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Preface

The goal of this research monograph is to develop a general combination, de-
composition, and structure theory for branched coverings of the two-sphere
to itself, regarded as the combinatorial and topological objects which arise
in the classification of certain holomorphic dynamical systems on the Rie-
mann sphere. It is intended for researchers interested in the classification of
those complex one-dimensional dynamical systems which are in some loose
sense tame, though precisely what this constitutes we leave open to interpre-
tation. The program is motivated in general by the dictionary between the
theories of iterated rational maps and Kleinian groups as holomorphic dynam-
ical systems, and in particular by the structure theory of compact irreducible
three-manifolds.

By and large this work involves only topological/combinatorial notions.
Apart from motivational discussions, the sole exceptions are (i) the construc-
tion of examples which is aided using complex dynamics in §9, and (ii) some
familiarity with the Douady-Hubbard proof of Thurston’s characterization of
rational functions in §§8.3.1 and §10.

The combination and decomposition theory is developed for maps which
are not necessarily postcritically finite. However, the proof of the main struc-
ture result, the Canonical Decomposition Theorem, depends on Thurston’s
characterization and is developed only for postcritically finite maps. A sur-
vey of known results regarding combinatorics and combination procedures for
rational maps is included.

This research was partially supported by NSF grant No. DMS-9996070,
the University of Missouri at Rolla, and Indiana University. I thank Albert
Goodman for timely advice on group actions which were particularly helpful in
proving the results in §7. I thank Curt McMullen for encouraging me to think
big. I am especially grateful to Mary Rees and to the referees for valuable
comments. Finally, I thank my family for their unwavering support.

Bloomington, Indiana, USA, Kevin M. Pilgrim
August, 2003
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1

Introduction

1.1 Motivation from dynamics–a brief sketch

This work is about the combinatorial aspects of rigidity phenomena in complex
dynamics. It is motivated by discoveries of Douady-Hubbard [DH1], Milnor-
Thurston [MT], and Sullivan made during the early 1980’s (see the preface by
Hubbard in [Tan4] for a firsthand account).

In the real quadratic family fa(x) = (x2 + a)/2,a ∈ R, it was proven [MT]
that the entropy of fa as a function of a is continuous, monotone, and in-
creasing as the real parameter varies from a = 5 to a = 8. A key ingredient of
their proof is a complete combinatorial characterization and rigidity result for
critically periodic maps fa, i.e. those for which the unique critical point at the
origin is periodic. To any map fa in the family one associates a combinatorial
invariant, called its kneading invariant. Such an invariant must be admissible
in order to arise from a map fa. It was shown that every admissible kneading
invariant actually arises from such a map fa, and that if two critically peri-
odic maps have the same kneading invariant, then they are affine conjugate.
In a process called microimplantation the dynamics of one map fa could be
“glued” into that of another map fa0 where fa0 is critically periodic to obtain
a new map fa∗a0 in this family. More precisely: a topological model for the
new map is constructed, and its kneading invariant, which depends only on
the topological data, is computed. The result turns out to be admissible, hence
by the characterization theorem defines uniquely a new map fa0∗a. This con-
struction interprets the cascade of period-doublings as the limit limn→∞ fan

where an+1 = an ∗ a0 and a0 is chosen so that the critical point is periodic
of period two. As an application, it is shown that there exists an uncountable
family of maps with distinct kneading invariants but with the same entropy.

Similar combinatorial rigidity phenomena were also observed for maps
fc(z) = z2 + c, c ∈ C in the complex setting. For “critically periodic” pa-
rameters c for which the critical point at the origin is periodic, the dynamics
restricted to the filled-in Julia set Kc = {z|f◦n(z) �→ ∞} looks roughly like a
map from a tree to itself (here f◦n is the n-fold iterate of f). The dynamics

K.M. Pilgrim: LNM 1827, pp. 1–35, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 1 Introduction

of fc can be faithfully encoded by what became later known as a Hubbard
tree, a finite planar tree equipped with a self-map, subject to some reasonable
admissibility criteria. Alternatively, via what became known as the theory of
invariant laminations, the dynamics of f can be encoded by a single rational
number µ = p/q ∈ (0, 1), where the denominator q is odd. As in the setting
of interval maps, the manner in which the critically periodic parameters c
are deployed in the parameter plane has a rich combinatorial structure. A
procedure known as tuning generalizes the process of microimplantation. The
inverse of tuning became known as renormalization and explains the presence
of small copies of the Mandelbrot set inside itself.

Among rational maps, Douady and Hubbard noticed from computer exper-
iments that a different combination procedure, now called mating , explained
the dynamical structure of certain quadratic rational functions in terms of a
pair of critically finite polynomials. However, not all such pairs of polynomi-
als were “mateable”, i.e. produced a rational map when mated–obstructions
could arise.

The combinatorial characterization and rigidity result for critically peri-
odic unimodal interval maps was greatly generalized by Thurston [DH3] to
postcritically finite rational maps, i.e. those rational maps f : Ĉ → Ĉ acting
on the Riemann sphere such that the postcritical set

Pf = ∪n>0f◦n({critical points})

is finite. This characterization was then applied to completely resolve the
question of when two critically finite quadratic polynomials are mateable.

1.2 Thurston’s Characterization and Rigidity Theorem.
Standard definitions

The following discussion summarizes the main results of [DH3]. Denote by S2

the Euclidean two-sphere. By a branched covering F : S2 → S2 we mean a
continuous orientation-preserving map of topological degree d ≥ 1 such that
for all x ∈ S2, there exist local charts about x and y = F (x) sending x and y
to 0 ∈ C such that within these charts, the map is given by z �→ zdx , where
dx ≥ 1 is the local degree of F at x. The prototypical example is a rational
function F : Ĉ→ Ĉ of degree at least two. If dx ≥ 2 we call x a critical point;
dx − 1 is its multiplicity. The Riemann-Hurwitz formula implies that counted
with multiplicity, there are 2d − 2 such critical points. The postcritical set is
defined as

PF =
⋃

n>0

F ◦n({critical points})

and when F is rational the topology and geometry of this set plays a crucial
role in the study of complex dynamics in one variable. Note that PF contains
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the set of critical values of F , so that in particular F ◦n : S2 − F−n(PF ) →
S2 − PF is an unramified covering for all n ≥ 1.

The simplest possible behavior of PF occurs when this set is finite; in this
case, F is said to be postcritically finite . “Postcritically finite” is sometimes
shortened to critically finite, and such maps F are called here Thurston maps.

Combinatorial equivalence. Two Thurston maps F,G are said to be com-
binatorially equivalent if there exist orientation-preserving homeomorphisms
of pairs h0, h1 : (S2, PF ) → (S2, PG) such that h0 ◦ F = G ◦ h1 and h0 is
isotopic to h1 through homeomorphisms agreeing on PF .

Orbifolds. The orbifold OF associated to F is the topological orbifold with
underlying space S2 and whose weight ν(x) at x is the least common multiple
of the local degree of F over all iterated preimages of x (infinite weight is
interpreted as a puncture). The Euler characteristic of OF

χ(OF ) = 2−
∑

x∈PF

(1− 1/ν(x))

is always nonpositive; if it is zero it is called Euclidean, or parabolic; otherwise
it is called hyperbolic.

Expanding metrics. For later reference, we discuss expanding metrics. Sup-
pose F is a C1 Thurston map with orbifold OF . Let P a

F denote the punctures
of OF (i.e. points eventually landing on a periodic critical point under itera-
tion). F is said to be expanding with respect to a Riemannian metric || · || on
S2 − PF if:

1. any compact piecewise smooth curve inside S2 − P a
F has finite length,

2. the distance d(·, ·) on S2 −P a
F determined by lengths of curves computed

with respect to || · || is complete,
3. for some constants C > 0 and λ > 1, we have that for any n > 0, for any
p ∈ S2 − F−n(PF ), and any tangent vector v ∈ Tp(S2),

||Dfn(v)|| > Cλn||v||.

Then we have the useful estimate

l(α̃) < C−1λ−nl(α)

whenever α̃ is a lift under f◦n of a curve α ∈ S2 − P a
F ; here l is length with

respect to || · ||.
Multicurves. Let γ be a simple closed curve in S2−PF . By a multicurve we
mean a collection

Γ = {γ1, ..., γN}
of simple, closed, disjoint, pairwise non-homotopic, non-peripheral curves in
S2−PF . A curve γ is peripheral in S2−PF if some component of its comple-
ment contains only one or no points of PF .
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In [DH3] a multicurve Γ is called F -invariant (or sometimes, “F -stable”)
if for any γ ∈ Γ , each component of F−1(γ) is either peripheral with respect
to PF , or is homotopic in S2 −PF to an element of Γ . By lifting homotopies,
it is easily seen that this property depends only on the set [Γ ] of homotopy
classes of elements of Γ in S2−PF . We shall actually require a slightly stronger
version of this definition, given in §1.8.3.

Thurston linear map. Let R
Γ be the vector space of formal real linear

combinations of elements of Γ . Associated to an F -invariant multicurve Γ is
a linear map

FΓ : R
Γ → R

Γ

defined as follows. Let γi,j,α be the components of F−1(γj) which are homo-
topic to γi in S2 − PF . Define

FΓ (γj) =
∑

i,α

1
di,j,α

γi

where di,j,α is the (positive) degree of the map F |γi,j,α : γi,j,α → γj . Then FΓ

has spectral radius realized by a real nonnegative eigenvalue λ(F, Γ ), by the
Perron-Frobenius theorem.

Thurston’s theorem is

Theorem 1.1 (Thurston’s characterization and rigidity theorem). A
Thurston map F with hyperbolic orbifold is equivalent to a rational function if
and only if for any F -stable multicurve Γ we have λ(f, Γ ) < 1. In that case,
the rational function is unique up to conjugation by an automorphism of the
Riemann sphere.

Thurston maps with Euclidean orbifold are treated as well. The postcritical
set of such a map has either three or four points. In the former case, any
such map is equivalent to a rational map unique up to conjugacy. In the
latter case, the orbifold has four points of order two, and the map lifts to an
endomorphism TF of a complex torus. Douady and Hubbard show that in this
case F is equivalent to a rational map if and only if either (1) the eigenvalues
of the induced map on H1(TF ) are not real, or (2) this induced map is a real
multiple of the identity. Here, though, the uniqueness (rigidity) conclusion can
fail. For example, in square degrees d = n2, it is possible that TF is given by
w �→ n · w, so that by varying the shape of the complex torus one obtains a
complex one-parameter family of postcritically finite rational maps which are
all quasiconformally conjugate. These examples are known as integral Lattès
examples; see Section 9.3.

Idea of the proof. The idea of the proof is the following. Associated to
F is a Teichmüller space TF modelled on (S2, PF ), and an analytic self-map
σF : TF → TF . The existence of a rational map combinatorially equivalent to



1.2 Thurston’s Characterization and Rigidity Theorem. Standard definitions 5

F is equivalent to the existence of a fixed point of σF . The map σF is distance-
nonincreasing for the Teichmüller metric, and if the associated orbifold is
hyperbolic, σ2

F decreases distances, though not necessarily uniformly. To find
a fixed point, one chooses arbitrarily τ0 ∈ TF and considers the sequence
τi = σ◦iF (τ0). If {τi} fails to converge, then the length of the shortest geodesic
on τi, in its natural hyperbolic metric, must become arbitrarily small. In this
case, for some i sufficiently large, the family of geodesics on τi which are both
sufficiently short and sufficiently shorter than any other geodesics on τi form
an invariant multicurve whose leading eigenvalue cannot be less than one, i.e.
is a Thurston obstruction .

For a nonperipheral simple closed curve γ ⊂ S2 − PF let lτ (γ) denote
the hyperbolic length of the unique geodesic on the marked Riemann surface
given by τ which is homotopic to γ. In [DH3] the authors show by example
that it is possible for curves of two different obstructions to intersect, thus
preventing their lengths from becoming simultaneously small. Hence, if Γ is
an obstruction and γ ∈ Γ , then it is not necessarily true that infi{lτi(γ)} = 0.
Moreover, their proof does not explicitly show that if F is obstructed, then
infi{lτi

(γ)} = 0 for some fixed curve γ. Thus it is conceivable that, for each
i, there is a curve γi such that

inf
i
{lτi(γi)} = 0

while for fixed i
inf
j
{lτj

(γi)} > 0.

In [Pil2] this possibility was ruled out:

Theorem 1.2 (Canonical obstruction). Let F be a Thurston map with
hyperbolic orbifold, and let Γc denote the set of all homotopy classes of non-
peripheral, simple closed curves γ in S2 −PF such that lτi(γ)→ 0 as i→∞.
Then Γc is independent of τi. Moreover:

1. If Γc is empty, then F is combinatorially equivalent to a rational map.
2. Otherwise, Γc is an F -stable multicurve for which λ(F, Γc) ≥ 1, and hence

is a canonically defined Thurston obstruction to the existence of a rational
map combinatorially equivalent to F .

The proof also showed, with the same hypotheses,

Theorem 1.3 (Curves degenerate or stay bounded). Let γ be a nonpe-
ripheral, simple closed curve in S2 − PF .

1. If γ ∈ Γc, then lτi(γ)→ 0 as i→∞.
2. If γ �∈ Γc, then lτi(γ) ≥ E for all i, where E is a positive constant depend-

ing on τ0 but not on γ.
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1.3 Examples

Formal mating. Formal mating is a combination process which takes as
input two monic complex polynomials f, g of the same degree d and returns
as output a branched covering F = Ff,g of the two-sphere. Let f, g be two
monic complex polynomials of degree d ≥ 2. Compactify the complex plane C

to C̃ = C∪{∞·exp(2πit), t ∈ R/Z} by adding the circle at infinity, thus making
C̃ homeomorphic to a closed disk. Extend f continuously to f̃ : C̃f → C̃f by
setting f(∞ · exp(2πit)) =∞ · exp(2πidt) and do the same for g.

Let S2
f,g denote the quotient space C̃f ∪ C̃g/ ∼, where ∞ · exp(2πit) ∼

∞ · exp(−2πit). The formal mating Ff,g : S2
f,g → S2

f,g is defined as the map
induced by f̃ on C̃f and by g̃ on C̃g.

1.3.1 A realizable mating

Let f(z) = z2−1 and g(z) = z2+c where c is the unique complex parameter for
which the critical point at the origin is periodic of period three and Im(c) > 0.
Then the formal mating F of f and g is combinatorially equivalent to a
rational map; see Figure 1.1.

1.3.2 An obstructed mating

Let f(z) = g(z) = z2−1 and denote by F the formal mating of f and g. Since
the origin is periodic of period two under z2 − 1, the postcritical set of F has
four points and the orbifold OF is the four-times punctured sphere. F is not
combinatorially equivalent to a rational map. To see this, let γ ∈ S2 = S2

f,g

be the simple closed curve formed by two copies, one in each of C̃f , C̃g, of
{∞ · exp(2πi1/3)} ∪ R1/3 ∪ {α} ∪ R2/3 ∪ {∞ · exp(2πi2/3)} where α is the
common landing point of R1/3, R2/3. (see §1.5.1 for relevant definitions, or
just look at Figure 1.2 below.)

Since z2 − 1 interchanges R1/3 and R2/3, F sends γ to itself by an
orientation-reversing homeomorphism. Hence Γ = {γ} is an invariant mul-
ticurve for which the Thurston matrix is simply (1), and so Γ is a Thurston
obstruction. Note, however, that Γ is also an obstruction to the existence of a
branched covering G combinatorially equivalent to F which is expanding with
respect to some metric, since lifts of γ must be shrunk by a definite factor.

Informally, one could decompose this example as follows (see Figure 1.3).
Let S0(y) denote the component of S2 − {γ} containing the two critical

points, and let S0(x) denote the component of S2 − {γ} containing the two
critical values. Regard S0(x) as a subset of one copy of the sphere Sx =
S2×{x}, and S0(y) as a subset of a different copy of the sphere Sy = S2×{y}.
Let S = Sx�Sy = S2×{x, y}. Let S1(x) = S0(x) ⊂ Sx and let S1(y) ⊂ Sy be
the unique component of S2 − F−1(γ) contained in S0(y). The original map
F determines branched covering maps S1(x)→ S0(y) and S1(y)→ S0(x).
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Fig. 1.1. A realizable mating. The filled-in Julia set of f(z) = z2 − 1 is shown at top
right in black. The complement of the filled-in Julia set of g(z) is shown in black at
top left in a chart near infinity. The Julia set of the mating of f and g is the boundary
between the black and white region in the figure at the bottom.

To complete the decomposition, we must extend over the unshaded regions–
the complement of S1(x),S1(y). Note that the boundary components of
S1(y),S1(x) map by degree one onto their images. We must make a choice
of such an extension. To keep things as simple as possible, we extend by a
homeomorphism. The result is a continuous branched covering map

F : S → S

which interchanges the two spheres Sx,Sy. The “postcritical set”, defined in
the obvious way, still consists of four points: two period 2 critical points in
the sphere Sy, and two period 2 critical values in the sphere Sx.
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∞ · e2πi/3

∞ · e2πi2/3

R2/3

R1/3

γ

Fig. 1.2. An obstructed mating. Postcritical points are indicated by solid dots and
critical points by crosses. The two overlapping crosses and dots correspond to the two
period 2 critical points.

Identify S2 × {x, y} with Ĉ × {x, y} via a homeomorphism so that the
postcritical set of F is {0,∞} × {x, y}. With a suitable generalization of the
notion of combinatorial equivalence to maps defined on unions of spheres (see
§4.2), F is combinatorially equivalent to the map which sends (z, y)→ (z2, x)
and (z, x)→ (z, y).

1.3.3 An obstructed expanding Thurston map

Here is a general construction. Let A =
(
a b
c d

)

∈ GL2(R) be a matrix with

integral coefficients. The linear map R
2 → R

2 defined by A preserves the
lattice Z

2 and thus descends to an endomorphism TA : T 2 → T 2 of the torus
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S1(x)

S0(x)

Sx

S1(y)

S0(y)

Sy

γ

F −1(γ)

x y

Fig. 1.3. Decomposition of the obstructed mating by cutting along the obstruction.
Postcritical points are indicated by solid dots and critical points by crosses. The two
overlapping crosses and dots correspond to the two period 2 critical points.

T 2 = R
2/Z2. This endomorphism commutes with the involution ι : (x, y) →

(−x,−y). The quotient space T 2/(v ∼ ι(v)) is topologically a sphere S2 and
so TA descends to a map FA : S2 → S2. The set of critical values of FA is the
image on the sphere of the set of points of order at most two on the torus.
Since the endomorphism on the torus must preserve this set of four points,
FA is postcritically finite.

If e.g. A =
(

3 0
0 2

)

then FA is expanding with respect to the orbifold metric

inherited from the Euclidean metric on the torus. Let γ be the curve which is
the image of the line x = 1/4. Then Γ = {γ} is a multicurve whose Thurston
matrix is (1/2+1/2+1/2) = (3/2) and is therefore an obstruction; see Figure
1.4 where the metric sphere is represented as a “rectangular pillowcase” i.e.
the union of two rectangles along their common boundary.

Using a similar decomposition process as in the previous example, we may
produce a map F : S2×{x, y} → S2×{x, y}, this time sending each component
to itself by a degree two branched covering.

Note that since the components of F−1(γ) map by degree two, the exten-
sion over the complements of S1(x),S1(y) is now more complicated. Again,
to keep things as simple as possible, we extend so that these complemen-
tary components, which are disks, map onto their images (again disks) by a
quadratic branched covering which is ramified at a single point (say at zx, zy)
which we arrange to be fixed points of F .

It turns out that the resulting map F is combinatorially equivalent to the
map of Ĉ×{x, y} to itself given by (z, x) �→ (z2−2, x) and (z, y) �→ (z2−2, y)
(the points zx, zy are identified with the point ∞ ∈ Ĉ).
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S1(x) S1(y)

zx zyS0(x) S0(y)

zx zy

x y

F −1(γ)

γ

Sx Sy

Fig. 1.4. An obstructed expanding map.
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Note, however, that a great deal of information is lost in this naive decom-
position: the degree of F is two, whereas the degree of the original map is six.
The method of decomposition we will present in §5 will proceed roughly in
the same manner presented in the above examples, but with the postcritical
set PF replaced by its full inverse image, QF = F−1(PF ). Since we are also
interested in recovering the original map F from F together with some other
data, we greatly refine the definition of the “trees” and their dynamics shown
in Figures 1.3 and 1.4.

1.3.4 A subdivision rule

Another source of examples, of which the one below is prototypical, comes
from finite oriented subdivision rules with edge-pairings, as introduced by
Canyon, Floyd, Kenyon, and Parry [CFP3]. Again, regard the sphere as the
quotient space of two Euclidean squares A and B whose oriented boundaries
are identified as shown in Figure 1.5.

e1

e1
e1

e1

e1

e1

e1

e1

e1

e1

e1

e2e2

e2

e2

e2 e2

e2

e3

e3

e3

e3

e3

e3

e3

e4 e4

e4e4

e4

e4

e4

e4

e4

e4

e4

A

A

A

A

A

A

B

B

B B

B

B

Fig. 1.5. A subdivision rule.

We regard this as a CW-structure on the sphere. A subdivision rule, loosely
speaking, is a procedure for refining this CW structure to obtain a new CW-
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structure on the sphere. In Figure 1.5, the arrows indicate this process of re-
finement. To produce a branched covering F , note that a choice of orientation-
preserving maps of cells which sends every oriented 1- and 2- cell on the right
to the unique cell on the left having the same label descends to a well-defined
degree five cellular map on the sphere which is cellular with respect to the cell
structures on the right and left spheres. Differing choices yield combinatorially
equivalent maps of the sphere.

This map may be produced from the Lattès example with A =
(

2 0
0 2

)

by the combinatorial surgery procedure of “blowing up an arc” [PT]; see
§1.5.2. I do not know if this F is combinatorially equivalent to a rational
map. Presumably, there is a metric on the sphere which is expanded under F .
This is clear combinatorially: one application of F refines every 1- and 2-cell.

This example generalizes; we shall discuss motivation for considering
branched coverings which arise from subdivision rules in §1.7.3.

1.4 Summary of this work

On the surface, Thurston’s characterization theorem [1.1] seems like the end
of the story of the classification problem. However, there are still many areas
of incomplete understanding:

1. Thurston’s characterization is implicit and involves checking a priori in-
finitely many conditions. There is no known general algorithm which de-
cides whether or not a Thurston map is obstructed.

2. There are no known general methods for implementing Thurston’s it-
erative algorithm. Apart from the numerics, the obstruction is the lack
of a means for numerically approximating a rational function with pre-
scribed critical values and prescribed combinatorics as a (non-dynamical)
branched covering of the sphere. This is a very hard problem, even for
polynomials ramified only over zero, one, and infinity–see [BS].

3. There are no known general methods for locating the canonical obstruction
Γc, if it exists.

4. There is no known way to effectively enumerate postcritically finite ratio-
nal maps.

5. Since Γc is canonical, it seems reasonable that cutting along Γ c should
result in “simpler” maps which might be easier to analyze. However, there
is no extant general theory of combinations and decompositions.

The main goal of this work is to provide a solution to Problem (5) above.
We shall give:

• a combination procedure (Theorem 3.2), taking as input a list of data
consisting of seven objects satisyfing fourteen axioms, and producing as
output a well-defined branched mapping F of the sphere to itself;
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• an analysis of how the combinatorial class of F depends on the input
data (Theorem 4.5), as well as explicit bounds on the number of classes
of maps F which can be produced by varying certain portions of the data
and keeping others fixed (Corollary 4.6, Theorem 7.1);

• a decomposition procedure, taking as input a branched mapping F and
producing as output such a list of input data, in a manner which is inverse
to combination (Theorem 5.1);

• an analysis of how the result of decomposition depends on F and some
choices used in the decomposition process (Theorem 6.1);

• a structure theorem for postcritically finite branched mappings (Theorem
10.2), informally stated as follows:
Canonical Decomposition Theorem: A Thurston map F is, in a
canonical fashion, decomposable along a multicurve Γ c into “pieces”, each
of which is of one of three possible types:
1. (elliptic case) a homeomorphism of spheres,
2. (parabolic case) covered by a homeomorphism of planes, or
3. (hyperbolic, rational case) equivalent to a rational map of spheres.
A priori Γ c ⊃ Γc. Unfortunately, we do not know if Γ c = Γc–at present
our arguments require inductively cutting along canonical obstructions in
a process that must terminate. We conjecture that only one step is needed.

• applications of our analysis to the structure of (combinatorial) symmetry
groups of Thurston mappings (Theorem 8.2).
For a finite, nonempty set Q in S2, let Mod(S2, Q) denote the mapping
class group of orientation-preserving homeomorphisms of S2 to itself which
send Q to itself, modulo isotopy through homeomorphisms fixing Q. Given
a Thurston map F , let Q = F−1(PF ), and let Mod(F ) denote the sub-
group of Mod(S2, Q) represented by maps α for which α ◦ F ◦ α−1 is
combinatorially equivalent to F .
Informally, the two main results are the following:
Theorem: Mod(F ) reduces along Γ c. That is, every element α of Mod(F )
sends Γ c to itself, up to isotopy relative to Q.

Twist Theorem: Let F be a Thurston map and Γ an invariant multic-
urve. If 1 is an eigenvalue of the Thurston linear map FΓ , then Mod(F )
contains a free abelian group of rank ≥ 1.

• an analysis of what happens when two Thurston obstructions intersect
(Theorem 8.7);

• examples from complex dynamics (§9) where we generalize existing com-
bination procedures, e.g. mating.

Here is a summary of the remainder of this Introduction.
§1.5 is a survey of known results regarding the combinatorics of complex

dynamical systems. I have tried to give as complete a bibliography as possible,
as much of this material is unpublished and/or scattered. Often, references
are merely listed without further discussion of their contents. I apologize for
any omissions.



14 1 Introduction

§1.6 develops some topological aspects of the “dictionary” between ratio-
nal maps and Kleinian groups as dynamical systems. In particular, we propose
to view the Canonical Decomposition Theorem as an analog of the JSJ de-
composition of a closed irreducible three-manifold.
§1.7 discusses connections between the analysis of postcritically finite ra-

tional maps and other, non-dynamical topics (e.g. geometric Galois theory;
groups of intermediate growth; Cannon’s conjecture on hyperbolic groups with
two-sphere boundary).
§1.8 discusses the combinatorial subtleties which necessarily arise when

trying to glue together noninvertible maps of the sphere. It is an important
preamble to the body of this work and should be read before continuing to
§2, since terminology and notation used throughout this work is introduced.
§1.9 discusses regularity issues in the definition of combinatorial equiva-

lence. The decomposition and combination procedures in this work are devel-
oped for non-postcritically finite maps as well. For such maps, however, there
are competing notions for combinatorial equivalence.

