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PREFACE

This book presents a set of solved examples on semiconductor device physics. Semiconductor
devices is a core subject in electrical engineering and physics curricula. The level of the proposed
examples corresponds to a semester course at senior undergraduate or junior graduate level.
Readers are expected to have a basic background on quantum and solid state physics, moreover
a reasonable mathematical knowledge reaching differential equations is also assumed.

There are many excellent text books on semiconductor device physics, however very often the
examples are mostly numerical, trying to fix the order of magnitude of the obtained results. In
this book, problems with a certain level of complexity are solved and explained step by step
presenting at the same time the involved physics. This work does not replace a text book and
lecture notes, but it may definitely be a good complement.

At the Universitat Politecnica de Catalunya (BarcelonaTech) one of the authors, R. Alcubilla, has
been lecturing on semiconductor devices at different levels for more than 20 years. In particular
together with C. Voz started in 2013 a semester course for engineering physics students at senior
undergraduate level. This book collects the exercises of the different written tests since 2013.
The level of the students has been always rather high and the acceptation of the course has
been also very good. Even if teachers tend to overestimate the motivation of the students, our
feeling has been always very positive and the average result of the proposed tests good.

We cannot claim the authorship of all the proposed problems. As most professors know, the
process for preparing a test is not easy, trying to question about the different parts of the course,
equilibrating the difficulties, looking for interesting questions (the definition of interesting
questions is subject of discussion between teacher and students). Some of the problems are
roughly original, classical ones or fruit of the previous experience of the authors, others are
adapted from material found in different books, web sites, etc...

R. Alcubilla wants to thank Universitat Politécnica de Catalunya (BarcelonaTech) for a 6 months
sabbatical leave used for writing the biggest part of this book. Finally, we want to thank our
students that during these years have “suffered” these exercises.

Barcelona, January 2020
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Chapter 1.

Semiconductor Physics



1. Radiative, band-to-band, recombination is proportional to the product of electron and
hole concentrations. Consider a p-type semiconductor with an impurity concentration
N A°

a) Find an expression for its radiative lifetime under low-injection conditions.

b) Find an expression for its radiative lifetime under high-injection conditions.

Comment the results you obtain.

The total amount of recombination events should be proportional to both electron and hole
concentrations. Furthermore, it should tend to zero along with any of the carrier concentrations.
Thus, the number of electron-hole pairs that recombine per unit time and unit volume R (cm3s?)
can be written as:

R=Bn-p

where B is a proportionality factor in units of cm3s™ and n and p are the electron and
hole concentrations, respectively. We can write n = ny + An and p = py + Ap where
ng and p, are the equilibrium concentrations and An and Ap the differences from their
actual concentration values. Thus, we call An and Ap the excess electron and hole
concentrations. Of course, these excesses are null under equilibrium. Then:

R =B (ng+ An)(pg+ Ap) = Bng pg + BnygAp + BpyAn + BAnAp

Let’s now proceed with the kind of tricks that students usually hate. Be careful however because
there is usually a lot of physics inside those tricks:

The first term is the recombination rate under equilibrium, i.e., when both excesses are null.
If there is some recombination in equilibrium but the concentrations remain constant, then
there must be an equal generation rate. Consequently, it is better to think about the net
recombination rate U (cm?3s?). That is the recombination not compensated by thermal
generation:

U = BnyAp + BpyAn + BAnAp
If we assume a p-type semiconductor then p, > n, (n, > p, in case of n-type)

Additionally, An = Ap due to quasineutrality. We start considering a semiconductor neutral
in equilibrium, this means that positive and negative charges equilibrate for a zero-net
charge. The hypothesis of quasineutrality means that even if we move away from
equilibrium, the net charge will still be very small compared to the amount of positive and
negative charges. More details will be given in the next problem.

Finally, we can talk about low or high injection conditions depending on the magnitude of
the excess carrier concentration. The most usual case is low injection regime, which means
that excesses are much lower than the majority carrier concentration. On the contrary, in
high injection the excesses are much higher than the majority carrier concentration.

Summiarizing, taking (iii) into account the net recombination rate is given by:

U = B ngAn + BpyAn + BAnAn



Particularizing for a p-type semiconductor (ii):
U = BpyAn + BAnAn
Then, in low injection (iv):
U = BpyAn
We can now rewrite this expression in another way:

U = BpyAn = An/1, , where we identify 7,, = j
0

We call t,, the electron (minority carrier) lifetime, which can be interpreted as the mean time
for electrons to recombine (symmetrically for holes in an n-type semiconductor). Note that the
lifetime is inversely proportional to the doping concentration. Minority carriers will recombine
faster as there are more majority carriers available to complete the process.

b) Under high injection everything is the same but with AnAp > p,An we arrive to:
1
U = BAnAn = An/t, , where 1, = o

Now the electron lifetime depends on the injection level and it cannot be taken as a constant
parameter. The lifetime decreases, that is recombination increases, with the injection level.



2. Analyzing the behavior of semiconductors under permanent regime, the hypothesis of
quasi-neutrality is often invoked. Consider a uniform region of a semiconductor with
negligible recombination where somehow quasi-neutrality is perturbed. Then, a
volumetric density of charge p would appear and consequently an electric field. The
drift current produced by this electric field will re-establish the neutrality in a brief
lapse of time. This relaxation process, nearly instantaneous in a doped semiconductor
has associated a characteristic time t ;.

Using well-known equations, find the expression for the temporal evolution of the
volumetric charge density during the relaxation process. Identify the characteristic
time t,; and evaluate its value for a silicon sample of conductivityc =1 0271 - cm™1

Data: &, =11.9,5,=8.85x 107 F/cm

Imagine that somehow you are injecting electrons from the left side of a semiconductor.
Consequently, you should have an excess of electrons An(x) over the equilibrium concentration
decreasing from left to right. You can find in textbooks that because of quasi-neutrality there
will exist also a hole excess Ap(x) = An(x). You can take it for granted if necessary, but to my
view the reason has been rather a mystery for a long time. Finally, | understood why it is the
case. | will try to explain it in this problem.

Let’s consider the electron concentration. For simplicity, consider that there is not any
generation and that recombination can be neglected in that region. Then, the continuity
equation writes:

dn 14dj,

dt q dx
where n is the electron concentration (cm), J,, the electron current density (A/cm?) and g the
elementary charge (C).

We also have ], = oF, being o the electrical conductivity (Q*cm™) and E the electric field
(V/cm).

Besides, there is the Gauss equation:

dE _p

dx ¢

with p the charge density (C/cm?) and ¢ the dielectric constant (F/cm).

Combining these equations, we arrive to:

dn  1ldp 1dJ, 1 dE 1o

dt qdt qdx q dx gqef
Then:

dp o

ac e’



and this differential equation can be solved to obtain the temporal evolution of the charge
density. Considering that at t = 0 the charge density is p(0) (initial condition):

p(®) = p(@exp (-2 t)

the ratio i can be identified as a relaxation time t; and write:

p(t) = p(exp (- é)

The value of t; for silicon with a rather typical resistivity of 1 Q-cm is:

& 885x1071%x11.9 _
==~ 10" 1%

td T o 1

This time is short (very short) compared to the usual carrier lifetimes in silicon. That is the reason
why we can consider that any disequilibrium in the charge density comes back to zero nearly
instantaneously. In other words, if any reason (usually injection) causes an excess carrier
concentration (either An or Ap) at a given point x at time t;, shortly after (in practice we assume
instantaneously) the semiconductor re-arranges itself for having equal excesses at this point. In
other words, an unbalanced charge produces an electric field, which is the origin of a drift
current that re-arranges the carrier distribution cancelling the charge.

It's important to be aware that in low conductivity semiconductors (amorphous or organic
materials where the conductivity may be many orders of magnitude lower than in inorganic
crystalline semiconductors) this is no longer the case. The relaxation time may be comparable
to the carrier lifetime and quasi-neutrality would be questionable or simply no longer valid.



3.

a)

b)

A silicon sample is doped with donor impurities, phosphorous, whose energy level is
located 45 meV below the conduction band, the concentration of impurity atoms is
Np =105 cm™3

a) Discuss qualitatively the evolution of the Fermi level from 0 K until high
temperatures above 600 K. Sketch also qualitatively the Fermi level position and
the fraction of ionized impurities in such a wide temperature range.

b) Calculate the temperature for a 50% ionization of the phosphorous impurities.

Hint: Solve first for the room temperature effective density of states in the conduction
band N:(300 K). Then, iterate for a more accurate result.

Data: k = 8.62 x 1075 eV /K, N(300 K) = 2.86 x 10'° cm™3,
3/2
N(T) = N(300 K) (300 K)

Since at 0 K the lowest energy states are occupied, electrons will stay at the impurity level (0%
ionization) and the conduction band empty. Then, Er will be located above the impurity level
and below the conduction band edge E. An increase in the temperature starts the ionization of
the impurities and Ep will shift towards the impurity level. Eventually, when Ep crosses the
impurity level they become 50% ionized. As the temperature is increased the fraction of ionized
impurities rapidly goes to 100% with Er already below the impurity level. At even higher
temperatures Er will continue moving down towards mid gap.

There is a temperature T, for a 50% ionization of the impurities. It is expected to be a relatively
low temperature. Thus, the Boltzmann approximation should apply:

Np Ec — Ef
2 = Ne(Texp (- e )

As it has been discussed before, this happens when Ef crosses the impurity level.
Then, Er = Ep and we can write:

Np Ec — Ep
22 = Ne(Texp - e )

which leads to:

. __E Ec — Ep
x = 3/
kln[l\g(fz)] kein [NJCVEDB/OZO) (36) 2]

Now we start to iterate at 300 K obtaining a first value of T,, = 47 K. A few more iterations
rapidly converge to the final solution:

T,= 47K - 63K » 60K - 61K - 61K

Then, T, = 61 K is the temperature for a 50% ionization of the impurities.
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4. A Silicon sample is doped by donor impurities

with a concentration N = 105 cm™3. The e [ EE
energy level E ) of the donor impurity is located > in EI

0.4 eV above the intrinsic Fermi level E;. - 202 E,
Suppose that neither the silicon bandgap L

neither the energy levels shown in the figure
vary noticeably with temperature. Ey
Additionally, the figure below shows the
intrinsic carrier concentration n; of silicon as a
function of the temperature.

1.2x10" Cmi{
600 K

1015 |

10 [
a) Calculate the position of the Fermi level E 10

referred to E; at 300 K. You can do those

300K

Intrinsic concentration, n; (cmr3)

approximations that you find reasonable. 10°+
b) Repeat this calculation for a temperature of ; 2 em
600 K. Discuss the main differences with 10°r 150K
the case of room temperature. . o
100 200 400 800

c) We know that at 150 K the Fermi level is
locatedat Er — E; = 0.4173 eV. Calculate
the corresponding concentrations of
electrons and holes and the fraction of ionized impurities.

Temperature (K)

d) Write down the transcendental equation that would allow to calculate numerically
the location of E at any temperature.

Data: ky = 8.62 x 107> eV/K

a) At 300 K we can consider that all the impurities are already ionized, Nj ~ N, . Besides, it is clear
thatn; < Np and p < n. Then:

i Np
) = Ep —E; = kT In— = 0.2977eV

F
nzND=niexp( T "
l

b) At 600 K we know from the plot that n; = 1.2 X 105 cm™3 and for sure Nj = Nj,.

We write the neutrality equation, i.e., total negative charges equal to total positive charges:

. ng
n=p+ Ny =p+Np= 7+ND
n?—Npn—nZ =0

Np + N2+ 4n?
n= =18x10%cm™3

2

The negative value has no physical meaning.

10



c) At 150 K we know from the plot the value of n;, whereas Er — E; is also known. Then, we can
calculate the carrier concentrations:

2
n;

n = mnexp (X)) = 207 x 104 em™, p =1L = 1.93x 107 cm™3 ~ 0

n
1

1+exp (— %)

NBL:ND

Ep — Ep = (Ep — E;) — (Ep — E;) = 0.4 — 0.4173 = —0.0173 eV

Note that N = n = 2.07 x 10'* cm™3. Thus, the percentage of ionized impurities is 20.7 %.

d) According to the condition of charge neutrality:
p+Ny=n
On the other hand, we have:

Ep—E;

Ei—Ep
n = nexp (=~

) and p = n;exp (k—T)

and the concentration of ionized impurities is given by:
Np = Np[1 - f(Ep)]

1 1

1+exp (%) ) ND1+exp (—%)

N = Npl1-

We can now re-write the charge neutrality equation as:

Ep—E;
= n;x, where x = exp (L)

1
n=+N
Lx b kT

X
1 S —
+ Ep-Ej
exp KT

This last equation can be solved for x to determine Er — E; at any arbitrary temperature.

11



5. The Fermi level E determines the electron and hole concentrations of a semiconductor
in equilibrium. Out of equilibrium we can define the quasi-Fermi levels E g, and E, to
calculate the electron and hole concentrations, respectively. For example, the electron
concentration would be:

¢ kT
Then, prove that the total electron current can be written as:

dEf,

Jn=pan dx (1)

The electron current is usually written as the addition of its drift and diffusion terms:

dn
Jn = qnuyE + ana

With g the elementary charge, u, the electron mobility (cm?V='-s?), E the electric field (V/cm)
and D,, the electron diffusion constant (cm?/s)

. . . . . ..o d
By introducing the electron quasi-Fermi level (1), we can write the derivative ﬁ as:

dn_N< 1>(dEC dEFn) Ec—Ep,
dx e\, Udx T Tax )P KT

dn n dV  dEg, n dEp,
e R Gy

dx~ kr\ Tax Tax )T kT dx
where we have used that dE; = —q dV (the band energy changes with the electrostatic
potential but the electron charge is —¢q). We have also used that E = —Z—Z

. . dn . . .
Now, we use this last expression ofd—: in the equation of the total current density:

dEFn>

n
Jn = qnunE — anﬁ(qE " ix

- . . . KT . .
and considering the Einstein relation D,, = 7 Mo we finally arrive to:

dEg,
dx

Jn = Upn

12



6.

Between the extremes 1 and 2 of a p-type semiconductor there is a temperature
difference AT = T, — T4 > 0. In this situation, if the terminals 1 and 2 are in short-
circuit we measure a current j . in the negative direction of x. This current is due to a
net flow of majority carriers from the hot side towards the cold side. In the open-circuit
condition, a voltage difference v,. = V{ —V, > 0 is also measured.

a) Explain the reason of this behavior, which is — AT +
known as Seebeck effect. Under exactly the T, T,
same circumstances, what would be different
about the measured j,. and v,. values if the ] J
semiconductor were n type? 1 — v

+ v —
The Seebeck effect can be described by the 5 L
following equation:
j=o(E-s%) (1)

where o is the electrical conductivity of the sample, E the electric field and S is called
the Seebeck coefficient.

b) Integrate the equation (1) between both extremes of the semiconductor, assuming
a uniform electric field, to obtain the j-v characteristic of this thermoelectric device.

¢) How would you determine the value of S with the sample in open-circuit conditions?

From now on consider that the semiconductor is a p-type silicon sample of length L =
200 um. Its electrical conductivity is ¢ = 0.2 271 - cm™! and the Seebeck coefficient
S =400 uV/K.

d) Calculate the j;. and v, values for a temperature difference AT = 50 K.

e) Calculate the maximum electrical power that this device (called thermopile) may
deliver assuming a unit area.

The thermal velocity of the charge carriers in 2 is greater than in 1. Consequently, in the short-
circuit condition there is a net flow of holes (majority carriers) from 2 to 1. This is observed as a
net current j. in the negative direction of the x axis. In open-circuit an electric field from 1 to 2
appears to stop the flow of holes and cancel this current. This electric field leads to a positive
voltage difference between the two extremes of the sample, v, = V; —V, > 0.

If the semiconductor were n-type, the measured jg. current would be positive. This current
would be explained by a net flow of electrons in short-circuit from 2 to 1. The voltage in open-
circuit would be negative, v, = V; — V, < 0. Now, an electric field from 2 to 1 is needed to stop
the electron flow.

b) The Seebeck effect may be described by:

o (E SdT)— ( av SdT)
J=0 dx i dx dx

13



We can integrate this equation assuming a uniform electric field:

jdx =—0dV —0SdT

2 2 2
jjdx=—]adV—jchdT=>jL=a(V1—V2)—cr(T2—T1)
1 1 1

=2y _Zsar
I=TV L

Then, for a given AT the j-v characteristic is a straight line not intersecting the origin.

c) Inthe open-circuit condition j = 0. Thus:

o g v,
—Vpe — —SAT = § =-=
LUOC LS S AT

0=

Then, by measuring the v, value you can easily calculate the Seebeck coefficient if you already
know the temperature difference between both extremes of the sample.

d) If AT = 50 K and taking S = 400 uV /K:
Voc = S AT =0.02V

Jsc is the short-circuit current that flows through the device for v = 0:
o
kc=-—ZSAT=:—Q2A/mn2
e) The electrical power P is calculated as:

P=jv=o2v?—2SATv
R A

where P takes a negative value, meaning that the device is delivering power to a hypothetical
external load. We can now look for the maximum power point:

dP

- 0=v=0.01V, j=-014/cm?

Ppax = 1 mW /cm?

It has been shown that some electrical power can be obtained from a temperature difference
by the Seebeck effect. This is a very active research field, where nanostructured materials may
be adequate to obtain high values of the Seebeck coefficient. Note that for a high conversion
efficiency the electrical conductivity must be also good. On the other hand, to maintain the
temperature difference between both extremes of the device a low thermal conductivity (k) is
preferred. In fact, a figure of merit Z = S20/k has been defined for these thermoelectric
devices. Materials combining good electrical conductivity with low thermal conductivity are
quite unusual, which makes this topic an exciting research field in materials science.

14
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7. We take a multimeter measuring in the

voltmeter DC mode. The red probe is
heated externally (with a lighter), while
the black probe remains at room
temperature. Then, we contact on a silicon
sample with the two probes close to each
other (as shown in the figure). The heat
transfer establishes a temperature
gradient in the semiconductor. The
reading on the voltmeter (voltage at the
red probe minus voltage at the black

probe) is negative. With this information,
could you determine if the sample is p or n?

Let’s consider first an n-type semiconductor. Because of the temperature gradient there will be
a net flow of the hotter electrons towers the cold side, i.e., from near the red probe towards the
black one. In open-circuit (voltmeter DC mode) an electric field appears to cancel this current,
which is oriented from the red probe towards the black one. Therefore, as the multimeter
measures the voltage at the red probe minus the voltage at the black probe, the reading would
be positive. However, the image shows a negative value and we conclude that the
semiconductor is actually p-type.

16



8.

a)

Consider a n-type semiconductor in equilibrium with a doping profile given by N;,(x) =
N,exp(—x?/L?).

a) Find the expression of the electric field E in the semiconductor as a function of x.

b) Find also the expression of the charge density p.

