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Preface

Crystal-structure analysis has become one of the most essential tools in chem-
istry and related disciplines. Several hundreds of thousands of crystal struc-
tures have been determined in the course of the years. The results obtained
from 1931 to 1990 were published year by year in Strukturbericht [1], later
Structure Reports [2]. Nowadays, crystal structures are deposited in several
large databases [3—8]. However, the mere accumulation of data is only of re-
stricted value if it lacks a systematic order and if the scientific interpretation of
the data leaves much to be desired.

Shortly after the discovery of X-ray diffraction from crystals by MAX VON
LAUE, WALTHER FRIEDRICH, and PAUL KNIPPING (1912) and the subse-
quent pioneering work by father WILLIAM HENRY BRAGG and son WILLIAM
LAWRENCE BRAGG, efforts set in to order the crystal structures found. By
1926 the number of crystal structures was already large enough for VIKTOR
MORITZ GOLDSCHMIDT to formulate the basic principles of packing of atoms
and ions in inorganic solids [9]. In 1928 LINUS PAULING set forth a number
of structural principles, essentially for ionic crystals, which he later repeated in
his famous book The Nature of the Chemical Bond, first published in 1938 [10].
Quite a few other approaches to show relationships between crystal structures
and to bring order into the constantly increasing amount of data were presented
and developed quite successfully over time. Most of these approaches, how-
ever, have one peculiarity in common: they make no or nearly no use of the
symmetry of the crystal structures.

The importance of symmetry relations in phase transitions in the solid state
was realized in 1937 by LEW LANDAU [11]. Around 1968 HARTMUT BAR-
NIGHAUSEN developed a procedure to work out relationships between crys-
tal structures with the aid of symmetry relations [12]. Since then, chemists
have become more and more aware of the value of these symmetry relations.
Symmetry relations can be formulated mathematically. This offers a secure
foundation for their application and makes it possible to develop algorithms to
make use of computers.

The symmetry of crystals is presented in International Tables for Crystal-
lography, Volume A [13], by diagrams and with the aid of analytical geometry.
The methods of analytical geometry can be applied universally; they are based
on the techniques of matrix calculus and make use of the results of elementary
group theory. Since 2004, the supplementary volume Al of International Ta-
bles for Crystallography has been available [14]. For the first time they contain
a complete listing of the subgroups of the space groups. This book shows how
to make use of these tables.
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Preface

Part I of this book presents the necessary mathematical tools: the fundamen-
tals of crystallography, especially of symmetry, the theory of crystallographic
groups, and the formalisms for the necessary crystallographic calculations. As
often in the natural sciences, these tools may appear difficult as long as one
is not accustomed to their use. However, the presented calculation techniques
are nothing more than applications of simple theorems of algebra and group
theory.

Group theory has profound foundations. For its application, however, the
profoundness is not needed. The mathematical foundations are contained in the
presented formalisms. Calculations can be performed and consequences can be
drawn with these formalisms, without the need to duplicate their mathematical
background.

Those who have some familiarity with the symmetry of crystals, i.e. who
have worked with space groups, are acquainted with Hermann—Mauguin sym-
bols, know how to handle atomic coordinates, etc., may take a first look at Part
II to obtain an impression of the results that follow from the mathematical re-
lations. However, it is not recommended to skip the chapters of Part I. Don’t
be mistaken: crystallographic group theory and symbolism does have pitfalls,
and calculations are susceptible to errors if they are not performed strictly in
accordance with the rules.

Part IT of the book gives an insight into the application to problems in crys-
tal chemistry. Numerous examples show how crystallographic group theory
can be used to disclose relations between crystal structures, to maintain order
among the enormous number of crystal structures, to predict possible crystal-
structure types, to analyse phase transitions, to understand the phenomenon
of domain formation and twinning in crystals, and to avoid errors in crystal-
structure determinations.

Appendix A deals with peculiarities of a certain kind of subgroup of the
space groups, the isomorphic subgroups, and discloses cross-connections to
number theory. Another appendix gives some insight into a few physico-
chemical aspects referring to phase transitions and to the theory of phase tran-
sitions.

A broad range of end-of-chapter exercises offers the possibility to apply
the learned material. Worked-out solutions to the exercises can be found in
Appendix D.

In the Glossary one can look up the meanings of special terms used in the
field.

One topic of group theory is not addressed in this book: representation the-
ory. Crystallographic symmetry does not deal with time. Representation the-
ory is needed to cover the symmetry properties of time-dependent phenomena
(such as vibrations). This is dealt with in numerous books and articles; we
could only repeat their content (see, e.g. [15-22]). However, some remarks
can be found in Chapter 15 and in Appendix C.

The book has many predecessors. It is based on earlier lectures and on
courses that were taught repeatedly since 1975 in Germany, Italy, France,
Czechia, Bulgaria, Russia, and South Africa. Lecturers of these courses were
first of all H. BARNIGHAUSEN (Karlsruhe), TH. HAHN (Aachen), and H.
WONDRATSCHEK (Karlsruhe), and, in addition, M. AROYO (Sofia, later Bil-



bao), G. CHAPUIS (Lausanne), W. E. KLEE (Karlsruhe), R. POTTGEN (Miin-
ster), and myself.

The text of Chapters 2—7 is due to H. WONDRATSCHEK, who allowed me
to use his material; he also revised these chapters after I had appended figures,
examples, exercises, and a few paragraphs. These chapters partly reflect lecture
notes by W. E. KLEE. Chapters 1, 10, 11, 15, and 16 essentially go back to
H. BARNIGHAUSEN and contain text by him; he also critically checked drafts
of these chapters. Parts of a script by R. POTTGEN, R.-D. HOFFMANN, and
U. RODEWALD were included in Chapter 17. I am especially grateful to all of
them. Without their manuscripts and without their consent to make use of their
texts this book could not have come into being.

Indirect contributors are G. NEBE (mathematician, Aachen), J. NEUBUSER
(mathematician, Aachen), and V. JANOVEC (physicist, Liberec) by their sug-
gestions, and numerous discussions with H. WONDRATSCHEK. In addition, I
am grateful to further unnamed colleagues for suggestions and discussions.

Ulrich Miiller
Marburg, Germany, November 2012
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Introduction

Crystallography is the science of crystals. The inner (atomic and electronic)
structure of crystalline solids as well as their physical properties are of central
interest. This includes the methods of structure determination and of mea-
surement of properties. A well-founded theoretical treatment is of special im-
portance to understand the connections and to find applications. In part, the
theories are strongly influenced by mathematics. Due to its strong interre-
lation with mathematics, physics, chemistry, mineralogy, materials sciences,
biochemistry, molecular biology, pharmaceutics, and metrology, crystallogra-
phy is more multidisciplinary than hardly any other field of science.

The theory of symmetry is of special importance among the theories in crys-
tallography. The symmetry of crystals, which also has influence on the physi-
cal properties, is specified with the aid of space groups.

Crystal chemistry is the branch of chemistry that deals with the structures,
properties, and other chemical aspects of crystalline solids. Geometric consid-
erations relating to the structures attract much attention in this discipline. In
this context it is a main objective to disclose relationships between different
crystal structures and to document the corresponding results in a concise but
also informative way. To this end, different approaches were presented over
time, which demonstrate the similarities and the differences of distinct struc-
tures from different points of view. For example, the main attention can be
directed to the coordination polyhedra and the joining of these polyhedra, or
to the relative size of ions, or to the kind of chemical bonding, or to similar
physical or chemical properties.

Symmetry has received attention for a long time in the description of sin-
gle structures—this is familiar to anyone who has been engaged in work with
crystal structures. However, concerning the comparison of structures, symme-
try considerations have for a long time been the exception. For certain, there
exist diverse reasons for this astonishing unbalanced development of crystal
chemistry. The main reason is likely to be that related crystal structures often
have different space groups so that their relationship becomes apparent only
by consideration of the group—subgroup relations between their space groups.
An essential part of the necessary group-theoretical material, namely a listing
of the subgroups of the space groups, became available in a useful form rather
late.

Aspects of space-group theory important to crystal chemistry were indeed
solved around 1930 by C. HERMANN and H. HEESCH and were included in
the 1935 edition of International Tables for the Determination of Crystal Struc-
tures [23]; this comprised lists of the subgroups of the space groups. However,
in the following edition of 1952 [24] they were excluded. In addition, in the

1.1 The symmetry principle in crystal

chemistry
1.2 Introductory examples

2
4



2 Introduction

edition of 1935 only a certain kind of subgroup was mentioned, namely the
translationengleiche subgroups, called zellengleiche subgroups at that time. A
broad application was thus hardly possible. For crystal-chemical applications
another kind of subgroup, the klassengleiche subgroups, are at least as impor-
tant. A compilation of the klassengleiche subgroups of the space groups was
presented by J. NEUBUSER and H. WONDRATSCHEK as much as 53 years
after the discovery of X-ray diffraction [25], and the isomorphic subgroups,
which are a special category of klassengleiche subgroups, were then derived
by E. BERTAUT and Y. BILLIET [26].

For 18 years this material existed only as a collection of copied sheets of
paper and was distributed this way among interested scientists. Finally, the
subgroups of the space groups were included in the 1983 edition of Volume
A of International Tables for Crystallography [13]. And yet, the listing of the
subgroups in the 1st to the 5th edition of Volume A (1983-2005) has been
incomplete. Beginning with the 6th edition (approx. 2013) the subgroups of
the space groups will no longer be included in Volume A.

Instead, a finally complete listing of all subgroups of the space groups has
existed since 2004 in the supplementary Volume Al of International Tables
for Crystallography [14]. This includes the corresponding axes and coordinate
transformations as well as the relations that exist between the Wyckoff posi-
tions of a space group and the Wyckoff positions of its subgroups. This infor-
mation, which is essential for group-theoretical considerations, can indeed also
be derived from the data of Volume A; that, however, is cumbersome and prone
to errors. In addition, since 1999 the Bilbao Crystallographic Server has been
in operation; it is accessible free of charge by internet, <www.cryst.ehu.es>. It
offers access to computer programs that display the subgroups and supergroups
of space groups as well as the corresponding Wyckoff-position relations and
other things [27-29].

International Tables for Crystallography, Volumes A and A1, will be hence-
forth referred to as International Tables A and International Tables Al. Inter-
national Tables are available in printed and in electronic form, <http://it.iucr.org>.

In this book it is shown that symmetry relations between the space groups
are a useful tool for the clear derivation and the concise presentation of facts
in the field of crystal chemistry. The presented examples will speak for them-
selves. However, it should be mentioned why the abstract framework of group
theory is so successful: it is due to the so-called symmetry principle in crystal
chemistry.

1.1 The symmetry principle in crystal chemistry

The symmetry principle is an old principle based on experience that has been
worded during its long history in rather different ways, such that a common
root is hardly discernible at first glance (see Chapter 19 for the historical de-
velopment). In view of crystal chemistry, BARNIGHAUSEN summarized the
symmetry principle in the following way, pointing out three important partial
aspects [12]:


www.cryst.ehu.es
http://it.iucr.org

1.1  The symmetry principle in crystal chemistry 3

(1) Incrystal structures the arrangement of atoms reveals a pronounced
tendency towards the highest possible symmetry.

(2) Counteracting factors due to special properties of the atoms or atom
aggregates may prevent the attainment of the highest possible sym-
metry. However, in many cases the deviations from ideal symmetry
are only small (key word: pseudosymmetry).

(3) During phase transitions and solid-state reactions which result in
products of lower symmetry, the higher symmetry of the starting
material is often indirectly preserved by the formation of oriented
domains.

Aspect 1 is due to the tendency of atoms of the same kind to occupy equiv-
alent positions in a crystal, as stated by BRUNNER [30]. This has physical
reasons:

Depending on the given conditions, such as chemical composition, the kind
of chemical bonding, electron configurations of the atoms, relative size of the
atoms, pressure, temperature, etc., there exists one energetically most favour-
able surrounding for atoms of a given species that all of these atoms strive to
attain. The same surrounding of atoms in a crystal is ensured only if they are
symmetry equivalent.

Aspect 2 of the symmetry principle is exploited extensively in Part II of this
book. Factors that counteract the attainment of the highest symmetry include:

e stereochemically active lone electron pairs;
o distortions caused by the Jahn—Teller effect;
e Peierls distortions;

e covalent bonds, hydrogen bonds and other bonding interactions between
atoms;

e clectronic effects between atoms, such as spin interactions;
e ordering of atoms in a disordered structure;

e freezing (condensation) of lattice vibrations (soft modes) giving rise to
phase transitions;

e ordered occupancy of originally equivalent sites by different kinds of
atoms (substitution derivatives);

e partial vacation of atomic positions;
e partial occupancy of voids in a packing of atoms.

Aspect 3 of the symmetry principle has its origin in an observation by J.
D. BERNAL. He noted that in the solid-state reaction Mn(OH), — MnOOH
— MnO; the initial and the product crystal had the same orientation [31].
Such reactions are called fopotactic reactions after F. K. LOTGERING [32]
(for a more exact definition see [33]). In a paper by J. D. BERNAL and A. L.
MACKAY we find the sentences [34]:

‘One of the controlling factors of topotactic reactions is, of course,
symmetry. This can be treated at various levels of sophistication,
ranging from Lyubarskii’s to ours, where we find that the simple
concept of Buridan’s ass illumines most cases.’
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Fig. 1.1 The relation between diamond and
zinc blende. The numbers in the boxes are
the atomic coordinates.

According to the metaphor ascribed to the French philosopher JEAN BURIDAN
(died circa 1358), the ass starves to death between two equal and equidistant
piles of hay because it cannot decide between them. Referred to crystals, such
asinine behaviour would correspond to an absence of phase transitions or solid-
state reactions if there are two or more energetically equivalent orientations of
the domains of the product. Crystals, of course, do not behave like the ass;
they take both.

1.2 Introductory examples

To get an impression for the kind of considerations that will be treated in more
detail in later chapters, we present a few simple examples. Many crystal struc-
tures can be related to a few simple, highly symmetrical crystal-structure types.
Zinc blende (sphalerite, ZnS) has the same structural principle as diamond; al-
ternating zinc and sulfur atoms take the positions of the carbon atoms. Both
structures have the same kind of cubic unit cell, the atoms in the cell occupy
the same positions, and they are bonded with one another in the same way.
Whereas all atoms in diamond are symmetrically equivalent, there must be
two symmetrically independent atomic positions in zinc blende, one for zinc
and one for sulfur. Zinc blende cannot have the same symmetry as diamond;
its space group is a subgroup of the space group of diamond. The relation is
depicted in Fig. 1.1 in a way that we will make use of in later chapters and
which is explained more exactly in Chapter 10.

In Fig. 1.1 a small ‘family tree’ is shown to the left; at its top the symmetry of
diamond is mentioned, marked by the symbol of its space group F 4/d32/m.
An arrow pointing downwards indicates the symmetry reduction to a subgroup.
The subgroup has the space-group symbol F 43 m; it has a reduced number of
symmetry operations. In particular, no symmetry operation of diamond may be

F41/d§2/m

3
:
0

2

l

_ S:4a|Zn:4c
F43m 43m| 43m
ol i
0 1
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retained that would convert a zinc position to a sulfur position. The multiplicity
of the C atoms in diamond is 8, i.e. the unit cell of diamond contains eight
symmetrically equivalent C atoms. Their position is expressed by the Wyckoff
symbol 8a. The 8 marks this multiplicity, and the a is an alphabetical label
according to which the positions are numbered in International Tables A [13].
Due to the symmetry reduction this position 8a splits into two independent
positions 4a and 4c in the subgroup. The point symmetry of the mentioned
atomic positions remains tetrahedral, symbol 43 m.

The ‘family tree’ in Fig. 1.1 is rather small; it comprises only one ‘mother’
and one ‘daughter’. As will be shown later, larger ‘family trees’ can be used
to depict relations among numerous crystal structures, with many ‘daughters’
and ‘grandchildren’. This notion harmonizes with the term family of struc-
tures in the rather strict sense according to H. D. MEGAW [35]. For the most
symmetrical structure in the family of structures MEGAW coined the term aris-
totype." The derived structures are called, again after MEGAW, hettotypes.”
These terms correspond to the terms basic structure and derivative structure
after BUERGER [36, 37].

Trees of group—subgroup relations as shown in Fig. 1.1 are called Bdrnig-
hausen trees.

In reality it is impossible to substitute Zn and S atoms for C atoms in a
diamond crystal. The substitution takes place only in one’s imagination. Nev-
ertheless, this kind of approach is very helpful to trace back the large number
of known structures to a few simple and well-known structure types and to thus
obtain a general view.

On the other hand, the case that the symmetry reduction actually takes place
in a sample does occur, namely in phase transitions as well as in chemical reac-
tions in the solid state. An example is the phase transition of CaCl, that takes
place at 217 °C [38—40]. It involves a mutual rotation of the coordination octa-
hedra about ¢, which is expressed by slightly altered atomic coordinates of the
Cl atoms (Fig. 1.2). Contrary to the diamond—zinc blende relation, the calcium
as well as the chlorine atoms remain symmetry equivalent; no atomic position
splits into several independent positions. Instead, their point symmetries are
reduced. Phase transitions of this kind are linked to changes of the physical
properties that depend on crystal symmetry. For example, CaCl, is ferroelastic
at temperatures below 217 °C.3

In the literature in physics the aristotype is often called the prototype or par-
ent phase, and the hettotype the daughter phase or distorted structure. These
terms are only applicable to phase transitions, i.e. to processes in which one
solid phase is converted to another one with the same chemical composition,
with a change of symmetry.

Calcium chloride forms twinned crystals in the course of the phase transi-
tion from the high- to the low-temperature modification. The reason for this
can be perceived in the images of the structures in Fig. 1.2. If the octahedron
in the middle of the cell is rotated clockwise (as depicted), the tetragonal high-
temperature form (a = b) transforms to the orthorhombic low-temperature form
with decreased a and increased b axis. The same structure is obtained by
counter-clockwise rotation, but with an increased a and a decreased b axis
(Fig. 1.3). In the initial tetragonal crystal the formation of the orthorhombic

1.2 Introductory examples 5

1greek aristos = the best, the highest

2 greek hetto = weaker, inferior

3 Ferroelastic: The domains in a crystal differ
in spontaneous strain and can be shifted by a
mechanical force.
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Fig. 1.2 The relation between the modifica-
tions of calcium chloride. The coordination
octahedron is rotated about the direction of
view (c axis), and the reflection planes run-
ning diagonally through the cell of the rutile
type vanish.

a<b P2i/n21/n2/m twins P2/n2i/n2/m

Fig. 1.3 The orientation of the coordina-
tion octahedra in the modifications of CaCl,
and the relative orientation of the unit cells
of the twin domains of the low-temperature
modification. The marked fourfold axes of
the tetragonal modification are converted to
twofold axes in the orthorhombic modifica-
tion.

Ca:2a|CL:4f
Pdyim21/mn2/m | mmm | m2m a=b=0637.9pm
0 (0.304 c=4193pm
CaCla, > 490K 1 50, at 520 K
(rutile type)
0 0
| b

2 l:'
|

Ca:2a|Cl:4g
P21/n21/n2/m .2m| ..m a=625.7pm
0 10.279 b=643.8pm
CaCl,, < 490K : c—416.8pm
(CaCl, type) 8 03)27 ot 203K

P4y/m2,/n2/m
a=>b

crystals sets in in different regions, statistically with the one or the other ori-
entation. At the end the whole crystal consists of intergrown twin domains.
The symmetry elements being lost during the phase transition, for example the
reflection planes running diagonally through the cell of the high-temperature
form, are indirectly preserved by the relative orientation of the twin domains.
More details concerning this phase transition are dealt with in Chapter 15;
there it is also explained that the kind of group—subgroup relation immediately
shows that the formation of twinned crystals is to be expected in this case.
The occurrence of twinned crystals is a widespread phenomenon. They can
severely hamper crystal-structure determination. Their existence cannot al-



ways be detected on X-ray diffraction diagrams, and systematic superposition
of X-ray reflections can cause the deduction of a false space group and even
a false unit cell. In spite of the false space group, often a seemingly plau-
sible structural model can be obtained, which may even be refined. Unfor-
tunately, faulty crystal-structure determinations are not uncommon, and un-
detected twins are one of the causes. The most common consequences are
slight to severe errors of interatomic distances; but even wrong coordination
numbers and polyhedra up to a false chemical composition may be the result.
Applications that rely on certain physical properties such as the piezoelectric
effect can be impeded if twinned crystals are employed. Knowledge of the
group-theoretical relations can help to avoid such errors.

Another kind of phase transformation occurs when statistically distributed
atoms become ordered. This is a common observation among intermetallic
compounds, but it is not restricted to this class of substances. CuszAu offers an
example. Above 390 °C the copper and gold atoms are statistically distributed
among all atomic positions of a face-centred cubic packing of spheres (space
group F4/m32/m; Fig. 1.4). Upon cooling an ordering process sets in; the
Au atoms now take the vertices of the unit cell whereas the Cu atoms take the
centres of the faces. This is a symmetry reduction because the unit cell is no
longer centred. The F of the space group symbol, meaning face-centred, is
replaced by a P for primitive (space group P4/m32/m).

_ Cu,Au:4a Cu, Au
HT-CuszAu 8
> 663 K
| 0
LA
l_ Au:la| Cu:3c¢
P4/m32/m | m3m |4/mmm
1
LT-CuzAu 2
<663 K 0 | 3
0 0
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Fig. 1.4 The relation between misordered and
ordered CuzAu. See margin note No. 2 in
Section 15.1.2 (page 199) for a remark refer-
ring to the term ‘misorder’.
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Basics of crystallography,
part 1

2.1 Introductory remarks

Matter consists of atoms of diverse elements. These atoms do not occur as iso-
lated particles, but in organized arrays: Finite arrays of interest are molecules
(N», H,O, CHy, NH3, CgHg, . ..); large arrays are crystals that consist of equal
parts that are periodically repeated in (nearly) any number.

Molecules and crystals are two kinds of appearance of matter. Molecules
can assemble to crystals. However, crystals do not necessarily consist of mole-
cules; the crystal components may be simple ions like Na™ and C1~, complex
ions like CO%’ and NHI, and many others. Henceforth, molecules and other
such components will be called building blocks if they are components of crys-
tals.

Other forms of appearance of matter, such as gases, liquids, glasses, partially
ordered structures, modulated structures, or quasicrystals will not be consid-
ered.

2.2 Crystals and lattices

Crystals are distinguished by the property that a shift called translation results
in a perfect superposition of all building blocks of the crystal.

Naturally occurring crystals (quartz, rock salt, garnet, ...) and synthetically
produced crystals (sugar, SrTiOs, silicon, ...) can be regarded as finite blocks
from infinite periodic structures. Replacement of the finite real crystal by the
corresponding periodic, infinite array usually allows an excellent description
of the real conditions and, therefore, is of great value, even though the infi-
nitely extended ideal crystal does not exist. The crystal structure is the spatial
distribution of the atoms in a crystal; usually, it is described with the model of
the infinite crystal pattern. Hereafter, when we address a crystal structure, we
always assume this kind of description.

Definition 2.1 The infinite, three-dimensional periodic array corresponding
to a crystal is called the crystal pattern (or infinite ideal crystal). The lengths
of the periodicities of this array may not be arbitrarily small.

The periodicity of a crystal structure implies that it comes to coincidence
with itself after having been shifted in certain directions by certain distances.

2.1
2.2
2.3
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1Only the patterns are two dimensional;
tilings, brick walls, etc. themselves are three-
dimensional bodies; their symmetries are
layer groups (Section 7.4).

The terms ‘lattice’ and ‘structure’ should
not be mixed up either. Do not say ‘lattice
structure’ when you mean a framework struc-
ture consisting of atoms linked in three di-
mensions.

The dimension d = 3 can be generalized to d = 1,2,3,.... This way, planar
arrangements (d = 2) can be included: periodic patterns of wall paper, tilings,
brick walls, tiled roofs,! cross-sections and projections of three-dimensional
crystals, etc. Dimensions d = 4,5,6, ... serve to formally describe incom-
mensurate crystal structures and quasicrystals in higher-dimensional spaces
(‘superspaces’).

The condition that periodicity lengths may not be arbitrarily small excludes
homogeneous continua among crystal structures. Due to the finite size of the
building blocks in real crystals there always exists a lower limit of the period-
icity distances (>0.1 nanometres).

The building blocks of the crystal structure may not only be points, figures,
tiles, atoms, molecules, ions, etc., but also continuous functions such as elec-
tron density.

A macroscopic (ideal) crystal is a finite block out of a crystal pattern. Macro-
scopic crystals do not really exist. A real crystal not only has, like the macro-
scopic (ideal) crystal, a finite size, but is also defective. In addition, the atoms
are not located at the exact positions like in the macroscopic crystal, but per-
form vibrational motions about these positions. The periodic pattern of atoms
of the macroscopic crystal is fulfilled only by the positions of equilibrium of
the vibrations.

Definition 2.2 A shift which brings a crystal structure to superposition with
itself is called a symmetry translation (or simply translation) of this crystal
structure. The corresponding shift vector is a translation vector.

Due to the periodicity, all integral multiples of a translation vector are also
translation vectors. With two non-parallel translation vectors t; and t, all inte-
gral linear combinations are translation vectors:

t=qt; +rty q,r = integers

Definition 2.3 The infinite set of all translation vectors t; of a crystal pattern
is its vector lattice T. The translation vectors are called lattice vectors.

The vector lattice is often simply called the lattice. In chemistry (not in
crystallography) the expression ‘crystal lattice’ is common. Frequently, the
term ‘lattice’ has been used as a synonym for ‘structure’ (e.g. diamond lat-
tice instead of diamond structure). Here we distinguish, as in International
Tables, between ‘lattice’ and ‘structure’, and ‘lattice’ is something different
from ‘point lattice’ and ‘particle lattice’, as defined in the next paragraph.’
Two-dimensional lattices are sometimes called nets in crystallography (not in
chemistry).

The vector lattice T of a crystal structure is an infinite set of vectors t;. With
the aid of the vector lattice T it is possible to construct other more expressive
lattices. Choose a starting point X, with the positional vector x,, (vector point-
ing from a selected origin to X,). The endpoints X; of all vectors x; = X, + t;
make up the point lattice belonging to X,, and T. The points of the point lattice
have a periodic order, they are all equal and they all have the same surround-
ings. If the centres of gravity of particles are situated at the points of a point
lattice, this is a particle lattice. All particles of the particle lattice are of the
same kind.
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An infinity of point lattices exists for every (vector) lattice, because any
arbitrary starting point X,, can be combined with the lattice vectors t;. The
lattice vectors may not be arbitrarily short according to Definition 2.1.

Definition 2.4 Points or particles that are transferred one to the other by a
translation of the crystal structure are called translation equivalent.

Avoid terms like ‘identical points’, which can often be found in the litera-
ture, when ‘translation-equivalent points’ are meant. Identical means ‘the very
same’. Two translation-equivalent points are equal, but they are not the very
same point.

2.3 Appropriate coordinate systems, crystal
coordinates

To describe the geometric facts in space analytically, one introduces a coordi-
nate system, consisting of an origin and a basis of three linearly independent,
i.e. not coplanar basis vectors a,b,c or a;,a,a3. Referred to this coordinate
system, each point in space can be specified by three coordinates (a coordi-
nate triplet). The origin has the coordinages 0,0,0. An arbitrary point P has

coordinates x,y,z or x1,x»,x3, the vector OP (the position vector) being:

—

OP=x=xa+yb+zc=x1a; +xa; +x3a3

In the plane, points P have coordinates x,y or x1,x; referred to an origin (0,
0) and the basis a,b or aj,a;.

Often a Cartesian coordinate system is suitable, in which the basis vectors
are mutually perpendicular and have the length of 1 (orthonormal basis). Com-
monly, the angles between a, b, and ¢ are denominated by a (between b and c¢),
B (between ¢ and a), and y (between a and b) or correspondingly by o, 0, 03.
With an orthonormal basis we then have

a=lal=b=|b|=c=lc|=1;, a=B=y=90°

or |a;| = 1 and angles (a;,a;) =90° for i,k =1,2,3 and i # k.

Generally, as far as the description of crystals is concerned, Cartesian coor-
dinate systems are not the most convenient. For crystallographic purposes, it
is more convenient to use a coordinate system that is adapted to the periodic
structure of a crystal. Therefore, lattice vectors are chosen as basis vectors.
With any other basis the description of the lattice of a crystal structure would
be more complicated.

Definition 2.5 A basis which consists of three lattice vectors of a crystal
pattern is called a crystallographic basis or a lattice basis of this crystal
structure.’

Referred to a crystallographic basis, each lattice vector t =ra; +a +13a3
is a linear combination of the basis vectors with rational coefficients t;. Every
vector with integral t; is a lattice vector. One can even select bases such that
the coefficients of all lattice vectors are integers.

3The term ‘basis’ was used erstwhile with an-
other meaning, namely in the sense of ‘cell
contents’.
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“For the sake of precise terminology, the term
‘centred’ should not be misused with a differ-
ent meaning; do not call a cluster of atoms
a ‘centred cluster’ if you mean a cluster of
atoms with an embedded atom, nor say, ‘the
Fg octahedron of the PFg ion is centred by
the P atom’.

Among the infinity of crystallographic bases of a crystal structure, some
permit a particularly simple description and thus have turned out to be the
most convenient. Such bases are the foundation for the description of the space
groups in International Tables A. These bases are selected whenever there is
no special reason for another choice.

Definition 2.6 The crystallographic bases used in International Tables A are
called conventional bases.

Definition 2.7 A crystallographic basis a;,a,, a3 of a vector lattice is called
a primitive (crystallographic) basis if its basis vectors are lattice vectors and
if every lattice vector t can be expressed as a linear combination with integral
coefficients t;:

t=rna; +nay +1a3 2.1)

For any vector lattice there exist an infinite number of primitive bases.

One could always choose a primitive basis. However, this would not be
convenient for many applications. Therefore, the chosen conventional crys-
tallographic basis is often not primitive, but such that as many as possible of
the angles between the basis vectors amount to 90°; the coefficients #; in eqn
(2.1) can then also be certain fractional numbers (mostly multiples of %). Fre-
quently, the lattice is called primitive if the conventional basis of the lattice
is primitive; if it is not primitive, it is called a centred lattice, or one says ‘the
setting is centred’.* Well-known examples are the face-centred cubic lattice cF
as in the cubic-closest packing of spheres (copper type) and the body-centred
cubic lattice cI of the tungsten type. Lattice types are treated in Section 6.2.

After having selected a crystallographic basis and an origin, it is easy to
describe a crystal structure. To this end one defines:

Definition 2.8 The parallelepiped in which the coordinates of all points are
0<x,yz<1
is called a unit cell of the crystal structure.

The selection of a basis and an origin implies the selection of a unit cell.
Every point in this unit cell has three coordinates 0 < x, y, z < 1. By addition or
subtraction of integral numbers to the coordinates one obtains the coordinates
of translation-equivalent points which are located in other cells. The transfor-
mation of numerical values to values 0 < x, y, z < 1 is called standardization.
We can now construct a crystal structure in two different ways:

(1) One takes a unit cell and adds or subtracts integral numbers to the co-
ordinates of its contents. This corresponds to a shift of the unit cell by
lattice vectors. In this way the complete crystal structure is built up sys-
tematically by joining (an infinity of) blocks, all with the same contents.

(2) One takes the centre of gravity of a particle in the unit cell and adds equal
particles in the points of the corresponding (infinite) point lattice. If
there are more particles to be considered, one takes the centre of gravity
of one of the remaining particles together with its point lattice, etc. Due
to the minimum distances between particles in the finite size of the cell,
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the number of particles to be considered is finite. In this way one obtains
a finite number of interlaced particle lattices that make up the crystal
structure.

In the first case, the structure is composed of an infinity of finite cells. In
the second case, the structure is composed by interlacing a finite number of
particle lattices which have an infinite extension. Both kinds of composition
are useful. A third kind of composition is presented in Section 6.5 on page 82.

A crystal structure can now easily be described completely by specifying
the metrics of the unit cell (lengths of the basis vectors and the angles between
them) and the contents of the cell (kind of particles and their coordinates within
one unit cell).

In order to be able to compare different or similar structures, their descrip-
tions have to refer to equal or similar cells. The conditions for conventional cell
choices are often not sufficient to warrant this. Methods to obtain a uniquely
defined cell from an arbitrarily chosen cell are called reduction methods. Com-
mon methods are:

(1) derivation of the reduced cell, see Section 8.4 (page 110) and Interna-
tional Tables A, Chapter 9.2 [13];

(2) the Delaunay reduction, see Zeitschrift fiir Kristallographie 84 (1933)
page 109; International Tables for X-ray Crystallography, Volume 1
(1952), pages 530-535 [24].

The cells obtained by these methods may or may not be identical. Therefore,
the method of reduction should be specified.

The geometric invariants of a crystal structure, for example, the distances
between particles and the bond angles, are independent of the chosen coor-
dinate system (basis and origin). How atoms are bonded with each other is
manifested in these quantities. In addition, these data are useful for the direct
comparison of different particles in the same crystal structure or of correspond-
ing particles in different crystal structures.

2.4 Lattice directions, net planes, and reciprocal
lattice

A lattice direction is the direction parallel to a lattice vector t. It is designated
by the symbol [uvw], u,v,w being the smallest integral coefficients of the lat-
tice vector in this direction; u,v, and w have no common divisor. [100], [010]
and [001] correspond to the directions of aj, a», and a3, respectively; [110] is
the direction of the vector —a; +a,.

A net plane running through points of a point lattice is one out of a set of
equidistant, parallel planes. The net plane is designated by the symbol (hk!) in
parentheses; h,k,[ are the integral Miller indices. From the set of planes, that
one is selected which is closest to the origin without running itself through the
origin. It intersects the coordinate axes at distances of a1 /h, a2 /k, a3/l from
the origin (Fig. 2.1). A plane running parallel to a basis vector obtains a 0 for
this direction.

15
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Fig. 2.1 A set of planes running through a
point lattice. The third basis vector is perpen-
dicular to the plane of the paper.
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net plane (130) dy5, intercept — o

A
\
\

In order to facilitate the calculus with planes, it is convenient to represent
each set of net planes by a vector t;, = ha] + ka3 +[a} in the reciprocal lattice.
The reciprocal lattice T* is a vector lattice with the reciprocal basis vectors
aj,ay,aj (or a*,b*,c*). tj,; is perpendicular to the net plane (k) and has
the length 1/djy, dpi being the interplanar distance between neighbouring net
planes. For more details see textbooks of crystal-structure analysis (e.g. [41-
441).

2.5 Calculation of distances and angles

Crystallographic bases are convenient for a simple description of crystals. How-
ever, the formulae for the computation of distances and angles in the crystal
structure become less practical than with Cartesian coordinates.

Definition 2.9 The lengths a,b,c of the basis vectors and the angles o, 3,y
between them are called the lattice constants or (better) the lattice parame-
ters of the lattice.