1.5 Survey of previous results

In this subsection, we attempt to give a fairly complete survey of results to
date concerning the combinatorial aspects of the dynamics of rational maps,
focusing on those aspects pertaining to combinations, decompositions, and
structure of maps which are nice, e.g. postcritically finite, geometrically finite,
or hyperbolic (see below for definitions). We assume some familiarity with one-
variable complex dynamics; see e.g. the text by Milnor [Mil4]. In many places
we simply state the flavor of the results and give references.

1.5.1 Enumeration

The rigidity portion of Thurston’s characterization implies that in principle it
should be possible to enumerate postcritically finite rational maps by enumer-
ating the corresponding combinatorial objects (branched coverings). However,
no general reasonable enumeration of postcritically finite rational functions or
Thurston maps is known, mainly due to the immense combinatorial complex-
ity of the set of such maps. Partial and related results include the following.

Polynomials. In the restricted setting of postcritically finite polynomials,
such an enumeration is possible. Let ∆ ⊂ C denote the open unit disk, S1 its
boundary, and identify S1 with R/Z via the map t �→ exp(2πit).

Definition 1.4 (Lamination). A lamination is an equivalence relation on
S1 such that the convex hulls of equivalence classes are disjoint.
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Now let K ⊂ C be a nondegenerate (i.e. contains more than one point)
continuum whose complement is connected. There is a unique Riemann map
φ : Ĉ−∆→ Ĉ−K such that φ(∞) =∞ and φ(z)/z → λ > 0 as z →∞. The
set Rt = {φ(r exp(2πit)|1 < r < ∞} is called an external ray of angle t and
the ray Rt is said to land at a point in z ∈ ∂K if limr↓1 φ(r exp(2πit)) = z.
From classical theorems of complex analysis, it is known that almost every
ray (with respect to Lebesgue measure on R/Z) lands, and that K is locally
connected if and only if φ extends continuously to Ĉ − ∆. The lamination
associated to K is defined by s ∼ t if and only if the external rays Rs, Rt land
at the same point. This is indeed a lamination, since distinct external rays
cannot intersect and two simple closed curves on the sphere cannot cross at
a single point.

Now let f be a monic polynomial, and let Kf = {z ∈ C|f◦n(z) �→ ∞}
denote the filled-in Julia set of f . It is known that Kf is connected if and only
if every finite critical point belongs to Kf . At this point, we digress to define

Definition 1.5 (Mandelbrot set). The Mandelbrot set M is the set of
those c ∈ C for which the filled-in Julia set Kc of z2 + c is connected.

If the filled-in Julia set of a monic polynomial f is connected, then we may
apply the above construction to speak of external rays, etc. as so define the
lamination Λf associated to Kf . The rational lamination ΛQ

f is the restriction
of Λf to Q/Z. Obviously, the lamination ΛQ

f must satisfy certain invariance
conditions since it comes from a polynomial. The landing points of rational
rays are necessarily periodic or preperiodic points which are either repelling or
parabolic; conversely, every point which iterates onto a repelling or parabolic
cycle is the landing point of some rational ray; see [Mil4] and the references
therein. Kiwi [Kiw] has characterized those rational laminations which arise
from polynomials; the analysis of postcritically finite maps plays a key role in
the proof. For more on these kinds of laminations, see also [BL1], [BL2], [Kel],
[Ree3], [Thu2].

Postcritically finite polynomials. The Julia set of any postcritically finite
rational map is connected and locally connected ([Mil4], Thm. 19.7). Now
suppose f is a postcritically finite polynomial. Then the Riemann map φ to the
complement of Kf extends continuously to the closed disk. It follows that ΛQ

f

determines the entire lamination Λf . This in turn permits one to reconstruct
a branched covering equivalent to f . Thurston rigidity then implies that the
rational lamination determines f as long as f is postcritically finite.

In fact, in the setting of postcritically finite polynomials, one can encode f
using far less data. Bielefeld, Fisher, and Hubbard [BFH] gave a precise com-
binatorial enumeration of critically pre periodic polynomials in terms of angle
conditions on external rays landing at critical values, i.e. by considering a sub-
set of the rational lamination. Milnor and Goldberg [GM] used angles of rays
landing at fixed points to develop a conjectural description of all polynomials
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which was completed by Poirier in [Poi1]. Poirier then gave an equivalent clas-
sification of arbitrary postcritically finite polynomials using Hubbard trees as
combinatorial objects [Poi2]. Hubbard trees are certain planar trees equipped
with self-maps satisfying certain rather natural expansivity, minimality, and
topological criteria which allow them to be good mimics of the dynamics of
such a polynomial. For more on Hubbard trees, see also [AF], [Dou].

In summary, it seems fair to say that the enumeration problem for post-
critically finite polynomials is solved, either using laminations, portraits, or
Hubbard trees. In particular, for quadratic postcritically finite polynomials
of the form z �→ z2 + c, the rational lamination, and hence the polynomial
itself, is faithfully encoded by a single rational number µ ∈ Q/Z–e.g. if the
critical point at the origin is preperiodic, then it lies in the Julia set, and µ is
the smallest rational number in [0, 1) such that Rµ lands at c. There is even
an explicit algorithm to reconstruct the lamination from µ; see [Dou], [DH1],
[Kel], [Lav], [Thu2].

Quadratic postcritically finite rational maps. For postcritically finite
quadratic branched coverings, M. Rees [Ree3], [Ree4] developed a sophisti-
cated program for describing such maps in terms of polynomials. A difficulty
is that a priori a given quadratic rational function might admit many such
descriptions. That is, unlike the case for polynomials, it is unclear how to as-
sociate to a general quadratic Thurston map or rational map a normal form,
i.e. minimal set of combinatorial data, necessary to determine the map.

General postcritically finite rational maps. Invariants. Indeed, enu-
merating even simple postcritically finite rational maps is hard. For exam-
ple, tabulating just the hyperbolic, non-polynomial rational functions of, say,
low degree (2 or 3) and small postcritical set (2,3, or 4 points) was a fairly
formidable task [BBL+]. For fixed degree and size of postcritical set, it is shown
that there can exist infinitely many combinatorially inequivalent branched
maps, of which at most finitely many can be equivalent to rational functions.

It is therefore natural to seek combinatorial invariants of Thurston maps.
An algebraic formulation of combinatorial equivalence has been developed by
Kameyama [Kam2] (cf. also [Pil4]) and the author [Pil3]. This is a somewhat
promising development, as the problem of deciding when two branched cov-
erings are combinatorially equivalent is reduced to a computational problem
in group theory.

A natural class of maps lying between rational and general Thurston maps
are those Thurston maps which are expanding. For fairly general reasons, a
degree d expanding map is a quotient via a ”coding map” of a one-sided
shift on d symbols, and the equivalence relation determining the fibers is also
a subshift of finite type (see [Fri] and also the chapter on semi-Markovian
spaces in [CP]). In [Kam3], [Kam5] coding maps and the structure of the set
of coding maps are investigated.
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1.5.2 Combinations and decompositions

No general theory of combinations and decompositions of Thurston mappings,
in the combinatorial category, had been developed. For Thurston maps, there
is no combination procedure in which a precise analysis of the dependency of
the output on the input data is given. At present, our discussion focuses on
combinations in the topological category: starting with e.g. two rational maps,
a topological combination procedure results in a Thurston map F . One then
asks whether F is combinatorially equivalent to a rational map R. Obtain-
ing effective control on the location and structure of potential obstructions is
crucial. Note that in this category, the topological dynamics of F is not typi-
cally relevant. Other combination procedures which proceed by producing the
topological dynamics of R directly using conformal or quasiconformal surgery
are briefly mentioned in §1.5.4.

Results relating to existing combination theorems include the following.

Quadratic Matings. The definition of formal mating has already been given
in §1.3. There are other notions of mating, in which two polynomials f, g are
called mateable if the branched covering F = f � g has at worst certain
“removable” obstructions. Milnor [Mil5], Shishikura [Shi4], Tan [Tan2] and
Wittner [Wit] discuss relationships between the different notions. These other
notions of mating apply to polynomials which are not necessarily postcritically
finite.

More precisely: let S2
f,g/ ∼ be the quotient space of the sphere on which F

is defined obtained by collapsing the closures of external rays to points. One
says that f, g are matable if (i) this quotient space is a sphere, and (ii) the
map of this space to itself induced by F is conjugate to a rational map via
a topological conjugacy which is holomorphic on the interiors of the filled-in
Julia sets of f and g. For examples and more details, see [Mil5], [YZ], [Luo].
If a rational map of degree d is a mating, the dynamics on its Julia set is a
quotient of z �→ zd on the unit circle. The converse is nearly true [Kam4].
Since our focus is on those aspects of the combinatorial theory which admit
generalizations beyond polynomials, we will not further discuss these notions
and will instead focus on the postcritically finite case here.

A quadratic polynomial f(z) = z2+c with connected Julia set has typically
two fixed points. The landing point of the zero angle external ray is the β-fixed
point; the other is the α fixed point. Suppose q rays land at the α-fixed point.
Then the set of q such rays is cyclically permuted, with rotation number p/q,
for some 1 < p < q. In this case, we say c is in the p/q-limb of the Mandelbrot
set. The conjugate of the p/q limb is the 1− p/q limb.

The investigations of Douady and Hubbard led to formulation of the
Quadratic Mating Conjecture for quadratic polynomials, now a theorem:

Theorem 1.6 (Quadratic Mating Theorem). Two postcritically finite
quadratic polynomials f, g are matable if and only if f, g do not belong to
conjugate limbs of the Mandelbrot set.
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Note that the hypothesis is purely combinatorial. Necessity is clear: if f, g
are in conjugate limbs, then the rays landing at the α fixed point join together,
and the quotient space S2

f,g/ ∼ is not a sphere (cf. Figure 1.2). The sufficiency
is more subtle. Levy [Lev] used Thurston’s Characterization Theorem [1.1]
to reduce the proof to ruling out the existence of very special obstructions,
now called Levy cycles. A Levy cycle is a multicurve Γ = {γ0, γ1, . . . , γn−1}
such that each γi has an inverse image mapping by degree one and which is
homotopic to γi+1 (subscripts modulo n). Like the obstruction in the example
in §1.3.2, Levy cycles are obstructions to the existence of a metric which is
expanding for F .

Other partial results were later obtained by Tan [Tan1]. The first complete
proof was given by Rees [Ree1]. Tan [Tan2] gave a simpler proof which gen-
eralized to maps with two critical points. Rees [Ree1] and Shishikura [Shi4]
refined the analysis to show that a natural quotient of the mating of two
polynomials f and g, when it exists, is actually topologically conjugate to the
equivalent rational map.

Wittner [Wit] also gave a detailed analysis of the phenomena of shared
matings, i.e. rational functions expressible as matings in essentially distinct
ways. This is a fascinating topic which seems to be related to the geometry of
parameter space [Eps1]. The current record-holder is the Lattès map

R(z) = z
z + η2

η2z + 1
, η2 = (3± i

√
7)/2

which is expressible as a mating in four essentially distinct ways ([Mil5], B.9).

Higher degree matings. Shishikura and Tan [SL] analyzed matings of cer-
tain postcritically finite cubic polynomials, and found that the question of
determining when the mating is equivalent to a rational map is much more
subtle than in the quadratic case–the obstructions need not be of the special,
Levy cycle kind, and are much more difficult to control.

Tunings in the quadratic rational family. The concept of tuning was first
given for interval maps by Milnor and Thurston. In the complex quadratic
setting, it may be described as follows. Given a quadratic polynomial f (or,
more generally, a rational map or branched covering) with a periodic sim-
ple critical point c whose orbit contains no other critical points, and given
quadratic polynomial p, the tuning of f by p is the branched covering F
obtained roughly as follows. Let c have period m ≥ 2. Write the cycle as
0 = c0 �→ c = c1 �→ c2 �→ . . . �→ cm−1 �→ c0 = 0. Let Di be the closure of the
immediate basin of ci. Then each Di is a disk which we may identify with a
copy of the compactified complex plane C̃×{i} by adding the circle at infinity
to C. Send C̃×{0} to C̃×{1} by p and C̃×{i} to C̃×{i+1} by the identity
map. The result descends to a well-defined branched covering F . See [Mil1].

Rees [Ree3], [Ree4] generalized the notion of tuning from polynomials to
arbitrary (quadratic) branched coverings. She proved that there are no ob-
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structions to realizing the tuning of a rational map by a quadratic polynomial.
D. Ahmadi [Ahm] considered generalizations of tuning to the case when one
has two critical points in the same cycle.

There appears to be some ambiguity in the definition of tuning given in
[Ree3], §1.20, when “type III” maps, which have a preperiodic critical point,
are considered–it is not evident that the combinatorial class (see §1.5.1) of the
output is well-defined, given the input data. The reason is as follows. Suppose
c is a periodic critical point of f along whose orbit the gluing is performed, and
suppose d is a preperiodic critical point of f mapping onto c under iteration.
After gluing, the forward orbit of d under the new map F is not well-defined
unless some additional data is prescribed. This potential ambiguity causes a
number of complications, is discussed in more detail in §3.2, and is dealt with
by our addition of “critical gluing data” to the input data for a combination
procedure.

Tunings in arbitrary degree. In [Pil5] a notion of tuning wherein a general
branched covering f is tuned by a family P of polynomials is given. If f is a
rational map satisfying a certain condition (“acylindrical”; compare §1.6) and
if P is “starlike”, then it is proven that the tuning of f by P is equivalent
to a rational map. A major ingredient is a tool allowing control of potential
obstructions which evolved into the Arcs intersecting obstructions theorem,
([PT], Thm. 3.2).

Generalized matings and tunings. Using the Arcs intersecting obstruc-
tions theorem, Tan and the author [PT] gave mild generalizations of the mat-
ing construction and gave examples of conditions under which the procedure
produces branched coverings equivalent to rational maps. In §9.3 we will give
a significant generalization of mating, though we do not give conditions for
such matings to be equivalent to rational maps.

Remarks. All of the combination procedures mentioned above have one fea-
ture in common: they produce maps with an invariant multicurve. Moreover,
apart from generalized matings and tunings, the degree of the output is equal
to the degree of the input.

When the input data for the above combination theorems consists of ra-
tional maps (as opposed to branched coverings), the geometry and dynamics
of these maps implies that the combinations can be defined in a totally un-
ambiguous fashion. That is, the resulting branched covering of the sphere is
well-defined. However, while it is easy to formulate analogs of these procedures
for branched coverings, these combination procedures inevitably depend on a
variety of choices, and there has appeared yet no explicit discussion of the
dependence of the result of combination on these choices.

Blowing up an arc. The operation of blowing up an arc [PT] increases the
degree. Let α be an arc whose interior lies in S2−PF and whose endpoints lie
in PF . Suppose F |α is a homeomorphism onto its image. To blow up α, cut the
sphere open along α and separate the edges of the cut. Send the complement
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of the incision via F , and the newly created disk by a homeomorphism onto
the exterior of F (α). Under suitable invariance assumptions on α, the result
is equivalent to a rational map. A highly useful technical device, the Arcs
intersecting obstructions theorem, is presented there as a means of controlling
the locations of potential obstructions.

Captures. Luo [Luo], Rees [Ree3], and Wittner [Wit] also considered opera-
tions called captures in the quadratic family. A capture is a branched covering
F : S2 → S2 obtained, for example, as follows. Let p : Ĉ→ Ĉ be a quadratic
polynomial with a periodic critical point at z = 0. Let x be a preperiodic point
in the backward orbit of 0, and let β : [a, b] → Ĉ = S2 be a path running
from ∞ to x and avoiding the forward orbit of x. Let σβ : S2 → S2 be a
homeomorphism which is the identity off a small neighborhood of the image
of β such that σ(∞) = x. The map F = σβ ◦ p is called a capture.

Miscellaneous. While not strictly speaking a combination procedure,
Kameyama [Kam1] gives conditions under which a self-similar subset of the
sphere is homeomorphic to the Julia set of a rational map.

1.5.3 Parameter space

A major motivation for the development of a combinatorial analysis of post-
critically finite rational maps was the desire to understand the rich combina-
torial structure seen in pictures of parameter spaces. Studies of this kind are
too numerous to be comprehensively listed here, so our account below is nec-
essarily selective. In particular we do not mention the large literature related
to real maps.

Definition 1.7 (Hyperbolic map). A rational map f : Ĉ → Ĉ is hyper-
bolic if every critical point converges to an attracting cycle under iteration.

Equivalently: f is expanding on a neighborhood of its Julia set with respect
to the Poincaré metric on the complement of the postcritical set. The condi-
tion of being hyperbolic is an open condition in the complex manifold Ratd of
rational maps of a given degree; a connected component of the set of hyper-
bolic maps is called a hyperbolic component in parameter space. It is natural
to ask how hyperbolic components are deployed in parameter space; when
their closures intersect, and how; how these connections are related to the
combinatorics of the maps involved; when their closures in the moduli space
Ratd/Aut(Ĉ) are compact, etc. Conjecturally, hyperbolic maps are dense in
Ratd; see e.g. [Lyu], [McM6]. Any two maps in the same hyperbolic component
are conjugate on a neighborhood of their respective Julia sets ([Kam3], Thm.
4.7). A hyperbolic component whose elements have connected Julia sets has
a preferred unique “center point” which is postcritically finite [McM1]. Ex-
panding components whose elements have connected Julia sets are essentially
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polydisks (see [Mil2], [Ree2]) while those corresponding to maps with discon-
nected Julia set may have more complicated topology (see [Mak1], [McM2]).

Quadratic polynomials. The combinatorial structure underlying the de-
ployment of hyperbolic components within the Mandelbrot set is now very
well understood. A few sources are [DR], [Dev], [DH1], [Kel], [Sch], [Thu2],
[Kau].

Quadratic rational maps. It turns out that the moduli space of Möbius
conjugacy classes of quadratic rational maps is biholomorphic to C

2 [Mil3].
Rees’ program [Ree3], [Ree4], [Ree5] yields detailed results on the combina-
torial structure of the one-complex dimensional loci Vn ⊂ C

2 of maps with
a critical point of period n. The approach is by analogy with the theory for
quadratic polynomials and proceeds using laminations. The last cited work
also relates the homotopy types of various spaces of rational maps and their
combinatorial analogs. Stimson [Sti] and Rees study the algebraic geometry
(in particular, the singularities) of the loci Vn and its relation to combinatorial
properties quadratic rational maps.

Other rational families. The combinatorics of certain families of rational
functions have also been investigated. Head [Hea] and Tan [Tan3] consider the
structure of the cubic rational maps obtained by applying Newton’s method to
cubic polynomials. Bernard [Ber] has investigated the combinatorial structure
of rational maps near a Lattès example. Inninger [IP] gives an explicit real
family of examples whose Julia sets are the whole sphere. Barański [Bar2],
[Bar1] studies maps with two superattracting fixed points and finds examples
of maps with fully invariant Fatou components which are not perturbations
of polynomials.

Compactness properties. There have also been investigations into the re-
lationship between the success and failure of combination theorems and the
structure of parameter spaces, especially compactness properties of and tan-
gencies between hyperbolic components. Rees [Ree2] gives compactness results
for certain real one-parameter subsets of hyperbolic components, independent
of the fine combinatorial details of the map. Petersen [Pet] relates the failure of
mating to noncompactness of hyperbolic components in the quadratic rational
family. Makienko [Mak2] gives sufficient conditions for the noncompactness of
hyperbolic components; work of Tan [Tan5] gives simpler and more complete
arguments for the same results. Epstein [Eps2] provides the first compactness
results for a hyperbolic component, for quadratic rational maps in which both
critical points lie in distinct periodic cycles of periods ≥ 2. In his thesis the
author [Pil5] proposes a series of conjectures relating the combinatorics of
rational maps, the topology of their Julia sets, the geometric realizability of
topological combination theorems, and compactness properties of hyperbolic
components; see also [McM5] and §1.6 for a survey of this topic.
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To bring this down to earth, here is a concrete question which is still open:

Question: Let f(z) =
√

3
2 i(z + 1

z ). The two critical points at ±1 lie in the
same cycle of period four. Does the hyperbolic component H(f) have compact
closure in the space of quadratic rational maps modulo Möbius conjugacy?

Geometry of combinations. Epstein shows by giving an explicit example
that the operation of mating, when extended to hyperbolic and parabolic
maps, is not continuous [Eps1]; the discontinuity phenomena is similar to
that present in the intertwining surgery of Epstein and Yampolsky [EY] .

1.5.4 Combinations via quasiconformal surgery

In many cases, it is desirable to have a combination procedure which does not
proceed via Thurston’s characterization theorem [1.1]. Typically, this proce-
dure is given by the process of quasiconformal surgery, which we now describe.
The input is one or more rational functions f, g, . . . and some combinatorial
data describing the surgery. The output is a rational function R. The surgery
proceeds by first constructing a K-quasiregular map R̃, i.e. a map which is
locally a rational map followed by a K-quasiconformal homeomorphism. Since
quasiconformal maps are quite flexible, this step is often not especially diffi-
cult. A common method for producing R from R̃ is to check that the iterates
of R̃ are uniformly K ′-quasiregular (often, a very delicate and technical step)
for some constant K ′, and then apply a theorem of Sullivan [Sul] (sometimes
referred to as the “Shishikura principle”) which asserts that under these as-
sumptions, R̃ is quasiconformally conjugate to a rational map R.

Often, the dependence of quasiconformal surgery on the input maps can be
explicitly controlled, yielding results about the geometry of parameter spaces.
Examples of this are too numerous to list comprehensively but we point out
here a few prototypical examples drawn from the themes of combination,
decomposition, and applications to parameter spaces of rational maps. First
is Douady and Hubbard’s seminal paper on polynomial-like maps [DH2] where
the technique is first introduced. Branner and Douady [BD] relate portions
of the cubic and quadratic polynomial parameter spaces, while Branner and
Fagella [BF] relate different limbs of the Mandelbrot set. Häıssinsky [Häı]
interprets tuning via quasiconformal surgery. Epstein and Yampolsky [EY]
start with a pair of quadratic polynomials and produce a cubic polynomial
via “intertwining” surgery.

We note that surgery has played a prominent role in the analysis of maps
with Siegel disks; cf. work of Ghys, Douady, Hermann, and Świa̧tek as well
as Petersen and Zakeri. The basic idea is to start with a generalized Blaschke
product which sends the unit circle onto itself by a homeomorphism with some
given rotation number, and to do surgery to produce a polynomial; the unit
circle turns into the boundary of a Siegel disk after surgery. Also, Shishikura
[Shi1], [Shi2] applies surgery profitably to the study of e.g. maps with Herman
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rings and Siegel disks; see also [Shi3] for trees associated with configurations
of Herman rings on the sphere.

1.5.5 From p.f. to geometrically finite and beyond

It is tempting to speculate on the extent to which Thurston’s characterization
and rigidity theorem [1.1] generalizes beyond the postcritically finite setting.

Rational laminations were conjectured to be good combinatorial objects
with which to classify polynomials. It was conjectured that a polynomial p
with connected Julia set and all cycles repelling is uniquely determined by
its rational lamination. (The condition, all cycles repelling, is present to rule
out deformations supported on the Fatou set, which are uninteresting in this
context.) In the quadratic family, this is equivalent to the famous “MLC” con-
jecture asserting that the Mandelbrot set is locally connected. If answered in
the affirmative, it implies that the dynamics of every point in the Mandelbrot
set is essentially faithfully encoded by a single number in R/Z. Partial results
in support of this conjecture were begun by Yoccoz ([Hub]), who proved that
the Mandelbrot set is locally connected at c under the assumption that z2+c is
non-renormalizable . Since then there have been a number of further improve-
ments in which the hypothesis “non-renormalizable” has been successively
weakened. For a good summary, see [Lyu] and the references therein.

A recent theorem of C. Henriksen [Hen], however, asserts that in the cubic
family, this rigidity fails. A pair of cubic polynomials having the same ratio-
nal lamination and having set-theoretically distinct dynamics on the forward
orbits of their critical points is constructed; the proof uses the intertwining
surgery of Epstein and Yampolsky. Thus the combinatorial classification of
polynomials of degree greater than two is apt to be significantly more com-
plicated.

Even for polynomial maps with totally disconnected Julia sets, such a
classification may be very difficult. Emerson [Eme] associates to such a map
an infinite tree, equipped with a self-map, which imitates the deployment of
annuli in the complement of the Julia set bounded by level sets of the Green’s
function; in particular he shows that uncountably many combinatorially in-
equivalent such trees can arise among maps of a given degree.

Less ambitious is to seek first a generalization of Thurston’s character-
ization to the setting of geometrically finite maps, i.e. to rational maps for
which the intersection of the Julia and postcritical sets is finite. This is dis-
cussed briefly by Thurston [Thu2]. In the thesis of David Brown [Bro], an
implementation of Thurston’s algorithm for non-postcritically finite quadratic
polynomials with connected Julia set is introduced. Turning to rational maps,
the combinatorics of geometrically finite maps with disconnected Julia sets is
discussed in [PL] and [Yin].

A major advance in the understanding of geometrically finite maps has
been announced by Cui Guizhen [Cui]. We briefly summarize here the results
of this work in progress. A geometrically finite branched covering map is a
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quasiregular map F with the following property. Let P ′F denote the set of ac-
cumulation points of the postcritical set PF ; note that this is forward-invariant
under F . Then (i) P ′F is finite; (ii) F is holomorphic on a neighborhood of
P ′F ; (iii) each periodic point of P ′F is either attracting, superattracting, or
parabolic. Two geometrically finite branched covering maps are combinatori-
ally equivalent if there is a combinatorial equivalence h0, h1 between them such
that (i) h0, h1 are quasiconformal; (ii) h0 = h1 on a neighborhood of attracting
periodic points in P ′F and on attracting parabolic petals of parabolic points
in P ′F . Starting with these definitions, he first proves a direct translation of
Thurston’s characterization and rigidity theorem for hyperbolic rational maps
by showing that each such map can be obtained via quasiconformal surgery
from a collection of postcritically finite maps and maps with disconnected
Julia set. The combination procedure used and the issues involved are quite
similar to those presented here.

To extend to maps with parabolics, Cui first shows that each hyperbolic
map can be “pinched” to a map with parabolics without changing the dynam-
ics on the Julia set. The proof uses novel distortion estimates, and represents
the first instance of obtaining limit points of quasiconformal deformations via
purely intrinsic methods. This result is then used to give a characterization
of geometrically finite rational maps with parabolics among geometrically fi-
nite branched covers. An extra condition, “no connecting arcs” is needed: by
“mating” of z2+1/4 with itself one can obtain a geometrically finite branched
covering with no Thurston obstructions but which is nonetheless not equiva-
lent to a rational map–an arc, invariant up to isotopy relative to the postcrit-
ical set, joins the two parabolic fixed points. The corresponding rational map,
however, has a degenerate parabolic point, and this arc should be collapsed
to a point.