The general situation can be explained as follows. We have a doping profile that decreases
towards the right side (positive direction of the x axis). Intuitively, the electron concentration
will also decrease in the x direction. This profile results in a net flow of electrons towards the
right side (diffusion current in the opposite direction). Since in equilibrium the current must be
null (both for electrons and holes), there must be a drift current of electrons to compensate its
diffusion term. If a drift current appears it is because of an electric field E. This will result from
a charge density p that can be calculated by the Gauss theorem.

We can proceed now with the equations:

If the temperature is not very low all the impurities are ionized, N7 (x) = Np(x). Besides, if it is
not very high the hole concentration can be neglected. Then, at usual operation temperatures
gqNZ (x) and qn(x) are respectively the positive and negative charge densities. As a first
approach we can assume n(x) = Np(x), which implies a zero-charge density. On the other
hand, the total electron current in equilibrium must be zero:

dn
]n = qn.unE + ana =0
Now, we use that n(x) = Np(x):

2 x

x 2x 2
qN, exp _ﬁ .unE_anNoL_zeXp _L_Z =0

. . . . kT .
and using the Einstein relation D,, = Y we arrive to:

b) According to the Gauss law:

dE _p_ P
dx & &8

kT 1
p(x) = £r5027L_2

We have finally obtained that a small charge density actually exists instead of a zero charge
density assumed above. This charge density could be used to calculate a more accurate second
order solution. Nevertheless, for usual values of N, and L this correction is very small.
Consequently, in most cases the first approximation becomes a very accurate solution. This
means that quasi-neutrality can be generally assumed.

If the doping profile changes very abruptly, this could not be the case. Then, a numerical or
iterative solution could be more precise.

17



9. Consider a n-type silicon sample under thermodynamical equilibrium at room
temperature. In a diffused region (0 < x < 10 um) with a non-uniform doping, the
electron concentration is given by:

n,(x) = 107 x 1072000% (cm3) ,  (x in cm)

a) Obtain an analytical expression for the
hole concentration in the same region. — T T
Plot this concentration profile and give
the numerical values at each extreme.

b) Calculate the electric field. Discuss the
result and its sign.

c) Obtain the expression of the
electrostatic potential in the same
region. Plot it taking the reference at
x =0. Calculate the potential
difference between both extremes of
the diffused region.

d) Finally, obtain the charge density in
the diffused region. Can this region be
considered neutral? Would it be
neutral independently of the doping profile?

Data:Vy = 25mV,n; =10 cm™3, ¢, , = 11.9, 5, = 8.85 x 107'* F/cm

a) Since the semiconductor is in equilibrium, n(x) p(x) = nf. Then:
_ "_12 _ 3. 2000 x ;
p(x) = s 10° - 10 , (xincm)

p(0) = 103 cm™3, p(10 wm) = 10%> cm™3

b) Besides, in equilibrium j,, = qnu, E + anz—: = (. Thus:
, dn
E(e) = - 4% =y, (~2000) In(10) = 115 V/cm

n

The decreasing profile in the electron concentration causes a net flow of electrons to the right
(diffusion current to the left). Then, there must be an electric field pulling the electrons to the
left in order to cancel the diffusion term (drift current to the right). Yes, indeed the electric field
is positive in the direction of the x axis.

c) We calculate the voltage difference between both extremes of the doped region:
dv
E(x)=——=dV = —-E(x)dx
dx

18



In our case the electric field is a constant:
b X
f dV=V(x)—V(0)=—f Edx=—-Ex
0 0

Now, taking the potential at x = 0 as a reference:
V(ix)=—Ex, (xincm)
V(10 um) = —115mV
d) By considering the Gauss equation:

e p
dx &g

Since E is a constant, p = 0 and the sample is neutral. However, this is not a general case and it
could be different for another doping profile. Nevertheless, if it does not change very fast with
distance, the sample can be typically assumed to be quasi-neutral.

108

z  (pm)

(mV)

_20 4

_40_

_60 4

_80 4

—100

-120

FElectrostatic potential
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10. Consider a photoconductor of length L (distance between the contacts), width D and
thickness t = 5 um. The semiconductor material is intrinsic Si (n; = 101° cm™3) and
the lifetime for both electrons and holes is T = 10~% s. A monochromatic radiation of
wavelength A = 0.83 um falls on the photoconductor with a power density of
0.1 W/cm?. The absorption coefficient of silicon is a =103 cm™! at this
wavelength. You can assume the generation rate constant with depth and equal to its
average value. Calculate the ratio Rgq,i/Riigh, being Raqyy the resistance of the
semiconductor in dark and Ry; 4y, its value under illumination

Data:h = 6.62x1073*]-5s,c=3%x10"%cm/s,q= 1.6 x1071°C

(R

D77
b/
*— A — e
i ¢ contacts
Vi
e >

The incident power density of 0.1 W /cm? consists of photons with 2 = 0.83 um. The energy
of each photon is given by:

3x 101 ¢m/s
0.83 x10~*cm

hc
Epn == =6.62X107%*] s =239%x10717] =1.48eV > E,

and the energy of each photon is able to generate an electron-hole pair. If the power density

that falls on the photoconductor is 0.1 W /cm?, the corresponding number of incident photons
at the front surface can be calculated as:

] 1 photon 4 % 1017 photons

=0.1 ‘ ~
Po s-cm? 239 x 10-19J cm?-s

On the other hand, the absorption of photons in a semiconductor follows the Lambert’s law:
B(x) = Poe™**
being @(x) the remaining (non-absorbed) photons at a depth x from the surface. Note that

photons disappear when they are absorbed. Then, the generation rate of electron-hole pairs is
related to the decrease of the photon flux as:

G(x) = —z—i =Qoae %

20



The problem suggests that we can assume the generation rate constant and equal to its average
value, g:

1t 1 )]
g= ?f Poae~dx = —?(Z)Oe_‘”‘lf) = 70(1 —e %) =31x10%%cm3s71
0

The resistance of the photoconductor in dark is:

R _ L 1 L
dark — pdarth -

Odark Dt

where the dark conductivity is o441 = q(tp + ptn)n;. Thus:
R _ 1 L

dark ™ q(ﬂp + Mn)ni Dt

On the other hand, under illumination the conductivity is g;4p; = q(ip + Un)(n; + An) and the
resistance becomes:

1 L
q(ﬂp + Mn)(ni + An) Dt

Riighe =
The ratio of the dark to the light resistance values is:

Raark _ 1/Tli _ An
1
Ruignt / (n; + An)

The excess carrier concentration An can be calculated from the continuity equation under
permanent regime. We also consider a homogeneous sample without any gradient in the
current density in the x direction:

dn_o_ _ An:>A o
at -9 Ty n=gt

Finally, we obtain:

R An gt gT
dark=1+_=1+g_zg_

= 3.1 x 10%
Riigne n; ng o

21



11.

a)

Consider an intrinsic silicon sample with length L = 1 cm, width W = 0.2 cm and
thickness d = 50 um. A very low dark current 1, flows between its terminals when a
voltage of 100V is applied. Then, we illuminate the sample with a monochromatic
radiation of wavelength 2 = 830 nm and power density of 0.1 W /cm?. Due to the
impinging light, the current in the photoconductor increases by an amount Al. The
lifetime for both electrons and holes is T = 10 us. You can assume that the sample is
thick enough for absorbing all the incident photons. Besides, it is also quite long to
neglect the influence of the contacts in the carrier distribution.

a) Calculate the average value for the carrier generation rate in the semiconductor.
From now on, assume that the generation rate is uniform with depth and equal to
the calculated average value.

b) Calculate the increase of the current Al in the photoconductor due to lighting.
Compare with the current I, flowing in darkness.

c) Considering the drift of the charge-carriers due to the applied voltage, calculate the
transit times for electrons (t,) and holes (tp). Those are the times taken by the
respective charge-carrier to traverse the length L of the photoconductor.

d) Write the increase in the current Al in terms of the transit times for both charge-
carriers.

e) Find an expression for the ratio between the increase in the number of charge-
carriers and the total number of photons incident on the sample per unit time.

f) Could be the result found in e) greater than 1? Could you give a physical
interpretation for this result?

W, AVARRVER VAR V4
L,/
o— A ——e
i d Io + Al contacts
\'4
Crmmm e >
L

Data:h =6.62x1073*]-5,c=3%x10%cm/s,q=1.6 x 10719,
n; = 10 em=3, p,, = 1500 cm?/V - s, p,, = 500 cm?/V - s

As it has been calculated in the previous exercise, 0.1 W /cm? of radiation with wavelength
830 nm means that 4 x 1017 photons/cm? - s are falling on the surface of the sample.

Compared to the previous exercise, now the sample is thick enough to absorb almost all the
incident photons:

do
G(x) = i aPye”
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0o 4x10Y7cm™2s71
— = =8x 10 cm3s71
d 50 X 10~%cm am s

1 ¢ Do
1 = — —ax = — — p—ad =
g dj(.) aq)oe dx d [1 e ]

where we have used that e %4 « 1.
b) In darkness, as the sample is intrinsic, n, = p, = n;:
Jo = q(pan; + ,upni)% = 0.32 mA/cm?
Iy =JoWd =032uA
Under illumination, both the electron and hole concentrations will increase by:
An=Ap =gt =8x%x10* cm™3

These excesses lead to a higher conductivity and the consequent increase in the current flowing
through the sample, J; + AJ where:

14 _V
0] = q(un + 1p)Bn— = q(pn + pp)gr 7 = 25.6 A/cm?
Al = AJ Wd = 25.6 mA

c) The transit time of electrons (t,) and holes (tp) are the times they need to cross the
photoconductor of length L. The transport mechanism is drift by the electric field, then:

L L L L?

vy pE m Voo
nrL
LZ
t,=——=20us
p HpV

d) The increase in the current can be rewritten as:

— Vo 4 vy 1 1

1 1
Al = AJ Wd = qgTLWd <— + —)
th  tp

e) The increase of charge-carriers crossing the semiconductor per unit time is:
1 1 0] 1 1 1 1
Ao = giiwd (—+— ) = =FtlWd (—+— | = BorlW [ — + —
th t,) d th t, th  t,
while the total number of photons incident on the sample per unit time is @,LW.

Then, the ratio of the increase of charge-carriers to the number of incident photons per unit
time is:
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f)

Q)()TLW (l + 1
tn

5) (1 N 1> L
=1|— — | = ~
PoLW th tp) tesr

The calculated ratio is indeed greater than 1. This means that a single photon generating one
electron-hole pair may result in more than one charge-carrier circulating between the contacts.
Note that the gain is given by the ratio of the lifetime to an effective transit time. This ratio can
be greater than one if we have a long lifetime together with short transit times. The generated
charge-carrier could circulate more than once before it recombines.
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12. An n-type silicon sample of width W is illuminated to obtain a uniform generation rate
G. At both extremes the surface recombination velocity takes the same value, S. The
minority carrier diffusion length in the bulk is much longer than the sample width.

a) Find the expression for the uniform generation

Z)I(:(e;;of minority carriers @ @ @ @ @ @

b) Compare the excess of
minority carriers at the G n-brpe
extremes Ap(0) = Ap(W) ™)
:e’rt;’t'erth:f ‘:ZI:e ::mz;z Jp(0) = =astp(©) ,/”/ Jp = —abyp ddAxp \\\\ Jo (W) = a54p(W)
Ap(W/2). Discuss the d - A
result depending on the AP(O)T ____________________ Po ] TAP(W)
relative values of S and
D,/W, where D, is the
diffusion coefficient for (} V;/ X

holes.

c) Assuming that the bulk of the sample is quasi-neutral, explain how the different
mobility of electrons and holes originates a small internal electric field. Find its
expression E(x) and plot it graphically.

a) Since the minority carrier diffusion length is much longer than the sample width, bulk
recombination can be neglected compared to recombination at both surfaces. Then, we can take
the diffusion equation of minority carriers (holes) without the recombination term:

D d?Ap =0 d?Ap G
_— = —t = —
P dx? dx? D,

which can integrate directly to obtain:

2

G x
Ap(x) = —D—7+Ax+B
P

Now, we must find A and B by imposing the boundary conditions at x = 0 and x = WW. Note
that the generation rate is constant, there is no bulk recombination, and we have equal surface
recombination velocities at both extremes. Intuitively, the solution should be a parabola
symmetric with respect to the center of the sample. The boundary conditions at both extremes
are given by the surface recombination velocity S:

Jp(0) = —qSAp(0), J,(W) = qSAp(W)

Observe that both hole currents should be directed towards the surface and consequently with
opposite directions.

I (o) = —gD, 2P D(G +A>
X)) =—q = —q ——X
P P dx P\ D,
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At the extreme x = 0:

—qD,A=—qSB = B =-24

whileatx = W:

D (- Lwia)=gs GW2+AW+B
%\ "D, ~P\7b,2
G W?
A_GW+SD_pT_ L SwY _aw
- SW+2D,  SW+2D, 2D,) 2D,

Finally, by introducing A and B in the expression of Ap(x) we arrive to:

Ap(x) Gx2+GW DpGW GWwW (1 X 1 x? aw 1+
X)=———=—+—x+—r=—7|z+t——-==—]=—1|=
p Dp 2 ZDp S ZDP 2 \S Dp WDp 2 \S
lel4
1.0
08 W =200 um
T
g 0.6 G=5x%x10" em™3s!
0.4 D,=10 em?s™!
<
0.2 S=50cm/s
0.0 . T T r . . .
0 25 50 75 100 125 150 175 200
z (um)
lel2
2.5
T
G=5x10"cm s
51_5 X cm™3s
2.1.0 D,=10 em?st
0.5 S=5x10%cm/s
0.0 . T T T . . .
0 25 50 75 100 125 150 175 200
z  (wm)

p

5,
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b)

c)

The excesses of minority carriers at both extremes are:

Ap(0) = 2=, Ap(W) = =

which confirms a symmetric profile, as we predicted intuitively.
On the other hand, at the center of the sample:
w GW (1 WwW/2 w/2 GWw i1 w
AP(—)=— =+ 1- ==+ —
2 2 \S D, w 2 \S 4D,

For very high values of S:

Gw?
8D,

S >0 = Ap(0) — 0,Ap(W) — 0, while Ap (%) ~

while for very low values of S:

D W Gw
_p ~ — =~ = —
S« W = Ap(0) Ap(2> Ap(W) 75

and we have a profile of minority carriers that tends to be flat across the sample.

Under the open-circuit condition:

J=lp+J/n=0

Because of quasi-neutrality the electric field is very small, we can neglect the drift current of
holes (minority carriers):

dAp

Jo ® Jpairr = _quW

On the other hand, for the electrons (majority carriers) we have:

dA
In= ]n,drift +]n,diff = qnu, E(x) + and_):l

In this case, even if the electric field is small, we cannot neglect the drift current because
electrons are majority carriers. Additionally, because of the quasi-neutrality An(x) = Ap(x).
Considering all of this in the expression for the total current density we arrive to:

dAp dAp
0=—qD, Tx + gqnu,E (x) + anW

D

E(x) = p —Dn 1 dAp_k_Tup—un 1 dAp

Po n(x) dx g gy n(x) dx

Under low injection, Ap(x) = An(x) < Np being N, the doping concentration.
Then, n(x) = N + An(x) = Np and we obtain:

2

Up o Np

_k_Tup—unidAp_k_Tup—unii(W_x> Hp —Hn 1 (W )

E(x) G|l=—x
Hn ND dx q Hn ND Dp

2
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Because of the different mobilities of electrons and holes a small electric filed (note the
majority carrier concentration in the denominator) appears to cancel the current in open-
circuit.

1.0

G=5x10"em™3s7!

Np=10'% ¢m =3
0.51
= 1200 Vem 2571

p =400 Vem 2571

0 25 50 75 100 125 150 175 200



13. Consider a p-type semiconductor sample
with infinite length in both directions. An
opaque screen splits this sample in two -
regions: right (x > 0) and left (x <0). B je,
Light at the left side produces a generation O
rate G, uniform for x < 0. At the right side
a stronger illumination produces a

generation rate G, also uniform for x > 0. G

| S PR

a) Find an expression for An(x) within the |
sample and plot this profile
qualitatively. Discuss the continuity .-
conditions imposed at x = 0. Comment |
on the values for An at x = 0 and x = 0 x
oo,

Data:
T, (electron lifetime)
L,, (electron diffusion length)

b) Find the electron and hole currents j,(x) and
Jjp(x), considering that the sample is in open-
ci.rcuit.. Distinguish bet.wee'n .the drift and i, (hole mobility) = p,,/3
diffusion components, justify if you neglect N , (impurity concentration)

any of them. Sketch qualitatively the Vy = kT/q ( thermal voltage)
corresponding profiles as a function of x.

c) Find the electric field E (x) self-established for maintaining the quasi-neutrality. Plot
its profile qualitatively. Calculate the voltage difference between the extremes of
the sample: AV = V(+o) — V(—0).

a) At a first glance, in the semi-infinite left side far enough from the boundary (x = 0) we should
find a constant excess minority carrier concentration An = G,t,,. Similarly, far enough in the
right side we would expect An = G,t,,. Additionally, the electron concentration should be
continuous everywhere, in particular at x = 0. Otherwise, the diffusion current would be infinite
and that does not seem reasonable. We expect also the derivative to be continuous. In fact, it is
reasonable to expect at the boundary an average carrier concentration between the values G, 7,
and G,t,. Let’s try to translate this into equations and see if we are right.

In each region the excess electron concentration is found by solving the diffusion equation for
an infinite sample under constant illumination, either G; or G:

An(x) = Aexp (Li) + Gy x<0
X
An(x) = B exp (— L—) + G,1, x>0

An(x) must also be continuous at x = 0:

An(O) =A+ G1Tn =B+ GzTn = A—-B = (GZ - Gl)TTL

Furthermore, as the sample is infinite in both directions whatever that happens at x = 0 will
disappear as you go far away from the boundary.
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b)

Then, a qualitative sketch of the excess electron concentration is shown here:

GZ Tn

G1 Ty

1
I
I
I
|
I
1
I
1
I
I
I
I
1
T

Intuitively, atx = 0 we expect A?’l(O) — (Gl‘;Gz) T,

Let’s find this result analytically. Not just the carrier concentration, but its derivative must be
continuous:

dAn A B
dx x=0 Ln Ln

FromA—B = (G, — G;)t,and A+ B = 0, we obtain:

A= (62;61) t,,B=-— (02;61) T

Thus, the final expressions are:

An(x) = @exp (i) + G, x<0

An(x) = — @ exp (—Li) + Gy1, x>0

and as we expected from the very beginning, An(0) = (Gl‘zLGZ) Ty

We distinguish the drift and diffusion components of the current densities:

Jn = ]n,drift + ]n.diff

Assuming quasi-neutrality the electric field will be very small and we neglect the drift component
of the minority carrier current density:

dAn
In = Jnaisr = anW
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which leads to:

Jn(O) = gDy, &= Gl)TnL—exp( ) q(G2 Gy exp( ) x <0

Jn(x)==¢q C Gl)L exp (— i) x>0

In addition, because of the quasi-neutrality An(x) = Ap(x). Thus:

dA 1
Ip.aiff = —qud—: = —gfn , remember that u, = u,/3

Finally, for the drift current density of the majority carrier, since the sample is in open-circuit:

L 2
J =Tty = (1 _E)jn'diff tparise =0 = Jparise = —3/n

that is:
(G —G1)
Jparipe(X) = —q ==Ly ex p( ) x<0

G,—G
Jparife(x) = — q(z 1)L ep( i) x>0

Current densities

c) Once we know the drift component of the hole current density, we can find the self-established
electric field:

]p,drift (x) = qp.“pE

and assuming that the sample is in low injection p = Ny, which leads to E(x) = M. Then:

qNalp
_ _(G2—Gy) x
E= Naky L, exp (Ln) x <0
_ _(G2—Gy) _x
E= Naky L, exp( Ln) x>0
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Finally, the internal voltage established across the whole sample is:

V(00) —V(—00) = foo —Edx = fo —Edx + foo—de
—oo 0

—00

o =G ([ o) [ o ()
= exXp|—)ax ex ——)ax
3NA/"p " —o00 an 0 P Ln

(G, —Gy) (G — Gty
AV =2——D =2——V

Electric field

Electrostatic potential
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14. Consider a p-type silicon sample in

open-circuit. Its thickness (W) is - tvpe

short compared to the diffusion = [A7(0) pop

length of the minority carrier. We el

illuminate the front side with a é g S el Mn(x)

short-wavelength monochromatic phu.} 4 Sp =
radiation, which is absorbed within - Taw n

the first nanometers of the sample. @~ f-------------------- 2o AR(W)
The front side is characterized by a nd

surface recombination velocity Sy, 0: l/il/ =

while at the back surface it tends to
infinity.

