters independe
each letter having the same probability that it has in the natural languddwus, in the first-order ap-
proximation to English, E is chosen with probability .12 (its frequency in normal English) and W
probability .02, but there is no influence between adjacent letters and no tendency to form the pr

SLetter, digram and trigram frequencies are giveSétret and Urgertty Fletcher Pratt, Blue Ribbon Books, 1939. Word frequ
cies are tabulated iRelative Frequency of English Speech Sou@dfewey, Harvard University Press, 1923.



digrams such as TH, ED, etc. In the second-order approximation, digram structure is introduced. .
letter is chosen, the next one is chosen in accordance with the frequencies with which the various
follow the first one. This requires a table of digram frequengig$). In the third-order approximation
trigram structure is introduced. Each letter is chosen with probabilities which depend on the precedi
letters.

3. THE SERIES OFAPPROXIMATIONS TOENGLISH

To give a visual idea of how this series of processes approaches a language, typical sequences in the
imations to English have been constructed and are given below. In all cases we have assumed a 2
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFIEYVKCQSGHYD QPAAMKBZAACIBZL.
HJQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EElI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with tetragranm-gram structure it is easiel
and better to jump at this point to word units. Here words are chosen independently but witt
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NA
URAL HERE HE THE AIN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHE!
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further
ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS TH/
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. N
these samples have reasonably good structure out to about twice the range that is taken into accour
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, t
letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of fout
words can easily be placed in sentences without unusual or strained constructions. The particular s
of ten words “attack on an English writer that the character of this” is not at all unreasonable. It appea
that a sufficiently complex stochastic process will give a satisfactory representation of a discrete sou

The first two samples were constructed by the use of a book of random numbers in conjunctio
(for example 2) a table of letter frequencies. This method might have been continued for (3), (4) al
since digram, trigram and word frequency tables are available, but a simpler equivalent method wa



To construct (3) for example, one opens a book at random and selects a letter at random on the pa
letter is recorded. The book is then opened to another page and one reads until this letter is enco
The succeeding letter is then recorded. Turning to another page this second letter is searched for
succeeding letter recorded, etc. A similar process was used for (4), (5) and (6). It would be intere:
further approximations could be constructed, but the labor involved becomes enormous at the next s

4. GRAPHICAL REPRESENTATION OF AMARKOFF PROCESS

Stochastic processes of the type described above are known mathematically as discrete Markoff pi
and have been extensively studied in the literafufEhe general case can be described as follows: Tt
exist a finite number of possible “states” of a syst&n,S,...,S,. In addition there is a set of transitio
probabilities; pi(j) the probability that if the system is in staeit will next go to stateS;. To make this
Markoff process into an information source we need only assume that a letter is produced for each tr
from one state to another. The states will correspond to the “residue of influence” from preceding let

The situation can be represented graphically as shown in Figs. 3, 4 and 5. The “states” are the j

Fig. 3—A graph corresponding to the source in example B.

points in the graph and the probabilities and letters produced for a transition are given beside the corr
ing line. Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the example C. In |

Fig. 4—A graph corresponding to the source in example C.

there is only one state since successive letters are independent. In Fig. 4 there are as many states
If a trigram example were constructed there would be at mstates corresponding to the possible pa
of letters preceding the one being chosen. Figure 5 is a graph for the case of word structure in exat
Here S corresponds to the “space” symbol.

5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can be considered to be represer
Markoff process. Among the possible discrete Markoff processes there is a group with special prc
of significance in communication theory. This special class consists of the “ergodic” processes &
shall call the corresponding sources ergodic sources. Although a rigorous definition of an ergodic prc
somewhatinvolved, the generalidea is simple. In an ergodic process every sequence produced by the

6For a detailed treatment see M .e€het,Méthode des fonctions arbitraires. &trie dese\énements en ciaé dans le cas d'u
nombre fini d€tats possiblesParis, Gauthier-Villars, 1938.



is the same in statistical properties. Thus the letter frequencies, digram frequencies, etc., obtain
particular sequences, will, as the lengths of the sequences increase, approach definite limits inde
of the particular sequence. Actually this is not true of every sequence but the set for which it is fal
probability zero. Roughly the ergodic property means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This property is related to the str
of the corresponding graph. If the graph has the following two propértiescorresponding process wi
be ergodic:

1. The graph does not consist of two isolated parts A and B such that it is impossible to go from ju
points in part A to junction points in part B along lines of the graph in the direction of arrows and
impossible to go from junctions in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing in the same orientatio
be called a “circuit.” The “length” of a circuit is the number of lines in it. Thus in Fig. 5 series BEE
is a circuit of length 5. The second property required is that the greatest common divisor of the ¢
of all circuits in the graph be one.

Fig. 5—A graph corresponding to the source in example D.

If the first condition is satisfied but the second one violated by having the greatest common diviso
tod > 1, the sequences have a certain type of periodic structure. The various sequencesfdiffatent
classes which are statistically the same apart from a shift of the origin (i.e., which letter in the sequ
called letter 1). By a shift of from 0 up td — 1 any sequence can be made statistically equivalent to
other. A simple example witd = 2 is the following: There are three possible lettayb,c. Lettera is
followed with eitherb or c with probabilities% and% respectively. Eitheb or c is always followed by letter
a. Thus atypical sequence is

abacacacabacababacac

This type of situation is not of much importance for our work.

If the first condition is violated the graph may be separated into a set of subgraphs each of which s
the first condition. We will assume that the second condition is also satisfied for each subgraph. We
this case what may be called a “mixed” source made up of a number of pure components. The com
correspond to the various subgraphd.4fL,, L3, ... are the component sources we may write

L= pili+ polo+ pslz+---

"These are restatements in terms of the graph of conditions giverdhé&tr”



wherep; is the probability of the component source

Physically the situation represented is this: There are several different shurtesls,... which are
each of homogeneous statistical structure (i.e., they are ergodic). We do notlpriovi which is to be
used, but once the sequence starts in a given pure componéntontinues indefinitely according to th
statistical structure of that component.