Having in hand now a generalization of Thurston’s theorem, Cui proceeds
to establish the existence of limits of various kinds of quasiconformal defor-
mations of geometrically finite rational maps. The technique employed is to
identify the limit as a geometrically finite branched cover, verify that it is
unobstructed, and then show that the corresponding rational map can be
perturbed back to recover the original path of deformations.

1.6 Analogy with three-manifolds

Here, we give some motivation from the topological aspects of the dictionary
between the theories of rational maps and Kleinian groups as holomorphic
dynamical systems on the Riemann sphere. For a comprehensive survey, see
[McM5] and [McM4]. Note that regarding Ĉ as the boundary at infinity of
hyperbolic three-space H

3 gives a bijection between orientation-preserving
isometries of H

3 and the group Aut(Ĉ) of Möbius transformations.
Let M be a compact, oriented, irreducible (every embedded two-sphere

bounds a three-ball) three-manifold. A connected, properly embedded, two-
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sided surface S ⊂ M (which is neither a sphere, projective plane, or disc
isotopic into ∂M) is incompressible if the inclusion S ↪→ M induces an in-
jection on fundamental groups. S is said to be peripheral if it is isotopic into
∂M . If M contains a nonperipheral incompressible surface S then M is called
Haken; M is toroidal if it contains a nonperipheral incompressible torus. If
∂M is nonempty and incompressible, a cylinder in M is a nonperipheral in-
compressible annulus. The prototypical example of a cylindrical manifold is
M = S × [−1, 1], where S is a closed surface. Nonperipheral tori are topolog-
ical obstructions to finding a hyperbolic structure on M , and cylinders also
play an important role in several respects:

Theorem 1.8. Let N be a convex compact geometrically finite hyperbolic
three-manifold with nonempty incompressible boundary. Then the following
are equivalent.

1. N is acylindrical.
2. π1(N) does not split (as free product with amalgamation or HNN exten-

sion) over Z.
3. Given any orientation-reversing ”gluing” homeomorphism h : ∂N → ∂N ,

the quotient manifold N/h admits a hyperbolic structure.
4. The deformation space of N has compact closure in the space of all hy-

perbolic structures on M .
5. The limit set of the fundamental group of N , regarded as a Kleinian group,

is a Sierpinski carpet.

Alternatively, one might replace condition (3) with the following: the limit
of any deformation of N corresponding to pinching a finite set of disjoint
simple closed curves exists.

The equivalence of (1) and (2) follows from standard arguments and the
fact that if N is cylindrical, then there exists and embedded cylinder. That
(3) implies (1) is clear. If a cylinder exists, any gluing map h which identifies
the ends of the cylinder yields a torus in N/h. That (4) implies (1) may be
proved as follows. Pinching the ends of the cylinder (we may assume they
are disjoint simple curves) yields a sequence of deformations whose limit does
not exist. This is well-known. That (1) implies (3) is part of Thurston’s ge-
ometrization theorem; it proceeds by first proving (1) implies (4) [Thu1]. An
alternative proof which does not take this route may be found in [McM3].
That a cylinder in a geometrically finite hyperbolic three-manifold causes clo-
sures of the domain of discontinuity to intersect follows easily by considering
the lifts of geodesics representing ends of the cylinder to the Riemann sphere
under the projection map from the universal cover. That (1) implies (5) seems
to be well-known, but I have been unable to locate the original reference. It
is sometimes attributed to Maskit.

One aspect of the utility of incompressible surfaces stems from the fact
that, after cutting M along S, the resulting pieces have homotopy-theoretic
properties which are highly representative of those of M : the fundamental
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group π1(M) splits (as free product with amalgamation or HNN extension)
over π1(S). Another is the following theorem, due to Jaco and Shalen and,
independently, Johannson [JS]:

Theorem 1.9 (Torus decomposition). Let M be a closed, orientable, irre-
ducible three-manifold. Then up to isotopy, there is a (possibly empty) canon-
ical family of incompressible tori T such that each component of M − T is
either atoroidal or Seifert fibered.

With the same notation, Thurston conjectured the following, which in-
cludes as a special case the Poincaré conjecture:

Conjecture: (Geometrization conjecture) The components of M − T
admit exactly one of eight possible geometric structures.

We propose to view a Thurston map F : S2 → S2 as the analog of a
compact, orientable, irreducible three-manifold and an invariant multicurve
(Definition 1.13) as the analog of a nonperipheral, incompressible surface dis-
joint from ∂M . With this in mind, our Canonical Decomposition Theorem
(Theorem 10.2) can be viewed as an analog of both the Torus Decompo-
sition Theorem and the Geometrization Conjecture for three-manifolds; the
canonical nature of the Thurston obstruction follows from the Canonical Ob-
structions Theorem (Thm. 10.4), a generalization of Theorem 1.3.

The mapping class group of a three-manifold is its group of self-home-
omorphisms, modulo those isotopic to the identity. Johannson [Joh] proved

Theorem 1.10 (Finiteness of mapping class groups). If M is a com-
pact, orientable, irreducible, Haken, acylindrical, atoroidal manifold, then the
mapping class group of M is finite.

Moreover, the conclusion can fail if e.g. the hypothesis of atoroidal is
dropped. Our Twist Theorem (Thm. 8.2) asserts that the mapping class group
(Definition 8.1) of a branched mapping is infinite if there is an invariant mul-
ticurve of a certain kind, and is therefore a partial analog of the converse of
Johannson’s theorem.

We summarize this analogy in the following table.
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Manifolds Branched maps

Cpt., oriented, irreducible 3-mfd. M Branched map F : S2 → S2

Nonperipheral (incompressible) surface Invariant multicurve

Nonperipheral incompressible torus Thurston obstruction

Canonical decomposing tori Canonical obstruction (§10)

Mapping class group Mapping class group (§8)

Haken Having an invariant multicurve

Gluing along boundary components Combination Thm. (§§3, 4)

Cutting along surfaces Decomposition Theorem (§§5, 6)

Torus Decomposition Thm. Canonical Decomposition Thm. (§10)

We remark that there is an essential difference between the two sides: for
manifolds/Kleinian groups the Klein-Maskit combinations (see [Mar], [Mas])
give geometric realizations in the setting of Kleinian groups for the topological
operation of gluing along surfaces. For Thurston maps such geometric real-
izations, in which one finds quasiconformally distorted copies of the original
groups which are ”glued”, do not usually exist. Figure 1.1 makes this clear–
there is no qc embedded copy of the Julia set of z2 − 1 in the Julia set of the
mating.

1.7 Connections

We mention here briefly some connections between the dynamics of postcrit-
ically finite rational maps and other areas of mathematics.

1.7.1 Geometric Galois theory

Recently there has been an attempt to gain an understanding of the structure
of the absolute Galois group G = Gal(Q/Q) by exploiting the remarkable fact
that there is a faithful action of G on a certain infinite set of finite, planar trees,
called dessins. These dessins are combinatorial objects which classify planar
covering spaces X

f→ C−{0, 1} given by polynomial maps f unramified above
{0, 1}. The action of G on the set of dessins is obtained by letting G act on
the coefficients of f , which one may take to be algebraic.
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The main result of [Pil1] is that there is also a faithful action of G on
the infinite set of Hubbard trees. Recall from §1.5 that Hubbard trees are
finite planar trees equipped with self-maps which classify postcritically finite
polynomials f : C → C as dynamical systems. Again, one may take the
coefficients of such a map to be algebraic, and the action of G is obtained by
letting G act on the coefficients of f . In fact, it is proved that G acts faithfully
on a highly restricted subsetDBP (”dynamical Belyi polynomials”) consisting
of postcritically finite polynomials f whose iterates are all unramified over
{0, 1} and whose Hubbard tree is uniquely determined by the dessin associated
to f as a covering space, plus a small amount of additional data.

There are several intriguing aspects to this dynamical point of view. First,
it turns out that the natural class of objects with which to work consists of
actual polynomials as opposed to equivalence classes of polynomials. Second,
the dynamical theory is richer. In particular, a special class of dynamical Belyi
polynomials is introduced, called extra-clean DBPs, which is closed under
composition, hence under iteration. This allows one to associate a tower of
invariants to a single given polynomial f , namely the monodromy groups
Mon(f◦n) of its iterates. Finally, the dynamical theory here embeds into the
non-dynamical one in the following sense: there is a G-equivariant injection
of the set of extra-clean dynamical Belyi polynomials into the set of non-
dynamical isomorphism classes of Belyi polynomials given by f �→ f◦2. From
the point of view of dynamics, this is remarkable: the dynamics of such an f ,
which involves an identification of domain and range, is completely determined
by the isomorphism class of f◦2 as a covering space, which does not require
such an identification.

1.7.2 Gromov hyperbolic spaces and interesting groups

Let (Un, un), n = 0, 1, 2, . . . be a sequence of path-connected, pointed topolog-
ical spaces, and let fn : (Un, un) → (Un−1, un−1), n = 1, 2, 3, . . . be covering
spaces which are unramified, at least two- but finite-sheeted, and not neces-
sarily regular. The composition fn = f1 ◦ f2 ◦ . . . ◦ fn : (Un, u0)→ (U0, u0) is
an unramified covering. Let the fiber of fn over u0 be denoted f−n(u0).

Let G = π1(U0, u0) denote the fundamental group of U0 based at u0. By
path-lifting, for each n, there is a transitive right action of G on the inverse
image f−n(u0) of u0 under fn. The quotient of G by the kernel of this action
is the monodromy group of fn, denoted Mon(fn). If vn ∈ f−n(u0) and g ∈ G,
then clearly (fn(vn))g = fn(vg

n). Hence for each n ≥ 2 the groups Mon(fn) are
imprimitive, and there is a surjective homomorphism Mon(fn)→ Mon(fn−1).
The inverse limit Mon(f1) ← Mon(f2) ← Mon(f3) ← . . . is thus a profinite
group; its isomorphism type is independent of the choices of basepoints {un}.

If Un = F−n(S2 − PF ) where F is a Thurston map, the result is what
is termed in [BGN] the iterated monodromy group (IMG) of F . According to
[BGN], the IMG of z2 + i has intermediate growth, i.e. with respect to some
generating set, the number of group elements expressible as a word of length
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n in the generators grows faster than any polynomial but slower than any
exponential function. IMGs are shown to be examples of what are termed
“self-similar groups”, and when F is expanding with respect to some metric
(e.g. when F is rational) then the corresponding IMG satisfies an additional
property of being what is termed “contracting”. In this case, a general mech-
anism for identifying the Julia set as the boundary at infinity of a certain
Gromov hyperbolic graph is given, and in a manner which permits one to, in
principle, algorithmically reconstruct the dynamics of F from purely combi-
natorial information.

1.7.3 Cannon’s conjecture

The investigations of Cannon, Floyd, and Parry [CFP1], [CFP2], [CFP3] into
connections between subdivision rules and postcritically finite rational maps
are motivated in part by a desire to prove

Cannon’s conjecture Let G be a Gromov hyperbolic group whose bound-
ary at infinity is homeomorphic to the two-sphere. Then G acts discretely,
cocompactly, and isometrically on hyperbolic three-space.

If true, this would be one step toward verification of the Geometrization
Conjecture. The idea, very roughly, is as follows. Successively growing the
ball of radius n in the Cayley graph starting at the identity yields a sequence
of finer and finer “subdivisions” of the boundary at infinity. Cannon [Can]
gives conditions for the existence of a G-invariant conformal structure on
the boundary at infinity. The existence of such a structure then implies the
conjecture forG. In actuality the situation is somewhat more complicated, and
verifying these conditions is difficult. However, in many classes of examples
having the flavor given in §1.3.4, one can in fact verify these conditions and
conclude that the branched covering is indeed equivalent to a rational map. It
is hoped that the converse is possible as well, i.e. rationality of the Thurston
map induced from the subdivision rule should imply that Cannon’s conditions
for conformality hold. For more details, see [CFP3] and recent work of M. Bonk
and B. Kleiner.

1.8 Discussion of combinatorial subtleties

In this subsection, we first recall for reference the concepts and definitions
arising in Thurston’s characterization of rational functions. Our results require
the introduction of some significant generalizations of these concepts, as well
as some slight modifications to these standard definitions. In the following
subsections, we motivate these generalizations by informally sketching the
process of decomposition, and introduce terminology and notation which will
be used in the remainder of this work.
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1.8.1 Overview of decomposition and combination

The development of a general theory of combinations and decompositions
necessitates the simultaneous introduction of three levels of generalizations of
the category whose objects are postcritically finite branched coverings of the
two-sphere and whose morphisms are pairs h0, h1 of homeomorphisms yielding
combinatorial equivalences. Specifically:

• Instead of a Thurston map F : S2 → S2, a map of a single sphere to itself,
we consider FS : S → S, a postcritically finite branched covering map of a
finite set S of spheres to itself, not necessarily surjective. For such maps F ,
critical points and the postcritical set PF are defined in the same manner
as for a single map.

• Instead of using PF , the postcritical set, in the definitions of combinatorial
equivalence and multicurves, we use an embellishment Y ⊂ S. Here, Y will
be a closed, forward-invariant set containing F−1(PF ); see the next section.

• Instead of considering only postcritically finite maps, we consider non-
postcritically finite maps having some tameness properties near accumu-
lation points of the postcritical set.

The last generalization is needed in order to give a decomposition theory
for e.g. rational functions with disconnected Julia sets, since Julia sets of
postcritically finite rational maps are necessarily connected.

Before a more detailed discussion of the first two generalizations, let us
see informally how they naturally arise in decompositions. In §5 we will make
the decomposition process precise. Let F be a branched covering with Q =
F−1(PF ). Let Γ be a finite invariant multicurve in S2 − Q. Cut the sphere
apart along a set of annuli A0 in S2 −Q whose core curves are the elements
of Γ . For the moment, discard these annuli A0. For each of the remaining
pieces, cap the resulting holes by disks with preferred center points to obtain
a collection S of spheres. Denote the collection of resulting center points of
these disks by Z. Then Z is finite. The set Q yields a corresponding set in
this union of spheres which we denote by Q. Set Y = Q�Z. After a suitable
extension, one finds that the original map F : (S2, Q)→ (S2, Q) yields a map
FS : (S,Y) → (S,Y) from a finite set of spheres to itself such that Y and
Z are forward-invariant under FS . One subtlety is that Q need no longer be
forward-invariant under FS . Another subtlety is that it is possible for Z to
be disjoint from the orbits of critical points, e.g. if elements of Γ all map by
degree one.

Also, we wish to be able to reconstruct the original map F . Therefore,
when formulating a combination procedure, we should expect that we must
record the following kinds of data:

• (Mapping tree, §2.1) a combinatorial object capturing how the annuli
in A0 are deployed on the sphere, as well as some rudimentary dynamics;
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• (Sphere Maps, §2.2) a map of pairs FS : (S,Y) → (S,Y), where Y =
Q� Z;

• (Annulus Maps, §2.3) a map FA : A1 → A0, recording the dynamics
above A0, which was forgotten in the process of decomposition sketched
above, (here, A1 ⊂ A0);

• (Topological Gluing, §3.1) a choice of map gluing the annular pieces
and spherical pieces together;

• (Critical Gluing, §3.2) a choice of what to do with points in Q which
map to points in Z under FS (see the examples in §9.2);

• (Missing Pieces, §3.3) a choice of how to define the new map F : S2 →
S2 on those regions not accounted for by FS ,FA. The noninvertible na-
ture of these dynamical systems implies that in all but the simplest cases
(matings; see §§1.3 and 9.2) this is a potential source of nontrivial ambi-
guity in the definition. We will resolve this point in §4 by showing that,
provided a suitable normal form is used, the choices made here have no
influence on the outcome.

There are several obvious and a few non-obvious compatibility requirements
which must be satisfied. In §§2 and 3 we adopt an axiomatic approach to
enumerating these requirements which will guarantee that the results of com-
bination and decomposition will be well-defined, and that these processes are
inverse to one another.

1.8.2 Embellishments. Technically convenient assumption.

Technically, it is far more convenient to reformulate the set-theoretic condi-
tions in the definition of combinatorial equivalence and multicurves using the
full preimage of the postcritical set as opposed to the postcritical set itself.
One reason is as follows:

Lemma 1.11. Let γ be a simple closed curve in S2−Q, where Q = F−1(PF ).
If γ is essential in S2−Q, then no two components of F−1(γ) are homotopic
in S2 −Q.

Proof: Suppose the contrary. Then there exist two preimages γ̃1, γ̃2 of γ such
that γ̃1 � γ̃2 is the boundary of an annulus R in S2−F−1(γ) with R∩Q = ∅.
The restriction of F to R is a proper unramified covering since Q contains the
critical points and by construction R is a component of the preimage of the
complement of γ. Hence the image F (R) is a nondegenerate annulus, which
is impossible. ��As another consequence, if Γ0 is a multicurve in S2 − Q,
then it can be shown that the annuli in A0 map by unramified coverings
under F . This is convenient, since then in our “mapping tree” caricature of
the dynamics, any folding caused by critical points will be concentrated in
vertices of this tree. See also Lemma 5.6.

Thus, in general, it is convenient to reformulate the definitions of multi-
curve and combinatorial equivalence so as to replace the postcritical set PF
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by its full preimage QF . However, we have already seen in the previous sub-
section how the process of decomposition leads naturally to consideration of
maps FS defined on a set S of spheres. With this in mind, we formulate

Definition 1.12 (Embellished map of spheres). An embellished map of
spheres is a triple (F ,S,Y) where

• S is a finite set of spheres,
• Y ⊂ S is closed,
• F : (S,Y)→ (S,Y) is a (tame) map of pairs such that

– F is an orientation-preserving branched covering,
– Crit(F) ⊂ Y, where Crit(F) denotes the set of critical points of F ,
– F−1(F(Y)) = Y.

Two embellished maps (F ,S,Y), (G,S ′,Y ′) are called combinatorially equiv-
alent if there are orientation-preserving (tame) homeomorphisms of pairs
H0,H1 : (S,Y) → (S ′,Y ′) such that H0 ◦ F = G ◦ H1 and H0 is isotopic to
H1 through (tame) homeomorphisms agreeing on Y.

Usually, we will drop the adjective “embellished”.
Remarks:

1. When S has just one connected component we will usually use Roman
fonts F,G, F ′, F ′′, Q etc. Also, we will sometimes refer to an embellished
map of spheres by e.g. the single symbol F , where it is to be understood
that there is a distinguished subset Y ⊂ S associated to F .

2. Here, “tame” is an unspecified set of regularity conditions on the geom-
etry of the sets Y,Y ′, the regularity of the maps F , G, H0, H1, and the
regularity of the isotopy joining H0 to H1. This is discussed in more detail
in §1.6.

3. We allow of course the case when S consists of a single sphere.
4. Kameyama [Kam2] uses the term furnished in the case when a single map

is involved and Y is finite. In our setting, when combining maps, the set Y
will be a disjoint union Y = Q�Z, where Z is finite and forward-invariant.

1.8.3 Invariant multicurves for embellished map of spheres.
Thurston linear map.

A multicurve in S −Y is a finite collection of simple, closed, essential, nonpe-
ripheral curves in S − Y, no two of which are homotopic in S − Y. We shall
need to require a slightly stronger definition of invariance, however.

Definition 1.13 (Invariant multicurve). Let (F ,S,Y) be an embellished
map of spheres and Γ a multicurve in S − Y. Γ is F-invariant if

1. for all γ ∈ Γ , each component of F−1(γ) is either peripheral with respect
to Y, or homotopic in S − Y to an element of Γ , and
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2. for each γi ∈ Γ , there exists a γj ∈ Γ such that γi is homotopic in S − Y
to a component of F−1(γj).

The first condition is the same as the usual one; the second is equivalent to
the following. Associated to an F-invariant multicurve Γ = {γ1, ..., γN} is
the Thurston linear map FΓ : R

Γ → R
Γ defined as in §1.5.1. The second

invariance condition is equivalent to the condition that the matrix (FΓ ) has
a nonzero entry in each row.

Remark: It is not always the case that a nonempty multicurve satisfying the
first condition contains a proper subset which is a sub-multicurve satisfying
both conditions–a priori it is possible for a multicurve to consist of a collection
of curves, each of whose preimages are inessential or peripheral. This happens
if and only if the matrix for the Thurston linear map is the zero matrix. How-
ever, in all other situations, deleting those rows and columns corresponding
to zero rows will result in a multicurve verifying both conditions.

1.9 Tameness assumptions

Bearing in mind the generalizations discussed above, let (F ,S,Y) be an embel-
lished map of spheres. We might wish to require some tameness assumptions
on (F ,S,Y). In order for these properties to be natural, one must require
some additional regularity on

1. the set Y itself,
2. the map F near Y, and
3. the maps H0,H1 occurring in the definition of combinatorial equivalence,
4. the isotopy joining H0 and H1.

A typical restriction in (1) is that Y have only finitely many accumulation
points. This will be the case if the map F is e.g. a single geometrically finite
rational map, i.e. one for which the intersection of the Julia set and postcritical
set is finite.

This requirement alone is usually too weak to be used for reasonable topo-
logical characterizations of rational functions with infinite postcritical set. For
instance, if the maps H0,H1 in the definition of combinatorial equivalence are
required only to be homeomorphisms, then the map F(z) = z2− 1

10 having an
attracting fixed point is combinatorially equivalent to the map G(z) = z2 − 3

4
having a parabolic fixed point. Thus, the topological model may fail to distin-
guish between maps which are geometrically essentially different, and which
indeed have non-homeomorphic Julia sets.

Geometrically finite rational maps are also well-behaved near accumulation
points of their postcritical set. In contrast, one might e.g. postcompose such
a map by an infinite sequence of Dehn twists along curves converging to an
attractor to obtain a new branched map with pathological behavior near this
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attractor. It might therefore be reasonable to pin down the local behavior of
the map near accumulation points of Y.

One possible way around this difficulty is to require that near such points,
(2) the map F is locally C1 conjugate to a rational function, (3) the maps
H0,H1 are C1, and (4) the isotopy joining H0 to H1 take place through C1

maps. This will serve to distinguish between the maps F and G above, since
the geometry of the two postcritical sets are radically different near the attrac-
tor. Alternatively, one could replace C1 with quasiconformal. One could also
strengthen the requirement in (2) to holomorphic conjugacy, but otherwise
keep the remaining requirements unmodified. For other alternatives, see e.g.
Cui [CJS], Epstein-Keen-Tresser [EKT], and McMullen ([McM7], Appendix
A).

In general, then, when the postcritical set is infinite, there may be various
choices of regularity on the maps h0, h1 near the points of Y which one might
wish to require.

To keep our theory of general applicability we leave the details unspecified,
referring to whatever restrictions are imposed in (1)-(4) above as tameness
assumptions. Our combination and decomposition constructions, however, are
robust in the following sense. When combining, the new dynamical system is
produced by C0 modifications of the original maps away from the set Q,
which contains all accumulation points of Y since Y = Q � Z is closed and
Z is finite. The Uniqueness of Combinations Theorem 4.5 (see §4) asserts
roughly that the combinatorial class of the map resulting from a combination
depends only on the classes of the input data (suitably defined). The proof of
this theorem relies on two steps: gluing together maps yielding equivalences
of input data, and C0 modifications away from the sets Q and Q. Thus,
when combining, we may safely assert that there will be no loss of regularity
of equivalences near points of Q. Similarly, when decomposing a branched
covering F : (S2, Q)→ (S2, Q), we may assume that the resulting embellished
map of spheres FS : (S,Y)→ (S,Y), where Y = Q�Z, has the same tameness
properties near Q as does F near Q.

More precisely, we need that whatever tameness definitions are used, the
following results should hold:

Tameness Restrictions

1. Space of tame homeomorphisms is path connected. If h : S → S
is a tame homeomorphism which fixes each component of S, then there is
a continuous path ht, 0 ≤ t ≤ 1, of tame homeomorphisms with h0 = id
and h1 = h.

2. Equivalence of definitions of combinatorial equivalence. Suppose
F t : (S,Yt) → (S,Yt), 0 ≤ t ≤ 1 is a continuous, one-parameter family
of tame embellished maps of spheres, such that Yt = ht(Y0), where ht is
a path of tame homeomorphisms. We require that F0 be combinatorially
equivalent to F1.

3. Equivalence of subsurfaces. If V ⊂ S is a compact subsurface satisfying
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a) V has finite connectivity, i.e. has finitely many connected components,
each with finitely many boundary components,

b) ∂V consists of finitely many tame Jordan curves in S − Y
then we say V is admissible. We say admissible V,V ′ are ambiently home-
omorphic if there is a homeomorphism h : (S,Y) → (S,Y) which is the
identity on Y and sending V to V ′.
The requirement is the following: If V,V ′ are ambiently homeomorphic,
then the homeomorphism h can be taken to be tame and in the same
isotopy class as h rel Y. Said loosely another way, the equivalence relation
of “ambiently homeomorphic”on the set of admissible subsurfaces should
be the same in the tame and topological categories.

Remarks:

1. The converse implication in (2) holds trivially using (1), since a pair of
tame homeomorphisms yielding a combinatorial equivalence between F
and F ′ defines a path between F and a conjugate of F ′, which in turn is
joined to F ′ by a path defined by an isotopy joining the conjugating map
to the identity.

2. When Y is finite and S = S2, (1) follows from ([Bir], Thm. 4.4). That
(2) holds in this case was first mentioned explicitly and used by M. Rees
[Ree3].
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Preliminaries

In this section, we formulate axiomatically the combinatorial and dynamical
data needed to define our combination and decomposition operations. A cen-
tral aim is to allow a complicated map to be decomposed into simpler pieces
in such a way that the original map is recoverable from the simpler pieces
and certain gluing data. In order to achieve this, when defining our combi-
nation procedure, we simultaneously consider the pieces and the gluing data
throughout. To ensure realizability of the data by an embellished branched
covering of the sphere to itself, we prescribe that the data satisfy a lengthy
but rather natural set of axioms guaranteeing compatibility of combinatorics,
dynamics, and topology.

We begin in Section 2.1 with the combinatorial aspects. A mapping tree is
a caricature of a single embellished branched covering 1 F : (S2, Q)→ (S2, Q)
with an invariant multicurve Γ , obtained in the following way. Full details are
contained in Section 5, where we prove the Decomposition Theorem [5.1]. We
emphasize that the reader pay particular attention to the notation developed
below.

