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Foreword

Materials donate their names to the great epochs of human civilizations. The Stone
Age with its heavy, huge monuments, the Bronze Age with the beauty of carefully
designed tools, finally the Iron Age with all the useful splendor of machinery – they
all furnish the visible proof. Now, however, we live in the Age of Semiconductors.
Strange and modest are their first two syllables: “semi” – not exactly convincing.
And yet, these materials are essentially invisible, truly small, hidden, yet most
important helpers in our activities every day.

Karl Boer was himself a major investigator and proponent for this new class of
materials. He contributed strongly in a variety of topics for these novel members of
condensed matter. He used to live in the western part of divided Berlin, but worked
most efficiently in its eastern part, directed research, demonstrated applications, and
actively assisted in spreading the knowledge of science and technology for all
international communities. Later, in the United States, he became also one of the
most successful pioneers of solar energy conversion – with semiconductors, of
course.

His handbook documented Boer’s broad range of personal knowledge and
experience. All the readers had thus a wonderfully rich collection of the multitude
of phenomena, very well explained and carefully presented. It is now a stroke of
good fortune for all those users that Udo Pohl, who also became a Berliner, took it
upon himself to amplify and modernize the handbook, to critically screen the
contents. No question: the bulwark of semiconductor knowledge lives on!

Hans J. QueisserStuttgart
March 8, 2013
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Preface

The roots of this book can be traced back to the 1950s when one of us (KWB) started
giving lectures of a young and intriguing emerging field – the physics of semi-
conductors. Semiconductor technology was in its infancy at that time, and the other
of us (UWP) was just born. The accumulated and steadily updated lecture notes
provided a broad background on semiconductor physics, and eventually – in 1990 –
led to the edition of the Survey of Semiconductor Physics. The textbook became a
helpful source for generations of students of physics and electrical engineering. This
applies as well for the younger of us two, who appreciated the concise treatment of
the new book for preparing his lectures held on semiconductor physics and epitaxy.

Now, a quarter of a century later, semiconductor physics is still young and
intriguing. New fields and materials joined the established topics, such as structures
employing quantum effects and designed light-matter interaction, or nitride and
organic semiconductors. Still their study bases upon the principles learned in the
early lectures.

Our common roots in Berlin and our pleasure on teaching brought us together –
by the amicable encouragement of Claus Ascheron from Springer. In this book, we
like to keep the conciseness of the presentation also given in the Survey and organize
new topics in the same style. We had to select the material for keeping the volume to
a manageable size; furthermore, like any book covering a large spectrum of subjects,
the treatment lacks the depth of more focused texts. We apologize to the reader who
may not find his own specialized subject represented in sufficient detail. This applies
also to the references, which, in a steadily developing field, may not remain best
choices; they essentially represent examples, helping to familiarize with the field and
find more recent literature.

In the course of writing, Dieter Palme steadily supported us by furnishing hun-
dreds of illustrations for this book; we are much obliged for his precise work and
critical comments for graphical representations. We appreciate being granted permis-
sion by publishers and authors for using illustrations from other published sources,
which were adapted and redrawn for a consistent presentation. Last but not least, we
gratefully acknowledge Hans-Joachim Queisser for writing his concise foreword.

Naples and Berlin Karl W. Böer
January 2018 Udo W. Pohl
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Abstract
Semiconductor physics and devices have emerged from early studies on the
conductivity of metal sulfides in the nineteenth century and experienced a strong
progress since the middle of the twentieth century. This introductive chapter briefly
highlights a couple of historic milestones and illustrates some general properties of
semiconductors. Then the fabrication of semiconductors is described, pointing out
the driving force of crystal growth, thermodynamics, and kinetics of nucleation and
the occurrence of different growth modes. Various methods for growing bulk single
crystals from the liquid and the vapor phase are introduced, and the techniques of
liquid-phase epitaxy, molecular-beam epitaxy, and metalorganic vapor-phase epi-
taxy for the fabrication of thin layers and sharp interfaces are pointed out.
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epitaxy � Molecular-beam epitaxy � Nucleation � Semiconductor history �
Supersaturation

1 Historic Development

A semiconductor is a solid with an electrical conductivity between that of a metal
and an insulator. This conductivity is caused by electronic particles such as elec-
trons, holes, or polarons, referred to later in this book as carriers (of charge) which
are set free by ionization. Such ionization can be produced thermally, by light, other
particles, or an electrical field. It involves only a small fraction of the total number of
atoms, with a density of free electronic particles typically of an order of 1014 . . . 1018

cm�3, compared to atomic densities of 1022 cm�3.
The changes in electronic properties controlled by external means – such as light,

applied voltage, magnetic field, temperature, or mechanical pressure – make the
semiconductor an interesting material for electronic devices, many of which have
become familiar parts of our daily lives. Such devices include diodes, transistors, and
integrated circuits in TV sets and computers: photosensors for imaging and the
identification of goods in stores; a large variety of sensors for measuring temperature,
weight, and magnetic fields; and all kinds of electro-optical displays. It is almost
impossible to think of a modern appliance that does not contain a semiconducting
device. Our cars, homes, and offices have become filled with such devices, ranging
from smartphones and PCs for home banking, home office, Internet shopping, and
mobile Internet to controls, copying machines, solar cells, and imaging devices.

The first semiconducting property was reported by Seebeck for lead sulfide in
1822 and Faraday for silver sulfide in 1833. In 1851, Hittorf measured the semilog-
arithmic dependence of the conductivity on 1/T (temperature) in Ag2S and
Cu2S. The first application of a semiconductor as a device was based on the
observation of Braun (1874) that point contacts on some metal sulfides are rectify-
ing; this became the well-known cat’s whisker detector of the early twentieth
century. Schuster noticed in 1874 that the contact of copper with copper oxide is
rectifying; this observation became the basis for the copper-oxide rectifier introduced
in 1926 by Grondahl. The discoveries of the photoconductivity of selenium by Smith
(1873) and the photovoltaic effect in the same material by Adams and Day (1876)
led to the first photocells as discussed by Bergmann (1931, 1934). The term
semiconductor1 was introduced much later by Königsberger and Weiss (1911).
Only during the middle of the past century did other materials, such as Ge, Si,
CdS, GaAs, and several other similar compounds gain great interest.

The invention of the transistor by Shockley, Bardeen, and Brattain in 1947 may
be considered as the birth of modern electronics. This device consisted of a block of

1The word itself was rediscovered at this time. It was actually used much earlier (Ebert1789) in
approximately the correct context, and then again 62 years later by Bromme (1851). However, even
after its more recent introduction, serious doubts were voiced as to whether even today’s most
prominent semiconductor, silicon, would not better be described as a metal (Wilson1931).

4 Properties and Growth of Semiconductors



germanium with two very closely spaced and electrically isolated gold contacts,
realized by a gold foil attached over the point of a plastic triangle: the tip of the
triangle sliced through the foil (Fig. 1a,b). The n-type Ge used had a thin p-type
surface layer underneath the contacts, leading to a pnp transistor; a small change in
the first (forward biased) contact current caused a greater change in the second
(reversed biased) contact current. Nowadays, a billion transistors are integrated on a
single advanced microprocessor chip as illustrated in Fig. 1c.

All initial studies involved crystalline materials; that is, their atoms are ordered in
a three-dimensional periodic array. When the transistor was developed (ca. 1950),
the first amorphous semiconductors (α-Se) became important for electrophotogra-
phy (XeroxTM). A few years later with the discovery of electronic switching
(Ovshinsky 1968), another class of amorphous semiconductors, the chalcogenide
glasses – and, more recently, with further development of solar cells, the amorphous
Si alloys – gained substantial interest.

Some organic semiconductors and new artificial compounds, nanostructures
and superlattices, more recently entered the vast inventory of semiconducting
materials of technical interest. Today, we experience that new compounds
can be designed to exhibit specific desired properties, such as a large carrier
mobility, appropriate optical absorption and emission, or higher-temperature
superconductivity.

Semiconductors have sparked the beginning of a new material epoch.2 Technol-
ogy has evolved from the Stone Age into the age of semiconductors, materials, that
are influencing culture and civilization to an unprecedented degree and enabled the
advent of the information society.

Fig. 1 (a) Principle and (b) realization of the first transistor, Bell Labs (1947). (c) Intel Core i5
Sandy Bridge microprocessor chip with quad core central processing unit comprising 995 million
transistors, Intel (2011)

2This age was also termed the silicon age (Queisser 1985), in reference to the material now most
widely used for semiconducting devices. Despite the great abundance in the earth’s crust (27.5%
surpassed only by oxygen with 50.5%, and followed by aluminum with 7.3% and iron with 3.4%),
and its dominance as the material of choice in the semiconductor industry, other semiconductor
materials (crystalline or amorphous) are now being identified which may show even greater
potential in the future. The global semiconductor industry with a $304 billion market in 2010
(source: KPMG report, �$321 billion in 2012) is a key driver for economic growth, with an annual
(long-term) average growth on the order of 13%.
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2 Some General Properties of Semiconductors

2.1 Electrical Aspects

In several respects, the electrical aspects of semiconductors are unique and require a
sophisticated knowledge of detail, which will be developed later in this book. Here,
only a few general facts can be mentioned to emphasize some of the reasons which
have sparked such enormous interest in this class of materials.

Semiconductors bridge a large gap of electrical conductivities between metals and
insulators; however, more importantly, their electrical resistance3 can change as a
result of external forces, e.g., by applied voltage, magnetic field, light, mechanical
stress, or a change in temperature. This is often accomplished by fabricating a device
from such semiconductors when incorporating minute amounts of specific impurities
(dopants) in a certain inhomogeneous pattern into the semiconductor. The electrical
response of these devices makes them electronically active, as opposed to such
passive elements as wires, insulators, or simple resistors made from thin metal
layers.

Although the large field of semiconducting devices deals with the inhomogeneity
aspect to a great extent, a thorough understanding of their operation requires a
detailed analysis of the electronic and related properties of the homogeneous mate-
rial. That is the topic of this book. The device aspects are dealt with in many reviews,
most comprehensively by Sze and Ng (2007).

2.2 Structural Aspects

As are all crystals, semiconductors can be thought of as composed of unit cells,
which describe the smallest atomic building blocks within an ordered crystalline
lattice with translational symmetry in all directions. In a crystalline semiconductor,
these unit cells are packed in a close-fitting, three-dimensional array that results in
long-range periodicity.

In an amorphous semiconductor, there is a similar packing of statistically slightly
deformed unit cells with variations in interatomic distance and bond angle. By
constructing such a semiconductor from such deformed unit cells, long-range peri-
odicity is lost, and a variation in the coordination number occurs. The short-range
order of an amorphous semiconductor, however, is similar to the crystalline state of
the same material. A two-dimensional illustration of maintaining short-range order
while losing long-range order is given in Fig. 2.

The consequences of the microscopic structure for the physical properties are
well known for crystalline semiconductors and comprise major parts of this book,
while the understanding of amorphous semiconductors is less well developed.

3The resistance is used here rather than the material resistivity because of the inhomogeneity of the
electronic transport through most of the devices.

6 Properties and Growth of Semiconductors



We have attempted to point out similarities and differences between the two
states and to provide plausibility arguments where a rigorous treatment is still
missing.

One of the reasons for a more manageable theoretical treatment of the crystalline
state is its periodicity, which permits an analysis by replacing a many-body problem
of astronomical extent (typically 1022 particles per cm3) with a periodic repetition of
one unit cell containing only a few relevant particles. Attempts to use a somewhat
similar approach (e.g., a modified Bethe-lattice approach; see ▶ Sect. 3.2.1 in
chapter “The Structure of Semiconductors”) for the amorphous state have been
relatively successful for theoretical prediction of some of the fundamental properties
of amorphous semiconductors.

Further discussion will be postponed until the elements necessary for a more
sophisticated analysis are properly introduced.

2.3 Chemical Aspects

Only a small number of elements and simple compounds have semiconductive
properties conducive for device development (cf. Fig. 3). Preferably, these materials
are covalently bound and are typically from group IV of the periodic system of
elements (Si, Ge) or are compounds of group III with group Velements (GaAs, GaN)
(see Mooser and Pearson (1956) and ▶ Sect. 1 in chapter “Crystal Bonding”). In
these semiconductors, the atoms have a low number of nearest neighbors (coordi-
nation number). In tetrahedrally bound crystals, the coordination number is 4. These
semiconductors have highly mobile carriers which are desirable for many devices.

A number of important semiconducting properties of these devices are rather
similar whether the material is in crystalline or amorphous form. This emphasizes the

Fig. 2 (a) Crystalline and (b) amorphous states of an A2B3 compound – e.g., As2S3 (After
Zachariasen 1932)
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importance of the chemical aspect and justifies more attention to the subject, which
will be provided in chapter ▶ “Crystal Bonding.”

At closer inspection, however, almost every physical property of a semiconductor
depends on the relative position of the atomic building blocks with respect to each
other, i.e., on the structure of the semiconductor.

In the recently emerging organic semiconductors, the building blocks are mole-
cules which are weakly bonded in organic crystals by van der Waals interaction.
Organic crystals are usually not conductive. Conductivity occurs within organic
molecules with a conjugated hydrocarbon structure, where single and double bonds
between carbon atoms consecutively change; such structure releases one electron per
carbon atom being delocalized within the molecule. If the overlap of the electron
wave functions of neighboring molecules is sufficiently large, band-like or hopping
conductivity may occur on a macroscopic scale. Similar to their inorganic counter-
parts, the mobility of carriers in organic semiconductors depends sensitively on the
relative arrangement of the molecular building blocks.

3 Growth of Semiconductors

Growth of a semiconductor requires nonequilibrium conditions to promote a transi-
tion from a more volatile to the intended solid phase. A process near equilibrium is
usually described by thermodynamics in terms of macroscopic control parameters
like temperature and pressure, while conditions far from equilibrium and on a short
time scale may more appropriately be described by kinetic steps on an atomic scale
with respective activation barriers. Basics of both approaches are pointed out in the
following.

3.1 Driving Force and Nucleation

3.1.1 Equilibrium
We first consider a single-component system with an equilibrium of two phases like
solid silicon in equilibrium with its own melt. The solid surface represents a
boundary between the two phases, and the amount of substance leaving one phase

Fig. 3 Semiconductors in the
periodic table. Green shadings
signify elemental
semiconductors and red and
blue shadings mark III–V and
II–VI compound
semiconductors, respectively

8 Properties and Growth of Semiconductors



equals the amount of substance entering the other phase, i.e., � dnSi,liquid = + dnSi,solid.
In equilibrium, dnSi,liquid = dnSi,solid = 0. The deviation from equilibrium required to
drive particles across the phase boundary toward the solid phase is obtained from the
chemical potential μ. For the considered single-component system, μ(T,P)= G(T,P)/ n.
The state function Gibbs energy G(T,P) of the system is related to the internal energyU
(S,V) by4G(T,P)=U + PV – TS, and n is the amount of substance (usually expressed in
units of mole). For two coexisting phases, μ is composed of the respective two parts, i.e.,
μ = μSi,liquid + μSi,solid = (GSi,liquid + GSi,solid)/ n. At equilibrium, this sum is minimum,
and μSi,liquid = μSi,solid. At a depart from equilibrium, μSi,liquid 6¼ μSi,solid applies, and a
tendency to restore the minimum exists.

In the general case, the system consists of Nc components instead of just one
kind of particles. In such multicomponent system, more than two phases may
coexist in equilibrium,5 and the Gibbs energy depends also on the substance
amounts ni,G ¼ GðT,P, n1, . . . , nNc

Þ. The molar fraction of component i is xi = ni/
n, and the sum of all Nc substance amounts yields n. The total chemical potential μ is
composed of contributions μi of all components,

μ ¼ G

n
¼ μ1x1 þ μ2x2 þ . . .þ μNc

xNC , (1)

where

μi T,P, x1, . . . , xNc
ð Þ ¼ @G

@ni

� �
T,P, nj 6¼i

, and xi ¼ ni
n
:

The minimum condition for G leads to the requirement that the chemical poten-
tials μi of all Nc components are equal among each other in each of the Np phases,

μi σ1ð Þ ¼ μi σ2ð Þ ¼ . . . ¼ μi Np

� �
, i ¼ 1 . . .Nc: equilibriumð Þ (2)

The σj signify the coexisting phases (vapor, liquid, etc.) of component j. Equation 2
applies simultaneously for all Nc components of the system, yielding a set of Nc

relations. The compositions of coexisting phases are generally not equal at equilib-
rium to fulfill these conditions, i.e., usually x1(σ1) 6¼ x1(σ2) 6¼ . . . 6¼ x1(σNp). In
liquid-phase epitaxy of GaAs, e.g., a melt containing xAs,liquid= 0.1 (=10% of liquid
substance moles), As dissolved in Ga may be in equilibrium with solid GaAs
containing precisely xAs,solid = 0.5.

4G is used instead of U, because control of temperature T and pressure P is more convenient than
that of the parameters entropy S and volume V.
5The number of coexisting phases is specified by Gibbs phase rule.
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3.1.2 Driving Force
To induce a transition to the solid phase, the parameters temperature and pressure are
controlled such that μ is larger in the nutrient phase. A measure for the deviation
from equilibrium is the supercooling ΔT = T – Te between the controlled temper-
ature T and the (initial) equilibrium temperature Te (melting temperature in a
liquid–solid equilibrium). For a phase transition from the gas phase induced by a
pressure variation, the supersaturation ΔP = P – Pe at constant temperature defines
the depart from equilibrium, Pe being the saturation (or equilibrium) vapor pressure.

A phase transition induced by supercooling ΔT= T – Te at constant pressure for a
single-component system is illustrated in Fig. 4. Above the equilibrium temperature
Te, the phase α is more stable than phase β, i.e., μα(T ) < μβ(T ). Below Te, however,
μβ(T ) < μα(T ) due to different slopes of the chemical potentials in the two phases
and their intersection at Te. Phases α and β exchange particles via the common-phase
boundary. Since μβ(T ) < μα(T ) below Te, the system can lower the total Gibbs
energy G = Gα + Gβ = nα μα + nβ μβ by transferring particles from phase α to phase
β: the amount of substance nβ in the stable phase β increases on expense of the
amount of substance nα in the less stable phase α. The driving force for this phase
transition is the difference in the chemical potential:

Δμ � μβ � μα nonequilibriumð Þ: (3)

Δ μ is called growth affinity or driving force for crystallization if the stable phase
β is a solid phase. Δ μ is a negative quantity, albeit often chosen positive in literature.
Figure 4 illustrates that an increase of supercooling Δ T raises the driving force Δ μ
and thereby enhances the rate of substance crossing the phase boundary.

The respective less stable phases indicated by dashed lines in Fig. 4 may sometimes
be experimentally observed to some extent. Well-known examples are heating of a
liquid above the boiling point (bumping) or supersaturated vapor in Wilson’s cloud

Fig. 4 Temperature
dependence of the chemical
potential μ of phases α and β
at constant pressure. The
growth affinity Δμ designates
the difference of the chemical
potentials μα and μβ induced
by a supercooling ΔT to a
temperature T< below the
equilibrium temperature Te
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chamber. The effect is particularly pronounced for undercooled metal melts which
may still be liquid some tens of degrees �C below the temperature of solidification.6

The driving force Eq.3 may likewise be induced by a supersaturationΔ P= P – Pe

at constant temperature. For solidification from the liquid phase, P must be increased
if the liquid–solid boundary has a positive slope dP/dT and decreased otherwise. The
driving force increases as Δ P is raised, similar to the dependence in supercooling
discussed above.

3.1.3 Nucleation
Any growth starts from a nucleus or crystal seed. If the system was initially in a
homogeneous phase, e.g., entirely liquid, the (new) solid phase is not spontaneously
formed when nonequilibrium conditions are adjusted. Instead, the initial phase remains
at first in a metastable state of undercooling (of a liquid below the freezing point) or
supersaturation (of a vapor below the condensation point) – the states indicated by
dashed lines in Fig. 4. The need to create an interface at the boundary to the new phase
leads to a persistence of the no longer most stable phase. The formation of such interface
consumes some energy, related to the surface energy of each phase. The stable new
phase is only formed at sufficient undercooling or supersaturation. Homogeneous
nucleation occurs spontaneously and randomly in a homogeneous initial phase; this is
generally not desired in crystal growth. Instead, heterogeneous nucleation induced by
preferential nucleation sites, like a seed crystal or a substrate, is applied.

In the classical capillary model developed by Gibbs (1874), Volmer and Weber
(1926), Volmer (1939), and others, the onset of the phase transition in a small region
called nucleus is connected to a change of Gibbs energy of the system ΔGN. This
quantity is composed of three contributions: at first, a favorable (i.e., negative) part
ΔGV due to the amount of substance entering the new stable phase. ΔGV is
proportional to the volume of the nucleus. Second, the interface between the new
stable phase and the metastable surrounding (homogeneous) phase must be created,
yielding a positive cost ΔGS. This contribution of surface free-energy is proportional
to the area of the interface. A third term ΔGE arises if the nucleus is subjected to
elastic stress. ΔGE (>0) counteracts the favorable volume term ΔGV and may even
suppress nucleation ifΔGE> |ΔGV|. The total change of Gibbs energy upon creation
of a nucleus is given by

ΔGN ¼ ΔGV þ ΔGS þ ΔGE: (4)

If we assume an unstrained spherical nucleus of radius r and an isotropic surface-
free energy γ, we obtainΔGS= γΔS= γ4 πr2 andΔGV= (Δg/ v) (4/3) πr3. Here, r is
the radius of the nucleus and ΔS its surface. v is the mole volume of the new phase
and Δg (<0) is the change of Gibbs energy of the system by creating one mole of the
new phase. Equation 4 then reads

6The phenomenon should not be confused with the size effect of melting-point depression in
nanoscale materials that originates from a large surface-to-volume ratio.
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ΔGN ¼ ΔGS þ ΔGV

¼ 4π γr2 þ Δg=vð Þr3=3� �
unstrained spherical nucleusð Þ: (5)

Gibbs energy change according to Eq. 5 drawn in Fig. 5 initially increases during
formation of the stable phase due to the unfavorable creation of the boundary to the
initial phase. After passing a maximum at some critical radius r*, the volume term (/ r3)
eventually prevails over the surface term (/ r2) and Gibbs energy change induced by
the creation of the nucleus becomes negative. Such nuclei are stable and grow.

In heterogeneous nucleation, a solid phase preexists; the interface area to the
ambient metastable phase is reduced, yielding a substantially smaller energy barrier
ΔGN*hetero. Since a part of the preexisting solid (seed or substrate) is covered by the
nucleus, a new interface is created between nucleus and substrate. If we assume an
unstrained nucleus with the shape of a spherical cap with radius r on a substrate as
depicted in Fig. 6, the balance of interface tensions at the line of contact between the
three phases of metastable ambient (index a), nucleus (n), and substrate (s) is given
by three quantities which represent the energies needed to create unit area of each of
the three interfaces. From the figure, we read the relation of Young (1805) for the
absolute values of tensions in balance γas = γns + γan cos Θ, or

cosΘ ¼ γas � γns
γan

: (6)

The wetting angle Θ may vary between 0 and 180� depending on the degree of
wetting, i.e., the affinity of nucleus and substrate materials. Θ determines the shape
of the nucleus. The volume of a spherical cap is (4/3) π r3 � f, where f (Θ) < 1 is a
geometrical factor. This shape factor reduces the volume of the nucleus with respect
to homogeneous nucleation according toΔGN *hetero= f�ΔGN *homo. Due to f< 1,

Fig. 5 Change of Gibbs energy ΔGN (solid blue line) for creating an unstrained spherical nucleus
with radius r in homogeneous nucleation. Dashed and dash-dotted lines are contributions ΔGS of
the surface and ΔGVof the volume, respectively. r* andΔGN* are the critical nucleus radius and the
critical work for nucleus creation, respectively. The red line refers to heterogeneous nucleation
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homogeneous nucleation (i.e., random formation of solid nuclei in the bulk of the
nutrient phase) can be suppressed and controlled seeded crystal growth can be
performed.

The critical energy of nucleation ΔGN* represents an activation energy for the
formation of viable nuclei. The rate of formation per unit area of such nuclei is
described by the Arrhenius dependence:

j ¼ j0exp
ΔG�

N

kT

� �
: (7)

The prefactor j0 follows from kinetic considerations of the nucleation process on an
atomic scale.

3.1.4 Growth Modes
The surface energies leading to Young’s relation (Eq. 6) affect the initial stage of
layer deposition on a substrate of different material. Growth with a smooth surface
corresponds to a wetting angle of zero in Eq. 6, or γas = γns + γan. If this condition
applies or γas exceeds the sum of the two other interface energies, we obtain
complete wetting of the layer on the substrate surface. Layer atoms are then more
strongly attracted to the substrate than to themselves, and growth may proceed in an
atomically flat layer-by-layer mode referred to as Frank–van der Merwe growth
mode. Figure 7 illustrates the initial stages of such two-dimensional layer growth for
different thickness of deposited material. Growth proceeds by the formation of two-
dimensional islands and the advancement of surface steps as considered in the
kinetic approach below.

A different surface morphology of the growth front is observed if the atoms of the
growing solid are more strongly attracted to each other than to the substrate, as
expressed in Eq. 6 by a wetting angle of π, or γns = γas + γan. If this condition applies
or γns is even larger, then the deposit does not wet the substrate surface. The surface
energy of deposit plus substrate is minimized if a maximum of substrate surface (with
a low surface energy γas) is not covered by the growing material (with a large γan). This
results in a three-dimensional growth of the deposit referred to as Volmer–Weber
growth mode. Figure 7 illustrates that the growing solid is deposited in form of islands,
which for thicker deposits eventually come into contact and coalesce.

Fig. 6 Nucleus created on a
structureless substrate. The
balance of surface energies γ
leads to a wetting angle Θ
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Often, an intermediate case is found referred to as Stranski–Krastanov growth
mode (also termed layer-plus-island growth). Here, the condition γas 	 γns + γan for
Frank–van der Merwe growth applies solely for the first deposited monolayer (or the
first few monolayers). After exceeding some critical thickness, the growth changes
to the Volmer–Weber case where γns 	 γas + γan applies. Such change may be
induced by the gradual accumulation of strain in the deposit. The growing solid
then resumes growth in form of three-dimensional islands, leaving a
two-dimensional wetting layer underneath. Stranski–Krastanov growth has gained
much advertence in recent years, because it may be employed for growth of defect-
free quantum dots (see ▶Sect. 2.2.3 in chapter “The Structure of Semiconductors”).

The three categories of growth modes arising from a consideration of interface
energies are sometimes complemented by further modes to account for observed
surface morphologies. Crystal faces which are slightly inclined with respect to faces
with small Miller indices (vicinal surfaces) have persistent surface steps; under
suitable conditions, these steps advance during growth without additional nucle-
ation, leading to step-flow growth. Depending on growth conditions, also bunches of
steps – so-called step bunching – may appear. In the presence of screw dislocations
(▶ Sect. 4.1 in chapter “Crystal Defects”) which create persistent surface steps,
spiral growth or screw-island growth is observed. Eventually, for materials with
low surface mobility of adatoms, columnar growth may be obtained; similar to
Volmer–Weber growth, islands nucleate, but they do not merge to continuous layers
when growth proceeds. A mosaic crystal composed of numerous slightly tilted and
twisted columnar crystallites is formed instead.

3.1.5 Kinetic Approach
The growth kinetics can usually be described by only a few categories of atomistic
rate processes. Such processes strongly depend on the specific location of an atom on
the surface as depicted in Fig. 8. Basically, four processes occur:

• Transport of atomic particles to the surface
• Diffusion of the particles across the surface
• Incorporation of each particle at a preferred surface site
• Dissipation of heat developed during growth

Fig. 7 Schematic of the three basic growth modes, illustrated as a function of approximately equal
coverage given in units of monolayers (ML)
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Each thermally activated kinetic growth process is controlled by characteristic
parameters entering an Arrhenius dependence with an activation energy E, a char-
acteristic time constant τ, and an attempt-rate constant ν0:

τ�1 Tð Þ ¼ ν0 e
� E

kT: (8)

The time constant of a process can be altered by the experimental conditions.
Surface diffusion effects adatoms to find a proper lattice site for incorporation into

the solid. A surface site of particular importance is the kink site or half-crystal
position marked by a circle in Fig. 8. An atom at this site has one half of its bonds
attached to neighboring atoms of the solid and the other half unsaturated. Crystal
growth basically proceeds via the incorporation of atoms at this site. Occupation of a
kink site yields an adjacent kink site; thereby, the atom row at the step is gradually
completed, leading to a lateral advancement of the step.7

The dynamics of growth is modeled in numerical Monte Carlo simulations using
rate equations of a few basic processes. Only the rate-limiting steps, i.e., slower
processes, are included in the calculations. Faster processes are accounted for in
average by using effective kinetic parameters. The supersaturation Δμ is usually
controlled by the experimental parameters T, the arrival rate of atoms F (flux,
controlled by the pressure P), and the material parameters of the kinetic processes
describing diffusion, reevaporation, and nucleation. The approach does not require a
detailed knowledge of the atomic interactions and permits simulations including
large time scales. Values for ν0 and E (of the order of 1012 s�1 and eV, respectively)
for each process are estimated from, e.g., molecular dynamics or are taken as
parameters to fit experimental results.

The kinetic description yields the temperature-dependent density of single mobile
adatoms, clusters of various sizes, and surface coverage. The critical radius r* of the
thermodynamic description corresponds to a critical cluster size comprising i atoms,
where clusters with j > i atoms are stable and likely to grow. The evolution of the

Fig. 8 Schematic illustration
of basic kinetic processes in
crystal growth. The white
circlemarks incorporation at a
kink site located at a
surface step

7After completion of a step, a new kink must nucleate at the step for advancement, and after
completion of an entire layer, a new (two-dimensional) nucleus with a step at its perimeter must be
created. Particularly, the latter leads to a slow growth rate of flat surfaces.
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surface coverage with single adatoms n1, stable clusters nx (=sum of all clusters nj
with j > i), and the total number of atoms on the surface, as resulting from the
solution of kinetic rate equations, is illustrated in Fig. 9 for growth on a flat surface,
starting at coverage Z = 0. At a high temperature T1, nucleation is negligible; the
single-atom density n1 � Ft initially rises for t < τa, τa being the (short) residence
time of a diffusing adatom from attachment on the surface (given by the flux rate F)
and reevaporation. The constant value at longer time reflects the balance of arrival
and evaporation without nucleation or growth (high-temperature limit). The density
of stable clusters nx starts at a negligible value at t = τa and increases monotonously
for t > τa. Both n1 and nx decrease as coalescence sets in. The condensation
coefficient α(t), which denotes the fraction of atomic dose impinging on the surface
and being incorporated into the deposit, is initially very small in this high temper-
ature, and so also the total deposit Ftα.

At a low temperature T2, no reevaporation occurs, i.e., α = 1. In this temperature
range, the single-atom density n1 plotted in Fig. 9 increases linearly until capture by
previously nucleated clusters sets in, causing n1 to pass a maximum at the mean
capture time τc and to decrease subsequently. The stable-cluster density nx increases
after a nucleation period and eventually decreases due to coalescence of clusters.

Growth of a flat surface proceeds basically by the attachment of adatoms at steps.
The steps may originate either from nucleation as discussed above or from the
terrace structure of a surface inclined by a small tilt angle with respect to a face
with small Miller indices (vicinal surface) or from screw dislocations. The latter
provide a source of persistent surface steps and may lead to efficient spiral growth of
crystals.8

Fig. 9 Density of single
atoms n1, stable clusters nx,
and the total number Ftα of
atoms condensed on the
surface as a function of timet
for a high temperature T1 and
a low temperatureT2. τa and τc
indicate reevaporation and
capture times, respectively,
and the label coal. marks a
decrease of n1 and nx due to
coalescence (After Venables
et al. 1984)

8A screw dislocation hitting a surface creates a steadily reproduced kink site at its core, enabling a
spiral growth around the core that is much faster than growth on a planar surface. Under suitable
conditions, a fine needle may form with an axial screw-dislocation line.
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3.1.6 Growth Habit
When the transport to the surface is slower than the diffusion across the surface,
the growth from a nucleus is ordered and a microcrystallite is formed. When such
growth occurs from one nucleus (seed) only, a single crystal will grow. Growth
from statistically formed nuclei results in polycrystals. The growth habit, i.e., the
shape, of a single crystal often features flat faces with well-defined mutual angles.
The reason is a pronounced dependence of the surface energy γ on the orientation
of the surface. The equilibrium crystal shape is determined by the minimum of the
sum of all products γi � Si, where the γi are the respective surface energies of the
crystal faces with area Si. According to Wulff ’s theorem (1901), the polyhedron of
the crystal shape can be geometrically constructed by drawing vectors from the
origin to all crystallographic directions with lengths proportional to the respective
surface energies and placing a normal plane at the tip; the shape of the crystal is
then given by the inner envelope of all such planes, i.e., by the planes with lowest
surface energy.

The habit of real crystals often deviates significantly from the equilibrium shape:
first, because growth occurs under nonequilibrium conditions altering the γi and
second, due to the effect of imperfections like screw dislocations affecting the
growth rate or due to spatial gradients in the driving force. Still, a simple rule
holds: the growth habit is determined by the faces with slowest growth rate, because
a slowly growing face with some angle (<90�) to a fast growing face will gradually
enlarge its surface on expense of the latter.

When the transport to the surface surpasses the diffusion velocity at the surface,
i.e., when the viscosity of the material near the surface is too large, the atomic
particles do not have time to find their proper, ordered position before more arriving
atoms block their movement and freeze in a highly disordered state, creating an
amorphous solid. Such growth occurs more easily when the atomic building blocks
are larger molecules, or are formed by covalent forces, which, aside from space
filling, must also fulfill well-defined angle relations.

3.2 Growth of Bulk Single Crystals

Single crystals can be grown from various ambient phases, such as vapors, solutions,
melts, or even from a solid (e.g., amorphous) phase. The basics outlined above apply
to all methods. There are numerous growth techniques as outlined in Table 1, and
often, a specific material requires its own individually designed technique to obtain
single crystals of the desired quality. Many reviews are available to describe this
subject in detail, e.g., Buckley (1951), Laudise (1970), Goodman (1978), Pamplin
(1980), Holden and Morrison (1982), Brice (1986), Markov (2003), and Handbooks,
e.g., Hurle (1994) and Dhanaraj et al. (2010).

3.2.1 Growth from the Liquid Phase
Growth of bulk crystals from the liquid phase may occur by crystallization from
either the molten material or a solution containing the dissolved material (the solute)
in a suitable solvent.
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Growth from the Melt
Melt growth is the most frequently applied method for growing large single crystals
at high growth rates. Prerequisites for the application are a melting without decom-
position (i.e., change of stoichiometry) and a solid state without polymorphic
transitions (i.e., change of crystal structure without change of stoichiometry) below
the melting point. Materials with a melting point below 1,800 �C are particularly made
employing the Bridgman (1923) (also referred to as Bridgman Stockbarger) or the
Czochralski method (1918), while high-melting materials are grown by zone-melting or
the flame-fusion technique introduced by Verneuil (1902).

The Bridgman method illustrated in Fig. 10a employs a crucible containing the
molten material which is moved relative to the axial temperature gradient of a
vertical furnace. An additional adiabatic loss zone may be inserted between the
high-temperature and the low-temperature zones of the furnace for a steep and better-
adjusted temperature gradient. The speed of the directional crystallization is con-
trolled by the speed of the temperature field; moving the furnace upward is favored
over lowering the crucible to minimize agitation which may disturb crystallization.
The coldest point of the crucible is the lower tip; here, crystallization of the melt
commences, and a narrow part of the crucible supports the selection of a single
crystal (with a proper, fast growing direction) from an initially polycrystalline
material. Alternatively, a seed crystal may be placed at the lower tip of the crucible
to induce growth along a specific orientation. The Bridgman method is also applied
in a horizontal configuration.

A technique closely related to the Bridgman method is the gradient freezing
method (see Gault et al. (1986), Asahi et al. (2003)): the crucible containing the melt
is kept stationary, and the temperature gradient is moved along the melt by using a
multiple-zone furnace with individually controlled temperature zones. The technique

Table 1 Techniques for growing bulk single crystals

Nutrient
phase

Liquid

Melt Solution Vapor Solid

Crystal
growth
process

Bridgman (vertical,
horizontal)

Solvent
evaporation

Physical
vapor
deposition

Recrystallization,
strain annealing

Gradient freeze (vertical
(VGF), horizontal
(HGF))

Slow cooling Chemical
vapor
deposition

Precipitation from
alloy

Czochralski Hydrothermal
growth

Chemical
vapor
transport

Polymorphic
phase change

Kyropoulos Diffusion and
chemical
reaction

Zone-melting, floating
zone

Verneuil
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is implemented in vertical (vertical gradient freeze (VGF)) and horizontal (HGF)
configurations.

Both Bridgman and VGF growths are widely employed for fabricating compound
semiconductors (arsenides, phosphides, antimonides, II–VI). For growth of volatile
or decomposing compounds with a high vapor pressure at melting point, an addi-
tional high pressure of an inert gas (Ar or N2) is applied; since the diffusion
coefficient in the vapor phase is inverse to the total pressure, the decomposition by
volatile components is reduced. For binary III–V semiconductors, the growth rate is
in the range of 1 mm/h. Small temperature gradients (1–10 �C/cm) favor crystalli-
zation with a low dislocation density (<500 cm�2).

The Czochralski method depicted in Fig. 10b is the most commonly used
technique for growing Si and compound semiconductors. The method provides a
high growth rate applicable to large crystals with a good perfection. The molten
material is kept in a crucible at a temperature slightly above the melting point. A
(cooler) seed crystal is dipped into the melt, leading to growth of the substance at the
seed. The seed is then continuously pulled from the melt according to the speed of
crystallization. The liquid–solid interface is kept slightly above the surface of the
melt such that a rod-shaped crystal is formed.9 The pulling speed depends on the
geometry of crucible and crystal and on the balance of heat flow into and out of the
crystal; it is in the order of some mm/h for semiconductors but may be as low as 0.1
mm/h for mixed crystals or as high as10 cm/h for elements. The pulling or heating
rate must constantly be controlled to keep the growth front at the right position for
maintaining a crystal with constant diameter. If either rate is too high, the crystalli-
zation front moves up, the crystal gets thinner, and removal of the heat of solidifi-
cation gets worse; this leads to an even higher growth front. The stationary position
of the crystallization front is thus labile and requires active control. Usually, the
pulled crystal rotates at a rate of some to some ten rounds per minute to control also
the convection of the melt.

For growth of volatile or decomposing compounds, a high pressure of an inert gas
is applied, similar to the Bridgman technique outlined above. Particularly in the

Fig. 10 Schematic for crystal
growth from the melt. (a)
Bridgman method with axial
temperature profile of a
furnace with two temperature
zones. (b) Czochralski
method with liquid
encapsulation by boron oxide

9This feature is different from the related method of Kyropoulos (1926,1930), where crystallization
proceeds by slowly cooling the melt, and the crystal grows into the melt.
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growth of GaAs, GaP, or InP, an additional molten boron oxide (B2O3) protection
layer swimming on the melt is used (liquid encapsulation Czochralski (LEC); Metz
et al. 1962). This chemically very stable liquid encapsulation has a low vapor
pressure and a low density. Since it is transparent, the meniscus at the crystallization
front can still be observed for controlling the pulling rate.

Growth from a Solution
This old technique is widely used for crystallizing materials which melt incongru-
ently, i.e., decompose below the melting temperature. A further advantage particu-
larly for low-temperature growth is the low density of equilibrium defects.
Disadvantages are a relatively low growth rate (typically 1 mm/d) and a potential
incorporation of solvent material. Supersaturation is achieved either by controlling
the solution temperature, by evaporating the solvent, or by chemical reaction. The
technique is called hydrothermal method if aqueous solvents are used, generally
applied in an autoclave at high-pressure conditions to increase the solubility. For
nonaqueous solvents, it is also termed solvothermal method. Hydrothermal growth is
capable for growing very large single crystals, also from materials with a very low
solubility at normal conditions, and was applied to fabricate a large variety of
crystals like germinates, silicates, phosphates (KDP, GaPO4), rare-earth
(RE) tungstates (NaRE(WO4)2), III–V (GaN) and II–VI (ZnO) compounds, and
organic compounds.

Growth from high-temperature solutions, also referred to as flux method
(Wanklyn 1974), avoids the need of high pressure. Seed crystals for oriented growth
may be used, and crystallization can be promoted by slow cooling or pulling of the
seed. The method is particularly used for fabricating oxides (e.g., LBO (LiB3O5) and
BBO (BaB2O4 or Ba(BO2)2)) and fluorides (BaF, PbF2).

3.2.2 Growth from the Vapor Phase
In vapor-phase growth, the source material is transferred to the vapor phase by
sublimation or chemical reaction at a high temperature T>, transported to the growth
region by diffusion or convection, and then crystallized at a lower temperature T<. The
sublimation–condensation process is also referred to as physical vapor deposition
(PVD), while a chemically assisted process is often termed chemical vapor deposition
(CVD) when performed in a closed configuration and chemical vapor transport
(CVT) in an open configuration.10 Recrystallization may occur at the ampoule walls
by self-seeded growth or at a seed crystal. The basic setup is illustrated in Fig. 11.

Physical Vapor Deposition
The equilibrium between a solid and a gaseous phase is described by the
Clausius–Clapeyron relation dPe/dT=ΔH/(TΔV). Pe is the equilibrium vapor pressure,
ΔH the heat of sublimation, andΔV the change of volume by the phase transition from

10The differentiation between physical and chemical process is often not well defined, and CVT is
also used for closed systems.
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solid to vapor. If ΔV is approximated by the (much larger) gas volume and the gas
behaves approximately like an ideal gas, the Clausius–Clapeyron relation reads

ln Pe2=Pe1ð Þ ffi Δh T2 � T1ð Þ
R T1 T2

, (9)

Δh = ΔH/ n being the heat of sublimation of one mole of substance, R the universal
molar gas constant, and Pei the equilibrium vapor pressure at temperature Ti.
Sublimation at a high temperature T2 and condensation at a lower temperature T1
then lead to a supersaturation

Δμ ¼ RT1 ln Pe2=Pe1ð Þ: (10)

The rate of material transport is proportional toΔμ. Due to limits in equilibration and
transport, Eq. 10 actually represents a maximum value. On the other hand, the
transport rate must not be too large to avoid spontaneous parasitic nucleation and
to ensure crystalline growth.

Chemical Vapor Transport
Application of a chemical transport agent C leads to a chemically assisted transition
between solid and vapor phase. If we consider a compound AB with a gaseous
component B (like GaN), the process can in a simple case be described by

ABsolid þ Cgas , ACgas þ Bgas: (11)

The equilibrium partial pressures are mutually related by the law of mass action,

Fig. 11 Schematic for crystal
growth from the vapor phase
in (a) an open system and (b)
a closed system. In (b), the
ampoule has a bottleneck for
selecting a seed. (c) Axial
temperature profile of the
furnace along the ampoule
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PAC � PB=PC ¼ KP, (12)

where KP is the temperature-dependent equilibrium constant. KP may have either
sign and effects a transport from hot to cold for KP > 0 (usual case) and reverse
otherwise. Typical transport agents are hydrogen, halogens (chlorine, iodine, bro-
mine), or hydrogen halides.

Growth from the vapor phase (both physical and chemical vapor deposition/
transport and mixtures) is applied for a large variety of materials. It is the main
method to grow large boules of SiC (PVD and CVT), column-III nitrides (hydride/
halide vapor-phase epitaxy), II-VI and I-III-VI2 compounds (CVT), organic semi-
conductors (PVD), and many others.

3.2.3 Growth of Organic Crystals
The growth units of organic crystals are bulky molecules instead of the atoms
illustrated schematically in Fig. 8, and their incorporation at a kink site of the surface
requires some energy for proper orientation. The crystals have very weak
intermolecular bonds and hence low melting temperatures (see Table 6 in chapter
▶ “Crystal Bonding”). Still the growth methods outlined above are basically also
applied for fabricating organic semiconductors, but their vapor pressure, a low thermal
stability of the growth units, and a limited solvent solubility often require specific
modifications of conventional growth techniques; for a review, see Kloc et al. (2010).

Growth from the vapor phase is the most frequently used method for fabricating
organic single crystals, particularly for smaller, more volatile molecules.11 Generally,
physical vapor transport is applied, using either an open tube or a sealed ampoule as
illustrated in Fig. 11a,b. The organic source material is heated to sublimation temper-
ature at one end of a quartz tube, vaporized, and either transported by an inert carrier
gas like nitrogen or by diffusion in vacuum to the deposition zone held at decreased
temperature. Organic semiconductors have usually a poor purity, but a comparable
sensitivity like conventional semiconductors with respect to defects. This favors
vapor-phase growth: heavy impurities may remain at the vaporization zone or already
be deposited at higher temperatures before the crystallization zone, and lighter impu-
rities behind this zone held at even lower temperatures. Crystals grown from the vapor
phase have usually best purity and structural quality. They often show a preferred
two-dimensional growth, yielding plate-type shapes with a very large aspect ratio of
lateral dimensions versus thickness.

The vapor pressure, solubility, and stability of molecules decrease with increasing
mass. This makes gas-phase growth difficult or even impossible for crystals com-
posed of heavy molecules. A few materials like smaller acenes can be melted without
decomposition. Such organic molecules can be crystallized from the melt by apply-
ing the Bridgman or the Czochralski method described above. For most materials
with heavy molecules, growth from a solution is the only available method.

11Organic materials interesting for semiconductor applications are treated in ▶ Sect. 1.5 in chapter
“The Structure of Semiconductors.”
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Solution-phase growth can be performed by allowing crystals to precipitate from a
supersaturated solution or by evaporating the solvent; the formation of larger crystals
may be favored by a very slow cooling and slow solvent evaporation. The poor
solubility may be increased by applying the solvothermal method with a high
pressure and a moderately increased (still quite low) growth temperature. The
solubility was also increased by modifying the molecules, e.g., by adding bulky
arms; however, such substitution creates other molecules with altered physical
properties. Growth can also be performed by coating techniques, e.g., by drop-
casting a supersaturated solution of the dissolved semiconductor onto a substrate
or by dip-coating the substrate into the solution. Such techniques lead to polycrys-
talline organic semiconductors, which are also widely used in organic electronics.

3.3 Epitaxy of Layer Structures

Advanced semiconductor devices often comprise quantum wells and superlattices with
atomically abrupt interfaces, which can only be fabricated by epitaxial growth processes.
The methods are essentially named after the nutrition phase. Physical vapor deposition
techniques apply the vaporization of source material in vacuum, comprising thermal
evaporation, laser ablation, or sputtering. Vapor-phase epitaxy (VPE) is often classified
according to the chemistry of the source gases, such as metalorganic VPE (MOVPE or
organometallic VPE (OMVPE), also termed metalorganic chemical vapor deposition
(MOCVD)) and hydride VPE (HVPE). Liquid-phase epitaxy (LPE) is performed from a
liquid solution or a melt. Epitaxy is treated in a number of textbooks, e.g., Herman et al.
(2004), Ayers (2007), and Pohl (2013). Each epitaxy method has its strengths and
weaknesses. The techniques of LPE, MBE, and MOVPE are outlined below; most
electronic and optoelectronic devices are fabricated using one of these methods.

3.3.1 Liquid-Phase Epitaxy
In liquid-phase epitaxy (LPE), a crystalline layer grows from a supersaturated
solution or melt on a substrate, similar to seeded bulk growth. The most unique
features of this mature technology are:

• Layers with an extraordinary high structural perfection can be grown.
• High growth rates can be applied in the LPE growth process.

Growth conditions of LPE processes are close to thermodynamic equilibrium,
enabling a very low density of point and dislocation defects. The carrier lifetime in
such layers is consequently high. Highly efficient red GaAs-based LEDs and a
majority of the world’s production of LEDs, high-performance HgCdTe γ-ray
detectors, and magneto-optic layers are presently fabricated using LPE. The tech-
nique is applied to grow compound semiconductors (III–V, II–VI, IV–IV), magnetic
or superconducting oxides, and many other materials. LPE is particularly useful for
growing thick layers, also due to high deposition rates up to 1 μm/min. A restriction
of LPE is the limitation to materials which are miscible at growth temperature and a
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quite limited ability for fabricating nanostructures like quantum wells due to inter-
diffusion at the interfaces. Reviews on LPE are given in, e.g., Giess and Ghez
(1975), Astles (1990), Small et al. (1994), and Capper and Mauk (2007).

There exist several methods to bring the substrate into contact with the growth
solution prepared for epitaxial growth and to separate them at the end of layer
growth. Most versatile is the sliding-boat technique illustrated in Fig. 12, which
allows for multiple-layer growth. The boat consists of two parts: a base carrying the
substrate in a recess and wells in a block, which contain the solutions for growing
successively different layers. Either the block with the wells or the base is movable,
such that the solutions can be placed over the substrate; the surface tension of the
liquids prevents leakage at the small clearance above the substrate. The boat is
located in a furnace for precise temperature control and in a reactor tube for
providing control of the gaseous ambient (usually purified H2).

The LPE process is similar to that of seeded growth of bulk crystals from a
solution or a melt. Growth from a solution is preferred due to low growth temper-
atures far below melting: the vapor pressure of volatile components is reduced, the
interdiffusion of heterointerfaces is decreased, and detrimental effects of differences
in the thermal expansion of substrate and epitaxial layers are reduced.

The supersaturation is created by either cooling or solvent evaporation of a
saturated solution. A diffusion boundary layer of thickness δ with a concentration
gradient and a temperature gradient is formed at the growth front. Growth species of
the solute diffuse toward the liquid–solid interface, and solvent species diffuse
contrariwise toward the bulk of the solution. The process within this layer is
controlled by diffusion. LPE relies on well-established data of the liquid–solid
phase equilibrium, and the development of a growth process for a new layer structure
requires much more time than for MBE andMOVPE pointed out below. On the other
hand, liquid-phase epitaxy bares the potential for fabricating epitaxial layers with the
highest possible structural perfection and homogeneity.

3.3.2 Molecular-Beam Epitaxy
Molecular-beam epitaxy (MBE) is widely applied in research labs and industrial
production. The technique is also termed metalorganic MBE (MOMBE),
gas-source MBE (GSMBE), or chemical beam epitaxy (CBE) if different gas
sources are employed. In early experiments, various beam techniques were used
(cf. Miller and Bachmann (1958), Günther (1958)). Studies on the surface
kinetics of GaAs epitaxy by Arthur (1968) provided an insight into the growth

Fig. 12 Apparatus for liquid-
phase epitaxy. Numbers
denote solutions with different
compositions
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mechanisms, and soon later, layers with high quality were demonstrated by
Cho (1971). Reviews on MBE are given in, e.g., Parker (1985) and Joyce
et al. (1994).

The characteristic feature of MBE is the mass transport in molecular or atomic
beams, i.e., directed rays of neutral atoms or molecules in vacuum. An ultrahigh
vacuum environment (UHV, P < 10�7 Pa) is required to ensure a low impurity level
in the layers originating from residual atoms of the background vapor; the back-
ground vapor provides a steady flux on the substrate that must be much smaller than
that of the MBE sources. A schematic of an MBE system is given in Fig. 13. Beams
of different species are produced by effusion cells mounted opposite to the substrate.
The duration of the exposure is individually controlled by shutters for a rapid change
of material composition. The beam-equivalent pressure (BEP) produced by the
sources is measured by a gauge placed at the position of the substrate. Typical
growth rates are below 1 μm/h. The vacuum environment enables in situ monitoring
using electron diffraction. Usually, reflection high-energy electron diffraction
(RHEED) with an electron beam nearly parallel to the growth surface is applied,
yielding structural information on the surface crystallography during surface prep-
aration and epitaxy.

Beam Sources
For the production of beams from solid or liquid materials, usually Knudsen cells
(K cells) based on radiative heating are employed; for temperatures above 1,300 �C,
mostly electron-beam evaporation is used. The effusion rate of thermal evaporation
is described by the Knudsen equation

Γ ¼ Pe � Presð ÞAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π m kT

p particles

s

� �
, (13)

Fig. 13 Schematic of a
molecular-beam epitaxy
system. The circular arrow
indicates the positioning of
the gauge at the location of the
substrate for calibrating the
beam-equivalent pressure of
the effusion cells
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where the equilibrium vapor pressure Pe(T ) in the cell kept at temperature T can be
expressed by the Clausius–Clapeyron relation, Pres is the residual gas pressure in the
MBE chamber, and m is the mass of the effused atoms or molecules. The aperture A
of the cell must be small for an ideal isothermal cell obeying Eq. 13, but often A is
made large to increase the particle flux. The angular flux distribution is in the ideal
case described by Knudsen’s cosine law of effusion,

Γ ϑð Þ=ω ¼ Γ 0ð Þ cos ϑ, (14)

the angle ϑ referring to the direction normal to the aperture and ω being the unit solid
angle comprising the considered flux. Cells with a large aperture for enhanced
effusion at moderate cell temperature have a flux distribution depending on the
charging level of the cell; the effect originates from a gradually increasing collima-
tion of the crucible side walls as the source material depletes.

Gaseous source materials (supplied by external cylinders) are applied due to a
quasi unlimited lifetime of the source and a precise control of the flux by pressure or
mass-flow controllers which are also used in MOVPE. This allows also for a simple
change of flux for, e.g., varying alloy composition. A gas source consists of the
gas-control system and a cell (e.g., a heated nozzle) for the gas inlet into the MBE
chamber. Thermally stable molecules are thermally dissociated in a cracking stage of
the vacuum inlet cell to provide reactive species for growth.

Kinetic Aspects
Growth in MBE occurs usually far from thermodynamic equilibrium. Still both kinetic
and thermodynamic processes are relevant. Since sources and substrate have different
temperatures, no global equilibrium exists for the entire system. Effused particles have
an energy distribution according to the temperature of the specific source. When they
impinge on the substrate surface, they thermalize to the substrate temperature. Particles
desorbing again from the surface were found to reflect an energy distribution according
to the substrate temperature, indicating that the time for thermalization is much less
than the mean time of surface diffusion. Such finding justifies to assume an at least
partial or local equilibrium on a time scale relevant for the growth process. The relevant
equilibrium temperature is therefore that of the substrate.

The fraction of particles sticking to the surface and being incorporated during
epitaxy Nsticking with respect to the total number of impinging particles of a consid-
ered species Ntotal is referred to as the sticking coefficient s:

s ¼ Nsticking

Ntotal

: (15)

The quantity smay also depend on the flux of other species12 and may have any value
between zero and unity. The sticking of particles on the surface is described by an

12For example, in MBE of GaAs, the sticking coefficient of As2,sAs2 , increases linearly with the
(independent) Ga adsorption rate and reaches unity when flux(Ga) = 2 � flux(As2).
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adsorption energy as applied in Eq. 8. Usually, the terms physisorption and chem-
isorption are used to account for smaller and larger energies, respectively, although
chemical interactions occur in both kinds of adsorptions and the two terms are not
well defined. They are still useful for an overall description of surface processes to
express different surface diffusivities of a considered adatom species. For a simpli-
fied growth description, a two-step condensation process of the impinging particle
is assumed implying two sticking coefficients. The high surface mobility often
found for species arriving at the surface is then assigned to a physisorbed state with
a lower adsorption energy and a larger desorption probability, and incorporation to
the chemisorbed state.

3.3.3 Metalorganic Vapor-Phase Epitaxy
Metalorganic vapor-phase epitaxy (MOVPE) is presently applied for semicon-
ductor device fabrication in large-scale reactors having a capacity for the simul-
taneous deposition on 50 two-inch wafers. Applications of MOVPE also include
oxides, metals, and organic materials. The technique was first reported by
Miederer et al. (1962), Manasevit and Simpson (1968) and Manasevit (1972).
Due to a simple control of partial pressures, MOVPE is advantageous in realizing
graded layers, or in applying source materials differing strongly in partial pres-
sures, e.g., in growth of arsenide–phosphide alloys and nitride semiconductors.
MOVPE is described in detail in, e.g., Jones and O’Brien (1997) and
Stringfellow (1999).

Metalorganic Precursors
In MOVPE, the constituent elements are transported to the vapor–solid interface
in form of volatile metalorganic compounds, typically by a carrier gas like
hydrogen at 100 mbar total pressure. The gaseous species dissociate thermally
at the heated substrate, thereby releasing the elements for layer growth. The
dissociation is generally assisted by chemical reactions. The net reaction for the
MOVPE of GaAs using the standard source compounds trimethylgallium and
arsine reads

Ga CH3ð Þ3 þ AsH3 ! GaAs þ 3 CH4 ": (16)

Actually, many reactions participate, and many successive steps and species are
involved in the chemistry of deposition (see, e.g., Mountziaris and Jensen (1991)).
Simple steps in the release of Ga from the trimethylgallium precursor in Eq. 16 are,
e.g., given by the successive removal of the organic CH3 groups:

Ga CH3ð Þ3 ! Ga CH3ð Þ2 þ CH3 ! Ga CH3 þ 2 CH3 ! Ga þ 3 CH3:

Basic requirements for the source compounds employed for MOVPE are a low
stability to allow for decomposition in the process, but still a sufficient one for
long-term storage. Furthermore, the volatility should be high, and a liquid state is
favorable to provide a steady source flow by the carrier gas. Most source molecules
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have the formMRn, whereM denotes the source element (e.g., Ga) and R are alkyls
like methyl CH3, ethyl C2H5, or tertiary butyl C(CH3)3. The bond strength to a
given element M can be selected by choosing a suitable organic ligand: the
metal–carbon bond strength depends on the electronegativity of the metal M and
the size and configuration of the ligand R. As a thumb rule, the bond strength
decreases as the number of carbon bonds to the central carbon in the alkyl is
increased.

Besides metalorganic sources, also hydrides like arsine AsH3 are employed as
precursors. Their use is interesting since they release hydrogen radicals under
decomposition that can assist removal of carbon-containing radicals from
the surface, such as CH3 forming stable CH4 with H. A major obstacle is their
high toxicity and their very high vapor pressure, requiring extensive safety
precautions.

Precursor Supply
Most metalorganic sources are liquids which are stored in bubblers at a controlled
temperature, yielding an equilibrium vapor pressure Pe MO. For transport, a carrier
gas (usually hydrogen) with a flow QMO is introduced by a dip tube ending near the
bottom of the bubbler, and the bubbles of the carrier gas saturate with precursor
molecules. At the outlet of the bubbler, a pressure controller is installed, acting like a
pressure-relief valve. This allows to define a fixed pressure PB (>Pe MO) in the
bubbler, thereby decoupling the bubbler pressure from the equilibrium vapor-
pressure of the MO source (see Fig. 14). Also, the total pressure Ptot in the reactor
is controlled independently. The partial pressure of a metalorganic source in the
reactor PMO results from the mentioned parameters by

PMO ¼ QMO

Qtot

� Ptot

PB

� Pe MO, (17)

Qtot denoting the total flow in the reactor. Both fractions in Eq. 17 are employed to
control the partial pressure PMO of the source in the reactor. Gaseous hydrides are
directly controlled by theirflowQHyd, and Eq. 17 simplifies toPHyd=QHyd�Ptot/Qtot.

The total flow in the reactor results from the sum of all component flows plus the
additionally introduced flow of the carrier gas. This flow is generally much higher
than that of all sources; consequently, the sum of all source partial pressures PMO and
PHyd is much smaller than the total pressure Ptot. The reactor pressure Ptot is
controlled as an independent parameter by a control valve attached to an exhaust
pump behind the reactor (Fig. 14).

Growth Regimes
The complete treatment of the MOVPE process involves numerous gas phase and
surface reactions, in addition to hydrodynamic aspects. Numerical solutions of such
complex problem were developed for specific processes like the MOVPE of GaAs
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from trimethylgallium and arsine (Jensen 1994). Growth occurs far from equilib-
rium13; the growth rate is usually somewhat higher than in MBE (�μm/h) and
generally limited by the slowest process. Without considering growth mechanisms
in detail, limits by either transport or decomposition/surface kinetics can be well
distinguished. Figure 15 shows the dependence of the GaAs growth rate from the
substrate temperature. At low-temperature experiment and simulation show an
exponential relation due to thermal activation of precursor decomposition and
interface growth reactions. This regime is referred to as kinetically limited growth.
As the temperature is increased, the growth rate becomes nearly independent on
temperature. In this range called transport-limited growth, precursor decomposition
and surface reactions are much faster than mass transport from the gas phase to the
vapor–solid interface; the diffusion in the gas phase depends only weakly on
temperature.14 In the high-temperature range, growth rates decrease due to enhanced
desorption and parasitic deposition at the reactor walls, leading to a depletion of the
gas phase.

MOVPE is usually performed in the mid-temperature range of transport-limited
growth, where variations of the substrate temperature have only a minor effect on the
growth rate, the composition of alloys, and on the doping level. For arsenide and
phosphide semiconductors, the range is typically between 500 �C and 800 �C and for
nitrides with their strong bonds above 1,000 �C to ensure sufficient adatom surface
mobility for crystalline growth.

Fig. 14 Schematic of a metalorganic vapor-phase epitaxy apparatus. Hydrogen is used as carrier
gas and introduced into the metalorganic sources MO1 and MO2. MFC and PC denote mass-flow
and pressure controllers, respectively

13Similar to MBE
14The difference in the maximum growth rates in Fig. 15 originates from effects of the reactor
geometry.
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4 Summary

Semiconductors have become basic elements of modern civilization, with an
extremely large range of application, including high-speed communication, compu-
tation, and artificial intelligence. An increasing variety of materials, distinguished by
their chemical composition and atomic structure, is used to produce semiconducting
devices and to perform specific device functions with increasing efficiency in
smaller dimensions and at lower costs.

The growth of a semiconductor requires a supersaturation or a supercooling of the
nutrient phase. Growth commences from a nucleus or crystal seed and proceeds by
incorporation of atoms at kink sites and the advancement of surface steps. Single-crystal
growth from the melt achieves highest growth rates. Growth from the vapor phase may
be performed by physical vapor deposition applying a sublimation–condensation pro-
cess or by chemical vapor deposition implying chemical reactions.

Epitaxial growth of layers is mainly performed applying liquid-phase epitaxy (LPE),
molecular-beam epitaxy (MBE), or metalorganic vapor-phase epitaxy (MOVPE). LPE
yields highest growth rates and layer perfection, but not atomically sharp interfaces.
MBE is a physical vapor deposition technique employing atomic or molecular beams in
ultrahigh vacuum environment, enabling in situ monitoring by electron diffraction.
MOVPE employs metalorganic source compounds which release the required elements
by decomposition at growth temperature. Heterostructures with atomically abrupt
interfaces like quantum wells can be fabricated by both MBE and MOVPE.