As an example one may take two of the processes defined above and gesam2 andp, = .8. A
sequence from the mixed source

L=.2L,+.8Ly

would be obtained by choosing firlst or L, with probabilities .2 and .8 and after this choice generatin
sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic. This assumption enc
to identify averages along a sequence with averages over the ensemble of possible sequences (the p
of a discrepancy being zero). For example the relative frequency of the letter A in a particular ir
sequence will be, with probability one, equal to its relative frequency in the ensemble of sequences.

If P, is the probability of stateandp;(j) the transition probability to statg then for the process to b
stationary it is clear that th@ must satisfy equilibrium conditions:

Pi =Y Rpi(j).

In the ergodic case it can be shown that with any starting conditions the probaBijii¢sof being in state
j afterN symbols, approach the equilibrium value\as» .

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantit
will measure, in some sense, how much information is “produced” by such a process, or better, at wi
information is produced?

Suppose we have a set of possible events whose probabilities of occurreqmemte. ., p,. These
probabilities are known but that is all we know concerning which event will occur. Can we find a me
of how much “choice” is involved in the selection of the event or of how uncertain we are of the outco

If there is such a measure, ddyp1, pz, ..., Pn), it is reasonable to require of it the following propertie

1. H should be continuous in tha.

2. If all the p; are equalp; = % thenH should be a monotonic increasing functionmofWith equally
likely events there is more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the oribirsdlould be the weighted sun
of the individual values oH. The meaning of this is illustrated in Fig. 6. At the left we have thi

1/2 " 1/2
1/3
2/3
s y 1/3
1/3™1/6

Fig. 6—Decomposition of a choice from three possibilities.

possibilitiesp; = 3, p2 = 2, ps = 2. On the right we first choose between two possibilities each v

probability%, and if the second occurs make another choice with probabi@ti%s The final results
have the same probabilities as before. We require, in this special case, that

11 1yl 1y, 1q¢2 1
H(3,3.5) =H(3,3) +3H(5,3).

The coeﬁ‘icienl‘iL is because this second choice only occurs half the time.
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In Appendix 2, the following result is established:
Theorem 2: The onlyH satisfying the three above assumptions is of the form:

n
H=-KY pilogp
i; | |

whereK is a positive constant.

This theorem, and the assumptions required for its proof, are in no way necessary for the present
Itis given chiefly to lend a certain plausibility to some of our later definitions. The real justification of t
definitions, however, will reside in their implications.

Quantities of the fornH =—3 pilogp; (the constanK merely amounts to a choice of a unit of measul
play a central role in information theory as measures of information, choice and uncertainty. The Fbrr
will be recognized as that of entropy as defined in certain formulations of statistical meéhahap; is
the probability of a system being in c&lof its phase spacéd is then, for example, thel in Boltzmann’s
famousH theorem. We shall cali = — ¥ p;logp; the entropy of the set of probabilitigs, . .., pn. If Xis a
chance variable we will writél (x) for its entropy; thus is not an argument of a function but a label for
number, to differentiate it frorhl (y) say, the entropy of the chance variajple

The entropy in the case of two possibilities with probabilifiegndq = 1 — p, namely

H = —(plogp+qglogq)

is plotted in Fig. 7 as a function qf.

1.0

o o7 X

o 1 2 3 4 5 6 7 8 9 10
p

Fig. 7—Entropy in the case of two possibilities with probabilitieand (1 — p).

The quantityH has a number of interesting properties which further substantiate it as a reasc
measure of choice or information.

1. H = 0 if and only if all thep; but one are zero, this one having the value unity. Thus only wher
are certain of the outcome dodsvanish. Otherwisél is positive.

2. For a givemn, H is a maximum and equal to logwhen all thep; are equal (i.e.,%). This is also
intuitively the most uncertain situation.

8See, for example, R. C. TolmaRrinciples of Statistical Mechanic§xford, Clarendon, 1938.
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3. Suppose there are two eventandy, in question withm possibilities for the first and for the second.
Let p(i, j) be the probability of the joint occurrenceidbr the first andj for the second. The entropy of th
joint event is

zp 1) logp(i,
while

zp Iwzp

1
s

p(i, ngp
I7J
It is easily shown that
H(xy) <HX) +H(y)

with equality only if the events are independent (igi, j) = p(i)p(j)). The uncertainty of a joint event i
less than or equal to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilitgspo, ..., pn increasesd. Thus if p1 < p2 and
we increasep, decreasing, an equal amount so that andp; are more nearly equal, théhincreases.
More generally, if we perform any “averaging” operation on ghef the form

= ajPp;
J

wherey;aj = yjaj = 1, and allajj > 0, thenH increases (except in the special case where this tran:
mation amounts to no more than a permutation ofgthevith H of course remaining the same).

5. Suppose there are two chance evergrdy as in 3, not necessarily independent. For any partict
valuei thatx can assume there is a conditional probabitityj) thaty has the valug. This is given by

pG.j)
yip@.])
We define theonditional entropyfy, Hy(y) as the average of the entropyydbr each value ox, weighted
according to the probability of getting that particukarhat is

pi(j) =

Zp j)logpi(]

This quantity measures how uncertain we arg ofi the average when we knowSubstituting the value of
pi(j) we obtain

Zp i) logp(i, +Zp ngp
mw—<>

or
H(xy) = H(X) +Hx(y).
The uncertainty (or entropy) of the joint eveqy is the uncertainty ok plus the uncertainty of whenx is

known.
6. From 3 and 5 we have

H(X) +H(y) > H(xy) = H(X) + Hx(y).
Hence
H(y) > Hx(y).

The uncertainty of is never increased by knowledgeofit will be decreased unlessandy are independent
events, in which case it is not changed.

12



7. THE ENTROPY OF ANINFORMATION SOURCE

Consider a discrete source of the finite state type considered above. For each possibikestateill be a
set of probabilitie;(j) of producing the various possible symbglsThus there is an entropy; for each
state. The entropy of the source will be defined as the average ofthessighted in accordance with thi
probability of occurrence of the states in question:

H—ZPHi

:—ZPQ i)logpi(]

This is the entropy of the source per symbol of text. If the Markoff process is proceeding at a definit:
rate there is also an entropy per second
= Z fiHi
1

wheref; is the average frequency (occurrences per second) ofistakearly
H =mH

wheremis the average number of symbols produced per seddrat.H' measures the amount of informe
tion generated by the source per symbol or per second. If the logarithmic base is 2, they will repres
per symbol or per second.