• Thicken the elements of the multicurve Γ to form a collection of disjoint,
essential, nonparallel closed annuli in S2 − Q whose union we denote by
A0. Thus, A0 is a subset of the sphere. A component of A0 is denoted by
Aa0,i

and the set of such components is denoted by A0. Thus,

A0 =
⋃

a0,i∈A0

Aa0,i .

• We arrange by precomposing with a homeomorphism isotopic to the iden-
tity so that the map F is in “standard form” (see Definition 5.2).

1 Here, the triple (F, S2, Q) is required only to be an embellished branched covering,
i.e. Q is closed, forward-invariant, contains the critical points, and coincides with
the preimage of its image.
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• Let A1 be the union of preimages of elements of A0 which are essential in
A0. Note that each component of A1 is an annulus mapping under F as
an unramified covering onto its image. Also, A1 is a subset of the sphere.
A component of A1 is denoted by Aa1,j

and the set of such components is
denoted by A1. Thus,

A1 =
⋃

a1,j∈A1

Aa1,j .

The standard form implies that A1 ⊂ A0 and that ∂A1 ⊃ ∂A0.
• Let S0 denote the union of the set of connected components of S2 −A0.

Thus, S0 is a subset of the sphere. A component of S0 is denoted S0(x)
and the set of such components is denoted by X. Thus,

S0 =
⋃

x∈X

S0(x).

• Within each component S0(x) of S0, it turns out that there is a unique
component S1(x) of F−1(S0) whose boundary contains ∂S0(x). We let S1
denote the union of such components. Thus,

S1 =
⋃

x∈X

S1(x).

• Let C = A0 −A1. Thus C is a subset of the sphere contained in A0. A
component of C is denoted by Cc and the set of such components is denoted
by C. Thus

C =
⋃

c∈C

Cc.

Then each annulus in A0 is an alternating union of annuli in A1 and in C,
beginning and ending with annuli in A1. Possibly there are no components
of C in a given component of A0. Figure 2.2 shows a caricature of how these
subannuli are deployed.

• We set U to be the union of the set of connected components of
S0(x)− S1(x), as x ranges over X. A component of U is denoted by Uu and
the set of such components is denoted by U . Note that the components of
U are disks. See Figure 2.1. Thus,

U =
⋃

u∈U

Uu.

• Finally, we let B1 denote the set of boundary components of A1. Let B0
denote the subset of B1 consisting of boundary components of A0. Then
B0 �= ∅. Note that ∂A0 = ∂S0, since S2 = S0 ∪A0, and the union is along
boundary components.
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The mapping tree T is then the following graph. The set of nodes (vertices)
is the set X � B1 � U . The edges are as follows. A node u ∈ U is connected
to exactly one other node; this node is an x-node, and is the unique x such
that Uu and S1(x) share a boundary component. A node in X is adjacent only
to nodes in U and to nodes in B1, and the latter case occurs only when the
boundary component corresponding to b1 is a boundary component of S0(x).
The remaining edges join pairs b+, b− of elements of B1 bounding a common
annulus, which may be either in A1 or in C.

The mapping tree T comes equipped with a projection π from S2 to T
which collapses

• boundary components of A1 to B1,
• annuli in A1 and C to edges,
• components of U to vertices in U ,
• subsurfaces of the form S1(x) to the subtree spanned by x and all vertices

(necessarily in B1 � U) which are adjacent to x.

At this point the reader is urged to turn to the examples in Section 9.
Note that the definitions of the tree and projection map lead to some

inequity within the definitions of nodes and edges. For instance:

• π−1(u), u ∈ U is a disk Uu

• π−1(b), b ∈ B1 is a Jordan curve
• π−1(x) is neither S0(x) nor S1(x)
• the preimage of an edge joining two vertices in B1 is an annulus in either
A or C.

Despite this apparent asymmetry, the graph-theoretic “closed neighborhood”
of x in T , which we call the “star” of the node x and denote by S1(x), is a
convenient caricature of the surface S1(x); see Figure 2.1.

As we shall see, the mapping tree T comes also equipped with a self-map
f : T → T which can be made to respect the projection π in a certain combina-
torial fashion. There is also a natural degree function deg : {nodes of T} → N

given by the topological degree of F on a suitable subset of the sphere.
Finally, imagine cutting apart the sphere using boundary components of

A0, and “capping” the resulting boundary components of S0 with disks to
form a collection S of spheres. Then above the mapping tree lie two kinds
of combinatorial dynamical systems: one corresponding to the spheres S, and
one to the annuli A1,A0.

In the next sections, we give a rather long list of axioms satisfied by this
setup in order to formulate precisely our combination theorems.

2.1 Mapping trees

A mapping tree of degree d is a triple T = (T, f,deg), where
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U

B0

x

u

b0

S1(x)

S0(x)

U

S0(x) B0

u

b0

S1(x)

Fig. 2.1. The star S0(x) is a caricature of S0(x).

• T is a finite, connected tree,
• the set of vertices of T is a disjoint union

X �B1 � U,

• f : T → T is a continuous self-map
• deg : X �B1 � U → N

subject to the following axioms:

A–1 Valence.
1. U vertices have valence one.
2. B1 vertices have valence two.

A–2 Adjacency.
1. U vertices are adjacent only to X vertices.
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2. B1 vertices are adjacent either to two vertices in B1, or to one vertex
in B1 and one vertex in X.

3. X vertices are adjacent only to B1 and to U vertices.
We denote by B0 the nonempty subset of B1 consisting of those ver-
tices adjacent to vertices in X.

Definition (annular edges, A0,A1): Given b1 ∈ B1, the Valence
and Adjacency axioms imply that there is a unique maximal path a0
in T − X which contains b1 and has the property that ∂a0 ⊂ B1.
Then actually ∂a0 ⊂ B0. We denote the set of such maximal paths
by A0 = {a0,i}n0

i=1 and refer to the a0,i as annular edges (even though
they are not necessarily edges of T , but rather unions of edges). Note
that the Valence and Adjacency axioms imply that the vertices within
any annular edge lie in B1. We require

4. Every annular edge has an even number of B1 vertices.
This implies that for each annular edge a0,i ∈ A0, as a0,i is traversed from
one boundary vertex b−0 ∈ B0 to the other boundary vertex b+0 ∈ B0, the
edges can be consecutively labelled by an alternating sequence of symbols
A1, C,A1, C, ..., A1, C,A1, beginning and ending with A1. Possibly a0,i is
itself already an edge of T , in which case the label is simply A1. See Figure
2.2.

x x

b0

A1

b0b1 b1 b1 b1 b1 b1

C C CA1 A1 A1

A0

Fig. 2.2. Structure of an annular edge a0 ∈ A0.

We denote by A1 and C respectively the collection of all subedges of
annular edges labelled by A1 and by C. Elements of A1 will be denoted
by a1,j ; those of C by c. Note that ∂A1 ⊃ ∂A0.
Stars. Given x ∈ X we denote by B(x) the set of all elements of B1
adjacent to x; these are necessarily in B0. Similarly, we denote by U(x)
the set of all elements of U adjacent to x. Below, let [O] denote the smallest
subtree of T containing O, a set of vertices, and for a subtree T ′ let ∂T ′

be the set of vertices of valence one . Set
• S0(x) = [{x} ∪B(x)]. Then

∂S0(x) = B(x)
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and ⋃

x∈X

∂S0(x) = ∂A0.

• S1(x) = [{x} ∪B(x) ∪ U(x)]. Then ∂S1(x) = B(x) ∪ U(x).
• S0 =

⋃

x∈X S0(x), S1 =
⋃

x∈X S1(x).
Thus, the star S0(x) is a caricature of a component S0(x), while the star
S1(x) is a caricature of S1(x).

A–3 Dynamics.
1. f : X → X. This need not be surjective onto X.
2. f : B1 � U → B0.
3. f is a homeomorphism on each edge of T
4. f |a0,i is a homeomorphism on each annular edge a0,i.
5. f : A1 → A0, i.e. the image of each edge a1,j ∈ A1 is an annular edge
a0,i ∈ A0. This need not be surjective onto A0. However, note that
every annular edge contains at least one subedge in A1. (This is the
combinatorial analog of the second condition in the definition [1.13]
of invariance of a multicurve.)

6. f maps an edge joining an x-vertex and a u-vertex homeomorphically
onto an edge joining an x-vertex to a b0-vertex.

In particular, any folding of T by f must be concentrated in theX vertices.
Definition (image subtrees): Recall that u ∈ U is adjacent to exactly
one x vertex. Since f |[x, u] is a homeomorphism, there is a unique subtree
f∗(u) ⊂ T which is the closure of the connected component of T − f(u)
which does not contain f(x). Said another way, f∗(u) is the largest con-
nected subtree containing f(u) but not f(x). See Figure 2.3.

x

f(x)

u

f (u)
*

f

b=f(u)

Fig. 2.3. The image subtree f∗(u) is the largest subtree containing f(u) but not
f(x), where x is the unique node adjacent to u.
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Similarly, given c ∈ C, the map f |c is a homeomorphism. We set f∗(c) to
be the closure of the connected component of T −{∂f(c)} which contains
f(c); see Figure 3.1.
Note that f∗(u), f∗(c) may be quite large subtrees.

A–4 Degree function.
1. Local homogeneity.

a) for all y = f(x) ∈ X, and all b0 ∈ B0(y),
∑

v∈B(x),f(v)=b0

deg(v) = deg(x).

This is the combinatorial analog of the fact that if F : S1(x) →
S0(y) is proper and has degree deg(x), then for each boundary
component of S0(y), the sum of the degrees of F on those preim-
ages lying in S1(x) must be equal to deg(x).

b) The function deg is constant on any vertices in a given annular
edge a0,i.
This is the combinatorial consequence of the fact (to be proved
later, Lemma 5.6) that the restriction of F to the annuli in A0 is
an unramified covering.

Below, by deg(∂c) we mean the value of the function deg on either
boundary component of c; by Axiom A–4 1(b) above this is indepen-
dent of which vertex is chosen.

2. Global homogeneity. For all y ∈ f(X),
∑

f(x)=y

deg(x) +
∑

y∈f∗(u)

deg(u) +
∑

y∈f∗(c)

deg(∂c) = d,

and for all b0 ∈ f(B1) = B0,
∑

b∈B1,f(b)=b0

deg(b) +
∑

b0∈f∗(u)

deg(u) +
∑

b0∈f∗(c)

deg(∂c) = d.

It may be that there is some redundancy in Axioms A–4 #1(a,b) and
A–4 #2.

A–5 Orientations. We assume we have chosen arbitrarily a decomposition

B0 = B−0 �B+
0

such that each annular subedge a0 is bounded by a pair (b−0 , b
+
0 ). Thus, we

may think of annular subedges as oriented arcs b−0 → b+0 and coordinatize
them with I = [−1,+1] � a0.
Definition (signed degree function δ): Recall that every edge a1,j ∈
A1 is a subedge of an oriented annular edge a0,i. We equip a1,j with the
induced orientation, and modify the degree function deg on the boundary
of a1,j by setting
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δ(b) = ±deg(b)

with the sign chosen + if f |a1,j is orientation-preserving and minus oth-
erwise. Note that δ has the same value on the two boundary vertices of
each a1,j ∈ A1.

2.2 Map of spheres over a mapping tree

Let S be the disjoint union of |X| copies of the two-sphere S2, and let S(x) de-
note the xth component. An embellished map of spheres lying over a mapping
tree T = (T, f,deg) is an orientation-preserving branched covering

FS : S → S

together with a continuous map

πS : S → T

satisfying the following axioms.

A–6 Embellished. FS : (S,Y)→ (S,Y) is an embellished map of spheres S
to itself for which Y = Q�Z, whereQ is closed, Z is finite, and F(Z) ⊂ Z.
(For the definition of embellished map of spheres, see Definition 1.12.)
Note that Z consists of isolated points of Y. Also, the conditions imply
that the global postcritical set is well-defined. When combining, we will
cut away a set of neighborhoods B of points in Z and glue in annuli in
the resulting holes to obtain a new sphere S2.

A–7 Standard form. There is a collection B of |Z| disjoint, closed, topolog-
ical disks Bz such that for each z in Z,
1. z ∈ int(Bz)
2. Bz ⊂ S −Q
3. Each component (FS)−1(Bz) is either a component of B, or is disjoint

from B
4. For each component Uu of (FS)−1(B)− B, we have |Uu ∩Q| ≤ 1.
5. For each z ∈ Z, there is a homeomorphism of pairs (Bz, z) → (∆, 0)

such that FS |∂Bz in these local coordinates is given by ζ → ζk where
k ≥ 1 is the local degree of FS near z.
Note that then we have also k = deg(FS , ∂Bz). Equivalently, param-
eterizing ∂Bz by R/Z, the map on ∂Bz is given by t �→ kt modulo
one.
We merely require the existence of this set of coordinates; at this point
we do not make a choice of such coordinates. The effect of this is to
rule out irrational rotations along cycles of boundary components in
B.
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Definition (missing disks):
We set U = (FS)−1(B) − B. The components of U we will refer to as
missing disks.

A–8 Tameness. We require that Q and FS are tame near any accumulation
points of Q. We leave this unspecified but require that the Tameness Re-
strictions of §1.9 hold. We emphasize that our results will be independent
of any such choice.

A–9 Covering. There are some obvious compatibility requirements needed
for the mapping tree to be a combinatorial caricature of the sphere maps
FS . For x ∈ X, let

S(x) = the copy of S2 above x
B(x) = B ∩ S(x)
U(x) = U ∩ S(x)
S0(x) = S(x)− B(x)
S1(x) = S0(x)− U(x) = S(x)− B(x)− U(x).

1. For each x ∈ X, πS is a map of triples

πS : (S0(x), ∂S1(x), ∂S0(x))→ (S0(x), ∂S1(x), ∂S0(x))

which is a bijection on connected components of each of the sets in-
dicated. Note that ∂S1(x) = B(x) ∪ U(x) and ∂S0(x) = B(x).
Bijections. Combining the above with the properties of Z,B, we have
bijections between connected components:

Z ←→ B ←→ ∂B = ∂S0
πS
←→ ∂S0 = B0 = B−0 �B+

0 = ∂A0

and
U ←→ ∂U ←→ U

and we use these bijections to write

∂A0 = ∂A−0 � ∂A+
0

∂B = ∂B− � ∂B+

Z = Z− � Z+.

We will use these frequently in the sequel. We denote connected com-
ponents of U by Uu so that the correspondence U ⊃ Uu ↔ u ∈ U is a
bijection.
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2. For each x ∈ X, the diagram

S1(x)
FS
−→ S0(f(x))

πS ↓ ↓ πS

S1(x)
f−→ S0(f(x))

commutes up to postcomposition of f by homeomorphisms of T which
fix the vertices.

3. Given a connected embedded submanifold E ⊂ S which maps under
FS onto an embedded submanifold of S, we denote by deg(FS , E) the
positive topological degree of the restriction FSSS|E, i.e. the cardi-
nality of a generic fiber.
We require that the unsigned (positive) degrees satisfy

deg(FS , S(x)) = deg(x)
deg(FS , ∂Bz) = deg(b0)
deg(FS , ∂Uu) = deg(u)

where b0 ↔ z under the bijection defined in the above axiom A-9(1).
4. a) Nonperipheral.

If x has valence 1 in S0(x), then |Q ∩ S0(x)| ≥ 2.
b) Nonparallel. If x has valence 2 in S0(x), then Q∩ S0(x) �= ∅.
These two conditions will guarantee that, when combining, core curves
of the annuli in A0 will form a multicurve.

2.3 Map of annuli over a mapping tree

Below, the standard annulus is

A = T× I = (R/Z)× [−1, 1].

Points in T are denoted t and are taken modulo one. Points in I are denoted
s. We equip A with the standard orientation which is the product of the
orientations on T and on I. With this convention, the induced orientation on
the boundary component T×{−1} is opposite that of T, while the orientation
induced on the boundary component T × {+1} agrees with that of T. Note
that with this convention, there is a canonical representative t �→ (t, 0) for
a generator of the fundamental group of A which we call the core curve of
A. This allows us to measure the signed degree of any map between standard
annuli. Moreover, the standard annulus has a preferred linear direction from
the negative boundary component to the positive one.

Let T be a mapping tree with A0, A1 as above. A map of annuli over T
is an orientation-preserving covering
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FA : A1 → A0

where

• A0 = A×A0,
• A1 ⊂ A0,
• ∂A1 ⊃ ∂A0,
• A1 is homeomorphic to A × A1 via an orientation-preserving homeomor-

phism h such that h|∂A0 = id∂A0 ,

together with a continuous map

πA : A0 → A0 ⊂ T

satisyfing the following axioms:

A–10 Subannuli. We require that the inclusion map A1 ↪→ A0 has signed
degree one on each component. This is consistent with the manner in which
we oriented edges of A1 using the orientations induced from ambient edges
in A0.

A–11 Covering. Let Aa1,j
denote the component of A1 corresponding to

A × {a1,j} and write Aa0,i = A × {a0,i}. We require that the annuli in
A0 lie over oriented edges in the obvious way, i.e. that for all a0,i ∈ A0
and a1,j ∈ A1 we have πA|Aa0,i

and πA|Aa1,j
are direction-preserving and

proper maps onto a0,i and a1,j respectively. Since a0,i � [−1, 1] we might
as well require additionally that

πA((T, s)× a0,i) = s ∈ [−1, 1] � a0,i

just to fix the picture in our minds.
Definition (missing annuli): We set

C = A0 −A1.

Each component of C is an annulus compactly contained in A0 and we
call components of C the missing annuli.
Bijections. By construction we have bijections on the level of connected
components

A0
πA
←→ A0

∂A0
πA
←→ ∂A0 = B0

A1
πA
←→ A1

∂A1
πA
←→ ∂A1 = B

C πA
←→ C

Furthermore, we require that for all a1 ∈ A1, the diagram
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Aa1,j

FA
−→ Af(a1,j)

πA ↓ ↓ πA

a1,j
f−→ f(a1,j)

commutes up to postcomposition with homeomorphisms of T fixing the
vertices, and that the covering FA on this component has signed degree
δ(b) where b is either boundary component of a1.

A–12 Standard form. We require that in the coordinates given for A0,A1,
if FAj = FA|Aa1,j , and if δ is the signed degree of this map, then

FAj (s,−1) = (δ(j)s, sgn(δ(j)) · (−1))

FAj (s,+1) = (δ(j)s, sgn(δ(j)) · (+1))

where sgn is the function which is +1 on positive numbers and −1 on negative
numbers. Note that while the absolute value of the signed degree is constant
on subannuli of a given annulus, the signs may differ. This is because different
subannuli within a given annulus may map to different annuli in A0 and our
choices for the orientations on the edges of A0 was arbitrary.
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Combinations

In this section, we suppose that sphere maps and annulus maps lying over
a common mapping tree are given. We introduce the notion of gluing data,
which comes in two flavors. Topological gluing data describes how to glue the
annulus and sphere maps together to obtain a map with domain a subset
of an abstract S2 and range equal to all of this same S2. This map is as yet
undefined on two regions: missing disks denoted U and missing annuli denoted
C. The missing disks may contain points of Q, possibly critical, whose images
are not yet determined and are specified by a choice of critical gluing data.
The topological and critical gluing data must satisfy certain additional axioms
in order for the resulting map F : S2 → S2 to be a well-defined embellished
branched covering.

The outcome of this process is summarized in §3.4, Theorem 3.2.

3.1 Topological gluing data

Recall that we have bijections

∂B πS
−→ B0

πA
←− ∂A0.

Furthermore, B0 = B− � B+ and we have a bijective correspondence B− ↔
B+.

A topological gluing is a choice of a continuous map

ρ : ∂B → ∂A0

such that

• ρ is a conjugacy, i.e. ρ ◦ FS = FA ◦ ρ;
• ρ is orientation-reversing (with respect to the orientations induced on

boundary components from orientations of the surfaces);

K.M. Pilgrim: LNM 1827, pp. 49–57, 2003.
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• the map πA ◦ ρ ◦ (πS)−1 induces the involution b±0 �→ b∓0 on connected
components.

The new sphere S2 is the quotient space

(S − B) �ρ A0 ≈ S2.

The projection maps πS , πA then define a continuous projection π : S2 → T .

3.2 Critical gluing data

At this point it is possible, after making some choices of extensions over U
and C, to define a new continuous map F : S2 → S2 on the quotient space
S0 �ρ A0 ≈ S2. However, if there are q ∈ Q with FS(q) ∈ Z then we lose
control of the orbit of q under our new map: by the definition of U , FS(q) ∈ Z
is equivalent to q ∈ U ∩Q, and we have not yet defined the new map over U .
Therefore, we specify the images of such points q first.

We do this by specifying the desired mapping scheme of the map to be
constructed. Loosely, a mapping scheme is a set-theoretic object recording the
dynamics and local degrees of a map F : (S2, Y )→ (S2, Y ) on the set Y .

Definition 3.1 (Mapping scheme). A mapping scheme is a triple (Y, τ, ω),
where Y is a set, τ : Y → Y is the dynamics function, and ω : Y → N is
the degree function. It is of degree d spherical type if the Riemann-Hurwitz
condition ∑

y∈Y

(ω(y)− 1) = 2d− 2

and the local degree condition

for all y ∈ τ(Y ),
∑

f(x)=y

ω(x) ≤ d

are satisfied. It is called complete if the sharper condition

for all y ∈ τ(Y ),
∑

f(x)=y

ω(x) = d

is satisfied.

Definition (critical gluing): A critical gluing is a choice of function

κ : Q∩ U → Q.
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A critical gluing defines a new mapping scheme (Q, τ, ω), where Q = Q,
given by

τ(q) =
{
FS(q) if FS(q) �∈ Z,
κ(q) if FS(q) ∈ Z

and
ω(q) = deg(FS , q).

The map κ, however, is defined purely set-theoretically, and some restric-
tions are clearly necessary if we hope for the existence of an embellished
branched covering F : (S2, Q) → (S2, Q) obtained by extending our maps
FS ,FA. Thus we require some topological compatibility.

Definition (images of missing disks and annuli). First, some notation.
Let Uu be any component of U . Let

F∗(Uu) = π−1f∗(u).

This is the topological disk in S2 bounded by the component of ∂B lying over
b0 = f(u) and which does not contain π−1(x), where u ∈ U(x). We refer to
F∗(Uu) as the image of the missing disk Uu.

Similarly, suppose Cc is any component of C. Then Cc = π−1(c) ⊂ A1. Let

F∗(Cc) = π−1(f∗(c)).

This is the annulus in S2 bounded by the curves π−1(f(b1)) and π−1(f(b′1)),
where ∂c = [b1, b′1]. See Figure 3.1. We refer to F∗(Cc) as the image of the
missing annulus Cc.

Note that F∗(Uu) and F∗(C), as subsets of S2, depend only on S0 and T ,
not on the maps involved or the choice of topological gluing.

Topological compatibility.

A–13 Recall that each component Uu contains at most one point of Q. If this
point is q, we require

τ(q) ∈ F∗(Uu) ∩Q.

Note that this is a perfectly reasonable condition if we are to map the
disk Uu in a reasonable way onto F∗(Uu). Axiom A–7 #4, which asserts
that |Uu ∩ Q| ≤ 1, is designed to guarantee that there is an essentially
unique way of extending the map over Uu, and to avoid any complications
in lifting equivalences; see the proof of the Uniqueness of Combinations
Theorem in §4.
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A–14 The mapping scheme (Q, τ, ω) is a complete spherical type mapping
scheme of degree d, where d is the degree of the mapping tree.

Despite the set-theoretic appearance of this second axiom, it will have
strong topological consequences, since it rules out the existence of extra-
neous preimages of points of τ(Q) under the map F (yet to be defined).

We are now ready to complete the definition of our new map.

3.3 Construction of combination

Gluing and extending. The new sphere is S2 = S0 �ρA0. Identify U and C
with subsets of our new sphere S2. Since ρ is a conjugacy, the function given
by FS on S1 and by FA on A1 is a continuous surjective map S1 ∪ρ A1 →
S0 �ρ A0 = S2. However, there are some missing pieces in the domain of our
map, namely the missing disks U and the missing annuli C.
Extending over U . To extend over U , suppose Uu is a component of U .
Recall that F∗(U) = π−1(f∗(u)) denotes the image of the missing disk Uu.
There are two cases to consider:

Case Q ∩ Uu = ∅. In this case there are no critical points of FS in Uu, since
Y∩Uu = ∅ and Crit(FS) ⊂ Y. Since Uu is a component of a preimage of a disk
in S under FS we have that deg(FS , ∂Uu) has degree one. We extend over Uu

by sending (Uu, ∂Uu)→ (F∗(Uu), ∂F∗(Uu)) by an arbitrary homeomorphism.

Case Q ∩ Uu �= ∅. By Axiom A–7 #4 this occurs only when Q ∩ Uu = {q},
and by Topological Compatibility Axiom A–13 in this case we have τ(q) ∈
F∗(Uu) ∩ Q. Using again the fact that Uu is a preimage of a disk in S under
FS , and the fact that there is at most one critical point of FS in Uu, we
have that deg(FS , ∂Uu) = deg(FS , q) = ω(q). We extend over Uu by sending
(Uu, q)→ (F∗(Uu), τ(q)) via a covering ramified of degree deg(u) = ω(q) over
τ(q). This is possible by Covering Axiom A–9 #3, which guarantees that
deg(FS , ∂Uu) = deg(u).

The extension over U we denote by FU and refer to these maps as the
missing disk maps .

Extending over C. To extend over C, suppose Cc is any component of C.
Recall that F∗(Cc) = π−1(f∗(c)) denotes the image of the missing annulus Cc.
This is an annulus in S2 bounded by π−1(f(b1)) and π−1(f(b′1)) which are
boundary components of a component of S0. Moreover the degrees by which
these components map are the same and are equal to deg(c). We extend by
an unbranched covering Cc → F∗(Cc) of this same degree.

The extension over C we denote by FC and refer to these maps as the
missing annulus maps .

Definition of combination. Finally, we define F : S2 → S2 by setting
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F =






FS on S1
FA on A1
FU on U
FC on C.

We have now produced a continuous orientation-preserving map F : S2 → S2

which we call an amalgam.

3.4 Summary: statement of Combination Theorem

Proposition 3.3, proved in the next subsection, together with the construction
described, implies the following result.

Theorem 3.2 (Combination theorem). Given data

1. a mapping tree T = (T, f,deg),
2. a map FS of spheres over T
3. a map FA of annuli over T
4. a topological gluing ρ
5. a critical gluing κ
6. missing disk maps FU
7. missing annulus maps FC

satisfying Axioms A–1 through A–14, there is a uniquely determined embel-
lished branched covering

F : (S2, Q)→ (S2, Q).