Under these conditions the electron excess at the front surface can be approximatively
calculated using the following expression:

¢ph
D

T+

An(0) =

where ¢}, is the number of incident photons per unit area and unit time and D, is the
electron diffusion coefficient. Assuming quasi-neutrality in the bulk of the
semiconductor:

a) Explain why a different mobility between electrons and holes produces an internal
electric field, which is needed for a total current equal to zero in open-circuit. Find
an expression for this electric field.

b) Justify that in this particular case, under low injection conditions, this electric field
can be considered approximatively uniform. Calculate its value using the data of
the problem.

¢) This electric field causes a voltage difference between the extremes (Dember effect).
Evaluate this voltage considering also its sign.

Data:

¢$pn =1.5x108cm 2571, W = 60 um, Sy = 10* cm/s,q = 1.6 x 10719 C,

kp =1.38x10"22 J/K,T=300K, N, =2x10"® cm=3,n; = 1.5 x 101° cm 3,
pn = 1200 cm?V-1s™, p, = 400 cm?v-1s71

a) Now that we already have some experience in this kind of problems, we can proceed straightforward:

* inopen-circuit/ = J, +J, =0

= because of quasi-neutrality An = Ap

= the drift current of minority carriers can be neglected
® inlow injectionp = Ny

Then:

dAn
J =0=quypE + q(Dpn — DP)W

(Dn—Dp)dﬂ: _k_T(“n_“p)dﬂ

E=-
UpNy  dx q UpN, dx

As u, # Uy a majority carrier drift current appears to cancel the total current in open-circuit.
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b) In this particular case

An(x) = An(0) (1 _ %) - dj: _ —AT;(/O)
o KT (=) An(@) .

q HpNa w

c) We integrate the electric field to obtain the voltage difference established between the extremes of
the sample:

kT (4n — 1p)

V() —V(W)=EW = N,

An(0) =~ 2.5mV

34



Chapter 2.

PN junction devices
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In a pn junction, how does the built-in potential V,; change when the temperature
increases? You can start by the considering the band diagram and the expected
evolution of the Fermi level with temperature. Assume also that the band gap does
not change much with temperature.

Following the suggestion of the problem, the built-in potential can be calculated as:
qVpi = Eg — (Ep — EV)p sidze — (Ec — EF)n side

We know that the Fermi level shifts towards the center of the gap when the temperature
increases. Then, both (Er — Ey)p sige and (E¢ — Ep)p sige Will increase with the temperature.

Consequently, the V}; value of the junction will be reduced.
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2. a) Show that the built-in potential V,; of a pn junction can be calculated using (i).

kT NaN ,
Vbi = 7 n (%) (’)
A small temperature increase will change the V,; value. If the increase from a
reference temperature T, is small enough, we can assume a linear variation (first-
order Taylor development):

dVp,;
dar T,

Vyi(T) =V, (T,) + a(T,) - (T —T,), where «a(T,) = (ii)
b) Find the expression for the thermal coefficient a(T,) in equation (ii). Calculate its

value for the data of the problem, indicating clearly its sign.

Note: For small temperature variations you can assume that N¢, Ny and E, do not
change significatively compared with their values at the reference temperature T ,.

Data: k=1.38x10"22J/K,q=1.6 x 10719 (C, T, = 300 K,
N¢(Tp) =2.86 x 10" cm™3, Ny(Ty) =2.66 x 102 cm™3, E (T,) =1.12eV,
N,=10%cm™3, Np,=10"%cm™3

a) There are several ways to arrive to the expression (i). Probably, the simplest one is by
considering that qV},; = @, — @, where @, and @,, are respectively the work functions of the p

and n-type regions before the junction is formed.

Ec
+ Er(n side)
qVpi
Er(p side) _
Ey
E.—E id
Np = N; exp <_ c I;C;" st e))
E ide) — E,
Ny = Ny exp (— r@ Slk;) v)
E - E E 'd _ E .d
N,Np = NcNy, exp (_ CkT V) exp( F(n si e)kT r(p si e))

E qVpi
NyNp = N-Ny exp (— ﬁ) exp (—le>

and using that:

E
n? = NNy exp (— ﬁ)
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we finally arrive to:

kT . N,Np
—In

2

Vi =
bi q ni

The value of V}; depends on the temperature explicitly and also through the change in nl-2 :

kT NsNp, E; kT  NcNy
Vpi=—In——=———1In
q n; q q NyNp

The thermal coefficient is given by:

dVy;

a(T,) = —
1) =,
and assuming that E;, N¢ and Ny do not change much for small temperature variations:

k NcN
a(T,) = _ElnNANZ

=—-097 mV/K

The negative sigh shows that the value of V}; decreases with increasing temperature.



3. We have a pn junction with a gradual impurity profile. The net impurity concentration
is N(x) = ax. For x < 0 the semiconductor is p-type, whereas for x > 0 it becomes
n-type. Assume that the space charge region (SCR) has a total width W.

a) Find the expression for the electric field in
the SCR. Remember that the electric field
should be zero at both extremes of the SCR.

N(x) /

7

P b) Integrate the electric field along the SCR

and find an expression for the built-in
potential Vp;.

=V

oo ls
SE

N Now, considering that an approximated V;
value can be calculated from the impurity
concentration at the extremes of the SCR:

WA 2
Vpi = kZT In (ag)

c) Calculate the values of V,; and W comparing this last equation with the expression
obtained in b).

Data:q=1.6 x10"1° C,ky =1.38x 10723 J/K, T =300 K,
g, =885x10""J/K,e, =11.9,n; = 1.5 x 101° cm 3,
a=5x%x10%cm™*

a) We start with the Gauss’s law:

dE _ p(x)
dx  &.¢,

where E is the electric field, p(x) is the charge density in (C/cm?) and &, and €, are the relative
and vacuum permittivity, respectively.

dE. p(x) qax
dx &8, &8,

2
ax a x
dE=q dx=>E(x)=q —+C
&+ &y 2
Since the electric field should be 0 at x = + %, we obtain:
WA 2
w qa (i 7) qa W?
P2 tr) oy m
2 && 2 &8, 8

2 8

A
a [(x*> W? a —X
E(x) = 2 <___>: ()
£,
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b) Regarding the built-in potential V};, it is calculated by integrating the electric field across the
SCR:

dv
E=——=dV =E(x)dx
dx

w w
V-—JT qa (W/Z)Z—xzdx_ qa 1 (K)Zx_ﬁ 2
bi _g &€, 2 £.8,2(\2 3| w

_qaw? .
biT 12 €6, @

c) If we compare this expression for V,; with that given in the problem:

kT saW
Vy = In = 2—ln(

ii
q n; q Zni) (@)

We can start by taking somehow arbitrarily V,; = 0.5V in (i) to obtain W = 0.43 um. If we use
this W value in (ii) we calculate V,; = 0.53 V. This value can be used again in (i) to obtain W =
0.44 pm, which in (ii) leads to V; = 0.7 V. We iterate in (i) obtaining W = 0.48 um, which in
(ii) gives again Vy,; = 0.7 V. Thus, we can take W = 0.48 um and V,; = 0.7 V as the final
solution.
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a)

4. Consider a pn junction with a doping profile as the one sketched in the figure. In
equilibrium the space charge region extends throughout the intermediate zone of

width W and impurity concentration N /2.

a) Draw qualitatively the charge density and the
electric field in the different zones of the
junction.

b) Calculate the built-in potential V,; between the
extremes.

As you can see from the data, N, > Np.
Consequently, you may suppose all the built-in
potential dropping in the m zone. Using this
approximation:

c¢) Calculate the width of the space charge region in
the right-hand side zone with N doping.

d) Calculate the value of the electric field at x = 0
and x =W.

<
=\

Data:q=1.6 x1071°C, e, =8.85x10"* F/cm, &, =11.9,V; = 25mV,
n,=10"cm3,W=1um N, =108 cm=3, N, = 10> cm=3

1
i qNp
1
| qNp/2
QL
e bem
w
n —
—qNy ‘!
0.0 0.5 1.0 2.0
z (um)
S -
1
1
1l
I
EW)
3]
E(0)

| : :

0.0 05 1.0 2.0

z  (um)
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b) The built-in potential can be calculated from the doping levels at the extremes:

kT NyN,
Vbi=—ln AZD
q n;

= 0.748V

c) IntheregionW <x < W + Wy:
N

E,(x) = qTDx +A

Since the electric field must be null at the extreme of the space-charge-region:
_ Mo _

E,(W + Wy) —T(W+WN)+A =0

we arrive to:
N

Bp(0) = = L2 (W + Wy - )

Inthe region 0 < x < W:

qNp/2

Ei(x) = x+B

but the electric field is continuous at x = W, thus:

Np/2 N
E, (W) =%W+B = E,(W) = —qTDWN
Therefore:
qND< w x)
E(x) = -2 (Wy+—=—-%
1(x) - N T > 7%

If we integrate the electric field across the SCR we should obtain the same V,; value calculated
before.

Vpi = ! EWYWy + EMW)W + %(E(O) —EW))W)

=3

1qNp qNp 1gNp
Voi =5 Wi + = WaW + == W?
5 w?  2e
WN+2WWN+T—MVM=O

This last equation can be solved to obtain Wy = 0.22 um.
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d) Finally, we calculate the electric field at the points x = 0and x = W:

N w

E(0) = —qTD(WN + ?) =—10.9 kV/cm
N

E(W) = —qTDWN — 33 kV/cm
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5. A diode goes into breakdown when the maximum electric field at the junction E .
reaches the critical value in the semiconductor E . First, consider a silicon abrupt p*n
junction where the n side can be considered semi-infinite. The space charge region will
extend a width W, mainly in the less doped n region. In this case:

a) Calculate the value of W when

the diode goes into breakdown. (W, » x,,x,)
n prin

b) Calculate the corresponding %lxllje Xp
breakdown voltage V . 0 %M’/;e

Now, consider a modified p*nn*
junction. The width of the n region
is W, (figure). For this new diode:

c) Calculate the intensity of the
electric field at x = W,, just at

—E
breakdown. max
d) Calculate the new breakdown "’Z“F”'C
field

voltage and compare it with
the value for a standard pn
junction.

Data: N, = 1016 cm~2 (n zone doping concentration), E, = 4 x 10° V/cm,
W,=0.5um,e5=10.62x10"13F/cm,q=1.6 x10"1°C
kp =8.62x10">eV/K, T =300 K

a) Inthe nside of the space-charge-region the Gauss law is:

dE Np Np
—=qg—=FE =qg—x+C
dx 1 Ei () =q i X

Since E(W) = 0, we can calculate the integration constant C and arrive to:

Np
E() = —q > (W =)

Therefore, the maximum electric field is:
Np

Emax = E(0)| =q—W
Esi

Finally, when this maximum electric field reaches the critical value E:

Esi

W =
qNp

E.=26x10"*cm
b) The voltage across the junction will be:
1
Vo = (<Vi) ~ Vg ~ 5 EW
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Remember that the voltage is calculated by integrating the electric field, i.e., the area of the

triangle:

—_

1 Eg; Eq;
Ve~ —E.W ==E, L, = —%

= E? =53V
2 2 °qNp 2qNp ¢

c) Now, we consider the modified p*nn* structure. In the region 0 < x < W,:

N,
E(x) = q—Dx+C
€si

When the diode just goes into breakdown E(0) = —E, thus:

N
E(x) = —E; + q—Dx
Esi

Np ;
E(Wn) = —Ec + q_—~W, = =32 x10°V/em
Si

d) The breakdown will occur at a lower voltage:

1
Ve = Wal EWo)| + 5 E(0) — E(W) W, = 18V
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6. A pin structure consists of an intrinsic region between two doped regions. In this
problem, both doped regions have the same concentration of impurities (Ny = Np =
1015 cm™3). The width of the intrinsic region is d = 2 um. The figure shows the
profile of the charge density in the pin structure.

a) Draw qualitatively the profiles of the electric field

and the electrostatic potential along the pin
structure. Sketch also the band diagram in D
equilibrium.

b) Calculate the built-in potential V,; between both
extremes of the pin structure.

c) Calculate the width (x, = x,) of the space charge
region in the doped zones. Xp

d) Calculate the electric field in the intrinsic region. X,

e) Which is the fraction of the built-in voltage
sustained by the intrinsic region? —qN,

Data: q=1.6x1071°C, n; =10%cm™3, v, =
25mV, e, =11.9,¢,=8.85x10"* F/cm

a)
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Energy bands

0.0 0.5 1.0 1.5 2.0
z (pm)
b) The built-in potential can be calculated with the equation:

NaNp

2
n;

Vyi = Vrln =576 mV

¢) The built-in voltage is also given by the integral of the electric field, which can be calculated
geometrically.

~xpEo + Eod + > 23 Ey = Vp;

. _ Ny .
Now, since x, = x, and E, = q o Xp:

N N
Ey(xpy+d)=Vy = q—Axg +q—Ade V=0
Esi Esi

_ 2 SEsiy
. d+ /d + 43V

— V.. =0 = =0.17X10_4
qNA bi Xp 2 cm

2
xp+dxp—

d) The electric field in the intrinsic region is uniform and equal to:

N
Eo =14y = 26kv/cm
€si

e) The built-in potential that drops in the p and n regions is only:

1
Vp = VN = ExpEO =23mlV = 4% Vbi

whereas the intrinsic region sustains the greatest part:

Vi = Eyd =530 mV = 92% Vj,
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7. Consider an abrupt p*n junction. We measure its capacitance C as a function of the
applied voltage V. If we plot 1/C? vs. V we observe a linear behavior (figure).

a) From this fitting, find the built-in potential V ;

. . 4 T T
and its margin of error.

w1
=3

b
(=]

b) Takin into account that it is an asymmetric
junction, calculate the doping level of the n
region and its margin of error.

w
=3

Current (mA)
[y
(=]

=
S

c) Finally, calculate the doping concentration of .

the highly-doped p region. Discuss its margin of = 2
S
<
i

(=}

04 05 06 07
Voltage (V)

error.

We have also measured the I-V characteristic of 1
the diode (inset), reading 25 mA at 0.6 V. This 1 cz=7P Vtaq
value is dominated by diffusion of minority
carriers in the n region, which can be considered
short with an ohmic contact at the end.

p=1254+0.01nF2V~1
q = 0.98 + 0.02 nF~—2

d) Give an estimation of the hole diffusion 2 1 0 1

coefficient D,, in the n region. Voltage (V)

Data: A =0.1 sz, q=1.6x 10-1° C, kg =1.38x% 10_23]/1(, T=300K
n; =10 cem3, ¢, =8.85x10"" F/cm, &, = 11.9, W = 200 um

a) V,; is the point where the 1/C? vs. V straight line intercepts the x axis. Remember that in
. . . , . . A .
general for an abrupt junction the junction capacitance writes as (; = &g; —where A is the
w

junction area an W is the width of the space charge region. Developing the expression we get:

A

C; = &
Yl 1 1,
q (NA ND)( bi )

]

Then, C; goes to infinite when V' — V,;. From the fit given in the figure:

qg 0098
Vi =;=E= 0.784V
About the error margin on V,,;, e(V,,;) will depend on the error we have when determining p and
q. If we consider Vy,; as a function of p and g, in fact we are looking how small variations on p
and g modifies the value of V,;. This is a core subject for the differential calculus. We write,
being £(g)and e(p) the margin errors in g and p respectively:

9Vpi Vpi
eWh) = |52 e(0) + |52 ) = (@) + Fe(p) = £0.02V (2.6%)

We take all the derivatives in absolute value, errors in the different variables will not cancel each
other.
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b) If we start again from

C 4 C? A2
j = Esi = (j 5512 1
2&¢; . 1 1
J qSl (N_A + N—D)(Vbi -V) (N Np )(Vbl V)
1 _ 2 1 + 1 v v

as Ny » Np we get :

12 1 v v

Then, since C_12 = —pV + q, we have:
j
2 1 =—2 1 10 ¢m3

p= qA%esi Np b= qufs p 10

The margin of error in N, is:
_ |9%p 2 — 12 .03
e(Np) = | ap 1 €0 = e pz = +7-10%cm

which is only around a 0.7% of its value.
c) Finally, if we try to obtain the doping concentration of the highly-doped region Ny:

kT NaNp nf qVpi
V= —1 — N, =L (
PR 4= N, P ket

) =42x10%8cm3

Let’s have a look to the margin of error:

ON ON
e(Ny) = [534] eN) + | 372 Vo)
) = 1L Sy + LI Sy
& ——e E e &
A ND D kTND bl

e(Ny) =429%x10°cm™34+33%x10¥ cm™3 = +4.2 x 1018 cm™3
Ny, =42x 1018 + 3.3 x 10'8cm 3

The margin of error is comparable to the calculated value (78%). Thus, we can just roughly
estimate the order of magnitude of the doping concentration in the p* region.

d) Finally, we are asked about the diffusion coefficient D,,. If the current is dominated by the
minority carrier diffusion in the less doped zone and the zone can be considered short with
ohmic contact at the end ( probably the simplest case), the current can be written:

IW Np

—galeni avy _ - _
I'=q4 W Np (exp (kT) 1) = Dp B qAn; (exp(qv) 1) =118 sz/s
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8.

In a pn junction, integrating the continuity equation in the n zone (with extremes 0 and
W) gives:

A
1 -1pW) =q | Lax

0

Compare the relative magnitudes of the three terms in the above equation if (a) the n
zone is much longer, or (b) much shorter than the hole diffusion length.

