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Preface

This text is meant for students starting to learn about semiconductor devices
and physics, as well as those who are interested in a review. It is meant to be a con-
cise description of what the authors think are the key areas of this subject. The goal
is to acquaint readers with the information to give them a sufficient understanding
of semiconductor devices and physics so it can either serve as a starting point from
which much more studying can be done in the area, or it can serve as a stand alone
final course that complements other areas of study and practice.

The authors are grateful to Dr. Zeynep Dilli and Dr. Anshu Sarge for their
help at the beginning of this project; Dr. Danilo Romero for his insightful discussions
on teaching semiconductor physics; Dr. Rob Valente for editing; Casey Goldvale for
providing figures; Dylan Goldvale for comments; Yumeng Cui and Usama Khalid
for being excellent graduate teaching assistants; and to UMD ENEE 313 students
Hannah Watsky and Mauricio Perez-Oviedo for proofreading the text.
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Chapter 1

Crystal Structure

1.1 Introduction

Crystal is a periodic array of atoms arranged in a lattice.

A crystal is a periodic array of atoms. There are many crystals in nature. Most

of the solid elements in the periodic table are crystals. Silicon is an example of

a crystal that is very important in electronics because it is also a semiconductor.

Other crystals include metals like aluminum and salts such as sodium chloride. As

a first step to defining crystal structure, we need to talk about lattices.

1.2 Lattice

Lattice is a periodic array of points in space.

The lattice is a mathematical concept. It is not the crystal. The atoms are arranged

on a lattice to define the crystal. However, the lattice itself is just a regular periodic

array of points in space arranged according to the following vector relationship:

~R = µ~a+ ν~b+ ω~c (1.1)

where, ~a,~b,~c are the fundamental lattice translation vectors and µ, ν, ω are integers.
~R is a vector that represents or lands on the set of points that defines the

lattice. Different values of the integers correspond to different points on the lattice.

The lattice looks the same as when viewed from any point ~R

in space.

Lattices can be in one dimension, two dimensions or three dimensions. Of

course, a physical crystal typically will be described using a 3-D lattice. However,

for illustration purposes, it is useful to show 2-D lattices. Figure 1.1 shows an

example of a rectangular 2-Dimensional lattice. The figure also shows the lattice

translation vectors ~a and ~b.

1
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a

b

a 2a

2b

b

a+2b

Figure 1.1: A rectangular lattice. ~a,~b are the fundamental translation vectors for
the set of points which define the lattice.

Another 2-D example is shown in Figure 1.2 where a 2-Dimensional diamond-

like lattice is illustrated.

Lattice Primitive Unit Cell is geometric structure that when translated by

the primitive vectors will fill up the entire space of the lattice. The Lattice Primitive

unit cell will contain only one lattice point. An example of a Lattice Primitive unit

cell is shown in Figure 1.2 denoted with the primitive vectors ~a and ~b.

Lattice Conventional Unit Cell is typically not a lattice primitive unit

cell but a convenient unit cell that describes the lattice. An example of a lattice

conventional (often called convenient) unit cell is shown in Figure 1.2 denoted with

the unit cell vectors ~a′ and ~b′. Note that the conventional lattice unit cell contains

more than one point (in this case two), which has the effect of increasing the number

of atoms in the basis. The atomic basis is discussed later in Section 1.3.

Example 1.1:

Primitive Unit Cell Descriptions in 2-D

Given the lattice structure shown in Figure 1.2, assign primitive lattice vectors

in four different ways. Remember, the choice of primitive vectors is not unique.

Any set of two (linear independent) vectors which contain a single lattice site

can define the primitive cell of a crystal. In this example, we can choose

any of the lattice vector pairs shown in Figure 1.3 labeled 1 − 4 as well as

all combinations of ±~ax and ±~bx. The pair of vectors labeled 5 and 6 do

not define a primitive cell. Vectors 5 are not primitive because they enclose

two full lattice sites and vectors 6 are not valid because they are not linearly

independent and thus do not define a 2-D expanse.
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Figure 1.2: A 2-dimensional diamond-like lattice. ~a,~b are the fundamental transla-
tion vectors for the set of points which define the lattice. These are better known as
the primitive lattice vectors, and they enclose one full lattice point in the primitive
cell. A conventional or convenient unit cell description of the crystal is shown us-
ing vectors ~a′, ~b′. In this description of the crystal, two lattice points are contained
within the unit cell.

Figure 1.3: Primitive vectors for a 2-D Lattice
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1.2.1 Common 3D Lattices and Lattice Unit Cells

For real crystals, we have 3-Dimensional lattices. There are a number of

important 3-D lattices. While an entire class can be devoted to the geometrical and

symmetry properties of these 3-D lattices, we will confine ourselves to mentioning

four important ones that are especially relevant to most crystalline solids, especially

semiconductors. These are the:

• Simple Cubic Lattice, which has lattice points on the corners of a cube,

and the 3-D lattice is formed by translating the cube through space, using

the orthogonal vectors ~a,~b and ~c, where |~a| = |~b| = |~c | There is one complete

lattice point in the cube unit cell. (This is a primitive lattice unit cell.) Figure

1.4 shows the a unit cell from of the simple cubic lattice.

• Body Centered Lattice, which has lattice points on the corners of a cube,

and one in the center, and the 3-D lattice is formed by translating the cube

through space, using the orthogonal vectors ~a,~b and ~c. There are two complete

lattice points in the body centered cubic unit cell. (This is not a primitive

unit cell for the body centered lattice.) Figure 1.5 shows the a unit cell from

of the body centered cubic lattice.

• Face Centered Lattice, which has lattice points on the corners of a cube,

and one each of the six faces, and the 3-D lattice is formed by translating

the cube through space, using the orthogonal vectors ~a,~b and ~c. There are

four complete lattice points in the face centered cubic unit cell. (This is not

a primitive unit cell for the face centered lattice.) Figure 1.6 shows the unit

cell of the face centered cubic lattice.

1.3 Crystal

Now that we have talked a little about lattices, let’s move on to crystals.

A crystal is the actual physical entity which consists of a periodic arrangement

of atoms on a lattice. The crystals that we talk about in this class are largely

crystalline solids and therefore will typically contain close to Avogadro’s number of

atoms. Recall, Avogadro’s number is 1.602 × 1023 number of atoms/molecules in

one mole of a substance. The separation of atoms in the crystal is typically about 2

angstroms. We typically describe the crystal as the lattice plus the atoms arranged

on each lattice point. Each lattice point will have the same arrangement of atoms

associated with it. The set of atoms associated with each lattice point is called the

Atomic Basis. The atomic basis is given by these atoms and their coordinates

with respect to the lattice point.
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Figure 1.4: Primitive cell of SC. A cube with atoms at its each corner.

Figure 1.5: A cube with 1/8 lattice point at its each corner and one in the center.
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Figure 1.6: A cube with lattice points at its each corner and one at the center of
each of the six faces.

Atomic Basis or often just called the Basis is arrangement of a group of atoms in

the crystal with respect to a lattice point.

Crystal = Lattice + Atomic Basis

Crystal Unit Cell: Fundamental building block which when translated by integer

multiples of lattice vectors produces the complete crystal. There are two basic types

of unit cells, a crystal primitive unit cell and a crystal convenient unit cell.

Note: Lattice Unit Cell versus Crystal Unit Cell: Earlier in the chapter we

talked about Lattice Unit Cells, and in this section we are talking about Crystal

Unit Cells. The main difference is that Lattice Unit Cells are just points in space,

while Crystal Unit Cells have atoms associated with them. In other words, Crystal

Unit Cells are real physical objects, while Lattice Unit cells are mathematical con-

structions. It is also important to understand that the Lattice Primitive Cell will

only have one point. However, the Crystal Primitive Cell can have more than one

atom as explained below.

Crystal Primitive Unit Cell: The smallest unit cell you can have and still have

the material. For a monatomic crystal, the primitive unit cell usually contains

only one atom. However, if the crystal contains more than one type of atom, the

primitive unit cell will contain more than one atom. For diatomic crystals containing
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for example, atom type A and atom type B, the primitive unit cell will typically

contain two atoms, one of type A and one of type B. However, unless the lattice is

rectangular, the primitive unit cell will typically have coordinate vectors that are

not orthogonal, and thus are difficult to work with.

Crystal Convenient Unit Cell: When scientists and engineers work with crystals,

they usually do not utilize the primitive unit cell to describe the crystal, but use

alternative or non-primitive rectangular unit cells that is much more convenient to

work with. The coordinate vectors for these conventional or convenient unit cells

will typically be at right angles.

Example 1.2:

2D Monatomic Crystal on Rectangular Lattice

Probably the simplest 2-D crystal is the crystalline solid that contains only

one type of atom arranged on a rectangular lattice. The structure is shown

in Figure 1.7. Determine the primitive lattice vectors and atomic basis.

For this case there is only one atom in the atomic basis and the crystal is

described as follows:

Lattice µ~a+ ν~b

Basis: Atom A at (0,0)
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Example 1.3:

2D Monatomic Crystal on Diamond Lattice

In Figure 1.8, we show 2-D crystal is the crystalline solid that contains only

one type of atom arranged on a diamond lattice. The diamond type structure

is the primitive lattice and the primitive unit cell. Give a primitive and

convenient cell description of the crystal by specifying the lattice vectors and

atomic basis.

For this case there is only one atom in the atomic basis and the crystal using

the primitive unit cell and a one atom basis is described as follows:

Lattice µ~a+ ν~b

Basis: Atom A at (0,0)

This monatomic crystal can also be described using a convenient rectangular

lattice and a convenient unit cell that contains two identical atoms. For this

case, the same crystal can be described by the following rectangular lattice

and the two atom basis.

Lattice µ~c+ ν ~d

Basis: Atom A at (0,0); and atom A at (1
2
c, 1

2
d)

Figure 1.8 shows both the primitive diamond and the convenient rectangular

structures.

Example 1.4:

Diatomic 2D Crystal on a rectangular lattice

An example of a 2-D crystal is shown in Figure 1.9, where there is a 2-D

rectangular lattice and an atomic basis consisting of two different types of

atoms, A and B. Determine the primitive lattice vectors and atomic basis.

We can describe the crystal in the following way:

Lattice µ~a+ ν~b

Basis: Atom A at (0,0); Atom B at (1
2
a, 1

2
b)

8
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Figure 1.7: A 2-D Crystal on a Rectangular lattice with a one atom (A) basis. The
lattice translation vectors and the unit cell are shown.

Figure 1.8: A 2-D Monatomic Crystal on a diamond-like lattice, with a one atom
(A) basis. The lattice translation vectors and the primitive unit cell are shown.
Also shown is the corresponding convenient rectangular lattice with a conventional
rectangular unit cell and a basis consisting of 2 (A) type atoms.
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a

b

a

b

unit cell

A

B

A

A

A

B

B B

B

Figure 1.9: A 2-D Crystal on a Rectangular lattice with a two atom (A & B) basis

Figure 1.10: An FCC Lattice
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Example 1.5:

Primitive and Convenient Unit Cell Descriptions in 3-D

Given the lattice structure shown in Figure 1.10, and assuming the side-

lengths of the box are equal to a, where a = ‖ã‖:
Give a description of the lattice (lattice vectors + atomic sites in basis) for a

primitive and convenient unit cell.

Using the FCC description of the crystal we obtain the primitive cell:

Primitive Lattice Vectors:

~a = a
2
x̂+ a

2
ŷ, ~b = a

2
x̂+ a

2
ẑ, ~c = a

2
ŷ + a

2
ẑ

Atomic Basis:

One atom at (0, 0, 0)

We only need to include one atom in the basis and translate it with various

linear combinations of the primitive lattice vectors to fill out the entire crystal.

The vectors are shown on the left of Figure 1.10.

For the convenient cell, we can use a SC lattice and increase the number of

atoms in the basis:

Lattice Vectors:

~a = ax̂, ~b = aŷ, ~c = aẑ

Atomic Basis:

Four atoms (0, 0, 0), (a
2
, a

2
, 0), (a

2
, 0, a

2
), (0, a

2
, a

2
)

We need to include more atoms in the convenient cell basis because if we only

translated the single atom from the primitive basis along linear combinations

of these new lattice vectors, we would be missing atoms on the faces (and

interior) of the unit cell. The vectors are shown on the right of Figure 1.10.

1.4 Crystal Planes and Directions

In a crystal atoms are arranged on the lattice and as a results we have layers

or planes of atoms. Planes form along different directions. We have a method of

referring to these planes and directions in a lattice and in a crystal structure.

Crystallographic Directions are written in brackets [uvw], where u, v and w

represent integers. The crystallographic direction is generally given by the coeffi-

cients of the lattice translation vectors. Examples of crystallographic directions for

a 2-D crystal are shown in Figure 1.11. with directions in 2-D given by values of

[uv].
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[1,0]

[1,1]

[1,2]

Figure 1.11: Figure showing examples of Crystallographic Directions and their la-
beling

Crystallographic Planes are written parenthesis (hkl), where h, k and l represent

integers that are called the Miller Indices for that crystal plane. The following

methodology is used to label crystallographic planes, and thus get the values of the

integer Miller indices h, k and l.

1. Draw an orthogonal coordinate system somewhere on the crystal.

2. Determine the x,y,z coordinates where the plane intersects the axes. These

will be integer values and will represent a number of lattice points.

3. Take the reciprocals of each of these points of intersection and then determine

the smallest set of integers that give the same ratios between the 1/x, 1/y and

1/z and these will be your h,k and l indices and thus the (hkl) crystal plan.

It is probably easiest to understand by example. Let’s start with a plane in

2D which is actually a line.

Example 1.6:

Find the label for Plane I in Figure 1.12.

1. Intercepts: 4~a, ∞~b
2. Taken plane is the reciprocals: 1

4
, 1
∞

3. Reduce to smallest set of integer that has same ratio 1
4
, 0→ (1, 0) Plane
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Plane I

Plane II

Figure 1.12: Figure showing examples of planes (1,0) and (1,1).

Example 1.7:

Find the label for Plane II in Figure 1.12.

1. Intercepts: (x=2) and (y=2)

2. Reciprocal 1
2
, 1

2

3. Plane (1,1) (Figure 1.12 Plane II)

Example 1.8:

Find the label for a plane with indices (3,1).

1. Intercepts at (x=1, y=3)

2. Reciprocals: 1
1
, 1

3

3. Plane (3,1) (See Figure 1.13)
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(3,1) plane

Figure 1.13: Figure showing plane (3,1).

Example 1.9:

Find the label for a 3D Crystal Plane with indices (2,1,4).

1. Intercepts at (x=2, y=4, z=1)

2. Reciprocals: 1
2
, 1

4
, 1

1

3. Plane (2,1,4) (See Figure 1.14)

1.5 Semiconductor Crystals

1.5.1 Elemental Semiconductors

Silicon is the most important semiconductor. It has a diamond crystal struc-

ture which has 2 atoms in its Primitive Unit Cell. Germanium is also a semicon-

ductor and has the same crystal structure as silicon. And of course, Carbon also

forms in the diamond structure. These atoms make up the first three the elements

of the 14th column of periodic table and are arranged from top to bottom as C,

Si, then Ge which indicate increasing atomic size. This size increase can be seen

in the size of their corresponding crystal lattice constants: aC = 0.3567nm, aSi =

0.5431nm, aGe = 0.5658nm.
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a

b

c

Figure 1.14: 3D Crystal plane (2,1,4).

Figure 1.15: A cubic unit cell of the diamond lattice. It can be thought of as
two interpenetrating FCC unit cells, with one translated one quarter way up along
the diagonal faces. Lattice constants: aC = 0.3567nm, aSi = 0.5431nm, aGe =
0.5658nm.
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Diamond Crystal Structure is very important in electronics because the

semiconductors silicon and germanium are arranged on a diamond lattice. The

diamond lattice is more complicated than the aforementioned structures. It can

be described as two interlaced Face Centered Cubic lattices, with one lattice being

translated by 1/4 ~a, 1/4~b and 1/4 ~c along the Face Centered diagonal. The diamond

lattice cubic nonprimitive unit cell is shown in Figure 1.15. This convenient unit

cell contains an 8 atom basis. For a more detailed discussion of various lattice types,

see a text on Solid State Physics such as Kittel [1].

Carbon, Silicon and Germanium are all in the 14th group in the periodic table,

so they all have 4 valence electrons. When they form crystals, the 4 valence electrons

hybridize into the four sp3 orbitals, which give rise to bonding and the diamond

crystal structure. Each silicon atom will be bonded to four other silicon atoms to

form the diamond lattice, forming covalent bonds and satisfying the octet rule for

pairing of valence electrons.

1.5.2 Compound Semiconductors

In addition to elemental semiconductors, there are compound semiconductors

that also form as diamond like structures. Gallium Arsenide (GaAs) and Gallium

Nitride (GaN) differ from the elemental structures of Si by the following. They

are composed of two interlaced FCC crystals, however, for GaAs one FCC crystal is

composed of Ga and the other translated FCC structure is composed of As. A similar

description can be given for GaN. This diamond like structure is called Zincblende

These compounds are called three-five semiconductors because they come from the

13th and 15th columns of the periodic table.

1.6 Problems

1.1 Primitive Unit Cell vs. Convenient Rectangular Unit Cell with Basis.

Recall, the primitive unit cell is the smallest unit cell we can have of a material,

and still have that material. However, the shape of the primitive can be

difficult to deal with. Often, we use a convenient larger rectangular unit cell

with a different atomic basis since it is easier to work with than the primitive

unit cell. Now, suppose we have a 2-Dimensional material composed of a single

type of atom (Atom A). The material has a convenient rectangular unit cell

with vectors: a = 1nm, and b = 2nm. Also, the atomic basis of this convenient

rectangular unit cell is (A: 0,0) and (A: 1
2
,1
2
).

(a) Sketch the lattice of this crystalline material and outline the convenient

rectangular unit cell described above. Include the lattice vectors a and b
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on the cell.

(b) Outline a primitive unit cell for this material on your sketch and label

the primitive vectors.

1.2 Consider the structure illustrated below, which might represent the structure

of a (two dimensional) molecular crystal with each arrow representing a het-

eropolar molecule, and the direction of the arrow designating the orientation of

a molecule. The molecules are arranged on an equilateral triangular network.

(a) Define the structure in terms of a convenient rectangular cell and a suit-

able basis.

(b) Define the structure in terms of a primitive cell and a basis.

(c) Repeat (a) and (b) if the molecules are replaced by atoms (i.e. dots

instead of arrows). (Note that this would also be an appropriate descrip-

tion!)

1.3 Miller Indices and Lattice Planes

(a) For the 2-Dimensional lattice, sketch the (1,0), (1,1) and (1,2) planes.

(These are actually lines for 2-D lattices)
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(b) For a 3-Dimensional cubic lattice, sketch the (1,0,0), (1,1,0) and (3,2,1)

planes

1.4 A 2-Dimensional crystalline material with the chemical formula AB2 has its

atoms arranged on square lattice. The three atom atomic basis of this structure

is (A: 0,0), (B: 1
2
,0), (B: 0,1

2
). The length of the primitive vector a is 0.5nm.

(Since the primitive unit cell is a square, both primitive vectors have the same

length.) The radius of atom A = 0.1nm, and the radius of Atom B = 0.05nm.

(a) Sketch this crystal

(b) Sketch a primitive unit cell of this crystal and discuss it in one or two

sentences.

(c) What is the area of the primitive unit cell filled by atoms, and what is

the empty area? (We are dealing with areas since this is a 2-D system).

1.5 A 3-Dimensional crystalline material has a simple cubic primitive unit cell

that has the chemical formula AB. The length of the primitive vector = a is

0.5nm. The atomic basis is (A: 0,0,0) and (B: 1
2
,1
2
,1
2
). The radius of atom A

= 0.1nm, and the radius of Atom B = 0.05nm.

(a) Sketch this simple cubic primitive unit cell.

(b) What is the total volume of this primitive unit cell?

(c) What is volume of the cell that is occupied by atoms?

(d) If instead of having the atom B in the center, you had atom A, would

this still be a primitive unit cell? Explain why or why not.

1.6 Sketch the unit cell for a:

(a) simple cubic lattice

(b) body centered cubic lattice

(c) face centered cubic lattice

1.7 Most semiconductors are arranged on a diamond lattice, shown in 1.15. How

many atoms are in the convenient rectangular (diamond structure) unit cell

of silicon? By giving the location of each of the atoms in this unit cell, justify

your answer.
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Chapter 2

Atoms, Electrons and the

Beginning of Quantum Mechanics

2.1 Introduction

Quantum Mechanics is the new physics. To be a good engineer, you really

need to have some fundamental understanding of basic quantum mechanics. Quan-

tum mechanical properties become important when we start working with small

objects, which typically have the dimensions of nanometers or smaller. We learned

in basic chemistry that quantum mechanics is important in describing the energy

levels of an atom. In addition, quantum mechanics plays a key role the operation

of modern electronic devices. The operation of the fundamental electronic devices,

such as transistors and diodes, is described by a combination classical mechanics

and quantum mechanical principles. As I write this in the year 2014, the latest

generation MOSFET transistor in production, which is the key transistor building

block of most electronics, has a gate length of 22nm. Other devices are even smaller,

and have critical dimensions of a few nanometers or less, and thus are strongly in-

fluenced by the principles of quantum mechanics. Electrons and holes, the basic

charge carriers in electronics are quantum mechanical entities. While virtually all

electronic devices are influenced by quantum mechanics, some devices operate virtu-

ally totally on quantum mechanical principles. These devices include Flash Memory

Sticks, Solar Cells, solid state Lasers, LEDs and LED lighting.

From a historical perspective, quantum mechanics started to come into being

in the early 20th century. Then, for the next one hundred years, most discovery

in physical science has been guided by quantum mechanical issues. Quantum Me-

chanics arose to satisfy the need for a new science to describe the observations
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that were being discovered about one hundred years ago. Two of these key areas

of the discovery were the Photoelectric Effect and the Light Emission Spec-

tra of Atoms. These discoveries opened up the fundamental quantum mechanical

properties that small particles, like electrons, exhibit both wavelike and particle-like

behavior, and that light, long thought of as a wave, can exhibit both particle and

wave-like properties as well.

There are numerous excellent texts on Modern Physics and Introductory Quan-

tum Mechanics. Students who want to delve deeper into these topics than is pre-

sented in this text might want to check out the following books [2, 3], for example.

2.2 Photoelectric Effect

In 1887 Heinrich Hertz discovered that if he focused ultraviolet light on a

metal surface electric sparks could more easily be emitted. Further investigations

showed that if you shined light of high enough frequency electric current could be

emitted from the metal surface. Furthermore, as the intensity of the light increased,

the electric current, or the number of electrons collected per unit time, would in-

crease. However, the energy of the individual electrons would not change unless you

changed the color or frequency of the incident light. If you shined light of higher

frequency, then the energy of the emitted electrons would be greater. Ultimately, it

was discovered that low frequency light (in the red part of the spectrum for example)

would not give rise at all to any emission of this ‘photocurrent’ or photoelectrons,

no matter what the intensity of the incident light was. This was puzzling to sci-

entists at the time because light intensity, which is defined as the light power per

unit area (Watts/m2), had always been taken to be proportional to the square of

the amplitude of the light. According to this classical view of the energy and light,

it had nothing to do with the frequency of the light, and therefore the frequency

should not have affected the energy of the emitted electrons.

Let’s summarize the Photoelectric Effect experiment (Figure 2.1):

1. Shine light at a metal plate.

2. Detect electrons that are emitted if the frequency of light is high enough.

3. Measure energy of emitted electrons.

4. Measurement showed that the energy of the emitted electrons is proportional

to the frequency of light, and the proportionality constant had a particular

value and was given the name Planck’s Constant and the symbol h
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Figure 2.1: Left diagram: Electrons are emitted when light strikes the material.
Right graph: Energy of the electrons as a function of frequency (energy) of light
striking it.

5. Measurement also showed that the number of electrons per unit time emitted

(electric current) for a fixed frequency (color) of light was proportional to the

intensity of the incident light.

When the energy of the emitted electrons was plotted versus frequency of light a

straight line was generated and the y-intercept was at a negative value. Mathemat-

ically this was given by:

E = hf − E0 (2.1)

or written in terms of angular frequency ω and the work function as defined below:

E = ~ω − qφ (2.2)

Where h = Planck’s constant = 6.63×10−34Jsec = 4.14×10−15eV sec, ~ = h
2π

,

f is the frequency of the light, and ω = 2πf .

The y-intercept of the energy versus frequency plot, E0 = qφ, is defined as the

Work function, which is the minimum energy required to remove an electron from

an atom.

Because there is a minimum photon energy required to remove an electron,

that means there is also a corresponding minimum photon frequency and wavelength.

The wavelength λ can be calculated from the frequency f using the relation c = λf ,

where c is the speed of light.

Conclusions about Quantum Mechanics (QM) and the particle nature of

light:

1. Light is composed of wave packets or particles of light called photons. A single

electron is emitted when the material absorbs a single photon. Energy from

the photon is transferred to the electron.
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2. Light intensity is given by number of photons present. That is why the increase

in light intensity gives rise to more electrons emitted per unit time.

3. Energy of photon (~ω) is proportional to light f (frequency), and is governed

by the following fundamental relationship:

E = hf or E = ~ω (2.3)

Example 2.1:

UV light of frequency f = 3×1015s−1 strikes a nickel plate with work function

E0 = 5eV . What is the energy of the emitted electrons? What if the incoming

light had f = 1× 1015Hz instead?

First calculate the energy of the incoming light:

Ephoton = hf = 4.14× 10−15eV s · 3× 1015s−1 = 12.4eV

Then subtract the work function of the metal to determine extra energy given

to the emitted electron:

E = hf − E0 = 12.4eV − 5eV = 7.4eV

If the frequency is f = 1× 1015s−1:

Ephoton = hf = 4.14× 10−15eV s · 1× 1015s−1 = 4.14eV

The photon does not have enough energy to free an electron from the metal.

Intensity of Light

As we discussed above, for electrons that are ejected from a metal surface after

being hit by light, the energy of the emitted electron only depends on the frequency

of the incident light, and not the intensity. However, if we increase the intensity

of the light, and keep the frequency or wavelength fixed, then more electrons are

emitted with the same energy. This leads to the quantum idea that light intensity

is proportional to the number of photons flowing in the light beam. Quantitatively,

the particle nature of light gives rise to the following definition of intensity IL.

IL = Nph~ω (2.4)

Where Nph is the number of photons flowing across a unit area of surface per

unit time or photon flux. So Nph is typically in units of 1/m2sec and if ~ω is in

units of Joules, then the intensity is in units of Joules/m2sec or Watts/m2.
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It is also worth noting that from electromagnetics, the intensity of an elec-

tromagnetic wave is classically given by 1
2
cεoE

2, where c is the speed of light, εo is

the permittivity of free space, and Eo is the amplitude of the electric field of the

electromagnetic wave. Thus, we can conclude that classically, the intensity of an

electromagnetic wave is proportional to the square of the amplitude, and quantum

mechanically, the intensity is proportional to the photon flux.

2.3 Atomic Spectra

When gases are electrically excited, they emit light at specific frequencies

(called the emission spectra of the gas).

2.3.1 Hydrogen Spectrum

An electron in an excited hydrogen atom jumps from one orbit to a lower

orbit releasing energy at specific wavelengths. When hydrogen gas was put in a

tube and electric current ran through the tube, the H-spectra was observed to have

the following discrete set light frequencies, shown below in Equations 2.5-2.7. The

discrete frequencies of the light obeyed certain relationships which were governed by

reciprocals of integers squared. The relationships between the sets of spectral lines

are classified as a set of light emission series. These are called the Lyman, Balmer

and Paschen series, where the set of observed series of light colors are named after

scientists that observed them.

• Lyman Series (Ultraviolet):

f = cR

[
1

12
− 1

n2

]
, n = 2, 3, 4.... (2.5)

• Balmer Series (Visible):

f = cR

[
1

22
− 1

n2

]
, n = 3, 4, 5.... (2.6)

• Paschen Series (Infrared):

f = cR

[
1

32
− 1

n2

]
, n = 4, 5.... (2.7)

Where f is the frequency of the emitted spectral line, R is the Rydberg con-

stant (R = 109, 678/cm) and c is the speed of light (c = 3× 1010cm/sec).
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Figure 2.2: Hydrogen spectrum indicating the Lyman (UV), Balmer (Visible) and
Paschen (IR) series.
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Figure 2.3: Centripetal force of orbiting electron provided by electrostatic attraction
between positively charged nucleus and negatively charged orbiting electron. Note
that this diagram is not at all to scale.

.

2.4 Bohr Model

The emission of light at discrete frequencies, that followed the inverse square

integer relationship described above led the Danish scientist Niels Bohr in 1913 to

construct a model of the hydrogen atom that explained the main spectral lines. This

model became know as the ‘Bohr Atom’, and was the first quantized model of the

atom and said that electrons could occupy only specific orbits of specific discrete

values of angular momentum and energy. Also, when the electrons made transitions

from a higher orbit of higher energy to a lower orbit of lower energy they emitted

light, and the frequency of emitted light followed the hydrogen spectra described

above. A key postulate made by Bohr was that the negative electron that orbited

the positive nucleus could only have specific values of angular momentum, which

were integer values of Planck’s constant divided by 2π or ~. This idea of quantized

angular momentum can be visualized somewhat as having an integer number of

electron full de-Broglie wave-lengths fitting into an orbit.

mvr = n~, n = 1, 2, 3, ........... (2.8)

Where mvr is the angular momentum of the electron, and m is the mass of the

electron, v is the magnitude of the electron velocity and r is the radius of the

electron orbit around the nucleus. Bohr said that the electrons can occupy specific
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orbits only (discrete). Therefore, angular momentum is quantized.

Solving 2.8 for v gives velocity magnitude in terms of discrete values as related

to angular momentum.

v =
n~
mr

, n = 1, 2, 3...... (2.9)

Bohr next equated centripetal force of the orbiting to the electrostatic force

between the electron and the nucleus:

− q2

κr2
= −mv

2

r
(2.10)

where, κ = 4πε0 and ε0 is the permittivity of free space.

Substituting the expression for velocity magnitude from 2.9 into equation 2.10

and solving for r, gives us what is known as the Bohr Radius when the value of

integer n = 1. As calculated, the Bohr radius should be the radius of the smallest

electron orbit around the nucleus.

rn =
κn2~2

q2m
(2.11)

Bohr Radius ≡ r1 = 0.529Å (2.12)

Bohr next introduced kinetic and potential energy into the model. We know

that the total energy is the sum of a particle’s kinetic plus its potential energy, or:

ETotal=Kinetic Energy (K.E.) + Potential Energy (P.E.), where

Kinetic Energy (K.E.)=1
2
mv2

Potential energy (P.E.)= − q2

κrn

Now, using equation 2.9 for velocity, and equation 2.11 for rn, we can express

the kinetic energy as:

K.E. =
mv2

2
=

1

2

n2~2

mr2
n

=
1

2

q4m

κ2n2~2
(2.13)

Similarly for Potential energy, using equation 2.11 for the rn, we can express

the potential energy as:

P.E. = − q4m

κ2n2~2
(2.14)

Utilizing the fact that total energy is equal to kinetic plus potential, we add equations

2.13 and 2.14 to obtain:

ETotal = K.E.+ P.E. = −1

2

q4m

κ2n2~2
(2.15)
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The negative sign here means that this is a ‘bound energy’ (in other words,

energy at infinity is the zero reference).

More important is that the energy difference between two values of

‘n’ (or 2 orbits) given by the following expression:

En2 − En1 =
q4m

2κ2~2

[
1

n2
1

− 1

n2
2

]
(2.16)

The above equation is very important because it is observable. This equation

predicted and largely explained the hydrogen emission spectrum. It also helped to

give more validation to the relationship of electron energy and photon frequency

given in the photoelectric effect. From the photoelectric effect and the Bohr atom

transition energy between orbits of equation 2.16, one can infer that the frequency

of emitted light corresponds to the transition of an electron from orbit n2 to orbit

n1 is:

ωn1,n2 =
1

~
[En2 − En1 ] (2.17)

where En2 and En1 are from equation 2.16, and where, ω = 2πf . These emission

frequencies can be translated into wavelengths using the relation c = λf to find the

emitted light wavelengths. For the hydrogen atom, Figure 2.4 shows the emitted

photons for various energy level transitions. In general, the color of a photon with

any given wavelength can be found on the electromagnetic spectrum shown in Figure

2.5.

Example uses of these equations include constructing lasers, and for optical

communications like the fiber network based Verizon internet network ‘fios’. Also,

astronomers use similar emission spectra to study the composition of different stars.

Example 2.2:

An electron in the 5th excited state (n = 6) falls down to the 2nd excited state

(n = 3) in a hydrogen atom. What is frequency of the emitted photon?

Calculate the energy difference of the two states:

En2 − En1 =
q4m

2κ2~2

[
1

n2
1

− 1

n2
2

]
=

(1.6× 10−19C)4 · (9.1× 10−31)

2 · (4πε0)2 · (1.054× 10−34Js)2

[
1

32
− 1

62

]
= 1.13eV

Convert photon energy to frequency:

f =
E
h

=
1.13eV

4.14eV s
= 2.73× 1014s−1

Importance of Derivation and Equations 2.16 and 2.17: The picture

of the atom as mostly empty space with a very solid positively charged center and
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Figure 2.4: Electron transitions from higher energy orbitals to lower causes emission
of photons with specific wavelengths. The dotted arrows indicate invisible colors and
solid arrows show the visible colors.
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Figure 2.5: The electromagnetic spectrum.
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negatively charged electrons some distance away was strengthened by Bohr’s model.

It gave rise to the ‘planetary’ picture of the atom, which consisted of a positively

charged center or nucleus, and negatively charged electrons circling around at some

distance away, and in very well defined orbits. Equation 2.16 gave the difference

in the energies of respective orbits. While this view was later revised with a more

complicated picture derived from more formal quantum mechanics, it provided a

foundation for the picture and discrete energy levels of an atom that we often still

utilize today.

2.5 De Broglie Wavelength

Soon after the photoelectric effect was explained by Albert Einstein, for which

he received the Nobel Prize, and an atomic model was put forth by Niels Bohr,

a physicist named Louis de Broglie suggested that if light could have particle-like

characteristics, then objects that we typically think of as particles can have wave-like

characteristics. De Broglie then presented a relationship between the wavelength λ

of a particle and its momentum be given as:

λ =
h

p
(2.18)

p= momentum of the particle, which in this text is typically an electron.

Hence, the higher the momentum of the electron, the shorter the wavelength, and

greater the frequency of the matter-wave and the greater the energy of the particle.

This very powerful postulate is at the heart of the “wave-particle duality” idea that

we often hear discussed at parties, sports events and at the dinner table. The idea

that an electron acts like a wave is the basis on which electron microscopes operate.

The electrons are accelerated to very high momenta, and thereby have very small

associated wavelengths and can therefore resolve features that can not be seen by

light microscopes of longer wavelengths. The idea of the de Broglie wavelength was

also utilized in the Bohr atom, which we will see below.

Relation to Bohr Atom

De Broglie also showed that this matter-wave and its relationship to a parti-

cle’s momentum helped to explain Bohr’s hypothesis that angular momentum was

quantized by the relation mvr = n~. De Broglie showed that if an integer number

of wavelengths were made to fit into one of the atomic orbits, then angular momen-

tum could be quantized using the same relationship that Bohr postulated. More

specifically,

2πr = nλ = n
h

p
= n

h

mv
(2.19)
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Now, re-arranging gives

mvr = n
h

2π
= n~ (2.20)

Thus, by allowing only integer numbers of wavelengths in an atomic orbit, De Broglie

gets the same relationship as the one postulated by Bohr when he said only values

of allowed angular momentum are given by an integer n times Planck’s constant ~.

Example 2.3:

Let’s calculate the first three Bohr radii and their associated de-Broglie wave-

lengths to get a feeling for the size scales that we are dealing with in the Bohr

atom.

Remember that we can show the allowed orbital radii must obey rn = κn2~2
q2m

by

balancing forces and using Bohr’s quantized momentum postulate. Using the

de-Broglie relation for momentum and wavelength λ = h
p

and the quantized

angular momentum equation mvr = n~, we can solve for the wavelength in

terms of n.

p =
h

λ
= mv =

n~
rn

λ =
2π

n
rn = 2π

κn~2

q2m

Plugging in n = 1, 2, 3 for the first three orbitals we find:

r1 = 0.529Å λ1 = 3.32Å

r2 = 2.12Å λ2 = 6.65Å

r3 = 4.76Å λ3 = 9.97Å

The value we find here for r1 comes out to the value defined in literature as the

‘Bohr Radius’ (a0). It is also interesting to note that the experimental bond

length in a hydrogen molecule (H2) is 0.74Å and for the singly ionized molecule

(H+
2 ), the bond length is almost exactly twice the Bohr radius calculated by

this simple formula.

Note: Intuitively, one might think that increasing energy should lead to a

shorter wavelength but here we seem to have the opposite. For those curious as to

why this is the case, higher energy orbitals with a larger radius move the electron

farther from the atomic core which, in addition to increasing total energy, increases

the potential energy and decreases the kinetic energy. This can be seen in Equations

2.13 and 2.14 where both the kinetic energy and potential energy are proportional

to 1/n2 except the potential energy is negative so it is actually increasing with

larger n as it becomes less negative. The decrease in kinetic energy corresponds to
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Figure 2.6: Bohr Model of the atom showing how an integer multiple of the corre-
sponding wavelengths fits the around circumference for each energy level.

an increase in the wavelength because the two are inversely proportional which is

shown below.

K.E. =
mv2

2
=

p2

2m
=

h2

2mλ2
(2.21)

2.6 The Heisenberg Uncertainty Principle

With all these new ideas about particles and waves floating around in the

1920’s, the physicist Werner Heisenberg came up with his famous Heisenberg Un-

certainty Principle:

(∆x∆p) ≥ ~
2

(2.22)

where,

∆x =uncertainty of particles position ‘x’.

∆p =uncertainty of particles momentum ‘p’.

An approximate derivation of the uncertainty principle is as follows. If an

electron has wave characteristics, it will have at wavelength λ. So the electron is

spread out over this wavelength, so the uncertainty in its position is ∆x = λ
2
.

Now, from the De Broglie wavelength we have λ = h
p
. Solving this expression

for p, and introducing the concept that since the wave is spread out over some

length, then we can say that ∆p = h
λ
. Now, taking the product:

31



Neil Goldsman and Christopher Darmody April 29, 2020

∆x∆p = (
λ

2
)(
h

λ
) =

h

2
(2.23)

While equation (2.23) is not the exact uncertainty principle, it motivates the

development of the uncertainty principle, and it can then be slightly modified to

give the actual Heisenberg Uncertainty Principle of equation (2.22). The physical

interpretation of the Heisenberg Uncertainty Principle is as follows. It says that

since electrons have a wave like characteristics, you can not really localize it to a

specific point in space, just like you can not localize a wave to a single point in space.

You can only sort of say that there is a probability of finding it at a certain location.

This becomes especially important when performing measurements or operations on

electrons. It indicates that since the electron is spread out like a wave, if you try

to perform an experiment on the electron, the experimenter will have to wind up

interacting with the wavelike properties of the electron and therefore influence the

experiment. This idea of knowing only the probability of somewhere finding an

electron is at the heart of quantum mechanics, which we will find out in the next

chapter.

2.7 Problems

2.1 Explain in your own words the difference between quantum and classical

physics with respect to the physical phenomena they each tend to explain.

Give three examples of phenomena explained by classical and quantum physics,

respectively.

2.2 Aluminum has a work function of 4.06eV . What is the minimum frequency of

light that will liberate an electron from that metal surface? What classification

of light is this (UV, IR or Visible)?

2.3 A mercury vapor lamp emits light at several wavelengths. Using a diffraction

grading the 184nm line is separated out and is directed toward the surface

of a one of the nickel electrodes that is in a tube that is transparent to this

wavelength, as shown below. The intensity of the light incident onto the

electrode is 0.1Watt/m2. The work function of nickel is 5.04eV . (Nickel is

often used in semiconductor fabrication because it does not easily oxidize.)

The surface dimensions of each electrode are 5mm× 5mm. There is a battery

attached to the electrodes as shown to establish an electric field in the tube

that pulls the emitted electrons from one electrode to the other.
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(a) What is the energy of the emitted electrons?

(b) What is the current in the wire?

2.4 In a Hydrogen atom, what is the energy and wavelength of the emitted photons

(in Joules and eV) if electrons transition from:

(a) The 4th energy level to the 1st energy level?

(b) The 4th energy level to the 2nd energy level?

2.5 Electron microscopes work on the De Broglie wavelength of an electron. If the

lenses of an electron microscope have a potential difference of 10, 000V , what

is the minimum size of an object that can be resolved by the microscope.

2.6 Using the Bohr atom:

(a) What is the energy needed to ionize a hydrogen atom if the electron is in

the lowest orbital (the ground state)?

(b) What is the energy needed to ionize hydrogen if the electron is in the

first excited state (n=2)?

2.7 How was Bohr’s atom different from classical physics? What were his postu-

lates?

2.8 Calculate the frequency of light emitted when an electron transitions from the

second lowest energy level to the lowest in a hydrogen atom. Calculate the

energy required to remove an electron from a hydrogen atom when the electron

is in the lowest energy level.

2.9 If you can measure the energy of an electron within an error range of 1.0eV,

what is the uncertainty in the location of the electron?
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2.10 In the Bohr model of the atom, the derivation is performed in a non-relativistic

framework. Is this reasonable approximation? Justify your answer by calcu-

lating an estimation for the velocity of an electron in the lowest energy level

for a hydrogen atom.

2.11 In a hydrogen atom, if you consider the electron to be a small particle, how

far is it away from the nucleus under the following conditions:

(a) When the electron is in the first energy level (also called the ground

state)?

(b) When the electron is in the second energy level?

2.12 The proton in a hydrogen atom has a radius of 8.5 × 10−16m and a mass of

1.67 × 10−27kg. An electron has a mass of 9.1 × 10−31kg. Assume for these

calculations that the electron can be treated as a spherical particle, not a wave.

(a) What is the ratio of the proton mass to the electron mass? (This is a

famous number.)

(b) If we make the approximation that the density of the electron and proton

are the same, what is the size of the radius of the electron?

(c) If the electron is in the ground state, what is the total volume of the

hydrogen atom?

(d) What is the percentage of occupied space in the atom?

(e) From your answer to part (d), what can you conclude about “matter”

with respect to occupied and empty space?

2.13 What is the De Broglie wavelength of the following:

(a) A free electron moving randomly at room temperature? (27C = 300K, 1
2
mv2 =

3
2
kBT. Recall that at T = 300K, kBT = 0.026eV.)

(b) A baseball thrown by Stephen Stausburg at 100mph? (A baseball is

0.145kg.)