References

Adams WG, Day RE (1876) The action of light on selenium. Proc R Soc (Lond) 25:113
Arthur JR Jr (1968) Interaction of Ga and As2 molecular beams with GaAs surfaces. J Appl Phys

39:4032

Fig. 15 Growth rate in the
MOVPE of homoepitaxial
GaAs layers as a function of
reciprocal temperature.
Trimethylgallium and arsine
are used as precursors. Full
and open circles represent
measured data from Reep and
Ghandhi (1983) and model
predictions from Mountziaris
and Jensen (1991),
respectively

30 Properties and Growth of Semiconductors



Asahi T, Kainosho K, Kohiro K, Noda A, Sato K, Oda O (2003) Chapter 15: Growth of III-V and
II-VI single crystals. In: Scheel HJ, Fukuda T (eds) Crystal growth technology. Wiley,
Chichester

Astles MG (1990) Liquid-phase epitaxial growth of III-V compound semiconductor materials and
their device applications. Adam Hilger, Bristol

Ayers JE (2007) Heteroepitaxy of semiconductors: theory, growth, and characterization. CRC, Boca
Raton

Bell Labs (1947) see: Bo Lojek (2007) History of semiconductor engineering. Springer, Berlin
Bergmann L (1931) Über eine neue Selen-Sperrschicht Photozelle. Phys Z 32:286 (On novel

selenium-junction photo cells, in German)
Bergmann L (1934) Phys Z 35:450
Braun F (1874) Über die Stromleitung durch Schwefelmetalle. Ann Phys Chem 153:556 (On the

current conduction in sulfur metals, in German)
Brice JC (1986) Crystal growth processes. Halstead Press, New York
Bridgman PW (1923) The compressibility of thirty metals as a function of pressure and temperature.

Proc Am Acad Arts Sci (Boston) 58:165; Ibid. 60:303(1925)
Bromme T (1851) Atlas der Physik der Welt. Krais & Hoffmann, Stuttgart (Physics atlas of the

world, in German)
Buckley HE (1951) Crystal growth. Wiley, New York
Capper P, Mauk M (2007) Liquid phase epitaxy of electronic, optical and optoelectronic materials.

Wiley, Chichester
Cho AY (1971) Film deposition by molecular-beam techniques. J Vac Sci Technol 8:S31
Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der

Metalle. Z Phys Chemie 92:219 (New method for measuring the crystallization speed of metals,
in German)

Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) (2010) Springer handbook of crystal growth.
Springer, New York

Ebert JJ (1789) Unterweisung in den Anfangsgründen der Naturlehre. Chr. Gottlieb Hertel, Leipzig
(Briefing in the elements of natural sciences, in German)

Faraday M (1833) Experimental researches in electricity, series IV. Bernard Quaritch, London,
p 433

Gault WA, Monberg EM, Clemans JE (1986) A novel application of the vertical gradient freeze
method to the growth of high quality III–V crystals. J Cryst Growth 74:491

Gibbs JW (1874) On the equilibrium of heterogeneous substances. Trans Conn Acad Arts
Sci 3:108–248, 343–524, (1874–1878). Reproduced in both The Scientific Papers (1906),
pp 55–353 and The Collected Works of J. Willard Gibbs, vol 2, Longmans, Green and Co.,
New York (1928), p. 267

Giess EA, Ghez R (1975) Liquid-phase epitaxy. In: Matthews JW (ed) Epitaxial growth part
B. Academic Press, New York, pp 183–213

Goodman CHL (1978) Crystal growth: theory and techniques. Plenum Press, New York
Grondahl LO (1926/1932) see: note on the discovery of the photoelectric effect in a copper-oxide

rectifier. Phys Rev 40:635
Günther KG (1958) Aufdampfschichten aus halbleitenden III-V-Verbindungen. Z Naturforschg

13a:1081 (Vapor deposition of semiconducting III-V compound layers, in German)
Hermann MA, Richter W, Sitter H (2004) Epitaxy. Springer, Berlin
Hittorf JW (1851) Über das elektrische Leitvermögen des Schwefelsilbers und des Halbschwe-

felkupfers. Ann Phys Lpz 84:1 (On the electric conductivity of sulfur silver and semi-sulfur
copper, in German)

Holden A, Morrison PS (1982) Crystals and crystal growing. MIT Press, Cambridge, MA
Hurle DTJ (1994) Handbook of crystal growth vol. 2a, bulk crystal growth, basic techniques. North

Holland, Amsterdam
Intel (2011) image accessible at http://www.techpowerup.com/reviews/Intel/Core_i5_2500K_GPU/

References 31

http://www.techpowerup.com/reviews/Intel/Core_i5_2500K_GPU/


Jensen KF (1994) Transport phenomena in vapor phase epitaxy reactors. In: Hurle DRT
(ed) Handbook of crystal growth. Elsevier, Amsterdam, pp 541–599

Jones AC, O’Brien P (1997) CVD of compound semiconductors. VCH, Weinheim
Joyce BA, Vvedenski DD, Foxon CT (1994) Growth mechanisms in MBE and CBE of III-V

compounds. In: Mahajan S (ed) Handbook on semiconductors. Elsevier, Amsterdam
Kloc C, Siegrist T, Pflaum J (2010) Growth of single-crystal organic semiconductors. In: Dhanaraj G,

Byrappa K, Prasad V, Dudley M (eds) Springer handbook of crystal growth. Springer, New York
Königsberger T, Weiss T (1911) Über die thermoelektrischen Effekte (Thermokräfte,

Thomsonwärme) und die Wärmeleitung in einigen Elementen und Verbindungen und über die
experimentelle Prüfung der Elektronentheorien. Ann Phys 35:1. (On the thermoelectrical effects
and heat conductivity in some elements and compounds and on the experimental examination of
the electron theory, in German)

KPMG report (2012) accessible at http://www.kpmg.com/eu/en/about/pages/annual-report.aspx
Kyropoulos S (1926) Ein Verfahren zur Herstellung großer Kristalle. Z Anorg Allg Chemie 154:308

(A method for the fabrication of large crystals, in German)
Kyropoulos S (1930) Dielektrizitätskonstanten regulärer Kristalle. Z Phys 63:849 (Dielectric

constants of normal crystals, in German)
Laudise RA (1970) The growth of single crystals. Prentice Hall, Englewood Cliffs
Manasevit HM, Simpson WI (1968) The use of metal-organics in the preparation of semiconductor

materials on insulating substrates: I. Epitaxial III-V gallium compounds. J Electrochem Soc
12:66C

Manasevit HM (1972) The use of metalorganics in the preparation of semiconductor materials:
Growth on insulating substrates. J Crystal Growth 13/14:306

Markov IV (2003) Crystal growth for beginners, 2nd edn. World Scientific, Singapore
Metz EAP, Miller RC, Mazelsky R (1962) A technique for pulling single crystals of volatile

materials. J Appl Phys 33:2016
Miederer WG, Ziegler, Dötzer R (1962) Verfahren zum tiegelfreien Herstellen von Galliumarse-

nidstäben aus Galliumalkylen und Arsenverbindungen bei niedrigen Temperaturen. German
Patent 1,176,102, filed 25.9.1962; and: Method of crucible-free production of gallium arsenide
rods from alkyl galliums and arsenic compounds at low temperatures. US Patent 3,226,270, filed
24.9.1963

Miller RJ, Bachmann CH (1958) Production of cadmium sulfide crystals by coevaporation in a
vacuum. J Appl Phys 29:1277

Mooser E, Pearson WB (1956) The chemical bond in semiconductors. J Electron 1:629
Mountziaris TJ, Jensen KF (1991) Gas-phase and surface reaction mechanisms in MOCVD of

GaAs with trimethyl-gallium and arsine. J Electrochem Soc 138:2426
Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys

Rev Lett 21:1450
Pamplin B (1980) Crystal growth, 2nd edn. Pergamon, New York
Parker EHC (ed) (1985) The technology and physics of molecular beam epitaxy. Plenum Press,

New York
Pohl UW (2013) Epitaxy of semiconductors. Springer, Berlin
Queisser HJ (1985) Kristallene Krisen. Piper, München English: The Conquest of the Microchip
Reep DH, Ghandhi SK (1983) Deposition of GaAs epitaxial layers by organometallic CVD.

J Electrochem Soc 130:675
Schuster A (1874) On unilateral conductivity. Philos Mag 48:251
Seebeck TJ (1822) Magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz.

Abhandl Deut Akad Wiss. Berlin, p 265. (Magnetic polarization of metals and ore by temper-
ature difference, in German)

Small MB, Giess EA, Ghez R (1994) Liquid-phase epitaxy. In: Hurle DTJ (ed) Handbook of crystal
growth, vol 3. Elsevier, Amsterdam, pp 223–253

Smith W (1873) Effect of light on selenium during the passage of an electric current. Nature 7:303
Stringfellow GB (1999) Organometallic vapor-phase epitaxy, 2nd edn. Academic Press, New York

32 Properties and Growth of Semiconductors

http://www.kpmg.com/eu/en/about/pages/annual-report.aspx


Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, Hoboken
Venables JA, Spiller GDT, Hanbrücken M (1984) Nucleation and growth of thin films. Rep Prog

Phys 47:399
Verneuil AV (1902) Production artificielle du rubis par fusion (Artificial production of ruby by

fusion, in French) C R Acad Sci Paris C 135:791; La synthese du rubis (Synthesis of ruby, in
French) Ann Chim et Phys (Paris) 3:20 (1904)

Volmer M (1939) Kinetik der Phasenbildung. Theodor Steinkopf, Dresden (Kinetics of phase
formation, in German)

Volmer M, Weber A (1926) Tröpfchenbildung in Dämpfen. Z Phys Chem 119:227 (Formation of
droplets in vapor, in German)

Wanklyn BMR (1974) Practical aspects of flux growth by spontaneous nucleation. In: Pamplin BR
(ed) Crystal growth, vol 1. Pergamon, Oxford, pp 217–288

Wilson AH (1931) The theory of electronic semi-conductors. Proc R Soc (Lond) Ser A 133:458
Wulff G (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der

Kristallflächen, Z. Kristallographie 34:449 (On the question of growth velocity and the decom-
position of crystal faces, in German)

Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc Lond 95:65
Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841

References 33



Crystal Bonding

Contents
1 Ionic and Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.1 Ionic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3 Mixed Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Metallic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3 Further Types of Bonding in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Atomic and Ionic Radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Bond-Length Relaxation in Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Bonding in Organic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Abstract
The bonding of atoms in semiconductors is accomplished by electrostatic forces –
Coulomb forces between the electrons and atomic nuclei – and the tendency of
atoms to fill their outer shells. Interatomic attraction is balanced by short-range
repulsion due to strong resistance of atoms against interpenetration of core shells.
Coulomb forces are the basis for ionic and hydrogen bonding forces but are also
involved in metallic bonding and, as dipole–dipole interaction, in van der Waals
bonding. In addition, strong quantum-mechanical effects, determining specific
orbitals, and Pauli exclusion are major contributing factors in covalent and
metallic bonding, respectively.
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1 Ionic and Covalent Bonding

Interatomic Forces In this chapter, the different types of bonding of solids are
reviewed, irrespective of whether the solids are crystalline or amorphous. This
treatment is quite general and is not restricted to semiconductors.
The formation of solids is determined by the interatomic forces and the size of the
atoms shaping the crystal lattice. The interatomic forces are composed of a
far-reaching attractive and a short-range repulsive component, resulting in an equi-
librium distance of vanishing forces at an interatomic distance re, at which the
potential energy shows a minimum (Fig. 1). In binary compounds, this equilibrium
distance, re, can be written as the sum of atomic radii,

re ¼ rA þ rB, (1)

where rA and rB are characteristic for the two atoms A and B (Fig. 2) and can be used
when other binary compounds are formed with the same bonding type, containing
A or B. For a more detailed discussion on atomic radii, see Sect. 3.1.

Attractive interatomic forces are predominantly electrostatic in character (e.g., in
ionic, metallic, van der Waals, and hydrogen bonding) or are a consequence of sharing
valence electrons of atoms to fill their outer shells, resulting in covalent bonding. Most
materials show mixed bonding, i.e., at least two of these bond types contribute
significantly to the interatomic interaction. In most technologically important com-
pound semiconductors, these mixed bondings are more covalent and less ionic. In

Fig. 1 Interaction potential
eV between two atoms; re is
the equilibrium distance; Eb is
the bonding energy at r = re

Fig. 2 Na+ anion and Cl�

cation shown as hard spheres
in actual ratio of radii
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other semiconductors, one of the other types may contribute, e.g., van der Waals
bonding in organic crystals and metallic bonding in highly conductive semiconduc-
tors. These different bonding types will be discussed in the following sections.

The repulsive interatomic forces, called Born forces (see Born and Huang 1954),
are caused by a strong resistance of the electronic shells of atoms against interpen-
etration. The repulsive Born potential is usually modeled with a strong power law1

eV rð Þ ¼ β=rm, m � 10 . . . 12, (3)

with β the force constant (see Eq. 1 in chapter▶ “Elasticity and Phonons”) and m an
empirical exponent (see Sect. 1.1). For ionic crystals, the exponent m is somewhat
smaller (6 < m < 10).

1.1 Ionic Bonding

Ionic bonding is caused by Coulomb attraction between ions. Such ions are formed
by the tendency of atoms to complete their outer shells. This is most easily accom-
plished by compounds between elements of group I and group VII of the periodic
system of elements; here, only one electron needs to be exchanged. For instance, in a
NaCl crystal, the Cl atom captures one electron to form a negative Cl� ion and the
Na atom loses the single electron in its outer shell to become a positive Na+ ion. The
bonding is then described by isotropic (radial-symmetric) nonsaturable Coulomb
forces attracting as many Na+ ions as space permits around each Cl� ion, and vice
versa, while maintaining overall neutrality, i.e., an equal number of positive and
negative ions. This results in a closely packed NaCl lattice with a coordination
number 6 (=number of nearest neighbors).

The energy gain between two ions can be calculated from the potential equation

eV ¼ � e2

4πe0 r
þ β

rm
for r ¼ re, (4)

containing Coulomb attraction (first term) and Born repulsion (second term). For an
equilibrium distance re ¼ rNaþ þ rCl� ¼ 2:8Å, a minimum of the potential energy of
eVmin��5 eV results2 for a typical value ofm= 9. In a crystal, we must consider all

1A better fit for the Born repulsion is obtained by the sum of a power and an exponential law:

VBorn ¼ β=rm þ γexp �r=r0ð Þ , (2)

where r0 is the softness parameter, listed for ions in Table 8. For more sophisticated repulsion
potentials, see Shanker and Kumar (1987).
2β can be eliminated from the minimum condition (dV=drjre ¼ 0). One obtains β = e2re

m� 1/(4πe0m)
and as cohesive energy eVmin=� e2(m � 1)/(4πe0m re).
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neighbors. For example, in a NaCl lattice, six nearest neighbors exert Coulomb
attraction in addition to 12 next-nearest neighbors of equal charge exerting Coulomb
repulsion, etc. This alternating interaction results in a summation that can be
expressed by a proportionality factor in the Coulomb term of Eq. 4, the Madelung
constant (Madelung 1918). For a NaCl crystal structure, we have

A ¼ 6ffiffiffi
1

p � 12ffiffiffi
2

p þ 8ffiffiffi
3

p � 6ffiffiffi
4

p þ 25ffiffiffi
5

p �þ� � �, (5)

where each term presents the number of equidistant neighbors in the numerator and
the corresponding distance (in lattice units) in the denominator. This series is only
slowly converging. Ewald’s method (the theta-function method) is powerful and
facilitates the numerical evaluation of A. For NaCl, we obtain from (Madelung 1918;
Born and Landé 1918)

eV ¼ �A
e2

4πe0
þ β0

rme
(6)

with A = 1.7476, a lattice binding energy of eVmin
(A) = H0(NaCl) = 7.948 eV,

compared to an experimental value of 7.934 eV. Here, β' and m are empirically
obtained from the observed lattice constant and compressibility. The Madelung
constant is listed for several AB compounds in Table 1 (see Sherman 1932).

The Born–Haber cyclic process is an empirical way of obtaining the lattice
energy, i.e., the binding energy per mole. The process starts with the solid metal
and gaseous halogen and adds the heat of sublimationWsubl(Na) and the dissociation
energy (1/2)Wdiss(Cl2); it further adds the ionization energy Wion(Na) and the elec-
tron affinity Wel aff(Cl) in order to obtain a diluted gas of Na+ and Cl� ions; all of
these energies can be obtained experimentally. These ions can be brought together
from infinity to form the NaCl crystal by gaining the unknown lattice energy
H0(NaCl). This entire sum of processes must equal the heat of formation
W0(NaCl) which can be determined experimentally (Born 1919; Haber 1919):

W0
solid ¼ Wsubl Nað Þ þWion Nað Þ þ 1

2
Wdiss Cl2ð Þ þWel aff Cl2ð Þ

n o
þ H0 NaClð Þ: (7)

In this equation, a minor correction of an isothermal compression of NaCl from
Table 1 Madelung constant for a number of crystal structures

Crystal structure Madelung constant

NaCl 1.7476

CsCl 1.7627

Zincblende 1.6381

Wurtzite 1.6410

CaF2 5.0388

Cu2O 4.1155

TiO2 (rutile) 4.8160
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p = 0 to p = 1 atm, heating from T = 0 K to room temperature, and an adiabatic
expansion of the ion gases to p= 0 have been neglected. The corresponding energies
almost cancel. The error is <1%.

A listing of lattice constants (for definition, see chapter ▶ “The Structure of
Semiconductors”) of a number of predominantly ionic AB compounds is given in
Table 2.

1.2 Covalent Bonding

Covalent bonding is caused by two electrons that are shared between two atoms:
they form an electron bridge. The bridge formation can be understood quantum-
mechanically by a nonspherical electron-density distribution that extends between
the bonded atoms. Examples of such density distributions are shown schematically

Table 2 Lattice constants a (in Å) and ratio of lattice constants c/a for simple AB compounds
(After Weißmantel and Hamann 1979) (for explanation of the different crystal structures, see
chapter ▶ “The Structure of Semiconductors”)

NaCl structure CsCl structure Zinc blende Wurtzite

a a a a a c/a

AgF 4.93 NaBr 5.973 BaS 6.363 AlP 5.431 AgI 4.589 1.63

AgCl 5.547 NaI 6.433 CsCl 4.118 AlAs 5.631 AIN 3.110 1.60

AgBr 5.775 PbS 5.935 CsBr 4.296 AlSb 6.142 BeO 2.700 1.63

BaO 5.534 PbSe 6.152 CsI 4.571 BeS 4.86 CdS 4.139 1.62

BaS 6.363 PbTe 6.353 TiI 4.206 BeSe 5.08 CdSe 4.309 1.63

BaSe 6.633 RbF 5.651 TlCl 3.842 BeTe 5.551 GaN 3.186 1.62

BaTe 7.000 RbCl 6.553 TlBr 3.978 CSi 4.357 InN 3.540 1.61

CaO 4.807 RbBr 6.868 TiI 4.198 CdS 5.832 MgTe 4.529 1.62

CaS 5.690 RbI 7.341 NH4Cl 3.874 CdSe 6.052 MnS 3.984 1.62

CaSe 5.992 SnAs 5.692 NH4Br 4.055 CdTe 6.423 MnSe 4.128 1.63

CaTe 6.358 SnTe 6.298 NH4I 4.379 CuF 4.264 TaN 3.056 –

CdO 4.698 SrO 5.156 TiNO3 4.31 CuCl 5.417 ZnO 3.249 1.60

KF 5.351 SrS 5.582 CsCN 4.25 CuBr 5.691 ZnS 3.819 1.64

KCl 6.283 SrSe 6.022 GaP 5.447 NH4F 4.399 1.60

KBr 6.599 SrTc 6.483 GaAs 5.646

KI 7.066 TaC 4.454 GaSb 6.130

LiF 4.025 TiC 4.329 HgSe 6.082

LiCl 5.130 TiN 4.244 HgTe 6.373

LiBr 5.501 TiO 4.244 InAs 6.048

LiI 6.012 VC 4.158 InSb 6.474

MgO 4.211 VN 4.137 MnS 5.611

MgS 5.200 VO 4.108 MnSe 5.832

MgSe 5.462 ZrC 4.696 ZnS 5.423

NaF 4.629 ZrN 4.619 ZnSe 5.661

NaCl 5.693 ZnTe 6.082
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in Fig. 3 for a molecule formation with electrons in a 1s or 2p state, e.g., for H2 or F2,
respectively.

If an atom approaching another atom of the same element has in its protruding
part of the electron-density distribution an unpaired electron with antiparallel spin,
both eigenfunctions may overlap; the Pauli principle is not violated. Their combined
wave function (ψ+ = ψA + ψB) yields an increased electron density |ψ+|

2 in the
overlap region (see Fig. 4a); the result is an attractive force between these two atoms
in the direction of the overlapping eigenfunctions. This is the state of lowest energy
of the two atoms, the bonding state. There is also a state of higher energy, the
antibonding state, with ψ� = ψA – ψB in which the spin of both electrons is parallel.
Here, the electrons are strongly repulsed because of the Pauli principle, and the
electron clouds cannot penetrate each other; therefore, the electron density between
both atoms vanishes (Fig. 4b). The resulting potential distribution as a function of
the interatomic distance between two hydrogen atoms forming an H2 molecule is
given in Fig. 5. In this figure, the ground state (bonding) S and the excited state
(antibonding) A are shown. The figure also contains as center curve the classical
contribution of two H atoms with a charge density corresponding to free atoms. Such
bonding is small compared with the covalent bonding.

Fig. 3 Atomic and molecular electron-density distribution for σ(s), σ( p), and π( p) bonding (After
Weißmantel and Hamann 1979)

Fig. 4 Wave functions of one-electron states [blue curves – identical in (a) and (b)] and probability
function to find one electron (red curves) in (a), a bonding state, and (b), an antibonding state,
showing finite and vanishing electron density at the center between atoms A and B for these two
states, respectively [observe the plotting of –ψB in (b)]. The picture of these two one-electron states
shown here shall not be confused with the two-electron potential given in Fig. 5
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The bond length (center-to-center distance) for some semiconductors and mole-
cules is listed in Table 3. In organic molecules, the bond length between C atoms
decreases with increasing bonding valency as shown in the table.

With increasingly missing unpaired electrons in the outer shell, more than one
atom of the same kind can be bound to each other. The number of bonded atoms is
given by the following valency: monovalent atoms can form only diatomic mole-
cules; divalent atoms, such as S or Se, can form chains; and trivalent atoms, such as
As, can form two-dimensional (layered) lattices. Solids are formed from such
elements by involving other bonding forces between the molecules, chains, or layers,
e.g., van der Waals forces (see Sect. 3). Only tetravalent elements can form three-
dimensional lattices which are covalently bound (e.g., Si).

Tetrahedrally Bound Elements Silicon has four electrons in its outer shell. In the
ground state of an isolated atom, two of the electrons occupy the s state and two of
them occupy p states, with a 2s22p2 configuration. By investing a certain amount of
promotion energy,3 this s2p2 configuration is changed into an sp3 configuration, in
which an unpaired electron sits in each one of the four singly occupied orbitals with
tetrahedral geometry (see Fig. 6). From the s orbital and the three p orbitals, four
linear combinations can be formed (depending upon the choice of signs), represented
as σi = 1/2 (φs + φpx + φpy + φpz). This is referred to as hybridization, with σi as the
hybrid function responsible for bonding. When we bring together a large number of
Si atoms, they arrange themselves such that each of them has four neighbors in
tetrahedral geometry as shown in ▶ Fig. 9 of chapter “The Structure of

Fig. 5 Potential energy for
the two valence electrons of
two covalently bound
hydrogen atoms approaching
each other. Upper curve,
antibonding state; lower
curve, bonding state; middle
curve, bonding potential from
free atom charge distribution.
Charge-density distributions
shown in the inset are for the
two covalent states (After
Kittel 1996)

3The promotion energy is 4.3, 3.5, and 3.3 eV for C, Si, and α-Sn, respectively. However, when
forming bonds by establishing electron bridges to neighboring atoms, a substantially larger energy
is gained, therefore resulting in net binding forces. Diamond has the highest cohesive energy in this
series, despite the fact that its promotion energy is the largest, because its sp3-sp3 C–C bonds are the
strongest (see Harrison (1980)).
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Semiconductors”. Each atom then forms four electron bridges to its neighbors, in
which each one is occupied with two electrons of opposite spin, as shown for the
center atom in Fig. 7a. Such bridges become evident in a density profile within the
(110) plane shown for two adjacent unit cells in Fig. 7b.

In contrast to the ionic bond, the covalent bond is angular dependent, since the
protruding atomic eigenfunctions extend in well-defined directions. Covalent bonding
is therefore a directional and saturable bonding; the corresponding force is known as a
chemical valence force, and acts in exactly as many directions as the valency describes.

1.3 Mixed Bonding

Crystals that are bonded partially by ionic and partially by covalent forces are
referred to as mixed-bond crystals. Most actual semiconductors have a fraction of
covalent and ionic bonding components (see, e.g., Mooser and Pearson 1956).

Tetrahedrally Bonded Binaries By using the Grimm–Sommerfeld rule (see
below) for isoelectronic rows of elements, Welker and Weiss (1954) predicted
desirable semiconducting properties for III–V compounds.4 Semiconducting III–V
and II–VI compounds are bound in a mixed bonding, in which electron bridges exist,
i.e., the bonding is directed, but the electron pair forming the bridge sits closer to the

Fig. 6 Linear combination
(hybridization) of a 1s
function (spherical) with 3p
functions (a) results in four
sp3 functions (b) which
extend toward the four
tetrahedra axes 1–4 and result
in strongly directional
bonding with a bond angle of
109.47�

Table 3 Bond lengths relevant to organic molecules, a-Si, and related semiconductors (After
Cotton and Wilkinson 1972)

Bond Bond length (Å) Bond Bond length (Å)

C–C 1.54 Si–Si 2.35

C = C 1.38 Si–H 1.48

C = C 1.42 (graphite) Ge–Ge 2.45

C � C 1.21 Ge–H 1.55

C–H 1.09 (sp3) C–Si 1.87

4Meaning compounds between one element of group III and one element of group Von the periodic
system of elements (cf. Fig. 3 in chapter ▶ “Properties and Growth of Semiconductors”)
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anion. This degree of ionicity increases for these compounds with an increased
difference in electronegativity (Fig. 8) from III–V to I–VII compounds and within
one class of compounds, e.g., from RbI to LiF (see also Table 4).

The mixed bonding may be expressed as the sum of the wave functions describ-
ing covalent and ionic bonding:

ψ ¼ aψ cov þ bψ ion, (8)

with the ratio b/a defining the ionicity of the bonding. This bonding can also be
described as rapidly alternating between that of covalent and ionic. Over an average
time period, a fraction of ionicity (b/a) results. The ionicity of the bonding can be
described by a static effective ion charge e*, as opposed to a dynamic effective ion
charge (discussed in ▶Sect. 1.1 in chapter “Photon–Phonon Interaction”), which is
less by a fraction on the order of b/a than in a purely ionic compound with the charge
given by the valency. For instance, in CdS, the divalent behavior of Cd and S could
result in a doubly charged Cd++S––lattice, while measurements of the electric dipole
moment indicate an effective charge of 0.49 for CdS. The static effective charge for
other II–VI and III–V compounds is given in Table 4.

The effective charge concept can be confusing if one does not clearly identify the
ionic state of the system. For instance, in the case of CdS, a purely ionic state is
Cd2+S2–, as opposed to the covalent state of Cd2–S2+ (which is equivalent to the Si0

Si0 configuration). In other words, the covalent state is that in which both Cd and S have
four valence electrons and are connected to each other by a double bond. This must not
be confused with the neutral Cd0S0 configuration, which is a mixed-bonding state. The
expression for the static effective charge (see Coulson et al. 1962) is

e�
e
¼ N a=bð Þ2 � 8� Nð Þ

1þ a=bð Þ2 , (9)

with N as the valency. For N = 2, the effective charge vanishes when a/b =
ffiffiffi
3

p
. For

Fig. 7 (a) Unit cell of diamond with pairs of electrons indicated between adjacent atoms. (b)
Electron-density profile within the (110) plane (After Dawson 1967)
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N = 3 in III–V compounds, e* vanishes when a/b =
ffiffiffiffiffiffiffiffi
5=3

p
, and for group IV

semiconductors when a = b.
In crystals, low coordination numbers (typically 4) signify a considerable cova-

lent contribution to the bonding.

Fig. 8 (a) Electronegativity
of the elements with groups
from the periodic table of
elements identified by
interconnecting lines.
(b) Ionicity of alkali halides
and halide molecules as a
function of the difference in
electronegativity (After
Pauling 1960)

Table 4 Static effective charges of partially covalent AB compounds (After Coulson et al. 1962)

Compound e*/e Compound e*/e

ZnO 0.60 BN
AlN
GaN
InN

0.43
0.56
0.55
0.58

ZnS
CdS
HgS

0.47
0.49
0.46

BP
AlP
GaP
InP

0.32
0.46
0.45
0.49

ZnSe
CdSe
HgSe

0.47
0.49
0.46

AlAs
GaAs
InAs

0.47
0.46
0.49

ZnTe
CdTe
HgTe

0.45
0.47
0.49

AISb
GaSb
InSb

0.44
0.43
0.46
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The different degree of bridge formation in crystals with mixed bonding (Fig. 9)
can be made visible by a Fourier analysis of x-ray diffraction from which the
electron-density distribution around each atom can be obtained. This is shown for
a mostly ionic crystal in Fig. 10a and for a mostly covalent crystal in Fig. 10b.

2 Metallic Bonding

Metallic bonding can be understood as a collective interaction of a mobile electron
fluid with metal ions. Metallic bonding occurs when the number of valence electrons
is only a small fraction of the coordination number; then, neither an ionic nor a
covalent bond can be established. Metallic bonding of simple metals, e.g., alkali
metals, can be modeled by assuming that each metal atom has given up its valence
electron, forming a lattice of positively charged ions, submerged in a fluid of

Fig. 9 Schematic sketch of mixed bonding from (a) nearly perfect covalent in Ge to (d) perfect
ionic in KCl. It shows diminishing bridge formation and increasing cloud formation of electrons
around anions with increasing ionicity (After Ashcroft and Mermin 1976)

Fig. 10 Electron-density distribution obtained by Fourier analysis of the x-ray diffraction pattern
of (a) NaCl, (110) plane, and (b) diamond, (110) plane (After Brill et al. 1939)
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electrons. Between the repulsive electron–electron and ion–ion interactions and the
attractive electron–ion interaction, a net attractive binding energy results, which is
nondirectional and not saturable, and results in close-packed structures with high
coordination numbers (8 or 12; Wigner and Seitz 1933), but relatively wide spacing
between the submerged metal ions (Table 5). Such metals have low binding energies
(~1 eV atom �1) and high compressibility. They are mechanically soft, since the
nondirectional lattice forces exert little resistance against plastic deformation. This
makes metals attractive for forming and machining.

In other metals, such as transition-group elements, the bonding may be described as
due to covalent bonds which rapidly hop from atom pair to atom pair. Again, free
electrons are engaged in this resonance-type bonding. These metals have a higher
binding energy of ~4 to 9 eVatom�1 and an interatomic distance that is closer to that
given by the sum of ionic radii (Table 5). They are substantially harder when located in
the middle of the transition metal row, e.g., Mo and W (Ashcroft and Mermin 1976).

In semiconductors with a very high density of free carriers, metallic binding
forces may contribute a small fraction to the lattice bond, interfering with the
predominant covalent bonding and usually weakening it, since these electrons are
obtained by ionizing other bonds. Changes in the mechanical strength of the lattice
can be observed in photoconductors in which a high density of free carriers can be
created by light (Gorid’ko et al. 1961). For more information, see Ziman (1969) and
Harrison (1966).

3 Further Types of Bonding in Solids

van der Waals Bonding Noble gas atoms or molecules with saturated covalent
bonds can be bound to each other by dipole–dipole interaction (Debye). The dipole
is created between the nucleus (nuclei) of the atom (molecule) and the cloud of
electrons moving around these nuclei and forms a fluctuating dipole moment even
for a spherically symmetrical atom. The interaction creates very weak, nonsaturable
attractive forces. The weakness of this van der Waals interaction results in low
melting points (Table 6) and soft molecule crystals. The bonding potential V(r) is
complemented by a short-range repulsive component originating from the Coulomb

Table 5 Ionic radii ri and half the nearest-neighbor distances in metals rm in Å (After Ashcroft and
Mermin 1976)

Metal ri rm rm/ri Transition metal ri rm rm/ri
Li 0.60 1.51 2.52 Cu 0.96 1.28 1.33

Na 0.95 1.83 1.93 Ag 1.26 1.45 1.15

K 1.33 2.26 1.70 Au 1.37 1.44 1.05

Rb 1.48 2.42 1.64

Cs 1.69 2.62 1.55
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repulsion of the core electrons and nuclei; this component can be approximated by
an exponential term, yielding, according to Buckingham (1938), the potential energy

eV ¼ � A

r6
þ B e�αr (10)

with empirical parameters A, B, and α. van der Waals forces (van der Waals 1873) are
the main binding forces of organic semiconductors (see Sect. 3.3).

Hydrogen Bonding Hydrogen bonding (Fig. 11) is a type of ionic bonding in
which the hydrogen atom has lost its electron to another atom of high electronega-
tivity. The remaining proton establishes a strong Coulomb attraction. This force is
not saturable. However, because of the small size of the proton, hydrogen bonding is
strongly localized, and spatially no more than two ions have space to be attracted to
it. When part of a molecule, the hydrogen bond – although ionic in nature – fixes the
direction of the attached atom because of space consideration. It should not, how-
ever, be confused with the covalent bonding of hydrogen that occurs at dangling
bonds (see ▶Sect. 3.2.2 in chapter “The Structure of Semiconductors”) in semi-
conductors, e.g., at the crystallite interfaces of polycrystalline Si or in amorphous
Si:H.

Intermediate Valence Bonding An interesting group of semiconductors are tran-
sition-metal compounds. The transition metals have partially filled inner 3d, 4d, 5d,

Table 6 Melting points (m.p.) of crystals bonded by van der Waals interaction

Noble gas crystal Organic crystal

Atom m.p. (K) Molecule Formula m.p. (�C)
He 0.95 (25 bar) Anthracene C14H10 216

Ne 25 Tetracene C18H12 357

Ar 84 Pentacene C22H14 300

Kr 116 Quaterthiophene C16H10 S4 ~213

Xe 162 Quinquethiophene C20H12 S5 253

Rn 202 Hexathiophene C24H14 S6 290

Rubrene C42H28 315–330

Fig. 11 Hydrogen bonding
between a positive hydrogen
ion (proton) and two ions
(coordination number 2)
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or 4f shells and a filled outer shell that provides a shielding effect to the valence
electrons. In these compounds, the crystal field has a reduced effect. Some of these
compounds show intermediate valence bonding. The resulting unusual properties
range from resonant valence-exchange transport in copper oxide compounds
(Anderson et al. 1987) to giant magnetoresistance and very large magneto-optical
effects in rare-earth semiconductors. For a review, see Holtzberg et al. (1980).

Other Bonding Considerations Other, more subtle bonding considerations have
gained a great deal of interest because of their attractive properties. These are related
to magnetic and special dielectric properties, to superconductivity, as well as to other
exotic effects.

For instance, diluted (“semi-”) magnetic semiconductors such as the alloy
Cdl-xMnxTe (Furdyna 1982, 1986; Brandt and Moshchalkov 1984; Wei and Zunger
1986; Goede and Heimbrodt 1988) show interesting magneto-optical properties.
They change from paramagnetic (x < 0.17) to antiferromagnetic (0.6 < x) and to the
ferro- or antiferromagnetic behavior of MnTe (▶ Sect. 2 in chapter “Magnetic
Semiconductors”); they exhibit giant magneto-optical effects and bound magnetic
polarons and offer opportunities for opto-electric devices that are tunable by mag-
netic fields.

These materials favor specific structures and permit the existence of certain
quasiparticles, such as small polarons or Frenkel excitons. The discussion requires
a substantial amount of understanding of the related physical effects and is therefore
postponed to a more appropriate section of this book (see also Phillips 1973;
Harrison 1980; Ehrenreich 1987).

3.1 Atomic and Ionic Radii

The equilibrium distances between atoms in a crystal define atomic radii when
assuming hard-sphere atoms touching each other. In reality, however, these radii
are soft with some variation of the electronic eigenfunctions and, for crystals with
significant covalent fraction, with dependence on the angular atomic arrangement.
However, for many crystals, the hard-sphere radii are very useful for most lattice
estimates.

When comparing the lattice constants of chemically similar crystals, such as
NaCl, NaBr, KCl, and KBr, one can determine the radii of the involved ions (Na+,
K+, Cl�, and Br�) if at least one radius is known independently. Goldschmidt (1927)
used the radii of F� and 0– – for calibration. Consequently, listings of other ionic
radii are therefore referred to as Goldschmidt radii. These radii are independent of
the compound in which the atoms are incorporated as long as they exhibit the same
type of bonding. One distinguishes atomic, ionic, metallic, and van der Waals radii.
Ionic radii vary with changing valency.

A list of the most important ion and atomic radii is given in Table 7. The drastic
change in radii with changing bonding force (Mooser and Pearson 1956) is best
demonstrated by comparing a few typical examples for some typical elements
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incorporated in semiconductors (Fig. 12). For more recent estimates of tetrahedral
covalent radii, see van Vechten and Phillips (1970).

The deviation from strict rigidity, i.e., the softness of the ionic spheres, is
conventionally considered by using a softness parameter r0 in the exponential
repulsion formula (Eq. 2). This parameter is listed for a number of ions in Table 8.

This softness also results in a change of the standard ionic radii as a function of
the number of surrounding atoms. A small correction Δm in the interionic distance is
listed in Table 9. This needs to be considered when crystals with different coordi-
nation numbers m, i.e., the number of surrounding atoms, are compared with each
other (e.g., CsCl and NaCl).

With increasing atomic number, the atomic (or ionic) radius of homologous
elements increases. The cohesive force therefore decreases with increasing atomic
(ionic) radii. Thus, compounds formed by the same bonding forces, and crystallizing
with similar crystal structure, show a decrease, for example, in hardness,5 melting
point, and band gap, but an increase in dielectric constant and carrier mobility (see
the respective sections).

The ratio of ionic radii determines the preferred crystal structure of ionic com-
pounds. This is caused by the fact that the energy gain of a crystal is increased with
every additional atom that can be added per unit volume. When several possible
atomic configurations are considered, the material crystallizes in a modification that
maximizes the number of atoms in a given volume. This represents the state of lowest
potential energy of the crystal, which is the most stable one. An elemental crystal
with isotropic radial interatomic forces will therefore crystallize in a close-packed
structure. In a binary crystal, the ratio of atomic radii will influence the possible
crystal structure. For isotropic nonsaturable interatomic forces, the resulting stable
lattices are shown in Table 11 for different ratios of the ion radii (see following
sections).

When a substantial amount of covalent bonding forces are involved, the rules
to select a stable crystal lattice for a given compound are more complex. Here,
atomic bond length and bond angles must be considered. Both can now be
determined from basic principal density-functions calculations (see ▶ Sect. 2 in
chapter “Quantum Mechanics of Electrons in Crystals”). We can then define
atomic radii from the turning point of the electron-density distribution of each
atom and obtain an angular-dependent internal energy scale from these calcula-
tions (Zunger and Cohen 1979). Using axes constructed from these radii, one
obtains well-separated domains in which only one crystal structure is observed for
binary compounds (Zunger and Cohen 1979; Villars and Calvert 1985; Yeh et al.
1992).

5This empirical quantity can be defined in several ways (e.g., as Mohs, Vickers, or Brinell hardness)
and is a macroscopic mechanical representation of the cohesive strength of the lattice. In Table 10,
the often used Mohs hardness is listed, which orders the listed minerals according to the ability of
the higher-numbered one to scratch the lower-numbered minerals.
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Fig. 12 Scale drawing of
rigid sphere atoms with
different bonding character
[ionic or covalent, identified
by the appropriate number of
minus signs (upper row) or
valence lines (lower row),
respectively]

Table 8 Repulsion potential softness parameters (Eq. 2) in Å (After Shanker and Kumar 1987)

Ion r0(th) r0(exp) Ion r0(th) r0(exp)

Li� 0.069 0.042 F� 0.179 0.215

Na+ 0.079 0.090 Cl� 0.238 0.224

K+ 0.106 0.108 Br� 0.258 0.254

Rb+ 0.115 0.089 I� 0.289 0.315

Cs+ 0.130 0.100

Table 9 Change of interatomic distance Dm (in Å) for compounds deviating from coordination
number m = 6

m Δm m Δm m Δm Δm Δm

1 �0.50 4 �0.11 7 +0.04 10 +0.14

2 �0.31 5 �0.05 8 +0.08 11 +0.17

3 �0.19 6 0 9 +0.11 12 +0.19

Table 10 Mohs hardness

Material Chemistry Lattice type Hardness

Talc Mg3H2SiO12-aq Layer lattice 1

Gypsum CaSO4�H2O Layer lattice 2

Iceland spar CaCO3 Layer lattice 3

Fluorite CaF2 Ion lattice 4

Apatite Ca5F(PO4)3 Ion lattice 5

Orthoclase KAlSi3O8 SiO4 frame 6

Quartz SiO2 SiO4 frame 7

Topaz Al2F2SiO4 Mixed ion-valency lattice 8

Corundum Al2O3 Valency lattice 9

Diamond C Valency lattice 10
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3.2 Bond-Length Relaxation in Alloys

The lattice constant of alloys Al-xBxC of binary compounds AC and BC with
respective lattice constants aAC and aBC interpolates according to the concentration

a xð Þ ¼ 1 � xð ÞaAC þ xaBC (11)

when they crystallize with the same crystal structure (Vegard’s rule, Vegard
1921). However, the bond length between any of the three pairs of atoms is
neither a constant, as suggested from the use of constant atomic radii (Pauling
1960), nor a linear interpolation as shown by the dotted line in Fig. 13 for total
relaxation of the bond of atom B in a different chemical environment AC (or of
A in BC).

This nonrigidity of atoms is important when incorporating isovalent impurities
into the lattice of a semiconductor (doping) and estimating the resulting deformation
of the surrounding lattice. With the bond length rBC within the AC lattice (see
Table 12), one defines a relaxation parameter

e ¼ rBC AC : Bð Þ � r0AC
r0BC � r0AC

: (12)

The superscript 0 indicates the undisturbed pure crystal, the notation AC:B indicates

Table 11 Preferred lattice structure for AB compounds with ionic binding forces (After
Goldschmidt 1927)

rA/rB Preferred stable lattice

<0.22 None

0.22. . .0.41 Zincblende or wurtzite

0.41. . .0.72 NaCl lattice

>0.72 CsCl lattice

Fig. 13 Variation of bond
length in an Al-xBxC alloy for
rigid atoms (e = 1), virtual
crystal approximation (e = 0),
and experimentally observed
relaxation
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B as doping element with a sufficiently small density incorporated in an AC
compound, so that B–B interaction can be neglected.

The relaxation parameter can be estimated from the bond-stretching and bond-bending
force constants α and β (see Table 13), according to Martins and Zunger (1984),

e ¼ 1

1þ 1

6

αAC
αBC

1þ 10
βAC
αAC

� � , (13)

yielding values of e typically near 0.7 (see Table 12); that is, isovalent impurity

Table 12 Bond length of an isovalent impurity in a given host lattice and bond-length relaxation
parameter (After Martins and Zunger 1984)

System rBC (AC:B) (Å) e System rBC (AC:B) (Å) e
AlP:In 2.480 0.65 InP:Al 2.414 0.73

GaP:In 2.474 0.63 InP:Ga 2.409 0.73

AlAs:In 2.553 0.60 InAs:Al 2.495 0.74

GaAs:In 2.556 0.62 InAs:Ga 2.495 0.73

AlSb:In 2.746 0.61 InSb:Al 2.693 0.75

GaSb:In 2.739 0.60 InSb:Ga 2.683 0.74

AlP:As 2.422 0.65 AlAs:P 2.395 0.67

AlP:Sb 2.542 0.61 AlSb:P 2.444 0.73

AlAs:Sb 2.574 0.60 AlSb:As 2.510 0.71

GaP:As 2.414 0.62 GaAs:P 2.387 0.68

GaP:Sb 2.519 0.57 GaSb:P 2.436 0.73

GaAs:Sb 2.564 0.60 GaSb:As 2.505 0.70

InP:As 2.595 0.67 InAs:P 2.562 0.74

InP:Sb 2.700 0.60 InSb:P 2.597 0.79

InAs:Sb 2.739 0.64 InSb:As 2.667 0.75

ZnS:Se 2.420 0.70 ZnSe:S 2.367 0.78

ZnS:Te 2.539 0.67 ZnTe:S 2.407 0.78

ZnSe:Te 2.584 0.71 ZnTe:Se 2.502 0.74

β-HgS:Se 2.611 0.76 HgSe:S 2.553 0.80

β-HgS:Te 2.716 0.71 HgTe:S 2.579 0.82

HgSe:Te 2.748 0.74 HgTe:Se 2.665 0.80

ZnS:Hg 2.482 0.73 β-HgS:Zn 2.380 0.80

ZnSe:Hg 2.587 0.74 HgSe:Zn 2.494 0.78

ZnTe:Cd 2.755 0.70 CdTe:Zn 2.674 0.78

ZnTe:Hg 2.748 0.69 HgTe:Zn 2.673 0.78

γ-CuCl:Br 2.440 0.81 γ-CuBr:Cl 2.367 0.79

γ-CuCl:I 2.563 0.80 γ-CuI:Cl 2.407 0.76

γ-CuBr:I 2.585 0.79 γ-CuI:Br 2.500 0.76

C:Si 1.665 0.35 Si:C 2.009 0.74

Si:Ge 2.380 0.58 Ge:Si 2.419 0.63

Si:Sn 2.473 0.53 α-Sn:Si 2.645 0.70

Ge:Sn 2.549 0.55 α-Sn:Si 2.688 0.67
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atoms behave more like rigid atoms (e = 1) than totally relaxed atoms (e = 0) in a
virtual crystal approximation (Eq. 11).

3.3 Bonding in Organic Crystals

Recently, semiconductors made from organic materials gained much advertence6;
for a review, see Schwoerer and Wolf (2007). All organic semiconductors are solids
comprising molecules with carbon atoms, which are bond by a system of conjugated
π electrons. In such a system, two adjacent C atoms are not only bond by σ bonds
(see Fig. 3), i.e., single bonds, but in addition by multiple (usually double) bonds. A
simple example is the ethene molecule C2H4 illustrated in Fig. 14. Three of the four
valence electrons (2s2, 2p2) of each C atom form σ bonds from sp2 hybrid orbitals:
two to H atoms and one to the other C atom; all these bonds lie in one plane. The two
remaining pz electrons of the C atoms have their density distribution above and
below this plane; they form an additional π bond, which is weaker than the strong σ
bond because the overlap of the pz wave functions of the adjacent C atoms is small.

The larger molecules of organic semiconductors have delocalized conjugated π
electrons in alternating single and double bonds. The molecule may be linear or
cyclic as illustrated in Fig. 15.

The molecules are the building blocks of organic semiconductors. They may
either be arranged in a regular order of a crystal as shown in ▶ Sect. 1.5 in chapter

Table 13 Bond-length (d ), bond-stretching (a), and bond-bending (b) force constants, calculated
from elastic constants (After Martin 1970)

Crystal d (Å) α (N m�1) β (N m�1) Crystal d (Å) α (N m�1) β (N m�1)

C 1.545 129.33 84.71 InP 2.541 43.04 6.24

Si 2.352 48.50 13.82 InAs 2.622 35.18 5.49

Ge 2.450 38.67 11.37 InSb 2.805 26.61 4.28

α-Sn 2.810 25.45 6.44 ZnS 2.342 44.92 4.81

SiC 1.888 88. 47.5 ZnSe 2.454 35.24 4.23

AlP 2.367 47.29 9.08 ZnTe 2.637 31.35 4.45

AlAs 2.451 43.05 9.86 CdTe 2.806 29.02 2.44

AlSb 2.656 35.35 6.79 β-HgS 2.534 41.33 2.56

GaP 2.360 47.32 10.46 HgSe 2.634 36.35 2.36

GaAs 2.448 41.19 8.94 HgTe 2.798 27.95 2.57

GaSb 2.640 33.16 7.23 γ-CuCl 2.341 22.9 1.01

γ-CuBr 2.464 23.1 1.32

γ-CuI 2.617 22.5 2.05

6Two principal devices made of organic semiconductors recently entered the market: light-emitting
diodes (OLEDs) and field-effect transistors (OFETs), processed as thin-film transistors (TFT).
Prominent molecules used in organic (opto-) electronics are listed in ▶ Sect. 1.5 in chapter “The
Structure of Semiconductors.”
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“The Structure of Semiconductors” or irregularly; while both forms are applied for
organic electronics, generally best performance is obtained with crystalline modifi-
cations. The molecules of organic semiconductors do not have unsaturated bonds
and hence no free valences like the atoms of inorganic semiconductors.
Intermolecular bonding forces of electrically neutral and nonpolar molecules are
pure van der Waals interactions. If the molecules have a permanent dipole moment or
polar substituents, static dipolar bonding and ionic or hydrogen bonding may be
superimposed. In the presence of charges, a term + q1q2/r is added to the potential in
Eq. 10 (see Starr and Williams 1977).

The bonding energy provided by van der Waals interaction is expressed by
Eq. 10. However, in contrast to interatomic distances in noble gas crystals, the
distance r in Eq. 10 is not well defined in organic solids: the distance between the
molecules is of the same size as the extension of the molecules. A good description
of experimental data is obtained, if the attractive potential between two neighboring
molecules is calculated as the sum of all atom – atom potentials according to the
Buckingham potential (Eq. 10), where r is the distance from an atom of one molecule
to an atom of the other molecule (Kitaigorodskii 1966). Parameters of Eq. 10 for all

Fig. 14 σ (blue) and π
(green) molecule orbitals of
an ethene molecule C2H4

Fig. 15 Various representations of (a) polyethylene and (b) anthracene. Carbon atoms are gener-
ally left out and usually also the hydrogen atoms. The π electrons are indicated by double valence
lines or, in cyclic molecules, also by a circle
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three different pairs of atoms occurring in hydrocarbon molecules are listed in
Table 14. The parameters were deduced from structural data and heat of sublimation
of many organic molecules and apply in good approximation for all solids composed
of hydrocarbon molecules with conjugated π electrons. The intermolecular atom –
atom potential calculated with these parameters is shown in Fig. 16. The
intermolecular bond lengths and energies per atom pair are 3.88 Å, 4.1 meV for
C–C; 3.30 Å, 2.1 meV for C–H; and 3.37 Å, 0.4 meV for H–H.

4 Summary

The interatomic forces responsible for crystal bonding are, to a large degree,
electrostatic forces between the electrons and atomic nuclei. These Coulomb forces
are the basic element for ionic and hydrogen bonding forces but are also involved in
metallic bonding and, as dipole–dipole interaction, in van der Waals bonding. In
addition, strong quantum-mechanical effects, determining specific orbitals, and Pauli
exclusion are major contributing factors in covalent and metallic bonding, respec-
tively. While the overlap of eigenfunctions of unpaired electrons with opposite spin
provides the major contribution to the covalent attraction, the near impermeability of
all other electronic orbitals determines the rigidity of atoms in close proximity to
each other. This justifies the specification of atomic radii.

Table 14 Parameters of the Buckingham potential Eq. 10 for atom – atom pairs of neighboring
hydrocarbon molecules (After Starr and Williams 1977)

Pair A (kJ mol�1 Å6) B (kJ mol�1) α (Å�1)

C–C 2,140 300,000 3.60

C–H 467 35,600 3.67

H–H 102 9,080 3.74

Fig. 16 Intermolecular
potential of Eq. 10 for
different atom – atom pairs of
neighboring hydrocarbon
molecules. The curves were
computed using the
parameters of Table 14
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Abstract
The bonding forces and atomic sizes determine the arrangement of the atoms in
equilibrium in crystals. The crystal structure is determined by the tendency to fill
a given space with the maximum number of atoms under the constraint of
bonding forces and atomic radii. Crystal bonding and crystal structure are thus
intimately related to each other and determine the intrinsic properties of semi-
conductors. Nonequilibrium states can be frozen-in and determine the structure of
amorphous semiconductors. In an amorphous structure the short-range order is
much like that in a crystal, while long-range periodicity does not exist. Quasi-
crystals are solids with an order between crystalline and amorphous. These
quasiperiodic crystals have no three-dimensional translational periodicity, but
exhibit long-range order in a diffraction experiment. A quasicrystalline pattern
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continuously fills all available space; unlike regular crystals space filling requires
an aperiodic repetition of (at least) two different unit cells.

Superlattices and low-dimensional structures like quantum wires and quantum
dots, created by alternating thin depositions of different semiconductors, show
material properties which can be engineered by designing size and chemical
composition. This opens the feasibility for fabricating new and improved devices.

Keywords
Bonding forces � Bravais lattice � Brillouin zone � Crystal structure �Atomic radii �
Crystal bonding � Miller indices � Organic semiconductors � Structure of
amorphous semiconductors � Short-range order � Quasicrystals � Superlattices �
Quantum wells � Quantum wires � Quantum dots � Reciprocal lattice � Unit cell

1 Structure and Symmetry in Crystalline Solids

Many physical properties of crystals depend on the periodicity and symmetry of the
lattice that determines its crystal structure. A short summary of the basic elements of
the crystal structure is presented in this chapter. For an extensive review, see
DiBenedetto (1967), Newnham (1975), and Barrett and Massalski (1980).

The easiest way to define the structure of a crystalline semiconductor (Fig. 1) is
by its smallest three-dimensional building block, the unit cell. From these unit cells,
the ideal crystal is constructed by three-dimensional repetition. The unit cell usually
contains a small number of atoms, from one for a primitive unit cell to a few atoms
for nonprimitive cells and compound crystals. In molecular crystals, this number can
be much larger and is usually a small multiple of the number of molecules forming
the crystal. The three-dimensional periodic array of atoms is called the crystal lattice.

To define a unit cell, one introduces a three-dimensional point lattice and adds to
this imaginary lattice an atomic basis, i.e., one, two, or more atoms in a specific
arrangement for each point, in order to arrive at the crystal lattice (Klug and
Alexander 1974; Buerger 1956). Figure 2 shows in two dimensions a crystal with
a basis containing two atoms.

1.1 Crystal Systems and Bravais Lattices

A coordinate system is introduced so that its origin lies at the center of an arbitrary
atom (or basis) and its axes point through the centers of preferably adjacent atoms
(or basis) while best representing the symmetry of the lattice1 – see Fig. 5. A lattice
vector points from the origin along each axis to the center of the next equivalent

1However, there is not always a unique way to define this coordinate system - see Sect. 1.1.3 below.
For mathematical reasons, an orthogonal system is preferred when possible.
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atom2 or from the center of one basis to the center of the next. The value of this
vector is called the lattice constant.

1.1.1 Crystal Systems
All possible crystals can be ordered into seven crystal systems (i.e., different
coordinate systems) according to the relative length of their lattice vectors and the
angle between these vectors – see Fig. 3. These crystal systems are listed in Table 1,
together with other properties identified in the following sections.

1.1.2 Bravais Lattices
There are several symmetry operations that transfer a crystal into itself. The simplest
one is a linear transformation, which transfers the lattice point t0 into an equivalent
lattice point t:

Fig. 1 Diamond structure
viewed along a h110i
direction (Goncharova 2012)

Fig. 2 The crystal lattice: point lattice plus basis with two atoms

2For example, from Na to Na in a NaCl crystal, and not from Na to the next Cl ion. “Equivalent”
refers to the neighborhood of this atom, which must be identical to the atom at the origin.
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t ¼ t0 þ n1aþ n2bþ n3c (1)

with a, b, and c as the lattice vectors in x-, y-, and z-directions, respectively, and
integers nl, n2, and n3. This linear transformation shifts the entire lattice by an integer
number of lattice constants and thereby reproduces the lattice. All lattices show
linear transformation symmetry. A unit cell can now be defined as the smallest
parallelepiped that forms the entire crystal when sequentially shifted by a linear
transformation according (1). There are only 14 different unit cells possible; they
form 14 different lattices, called Bravais lattices (or translation lattices).

In each of the crystal systems, there is one lattice with a unit cell that contains
only one lattice atom,3 the primitive unit cell (P in Table 1). In some crystal systems,
there exist lattices with unit cells containing more than one atom per cell. For
example, in the orthorhombic system the extra atom(s) may sit in the center of the
unit cell (body centered, I), in the center of the base [(a + b)/2, base centered, C], or
in the center of all faces4 ( face centered, F), as shown in Fig. 4. All Bravais lattices
are listed in the last column of Table 1.

1.1.3 The Primitive Unit Cell
Occasionally one needs to describe the lattice as subdivided into primitive cells,
while filling the entire space without voids. This can always be done; an example is
presented in Fig. 5. The figure shows a face-centered cubic lattice with four lattice
atoms in its unit cell. If the orthogonal system of crystal axes is replaced with one
connecting the corner atom to the nearest face-centered atom, the crystal structure
becomes trigonal with

Fig. 3 Coordinate system
and angles between lattice
vectors within a crystal

3Since each corner is shared by eight adjacent cells, only 1/8 of each corner atom belongs to each
cell. Therefore, with eight corners one has 8 � 1/8 = 1 atom per primitive cell.
4Each surface is shared by two neighbor cells; for example, with six surfaces, there are 6 � 1/2 =
3 surface atoms per unit cell.
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α0 ¼ β0 ¼ γ0 ¼ 60� and a0 ¼ b0 ¼ c0 ¼ affiffiffi
2

p :

The cubic system is usually preferred because of a simpler mathematical description,
but the trigonal representation is totally equivalent to it. This example shows that for
a given crystal, the choice of a certain crystal system is not unique.

Table 1 Crystal systems, point groups, and Bravais lattices

Crystal systems
Lattice vector
relation

Lattice angle
relation

Crystal class

Bravais
latticesSchönflies

Hermann-
Mauguin

Triclinic a 6¼ b 6¼ c α 6¼ β 6¼ γ C1 1 P

C1 1 P

Monoclinic a 6¼ b 6¼ c α = γ = 90�

β > 90�
C2 2 P,C

C1h (C2) m P,C

C2h
2
m

P,C

Orthorhombic a 6¼ b 6¼ c α = β = γ =
90�

C2v 2 mm P,C,F,I

D2 (V) 222 P,C,F,I

D2h (Vh) 2
m

2
m

2
m

P,C,F,I

Tetragonal a = b 6¼ c α = β = γ =
90�

C4 4 P,I

S4 4 P,I

C4h
4
m

P,I

C4v 4 mm P,I

D2d (V2) 42m P,C,F,I

D4 422 P,I

D4h
4
m

2
m

2
m

P,I

Trigonal or
rhombohedral

a = b = c α = β = γ 6¼
90�

C3 3 C,R

S6 (C3i) 3 C,R

C3v 3 m H,C,R

D3 32 H,C

D3d 3 2
m

H,C,R

Hexagonal a = b 6¼ c α = γ = 90�

β = 120�
C6 6 C

C3h 6 C

C6h
6
m

C

C6v 6 mm C

D3h 62m C,H

D6 622 C

D6h
6
m

2
m

2
m

C

Cubic or
isometric

a = b = c α = β = γ =
90�

T 23 P,F,I

Th
2
m
3 P,F,I

Td 43m P,F,I

O 432 P,F,I

Oh
4
m
3 2

m
P,F,I
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1.2 Point Groups (Crystal Classes) and Space Groups

1.2.1 Point Groups
The other symmetry operations, excluding any translation, are rotation, reflection
(composed from rotation and inversion on a plane), and inversion, i.e., “reflection” at
a point. Crystals that are distinguished by one or a combination of these can be
divided into 32 different crystal classes. These symmetry operations are applied to
the basis about a point of the Bravais lattice and therefore are also called point
groups. The symmetry operations are usually identified by their Schönflies or
Hermann–Mauguin symbol.

The Schönflies symbol identifies with capital letters C, D, T, and O the basic
symmetry: cyclic, dihedral, tetrahedral, and octahedral. A subscript is used to

Fig. 4 Unit cells of the orthorhombic Bravais lattice. (a) Primitive P, (b) body-centered I, (c) base-
centered C, and (d) face-centered F. Upper row: fractional atoms shown within each unit cell, lower
row: number of atoms per unit cell indicated

Fig. 5 Face-centered cubic
unit cell with inscribed
trigonal primitive cell (blue
lines)
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identify the rotational symmetry, e.g., D3 has threefold symmetry. Another index, v,
h, d is used for further distinction – see, e.g., Brown and Forsyth (1973).

The Hermann–Mauguin nomenclature indicates the type of symmetry directly
from the symbol. It is a combination of numbers (n) and the letter m: n indicates
rotational symmetry (for n = 2, 3, 4, or 6, an n-fold symmetry) and n denotes either
an inversion (l) or a roto-inversion (with a 3-, 4-, or 6-fold symmetry); m indicates a
mirror plane parallel to, and n

m perpendicular to, the rotational axis with n-fold
symmetry. Repetition of m or other symbols indicates the symmetry about the other
orthogonal planes or axes – see, e.g., Hahn (1983).

All possible combinations of rotation, reflection, and inversion are listed in
Table 1, with both symbols to identify each of the 32 point groups.

1.2.2 Space Groups
Combining the symmetry operations leading to the point groups with nonprimitive
translation yields a total of 230 space groups. Alternatively, there are 1421 space
groups when the ordering of spins is also considered (Birss 1964). They include
screw axis and glide plane operations; the former combines translation (shifting)
with rotation; the latter combines translation with reflection.

The Schönflies symbol for space groups designates the different possibilities of
combining the symmetry operations by a superscript referring to the point group
symbol (e.g., Oh

7 for Si).
In the Hermann–Mauguin symbol, the Bravais lattice identifier is added: A, B,

and C (identifying the specific base for face-centered symmetry)5; P (primitive); I, F,
and R (rhombohedric); and H (hexagonal). In addition, small letters, a, b, c, d, or n,
are appended to identify specific glide planes – namely, at a/2, b/2, and c/2, rþs

4
, and

rþs
2
, for a, b, c, d, and n, respectively, with r and s standing for any a, b, or c.6

Typical element semiconductors have Oh symmetry, e.g., diamond Oh
7 (or Fd3m)

for Ge and Si. Other binary semiconductors have zincblende Td
2 (or F43m) for GaAs,

wurtzite C6v
4 (P63mc) for GaN, or rock salt Oh

5 (or Fm3m) for NaCl.
In summary, crystals are classified according to their lattice symmetry in four

different ways, depending on the type of symmetry operation employed. This is
shown in Table 2.

1.2.3 Crystallographic Notations
A lattice point is identified by the coefficients of the lattice vector pointing to it:

Rn ¼ n1aþ n2bþ n3c: (2)

A lattice point is conventionally given by the three coefficients without brackets:

5A is the face spun between b and c, B between a and c, and C between a and b.
6Thus, (r + s)/4 is a quarter of a face diagonal.
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n1 n2 n3:

A lattice direction is identified by a line pointing in this direction. When this line
is shifted parallel so that it passes through the origin, the position of the nearest
lattice point on this line, identified by the coefficients of Eq. 2 and enclosed in square
brackets, defines this direction:

n1 n2 n3½ �:

Conveniently, one may reduce this notation by permitting simple fractions; for
example, [221] may also be written as [1 1 1/2]. Negative coefficients are identified
by a bar: [001] = -[001] is a vector pointing downward.