Let Q and R be two points in a crystal structure having the coordinates
Xg,¥q:2q and x,,yr,z,. Then the distance r,, between Q and R is equal to the

length of the vector x, — x;, =QR, where x, and x, are the position vectors
(vectors from the origin) of Q and R. The length r,, is the root of the scalar
product of x, — x, with itself:

rgr = (% —%,)> = [(xr—x)a+ (yr— yg )b+ (z— 2)¢]

(x4 —24)%@ + (yr—24)* D> + (20— 24)*¢* +2(x,— %) (yr— 4 )abcos y
+2(zr—2¢) (X, — xg)accos B +2(y,— y4) (2 — z4)bccos o

The (bond) angle w at the apex P between the connecting lines PQ and
PR (Fig. 2.2) can be calculated with the following formula, using the scalar
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product of the vectors (x, —X,) and (X, —X,) (X, is the position vector of P):

(Xg—Xp) - (Xp—Xp) = Fpglprcosy
= (xg=xp) (X —5p)a® + (g =yp) (r—yp)b + (2
+[(xg—xp) r—yp) + (yq ¥p)(xr—xp)]abcosy
+[(zg—2p) (Xr— xp) + (xg—xp) (27— 2p)] accos B
+[{(g=yp)(zr—2p) + (24— 2p) Vr—¥p)] becos

Every angle a;; = 90° strongly simplifies the formula. This is an advantage of
an orthonormal basis; for this reason it is commonly used in crystal physics.
The simplified formula then is (e = unit of length of the basis, e.g. ¢ = 1 pm):

2= [(=xg)* + (= yg)* + (2r—20)Y] &

cosy = rpql pr1 [(xg—xp) (Xr—xp) + (Vg—Yp) r—p) + (24 g

—2p)(zr—2p)]e

The volume V of the unit cell is obtained from the formula:

V2 2

a?b?c*(142cos acos  cosy — cos” a — cos’ f — cos> y)

The lattice parameters a,b,c,, 3,y appear in the combinations g;; = a,2 or
gik = ;- Ay = a;aicosay, i # j Ak #i.

For calculations, the specification of the shape of the cell by the g; values is
more important than the usually quoted lattice parameters a; and «;, since the
gik are needed for all calculations. From the a; and ¢;; one can calculate all g,
conversely from the g; the a; and a;.

Definition 2.10 The complete set of the coefficients g;; is called the metric
tensor, formulated in the following way:

811 812 813 a®>  abcosy accosp
G=| g1 8» g3 | =| abcosy b*  becosa
831 832 833 accosp bccosa  ¢?

gik = 8ki holds, since a; - a; = a; - a;.

With p;, gi, and r;, i = 1,2,3, as the coordinates of the points P, O, and R one
obtains the formulae:

e Distance QR = ry: rfir = i):l,{g,-k(r,- —gi)(re—aqr)  (2.2)
e Distance from the origin O: (0]0) :’ g ré = Z]:(gikqiqk
o Angle QPR (apex P): ’

cos(QPR) = (rpq) ™ (rpr) ™! Zgik(%' = pi)(rk — px) (23)
e Volume V of the unit cell: ZJXC/Z = det(G) (2.4)

Application of G with the independent quantities g instead of the six lattice
parameters a,b, c, a, B, y has the advantage that the g;; are more homogeneous;
for example, they all have the same unit A% or pm?.

The importance of the metric tensor G is not restricted to the calculation of

distances and angles:

—p)(ar—2zp)e

2

Q

Fig. 2.2 Triangle of the points P, O, and R
with distances PQ, PR, and QR and angle y.



18 Basics of crystallography, part 1

e With the aid of G one can decide whether a given affine mapping leaves
invariant all distances and angles, i.e. whether it is an isometry, see Sec-
tion 3.5.

e If T* is the reciprocal lattice of the lattice T, then G*(T*) = G~ (T) is
the inverse matrix of G: The metric tensors of the lattice and the recip-
rocal lattice are mutually inverse.



Mappings

3.1 Mappings in crystallography
3.1.1 An example

The following data can be found in International Tables A in the table for
the space group I4;/amd, No. 141, ORIGIN CHOICE 1, under the heading

‘Coordinates’ as a first block of entries:

(0,0,00+ (5,5, 3)+
(1) x,y,2 Q) x+33+3.z+3 B)yx+3.z+g (4) y+5.%z2
(5)x+1.vz+3 (6) x,y+3.2+7 (N y+3x+52+% (8) ¥.%2
(9) X5+ 5.2+ % (10) x+ 5,92+ 3 (11) y,x,2 (12) y+4x+
(13) x+ 3.5+ 3.2+ 5 (14) Tyz (15)5+3.%z+3  (16) yxty.z

Following the common practice in crystallography, minus signs have been set
over the symbols: X means —x. These coordinate triplets are usually interpreted
in the following way: Starting from the point x,y, z in three-dimensional space,
the following points are symmetry equivalent:

(0,0,0)+ (3.3 9+
(1) X027 x+iy+3.z2+1
(2) —x+3 ytg.zts X,z
(3)

—yx+3,2+4 —y+3xz+3

One can also interpret these entries in International Tables A directly as
descriptions of the symmetry operations of the space group. In the following,
we will mainly adopt this kind of interpretation.

3.1.2 Symmetry operations

Definition 3.1 A symmetry operation is a mapping of an object such that
(1) all distances remain unchanged,
(2) the object is mapped onto itself or onto its mirror image.

If the object is a crystal structure, the mapping is a crystallographic symmetry
operation.
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ces 23
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‘Mapped onto itself’ does not mean that each point is mapped onto itself;
rather, the object is mapped in such a way that an observer cannot distinguish
the states of the object before and after the mapping.

According to this interpretation, the entries in International Tables A for the
space group /4/amd mean:

. 1 1 1.
X, 0,2 = 508 X, 0,2 = x+§7y+fvz+§’
.1 5,1 1. T o
X, 3,2 — x+§ay+jvz+j’ X, 0,2 = 50,2
or
~ o~ & . S~ s 1 1 1
X,V = X, 0,25 X,y,z—x+§,y+§,z+§,
c sz =1 5,1 1. F5 5 —F v o
xay7z_x+§ay+§7z+§’ XY, 2 =X, 4

The data of International Tables A thus describe how the coordinates %, , 7 of
the image point result from the coordinates x, y, z of the original point.

Mappings play an important part in crystallography. A mapping is an in-
struction by which for each point of the space there is a uniquely determined
point, the image point. The affine mappings and their special case, the isomet-
ric mappings or isometries, are of particular interest. Isometries are of funda-
mental interest for the symmetry of crystals. They are dealt with in Section
3.5.

Definition 3.2 The set of all symmetry operations of a crystal structure is
called the space group of the crystal structure.

These symmetry operations are classified with the aid of affine mappings.
Since isometries are a special case of affine mappings, we will address them
first.

3.2 Affine mappings

Definition 3.3 A mapping of space which maps parallel straight lines onto
parallel straight lines is called an affine mapping.

After having chosen a coordinate system, an affine mapping can always be
represented by the following set of equations (xi, xp, x3 are the coordinates of
the original point; X, ¥, ¥3 are the coordinates of the image point):

X1 = Wixt +Wixa +wy

in the plane { X = Warxi +Waxo +ws

X1 = Wiixr +Wiaxa +Wizxz +wy
in space Xy = Woixi +Waoxy + Wazxs +wo (3.1
X3 = Wa1x1 +Wsoxz + Wazxz + w3

In matrix notation this is:



in the plane

()=

Wi Wio
w; =W
( War Wap )

|
7N
= =
[*) —
~_
I
3{.1
7N
s =
o8]
~_
I

in space
X1 X wi Wi Wi Wi
X |l=x | B | =% | w2 | =w | War W, W3 | =W (3.2)
X3 X3 w3 Wi Wi Wi

Equation (3.1) then reads:

X Wi Wi Wis X wi
=1 Wa W Wy x |+ w2 (3.3)
X3 W31 Wi Wi X3 w3
or for short
¥=Wx+w or ¥=(W,w)x or ¥=(Ww)x 3.4

The matrix W is called the matrix part, the column w is the column part of the
representation of the mapping by matrices. The symbols (W,w) and (W|w)
are called the matrix—column pair and the Seitz symbol of the mapping.

If two affine mappings are performed one after the other, the result is again
an affine mapping. If the first mapping is represented by ¥ = Wx +w and the
second one by ¥ = V& +v, the result is:

= V(Wx+w)+v=VWx+Vw+v=Ux+u (3.5)
= (VW,Vw+v)x = (U,u)x

=

=u

or
This can also be written ¥ = (V,v)(W,w)x and, therefore:

(U,u) = (V,v)(W,w) = (VW,Vw +v) (3.6)
or U=VW and u=Vw+v 3.7

How does one calculate U and u from V, v, W, and w? Let Uy by the
element of U in the ith row and kth column; i is called the row index, & is the
column index. Corresponding denominations apply to V and W. On closer
inspection of eqns (3.7) one obtains:

Uit = Va Wi + VioWor + Vis W3,

One says: ‘Uj is the product of the ith row of V with the kth column of W~
because all elements of V belong to the ith row and all those of W to the kth
column.

The ith element u; of the column u is calculated by multiplication of the ith
row of V with the column w and addition of the ith element of the column v
(being a column, of course, # has only a row index):

uj = Viywy +Vipwa +Vizws +v;

This way, matrices are multiplied with other matrices or matrices with columns.

The number of columns of the left matrix must be equal to the number of rows
of the right matrix (or right column).

3.2 Affine mappings 21
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W=w.w....w=I

k times

(3.10)

The identity mapping (I,0) is represented by

00 0
10 and the zero column o= | 0
01 0

the unit matrix I =

S O =

¥x=lo)x=Ix+o=x

It maps every point onto itself. (I,¢) with = o represents a translation.
The mapping (V,v) = (W,w)~! which reverses a mapping (W,w) is called
the inverse mapping of (W,w), such that:

(Vo) (Wow) = (W.w) " (W,w) = (I,0) (3.8)
Using eqn (3.6), we obtain:
(V) (W,w) = (VW,Vw+v) = (L,0)

Therefore, VW =IorV = W laswellaso = Vw+vorv=—Vw=—W lw.
It follows that:
(Wow) ™= (W, —wlw) (3.9)

(W,w) can be inverted if W~! exists, i.e. if det(W) # 0 holds. These map-
pings are called regular mappings or non-singular mappings. If det(W) = 0,
the volume of the image is zero; this is called a projection. Projections are not
considered in the following. The volume of the image of a body, for example
of a unit cell, is W times as large as the original volume, with det(W) =W #0.

A change of the coordinate system generally causes a change of the ma-
trix and the column of an affine mapping. Thereby the matrix W depends
only on the change of the basis, whereas the column w depends on the ba-
sis and the origin change of the coordinate system, see Section 3.7, page 30.
The determinant det(W) and the trace tr(W) = Wi + W, (in the plane) or
tr(W) = Wy + Wy + W3 (in space) are independent of the choice of the co-
ordinate system. This is also valid for the order k; that is the smallest positive
integral number, for which W* = I holds. W* is the product of k matrices. The
determinant, trace, and order are the invariants of a mapping.

Definition 3.4 A point Xy that is mapped onto itself is called a fixed point
of the mapping.

Fixed points of affine mappings can be obtained from the equation:
Xp=xp=Wxp+w 3.11)

Let WE = 1. If (W,w)* = (I,0), the mapping has at least one fixed point. In
this case, the number of points X; with the coordinate columns

(Ww)x, (Ww)x, ..., (W.w)* 'x, (Ww)'x = (Io)x=x

is finite, and a finite number of points always has its centre of gravity as a fixed
point. If (W, w)* = (I,¢) with t # o, the mapping has no fixed point.

An affine mapping that does not include a translation, (W,0), leaves the
origin unchanged, because & = Wo + o0 = o. Every affine mapping (W,w) can
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be composed by the successive execution of a mapping (W,0) and a translation
I,w):
(W,w) = (I,w)(W,0) (3.12)

The mapping represented by (W,0) is called the linear part. (I,w) represents
the translation part.

3.3 Application of (n + 1) x (n +1) matrices

Equations (3.6) and (3.9) are difficult to memorize. A more transparent and
more elegant way to write down general formulae is to use 4 x 4 matrices and
four-row columns (correspondingly, in the plane, 3 x 3 matrices and three-row
columns):

X X
X — x= )Z) Foa=|2 (W,w) - W= wow
1 1 0 0 01
X X
Y1l " Y] o 5=ws (3.13)
< £
1 0 0 0]l 1

The three-row columns have been augmented to four-row columns by append-
ing a 1. The 3 x 3 matrix W has been combined with the column w to form a
3 x 4 matrix and then supplemented by a fourth row ‘0 0 0 1’ to form a square
4 x 4 matrix. These columns are called augmented columns, and the matrices
are called augmented matrices and are designated by open-face letters.

The vertical and horizontal lines in the matrices have no mathematical mean-
ing and can be omitted. They are simply a convenience for separating the
matrix part from the column part and from the row ‘000 1°.

The 4 x 4 matrix corresponding to (U,u) = (V,v)(W,w) then is the product
of the 4 x 4 matrices of (V,v) and (W,w):

U |u _ \ 4 y W \w (3.14)
0001 00 O| 1 00 O| 1
or U = VW (3.15)
The reverse mapping is represented by the inverse matrix W~
wi=| W [Ww (3.17)
0 0 O| 1

An advantage of the use of augmented matrices is the replacement of the
unpleasant eqns (3.6) and (3.9) by eqns (3.15) and (3.17), which require only
matrix multiplications. Another advantage is presented in the next section.

Wlw =1

[ =4 x 4 unit matrix

(3.16)
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1In mathematics, ‘space’ has a different
meaning from in everyday life. ‘Point space’
is the space of points; ‘vector space’ is the
space of vectors. In point space every point
has its positional coordinates. Vector space
can by imagined as a collection of arrows
(vectors), all of which start at a common ori-
gin, each one with a length and a direction.
However, vectors are independent of their lo-
cation and can be shifted arbitrarily in par-
allel; they do not need to start at the origin.
A point as well as a vector is specified by a
triplet of numbers; however, there exist math-
ematical operations between vectors, but not
between points. For example, vectors can be
added or multiplied, but not points.

3.4 Affine mappings of vectors

The mapping of a point P onto the point P by a translation with the translation
vector t, ¥ = x +1¢, causes a change of its coordinates. Of course, a translation
of two points P and Q by the same translation leaves their mutual distance
invariant. Point coordinates and vector coefficients are represented by three-
row columns that cannot be distinguished. Therefore, some kind of distinctive
mark is desirable. It is an advantage of the augmented columns to possess this
mark.
In a given coordinate system, let x,, and x, be the augmented columns:

Xp Xg
xp = Yp and  x,= Yq
Zp Zq
1 1

Then the distance vector has the augmented column with the vector coeffi-
cients:

Xq —Xp
r=x,—Xp,= Yo Vp
Zq_Zp

0

It has a O in its last row since 1 — 1 = 0. Columns of vector coefficients are
thus augmented in a different way than columns of point coordinates.

A translation is represented by (I,¢). Let r be the column of coefficients of
a distance vector and let r be its augmented column. Using 4 x 4 matrices, the
distance vector becomes:

I3 131 r r

e oor | 2= T 2| ]|=|" (3.18)
i nl{n || s
0 0001 0 0

By the matrix multiplication, the coefficients of ¢ are multiplied with the O of
the column r and thus become ineffective.
This is not only valid for translations, but for all affine mappings of vectors:

F=Wr=Wr+0-w=Wr (3.19)

Theorem 3.5 Whereas point coordinates are transformed by ¥ = (W,w)x =
Wx +w, the vector coefficients r are affected only by the matrix part of W:

F=(W,w)r=Wr
The column part w is ineffective.
This is also valid for other kinds of vectors, for example, for the basis vectors
of the coordinate system.

Consequence: if (W,w) represents an affine mapping in point space, W repre-
sents the corresponding mapping in vector space.



3.5 Isometries

An affine mapping that leaves all distances and angles unchanged is called
an isometry. Isometries are special affine mappings that cause no distortions
of any object. In crystallography, in principle, they are more important than
general affine mappings. However, we have discussed the more general class
of affine mappings first, the mathematical formalism being the same.

If the image of a body is not distorted as compared to the original body,
then it also occupies the same volume. The change of volume under a map-
ping is expressed by the determinant det(W) of the matrix of the mapping W.
Therefore, for isometries one has:

det(W) = +1

This condition, however, is not sufficient. In addition, all lattice parameters
have to be retained. This means that the metric tensor G (Definiton 2.10,
page 17) has to remain unchanged.

Because of (W,w) = (I,w)(W,o0), the matrix W alone decides whether the
mapping is an isometry or not; (I,w) always represents a translation, and this
is an isometry.

Let W be the matrix of an isometry (W,w) and let a;,a,a3 be the basis of
the coordinate system.

It is convenient to write the basis vectors in a row; the vector X can then
be formulated as the matrix product of the row of the basis vectors with the
column of the coefficients:

X1
(aj,az,a3) | x | =xja; +xa; +x3a3 =x (3.20)
x3

In the matrix formalism a row is interpreted as a 1 x 3 matrix, a column as
a 3 x 1 matrix. In crystallography, elements of such matrices are designated
by lower case letters. A matrix W that has been reflected through its main
diagonal line Wy, Wsy, Wa; is called the transpose of W, designated W7 if Wy,
is an element of W, then this element is W;; of WT.

Consider the images &; of the basis vectors a; under the isometry represented
by (W,w). According to Theorem 3.5, vectors are transformed only by W:

3
a=aW,+aWy+asWy or 4= aW

k=1
In matrix notation this is:
Wi Wi Wis
(a1,82,a3) = (ag,az,a3) | War Wap Was
Wi Wiy Wi
or (51,52,53) = (31,32,33)W (3.21)

Note that this multiplication, contrary to the multiplication of a matrix with
a column, is performed by multiplying the a;s by the elements of a column
of W, i.e. for each basis vector of the image a; the column index i of W is
constant.

3.5 Isometries 25
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G=w'Gw
Condition for an isometry:
G=w'Gw

(3.23)

(3.24)

The scalar product (dot product) of two image vectors is:

3 3
48 = Zn= (Z ame,-> : (Zanwnk> =
m=1 n=1

3 3
= Z a,,-a, W,;Wy = Z gmnWmiWnk (322)

mn=1 mn=1

This can be written in matrix form if one takes the transpose of W, eqn (3.23).
An isometry may not change the lattice parameters, therefore, G = G. From
this follows eqn (3.24), which is the necessary and sufficient condition for
(W,w) to represent an isometry. Equation (3.24) serves to find out whether
a mapping represented by the matrix W in the given basis (aj,a,,as3) is an
isometry.

Example 3.1

Are the mappings W; and W, isometries if they refer to a hexagonal basis
(a=b#c,a0=p =90° y=120°) and if they are represented by the matrix
parts Wi and W,?

100 110
Wi=1010 Wo=1100
001 001
The metric tensor of the hexagonal basis is:
a —a*/2 0
G=| a2 & 0
0 0
According to eqn (3.22), for W; one has:
gu = gu(=1(=1)+g(-1)(0) +g13(~1)(0)

+821(0)(—1) +£22(0)(0) + £23(0)(0)
+231(0)(—1) +£32(0)(0) +g33(0)(0)
= 811
g2 = 0+g1a(=1)(+1)+0+04+0+0+0+0+0
= —gn=d"/2 # gu; ...

Therefore, G # G; W, does not represent an isometry.

For W, we have:

_ l 10 811 812 0 1 T 0
GZWEGsz 100 g2 g11 O 100
001 0 0 gn/\0oO1
This results in the six equations:
1 = gut2enten=d =g &n=-81—gn=—a/2=gn;
g3 = gi3+83=0=g13 fn=gu=d=gn
83 = —g13=0=g23; 8&33=2g33

Condition (3.24) is fulfilled; W, represents an isometry in this basis.



Condition (3.24) becomes rather simple for an orthonormal basis G = I (unit
matrix). In this case one obtains the condition:

WiIw=1 or W'w=I (3.25)

This is exactly the condition for an inverse matrix. Theorem 3.6 follows:

Theorem 3.6 An affine mapping, referred to an orthonormal basis, is an
isometry precisely if WT = W~! holds.

Remark. W' = W~! are the known conditions of orthogonality.

Example 3.2

If the matrices W; and W, of Example 3.1 were to refer to an orthonormal
basis, the mapping W; would be an isometry. Then, WI = W; holds, and so
does WIW =TI due to le = I. However, for W, one obtains:

010
Wyl=(T10|#W,
001
Therefore, W, does not represent an isometry.

Regarded geometrically, the mapping (W,0) of Example 3.1 is a distorting,
shearing reflection in the y-z plane, while (W,0) is a rotation by 60°. In
Example 3.2, (W},0) represents a reflection through the y-z plane, and (W3,0)
represents a complicated distorting mapping.

The question remains, what do mappings mean geometrically? Given a
matrix—column pair (W,w), referred to a known coordinate system, what is
the corresponding type of mapping (rotation, translation, reflection, ...)?

The next section deals with the types of isometries. The question, how to
deduce the geometric type of mapping from (W,w), is the subject of Section
4.3. Finally, in Section 4.4 it is shown how to determine the pair (W,w) for a
given isometry in a known coordinate system.

3.6 Types of isometries

In space, the following kinds of isometries are distinguished:”

1. The identical mapping or identity, 1 or |, ¥ = x for all points. For the identity
we have W = I (unit matrix) and w = o (zero column):

¥=Ix+o=x
Every point is a fixed point.

2. Translations T, ¥ = x +w (Fig. 3.1). For translations W = I also holds.
Therefore, the identity | can be regarded as a special translation with w = 0.
There is no fixed point for w # 0, because the equation ¥ =x =x+w has
no solution.

3. Rotations and screw rotations:

¥=Wx+w with det(W)=+1

3.6 Types of isometries

Conditions of orthogonality:

3
Y WiWou =
k=1

3
Z WiiWim =
k=1

1fori=m
Ofori#m

l1fori=m
0 fori#m

27

ZWe denominate mappings with upper case
sans serif fonts like I, T, or W, matrices
with bold italic upper case letters like W or
G, columns (one-column matrices) with bold
italic lower case letters like w or x, and vec-
tors with bold lower case letters like w or x.
See the list of symbols after the Table of Con-

tents.

X1 +wq
X=| xp+wy
X3+ w3

image point ¥

Fig. 3.1 A translation.
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b
X1

image point

X

X1 XxX=1 X
X

¢ 3

X
Xxp  starting point x = [ xp
X3

a
Fig. 3.2 A rotation about the ¢ axis (direction
of view); X3 = x3. For a screw rotation, the
rotation is followed by a shift w} parallel to
¢, ie X3 =x3+wj.

In a Cartesian coordinate system and rotation about the ¢ axis, (W,w) has
the form:

cosgp —sing 0 | 0
sing cose 0|0
0 0 +1|w]
0 0 0 | 1

W =

The angle of rotation ¢ follows from the frace tr(W) of the 3 x 3 matrix W
(i.e. from the sum of the main diagonal elements):

1+2coso =tr(W) =Wy + Wa + Wi (3.26)
tr(W) —1
or cosp=——

(a) If wi = 0, the isometry is called a rotation R (Fig. 3.2).
Every rotation through an angle of rotation ¢ # 0° has exactly one
straight line of fixed points u, the rotation axis. One obtains its direction
by solving the equation:
Wu=u

The order N of a rotation follows from

~360°

¢

with j <N and j, N integral with no common divisor. The symbol of
such a rotation is N/. The order k of the mapping is k = N. The identity
can be regarded as a rotation with ¢ = 0°.

(b) If wh # 0, the isometry is called a screw rotation (Fig. 3.2). It can always
be regarded as a rotation R by the angle ¢, coupled with a translation T
parallel to the rotation axis:

1000 cosgp —sing 0|0
0100 sing cosep 0|0
Ww) =100 1|w 0 0 10
000|1 0 0 0\1

The order N of R is the order of the screw axis. However, the order k
of the symmetry operation, i.e. of the screw rotation, is always infinite
because the N-fold execution does not result in the identity, but in a
translation. A screw rotation has no fixed point.

4. An inversion 1 or | is an isometry with W = —I: ¥ = —x+w.

Geometrically it is a ‘reflection’ of space through a point with the coordi-
nates %w. This one point is the only fixed point. The fixed point is called
a point of inversion, centre of symmetry, or inversion centre. The relations
W2=TandTxT=T = 1hold,

In space, det(—1I) = (—1)3 = —1 holds; therefore, the inversion is a special
kind of rotoinversion. However, in the plane det(—I) = (—1)> = +1 holds,
which corresponds to a rotation with 2cos ¢ = —2 and ¢ = 180°.



o3|
image point ¥ = | & | withi; = —x3
- x
X1 3
p b
)
X1
¢
X1
xp  starting point x = | xo
X3
a
. An isometry of space with det(W) = —1 is called a rotoinversion R. It

can always be interpreted as a coupling of a rotation R and an inversion
T: R= TR =RI (Fig. 3.3). The angle of rotation ¢ of R and thus of R is
calculated from

tr(W) = —(1+2cos o)

Special cases are:
e The inversion | as a coupling of the inversion with a rotation of 0° (or
360°).
e The reflection m through a plane as a coupling of T with a rotation
through 180°; the reflection is dealt with in item 6.

With the exception of the reflection, all rotoinversions have exactly one fixed
point. The corresponding axis is called axis of rotoinversion. This axis is
mapped onto itself as a whole; it runs through the fixed point, where it is
reflected. The rotoinversion is called N-fold, if the corresponding rotation R
has the order N. If N is even, then the order of the rotoinversion is k = N,
just as in the case of rotations. If N is odd, the order is k = 2N: For T the
order is k = 2; for 3 it is k = 6, because 37 is not |, but T.

. Reflections and glide reflections. In a Cartesian coordinate system and rota-
tion about the ¢ axis, the matrix W of a twofold rotoinversion is:

100
W=1010

00T
Therefore, det(W) = —1, tr(W) = 1, W2 =1, and W #I. If it is performed
twice, the result is a translation:

(W,w)> = (W2 Ww+w) = (L)

If t = o, the operation is called a reflection; for t # o it is a glide reflection

(Fig. 3.4).

(a) Reflection. A reflection leaves all points of a particular plane unchanged,
the mirror plane or plane of reflection. It runs through the point X with

—1
X =5w.

3.6  Types of isometries 29

Fig. 3.3 A rotoinversion about the ¢ axis (di-
rection of view) with fixed point at the ori-
gin . Shown is the coupling R, i.e. a ro-
tation immediately followed by an inversion;
the same results from a coupling IR.

X
¢ starting point x = | xp
X3
X3
X
X1 2 X3
o X1
image point ¥ = X2
—x3
X
¢ starting point x = | x»
X3
X3
X1 X2

\ o
T
g . .
image point
X1t+8
X = X
—X3
Fig. 3.4 A reflection and a glide reflection
with the mirror plane and the glide plane be-

ing perpendicular to ¢ and running through
the origin
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(b) Glide reflection. A glide reflection has no fixed point. However, it has a
glide plane, which is obtained by the reduced mapping:

I,—g)(W,w)=(W,w—g) with g= %t: T(Ww+w)

g is the column of coefficients of the glide vector; due to Wg = g it
is oriented parallel to the glide plane. The point with the coordinates
x= %w is situated on the glide plane.

Symmetry operations with det(W) = —1, i.e. inversion, rotoinversion, reflec-
tion, and glide reflection are called symmetry operations of the second kind.

3.7 Changes of the coordinate system

Sometimes it is necessary to change the coordinate system:

(1) If the same crystal structure has been described in different coordinate sys-
tems, the data of one of them (lattice parameters, atomic coordinates, pa-
rameters of thermal motion) have to be transformed to the other coordinate
system if they are to be compared. For the comparison of similar crystal
structures, the data also have to be referred to analogous coordinate sys-
tems, which may require a transformation of the coordinates.

(2) In phase transitions, the phases are often related by symmetry. Commonly,
the data of both phases have been documented in conventional settings, but
the conventional settings of both may differ from one another. This case
requires a change of the coordinate system, if the data of the new phase are
to be compared with those of the old phase.

(3) In crystal physics, it is common to use orthonormal bases (e.g. for the de-
termination of the thermal expansion, the dielectric constant, the elasticity,
the piezoelectricity). For corresponding crystal-physical calculations, the
point coordinates as well as the indices of directions and planes have to be
transformed from the conventional bases to orthonormal bases.

In all of these cases, either the origins or the bases or both differ and have to
be converted. The corresponding formulae are derived in the following.
3.7.1 Origin shift
Let (cf. Fig. 3.5):

o origin of the old coordinate system
X . . . .
=y coordinate column of the point X in the old coordinate
N system
B y
o origin of the new coordinate system
xl
o = , coordinate column of the point X in the new coordinate
-\ system
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X —_—
B P shift vector OO’ of the origin = coordinate column of the I e
P=1 Y .. /. . x'=0X
new origin O’ in the old coordinate system. o
Zp X
Then one has:
X=x—p 3.27)
Formally, this can be written: p=00'
x'=T,—px=(p)'x (3.28)

Using augmented matrices, eqn (3.28) reads:

Fig. 3.5 Shift of the origin O to the new origin
0.

X =P 'x with P= and
Written in full, this is:
X 100|—x, X
Y| 010y y
7| 7100 1]z z
1 0 1

or X =x—x, Y=y—y, Z=z2—2.
An origin shift of (x,,yp,zp) (in the old coordinate system) causes coordinate
changes by the same amounts, but with opposite signs.
The transformation &' = P~'t causes no change to a distance vector because
the column p remains ineffective due to the zero of t. t=

3.7.2 Basis change

A change of the basis is usually specified by a 3 x 3 matrix P which relates the
new basis vectors to the old basis vectors by linear combinations:

(a',b',¢') = (a,b,e)P or (a")T=(a)'P (3.29)
For a given point X let:
ax+by+cz=ax' +by +¢'7  orforshort (a)Tx = (a')Tx’
By insertion of eqn (3.29) one obtains:
(a)Tx = (a)"Px’ or x=Px (3.30)
X =P lx=(Po) 'x (3.31)

Equations (3.29), (3.30), and (3.31) show that the matrix P transforms from
the old to the new basis vectors, whereas the inverse matrix P~! transforms
the coordinates. For the reverse transformation it is the other way around: P~!
transforms from the new to the old basis vectors and P from the new to the old
coordinates.
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Ahex

\4

Aort

bhex
= bort

Example 3.3

Consider the transformation from a hexagonal to the corresponding (or-
thorhombic) orthohexagonal basis. According to the figure in the margin,
the formulae for the conversion are:

(aom bort, cort) = (ahex;bheXa chex)P

- (ahex; bheXa chex)

S =N
S = O

0
0
1
= (2apex + bhex, Phex, Chex)

The coordinates are transformed according to:

—1
Xort = P Xpex

1 1
Xort 2 00 Xhex 2Xhex
— 1 _ 1
Yort = -2 10 Yhex | = | —7%hex T Yhex
Zort 001 Zhex Zhex

Instead of inverting P by calculation, P! can be deduced from the figure by
derivation of the matrix for the reverse transformation of the basis vectors
from the orthohexagonal to the hexagonal cell.

Note that the components which are to by multiplied with the basis vectors
Apex,> Phex, and ¢hex are mentioned column by column in the matrix P, whereas
the components for the coordinates are mentioned row by row in the inverse
matrix P~

3.7.3 General transformation of the coordinate system

Generally both the basis and the origin have to be transformed. Since the origin
shift p is referred to the old basis (a)T, it must be performed first. Therefore,
(I,p)~'x is calculated first according to eqn (3.28), which is then multiplied
on the right side of (P,0)~! according to eqn (3.31):

X' = (P70)7]<Iap)71x

(Lp)(P0) 'x
= (Pp) 'x=P ', —P 'p)x or ¥=P'x (3.32)

[((Lp)(P,0))" = (P,o) ' (I,p)~" and (P.p)~ ' =P~ = (P!, —P"'p), see
eqn (3.17), page 23].
The column part in eqn (3.32) is:

p=—P'p (3.33)

It corresponds to the position of the old origin in the new coordinate system;
this becomes evident if one inserts x = (0,0, 0)T in eqn (3.32).
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Example 3.4

Consider the transformation from a cubic to a rhombohedral unit cell with

hexagonal axis setting, combined with an origin shift by %, Alf, % (in the cubic

coordinate system). As can be inferred from the figure in the margin, the new Ceub beup
basis vectors are:

bhex
Apex = Acub — Deubs Dhex = Beub — Ccubs Chex = Acub + Peub + Ceud >

or (ahem bhe)u chex) - (aCl]b7 bcuba Ccub)P

= (aCl]b7 beub, Ccub) - acyb

O = =

_—— O
—_ = =

q . Ahex
The reverse transformation hexagonal — cubic corresponds to:

2 1 1 1 1 1
Acub = 3 Ahex + §bhex + 3 Chex beub = —3 dhex + §bhex =+ 3 Chex»
__1 —2p 1
Ceub = —3hex — 3 Dhex + 3 Chex

or

2 1 _1

| i1

(Acubs Deubs Ccub) = (Bhexs Phexs Chex) P~ = (Ahex; Phexs Chex) 3 3 73
1 1 1

3 3 3

The column part in eqn (3.32) is:

2 _1 _1 1
1 P (f 0
P p=—|3 33]|la]=|0
1 1 1 1 _1
3 3 3 4 7

Combined with the origin shift, the new coordinates result from the old ones
according to:

2 1 1
B Y i
—1 3 z 5|0 Yecub
Xpex = P~ Xeup = i i i 1
3 3 3|77 Zeub
0 0 0]1 1
2

3Xcub — %ycub - %Zcub

%xcub + %ycub - %Zcub

%xcub + %xcub + %Zcub - 4]_1
1

Numerical examples: (0, 0, 0)cyp — (0, O, —%)hex;

(0.54,0.03, 0.12)cyp, —

(30.54-10.03-10.12, 0,54+10,03-20,12,

$0.54+£0.03+ 5 0.12— hex = (0.31, 0.11, ~0.02)pex

3.7.4 The effect of coordinate transformations on mappings

If the coordinate system is changed, the matrix (W, w) of a mapping (isometry)
is also changed. For a mapping, the following relations hold according to eqn
(3.4), page 21:
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=

= (W,w)x in the old coordinate system (3.34)

and ¥ = (W w')x’ in the new coordinate system (3.35)

For a general transformation of the coordinate system (origin shift and change
of basis), by substitution of eqn (3.32) into eqn (3.35) one obtains:

=W w)(Pp)'x

The transformation matrix (P,p)~! is valid for all points, including the image

point ¥; therefore, by analogy to eqn (3.32), # = (P,p)~'% holds. From the
preceding equation we thus obtain:

(P.p)"'x = (W.w)(Pp) 'x
Multiplication on the left side with (P,p):
x=(P.p)(W.w)(P.p) 'x
Comparison with eqn (3.34) yields:
(W,w) = (P.p)(W'.w')(P.p)""
Multiplication on the left side with (P,p)~! and on the right side with (P,p):

(W'.w') = (P.p)~ (W,w)(P,p) (3.36)

By computation this results in:
W = P 'wp (3.37)
and w = —P 'p+P 'wi+P 'Wp (3.38)

Equation (3.38) can also be formulated as:
w =P '(w+(W-1I)p) (3.39)

If (P,p)~' =P~!, (W,w) =W and (P,p) = P are written down as 4 x 4 ma-
trices, and eqn (3.36) simply becomes:

W' =p~'wp (3.40)

This is a more transparent and more elegant formula. However, the matrix—
column pair formalism according to eqns (3.37) and (3.38) is, in general, ad-
vantageous for practical calculations.