If the zone is short W <« L,, the minority carrier distribution (solution of the diffusion equation)
can be approximated by a straight line, consequently its derivative is constant and so is the hole
diffusion current which is constant in the whole zone in particular J,,(0) = J,(W). Consequently
we deduce that the recombination within the bulk will be negligible in front of both J,,(0) and
Jp(W). Usually at the end of the zone we have some kind of contact (usually ohmic) and J,, (W)
is the recombination at the contact. So we can re-phrase saying that in a short zone the
recombination within the bulk is negligible in front of the recombination at the contact.

If the zone is long W >> L, the excess minority carrier distribution is an exponential and for high
enough values of x tends to zero and so does its derivative, consequently the hole diffusion

current is also zero and then the entering current J,(0) equals the recombination within the
bulk of the zone:

YA
e =a [ L
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9. Consider a pn junction biased at voltage V. .
1 I Ir
a) Show that the total current flowing through | 1
the device can be calculated by adding the |PTe9ion . scr. nregion
minority carrier diffusion currents at the : :
respective boundaries of the space charge

region.

b) If the generation/recombination within the
space charge region were not negligible how
would be modified the J-V characteristic of
the diode?

a) Let’s call x,, and x,, respectively the boundaries between the space charge region and the
neutral n and p zones. Obvioulsy by Kirchoff’s law:

]T = ]p(xi) +]n(xi); in
As a point for calculating the current we may choose either x,, or x,,. Let’s take for instance x:

Jr= ]p(xp) +]n(xp)

]n(xp) = ]n,drift(xp) + ]n,diff(xp)

At x,, electrons are minority carriers and x,, is boundary with the quasi neutral zone (E — 0),
then we can neglect the drift current (produced by the electric field E). Thus:

Jr = Jp(xp) + Jnairr(xp)

Let’s now consider the zone between x,, and x;,:

]p (xp) ]p (xn)
Writing the continuity equation between Xx,, and x,, we have:

ld]p_G Ap
qdx Tp

If we neglect generation/recombination between x,, and x,, , the derivative of the hole current

will be null, and the hole current constant within the space charge region i.e.]p(xp) = Jp (xn).
We can then write:

Jr :]p(xp) +]n.diff(xp) = Jp(xn) +]n,diff(xp)
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b)

Now:

Jr = Jp(en) + Jnairs(xp) = Jparife Ccn) + Jpairr () + Jnairr (%)

Again in x,, , boundary of the quasi neutral zone, holes are minority carriers and the electric field

E — 0. We can neglect the hole drift current. Finally:

Jr = Ipairr ) + Jnairr (%)
If we do not neglect generation/recombination within the space charge region:

1d]p_G Ap
qdx Ty

Integrating between x,, and x,, we obtain:

Ap
Tp

Xn Xn A
]p(xn) _]p(xp) = qj (G - > dx :]p(xp) =]p(xn) — qj <G __p> dx

Finally, we arrive to:

Xn A
Jr = Jpairr n) + Inairr(%p) — qf (G — _p) dx
*p
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10. A p*n junction is directly biased. The quasi-neutral n region can be considered short
when compared with the minority carrier diffusion length. In the figure we show the
hole diffusion current density ( Jp,ai ff) in the quasi-neutral n region. (dotted line) The
back contact is ohmic.

a) Show on the figure, for the same region,
the electron diffusion current density

p*izCE n
Unairr)- | I
b) Show, also on the figure, the drift — :
currents densities for electrons 0 w

50 L] L] L] L] L]
40k i
30 F 4
20 F
50 e

(]n,drift) and holes (]p,drift)'

¢) Indicate the value of the total current

density flowing through the device. i |
d) Calculate, with good approximation, ;8 [ ]
the reverse saturation current J , of the - .
junction.  Finally  calculate  the B

pola”'zation VOItage. 0 10 20 30 40 ' .5,0 60 70 80 90 100
Posicion (pm)
Data: q=1.6x1071°C, V; =25mV,
W =100 um,n; = 10 cm=3, Ny = 10> cm™3
Mn = 1500 cm?/Vs, p, = 500 cm?/Vs,

-30

Densidad de corriente (mA/cm?)

. 50 L} L} L} L} L} L} L} L} L}

R 40 | e
g ]n,d‘rift

= 30

E 20} I ai J
- p.diff

] 10____________________]7; ______
c

2 0

S -10f Tp,arift i
3 -20fF ] . e
T 30 ndiff

2 40 b

E _SO 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Posicion (um)

a) The electron diffusion current is by definition [, 4;rf = an% .

May be you are puzzled, because sometimes we write J, girr = qDp Z—:.

In fact, n = n, + An. The concentration of electrons (or holes) can be written as the addition of
the concentration under equilibrium n,, (or p,) and the excess over the equilibrium value An (or
Ap). It's clear that if the doping is uniform n, (or p,) is constant and the derivative is zero.
However, what happens if the doping concentration is not constant? In equilibrium the electron
(hole) current is null. That means that somehow the existing diffusion due to a non-uniform
doping is compensated by a drift also in equilibrium. All together, we can neglect both the
diffusion and the drift existing in equilibrium because they compensate each other and focus
only on the net currents. In the case of diffusion, concentrate on the derivatives of the excesses.
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Let’s come back to the beginning:

dAn D, dAp D, Un
Jnaifr = qPn— === D—p(—qu W) = _D_p]p,diff = _E]p,diff = —30mA/cm?

Remember that because of quasi-neutrality, An(x) = Ap(x) . You can come back to exercise 2
in chapter 1 for an explanation about the physical origin of quasi-neutrality.

b, c) We go now for the drift currents. First, the hole drift current can be neglected. Holes are minority
carriers in the quasi-neutral n zone where the electric field E — 0. Thus:

I arift=0

What about the electron (majority carrier) drift current? We know that the total current can be
calculated by adding the minority carrier diffusion currents at the edges of the space charge
region (see the previous problem). If the material is uniform (no heterojunctions are involved)
and the junction is asymmetric (either p*n or n*p), the diffusion current of the minority carrier
at the boundary of the less doped zone is much greater than the other one. In our case:

Jr = Jpairr(0) = 10 mA/cm?

In the figure we see that J, 47 is constant along the whole n zone.

Jr = Ipairr t Iparire T Jnairs + Inarist

Since Jr = Jp.aiff, We have that [ grire = —Jnaifr = 30 mA/cm?

d) Finally, the reverse saturation current for an asymmetric junction with the lowly-doped zone
being short can be written as:

D Dy n?
Jo® a5 Po =47,

i _ 2
Wy 20 pA/cm

If you are not sure about the above result, remember that if the diffusion current is constant
that means that the excess hole distribution has to be a straight line. The current is going to be
proportional to the slope of this straight line. The excess at x = 0 is the boundary condition:

190 = (o0 () 1)

The excess of minority carriers at x = W is 0 because of the ohmic contact.
The applied voltage can be now calculated:

J= ]O(exp(Z_Z)—l)szkq—Tln(]io+l>=0.5V
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11. In a p*n junction we focus in the quasi-neutral n zone out of the space charge region.

A voltage V is applied injecting an excess of minority carriers (holes) in the quasi-
neutral zone of width W. Holes are going to diffuse in this region (with diffusion
coefficient D,). We may consider that the diffusion length L,, is much longer than the
width of the quasi-neutral zone (short-zone approach). The other extreme of the n
region has a contact extracting the excess of minority carriers with a recombination
velocity S. In the permanent regime:

a) Find the expression for the minority carrier excess Ap(x) in the quasi neutral zone
n. In particular, find the hole excess Ap(x) precisely at the extreme of the n region.

b) Find the minority carrier diffusion current and compare with the total hole current.

c) Find the expression for the total charge produced by the excess carriers in the n
zone.

d) Find the expression for the diffusion capacity related to the n zone.

e) Finally, find the transit time for minority carriers (holes) in the n zone. Discuss the
result when S > D,,/W and whenS < D, /W.

1 W |
. . %
1 1Ap(0) = p, (exp (q /kT)—l)
| | S-a
o - = qSAp(W
! T. §‘~-~§‘§Ap(x) ]p q p( )
| e T
p* region 1SCR nregion Tte-l
! || ‘~~,AP(W)
| |
L P _____ T
|
: >
0 x

a) We start writing the diffusion equation for holes under permanent regime and without external

generation. In addition as the zone is electrically short W<<L, we can neglect the
recombination:

d2
& _
dx?
The solution for this differential equation is straightforward:
p(x) =Ax+B

2

i

Boundary condition at x = 0 is p(0) = p,exp (qV/kT) with p, = ;— and Nj the doping
D
concentration of the n zone.

At x = W the boundary condition is referred to a recombination velocity S. We write:

Jp = qSAp(W) = —qD = qSAp(W)

dp|
pdx w
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Then, we have:

B=poexp (" /i)

and
~DpA = S(AW + B —p,)
where we have used that Ap(W) = p(W) — p,. We obtain A:

—~(Dp +5W)A = 5p, (exp (1 /) = 1)

S
A== 5—sgro (ex0 (Vhar) =1)

Therefore:

p(x) = — ﬁpo (exp (qV/kT) - 1) X + poexp (qV/kT)

Ap(x) = p(x) — Py = Do (exl’ (qV/kT) - 1) =3 - VxV
wtS
DP
Ap(W) =p, (exp (qV/ kT) - 1) D -
wtS

Note that for § — o as in an ohmic contact Ap(W) — 0.

b) The total current equals the current of the minority carrier at x = 0 because the junction is
asymmetric.

Jr = Jpairs(x = 0)

Jr= —quZ—i 0o q%&i e (ex (" /ir) - 1)
4

¢) Find now the total charge produced by the excess carrier in the n zone. Is only matter of a bit
of calculus. The charge will be:

Qp = fow qlp (x)dx = fOW qPo (exp (qV/kT) — 1) (1 __S 1) dox

DW”+S w
Qp = qpo (exp (qV/kT) - 1) w— DpS %
B+
Qp = qpo (exp (qV/kT) - 1)% 2 — Dr% in units of C/cm3
W +S
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d) The diffusion capacity is the derivative of the charge with respect the voltage

dQp w S
="y =523

ot )
W+S

e) Finally, the transit time is by definition:

L D w
In the limiting case S » £ = 1, ¥ —
w 2D,

. D. w
whereasinthecase S K £ = 1, ~ —
w s

If the contact extracts the excess of carriers very slowly, then the diffusion constant does not
play any role.
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12. Consider a p*n junction for which we may calculate .
the current regarding only the quasi-neutral n | P E
zone. Due a particular fabrication process the n |
region has two distinct zones. Until a distance € 2p(0) E
from the junction the recombination is negligible \ E
because the lifetime is extremely long. After £ the SCR E
recombination is high and the corresponding o
diffusion length L, is short compared with the i
remaining width of the zone n. For simplicity
consider the diffusion coefficient D,, constant all
along the zone. The bias voltage results in a hole

excess Ap(0) = p,(exp(V/V;) — 1) at the edge 5 }
of the space charge region.

a) Find the expression for Ap(¥£) as a function of Ap(0), € and L,,.

b) As the electrical characteristic can be written as | = J,(exp(V/V) — 1), find the
expression for the reversed saturation current J ,.

a) In the first zone i.e. for 0 < x < £ the recombination is negligible and consequently we can
assume that the excess minority carrier distribution will be a straight line. We can write:

Ap(0) — Ap(£’)>x

0<x<d¥ Ap(x)zAp(O)—( 7

The second zone is electrically long, then the excess carrier distribution is an exponential
startingatx = ¢

-7
?<x<oo; Ap(x)=Ap(®)exp <— xL >
P

We know that at x = 0 we have:

200 =3 (e (V) -1)

On the other hand the excess carrier distribution at x = £ should be continuous and also the
derivative (proportional to the diffusion current).

Ap(£7) = Ap(£™)

dAp
dx

_dlAp
x={~ dx

x=£%

And now some calculus:

_(Bp(0) —Ap(£) _ Ap(f)
? L

p

Ap(0)L,

Ap(¢) =m
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b) Now, for the current density:

dAp
P odx

Ap(0) — Ap(L D
= quM=qu(0)7p<
x=0

J=—qD )
L,+?

J = qz%%@i 4’) (ex0 (" /ier) = 1) = o (ex2 (T ir) = 1)
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13. Multicrystalline silicon consists of small crystals with different dimensions and
crystalline orientation. These crystalline domains are separated by grain boundaries
where the high concentration of structural defects results in a high recombination.
Consider a p*n junction with a grain

boundary in the volume of the n p* SCR n
region. Its effect can be considered A!pl(());\\ Ao S 1,00
including a surface recombination S at ! 1ot~ —_—

a distance € of the junction. Within o TTL8p(0)

the crystalline domains the hole I . Po :?_____"_'_‘_‘_‘_‘_-_-_—_—_-_._.__A__?Z_(_‘_/'_/_Z
diffusion length is long compared with — C S
the crystal dimensions. In the extreme 0 ¢ w x

of the n region we assume an ideal
ohmic contact.

a) Briefly justify the following boundary conditions:

Ap(0) = p,(exp(V/Vy) — 1)
Ap(W) =0

Ap continuous en x = ¢
Jp(€7) —J,(£F) = qSAp(£)

b) Show that the current circulating through the diode can be calculated as:

s w
D, D, /W W-¢ v
J= quo S w (exp <V_T) - 1)
D/t W—¢
! ' J
Jo

¢) Comment on the ] , expression analysing the limiting cases depending on the S value
and the location of the grain boundary.

A careful reading shows that actually we have a neutral zone divided in two regions, both
electrically short where recombination can be neglected and the excess carrier distribution
approximated by a straight line, and a plane with a certain amount of recombination determined
by a surface recombination velocity S at the boundary between them.

At x = 0 we have the usual boundary condition at the edge of the space charge region

At x = W we assume an ideal ohmic contact and then Ap(W) = 0

Ap has to be continuous at x = £ (and anywhere else) if the material is homogeneous

We have a surface recombination at x = £. The current reaching the plane is equal to the
current leaving the plane plus the recombination current at the plane

b) The circulating current will be | = J, 4;¢¢ (0) = —qD,, %
x=0

Thus, we must find Ap(x) between x = 0 and x = ¥.
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x <7, Ap(x) =Ax +B
t<x<W; Ap(x) =Cx+ D

Now we have to play wisely with the boundary conditions in order to find A that is what at the
end we need.

B = Ap(0)
WC+D=0
PA—4C —D = —Ap(0) = €A+ (W — £)C = —Ap(0)

~D,A + D,C = SLA + SAp(0) = (D, + S€)A — D,C = —SAp(0)

Finally:
Ap(0) + ¢A
(D, + S¢)A+D, w7 " —SAp(0)
D
S+ L
A= _L_I;Ap(o)
St + me
and:
S+
] % Iy aiy (0) = —qDyA = qD, —¥=Lap(0)
s . w
D, D, /W W=7 |4 1
J=ay;Po S+—W exP\y,
D,/ T W—2¢

D
c) If S > oo then Jy = quPo as you could expect. The infinite recombination at x = € hides the
right zone and the current is only fixed by the zone at the left of the boundary.

D
IfS —> 0thenjy, = q pro, the boundary between both zones does not affect anymore.
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14. We focus in the quasi-neutral n zone of a
semiconductor junction. The hole diffusion

length is much longer than its width . As it is p SCR n

well known in this case the recombination is E : Ly > W
negligible and we can consider that all ! Ap\

injected holes at x = 0 will be extracted at : Ir=4q WpAp(O) = ct.
the contact (at x = W) and consequently the Ap(0)

hole current will be constant.

a) Starting from the fact that at each point x
we can express the current as a function of
the carrier concentration and their
velocity, find the expression for the hole

velocity v(x) at each point of the n zone.

b) Verify that the transit time obtained from
a cinematic definition, that is:

fw dx
T = —
tr 0 v(x)

Coincides with the statistical definition T, = Q,/],, more common in semiconductor
devices textbooks.

a) The current can be written as the charge (moving) times the velocity i.e.
] = q8p(v(x) = qap(0) (1 - 2) v(x)
w

D
Simultaneously, we can write also | = g W”Ap(O). Then:

Dp Dp
q~-Ap(0) - D
'U(x) — w — w — p

) () W

b) The transit time according to a cinematic interpretation:

dx dx
v(x)zaﬁdtzm

W dx Ww —x w?
T”:fo v(x):fo D, dx:zz)p

which is the usual definition of the transit time for a short zone (where the excess carrier
distribution can be approximated by a straight line). We can further verify this by evaluating

Ter = Qp/]p:

w Ap(0
Qp = qfo Ap(x)dx = q%W

DZ’
Jp = q—>4p(0)

w
Ap(0
Qp q—pz()W w?
Ttr:_: D =
2D
o quap) 2Pr
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15. Ap*ndiode is directly biased through a voltage source Ve

with Vo =30V and a resistance R; = 15 k{2,
resulting in a V = 0.56 V (figure a). In the small
signal circuit (figure b), the capacity C; is so large c R;

than it can be considered a short circuit in the R y
frequency range of v,. —/\M,—l Ii .
a) Identify the components of the impedance Z(w) in + v
the small signal circuit. In particular calculate the v, (t) f\) XZ b+ (D)
relevant parameters in the diode model. Cross

section is A = 0.01 cm? and the n region is semi- |
infinite. (@)

|
|
L

b) Calculate the amplitude of the output voltage v,

at intermediate frequencies, in this range of
frequencies the impedance Z(w) is dominated by 1
Z(w)| | v (t)

its resistive part. The output resistance of the s ®
signal generator is R, = 50 2 and the amplitude
of vgisV,, = 100 mV.
c) Calculate the frequency f . for an amplitude of the
output voltage reduced in a factor /2.

Data: ¢ =1.6 x1071°C, ky =1.38x 10722 J/K, T =300 K, N, = 10'® cm 3,
n; =1.5x10" cm™3, p, =400 cm*v-'s7, 7, = 0.1 pus

The impedance Z(w) has a resistive part r; (dynamic resistance) in parallel with a capacitance
C4. Under direct bias the capacitive part of the small signal equivalent circuit of the diode is the
diffusion capacitance which models the fact that carrier concentration and consequently the
associated charge have to be modified when the applied voltage varies.

Considering a p*n junction with semi-infinite n region the saturation current writes:

D, D, n2 12
IS~AqL pO_AqL—N—D_36X1O A

The current flowing through the diode will be:

Ip —Is(exp( o )—1) ~ISexp( )— 1.9mA
On the one hand:

Vp
ga =P = tsenl) by =1=130
a7 avp Vr Vr a7 gq

where we have used that V; = kT /q.
On the other hand:

dQp

Crn =
D™ qv,

where Qp is the charge accumulated by the excess minority carriers in the neutral zones. In this
case, because the junction is asymmetric, we consider only the n zone (less doped):

o= a0t =[5 (e () 1) ()

p
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We consider an exponential distribution because the n zone is long (W > Lp).
2
n; qVp
=405, (e () =)
Qo = Aqyy-Ly (exv (37

and

Cp = dQp A n; Ly (qVD)

“av, I v P Uk

As the circulating current is:

n? D qv n? D qv
Ip = Aq N—;i(exp (k—TD) - 1) ~ Aq N—;iexp (k—TD)

and using that L%, = D, T,, we can re-write the expression for Cj, as:

Cp =22 =76nF

T

b) Atintermediate frequencies Z = 14:

Td
Vy = Vg
Rs+1g

if the input signal amplitude is 100 mV, then the output amplitude will be 21 mV'.

c) At high frequencies, everything becomes more convolute:

1 1 1
—=—+4jCiw = +jCiw—=>7=———
Z JLlgw = gg T Jlgw ga +jCqw
Vo> 1

VS Bl (1 + ngd)z + (Rsta))z

We are asked to find the frequency at which the output voltage reduces its low frequency value
by a factor of V2 that is

2
1

, [ Ta
VoI _[Rst7a 1
(1 + Ryg4)?