If successive symbols are independent tHeis simply — 5 pilogpi wherep; is the probability of sym-
boli. Suppose in this case we consider a long messabesgimbols. It will contain with high probability
aboutp;N occurrences of the first symbgi;N occurrences of the second, etc. Hence the probability of
particular message will be roughly

p=p{"pgeN.. ppN
or

logp=N? pilogp

logp= —I\IIH

N

H is thus approximately the logarithm of the reciprocal probability of a typical long sequence divided |
number of symbols in the sequence. The same result holds for any source. Stated more precisely
(see Appendix 3):

Theorem 3:Given any > 0 andd > 0, we can find aNg such that the sequences of any lerigth Ng
fall into two classes:

1. A set whose total probability is less than

2. The remainder, all of whose members have probabilities satisfying the inequality

logp™* _
N

H|<s.

. logp~! .
In other words we are almost certain to havgp— very close taH whenN is large.

A closely related result deals with the number of sequences of various probabilities. Consider ag
sequences of lengt and let them be arranged in order of decreasing probability. We defifeto be
the number we must take from this set starting with the most probable one in order to accumulate
probabilityq for those taken.

13



Theorem 4:

.logn(q)
Lim —N H

N—o0
whenq does not equdl or1.

We may interpret log(q) as the number of bits required to specify the sequence when we conside|

the most probable sequences with a total probal:q'lit?henM is the number of bits per symbol fo

the specification. The theorem says that for la¥gehis will be independent of and equal td4. The rate
of growth of the logarithm of the number of reasonably probable sequences is giterrdayardless of our
interpretation of “reasonably probable.” Due to these results, which are proved in Appendix 3, it is pc
for most purposes to treat the long sequences as though there werd\usfttBem, each with a probability
2-HN,

The next two theorems show thet andH’ can be determined by limiting operations directly fro
the statistics of the message sequences, without reference to the states and transition probabilities
states.

Theorem 5:Let p(B;) be the probability of a sequenBg of symbols from the source. Let
Z p(Bi)logp(B

where the sum is over all sequen8<ontainingN symbols. ThelGy is a monotonic decreasing functio
ofN and
Lim Gny=H
N—oo0
Theorem 6:Let p(B;,Sj) be the probability of sequend® followed by symbolS; and pg;(Sj) =
p(Bi,Sj)/p(Bi) be the conditional probability &; afterB;. Let

Fv=—"Y p(Bi,S;)logps,(S))
1]

where the sum is over all block of N — 1 symbols and over all symbof;. ThenFy is a monotonic
decreasing function o,

Fn =NGy — (N—1)Gn-_1,

1 N
==~ SF
anl n,

FN S GN,

andLimn_oFn=H.

These results are derived in Appendix 3. They show that a series of approximatibcatdbe obtained
by considering only the statistical structure of the sequences extending,@ver. IN symbols.Fy is the
better approximation. In fady is the entropy of thN™ order approximation to the source of the ty
discussed above. If there are no statistical influences extending over mond #anbols, that is if the
conditional probability of the next symbol knowing the precediNg- 1) is not changed by a knowledge ¢
any before that, theRy = H. Fy of course is the conditional entropy of the next symbol when(khe 1)
preceding ones are known, whiB is the entropy per symbol of blocks bfsymbols.

The ratio of the entropy of a source to the maximum value it could have while still restricted to the
symbols will be called itselative entropy This is the maximum compression possible when we encode
the same alphabet. One minus the relative entropy isstthendancy The redundancy of ordinary English
not considering statistical structure over greater distances than about eight letters, is roughly 509
means that when we write English half of what we write is determined by the structure of the langua
half is chosen freely. The figure 50% was found by several independent methods which all gave re

14



this neighborhood. One is by calculation of the entropy of the approximations to English. A second n
is to delete a certain fraction of the letters from a sample of English text and then let someone atte
restore them. If they can be restored when 50% are deleted the redundancy must be greater than
third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic English and by James
book “Finnegans Wake”. The Basic English vocabulary is limited to 850 words and the redundancy i
high. This is reflected in the expansion that occurs when a passage is translated into Basic Englist
on the other hand enlarges the vocabulary and is alleged to achieve a compression of semantic cont

The redundancy of a language is related to the existence of crossword puzzles. If the redund
zero any sequence of letters is a reasonable text in the language and any two-dimensional array ¢
forms a crossword puzzle. If the redundancy is too high the language imposes too many constraints f
crossword puzzles to be possible. A more detailed analysis shows that if we assume the constraints
by the language are of a rather chaotic and random nature, large crossword puzzles are just possil
the redundancy is 50%. If the redundancy is 33%, three-dimensional crossword puzzles should be p
etc.

8. REPRESENTATION OF THEENCODING AND DECODING OPERATIONS

We have yet to represent mathematically the operations performed by the transmitter and receive
coding and decoding the information. Either of these will be called a discrete transducer. The input
transducer is a sequence of input symbols and its output a sequence of output symbols. The transdt
have an internal memory so that its output depends not only on the present input symbol but also on
history. We assume that the internal memory is finite, i.e., there exist a finite numdigrossible states o
the transducer and that its output is a function of the present state and the present input symbol. T
state will be a second function of these two quantities. Thus a transducer can be described by two fu

Yn = f(Xn,an)
ant1 = 9(Xn, )

where

Xn is then input symbol,

an is the state of the transducer when tfeinput symbol is introduced,

Vn is the output symbol (or sequence of output symbols) produced whisrintroduced if the state isp.

If the output symbols of one transducer can be identified with the input symbols of a second, they
connected in tandem and the result is also a transducer. If there exists a second transducer which
on the output of the first and recovers the original input, the first transducer will be called non-singul
the second will be called its inverse.

Theorem 7: The output of a finite state transducer driven by a finite state statistical source is a
state statistical source, with entropy (per unit time) less than or equal to that of the input. If the tran
is non-singular they are equal.