The complete formalism can be depicted as shown in the diagram in Fig. 3.6.
The points X (left) and X (right) are specified by the initial coordinates x and
X (top) and the new coordinates x’ and ¥’ (bottom). The transformations are
given next to the arrows. From left to right this corresponds to a mapping
and from top to bottom to a coordinate transformation. Equation (3.36) can
be derived directly from the diagram: On the one side, ¥ = (W', w’)x’ holds
(lower arrow pointing to the right), on the other side we have (taking the detour
through the upper part of the image):

¥ =(Pp) &= (Pp) (Wwix=(Pp) " (Ww)(Pp)

Equating both paths results in eqn (3.36).
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point X image point X

(W,w)

old coordinates

(W,w')

> . ¥
(W,w)!
Pp) || (P.p)! (P.p) \(P,p)‘
> @

x’ new coordinates

¥ @ <

(Wl7wl)—l

Origin shift. If only the origin is shifted, the matrix part of the transformation
is the unit matrix, P = I. Equations (3.37) and (3.38) then become:

W =TI'wi=w (3.41)
and w = —I''p+I"'w+I"'Wp (3.42)
= w+Wp—p or wW=w+(W-I)p (3.43)

Consequences: An origin shift does not affect the matrix W of a mapping. The
change of the column not only depends on p, but also on W.

Example 3.5

Space group F ddd, origin choice 1, has a twofold screw axis at 0, }1, Z; it
maps an atom with the coordinates x, y, z onto a symmetry-equivalent position
—X, % =, % + z. If one switches to origin choice 2, the origin must be shifted
by (3. %, %). What is the new mapping instruction?

The matrix and column parts for origin choice 1 read:

-1 00 0

W= 0-10 and w= %

1

0 01 !
Combined with the origin shift pT = (§7 %7 %), we obtain from eqn (3.43)
0 -1 00 % 1 =
w=w+Wp-p=| 1 |+ 0-10 % = % = I
1 1 1 1
l 0 01/ \! ! i

Together with the unchanged matrix part, the new mapping for origin choice
2 thus becomes:

—%—x,%—y,%—i—z or (standardized to 0 < w} < 1) %—x,z—y,%+z

Transformation only of the basis. If only the basis is transformed, the column
part of the transformation consists only of zeros, p = 0. Equations (3.37) and
(3.38) then become:

w = p'wp (3.44)
w = —Plo+P 'w+P 'Wo
= Plw (3.45)

Fig. 3.6 Diagram of the ‘mapping of map-
pings*.

A transformation of the kind
W =P 'WP is called a similarity
transformation.
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Example 3.6

Consider the transformation of a hexagonal to an orthorhombic cell from
Example 3.3. Assume the presence of a glide plane, which maps an atom
from the position x, y, z to the position x, x —y, z+ %, referred to the hexago-
nal coordinate system. What is the conversion formula in the orthorhombic
coordinate system?

The mapping x, x —y, z+ % corresponds to the matrix and column:

1 00 0

W=|1-10 w=| 0

1

0 01 3

The transformation matrices from Example 3.3 are:

200 100
P=(110| ad P'=(-110
001 001

Using eqns (3.44) and (3.45), we calculate for the mapping in the orthorhom-
bic coordinate system:

100 1 00\ /200
W =1|-310 1 -10 110
001 01/ \001
1 00
=(0-10
0 01
300 0 0
w o= | 310 0f=10
001 : !

This is equivalent to x, —y, z+ %

3.7.5 Several consecutive transformations of the coordinate
system

If several consecutive coordinate transformations are to be performed, the
transformation matrices for the overall transformation from the initial to the
final coordinate system result by multiplication of the matrices of the single
steps. If no origin shifts are involved, it is sufficient to use the 3 x 3 matrices,
otherwise the 4 x 4 matrices must be taken. In the following we use the 4 x 4
matrices.

Let Py, P,,... be the 4 x 4 matrices for several consecutive transformations
and Pf', Py ! ... the corresponding inverse matrices. Let a, b, ¢ be the orig-
inal basis vectors and a’, b/, ¢/ the new basis vectors after the sequence of
transformations. Let x and %’ be the augmented columns of the coordinates
before and after the sequence of transformations. Then the following relations
hold:
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(a,b,¢,p) = (a,b,c,0)P|P;,... and x =...P,'P 'x

p is the origin shift, i.e. the coordinate column of the new origin in the old

coordinate system. Note that the inverse matrices have to be multiplied in
reverse order.

Example 3.7
Consider the coordinate transformation cubic — rhombohedral-hexagonal
from Example 3.4, followed by another transformation to a monoclinic ba-

sis, combined with a second origin shift pg = (f%, ,%’0) (in the hexagonal
coordinate system).

The matrices of the first transformation are (see Example 3.4):

1
1
0
0

P _
Pl<ll’l)
o |1

Pl —p!
and P11:< ! 11p1>:
[

Assume a relation between the cells for the second transformation (rhombo-

hedral-hexagonal — monoclinic) according to the adjacent figure. From the
figure we deduce:

Oo|l= = O
— | = =

Q= W = W=

Phex = Pmon

W= W[ W=

O (W= wI—=wir O = = =

Cmon

Wl

Apex

(amombmonycmon) - (aheXathXachex)PZ
0
1

2
= (aheX7bheX7chex) 1
0

W= W= WD

amon

(ahex, Phex chex) = (amonvbmon,cmon) Pz_l

I
=

O PI—=I—

O = O
|
w O =
[
O PI—=—
Il
~— N O = O
O Bl—i|—

= (amon s Bmon, cmon)

1
i
1
4
0

The transformation of the basis vectors and the origin shift from the original

to the final coordinate system resulting from the two consecutive transforma-
tions is obtained from:
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1 01/3\/20 3|-1
-1 111 IR
PP, = 4 3 2
Pl o1 b )loo ] o
0 00 1/\00 0] 1
(amom Bmon, Cmonap): (acub7 beub, Ceubs 0)
1
2 01 7‘}
—1 1 0| =
:(acubabcub,ccubao) 1 -10 %
0O 00| 1

This corresponds to:

Amon = 28cub — beub — Ccubs Bmon = beub — Ccub,  Cmon = Acub

combined with an origin shift of pT = (—1,%,2) in the cubic coordinate

system. The corresponding coordinate transformations (cubic — monoclinic)
are calculated according to:

—Ip—1
Xmon :Pz Pl Xcub

Xmon % 0 —1 % % —% —% 0 et
Ymon —% 1 0 % % % —% 0 Yeub
Zmon | | 00 3|0 {5 1 31| zaw
1 00 0[1/\0 0 O] 1 1
0 _% _% % Xcub
_ 0 % _% 41_1 Yeub
11 1(=3 || 2z
0 0 O] 1 1
This corresponds to:
Xmon — _%ycub - %Zcub + %7 Ymon = %ycub - %Zcub =+ le

3
Zmon = Xcub T Yeub T+ Zeub — 7

3.7.6 Calculation of origin shifts from coordinate
transformations

Group—subgroup relations between space groups often involve basis trans-
formations and origin shifts. In International Tables Al, Part 2, the origin
shifts are listed after the basis transformations in the form of numerical triplets
pl = (Xp, ¥ps 2p)- These refer to the original coordinate system. In Part 3 of the
same tables, the coordinate transformations are given in addition to the basis
transformations; however, the origin shifts are listed only together with the co-
ordinate transformations, namely as additive numbers to the coordinate values.
These additive numbers are nothing other than the vector coefficients of the
shift vector p'" = (x),, ¥, 2,) in the new coordinate system of the subgroup.

To calculate the corresponding origin shift p in the initial coordinate system
from the coordinate transformation listed in Part 3, eqn (3.33), page 32, has to
be applied:
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p'=—P 'p andthus p=—Pp’ (3.46)

Unfortunately, often there exist several choices for the basis transformation
and for the origin shift for the very same group—subgroup relation. In Part
2 of International Tables A1l often a different basis transformation and/or a
different origin shift have been chosen as compared to Part 3; this is not always
obvious due to the different kind of presentation. Therefore, given the case, p
must be calculated from p’; one cannot simply look up the values listed in the
corresponding space group table in Part 2.3

Example 3.8
The group-subgroup relation P4,/mbc — C ccm requires a cell transforma-
tion and an origin shift. In International Tables Al, Part 3, one finds the
transformation of the basis vectors in the column ‘Axes’:

a=a—b b =a+b,c=c

The transformation matrix is therefore:

110

P=(-110

001
In the column ‘Coordinates’ the listed coordinate transformations are %(x —
y)+ %, 5(x+y)+1, z. Therefore, the origin shift is p'T = (1, 1, 0) in the

coordinate system of C ccm. The corresponding origin shift in the coordinate
system of P4,/mbc is:

Xp 110 : -1
yp :p:—Pp/:— —110 4—1‘ = 0
2p 001 0 0

For the same relation P4,/mbc — Cccm, the same basis transformation
is listed in Part 2 of International Tables Al, but a different origin shift,
(0,1,0).

3.7.7 Transformation of further crystallographic quantities

Any transformation of the basis vectors entails changes for all quantities that
depend on the setting of the basis. Without proof, we list some of them. Since
all mentioned quantities are vectors or vector coefficients, the changes are inde-
pendent of any origin shift; the transformations require only the 3 x3 matrices
Pand P~

The Miller indices &, k, [ of lattice planes are transformed in the same way as
the basis vectors. The new indices /', k', I’ result from the same transformation
matrix P as for the basis vectors a, b, c.

The reciprocal lattice vectors a*, b*, ¢* are oriented perpendicular to the
planes (100), (010), and (00 1). Their lengths are

at = l/d]oo =bc sin(x/V, b* = l/d()]() =ac Sinﬁ/v, = l/d()o] =ab siny/V

3The different choices for the basis transfor-
mations and origin shifts in Parts 2 and 3 of
International Tables A1l are due, in part, to
their history of creation and, in part, to ma-
terial grounds. The tables were created in-
dependently by different authors at different
times and were only combined at a late stage.
The differences in presentation and the corre-
sponding reasons are explained in the Appen-
dix of International Tables Al.

(W K1) = (hk,1)P

with V being the volume of the unit cell and djgg = distance between adjacent +/1-cos? a—cos? f—cos? y+2cos acos f cos y
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a*’/ a* planes (1 00). They are transformed in the same way as the coordinates by the
b | =P~ ' | b* inverse matrix P~
e c* The coefficients u, v, w of a translation vector t = ua+ vb+ we are also trans-
y " formed by the inverse matrix P~
vV =P 1|y
w w

Exercises

Solutions in Appendix D (page 281) tioned in Exercise 3.1; symmetry operation (15) is

(3.1) Zircon (ZrSiOy), anatase (TiO,), many rare-earth phos- y+ 431,75 + %,Z + % What d? t]hel symmetry operations
phates, arsenates, vanadates and others crystallize in the (8), (10), (15), and (15) + (za 2> z) look like in the new
space group I4/amd, space group number 141. In In- basis?
ternational Tables A, taking origin choice 2, one finds (d) What would the corresponding entries be in Interna-
among others the following coordinate triplets under the tional Tables A, if this primitive basis were used? Take
heading ‘positions’: into account the standardization, i.e. translations are con-
8) 7+ %’)—H_ %,Z-i—% (10) x+ %7})’2_’_% verted to values of 0 to <1 by the addition of integral

numbers.
Formulate these coordinate triplets as: - = .
(3.3) A subgroup of the space group P6m2 is P62m with the

basis vectorsa’ =2a+b, b’ = —a+b, ¢/ = ¢ and an ori-
gin shift pT = (%, %,0). How many times has the unit
cell of P62m been enlarged? How do the coordinates
(¢) 4 x 4 matrices. transform?

(a) Mappings that transfer the point X with the coordi-
nates x,y, z onto the point X with the coordinates %, ¥, %;

(b) Matrix—column pairs;

(d) Apply eqn (3.5), page 21, consecutively to the given (3.4)

A 1 The coordinate system of a (body-centred) tetragonal
matrix—column pairs. Does the result depend on the se-

space group is to be transformed first to an orthorhom-

quence? bic coordinate system with the basis vectors a’ = a+b,
(e) Multiply the corresponding 4 x 4 matrices and com- b’ = —a+b, ¢/ = ¢ and an origin shift p"ll" = (0, %70)’ fol-
pare the results with the results of (d). lowed by a second transformation to a monoclinic system
(f) Convert the results back to coordinate triplets and witha” =a’, b’ = b/, " = f%(a’ +¢’) and an origin
compare these with the listing in International Tables A, shift p; =(- %, %, f%) (referred to the orthorhombic co-
space group /4 /amd, origin choice 2. ordinate system). What are the transformations of the ba-
(3.2) For some physical problem it is necessary to refer space sis vectors and the coordinates from the tetragonal to the
group I41/amd to a primitive basis. This is chosen to be: monoclinic coordinate system? What is the origin shift?

D he vol f the unit cell ch ?
ap—a,bp=h, cp= %(a+b+c) oes the volume of the unit cell change

(3.5) The group—subgroup relation F m3c¢ — I4/mcm (retain-
ing the ¢ axis) requires a basis transformation and an ori-
gin shift. In International Tables A1, Part 3, one finds
the basis transformation %(a —b), %(a +b), ¢ and the
coordinate transformation x —y + %, x+7y, z. What is
the corresponding origin shift in the coordinate system

(b) How do the point coordinates transform? of Fm3c¢? Compare the result with the origin shift of

(c) The symmetry operations (8) and (10) are men- %, %,Ogiven in Part 2 of the tables.

If this basis were chosen for the description of the space
group in International Tables A, the data of International
Tables A, origin choice 2, would have to be changed, as
described in Section 3.7.

(a) What is the matrix of the basis transformation?



Basics of crystallography,
part 2

4.1 The description of crystal symmetry in
International Tables A: Positions

Three different kinds of description of the symmetry operations of crystals are
used in International Tables A:
(1) By one or more diagrams of the symmetry elements, see Section 6.4.1.
(2) By one diagram of ‘general positions’, see Section 6.4.4.

(3) By the coordinate triplets of the ‘general positions’, see Section 3.1.1.
As shown there, the coordinate triplets not only specify the coordinates
of the image points, but can also be regarded as descriptions of the map-
pings; see also Section 6.4.3.

In International Tables A, the coordinate triplets in the upper block of the
‘Positions’, such as shown at the beginning of Section 3.1.1 for the space group
14, /amd, are a kind of shorthand notation of eqn (3.1) (page 20):

e the left part (¥ =, § =, 7 =) has been omitted;
e all components with the coefficients Wy, = 0 and w; = 0 have been omit-
ted.
The term (2) X+ %,y+ %,z—|— % therefore means:

-1 00

1
2
W= 0—-10|, w=|3
0 01 %
The term (3) y,x+ %,z + % is a shorthand notation of the matrix—column pair:
0-10 0
w=[1 00], w=]|13
0 01 ‘l‘

This way, International Tables A present the analytic-geometrical tools for
the description of crystal symmetry.

4.2 Crystallographic symmetry operations

By definition, crystallographic symmetry operations are always isometries;
however, not every isometry can be a crystallographic symmetry operation.

4.1

4.2

4.3

The description of crystal symmetry in
International Tables A: Positions 41

Crystallographic symmetry operations
41

Geometric interpretation of the ma-
trix—-column pair (W,w) of a crystallo-

graphic symmetry operation 45
4.4 Derivation of the matrix—column pair
of an isometry 47
Exercises 43
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This is due to the periodicity of crystals and to the restriction that the period-
icity lengths may not be arbitrarily short.

Let a crystal be referred to a coordinate system with a primitive basis, Defi-
nition 2.7 (page 14). Then every symmetry operation corresponds to a matrix—
column pair (W,w). This includes an infinity of translations (I,w); every
triplet w of integers represents a translation. However, the number of matrix
parts W is finite, as follows from the following considerations.

Theorem 4.1 For every space group, represented by the matrix—column
pairs (W,w) of its symmetry operations, there exist only a finite number
of matrices W.

The matrix W maps the basis (aj,a;,a3) onto the vectors (a;,a,,a3). For
the set of all Ws we have a set of base images. Every basis vector is a lattice
vector; therefore, its image vector is also a lattice vector, since the lattice has
to be mapped onto itself under W, otherwise W would not correspond to a
symmetry operation. The set of all image vectors of a basis vector, say a;,
have their endpoints on a sphere of radius a;. If there were infinitely many
image vectors a;, their endpoints would have to concentrate around at least one
point on this sphere with an infinite density. For any two lattice vectors their
difference also is a lattice vector; then there would have to exist arbitrarily
short lattice vectors. As a consequence, only a finite number of image vectors
a; can exist for any 7, and thus only finitely many matrices W.

This conclusion is evidently independent of the dimension d of space. How-
ever, the maximal possible number of different matrices increases markedly
with d: Itis 2 ford =1, 12 for d = 2, 48 for d = 3, and 1152 for d = 4.

A second restriction concerns the possible orders N of rotations. According
to the aforementioned consideration of the matrices W, these have to consist
of integral numbers if a primitive basis has been chosen, because in that case
all lattice vectors are integral. On the other hand, the matrix of any rotation,
referred to an appropriate orthonormal basis, can be represented by

cosp —sing 0
W= sing cosep O
0 0 1

The trace of the matrix is therefore tr(W) = n, n integral, as well as tr(W) =
1+2coso.

The trace is independent of the basis. As a consequence, for crystallographic
symmetry operations, one has:

1+2cos¢ = n, nintegral
This restricts the possible values of ¢ to:
¢ =07, 60°, 90°, 120°, 180°, 240°, 270°, and 300°
Therefore, the order N is restricted to the values N = 1,2,3,4, and 6. This is

also valid for rotoinversions, since any rotation can be coupled with an inver-
sion.
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In crystallography, the types of crystallographic symmetry operations are
designated by their Hermann—-Mauguin symbols (Figs. 4.1 and 4.2). These
are:

1 for the identical mapping.

T (‘one bar’) for the inversion.

e Rotations: A number N, N = 2, 3, 4, 6. This corresponds to the order
of the rotation. If needed, the power of the rotation is mentioned; for
example, 6~! = 6, rotation by —60° = 300°.

e Screw rotations: N, designates a screw rotation consisting of a rotation
N coupled with a translation parallel to the axis of rotation by p/N of
the shortest lattice distance in this direction. The possible symbols are:
21 (‘tWO sub one’), 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

e Rotoinversions: 3, 4 and 6.

o Reflections: m (like mirror). m is identical to 2.
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w\ . : . ™~ mirror plane
point of inversion \,
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Fig. 4.1 The effect of different symmetry operations on the point & (Chinese symbol for point, pronounced dizn in Chinese, hoshee in Japanese).
The symmetry operations are designated by their Hermann—Mauguin symbols and by their graphical symbols.
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Fig. 4.2 The crystallographic screw axes with their Hermann—Mauguin and graphical symbols. The axes 3y, 41, 6;, and 6, are right-handed, 3,, 43,
65, and 64 left-handed. One length of translation in the axis direction is depicted.
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o Glide reflections: The letter m is replaced by a symbol that expresses the
glide vector v. The vector v is parallel to the glide plane; its length is
one-half of a lattice vector. The main symbols among the conventional
settings are:

a, b, or c if the glide vector is %a, %b, or %c, respectively; for plane
groups it is g;

n for glide vectors J(+a=b), J(+b=xec), 1 (+eta), or 1 (fatbLc);
d for glide vectors 1 (+a=£b), 2 (tb=tc), }(£cta),or I (tatbte).
e designates a glide plane having two mutually perpendicular glide vec-
tors %a, %b, or %c.

For the special symbols g; and g, among non-conventional settings of
tetragonal space groups see Section 9.3.3.

The mentioned symbols for single crystallographic symmetry operations
give no indication about the orientation of the rotation or rotoinversion axis.
As explained in more detail in Section 6.3.1, the orientation of an axis is ex-
pressed in a Hermann—Mauguin symbol by its position in the symbol.

In the plane, the same orders exist for rotations, since the traces of the ma-
trices yield the same equation 2cos ¢ = n with the same solutions for ¢ and
N. However, only one type of symmetry operation exists in the plane for
det(W) = —1, the reflection or glide reflection at a line, which is represented

in an appropriate basis by:
-10
v=(%o1)

A rotation axis belongs to every rotation. Among the symmetry rotations
of crystals, these axes can only adopt certain mutual angles, otherwise their
compositions would produce rotations with non-integral traces. This is another
way to understand why for a crystal there can only exist a finite number of
matrices W. The different possible sets { W} of compatible matrices W, the 32
crystal classes, can be derived in this way.

4.3 Geometric interpretation of the
matrix—column pair (W,w) of a
crystallographic symmetry operation

Consider a crystallographic symmetry operation W, represented by the matrix—
column pair (W,w), referred to a given coordinate system (the geometric in-
terpretation would be impossible without the coordinate system).

Essentially, the following procedure can be applied to general isometries,
without restrictions to the orders. See also Section 3.6.

First, we analyse the matrix part W:

e det(W) = +1: rotation; det(W) = —1: rotoinversion;

e angle of rotation ¢ from cos ¢ = 1 (tr(W) — 1) (4.1);
the + sign refers to rotations, the — sign to rotoinversions.
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This can be summarized in a table:

det(W) = +1 det(W) = —1
w(W)[3210 -1]-3 -2 -1 0 1
type (1643 2|1 6 4 32=m
order |1 643 2|2 6 4 6 2

Characterization of the crystallographic symmetry operations

Every symmetry operation, translations excepted, is related to a symmetry el-
ement. This is a point, a straight line, or a plane which retains its position in
space when the symmetry operation is performed.
1. Type 1 or 1:

e 1: identity or translation with w as a column of the translation vector;

e 1: inversion; the symmetry element is the point of inversion F (inver-
sion centre):

1
Xrp = Ew “4.2)
2. All other operations have a fixed axis (axis of rotation or rotoinversion); its
direction can be calculated from Wu = u (rotations) or Wu = —u (rotoinver-

sions). For a reflection and a glide reflection the symmetry element is not
the axis, but the mirror plane or the glide plane (short for glide-reflection
plane); the direction of the axis is normal to the plane.

3. The coefficient of a screw rotation or the coefficient of a glide reflection %t
can be calculated from the corresponding matrix of rotation W, which has
order k, i.e. WK =T

11
%t:%<W"_l+Wk_2+...+W+I)W 4.3)

If ¢t = 0, we have a rotation or a reflection. If # # 0, we have a screw rotation
or a glide reflection. In this case one obtains the reduced operation:

(1) (W.w) = (Wow = 10) = (W) (4.4)
The column %t is called the screw component or the glide component of the
column w. The column w' = w — %t determines the position in space of the
corresponding symmetry element. Therefore, w’ is also called the positional
component of w. If W has only main diagonal coefficients, i.e. only W;; # 0,
then W;; = &1 holds and w; is a screw or a glide coefficient for W;; = +1
and a positional coefficient for W;; = —1.

4. The fixed points of the isometry are determined by solution of eqn (3.11):
Wxr+w=xp

This equation has no solution for screw rotations and glide reflections. The
position of the screw axis or glide plane rather results from the reduced
operation, eqn (4.4):

Wxp +w =xp (4.5)
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The conventional pairs (W,w) are listed in International Tables A in short-
hand notation as ‘general positions’, see Section 3.1.1. Their geometric mean-
ing can be found in the tables of the space groups under the heading ‘symmetry
operations’. They have been numbered in the same sequence as the coordinate
triplets. More explanations follow in Section 6.4.3.

4.4 Derivation of the matrix—column pair of an
isometry

The matrix—column pair (W, w) consists of 12 coefficients. To determine them,
the coordinates of four non-coplanar image points have to be known. The most

straightforward procedure is to take the image points of the origin and of the
three endpoints of the basis vectors.

1. If O is the image point of the origin O, we obtain:
o=Wo+w=w 4.6)

Therefore, the coordinates & of O are the coefficients of w.

2. After having determined w, the matrix W is obtained from the images of the
points X,,Y, and Z, with

1 0 0
Xo = 01, yo= 1 y o= 0
0 0 1

using the relations:

Xo=Wx,+w, y,=Wy,+w, Z,=Wz,+w or 4.7

Wi Wio Wiz
j‘7() = W21 +w, 5’0 = W22 +w, z(} = W23 +w (48)
Wa1 W3 W3

With the coordinates of ¥,,¥,,Z, one obtains the matrix W.

To check the result, one calculates fixed points, the trace, the determinant,
the order, and/or other known values. If the images of 0,X,,Y,, or Z, are dif-
ficult to determine, one has to use the images of other points; the calculations
then become more complicated.
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Exercises

Solutions in Appendix D (page 283) (c) the direction of the axis of rotation or of the normal to

(4.1) Give the geometric interpretations for the symmetry op- the plane;

erations (8), (10), (15), (15) + (%.3.%) = (15), and
(15)2, mentioned in Exercises 3.1 and 3.2 (page 40;
(15)2, means standardized). Take the matrices you ob-
tained with Exercise 3.1 and apply the procedure ex-
plained in Section 4.3. For each of the mentioned op-
erations, derive:

(a) the determinant det(W) and the trace tr(W);
(b) from that, the type of symmetry operation;

(d) the screw and glide components;

(e) the position of the symmetry element;

(f) the Hermann—Mauguin symbol of the symmetry oper-
ation.

(g) Which operations yield fixed points?

Compare the results with the figures and listings of the
symmetry operations in International Tables A, space
group 14 /amd, origin choice 2.
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exists another number —z with the property z+ (—z) = 0. The relation
21 + 2 = 2o + z; always holds.

(2) The symmetry G of a square.

The set G consists of the eight mapping elements g;, g», ..., gs. These
are, see Fig. 5.1, the rotations 4 counter-clockwise by 90°, 2 by 180°, and
47" by —90° (equivalent to 4° by 270°), the reflections my, m,, m,, and
m_ through the lines my, my, m, and m_, and finally the identity mapping ® @
1, which maps every point onto itself. Each one of these mappings maps
the square onto itself; any composition (sequence) of two mappings again
yields a mapping of the figure onto itself. The composition of any map- L 4 —>
ping g with 7 reproduces g, and for any mapping g there exists the inverse
mapping g~ !, such that g composed with g~ ! yields the identity mapping.
Contrary to Z the composition of two elements does not always yield the @ @
same element: 4 and m, yield m_ if 4 is performed first, but my if my is 1,—1 1,1

performed first. my My m—

The two sets have another important property in common, referred to the la
chosen kinds of composition, addition and sequential mapping. If one takes Fig 5.1 The square and its symmetry ele-
three elements z;,2, 23 or gi,. g3, it makes no difference which elements ~ments (point of rotation & and four mirror
are composed first as long as the sequence is not changed: lines).

(+n)+n=2a+25=2

always yields the same result as
a+(ntn)=z+2=2

In the same way
(giog)ogs=g4093=9g6=0g1°(%2°73) =71°95 = gs

holds, where the sequential execution is expressed by the symbol o. The sets
Z and G are said to be associative with respect to the selected compositions.

The sets Z and G share the mentioned properties with many other sets. The
term group has been coined for all sets having these properties.
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Table 5.1 Symmetry operations of a
square and the corresponding permuta-
tions of its vertices, see Fig. 5.1.

Table 5.2 Matrices of the symmetry opera-

tions of the square.

— o

S =

— o

N N~ N~

O =

An example of a non-associative composition of elements of the set Z is
subtraction. For example, (5—3)—-2=2-2=0,but5—(3-2)=5-1=
4 # 0. However, we do not have to be concerned about associativity: mappings
are associative, and symmetry deals with groups of mappings.

Let us consider the example of the group G in some more detail. The se-
quential execution of mappings is not always a simple matter. You may find it
difficult to answer the question, “Which mapping (symmetry operation) results
when a cube is first rotated counter-clockwise about the direction [111] (body
diagonal) by 120° and then about [010] (an edge) by 270°?" The replacement
of mappings by analytical tools helps to keep track of the operations. Such
tools are the permutations of the vertices @, @, @), and @; other tools are
the matrices of the mappings. Exactly one permutation and one matrix cor-
responds to each mapping (if the origin is chosen to be in the centre of the
square, the column w of the matrix—column pair (W,w) is a zero column and
it is sufficient to consider the matrix W). The composition of mappings then
corresponds to a sequence of permutations or to multiplication of the matrices,
see Tables 5.1 and 5.2. The notation in Table 5.1 has the following meaning:
(3) means, the vertex @ keeps its position; (13) means, the vertices @ and @
interchange their positions; (1234) means cyclic interchange of the vertices,
D—-20—-@—-@—-0.

Using permutations, one obtains the result of the above-mentioned sequen-
tial execution of 4 and m,:

First 4, then my First my, then 4

ORORENCY ORORENCY
4 1 11| me oLl
ORCORONEY @0 o6
me oLl 4 11 1]
ONORONE) ®@0®

this corresponds to the permutation
(H)(3)(24) which is m_

this corresponds to the permutation
(2)(4)(1 3) which is my

Using matrices, the first operation has to be written on the right side, since
it is applied to the coordinate column which is placed on the right side in the
formula ¥ = Wx:

First 4, then my First my, then 4
W(my)  W(4) W(4)  W(my)
T0 01 01 071 10 01
(o 1)(1 0) (1 o)*W(m*) <1 0)(0 1) <T 0
If the group contains not too many elements, the results of the compositions
can be presented in a table, the group multiplication table, see Table 5.3. In
the top line, each column is labelled with a symmetry operation (group ele-
ment), and so is each row in the left-most column. The top line refers to the
operation performed first, the left column to the second operation. The entry at

the intersection of a column and a row corresponds to the composition of the
operations. Check the results obtained from 4 and mj.

)=wim)
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Table 5.3 Multiplication table of the symmetry group of the square.

1 2 4 477 my my my m_ <« first symmetry operation

1T 2 4 4" m mp om m-
2 1 477 4 my m_— my my
4 477 2 1 mrom omo omy
4 4 1 2 me o ome mp omy

my | my my m- my 1 4717 2 4
my|my mo me m, 4 1 477 2
my|m, me my m. 2 4 1 471

m_|m- my my, me 4 2 4 1

second symmetry operation

5.2 Basics of group theory

The observations made in Section 5.1 can be formalized with the so-called
group axioms (group postulates) [45]. These are:

(1) Closure: A group is a set G of elements g;, for which a composition law is
defined, such that the composition of any two elements g; o gy yields exactly
one element g i € g 1 lgi o g reads ‘g; followed by gy ’.

gj =39i° 0k
Remarks
e The notation g; € G means, g; is an element of the set G.

e We use: calligraphic letters such as G,H for groups; slanted sans-
serif lower case letters or ciphers such as g, h, 4 for group elements;
italic upper case letters such as A, B for arbitrary sets; and italic lower
case letters such as a, b for their elements. Groups and sets are also
designated by curly braces such as {g1,@,...} =G or{aj,az,...} =
A. {W} means a group consisting of mapping matrices Wi, W, ... .

e The composition of elements is often called ‘multiplication’ and the
result the ‘product’, even if the composition is of some other kind.
The composition sign o is usually omitted.

e In most cases the kind of composition is clear. However, sometimes
a specification is needed, for example, if the composition in Z should
be addition or multiplication.

e The convention in crystallography is: When mappings of points (or
coordinates) are expressed by matrices, then in a sequence of map-
pings the first matrix is written on the right, the second one on the
left, see Section 5.1.

e The symmetry operations are the elements of a symmetry group. The
symmetry elements (points of inversion, rotation axes, rotoinversion
axes, screw axes, and reflection and glide planes) are not the elements
of the group. This unfortunate terminology has historical reasons.

(2) The composition of elements is associative, see Section 5.1.
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Example 5.1

Generation of the symmetry group of
the square from the generator {4, my }:
4omy — m_; myom_ — 477,
4om_ — my; 4omy, — my;
myom, — 2; 40471 — 1

(3) One element of the group, the identity element, g; = e has the property
egi=gie=g forall g €g

(4) Every g € G has an inverse element (or reciprocal element) x € G, such
that xg = gx = e holds. Usually, the inverse element is termed g—!.

The element inverse to g~ !

is g. If g # g~ !, there are pairs g and g~

For the following, some more basic terms are needed.

(a) The number G = |G| of elements in a group G is called the order of the
group. If G is not finite (as in Z), G is called a group of infinite order or an
infinite group.

(b) Let g € G. Then, according to axiom 1, gg = g%, ggg = g°,... are also
elements of G. If G is finite, there must exist a smallest number k, such that
g* = e holds. This number  is called the order of the element g (not to be
confused with the order of the group). If G is infinite, k can be infinite. For
example, the group Z from Section 5.1 only has elements of infinite order
(the 0 excepted).

(¢) If gi gr = gr 9; holds for all element pairs g;,gx € G, G is called a commu-
tative or Abelian group (after the mathematician ABEL).

(d) An arbitrary subset A = {aj,az,a3,...} C G is called a complex from G.
A complex usually does not fulfil the group axioms. g;A refers to the set
{gia1,giaz,gias, ...} of the products of g; with the elements of A; A g; des-
ignates the set {a)g;,a29:,a38;,...}. If B={by,by,bs,...} C G is also a
complex from G, then A B is the set of all products a; by, AB = {a; by,a, by,
azby,...,a1by,...,a;iby,...}; BA is the set of all products b; ay.

(e) A complex H C G which fulfils the group axioms is called a subgroup,
written H < G. If G contains elements which do not occur in H, i.e. if
‘H (as a set) is smaller than G, then H is called a proper subgroup of G,
‘H < G. By analogy, G > H is called a supergroup of H and G > H a
proper supergroup of H. G < G as a subgroup of itself and the unity
element e (that always forms a group by itself) are the trivial subgroups
of G. If we regard e as being a group, we write {e}.

Definition 5.1 H < G is called a maximal subgroup of G if there exists no
intermediate group Z for which H < Z < G holds. If / is a maximal
subgroup of G, then G > 'H is called a minimal supergroup of H.

(f) A complex of elements g, @,... is called a set of generators of G it G
(i.e. all elements of G) can be generated by repeated compositions from
the generators.

For example, the symmetry group of the square, among others, can be gen-
erated from {4, m, } or {my,m, }or {1,4~ " my,m,}or {4,2,47 ", m_,m, }.

(g) A group G is called cyclic, if it can be generated from one of its elements
ac G (aand a~! in the case of infinite groups). For finite cyclic groups,
the order of ais the group order. The order of (Z,+) is infinite, see above,
letter (b); generators are a = 1 and al=-1.



(h) A group of small order can be clearly represented by its group multiplica-
tion table, see the example in Table 5.3. The composition ab of a and b is
placed in the intersection of the column of a and the row of b. Each column
and each row of the group multiplication table lists each of the elements of
the group once and only once.

Question. What elements of a group multiplication table have order 2?
(Reply in Appendix D, page 283.)

(i) Groups which have the same group multiplication table, apart from the
names or symbols, and if necessary, after rearrangement of rows and col-
umns, are called isomorphic. This definition becomes unwieldy for groups
of large order and meaningless for infinite groups. However, the essen-
tial property ‘the same group multiplication table’ can be defined without
reference to a multiplication table.

LetG ={g1,9,...} and G’ ={g}, g5, ...} be two groups. ‘The same group
multiplication table’ means that for corresponding elements g; and g or g and

g, their products g; g and g gj, also correspond to each other. This is the basis
of the definition:

]

Definition 5.2 Two groups G and G’ are isomorphic, G = G/, if

(i) there exits a reversible mapping of G onto G', g; = g/:
(i) the product g/ g; of the images g/ and g is equal to the image (g; gk)’
/

of the product g; gi for every pair g;,gx € G. More formally: g/ g, =
0i 9x) - I'he 1image of the product 1s equal to the product of the images.
’. The image of the product is equal to the product of the imag

With the aid of isomorphism all groups can be subdivided into isomorphism
classes (isomorphism types) of isomorphic groups. Such a class is also called
an abstract group; the groups themselves are realizations of the abstract group.
In the group-theoretical sense, there is no distinction between different realiza-
tions of the same abstract group. This makes it possible to replace a group
of mappings by the corresponding group of matrices (or of permutations) and
thus renders it possible to treat the geometrical group with analytical tools.
This is exactly what is exploited in Section 5.1, where three realizations of the
symmetry group of the square are used:

(1) the group of the mappings {1,4,...,m_};
(2) the permutation group, the elements of which are listed in Table 5.1;

(3) the group of the matrices mentioned in Table 5.2.