(c) Compare your answers for parts (a) and (b) in this problem and comment.
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Chapter 3

Quantum Mechanics and The

Schrodinger Wave Equation

3.1 Introduction

While Bohr’s theory provided a model for the atom, it did not fully explain all

the spectral lines of hydrogen. Also, his model was limited to the atomic structure,

what about other small objects? For example, what physics was underlying the

photoelectric effect? Why does red light pass right through certain materials, while

blue light is absorbed? Why does an electron not radiate electromagnetic energy and

not spiral into the nucleus like a classically accelerating charge? Other phenomena

like the change in a material’s heat capacity that occurred at very low temperatures

could not be explained by classical thermodynamics. Newton’s equations provided

an entire framework for classical mechanics, Maxwell’s equations provided a com-

prehensive theory for classical electromagnetism. A theory that provided a compre-

hensive framework to describe the physics of nanoscale particles, and this idea of

wave particle duality, was needed by the early 20th century. This new theory came

about in 1926, when the physicist Erwin Schrodinger published a paper using the

concept of the particle’s Wave Function and introduced the Schrodinger Wave

Equation.

3.2 Key Concepts of Quantum Mechanics

The concepts and mathematics associated with Quantum Mechanics are a

little different than classical physics and takes a little getting used to. Below we
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summarize some of these key ideas.

The Wave-Function: The concept of the particle’s ”Wave-Function” is at the

core of the quantum mechanics. To quantify the properties of a small particle, like

an electron, you typically determine its wave-function. The concept of the wave-

function is in line with the idea that a small physical object like an electron will have

both particle and wave characteristics. The wave-function of different electrons in

general will not be the same. The wave function of an electron is determined by the

environment the electron is in. For example, the wave-function in the first orbit of

the Bohr atom will be different than the wave function for the electron if it is in the

second orbit of the Bohr atom. Also, the electrons that conduct electricity in a metal

will have different wave-functions than the electrons in isolated atoms in a gas. From

a semiconductor perspective, the wave-functions of electrons in a MOSFET will be

different from the wave functions for electrons in a Bipolar Junction Transistor

(BJT). The differences between electron’s wave function in different environments

is due to the differences in the potential energy of the system that the particle is in.

Wave-Function and the Schrodinger Wave Equation: One obtains the wave-

function by solving the Schrodinger Wave Equation, which is typically shortened and

referred to as the Schrodinger Equation. The Schrodinger equation is the governing

equation in quantum mechanics and is analogous to ~F = m~a in classical mechanics

and Maxwell’s equations in electromagnetics. This will become much more evident

in the sections below.

Quantum Mechanics and Probability: A very important aspect of Quantum

Mechanics is that for most of the particle’s physical attributes, you can not ascribe

exact values, only probabilities that they have those values. For example, you cannot

tell exactly where an electron is at a given instant in time, you can only tell the

probability of a particle being in that region. Similarly, you cannot typically say

exactly what the momentum of a particle is, you can only determine the probability

of finding a particle around that momentum or you can provide the average or

expected value of momentum. This concept of probability is in line with the concept

that a small particle has wave-like characteristics when one recalls that a wave is

spread over a large region of space and, in contrast to a particle, one does not

typically say that a wave is located at a specific location.

Quantum Mechanics and Discrete Energy Levels: Another one of the char-

acteristics of quantum mechanics is that under many conditions, a particle can only

have specific values of energy. More specifically, when a particle is bound by some

potential energy, it can only have specific energy values. In other words, it can only

have specific values or ‘quanta’ of energy. For example, an electron in an atom can

only take on specific energy values, that are determined by the pull of the nucleus.

It cannot take on a continuum of values. Having only allowed values is another

concept that is at the core of quantum mechanics.

36



Neil Goldsman and Christopher Darmody April 29, 2020

Mathematics of Quantum Mechanics: Instead of largely based on vector calcu-

lus like classical mechanics and classical electromagnetics, quantum mechanics relies

on the mathematics of partial differential equations, eigenvalue equations, differen-

tial operators, linear algebra and orthogonal functions.

3.3 Mathematical Description

Ψ(x, y, z, t) is the wave-function and it is essentially a complete description of the

physical nature of the small particle. In other words, once you know the wave-

function of the particle, from it you can pretty much extract any information that

you might need to know about the characteristics of the particle in a particular

system. Calling it the wave-function comes from the idea that electrons can have

both wave-like and particle-like characteristics. The wave-function depends on the

independent variables in space and time x, y, z and t, and has been traditionally

written as the Greek letter Psi (Ψ).

Probability of Finding the Particle

While Ψ is the fundamental small particle function, the observable physics

comes from working with the properties of the wave-function, especially its square

magnitude |Ψ|2. It is probably best to just list these properties and then offer some

explanation.

The square magnitude of the wave-function gives the probability density of

finding a particle at the point (x, y, z, t)

Ψ∗ ·Ψ = |Ψ|2 = |Ψ(x, y, z, t)|2 (3.1)

where Ψ∗ is the complex conjugate of Ψ.

It follows that the probability of finding an electron in the small volume element

dxdydz around the point (x, y, z) at time t is:

Probability = |Ψ(x, y, z, t)|2dxdydz (3.2)

The integral over all space of the probability density is equal to one, which says that

the particle must exist somewhere.∫ ∞
−∞
|Ψ(x, y, z, t)|2dxdydz = 1 (3.3)
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Classical Physics Quantum Mech.

Position x x

Function f(x) f(x)

Momentum p −j~ ∂
∂x

Kinetic Energy p2

2m
− ~2

2m
∂2

∂x2

Total Energy E j~ ∂
∂t

Table 3.1: Table comparing classical physics with quatum mechanics.

Example 3.1:

Say you have an electron in a state with normalized wave-function Ψ(x) =√
2
L

sin
(

2π
L
x
)

defined on (0 ≤ x ≤ L). What is the probability of finding the

electron in the center half of the region?

To find the probability in this region, we simply integrate the probability

density from L/4 to 3L/4.

∫ 3L/4

L/4

|Ψ(x)|2 dx =
2

L

∫ 3L/4

L/4

sin2

(
2π

L
x

)
dx =

2

L

[
x

2
−
L sin

(
4π
L
x
)

8π

]3L/4

L/4

=
L

4

Now we must get an idea of the quantum world representation of physical

quantities. To do this, we use differential operators.

Expectation Value of Position

As mentioned above, Quantum Mechanics deals with probabilities, and we

usually cannot determine the precise position x or momentum p of a particle. So as

a result, we usually calculate their average or “Expectation” values. The expectation

value of position 〈x〉 is given by:

〈x〉 =

∫ ∞
−∞

Ψ∗ xΨdx (3.4)

Similarly, the expectation value of any function of position f(x) is given by:

〈f(x)〉 =

∫ ∞
−∞

Ψ∗ f(x) Ψdx (3.5)
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Momentum Operator and Expectation Value:

Similarly, we usually cannot determine the exact momentum of a particle, so

we calculate its average or expected value. Finding the average momentum p of the

system is a little different from finding the expected value of position, because in

quantum mechanics, momentum takes on the form of a differential operator, and

not just an algebraic expression. At first this appears to be a little weird, but you

will eventually get used to it.

〈p〉 =

∫ ∞
−∞

Ψ∗ p̂Ψdx (3.6)

Where the momentum operator p̂ is:

Momentum Operator = −j~ ∂
∂x

(3.7)

〈p〉 =

∫ ∞
−∞

Ψ∗(−j~ ∂
∂x

)Ψdx (3.8)

The operator then works on the next term in the expression. In other words, the

operation performed to obtain the expected value of momentum is simply to take

the derivative of the wave function with respect to position to the right of the

momentum operator, and then just evaluate the integral.

There are other operators in quantum mechanics as well. Quantities that usu-

ally involve momentum in some way are typically expressed in quantum mechanics

as operators. For example, kinetic energy in classical physics is ( p
2

2m
). Thus by anal-

ogy with the momentum operator, one can see that the in QM, kinetic energy take

on the following operator form: K̂Eop = − ~2
2m

∂2

∂x2

In general for a differential operator Q̂op, we determine its expected value to

be:

〈Q̂op〉 =

∫
Ψ∗ Q̂op Ψdx (3.9)

Energy Operator for Time Dependent Case: We have not talked about the

energy operator before, and we will see later that it typically does not play a major

role in our QM analyses. The energy operator works on the variable of time. Since we

typically work with time-independent phenomena to obtain key results, the energy

operator does not often arise. However, energy is still extremely important at the

heart of many QM calculations. In particular, the Energy Eigenvalue has great

importance which will become more meaningful and evident in later sections. For

now, just know that the energy operator in the time dependent Schrodinger equation

is given by:

Ê = j~
∂

∂t
(3.10)

Remember, operators have a differential form, not an algebraic form.
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Example 3.2:

For the following wave-functions, calculate the expected value of position and

momentum for each:

Ψ1(x) =

√
2

L
sin
(π
L
x
)

(0 ≤ x ≤ L)

Ψ2(x) = exp (jkx) (−∞ ≤ x ≤ ∞)

For the first wavefunction we only need to integrate over the range 0 to L

because this is a confined state:

〈x〉 =

∫ L

0

Ψ∗1xΨ1dx =
2

L

∫ L

0

x sin2
(π
L
x
)
dx =

L

2

〈p〉 =

∫ L

0

Ψ∗1(−j~ ∂
∂x

)Ψ1dx =
2

L

∫ L

0

−j~ sin
(π
L
x
) ∂

∂x
sin
(π
L
x
)
dx

=
2

L

∫ L

0

−j~ sin
(π
L
x
) π
L

cos
(π
L
x
)
dx = 0

As it turns out, this first wave-function is a type of confined or bound state.

Due to symmetry, an electron in this state is expected to be in the center of the

confining region - as one might expect. Also due to symmetry, the electron’s

expected momentum is zero. This can be thought of as the electron ‘bouncing’

back and forth inside the well i.e. it has equal and opposite components of ±
momentum - the average of which is no net momentum.

For the second wave-function, we have a state which extends over all space. In

this case, the state is said to be ‘non-normalizable’ because
∫∞
−∞Ψ∗2Ψ2dx =∞.

Because the state is not normalized, the expectation value formula must be

divided by the normalization integral which we will introduce here in the form

of a limit.

〈x〉 = lim
L−>∞

∫ L
−L Ψ∗2xΨ2dx∫ L
−L Ψ∗2Ψ2dx

= lim
L−>∞

1

2L

∫ L

−L
exp(−jkx)x exp(jkx)dx

= lim
L−>∞

1

2L

∫ L

−L
xdx = 0

〈p〉 = lim
L−>∞

∫ L
−L Ψ∗2(−j~ ∂

∂x
)Ψ2dx∫ L

−L Ψ∗2Ψ2dx
= lim

L−>∞

−j~
2L

∫ L

−L
exp(−jkx)

∂

∂x
exp(jkx)dx

= lim
L−>∞

−j~
2L

∫ L

−L
exp(−jkx)jk exp(jkx)dx =

1

2L

∫ L

−L
~kdx =

~k2L

2L
= ~k

This type of wave-function is known as a plane wave where we see that this

state has a well defined momentum and it is traveling in the positive direction.

40



Neil Goldsman and Christopher Darmody April 29, 2020

3.4 The Schrodinger Wave Equation

As was stated above, the Schrodinger Wave Equation (or Schrodinger equation

for short), is at the heart of the formal mathematical theory of quantum mechanics.

The solution of the Schrodinger equation for a specific physical environment, gives

the wave function for the particle in that environment. And from the wave function,

most of the particle’s physical attributes can be extracted.

Just like in classical physics, where we do not derive Newton’s laws which are

largely determined from observation, we do not rigorously derive the Schrodinger

equation. We do, however, come to the Schrodinger equation by using arguments of

conservation of energy and quantum mechanical operators. We obtain Schrodinger

wave equation (SWE) by using arguments of energy conservation:

Kinetic Energy + Potential Energy = ETotal (3.11)

Classically we write this as:

p2

2m
+ V (x) = ETotal (3.12)

The next thing we do is put in the operators for the specific terms in the above

statement of energy conservation, and also, we include the wave function Ψ, because

it is the function that the operators act upon.

Schrodinger Wave Equation: This yields the following equation which is the

Schrodinger Wave Equation:

− ~2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = j~

∂Ψ(x, t)

∂t
(3.13)

The first term of equation 3.13 is the kinetic energy operator, operating on the

wave-function. The next term reflects the potential energy and is algebraic since

it is not a function of momentum, and the final term is the total energy operator,

acting on the wave function.

Since we live in a 3-dimensional world, it makes sense to also write the Schrodinger

equation in 3-D:

− ~2

2m
∇2Ψ(x, y, z, t) + V (x, y, z, t)Ψ(x, y, z, t) = j~

∂Ψ(x, y, z, t)

∂t
(3.14)

Where the Laplacian operator ∇2 is:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.15)
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Figure 3.1: Various possibilities for potential in space.
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Potential Energy V (x, y, z): In one spatial dimension, we write potential energy

as V (x, t). The potential energy term in the Schrodinger equation is what accounts

for the environment of the particle. The potential energy term is what makes the

resulting wave function different for particles that have different potential energies.

The potential can be a function of both space and time. However, we typically

have situations where the potential term only depends on x, and not on t. We

will see below that when potential energy is only a function of position, it will

allow us to transform the Schrodinger equation into an eigenvalue equation that

can provide discrete energy levels. So, it is the potential energy that makes each

application of the Schrodinger equation distinct. Put in different physical situations

(i.e. different expressions for V) in SWE and you’ll get different expressions for Ψ.

See the examples of various 1-D potentials in Figure 3.1.

3.4.1 Separation of Variables and the Time-Independent

Schrodinger Equation

In this section we will derive perhaps the second most important equation

in quantum mechanics which is the Time-Independent Schrodinger Equation. The

time independent Schrodinger Equation (often referred to as just ‘the Schrodinger

Equation’), can be solved to provide the steady state wave-function and the allowed

energy levels of the system. We will obtain the time-independent Schrodinger Equa-

tion by using the separation of variables method to transform the time-dependent

Schrodinger equation, which is a single partial differential equation in space and

time, into two separate equations: one equation in space and one equation in time.

This can be achieved mathematically when the potential energy term only depends

on space and not on time. In other words the potential energy term is V (x).

With separation of variables, we re-write the solution of the Schrodinger equa-

tion as the product of two functions, one function of space and one function of

time:

Ψ(x, t) = ψ(x)φ(t) (3.16)

Where ψ(x) depends on space or x only, and φ(t) depends on time or t only.

We can refer to ψ(x) as the time-independent wave function or often just as the

wave-function.

Now substitute the product in equation 3.16 into the Schrodinger equation

3.13:

− ~2

2m

∂2(ψ(x)φ(t))

∂x2
+ V (x)(ψ(x)φ(t)) = j~

∂(ψ(x)φ(t))

∂t
(3.17)

Since the first term of equation 3.17 is independent of t, and the third term is
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independent of x, we therefore obtain:

−φ(t)
~2

2m

∂2ψ(x)

∂x2
+ V (x)(ψ(x)φ(t)) = jψ(x)~

∂φ(t)

∂t
(3.18)

Multiplying eqn. 3.17 by 1
φ(t)ψ(x)

, we get:

− 1

ψ(x)

~2

2m

∂2ψ(x)

∂x2
+ V (x) = j

1

φ(t)
~
∂φ(t)

∂t
(3.19)

We have now obtained an important intermediate result which is that the left

hand side (LHS) of equation 3.19 depends only on x and the right hand side (RHS)

depends only on t. Separation has been achieved. (Note, that such separation of

variables would not have been possible if the potential also depended on t as well

as x.)

Now comes a part which might take a little thought. In equation 3.19 we have

two independent variables, x and t, and they can thus take on any value. Also, in

equation 3.19 the LHS and the RHS always have to be equal no matter what the

values of x and t are assigned to be. The only way to ensure this is true is to have

both sides of equation 3.19 equal to the same constant. So, LHS and RHS have to

be equal to a constant, say E, which we will call the separation constant. (Later

we will find out that the separation constant is also the eigenvalue of the equation,

which turns out to take on specific values which are the allowed energy levels).

Separating the LHS from the RHS and setting them both equal to the same sepa-

ration constant E gives:

− 1

ψ(x)

~2

2m

∂2ψ(x)

∂x2
+ V (x) = E (3.20)

j
1

φ(t)
~
∂φ(t)

∂t
= E (3.21)

Now, re-arranging gives our final expressions which are the two separated

Schrodinger equations, which are eigenvalue equations, one in space and one in

time:

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (3.22)

j~
dφ(t)

dt
= Eφ(t) (3.23)

(Note: After separation, ∂
∂x

has been replaced with d
dx

since we are only work-

ing with one independent variable in each equation.)

While we did our analysis in 1-D for our space coordinate, it follows that if

our potential varies in three dimensions in space, then the 3-D Time-Independent
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Schrodinger equation is given by:

− ~2

2m
∇2ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z) (3.24)

Time Dependent Part: The time only part equation 3.23 is a simple first order

ordinary differential equation. It can thus readily be solved to give:

φ(t) = Ce−j
Et
~ (3.25)

The coefficient C and will be given by the boundary conditions for the specific

application.

3.4.2 Physical Interpretation and Key Points of Time Inde-

pendent Schrodinger Equation

Important physical outcomes:

1. E ≡ separation variable turns out to be the energy of that Quantum State:

E ≡ E

2. E is the total energy of the state (E = K.E.+ P.E.).

3. Time independent Schrodinger Equation (3.22 or 3.24) is an eigenvalue equa-

tion.

4. The expression in square brackets is Ĥ: is a differential operator called the

Hamiltonian Operator:

Ĥ ≡
[
− ~2

2m

∂2

∂x2
+ V (x)

]
(3.26)

where Ĥψ(x) = Eψ(x)

5. ψ(x)= eigenfunction, the wave function and also the eigenstate of the system.

6. E= eigenvalue, which is the energy of the state.

7. Bound States: We will see soon that if the particle is bound or held on

to by the potential energy V (x) (in other words if energy of the particle is

less than the potential energy), then the particle is said to be bound, and the

solution of the Schrodinger equation will be set of eigenfunctions ψ(x)i and

each eigenfunction will correspond to an eigenvalue or eigenenergy Ei. These

are discrete energy values that correspond to the discrete Quantum Energy

Levels of a system. For example, the discrete energy levels of and atom.
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8. Free States: On the other hand, if the particle is not bound by the potential

energy, then the particle is said to be free. In other words, if the total energy

is greater than the potential energy for the entire system, the particle is con-

sidered to be free. Under these circumstances, we do not have discrete energy

levels, but the system is typically characterized by a continuum of energy lev-

els. An example of such a system is an electron microscope or a cathode ray

tube.

3.4.3 Boundary Conditions for ψ(x)

To make sure that our solution to the Schrodinger equation corresponds to

physically realistic situations, the wave function must satisfy the following set of

boundary conditions:

1. At x = −∞ and x = +∞, ψ(x) = 0. This makes sense because the particle

must exist somewhere in a finite region of space. Also, we must make sure

that the wave function is finite, otherwise it would not be physical, so this also

typically requires ψ to be zero at positive and negative infinity.

2. ψ(x) must be continuous across all boundaries. This makes sense because as

we look at the kinetic energy or first term of the Schrodinger equation, if the

ψ(x) were not continuous, then the derivative would not exist and then the

wave-function could not be physical.

3. Similarly, the derivative ∂ψ(x)
∂x

must be continuous to ensure that the kinetic

energy term, which contains a second derivative, can be evaluated and thus

give physical values for the wave function.

4. In regions where the potential is infinity, the wave function must be zero to

keep the system finite and thus physically realistic.

3.4.4 System: Free Particle of the V(x) = 0 Potential

To begin feeling comfortable with the Schrodinger equation and the idea of the

wave function, it helps to just start using it for some simple, but very informative

cases. To start let’s look at probably the simplest case for the Schrodinger equation,

and that is for the case when the potential energy is zero or V (x) = 0. Under this

condition, equation 3.22 becomes:

− ~2

2m

d2ψ(x)

dx2
+ 0 = Eψ(x) (3.27)
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For convenience, we now multiply out by −2m
~2 and then make the change of

variable k2 = 2mE
~2 to obtain the form:

d2ψ

dx2
= −k2ψ(x) (3.28)

This is an ordinary second order differential equation with constant coeffi-

cients. Since it is second order, there will be two solutions, and the solutions will

be exponential functions. Also, since the LHS and RHS have different signs, the

argument of the exponential is imaginary. Given these characteristics, we merely

state that the general solution is given by the following:

ψ(x) = Aejkx +Be−jkx (3.29)

To verify that 3.29 is indeed the general solution you can substitute it back into to

equations 3.27 and 3.28 and confirm that the RHS and LHS are identical algebraic

expressions after performing the differentiations.

While 3.29 is the general solution, we still don’t know the values of the un-

known coefficients A and B, and nor the value of the argument parameter k, al-

though we do know that it is proportional to the square root of the particle’s energy.

To get a little more physical insight into what the solution is saying, let’s bring back

the time variation with the help of equations 3.16 and 3.25 as follows:

Ψ(x, t) = ψ(x)φ(t) =
[
Aejkx +Be−jkx

]
Ce−j

Et
~ (3.30)

or

Ψ(x, t) = Fej(kx−ωt) +Ge−j(kx+ωt) (3.31)

where we have renamed the unknown constants AC= F and BC=G, where of course

F and G are also unknown constants. Also, we have made the substitution E
~ = ω.

Physical Interpretation: The general solution says that Ψ(x, t) consists of two

waves, one moving in the +x direction (with the F coefficient) and one traveling in

the - x direction (with the G coefficient). The solution thus says that electron has

a wave characteristics. The values of wave vector k and angular frequency ω, and

the coefficients will be obtained from the boundary conditions.

Let’s consider the example of an electron shot out of an electron filament with

energy Eo, and the electron is traveling in the positive x direction, and travels very

far until it is collected by some electrode a very large distance L away. Where L

is much much larger than the De Broglie wave length of the electron. Under these

circumstances, the wave vector k =
[

2mEo
~2
] 1

2 and the angular frequency is ω = Eo
~ .

Also, since the electron is moving in positive x direction only, then G = 0, and the

wave-function will be:

Ψ(x, t) = Fexp

[
j

(√
2mEo
~

x− Eo
~
t

)]
(3.32)
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Finally, the coefficient F can be determined by requiring
∫ L

0
Ψ∗Ψ(x)dx = 1, where

L is the long distance between the electrode from where the electron is emitted and

the electrode where it is collected. Performing the integration gives F 2L = 1, so we

wind up with the following form for the wave function for the free electron that is

emitted with energy Eo and collected a distance L away.

Ψ(x, t) =

√
1

L
exp

[
j

(√
2mEo
~

x− Eo
~
t

)]
(3.33)

Important: It is important to note that the length L used for the free particle

here is usually taken as infinity in most quantum mechanics texts, and the wave

function is left un-normalized. However, since we are engineers, we look for realistic

situations. For us, L, which is the length of a cathode ray tube or an electron

microscope, for example, may be a meter long, is much much larger than an electron

wave length which is typically on the order of one nanometer. Thus, for all practical

purposes our electrons in this example can be treated as free particles. You will find

that this will not be true for the potential well cases in the following section where

the wave length of the particle and the width of the well are of the same or similar

orders of magnitude.

3.4.5 The Double Slit Experiment: Interference Pattern

The wave-function of an electron may seem like an abstract mathematical

concept because it is not directly observable (though the magnitude squared is ob-

servable as a probability density), but the wave-like nature of a particle can be

revealed experimentally. The famous experiment now known as the Double Slit Ex-

periment was first performed by Thomas Young in 1803. It directly demonstrated

the wave-like nature of photons by producing an interference pattern on a screen

caused by a beam of light interacting with itself. The basic diagram of the exper-

iment is shown in Figure 3.2. The peaks of the incoming wavefront shown as blue

lines pass through the slit and diffract. Once the wave hits the double slit, each

opening creates a separate set of wave-fronts which, when overlapping, interfere

constructively to increase the wave intensity. In other locations, the peak of one

wave interferes with the trough of another, causing destructive interference and as

a result no wave. Constructive interference will occur at the screen when the path

from slot a differs from path b by an integer multiple of the light wavelength. The

experiment as performed using a beam of light may not be convincing as to the

wave-like nature of a single particle because one might think that incident particle

is merely interfering with all of the other particles simultaneously flowing through

the opposite slit. Interestingly, the same pattern can be constructed by firing the

particles one at a time though the double-slit and building up a distribution of

where the final particles strike the screen. After many particles have been fired the
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Figure 3.2: Double Slit Experiment: Left shows the intensity pattern seen when
a beam of monochromatic light is shown on a double slit. Right shows the strike
locations for single particles (such as electrons or photons) built up after firing the
particles one at a time. The intensity/probability distribution (blue solid) follows
the envelope of diffraction that would result from a single-slit (red dashed) but has
the higher frequency oscillations caused by the interference.

probability distribution recovered matches the beam intensity pattern and it is clear

that each particle must be able to interact and interfere with itself.

3.5 Solving the Time Independent Schrodinger

Equation for Bound States

In this section we will give several important examples for solving the Schrodinger

equation for some common potential energy terms. In these examples, the electrons

are bound by the potential energy, and are thus not free to move anywhere. While

the potentials for these examples may appear a little contrived, they do reflect real

situations that actually do occur, especially in nanoscale electronics. We will see

that for these bound electrons, they will only be allowed to have specific allowed

energy levels.

3.5.1 System: The Particle in Infinite Potential Well

One of the most common, simple and also illustrative examples of solving the

Schrodinger equation and a quantum system is the 1-Dimensional infinite potential

energy well. In this situation, we have a region of zero potential energy that is

bounded on either side by regions of infinitely repulsive potential energy. This is

often referred to as the 1-D particle in a box problem where the particle is located
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-∞ ∞0 L

V=0

V=∞

ψ=0

V=∞

ψ=0

Potential Well

Figure 3.3: Infinite Potential Well.

in a box with walls that have infinitely high potential energy so the particle cannot

escape the box. The potential is shown in Figure 3.3. While this actual potential

does not really exist in nature, it is very useful for approximating many quantum

systems. The general time independent Schrodinger equation for this potential

energy is the following.

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (3.34)

Outside the Well

For, x < 0 and x > L, V (x) = ∞, then ψ(x) = 0 (particle does not exist in

these regions). If it existed the energy of the particle would be infinite, which is not

physical.

Inside the Well

Inside the well for x between 0 and L or (0 < x < L), V = 0, so the Schrodinger

equation in this region becomes

− ~2

2m

d2ψ(x)

dx2
+ 0 = Eψ(x) (3.35)

This is a simple homogeneous second order differential eigenvalue equation which

we solve with the following by first making the change of variables: k2 = 2mE
~2 to

obtain:
d2ψ(x)

dx2
= −k2ψ(x) (3.36)

Since it is a second order equation we have two solutions and the general

solution is the sum of the two individual solutions:

ψ(x) = A sin(kx) +B cos(kx) (3.37)
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You should verify that 3.37 is indeed a solution to differential equation by substitut-

ing it into the original the equation 3.35, performing the differentiation and ensuring

that the two sides of the equation are indeed equal.

Obtaining values for unknown coefficients A, B, and the energy eigenval-

ues Ei.
To obtain the values for the unknown coefficients and the energy eigenvalues,

we apply boundary conditions (BCs) to equation 3.37:

1. BC1: at x = 0, ψ(0) = 0 so

ψ(0) = A sin(0) +B cos(0) = 0 (3.38)

This means that the coefficient B must be zero, or B = 0 to satisfy equation

3.38

ψ(x) = A sin(kx) (3.39)

2. BC2: at x = L, ψ(L) = 0

ψ(L) = 0 = A sin(kL) (3.40)

This means that only certain values of k are allowed which satisfy equation

3.40, which are

kn =
nπ

L
, n = 1, 2, 3.... (3.41)

So, ψn(x) = A sin(nπ
L
x). Note that we have put a subscript n with ψ = ψn to

reflect the numerous ψ’s that satisfy equation.

Now, we need to find the coefficient A and use normalization to do so. To find

A, recall
∫∞
−∞ ψ

∗(x)ψ(x)dx = 1. This yields the following value for A: A = ( 2
L

)
1
2

Exact Solution or Eigenfunctions

Finally, with the coefficient A ascertained using normalization, we have the

set of wave-functions ψn(x):

ψn(x) =

√
2

L
sin
(nπ
L
x
)

(3.42)

ψn(x) are the eigenfunctions or particle wave-functions for the infinite 1-dimensional

square well potential. Note, that all ψn(x) have the same form, except for the integer

n in the argument of the sine function. These reflect the different eigenfunctions

that satisfy the Schrodinger equation for the given particle in a box potential. The

first three wave functions for the values of n = 1, 2 3 are shown in Figure 3.4.

Allowed Energy Values En
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Figure 3.4: The first three wave functions for the values of n = 1, 2 3 for the Infinite

1-D Potential Well

Substituting back the energy as described by k, we have the following allowed

value for energy, or the energy eigenvalues: En = ~2k2n
2m

and using the allowed values

of kn gives:

En =
~2π2n2

2mL2
(3.43)

En are the Eigenvalues or allowed energy values.

It is useful to observe that for large values of L, (size of room), the En for

various n are close together making the energy function virtually continuous. but

for small L (atom), the energy levels are separated far apart.

Additionally, the wavefunction solutions obtained here are all orthogonal (and

orthonormal when normalized, as in Equation 3.42). Mathematically, this means:∫ ∞
−∞

ψn(x)ψm(x)dx = δnm (3.44)

δnm =

{
0, n 6= m

1, n = m
(3.45)

where δnm is the Kronecker delta function.
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Example 3.3:

Quantum Well Lasers and Light Emitting Diodes

For a quantum well laser, or a quantum well Light Emitting Diode (LED), you

generate very pure monochromatic light by constructing a nanoscale box of

length L = 1nm and inserting electrons inside. As electrons make transitions

from the first excited energy level to the ground state, calculate the frequency

of light you would expect to be emitted?

First, calculate the energy of the emitted light from making this transition:

E2 − E1 =
~2π2

2mL2
(22 − 12) = 1.13eV

Calculating the frequency of this light, recall ω = E/~ and f = ω/(2π):

f =
(E2 − E1)

2π~
=

1.13eV

2π · 6.58× 10−16eV s
= 2.73× 1014Hz

This frequency corresponds to near infrared light.

3.5.2 System: Finite Potential Well

In Figure 3.5 we show a 1-Dimensional finite potential energy well. This is

analogous to the previous example, except that the potential energy barriers outside

the well are not infinity, but have a finite height which is equal to Vo. (Units here

are typically either Joules or electron volts eV).

If the particle energy E is less than V o, (E < V o), then quantum mechanics tells

us that the particle can only have discrete values of energy Eiand can be described

by specific wave functions ψi(x).

The other interesting thing that we will find by solving this problem is that

quantum mechanics allows for the particle to enter the regions of potential energy

V o. This is totally different from classical physics which would never allow a particle

that has lower energy than a blocking potential, to ever penetrate the blocking

potential region. This is a fundamental QM result that we will see several times

in this chapter. Furthermore, this phenomenon of barrier penetration is used for

numerous electronic devices that you use daily, such as flash memory drives. It

is also one of the operating mechanisms behind making electrical connections to

MOSFET transistor devices. We will discuss this more later when we talk about

”Tunneling”.

To solve the finite well problem, we first divide our domain into three regions.

We then solve the time independent Schrodinger equation in each region. We then
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Figure 3.5: 1-Dimensional Finite Potential Energy Well

apply the boundary conditions on the wave function at (+) and (-) infinity, and at

the well boundaries, x = −L
2

and at x = L
2
.

We will solve the Finite Well problem for the case for which the energy of the

particle is lower than the potential energy outside of the well (E < Vo).

Region I: (−∞ ≤ x ≤ −L
2
), V = Vo: We begin by substituting the potential Vo

into the Schrodinger equation,

− ~2

2m

d2ψI(x)

dx2
+ VoψI(x) = EψI(x) (3.46)

and then we re-arrange to get the following:

d2ψI(x)

dx2
=

2m(Vo − E)

~2
ψI(x) (3.47)

Making the change of variables for convenience we define KI as the following

expression. Also, since Vo > E , KI is a real number.

KI =

√
2m

~2
(Vo − E) (3.48)

Since KI is real, and the both sides of equation 3.47 have the same sign, and

it is a second order differential equation, the general solution to 3.47 is the

sum of two real exponentials.

ψI(x) = AeKIx +Be−KIx (3.49)

Where A and B are the unknown coefficients, which can be determined by

applying boundary conditions that are specific for this problem.
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Region II (−L
2
≤ x ≤ L

2
), V = 0: In this region the potential is zero, which gives

rise the following form of the Schrodinger equation.

− ~2

2m

d2

dx2
ψII(x) = EψII(x) (3.50)

Since the equation is second order and the LHS and RHS are of opposite

sign, the solutions are complex exponentials, which can also be expressed as

sinusoidals: Thus,

ψII(x) = C cos(KIIx) +D sin(KIIx) (3.51)

where the unknown coefficients C and D can be obtained by the boundary

conditions, and KII is:

KII =

√
2m

~2
E (3.52)

Region III: (L
2
≤ x ≤ ∞), V = Vo: This is the same as Region I, but with

different coefficients:

ψIII(x) = FeKIIIx +Ge−KIIIx (3.53)

KIII =

√
2m

~2
(Vo − E) (3.54)

Boundary Conditions (BCs): As we discussed in Section 3.4.3, the wave function

must go to zero at infinity and it must be continuous across boundaries. Also, as

required by the Schrodinger equation, the first derivative of the wave function must

also be continuous across boundaries. These lead to following BCs:

1. ψ should be 0 at ±∞.

2. ψ is continuous at the intersection of Region I and Region II on the left, and

Region II and Region III on the right,

3. dψ
dx

is continuous at the intersection of Region I and Region II on the left, and

Region II and Region III on the right,

Applying the BC at x=−∞ that ψI(−∞) = 0, we have B = 0. Similarly, using the

BC at x=+∞ that ψIII(+∞) = 0, we have F = 0. Rearranging the equations, we

have

ψI(x) = AeKIx (3.55)

ψII(x) = C cos(KIIx) +D sin(KIIx) (3.56)

ψIII(x) = Ge−KIIIx (3.57)
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Figure 3.6: The first three wave functions (eigenfunctions) for the 1-Dimensional
Finite Potential Energy Well. Notice that the wave function extends into the regions
outside of the well, indicating that it is possible to find the particle outside of the
well.

Using the BC’s for the boundaries of −L
2

and L
2
, we have

ψI(−
L

2
) = ψII(−

L

2
) (3.58)

ψII(
L

2
) = ψIII(

L

2
) (3.59)

dψI(x)

dx

∣∣∣∣
L=−L

2

=
dψII(x)

dx

∣∣∣∣
L=−L

2

(3.60)

dψII(x)

dx

∣∣∣∣
L=L

2

=
dψIII(x)

dx

∣∣∣∣
L=L

2

(3.61)

Also the overall wave function must be normalized to 1 since the particle exists

somewhere, or
∫∞
−∞ ψ

∗(x)ψ(x)dx = 1. Applying the normalization requirement to

the finite well system gives:∫ −L
2

−∞
ψ∗I (x)ψI(x)dx+

∫ L
2

−L
2

ψ∗II(x)ψII(x)dx+

∫ ∞
L
2

ψ∗III(x)ψIII(x)dx = 1 (3.62)

The wave function solutions 3.55 though 3.57 contain four unknown coefficients

(A, C, D and G). They also have in them allowed energy values which are contained

in KI , KII and KIII . To solve for the unknown coefficients, we would next apply five

conditions given by equations 3.58 to 3.62 to obtain the four unknown coefficients

and the allowed energy eigenvalues En. This winds up being a lengthy exercise, the

results of which are provided in Appendix A. We illustrate the results that you

would obtain in Figure 3.6. The energy eigenvalues you would get are in a form

that is similar to those of the infinite well as given by equation 3.43, but generally
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have slightly lower values for a given solution integer n. Physically, this result makes

sense because the system is very similar to the infinite well example, except that the

wave function can penetrate or ‘leak’ into the high potential regions. This broadened

wavefunction has the effect, in a sense, of increasing the effective “length” of the

box, thus reducing the magnitudes of the allowed energy eigenvalues.

For an example finite well with Vo = 5eV and L = 2nm, the first six allowed

energies are compared to those in an infinite well of the same length below:

1 2 3 4 5 6

Finite: 0.0795 eV 0.3175 eV 0.7128 eV 1.2626 eV 1.9625 eV 2.8038 eV

Infinite: 0.0940 eV 0.3761 eV 0.8462 eV 1.5043 eV 2.3505 eV 3.3848 eV
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Important Observations and Results about the resulting wave func-

tion: It is important to notice that the wave function ψ is sinusoidal inside the well

(RII region), and in Regions I and III ψ is given by decaying exponentials. This says

that the particle can penetrate the wall of the potential energy well, even though

the particle’s energy is lower than the height of the potential energy barrier formed

by the wall of the well. The particle can be found outside the box because |ψI |2
and |ψIII |2 are not zero. This is totally in contrast with classical physics which says

that if a particle has less energy than the potential barrier, it would never be able

to penetrate it. However, experiments and basic electronic devices, like MOSFET

transistors, that we use daily tell us that quantum mechanics gives us the correct

picture.

3.6 Tunneling and Barrier Penetration

Tunneling is a purely quantum mechanical phenomenon that is very important

in electronics. Tunneling is when a particle passes from one side of an energy barrier

to the other side, for the case when the energy of the particle lower than the potential

energy of the barrier. This is totally not allowed according to classical physics,

but it happens all the time and is explained by quantum mechanics. It has many

applications and is the mechanism behind various devices including the operation

of flash memory sticks and solid state drives. Figure 3.7 illustrates the concept of

tunneling. The top figure shows the particle wave function which depicts an electron

wave function heading into the barrier. The wave then penetrates the barrier and

comes out the other side. One thing to notice is that the incident wave in Region

I has larger amplitude than the transmitted wave in Region III. This reflects the

result that not all electrons wind up tunneling through the barrier, but some of the

incident electrons are reflected back, so the probability of finding the particle in

Region I is greater than finding it in Region III.

We will solve the tunneling barrier problem for the case for which the energy

of the particle is lower than the potential energy of the barrier (E < VB). In other

words, consider the case of an electron that is launched and travels in the positive

x direction toward a barrier that has a blocking potential energy that is greater

than the energy of which the particle is launched. To analyze this problem, we solve

the Schrodinger equation in the three regions and apply boundary conditions. One

thing to make sure you understand is that this is a free particle problem, not a

bound particle situation.

Region I: (x ≤ 0), V = 0: We begin by substituting the potential V = 0 into the
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RI
RIII

RII

ψI ψII ψIII

---0 L

Figure 3.7: The top figure is an example wave function of a tunneling particle. The
barrier is between 0 and L, and it has height of VB units of energy (typically in
Joules or eV). The bottom figure is an example of a Flash Memory Transistor that
operates on the principle of tunneling.
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Schrodinger equation, and rearranging to get the following:

d2

dx2
ψI(x) = −2m

~2
EψI(x) (3.63)

Making the change of variables for convenience we define KI as the following

KI =

√
2mE
~2

(3.64)

Since KI is real, and the LHS and RHS equation 3.63 have the different sign,

and it is a second order differential equation, the general solution to 3.47 is the

sum of two complex exponentials and thus represents two waves: one moving

in the (+x) direction and the other moving in the (−x) direction:

ψI(x) = AejKIx +Be−jKIx (3.65)

Where A and B are the unknown coefficients, which can be determined by

applying boundary conditions.

Region II: (0 ≤ x ≤ L, V = VB): This is the region of the large potential energy

barrier which has VB > E ,

− ~2

2m

d2ψII(x)

dx2
+ VBψII(x) = EψII(x) (3.66)

Making the change of variable

KII =

√
2m

~2
(VB − E) (3.67)

Rearranging which gives rise the following form of the Schrodinger equation.

d2ψII(x)

dx2
= K2

II ψII(x) (3.68)

Since the equation is second order and the LHS and RHS are of the same sign,

the solutions are real exponentials:

ψII(x) = CeKIIx +De−KIIx (3.69)

where the unknown coefficients C and D can be obtained by the boundary

conditions.

Region III: (L ≤ x), V = 0: This is the same general wave-like as Region I, but

with different coefficients:

ψIII(x) = FejKIIIx +Ge−jKIIIx (3.70)

KIII =

√
2mE
~2

(3.71)
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In Region III, the wave function represents a particle that has passed through

the barrier and is traveling only in the +x direction. Therefore, we can im-

mediately set the coefficient G = 0, and we are left with the following wave

function in Region III.

ψIII(x) = FejKIIIx (3.72)

Summarizing our results we get the following form of the wave functions for Regions

I, II and III.

ψI(x) = AejKIx +Be−jKIx (x ≤ 0) (3.73)

ψII(x) = CeKIIx +De−KIIx (0 ≤ x ≤ L) (3.74)

ψIII(x) = FejKIIIx (x ≥ L) (3.75)

Physically 3.73 corresponds to the incident wave traveling toward the barrier (the

first term) and then part of the wave that is reflected and thus traveling in the −x
direction away from the barrier (indicated by the second term). Equation 3.74 is

an exponentially decaying part of the wave function the represents that the electron

can enter and exist within the classically forbidden barrier. Equation 3.75 represents

the fact that the particle can pass through the barrier and will continue to travel

to the right (in the positive x direction). Note that we have not included the

time dependence in our solution. However, the time dependence could easily be

incorporated by multiplying all three of the above expressions by the time dependent

part of the wave function φ(t) = Ce−j
Et
~ , as given by equation 3.25. Including the

time dependence can be helpful in visualizing that we do indeed have traveling wave

solutions in Regions I and III. You may want to do this on your own.

Finally, the actual energy of the particle will be set when the particle is first

launched, and thus provides the values for KI , KII and KIII . The coefficients

can be determined by the boundary conditions requiring the wave function and its

derivative to be continuous across the region boundaries.

Using the BC’s for the boundaries at x = 0 and x = L, we have

ψI(0) = ψII(0) (3.76)

ψII(L) = ψIII(L) (3.77)

dψI(x)

dx

∣∣∣∣
x=0

=
dψII(x)

dx

∣∣∣∣
x=0

(3.78)

dψII(x)

dx

∣∣∣∣
x=L

=
dψIII(x)

dx

∣∣∣∣
x=L

(3.79)

Now, explicitly substituting in the expressions for the wave functions (3.73),

(3.74) and (3.75) and evaluating them at the boundaries (x = 0) and (x = L) as

indicated above, gives the following four simultaneous equations:

A+B = C +D (3.80)
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CeKIIL +De−KIIL = FejKIIIL (3.81)

jKIA− jKIB = KIIC −KIID (3.82)

KIICe
KIIL −KIIDe

−KIIL = jKIIIFe
jKIIIL (3.83)

Implementing the boundary conditions gives the four equations 3.80 through

3.83. However, we have five unknown coefficients: A,B,C,D and F . In our last

example, which was the finite potential well, we implemented the normalization

condition to give the fifth equation. We could do something similar here. However,

for tunneling it is usually sufficient to not determine all the wavefunction coefficients,

but to determine the all-important Transmission and Reflection coefficients T

and R.