Leta represent the state of the source, which produces a sequence of syynaiotslets be the state of
the transducer, which produces, in its output, blocks of symjjolShe combined system can be represen
by the “product state space” of paiis, 3). Two points in the spaciv1, 1) and(az, 32), are connected by
a line if a1 can produce ar which changeg; to 32, and this line is given the probability of thatin this
case. The line is labeled with the blockygfsymbols produced by the transducer. The entropy of the ou
can be calculated as the weighted sum over the states. If we sum fii&awrh resulting term is less than ¢
equal to the corresponding term f@r hence the entropy is not increased. If the transducer is non-sing
let its output be connected to the inverse transducet; IH; andHj are the output entropies of the sourc
the first and second transducers respectively, tier H, > H = Hj and thereforéd] = HJ.
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Suppose we have a system of constraints on possible sequences of the type which can be repre:

a linear graph as in Fig. 2. If probabiliti@{f’ were assigned to the various lines connecting stmstate]
this would become a source. There is one particular assignment which maximizes the resulting entrc
Appendix 4).
Theorem 8:Let the system of constraints considered as a channel have a cdpaceiygW. If we
assign
(s B; _gs_s)
B = B Wi

9 is the duration of the!h symbol leading from stafteto statej and theB; satisfy

wheret;;

_9
B, = ZBJ'W i
]

thenH is maximized and equal 1O.

By proper assignment of the transition probabilities the entropy of symbols on a channel can be
mized at the channel capacity.

9. THE FUNDAMENTAL THEOREM FOR ANOISELESSCHANNEL

We will now justify our interpretation oH as the rate of generating information by proving tHatleter-
mines the channel capacity required with most efficient coding.

Theorem 9:Let a source have entropy (bits per symbgland a channel have a capady bits per
secondl. Then it is possible to encode the output of the source in such a way as to transmit at the ¢

C . L . . )
rateﬁ — e symbols per second over the channel whegearbitrarily small. It is not possible to transmit :

C
an average rate greater thﬁn

C .
The converse part of the theorem, thatcannot be exceeded, may be proved by noting that the ent

of the channel input per second is equal to that of the source, since the transmitter must be non-sing
also this entropy cannot exceed the channel capacity. HeéheeC and the number of symbols per secol
=H'/H <C/H.

The first part of the theorem will be proved in two different ways. The first method is to conside
set of all sequences df symbols produced by the source. Fotarge we can divide these into two group
one containing less thari’2t”N members and the second containing less tH&hraembers (wher® is
the logarithm of the number of different symbols) and having a total probability lesgithasN increases
n andy approach zero. The number of signals of durafioim the channel is greater thad®?)T with 6
small whenT is large. if we choose

H
T= (C + >\> N

then there will be a sufficient number of sequences of channel symbols for the high probability groug
N andT are sufficiently large (however smal) and also some additional ones. The high probability grc
is coded in an arbitrary one-to-one way into this set. The remaining sequences are represented t
sequences, starting and ending with one of the sequences not used for the high probability grou
special sequence acts as a start and stop signal for a different code. In between a sufficient time is
to give enough different sequences for all the low probability messages. This will require

R
Ty = <E + S0> N
whereyp is small. The mean rate of transmission in message symbols per second will then be greate

71: [(1_5)@“) +5(g+<p)}

T T -1
{(1— ‘”N +o
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As N increase$, A andy approach zero and the rate approacges

Another method of performing this coding and thereby proving the theorem can be described as ft
Arrange the messages of lendthin order of decreasing probability and suppose their probabilities
p1> P2 > pP3--- > pn. LetPs= Zi‘l pi; that isPs is the cumulative probability up to, but not includirna.
We first encode into a binary system. The binary code for messiagihtained by expandirig; as a binary
number. The expansion is carried ountgplaces, where is the integer satisfying:

1 1
log, — <ms < 1+log, —.
Ps Ps

Thus the messages of high probability are represented by short codes and those of low probability
codes. From these inequalities we have
1 <
oms = Ps< omT

The code foiPs will differ from all succeeding ones in one or more of itg places, since all the remainin
P are at Ieastzirrs larger and their binary expansions therefore differ in the firsplaces. Consequently al
the codes are different and it is possible to recover the message from its code. If the channel seque
not already sequences of binary digits, they can be ascribed binary numbers in an arbitrary fashion
binary code thus translated into signals suitable for the channel.

The average numbeét’ of binary digits used per symbol of original message is easily estimated.
have

1
H' = N Z MgPs.
But, 1 1 1 1 1
N2 (g ) ps < G 3 mps < 3 (1+10g, ) ps
and therefore,

1
GNSHI<GN+N

As N increase&y approachesl, the entropy of the source aktl approaches!.

We see from this that the inefficiency in coding, when only a finite delayl sfymbols is used, nee
not be greater thaﬁ plus the difference between the true entrépyand the entropysy calculated for
sequences of lengtid. The per cent excess time needed over the ideal is therefore less than

This method of encoding is substantially the same as one found independently by R. M. Fasio
method is to arrange the messages of lehgyih order of decreasing probability. Divide this series into tv
groups of as nearly equal probability as possible. If the message is in the first group its first binar
will be 0, otherwise 1. The groups are similarly divided into subsets of nearly equal probability ar
particular subset determines the second binary digit. This process is continued until each subset
only one message. Itis easily seen that apart from minor differences (generally in the last digit) this a
to the same thing as the arithmetic process described above.

10. DISCUSSION ANDEXAMPLES

In order to obtain the maximum power transfer from a generator to a load, a transformer must in gen
introduced so that the generator as seen from the load has the load resistance. The situation here i
analogous. The transducer which does the encoding should match the source to the channel in a s
sense. The source as seen from the channel through the transducer should have the same statistica

9Technical Report No. 65, The Research Laboratory of Electronics, M.I.T., March 17, 1949.
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as the source which maximizes the entropy in the channel. The content of Theorem 9 is that, althc
exact match is not in general possible, we can approximate it as closely as desired. The ratio of thi
rate of transmission to the capac@@ymay be called the efficiency of the coding system. This is of col
equal to the ratio of the actual entropy of the channel symbols to the maximum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay in the transmitter and receiver.
noiseless case which we have been considering, the main function of this delay is to allow reasonak
matching of probabilities to corresponding lengths of sequences. With a good code the logarithm
reciprocal probability of a long message must be proportional to the duration of the corresponding sic
fact

—1
‘ logp™ C‘

T
must be small for all but a small fraction of the long messages.