5.3 Coset decomposition of a group

Let G be a group and H < G a subgroup. A coset decomposition of G with
respect to H is defined as follows:

(1) The subgroup H is the first coset.

(2) If g, € G, but g» ¢ H, then the complex g, H is the second coset (left
coset, since g is on the left side).

53

Coset decomposition of a group 53
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No element of g»p’H is an element of H and all elements of g, ’H are
different. Therefore, the cosets H and g» H have |H | elements each.

(3) If gs € G but g3 ¢ H and g5 ¢ g»'H, the complex g3 H is the third (left)
coset. All elements of g3’H are different and no element of g3 H appears
in H or g» 'H; all elements are new.

(4) One continues the procedure until no element of G is left over. As a
result, G has been decomposed to left cosets with respect to H . In the
same way, G can also be decomposed to right cosets H,H ¢, .. ..

(5) The number of right and left cosets is the same; it is called the index of
HingG.

It follows from items (1)—(5) that each element of G appears in exactly one
coset and that every coset contains |H | elements. Only the first coset is a group
since it is the only one which contains the identity element. From h;H = H it
follows that every element g; h; of the coset g;’H can be used to generate the
coset.

Taking h; € H and n = |H|, the elements g; € G are distributed among the
left cosets in the following manner:

first second third ... ith
coset coset coset coset
H= ngZ g3H: g,-H:
e=hy Qe Qe gie
hy o g e gi
hs3 g hs g3 hs e gihs
hn [¢}] hn [o4] hn cee gi hn

Total of i cosets. Each of them contains the same number of elements.
No one contains elements of another coset

Example 5.2

A few coset decompositions of the symmetry group of the square,
G=1{1,2,4,4",my,my,my,m_} (cf. Fig. 5.1 and Table 5.3):
Decomposition with respect to H = {1,2}

Ist coset 2nd coset 3rd coset 4th coset

left cosets
1oH ={1,2} 4o’}-{:{4,4*7} myoH ={my,m,} myoH={my,m_}

right cosets
Hot1={1,2} Hod={4,4""} Homy={my,m} Homi={my m_}

There are four cosets, the index amounts to 4. In addition, in this case, the
left and right cosets are equal.



Decomposition with respect to H = {1, my }
1st coset 2nd coset 3rd coset 4th coset

left cosets
1OH:{17mX} 4OH:{4vm—} ZOH:{va}’} 47107_{:{4715”74—}

right cosets
Hot={1,m} Hod4={4,m:} Ho2={2,m,} Ho4 '={4""m_}

Left and right cosets are different.

The Theorem of Lagrange follows directly from the coset decomposition of
a finite group:

Theorem 5.3 If G is a finite group and H < G, then the order [H | of H is
a divisor of the order |G| of G.

There exist i cosets having |H | elements each, every element of G appears
exactly once, and therefore |G| = |H | x i. The index is:

_ 191
i | 5.1

From Theorem 5.3 it follows that a group having the order of a prime number
p can only have trivial subgroups. The symmetry group of the square, having
an order of 8, can only have subgroups of orders 1 ({1}, trivial), 2, 4, and 8
(G, trivial).

Equation (5.1) is meaningless for infinite groups. However, if the elements
of an infinite group are arranged in a sequence, one can delete from this se-
quence, say, every other element. The number of the remaining elements then
is ‘half as many’, even though their number is still infinite. After deletion of
all odd numbers from the infinite group Z of all integral numbers, the group of
the even numbers remains. This is a subgroup of Z of index 2. This is due to
the fact that in this way Z has been decomposed into two cosets: the subgroup
‘H of the even numbers and a second coset containing the odd numbers:

first second
coset coset
H= 1+H=
e=0 1+0=1

-2 2 1+(-2)=—-1 1+2=3
-4 4 1+(—4)=-3 1+4=5

Similar considerations apply to space groups. Space groups are infinite
groups, consisting of an infinite number of symmetry operations. However,
one can say, ‘the subgroup of a space group of index 2 consists of half as many
symmetry operations’. ‘Half as many’ is to be taken in the same sense as, ‘the
number of even numbers is half as many as the number of integral numbers’.

5.3 Coset decomposition of a group 55

For the finite index between two infinite
groups G > H we write i = |G : H|.
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5.4 Conjugation

The coset decomposition of a group G separates the elements of G into classes;
every element belongs to one class, i.e. to one coset. The cosets have the
same number of elements, but the elements of a coset are quite different. For
example, the identity element is part of the elements of the subgroup (first
coset), while the order of all other elements is larger than 1. In this section we
consider another kind of separation of the elements of G: the subdivision into
conjugacy classes. Generally, conjugacy classes have different sizes (lengths),
but the elements of one class have common features.

Definition 5.4 The elements g; and g;, g;,9; € G, are called conjugate in G
if there exists an element g, € G such that g; = g,,;l 9i 9m holds. The set of
elements which are conjugate to g; when g, runs through all elements of G
is called the conjugacy class of g;.

One also says that g; can be transformed to g; by g,,. There may exist several
elements g,,,9,,... € G which transform g; to g;.

Referred to symmetry groups, this means: Two symmetry operations of the
symmetry group G are conjugate if they are transformed one to another by
some other symmetry operation of the same group G.

Example 5.3
In the symmetry group of the square (Fig. 5.1), the rotation 4 transforms the
reflection m, to m_ and vice versa:

m, 471 m 4

01\ /(01 01 01

10) \10 10 10
The same transformation m, = m_ can be achieved by the rotation 4~ " and
by the reflections my and m,, while the remaining symmetry operations of the
square leave m, and m_ unchanged. The reflections m, and m_ are conju-

gate in the symmetry group of the square. Together, they form a conjugacy
class.

Properties of conjugation:

(1) Every element of G belongs to exactly one conjugacy class.

(2) The number of elements in a conjugacy class (the length of the conjugacy
class) is different; however, it is always a divisor of the order of G.
(3) If g; € G and if the equation .
9n 9i9m = i (5.2
holds for all g,, € G, then g; is called self-conjugate. Since eqn (5.2) is
equivalent to g; g,y = 9 gi, Oone also says: ‘g; is interchangeable with all
elements of G°.

(4) For Abelian groups, it follows from eqn (5.2) that every element is self-
conjugate, and thus forms a conjugacy class by itself. Similarly, the identity
element e € G of any group forms a class by itself.

(5) Elements of the same conjugacy class have the same order.
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Definition 5.5 Subgroups H,H' < G are called conjugate subgroups in G,
if there exists an element g,, € G such that H' = g, "1 g, holds. The set of
subgroups that are conjugate to H when gy, runs through all elements of G
forms a conjugacy class.

Theorem 5.6 Conjugate subgroups are isomorphic and thus have the same
order.

By conjugation, the set of all subgroups of G is subdivided into conjugacy
classes of subgroups. Subgroups of the same conjugacy class are isomorphic.
The number of subgroups in such a class is a divisor of the order |G|. Every
subgroup of G belongs to exactly one conjugacy class. Different conjugacy
classes may contain different numbers of subgroups.

Conjugate subgroups of space groups are the subject of Chapter 8 .

Definition 5.7 Let H < G. If g, 2y gn = H holds for all g, € G, H is
called a normal subgroup of G, designated H <1 G (also called an invariant
subgroup or self-conjugate subgroup).

The equation g,;l'Hgm = H is equivalent to H g,, = g, H{. Therefore, the
coset decomposition of a normal subgroup yields the same right and left cosets.
The normal subgroup can also be defined by this property. That implies the
self-conjugacy in G. In Example 5.2, {7,2} is a normal subgroup, {1,2} <3,
but not so {71, my}.

Every group G has two trivial normal subgroups: the identity element {e}
and itself (G ). All other normal subgroups are called proper normal subgroups.

5.5 Factor groups and homomorphisms

The cosets of a group G with respect to a normal subgroup N <1G by them-
selves form a group which is called the factor group (or quotient group) F =
G /N . The cosets are considered to be the new group elements. They are con-
nected by complex multiplication, see Section 5.2, letter (d). Replacing group
elements by cosets can be compared to the packing of matches into match
boxes: First, one has to do with matches; after packing them, one only sees the
match boxes (now filled), which are now the elements to be handled.

Example 5.5

The point group 3m consists of the elements 17, 3,3~ ', my, mp, mg. Its
subgroup 3 consists of the elements 7, 3,3 '; it is also the first coset
of the coset decomposition of 3m with respect to 3. The complex
m;{1,3,3 "} = {my, mz, m3} is the second coset. Left and right cosets co-
incide; therefore, the subgroup 3 is a normal subgroup. The factor group
3m /3 consists of the two elements {7, 3, 3~ '} and {my, ms, m3}. Together,
the rotations are now considered to be one group element, and the reflections
in common form another group element. The normal subgroup, in this case
{1, 3,3 "}, is the new identity element of the factor group.

Example 5.4

As explained in Example 5.3, my
and m_ are conjugate elements of
the symmetry group G of the square.
The groups {7,m;} and {7,m_}
are conjugate subgroups of G be-
cause 4~ "{1,m;}4={1,m_}. These
two groups form a conjugacy class.
The conjugate subgroups {7, my} and
{1,m,} form another conjugacy class;
4 {1,m}4={1,m,}.

G /N is pronounced ‘G modulo N’
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Factor groups are important not only in group theory, but also in crystallog-
raphy and in representation theory. The following rules hold:

The normal subgroup N of the group G is the identity element of the factor
group F =G/N.
The element inverse to g; A is g; '\ .

Example 5.6
Let G be the group of the square (cf. Section 5.1) and let N/ be the normal
subgroup { 1,2} <G. The group multiplication table of the factor group F is:

| {122 {4477} {mem} {mym }
{172} {172} {47471} {mX’my} {m+7m*}
{47471} {4’471} {172} {er’m*} {mmmy}

{mX7m,V} {mX7my} {ervm*} {1’2} {4’471}
{me,m_} [{my,m_} {m.m} {4477} {1,2}

The identity element is {7,2}. The multiplication table is equal to the multi-
plication table of the point group mm?2; therefore, the factor group is isomor-
phic to mm?2.

In the preceding example F is isomorphic to a subgroup of G. This is not
necessarily so; factor groups of space groups very often are not isomorphic to a
subgroup. The main difference between the factor groups F and the subgroups
‘H of a group G can be demonstrated by a geometric comparison:

A subgroup corresponds to a section through a body; the section only dis-
closes a part of the body, not the whole body, but of this part all of its details.
The factor group corresponds to a projection of a body onto a plane: every
volume element of the body contributes to the image, but always a column of
volume elements is projected onto an image element; the individual character
of the elements of the body is lost.

Normal subgroups and factor groups are intimately related to the homomor-
phic mappings or homomorphisms.

Definition 5.8 A mapping G — G’ is called homomorphic or a homomor-
phism if for all pairs of elements g;,gr € G that are mapped, g; — g/ and

Ok — g,’(,
(9i9) = 9; o (5.3)
also holds. The image of the product is equal to the product of the images.

This is the same condition as for an isomorphism, see Section 5.2, letter (i).
However, an isomorphism has exactly one image element per starting element,
so that the mapping can be reversed, whereas under a homomorphism there is
no restriction as to how many elements of G are mapped onto one element of
G'. Therefore, isomorphism is a special kind of homomorphism.



Example 5.7

Let G ={Wj,...,Wsg} be the group of the mapping matrices of the square (cf.
Table 5.2); their determinants have the values det(W;) = +1. If we assign its
determinant to each matrix, then this is a homomorphic mapping of the group
G of the matrices onto the group of numbers G’ = {—1,1}; —1 and 1 form
a group with respect to the composition by multiplication. Equation (5.3)
of Definition 5.8 holds since det(W;W;) = det(W;) det(Wy). The mapping
cannot be reversed because the determinant 1 has been assigned to four of
the matrices and the determinant —1 to the other four.

Closer inspection reveals that a homomorphism involves a close relation
between G and G', see, for example, the textbook [45].

Theorem 5.9 Let G — G’ be ahomomorphism of G onto G’. Then a normal
subgroup K <G is mapped onto €, the identity element of G’, and the cosets
9iK are mapped onto the remaining elements g/ € G’. Therefore, the factor
group G /K is isomorphic to G'. The normal subgroup K is called the kernel
of the homomorphism. The homomorphism is an isomorphism if = {e},
i.e. G'isisomorphic to G.

Theorem 5.9 is of outstanding importance in crystallography. Take G as the
space group of a crystal structure, C as the group of all translations of this
structure, and G’ as the point group of the macroscopic symmetry of the crys-
tal; then, according to this theorem, the point group of a crystal is isomorphic
to the factor group of the space group with respect to the group of its transla-
tions. This will be dealt with in more detail in Section 6.1.2.

5.6 Action of a group on a set

In spite of their importance, groups are not of primary interest in crystal chem-
istry. Of course, they are needed, since isometry groups are used to describe
the symmetry of crystals. They are the foundation for all considerations,
and knowledge of how to deal with them is essential to all profound reflec-
tions on crystal-chemical topics. However, primary interest is focused on the
crystal structures themselves, on their composition from partial structures of
symmetry-equivalent particles, and on the interactions between particles of
equal or different partial structures. The symmetry group of the crystal struc-
ture is behind this. Therefore, what is really of interest, is the influence of the
group on the points (centres of the particles) in point space: Which points are
symmetry equivalent, which are invariant under which symmetry operations,
etc. The conception of the action of a group on a set deals with this kind of
questions. However, it is much more general, since the groups and the sets can
be of any kind. As for groups, certain postulates must be fulfilled:

Let G be a group with the elements e, gs,...,g;,... and let M be a set with
the elements my,mo,...,m;,... .

5.6 Action of a group on a set
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Definition 5.10 The group G acts on the set M if:
(1) m; = g;mis aunique element m; € M for every g; € G and every m € M.
(2) em =mis fulfilled for every m € M and the identity element e € G .
(3) gr(gim) = (g gi)m holds for every pair g;, gy € G and every m € M.

Definition 5.11 The set of the elements m; € M which are obtained by m; =
g;m when g; runs through all elements of the group G is called the G-orbit of
m or the orbit Gm.

Applied to crystals, this means: Let G be the space group of a crystal struc-
ture and let m be an atom out of the set M of all atoms. The orbit Gm is the set
of all atoms which are symmetry-equivalent to the atom m in the crystal. For
crystals we formulate in a more general way:

Definition 5.12 The mapping of a point X, by the symmetry operations of
a space group yields an infinite set of points, which is termed the orbit of X,
under G or the crystallographic point orbit of X, or the G-orbit of X, or, for
short, GX,.

A G-orbit is independent of the point X, chosen from its points. The different
G-orbits of point space have no points in common. Two G-orbits would be
identical if they had a common point. Therefore, the space group causes a
subdivision of the point space into G-orbits. Crystallographic point orbits are
dealt with in more detail in Section 6.5.

Example 5.8 B
The space group of zinc blende is F43m. Let a zinc atom be situated at

the point Xz, = (%, %, %) By the symmetry operations of F43m further

(symmetry-equivalent) zinc atoms are situated at the points %, %, %, %, %, %,
and %, %, % and, in addition, at infinitely many more points, which result
from the mentioned points by addition of (g, r, s), with g, r, s = arbitrary
positive or negative integral numbers. The complete set of these symmetry-
equivalent zinc positions makes up a crystallographic point orbit. Starting

from Xs = (0, 0, 0), the sulfur atoms occupy another orbit.

Definition 5.13 The set of all g; € G for which g;m = m holds is called the
stabilizer S of min G.

In a crystal the stabilizer of m in G is the set of all symmetry operations of
the space group G which map the atom m onto itself. The stabilizer is nothing
other than the site symmetry of the point X, at which the atom is situated
(Section 6.1.1).

The stabilizer is a subgroup of G, S < G. If the element g € G, gr ¢ S,
maps the element m € M onto my € M, then this is also valid for the elements
xS C G. One can show that exactly these elements map m onto my:

If my = gm holds for any g € G, then my = gm = gy m or g,;lgm = m holds.
Therefore, g, ! g=s, € S holds for any s,. It follows that g = g; s,. Therefore,
all g € G which map m onto my, are contained in the left coset gS of G with
respect to S.
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Theorem 5.14 If |G| is the order of the finite group G and |S| the order of
the stabilizer S of the element m € M, then L = |G|/|S| is the length of the
orbit Gm.

Among symmetry groups, ‘length’ means the ‘number of symmetry-equiva-
lent points’. For example, the symmetry group G of the square has order
|G| = 8. The vertex m = @ of the square (Fig. 5.1) is mapped onto itself
by the symmetry operations 7 and m_; the stabilizer therefore is the group
S = {1,m_} with order |S| = 2 (site symmetry group of the point @). The
length of the orbit Gm is L = 8/2 = 4; there are four points which are symme-
try equivalent to .

Exercises

Solutions in Appendix D (page 283)

(5.1)

(5.2)

(5.3)

(54)

(5.5)

How can it be recognized in a multiplication table,
whether the result of a composition is independent of the
sequence of the elements?

What are the orders of the symmetry operations of the
symmetry group of the square in Section 5.1? Do not
confuse the orders of the symmetry operations with the
order of the group.

List the elements of the symmetry group of the trigonal
prism. What is the order of the group? Write down the
permutation group for the vertices of the trigonal prism in
the same way as in Table 5.1 (label the vertices 1, 2, 3 for
the lower base plane and 4, 5, 6 for the upper plane, ver-
tex 4 being on top of vertex 1). Perform subsequent per-
mutations to find out which symmetry operation results
when the rotoinversion 6 is performed first, followed by
the horizontal reflection m,. Continue in the same way
for other compositions of symmetry operations and write
down the multiplication table.

Perform the right and left coset decompositions of 62
(symmetry group of the trigonal prism) with respect to
the subgroup {1, 3,37 '}. Compare the two decomposi-
tions; what do you observe? What is the index? Repeat
this with respect to the subgroup {1, ms} (m; = reflec-
tion which maps each of the vertices 1 and 4 onto itself).
What is different this time?

Which cosets are subgroups of G ?

(5.6)
(5.7)

(5.8)

(5.9

Why is a subgroup of index 2 always a normal subgroup?

The two-dimensional symmetry group 4mm of the
square and its multiplication table are given in Section
5.1

(a) What are the subgroups of 4mm and how can they be
found? Which of them are maximal?

(b) Why can my and m4 not be elements of the same sub-
group?

(¢) What subgroups are mutually conjugate and what
does that mean geometrically?

(d) What subgroups are normal subgroups?

(e) Include all subgroups in a graph exhibiting a hierar-
chical sequence in the following way: 4mm is at the top;
all subgroups of the same order appear in the same row;
every group is joined with every one of its maximal sub-
groups by a line; conjugate subgroups are joined by hor-
izontal lines.

Write down the coset decomposition of the group Z of
the integral numbers with respect to the subgroup of the
numbers divisible by 5, {0,+5,+10,£15,...}. What is
the index of the subgroup {0,+5,4+10,£15,...}? Isita
normal subgroup?

The multiplication table of the factor group F = G/{1,2}
of the group G of the square is given in Example 5.6 (page
58). Is F an Abelian group?
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Basics of crystallography,
part 3

The topics that have been dealt with in Chapters 3 (mappings) and 5 (groups)
are applied in this chapter to the symmetry of crystals. This includes the clari-
fication of certain terms, because the unfortunate nomenclature that has histor-
ically evolved has caused some confusion.

6.1 Space groups and point groups

The expression ‘point group’ is used for two different terms which are inti-
mately related, but not really identical:

(1) the symmetry of a molecule (or some other arrangement of particles) or
the surroundings of a point in a crystal structure (site symmetry);

(2) the symmetry of an ideally developed macroscopic crystal.

First, we consider molecular symmetry.

6.1.1 Molecular symmetry

Consider a molecule (or a finite cluster of atoms or something similar). The
set of all isometries that map the molecule onto itself is called the molecular
symmetry.

Definition 6.1 The molecular symmetry forms a group which is called the
point group Py of the molecule.

Point groups are designated by Hermann—Mauguin symbols in the same way
as explained for space groups, see Section 6.3.1, pages 71-72 and 74.

The group Py is finite if the molecule consists of a finite number of atoms
and is mapped onto itself by a finite number of isometries. However, the group
is infinite for linear molecules like H, and CO, because of the infinite order of
the molecular axis.

Polymeric molecules actually consist of a finite number of atoms, but it
is more practical to treat them as sections of infinitely large molecules, in the
same way as crystals are treated as sections of ideal infinite crystals (i.e. crystal
patterns). If an (infinitely long) ideal molecule has translational symmetry in
one direction, then its symmetry group is a rod group. If it forms a layer with
translational symmetry in two dimensions, its symmetry group is a layer group.
Rod and layer groups are the subject of Section 7.4.

6.1
6.2
6.3
6.4

6.5

6.6

Exercises

Space groups and point groups 63
The lattice of a space group 69
Space-group symbols 70

Description of space-group symmetry
in International Tables A 76

General and special positions of the
space groups 81
The difference between space group
and space-group type 84

85



64 Basics of crystallography, part 3

According to their equivalence, point groups are classified into point-group
types.

Definition 6.2 Two point groups Py and Pyp belong to the same point-
group type if, after selection of appropriate bases (with origins at the centres
of gravity), the matrix groups of Py and Py coincide.

All symmetry operations of a finite molecule leave its centre of gravity un-
changed. If this is chosen as the origin, all symmetry operations are repre-
sented by matrix—column pairs of the kind (W,0), i.e. consideration of the
matrices W is sufficient.

Any arbitrary point of a molecule (e.g. an atom centre) may be mapped onto
itself by symmetry operations other than the identity.

Definition 6.3 A point in a molecule has a definite site symmetry S (site
symmetry group). It consists of all those symmetry operations of the point
group of the molecule which leave the point fixed.

The site symmetry group S is always a subgroup of the point group of the
molecule: S < Py. It corresponds to the stabilizer, see Definition 5.13.

Definition 6.4 A set of symmetrically equivalent points X of a molecule is
in a general position if the site symmetry S of the points consists of nothing
more than the identity, S = Z. Otherwise, if S > Z, the points are in a
special position.

In this context, the term ‘position’ does not have the meaning of ‘a certain
place in space’, but is rather an abbreviation for ‘“Wyckoff position’ according
to Definition 6.6. Every point group has only one general position, but it may
have several special positions.

The point group Py of the molecule acts on the molecule in the way de-
scribed in Section 5.6. By analogy to Definition 5.12, the set of points which
are symmetry-equivalent to a point X is the orbit of X under Py. According
to Theorem 5.14, the length of the orbit of a point X, at a general position
under Py is L =|Pwu |, i.e. there always exist | Py | symmetrically equivalent
points of a general position. For points X; of a special position having a site
symmetry of order | S|, there exist |P|/| S| symmetrically equivalent points.
Usually, the length of an orbit (of a finite group) is called its multiplicity.

Theorem 6.5 The multiplicity of a point at a general position in a molecule
is equal to the group order | Py |. If | S| is the order of the site symmetry of
a point in a special position, the product of the multiplicity Z of this orbit
with | S| is equal to the multiplicity Z, of a point in the general position:

|S| X Zs =Z,.

Example 6.1

The symmetry of the NH3 molecule consists of the rotations 7, 3, 3~ and
three reflections my, mo, ms . It is a group of order 6. The atoms occupy two
special positions:

N atom with |Sy| = 6 and Zy = 1; three H atoms with | Sir | = 2 and Zy = 3.



The symmetry for every one of the hydrogen atoms is alike. In this case,
there exist three kinds of orbits:
(1) Special position on the threefold rotation axis. There is only one parti-
cle (N atom).

(2) Special position on a mirror plane. There are three symmetrically
equivalent particles (H atoms).

(3) General position anywhere else comprising six equivalent particles
(not actually existing in this example).

Definition 6.6 Two Py-orbits O; and O; (orbits under Pyy) belong to the
same Wyckoff position if, after having selected two arbitrary points X; € O
and X, € O», their site symmetries S| and S, are conjugate in Pyp. In other
words, there exists a symmetry operation g of the point group Py which

fulfils the following equation: 1
S=9g Sig

Example 6.2
The pattern of the atoms of a metal-porphirine complex has the same two-
dimensional point group as the square (cf. Fig. 5.1, page 49). The atoms
C!, ¢, C!', C'% are symmetrically equivalent; they make up one orbit. The
atoms H!, H®, H!'!, H'® make up another orbit. The atom C! is situated on
the mirror line my; its site symmetry group is S(C!) = {1, m,}. The site
symmetry group of the atom H® is S(H®) = {1, m,}. With the aid of the
group multiplication table (Table 5.3, page 51) one obtains:

47 {1,m}a={1,m}
Therefore, the site symmetry of the atom C' is conjugate to that of HS; the
orbits of the atoms C! and H®, i.e. the points C', C®, C!!, C!¢, H!, HS,
H!', and H'® belong to the same Wyckoff position. The orbit comprising
the four atoms N!, N2, N3, and N* belongs to another Wyckoff position: N L
is situated on the mirror line m_ having the site symmetry group S(N') =
{1, m_}. {1, m_} and {1, m, } are different site symmetry groups; there is no
symmetry operation g of the square which fulfils m_ = g_lmyg. All other
C and H atoms have the site symmetry group {7} (general position); they
commonly belong to another Wyckoff position.

The example shows: The points C!, C6, C!!, C!6 belong to the same Wyck-
off position as H!, H®, H'!, H!®. Atoms at special positions belong to the same
Wyckoff position if they occupy symmetry elements that are equivalent by a
symmetry operation of the point group. The mirror lines 7, and m, are equiva-
lent by fourfold rotation and thus are conjugate; all points on these mirror lines
(their point of intersection excepted) belong to the same Wyckoff position. The
point of intersection (position of the M atom) has another site symmetry and
belongs to another Wyckoff position. The mirror lines m., m_ are not conju-
gate to my, my; points on them belong to two different Wyckoff positions.

Do not get irritated by the singular form of the terms ‘general position’,
‘special position’, and “Wyckoff position’. Every such position may comprise
many points (e.g. centres of atoms).
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Application of the rules of Section 3.2,
eqns (3.6) and (3.9), yields (cf. page 21):

(W.w) YL,6)(W,w)

=W lH=r)

(6.1)

6.1.2 The space group and its point group

The 230 space-group types were derived in 1891 by FEDOROV and by SCHOEN-
FLIES, and somewhat later by BARLOW. The periodic structure of crystals was

proven 21 years later (1912) when the first X-ray diffraction experiment was

performed with a crystal by LAUE, FRIEDRICH, and KNIPPING. The period-

icity had been assumed a long time before, but symmetry considerations had

been possible only by observation of the shape of macroscopic real crystals.

Like molecules, they belong to a finite point group. Nowadays we know that

crystals are finite sections of periodic structures, and the problem of the macro-

scopic crystal symmetry is posed in a different way than for molecules.

Real crystals are formed by crystal growth, which involves a parallel ad-
vancement of crystal faces. It is not the faces which remain invariant, but the
normals on them. These are directions and thus have the character of vectors.
Usually, the external shape of a crystal does not really correspond to its sym-
metry because of impairment during the growth process. The real symmetry of
the ideally grown crystal is obtained from the normals: the bundle of vectors
on the crystal faces is not susceptible to growth impairment.

Definition 6.7 The point group of a crystal structure is the symmetry group
of the bundle of the normals on the crystal faces.

All kinds of faces that appear in a crystal species have to be considered, even
very small faces that can be missing in individual crystals.

After having selected a coordinate system, the corresponding symmetry op-
erations are not represented by matrix—column pairs (W,w), but only by the
matrix parts W, see Section 3.2, Theorem 3.5, page 24. Therefore, the group
P = {W} is finite, see Section 4.2, Theorem 4.1.

The set of all translations of a space group G forms a group 7, the trans-
lation group. From a translation, by conjugation one always obtains again a
translation, see eqn (6.1). It follows that:

Theorem 6.8 The translation group 7 is not only a subgroup of the space
group G, but even a normal subgroup: 7 < §.

What is the coset decomposition, see Section 5.3, of G with respect to 7°?
Let us consider an example:

Example 6.3
Left coset decomposition of the space group Pmm?2 = {1,2, my, m,, t;,
to, t3,... } with respect to the translation group 7 = {1, t;, to, t3,... }:

1st coset 2nd coset 3rd coset 4th coset
107 = 1o, 20T = 201, myoT = myol, myo7 = myol,
1oty 20ty, my o ty, myotﬁ

1Ot27 20t2, mXot27 myot27

Tots, 2ot my o t3, my ots,

T is considered as an (infinite) column of the translations. The first coset
is represented by the identity 7, represented by (I,0). Any other symmetry



operation (in the example the twofold rotation 2), represented by (W,,w>),
is chosen as the representative of the second coset. The remaining symmetry
operations of this coset are represented by (I,¢;)(Wo,wy) = (Wa, w2 +1;), so
that all elements of the second coset have the same matrix W,. There can be
no elements with the matrix W5, which do not appear in the second column,
etc.

Theorem 6.9 Every coset of the decomposition of G with respect to 7 con-
tains exactly those elements which have the same matrix part. Every matrix
W is characteristic for ‘its’ coset.

Therefore, the number of cosets of G/7T is exactly as many as the number of
matrices W. If every coset is considered to be a new (infinite) group element,
then the group consisting of these elements is nothing other than the factor
group G/7.

Multiplication of an element of the ith coset with one of the kth coset yields:

(Wi, wi +t) (Wi, wi+t,) = (Wi Wi, wi +t, + Wiw; + Wit,)

This is an element of the coset represented by W; = W;W;. In addition, one
has:
(Wi wi) (Wi w)) = (1, Wow; +wi) = (L)

1

The cosets taken as the elements of the factor group G/7 thus have the same
group multiplication table (aside from their labelling) as the matrix parts which
represent them.

Theorem 6.10 The factor group G/7 is isomorphic to the point group P,
or: The point group P is a homomorphic mapping of the space group G with
the translation group 7 as its kernel, see Section 5.5, Theorem 5.9.

The point groups of crystals are classified like the point groups of molecules.
Whereas the point groups of molecules act on points, and thus operate in point
space, the point groups of crystals map vectors onto one another; they operate
in vector space.

Definition 6.11 Two crystallographic point groups P; and P, belong to the
same point group type, called the crystal class, if a basis can be found such
that the matrix groups {W;} of P; and {W,} of P, coincide.

There are 32 crystal classes in space and 10 in the plane.

6.1.3 Classification of the space groups

A subdivision of a set into subsets is called a classification if every one of
the subsets belongs to exactly one class. The classification of the crystallo-
graphic point groups also results in a classification of the space groups into 32
crystal classes of space groups. However, other classifications are more im-
portant. We discuss three of them: The classification of the space groups into
seven crystal systems, into 219 affine space-group types, and into 230 crystal-
lographic space-group types (or positive-affine space-group types). The latter

6.1
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Table 6.1 The 11 pairs of enantiomor-
phic space-group types (designated by their
Hermann—Mauguin symbols, Section 6.3.1).

P31 —P3;
P3121—P3,21
P3;12—P3,12

P4, — P45
P4,22 — P4522

P4,2,2—P432,2

P6; — Pb6s

P6, — P6y
P6122—P6522
P6,22 —P6422
P4,32 —P4532

are frequently called the 230 space groups, although they are not really space
groups, but classes of infinite numbers of equivalent space groups.

Among the 32 crystal classes there exist seven which belong to point groups
of lattices. These seven point groups are called holohedries. All point groups
can uniquely be assigned to these holohedries. A point group P belongs to a
holohedry H such that:

(1) P < H, i.e. the crystal class is a (proper or improper) subgroup of the
holohedry;

(2) the index | H|/|P] is as small as possible.

The assignment of space groups to point groups entails an assignment to the
holohedries.

Definition 6.12 The seven holohedries assigned to the space groups are the
seven crystal systems of space groups.

The crystal systems are: triclinic, monoclinic, orthorhombic, tetragonal, trigo-
nal, hexagonal, and cubic. Contrary to the ‘natural’ sequence ‘trigonal, tetrag-
onal, hexagonal’, ‘trigonal’ and ‘hexagonal’ are placed together due to their
close relationship.

The crystal systems and the crystal classes of space groups form the basis
for the sequence of the space-group tables in International Tables A.

The classification of the space groups into crystal systems is more coarse
than that into crystal classes. A finer subdivision, i.e. a subdivision of the
crystal classes, is also desirable; for example, among the crystal class 2 some
space groups have 2; screw rotations (and no rotations 2), symbol P2, and
others have only rotations, P2. Up to now, both of them belong to the same
class, but they should be separated. This can be done as follows.

Consider every space group referred to an appropriate coordinate system,
preferably the conventional crystallographic coordinate system. Then every
space group is characterized by the set of its matrix—column pairs {(W,w)}.

Definition 6.13 Two space groups G; and G, belong to the same affine
space-group type or are called affine equivalent, if the sets {(W,w;)} and
{(W3,w7)} of their matrix—column pairs coincide, referred to an appropriate
coordinate system. They belong to the same crystallographic space-group
type if the sets {(Wy,w;)} and {(W,w,)} of their matrix—column pairs co-
incide, referred to an appropriate right-handed coordinate system.

‘Appropriate coordinate system’ means with basis vectors that correspond to
the lattice of the crystal. In space, there exist 219 affine space-group types. The
term is due to the fact that the transformation from an appropriate coordinate
system of G| to that of G, generally requires an affine transformation, i.e. with
distortion of the lattice. G and G, are two different space groups if their lattice
dimensions are different.

The 230 crystallographic space-group types (often called, not quite cor-
rectly, ‘the 230 space groups’) are obtained if only right-handed coordinate
systems are permitted. In chemistry, the distinction between right- and left-
handed molecules can be essential, and in crystallography it is desirable to dis-
tinguish right-handed screw axes (e.g. 4;) from left-handed ones (e.g. 43). This



restriction causes a finer classification. Eleven affine space-group types split
into enantiomorphic pairs of crystallographic space-group types (Table 6.1).

At first glance, it may seem impossible to compare space groups for equiv-
alence by comparison of their infinite groups {(W,w)}. However, this task is
not really so difficult, since it is sufficient to compare a finite set of (no more
than 10) corresponding generators, and reference to the conventional coordi-
nate systems usually yields a fast solution.

For practical work it is convenient to compare the space-group diagrams of
International Tables A, see Section 6.4, or to compare the Hermann—Mauguin
symbols.

6.2 The lattice of a space group

In crystallography, the vector lattice T is referred to a lattice basis or crystal-
lographc basis a;,a,, a3, see Definition 2.5 (page 13). In this case all integral
linear combinations t = tja; + ta, + t3a3 of the basis vectors are lattice vec-
tors. A crystallographic basis can always be chosen such that all lattice vectors
are integral linear combinations of the basis vectors: primitive basis, Defini-
tion 2.7. In crystallography, a conventional crystallographic basis is chosen,
see Definition 2.6, such that the matrices of the symmetry operations become
‘user friendly’ and the metric tensor (cf. Definiton 2.10, page 17) results in the
simplest formulae for the calculation of distances and angles. This is achieved
mainly by choosing basis vectors parallel to symmetry axes or perpendicular
to symmetry planes, i.e. if they are symmetry adapted. As a consequence, the
conventional basis is not always primitive; see the comments after Definition
2.7, page 14.