3.6.1 Tunneling Transmission and Reflection Coefficients

The transmission and reflection coefficients quantify the probability of particles

being transmitted all the way through the barrier and being reflected back away from

the barrier. The transmission probability is the square amplitude of the incident

wave divided by the square amplitude of the fully transmitted wave, or ratios of

the wavefunction coefficients as shown below. The actual determination of these

coefficients, though a potentially useful exercise, is somewhat of an arduous endeavor

so we will save that for when you are earning big bucks designing the next generation

solid state computer memory drive. For those curious, the detailed expressions for

all the transmission coefficients are given in Appendix A. Manipulating equations

3.80 through 3.83 we eliminate all but one unknown, and then by taking the ratio

of |F |2/|A|2, we find the transmission coefficient.

Complete Transmission Coefficient:

T =
|F |2

|A|2
=

(
1 +

V 2
B sinh2(KIIL)

4E(VB − E)

)−1

(3.84)

Thick Barrier Approximation (KIIL >> 1): In the case where the barrier

width L, is much wider than the De Broglie wavelength, the expression 3.84 can be

approximated as the following product of a quadratic and a decaying exponential.

T =
|F |2

|A|2
≈ 16E

VB

(
1− E

VB

)
e−

2L
~

√
2m(VB−E) (3.85)

Where we have directly substituted the expression (3.67) for the wave vector KII =√
2m
~2 (VB − E) to more explicitly indicate the relationship between particle energy

E , barrier height VB and barrier width L.
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Thin Barrier Approximation (KIIL << 1): In the case where the barrier width

L, is much thinner than the De Broglie wavelength, expression 3.84 can be approx-

imated as the following simple decaying exponential, where again we substitute the

explicit expression for KII .

T =
|F |2

|A|2
≈ e−

2L
~

√
2m(VB−E) (3.86)

Also, the reflection and transmission coefficients are related by:

R = 1− T (3.87)

Physical Interpretation: By observing the above expressions for the transmission

coefficient, especially equation (3.86), for the thin barrier, we see that transmission

will increase as the particle energy E increases toward the barrier height potential

energy VB. The transmission probability will also increase as the barrier gets wider.

However, transmission will decrease as the barrier height increases. These results

all make intuitive sense. The most direct application of the tunneling transmission

coefficient is that it will quantify the number of particles that will actually pass

through the barrier as compared to the number that are incident upon the barrier.

For example, if T = 0.05, and a beam of N = 20, 000 particles per second are

launched or incident upon the barrier, then T×N = 0.05×20, 000 = 1, 000 particles

per second on average will tunnel through and pass through to the other side. Also

(1−T )×N = R×N = 0.95×20, 000 = 19, 000 particles per second will be reflected

back or bounce off the barrier and go back toward the original source.

Example 3.4:

A potential barrier of VB = 2eV is 1nm thick. Calculate the transmission

probability for an electron incident with energy 1eV .

KII =
√

2m(VB − E)/~ =

√
2 · 9.1× 10−31kg · (2eV − 1eV )

1.055× 10−34Js
= 5.12nm−1

T (1eV ) =

(
1 +

V 2
B sinh2(KIIL)

4E(VB − E)

)−1

=

(
1 +

(2eV )2 sinh2(5.12nm−1 · 1nm)

4 · 1eV · (2eV − 1eV )

)−1

= 1.42× 10−4

3.7 Problems

3.1 Using the method of separation of variables solve the Schrodinger Wave Equa-

tion for a free electron in one dimension. Recall that for the free electron V=0,
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so that:

− ~2

2m

∂2Ψ(x, t)

∂x2
= −~

j

∂Ψ(x, t)

∂t

(a) Assume the electron is moving in the positive x direction and show that

the solution is that of a plane wave. Show also that for the solution to

exist the following relation between E, our separation constant, and k

must hold: E = ~2k2
2m

, where E is the total energy of the electron. (Note

that k is the wavevector and k = 2π/λ where λ the electron wavelength).

(b) Starting from the classical expression for kinetic energy, E = 1
2
mv2, show

that the momentum of the free electron can be written as ~k.

(c) We know the momentum operator is given by ~
j
∂
∂x

. Show that the average

(or expected) momentum is given by ~k.

3.2 If an electron is in an infinite potential well of length 1.0 nanometers:

(a) Is the electron bound or unbound?

(b) Calculate the values of the first three energy levels that the electron can

have in Joules and eV.

(c) Solve the Schrodinger equation to get the wave-functions for the first

three energy levels.

(d) Plot the wave-functions for the first three levels.

(e) Plot the square magnitude of the wave-functions for the first three levels.

Comment on the what each of these plots tell us with respect to finding

the probability at a specific location in the well, for each energy level.

(f) Calculate the probability of finding the particle in the region (0 < x <

L/4) if the electron is in the nth energy level.

(g) Calculate the expectation value for position and momentum for a particle

in the nth energy state of the well. Do your answers make physical sense?

Compare this to what you would expect classically.

3.3 Using the quantum mechanical momentum operator p̂ = −j~ ∂
∂x

, derive the

expression for the kinetic energy operator. (Hint: In classical physics, K.E. =
1
2
mv2 and p = mv)

3.4 Lets say you are designing an optical communication device to be used in Fiber

Optic Services (FIOS) and you want to use a higher frequency light for your

optical communication.

(a) If you want to increase the frequency of the light that the electrons in

the well could absorb, what could you do to the potential energy well.

Explain qualitatively in a sentence or two.
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(b) If your well is 1.0 nm in length, and can be approximated to have infinite

potential on the sides, and you are using the first three energy levels for

your optical system, what three wavelengths of light will you use for your

optical communications?

3.5 A new kind of digital electronics is being developed. In this new technology, an

electron is trapped in a 2-dimensional potential energy well and the different

quantum states of the system are being used as different logic levels. Assume

the well has infinitely high barriers on all four sides. Inside the well V = 0.

Also, the well has length of 0.5nm and width of 1.0nm.

(a) Solve the Schrodinger equation to get the wave functions of the well.

(Hint, this is a 2-D problem, so use separation of variables: Ψ(x, y) =

X(x)Y (y), and then solve the two directions independently.)

(b) Derive and expression for the allowed energy levels.

(c) Calculate the energies of the first 3 levels in Joules and eV.

3.6 Considering a 1-D quantum well with finite barriers of height V on either side

of the well:

(a) Write down the time-independent SWE for each of the three regions of

the system.

(b) Solve the SWE for each of the three regions for the bound electrons, you

do not have to obtain values for the unknown coefficients, except those

that would keep the wave-function from going to infinity at x = ±∞.

(c) Sketch what you expect the wave-functions to look like. Remember the

continuity requirements for the wave-function.

(d) Apply the boundary conditions and set up the explicit set of equations

that you need to solve to determine the coefficients.

(e) What physically does it mean that the wave-function decays exponen-

tially on either side of the quantum well. Compare this result to the

infinite well case above and explain what the difference means physically.

3.7 A flash memory stick (also known as a travel-drive) contains billions of transis-

tors for storing charge. Each charge-storing transistor gives rise to a ‘bit’, with

a 1 or 0 depending on whether or not the charge is stored. The way charge

is stored is by having electrons tunnel through an oxide barrier to charge a

capacitor. When there is no voltage applied to the transistor, the barrier is

too high for significant tunneling and thus charge storage does not take place.

When a voltage is applied to the transistor, the tunneling barrier is lowered

enough so that tunneling and charging and thus storage of ‘bits’ takes place.
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(a) If the rectangular barrier is 1nm thick and 4.2eV high, write down the

time-independent SWE for the three regions of interest. Take the poten-

tial energy on either side of the barrier to be 0eV .

(b) Solve the SWE to obtain the wave-function in each of the three regions.

Take the electron energy to be 1.1eV , which is obviously lower than

the barrier energy. You do not have to obtain values for the constant

coefficients in front of the exponents.

(c) Now lower the barrier to 1.2eV by applying a bias of 3.0V to the device.

How has the solution to the SWE changed? (The electron energy is still

1.1eV ). Describe quantitatively, by referring to your solutions above, the

difference in the barrier penetration and thus charging between cases in

parts (b) and (c).

3.8 Explain using concepts from quantum mechanics why glass is transparent.

3.9 Write down three examples of technology based on quantum mechanics that

you use regularly. Explain qualitatively how their operations depend on quan-

tum mechanical principles.

3.10 For the infinite well potential configuration shown in Figure 3.4:

(a) Confirm that the solutions given by Equation 3.42, do indeed work when

substituted back into the Schrodinger Wave Equation.

(b) Show that the different solutions are orthonormal to each other, i.e. show

that Equation 3.44 equals 0 for n 6= m and 1 for n = m.
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Chapter 4

Quantum Mechanics and The

Hydrogen Atom

4.1 Introduction

An introduction to the key points and results of quantum mechanics would

not be complete without a discussion on the hydrogen atom. The energy levels and

the spectrum of the hydrogen atom are accurately predicted by quantum mechanics.

While the Bohr atom predicted the gross properties of the hydrogen light emission

spectrum, it was unable to predict the details known as the fine structure. Quantum

mechanics overcomes this deficiency. While it gives the principal energy levels just

as the Bohr atom, it is also able to predict the fine emission structure, which is a

major success of quantum theory. The hydrogen atom consists of one large positively

charged proton and a single electron some distance away. While it appears like

a relatively simple system, it is actually fairly complicated. Thus, we will only

outline the procedure analyzing the hydrogen and hydrogen-like atoms here. A

full discussion is part of a course which has quantum mechanics as its main focus.

Interested students are highly encouraged to take such an enriching course.

4.2 Schrodinger Equation for the Hydrogen Atom

The hydrogen atom consists of a negatively charged electron that is approxi-

mately separated from a positively charged nucleus by a distance r. The potential
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Figure 4.1: Spherical Coordinate System. Any point can be defined by the radial
distance r; the polar angle θ from vertical axis, and the azimuthal angle φ, which
is the angle between the x-axis and the projection of the radial vector onto the x-y
plane. The volume element for spherical coordinates is shown in the figure.

energy is given by the Coulomb potential of electrostatics:

V (x, y, z) = − q2

4πε0
√

(x2 + y2 + z2)
(4.1)

Potential V does not depend on the angle and is spherically symmetrical.

Therefore it is best to not use rectangular coordinates, but write the potential using

spherical coordinates:

V (r) = − q2

4πε0r
(4.2)

where r =
√

(x2 + y2 + z2)

Recall that the relationship between Cartesian and spherical coordinates is given

by:

x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ

And the volume element dV in spherical coordinates is:

dV = r2sinθdrdθdφ.

Illustrations of the spherical coordinate system are given in figures 4.1 and 4.2.

Now, using the above expression for V (r) we obtain the following form for

the Schrodinger equation for the hydrogen atom, where the wave-function ψ is a
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Figure 4.2: Spherical Coordinate System. Any point can be defined by r, the radial
distance, the polar angle θ, and the azimuthal angle φ.
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function of the spherical coordinates r, θ, φ:

− ~2

2M
∇2ψ(r, θ, φ)− q2

4πε0r
ψ(r, θ, φ) = Eψ(r, θ, φ) (4.3)

Where M is the mass of the electron.

Here comes the complicated part. We now have to write the Laplacian operator

∇2 in spherical coordinates to obtain the explicit form of the Schrodinger equation

for the H atom. So, substituting ∇2 using spherical coordinates gives:

−~2

2M

[
1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

]
ψ(r, θ, φ)

− q2

4πε0r
ψ(r, θ, φ) = Eψ(r, θ, φ) (4.4)

As said above, equation 4.4 is the Schrodinger equation for the hydrogen atom

written in spherical coordinates, and the top part of the equation within the square

brackets is the Laplacian operator ∇2 also expressed in spherical coordinates.

4.3 Separation of Variables

Equation 4.4 looks pretty intimidating, however, there is something worth

noting which is that the potential energy term only depends on the independent

variable r. This property helps us to utilize the separation of variables technique

where we can write the wave-function as:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (4.5)

In equation 4.5 we write the wave, which depends on the three variables r, θ, φ

as the product of three individual functions, with each depending only on a single

independent variable. (R(r) depends on r, Θ(θ) depends on polar angle θ,Φ(φ)

depends only on azimuthal angle φ). Next we Substitute 4.5 into 4.4 and then

do a fair amount of algebra and differentiation to transform the single Schrodinger

equation 4.4 into three separate equations: one for Φ(φ) only, one for Θ(θ) only, and

one for R(r) only. I will not include the details of this manipulation here, but it is

not too bad and you can check it out in the references [2, 3]. The resulting three

separate differential equations are:

d2Φ

dφ2
= −m2Φ (4.6)

− 1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

m2

sin2 θ
Θ = l(l + 1)Θ (4.7)
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−~2

2M

[
1

r2

d

dr
(r2 d

dr
)− l(l + 1)

r2

]
R(r)− q2

4πε0r
R(r) = E R(r) (4.8)

The separation of variables technique utilizes the separation constants of m

and l(l+1). Here, we used two separation constants because we have three equations.

(Recall when we used separation of variables to separate space and time in Chapter

3, we used one separation constant because we had to separate the time dependent

Schrodinger equation into two equations.) The exact values of these separation

constants come from the boundary conditions and the requirements of continuity

of the wave-function. This will become more clear later in this section especially

when we describe the solutions of equation 4.7, which provides the polar angle θ

dependence on the wave-function.

Eigenfunction and Eigenvalue Equations and their Solutions

Each one of the three separate equations has a similar special form. More

specifically, each one of the three separated equations is an eigenvalue equation

where a second order differential operator is acting on the function on the LHS,

which is equal to a constant times the same function on the RHS. Equations of this

form are called Sturm-Liouville equations after the two mathematicians who first

studied them extensively in the mid 19th century. It has been found that equations

in this form have a special type of solution. More specifically, they are satisfied by

a set of solutions and each single solution of the set will give a specific Eigenvalue.

A simple example of a set like this are the solutions for the Schrodinger equa-

tion for the particle in an infinite potential well of length L. In section 3.5.1 we

found that the set of solutions were ψ(x) = (2/L)sin(nπx/L) (equation 3.42) and

each solution gave rise to a specific eigenvalue En = ~2π2n2/2mL2 (equation 3.43).

The value of the integer n indicates the specific wave-function and its corresponding

energy. Since equations 4.6 through 4.8 all have this general form, they will have a

set of functions as their allowed solutions, and each one of the allowed functions of

the set will correspond to a separate eigenvalue. Now let’s look at the solution to

each equation separately.

4.3.1 Solution of Φ Equation (Azimuthal Angle Dependence)

It is straightforward to integrate equation 4.6 and see that the solution is:

Φm(φ) =
1√
2π
ejmφ m = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (4.9)

The normalization coefficient 1√
2π

is obtained by the requirement that∫ 2π

0

Φ∗m(φ)Φm(φ)dφ = 1 (4.10)
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Note the values of m are restricted to integers. This is because if we go around in a

complete circle and come back to where we started, the wave-function must be the

same. Otherwise it would not be physical.

The Eigenvalue of the azimuthal equation is m2. More detailed study of quantum

mechanics shows that m~ is equal to the z component of the electron’s angular

momentum.

4.3.2 Solution of Θ Equation (Polar Angle Dependence)

The solution to equation 4.7 will give the θ or polar angle dependence on

the wave-function. This may be easier said than done because equation 4.7 is very

complicated. However, we are very lucky because equations of this type have been

studied by mathematicians for about 200 years. This equation is called the As-

sociated Legendre Equation and is named after the mathematician Adrien-Marie

Legendre (1752-1833). Mathematicians have shown that solutions for this equation

are given by polynomials. The only allowed solutions are when the equation 4.7

have specific integer values for the indices l and m, which are contained explicitly

in the equation. Thus only very specific polynomials are the solutions and they

correspond to different values of l and m. The system of polynomials are designated

as Pm
l (cos θ), and they are functions of cos θ and sin θ and are called the Associated

Legendre Polynomials. Thus the solutions to equation 4.7 are

Θlm(θ) = NlmP
m
l (cosθ) l = 0, 1, 2, 3, ....... (4.11)

where Nlm is the normalization constant, that depends on the values of l and m.

We won’t worry about the exact values of Nlm in this class, but they satisfy the

normalization condition:∫ π

0

Θ2
lm(θ) sin θdθ =

∫ π

0

|NlmP
m
l (cosθ)|2 sin θdθ = 1 (4.12)

For those interested it turns out that the values of Nlm are the following [2]:

Nlm =

√
(2l + 1)(l −m)!

2(l +m)!
(4.13)

Where ! is factorial. Also, one very important thing to know is that the values

of m are restricted to be less than or equal to each specific value of l. In other words

for a given value of l, we have the very important requirement that (|m| ≤ l). It

is also important to note that for the radial function Θlm(θ) m ≥ 0, which is true

for the associated Legendre polynomials Pm
l (cos θ) and the normalization coefficient

Nlm. But m can take on negative values for the azimuthal angle component Φm(φ)

as described in the previous subsection.
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The first six Associated Legendre Polynomials Pm
l (cosθ) are:

s : P 0
0 = 1

p : P 0
1 = cos θ , P 1

1 = − sin θ

d : P 0
2 = 1

2
(3 cos2 θ − 1) P 1

2 = −3 sin θ cos θ P 2
2 = 3 sin2 θ

etc.

The set of Associated Legendre Polynomials will continue indefinitely. However, we

are typically interested in the first few which correspond to the s, p, d and f atomic

orbitals, which we will talk about more later in the chapter.

The Eigenvalue of the polar equation is l(l+ 1). More detailed study of quantum

mechanics shows that
√
l(l + 1)~ is equal to the electron’s angular momentum.

Example:

Show that the polar normalization function Nlm is correct for nor-

malizing Θ2
10(θ) and Θ2

11(θ).

When integrating the polar component of the wavefunction over dΘ, we must

include the θ dependence of the volume element (sin θ) in the integrand.

Θlm(θ) = NlmP
m
l (cos θ)∫ π

0

Θ2
10(θ) sin θdθ =

∫ π

0

∣∣∣∣∣
√

(2 + 1)(1− 0)!

2(1 + 0)!
cos θ

∣∣∣∣∣
2

sin θdθ =

=

∫ π

0

3

2
cos2 θ sin θdθ = 1

∫ π

0

Θ2
11(θ) sin θdθ =

∫ π

0

∣∣∣∣∣
√

(2 + 1)(1− 1)!

2(1 + 1)!
(− sin θ)

∣∣∣∣∣
2

sin θdθ =

=

∫ π

0

3

4
sin3 θ dθ = 1

Remember, when evaluating factorials 0! = 1, also all instances of m in the

polar equations are actually |m|.

4.3.3 Solution of the R Equation (Radial or Distance De-

pendence from the Nucleus)

The solution to equation 4.8 tells us how the wave-function varies as you move

away from the center or nucleus of the atom regardless of the angle. It depends

on absolute distance or r only. It generally describes the geometry of the overall

electron orbit for each energy level n. The radial equation is also very complicated,
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but is has been studied for quite a while and the solution has been determined using

series solution methods. Like the equations for the φ and θ dependence, the radial

equation has a set of solutions that will continue indefinitely. This set of functions

are called the Associated Laguerre Polynomials. The specific form of each function

of this set is provided by the integers n and l, and is given by the following:

Rnl(r) = Anl e
− r
nao

[
2r

nao

]l
L2l+1
n−l−1

(
2r

nao

)
n = 1, 2, 3, . . . , and (0 ≤ l < n) (4.14)

Anl =

√
4(n− l − 1)!

a3
on

4(n+ l)!
(4.15)

Where r is the distance from the origin, Anl are the normalization coefficients, ao =

0.53 angstrom which is the Bohr radius that we found in Chapter 2, n is any integer

greater than zero, and L2l+1
n−l−1(2r/nao) are the Associated Laguerre polynomials and

are given by

L2l+1
n−l−1

(
2r

nao

)
=

n−l−1∑
k=0

(−1)k [(n+ l)!]2

(n− l − 1− k)!(2l + 1 + k)!k!

[
2r

nao

]k
(4.16)

Also, it is very important to note that the values of l are limited to be less than n or

(l < n). Furthermore just like for Φ and Θ, the function R(r) must be normalized:∫ ∞
0

R2
nl(r)r

2dr = 1 (4.17)

Note that the additional r2 term in the integral arises due to the r dependence

of the spherical coordinates volume elements. Graphs of the square magnitude of

the radial distribution |Rnl|2 are shown in Figure 4.3 for the first three values of

the principle quantum number n. These graphs give the probability of finding the

electron at a distance r in angstroms from the nucleus. The values n =1, 2, 3 give

the first three energy levels of the hydrogen atom, where n=1 is the ground state

energy. We see at the ground state, the electron is most likely to be at about 0.5Å

from the nucleus which is about the same as the Bohr radius.

While the general form of the radial part of the wave-function R(r) is com-

plicated (equation 4.14), and you don’t need to know the details for this class, it

is IMPORTANT to know that the function is given by a polynomial multiplied by a

decaying exponential function.

Rnl(r) = e
−Zr
nao fnl(r) n = 1, 2, 3...... (4.18)

Where Z= nuclear charge (for hydrogen Z=1), and ao = 4πε~2
mq2

= Bohr radius.
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Figure 4.3: The square magnitude of the radial component of the hydrogen wave
function Rnl(r) for the first three energy levels. Graphs show the plot of r2R2

nl.

4.4 Energy Levels and the Total Wave-function

Energy Levels

The allowed energy levels of the hydrogen atom are given by the eigenvalues

of the general Schrodinger equation for the hydrogen atom or equation 4.4. These

are the same as the eigenvalues of the radial equation or equation 4.8 and are given

by the following:

En = − MZ2q4

(4πε0)22~2n2
(4.19)

Where M is the mass of the electron, and Z is the nuclear charge. For example, for

hydrogen Z = 1, and for a helium ion He+ Z = 2.

Note that the allowed energy values are negative and increase (get closer to

zero) as the quantum number n increases. The negative value of energy just means

that the electron is bounded by the positively charged nucleus. The larger the value

of n, the higher the energy level and the less bound the electron. In the limit of

infinite n, the energy becomes zero, which means that the electron is no longer

bound to the nucleus. Also note that the values for the allowed energies are the

same that Bohr obtained for his ‘Bohr Atom’.
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It is worth noting that the energy levels given by equation 4.19 only depend

on the value of the quantum number n from the Radial equation and not on the

values of l. This is actually a simplification. The levels do indeed depend on l as

well as the spin of the electron. These are due to quantum relativistic effects and

the interactions of polar angle wave function and the electron spin. However, this

is probably something we should not spend too much time on here. Just know that

these interactions do give rise to the various further splitting of energy levels which

depend on l and the spin. This effect results in an energy that depends on the orbit

the electron is in (n), as well as the suborbital (s, p, d, f), as defined by l.

Total Wave-function ψnlm(r, θ, φ)

Now that we have explained how we obtain the individual parts of the wave-

function that we introduced for our separation of variables methodology, we can

construct the total wave-function ψlmn(r, θ, φ) by multiplying together the individual

parts:

ψnlm(r, θ, φ) = Rnl(r)Θlm(θ)Φm(φ) (4.20)

We now start constructing the various hydrogen wave-functions by choosing values

for n, l,m and multiplying functions together. The first three wave-functions, con-

structed for nlm = 100, nlm = 210 and nlm = 21± 1, are given below. A large set

of these hydrogen wave-functions can easily be found on the Internet and in many

introductory quantum mechanics books [2, 3].

ψ100(r, θ, φ) =
1√
π

(
Z

ao

)3/2

e−Zr/ao (4.21)

ψ200(r, θ, φ) =
1

4
√

2π

(
Z

ao

)3/2(
2− Zr

ao

)
e−Zr/2ao (4.22)

ψ210(r, θ, φ) =
1

4
√

2π

(
Z

ao

)3/2
Zr

ao
e−Zr/2aocosθ (4.23)

ψ21±1(r, θ, φ) =
1

8
√
π

(
Z

ao

)3/2
Zr

ao
e−Zr/2aosinθe±jφ (4.24)

Three-dimensional images illustrating the square magnitude of hydrogen wave-

functions ψnl for n, l = 1,0; 2,1; 3,2; 4,3; 5,4 and the allowed values of the quantum

number m for each case are shown in Figure 4.4.
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Figure 4.4: Three-dimensional images illustrating the square magnitude of hydrogen
wave-functions |ψnl|2 for n, l = 1,0; 2,1; 3,2; 4,3; 5,4 and the allowed values of the
quantum number m for each case. The corresponding s, p and d indices are also
shown. Recall the s,p,d indices correspond to specific values of the l and m quantum
numbers.
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4.5 The Indices: n, l and m, the Electron Spin s

and the Pauli Exclusion Principle

These indices are also called the quantum numbers for the hydrogen atom.

Each distinct combination of n, l and m corresponds to another wave-function and

thus another quantum state of the hydrogen atom. (This does not include spin

which we will talk about later.) The wave-functions for hydrogen and the energy

values are also applicable to all the elements with minor modification to account

for the different atoms having many electrons. Thus, the wave-functions above also

correspond to all the known atoms and thus give structure to each of the atoms

found in the periodic table.

These indices n, l and m are described as follows:

• n is principal quantum number. It describes the orbit and energy level of

the electron, and comes from the possible solutions of the Rnl equation:

n = 1, 2, 3, 4........

• l is the polar angle quantum number. It describes the suborbital and

comes from the Θlm(θ) equation. The value of l corresponds to the orbitals:

s, p, d, f,...as follows: l = 0 gives an s suborbital, l = 1 gives a p suborbital,

l = 2 gives a d suborbital, l = 3 gives an f suborbital, etc. Values of l are

integers, and l is restricted for a given value of n, and they give the allowed

suborbits for a given orbit. For a given value of n, values of l can be:

l = 0, 1, 2, ..., n− 1

It is also important to note that the angular momentum L of the system is

given by the expression: L =
√
l(l + 1)~

• m indicates the azimuthal dependence of the wave-function. It comes from

φm(φ) and (−l ≤ m ≤ l). It gives the number of suborbitals there are for a

given value of l. For each value of l, there will be 2l + 1 values of m.

m = −l,−1 + 1, ......− 1, 0, 1, ...., l − 1, l

The eigenvalue of the azimuthal equation is actually m2, and the z-component

of the angular momentum Lz = m~.

• Example: As an example consider the case where n = 3, l = 1, m = 0.

This will correspond to a p suborbital in the third energy level or third row

of the periodic table. When m = 0, this is traditionally taken to mean the pz
suborbital.

• Electron Spin (s): We have not really talked about electron spin yet. Spin

is a characteristic that largely determines the effect of the magnetic field on an

78



Neil Goldsman and Christopher Darmody April 29, 2020

electron. All electrons have spin. There are two possible spin states that an

electron will occupy: “spin up” and “spin down”. The quantum numbers

for spin are:

s = ±1
2

Spin is regularly used in modern technology. One especially interesting and fa-

mous application is in Magnetic Resonance Imaging (MRI) which uses electron

spin to produce tissue images inside the human body.

The Pauli Exclusion Principle says that no more than one electron can oc-

cupy the same quantum state. For the hydrogen atom, the specific combination of

n, l,m, s determines the state the electron is in and will be unique for each state.

(Often you will hear people say that two electrons can occupy a state. When people

say this they are neglecting the effect of spin.) Particles that obey this restriction

with respect to only one being able to occupy a given state are called “Fermions”.

The Pauli Exclusion Principle is extremely important to the world as we know it.

If electrons did not obey the Pauli Exclusion Principle, they would all drop to the

lowest energy level and there would not be interactions between atoms as we know

it. Thus, life and the world as we know it would not exist!

Filling Up Atomic Orbitals

Atoms across the periodic table fill up their orbitals according to the number

of electrons they have. Recall the following:

l=0, s orbital, 2 states

l=1, p orbital, 6 states

l=2, d orbital, 10 states

l=3, f orbital, 14 states

Atoms will continue to fill up suborbitals as the atomic number increases. It is

probably easiest to show this by example. Filling up of the orbitals for Chlorine

(atomic number Z = 17), for example, is as follows:

1s22s22p63s23p5 (Total number of electrons=17)

The full table of quantum number combinations up to n = 3 is shown in table

4.1.
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Table 4.1: Allowed quantum number combinations up to n = 3.

n l m Spin
Total Suborbital

Notation Elements
Total States

States in Orbital

1 0 0 ±~
2

2 1s1, 1s2 H, He 2

2

0 0 ±~
2

2 2s1, 2s2 Li, Be

8

1
-1 ±~

2
6 2p1. . . 2p6

B, C,

0 ±~
2

N, O,

1 ±~
2

F, Ne

3

0 0 ±~
2

2 3s1, 3s2 Na, Mg

18

1
-1 ±~

2
6 3p1. . . 3p6

Al, Si,

0 ±~
2

P, S,

1 ±~
2

Cl, Ar

2

-2 ±~
2

10 3d1. . . 3d10

Sc, Ti,

-1 ±~
2

V, Cr,

0 ±~
2

Mn, Fe,

1 ±~
2

Co, Ni,

2 ±~
2

Cu, Zn∗

∗The 4s suborbital starts to fill before the 3d suborbital due to it’s lower energy so
the 4s1 and 4s2 electrons are needed to create all of these elements. Elements 19
and 20 (K and Ca) are not listed because they only have 4s electrons and no 3d
electrons.

4.6 Problems

4.1 Write down the time independent Schrodinger equation for the hydrogen atom.

Include the potential energy and the complete ∇2 operator in spherical coor-

dinates.

4.2 What is the probability density for the wave function in the azimuthal (φ)

direction? Remember, the probability density is obtained from the magnitude

of the wave function squared.

4.3 On a polar plot using the polar angle wave-function Θ(θ), graph the probability

density functions of the S0, P 0
1 and P 1

1 orbitals.
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4.4 Why are atoms typically stable when they have eight electrons in their outer

orbits?

4.5 Briefly describe how the Schrodinger Equation is solved for the hydrogen atom.

(Hint: describe how you would use separation of variables.)

4.6 Calculate the frequency of light emitted when an electron drops from the third

energy level of hydrogen to the second.

4.7 Atomic Structure of Silicon (Atomic Number is 14),

(a) Write down the values of the quantum numbers: n, l, m, and spin for

each electron in a silicon atom.

(b) Draw a diagram of how the electrons in a silicon atom are arranged into

orbits (n) and suborbitals (s,p,...).

(c) How many bonds do you think a silicon atom can make and why?

4.8 The 1s orbital of a hydrogen atom is given by R10(r) = Ae−r/a0 where a0 is

the Bohr radius and A is a normalization constant.

(a) Find the value of the normalization constant A using equation 4.17.

(b) Calculate the expected radial distance one would measure the electron

from the atomic core in this state. Leave your answer in terms of the

Bohr radius.

(c) Calculate the most likely radial distance (where the probability density

is maximum) and compare the value to the expectation. (Hint: As in

part (a), you must multiply the radial probability density by the ra-

dial Jacobian for spherical coordinates before finding the maximum, i.e.

r2 |R10(r)|2).

4.9 Hydrogen is excited by an electrical current and spectral measurements indi-

cate that it has been excited to the second energy level (n = 2).

(a) What are the possible values of angular momentum that the hydrogen’s

electron can have?

(b) If the electron is in a p suborbital, and its z-component of angular mo-

mentum is equal to zero, what is the probability that the electron will

be in a region that is between 0 and 30o from the polar or z axis of the

hydrogen atom?

4.10 This entire chapter has focused on the hydrogen atom. However, we are of-

ten most interested in other atoms, especially the semiconductors like silicon.

Explain qualitatively why it is useful to learn all these things about hydrogen

when we ultimately are more interested in other atoms in the periodic table.
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4.11 If the Pauli Exclusion Principle did not exist, explain what you think atomic

structure would look like. How would this affect chemical bonding and the

world as we know it? Answer in about two or three sentences.
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Chapter 5

Electrons, Holes and the Quantum
Mechanics of Crystalline Solids

5.1 Introduction

In this chapter we will focus on electrical conduction in semiconductors, and

we will answer many questions about the electrical characteristics of electronic ma-

terials. Why are some materials metals, others insulators, and even others semi-

conductors? Why do we make electronics out of mainly semiconductor crystalline

solids? How does quantum mechanics determine the particles that act as charge

carriers in semiconductors? How do we incorporate the periodic potential energy

of the crystalline structure into the Schrodinger equation? What is an ‘n-type’ ma-

terial and what is a ‘p-type’ material? In this chapter we will learn how quantum

mechanics helps to answer many of these questions. We will learn about what is a

conduction electron and what is a hole. We will learn about the valence band and

the conduction band in crystalline solid materials. We will learn about the concept

of effective mass. We will learn about the unique properties of semiconductors that

allow for a process of doping from which we make PN junctions and virtually all

electronics.

5.2 Electron Wave Function in a Crystal

Just like electrons around a single atom, and electrons in an infinite and finite

potential well, electrons in a crystalline solid are described by ascertaining their

wave functions by solving the Schrodinger equation.

5.2.1 Schrodinger Equation for Electrons in a Crystal

Periodic Potential Energy: Electrons in crystals are bound to the periodic

array of atoms that make up the solid. In metals the electrons are very loosely bound,
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in insulators the electrons are tightly bound, and in semiconductors they are bound

somewhere in between. The thing that the electrons all have in common in different

crystal solids is that the potential energy that the electrons feel is periodic with

the periodicity of the crystal. Therefore, when we move from one unit cell to the

same relative location on a different unit cell, since the environment is the same, the

potential energy will be the same. Furthermore, since the crystal structure repeats

itself over virtually an infinite number (on the order of Avogadro’s Number) of unit

cells, the electrical potential is periodic. We use the fact that we are dealing with

a periodic potential to solve the Schrodinger equation to obtain the electron wave

functions in all crystalline solids. In this class we will pay particular attention to

semiconductor crystalline solids.

The time independent Schrodinger equation in a crystal solid is given by:

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (5.1)

where ψ(x) is the electron wave function, m is the mass of the electron, E is the

electron energy, which is an allowed energy level, and V (x) is the potential energy

that the electron feels. The unique aspect of Schrodinger equation 5.1 is that the

potential is periodic which means that it has the following property:

V (x) = V (x+ na), n = 1, 2, 3, 4............ (5.2)

In equation 5.2 a is a primitive lattice vector. In other words, the crystal is

periodic in the length ′a′. Note that our example here is for one dimension, but the

same applies in three dimensions. In Figure 5.1 we illustrate the periodic potential

for a 1-D array of atoms. Note that each atom has a form of −1
x

for its potential

energy.

To get a more explicit idea about the Schrodinger equation for a periodic

potential, we bring in Fourier series. Recall that any periodic function can be

written as a Fourier series, which means it can be written as a sum of sinusoidal

functions. Thus, the periodic potential can be written as the following complex

series:

V (x) =
∞∑

n=−∞

Vne
j2πnx/a (5.3)

Where a is the lattice constant, and Vn are the coefficients for each term in the series.

Substituting the Fourier series, which is a by definition a periodic function, we obtain

the following, more explicit form for the Schrodnger equation for a crystalline solid

like that of a semiconductor.

− ~2

2m

d2ψ(x)

dx2
+

[
∞∑

n=−∞

Vne
j2πnx/a

]
ψ(x) = Eψ(x) (5.4)
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5.2.2 The Wave-Function and Bloch’s Theorem

In general, it would be absurdly difficult to write down and solve the Schrodinger

equation for electrons in a crystal because there are so many atoms and so many

electrons. In his Ph.D thesis, in 1928, the Physicist Felix Bloch came up with a way

to overcome this problem and greatly simplify solving the Schrodinger equation for

so many atoms at once. Felix Bloch showed that the solution to the Schrodinger

equation for an electron in a periodic potential like the crystal lattice is given by a

plane wave function times another function that has the periodicity of the crystal:

ψ(x) = u(x)ejkx : (5.5)

where ejkx is a plane wave, and u(x) is periodic so that:

u(x) = u(x+ na) (5.6)

For a 1-Dimensional lattice, n is an integer and a is the distance between atoms.

5.3 Band Structure for the Material and Its Im-

portance

If the Schrodinger equation is solved for a periodic potential, we will get the

wave-function and a relation between E and k, that is in many ways similar to that

of a free particle. Recall, for a free particle: E = ~2k2
2m

(parabola). For crystals, you

get bands that are sort of parabolas, but have some specific differences that we will

talk a little about below.

The relationship between energy and the electron wave-vector is called the

Band structure of the material. An example picture of the band structure is given

in the bottom part of Figure 5.1. In the figure the horizontal axis is k or the electron

wave-vector. The vertical axis is the energy. Since we are dealing with quantum

mechanics and electrons that are not totally free, bands contain many discrete states.

Two electrons can exist in a given state of wave-vector k and energy E , one with

spin up and the other with spin down. (The spin up state and the spin down state

are actually two different states with the same value of wave vector k.) The figure

shows that there are gaps in the allowed energy that electrons can have between the

specific bands. These spaces are called Energy Bandgaps and are very important

for determining the electrical properties of the material. There are no quantum

states in the bandgap, they are forbidden zones, so electrons cannot exist

in the energy bandgaps. The figure also shows that k is not continuous either.

This is illustrated by the little vertical lines in energy bands 3 and 4. In fact, all

the bands have such restrictions on k, but they are only illustrated here in the top

two bands. There are many states in a band. In general, for each band there are
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the same number of states in the band as there are atoms in the entire crystal.

And if we include spin, there are two times the number of states in each band as

there are atoms in the crystal. Thus, if the crystal contains N atoms, then there

will be in general 2N quantum states in each energy band where electrons can exist.

Since N is the number of atoms in the crystal, it is very large, approximately the

value of Avogadro’s Number (N ≈ 1023/cm3). Each state will have a unique value

of the pair (k, E). Let us clarify that we will have approximately 1023 States/cm3

for a 3-dimensional crystal. In this class, we a simplifying and describing things in

one dimension because the concept is the same. For a 1-D crystal, we would have

(N = 1023)1/3 or about 107 states/cm.

Again, since electrons are confined k will have discrete values. The allowed

values of k are

k =
2πn

L
=

2πn

Na
n = ±1,±2,±3...± N

2
(5.7)

N=number of atoms in crystal (≈ Avogadro’s number )

L=length of the crystal=Na

a= lattice constant or the spacing between primitive unit cells in the crystal.

Material’s Band Structure Provides Most of its Electrical Characteristics:

The electrical characteristics of a particular crystalline solid can be extracted

from its band structure. That is why the key objective for solving the Schrodinger

equation for a particular crystal is to ultimately calculate its band structure. More

specifically the following properties which we will talk more about in the next several

pages, are contained in the band structure. The band structure describes:

1. Whether the material is a conductor, insulator or a semiconductor by

the number of electrons in each band and the size of the distances between

the bands or the bandgap.

2. The instantaneous velocity of the electrons in the material.

3. The effective mass of the electrons in the material.

4. The intrinsic number of electrons and holes there are in a semiconductor.

5. The mobility of the electrons and holes in semiconductors and ultimately

the electrical conductivity of a specific semiconductor.

Effective Mass

The effective mass is a very important concept in semiconductors, especially

with respect to electron transport and mobility. When an external electric field is

applied to a semiconductor, the electrons feel the applied electric field and they also
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Figure 5.1: Figure showing how periodic potential varies and how orbital splitting
takes place.
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feel the periodic potential of the lattice. The electrons therefore accelerate due to

combined effects of the applied field and the periodic internal potential in a com-

plicated way. To take into account both these influences simultaneously, scientists

found that we could use an ”Effective Mass (m∗)” instead of the regular electron

mass, and this effective mass could account for both, the internal microscopic peri-

odic potential, as well as the macroscopic applied electric field. The effective mass

is obtained directly from the second derivative of the band structure as follows:

1

~2

d2E
dk2

=
1

m∗
(5.8)

or
~2

d2E
dk2

= m∗ (5.9)

After solving the Schrodinger equation, and verifying with experiments, we find the

E vs. k for the semiconductor, we can then compute 1
~2
d2E
dk2

from which we obtain

m∗ for an electron in a particular band.

One important result of equation 5.9 is that if the band has high curvature,

then the effective mass will be relatively low, while if the energy has low curvature,

the effective mass will be relatively high.

Instantaneous Electron Velocity vg:

The instantaneous velocity of an electron in a crystal at any instant in time

and point in space is also obtained from the bandstructure. The symbol we give for

instantaneous electron velocity is vg, where the subscript g comes from the idea that

we also call the instantaneous velocity the ”group” velocity. We get this because if

we describe the electron as a wave packet, the instantaneous velocity of the wave

packet is called the group velocity. We obtain the instantaneous velocity for an

electron in a particular state with wave vector k, from the derivative or slope of the

band structure at that value of k:

vgi =
1

~
dE
dk

∣∣∣∣
i

(5.10)

where vgi is the instantaneous velocity of the electron in the ki quantum state. Note

that the slope of the E vs.k at a particular value of k can be positive or negative.

So the electron can be moving in either the positive (positive slope) or negative

(negative derivative) direction instantaneously in the crystal.

Simplest Example: The Free Electron

In Chapter 3 we studied the free electron, which is the case where the potential

equals 0 everywhere. We found in Chapter 3 that the relationship between E and k

is given by E = ~2k2
2m

.
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Applying equation 5.10, we find that the instantaneous velocity for a free

electron with wave vector k is:

1

~
dE
dk

=
~k
m

= vg (5.11)

Now, if we apply expression 5.8 to the free electron we calculate the expected

result for the mass of the electron.

1

~2

d2

dk2
(
~2k2

2m
) =

2

~2
(
~2

2m
) =

1

m
(5.12)

k states in an Energy Band

Earlier in this section we said that the number of states allowed in an energy

band is 2N, where N: number of atoms in crystal and the factor 2 comes from spin.

We show this in the derivation below.

First of all, let’s draw two identical crystals in 1-D, so that the end of one

crystal is touching the beginning of the next crystal. Each crystal is of length L.

According to Bloch’s theorem discussed above, the electron wave function in

a particular state k at point x in the first crystal is given by ψk(x) = Uk(x)ejkx,

where Uk(x) is a periodic function with the same periodicity of the periodic potential

energy of the crystal. The subscript k in Uk(x) says it is a function of k as well as

x.

Now the wave function for the electron in the adjacent identical crystal is given

by ψk(x+ L) = Uk(x+ L)ejk(x+L), since it is a distance L away.

Since the crystals are identical, ψ(x) = ψk(x+ L) and

Ψk(x) = Uk(x)ejkx and

Ψk(x+ L) = Uk(x+ L)ejk(x+L)

where L = Na, (N=number of atoms in crystal).

Due to Bloch and periodicity: U(x) = U(x+ na) = U(x+Na).