The dependence of F on the data is a subtle issue and will be investigated in
Section 4.

3.5 Properties of combinations

In this subsection, we assume that the map F is an amalgam produced using
a particular choice of the data above. Below, recall that Q is defined as the
image of Q under the inclusion map S0 ↪→ S2.

Proposition 3.3 (Amalgams are embellished.).

1. Suppose that Axioms A1–A13 are satisfied. Then
a) F is a branched covering of degree d.
b) F (Q) ⊂ Q.
c) Crit(F ) ⊂ Q.

Hence, (Q, τ, ω) is a degree d mapping scheme of spherical type.
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2. If in addition Axiom A14 is satisfied, then the mapping scheme (Q, τ, ω)
is complete, and hence F : (S2, Q) → (S2, Q) is an embellished branched
covering.

Proof:

1a) The map F is clearly a branched covering. That the degree is d fol-
lows easily from the Global Homogeneity Axioms A–4 #2 and the Covering
Axioms A–9 and the definition of F .

1b) For all q ∈ Q we have F (q) = τ(q) by construction. To see this, recall
that Q ⊂ S0 = S1 ∪ U . If q ∈ Q ∩ S1 then F (q) = FS(q) = τ(q) by the defi-
nition of τ , while if q ∈ Q ∩ U then F (q) = τ(q) by the definition of F = FU
on U . Since τ : Q→ Q, we have that F (Q) ⊂ Q and so Q is forward-invariant.

1c) The critical points of F are of two types: those in S1, which are in Q
since they are critical points of FS , and those in U . By construction of FU ,
if o is a critical point of FU , then the component Uu containing o contains a
point q of Q, and by construction of FU this point must be o itself. Hence
Crit(F ) ⊂ Q and in fact Crit(F ) = Crit(Q), where the latter set is defined as
those q ∈ Q for which ω(q) > 1.

2. We have F |Q = τ by the definition of F and τ . Also, for all q ∈ Q,
deg(F, q) = ω(q). Topological Compatibility Axiom A14 implies that each
p ∈ τ(Q) has d preimages under τ in Q, counted with multiplicity. Hence each
p ∈ F (Q) has d preimages under F in Q, counted with multiplicity. Since the
degree of F is d and F |Q = τ |Q, we have F−1(F (Q)) ⊂ Q. The inclusion in
the other direction is trivial. ��

As a consequence of Topological Compatibility Axiom 14 and the last
paragraph of the previous proof, we have

Proposition 3.4 (Image of Q constrained). For all c ∈ C, we have F (Q)∩
F (Cc) = ∅.

Proof: Otherwise, there are strictly more than d preimages of points in the
intersection. ��

Proposition 3.5. If Aa0,i
⊂ F∗(Cc), then Aa0,i

is inessential in F∗(Cc).

Proof: The annulus F∗(Cc) lies over a subtree of T as shown in Figure 3.1.
��To set up the next statement, let

A0 = {a0,1, ..., a0,i, ..., a0,n0}

and
A1 = {a1,1, ..., a1,j , ..., a1,n1}.

Let Γ denote the multicurve in S2−Q whose elements are the n0 core curves
of the annuli A0,i in A0.
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xc
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b1 b'1

Cc
F*(Cc)

F

π π

β1 β'1
F(β1) F(β'1)

f* (c)

f(b1) f(b'1)

Fig. 3.1. The annulus F∗(Cc) is bounded by two curves in ∂S0(x) for a unique x,
and lies over a subtree of T as indicated.

Proposition 3.6 (Core curves form multicurve). Γ is an F -invariant
multicurve, and the Thurston linear transformation FΓ : R

Γ → R
Γ is given

by the matrix NT, where

(NT)i,j =
∑

a1,k⊂a0,i

f(a1,k)=a0,j

1
|δ(a1,k)| ,

where δ(a1,k) is the signed degree of either boundary component of a1,k.

In particular, FΓ depends only on T .

Proof: Covering Axioms A–9 #4(a,b) guarantees that elements of Γ are
essential, nonperipheral, and pairwise nonhomotopic. To check invariance, fix
γ ∈ Γ . The preimages γ̃ of γ under F consist of curves in

1. A1,
2. possibly U , and
3. possibly C.

The curves in case (1) are homotopic rel Q to an element of Γ . The curves in
case (2) are all inessential or peripheral, by Axiom A–7 #4. The curves in case
(3) are all inessential since any such preimage is the preimage under a missing
annulus map FC , and by Proposition 3.5, γ is inessential in any annulus F∗(C).
To check the second invariance condition, let a0,i ∈ A0. By the definition of
A1 and A0, the annular edge a0,i contains an element a1,j ∈ A1 as a subedge.
Hence f(a0,i) ⊃ f(a0,j), an element of A0. Lifting to the sphere under πA

shows that there is a preimage of an element of Γ homotopic to a0,i. Finally,
the Covering Axioms for the annulus maps, and the observation that the only
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preimages contributing in the definition of FΓ are those in Case 1, show that
the transformation FΓ has the indicated form. ��

The next results concern the persistence of invariant multicurves under
amalgamation. To set up the statement, let Y = Q�Z, and denote by scc(S,Y)
and scc(S2, Q) the sets of homotopy classes of essential, simple, possibly pe-
ripheral closed curves in S −Y and S2−Q, respectively. Let [Γ ] ⊂ scc(S2, Q)
denote the classes of the elements of the multicurve Γ as in the previous
Proposition 3.6. A simple closed curve in S −Y is homotopic rel Y to a curve
in S0 − Q, and by Axiom 7, part 4(a), the image of an essential curve in
S0−Q under the inclusion ι : S0 ↪→ S2 is essential in S2−Q. Hence ι induces
a function

ι∗ : scc(S,Y)→ scc(S2, Q)

with the following easily verified properties:

Proposition 3.7 (Curves under inclusion).

1. A class belongs to the image of ι∗ if and only if up to homotopy in S2−Q
it is disjoint from Γ . (Parallel curves are disjoint.)

2. The image under ι∗ of a homotopy class [α] is represented by a curve
which is peripheral in S2 −Q if and only if α is peripheral in both S − Y
and S −Q, i.e. α is homotopic in S − Y to a curve surrounding a single
element of Q.

3. The image under ι∗ of a homotopy class [α] lies in [Γ ] if and only if α is
peripheral in S − Y and S − Z, i.e. α is homotopic in S − Y to a curve
surrounding a single element of Z. (Equivalently, α is homotopic in S−Y
to a boundary component of B.)

4. The images under ι∗ of two classes [α+], [α−] coincide if and only if (i)
their common image lies in Γ , and (ii) α+, α− are respectively homotopic
to two boundary components of B given by b−0 , b

+
0 . Moreover, every class

in [Γ ] has exactly two preimages under ι∗ arising in this fashion.
5. If ΓS1 is a multicurve in S −Y, then ι∗|[ΓS1 ] is a bijection, and the image

[Γ1] = ι∗([ΓS1 ]) is a set of classes represented by a multicurve Γ1 in S2−Q.

Proposition 3.8 (Invariant multicurves persist). Let ΓS1 be a multicurve
in S − Y and let Γ1 ⊂ S2 −Q represent the image ι∗([ΓS1 ]) .

1. If Γ1 is F -invariant, then ΓS1 is FS-invariant.
2. Suppose ΓS1 is invariant under FS .

a) If no element of Γ1 is essential in the image F∗(Cc) of some missing
annulus C, then Γ1 is invariant under F . In this case, the bijection
ι∗ : [ΓS1 ] → [Γ1] defines a conjugacy from the Thurston linear map
determined by FS and ΓS1 to the Thurston linear map determined by
F and Γ1.
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b) Otherwise, there are preimages of elements of Γ1 under F which are
homotopic in S2 − Q to elements of Γ . In this case, Γ � Γ1 is F -
invariant, and the Thurston linear transformation FΓ
Γ1 has matrix
of the form (

NT ∗
0 N1

)

where NT is the matrix for the Thurston linear map determined by F
and Γ , and N1 is the matrix for the Thurston linear map determined
by FS and ΓS1 .

Proof: First, by Proposition 3.7, (3) above, and the fact that multicurves
consist of nonperipheral curves, no element of Γ1 is homotopic to an element
of Γ . Next, the hypothesis implies that we may assume that Γ1 ⊂ S0. Finally,
recall that by construction of the amalgam F we have F = FS on S1.

With these observations, conclusion (1) follows immediately, using the fact
that a preimage under FS of a simple closed curve in S0 ⊂ S is either in
S1 (and hence corresponds to a preimage under F ) or in U (and hence is
peripheral in S − Y by Covering Axiom A–7#4).

Let us now prove (2). Choose γS1 ∈ ΓS1 and let γ1 = ι(γS1 ). Let δ be a
component of F−1(γ1). By the construction of the amalgam F , there are four
possibilities for where δ resides:
(i) in U , in which case δ is peripheral;
(ii) in A1, but this is impossible since then γ1 ⊂ A0 and we are assuming
γ1 ⊂ S0 which is disjoint from A0;
(iii) in C;
(iv) in S1.
Now suppose that the hypothesis in 2(a) holds, i.e. that γ1 is inessential in
the image of every missing annulus. If δ ⊂ Cc for some c, then δ must be
inessential in Cc, and so since Cc ∩Q = ∅ we conclude that δ is inessential in
S2 − Q. Hence, if δ is essential in S2 − Q, it lies in S1. Since the inclusion
ι is a conjugacy between FS and F on S1, the conclusions in 2(a) follow
immediately.

Now suppose that the hypothesis in 2(b) holds for this γ1 and δ. Then
δ is an essential curve in Cc, and hence δ is homotopic in S2 − Q to a core
curve of A0, i.e. to an element of Γ . Thus Γ � Γ1 satisfies condition (1) in
the definition of invariant multicurve (Definition 1.13). By Proposition 3.6,
NT has a nonzero entry in every row. Since Γ1 is an invariant multicurve, it
satisfies condition (2) in the definition, and this implies that the matrix N1
has a nonzero entry in every row. Thus, Γ � Γ1 also satisfies condition (2).
Hence, Γ � Γ1 is an invariant multicurve. ��
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Uniqueness of combinations

Here, we investigate the dependence of the combinatorial class of an amal-
gam F on the data used in its definition, and introduce several notions of
equivalence to capture this dependence.

4.1 Structure data and amalgamating data.

First, we pin down the global topological structure of the input data, and the
set-theoretic dynamics on the set Y.

Definition 4.1 (Structure data). The structure data for amalgamation
consists of:

1. a mapping tree T and a set S of spheres, indexed by X;
2. the sets Q,Z as subsets of S;
3. the restriction of a map of spheres FS over T to the set Y = Q � Z, so

that the set-theoretic data of the dynamics on Y is fixed;
4. the local degrees of FS near points in Y;
5. a critical gluing κ : Q∩ U → Q.

While most of these conditions are reasonable, the second warrants some
explanation. If we are free to vary these sets while keeping, essentially, the
same dynamics (and local degrees), then we must introduce a further notion
of equivalence. However, we can always arrange so that these sets are the same
by a suitable conjugation. So this is not really a serious restriction.

Next, we formally introduce the parameters on which the construction of
an amalgam depends.

Definition 4.2 (Amalgamating data). Fix a structure data for amalga-
mation. Amalgamating data with respect to this structure data is a 5-tuple

D = {FS ,FA, ρ,FU ,FC}

where the terms and the dependencies are indicated as follows:
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1. FS is a map of spheres over T, satisfying conditions (1)-(5) in Definition
4.1;

2. FA is a map of annuli over T;
3. ρ is a topological gluing (depends on FS and FA)
4. FU are missing disk maps (depends on FS , ρ)
5. FC are missing annulus maps (depends on FS ,FA, and ρ)

Given D, we denote by F (D) the amalgam produced with the data D.

4.2 Combinatorial equivalence of sphere and annulus
maps

Next, we formulate notions of combinatorial equivalence of sphere and annulus
maps.

Definition 4.3 (Combinatorial equivalence of sphere maps over T).
Let FS ,FS′

be two families of sphere maps lying over a common mapping tree
T such that

1. S0 = S ′0,S1 = S ′1
2. FS |∂S1 = FS′ |∂S ′1

We say FS and FS′
are combinatorially equivalent over T if there exist tame

orientation-preserving homeomorphisms H0,H1 : S → S ′ such that the fol-
lowing hold:

1. H0 ◦ F = F ′ ◦ H1
2. H0|∂S1 = H1|∂S1 = id∂S1
3. H0|S1 � H1 through tame homeomorphisms which are the identity on
∂S1 �Q

This notion of equivalence is distinct from the definition of equivalence of an
embellished map of spheres per se, as given in Definition 1.12. The difference
is that here we require some control over the boundary values. With this
definition, however, it is easy to check that if e.g. Q is finite and no additional
regularity beyond continuity is required in the definition of tameness, then
the set of such classes naturally a discrete topological space. This need not
be the case if e.g. Q is infinite, where to recover discreteness some tameness
assumptions might be necessary.

Definition 4.4 (Combinatorial equivalence of annulus maps). Sup-
pose FA,FA′

are two families of annulus maps lying over a common mapping
tree T such that

1. A0 = A′0,A1 = A′1,
2. FA|∂A1 = FA′ |∂A′1.
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We say FA is combinatorially equivalent to FA′
if there exist orientation-

preserving homeomorphisms HA0 : A0 → A′0 and HA1 : A1 → A′1 with the
following properties:

1. HA0 ◦ FA = FA′ ◦ HA1
2. HA0 |∂A1 = HA1 |∂A1 = id∂A1

3. the homeomorphism H1
A

: A0 → A′0 obtained by extending HA1 by the
identity over C = A0 − A1 is isotopic to HA0 through homeomorphisms
which are the identity on ∂A0.

Note that the extension over C in (3) is required to be the identity.

4.3 Statement of Uniqueness of Combinations Theorem

Assume a fixed structure data for amalgamation is given.
One would like a statement which asserts that given a set of amalgamating

data D, the combinatorial class of an amalgam F = F (D) depends only on
the classes of sphere maps FS and of annulus maps FA. This is not possible:
choices must be made for the extension FC of F over the missing annuli C.
That is, for fixed FS ,FA and varying FC , it is possible to produce amalgams
F in distinct classes. It turns out that the choice of missing disk maps FU is
irrelevant (Proposition 4.7).

Rather than formulate a lengthy notion of equivalence of amalgamating
data, we will show that once a basepoint D has been fixed, the amalgamating
data D′ can be altered to produce new amalgamating data D′′ such that (i)
F (D′) is equivalent to F (D′′), and (ii) D′′ is in “simple form with respect
to D” (Definition 4.11). Hence, in order to enumerate the set of classes of
amalgams F (D′) which can be produced by varying the amalgamating data
D′, it suffices to assume that this data is in simple form with respect to D.

We then have

Theorem 4.5 (Uniqueness of combinations). Fix a basepoint D of amal-
gamating data. Suppose amalgamating data D′ is in simple form with re-
spect to D. If the sphere maps FS ,FS′

are combinatorially equivalent, and if
the annulus maps FA,FA′

are combinatorially equivalent, then the amalgams
F (D), F (D′) are combinatorially equivalent.

Under the same hypotheses, we have

Corollary 4.6 (Bound on classes with fixed sphere class). For a fixed
combinatorial class of sphere maps, the number of combinatorial classes of
amalgams is bounded by the number of combinatorial classes of annulus maps.

In §§7.1, 7.2 respectively we state and prove a theorem giving the number
of combinatorial classes of annulus maps, making the bound in the above
Corollary explicit.
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4.4 Proof of Uniqueness of Combinations Theorem

4.4.1 Missing disk maps irrelevant

Proposition 4.7 ( [F (D′)] is independent of FU ′
). The combinatorial

class [F (D′)] is independent of the choice of the missing disk maps FU ′
.

Proof: Assume F ′, F ′′ are amalgams produced from amalgamating data
D′,D′′ which differ only in the choice of missing disk maps FU ′

,FU ′′
. We

claim that there is a combinatorial equivalence H0,H1 between F ′ and F ′′

where H0 = idS2 .
Note that this makes sense. The assumption FS′

= FS′′
implies in particu-

lar that the subsets S ′0,S ′′0 coincide. Henceforth, let us simply write S0 for these
sets. By assumption ρ′ = ρ′′, so the domains of definition of F ′, F ′′, which are
both spheres, may be regarded as the same sphere S2. Then A′0 = A′′0 and we
denote this common subset of S2 by simply A0. Also, U ′ = U ′′ and we denote
this set as simply U as well. Note that it now makes sense to speak of idS2 .
Let H0 = idS2 .

To find H1, set H1 = id on A0 � S1. To complete the definition of H1, we
need only extend it over U . Above each u ∈ U , FU ′

and FU ′′
are branched

coverings of disks, with the same boundary values, ramified of the same degree
over the same single point. Hence for each u ∈ U there is no obstruction to
lifting the restriction of H0 to the set F ′∗(Uu) = F ′′∗ (Uu) under F ′ and F ′′ to
obtain a homeomorphism which is the identity on ∂Uu ∪{u}. Thus now H1 is
defined on all of S2 and H0 ◦ F ′ = F ′′ ◦ H1 by construction.

It remains to show H0 � H1 rel Q. This follows immediately from the
Alexander Trick (see below). ��
The Alexander Trick ([Bir], Lemma 4.4.1) If g : Dn → Dn is a homeomor-
phism from the unit n-ball to itself which fixes the (n−1)-sphere Sn−1 = ∂Dn

pointwise, then g is isotopic to the identity under an isotopy which fixes Sn−1

pointwise. If g(0) = 0 then the isotopy may be chosen to fix 0.

Hence in the following, we suppress mention of the missing disk maps FU
in the amalgamating data.

4.4.2 Reduction to fixed boundary values

In what follows, we assume that we have chosen a basepoint D = {FS , ρ,FA,
FC} and we set F = F (D).

Proposition 4.8 (Reduction to fixed boundary values). Let F ′ =
F (D′). Then F ′ is combinatorially equivalent to F ′′ = F (D′′), where in the
data D′′ we have

• S ′′
0 = S0,

• S ′′1 = S1 (and so U ′′ = U),
• ρ′′ = ρ
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• A′′1 = A1 (and so C′′ = C),
• FU ′′ |∂U ′′ = FU |∂U , and
• FA′′ |∂A′′1 = FA|∂A1.

Proof: The homeomorphism φ0 = (ρ′)−1 ◦ id∂A0 ◦ ρ conjugates FS |∂S0
to FS′ |∂S ′0. Lift this homeomorphism under F and F ′ to a conjugacy
φ1 : ∂S1 � ∂(A1 − A0) → ∂S ′1 � ∂(A′1 − ∂A′0). Extend φ1 arbitrarily to
a tame homeomorphism Φ fixing Q � Z and sending the pairs (S0,S1) →
(S ′0,S ′1), (A0,A1) → (A′0,A′1). Then Φ : S2 → S2 is continuous. Now set
F ′′ = Φ−1 ◦ F ′ ◦ Φ, i.e. “pull back” F ′ under Φ. Pulling back the data D′

to D′′ we find that the resulting map F ′′ = F (D′′) then has the indicated
properties. ��

Thus the set of all combinatorial classes of amalgams obtained with fixed
structure data coincides with the set of all combinatorial classes of amal-
gams produced using the subset of amalgamating data where the spaces
S0,S1,A0,A1,U , C are fixed, the topological gluing is fixed, and the boundary
values of the maps are fixed and equal to ρ.

Assumption. Hence, once the basepoint D is chosen, we may assume that
whenever D′ = {FS′

, ρ′,FA′
,FC′} is amalgamating data defining F ′, we have

in particular that the boundary values ρ′ = ρ. Summarizing, we refer to this
as having fixed the structure data and the boundary values . The data required
to form an amalgam then consists only of the sphere, annulus, and missing
disk and annulus maps; by Proposition 4.7 we suppress mention of the missing
disk maps, since they do not affect the class of the amalgam. In short, we now
write

D = {FS ,FA,FC}
for the basepoint data defining F and

D′ = {FS′
,FA′

,FC′}

for that defining F ′.

4.4.3 Reduction to simple form

Recall from the previous subsection that we assume that the structure data
and the boundary values are fixed.

Proposition 4.9. Fix a basepoint F = F (D), where

D = {FS ,FC ,FA}.

Let F ′ = F (D′), where
D′ = {FS′

,FC′
,FA′}

and assume FS′
is combinatorially equivalent to FS .
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Then F ′ is combinatorially equivalent to an amalgam F ′′ = F (D′′) which
is produced using a map FS′′

of spheres combinatorially equivalent over T to
FS via a pair HS0 ,HS1 of tame homeomorphisms with HS0 = id.

The content of this proposition is that we may assume HS0 = id without
altering the class of amalgam.
Proof: (of Proposition 4.9) LetHS0 ,HS1 be a pair of tame homeomorphisms
yielding an equivalence. By assumption, the boundary values are the same,
hence we may extend HS0 by the identity on A0 to obtain a homeomorphism
H0 : S2 → S2. Let F ′′ = (H0)−1 ◦ F ′ ◦ H0. Then F ′′ is tamely topologically
conjugate to F ′. Moreover, the map of spheres FS′′

= (H0)−1 ◦ F ′ ◦ H0
is combinatorially equivalent to FS via the pair HS0 ◦ (HS0 )−1 = idS0 and
HS1 ◦ (HS0 )−1, as required. ��
Assumption. We may therefore assume that in any set of amalgamating
data D′ for which the map of spheres FS′

is combinatorially equivalent over
T via a pair HS0 ,HS1 to the map of spheres FS in our basepoint D, we have
H0 = idS0 .

At this point it is tempting to try to glue together equivalences between
the sphere and annulus maps. However, the extensions FC over the missing
annuli C are a potential source of obstructions to the lift H1 of an equivalence
H0 = HS0 ∪ HA0 being isotopic to H0. The Unwinding Trick provides one
more degree of freedom in altering the input data so as to achieve the desired
“simple form”, for which this obstruction vanishes.

Below, note that once the boundary values and structure data are fixed,
the missing annuli Cc and their images F∗(Cc) are well-defined as subsets of
S2.

Proposition 4.10 (The unwinding trick). Fix a basepoint F = F (D),
where

D = {FS ,FC ,FA}.

Let F ′ = F (D′), where
D′ = {FS′

,FC′
,FA′}

and for which FS′
is combinatorially equivalent to FS via a pair HS0 ,HS1 with

H0 = idS0 .
Then F ′ is combinatorially equivalent to F ′′ = F (D′′), where

D′′ = {FS′′
= FS′

,FC′′
,FA′′},

and the data D′′ has the following property:
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Any homeomorphism H0 : S2 → S2 which is the identity on S0,
when restricted to the image F∗(Cc) of any missing annulus Cc, lifts
under FC and FC′′

to a homeomorphism HC1 : Cc → Cc which is
isotopic to the identity rel ∂Cc.

Furthermore, F ′′ = F ′ ◦ h, where h : S2 → S2 is a homeomorphism supported
on the interiors of the annuli in A0, and the homeomorphism h can be chosen
so as to depend only on FC′

and not on FA′
.

Proof: Recall (Figure 3.1) that the annulus F∗(Cc) is the union of

• the unique component S0(x) of S0 whose boundary contains ∂F∗(Cc), and
• finitely many disks in S2.

Hence altering H0 on these disks will not change the isotopy class (rel bound-
ary of F∗(Cc)) of the mapH0|F∗(Cc). Therefore it is enough to prove the result
for some particular such homeomorphism H0 which is the identity on S0; for
convenience we take H0 = idS2 .

Fix c ∈ C. The maps FC ,FC′
when restricted to the annuli Cc = C′c are

covering maps of the same degree. Each annulus Cc is an essential subannulus
in the interior of some directed annulus A0,i(c) ∈ A0. Thus, Cc has a preferred
positive boundary component ∂+Cc which coincides with the negative bound-
ary component of some annulus A1,j(c) ∈ A1 as well as a preferred negative
boundary component ∂−Cc (see Figure 4.1).

Let HCc
1 : Cc → C′c = Cc be the particular lift of the identity map H0 on

F∗(Cc) = F ′∗(C′c) under FC ,FC′
which is the identity on the negative boundary

component of Cc. There are two potential complications: (1) HCc
1 need not be

the identity on the other positive boundary component of Cc, and (2) even if
it is, it need not be isotopic to the identity rel ∂Cc.

We resolve these difficulties simultaneously as follows. First, note that the
combinatorial class of F ′ is unchanged if F ′ is precomposed with a homeomor-
phism h isotopic to the identity rel Q. We will find such an h such that the
identity map on the annuli F∗(Cc), c ∈ C lifts under F ′ ◦ h to a homeomor-
phismHCc

1 which is isotopic to the identity rel boundary. The homeomorphism
h will be supported on a neighborhood of ∪c∈C∂

+Cc.
Fix c ∈ C. Choose arbitrarily points x± ∈ ∂±Cc and a curve α : [0, 1]→ Cc

from x− to x+. Let α̃ be the lift of (H0 ◦ FC |Cc)(α) under FC′
based at x−

(recall that H0 = idS2). Then the terminal endpoint x̃+ is a point on ∂+(Cc)
lying over (FC |Cc)(x+) = (FC′ |Cc)(x+), since we have already arranged that
the boundary values of FC ,FC′

are the same.
Then there exists an “unwinding” homeomorphism hc : Cc ∪ A1,j(c) →

Cc ∪ A1,j(c) with the following properties (see Figure 4.1):

1. hc = id on a neighborhood of the boundary of the annulus Cc ∪ A1,j(c).
2. hc is isotopic to the identity rel ∂(Cc ∪ A1,j(c))
3. FC′ ◦ h|∂Cc = FC′

4. hc(α) is homotopic rel endpoints via a homotopy in Cc to the curve α̃.
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Fig. 4.1. The homeomorphism hc sends α to a curve homotopic to α̃.

The homeomorphism hc can be obtained by extending the unique deck trans-
formation of FC |∂+(Cc) sending x+ to x̃+ to a neighborhood of ∂+(Cc) so as
to arrange that hc(α) is homotopic to α̃.

Consider now the composition (FC′ |Cc) ◦ hc. The lift of (H0 ◦ FC |Cc)(α)
based at x− under this map is then h−1

c ◦ (FC′ |Cc)−1(α) = h−1
c (α̃), and by

property (4) above, we have that this curve is homotopic in Cc to α itself.
Hence, the identity map H0 lifts under FC and FC′ ◦ hc to a map denoted
H1|Cc which on Cc sends the curve α to a curve which is homotopic to α fixing
endpoints. From this it follows that H1|Cc is isotopic to the identity through
maps fixing ∂Cc.