Definition 6.14 A lattice whose conventional basis is primitive is called a
primitive lattice. The other lattices are called centred lattices.

A lattice is not ‘primitive’ or ‘centred’ as such, but (artificially) becomes so
by the selection of the basis. The types of centring among the conventional
bases in crystallography are the base centring A in the b-c plane, B in the a-c
plane, C in the a-b plane, the face centring F of all faces, the body centring
I (inner centring) in the middle of the cell, and the rhombohedral centring R
(Fig. 6.1).

Referred to a primitive basis, the matrices of the translations have the form
(1,£), with ¢ being a column of infegral numbers. Referred to a centred basis,
the lattice vectors may have fractional numbers as coefficients.

The cell of a primitive lattice has no lattice vectors having their endpoints
within the cell, the null vector (origin) excepted. The conventional centred
lattices have centring vectors with the coefficients:

1 1 1 1 1 1 1 1 1 1 1 1
A 0,5,5 B 3,0,3 C 3,20 F 0,3,5 2,0,3 2,3,0
1 1 1 2 1 1 1 2 2
I 3,2:2 R 33,3 3:%33

The infinite set of all possible lattices is classified into Bravais types (also
called Bravais lattices). The easiest way to envisage this classification is ac-
cording to the space groups of their point lattices.
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1 2
primitive base centred
P C(orA,B)

4 2
face centred body centred
F I
rhombohedral
R

Fig. 6.1 Unit cells of centred bases and their
symbols. The numbers specify how manifold
primitive the respective cell is (i.e. by which
factor the unit cell is enlarged relative to the
corresponding primitive cell).
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Definition 6.15 Two point lattices belong to the same Bravais type if their
space groups belong to the same space-group type.

According to this definition, there exist 14 Bravais types, named after A.
BRAVAIS, who was the first one to derive them in 1850. Since every point
lattice also corresponds to a vector lattice, this includes a classification of the
vector lattices (Table 6.2).

Table 6.2 The 14 Bravais types (Bravais lattices).

Name (abbreviation) Metrics of the lattice Centring
primitive triclinic (aP) a#b#c;, a# B #y#90°

primitive monoclinic (mP) aF#b#c; a=y=90% B #90°
base-centred monoclinic (mC) a # b # c; oo =y=90° B #90° %, %70

primitive orthorhombic (oP) a#b#c,a=p=y=90°

base-centred orthorhombic (0C) a#b#c; a = =y=90° % %,0

face-centred orthorhombic (0F) a#b#c; a =B =y=90° 0,4.3: 5,04 5,10

body-centred orthorhombic (ol) a#b#c; a = =y=90° %’ %, %

primitive tetragonal (¢P) a=b#c, a=p=y=90°

body-centred tetragonal (¢1) a=b#c,a=p=y=90° %, %, %

primitive hexagonal (hP) a=b#c;, a=p=90% y=120°

rhombohedral trigonal (hR)* a=b#c, a=p=90% y=120° %, %, %; %7 %, %
primitive rhombohedral (rP)* a=b=c; a = =y #90°

primitive cubic (cP) a=b=c,a=B=y=90°

face-centred cubic (cF) a=b=c;0=p=y=90° 0,4.4:4.0,4:5.5.0

body-centred cubic (cl) a=b=c,a=p=y=90° %’ %7 %

* hR and rP are identical, but with different settings of their basis vectors

6.3 Space-group symbols

Several kinds of symbols have been in use to designate space-group types.
We deal with the Hermann—Mauguin symbols in detail and briefly with the
Schoenflies symbols. In addition, especially in the Russian literature, the Fe-
dorov symbols have been used [47]. Since the Hermann—Mauguin symbols
contain no information about the position of the chosen origin, although this
is sometimes important, HALL developed correspondingly supplemented sym-
bols [46].

6.3.1 Hermann-Mauguin symbols

The original version of the Hermann—Mauguin symbols is due to CARL HER-
MANN [48]; they were converted to an easy-to-use form by CHARLES MAU-
GUIN [49]. They are also called international symbols. Initially, the symbols
were conceived of as a specification of a system of generators of the space



group, see Section 5.2, letter (f). This was not a system of as few generators
as possible, but such that the space group could be generated in a most simple
and clear way (for details, see International Tables A, Section 8.3.5).

In the course of time, this view has changed: In International Tables A, a
Hermann—Mauguin symbol designates the symmetry in outstanding directions,
the symmetry directions. The symmetry in a symmetry direction u means the
complete set {W;} of symmetry operations W;, whose rotation, screw, and
rotoinversion axes or the normals on mirror or glide planes run parallel to u.

A direction u of non-trivial symmetry (i.e. higher than 1 or 1) is always a
lattice direction, and a plane perpendicular to u is always a lattice plane. To
perceive the ‘symmetry in a symmetry direction W’, it is convenient to define a
cell referred to u , i.e. a symmetry-adapted cell.

Definition 6.16 A cell, defined by a shortest lattice vector in the direction of
u and a primitive basis in the plane perpendicular to u, is called a symmetry-
adapted cell or a cell referred to u.

If this cell is primitive, then the symmetry in the direction of u is uniform:
All rotation or screw axes parallel to u are of the same kind; for example, only
rotation axes 2 or only screw axes 2| or only screw axes 4,; or only one kind
of mirror or glide planes exists perpendicular to u; for example, only mirror
planes m or only glide planes n.

If the cell is centred, rotations exist along with screw rotations and reflec-
tions along with glide reflections, or there jointly exist different kinds of screw
rotations or of glide reflections. This is because the subsequent execution of a
rotation and a centring translation results in a screw rotation, and a reflection
and a translation results in a glide reflection. Examples: space group C2 has
parallel 2 and 2 axes; space group /4 has 4 and 4, axes; space group R3 has
3, 31, and 3, axes; space group Cc has c and n glide planes.

Different symmetry directions can be symmetrically equivalent, for exam-
ple, the three fourfold axes parallel to the edges of a cube. Symmetry directions
of this kind are combined to symmetry classes or symmetry direction systems.
In crystals sometimes there are up to three classes of symmetrically equivalent
directions of non-trivial symmetry. From each of these classes one selects one
representative symmetry direction, the direction and its counter-direction being
considered as one symmetry direction.

In International Tables A, the full Hermann—Mauguin symbol first desig-
nates the conventional lattice type (P, A, B, C, F, I, or R; Section 6.2).

The full Hermann—Mauguin symbol then specifies one system of generators
of the symmetry group for every representative symmetry direction. If the
normals to reflection or glide planes are parallel to rotation or screw axes, then
both are separated by a fraction bar, for example, 2/c, 63/m (however, 6 is used
instead of 3/m). Rotations are specified with priority over screw rotations, and
reflections over glide reflections.

In the Hermann—Mauguin symbol the kind of symmetry is specified by its
component and the orientation of the symmetry direction by the place in the
symbol. The sequence of the representative symmetry directions in the symbol
depends on the crystal system. The crystal system and the number of represen-
tative symmetry directions is revealed by the Hermann—Mauguin symbol:

6.3 Space-group symbols
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(1) No symmetry direction: triclinic (only P1 and P1).

(2) One symmetry direction, twofold symmetry: monoclinic. The represen-

tative symmetry direction in crystallography is usually b, in physics and
chemistry sometimes ¢. Examples: P2y, Cc, P2/c.
The Hermann—Mauguin symbol of monoclinic space groups often also
states the symmetry in the a, b, and ¢ directions (as in the orthorhombic
system), each of the two non-symmetry directions being labelled by a ‘1°.
Examples: P121 (b axis setting), P11 m (c axis setting), C12/c1 (b axis
setting).

(3) Three mutually perpendicular symmetry directions parallel to the coor-
dinate axes, only twofold symmetries: orthorhombic. The sequence of
the symmetry directions is a, b, ¢. Examples: P222, 1222, Cmc2y,
P2y/n2y/n2/m, F2/d2/d?2/d.

(4) One symmetry direction with higher than twofold symmetry in the point
group (3, 3, 4, 4, 4/m, 6, 6, or 6/m): trigonal, tetragonal, or hexagonal
space groups. The direction of this symmetry direction is ¢. The other
representative symmetry directions are oriented perpendicular to ¢ and have
a maximal order of 2. The sequence of the symmetry directions in the
Hermann—Mauguin symbol is ¢, a, a—b. Examples: P3;11=P3;,P31c,
P3cl,P6522,P62m, P6m2, P63/m2/c2/m.

With a rhombohedral R lattice there are only two representative symmetry
directions: ¢ and a for a hexagonal setting of the coordinate system, cor-
responding to [111] and [110] for a thombohedral coordinate system (i.e.
a=b=c; o= =y+#90°). Examples: R3, R3, R32, R3m, R3¢, R32/c.

(5) One symmetry direction system of four directions having threefold axes
parallel to the four body diagonals of the cube: cubic. A further symmetry
direction system runs parallel to the cube edges and in some cases another
symmetry direction system runs parallel to the six face diagonals. The se-
quence of the representative symmetry directions in the Hermann—-Mauguin
symbol is a (cube edge), a+ b + ¢ (body diagonal); if present, additionally
a-+b (face diagonal).

Note: Contrary to trigonal and rhombohedral space groups, cubic space
groups do not have the component 3 or 3 directly after the lattice symbol,
but in the third position.

Examples: P23 (P321 and P312 are trigonal), Ia3, P4,32, F43m,
P4,/m32/n, F41/d32/m.
Particularities:

(1) The presence of points of inversion is mentioned only for P1. In all other
cases the presence or absence of points of inversion can be recognized as
follows: they are present and only present if there are either rotoinversion
axes of odd order or rotation axes of even order perpendicular to planes of
reflection or glide reflection (e.g. 2/m, 21/c, 41/a, 42/n, 63/m). Only the full
symbol reveals this for some space groups.

(2) P42m and P4m?2 are the Hermann-Mauguin symbols of different space
group types. P3, P31, R3, R3¢ are correct symbols, but not so P32 or



P3c. For the latter, the symmetry in the directions a and a —b must be
mentioned: P321 and P312, P3c1 and P3 1c are pairs of different space-

group types.

(3) In two cases it is necessary to depart from the rule that rotations are men-
tioned with priority over screw rotations. Otherwise two space-group types
would obtain the same Hermann—Mauguin symbol /222 and another two
would obtain 723. All four space group types have twofold rotation axes
that run parallel to the coordinate axes along with twofold screw axes, due
to the I centring. For one space-group type each of the mentioned sym-
bols is maintained (in these space-group types non-parallel axes 2 intersect
each other); the other two types are labelled /2,2, 2; and /2 3 (they have
non-intersecting axes).

In the short Hermann—Mauguin symbol the symmetry information of the full
symbol has been reduced, so that the symbols become more handy, but remain
sufficiently informative (the symbol contains at least one set of generators of
the space group). The reflections and glide reflections of the full symbol are
being kept in the short symbol; only rotations and screw rotations are omitted.
In the short symbols of centrosymmetric orthorhombic space groups only three
planes are mentioned, for example Pbam (full symbol P2,/b2;/a2/m).

Only C centrings and ¢ glide reflections are used for the short symbols of
monoclinic space groups. The full symbol must be given for other settings,
for example, A 112/m, not A2/m; P12;/n1, not P2;/n (although the symbol
P2, /n abounds in the literature).

The scarcely used extended Hermann—Mauguin symbol specifies nearly the
entire symmetry of every symmetry direction (Table 6.3). For further details
see International Tables A, Section 4.

The short Hermann—Mauguin symbol can be completed to the full symbol,
and from this it is possible to derive the full set of symmetry operations of the
space group. However, some familiarity with Hermann—-Mauguin symbols is
required before they can be handled securely in difficult cases. This is due to
the fact that the Hermann—Mauguin symbols depend on the orientation of the
space-group symmetry relative to the conventional basis. This property makes
them more informative but also less easy to handle. Different symbols can
refer to the same space-group type.

Table 6.3 Examples of short, full, and extended Hermann—Mauguin symbols.

Short Full Extended Short Full Extended
Cm Clml Clml 1212127 121212 1212124
a 222
C2/c C12/c1 C12/cl Cmem  C2/m2/c2i/m C2/m2/c2)/m
21/n 21/b2y/n2y/n*
I41/a I41fa 141/a Pdy/nmce P4y/n2i/m2/c P4y/n2i/m2/c
43/b 21/}1

* Inconsequently labelled somewhat differently in International Tables A.

6.3 Space-group symbols
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Example 6.4

P2/m2/n2/a, P2/m2i/a2/n, P2i/b2/m2/n, P2/n2/m2;/b, P2/n2/c2/m,
and P2/c2/n2/m denote the same orthorhombic space group type No. 53
(Pmna).

P21/n21/m21/a, P21/n21/a21/m, P21/m21/n21/b, P21/b21/n21/m,
P2i/m2/c2/n, and P2/c2;/m2;/n are the (full) Hermann—-Mauguin
symbols of another orthorhombic space group type, No. 62 (Pnma).

The symbols mentioned first refer to the conventional settings. The other
five are non-conventional settings, with differently oriented bases. More
details on non-conventional settings are the subject of Section 9.3.

The point group symbol corresponding to a space group can be obtained
from the Hermann—Mauguin symbol in the following way:

(1) the lattice symbol is deleted (P, A, B, C, F, I or R);
(2) all screw components are deleted (the subscript ciphers are deleted);

(3) the letters for glide reflections (a, b, c, n, d, e) are replaced by m.

Examples: C2/c — 2/m
P2/m2/n2/a (short Pmna) — 2/m?2/m?2/m (short mmm)
142d — 42m
141/a32/d (short Ia3d) — 4/m32/m (short m3m)

6.3.2 Schoenflies symbols

Schoenflies symbols were developed 35 years before the Hermann—Mauguin
symbols. Compared to their original form, some of them have been slightly
altered.

Rotoreflections are used instead of rotoinversions. A rotoreflection results
from a coupling of a rotation with a reflection through a plane perpendicular
to the rotation axis. Rotoreflections and rotoinversions state identical facts, but
the orders of their rotations differ in pairs if they are not divisible by 4:

rotoreflection (Schoenflies) S Sy Sz Se Sq

rotoinversion (Hermann—Mauguin) 2 =m 1 & 3 g

In Section 6.1.2 the space groups are assigned to crystal classes according to
their point groups. SCHOENFLIES introduced symbols for these crystal classes
(point-group types) in the following way:

Ci no symmetry.

C; acentre of inversion is the only symmetry element.
C; aplane of reflection is the only symmetry element.
Cy an N-fold rotation axis is the only symmetry element.

Sy an N-fold rotoreflection axis is the only symmetry element; only S4
is used; for symbols replacing S3 and Sg see the following.



Cy; there is an N-fold rotation axis (N odd) and a centre of inversion on
the axis. Identical to Sy, with M =2 x N.

Dy there are N twofold rotation axes perpendicular to an N-fold rotation
axis.

Cyy there is a vertical N-fold rotation axis and a horizontal reflection
plane. Cs;, is identical to S3. There is also an inversion centre if N is
even.

Cyy an N-fold vertical rotation axis is situated at the intersection line of
N vertical reflection planes.

Dy, there is an N-fold vertical rotation axis, N horizontal twofold ro-
tation axes, N vertical reflection planes, and a horizontal reflection
plane. There is also an inversion centre if N is even.

Dyg an N-fold vertical rotation axis contains a 2N-fold rotoreflection axis
and N horizontal twofold axes have bisecting directions between N

vertical reflection planes. There is also an inversion centre if N is
odd. Identical to Sy;, with M =2 X N.

O, symmetry of an octahedron and a cube.

O  as Oy, without reflection planes (rotations of an octahedron).

T; symmetry of a tetrahedron.

T, symmetry of an octahedron with twofold instead of fourfold axes.
T  as Ty and T}, without reflection planes (rotations of a tetrahedron).
Special non-crystallographic point groups:

I, symmetry of an icosahedron and pentagonal dodecahedron.

1 as I, without reflection planes (rotations of an icosahedron).

Cwy symmetry of a cone.

D..;, symmetry of a cylinder.

K;,  symmetry of a sphere.

The space-group types belonging to a crystal class were simply numbered
consecutively by SCHOENFLIES; they are distinguished by superscript num-
bers. The sequence of the crystal classes has not always been kept the same in
the space-group tables. Since 1952 the space-group types have been numbered
in International Tables from 1 to 230, with the consequence that this sequence
can hardly be changed.

Some Schoenflies symbols are compared with the corresponding Hermann—
Mauguin symbols in Table 6.4 .

Schoenflies space-group symbols have the advantage that they designate the
space-group types in a unique way and independent of the selection (setting)
of a basis. They have the disadvantage that they only give direct information
about the point-group symmetry. They lack information about the lattice type,
which is expressed only indirectly by the superscript number.

Schoenflies symbols are concise, but contain less information than Hermann—
Mauguin symbols. Schoenflies symbols continue to be very popular in spec-
troscopy, quantum chemistry, and to designate the symmetry of molecules. In
crystallography they are hardly used anymore.

6.3 Space-group symbols
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Table 6.4 Comparison of Schoenflies and Hermann—Mauguin symbols of the crystallographic and
some additional point-group types and examples for a few space-group types.

Schoen- Hermann— Schoen- Hermann— Schoen- Hermann-Mauguin
flies Mauguin flies Mauguin flies short full

Point-group types

Cl 1 Cl' 1 CS m
C 2 Coy 2/m Cy, mm?2
C3 3 Cyp=8 6= 3/m Gy, 3m
Cy 4 Cu 4/m Cyy dmm
Co 6 Con 6/m Coy 6mm
S4 4 C3i = Sg 3 Cooy com
D, 222 Dyg =S4y 42m D, mmm 2/m?2/m?2/m
D3 32 D3h 52m D3d §m §2/m
Dy 422 Dyg = Ss, 82m Dyy, 4/mmm  4/m2/m2/m
D5 52 Djh ﬁZm D5d gm gZ/Wl
D6 622 Dﬁd = S12v ﬁZm Dﬁh 6/mmm 6/m2/m2/m
D, oo/mm oo/m?2/m = =2/m
T 23 Ty 43m 1, m3 2/m3
o 432 Oy, m3m 4/m32/m
1 235 I m35 2/m35

Space-group types

c! Pl c! P1 C! Pm Plml

cl P2 c3 P2, c3, P2i/c  P12j/cl

Dé P222 C2]§ Cmc2 D;E Pnma P2{/n21/m2/a

cs, 141/a D3, P421m D?th P4y/mme Pdy/m2/m2/c

cz R3 C? P63/m D4 P63/mmc P63/m2/m2/c
3i 6h 6h

77 F43m 03 F432 o; Fm3m  F4/m32/m

6.4 Description of space-group symmetry in
International Tables A

In most cases, the information concerning each space-group type can be found
in International Tables A on two facing pages. The space-group symmetry
is shown by diagrams, a list of the symmetry operations, and a table of the
Wyckoff positions.

6.4.1 Diagrams of the symmetry elements

Consider as an example the space-group type Pbcm, No. 57. On the left
page of the facing pages in International Tables A there are three diagrams,
showing projections of the geometric sites of the symmetry elements of one
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Hermann—Mauguin Schoenflies Hermann—Mauguin point-group type
symbol (short) symbol symbol (full) (crystal class) crystal system

! v / |
Pbcm D%llz mmm Orthorhombic

No. 57 P2/b21/c21/m
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Fig. 6.2 Heading and diagrams from Interna-

tional Tables A for the orthorhombic space-

group type Pbcm. Orientation of axes when
unit cell (Fig. 6.2). In each diagram, the origin is at the upper left corner. As  the letters are upright: l-»b_

in the case of all orthorhombic space groups, every one of the three diagrams
has two space-group symbols. The symbol mentioned in the heading and on
top of the first diagram refers to the conventional (standard) setting. The other
five symbols refer to non-conventional settings. If the book is turned such that
the letters of a space-group symbol next to a diagram are upright, the a axis of
the diagram points downwards and the b axis to the right. If the book is held
upright, the diagram at the upper right corresponds to the conventional setting
with the a axis downwards and the c¢ axis to the right; the lower left diagram
corresponds to the conventional setting with the ¢ axis downwards and the b
axis to the right.
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Table 6.5 The most important graphic symbols for symmetry elements.

Axes perpendicular to the paper plane

1 o
2
3 A
4 @
6 ©
Ton6 ©

21 ’ Ton2 § 1on2 §
3 A 3, A 3 A
4 & 4 & 4 % Tond4 ¢ Tond, ¢
6, W 6, ® 63 L 6, @ 65
Ton6; © 4 @ 6 @

Axes parallel to the paper plane

2 <~ —> 2, — — 4 =

?
ﬁ
*

Axes inclined to the paper plane

2 9

21 _§" 3 }" 3 }’b 3 ,}i‘ 3, _}{‘

Planes parallel to the paper plane; axes directions L_’b

T r T

Planes perpendicular to the paper plane; axes directions l_’b
a

m —

The symmetry elements are depicted by graphic symbols (Table 6.5). The
kind of symmetry element and its orientation follow from the symbol. The
heights z in the direction of ¢ (direction of view) are specified for points of
inversion and for axes and planes parallel to the paper plane as fractional num-
bers 0 <z < % if z# 0. All symmetry elements at height z occur again at height
z+1

Triclinic and monoclinic space groups are also shown by three projections
along the three coordinate axes; all of them are referred to the conventional set-
ting, which is mentioned in the heading. The axes are marked in the diagrams.
Monoclinic space groups are treated with the two settings with symmetrically
unique axis b and c. In those cases in which, in addition to this monoclinic
axis, there is another special direction (centring vector, glide vector), three dif-
ferent cell choices are distinguished; therefore, the space-group types C2, Pc,
Cm, Cc, C2/m, P2/c, P2;/c, and C2/c do not take the usual two pages, but
eight pages per space-group type.

For each tetragonal, trigonal, hexagonal, and cubic space-group type only
one diagram is shown in projection along ¢, having the standard orientation a
downwards and b to the right. Trigonal space groups with rhombohedral lattice
are described twice each, for a rhombohedral (primitive) cell and a hexagonal
(rhombohedrally centred) cell; the diagrams for both are identical. The depic-
tion of the symmetry elements for cubic space groups with an F-centred lattice
only comprises one quarter of the cell, the contents of the other three quarters
being the same.



6.4 Description of space-group symmetry in International Tables A 79

6.4.2 Lists of the Wyckoff positions

For every space-group type there is a table of Wyckoff positions under the
heading ‘Positions’, usually on the right page of the facing pages. For the
space-group type Pbcm it reads:

Multiplicity, Coordinates

Wyckoff letter,

Site symmetry

8 e 1 Wxyz  @Qx¥z+y  B)Ey+3.2+; @) xi+3.2
5)E5.z  O)xyi+s  (Dxy+rz+s () Ey+3.2

4 d .m  xyj %53 Y+ 1.7 XJ+14.3

4 ¢ 2 x, 1,0 %31 %3.0 x4, 4

T 1 1 1 1 11 11
4 b 1 57070 77077 212972 77770
4 a 1 0,0,0 0,0, % 0,41 0,4,0

The Wyckoff positions are numbered alphabetically from bottom to top by the
Wyckoff letters in the second column. The Wyckoff position with the highest
site symmetry is always placed in the bottom line and has the letter a. For any
point belonging to a Wyckoff position, the number of symmetry-equivalent
points within one unit cell is specified by the multiplicity in the first column.
Usually, a Wyckoff position is labelled by its multiplicity and the Wyckoff
letter, for example, 4d for the second Wyckoff position in the preceding list.

The site symmetry in the third column is stated in an oriented way, hav-
ing the same sequence of symmetry directions as in the space-group symbol.
Those representative symmetry directions that have no symmetry higher than
1 or 1 are marked by points. For example, the site symmetry given for the
Wyckoff position 44 is ..m; therefore, its site symmetry is a reflection through
a plane perpendicular to the third symmetry direction (c).

The general position is always the first one of the list of Wyckoff positions;
it is labelled by the ‘highest’ necessary lower-case letter of the alphabet (for
Pbcm this is e), and it always has the site symmetry 1. Exceptionally, the
general position of Pmmm is labelled a, because Pmmm has 27 Wyckoff
positions, which is one more than the number of letters in the alphabet.

The coordinate triplets of the general position are numbered, for Pbcm from
(1) to (8). As explained in Section 4.1 (page 41), the corresponding symmetry
operation can be derived from a coordinate triplet: The coordinate triplet is
transcribed to a matrix—column pair and its geometric meaning is derived by
the method explained in Section 4.3 (page 45):

100\ /0 -1 00\ /0 -1 00\ /0
(1):(010)(0) (2):( 01 0)(0) (8):( 01 0)(%)
001/,\0 0 01/,\3 001/,\0

The general position is the most important one, but it is not the only way to
express the space-group symmetry. In addition, the matrix—column pairs of the
corresponding symmetry operations are explicitly listed, see the next section.
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6.4.3 Symmetry operations of the general position

The symmetry operations are listed under the heading ‘Symmetry operations’,
usually on the left page of the facing pages. The symmetry operation corre-
sponding to a coordinate triplet of the general position is specified after the
number of the coordinate triplet. For the example of the space-group type
Pbcm the listing is:

(11 (2) 2(0,0,3) 0,0,z (3) 2(0,%,0) 0,34 (4)2 x1}.0
(5) 1 0,00 (6)m xy} (7) ¢ x4z (8) b 0.z

This is to be interpreted in the following way:

The symmetry operation (1) is the identity;
(2) is a twofold rotation about the axis 0,0,z combined with a shift by
(0,0, %), i.e. it is a twofold screw rotation;

(3) is a twofold rotation about the axis O,y,% combined with a shift by
(0, %,0), i.e. a twofold screw rotation;

(4) is a twofold rotation about the axis x, 4—1“0;

(5) is an inversion through the point 0,0, 0;

(6) is a reflection through the plane x,y, le;

(7) is a glide reflection with the glide direction ¢ through a glide plane
X, %,Z;

(8) is a glide reflection with the glide direction b through a glide plane
0,y,z.

In general, an entry consists of the following data:

(1) (n) number of the coordinate triplet.

(2) Hermann—Mauguin symbol of the operation, for example, 2 or c. The
sense of rotation is marked by * or ~, for example, 4" or 4=. If a
triplet of numbers in parentheses follows, for example, 2(0,0, %), this
corresponds to the column of the screw or glide vector.

(3) Parameterized representation of the symmetry element (point, axis, or

plane), for example, 0,0,z or O, y,% or Xx, }T,z. For rotoinversions, the

axis and the point of inversion are given, for example, 4 0, %7z; 0, %, }1.

The listing for space groups with centred lattices consists of several blocks,
one for 0,0,0 and one for each centring vector, which is mentioned on top of
the block, for example ‘For (%, %, %)—&— set’. Translations as symmetry opera-
tions occur only in the latter blocks, specified, for example, by #( %7 %, %) Fur-
ther exhaustive explanations can be found, as for all components of the space-
group tables, in the instructions in Part 2 of International Tables A (Guide to

the use of the space-group tables).

6.4.4 Diagrams of the general positions

Only one diagram per space group is shown for the general position. It has
the standard orientation (a downward, b to the right; Fig. 6.2 bottom right).
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Monoclinic space groups have one diagram each for the two settings ‘unique
axis b’ and ‘unique axis ¢’. The outlines of the cell have been drawn as thin
lines, as well as the lines x, %,0 and %, v,0 (x =y for hexagonal cells). The
starting point of the orbit is within the cell, close to the origin (upper left cor-
ner), slightly above the plane of the paper, which is expressed by a + sign (for
+z). The depicted points cover all points within the unit cell and points in the
close vicinity of the unit cell; their heights are given as %+ (for % +2), — (for
—2), %— (for % —7), etc. (y for monoclinic b settings).

The points are represented by circles. Each point corresponds to exactly
one symmetry operation, which maps the starting point onto the considered
point. Image points of symmetry operations of the second kind, i.e. those
with det(W) = —1 for their matrix part W, are marked by a comma in the
middle of the circle. If the starting point were a right-hand glove, the points
with a comma would correspond to left-hand gloves. If there are reflection
planes parallel to the paper plane, the points of projection of equivalent points
coincide. In this case the circle is subdivided by a vertical line, and exactly one
of the semicircles contains a comma.

The diagrams for cubic space groups differ somewhat (if available, look
up the page of a cubic space group in International Tables A). The points of
the orbit are connected by lines forming a polyhedron around the origin and
around its translationally equivalent points. Three diagrams form two pairs of
stereoscopic views, allowing stereo views of the configurations. Look at the
left image with the left eye and at the central image with the right eye or at
the central image with the left eye and at the right image with the right eye.
Unfortunately, the quality of the images leaves somewhat to be desired.

6.5 General and special positions of the space
groups

The site symmetry group Sx of a point X is defined for a space group G in
the same way as for a molecular symmetry group Py: it is the subgroup of
G consisting of those symmetry operations of G which leave X unchanged,
see Definition 6.3. Again, general and special positions are distinguished,
Definition 6.4. However, in the case of space groups it is not immediately
clear that the order |S| of S must be finite. This follows from:

Theorem 6.17 The matrix—column pairs (Wy,wy) of the elements s; € S
have different matrix parts Wy; each Wy can occur at most once.

If two group elements s, € S and s, € S had the same matrices, W,, = W,,,
the following would hold (cf. eqns (3.6) and (3.9) in Section 3.2, page 21):

(Wnuwm)(Wnawn)71 = (Wmawm)(W;l ’ _W;]wn)
= (Iwy—wy) = (1)
That is a translation. However, translations have no fixed points and thus can-

not be part of the site symmetry. The group {W} of all matrix parts of G is
finite, see Section 4.2, and, therefore, so is S.
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The Wyckoff positions of the space groups G yield the real base for a concise
and complete description of a crystal structure. In Section 2.3 two ways of
putting together a crystal structure are described:

(1) by lining up unit cells;
(2) by interlacing particle lattices.

Now we can add:

(3) One starts from the centre of gravity of a particle in the unit cell and
adds the centres of gravity of the corresponding (infinte) G-orbit. One
continues with the centre of gravity of a particle not yet considered, etc.;
in this way the crystal structure is set up from a finite number of G-orbits.
Usually, several point lattices form part of a G-orbit.

Whereas the coordinate triplets of the points of a point group designate in-
dividual points, the coordinate triplets of the Wyckoff positions of the space
groups are representatives of their point lattices. The matrix—column pairs de-
rived from the general position do not represent single mappings, but cosets
of G with respect to 7. The multiplicity Z in the first column of the tables
corresponds to the product of the order of the crystal class and the number of
centring vectors, divided by the order S of the site-symmetry group S. This is
nothing other than the number of symmetry-equivalent points in the unit cell.

A Wyckoff position consists of infinitely many G-orbits if the coordinate
triplet of the representing point includes at least one free parameter, see the
following example. If there is no free parameter, like in the case of the Wyckoff
position 4b 1 %,070 of the space-group type Pbcm, the Wyckoff position
consists of only one G-orbit.

Example 6.5

In the space-group Pbcm the G-orbits GX; for X; = 0.094, zlp 0, and GX
for X, = 0.137, %, 0 belong to the same Wyckoff position 4¢ x, %,0 with
the site symmetry 2. X; and X, belong to the same site symmetry group S,

consisting of the identity and a twofold rotation, but their orbits are different.

6.5.1 The general position of a space group

The importance of the general position of a space group G has been stressed
repeatedly. The (numbered) coordinate triplets listed in International Tables A
in the upper block of the ‘Positions’ can be interpreted as a shorthand notation
of the matrix—column pairs of symmetry operations. They form a system of
representatives of the cosets of G/7, i.e. they contain exactly one representa-
tive of every coset. The choice of the representatives, in principle, is arbitrary.
It is standardized such that 0 < w; < 1 holds for the coefficients of the columns
w. This way the coset belonging to (W,w) contains exactly all matrix—column
pairs (W,w +t), with ¢ running through the coefficient columns of all trans-
lations. The number of representatives is equal to the order |P| of the point
group, due to the isomorphism of the factor group G/7 with the point group
P.
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For primitive lattices, ¢ is a triplet of integral numbers; centred lattices addi-
tionally have rational numbers. This makes the standardization of the represen-
tatives ambiguous. In fact, the choice of the representatives has been changed
in some cases. For example, for the space-group type Cmma (termed Cmme
since 2002), in the 1952 edition International Tables one finds % —x,y,z, but
x,y+ %,z since 1983. The reason is that the representatives and their sequences
were selected according to different procedures in 1952 and 1983.

The components that make up a space group are such that they render it
possible to cover the infinite set of symmetry operations by a finite number of
specifications. The bases in International Tables A have been selected in such
a way that all matrices consist of integral numbers.

6.5.2 The special positions of a space group

The order of the site-symmetry group S of a special position is |S| > 1. The set
of the matrix parts W of the elements of S form a group which is isomorphic to
the group of the matrix—column pairs {(W,w)} of S. Since {W} is a subgroup
of the matrix group of the point group P of G, it follows that:

Theorem 6.18 Every site-symmetry group S of a space group G is isomor-
phic to a subgroup of the point group P of G.

The site-symmetry group S of an arbitrary point X in a special position
always has infinitely many conjugate groups S;. Due to the three-dimensional
periodicity of the lattice, every point X has an infinite number of symmetry-
equivalent points X;, i.e. points belonging to the orbit of X; their site-symmetry
groups are conjugate. If S consists of rotations about an axis, all points of the
orbit GX, which are located on the rotation axis, have the same group S. In
addition, there exists an infinite bunch of parallel axes and thus an infinite
number of groups S;. Similar considerations apply to the points located on
a reflection plane; they have the same site-symmetry group, and there are an
infinite number of these groups on the infinitely many parallel planes.

Generally, there are several site symmetry groups of the same kind. For
example, in a centrosymmetric space group, the centres of inversion which
are translation equivalent to the centre 1 at the origin are located at points X;
having integral coordinates. There are additional inversion centres at %,0,0;
0, %,0;070,%; %, %70; %,O,%;O,%, %; and %, %, % They can be derived from eqn
(4.2) (page 46), according to which the fixed points of inversion are atxr = %w,
with the translations w = (1,0,0); (0,1,0); (0,0,1); (1,1,0); (1,0,1); (0,1,1);
and (1,1,1). Every centrosymmetric space group has eight inversion centres in
a primitive unit cell; they are not translation equivalent, but some of them may
become symmetry equivalent by symmetry operations other than translations.

A glance at International Tables A shows that Pmmm, No. 47, has eight
kinds of inversion centres (in this case the centres 1 are hidden in the eight
Wyckoft positions of site symmetry mmm). Pbcm, No. 57, has only two
Wyckoff positions with the site symmetry 1, each with a multiplicity of 4,
because every four of the inversion centres are equivalent by reflections and
rotations.
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The coordinate triplets of special positions can only be interpreted as such,
and no longer as descriptions of mappings. This is because the first represen-
tative is not only invariant under the identity mapping, but under |S| mappings
and it is converted by |S| mappings onto other representatives.

In practical work, two aspects of the special positions are of importance:

(1) Special positions of higher-symmetry space groups often have multiplic-
ities that correspond to the number of certain equivalent particles in the
unit cell, whereas the multiplicity of the general position is too high for
other particles. In this case, these other particles can be located only
at a special position, in accordance with the chemical composition. For
example, the unit cell of CaF, contains four Ca>* ions (multiplicity of
4); then the F~ ions can only be situated at a Wyckoff position of multi-
plicity 8.