If a source can produce only one particular message its entropy is zero, and no channel is requil
example, a computing machine set up to calculate the successive digitsrofluces a definite sequenc
with no chance element. No channel is required to “transmit” this to another point. One could cons
second machine to compute the same sequence at the point. However, this may be impractical. In su
we can choose to ignore some or all of the statistical knowledge we have of the source. We might c
the digits ofr to be a random sequence in that we construct a system capable of sending any sequ
digits. In a similar way we may choose to use some of our statistical knowledge of English in constr
a code, but not all of it. In such a case we consider the source with the maximum entropy subject
statistical conditions we wish to retain. The entropy of this source determines the channel capacity
is necessary and sufficient. In theexample the only information retained is that all the digits are cho
from the set 01,...,9. In the case of English one might wish to use the statistical saving possible d
letter frequencies, but nothing else. The maximum entropy source is then the first approximation to E
and its entropy determines the required channel capacity.

As a simple example of some of these results consider a source which produces a sequence ¢
choien from amond, B, C, D with probabilities], %, 2, £, successive symbols being chosen independet
We have

H=—(}log}+3logl+2log3)
= I bits per symbol

Thus we can approximate a coding system to encode messages from this source into binary digits
average of} binary digit per symbol. In this case we can actually achieve the limiting value by the folloy
code (obtained by the method of the second proof of Theorem 9):

A 0
B 10
C 110
D 111

The average number of binary digits used in encoding a sequemteyhbols will be
N(3x1+32 ><2+2><3) IN.

It is easily seen that the binary digits 0, 1 have probabiligeé so theH for the coded sequences is or
bit per symbol. Since, on the average, we hé\hﬂ'nary symbols per original letter, the entropies on a ti
basis are the same. The maximum possible entropy for the original set is-l@gdccurring whem, B, C,
D have probabilities;, 7, 3, . Hence the relative entropy § We can translate the binary sequences i
the original set of symbols on a two-to-one basis by the following table:

00 A
01 B
10 c
11 D’
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This double process then encodes the original message into the same symbols but with an average ¢
sion ratio.

As a second example consider a source which produces a sequétsaimdB’s with probability p for
Aandgqfor B. If p < qwe have

H = —logpP(1—p)* P
= —plogp(1— p)*=P/P
= plog=

2

In such a case one can construct a fairly good coding of the message on a 0, 1 channel by sending
sequence, say 0000, for the infrequent syn#bahd then a sequence indicating themberof B's following
it. This could be indicated by the binary representation with all numbers containing the special se
deleted. All numbers up to 16 are represented as usual; 16 is represented by the next binary numbel
which does not contain four zeros, namely=270001, etc.

It can be shown that g3— 0 the coding approaches ideal provided the length of the special seque
properly adjusted.

PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF ANOISY DISCRETECHANNEL

We now consider the case where the signal is perturbed by noise during transmission or at one or ti
of the terminals. This means that the received signal is not necessarily the same as that sent o
transmitter. Two cases may be distinguished. If a particular transmitted signal always produces th
received signal, i.e., the received signal is a definite function of the transmitted signal, then the effect
called distortion. If this function has an inverse — no two transmitted signals producing the same re
signal — distortion may be corrected, at least in principle, by merely performing the inverse func
operation on the received signal.

The case of interest here is that in which the signal does not always undergo the same change
mission. In this case we may assume the received sigtmbe a function of the transmitted sigr&hnd a
second variable, the noidé

E=f(SN)
The noise is considered to be a chance variable just as the message was above. In general it may
sented by a suitable stochastic process. The most general type of noisy discrete channel we shall
is a generalization of the finite state noise-free channel described previously. We assume a finite nu
states and a set of probabilities

Pai(B3,])-

This is the probability, if the channel is in stateand symbol is transmitted, that symbglwill be received
and the channel left in stat¢é Thusa andg range over the possible statéesyer the possible transmittes
signals and over the possible received signals. In the case where successive symbols are independe
turbed by the noise there is only one state, and the channel is described by the set of transition prob
pi(j), the probability of transmitted symbibbeing received a§.

If a noisy channel is fed by a source there are two statistical processes at work: the source and tf
Thus there are a number of entropies that can be calculated. First there is the éHxppy the source
or of the input to the channel (these will be equal if the transmitter is non-singular). The entropy
output of the channel, i.e., the received signal, will be denotad (gy. In the noiseless casé(y) = H(x).
The joint entropy of input and output will Bd(xy). Finally there are two conditional entropielg(y) and
Hy(x), the entropy of the output when the input is known and conversely. Among these quantities w
the relations

H(x,y) = H(X) + Hx(y) = H(y) + Hy(x).
All of these entropies can be measured on a per-second or a per-symbol basis.
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12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct the original message or the tran:
signal withcertaintyby any operation on the received sigial There are, however, ways of transmittir
the information which are optimal in combating noise. This is the problem which we now consider.

Suppose there are two possible symbols 0 and 1, and we are transmitting at a rate of 2000 sym
second with probabilitiepy = p1 = % Thus our source is producing information at the rate of 1000 |
per second. During transmission the noise introduces errors so that, on the average, 1 in 100 is |
incorrectly (a0 as 1, or 1 as 0). What is the rate of transmission of information? Certainly less tha
bits per second since about 1% of the received symbols are incorrect. Our first impulse might be
the rate is 990 bits per second, merely subtracting the expected number of errors. This is not sati
since it fails to take into account the recipient’s lack of knowledge of where the errors occur. We may
it to an extreme case and suppose the noise so great that the received symbols are entirely indep
the transmitted symbols. The probability of receiving J%iwhatever was transmitted and similarly for
Then about half of the received symbols are correct due to chance alone, and we would be giving the
credit for transmitting 500 bits per second while actually no information is being transmitted at all. Ec
“good” transmission would be obtained by dispensing with the channel entirely and flipping a coin
receiving point.

Evidently the proper correction to apply to the amount of information transmitted is the amount c
information which is missing in the received signal, or alternatively the uncertainty when we have re
a signal of what was actually sent. From our previous discussion of entropy as a measure of uncer
seems reasonable to use the conditional entropy of the message, knowing the received signal, as a
of this missing information. This is indeed the proper definition, as we shall see later. Following thi:
the rate of actual transmissioR, would be obtained by subtracting from the rate of production (i.e.,
entropy of the source) the average rate of conditional entropy.