So, ψ(x+ L) = Uk(x+Na)ejk(x+L) = Uk(x)ejk(x+L)

Setting ψ(x) = ψ(x+ L)

Uk(x)ejkx = Uk(x)ejk(x+L)

Canceling Uk(x) from both sides gives:

1=ejkL

This allows k to take on many values, but restricts them such that kL must be

values of 2πn = kL, where n is an integer. Thus k is restricted to the following

discrete values: kn = 2πn
L

n=±1, ±2 ....±N
2

So, there are many k values and hence, lots of states. For a 1-D crystal N ≈ 107/cm.

For a 3D crystal N ≈ 1023/cm3 or about Avogadro’s Number. (One might ask the

question, why we don’t allow states with n > |N/2|. The answer is that these states
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are physically the same as those that have values of n < |N/2|. This result becomes

clear in follow up courses in solid state physics. For now just trust me.)

Distance Between States in k Space

The distance between adjacent quantum states or k states can be easily cal-

culated as: 2π(n+1)
L
− 2πn

L
= 2π

L
= 2π

Na
.

Since N is such a large number, there are many states in the band and the states are

very closely spaced. Since the states are so closely spaced, we typically think of the

each band as a continuous function of E(k). The maximum and minimum values of

k for a particular band are as follows: kmax = 2π
L
N
2

or kmax = π
a
, and kmin = −π

a
.

5.4 Material Classification: Conductor, Insulator

or Semiconductor

Crystalline solids can be classified by their electrical conductivity. This is

obviously important for their applications in electronics. As discussed before, the

electrical conductive properties of the material are typically given by its energy band

structure. These properties are typically determined by the electron occupancy of

the bands and the size of the energy bandgaps between bands. Remember, no

electrons exist at energies in the bandgaps because there are no quantum states in

these bandgap regions.

Rules of Conduction: Occupancy of a Particular Band

First, let’s summarize the conductivity of any single energy band as follows:

1. Full bands cannot conduct electricity. Full bands cannot conduct because

electrons will have no place to go in k-space, where ever they would try to go

is already occupied by another electron. And the Pauli Exclusion principle

says that only one electron can occupy any given state.

2. Empty bands cannot conduct, they contain no electrons.

3. Only partially full bands can conduct. These bands have both occupied and

empty states, so electrons can move from k-state to a different k-state, which

can then give rise to current in the band.

Filling Up of Bands from Low Energy to High Energy

As we mentioned previously, in general each band has 2N states that can be

occupied by electrons, where N is the number of atoms in the crystal. (Note, there

will be exceptions to this, but we will not consider these kinds of details in this class.)

In a crystal, electrons in the lowest orbits (those with quantum number n=1) will
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Figure 5.2: E-k diagram for conductor, insulator and semiconductor. VB, CB, Eg
stand for valence band, conduction band, Energy Bandgap, respectively. The small
circles represent electrons. The diagram is for absolute zero (T =0K). At higher
temperatures the semiconductor would have some electrons in its conduction band,
but nowhere near as many as the conductor has.
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Material
T=0K T>0K

Bandgap Eg
CB VB CB VB

Metal 1
2

Full Full 1
2

Full Full Zero

Semiconductor Empty Full Slightly Full Slightly Empty Small

Insulator Empty Full Empty Full Large

Table 5.1: Table comparing metal, insulator and semiconductor.

fill the lowest energy bands, once those are filled the next higher bands will become

populated with electrons from the higher orbits, and eventually the outer or valence

electrons will fill the upper energy bands.

Valence Band: The highest band in energy that is totally full with all states

occupied by electrons at absolute zero temperature (T = 0K) is called the Valence

Band (VB).

Conduction Band: The next higher band above the valence band is called the

Conduction Band (CB).

The Bandgap and Conductor, Insulator or Semiconductor

The occupancy of the conduction band at (T = 0K), as well as the size of

the bandgap will determine whether or not the material is a conductor, insulator or

semiconductor.

Conductors:

Materials that are good conductors have their conduction bands highly occu-

pied at T = 0K. By highly, we mean that about 50% of conduction band k states

are filled. These materials are metals and are very good conductors such as copper,

silver or gold. Approximately each copper atom will contribute an electron to the

conduction band giving approximately Avogadro’s number of electrons per cm3 mo-

bile electrons which can contribute to electrical conduction and therefore very high

conductivity. This is illustrated on the left diagram of Figure 5.2.

Insulators:

Insulators do not conduct electricity at low nor at high temperatures. Insula-

tors have an empty conduction and a full valence band at low and high temperatures.

Insulators also have a very large bandgap so that electrons cannot gain sufficient
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thermal energy to jump from the VB to the CB at any temperature of practical

importance. Thus the VB is always full so it cannot conduct electricity, and the

CB is always empty and cannot conduct electricity either. This is illustrated on the

middle diagram of Figure 5.2.

(Note that in addition to crystal insulators, there are also amorphous insulators

like glass (Si02). Glass does not form a regular crystal structure so Bloch’s theorem

does not apply to it, so it does not have a well defined band structure. Also the

bonding is in glass is covalent so electrons are held tightly to their atoms. As a

result, amorphous materials are typically insulators.)

Semiconductors:

At absolute zero (T = 0K), the valence band of a semiconductor is full and the

conduction band is empty. Thus, at absolute zero semiconductors do not conduct

electricity. However, the bandgap between the valence and conduction bands is

relatively small. In silicon for example, the bandgap is 1.1eV and in germanium it

is only 0.66eV. (In contrast an insulator will typically have a bandgap in the 5eV to

10eV range.) As a result if the temperature is above absolute zero, a few electrons

in the VB will acquire sufficient thermal energy to jump to the CB, leaving the VB

with some empty states, called holes, and the CB populated with some electrons.

This allows both bands to conduct electricity. However, since the actual number

of electrons that have been excited to the CB is small compared to the number

of states available states in the CB, or the number of atoms in the crystal, the

intrinsic semiconductor winds up being a very poor conductor of electricity. (We

will find later that we can use manufacturing to increase the natural or intrinsic low

conductivity of semiconductors). At room temperature 300K, the concentration

of electrons in the CB of silicon is approximately 1010/cm3. This concentration is

called the intrinsic electron concentration (ni), and it will be equal to the intrinsic

concentration of holes (pi) in the valence band. The higher the temperature, the

higher the intrinsic concentration since more electrons can obtain the thermal energy

to jump from the valence to the conduction band. Also, it follows that the larger

the energy bandgap between the VB and CB, the smaller the intrinsic electron and

hole concentrations. In general, this intrinsic population is actually very small when

compared to the concentration of electrons in the CB of copper which is on the order

of 1023/cm3. It also largely explains why the conductivity of copper is approximately

1013 greater than the conductivity of intrinsic silicon. This is illustrated on the right

diagram of Figure 5.2. Note that the elemental semiconductors are from column 14

(column 4 if you neglect transition elements) of the peridic table 5.3. They have

four valence electrons and a bandgap.
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Figure 5.3: Periodic Table

5.5 Electron and Hole Transport in Semiconduc-

tor Energy Bands

5.5.1 Electron Current in the Conduction Band

Recall that current density is typically given by

~Jn = −qn < ~v > (5.13)

Where ~Jn is the electron current in a particular energy band, n= electron concen-

tration, or electrons per unit volume, which we will use the units of 1/cm3, < v > =

average electron velocity and q is the magnitude of the electron charge (1.6× 10−19

Coulombs.). Current density ~J is current per area, and in this class we will use the

units of Amps/cm2.

It is also possible to express the current density in a more detailed way. Instead

of using the concentration times the average velocity, we can sum the velocity vectors

of all the electrons per unit volume in the conduction band. In other words, let’s

write current density in an energy band as follows:
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~Jn = −q
Nncb∑
i

~vgi (5.14)

~Jn is current density in conduction band, ~vgi is the instantaneous velocity of

the i′th electron in the band. The sum is over all states in the band that are filled

with electrons, and Nncb is the number of electrons in the conduction band.

Now if we recall that ~vgi = 1
~
d~E
dk

, then we can write the current in a particular

band as follows:

~Jn =
−q
~

Nncb∑
i

dE
d~k

∣∣∣∣∣
i

(5.15)

5.5.2 Hole Current in the Valence Band

Remember that when the temperature is greater than absolute zero, some elec-

trons in the valence band will acquire sufficient energy and jump into the conduction

band leaving empty states or holes in the valence band. Now that the valence band

is not totally fully it can carry a current. Just like we did for electrons in the con-

duction band, let’s sum over the velocities of all the electrons in the valence band

to get the current density in that band.

~Jp =
−q
~

Nnvb∑
i

dE
d~k

∣∣∣∣∣
i

(5.16)

Where ~Jp is the current density in the valence band, and Nnvb is the number

of electrons in the valence band.

Now remember, the number of empty states or holes in the valence band is very

small compared to the total number of states and the total number of electrons in

the band. In fact the valence band is still over 99.999% full of electrons. Therefore,

it is more convenient to write the above sum as a summation over all states and then

subtract off the states that are empty. So equation 5.16 can be written as follows:

~Jp =
−q
~
∑
All

dE
d~k

∣∣∣∣∣
i

−

−q
~

∑
Empty

dE
d~k

∣∣∣∣∣
j

 (5.17)

Now recall the a full band cannot conduct electricity, so the first summation

in equation 5.17 is zero:

~Jp = 0−

−q
~

∑
Empty

dE
d~k

∣∣∣∣∣
j

 (5.18)
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Now distributing the negative sign and not writing the zero gives the following

expression for current in the valence band:

~Jp = +
q

~

Npvb∑
j

dE
d~k

∣∣∣∣∣∣
j

(5.19)

Where Npvb is the number of empty states in the valence band. These empty states

are called holes.

Important Result: Holes Behave Like Positively Charged Electrons.

It is important to examine equations 5.15 and 5.19 and to notice that they

look identical except for the sign in front of q. This indicates that mathematically,

the current in the valence band can be given by adding the velocities of the holes

as opposed to summing over all the VB electrons, except that instead of the charge

being negative, the charge is positive. This leads to the important result that holes

in the valence band act as positively charged electrons when it comes to the flow

of electrical current. In other words, those few empty states or holes in the valence

band can be treated the same as positively charged electrons. So, even though holes

are just empty states, they act like positively charged electrons.

Electron and Hole Summary: In semiconductors we have two types of charge

carriers:

1. Negatively charged electrons in the conduction band.

2. Positively charged holes in the valence band.

3. Electrons and holes will typically have different instantaneous velocities and

effective masses, which are determined by the slopes and curvatures of the

conduction and valence bands, respectively.

4. It follows that semiconductors have current due to electrons in the conduction

band and holes in the valence band. And the total current is the vector sum

of both.

5.6 Doping, Intrinsic and Extrinsic Semiconduc-

tors

Intrinsic Semiconductor:

An intrinsic semiconductor is just a pure crystal of the material. It does

not have any impurities called dopants. Intrinsic semiconductors are very poor
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conductors of electricity because they have very few electrons in the conduction

band and very few holes in the valence band. The intrinsic electron concentration

in a semiconductor depends on temperature because they come from the electrons

in the valence band that can get enough thermal energy to jump to the conduction

band. The symbol for intrinsic electron concentration is ni, and it is equal to the

intrinsic hole concentration pi in the valence band, because every electron that jumps

to the conduction band from the valence band leaves behind a hole in the valence

band. As an example, the intrinsic carrier concentration in silicon is approximately

1010/cm3, while the concentration of conduction electrons in the conductor copper

is approximately 1023/cm3. It is therefore not surprising that the conductivity of

intrinsic silicon is about 6× 1011 times less than that of copper.

Extrinsic Semiconductors and Doping:

We change the number of mobile electrons and mobile holes by doping with

impurities that give rise to electrons in the conduction band or holes in the va-

lence band. Impurities that give rise to electrons in the conduction band are called

Donors, and impurities that give rise to holes in the valence band are called Ac-

ceptors. These donors and acceptors are impurities that substitute for the intrinsic

semiconductor atoms, typically silicon, in the crystal lattice. The process of sub-

stituting donors or acceptors into the pure semiconductor crystal lattice is called

Doping.

N-Type Semiconductor: Let’s use silicon in this discussion as the intrinsic semi-

conductor. As we know, silicon is a column four element and thus has four valence

electrons, and the intrinsic electron and hole concentrations in silicon is approxi-

mately 1010/cm3. To generate N-type silicon, we dope silicon with donor atoms.

These atoms will have five valence electrons. Four of the donor’s electrons will be

tightly bound to the silicon atoms, the fifth will be very loosely bound. Since this

fifth electron is so loosely bound, it will move away from its original donor atom and

enter the conduction band of the silicon so that it now becomes a mobile electron.

Donors are put in the semiconductor at concentrations 1014 < ND < 1020/cm3,

which thereby greatly increases the mobile electron concentration and hence the

conductivity. Typically, in silicon Phosphorous is used as a donor.

P-Type Semiconductor: To generate mobile holes, we dope silicon with a ma-

terial that has three valence electrons. This give rise to unsatisfied bonds because

silicon wants four pairs. An electron from the valence band will then leave the band

and be used to satisfy the fourth pair. Since the electron has left the valence band,

the band now has some empty states or holes. Acceptors are put in the semiconduc-

tor at concentrations 1014 < NA < 1020/cm3, which thereby greatly increases the

mobile hole concentration and hence the conductivity. This gives rise to a P-type

semiconductor. Typically, in silicon Boron is used as an acceptor.

Energy Levels of Dopants On an energy scale, the donor levels are found
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Figure 5.4: Dopant atoms incorporated into a Si lattice. Each Si atom comes with
4 valence electrons with which they uses to covalently bond to 4 neighboring atoms
with 2 electrons per bond. Donors (left) contribute an extra mobile electron (e−) in
addition to making bonds with 4 neighbors. Acceptors (right) contribute 3 electrons
for bonding with neighbor atoms which leaves a mobile hole (h+).

Figure 5.5: Donor level ED and acceptor level EA and their relative positions within
the bandgap. Each dopant atom adds a localized state which becomes ionized by
thermal energy.

just below the conduction band minimum, so they can easily gain sufficient thermal

energy to jump to the conduction band. This gives rise to mobile electrons, and

positively charged immobile donor ions that are fixed in the semiconductor crystal

lattice.

The acceptor levels are found just above the valence band maximum, so elec-

trons from the valence band can easily gain enough energy to attach to the acceptor
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atoms. This gives rise to negatively charged immobile acceptor ions in lattice sites,

and mobile positively charged holes in the valence band.

Charge Neutrality: It is important to note that uniformly doped semiconductors

are not charged; overall they are charge neutral. By uniformly doped we mean that

dopant atoms are distributed uniformly throughout the semiconductor, their density

does not change with position. The reason for being charge neutral is that there will

be the same concentration of ionized donors and acceptors as there will be electrons

and holes. This leads to the following equation describing charge neutrality:

p− n+N+
D −N

−
A = 0 (5.20)

5.6.1 Equilibrium Concentration of Electrons and Holes in

Uniformly Doped Semiconductors

At equilibrium the following very important formula applies:

n2
i = np (5.21)

where ni is the intrinsic electron and hole concentrations. Now, once we dope, the

electron and hole concentrations will be different. So, after doping we have the

following:

• n is the mobile electron concentration (which is the concentration of electrons

in the conduction band);

• p is the mobile hole concentration (which is the concentration of holes in the

valence band);

Before going any further, let’s remind ourselves what we mean by equilibrium.

Generally, a semiconductor material is at equilibrium when it is just sitting there at

a uniform temperature that is the same as its environment. Also, there should be

no current flowing through it and there should not be any external light hitting it.

Under these conditions, the material is typically at equilibrium. As we mentioned

before, equation 5.21 only applies at equilibrium, and it comes from thermodynam-

ics, and is analogous to thermal equilibrium in chemistry when the ratio of the

concentration of the products to the reactants at chemical equilibrium is a constant

for a given temperature.

Now let’s apply charge neutrality and thermal equilibrium to obtain an ex-

pression for the mobile electron and hole concentrations in a doped semiconductor.

Solving equations 5.20 and 5.21 simultaneously gives the following expression:

n =
ND −NA

2
+

√(
ND −NA

2

)2

+ n2
i (5.22)
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Once the electron concentration is calculated from equation 5.22, one can

substitute it back into equation 5.21 to obtain the hole concentration at equilibrium.

Now there are several things to note here:

• If ND > NA then the mobile electron concentration will be greater than the

mobile hole concentration and the electrons are said to be the majority car-

riers, and holes are called the minority carriers. Similarly, if NA > ND,

then holes are said to be the majority carriers and the mobile electrons are

the minority carriers.

• If there is only one type of dopant atom, say for example ND = 1016/cm3 and

NA = 0, then it is an excellent approximation to say that the electron con-

centration is equal to the donor concentration or n = ND = 1016/cm3. Once

you obtain n, you can immediately calculate the mobile hole concentration

from equation 5.21 as p = n2
i /ND. So for example, if we have silicon where

ni = 1010/cm3 then p = 104/cm3. Similarly, if the material is doped with

acceptors, and ND = 0, then p = NA and n = n2
i /NA.

• When a material is doped with both donors and acceptors, the higher doping

will determine if the material is N-type or P-type. However, the precise value

of n and p need to be obtained using equations 5.22 and 5.21.

For example, if ND = 1017 and NA = 1015, and ni = 1010, all in units of /cm3.

Then using equations 5.21 and 5.22 gives n = 9.9×1016 and p = 1.01×103/cm3

and material is N-type since ND > NA, which results in n > p.

5.6.2 Semiconductor Carrier (Fermi) Statistics

The distributions of electrons and holes in equilibrium in the various energy

states in the valence and conduction bands are described in detail by statistics.

However, it is a specific type of statistics that takes into account the Pauli Exclu-

sion Principle that says only one electron can exist in any quantum state. These

statistics are called Fermi Statistics and they are generally very important in semi-

conductors, especially for more detailed analysis of concepts than we will do in this

course. Fermi statistics tell us what the probability is that a particular quantum

energy state is occupied by a single electron, and this probability is between zero

and one. One of the key concepts in Fermi statistics is the Fermi Level. The Fermi

level is the energy where Fermi Statistics says that the probability of a state being

occupied is 1/2. At energies above the Fermi level we find that the probability of

states being occupied is less than 1/2; and at energies below the Fermi level the

probability of states being occupied is greater than 1/2. Figure 5.7 shows the loca-

tion of the Fermi level for intrinsic, N-type and P-type semiconductors, respectively.
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Figure 5.6: The Fermi function F (E), depicting the greater than 50% chance of
occupancy below the Fermi level EF and the less than 50% chance above.

The form of the Fermi function is given in Figure 5.6. From this plot, we can see

that as temperature increases, the Fermi function changes from a step function (at

0K) to a more gently changing slope, allowing more occupancy of the higher energy

states (and consequently, less occupancy of the lower energy states) due to increased

thermal energy.

Below are given some of the important expressions that relate mobile electron

and hole concentrations to the conduction band, valence band and Fermi energies

in equilibrium.

The probability that a quantum state is occupied by an electron is provided

by the Fermi Probability Function which is given as the following expression:

F (E) =
1

exp E−EF
KT

+ 1
(5.23)

Where EF is the Fermi Level or Fermi Energy, which was described above, and K

is the Boltzmann constant.

It follows that if there are Nq quantum states in a system at a particular

energy E , then the number of electrons ne in those states is given by the number of

quantum states Nq multiplied by the probability F (E) that each state is occupied.

This is expressed mathematically as:

ne = Nq × F (E) =
Nq

exp E−EF
KT

+ 1
(5.24)

At this point the question often arises as to ’how do we know the Fermi Level’,

because without knowing it, we can not evaluate the above expression to calculate

the number of electrons present. This is a good question and is typically answered

by the fields of Statistical Mechanics and Chemical Thermodynamics. However, in

semiconductors at the level of this text, we will treat the Fermi Level as a reference
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point that helps describe the semiconductor system. The level will typically be given

with respect to another known quantity, which we will see below.

Electrons Concentration in Conduction Band and Hole Concentration in

Valence Band at Equilibrium

Fermi Statistics are often used to calculate the number of electrons in the

conduction band or holes in the valence band. To calculate the number of electrons

in the conduction band we apply the following logic.

n =

∫ ∞
EC

F (E)DoS(E)dE (5.25)

Where DoS(E) is the density of states and EC is the edge of the conduction

band. The DoS(E) is a function often seen while studying the electrical properties

of crystalline solids. It gives the number of allowed quantum states that electrons

can occupy per unit energy. Later courses and more detailed investigations in semi-

conductors often heavily involve the density of states. In this text it suffices to say

qualitatively what it is, and how it is used with the Fermi function to calculate the

number of electrons in the conduction band and the number of holes in the valence

band. By multiplying the density of states in the conduction band by the probabil-

ity of occupancy of each state, we integrate to obtain the total number of occupied

states in the conduction band and thus the number of mobile electrons. Similarly, to

calculate the number of mobile holes in the valence band, we multiply the valence

band density of states by the probability the state is unoccupied 1 − F (E), then

integrate. In the Appendix of this text, we describe in more detail the DoS(E), and

how these integrals are performed to obtain the expressions 5.27 and 5.28 below.

p =

∫ EV
−∞

(1− F (E))DoS(E)dE (5.26)

Relationship between Fermi Level, Electron and Hole Concentrations in

Equilibrum and Effective Density of States

As it turns out, these integrals don’t have a closed form expression but can be

approximated by replacing the Fermi function with a Boltzmann function, assuming

the Fermi level is more than a few KT below the conduction band edge (or above the

valence band edge for holes). Making this approximation, we essentially create an

effective density of states at the band edge denoted as NC and NV for the conduction

and valence bands respectively.

n = NC exp[−(EC − EF )/KT ] (5.27)

p = NV exp[−(EF − EV )/KT ] (5.28)

102



Neil Goldsman and Christopher Darmody April 29, 2020

EF

Ev

Ec

CB

VB

Intrinsic

EF

Ev

Ec

CB

VB

EF
Ev

Ec

CB

VB

p-typen-type

Figure 5.7: E-k diagram showing intrinsic (left), N-type (center) and P-type (right)
materials as indicated by the position of the Fermi Level. The figure also indicates
the conduction band, the valence band and the bandgap.

NC = 2

(
2πm∗nKT

h2

)3/2

(5.29)

NV = 2

(
2πm∗pKT

h2

)3/2

(5.30)

Where m∗n and m∗p are the density of states effective masses for electrons and

holes respectively. By inserting the electron and hole concentrations obtained from

equations 5.27 and 5.28 into the equation for intrinsic carrier concentration (Eq.

5.21), we obtain the formula for ni in terms of the bandgap (Eg) of the material and

the temperature.

ni =
√
NCNV exp

(
−Eg
2KT

)
(5.31)

Intrinsic Fermi Level

Equations 5.27 and 5.28 give relationships between the Fermi level and the

mobile electron and hole concentrations. By taking the product of n and p we also

obtain a relationship between the intrinsic carrier concentration and the bandgap for

a specific material at equilibrium. From this relationship, given by Equation 5.31, it

becomes evident that ni increases with increasing temperature. The intrinsic carrier

concentrations increase as the bandgap decreases since since electrons will need less

energy to be excited from the valence to the conduction band.
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At this point it is also worth defining a specific value of the Fermi level when

the carrier concentration is at its intrinsic value. We call this the Intrinsic Fermi

Level EFi and the following expressions hold:

ni = NC exp[−(EC − EFi)/KT ] (5.32)

pi = NV exp[−(EFi − EV )/KT ] (5.33)

And of course, ni = pi since in intrinsic semiconductors at equilibrium, every electron

excited into the conduction band will also leave behind or generate a hole in the

valance band.

Fermi Level Location

In semiconductors, the Fermi level is found somewhere in the bandgap. In

particular, in N-type semiconductors the Fermi level will be relatively close to the

conduction band minimum EC . If a semiconductor is doped with acceptors so it

is P-type, then the Fermi level will be located relatively close the valence band

maximum EV . For intrinsic semiconductors, the Fermi level will be approximately

at the center of the bandgap, and if the electron and hole effective masses are the

same, EFi will be exactly at the bandgap center.

Fermi Level and the Chemical Potential

The Fermi level has its origins in chemistry and thermodynamics. It is formally

the average energy required to add an electron to a material. In semiconductors in

equilibrium the Fermi level is useful when different materials are joined. In this case

electrons in the material with a higher Fermi level transfer to the electrons with the

lower Fermi level to establish equilibrium between the two material. The difference

in the two Fermi levels is called the work function or the electrochemical potential

difference between the materials. We first were introduced to the work function

when we studied the photoelectric effect for metals. When electrons transfer from

one material to another to achieve equilibrium, the work function becomes equal to

a built-in potential energy that will typically exist in a region where the the two

materials come together. We will learn more about this built in potential in the

later chapters of this book.
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Example 5.1:

Find the intrinsic carrier concentration for silicon at room temperature

(300K).

Taking the effective masses to be m∗n = 1.08m0 and m∗p = 0.81m0, we find the

effective density of states:

NC = 2

(
2πm∗nKT

h2

)3/2

= 2.8× 1019cm−3

NV = 2

(
2πm∗pKT

h2

)3/2

= 1.8× 1019cm−3

Values on the order of 1019cm−3 are typical for most semiconductors. Substi-

tuting these into equation 5.31 using a bandgap of 1.1eV :

ni =
√
NCNV exp

(
−Eg
2KT

)
= 1.3× 1010cm−3

The value reported in literature varies from around 1− 1.5× 1010cm−3.
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Example 5.2:

A piece of silicon is doped with Donors ND = 1 × 1018cm−3 and Acceptors

NA = 3× 1018cm−3. Take ni = 1010cm−3 and NV = 2× 1019cm−3. Where is

the Fermi level in this material?

First, because this material is doped with both types of dopant (also known

as counter-doping), we must use equation 5.22 and solve for p using 5.21.

Alternatively we can derive a similar formula to 5.22 by solving for p instead

of n, since we know the material will be more p-type because NA > ND >> ni.

p =
NA −ND

2
+

√
(
NA −ND

2
)2 + n2

i = 2× 1018cm−3

This result makes sense because ni is negligible compared to the doping con-

centration, so the equation simplifies to p = NA − ND. Continuing, we use

equation 5.28 to solve for EF − EV :

p = NV exp[−(EF − EV )/KT ]

Substituting the above values for p and NV

2× 1018cm−3 =
(
2× 1019cm−3

)
exp(−(EF − EV )/KT )

Solving for (EF − EV ) gives

(EF − EV ) = KT ln(10) = 59.5meV ≈ 0.06eV

In other words, the Fermi level is 0.06eV above the valence band edge. This

is very close to the valence band as compared to in an intrinsic material where

the Fermi level is around mid-gap or 0.55eV above the valence band edge for

Si.

5.7 Problems

5.1 Questions about Band Structure of Solid Crystals

(a) Explain how energy bands arise in a crystal by bringing Avogadro’s num-

ber of atoms together. How many quantum states are in each energy

band?

(b) Sketch the band structure (E vs. k) for a metal, semiconductor and an

insulator.
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(c) What is the difference between an insulator, a metal and a semiconductor

in terms of the bands? Explain this using bandgap and the filling of states

by electrons.

(d) Why can’t a full energy band conduct electricity.

(e) What is the difference between a conduction electron and a non-conduction

electron?

(f) What is a hole?

(g) What is the general form of the wave-function for electrons in the periodic

potential of a crystalline solid?

(h) What is the general form of the Schrodinger equation for a crystal? (In-

sert form of potential into SWE)

(i) How do you calculate the effective mass of an electron in a crystalline

solid, and what does it account for?

5.2 Graph the intrinsic electron and hole concentrations of silicon as a function of

temperature ranging from −200◦C to +200◦C. Also, what is the carrier con-

centration at room temperature (27◦C)? The bandgap of Silicon is 1.1eV, the

effective masses for electrons and holes are 0.33m0 and 0.28m0, respectively,

where m0 is the mass of a free electron.

5.3 Calculate the number of atoms per cm3 in Si.

5.4 Intrinsic Carrier Concentration and Fermi Level

(a) Graph the intrinsic electron concentration as a function of bandgap. For

this calculation make the approximation that m∗n = m∗p = m0 for all the

semiconductors. Assume Eg ranges from 0.1eV to 6eV . Comment on

the values of ni compared to the concentration of atoms in the crystals.

(Assume the density of atoms is the same as what you calculated above

for Si). Take the temperature to be 27◦C.

(b) Graph the Fermi Level with respect to the valence band edge EV for the

materials listed in the previous part of this problem.

(c) Graph the Fermi Level with respect to the conduction band edge EC for

the materials listed in the previous part of this problem.

(d) From your graphs in the previous to parts of this problem, what can we

say about the Fermi level for an intrinsic semiconductor with respect to

its location within the bandgap.

5.5 In your own words explain what intrinsic, N-type and P-Type semiconductors

are.
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5.6 Why is Boron used as an acceptor in dopant and why is Phosphorous used as

a donor dopant in Silicon.

5.7 In a silicon bar uniformly doped with 1016 phosphorus atoms per cm3 and

5 × 1014 boron atoms per cm3. Calculate the mobile electron and hole con-

centrations for this bar. (Note that phosphorus is a donor and boron is an

acceptor for silicon.)

5.8 The silicon conduction band can be expressed as E = ~2k2
2m∗

. Plot E vs k with

the vertical axis E . Plot for E less than 0.5eV . Take m∗ = 0.26m0, where m0

is the mass of a free electron. (Be careful with units.)

5.9 Using the energy vs. velocity relationship: ν = 1
~
dE
dk

, and the energy vs.

k relationship in problem above, plot the velocity of a particle versus k for

values of k between 0 and 2× 109/meter.

5.10 The following band diagram illustrates the dispersion relation (E vs k) for

conducting electrons.

(a) At which location marked × would an electron have the largest instan-

taneous velocity? Which would be the slowest?

(b) Order the valleys from lightest to heaviest effective mass.

5.11 What happens to the intrinsic carrier concentration as the temperature in-

creases? If the intrinsic carrier concentration is larger than the dopant con-

centration, where does this put the Fermi level?

5.12 The energy bandgap of silicon is 1.1eV. For intrinsic silicon, graph the Fermi

function F (E) for an energy range starting from 1eV less than EF to 1eV

greater than EF at T=300K. What is the maximum value of F (E) and why

does F (E) become flat at its maximum value as E becomes several multiples

of KT less than EF ?

5.13 If E is several times KT greater than EF , show that F (E) can be written as

an exponential function.
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5.14 N-Type Doping, P-Type Doping, and the Fermi Level

(a) If silicon is doped with phosphorus with concentration of ND = 1 ×
1017/cm3, and all the phosphorus donors are ionized, what is the mobile

electron mobile concentration? Calculate the position of the Fermi level

with respect to the position of the conduction band minimum. Sketch

the band diagram, the location of the Fermi Level and the location of the

donor level in the diagram.

(b) If silicon is doped with boron with a concentration of NA = 1×1017/cm3,

and all the acceptors are ionized, what is the mobile hole concentration?

Calculate the position of the Fermi level with respect to the position of

the valence band maximum. Sketch the band diagram, the location of

the Fermi Level and the location of the acceptor level in the diagram.

(c) Comment on the location of the Fermi Level for N-type and P-type semi-

conductors with respect to conduction and valence band edges, EC and

EV , respectively.
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Chapter 6

Semiconductor Currents: Drift

and Diffusion

6.1 Introduction

Previously we learned about the quantum mechanics that explains the differ-

ences between semiconductors and metals and insulators; material band structures

and how they give rise to electrons and holes in semiconductors, and other quan-

tum related parameters like effective mass. We are now ready to use these concepts

on a more classical level to describe electron and hole flow in semiconductors. We

will learn about Drift and Diffusion, which are the two main mechanisms of current

flow in semiconductors. We will also learn that a built-in electric field occurs when

semiconductors are not uniformly doped. We will learn that the built-in electric

arises in response to drift and diffusion currents tending to oppose each other. We

will begin to find that non-uniform doping is at the heart of what makes solid state

devices, such as transistors and diodes, work like they do.

6.2 Drift and Diffusion Currents

There are two mechanisms of current flow in semiconductors: Drift and Diffu-

sion. Drift is the current that is driven by an electric field inside the semiconductor

device or material. Diffusion is the current that is driven by a concentration gradient

of electrons or holes inside a semiconductor.
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6.2.1 Drift Current

Suppose we have a simple plain rectangular bar that is made up of silicon,

and we apply a DC voltage between the two ends of the bar. Inside the bar an

electric field will be establish because of the applied voltage. Also, since there are

mobile electrons and holes, the electric field will give rise to an electric current.

(Recall, that mobile electrons are the ones that are in the conduction band, and the

mobile holes are those that are found in the valence band.) This current, which is

in response to a macroscopic electric field, is called Drift Current. There will be a

drift current for electrons and a separate drift current for holes, and they are given

by the following expressions:

~Jndrift = qµnn~E (6.1)

~Jpdrift = qµpp ~E (6.2)

Where ~Jndrift is the electron drift current density, typically in units of amps/cm2;

µn is the electron mobility, typically in units of cm2/V olt sec; n is the mobile elec-

tron concentration, which is the same thing as the concentration of electrons in the

conduction band and typically in units of electrons/cm3; and ~E is the electric field,

which is typically in units of V olts/cm.
~Jpdrift is the hole drift current; µp is the hole mobility; p is the hole concen-

tration, which is the same thing as the concentration of holes in the conduction

band.

q = 1.6× 10−19 Coulomb is the elementary charge which is a positive number.

Note that the sign on both the electron and hole drift currents are the same.

This is because electrons and holes will move in opposite directions in response to

the electric field, however, since the charge of an electron is negative, the negative

charge and the negative direction multiply to give a positive drift current.

We will discuss mobility more, later in this chapter. For now, please remember

that mobility is the proportionality factor that relates the electric field to the electron

or hole average velocity that results in response to the field.

We can also express the drift currents using the electrostatic potential. Recall

from your electromagnetism classes that the electric field is the negative gradient of

the electrostatic potential φ, or:

~E = −∇φ (6.3)

Where the electrostatic potential φ is in units of Volts.

Substituting 6.3 for ~E in equations 6.1 and 6.2, we often find drift currents

expressed as follows:
~Jndrift = −qµnn∇φ (6.4)
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Figure 6.1: Electrons and holes drifting under the effect of an applied electric field.
The mobility which relates the drift velocity to the electric field strength is inversely
proportional to the amount of scattering the carrier does with the lattice.
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~Jpdrift = −qµpp∇φ (6.5)

Comment on Electric Field in Drift Current Expression

The electric field in equations 6.1 and 6.2 is a macroscopic field. It should not

get confused with the field due to the period potential of the atoms in the lattice.

The electric field in the current equations is typically due to an applied voltage. We

will learn later that it will also arise when we have non uniform doping, such as in a

PN junction. We call this field macroscopic because it does not vary in space nearly

as much as the field due to the periodic potential of atoms. For drift currents in

semiconductors we will always be talking about this macroscopic field.

Comment on Electron Drift and Scattering

It is important to point out that drift current is really due to the average

motion of electrons and holes in response to a macroscopic electric field. This is

illustrated in Figure 6.1. In general, electrons will flow toward the electric field,

however, as they flow they are regularly being scattered through interactions with

the crystal lattice, which randomize their momentum. So the overall motion will

be something like this: The electron gets pulled toward the field, then it interacts

with the lattice and gets scattered in another direction; it then gets pulled in the

direction of the field again, then it gets scattered by the lattice, etc. This process

continues until the electron, as shown in Figure 6.1, that is emitted at the negative

contact on the semiconductor bar, finally makes its way to the other end where it

is collected at the positive contact of the bar. A similar process occurs for hole

transport, but in the other direction since holes are positively charged. The average

distance and electron travels between scattering events is called the mean free path,

and is about one nanometer. The average velocity of the electrons or holes, in the

direction of the field after all the scattering, is called the drift velocity. We will talk

about this more later in this chapter in the section on electron and hole mobility.
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Example 6.1

A silicon bar is uniformly doped with 1017/cm3 boron atoms. The bar is

100µm long. A positive voltage of VA = 10.0V is applied to the left end of the

bar, and the right end of the bar is grounded. What is the current density in

the bar?

Since the bar is uniformly doped with boron at 1017/cm3, the hole concen-

tration will be p = 1017/cm3, and the electron concentration n = n2
i /p =

103/cm3. Since n is fourteen orders of magnitude less than p, we will neglect

it and use equation (6.4), which is one dimension is:

Jpdrift = −qµp
dφ

dx
= J.

Since the bar is uniformly doped, dφ
dx

= VA
L

. Substituting in values for p, L and

VA from above, taking µp = 450cm2/V sec from the Appendix, and putting

all lengths in centimeters gives:

J = −(1.6× 10−19C)(450cm2/V sec)(1017/cm3)
10.0V

1× 10−2cm
= −7200A/cm2

6.2.2 Diffusion Current

In semiconductors we also have diffusion current. This current arises due to

random motion of electrons or holes in the presence of a concentration gradient. For

example, if there is a larger concentration of electrons in one region in a semiconduc-

tor material than another region, then random thermal motion of the electrons will

tend to have them move on average from the region of higher concentration to the

region of lower concentration, giving rise to a diffusion current. Situations like this

will also occur for holes as well. Note that semiconductors are different from metals.

We generally do not have diffusion currents in conductors because the electron con-

centrations in conductors are uniform (do not vary with position) and thus do not

have concentration gradients. Diffusion currents typically arise in semiconductors

when we have non-uniform doping. The expressions for electron and hole diffusion

currents are given by:

~Jndif = qDn∇n (6.6)

~Jpdif = −qDp∇p (6.7)

Where ~Jndif is the electron diffusion current density; Dn is the diffusion coefficient

for electrons; ~Jpdif is the hole diffusion current and Dp is the diffusion coefficient for

holes.
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Note that the diffusion coefficient is the proportionality factor that relates the

gradient in the charge carrier concentration to the current. We will discuss the

diffusion constant later in this chapter.

6.2.3 Total Current

The total current density for electrons in the conduction band is given by the

sum of the drift and diffusion electron currents. Similarly, the total hole current

density in the valence band is given by the sum of the hole drift and diffusion

current:
~JnT = −qµnn∇φ+ qDn∇n (6.8)

~JpT = −qµpp∇φ− qDp∇p (6.9)

In our class, we will typically be doing our analyses in one dimension, where

the gradient operators reduce to simple derivatives:

JnT = −qµnn
dφ

dx
+ qDn

dn

dx
(6.10)

JpT = −qµpp
dφ

dx
− qDp

dp

dx
(6.11)

Now it is important to note that these expressions describe the current density,

and they will typically be functions of position inside the semiconductor or the

device. Similarly, the electrostatic potenital φ(x) and the carrier concentrations

n(x) and p(x) are typically functions of position.

Total Current: At any given point x inside the semiconductor, we may have both

electron current and hole current. The total current at any given point is the sum

of the electron and hole currents at that point, or

JT = JnT (x) + JpT (x) (6.12)

6.3 Derivation of Mobility, Diffusion Coefficient

and the Einstein Relation

6.3.1 Electron and Hole Mobility

As mentioned before, the electron mobility µn is the proportionality factor

that relates the electric field to the average velocity of electrons due to drift in the

electric field.
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Figure 6.2: Diagram of drift motion inside of a semiconductor under an applied field.
Explosion symbols represent scattering events which change the direction of motion.
(a) Random thermal motion with average 0 displacement due to the symmetrical
distribution of instantaneous velocities. (b) Drift motion of electron purely under
the effect of the electric field. Note: This is an idealized situation without
scattering which under all practical instances won’t happen. (c) Total
combined motion of electron drifting and scattering in a semiconductor.

116



Neil Goldsman and Christopher Darmody April 29, 2020

Consider again the ordinary semiconductor bar that we described earlier. The

bar has a voltage applied between the two ends so there will be a current due to drift

in the bar. The drift current is actually an average flow of the electrons in response to

the applied field. However, the electrons will also have an instantaneous random or

thermal velocity vt that is typically significantly larger than the average velocity due

to drift. We talked about this velocity in the previous chapter where we calculated

it from the slope of the E vs. k band diagram (Here we have renamed it and are

calling it vt as opposed to vg, but it’s the same thing, which is the instantaneous

velocity). As electrons are pulled by the macroscopic electric field, their motion

is quasi random due to electrons scattering with the lattice. Actually they scatter

with thermal vibrations of the lattice called phonons. However, electrons will flow in

response to the field with a net or average velocity < v >. The proportionality factor

relating this average velocity to the electric field is call the electron mobility. We

derive the expression for the electron mobility as follows:

The total average force on electrons in the semiconductor bar with the electric

field inside is given by Newton’s law:

m∗n~a = ~Ffield + ~Fscattering (6.13)

Where m∗n is the electron effective mass; ~a is the acceleration of the electrons;
~FEfield = −q ~E is the force on the electrons due to the macroscopic electric field.

~Fscattering = −m∗n<~v>
τ

is the average force on the electrons due to scattering

with the crystal lattice as the electrons move about in the semiconductor and are

pulled by the field. The scattering tends to oppose the force from the field. It is

actually largely the process of electron scattering by the crystal lattice that gives

rise to electrical resistance. The parameter τ = average time between collisions or

scattering events and 1
τ

is the average scattering rate.

Overall, the electrons do not accelerate because whenever they gain velocity

from the electric field, they then will lose that extra velocity as a result of scattering.

Thus the total average force on the mobile drifting electrons is zero, or m∗n~a = 0.

So we have

0 = −qE − m∗ < ~v >

τ
(6.14)

This can be solved for the average velocity:

< ~v >= − qτ
m∗n

~E (6.15)

or

< ~v >= −µn ~E (6.16)

Where we have defined electron mobility as:

µn =
qτ

m∗n
(6.17)
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Going through a similar analysis gives an analogous expression for hole mobility:

µp =
qτ

m∗p
(6.18)

Drift Velocity: By convention, we call the average velocity that arises in response

to the electric field the drift velocity and designate it as : < ~v >= ~vdrift.

The motion of an electron drifting in an electric field is illustrated in Figure 6.2.

In the illustration, (a) shows the random thermal motion of the electron scattering

randomly with no preferred direction. On top of this motion, the electron also

experiences a Coulombic force in the direction opposed to the electric field due to

its negative charge. This force adds a strong bias to the direction the electron

is moving resulting in an average drift velocity in the direction of the field with

proportionality constant equal to the mobility µn.

Resistance and Scattering mechanisms: There are various scattering mecha-

nisms which influence the motion of the electron traveling in the crystal. We have

already discussed this scattering earlier in this chapter. These scattering events

include collisions with defects and atomic vibrations called phonons which locally

change the perfectly periodic lattice potential of the atoms. Such scattering is ac-

tually the main cause of resistance in a crystal. The more scattering there is, the

higher the resistance. Also, affecting the resistance is the doping concentration. For

example, the higher the donor concentration in an N-type silicon bar, the lower the

resistance of the bar.

Figure 6.3: Dimensions of a resistive silicon bar.

The resistivity ρ of a bar of semiconductor is related to its conductivity σ

which is in turn related to the mobility through the average scattering rate.