(2) If a building block of a crystal structure is to occupy a special position,
the symmetry of its surroundings cannot be higher than the proper sym-
metry of this building block. For example, the centre of gravity of a
tetrahedral molecule cannot be placed at a special position whose site
symmetry contains an inversion. This often restricts the possible posi-
tions to be taken.

6.6 The difference between space group and
space-group type

Repeatedly, it has been mentioned that a space group should not be confused
with a space-group type. A space group is characterized by the symmetry
which is expressed by a space-group symbol and by the lattice of its transla-
tions. If one considers a specific crystal structure, then it has a lattice with
well-defined lattice parameters and the atoms are located at specific places.
The corresponding symmetry is a space group.

A space-group type is also characterized by a space-group symbol and a lat-
tice, but the dimensions of the lattice are arbitrary. Consider as an example the
structures of rutile and trirutile (Fig. 11.8, page 147). Both structures belong
to the same space-group type P4,/mnm, but the basis vector ¢ and the number
of atoms in the unit cell of trirutile are triplicated. The symmetries of both of
the individual structures, rutile and trirutile, are also designated by the symbol
P4,/mnm. Rutile and trirutile have a specific lattice each, but their lattices do
not coincide; in this case the symbol refers to two different space groups.

At first glance it may seem confusing that the same symbol is used for two
different things. But in fact there is no confusion, because a space group never
serves for anything other than to designate the symmetry of a specific crystal
structure, including the specification of the lattice parameters and the atomic
coordinates.

To put it another way: A space group is the group of symmetry operations
of some specific crystal structure. There are an infinite number of possible
space groups. A space-group type is one out of 230 possible ways that crystal-
lographic symmetry operations can be combined in space.
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The tables of International Tables A, in the first place, are the tables of
space-group types, with arbitrary values for the lattice parameters, arbitrary
occupation of Wyckoff positions, and arbitrary atomic coordinates. However,
if the symmetry of a specific crystal structure is being described, with specific
lattice parameters and atomic coordinates, the corresponding table describes
an individual space group.

International Tables A1 are the tables of the subgroups of the space groups.
Group—subgroup relations exist only between space groups, not between space-
group types. No specific values of lattice parameters have been listed, but for
every group—subgroup pair it is unequivocal how the lattice parameters and the
atomic sites of the subgroup result from those of the original group.

Exercises
Solutions on page 285 (6.2) What is the difference between the space groups P63mc
(6.1) Denominate the crystal systems corresponding to the fol- and P63 cm?
lowing space groups: B B B (6.3) To what crystal classes (point groups) do the following
P4,32; P4,22; Fddd; P1 2/c 1; P4n2; P43n; R3m; space groups belong?

Fm3. P2,2,2y; P63/mcm; P2/c; Pa3; Pdy/m21/b2/c?
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Subgroups and supergroups
of point and space groups

A structural relationship entails a symmetry relationship. Changes of symme-
try occur during phase transitions or when an isotropic surrounding is replaced
by anisotropic mechanical forces or by the action of electric or magnetic fields.
Part of the symmetry of a molecule or crystal is then lost (‘the symmetry is
broken’). In the mentioned cases, there often exists a group—subgroup relation
between the symmetry groups of the involved substances or phases. Therefore,
it is useful to consider the foundations of such relations.

7.1 Subgroups of the point groups of molecules

In this section those molecular symmetries and their subgroups are considered
which may occur as crystallographic point groups. A diagram of group—sub-
group relations of non-crystallographic point groups can be found in Interna-
tional Tables A, Section 10.1.4, Fig. 10.1.4.3.

The relations between a point group and its subgroups can be depicted by a
graph. Two important aspects should be taken into account:

(1) toinclude as many as possible such relations in a graph;

(2) to manage with as few as possible and as clear as possible graphs.

Every crystallographic point group is either a subgroup of a cubic point
group of type 4/m32/m (short symbol m3m) of order 48 or of a hexagonal
point group of type 6/m2/m2/m (6/mmm) of order 24. Therefore, only two
graphs are needed to display all group—subgroup relations.

In the graphs of Figs. 7.1 and 7.2 the symbol of every point group is con-
nected with its maximal subgroups by lines. The order of the group mentioned
on the left side corresponds to the height in the graph. The graphs shown
are contracted graphs, in which subgroups of the same type are mentioned
only once. For example, 4/m32/m actually has three subgroups of the type
4/m?2/m?2/m, with their fourfold rotation axes aligned along x, y, and z, respec-
tively, but 4/m2/m?2/m is mentioned only once. The complete graphs, which
would contain all subgroups (e.g. three times 4/m2/m2/m), would take much
more space; Fig. 7.1 would consist of 98 Hermann—Mauguin symbols with a
bewildering number of connecting lines.

Some point-group types appear in both graphs.

A direction is called unique, if it is not equivalent by symmetry to any other
direction, not even the counter-direction. The 10 point groups framed in the

7.1 Subgroups of the point groups of mole-
cules 87

7.2 Subgroups of the space groups 89
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groups 94
7.4 Layer groups and rod groups 96
Exercises 99
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Fig. 7.1 Subgroup graph (contracted) of the
point group 4/m32/m (m3m). The order at
the left side is given on a logarithmic scale.
Polar groups are framed.

Fig. 7.2 Subgroup graph (contracted) of the
point group 6/m2/m2/m (6/mmm). Polar
groups are framed.
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graphs of Figs. 7.1 and 7.2 have at least one unique direction. They are called
polar point groups. Certain properties, for example, an electric dipole moment,
require a polar point group.

Figures 7.1 and 7.2 only show symmetry relations. A symmetry reduction
from a group G to a subgroup H also implies a change of the equivalence
conditions within a molecule:

(1) The site symmetries of the atoms are reduced, or

(2) the point orbits of symmetrically equivalent atoms split into different
orbits, or

(3) both happen.

The symmetry reduction is often accompanied by an increased mobility of the
atoms: Parameters (coordinates, parameters of thermal motion) with fixed or
coupled values become independent.

7.2 Subgroups of the space groups

When crystal structures are related or when one of them is converted to another
one by a phase transition, keeping the general arrangement, the symmetries
of the crystal structures are related. A few examples have been presented in
Section 1.2, and many more are dealt with in Part II.

‘Related symmetry’ means:

(1) the symmetry of one crystal structure is a subgroup of the symmetry of
the other one; or

(2) both crystal structures have a common supergroup, i.e. they have differ-
ent partial symmetries of a higher symmetry; or

(3) both crystal structures have a common subgroup, i.e. they have part of
their symmetries in common, but none is contained in the other. This
case, however, requires particular prudence; in principle, it is always
possible to find an infinite number of common subgroups and to use
them to invent meaningless ‘symmetry relations’.

On the other hand, symmetry relations often indicate the presence of struc-
tural relations, and it may be worth checking them. However, this should be
done with caution, as shown by the example of the pair of structures CO; —
FeS,; both have the same space group type Pa3, similar lattice parameters,
and the same occupied Wyckoff positions, and yet the structural details are so
different that they cannot be considered to belong to the same structure type
(cf. Section 8.8, page 117).

It is possible to list all possible subgroup types for every space-group type
and to specify the subgroups in a general way by formulae. For practical work,
another approach has been chosen. First, one looks for groups that are inter-
mediate between the starting space group G and the candidate subgroup H and
proceeds from G to H by a chain or several chains of consecutive maximal sub-
groups. This way one finds all subgroups of G up to a certain index by deter-
mining first the maximal subgroups H;; of G, then all maximal subgroups Hy
of Hj;, etc., until the desired index has been reached. The indices |G : H ;

s
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ISee margin note No. 1 in Chapter 10 (page
133) for comments referring to the terms
translationengleiche and klassengleiche.

| H 1; : H x|, must be divisors of the index |G : H | (Lagrange’s Theorem 5.3,
page 55).

For this kind of procedure a theorem by C. HERMANN is of special value.
First we define three special kinds of subgroups of space groups.

Let G be a space group with point group Pg and normal subgroup of all
translations 7g and, correspondingly, let H < G be a subgroup with point group
‘P and normal subgroup 75.

Definition 7.1 H < G is called a translationengleiche subgroup if G and
‘H have the same group of translations, 73 = 7g; therefore, H belongs to a
crystal class of lower symmetry than G, Py, < Pg.!

Definition 7.2 H < G is called a klassengleiche subgroup, if G and H be-
long to the same crystal class, Py = Pg; therefore, H has fewer translations
than G, Ty < Tg.l

Definition 7.3 A klassengleiche subgroup is called an isomorphic subgroup
if G and H belong to the same affine space-group type.

Isomorphic subgroups are a special case of klassengleiche subgroups. An iso-
morphic subgroup either has the same standard Hermann—Mauguin symbol as
the supergroup or that of the enantiomorphic partner.

Definition 7.4 7 is called a general subgroup, it T3y < Ig and Py < Pg
hold.

A general subgroup is neither translationengleiche nor klassengleiche.

The remarkable theorem of Hermann [50] is then:

Theorem 7.5 A maximal subgroup of a space group is either translationen-
gleiche or klassengleiche.

The proof of the theorem follows by construction of the intermediate group
Z,G > Z > H, which consists of those cosets of G that occur in H, possibly
with fewer translations. Z is evidently a translationengleiche subgroup of G
and a klassengleiche supergroup of H. Either Z = G or Z = H must hold for
a maximal subgroup.

Due to Hermann’s theorem it is sufficient to consider only the translationen-
gleiche and the klassengleiche subgroups. The maximal subgroups for every
space-group type are listed in International Tables, volumes A and Al (Vol-
ume A only up to the 5th edition, 2005). In Volume A they can be found under
the headings ‘Maximal non-isomorphic subgroups’ and ‘Maximal isomorphic
subgroups of lowest index’. However, among the klassengleiche subgroups
with an enlarged conventional cell (mentioned under IIb) only the space-group
types of the subgroups are listed, and not all of the individual subgroups them-
selves. In addition, Volume A lacks the important information about any nec-
essary origin shifts. The complete listing of all subgroups can be found in
Volume A1 [14] which was published for the first time in 2004.

A detailed description of the data and instructions for their use appear in
Volume A, Section 2.2.15, and in Volume A1, Chapters 2.1 and 3.1.



In addition to Hermann’s theorem, further restrictions apply to the maximal
subgroups of the space groups. Some of them, which are useful when setting
up subgroup tables and in the practical application of group—subgroup rela-
tions, are mentioned in the following, without proofs. The proofs can be found
in International Tables A1, Chapter 1.5 (2004 edition) and Chapter 1.3 (2010
edition) in a theoretical chapter by G. NEBE.

Theorem 7.6 Every space group G has an infinite number of maximal sub-
groups H. They are space groups and their indices are powers of prime
numbers p', p2, or p.

Remarks

(1) A subgroup of, say, index 6 cannot be maximal.

(2) Prime numbers p' apply to triclinic, monoclinic, and orthorhombic space
groups G;
p! and p? to trigonal, tetragonal, and hexagonal G;
pl, pz, and p3 to cubic G.

(3) Certain restrictions apply to the possible values of the prime numbers p,
depending on G and the subgroup (e.g. only prime numbers of the kind
p = 6n+ 1 with n = integral). See Appendix A.

Theorem 7.7 There are only a finite number of maximal non-isomorphic
subgroups H of G because: If i is the index of H in G, i = |G : H|, then H
being non-isomorphic to G is only possible if i is a divisor of |P|, the order
of the point group P of G.

Since the orders of the crystallographic point groups only contain the factors
2 and 3, maximal non-isomorphic subgroups can only have the indices 2, 3, 4,
and 8. However, the index 8 is excluded. Actually, not all of these possibili-
ties do occur. All maximal non-isomorphic subgroups of triclinic, monoclinic,
orthorhombic, and tetragonal space groups have index 2; those of trigonal and
hexagonal space groups have indices 2 or 3; indices 2, 3, and 4 only occur
among cubic space groups.

Isomorphic subgroups may also have the mentioned indices, for example 2.
A space group of type P 1, for example, has seven subgroups of index 2, all of
which are isomorphic.

Theorem 7.8 The number N of the subgroups of index 2 of a space group
Gis N=2"—1,0<n<6.

The mentioned theorems show that a space group has infinitely many max-
imal subgroups. However, there are only a finite number which are non-
isomorphic.

7.2.1 Maximal translationengleiche subgroups

The conditions concerning translationengleiche subgroups are the simplest
ones. They can only be non-isomorphic subgroups because the (finite) point
group has been decreased. All translations are kept; complete cosets of the de-
composition of G with respect to 7 have been deleted (Table 7.1). The graphs
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Fig. 7.3 Graph (contracted) of the translatio- Pm3m
nengleiche subgroups of Pm3m. Every con-
jugacy class of maximal subgroups is marked
by one line. For example, there are three non-
conjugate subgroups of Pmmm of the type
Pmm?2,namely Pmm?2, Pm2m, and P2mm, _ _
which are commonly designated by the con- P432 PA3m  Pm3
ventional setting Pmm?2. These may be con-
jugate in groups of higher order; in Pm3
there is only one class of three conjugates of
Pmm?2. The trivial subgroup P1 is not men-
tioned.

P4/mmm

R3

7

P2]212 Pca21 Pma?2 Pchl P21/C P2/C P21/m

Fig. 7.4 Graph (contracted) of the translatio- W
nengleiche subgroups of Pbcm. The kind of v
Pc Pm P1

presentation is as in Fig. 7.3. P2y P2

of the point groups of Figs. 7.1 and 7.2 can be applied, since the factor group
G/T is isomorphic to the point group P. Space-group symbols replace the
point-group symbols. There are 10 cubic space-group types of the crystal class
m3m, and thus there are 10 graphs corresponding to Fig. 7.1. However, addi-
tional graphs are needed because, for example, Pbcm does not appear among
the translationengleiche subgroups of a space group of the crystal class m3m.
Figures 7.3 and 7.4 are examples of such graphs.

The translationengleiche subgroups H of a space group G are completely
listed in the subgroup tables of International Tables A (up to 2005) under 1.
Since every H contains complete cosets of G/7, H can be completely char-



acterized by specifying the numbers (n) of the representatives of these cosets.
Note, however, that the standard coordinate system of H may differ from that
of G. It may be necessary to perform a coordinate transformation (Section 3.7)
to obtain the standard data of H.

7.2.2 Maximal non-isomorphic klassengleiche subgroups

Non-isomorphic klassengleiche subgroups of every space group can also be
listed completely. However, in Volume A of International Tables this has been
done only partly; the complete list can be found in Volume Al. Klassengleiche
subgroups have a reduced 7 and thus also every coset in the factor group G/T
is reduced, but the number of cosets remains unchanged (Table 7.1). Two pos-
sibilities are distinguished for practical reasons (there is no group-theoretical
reason):

(1) The conventional cell remains unchanged, i.e. only centring translations

are lost (of course, only applicable to centred settings).

(2) The conventional cell is enlarged.

Case 1 can be treated in the same way as the case of translationengleiche
subgroups since the representatives of G (with or without centring translations)
remain present in 7. For this reason, subgroups of this kind have been com-
pletely listed in Volume A under ITa and characterized in the same way as un-
der I. Case 2, the subgroups with an increased conventional cell, would have
different coordinate triplets than G due to the changed cell. Therefore, only the
kinds of cell enlargements and the fypes of the subgroups have been listed in
Volume A under IIb, but neither their numbers nor the actual representatives.
For example, in Volume A, space-group type Pmmm, in the listing of the IIb
subgroups, the entry P c cm refers to two subgroups, the entry Cmmm to four,
and F mmm to eight different subgroups. In Volume A1 all of these subgroups
have been completely listed.

Klassengleiche subgroups can also be depicted in graphs, one for each crys-
tal class. If the isomorphic subgroups are not considered (although they exist
always), 29 graphs are needed; some rather simple, others more or less compli-
cated. The crystal classes mmm, mm?2, and 4/mmm have the most complicated
ones, because they have the largest numbers of space-group types (28, 22, 20).
As examples, the graphs of the crystal classes 2/m and m3m are depicted in
Figs. 7.5 and 7.6. All 29 graphs of the klassengleiche subgroups can be found
in International Tables Al.

7.2.3 Maximal isomorphic subgroups

The number of maximal isomorphic subgroups is always infinite; therefore, it
is only possible to list a small number of them individually. Only a few with
the smallest indices have been included in Volume A of International Tables,
under the heading ‘Ilc Maximal isomorphic subgroups of lowest index’. In
Volume Al all up to index 4 are mentioned individually. In addition, series
are mentioned that cover the complete infinite set of isomorphic subgroups
with the aid of parameters. Concerning the possible values of the indices of
isomorphic subgroups see Appendix A.
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Table 7.1 Coset decomposition of the space
group G = Pmm?2 with respect to the group
of translations 7 (cf. Example 6.3, page
66). The group elements that are deleted
upon symmetry reduction to the transla-
tionengleiche subgroup P2 and the klassen-
gleiche subgroup Pcc2 with doubled ba-
sis vector ¢ have been crossed out. For
Pcc2 the elements of 7 are designated
by (p,4,0), (p,q,1),... which means the
translations pa,gb,0c, pa,gb,=£lc,... with
p,q=0,+1,+2,...; (0,0,0) is the identity
translation.

translationengleiche subgroup P2

Ist coset 2nd coset 3rd coset  4th coset
To1 201 meoT  mgoT
1oty 20t my oty myot
1oty 20ty myoly myolz
Tots 20ty mgols myols
Toty 20l mgoly myoly

klassengleiche subgroup Pcc2 (¢ = 2¢)

Ist coset 2nd coset 3rd coset 4th coset

10(p.q,0) 20(p.q.0) mxotpq0) myotpq0)
LolpgT) 206pT) meo(p.g,1) myo(p.g,1)
10(p.q.2) 20(p.q.2) mxetpq2) myetpq2)
1eo{pg3) 2o4p:q.3) myo(p.q.3) myo(p.q.3)
10(p,q.4) 20(p.q4) meotpgd) myetpgH)
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Fig. 7.5 Graph of the maximal klassengleiche
subgroups of space groups of the crystal class
2/m. Every space group G is connected with
its maximal subgroups H by arrows; H is
placed lower than G in the graph. If the type
G can also occur as a subgroup of H, both
symbols are at the same height and the arrows
point in the possible directions group — sub-
group. All indices are 2.

Fig. 7.6 Graph of the maximal klassenglei-
che subgroups of space groups of the crystal
class m3m. The kind of presentation is as in
Fig. 7.5. The indices are given in the arrows.

C2jm =——= PYm

C2lc <«— P2/c P2y/m

Y
P21/C

Fm3m <=, A= Pm3m ) A= Im3m

\ NN

4

Pn3m Pm3n Pn3n
2 / \ 2 |
e N v

Fd3m Fd3c la3d

7.3 Minimal supergroups of the space groups

Whereas subgroups of space groups of finite index are always space groups,
this restriction is not applicable to supergroups. However, this must not worry
us as long as we deal with real crystal structures, whose symmetries can be
described by space groups. Quasicrystals and incommensurately modulated
structures, which are described with superspace groups in four- or five-dimen-
sional space, are left out of consideration. We consider only three-dimensional
space groups.

By reversal of the definitions for maximal subgroups of space groups we
define:

Definition 7.9 Let H be a maximal translationengleiche, klassengleiche, or
isomorphic subgroup of the space group G, H < G. Then G is a translatio-
nengleiche, klassengleiche, or isomorphic minimal supergroup of H.

Even with restriction to space groups, supergroups are more manifold than
subgroups. Subgroups result from the deletion of present symmetry opera-
tions; supergroups, however, result from the addition of symmetry operations.

Example 7.1

By deletion of the points of inversion from the space group P 1 one obtains
one translationengleiche, maximal subgroup P 1 of index 2. If one starts from
P1 and adds points of inversion, without changing the shape and size of the
unit cell, there are an infinite number of possibilities where to place these
points of inversion. Therefore, P 1 has an infinity of minimal translationen-
gleiche supergroups P1 of index 2.
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The tables of the supergroups in International Tables A and A1 are reversed
listings of the subgroup tables. If a space group H appears as a maximal sub-
group of a space group G, then G is listed as a supergroup in the table of
the space group H. The table contains only translationengleiche and non-
isomorphic klassengleiche supergroups. Not all of the individual supergroups
have been listed; a listed space-group symbol may refer to several space groups
of the same type, but only the corresponding conventional symbol is mentioned
once. The tables neither contain information about the actual number of super-
groups of the same type nor about origin shifts.

However, in Chapter 2.1 of the second edition of International Tables Al
(2010), ‘Guide to the subgroup tables and graphs’, instructions and examples
have been included of how to derive the exact data of the minimal supergroups
(only if the space group H is neither triclinic nor monoclinic and if the super-
group G is a space group).

A space group G which belongs to a different crystal system than the space
group H can only be a supergroup G > H if the lattice of H fulfils the metric
conditions of the lattice of G, or nearly so in practical work. For example, if
‘H is orthorhombic and G is tetragonal, then G can only be a supergroup if the
lattice parameters of H fulfil the condition a = b.

Example 7.2

In International Tables, Volumes A and Al, the following translationen-
gleiche orthorhombic supergroups of the space group P2; 2; 2 are listed with
their short Hermann—Mauguin symbols. The full symbols have been added
here:

Pbam P2;/b21/a2/m Pccn P2i/c2i/c2/n  Pbcm P2/b2,/c2i/m
Pnnm P2j/n2;/mn2/m Pmmn P2/m2/m2/n Pbcn P21/b2/c2/n

From the sequence of the 2; axes in the full symbols one can deduce:

Pbam, Pccn, Pnnm, and Pmmn are supergroups with the same orienta-
tions of the coordinate systems. It is not mentioned that of these only Pbam
is a supergroup without an origin shift; to find this out, one has to look up the
tables of the mentioned space groups in Volume Al and look for the sub-
group P212;2; it is there where the origin shifts are mentioned. Pbcm
and Pbcn themselves are not actually supergroups, but only the conven-
tional symbols of the space groups of four actual supergroups with exchanged
axes and shifted origins; Pbcm stands for the supergroups P2;/b2/m2/a
and P2/m2;/a2/b without changed axes; Pbcn stands for P2/c2;/n2/b
and P21/n2;/c2/a (see Section 9.3 for Hermann—Mauguin symbols of non-
conventional settings). The tables do not show directly that Pbam, Pccn,
Pnnm, and Pmmn refer to one supergroup each, while Pbcm and Pbcn
refer to two each. However, this can be calculated by the procedure given in
Section 2.1.7 of the second edition of International Tables A1 (2010).

In addition, four translationengleiche tetragonal supergroups are listed:
P42,2, P4,2,2, P42;m and P42;c. However, these are supergroups
only if the space group P22 2 satisfies the condition a = b (or nearly so in
practice).
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7.4 Layer groups and rod groups

Definition 7.10 The symmetry operations of an object in three-dimensional
space form a layer group if it has translational symmetry only in two dimen-
sions, and a rod group if it has translational symmetry only in one dimension.

The symmetry operations of an object in two-dimensional space form a frieze
group if it has translational symmetry only in one dimension.

Layer, rod, and frieze groups are called subperiodic groups.
There are a few other terms for these groups (incomplete list):

Layer group, layer space group, net group, diperiodic group in three
dimensions, two-dimensional group in three dimensions.

Rod group, stem group, linear space group, one-dimensional group in
three dimensions.

Frieze group, ribbon group, line group in two dimensions.

The terms ‘two-dimensional space group’ instead of layer group and ‘one-
dimensional space group’ instead of rod group, which can be found in the
literature, are misleading and should not be used because these terms rather
refer to plane groups and line groups.

Layer and rod groups were derived by C. HERMANN [51]. They have been
compiled in International Tables, Volume E [52], in the same style as the space
groups in Volume A (including their maximal subgroups).

As for space groups, the orders of rotations of layer groups are restricted
to 1, 2, 3, 4, and 6. Therefore, there are only a finite number of layer group
types, namely 80. The order of rotations of rod groups parallel to the axis with
translational symmetry is not restricted; therefore, there are an infinite number
of rod group types. If the orders of rotations are restricted to 1, 2, 3, 4, and 6,
the number of rod group types is 75. The maximal order of rotations of frieze
groups is 2; there are seven types of frieze groups.

Layer groups are not to be confused with plane groups. For a plane group,
space is restricted to two dimensions, which in principle is an infinitely thin
plane. An (ideal) infinitely extended planar molecule like a graphene layer
always has an extension in the third dimension (perpendicular to the molecular
plane); its symmetry can only be designated by a layer group, in principle. The
symmetry of the pattern of the graphene layer, i.e. its projection onto a parallel
plane, on the other hand, can be designated by a plane group. The symmetry
of layers having a thickness of several atoms, for example a silicate or a Cdl,
layer, cannot be described by such a projection.

The symbols used in International Tables E to denominate the symmetries
of layer groups correspond to the Hermann—Mauguin symbols of space groups.
The direction of ¢ is considered to be perpendicular to the layer. Screw axes
and glide vectors of glide planes can only occur perpendicular to ¢. The sole
difference to the space-group symbols is the use of the lower case letters p and
c instead of P and C for the first letter, which designates the lattice type (cen-
tring), for example, p4/nmm (layer groups have no a, b, f, i, and r centrings).
When using one of these symbols, one must explicitly state whether one is



talking about a layer or a plane group, because the symbols in both cases begin
with the same letters (p or c), and in some cases a layer group is designated
with the same symbol as a plane group.

No centrings exist for rod groups. To distinguish them from layer groups,
the symmetry symbol begins with a slanted / in (North American) script
style, for example, fz24,/mmc. c¢ is the direction having translational sym-
metry. Screw axes and glide vectors of glide planes can only occur parallel to
c. Non-conventional settings, with translational symmetry along a or b, can
be expressed by subscript letters a or b, for example, /2,2 am (conventionally
emc2y).

Molecules of chain polymers tend to be entangled, in which case they have
no overall symmetry; symmetry is then restricted to the local symmetry in the
immediate surroundings of an atom. In crystalline polymers the chains are
forced to align themselves and to adopt a symmetric conformation. This sym-
metry can be crystallographic, but often the symmetry of the single molecule
within the crystal matrix is non-crystallographic.

Crystalline chain polymers often adopt helical molecular structures. In poly-
mer science helices are designated by N/r (‘N/r helix’) where N is the num-
ber of repeating units®> within one translation period and r is the corresponding
number of helical coil turns along the molecular chain [53]. The corresponding
Hermann—Mauguin screw axis symbol N, can be calculated from

Nnt+l=rgq (7.1)

where n = 0,1,2,... and 0 < g < N are integers to be chosen such that the
equation is satisfied. In a helix designated by a Hermann—Mauguin symbol, all
repeating units are symmetrically equivalent. The chemical handedness of the
helix does not follow from the N/r symbol, but is specified by the letters M
(minus; or L) and P (or R) for left and right, respectively.

Example 7.3

Isotactic poly-4-methyl-1-pentene (form I) consists of helical 7/2 chains (7
monomers per two chain windings). Equation (7.1) is fulfilled either as
Tx14+1=2x40r7x1—1=2x3,ie. q=4or g=3, and the corre-
sponding Hermann—Mauguin screw axis symbol is either 74 or 73, depend-
ing on chirality. The helix is shown in Fig. 7.7. The N/r symbol cannot be
deduced uniquely from the Hermann-Mauguin symbol, because a 7/9 or any
other 7/(2 modulo 7) P-helix and any 7/(5 modulo 7) M-helix also has /74
symmetry.

Somewhat different symbols for layer and rod groups that had been in use
before the publication of International Tables E in 2002 go back to BOHM and
DORNBERGER-SCHIFF [55, 56]. Hermann—Mauguin symbols of space groups
had been used, the symmetry directions without translational symmetry being
set in parentheses. Again, the unique direction is ¢. Examples: layer group
P (4/n)mm [short] or P(4/n)21/m2/m [full symbol]; rod group P4,/m (mc)
[short] or P4,/m (2/m?2/c) [full].

A layer group is the subgroup of a space group that has lost all translations
in the space dimension perpendicular to the layer. It corresponds to the factor
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Fig. 7.7 7/2 P-helix of isotactic poly-4-
methyl-1-pentene which corresponds to a 74
helix in Hermann—Mauguin notation. Large
spheres represent isobutyl groups. Image
adapted from [54].

2‘Repeating unit’ and ‘monomer unit’ can
be identical; however, in a case like poly-
ethylene, (CH)).., the repeating unit is CHp
whereas the chemical monomer is CoHy.
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group of the space group with respect to the group of all translations in this
direction. For example, the layer group pmm?2 is a subgroup of the space
group Pmm?2; it is isomorphic to the factor group Pmm?2 /7., T, being the
group of translations in the z direction.

Example 7.4
The symmetry group of a graphene layer is the layer group p6/m2/m2/m
(p6/mmm for short; P(6/m)mm in Bohm—Dornberger-Schiff notation).

Example 7.5

The symmetry group of a single selected polymeric molecule of mercury
oxide is the rod group /22/m2/c2,/m (fzmcm for short; P(mc)m in Bohm—
Dornberger-Schiff notation):
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Exercises

Solutions in Appendix D (page 285).

For an exercise concerning supergroups see Exercise 9.5, page
130.
Exercises concerning translationengleiche, klassengleiche, and
isomorphic subgroups are at the ends of Chapters 11, 12, and 13.
(7.1) What layer or rod symmetry do the following polymeric
molecules or ions have?

LP¢™ in BaPs

LPy2 in (CuDsPy,

LCrFE™ in RbyCrFs

iSizng in kaolinite black phosphorus
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Conjugate subgroups,
normalizers and equivalent
descriptions of crystal
structures

8.1 Conjugate subgroups of space groups

Conjugate subgroups were defined in Section 5.4 (Definition 5.5, page 57). In
this section we consider some relations among conjugate subgroups of space
groups by means of examples.

Let G be a space group and H a subgroup of G, H < G. There can be
groups conjugate to H, which we designate by H’, H”, ... . In common, H,
H', H",... form a conjugacy class. Conjugate means: the groups H, H’,
H”, ... belong to the same space-group type, their lattices have the same di-
mensions, and they are equivalent by symmetry operations of G. One says,
“H,H',’H", ... are conjugate in G’ or ‘H’, H", ... are conjugate to H in G’.

Two kinds of conjugation of maximal subgroups can be distinguished:

1. Orientational conjugation. The conjugate subgroups have differently ori-
ented unit cells. The orientations can be mapped one onto the other by sym-
metry operations of G. Consider as an example the orthorhombic subgroups
of a hexagonal space group (Fig. 8.1); the three unit cells are mutually rotated
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structures 110
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8.6 Chirality 113
8.7 Wrongly assigned space groups 115
8.8 Isotypism 117
Exercises 119

Fig. 8.1 Conjugate (C centred) orthorhom-
bic subgroups (H = Cmm?2) of a hexagonal
space group (G = P6mm) with three differ-
ent orientations.
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Fig. 8.2 Occurrence of conjugate subgroups
by triplication of the unit cell.

by 120°, i.e. they are equivalent by a rotation of order three of the hexagonal
space group. The axis of order two which is contained in an axis of order six
is maintained in the subgroups; the subgroups are conjugate in G by means of
the lost axis of order three.

2. Translational conjugation. The primitive unit cell of the subgroups H, H’,
H”, ... must be enlarged by a (integral) factor > 3 as compared to the primitive
cell of G. The conjugates differ in the selection of the symmetry elements of G
that are being lost with the cell enlargement. If the unit cells of the conjugate
subgroups H, H', H”, ... are set up according to the usual conventions, they
differ in the positions of their origins; the positions of the origins of H, H’,
H", ... are mapped onto each other by translation vectors of G which do not
belong to H.

Figure 8.2 shows an example in which the unit cell of a centrosymmetric
space group G (e.g. P1) is enlarged by a factor of three. There are three sub-
groups ‘H, H’, and H” that are conjugate in G. Every one of them contains
another third of the centres of inversion originally present. 7, /', and H” can
be mapped onto each other by the translation vector b of G. Instead of the
initially symmetry-equivalent points ® we now have three kinds of points, ®,
® and ©. The three patterns of points are completely equivalent; the same
pattern results if the ‘colours’ are interchanged.

A second example is shown in Fig. 8.3. In this case the unit cell of a cen-
trosymmetric space group G is enlarged by a factor of four in two steps. The
first step involves a doubling of the basis vector b, and one half of the inver-
sion centres are being lost. There are two subgroups H; and H, which are on a
par; one contains one half of the original inversion centres, the other one con-
tains the other half. However, ;| and H; are not conjugate in G, but belong
to different conjugacy classes. H; and H; are not equivalent by a symmetry
operation of G; their origins are mutually shifted by %b. The patterns of the
two inequivalent points ® and ® are not alike and cannot be made equivalent
by interchange of their colours. We return to this subject in Section 8.3, where
non-conjugate subgroups of this kind are called subgroups on a par according
to Definition 8.2.

The two unit cells depicted in Fig. 8.3 for the subgroup H; differ in the
positions of their origins, which are equivalent by the translation vector b of G.
And yet, in this case there are no conjugate subgroups; both unit cells comprise
exactly the same selection of remaining inversion centres. For the description
and distribution of the points ® and ® it makes no difference whether the one
or the other position of the origin is selected. H; is a subgroup of G of index
2. This is an example for the universally valid statement that there never exist
conjugate subgroups when the index is 2.

The situation is different when the unit cell is doubled a second time. At
each of the steps H; — H3 and H; — H} again one half of the inversion
centres are lost. H3 and Hj are two different subgroups that are conjugate
in G (but not in ;). Their unit cells shown in Fig. 8.3 are equivalent by the
translation b of G. They contain different subsets of the remaining fourth of the
inversion centres. Both patterns of distribution of the four kinds of points e,
®, 0, and @ are absolutely equivalent, as can be recognized by interchange of
the ‘colours’. The index of H3 in G is 4.



first step: doubling of the
basis vector b’ = 2b

‘H1 and H, are not symmetry
equivalent by a translation b of
G; they are not conjugate in G
but subgroups on a par

" two equivalent descriptions of the very same sub-
group H; that differ by the translation b of G. Both
cells contain exactly the same subset of inversion cen-
tres of G. There are no conjugates

second step: second doubling of the basis vector b’

‘H3 and H’3 are two subgroups that
are conjugate in G. They are different
space groups that contain different sub-
sets of the inversion centres of G. They
HY ° are conjugate by the translation b of G

Fig. 8.3 Example for the occurrence of conjugate subgroups due to the loss of translational sym-
metry by enlargement of the unit cell by a factor of 4.

Cell enlargements do not always generate conjugate subgroups. If the cell of
a space group is being enlarged in a direction in which the origin may float, i.e.
is not fixed by symmetry, no conjugate subgroups result. For example, there
are no isomorphic subgroups of Pca?2; if the basis vector ¢ is enlarged by an
arbitrary integral factor, since the origin of Pca?2; may float in the direction of
c¢. In addition, there are some other cases where the enlargement of the unit cell
by a factor > 3 does not produce conjugate subgroups. An example is shown
in Fig. 8.4.

Among translationengleiche maximal subgroups only orientational conju-
gation can occur, among klassengleiche and isomorphic maximal subgroups
only translational conjugation.