1
AR -2

Comparing both equations we see that (1 + Rgg4)? = (RsCyw,)?:

RS + Ta
RSdeC =1+ ngd = s
2f, ! ! f. =2 MH
w, = 21T = = - = z
¢ ¢ _TaRs c, (allRs)Ca ¢

R5+rd
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16. Consider a heterojunction LED with an AlGaAs (N*) 1| Gads(P) | AlGads (P*)
AlGaAs (n*) injection layer and an GaAs (p) injection layer i active layer i“”"fi'w"w”f layer
active layer whose width W is short compared with An(0) = m (e R8T — D) !
the minority carrier diffusion length. The role of the AN Ao )

AlGaAs (p™) is to confine the electrons injected in : oo

the active zone increasing the radiative =g D,,% \\\EAn(W)
recombination. The effect of this confinement can , —>

be described through a recombination velocity S (or L tJn = —qSAn(W)
electron extraction velocity if you prefer) at the FoooT

isotype boundary. The LED is directly polarized with ! !

a voltage V. 5 W x

a) Taking into account the electron affinity, the energy gap E ; and the doping type of
each layer, sketch qualitatively the band diagram.

Find as a function of S and V the expression for the minority carrier excess An(x) in
the GaAs active layer. Use the boundary conditions shown in the figure.

b)

c

Find also the expression for the electron current density J,,. Discuss the reason why
the total current circulating through the LED is mainly the electron component.

d) In the GaAs active layer takes place a radiative recombination with characteristic

time t,,. Find as a function of S and V the expression for the total recombination in
the active layer (width W).

In what follows calculate the values for the particular situation with S = 10* cm/s
and V =1V. For the GaAs active layer take n; = 2 x 10 cm™3, N, = 107 cm3,
D,=20cm?/s, W=0.5umyt, =10 ns.

e) What is the LED emission wavelength? Calculate the emitted light power by unit
area?

f) Calculate also the electric power consumed by the device and the energetic
efficiency defined as the ratio emitted light power/consumed electric power.

Data: In the active layer of GaAs: x =4.1eVandE; = 1.4 eV
Inthe AlGaAs: x =3.6eVand E; =1.9eV
Otherdata:q = 1.6 x 1071°C, ky = 8.62 x 10> eV/K, T = 300 K,
h=6.62x103*]J/s,c=3x108m/s
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a)

b)

c)

d)

AlGaAs (p*)

AlGaAs (nt)

As the active layer is short (compare L,, with W), the minority carrier distribution An(x) can be,
with good approximation, taken as a straight line.

An(x) = Ax+ B
where
%4
An(0) = B =n, (exp (V—T) - 1)
The boundary condition at W writes:

dAn

qDn——~ = —qSAn(W)

x=W

D,A = —S(AW + An(0))

A= 5 lA 0
RS e
W
i) = (e (57) ~1)| 1~ 5
nx) =n —) = - —
oexpVT S+%W

w

The minority carrier diffusion currents are proportional to nl-z, the square of the intrinsic
concentration in the corresponding layer, which is on its turn proportional to exp(— Eg/kT).

The net result is that a difference of 0.5 eV in the gap makes a huge difference in niz and
consequently in the minority carrier diffusion length.

dAn D, S /4
J = =In, airf = =P = Ao (exp (V_) - 1)
S+ 7 T
w
The total number of electron-hole pairs recombined per unit time and unit surface in the active
layer will writes as:

fWAn(x) e = An(0) W ) S
0

Tn Tp, 2 S+W
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e) The LED emission wavelength is determined by the bandgap of the active layer E; = hc/A.

f)

If we want to calculate the emitted light power by unit area we should multiply the number of
photons emitted per second (obtained previously) by the energy of each photon:

v 1w S ,
Piighe = hvn, (exp <V_T> - 1);? 2— -, D, =2.7mW/cm
W

The electric power consumed will be:

JV=Vq2 “LD_nno (exp (5-) — 1) = 3.88 mw /cm?
w

T

and the LED efficiency:

h N )LW(,_ S

Pune "”O(e"p(w) )rn 2 5+% ww? D
Pelectrical B 74 q % LDnnU (exp (VLT) — 1) B qV ZL%
w

S+

Obviously, the expression is not valid for S — 0, because several approximations that we make
implicitly are not longer valid. On the one hand when we have assumed short zone and negligible
recombination..., is it negligible in front of what? In fact we are saying that is negligible in front
of recombination at the extreme (contact). If S - 0 we have not recombination to compare
with. On the other hand the flowing current also tends to zero. The flowing current is the
addition of diffusion minority carrier current at both sides of the junction. The hole current has
been neglected because the greater gap (neglected in front of hole current which is going to
zero as S does). Finally if we look at the diffusion current in the active zone (thinking in terms of
the continuity equation) is the addition of the recombination current within the active zone,
which is neglected because we assume short zone, and the recombination at x = W that is
proportional to S and then goes to zero also. The consequence of all together is that we should
be careful when we perform approximations. Neglect recombination terms in front of larger
recombinations may be a good idea but neglect them in front of terms that have been already
neglected may produce a disaster.

“n
W
_ 1+2%
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17. Consider a solar cell fabricated from a n type wafer with thickness W = 200 um. A p*
region, with negligible thickness in front of W, is diffused in only one face. The minority
carrier diffusion length in the n zone is larger than the wafer thickness. The solar cell
is illuminated with a radiation (hc /AZE g) leading to a uniform generation rate G =
10'° cm=3s~1 in all the device. The back contact is ohmic.

a) Explain why under short circuit a current J ;. flows due to the illumination. Show the
direction of this current within the device and through the external circuit.

b) Calculate (without solving the diffusion equation) the ] ;. value. Justify the obtained
result and comment why it is a good approximation.

Data:q=1.6 x 1071°C

a) The generation will take place in the n zone. The holes generated will diffuse in all directions.
Those reaching the back contact will recombine while those diffusing towards the p zone will be
collected. Holes are going to move from n to p (reverse direction).

Jse
[ J o D l\l
A I/l
+ v=0 -

b) For the excess carrier distribution under short-circuit we have Ap(0) =0 and Ap(W) =0
because of the ohmic contact. If the generation is constant with x and the boundary conditions
are symmetrical, the shape of Ap(x)should be also symmetrical. We are going to collect 50% of
photogenerated carriers, losing the other 50% at the contact.

1
Jse = EqGW = 16 mA/cm?
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18. Consider a solar cell fabricated using an abrupt p*n silicon junction where the p*

region (which although there is not any physical reason is usually called emitter) is
much thinner than the n zone (called “base” due to unclear historical reasons).
Consequently the current flowing through the device can be reasonably calculated
regarding only the minority carrier profile in the n zone. Suppose also that the
quasineutral n zone is short compared with the minority carrier diffusion length. (W <
L,). The back contact presents a surface recombination velocity S. The device is
illuminated with a wavelength long enough to get a carrier generation G uniform in
the whole device.

p*region| igogp!  nregion
(emitter) | ! ! (base) Af (_x2 _———
1 1 -7 7= -
| i - S~ | JW) =qSAp(W)
I I ,,"’
i r-
i TiAP(O) — p0<e(1V/kT _ 1) Ap(W)
i b emeeecmecmceemeceeemcmeememeeaaa
. . p()
: !
0 W Tx

a) Find the expression for the excess minority carrier profile in the n zone for a given
value of the applied voltage V.

b) Find the expression for the current density flowing through the device. Identify the
current density J ;. circulating under short circuit conditions.

c) Comment about the variation of J,. depending on the S value compared with
D, /W. Using the given data values calculate the S value allowing to collect the
90% of the photogenerated current within the device.

d) Find the expression forV ,. (voltage under open circuit conditions). Using the value
for S previously found, calculate the reached value for V..

Data: Np =10%cm™3, n; =10 cm™3,D, = 10 cm*s™ 1, W = 200 um, G =
5x10® ecm3s1g=1.6 x10"1° C,V; = 25mV

We solve the diffusion equation that gives the excess minority carrier distribution in the
neutral zone:
Ap

d?A
L

D —_—
P dx? (-

As the n zone is short compared with the minority carrier diffusion length we can neglect the

recombination, then:
d?Ap

T

d’Ap G

D - = -
dx? D,
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We can integrate directly:
dAp G

——=——x+4
dx D,

and integrating again

G x?
Ap(x) = —D—7+Ax+B

Now we impose the boundary conditions:

Ap(0) = B =p, (exp (%) — 1)

dAp

—abp | _,, = asbp(W)

Now a bit of algebra|c work:

G G W2
~Dp| =W +4) = S( =5+ AW + 4p(0)

p pz
sw
A GW1+2D S Ap(0)
"D, +sw D, +sw"?
and
sw

Ap(x) ze+(GW1+2D a Ap(0) + Ap(0)
P ="D, 2 D, +SW D, +sw P |¥TEP

Remember that because the p*is very thin no significant light absorption will occur, moreover
the junction is asymmetric. All together allows us to calculate the total current as:

1+ﬂ
_ _ dAp _
J=Jpairr =—aDp “dx =g _quGWD +SW+q P p, +SWAp(O)

sw

1455
1= 255 T o (L) = 1) - qow —a
WDy Np P\v, 1+SW
wt D,

Under short circuit conditions (V' = 0) we have only the second term meaning that a current
proportional to the generation produced by light is circulating from N to P. This current, called
short circuit current, writes as:

1 s
L+ap,/w
S

D,/W

Jsc = —qGW
14+ +—7F+
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c)

d)

If S is high, in particular S > D, /W, then:
Jse & =3 qGW
which means that from the total photogenerated carriers GW (cm?/s) per unit surface and unit
time we are going to lose 50% due to recombination at the back contact.
If Sislow, S < D, /W, then:
Jse = —qGW

We have a factor 2 between both extreme cases. It’s not surprising that solar cell designers
concentrate in reducing back recombination while maintaining a good electric contact (not an
easy task).

The factor reducing the effectively collected J;. below its maximum value is:

1 S
1+5 =
2 D,/W

X =5
S
L+ 57w

If we replace D), and W by its values, we have Dp/W =500 cm/s. If we want x = 0.99 we can
solve for S obtaining S = 125 ¢m/s as a maximum value for S at the back surface.

The open circuit voltage, V,.,is the applied voltage for which the circulating current is zero.
14
=1 (e /VT - 1) —Jse
ForV =V, = ] = 0, then:

Voe = Vo ln (% + 1) ~ 623mV; Jo. = 16 mA/cm? ; J, = 0.16 X 10712 A/cm?

(o]
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19. Consider a solar cell based on a p™n

a)

T
+ [ n
1

Ap

junction with a very thin p* region. So, as |P
we have seen in previous problems, the F
circulating current can be calculated :
considering only the n region. The cell is i .-

|

I

I

illuminated and we get an uniform

generation profile G. Simultaneously we ! R4 Jp(x) = —qD, —

apply an external voltage V. The hole cel )

diffusion length is much shorter than the
n zone width, i.e. we can consider the n
zone long.

Ap(0) = p,(e"/VT — 1)

a) Find the expression Ap(x) for the

-

0

Z
1
|
I
I
|
|
|
|
I
I
|
|
1

excess minority carriers in the n

region.

b) Calculate the total current | flowing through the device and the electric power
generated by the cell.

c) Find the expression for the small electric field in the n region. Calculate its value for
x > L, and comment about the result

Data:Np =10%cm™3, n; =10%cm3, 6 =2 x 10 em™3s™1, kT/q = 25 mV
q=1.6><10 19C,V_0.5V,D,,=12cmsl, T, = 3 us,
D,

= /DpT, = 60 um, ——3

p

In order to find Ap(x) we need to solve again the diffusion equation, this time with a constant
excitation G:
d’Ap Ap G

dx? _g_ D,

It's a second order differential equation with constant coefficients and constant excitation. The
solution is the solution of the homogeneous equation (without excitation) plus a particular
solution of the complete equation. For finding the particular solution of the complete equation
a common possibility is to try in the equation a function of the same kind of the excitation in this
case constant. They are some common sense reasons for doing so, far enough from the
boundaries it’s quite reasonable that the system response follows somehow the excitation. Let’s
try then Ap(x) = K. If we substitute in the equation we have

K G K=G

—_—_— = —— = T
2 p

Ly Dy
The result could have been guessed intuitively. Far away from the junction what we have is a
semiconductor with lifetime 7, and constant generation G. It’s easy to see that then:

Ap(x) = GTp.

Together with the solution of the homogeneous equation we obtain the complete solution:

Ap(x) = Aexp (——) + B exp ( ) + Gty
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b)

c)

As the zone is long (x > L), B has to be zero:

X
Ap(x) = Aexp (— L_> + Gty
P

Ap(0) = A+ Gt, —» A= Ap(0) — Gty

Ap(x) = (Ap(O) — Grp) exp (— Li> + G,
P

Ap(x) = Ap(0) exp (- Li> + G, (1 + exp (— ;))
p P

where:

ns

Ap(0) = p, (exp (VLT) - 1) = (exp (VLT) - 1) = 4.85 x 10'? cm™3

2
L

and

Gty = 6x108cm™3
The total current J approximatively equals the minority carrier diffusion current at the boundary
of the less doped zone with the space charge region (remember that the junction is asymmetric)

dAp
Pax ly=¢

] = Jpaiff(0) = —qD

D
J = Jp airr(0) = g 7 Ap(0) = qGLy
P
J = 1.55mA/cm? — 19.2 mA/cm? = —17.65 mA/cm?
P =V]=0.5(-17.65) mW /cm? = —8.8 mW /cm?

Now we are asked about the small electric field appearing in the n zone. First of all, let’s write
the total currentas | = J,(x) + J,(x) Vx. First take a x in the n zone. We can write:

J = Tpairr ) + Jpariee () + Jnairf () + Jnarige ()

We can neglect the hole drift current. On the one hand the electric field is very small ( in fact we
are looking for it) and on the other hand holes are minority carriers and are few (at least
compared with majority carriers). We have then:

J = Jpairr ) + Jnairr () + Jnarife ()

Because of quasi-neutrality An(x) = Ap(x) so:

dx D,

da Dy, dA
]Tl,diff(x) = an n(x) = <_Dp p(x)

T) = —3Jp airr(X)

1 1 X X
Jpairr () = | qDpAP(0) 7— — qDpGTy — | exp | —7— | = J,(0)exp | ——
Ly Ly Ly Ly
The total current can be calculated as the minority carrier current at the boundary of the space

charge region i.e. J,(0) = J. We write then [, 4;rr(x) = ] exp (— Li)
14
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The total current:
J = Jpairr ) + Jnairr () + Jnaripe(x)

Will be written now:

J =Jexp (‘ ;) — 3Jexp (— Lx_p) + Jn arife(x)

14

J = Jexp (— Li) — 3Jexp (— Li> + QNpiinE ()

P P
(x) = / (1+Zexp<—£>)
Npi, L,
Forx > Ly:
E =~ quﬂn =-73mV/cm

Both excesses Ap(x) and An(x) go to zero when x increases, also the diffusion currents go to
zero. At the end, for x large enough the whole current is majority carrier drift current, drifted
by this very small electric field.

x > Lp =] z]n,drift

Current densities (mA/ch)

o

|
vl

x> Lp =F =
qNpun

I
=
S,

Electric field (mV/em)
Yoo
o| o

0 50 100 150 200 250 300 350 400
r (pum)
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20. Consider an abrupt silicon p*n junction used as a solar cell. The p* region is much
thinner than the n zone, as a consequence the circulating current can be calculated
with good approximation regarding only to the minority carrier profile in the n zone.
The solar cell is illuminated with a monochromatic radiation producing an exponential
generation profile G(x). The light penetration length (1/a) is much shorter than the
n region width, resulting in a complete absorption. Moreover, the n region can be
considered long (semi-infinite) compared with the hole diffusion length (L,). The solar
cell is under short-circuit (0 V applied voltage).

a) Find the hole excess profile in
the n region Ap(x)*.

b) Obtain an expression for the
current density in short circuit

(o]

G,
qG(x)dx = q -

conditions, J .
The internal quantum efficiency p*
(IQE) is defined as the fraction  regjon - : ' region

of the photogenerated current
which is effectively collected:

IQE = 1=

]ph I

=Y

c) Obtain an expression for IQE,
depending only of a and L,

* In the corresponding non-homogeneous differential equation try a particular solution
Ap(x) = Ke™**, with K a coefficient to determine.

a) The situation resembles that of the previous problem, the difference is that now the excitation
is exponential. The procedure is the same, for solving:
d’Ap Ap G(x)
dx? T 1E D,
We have to add the solution of the homogeneous equation and a particular solution of the

complete equation. This particular solution will have the shape of the excitation.

Let’s try a particular solution as Ap(x) = C exp(—ax). Substituting this expression for Ap(x) in
the diffusion equation we get :

Go
Cexp(—ax Goexp(—ax D,
CaZexp(_ax) _ p(z ) _ _ o P( ) —(C = e
L D, a2 — L
LZ
P

Then we can write for Ap(x)
Go

x x Dy,
Ap(x) = Aexp T + B exp —T ﬁexp(—ax)
P P =
2

p

The constant A should be zero because the region is long and x > L,
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b)

Go

X D,
Ap(x) = B exp I ——1exp(—ax)
D

Under short circuit Ap(0) = 0, and we can obtain B:

Go
D
B=—2F
1
0.’2——2
Ly
and
Go
D, x
Ap(x) =——— exp| —— ) — exp(—ax)
2_ 1 L
as — Tz p
Ly

The short circuit current will be

D|§3

Jsc = _qu W

) 1 1
R s WAL Rk U |
x= ac—-= p a+—
Iz I,

In order to obtain this result you should remember (a + b)(a — b) = a? — b?, an useful result

that we learned at school.

Let’s calculate first the photogenerated current

o= [ aGoe-onan = g2
ph OQO qO(

remember that the zone is thick enough to reach complete absorption.
Finally, the internal quantum efficiency is:

1QE =% =

]ph a _|_l
L'P
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21. One of the reasons limiting the efficiency of solar cells is the waste of photons with
energy less than the semiconductor energy gap. Nevertheless in the last years
researchers are looking for strategies to overcome this limitation. Among these
strategies the local introduction of nanoparticles (see figure) may result in an extra
generation of carriers due to two photon absorption. The net result would be a | ,, due
to those low energy photons.