Equivalent directions are directions which are crystallographically equivalent; for
example, in a cube these are the directions [100], [010], [001], [100], [010] and [001].
All of these are meant when one writes h100i; in general

hn1 n2 n3i:

A lattice plane is described by Miller indices. These are obtained by taking the
three coefficients of the intercepts of this plane with the three axes n1, n2, and n3;
forming the reciprocals of these coefficients 1/n1 1/n2 1/n3; and clearing the fractions.
For example, for a plane parallel to c and intersecting the x-axis at 2a (see Fig. 6) and
the y-axis at 4b, the fractions are ½ ¼ 1

1. Thus, the Miller indices are (210) and are
enclosed in parentheses. The general form is

h k lð Þ:

Table 2 Crystal classification

Crystals
distinguished by

chemistry

14 Bravais Lattices
translation

7 Crystal Systems
coordinate system

230 Space Groups
translation,

rotation, reflection

32 Crystal Classes
rotation, reflection
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A family of planeswhich are crystallographically equivalent [such as (111), (111),
(111), (111), (1 11), etc.] is identified by the Miller indices in curly parentheses. For
this example the triple is {111}; in general, it is

h k lf g:

The Miller indices notation is a reciprocal lattice representation (see Sect. 1.3). It
is quite useful for the discussion of interference phenomena, which requires the
knowledge of distances between equivalent planes. The distance between the {hkl}
planes is easily found; in a cubic system, it is simply

dhkl ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p , (3)

with a the lattice constant. In other crystal systems the expressions are slightly more
complicated7 (see Warren 1990; Zachariasen 2004; and James 1954 for more
details).

The reciprocal lattice is a lattice in which each point relates to a corresponding
point of the actual lattice by a reciprocity relation given below (Eqs. 6–10).

1.2.4 Morphology of Similar Crystals
When a specific chemical compound crystallizes in different crystal classes, it is
called a polymorph. When crystals with the same structure are formed by com-
pounds in which only one element is exchanged with a homologous element, they

Fig. 6 Example of a (210)
plane

7The general expression for the distance between two planes is given by

d2hkl ¼

1 cos γ cos β
cos γ 1 cos α
cos β cos α 1

������
������

h

a

h=a cos γ cos β
k=b 1 cos α
l=c cos α 1

������
������þ

k

b

1 h=a cos β
cos γ k=b cos α
cos β l=c 1

������
������þ

l

c

1 cos γ h=a
cos γ 1 k=b
cos β cos α l=c

������
������
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are referred to as morphotrop. When similar compounds crystallize in a similar
crystal form, they are called isomorph when they also have other physical properties
in common, such as similar cation to anion radii ratio and similar polarizability.

1.3 The Reciprocal Lattice

As indicated above, the introduction of a reciprocal lattice is advantageous when one
needs to identify the distance between equivalent lattice planes. This is of help for all
kinds of interference phenomena, such as x-ray diffraction, the behavior of electrons
when taken as waves, or lattice oscillations themselves. In a quantitative description,
the relevant waves are described by wave functions of the type8

φ k, rð Þ ¼ A exp i k � r� ωtð Þf g (4)

where A is the amplitude factor, r is a vector in real space, and k is a vector in
reciprocal space. Here, k is referred to as the wave vector, or wave number, if only
one relevant dimension is discussed; the wavevector is normal to the wave front and
has the magnitude

jk j¼ 2π=λ (5)

with λ the wavelength. Since k � r is dimensionless, k has the dimension of reciprocal
length. Multiplied by ħ, (=h/2π, where h is the Planck constant) ħk has the physical
meaning of a momentum as will be shown in ▶ Sect. 2.1 in chapter “The Origin of
Band Structure.”

When Rn is a lattice vector [for ease of mathematical description, we now change
from (a, b, c) to (a1, a2, a3)]

Rn ¼ n1a1 þ n2a2 þ n3a3, (6)

one obtains the corresponding vector Km in reciprocal space with the three funda-
mental vectors bl, b2, and b3:

Km ¼ m1b1 þ m2b2 þ m3b3 (7)

where both sets of unit vectors are related by the orthogonal relation

ai bj ¼ 2π δij and i, j ¼ 1, 2, 3, (8)

where δij is the Kronecker delta symbol

8This description is more convenient than an equivalent description, which in one direction reads
ϕ(x) = A exp{2πi(x/λ � νt)}.
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δij ¼ 1 for i ¼ j
0 for i 6¼ j

�
: (9)

The orthogonal relation can also be expressed by

b1 ¼ 2π
a2 � a3

a1 � a2 � a3 , etc: cyclicalð Þ, (10)

that is, every vector in the reciprocal lattice is normal to the corresponding plane of
the crystal lattice and its length is equal to the reciprocal distance between two
neighboring corresponding lattice planes (see Kittel 2007). This definition is distin-
guished by a factor 2π from the definition of a reciprocal lattice found by crystal-
lographers. This factor is included here to make the units of the reciprocal space
identical to the wavevector units.

1.3.1 Wigner–Seitz Cells and Brillouin Zones
As knowledge about an entire crystal can be derived from the periodic repetition
of its smallest unit, the unit cell, one can derive knowledge about the wave
behavior from an equivalent cell in the reciprocal lattice. A convenient way to
introduce this discussion is by examining theWigner–Seitz cell rather than the unit
cell itself.

A Wigner–Seitz cell is formed when a lattice point is connected with all equiv-
alent neighbors, and planes are erected normal to and in the center of each of these
interconnecting lines. An example is shown in Fig. 7, where for the face-centered
unit cell (a1, a2, a3), the Wigner–Seitz cell is constructed; the plane orthogonal to and
intersecting the lattice vector a2 is visible.

When such a Wigner–Seitz cell is constructed from the unit cell of the reciprocal
lattice, the resulting cell is called the first Brillouin zone. It is the basic unit for
describing lattice oscillations and electronic phenomena.

Most semiconductors crystallize with cubic or hexagonal lattices; by contrast,
organic semiconductors have low-symmetry – often monoclinic – unit cells. The

Fig. 7 Face-centered cubic
lattice (blue atoms on the
black cube) with primitive
parallelepiped (red lines) and
from it the derived
Wigner–Seitz cell in real
space (blue polyhedron),
which is equivalent to the
Brillouin zone in reciprocal
space
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first Brillouin zones of these lattices are given in Fig. 8 and will be referred to
frequently later in the book.

In these discussions, lattice symmetry is of great importance, and points about
which certain symmetry operations can reproduce the lattice are often cited. These
symmetry points can also be transformed into the reciprocal lattice and are identified
here by specific letters. The most important symmetry points with their conventional
notations are identified in the different Brillouin zones of Fig. 8. Γ is always the
center of the zone (kx = ky = kz = 0), and in any of the cubic lattices, X is the
intersection of the Brillouin zone surface with any of the main axes (kx, ky, or kz); the
points Δ, Λ, and Σ in face-centered cubic lattices lie halfway between Γ and X, Γ and
L, and Γ and K, as shown in Fig. 8b. The positions of the other symmetry points
(H, K, L, etc.) can be obtained directly from Fig. 8. In the hexagonal and monoclinic
lattices other letters are used by convention as shown in Fig. 8.

The extent of the first Brillouin zone can easily be identified. For instance, in a
primitive orthorhombic lattice with its unit cell extending to a, b, and c in the x-, y-,
and z-directions, respectively, the first Brillouin zone extends from � π

a to π
a in kx-,

from � π
b to π

b in ky-, and from � π
c to

π
c in kz-direction. Since the wave equation is

periodic in r and k, all relevant information is contained within the first
Brillouin zone.

1.4 Relevance of Symmetry to Semiconductors

Lattice periodicity is one of the major factors in determining the band structure of
semiconductors – see chapter ▶ “The Origin of Band Structure.” The symmetry

Fig. 8 Brillouin zones for the three cubic, hexagonal, and monoclinic lattices with important
symmetry points and axes. (a) Primitive, (b) face-centered, and (c) body-centered cubic lattice,
(d) primitive hexagonal, and (e) simple monoclinic lattice
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elements of the lattice are reflected in the corresponding symmetry elements of the
bands, from which important qualitative information about the electronic structure of
a semiconductor is obtained. Therefore, the main features of the symmetry of some
of the typical semiconductors are summarized below. A comprehensive review of
element and compound structures is given by Wells (2012).

1.4.1 Elemental Semiconductors and Binary Semiconducting
Compounds

Elemental Semiconductors
Most of the important crystalline semiconductors are elements (Ge, Si) or binary
compounds (III–Vor II–VI). They form crystals in which each atom is surrounded
by four nearest neighbors,9 i.e., they have a coordination number of 4. The
connecting four atoms (ligands) surround each atom in the equidistant corners of a
tetrahedron. The lattice is formed so that each of the surrounding atoms is again the
center atom of an adjacent tetrahedron, as shown for two such tetrahedra in Fig. 9. Of
the two principal possibilities for arranging two tetrahedra, only one is realized in
nature for elemental crystals: the diamond lattice, wherein the base triangles of the
intertwined tetrahedra are rotated by 60�. Ge and Si are examples. In amorphous
elemental semiconductors, however, both possibilities of arranging the tetrahedra are
realized – see Sect. 3.1.

Binary Semiconducting Compounds
Binary III–V and II–VI compounds are formed by both tetrahedral arrangements
which are dependent on relative atomic radii and preferred valence angles (see

Fig. 9 Side and top view of two intertwined tetrahedra with (a) base triangles parallel (dihedral
angle 0�) and (b) base triangles rotated by 60�

9There are other modifications possible. For example, seven for Si, of which four are stable at room
temperature and ambient pressure (see Landoldt-Börnstein 1982, 1987). Only Si I and α-Si are
included in this book. Si III is face-centered cubic and a semimetal; Si IV is hexagonal diamond and
is a medium-gap semiconductor (see Besson et al. 1987).
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▶ Sect. 1 in chapter “Crystal Bonding”), although with alternating atoms as nearest
neighbors. These compounds can be thought of as an element (IV) semiconductor
after replacing alternating atoms with an atom of the adjacent rows of elements (III
and V). Similarly, II–VI compounds can be created by using elements from the next-
to-adjacent rows – see Fig. 10 and Fig. 3 in chapter ▶ “Properties and Growth of
Semiconductors”.

Aside from these classical AB compounds, there are others that have interesting
semiconducting (specifically thermoelectrical) properties. Examples include the
II–V compounds (such as ZnSb, ZnAs, CdSb, or CdAs), which have orthorhombic
structures. For a review, see Arushanov (1986).

The diamond lattice for AB compounds results in a zincblende lattice shown in
Fig. 11a. Most III–V compounds, as, for instance, GaAs, are examples.

Unrotated interpenetrating tetrahedra, as shown in Fig. 9a, produce the wurtzite
lattice (Fig. 11b) which can also be obtained for a number of AB compounds.
Examples include ZnS, CdS, and GaN. The aforementioned semiconductors can
also crystallize in a zincblende modification. Under certain conditions, alternating
layers of wurtzite and zincblende, each several atomic layers thick, are observed.
This is called a polytype. Often, the zincblende structure is more stable at lower
temperatures and the wurtzite structure appears above a transition temperature (1053
�C in CdS). With rapid cooling the wurtzite structure can be frozen-in.

Other structures of binary semiconductors include:

• NaCl-type semiconductors, with PbTe as an example

Fig. 10 Binary compounds with semiconducting properties

Fig. 11 (a) Zincblende lattice (GaAs) constructed from two interpenetrating face-centered cubic
sublattices of Ga and As, with a displaced origin at a/4, a/4, a/4, with a the edge length of the
elementary cube. (b) Wurtzite lattice (CdS, GaN) constructed from two intertwined hexagonal
sublattices of Cd and S (or, Ga and N)
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• Cinnabar (deformed NaCl) structures, with HgS as an example
• Antifluorite silicide structures, with Mg2Si as an example. These structures can be

regarded as derived from the fcc lattice (Fig. 11a) with one of the two interstitial
positions filled by the second metal atom, similar to the Nowotny–Juza com-
pounds in Sect. 1.4.2 below, and

• A3
IBIV structures, with Cs3Si as an example. For a review, see Parthé (1964),

Sommer (1968), and Abrikosov et al. (1969).

1.4.2 Ternary and Quaternary Semiconducting Compounds
There are several classes of ternary and quaternary compounds with known attrac-
tive semiconducting properties. All have tetrahedral structures: each atom is
surrounded by four neighbors. Some examples are discussed in the following
sections. For a review, see Zunger (1985).

One can conceptually form a wide variety of ternary, quaternary, or higher
compounds which have desirable semiconducting properties by replacing within a
tetrahedral lattice, subsequent to the original replacement shown in Fig. 10, certain
atoms with those from adjacent rows, as given in Fig. 12. These examples represent a
large number (~140) of such compounds and indicate the rules for this type of
compound formation. For instance, a II–III2–VI4 compound can be formed by
replacing 8 atoms of column IV first with 4 atoms each of columns II and VI and
consequently the 4 atoms of column II with one vacancy (0), one atom of column II,
and two atoms of column III.

Ternary Chalcopyrites
Best researched are the ternary chalcopyrites I–III–VI2; they are constructed from
two zincblende lattices in which the metal atoms are replaced by an atom from each
of the adjacent columns. In a simple example one may think of the two Zn atoms
from ZnS as transmuted into Cu and Ga:

Fig. 12 Construction of pseudobinaries (b), ternaries (a, c, d, e) pseudoternaries (g, h), and
quaternaries (f) from element (IV) semiconductors (0 represents a vacancy, i.e., a missing atom at
a lattice position)
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30ZnS þ 30ZnS ! 29Cu31GaS2,

with some deformation of the zincblende lattice, since the Cu–S and Ga–S bonds
have different strengths, and with a unit cell twice the size of that in the ZnS lattice
(Fig. 13). For a review, see Miller et al. (1981).

Ternary Pnictides and ABC2 Compounds
Other ternaries with good semiconducting properties are the ternary pnictides
II–IV–V2 (such as ZnSiP2) which have the same chalcopyrite structure and, in a
similar example, can be constructed from GaP by the transmutation

31GaPþ31GaP ! 30Zn32SiP2:

Still another class with chalcopyrite structure is composed of the I–III–VI2
compounds, of which CuFeS2 is representative. (These structures are reviewed by
Jaffe and Zunger 1984).

Nowotny–Juza Compounds
Interesting variations of this tetrahedral structure (see Parthé 1972) are the
Nowotny–Juza compounds, which are partially filled tetrahedral interstitial I–II–V
compounds (e.g., LiZnN). Here the Li atom is inserted into exactly one half of the
available interstitial sites of the zincblende lattice (e.g., on Va or on Vc as shown in
Fig. 14). A substantial preference for the Li atom to occur at the site closer to the N
atom (rather than the site next to the Zn – the lattice energy of this structure is lower
by about 1 eV) makes this compound an ordered crystal with good electronic
properties (Carlson et al. 1985; Kuriyama and Nakamura 1987; Bacewicz and
Ciszek 1988; Yu et al. 2004; Kalarasse and Bennecer 2006). It should be noted,
however, that the Zn atom is fourfold coordinated with N atoms, while the N atom is

Fig. 13 (a) ZnS (or GaP)
double unit cell; (b) CuGaS2
(or ZnGeP2) unit cell
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fourfold coordinated with Zn and fourfold coordinated with Li; therefore, it has eight
nearest neighbors.

The Adamantine AnB4-nC4 and Derived Vacancy Structures
Examples of this class of AnB4-nC4 structures with n = 1 or 3, such as A3BC4 or
AB3C4, are the famatinites (e.g., Cu3SbS4 or InGa3As4) or lazarevicites (e.g.,
Cu3AsS4). With n = 2 this class reduces to ABC2 (e.g., CuGaAs2 or GaAlAs2),
and with n = 4 it reduces to the zincblende (ZnS) lattice. The layered sublattices
can be ordered (e.g., in CuGaAs2) or disordered (alloyed) as in GaAlAs2 and are
discussed in the following section. All of these compounds follow the octet (8 – N )
rule (see Sect. 3.1.1); they are fourfold coordinated (each cation is surrounded by
four anions and vice versa).

The 8 � N rule determines how many shared electrons are needed to satisfy
perfect covalent bonding (▶Sect. 1 in chapter “Crystal Bonding”) for any atom
with N valency electrons, e.g., 1 for Cl with N = 7, 2 for S with N = 6, or 4 for Si
with N = 4, requiring single, chain-like, or tetrahedral bondings, respectively.

Deviations from the AnB4-nC4 composition may occur when including ordered
vacancy compounds into this group, such as II–III2VI4 compounds (e.g., CuIn2Se4)
in which one of the II or III atoms is removed in an ordered fashion, resulting in
defect famatinites or defect stannites.

An instructive generic overview of the different structures of tetragonal ternaries
or pseudotemaries is given by Bernard and Zunger (1988) (Fig. 15). See also Shay
and Wernick (1974); Miller et al. (1981) and conference proceedings on ternary and
multinary compounds.

Pseudoternary Compounds
Finally, one may consider pseudoternary compounds in which one of the compo-
nents is replaced by an alloy of two homologous elements. For example, Ga replaced
by a mixture of Al and Ga in GaAs yields AlxGal-xAs; replacement of As by P and As

Fig. 14 Unit cell of the
Nowotny–Juza compound
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Fig. 15 Structure of AnB4-nC4 (adamantine) compounds (a–d) and their derived, ordered vacancy
structures (e–g). Also included are cation-disordered structures including ordered vacancies (h) and
(i) and the parent zincblende (with ordered or disordered sublattice). Vacancies are shown as open
rectangles (After Bernard and Zunger 1988)
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yields GaPxAsl-x. These pseudoternary compounds contain alloys of isovalent atoms
in one of the sublattices.

When the two alloying elements are sufficiently different in size, preference for
ordering exists for stoichiometric composition in the sublattice of this alloy. Sub-
stantial bandgap bowing (see ▶Sect. 2.1 in chapter “Bands and Bandgaps in
Solids”) gives a helpful indication of predicting candidates for this ordering of
stoichiometric compounds. Examples include GaInP2, which shows strong bowing,
where the Ga and In atoms are periodically ordered (Srivastava et al. 1985), Ga3InP4,
or GaIn3P4 with similar chalcopyrite-type structures (see also ▶ Sect. 2.1 in chapter
“Bands and Bandgaps in Solids”). Here again, the coordination number is four; each
atom is surrounded by four nearest neighbors, although they are not necessarily of
the same element.

A different class of such compounds is obtained when alloying with nonisovalent
atoms, such as Si+GaAs.

The desire to obtain semiconductors with specific properties that are better suited
for designing new and improved devices has focused major interest on synthesizing
new semiconducting materials as discussed above, or using sophisticated growth
methods to be discussed below, aided by theoretical analyses to predict potentially
interesting target materials (see Ehrenreich 1987).

1.5 Structure of Organic Semiconductors

The growth units in organic semiconductors are bulky molecules with a lower
symmetry than single atoms, the growth units of inorganic semiconductors. Organic
semiconductors therefore crystallize generally in low-symmetry unit cells. Conse-
quently all physical properties have tensor character with often large anisotropies.
The versatile ability for synthesizing organic molecules leads to a huge and steadily
increasing number of organic crystals. Most of them are insulating, but quite a few
show conductive or semiconducting properties; we focus on some important
examples.

The structure of organic crystals is determined by their intermolecular forces. In
nonpolar molecules these are van der Waals attractive and Born repulsive forces,
combined described by the Buckingham potential Eq. 10 in chapter ▶ “Crystal
Bonding”. Nonpolar molecules comprise aliphatic10 hydrocarbons like the alkanes
CH3(CH2)nCH3 and aromates like the oligoacenes C4n+2H2n+4 listed in Table 3. Due
to the weak attractive interaction, the molecules tend to crystallize in lattices with
closest packing for maximizing the number of intermolecular contacts. The packing
density is described by a coefficient (Kitaigorodskii 1973)

10Aliphatic (from Greek aleiphar, “oil”) designates organic compounds in which the carbon atoms
are linked in open chains.
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K ¼ ZV0=Vuc, (11)

where Vuc is the volume of the unit cell and V0 the volume of one of the Z molecules
of the unit cell; V0 can be computed from the molecule structure and the atomic radii.
Stable crystals have packing coefficients between 0.65 and 0.80.

The mutual arrangement of the molecules follows the trend of close spacing:
planar molecules prefer a parallel alignment. Furthermore, atoms tend to locate at
interstices between atoms of the adjacent molecule. This favors a crystallization in a
herringbone packing with an angle between adjacent columns of the planar mole-
cules, observed, e.g., for oligoacenes and oligothiophenes11. The rule of thumb for
interstitial alignment does not apply if the molecules have a permanent dipole
moment or polar substituents; even small dipolar or ionic contributions to the
intermolecular bonding have a respective long-ranging 1/r3 or 1/r dependence and
thus a significant effect on the crystal structure.

Organic crystals often suffer for their limited perfection. Crystal growth is
hampered by various factors: the orientational degree of freedom of their building
blocks favors disorder-induced defects, crystal properties vary sensitively with the
introduction of contaminants, and the rigid molecule structure combined with a weak
intermolecular bonding make organic crystals fragile. Structural imperfections imply
the frequently observed formation of polymorphs, which differ, e.g., in the herring-
bone angle or even in the number Z of molecules per unit cell.

Table 3 Crystallographic data of some organic semiconductors. Z denotes the number of molecule
per unit cell; values of vectors a, b, and c are given in Å; volume Vof the unit cell in Å3; and angles
a, b, and g in degrees. Most molecules form various polymorphs; only data of a few are given

Organic crystal Formula
Crystal
system Z a b c α β γ V

Anthracene C14H10 Monoclinic 2 8.6 6.0 11.2 90 125 90 474

Tetracene C18H12 Triclinic 2 7.9 6.0 13.5 100 113 86 583

Pentacene C22H14 Triclinic 2 7.9 6.1 16.0 102 113 86 692

Rubrene C42H28 Monoclinic 2 8.7 10.1 15.6 90 91 90 1,383

Triclinic 1 7.0 8.5 11.9 93 106 96 684

Orthorhombic 4 26.9 7.2 14.4 90 90 90 2,736

Perylene (α
phase)

C18H12 Monoclinic 4 11.4 10.9 10.3 90 101 90 1,249

Perylene (β
phase)

C18H12 Monoclinic 2 11.3 5.9 9.7 90 92 90 394

Quaterthiophene
(α-4 T)

C16H10S4 Monoclinic 4 30.5 7.9 6.1 90 92 90 1,471

Hexathiophene
(α-6 T)

C24H14S6 Monoclinic 4 44.7 7.9 6.0 90 91 90 2,117

CuPc (β phase) CuN8C32H16 Monoclinic 2 14.6 4.8 17.3 90 105 90 1,171

Alq3 (α phase) Al
(C9H6NO)3

Triclinic 6.2 12.9 14.7 70 89 83
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Prominent organic semiconductors are listed in Table 3; small molecules (usually
oligomers11) and polymers, both with conjugated π bonds, are used.12 Crystals are
generally formed from molecules; the structure of such molecules is shown in
Fig. 16. The family of acenes is formed from polycyclic aromatic hydrocarbons
fused in a linear chain of conjugated benzene rings (Fig. 16a). The polycyclic
aromate rubrene (5,6,11,12-tetraphenylnaphthacene, the numbers indicate where
four phenyl groups are attached to tetracene) is built on a tetracene backbone with
four phenyl rings on the side that lie in a plane that is perpendicular to the plane of
the backbone (Fig. 16d). The perylene molecule shown in Fig. 16c consists of two
naphthalene molecules (similar to anthracene Fig. 16a with only two benzole rings,
i.e., n = 0), connected by a carbon–carbon bond; all of the carbon atoms in perylene
are sp2 hybridized. The heterocyclic thiophenes Fig. 16b include a sulfur atom in
their ring structure. Examples for more complex compounds used in organic devices
are copper phthalocyanine (CuPc) shown in Fig. 16e and tris(8-hydroxyquinolinato)
aluminum (Alq3, Fig. 16f). There are numerous derivatives of all these compounds

Fig. 16 Molecules of prominent organic semiconductors: (a) oligoacenes anthracene (n = 1),
tetracene (n = 2), pentacene (n = 3); (b) oligothiophenes quaterthiophene (n = 1), hexathiophene
(n = 2); (c) perylene, (d) rubrene, (e) copper phthalocyanine (CuPc), and (f) tris(8-hydroxyqui-
nolinato)aluminum (Alq3). The small width of the side rings in (d) indicates a twist by 85� out of the
plane of projection. (g) The repetition unit of the polymer poly(p-phenylene vinylene). For the
representation of chemical structures, see Fig. 15 in chapter “▶Crystal Bonding”

11An oligomer (from Greek oligos, “a few,” and meros “part”) is a molecule consisting of a small
number of the repeat units of a polymer; a polymer (from Greek poly “many” and meros “part”) is a
large molecule composed of many repeated subunits.
12The organic semiconductors listed in Table 3 are widely used particularly due to their high carrier
mobility and stability. Highest hole mobilities at room temperature were reported for pentacene
(35 cm2/Vs; Jurchescu et al. 2004) and rubrene crystals (40 cm2/Vs; Takeya et al. 2007); CuPc,
known as blue dye in artificial organic pigments, is used in organic FETs, and Alq3 is commonly
applied in organic LEDs.
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obtained from substituting one or several hydrogen atoms (which are not drawn in
Fig. 16) for organic groups like methyl (CH3), or a halogen like Cl, or a cyclic phenyl
ring (C6H5) as those shown in rubrene Fig. 16d.

There are also polymers with conjugated π electrons used for semiconductor
applications, in addition to organic crystals made of small molecules like those
introduced above. A simple example is poly(p-phenylene vinylene), PPV, shown
in Fig. 16g. Since this polymer does not dissolve in common solvents, more
conveniently prepared derivatives of PPVare widely applied. Thin films of polymers
are often formed by solution processing such as spin casting, resulting in polycrys-
talline or amorphous solids with entangled long polymer chains. These films are
more robust than the crystalline films prepared from small molecules; their electrical
properties are, however, inferior to crystalline solids.

Using such molecules as building blocks, organic crystals are formed with one or
several molecules per unit cell. The frequently observed herringbone alignment of
neighboring molecules is illustrated in Fig. 17a for a pentacene crystal. The nonpolar
acene molecules are planar, and a similar crystalline arrangement of the molecules is
found for the other family members, all with herringbone angles around 50�; the
respective shapes of monoclinic and triclinic unit cells do not differ so much (except
for the different molecule lengths and respective c values), as indicated by comparable
angles α and γ near 90� listed in Table 3. The unit cell of an anthracene crystal is shown
in Fig. 17b. The plane of the molecule does not coincide with a face of the unit cell. In
pentacene the long axes of the two differently aligned molecules form respective angles
of 22� and 20� to the c-axis, their short axes angles of 31� and 39� to the b-axis, and
their normal axes angles of 27� and 32� to the a-axis of the unit cell; comparable values
are found for the other acene crystals. It should be noted that the prevailing bulk
structure differs from the structure predominately found in thin film growth.13

Fig. 17 Crystal structure of organic semiconductors; orange circles represent C atoms; H atoms
are not shown. (a) The frequently observed herringbone packing of organic crystals, demonstrated
for a top view on the a–b plane of a pentacene crystal. (b) Anthracene crystal with two anthracene
molecules per unit cell. (c) Unit cell of the α phase of a perylene crystal comprising two pairs of
perylene molecules

13In thin films the tilt of the long molecule axis with respect to the a–b plane is much smaller (3�

instead of 22� for pentacene); see Ambrosch-Draxl et al. 2009.
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The herringbone packing is also realized in a variety of crystal structures of
rubrene and perylene crystals. In the α phase of perylene shown in Fig. 17c, the
pattern is built by molecule pairs, while it is formed by single molecules in the β
phase (not shown). The pairing leads to a roughly doubled b value of the α � phase
unit cell, while the other parameters are similar.

2 Superlattices and Quantum Structures

2.1 Superlattice Structures

Periodic alternation of one or a few monolayers of semiconductor A and B produces
a composite semiconductor called a superlattice. Material A could stand for Ge or
GaAs and B for Si or AlAs. Awide variety of other materials including alloys of such
semiconductors and organic layers can also be used.

The width of each layer could be a few Angstroms in ultrathin superlattices to a
few hundred Angstroms. In the first case, one may regard the resulting material as a
new artificial compound (Isu et al. 1987); in the second case, the properties of the
superlattice approach those of layers of the bulk material. Superlattices in the range
between these extremes show interesting new properties. With epitaxial deposition
techniques outlined in ▶ Sect. 3.3 in chapter “Properties and Growth of Semicon-
ductors,” one is able to deposit onto a planar substrate monolayer after monolayer of
the same or a different material.

2.1.1 Mini-Brillouin Zone
The introduction of a new superlattice periodicity has a profound influence on the
structure of the Brillouin zones. In addition to the periodicity within each of the
layers with lattice constant a, there is superlattice periodicity with lattice constant l.
Consequently, within the first Brillouin zone of dimension π/a, a mini-Brillouin zone
of dimension π/l will appear. Since l is usually much larger than a, e.g., l= 10a for a
periodic deposition of 10 monolayers of each material, the dimensions of the mini-
Brillouin zone is only a small fraction (a/l) of the Brillouin zone and is located at its
center with Γ coinciding. Such a mini-zone is of more than academic interest, since
the superlattice is composed of alternating layers of different materials. Therefore,
reflections of waves, e.g., excitons or electrons, can occur at the boundary between
these materials. The related dispersion spectrum (discussed in ▶ Sect. 3.2 in chapter
“Elasticity and Phonons” and ▶ Sect. 3.1.2 in chapter “Bands and Bandgaps in
Solids”) will become substantially modified, with important boundaries at the
surface of such mini-zones. It is this mini-Brillouin zone structure that makes such
superlattices especially interesting; this will become clearer in later discussions
throughout the book. A more detailed discussion of the mini-zones is inherently
coupled with corresponding new properties and is therefore postponed to the appro-
priate sections in this book.

2 Superlattices and Quantum Structures 81



2.1.2 Ultrathin Superlattices
Single or up to a few atomic layer sequential depositions can be accomplished
(Gossard 1986; Petroff et al. 1979) even between materials with substantial lattice
mismatch, e.g., Si and Ge, GaAs, and InAs (Fig. 18). The thickness of each layer
must be thinner than the critical length beyond which dislocations (see ▶ Sect. 4 in
chapter “Crystal Defects”) can be created. This critical length decreases (inverse)
with increasing lattice mismatch and is on the order of 25 Å for a mismatch of 4%.

In ultrathin superlattices, the transition range between a true superlattice and an
artificial new compound is reached. This opens an interesting field for synthesizing a
large variety of compounds that may not otherwise grow by ordinary chemical
reaction followed by conventional crystallization techniques.

Estimates as to whether or not such a spontaneous growth is possible have
been carried out by estimating the enthalpy of formation of the ordered compound
from the segregated phases. For instance, for a single-layer (GaAs)1–(AlAs)1 ultra-
thin superlattice, the formation enthalpy from the components GaAs and AlAs is
given by

ΔQ ¼ EGaAlAs2 � EGaAs þ EAlAsð Þ: (12)

The formation enthalpy depends on the lattice mismatch. It is on the order of
10 meV for ultrathin superlattices with low mismatch (GaAs–AlAs) and about one
order of magnitude larger for superlattices with large mismatch (such as GaAs–GaSb
or GaP–InP), as shown in Table 4. The diatomic system Si–Ge, while having a large
lattice mismatch, nevertheless shows a lower formation enthalpy, for reasons of
lower constraint of the lattice.

The formation enthalpy also decreases with increasing thickness of each of the
layers (Wood et al. 1988). Therefore, the ultrathin superlattices of isovalent

Fig. 18 Transmission-
electron micrograph of an
ultrathin superlattice of
(GaAs)4–(AlAs)4 bilayers.
The inset shows an electron-
diffraction pattern (After
Petroff et al. 1978)
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semiconductors are chemically unstable with respect to the segregated compounds.
These always have a lower formation enthalpy. Alloy formation does not require
nucleation necessary for crystal growth of the segregated phases. Therefore, alloy
formation of GaAs–AlAs is the dominant degradation mechanism. Recrystallization
is usually frozen-in at room temperature.

Superlattices with low lattice mismatch, however, are also unstable with respect
to alloy formation, e.g., to Ga1-xAlxAs, which has a formation enthalpy between that
of the superlattice and the segregated phases. In contrast, the alloy formation energy
of semiconductors with large mismatch lies above that for ultrathin superlattices.
They are therefore more stable (Wood and Zunger 1988).

Several of these ultrathin superlattices can be grown under certain growth con-
ditions spontaneously as an ordered compound, without artificially imposing layer-
by-layer deposition, for instance, (GaAs)1 (AlAs)1 grown near 840 K by Petroff et al.
(1978) and Kuan et al. (1985), (InAs)1 (GaAs)1 grown by Kuan et al. (1987),
(GaAs)1 (GaSb)1 grown by Jen et al. (1986), (InP)n (GaP)n grown by Gomyo et al.
(1987), and (InAs)1 (GaAs)3 + (InAs)3 (GaAs)1 grown by Nakayama and Fujita
(1985). All of these lattices grow as ordered compounds of the AnB4-nC4 adamantine
type (see Sect. 1.4.2).

2.1.3 Intercalated Compounds and Organic Superlattices

Intercalated Compounds
In crystals, such as graphite, which show a two-dimensional lattice structure, layers
of other materials can be inserted between each single or multiple layer to form new
compounds with unusual properties. This insertion of layers can be achieved easily
by simply dipping graphite into molten metals, such as Li at 200–400 �C. After
immersion, the intercalation starts at the edges and proceeds into the bulk by rapid
diffusion. In graphite intercalation compounds may either occupy every graphite
layer (stage 1 compounds) or every second layer (stage 2), such that two graphite
layers alternate with a layer of intercalated material. Stage 1 binary graphite–metal
intercalation has stoichiometry XC8 for large metals (X = K, Rb, Cs) and XC6 for
small metals (X = Li, Sr, Ba, Eu, Yb, Ca). Intercalation changes the charge
distribution and bonding in graphite; the compounds KC8 or LiC6, e.g., are trans-
parent (yellow) and show anisotropic conductivity and low-temperature supercon-
ductivity. In the process of intercalation, the metal atom is ionized while the graphite
layer becomes negatively charged. When immersed in an oxidizing liquid, the
driving force to oxidize Li can be strong enough to reverse the reaction. This

Table 4 Formation enthalpy for single-layer superlattices (After Wood et al. 1988; and Dandrea
and Zunger 1991)

Superlattice Lattice mismatch (%) Formation enthalpy (meV/4 atoms)

(GaAs)1–(AlAs)1 0.1 11.5

(GaP)1–(InP)1 7.4 91

(GaAs)1–(AlSb)1 7.5 115
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reversible process is attractive in the design of high-density rechargeable batteries
when providing electrochemical driving forces.

Other layer-like lattices can also be intercalated easily. An example is TaS2. Many
of these compounds have extremely high diffusivity of the intercalating atoms. Some
of them show a very large electrical anisotropy.

For a review, see Whittingham and Jacobson (1982) or Emery et al. (2008).

Organic Superlattices
Well known are the Langmuir–Blodgett films (Langmuir 1920; Blodgett 1935),
which are monomolecular films of highly anisotropic organic molecules, such as
alkanoic acids and their salts which form long hydrophobic chains. One end of the
chain terminates in a hydrophobic acid group. Densely packed monomolecular
layers can be obtained while floating on a water surface; by proper manipulation,
these layers can be picked up, layer by layer (Fig. 19), onto an appropriate substrate,
thereby producing a highly ordered superlattice structure; up to 103 such layers on
top of each other have been produced. The ease in composing superlattices with a
large variety of compositions makes these layers attractive for exploring a number of
technical applications including electro-optical and microelectronic devices. For
reviews, see Roberts (1985), Agarwal (1988), and Richardson (2000). More recent
work also applied the Langmuir–Blodgett technique for fabricating well-ordered
mesoscopic structural surfaces; see Chen et al. (2007).

2.2 Quantum Wells, Quantum Wires, and Quantum Dots

The reduction of the dimensions of a solid from three (3D) to 2D, 1D, or 0D leads to
a modification of the electronic density-of-states (discussed in chapter▶ “Bands and
Bandgaps in Solids” Sect. 3.2). The effect of size quantization gets distinguishable if
the motion of a quasi-free charge carrier with effective mass m* (introduced in

Fig. 19 Langmuir–Blodgett technique to produce multilayer films of amphiphilic, i.e., either
hydrophilic or hydrophobic molecules from a water surface in a head-to-head and tail-to-tail
mode. (a) Monolayer on top of water surface, (b) monolayer compressed and ordered, (c) mono-
layer picked up by glass slide moving upward, (d) second monolayer deposited by dipping of glass
slide, and (e) third monolayer picked up by glass slide moving upward
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chapter ▶ “The Origin of Band Structure”, Sect. 2.2) is confined to a length scale in

the range of or below the de Broglie wavelength λ = h/p = h /
ffiffiffiffiffiffiffiffiffiffiffi
2m�E

p
. For a thermal

energy E = (3/2) kT = 26 meV at room temperature and an effective mass of one
tenth of the free electron mass, a typical length is in the 10 nm range. For excitons,
i.e., correlated electron–hole pairs introduced in chapter ▶ “Excitons,” the relevant
length scale is the exciton Bohr radius given by

aX ¼ h2ee0
π μe20

, (13)

where e, e0, μ, and e0 are the relative permittivity of the solid, the permittivity of
vacuum, the reduced mass of the exciton, and the electron charge, respectively. A
typical length to observe size quantization for excitons is also in the 10 nm range.
The Bohr radius of confined excitons is somewhat affected by a spatial localization
(Bastard and Brum 1986).

Fabrication of such small semiconductor nanostructures usually employs self-
organization phenomena during epitaxial growth, because patterning by etching or
implantation techniques inevitably introduce defects which deteriorate the electronic
properties. Most approaches are based on an anisotropy of surface migration of
supplied atoms originating from a nonuniform driving force like strain. Thereby
structurally or compositionally nonuniform crystals with dimensions in the nano-
meter range may be coherently formed without structural defects.

2.2.1 Quantum Wells
A quantum well (QW) is made from a thin semiconductor layer with a smaller
bandgap energy clad by semiconductors with a larger bandgap forming barriers.
Usually the same material is used for lower and upper barrier, leading to a symmet-
rical square potential in one direction with a confinement given by the band offsets in
the valence and conduction bands (▶ Sect. 3.1 in chapter “Bands and Bandgaps in
Solids”). Semiconductors with a small bandgap tend to have a large lattice constant;
since coherent growth (without detrimental misfit dislocations, ▶ Sect. 1 in chapter
“Crystal Interfaces”) requires a low mismatch of lattice constants (typically below
1%), QWs or cladding barriers are usually alloyed by applying Vegard’s rule
(Eq. 11 in chapter ▶ “Crystal Bonding”) to achieve matching. Still QWs are often
coherently strained with an in-plane lattice parameter determined by the substrate
material and a vertical lattice parameter resulting from Poisson’s ratio of the QW
material.14 Even lattice matching at growth temperature may result in significant
mismatch at room (or cryogenic) temperature due to differences in thermal

14Poisson’s ratio denotes the negative quotient of transverse strain/longitudinal strain for uniaxial
stress, generally yielding a positive quantity (typically 0.25 . . . 0.3): transverse tensile strain leads to
longitudinal compressive strain and vice versa; see also ▶ Sect. 1.1 in chapter “Elasticity and
Phonons.”

2 Superlattices and Quantum Structures 85



expansion of QW and barriers or substrate materials (▶ Sect. 2 in chapter “Phonon-
Induced Thermal Properties”).

Strain in a QW effects a splitting of confined carrier states. In addition, piezo-
electric polarization is induced; the effect is particularly pronounced in semiconduc-
tors with wurtzite structure like column III nitrides or ZnO. The effect of strain on the
bandgap is discussed in ▶Sect. 2.2 in chapter “Bands and Bandgaps in Solids.”

2.2.2 Quantum Wires
Fabrication of a one-dimensional quantum wire requires some patterning to define a
lateral confinement in addition to the vertical cladding. The interface-to-volume ratio
of 1D structures is larger than that of 2D quantum wells, so that interface fluctuations
of thickness or composition on a length scale of the exciton Bohr radius easily lead to
carrier localization referred to as zero-dimensional regime. Fabrication techniques of
1D wires with high optical quality imply epitaxial techniques like growth on
V-groove substrates or corrugated substrates (for a review, see Wang and Voliotis
2006) and the approach of nanowire growth (see, e.g., Choi 2012).

Epitaxial Quantum Wires
Most epitaxial techniques for fabricating 1D structures lead to complicate confine-
ment potentials, and often an additional quantum well is coupled to the quantum
wire. Successful approaches for epitaxial 1D quantum wires are V-shaped wires and
T-shaped wires as illustrated in Fig. 20. The T-shaped wire depicted in Fig. 20 is
formed from an overgrowth of the cleaved edge of a quantum-well structure
(Wegscheider et al. 1993).

V-shaped ridge and sidewall wires are fabricated by employing the dependence of
the growth rate on crystallographic orientation (Bhat et al. 1988). Column III con-
trolled MBE of GaAs/AlGaAs superlattices yields a diffusion length of Ga adatoms
according λGa / exp(-Eeff/(kT)), with Eeff depending on the surface orientation. At
620 �C λGa decreases in the order of GaAs surfaces related to (110), (111)A, (111)B,
and (001) orientations. On a nonplanar GaAs surface, Ga adatoms migrate towards
facets with minimum λGa and are incorporated there. The growth rate of facets with a
larger diffusion length is therefore decreased. Quantum wires were fabricated on
(001)-oriented GaAs substrate with V-shaped grooves oriented along the [ 110 ]

Fig. 20 Cross-section schemes of epitaxial quantum wires (encircled). B and S signify barrier and
substrate materials, respectively
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direction and composed of two {111}A sidewalls (obtained by wet etching). During
growth of a lower AlGaAs barrier layer, the adatom diffusion-length is quite short and
does not show a pronounced facet dependence; the V-groove bottom therefore remains
quite sharp. In the subsequent GaAs growth, Ga adatoms impinging on the {111}A
sidewalls tend to migrate with a long diffusion length to facets with a short diffusion
length. Thereby the growth rate is enhanced at the bottom of the V-groove, and a (001)
facet is generated. Eventually the GaAs layer is capped by an upper AlGaAs barrier,
leaving buried regions of an enhanced thickness which act as a quantum wire.

During growth of the upper AlGaAs layer, the diffusion length of Ga adatoms is
again quite short. This leads to a sharpening of the V-groove bottom and allows for
creating a vertical stack of quantum wires as shown in Fig. 21. The dark regions in
the AlGaAs layers labeled VQW (vertical QW) represent Ga-rich material with a
lower bandgap.

Nanowires
A different approach for creating a 1D nanowire is the vapor–liquid–solid (VLS)
mechanism (Wagner and Ellis 1964). A metal catalyst (such as gold) forms at a high
temperature liquid alloy droplets by adsorbing gaseous components of the material
to be grown as illustrated in Fig. 22. At supersaturation the soluted components
precipitate at the liquid–solid interface (when growth commences precipitation starts
at the interface to the substrate), leading to 1D whisker growth with typ. 0.1 μm
diameter; the liquid droplet remains at the top of the growing nanowire. Axial
heterostructures with a change of composition or doping along the wire axis are
formed by changing the composition of the gas phase. Also radial heterostructures
with interfaces along the wire axis can be formed; after completing the growth of a

Fig. 21 Cross-section
transmission-electron
micrograph of a vertically
stacked GaAs/Al0.42Ga0.58As
quantum wires. AlGaAs
appears bright; the white
circle marks the radius of
curvature at the bottom
interface of the wire (After
Gustafsson et al. 1995)
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nanowire core, the growth conditions are altered to deposit a shell material. Multiple
shell structures are produced by subsequent introduction of different materials.

2.2.3 Quantum Dots
A quantum dot (QD) is a zero-dimensional nanostructure providing fully quantized
electron and hole states similar to discrete states in an atom. Interface perfection is
crucial for 0D nanostructures due to a very high interface-to-volume ratio. Fabrica-
tion techniques comprise epitaxial QDs and colloidal QDs.

Epitaxial Quantum Dots
Epitaxial QDs are mostly fabricated self-organized by applying the Stranski–Krastanow
growth mode introduced in ▶Sect. 3.1.4 of chapter “Properties and Growth of Semi-
conductors.” This growth mode may be induced by epitaxy of a highly strained layer,
which initially grows two-dimensionally and subsequently transforms to three-
dimensional islands due to elastic strain relaxation (Bimberg et al. 1999), cf. Fig. 23.
Some part of the material remains as a two-dimensional wetting layer, due to a low
surface free energy compared to the covered (barrier) material. The size of the three-
dimensional islands lies for many semiconductors in the range required for quantum
dots; the QDs are formed by capping such islands with an upper barrier material. The

Fig. 22 (a) Successive steps in theVLSmechanism applied to create a nanowire. (b) Scanning electron
micrographs of Si nanowires grown at 700 �C by the VLS mechanism on Si(111) (MPI Halle 2007)

Fig. 23 Scheme illustrating
elastic strain relaxation by
forming three-dimensional
islands
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minimum diameter for a QD required to confine at least one bound state of a carrier is in
the nanometer range section (▶Sect. 3.4 in chapter “Bands and Bandgaps in Solids”).

The total energy gain for the formation of three-dimensional islands with respect
to a two-dimensional layer is given by strain and surface-energy contributions of
both the reorganized part of the material forming the islands and the part remaining
in the wetting layer after the Stranski–Krastanow transition. The contributions
sensitively depend on the shape of the islands; their sum is given in Fig. 24 for
pyramidal InAs islands with {110} side facets and a (001) surface of the wetting
layer, grown on (001)-oriented GaAs (Wang et al. 1999). The total energy density
has an energy minimum for a particular island size (see arrows), creating a driving
force towards a uniform size for an ensemble of islands.

Stranski–Krastanow growth induced by strain is found for both compressively
and tensely strained layers in various materials systems and crystal structures.
Table 5 and Fig. 25 give some examples. Usually substrate material is also employed
for covering the islands after formation. The barrier material is then generally termed
matrix. Often the island material is alloyed with matrix material to reduce the strain,
yielding a parameter for controlling the transition energy of confined carriers. The
shape of the islands is generally strongly modified during the capping process: the
islands tend to become flat during cap layer deposition; often quantum dots with a
shape of truncated pyramids are formed (Costantini et al. 2006).

Colloidal Quantum Dots
Colloidal quantum dots, also termed nanocrystals or nanocrystal QDs, are synthe-
sized from precursor compounds dissolved in solutions (for a review see Murray
et al. 2000). At high temperature the precursors chemically transform into mono-
mers. Nanocrystal nucleation starts at sufficient supersaturation of dissolved mono-
mers. At high monomer concentration, the critical size where growth balances
shrinkage is small; smaller nanocrystals grow faster than large ones (they need less

Fig. 24 Total energy gain
calculated for the island
formation of a 1.8 monolayers
thick InAs layer on GaAs
(black lines); an areal density
of 1010 islands/cm2 is
assumed. The curves represent
various contributions as
indicated; WL signifies the
wetting layer. The gray line
refers to the total energy gain
for 1.5 monolayers InAs.
Arrows mark the minima of
the total energy curves (After
Wang et al. 1999)
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atoms to grow), leading to a narrow size distribution of the ensemble.15 Core/shell
structures can be produced similar to nanowires; see Fig. 26.

Colloidal QDs can be embedded in glass matrices or in organic and related
matrices; respective properties are described by Woggon 1997. Close-packed order-
ing of nanocrystals can be prepared by solvent evaporation, yielding nanocrystal
solids with long-range order. Nanocrystals were also arranged in superlattices;
reviews are given in Murray et al. (2000) and Hanrath (2012).

3 Amorphous Structures

Although there is no macroscopic structure16 discernible in amorphous semiconduc-
tors (glasses for brevity), there is a well-determined microscopic order in atomic
dimensions, which for nearest and next-nearest neighbors is usually nearly identical

Fig. 25 Free-standing self-organized islands formed by Stranski–Krastanow growth in various
strained heteroepitaxial materials: (a) Ge/Si(001) (After Rastelli et al. 2001), (b) InAs/GaAs(001)
(After Márquez et al. 2001), (c) GaN/AlN(0001) (After Xu et al. 2007), (d) PbTe/PbSe(111) (After
Pinczolits et al. 1998). The AFM images (a), (b), and (d) are vertically not to scale with respect to
the lateral scale

Table 5 Some semiconductor materials used for strain-induced, self-organized Stranski–
Krastanow formation of islands

Island/matrix Ge/Si InAs/GaAs GaN/AlN PbSe/PbTe

Structure Diamond Zincblende Wurtzite Sodium chloride

Orientation (001) (001) (0001) (111)

Mismatch �3.6% �7% �2.5% +5.5%

15Nanocrystals of 2–10 nm diameter (corresponding to 10–50 atom diameters) contain some
102–105 atoms.
16The surface of glasses, even at very high magnification, does not show any characteristic
structure; after fracture, glasses show no preferred cleavage planes whatsoever.
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to the order in the crystalline state of the same material. The long-range order,
however, is absent (see Phillips 1980 and Singh and Shimakawa 2003).

In many respects, the glass can be regarded as a supercooled liquid. When cooling
down from a melt, glass-forming materials undergo two transition temperatures: Tf
where it becomes possible to pull filaments (honey-like consistency) and Tg, where
form elasticity is established, i.e., the glass can be formed into any arbitrary shape –
its viscosity has reached 1015p, and its atomic rearrangement time is ~105 s. Only Tg
is now used as the transition temperature and is identified in Fig. 27 (for a review see
Jäckle 1986). When plotting certain properties of a semiconductor – such as its
specific density (Fig. 27), the electrical conductivity, and many others as a function
of the temperature – a jump and break in slopes are observed at the melting
temperature Tm when crystallization occurs. Such a jump is absent when cooling
proceeds sufficiently fast and an amorphous structure is frozen-in.

Fast cooling (quenching) for typical glasses is already achieved with a rate <1
deg/s, while many solids, including metals, become frozen-in liquids and remain
amorphous at room temperature when this rate is ~107 deg/s, which can be achieved
by splat cooling on fast rotating disks.

Near a transition temperature Tg < Tm, the slope gradually changes and, for
T < Tg, the curves in Fig. 27 for a glass and a crystal of the same material run
essentially parallel to each other.

Materials that have a large fraction of covalent bonding (see ▶ Sect. 1 in chapter
“Crystal Bonding”) show a tendency for glass formation. The liquid becomes
significantly more viscous before crystallization takes place. The composition
range for glass formation is shown for some ternary compounds in Fig. 28. In this
range, while still liquid, cross-linking of many atoms has already taken place, and the
principal building blocks (see below) of the glass are established; however, they
cannot adjust with sufficient rigor to produce long-range periodicity. Nevertheless,
all bonds tend to be satisfied by attachment to an appropriate neighbor.

Fig. 26 High-resolution transmission-electron micrograph of nanocrystals with 3.5 nm CdSe core
and 5 monolayers of CdS shell, elongated along the wurtzite c-axis (vertical in the figure); after Li
et al. 2003
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The resulting structure is composed of principal building blocks that join each other
with slight deviation from the preferred interatomic angle and distance ( frustration)
and consequent relaxation of these relations within the building blocks. In contrast,
during crystallization, such building blocks easily break up so that a larger crystallite
can grow by sequentially adding atoms rather than entire building blocks. During glass
formation, there is usually little tendency to form dangling bonds, i.e., bonds not
extending between two atoms – see matrix glasses in Sect. 3.2.2.

The structural analysis of an amorphous semiconductor can therefore be divided
into two parts: the principal atomic building blocks and the arrangement of these
blocks to form the glass.

Fig. 27 Schematics of the
dependence of the reciprocal
density as a function of the
temperature

Fig. 28 Approximate glass-forming (shaded) regions in a few ternary semiconductor alloy
systems – a point within this triangle represents an alloy of the three components of a composition
given by the normal to each side of the triangle (After Mott and Davis 1979)
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3.1 Building Blocks and Short-Range Order

3.1.1 Building Blocks
Atomic semiconductors can be dealt with most easily since all of the neighbors are
equivalent. Perfect crystalline order with tetrahedral binding (fourfold coordination)
requires the formation of six-member rings – see Fig. 2. in chapter▶ “Properties and
Growth of Semiconductors.” Polk (1971) introduced odd-numbered rings (5 or 7)
and thereby formed glasses with an otherwise tetrahedrally coordinated arrangement
of atoms around these building blocks. Such odd-numbered rings were later con-
firmed in α-Si (Pantelides 1987) and in α-C (Galli et al. 1988).

Comparing crystalline (c) and amorphous (α) structures of the same element (e.g.,
Ge), one sees that first- and second-neighbor distances (2.45 vs. 2.46 and 4.02
vs. 4.00 Å for c-Ge vs. α-Ge, respectively) are surprisingly similar, as is the average
bond angle (109.5 vs. 108.5�). There is, however, a spread of�10� in the bond angle
for the amorphous structure, resulting in an average coordination number of 3.7
rather than 4 for c-Ge (Etherington et al. 1982). The lower effective coordination
number indicates a principal building-block structure that is slightly less filled but
without vacancies, which are ill-defined in amorphous structures (see ▶ Sect. 2 in
chapter “Defects in Amorphous and Organic Semiconductors”). Hard-sphere
models, which would assist in defining sufficient space between the spheres as
vacancies, must be used with caution since covalent structures can relax interatomic
lattice spacing when relaxing bond angles (Waire et al. 1971).

Binary compounds are more difficult to arrange in such a fashion, since
odd-member rings cannot be formed in an AB sequence without requiring at least
one AA or BB sequence. Random network models, however, can also be made with
larger even-numbered rings. Zachariasen (1932) suggested the first one for SiO2-type
glasses, which was shown for a two-dimensional representation in Fig. 2 in chapter
▶ “Properties and Growth of Semiconductors.”

Many covalent polyatomic binary compounds containing chalcogens easily form
semiconducting glasses such as As2S3, As2Se3, or GexTey. The principal building
blocks obey the 8� N rule. For example, As with N= 5 is bonded to three Se atoms,
while the Se with N = 6 in turn is surrounded by two As atoms in an As–Se–As
configuration. Similarly, the Ge with N = 4 is surrounded by four Te atoms, while
each Te atom with N= 6 has two Ge atoms as nearest neighbors in GeTe2, similar to
the SiO2 configuration.

In some of these amorphous chalcogen compounds, however, the interatomic
nearest-neighbor distance is shorter and the coordination number is significantly
lower than in the corresponding crystalline compounds (Bienenstock 1985). A
chalcogen–chalcogen pairing [e.g., by including Ge–Te–Te–Ge or an ethane-like
Ge2(Tel/2)6 formation17] can distort the building blocks. The large variety of possible
GexTey building blocks, still fulfilling the 8 � N rule, created by replacing Ge–Ge

17The “chemical formula” using Tel/2 shows the symmetry of the Te binding and indicates that on
the other side of each of the Te atoms another Ge atom is bound.
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with Ge–Te or Te–Te bonds, is the reason that glasses of a continuous composition
from pure Ge to pure Te can be formed (Boolchand 1985).

3.1.2 Short-Range Order
In crystalline covalent semiconductors, the coordination number is given by the 8� N
rule, which is 4 for Si. For compounds one can define an average coordination
number, drawing a shell in the atomic distribution function around an arbitrary atom
and averaging (Fig. 29). These shells contain at nearest-neighbor distance a maxi-
mum of m = 4 atoms for GaAs, m = 3 for GeTe (also for As), and m = 2 for a linear
lattice such as Se. The average coordination number is m = 2.7 for GeTe2 and m =
2.4 for As2Se3. In a crystal there are m/2 constraints per atom with respect to bond
length, since two atoms share a bond. This can easily be fulfilled if m/2 	 3, since
each atom can shift with respect to its neighbor in three dimensions. There are also
m(m�1)/2 constraints with respect to the bond angle, since it is defined by three
atoms. Therefore, bond length and bond angle are constrained only if

m

2
þ m m� 1ð Þ

2
	 3, or m 	

ffiffiffi
6

p
ffi 2:4: (14)

Si- and GaAs-type semiconductors are overconstrained: a large internal strain
prevents any significant deviation from its ordered, crystalline state. Not so Se or
As2Se3. The former, with m = 2, is underconstrained: it provides a large amount of
freedom for deviation from uniformity in bond length and angle; therefore, it easily
forms amorphous structures. The latter, As2Se3, needs only minor alloying to cause
m to drop below 2.4 and therefore also forms a glass easily. Since Eq. 14 shows a
quadratic dependence onm, a glass-forming tendency is rather sensitive to a lowering
m (Ovshinsky 1976; Adler 1985; Phillips 1980).

The above-described principal building blocks are also described as intermediate-
range order. These blocks are composed of subunits, identified by the short-range

Fig. 29 Distance distribution
(radial distribution function)
of atoms in amorphous (red)
and crystalline (blue curve) Si
layers of 100 Å thickness
(After Moss and Graczyk
1970)

94 The Structure of Semiconductors



order of a few atoms, and characterized by bond lengths, bond angles (next-nearest-
neighbor distances), and site geometry. Intermediate-range order describes third-neigh-
bor distances, dihedral angles, atomic ring structures, and local topology. It distin-
guishes for tetra-, tri-, and divalent bonding truly three-dimensional (tetrahedral),
two-dimensional (layer-like), and one-dimensional (chain-like) structures, respectively.

Intermediate-range order shows some interesting features that distinguish amor-
phous from crystalline states. For instance, monatomic column IV semiconductors
crystallize only in the diamond lattice with a dihedral angle of 60�. Amorphous Ge,
however, shows a dihedral angle of 0� (see Fig. 9a). The interesting feature of this
structure is the disappearance of the third-neighbor peak in diffraction analysis,
which is observed at 4.7 Å for c-Ge. With a dihedral angle of 0� for α-Ge, this
third-neighbor distance is 4.02 Å; thus it is very close to, and nearly indistinguish-
able from, the second nearest neighbor at 4.0 Å (see Fig. 29).

EXAFS and NEXAFS
Information about the structure that surrounds specific types of atoms can be obtained
from the extended x-ray absorption fine structure (EXAFS). With synchrotron radia-
tion a continuous spectrum of x-rays is available for investigating absorption or
luminescence spectra which show characteristic edges when an electron of a specific
atom is excited from an inner shell into the continuum. Interference of such electrons
with backscattered electrons from the surrounding atoms (Fig. 30a) results in a fine
structure of the absorption beyond the edge (Fig. 30b). This results from interference
between outgoing and reflected parts of the electron de Broglie wave, as indicated by
red and blue rings in Fig. 30a. This fine structure, therefore, yields information about

Fig. 30 (a) EXAFS representation with electron wave emitted from one atom (red) and scattered
waves from adjacent atoms (blue). (b) EXAFS for crystalline Ge (a) and for amorphous Ge (b)
(After Stern 1985)
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the distance to the surrounding atoms, as well as their number, and provides species
identification of the neighbor atoms (Hayes and Boyce 1985; Bertrand et al. 2012).

EXAFS measurements do not require long-range periodicity and therefore are
useful in analyzing amorphous short-range structures.

When measuring x-ray fluorescence rather than absorption, the surrounding of
specific impurities of low density can also be analyzed, since such fluorescence has a
much lower probability of overlapping with other emission in the same spectral
range. In addition, near-edge x-ray fine structure (NEXAFS), within 30 eV of the
edge, gives information from low-energy photoelectrons which undergo multiple
scattering and provides information on the average coordination number, mass of
neighbor atoms, average distance, and their variations with temperature. For special
cases, it also yields information on the angular distribution of the surrounding atoms.
For a review, see Bienenstock (1985), Stern (1978, 1985).

3.2 Network Structures and Matrix Glasses

3.2.1 Network Structures
The entire glass can be composed of a network-like structure from elements of
intermediate-range order, or as a matrix-like structure, which is preferable for
elemental semiconductors and will be explained below (see matrix glasses).

Network glasses are constructed from principal building blocks with long-range
disorder added. Such disorder can be introduced in several ways by statistical
variation of interatomic distances and bond angles.

The results of a calculation of the radial density-distribution function of such
random network structures are in satisfactory agreement with the experimental
observation obtained from x-ray diffraction data and from EXAFS or NEXAFS, as
shown for amorphous Ge and GaAs in Fig. 31.

Requirements for creating such a network were given by Bell and Dean (1972)
and applied to α-SiO2, α-GeO2, and α-BeF2. When starting from a Si(O1/2)4 unit, one

Fig. 31 Radial density
function of α-Ge (Temkin
et al. 1973) and α-GaAs
(Temkin 1974) shown as solid
curves and obtained from
computation for a random
network by Steinhardt et al.
1974 (dots at upper curve) and
by Temkin 1974 (dots at lower
curve)
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proceeds with a covalent random network, connecting to it other Si(O1/2)4 units with
twofold oxygen coordination, while requiring that:

• The bond angle of Si atoms must not deviate more than�10� from the ideal value
of 109.47�.

• All tetrahedra are corner-connected.
• The bond angles of O atoms may spread by �25� from the ideal value of 150�.
• There is equal probability for all dihedral angles.
• There is no correlation between bond angles at O atoms and dihedral angle.
• There is complete space filling.

Modifications of these instructions yield slightly different networks. The relation
to the dihedral angle (e.g., assuming some correlation) is an example of such
modification.

A relatively simple infinite aperiodic network structure is called a Bethe lattice
(Bethe 1935; see also Runnels 1967; Allan et al. 1982). Another kind of network
structure is the fractal structure, in which void spaces between more densely filled
regions can be identified (see Mandelbrot 1981).

3.2.2 Matrix Glasses, a-Si:H
Constructing an atomic amorphous semiconductor but relaxing the requirements for
a fourfold coordination creates dangling bonds. These bonds could attract monova-
lent elements such as H or F. Alternatively, the tetravalent host atom could be
replaced with an element of lower valency such as N or O.

When foreign atoms are introduced in a density that is large enough so that their
interaction can no longer be neglected, we call this process an alloy formation; as
such, we may include homologous elements (e.g., C in α-Si). In all such cases, we
then satisfy the 8 � N rule but achieve a greater degree of flexibility in constructing
the amorphous host matrix, a reason why such alloys are easily formed.

In addition, we may include into such a host matrix more than one kind of atom
and thereby create more complex alloys, e.g., forming α-Si:O:H or α-Si:N:H by also
incorporating oxygen or nitrogen into α-Si:H. Examples of such clusters are shown
in Fig. 32.

For a theoretical analysis of the various possibilities of incorporating foreign
atoms (e.g., in Si–H, SiH2, or SiH3 configurations as shown in Fig. 33), it is useful to
consider larger atomic clusters from this network. Such clusters contain nearest,
next-nearest, and higher-order neighbors from the alloyed atom, as shown in Fig. 34.

Hydrogenated amorphous silicon (α-Si:H) is the most commonly used material
for large-area optoelectronic devices because it absorbs light much more efficiently
than crystalline silicon, in which crystal momentum conservation restricts optical
transitions. Experimental analyses using a variety of techniques (neutron scattering,
small-angle neutron scattering, EXAFS, etc.) indicate that α-Si:H contains hydrogen
(about 10%) without substantially changing the bond length and the dihedral angle;
see Fig. 35. It has a coordination number of 3.7 to 3.9 and may be described as a
mixture of fourfold and threefold coordinated atoms. The hydrogenation is essential
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for eliminating the native dangling-bond defect concentration (to ~1015 cm�3),
which produce a metastable light-induced degradation of the optoelectronic proper-
ties (Staebler–Wronski effect, Pantelides 1987, Fritzsche 2001). The defects are
mostly dangling bonds on threefold coordinated Si atoms (SiH units; see Figs. 32,
34, Menelle and Bellissent 1986, and Freysoldt et al. 2012); they give rise to
amphoteric electronic states in the bandgap which may be occupied by up to two
electrons and act as efficient recombination centers (Street 1991).