R=H(x) — Hy(x)

The conditional entropidy(x) will, for convenience, be called the equivocation. It measures the ave
ambiguity of the received signal.

In the example considered above, if a 0 is receivedathesterioriprobability that a O was transmitte
is .99, and that a 1 was transmitted is .01. These figures are reversed if a 1 is received. Hence

Hy(x) = —[.99109.99+ 0.0110gQ01]
=.081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at a rate 8269919 bits per second
In the extreme case where a 0 is equally likely to be receigsed@or 1 angimilarly for 1, thea posteriori
probabilities are}, 1 and

Hy() = - [3log} + 3log}]
=1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it should be.

The following theorem gives a direct intuitive interpretation of the equivocation and also servesto |
it as the unique appropriate measure. We consider a communication system and an observer (or
device) who can see both what is sent and what is recovered (with errors due to noise). This observ
the errors in the recovered message and transmits data to the receiving point over a “correction cha
enable the receiver to correct the errors. The situation is indicated schematically in Fig. 8.

Theorem 10:If the correction channel has a capacity equaHigx) it is possible to so encode th
correction data as to send it over this channel and correct all but an arbitrarily small feacfitive errors.
This is not possible if the channel capacity is less tHgx).
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Fig. 8—Schematic diagram of a correction system.

Roughly thenHy(x) is the amount of additional information that must be supplied per second a
receiving point to correct the received message.

To prove the first part, consider long sequences of received mebbagad corresponding origina
messagdl. There will be logarithmicallyT Hy(x) of theM’s which could reasonably have produced ea
M’. Thus we havd Hy(x) binary digits to send each seconds. This can be done witfrequency of errors
on a channel of capacityy(x).

The second part can be proved by noting, first, that for any discrete chance vaxjabhles

Hy(X,2) > Hy(x).
The left-hand side can be expanded to give

Hy(2) + Hyz(X) > Hy(x)
Hyz(X) > Hy(x) — Hy(2) > Hy(x) —H(2).

If we identify x as the output of the sourcgas the received signal amas the signal sent over the correctic
channel, then the right-hand side is the equivocation less the rate of transmission over the correction
If the capacity of this channel is less than the equivocation the right-hand side will be greater than ze
Hy2(x) > 0. But this is the uncertainty of what was sent, knowing both the received signal and the corr
signal. If this is greater than zero the frequency of errors cannot be arbitrarily small.

Example:

Suppose the errors occur at random in a sequence of binary digits: probphilaya digit is wrong
andg = 1- p that it is right. These errors can be corrected if their position is known. Thus
correction channel need only send information as to these positions. This amounts to trans
from a source which produces binary digits with probabipitior 1 (incorrect) andj for O (correct).
This requires a channel of capacity

—[plogp+qlogq]

which is the equivocation of the original system.
The rate of transmissidR can be written in two other forms due to the identities noted above. We t
R=H(x)

=H(y
=H(X) +H(y) —H(xy).
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The first defining expression has already been interpreted as the amount of information sent less th
tainty of what was sent. The second measures the amount received less the part of this which is due
The third is the sum of the two amounts less the joint entropy and therefore in a sense is the numbe
per second common to the two. Thus all three expressions have a certain intuitive significance.

The capacityC of a noisy channel should be the maximum possible rate of transmission, i.e., th
when the source is properly matched to the channel. We therefore define the channel capacity by

C = Max(H (x) — Hy(x))

where the maximum is with respect to all possible information sources used as input to the channe
channel is noiselesBly(x) = 0. The definition is then equivalent to that already given for a noiseless che
since the maximum entropy for the channel is its capacity.

13. THE FUNDAMENTAL THEOREM FOR ADISCRETECHANNEL WITH NOISE

It may seem surprising that we should define a definite cap@city a noisy channel since we can nev
send certain information in such a case. It is clear, however, that by sending the information in a red
form the probability of errors can be reduced. For example, by repeating the message many times &
statistical study of the different received versions of the message the probability of errors could be ma
small. One would expect, however, that to make this probability of errors approach zero, the redut
of the encoding must increase indefinitely, and the rate of transmission therefore approach zero. Tr
no means true. If it were, there would not be a very well defined capacity, but only a capacity for a
frequency of errors, or a given equivocation; the capacity going down as the error requirements ar
more stringent. Actually the capacifydefined above has a very definite significance. It is possible to ¢
information at the rat€ through the channelith as small a frequency of errors or equivocation as desi
by proper encoding. This statement is not true for any rate greateCthian attempt is made to transm
at a higher rate tha@, sayC + Ry, then there will necessarily be an equivocation equal to or greater tha
excesdR;. Nature takes payment by requiring just that much uncertainty, so that we are not actually ¢
any more thai€ through correctly.

The situation is indicated in Fig. 9. The rate of information into the channel is plotted horizontall
the equivocation vertically. Any point above the heavy line in the shaded region can be attained an
below cannot. The points on the line cannot in general be attained, but there will usually be two pol
the line that can.

These results are the main justification for the definitio@ aind will now be proved.

Theorem 11:Let a discrete channel have the capaCiignd a discrete source the entropy per se¢bnc
If H < C there exists a coding system such that the output of the source can be transmitted over the
with an arbitrarily small frequency of errors (or an arbitrarily small equivocatiorif ¥ C it is possible
to encode the source so that the equivocation is lessHha@ + ¢ wheree is arbitrarily small. There is nc
method of encoding which gives an equivocation less thaiC.

The method of proving the first part of this theorem is not by exhibiting a coding method havin
desired properties, but by showing that such a code must exist in a certain group of codes. In fact:

QNN
ATTAINABLE
REGION

c H(X)

Fig. 9—The equivocation possible for a given input entropy to a channel.
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average the frequency of errors over this group and show that this average can be made tes$ than
average of a set of numbers is less thahere must exist at least one in the set which is less ¢hdrhis
will establish the desired result.

The capacityC of a noisy channel has been defined as

C = Max(H (x) — Hy(x))

wherex is the input andg the output. The maximization is over all sources which might be used as inp
the channel.