We then let h : S2 → S2 be the homeomorphism obtained by applying hc

on each of the disjoint annuli Cc∪A1,j(c). Then F ′′ = F ′ ◦h is combinatorially
equivalent to F ′ and the arguments in the previous paragraph show that
desired properties hold.

��
Definition 4.11 (Simple form). A set D′′ of amalgamating data is said to
be in simple form with respect to a basepoint D if

1. D,D′′ are amalgamating data with respect to the same structure data,
2. the boundary values ρ, ρ′′ are the same,
3. the sphere maps FS ,FS′′

are equivalent over T via homeomorphisms
HS0 ,HS1 with HS0 = id, and

4. any homeomorphism H0 : S2 → S2 which is the identity on S0, when
restricted to the image F∗(Cc) of any missing annulus Cc, lifts under FC
and FC′′

to a homeomorphism HC1 : Cc → Cc which is isotopic to the
identity rel ∂Cc.

Summarizing: given fixed structure data and a basepoint D of amalgamat-
ing data, the set of classes of amalgams which can be produced using any
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other amalgamating data with respect to this structure data coincides with
the a priori smaller set of classes of amalgams which can be produced using
amalgamating data which is in simple form with respect to D.

Moreover, the last conclusion in the Unwinding Trick shows that simple
form is preserved under varying just the annulus maps:

Corollary 4.12. Suppose D′ = {FS′
,FC′

,FA′} is in simple form with respect
to D. Then {FS′

,FC′
,FA′′} is also in simple form with respect to D, where

FA′′
is any other choice of annulus maps.

4.4.4 Conclusion of proof of Uniqueness Theorem

Let F = F (D) be the basepoint and F ′ = F (D′) be in simple form with
respect to F . Recall that the simple form implies that the pairHS0 ,HS1 yielding
a combinatorial equivalence between FS ,FS′

may be taken with HS0 = idS0 .
Let HA0 ,HA1 be a pair of homeomorphisms giving an equivalence between the
annulus maps. We must show that F and F ′ are combinatorially equivalent.

Let H0 : S2 → S2 be given by

H0 =
{
HS0 = idS0 on S0
HA0 on A0

We now lift H0 under F and F ′ to a homeomorphism H1 : S2 → S2 in the
following way.

On the missing disks U ,U ′ there is no obstruction to lifting H0 to a map
which is the identity on the boundary since, for each u ∈ U , the maps FU ,FU ′

are either homeomorphisms, or are both ramified coverings of disks with one
critical point and with the same degree. We denote the collection of such lifts
by HU1 .

On the missing annuli C,H0 lifts to a homeomorphismHC1 which is isotopic
to the identity rel boundary, by the definition of simple form [4.11] and the
Unwinding Trick [Prop. 4.10].

On the subsets S1,A1 we use HS1 ,HA1 as in the definitions [4.3, 4.4] of com-
binatorial equivalence. By definition, these are the identity on their bound-
aries.

Finally, we set

H1 =






HS1 on S1
HA1 on A1
HC1 on C
HU1 on U .

Thus, H1 is a continuous lift of H0. We now verify that H0 is isotopic to H1
through maps which fix Q. In fact, we shall show that H0,H1 are isotopic rel
∂S1 ∪Q.
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On U , the maps H0,H1 agree on ∂U and, on each component Uu, and they
fix any (necessarily unique, by Axiom A-7, 4) point q ∈ Uu, if such a point q
exists. By the Alexander Trick, there is an isotopy rel ∂Uu∪{q} joining H0|Uu

to H1|Uu.
On S1, the maps H0,H1 are isotopic rel ∂S1 ∪Q by the definition [4.3] of

combinatorial equivalence of sphere maps.
Fix now a component A0,i of A0. If A0,i contains no components of C, then

H0 andH1 are isotopic rel ∂A0,i by the definition of combinatorial equivalence
of annulus maps [4.4]. Otherwise, the map H1 restricted to each component
Cc of C ∩ A0,i is isotopic to the identity rel ∂Cc, by the construction of HC1
and the Unwinding Trick. By the definition of combinatorial equivalence of
annulus maps, the extension HA1 of HA1 over each component of C ∩ A0,i by
the identity map yields a map which is isotopic to HA0 rel boundary A0,i. It
follows that the map H1|A0,i is isotopic to HA0 |A0,i. This holds over all the
disjoint annuli A0,i in A0, hence H0|A0 is isotopic to H1|A0 rel boundary A0.

Together, the isotopies over U , S1, andA0 piece together to yield an isotopy
between H0 and H1 through maps fixing ∂S1 ∪Q. ��
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Decomposition

5.1 Statement of Decomposition Theorem

In this section, we give a converse, decomposition procedure for amalgamation.
We say that two pairs, each consisting of an embellished map of spheres

and an invariant multicurve, are combinatorially equivalent if there is a com-
binatorial equivalence between them sending one multicurve to the other, up
to isotopy.

The main result of this section is

Theorem 5.1 (Decomposition). Let G : (S2, Q) → (S2, Q) be an embel-
lished map of a sphere to itself and Γ a nonempty invariant multicurve. Then
there is a homeomorphism h : (S2, Q) → (S2, Q) isotopic to the identity rel
Q such that F = G ◦ h is an amalgam with annuli A0 whose core curves are
homotopic to Γ . The data which expresses F as an amalgam has the following
properties:

1. Boundary values. The boundary values are determined by the pair
(F,A0).

2. Structure data.
a) Mapping tree. The mapping tree T depends only on the equivalence

class of pair (G,Γ ). The set of spheres S = S2 ×X, where X is the
set of X-vertices of T.

b) Set Q. The map F : (S2, Q)→ (S2, Q) and the isotopy class of Γ in
S2 − Q determine uniquely the set Q which is canonically identified
with Q.

c) Set Z. The subset Z is in bijective correspondence with the set of
boundary components of S0. The locations of the points Z, with the
following exceptions, depend only on F and the isotopy class of Γ .

The exceptions arise as those z corresponding to boundary components
b for which there exists no component Uu of U which intersects Q and
whose boundary maps to b. Such components b are necessarily either

K.M. Pilgrim: LNM 1827, pp. 69–77, 2003.
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totally invariant under F , or have all preimages other than possibly
itself mapping by degree one.

We write
Z = Zexc � Zdet

for the exceptional and determined elements of Z.
d) Restrictions and local degrees on Q. The mapping scheme (Q �
Z,F ,degF ) is uniquely determined up to isomorphism by F and the
isotopy class of Γ in the following sense: a choice of exceptional points
Zexc, together with F and Q, determines uniquely a mapping scheme
with underlying set Q�Z. A different choice of exceptional points Z ′ =
Zexc′ � Zdet determines a canonically defined isomorphism Q � Z →
Q�Z ′ of the corresponding mapping schemes which is the identity off
the exceptional set.
However, the set Q∩F−1(Z) is canonically determined by F and the
isotopy class of Γ .

e) Critical gluing. The critical gluing κ : Q ∩ F−1(Z)→ Q is canoni-
cally determined by F and the isotopy class of Γ .

3. Annulus maps. Missing annulus maps. Missing disk maps. The
annulus maps FA, missing annulus maps FC, and missing disk maps FU
depend only on F and A0.

4. Sphere maps. The (non-proper) restriction of the sphere maps FS :
(S,Y)→ (S,Y) to the subset S0,

FS |S0 : S1 � U → S

depends only on F and A0.

Remark. To see how elements of Zexc can arise, consider a decomposition
procedure inverse to mating. Here, Γ = {γ} consists of the “equator” and
is totally invariant. Cut along γ to obtain two disks D± viewed as disjoint
subsets of two different spheres S2

±, each of which is identified with the domain
S2 of G. There is still no natural way to extend the map G|D+ over the disk
S2−D+–since the boundary ∂D+ maps by itself with degree (typically) ≥ 2,
any extension over S2 − D± must introduce branching, and the locations of
the branch points and values must be specified in advance.

The embellished map of spheres F : (S,Y) → (S,Y) is called a decompo-
sition of G along Γ . When we wish to emphasize the dependence of the map
F on F , we say that F is produced from F . Technically, this is not quite right:
the construction of F from F will involve some choices; the Decomposition
Theorem [5.1] records what those choices are. In Section 6 we analyze the
dependence of the class of F on these choices.

The map F will have a special form, called standard form with respect to
Γ , which is defined in the next section.
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5.2 Standard form with respect to a multicurve

Definition 5.2 (Standard form). An embellished branched covering F :
(S2, Q)→ (S2, Q) is said to be in standard form with respect to a multicurve
Γ if there exist a set A0 = {Aa0,1 , ...,Aa0,n0

} of n0 = |Γ | disjoint, closed
annuli such that

1. each γi ∈ Γ is homotopic to a core curve of some annulus in A0;
2. if A0 = ∪n0

i=1Aa0,i , and if A1 denotes the components of preimages of A0
which are both essential and nonperipheral in S2−Q, then A1 ⊂ A0, and
∂A1 ⊃ ∂A0;

3. In suitable local coordinates, the map F |∂A1 : ∂A1 → ∂A0 is given by
t �→ δ+t modulo 1, where δ+ is the (positive) degree of F on the given
boundary component.

The standard form F is obtained by precomposing G with a homeomor-
phism isotopic to the identity rel Q such that suitably thickened elements of
Γ0 form the required set of annuli A0.

Proposition 5.3 (Standard form). Let G : (S2, Q) → (S2, Q) be an em-
bellished branched covering and Γ a G-invariant multicurve. Then there is a
homeomorphism h : (S2, Q)→ (S2, Q) isotopic to the identity rel Q such that
F = G ◦ h is in standard form with respect to Γ .

Proof: Thicken the components of Γ to disjoint, closed annuli A0. By invari-
ance of Γ , each essential, nonperipheral preimage of ∂A0 is homotopic rel Q
to an element of ∂A0, and each component of ∂A0 is homotopic to at least
one such preimage. For fixed i, consider the collection of all preimages of ∂A0
homotopic to γi in S2 −Q. There are exactly two outermost such preimages,
say b−0 , b

+
0 , where outermost means that neither b−0 nor b+0 separates a pair of

curves in this collection. Together, b−0 and b+0 bound a closed annulus A#
a0,i

which is isotopic in S2 − Q to the annulus Aa0,i
. Let h1 : (S2, Q) → (S2, Q)

be a homeomorphism of S2 isotopic to the identity rel Q and sending each
annulus Aa0,i to the annulus A#

a0,i
; such an h1 exists by the Tameness Restric-

tion # 3 (§1.9). Then G ◦ h1 satisfies the first two conditions in the definition
[5.2] of standard form, and the third is achieved by precomposing G ◦h1 with
another suitable tame homeomorphism h2 isotopic to the identity rel Q to
obtain F = G ◦ h1 ◦ h2 = G ◦ h. ��

5.3 Maps in standard forms are amalgams

Next, we claim that F is an amalgam.

Proposition 5.4 (Maps in standard form are amalgams). If F is in
standard form with respect to a multicurve Γ , then F is an amalgam whose
core curves are isotopic to Γ .
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Proof: We proceed by brutally verifying the axioms one by one. For an
overview of this process, see the discussion at the beginning of §2.

Definition of S0,S1,A0,A1,U , C. We set A0 = �iAa0,i
and A1 = �jAa1,j

as
before. Let C = A0 −A1 and index the connected components Cc by elements
c ∈ C. Let S0 = S2 −A0, and let X denote the set of connected components
of S0. Set S0(x) to be the xth connected component of S0. Finally, let S1
denote the union of those connected components of F−1(S0) satisfying the
following two properties: it is contained in some component S0(x), and its
boundary contains ∂S0(x).

Lemma 5.5. The inclusion map S1 ↪→ S0 induces a bijection between the
components of S1 and those of S0.

Proof: Injectivity is clear, and surjectivity follows from F -invariance and the
extremal property (2) of the annuli in the definition of standard form [5.2].
��This lemma allows us to write S1(x) for the unique component of S1 which
is contained in S0(x), and whose boundary contains ∂S0(x).

Finally, we set U = S0 − S1, and index components Uu of U by the set U .

Definition of tree T . Let B1 denote the set of boundary components of A1,
and B0 those of A0. Observe that B0 ⊂ B1 and that B1−B0 consists precisely
of the set of boundary components of C.

We set T to be the tree whose set of vertices is X � U � B1 and whose
edges are defined as follows:

• First, given u ∈ U , we have ∂Uu ⊂ S1(x) for a unique x ∈ X. We join x
and u by an edge.

• Next, given c ∈ C, we have ∂Cc = b−1 � b+1 for components b−1 , b
+
1 of ∂A1.

We join b−1 and b+1 by an edge and label this edge with c.
• Then, given x ∈ X, ∂S0(x) ⊂ ∂A0 = B0. We join each b0 ∈ ∂S0(x) to x

by an edge.
• Finally, we join two elements of B1 by an edge if the corresponding bound-

ary components of A1 together bound an annulus Aa1,j in A1. We label
this edge with a1,j .

With this definition, it is straightforward to verify that the Valence and Ad-
jacency Axioms (Axioms 1,2) are satisfied.

Having now in hand the tree T , we set A0, A1 as in the definition of a
mapping tree given in §2.1. We will need

Lemma 5.6. For each annulus Aa0,i ∈ A0, F |Aa0,i is an unbranched cover-
ing, and the image F (Aa0,i

) is disjoint from F (Q). Hence, for c ∈ C, F |Cc is
a proper unbranched covering, and the image F (Cc) is disjoint from F (Q).

Note that this is not obvious–although ∂Aa0,i is made up of preimages,
Aa0,i need not a priori be a preimage of an annulus.
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Proof: Let b−0 , b
+
0 denote the boundary components of Aa0,i . Since Aa0,i∩Q =

∅, and Q is an embellishment, Aa0,i
contains no critical points. It follows that

F (b−0 ) �= F (b+0 ). So F (b−0 )∪F (b+0 ) bounds an annulus, call it B. Equip b−0 , b
+
0

with the orientation induced from Aa0,i , and push these orientations down
to orientations on F (b−0 ), F (b+0 ). The extremal condition (2) on ∂A0,i in the
definition of standard form [5.2] implies that these orientations agree with the
orientations induced by B. Now suppose B contains a point p ∈ F (Q). Choose
arbitrarily o ∈ ∂B and a path α : [0, 1]→ B from o to p whose interior avoids
F (Q). Lifting α based at õ ∈ ∂Aa0,i , we obtain a path α̃ in A0,i terminating
at a point of F−1(F (Q)) = Q. This is impossible since Aa0,i

∩ Q = ∅ by
construction. So B∩F (Q) = ∅. It follows that F |Aa0,i

is proper. Since a proper
local homeomorphism is a covering map, the first statement of the Lemma is
proved. The second follows immediately since boundary components of Cc are
preimages of curves. ��

A similar argument, using the fact that boundary components of U are
inessential or peripheral rel Q and the fact that Q = F−1(F (Q)), establishes

Lemma 5.7. For each Uu ∈ U , F |Uu is a proper branched covering which is
ramified at a maximum of one point in the interior of Uu. Furthermore, the
image F (Uu) contains at most one point of F (Q).

Definition of map f : T → T . We first define T on the vertices of T .
Using Lemma 5.5, for x ∈ X we set f(x) = y if F (S1(x)) = S0(y). Consider

now b1 ∈ B1. By definition b1 is a boundary component of A1 and hence
F (b1) is a boundary component b0 of A0; we set f(b1) = b0. Next consider a
component Uu of U . It is a disk bounded by a single boundary component β
of some component S1(x). Thus F (β) is a boundary component of S0(f(x)),
i.e. is some b0 ∈ B0. We then set f(u) = b0.

It remains to extend f over edges of T . It is straightforward to verify
that the images of any pair of distinct, adjacent vertices is a pair of distinct
vertices. Since any two vertices in a tree are joined by a unique path, there
is an essentially unique way to extend f over the edges of T such that f is
continuous and the restriction of f to edges is a homeomorphism; this verifies
Axioms A–3, #s 1,2,3. The remaining axioms A–3 #s 4,5 follow from Lemma
5.6.

Degree function. We set the degree function deg in the obvious way, namely

• deg(x) = deg(F |S1(x)→ S0(f(x)))
• deg(b1) = deg(F |b1 : b1 → F (b1))
• deg(u) = deg(F |β : β → F (β)) where β = ∂Uu.

The first Local Homogeneity Axiom (Axiom A-4 #1(a)) then follows from
the fact that F |S1(x) : S1(x) → S0(f(x)) is a ramified covering map, and
the second (Axiom A-4 #1(b)) from Lemma 5.6. The Global Homogeneity
Axioms (Axioms A–4 # 2) follow immediately from the definition of the degree
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function, Lemmas 5.6 and 5.7, and the fact that F is a branched covering of
degree d.

Orientations. We equip the annular edges a0,i of A0 with arbitrarily chosen
orientations, and use this to define the signed degree function δ.

Sphere maps. For each x ∈ X, let S(x) = S2 be the domain (and range)
of F . We emphasize that S(x) is not constructed as an abstract manifold
by gluing disks onto components of S0(x). Let B(x) = S(x)− S0(x) and set
B = ∪xB(x); this is a collection of disks.

Equip each disk in B with a preferred center point z in its interior, so
that Bz refers to the unique disk with center z. The points in Z are not quite
chosen arbitrarily: if b = ∂Bz = ∂F (Uu) then by Lemma 5.7 above, the disk
F (Uu) = Bz contains at most one point of F (Q). If such a point exists, we
choose it to be the center, and denote the resulting collection of determined
points by Zdet. If no such point exists, we choose arbitrarily a center point
z of F(Uu), and denote the resulting collection of exceptional points whose
locations are not canonically determined by Zexc.

Set Z = Zexc � Zdet, Q = Q, Y = Q � Z, and S = �xS(x). Then
S = S2 × X is a union of spheres and S0,S1 may be canonically identified
with subsets of S.

At this point we have a proper map FS |S1 : S1 → S0 given by the restric-
tion of F to S1. We need to extend this map to S. In fact, we have a bit more:
for each x ∈ X, the map F restricts to a (non-proper) map

FS |S0(x) = F |S0(x) : S0(x)→ S(f(x)),

i.e. in addition FS is already defined on U . It remains therefore to extend FS
over B.

Given z ∈ Z, ∂Bz ⊂ ∂S0 ⊂ ∂S1 and so F (∂Bz) ⊂ ∂S0 = ∂B is a boundary
component of another disk in B whose center we denote (abusing notation)
as FS(z). We then “radially” extend the map FS : ∂Bz → ∂BFS(z) to a map
(Bz, z)→ (BFS(z),FS(z)) which is a covering ramified only at z and of local
degree equal to that of the degree on the boundary.

Since the modification of G to F in Proposition 5.3 can be taken to be away
from Q, and FS = F near any accumulation points of Q = Q, the Tameness
Axiom A–8 is satisfied. The Standard Form Axioms A–7 are also satisfied;
verification of A–7#4 follows from F -invariance of Γ0. The projection map
πS can be then defined as follows: project the disks B to B0, the disks U to
U , and extend continuously to obtain a projection of S onto the mapping tree
T . The Covering Axioms A–9 #s 1–4 are then satisfied.

At this point we need to verify the Embellished Axiom A–6.

Lemma 5.8. The map
FS : (S,Y)→ (S,Y)

is an embellished branched covering.
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Proof: The set Y is clearly closed, forward-invariant, and contains the critical
points of FS . Thus it suffices to prove that (FS)−1(Y) = Y. The containment
⊃ is trivial. To prove the other direction, let y ∈ (FS)(Y).
Case 1: y ∈ Q. Since Z is forward-invariant under FS , and since FS(Q∩U) ⊂
Z, we must have that y ∈ FS(Q − Q ∩ U). Hence y ∈ FS(S1 ∩ Q). By
construction Q = Q and FS |S1 = F |S1, hence y ∈ F (S1∩Q). Thus y ∈ F (Q).
Also, y ∈ S0. By construction (FS)−1(S0) = S1, and so (FS)−1(S0) = S1.
Hence (FS)−1(y) ⊂ F−1(F (Q)) = Q = Q, since F : (S2, Q) → (S2, Q) is
embellished. Therefore (FS)−1(y) ⊂ Q ⊂ Y.
Case 2: y ∈ Z. Then any preimage p of y under FS which is not a priori in
Y lies in a disc Uu for which Uu ∩Q = ∅.

Now, if y = FS(q), some q ∈ Q, then F (Uu) must contain a point of F (Q).
Since F : (S2, Q)→ (S2, Q) is embellished, F−1(F (Q)) = Q, and so Uu must
contain a point of Q. Hence we may assume that y �∈ FS(Q).

Fig. 5.1. If F (Uu) contains no points of F (Q), then f : T ′ → f∗(u) is a homeomor-
phism.

In this case, there exists z ∈ Z such that FS(z) = y. In terms of the
original map F , this corresponds to the following situation: there exist u ∈ U ,
x, x′ ∈ X, and b′0 ∈ B0 such that f(x) = f(x′), f(u) = f(b′0), u ∈ S1(x), and
b′0 ∈ S0(x′); see Figure 5.1. We claim that the image subtree f∗(u) contains
the image under f of at least one x vertex corresponding to a component
S0(x) for which S0(x)∩Q �= ∅. To see this, suppose otherwise. Then the disk
F (Uu) contains in particular no critical values of F , hence all components of
its preimages are disks mapping homeomorphically under F . In particular,
the disk D in S2 bounded by the component of ∂S0(x′) lying above b′0 maps
homeomorphically to F (Uu) and lies over a corresponding maximal subtree
T ′ bounded by b′0 mapping homeomorphically to f∗(u) under f . By Covering
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Axiom A–9 #4, the disk D must contain elements of Q. Hence F (D) = F (Uu)
must contain points of F (Q), and we are in the case treated by the previous
paragraph. ��
Annulus maps. Set

FA = F|A1 : A1 → A0.

Choose arbitrarily a direction-preserving identification of A0 with A× A0 so
that the map on F : ∂A0 → ∂A0 is given as in the Standard form axiom
A–12 for annulus maps. For each annular edge a0,i ∈ A0, choose a direction-
preserving identification of a0,i with [−1, 1]. To define a projection, let π :
A0 → �A0a0 be the map which forgets the radial coordinate.

The Subannuli Axiom A–10 follows since each annulus in A1 is essential
in A0. The Covering Axiom A–11 follows easily as well.

Topological gluing data. Since, as a subset of the original sphere S2 we
have ∂S0 = ∂A0, we have a preferred topological gluing ρ : ∂B → ∂A0 giving
a conjugacy between boundary values.

Critical gluing data. Suppose q ∈ Q maps to z ∈ Z under FS . Since
Q = Q and F (Q) ⊂ Q, we obtain a correspondence q �→ FS(q) = z ↔ F (q) ∈
Q. In this way, we the critical gluing data

κ : Q∩ F−1(Z)→ Q

defined by κ(q) = F (q) for q ∈ Q ∩ F−1(Z) is uniquely determined by F .
The resulting mapping scheme is then canonically isomorphic to that of F
on Q, hence the Topological Compatibility Axiom A–14 is satisfied. Finally,
Topological Compatibility Axiom A–13 follows from invariance of Γ0 and the
definition of κ given above.

Gluing and extending. Gluing is done in the obvious way using the map ρ.
Given F , for the missing annulus maps one may take FC = F |C. The missing
disk maps FU were already defined by restricting F to U .

This completes the verification of the axioms, and the proof of Proposition
5.4. ��

Thus, an embellished branched covering F : (S2, Q) → (S2, Q) in stan-
dard form with respect to an invariant multicurve Γ0 ⊂ S2 −Q is indeed an
amalgam.

5.4 Proof of Decomposition Theorem

Most of the statements follow directly from the construction in the previ-
ous subsection. Statement 2(a) warrants a brief discussion. First, given two
different standard forms F, F ′ for the same pair (G,Γ ), it is easy to show
that the resulting mapping trees T,T′ are canonically isomorphic. The only
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arbitrary choices are in the dynamics function, which is only defined up to
postcomposition with vertex-fixing homeomorphisms anyway. Similarly, given
a combinatorial equivalence of pairs (G,Γ ) → (G′, Γ ′) and standard forms
F, F ′, there is an induced isomorphism between the corresponding mapping
trees T,T′. ��
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Uniqueness of decompositions

6.1 Statement of Uniqueness of Decompositions
Theorem

Recall that two pairs, each consisting of an embellished map of spheres and an
invariant multicurve, are combinatorially equivalent if there is a combinatorial
equivalence between them sending one multicurve to the other, up to isotopy.

Theorem 6.1 (Uniqueness of Decomposition). Let G : (S2, Q)→ (S2, Q)
be an embellished branched cover and Γ an invariant multicurve. Let F :
(S,Y) → (S,Y) be a decomposition of G along Γ . Then the combinatorial
class of F is determined by the equivalence class of pairs (G,Γ ).

Given G : (S2, Q)→ (S2, Q) and an invariant multicurve Γ0, the construc-
tion of a standard form F depends on a choice of annuli A0 and on the choice
of homeomorphism h for which F = G ◦ h and h � id relative to Q. Further-
more, the construction of the map of spheres F : (S,Y)→ (S,Y) depends on
these choices, and on others. Hence the conclusion of the theorem is indeed
non-obvious.

The proof will be similar in spirit to the proof of the Uniqueness of Com-
binations Theorem [6.1]: by applying conjugacies we will reduce to the case
when the structure data and boundary values are fixed. The conclusion will
follow by an appeal to the Tameness Restriction # 2, §1.9.

6.2 Proof of Uniqueness of Decomposition Theorem

Let G : (S2, Q)→ (S2, Q) and G′ : (S2, Q′)→ (S2, Q′) be embellished maps.
Let Γ, Γ ′ be multicurves invariant under G,G′, respectively. Suppose the pair
(G,Γ ) is combinatorially equivalent to (G′, Γ ′). Let F = G◦h and F ′ = G′◦h′
be standard forms of G,G′ with respect to Γ, Γ ′ having sets of annuli A0,A′0,
respectively. Let FS : (S,Y) → (S,Y) be the embellished map of spheres

K.M. Pilgrim: LNM 1827, pp. 79–81, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



80 6 Uniqueness of decompositions

produced by decomposing F along A0, using any set of choices, and similarly
define FS′

: (S ′,Y ′)→ (S ′,Y ′).
Suppose h0, h1 : (S2, Q) → (S2, Q′) yield a combinatorial equivalence

between (G,Γ ) and (G′, Γ ′). Set H0 = h0 and H1 = (h′)−1 ◦ h1 ◦ h. Then
H0, H1 : (S2, Q)→ (S2, Q′) form a combinatorial equivalence between F and
F ′.