ρ =
1

σ
=

1

q(µnn+ µpp)
(6.19)
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If the scattering rate for electrons and holes are both equal to τ , then resistivity

can be written as:

ρ =
1

q2τ( n
m∗n

+ p
m∗p

)
(6.20)

To calculate the full resistance of a bar of cross sectional area A and length

L:

R =
ρL

A
=

L

q(µnn+ µpp)A
(6.21)

Figure 6.4: Charges in uniformly doped slabs of silicon. The ionized dopants are
fixed in the crystal lattice but the mobile charges are free to move around. There
are an equal number of ions and carriers so each bar is charge neutral as a whole.

6.3.2 Derivation of the Diffusion Current and Coefficient

In this section we derive the diffusion coefficients for electrons and holes: Dn

and Dp. The derivation is aimed at addressing the following scenario: Let’s de-

termine the net flow of carriers across a plane, located at point x = 0, due to the

random motion of carrier from the left and the right of the plane.
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To do this we first realize that electrons are moving randomly with thermal

velocity vt. Due to this random motion we now define a flux of electrons across

a plane at point x = 0 due to electrons on either side of this plane starting from

locations x = −l and x = +l, respectively. Here l is the ‘mean free path’, which is

the short distance the electron travels between scatterings.

F(0) = net flux at x=0, which is composed of the flux from the left starting

from the point of the last scattering x = −l minus the flux from the right, again

since the point of last scattering x = +l.

F (0) =
1

2
vtn(−l)− 1

2
vtn(l) (6.22)

Where the fraction 1/2 comes from the idea that at any given point, approximately

1/2 of the randomly moving particles are moving toward the plane at x = 0 and

the other half are moving away from it. Now, since the mean free path l is a small

distance, we expand using Taylors series:

F (0) =
vt
2

[
n(0)− dn

dx
l

]
− vt

2

[
n(0) +

dn

dx
l

]
(6.23)

This reduces to:

F (0) = −lvt
dn

dx
(6.24)

We now transform the net flux to the electron current density by multiplying it by

the charge on an electron −q:

Jndiff = −qF = qlvt
dn

dx
(6.25)

Now we define the quantity lvt = Dn, we obtain the familiar expression for electron

diffusion current density.

Jndiff = qDn
dn

dx
(6.26)

where, Dn is the diffusion coefficient for electrons.

From Figure 6.5, it is clear that a concentration gradient will to produce

a net diffusion current. Recall that the instantaneous velocity of the particles is

defined by the E versus k relationship. Because this relationship is symmetrical for

±k, it ensures that for each state traveling in the positive direction, there is always

another state traveling in the negative direction with the same speed. This fixes the

fraction of particles moving left or right at a given point to 1
2
, so the only way to

produce a net flow of particles is to have a concentration gradient present.
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Figure 6.5: Electrons at any point move with random directions due to thermal
motion so on average 1

2
are moving to the left, and 1

2
are moving to the right. (a)

Total flux (and current) is zero because there are the same number of electrons
moving left and right across x = 0. (b) More electrons are moving right across the
x = 0 line so there is a net flux (and thus a diffusion current). (c) Actual electron
concentration is a quantity which varies continuously with position.
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6.3.3 The Einstein Relation between Mobility and Diffusiv-

ity

The Einstein relationship is important in semiconductors. It relates carrier

mobility µ to carrier diffusivity D and is given by:

D = µ
KT

q
(6.27)

Where K is the Boltzmann constant and T is degrees Kelvin.

Now, we derive the Einstein relation. We first write the mean free path as the

product of the thermal velocity and the time between collisions:

l = Vtτ (6.28)

We substitute this for l in the expression for D under equation 6.25. This gives

D = v2
t τ (6.29)

Now we relate kinetic energy to thermal energy in each dimension: 1
2
m∗v2

t = KT
2

or

v2
t =

KT

m∗
(6.30)

Now, we substitute into the expression for D above to obtain the Einstein Rela-

tion:

D =
qτ

m∗
KT

q
= µ

KT

q
(6.31)

The diffusivity D is also related to the diffusion length L by the relation:

L =
√
Dτ (6.32)
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Example 6.2:

Find the diffusion current in a piece of silicon if the mobile electron concen-

tration in the sample is found to have the following spatial variation:

n(x) = n0 exp(−x
L

), where n0 = 1016/cm3 and L = 10−3cm, and x is in units

of centimeters.

Using equation (6.6) for electron diffusion current density and substituting in

for n(x) we have:

Jn = qDn
dn

dx
= −qDn

L
n0 exp

(
−x
L

)
Next, we use the Einstein Relation KT

q
µn for Dn. Where KT/q = 0.026V at

room temperature and µ = 1400cm2/V sec from the Appendix.

Substituting these values into the electron diffusion current expression gives:

Jn(x) = −(1.6× 10−19C)(0.026V )(1400cm2/V s)

10−3cm
(1016/cm3) exp

(
−x

10−3cm

)
Evaluating the numbers gives the following expression for electron diffusion

current density as a function of position:

Jn(x) = −41.6 exp

(
−x

10−3cm

)
A/cm2

Note that the negative value of the current indicates that the current is flowing

to the left, while the electrons are diffusing to the right.

6.4 Problems

6.1 A semiconductor has a mobile electron concentration of 1 × 1016/cm3 and

the electron mobility is µn = 800cm2/V sec. If an electric field of 100V/cm

is applied to the material, calculate the electron drift current density Jndrift
in the semiconductor. If the semiconductor has a cross-section of 100µm by

100µm, what is the current?

6.2 A semiconductor has an internal mobile electron concentration gradient of 1×
1020/cm4. The electron diffusivity is Dn = 20cm2/sec. Calculate the electron

diffusion current density Jndif in the semiconductor. If the semiconductor has

a cross-section of 100µm by 100µm, what is the current?

6.3 Describe what is meant by average drift velocity for electrons in the presence

123



Neil Goldsman and Christopher Darmody April 29, 2020

of an electric field as opposed to the instantaneous velocity 1
~
dE
dk

from the

band structure. What is the average force on electrons that are drifting in an

electric field in a uniform semiconductor. Explain your answer using words

like scattering and mobility.

6.4 Describe in your own words what drift current is.

6.5 A semiconductor has an electron mobility of 1000cm2/V s and an effective

mass m∗ = 0.5m0 (where m0 is the actual mass of an electron). What is the

average time between scattering events in the crystal? What is the average

scattering rate? (Be careful with units here.) What is scattering and what

causes electron scattering in semiconductors?

6.6 In a silicon bar uniformly doped with 1× 1015 phosphorus atoms per cm3 and

1× 1018 boron atoms per cm3.

(a) Calculate the mobile electron and hole concentrations for this bar. What

do you notice about the mobile hole concentration compared to the ac-

ceptor doping? How about the mobile electron concentration compared

to the donor doping.

(b) Now, if we apply an electric field in the +x-direction with a magnitude of

103V/cm to the silicon bar, what are the electron and hole drift current

densities? What is the total current density in the bar? Remember charge

neutrality will exist in this uniformly doped bar. Use µn = 1000cm2/V s

and µp = 500cm2/V s for electron and hole mobilities respectively.

(c) If the bar is 100um long and has a square cross-section that is 10um ×
10um, calculate the resistance of the bar in ohms. (Be careful with units

here)

6.7 Describe in your own words what diffusion current is.

6.8 The hole concentration in a piece of silicon is given by:

p(x) = 1014(1− exp(−x/3µm))cm−3

What is the hole concentration at x = 1um? What is the hole diffusion

current density at x = 1um? Take the diffusion coefficient for holes to be

Dp = 2.5cm2/s.
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Chapter 7

Non-Uniform Doping and the

Built-In Electric Field

7.1 Introduction

In this chapter we find out that in semiconductors when the doping varies

with position, internal electric fields and internal electrostatic potentials arise. This

occurs because of the interplay of both drift and diffusion currents that exist in

non-uniformly doped semiconductors.

7.2 Built in Electric Field: Balance of Drift and

Diffusion Currents

Assume we have two different separate semiconductor blocks: block A and

block B as shown in the top of Figure 7.1. Any semiconductor will do, but let’s

assume that the semiconductor is silicon, since that is the one most common and

comprises almost all electronics. Now, let’s assume block A is doped N-type with

doping ND1, and block B is also doped N-type with a different donor concentration

say ND2. Also, let’s assume that ND1 > ND2, so block A has higher doping than

block B, and thus block A has more mobile electrons than block B. (Recall, the

mobile electrons are in the semiconductor conduction band in energy space.) The

blocks are not connected and have no net charge. Each block will have no net charge

because within each the number of negatively charged mobile electrons will be the

same as the number of positively charged ionized donor atoms. In other words, in
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Figure 7.1: Block A and block B be are both doped N-type, the doping in block
A is greater concentration than that of block B. At the bottom, the two blocks are
brought together in intimate contact. Mobile electrons from block A diffuse to block
B. This causes the block A side to become positively charged with respect to the
block B side and a built-in electric field arises pointing from block A to block B.
The circled negative symbols represent mobile electrons and the plus signs represent
fixed ionized donor atoms that a stuck in the semiconductor lattice.
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block A the number of mobile electrons will be approximatey equal to ND1 and the

number of ionized donors N+
D will also equal ND1, thus the sum of positive and

negative charges will be zero.

Now, let’s connect the blocks together to form a junction between block A and

block B. What will happen? Well, since block A has higher concentration of mobile

electrons than block B, the mobile electrons from block A will diffuse to block B

as a result of random motion. Now, block A will wind up being positively charged

since it started out as neutral and then lost some of its electrons, and block B will

be negatively charged since it has gained some electrons. Now, since block A is now

positively charged, and block B is now negatively charged, an electric field will arise

that points from block A to block B. This is called the Built-In Electric Field

and is very important in semiconductor operation. This built-in electric field will

then act on the electrons that have diffused over from A to B, and start pulling

them back from block B back to block A. This flow from B to A due to the electric

field that has arisen is drfit current; and the flow from A to B is diffusion current.

Now, if there is no applied voltage to the blocks, then there will be no net current,

and the flow due to diffusion will be equal and opposite to the flow due to drift.

The charge separation and the built-in field are shown in the bottom of Figure 7.1.

In summary, when we have a region of high N-type doping concentration next

to a region of low N-type doping concentration in equilibrium, then we will wind up

with a built in electric field (and a built in potential), and the drift current will be

equal and opposite to the diffusion current.

7.2.1 Derivation of Built-In Potential

To derive the expression for the relationship between built in potential and

the differences in electron concentration, we start by considering a bar of semicon-

ductor material. One side of the bar is doped with ND1 and has n1 mobile electron

concentration, and ND1 ≈ n1. The other side is doped with ND2, and ND2 ≈ n2.

Now, the bar is open circuited and thus has no net current flowing. We know the

total electron current, already given by equation (7.1), has both drift and diffusion

components as follows:

JnT = −qµnn
dφ

dx
+ qDn

dn

dx
(7.1)

Since the bar is open circuited no net current will flow so JnT = 0, and we have

0 = −qµnn
dφ

dx
+ qDn

dn

dx
(7.2)

Now recall the Einstein relation that relates diffusivity to mobility that we derived

previously:

Dn =
KT

q
µn = VTµn, (7.3)
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where VT is the thermal voltage which is equal to 0.026V at 300K. (not to be

confused with the thermal velocity vt), Substituting for the diffusion coefficient we

have:

0 = −qµnn
dφ

dx
+ qVTµn

dn

dx
(7.4)

Cancel µn and q from both sides, rearrange and separate variables:

1

VT

dφ

dx
=

1

n

dn

dx
(7.5)

Now integrating both sides from x1 to x2.

1

VT

∫ φ(x2)

φ(x1)

dφ =

∫ n(x2)

n(x1)

1

n
dn (7.6)

Completing the integration and now applying the limits gives:

1

VT
[φ(x2)− φ(x1)] = ln[n(x2)]− ln[n(x1)] (7.7)

Multiplying both sides by −1, writing the difference of logs as a fraction, defining

n(x1) as n1, and similarly for the other variables, we have:

1

VT
[φ1 − φ2] = ln

n1

n2

(7.8)

We can also write equation (7.8) in terms of an exponential:

n1 = n2 e
[φ1−φ2]
VT (7.9)

Where [φ1 − φ2] is the built-in potential between points x1 and x2.

Equation (7.9) is very important. It says that when we have a difference in

electron concentration at two different points in the semiconductor, then we will

also have a difference in potential between those points. It also says that there is

an exponential relationship between potential differences and carrier concentrations

inside the semiconductor.

Now, if we make the following definition for the built in potential of this n1/n2

junction:

φBI = φ1 − φ2 (7.10)

And we make the approximations that n1 = ND1 and n2 = ND2, we can come

up with the built in potential as a function of doping concentration. Since the

manufacturer of the material will know and provides the doping concentration, we

can determine the built in potential as:

φBI = VT ln
ND1

ND2

(7.11)
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Example 7.1:

If a semiconductor bar is doped with donors on one side with ND1 = 1 ×
1018/cm3 and donors on the other side with ND2 = 1 × 1015/cm3, calculate

the buil-in voltage.

φBI = 0.026 ln

(
1018

1015

)
= 0.18V

The actual smoothly-varying potential profile inside of this example N-N junc-

tion is shown in Figure 7.2. For x < 0 the doping is ND1 and for x > 0 the

doping is ND2. We can confirm from this picture that the built in potential is

indeed 0.18V by subtracting the potential on the left side from the potential

on the right side:

0.48V − 0.3V = 0.18V

x (um)

-1 0 1

φ
 (

V
)

0.3

0.35

0.4

0.45

0.5

Figure 7.2: Potential profile inside N-N junction formed with ND1 = 1 × 1018/cm3

(x < 0) and ND2 = 1× 1015/cm3 (x > 0)

Note that we have here come up with the built-in voltage for an n/n junction.

A totally analogous derivation can be applied to find the built-in voltage for a p/p

junction. Even more important, we will find in the next chapter an analogous

expression for the ubiquitous PN junction.

7.2.2 The Reference Potential

As we learned early on in our science education, electrostatic potential must

be with respect to a reference voltage. Otherwise, we always need to speak in terms

of potential differences. In semiconductors, we typically set a reference potential
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which is correlated to the intrinsic carrier concentration of a semiconductor. To

understand this better let’s refer back to equation (7.9). Now, let’s replace n2 with

ni, the intrinsic electron concentration, and equation (7.9) is written as

n1 = ni e
[φ1−φi]
VT (7.12)

Now, let’s make the definition that at any point in the semiconductor where the

mobile electron concentration is intrinsic or ni at equilibrium, then the potential at

that point will be φi = 0V . This defines a reference or zero potential at equilibrium.

In other words, in equilibrium at any point inside the semiconductor where the

mobile electron concentration is ni, the potential at that point will be 0V . We

can then write an equilibrium expression that relates any carrier concentration at a

specific point to the absolute potential at that same point as follows:

n(x) = ni e
φ(x)
VT (7.13)

Since at equilibrium the expression n(x)p(x) = n2
i always holds, then we can express

the local hole concentration p(x) to the potential at that point wth a negative in

the exponential as follows:

p(x) = ni e
−φ(x)
VT (7.14)

By taking the natural log of both sides in Equations 7.13 and 7.14, we can also write

the potential in a semiconductor in equilibrium in terms of the ratio of the mobile

carrier concentration at a particular position to the intrinsic concentration:

φ(x) = VT ln
n(x)

ni
= −VT ln

p(x)

ni
(7.15)

Example 7.2:

If we have a silicon bar that is doped at the left end of the bar with ND =

1017/cm3 donors, and at the right end the bar is doped with NA = 1016/cm3

acceptors. Then we can make the approximation that the left end of the bar

has an electron concentration of 1017/cm3, and the right end of the bar has

a hole concentration of 1016/cm3 Also, we can then call the potential at the

left end φn and the potential on the right end φp, where:

φn = VT ln
ND

ni
= 0.026 ln

(
1017

1010

)
= 0.42V (7.16)

and

φp = −VT ln
NA

ni
= −0.026 ln

(
1016

1010

)
= −0.36V (7.17)
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x (um)

-1 0 1

φ
 (

V
)

-0.3

-0.2
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0
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0.2

0.3

0.4

Figure 7.3: Potential profile inside the PN junction formed with ND = 1017/cm3

(x < 0) and NA = 1016/cm3 (x > 0)

Figure 7.3 shows the potential profile inside this example PN junction. The n-

doped side far from the junction has constant potential equal to φn and the p-doped

side equal to φp. Near the junction in a region called the depletion region, the

potential makes a smooth transition between these values. Also, please note that

when we have equilibrium, regions where the material is doped n-type the potential

is positive, and the potential is negative where the bar is doped p-type. (Recall, in

equilibrium we do not have any outside energy sources applied to the bar, like no

applied voltages.)

Relationship between Potential and Fermi Level

It turns out that the difference between the actual Fermi level in a semiconduc-

tor and the intrinsic Fermi level also describes the electrostatic potential for mobile

carriers in the material. If you go on and study more semiconductor physics, you

will most likely run into analyses that involve the Fermi level, because it becomes

a very useful tool for the analysis of devices that contain more than one material

(not just silicon for example). We therefore introduce here some key concepts that

relate to the Fermi level that will help if future encounters with device physics wind

up involving the Fermi level.

In Chapter 5 we introduced the concept of the Fermi Level as a way describing

the concentration of electrons and holes in the valence and conduction bands in

equilibrium. Recall that the equilibrium electron concentration written in terms of

the Fermi as the following.

n = NC exp[−(EC − EF )/KT ] (7.18)

And the intrinsic carrier concentration is given by

ni = NC exp[−(EC − EFi)/KT ] (7.19)
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Taking the natural log of the ratio between n and ni and then multplying by KT
q

gives the following relationship:

KT

q
ln
n(x)

ni
= VT ln

n(x)

ni
=
EF − EFi(x)

q
(7.20)

Comparing Equations 7.20 and 7.15 we see that in equilibrium, we can express the

internal potential in a semiconductor as the difference between the Fermi level and

intrinsic Fermi level divided by the magnitude of the electronic charge:

φ(x) =
EF − EFi(x)

q
(7.21)

This is a fundamental relationship which connects the description of semiconductors

in terms of the Fermi level to the description used in this text which is in terms of

the electrostatic potential.

7.2.3 Poisson Equation

One of the most basic equations from electrostatics that often arises in semicon-

ductors is the Poisson equation. From your electromagnetics classes, you probably

recall that the Poisson equation relates the charge to the potential, and it is often

thought of as another way of stating Gausses law. In general the Poisson equation

is as follows:

∇2φ = −ρ
ε

(7.22)

Where ρ is the charge concentration.

As we have seen before, in semiconductors the charge concentration at any

point is composed of the contribution from the mobile electron n, the mobile hole

p, the ionized acceptor N−A , and the ionized donor N+
D concentrations at that point,

respectively. This gives the following general form for the Poisson equation in semi-

conductors:

∇2φ = −q
ε
(p− n+N+

D −N
−
A ) (7.23)

Equilibrium Poisson Equation: When the semiconductor is in equilibrium

condition (no applied voltage, etc.), the electron and hole concentrations are written

using equations (7.13) and (7.14), respectively. This gives the following form for the

Poisson equation in for semiconductors in equilibrium:

∇2φ = −q
ε
(ni e

−φ
VT − ni e

φ
VT +N+

D −N
−
A ) (7.24)

In one dimension equation (7.24) is expressed as:

d2φ(x)

dx2
= −q

ε
[ni e

−φ(x)
VT − ni e

φ(x)
VT +N+

D (x)−N−A (x)] (7.25)

132



Neil Goldsman and Christopher Darmody April 29, 2020

Note that in equation (7.25) we have explicitly included the x dependence to

remind us that all the quantities in the Poisson equation are typically functions of

position.

Example 7.3:

Using the current equation and the definition of carrier concentration with

respect to the reference potential, show that both the electron current den-

sity and the hole current density are both identically zero at any point in a

semiconductor in equilibrium.

Start with the Einstein relation µnVT = Dn, the current equation for electrons

(7.1) and the expression for mobile electron concentration at equilibrium:

JnT (x) = −qµnn(x)
dφ(x)

dx
+ qDn

dn(x)

dx

n(x) = ni e
φ(x)
VT

Evaluating the derivative from the diffusion current term:

dn

dx
=

d

dx
(nie

φ(x)
VT ) =

ni e
φ(x)
VT

VT

dφ(x)

dx
=
n(x)

VT

dφ(x)

dx
(7.26)

Substituting this for the derivative of concentration in the current eqution

and using the Einstein relation gives:

JnT (x) = −qµnn(x)
dφ(x)

dx
+ qµnn(x)

dφ(x)

dx
= 0 (7.27)

This is an important example because it verifies mathematically that at equi-

librium, the drift and the diffusion currents for mobile electrons are equal in

magnitude and opposite in direction and then cancel each other to yield zero

net current. A similar treatment can be provided for holes which is left for an

excersize in the problems at then end of this chapter.

7.3 Problems

7.1 In words, qualitatively describe how the built in potential would arise in a

non-uniformly doped P-type Silicon bar. Assume that the right end of the bar

has higher acceptor (NA) doping than the left side of the bar.

7.2 Derive the expression for the hole diffusion current density across a plane by

considering the flow of holes across it.
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7.3 Using the current equation for holes, derive the expression relating built-in

voltage and hole concentration at equilibrium (Jp = 0) that results from the

balance of drift and diffusion currents in a non-uniformly doped silicon bar.

7.4 One half of a silicon bar is doped with 1019cm−3 of donor atoms, and the other

half is doped with 1015cm−3 donors, what is the built-in potential inside this

bar. Assume all the donors are ionized.

7.5 If the electron concentration as a function of position (z) in a 100um long

silicon bar at equilibrium is found to be:

n(z) = nb

[
1 +

z

L

]
(a) Graph the potential as a function of position in the bar from z = 0 to

100um. Let nb = 1× 1015cm−3, and L = 1µm

(b) Graph the base-10 log of the hole concentration as a function of position

along the bar.

(Note equilibrium means the total current in the bar is zero.)

7.6 A semiconductor device relies on various specific regions having a excess of

electrons (heavily n-doped) and other regions having an excess of holes (heavily

p-doped) in order to function properly.

(a) Explain what would happen to the functionality of this device at high

temperatures (below melting temp.)? Why? Include things like ‘more/less

n/p-type’ and ‘intrinsic’ in your response.

(b) What material property would you want to change to improve this issue?

7.7 The electrostatic potential in a semiconductor is found to be:

φ(x) =
qND

2ε
x2 V olts

Where ND is the ionized donor concentration. Note that the units for electro-

static potential are Volts.

(a) Obtain an expression for the electric field in terms of the parameters

given in the above expression for potential. Include units in your answer.

(b) Obtain an expression for the charge density. Include units in your answer.

7.8 Using the current equation, the Einstein relation, and the definition of carrier

concentration with respect to the reference potential, show that both the elec-

tron current density and the hole current density are both identically zero at

any point in a nonuniformly doped semiconductor in equilibrium.
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Chapter 8

The PN Junction Part I

8.1 Introduction

A PN junction is probably the most fundamental structure in electronics. A

PN junction is the intimate contact of an N-type and a P-type semiconductor.

This structure forms a diode, which we know allows electric current to flow in one

direction but not the other. The PN junction structure forms a diode, but it is also

a critical component of many other devices including the BJT and the ubiquitous

MOSFET. A diode is composed mainly of a PN junction. The governing equation

for the PN junction diode is:

ID = Io
[
eVA/VT − 1

]
(8.1)

Where Io is called the saturation current and it is determined by the doping and

material parameters. VA is the applied voltage. It is a positive number when the

plus side is of VA is applied to the P-side of the junction. VT is the thermal voltage

KT/q.

In this chapter and the next, we will learn how a PN junction works and how

it gives rise to the governing equation (8.1). The block diagram of a PN junction

and the circuit symbol are shown in Figure 8.1. In the figure, the N-side is on the

left and the P-side is on the right. (In this chapter, we will use this convention of

having the N-side on the left and P-side on the right. I find that it makes the PN

junction analysis somewhat easier.)

8.2 Built-In Potential of a PN Junction

Since a PN junction is a nonuniformly doped semiconductor, it will have a

built in potential φo. Like we found in the previous chapter, the built in potential
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Figure 8.1: PN Junction Block Diagram. The N-side is on the left doped with
donors and the P-side is on the right doped with acceptors.The lower figure shows
the circuit symbol for the PN junction with N-side and P-side indicated. The applied
voltage VA is positive as indicated because the positive terminal is connected to the
P-Side.
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is given by:

φo = VT ln

(
nn
np

)
(8.2)

Where nn is the mobile electron concentration on the N-side and np is the concen-

tration of mobile electrons on the P-side. Now it is an excellent approximation to

say that the mobile electron concentration on the N-side is equal to the donor con-

centration (nn = ND), and the mobile hole concentration on the P-side is equal to

the acceptor concentration (pp = NA). Now if we invoke the equilibrium condition

that np = n2
i , then np the electron concentration on the P-side is np = n2

i /NA.

Substituting into equation (8.2) we obtain the following well known equation for the

built in potential of a PN junction:

φo = VT ln

(
NDNA

n2
i

)
(8.3)

This same result is obtained if we use the ratio of hole concentrations instead

of taking the ratio of electrons in Equation 8.2. However, the ratio is flipped due to

the opposite charge of the holes i.e. φo = VT ln
(
pp
pn

)
.

Built-in Potential versus Temperature

It is important to note that the φo depends on absolute temperature in two

basic ways. First of all VT = KbT/q which is obviously directly proportional to

temperature. In addition, the intrinsic carrier concentration ni increases with in-

creasing temperature as was described in Chapter 5. The increase in the intrinsic

concentration is the dominant effect here, so as temperature increases, the built in

potential will typically decrease in semiconductors.

8.3 PN Junction Operation: Qualitative

The operation of a PN junction is similar to that of the N1/N2 junction we

studied in the previous chapter. The PN junction and the N1/N2 junction both have

a built-in potential. However, the fact that we have an N-type material in contact

with a P-type material gives rise rectification. More specifically, a PN junction

will rectify electrical current, but an N1/N2 junction will not. The rectification

properties of the PN junction can easily be seen from the plot of the diode’s current-

voltage relationship (Equation 8.1) shown in Figure 8.2. When the forward voltage

bias is applied (positive), substantial current is able to flow through the diode,

however in reverse bias, the current is greatly suppressed and only a small leakage

current Io can make it through. The leakage current is generally many orders of

magnitude less than the forward current so we say the diode acts as a rectifier.
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Figure 8.2: Plot of PN Junction current equation. The ‘turn-on’ or ‘knee’ voltage
VON for a typical Si diode is around 0.7V . Leakage current is typically in the micro-
amp regime, whereas the forward current typically ranges from milli-amps to amps.

8.3.1 Equilibrium, No Net Current

The top illustration in Figure 8.3 shows the PN junction at equilibrium. On

the N-side we have a very large concentration of mobile electrons. On the P-side

the concentration of mobile electrons is many orders of magnitude smaller. Thus,

electrons from the N-side will diffuse to the P-side in response to the concentration

gradient. Since the N-side loses electrons it will become positively charged, and since

the P-side gains electrons it will take on a negative charge. As electrons continue

to diffuse from N-side to P-side, an electric field will arise due to the separation of

charge. This built-in electric field will point from the N-side to the P-side since the

N-side is now positive with respect to the P-side. This built-in field will then act to

pull mobile electrons back to the N-side. Since there is no applied bias to the PN

junction there will be no net electron current, so the electron diffusion from N to P

will be equal and opposite to the drift flow from P to N, which has resulted from

the built-in field. A similar set of events will occur for mobile holes. In other words,

holes will diffuse from P to N and the built-in electric field will cause holes to drift

back from N to P giving rise to zero net hole current. Thus, at equilibrium in a

PN junction electron drift current will be equal and opposite to electron diffusion

current so that the total electron current will be zero. Likewise, hole drift and

diffusion currents are equal and opposite as well, so the total hole current will also

be zero. So for electrons we have:

JnT = 0 = qµnnEo + qDn
dn

dx
(8.4)

And for hole current we have:

JpT = 0 = qµppEo − qDp
dp

dx
(8.5)

Recall that the first terms on the right hand side of equations (8.4) and (8.5)
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Figure 8.3: PN Junction: Top Equilibrium; Middle Forward Bias; Bottom Reverse
Bias. The N-Side is on left, the P-Side is on the right of each figure. The depletion
region is between −xn and xp. Outside the depletion region are the quasi neutral
N-side and P-side bulk regions.
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are drift currents and the second terms are the diffusion currents, and Eo is the

built-in electric field, which points from N to P.

Depletion Region: Since most of the mobile charge has diffused away, the

region near the junction will be largely void of mobile electrons and holes. Thus,

this region will consist mainly of positively charged ionized donors on the N-side and

negatively charged ionized acceptors on the P-side. Since this region is mainly void

of mobile charges, it is called the Depletion Region. Furthermore, the internal

electric field and the internal electrostatic potential will be dropped across this

depletion region, for equilibrium, forward bias and reverse bias as well. The depletion

region is shown as the charged area between −xn and xp in Figure 8.5.

8.3.2 Forward Bias

In forward bias, we apply a positive external voltage to the P-side with respect

to N-side. This is shown in the middle illustration in Figure 8.3. The external voltage

gives rise to a field component EA inside the device that points from P to N. Now

the total field ET in the device is now:

ET = Eo − EA, ET < Eo (8.6)

So the applied field has the effect of reducing the total field because it points in the

opposite direction as Eo. Now, it is important to keep in mind that the total field

ET still points in the same direction as Eo, but tends to be less than Eo.

Now, since the electric field is now smaller across the depletion region, the drift

current components are decreased. Thus, electron drift current is now less than the

electron diffusion current and a net electron current will flow. This net electron

current is largely due to diffusion. Similarly, the applied field also reduces the hole

drift current and a net hole current will now flow as well, which is largely diffusion

current in nature.

So that is how forward bias works. In summary, we apply an external potential

that reduces the internal field, thereby reducing the drift current. Furthermore, the

diffusion current has not changed too much from equilibrium. Thus diffusion is now

greater than drift and a net current will flow, which is given by:

ID = Io e
VA/VT (8.7)

8.3.3 Reverse Bias

In reverse bias, we apply a positive voltage to the N-side with respect to the

P-side. This is shown on the bottom of Figure 8.3. The added bias is in the same

direction as the built-in field, and thus adds to it. So the total field across the

junction is now greater than the built in field or:

ET = Eo + EA, ET > Eo (8.8)
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At first this seems like it would significantly increase the drift component, but it

does not. In fact hardly any reverse current flows at all. The reason is that there

are relatively very few electrons on the P-side, and therefore, there are very few

electrons available for drift current from P to N. For significant drift current to

flow, you need both field and carriers, but the carriers that would respond to the

enhanced field are minority carriers, and thus very low in concentration.

More specifically, the total electric field in Reverse Bias is mainly contained

within the depletion region and it points from N to P. Furthermore, the net electron

current in reverse bias is due largely to the small number of electrons in the P-

side near the junction that can be pulled over by the field. Similarly, the net hole

current consists of the small number of minority holes in the N-side that are pushed

over to the P-side by the electric field. Thus this enhanced field only increases the

drift current from its equilibrium level by a very small amount. Furthermore, the

diffusion current does not really change too much from the equilibrium case. Thus,

in reverse bias, the drift current becomes only slightly larger than its equilibrium

value, and drift and diffusion still balance except for a very slightly increased drift

component. Therefore, a very very small current flows into the N-side and out of

the P-side in reverse bias. This reverse bias current is many orders of magnitude

smaller than the forward bias current at typical values of VA, and is approximately

given by:

ID = −Io (8.9)

(Note that ID in reverse bias will typically be a little larger than −Io, but the

reason for this will be saved for later.)

8.3.4 Requirements for Rectification

A rectifier is an electronic device that only allows current to flow in one di-

rection. As discussed, a PN junction allows current to flow in one direction but,

except for a very small leakage current, not the other. The PN junction is the most

ubiquitous rectifier in electronics. We found in Chapter 7 that non-uniform doping

using the same gives rise to a built-in potential. In the current chapter we find

that non-uniform doping that consists of two different dopant species (donors and

acceptors) gives rise to not only a built-in potential but also a depletion region. For

a device to be able to rectify two physical attributes are required;
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Figure 8.4: Depletion region and Quasi Neutal regions of PN Junction

Requirements for Rectification

1. A Built in Potential

2. A Depletion Region

This important result is at the heart of modern semiconductor electronics.

8.4 Electric Field, Potential and the Depletion

Approximation

To analyze the electric field, the electrostatic potential and the charge distri-

bution in a PN junction we use the Depletion Approximation. The depletion

approximation says that there is a small region on either side of the PN junction that

has very few (or is depleted of) mobile electrons or holes compared to the concentra-

tion of ionized donors and acceptors, and this region is therefore electrically charged.

Furthermore, all areas outside of the depletion region are approximated as charge

neutral. As a result all the electric field in the PN junction is contained within this

depletion region. Furthermore, the electrostatic potential is totally dropped across

the depletion region. Outside the depletion region, the electric field is approximated

to be zero, and the electrostatic potential is approximated to be constant. Overall,

the depletion approximation is very accurate for most applications, especially when

the PN junction is in equilibrium.

In this text, when we use the depletion approximation, it is convenient to

divide the PN junction into four regions, as shown in Figure 8.4.

• Region 1: Quasi Neutral N-Type: This is the N-side of the PN junc-

tion that is doped with donors. Here the concentration of mobile electrons

is provided by the donor atoms which become ionized (Donor atoms in Si
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are typically Phosphorous, a column 5 element), The concentration of mobile

electrons is essentially equal to the ionized donor concentration so the Quasi

Neutral N-side of the PN junction is charge neutral. This region extends from

the metal contact to the N-side of the depletion region. In this quasi neutral

N-side, electrons are the majority carriers, and holes are the minority carriers.

This large region is also called the N-type bulk region in the PN junction.

• Region 2: N-Side of the Depletion Region: This narrow region extends

from the edge of the N-side of the depletion region to the edge of junction with

the P-Side. Since this narrow region is largely void of mobile electrons and

holes, it has a charge concentration that is due to the ionized donors, so it has

positive charge density of ρ = +qND, where ND is the donor concentration.

• Region 3: P-Side of the Depletion Region: This is analogous to Region

2, but it is on the P-side of the depletion region. This narrow region extends

from the edge of the junction with the N-Side to the edge of the P-side quasi-

neutral region. Since this narrow region is largely void of mobile electrons

and holes, it has a charge concentration that is due to the ionized acceptors,

so it has negative charge density of ρ = −qNA, where NA is the acceptor

concentration.

• Region 4: Quasi Neutral P-Type: This is the P-side of the PN junction

that is doped with acceptors. Here the concentration of mobile holes is pro-

vided by the acceptor atoms which become ionized (Acceptor atoms in Si are

typically Boron, a column 3 element), The concentration of mobile holes is

essentially equal to the ionized acceptor concentration so the Quasi Neutral

P-side of the PN junction is charge neutral. This region extends from the P-

side of the depletion region to the P-side contact. In this quasi neutral P-side,

holes are the majority carriers, and electrons are the minority carriers. This

large region is also called the P-type bulk region in the PN junction.

8.4.1 Doping and Charge Summary in PN Junction Regions

The doping and charge summaries are illustrated in Figure 8.4. Below is a

further description.

Region 1: Quasi Neutral N-Side (x ≤ −xn):

Doping = ND = Donor Concentration

NA=0.

n ≈ ND

p ≈ n2
i

n
(extremely small and taken as negligible)

ρ = q(p− n+ND) ≈ 0
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Region 2: Depletion Region N-Side (−xn ≤ x ≤ 0):

Doping = ND = Donor Concentration

NA = 0

n << ND

p << ND

n, p are negligible compared with ND

ρ = +q(p− n+N+
D ) ≈ +qND

Region 2 is largely depleted of mobile carriers. Hence, it is called N-side of

the Depletion Region

Region 3: Depletion Region P-Side (0 ≤ x ≤ xp):

Doping = NA = Acceptor Concentration

ND = 0

n << NA

p << NA

n, p are negligible compared with NA

ρ = +q(p− n−N−A ) ≈ −qN−A
R3 is largely depleted of mobile carriers. Hence, it is called P-side of the

Depletion Region.

Region 4: Quasi Neutral P-Side (x ≥ xp):

Doping = NA = Acceptor Concentration

ND = 0

p ≈ NA

n ≈ n2
i

p
(very small and taken as negligible)

So, ρ = +q(p− n−N−A ) ≈ 0

8.4.2 PN Junction Electric Field and Potential Distribution
Using the Depletion Approximation

We will now derive the expressions for the built-in electric field and the built-

in electrostatic potential as a function of position in the PN junction. We will do

this by solving the Poisson equation for regions 1 through 4 within the framework

of the very accurate depletion approximation. First of all, let’s rewrite the Poisson

equation for semiconductors in one dimension:

d2φ

dx2
= −q

ε
(p− n+N+

D −N
−
A ) (8.10)

And also recall that the electric field is the negative gradient of the potential which

in one dimension reduces to the simple derivative:

E = −dφ
dx

(8.11)
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Region 1: Quasi-Neutral N-Side

Let’s remind ourselves the depletion approximation says that all the potential

drops across the depletion region, and the electric field is totally contained within the

depletion region. Keeping this in mind let’s solve the Poisson equation for Region

1, which is charge neutral:

d2φ

dx2
= −q

ε
(p− n+N+

D ) = 0 (8.12)

The solution to 8.12 says that the potential in the bulk N-side is either linear or con-

stant. Since the depletion approximation says that the potential is totally dropped

across the depletion region (Regions 2 and 3), the potential in this region is constant.

Furthermore, using equation (7.13), we find that the constant potential is:

φn = VT ln
ND

ni
(8.13)

Furthermore, since the potential is constant, then the electric field E = 0 in this

bulk N-Side. The constant potential and the zero field in the bulk N and P regions

are illustrated in Figure 8.5.

Region 4: Quasi-Neutral P-Side

The analysis for the bulk P-Side is analogous to that of the quasi-neutral

bulk N-side. In the bulk P-side we have charge neutrality so the Poisson equation

becomes
d2φ

dx2
= −q

ε
(p− n−N−A ) = 0 (8.14)

The solution to 8.14 says that the potential in the bulk P-side is either linear or con-

stant. Since the depletion approximation says that the potential is totally dropped

across the depletion region (Regions 2 and 3), the potential in this region is constant.

Furthermore, using equation (7.14), we find that the constant potential is:

φp = −VT ln
NA

ni
(8.15)

Furthermore, since the potential is constant, then the electric field E = 0 in this

bulk P-Side. It is also important to notice that using ni as the point of reference

potential, then the potential in the P-Side turns out to be a negative number. See

Figure 8.5.

Region 2, N-Side of Depletion Region

The N-side of the depletion region is doped with donors, and has negligible

mobile electrons and holes. Thus the Poisson equation for this region is:

d2φ

dx2
= −q

ε
N+
D (8.16)
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Figure 8.5: PN Junction in Equilibrium: Top is the Charge Density; Middle is the
Built-In Electric Field; Bottom is the Built-In Electrostatic Potential.The N-Side is
on left, the P-Side is on the right of each figure. The depletion region is between
−xn and xp. Outside the depletion region are the quasi neutral N-side and P-side
bulk regions.

Integrating and remembering that the field is the negative of the derivative of the

potential we obtain

−dφ(x)

dx
= E(x) =

q

ε
NDx− c (8.17)

Now apply boundary condition that the field must go to zero at −xn and we can

solve for the constant of integration.

E(−xn) = 0 = −q
ε
NDxn − c. Solving for c gives c = −q

ε
NDxn. Substituting

this expression for c back into equation (8.17) gives the following expression for the

electric field as a function of position in the N-side of the depletion region:

E(x) =
q

ε
ND(x+ xn) (−xn ≤ x ≤ 0) (8.18)

Now find the potential φ(x). We start with equation (8.18), writing the field

as the negative derivative of the potential we have:

dφ

dx
=
−q
ε
ND(x+ xn) (8.19)
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Now integrating both sides from the edge of the depletion region −xn to some point

x in the depletion region:∫ φ(x)

φ(−xn)

dφ =
−q
ε
ND

∫ x

−xn
(x+ xn)dx (8.20)

which gives:

φ(x)− φ(−xn) =
−q
2ε
ND(x+ xn)2 (8.21)

Rearranging gives the expression for the potential as a function of position in the

N-side of the depletion region.

φ(x) = φn −
q

2ε
ND(x+ xn)2 (8.22)

where φn = φ(−xn) = VT ln ND
ni

. See Figure 8.5.

Region 3, P-Side of the Depletion Region

The analysis of the field and potential on the P-Side of the depletion region is

analogous to that of the N-side depletion region. As in the N-side, the concentra-

tion of mobile electrons and holes is negligible compared with the ionized dopant

concentration. But here, the dopants are acceptors so the charge concentration is

negative and is given as −qNA. Starting with this charge concentration we find the

electric field and the electrostatic potential by integration of the Poisson equation.

This gives the following:

E(x) =
q

ε
NA(xp − x) (0 ≤ x ≤ xp) (8.23)

φ(x) =
q

2ε
NA(xp − x)2 + φp (0 ≤ x ≤ xp) (8.24)

where, φp = φ(xp) = −VT ln NA
ni

. Figure 8.5 illustrates the built-in electric field and

the built-in electrostatic potential.

Depletion Region Length

Once we have the field and the built in potential, it is straightforward to obtain

the lengths of the depletion region on each side:

xn =

√
2ε(φ0 − VA)

q

[
NA

ND(NA +ND)

]
(8.25)

xp =

√
2ε(φ0 − VA)

q

[
ND

NA(NA +ND)

]
(8.26)
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Where VA is the applied voltage across the PN junction, as shown in Figure 8.1. VA
is positive for forward bias and negative for reverse bias. Also, for this expression,

there are no restrictions on the values of VA for reverse bias, but for forward bias

VA must be less than the built-in potential or ( VA < φ0 for FB).

The entire depletion region width can easily be calculated from WD = xn+xp:

WD =

√
2ε(φ0 − VA)

q

[
NA +ND

NAND

]
(8.27)

Additionally, the depletion lengths xn and xp can be determined from the

width:

xn =
NA

NA +ND

WD (8.28)

xp =
ND

NA +ND

WD (8.29)
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Example 8.1:

A silicon PN junction is doped on one side with the acceptor boron at a

concentration of 1 × 1017/cm3 and the other side is doped with the donor

phosphorous at a concentration of 1×1016/cm3. Assume all dopant atoms are

ionized. Calculate the built in potential φ0, the length of the depletion region

region WD and the peak electric field at room temperature. Also calculate

the value of the electrostatic potential at the junction.