4 Quasicrystals

Quasicrystals are solids with an order between crystalline and amorphous. While a
crystal is formed by a periodic repetition of one unit cell, quasicrystals can be
assembled by an aperiodic repetition of (at least) two different unit cells. Such unit
cells also may have fivefold symmetry as first shown by Shechtman et al. (1984), and
Levine and Steinhardt (1984); this symmetry is forbidden for crystals since it cannot

Fig. 32 Atomic clusters
occurring in an α-Si:O:H alloy

Fig. 33 Local bonding variation in an α-Si:H alloy with higher densities of hydrogen
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fill space without overlap or voids as illustrated in Fig. 36. A quasicrystal has no
three-dimensional translational periodicity but still exhibits long-range order in a
diffraction experiment. Furthermore, orientational order exists: bond angles
between neighboring atoms have long-range correlations. There are two types of
quasicrystals: icosahedral quasicrystals, which are aperiodic in all directions, and
axial quasicrystals, which have an axis of 5-, 8-, 10-, or 12-fold symmetry (pentag-
onal, octagonal, decagonal, or dodecagonal quasicrystals, respectively); axial qua-
sicrystals are periodic along their axis and quasiperiodic in planes normal to it
(Steinhardt 1987; Cahn et al. 1986; Bendersky 1985; Janot 1994; Suck et al. 2002;
Dubois 2005).

Fig. 35 (a) Si–Si radial distribution function and (b) Si–Si–Si bond-angle distribution of α-Si:H
prepared by a fast (solid red line) or slow cooling rate (blue dots). The peaks of the distribution
functions center near the values 2.35 Å, 3.84 Å, and 109.5� of crystalline Si and narrow with slower
cooling; after Jarolimek et al. 2009

Fig. 34 (a and b) Different atomic clusters to which an H atom is attached. (c) Local order in α-Si:
H with typical interatomic distances shown (After Menelle and Bellissent 1986)
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4.1 Quasiperiodicity and Properties of Quasicrystals

4.1.1 Quasiperiodicity
To illustrate the origin of a quasiperiodic structure, we consider the density of lattice
points ρ(x) on a one-dimensional lattice. A periodic structure of equally spaced
lattice points with lattice parameter a is described by

ρ xð Þ ¼
X
n

δ x� nað Þ: (15)

Superimposing a second periodic structure with a different lattice parameter α �
a yields the sum

ρ xð Þ ¼
X
n,m

δ x� n að Þ þ δ x� m αað Þ: (16)

This density of lattice points still has long-range order. It is, however, not
periodic, if the ratio α of the two lattice parameters is not a rational number; a
periodic spatial coincidence can only occur for rational numbers α. A prominent
quasiperiodic chain is the one-dimensional Fibonacci sequence consisting of

two spacings L (long) and S (short) with a surd ratio L=S ¼ τ ¼ 1þ ffiffiffi
5

p� �
=2

¼ 1:618034 . . . (the golden ratio). The ratio τ appears in icosahedral symmetries,
e.g., in the ratio of the diagonal and the edge length of a pentagonal plane, and τ
is found in diffraction patterns of icosahedral quasicrystals; see Fig. 37a. The
diffraction diagram also shows the self-similarity by scaling observed in quasi-
crystals. An experimental challenge of such measurements is the large variation
of the intensity distribution over many orders of magnitude.

4.1.2 Quasicrystal Compounds
Quasicrystals exist in many metallic alloys, particularly in aluminum alloyed with
transition metals like Mn, Co, or Cu, or with normal metals like Mg. Structures may

Fig. 36 Space filling in two dimensions using regular polygon tiles. For triangles, squares and
hexagons (a–c) a single type of tile fills a surface; pentagons (d) leave gaps which can be filled with
diamond-shaped tiles (Penrose 1974)
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be very complex with up to some 103 atoms per unit cell.18 Both stable and
metastable forms exist for quasiperiodic crystals. Stable quasicrystals synthesized
using conventional metallurgy resist thermal treatment. Metastable quasicrystals are
prepared by rapid cooling using melt spinning or by crystallization of the amorphous
phase.19 A few alloys forming quasicrystals are listed in Table 6.

Intermetallic quasicrystals are hard and brittle materials.20 They have typically
unusual transport properties and low surface energies. The electrical conductivity σ
is low; a steady increase according σ = σ4K + Δσ(Τ) was found as the temperature is
raised with some general function Δσ as reported by Mayou et al. 1993. The
thermoelectric power at room temperature is large compared to Seebeck coefficients
of crystalline and disordered metallic alloys; small deviations in the chemical
composition give rise to large changes and even sign reversal, indicating a strong

Fig. 37 (a) Electron diffraction pattern from an Al-14%Mn quasicrystal with icosahedral symme-
try reported by Shechtman et al. 1984. Yellow and blue circles mark two pentagons scaled by the
golden ratio τ. (b) Icosahedron viewed on one of the 20 triangular faces. (c) Icosahedral Zn–Mg–Ho
quasicrystal (Ames Laboratory 2010)

Table 6 Some metallic alloys with quasicrystal phases occurring at specific compositions

Icosahedral quasicrystals

Axial quasicrystals

Compound Symmetry

AlMn7.1, YbCd5.7 Mn–Si, Cr–Ni–Si Octagonal

Al–Pd–Mn, Al–Li–Cu, Al–Cu–Fe Al–Fe–TM (TM = Cr,Mn,Ni,Pd) Decagonal

Zn60Mg30RE10 (RE = Y,Dy,Ho,Lu,Tb,Gd) Al–Cu–TM (TM = Co,Ni,Rh)

Al–Cu–TM (TM = Cr,Mn,Fe,Ru,Os) Ni–V, Ni–Cr Dodecagonal

18The largest unit cell experimentally found so far corresponds to the Al60.3Cu30.9Fe9.7 compound
comprising nearly 5,000 atoms.
19A natural quasicrystal, an Al63Cu24Fe13 alloy termed icosahedrite, has been found in a meteorite
(Bindi et al. 2011).
20For many quasicrystals a transition from brittle to ductile behavior was found at ~3/4 of the
melting temperature (Dubois et al. 2000).
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effect of the local order (Häussler et al. 2000). The thermal conductivity is very low,
with a particularly small contribution of electrons. The unusual transport properties
are related to the small number of free carriers, associated with a pronounced
pseudogap (Belin-Ferré 2004) around the Fermi level. Furthermore, extended elec-
tronic states like those found in periodic crystals cannot develop due to the lack of
translational symmetry.

The unusual properties of quasicrystals are interesting for various applications
like thermal insolation, reduced adhesion combined with hardness, reduced solid
friction, resistance against corrosion, and catalysis (Maciá 2006; Dubois 2012).

4.2 Modeling Quasicrystals

Two methods are generally used for describing quasicrystals.

4.2.1 The Superspace Approach
Symmetries that are non-crystallographic in three dimensions (3D) may become
crystallographic in higher-dimensional space (Hermann 1949). Icosahedral symme-
try complies with translational symmetry in a 6-dimensional (6D) space, where each
coordinate is perpendicular to a hyperplane spanned by the other 5 coordinates; the
6D space is composed of the physical 3D space (called parallel space) and a
complementary 3D space (perpendicular space). A 3D icosahedron is then obtained
as a projection of a 6D hypercube to three dimensions. The effect of such transfor-
mation is illustrated in Fig. 38. The 2D square lattice can be projected to a 1D
subspace as a straight line Rk. If the slopeΔy/Δx of Rk is a rational number in units of
a, a discrete periodic 1D set of sites is projected on Rk. If the slope is irrational as
depicted in the lower strip of the figure, the 1D sequence is aperiodic (in the figure
the projection on Rk is restricted to the indicated strip). A rational slope close to an
irrational slope creates an approximant with a periodic structure, labeled by the axial
relations of the generating cut.21 The 3/2 approximant depicted in Fig. 38 yields a
periodic sequence SLSLL. The local atomic arrangement of approximant phases
generated by rational cuts in superspace are expected to be similar to those of
corresponding quasicrystals.22

The strength of the superspace formalism is its straightforward mathematical
concept and the ability to apply the mature diffraction theory developed for periodic
3D crystals also to quasiperiodic crystals. The description of axial quasicrystals
requires a 5-dimensional space, which decomposes into the 2 orthogonal subspaces
of the physical 3D space and a complementary 2D space.

21The relation is τ:1, τ:1, τ:1 for an icosahedral quasicrystal and, e.g., 2:1, 2:1, 2:1 for a cubic
approximant (Pay Gómez and Lidin 2001).
22Since the theoretical treatment of quasicrystals is challenging, often large approximants which are
found to have similar properties are modeled instead.
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4.2.2 Three-Dimensional Direct-Space Approach
This complementary method applies rules of tiling models like those depicted in
Fig. 36d for a 2D Penrose tiling to atomic clusters of approximant phases. To create a
quasiperiodic structure directly, the operations must transform the structure into itself
within rescaling effects (Janot 1994) to ensure self-similarity. Thus, a 2D Penrose
tiling can be created by iteratively applied deflation rules for two different rhombic
unit cells (tiles).23 An instructive example is the 1D quasiperiodic Fibonacci
sequence of L and S segments shown in Fig. 39. Starting with a finite LS sequence
and applying the substitution rules L! LS and S! L, strings with increasing length
are formed successively. The self-similarity of the chain is illustrated in the figure.

The advantage of the direct-space approach is its intuitive clearness and the
ability for quantitative evaluation using microscopy and diffraction methods.

5 Summary

Crystal bonding and crystal structure are intimately related to each other. The crystal
structure is determined by the tendency to fill a given space with the maximum
number of atoms under the constraint of bonding forces and atomic radii. This

Fig. 38 Periodic (upper strip) and quasiperiodic sequence (lower strip) of one-dimensional tiles
L and S, created by projecting points of a square lattice on a straight line Rk. Using an irrational
slope obeying cosα/sinα= τ (the golden mean) yields a Fibonacci sequence of L and S (lower strip).
The upper strip is the 3/2 approximant of the golden mean with a rational slope

23To obtain a quasiperiodic instead of a just random tiling, matching rules for the arrangement of the
two different tiles must be obeyed.
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tendency originates from the strong driving force of lowering the internal energy of a
solid in thermal equilibrium and causes the number of atoms per unit volume to be
maximized, leading to an ordered structure.

An amorphous structure results with no long-range order, when sufficient viscos-
ity restricts atomic motion during fast enough cooling so that atomic building blocks
cannot find their crystalline ordered position before further motion becomes more
restricted by their rigidified surrounding. In an amorphous structure, the short-range
order is much like that in a crystal, while long-range periodicity does not exist. This
lack of periodicity has major consequences for the lack of interference effects,
modifying substantially the theoretical analysis of photon, phonon, and electronic
band-structure effects.

Quasicrystals are assembled by an aperiodic repetition of (at least) two unit cells
and still exhibit long-range order in a diffraction experiment. A unit cell may have a
symmetry not existing in crystals. There exist icosahedral quasicrystals with aperi-
odicity in all spatial directions and axial quasicrystals with a periodicity along one
direction.

Superlattices and low-dimensional structures like quantum wells, quantum wires,
and quantum dots enrich the variety of semiconducting materials. Their very attrac-
tive material properties can be engineered by designing size and chemical compo-
sition for creating new and improved devices.
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Abstract
Springlike interatomic forces allow macroscopic elastic deformations of the
semiconductor and coupled microscopic oscillations of each atom. The strain
occurring as a response to external stress is conventionally described by elastic
stiffness constants. When the strain exceeds the range in which the harmonic
approximation of the interatomic potential is valid, higher-order stiffness con-
stants are used. The symmetry of crystals strongly reduces the number of inde-
pendent constants. Elastic properties can be measured by static deformations or
kinetically by sound wave propagation.

Different modes of sound waves propagate with different velocities from
which all stiffness constants can be determined. Each mode of such collective
oscillations is equivalent to a harmonic oscillator which can be quantized as a
phonon. Phonons are one of the most important quasiparticles in solids. They are
responsible for all thermal properties and, when interacting with other quasipar-
ticles, for the damping of their motion.
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1 Elastic Properties

Elastic properties of solids are determined by interatomic forces and the crystal
structure of solids. These properties determine not only the macroscopic elastic
behavior of a solid but also provide the basic elements for all lattice oscillations.

The interatomic forces can be described in a first approximation as spring forces.
This means that the force F is proportional to an atomic displacement u = r � re:

F ¼ βu, (1)

with β the (spring) force constant. This holds for small displacements from the
equilibrium position of each atom as long as the potential can be approximated by a
parabola (see Fig. 1 for values of r close to the equilibrium distance re). For the
harmonic potential V = V0 + α(r � re)

2 and F = dV/dr, we obtain the linear relation
(1) with β = 2α for the spring forces. For nonlinear effects, see ▶ Sect. 1.2 and in
chapter “Interaction of Light with Solids” Sect. 3.

In a three-dimensional lattice with interatomic forces restraining changes in the
bond length and bond angle, a more complicated relation between the force and the
atomic displacement in such a network must be considered. Since various force
constants can be distinguished in such a three-dimensional lattice, the general
relation between forces and lattice deformation will be analyzed first.

Microscopic parameters can be derived from macroscopic experiments by expos-
ing a sample to specific forces (stress) and observing the resulting deformation
(strain). The following section will deal briefly with stationary deformation of the

Fig. 1 Interatomic potential
energy eV (black line) and
parabolic, i.e., harmonic,
approximation (green line). re
is the equilibrium distance
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semiconductor described as a macroscopic continuum. In Sect. 2, we will then
discuss additional information which can be obtained from dynamic deformation.

1.1 Stress–Strain Relations

The basis for deriving the elastic constants is a simple application of Hooke’s law
(Eq. 1) to the different ways of applying mechanical forces to a semiconductor,
which are summarized for isotropic systems and homogeneous strains in Fig. 2.

There are three macroscopic elastic moduli which can be expressed for a homo-
geneous medium by the following relations:

• The linear elasticity modulus (Young’s modulus or stretching modulus) E:

E ¼ FD=A

Δl=l
(2)

• The shear modulus (or rigidity modulus) G:

G ¼ FS=A

Δx=l
(3)

• The bulk modulus (or compression modulus) B (=1/κ with κ the compressibility):

B ¼ �V
ΔP
ΔV

, (4)

where l, A, and V are, respectively, the length, the face area, and the volume of the
undeformed cube; FD is the pull force; FS is the shear force; and P is the pressure.1 In
a typical semiconductor, these moduli depend on the crystal orientation. From this

Fig. 2 Three basic types of mechanical deformation of a cube: (a) stretching (in one dimension),
(b) shearing, and (c) volume compression

1The ratios σD = FD/A and σS = FS/A are a normal stress (uniaxial pressure) and a shear stress,
respectively, and P is the hydrostatic pressure. Stresses are the origin of deformations and have the
unit of a force per area.
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mechanical approach, we can deduce important consequences for the different types
of waves of interest in a semiconductor.

The mechanical deformation depends on the type of stress applied as illustrated in
Fig. 2. A parallelepiped (e.g., a crystallite) can be deformed by changing the lengths
of its edges and the angle between them or, equivalently, by changing its unit cell
accordingly. During such a deformation, an arbitrary point, described by a vector
r from the origin, is displaced to r0, which in turn is given in component form as

x0 ¼ 1þ @u1
@x

� �
xþ 1þ @u1

@y

� �
yþ 1þ @u1

@z

� �
z

y0 ¼ 1þ @u2
@x

� �
xþ 1þ @u2

@y

� �
yþ 1þ @u2

@z

� �
z

z0 ¼ 1þ @u3
@x

� �
xþ 1þ @u3

@y

� �
yþ 1þ @u3

@z

� �
z

(5)

where u1, u2, and u3 are the components of the displacement vector and assuming
that the dimensionless strain quantities (@ui/@x, @ui/@y, @ui/@z)< 1. When expressed
in tensor form, we have

r0 ¼ rþ «�r (6)

with the components of the tensor « given by the derivatives in Eq. 5. A pure
deformation without translation or rotation of the crystal is described by the sym-
metric part of this tensor

«s ¼

@u1
@x

1

2

@u1
@y

þ @u2
@x

� �
1

2

@u1
@z

þ @u3
@x

� �
1

2

@u1
@y

þ @u2
@x

� �
@u2
@y

1

2

@u2
@z

þ @u3
@y

� �
1

2

@u1
@z

þ @u3
@x

� �
1

2

@u2
@z

þ @u3
@y

� �
@u3
@z

0
BBBBBB@

1
CCCCCCA

(7)

defining a set of strain coefficients eik with which the crystallite deformation is easily
described. For instance, after application of hydrostatic pressure, the relative volume
change and the new volume are given from V0 = a0 � b0 � c0, when retaining only
first-order terms by

ΔV=V ¼ V � V0ð Þ=V ¼ exx þ eyy þ ezz and

V0 ¼ V 1� exx þ eyy þ ezz
� �� �

:
(8)

(For more detail, see Joos (1945) and Nye (1972).) The strain coefficients eik relate to
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the six independent components of the stresses (σxx, σyy, σzz and σyz, σzx, σxy) in a
tensor relationship

«s ¼ S σ (9)

with the compliance tensor S comprising 81 elastic compliance constants Sijkl (with
i, j, k, l= 1, . . . 3); usually a reduced notation with 36 constants Sik (with i, k= 1, . . . 6)
is applied.2

Often the inverse relationship is used:

σ ¼ C «s and C ¼ S�1 (10)

with the elastic stiffness constants Cijkl (with i, j, k, l = 1, . . . 3) usually reduced to
36 constants Cik (with i, k = 1, . . . 6). Equation 10 is also known as the generalized
Hooke’s law. Since σyz= σzy, etc., and eyz= ezy, etc., both second-rank tensors can be
reduced in a symbolic notation to vectors σ and « with six components. This permits
us to write a matrix relation between σ and « where the fourth-rank tensors C and S
are replaced by 6� 6 matricesC and S. The stress components can then be written as

σi ¼
X6

k¼1
Cik ek (11)

with the convention k= 1 . . . 6 equivalent to xx, yy, zz, yz, zx, and xy, respectively, for
a single index (Voigt notation).3

1.2 Elastic Stiffness Constants

The number of elastic stiffness constants can be reduced from 36 because of two
considerations:

1. The parabolicity of the lattice potential (in harmonic approximation) renders the
Cik symmetrical: Cik = Cki, leaving 21 independent constants.

2. Lattice symmetry further reduces this number.

2S is a fourth-rank tensor with 34 = 81 components Sijkl. The tensor (Sijkl) is usually reduced to a
6 � 6 matrix (Sik) by the index substitution given in the text, thereby simplifying the notation but
losing the tensor transformation properties; for details, see Dunstan (1997).
3The full tensor notation reads σij = � k = 1

3 � l = 1
3 Cijkl ekl. This form yields correctly transformed

stress–strain relations for arbitrary stress directions, while the reduced notation applies only for
stresses along the principal axes, when the generally listed constants Cmn are used.
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For instance, in a cubic latticewith cyclic interchange of x, y, and z, the same state
is reproduced. This yields

C12 ¼ C13 ¼ C23,C11 ¼ C22 ¼ C33 and C44 ¼ C55 ¼ C66

C14 ¼ C15 ¼ C16 ¼ C61 ¼ C62 ¼ C63 ¼ C64 ¼ C65 ¼ 0

and an exceedingly simple matrix results:

Ccubic ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

0
BBBBBB@

1
CCCCCCA

(12)

with only three independent elastic stiffness constants C11, C12, and C44. The
hexagonal lattice has a lower symmetry and requires five independent elastic
stiffness constants; the respective matrix reads

Chex ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
C11 � C12

2

0
BBBBBBB@

1
CCCCCCCA

(13)

The independent elastic stiffness constants for the seven crystal systems and isotro-
pic solids are given in Table 1.

The values of these elastic stiffness constants for the more important semicon-
ductors are listed in Table 2. These stiffness constants depend on the lattice temper-
ature (see below); the room temperature values are given when not otherwise stated.

1.2.1 Third-Order Elastic Constants
In the previous discussion, only the harmonic part of the interatomic potential was
included; this limits the amplitude of deformation to the validity of Hooke’s law. For
nonlinear effects, which include thermal expansion and phonon scattering, the third-
order elastic constants must be included (see Brugger 1964). These can be obtained
from the lattice potential with higher terms:

V ¼ V0 þ α1 r � reð Þ2 þ α2 r � reð Þ3 þ . . . (14)

with the strain energy
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Table 1 Elastic stiffness constants for primitive lattices and isotropic solids

Crystal system

Independent elastic stiffness constants

Number Constants

Triclinic 21 C11C12C13C14C15C16C22C23C24C25C26

C33C34C35C36C44C45C46C55C56C66

Monoclinic (standard orientation) 13 C11C12C13C15C22C23C25

C33C35C44C46C55C66

Trigonal 6 C11C12C13C14 C33C44C55

Hexagonal 5 C11C12C13 C33C44

Orthorhombic 9 C11C12C13C22C23C33C44C55C66

Tetragonal 6 C11C12C13 C33C44 C66

Cubic 3 C11C12 C44

Isotropic 2 C11C12

Table 2 Elastic stiffness constants for some important semiconductors in GPa

Crystal Structure C11 C12 C44 C13 C33

Diamonda D 1,076.4 125.2 557.4

Sia D 165.8 63.9 79.6

Gea D 124.0 41.3 68.3

α-Sna D 69.0 29.3 36.2

SiCb ZB 390 142 256

AlPc ZB 133.0 63.0 61.5

AlAsc ZB 125.0 53.4 54.2

AlSbc ZB 87.7 43.4 40.8

β-GaNd ZB 293 159 155

GaPc ZB 140.5 62.0 70.3

GaAsc ZB 122.1 56.6 60.0

GaSbc ZB 88.4 40.3 43.2

InPc ZB 101.1 56.1 45.6

InAsc ZB 83.3 45.3 39.6

InSbc ZB 68.5 37.4 31.1

ZnSe ZB 98.1 62.7 44.8

ZnSee ZB 87.2 52.4 39.2

ZnTee ZB 71.3 40.7 31.2

CdTea ZB 53.8 37.4 20.2

HgSea ZB 62.2 46.4 22.7

HgTea ZB 53.6 36.6 21.1

PbS NaCl 113.9 28.9 27.2

PbSe NaCl 123.7 19.3 15.9

PbTe NaCl 107.2 7.7 1.3

SiCe 6H 501 111 163 53 553

AlNd W 396 137 116 108 373

GaNd W 390 145 105 106 398

(continued)
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ES ¼ ES0 þ
1

2

X
i, k

Cik eiek þ 1

6

X
i, k, l

Cikl eiekel (15)

defining the third-order elastic constants. These constants can be obtained from
sound-wave propagation (see Sect. 2.1) in a sufficiently prestressed semiconductor.
In Table 3, the set of third-order elastic constants for a few semiconductors is given.
(See McSkimmin and Andreatch (1964, 1967); for a general review, see Hiki
(1981).)

1.2.2 Temperature Dependence
The expansion of the lattice with increased temperature leads to a reduction of
interatomic forces and thus a reduction in the value of the elastic stiffness constants

Table 2 (continued)

Crystal Structure C11 C12 C44 C13 C33

InNd W 223 115 48 92 224

ZnOa W 206 118 44 118 211

CdSb W 86.5 54.0 15.0 47.3 94.4

CdSea W 74.1 45.2 13.4 39 84.3
aMartienssen and Warlimont (2005)
bAdachi (2005)
cVurgaftman et al. (2001)
dVurgaftman and Meyer (2003)
eAyers (2007)

Table 3 Third-order elastic constants at room temperature in GPa

Crystal Structure C111 C112 C123 C144 C166 C456

C (diamond)a D �7,603 �1,909 +835 +1,438 �3,938 �2,316

Sib D �816 �446 �79 �14 �344 �76

Gec D �710 �389 �18 �23 �292 �53

GaPd ZB �737 �474 �131 �107 �234 +62

GaAse ZB �628 �387 �90 +24 �269 �44

GaSbf ZB �475 �308 �44 +50 �216 �25

InPg ZB �860 �185 �510 �650 +160 �4

InAsg ZB �518 �225 �239 �190 �18 �7

ZnSeg ZB �827 �136 �511 +222 �265 �278

HgTeg ZB �260 �170 �77 �17 �57 �1
aLang and Gupta (2011)
bAnastassakis et al. (1990)
cMcSkimmin and Andreatch (1964)
dYoğurtçu et al. (1981)
eJoharapurkar et al. (1992)
fRaja and Reddy (1976)
gAdachi (2005)
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(Garber and Granato 1975). Typical behavior is shown for Si in Fig. 3. Near 0 K this
dependence disappears, shown as a horizontal tangent in Fig. 3 – as required by the
third law of thermodynamics. The figure also shows that doping (▶Sects. 1.2 in
chapter “Crystal Defects” and 1 in chapter ▶ “Shallow-Level Centers”) usually
weakens the lattice and thereby reduces the elastic stiffness constants.

1.2.3 Information from Elastic Stiffness Constants
The elastic stiffness constants provide a wealth of information about the interatomic
forces. Their magnitude reflects the strength of the bond and, for a similar bonding
type, shows the decreasing strength of the bond with increasing atomic number
(atomic radius), as seen in Table 2 by comparing compounds in which only one of
the homologous elements is varied, e.g., InP, InAs, and InSb.

Most direct information can be derived by expressing the compressibility in terms
of Cik. For instance, the compressibility in cubic crystals is given by4

κ ¼ 3

C11 þ 2C12

: (16)

When binding forces are radially symmetric (ionic bond), one expects the Cauchy
relation (Cauchy 1828; see Zener 1947; Musgrave 1970) to hold

C44 ¼ C11 � C12

2
: (17)

Fig. 3 Temperature dependence of the elastic stiffness constants for Si (After Hall 1967)

4For hexagonal crystals, the compressibility is given by κhex ¼ C11þC12�4C13þ2C33

C11þC12ð ÞC33�2C13
2.
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Deviation from this relation indicates an elastic anisotropy and is presented as
anisotropy parameter a = C11 – C12/ (2C44). Such anisotropy is given by Keating’s
relation (Keating 1966) for monoatomic cubic semiconductors:

C44 ¼ C11 � C12

2
� C11 þ 3C12

C11 þ C12

: (18)

Other information can be obtained about the influence of lattice defects (Mason
and Bateman 1964) and about the influence of free electrons (Bruner and Keyes
1961) which reduce the strength of the lattice bonds. A decrease in all elastic
stiffness constants is shown by Hall (1967) as illustrated in Fig. 3.

2 Elastic Waves

Acoustic oscillations correspond to the macroscopic behavior of a solid responding
to sound waves. At long wavelengths, this behavior can be described (Brown 1967;
Musgrave 1970) by a continuum model in which the displacement ui (in the har-
monic approximation) follows the equation of motion:

ρ
@2ui
@t2

¼
X
k

@σik
@xk

¼
X
j

X
k

X
l

Cijkl
@2ui
@xj@xk

, (19)

where u1, u2, and u3 are displacements in the x-, y-, and z-directions, respectively; ρ
is the mass density, and σik is the stress tensor (see Sect. 1.1). The Cik are related to
the components of the Cijkl tensor. This relation is given by5

Cαβ ¼ Cijkl for 1 � α, β � 3

Cαβ ¼ 1

4
Cijkl for 4 � α, β � 6

Cαβ ¼ 1

2
Cijkl for 1 � α � 3, 4 � β � 6, or 1 � β � 3, 4 � α � 6

and α= (ij), β= (kl) with i, j, k, l permutating for x, y, z, following the convention for
(α or β) = 1 . . . 6, equivalent to xx, yy, zz, yz, zx, and xy, respectively. Equation 19 is
the wave equation.

5The factors are necessary due to a simplification in Voigt notation; the full tensor notation
comprises, e.g., off-diagonal summands Cijklekl + Cijlkelk(k 6¼ l ), while in the shorter matrix notation,
the corresponding summands Cmnen (n = 4, 5, 6) only appear once.
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In a cubic crystal, the relation (19) can be expressed as

ρ
@2u1
@t2

¼ C11

@2u1
@x2

þ C44

@2u1
@y2

þ @2u1
@z2

� �
þ C12 þ C44ð Þ @2u2

@x@y
þ @2u3
@x@z

� �
, (20)

with similar equations for u2 and u3 obtained by cyclic exchange of (u1, u2, u3) and
(x, y, z). Their solutions can be written for the displacement vector in plane wave
form:

u r, tð Þ ¼ Aexp i qr� ωtð Þ½ �, (21)

with |q| = 2π/λ and q the wavevector for lattice oscillations. Here q will be used
consistently to set it apart from k, the electron wavevector (see▶ Sect. 1.2 in chapter
“The Origin of Band Structure”). In one dimension, q is referred to as the
wavenumber. Introducing this ansatz (German for “trial solution”) into Eq. 20
yields the set of equations that connect ω and q, called the dispersion equations
(see Sect. 3.1).

2.1 Sound Waves in Crystals

2.1.1 Cubic Crystals
We now determine the crystallographic direction in which the sound wave
propagates and whether it is induced as a compression (longitudinal) wave or
as a shear (transverse) wave. Only in special directions (see below) are these
waves purely longitudinal or transverse; otherwise, they have components of
each. In either case, the resulting dispersion relations are easily obtained. For
instance, when a longitudinal sound wave propagates in the 100 direction, one
obtains from Eq. 19

ρ
@2u1
@t2

¼ C11

@2u1
@x2

(22)

which yields with the ansatz u1 = A exp[i(qxx � ωt)] the dispersion relation

ρω2 ¼ C11q
2
x : (23)

Rewriting Eq. 22 as

@2u1
@t2

¼ 1

v2s

@2u1
@x2

, (24)

one obtains the sound velocity (see also Sect. 3.1):
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vs ¼ ω

q
¼

ffiffiffiffiffiffiffi
C11

ρ

s
: (25)

For longitudinal and transverse acoustic waves, one has the simple relations

að Þ vs, l ¼
ffiffiffiffiffiffiffi
C11

ρ

s
and bð Þ vs, t ¼

ffiffiffiffiffiffiffi
C44

ρ

s
, (26)

obtained from an equation similar to Eq. 22. In the 110 direction, the relationship is a
bit more involved, since two transverse modes must be distinguished:

að Þ vs, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 þ C12 þ 2C44

2ρ

s
, bð Þ vs, t1 ¼

ffiffiffiffiffiffiffi
C44

ρ

s
,

cð Þ vs, t2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 � C12

2ρ

s
:

(27)

Finally, in the 111 direction, one obtains

að Þ vs, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 þ 2C12 þ 4C44

3ρ

s
and bð Þ vs, t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 � C12 þ C44

3ρ

s
: (28)

Later, when electron scattering with longitudinal acoustic phonons is considered,
Cl is used as an abbreviation for a longitudinal elastic constant, which equals C11 in
the 100 direction and (C11 + C12 + 2C44)/2 in the 110 direction.

These velocities are conventionally labeled v1, v3, and v6 for longitudinal waves
in the 100, 110, and 111 directions, respectively. The corresponding transverse
waves are labeled v2; v4, v5; and v7, v8 for the 100 (one wave), 110 (two waves),
and 111 (two waves) directions, respectively.6

Sound velocities vi are given for a number of semiconductors in Tables 4 and 5.
Since they are related to the elastic stiffness constants, the sound velocities decrease
with increasing temperature, as shown in Fig. 4. The change in crystal volume with
temperature has the opposite influence on the sound velocity, but usually is a smaller
effect. With application of uniaxial stress, the lattice symmetry is lowered, and new
branches appear for the sound velocities, which split proportional to the applied stress.

6Also the following labels are used (see also Eqs. 26, 27, and 28): vL (corresponding to v1 or vs, l
100),

vT (v2, vs, t
100), vl (v3, vs, l

100), vtk (v4, vt1 ), vt⊥ (v5, vt2 ), vl’ (v6, vs, l
111), vt’ (v7, vs, t

111).
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2.1.2 Hexagonal Crystals
In hexagonal crystals, sound propagation along and perpendicular to the c-axis is
distinguished. Values for some semiconductors are given in Table 5; the last line in
the header gives the relations of v to the elastic stiffness constants.

Table 4 Sound velocities in some cubic semiconductors (structure diamond (D) or zincblende
(ZB)) given in 103 m/s. Expressions with square brackets (top) denote the propagation direction;
below is the direction [] or plane () of polarization; the last line of the header gives the reference to
the respective equation in the text

Crystal Structure

v1 v2 v3 v4 v5 v6 v7

LA
TA1,
TA2 LA TA1 TA2 LA

TA1,
TA2

001½ �
001½ �

001½ �
001ð Þ

110½ �
110½ �

110½ �
001ð Þ

110½ �
110ð Þ

111½ �
111½ �

111½ �
111ð Þ

Eq. 26a Eq. 26b Eq. 27a Eq. 27b Eq. 27c Eq. 28a Eq. 28b

Diamond D 17.52 12.82 18.32 12.82 11.66 18.58 12.06

Si D 8.43 5.84 9.13 5.84 4.67 9.36 5.09

Ge D 4.87 3.57 5.36 3.57 2.77 5.51 3.06

SiC ZB 11.0 8.92 12.7 8.92 6.21 13.3 7.23

β-GaN ZB 6.9 5.02 7.87 5.02 3.3 8.17 3.96

GaP ZB 5.83 4.12 6.43 4.12 3.08 6.63 3.46

GaAs ZB 4.73 3.35 5.24 3.35 2.48 5.4 2.8

GaSb ZB 3.97 2.77 4.38 2.77 2.07 4.50 2.33

InP ZB 4.58 3.08 5.08 3.08 2.16 5.23 2.51

InAs ZB 3.83 2.64 4.28 2.64 1.83 4.41 2.13

ZnSe ZB 4.04 2.77 4.55 2.77 1.82 4.70 2.19

HgTe ZB 2.57 1.60 2.85 1.60 1.01 2.94 1.24

Table 5 Sound velocities in hexagonal semiconductors (wurtzite (W) or 6H) at room temperature
given in 103 m/s. Expressions with square brackets (top) denote the propagation direction; below is
the direction [] or plane () of polarization (After Adachi 2005)

Crystal Structure

v1 v2 v3 v4 v5
LA TA1,TA2 TA1 TA2 LA
00:1½ �
00:1½ �

00:1½ �
00:1ð Þ

01:0½ �
00:1½ �

01:0½ �
21:0½ �

01:0½ �
01:0½ �ffiffiffiffiffi

C33

ρ

q ffiffiffiffiffi
C44

ρ

q ffiffiffiffiffi
C44

ρ

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12

ρ

q ffiffiffiffiffi
C11

ρ

q
SiC 6H 13.1 7.12 7.12 7.79 12.5

AlN W 10.9 6.07 6.07 7.80 11.2

GaN W 7.97 3.93 3.93 4.37 7.83

InN W 5.17 1.21 1.21 2.51 5.28

ZnO W 6.20 2.79 2.79 2.80 6.07

CdS W 4.43 1.76 1.76 1.84 4.24

CdSe W 3.86 1.54 1.54 1.60 3.62
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Ultrasound Measurement of Elastic Constants The sound velocities can be mea-
sured by using ultrasound transducers coupled to properly cut semiconductor plate-
lets and measuring the time delay between an emitted pulse and its reflected echo.
For a review, see Truell et al. (1969). This method can be used to determine
experimentally the elastic stiffness constants from the sound velocity for longitudi-
nal and transverse acoustic waves in different crystallographic directions.

Sound BeamMixing At sufficient amplitudes, the nonlinear part of the interatomic
potential becomes important in sound waves; this permits two sound beams of the
same or different frequency to mix, and results in the creation of a third beam with
sum or difference frequency (Hiki and Mukai 1973).

Sound Damping and Crystal Defects Sound echos in good semiconducting sam-
ples can be observed after many reflections at the surfaces. Damping of the sound
occurs because of inelastic scattering with phonons (see Sect. 3 for definition) and
crystal defects. For interaction with phonons, considering the anharmonic part of the
lattice potential, there are two extreme regimes: the Akhieser regime (Akhieser
1939) with ωsτ < 1 and the Landau–Rumer regime with ωsτ > 1 (ωs = sound
frequency, τ = phonon relaxation time) see ▶ Sect. 1 in chapter “Photon–Phonon
Interaction.” In the former, the sound attenuation is given by (Woodruff and
Ehrenreich 1961)

γA ¼ δ2ω2
s T (29)

and in the second by (Landau and Rumer 1937)

Fig. 4 Sound velocities of shear waves in Si versus temperature for propagation along 110: (a)
longitudinal wave and (b) shear waves for particle motion parallel to 001 direction (v4) and 110
direction (v5)

124 Elasticity and Phonons



γL�R ¼ δ2ωsT
4, (30)

where δ is a quantity7 proportional to the lattice anharmonicity and T is the
temperature. A similar attenuation is important for phonon–phonon interaction, as
it determines heat conductivity (see ▶ Sect. 3 in chapter “Phonon-Induced Thermal
Properties”). For a consistent treatment in the entire frequency range, see
Guyer (1966).

There is a wide variety of crystal defects (see chapter▶ “Crystal Defects”) which
cause further sound attenuation. The detectability of such defects depends on the
wavelength of the sound: small defects (point defects and dislocations) require
wavelengths on the order of the lattice constant; larger defects, such as crystallite
boundaries, precipitates, and small cavities, can be detected with conventional
ultrasound. In general, the wavelength should be on the order of the defect dimen-
sion to cause detectable sound attenuation.

In a continuum model, the elastic (acoustic) waves with a long wavelength are
only one type of possible oscillations. The description will be extended below to
more general lattice oscillations.

3 Phonon Spectra

When an atom is coupled to another atom of the same mass in a diatomic molecule, it
can oscillate in a vibrational mode with a well-defined eigenfrequency

ω0 ¼
ffiffiffiffiffi
β

M

r
(31)

with β as the spring (force) constant andM as its mass. For Coulomb interaction, the
spring constant can be given easily, relating the force to the spatial derivative of the
Coulomb potential and yielding, near the equilibrium distance a, for β ffi e2/(4πe0a)

2.
When this same atom is imbedded in a monatomic crystal, a broad spectrum of

oscillation is possible. In the following sections, we will analyze this vibration
spectrum. Here, such an oscillatory state may be envisaged by holding a lattice of
steel balls interconnected by springs, as shown in a two-dimensional model in Fig. 5,
and by wiggling it, setting the balls in a jiggling oscillatory motion. The motion of
each individual ball, although oscillatory in nature, is a complicated one, with
components in all directions. It can be decomposed into a sum of many harmonic
parts of a large number of frequencies. A systematic discussion in the following
pages will show, however, that order can be brought into this complex picture.

7The constant δ can be expressed as Γ2Cv/(3ρvs
3) with Γ the Grüneisen parameter (▶Eq. 26 of

chapter “Phonon-Induced Thermal Properties”), Cv the specific heat, ρ the density, and vs the
average sound velocity.
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The coupled lattice atoms in such a state of complex oscillation can be thought of
as performing collective oscillations. Each mode into which it can be decomposed
belongs to the entire crystal. Such modes can be regarded as quanta of elementary
excitations, ℏω, and are called phonons.8 They are not localized; together, they
belong to the entire crystal, until a specific event (a scattering event) occurs where,
temporarily, such localization takes place. In our steel-ball model, it could be
demonstrated by hitting one of the balls with a small hammer, temporarily making
it oscillate more orderly in its resonance frequency, until, by interaction with its
neighbors, the more erratic, jiggling motion is restored.

3.1 Oscillations of One-Dimensional Lattices

In order to understand this concept better, an analysis of the classical equation of
motion for a simple one-dimensional lattice is given first. In such a lattice, longitu-
dinal and transversemodes of oscillations are possible. In pure form, these oscilla-
tions entail oscillations in the direction of, or perpendicular to, the atomic chain,
respectively. In general, therefore, one can describe an arbitrary state of oscillations
by a superposition of one longitudinal and two (perpendicular to each other)
transverse branches of oscillations. Pure longitudinal oscillations are described first.

Fig. 5 Two-dimensional
representation of a lattice of
steel balls held in place by
interconnecting springs

8An elastic wave can thus be regarded as a stream of phonons, in analogy to an electromagnetic
wave which can be described as a stream of photons. Both quasiparticles are not conserved;
phonons or photons can be created by simply increasing the temperature or the electromagnetic
field.
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3.1.1 Longitudinal Lattice Oscillation
In a longitudinal mode, the atoms in a monatomic chain oscillate, thereby changing
the distance between each other, although remaining entirely along the x-axis; see the
lower row of Fig. 6. For small displacements, assuming a harmonic lattice potential,9

the force F is proportional to the relative atomic displacement u (Hooke’s law). For
an arbitrary atom (index n), the forces acting on it are transmitted from its two
neighbors (n � 1 and n + 1) and are given by (see Fig. 6)

F ¼ β un�1 � unð Þ � β un � unþ1ð Þ (32)

with β the spring constant. Using Newton’s law, the equation for motion of this atom
is

M
d2un
dt2

¼ F ¼ β unþ1 þ un�1 � 2unð Þ: (33)

The solution of this equation must describe atomic oscillations, which are given by

un ¼ Aexp i qna� ωtð Þð Þ (34)

with q as the wavenumber and na as the position x of the nth atom. Equation 34 is
used as a trial solution and is introduced into Eq. 33 for un, un+1, and un�1. We then
obtain the relationship between ω and q,

Mω2 ¼ �β exp iqað Þ þ exp �iqað Þ � 2ð Þ ¼ 2β 1� cos qað Þð Þ, (35)

from which the dispersion equation is obtained:

ω qð Þ ¼ �2

ffiffiffiffiffi
β

M

r
sin

qa

2

� �			 			: (36)

Fig. 6 Linear chains of atoms
with the upper chain at rest
and the lower vibrating in a
longitudinal mode

9In the harmonic approximation, there is no exchange of energy between different modes of
oscillation. Such exchange, necessary to return to equilibrium after any perturbation, requires
anharmonicity.
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The � sign refers to waves traveling to the left or to the right. Standing waves, as
required for the boundary conditions (Eq. 37), are obtained by superposition of the
running waves with opposite propagation and equal amplitude.

The dispersion relation is pictured in Fig. 7.10 The frequency increases linearly
with q for (qa/2) < 1, as is expected for elastic waves in a homogeneous elastic
material. However, ω(q) then levels off and reaches a saturation value sin π

2
¼ 1

� �
when q ! π

a , i.e., when the wavelength of the oscillations (λ = 2π/q) approaches
twice the interatomic distance; the atomic character of the medium becomes apparent

here (see below). The maximum frequencies ωmax ¼ 2
ffiffiffiffiffiffiffiffiffi
β=M

p� �
are typically on the

order of 1013 Hz; the related maximum phonon energy ℏωmax is on the order of
30 meV (240 cm�1) for typical semiconductors.

3.1.2 Transverse Lattice Oscillation
The same dispersion relation is obtained for transverse waves in a linear chain as
long as the amplitude remains small and the force constants can be described by the
same β. For these waves, however, the oscillations occur in a plane perpendicular to
the x-axis. Since there are two of these planes orthogonal to each other, we distin-
guish twotransverse polarizations of these oscillations. Figure 8 presents some
examples of such modes of transverse vibrations in a very short chain.

As a boundary condition, we can require that no energy is transferred from or to the
outside; this is the adiabatic boundary condition and requires nodes at the outer “surfaces”
(x = 0 and x = l). With this condition, q can only attain discrete values qn, with

q ¼ qn ¼
2πnq
l

nq ¼ 1, 2, . . . l=a ¼ Nð Þ, (37)

where N is the number of atoms in the chain and l is the length of the chain. The

Fig. 7 Dispersion relation
(here for the energy ℏω) as
given by Eq. 36 for a linear
chain of the same type of
atoms with an interatomic
distance a. The boundaries in
q are those of the first
Brillouin zone

10To point out the similarity to the E(k) diagram for electrons in a periodic potential (see▶ Sect. 2 in
chapter “The Origin of Band Structure”), ℏω is plotted rather than ω as a function of q throughout
the book. The limit of the wavenumber between –π/a and +π/a indicates the boundaries of the first
Brillouin zone (▶ Sect. 1.3 in chapter “The Structure of Semiconductors”). Extending the diagram
beyond this interval provides no new information.
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upper limit of nq = l/a is given by the fact that the minimum wavelength is a when
fulfilling the boundary condition of nodes at both ends of the chain. Smaller
wavelength representations, although possible, describe no new type of atomic
oscillation and are disregarded. Therefore, a chain of N atoms has exactly
N different modes for the given polarization of such oscillations.11 Or, an arbitrary
state of motion of such chain can be decomposed by the superposition of 2N normal
modes. The factor of two stems from the two polarizations of transverse oscillations.
Depending on the total energy (i.e., thermal energy) in the chain, these different
modes can be excited to a greater or lesser degree; however, with oscillations of
quantized energy steps

En ¼ ℏωn and ωn ¼ ω qnð Þ, (38)

each one of these steps represents a phonon. For a single oscillator, a larger
excitation causes a larger amplitude at the same eigenfrequency, i.e., a larger energy
and therefore a larger number of phonons, each one of them having the same energy.
The occupation of a specific mode is then given by the total energy within this mode
divided by ℏω:

E mð Þ
n

En
¼ nþ 1

2
(39)

with m phonons residing in this mode. The term ½ stems from the zero-point energy,
i.e., a remaining fraction of energy at T = 0 K.

In thermal equilibrium, the many different modes are occupied with phonons
according to the Bose–Einstein distribution function: the higher the temperature, the
more phonons that appear.

With one longitudinal and two transverse branches, we have a total of 3N phonon
modes in a linear lattice. This also holds true for two- or three-dimensional mon-
atomic lattices, where N is the total number of lattice atoms (i.e., there is also a total
of 3N phonon modes).

Fig. 8 Three modes of
transverse oscillation in a
short one-dimensional chain
of length l

11Strictly speaking, there are only N � 2 different modes when requiring that the surface atoms
remain at rest. By bending the (long) linear chain into a circle, one can obtain an equivalent
condition by introducing cyclic boundary conditions [requiring u(x = 0) = u(x = l )] to get around
this “N – 2” peculiarity (Born and von Karman 1912). For large N, however, one always has
N � 2 ffi N. Such a cyclic boundary condition is also necessary to permit propagating waves.
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Comparing the relative displacement of atoms in the three different modes shown
in Fig. 8, we see that the displacement of adjacent atoms with respect to each other
becomes larger with decreased wavelength, i.e., with increased q. Therefore, more
energy is contained in modes with higher ω. This relation between phonon energy
and wavelength λ = 2π/q is given by the dispersion relations (Eqs. 36 and 44).

3.1.3 Transverse Oscillation in a Diatomic Lattice
In a lattice with a basis (see▶ Sect. 1 in chapter “The Structure of Semiconductors”)
(e.g., a diatomic linear chain with alternating masses), the equation of motion can be
split into a set of two oscillatory equations:

M1

d2u2n
dt2

¼ β u2nþ1 þ u2n�1 � 2u2nð Þ (40)

and

M2

d2u2nþ1

dt2
¼ β u2nþ2 þ u2n � 2u2nþ1ð Þ: (41)

These require two wave equations for the displacements of light and heavy atoms
with indices 1 and 2, respectively, and a0 the nearest neighbor distance = a/2 with
a the lattice constant:

u2n ¼ A1 exp i 2nqa0 � ωtð Þð Þ (42)

and

u2nþ1 ¼ A2 exp i 2nþ 1½ �qa0 � ωtð Þð Þ: (43)

with amplitudes A1 and A2. Introducing Eqs. 42 and 43 into Eqs. 40 and 41 and
solving the ensuing secular equations yields the dispersion equation for a diatomic
chain

ω2
� ¼ β M1 þM2ð Þ

M1M2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M1M2 sin

2 qa0ð Þ
M1 þM2ð Þ2

s !
: (44)

It has two solutions depending on the sign of the square root. The two corresponding
ℏω(q) branches are shown in Fig. 9.

The upper branch is referred to as the optical branch, the lower as the acoustic
branch. The amplitudes of the different sublattice oscillations near q = 0 for the
same wavelength are the same for the acoustic branch:

A1

A2

ffi
1 for q ! 0

1 for q ! π

a

(
: (45)
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For q = π/a, the heavy atom is at rest, as shown in Fig. 10b (top), with amplitude
A2 = 0. For the optical branch,

A1

A2

ffi
�M2

M1

for q ! 0

0 for q ! π

a

8><
>: : (46)

Here, for q = π/a, the light atom is at rest with amplitude A1 = 0. In the latter case, the
lattices oscillate opposite to each other, while the center of mass remains stationary;
therefore, the lighter mass oscillates with larger amplitude, as indicated in Fig. 10.

If the lattice binding force is (partially) ionic, the optical branch of oscillation will
show a large dipole moment interacting with electromagnetic radiation (photons)

Fig. 10 Acoustic and optical branches of transverse oscillations with the same wavelength in a
diatomic lattice for (a) long-wavelength limits and for (b) short-wavelength limits (λ = 2a) with
heavy (blue) and light atoms (red) at rest for acoustic and optical modes, respectively

Fig. 9 Dispersion relations for a diatomic chain of light (M1) and heavy (M2) atoms in alternating
order, indicating acoustic and optical branches with a forbidden frequency range in between. The
energies ℏω at q= 0 and q=� π/a are given at the right-hand side. The red curve part indicates the
one branch when Ml = M2
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– hence the name optical phonons. The acoustic branch has a much smaller dipole
moment since adjacent atoms oscillate with each other (Fig. 10a); therefore, optical
stimulation is less effective for acoustic mode excitation. This mode is stimulated
preferably by mechanical means such as sound waves.

At short wavelengths (q ffi π/a), the heavy atoms are oscillating while the light
atoms are at rest in the optical mode; the oscillation energy is large. At the same
wavelength in the acoustic mode, only the light atoms are oscillating with larger
amplitude but with lesser energy (see Fig. 11).

3.1.4 Phonon Velocity
A phonon with energy ℏω has been introduced as related to lattice oscillation after
localization with a certain frequency ω, i.e., a certain mode of a collective state of
oscillations. A phonon may also be seen as a quasiparticle when described as a wave
packet, similar to the description of an electron which is to be discussed in ▶ Sect.
2.1 in chapter “The Origin of Band Structure.” The velocity of such a wave packet is
given by the group velocity12 or phonon velocity:

Fig. 11 Amplitude ratio for
light and heavy atoms as a
function of the wavenumber
(After Weißmantel and
Hamann 1979)

12The group velocity can be defined when at least two waves of slightly different frequencies
interact and form a wave train with an envelope forming beats (Fig. 12). Since energy cannot flow
past a node, one readily sees that the velocity with which energy is transmitted must equal the
velocity with which the nodes move. Adding two waves with ω, q and ω + dω, q + dq, one obtains
for the superposition

u1 þ u2 ¼ A1 þ A2ð Þ cos t

2
dω� x

2
dq

� �
: (48)

Thus the motion of the zero-phase point of the envelope

t

2
dω� x

2
dq ¼ 0 (49)

yields for the velocity of the groups of waves:

vg ¼ x

t
¼ dω

dq
(50)

or, more generally, Eq. 47.
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vg ¼ @

@q
ω qð Þ, (47)

that is, by the slope of ω(q). In a one-dimensional lattice and isotropic solids, the
gradient @ω(q)/@q is replaced by the derivative dω(q)/@q.

There is another important velocity in solids, the phase velocity,13 or sound
velocity, which is given by

vs ¼ ω

q
: (52)

Both group and phase velocities are the same in the acoustic branch at low values
of q, i.e., at long wavelengths where ω / q (see Figs. 7, 9, and three-dimensional
phonon dispersion-curves near the Γ point, i.e., at q ! 0); however, they become
substantially different where dispersion occurs.

With decreasing wavelength (increasing q), the phase velocity decreases but
remains on the same order of magnitude as the sound velocity near the Γ point. At
the surface of the Brillouin zone (e.g., at the X point of a cubic semiconductor), the
sound velocity is decreased slightly to vs(q = π/a) = ω(q = π/a)/(π/a). An estimate
for the sound velocity is obtained by extrapolating the acoustic branch ω = vsq to
q = π/a with ℏωn(q = π/a) 	 kθ, yielding

vs ¼ k

ℏ
aθ

π
¼ 4:168 θ Kð Þ a Åð Þ m=sð Þ; (53)

with the Debye temperature θ (see ▶ Sect. 1.1.2 in chapter “Phonon-Induced
Thermal Properties”) on the order of 300 K, the average phonon velocity is on the
order of 103 m/s.

Fig. 12 Wave train (blue curve) made by superposition of two waves with slightly different
frequencies, resulting in beats of the envelope function (red curve)

13The velocity in which the phase of a single wave moves; for a node, it is given by

ωt� qx ¼ 0, (51)

resulting in the phase velocity given by Eq. 52; this is the velocity with which energy is transported
in such a wave.
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In contrast, the group velocity, given by the slope of ω(q), vanishes at q = π/a; at
the surface of the Brillouin zone, the waves have become standing waves, composed
of two components moving in opposite directions with the same amplitude and
velocity. This is the condition of Bragg reflection and will be discussed later in more
detail for a similar problem dealing with electrons (▶ Sect. 2.2 in chapter “The
Origin of Band Structure”).

In summary, in the diatomic one-dimensional chain, we have for the acoustic branch

vg ¼ vs ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

2 M1 þM2ð Þ

s
for q <

π

a
(54)

and

vg ¼ 0

vs ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
2β

π2M2

r 9=
; for q ffi π

a
; (55)

and for the optical branch

vg ¼ 0

vs : meaningless



for q <

π

a
and for q ffi π

a
: (56)

In a three-dimensional lattice, similar results are obtained except for the anisotropic
velocities (see Sect. 2.1).

3.2 Phonons in a Three-Dimensional Lattice

In a three-dimensional lattice, the dispersion equation ω(q) is given by a hypersur-
face. A cut through such a surface in a specific crystallographic direction is conven-
tionally presented and is shown for the [100] direction in Fig. 13 for two typical
semiconductors. There are 3p branches of the phonon dispersion, where p is the
number of atoms in the basis. In three branches, ℏω goes to zero for vanishing
q; these are the acoustic branches (1 longitudinal, LA, and 2 transversal, TA). All
3p � 3 others are optical branches.14 Their energy ℏω does not vanish in the long-
wavelength limit at q! 0. Monatomic lattices also show optical branches when they
have more than one atom per unit cell (e.g., Si); here we must distinguish between
oscillations in which the atoms within the unit cell vibrate about their center of mass
(optical), and oscillations in which the center of the unit cell vibrates (acoustic).15 In

14For instance, in a crystal with four atoms in the basis (primitive unit cell), one has three acoustic
and nine optical branches; see the phonon dispersion of wurtzite GaN shown in Fig. 15b.
15Some materials undergo a phase transition between diatomic and monatomic unit cells
(e.g., hcp ! fcc transition), whereby the optical branch disappears during the transition. For
example, Ca shows such a phase transition at 450 
C.
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diatomic lattices, there is a gap between optical and acoustic branches (GaAs), while
in monatomic lattices, there is none (Si). The phonon energies are higher in lattices
with larger binding energies (compare GaAs and GaN in Fig. 16).

Optical phonon branches show a small ω(q) dependence near q= 0, with a rather
well-defined phonon energy ℏω0 ffi ℏω(q = 0). The transverse optical branch near
q = 0 is important for optical absorption, while the longitudinal branch is more
important for scattering with electrons; see▶ Sect. 2.3 in chapter “Carrier Scattering
at Low Electric Fields” for more detail. Acoustic phonon branches show a linear
dispersion ω(q) / q near q = 0, with a derivative reflecting the sound velocity
discussed in Sect. 3.1. In anisotropic lattices, one has to distinguish more compli-
cated modes, such as involving bond stretching and bond bending between the
different lattice atoms.

The conventional diagram within the first Brillouin zone shown in Figs. 14 and 15
is an intersection of the ω(q) hypersurface with planar surfaces connecting the listed
symmetry points (see ▶ Sect. 1.3 and ▶ Fig. 8 in chapter “The Structure of Semi-
conductors”) and changing direction at each vertical line. A similar representation is
conventionally used in the E(k) diagram for the dispersion relation of electrons in the
semiconductor; see ▶Sect. 4 in chapter “Quantum Mechanics of Electrons in
Crystals.” Optical branches are distinguished as A1 and B (both nondegenerate)
and E1 and E2 (both twofold degenerate). Only A1 and E1 are dipole active, i.e.,
they show up in absorption or reflection. A1, E1, and E2 are Raman active (see
▶ Sect. 3.3 in chapter “Photon–Phonon Interaction”); B is not optically active. A
listing of the characteristic phonon energies is given in Table 6.

3.2.1 Phonon Density of States
The phonon density distribution N(ω)dω (see Eq. 13 in chapter ▶ “Phonon-Induced
Thermal Properties”) determines many properties of solids including mechanical
(thermal expansion), thermal (energy content), electrical, and optical (phonon scat-
tering) properties. The density of states g(ω), contained in N(ω), can be obtained by
counting the number of modes occurring within a frequency interval (ω, ω + dω).

Fig. 13 Phonon spectrum for
Si and GaAs in the [100]
direction (details of Figs. 14
and 15a, respectively)
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It is instructive to derive the density of states analytically for the linear chain of
atoms. Here, the dispersion relation (36) has discrete normal modes for q = qn given
in Eq. 37:

ω qnð Þ ¼ ω0 sin
qna

2

� �
¼ ω0 sin

πnqa

l

� �
: (57)

The density of states is given by the modes per frequency interval, which can
be obtained by differentiation of Eq. 57, replacing cos (πnq/l ), and using sin2 +
cos2 = 1:

dω

dnq
¼ πa

l
ω0 cos

π nqa

l

� �
¼ π a

l
ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω

ω0

� �2
s

: (58)

Consequently, one has for the density of states of the linear chain the reciprocal of
Eq. 58:

dnq ¼ g ωð Þdω ¼ l

π aω0

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω

ω0

� �2r : (59)

In a three-dimensional lattice, and in more general terms, this density of states can
be expressed by

g ωð Þdω ¼ V

ð
Sω

dSω
@

@q
ω

				
				
dω, (60)

Fig. 14 Phonon dispersion curves for Si. Solid curves are calculated byWeber (1977); filled circles
are experimental values. The right panel shows the density of states of the phonon modes
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where V is the volume, Sω is the surface of constant energy,16dSω is the surface
element of Sω, and @ω/@q is the gradient of ω in q space. In the nondispersive range,
where ω / q for the acoustic branch (see Eq. 9 in chapter ▶ “Phonon-Induced
Thermal Properties”), we can show that

Fig. 15 (a) Phonon dispersion curves of GaAs as measured from neutron diffraction and
one-phonon density of states as a function of frequency calculated from the rigid ion model
(After Patel et al. 1984). (b) Same for GaN measured from inelastic x-ray scattering (After Ruf
et al. 2001; DOS after Davydov et al. 1998)

16This surface is similar to the Fermi surface in the Brillouin zone discussed in▶ Sect. 1.1 in chapter
“Bands and Bandgaps in Solids.” For phonons, however, the energy surface lies at much lower
energies.
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g ωacousticð Þ / ω2: (61)

For higher values of q, and in optical branches, peaks occur in the density distribu-
tion when this gradient tends to zero (see also Fig. 2 in chapter ▶ “Phonon-Induced
Thermal Properties”). These are the critical points identified by capital letters. The
different branches are numbered in the g(ω) diagram starting from the acoustic
branch. Most important are critical points in the center, or at the boundary, of the
Brillouin zone (see Figs. 14 and 15): at Γ (for optical branches) and at X, K, and
L (for identification, see Fig. 8 in chapter▶ “The Structure of Semiconductors”): the
corresponding density of state function has spikes; many more modes per dω interval
occur, where the branch ω(q) is flat rather than in a range where ω varies steeply with
q, as, for example, in the acoustic branch at the Γ point.

3.2.2 Local Phonon Modes
In the neighborhood of lattice defects (see chapter ▶ “Crystal Defects”), the binding
forces and the mass for extrinsic defects are altered; thus the oscillatory behavior is
locally modified. The eigenfrequency of such a defect (subscript d ) is different from
the most abundant lattice frequencies. In the simple isotropic case, it is given by

ω0, d ¼ 2

ffiffiffiffiffiffiffi
βd
Md

r
: (62)

When the density of a specific defect is large enough and its eigenfrequency lies
outside the allowed ranges of the intrinsic phonon spectrum,17 a localized vibra-
tional mode (LVM) can be experimentally distinguished (e.g., its IR absorption can
be observed), providing information about the defect center. For instance, the
absorption spectrum of substitutional 12C on an arsenic site in GaAs is shown in
Fig. 16. The frequency is sensitive to the isotope masses of the four tetrahedrally
surrounding Ga next neighbors, being 69Ga or 71Ga with a natural abundance ratio of
61 %/39 %. Pure tetrahedral 71Ga and 69Ga surrounding yield lowest and highest
energy, respectively; bars in Fig. 16 indicate positions and oscillator strength of
theoretical transitions of various surroundings.

Often, the lattice oscillation surrounding a defect is described by radially
expanding and contracting oscillations, i.e., by a breathing mode. For reviews, see
Barker and Sievers (1975) and Mitra and Massa (1982). Further detail is given in
▶ Sect. 3.3 of chapter “Photon–Phonon Interaction.” For local modes in highly
disordered semiconductors, see also ▶ Sect. 3.3 of chapter “Phonon-Induced Ther-
mal Properties.”

17For instance, if the mass of the defect atom is much smaller, the eigenfrequency can be higher than
the highest lattice phonon frequency (local mode); for heavier atoms, its optical phonon may lie
within the gap between the optical and acoustic branches (gap mode). In a resonant mode, the
eigenfrequency of the foreign atom lies within the band of a phonon branch of the host lattice. This
mode shows a greatly enhanced amplitude.
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3.2.3 Phonon Modes in Mixed Crystals
Phonon frequencies in alloyed crystals of the type AxB1-xC (or, analogously, ABxC1-x)
depend on the composition parameter x.18 For acoustic phonons in the long-
wavelength limit, the sound velocity, and correspondingly the phonon dispersion
(q! 0), is determined by the weighted average of the alloyed atoms. In the case q!
π/a, however, only one sublattice vibrates (see Fig. 10b). The phonon spectrum then
may be broadened due to different masses and force constants of the alloyed atoms.
The optical phonons exhibit an either one-mode or two-mode behavior (see Barker
and Sievers 1975). In one-mode behavior, the mode frequencies of the pure BC
crystal evolve continuously (and roughly linearly) with increasing x toward the mode
frequencies of the pure AC crystal. In the frequently observed two-mode behavior,
the LO–TO multiplet of the pure BC crystal (x = 0) evolves with increasing
x approximately linearly toward a localized mode of B atoms in an AC crystal
(x = 1); simultaneously a localized mode of A atoms in BC evolves to the LO–TO
multiplet in the pure AC crystal. The two-mode behavior of AlxGa1-xAs mixed
crystal is shown in Fig. 17. At small composition parameter x, the LO–TO multiplet
is GaAs-like; at large x, it is AlAs-like.

Some mixed crystals exhibit a mixed-mode behavior, i.e., both kinds of behavior
in different concentration ranges (see Deych et al. (2000)).