Let S0 = S2 − A0 and S ′0 = S2 − A′0. Let S1,S ′1 be the subsets of S0,S ′0
as defined in §5.3, regarded for now as subsets of S2. Then H0(S1) and S ′1 are
ambiently homeomorphic via a map isotopic to the identity rel Q′, hence by
Tameness Restriction #3 there exists a tame homeomorphism H : (S2, Q′)→
(S2, Q′) isotopic to the identity rel Q′ sending H0(S1) onto S ′1.

Set ψ0 = H ◦ H0 : (S2,S1, Q) → (S2,S ′1, Q′) and lift ψ0 under F, F ′

to obtain a map ψ1 : (S2, Q) → (S2, Q′) such that the pair (ψ0, ψ1) is a
combinatorial equivalence between F and F ′; this is possible since H ◦H0 is
isotopic to H0 rel Q. Then

F ′ = ψ0 ◦ F ◦ ψ−1
1

and so

F ′′ = ψ−1
0 ◦ F ′ ◦ ψ0 = F ◦ ψ−1

1 ◦ ψ0 = G ◦ (h ◦ ψ−1
1 ◦ ψ0)

is a map topologically conjugate to F ′. Furthermore, F ′′ is a standard form
of G with respect to Γ . To see this, note first that by construction F ′′ is
obtained by precomposing G with the map h ◦ ψ−1

1 ◦ ψ0 which is isotopic
to the identity rel Q. Next, ψ0 carries S1 to S ′1 by construction, hence in
particular ψ0 : A0 → A′0. Since F ′ has associated annuli A′0, the conjugate
F ′′ therefore has associated annuli ψ−1

0 (A′0) = A0.
Recall that FS′

denotes the map of spheres produced from F ′ as in the
Decomposition Theorem [5.1], using any set of choices. The Decomposition
Theorem is natural in the following sense: since we identify S ′ with copies of
the domain S2 of F ′, as opposed to an abstract manifold, a choice of map of
spheres FS′

produced using F ′ and a homeomorphism ψ0 conjugating F ′ to
F ′′ induces a topological conjugacy

ψS0 : S ′ → S ′′

between the map of spheres FS′
and another map of spheres denoted FS′′

which is produced from F ′′ using a set of choices which is uniquely determined
by F ′ and ψ0.

Putting the previous two paragraphs together, we have established that
any choice of map of spheres FS′

produced using F ′ is tamely topologically
conjugate, hence combinatorially equivalent, to a map of spheres FS′′

pro-
duced using a map F ′′ which is topologically conjugate to F ′, and for which
the surface S ′′1 coincides with the surface S1 of F .

It therefore suffices to prove
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Proposition 6.2. Suppose F, F ′ are standard forms of a single map G with
respect to a multicurve Γ , with the property that the surfaces S1,S ′1 coincide.
Let FS ,FS′

be the associated sphere maps as in the Decomposition Theorem
[5.1], produced using any set of choices. Then FS and FS′

are combinatorially
equivalent.

Let F, F ′ and FS ,FS′
be as in the above Proposition 6.2. Note that now

S = S ′ and S1 = S ′1.

Proposition 6.3. There is a one-parameter family of maps

F t : (S,Y)→ (S,Yt), t ∈ [0, 1]

such that

1. F t|Q = idQ, all t
2. F0 = FS
3. F1|S1 = F ′|S1.
4. the subsets Yt vary (tamely) isotopically in S2

Proof: Since F = G ◦ h and F ′ = G ◦ h′ where h, h′ are (tamely) isotopic to
the identity rel Q, we have F = F ′ ◦H where H = (h′)−1 ◦h is isotopic to the
identity rel Q. Let Ht be such an isotopy, with H0 = idS2 and H1 = H. Note
that while Ht(S1) may vary, H0(S1) = H1(S1) = S1. As before the maps Ht

induce homeomorphisms HSt : S → S. We set

F t = FS ◦ H−1
t : S → S.

By construction, (1)–(4) hold. ��
Proof of Prop. 6.2 and conclusion of proof. Since FS = F0 and F1 are
joined by a path in which the marked sets Yt vary isotopically, FS and F1 are
combinatorially equivalent by Tameness Restriction #2. To prove Proposition
6.2 it therefore remains only to prove that FS′

and F1 are combinatorially
equivalent.

The two maps agree on S1, whose complement is a union of disks with
preferred, possibly different centers as the only possible ramification points;
the possibility of varying centers occurs when Zexc is nonempty. It follows
easily that FS′

and F1 are combinatorially equivalent, by precomposing with
a homeomorphism isotopic to the identity rel ∂S1 so as to arrange that the
centers are the same, and then applying the Alexander Trick; cf. the proof of
Proposition 4.7.

Thus, F and F ′ are combinatorially equivalent, hence Proposition 6.2 and
the Uniqueness of Decompositions Theorem are proven. ��
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Counting classes of annulus maps

7.1 Statement of Number of Classes of Annulus Maps
Theorem

Fix a mapping tree T, and let A0,A1 be as in the definition of a map of annuli
over T (§2.3). Here, we bound the number of combinatorial classes of annulus
maps.

To set up the statement, recall that A0, A1 are annular edges and edges of
T , respectively, which lie below components ofA0 andA1 under the projection
πA. By abuse of notation, we set

A0 = {1, 2, ..., i, ..., n0}

A1 = {1, 2, ..., j, ..., n1}.

The dynamics function f : T → T determines a map (also denoted f)

f : A1 → A0

given by
f(j) = i if f(a1,j) = a0,i.

In addition we have a surjection

ε : A1 → A0

given by
ε(j) = i if a1,j ⊂ a0,i

i.e. if the annular edges satisfy a1,j ⊂ a0,i (recall the definition given in §2.1).
Recall that in addition, we have a signed degree function
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δ : A1 → Z− {0}.

Define matrices L,M, (ε) by

Lii =
{

lcm{|δ(j)| | f(j) = i} if f−1(i) �= ∅
1 otherwise

Mji =
{ Lii

|δ(j)| if f(j) = i

0 otherwise

and

(ε)ij =
{

1 if ε(j) = i
0 otherwise

Theorem 7.1 (Number of classes of annulus maps). There is a bijec-
tion between the set of combinatorial classes of annulus maps over T and the
elements of the quotient group

Z
A0/(L− (ε)M)ZA0 .

In particular, this set is finite if and only if the matrix

NT = (ε)ML−1

does not have one as an eigenvalue.

The matrix NT is the matrix of the Thurston linear map (FΓ ) of any amalgam
produced using T; see Proposition 3.6. The equality NT = (ε)ML−1 is part
of the conclusion of the theorem.

7.2 Proof of Number of Classes of Annulus Maps
Theorem

7.2.1 Homeomorphism of annuli. Index.

Homeomorphism of annuli. Index. We denote by G the space of all home-
omorphisms g : A→ A such that g|∂A = id, endowed with the uniform topol-
ogy, and by G0 the subspace of maps isotopic to the identity through maps
which are the identity on the boundary. There is a split exact sequence

1→ G0 → G
π−→←−
σ

Z→ 0

where the map π may be described as follows. Identify the ends of the annulus
to form a torus. The induced map on the fundamental group of this torus is
a matrix of the form
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(g∗) =
(

1 π(g)
0 1

)

where the integer π(g) represents the number of times the image of the longi-
tude wraps around the torus in the meridional direction. A section σ is given
by

σ(n) = (s, t) �→ (s+ nt, t)

i.e. by the nth power of a standard Dehn twist. Thus, indices characterize
isotopy classes (relative to the boundary) of self-homeomorphisms of annuli
which are the identity on the boundary. The index is additive in the sense
that if an annulus A0 is the union of two subannuli A1, A

′
1 along a common

boundary component, and if g1, g′1 are two homeomorphisms from A1, A
′
1 to

A1, A
′
1 which are the identity on the boundary, then the index of the homeo-

morphism of A0 to itself obtained by gluing together g1, g′1 is the sum of the
indices of g1, g′1.

7.2.2 Characterization of combinatorial equivalence by group
action.

The set of all annulus maps lying over T forms a topological space E , using the
uniform topology. There is a preferred basepoint FA0 sending the jth annulus
of A1 to its image via

(s, t) �→ (δ(j)s, sgn(δ(j))t).

Let GA0 , GA1 denote the Cartesian products of |A0|, |A1| copies of G, re-
spectively, and let πA0 : GA0 → Z

A0 and πA1 : GA1 → Z
A1 be the homomor-

phisms obtained by applying π in each factor. Let

K = ker(πA0 × πA1 : GA0 × GA1 → Z
A0 ⊕ Z

A1)
= (G0)A0 × (G0)A1

The group GA0 × GA1 acts transitively and faithfully on E by

(g0, g1).FA = g0 ◦ FA ◦ g−1
1 .

Let H be the stabilizer of the basepoint FA0 under this action. Since the action
is transitive, the action of GA0×GA1 on E is isomorphic to the action of GA0×
GA1 on the set of cosets (GA0 × GA1)/H by left multiplication. Furthermore,
additivity of indices and the definition of combinatorial equivalence (Definition
4.4) show that FA,FA′ ∈ E are combinatorially equivalent if and only if
(g0, g1).FA = FA′

for some (g0, g1) ∈ D, where

D = {(g0, g1)|(ε)πA1(g1) = πA0(g0)}

and where (ε) is the matrix given previously. Clearly D ⊃ K. Note that since
D is the preimage of a subgroup of an abelian group under a homomorphism,
D is a normal subgroup of GA0 × GA1 .
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7.2.3 Reduction to abelian groups

Orbit equivalence.

Lemma 7.2. Suppose G acts transitively on a set E with stabilizer H. Let
π : G→ π(G) be an epimorphism with kernel K, and suppose D is a subgroup
of G containing K.

Then the action of the subgroup D on E = G/H descends to an action of
π(D) on π(D)/π(H), and the natural map E = G/H → π(G)/π(H) is a bijec-
tion between the set of orbits of D on G/H and that of π(D) on π(G)/π(H).

Proof: By transitivity, the action of G on E is isomorphic to the action of G
on G/H by left multiplication. Since π is an epimorphism, the map G/H →
π(G)/π(H) is a surjection. Together with π, this defines an epimorphism
between the actions of G on G/H and π(G) on π(G)/π(H). By restricting
to D we obtain similarly an epimorphism between the actions of D on G/H
and π(D) on π(G)/π(H). Thus the map G/H → π(G)/π(H) sends D-orbits
surjectively to π(D)-orbits and is a surjection on the set of orbits.

We claim in fact that this map between sets of orbits is injective. For
suppose π(D)π(g)π(H) = π(D)π(g′)π(H). Then DgH = KDg′H. But by
hypothesis K ⊂ D, so DgH = Dg′H. ��

Applying Lemma 7.2 with G = GA0×GA1 , H = H, K = K, π = πA0×πA1 ,
and E = E , we see that the set of combinatorial equivalence classes of elements
of E is in bijective correspondence with the orbits of π(D) < Z

A0⊕Z
A1 acting

by (left) addition on the set of cosets (ZA0 ⊕ Z
A1)/π(H).

7.2.4 Computations and conclusion of proof

Lemma 7.3. Let δ ∈ Z−{0} and suppose FA : A→ A is given by FA(s, t) =
(δs, sgn(δ)t). If g0, g1 ∈ G and g0 ◦ FA = FA ◦ g1, then sgn(δ)π(g0) = δπ(g1).

Proof: The maps g0 ◦ FA and FA ◦ g1 induce maps of the torus obtained by
identifying the boundary components. With respect to the standard basis of
the torus, functoriality of induced maps on fundamental groups yields

(g0 ◦ FA)∗ =
(
δ π(g0)
0 sgn(δ)

)

and

(FA ◦ g1)∗ =
(
δ δπ(g1)
0 sgn(δ)

)

.

��
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Lemma 7.4. We have

(πA0 × πA1)(H) = col
(
L
M

)

where the right-hand side is the subgroup of Z
A0 ⊕ Z

A1 generated by the
columns of the indicated matrix.

Proof: Suppose (g0, g1) ∈ GA0 × GA1 . Set y = πA0(g0) = (y1, ..., yi, ..., yn0)
and x = πA1(g1) = (x1, ...xj , ..., xn1). Then Lemma 7.3 implies that (y, x) ∈
(πA0 × πA1)(H) if and only if

sgn(δ(j)) · yf(j) = δ(j) · xj for all j = 1, ..., n1

which is equivalent to

yf(j) = |δ(j)| · xj for all j = 1, ..., n1.

The solution set of these equations (over the integers) has a basis equal to the
columns of the block matrix (

L
M

)
A0
A1

Here, the rows correspond to the indicated subsets. The matrix L has |A0|
rows and columns, is diagonal, and has all diagonal entries nonzero. M has
|A1| rows and |A0| columns,

Lii =
{

lcm{|δ(j)| | f(j) = i} if f−1(i) �= ∅
1 otherwise

and

Mji =
{ Lii

|δ(j)| if i = f(j)
0 otherwise

��

Lemma 7.5. We have

(πA0 × πA1)(D) = col
(

(ε)
I

)

.

Proof: This follows directly from the definition of D. ��
Conclusion of proof: Since the ambient group is abelian, the orbits of the
action of (πA0 ×πA1)(D) on the quotient (ZA0 ⊕Z

A1)/(πA0 ×πA1)(H) is thus
the quotient of Z

A0 ⊕ZA1 by the group generated by the columns of the two
matrices
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(
L
M

)

and
(

(ε)
I

)

.

i.e. by the columns of the matrix
(
L (ε)
M I

)

.

Elementary row and column operations performed over the integers will not
change the isomorphism type of the quotient. Thus, the quotient is isomorphic
to

Z
A0/(L− (ε)M)ZA0

and this proves the first part of Theorem 7.1.
To prove the last statement, notice that the quotient is infinite if and only

if L − (ε)M is singular as a real matrix. Since L is invertible over the reals,
this occurs if and only if I − (ε)ML−1 is singular, i.e. if and only if (ε)ML−1

has one as an eigenvalue. Simply applying the definitions of (ε),M,L and
multiplying shows that

((ε)ML−1)ij =
∑

ε(k)=i
f(k)=j

1
|δ(k)| = (NT)ij .
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Applications to mapping class groups

Our methods also shed light on certain combinatorial automorphisms of
branched coverings. In this section, we use throughout the notation of §7.

8.1 The Twist Theorem

Definition 8.1 (Combinatorial automorphisms. Mapping class group.).
Let G : (S2, Q) → (S2, Q) be an embellished branched covering and Γ0 ⊂
S2−Q a G-invariant multicurve. The group of combinatorial automorphisms
of G, denoted Mod(G), is the set of pairs (h0, h1) of homeomorphisms for
which (h0, h1) yield a combinatorial equivalence from G to itself. The mapping
class group of G is the quotient of the combinatorial automorphism group
by the equivalence relation (h0, h1) ∼ (h′0, h

′
1) if h0 and h1 are respectively

isotopic to h′0 and h′1 through tame homeomorphisms fixing Q.

Note that when Q is finite, the map sending (h0, h1) to h0 descends to an
embedding of Mod(G) into the classical mapping class group Mod(S2, Q)
consisting of orientation-preserving homeomorphisms of S2 sendingQ to itself,
modulo isotopy.

Remark: According to M. Rees, the mapping class group of G is isomor-
phic to the fundamental group of B, where B is a space of maps which are
combinatorially equivalent to G (in a sense similar to that given here). In
particular, G is combinatorially equivalent to a rational map if and only if B
is contractible. See [Ree5], §6.3.

Theorem 8.2 (Twist Theorem). Let G : (S2, Q) → (S2, Q) be an embel-
lished branched covering and Γ an invariant multicurve. Let T be the mapping
tree determined by decomposing G along Γ and let A0, A1, L,M, ε be as in Sec-
tion §7.1.

K.M. Pilgrim: LNM 1827, pp. 89–94, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Then the mapping class group of G contains a subgroup Tw(G,Γ ) iso-
morphic to the intersection in Z

A0 × Z
A1 of the subgroups generated by the

columns of the matrices
(
L
M

)

and
(

(ε)
I

)

.

The group Tw(G,Γ ) is nontrivial if and only if the Thurston linear map
GΓ = NT = (ε)ML−1 has one as an eigenvalue. In this case, it is an infinite
free abelian group generated by powers of Dehn twists supported in the annuli
A0 and A1.

Note that the conclusion makes sense, since by the Uniqueness of Decom-
positions Theorem [6.1] the mapping tree T depends only on the equivalence
class of pair (G,Γ ) and not on any choices. Also, the above subgroup is ac-
tually isomorphic to an analogous mapping class group for annulus maps; see
§8.2.1.

8.2 Proof of Twist Theorem

8.2.1 Combinatorial automorphisms of annulus maps

Definition 8.3 (Combinatorial automorphisms of annulus maps). Let
FA ∈ E be a map of annuli over T. A combinatorial automorphism of FA is
a pair (g0, g1) ∈ GA0 × GA1 such that (g0, g1).FA = FA and (g0, g1) ∈ D.

The set of combinatorial automorphisms of FA therefore form a group
under composition. Since GA0×GA1 acts transitively on E and D is normal, the
combinatorial automorphism groups of any two elements FA are conjugate.
We define the mapping class group of FA to be the image under πA0 × πA1

of the group of combinatorial automorphisms of FA. Thus, the isomorphism
class of mapping class group depends only on E , so that we may speak of the
mapping class group MCG(E) of E .

Lemma 8.4. Up to isomorphism,

MCG(E) = (πA0 × πA1)(H ∩D)
= (πA0 × πA1)(H) ∩ (πA0 × πA1)(D)

= col
(
L
M

)

∩ col
(

(ε)
I

)

.

Proof: The first equality follows directly from the definition of the map-
ping class group, using the basepoint FA0 whose stabilizer is H. The second
inequality is a consequence of the general fact that if φ : G → G′ is a ho-
momorphism with kernel K, and if H and D ⊃ K are subgroups of G, then
φ(H ∩D) = φ(H)∩ φ(D). The third follows from the second and the compu-
tations of the images of H and D. ��
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Lemma 8.5. The following conditions are equivalent:

1. E has finitely many equivalence classes
2. NT does not have one as an eigenvalue
3. the mapping class group of E is trivial.

Proof: Equivalence of the first two conditions follows from Theorem 7.1.
Suppose the second condition holds. The proof of Theorem 7.1 shows that
this holds if and only if the matrix

(
L (ε)
M I

)

has full rank equal to |A0|+ |A1|. The matrices
(
L
M

)

and
(

(ε)
I

)

have rank |A0| and |A1| respectively. Thus, (2) is equivalent to the condition
that the subgroups generated by the columns of the two matrices above have
trivial intersection, i.e. (πA0 × πA1)(H) ∩ (πA0 × πA1)(D) is trivial. By the
previous Lemma, this is equivalent to triviality of the mapping class group.
��

8.2.2 Conclusion of proof of Twist Theorem

A combinatorial equivalence (h′0, h
′
1) between maps G,G′ induces an iso-

morphism between their combinatorial automorphism groups by sending
(h0, h1) �→ (h′0 ◦ h0 ◦ (h′0)

−1, h′1 ◦ h1 ◦ (h′1)
−1) which descends to an isomor-

phism between mapping class groups. Therefore, it is enough to show that
some representative of G has the indicated properties.

By the Decomposition Theorem [5.1], G is combinatorially equivalent to
an amalgam F = F (FS ,FC ,FA). By the Unwinding Trick (Proposition 4.10)
and Corollary 4.12, there exist FC′′

such that F ′′ = F (FS ,FC′′
,FA) is in sim-

ple form with respect to F . Given any pair of homeomorphismsHA0 : A0 → A0
andHA1 : A1 → A1 which yield combinatorial automorphisms of FA, the proof
of the Uniqueness of Combinations Theorem [4.5] shows that the extension
H0 of HA0 by the identity over S0 lifts under F and F ′′ to a homeomorphism
H1 such that (H0,H1) is a pair giving a combinatorial equivalence from F to
F ′′. Thus we have a function from the group of combinatorial automorphisms
of FA to the set of combinatorial equivalences from F to F ′′. Choosing arbi-
trarily a basepoint equivalence, we may identify the set of equivalences from F
to F ′′ with the combinatorial automorphism group of F so that this function
is a homomorphism. It descends to a homomorphism from the mapping class
group of annulus maps E to the mapping class group of F . By construction, it
is generated by powers of Dehn twists along the annuli in A0. Since the annuli
in A0 are nonperipheral, this homomorphism is injective. Thus, the mapping
class group of E embeds into that of F , and the theorem follows from the
Lemmas in the previous subsection. ��
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8.3 When Thurston obstructions intersect

The Twist Theorem [8.2] sheds light on what happens when Thurston ob-
structions intersect. For simplicity, we restrict our attention to a map of a
single sphere G : (S2, Q)→ (S2, Q) for which Q is finite.

8.3.1 Statement of Intersecting Obstructions Theorem

We shall need some basic facts from the theory of nonnegative square matri-
ces; see ([Gan], Volume 2, ch. XIII). Such a matrix A always has a largest
nonnegative (or leading) eigenvalue λ(A) equal to its spectral radius.

Irreducible matrices. A nonnegative n-by-n matrix A is called irreducible
if no permutation of the indices places it in block lower-triangular form. In
this case, given i, j there exists q with 0 ≤ q ≤ n such that (Aq)i,j �= 0. By
Frobenius’ Theorem, A has a positive eigenvalue λ(A) equal to its spectral
radius, and up to scale, there is exactly one positive eigenvector corresponding
to λ(A).

Reducible matrices. By applying a permutation of the indices, A may be
assumed to be in the form







A11 0 ... 0
A21 A22 ... 0
... ... ... 0
As1 As2 ... Ass







where the blocks Ajj are irreducible. Moreover,

λ(A) = sup
j
λ(Ajj).

We shall need to consider linear transformations for multicurves Γ which
are not necessarily invariant. For an embellished branched map G : (S2, Q)→
(S2, Q) Define GΓ : R

Γ → R
Γ by the same formula. We say Γ is irreducible if

the matrix (GΓ ) is irreducible. Let Γ be a multicurve and A = (GΓ ). Let Γj

denote the set of indices (curves in Γ ) corresponding to the jth block in the
decomposition given in the previous subsection, so that Ajj = (GΓj ). We call
the Γj ’s the irreducible components of Γ . As sets, they are well-defined up to
permutations of the indices j.

Irreducible obstructions. In the same setting, we say that an irreducible
multicurve Γ for G is an irreducible Thurston obstruction if its leading eigen-
value is at least one. Therefore, by the above results, any Thurston obstruction
contains an irreducible obstruction with the same eigenvalue.

Intersection numbers. Given simple closed curves α, β ∈ S2 − Q their
intersection number is
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α · β = inf{#α′ ∩ β′|α′ � α, β′ � β}

where � denotes free homotopy in S2 − Q. The intersection number of mul-
ticurves Γ1 · Γ2 is defined by extending (bi)linearly. Note that in particular
Γ1 · Γ2 = 0 if and only if up to homotopy either Γ1 = Γ2 or Γ1 ∩ Γ2 = ∅.

Theorem 8.6 (Intersecting Irreducible Obstructions). Suppose
G : (S2, Q) → (S2, Q) is an embellished branched covering with Q finite,
and Γ1, Γ2 are two irreducible obstructions. If Γ1 · Γ2 �= 0 then the leading
eigenvalues of Γ1 and Γ2 are both equal to one.

For explicit examples, see [DH3], Example 3, pp. 295-6.
Proof: While it seems likely that a direct combinatorial proof can be given,
we prefer to make use of the connection between GΓ and the growth of moduli
of annuli when one tries to realize G analytically. We shall freely exploit the
facts from conformal geometry in [DH3].

We consider the induced map σG on Teichmüller space considered by
Douady and Hubbard [DH3]. Fix a basepoint τ0 with underlying surface
X0 = P

1 −Q0 and let τn = σ◦nG (τ0) have underlying surface Xn = P
1 −Qn.

The hypothesis and the Grötzsch Inequality imply that for each γ in Γ1, Γ2,
there is a lower bound, independent of n, on the modulus of the largest em-
bedded annulus in Xn with core curve homotopic to γ. This implies that
the length of the unique geodesic on Xn homotopic to γ is bounded above
independent of n.

If the leading eigenvalue of, say, Γ1 is strictly greater than one, then the
irreducibility assumption implies that the moduli of annuli about each γ ∈ Γ1
on Xn tend to infinity. This implies that the length of each geodesic on Xn

homotopic into Γ1 tends to zero as n→∞.
However, a geodesic on a Riemann surface which intersects a short geodesic

on a Riemann surface must be long, by the well-known Collar Lemma. That
is, eventually, there are long geodesics homotopic to elements of Γ2 on Xn, a
contradiction.

��

8.3.2 Maps with intersecting obstructions have large mapping
class groups

The Twist Theorem (Thm. 8.2) and the Intersecting Irreducible Obstructions
Theorem (Thm. 8.6) have as an immediate consequence the following theorem,
which sheds light on what happens when obstructions intersect.

Theorem 8.7 (Intersecting obstructions yield large mapping class
groups). Let G : (S2, Q)→ (S2, Q) is an embellished branched covering such
that Q is finite. If Γ1, Γ2 are two irreducible obstructions with nonzero inter-
section number, then the mapping class group of G contains two distinct free
abelian subgroups, each generated by a collection of homeomorphisms which
have the form of powers of Dehn twists about elements of Γ1, Γ2, respectively.
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It is tempting to try to deduce, from the existence of a pair of intersecting
obstructions, the existence of an (up to isotopy) G-invariant subsurface S ⊂
S2 − Q such that G|S is a homeomorphism. This is the case of Douady and
Hubbard’s Example 3 mentioned above: the union of the curves β, α, δ3, δ4
constitute such a surface S.

However, the Lattès example, given in the next section, shows that this
need not always be the case.
Question: Under what conditions does the presence of two intersecting ob-
structions imply the existence of such an invariant subsurface S on which G
acts as a homeomorphism?

It seems likely that a sufficient condition is that the obstructions intersect
in a suitably complicated fashion.
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Examples

In this section, we give several examples. To make them concrete, and to
connect them with the geometric objects they are supposed to emulate, we
choose our examples from the theory of complex dynamical systems, though
this is not really essential and indeed many of the constructions could just as
easily be defined in the more general setting of branched coverings.

9.1 Background from complex dynamics

To explain our examples, we need to generalize the theory of holomorphic
dynamical systems from maps defined on a single copy of the Riemann sphere,
identified with P

1, to maps on multiple copies.

Definition 9.1 (Rational map of spheres). A map of spheres R : S → S
is rational if S is a disjoint union of copies of P

1 and the map R is holomor-
phic.