8.2 Normalizers of space groups

According to Definition 5.5 two groups H and H' are conjugate subgroups in
G if H can be mapped onto H’ by an element g, € G by conjugation:

H’:g,legm 9m gH

In addition, there always exist further elements g; € G that map H onto itself.
These include at least the elements of H itself, but there may exist further
elements with this property.
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Fig. 8.4 The group G has three conjugate sub-
groups of type H, but only one subgroup of
type H,. The three conjugates to H; differ in
the positions of their origins. For H; it makes
no difference whether the origin is chosen at
the positions @, @, or @); the result is the
same subgroup in any case.
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Definition 8.1 All elements g; € G that map a subgroup H < G onto itself
according to H = g; M g;, taken by themselves, are the elements of a group.
This group is called the normalizer of H in G and is designated by Ng(H).
Expressed mathematically:

Ng(H)={9:€G|g; "Hg =M} (8.1)

The expression between the braces means: ‘all elements g; in G for which
g "H g; = H holds’.

The normalizer is an intermediate group between G and H: H I Ng(H) <
G. It depends on G and H. H is a normal subgroup of Ng(H).

A special normalizer is the Euclidean normalizer of a space group. This is
the normalizer of a space group G in the supergroup &, the Euclidean group:

Ne(@)={b €& |b'Gb =G}

The Euclidean group £ comprises all isometries of three-dimensional space,
i.e. all distortion-free mappings. All space groups are subgroups of &.

Consider as examples the images of the symmetry elements of the space
groups in the left half of Fig. 8.5. A certain pattern can be recognized, the
symmetry of which is higher than the symmetry of the space group itself. The
symmetry operations that map equal symmetry elements of a space group G
onto each other form a group (not necessarily a space group), which is nothing
other than the Euclidean normalizer of G. In Fig. 8.5 the Euclidean normalizers
are shown on the right side. The Euclidean normalizer N¢(G) so to speak de-
scribes the ‘symmetry of the symmetry’ of G. A synonymous term is Cheshire
group (so-called after the ‘Cheshire cat’ from the fairy tale ‘Alice’s adventures
in Wonderland’; first the cat appears grinning on the branches of a tree, later it
disappears and nothing is left but its grin) [57].

In most cases N¢(G) has a smaller unit cell than G (Fig. 8.5). For space
groups whose origin floats in one or more directions, i.e. is not fixed by symme-
try, the unit cell of the Euclidean normalizer is even infinitesimally small in the
corresponding directions. For example, if G belongs to the crystal class mm?2
and has the lattice basis a,b, ¢, then the lattice basis of N¢(G) is %a, %b,sc;
the value of ¢ is infinitesimally small. In this case Mg (G) is no longer a space
group (the basis vectors of a space group may not be arbitrarily small); in the
symbol of the normalizer this is expressed by a superscript !, 2, or 3, depending
on the number of the corresponding directions.

In many cases of triclinic, monoclinic, and orthorhombic space groups,
Ne (G) also depends on the metric of the unit cell of G. For example, the
Euclidean normalizer of Pbca is normally Pmmm with halved lattice parame-
ters, but it is Pm3 if a = b = ¢ (Fig. 8.5). The Euclidean normalizer of P2i/m
generally is P2/m with halved lattice parameters; however, with a specialized
metric of the cell itis Pmmm, P4/mmm, P6/mmm, or Cmmm (Fig. 8.6). Nor-
malizers with specialized metric have to be taken into account for translatio-
nengleiche subgroups; for example, a translationengleiche orthorhombic sub-
group of a tetragonal space group still has the tetragonal cell metric a = b # c.

Tables of Euclidean normalizers of all space groups can be found in Inter-
national Tables A, Chapter 15, beginning with the 1987 edition. However, the
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Euclidean normalizers with specialized metric of the unit cell have been listed
only since the 5th edition (2002); they can also be found in [58]. An extract
from International Tables A is reproduced in Table 8.1 (page 112).

Finally, we mention two more normalizers. The affine normalizer, like the
Euclidean normalizer, maps a space group onto itself, but in addition allows
a distortion of the lattice. For example, only parallel 2; axes of the space
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Fig. 8.5 Examples of Euclidean normaliz-
ers of space groups. The unit cells of the
Euclidean normalizers are displayed by grey
backgrounds. For P'6/mmm the additional
2; axes and the additional glide planes in
between the reflection planes have not been
drawn for the sake of clarity. e = infinitesi-
mally small value.
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Fig. 8.6 Euclidean normalizers of the space
group P112;/m with specialized metrics of
the unit cell; a downwards, b to the right,
monoclinic axis ¢ perpendicular to the pa-
per plane. The cells displayed by grey back-
grounds correspond to the cells of the normal-
izers, for which only the symmetry axes and
reflection planes parallel to ¢ are shown, and

whose third basis vector is %c.

} i%j A/

8

§ §4§4§
a<b y=90° a=b y=90° a=b y=120°

Ne =P2/m2/m2/m Neg =P4/m2/m2/m  Ng=P6/m2/m2/m

a=b 90°<y<120° a<b cosy=—
Ne =C2/m2/m2/m Ne =C2/m2/m2/m

group P21/b2/c21/a (a # b # c¢) are mapped onto each other by the Euclidean
normalizer; however, the affine normalizer also maps the differently oriented
axes onto each other. The affine normalizer of the group G is the normalizer
in the affine group, the group of all mappings (including distorting mappings).
The affine normalizer is a supergroup of the Euclidean normalizer.

The chirality-preserving Euclidean normalizer Ng+(G) is the normalizer of
a space group G in the chirality-preserving Euclidean group. That is the group
of all isometries of three-dimensional space, but excluding all symmetry oper-
ations of the second kind (inversion, rotoinversion, reflection, glide reflection).
The chirality-preserving normalizer is a subgroup of the Euclidean normalizer:

G < Ng+(9) <Ne(G)

If N¢(G) is centrosymmetric, Ng+(G) is the non-centrosymmetric subgroup
of N¢(G) of index 2, which is a supergroup of G. If N¢(G) is non-centro-
symmetric, Ng+(G) and Ng(G) are identical. Chirality-preserving Euclidean
normalizers are listed in International Tables A from the 6th edition onwards
(due to be published in 2013).

8.3 The number of conjugate subgroups.
Subgroups on a par

According to eqn (8.1), the normalizer of H in G, Ng(H), is the group of all
elements g, € G that map H onto itself by conjugation. These group elements
are also elements of Ng(H), the Euclidean normalizer of H.

Ng(H) is the largest common subgroup of G and N¢(H); it consists of the
intersection of the sets of symmetry operations of G and N¢ (H). This property
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makes it especially valuable; it renders it possible to derive the normalizer
Ng(H) from the tabulated Euclidean normalizers of the space groups.

The index j of Ng(H) in G corresponds to the number of conjugate sub-
groups of H in G [59]. The arrows in the adjacent graph mark group—subgroup
relations that do not have to be maximal. In addition, several space groups may
coincide, N¢(H) =Ng(H) or G = Ng(H) or Ng(H) = H; the corresponding
connecting arrow is then omitted. If G = Ng(H), then j = 1 and there are no
subgroups conjugate to H; this applies if H is a normal subgroup of G.

Example 8.1

How many maximal conjugate subgroups of type Cmcm does the space
group P63/mmc have?

The Euclidean normalizer of Cmcm is Pmmm with halved basis vectors
(Table 8.1). Since Cmcm is a maximal subgroup of P63/mmc, Ng(H) must
either be equal to G or equal to H. In this case, Ng(H) = H and the index 3 of
Ng(H) in G shows the existence of three conjugates of Cmcm in P63/mmec.
They have the three orientations as in Fig. 8.1. In the adjacent graph the basis
vectors of every space group are given as vector sums of the basis vectors a,
b, cof G.

Among the subgroups of a space group G there may exist several conjugacy
classes, Hi, Hy, H{, ..., Ho, H5, H5, ..., ..., all of which belong to the
same space-group type and whose unit cells have the same dimensions.

Definition 8.2 Subgroups H;, Ha, ... < Z < G which are not conjugate in
G, but conjugate in one of the Euclidean normalizers N¢g(G) or Ng(Z) are
called subgroups on a par in G.! They belong to different conjugacy classes,
have the same lattice dimensions, and the same space group type.

We already met subgroups on a par in Fig. 8.3 (page 103). There, H; and H>
are subgroups on a par in G; they are not symmetry equivalent by a symmetry
operation of G. H3 and H} are subgroups on a par of H1; they are not conjugate
in H;, but they are conjugate in G and also in N¢(H,). Actual examples of
subgroups on a par are dealt with in the following Example 8.2 and in Section
11.2, page 141.

Subgroups on a par H;, Ha, ... that are maximal subgroups of G are con-
jugate in Ne(G). Then one of the relations shown in Fig. 8.7 holds. The
mentioned indices i and j show how many of these conjugacy classes occur
and how many conjugates are contained in each of them. Every conjugacy
class of the subgroups on a par contains the same number of conjugates. The
number i X j refers to all conjugates in all conjugacy classes of the subgroups
on a par; for this quantity the expression ‘Euclidean equivalent subgroups’ can
be found in the literature [59] which, however, has caused misunderstandings
(it is only applicable if H;, H,, ... are maximal subgroups of G).

If 'H is not a maximal subgroup of G, there may be subgroups on a par that
are conjugate in Ng (Z), the Euclidean normalizer of an intermediate group Z,
G > Z > H. If H is a maximal subgroup of Z, one can elucidate with one of
the diagrams of Fig. 8.7 if there exist subgroups on a par (different conjugacy
classes); for this purpose, G is to be replaced by Z.

Q Ne(H
N <(H) Euclidean nor-
malizer of H

Ne(H) NG
normahzer
l of Hin G
(N = symbol
H for intersection)

index j= number of conjugates of H in G

Pmmm = Ng(H)
ta, La+2b), le

G =P63/mmc
a, b, c l
‘ Cmmm
a,a+2b, 2c

¢ —
H=Cmcm=Ng(H)
a,a+2b,c

I\We avoid the expression ‘equivalent sub-
groups’ which has different meanings in the
literature; in addition, it should not be con-
fused with ‘symmetry equivalent’.
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Fig. 8.7 Possible group—subgroup relations
between the space group G, its maximal sub-
group H, and their Euclidean normalizers.
Except for G and H, two or more of the
groups may coincide; the connecting arrow is
then omitted. The group—subgroup relations
marked by the arrows, from G to H excepted,
do not have to be maximal.

Index j of Ng(H) in G = number of conju-
gates to H in G in a conjugacy class;

index i = number of conjugacy classes.

Ne(Z)=P4/m2/m2/m
L(a=b),La+b), lc

Y P4/m32/m=G

a,b,c

D =Neg(Hy) :P4/:n2/m2/m /

k=12 abje 4

L

N\, /
N\ A
D Y Ne(H) i Ne(H)
| Yo
D
j=1 G=Ng(H) g G
l ! ]
H H=Ng(H) H=Ng(H)=D

D = Ng(G) N Ng(H) = largest common subgroup of Ng(G) and N¢ (H)

Example 8.2

Starting from the cubic space group of perovskite, G = Pm3m, sym-
metry can be reduced in two steps to the space group P4/mbm. As
can be seen by the relations shown in the margin, there are two differ-
ent subgroups on a par of the type P4/mbm, H; and H,, which have
the tetragonal ¢ vector parallel to cubic ¢ and the origin positions

Z = P4m2/m2/m = Ng(H,) %, %,O and 0,0,0 in the coordinate system of G. They are conju-

a,b,c k=12 gate in Ng(Z), the Euclidean normalizer of the intermediate group

27 S Z, and belong to two conjugacy classes. The index of Ng(H,) in

M, = P4/m2, /b;/m Hy = ; 4/m2,/b2/m G is 3. Therefore, the conjugacy classes represented by ;| and H;
a—b,a+b,c a—b,a+b,c consist of three groups each that are conjugate in G; they have ¢ par-
110 0,0,0 allel to a, b, and ¢ of cubic G, respectively. The existence of two

3 conjugates in G 3 conjugates in G subgroups on a par, H; and Hj,, with ¢ parallel to cubic ¢ can be

2 conjugacy classes

(subgroups on a par)
compare with the left diagram of Fig.
8.7, with D = Ng(H,), i =2, and
inserting Z instead of G

recognized by the index 2 of D in Mg (Z). They render possible two
different kinds of distortion of the perovskite structure (Fig. 8.8).

If one is interested in the subgroups of G in a tree of group—subgroup rela-
tions, in general only one representative of each conjugacy class needs to be
considered, since all representatives are symmetry equivalent from the point of
view of G and thus are absolutely equal. However, subgroups an a par, being
non-conjugate, should all be considered, even though they also have the same
space-group type and the same lattice dimensions. In the tree shown to the left
of Example 8.2 only one representative is mentioned of each conjugacy class.
The complete graph, which includes all conjugate subgroups, is depicted in
Fig. 8.9.

In International Tables A1 all maximal subgroups are listed for every space
group. All conjugate maximal subgroups are mentioned in Part 2 of the ta-
bles; braces indicate which of them belong to the same conjugacy classes. In
Part 3 of the Tables (Relations between the Wyckoff positions) only one repre-
sentative is listed for every conjugacy class; however, if there exist conjugate
subgroups with orientational conjugation, their basis transformations are men-
tioned. The relations between the Wyckoff positions for a group—subgroup pair
are always the same for conjugate subgroups.
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Fig. 8.8 Two variants of the perovskite struc-
ture with different kinds of distortion of the
coordination octahedra in two different klas-
sengleiche subgroups on a par. With the cell
enlargement from P4/mmm to P4/mbm, in
one case the fourfold rotation axes running
through the centres of the octahedra are lost;
in the other case those running through the

KCuF; NaNbO;-T, cations drawn as spheres.
G = P4/m32/m
a,b,c
Z = P4/m2/m2/m Z' = P4/m2/m2/m Z" = P4/m2/m2/m
a,b,c b,c,a c,a,b

P4/m21/b2/m  P4/m21/b2/m P4/m21/b2/m P4/m2,/b2/m P4/m2,/b2/m P4/m21/b2/m
a—b,a+b,c a—b,a+b,c b—c,b+c,a b—c,b+c,a c—a,c+a,b c—a,c+a,b
53,0 0,0,0 0,53 0,0,0 30,3 0,0,0

Hi Ha H) H) HY HY

Fig. 8.9 Complete graph of the group—subgroup relations from Example 8.2 including all conjugate
subgroups (without Euclidean normalizers). The basis vectors of the subgroups are given as linear
combinations of the basis vectors a, b, and ¢ of G, and the origin positions refer to the coordinate
system of G. Subgroups that are conjugate in G are distinguished by primes ’ and ”.
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8.4 Standardized description of crystal

structures

At least the following data are needed for a unique description of a crystal
structure:

(1) the dimensions of the lattice, expressed by the lattice parameters a, b, c,

a,B,v;

(2) the space group (Hermann—-Mauguin symbol, perhaps its number ac-

cording to International Tables), given the case with mention of the ori-
gin choice (origin choice 1 or 2);

(3) for every point orbit occupied by atoms, the coordinates of one of its

atoms.

These data can be specified in infinitely different ways, in principle. To be

able to compare different crystal structures, to give them a systematic order,
and to be able to handle them in databases, a uniform as possible description
of the many structures is desirable. Therefore, in the course of time, rules have
been developed for a standardized description, namely [60, 61]:

e The conventional setting according to International Tables A is chosen

for the space group. If the tables allow for different choices, the pref-
erence is: origin at a centre of inversion, if present (origin choice 2);
hexagonal axes for rhombohedral space groups; monoclinic axis b and
‘cell choice 1’ for monoclinic space groups.

If there is still free scope to choose the unit cell, the reduced cell is
chosen. Detailed instructions to establish such a cell can be found in
International Tables A, Chapter 9.2. The most important ones are:

<b< |cosy| < a |cosB| < a [cosa| < b
a c — — —
=v= "= 2 =2 =2c

All angles 60° < a, B, y<90° or all 90° < «, B, y < 120°.

Atomic coordinates for every representative atom of a point orbit such
that 0 <x <1, 0<y <1, 0<z< 1andaminimum for v/x% + y% + z2.
Sequence of the atoms according to the sequence of the Wyckoff sym-
bols in International Tables A (from top to bottom); if the Wyckoff sym-
bols coincide, sequence with increasing coordinate values of x, then y,
then z.

The program STRUCTURE TIDY [62] can be used to standardize any set of

data this way.

8.5 Equivalent descriptions of crystal structures

Contraventions of the rules mentioned in the preceding section are frequent,
not only from negligence or ignorance of the rules, but often for compelling
reasons. For instance, in the case of molecules, the atomic coordinates are pref-
erably chosen such that the atoms belong to the same molecule and are listed
in the sequence of their linkage, even if this is in contravention of the rules.



8.5 Equivalent descriptions of crystal structures

Standardized structural data can result in two similar structures being docu-
mented differently, such that their relationship can hardly be recognized or is
even obscured. In order to make relations evident one is often forced to avoid
standardized descriptions. Relations become most evident when the unit cells
exhibit strict correspondence of their settings, dimensions, axes ratios, and
atomic coordinates. When comparing crystal structures, cell transformations
and the involved coordinate transformations should be avoided, if possible,
even if this calls for non-conventional settings of space groups.

Even if the rules are observed, there are almost always several possible ways
to describe the very same crystal structure. For example, for the structure of
rock salt (space group Fm3m) the origin can be chosen to be at the centre of
a Na™ or a Cl™ ion, which results in two different sets of coordinates. In this
case the equivalence of both descriptions is easy to recognize. However, in
many other cases it is by no means a simple matter to recognize whether two
differently documented structures are alike or not.

For all space groups, except Im3m and Ia3d, one can choose several dif-
ferent sets of atomic coordinates describing one and the same structure in the
same space-group setting. The number of equivalent coordinate sets for the
space group G is exactly i, i being the index of G in its Euclidean normalizer
Ng(g) [63,64]. By definition, i cosets result in the coset decomposition of
Ne(G) with respect to G (cf. Section 5.3). G, which is the first coset of N¢(G),
maps the structure onto itself; the symmetry operations of any other coset gen-
erate one additional mapping each with a different set of coordinates.

To obtain one equivalent set of coordinates from another one, one makes use
of the Euclidean normalizers as listed in Chapter 15 of International Tables A.
Table 8.1 contains an excerpt of these tables. The columns under Euclidean
normalizer N¢(G) contain the (space) group symbols of the Euclidean nor-
malizers and their basis vectors (as vector sums of the basis vectors of G).
For space groups with floating origins (not fixed by symmetry), such as /4, the
numbers of pertinent dimensions of space are specified by superscript numbers
in the symbols of Ng(G), for example, P! 4/mmm. In addition, the basis vec-
tors of Ng(G) are infinitesimally small in these directions, which is expressed
by the numerical factor e. The last column contains the indices of G in Ng(G).
The index values correspond to the numbers of equivalent sets of coordinates
with which a structure can be described in a space group G. By application of
the coordinate transformations listed in the column Additional generators of
Ne(G) one obtains one equivalent set of coordinates from another one. The
symbol # means a translation of an arbitrary amount. A few particularities have
to be watched in the case of chiral crystal structures (see next section).

Example 8.3

Rock salt crystallizes in space group F m3m. The Euclidean normalizer is
Ne(Fm3m)=Pm3m (%a, %b, %c) with index i = 2. Therefore, there are two
possible sets of coordinates. One is obtained from the other one according to

the additional generators of Ng(G) in Table 8.1 by the addition of 1 %, %:

Na 4a 0,0,0 and Na 4p 111
clo4p 111 Cl 4a 0,0,0

| —

111
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Table 8.1 Selection of Euclidean normalizers of space groups. Excerpt from International Tables
A, 6th edition (2013) [13]; Tables 15.2.1.3 and 15.2.1.4 in the editions of 2002 and 2005; Table

15.3.2 in the editions of 1987-1998.

Space group G Euclidean normalizer Ng(G) Additional generators of N¢(G) Index
Hermann— and chirality-preserving Inversion | Further | of G
Mauguin normalizer Ng+(G) througha | gener- [ in

symbol Symbol Basis vectors Translations centre at | ators |Ng(G)
P12;/m1*  |P12/m1 ta,Ib, te £,0,0;0,1,0;0,0,1 8-1-1
P12/m1" | Bmmm L@a+e), Ib, J(-a+e) | 1,0,0;0,1,0;0,0,1 Z,y,x |8:1-2
C12/m1*  |P12/m1 taib le 1,0,0; 0,0, 1 4-1-1
P2,2,2,*  |Pmmm Ta,1b, le 1,0,0;0,1,0,0,0,1| 0,0,0 8:2-1
Ne+(G): P222 | 3a,1b, Jc $,0,0; 0, %,0; 0,0, 3 8-1
Cmem Pmmm Ja,ib le 1,0,0; 0,0,3 4.1-1
Ibam* Pmmm ta,Ib, te £,0,0;0,%,0 4-1-1
14 P 4/mmm La-b), La+h),ec  [0,0,7 0,0,0 |y,x,z [e0:2-2
Ngi(G): P422| L(a-b), L(a+h),ec  |0,0,1 V,x,7 |eo-2
P4/n P4/mmm L@-b), La+b), fe¢ [1,1,0;0,0,1 yx,z |4-1-2
1422 P4/mmm 1a-b), Ja+h), fe 0,01 0,0,0 2-2-1
Neg+(G): P422 | L(a-b), Sa+b), Je |0,0,] 2-1
P42c P4/mmm I(a-b), J(a+b), e |4,%,0;0,0,3 0,0,0 4.2-1
1424 Pdy/nnm I(a-b), J(a+b), e [0,0,1 104 2:2-1
P3,21 P6422 at+b,-a, Jc 0,0,% xy,z |22
P3ml P6/mmm a,b, Jc 0,0, 1 ¥,z |2-1-2
R3m (hex.) |R3m (hex.) -a,-b, j¢ 0,0, % 2-1-1
P6 P6/mmm L(2a+b),1(-a+b),3¢| %,1,0;0,0,1 0,0,0 |yx,z [6-2:2
P63/m P6/mmm a,b, ic 0,0,1 y,xz [2-1-2
P63mc Pl 6/mmm a,b, ec 0,0, 1 0,0,0 00-2-1
P63/mmc | P6/mmm a,b, ic 0,0,1 2-1-1
Pm3m Im3m a,b,c 151 2-1-1
Fm3m Pm3m Ja,1b, Jc 343 2-1-1

* without specialized lattice metric
Tifa=c, 90° < B < 120°

Example 8.4

WOBTy crystallizes in space group /4 with the following atomic coordinates
[65]:

X y z
W 0 0 0.078
(O (] 0 0.529

Br 0.260 0.069 0.0

The Euclidean normalizer of I4 is P'4/mmm with the basis vectors
I(a—b), L(a+Db), ec. The index of 74 in P'4/mmm is e -2 -2 and thus
is infinite (due to the infinitesimally small basis vector ec). By addition of



0,0, to the coordinates of all atoms one obtains another equivalent set of
coordinates. For this, there are infinitely many possibilities because 7 can
adopt any arbitrary value. As expressed by the index oo -2 -2, in addition,
there exist four equivalent sets of coordinates for every one of these infinitely
many sets of coordinates. They are obtained by inversion at 0,0,0 and by the
transformation y, x, z. The equivalent sets of coordinates are thus:

W 0 0 0.078 +1¢ 0 0 -0.078 -t
O 0 0 0.529 +1¢ 0 0 —0.529 ¢
Br 0.260 0.069 0,0+t -0.260 -0.069 0.0—¢

W 0 0 0.078 +1¢ 0 0 -0.078 -t
O 0 0 0.529 +¢ 0 0 —0.529 ¢

Br 0.069 0.260 0.0+t —0.069 -0.260 0.0-¢

with 7 = arbitrary. The situation is depicted in Fig. 8.10.

8.6 Chirality

Definition 8.3 An object is chiral if it cannot be superposed by pure rotation
and translation on its image formed by inversion through a point.

The symmetry group of a chiral object contains no symmetry operations of
the second kind, i.e. no inversion, rotoinversion, reflection, or glide reflection.
Further terms in this context are [66, 67]:

Absolute configuration spatial arrangement of atoms in a chiral molecule
and its appropriate designation (e.g. by (R), (S) etc.)

Absolute (crystal) spatial arrangement of atoms in a chiral crystal and its des-
structure cription (lattice parameters, space group, atomic coordinates)
Enantiomorph one out of a pair of objects of opposite chirality
Enantiomer one molecule out of a pair of opposite chirality
(special designation for enantiomorphic molecules)
Racemate equimolar mixture of a pair of enantiomers

Chirality sense
(for short: chirality)

Achiral

property that distinguishes enantiomorphs from one another;
the two enantiomorphs of a pair have opposite chirality

property of an object that is not chiral

One has to distinguish: the symmetry of a molecule, designated by its point
group; the symmetry of a crystal, designated by its space group; and the sym-
metry of a space group, designated by its Euclidean normalizer.

Space groups are precisely chiral if their Euclidean normalizer has no sym-
metry operations of the second kind. These are the space groups with screw
axes 31 or 3;, 41 or 43, 61 or 65 as well as 6, or 64 if only one of these kinds
is present. There are eleven pairs of enantiomorphic space group types (Ta-
ble 6.1, page 68; the terms ‘enantiomorphic space group’ and ‘chiral space
group’ are synonymous).

An enantiomorphic space group is a sufficient but not a necessary condition
for a chiral crystal structure. Chirality of the crystal structure is given also if the
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(fourth set of coordinates)

A
303

ta

Fig. 8.10 Two equivalent descriptions of the
crystal structure of WOBry. Two more re-
sult by inversion and infinitely many more by
shifting the origin in the direction of c.

(second set of coordinates)
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2 Many structural researchers are not aware
of the difference between chiral space groups
and Sohncke space groups; frequently, even
in textbooks, the term chiral space group
is used although a Sohncke space group is
meant.

building blocks of a crystal in an achiral space group consist of only one kind if
enantiomers or if the building blocks, without having to be chiral themselves,
are arranged in a chiral manner in the crystal. For example, the single strands
of molecules in WOBr4 are not chiral (Example 8.4 and Fig. 8.10); the square-
pyramidal molecules fulfil the point symmetry 4mm, and the strands of the
molecules associated along c fulfil the rod group 24mm. The crystal structure,
however, is chiral.

Chiral crystal structures are compatible only with space groups that have no
inversion centres, rotoinversion axes, reflection, and glide-reflection planes;
these symmetry elements would generate the opposite enantiomers, the com-
pound would have to be racemic. Chiral crystal structures can adopt one out
of 65 space-group types; they are called the Sohncke space-group types (after
L. SOHNCKE who was the first to derive them).” The Sohncke space-group
types comprise the 11 pairs of enantiomorphic space-group types and a further
43 achiral space-group types. For details see [67]. The enantiomorphic struc-
tures of a chiral crystal structure in an achiral space group are equivalent by
the Euclidean normalizer of their space group. The total number of equivalent
sets of coordinates, including the enantiomorphic pairs, can be determined as
described in the preceding section. If one wants to determine the equivalent
sets of coordinates of a chiral crystal structure without inclusion of the enan-
tiomorphs, the chirality-preserving Euclidean normalizer Mg+ (G) has to be
applied instead of the Euclidean normalizer.

The chirality-preserving Euclidean normalizer is identical to the Euclidean
normalizer in the case of the 11 pairs of enantiomorphic space-group types.
For the other 43 Sohncke space-group types the chirality-preserving Euclidean
normalizer is a non-centrosymmetric subgroup of index 2 of the Euclidean
normalizer.

Example 8.5

The phosphorus atoms in NaP form helical chains that have the symmetry
(rod group), not imposed by the crystal symmetry, /4322 [68]. The chains
wind around 2; axes parallel to b in the space group G = P2;2;2;.

The Euclidean normalizer N¢(G) is Pmmm with halved basis vectors (cf.
Table 8.1); the chirality-preserving Euclidean normalizer Ng+(G) is its non-
centrosymmetric subgroup P222. The index 16 of G in Ng(G) shows the
existence of 16 equivalent sets of coordinates to describe the crystal structure,
which includes 8 enantiomorphic pairs. The index of G in N+ (G) is 8. That
corresponds to the eight equivalent sets of coordinates that are obtained by
application of the translations

0,0,0; 3,0,0; 0, 3,05 0,0, 35 5,5,0: 5,0,5: 0,5, 55and 3,3, 5
keeping the chirality. The other eight, with the opposite chirality, follow from
the same translations and additional inversion.

The inversion converts the left-handed /4322 helices to right-handed /2 4,22
helices. 24322 and 2422 helices are enantiomorphic. The chirality is a
property of the polymeric (P~ ). ions.

The space group P22 2; itself is not chiral, but it contains no symmetry
operations of the second kind; it is a Sohncke space group. The left as well
as right-handed form of NaP can crystallize in the space group P2;2;2;.



If the space group itself is chiral, i.e. if it belongs to one of the 11 pairs
of enantiomorphic space-group types, the enantiomorphic pair of structures
are not equivalent by the Euclidean normalizer. Therefore, when determining
the number of equivalent sets of coordinates with the aid of the Euclidean
normalizer, one obtains only those with the same chirality. For example, quartz
exhibits two enantiomorphic forms in the space groups P3; 21 (left quartz) and
P3,21 (right quartz).®> As explained in Example 8.6, there are four equivalent
sets of coordinates for right quartz. For left quartz there are also four equivalent
sets of coordinates that cannot be generated by the Euclidean normalizer of
right quartz. To obtain a coordinate set of the opposite enantiomorph of an
enantiomorphic space group, the coordinates have to be inverted at 0,0, 0 and
the opposite enantiomorphic space group has to be chosen.

Whereas the non-chiral space group P212;2; is compatible with /24322
as well as 24122 helices of NaP, the helical components of right quartz are
incompatible with the space group P3121 of left quartz.

Example 8.6

The crystal structure of quartz was determined approximately one hundred
times. Right quartz crystallizes in the space group P3,21 with the atomic
coordinates:

X y Z
Si 0470 0}
O 0414 0.268 0.286

The Euclidean normalizer is P6422 (Table 8.1). The index 4 shows four
equivalent sets of coordinates. The other three are obtained by the translation
0,0, 1, the transformation —x, —y, z, and by translation and transformation:

X
Si 0470 0 3 -0.470 0 L -0.470 0 2
O 0414 0268 0.786  -0.414 -0.268 0.286  —-0.414 —0.268 0.786

The four possibilities are shown in Fig. 8.11.

8.7 Wrongly assigned space groups

Due to the rapid collection of X-ray diffraction data and powerful comput-
ers and computer programs, the number of crystal structure determinations
has strongly increased. Often computers have been used as ‘black boxes’ us-
ing preadjusted (default) routines, without the user worrying about what the
computer has been doing. Correspondingly, the number of faulty structure de-
terminations has increased. One of the most frequent errors is the choice of a
wrong space group, in particular one of a too low symmetry [69-78]. This is
always the case if the Euclidean normalizer NVg(G) of the chosen space group
G generates less than i equivalent sets of coordinates (i = index of G in Ng(G)).
The correct space group is then an intermediate group between G and Ng(G).
Another reason for the wrong choice of space groups are twinned crystals, see
Section 17.4.

8.7 Wrongly assigned space groups 115

3 That “left quartz’ has right-handed 3; screw
axes has historical reasons. The terms ‘left
quartz’ and ‘right quartz’ were coined by
CHR. S. WEISS in the nineteenth century,
based on the morphology of quartz crystals,
at times when the theory of space groups
had not been developed and the experimental
crystal structure determination was not possi-
ble. Accidentally, left quartz rotates the plane
of polarized light to the left.
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Fig. 8.11 The four equivalent descriptions for
the crystal structure of right quartz. The num-
bers in the SiOy4 tetrahedra are the z coordi-
nates of the Si atoms.

Example 8.7

LaB,C, was described in the space group P42c with the set of coordi-
nates mentioned first [79]. The Euclidean normalizer is P4/mmm with
I(a—b), S(a+b), 1c. The index of P42c in P4/mmm is 8. With the
aid of Table 8.1 we supposedly obtain eight equivalent sets of coordinates:

X y z %+x %+y z X y %+z %+x %+y %+z
La 0 o ot L of o0 o 3l 3 3 3

1 1 1 1 3 3
B J 0226 f| o0 o726 1| 1} 0226 2| 0 o072 3
c o173 1 Ltiloe3 o 1oz 1 3 joe3 o 3

1 1 1 1

—X -y 272 37X 27y 2% —X -y =% b —X 7Y Z
La 0 o +| 3% 1 5| 0 o o & 1 o0

1 1 1 1 3 3
B 1 0206 1| 0 0214 }| I 0226 3| 0 0274 3
c -0173 L 1037 o i |-0173 L 30337 o 3

In P42c the following positions are symmetry equivalent [13]:
0,0,0and 0,0,5 1, 10and 1,11 Ly dandi—3 0,y,3and0,-y, 3
%,y,%and%,—y,% O,y&andO;y,% x,%,%and—x,%,% )@O,%and—x,o,%

11 1 1 1
X557 and—x,j,z X,O,Z and—x,O,Z

—_



Therefore, the atoms of the sets of coordinates mentioned one beneath the
other belong to the same set of coordinates in P42c. There really are only
four independent sets of coordinates. The symmetry of the space group
P42c is too low. The correct space group is a supergroup of P42c, namely
P4y/mmec [78].

Errors of this kind can lead to unreliable or even wrong atomic coordinates
and interatomic distances, which occasionally led to grotesque misinterpreta-
tions or ‘explanations’. The most frequent descriptions of structures with too
low a symmetry concern space groups with floating origins or not recognized
rhombohedral symmetry. The space group Cc has been wrongly assigned more
often than any other [69, 70, 72].

Since the Euclidean normalizers also depend on the metric of the unit cell,
this has to be paid attention to. If the correct space group has a different metric,
the coordinates have to be transformed to its unit cell. Therefore, in the course
of a crystal structure determination it should always be checked if the lattice
can be transformed to that of a crystal system of higher symmetry. An example
is given in Exercise 8.12 (page 120).

8.8 Isotypism

Definition 8.4 The crystal structures of two compounds are isotypic if their
atoms are distributed in a like manner and if they have the same space group.

One of the structures can be generated from the other if atoms of an element
are replaced by atoms of another element without changing their positions in
the crystal structure (one-to-one correspondence for all atomic positions). The
absolute values of the lattice dimensions and the interatomic distances may
differ, and small deviations are permitted for the atomic coordinates. The an-
gles between the basis vectors and the relative lattice dimensions (axes ratios)
must be similar.

It is not quite clear how large the deviations may be if there are striking
differences among free parameters for atomic positions or axes ratios. If all
parameters are fixed by symmetry, the situation is clear. NaCl and MgO def-
initely are isotypic. However, pyrite and solid carbon dioxide should not be
considered to be isotypic, in spite of certain agreements. Evidently, the para-
meters x deviate too much from one another. CO; has two O atoms placed on a
threefold rotation axis at only 115 pm from a C atom; the corresponding Fe—S
distance in pyrite amounts to 360 pm, whereas six other S atoms surround the
Fe atom at only 226 pm.

To specify the degree of deviation in a quantitative manner, one can define
deviation parameters [82, 83]. If the data of two structures that are to be com-
pared have been standardized in the same way, one can define a characteristic
value A (x) in which the coordinate deviations of all atoms are combined:

_ Ymy/(x1 —x2)2+ (yi —y2) + (21 —22)2

o (8.2)

A(x)

pyrite [80] Pa3
a=>542 pm
Fe 4a 0 0 O

8.8 Isotypism 117

CO, [81] Pa3
a =562 pm
C 4a 000

O 8 x x x
with x = 0.118
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Table 8.2 Comparison of structural data of some representatives of the chalcopyrite type ABX>,
space group /42 [83]. Wyckoff positions: A on 4b (0,0, 1); B on 4a (0,0,0); X on 84 (x, 1, é)
The angle v specifies the turning of the BX, coordination tetrahedra about ¢ relative to a. The A
values have been calculated in relation to CuGaTe, which was chosen as the ideal representative.