Imagine a solar cell with a p*n structure whose n Jse

region has been modified including an extremely
narrow region with nanoparticles at a distance £ of
the junction. At the back contact of the solar cell we V=0

have a surface recombination velocity S. The solar pt | n
cell is illuminated with a radiation whose energy is
clearly lower than the bandgap energy and may be

]ph =Jsc +rec

partially absorbed at the nanoparticles region. The Jse Jrec
generated carriers may diffuse towards the junction -
and be collected contributing to the photogenerated
current or alternatively to diffuse towards the back
contact where they will recombine. Ap
Considering the n region short and the device under Ap(£)
short circuit, the hole excess at x = € is given by
equation (i), where J,, is the current density
photogenerated at the nanoparticles region and D,,
is the hole diffusion coefficient in the n region.

§________________

a) Find an expression for the collection efficiency, 0 ¢

defined as the fraction of the photogenerated Ion
current collected under short circuit, x = Jsc/Jph- Ap(£) = " q
Discuss the limiting situations for y comparing S % + WDf 5 ) 5
with D, /(W — £) . S+Wf{’
b) Can you obtain the expression (i) for Ap(£)?

a) Another impressive problem when you read it for the first time, but at the end of the day it
reduces to calculate:

— —aD dAp
]SC_ q p dx =0

In fact we do not need to worry about the signs, y is defined positive or if you prefer taking as
positive for J;. given in the figure we can forget about the usual minus sign appearing in the hole
diffusion current.

dAp Ap(?)
=qgD,— =qD,——
]SC q p dx U q p 1?

the rest reduces again to work with the expressions.
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Jon 1+

_Jse !

wW-¢__ D,

The limiting cases are:

D, '3
s> = y=1——

W — ¢ w
S« Dy !
=y
w—e ¥ 1+
D,/?

b) The generated carriers at the nanoparticles layer partially diffuse towards the junction
contributing to J,. and the rest diffuse towards the backcontact where they recombine and are
lost. We can write:

]ph = Jsc¢ + Jrec

Ap(L
Jse =1q p#

Ap(¢) — Ap(W
]rec‘:qu p(])/v_f;( )

Jrec = qSAp(W)

Now, a bit of algebra:

Jrec
Ap(W) =—
pW) =75

_Jrec D.

Jrec =4 pwﬁlrec +W—l —QW p()

l)p
]rec‘:qW_{,Ap({))S—*_ ,

w-—+¢

Coming back to J,,, = Jsc + Jrec and substituting the expression for J,...:

Ap(?) D S
Jon = 9Dy +q—> Ap({’)—D
£ W —¢ sy
wW—¢
And finally:
]ph/
_ q
LW —{’S D,
tw—o
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Chapter 3.

The Bipolar Junction Transistor
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1.

In a bipolar transistor define the base transport factor ay. Show that it can be
calculated with good approximation using:

WZ
ar~1-95

where W is the neutral base width and L is the base minority carrier diffusion length.
Justify all approximations. You may use either a NPN or PNP structure.

Vg > 0 Ve <0

i

Ign
E O— Iz, ——OC
P+ IEP n ICP p

Before enter into the detail of the problem let’s try to explain shortly the basic operation of a
bipolar transistor: In a bipolar transistor the directly biased base emitter junction injects carriers
from the emitter into the base, and also from the base into the emitter but let’s forget them
until later. Provided the base collector junction is reverse biased or short-circuited, most carriers
injected into the base reach the collector (those which do not recombine in the base). The
current through the base terminal will provide the carriers that will be injected by the base into
the emitter (remember that the junction is directly biased) in addition to the flow of carriers
needed to maintain the recombination in the base (under permanent regime we have carrier
distributions constant with time, if carriers recombine a flow of incoming carriers is needed to
maintain the distributions constant).

In what follows we restrict to small signal transistors forgetting power transistors. If the
transistor is properly designed, the carriers injected by the emitter into the base are many more
than the ones injected by the base into the emitter, if additionally we have low recombination
in the base, the total base current will be small (much smaller than the others). At the end of
the day a small change in the base emitter bias will produce a big change in the flow of carriers
injected into the base and consequently in the collected flow of carriers at the collector. As a
summary we can say that a good small signal transistor needs a small base current and for
achieve this goal on one hand a low recombination into the base is needed, and on the other
hand the injected current by the emitter into the base has to be much greater than the current
injected by the base into the emitter.

We take a PNP transistor. If we consider a short base the minority carrier distribution is a straight
line with boundary conditions:

V
Ap(0) = p, (exp (%) — 1); Ap(Wg) =0 for Vg =0
T
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Then, we can write the excess minority carrier distribution:
X
Ap(x) = 8p(0) (1-4)

The hole current injected by the p-type emitter into the base will write:

Ap(0)
IEP = qADpTB

The hole current reaching the base-collector junction will be Iop = Igp — I, where Ig, is the
recombination within the base.

WB  Ap(x Ap(0) (Ve x Ap,, (0) W,
IBrzf ” p()dx:qA p()f (1__>dx:qA Pn(0) Wy
0 Tp T Jo Wp T 2

The transport factor ar is defined as the fraction of holes entering in the base that reaches the
collector i.e:

wo = lep _Tep = ler | Ier
T I Igp
Ap,(0) Wp
. A== W T
Tr= 1T 0) - 2Dt - 212
4AD, Apﬁ/'l(;()) 2D,7, 2L

2 _
Remember that Ly = DpyTp,.

If the explanation at the beginning of the problem has been useful you will agree with me that
ar needs to be near 1 in a good transistor.

May be the reader has already noticed some flaws in the reasoning. First we have started saying
that the base is short. In fact the short zone approach is equivalent to neglect the recombination
in the diffusion equation and if we neglect the recombination obviously all carriers entering in
the base reach the collector and the transport factor is 1. In fact what we have done is slightly
more subtle, we have assumed a short base in order to easily find an approximative minority
carrier distribution in the base. Once a straight line carrier distribution is assumed, we calculate
the recombination as proportional to the integral of the distribution (not taking derivatives at
both extremes and subtracting as both derivatives would be equal and the difference zero) and
we subtract this recombination from the incoming current. In practice is a very good
approximation. For an exact solution we should have solved the diffusion equation in the base
including the recombination term and then calculate the current reaching the collector as
proportional to the derivative of the distribution at the collector base boundary.
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2.

a)

A PNP bipolar transistor is biased in the so

called active zone with the base-emitter
junction directly biased and the base-
collector short-circuited. The base neutral
region is short compared with the minority
carrier diffusion length, consequently the
transport factor (ay) is close to 1. In the
emitter, also short, we have a surface
recombination velocity S at the front face.
The boundary condition for the excess

minority carrier concentration can be

. X, %% (0] Ws x
written as: T v

qD,, — =—qSAn(Wg) (signs according to the figure axis)

a) Define the injection efficiency (yg) and find its expression for the proposed
structure. Discuss the effect of S in y . Find its value for the limiting cases
S>»D,,/WgandS < D, /Wg.

b) Define the current gain () and find its expression in this case. Discuss the effect of
S in B and find the limiting results for S > D, /Wgand S < D,,/Wg.

(Expressions would be function of the electron diffusion coefficient in the emitter
D,, and holes in the base D,, of the impurity concentration in the emitter N and
base N, of the emitter and base neutral zone widths W, and W i and the surface
recombination velocity at the front face S)

If in the previous problem we focused into a as a merit factor indicating the relative importance
of the recombination in the base, now we are going to focus on another merit factor, the
injection efficiency. The injection efficiency quantifies in what extent the current injected by the
emitter into the base is larger than the current injected by the base into the emitter. By
definition the injection efficiency y is the ratio between the current injected by the emitter into
the base (in a PNP transistor this will be hole current) and the total current through the emitter
base junction. We write the emitter current Iy = Igy + Izp Where Igy is the electron current
injected by the base into the emitter and Ip is the hole current injected by the emitter into the
base (in a PNP transistor). Then:

Vg = Igp

P = —
Igy + Igp

Igp can be easily calculated. The excess minority carrier distribution is a straight line (see the

figure). Then, and its derivative is constant all along the base:

dap(x) _  Ap(0)

p(0
Igp :_quT—q D W,

D,n? Ves
Igp=¢q P L(exp(—)—l
EP A waNg Vr
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b)

We neglect the area. All currents are proportional to the device area. Or if you prefer assume
the area equal to 1 cm?.
Now we calculate Igy. In the emitter An(x) = Ax + B with boundary values:

2

An(0) = B = n, (exp (VVL:> — 1) = ]T\ll—;(exp (VVL:) — 1)

and
dAn

anE = —q S An(Wg)

XEZWE

with
An(Wg) = AWg + ;—i(exp (‘%?) - 1)

We solve looking for A:

D,A=—S| AW, +n—i2<ex (@>—1)

S n? Veg
it ()
D, + swy Ny \“*P v

We can now obtain:

B dan _ _  Dani s V) _
Ign = qDy dx lyxz=o = —qbnA = qWENEV?/_nJ,S (exp ( VT) 1)
E
and finally:
Dpni2
gl _ 1 Wy _ !
E IEN + IEP q Dpniz " q Dnniz S 1+ DnWBNB 5 S
WBNB WENE&_F S DPWENE_n + S
Wy We

For large values of S we find the classical result:

55 Dn !
_—— ~
wy VBT DaWshg
D, WgNp

whereas for low values of the surface recombination velocity S, as it may be the case in
polysilicon emitter transistors, the current injected into the emitter decreases and as a
consequence yg improves approaching 1.

S« Dn !
— : ~ —mmme e e e
Wg Ve 1+ WgNgS
Dy, Ng

The gain current 8 is defined as the ratio between collector and base current. The collector
current is the hole current traversing the base and reaching the base collector boundary. As the
base is short, the distribution a straight line and its derivative constant, equal to Igp , on its hand
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the base current is only Iy because we are neglecting the recombination in the base as it is
short.

Dpni2
goler o TWeNy  _  DpWele
Igy ¢ D,n? . S DaWsNp S
WgNg Dy, R4S
Wy +S Wy

For high values of S ( ohmic contact) we get the usual result:

D D,WgN
S» L—op=t"LF
Wg DnWgNg

whereas for low values of S:
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3. Consider a bipolar transistor biased in the active
region. Changes in the total charge in the emitter-
base junction are related with a delay time tg. This
parameter T limits the frequency performance of the
transistor. It has been observed that for the usual

values of W g the delay time increases parabolically.

Considering a short emitter and performing the

approximations that you consider appropriate.

a) Find the expression for tr and verify that the

values correspond with those shown in the figure.

Calculate the cut-off frequency for a base width
WB = 0 5 Il,m.

Now we evaluate for the extreme cases.

In first place, consider the case where the base width
is much larger than the minority carrier diffusion
length in the base.

b) To what value will Ty tend to saturate?

800

700 -

600

500 -

400

300 -

forward delay time, tz (ps)

N

o

o
T

0.0

02 04 06 08 10
base width, W (um)

Consider now the other extreme case where the base width is very short.

c) What other term, usually negligible, limits the reduction of tr? Calculate T for a
base widthof Wy = 0.1 um.

Data for the base: D,,;,p = 8 cm?/s,T,ing = 1 us, Ng = 1017 cm~

3

Data for the emitter: D ;g = 6 cm?/s, Np = 1018 cm™3, W = 0.5 um

Veg > 0 Veg <0
F B i
" y
SCR T
pt i onm |1 p
1l 1Ap(0) v
EO— | | —OC
An(O):
O I
ny ! L]

a) The so called forward delay time 7 is the ratio between the charge accumulated by the excess
minority carrier in the transistor Qr (part in the emitter and part in the base Qr = Qz + Qp )
and the collector current .

:QE+QB

F IC

The minority carrier diffusion length in the base will be Lg = /Dgtg = 28 um.

85

1.2



b)

1 1 ;
As both Qz and Qg depend on /NE and /NB respectively and Nz > Ng, we can expect that
Qp < Qg and then 1y ~ QB/IC'

In the range of base widths in the figure, the base can be considered short, the excess charge
Qp is easily calculated integrating the excess minority carrier distribution (a straight line)
assuming that the base collector junction is either short-circuited or reverse biased. Then:

1n? Veg
qyy-\exp\ ) — 1)Ws 2
~ B ( ( T ) ) =2 (base transit time)

g e (52) 1)

2
For Wp = 1pm, -2 = 625 pS
B

2
For Wy = 0.3 um, ZWTB =56 pS
B

The corresponding values for the cut-off frequency will be f; = # leading to 0.25 and
F

2.8 GHz respectively.

If the base is much longer than the minority carrier diffusion length (a quite unrealistic situation
indeed):

05 _ qbp(0)Lg _ L}
IC DB

Tr —
q1,.p(0) Ds
B

= 15 = lus

with increasing base width, the base transit time and consequently the forward transit time will
saturate to the minority carrier lifetime, in this case 1 us.

When the base becomes shorter, the accumulated excess charge Qy also decreases. If the base
is short enough we should consider Qr which we neglected previously. Assuming a short emitter
we get:

1 1
_ Qs+ 0p 75O +a3MpO0Wy 1 N;WaWp | W
F IC 2 NEDB ZDB

Dg
q WBAP(O)

The first term decreases linearly with W5, while the second decreases quadratically. For small
enough values of Wy the first term will be dominant.
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4. The figure shows the minority carrier excess in the quasi-neutral emitter and base of a

b)

NPN bipolar transistor biased in the active zone. The device area is A = 10~* cm?.

a) Vpgc =0. Calculate V g applied to the base-emitter junction.

b)

Calculate both the electron and hole
components of the emitter current. Give
also the value for the injection efficiency y g

2

Amin (cm™3)

- 5x10"
¢) Calculate the recombination current in the AR
base and the corresponding transport 10" AR
L 4x10™
factor ay. AR
\
d) Calculate the currents at the terminals: I, L 3410™ 4 \
\ Ang
I e I.. What's the value of the current ‘.
in he transistor. \
gain B of the transisto L 10% ] .
e) Calculate the small signal circuit R
parameters .y g, L 1x10™ '
f) Evaluate the charge stored in the device, APE’ - AN
- \
the capacity C,, and the delay time tp. -~ ———— ; —
04 02 00 00 02 04 06 08 10
g) Draw the small signal equivalent circuit xg (um) xg (um)

and give an estimation of the cut-off
frequency for which |B| =1 (with the
output short-circuited).

Emitter data: N = 107 cm™3, D, = 1 cm?/s
Base data: N, = 10 cm™3, D,, = 30 cm?/s, t,, = 0.2 us

Otherdata:n; =10 cm™3,q=1.6 x1071° C, ky; = 8.62 x 107> eV/K, T = 300 K

The boundary condition at the emitter side of the emitter-base junction is, we take Apg (0), from
the figure:

2

n’ v, kT N
Apg(0) = N—l<exp (%) - 1) = Vg ~ 71n (ApE(O) n—’j) =0.637V
E T i

we can do the same starting from the boundary condition at the base side of the emitter-base
junction.

We are in a NPN transistor Igy is the electron current injected by the emitter into the base.
As the base is short and the excess carrier distribution is a straight line (see figure) we have:

Ang(0)

B

A=24mA

Igny = qDy (A is the device area)
with

Ang(0) = ;—i (exp (VV—T) - 1)
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d)

Analogously:

Apg(0)

E

A =0.02mA

Igp = qDp
with

Apg(0) = n (exp (‘%E) - 1)

Ng

The injection efficiency will be:

I I 2.4
—EN __ TEN  _ =0.9917
I Igy+1Igp 242

YE

Note the difference with the expression used in the problem 2 as here we have a NPN transistor
while in the former case it was PNP.

The recombination current:

dx = qA

WB An(x) 1 An(0)Wy
IBr=qu . E—:zuA
0 n n

The current at the collector boundary will equal the electron current entering from the emitter
minus the recombination within the base.

ICN = IEN - IBT = 2398 mA
and the transport factor

I 2.398

Ty 2.4

Let’s calculate the currents at the terminals:
Ig = Igy +Igp = 24mA + 0.002 mA = 242 mA
Ig =Igp + 15, =0.02mA+ 2 uA =22 uA

with the base collector junction short-circuited
I =Icy = 2.398 mA

and

_ 2.398mA

= 0022ma 109

In amplification applications, the transistor is biased in the active region (base emitter junction
directly and collector base junction reversely biased). For doing so we need to use constant
values for both polarizations, to this continuous values we superpose the small signal which has
to be amplified. This signal value is much smaller than the polarization value. The first step when
solving an amplifier is to solve it taking into account only the constant sources. Doing so we
obtain the continuous values for the different variables (base, emitter, collector currents and

88



f)

junction voltages). Knowing these values we calculate the components of the small signal
equivalent circuit which relates between them the signal components of the different variables.
From now on the rest of the problem refers to the small signal equivalent circuit.

A comment about notation, take for instance the base current, we write ig the total value of the
variable, I the polarization or continuous value and ijthe signal component. That means:

iB = IB + ib
1, is the dynamic resistance of the base emitter diode:

Vp 25mv
L T 22 A

and g,,is the transconductance that relates the change in the output current (collector) with the
variation in the input voltage (Vgg)

I 2.398mA

== = A
v, Tammy CoomAlv

Im

The total charge stored by excess minority carriers will write:

Ape ()W, Ang (0)W,
pe(0) E_I_A 5(0)Wg

Qr = qA > q > = 0.016 pC + 0.4 pC = 0.416 pC
The transit time
Qr 0.416pC
=—=——=0.17
e T 24 mA ns
Finally,
i_c _ T9mVbe

ib Upe + jCTtTrr(‘)vbe

This quotient will be 1 when w = gc_m

T

dVge ' Vp

Cr

and consequently

1
© = 2nfy = — = fr = 5— = 936 MHz

F g
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5. When fabricating a homojunction bipolar transistor we
perform two diffusions with different doping on the same
substrate. These diffusions produce the base and emitter
regions, as it is shown in the figure for a PNP transistor. It
can be seen that in general the doping concentration in
the base in actual devices is clearly non uniform. Consider
the n-type effective doping in the base can be
approximated by an exponential profile:

-

o
™
S

-
o
©

-
o
®

-
o
3

-
o
>

Doping concentration (cm-3)

NDeff =Np—N,~= N,exp (—E)

1015

A [
where N, = 107 cm™3 and 2 = 0.17 pm. surface 'I . \‘l\ i ey
0.0 05 1.0 15
a) Calculate the electric field in the base of the transistor. x (um)
b) Taking into account the magnitude and sign of the
previously calculated electric field, discuss its effect emitter | base colector
regarding the transit time of the carriers injected by
the emitter in the base when the transistor is biased in 0= Vli/l;:0.8 um x

the active zone.

c) Following the same reasoning, discuss the effect of a non-uniform doping on the
cut-off frequency. In particular consider the effect of A comparing its value with the
base widthW g.