3.2.4 Pressure Dependence of Phonons
With hydrostatic pressure, the interatomic distance is reduced, resulting in an
increase of ion–ion interaction and a reduction of electronic screening. This causes
an increase of the optical phonon energy at the Γ point of E(q) with increasing
pressure. However, the pressure coefficient for TA (transversal acoustic) modes at

Fig. 16 Local vibrational
modes of 12C on As site in
GaAs. Calculated energies
and oscillator strengths of
transitions related to different
configurations of tetrahedrally
coordinated 69Ga and 71Ga
next neighbors are indicated
by gray bars; calculated
Lorentzians are artificially
broadened (After Newman
(1993))

18For simplicity, the frequently applied alloying on either the anion or the cation sublattice of a
compound semiconductor is considered.
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the Brillouin zone boundary (at X and L) is negative, which seems to be an intrinsic
property of shear distortion in predominately covalent semiconductors that are
involved in such modes (Martinez 1980). The corresponding pressure coefficients
are listed in Table 7.

3.2.5 Microscopic Force Models
More sophisticated models than the harmonic approach outlined in Sect. 3.1 con-
sider the interacting potential V(R) between the lattice atoms, from which the force
constants βαi can be determined by forming the spatial derivative of these potentials
with respect to the deformation. When these force constants are introduced into the
set of equations of motion similar to Eqs. 40 and 41, and a planar wave ansatz is
introduced, the resulting secular equations have as their solution the dispersion
equation. It should be noted that all of these calculations use an empirical potential
with several (usually 4–6) adjustable parameters.

Depending on the interacting potential, we must distinguish the rigid ion model –
which includes only ion–ion interaction, i.e., central forces except for nearest
neighbor interaction, which may be viewed as noncentral (Rajagopal and Srinivasan
1960) – and several more refined models, which include the influence of the electron
shell (bond angle influence). For a review, see Bilz and Kress (1979); an example is
given in Fig. 15a for GaAs. Shell models, which include valence forces into the
interaction potential, are used for covalent semiconductors. Turbino et al. (1972)
applied such a potential to achieve good agreement with measured ω(q) curves for
the group IV elements. Another shell model proposed by Jasval (1975) successfully
calculated the dispersion relation for III–Vand II–VI compounds (Jasval 1977). Best
agreement between the model computation and experiment has been obtained for
III–V compounds by Weber (1977) with a bond-charge model and is shown for Si in
Fig. 13.

More recently, ab initio calculations are applied by tracing back lattice dynamics
to electron–electron and electron–ion interaction, which together describe the

Fig. 17 Optical phonon
branches for AlxGa1�xAs
mixed crystals as a function of
the alloying parameter x
(After Adachi (1985))
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interatomic forces. An example for the excellent agreement of calculations and
experiment is given in Fig. 15b for GaN. (See also ▶Sect. 2 in chapter “Quantum
Mechanics of Electrons in Crystals.”)

3.3 Phonons in Superlattices, at Surfaces, in Organic
Semiconductors, and in Amorphous Semiconductors

3.3.1 Phonons in Superlattices
A remarkable result of the periodic structure of a superlattice of alternating layers
A and B with a superlattice constant l (=thickness of layers A + B) is its reduced
dispersion relation with a boundary at � π/l for the first superlattice Brillouin zone
(mini-zone – see ▶Sect. 2.1 in chapter “The Structure of Semiconductors” – and
superlattices in▶ Sect. 3.1.2 in chapter “Bands and Bandgaps in Solids”) rather than
at � π/a for the bulk lattice. Consequently, the phonon spectrum is folded at the
mini-zone boundary rather than continued to the main Brillouin zone boundary
(Fig. 18). Since the alternating materials in a superlattice have different atomic
masses and force constants, there is, as in an AB compound, a gap between each
of the branches of the folded dispersion curve.

In comparison with the dispersion curve of an alloyed bulk lattice, several folded
branches evolve from the acoustic branch. The dispersion entering the backfolding
is an average of those of the two superlattice materials, weighted by their relative
layer thickness; only the first folded branch is referred to as an acoustic branch of the
superlattice. In the optical branches, two alternatives may appear. If the phonon
energies of the two materials overlap, folded optical branches similar to the acoustic
phonons appear. Otherwise, an optical oscillation in one material does not find a
resonance in the other material and gets localized in the respective layer. The phonon
dispersion spectrum is thus modified to a large degree from the bulk phonon
behavior, as is expected considering the coupling of atom groups and the reflection
at the boundaries between the superlattice layers.

Table 7 Pressure coefficient of phonon modes at room temperatures in meV/kbar (After Martinez
1980)

Crystal Structure dωTO/dp dωLO/dp dωTA(X)/dp dωTA(L )/dp

C D 0.445 0.1

Si D 0.064 �0.027 �0.019

Ge D 0.057 �0.004

GaP ZB 0.054 0.056 �0.011 �0.009

GaAs ZB 0.053 0.054

GaSb ZB 0.062 0.062

ZnS ZB 0.077 0.053 �0.021 �0.18

ZnSe ZB 0.063 0.052 �0.019 �0.17

ZnTe ZB 0.070 0.056 �0.015 �0.01
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The multibranch structure can be directly observed from phonon scattering
experiments (see ▶ Sect. 3.3 in chapter “Photon–Phonon Interaction” and Colvard
(1987)). For reviews, see Klein (1986) and Ruf (1998).

3.3.2 Surface Phonons
Atoms at and near the surface are bound with lesser strength because of missing
external neighbors. Consequently, there is a modification of the phonon spectrum
near the surface that can be excited through surface waves (see below). These surface
phonons have a lower frequency caused by a lower force constant than the optical
phonons in the crystal bulk and can be observed in the forbidden frequency range
(Wallis 1994). Surface phonons are localized at the surface, i.e., the vibrational
amplitude decays (basically exponentially) away from the surface.19 The spectrum
of surface phonons is illustrated in Fig. 19. The energy ℏω of surface phonons
depends uniquely on the wavevector component qk which lies in the surface plane.
The spectrum of bulk phonons is indicated as a continuum in the presentation ℏω
(qk), since the component of the wavevector perpendicular to the surface is arbitrary.

Surface phonons can only persist if no bulk modes of the same symmetry exist at
the same energy and wavevector component qk. Another kind of surface vibrations
are surface-phonon resonances; these resonances are bulk-phonon modes with a
large amplitude at the surface.

Fig. 18 (a) Phonon dispersion curves for longitudinal mode, calculated for a linear chain in GaAs
(solid curve) and for AlAs (dashed curve), and shown folded for a mini-zone of a symmetrical
superlattice with a periodicity of l = 6a. (b) Raman spectra of a (42 Å GaAs/ 8 Å Al0.3Ga0.7As)
superlattice. Vertical arrows indicate folded-phonon doublets expected from the dispersion in the
inset (After Colvard et al. (1985))

19The same applies for phonons localized at an interface. Both a surface and an interface break the
three-dimensional translation symmetry of a solid, giving rise to such localization of the solutions of
the equation of motion.
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In the acoustic branch, elastic surface waves propagate along the surface within a
thin layer with a thickness approximately equals the wavelength (Rayleigh waves).
The frequency of this surface wave can be derived from Maxwell’s equation,
yielding

ωs ¼ ωTO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
est þ 1

eopt þ 1

s
(63)

where est is the static and eopt is the optical dielectric constant (see ▶ Sect. 1.3 in
chapter “Interaction of Light with Solids”). This frequency lies between the longi-
tudinal and transverse branches (compare with Eq. 50 in chapter▶ “Photon–Phonon
Interaction”) and can be observed in crystal plates of sufficient width (for cubic
semiconductors, see Ludwig 1974).

3.3.3 Phonons in Organic Semiconductors
There are two different kinds of vibrational modes in organic crystals: intramolecular
vibrations (internal modes) and intermolecular vibrations (external modes).
Both have a strong effect on the electrical and optical properties of organic
semiconductors.

Internal modes represent vibrations of individual molecules. Atoms of the
molecule oscillate about their equilibrium position; the center of gravity of the
molecule remains at rest. A free molecule with N atoms has 3N – 6 internal
eigenmodes. Due to the weak intermolecular interaction of organic crystals
(▶ Sect. 3.3 in chapter “Crystal Bonding”), the frequencies of internal modes do
hardly differ from the eigenmodes of the free molecule. Furthermore, internal
modes show only weak dispersion. Since intramolecular forces are strong, internal
eigenmodes have usually a high energy and their thermal excitation is weak at
room temperature. In some cases, the weak intermolecular interaction can be
observed in the spectrum of soft low-frequency internal eigenmodes: the coupling

Fig. 19 Spectrum of surface
phonons (black curves). The
shaded area represents the
continuum of bulk modes, and
dotted lines are surface
resonances
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to neighboring molecules leads to a – generally small – splitting of the resonance
frequency (typically below 0.1 meV). This effect is analogous to the Davydov
splitting observed in excitonic spectra of organic molecules with Z > 1 molecules
per unit cell (Davydov 1964).

The anthracene molecule consists of 14 C atoms and 10 H atoms (Fig. 15b in
chapter ▶ “Crystal Bonding”), yielding 66 internal modes. Two out-of-plane modes
with a low energy are illustrated in Fig. 20: a butterfly distortion (symmetry B3u) and
a twisting distortion (symmetry Au); half a period after this snapshot, all amplitudes
changed sign.

External modes are coupled oscillations of molecules, i.e., phonons like those
found in inorganic solids. In addition to translational motions, molecules also
perform oscillating rotations, so-called librations, about their equilibrium position.
In external modes, the molecules can be assumed to be rigid. An organic crystal
hence has f = 6 degrees of freedom (three axes of translation and three of rotation).
A crystal with Z molecules per unit cell (▶ Sect. 1.5 in chapter “The Structure of
Semiconductors”) has consequently f � Z external eigenmodes and therefore
f � Z phonon branches.

The restoring forces of the external modes are given by the weak intermolecular
interactions, i.e., basically by van der Waals forces. Since these interactions are much
weaker than the intramolecular covalent interactions, frequencies of external modes
are usually much lower than those of internal modes; this holds particularly for
organic crystals composed of light molecules. The low phonon energies of organic
crystals lead to a high occupation of phonon states at room temperature; conse-
quently, phonons strongly affect interactions with carriers.

The phonon dispersion ω(q) of external modes is similar to that of inorganic
crystals; in particular, there are acoustic branches, where ℏω(q= 0)! 0 applies, and
optical branches with a finite energy ℏω(q = 0). Phonon energies of organic crystals
are generally smaller than those of inorganic crystals.

Phonon dispersion curves for a deuterated d10-anthracene
20 crystal are shown in

Fig. 21. Anthracene has Z = 2 molecules in a unit cell (Table 3 in chapter ▶ “The

Fig. 20 Top view on a planar anthracene molecule showing two of the 66 internal modes: (a) a
butterfly distortion and (b) a twisting distortion. The

J
and

N
symbols indicate an atomic

movement out of and into the drawing plane, and their size indicates the magnitude of the
displacements; the two central carbon atoms in (b) remain at rest

20In d10-anthracene, all 10 hydrogen atoms are substituted by deuterium atoms to increase the cross
section for coherent inelastic neutron scattering.
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Structure of Semiconductors”), yielding 12 phonon branches: 3 acoustic and 9 opti-
cal branches. There exist one symmetric and one antisymmetric set of modes with
six modes each for every principal symmetry direction, originating from a twofold
screw axis along the [0q0] direction; the additional two branches in each set found in
the figure stem from internal modes. The sets are presented separately in the
extended-zone scheme of Fig. 21, so as to avoid branch crossing (Dorner et al.
1982). The assignments of the modes are complicated by mixing for q 6¼ 0. Only at
the Γ point at q= 0 all modes are distinguished by their symmetry: Γ1 and Γ3 contain
librations, and Γ2 and Γ4 contain the external translations; still all vibrations may
comprise contributions from internal modes. Model calculations reported by Dorner
et al. (1972) indicated weak contributions of internal modes to dispersion curves
with ℏω > 2 THz and strong contributions above 3 THz; the uppermost branches
have almost pure internal character composed of the modes illustrated in Fig. 20.

3.3.4 Phonons in Amorphous Semiconductors
The vibrational spectrum of amorphous semiconductors is an important means for
obtaining information about their structure. However, the description used previ-
ously in an ℏω (q) representation is no longer appropriate because of nonperiodicity:
q is not a good quantum number for phonons in a glass. Long-wavelength acoustic
phonons, on the other hand, behave much like phonons in crystals. Instead, local
mode phonons are used for exploring the atomic structure. From the phonon
spectrum, we obtain valuable information about the specific bonding character,

Fig. 21 Phonon dispersion ω(q) of the 12 external and the 4 low-energy internal modes of a
deuterated anthracene crystal measured at 12 K using inelastic neutron scattering. In the presented
extended-zone scheme, branches must not cross. The given directions of the phonon wavevector
q refer to the monoclinic Brillouin zone shown in Fig. 8 in chapter ▶ “The Structure of Semi-
conductors” (After Dorner et al. (1982))
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topology, and local symmetry, thus describing the phonon spectrum as a local
(vibrational) density of states (LDOS).

The different local vibrational modes can be calculated using a molecular cluster
model (Lucovsky et al. 1983), wherein the frequencies of specific modes of atomic
vibrations are calculated. We must distinguish alloy atoms, e.g., H in an a-Si host, or
foreign atoms (impurities) with a lower density so that impurity–impurity interaction
can be neglected in the latter material. In many respects, these local modes are
similar to those in a crystalline host; however, the LDOS features in a glass are
broader since the local environment is deformed to a larger extent and variety.

3.3.5 Measurement of Phonon Spectra
There are numerous methods for obtaining information about the phonon spectra.
Phonons near the center of the Brillouin zone can be excited by optical techniques
due to the small photon momentum. The measurements can be divided into methods
which reveal the structure of optical modes and those that deal with acoustic modes.
The optical mode can be detected by optical absorption or reflection measurements.
Its spectral distribution yields the most direct information about these lattice oscil-
lations. In addition, optical scattering experiments provide information about the
most abundant optical and acoustic phonons. Both techniques will be discussed in
detail in ▶ Sects. 2 and ▶ 3 in chapter “Photon–Phonon Interaction,” respectively.

Because of the large phonon momentum near the boundaries of the zone, only
heavy particles can interact sufficiently. As such, neutrons are almost ideal probes for
investigating the entire phonon spectrum.21 Slow neutrons (massMn) have an energy
(3/2)kT and a momentum (wavenumber)

q ¼ Mnv

ℏ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MnkT

p
ℏ

¼ 2:5
ffiffiffi
T

p
� 107 cm�1

� �
, (64)

which, at low temperatures, are comparable to the total extent of the Brillouin zone.
In scattering with phonons while conserving total energy and momentum, such
neutrons are therefore able to probe the entire phonon spectrum. Slow neutrons
can be obtained by cooling neutrons from a nuclear reactor using a moderating
material with a large scattering cross-section, such as water or liquid hydrogen.
Monoenergetic neutrons are obtained by diffraction from a single crystal. A colli-
mated beam of these monochromatic neutrons is scattered by phonons within a
semiconductor. From the angular distribution of the energy (i.e., the incident neutron
energy plus phonon energy), we then obtain a complete ω(q) dispersion curve of all
active branches of the phonon spectrum (see reviews by Dolling (1974), Bührer and
Iqbal (1984)). High-energy branches are inactive at temperatures much below the
Debye temperature of the semiconductor.

21Except for compounds in which thermal neutrons react strongly with the nucleus of one of the
elements, e.g., l0B or 113Cd.
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4 Summary

Elastic deformations of solids are described by elastic stiffness constants accounting
for the interatomic forces. The symmetry of crystals reduces their number in the
harmonic approximation from 21 (triclinic) to 3 (cubic). Coupled acoustic oscilla-
tions of the atoms lead to different modes of sound waves. The excitation of each
mode is quantized in multiples of elementary excitations called phonons. The
number of branches in the phonon dispersion is determined by the number of
atoms p in the basis; there are three acoustic branches (one longitudinal, two
transversal) and 3p – 3 optical branches.

Phonons are responsible for the thermal properties and cause thermalization of a
wide variety of events when interacting with other particles, such as electrons and
holes. They supply the necessary damping (i.e., dissipation of energy into the
thermal reservoir), thereby providing for optical absorption, electric energy dissipa-
tion, and solidification of liquids, to mention just a few. The phonon spectrum is part
of the fingerprint of the specific semiconductor. In mixed crystals (random alloys),
the phonon frequencies depend on the composition parameter; one-mode and
two-mode behaviors occur. In superlattices, the phonon dispersion is folded at the
boundary of the mini-zone, if the phonon energies in the constituent materials
overlap; otherwise, phonon modes are localized in one material.

The phonon spectrum can be divided into an intrinsic spectrum determined by the
bulk of the semiconductor and additional features due to surfaces, impurities, and
other defects. In organic semiconductors, internal modes of the molecules and
librations, i.e., oscillating rotations of the molecules, occur in addition to transla-
tional modes. Phonon spectra can be determined by optical absorption or by scat-
tering experiments and can be calculated, e.g., by ab initio methods from basic
principles. From the dispersion relation, we can obtain directly the density of states
of the different modes of oscillation, the knowledge of which is essential for the
identification of the energy density in the most important phonon branches.
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1 Heat Capacity

There are three macroscopic thermal properties originating from phonons:

• Heat capacity
• Thermal expansion
• Thermal conductivity

neglecting electronic contributions here. Since these are easily observable effects,
they were studied early, and rather general, often semiempirical descriptions were
given. These properties are of interest with regard to the interaction of electrons with
phonons and the dissipation of energy, e.g., in optical excitation. The first set of
processes is discussed in chapters ▶ “Carrier Scattering at Low Electric Fields” and
▶ “Carrier Scattering at High Electric Fields”. The latter processes are kinetic in
nature and are discussed in chapter ▶ “Dynamic Processes”. In this chapter we will
provide the essential basic information.

Heat capacity is a measure of the content of thermal energy, which is stored in all
active oscillations of atoms in the solid. The specific heat (or specific heat capacity)
expresses the change of the total energy U of all phonons in the solid for a given
change of temperature T; it is hence defined, for constant volume1, as

CV ¼ @U

@T

� �
V

: (2)

In a monatomic semiconductor, each oscillating lattice atom represents a basically
harmonic oscillator with an average energy of kT/2 per degree of freedom. Thus, with
three degrees of freedom per atom, times two (for the kinetic and potential energies of
the oscillator), a solid with NA atoms per mole yields a total energy U= 3NAkT. From
Eq. 2 we then obtain for the specific heat the Dulong–Petit law (1819):

CV ¼ 3NAk ¼ 3R ffi 25 Jmol�1K�1 (3)

where R is the gas constant.2 This equation is approximately fulfilled at sufficiently
high temperatures when all modes of oscillation are excited.

1Although the specific heat is measured more easily for constant pressure CP, the difference between
CV and CP is very small for solids and is given by

CP � CV ¼ 9α2TVm

κ
(1)

where α is the thermal expansion coefficient, κ is the isothermal compressibility, and Vm is the molar
volume.
2The specific heat is given here in Ws/(mol K) and should be distinguished from the values often
given in tables in units of Ws/(cm3K) or Ws/(gK).
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1.1 Classical Models

1.1.1 Einstein Model
The Dulong–Petit law Eq. 3 states a constant specific heat for all solids and does not
account for the generally observed decrease of CV at lower temperatures. At low
temperatures the phonons freeze out, i.e., they can no longer be thermally excited. A
realistic description of the total energy U of all phonons therefore considers the
energy of all phonon modes ℏωi and their respective occupation in thermal equilib-
rium. Phonons are bosons, i.e., particles with integer spin, and follow Bose–Einstein
statistics. The Einstein model assumes one mode of oscillation with one
corresponding eigenfrequency ω0 only. At sufficiently high temperatures, most of
the oscillatory energy is indeed present in one kind of phonon, the transverse optical
phonons, which – due to their flat dispersion curves – have nearly the same
frequency in the entire Brillouin zone. Therefore, there is some justification for
identifying the oscillatory lattice energy with U0 = 3NAℏω0 for a one-atomic
semiconductor with NA atoms and three oscillators per atom (in the three lattice
coordinates). The occupation of the states is given by multiplication of U0 with the
Bose–Einstein distribution fBE = (exp(ℏω0/(kT)) � 1)�1, yielding

U ¼ U0 f BE ¼ 3NAℏω0

exp ℏω0= kTð Þð Þ � 1
(4)

and therefore from Eqs. 2 and 3

CV ¼ 3R
ℏω0

kT

� �2 exp
ℏω0

kT

� �
exp ℏω0

kT

� �� 1
� �2 , (5)

which represents the Einstein model of the specific heat (Einstein 1907). Equation 5
shows the observed decrease of CV with decreasing temperature as part of a
quantum-mechanical phenomenon, the successive freeze-out of phonons, rather
than a continuous decrease of oscillatory amplitudes. The Einstein model describes
the trend of CV(T ) quite well for values exceeding about 3/2 R; the simplifying
assumption of a single phonon mode leads, however, to an exponential dependence
of CV for T ! 0 that is experimentally not observed.

1.1.2 Debye Model
Debye (1912) approached the problem from a different point of view, having
recognized that various acoustic oscillatory modes are dominant at low temperature.
With a distribution function g(ω) of these modes, the phonons are distributed over
these modes according to the Bose–Einstein statistics. Neglecting optical modes,
Debye obtained for the thermal energy content
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U ¼
ðωD

0

ℏωg ωð Þ f BE ℏωð Þdω ¼
ðωD

0

ℏωg ωð Þdω
exp

ℏω
kT

� �
� 1

: (6)

The integration requires an upper limit ωD of phonon frequencies, given by the fact
that the total number of modes cannot exceed 3N:

3N ¼
ðωD

0

g ωð Þdω: (7)

Permitting all standing wave-type oscillations (or all running waves fulfilling cyclic
boundary conditions), we obtain the distribution function by mode counting (see
▶Sect. 3.2 in chapter “Elasticity and Phonons”), similar to that done for electron
waves:

g ωð Þdω ¼ V

8π3
4π q2dq: (8)

With the group velocity vg = @ω/@q, and assuming a linear dispersion relation
(ω = vgq) for a macroscopic continuous solid, we obtain

g ωð Þdω ¼ V

2π2
ω2

v3g
dω ¼ 9N

ω2

ω3
D

dω; (9)

the limiting Debye frequency ωD can be replaced by the so-called Debye
temperature θ, according to

ℏωD ¼ vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6π2ℏ2N

V

3

s
� kθ: (10)

This yields the well-known Debye expression for the specific heat [from Eq. 2 using
Eqs. 6, 9, and 10]:

CV ¼ 9R
T

θ

� �3ðθ=T
0

x4expx

expx� 1ð Þ2 dx, (11)

which can be approximated by the expansion of the exponent (see Joos 1945 for
detail) as

CV ¼ 233:78R T
θ

� �3
for T � θ

3R 1� 0:05 T
θ

� �2� �
for T ≳ 0:5θ:

8<
: (12)
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A better approximation includes, in addition to the cubic term at low T, a linear
component if free electron contributions are significant.

A quite good fit with the experiment can be obtained for some crystals by
choosing the appropriate θ – see Fig. 1. The Debye temperatures for a variety of
solids are listed in Table 1. For non-monatomic semiconductors (e.g., diatomic), the
agreement is usually less satisfactory. We then evaluate the measured CV(T ) with
Eq. 11 but permit a temperature-dependent Debye temperature. The deviation from
θ = const is a measure for the departure of the actual phonon spectrum from the
assumed distribution – see Fig. 3.

1.1.3 Validity Range of the Approximations
The specific heat is reasonably well described by Dulong–Petit law at temperatures
well above the Debye temperature. With decreasing temperature, the freezing-out of

Fig. 1 Molar specific heat of
crystals as a function of the
normalized temperature and
the two branches of the
approximation (Eq. 12)
(After Weißmantel and
Hamann 1995)

Table 1 Debye temperatures for various solids at 300 K (largely after Martienssen and
Warlimont 2005)

Material θ (K) Material θ (K) Material θ (K)

CDiamond 1860 ZnO 440 AlAs 417

Si 645 ZnS 351 AlSb 292

Ge 374 ZnSe 339 GaN �600

α-Sn 230 ZnTe 180 GaP 445

LiF 730 CdO 255 GaAs 344

LiCl 422 CdS 219 GaSb 266

NaF 491 CdSe 182 InN �660

NaCl 321 CdTe 140 InP 321

KF 336 AlN �1150 InAs 247

KCl 233 AlP 588 InSb 206
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the dominant phonon mode makes the major contribution. Here the Einstein approx-
imation is useful, while at very low temperatures (where CV < 3/2 R), contributions
of the acoustic phonon branch dominate and the Debye approximation fits the
experimental results remarkably well. However, the rapid change of the Debye
temperature with the actual temperature, even at low temperatures (see Fig. 3),
indicates the need for a more detailed analysis which will be discussed in the
following section.

1.2 General Phonon-Distribution Function and Phase Changes

There are several branches of the phonon spectrum. In the simplest case, following
Eq. 9, these can be taken into account for the acoustic phonons by setting

1=v3g ¼ 1

3
1=v3l þ 2=v3t
� �

while still assuming a parabolic distribution. However,

the actual phonon-distribution function is much more complex. Figure 2 shows the
difference between the simple quadratic distribution function and one that is
obtained from neutron scattering. Introducing this experimentally obtained distri-
bution function into Eq. 6, the derived specific heat yields a temperature-dependent
Debye temperature. Examples of such dependence for some II–VI semiconductors
are shown in Fig. 3. A significant deviation from θ = const usually appears at low
temperatures.

The density-of-state distribution function can be obtained by mode counting from
a variety of approximations (▶ Sect. 3.2 in chapter “Elasticity and Phonons”) and
from basic-principles computation. The specific heat can then be calculated by
integrating the temperature derivative of the product of density distribution and
statistical distribution function

CV ¼ 1

V

@

@T

ð1
0

ℏω g ωð Þ dω

exp
ℏω
kT

� �
� 1

: (13)

Fig. 2 Density of states for
phonons as obtained from the
Debye approximation (dashed
curve) and experimental data
from copper obtained from
neutron scattering (solid
curve), scaled to yield equal
area under both curves (After
Svenson et al. 1967)
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At low temperatures (T � θ) only acoustic phonons with very long wavelengths
(λ � a) participate in the heat content of a solid. As the Debye temperature is
approached, optical phonons also become excited; initially, these are the optical
phonons with lowest energy. They are near the boundary of the Brillouin zone and
have a wavelength close to the lattice constant since ℏω0 (q= π/a)< ℏω0 (q= 0), as
shown in Figs. 13 and 15 in chapter ▶ “Elasticity and Phonons”.

1.2.1 Phase Changes
There are major changes in the measured specific heat at temperatures where phase
changes occur (configurational specific heat). The most obvious change happens at the
melting point between solid and liquid state, which will not be discussed further here.
Others deal with first- or second-order phase changes (see below) at which new
oscillatory modes are able to participate in the phonon spectrum. Examples are
molecule crystals or compounds with radicals, such as SO4, NO3, or ClO4, which
can become free to rotate within the solid long before melting occurs. The solid reacts
to such a change in degrees of freedom by a change in crystal structure, volume, and
many other physical properties. Other phase changes below the melting temperatures
are less drastic and involve only a change in lattice structure (symmetry).

All these changes cause a change in the phonon spectrum and thus also a change
in the specific heat. The specific heat develops spikes or jumps at these phase
transformations of first or second order, respectively, which, in turn, can be used
for the detection of these changes (see Fig. 4). Depending on the sign of the peak, we
must distinguish exotherm or endotherm processes responsible for the phase
transformation.

The order of the transition is defined by the degree of the lowest derivative of the
Gibbs free energyG(P,T)=U – TS + PV that shows a jump. Since (@G/@T)P=�S and
(@G/@P)T= V, a first-order transition shows a discontinuity of entropy and volume at the
transition temperature. Melting is one such transition. With (@2G/@T2)P=�(@S/@T)P=
�CP/T and (@

2G/@P2)T = (@V/@P)T = �κV, the specific heat or compressibility shows
such discontinuity. Dielectric or magnetic ordering at the Curie or Neel temperature and
the λ-point transformation of liquid helium are examples for higher-order phase

Fig. 3 Effective Debye
temperatures θD(T ) of II–VI
semiconductors according
Eq. 11. Data points are
derived from experimental CP

values, red arrows indicate
high-temperature limits of the
theoretical Debye
temperatures, and vertical
green bars denote minima of
θD(T ) (After Pässler 2011)
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transitions (Landau and Lifshitz 1958). Solids which can rapidly and reversibly be
switched between an amorphous and a crystalline phase have recently gained much
advertance for optical and electrical memory devices. The phase change in nanostruc-
tured materials, e.g., (GeTe)m(Sb2Te3)n, (n, m integer), proceeds on a nanosecond
timescale and is accompanied by strong changes of optical and electrical properties;
for a review see Lencer et al. 2011.

With sensitive measuring methods (differential thermal analysis or 3ω method),
small changes in lattice and defect structures can be detected, such as partial
recrystallization, changes in dielectric and magnetic states involving their degree
of order, and even in the density of point defects.

1.3 Specific Heat of Amorphous Semiconductors

At low temperatures many amorphous materials show an anomalous linear increase
of the specific heat with temperature. This cannot be explained by a conventional
phonon spectrum. However, it can be explained when atoms tunnel within the glass
to different metastable positions when these different positions of atoms have nearly
the same energy (two-level tunneling system). If the barrier between the different
positions is low and thin enough, such transitions can be activated at rather low
temperatures and result in a specific heat contribution of (Phillips 1973)

CV / T: (14)

When plotting CV/T
3 as a function of T, we observe a characteristic maximum

near T = 10 K which coincides with the plateau of the thermal conductivity in
amorphous semiconductors (see Sect. 3.2) and may point to related causes (Yu and
Freeman 1986). Experimental data can be found in Pohl et al. 1974.

2 Thermal Expansion

The anharmonicity of the lattice potential and the resulting increased average
amplitude of the lattice oscillations are responsible for the expansion of the semi-
conductor with increasing temperature. Crystal defect-related additional expansion

Fig. 4 Specific heat as a
function of the temperature for
(a) first- and (b) second-order
phase transitions occurring at
a temperature Ttr
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is neglected here (see▶Sect. 2.1 in chapter “Crystal Defects”). Valuable information
can be extracted from a phenomenological continuum approach, which will be
discussed before the atomistic model is presented.

2.1 Phenomenological Description

Two thermal expansion coefficients are commonly used, a linear and a volume
expansion coefficient:

α ¼ 1

l

Δl
ΔT

and αV ¼ 1

V

ΔV
ΔT

, (15)

with αV 	 3α for isotropic materials. For anisotropic crystals the linear thermal
expansion coefficient is a tensor, which is proportional to the strain tensor « (see
▶ Sect. 1.1 in chapter “Elasticity and Phonons”) and the temperature difference:

« ¼ αΔT: (16)

with the tabulated components in the main axis of the tensor ellipsoid (αxx, αyy, αzz)
usually referred to as (α1, α2, α3), or, in uniaxial crystals like wurtzites, as αk and α⊥
(with respect to the c axis). Because of the varied strengths of the lattice forces in
different directions for anisotropic lattices, an anisotropy of αi appears. Examples of
strongly anisotropic (layer) semiconductors are BN, GaS, GaSe, InSe, TlSe, InBi
(White et al. 1975), and some chalcopyrites such as CuGaSe2 (Bodnar and Orlova
1985). Semiconductors with a high degree of anisotropy, e.g., Se, show a minor
contraction in the direction of strongest bonding while expanding in the direction of
weakest bonding, with the volume expansion coefficient αV usually positive.3 This
fact provides an opportunity to design composite materials with essentially zero
thermal expansion (Roy and Agrawal 1985).

The relation between the strength of the lattice bonding and the thermal
expansion yields a useful empirical rule, the Grüneisen rule, which connects the
melting point Tm of isotropic materials with the thermal expansion and holds well
for metals:

Δl
l

� �
Tm Kð Þ

ffi 0:07; hence α ffi 0:07

Tm
: (17)

3Exceptions like H2O or In are caused by rather unusual changes in the atomic structure of the
solid. (Were it not for these changes in H2O, lakes would freeze from the bottom up.) Another
important anomaly of αV is observed at very low temperatures (see end of Sect. 2.2 in this
chapter).
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The maximum thermal expansion at the melting point is about 7% and is
independent of the material. The melting point, in turn, is related to the Debye
temperature θ and thus to the elastic stiffness constants, i.e., to the strength of
bonding via another empirical relation

Tm ¼ γ a2 M θ2, (18)

where M is the atomic mass, γ is the Lindemann parameter (compare Eq. 20), and
a is the interatomic distance (in a monatomic lattice). This Lindemann relation can
be justified with a lattice dynamic model.

Table 2 lists the thermal expansion coefficients and other relevant parameters for
several important semiconductors.

Table 2 Room temperature thermal expansion coefficients a in 10�6 K�1, lattice constant a in Å,
density r in g/cm3, and melting point Tm in K for some semiconductors; data largely from
Martienssen and Warlimont 2005

Material a (Å) ρ (g/cm3) α (K�1) Tm (K)

CDiamond 3.5669 3.515 1.0 4100

Si 5.4310 2.329 2.9 1687

Ge 5.6579 5.323 5.9 1210

ZnS 5.4053 4.088 1991

ZnSe 5.6674 5.266a 7.4 1799

ZnTe 6.0882 5.636 8.3 1564

CdSe 6.078 5.81 3.8a 1537

CdTe 6.46 5.87b 5.0 1367

AlN 3.1111 (a) 3.255 4.4 (⊥c) 3025

4.9788 (c) 3.5 (kc)
AlP 5.451 2.42a 2823

AlAs 5.6622 3.81a 5.2 2013

AlSb 6.1355 4.218 4.2a 1327

GaN 3.190 (a)a 6.07a 3.2 (⊥c)a 2791

5.189 (c)a 5.6 (kc)a
GaP 5.4506 4.138 4.7 1749

GaAs 5.6536 5.316 5.9 1511

GaSb 6.0959 5.614 7.8 991

InN 3.5446 (a)a 6.78a 3.6 (⊥c) �1900

5.7034 (c)a 2.6 (kc) (at 80 kbar)

InP 5.8687 4.81a 4.8 1327

InAs 6.0583 5.667 4.5c 1221

InSb 6.4794 5.775 5.4 800
aTemperature not specified
bT = 4 K
c(20–250) K
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2.2 Lattice Dynamic Consideration

The average kinetic energy per atom as a linear harmonic oscillator is

Eosc ¼ 1

2
M

du

dt

� �2

¼ 1

2
M ω2 u2, (19)

which is equivalent to (1/2)kT for a linear oscillator, withu= fa and f as the fractional
displacement from the equilibrium interatomic distance a. The oscillatory energy per
atom in a solid is 3kT; at high temperatures most of the oscillations are in the optical
branch. Therefore, we obtain from Eq. 19 with ℏω = ℏω0 ffi kθ for the melting point
with Eosc = 3kTm

Tm ¼ k

9ℏ2
M θ2f 2max a

2 , (20)

defining fmax as the maximum displacement of atoms at the melting point. This
equation is identical to the Lindemann relation (Eq. 18) with γ = k f max

2 /9ℏ2.
Comparison with the experiment shows that for most solids 0.1 < fmax < 0.15;
that is, the maximum amplitude of the lattice oscillation is roughly 10% of the
interatomic spacing at the melting temperature. This is equivalent to the Grüneisen

rule since the rms of the linear oscillation amplitude is fmax=
ffiffiffi
2

p ffi 0:07, and
assuming that almost all of these oscillations are totally anharmonic, i.e., atoms are
essentially rigid and any oscillation needs additional lattice space.

Any thermal expansion requires a nonharmonic contribution from the interatomic
potential (see Fig. 1 in chapter▶ “Elasticity and Phonons”). Nonharmonic terms can
be evaluated from higher-order elastic constants (Hiki 1981). Considering the third-
order term in the lattice potential (see Eq. 14 in chapter ▶ “Elasticity and Phonons”)

Epot ¼ E0 þ β1u
2 þ β2u

3, (21)

we obtain for the average displacement of a lattice atom

u ¼

ð1
�1

uexp �Epot

kT

� �
dωð1

�1
exp �Epot

kT

� �
dω

, (22)

which can be evaluated by introducing Eq. 21 into Eq. 22 and integrating,
yielding

u ffi 3

4

β2
β21

kT: (23)
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Using for the thermal expansion the average relative displacement

α ¼ d

dT

u

a

� �
¼ 3

4

β2
aβ21

k (24)

(a is the interatomic distance for a cubic crystal), we obtain a first-order estimate of
the thermal expansion coefficient in terms of the anharmonicity constant (β2) of the
lattice oscillation. In this approximation α is temperature independent. Near the
melting point, however, additional lattice expansion is observed because of intrinsic
(Schottky or Frenkel) defect generation (see ▶Sect. 2.1 in chapter “Crystal
Defects”).

At lower temperatures, however, α decreases with decreasing T, much like the
specific heat. This can be explained in the above theory by replacing the
Dulong–Petit value for the lattice energy (used to obtain Eq. 20) with the appropriate
function u(T ) yielding CV(T ) at lower temperatures (e.g., the Debye function). A
direct possibility for introducing CV is provided through the Mie–Grüneisen theory
of the equation of state of solids (Grüneisen 1926), which yields

α ¼ Γ

3

CV

BV
, (25)

with Γ the Grüneisen parameter, which can be expressed as

Γ ¼ � dlnω

dlnV
¼ � Vdω

ωdV
: (26)

For sufficiently high temperatures, Γ is nearly constant (see Fig. 5). Equation 25
shows with α/ CV the main tendencies of the observed behavior of α(T ), neglecting
the slight temperature dependence of volume V and bulk inverse compressibility B.

Fig. 5 Grüneisen parameter Γ as a function of the temperature for GaAs. Data points are obtained
from linear expansion coefficient and specific heat; the solid line is calculated (After Soma et al.
1982)
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A more sophisticated lattice dynamic theory must consider the temperature
dependences of Γ and CV calculated for the different modes i) of lattice oscillations;
hence (Mitra and Massa 1982):

α Tð Þ ¼
X

i
ΓiC

ið Þ
V

3BV
: (27)

This relation is the basis for further lattice dynamic analysis relating to Γi and C V
(i)

(see Namjoshi et al. 1971).

2.2.1 Negative Thermal Expansion
At low temperature (T < 0.2 θ), the thermal expansion coefficients of numerous
semiconductors (IV, III–V, and II–VI compounds) become negative (observed first
by Valentiner andWallot 1915); at still lower temperatures, a range of positive values
of α often reappears (Daniels 1962). This behavior, shown in Fig. 6, can be
understood from the residual anisotropy of lattice oscillations that renders the
Grüneisen parameters negative for low-frequency transverse acoustic modes in
diamond and zinc-blende lattices (Barron 1957 – see also Sect. 2.1). This means a
contraction of the crystal perpendicular to a longitudinal oscillation, which can yield
a net volume contraction in an intermediate temperature range.

2.2.2 Photothermal Expansion
Phonons created as a result of optical excitation cause local heating, thereby
expanding the lattice. Such expansion, in turn, can be used to detect the phonon
generation. The photothermal expansion method can be used as loss spectroscopy
for photoluminescence (nonradiative recombination produces phonons) or in pho-
tovoltaic devices. Recent applications also include micro-actuators. A variety of
highly sensitive techniques was developed, capable of detecting a change in tem-
perature of 10�5 degrees (Amer 1987) and absorption coefficients in the 10�2 cm�1

range (Luk’yanov et al. 2008). Photoacoustic methods were predominantly applied
to study liquids and gases, although the spectral distribution of photo-induced

Fig. 6 Linear thermal
expansion coefficients of Ge,
GaAs, and ZnSe (After
Novikova 1966)
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phonon generation contains much information about the electronic and vibronic
structure and about deexcitation mechanisms in solids. A review of photoacoustic
methods is given by Rosencwaig (1980), Patel and Tam (1981), Tam (1986), and
Almond and Tam (1996); an example for nonradiative relaxation of a transition
metal in fluorides measured using photoacoustic spectroscopy is given by Torchia
et al. (2002), and the ultrafast dynamics of surface expansion and thermal diffusivity
is reported by Pennington and Harris (1992).

3 Thermal Conductivity

3.1 Diffusive Thermal Transport

Heat transport in a solid is caused by phonons and all other mobile quasiparticles
which contain excess energy and interact with the lattice, such as electrons (see
Sect. 3.3 and ▶ Sect. 1.2.1 in chapter “Carriers in Magnetic Fields and Temper-
ature Gradients”) in chapter “Carriers in Magnetic Fields and Temperature
Gradients”), holes, polarons, excitons, and photons. In semiconductors with
low carrier density, and in the absence of light and electric fields, the thermal
energy transport is caused mainly by phonons. Such transport would propagate
with sound velocity if phonons were not scattered. Such ballistic phonon
transport is observed shortly after a heat pulse is applied at low temperatures
before thermalization of phonons occurs (Knaak et al. 1986). However, the
sample dimension is usually much larger than the mean free path of phonons,
being in the range of typically 100 nm at room temperature. Consequently, the
thermal energy flux per unit area J = dQ/(A dt) is given by a diffusion type of
transport, carried by the random motion of phonons and directed by their
gradient as the driving force:

J ¼ �κ
@

@r
T (28)

with κ as the thermal conductivity. The thermal current density can be derived from
the phonon flux as a particle current of N phonons with an average velocity vs. After
integration over all angles of the phonon flux through an arbitrary surface normal
to the flux, we obtain 1

6
Nvs. With an average thermal energy of 3

2
kT per phonon, this

results in a net thermal energy flux J between two closely spaced parallel planes
at T1 and T2 of

J ¼ 1

6
Navvs

3

2
k T2 � T1ð Þ, (29)

with heat transfer taking place after an inelastic collision, i.e., after a distance of the
mean free path for phonons λ is traversed. Replacing the temperature gradient @T/@r
with (T2�T1)/2λ, and inserting the classical expression for the specific heat of such a
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phonon gasCV ¼ 3
2
Nk, we obtain from Eqs. 28 and 29 the often-cited expression for

the thermal conductivity (Debye 1914):

κ ¼ 1

3
CVvs λ: (30)

The various modes (i) and branches ( j) of the phonon spectrum contributing to κ
can be accounted for by appropriate summation while retaining the relation of
Eq. 30:

κ ¼ 1

3

X
i, j
Cijvij λij: (31)

The contribution of the different components of the specific heat introduces a
temperature dependence of κ. The phonon velocities vij are group velocities
(@ω/@q) and are less temperature dependent (▶ Sect. 3.1.4 in chapter “Elasticity
and Phonons”).

The critical parameter for the thermal conductivity is the mean free path λ,
which requires a thorough study of the phonon-scattering mechanisms (Sect. 3.2).
For a review of experimental techniques, see Rowe and Bhandari (1986). In
anisotropic materials, the thermal conductivity can be anisotropic because of the
anisotropy of the elastic constants and therefore of the phonon velocity; see de
Goer et al. (1982).

The heat conductivity depends on the phonon velocity and on scattering. The
phonon velocity decreases with decreasing lattice bonding. Therefore, the thermal
conductivity decreases with an increase of the atomic number when comparing
elements within the same column of the periodic system. Examples for III–V semi-
conductors are listed in Table 3.

3.2 Phonon-Scattering Mechanisms

Phonons can interact with each other because of the anharmonicity of the lattice
potential, which permits phonon–phonon scattering. This is the most basic (intrinsic)
scattering mechanism, limiting the thermal conductivity. Other scattering mecha-
nisms may reduce the mean free path λij further according to

Table 3 Thermal conductivity of III–V semiconductors at room temperature in W/(cm K)

Cation/Anion

P As Sb

Atomic weight 31 75 122

Al 27 0.8 �0.6

Ga 70 �0.9 0.5 0.3

In 115 0.7 �0.4 0.2
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1

λij
¼

X
k

1

λijk
, (32)

where the index k identifies all scattering mechanisms. The more important ones are:

• Phonon–phonon scattering
• Phonon scattering at point defects
• Phonon scattering at line defects
• Phonon scattering at short- or long-range disorder
• Phonon scattering at grain boundaries or surfaces
• Phonon scattering with carriers

Each one of these scattering categories must be distinguished with respect to the
type of phonons involved. A large body of literature describes the different phe-
nomena: e.g., Drabble and Goldsmid (1961), Steigmeier (1969), Touloukian et al.
(1970), Childs et al. (1973), Challis et al. (1975), Klemens and Chu (1976), Berman
(1976), Slack (1979), Vandersande and Wood (1986), and Klemens (1986). Only a
few of these mechanisms will be discussed here, since we will return to this field
when discussing electron scattering with different types of phonons.

3.2.1 Phonon–Phonon Scattering
Conserving total energy and momentum,

ℏω1 þ ℏω2 ¼ ℏω3 and q1 þ q2 ¼ q3, (33)

yields no change per se in heat flow for phonons of low energy and momentum. This
scattering process is referred to as an N-process and is shown in Fig. 7a. However,
when the phonon momentum is large enough so that the summation ql + q2 leads to a
phonon with a momentum outside the first Brillouin zone, Bragg reflection at the
zone boundary occurs and the resulting q3 has its direction essentially reversed.
Mathematically, one accounts for the Bragg reflection by adding the reciprocal
lattice vector G with the length of the Brillouin zone and thereby obtains a resulting
phonon within this Brillouin zone (see Fig. 7b). Peierls (1929, 1955) defined this as

Fig. 7 (a) N-processes and
(b) U-processes for two
phonons with momentum ql
and q2, producing a third
phonon with momentum q3.
The reciprocal lattice vector
G indicates the Bragg
reflection at the zone
boundary
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an Umklapp process (U-process). Only these processes contribute directly to a
thermal resistance.

U-processes require a sufficient q of the initiating phonons, i.e., sufficient phonon
population at higher ℏω. This occurs at higher temperatures (T ≳ θ/4). More
complex lattice structures result in more complicated Brillouin zones with more
opportunities for Umklapp processes. Therefore, these crystals usually show a lower
heat conductivity.

Leibfried and Schlömann (1963) give an estimate of the thermal conductivity,
which increases hyperbolically with decreasing temperature:

κ / λ ¼ 12

5

ffiffiffi
4

3
p k

h

� �3 M a

Γ þ 1
2

ð Þ2
θ3

T
ffi 5:76

M a

Γ þ 1
2

ð Þ2
θ3

T
Åð Þ (34)

where M is the atomic mass, a is the interatomic spacing, and Γ is the Grüneisen
anharmonicity parameter (Eq. 26). It follows from Eq. 34 that the thermal conduc-
tivity at high temperatures increases rapidly with increasing Debye temperature. The
increasing scattering at higher temperature is due to an increase in amplitude and
hence in anharmonicity of the oscillation, causing an increase in phonon–phonon
scattering cross-section.

At lower temperatures, U-processes freeze out. This results in a decrease of
scattering and thus an increase of the thermal conductivity with decreasing
temperature:

κU / λ ¼ 7

4

k

h

� �3 M a

Γ þ 1
2

ð Þ2
T3

θ
exp

θU
T

� �
(35)

where θU < θ (typically θU	 0.5 θ), in agreement with the experiment (Klemens
1958).

3.2.2 Scattering at Crystal Boundaries
If the mean free path exceeds the smallest distance between crystallite boundaries,
then λ in Eq. 30 is replaced by the Casimir length LC (Casimir 1938)

κ ¼ 1

3
CVvs LC; (36)

LC is on the order of the shortest distance (e.g., platelet thickness) in the material (see
also Fig. 10b; for superlattices see Sect. 3.4) and depends on the roughness of the
surface or the type of crystallite interface. Only rough surfaces cause backscattering
and thereby increase the thermal resistance. Roughness relates to the wavelength of
the scattered elastic wave (low-energy acoustic branch). At smaller dimensions of
the roughness, some of the reflection will be specular: a surface appears smoother to
longer-wavelength waves. The acoustic phonon wavelength is typically on the order
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of 100Å at 10K.4 At such low temperatures, κ(T ) is then determined by CV(T ) and
therefore varies /T3 (Fig. 10b). See also de Goër et al. (1965).

3.2.3 Phonon Scattering at Lattice Defects
At lower temperatures, phonon scattering at lattice defects starts to compete with the
intrinsic phonon–phonon scattering and limits the thermal conductivity to a degree that
depends strongly on the density and distribution of lattice imperfections. Such scatter-
ing at lattice defects can be caused by the change in mass and elastic properties of the
lattice surrounding the defect, hence changing the wave dispersion-relation. Phonon
scattering at point defects can be compared to scattering of waves at obstacles. The
relaxation time of phonons scattered at foreign atoms of mass Mf can be estimated as

τ ¼ 4π vs3

Nf af 3ω4

Mf �M0

M0

� �2

(37)

where Nf is the density of foreign atoms, af
3 is their atomic volume, and ω is the

frequency of the scattered phonons (Klemens 1955). τ is approximately equal to the
time between scattering events τ 	 λ/vs. An increased scattering probability is
obtained for phonons with a dominant wavelength of a similar dimension as the
obstacle. Therefore, point-defect scattering is more pronounced at high and inter-
mediate temperatures, providing more short-wavelength phonons at high q values,
i.e., at higher energies. However, scattering at extended defects, such as dislocations
(Sproull et al. 1959), stacking faults, colloids (Walton 1967), voids (Vandersande
1980), grain boundaries (Vandersande and Pohl 1982), and surfaces, is also impor-
tant at low temperatures.

When, because of phonon scattering at these defects, the mean free path levels off
at lower temperatures, the temperature dependence of the thermal conductivity is
given only by that of the specific heat, i.e., by CV / (T/θ)3. At higher temperatures
where the specific heat levels off, the thermal conductivity is determined by the
increase in phonon–phonon scattering with temperature. The combined behavior is
sketched in Fig. 8. The influence of additional scattering mechanisms on the thermal
conductivity of Si is shown in Fig. 9.

Lattice disorder of an alloy type can substantially reduce the thermal conductivity.
A similar reduction is observed in the common mixture of different isotopes in any
lattice. An example for Ge is shown in Fig. 10a and for SiGe alloys or polycrystals in
Fig. 10b. Here, scattering at the surface of thin layers reduces the thermal conduc-
tivity at lower temperatures. Phonon mean free paths up to 30 cm are observed at
T < 1 K in pure Si (Vandersande and Wood 1986). The effect of alloying at a given
temperature is illustrated for Ga1�xAlxAs in Fig. 11a in terms of the inverse quantity
of κ, the thermal resistivity κ�1. The alloy shows highest thermal resistivity κ�1 (i.e.,
lowest thermal conductivity) for an equal cation sublattice occupation by Ga and Al
(maximum disorder).

4The dominant phonon wavelength is in the range of Λdom ¼ 1:48vsℏ
kT ; see Klitsner and Pohl 1987.
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Finally, one observes strong phonon absorption in the frequency range of local
modes (see ▶Sect. 3.2.2 in chapter “Elasticity and Phonons”) of lattice defects
(resonant scattering). This can lead to dips in the κ(T ) curve when, with increasing T,
phonon branches above the local mode that could be populated are kept depleted by
this scattering process. Strong interaction is also observed for paramagnetic impu-
rities with resonant scattering involving spin–lattice relaxation: see Holland (1964)
for Mn doping in GaAs and Adilov et al. (1986) for doping with Ni.

3.3 Phonon Scattering in Crystalline and Amorphous
Semiconductors

Scattering of phonons with electrons and other quasiparticles is discussed later
(▶ Sects. 2 and ▶ 5 in chapter “Carrier Scattering at Low Electric Fields”, and

Fig. 9 Typical temperature
dependence of the thermal
conductivity for Si (solid
curve) compared with the
different scattering
contributions. (1) Umklapp
scattering; (2) diffuse
boundary and isotope
scattering; (3) diffuse
boundary scattering; (4)
Umklapp, diffuse boundary,
and isotope scattering; and (5)
Umklapp and isotope
scattering (After Glassbrenner
and Slack 1964)

Fig. 8 Typical temperature dependence of (a) the mean free path and (b) the thermal conductivity
in semiconductors
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chapter ▶ “Carrier Scattering at High Electric Fields”). Such type of scattering
reduces the thermal conductivity especially at low and medium temperatures.

The influence of a low density of p-type and n-type doping (i.e., the introduction
of desired impurities – see ▶Sect. 1.2 in chapter “Crystal Defects”) on the thermal
conductivity is shown for GaAs in Fig. 11b. The thermal conductivity of group IVand
III–V semiconductors above 300 K is discussed by Logachev and Vasilev (1973).

Fig. 11 (a) Thermal resistivity κ�1 of a Ga1-xAlxAs alloy for various compositions x at room
temperature, the solid line is a theoretical fit to the data; after Afromowitz 1973. (b) Influence of
doping on the thermal conductivity of GaAs: high-purity (doping <1016 cm�3) single crystal
(black), n-type (blue) and p-type (red) samples with carrier concentrations given in cm�3 (After
Carlson et al. 1965)

Fig. 10 (a) Thermal conductivities of normal Ge and Ge enriched with 74Ge (After Geballe and
Hull 1958). (b) Thermal conductivity of Si and SiGe alloys as single and polycrystals as a function
of the temperature (After Kumar et al. 1985)

170 Phonon-Induced Thermal Properties



With high doping densities, other thermal energy transport mechanisms may become
important, such as the transport by ambipolar diffusion of electrons and holes or
excitons (see ▶Sect. 1 in chapter “Excitons”), with consequent scattering or recom-
bination at the cooler end of the sample. For a review of the theory, see Slack (1979);
for an experimental review, see Parrott and Stuckes (1975) or Berman (1976).

IR photon emission from the hot end and reabsorption at the cold end, for
example, by free carriers (Vandersande and Wood 1986) also contributes to the
thermal energy transport at high temperatures in partially transparent semiconduc-
tors (Waseda and Ohta 1987). Transparency is needed for the transmission of
photons; some absorption is needed for interaction with the lattice (Vandersande
and Wood 1986). In Ge this radiative contribution is ffi 0.01 W/(cm K); it increases
with increasing temperature, but at 200 K it is still small compared to the lattice
conductivity of Ge. This radiative transmission can contribute a significant fraction
of the thermal energy transport at high temperatures with κ / T3.

In the case of high optical excitation of free electrons via laser pulses, the
transmission of energy from the heated electron plasma can become very large,
causing a major change in the distribution of phonons (see ▶ Sect. 1.2 in chapter
“Dynamic Processes”).

3.3.1 Thermal Conductivity by Free Carriers
Thermal energy can also be carried by electrons and is a major contribution in
metals. Both phonon and electronic contributions are additive:

κ ¼ κph þ κel: (38)

The electronic contribution can be estimated similarly to the phonon contribution,
using the equivalent of Eq. 31:

κel ¼ 1

3
C

elð Þ
V v2rmsτn; (39)

with CV
(el) = 2nk for a classical electron gas and vrms

2 = 3kT/mn, we have

κel ¼ 2nk2
τn
mn

� �
T (40)

where n, τn, andmn are the electron density, their relaxation time, and effective mass,
respectively. The electronic contribution is related to the electron conductivity
[σ = enμ = e2nτn/mn – see ▶ Sect. 2 in chapter “Carrier-Transport Equations”] by
the Wiedemann–Franz law

κ

σ
¼ 2

k

e

� �2

T (41)
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and gives a marked contribution only at higher carrier densities (Kittel 1986). The
factor 2 in Eq. 41 holds for nondegenerate semiconductors. At higher electron
densities, and depending on the scattering mechanism, this factor varies between
2 and 4. The entire proportionality factor at the right side of Eq. 41 is called the
Lorentz numberL= 2(k/e)2. For a strongly degenerate electron gas, L = (π2/3)(k/e)2;
for more detail, see Smith (1978).

Bipolar thermal conductivity can have a major contribution in narrow-bandgap
semiconductors. Electrons and holes are moving in the same direction without
causing a net electric current. The thermal conductivity by bipolar diffusion can be
larger by a factor of up to 10 than the electronic contribution alone (Vandersande and
Wood 1986).

3.3.2 Phonon Scattering in Amorphous Semiconductors
In strongly disordered solids the mean free path is typically on the order of very few
interatomic spacings (�10 Å) and is essentially independent of the temperature
(Kittel 1949). At low temperatures, the material behaves like an isotropic elastic
medium for the long-wavelength acoustic phonons. Below a few degrees K, these
phonons freeze out, and all amorphous solids behave remarkably uniformly. Their
thermal conductivity has a plateau at ffi10 K and, at lower temperatures, decreases
proportionally to T2. Above the plateau, the thermal conductivity increases linearly
with temperature. This behavior is essentially independent of the material and any
impurity (see Fig. 12).

This T2 dependence can be explained by resonant scattering between two-level
states (TLS) which may arise from quantum tunneling between atoms (Matsumoto
and Anderson 1981). Here the scattering length λph caused by spatial fluctuations
at a scale of about 10 Å varies inversely with the phonon frequency and hence
also inversely with the temperature. Consequently, the thermal conductivity
κ = CVvs λph/3 (see Eq. 30) varies as κ /T2 in the range in which such phonons
give a T3 contribution to the specific heat (Anderson and Crowell 1972).

Fig. 12 Low temperature
thermal conductivities of
various amorphous solids
(After Stephens 1973)
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The plateau is probably caused by Rayleigh scattering (Yu and Freeman 1986)
involving localized (nonpropagating) modes (Akkermans and Maynard 1985) or
fractons (Orbach 1984) with a phonon wavelength λ ffi lω as the fracton localization
length. However, neither the source of scattering in this range nor the reason for an
increase in κ(T ) / T at higher temperatures is yet identified.

A broad range of defect-related phonon-scattering results is reported in the
literature; for example, for α-Si doped with Se and Te, see Vakhabov et al. (1985)
and for doping with O, see Radhakrishnan et al. (1982); Igamberdiev et al. (1983)
reported κ (6 < T < 300 K) and various doping. For a representative sample of
results, see Anderson and Wolfe (1986).

3.4 Thermal Transport in Superlattices

Thermal transport in semiconductor superlattices is important for electronic and
optoelectronic devices, where a high thermal conductivity is required for heat
dissipation, and for thermoelectric devices, where a low thermal conductivity is
desired for high efficiency. The thermal conductivity of superlattices is generally
anisotropic and usually below that of alloys with a corresponding average compo-
sition of the constituent materials. The dimension of the Brillouin zone normal to the
layers is reduced (Fig. 18 in chapter▶ “Elasticity and Phonons”), thereby modifying
the group velocity of phonons in both magnitude and direction and reducing the
energy required for Umklapp processes. Phonons are also sensitive to the specularity
of the interfaces between the layers in a heterostructure; diffuse scattering due to
roughness, dislocations, and alloy formation at the interfaces participate significantly
in the reduction of thermal conductivity and often makes comparison difficult.

Most studies focus on heat transport in the cross-plane direction (i.e., perpendic-
ular to the interfaces), since heat flows mainly in this direction (Chen and Tien 1993)
and potential benefits of in-plane transport, e.g., waveguiding effects, are easily
obscured by interface imperfections. Besides scattering of phonons at rough inter-
faces, acoustic mismatch of the constituent materials and effects of zone folding
which reduce phonon group-velocities affect cross-plane thermal conductivity, since
the phonon mean free path is even at room temperature larger than typical layer
thicknesses. Studies on quasi-unstrained GaAs/AlAs superlattices with well-defined
interfaces show a decreased conductivity as the interface density increases (Yao
1987; Capinski et al. 1999). The decreased thermal conductivity of GaAs/AlAs and
Si/Ge superlattices compared to that of alloys with the same mass ratio (Fig. 13a) is
concluded to originate from interface scattering of phonons due to a mismatch in
specific heat, group velocity, and density of adjacent layers (Chen 1998).

For various superlattices also an increase of thermal conductivity for very short
periods was experimentally observed, leading to a minimum for some intermediate
period length (Fig. 13b). Such behavior was reported for Bi2Te3/Sb2Te3 (Venkatasu-
bramanian 2000) and GaAs/AlAs (Tritt 2004) and also calculated as a general
feature by Simkin and Mahan 2000. The trend could be well modeled for Si/Ge by
first-principles calculations which include vibrational modes and scattering rates due
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to anharmonicity and interfacial disorder (Garg and Chen 2013). The analysis of
phonon scattering in Si/Ge reveals a dominant heat conduction of coherent
low-frequency phonons with long mean free path λ at short periods and a transition
to mainly incoherent transport of high-frequency phonons at longer periods. While
in alloys low thermal conductivity originates from disorder-induced scattering
mainly reducing the heat carrying ability of high-frequency phonons, also the heat
carrying ability of low-frequency phonons is reduced in superlattices due to a
decrease of the cross-plane group velocity; consequently the thermal conductivity
drops below the alloy value reached for shortest superlattice periods (11 Å in
Fig. 13b). Along the in-plane direction, the decrease in group velocity is less
pronounced, and the increase of thermal conductivity for longer periods is due to
increased phonon lifetimes.

Theoretical modeling of the thermal conductivity in superlattices is mostly based
on a calculation of the actual phonon modes, inserted into the standard formula for
the thermal conductivity

κ ¼ ℏ
X
λ

ð
v2sλωλτλ

df BE ωλð Þ
dT

d3q

2πð Þ3 , (42)

where vs and τ are the q-dependent quantities velocity and lifetime of the phonons,
and fBE is the Bose–Einstein occupation function. Equation 42 is derived from the
Boltzmann transport equation (▶ Sect. 4 in chapter “Carrier-Transport Equations”),
where the lifetime τ is usually taken from the homogeneous material (Cahill et al.
2003). The Boltzmann approach treats phonons as incoherent particles and neglects
coherence and the consequential modification of the phonon band-structure. These
models describe data in the range of large superlattice periods.

Fig. 13 (a) Cross-plane thermal conductivity for various superlattices with bilayer periods of near
5 nm: GaAs/AlAs (open circles, 5.67 nm), Si/Ge (open triangles, 5 nm; filled circles, 4.4 nm), InAs/AlSb
(open diamonds, 6.5 nm); after Cahill et al. 2003. (b) Calculated thermal conductivities including
anharmonic and interface roughness effects for Si/Ge superlattices as a function of superlattice period
(After Garg and Chen 2013)
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A second group of models assumes the other extreme and treats phonons as
coherent waves. Due to interference of traveling toward and away from interfaces,
the calculated conductivity typically initially decreases with increasing period length
and approaches a constant value beyond about 10 monolayer thickness (Tritt 2004).
The models fail to describe the usually observed behavior for longer periods.

A more recently developed partially incoherent approach based on first principles
applies force constants derived from density-functional perturbation theory
(Debernardi et al. 1995). Additional incorporation of interface-disorder effects appears
presently a viable approach to describe actual thermal properties of superlattices.

4 Summary

Phonons represent the thermal energy content of a semiconductor. Only a negligible
amount is added by the kinetic energy of free electrons and holes in normal semi-
conductors since their density is comparatively small. After knowing the phonon
density-distribution (a product of density of states and Bose–Einstein distribution),
the thermal energy content is obtained by simple summation. The change of the
thermal energy content with temperature, the specific heat, is directly accessible
experimentally.

Phonons populate at low temperatures almost exclusively the acoustic branches,
and only at temperatures approaching the Debye temperature do they extend with a
significant fraction to optical branches. The thermal properties due to phonons,
however, change smoothly with temperature because of the additive contribution
of all phonons. A thorough knowledge of their distribution permits one to predict
details of the thermal properties.

The transport of phonons within the semiconductor is a diffusion-type process,
driven by the gradient of the phonon density and described by a random walk of
phonons between scattering events. The measured thermal conductivity in a tem-
perature gradient provides experimental access to a variety of such microscopic
scattering processes. A simultaneous contribution of both incoherent and coherent
scattering with a temperature-dependent fraction describes the thermal transport in
superlattice structures.