Periodic cycles and their multipliers, or eigenvalues, are defined just as for
the case when S is a single sphere. In particular, an attractor (repeller) of R is
a periodic cycle with multiplier λ with |λ| < 1 (> 1). A family of holomorphic
functions defined on a domain Ω ⊂ P

1 into S is normal if every sequence con-
tains a subsequence converging locally uniformly, where the spherical metric
is used on each component to measure the distance between image values.
The Fatou set of R is the subset of points w ∈ S for which the iterates of
R are normal near w. The Julia set of R is the complement of the Fatou
set. Since R need not be surjective, the Julia set need not coincide with the
closure of the repelling periodic points. The immediate basin of an attractor is
the union of the connected components of the Fatou set containing the points
in the attracting cycle. The grand orbit of w ∈ S is the set ∪n,mR−mRn(z).

Proposition 9.2 (Rational standard form). Let R : (S,Y) → (S,Y)
be an embellished rational map of spheres satisfying Embellished Axiom A–6.

K.M. Pilgrim: LNM 1827, pp. 95–103, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Suppose Z is contained in the grand orbit of a union of attractors. Then there
is a canonical embellished map of spheres F : (S,Y)→ (S,Y) combinatorially
equivalent to R and which satisfies the Standard Form Axioms A–7.

Proof: The images of Z under R stabilize under iteration to a union of at-
tracting cycles. Let {z0, z1, ..., zp−1} be one such attractor and Ω0, Ω1, ..., Ωp−1
its immediate basin. Since Z is finite and Q is closed, Q does not accumu-
late on Z. Hence there are no critical points of R which are not in Z and
which accumulate on but do not lie in Z. The “Critical points in the basin”
Theorem ([Mil4], Thm. 9.3) applied to R◦p at the point zi implies that for
each i, there exists a biholomorphic map φ : (Ωi, zi) → (∆, 0) such that
(φi(z))ω(zi) = φi+1 mod p(R(zi)) for all z ∈ Ωi, where ω(zi) is the local degree
of R near zi. In particular, the basins Ωi are open disks disjoint from Q.

Furthermore, the maps φi are unique up to postcomposition with multi-
plication by certain roots of unity. From this follows the existence of canon-
ical radial coordinates r on each basin Ωi such that R preserves the set
of radial lines. Let Bzi

be the closed disk in Ωi given by r ≤ 1/2 and let
B′zi

= (R|Ωi)−1(Bzi+1) (the constant 1/2 is arbitrary but fixed once and for
all). Then B′zi

⊃ Bzi
.

Let H : S → S be a homeomorphism which is the identity off outside
of a small neighborhood of ∪iB′zi

, which fixes the angular coordinates in Ωi,
and which sends Bzi

onto B′zi
. Then H is isotopic to the identity rel Y. It

is straightforword though tedious to write an explicit formula for H in these
radial coordinates which depends only on the set of local degrees ω(zi), and
so H is canonical. Then F = R ◦ H is combinatorially equivalent to R, and
the disks Bzi are permuted under F . If z ∈ Z satisfies Fr(z) = zi we set Bz

to be the unique component of F−r(Bzi
) containing z. In this way we obtain

a collection B of disks, and Standard Form Axioms A–7 #s 1,2,3, and 5 are
then satisfied.

To verify Axiom A–7 # 4, we first note that each Fatou component in the
grand orbit of a point in Z must be a disk. For otherwise, there is a critical
point with an infinite forward orbit accumulating at an attractor in Z, and
this is impossible. It follows that the radial coordinates defined above may
be pulled back to the Fatou components containing points in the grand orbit
of Z such that each such component Ω has a unique preferred center given
by its intersection with the grand orbit of Z. Hence each such component Ω
contains at most one point of Q. It follows easily from the construction of B
that Axiom A–7 #4 holds. ��

9.2 Matings

Matings. The simplest combinations are matings; see e.g. [Tan2]. Loosely,
mating is gluing together polynomials of the same degree along their actions on
the circle at infinity of the complex plane. Below, we interpret this construction
in our language.
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Let Ĉ± denote two disjoint copies of the Riemann sphere. Let R± : Ĉ± →
Ĉ± be two monic postcritically finite polynomial maps of the same degree
d. Set S = Ĉ− � Ĉ+ and let R : S → S be defined by applying R− on Ĉ−
and R+ on Ĉ+. Let Q = Q− � Q+ be the union of the full preimages of the
postcritical sets of R−, R+ in the finite plane, and let Z = {∞−,∞+} and
Y = Q � Z. Then R satisfies the hypotheses of Proposition 9.2 (see Axiom
A-7).

Let F be the canonical standard form of R. Note that B and its comple-
ment are both completely invariant under R, i.e. coincide with their grand
orbits. Hence S0 = S1 = S − B. Regard F as a map of spheres over the map-
ping tree T defined as follows. There are two vertices x−, x+, each of which
has degree d and a single boundary vertex b−, b+. The underlying tree T has
a single annular edge joining b− and b+ which we orient so that it points to
b+. The dynamics function f : T → T is the identity map. Then Axioms A–1
through A–9 are satisfied. We set FS = F|S0.

Let A0 be a single copy of the standard annulus. Let FA : A0 → A0 be
any degree d self-map of A0 satisfying Axioms A–10 through A–12.

We now glue these two maps together; see Figure 9.1. Choose arbitrarily
an orientation-reversing conjugacy ρ : ∂S0 → ∂A0 as the topological gluing.
Since B is completely invariant, there are no missing disks, and the Topo-
logical Compatibility Axiom A–13 is trivially satisfied. Axiom A–14 is also
satisfied. To see this, note that

∑

q∈Q− ω(q) = d − 1 =
∑

q∈Q+
ω(q), so that

∑

q∈Q=Q ω(q) = 2(d−1) and the Riemann-Hurwitz condition is satisfied. Also,
by the definition of Q±, Q± = R−1

± (R±(Q±)), hence each q ∈ Q± has exactly
d preimages, counted with multiplicity. Hence the amalgam F is well-defined.
We call such an amalgam a mating of R− with R+.

By construction this amalgam F depends only the topological gluing ρ
and the choice of the annulus maps FA. By the Uniqueness of Combinations
Theorem, the set of classes of matings then coincides with the set of maps
produced using a fixed topological gluing. How many such classes are there?
By Corollary 4.6 it is enough to count the number of classes of annulus maps
over T, given in Theorem 7.1. We have L = (d),M = (1), (ε) = 1, and
therefore there are

|Z/(L− (ε)M)Z| = |Z/(d− 1)Z| = d− 1

such classes.
This bound coincides with the count produced from the usual definition

of mating, where the polynomials are glued together using any one of the
d − 1 choices of orientation-reversing conjugacies between the actions of the
two polynomials on the circles at infinity. Any mating produced in this fashion
has an invariant multicurve consisting of a single curve mapping to itself by full
degree d. By the Decomposition Theorem [5.1], such a map is combinatorially
equivalent to an amalgam. Hence, the two definitions of mating yield precisely
the same set of resulting classes.
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Fig. 9.1. Mating.

9.3 Generalized matings

In this section, we generalize the mating construction.
Suppose R−, R+ : P

1 → P
1 are degree d−, d+ ≥ 2 endomorphisms with

fixed points z0
−, z

0
+ having the same local degree k ≥ 2 and which are isolated

points of the postcritical sets P−, P+. We wish to combine R−, R+ by “gluing
along boundaries of neighborhoods of z0

−, z
0
+”, much as we did for matings.

In this more general setting, however, the points z0
−, z

0
+ may have preimages

other than themselves.
To realize this in our setting, begin with the map

R− �R+ : P
1
− � P

1
+ → P

1
− � P

1

acting on two disjoint copies P
1
−,P

1
+ of P

1 onto itself. We will extend this
map, by adding new, disjoint spheres which are preperiodic, to a rational
embellished map of spheres

R : (S,Y)→ (S,Y)

having the same image P
1
− � P

1
+ as follows. We set

S = P
1 ×X, X = X− �X+

where X± = R−1
± (z0

±). The set Y will be

Y = R−1(P− � P+)

i.e. the full preimage, under R, of the union of the postcritical sets of R−, R+;
see Figure 9.2.

To define the extension on the copy of P
1 corresponding to, say, zi

− ∈
R−1
− (z0

−), choose arbitrarily two distinct points zi
− and qi

− in this copy of P
1.

Map this copy holomorphically, using a degree di
− = deg(R−, zi

−) map, such
that
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• zi
− �→ z0

+ by local degree di
−;

• qi
− �→ an element of P+ − {z0

+} by local degree di
−.

Repeat the construction for points in R−1
+ (z0

+). Then
∑

i d
i
− = d− − k and

∑

i d
i
+ = d+ − k.

Note that with this definition of R,

• the degree of R is d = k + d− − k + d+ − k = d− + d+ − k, and
• Y is the full preimage of the postcritical set P− � P+ of R.

Thus R : (S,Y)→ (S,Y) is an embellished map of spheres which is rational.
Furthermore, note that R is canonical: once the set-theoretic data of the
images of the zi

± and qi
± are specified, any two such R are holomorphically

conjugate.

Fig. 9.2. Generalized mating.

To begin the construction of the amalgam, let

Z± = R−1(z0
±), Q = Y − (Z− � Z+).

Then R : (S,Y)→ (S,Y) satisfies Embellished Axiom A–6, so that by Propo-
sition 9.2, there exists a canonical embellished map of spheres F : (S,Y) →
(S,Y) satisfying Axiom A–7. Let U ,B be as in Axiom A–7.
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Fig. 9.3. Generalized mating. Grey dots are U -vertices. Solid dots are X-vertices.
A solid oval containing vertices indicates a set of vertices which are ends of the tree
and are incident to a common X-vertex. If one of the qi

±’s is mapped to one of the
zj

∓’s then the picture is slightly less symmetric.

The mapping tree has degree d and vertices X,B0 = B1, U given by the
connected components of S,B,U , respectively, and edges joining

• x and b if and only if Bb ⊂ S(x),
• x and u if and only if Uu ⊂ S(x),
• b and b if and only if there exists zi

− ∈ Bb and zi
− ∈ Bb, or similarly with

sign +.

The sets C, C are empty.
The result looks schematically like Figure 9.3, and trivially satisfies Ax-

ioms A–1, A–2. The degree function is defined as the (unsigned) topological
degree on the corresponding connected component. There is then an essen-



9.4 Integral Lattès examples 101

tially unique way of defining the dynamics map f and projection maps πS

so as to satisfy Axiom A–3, and A–9(#s 1-3). The Local and Global Ho-
mogeneity Axioms (A–4) follow easily from the definitions and the fact that
d = d− + d+ − k. The Tameness Axiom A–8 holds by default.

At this point we pause to verify Axiom A–9, # 4. If x corresponds to, say,
the domain of R− and S0(x)∩Q = ∅ then every critical point of R− maps to
z0
−, which is impossible. So A–9, #4b holds. If the nonperipheral axiom A–9,

#4a fails for some x, then x is preperiodic, and the intersection of the image
of S0(x) under R with, say, P− consists of two points. This forces |P−| = 2.
Then R− is conjugate to w �→= wd− and by combining (naively) we don’t get
anything new. Hence we assume |P−|, |P+| > 2.

Choose orientations of annular edges A0 arbitrarily (Axiom A–5) and use
the data to choose annulus maps FA and projections πA satisfying Axioms
A–10 through A–12. Choose arbitrarily a topological gluing (in our present
notation, this induces the bijection zi

± ↔ zi
±; the signs “+” and “-” have been

already used for different purposes).
The critical gluing κ is defined as κ(q) = qi

± if F(q) = zi
±. We use this to

define the new mapping scheme (Q, τ, ω) as in §3.2. The Topological Compat-
ibility Axiom A–13 is clear, so after choosing arbitrarily the irrelevant missing
disk maps FU we may appeal to Proposition 3.3 and conclude that we have
now in hand a well-defined branched covering F : (S2, Q)→ (S2, Q). To verify
that F is indeed embellished, we need only check that the mapping scheme
(Q, τ, ω) is complete to verify Axiom A–14, i.e. that F−1(F (Q)) = Q. How-
ever, this is clear, since an element p ∈ F (Q) is either (i) in P− � P+, or (ii)
one of the qi

− or qi
+ which is also the image under F of some other point in

Q. Case (ii) occurs if and only if the corresponding point zi
− or zi

+ is in P− or
P+. In either case, one counts preimages and finds that all d = d− + d+ − k,
with multiplicities, are accounted for. So F−1(F (Q)) = Q and we are done.

How many such maps F can we produce? By Corollary 4.6, it is enough
to count the number of classes of annulus maps. This is determined by the
common degree k and by the set of local degrees at the zi

±’s. One easily finds,
applying Theorem 7.1, that this number is at most l − l/k, where l is the
least common multiple of k and these degrees. Note that if l = k, which is the
case for matings, then this bound specializes to k− 1, which is the bound for
matings.

9.4 Integral Lattès examples

Let Λ = ω1Z ⊕ ω2Z ⊂ C be a lattice and denote by C/Λ the quotient torus.
The involution w �→ −w descends to an involution on the torus with quotient
P

1. The map w �→ nw on C commutes with this involution and preserves the
lattice, hence descends to a well-defined degree n2 map on P

1 called an inte-
gral Lattès map. Different choices of lattice yield (quasiconformally) conjugate
maps on P

1.
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Taking n = 2, the resulting degree four map R : P
1 → P

1 may be topo-
logically described as in Figure 9.4, from which it is clear that the multicurve
Γ = {γ1, γ2} is invariant with linear map R

Γ given by the identity matrix.
The associated orbifold is the (2, 2, 2, 2) orbifold, and is Euclidean.

fold

fold

scale

R

Fig. 9.4. The map on the sphere induced by w �→ 2w on the torus can be thought of
as the composition of a horizontal fold, a vertical fold, and a rescaling. The unique
periodic point in the postcritical set is highlighted as a black dot. There are six
critical points, four in the centers of the edges of the pillowcase, one in the front
center, and one in the back center. The postcritical set consists of the four “corners”
of the pillowcase. Note that the two thick vertical gray curves form an invariant
multicurve.

The decomposition of the sphere and the mapping tree is illustrated in
Figure 9.5. The set U is empty. The dynamics map f : T → T acts on X-
vertices sending x1, x0 to x0 by degree two and x2 to x1 by degree four. With
respect to the indicated orientations, f reverses orientations on connected
components of A1 which lie between x2 and x1. There are two missing annuli
C1, C2.

After decomposing, the resulting map of spheres F : (S,Y)→ (S,Y) is in
fact rational. The unique periodic component S(x0) of S has period one and
on this component the map F is holomorphically conjugate to z �→ z2 − 2.

Note, however, that we could have taken Γ to be the pair of horizontal
curves instead, and the resulting analysis would yield the same results. Hence,
the map R can be decomposed into the same set of sphere maps in two distinct
ways.

Moreover, the Twist Theorem [8.2] applied to the vertical multicurve Γ
shows, after a brief but straightforward calculation, that the mapping class
group contains a rank-one free abelian subgroup generated by performing
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Fig. 9.5. Structure of a Lattès example. There are two annuli in A0 bounded by the
bold curves lying above the annular edges labelled a0,1, a0,2. Each of these annuli has
two preimages in A1, both mapping by degree two, with those on the left preserving
and those on the right reversing orientation of edges. Note that one obtains the same
picture using annuli which are horizontal.

double Dehn twists, in the same directions, simultaneously about γ1 and γ2.
Of course, the same holds true in the vertical directions as well.
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Canonical Decomposition Theorem

In this section, we consider the structure of postcritically finite branched cov-
erings from the sphere to itself. We give, in §10.2 below, a structure theorem
which says that any such map is, in a canonical fashion, decomposable into
“pieces”, each of which is of one of three possible types:

1. (elliptic case) a homeomorphism of spheres,
2. (parabolic case) covered by a homeomorphism of planes, or
3. (hyperbolic, rational case) equivalent to a rational map of spheres.

We make these notions precise in the next two subsections.

10.1 Cycles of a map of spheres, and their orbifolds

Let F : (S,Y) → (S,Y) be an embellished map of spheres for which Y is
finite. Let X denote the set of connected components of S and let f : X → X
be the induced map. Let deg : X → N be given by deg(x) = deg(f, x).

We can think of the triple (X, f,deg) as a directed graph K with directed
edges x→ f(x) labelled, or weighted, by the degree deg(x).

Definitions and notation.

• A component of F is a connected component of K, viewed as an undirected
graph.

• A cycle of F is a cycle of K. Note that each component contains a unique
cycle, since f is a function from X to X.

• For a cycle ζ we set
Sζ = ∪x∈ζS(x)

and
Yζ = Sζ ∩ Y.

K.M. Pilgrim: LNM 1827, pp. 105–109, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Thus
Fζ = F|Sζ : (Sζ ,Yζ)→ (Sζ ,Yζ)

is again an embellished map of spheres.
• The orbifold Oζ associated to a cycle ζ has, as its underlying topological

space, the space Sζ . The weight ν(p) at p ∈ Sζ is given by the least common
multiple, over all iterated preimages p′ of the restricted map Fζ , of the local
degree of Fζ at p′. Note that any singular points (where ν(p) > 1) must
lie in Y. We let Oζ(x) denote the orbifold given by the xth connected
component of Oζ .

• The Euler characteristic of a cycle ζ is given by

∑

x∈ζ



2−
∑

p∈S(x)

(

1− 1
ν(p)

)


 .

When the cycle has period one, this generalizes the usual definition of the
orbifold associated to a branched covering, cf. [DH3] and [McM6]. Note
that the Euler characteristic of a cycle is the sum of the Euler character-
istics over all components.
It will turn out (Lemma 10.1 below) that, although the numerical values of
the Euler characteristics of connected orbifolds S(x) may vary as x varies
within ζ, the sign of this value is constant in the cycle. Thus:

• It makes sense to speak of a cycle as being elliptic, parabolic, hyperbolic
according as the Euler characteristic of the cycle is positive, zero, or neg-
ative.

Lemma 10.1.

1. The sign of Oζ(x) is independent of x ∈ ζ.
2. Oζ is elliptic if and only if Fζ is a homeomorphism.
3. Oζ is parabolic if and only if Fζ is a covering map of orbifolds. In this

case, Fζ lifts under the orbifold universal covering map π : R
2 × ζ → Oζ

to a homeomorphism F̃ζ : R
2 × ζ → R

2 × ζ.

Proof: (Cf. [DH3], Prop. 9.1)

1. Let Ôζ be the orbifold with the same underlying space S and with
weight

ν̂(p) =
ν(Fζ(p))
deg(Fζ , p)

.

Then F : Ôζ → Oζ is a covering map of orbifolds. Write the cycle ζ as
x0 �→ x1 �→ ... �→ xn−1. and let di be the degree of Fζ on S(xi). Then
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χ(Ôζ(xi)) = di · χ(Oζ(xi+1)) ≤ χ(Oζ(xi)).

Applying this inequality around the cycle yields 1.

2. In particular for each i we have

(d− 1)χ(Oζ(xi)) ≤ 0 (10.1)

where d = Πn
i=1di is the product of the degrees around the cycle. Thus if the

orbifold is elliptic, then d = 1 and so Fζ is a homeomorphism. Conversely, if
Fζ is a homeomorphism, then in fact there are no singular points at all, the
orbifold is actually a manifold, and each component has Euler characteristic
χ(S2) = 2.

3. Oζ is parabolic if and only if d > 1 and equality holds in Inequality
(10.1). Equivalently, Ôζ(xi) = Oζ(xi) and so Fζ is a (self) covering map of
the orbifold Oζ to itself.

In this case Fζ lifts to a homeomorphism F̃ζ of the disjoint union of the
universal covers of the Oζ(xi), i.e. to n copies of the plane, which commutes
with the (orbifold) covering transformations.

��

10.2 Statement of Canonical Decomposition Theorem

Theorem 10.2 (Canonical decomposition theorem). Let F : (S2, Q)→
(S2, Q) be a postcritically finite embellished branched covering. Then F de-
composes along a canonically determined, possibly empty multicurve Γ c into
an embellished map F : (S,Y)→ (S,Y) of spheres such that every cycle of F
is either

1. elliptic, i.e. a homeomorphism,
2. parabolic, i.e. covered by a homeomorphism of a set of Euclidean planes

to itself, or
3. hyperbolic and rational, i.e. equivalent to an embellished postcritically fi-

nite rational map with hyperbolic orbifold.

Furthermore, Γ c is empty if and only if the map F itself, considered as a cycle
of length one, is one of the three types above.

In the second case above, the cycle may or may not be equivalent to a
rational map of spheres.

Since Γ c is canonical, we have under the same hypotheses

Corollary 10.3 (Mod(F ) reduces along Γ c). For each α ∈ Mod(G),
α(Γ c) = Γ c, up to isotopy relative to Q.
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10.3 Proof of Canonical Decomposition Theorem

10.3.1 Characterization of rational cycles with hyperbolic orbifold

The Douady-Hubbard-Thurston characterization of postcritically finite ratio-
nal maps with hyperbolic orbifold as branched coverings generalizes immedi-
ately to the setting of embellished maps of spheres.

First, it is enough to consider only a single cycle, since an invariant complex
structure on a cycle can always be lifted to a holomorphic map between a
preperiodic component and its image.

Next, to an embellished map of spheres with a single cycle, one considers an
induced map σF on a product T of Teichmüller spaces. The analytic properties
of the map are identical to those considered in [DH3] in the case when the
orbifold is hyperbolic: the map (iterated 2n times, where n is the length of the
cycle) is contracting, though not uniformly so. Existence of a fixed point is
equivalent to being equivalent to a rational map of spheres. Choose arbitrarily
a basepoint τ0 ∈ T , and let τi = σ◦iF (τ0). If a fixed point does not exist, then
the Riemann surfaces determined by τi develop short geodesics , and the
same arguments provide as before a topological obstruction in the form of an
invariant multicurve Γ such that the leading eigenvalue of FΓ : R

Γ → R
Γ

is at least one. The enlargement of the postcritical set to a larger, forward-
invariant finite set in no way alters the character of the proof or the statement
of the results.

In [Pil2] the Douady-Hubbard characterization was refined to show that
in fact not only do short geodesics develop, but that the curves whose lengths
converge to zero form an invariant multicurve and a topological obstruction;
see 1.2.

Precisely the same arguments yield an analogous theorem for maps of
spheres.

Theorem 10.4 (Canonical obstructions). Let F : (S,Y) → (S,Y) be an
embellished map of spheres consisting of a single cycle. Suppose Y is finite,
and that the orbifold of F is hyperbolic.

Let Γc denote the set of all homotopy classes of nonperipheral, simple
closed curves γ in S − Y such that the hyperbolic length of γ on τi converges
to zero under as i→∞. Then Γc is independent of τi. Moreover:

1. If Γc is empty, then F is equivalent to a rational map.
2. Otherwise, Γc is an invariant multicurve for which the leading eigenvalue
λ(F , Γc) is ≥ 1, and hence is a canonically defined obstruction to the
existence of a rational map of spheres equivalent to F .

The characterization of embellished maps with parabolic orbifold, however,
is a bit more subtle. The addition of other marked points causes potential
complications. We do not pursue such a classification here.
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10.3.2 Conclusion of proof

Suppose F itself is neither a homeomorphism, nor covered by a homeomor-
phism of the plane, nor has hyperbolic orbifold and is equivalent to a rational
map.

Then the orbifold of F is hyperbolic, and F is not equivalent to a rational
map.

By the Canonical Obstructions Theorem, (Thm. 10.4), there is a canonical
topological obstruction Γ 0 which is an F -invariant multicurve.

By the Decomposition Theorem [5.1], decomposing F along Γ 0 yields a
map of spheres F1 : (S1,Y1) → (S1,Y1). By the Uniqueness of Decom-
positions Theorem [6.1], the combinatorial class of F1 depends only on the
equivalence class of pairs (F, Γ 0).

We now proceed by induction. At the inductive step, we have an F -
invariant multicurve Γn. Decomposing F along Γn produces a map of spheres
Fn : (Sn,Yn) → (Sn,Yn) whose combinatorial class depends only on the
equivalence class of pair (F, Γn). Either conclusions (1)-(3) of the Theorem
hold, or else there exists a cycle ζ of Fn not equivalent to a rational map and
whose orbifold is hyperbolic.

Apply the Canonical Obstructions theorem [10.4] to the map Fn on the
cycle ζ to obtain a nonempty (Fn)ζ-invariant multicurve Γ ζ

n+1. This multic-
urve pulls back under Fn to a canonically defined invariant multicurve ΓSn+1
for Fn. By Proposition 3.6, Invariant multicurves persist, the image Γn+1 of
ΓSn+1 under the inclusion Sn

0 ↪→ S2 −Q is well-defined and, up to isotopy, is
disjoint from Γn. By the same proposition,

Γn+1 = Γn+1 � Γn

is again an F -invariant multicurve.
Thus, the cardinality of the Γn’s is strictly increasing in n. Since the

number of elements of Γn can be at most |Q| − 3, the inductive process
must conclude at some point, i.e. at some stage, no further decomposition is
possible. That is, all cycles of Fn have the properties listed in the Theorem.
��

We conjecture that in fact the procedure stops at n = 1, i.e. that after
decomposing F along the canonical obstruction Γc picked out by the iterative
algorithm on Teichmüller space, every cycle with hyperbolic orbifold is equiv-
alent to a rational map. Theorem 1.3 is evidence in favor of this conjecture.
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say, 1995).

[Shi1] M. Shishikura. On the Quasiconformal Surgery of Rational Functions. Ann.
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boundary values, 63
branched covering, 2

Cannon’s conjecture, 29
captures, 20
combinatorial equivalence
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of map of annuli, 60
of map of spheres, 32
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Euler characteristic, 3, 106

filled-in Julia set, 1

Galois theory, 27

geometrically finite
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Geometrization Conjecture, 26
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topological, 49

Gromov hyperbolic space, 28

Haken manifold, 25
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Hubbard trees, 16
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standard form for, 44
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construction of new, 51
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quadratic mating conjecture, 17

missing annuli, 47
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monodromy group, 28
multicurve, 3

invariant, 4, 32
irreducible, 92
irreducible, definition of, 92

Newton’s method, 21
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peripheral curve, 3
peripheral surface, 25
postcritical set, 2
postcritically finite, 2, 3

quasiconformal surgery, 22

rational standard form, 95
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standard form

for map of annuli, 48
of map of spheres, 44
rational, 95
with respect to a multicurve, 71

star, 41
structure data

definition of, 59
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restrictions, 34

Thurston linear map, 4, 33
Thurston map, 3
Thurston obstruction, 5
Thurston’s thm., 4
topological gluing data, 49
Torus Decomposition Theorem

for 3-manifolds, 26
tuning, 2

arbitrary degree, 19
generalized, 19
quadratic, 18

Unwinding Trick, 64
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