φ0 = 0.026 ln

[
(1× 1016)(1× 1017)

(1× 1010)2

]
= 0.77V

WD =

√
2× 11.7× 8.85× 10−14 × 0.77

1.6× 10−19

[
(1× 1016) + (1× 1017)

(1× 1016)(1× 1017)

]
WD = 3.4× 10−5cm = 0.33µm

To calculate the peak electric field we note that the field is continuous and is

maximum at the junction:

Emax = E(0) =
q

ε
NDxn =

q

ε
NAxp

Using Equations 8.25 and 8.26 for xn and xp and multiplying by the corre-

sponding constants gives:

Emax = E(0) =

√
2qφ0

ε

NAND

NA +ND

=

√
2× 1.6× 10−19 × 0.77

11.7× 8.85× 10−14

(1017)(1016)

(1017) + (1016)

Emax = E(0) = 4.65× 104V/cm

To calculate the value of the electrostatic potential at the junction we can use

either one of equations (8.22) or (8.24) and evaluate at φ(0).

φ(0) =
q

2ε
NAx

2
p + φp = φn −

q

2ε
NDx

2
n = −0.35V

8.4.3 PN Junction Depletion Approximation Comparison
to Numerical Solution and Effects of Bias

In the previous sections we have used the depletion approximation to calculate

reasonably simple closed form solutions of the charge density, field, and potential

everywhere inside the PN junction. The key assumption in this approximation was

that an abrupt depletion region surrounding the junction forms, and is completely

devoid of electrons and holes. In the real world, however, the concentration of
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electrons and holes does not suddenly become zero inside the depletion region and

instead there is a transition period at the depletion region edges where the concentra-

tion changes continuously from its equilibrium value in the quasi-neutral region to a

small value inside the depletion region. The validity of the depletion approximation

relies on the fact that this change is quite rapid due to the exponential dependence

of the electron and hole concentrations on the potential (Equations 7.13 and 7.14).

Since this fact is true, the charge density inside the depletion region is well approx-

imated by a square-wave function. A comparison of the depletion approximation

solution to a full numerical solution of the Poisson equation in a PN junction is pro-

vided in Figure 8.6. The full numerical solution shown is a self-consistent solution to

the Poisson equation in one dimension (Equation 7.25) for all values of x performed

without breaking the space up into different regions.

This solution is valid for the PN junction with no applied bias. The derivation

of the solution to the Poisson equation for a PN junction under applied bias can be

carried out in the same manner as we have provided for the case of no applied bias.

The only change is that that we must add the applied potential to the boundary

conditions i.e. the potential value in the quasi-neutral regions. When applying

forward bias of VA, the positive potential is applied to the p region of the junction and

we will take the n region to be our ground. Following this, our constant potentials

inside the quasi-neutral regions will become φp + VA and phin + 0 respectively. The

applied potential also affects the location of the depletion region edges, as given in

Equations 8.25 and 8.26. Forward bias shrinks the depletion region and reverse bias

increases the length of the depletion region. The consequence of these changed bias

conditions are shown in Figure 8.7, where the equilibrium, reverse, and forward bias

conditions are shown.
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Figure 8.6: Solutions to Poisson equation in PN junction doped with ND = 1016/cm3

(x < 0) and NA = 5× 1016/cm3 (x > 0). Numerical solution to the full equation is
in red. Depletion approximation solution is in blue.
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doped with ND = 1016/cm3 (x < 0) and NA = 5 × 1016/cm3 (x > 0). Equilibrium
solution is shown in blue, forward bias is shows in yellow, and reverse bias is shown
in red. The reverse bias voltage VR = −1V and the forward bias voltage VF = 0.3V .
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Example 8.2:

Based on what you learned in this and the several preceding chapters, answer

the following questions in a sentence of two:

1) How do you connect a power supply to forward or reverse bias the PN

junction in Example 8.1?

To forward bias the junction, connect the positive potential to the boron

doped (p) side, and the negative potential to the phosphorous (n) side. For

reverse bias, apply the potential in the opposite manner.

2) Why is the electric field smaller during forward bias than in equilibrium or

reverse bias, as evidenced by Figure 8.7?

In forward bias, the field due to the biasing potential is oriented opposite to

that of the built-in field resulting from the built-in potential. These fields add

together to result in a net field which is smaller, but still oriented the same

direction as the original built-in field. Remember, the forward bias potential

will be less than the built-in potential so the sign of the electric field will not

reverse. In reverse bias, the fields will add to create a larger net field.

3) Why doesn’t the drift current increase significantly in reverse bias even

though the internal field increases as shown in Figure 8.7?

The drift current doesn’t increase in reverse bias because despite the field

magnitude, there are very few electrons in the depletion region. Because the

field increases but the carrier concentration is still low, the drift current only

increases by a very small amount.
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8.5 Problems

8.1 If Io = 1 × 10−15A, graph the diode equation from −1 ≤ VA ≤ 0.8 volts.

Indicate on the graph the regions of forward and reverse bias. Assume the

temperature is 27oC, or room temperature.

8.2 PN Junction in Equilibrium Qualitative Operation

(a) What are the four basic current components in a PN junction.

(b) What is meant when we say a ‘PN junction is in equilibrium’?

(c) In equilibrium, what are the relative magnitudes and directions of each

of the four current components?

8.3 PN Junction Forward Bias Qualitative Operation

(a) How do we connect a battery to forward bias a PN junction? Indicate

which pole of the battery connects to the P side or N side.

(b) When you forward bias a PN junction, what happens to the drift current

for each carrier? What happens to the diffusion current for each carrier?

(c) Use your answers to the previous two questions to summarize the opera-

tion of a PN junction diode for forward bias operation in a few sentences.

8.4 PN Junction Reverse Bias Qualitative Operation

(a) How do we connect a battery to reverse bias a PN junction? Indicate

which pole of the battery connects to the P side or N side.

(b) When you reverse bias a PN junction, what happens to the drift current

for each carrier? What happens to the diffusion current for each carrier?

Do any of the current components change significantly?

(c) Use your answers to the previous two questions to summarize the opera-

tion of a PN junction diode for reverse bias operation in a few sentences.

8.5 Derive the expressions for the electric field and electrostatic potential versus

position in the P-side of the depletion region for a PN junction. Graph the

electric field and electrostatic potential for the entire PN (or NP) junction.

8.6 Derive the expressions for the lengths of the depletion regions xn and xp.

8.7 If a PN junction is doped with ND = 1016cm−3 and NA = 1017cm−3:
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(a) Graph the electric field as a function of position and the built-in potential

as a function of position with zero applied voltage. Include the field and

potential in the quasi neutral regions on the P and N sides, as well as in

the depletion region near the junction.

(b) Determine the length of the depletion region length on the n-side and the

p-side, respectively.

(c) Give the expression for boundary value potentials, φn and φp.

8.8 In an abrupt PN junction, where is the field strength at its maximum? What

happens to the maximum and the depletion width if you increase both the

acceptor and donor doping concentrations? Why?

8.9 Derive an expression for the maximum of the electric field in an abrupt PN

junction under no bias as a function of only: the doping concentrations NA

and ND, the intrinsic carrier concentration ni, the dielectric constant of the

semiconductor ε, the Boltzmann constant K and the temperature T .

8.10 If one side of the PN junction is doped more heavily than the other, comment

on how the field inside the depletion region is affected.

8.11 An abrupt PN junction is created with NA = 1017cm−3 and ND = 1018cm−3.

For a certain bias condition you know that the depletion length on the p-side

extends 1um from the junction. Only using charge neutrality, calculate the

depletion region length on the n-side. Why can we calculate the depletion

length this way?

8.12 What are the key assumptions made in the depletion approximation? What

do these assumptions mean physically? How might things be different in the

real world?

8.13 We know from Gauss’s Law and the definition of the electric field in one

dimension that the integral of the charge density gives us the electric field,

and the integral of the electric field gives us the minus potential. As a result,

given the abrupt PN junction charge density shown in the first row of Figure

8.8 below, we can deduce the triangular electric field profile and quadratic

(minus) potential profile. For charge densities A), B), and C), match their

corresponding electric field and minus potential profiles.

8.14 Built-in Potential versus Temperature: Calculate and graph the built-in poten-

tial versus Temperature for the silicon PN junction that has ND = 1016cm−3

and NA = 1016cm−3 for temperature ranging between 0oC and 200oC. You

will need to also calculate the intrinsic carrier concentration as a function of

temperature to do this problem, which was discussed in Chapter 5.
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Figure 8.8: Plots of charge density ρ (first column), electric field E (second column),

and minus potential −φ (third column) for Question 8.13. The first row shows a

properly matched set based on the governing physical equations.

8.15 A silicon PN junction is doped on one side with 1016/cm3 boron and the other

side with 1016/cm3 phosphorous. The depletion approximation says that the

concentration of mobile carrier is negligible compared to that of the ionized

dopant atoms in the vicinity of the PN junction. Using the exponential expres-

sions relating potential and carrier concentration in equilibrium, along with

the calculated electrostatic potential from the depletion approximation, calcu-

late and graph the mobile electron and hole concentrations along the depletion

region. Compare your result of the mobile carrier concentration with that of

the ionized dopant concentration. Calculate and graph the percent error in the

depletion approximation as a function of position along the depletion region.
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Chapter 9

PN Junction Part II

9.1 Introduction

In this chapter we will derive the diode equation which is one of the most

fundamental equations in electronics:

ID = I0(eVA/VT − 1) (9.1)

9.2 Continuity Equations

First we derive continuity equation for electrons which is a partial differential

equation in space and time. In three spatial dimensions it is given as:

∂n

∂t
=

1

q
∇ · ~Jn +Gn −Rn (9.2)

In one spatial dimension the continuity equation for electrons is:

∂n

∂t
=

1

q

∂J

∂x
+Gn −Rn (9.3)

The continuity equation says that the change in the number of electrons per unit

time in a small volume element is equal to the flow of electrons into the volume

element, minus the flow of electrons out of the volume element, plus any generation of

electrons minus any recombination of electrons within the volume. This is illustrated

in Figure 9.1, and expressed mathematically as follows:

dV olume = (∆xA)

∂n

∂t
∆xA =

1

−q
(Jn(x)− Jn(x+ ∆x))A+ (Gn −Rn)∆xA (9.4)

157



Neil Goldsman and Christopher Darmody April 29, 2020

Figure 9.1: Illustration of physical meaning of Continuity Equation.

Expanding Jn(x + ∆x) in a Taylor series and canceling the cross-sectional area A

from all terms gives:

∂n

∂t
∆x =

1

−q
(Jn(x)− Jn(x)− ∂Jn

∂x
∆x) + (Gn −Rn)∆x (9.5)

Canceling the ∆x, the Jn(x) terms and the negative sign gives the continuity equa-

tion for electons in one spatial dimension and time:

∂n

∂t
=

1

q

∂Jn
∂x

+ (Gn −Rn) (9.6)

Following an analogous procedure for holes will give the following continuity equa-

tion for holes:
∂p

∂t
=
−1

q

∂Jp
∂x

+ (Gp −Rp) (9.7)

9.2.1 Generation and Recombination

The term −Rn stands for the loss of electrons from the conduction band by

their recombining with holes in the valence band. Physically, what is actually hap-

pening is that a conduction band electron falls back into the valence band. As a

result, there is one less electron in the conduction band, and one less hole in the

valence band. The units for Rn are concentration/time or 1/cm3 sec. There are

various mechanisms of recombination, which students and engineers will study later

in their careers. For the standard electrical operation of semiconductor devices, like

diodes, MOSFETs and BJTs, the most common type of recombination is called
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Shockley-Read-Hall recombination, which describes recombination of electrons with

holes being facilitated by defect traps in semiconductor.

The term Gn in the continuity equation reflects the generation of electrons

from the valence band into the conduction band. This will occur thermally when

the temperature rises, or when electrons absorp photons with sufficient energy. It can

also occur when electrons in the conduction band get so much energy by an applied

electric field that they collide with electrons in the valence band and cause them

to jump to the conduction band. This is called impact-ionization and it generates

both an electron and a hole. These are mechanisms for further study later in the

students’ careers.

During standard diode operation, the main phenomenon occuring is the re-

combination of electron holes pairs in the bulk or quasi-neutral regions of the PN

junction. For these circumstances, it turns out that the generation/recombination

term can be given as:

Gn −Rn = −∆n

τn
(9.8)

Where τ is the recombination lifetime. (Note that the τn here is different from the

one in the formula for mobility, ,which is the mean time between collisions.) There

will be an analogous expression for the recombination of holes in the hole-continuity

equation.
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Example 9.1:

A steady state direct electron flow is entering into one end of a region of a

semiconductor device that is 50µm long with a cross-sectional area of 100µm×
100µm. Measurements find that the electron current is totally absorbed in

this region by electron-hole recombination. In other words, electrons flows

into the region but none flow out. We also find that the mobile electron

concentration increases uniformly in the region by ∆n = 1×1014/cm3 in order

to accommodate the recombination process, and the recombination lifetime

τn = 1×10−6s. At the other end of the region hole current is flowing in and it

too is totally absorbed by recombining with electrons that are entering from

the other end. How much electron current is flowing through one side of the

region, and how much hole current is flowing through the other side?

Start with the continuity equation for electrons:

∂n

∂t
=

1

q

∂Jn
∂x

+ (Gn −Rn)

DC Steady State current means the concentration doesn’t change with time:

∂n

∂t
= 0

We know that the total generation/recombination term must be negative since

we only have recombination:

Gn −Rn = −∆n

τn

Plugging these values into the steady state continuity equation:

1

q

dJn
dx

=
∆n

τn

Since ∆n is constant, this equation can be directly integrated to get the

current density. We can multiply by the area A to get the total current

component.

In = A
q∆n

τn

∫ 50µm

0

dx = (100µm)2 1.6× 10−19C · 1014cm−3 · 50µm

10−6s
= 8×10−6A

We know that all holes also recombine in this region, so from symmetry, the

same amount of hole current must flow in to the other side.

Ip = In
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9.3 Fundamental Semiconductor Equations:

Now that we have derived the continuity equations, we have seen in this course

the five coupled fundamental semiconductor equations. These fundamental semicon-

ductor equations are to semiconductors as Maxwell’s equation are to Electricity and

Magnetism, and as Schrodinger’s equation is to Quantum Mechanics. We list the

five fundamental semiconductor equations below:

Semiconductor Equations

∂2φ

∂x2
= −q

ε
(p− n+N+

D −N
−
A ) Poisson Equation (9.9)

∂n

∂t
=

1

q

∂Jn
∂x

+Gn −Rn Electron Continuity Equation (9.10)

∂p

∂t
= −1

q

∂Jp
∂x

+Gp −Rp Hole Continuity Equation (9.11)

Jn = −qnµn
∂φ

∂x
+ qDn

∂n

∂x
Electron Current Equation (9.12)

Jp = −qpµp
∂φ

∂x
− qDp

∂p

∂x
Hole Current Equation (9.13)

We have already used some of these equations previously in this course. For

example, we used the current equations to obtain the built-in electric field in an

N1/N2 junction and a PN junction in equilibrium. Also, we used the Poisson equa-

tion to describe the electric field and the electrostatic potential in the Depletion

region of a PN junction. To perform a detailed, comprehensive device analysis (of a

diode, BJT, MOSFET, etc.) or to design a device, these equations are solved fully

on a computer, all at once, self-consistently, with specific device structure (dop-

ing, geometry, etc.) as input. The result gives a comprehensive description of the

operation of the device including the current-voltage characteristics, the MOSFET

threshold voltage, BJT Beta, etc.

In this course we will continue to use these equations, but in an approximate

decoupled way to obtain analytical expressions for the device operation. In this

chapter we will use them to derive the current equation for a PN junction. More

specifically, we will use mainly the current and continuity equations.

9.4 Derivation of Diode Equation

Before starting our derivation let’s specify the following notation which we will

use in the derivation.
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N-Side:

nn0 = Electron equilibrium concentration in N-Side bulk.

pn0 = Hole equilibrium concentration in N-Side bulk

pn = Non-Equilibrium Hole concentration on N-side,

P-side:

pp0 = Equilibrium hole concentration in P-Side bulk.

np0 = Electron equilibrium concentration in P-Side bulk.

np = Non Equilibrium Electron concentration on P-side

Minority Carriers: Electrons on the P-Side, and Holes on the N-Side.

Majority Carriers: Electrons on the N-Side, and Holes on the P-Side.

Electron Diffusion Length: Ln: Distance electron diffuses in P-type material

before it recombines with a hole (Ln =
√
Dn τn ).

Hole Diffusion Length: Lp: Distance hole diffuses in N-type material before it

recombines with an electron (Lp =
√
Dp τp ).

Equilibrium: Recall, the equilibrium concentrations are when there is no applied

voltage and no current flowing. In this section, we will not be in equilibrium because

we will apply a voltage and obtain the resulting current.

General Approach

Recall that when we apply a forward bias voltage, built in field and the built-in

potential decrease. This allows diffusion current to dominate over drift current. Our

analysis will be based largely on obtaining the diffusion current that results after we

apply a forward bias. To do so, we will solve the current and continuity equations

for minority carriers. This will first give us the electron concentration in the P-

side and the hole concentration in the N-side. When we get these non-equilibrium

concentrations, we will utilize them in the diffusion current expression to get the

minority carrier current flows. Finally, we will use continuity (KCL) to get the total

current which will give the diode equation.

Electron Current in Quasi-Neutral P-Side

To find the current we will start by finding the electron concentration and the

electron current in the bulk P-side. In other words, we will find the minority carrier

concentration and current in what we called ’Region 4’ in the previous chapter.

To do this, we will start with the Poisson (9.9), Electron Continuity (9.10), and

Electron Current (9.12) equations from above, and solve them self-consistently for

the potential φ(x), the electron concentration n(x), and the electron current Jn(x)

throughout the bulk P-side.
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First of all, the Poisson equation solution is easy. Since we make the very good

approximation that the field is contained in the depletion region, then the potential

in the quasi neutral P-side is constant and the field E = 0. This leaves us with only

the continuity and current equations to solve.

Now, let’s further make our lives easier by looking only for a steady state

or time independent solution. We can then set ∂n
∂t

= 0. This leaves us with the

following forms of the Electron Current and Electron Continuity Equations in the

quasi-neutral P-region.

0 =
1

q

dJn
dx

+Gn −Rn (9.14)

Jn = qDn
dn

dx
(9.15)

Note that the current equation now only has a diffusion component because the field

is zero and hence no drift.

We now have two equations and two unknowns (Jn and n). Now we reduce to

one equation by substituting the expression for Jn from the diffusion current into

the continuity equation. This leaves only the continuity equation and one unknown

which is n(x):

0 =
1

q

d

dx
(qDn

dn

dx
) +Gn −Rn (9.16)

Now, let’s re-write n(x) as the sum of the excess electron concentration resulting

from the applied bias ∆n(x) and the constant equilibrium concentration:

n(x) = ∆n(x) + np0 (9.17)

The Generation / Recombination term, which is the rate in which the excess elec-

trons recombine with holes in the P-side, can be approximated as:

Gn −Rn =
−∆n

τ
(9.18)

Remember, when an electron and hole recombine, we lose both of these mobile

carriers. Now substituting for n(x) and Gn −Rn into equation (9.16) gives

0 = Dn
d2∆n

dx2
− ∆n

τ
(9.19)

Note that d(∆n+np0)

dx
= d∆n

dx
since np0 is a constant. Equation (9.19) is a simple

second order homogeneous differential equation with constant coefficients which has

the general solution:

∆n(x) = Aex/Ln +Be−x/Ln (9.20)

where, L2
n = Dnτ . The parameter Ln is called the electron diffusion length,

and it is the average distance that the electron will diffuse in the P-side before it

recombines with a hole.
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Boundary Conditions

Now apply boundary conditions at x =∞ and x = xp, to get A and B.

First, ∆n(∞) = 0, so A = 0. This leaves

∆n(x) = Be−x/Ln (9.21)

Now apply boundary condition at x = xp. To find the concentration at the begin-

ning of the P-bulk region (Depletion region edge), we first recall built-in potential

relations from the previous chapter:

np0 = nn0e
−φ0/VT (9.22)

Where φ0 is the Built-in potential.

Now in addition to the built-in potential, we also have an external or applied

potential. So we will add this additional potential to φ0. This gives the electron

concentration at the edge of the P-side while including the effect of the added voltage

VA:

np(xp) = nn0e
(−φ0+VA)/VT (9.23)

Now, we write in terms of the excess concentration at the boundary by subtracting

off the equilibrium value:

∆n(xp) = np(xp)− np0 = nn0e
−φ0/VT (eVA/VT − 1) (9.24)

Using equation (9.22) gives:

∆n(xp) = np0(eVA/Vt − 1) (9.25)

Note that equation is very important and intuitive. It says that the extra electron

concentration at the boundary of the P-side is simply the equilibrium concentration

multiplied by the exponential factor that contains the applied bias VA. In other

words, equation (9.25) tells us a great deal about the effect of the applied bias.

Now continuing to find B:

∆n(xp) = np0(eVA/VT − 1) = Be−xp/Ln (9.26)

Solving for B gives:

B = ∆n(xp)e
xp/Ln = np0(eVA/VT − 1)exp/Ln (9.27)

Finally, substituting for B into equation (9.21) gives:

∆n(x) = np0(eVA/VT − 1)e(xp−x)/Ln (9.28)
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Figure 9.2: Top figure illustrates the electron and hole concentrations in equilibrium.

The bottom figure illustrates the carrier concentration when a forward bias is applied

to the PN junction. The figure is not really to scale since the majority concentration

in each region is many orders of magnitude larger than the minority concentration.

Thus the scale is generally logarithmic. 165
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Equation (9.28) is important. It gives the excess electron concentration (concen-

tration in excess of the equilibrium) on the P-side as a function of position after

applying external voltage VA to the PN junction. As a check, note that if we don’t

apply an external voltage, then VA would be zero and there would also be zero excess

p-side electrons.

Electron Current on P-Side

Now that we have the electron concentration as a function of position, we can

easily substitute it back into equation for diffusion current:

Jn(x) = qDn
dn(x)

dx
(9.29)

Substituting n(x) from (9.28) into (9.29) and then taking the derivative of the

concentration with respect to x and multiplying by q and diffusivity Dn gives the

following final expression for electron current density in the quasi-neutral p-side:

Jnp(x) = −qDnnp0
Ln

(eVA/VT − 1)e(xp−x)/Ln ; (x ≥ xp) (9.30)

Excess Hole Concentration and Hole Current on N-Side

Performing a totally analogous procedure for the minority carrier holes, we get

the following final expression for excess hole concentration versus position on the

N-side:

∆p(x) = pn0(eVA/VT − 1)e(xn+x)/Lp (9.31)

Substituting the hole concentration into the expression for diffusion current:

Jp(x) = −qDp
dp(x)

dx
(9.32)

We obtain the following final expression for hole current density in the N-side quasi

neutral region:

Jpn(x) = −qDppn0

Lp
(eVA/VT − 1)e(xn+x)/Lp ; (x ≤ −xn) (9.33)

The electron and hole current densities, as well as the total current density, under

forward bias are illustrated in Figure 9.3.

Current in Depletion Region:

To find currents Jn, Jp in the depletion region , we utilize he very good approx-

imation that there is negligible generation or recombination of mobile electrons or

holes in the depletion region because the depletion region being thin, the electrons

and holes do not find enough time to recombine. So (Gn − Rn) and (Gp − Rp) are
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both taken as zero in this region. So the continuity equation for electrons and holes

in the depletion region both simplify to:

dJn
dx

= 0 (9.34)

dJp
dx

= 0 (9.35)

Thus, Jn = constant and Jp = constant for (−xn ≤ x ≤ xp). Furthermore, the

constants are equal to the currents at the edges of the depletion region, which we

have already determined above. So the values of the electron and hole currents

throughout the depletion region are given as the known constants:

Jn(xp) = −qDnnp0
Ln

(eVA/VT − 1) (−xn ≤ x ≤ xp) (9.36)

Jp(−xn) = −qDppn0

Lp
(eVA/VT − 1) (−xn ≤ x ≤ xp) (9.37)

Furthermore, since the current components are constant in the depletion re-

gion, we also have Jn(xp) = Jn(−xn) and Jp(−xn) = Jp(xp). See Figure 9.3 to get

a picture of the constant currents in the depletion region.

Total Diode Current

Using Kirchoff’s Current Law (which is also a form of the continuity equation),

we know that the total current JTot in the PN junction must constant. Furthermore

we also know that the total current at any point is the sum of the electron current

and the hole current:

JTot = Jn(x) + Jp(x) = constant (9.38)

We know the total electron current and the total hole current at every point in the

depletion region. So, if we add the depletion region currents given by equations

(9.36) and (9.37) we will get the total current density:

JTot = Jn(xp) + Jp(−xn) (9.39)

JTot =

[
qDppn0

Lp
+
qDnnp0
Ln

]
(eVA/VT − 1) (9.40)

or

JTot = J0(eVA/VT − 1) (9.41)

where

J0 =

[
qDpn

2
i

NDLp
+
qDnn

2
i

NALn

]
(9.42)
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Figure 9.3: The electron, hole and total currents throughout the PN junction under

forward bias.
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Where we have used np0 =
n2
i

NA
and pn0 =

n2
i

ND
. In our equation for total current

density the negative sign has been left off because we are mainly interested in mag-

nitude of the current.

Recall the JTot is actually the current density, so in order to get the current,

we need to multiply by the cross sectional area of the diode or Io = AJo so that we

obtain:

ID = I0(eVA/VT − 1) (9.43)

Equation (9.43) is called the Diode Equation which we presented in the beginning

of this chapter. Here we have derived the diode equation, which is one of the most

fundamental equations in solid state electronics.
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Example 9.2:

If the N-side of a Silicon PN junction is doped with 1017/cm3 donor phospho-

rous atoms, and the P-side of the junction is doped with 1016/cm3 acceptor

boron atoms, calculate the total current in the diode at a forward bias of

VA = 0.6V . Take the cross sectional area to be AC = (100um)2. Also, what

percentage of the total current across the junction at x = 0 is due to electron

current and hole current, respectively?

In order to evaluate the diode current equation we need to find values for the

diffusion coefficients Dn and Dp and diffusion lengths Ln and Lp.

Dn = µn
KT

q
= 1400cm2/V s · 0.026V = 36cm2/V s

Dp = µp
KT

q
= 450cm2/V s · 0.026V = 12cm2/V s

Ln =
√
Dnτn =

√
36cm2/V s · 4× 10−6s = 120um

Lp =
√
Dpτp =

√
12cm2/V s · 2× 10−6s = 49um

Plugging these values into the diode current equation:

ID = ACqn
2
i

(
Dp

NDLp
+

Dn

NALn

)(
exp

(
VA
VT

)
− 1

)
= 5.5× 10−6A

To find the percentage of the current components at x = 0, we use the

constant value of Jn or Jp inside the depletion region. In this case, we’ll use

the equation for holes, but either equation could be used.

Because the current components inside the depletion region are con-

stant due to our assumption that there is no generation or recombination

here:

Jp(0) = Jp(−xn) =
qDpn

2
i

NDLp
(eVA/VT − 1) = 4.13× 10−3A/cm2

Taking the ratio of the hole current to the total gives us the hole current

fraction:

p% =
41.3A/m2 · (100um)2

5.5× 10−6A
= 7.5%

n% = 100%− p% = 92.5%

Majority Carrier Currents

While we have found the total diode current and the minority carrier currents,
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we can also now find the majority carrier currents. Since the total current is con-

stant, and we know the minority carrier current in each region, we can just subtract

the minority current from the total current to get the majority carrier current. In

other words, the majority carrier or electron current density in the N-side is:

Jnn(x) = JTot − Jpn(x) (9.44)

and the hole current density in the P-side is:

Jpp(x) = JTot − Jnp(x) (9.45)

Where JTot, Jpn(x) and Jnp(x) are given by equations (9.41), (9.33) and (9.30),

respectively. Figure 9.3 illustrates the majority and minority currents throughout

the forward biased PN junction.

Section Summary

In this section we derived the diode equation which is one of the most im-

portant parts of semiconductor device physics. The main result indicates that the

current in forward bias is exponentially dependent on the applied voltage VA. Fur-

thermore, if we look at equation (9.40), we see that, in addition to the applied

voltage, the current is given by material parameters: Diffusivity (Dn, Dp), Diffu-

sion Lengths (Ln, Lp), intrinsic carrier concentration ni, thermal voltage VT = KT
q

,

as well as the doping concentrations NA and ND. Note, electronic devices are en-

gineered by carefully choosing the geometry and doping concentrations while using

equations like (9.40) as guidelines.
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Example 9.3:

If the N-side of a silicon PN junction is doped with 1017/cm3 phosphorous

atoms, and the P-side is doped with 1017/cm3 boron atoms, calculate the

built-in potential. What are are the electron and hole concentrations at the

edges of the quasi-neutral regions −xn and xp in equilibrium?

φo = VT ln
NDNA

n2
i

= 0.026 ln
10171017

(1010)2
= 0.84V

n(−xn) = ND = 1017/cm3

n(xp) =
n2
i

NA

=
(1010)2

1017
= 103/cm3

p(xp) = NA = 1017/cm3

p(−xn) =
n2
i

ND

=
(1010)2

1017
= 103/cm3

Now, suppose a positive voltage of VA = 0.6V is applied to between the ends

of the junction with the positive terminal connected to the P-side so it is

forward biased. What are the electron and hole concentrations now at the

edges of the quasi-neutral regions?

n(xp) = n(−xn)e(−φo+VA)/VT = NDe
(−0.84+0.60)/0.026 = 9.8× 1012/cm3

p(−xn) = p(xp)e
(−φo+VA)/VT = NAe

(−0.84+0.60)/0.026 = 9.8× 1012/cm3

9.5 Diode Capacitances

Associated with a PN junction are also intrinsic capacitors which limit the

speed at which a diode can respond. The capacitors are in parallel with the ideal

diode, and are illustrated in Figure 9.4. As shown in the figure, there are two basic

types of capacitances in a PN junction:

1. Cj : Depletion region or junction capacitance.

2. CDiff : Diffusion capacitance: mainly in forward bias. The diffusion capaci-

tance can be further identified as a diffusion capacitance due to excess electrons

(CDiffn) or a diffusion capacitance due to excess holes (CDiffp).

In general, we will be looking for the small signal capacitance which is given by:

C =

∣∣∣∣dQn

dVA

∣∣∣∣ =

∣∣∣∣dQp

dVA

∣∣∣∣ Farads/area (9.46)
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Figure 9.4: The intrinsic capacitors that are present in a PN junction diode. There

are two types of capacitors: the junction capacitance and the diffusion capacitances.

There is an N-type diffusion capacitor and a P-type diffusion capacitor.
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Figure 9.5: A cartoon-like drawing illustrates the sources of the junction and dif-

fusion capacitances by placing the capacitor circuit symbol over the regions from

which the capacitances arise.

Junction Capacitance

The junction capacitance comes from the charge in the depletion region as

illustrated in Figure 9.5.The positive charge in the depletion region is: Qn = qNDxn.

We derive junction capacitance as follows:

Cj =

∣∣∣∣dQn

dVA

∣∣∣∣ =

∣∣∣∣dQn

dxn

dxn
dVA

∣∣∣∣ =

∣∣∣∣qND
dxn
dVA

∣∣∣∣ (9.47)

dxn
dVA

= −

√
ε

2q(φ0 − VA)
[

NA

ND(NA +ND)
] (9.48)

Cj =

√
qε

2(φ0 − VA)
[

NDNA

(NA +ND)
] (9.49)

Diffusion Capacitance:

Since it takes time to set up the excess carrier concentrations ∆n and ∆p after

applying a forward bias, this gives rise to a charge and a capacitance:

CDiffn =
dQDiffn

dVA
(9.50)

174



Neil Goldsman and Christopher Darmody April 29, 2020

The charge associated with the diffusion capacitance due to electrons is the from

the total excess electron concentration on the P-side during forward bias. This

total charge is obtained from integrating the excess minority electron concentration

throughout the quasi-neutral P-side.

QDiffn = q

∫ ∞
xp

∆n(x)dx (9.51)

Substituting equation (9.28) for ∆n(x) and integrating yields:

QDiffn = Lnqnp0(eVA/VT − 1) (9.52)

Now differentiating with respect to the applied voltage gives the diffusion capaci-

tance:

CDiffn =
dQDiffn

dVA
=
Lnqnp0
VT

(eVA/VT ) (9.53)

A similar process for excess minority holes gives:

CDiffp =
dQdDiffp

dVA
=
Lpqpn0

VT
(eVA/VT ) (9.54)

It is important to note that these capacitances are in units of Farads per unit area.

To get the capacitor value for a specific diode, one has to multiply by the cross

sectional area of the device. Figure 9.5 illustrates the source of the junction and

diffusion capacitances by placing the capacitance circuit symbol over the related

regions in the PN junction.

9.6 Problems

9.1 What is meant by the diffusion lengths Ln and Lp? Using the Einstein relation

and the values in Table C.2, calculate typical diffusion lengths for electrons

and holes in silicon.

9.2 A Silicon PN junction is doped with ND = 5× 1016cm−3 and NA = 1017cm−3,

and has a cross-section area of 100um × 100um. Assume that the diode can

be considered to be infinitely long. Obtain material parameters from Table

C.2 A forward bias of 0.3V is applied to the diode at 300◦K.

(a) Calculate and graph the minority carrier concentration as a function of

position for this device.

(b) Calculate and graph the electron and hole currents as a function of posi-

tion throughout the entire device, as well as the total current (Give In(x)

and Ip(x) everywhere.)
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(c) Graph the diode current versus applied voltage for this diode for −1.0V <

VA < 0.7V .

9.3 (a) Calculate the built in potential for the diode in the previous problem.

(b) Now, without doing any calculations, decide what is larger, xn or xp.

Explain how you arrived at your answer.

9.4 Starting from the current and continuity equations for holes, derive the equa-

tion for excess minority hole concentration and minority carrier hole current

for a PN junction under bias.

9.5 What are the boundary conditions ∆n(xp) and ∆p(−xn) for the excess minor-

ity carrier concentrations used when solving the current continuity equations

to obtain the excess minority carrier concentrations: ∆n(x) and ∆p(x)? Ex-

plain qualitatively how they come about and derive them algebraically.

9.6 Explain qualitatively what is meant by the depletion approximation. Describe

the different regions of the PN junction under this approximate method of

viewing the device.

9.7 A Silicon PN junction is doped with ND = 1× 1017cm−3 and NA = 1017cm−3,

and has a cross-section area of 100um×100um. Assume that the diode can be

considered to be infinitely long. Obtain material parameters from Table C.2.

Graph the diode current for VA between -1.0V and 0.7V at T = 27oC. Graph

the diode current for the same voltages again, but this time for T = 200oC.

9.8 A clever device engineer decided to add strain the Silicon lattice which slightly

changed the spacing between atoms. This caused the curvature of the valence

band to double. How would this affect the diode current in the preceding

problem. Provide a qualitative explanation and a numerical value.

9.9 If the diode in problem (2) above has a reverse bias of VA = −1V :

(a) Calculate the capacitance. Note that under reverse bias only the junction

capacitance is important.

(b) Sketch the small signal frequency response of this diode if it is driven by

a small AC signal with source resistance of 50Ω while also under this -1V

reverse bias. (Ignore any diode resistance.)

9.10 If the diode in problem (2) above has a forward bias of VA = 0.3V : Calculate

the total capacitance of this diode at the given bias. (Note that under forward

bias, the diode will have both junction and diffusion capacitance.)
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Chapter 10

BJT: Bipolar Junction Transistor

10.1 Introduction

The bipolar junction transistor (BJT) is a three-terminal device which is

mainly configured with external resistors and capacitors to be used as an amplifier

in analog electronics. A BJT is typically described as a current-controlled current

source where the current flowing between the emitter (E) and collector (C) termi-

nals is controlled by the much smaller current flowing into or out of the base (B)

terminal. In addition, it can also be described as a voltage controlled current source

where the the current flowing between the emitter (E) and collector (C) terminals

is controlled by the voltage applied between the base (B) and emitter (E) terminals.

Since a linear variation in the B-E voltage gives rise to an exponential variation in

the C-E current, the BJT has applications as a high gain amplifier.

The BJT exists in two varieties: NPN and PNP. An NPN BJT is composed of

an N-type emitter, connected to the P-type base, which in turn is connected to an

N-type collector. The emitter-base junction is an NP junction and the base-collector

junction is a PN junction.

For the NPN BJT, the N-type doping in the emitter is typically a hundred

times larger than the P-type doping in the base. Furthermore, the width of the

base is typically very narrow compared to the recombination length for electrons

and holes for reasons that will be explained later in the chapter.
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10.2 BJT Modes of Operation and Basic Current

Relationships

The BJT has four basic modes of operation:

1. Forward Active (Analog Applications)

2. Reverse Active (Not typically used)

3. Saturation (Digital Applications)

4. Cutoff (Digital Applications)

10.2.1 Forward Active Mode Basic Current Relations

The Forward Active Mode is by far the most commonly used of BJTs. It is

typically used to construct voltage amplifiers. We will therefore focus on this mode

of operation in this text. For a BJT to be biased in the forward active mode, the

terminal voltages have to have the following relationships:

NPN: VC > VB > VE
PNP: VE > VB > VC

Writing the KCL for currents in the BJT (See Fig. 10.1):

IC + IB = IE (10.1)

We here define β, the current gain:

IC = βIB (10.2)

where the value of β varies, but it is typically greater than 100:

β > 100 (10.3)

The value of β depends on the structural design of the BJT. We will show how

to calculate it later on in the chapter. Using Eqn. 10.2 in Eqn. 10.1 we can rewrite:

(β + 1)
IC
β

= IE (10.4)

⇒ β

β + 1
IE = IC (10.5)

Defining α as the ratio

α =
β

β + 1
(10.6)
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Figure 10.1: A BJT is a three terminal device with emitter, collector and base

terminals. An NPN BJT has an n-type collector and emitter, and a thin, lightly

doped p-type layer as the base in between. A PNP BJT has a p-type collector and

emitter, and a thin, lightly doped n-type layer forms the base.
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Figure 10.2: NPN BJT biased in the forward active mode of operation. On the left

is the circuit symbol and on the right is an illustration of the BJT structure with

external forward bias connections.

we obtain

αIE = IC . (10.7)

We can also write IE in terms of IB and β:

βIB + IB = IE (10.8)

⇒ (β + 1)IB = IE (10.9)

Typically,

0.99 < α < 1.00 (10.10)

The basic IV characteristics under normal operation are shown in Figures

10.3 and 10.4. In forward active mode, we often think of the BJT current IC as

being independent of VCE because these current lines are approximately flat. This,

however, is an idealized situation and in reality, there is a slight increase in the

current as a function of VCE in the forward action region. Increasing either the base

current IB or the base-emitter bias voltage VBE will increase the current through

the collector.

10.3 Physical BJT Operation in Forward Active

Forward active is the standard mode of operation for BJTs when they are used

in analog electronics applications (amplifiers etc.). For forward-active operation, the
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Figure 10.3: BJT IV curves with linearly increasing Base Current IB from 5nA to

20nA
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Figure 10.4: BJT IV curves with linearly increasing Base Voltage VBE from 0.4V to

0.5V
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Figure 10.5: Flow of electrons and holes in Forward Biased NPN BJT.

emitter-base junction is forward-biased and the base-collector junction is reverse-

biased, as shown in Figure 10.2 for an NPN transistor. To understand BJT operation

and how current gain β comes about it is important to keep in mind the following

two physical characteristics of BJT structure:

1. Emitter and Base Doping: The magnitude of donor doping in the N-type

emitter is much larger than the magnitude of the acceptor doping in the P-

type base. (This refers to NPN configuration.) (In general doping in emitter

is much much larger than doping in base.)

2. Base Width: The base is very narrow so that the recombination length for

electrons Ln is much larger than the base width or (WB << Ln).

10.3.1 Electron and Hole Flow and Currents for NPN BJT

In an NPN BJT, under forward bias conditions, electrons enter the base from

the emitter, and then flow across the base due to diffusion. However, before most

of these electrons have the time to recombine in the base, they reach the end of

the base and are then pulled into the collector by the large electric field, from the

reverse biased collector base junction, that points from the collector into the base.

In this way electrons flow from the emitter to the collector and give rise to collector

current.

Since the base-emitter junction is forward biased, we also have holes diffusing

from the base into the emitter. This gives rise to one of the components of base

current. However, since the emitter is much more highly doped than the base, the
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Figure 10.6: Current components in the NPN BJT.

flow of holes into the emitter is much much less than the flow of electrons into the

base. Thus, the magnitude of the current from the base into the emitter is much less

than the total emitter current and thus also much less than the collector current.

We describe this again in a little more detail below.

The flow of electrons and holes, and the resulting electron and hole current

components are illustrated in Figures 10.5 and 10.6, respectively.

Emitter Current: IE has three components, which are also the sum of the collector

and base currents.

IE = IE1 + IE2 + IE3 (10.11)

Which can also be written as:

IE = IC + IB1 + IB2 (10.12)

• IE1 = IC which is composed of electrons flowing from emitter into base and

then to collector.

• IE2 is composed of electrons flowing into base that then recombine with holes

in base, (IE2 = IB1).

• IE3 is composed of holes flowing from base to emitter due to forward biased

emitter-base junction (IE3 = IB2).

Base Currents IB1 and IB2:

Base Current IB has two components:

IB = IB1 + IB2 (10.13)
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• IB1 is due to holes in the base that recombine with electrons that have diffused

into the base from the emitter.

• IB2 is due to holes that diffuse from the base into the emitter across the forward

biased base emitter junction.

Since the emitter is much more highly doped than the base, most of the current

across the base-emitter junction is due to the electrons flowing from the emitter to

the base, not from the holes flowing from the base to the emitter. Furthermore, since

the base is so short, very few electrons and holes recombine there. In summary, since

the base is doped at a very low level compared to the emitter, and there is very little

recombination in the base, the total base current is very small compared to the total

emitter current. So the current ratio IE/IB is very large (IE/IB = (β + 1)).

Collector Current: IC
The collector current is composed of electrons that have flowed from the N-type

emitter, through the base and then into the collector.

• IC = IE1

Since the Base-Emitter junction is forward biased, electrons diffuse from the

emitter into the base due to standard PN junction operation. However, since the

base is very narrow, most of the electrons do not recombine with holes in the P-

type base, but instead diffuse across the base toward the collector. They are then

swept into the collector by the large electric field in the reverse-biased base-collector

junction. Once these electrons are in the collector, they will eventually exit the

collector wire contact and be manifested as the collector current.

10.4 Derivation of BJT Current - Voltage Rela-

tionships

To derive the Current - Voltage (I-V) relationships for a BJT, we will utilize an

approach that is very similar to the one we followed for a PN junction. This makes

sense since a BJT is essentially composed of two PN junctions. This approach uses

the semiconductor equations, especially the current and continuity equations, to

determine the carrier concentrations. We then use the carrier concentrations to

obtain the current. We will start by deriving the expression for the collector current

as a function of the base-emitter voltage.
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10.4.1 Collector Current

The collector current IC is composed of electrons that diffuse from the emitter,

across the forward biased base-emitter junction, which then continue to diffuse across

the base region, and are then pulled into the collector by the strong electric field

across the reverse biased base-collector junction. To quantify this current, we will

start by solving the current and continuity equations for electrons (minority carriers)

in the P-type base.