Data: kz = 1.38 x 10723 J/K, T = 300K,
g=1.6x10"1¢C

a) The non-uniform doping within the base will generate a built-in electric field in order to stop the
diffusion of electrons from the left towards the right, that is an electric field from left towards
the right.

dn
Jn = qnunE + ana =0

The concentration of electrons will be:

n~ Np,,, = Noexp (_ %)

(- Pem(=5

dn
—qDnzy D, "Y/) kT

1
E= —=
qupn pp n q A

~ 1.5 kV/cm

b) If E > 0 in the base it will accelerate the holes towards the right. In practice when biased in
active zone, the emitter will inject holes into the base, the built-in electric field will accelerate
the transit towards the collector.

c) If the total transit time 7 is dominated by the base transit time, as it is usually the case, if the
field is strong enough it will be somehow reduced in the presence of an internal electric field.
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The transit time in the base due to diffusion (without electric field) is:

W2

Ttr =5
2D

p

while the transit time in the base due to the drift will write:

The reduction will be only noticeable if this late base transit time due to drift is smaller than the
transit time due to diffusion i.e.

oo 2D
mE >
kT w,
KT1 2= LW
— — _) —
2" w, 2

In this case the base transit time will be reduced and then the cut-off frequency increased.
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6. Consider a NPN bipolar transistor whose base, emitter base colector
short, defines a transport factor ar =~ 1. On its side
the emitter can be considered long compared with
the corresponding minority carrier diffusion length.
The transistor is biased in the active zone and you
cantakeVgc =0V

N

a) Find expression for the base and collector
currents for a given value for V g>0.

b) Find expressions for the injection efficiency yg
and for the current gain B. Give their numerical
value.

c) Find expressions for the stored charge in the emitter Qg and in the base Qg for a
given value of V 5.

d) Find the expression for the delay time tr which will determine the frequency
features of the transistor. Write T in terms of both the hole lifetime in the emitter
T and the electron transit time in the base t.,.g. Calculate the Tt value indicating
the emitter and base contributions to this delay time.

Emitter data: Ny = 10° cm™3, D =4 cm?/s, t; = 100 ps
Base data: Np = 107 cm™3, Dp = 20 cm?/s, Wy =1pum

a) The total base current (with Vg, = 0) is the addition of the hole current injected by the base
into the emitter and the hole current injected into the base to maintain the recombination. As
the base is short and with little recombination (transport factor = 1) we may suppose that the
dominant term is the former one.

The emitter is long and then the minority carrier excess distribution will be exponential and will
write (taking the x axis positive entering in the emitter and with the origin at the border of the
space charge region at the emitter side).

ap(x) = dp(@)exp (- &)

The hole current injected in the emitter is:

dap

Igp = —CIADEE o =qA Iz—sz—i(exp (%) — 1)

Then

Dg n? Vsg
Ig ~ Igp = A——( (—)—1)
B EPp — ( Ly Ng exp Vy

being A the device area.
The collector current if we neglect the recombination in the base and remembering that Vg, =0
will write as

Dy n} V
Ir = qA—B—l(exp (£> - 1)
Wy Ng Vr

92



b) The injection efficiency yg is defined as the ratio between the current injected by the emitter
into the base Iy and the total emitter current Iy = Igp + Igy. On the other hand because the
base is short and there is very little recombination in it Igy = I.. Then remembering that the

diffusion length in the emitter can be calculated from the data as Ly = /Dt = 0.2 um

Dy 1
gy Wg Ny
= = = 0.9901
e Tep+ley Dg L Dp T . DiWslg
Wy Ng ' L Ng DpLgNg

The current gain S is defined as the ratio between the collector current I- and the base current I

Dp 1

le ~WBNB —&L_E& 100
Ip Dg1 DEWBNB_
Lg Ng

ﬂ:

¢) The charge stored by the excess minority carrier in the emitter Qg and the base Qg are
respectively :

Qr = qA fOWE Ap(x)dx and Qp = qA fOWE An(x)dx

Wg 2 V
Qr = qu Ap(0)e Lde = qA—(exp( ) 1)L
0 Vr

Wg
Wg > L = exp (—L—) -0
E

On the other hand

Wg 2

An(0) (1 — Wi> dx = qAAn(0) % = qAn—i (exp (£> — 1) —

Q =qu
5 A Np

0

d) The forward delay time

Lg 1 Wg
o _%t0 _Q Q_ N W Ne 2 L% wg
" Ic I Ic D1l " Dg 1 " DpNg, 2D
WyNg; WzN; WyNg“E
Tg Tg 100ps
Tp = _[)B—&L_E-i_ Terp = F'}‘TtTB = 100 —+ 250 ps
Dg Ng Wg
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Consider a doped region with impurity concentration N, width W and minority carrier
diffusion coefficient D. We define a characteristic parameter for this region called

Gummel number:

G- NW
D
Consider now a bipolar transistor with emitter and base shorts. We know the Gummel
numbers for the emitter and base G = 1.6 x 1013 cm™*s~! and base G =
8 x 1010 cm4s71,
a) Find an expression for the current gain 8 expressed in terms only of the Gummel
numbers. Calculate the numerical value for f3.
b) Analogously find an expression for the injection efficiency and give its numerical

value.

If we recover the expression for the current gain obtained in the last exercise we have:
Dg 1 Veg
IC WBN_n (exP(VT) B 1) DB WE NE

Bt (o () )

B =

In this expression we have the same intrinsic concentration for both the emitter and the base.
If we re-organize the former expression we get:

WgNg
DgWgNg "Dy Gy 16x10% 200
DyWsNg WsNg Gy 8x1010
Dg
The expression for the injection efficiency is
Dg 1
IEN WB NB 1 1 1
= = = = = 0.995
"' lgp+lgy Dg L Dp 1 DgWaNy | Gy | 81010
Wy Ny Wy N DpWgNg Gg 1.6 x 1013
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8.

a)

Consider an NPN Silicon bipolar
transistor (BJT) as shown in the figure.
The base can be considered short
(transport factor ar ~ 1).The emitter is
also short.

a) Calculate the current gain f3.

emitter SCR base

Consider now a heterojunction bipolar
transistor (HBT) with an emitter of
Aly,1Gag9As (E; = 1.5 eV) grownona

GaAs base (Eg =1.4 eV): < - e >
~ ,I o~ ,I
g . Wg = 0.5 Wy =08
b) Draw qualitatively the band diagram " Cnt’ m A Olff 'Zn_g
. . . E — B —
of the base-emitter junction under Dy =5em=2s~1 Dy =20 cm2s1

equilibrium. Give an estimation about
the increase in [ due to the
heterojunction.

In GaAs based ternary alloys for simplicity suppose that electron daffinity, diffusion
coefficients, and effective densities of states do not vary much compared with GaAs.

Data: q =1.6 x1071°C, ky =1.38x10°23J/K, T = 300 K

This exercise explores the effect of ideal heterojunctions on bipolar transistor performance. HBT
are important devices nowadays when high power and frequency are required.

First we are asked about the current gain in a homojunction bipolar transistor with emitter and
base electrically short.

If the base is short the recombination within the base is generally negligible and in particular
smaller than the current injected by the base into the emitter and on the other hand the
collector current (with Vgc =0) is nearly equal to the current injected by the emitter in the base.

R Gl B A
I ﬁl_iNiEnizE (exp (VVLTE) - 1) Dy Wy Ng

100

where n;g and n;; are the intrinsic concentration in the base and the emitter respectively. As
the semiconductor is Silicon in both cases n;5 = n;g.

b) Now we analyze the case of a transistor where the emitter has a larger bandgap than the base.

emitter colector

base
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Under certain conditions the main electrical effect of the heterojunction comes from the
asymmetry of barriers for electrons and holes. This asymmetry results in a strong asymmetry
between hole and electron currents.

If we recover the expression for the current gain

_ Ic Dg Wg Ng nL'ZB

Now due to the heterojunction we have different materials at emitter and base de intrinsic
concentration is no longer equal. In fact if we consider constant effective density of states in the
GaAs alloys we have:

AE
niZE = niZBexp (_k_’FG> ) with AEg = gE — EgB =0.1eV

The expression for the current gain is

AE,
) = ﬁB]T exp <_) = 100 . 54 = 54‘00

Ic  DgWgNg (AEG
kT

Bupr = L =D, wo N, P \kr
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9. Consider a npn bipolar transistor, base and

collector are fabricated using the same
semiconductor with an energy gap E ;. We will
refer to it as reference BJT. The base can be
considered short and consequently the
recombination can be neglected. The emitter
also can be considered short. The base emitter
junction is directly biased with voltage V g while
the base collector junction is short circuited
Vgc=0V.

For the reference transistor:

a) Find and expression for the current gain 8 as
a function of the given data.

b) Find expressions for the small signal
parameters r, and g,,.

c) Find and expression for the delay time tp,
separate the base and emitter contributions

(tr = T + Tp).

collector

narrow base N

Ey + AE, E
wide emitter

oY __

n;: intrinsic concentration for E

N, Ng: emitter and base doping concentrations
Dg , Dg: emitter and base diffusivities

W, Wpg: emitter and base widths

q: electron charge, kT: thermal energy

A: device area

Consider now two heterojunction transistors. One of them, called wide emitter (WE),
the emitter has an energy gap E ; + AE ; larger than the base and collector. The other,
called narrow base (NB), the base has an energy gap E ; — AE gnarrower than collector

and emitter

d) Complete the table below showing how the different parameters change referred

to the reference BJT.

BJT reference HBT wide emitter HBT narrow base
g Bue =8 exp(T2) | Bur=
Tn Trwe = Trnp =
9m Imwe = 9mnb =
TE TEwe = TEnb =
Tp TBwe = TBnb =
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a)

b)

c)

The problem reviews the different features of HBT’s (Heterojunction Bipolar Transistors). The
focus is on one hand on wide gap emitter HBT’s, for instance GaixAlAs/GaAs/GaAs, and on the
other hand narrow gap base HBT’s, the best known Si/Si;«Ge,/Si. As we have already seen in
problem 8 if the band diagram is smooth enough, without spikes and notches, the analysis of
HBT’s is rather simple, in fact it reduces to consider the proper intrinsic concentration in each
case.

Let’s start writing the expressions for I, Ig, Q@ and Qg. Both emitter and base are shorts.
2 2

Nig VsE nig VBE> )
—1) ; I = gAD —1
NyW, (exp ( vy ) ) 1B T ARV N W, (exp ( vy

where n; and n; are the intrinsic concentration at base and emitter respectively.

I = qADg

n? vV w, n? vV w,
% o () 1) % - 0= a2 e (22) 1)
Qr =q N, exp v > Qg =¢q N, exp v >

With that we can write

nip Ver) _
pole aAD, - (exp (FE£) - 1) Dg Wy Ny ny
Iy nZ Vs Dg Wg Ng nig
94Dy oy (exp (V_T -1)
For the reference transistor njg = njpand § = 5—3%%
EWBINB

The dynamic resistance of the base emitter junction is

_r Vr

_E qADENZW exp‘f/ 1)
T

And the transconductance

I qADBN; (exr (35) - 1)
Ve Vy

Im =

The forward transit time

Qr Qp  QOp
TF=E=K+K=TE+TB
nZ Vsg Wy

_ Qs _ AR (exp(VT) 1) _WE

e qADg Nn;, (exp (I{,TE ) - 1) 2D, ~
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d)

and

5 2
Nig VsE _ K &
Qe 1w, (exp () - 1) 2Dy ”iZE _ Tut
E— 757 — 2 -
Ie Ve DB Ng We n B
94D -1 (exp (22 A )-1) DN, W,
Wi
] Wi 2Dgnj
Fe ZDB B nizB
- cerialis h R d WB+WE
e material is homogenous 1z = 1z and 7p = o7 - B2Dg

The expressions giving the different parameters are the same as previously, with the only

A
difference that now both in wide gap emitter and narrow base we have & = = exp (

Remember that AE is defined positive in both cases.

LE

BJT reference HBT wide emitter HBT narrow base
8 AE, AE,
Pue =F- exp(kT) P =P exp(kT)
AE, _
T Trwe = Tn€XP ( kT ) Tanb = T
AE,
Im Imwe = Im Imnb = GmeXp ( )
’ kT
AE, AE,
23 TEwe = TEEXD (— k_T> TEnp = TEEXP (— k—T)
Tp Tawe = B Tgnp = Tp
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10. A phototransistor is a light detector device able to
internally amplify the photogenerated current. Its
physical structure is similar to a bipolar junction
transistor (BJT) but without a base contact.

sx i

Consider a pn hototransistor where a lon
pnp p a K\ pt J n (B) j

enough wavelength (resulting in a uniform

generation profile) illuminates the base-collector

junction. Assume the base short and that the

photogenerated current I, is due exclusively to

optical absorption in the collector region. The

collector region can be assumed long (minority
carrier diffusion length L.). Electrons generated
into the collector reaching the base act from all
points of view as an effective Iz. Recombination
within the base can be neglected because it is
short. Emitter can be also assumed short. We apply
between the terminals a voltageV . = 5 V. Using
the rest of data included in the figure:

Ipp =

c

Data:
Ng=3x108¢m3
D = 6cm?*s™?!
Wg=1um
Ng=6x10%cm3
Dp =12 cm?s™1

WB= 1Ilm
Lc =50 um
A =0.01cm?

G =10 cm3s71
g=1.6x10"1¢
n; =100 ¢m3
Vy=25mV

a) Calculate the current I,,, generated in the collector region, which is injected in the

base.

b) Calculate the voltage Vg biasing the emitter-base junction. Calculate also the

voltage drop at the collector base junction?

¢) Calculate the collector current I and compare with the previously calculatedl .
As a light detector, what is the current gain of this phototransistor?

a) For details about the calculation of the photocurrent see problem 19 chapter 2. The excess

carrier distribution in the collector will be:

lel3

1.0
0.8
T 0.67
g
L
S 0.4 _ x
< An(x) = Gt 1 —exp -
C
0.2
0.0 : ; : : :
0 50 100 150 200 250
z  (um)
dAn G,
Ly, = qAD¢——| = qAD¢;—— = qAGL; = 80 puA
dx x=0 LC

300
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b)

c)

The current injected into the base will play the role of the base current. As the base is short
and consequently we assume no recombination in it, this current will be injected into the

emitter.
Dg n? Vg
Ipp = Ig = Igy = qAWEN—;(exp <V_T> - 1)
and
Veg = Vrln (1 + Iph%q%) =598mV ~ 0.6V
ET

VEC = VEB - VCB d VCB = VEB - VEC = 0.6V — SV = —4.4V

The collector current will be

Dy n? Veg
Ic=Igp = qA WBN—;<exp (V_T) - 1) =7.8mA

The light generated current (at least the collected part of it) is I, = 80uA but the collector is B
times larger with (remember than the recombination current in the base is assumed to be zero)

Acting as photodetector we have a gain of §.
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Chapter 4.

The Metal-Oxide-Semiconductor Field-Effect Transistor
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1. The figure shows the electric field distribution within a MOS structure for a given
potential V ; applied to the gate. Assuming the flat band potential V i (potential for
which the bands are flat) is zero, find:

a) The potential in the bulk of the A
semiconductor g F (kv/em)
b) The potential at the surface Yg 20
c) The threshold voltage V;
d) Find the value of the applied 20l
potential V
Data: 1ok

qg=1.6x10"1¢C
£;=10"12 F/cm
€ox =3 x 10773 F/cm 0 5 4 6 5 10 12 14
n;=1.5x1010%cm™3 2468 102 14 x(um)
kp =1.38x10723 J/K

T=300K

N.B. We take arbitrarily the origin of potentials at the point where Er; = Er and will be positive
if Er > Eg; and negative otherwise.

a) Ata given point x the potential is defined as:

Ep — Epi(x)
P(x) = ———=
Then, at equilibrium, the electron and hole concentrations can be written as:
n(x) = n;ex (M) (x) = njex (— q1,b(x)>

Coming back to the problem. In the semiconductor the electric field will be:

X
E:f p(x) dx
o Esi

The charge within the space charge region in the semiconductor beneath the surface will be

p(x) = —qN,4 and:

N
E(x) = —q—Ax +C
€si

At the end of the space charge region the electric field will be zero.

w

N, N
EW)=—q2W+C=0=>C=q-=2
€si &si

and

Ny
EG) = a2 (W -

Si
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b)

Now, from the maximum value of the field:

A Esi Emax —
E =q—W=>N =——=10150m3
max £ A q w

In the bulk the hole concentration will be equal to N,4. Then, we write:
kT N,

_a¥p
Ny =ne kT = ypp = ——lnn— =-0.28V
i

The potential drop in the semiconductor is the difference between the potential at the surface
s and the the potential at the bulk of the semiconductor Y 5:

Vse = Ys — g

On the other hand the potential drop in the semiconductor V. is the integral of the electric
field:

max

2
'(/JS = VSC +Ith = 002 V

VSC = =03V

The potential distribution taking as a reference the potential at the bulk:

1.0
Ve

0.81
__0.61
=
N 0.4 VSC

0.2 1

Vi =0V
0.0fF-======—m—mmmmmmm—mm———CS===
0.0 0.2 0.4 0.6 0.8 1.0
r (um)
I

S /E
s i
@0 : EF_Z """""""""""""""""""
B O' ~ —
E Br
> | Ey
%_1_ 1
& 1
g 1
M :

-2 1

|
0.0 0.2 0.4 0.6 0.8 1.0
r (um)
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c)

d)

The threshold voltage with zero flat band voltage Vyg = 0 writes:

Qs
Vp = _C_+ 2|Yg|
ox

The charge Qg is the charge in the space charge region of the semiconductor —gN,W and Wthe
width of the space charge region:

W= [t 20l = f2egaN, 2]
A
 2&5iqNa2| |

Vp = + 2[p| = 1.45V
Cox

with C,, the gate capacity by unit surface, C,, = ‘EL" = 15 nF/cm?
X

0.

The applied potential at the gate will be the addition of the potential drop at the dielectric and
the potential drop in the semiconductor

V 1 V
= =30x103—-0.2%x107* —-10%x103—-0.6 x 1074
VG V0X+VSC 30 0 om 0 0 Cm+2 0 0 om 0.6 0 *cm

VG=VOX+VSC=06V+03V:09V

As we see the applied voltage is lower than the threshold.
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2.

We fabricate a capacitance, one plate is a metal sheet and the other a n doped
semiconductor, both “plates” are separated by a dielectric. Although the doped
semiconductor presents a high conductivity, the electric field enters (a very short
distance) into its volume. As a consequence a small fraction of the voltage applied to
the capacitance will drop in the semiconductor.

: I

a) In agreement with the figure, find the

expression for the charge density within the
semiconductor p(x) as a function of the
voltage V(x) which bends the bands.
Assuming V < KT /q develop p(x) to the first

order in V(x).

Np = 1017 -3 :__:~_ - g
Esi = 10712 F /em ﬁ
g=1.6x10"1¢C {/ Fel)

+
b) Show that the voltage within the ¢
semiconductor quickly drops following an £
exponential shape: ¢
Er
‘SSt
V(x) = V(0) exp (- —) where Ly = [V
Ly is called Debye length. Calculate its value E
with the given data @ v
metal insulator n-type

a) Charge p(x) will be at the semiconductor side:

E —F
p(x) = q(Np —n(x)) =q (ND — N¢ exp <— %))

From the figure we can write:
Ec(x) = Ec(0) — qV (x)

Then replacing in the former expression:

EAE) i (29) = iy (1 - s (222))

)

p(x) =q (ND — N¢ exp (—
where we have used that N, = N, exp (—

If we develop the exponential to the first order following the suggestion we have:

2
. <1 ~ (1 s qV(x))> q ND

kT Ve

b) From the Gauss’s law:

dE X N
P( ) q-Np V)
dx & kTsSl-
Then,as E = — v we write:
dx
d*vV  q®Np v 1
—_—= vV = ——-=V =0
&2 ey PTG g’ ®
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The solution of the differential equation will be V(x) = V(0) exp (— Li) where:
D

kTSSi gSi
Ly = = |V
b \/quD \/ ’ qNp

is called the Debye length. For Ny = 107 cm™3 we obtain a value of L, =~ 12 nm.