Let S be a source which achieves the maximum capdgitif this maximum is not actually achieve
by any source le§ be a source which approximates to giving the maximum rate. Sugposeused as
input to the channel. We consider the possible transmitted and received sequences of a longlduragol
following will be true:

1. The transmitted sequences fall into two classes, a high probability group with dbttit@embers
and the remaining sequences of small total probability.

2. Similarly the received sequences have a high probability set of aB6{% 2Znembers and a low
probability set of remaining sequences.

3. Each high probability output could be produced by abdii¥® inputs. The probability of all other
cases has a small total probability.

All the €'s andé’s implied by the words “small” and “about” in these statements approach zero a
allow T to increase anfp to approach the maximizing source.

The situation is summarized in Fig. 10 where the input sequences are points on the left and
sequences points on the right. The fan of cross lines represents the range of possible causes for
output.

E
°
M °
° °
° °

2H(X)T
HIGH PROBABILITY ® 2HWT
MESSAGES HIGH PROBABILITY

® RECEIVED SIGNALS

2H,()T
REASONABLE CAUSES
° FOR EACHE °

2Hx(y)T
REASONABLE EFFECTS 4
FOR EACHM

Fig. 10—Schematic representation of the relations between inputs and outputs in a channel.
Now suppose we have another source producing information aRnatth R < C. In the periodT this

source will have 2R high probability messages. We wish to associate these with a selection of the pc
channel inputs in such a way as to get a small frequency of errors. We will set up this associatiol
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possible ways (using, however, only the high probability group of inputs as determined by the Sgjut
and average the frequency of errors for this large class of possible coding systems. This is the s
calculating the frequency of errors for a random association of the messages and channel inputs of ¢
T. Suppose a particular outpyt is observed. What is the probability of more than one message in th
of possible causes gi? There are )R messages distributed at random '%) points. The probability of

a particular point being a message is thus
2T(R-H(¥)

The probability that none of the points in the fan is a message (apart from the actual originating mes:¢

p— [1- 2TRH2™,

Now R < H(x) — Hy(x) soR—H(x) = —Hy(x) — n with n positive. Consequently

P=[1-2 THK-Tn 2T

approaches (ab — )
1-2"T.

Hence the probability of an error approaches zero and the first part of the theorem is proved.

The second part of the theorem is easily shown by noting that we could merelZdstsdper second
from the source, completely neglecting the remainder of the information generated. At the recei\
neglected part gives an equivocatidiix) — C and the part transmitted need only add his limit can also
be attained in many other ways, as will be shown when we consider the continuous case.

The last statement of the theorem is a simple consequence of our definil@oSoppose we can encod
a source wittH(x) = C+ain such a way as to obtain an equivocatidy{x) = a— e with e positive. Then
R=H(x) =C+aand

H(X) —Hy(X) =C+e¢

with e positive. This contradicts the definition Gfas the maximum off (x) — Hy(x).

Actually more has been proved than was stated in the theorem. If the average of a set of nun
within e of of their maximum, a fraction of at mogte can be more thary/e below the maximum. Sinceis
arbitrarily small we can say that almost all the systems are arbitrarily close to the ideal.

14. DISCUSSION

The demonstration of Theorem 11, while not a pure existence proof, has some of the deficiencies
proofs. An attempt to obtain a good approximation to ideal coding by following the method of the pr
generally impractical. In fact, apart from some rather trivial cases and certain limiting situations, no e
description of a series of approximation to the ideal has been found. Probably this is no accident
related to the difficulty of giving an explicit construction for a good approximation to a random sequel

An approximation to the ideal would have the property that if the signal is altered in a reasonabl
by the noise, the original can still be recovered. In other words the alteration will not in general b
closer to another reasonable signal than the original. This is accomplished at the cost of a certain an
redundancy in the coding. The redundancy must be introduced in the proper way to combat the pa
noise structure involved. However, any redundancy in the source will usually help if it is utilized ¢
receiving point. In particular, if the source already has a certain redundancy and no attempt is i
eliminate it in matching to the channel, this redundancy will help combat noise. For example, in a noi
telegraph channel one could save about 50% in time by proper encoding of the messages. Thisisr
and most of the redundancy of English remains in the channel symbols. This has the advantage, h
of allowing considerable noise in the channel. A sizable fraction of the letters can be received inco
and still reconstructed by the context. In fact this is probably not a bad approximation to the ideal in
cases, since the statistical structure of English is rather involved and the reasonable English seque
not too far (in the sense required for the theorem) from a random selection.
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As in the noiseless case a delay is generally required to approach the ideal encoding. It now
additional function of allowing a large sample of noise to affect the signal before any judgment is
at the receiving point as to the original message. Increasing the sample size always sharpens the
statistical assertions.

The content of Theorem 11 and its proof can be formulated in a somewhat different way which e»
the connection with the noiseless case more clearly. Consider the possible signals of duaatisuppose
a subset of them is selected to be used. Let those in the subset all be used with equal probability, and
the receiver is constructed to select, as the original signal, the most probable cause from the subset
perturbed signal is received. We defld€T, g) to be the maximum number of signals we can choose for
subset such that the probability of an incorrect interpretation is less than or equal to

. logN(T . . .
Theorem 12:|T_|m Og™L9 T( .9) = C, whereC is the channel capacity, provided tlygdoes not equal O ol
oo

1.

In other words, no matter how we set out limits of reliability, we can distinguish reliably in Tim
enough messages to correspond to a@dubits, whenT is sufficiently large. Theorem 12 can be compar
with the definition of the capacity of a noiseless channel given in Section 1.

15. EXAMPLE OF A DISCRETECHANNEL AND ITS CAPACITY

A simple example of a discrete channel is indicated in Fig. 11. There are three possible symbols. The
never affected by noise. The second and third each have probabilftgoming through undisturbed, an
g of being changed into the other of the pair. We have (letting —[plogp+ qlogg] andP andQ be the

*—> 0
p
TRANSMITTED J RECEIVED
SYMBOLS q SYMBOLS
p

Fig. 11—Example of a discrete channel.
probabilities of using the first and second symbols)

H(x) = —PlogP — 2QlogQ
Hy(x) = 2Qa.