Thermal expansion is the result of the anharmonicity of interatomic potentials
and, in contrast to many other nonharmonic phenomena (e.g., optical), presents itself
already at low amplitudes of lattice oscillations (i.e., at relatively low temperatures).
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Abstract
Characteristic for much of the electronic behavior in solids is the existence of
energy bands, separated by bandgaps. The bands are permitted for occupation
with carriers, and their origin can be described by two complementary models.
The proximity approach considers the effect of the neighborhood in a solid on the
energy levels of an isolated atom; this model is particularly suited for organic
semiconductors, amorphous semiconductors, and clusters of atoms. The period-
icity approach emphasizes the long-range periodicity of the potential in a crystal.
Electrons near the lower edge of a band in a crystal behave akin to electrons in
vacuum; the influence of the crystal potential is expressed by an effective electron
mass which increases with increasing distance from the band edge. This chapter
describes the basic elements of the electronic band structure in solids.
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1 Approaches for Modeling

Electronic transitions in energy and in space are the basic processes of interest in
semiconductor physics. The first group is responsible for the large variety of
excitation and de-excitation (recombination) processes; the second must be con-
sidered for carrier transport. Both are characterized by quantum-mechanical fea-
tures: the spectrum of electronic energy states (eigenstates), the distribution of
electrons over these states, and the interactions that cause changes in this
distribution.

The general principles that yield the spectrum of energy states typical for the solid
semiconductor are discussed first. The main features of this spectrum are obtained
using two apparently different models, which both are applied to describe crystals.
The first model, referred to as the proximity approach, starts from individual atoms
and its immediate neighborhood and expands with less and less attention to the
atomistic structure the further one extends from the origin. This approach is also
successfully used for amorphous semiconductors. The second model, the periodicity
approach, is at first view rather insensitive to the detailed properties of individual
atoms but considers the long-range periodicity of a crystalline lattice. Both yield
similar qualitative results: spectra of broad, permitted ranges of energy which, in
space, extend as bands throughout the entire semiconductor and which are inter-
spersed with forbidden ranges.

In this chapter both the proximity and the periodicity approach are presented, and
common features along with some of the differences in the results are pointed out.
The discussion starts from a rather heuristic description and introduces sequentially
more sophisticated elements.

1.1 The Proximity Approach

In a simple first step, the exchange of electrons between two atoms can be made
plausible by considering the splitting of eigenstates of degenerate oscillators, i.e.,
oscillator states having the same eigenfrequency, when they become coupled with
each other. This splitting increases as the coupling gets stronger, corresponding to a
closer approach of two atoms. The addition of more atoms of the same kind at
increased distances splits the energy levels into more levels which span a range of
energies. If the levels are spaced closely enough, Heisenberg’s uncertainty principle
no longer permits distinction between the individual levels.1 In this case, one obtains

1Applying ΔEΔt ffi ħ and relating Δt to the time an electron resides at a sufficiently high energy
level Eik (later identified as belonging to an upper band), an uncertainty ofΔE results. The timeΔt is
related to scattering (see ▶ Sect. 2 in chapter “Carrier-Transport Equations”); the electron is
removed from this level after λ/vrms � 10�12 s, yielding an uncertainty of ~1 meV, which is on
the same order as the splitting provided by only 104 atoms (assuming a band width of ~1 eVand an
equidistant splitting of 1 level per added atom – that is, within a crystallite of <100 Å diameter.
With larger crystallites the splitting is even closer and results in a level continuum.
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an allowed energy range in a sufficiently large cluster of atoms, instead of a discrete
energy-level spectrum of a single atom or an aggregate of a few atoms – see Fig. 5.
Since outer shell electrons can be exchanged more easily, the energy ranges created
from valence electrons will be wider than the ranges created from the shielded inner
electrons. The latter will more closely resemble the discrete eigenstates of isolated
atoms. Since the same atoms behave alike, this allowed energy range extends
throughout the crystal. In two dimensions (x,E) one therefore can draw allowed
energy bands separated by forbidden gaps (Fig. 1).

In Fig. 1 the total electron energy is drawn disregarding the potential energy that
an electron experiences when separated from an individual atom, which is shown in
Fig. 2 for a single atom (upper curve, in green) and for a small one-dimensional
cluster (blue curve). The band model emphasizes the collective behavior, i.e., the
sharing of the electron among the atoms of the cluster. The potential distribution
picture, on the other hand, emphasizes the localization of an electron within each
potential funnel. Both pictures are valid: the band picture is more relevant for higher
bands, while the potential picture is more relevant for lower (core) levels.

When the band picture is superimposed to the picture of the individual potentials
of many adjacent atoms (Fig. 3), we recognize that the semiclassical approach, in
which electrons may only move above potential barriers, is inappropriate, since
bands indicate that electronic exchange exists well below the crest of the barriers.
The origin of the electron transfer through such barriers is tunneling, i.e., a quantum-
mechanical exchange, – see ▶ Sect. 2.3 in chapter “Carrier Generation.”

This heuristic approach will now be expanded to motivate the formation of bands
in a more appropriate quantum-mechanical analysis. The analysis is first applied to a

Fig. 1 (a) Splitting of
eigenstates when two atoms
have approached each other.
(b) Simple band model of a
crystal consisting of many
atoms

Fig. 2 Potential energy of an
electron in an atom (green
curve) and of an electron in an
atomic cluster (blue curve);
red dots below the abscissa
indicate positions of atom
cores
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cluster of atoms that forms the building block of an amorphous semiconductor and
then to a periodic lattice.

1.1.1 Electronic Structure of Amorphous Semiconductors
The electron energy depends sensitively on the interatomic distance and bond angle,
as shown for a simple H2 and an H2O molecule in Fig. 4. The bonding and
antibonding curves reflect antiparallel and parallel spin of the electrons in the
bonds, respectively.

The electronic structure of an amorphous or crystalline solid can be obtained by
starting from an arbitrary atom and including more and more neighbors in an
appropriate configuration; the eigenfunctions of such a cluster are determined by
solving its Schrödinger equation. This is referred to as a tight-binding approach.
Solutions can be obtained numerically, using reasonable approximations (Reitz
1955; Heine 1980; Slater and Johnson 1972; Kaplan and Mahanti 1995 – see also

Fig. 3 Potential energy and eigenstates of electrons in (a) an atom and (b) a small crystal

Fig. 4 Electron energy as a function of (a) the interatomic distance of a hydrogen molecule and (b)
the bond angle in H2O
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chapter ▶ “Quantum Mechanics of Electrons in Crystals”). The analysis can be
described as that for a large molecule of, say, 20–50 atoms and delivers a spectrum
of energy eigenvalues that, when the cluster is large enough, presents a valuable
estimate of the energy bands of the solid.

Several Si atoms which form such a cluster produce the typical sp3 bonding
and antibonding states that are generated when the atoms are close enough – see
▶ Sect. 1.2 and ▶ Fig. 6 in chapter “Crystal Bonding.” For a small cluster of Si
atoms in an “amorphous configuration” (▶ Sect. 3.2 in chapter “The Structure of
Semiconductors”), we calculate an eigenvalue spectrum (Fig. 5a) and see that the
proximity to other Si atoms significantly changes and splits the atomic levels (shown
on the left). They are split by a large amount and are distributed unevenly in energy.
A much larger number of atoms, however, are required to create a truly band-like
level distribution. The spectrum changes significantly when hydrogen is added to
this cluster, which forms a bridging hydrogen structure (Ovshinsky and Adler 1978).
It removes states from the gap of α-Si and thereby increases the bandgap from 1.3 eV
for α-Si to 1.7 eV for the technically more interesting, hydrogenated α-Si:H
(Eberhart et al. 1982; Street 2005).

When more atoms of the same kind are incorporated within such a cluster, more
levels appear within the two bands, i.e., within the range of bonding and

Fig. 5 Electron energy-level distribution for bonding (valence band) and antibonding (conduction
band) states of a 17-atom cluster and optical density of states (see ▶ Sect. 1 in chapter “Band-to-
Band Transitions”) for (a) α-Si and (b) α-Si:H. Amorphous silicon α-Si is modeled by a Si-(SiH3)4
cluster denoted Si5(sat)12 with a central Si bond to 4 Si, each of which is saturated by 3 H. In the
hydrogenated cluster 1 H atom is substituted for 1 Si, yielding a SiH-(SiH3)3 cluster corresponding
to a Si:16% H alloy. Principal hydrogen-induced levels are marked in green and labeled according
to the H contribution in the molecular orbitals (After Johnson et al. 1980). The agreement with the
experimental bandgap of such a small cluster is spurious, however, and should not be over-
evaluated. The calculated bandgap depends substantially on the boundary conditions
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antibonding states. These bands have been labeled in Fig. 5 as the conduction and
valence bands; for more detailed definitions, see ▶ Sect. 1 in chapter “Bands and
Bandgaps in Solids.” The finite-cluster approach always overestimates the
bandgap energy, since, by necessity, this approach omits states present which
are far away from the center in k space and in direct bandgap materials (▶ Sect. 2
in chapter “Band-to-Band Transitions”) lie near the edges of the bandgap.

From these examples, we can deduce that some information about the energy
width of the upper energy bands and the bandgap can be obtained from clusters
containing only ~50 atoms in an appropriate structural configuration. That is, the
outer atoms must be kept artificially at positions they would attain when interacting
with the surrounding atoms within a much larger amorphous network of atoms. The
level distribution within a band, however, is poorly represented by such small
clusters. The incorporation of many more atoms presents major computational
problems for amorphous semiconductors; however, this problem becomes exceed-
ingly simple in the periodic lattice of a crystalline semiconductor. For more reading,
see Adler (1985), Agarwal (1995), Beeby and Hayes (1989), Shinozuka (1999), and
Singh and Shimakawa (2003).

1.2 The Periodicity Approach

The behavior of electrons in a semiconductor can be approximated by assuming that
they are nearly free electrons but interact with the periodic potential that simulates
the lattice. In order to distinguish the influence of this periodic potential, one should
first recall the behavior of a free electron with mass m0in vacuum. This is determined
by the solution of the Schrödinger equation

@2

@r2
ψ þ 2m0

ħ2
Eψ ¼ 0, (1)

which can be described by an electron wave

ψ rð Þ ¼ Aexp �ik � rð Þ, (2)

with A as an amplitude factor. The wavevector k relates to electron momentum and
energy as

k ¼ m0v

ħ
¼ p

ħ
, E ¼ m0

2
v2 ¼ p2

2m0

¼ ħ2k2

2m0

, (3)

or, more accurately, to the expectation value of the momentum given by

ph i ¼
ð1
�1

ψ� ħ
i

@

@r
ψ dr ¼ ħk

ð1
�1

ψ�ψ ¼ ħk: (4)

The wavevector k is the reduced wavevector – see the discussion later in this section
and Fig. 13. Hence, E(p) or E(k) is described by a three-dimensional paraboloid
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(by a parabola in one relevant coordinate) with one electronic parameter, the electron
rest mass m0.

Equation 2 represents an electron wave with a wavelength, the de Broglie
wavelength,2 of

λDB ¼ 2π

k
¼ h

pj j ¼
h

m0v
¼ 7:27

v cm=sð Þ cmð Þ (5)

or, when introducing the electron energy from Eq. 3,

λDB ¼ hffiffiffiffiffiffiffiffiffiffiffi
2m0E

p ¼ 12:26ffiffiffiffiffiffiffiffiffiffiffiffiffi
E eVð Þp Åð Þ: (6)

An electron in the lattice, i.e., when it is exposed to a periodic potential, no longer
behaves like a free particle: it experiences interference from the lattice potential
when, with increasing electron energy, its de Broglie wavelength becomes compa-
rable to the lattice constant. The ensuing Bragg reflections prohibit a further accel-
eration of the electron, described later in more detail. This simple discussion also
indicates the existence of a finite energy range, the energy band in a semiconductor.
Near the bottom band edges, the electron behaves to some extent like a free electron,
i.e., like a classical particle. The quantum-mechanical nature becomes evident when
it gains energy in an electric field or is forced to occupy higher states. At energies of
4 eV, the de Broglie wavelength is 6 Å, i.e., small enough to permit interference
effects within the periodic potential of the lattice. This plausibility argument can be
substantiated by describing the electron with a wave equation, the Schrödinger
equation, and by introducing into the Schrödinger equation a periodic potential V(r),

@2

@r2
ψ þ 2m0

ħ2
E kð Þ � V rð Þð Þ ψ ¼ 0: (7)

The solutions of this Schrödinger equation are so-called Bloch functions which
can be expressed as a linear combination of waves

ψn k, rð Þ ¼ un k, rð Þexp i k � rð Þ, (8)

with n as the band index specifying a certain band. The waves are plane waves with a
space-dependent amplitude factor un(k,r), which shows lattice periodicity (Bloch’s
theorem, 1928; see ▶ Sect. 1.2 in chapter “Quantum Mechanics of Electrons in
Crystals”). A one-dimensional schematic representation is given in Fig. 6 to indicate
the relationship between the lattice potential V(r) and the Bloch function ψn(k,r),

2The de Broglie wavelength is on the same order of magnitude as the uncertainty distance obtained
from Heisenberg’s uncertainty principle Δx � ħ/Δpx, which has the same form as λDB. This yields
uncertainty distances of 10 Å for thermal (free) electrons at room temperature.
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which contains un(k,r) and the plane wavefunction of the electron exp(ik � r), to
construct the electron wavefunction (Harrison 1980a).

Inserting Eq. 8 into Eq. 7, we obtain the result that solutions exist only for
certain ranges of the electron energy En(k), which are interspersed with energy
ranges in which real solutions do not exist. This confirms the previously obtained
results that the energy spectrum in a solid consists of alternating allowed and
forbidden energy ranges (energy bands). The periodic-potential approach, how-
ever, gives additional information that can be demonstrated readily in a simple
one-dimensional model.

1.2.1 The Kronig-Penney Model
An enormously simplified periodic potential V(x) is sufficient for introduction into Eq. 9
to show the typical behavior. This is the Kronig-Penney potential (Kronig and Penney
1931),3 which is shown in Fig. 7. Since the discussion of this behavior is rather
transparent, it will be used here for an introduction to the basic features of the bandmodel.

Introducing Eq. 8 into Eq. 7 for one relevant dimension, we see that u(x) must
satisfy

Fig. 6 A schematic representation of electronic eigenstates in a crystal. (a) The potential V(r)
plotted along a row of atoms; (b) u(k,r), which has the periodicity of the lattice; (c) a plane electron
wave, the real part of which is shown to construct the electron wavefunction; and (d) a Bloch
function; the state itself is complex, and only the real part is shown. The Bloch function is composed
of the product of (b) and (c)

3In one dimension, there are other periodic potentials for which the Schrödinger equation can be
integrated explicitly. V(x) = �V0 sech

2(γx) is one such potential, which yields solutions in terms of
hypergeometric functions (see Mills and Montroll 1970). The results are quite similar to the Kronig-
Penney potential.

190 The Origin of Band Structure



d2u

dx2
þ 2ik

du

dx
� k2 � 2m0 E� V xð Þ½ 	

ħ2

� �
u ¼ 0: (9)

We can split Eq. 9 after the introduction of the Kronig-Penney potential into two
differential equations: one for the bottom of the well and one for the top of the barrier
with a potential V = V0. The solutions in each part can be expressed as the sum of
two waves:

u1 xð Þ ¼ Aexp i α� kð Þx½ 	 þ Bexp �i αþ kð Þx½ 	 for 0 < x < a1
u2 xð Þ ¼ Cexp i β � kð Þx½ 	 þ Dexp �i β þ kð Þx½ 	 for � a2 < x < 0,

(10)

where α and β are the k values for a free electron in vacuum, for V = 0, and for a
constant barrier potential V0, respectively:

α ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m0E

ħ2

r
and β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 V0 � Eð Þ

ħ2

s
: (11)

The integration constants can be determined by the continuity requirements of u(x)
and its first derivatives at x = al and x = a2, which yield4

� α2 � β2

2αβ
sin αa1ð Þsinh βa2ð Þ þ cos αa1ð Þcosh βa2ð Þ ¼ cos kað Þ: (12)

Equation 12 provides the dispersion relation E(k) (E is contained in α and β).
The dispersion relation is the key to many discussions of electronic properties in

solids. Since the wavenumber k is proportional to the electron momentum (Eq. 3),
the dispersion equation relates the electron energy to mass and velocity, both of
which are essential for understanding the specific behavior of electrons in a semi-
conductor. This will be explained in detail in several of the following sections.

Fig. 7 Kronig-Penney
potential with V0 the barrier
height, al and a2 the well and
barrier widths, respectively

4For E > V0, the square root in β becomes imaginary. Introducing γ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 e� V0ð Þ=ħ2

q
and with

sinh(iγ) = i sinγ and cosh(iγ) = i cosγ, we obtain for higher electron energies a similar equation:

� γ2 þ α2

2αγ
sin γa2ð Þ sin αa1ð Þ þ cos γa2ð Þ cos αa1ð Þ ¼ cos kað Þ:
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Equation 12 reveals that a sequence of allowed energy ranges (bands) is inter-
spersed with forbidden energy ranges: energy gaps are formed when the left-hand side
(LHS) of Eq. 12 exceeds�1, which are the limiting values of the equation’s right-hand
side. In Fig. 8 the hatched ranges show the energy bands; no solution of the
Schrödinger equation can be found between the bands for real values of k. This picture
describes a situation between a free electron in vacuum, where all energies are
permitted, and an electron bound to an isolated atom, where the permitted energy
ranges shrink to a set of discrete energy levels. The height and width of the potential
barriers and wells (al, a2, and V0) determine whether an electron behaves more like an
electron bound to a single atom (large a2/a1 and V0) or more like a free electron in
vacuum (small a2 and V0); see Fig. 9. In the latter example the permitted ranges extend
over a wider energy range.

More information can be deduced from the E(k) behavior within each of the
permitted energy ranges shown in Fig. 10. At the bottom of the first permitted energy
range, E(k) is nearly parabolic. Then Emoves with increasing k through an inflection

Fig. 8 Left-hand side (LHS)
of Eq. 12 as a function of
E (contained in α and β),
computed for a1 = 6 Å,
a2 = 1.2 Å, and V0 = 10 eV

Fig. 9 LHS as in Fig. 8, but for two different values of the parameter V0 (10 eV for curve labeled
“outer electrons” and 40 eV for “inner electrons” – other parameters as in Fig. 8), indicating the
reduced width of the permitted bands for higher potential barriers (i.e., for inner electrons that are
more tightly bound) represented by encircled green bars at the E axis
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point and, at the top of this range, becomes nearly parabolic again but with a negative
curvature.

Compared to the parabola of the free electron, the lower part of the E(k) curve is
raised. At the upper edge of the first allowed range, i.e., at k = �π/a, the curve
coincides again with the free electron parabola. The next permitted band starts after a
jump in E from E1 to E2 at k = �π/a and has a similar E(k) behavior as the first
energy band, except that the curvatures are larger at the bottom and top of the band.
The top is reached at k = �2π/a, where again a jump of E occurs, from E2 to E3, etc.
(Fig. 10). This behavior continues for higher bands with broader allowed bands,
gradually increased curvature at the bottom and the top, and narrower bandgaps.
Figure 10 also contains E(k) for the free electron (Eq. 3), which is parabolic in the
entire E(k) range.

This general behavior is independent of the actual shape of the periodic potential
as long as it has sufficient strength. Although periodicity of V(x) is a necessary – but
not sufficient – condition for energy bands with interspersed forbidden gaps, it so
happens that in solids, for inner shell electrons, the potential barriers are sufficiently
high to cause rather narrow, lower bands. Electrons at sufficiently high energies
occupy wider bands and behave more like free electrons: they can move readily
through the lattice. They will, however, be subject to interference with the periodic
lattice potential (see Sect. 2.2).

When analyzing the effect of a three-dimensional periodic potential and using a
real lattice potential, the actual E(k) behavior becomes more complex; however, it
still maintains the basic features of energy bands interspersed with bandgaps.
This fundamental behavior is the basis for the electronic behavior of semiconductors
and is described in more detail in many textbooks of solid state physics, e.g.,
Anderson (1963), Ashcroft and Mermin (1976), Bube (1992), Callaway (1976),
Fletcher (1971), Harrison (1980b), Haug (1972), Kittel (2007), Marder (2010), and
Ziman (1972).

Fig. 10 (a) As Fig. 8,
however, for a larger al/a2
ratio. (b) E(k) for a free
electron (parabola) and for a
Kronig-Penney potential in an
extended wavenumber E(k)
representation. Bottom
segments of the bands shown
at the right indicate the
increased curvature at the
edge of higher bands
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1.3 Periodicity Versus Proximity Approach

The proximity of a sufficient number of atoms and the periodic lattice structure
of a crystal both lead to allowed energy bands interspaced by bandgaps. We may
use one or the other picture to obtain further information about the band
structure.

The periodic lattice-structure approach is more suited for obtaining the specific E
(k) structure of the inner part of the band (near k = 0) which cannot be obtained from
the proximity approach. It reflects the symmetry of the lattice and allows for
obtaining the results in the most economical way. Its results, however, are restricted
to periodic lattices, i.e., to crystals. This refers specifically to interference phenom-
ena involving diffraction from further-than-nearest and next-nearest neighbor dis-
tances. These distances, however, can still be discerned in the x-ray diffraction of
amorphous semiconductors and therefore may also be expected to influence electron
behavior further away from k = 0.

The proximity approach can be used to obtain some information about the inside of
the bands for first orientation. However, the inadvertent inclusion of artificial states at
the surface of the cluster and the requirement for an extremely large cluster size to
provide band states close to the band edges have been the handicaps of this approach.

A supershell approach is sometimes used to avoid some of the shortcomings of
the periodic lattice and proximity approaches. This approach takes a cluster of
sufficient size and repeats it periodically until the entire crystal volume is filled. In
this way the mathematical methods developed for studying periodic lattices can be
used, while certain elements of an amorphous structure are included in the cluster.
The error due to the forced adjustment of each cluster can be minimized by
increasing the size of the cluster.

Many of these results are important for understanding the behavior of metals
(e.g., overlapping bands), but will not be discussed here. Other results relate to
semiconductors, including semiconductor-metal transitions (see ▶ Sect. 3 in chapter
“Equilibrium Statistics of Carriers”). Some heuristic examples of near-band-edge
properties are given below.

1.3.1 Band-Edge Fluctuation
The ideal periodicity of a crystal lattice can be modified for a number of reasons,
among them lattice oscillations or displaced lattice atoms. An amorphous semicon-
ductor, for example, may be described by having frozen-in large fluctuations of the
interatomic distances and bond angles. In some respects such structures are “almost
crystalline,” but with slightly changing lattice parameters, occurring particularly in
the third-neighbor distance and beyond; see Fig. 29 in chapter ▶ “The Structure of
Semiconductors”. The good short-range order in an amorphous semiconductor leads
to a band structure comparable to that of a perfectly ordered crystal; however, a
lattice with a different lattice constant causes a different E(k) with a different width
of allowed bands and gaps. Therefore, we expect variations of the band edges in time
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and space.5 Rather than being perfectly straight, the band edge becomes perturbed.
Over a time average, and the band edge appears to be fuzzed out (Fig. 11). For
further detail see chapter ▶ “Defects in Amorphous and Organic Semiconductors.”

1.3.2 Discrete Defect Level in the Bandgap
When a local deviation from the ideal lattice structure is sufficiently large, the
eigenstate of a disordered atom may lie within the bandgap. A plausibility argument
may be obtained from the proximity model.

Assume an extra atom is incorporated in an interstitial site of the lattice (later
discussed in ▶ Sect. 2.1 in chapter “Crystal Defects”). This extra atom is much
closer to its neighbors; the exchange frequency is substantially larger than that for
the nearest neighbors which yield the largest exchange frequency in an ideal lattice
(equivalent to the band edges). Thus, the eigenstates of this interstitial atom, here an
intrinsic point defect, and its nearest neighbors lie outside of the allowed bands of the
ideal lattice, i.e., within the bandgaps (Fig. 12).

Energy states within the gap are localized at the position of this lattice defect (x0
in Fig. 12) and play an important role in localizing (trapping) electrons in real
crystals (see ▶ Sect. 2 in chapter “Deep-Level Centers”) and in amorphous semi-
conductors. It also becomes reasonable to expect an energy distribution of such
localized (trap) levels in the gap near the band edge, when taking into consideration
that in crystalline and amorphous semiconductors a wide variety of lattice imper-
fections and lattice parameter variations are observed. In ▶ Sect. 3 of chapter
“Optical Properties of Defects” and in chapter ▶ “Defects in Amorphous and
Organic Semiconductors”we will return to this level distribution near the band edge.

Fig. 11 (a) Perturbed and (b) fuzzed-out band edges in a crystal with phonons and in an
amorphous semiconductor

5This concept must be used with caution, since k is a good quantum number only when electrons
can move without scattering over at least several lattice distances. That is certainly not the case in
most amorphous semiconductors near the “band edge” (see ▶ Sect. 4 in chapter “Carrier Transport
Induced and Controlled by Defects”). However, at higher energies further inside the band, there is
some evidence that the mean free path (▶ Sect. 2 in chapter “Carrier-Transport Equations”) is much
larger than the interatomic distance even in amorphous semiconductors. In bringing the two
approaches together, the argument presented here lacks rigor and has plausibility only in terms of
correspondence.
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2 The Reduced k Vector

A general feature of the solutions of the Schrödinger equation is the periodicity of E
(k), illustrated in Fig. 13b. The figure shows the periodicity in k along kx with a
period length of kxa = 2π. This means that a shift of the solution E(kx) by 2π/a in kx
represents the same behavior. Fig. 13a contains a copy of Fig. 10, indicating the
relation to the periodicity of E(k) shown in Fig. 13b. Any full segment of the periodic
representation is a reduced k-vector representation. One such segment is shown
within the first Brillouin zone in Fig. 13c, i.e., within – π/a < kx < π/a. For a three-
dimensional lattice, the reduced representation is discussed in ▶ Sect. 4 in chapter
“Quantum Mechanics of Electrons in Crystals.”

The reduced representation E(k) shows an alternating sign of the curvature at the
edge of each band at k = 0. It is positive for the first band, negative for the second,
etc. This interesting peculiarity occurs in real crystals in a somewhat similar fashion,
although is more complex because of a multiplicity of bands, as will be discussed in
▶ Sect. 1.2 in chapter “Bands and Bandgaps in Solids.”

It is instructive to look at an enlarged detail of Fig. 13 as shown in Fig. 14d. This
figure can be constructed from two parabolas of free electrons, shifted by 2π

a – a situation
that can be thought of by inserting a lattice into the vacuum, although with vanishing
lattice potential (an empty lattice– see ▶Sect. 4.1 in chapter “Quantum Mechanics of
Electrons in Crystals”). The electron in each reference system is described by its
corresponding parabola (subfigure 14c). When interacting through a periodic perturba-
tion potential of amplitude U0, the crossing of both E(k) parabolas is eliminated and a
splitting occurs with a gap of the order of j2 U0j, as shown in subfigures b and d.

2.1 Newtonian Description of a Quasi-Free Electron

In many discussions about electron behavior in solids, a classical particle picture is
used rather than the quantum-mechanical one of a wave packet; it is often more
intuitive. Electrons behave like little balls, “sliding down” a potential hill and
“scattering” upon collision with an atomic lattice defect. The picture is justified by
using Bohr’s correspondence principle near the bottom of the conduction band

Fig. 12 Simple intrinsic
atomic interstitial (i.e., an
atom being chemically
identical to the atoms of the
crystal) in an idealized lattice
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(the band in which electron conduction takes place). However, since not all of the
electron behavior can be described by this model, as explained in the previous
section, we can account for the modification by incorporating the information
obtained from its dual nature as a wave into one of its classical parameters –
its mass.

An electron, regarded as a classical (Newtonian) particle, has a momentum

p ¼ m0v and a kinetic energy E ¼ m0

2
v2 ¼ p2

2m0

: (13)

Relativistic effects are excluded here (i.e., v 
 c is assumed): the electron mass is its
rest mass m0. The velocity of such a particle changes with time in response to an
acting force F (Newton’s second law):

dp

dt
¼ m0

dv

dt
¼ F : (14)

On the other hand, an electron in vacuum, regarded as a wave, has

Fig. 13 Comparison
between: (a) extended
wavenumber k, (b) periodic,
and (c) reduced wavenumber
representations of E(k)
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a momentum p ¼ ħk and an energy E ¼ p2

2m0

¼ ħ2 k2

2m0

: (15)

When exposed to a force, such as that supplied by an electric field jEj, and with
F = �ejEj, its momentum increases accordingly:

dp

dt
¼ ħ

dk

dt
¼ F : (16)

When the electron is described as a wave packet, its velocity is the group velocity6

Fig. 14 (a) E(k) for a free electron. (b) Splitting of E(k) if a small periodic field is introduced. (c)
Free electron in an empty lattice. (d) E(k) of the original parabola, disturbed by the periodic-
potential perturbation (compare with Fig. 13a)

6In an infinite crystal, the electron (when not interacting with a localized defect) is not localized and
is described by a simple wavefunction (i.e., having one wavelength and the same amplitude
throughout the crystal). The probability of finding it is the same throughout the crystal (/ψ2).
When localized, the electron is represented by a superposition of several wavefunctions of slightly
different wavelengths. The superposition of these wavefunctions is referred to as a wave packet. A

moving electron is represented by a moving wave packet ψ ¼ 1
2δk

ðkþδk

k�δk
u x, kð Þexp i kx� ωtð Þð Þdk

which quickly spreads out over time. It has its maximum at a position x ¼ 1
ħ
@E
@k t, yielding for the

group velocity, i.e., the velocity of the maximum of the wave packet, vg ¼ @x
@t ¼ 1

ħ
@E
@k. With E = ħω,

we obtain vg ¼ @ω
@k .
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vg ¼ @ω

@k
¼ 1

ħ
@E

@k
: (17)

Applying Newton’s law to such an electron wave packet (in a relation similar to
Eq. 14),

m0

dvg
dt

¼ F , (18)

and with

dvg
dt

¼ 1

ħ
d

dt

@E

@k

� �
¼ 1

ħ
@2E

@k2
dk

dt
¼ 1

ħ2
@2E

@k2
F , (19)

we see by comparison with Eq. 18 that the factor preceding F has the dimension of
an inverse mass. This factor is proportional to the curvature of E(k).

2.2 The Effective Mass

If we want to retain the Newtonian behavior, we have to replace the electron mass m0

in Eq. 18 with the effective electron mass when comparing Eqs. 18 and 197:

m� ¼ ħ2

@2E

@k2

: (20)

This effective mass contains the peculiarities of the interaction of the electron with
the lattice (the superscript * distinguishes this mass from the rest mass). However, a
possibly important part caused by the adiabatic approximation (see Born-
Oppenheimer approximation ▶ Sect. 1.1 in chapter “Quantum Mechanics of Elec-
trons in Crystals”) is missing. The influence of this part is discussed in▶ Sect. 1.2 in
chapter “Carrier-Transport Equations” and can be described by a different effective
mass – the polaron mass.

From Fig. 10, we see that the effective electron mass at the lower edge of the third
band, here assumed to harbor free electrons (see ▶ Sect. 1.1 in chapter “Bands and
Bandgaps in Solids”), is smaller than the rest mass of a free electron, since the
curvature of E(k) is larger here. At higher energies within the band, this curvature
decreases, changes sign, and, at the upper edge of the band, becomes negative

7For the electron behavior, only expectation values can be given. In order to maintain Newton’s
second law, we continue to use ℏk (Eq. 15), which is no longer an electron momentum. It is well
defined within the crystal and is referred to as crystal momentum. We then separate the electron
properties from those of the crystal by using @2E/@k2 to define its effective mass.
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(as shown in Fig. 15). Consequently, the effective electron mass increases, becomes
infinite near the center of an allowed band, and changes sign there. Coming from
negative infinity, the effective electron mass returns to a finite but negative value
which, at the top of the band, is of the same order of magnitude as at the bottom of
the band (Figs. 13 and 15). This behavior is repeated in the next band, except that the
sign sequence is exchanged. Here the effective mass is negative at k = 0; however,
the effective electron mass is always positive at the bottom of any band and negative
at the top. For lower bands, i.e., narrower bands, the value of the effective mass
becomes larger at the band edge.

When electrons accelerate substantially above the lower edge of the band in
sufficiently high fields, the de Broglie wavelength of the electron becomes smaller
and comparable to the interatomic lattice spacing. Here, interference effects of the
electron wave with the periodic lattice potential become important: Bragg reflection
becomes more prevalent, while more and more frequency components of the wave
packet are reflected. Therefore, further acceleration will become more difficult to
achieve; in the Newtonian model, the effective mass of the electron increases until,
near the center of the band, further acceleration stops. When the energy of the
electron is raised above the center of the band, the electron will decelerate in the
direction of the electric field until it reaches the top of the band, where it will come to
a standstill. The electron wave has then reached a perfect diffraction condition.8 It
can be described as a standing wave, composed of incoming and refracted waves of
exactly the same amplitude. With some caution we may describe the “recoil” of the

Fig. 15 (a) Typical E(k)
dependence for two simple
bands, and (b) derived
effective electron masses m*
within these permitted energy
bands. Actually, one
determines m*(k); this graph
is turned by 90� to show its
relation to the band model
shown at the left

8In theory, the electron will continue to accelerate in the opposite direction to the field and lose
energy, thereby descending in the band, and the above-described process will proceed in the reverse
direction until the electron has reached the lower band edge, where the entire process repeats itself.
This oscillating behavior is called the Bloch oscillation. Long before the oscillation can be
completed, however, scattering interrupts the process. Whether in rare cases (e.g., in narrow
mini-bands of superlattices or ultrapure semiconductors at low temperatures) such Bloch oscilla-
tions are observable, and whether they are theoretically justifiable in more advanced models
(Krieger and Iafrate 1986), is controversial. In three-dimensional lattices, other bands overlap and
transitions into these bands complicate the picture.
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lattice as being responsible for absorbing an increasing fraction of the electron
momentum when it is accelerated. The total momentum is thus still conserved, and
Newton’s law is fulfilled. When an electron wave impinges on a thin crystal layer in
an energy range in which the crystal is partially transparent for the electron, such
momentum transfer can be measured directly by changing the electron energy so that
diffraction occurs and part of the electron beam is reflected.

This qualitative picture also holds for more realistic periodic potentials, although
the quantitative relationship depends on many other factors. Each of the bands
usually consists of several branches which often overlap one another and may
show additional extrema (saddle points) in the first Brillouin zone, making the
dependence of the effective mass on the electron energy more complicated. Near
the band edge (for electrons), only one – perhaps degenerate – E(k) branch is present
in typical semiconductors, so that the above description holds rather well. This
branch can be split, for example, by crystal anisotropy or electric or magnetic fields.

In summarizing the much more involved behavior of an electron in such a
realistic band, we may wonder if we gained a more intuitive picture using the
particle model. If we recognize, however, that the electron will mostly reside close
to the bottom of the band, usually within a few kT, the model is quite helpful for an
analysis of a number of basic processes. The electron will behave here like a particle
with a constant effective mass; the value of this effective mass depends on the actual
lattice potential, i.e., on the chemical and crystallographic nature of the material
because these determine the shape of E(k). In ▶Sect. 4.5 of chapter “Carrier-
Transport Equations,” we present a more detailed description of the effective mass
for the application of this concept to carrier transport in typical semiconductors.

3 The Proximity Approach in Organic Crystals

Organic crystals are composed of molecules as building blocks instead of atoms
(▶ Sect. 1.5 in chapter “The Structure of Semiconductors”). The electronic band
structure of an organic semiconductor may therefore be derived from the proximity
approach (Fig. 3) by replacing energy levels of atomic orbitals with levels of
molecular orbitals. A schematic of the level scheme of an isolated single molecule
is shown in Fig. 16. If the molecule is electrically neutral and not a radical, it has an
even number of electrons. The highest occupied molecular orbital of the delocalized
π electrons (▶ Sect. 3.3 in chapter “Crystal Bonding”) in the conjugated molecule,
the so-called HOMO, refers to the electronic ground state of the molecule. It is
occupied by 2 electrons with opposite spin and hence a singlet state with total spin
S = 0, labeled S0 in Fig. 16 (valence states below S0 are not shown).

The first excited singlet state is S1. There exists also a triplet state labeled T1 with
parallel spin of the electron in the HOMO state and the electron in the excited state,
yielding a total spin S = 1; its energy is larger than that of S0. Further excited states
S2 and T2 may exist with an energy separation to S0 below the ionization energy Ig,
but the lifetime of an electron excited to such states is very small compared to that in
the states S1 and T1. Excited states S2 and T2 as well as the vibronic states of the
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molecule that couple to each of the electronic states are not shown in Fig. 16 for
clarity.

The molecule ground state in the gas phase is given by the ionization energy Ig.
This quantity represents the energy required to remove the most weakly bound
electron from the molecule and is readily accessible in experiment. Vice versa, if
an additional electron is bound to the molecule to form a negatively charged
molecular ion, an energy Ag, called electron affinity, is released. If the molecule is
ionized in the environment of a crystal lattice, the required energy Ic is smaller than
Ig, because negative and positive charges are now separated by a polarizable medium
with a dielectric constant (typically about 3). Ig is reduced by a polarization energy
Pp. Similarly, the electron affinity in a crystal is increased by a polarization energy Pn

to a value Ac. The molecular ion states are separated by an energy gap Eg, which for
Pp = Pn � P is given by (Karl 1974)

Eg ¼ Ic � Ac ¼ Ig � Ag � 2P ¼ 2Ic � Ig � Ag; (21)

see also Fig. 17. The energy gap and its position with respect to the vacuum level
depend on the spatial extent of the delocalized π electrons in the molecules of the
crystal; this dependence is illustrated for acenes in Fig. 17.

In an anthracene crystal the bandgap energy Eg is 4.1 eV; this energy is required
to remove an electron from the HOMO level to a quasi-free state of the molecule,
leaving a positive charge in the HOMO. The quasi-free state is the lowest unoc-
cupied molecular orbital, the LUMO level; in analogy to inorganic semiconduc-
tors, the energy of the LUMO in organic semiconductors is referred to as
conduction band, and that of the HOMO is called valence band. The S1 state
indicated in Fig. 16 lies below the LUMO level; in this state the electron is still
bound to this positive charge, forming a so-called exciton (see ▶ Sect. 1.1.2 of

Fig. 16 Schematic of the
energy levels of a single
molecule (gas phase, left) and
of a molecule crystal (right);
Ig, Ag, Ic, and Ac denote,
respectively, the ionization
energies I and electron
affinities A of the molecule in
the gas phase and in the
crystal; Pn and Pp signify the
polarization energies of an
electron and a hole in the
molecule crystal
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chapter “Excitons”); the excitation energy of the S1 exciton in anthracene is 1 eV
lower9 than Eg.

The polarization energy P in organic crystals has an electronic and a vibronic
component. If an electron is added to a molecule, the neighboring molecules are
polarized by the negative charge in their vicinity. The characteristic response time for
this electronic polarization is of the order of the oscillation period in an optical
transition. This time is much shorter than that of a vibronic oscillation; the electronic
polarization of the molecular neighborhood thus follows the movement of a quasi-
free electron, thereby affecting its effective mass. This influence is not related to the
effective mass of a quasi-free electron in an inorganic crystal discussed in Sect. 2.
The quasi-free electron in the LUMO and its surrounding polarization cloud com-
bined form a mobile quasiparticle referred to as (negative) polaron; correspondingly
a positive charge in the HOMO builds a positive polaron.10 We read from Fig. 17 that
the polarization energies of the negative and positive polaron are given by

Pn ¼ Ac � Ag

Pp ¼ Ig � Ic:
(22)

Both quantities are proportional to the polarizability of the organic molecules and are
much larger than in conventional semiconductors. Still polarons also occur in
inorganic semiconductors and are discussed in ▶ Sect. 1.2 of chapter “Carrier-
Transport Equations” in the framework of transport properties.

Fig. 17 Ionization energies
of the highest occupied level
and binding energies of the
lowest unoccupied level for
various oligoacenes in the gas
phase (left horizontal bars,
referring to Ig and Ag) and in
the crystalline state (right
bars, referring to Ic and Ac);
after Karl (1974)

9This energy difference represents the binding energy of the exciton; its value is much larger than
values found in inorganic semiconductors. A large binding energy corresponds to a strong spatial
localization, a typical feature of excitons in organic crystals.
10The polaron character of mobile carriers in organic crystal is often not explicitly considered; in
analogy to the quasiparticles of inorganic semiconductors, the carriers are simply termed electrons
and holes.
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The vibronic component of the polarization energy is related to a relaxation of the
crystal lattice in the environment of the charged molecule. The characteristic
response time is given by the period of a phonon oscillation and therefore much
longer than the electronic response. A consequence of the vibronic relaxation is a
decrease of the bandgap energy (in an anthracene crystal both Pn and Pp are
increased by 0.15 eV; consequently Eg decreases by 0.3 eV). The energy of Eg

before a lattice relaxation is called optical bandgap and that after relaxation adia-
batic bandgap.

The conductivity and the carrier mobility in organic semiconductors are generally
very low compared to inorganic semiconductors.11 This holds even if the electron
mobility in the LUMO level of a molecule is high. The reason is the weak
intermolecular contact in the organic crystal, schematically illustrated in Fig. 18.
The figure shows the potential energy and energy levels of electrons in a small
crystal comprising a chain of four molecules with three atoms each. Each occupied
molecular orbital is filled by two electrons with opposite spin. Above the core levels
near the atomic nuclei, the schematic indicates the occupied molecular-orbital levels
of electrons which are delocalized within the molecules, with the topmost HOMO
state. The filled HOMO and the empty LUMO levels of each molecule are separated
from those of neighboring molecules by a potential barrier. The barrier originates
from the weak intermolecular van der Waals interactions, leading to a predominant
localization of the HOMO and LUMO wavefunctions in each molecule. Height and
thickness of this barrier decide whether – in case of small barriers, corresponding to
strong intermolecular interaction – conduction and valence bands evolve from these
levels or not.

If the intermolecular barrier is low, bands similar to those in inorganic semi-
conductors are created as illustrated in Fig. 3. Higher barriers may still allow for

Fig. 18 Schematic of the
potential energy and electron
levels in a small organic
crystal

11The mobility of electrons is defined in ▶ Sect. 2.2 in chapter “Carrier-Transport Equations” by
μ = (q/m*)  τ, with effective mass m*, charge q, and a mean time τ between scattering events; in
organic crystals μ300K is usually below 1 cm2/(Vs), often orders of magnitude smaller, compared to
values of 103 cm2/(Vs) for inorganic semiconductors.

204 The Origin of Band Structure



conductivity by phonon-assisted hopping. The criteria for the occurrence of either
band conduction or hopping conduction derive from the mean time τ between
scattering events of a mobile carrier and the width W of the states for carrier
transport. For band conduction τ � ħ/W must apply. Often a decision whether or
not the criterion is met is difficult; a typical bandwidth of about 0.5 eV for oligoacene
crystals yields τ > 10�15 s, leading to a mean free path length of the carrier that
exceeds the crystal lattice constant.

4 Summary

The electronic band structure of solids is the most significant feature to understand
the electronic behavior of semiconductors. General features are described by the
proximity approach, which considers the effect of the immediate neighborhood in a
solid and, with gradually less attention, that of more distant atoms, on the energy
levels of an isolated atom. Similar results are obtained by the periodicity approach,
which considers the long-range periodicity of the crystal potential. The typical band
structure with alternating bands and bandgaps is characteristic for all solids, in
contrast to isolated atoms which show a discrete level spectrum. Details of the
band structure depend on the chemistry of the material and its atomic structure
(symmetry). Deviation from a periodic structure predominantly influences the
energy range near the band edges, while it has little influence near the center of
the bands.

Electrons near the lower edge of a band in a periodic lattice behave akin to
electrons in vacuum. The influence of the lattice is taken into account by ascribing an
effective mass to the carriers that, for typical semiconductors, is smaller than the
electron rest mass at the band edge and increases with increasing distance from the
band edge. In disordered or amorphous semiconductors, the band edge is fuzzy and
the electronic states become localized when extended sufficiently beyond the band
edge. In organic semiconductors a large polarization affects the effective mass of
carriers, accounted for in the polariton model; in the case of large intermolecular
barriers hopping conduction instead of band conduction occurs.
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Abstract
The electronic band structure of semiconductors reveals most of their intrinsic
properties. It consists of the dispersion relation En(k) for the various bands and is
obtained from solving the Schrödinger equation for all electrons and nuclei in the
solid. A manageable solution of this many-body problem requires substantial
approximations for the interaction potential of all involved particles. Both empir-
ical and ab initio approaches were developed for a one-electron scheme with
different ways to approximate the actual interaction potential. Most approaches
expand the wavefunction in terms of a set of orthogonal trial functions, followed
by variation of the expansion coefficients for finding a self-consistent solution.
The more recent density-functional method calculates self-consistently the
ground-state energy of the many-electron system from the charge-density
distribution.
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1 The Schrödinger Equation

In order to understand electronic transitions and the electron transport in a semicon-
ductor, one must analyze its three-dimensional band structure, which is determined
by solving the Schrödinger equation with a three-dimensional lattice potential for the
actual crystal. To obtain such a potential and to solve the Schrödinger equation
amounts to solving a many-body problem, because it involves all the lattice atoms
and all of their electrons. It requires several sets of approximations for the problem to
become manageable. Due to the limited space in this chapter, only some important
topics are outlined; further relevant reading includes Ashcroft and Mermin (1976),
Bassani and Pastori Parravicini (1975), Harrison (1980), and Phillips and Lucovsky
(2009). In this chapter, following conventional descriptions and simplifying Cou-
lomb terms, cgs units are used.

In the previous sections a crude periodic potential was presented for a
one-dimensional one-electron model, which yielded some basic results for the
band model. In this section we will take the opposite approach. Starting from the
most general model, we will simplify it step by step until it can be solved mathe-
matically; this treatment will provide some insight into the present understanding of
the band structures. The electron spin, which is coupled to the angular momentum
via spin-orbit interaction, is not included here. The spin–orbit interaction is a
relativistic effect and considered in Sect. 3.

It is relatively easy to write down in a general form the Schrödinger equation
which describes the many-body problem of n electrons in a lattice of N atoms,
including atomic motion within the crystal, but excluding relativistic effects:

�
Xn
i¼1

ℏ2

2m0

@2

@r2i
Φ�

XN
I¼1

ℏ2

2MI

@2

@R2
I

Φþ
Xn
i, j¼1

i 6¼j

e2

2rij
Φ

þ Vion�ion R1,R2, . . .ð ÞΦþ Vel�ion r1, r2, . . . ,R1,R2, . . .ð ÞΦ ¼ EΦ:

(1)

Here RI and MI are the ion coordinates and masses, and ri are the electron
coordinates; Φ is the wave-function for the system of atoms and electrons. The
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five terms on the left-hand side describe the kinetic energy of the electrons, the
kinetic energy of the atoms, the potential energy due to the electron–electron
Coulomb repulsion, the potential energy due to the repulsive interatomic interaction,
and, finally, the potential energy due to the attractive electron–atom interaction. A
major problem is the extremely large number of terms in the sums of Eq. 1. A first
step usually made to reduce the complexity is to separate the chemically inert core
and valence electrons and to neglect a deformation of the ion core.1

1.1 Born–Oppenheimer Approximation

For a reasonable first approximation, one takes into consideration the large ratio MI/
m0 of atomic to electron masses. This lets the lattice oscillations appear to stand still
for the much faster, more easily accelerated electrons and permits the use of an
adiabatic approximation (Born and Oppenheimer 1927; Pelzer and Wigner 1932).
With the ansatz

Φ R1,R2, . . . , r1, r2, . . .ð Þ ¼ φ R1,R2, . . .ð Þ ψ R1,R2, . . . , r1, r2, . . .ð Þ, (2)

a separation of the atomic eigenfunctions φ and electronic eigenfunctions ψ can be
achieved. The resulting Schrödinger equation for electrons in a lattice with atoms at
rest is

�
Xn
i¼1

ℏ2

2m0

@2

@r2i
ψ þ

Xn
i, j¼1

i 6¼j

e2

2rij
ψ þ Vel�ion R1,R2, . . . , r1, r2, . . .ð Þψ

¼ E0 R1,R2, . . .ð Þ ψ (3)

and the Schrödinger equation for the oscillating atoms is

�
XN
I¼1

ℏ2

2MI

@2

@R2
I

φþ Vion�ion R1,R2, . . .ð Þ þ E0 R1,R2, . . .ð Þð Þφþ ¼ Eφ: (4)

Here the total electron energy E0 is added to the potential energy of the lattice. Two
terms responsible for electron–lattice interaction

1The latter assumption is questionable when explaining certain dielectric properties with strong
polarization (▶ Sect. 3 in chapter “Interaction of Light with Solids”). If a core–valence electron
separation is not made, all potentials in Eq. 1 are simple Coulomb potentials. Otherwise, the
effective interaction potentials must be obtained.
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�
X ℏ2

2MI
φ

@2

@R2
I

ψ � 2
X ℏ2

2MI

@

@RI
φ

@

@RI
ψ

are neglected in Eq. 4 and can be used in a perturbation approach to induce
transitions between stationary solutions of Eqs. 3 and 4 (Kubo 1952). A further
simplification to the Schrödinger equation for electrons (Eq. 3) can be introduced
when the ion motion induced by the electron configuration is neglected, yielding

�
Xn
i¼1

ℏ2

2m0

@2

@r2i
ψ þ

Xn
i, j¼1

i 6¼ j

e2

2rij
ψ þ Vel�ion r1, r2, . . .ð Þψ ¼ Eψ (5)

with Vel–ion as the periodic potential of the lattice atoms. The coordinates of electrons
are the variables, while ions are assumed to be at their average positions. Lattice
oscillations therefore do not enter this analysis.

1.2 One-Electron Approximation

The most drastic step towards a manageable problem is the reduction of the
electronic Schrödinger equation to a one-electron approximation by separating

ψ r1, r2, . . . , rnð Þ ¼ ψ r1ð Þ ψ r2ð Þ . . . ψ rnð Þ: (6)

The assumption that each electron experiences essentially the same potential Vel–el(r)
of an averaged distribution of all other electrons, i.e., the electrons are assumed to be
independent of each other, is called Hartree approximation. The principle is illus-
trated in the simple scheme of Fig. 1. The movement of the electron in atom 1 is
generally correlated to that of the electron in atom 2 (and vice versa); in the Hartree
approximation electron 1 only senses the average charge density of electron 2 illus-
trated in Fig. 1b. Consequently the correlation gets lost, and computed electron
energies are too high. The Hartree approximation yields a single set of terms in the
Schrödinger equation:

� ℏ2

2m0

@2

@r2
ψ þ Vel�ion rð Þ þ Vel�el rð Þð Þ ψ ¼ Eψ : (7)

The entire problem has now been reduced to the problem of a single electron moving
independently of all other electrons in a static potential composed of a perfect
periodic potential of the lattice and an average potential describing its interaction
with all the other electrons.2 The main goal in the analysis of the realistic behavior of
electrons in a crystal lattice is to obtain the potential Vel–ion + Vel–el; there are many
approaches to accomplish this task as outlined in Sects. 2.1 and 2.2. With the

2For the formal relation between the many-body problem and the one-electron band structure, see
Hedin and Lundqvist (1970).
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potential known, the problem becomes one of numerically integrating Eq. 7. The
electron behavior can then be described in one of two fashions, depending on the
kind of problem to be discussed.

1. For the electron in higher bands (conduction bands – see ▶ Sect. 1 in chapter
“Bands and Bandgaps in Solids”), a simple periodic function is assumed for the
potential, and the wavefunction is best expressed as the Bloch function

ψn k, rð Þ ¼ un k, rð Þ exp ik, rð Þ (8)

where n is the band index and un(k,r) is periodic with the lattice periodicity
(Bloch theorem3). These Bloch functions are plane waves that are modulated with
lattice periodicity; see Fig. 6 in chapter ▶ “The Origin of Band Structure.”

2. For tighter bound states (lower bands), one often uses to better advantage the
Wannier functions, which are defined as wave packets of the Bloch functions

φn r� Rð Þ ¼ 1ffiffiffiffi
V

p
X
k

un k, rð Þ exp ik, rð Þ exp �ik,Rð Þ (9)

and are localized near the lattice siteR; V is the crystal volume. Such a description
assists in finding V(r) in terms of simpler quantities.

1.3 Pseudopotentials

The initial effort of the band theory is devoted to obtaining the crystal potential V(r).
The crystal potential has two contributions: the electronic part and the ionic part (see
Eq. 7). The electronic contribution is in many approaches interwoven with the
method for solving the wave equation; therefore, we will return to this subject in
Sects. 2.1 and 2.2. The ionic contribution is obtained from the charge of the nuclei

Fig. 1 Scheme of two atoms with one electron each, illustrating the charge density viewed from the
position of electron 1, in (a) the general case, (b) the Hartree approximation

3The Bloch theorem states that nondegenerate solutions of the Schrödinger equation in a periodic
lattice are also solutions after translation by a lattice vector, with the amplitude function having
lattice periodicity uk,β(r) = uk,β(r+R); R is any translation vector which reproduces the Bravais
lattice.
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and that of the core electrons, which are treated as atomic functions; the sum is
usually described by Coulomb potentials produced by ions of charge Ze.

The exact ionic potential shows very large amplitudes near the center of each ion
and thereby creates substantial and unnecessary computational problems, if only
upper bands (i.e., no core states) are of interest. Many methods circumvent these
problems by using pseudopotentials which avoid the potential spikes as indicated
below. The spiky part of the potential is of importance for inner core electrons but
usually not for valence or conduction band electrons. Introduced by Prokofjew
(1929) and Fermi (1934) and applied to atoms by Hellmann (1935), the pseudo-
potential became a major means to provide the most important input to the Hamil-
tonian relevant for valence electrons. In the late 1950s and 1960s (Phillips and
Kleinman 1959; review of Harrison 1966), it was shown that valence electrons are
effectively excluded from the ion core of an atom by an almost exact balance
between two strong forces: the Coulomb attraction to the core and the quantum-
mechanical repulsion from the core electrons (exclusion). This is also known as the
Phillips cancellation theorem (Phillips and Kleinman 1959). The resulting net force
can be described by a rather weak, attractive pseudopotential (Ziman 1964; Harrison
1966), which has lattice periodicity

V rð Þ ¼
X
k

X
α

Vα kð ÞSα kð Þexp ik � rð Þ, (10)

where α is the type of atom in the unit cell, Vα is the atomic pseudopotential of atom
α, and Sα is a structure factor. A typical plot of an atomic pseudopotential is shown in
Fig. 2. The repulsive branch starts at ~1/2 of the bond length (tick mark at the r axis
in Fig. 2). The strength of the pseudopotential is much reduced compared to the
atomic (Coulomb) potential. The use of the weaker periodic lattice potential permits
the application of a perturbation formalism. For reviews, see Heine and Weaire

Fig. 2 Radial dependence of
typical pseudopotentials
compared to the Coulomb-
attractive atomic potential
(blue curve), which dominates
further away from the core.
The solid and dashed red
curves show a soft-core and a
hard-core pseudopotential,
respectively. The top part
shows the wavefunction
resulting from the atomic
potential (blue) and the
pseudo-wavefunction
obtained from a
pseudopotential
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(1970), Bassani and Giuliano (1972), Cohen (1984), Vanderbilt (1990), and
Laasonen et al. (1993).

A widely applied pseudopotential is the muffin-tin potential illustrated in Fig. 3.
This potential is composed of a radial-symmetric inner part centered at the location
RI of the atoms and an outer part at the interstitial positions between the atoms that is
often assumed to be constant (e.g., 0), yielding

V rð Þ ¼ V r� RIj jð Þ for r� RIj j < r0
V0 ¼ V r0ð Þ ¼ 0 for r� RIj j > r0 for all RI:

�
(11)

The muffin-tin aspect of the potential (Fig. 3) can be modified by assuming an
adjustable flat potential to fit the experimental results. Also the radius r0 of the
boundary between core and outer region may be chosen, although results are
reported to be largely insensitive on the choice.

With a pseudopotential rather than the real lattice potential, we lose information
about the bands of core electrons which are of little interest to semiconductor
behavior, but gain the simplicity of describing the solutions with pseudo-
wavefunctions, which are slowly varying as illustrated in Fig. 2 and can be approx-
imated more easily by superposition of fewer terms. The resulting eigenvalues for
the upper (valence and conduction) bands, however, are the same as obtained with
the exact potential extending into the core region.

The ease of arriving at quantitative results, which can be compared with the
experiment, permits the repeated readjustment of the pseudopotential in iterative
trials, until agreement with the experiment is satisfactory (empirical pseudopotential
method (EPM)), as discussed by Cohen and Heine (1970) and Mäder and Zunger
(1994). It should be noted that the empirical pseudopotential method determines a
crystal potential by fitting the band structure to the experiment. However, it cannot
be made self-consistent, since the screening expressed by electron–electron and
exchange interactions discussed later (second and third terms of Eq. 32) are not
included. The agreement that can be achieved between theory, when fitted empiri-
cally, and experiment is rather good (Chelikowsky and Phillips 1978; Ihm and
Cohen 1980). However, when the so-adjusted potential is used to calculate the
electron density distribution, there is only fair agreement with the distribution
obtained from X-ray diffraction.

First-principles pseudopotentials suitable for computing valence electron total
energies and the full band structure show substantially improved agreement with the

Fig. 3 Muffin-tin potential,
showing the typical form of
the approximated potential
surrounding each atom

1 The Schrödinger Equation 213



experiment (Bachelet et al. 1982; Ihm et al. 1979; Froyen 1996). They are derived
from microscopic models and are usually applied today (Vanderbilt 1990; Laasonen
et al. 1993).

2 Band-Structure Calculation

After a suitable crystal potential V(r) is determined, the Schrödinger equation (7)
containing this potential must be solved under the appropriate boundary condition4 to
obtain the dispersion relation En(k). A wide variety of methods for efficiently com-
puting such solutions have been developed, all of which are based on variational
principles. Usually, the wavefunction is expanded in terms of trial functions, followed
by a variation of the expansion coefficients. This technique proposed by Ritz (see
Morse and Feshbach 1953) replaces the problem of solving the wave equation with the
simpler one of solving equivalent secular equations. A classification of prominent
approaches is given in Fig. 4; often, also a mix of different methods is applied.5 Most
of these methods can be used for efficient computation and lead to similar results. With
the substantial increase in computer power, nonempirical ab initio calculations have
replaced most of the earlier approximate and empirical approaches, where the potential
was not treated in a self-consistent manner.

2.1 Noninteracting Electrons in Crystals

The precision of band-structure calculations depends on the ability to correct the
drastic simplifications made to obtain the one-electron equation, i.e., to describe

4Namely, k must be real and ψ(r) periodic with lattice periodicity ψ (r) = ψ(r + nai) (Born–van
Karman boundary condition).
5Some of the methods are considered in more detail in this section. The following abbreviations are
commonly used:
DFT: Density functional theory
EPM: Empirical pseudopotential method
EEX: Exact-exchange method
GGA: Generalized gradient approximation
GWA: Green’s function GW approximation
HF(A): Hartree–Fock (approximation)
KKR: Korringa–Kohn–Rostocker (Green’s function) method
(L)APW: (Linear) augmented plane wave method
LCAO: Linear combination of atomic orbitals
LDA: Local density approximation
LMTO: Linear muffin-tin orbitals
LSDA: Local-spin-density approximation
OPW: Orthogonal-plane-wave method
PSF: Pseudofunctional method (Kasowski et al. 1986)
PW: Plane wave
TB: Tight binding
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electron–electron interaction as realistic as possible. Methods discussed in this
section use an effective one-electron crystal potential V(r) which includes both the
ionic and the electronic part.

2.1.1 The k�p Method
The instructive model of quasi-free electrons outlined in chapter ▶ “The Origin of
Band Structure” (periodicity approach, effective mass) leads to a popular non-
atomistic model, which is widely applied to obtain analytic expressions for the
band structure near high-symmetry points from experimental optical spectra. The
method was introduced by Bardeen (1938) and was used to explore the band
structure in the vicinity of k = 0 or other critical points k0 of the Brillouin zone
(Seitz 1940; see Sect. 4). It is based on a symmetry-adapted perturbation approach
with the standard ℏ k � p/m term (with p = �ih@/@r) in the Hamiltonian, applied to
the lattice-periodic functions un(k,r) rather than to the full Bloch function in the
neighborhood of the critical point. Introducing this function into the one-electron
Schrödinger equation, one obtains

� ℏ2

2m0

@2

@r2
þ V rð Þ þ ℏ

m0

k � pþ ℏ2k2

2m0

� �
un k, rð Þ ¼ En kð Þ un k, rð Þ: (12)

Here the un(k,r) are a complete, orthogonal set of eigenfunctions in real crystal space
referred to as the k�p representation. The first two terms in the Hamiltonian of Eq. 12

Fig. 4 Classification of methods applied to solve the Schrödinger equation of electrons in the
periodic crystal potential
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define the unperturbed Hamiltonian H0, and the last two terms can be developed as
small perturbations in the vicinity of the given k0. Thus, Eq. 12 may be written as

H0 þ ℏ
m0

k� k0ð Þ � pþ ℏ2

2m0

k� k0ð Þ2
� �

un k, rð Þ ¼ En kð Þ un k, rð Þ (13)

Written in matrix form, the number of k�p matrix elements is greatly reduced
because of symmetry considerations. These matrix elements

Mjn k0ð Þ ¼
ð
ψ�
n k0, rð Þp ψn k0, rð Þ dr (14)

can be evaluated easily (ψn is the Bloch function – see Eq. 8). They contain only a
small number of parameters which are taken from the experiment or from ab initio
calculations. The eigenvalues near a characteristic point k0 can be expressed as

En kð Þ ¼ En k0ð Þ þ ℏ2 k� k0ð Þ2
2m0

þ ℏ2

m2
0

X
j, n
j6¼n

k� k0ð Þ �Mjn k0ð Þ
En k0ð Þ � Ej k0ð Þ (15)

Equation 15 can be simplified when interactions between only two bands are of
interest (e.g., the valence and conduction bands [see▶ Sect. 1 in chapter “Bands and
Bandgaps in Solids”]), and the energy difference between these is small compared to
the difference with all other bands. Then we can write

En kð Þ ¼ En k0ð Þ þ ℏ2

2

X3
i¼1

ki � k0ð Þ2
mi

with i ¼ x, y, z (16)

and can express the effective mass (see ▶Sect. 2.2 in chapter “The Origin of Band
Structure”) for an isotopic system as

1

m� ¼
1

m0

� 2 Mnj k0ð Þ�� ��2
m2

0 Ej k0ð Þ � En k0ð Þ� � (17)

with + or � for the upper or lower band, respectively.
One can use Eq. 15 for the deviation of E(k) from parabolicity near a critical

point k0:

E k� k0ð Þ ¼ �Eg

2
þ ℏ2 k� k0ð Þ2

2m0

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2

g þ
4ℏ2 k� k0ð Þ2 Mnj k0ð Þ�� ��2

m2
0

s
(18)

which yields with Eq. 17:
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E k� k0ð Þ ¼ �Eg

2
þ ℏ2 k� k0ð Þ2

2m0

� Eg

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ℏ2 k� k0ð Þ2

Eg

1

m� �
1

m0

� �s
(19)

with m* as the effective mass (assumed to be isotropic) in the conduction (+) or
valence (�) band (see ▶ Sect. 1 in chapter “Bands and Bandgaps in Solids”). This
illustrates the usefulness of the k�p method in a simple example.