107



3. Consider the MOS structure shown in the figure. The
charge within the oxide is Q,, = 108 C/cm?, the flat
band voltage is Vg = —1V.

a) Calculate the impurity concentration in the substrate.

b) Calculate the threshold voltage Vi for the MOS
structure.

Si (p)
If we use this structure for the fabrication of a N channel

MOSFET transistor and we bias in the saturation zone with
VGS = 4' Vand VDS = 10 V:

c) Define the transconductance and calculate its value.
Data:q=1.6x10"1°C ky =1.38x 10" 23J/K, T = 300 K,
E;=11eV,n;=1.5x10"cm™3,g, = 8.85x107*F/cm,
£ =11.9,¢,, = 3.9, t,, = 350 4, u,, = 1300 cm?/Vs, W = L = 1 um.

a) The impurity concentration in the substrate is directly related to the bulk potential ¥ p:

p(x) = n;exp (— %) =Ny

We will find first 1. The flat band voltage is:

Vep = @us —% , with Qys = @y — @s
ox
@u and @g are respectively the work functions of the gate electrode and the substrate.
Remember than the work function is the energy difference between the Fermi level and the
vacuum level (we can say that the work function is the energy that should be given to an electron
hypothetically located at the Fermi level to extract it from the material).

i : Evac
ou i S0z Asi
: P Ps
poly-Si (n*) | | § Si (p)
___________ — ' Ec
i :L_ ___________ El
i :'" """""" EF
| i Ey

The gate electrode is polysilicon, heavily n-doped, consequently the Fermi level will be nearly at
the conduction band (Er = E ) and the work function of the gate electrode is roughly equal to
the electron affinity in it, ¢ = xs;.
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On the other hand, the work function in the semiconductor ¢ is the distance between the Fermi
level and the vacuum level at the semiconductor side.

Eg
Qs = Xsi t 7+CI|1/JB|

Eg
Pus = Pu — Ps = Xsi — (Xsi + _+Q|¢B|)

2
Q Eg; Q
Vi = Qus — C::: = Xsi — (Xsi + 7+ q|¢B|) - C:::
Do =z Yox , with t,, the oxide thickness = Qox =01V
Cox ox/t Cox
ox
Y =—-035V

The substrate is P type, the Fermi level is below the intrinsic Fermi level and the potential at the
bulk negative.

avs

Ny = njexp (— T

) =1.1x 10%cm™3

b) The threshold voltage is Vi = Vpg + Viyp

J2e5:qN,2
Vo = squ a2¥s| | 21pl =121V
ox

Ve =Veg+ V5o =—1V+121V =021V
c) The transconductance is, for a given bias point, the incremental relationship between the drain
current and the gate voltage:
_ dip
a dvgs

Im
Q

being Q the polarization point. For the given values for Vs and Vj,5 the transistor will be in the
saturation zone. Then:

; —1 C K — V)2
lD—Zlin oxL(VGs T)

dip 1 w
= == pnCox —2(Vgso — Vr) = 0.48 mA/V
vesly, 2

Im
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4. A given MOS structure has a gate electrode, an oxide
without fixed charge and thickness t = 200 nm and a
substrate of p type Silicon. A first zone in the semiconductor
substrate with thickness W = 0.4 um has a doping
concentration N, = 10'°> cm~3, and 2 x 101> cm~3in the
rest of the substrate. When we apply V; = 1V at the gate
a space charge region is created in the semiconductor with
a total thickness of 0.56 ym.

a) Calculate the values of the electric field at x = 0 and
x =W, E(0)and E(W).

b) Calculate the electric field E ,,inside the dielectric.

c) Calculate the total potential drop in the semiconductor
and the oxide. Verify that the addition of both gives the
gate voltageV; =1V.

d) Calculate the voltage drop in the semiconductor needed
if the surface has to reach the inversion threshold.
Explain the reason why for V; = 1V the surface has not
been inverted yet.

Data:q=1.6 x1071° C,n; = 101% cm™3,
£5;=10.62x 1013 F/cm, £,, =3.54 x 10713 F/cm,
kp =8.62x10>eV/K, T =300 K

a) From Gauss’s law:

£ f"p(x) .
0

Esi

If we integrate from W + A to W we obtain:

2gN,A
E(W) = qg—f’ = 484V /cm

Si
If we integrate up to the origin:

(ZN,A + N,W)

Esi

E(0) =gq = 10847 V/cm

Charge density

1
4

oy
<= D>-=--- - - >i€ = >
1 | 1
----- --- ; ; ; >
! 0 W W+A X
! |
! 1
1 —
: ! —qNy
L
' E —q(2N,)
1 '
Electric field
i Eox !
| 1
L
L
L 1E(0)
! 1
' : EW)
! 1
..... - N
0 w W+A X

b) The electric displacement has to be continuous at the boundary (0) between the oxide and the

semiconductor.
Eox&ox = Esi€si

_ Egigg

V
on = 32541%

on
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c) The voltage drop in the semiconductor is the integral of the field.

Vsc = E(W) % +EW)W + (E(0) — E(W))g =0.3519V

Vox = Epxt = 0.6508V
Ve =Vsc+Vox =1V
d) Let’s find first the potential at the bulk:
_a¥s
Ny =nje kT = Py =—-0.29V
2|yYgl = 0.58V
The potential drop in the semiconductor is:
Vse = 0.3519V < 2|yYp|

Consequently, the surface is not inverted yet.
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5. The figure shows the potential distribution in a n cannel MOS structure (p substrate).
The dielectric is silicon oxide, without fixed charge and thickness t = 0.1 um. Assume
null flat band voltage. With the information given in the figure:

a) Calculate the substrate doping N4 and the Voltage
bulk potential Y, .

b) Calculate the threshold voltage V; for the :
MOS structure L5V

c) Justify that the semiconductor surface is
inverted

d) Calculate the electric field in the oxide.
e) Calculate the total charge in the MOS 0.6V """
capacitance. Which part is due to free
carriers in the inverted channel?

Data: N ?(_ 0.9 um
q=1.6x10"1¢C n;=101cm3, 0.1 um

kp =8.62x10°eV/K, T = 300K,
£5;=10.62%x 1013 F/cm, g,, =3.54 x 1073 F/cm

a) Now the figure shows the potential distribution i.e. the integral of the field.
Let’s start finding the electric field:

X
E=f p(x) .
o Esi

The charge within the space charge region in the semiconductor beneath the surface will be
p(x) = —qN,4 and:

N
E(x) = —q—Ax +C
Esi
At the end of the space charge region x = W, the electric field will be zero.
Ny Ny
EW)=—q—W+(C=0=C=q—W
&si &si

E(x) = q’gv—:_(w—x)

On the other hand:

dv
E=-—=4dV =—-Edx
dx
w w woN
A
f dV=—f de=—] qg— (W — x)dx
0 0 o Ssi
N 2" N, W2
YW —V(0) = — A lwy - | =TT
Egi 2 =0 Egj 2
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The potential drop within the semiconductor

From the figure, Vs = 0.6 V and W = 0.9 um. We can calculate the doping concentration:

255‘ _
Ny = qWLZVSC ~ 10%cm™3
qPp KT . Ny
N, =p =n;exp (_W) = Y = —7ln—i =-0.28V

b) The flat band voltage is zero then the threshold voltage will write

Q
Vp = —C_B+ 2| gl
ox

The charge Qg is the charge in the space charge region of the semiconductor —gN,W and Wthe
width of the space charge region:

2e¢; 2
W=7 Wl J2eaWa2ial = Qs = ~143nC/cm?
A

A/ 2&5;qN, 2
VT= SLCéa |¢B|+2|1/)B|z1V
ox

with C,, the gate capacity by unit surface, Cyy = &x/tox = 35.4 nF/cm?
¢) From the figure the total gate voltage is 1.5 V > V.. So, the surface is inverted.
d) The electric field in the oxide is E,,, = ? =90kV/cm
0x

e) From Gauss’s law, the electric field at the oxide is

_ total charge  charge in the channel + charge in the space-charge-region
ox — -

Sox SOX

on — Qinv + QB

gox

Qinv = Eox€ox — Qg = 17.5 nC/cmZ

Alternatively, the excess over Vi i.e Vg — Vp = _QC""”
ox

Qiny = Cox (Vg — Vp) = 17.5nC /cm?
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6.

b)

c)

Consider the circuit shown in the figure, using it we try Vps
to analyze the frequency features of a n channel
MOSFET. l[D +ig

a) Considering the values (DC) of Vs and Vg,
determine in what region is the transistor biased.
Calculate the corresponding value for I .

b) Calculate the main parameters of the transistor
small signal model in its operating point taking into V¢
consideration the region of operation where the
transistor is biased.

c) Analyzing the small signal circuit, find the transistor cut-off frequency f . The cut-
off frequency is defined as the frequency for which |A;| = 1. Discuss the effect on
fr of the following dimensions: oxide thickness (t ), width (W) and channel length

(L).
Data: Vg =Vps =25V, V=1V, W=50um, L=1pum
&, =3.9, & =8.85x10""* F/cm, t,, = 80nm, u,, = 900 cm?/Vs

[

Ves > Vi and Vs = V. Finally, Vps > Vi — Vi and the transistor is in saturation.

1 w
Ip = EK(VGS —-Vp)?; K= ﬂnCoxT =19mA/V? ; I, =2.18mA
The capacitance Cys = gCoxWL =14 fF.
Remember the convention:

= Capital letter with capital letter subscript for the bias value My,
= Small letter with capital letter subscript for the total value of the variable m,,
= Small letter with small letter subscript for the signal part m,,

B dip
B dvgs

Im

Q

Fort the current gain:

Iq

lg

ImVgs  Gm
VgsCysw  Cgsw

ig = ngijgS - |Al| =

If we look at what frequency the current gain drops to unit we get:

Im Im
Cystor T Tfr Cos

w
1 gn _ 1 K(Vasq =Vr) _ 1 nCox (Vaso = V1)

fr=75-

- = =32 GHz
2mCys  2m 2/3CoWL 27 2/ CoxWL

If we have a look to the final expression for fr we see that it does not depend neither on the
oxide thickness t,, neither on the channel width. On the other hand, it depends inversely on

the square of the channel length f 1/L2'
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7. The figure shows the transconductance g,, of a n —————
channel MOSFET as a function of V ;5, measured for
a given value of V .

a) Identify in the figure which regions correspond to
cut-off, linear zone and saturation.

b) What is the transistor threshold voltage V?

gm (MA/V)

c) What is the value of Vpg for which the
measurements have been done?

d) Calculate the mobility of the electrons in the
channel.

Data: W =70 um, L =10 um, t,, = 20 nm,
_ _ -14
&, =3.9,& =885%x10"""F/cm Ves (V)

Tox

a) b) The transconductance in saturation has a linear dependence with V;:

Im = &|Q = K(VGSQ - VT)

- dvGS

An n channel MOSFET is in saturation if Vg > Vg — Vi, e, Vg < Vpg + V. If we look at the
figure the linear dependence is from Vg > 2V until Vg = 6V. That means that in this interval
2V < Vgg < 6V the MOSFET is in saturation. If Vg = 6V the MOSFET is in the ohmic zone and
in cut-off for Voo < 2V.Then, Vy = 2 V.

c) IfVy = 2V the transition from saturation to ohmic zone happens at Vg = 6V, then Vs = 4V.

. . . di
d) The expression in saturation for the transconductance is g,, = dle | = K(VGSQ - VT)
GS Q

If we take the value g,, = 6 mA/V for Vg = 6V, we obtain K = 1.5 mA/V?. Then:

w
Kz.uncoxf:ﬂn=__ )

K L 15x107%-20x1077 (10
Cox W  3.9-885x 10714

) = 1241 cm?/V - s
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8.

The objective of the Dennard scaling is to
achieve that the consumed power by a
MOSFET scales with the area. Then, although
in an integrated circuit the density of
transistors increases, the consumed power by
unit area will remain more or less constant. As
an example consider an n channel MOSFET
with  Aluminum gate (¢, =4.2¢eV),
fabricated on a p type substrate and doping
N, = 1016 cm~3. The gate dielectric is silicon
dioxide without fixed charge and thickness t .

a) Calculate the threshold voltage V; for an
oxide thickness t,, = 100 nm. Verify that
if we reduce t,, by a factor 2, the value of
Vr will reduce also approximatively in a
factor 2.

© John Wiley & Sons, Inc.

Then if we reduce t,, by a factor 2, we can operate the MOSFET with around half
voltages V s and V ;. Consider also reduce by a factor 2 the width W and the channel
length L, (the aspect ratio W/L will remain constant).

b) How will the current I}, vary compared with the value for the initial dimensions of
tox, Wand L?

c) Justify that the consumed power (P = Vgsly) is proportional to the device area
W X L.

d) Finally evaluate how the transistor cut-off frequency frwill vary when the
dimensions (t,,, W y L) are reduced by a factor of 2. f is the frequency for which
the small signal current gain |id /i g| =1.

Data:q=1.6 x10"1° C ky =1.38x 10723 J/K, T = 300K, n; = 10'° cm™3,
Xsi=4.05eV, &, =8.85x10""* F/cm, &,, =11.9,¢,, = 3.9

Let’s calculate first the threshold voltage V7.

Dms V2&s5iqNs2 ||

Vp = M5 4 olgl +
™ q 5 Cox

with @y the difference in work function between the metal ¢, in this case Aluminum, and the
semiconductor ¢s.

The work function in the semiconductor writes as:

E
bs = Xxsi + 7G+Q|¢B|

where ys; is the electron affinity in the semiconductor and 1 is the distance between the
intrinsic Fermi level in the bulk (far away from the surface) of the semiconductor and the actual
position of the Fermi level:

(Er —Ep) KT N,

—In—=-0.345V

Ve = q q n
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b)

d)

E
bs = xsi + 7(” + qlpg| = 4.05 eV + 0.55 eV + 0.345 eV ~ 4.95 eV
Finally,
Pyus = ¢y — ps =~ —0.75 eV

VT=%+2|¢B|+—WWB —0.75V + 0.7V + 1.39V ~ 1.35V

COJC

for an oxide thickness of t,,, = 100 nm.

If t,, = 50 nm then:

? 2e5,qN,2
VT=$+2|¢B| SquAW’B' —0.75V + 0.7V + 0.7V ~ 0.65V
ox

Roughly the threshold reduces to a half when the oxide thickness reduces by a factor 2.

If we have a look to the expression of the current in saturation.

1

w 2
2 (Ves — Vr)

Ip = oxL

UnC,

Now if we reduce by a factor of 2 the dimensions t,,, W, L and also the voltages V;sand V; we
get

Ip~ Yyzee Ly2
D~ 1/fox ox |

and when we scale

~—— .

The power Pp = Vpslp. Scaling dimensions (and consequently currents as we have just seen)
and also the voltages by a factor of 2 the dissipated power will scale by a factor of 4.

Summarizing if we scale dimensions and voltages by a factor of 2, the area will reduce by a factor
of 4 and so will do the dissipated power. The dissipated power by unit area will remain constant.

The cut-off frequency

1

w
_ L gm _ 1 K(asq=Vr) _ 1 #nCox T (Voso = Vi)
Jr= 2mCys

21 2/aCouWL 2T 2/3Co WL

will scale if we reduce dimensions and voltages by a factor of two we get:
1 |14
[t TV

fr~
l tox wL

The cut-off frequency will increase by a factor of 2.
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9.

a)

b)

c)

d)

The figure shows the transfer characteristic
Ip-V s for a MOSFET measured in saturation
(we have fixed Vps=Vis during the
measurement) We have also measured the 225F
gate capacitance (WLC,,), and we obtain
25 x 10717 F. The gate is polysilicon p™, 180 o m o .
square with 1 um side. The substrate
resistivity is 2.1 2 - cm.

270

Ip (nA)
&

a) Calculate the threshold voltage V.
b) Is a n or p channel transistor? Why? 0

c) Calculate the transconductance g, at
Vs = 5V, under saturation conditions. 45 -mm e

d) Find the electron mobility in the channel

|
|
I
and the oxide thickness. . . '.
0 1 2 3 4
e) Calculate the substrate doping, knowing Ves (V)
that the ratio =2 = %

Hn

f) Calculate the flat-band voltage V g5 and the fixed charge in the oxide.

Data: &,, =3.45x 10713 F/cm, &5 =10.5x10"3 F/cm,E; =1.1eV,
n; =10 cm=3,kT/q=0.025V, q=1.6 x1071°C

In saturation

1 W 2
Ip =§ KT(VGS_VT)

Taking two points of the curve (Vs = 3V and Vs = 5V), we get:

180 (5 — Vrp)?
45 (3 —Vp)?

:VT=1V

we can obtain also K = 22.5 uA/V?
It’s a N channel MOSFET because Vgs, Vps >0, Vi >0, I >0

The transconductance g,, is defined as:

_dip
dvgsl,

Im = K(VGSQ - VT)

Calculating for V5o = 5V we obtain g,, = 90 uA/V

_ 25107 F

The gate has L = W = 1um and the C,, = Tosomz = 25 nF/cm?

ErE
tox = —2 ~ 140 nm

ox
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e)

f)

On the other hand,

K Cp— = KL 900 ¢cm?/V
=u Un = = cm - S
nEox g, n Cox W

The resistivity p = % = . Remember that we are in a NMOS and the substrate is p type,

qupNa

u
up=?"=300 cm?/V-s = Ny =

~ 10 cm=3
Alpp

The threshold voltage V; can be written as the addition of the value of the threshold voltage Vrq
when the bands are flat and the flat-band voltage Vp5 i.e the needed voltage in order to flatten
the bands

Ve = Vg + Vo

On the one hand:

J2e5:qN,2 KT N
Vo = Y2 WNZWEl g 1 with gy = — XL 1M — g345v
Cox q n;
VTO =26V

The flat-band voltage Vgg will be:
VT - VTO = _16 V
from Vg we can calculate the fixed charge in the oxide:

¢MS _ Qox
q  Cox

VFB -

but we need to calculate first ¢ 5 = Py — Ps.

The work function at the gate electrode is the difference between the Fermi level at the gate
electrode and the vacuum level. As the gate is fabricated in heavily p-type doped polysilicon,
¢m = Xsi + Eg, while on the semiconductor side ¢s = xs; + E¢/2 + qlypl.

Finally,

Eg
bus = 7‘*‘ qlypl = 0.205V

¢MS Qox
Vep = —— = Qox = C
FB q Cox ox ox

(%— VFB) = 45 nC/cm?
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