Bond angles Bond angles
Formula c¢/a x X-A-X /° X-B-X /° y/° A
ABX, 2% 4x 2% 4x

CuGaTe, 198 0.2434 110.7 1089 109.2 109.6 02 -

CuFeS, 1.97 0.2426 111.1 108.7 109.5 109.5 0.9 0.006
InLiTey 1.95 02441 1115 1085 1103 109.1 03 0.016
AgGaS, 1.79 0.2092 119.5 104.7 111.1 108.7 4.3 0.133
LiPN, 1.56 0.1699 129.7 100.7 1145 107.0 10.8 0.335
LiBO, 1.55 0.1574 1302 100.0 113.4 1075 12.8 0.355

where x1, y1, z1 are the coordinates of an atom of the one structure and x3, y2, 22
are those of the corresponding atom of the other structure. m is the correspond-
ing multiplicity of the Wyckoff position. The sum is taken over all atoms of
the asymmetric unit. A second characteristic value A(a) is used to relate the
axes ratios:

Ala) = (b1/ar)(c1/a1) 83)

(b2/az)(c2/az)

Both characteristic values can be combined into a deviation parameter A:
A = [V2A(x) + 1]A(a) — 1 (8.4)

A is equal to zero if there is complete coincidence of both structures. For the
example pyrite — CO, we calculate A = 0.65. Further examples are listed in Ta-
ble 8.2, referring to structural data of representatives of the chalcopyrite type.
In chalcopyrite (CuFeS;) Cu and Fe atoms have a tetrahedral coordination by
S atoms, and the tetrahedra are linked via common vertices. The compounds
LiPN, and LiBO, at the end of the list exhibit considerable deviations from the
ideal values ¢/a = 2.0, x = 0.25 (free parameter of the X atoms) and y = 0°
(turning angle of the tetrahedra about c¢); the tetrahedra are strongly distorted.
Nevertheless, the general linking of the atoms remains unchanged, and one
could consider these compounds as being isotypic with CuFeS,. The sulfur
atoms in chalcopyrite, taken by themselves, are arranged in a cubic-closest
packing of spheres and have coordination number 12 relative to atoms of their
kind. The N and O atoms in LiPN, and LiBO,, however, have only six ad-
jacent atoms of the same kind. In this and in similar cases it is advisable to
use the term ‘isotypism’ with caution and to rather disclose the relationship
by an appropriate circumscription. Parameters like the turning angle v or the
deviation parameter A are expedient for this purpose.



Definition 8.5 Two structures are homeotypic if they are similar, but the
aforementioned conditions for isotypism are relaxed in that [84]:

(1) their space groups are different and are related by a group—subgroup
relation;

(2) positions occupied by one kind of atoms in the one structure are taken
by several kinds of atoms in the other structure in an ordered manner
(substitution derivatives);

(3) or the geometric conditions differ (significant deviations of axes ratios,
angles, or atomic coordinates).

An example of substitution derivatives is: C (diamond) — ZnS (zinc blende)
— CuFeS,. The most appropriate method to work out relations of homeotypic
structures whose space groups differ are crystallographic group—subgroup re-
lations. Structures are also termed homeotypic if a single atom is replaced by a
building block consisting of several atoms. Known examples are: the Nowotny
phase MnsSi3C as an analogue to the apatite structure Cas(PO4)3F [85] and
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K;[PtClg] as an analogue to CaF, (PtClé* ions at the Ca positions).

Exercises

Normalizers are in Table 8.1. Some of the problems require
access to International Tables A or Al.
Solutions in Appendix D (page 285)

8.1)

(8.2)

(8.3)

(8.4)

Every cubic space group has four conjugate maximal
rhombohedral subgroups. Is this orientational or trans-
lational conjugation?

Use the images of the symmetry elements in Interna-
tional Tables A to draw a diagram each with the sym-

(8.5)

(8.6)

How many subgroups on a par H = P63/mmc in G =
P 6/mmm exist with doubled ¢? Are there any conjugates
of Hin G?

Many tetraphenylphosphonium salts having square-
pyramidal or octahedral anions crystallize in the space
group P4/n. The coordinates for P(C¢Hs)4[MoNCly] are
(origin choice 2, i.e. origin at a centre of inversion) [86]:

metry elements of the ‘symmetry of the symmetry’ of )i yg < ’i yl <
the space groups P21212y, Pbam, P4;. What are the P g 7 0 Mo 3 I 0.121
Hermann—Mauguin symbols and the basis vectors of the Cl1 0362 0.760 0.141 N % % -0.093

Euclidean normalizers? Does any one of the orthorhom-
bic space groups have a normalizer with enhanced sym-
metry if a = b?

Let G = R3m and H = P3m1 with the same lattice pa-
rameters (hexagonal setting of the unit cell). Set up a
tree of group—subgroup relations with the aid of Inter-
national Tables A or Al including Ng(H) and Ng(H).
How many conjugate subgroups are there for H in G?

Consider Fig. 8.4 and show with the aid of the normaliz-
ers why there are three conjugates of the space group H;
in G but only one of H,.

8.7)

C2 0437 0.836 0.117 ClI 0.400 0.347 0.191
(values for the H atoms and C 3 to C 6 omitted)

How many equivalent sets of coordinates can be used to
describe the structure? What are the corresponding coor-
dinates?

The vanadium bronzes B’-CugosV20s [87] and B-
Ag.33V20s5 [88] are monoclinic, both with space group
C2/m (the positions of the Cu and Ag atoms show partial
occupancy). The coordinates are (without O atoms):
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B’-Cug.26V20s
a=1524, b =361, a=1539, b =361,
c¢=1010 pm, B = 107.25° ¢ =1007 pm, B = 109.7°
X y z X y z
Cu 0.530 0 0.361 Ag 0.996 0 0.404
V1 0.335 0 0.096 V1 0.117 0 0.119
V2 0.114 0 0.120 V2 0.338 0 0.101
V3 0.287 0 0.407 V3 0.288 0 0.410

Are the two structures isotypic or homeotypic (apart from
the different partial occupancies of the Cu and Ag posi-
tions)?

B-Ago33V20s

(8.8) Are the following three crystal structures isotypic?

NaAgz O, [89] Ibam
a=0616,b=1044,c =597 pm

X y z
Na 4b 5 0 i
Agl 4c¢ 0O 0 0
Ag2 8 & 1 1
O 8j 0.289 0.110 0

NaszAlP; [90] Ibam
a=0677,b=1319, c = 608 pm

X y Z
Al 40 0

1 1
Nal 46 3 0 |

Na2 8; 0.312 0.308 0
P 8j 0.196 0.101 O

PryNCl; [91] Ibam
a=1353,b=685,c =611 pm

X y Z
N 420 0 !
cir 40 5k

Cl2 8j 0.799 0.180 O
Pr 8j 0.094 0.177 0
(8.9) Are the following two crystal structures isotypic?
NagFeS, [92] P63mc
a=2895,¢c=691 pm
X y b4
0.146 -0.146 0.543
0.532 0.468 0.368
2025

0.596
188 0.143

Nal 6c¢
Na2 6¢
Fe 2b

S1  2b

3
2
3
S2 6c -0.

QO L= L=

Ca4OCl, [93,94]  P63mc
a =907, c=686pm

X y b4
Cal 2b % 2 0427
Ca2 6c 0.198 -0.198 0.0
o 2b 1% 2 0106
Cll 6c 0.136 —0.136 0.385

Cl2 6c 0464 0.536 0.708

(8.10) In 2001 it was announced that rambergite has an ‘anti-
wurtzite® structure with the opposite absolute configura-
tion of wurtzite [95]. Why is this nonsense?

wurtzite (ZnS) P6smc
a=2382, c =626 pm

rambergite (MnS) P63mc
a =398, b =645 pm

Xy z Xy z
Zn 1+ %20 Mn 2 10
s 1 %0375 s % 1 o622

(8.11) The crystal data for two compounds are listed in the fol-
lowing. Decide whether the mentioned space groups are
possibly wrong.

GeSy-1i [96] 142d
a=>548, c =914 pm

Nap,HgO, [97] 1422
a=2342, b=1332 pm

X y z Xy z
Ge 0 00 Na 0 0 0.325
S 0239 1 ¢ Hg 0 0 0

O 00 0.147

(8.12) From the published lattice parameters of NayAuCoOs
[98] it may be conjectured that the structure is not mono-
clinic (space group P2;/m), but B-centred orthorhombic.
What is the correct space group and what are the atomic
coordinates?

a=5557,b=1042, ¢ = 555.7 pm, g = 117.39°

X y Z X y Z

Au 0 0 0 Co 0266 2  0.266
Nal 0.332 0.000 0.669 O1 0.713 0.383 0.989
Na2 0.634 3 0005 02 0.989 0.383 0.711
Na3 0.993 1 0364 03 0433 1 0430



How to handle space groups

9.1 Wyckoff positions of space groups

The (infinite) set of symmetry-equivalent points in a space group G is called
a G-orbit or crystallographic point orbit (also point configuration), cf. Defin-
itions 5.11 and 5.12 (page 60) [99-102]. If it is clear that the subject in ques-
tion concerns points of a space group, for short, we simply call it an orbit or
point orbit. If the coordinates of a site are completely fixed by symmetry (e.g.
JT, JT, }T), then the orbit is identical with the corresponding Wyckoff position of
the space group. However, if there are one or more freely variable coordinates
(e.g. x in x, %,O), the Wyckoff position comprises an infinity of possible or-
bits; they differ in the values of the variable coordinate(s), cf. Definition 6.6
(page 65) and Section 6.5 (page 81). For example, in space group Pbcm the
set of points that are symmetry equivalent to, say, 0.391, 4—11, 0, makes up one or-
bit. The set corresponding to 0.468, %, 0 belongs to the same Wyckoff position
4¢ of Pbcm, but to another orbit (its variable coordinate x is different).

It is customary to designate a Wyckoff position of a space group by its Wyck-
off symbol. It consists of the multiplicity and the Wyckoff letter, for example,
4c, see Section 6.4.2, page 79.

A consequence of this kind of designation is the dependence of the multi-
plicity on the size of the chosen unit cell. For example, the multiplicities of
rhombohedral space groups are larger by a factor of 3 if the unit cell is not
referred to rhombohedral, but to hexagonal axes.

Many space groups have different Wyckoff positions with the same type of
point symmetry; combined they form a Wyckoff set (called Konfigurationslage
by [99]). These Wyckoff positions are mapped onto one another by the affine

normalizer of the space group (cf. Section 8.2, page 105).

Example 9.1
Space group No. 23, 7222, has six Wyckoff positions with the site symmetry
2; together they make up one Wyckoff set:

4e (x,0,0) and 4f (x, 0, %) on twofold rotation axes parallel to a,
4g (0,y,0) and 4h (%, , 0) on twofold rotation axes parallel to b,

4i (0,0,z) and 4 (0, 1, z) on twofold rotation axes parallel to c.

However, if the lattice parameters are a # b # ¢, in the preceding example
the positions 4e, 4 f cannot be considered to be equivalent to the positions 4g,
4h and to 4i, 4], being on differently oriented axes. On the other hand, the
positions 4e and 4f are equivalent; they are mapped onto each other by the
Euclidean normalizer (they are equivalent in the Euclidean normalizer).

9.1 Wyckoff positions of space groups 121

9.2 Relations between the Wyckoff posi-
tions in group—subgroup relations 122

9.3 Non-conventional settings of space
groups 123

Exercises 130
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As explained in Section 8.5, as a rule, there exist several equivalent sets of
coordinates that describe the very same crystal structure; they can be inter-
converted with the aid of the Euclidean normalizer. The change from one to
another coordinate set can imply an interchange of Wyckoff positions among
the positions that are equivalent in the Euclidean normalizer. If the origin of
space group /222 is shifted by 0, 0, % the atoms at the Wyckoff position 4e
are shifted to 4/ and vice versa. This is similar to the interchange of Na and
Cl atoms in Example 8.3 (page 111).

With monoclinic space groups, different unit cells can be chosen for the
same structure; their bases can be interconverted by transformations such as
a=£nc, b, ¢ (n = integral number). This can also cause an interchange of Wyck-
off symbols. The same applies to basis transformations of the space group P1.

Example 9.2
The space group P12;/c1 has four kinds of inversion centres:

24,0,0,0; 2b,1,0,0; 2¢0,0,3; 2d, 1,01
By transformation to a cell with the basis a+ ¢, b, ¢ (grey in the image in

the margin), the Wyckoff positions 2a and 2¢ keep their Wyckoff symbols,
whereas the other two are interchanged 2b = 2d.

9.2 Relations between the Wyckoff positions in
group—subgroup relations

For every group—subgroup relation G — H it is essential to keep track of which
Wyckoff positions of the subgroup H result from those Wyckoff positions of
the space group G that are occupied by atoms. A group—subgroup relation can
only be correct and fraught with meaning if there exist clear connections for
all atoms.

The atomic positions show clearly how the symmetry is being reduced step
by step in a sequence of group—subgroup relations. At first, as a rule, the atoms
occupy special positions, i.e. they are located on certain symmetry elements
with fixed values for the coordinates and with some specific site symmetry.
When proceeding from group to subgroup, the atomic positions experience the
following changes one by one or jointly [103]:

(1) some or all coordinates x, y, z fixed or coupled by symmetry become
independent, i.e. the atoms can shift away from a special position;

(2) the site symmetry is reduced;
(3) the point orbit splits into different orbits.

If the index of the symmetry reduction is 2, either the site symmetry is kept
and the orbit splits or there is no splitting and the site symmetry is reduced.
There is a one-to-one relation between the points of an orbit and the cor-
responding points of a subgroup. They comprise the same number of points
in the same volume. The multiplicity of a Wyckoff position shows up in the
multiplicities of the corresponding Wyckoff positions of the subgroup. If the
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unit cell selected to describe the subgroup has the same size, the sum of the
multiplicities of the positions of the subgroup must be equal to the multiplicity
of the position of the starting group. For example, from a position with multi-
plicity of 6, a position with multiplicity of 6 can result, or it can split into two
positions of multiplicity of 3, or into two with multiplicities of 2 and 4, or into
three with multiplicity of 2. If the unit cell of the subgroup is enlarged or re-
duced by a factor f, then the sum of the multiplicities must also be multiplied
or divided by this factor f.

Between the positions of a space group and those of its subgroups there
exist unique relations for given relative positions of their unit cells. Usually,
there are several possible relative positions; the relations between the Wyckoff
positions may differ for different (arbitrary choices of) relative positions of the
origins of the group and the subgroup.

The relations between the Wyckoff positions of the space groups and their
subgroups can be derived from the data of International Tables A. However,
this is a cumbersome task prone to errors. Therefore, it is recommended to
use the tables of International Tables Al. Listed are all maximal subgroups
of all space groups and what Wyckoff positions of a subgroup result form the
Wyckoff positions of each space group. The listed relations in each case are
valid only for the given basis transformation and origin shift. With other ba-
sis transformations or origin shifts the Wyckoff symbols of the subgroup may
have to be interchanged among the positions that are equivalent in the Euclid-
ean normalizer. In addition, the computer program WYCKSPLIT can be used;
it computes the relations after input of the space group, subgroup, basis trans-
formation, and origin shift [104].

9.3 Non-conventional settings of space groups

As a rule, it is recommended to describe crystal structures with the conven-
tional settings of the space groups and taking into account the standardization
rules mentioned in Section 8.4. However, standardized settings may mean that
related crystal structures have to be described differently, with the consequence
that the similarities become less clear and may even be obscured. For the com-
parison of crystal structures, it is preferable to set up all unit cells in a most
uniform way and to avoid cell transformations as far as possible, even if this
requires the utilization of non-conventional settings of the space groups. In this
section some instructions are given referring to such non-conventional settings.

9.3.1 Orthorhombic space groups

Among orthorhombic space groups it is frequently suitable to choose settings
that deviate from the listings in International Tables A. This is due to the fact
that there exists no special preference for any of the axes directions a, b, and ¢
in the orthorhombic system. Generally, there are six possible settings. All six
are mentioned in Table 4.3.2.1 of International Tables A, but only one of them
is considered as the standard setting and has been completely listed. The other
five are obtained by interchange of the axes, namely:

123
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(1) Conventional setting: abc

(2) Cyclic interchange ‘forwards’:  cab

(3) Cyclic interchange ‘backwards’: bca

(4) Interchange of aand b: bac or bac or bac
(5) Interchange of aand ¢: cha or chba or <cha
(6) Interchange of b and c: acb or acbhb or ach

The notation cab means: the original a axis is now in the position b, etc.,
or: convert ato b, b to ¢, ¢ to a. The options 4 to 6 (interchange of two axes)
require the reversal of the direction of one axis in order to retain a right-handed
coordinate system.

The interchange of the axes has the following consequences:

(1) The lattice parameters a, b, ¢ must be interchanged.

(2) In the Hermann—Mauguin symbol the sequence of the symmetry direc-
tions has to be changed.

(3) The notations of the glide directions a, b, ¢ in the Hermann—-Mauguin
symbol have to be interchanged. m, n, d, and e remain unaltered.

(4) The notations of the centrings A, B, C have to be interchanged. P, F,
and / remain unaltered.

(5) In the coordinate triplets of the atomic positions the sequence and the
notations have to be interchanged. If the direction of an axis is reversed,
the signs of the corresponding coordinates have to be inverted. Usually,
the Wyckoff symbols remain unaltered. However, caution is required if
the interchange of axes concerns space groups whose symbols do not
reveal that or how the axes have been interchanged (see Examples 9.5
and 9.6).

(6) The notations of rotations and screw rotations do not change.

Example 9.3
Two possibilities to interchange axes of the space group P2/b2,/c2i/m
(Pbcm, No. 57) and its Wyckoff position 4¢ (x, 4, 0):

abc: P2/b2i/c2i/m  x, 1,0 abc: P2/b2i/c2i/m  x, 1,0

AKX T

bea: P2,/b2/m2/a 1,0, acb: P2/c21/m2,/b ,0,—1

Example 9.4

Two possibilities to interchange axes of the space group C2/m2/c2i/m
(Cmem, No. 63) and its Wyckoff position 8g (x, y, ;{) with x = 0.17 and
y=0.29:

abe: C2/m2/c2i/m 0.17,0.29, 1 abe: C2/m2/c2i/m  0.17,0.29,

| XC A XX

cab: A2;/m2/m2/a 1,017,029 bac: C2/c2/m2i/m —0.29,0.17,

Bl B—
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In most cases the non-conventional Hermann—Mauguin symbol shows in a
unique way how the setting differs from the conventional setting. However,
there are exceptions, as shown in the following two examples.

Example 9.5

In the space group P222; (No. 17) the Wyckoff position 2a (x, 0, 0) is sit-
uated on twofold rotation axes parallel to a, and the position 2¢ (0, y, %) on
twofold rotation axes parallel to b. The following two possibilities to inter-
change axes result in the same non-conventional space-group symbol:

2a 26‘ 2a 2c
abec: P222; x,0,0 O, y, abe: P222; x,0,0 O, y,
cab: P2;22 0,y,0 1 cha: P2,22 0,0,z 4 , v, 0

After cyclic interchange the twofold rotation axes of the Wyckoff position 2a
are parallel to b at 0, y, 0. On the other hand, interchange of a and ¢ yields
twofold rotation axes parallel to b at %, v, 0. The non-conventional symbol
P2;22 does not show how the basis vectors have been interchanged and
where the rotation axes are situated. In such cases cyclic interchange should
be preferred.

Example 9.6
The space group Cmme (C2/m2/m2/e, No. 67) has a subgroup Ibca
(I21/b21/c21/a, No. 73) with doubled ¢ vector. The Wyckoff position 4d
(0,0, 1) of Cmme becomes 8¢ (x, 0, 1) of Ibca with x ~ 0.
Starting from Bmem, a non-conventional setting (b ¢ a) of Cmme, one ob-
tains the same subgroup /bca by doubling b. The position 4d of Bmem is
(O, 5, 0), from which one obtalns (O, 7> 2) of Ibca (z ~ 0). According to
International Tables A, (O, Hie ) is not the position 8c, but 8e of Ibca; there-
fore, it has another denomination than when starting from Cmme. However,
one can choose the non-conventional setting b ¢ a for /b ca, which results in
the Wyckoft symbol 8c for the position (0, %, 7). The symbol /b ca does not
reveal this because cyclic interchange of the axes does not change the sym-
bol. In this case the interchanged axes and Wyckoff symbols must explicitly
be mentioned to avoid confusion.
4d 4d 4d
C2/m2/m2fe 0,0, 5  B2m2/e2/m 0,1, 0 B2m2/e2/m 0,1 0
a,b|,2c l l l a,2|b,c l l l a,2|b,c l l l
v v v
! 0, 1,2 0,1 z
8¢ @b'c) 8 (b'ca’) 8¢

s

121/b21/c2i/a x, 0, 121/1?21/6‘21/61 121/b21/021/a

)

9.3.2 Monoclinic space groups

The interchange of axes of monoclinic space groups has the same consequences
as for orthorhombic space groups. In addition, the interchange of the angles
o, 3,7 has to be considered. International Tables A list the settings with b and
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Fig. 9.1 The three cell choices for space
group No. 14, P2, /c, with monoclinic b axis.

Al2/al j—'

[ [} ‘ o . o
/TC § § o
o/l. ol ¢ c!l
/4 g /4
N
SN RN EEE
O § § o]

Fig. 9.2 The two settings A12/al and
A12/n1 of the same space group with the
same axes directions differ in the positions of
their origins.

cell choice 2
a P12y/n1

7,

cell choice 3
P12/al

cell choice 1
P12;/cl
standard setting

¢ as monoclinic axis. Settings with monoclinic a axis can be obtained from
these settings in the same way as described in the preceding section.

A few additional particularities have to be taken into account in the case
of monoclinic space groups with centrings or with glide planes. Three cell
choices have each been listed for these space groups (cell choices 1, 2, and
3). The direction of the monoclinic axis and the cell choice can be uniquely
recognized from the full Hermann—Mauguin symbol (Fig. 9.1). If a setting
other than the standard setting is chosen (P 12;/c1 in Fig. 9.1), the full symbol
must be stated. A change of the cell choice not only entails a change of the
Hermann—Mauguin symbol, but also of the monoclinic angle.

The interchange of axes of the space groups Cc¢ and C2/c requires special
care. An interchange of the axes a and ¢ (keeping the cell and —b as mono-
clinic axis), results in the following change of the space group symbol:

—

C12/c1 (cell choice 1) Al2/al

A12/a1is not a conventional setting. One of the settings listed in International
Tables is A12/n1 (cell choice 2). A12/n1 and A 12/a 1 refer to the same space
group with the same cell, but with shifted origin positions. The space group has
a as well as n glide planes; the one mentioned in the symbol is located at y =0,
the other one at y = %. The change of the setting from A12/al to A12/nl,
keeping the axes directions, involves an origin shift by 0, 4—1‘, % (Fig. 9.2).
Cyclic interchange of the axes abec — cab yields a change of the mono-
clinic axis from b to ¢. C12/c1 is then converted to A112/a. One can also
interchange b and ¢: abe — acb; in this case the position of the origin must
be watched. C'12/c1 is then converted to B112/b with glide planes b at z =0
andnatz = %. B112/b had been the setting used for the monoclinic ¢ axis in
the old editions of International Tables (up to 1969). However, since the 1983
edition it has been B 112/n (monoclinic ¢, cell choice 2), with glide planes n
atz=0and b atz= 1. B112/b and B112/n differ in their origin positions
by 4—1“ 0, %. The denominations of the Wyckoff symbols in the old editions of
International Tables (up to 1969) differ from the newer editions.
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If one can choose, non-conventional monoclinic settings that result from
cyclic interchange of axes should be preferred. In that case the coordinate
triplets have to be interchanged correspondingly, but there are no origin shifts.
The Wyckoff letters remain unchanged. In addition, the monoclinic angle
keeps its value ( for monoclinic b axis). If a and ¢ are interchanged, 8 only
keeps its value if the direction of b is reversed, whereas the settings cba and
cba require a replacement of 8 by 180° — .

Sometimes it is useful to choose a non-conventional centred setting. For
example, the space group Cmcm has a subgroup P 112;/m that can also be set
as C112;/m. This setting avoids a cell transformation:

C2/m2/c2/m
I

%(afb),b,c
\/
P112y/m

A disadvantage of non-conventional centrings is the lack of tables of the
coordinate triplets for the Wyckoff positions. Wyckoff symbols are only unique
if the corresponding coordinate triplets are explicitly stated.

9.3.3 Tetragonal space groups

Sometimes it is useful to choose C-centred instead of primitive settings or face-
centred instead of body-centred settings of tetragonal space groups. Their a’
and b’ axes run diagonal to the axes of the conventional setting (Fig. 9.3). For
example, this should be considered for a relation from a face-centred cubic
space group to a tetragonal subgroup, which can then be described with un-
changed axes and an F instead of a (conventional) / cell. This is advisable if a
further subgroup follows which again has the metric of the original F' cell; in
this way two cell transformations can be avoided.

In the Hermann—Mauguin symbol of the non-conventional centred setting
the symmetry elements referring to the directions a and a —b are interchanged.
In addition to the letters for the centrings, the following letters for glide planes
have to be changed:

setting glide glide
(centring) planes L ¢ planes L a
conventional P I a n b n
Lol Lol ol
non-conventional cC F d e g1 &

The glide planes g, and g» run perpendicular to a’ — b’ and a’ + b’ (in the

: : : 11 11
non-conventional setting) and have glide components of y,3,0 and 7,75,

respectively.

Fig. 9.3 Relative orientations of C and F cen-
tred tetragonal unit cells.
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Example 9.7

Transformation of two tetragonal space groups to unit cells with doubled
volume and diagonal a and b axes:

Fdme C4/e2/m?2/g)

Example 9.8

Above 47 °C, NiCryO4 has the cubic spinel structure. Upon cooling, the
structure experiences a slight distortion and becomes tetragonal [105].
the tetragonal structure is not described with a body-centred but with a face-
centred setting, the small amount of the distortion concerning the coordinates
of the O atoms becomes much more apparent (tree of group—subgroup rela-
tions as explained in Chapter 10):

_ Ni:8a|Cr:16d| O:32e
F4,/d32/m" | 43m | 3m | 3m
NiCr,04325K]| 0 | § [0.3866|a=

\ 0 | 3 [0.3866/831.8pm
/ 3 0 | 3 (03866

_— : ( ey NI
\

Ni:8a|Cr:16d | O:32h Ni:4a|Cr:8d| O:16h
Fd/d2/d2mM\ Tom | 2fm | .m | T41/a2/m2/dV | Gm2 | 2/m.| .m.
] 0 3 (03851 , 0 | 1 [0.7702
non—conYentlonal 0 % 0.3897 conveqtlonal 0 % 0.3897
setting setting
a=2825.7pm, c = 843.5 pm a=>583.8pm, c = 843.5 pm

Transformation 74;/a2/m?2/d — F 4/d2/d2/m according toa+b,-a+b,c
and 1(x+y), 3 (—x+y),z

Note the sequence in the Hermann—Mauguin symbols, also at the site sym-
metry of the Ni atom, and the halved multiplicities at the Wyckoff symbols
of the conventional setting /4/a2/m?2/d (because of the halved size of the
unit cell).

A disadvantage as for all non-conventional centrings is the lack of tables
of the coordinates of the Wyckoff positions. One has to be specially careful
when space groups with d glide planes are involved. For instance, for the
space group [41/amd (I4/a2/m?2/d) mentioned in Example 9.8, it makes a
difference whether the transformation 14,/amd — F4,/ddm is performed
according to a+b,—-a+b,c or a—b, a+b, ¢, because the d glide directions
are different. The latter transformation results in wrong glide directions un-

less an origin shift of ——,— }‘, }‘ is included in the group—subgroup relation.
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The transformation of space groups that allow two origin choices can involve
different origin shifts depending on the origin choice.

9.3.4 Rhombohedral space groups

Basis transformations concerning rhombohedral space groups can be rather
complex. In addition, it has to be watched whether the setting refers to ‘rhom-
bohedral’ or to ‘hexagonal’ axes. The transformations are notoriously prone to
errors.

Every cubic space group has rhombohedral subgroups that have their three-
fold axes parallel to one of the four directions of the body diagonals of the
cube. Only in the case of primitive cubic space groups does the conventional
cell of a maximal thombohedral subgroup have the same unit cell, provided
that rhombohedral axes have been chosen. The maximal rhombohedral sub-
groups of F- and /-centred cubic space groups can be derived without cell
transformations if non-conventional F- or I-centred settings are chosen with
rhombohedral axes (i.e. witha =b = ¢, 90° # a = 8 = vy~ 90°). The space-
group symbol then begins with F 3, F3, I3, or I3, for example, F 3m instead
of R3m™ (not to be confounded with F m3).

‘Hexagonal’ axes offer two possible settings called ‘obverse’ and ‘reverse’;
obverse is the conventional one. The settings differ in the kind of centring of
the hexagonal cell, namely i(%, %, %) for obverse and i(%, %, %) for reverse.
Sometimes cell transformations can be avoided if the reverse setting is chosen.
For example, when a rhombohedral space group results from another rhombo-
hedral space group by doubling of the (hexagonal) c axis, either the directions
of a and b have to be reversed or one can keep the directions if one of the two
space groups is chosen with a reverse setting. Since this cannot be expressed
by the Hermann—Mauguin symbol, it has to be explicitly mentioned, preferably
be a superscript ") after the corresponding Hermann-Mauguin symbol.

9.3.5 Hexagonal space groups

In former times, hexagonal space groups were described with an H cell ora C
cell. These result from the conventional cell according to:

Basis vectors of the H cell: 2a+b, —a+b, ¢

Basis vectors of the C cell: 2a+b, b, ¢ or a,a+2b, ¢

The C cell (orthohexagonal cell) corresponds to the cell of orthorhombic
subgroups of hexagonal space groups. The H cell is centred in the positions

:&:(%7 %, 0). Both kinds of cell are usually of little advantage and are used only
seldom.
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Exercises

Solutions in Appendix D (page 287)

9.1

9.2)

(9.3)

94

The cell of space group P1 is to be converted to another
cell with the basis vectors a, b, a+b+c¢. How do the
Wyckoff symbols have to be interchanged? Set up the
transformation matrices P and P~!. The Wyckoff sym-
bols are: 1a (0,0, 0); 156 (0,0, 1); 1c (0, 1,0); 1d (1,0,0);
le (4, 5,00 1f (3,0, 5): 1g (0, 3, 5): 1 (3, 5. b

2i (x,Y,2)-

What are the Hermann—Mauguin symbols of space group
P21/n21/m2;/a for the axes settings ¢, a, b and b, a, ¢?
What are the corresponding coordinates of the point 0.24,
1, 061?

What has to be considered when the axes a and b of the
space group C12/c1 are interchanged?

What is the Hermann—Mauguin symbol of the space
group P4,/n21/c2/m with a C-centred setting?

(9.5) Among others, the following supergroups of space group

P2y/c (P121/c1, No. 14) are listed in International Ta-
bles with their standard symbols; the full symbols have
been added here in parentheses:

Pnna (P2/n2y/n2/a); Pcca (P2/c2/c2/a);
Pcen (P21/c21/c2/n); Cmce (C2/m2/c2,/e).

Only the standard symbols are listed for supergroups,
even if this requires a basis transformation that is not
mentioned. What are the Hermann—Mauguin symbols of
the supergroups if their axes are oriented in the same way
as for P121/c1? Is it necessary, in some of the cases, to
choose some other setting of P12;/c1 in order to be able
to keep the orientation of the axes for the supergroup?
What conditions must be met by the cell of P12;/c1 so
that the mentioned space groups can actually be super-
groups?
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The group-theoretical
presentation of
crystal-chemical
relationships

The consequent application of group theory in crystal chemistry yields a con-
clusive confirmation for the validity of the symmetry principle mentioned in
Section 1.1. Particularly aspect 2 of the symmetry principle emerges in an
impressive way. Disturbances like covalent bonds, lone electron pairs, or the
Jahn-Teller effect, as a rule, cause symmetry reductions as compared to ideal
models. However, the group-theoretical analysis shows that the symmetry re-
duction often corresponds to the smallest possible step, i.e. the space group of
a crystal structure is a maximal subgroup of a related conceivable or actually
existent higher-symmetry structure.

If the symmetry reduction is such that all translations are being retained, the
maximal subgroup H is called a translationengleiche subgroup of the space
group G. CARL HERMANN called these subgroups zellengleiche subgroups.
However, this term has been replaced by translationengleiche because of pos-
sible misinterpretations. On page 145 it is explained why zellengleiche is prone
to misinterpretations.!

If the symmetry reduction involves a loss of translations, the maximal sub-
group H is either a klassengleiche or an isomorphic subgroup of the space
group G; isomorphic is an important special case of klassengleiche. The loss
of translations is tantamount to an enlargement of the primitive unit cell, either
by enlargement of the conventional unit cell or by the loss of centrings. In the
outset of the development, the misleading terms ‘equivalent’ and ‘isosymbolic’
(with the same Hermann—Mauguin symbol) were used instead of ‘isomorphic’.
Enantiomorphic subgroups like P3; and P 3, are isomorphic, although they ap-
pear as different, not ‘isosymbolic’ space-group types in International Tables.

With the aid of the mentioned terms of space-group theory it is possible to
present symmetry relations between two crystal structures in a concise manner
with a Bdrnighausen tree. If the space group of the lower-symmetry structure
is a maximal subgroup of the space group of the higher-symmetry structure,
there is only one step of symmetry reduction. If it is not a maximal subgroup,
we resolve the total symmetry reduction into a chain of sequential steps, each
step representing the transition to a maximal subgroup. Therefore, we have to
discuss only one of these steps in detail.

! German translationengleiche means ‘with
the same translations’; zellengleiche means
‘with the same cell’; klassengleiche means

‘of the same (crystal) class’. Of the dif-
ferent German declension endings only the
form with terminal -e is commonly used in
English. Native English-speaking experts of
a commission of the International Union of
Crystallography could not agree upon apt
English terms with exactly the same mean-
ings and officially decided to adopt the Ger-
man terms. The abbreviations ‘f-subgroup’
and ‘k-subgroup’ are unfortunate because
with ‘#-subgroup’ it is not obvious if the
loss or the conservation of the translations
is meant. Some non-English-speaking au-
thors have used the expressions translation-
equivalent and class-equivalent which do not
reflect the exact meaning. A few American
authors use the terms equi-translational and
equi-class.
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For two structures that we want to interrelate, we place their space-group
symbols one below the other and indicate the direction of the symmetry reduc-
tion by an arrow pointing downwards. See the example in the white field of
the scheme on the opposite page.

Since they are more informative, it is advisable to use only the full Hermann—
Mauguin symbols. In the middle of the arrow we insert the kind of maximal
subgroup and the index of symmetry reduction, using the abbreviations t for
translationengleiche, k for klassengleiche, and i for isomorphic. If the symme-
try reduction involves a change of the size or setting of the unit cell, we also
insert the new basis vectors expressed as vector sums of the basis vectors of
the higher-symmetry cell.

For the sake of clarity it is recommended to avoid cell transformations when-
ever possible. If necessary, it is much better to fully exploit the possibilities
offered by the Hermann—Mauguin symbolism and to choose space-group set-
tings that do not correspond to the conventional settings of International Tables
(cf.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>