∂np
∂t

=
1

q

∂Jn
∂x

+Gn −Rn (10.14)

Jn = −qnpµn
∂φ

∂x
+ qDn

∂n

∂x
(10.15)

where np is the minority carrier concentration in the base.

We can now apply the conditions in the base to simplify the above conti-

nuity and current equations. First of all, we will assume steady state or DC op-

eration so ∂np
∂t

= 0. Also, since the base is very thin, we will neglect the gen-

eration/recombination term so Gn − Rn = 0. Finally, since the P-type base is

quasi-neutral, the electric field is very small so we will neglect the drift component

of the current. The current and continuity equations are thus greatly simplified to

the following:

0 =
1

q

∂Jn
∂x

(10.16)

Jn = qDn
∂np
∂x

(10.17)

Recall from our derivation of the diode current that the electron concentration

can be rewritten as an excess component plus an equilibrium component (Equation

9.17).

np(x) = ∆np(x) + npo (10.18)

The concentration gradient in the electron current equation now only oper-

ates on the position-dependent excess component ∆np(x) because the equilibrium

component has a derivative of 0:

Jn = qDn
∂∆np
∂x

(10.19)

We now have two equations and two unknowns (Jn and ∆np).

Minority Carrier Concentration np in Base: Now substituting for Jn gives the

following equation for np only:
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Figure 10.7: Cross-Section of BJT showing coordinates at boundaries of base.

d2∆np(x)

dx2
= 0 (10.20)

Integrating two times gives:

d∆np(x)

dx
= A (10.21)

∆np(x) = Ax+B (10.22)

Boundary Conditions: The solution to the continuity equation indicates that the

electron concentration distribution in the base varies linearly as they diffuse across

the base region. To obtain the values of the constants A and B we need to apply

boundary conditions in a way that is similar to what we did for the PN junction.

First of all, we set up a coordinate system as shown in Figure 10.7. Let x = 0

at the edge base-emitter depletion region, and we let x = WB at the edge of the

base-collector depletion region.

BC 1: at x = 0: At the base-edge of the emitter-base junction, the injected

electron concentration depends exponentially on the base-emitter bias, and can be

calculated with the same method as was used while deriving currents for a forward-

biased PN-junction transistor (see equation (9.25) from PN junction chapter). Thus,

the boundary condition at x = 0 is:

np(0) = npo exp(
VBE
VT

) (10.23)

∆np(0) = npo

(
exp(

VBE
VT

)− 1

)
(10.24)
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Substituting for this value for x = 0 in equation (10.22) gives us the value of the

constant B:

∆np(0) = A · 0 +B = B = npo

(
exp(

VBE
VT

)− 1

)
(10.25)

BC 2: at x = WB: On the collector side, the electrons which have moved to the

junction edge are immediately swept away by the depletion region electric field, and

therefore the excess minority concentration at this edge may be taken as zero or:

∆np(WB) = 0 (10.26)

Substituting this value into equation (10.22), and the value of B obtained above,

gives the following for the constant A:

∆np(WB) = 0 = AWB +B (10.27)

Or

A =
−B
WB

=
−∆np(0)

WB

= − npo
WB

exp(
VBE
VT

) (10.28)

Substituting for A and B into equation (10.22) gives the following expression for

the excess electron concentration in the base in forward active mode:

∆np(x) = npo

(
exp(

VBE
VT

)− 1

)
(1− x

WB

) (10.29)

Therefore the excess electron concentration in the base decays linearly from the

emitter junction edge to the collector junction edge - valid when the base is thin

compared to the diffusion length. Figure 10.8 shows the calculated concentration of

electrons in the base during forward active. The figure also shows the hole concen-

trations in the emitter and collector for forward active.

Current:

Now that we have the minority carrier concentration in the base as a function

of position, we can substitute it into the current equation to get the electron current

density in the base. So, substituting ∆np(x) from equation (10.29) into equation

(10.19), and then taking the derivative as indicated, we get the following expression

for the electron current density in the base, which is equal to the current density of

electrons that flows into the collector.

Jn = −qDn

WB

npo

(
exp(

VBE
VT

)− 1

)
(10.30)

The collector current can then be found by using this current density. Assum-

ing a cross-sectional area of Ac for the transistor and using npo = n2
i /NA, we obtain

the following expression for the Collector Current:
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Figure 10.8: Cross-Section of BJT showing minority carrier concentrations during

forward active operation.

IC =
qAcDnn

2
i

WBNA

(
exp(

VBE
VT

)− 1

)
(10.31)

We will assume the BJT is operating in forward active mode, meaning exp(VBE
VT

)�
1 so a more tractable form of the equation is obtained:

IC =
qAcDnn

2
i

WBNA

exp(
VBE
VT

) (10.32)

Defining the transistor saturation current IC0 as a constant dependent on the

transistor structural elements, such that IC0 = qAcDnnpo/WB,

IC = IC0 exp(
VBE
VT

) (10.33)
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Example 10.1:

A silicon BJT has the following doping profile and transport parameters:

Emitter Doping is ND = 1019cm−3; Base doping is NA = 1017cm−3; Collector

Doping is ND = 1016cm−3; Base Width = 1.0µm; Electron lifetime in base

is τb = 10−6s; Hole lifetime in emitter is τp = 10−7s; Electron diffusivity

Dn = 20cm2/s; Hole diffusivity Dp = 10cm2/s and BJT cross-sectional area

100µm× 100µm.

If the base-emitter voltage VBE = 0.6V , and the base-collector junction is

reverse biased, calculate the following:

1. The electron concentration in the base as a function of position.

Recall, from the solution of the current and continuity equations we know that

the excess electron concentration drops approximately linearly across the base:

∆npB(x) = npo

(
exp(

VBE
VT

)− 1

)(
1− x

WB

)
And the total electron concentration becomes:

npB(x) =
(1010)2

(1017)

[(
exp(

0.6

0.026
)− 1

)(
1− x

1um

)
+ 1

]
npB(x) = 1.05× 1013

(
1− x

1um

)

2. The total number of electrons in the base.

Integrating npB(x) from 0 to WB and multiplying by the BJT area A:

A ·
∫ WB

0

npB(x)dx = A ·
∫ WB

0

n2
i

NA

[(
exp(

VBE
VT

)− 1

)(
1− x

WB

)
+ 1

]
dx

= A · 5.26× 1012cm−3 ·WB = 5.26× 104electrons

3. The collector current.

IC =
qAcDnn

2
i

WBNA

(
exp(

VBE
VT

)− 1

)
IC =

1.6× 10−19C · (100um)2 · 20cm2/s · (1010cm−3)2

1um · (1017cm−3)

(
exp(

0.6

0.026
)− 1

)
IC = 3.4× 10−5A
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10.4.2 Base Currents

The base current IB has two components: IB = IB1 + IB2.

Base Current Component IB1

As discussed previously, IB1 is due to electron/hole recombination in the base,

and depends on the amount of minority carriers in this region. To get the total

amount of current due to recombination of electrons and holes in the narrow base

we again start with the continuity equation.

∂p

∂t
= − 1

q

∂Jp
∂x

+Gp −Rp (10.34)

As we did previously, we look only for steady state solutions, so ∂p
∂t

= 0. Just as

we did for the PN junction, we approximate the generation/recombination term as

follows:

Gp −Rp ≈ −
p(x)− po

τb
= −∆p(x)

τb
(10.35)

Where τb is the carrier recombination lifetime in the base, and p is the hole concen-

tration in the base during forward active operation, and po is the equilibrium hole

concentration. The continuity equation for holes in the base then becomes:

0 = − 1

q

∂Jp
∂x
− ∆p(x)

τb
(10.36)

Now, let’s separate variables and integrate over the base to obtain the total current

due to recombination: ∫ WB

0

dJp = −q
∫ WB

0

∆p(x)

τb
dx (10.37)

Evaluating the left hand side says that the total current density due to recombination

in the base is:

Jp = −q
∫ WB

0

∆p(x)

τb
dx (10.38)

Observing equation (10.38) we have one equation and two unknowns (Jp and p).

This difficulty can be overcome by realizing that the recombination rate for holes

in the base must be the same as the recombination rate for electrons in the base

since electrons recombine with holes. Furthermore, we can readily calculate the

recombination rate for electrons because we have already calculated the electron

concentration in the previous section as given by equation (10.29). In other words:

∆p(x)

τb
=

∆np(x)

τb
=
npo

(
exp(VBE

VT
)− 1

)
(1− x

WB
)

τb
(10.39)
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Again, because the BJT is operating in forward active, we can neglect the ‘−1’ term

in equation 10.39. Now, substituting the right hand side of the above equation into

(10.38) gives:

Jp = −q
∫ WB

0

npo exp(VBE
VT

)(1− x
WB

)

τb
dx (10.40)

Performing the integration and multiplying by the cross-sectional area of the

base Ac gives the following expression for the base current component due to recom-

bination of electrons, injected from the emitter, with holes in the base:

IB1 =
1

2

qAcnpoWB

τb
exp(

VBE
VT

) (10.41)

where τb is the recombination rate in the base.
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Example 10.2:

For the BJT and bias conditions in Example 10.1, calculate the following:

1) The electron current from the emitter that is due to recombination in the

base.

IE2 = IB1 =
1

2

qAcnpoWB

τb
exp(

VBE
VT

)

IB1 =
1.6× 10−19C · (100um)2 · (1010cm−3)2 · 1um

2 · (1017cm−3) · (10−6s)
exp(

0.6

0.026
)

IB1 = 8.4× 10−9A

2) The emitter current component, and collector current that is due to elec-

trons from the emitter that then diffuse through the narrow base and get

swept into the collector by the reverse biased base-collector junction.

IE1 = IC =
qAcDnn

2
i

WBNA

exp(
VBE
VT

)

IC =
1.6× 10−19C · (100um)2 · 20cm2/s · (1010cm−3)2

(1um) · (1017cm−3)
exp(

0.6

0.026
)

IC = 3.4× 10−5A

3) The hole current that enters the base electrode due to recombination with

electrons.

An equal amount of hole current enters the base from the external connection

as there is electron current entering from the emitter because these currents

are due to recombination of electrons with holes.

IB1 = 8.4× 10−9A

4) The ratio components of the emitter current that are due to electrons from

the emitter that enter the base to the component of hole current in the base

that is due to recombination with electrons.
IE1 + IE2

IB1

=
IC + IB1

IB1

=
3.4× 10−5 + 8.4× 10−9

8.4× 10−9
= 4049

Base Current Component IB2

IB2 is due to holes that diffused from the base into the emitter across the

forward biased base-emitter junction. This current is totally analogous to the hole

current in a PN junction that diffuses from the P-side into the N-side under forward

bias. Recall from the previous chapter that this current was obtain by solving the
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current and continuity equations for minority carriers. We will not go through this

entire lengthy derivation again, but simply use the results from the PN junction

described in the previous chapter. So, as obtained in Chapter 9, the current due to

holes at the junction edge is given by equation (9.37):

Jp(−xn) = −qDppn0

Lp
(eVA/VT − 1) (10.42)

Now, substituting VBE for the applied voltage, neglecting ‘−1’ term compared to

the exponential, and multiplying by the transistor cross-sectional area Ac, we obtain

the component of the base current due to holes diffusing from the P-base to the N-

emitter:

IB2 =
qAcDppn0

Lp
eVBE/VT (10.43)

where Dp and Lp are hole diffusion constant and recombination length in the

n-type emitter, respectively.

Example 10.3:

For the BJT and bias conditions in Examples 10.1 and 10.2, calculate the

following:

1) The base current that is due to hole diffusion from the base into the emitter.

IE2 = IB2 =
qAcDppn0

Lp
exp(

VBE
VT

)

IB2 =
1.6× 10−19C · (100um)2 · 10cm2/s · (1010cm−3)2

(1019cm−3) · (
√

10cm2/s · 10−7s)
exp(

0.6

0.026
)

IB2 = 1.7× 10−8A

2) The ratio of the total emitter current to the component of base current

that is due to hole current diffusing from the base into the emitter.

IE1 + IE2 + IE3

IB2

=
IC + IB1 + IB2

IB2

=
3.4× 10−5 + 8.4× 10−9 + 1.7× 10−8

1.7× 10−8

IC + IB1 + IB2

IB2

= 2001

Total Base Current

The total base current IB can be found by summing the two components up.

IB = IB1 + IB2 =

[
1

2

qAWB

τb

n2
i

NA

+
qADp

Lp

n2
i

ND

]
exp(

VBE
VT

) (10.44)
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Where the values for the minority carrier equilibrium concentrations have be written

in terms of the doping: np0 = n2
i /NA and pn0 = n2

i /ND. For compactness, we will

typically write

IB = IB0 exp(
VBE
VT

) (10.45)

where

IB0 =

[
1

2

qAWB

τb

n2
i

NA

+
qADp

Lp

n2
i

ND

]
(10.46)

10.4.3 Current Gain β

Since the result for total base current IB depends directly on exp(VBE/VT ),

just like IC does, the two may be stated in terms of each other. This leads us to a

definition of β, the current gain, given earlier in the chapter as IC/IB. Substituting

for IC from equation (10.32) and IB from equation (10.44), we obtain the following

expression for β:

β =
IC
IB

(10.47)

β =

qADnnpo
WB

exp(VBE
VT

)

(1
2

qAnpoWB

τb
+ qADp

Lp

n2
i

ND
) exp(VBE

VT
)

(10.48)

or

β =
1

W 2
B

2τbDn
+ Dp

Dn

WB

Lp

NA
ND

(10.49)

Since there is very little base current compared to the electron current that

travels from the emitter to the collector, the ratio IC/IB is large. Device design

decisions to optimize β include keeping the base region very narrow and doping the

emitter heavily compared to the base. Remember, ND in the equation for β is the

emitter doping.
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Example 10.4:

For the BJT and bias conditions in Examples 10.1-10.3, calculate the value of

β by taking the ratio of the collector electron current to the total base hole

current.

The base current is comprised of two components: IB1 which is due to holes

recombining with electrons in the base, and IB2 which is due to the forward

biased emitter-base junction.

IB1 = 1
2

qAcnpoWB

τb
exp(VBE

VT
) = 8.4× 10−9A

IB2 = qAcDppn0
Lp

exp(VBE
VT

) = 1.7× 10−8A

IC =
qAcDnn2

i

WBNA
exp(VBE

VT
) = 3.4× 10−5A

β = IC
IB1+IB2

= 3.4×10−5A
8.4×10−9A+1.7×10−8A

= 1339

You should get the same value for beta (within rounding error) by plugging

in the appropriate values directly into Equation 10.49.

10.5 BJT I-V Characteristics

We can now describe the current-voltage characteristics of the BJT in terms

of IC vs VCE, with VBE as the parameter. Note that we can rewrite VCE = VCB +

VBE We have described so far that

IC = βIB (10.50)

IE = (β + 1)IB (10.51)

IB = IB0e
VBE/VT (10.52)

IC ideally does not depend on VCE. It can be described as either a voltage

or a current dependent current source, which is possible since it is assumed to be

not load-dependent. Which is to say, whatever load is attached to the collector, the

current profile remains flat.

10.5.1 Early Voltage

As a matter of fact, this idea of a perfectly-horizontal IC vs VCE relationship,

with IC as an ideal dependent source, is an idealized description. IC actually has a

slight slope with respect to VCE. As the collector bias is raised with respect to the
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base, causing the base-collector junction to be deeper in reverse-bias, the depletion

region between the base and the collector gets wider. This effectively causes the

base width WB to shrink, which increases the current flow. This phenomenon is

called the Early Effect.

Recall the ideal description for IC :

IC =
AcqDnn

2
i

WBNA

eVBE/VT (10.53)

Including the effects of the Early voltage VA:

IC =
AcqDnn

2
i

WBNA

eVBE/VT [1 +
VCE
VA

] (10.54)

VA is called the Early Voltage. It is a measure of the how non-ideal the BJT is

in acting as a current source. VA is typically very large compared to VCE. Therefore

the Early effect does not have a major impact, but it is important nonetheless, as

it gives rise to the small-signal parameter r0, the output resistance.

The small dependence of collector current IC on VCE, the Early Effect and the

Early Voltage are shown in Figure 10.9.

10.6 Small Signal Parameters

When we use BJTs to construct amplifiers, we typically make circuits that

amplify small variations of input signals to obtain larger variations of signals at the

output. To quantify these variations, we typically define small signal parameters

for BJTs. These small signal parameters are the first order terms in Taylor series

expansions of the BJT current-voltage relations when currents and/or voltages are

varied.

The small (first order) variation in collector current IC in response to small

variations in VBE and VCE are as follows:

∆IC =
∂IC
∂VBE

∆VBE +
∂IC
∂VCE

∆VCE (10.55)

Now if we define the small signal transconductance as: gm = ∂IC
∂VBE

,

And the small signal output conductance as: go = ∂IC
∂VC

,

We can rewrite equation (10.55) as follows:

∆IC = gm∆VBE + go∆VCE (10.56)

It is often more convenient to express the variation of the collector current that

results from its dependence on VCE as an output resistance. So we define the output

resistance parameter ro as the reciprocal of the output conductance:

ro = 1/go (10.57)
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Figure 10.9: A. (Top left) Ideal IV curves: The current value is determined by

VBE and remains constant with changing VCE. B. (Top right) Actual IV curves:

The current increases with increasing VCE. This is caused by the Early effect, as

described in the text. C. The BJT cross-section in the forward active region. WB1

is the base region width for a given VCE. D. Higher VCE causes the base-collector

junction depletion region to widen and the effective base width to decrease, to

WB2 << WB1. This results in an increase in the collector current with higher VCE,

which is the Early effect. E: All the IV curves converge to VA, called the Early

Voltage. 197
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Figure 10.10: Basic small signal model for BJT.

And equation (10.55) can now be written as:

∆IC = gm∆VBE +
1

ro
∆VCE (10.58)

We also typically want to calculate the variation in the base current that results

from a small variation in the base-emitter voltage. Again applying Taylor series to

first order gives:

∆IB =
∂IB
∂VBE

∆VBE (10.59)

Now we define a small signal input conductance as gπ = ∂IB
∂VBE

. And it is often

convenient to write the conductance in terms of a resistance such that 1
gπ

= rπ. We

can then write the change in base current due to a small change in base-emitter

voltage as:

∆IB =
1

rπ
∆VBE (10.60)

We can now use these relationships to construct the small signal equivalent circuit for

a BJT amplifier. Figure 10.10 shows a standard BJT small signal model equivalent

circuit obtained using the methods described in this section.

10.7 BJT Capacitances

Associated with the BJT are intrinsic capacitors that play a very large role in

determining the operation speed of a BJT. The intrinsic capacitors affect the BJT

frequency response and switching speed. The intrinsic capacitors are analogous to
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Figure 10.11: Basic small signal model for BJT.

those associated with the PN junctions we studied previously. In the small signal

model there are typically two major capacitors: Cπ and Cµ, which are associated

with Base-Emitter junction and the Base-Collector junction, respectively. The ca-

pacitance Cπ is composed of the parallel combination of the Base-Emitter junction

capacitance and the diffusion capacitance due to minority charge in the base. Ex-

pressions for these types of capacitors are analogous to those in equations (9.49) and

(9.53), respectively. The capacitor Cµ is due to the depletion region of the reverse

biased Base-Collector junction. It is thus a depletion capacitance and has the form

of equation (9.49).

10.8 Problems

10.1 Sketch and label the cross-sections of an NPN and a PNP BJT.

10.2 Describe in your own words how a BJT operates in forward active mode. Use

words that include drift, diffusion, built-in fields, reverse bias, forward bias,

short base, diffusion length, etc.

10.3 A silicon BJT has the structure and parameters below. Calculate β and α;

Assume forward active operation.

(a) Base Width = 1.0µm

(b) Electron lifetime in base is 1× 10−6s

(c) Base doping is NA = 1017cm−3
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(d) Emitter Doping is ND = 2× 1019cm−3

(e) Collector Doping is ND = 1018cm−3

(f) Electron diffusivity Dn = 20cm2/s

(g) Hole diffusivity Dp = 10cm2/s

(h) BJT cross-sectional area 100µm× 100µm

10.4 For the BJT with parameters above, graph the collector current versus the

collector-emitter voltage for the voltage range 0 < VCE < 5 and three value of

VBE = (0.4, 0.5, 0.6)V .

10.5 For the BJT with the structure given in problem 3, calculate Cπ and Cµ if

VBE = 0.6V and VCE = 2V.

10.6 Describe the key attributes of a BJT design that give rise to a large value of

β.

10.7 By solving the relevant semiconductor equations, derive the current gain β,

and the current components for the base, emitter and collector for a PNP

BJT in forward active mode. (Remember, for PNP, forward active means

VE > VB > VC .)

10.8 By taking the ratio of the sum of the base current components to the sum

of the emitter current components, and using the relationships between the

various components of base and emitter currents, show that IE/IB = β + 1.
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Chapter 11

MOSFET: Metal Oxide

Semiconductor Field Effect

Transistor

11.1 Introduction

The MOSFET is the most common transistor of all. It has both analog and dig-

ital applications. Almost all computer chips have MOSFETs as their basic building

blocks. So MOSFETs can act as digital switches. MOSFETs can also be configured

to operate as analog amplifiers. The MOSFET is usually considered to be a three

terminal device. The three terminals are the gate, source and drain. (The MOSFET

also has a fourth terminal called the body, but the body is usually shorted to the

source or grounded, it thus plays a secondary role so we won’t worry about it too

much in this text.) Although there are many nuances, the general operation is that

a voltage applied to the gate terminal controls the current that flows between the

drain and the source. One of the key features of the MOSFET is the gate oxide.

This is a very thin insulating layer that separates the gate terminal from the rest

of the device. Because of this oxide, when you apply a DC voltage to the gate, no

gate current will flow. Thus the current between the source and the drain is largely

controlled by the electric field that arises due to the gate voltage. This is where the

MOSFET gets its name as a ’field-effect transistor’. This is in contrast to a BJT

where there is a DC base current and a very specific ratio between the base and

collector currents).

In a modern digital CPU chip, there can be as many as a billion MOSFET
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Figure 11.1: Cross Section of N-MOSFET.

transistors. In analog circuits, the number of MOSFETs is much smaller, usually

numbering between ten and one thousand. As you can surmise by the number

of MOSFETs on a computer chip, MOSFETs can be incredibly small. Modern

processing technology has allowed engineers to fabricate MOSFETs with typical

sizes of less than a few tens of nanometers.

11.2 MOSFET Structure and Circuit Symbol

Figure 11.1 shows the physical two-dimensional cross-section of an N-Channel

MOSFET. The figure shows the N-type Source and Drain regions, the P-type Sub-

strate, the thin Silicon-Dioxide layer and the Gate. The thickness of the oxide layer

is only a few nanometers, and is designated as tox. Figure 11.2 shows a cross-section

of a P-Channel MOSFET. As shown in the figure, the doping of the P-Channel

MOSFET is opposite that of the N-Channel device. An important thing to notice

is that there are PN junctions formed between the source and the substrate and the

drain and the substrate. Also, the doping in the source and drain is typically 100 to

1000 times greater than the doping in the substrate. Thus, as shown in the figures,

we designate the source and drains with a (+) sign to indicate that they are highly

doped.

In Figure 11.3 three dimensional illustrations of N and P channel MOSFETs

are shown. The key attribute to take from the 3D figures is the gate width ’W’ and

the gate length L, which are important parameters for setting the device current.

Their circuit symbols and corresponding physical contacts and orientation are

shown in Figure 11.4.
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Figure 11.2: Cross Section of P-MOSFET.

Figure 11.3: 3-Dimensional MOSFET Diagrams

Figure 11.4: N-MOSFET and P-MOSFET Circuit Symbols
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Figure 11.5: MOSFET IV curves with linearly increasing Gate Voltage VGS from
1V to 5V

11.3 Qualitative MOSFET Operation

In this section our discussion will be for N-Channel MOSFETs. A totally anal-

ogous description is applicable to P-Channel MOSFETs, but the voltage polarities

would be opposite. In an N-Channel MOSFET, the current that flows into the the

drain and out of the source is largely controlled by the voltage applied to the gate.

Since the current flow between two terminals (the source and drain) is controlled

by a voltage applied to a third terminal (the gate), we refer to the MOSFET as

a voltage controlled current source. Like a BJT, the MOSFET IV characteristics

in Figure 11.5 show that the MOSFET can act as a constant current source under

certain bias conditions. Figure 11.6 shows the effect that the gate voltage VGS has in

controlling the current as well as the location of the turn-on or Threshold Voltage

VTH - below which current does not readily flow.

11.3.1 Channel Formation and Threshold Voltage

Now, let’s describe this qualitative operation in a little more detail. First of

all refer to Figure 11.7. In this figure the NMOS transistor has the source grounded

and the body grounded. A positive voltage is then applied to the gate, and another

positive voltage is applied to the drain. The positive potential applied between the

gate and source (VGS) acts to forward bias the source-substrate (N-P) region near
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Figure 11.6: MOSFET IV curves with constant Drain Voltage VDS of 0.5V. The red
star indicates the inflection point of the curve which is used in the extraction of the
threshold voltage VTH

oxide at the top of the device. The electric field arising from the gate-to-source

voltage points in the direction that is opposite the built-in field due to the source-

substrate PN junction. This reduces the total electric field and allows electrons from

the source to diffuse into the substrate region at the top of the source near the gate

oxide. Now, these electrons that diffuse out of the source are also pulled up against

the insulating oxide by the gate field. However, since the oxide is an insulator, the

electrons from the source cannot enter the gate electrode but will gather under the

oxide, resulting in a large concentration of mobile electrons in the P-substrate right

under the gate oxide. This large concentration of electrons under the oxide is called

the channel of mobile electrons, or just the channel. The value of the gate-source

voltage (VGS) necessary to create a channel is called the Threshold Voltage or

VTH . Figure 11.8 emphasizes the channel under the oxide by showing the mobile

electrons as circled negative charges.

11.3.2 MOSFET Current Flow

Once a channel is formed, current can flow between the source and the drain.

If a voltage is now applied to the drain, with the source still grounded, then the

field that results from this drain-source voltage (VDS), acts to pull the electrons that

are in the channel into the drain and eventually into the drain contact wire. This
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Figure 11.7: Cross Section of N-MOSFET. showing mobile electrons in channel.
The picture shows that the gate voltage is greater than the threshold voltage so a
channel has been formed. The figure also shows the depletion regions around the
source and drain regions

Figure 11.8: Cross Section of N-MOSFET showing the formation of the channel due
to the forward bias of the source junction near the surface due to the gate field. Once
the gate voltage is greater than the threshold voltage, the channel forms because
the gate field pulls electrons (which can now leave the source) up to the gate oxide.
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electron flow out of the drain contact then manifests itself as the drain current (ID),

which flows into the drain. In the steady state, these gate and drain voltages are

kept fixed, and electrons will continue to flow out of the source, into the channel,

and into the drain. This flow manifests itself as an electrical current that flows into

the drain and out of the source. See Figure 11.7 for illustrations.

11.3.3 Cutoff

It is important to understand, that if there is no channel formed, there will

not be a drain-to-source current in the MOSFET. To understand this consider the

following. The voltage on the drain is a polarity that reverse biases the drain-

substrate PN junction. Typically, virtually no current can flow in a reverse biased

PN junction. So, unless there is a channel that supplies electrons to the drain, no

drain current will flow if a drain voltage is applied. When there is no gate-source

voltage, or if it is below a certain threshold, then there will be no channel formed,

and there will be no drain-source current, even when a voltage is applied to the

drain. Under these conditions the MOSFET is said to be in Cutoff. Thus, when

the gate-source voltage is below the threshold voltage, a channel is not created, and

no significant drain current can flow. (If you go on to study devices and electronics

more, you will find that this low gate voltage condition is called subthreshold, but

we will not consider this in here.) Figure 11.9 illustrates the situation in cutoff. The

positive and negative charges are fixed (not mobile so they are not circled) and are

due to fixed ionized dopant atoms. There is not a channel of mobile charges so no

current will flow.

11.4 Current-Voltage Characteristics and Equa-

tions

For an N-Channel MOSFET, when VGS ≥ VTH and when VDS > 0, drain

current ID will flow. The characteristic curves of ID vs. VDS for several different

values of VGS are shown in Figure 11.10. The figure shows that for a given curve

(specific value of VGS), the drain current first depends linearly on VDS, then takes

on a quadratic character, and then finally ID becomes relatively constant even as

VDS increases.

11.4.1 Linear Region: (VGS − VTH) ≥ VDS:

We call the region of relatively low VDS, where IDS increases rapidly with

increasing VDS the linear or triode region. The relationship between drain current
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Figure 11.9: Cross-Section of an N-MOSFET in Cutoff region. Note that there is
no channel formed because since it is assumed that any applied gate voltage would
be less than the threshold voltage. The charges illustrated represent the charged
depletion regions that are formed under the gate as around the source-substrate and
drain-substrate PN junctions. The charges are fixed because they are from ionized
dopants, not from mobile electrons or holes.

Figure 11.10: Current-Voltage Characteristic of an N-MOSFET. Each curve is a
plot of VDS vs. ID at a constant value of VGS. Each curve is for a different value of
VGS

.
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Figure 11.11: Illustration of the electron channel under formed on the gate oxide in
the linear region of operation. The channel is also called the inversion layer since the
mobile carriers at the top of the P-Substrate at the oxide interface are now electrons

and gate-source voltage and drain-source voltage is given as follows:

ID = µCox
W

L

[
(VGS − VTH)VDS −

V 2
DS

2

]
, (VGS − VTH) ≥ VDS (11.1)

In this region of operation, the quantity of the gate-source voltage minus the thresh-

old voltage, is greater than the drain source voltage, or (VGS − VTH ≥ VDS).

Under these voltage conditions, the electron channel underneath the gate oxide

is fairly uniform between the source and the drain. This is illustrated in Figures

11.11 and 11.12.

In equations (11.1) and (11.2) we have the following parameters and variables:

µ is the electron mobility;

L is the gate length;

W is the gate width;

Cox is the gate oxide capacitance per unit area; Cox = εox
tox

;

εox and tox are the gate oxide permittivity and gate oxide thickness;

VTH is the threshold voltage;

VGS is the gate-source voltage;

VDS is the drain-source voltage;
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Figure 11.12: Simulated electron concentration within an N-MOSFET biased in
Linear region. The colored surface indicates the log10 of electron density in units
of cm−3. The electron concentration at the semiconductor surface (channel) is high
and uniform from source to drain.

11.4.2 Saturation Region: (VGS − VTH) ≤ VDS:

We call the region of relatively high VDS, where IDS stays essentially constant

with increasing VDS the saturation region. The relationship between drain current

and gate-source voltage and drain-source voltage in the saturation region is given

as follows:

ID =
µCoxW

2L
(VGS − VTH)2 , (VGS − VTH) ≤ VDS (11.2)

In the saturation region of operation the channel is not uniform under the gate

oxide. The channel concentration of electrons is much higher at the source side of

the channel than at the drain side. In fact at the drain side the electron concentration

is sufficiently low that it can be considered to be a depletion-type region, and the

channel is said to be ’pinched-off’ near the drain. Figures 11.13 and 11.14 illustrates

this condition.
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Figure 11.13: Cross Section of N-MOSFET biased in Saturation. The channel has
two distinct regions. Near the source the channel has a very high concentration of
mobile electrons that are pulled against the oxide. Near the drain, the channel is
not so tightly pulled up to the gate oxide but is spread out more vertically and has
much lower concentration but is much thicker. The figure actually shows a contour
plot of the channel. The darker triangular region has very high mobile electron
density while the lighter more rectangular region has low mobile electron density

Figure 11.14: Simulated electron concentration within an N-MOSFET biased in
Saturation. The colored surface indicates the log10 of electron density in units of
cm−3. The red arrow indicates the significant drop in electron concentration at the
semiconductor surface (channel) near the drain, meaning the device in pinched off
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Example 11.5:

A silicon N-MOSFET has channel with width W = 2µm and length L =

0.5µm with a gate oxide thickness of tox = 20nm made of SiO2 (εr = 3.9).

Calculate Cox (capacitance per unit area) as well as the total capacitance of

the gate oxide.

Cox =
εox
tox

=
3.9ε0
20nm

=
3.9 · 8.854× 10−14F/cm

2× 10−6
= 1.7× 10−7F/cm2

To calculate the total gate capacitance multiply the capacitance per area by

the total gate area covering the channel.

CGate = Cox · A = Cox ·W · L =

= (1.7× 10−7 F

cm2
) · (2× 10−4cm) · (5× 10−5cm) = 1.7× 10−15F

Example 11.6:

The same N-MOSFET in Example 11.5 is biased with VGS = 5V and VDS =

1V . The threshold voltage is VTH = 0.8V . Take the mobility to be µ =

300cm2/V s. This mobility is generally lower than the bulk mobility due to

defects at the semiconductor-oxide interface.

What region is this device operation in (Cutoff, Linear, Saturation)? Calculate

the drain current at this bias point.

Because VGS ≥ VTH ⇒ 5V > 0.8V we know the device is not in cutoff and

since (VGS − VTH) ≥ VDS ⇒ (5V − 0.8V ) ≥ 1V we know that the MOSFET

is operating in the linear region. Apply the linear region current formula to

calculate the drain current:

ID = µCox
W

L

[
(VGS − VTH)VDS −

V 2
DS

2

]
=

=

(
300

cm2

V s

)(
1.7× 10−7 F

cm2

)(
2µm

0.5µm

)[
(5V − 0.8V ) · (1V )− (1V )2

2

]
= 7.5× 10−4A
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Example 11.7:

The same N-MOSFET in Examples 11.5 and 11.6 is now biased with VGS = 5V

and VDS = 10V .

Confirm that this device is operating in the saturation region and calculate

the new drain current at this bias point.

Because (VGS − VTH) ≤ VDS ⇒ (5V − 0.8V ) ≤ 10V the MOSFET is indeed

operating in the saturation region. Applying the appropriate current formula

to calculate the drain current:

ID =
µCoxW

2L
(VGS − VTH)2 =

=

(
300 cm

2

V s

) (
1.7× 10−7 F

cm2

)
2µm

2 ∗ 0.5µm
(5V − 0.8V )2

= 1.8× 10−3A

11.5 Simplified Derivation of Current-Voltage Re-

lations: Applicable for Low VDS

In this section we will derive a simple or zero order version of the MOSFET

current-voltage relationship. The derivation gives a good intuition of MOSFET

operation, and the result is applicable to very low drain-source voltages. To obtain

this relation for current versus voltage at very low VDS, we recall that a MOSFET is

similar to a capacitor. The polysilicon gate acts like the top plate of the capacitor,

and the channel of mobile electrons acts like the bottom plate. The voltage between

the gate and the source VGS mainly controls the concentration of mobile electrons

in the channel. The larger VGS, the higher the channel electron concentration. Once

the channel is formed, the voltage between the drain and the source VDS acts to

pull the channel electrons from the source into the drain, which then gives rise to

drain current ID. To get an expression for the drain current ID we start with the

drift term of the current equation that we have seen in previous chapters:

J = qµnE, I = AJ, I = AqµnE (11.3)

Where J is the drift current density and A is the cross-section area that the current

density flows through. Now, let’s work with drain current and we get:

ID = AcqnµE = −Acqnµ
dφ

dx
= −Wtchqnµ

dφ

dx
(11.4)

Where ID is the drain current; Ac = Wtch is the cross sectional area of the channel

where W is the channel width and tch is the channel thickness; n is the concentration
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Figure 11.15: Cross Section of N-MOSFET illustrating channel length (L) and thick-
ness (tch)

of mobile electrons in the channel; µ is the electron mobility; φ is the electrostatic

potential; and −dφ/dx is the electric field E. (See Figure 11.15). The goal now

is to express the above variables in terms of known parameters. First of all, let’s

approximate the derivative of the potential in terms of the voltage VDS and the

length of the gate L, which are both known.

dφ

dx
=
VDS
L

(11.5)

Now we need to express the channel electron concentration in terms of known quan-

tities and parameters as well. To do this we recall that the MOSFET is like a

capacitor and recall that the charge on a capacitor is Q = CV . Since the channel

can be thought of as the charge on the lower plate of a capacitor we can say the

following:

Qchannel = Qmobile +Qfixed = CoxVGS (11.6)

Where Qchannel is the areal charge concentration in the channel, which is composed

of the mobile electron charge Qmobile, and the fixed background charge Qfixed that

is due to ionized acceptors. (The units of the areal charge is coulombs/cm2.)

However, only the mobile charge contributes to the current, so we subtract the

threshold voltage VTH from the gate-source voltage to get Qmobile.

Qmobile = Cox(VGS − VTH) = qntch (11.7)
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Figure 11.16: Cross section of MOSFET showing the V(x) for Current-Voltage
(ID vs. VGS, VDS) derivation.

Note that we have to multiply the three dimensional channel concentration n by

the channel thickness tch to convert to charge per unit area. Now we substitute the

above for dφ
dx

and qntch into equation (11.4), and we obtain the following expression

for drain current:

ID =
WµCox
L

(VGS − VTH)VDS , VDS << (VGS − VTH) (11.8)

Now it is important not to forget that the expression for MOSFET drain

current ID given by equation (11.8) is only only valid for very small values of VDS.

It is also worth noting that more complete expression for current in the linear region

given by equation (11.1) reduces to equation (11.8) for very small values of VDS.

This is because when VDS is much less than one, V 2
DS in equation (11.1) becomes

negligible. Finally, we need to mention that the negative sign in equation (11.8) has

not been written explicitly because we’re focusing on current magnitude and not

worrying about direction at this particular time.

11.6 Derivation of Drain Current versus Gate and

Drain Voltages for Linear Region:

(VGS − VTH ≥ VDS)

Here we will derive equation (11.1) for operation in the linear region. This will

follow from the previous derivation, but we will account for the fact that the electron

concentration in the channel is not constant, but will be a function of position or

n = n(x). The geometry for this derivation is provided in Figure 11.16. Like before,

we start with the standard expression for electron drift current density:
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J = −qµndφ
dx

(11.9)

Now we multiply by the channel cross-sectional area, explicitly indicate the position

dependence on the carrier concentration n(x), and write the potential or voltage

using the letter V instead of φ to obtain an expression for drain current in the

channel which is similar to (11.4) in the previous section:

ID = AcJ = Acqµn(x)
dφ

dx
= Wtchqµn(x)

dφ

dx
(11.10)

Where the parameters have the same meaning as before, except now n(x) is

now a function of position. We now express the charge density at the point x in the

channel as the product of the oxide capacitance and the voltage across the capacitor

a point x:

Q(x)channel = Q(x)mobile +Q(x)fixed = Cox(VG − V (x)) (11.11)

Where V(x) is the potential at the point in the channel at the location where the

charge is Q(x). Also, recall that Cox is the gate capacitance per unit area and

Q(x)channel, Q(x)mobile and Q(x)fixed are all areal charge which is typically expressed

as Coulombs/cm2

Now, we are only interested in the mobile charge in the channel since that gives

to the current, so we subtract the threshold voltage to obtain the mobile charge only:

Q(x)mobile = Cox(VG − V (x)− VTH) (11.12)

We now express Q(x)mobile in terms of the mobile charge concentration as follows:

qn(x)tch = Q(x)mobile = Cox(VG − V (x)− VTH) (11.13)

Note that we have multiplied the carrier concentration, which is per unit volume,

by the channel thickness to get the charge per unit area at the x coordinate under

the gate. Now, we have n(x) in terms of device parameters so let’s substitute them

for n(x) in equation (11.10).

ID = Wµ[Cox(VG − V (x)− VTH)]
dV

dx
(11.14)

Where we have also replaced the symbol φ we use for potential with voltage

symbol V , which of course has the same meaning. Now, using KVL, we can re-write

the quantity (VG− V (x)) in terms of gate and source voltage as indicated in Figure

11.16.

(VG − V (x)) = VG − VS − V (x) + VS = VGS + VS − V (x) (11.15)
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Where we have used the standard notation that the difference between the two

potentials can be written as (VG − VS) = VGS Substituting for (VG − V (x)) in

equation (11.14) and rearranging gives

ID = WµCox[(VGS − VTH) + VS − V (x)]
dV

dx
(11.16)

Multiplying both sides by dx and integrating from source to drain gives:∫ xD

xS

IDdx =

∫ V (xD)

V (xS)

WµCox[(VGS − VTH) + VS − V (x)]dV (11.17)

Performing the indicated integration gives:

ID x
∣∣∣xD
xS

= WµCox

[
(VGS − VTH)V + VSV −

V 2

2

] ∣∣∣∣VD
VS

(11.18)

Substituting in the limits of integration and knowing that the gate length is L =

xD − xS, we obtain the following:

ID L = WµCox

[
(VGS − VTH)VDS −

V 2
DS

2

]
(11.19)

Note that ID is factored out of the integral since the total drain current must be

constant since we have to satisfy KCL. Now we divide both sides by the gate length

L, and we obtain the final expression for drain current versus gate, drain and source

voltages that we gave earlier in Section 11.4.1 for MOSFET operation in the linear

region:

ID =
WµCox
L

[
(VGS − VTH)VDS −

V 2
DS

2

]
, (VGS − VTH) ≥ VDS (11.20)

Equation (11.20) says that the current going into the drain of an N-Channel MOS-

FET is determined by the values of VDS and VGS that you apply to the device. Since

the drain current ID depends on the terminal voltages, the device is called a voltage

controlled current source. Equation (11.20) is applicable only in the linear (also

called the triode) region of operation. Also, it is worth noting that for small values

of VDS, the quadratic V 2
DS/2 term is negligible, and equation (11.20) will reduce to

equation (11.8) of the previous section.

11.7 Derivation of Drain Current versus Gate and

Drain Voltages for Saturation Region:

(VGS − VTH ≤ VDS)

The derivation for current in the saturation region of operation is very simple.

If we recall that for values of VDS which are greater than the quantity (VGS − VTH)
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the drain current does not change when we continue to increase VDS. (We will find

later that this is an approximation, but we will not worry about that now.) Thus,

to find the current in the saturation region we simply equate VDS and (VGS − VTH)

and substitute this into equation (11.20). In other words we do the following:

ID =
WµCox
L

[
(VGS − VTH)(VGS − VTH)− (VGS − VTH)2

2

]
(11.21)

Doing the algebra gives rise to the expression that we gave earlier in Section 11.4.2 for

drain current versus gate-source voltage for N-channel MOSFETs in the saturation

region.

ID =
WµCox

2L
(VGS − VTH)2 , (VGS − VTH) ≤ VDS (11.22)

It is important to observe that as equation (11.22) indicates, current in the satura-

tion region only depends on VGS, and is independent of VDS. Since ID is independent

of VDS the MOSFET in operating in saturation is an excellent voltage controlled

current source, and thus we use MOSFETs operating in saturation for designing

amplifiers. (As mentioned previously, this result will be slighly modified later to

account for channel length modulation, which gives rise to a very small dependence

of ID on VDS in saturation).