The use of this method for band-structure analysis was initiated by Kane (1956)
and has been carried on by many others. It became particularly popular to describe
optical transitions in direct-bandgap semiconductors like GaAs using an eight-band
k�p model, which comprises the three valence-band p orbitals and the one
s conduction band (�2 spin states); 8 Bloch functions are sufficient for a reasonable
description of ~20% of the Brillouin zone and hence phenomena occurring near the
direct bandgap. Examples of E(k) determined by the k�p method are given by
Cardona and Pollak (1966); see also Burt (1992) and the introduction by Yu and
Cardona (2005).

2.1.2 Hartree Approximation
We come back to the approach of Hartree illustrated in Fig. 1 and the related
one-electron Schrödinger equation. The electronic contribution in Eq. 7 can be
approximated by the solution of the corresponding Hartree equation, describing
the Coulomb interaction only:

� ℏ2

2m0

@2

@r2
�
X
I

ZI e
2

r� RIj j þ Vel�el rð Þ
 !

ψn rð Þ ¼ En ψn rð Þ (20)

with

Vel�el rð Þ ¼
X
m

m 6¼n

e2
ð

ψm rj
� ��� ��2

r� rj
�� �� drj (21)

Since the symmetrical6 many-electron wavefunction Eq. 6 is incompatible with
the Pauli principle, a many-electron wavefunction ψ obeying the Pauli principle is
constructed instead by using an antisymmetric normalized product of all of the
one-electron eigenfunctions ψn(ri) in a Slater determinant:

6A symmetrical wavefunction does not change sign when the coordinates of two electrons are
interchanged, in contrast to an antisymmetrical wavefunction.
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ψ r1, r2, . . .ð Þ ¼ 1ffiffiffiffi
n!

p
ψ1 r1ð Þ ψ2 r1ð Þ � � � ψn r1ð Þ
ψ1 r2ð Þ ψ2 r2ð Þ � � � ψn r2ð Þ
⋮ ⋮ ⋮ ⋮

ψ1 rnð Þ ψ2 rnð Þ � � � ψn rnð Þ

��������

��������
(22)

The normalization factor accounts for the n! possibilities for distributing
n indistinguishable electrons over n states. The determinant vanishes if two electrons
occupy the same state, since two rows of the determinant are then identical.

The Hamiltonian of the Hartree equation contains its own eigenfunction. Its
solution therefore involves first guessing an approximate solution ψ(r) that des-
cribes the probability of finding an electron at the position r, and a consequent
iteration by introducing Eq. 21 into the Schrödinger equation (Eq. 7). This equation
is then solved, using the resulting eigenfunction ψ as the input function in Eq. 21
and continuing until convergence is achieved (self-consistent field method). It must
be noted that Hartree calculations overestimate substantially the electronic
eigenenergies.

2.1.3 Tight-Binding or LCAO Approach
The electronic eigenfunction in a crystal lattice can be approximately derived from
the atomic eigenfunctions (linear combination of atomic orbitals (LCAO) approach;
Heitler and London 1927; Bloch 1928; Slater 1951, 1953a, b) of each lattice atom in
the unit cell and consequent periodic repetition. This is the basis for the tight-binding
(TB) approximation in which the crystal wavefunction is composed of a linear
combination of the eigenstates of the free atoms. Properly set up, these are the
Bloch tight-binding sums:

ψn k, rð Þ ¼ 1ffiffiffiffi
N

p
X
RI

exp ikRIð Þφn r� RIð Þ (23)

composed from φn(r� RI), the Wannier functions of the free atoms (Eq. 9) localized
at the lattice sites RI; unlike the atomic eigenfunctions, the Wannier functions
already form a complete orthogonal set and therefore can be used directly to describe
the electronic eigenfunctions in the crystal. Here N is the number of unit cells in the
crystal. The tight-binding sums are used for analyzing low-energy states (deep-lying
bands), where the eigenfunctions are rather localized near the nucleus of each atom
and are barely disturbed by surrounding atoms. The method can be simplified when
the actual atomic eigenfunctions are replaced by a similar but simpler complete set of
orthonormalized functions (Kane 1976), a mixed basis set (Bendt and Zunger 1982),
or evanescent Bloch solutions (Chang 1982).

Overlap integrals describe the interaction between the atoms that causes broad-
ening of the bands. For higher bands, one must consider the fact that the atomic
states extend over much larger than interatomic distances and the overlap integral
becomes very sensitive to the tail of the atomic potential. This fundamental difficulty
limits the applicability of the tight-binding method to deep states and core bands.
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Still band structures of semiconductors like Si or GaAs are reasonably well described
using tight-binding approaches.

2.1.4 Nearest-Neighbor Tight-Binding Model
A theoretical shortcut to obtain the chemical trend of band structures of tetrahedrally
bound semiconductors was introduced by Harrison (1973) and extended by Vogl
et al. (1983) and Jancu et al. (1998). This semiempirical NN-TB model uses a limited
set of orbitals, usually one s and three p localized pseudoorbitals plus one unoccu-
pied excited state s* yielding a sp3s* basis, or, for significant improvements,
including also the d orbitals for a sp3d5s* basis for also obtaining indirect gap
features.7 These are adjusted to fit optical bandgaps in constructing a pseudo-
Hamiltonian, somewhat similar to the older empirical pseudopotential method
(EPM). The resulting band structure is easily obtained and is in reasonable agree-
ment with that obtained for such semiconductors from pseudopotentials. When the
matrix elements of this model are fixed by the atomic energies of the lattice
constituents and by a set of universal constants, certain chemical trends of the
electronic structure of zincblende and diamond semiconductors can be predicted.

2.1.5 Cellular Method
The cellular method (Wigner and Seitz 1933, 1934) utilizes the fact that the lattice
can be divided into Wigner–Seitz cells (▶ Sect. 1.3.1 in chapter “The Structure of
Semiconductors”); the Schrödinger equation is hence to be solved within one such
cell, and the Bloch condition ψn(r + R) = exp(ikR)ψn (r) is used to obtain solutions
for the entire solid. The actual cell potential is approximated by a potential with
rotational symmetry, allowing to separate the angular and radial parts of the
wavefunction according to

ψ k, rð Þ ¼
X1
l¼0

Xl
m¼�l

clm kð ÞYlm θ,φð ÞRl E, rð Þ (24)

with Ylm(θ,φ) as spherical harmonics and Rl(E,r) as the solution of the purely radial
wave equation. Solutions can easily be obtained when using appropriate boundary
conditions (ψ continuous at rB and dψ=drjrB ¼ dψ=drjrBþR ¼ 0) with nearly spherical
symmetry (dominant contribution from the spherical core) and the Wigner–Seitz cell
(boundary at rB) containing only one atom in its center (Bell 1953). The difficulty of
the cellular method resides in determining appropriate boundary conditions for all
r from only a few known points on the surface of the Wigner–Seitz cell (Shockley
1938).

7This model is more commonly also referred to as sps* method or spds* method.
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2.1.6 Augmented Plane-Wave Method
The difficulties with insufficiently known boundary conditions in the cellular
method can be reduced by the augmented plane-wave (APW) method, in which
the potential is prescribed by a muffin-tin type (Fig. 2). The potential is spherically
symmetric inside the muffin-tin sphere and constant outside in the so-called inter-
stitial region. For a primitive lattice and spherical symmetry up to one half of the
interatomic spacing r0, we have

ψ k, rð Þ ¼
X1
l¼0

Xl
m¼�l

clm kð ÞYlm θ,ϕð ÞRl E, rð Þη r� r0ð Þ

þ
X
j

bj kð Þexp i kþ kj
� � � r	 


1� η r� r0ð Þ½ �
(25)

η r� r0ð Þ ¼ 0 for r > r0
1 for r < r0

�
(26)

Equation 25 has a tight-binding and a plane-wave contribution for the inner and
outer parts, respectively. This method was suggested by Slater (1937) and has
become very useful for analyzing electronic states for closely packed materials
(metals). However, it yields energy gaps of semiconductors which are too small.
Some improvement is obtained by assuming an adjustable flat potential to fit the
experimental results (Loucks 1967; Dimmock 1971).

A difficulty in APW calculations is the search for atomic basis functions at
energies that one is trying to obtain. A major advancement was made by using
atomic wavefunction at different energies El, usually chosen at the center of the band
of interest with angular character l (Andersen 1975; Krakauer et al. 1981; Wei and
Krakauer 1985). The convergence of the method was improved by adding a further
set of orbitals at a different energy (Singh and Nordstrom 2006). This linearized
augmented plane-wave (LAPW) method treats all electrons, valence and core, in an
equal fashion and contains no shape approximations of the potential. The LAPW
method yields very accurate results and is applied in present state-of-the-art band
calculations outlined in Sect. 2.2.2.

2.1.7 Green’s Function (KKR) Method
The Green’s-function method, also referred to as KKR method, uses a transformation
of the Schrödinger equation into an integral equation (Korringa 1947), which
circumvents the difficulty of unknown boundary conditions (Kohn and Rostoker
1954), but also requires a crystal potential in a muffin-tin form (Fig. 2). One obtains
ψ(k, r) from an integral equation

ψ k, rð Þ ¼
ð
V

G r� r0,E kð Þ½ � V r0ð Þ ψ k, r0ð Þdr0 (27)
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where V(r0) is the muffin-tin potential and Gk(r-r0, E(k)) is the Green’s function. It is
determined as the solution of

ℏ2

2m

@2

@r2
þ E

� �
G r� r0,E kð Þ½ � ¼ δ r� r0ð Þ

with G rþ r0,E kð Þ½ � ¼ G r,E kð Þ½ �exp ik � r0ð Þ
(28)

as the boundary condition. The Green’s function can be expressed as the expansion

G r� r0,E kð Þ½ � ¼ � 1

V

X
n
exp i kþ knð Þ � r� r0ð Þ½ �

ℏ2=2m
	 


kþ knð Þ2 � E kð Þ (29)

(see Friedman 1956). The Green’s function method is closely related to the aug-
mented plane-wave method and can be used to obtain the same results for muffin-tin
type of potentials. A substantial reduction of computation is possible when the
analysis is restricted to the immediate neighborhood of certain symmetry points in
the crystal, with the expansion (Eq. 29).

2.1.8 Linearized Muffin-Tin Orbital Method
This approach is based on ideas of the LAPW and Green’s-function methods
outlined above (Andersen 1973, 1975; Skriver 1984). It assumes a muffin-tin
potential (Eq. 11) and expands the wavefunction inside the muffin-tin sphere as
linear combinations of atomic functions as in LAPW. In the interstitial region outside
the muffin-tin sphere, however, the wavefunctions are expanded in terms of spher-
ical waves as in scattering problems. Such wavefunctions are referred to as muffin-
tin orbitals. The Bloch function of the crystal is expanded as muffin-tin orbitals
referring to atomic sites. The expansion coefficients and the eigenvalues are obtained
from solving the Schrödinger equation with the muffin-tin potential (Martin 2004).

The crystal symmetry and the linearization of the wavefunction included in the
LAPW approach lead to a significant simplification, yielding a highly efficient
method. The prerequisite of symmetry leads to good results for solids with close
packed structures, while the method works less well for solids with open structures
like diamond and related lattices or for structures containing surfaces or interfaces.

2.2 Approaches Explicitly Containing Electron–Electron
Interaction

A true many-particle Hamilton operator contains an electron–electron interaction
term of the type V(ri–rj) and cannot be represented as a sum of single-particle terms.
Methods explicitly including the electron–electron interaction require, however,
still approximations to become manageable. Often a system of interacting electrons
is mapped onto a system with noninteracting electrons comprising effective
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parameters; the interaction is then contained in the parameters, which are usually
determined self-consistently.

2.2.1 Hartree–Fock Approximation
Using the Slater determinant for the many-electron wavefunction, Fock obtained an
additional contribution to the potential referred to as electronic exchange interaction
(Fock 1930; Corson 1951), yielding with Eq. 21:

� ℏ2

2m0

@2

@r2
�
X
I

ZI e
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r� RIj j � Vel�el rð Þ � Vex

 !
ψn rð Þ ¼ En ψn rð Þ (30)

The exchange interaction (or Fock contribution) is given by

Vex ψn rð Þ ¼ �e2
X
m

m 6¼n

ð
ψ�
m rj
� �

ψn rj
� �

r� rj
�� �� ψm rð Þdrj (31)

This is a Coulomb term arising from the antisymmetry of the wavefunction and the
indistinguishability of electrons.

The Hartree–Fock approximation (HFA) poses some difficulties, as it renders the
potential a nonlocal operator (it is an integral operator). Many attempts deal with a
more suitable way of using the Hartree–Fock concept to arrive at an appropriate
potential (Löwdin 1956; Pratt 1957; Slater 1953a, b; Wood and Pratt 1957; Pisani
et al. 1988). Other methods take care of electron–electron interaction more ade-
quately (Brueckner 1955; Pines 1956; Bohm et al. 1957; Hubbard 1957; Hedin and
Lundqvist 1970; Aulbur et al. 2000).

Hartree–Fock-based calculations have successfully been applied to clusters
containing not too many atoms. The large number of multicenter integrals imposes
limits of the applicability of the method to smaller systems, even if some multicenter
integrals and charge self-consistency are neglected. Hartree–Fock calculations can
hence usually not be applied directly to mesoscopic or larger systems. It must be
noted that Hartree–Fock band-structure calculations similar to Hartree calculations
overestimate the bandgap energies of solids.

2.2.2 Density-Functional Theory
More recently, methods applying the density-functional theory (DFT) attracted much
attention. The approaches are based on the theorem that the energy of the many-
electron system is a functional of the electron density n(r) and that this functional E
[n] has its minimum at the exact ground-state electron density n0. The electronic
contribution is separated into a Hartree Coulomb potential of the electron–electron
interaction according Eq. 21 and an exchange correlation (xc) term, which both
depend on the ground-state charge–density distribution ρ(r) = en(r) (McWeeny
1957; Chirgwin 1957). The method applies a formalism of Hohenberg and Kohn
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(1964); see also Kohn and Sham (1965), Levy (1982), and Dreizler and Gross
(1990), using a potential

V ρ rð Þ½ � ¼ Vext rð Þ þ Vel�el ρ rð Þ½ � þ Vxc ρ rð Þ½ � (32)

where Vext is the external (to the electron) potential imposed by the ions and Vxc

represents the correction potential including exchange and correlation. Using the
potential Eq. 15, the intractable N-electron Schrödinger equation is exactly mapped
to a manageable set of N self-consistent one-electron equations, with all many-body
interactions lumped into the single additive exchange-correlation potential Vxc. The
correction potential Vxc accounts for the exchange interaction and the correlation of
all N electrons in the solid. The exchange-correlation potential is formally defined as
the functional derivative

Vxc rð Þ ¼ δExc n rð Þ½ �
δn rð Þ (33)

where δExc[n(r)] is the functional of the exchange-correlation energy. Since the
general form of δExc[n(r)] is not known, several approximations were developed, the
most simple being the local density approximation (LDA):

ELDA
xc n rð Þ½ � ¼

ð
n rð ÞeLDAxc n rð Þð Þ dr (34)

exc
LDA is the exchange-correlation energy per particle, representing the interaction of
the considered electron with a many-electron system of constant electron density
(see Ceperley and Adler (1980)), and a parametrization by Perdew and Zunger
(1981). The LDA approach proved to describe electron density, atomic geometry,
and other quantities of bulk crystals and surfaces with high precision. Larger errors
with too large binding or bulk cohesive energies are obtained in the description of
spatially inhomogeneous systems such as atoms or small clusters. Improvements are
achieved using also the local gradient of the density [@ n(r)/@r]; see Perdew et al.
(1996). Such generalized gradient approximations (GGA) are necessary for describ-
ing small systems like molecules.

In a Bloch-function description, the ground-state charge density

ρn rð Þ ¼ en rð Þ ¼ e
X
n

X
k

ψn k, rð Þj j2 (35)

is a sum over occupied bands n and wavevectors k in the entire Brillouin zone
of the crystal. Since ψn(k, r) depends on V[n(r)] and n(r) depends on ψn(k, r), these
calculations must be carried out in a self-consistent manner; in the DFT approach the
electron density, rather than the many-electron wavefunction, is calculated self-
consistently from first principles. The density profile can be plotted in a
two-dimensional representation as equidensity contour lines, permitting a distinction
of electrons from different bands. Examples for NaCl and diamond are given in
Fig. 10 in chapter ▶ “Crystal Bonding.”
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Density-functional theory is widely applied today for electronic-structure
calculations ranging from chemistry to condensed-matter physics. Mostly used
are LAPW, LMTO, and pseudofunctional methods for all (core + valence)-electron
calculations applying the local-density approximation. The fully quantum-
mechanical calculation is capable for treating systems with thousands of electrons;
DFT based on pseudopotentials and a plane-wave basis set became a standard
today for calculating ground-state properties of semiconductors (Martin 2004).
LDA and GGA methods are well suited to predict ground-state properties, but
usually fail to describe excited-state properties. Thus, the bandgap energy of
semiconductors is commonly underestimated (bandgap problem), see Fig. 5. Asso-
ciated with this problem, effective masses are often significantly underestimated
as well.

The poor agreement of bandgap DFT calculations using the LDA or GGA
approaches stimulated studies using the exact exchange within the DFT scheme as
proposed by Städele et al. (1999); this exact-exchange (EXX) method is also referred
to as optimized effective potential (OEPx) method. The basic idea is the use of
orbital-dependent exchange-correlation functionals; the method uses Kohn–Sham
orbitals (being functionals of the density) as ingredients in approximate exchange-
correlation functionals which are implicit density functionals (Engel 2009). A review
is given by Kümmel and Kronik (2008).

The EXX approach yields both structural and optical properties in much better
agreement with experiment than corresponding LDA or GGA calculations.
Improved gaps were found both with all (core + valence)-electron calculations on
the basis of the atomic-sphere approximation (Kotani 1995) and with full-potential
plane-wave pseudopotential PP calculations (Städele et al. 1999). A disadvantage of
the EXX method is the large numerical complexity.

Fig. 5 Calculated and experimental bandgap energies, symbols in a column refer to the labeling
solid. (a) Method LDA denotes local-density approximation; PBE0/LDA and G0W0/LDA refer to
the non-self-consistent model-potential method (Gritsenko et al. 1995) and a frequency-dependent
non-self-consistent GW method, both based on LDA (After Hüser et al. (2013)). (b) Comparison of
experimental and theoretical bandgap energies obtained from GWA and LDA calculations; blue and
green symbols denote direct and indirect bandgaps (Data from Aulbur et al. (2000))
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2.2.3 Quasiparticle GW Calculations
The GWapproach applies the many-body perturbation theory using the quasiparticle
concept (Hedin 1965). The central idea is based on the electronic self-energy, which
is an energy-dependent and spatially nonlocal analogous of the exchange-correlation
potential of DFT. In a descriptive picture the Coulomb repulsion between interacting
electrons leads to a depletion of the negative charge around a considered electron;
the ensemble of this electron and the surrounding positive polarization cloud forms a
quasiparticle. This quasiparticle interacts with other quasiparticles via a screened
rather than the bare Coulomb potential; the success of one-particle theories such as
DFT demonstrates that the quasiparticle concept works well in solids, despite the
strong interactions between bare particles (Aulbur et al. 2000).

The energy difference between states of the quasiparticle and those of the bare
particle is described by the self-energy Σ. This energy equals the energy of the bare
particle interacting with itself via the polarization cloud that the particle generates in
the many-body system. Σ is nonlocal and energy dependent, and accounts for all
exchange and correlation effects. Analogous to the exchange-correlation energy in
DFT, the self-energy cannot be determined exactly. The simplest approximation for
the self-energy is the GWapproximation (GWA), where Σ is expanded to first order
in the screened interaction; here G denotes the Green’s function and W the dynam-
ically screened Coulomb interaction. Σ should be evaluated self-consistently, but due
to the computational complexity rather non-self-consistent G0W0 calculations with
an initial G0 and a dielectric constant both obtained from LDA calculations are used.

The GWA method yields quasiparticle energies in excellent agreement with
experimentally determined band structures. Figure 5 compares calculated and exper-
imental bandgaps for a number of solids.

Many band-structure calculations apply a combination of various methods. One
such approach is an a posteriori correction of the LDA approach by the GWmethod to
obtain correct bandgaps. The application of the quasiparticle GW ansatz as a perturba-
tion to the ground state of the fictitious, noninteracting Kohn–Sham electrons of exact-
exchange density-functional theory removes the self-interaction by the EXX approach;
this yields a stronger localization of cation d electrons and thus a reduced p–d
hybridization compared to the local-density approximation (e.g., Rinke et al. 2005).

3 Relativistic Effects

Electrons described as Bloch electrons are free (except for scattering) to move within
the periodic potential of the crystal; their velocity in a semiconductor is on the order of
the thermal velocity (~107 cm/s), and relativistic effects can be neglected. However,
this is no longer true for electrons that move in the strong local field near the nuclei,
with velocities approaching the velocity of light. Here relativistic terms in the wave
equation must be considered. One replaces the Schrödinger equation with the Dirac
relativistic equation and a four-component spinor wavefunction (Rose 1961), leading
to an equation for the upper two-component spinor ψ as
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with 1 as the unity matrix and σ as the Pauli operator matrices.8 There are three
relativistic terms; the third and fourth terms represent the relativistic corrections to
kinetic and potential energies (the Darwin and mass–velocity corrections), and the
fifth term represents the spin-orbit coupling; this term describes the interaction of the
electron spin with the magnetic moment of the electron in its orbit. It reduces the
symmetry, causes removal of some degeneracies of valence-band states, and thereby
determines the spin-orbit splitting of valence bands.

The spin-orbit splitting becomes more pronounced for heavy elements with larger
nuclear charges. At the Γ point, the valence band of Si with Z= 14 splits by 0.04 eV,
while for Ge with Z = 32 the valence band splits by 0.30 eV (see Table 5 in chapter
▶ “Bands and Bandgaps in Solids” for a listing of such splittings). The atomic spin-
orbit splitting is nearly the same as that in a crystal since the interaction occurs deep
in the atomic core, where the surrounding atoms of the crystal have little influence.

Relativistic corrections to classical (OPW and APW) band-structure calculations
have been made by Soven (1965), Loucks (1965), Onodera and Okazaki (1966), and
Pay-June Lin-Chung and Teitler (1972).

The density-functional theory is generalized to a spin-polarized form to account
for spin-orbit splitting (von Barth and Hedin 1972; Rajagopal and Callaway 1973).
For this purpose the two spin orientations σ = " and # of the carrier density nσ(r) are
considered, yielding the total carrier density n (r) = n" + n#. The exchange-
correlation potential is then defined by

Vxc, σ n", n#
	 


, r
� � ¼ δExc n" rð Þ, n# rð Þ	 


δnσ rð Þ : (37)

The general form of δExc[n"(r), n#(r)] is not known. Usually the local-spin-
density approximation (LSDA) is used; this approach assumes that the exchange-
correlation energy per particle at each point in space is given by its value for a
homogeneous electron gas, yielding

ELSDA
xc n" rð Þ, n# rð Þ	 
 ¼ ð n rð ÞeLSDAxc n" rð Þ, n# rð Þ� �

dr (38)

analogous to Eq. 34. Merits and shortcomings discussed for the LDA approach also
apply here, and respective amendments were developed. For details, see Kümmel
and Kronik (2008); implementation of the relativistic LDA method including the

8The components of 1 and σ are

1 ¼ 1 0

0 1

� �
, σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
, σz ¼ 1 0

0 �1

� �
:

226 Quantum Mechanics of Electrons in Crystals



construction of relativistic pseudopotentials is reported by Majewski et al. (2004).
The spin-orbit interaction arises from the p and d electrons in the core and thus enters
the electronic Hamiltonian only in the ionic pseudopotential explicitly since the
gradients of the potential generated by the valence electrons are much weaker than
the gradients of the ionic potential.

The valence-band spin-orbit splitting Δ0 at the Γ point calculated using the
relativistic pseudopotential LDA approach is illustrated for various III–V semi-
conductors in Fig. 6. The results agree well with experimental data and show that
the magnitude of Δ0 is largely determined by the anion, in agreement with the
anion p-type character of the valence band in the considered zincblende
semiconductors.

4 Band Structure of Three-Dimensional Lattices

The dispersion relation En(k) for three-dimensional lattices yields additional bands,
which may or may not overlap. In any crystallographic direction, however, each
band shows single-valued curves. To get a better perception of the topography of this
En(k) structure, which is a three-dimensional hypersurface in the four-dimensional
(E, k)-space, we start our discussion from a two-dimensional display of E(k) in the
first Brillouin zone.

As shown in the one-dimensional example in ▶ Sect. 2 in chapter “The Origin of
Band Structure,” the translational symmetry of the lattice permits a reduced repre-
sentation of the dispersion relation E(k) (see Fig. 13 in chapter ▶ “The Origin of
Band Structure”) with a periodicity (2π/a in the kx direction) related to the reciprocal
lattice periodicity. This periodicity is maintained in three dimensions. For example,
one has within a primitive orthorhombic unit cell

Fig. 6 Calculated and
experimental spin-orbit
splitting Δ0 of the valence
band in various zincblende
semiconductors (After
Majewski et al. 2004)
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For a complete discussion, the momentum vector k can be restricted to this reduced
cell, the first Brillouin zone, which contains all relevant information (see ▶ Sect.
1.3.1 in chapter “The Structure of Semiconductors”).

E(k) can be plotted easily in a one-dimensional lattice (see Fig. 13 in chapter
▶ “The Origin of Band Structure”). The E(k) behavior of the first two bands of a
two-dimensional structure is shown in Fig. 7; it represents one curved surface for
each of the bands. The center (kx = ky = 0) is denoted by Γ. Cuts of this surface with
a plane parallel to the energy axis show a different E(k) behavior, depending on the
orientation of the plane in the kx and ky directions. However, because of symmetry of
the assumed square lattice, a cut normal to the kx direction must result in the same E
(k) as a cut at the same k value normal to the ky direction. Another cut at 45� between
kx and ky shows a different E(k) from the aforementioned, but the same E(k) for all
equivalent 45� cuts. All essential elements of the E(k) surfaces are contained in such
cuts. The intersection of the major crystallographic symmetry axes with the surface
of the first Brillouin zone is identified in Fig. 7a with appropriate letters9 (X for the
first and W for the second in the example given above). E(k) in a two-dimensional

Fig. 7 (a) E(k) surfaces for
two bands in a hypothetical
two-dimensional square
lattice, with symmetry points
X and W indicated at the
boundary of the first Brillouin
zone (bottom plane). (b) E(k)
in a conventional
one-dimensional E(k)
representation. The diagram is
broken at the vertical lines
representing symmetry points
W, Γ (center of Brillouin zone)
and X

9See Fig. 8 in chapter ▶ “The Structure of Semiconductors”: Γ for the center at k = (0,0,0); in a
face-centered cubic lattice for the point L: k ¼ 2π

a
1
2
, 1
2
, 1
2

ð Þ; for the point X : k ¼ 2π
a 1, 0, 0ð Þ.
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representation shown in Fig. 7b is plotted along a k vector connecting these points
(compare subfigures a and b of Fig. 7). A similar representation of cuts through the
E(k) hypersurface is conventionally made in three-dimensional lattices and will be
discussed in Sect. 4.2.

To gain a better perception about the shape of E(k) for a real lattice, we will start
from free electrons with well-known paraboloid behavior and progressively intro-
duce a hypothetical lattice with an increasing amplitude of the lattice potential.

4.1 Empty and Nearly Empty Lattices

A crystal lattice with lattice periodicity but vanishing lattice potential is referred to as
an empty lattice (Shockley 1938). Introducing a very small lattice potential, with just
enough of an amplitude to influence slightly the E(k) behavior obtained for the
empty lattice, defines this as a nearly empty lattice. The development of E(k) with an
increasing amplitude of the lattice potential is instructive in understanding the origin
of the different bands in an actual crystal.

Starting with a free electron in vacuum, one obtains the well-known parabolic E
(k) behavior (see ▶ Sect. 2 in chapter “The Origin of Band Structure”), redrawn in
Fig. 8. Adding to the model an empty, one-dimensional lattice with lattice constant
a does not change E(k). However, one can now insert multiples of πaon the kx axis and
fold the diagram to a reduced E(k) representation, as indicated by the green curves in
Fig 8. The En(k) diagram given in Fig. 9a is obtained by replacing the
one-dimensional lattice with the empty face-centered cubic lattice of the same
geometry as the Ge lattice (Herman 1958). The index n indicates the different
branches of E(k). The comparison of Fig. 9a with Fig. 8 shows that several E(k)
curves (bands) overlap in the empty Ge lattice while they do not in the empty
primitive cubic lattice; this overlap is caused by the additional lattice point in the
Ge lattice. The discussion of an empty lattice provides a useful method of

Fig. 8 E(k) for a free electron
on an empty one-dimensional
lattice (red curve) and its
reduced representation (green)
between 0 and π/a
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determining the sequence of the different bands since such a sequence does not
depend on the lattice potential.

The periodic crystal potential, switched on at a very small amplitude, yields En(k)
of the nearly empty lattice, shown in Fig. 9b. A deformation and splitting in the En(k)
dispersion relation becomes visible. With the knowledge that the unit cell of the
diamond lattice contains 2 atoms, and thus 8 valence electrons, one concludes that
the lowest four En(k) curves, occupied by two electrons each due to spin degeneracy,
belong to one set of bands. This set of bands will later be identified as the valence
band, disregarding degeneracy, and the curves above the fourth belong to the next
higher set of bands, later defined as the conduction band (▶Sect. 1 in chapter “Bands
and Bandgaps in Solids”). The bandgap (shaded region in Fig. 9) is expected above
the fourth and below the fifth En(k) curves. The actual bandgap is the smallest

Fig. 9 E(k) of the Ge lattice, disregarding spin-orbit splitting: (a) empty lattice, (b) segment Γ-X-W
of the nearly empty lattice, and (c) actual electronic band structure of Ge. Colors serve solely to
distinguish curves. The hatched area represents the region between the uppermost valence band
Ev(k) and the lowest conduction band Ec(k) and has no other meaning per se; the respective smallest
distance at Γ represents the direct bandgap; the distance between the absolute minimum of Ec(k) at
L and the absolute maximum of Ev(k) at Γ represents the indirect bandgap (After Herman 1958)
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distance between the highest point of the fourth and the lowest point of the fifth
curves in Fig. 9b. These points are not necessarily on top of each other; see Fig. 11.

By comparing Fig. 9a with b, one obtains guidance for the developing band
structure. The splitting of the bands and the avoidance of a crossover can be clearly
seen in the left diagram between Γ and X. The actual band structure is shown in
Fig. 9c for the full amplitude of the periodic lattice potential of Ge.

4.2 The Band Structure of Typical Semiconductors

A computation of the band structure of Ge by Herman (1958) is shown in Fig. 9c.
This figure also shows the common notation of the bands introduced by Bouckaert
et al. (1936) – see Bassani and Pastori Parravicini (1975), for a review. Further
modifications of En(k), due to the introduction of spin-orbit interaction, can be seen
by comparing Figs. 9c and 11b.

4.2.1 Symmetry of E(k)
The electronic bands En(k) have the same point-group symmetry as the crystal to
which the Brillouin zone belongs (see Bassani and Pastori Parravicini 1975). In
general, one has in a nonreduced (i.e., extended) Brillouin zone representation

En kð Þ ¼ En kþKð Þ (39)

En kð Þ ¼ En �kð Þ (40)

En kð Þ ¼ En αkð Þ (41)

with K as a lattice vector in the reciprocal lattice and α identifying any point-group
operation, e.g., a rotation; the relation Eq. 40 is also known as Kramer’s theorem.
Consequently, for nondegenerate En(k) at the center (Γ) or at the surface of the
Brillouin zone, En(k) must have an extremum, as can be seen from fulfilling Eqs. 39
and 40 simultaneously. However, noninteracting branches En(k) may cross,10 thus
permitting a finite slope at the symmetry point, as shown for the Γ point for curves
2 and 3 in Fig. 10.

Extrema of En(k), however, are not limited to the center or surfaces of the
Brillouin zone, as Fig. 11 shows. There is a maximum of E(k) along Σ and along
Δ (see Figs. 8 in chapter▶ “The Structure of Semiconductors” and 11) for one of the
Γ15 and Γ'2 branches. In Si, there is, e.g., a secondary minimum at the bottom of the
conduction band at ~0:8 π

a kx. Other minima are at the equivalent points – see Fig. 10
in chapter ▶ “Bands and Bandgaps in Solids.” Such minima are referred to as

10The crossing En(k) must belong to different symmetry states that cannot interact with each other.
States of the same symmetry interact and cannot cross (noncrossing rule). Examples of crossing can
be seen in Fig. 11 for Si at X1 and for noncrossing at Δ for GaAs.
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Fig. 10 Symmetry-related
information about the shape of
En(k) at k = 0 and at the
surface of the Brillouin zone

Fig. 11 Energy bands of diamond structure (a) Si and (b) Ge and of (c) zincblende GaAs
calculated using the empirical nonlocal pseudopotential method (EPM) (After Chelikowsky and
Cohen 1976). (d) Energy bands of wurtzite GaN calculated using full-potential linear muffin-tin
orbitals (LMTO) (After Lambrecht 1998)
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satellite minima and play an important role in the semiconductive properties of the
material: they determine the properties of the conduction electrons.

In the neighborhood of extrema or saddle points of E(k) (critical points), E(k) can
be written in three dimensions as

E kð Þ ¼ E k0ð Þ þ
X3
i¼1

ai ki � k0ið Þ2: (42)

This permits us to distinguish four types of critical points, which are classified as

M0 for a1, a2, a3 positive (minimum)
M1 for a1 negative, a2, a3 positive (saddle point)
M2 for a1, a2 negative, a3 positive (saddle point)
M3 for a1, a2, a3 negative (maximum)

The curvature of E(k) relates to the effective mass. Therefore, M0 relates to a
positive andM3 to a negative effective mass for electrons.M1 is characterized by one
negative and two positive effective masses, and M2 is characterized by two negative
and one positive mass in the respective directions. In all of these critical points, @E/@
k = 0. The critical points are of importance: here the density of states has a
maximum; this will be discussed in the following section.

The parabolic approximation Eq. 42 for E(k) near an extremum is insufficient to
describe transport and excitation phenomena at higher energies; higher-order terms
must then be taken into consideration. The large variety of bands (Fig. 11), however,
necessitates restricting this discussion to the most important ones. These will be
identified in ▶ Sect. 1 in chapter “Bands and Bandgaps in Solids,” while the
discussion on the shape of these bands will be postponed to ▶ Sect. 1.2 in chapter
“Bands and Bandgaps in Solids.”

Any further discussion of the different sets of energy bands shown in Fig. 11
requires an understanding of the symmetry properties of the electronic states, which
is not the topic of this book. A systematic introduction can be found, for example, in
Bassani and Pastori Parravicini (1975).

4.2.2 Density of States
Bands originate from the splitting of atomic eigenstates. Therefore, each band
contains N states, where N is the number of atoms in the crystal times a degeneracy
factor vD (for a simple band vD = 2). The density of states g(E) per energy interval
dE is then defined by11

11Compare with a similar calculation of the density of states for phonons given in ▶ Sect. 3.2 in
chapter “Elasticity and Phonons.”
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vDN ¼
ðEmax

Emin

g Eð ÞdE (43)

For computational purposes, it is more convenient to express g as a function of
k rather than of E with

g Eð ÞdE ¼
g kð Þ dk

dE
dE in one dimension

g kð Þ 1

@E kð Þ=@kj j dE in three dimensions:

8><
>: (44)

Within the first Brillouin zone, one can easily follow the filling of the band with
electrons. Since electrons are fermions with a spin of 1/2, they can fill each state only
to a maximum of two electrons, one with spin up, the other with spin down. The
states fill consecutively near T= 0 K; the highest states filled at T= 0 K identifies the
Fermi energy, which is also referred to as the Fermi level (in ideal semiconductors
the Fermi level lies near the mid-gap – see ▶Sect. 2 in chapter “Equilibrium
Statistics of Carriers”).

A single band of type 1 in Fig. 10 fills from the center (Γ) to complete first a small
sphere (Fig. 7 in chapter ▶ “Bands and Bandgaps in Solids”), which, with continued
filling, will become deformed. The degree of deformation depends on the strength of the
lattice forces (see▶ “Sect. 1.1 in chapter Bands and Bandgaps in Solids” on the shape of
bands and Fig. 8 in chapter ▶ “Bands and Bandgaps in Solids”). With SE the total area
of the enclosing surface to which this filling proceeded, we can then express the volume
of the k space between E and E +dE by the integral over a closed surface at E:

þ
E

dSE
@E kð Þ=@kj j dE: (45)

Since the volume in the entire first Brillouin zone, given here for a cubic crystal, is
(2π/a)3 and a crystal of volume V has vDV/a

3 electron states per band, there are 8π3/
(vDV ) electron states in this band; therefore

gn Eð ÞdE ¼ vD

2πð Þ3
þ

dSE
@E kð Þ=@kj j dE: (46)

From Eq. 46 one sees that the increment of the density of states is steepest where
the slope of E(k) is the smallest. This is the case at or near the critical points
described above.

The band index n is added for distinction, since with more than one band and with
overlapping bands the density of states is additive:

g Eð ÞdE ¼
X
n

gn Eð ÞdE: (47)
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The total density of states contains a substantial amount of structure stemming
from the critical points of the different bands, as shown in Fig. 12. This figure shows
clearly the interrelationship between E(k) for each band (right part of the figure) with
the density distribution (left part). The listed symmetry points will assist in finding
the related branches.

For most semiconducting properties, only the density of states near the edges of
the bandgap is important. This density can be easily estimated in a parabolic E(k)
approximation and will be discussed in more detail in ▶ Sect. 1 in chapter “Equi-
librium Statistics of Carriers.”

4.3 Band Structure of Organic Crystals

Carriers in organic crystals couple strongly to phonons and are consequently
described as polarons (▶ Sect. 1.2 in chapter “Carrier-Transport Equations”). In
the low-temperature regime often band-like conduction similar to that of inorganic
semiconductors is observed; carriers are then well characterized in terms of a band
structure. Due to the weak intermolecular van der Waals bonds, the electronic
bandwidth is generally quite narrow; data of the lowest unoccupied and the highest
occupied molecular-orbital (LUMO and HOMO) bands for some organic semicon-
ductors are given in Table 1. The pronounced electron–phonon coupling leads to a
significant dependence of the bandwidth W on temperature (see Fig. 41 in chapter

Fig. 12 Band structure E(k) (blue curves) and density-of-state (DOS) distribution g(E) (red) in
valence and conduction bands of Si, with corresponding symmetry points identified. The DOS
distribution is turned by 90� from the conventional representation to relate directly to the E(k)
representation (After Chelikowsky et al. (1973))
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▶ “Bands and Bandgaps in Solids”): the maximum bandwidth at T! 0 decreases as
the temperature increases (Holstein 1959; Hannewald et al. 2004).

The electronic band structure of an anthracene crystal calculated using the tight-
binding approach is given in Fig. 13. The dispersions E(k) refer to directions of the
monoclinic Brillouin zone shown in Fig. 8e in chapter ▶ “The Structure of Semi-
conductors”; d1 = (½½0) and d1 = (�½½0) are next-neighbor directions in the xy

Table 1 Bandwidth W for crystalline organic semiconductors

Crystal

Bandwidth W (meV)

ReferencesHOMO LUMO

Anthracene 509 508 Chen et al. (2003)

Tetracene 625 502 Chen et al. (2003)

Pentacene 738 728 Chen et al. (2003)

Rubrene 420 180 Yanagisawa et al. (2013)

CuPc 96 260 Yang et al. (2008)

Fig. 13 Dispersion E(k) and
density of states (DOS) of the
lowest unoccupied and the
highest occupied molecular-
orbital (LUMO and HOMO)
bands for an anthracene
crystal. kx to kz signify
crystallographic directions of
the monoclinic unit cell; kd1
and kd2 refer to nearest-
neighbor directions (After
Cheng et al. (2003))
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plane. Anthracene has two equivalent molecules with different orientations in the
unit cell; both the LUMO and HOMO levels are composed of symmetrical and
asymmetric linear combinations of molecular orbitals of the two molecules, leading
to a twofold splitting. The degeneracy of kx and ky at the edge of the Brillouin zone in
the xy plane originates from a crystal glide-plane symmetry; no such symmetry exists
in triclinic crystals like tetracene and pentacene, where this degeneracy is lifted. The
dispersion along kz is very small, and a large gap occurs between upper and lower
band. These features originate in this direction from small interactions of molecules
located in adjacent layers and are often found in organic crystals with herringbone
packing (Cheng et al. 2003). The density of states of the LUMO and HOMO bands
plotted at the right side of Fig. 13 reflects the inverse slope of the contributing
dispersion curves.

Rubrene crystals also show band-like conduction; the orthorhombic phase con-
sidered here comprises two differently aligned molecule pairs per unit cell in a
herringbone packing. The band structure shown in Fig. 14 was calculated applying
density-functional theory with two different approaches: a plane-wave pseudo-
potential treatment using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation
functional and a refined quasiparticle treatment with PBE wavefunctions and eigen-
values plus self-energy corrections within the G0W0 approximation (Yanagisawa
et al. 2013). The direct bandgap of 2.34 eV of the G0W0 calculation agrees reason-
ably with an experimental optical band gap of 2.2 eV, reflecting the improvement
also found for inorganic semiconductors (Fig. 5) by including self-energy correc-
tions. The HOMO bands of rubrene show a large dispersion along Γ-Y and only

Fig. 14 Electronic dispersion
of the LUMO and HOMO
bands for a rubrene crystal,
calculated using DFT and the
PBE exchange-correlation
functional (blue) or the G0W0

approximation (red) (After
Yanagisawa et al. (2013))
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minor dispersion along Γ-Z, in accordance with angle-resolved photoelectron-spec-
troscopy data (Machida et al. 2010) and the experimental large anisotropy of carrier
transport.

5 Summary

The analysis of the atomic and electronic behavior of semiconductors rests on the
solutions of the appropriate Schrödinger equation. This equation contains the inter-
action potential of all involved particles, i.e., electrons and atom nuclei. The inter-
action potential can be approximated in a number of different ways, accounting for
electronic and ionic contributions, and can be computed from basic principles. The
solution of the Schrödinger equation for a one-electron approximation is usually
based on variational principles by expanding the wavefunction in terms of a set of
orthogonal trial functions, followed by variation of the expansion coefficients.
Methods explicitly containing correction terms for many-particle electron–electron
interactions account for exchange interaction and correlation of all electrons. Suffi-
ciently accurate boundary conditions reduce the computational effort and yield
results in good agreement with the experiment. The band structure and related
density of states are computed for most of the common semiconductors and are
available for quite a number of new materials with promising semiconducting
properties. The development of computational techniques has led to a quantitative
description of the band structure and the prediction of stable new compounds before
they were synthesized. It permits prediction of their electronic and other properties
and has become an essential tool in designing new materials for solid-state devices.
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Abstract
Valence and conduction bands and the bandgap in between these bands determine
the electronic properties of solids. For semiconductors, the band structure of the
conduction band and the valence bands near the edge to the fundamental bandgap
is of particular interest. Both the band structure and bandgap are influenced by
external parameters such as temperature and pressure and can also be changed by
alloying and heavy doping.

In low-dimensional semiconductors like superlattices and quantum wells,
quantum wires and quantum dots anisotropic carrier confinement occurs. The
effective gap and energies in conduction and valence bands can be varied by
changing spatial dimensions and barrier height of the low-dimensional structure.
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The bands in amorphous semiconductors near the band edge are ill-defined since
long-range periodicity is missing. Still the density-of-state distribution shows
significant similarities to that of the same material in the crystallite state.

Keywords
Bandgap energy � Bowing � Conduction bands � Confined states � Cyclotron
resonance � Density of states dimensionality � Effective mass � Hole effective
mass � HOMO � LUMO � Luttinger parameters � Quantum dots � Quantum wells �
Quantum wires � Valence bands

1 Valence and Conduction Bands

This chapter outlines the most important bands in semiconductors, the valence
and conduction bands, and their dependence on various material and external
parameters.

A set of bands (subbands), created by the splitting and hybridization (see below)
of the ground state of valence electrons, taken together are referred to as the
valence band. The number of states contained in this band is given by the
multiplicity of its atomic state (typically 4 for sp3 hybridization), multiplied by
the number of atoms creating this band, e.g., the number of atoms in an entire ideal
crystal.1

The formation of such bands is often shown as it evolves from the spectrum of
isolated atoms when they are brought together to form the crystal lattice. Their
levels split with decreasing interatomic distance, as shown in Fig. 1 and discussed
in ▶ Sect. 1 of chapter “The Origin of Band Structure”. There are several possi-
bilities for the energy and electron distribution over these levels, depending on the
crystal bonding and structure. Three relatively simple examples are given in
Fig. 1.

Figure 1a shows the splitting and overlap of the s and p bands of a main-group
metal. The atomic states remain nearly unchanged when the atoms approach each
other (here s and p bands do not mix) to form a metal.

Figure 1b shows the splitting for a covalent (tetravalent) crystal, e.g., for a
thatogen, such as C (diamond) or Si. Near the crossover point, a hybridization into
sp3 states occurs, providing four sp3 states for the lower band and four sp3 states for
the upper band. A bandgap appears between these two hybrid bands – see Sect. 2.

Figure 1c shows the lone-pair configuration typical for higher valency atoms,
e.g., a pnictogen, such as P or As, or a chalcogen,2 such as Se or Te, where some
electrons in the p state do not participate in the bonding states. This is the case

1In a real crystal this number is reduced since electron scattering limits the coherence length of the
electron wave (i.e., the length in which quantum-mechanical interaction can take place). With a
mean free path λ the number of atoms responsible for the band-level splitting is of the order of (λ/a)3

for a primitive cubic lattice with lattice constant a. Each of these levels is broadened by collision
broadening; therefore, even for λ approaching a, the result is still bands rather than discrete levels.
2AB compounds containing these elements are referred to as pnictides or chalcogenides.
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when the number of valence electrons is greater than 4, since antibonding states
always increase more in energy than bonding states decrease when atoms approach
each other (see Fig. 1c). Therefore, a pair of electrons when nonbonded (lone pair)
has lower energy than when split into one bonding state electron and one anti-
bonding state electron; only a total of four electrons can occupy all of the bonding
orbitals.

Bands obtained from such splitting, which are completely or partially filled with
valence electrons, are called valence bands.

1.1 Insulators, Semiconductors, and Metals

1.1.1 Insulators and Semiconductors
In a covalent monatomic crystal, the four valence electrons fill each of the levels in
the valence band. In such a totally filled valence band, electronic conduction is
impossible, since electrons can only move by an exchange: for every electron
moving in one direction, exactly one electron must move in the opposite direction;
there is no free momentum space (Pauli principle) for a net electron transport.3

Diamond is an example of a simple crystal with tetravalent atoms and a totally filled
valence band. It is therefore an insulator. The band above the valence band has the
same number of states but contains no electrons at vanishing excitation. It is an
empty band. In materials in which this band is relatively close to the valence band
(i.e., in materials with a narrow bandgap between these bands, such as germanium
with a bandgap of Eg= 0.64 eV), thermal excitation at room temperature will bring a
number of electrons into this upper band and partially fill it, although to a very small
fraction of the total level density. These electrons can easily gain energy from an

Fig. 1 Electronic energy distribution for a crystal as a function of the interatomic nearest-neighbor
distance r. (a) Overlap of s and p bands in main-group metals. (b) sp3 hybridization in covalent
tetravalent elements for r� rx; rx is the crossover distance. (c) Lone-pair semiconductors such as Se

3In a quantum-mechanical picture, any E(k) state represents a certain mass and velocity. In a filled
band, all of them add up to zero.
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external electric field as there are enough free levels available adjacent to each of
these electrons; a net electron transport (see next section) in the direction of the
electric field can take place. Electronic conduction occurs; therefore, this band is
referred to as the conduction band. Germanium acts as an insulator for vanishing
excitation and as a conductor with sufficient thermal excitation: it is called a
semiconductor and is distinguished from an insulator by a somewhat narrower
bandgap.

This description of electronic transport in a partially filled band needs a more
precise discussion, which will be given in chapter ▶ “Carrier Transport Induced and
Controlled by Defects”. However, in order to understand many of the following
sections, a heuristic description is supplied below.

Electrons and Holes
When an electron is lifted from the valence band into the conduction band, an empty
state is simultaneously created in the valence band. Just as the electron can move in
the conduction band, so can the empty state in the valence band. Since it is
surrounded by electrons, which can move into the empty state, the empty state
moves in the opposite direction of the electron.

The valence-band behavior somewhat resembles the filling of theater seats on the
parquet. When all these seats are filled, people still can move but only by exchanging
seats. When the balcony (the conduction band) is opened, some people from the
front of the parquet may move up to occupy seats in the balcony, leaving their empty
seats below. Consequently, people in the parquet may move toward the stage, giving
the impression that empty seats move in the opposite direction. However, only
people are moving toward the stage, following the force of attraction. Chairs remain
fixed to the floor; their state of being empty or filled is moving. The situation is
similar in the semiconductor: only electrons are moving, not atoms or ions. Ionic
conductivity is neglected here. Thus, an empty state deserves its own name: a hole. It
behaves much like an electron with an effective mass similar in value to the electron
mass and not that of an ion.

As shown earlier (▶Sect. 2.1 of chapter “The Origin of Band Structure”), the
electron within the conduction band is free to move when considering its mass as an
effective mass. To distinguish it from an electron in vacuum, it is also referred to as a
Bloch electron. The holes are also free to move. Both contribute to the electrical
conductivity and are therefore called carriers (of this current).

Electrons tend to occupy the lowest-energy states; that is, they fill a band from
the bottom up and occupy states near the bottom of the conduction band desig-
nated as Ec. Holes will consequently, like soap bubbles in water, bubble toward
its upper surface: they will collect at the upper edge of the valence band desig-
nated as Ev.

When an electron is accelerated in the direction of a mechanical force, for
instance, by accelerating the semiconductor in the Tolman experiment, the hole is
accelerated in the opposite direction. Therefore, its effective mass mp has the sign
opposite to the mass of an electron:
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mp ¼ � ℏ2

@2E
@k2

���
Ev

and mn ¼ þ ℏ2

@2E
@k2

���
Ec

; (1)

this is illustrated in Fig. 2. At the top of the valence band, E(k) has a negative
curvature that results in a negative effective mass for electrons. However, since the
effective mass of the hole has the opposite sign as the electron (Eq. 1), its effective
mass is positive here, as is the effective mass of an electron at the bottom of the
conduction band:

mp Evð Þ > 0, mn Ecð Þ > 0: (2)

Finally, the charge of an electron is negative4 by convention; therefore, the charge
of a hole (i.e., of an atom with a missing electron) is positive. This permits the
distinction between a particle flux under the influence of an electric field5 F and the
electric current caused by electrons and holes. The particle flux proceeds in opposite
directions: holes move in the direction of the electric field, and electrons move
against it. This is also reflected in the mobility of the particles, defined in ▶Sect. 2.2
of chapter “Carrier-Transport Equations” by μ = (q/m*) � τ, with particle charge
q and a mean time τ (>0) between scattering events. However, both electron and
hole currents jn and jp have the same sign and are therefore additive, because j /
qμF. Table 1 summarizes the typical properties of electrons and holes in a
semiconductor.

Fig. 2 E(k) for a simple
valence and conduction band;
signs of the effective masses
of holes and electrons are
indicated

4A positive charge was arbitrarily related to the charge of a glass rod, rubbed with silk (by Benjamin
Franklin); this charge was not caused by an added electron as it became known later, but by a
missing electron on the glass rod. This electron was removed by the silk.
5In this and all chapters dealing with electrical conductivity, the electric field is identified as F and
the energy is identified as E.
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1.1.2 Metals
In monovalent metals, the valence band is only partially filled; 50% of the s states
are occupied. Therefore, electronic conduction takes place even with vanishing
excitation. Divalent metals show allowed eigenvalues in the range of the overlap
between s and p bands6 – see Fig. 1a. In this range, therefore, only about 25% of the
two s and the six p states are filled, and thus electronic conduction occurs at
vanishing excitation. Trivalent metals have about 63% of their states in the over-
lapping s and p bands unoccupied. In transition metals, inner shell electrons occupy
partially filled d bands.

All metals are thus distinguished from semiconductors by their substantial (�50%)
fraction of free states in the highest partially occupied band with vanishing excitation.
This band is therefore both a valence band, containing the valence electrons, and a
conduction band where all metallic conduction takes place.

This simple model for distinguishing nonmetals from metals by the complete or
incomplete filling of bands is due to Wilson (1931). The model is still valid for most
cases, except where magnetic properties or strong electron–phonon interactions
(polarons; see ▶ Sect. 1.2 of chapter “Carrier-Transport Equations”) interfere.

1.1.3 Semimetals and Narrow-Gap Semiconductors
Metals that show a very small overlap of conduction and valence band exhibit weak
electronic conduction. The density of states near the Fermi level (see ▶Sect. 2 of
chapter “Equilibrium Statistics of Carriers”) is very small and only the relatively few
electrons there control the conduction. Only these electrons can be scattered. For
reviews, see Ziman (1969) or Cracknell and Wong (1973). These materials are
termed semimetals; examples are graphite and bismuth.

On the other hand, semiconductors with very small bandgaps show relatively
high conductivity compared to other semiconductors. By some alloying, application
of pressure, or even at elevated temperature, the bandgap can vanish, turning such
semiconductors into metals. Examples include gray tin with a gap of 0–0.08 eV
(suggested by magneto-optical experiments; (Pidgeon 1969)) and lead chalcogen-
ides and their alloys with other II–VI compounds or with SnTe and mercury
chalcogenides. For a review, see Tsidilkovski et al. (1985). The lead chalcogenides
are characterized by a small bandgap with a maximum of the valence band and a
minimum of the conduction band at the L point rather than the Γ point which is the

Table 1 Typical properties of electrons and holes

Charge Near m* @E/@k2 Mobility jn,p(F)

Electrons �e Ec +mn Positive �μn Positive

Holes +e Ev +mp Negative +μp Positive

6The difference between metals, where the overlap range is allowed, and semiconductors, where the
overlap range is forbidden (bandgap), depends on Wigner’s rules (Wigner 1959), which state that
eigenstates belonging to different symmetry groups of the Hamiltonian cannot mix (metals). In
semiconductors they do mix, yielding sp3 hybridization for Si.
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case for most other direct-gap semiconductors (▶Sect. 2 of chapter “Band-to-Band
Transitions”) with Eg and mn as shown in Table 2. Alloyed with CdTe (Eg = 1.5 eV),
the bandgap varies with composition but can dip below zero (to �0.1 eV) because of
bowing (see Sect. 2.1) for an alloy of PbTe containing a few percent Cd (Schmit and
Stelzer 1973). Besides optical applications in the infrared range, narrow-gap semi-
conductors are interesting for thermoelectric applications (Mahan 1997).

A typical change of the E(k) behavior near the Γ point is shown in Fig. 4 for
Hg1-xCdxTe as a function of the hydrostatic pressure or the composition (Kane
1979). The bandgap can be expressed by an empirical relation (Hansen et al. 1982)

Eg x, Tð Þ ¼ �0:302 þ 1:93xþ 5:35� 10�4 1� 2xð ÞT � 0:81x2

þ 0:832x3 eVð Þ (3)

for 0< x< 1 and 4.2< T< 300 K. The gap also changes linearly with pressure, with
a pressure coefficient of 10�2 eV/kbar.

Another interesting property is observed when alloying PbTe and SnTe. The L6
+

and L6
� bands are inverted; the L6

� band is the conduction band in PbTe, while it is the
valence band in SnTe, and vice versa for the L6

+ band. In an alloy of Pbl-xSnxTe with
x = 0.62, both bands touch at 300 K. For x > 0.62, the alloy becomes a metal

Fig. 3 Empty (red) and filled (green) states in the upper bands of (a) a metal, (b) a semiconductor,
and (c) an insulator. The energies at the top of the valence band and the bottom of the conduction
band are identified as Ev and Ec, respectively

Table 2 Band parameters for lead chalcogenides

Material T (K) Eg (eV) mnk mn⊥

PbS 290 0.41 0.11 0.11

77 0.31

4 0.29

PbSe 290 0.27 0.05 0.08

77 0.17

4 0.15

PbTe 290 0.32 0.025 0.22

77 0.22

4 0.19
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(see Fig. 5). Such materials are also referred to as gapless semiconductors when the
top of the valence band touches the bottom of the conduction band.

These examples demonstrate the possibility of designing very-narrow-bandgap
materials or semimetals by alloying two narrow-bandgap semiconductors with each
other (see Fig. 6). The density of states in semimetals at the Fermi level is very small
compared to that of a metal. In gapless semiconductors, it is zero (see Fig. 4 at x =
0.16 for T = 0 K).

A special case of a gapless semiconductor occurs when tailing band states overlap
with the conduction band (Fig. 6c). Tailing states are band states which extend into
the bandgap due to the disturbed neighborhood of lattice defects as discussed in
chapter ▶ “Defects in Amorphous and Organic Semiconductors”.

1.1.4 The Shape of Valence and Conduction Bands in Semiconductors
The shape of valence and conduction bands is given by the three-dimensional
dispersion relation E(k) and is of interest for semiconducting properties in the energy

Fig. 5 (a) Conduction and valence bands in a schematic E(k) representation of Pbl-xSnxTe for
different alloy ratios x. (b) Bandgap as a function of alloy ratio for T = 12 and 300 K (After
Dimmock et al. 1966)

Fig. 4 Conduction and
valence bands of Hg1-xCdxTe
as a function of pressure p or
composition x (schematic)
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range near the bottom of the conduction band (near Ec) and near the top of the
valence band(s) (near Ev).

The shape of these bands can be visualized from a constant-energy surface near
the bottom of the conduction band or the top of the valence band. This surface can be
identified by sequentially filling the band7 as described in ▶ Sect. 4.2 of chapter
“Quantum Mechanics of Electrons in Crystals”. Electrons that populate states within
E(k) up to a certain energy E1 [i.e., to the corresponding k1 (E1)] are contained in a
small sphere in the center of the zone (Fig. 7) that grows parabolically in radius with
increasing degree of filling, that is, with an increasing value of k. k(E) is single-
valued and monotonic within each band.

When starting from the center, E(k1) becomes progressively more deformed with
higher energy (higher k). A two-dimensional representation (Fig. 8) demonstrates
more clearly some typical shapes of equi-energy surfaces in a simple cubic lattice.

Fig. 6 Density of states of
valence and conduction bands
with electron filling indicated
for: (a) gapless
semiconductor, (b) semimetal,
and (c) gapless semiconductor
with overlapping tail states
(▶ Sect. 2 of chapter “Defects
in Amorphous and Organic
Semiconductors”)

Fig. 7 Equi-energy surface
for small electron energies
within the first Brillouin zone
for a primitive cubic lattice

7Each band contains a large number of energy levels (see ▶ Sect. 4.2 of chapter “Quantum
Mechanics of Electrons in Crystals”). Increasing number of electrons first fills the levels at the
lowest energy (for T = 0) and then successively higher and higher energies. This process is referred
to as band filling.
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Figures 8a–d are distinguished by increasing binding forces, showing increasingly
more deviation from circles.

A similar development is observed near the top of the valence band: when it
becomes filled with holes, the upper part of the Brillouin zone becomes depleted
down to a certain energy E1’ with the effect of rounding down the sharp edges of the
Brillouin zone.

Depending on the density of electrons within the band, a large fraction of the
Brillouin zone is filled. Figure 9 illustrates such a Brillouin zone with a partially
filled valence (or conduction) band of a metal. This figure also shows the connection
to another neighboring zone. The periodicity of E(k) is indicated at the upper left of
Fig. 9. The zones are of the same order, first Brillouin zones. Higher Brillouin zones
are not relevant to the discussion of semiconducting properties. In contrast to the

Fig. 8 Two-dimensional cut through a family of equi-energy surfaces for a primitive cubic crystal
(corresponding to a cut at E = const in ▶ Fig. 7 of chapter “Quantum Mechanics of Electrons in
Crystals”). (a–d) represent crystals with gradually increasing binding potential. Filling with elec-
trons is indicated by shading in (d). Spherical surfaces indicate quasi-free behavior of electrons.
Deviations from the sphere indicate substantial lattice influence

Fig. 9 Equi-energy surface at
the Fermi level (Fermi
surface) of a face-centered
cubic metal, with contacts to
the adjacent Fermi surfaces
through the center of the
hexagonal surfaces of the
Brillouin surfaces. Three
extremal orbits for electrons
along the Fermi surface are
identified by B111, B100, and
N (After Pippard 1965)
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one-dimensional E(k) representation of ▶Fig. 13 of chapter “The Origin of Band
Structure”, where several curves in the first Brillouin zones are shown, in the k space
representation only one such equivalent surface can be drawn without confusion. It is
the valence band in Figs. 8d, 9, and 10c and the conduction band in Figs. 7 and 10a, b.

In semiconductors, the equi-energy surfaces close to the top of the valence band
(nearly full Brillouin zone) and at the bottom of the conduction band (nearly empty
Brillouin zone) are of interest for the electron transport. They are shown in Fig. 10
for Ge and Si.

Figure 10a shows for Si six small ellipsoids in the (100) direction which are
centered at �0.8kx, �0.8ky, and �0.8kz. Figure 10b indicates for Ge in the (111)
direction eight ellipsoids which are centered at the L points (see ▶ Fig. 8 of chapter
“The Structure of Semiconductors”). There are four such L minima per Brillouin
zone. Other semiconductors having their lowest minima outside the Γ point are GaP
and AlSb. Most other semiconductors have their lowest conduction-band minimum
at (000), at the Γ point.

Figure 10c shows the warped equi-energy surface near the upper edge of the
valence band for heavy holes (see Sect. 1.2) in Si and Ge. This equi-energy surface
fills almost the entire Brillouin zone. Its shape is shown without the surrounding
Brillouin zone in nearly the same scale as in Fig. 10a, b. The filling of the valence
band with holes is greatly exaggerated; otherwise, the Brillouin zone with a flat outer
surface and only slightly rounded edges would show.

The shape of these equi-energy surfaces is intimately related to the three-dimensional
shape of the bands (E(k)) – see▶Sect. 4.2 of chapter “QuantumMechanics of Electrons
in Crystals”. The anisotropy is evident from Fig. 10. This anisotropic En(k) behavior has
an influence on the effective mass and therefore on carrier transport.Wewill first analyze
the anisotropy of the effective mass in more detail.

1.2 The Effective Mass in Real Bands

In ▶ Sect. 2.2 of chapter “The Origin of Band Structure” the effective mass is
defined as proportional to the inverse of the second derivative of E(k), i.e., of the

Fig. 10 Brillouin zone of (a) Si and (b) Ge with equi-energy surfaces near the conduction-band edge
and (c) equi-energy surface of the valence band for heavy holes in Si or Ge near the upper band edge
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curvature of E(k). The anisotropy of E(k) in an actual crystal makes the introduction
of a tensor relation for the effective mass necessary:

mn ! m� with components m�
ik ¼ ℏ2

@2E

@ki@kj

: (4)

This tensor ellipsoid, when transformed to main axes, contains usually only very few
nonvanishing components. We will identify these below for some of the more
important semiconductors.