We wish to choosP andQ in such a way as to maximiz¢(x) — Hy(x), subject to the constraif+2Q = 1.
Hence we consider

U = —PlogP — 2QlogQ — 2Qa + A\(P+ 2Q)

ouU
Fr =—-1-logP+A=0
ouU
0= —2—2logQ —2a+ 2\ =0.
Eliminating A
logP =1logQ+ «
P=Qe =Qp
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The channel capacity is then
B+ 2

B

Note how this checks the obvious values in the cgsesl andp = % In the first,3 = 1 andC = log 3,

which is correct since the channel is then noiseless with three possible symbgis- gf B =2 and
= log2. Here the second and third symbols cannot be distinguished at all and act together il
symbol. The first symbol is used with probabily= % and the second and third together with probabil
%. This may be distributed between them in any desired way and still achieve the maximum capacity
For intermediate values gf the channel capacity will lie between log2 and log3. The distinct
between the second and third symbols conveys some information but not as much as in the noisele
The first symbol is used somewhat more frequently than the other two because of its freedom from r

=log——

16. THE CHANNEL CAPACITY IN CERTAIN SPECIAL CASES

If the noise affects successive channel symbols independently it can be described by a set of tr
probabilitiespjj. This is the probability, if symbalis sent, thag will be received. The maximum channg
rate is then given by the maximum of

= Rpijlogy Rpij+ > Rpijlogp;
1,] | 1,]

where we vary thé subject toy P, = 1. This leads by the method of Lagrange to the equations,

p51

=pu s=12,....
Yi P pij

Z psjlog — —

Multiplying by Ps and summing ors shows thaf, = C. Let the inverse ofs; (if it exists) behs so that
> shstpsj = dtj. Then:

Y hstpsjlogpsj—logy Rpr =C hg.

S] | 5

Hence:
2 Ppe= exp[—C > hst+ > hipsjlog psi]
1 S S,]

or,
Pi= 3 Meexp]~C 3 ot 5 heaps;logps .
S S

This is the system of equations for determining the maximizing valu®g weifith C to be determined sc
thaty B = 1. When this is don€ will be the channel capacity, and tRethe proper probabilities for the
channel symbols to achieve this capacity.

If each input symbol has the same set of probabilities on the lines emerging from it, and the same
of each output symbol, the capacity can be easily calculated. Examples are shown in Fig. 12. In sucl
Hyx(y) is independent of the distribution of probabilities on the input symbols, and is givenhy log p;
where thep; are the values of the transition probabilities from any input symbol. The channel capacit)

Max[H(y) — Hx(y)] = MaxH(y) +  pilogpi.

The maximum oH (y) is clearly lognwheremis the number of output symbols, since it is possible to m:
them all equally probable by making the input symbols equally probable. The channel capacity is the

=logm+ z pilogpi.
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a b Cc

Fig. 12—Examples of discrete channels with the same transition probabilities for each input and for each o

In Fig. 12a it would be
C=log4—log2=log2

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b

C=log4-3log3- }log6
=log4—log3— 1log2
= Iog%Z%.
In Fig. 12c we have
C=log3- }log2— 3log3— £log6
— |Ogi
233365
Suppose the symbols fall into several groups such that the noise never causes a symbol in one
be mistaken for a symbol in another group. Let the capacity fonthegroup beC,, (in bits per second)

when we use only the symbols in this group. Then it is easily shown that, for best use of the entire
total probabilityP, of all symbols in thenth group should be

2Cn
_ZW'

Within a group the probability is distributed just as it would be if these were the only symbols being
The channel capacity is

P

C= Iogzzcn.
17. AN EXAMPLE OF EFFICIENT CODING

The following example, although somewhat unrealistic, is a case in which exact matching to a noisy c
is possible. There are two channel symbols, 0 and 1, and the noise affects them in blocks of seven s
A block of seven is either transmitted without error, or exactly one symbol of the seven is incorrect.
eight possibilities are equally likely. We have

C =Max[H(y) — Hx(y)]
= 3[7+§logg]
= 4 bits/symbol

An efficient code, allowing complete correction of errors and transmitting at theCratethe following
(found by a method due to R. Hamming):
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Let a block of seven symbols b&, X, ...,X7. Of theseXs, X5, Xg and X7 are message symbols ar
chosen arbitrarily by the source. The other three are redundant and calculated as follows:

X4 ischosento makea = X3+ X5+ Xg+ X7 even
X2 “ 3 13 13 ﬁ — X2 + X3 + X6+ X7 “
Xl " " 13 13 ,y — Xl + &_*_ X5 + X7 "

When a block of seven is receiveg 3 and~ are calculated and if even called zero, if odd called one. -
binary numberx 3+ then gives the subscript of thé that is incorrect (if 0 there was no error).

APPENDIX 1
THE GROWTH OF THENUMBER OF BLOCKS OFSYMBOLS WITH A FINITE STATE CONDITION

LetN;(L) be the number of blocks of symbols of lend@ttending in staté. Then we have
Nj(L) = 3 Ni (L —bif)
1S

wherebilj , bﬁ Yo bi”j1 are the length of the symbols which may be chosen in state lead to statg. These
are linear difference equations and the behavidr asc must be of the type

Nj = AjWE.
Substituting in the difference equation
(s
AJ_WL _ AiWL—bij
’
or

_p®
Aj = ZA4W ij
s

(s)
3 (3w -a)ao
] S

For this to be possible the determinant

DW) = |aij| =

(s)
i s
S

must vanish and this determinés which is, of course, the largest real rootidf= 0.
The quantityC is then given by

AA/L
C = Lim 29X AW

L—o0

= logW

and we also note that the same growth properties result if we require that all blocks start in the sam
trarily chosen) state.
APPENDIX 2

DERIVATION OF H = — 5 pilogp

11 1
LetH (ﬁ’ PUIEEE ﬁ) = A(n). From condition (3) we can decompose a choice fefhequally likely possi-

bilities into a series oin choices frons equally likely possibilities and obtain

A(S™) = mA(s).
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Similarly o "
A(t") = nA(t).

We can choosa arbitrarily large and find amto satisfy
ST <t < (MHD),
Thus, taking logarithms and dividing Injogs,

m _logt m
<_g<

n—logs— n