11.8 The MOS Capacitor and Threshold Voltage

As a first step to obtaining the expression for MOSFET threshold voltage

VTH , we start with the MOS capacitor. The derivation of the expression for the

threshold voltage VTH is based on the electrostatic analysis of the MOS capacitor.

The MOS capacitor is a MOSFET without the source and drain (Figure 11.17). In

other words, it is a three layer device. The top layer is the metal or highly doped

polysilcon gate; The middle layer is a very thin insulating oxide (SiO2); and the

third layer is composed of a semiconductor, which is almost always silicon. Figure

11.18 shows the typical MOS capacitor structure. As shown in the figure, the poly-

silicon gate is so highly doped that is acts like a metal; the oxide is very thin with

tox typically being on the order of nanometers. The semiconductor layer this MOS

capacitor is P-type and is typically several microns thick.

11.8.1 Electric Field, Potential and Charge in a MOS Ca-
pacitor

In Figure 11.19 we show the charge charge distribution of the MOS capacitor

when both the gate and the P-substrate layers are both grounded. We see a very

very thin positively charged depletion layer on the N-type polysilicon gate, and a

thicker negatively charged depletion layer in the P-type material under the oxide.
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Figure 11.17: The MOS Capacitor within the full MOSFET

Figure 11.18: Cross section of MOS Capacitor
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Figure 11.19: MOS Capacitor for derivation of threshold voltage VTH

This electrostatic layer is similar to that in a PN junction, except in the MOS

capacitor there is an insulating oxide between the N and P type materials.

Since there is not a direct contact between the N and P layers, it may seem

curious as to how this charge re-arrangement occurs. The answer is that the large

concentration of mobile electrons in the N-type polysilicon will flow through ground

to the P-type substrate region where the concentration of mobile electrons is very

very small. In other words electrons will flow from a region of high concentration

to a region of low concentration resulting in a displacement of charge. Also, holes

will flow from the P-substrate through ground to the N-type polysilicon gate. This

will give rise to a very thin positively charged surface layer of ionized donors on the

N-type polysilicon and a region of negatively charged ionized acceptor ions in the

P-type region under the oxide. In other words, after this rearrangement of charge

a depletion region will arise in the P-type silicon under the oxide and in the the

N-type polysilicon gate. This is illustrated in Figure 11.19. One key point about

this depletion region is that it is virtually entirely in the P-type region under the

gate. Since the N-type doping in the polysilicon is several orders of magnitude

greater than the P-type doping in the substrate, the depletion region in the N-type

polysilicon is negligibly thin. As a result of this transfer of charge, we wind up with

a built-in potential across the MOS capacitor, which is analogous to that of a PN

junction. The magnitude of this built in potential φo is given by:

φo = φn−poly − φp = VT ln (
NDpolyNA

n2
i

) (11.23)

Where the parameters have their usual meanings: φo is the built-in potential, NDpoly

is the N-type doping concentration of the polysilicon gate, NA is the P-type doping
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concentration in the silicon substrate under the gate oxide, ni is the silicon intrinsic

mobile carrier concentration, and VT is the thermal voltage = KT/q.

Example 11.8:

A silicon N-MOSFET has a substrate doping of NA = 1017cm−3 and has a

gate made of heavily doped polysilicon ND−poly = 5 × 1019cm−3. Calculate

the built-in potential of this device.

The built-in potential of the MOSFET is the difference between the potential

at the polysilicon gate and the potential deep in the p-type substrate.

φn−poly = VT ln(NDpoly/ni)

φp = −VT ln(NA/ni)

φo = φn−poly − φp = VT ln(
NDpolyNA

n2
i

) = 0.026V ln(
5× 1019 · 1017

1020
) = 1V

11.8.2 Applying the Depletion Approximation to Calculate
the Field and Potential

To calculate the electric field and the electrostatic potential in the MOS ca-

pacitor, we solve the Poisson equation while applying the Depletion Approximation

in a way very similar to what we did for the PN junction in Section 8.4 of Chapter

8. To do so we will divide the MOS capacitor into three regions and calculate the

field and potential distribution in each region using the analysis below.

Region 1: The Polysilicon Gate

The polysilicon gate has extremely high doping so that it acts like a metal.

This causes there to be no charge density, so from Poisson’s equation we know:

d2φ

dx2
= 0 (11.24)

In addition, since the polysilicon acts like a metal, there is no potential drop

across it (∆φn−poly = 0), so the electrostatic potential in this region is constant

(φ(x) = Constant) and has the value due to the built-in potential. Because the

potential is a constant, the electric field will therefore be zero in this region.

Epoly = 0 (11.25)

φ = VT ln
NDpoly

ni
≡ φn−poly (11.26)
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Figure 11.20: Depletion approximation solutions to electric field and potential inside
a p-type MOS Capacitor
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Region 3: The P-Type Silicon Substrate

We will now work out of order and focus on Region 3, which is the P-type

depletion under the gate oxide. To calculate the electric field in the P region near

the gate oxide, we will use the depletion approximation. To do this we solve the

Poisson equation in this depletion region. Starting with the general Poisson equation

for semiconductor we have

d2φ

dx2
= − q

εSi
(p− n+N+

D −N
−
A ) (0 ≤ x ≤ xp) (11.27)

where xs = 0 is the coordinate of the Si/SiO2 surface or interface, and xp is

the end of the depletion region in the p-substrate as shown in Figure 11.19.

Now directly following the work done in Chapter 8 for calculating the internal

field and potential, 11.27 reduces to the following since the doping is by acceptors,

and the mobile electron and hole concentrations are negligible.

d2φ

dx2
=

q

εSi
(N−A ) (0 ≤ x ≤ xp) (11.28)

Integrating once we obtain:

dφ

dx
=

q

εSi
NAx+ Constant (11.29)

To derive an expression for the electric field in the depletion region directly under

the gate oxide recall that E = −dφ/dx. Applying the boundary condition that the

electric field is zero in the quasi neutral P-type substrate (starting at xp) we can

solve for the constant to obtain:
dφ

dx
|xp = 0 (11.30)

E(x) = −dφ
dx

=
qNA

εSi
(xp − x) (0 ≤ x ≤ xp) (11.31)

Following the method in Section 8.4, we now integrate again and obtain the

expression for electrostatic potential in this region as a function of position∫ φ(xp)

φ(x)

dφ =
qNA

εSi

∫ xp

x

(x− xp)dx (11.32)

φ(xp)− φ(x) =
−qNA

2εSi
(x− xp)2 (11.33)

At the depletion region edge xp, the potential must equal its constant value in

the quasi-neutral region φ(xp) = φp used in the definition of the built-in potential:

φ(x) =
q

2εSi
NA(xp − x)2 + φp (0 ≤ x ≤ xp) (11.34)
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where,

φp = φ(xp) = −VT ln
NA

ni
(11.35)

Figure 8.5 illustrates the built-in electric field and the built-in electrostatic potential.

Region 2: The Gate Oxide

Since there is no charge in the insulating gate oxide, the solution of the Poisson

equation becomes:
d2φ

dx2
= 0 (−xox ≤ x ≤ 0) (11.36)

By integrating, this immediately gives

dφ

dx
= Constant (−xox ≤ x ≤ 0) (11.37)

And since the electric field E = −dφ/dx, it means that the electric field in the oxide

is a constant as well.

Eox = Constant (11.38)

To determine the value of that constant we apply Gauss’ Law which requires that

at the oxide/semiconductor interface the product of the electric field and the per-

mittivity must be continuous or:

εoxEox(0) = εSiESi(0) (11.39)

We have already obtained the expression for the electric field at the surface in the

previous section. Evaluating equation 11.31 at the surface (x = 0) and doing a little

algebra we obtain an expression for the oxide field in terms of known parameters:

Eox =
εSi
εox

ESi(0) =
q

εox
NA(xp − 0) (11.40)

Solving for the potential by integrating the negative of the field:

dφ

dx
= −E (11.41)

∫ φ(x)

φ(−xox)

dφ = −Eox
∫ x

−xox
dx (11.42)

φ(x)− φ(−xox) = −Eox(x+ xox) (11.43)

From our results in Region 1, we apply the potential boundary condition:

φ(−xox) = φn−poly (11.44)
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φ(x) = φn−poly − Eox(x+ xox) (11.45)

We can see from this that the potential drops linearly across the oxide. Calculating

the drop across the oxide ∆φox is just

∆φox = Eox(0 + xox) = Eoxtox (11.46)

Where tox = xox is the thickness of the gate oxide.

The complete electric field and potential we have derived are plotted in Figure

11.20.

11.8.3 Threshold Voltage VTH Derivation

Now that we did the electrostatic analysis of the MOS capacitor, we will use

the results to help as part of our threshold voltage derivation. The threshold voltage

VTH is the value of gate-source voltage that is necessary to invert the surface from

P-type to N-type. In other words, the value of VGS that is necessary to change the

surface potential φs ≡ φ(x = 0) equal to −φp. Here we will derive an expression

for this voltage in terms of the applied gate voltage and known parameters using a

MOS capacitor. The approach will be to start off with the equilibrium condition,

and then add an additional gate voltage VG to obtain the final expression.

If we consider the MOS capacitor in Figure 11.19, we know that the built in

potential for this structure is the difference between built in potential from the N-

poly doping of the gate and the built-in potential from the P doping of the substrate:

φo = φn−poly − φp (11.47)

Where φn−poly and φp are known from the doping as given by equations (11.26 and

(11.35), respectively.

Now that we know the built in potential, the set of steps will be to determine

how the built in potential is distributed over the MOS capacitor:

φo = ∆φn−poly + ∆φox + ∆φDR + ∆φp−bulk (11.48)

∆φn−poly = 0, since the n-poly gate is doped very highly it acts like a metal

and thus there is negligble voltage drop across it.

∆φp−bulk = 0, since the p-bulk is far from the oxide it is charge neutral (p u
NA), so there is negligible electric field and thus there is a negligible voltage drop

across it.

Therefore, all the built-in potential is dropped across the gate oxide and the

depletion region in the p-type silicon under the gate or:

φo = ∆φox + ∆φDR (11.49)
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Now let’s determine how the built-in voltage is distributed over the gate oxide and

the depletion region as indicated in Figure 11.19.

Gate Oxide Voltage Drop

In this section we’ll find an expression for the voltage drop across the gate

oxide in terms of known parameters. We found earlier in this chapter that the

electric field in the oxide is constant. We also found the voltage drop across the

oxide as the product of the field and the oxide thickness (Equation 11.46):

∆φox = Eoxtox (11.50)

We now need to determine Eox in terms of known parameters. Since we found

an expression for the field in the semiconductor earlier in the chapter, we employ

electrostatics to write the oxide field in terms of the semiconductor field at the

interface. Electrostatics says that the product of the permittivity and the electric

field must be continuous at the SiO2/Si interface as we showed earlier in equation

(11.39) :

εoxEox(0) = εSiESi(0) (11.51)

Now, find Eox(0) from ESi(0) using the expression for the electric field in the

silicon depletion region (11.31) that we derived in the previous section:

ESi(0) =
q

εSi
NA(xp − 0) (11.52)

Eox(0) =
εSiESi(0)

εox
=
qNAxp
εox

(11.53)

Now, we find xp in terms of φ using our solution to the potential in the depletion

region (Equation 11.34):

φ(0)− φp =
qNA

2εSi
(xp − 0)2 (11.54)

xp =

[
2εSi
qNA

(φ(0)− φp)
] 1

2

(11.55)

Now that we have an expression for xp we can finally evaluate Equation 11.50

for ∆φox in terms of known physical quantities (except for φ(0) which we will discuss

later). Substituting Equation 11.55 into the oxide field from equation (11.53) then

into equation (11.50) we get the potential drop across the oxide:

∆φox = Eoxtox =
qNAxp
εox

tox (11.56)

∆φox =
qNAtox
εox

[
2εSi
qNA

(φ(0)− φp)
] 1

2

(11.57)
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Making the substitution for the oxide capacitance (per unit area) Cox = εox/tox
and defining the surface potential φs ≡ φ(0):

∆φox =
1

Cox
[2qNAεSi(φs − φp)]

1
2 (11.58)

We now use equations (11.58), (11.49) and (11.61) to express the entire built-in

potential as the sum of the drop across the oxide and the drop across the semicon-

ductor depletion region:

φo =
1

Cox
[2q εSiNA(φs − φp)]

1
2 + (φs − φp) (11.59)

Where we have written the potential φ(0) in the simplified form of φs. Now it is

important to note that the built in potential on the left hand side is known from

the doping and given by equation (11.23), and all terms on the right hand sides

of equation (11.59) are known except for the surface potential φs. So, the surface

potential could be readily determined by solving for it in equation (11.59).

Finding Threshold Voltage

Depletion Region Voltage Drop

The voltage drop across the depletion region is given as a function of position

in equation (11.34). Here, we are interested in the total potential drop across the

depletion region which we can calculate as the difference between the potential at

the semiconductor surface φ(0) and the potential at the edge of the depletion region

φ(xp):

∆φDR = φ(0)− φ(xp) (11.60)

Or using the more compact notation:

∆φDR = φs − φp (11.61)

Where φ(xp) has its usual definition of the constant bulk potential determined by

the doping as in equation (11.35).

We will now use equation (11.59) to find the MOSFET threshold voltage. Let’s

start by adding the gate voltage VG to the LHS of the equation and moving the built

in voltage to the RHS:

VG =
1

Cox
[2q εSiNA(φs(VG)− φp)]

1
2 + (φs(VG)− φp)− φo (11.62)

It is important to note that the surface potential does not have the same value

as it did in equation (11.59) because it is a function of the gate voltage VG. We now

introduce the definition of the threshold voltage as the following:
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The MOSFET Threshold Voltage VTH is amount of gate voltage necessary so

that the surface potential is equal to the magnitude of the bulk potential but opposite

in sign. In other words:

VTH = VG|φs=−φp (11.63)

Using the definition (11.63) in equation (11.62). we substitute −φp for φs and arrive

at the following expression for threshold voltage in terms of known parameters:

VTH =
1

Cox
[2q εSiNA(−2φp)]

1
2 − (2φp)− φo (11.64)

Now, since the built-in potential φp in the p-substrate is always less than zero, we

can write equation (11.64) using absolute values and arrive at the final expression

for the MOSFET threshold voltage:

VTH =
1

Cox
[4q εSiNA|φp| ]

1
2 + 2|φp| − φo (11.65)

Before ending this section, we remind ourselves that it is not at all arbitrary that

we define threshold voltage by equation (11.63). It has this definition because when

the surface potential is equal and opposite the bulk potential, it means that the

concentration of electrons at the surface is equal in magnitude to the concentration

of holes in the substrate. Thus, the surface has been inverted from a region where

the mobile carriers were holes, to a region where the mobile carriers are electrons.

Thus, the surface has been inverted and the channel of conducting electrons (or the

n-channel) has formed.

Example 11.9:

The same N-MOSFET as in 11.8 has a gate oxide made of SiO2 which is 30nm

thick. Calculate its threshold voltage.

First we need to find φp and Cox:

φp = VT ln(NA/ni) = −0.026V ln(1017/1010) = −0.42V

Cox =
εox
tox

=
3.9ε0
30nm

=
3.9 · 8.85× 10−14F/cm

3× 10−6cm
= 1.15× 10−7F/cm2

Then apply the formula for threshold voltage using our physical parameters

and the values previously calculated:

VTH =
1

Cox
[4q εSiNA|φp| ]

1
2 + 2|φp| − φo

=
[4(1.6× 10−19)(11.7 · 8.85× 10−14)(1017)(0.42)]

1
2

1.15× 10−7
+ 2(0.42)− 1 = 1.3V
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Figure 11.21: MOSFET IV curves with linearly increasing Gate Voltage VGS from
1V to 5V. When the channel length modulation parameter λ is not included, the
saturation current remains constant with respect to VDS (shown as dashed black
lines).

11.9 Small Signal Analog Model

Earlier in this chapter we derive the DC drain current MOSFET in saturation,

and found it is given by:

ID =
µCoxW

2L
(VGS − VTH)2(1 + λVDS) (11.66)

Where the parameter λ is the channel length modulation factor and it is typically

small, so that the term (λVDS << 1), and λVDS represents a small correction.

This factor results in a slight VDS dependency in the drain current for a MOSFET

operating in the saturation region, shown in Figure 11.21.

We now find the small signal current. The drain current depends strongly on

VGS and a little on VDS, so the total small signal drain current is obtained by the

total differential with respect to both: ∆ID for a given ∆VGS and ∆VDS

∆ID =
∂ID
∂VGS

∆VGS +
∂ID
∂VDS

∆VDS (11.67)

We now define: ∂ID
∂VGS

= gm to be the Small Signal Transconductance.

Taking derivative of ID in saturation with respect to VGS and substituting:

gm =
∂ID
∂VGS

=
µCoxW

L
(VGS − VTH) (11.68)
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Figure 11.22: Small Signal Equivalent Circuit of N-MOSFET.

Or, written in terms of the drain current we get:

gm =

√
2µCoxWID

L
(11.69)

Next we define the output conductance go = ∂ID
∂VDS

. Performing the indicated differ-

entiation gives:

go =
µCoxW

2L
(VGS − VTH)2λ = λID (11.70)

Finally, when we work with small signal equivalent circuits we typically use output

resistance ro which is just the reciprocal of the ouput conductance:

ro =
1

go
(11.71)

In Figure 11.22 we show the small signal N-MOSFET equivalent circuit. The ca-

pacitors in the equivalent circuit come from Cox. In general the capacitors are given

as follows:

Cgs =
2

3
CoxLW (11.72)

and

Cgd = CoxLdW (11.73)

Where Ld is the small distance that the gate oxide overlaps the drain, and it is

call the lateral diffusion length. Typically, Cgs >> Cgd. However, Cgd is a Miller

capacitor so its effect is increased for high gain amplifiers. The physical locations of

these capacitors inside the MOSFET are shown in Figure 11.23.
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Figure 11.23: Small Signal Equivalent Circuit of N-MOSFET.

Example 11.10:

The N-MOSFET in Example 11.5 is biased such that it has drain current

ID = 3× 10−3A flowing. Calculate the small signal transconductance gm and

the output resistance ro assuming λ = 100V −1.

gm =

√
2µCoxWID

L
=

√
2(300)(1.7× 10−7)(2)(3× 10−3)

0.5
= 1.1× 10−3Ω−1

go = λID = 3× 10−5Ω−1

ro =
1

go
= 33.3kΩ

11.10 Problems

11.1 (a) Draw two cross-sections of an N-MOSFET. Label the source, drain, gate,

body, oxide, substrate, and indicate the type of doping in each region.

Draw one cross-section with zero gate voltage, and another when gate

voltage is large enough to establish a channel.

(b) What is meant by the inversion layer, how is it formed? What are the

mobile carriers in the channel for a N-Channel MOSET and a P-Channel

MOSFET.

(c) Qualitatively, explain how and why the gate voltage affects the mobile
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carrier concentration in the channel and the drain current.

11.2 Describe qualitatively how a MOSFET works.

11.3 Why is the DC input resistance of a MOSFET equal to infinity. Why is a

MOSFET a field effect device, while a BJT is not.

11.4 Describe in a sentence or two what is meant by the threshold voltage in a

MOSFET. Why do we say that inversion is reached when the surface potential

is equal to the negative of the substrate potential?

11.5 An N-Channel MOSFET has NA = 1017cm−3, ND−poly = 1019cm−3, Tox =

10nm, L = 0.5um and W = 20.0um. Let mobility µn = 500cm2/V s. (Note

that the electron mobility by the MOSFET surface is lower than in the bulk.)

(a) Calculate the Threshold Voltage for this MOSFET.

(b) Graph carefully the family of curves for the MOSFET above for VGS =

1, 2 and 3V , and VDS = 0 to 5V for each value of VGS.

(c) Calculate the width of the depletion region under the gate if the surface

potential is zero volts.

(d) Calculate the electric field in the oxide when the surface potential is zero

volts.

11.6 Derive the expression for Id vs. VGS for extremely low values of VDS, including

all of the steps. Also, point out where the channel charge and the electric field

parallel to the channel is hidden the in the equation.

11.7 Explain the difference between the two regions of operation of a MOSFET:

Linear and Saturation. Include the words pinch-off and depletion region in

your answer.

11.8 Derive the expressions for the small signal output resistance and the transcon-

ductance.

11.9 Calculate values for and draw the small signal equivalent circuit of an N-

MOSFET in Problem 11.5 above when VGS = 2V and VDS = 3V . Take

the channel length modulation parameter λ = 0.05/V . Include Cgs and Cds.

Assume lateral diffusion Ld = 0.05um.

11.10 Derive the expression for threshold voltage, including all steps. Explain each

step with a short sentence.

11.11 Derive the expression for the depletion region length xp in terms of the built

in potential, the substrate doping NA, oxide thickness tox, q, and the material

permittivities.
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11.12 Starting with the Poisson equation, show that the electric field in the oxide

Eox is constant and given by: Eox = qNAxp
εox

, where xp is the thickness of the

depletion region in the semiconductor.
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Appendix A

Quantum Mechanics

A.1 Finite Well

As mentioned in Section 3.5.2 algebraic derivation is lengthy, however here

we will present the final solutions for computing the allowed energies. Equations

A.1 through A.4 can be obtained by solving for the wavefunction coefficients using

Equations 3.55 through 3.56 with boundary conditions set by Equations 3.58 and

3.62.

Odd Solutions : tan

(
knL

2

)
=

√(
α

kn

)2

− 1 n = 1, 3, 5, . . . (A.1)

Even Solutions : − cot

(
knL

2

)
=

√(
α

kn

)2

− 1 n = 2, 4, 6, . . . (A.2)

α =

√
2mVo
~

(A.3)

En =
~2k2

n

2m
(A.4)

From this new set of equations, the energy solutions can be calculated numer-

ically or graphically (Figure A.1) with relative ease by solving for the allowed kn
values and converting these to their corresponding En.

The right hand side of equations A.1 and A.2 is plotted in black in Figure A.1,

along with the tangent (red) and the negative cotangent (blue) functions. Where

these lines cross are the discrete energy solutions for the bound states in a finite

well with Vo = 5eV and L = 2nm. A finite well will have a finite number of bound

states that ‘fit’ into it before the particle becomes free. We can tell that there are a

finite number of states graphically because even though the red and blue lines will

continue appearing out towards infinite energy, eventually the quantity
√(

α
k

)2 − 1
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in black will touch the x axis at E = Vo before it becomes imaginary at larger

energies. This limits the number of bound solutions and indicates that all bound

states must have energy less than the well height.
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Figure A.1: Finite well energy solutions are circled for a well with Vo = 5eV and

L = 2nm. The black line is the quantity
√(

α
k

)2 − 1, the red lines are tan
(
kL
2

)
and

the blue lines are − cot
(
kL
2

)
. The x value where the lines intersect gives the allowed

energy of that state.

For the example finite well in Figure A.1, the first six allowed energies are

compared to those in an infinite well of the same length below:

1 2 3 4 5 6

Finite: 0.0795 eV 0.3175 eV 0.7128 eV 1.2626 eV 1.9625 eV 2.8038 eV

Infinite: 0.0940 eV 0.3761 eV 0.8462 eV 1.5043 eV 2.3505 eV 3.3848 eV
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Example A.1:

You wish to create a finite well system which has the same ground state energy

as an infinite well system. If the infinite well system has L = 1nm, what would

the length need to be for the finite well if it’s barriers are Vo = 3eV ?

Start by finding the ground state energy of the infinite well which we will use

to compare the final solution:

E1 =
π2~212

2mL2
=

π2(1.054× 10−34Js)212

2 · 9.1× 10−28kg · (1nm)2
= 0.376eV

Next, get k1 from E1 (or obtain it directly with kn = nπ/L):

k1 =
√

2mE1/~ = 3.14× 109m−1

Evaluate α:

α =

√
2mVo
~

=

√
2 · 9.1× 10−28kg · 3eV

1.054× 10−34Js
= 8.87× 109m−1

Then, for the ground state of the finite well, we must evaluate the solution

using the odd equation (A.1) since the ground state has n = 1.

tan

(
knL

2

)
=

√(
α

kn

)2

− 1

L =
2

k1

tan−1

√( α
k1

)2

− 1

 =
2

k1

tan−1

√( α
k1

)2

− 1

 = 0.77nm

So the finite well must be slightly contracted compared to the infinite well.

This result makes sense because for the same L, the finite well energies are

slightly lower so to compensate, the well must shrink because in the infinite

well solution E ∝ 1/L2.

A.2 Finite Barrier Tunneling

The transmission coefficient determines the probability of an incident electron

passing through the region of space occupied by a potential barrier - whether that

be emission over the ‘top’ (when E > VB) or ‘through’ in the case of tunneling (when

E < VB). Here, E is the energy of the incoming electron and VB is the energy of

the rectangular barrier with length L. Transmission is determined by dividing the

probability density of the electron transmitted through the barrier |F |2 by that of

236



Neil Goldsman and Christopher Darmody April 29, 2020

E/V
B

0 1 2 3 4 5

T

0

0.2

0.4

0.6

0.8

1

1

3

9

√

2mVBL/h̄=

Figure A.2: Quantum mechanical transmission through a finite barrier. As the term√
2mVBL/~ increases, the transmission approaches the classical limit (black dashed

line).

the incident electron |A|2.

T =
|F |2

|A|2
=



(
1 +

V 2
B sinh2(KIIL)

4E(VB − E)

)−1

, VB > E KII =
√

2m(VB − E)/~(
1 +

V 2
B sin2(KIIL)

4E(E − VB)

)−1

, VB < E KII =
√

2m(E − VB)/~(
1 +

mL2VB
2~2

)−1

, VB = E

(A.5)

From this result, it is straightforward to recover the reflection coefficient using

the relation T +R = 1. Immediately we can see a drastic difference in the quantum

mechanical transmission probability compared to what we would expect classically.

In a classical system, for all energies less than the barrier height we would expect

to see identically zero transmission, and for all energies greater than the barrier we

would expect to see perfect transmission. Interestingly, the quantum mechanically

determined transmission probability approaches this classical limit as the barrier

height and width increase, shown in Figure A.2 as the black dashed line. Please

note that these formulas are only valid when the left and right sides of the barrier

are at equal potentials, otherwise a factor of the ratio of KI and KIII must be
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included.

Example A.2:

A potential barrier of VB = 2eV is 1nm thick. Calculate the transmission

probability for an electron incident with energy 1eV . If the incident energy is

instead 2.5eV , what is the new transmission probability?

Since the first electron has less energy than the barrier, we use first equation

in A.5:

KII =
√

2m(VB − E)/~ =

√
2 · 9.1× 10−31kg · (2eV − 1eV )

1.055× 10−34Js
= 5.12nm−1

T (1eV ) =

(
1 +

V 2
B sinh2(KIIL)

4E(VB − E)

)−1

=

(
1 +

(2eV )2 sinh2(5.12nm−1 · 1nm)

4 · 1eV · (2eV − 1eV )

)−1

= 1.42× 10−4

Barrier transmission is extremely low in this case because our T vs E/VB looks

similar to the yellow curve in Figure A.2 because our barrier has
√

2mVBL/~ =

7.25. For the yellow curve, transmission close to zero for all E/VB < 1 which

includes our specific case of E/VB = 0.5.

For the higher energy electron:

KII =
√

2m(E − VB)/~ =

√
2 · 9.1× 10−31kg · (2.5eV − 2eV )

1.055× 10−34Js
= 3.62nm−1

T (2.5eV ) =

(
1 +

V 2
B sin2(KIIL)

4E(E − VB)

)−1

=

(
1 +

(2eV )2 sin2(5.12nm−1 · 1nm)

4 · 1eV · (2.5eV − 2eV )

)−1

= 0.7

Barrier transmission in this case is significant but not perfect.

A.3 Density of States

To derive the density of states in the conduction and valence bands, we assume

that the electrons (and holes) are free particles confined to a crystal with side lengths

L. From Bloch’s theorem, we know that the wavefunction (in 3D) may be expressed

as:
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ψk(r) = eik·ruk(r) (A.6)

kxL = 2πnx (A.7)

kyL = 2πny (A.8)

kzL = 2πnz (A.9)

n = . . . ,−2,−1, 0, 1, 2, . . . (A.10)

with the stipulation that k must obey periodic boundary conditions with the

crystal boundary. From this, we know that in reciprocal (k) space, there is one state

per (2π/L)3. We also know the dispersion relation for a free particle:

Ek =
~2|k|2

2m∗
(A.11)

From this we can calculate the number of states N within a spherical volume

of radius |k|. The total number of states must be divided by 8 because to account for

the equivalence of ±kx,y,z values, which represent a phase shift in the wavefunction

but are physically the same state. This can be thought of as taking only the octant

of Cartesian space where kx, ky, kz are all positive (Figure A.3). To account for the

spin degeneracy of the states we multiply by two.

Figure A.3: Counting number of states in k-space that fit within the 8th sphere of a

given energy.
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N = 2

(
1

8

)
(4/3)π|k|3

(2π/L)3
=

V

3π2
|k|3 =

V

3π2

(
2m∗E

~2

)3/2

(A.12)

Here, V is the volume of the crystal. To get the density of states DoS(E) (per

volume) we take the derivative of N with respect to E and divide by V :

DoS(E) =
dN

dE
=

1

2π2

(
2m∗

~2

)3/2√
E (A.13)

DoS(E) =
4π(2m∗)3/2

h3

√
E (A.14)

You can see that the density of states has a square root dependence in 3D space,

where we are normally operating. Devices which exploit quantum confinement can

also be fabricated, which effectively changes the density of states to their analogous

0D, 1D, and 2D forms with different energy dependence (δ(E), 1/
√
E, and constant).

Changing the density of states can have many various and interesting consequences

to device operation and is often used in conjunction with other quantum effects like

tunneling.
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Appendix B

Advanced Semiconductor Devices

B.1 JFETs

The Junction Field Effect Transistor is a relatively simple three-terminal device

that is mainly composed of a single semiconductor PN junction. Figure xx shows a

N-channel Silicon JFET cross section. The JFET has three terminals: the Source,

Gate and Drain. As can be seen from the figure, the JFET is largely composed of

a thin N-type silicon bar with source and drain contacts at the end with a P-type

section in the middle that serves as the gate. In contrast to the MOSFET, the

JFET does not have an oxide at the gate, it is just a region of P-type silicon. For

N-type JFETs, the typical operation is as follows. A positive voltage is applied from

the drain to the source. Since the voltage is higher at the drain contact than the

source contact, electrons will flow from the source to the drain, the current goes into

the drain and out of the source. The region where the electrons flow is called the

channel. Now a voltage is applied to the gate that is negative with respect to both

the source and the drain. Therefore the PN junction in the JFET is reverse biased.

The larger the magnitude of the negative gate voltage, the more reverse biased the

PN junction and the larger the depletion region. As the electrons flow from source

to drain they need to flow around the P-region where the channel becomes narrow.

As the magnitude of the negative voltage is increased the depletion region increases

and the channel becomes more and more narrow and the depletion region extends

all the way down across the channel. This limits or saturates the current no matter

how much drain voltage you apply, the current stays fixed. The current voltage

characteristics of an n-channel JFET are shown in Figure xx. The region where

the Id vs Vds curves are horizontal is called saturation, just like in MOSFETs.

Algebraic relationships for the drain current as a function of the gate-source and

drain-source voltages can be obtained by solving the semiconductor equations, while
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Figure B.1: Cross Section of N-channel JFET.

Figure B.2: Cross Section of N-channel JFET showing channel nearly cutoff.

employing appropriate approximations. These current voltage characteristics can be

found in other device physics and physical circuit design books. Keeping with the

introductory and concise nature of this text, here we present only the common

formula of JFET operation the saturation region:

ID = IDSS

(
1− VGS

VP

)2

− VP ≤ VGS ≤ 0 (B.1)

Where IDSS is the maximum current which is obtained when VGS = 0.

The benefits of the JFET are that it can carry a significant amount of current.

However, it is often complicated and not always practical to use from a circuit

perspective because you need to apply negative voltage to the gate and therefore

two different voltage polarities are required. Additionally, in contrast to a MOSFET,

the reverse biased PN junction at the gate does have some reverse bias current so

you do need to supply current to the gate of the device in order to make it work,

although not as much as to the base of a BJT.

242



Neil Goldsman and Christopher Darmody April 29, 2020

Figure B.3: Current-Voltage characteristics of a JFET.

B.2 Metal-Semiconductor Junctions

B.2.1 Schottky Barrier Diodes and Metal Semiconductor

Contacts

In addition to diodes that are formed by semiconductor PN junctions, it is

also possible to create a diode or rectifier that is made of a contact between a

doped semiconductor and a metal. These kind of rectifiers are called Schottky

diodes after Walter Schottky who invented them in the mid twentieth century. The

Schottky diode has a similar current voltage relation to a PN junction diode and

operates under similar principles. When certain types of metals are brought into

contact with a certain semiconductor with specific doping, a built in potential and a

depletion region in the semiconductor form. As we said in Chapter 8, requirements

for rectification are to have a junction that has both, a depletion region and a built in

potential. In addition to the depletion region and the built-in potential, there is an

abrupt offset between the band structure of the metal and that of the semiconductor.

This offset is another factor that allows particular metal-semiconductor contacts to

function as rectifiers.
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B.2.2 Schottky Barrier Diodes with Metal and N-Type Semi-

conductor: Rectifying Contacts

Figure B.4: Block diagram of Schottky structure. Plots show the position-dependent
charge density, electric field profile, and potential profile inside the device.

At this point it is worth studying the band structure characteristics of a metal

and N-type semiconductor that would form a rectifying contact or a Schottky diode

when connected. On the right of Figure B.5 is an illustration of the valence band

maximum EV , conduction band minimum EC , and the location of the Fermi level
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in an N-type semiconductor EFS. Also shown is the zero energy line Evac which is

the energy of an electron after it has been extracted from the material, as well as

the electron affinity qχ, which is the energy required to remove an electron that is

in the semiconductor conduction band away from the material. On the left of the

figure is the Fermi level of the metal and the zero energy line. Also shown is the

metal work function qΦM , which is the energy required to remove an electron from

the surface of the metal.

Figure B.5: Energy versus position band structure diagram of an n-type contact in
equilibrium. The built-in electric field ~E0 points from the N-semiconductor to the
surface of the metal.

Under certain conditions, when N-type silicon is brought into contact with cer-

tain metals, electrons from the silicon naturally transfer to the metal. This happens

only if the Fermi level of the silicon, that has been doped with donors, is higher than

the Fermi level of the metal. In other words, the chemical potential of electrons in

the semiconductor is higher than that of the metal, so electrons in the semiconduc-

tor will be in higher energy states than those in the metal. Physical systems tend to

want to reduce their energy to achieve equilibrium and therefore electrons in the N-

type semiconductor will naturally transfer to the metal when they are brought into

contact. When this transfer occurs, the region in the semiconductor near the metal

becomes depleted of electrons and a depletion layer forms in an analogous manner to

what occurs in a PN junction. As a result, the metal takes on more electrons. How-

ever, since the metal already has a very high concentration of electrons it does not

obtain an accumulation region, but only an extremely thin negatively charged region

at its surface near metal-semiconductor interface. Electrons will continue to flow

from the semiconductor to the metal and the chemical potential of the semiconductor

will decrease while the chemical potential of the metal will increase. Eventually the

Fermi levels (or chemical potentials) will become equal and there will no longer be a

net flow of electrons between the two materials. At this time a depletion region will
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have formed in the semiconductor that contains an electric field that points from the

now positively charged N-type semiconductor to the now negatively charged metal

surface. The built-in potential is proportional to Fermi level metal subtracted from

the Fermi level in the semiconductor or qφo = EFS−EFM = qΦM−(qχ+Eg/2−qφn).

Equilibrium: The operation of the Schottky Barrier Diode is analogous to that of

the PN junction. As mentioned above, we have a positively charged depletion region

in the N-type semiconductor and a negative surface charge on the metal and an

electric field within the depletion region that points from the N-type semiconductor

and terminates on the metal surface. In equilibrium, electrons from the highly

doped region deeper in the semiconductor will diffuse toward the depletion region

due to the concentration gradient. (Away from the junction and the depletion

region, nn = ND.) However, when these electrons feel the electric field in the

depletion region, they are pulled back by the field toward the N-type bulk area. So,

in equilibrium, the diffusion current toward the junction is equal and opposite of

the drift current from the junction region back into the bulk N-type semiconductor.

Forward Bias: To forward bias this Schottky Diode, we apply a potential to across

the semiconductor and the metal as shown in Figure B.6. By applying a negative

voltage to the semiconductor with respect to the metal, an internal electric field

arises in the depletion region which points in the opposite direction of the built-in

field. Thus, just as in the PN junction under forward bias, the total field is now

reduced. With the lower electric field, the drift current becomes smaller, but the

diffusion current has not appreciably changed because the concentration gradient

between the bulk semiconductor and the depletion region at the junction has been

maintained. The upshot is that drift current has now been reduced so now there is

more diffusion current than drift, and a net current will flow. This net current is

composed of electrons flowing from the N-type semiconductor to the metal. Since

by convention current flow is in opposite direction to electron flow, current in the

forward biased Schottky diode with an N-type semiconductor flows from the metal

to the semiconductor.

Reverse Bias: Under forward bias electrons can flow from the semiconductor

to the metal. However, under reverse bias now electrons can flow. There are two

reasons for this. First, within the semiconductor, if a reverse bias is applied, the

field inside the depletion region gets even larger. Thus, any electrons that diffuse

from the semiconductor bulk to the depletion region will surely get pulled back into

the bulk due to the increased junction field. Secondly, there is a quantum barrier

between the metal and the semiconductor for electrons. As shown in Figure B.7,

there is a large barrier for electrons from the metal Fermi surface to the conduction
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Figure B.6: Energy versus position band structure diagram of an n-type forward
biased contact. Applied bias VA to the metal is positive with respect to the N-
semiconductor.

Figure B.7: Energy versus position band structure diagram of an n-type reverse
biased contact. Applied bias VA to the metal is negative with respect to the N-
semiconductor.

band in semiconductor. The height of this barrier is φB, which is given by

qφB = q(ΦM − χ) (B.2)

Electrons cannot flow from the metal to the semiconductor because of the

large barrier qφB between the metal and the conduction band of the semiconductor,

even if a negative voltage is applied to the metal with respect to the semiconduc-

tor. Therefore, since current is in the opposite direction to electron flow, current

cannot flow when a voltage is applied to the Schottky diode that is positive on the

semiconductor side with respect to the metal side.
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Schottky Diode Equation:

J = Jo
[
eVA/VT − 1

]
(B.3)

B.2.3 Non-Rectifying Contacts

In the case where the Fermi level is lower in the semiconductor than in the

metal, the semiconductor will accumulate electrons instead of creating a depletion

region. To balance this charge, the metal forms a very thin layer of positive charge

at the interface, causing the field lines to point from the metal to the semiconductor.

The metal will not form a depletion region due to the enormous number of electrons

it contains. Because the semiconductor is now accumulated, this type of contact is

referred to as Non-Rectifying or ohmic rather than Schottky. When bias is applied,

an ohmic contact will act more similarly to a resistor and will not be rectifying.

Figure B.8: Energy versus position band structure diagram of an n-type ohmic

contact.

B.2.4 Tunneling Contacts

As in the case of the rectifying n-type Schottky contact, an n-type tunneling

contact has the Fermi level of the n-type silicon EFS higher than the Fermi level

of the metal EFM . The difference here is that the semiconductor is heavily doped

which causes the depletion region that forms at the interface to be extremely thin.

As a result, the potential barrier φB formed by the conduction band is considerably

thinner than in the case of the Shottky contact, and the conduction band EC is

nearly aligned with the Fermi level in the metal EFM . This allows significantly more
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electrons to quantum-mechanically tunnel from the metal into the semiconductor

and vise-versa so that it passes current both ways about equally. In this way the

tunneling contact acts more similarly to an ohmic contact than a Schottky contact.

Figure B.9: Energy versus position band structure diagram of an n-type tunneling

contact.

B.2.5 Fermi Level in PN Junctions

Just like a Schottky diode, we learned in Chapter 8 that a PN junction has

a built-in potential. At the time, we described their operation without the need

to introduce the concept of a Fermi level. Just as in the description of the various

contact types, we can use the Fermi level to analyze the PN junction and obtain

the same built-in potential result. The Fermi level of the P-type semiconductor is

lower than the Fermi level of the N-type semiconductor, causing electrons on the

N-side to flow to the P-side where they recombine with the excess holes there. This

creates the depletion region and built-in field and potential just like in the case of

the Schottky contact. Also similarly, the total built-in potential can be determined

by the difference in the Fermi levels qφo = EFN −EFP = (qχ+Eg/2 + q |φp|)− (qχ+

Eg/2− qφn) = q(φn + |φp|) = qVT ln
(
NDNA
n2
i

)
. Because the left and right side of the

junction are the same material (just doped differently), the effect of the bandgap

and affinity cancels out to achieve the result from Chapter 8.
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Figure B.10: Energy versus position band structure diagram of a PN junction.
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Appendix C

Physical Constants and Material

Parameters

Physical Constants

Table C.1: Most Relevant Physical Constants

Constant Symbol Value Units

Planck Constant h
6.626× 10−34 J·s

4.136× 10−15 eV·s

Reduced Planck Constant ~
1.055× 10−34 J·s

6.582× 10−16 eV·s

Boltzmann Constant K
1.381× 10−23 J·K−1

8.617× 10−5 eV·K−1

Electron Charge (magnitude) q 1.602× 10−19 C

Avogadro’s Number Ao 6.0226× 1023 mol−1

Electron Mass mo 9.109× 10−31 kg

Permittivity of Free Space εo 8.854× 10−14 F·cm−1

Speed of Light c 2.998× 1010 cm·s−1
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Material Parameters

Table C.2: Most Relevant Semiconductor Material Parameters

Parameter Symbol Si Ge GaAs Units

Atomic Number Z 14 32 31− 33 −

Valence − 4 4 3− 5 −

Bandgap Eg 1.12 0.66 1.42 eV

Density ρ 2.329 5.323 5.32 g·cm−3

Elec. Eff. Mass (DoS) m∗n,dos 1.08 0.56 0.067 mo

Elec. Eff. Mass (Mobility) m∗n,cond 0.26 0.12 0.067 mo

Hole Eff. Mass (DoS) m∗p,dos 0.81 0.29 0.47 mo

Hole Eff. Mass (Mobility) m∗p,cond 0.39 0.21 0.34 mo

Intrinsic Carrier Conc. (300K) ni 1× 1010 2× 1013 2.1× 106 cm−3

Permittivity ε 11.7 16.2 12.9 εo

Elec. Mobility (max) µn 1400 3900 8500 cm2/(V·s)

Hole Mobility (max) µp 450 1900 400 cm2/(V·s)

Elec. Recomb. Lifetime (typ.) τn 4× 10−6 ≥ 1× 10−3 5× 10−9 s

Hole Recomb. Lifetime (typ.) τp 2× 10−6 ≥ 1× 10−3 3× 10−6 s
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