Figure 11 shows the important minima of typical conduction bands and maxima
of the valence bands. In most semiconductors, the relevant conduction-band mini-
mum lies at the Γ point (direct gap) or near the L or X point (indirect gap as discussed
in ▶ Sect. 2 of chapter “Band-to-Band Transitions”). The energies of these minima
are listed in Table 3. The relevant maxima of the valence band are at the Γ point.
Their energies are listed in Table 4.

We will first discuss the shape of the conduction and valence bands near the band
edge and thereby provide simple expressions for the respective effective masses.

1.2.1 The Conduction Bands
The relationship of E(k) in the vicinity of the conduction-band minima near the band
edge can be described as conduction band, at Γ:

Ec kð Þ ¼ ℏ2

2m
k2, (5)

Fig. 11 Simplified band
structure of typical
semiconductors near the most
important extrema of valence
and conduction bands
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and at a satellite conduction band:

Ec kð Þ ¼ ℏ2

2

kx � k0xð Þ2
mk

þ ky � k0y
� �2 þ kz � k0zð Þ2

m⊥

 !
, (6)

Table 3 Electron effective masses in units of m0, conduction bands at 0 K in eV with characteristic
point and band numbers identified, and spin–orbit splitting D0 and camel’s back parameters Dc and
D0
c in eV. D, W, and ZB in column “Structure” denote diamond, wurtzite, and zincblende,

respectively. The two values of mn for wurtzite crystals refer to data parallel and perpendicular to
the c axis. Lowest gap values defining the bandgap are printed bold

Crystal Struct.
1. Indir.
gap mnk mn⊥

2. Dir.
gap mn 3. Gap mnk mn⊥ Δc

Δ0
c or

ΔE
Si D (X1)

1.16
0.92 0.19 (Γ2)

4.19

Ge D (L6)
0.76

1.57 0.081 (Γ7)
0.898

0.038

AlN W (Γ)
6.25

0.32 0.30

AlP ZB (X6)
2.52

2.68 0.155 (Γ6)
3.63

0.22 (L6)
3.57

AlAs ZB (X6)
2.24

0.97 0.22 (Γ6)
3.099

0.15 (L6)
2.46

1.32 0.15

GaN W (Γ)
3.51

0.20 0.20

GaP ZB (X6)
2.35

0.91 0.25 (Γ1)
2.72

0.13 (L1)
2.72

1.2 0.15 (Δ)
0.355

(Δ)
0.433
Δ0
c

GaAs ZB (L6)
1.815

1.9 0.075 (Γ6)
1.519

0.067 (X6)
1.981

1.3 0.23 (X)
0.304

(X)
0.009
ΔE

GaSb ZB (L6)
0.875

1.3 0.10 (Γ6)
0.812

0.039 (X6)
1.141

1.51 0.22 (X)
0.178

(X)
0.025
ΔE

InN W (Γ)
0.78

0.07 0.07

InP ZB (L6)
2.014

(Γ6)
1.424

0.080 (X6)
2.384

InAs ZB (L6)
1.133

0.64 0.05 (Γ6)
0.417

0.026 (X6)
1.433

1.13 0.16

ZnSe ZB (L6)
3.96

(Γ6)
2.82

0.16 (X6)
4.57

CdS W (Γ)
2.579

0.15 0.17

CdTe ZB (L6)
2.82

(Γ6)
1.475

0.096 (X6)
3.48
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relating E(k) directly to the corresponding effective masses. Satellite minima of E(k)
at k0 6¼ 0 show ellipticity, such as those of the indirect gap semiconductors Ge, Si,
and GaP; so do the higher satellite minima of others III–V compounds, such as
GaAs. For symmetry reasons, these ellipsoids are ellipsoids of revolution about the
main axes; hence, we distinguish only two effective masses, parallel and orthogonal
to these axes, mk and m⊥, respectively (Eq. 6). The main axes of these ellipsoids of
revolution lie in h100i direction for Si and in h111i direction for Ge. Another
example is the camel’s back conduction band of some III–V compound semicon-
ductors (see Fig. 12); it can be described by

Ec kð Þ ¼ ℏ2k2k
2mk

þ ℏ2k2⊥
2m⊥

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δc

2

� �2

þ Δc
0

ℏ2k2k
2mk

s
, (7)

where kk, mk, k⊥, and m⊥ are the components parallel and perpendicular to [100] and
Δ0
c describes the nonparabolicity; ΔE and Δc are identified in Fig. 12.
The energies of the conduction-band minima, as measured from the valence-band

maximum, and the corresponding effective masses are listed in Table 3.

1.2.2 The Valence Band of Cubic Semiconductors
The valence band develops from the twofold degenerate s states and the
sixfold degenerate p states of an atom forming sp3 hybrids. Without spin–orbit
interaction it breaks into two bands at k = 0 (Γl and Γ25’, as shown in ▶ Fig. 9c
of chapter “Quantum Mechanics of Electrons in Crystals”). With spin–orbit
interaction, the upper edge Γ25’ breaks into two sets of bands: one set with a
total momentum of 3/2 is fourfold degenerate at k = 0; this degeneracy can be
removed in anisotropic crystals with crystal-field coupling, for example, in
hexagonal GaN.

The other set is twofold degenerate with j = 1/2 and shifted by the spin–orbit
splitting energy Δ0 (▶ Figs. 11b of chapter “Quantum Mechanics of Electrons in
Crystals” and 11); it is referred to as the spin–orbit split-off band “so” with an

Table 4 Upper valence bands (except G6) in eV for some semiconductors

Crystal Γ-related maxima L-related X-related

Si (Γ1) – 12.5 Γ25 = (Γ8) 0 (Γ7) – 0.044 (L3) – 2.82 (X4) – 6.27

Ge (Γ6) – 12.7 (Γ8) 0 (Γ7) – 0.29 (L6,5) – 1,43 (X5) – 3.29

GaP (Γ1) – 13.0 Γ15 = (Γ8) 0 (Γ7) – 0.08 (L3) – 1.1 (X5) –2.7

GaAs (Γ7) – 12.6 (Γ8) 0 (Γ7) – 0.35 (L4,5) – 1.2 (X7) – 2.87

GaSb (Γ6) – 12.0 (Γ8) 0 (Γ7) – 0.76 (L4,5) – 1.1 (X7) – 2.37

InP (Γ6) – 11.4 (Γ8) 0 (Γ7) – 0.21 (L4,5) – 0.94 (X7) – 2.06

InAs (Γ6) – 12.7 (Γ8) 0 (Γ7) – 0.43 (L4,5) – 0.9 (X7) – 2.37

ZnSe (Γ6) – 12.5 Γ15 = (Γ8) 0 (Γ7) – 0.45 (L4,5) – 0.76 (X7) – 1.96

CdTe (Γ6) – 11.1 (Γ8) 0 (Γ7) – 0.89 (L4,5) – 0.65 (X7) – 1.60
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effective mass mso. For k 6¼ 0 the degeneracy of the upper band is removed. Here,
the band splits into two bands, each of which is twofold degenerate. The one with
lower curvature is the heavy-hole band “hh” with an effective mass mhh; the other
with larger curvature is the light-hole band “lh” with an effective mass mlh. The
valence-band energies at a number of symmetry points are given in Table 4 for
some typical semiconductors. Near the Γ point (k = 0) the Hamiltonian describing
the three sets of upper valence bands can be written as (D'yakonov and Perel’
1971)

H ¼ � Aþ 2Bð Þk2 þ 3B k � bL� 	2
� 1

3
Δ0 σ � bL� 	

þ 1

3
Δ0, (8)

with

A ¼ �ℏ2

4

1

mlh

þ 1

mhh

� �
, B ¼ ℏ2

4

1

mlh

� 1

mhh

� �
, (9)

where bL is the angular-momentum matrix, σ is the Pauli operator spin matrix, and
Δ0 is the spin–orbit splitting.

Only the light- and heavy-hole bands need to be considered when Δ0 is larger
than certain energies, e.g., kT or the ionization energy of shallow acceptors (see
▶ Sect. 1 of chapter “Shallow-Level Centers”). For these two bands, the Hamilto-
nian reduces considerably. Luttinger (1956) gives it in a form that does not require
spherical symmetry

H ¼ ℏ2

2m0

γ1 þ 5

2
γ2

� 	
k2 � 2γ3 k � Jð Þ2 þ 2 γ3 � γ2ð Þ k2xJ

2
x þ k2yJ

2
y þ k2z J

2
z

� 	h i
, (10)

where J is a pseudovector representing the spin–momentum operator (Bir and Pikus
1974) and γi are the Luttinger parameters. For γ3 = γ2, the eigenvalues of this
Hamiltonian yield two parabolic bands

Fig. 12 Camel’s back
conduction band in GaP along
the Δ axes near the Brillouin
zone boundary at X. Dashed
and solid curves refer to
diamond and zinc-blende
structures, respectively
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Elh ¼ γ1 þ 2γ2
2m0

ℏ2k2 and Ehh ¼ γ1 � 2γ2
2m0

ℏ2k2, (11)

for light and heavy holes with effective masses

mlh ¼ m0

γ1 þ 2γ2
and mhh ¼ m0

γ1 � 2γ2
: (12)

With γ3 substantially different from γ2, the two sets of valence bands become warped
and are determined from the dispersion equation:

Elh,hh ¼ ℏ2

2m0

γ1k
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ22k

2 þ 12 γ23 � γ22
� �

k2xk
2
y þ k2yk

2
z þ k2z k

2
x

� 	r
 �
(13)

with the + and � signs for light- and heavy-hole bands, respectively. The degree of
warping can be judged from the tabulated values of γi (Table 5). For example, it is
small for Ge and GaAs (γ2 	 γ3) and much larger for Si and GaP (see also Fig. 13).

Often an equivalent description of these two bands is given8:

E� ¼ Ak2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bk2
� �2 þ C k2xk

2
y þ k2yk

2
z þ k2z k

2
x

� 	r
, (15)

with the + and � signs for the light- and heavy-hole bands, respectively. The band
parameters can be interpreted as A giving the average curvature, B giving the

Table 5 Hole effective masses in units of m0, valence-band splitting D0 in eV, and Luttinger
valence-band parameters of some cubic semiconductors

Crystal γ1 γ2 γ3 Δ0 mhh(100) mhh(110) mhh(111) mlh mso

Si 4.29 0.34 1.45 0.044 0.54 0.153 0.23

Ge 13.38 4.28 5.69 0.296 0.28 0.35 0.38 0.044 0.10

AlP 3.35 0.71 1.23 0.07 0.30

AlAs 3.76 0.82 1.42 0.28 0.28

GaP 4.05 0.49 2.93 0.08 0.42 1.00 0.16 0.25

GaAs 6.98 2.06 2.93 0.341 0.51 0.082 0.172

GaSb 13.4 4.7 6.0 0.76 0.28 0.05 0.12

InP 5.08 1.60 2.10 0.108 0.56 0.60 0.12 0.21

InAs 20.0 8.5 9.2 0.39 0.35 0.43 0.026 0.14

ZnSe 4.3 1.14 1.84 0.43

CdTe 5.3 1.7 2.0 0.81 0.72 0.81 0.84 0.13

8There are also Dresselhaus parameters L,M, and N (Dresselhaus et al. 1955) to describe the valence
band. They are related to the Luttinger parameters by

γ1 ¼ �2m0 Lþ 2Mð Þ=3 , γ2 ¼ �2m0 L�Mð Þ=6 , γ3 ¼ �2m0N=6: (14)
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splitting between heavy- and light-hole bands, and C describing the warping. These
parameters are related to the Luttinger band parameters by

γ1
m0

¼ � 2

ℏ2
A ,

γ2
m0

¼ � 1

ℏ2
B ,

γ3
m0

¼ � 1ffiffiffi
3

p
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 3B2

p
: (16)

The different shapes of the surfaces of constant energy for the different conduction
and valence bands are summarized in Fig. 14. An impression about the degree of
warping for Si can be obtained from Fig. 13, which shows cuts through the E(k)
surface in different crystallographic directions (Pantelides 1978).

1.2.3 The Valence Band of Wurtzite Semiconductors
The valence band of wurtzite crystals and related hexagonal polytypes develops from
sp3 hybrids similar to the cubic case. However, the behavior of the bands along [0001],
i.e., along the c axis, is distinctly different from that perpendicular. The valence-band
states transform p-like at the center of the Brillouin zone as X, Y, and Z representations
of the wurtzite C6v

4 space-group symmetry. The hexagonal symmetry causes a crystal-
field splitting Δcr. The additional effect of the spin–orbit interaction Δso creates a
splitting of the valence-band maximum at k= 0 into three valence bands labeled A, B,
and C as illustrated in Fig. 14. The spin–orbit splittingΔso is expressed in terms of two
parameters Δ2 and Δ3, which commonly are assumed to be equal, yielding Δ2=Δ3=
Δso/3. The crystal-field splitting Δcr = Δ1 is generally not related to Δso. The energy
splitting of the Δcr and Δso parameters is given by

Xh jHcr Xj i ¼ Yh jHcr Yj i ¼ Ev þ Δ1, (17a)

Zh jHcr Zj i ¼ Ev, (17b)

Xh jHso,z Yj i ¼ �iΔ2, (17c)

Fig. 13 E(k) diagram for the valence bands of Si near the Γ point in three symmetry directions
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Yh jHso,x Zj i ¼ Zh jHso,y Xj i ¼ �iΔ3: (17d)

This yields at the Γ point the energies

E1 ¼ Δ1 þ Δ2

E2,3 ¼ 1
2

Δ1 � Δ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1 � Δ2ð Þ2 þ 8Δ2

3

q� �
,

(18)

with E1 corresponding to the Γ9 level in Fig. 14 and E2,3 to the two Γ7 levels. The
order of the levels depends on the values of the parameters, which are affected by the
kind of material, and the hexagonal c/a and u lattice parameters. In GaN the splitting
by Δcr leads to an upper Γ6 level and a lower Γ1 level, while the order is reversed for
AlN as shown in Fig. 15.

Unlike in zincblende crystals, the valence band of wurtzite crystals deviates
significantly from parabolic behavior. The valence-band structure is commonly
expressed in terms of seven (sometimes only 6) parameters Ai and the three splitting
parameters Δi mentioned above, using the Hamiltonian reported from Bir and Pikus
(1974):

Fig. 14 Splitting of the top of the valence band at k = 0 for wurtzite crystals by the effect of the
crystal-field and the spin–orbit interaction. The three resulting heavy-hole, light-hole, and crystal-
hole bands are referred to as A, B, and C, respectively
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H ¼ Δ1 L
2
z þ Δ2 Lz σz þ

ffiffiffi
2

p
Δ3 Lþ σ� þ L� σþð Þ

þ A1 þ A3 L
2
z

� �
k2z þ A2 þ A4 L

2
x

� �
k2x þ k2y

� 	
� A5 L2þk

2
� þ L2�k

2
þ

� � � 2iA6kz LzLþ½ 
k� � LzL�½ 
kþð Þ
þ A7 Lþk� þ L�kþð Þ

(19)

with the abbreviations given in atomic units (i.e., ℏ = 1, m0 = ½, e2 = 2)

k� ¼ kx � i ky, L� ¼ � i=
ffiffiffi
2

p� 	
Lx � iLy
� �

, σ� ¼ � i=2ð Þ σx � iσy
� �

,

and 2[Lz L�] = Lz L� + L� Lz. The L and σ symbols represent the angular-
momentum matrices and Pauli spin-matrices, and the Ai and Δi are fitting parameters
listed in Table 6.

The parameters Ai of wurtzite crystals correspond to the Luttinger parameters γi of
zincblende crystals. The six hole masses are accordingly expressed by (Suzuki et al.
1995):

m0=m
k
hh ¼ � A1 þ A3ð Þ, m0=m

⊥
hh ¼ � A2 þ A4 � A5ð Þ

m0=m
k
lh ¼ � A1 þ A3ð Þ, m0=m

⊥
lh ¼ � A2 þ A4 � A5ð Þ � 2A2

7= Δ1j j
m0=m

k
ch ¼ �A1, m0=m

⊥
ch ¼ �A2 þ 2A2

7= Δ1j j,
(20)

where k and⊥ refer to the orientation with respect to the c axis and the indices hh, lh,
and ch refer to light, heavy, and crystal hole. We note that the inversion parameter A7

breaks the spin degeneracies of light hole and crystal hole in the in-plane direction
denoted by the symbol ⊥.

The A parameters can be related to the Luttinger parameters in the cubic approx-
imation: the z axis of the cubic zincblende system is aligned along [111] and the
corresponding x and y axes are aligned along the [ 112 ] and [ 110 ] directions,
respectively; the hexagonal crystal field is assumed zero, i.e., Δcr = Δ1 = 0 and

Δ2= Δ3=Δso/3. This leads to the dependences A1= A2 + 2A4, A3=� 2A4=
ffiffiffi
2

p
A6

� 4A5, A7 = 0. For these conditions the A parameters read:

Fig. 15 Valence-band
structure of GaN and AlN near
the center of the Brillouin
zone. The kz axis points along
the [0001] direction and kx
axis perpendicular along an
in-plane direction (After
Chuang and Chang 1996)
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A1 ¼ � γ1 þ 4γ3ð Þ
A2 ¼ � γ1 � 2γ3ð Þ
A3 ¼ 6γ3
A4 ¼ �2γ3
A5 ¼ � γ2 þ 2γ3ð Þ
A6 ¼ � ffiffiffi

2
p

2γ2 þ γ3ð Þ:

(21)

For GaN and AlN the cubic approximation was reported to yield a good description
of the valence bands at k = 0 when compared to the first-principles LAPW
calculations of the wurtzite structure (Suzuki et al. 1995).

1.2.4 Probing Bands with Cyclotron Resonance
By applying a sufficiently strong magnetic field, the band shape can be probed by
forcing the electrons into circles perpendicular to the direction of the magnetic
induction (for vanishing electric field), following the Lorentz force F L

9:

F L ¼ ℏ
dk

dt
¼ e Fþ v� Bð Þ: (22)

These circling electrons are accelerated by the magnetic induction with a centripetal
acceleration

a ¼ ℏ
m�

dk

dt
¼ e

m� v� Bð Þ ¼ e

ℏm�
@E kð Þ
@k

� B

� �
; (23)

this acceleration is a measure of the effective mass, m*, hence of the band shape at
the specific electron energy (see below). The accelerated electrons can interact with a
high-frequency, small-amplitude probing electromagnetic field and show a reso-
nance absorption – the cyclotron resonance (in the classical limit)10 – when the ac

9Note that F represents the electric field and E an energy.
10Here cyclotron resonance is discussed within the same band, and quantum effects are neglected.
This can be justified when, neglecting scattering, each electron describes full circles which have to
be integers of its de Broglie wavelength ▶Eq. 6 of chapter “The Origin of Band Structure”. This
integer represents the quantum number nq of the circle, and for the magnetic induction discussed
here, it is a large number. Resonance means absorption (or emission) of one quantum ℏωc, hence
changing nq by Δnq = �1, which is the selection rule for cyclotron transitions. Since Δnq � nq, a
change in circle diameter is negligible; hence, the classical approach is justified. At higher fields the
circles become smaller, and when approaching atomic size, the quantum levels (Landau levels – see
▶ Sect. 2 of chapter “Carriers in Magnetic Fields and Temperature Gradients”) become wider
spaced and a quantum-mechanical approach is required. For reviews, see Lax (1963), Mavroides
(1972), and McCombe and Wagner (1975).
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frequency of the probing field coincides with the cyclotron frequency of the circling
electrons:

ωc ¼ eB0

m� ¼ 178:4
m0

m� B0 GHz=Tð Þ, (24)

where B0 is the stationary magnetic induction. This resonance absorption is quite
distinct when the electrons are permitted to complete many circles11 before being
interrupted by scattering (see chapter ▶ “Carrier Scattering at Low Electric Fields”).
Since the path of an electron to complete a cycle is smaller with the decreasing radius
of the circle and scattering is reduced with the decreasing density of defects and
phonons (see chapter ▶ “Carrier Scattering at Low Electric Fields”), cyclotron-
resonance measurements are usually performed at high magnetic fields in materials
of high purity and at low temperature. Excessively high magnetic fields, however,
cause inconveniently large high-resonance frequencies (for B0 of 1 Tesla, one
obtains ν = ωc/2π ffi 100 GHz).

Although electrons along all cross sections of the Fermi surface perpendicular to
the direction of the magnetic field cause resonance absorption, absorption maxima
are observed at the extrema of the cross section (belly or neck, see Fig. 9) because of
the higher electron density here. In addition, one observes the so-called dog-bone
cross sections, in which electrons circle between four adjacent Fermi surfaces near
the neck of each surface, as well as many other cross-section shapes depending on
the direction of the magnetic field and the shape of the Fermi surfaces.

In semiconductors, the cyclotron resonance can be used to probe the shape of the
bands near the edge of the conduction or valence band. Since the cyclotron-
resonance frequency depends only on the effective mass, its measurement yields
the most direct information about its behavior (see the following section and reviews
by (Smith 1967; Pidgeon 1980)).

1.2.5 Measurement of Effective Masses with Cyclotron Resonance
The effective mass is obtained directly from the cyclotron frequency (Eq. 24). By
changing the relative alignment of the magnetic induction and the crystal axis, one
can probe the anisotropy of the effective mass, such as that caused by the elliptical
satellite bands – see Fig. 16b.

The resonance frequency in such elliptical bands is

11The circle diameter (πvn/ωc) is typically of the order of 10�3 cm for a magnetic induction of 1 T;
here vn is the thermal velocity of an electron. In metals, however, one also has to consider the skin
penetration of the probing electromagnetic field. The skin depth of a metal is usually a very small
fraction of the circle diameter, so that the probing ac field can interact only at the very top part of
each electron cycle close to the surface. This enhances information about near-surface behavior in
metals, while in semiconductors, probing extends throughout the bulk.
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ωc ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0x

mymz
þ B2

0y

mzmx
þ B2

0z

mxmy

s
, (25)

with the components of a matrix tensor (mx, my, mz) in diagonal form. With mk = mx

and m⊥ = my = mz, the longitudinal and transverse effective masses, one obtains
from Eq. 25 for the resonance frequency

ωc ¼ eB0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ

m2
⊥

þ sin2θ

mkm⊥

s
, (26)

where θ is the angle between B0 and the principal axis of the E(k) ellipsoid (Fig. 17).
Figure 18 shows the measured resonance spectrum in Ge at a constant probing

frequency of 23 GHz (cm wave), with varying magnetic induction applied 10 out of
the (110) plane and 30 from the [100] direction. Resonances shown in Fig. 18 are
caused by electrons and holes in the different valence bands (see Fig. 10c). Hole
resonances can be expressed (Dresselhaus et al. 1955) with ωc = eB0/mp by
introducing an anisotropic hole effective mass:

mp

m0

¼ 1

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2=4

q 1� C2 1� 3 cos2θð Þ2

64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2=4

q
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2=4

q� �
0BB@

1CCA: (27)

Fig. 17 Magnetic orbit in
k space near the bottom of the
conduction band in a satellite
valley of Ge, with arbitrary
orientation of the magnetic
induction B

Fig. 16 Typical shapes of
surfaces of constant energy:
(a) spherical, (b) ellipsoidal,
and (c) warped
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The parameters A, B, and C are the empirical valence-band parameters explained in the
section on conduction bands above. Because of the warping of the valence band, higher
harmonics of the heavy-hole resonance are also found in cyclotron resonance (Fig. 18).

1.2.6 The Conduction Band at Higher Energies
The parabolic approximation is no longer sufficient when a significant fraction of the
electrons is at higher energies in the band, for example, at elevated temperatures,
high electric fields, after optical excitation, or when pushed up by high doping – see
▶ Sect. 1 of chapter “Carrier Scattering at High Electric Fields” and ▶Sect. 3 of
chapter “Optical Properties of Defects”. With increasing E, the band curvature
decreases; hence, usually m* increases, introducing an energy-dependent effective
mass. When expressed by mn(T ), the changes are relatively small between 0 and
300 K (1–5%). This dependence is shown in Fig. 19 as a function of the temperature
for Si and as a function of the energy above the band edge for Ge.

When a more accurate description of the band shape is needed beyond Ec(k = 0),
we can use an expression obtained from the k � p theory. For the shape of the
conduction band of GaAs, for example, we have

Fig. 19 Effective transverse electron mass (a) as a function of the temperature for Si (After (Ousset
et al. 1976)) and (b) as a function of the energy for Ge (After Aggarwal et al. 1969)

Fig. 18 Cyclotron resonance
in Ge with magnetic induction
applied in a direction showing
the eight resonances observed
in this crystal (After Dexter
et al. 1956)

266 Bands and Bandgaps in Solids



E k near Γ6ð Þ ¼ ℏ2k2

2mn
þ αþ β sð Þk4 � γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 9 t

p
k3 (28)

with

s ¼ k2xk
2
y þ k2yk

2
z þ k2z k

2
x

k4
and t ¼ k2xk

2
yk

2
z

k6
: (29)

The second term in Eq. 28 describes the deviation from parabolicity, and the third
term describes a slight band warping of the conduction band. In GaAs there is also a
slight spin splitting of the conduction band (Rössler 1984). See Fig. 20.

1.2.7 The Momentum Effective Mass
The effective mass of a carrier is conventionally described in relation to Newton’s
second law, yielding the well-known relation involving the curvature of E(k) – see
▶ Sect. 2.2 of chapter “The Origin of Band Structure”. Another way to introduce this
mass in a semiconductor with a spherical band of arbitrary shape is through the
relationship between the carrier velocity and the pseudo-momentum:

vi ¼
X
j

ℏ
mij

kj with vi ¼ 1

ℏ
@E

@k
: (30)

In a spherical band, therefore, the momentum effective mass is a scalar:

1

m� ¼
1

ℏ2

1

k

@E

@k
: (31)

In a parabolic dispersion E(k), this definition is identical to the conventional one,
relating the effective mass to the second derivative of E(k). The common description
is satisfactory as long as the discussion is restricted to the energy range near the band
edge, where parabolicity is a reasonable approximation. At higher energies the
momentum effective mass is more appropriate (Zawadzki 1982), and it will therefore
be used in the following section.

Fig. 20 E(k) in the lowest
conduction band of GaAs as a
function of the square of the
wavevector for various
directions from k = 0 to k =
0.07 � (2π/a). The two curves
for the [110] direction show
the spin splitting of the
conduction band (After
Rössler 1984)
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1.2.8 The Effective Mass at Higher Energies
A large fraction of the electrons can reach substantially higher energies within a
band when the Fermi level is shifted into the conduction band by higher doping.
Since the curvature decreases with increasing distance from the lower band edge,
the effective mass increases. In semiconductors with a very low effective mass
(here one has a low density of states near the band edge), one can reach this
condition at moderate doping levels, for example, with a donor density in excess of
1017 cm�3 for InSb (see▶Sect. 3 of chapter “Optical Properties of Defects”) as can be
seen by comparing upper and lower abscissae of Fig. 21. Kane (1957) estimates the
shape of the conduction band as a function of the wavevector for a three-band model
(Γ6, Γ7, and Γ8) near k = 0 for InSb. In GaAs the corrections are somewhat smaller
(Vrehen 1968) because of a larger bandgap. Thus, one obtains for the nonparabolic
conduction band

E kð Þ ¼ ℏ2k2

2m0
n

� 1� m0
n

m0

� �
ℏ2k2

2m0
n

� �2 3E2
g þ 4Δ0Eg þ 2Δ2

0

Eg Eg þ Δ0

� �
3Eg þ 2Δ0

� � !
, (32)

where the energy is normalized to E= 0 at Ec; Δ0 is the spin–orbit splitting, and mn
0

is the effective mass at the bottom of the conduction band, which can be expressed
(Kane 1957) as

1

m0
n

¼ 1

m0

þ 4P2

3ℏ2Eg

Δ0 þ 3
2
Eg

Δ0 þ Eg

: (33)

Here P is the matrix element connecting the conduction band with the three valence
bands.

Fig. 21 Effective masses of
electrons in InSb as calculated
from the three-band Kane
model (solid curve) and
measured by various authors
as a function of the position of
the Fermi level below and
inside the conduction band
(After Zawadzki 1974)

268 Bands and Bandgaps in Solids



The effective mass slightly above the bottom of the conduction band can be
approximated as

mn Eð Þ ¼ m0
n 1þ 2E

Eg

� �
ffi m0

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vg

v

� 	2r
, (34)

with v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg= 2m0

n

� �q
and vg as the group velocity (▶Eq. 17 of chapter “The Origin

of Band Structure”; Landsberg 1987). Equation 34 is in fair agreement with the
experiment for InSb (Fig. 21).

With increasing temperature, one must also consider the lattice expansion and
consequent relative shift of the different bands if they are near enough to Ec. This
influences the effective mass as a function of temperature and, in the given example
of GaAs, causes a reduction in mn with increasing temperature rather than an
increase with increasing band filling – see Fig. 22.

2 The Bandgap

In semiconductors, the valence band is separated from the conduction band by a
relatively narrow bandgap (for further distinction, see▶ Sect. 1 of chapter “Band-to-
Band Transitions”); in insulators, the gap is much wider (Fig. 3). The distinction
between semiconductors and insulators is arbitrary at a bandgap of �3 eV. A wide
variety of materials provides a continuous transition of behavior from that of
insulators and wide-, narrow-, and zero-bandgap semiconductors to metals.

The bandgap shows a distinctive trend that is seen for various AB compounds in
Fig. 23 (see also Sect. 1, Tables 2, 3, and 8): it decreases with decreasing ionicity of
the lattice binding forces and decreases steeply in the same class of compounds for
homologous components with increasing atomic number, e.g., increasing ionic
radius (interatomic spacing) or decreasing binding energy (see Phillips 1970). We
must be careful, however, when using this trend for predicting the bandgap of
unknown compounds, since substantial deviations occur between materials with
the gap at the Γ, L, or X point in E(k).

Fig. 22 Electron effective
mass as a function of
temperature for GaAs (After
Blakemore 1982)

2 The Bandgap 269



2.1 Bandgap of Alloys

A continuous variation of the width of the bandgap can be achieved by alloy
formation or by application of hydrostatic pressure, which thereby changes the
lattice composition or the lattice constant and thus the bandgap (see Sect. 2.2).
Alloys12 can be formed between similar metals or by mixing similar, homologous
elements within a compound. An example is GaxAll-xAs, in which the metal-atom
sublattice is a homogeneous and statistical mixture (substitutional random alloy) of
Ga and Al, with a resulting bandgap between that of GaAs and AlAs. Another
example is GaAsl-xPx, in which the nonmetal sublattice is alloyed. There are an
infinite number of such pseudo-compounds, which provides the possibility of creating
any desired bandgap energy. For quaternary alloys such as GaxAll-xPyAsl-y,
see Pearsall (1982).

Fig. 23 Bandgap energies for various AB compounds and element semiconductors; C refers to the
diamond modification (After Hayes and Stoneham 1984)

12The conventional term alloy of metals also encompasses crystallite mixtures of nonintersoluble
metals, such as lead and tin (solder). Here, however, only materials within their solubility ranges are
discussed. The Hume-Rothery rule identifies these metals as having similar binding character,
similar valency, and similar atomic radii (Hume-Rothery 1936). Corresponding guidelines apply
to the intersolubility of cations or anions in compounds.
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Alloy formation between components AC and BC produces a linear interpolation
of the bandgap

Eg xð Þ ¼ Eg ACð Þ þ x Eg BCð Þ � Eg ACð Þ� 
(35)

only if the alloying atoms (A and B) have nearly identical binding forces to atom
C and have nearly the same atomic radii. The bar over Eg indicates the averaging
over various local configurations with different numbers of nearest neighbors of a
certain atom. An example is ZnSxSel-x (Fig. 24a). If the radii are substantially
different, a strong bowing of the bandgap is observed, as shown for ZnSxTel-x
and ZnSexTel-x in Fig. 24b, c (Bernard and Zunger 1987). For a review, see
Jaros (1985).

The bowing is described with an empirical bowing parameter b according to

Eg xð Þ ¼ Eg xð Þ � bx 1� xð Þ: (36)

This bowing parameter is listed in Table 7 for a selection of II–VI and III–V
compounds. It must be noted that reasonable values for b in many cases apply
only for a limited composition range; sometimes also composition-dependent
parameters b(x) are reported (see, e.g., Vurgaftman et al. 2001).

Since the lattice parameter(s) of semiconductor alloys are well described by the
linear dependence expressed by Vegard’s rule (▶Eq. 11 of chapter “Crystal Bond-
ing”), the composition parameter x used as abscissa in Fig. 24 is usually replaced by
a lattice parameter (generally a in both zincblende and wurtzite semiconductors).

Fig. 24 Bandgap energy as a
function of the composition
parameter x of mixed crystals
between ZnS, ZnSe, and ZnTe
(After Larach et al. 1957)
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The resulting presentation of alloy bandgaps is shown in Fig. 25 for various semi-
conductors. Kinks in the curves indicate crossings of conduction bands.

The bowing is caused by a change of the lattice energy of the alloy, which is due
to chemical and structural differences when a lattice atom is replaced by an alloying
atom. The change in bandgap energy is given by

ΔEg ¼ ΔEchem
g þ ΔEstruc

g : (37)

The varying chemical nature of the alloying atom may be expressed by its different
electronegativity “en” and hybridization “pd” when forming the lattice bond:

ΔEchem
g ¼ ΔEen

g þ ΔEpd
g : (38)

The changes in structure are induced by different bond lengths (u) and tetragonal
(bond angle) distortion (η) (see below):

Table 7 Bowing parameter b in eV for various compound semiconductors (computed from
Richardson 1973)

GaAs AlSb InP GaSb InAs InSb ZnS ZnSe ZnTe CdTe

GaP 0.38 2.31 1.36 3.51 2.67 5.68 0.87 1.41 3.51 2.96

GaAs 0.44 0.22 1.44 0.84 2.86 1.20 0.76 1.55 0.76

AlSb 0.01 0.005 0.05 0.92 3.64 1.88 1.17 1.55

InP 0.49 0.22 1.55 2.12 0.92 0.84 0.46

GaSb 0.008 0.24 4.08 1.85 0.44 �0.24

InAs 0.52 3.13 1.25 0.35 0.05

InSb 6.20 3.21 0.90 0.44

ZnS 0.60 3.02 2.07

ZnSe 0.90 0.02

ZnTe �0.57

Fig. 25 Bandgap energy as a
function of lattice constant
a for pure (dots) and alloyed
zinc-blende and diamond
semiconductors at room
temperature. Blue and red
drawing denotes direct and
indirect bandgap, respectively
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ΔEstruc
g ¼ ΔEu

g þ ΔEη
g: (39)

The shifting of different conduction-band minima by alloying can be substantially
dissimilar from each other and consequently may change their relative position. An
example is shown in Fig. 26 for the Γ, X, and L points of Ga l-xAlxAs.

The structural changes are more easily discussed when starting from a 50% alloy.
When ordered, this alloy can be described as a chalcopyrite. For example, an ordered
Zn0.5Cd0.5S can be described as ZnCdS2, which in structure is similar to CuGaS2
(see▶Fig. 13b of chapter “The Structure of Semiconductors”). The bond alternation is
given by an anion displacement parameter u ¼ AC2 � BC2

� �
=a2 þ 1=4with (A, B, C)

standing for the components (Zn, Cd, S in the given example) and AC as the ave-
rage distance between atoms A and C, etc. The tetragonal distortion is described
by the ratio η = c/2a. The more the measured u in the actual alloy deviates from the
ideal ratio 1/4 and η from 1 for an ideal chalcopyrite, the larger is the contribution
from ΔEg

struc to the bowing.
In ternary compounds, e.g., chalcopyrites, little bowing is observed when the

anion sublattice is alloyed (e.g., CuInSxSel-x, CuInSexTel-x, and CuInSxTel-x), while
there is substantial bowing when the cation sublattice is alloyed (e.g., CuGaxInl-xSe2
or CuxAgl-xGaSe2). For reviews, see Martins and Zunger (1986) and also Jaffe and
Zunger (1984).

Strong bowing indicates a large change in lattice energy, which acts as a driving
force for ordering, that is, for compound formation when a stoichiometric atomic
ratio is reached rather than the formation of a statistical alloy. Examples are SiGe,
GaInP2, or Ga2AsP (Jen et al. 1986; Srivastava et al. 1986; Ourmazd and Bean
1985). For InxGa1-xN and InxAl1-xN alloys, see Ferhat and Bechstedt (2002).

2.2 Bandgap Dependence on Temperature and Pressure

The bandgap (and other band features – see ▶Sect. 1 of chapter “Band-to-Band
Transitions”) change with temperature and pressure:

ΔEg ¼ @Eg

@T

� �
P

ΔT þ @Eg

@P

� �
T

ΔP: (40)

Fig. 26 Changes of the
conduction-band minima of
Gal-xAlxAs as a function of the
composition parameter x at
room temperature (From data
of Saxena 1981)
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Temperature-induced changes are due to changes in:

• Lattice constants
• Electron–phonon interaction

The first term of Eq. 40, however, is closely related to the second term, which
gives the changes of the bandgap under pressure. The latter can be divided into
several contributions, solely related to a change in the lattice constant. These changes
influence the optical behavior due to changes in:

• Matrix element, which depends on 1/a (lattice constant in a cubic crystal)
• Density of states inducing changes in the effective mass
• Energy of electronic levels
• Plasma frequency containing a changed density of dipoles and a changed effec-

tive charge
• Phonon frequency as the lattice stiffens with increasing pressure (anharmonicity

of oscillations)

The changes in electron–phonon interaction dominating the first term of Eq. 40
are more involved. They have attracted substantial interest and can be divided into
three different approaches:

1. The approach suggested by Fan (1951), involving an electron self-energy term
that arises from spontaneous emission and reabsorption of a phonon; this
approach was expanded by Cohen (1962) to include intervalley scattering.

2. The approach suggested by Antončik (1955), who introduced a temperature-
dependent structure factor (Debye–Waller factor),13 that is experimentally acces-
sible from the temperature dependence of the Bragg reflections.

3. The approach suggested by Brooks (1955) and refined by Heine and van Vechten
(1976), relating to a change in lattice vibrations from ω to ω’ when an electron is
excited from the valence into the conduction band:

Eg Tð Þ ¼ Eg 0ð Þ � kT
X
i

ln
ω

0
i

ωi

� �
: (42)

See Lautenschlager et al. (1985) for later work.

13This Debye–Waller factor (W ) is related to the probability of phonon emission during electron or
x-ray diffraction and is given in the Debye approximation by

p ¼ exp �2Wð Þ ¼ exp � 6ER

kΘ

1

4
þ T

Θ

ðΘ=T
0

x dx

exp xð Þ � 1

" # !
, (41)

where ER is the recoil energy Mv2/2.
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Finally, the influence of uniaxial stress lowers the crystal symmetry and thus
removes the degeneracy of the valence-band maximum in cubic crystals. Uniaxial
stress experiments can be designed to yield information on level and effective-mass
symmetries and on deformation potentials. These changes will be discussed in
▶ Sect. 3.2 of chapter “Shallow-Level Centers”.

Since the influences of temperature and pressure are manyfold and involve all
bands, it is not possible to describe features which apply universally to all semi-
conductors. A few examples will be presented here. More comprehensive literature
includes a large number of odd cases that behave substantially differently from the
given examples, e.g., referenced by Martinez (1980).

The bandgap usually decreases with increasing temperature – see Fig. 27. Excep-
tions are the lead chalcogenides, which show an increase of the gap with tempera-
ture; this bandgap is determined at the L point – see Fig. 5.

In a wide temperature range, the bandgap changes linearly with temperature

Eg Tð Þ ¼ Eg0 þ βE T, (43)

where βE is typically in the �10�4 eV/deg range – see dEg/dT at 300 K in Table 8.
For lower temperature, however, jβEj decreases and vanishes for T! 0 according to
the third law of thermodynamics.

The temperature dependence of the gap over a larger temperature range can be
approximated by (Varshni 1967)

Eg Tð Þ ¼ Eg0 � α T2

β þ T
: (44)

The empirical parameters α and β are typically in the range (0.4–0.6) meV/K and
(100–600) K as listed in Table 8 for some semiconductors.

The change of the bandgap energy due to pressure is expressed as

ΔEg Pð Þ ¼ @Eg

@P

� �
T

ΔP: (45)

Fig. 27 Decrease of the
bandgap energy with increasing
temperature for Si. The curve is
a fit to Eq. 44 (Data are from
Bludau et al. 1974)
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However, it cannot be linearized in a wider pressure range, since it often involves
several bands which are influenced by different pressure coefficients that may even
have different signs. As an example, the pressure dependence of the gap in GaAs is
given in Fig. 28a. The gap first increases, shows a maximum at �6 � 104 bar, and
then decreases again with increasing pressure. The lower valley in the conduction
band in GaAs (Γ point) increases, while the (100) valley decreases with pressure. At
pressures above 8 � 104 bar, GaAs becomes an indirect bandgap material. The
pressure coefficient can approximately be described by the relation Eg (eV)= 1.45 +
0.0126 P – 3.77 � 10�5P2 (P in kbar).

Table 8 Direct (d ) and indirect i) bandgap energies for various semiconductors and their temper-
ature dependence expressed in terms of parameters a and b according to Eq. 44 and their linear
temperature and pressure coefficients

Crystal
Eg

(0 K) (eV) Eg (300 K) (eV) α (meV/K) β (K)

dEg

dT
meV
K

� ���
300 K

dEg

dP
meV
kbar

� �
Si 1.1695 (i) 1.110 (i) 0.473 636 �0.28 �1.41

Ge 0.744 (i) 0.664 (i) 0.477 235 �0.37 5.1

AlN 6.25 (d ) 6.13 (d ) 1.799 1462 �0.6 4.9

AlP 2.52 (i) 2.45 (i) 0.318 588 �0.2

AlAs 2.24 (i) 2.15 (i) 0.70 530 �0.4 10.5

GaN 3.510 (d ) 3.42 (d ) 0.909 830 �0.4 3.9

GaP 2.350 (i) 2.272 (i) 0.5571 372 �0.37 10.5

GaAs 1.519 (d ) 1.411 (d ) 0.540 204 �0.39 11.3

GaSb 0.812 (d ) 0.69 (d ) 0.417 140 �0.37 14.5

InN 0.78 (d ) �0.75 (d ) 0.245 624 �0.1 3.0

InP 1.424 (d ) 1.34 (d ) 0.363 162 �0.29 9.1

InAs 0.417 (d ) 0.356 (d ) 0.276 93 �0.34 10.0

ZnSe 2.820 (d ) 2.713 (d ) 0.490 190 �0.45 7

CdS 2.579 (d ) 2.501 (d ) 0.47 230 �0.38 4.4

CdSe 1.841 (d ) 1.751 (d ) 1.7 1150 �0.36 5.0

CdTe 1.606 (d ) 1.43 (d ) 0.310 108 �0.54 7.9

Fig. 28 (a) Pressure dependence of the bandgap of GaAs, and (b) trends (arrows) of E(k) with
increasing pressure (After Edwards et al. 1959)
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Pressure coefficients near 1 bar are typically on the order of 10 meV/kbar. They
are usually positive for Γ h000i and L h111i valleys and are negative for valleys
along hl00i � see Fig. 28b.

2.3 Bandgap at High Doping Level

The bandgap in heavily doped semiconductors is substantially reduced. There are
many reasons for the reduction of the bandgap, summarized in an extensive review
by Abram et al. (1978); see also Mahan (1980), van Overstraeten (1982), and Kalt
(1996). The more important phenomena which influence the bandgap at high doping
densities (Nd > 1017 cm�3) are given below:

(a) The exchange energy of electrons due to their fermion nature. It tends to keep the
electrons with parallel spin away from each other but is attractive to electrons
with opposite spin, resulting in a net attractive term. As a consequence, one
obtains a lowering of the conduction-band edge δEcex relative to the Fermi level
in equilibrium and at T = 0:

δEcex ¼ � e2

πee0
ΛδkF ffi Bδe

Nd cm�3ð Þ
1018

� �1
3

meVð Þ; (46)

the wave number at the Fermi surface is given by

kF ¼ 3π2Nd

νD

� �1
3

, (47)

assuming total ionization of uncompensated donors of density Nd and νD the
degeneracy factor of the band; Λδ and Bδe are numerical factors listed in Table 9
(Mahan 1980); for further many-body corrections, see Kalt (1996).

(b) The attractive interaction between free electrons and charged donors, causing
another reduction in the conduction-band edge:

δEced ¼ � e2

πee0λTF
ffi Cδe

Nd cm�3ð Þ
1018

� �1
6

meVð Þ, (48)

with the Thomas–Fermi screening length

Table 9 Empirical parameters for bandgap narrowing (Mahan 1980)

Crystal νD Aδ F λδ Bδ e Cδ e Dδ p Eδ p

Si 6 3.3 0.95 �6.5 �12.1 �13.1 6.1

Ge 4 6.6 0.84 �4.9 �6.0 �8.2 4.4
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λTF ¼ π
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
este0ℏ2

mne2 3Ndð Þ1
3

s
(49)

which is responsible for screening at sufficient doping density – see (Landsberg et al.
1985).

(c) The exchange energy for holes, causing a relative increase of the valence-band
edge by

δEvhx ¼ �mp e4
ffiffiffiffiffiffi
ωp

p

π ee0ð Þ2ℏ J ffi Dδp
Nd cm�3ð Þ

1018

� �1
4

meVð Þ, (50)

with ωp as the plasma frequency (▶Sect. 1.1 of chapter “Photon–Free-Electron
Interaction”) and J as an integral (Mahan 1980) of nearly constant value (J ffi 0.8).

(d) The interaction between holes and donors is repulsive and thus causes a relative
lowering of the valence-band edge by

δEvhd ¼ �0:48
e2

ee0
N

1
3

d ffi Eδp
Nd cm�3ð Þ

1018

� �1
3

meVð Þ: (51)

The total change in the bandgap energy is obtained as the sum of all of these
contributions,

ΔEg ¼ δEcex þ δEced þ δEvhx þ δEvhd ¼ ΔEc þ ΔEv: (52)

The influence of the first two contributions on the conduction band is shown in
Fig. 29a for Si. The total reduction of the bandgap energy as a function of the doping
density is shown for Si in Fig. 29b, and contributions of δEcex and δEced are given in
Fig. 29c.

Pantelides et al. (1985) estimated that multivalley interaction and density fluctu-
ation cause a further reduction in the electrically obtained bandgap, which is on the
order of 50 meV at Nd � 1020 cm�3 in GaAs. This agrees with the optically
determined bandgap reduction via absorption, luminescence, or photoluminescence
spectroscopy (Wagner 1984). See also Berggren and Sernelius (1984).

Simple empirical relations to approximate the change in bandgap energies with
doping are given for some semiconductors in Table 10; see also Jain and
Roulston (1991).

2.3.1 Fermi Level at High Doping Densities
When the doping density Nd exceeds the effective level density Nc at the lower edge
of the conduction band, the Fermi level moves from the bandgap into the conduction
band. This results in an “effective widening” of an optical gap, since, for example,
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optical excitation from the valence band can only proceed to empty states above the
Fermi level. The shift is given for parabolic bands, using the density of states in these
bands (▶ Sect. 1 of chapter “Equilibrium Statistics of Carriers”) and n ffi Nd, by

δEcF ¼ ℏ2

2mdsn

3π2Nd

νD

� �2
3

ffi AδF
Nd cm�3ð Þ

1018

� �2
3

meVð Þ, (53)

where vD is the degeneracy factor of the conduction band and mdsn is the density-of-
state mass for electrons. This equation is valid when all donors are ionized and
uncompensated. A similar expression can be obtained for high doping with accep-
tors, replacing mdsn with the density-of-state mass for holes mdsp and vD with the
degeneracy factor for the valence bands. However, the larger effective mass of holes
in the heavy-hole band makes this effect less favorable. Table 9 lists AδF and vD for Si
and Ge. Such a shift is substantial even at moderate electron densities for semi-
conductors with low effective mass (e.g., InP). See ▶Sect. 3.2 of chapter “Optical
Properties of Defects” for the optical manifestation of this shift (Burstein–Moss
effect).

Table 10 Doping-dependent bandgap energy

Crystal Bandgap energy

Si Eg (eV) = 1.206 � 0.0404 ln(Na (cm
�3)/7.5 � 1016)

GaAs Eg eVð Þ ¼ 1:45� 1:6� 10�8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n cm�3ð Þ3

p
InP Eg eVð Þ ¼ 1:344� 2:25� 10�8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n cm�3ð Þ3

p
InN Eg eVð Þ ¼ Eg n ¼ 0ð Þ � 2:0� 10�8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n cm�3ð Þ3

p

Fig. 29 (a) Schematic illustrating the change of the bandgap energy with increasing donor density.
(b) Bandgap narrowing as a function of the density of shallow donors in Si; (c) contributions of the
electron exchange energy δEcex and the interaction of electrons and charged donors δEced to the
relative lowering of the conduction band in Si (After Mahan 1980)
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3 Electronic States in Low-Dimensional Semiconductors

When a semiconductor with a larger bandgap is embedded in another one of a
smaller gap, the former acts as a barrier for carriers. To find out whether electrons or
holes or both are confined in the small-bandgap semiconductor and to obtain the
actual barrier height, it is important to know the offset of the valence-band edge
(Kroemer 1983; Yu et al. 1992) and the actual bandgap of the (generally strained)
confined solid. Three cases referred to as type I to III may be distinguished in the
alignment of the valence-band edges of the two semiconductors as illustrated in
Fig. 30. The straddled alignment of a type I double heterostructure provides a
confinement for both electrons and holes, while the staggered alignment of type II
confines either electrons (as depicted in Fig. 30b) or holes (if EvB > EvA). The
misaligned band lineup of type III, also referred to as broken-gap configuration,
occurs if the bandgaps of the two semiconductors do not overlap, i.e., if EvA lies
above EcB or EcA lies below EvB.

A quantum well is formed if the confining potential (illustrated for electrons in
Fig. 30) acts solely in one spatial direction and extends over a small length in the
range or below the de Broglie wavelength of confined carriers14; the motion of
carriers is restricted in this direction and unrestricted in the two perpendicular
directions, creating a two-dimensional (2D) well. If an additional confinement acts
along one of these two perpendicular directions, a quantum wire (1D) is formed with
an unrestricted carrier motion only along one direction: the wire axis. If a further

Fig. 30 Alignment of band edges in (a) type I, (b) type II, and (c) type III double heterostructures
made from small-bandgap semiconductor A with a small extension along the spatial coordinate
z clad by a wide-bandgap semiconductor B. Ev denotes the upper edge of the valence band, Ec the
lower edge of the conduction band, the difference Ec � Ev is the energy of the bandgap Eg

14At room temperature this is λ= h/p= h/
ffiffiffiffiffiffiffiffiffiffiffi
2m�E

p ffi 17 nm for 300 K thermal energies and a typical
effective mass of 0.2 � m0, i.e., in the 10 nm range. For excitons the relevant Bohr radius is also in
this range, e.g., 11.5 nm for GaAs and 3.2 nm for GaN.
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confinement potential acts also along this axis, a quantum dot is created with a three-
dimensional confinement, leading to 0D states. 2D through 0D quantum structures
are discussed in the following:

3.1 Quantum Wells and Superlattices

3.1.1 Quantum Wells
A quantum well is made from a thin semiconductor layer sandwiched between
semiconductors with a larger bandgap forming barriers. Usually the same material
is used for lower and upper barriers leading to a symmetrical square potential as
illustrated for Ec in Fig. 30. For an infinite confinement potential, the wavefunction
of a confined carrier cannot penetrate into the barriers. The eigenvalues along this
direction15 for a well of thickness Lz are given by

Ez,n ¼ ℏ2

2m�
z

nπ

Lz

� �2

, n ¼ 1, 2, 3, . . . : (54)

The quantum number gives the number of the carrier’s half-wavelengths in the
confined state. We note that the energy of the ground state with the quantum number
n = 1 is increased by the quantization energy ΔE = Ez,1. The eigenvalues of the
wavefunction are given by the sum of those for the x and y directions and (Eq. 54),
yielding E= Ex + Ey + Ez,n. For unrestricted carrier motion in the xy plane according
to the parabolic approximation, this sum reads

E ¼ En ¼ ℏ2k2x
2m�

x

þ ℏ2k2y
2m�

y

þ ℏ2

2m�
z

nπ

Lz

� �2

: (55)

The dispersion E(k) along kx and ky therefore consists of a series of parabola each
labeled by a particular value of n. The parabola are also referred to as subbands.

The confinement of a semiconductor quantum-well is given by the band offsets
illustrated in Fig. 30, which are typically some tenth of eV. For such finite barrier
height W(z) = ΔE � W0, the wavefunctions of a confined charge carrier penetrate
into the barriers. The eigenvalues for a square potential are obtained from the
transcendental equation

tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mwEnL

2
z

2ℏ2

s0@ 1A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mw

mb

W0 � En

En

r
(56a)

15Quantum wells are fabricated from a layer sequence BAB grown using epitaxy (▶ Sect. 3.3 of
chapter “Properties and Growth of Semiconductors”); the growth direction is usually referred to as
z direction, which we designate here as the direction where the confinement occurs.
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for even wavefunctions, i.e., even quantum numbers n, and

cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mwEnL

2
z

2ℏ2

s0@ 1A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mw

mb

W0 � En

En

r
(56b)

for odd wavefunctions (Bastard and Brum 1986).mw and mb are the effective masses
of the carriers in well and barriers, respectively, and Lz is the well width. Numerically
obtained solutions are given in Fig. 31 (Dingle et al. 1974). Energies in the figure are
scaled in units of the ground-state energy E1 of a well with infinite barriers (Eq. 54).
The gray line signifies the top of the well at E =W0. Discrete bound states are found
for E < W0, while continuum states exist for E � W0. We note that the number of
bound states of a confined carrier decreases as W0 decreases. Furthermore, the level
spacing and consequently the energy of the levels decrease. The topmost bound level
approaches the top of the well as W0 is gradually reduced. It should be noted that at
least one bound level exists in any quantum well.

A direct demonstration of subband formation in InAs/GaSb quantum wells by
imaging the local density of states is shown in Fig. 32 (Suzuki et al. 2007). The two
semiconductors form a broken-gap band alignment with the conduction-band edge
of the InAs quantum well lying below the valence-band edge of the cladding GaSb
(Fig. 30c), thereby providing a large confinement potential for electrons in the well.
Using the tip of a low-temperature scanning-tunneling microscope, the local density
of states was imaged across the InAs well by the spatially resolved normalized
differential conductance dI/dV: the tunneling tip locally probes the probability ampli-
tude of electrons (i.e., the electron density) across the well (Rontani et al. 2007).

The E(k) behavior of the valence band in an actual strained semiconductor
quantum well is a bit more complicated, since we must distinguish between light

Fig. 31 Calculated bound-
state energies of a carrier in a
symmetrical rectangular
potential well of finite depth
W0 indicated by the gray line.
Bars at the right-hand side
mark energy levels with
quantum numbers n for
infinite high barriers (After
Dingle 1975)
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and heavy holes in cubic (zincblende, diamond) or light, heavy, and crystal holes in
wurtzite semiconductors, which result in two or three sets of mini-bands. Consider-
ing excited states in the valence band of a cubic crystal, we observe a crossing of
states between heavy- and light-hole bands, as shown in Fig. 33. This results in a
mixing between these states (Collins et al. 1987). As shown on an enlarged scale in
Fig. 33c, this indicates that the dispersion curves cannot cross and that the interaction
(mixing) that takes place near the points of intended crossing results in a splitting,
making the top of the upper band light-hole-like and its bottom part heavy-hole-like
and vice versa for the lower band; compare also to Fig. 15.

3.1.2 Superlattices
Permitted bands separated by bandgaps occur in a bulk crystal as a consequence of the
quantum-mechanical properties of electrons in a periodic potential. This remains true
in superstructures. The additional periodicity in the lattice potential can be provided by

Fig. 32 (a) Scanning tunneling (dI/dV)/(I/V ) spectra locally probed across a 17 nm wide InAs/
GaSb quantum well for bias varied from 0.01 to 0.9 V in steps of 0.01 V. (b) Confining potential
(black lines) and calculated local density of states given as the sum of the squared subband
wavefunctions (gray curves) (After (Suzuki et al. 2007))

Fig. 33 (a) Dispersion
relations for electron and hole
subbands in a quantum well
confining two electron states,
one light-hole and two heavy-
hole states. (b) Optical
excitation transitions into the
ground state of the conduction
band. (c) Light- and heavy-
hole dispersions showing the
crossing at enlarged scale
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alternating layers of semiconductors with different bandgaps, i.e., in superlattices – see
Esaki and Tsu (1970) and Ando et al. (1982). Some of the effects observed in a
superlattice are already present in a single layer that provides a two-dimensional
quantum-well confinement of the electronic eigenfunctions as discussed above.

The periodic alternation of barrier and well layers produces a potential (Fig. 34a) of
the same form as the previously discussed Kronig–Penney potential16 (▶Sect. 1.2 of
chapter “The Origin of Band Structure”). The resulting eigenvalue spectrum is similar
to the spectrum of free electrons exposed to the periodic potential of a crystal, except
that now the periodic potential is imposed on Bloch electrons with an effective mass
mn, and the potential has a lower amplitude and a larger period length than the periodic
potential in a bulk lattice. Consequently, within the conduction band, one observes a
subband structure of mini-bands located within the valleys of this band; the higher
mini-bands extend beyond the height of the potential barriers. The lower mini-bands
are separated by mini-bandgaps (Fig. 34b) in the direction of the superlattice period-
icity z. Within the plane of the superlattice layers (x, y), however, the electron
eigenfunction experiences only the regular lattice periodicity. Therefore, the dispersion
relations E(kx) and E(ky) are much like those for the unperturbed lattice except for
the mixing with the states in the z direction; this results in lifting the lowest energy
(at k = 0) of the E(k) parabola above Ec of the bulk well material (Fig. 34b, c). The
second mini-band results in a second, shifted parabola, etc.

The mini-band structure is a direct-bandgap structure, independent of whether the
host (well) material has a direct or indirect bandgap. It permits optical transitions
from the valence band, which has a similar mini-band structure, to the lowest
conduction mini-band state at k = 0 (Fig. 33b).

Variations of the period length, barrier width, and barrier height change the width
of the allowed mini-bands and the interfacing mini-gaps. Using the Kronig–Penney
model, these are determined by▶Eq. 12 of chapter “The Origin of Band Structure”;
however, m0, contained in α and β (see ▶Eq. 11 of chapter “The Origin of Band
Structure”), is replaced by mn and the lattice parameters a1 and a2 (▶ Fig. 7 of
chapter “The Origin of Band Structure”) are replaced by the superlattice well and
barrier widths l1 and l2 (Fig. 35). This yields an implicit equation for the band edges
(i.e., for cos(ka) = 1 in ▶Eq. 12 of chapter “The Origin of Band Structure”):

α2 � β2

2αβ
¼ ctg α l1ð Þ ctgh β l2ð Þ: (57)

The resulting mini-band structure and E(k) dispersion relation shown in Fig. 34b
is very similar to the band structure shown in ▶ Figs. 3b and ▶ 10 of chapter “The

16The alternating potential shown in Fig. 30a is of type I, i.e., a minimum of Ec(z) coincides with a
maximum of Ev(z). Both minima and maxima coincide in a type-II superlattice (Fig. 30b). An
example for type II is the GaAsxSbl-x superlattice. For x below 0.25, the valence band of GaAs
extends above the conduction band of GaSb, resulting in quasimetallic behavior. For a review of
type-II superlattices, see Voos and Esaki (1981).
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Origin of Band Structure” for the periodic crystal potential, except that the edge of
the Brillouin zone in the kz direction (mini-zone) lies at �π/l with l = l1 + l2.
Typically, l is on the order of 5. . .50 lattice constants; thus the mini-zone is only a
small fraction (1/5 . . . 1/50) of the Brillouin zone of the host lattice. In contrast, the
Brillouin zone in the kx and ky directions extends to the full width �π/a and �π/b.
There are no mini-gaps in the x and y directions.

Figure 35 shows the computed widths of mini-bands and intermittent gaps as a
function of the period length for a symmetrical well/barrier structure with a barrier
height of 0.4 eV.17 For l1 = l2 = 40 Å, the lowest band is rather narrow and lies at

Fig. 34 (a) Mini-bands and (b) mini-zones in the conduction band in the kz direction for a
superlattice. Carriers are confined in the z direction in the lower mini-bands. There is no confine-
ment in the x and y directions; (c) the ordinary band scheme applies, but with the band minimum
lifted to the respective mini-band minimum

Fig. 35 Computed mini-
bands for a symmetrical
superlattice (After Esaki
1985)

17This is a typical band offset at heterointerfaces; for the important GaAs/GaxA1-xAs interface, 62%
of the x-dependent bandgap discontinuity ΔEg form the discontinuity at the conduction-band edge
ΔEc and 38% at the valence-band edge ΔEv (Watanabe et al. 1985).
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100 meV above the well bottom. The second band extends from 320 to 380 meV.
Higher bands (E3, E4 . . .) overlap above the top of the barrier. Increasing the
thickness or the height of the barrier layer reduces the tunneling through the barriers.
The electronic eigenvalues within each separated well can be estimated from Eq. 54
putting Lz = l1 and considering the effect of finite barriers shown in Fig. 31. The
dependence of the energy of these states on the quantum-well thickness (En / 1/l1

2)
was verified from optical absorption, providing a nice confirmation of the quantum-
mechanical model. The width of these levels is lifetime broadened and can be
estimated from the uncertainty relation

ΔEn Δt ffi ΔEn l1
vrms

Te ffi ℏ, (58)

with the tunneling probability Te through such barriers (▶Sect. 2.3 of chapter
“Carrier Generation” and ▶ Sect. 2.3 of chapter “Carrier Transport in Low-Dimen-
sional Semiconductors”) given by

Te / exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mn

ℏ
ΔEc � Enð Þ

r
l2

 !
, (59)

where ΔEc is the barrier height and En is the energy of the level from which
tunneling takes place.

A more sophisticated approach in dealing with superlattices of various dimen-
sions resorts to a quantum-mechanical description of the periodic superlattice as
given, for example, by Schulman and McGill (Schulman and McGill 1981); see also
the review by Bastard and Brum (1986).

Quantum wells and superlattices that show a beautiful illustration of quantum-
mechanical behavior have been fabricated from a number of semiconductor pairs
that have little lattice mismatch. The best studied is the GaAs/GaxAl1-xAs couple.
The height of the barrier can be changed by varying the concentration of Al in
GaxAl1-xAs; typically, it is a few tenths of an eV (Cho 1971; Woodall 1972; Chang
et al. 1973).

3.1.3 Ultrathin Superlattices
As the width of the layers in superlattices become thinner and thinner, the super-
lattice structure finally disappears and is replaced by the electronic structure of a
single compound. A distinction between a true superlattice and a bulk semiconductor
can be made when all bandgaps between mini-bands disappear and the density of
states increases monotonically from the band edge into the band.

For instance, stacking single layers of GaAs and AlAs in the [100] direction
results in a (GaAs)1–(AlAs)1 structure identical to bulk GaAlAs2. Consequently, the
band structure must be the same. Extending this discussion to the symmetrical
(GaAs)n–(AlAs)n superlattices, Batra et al. (Batra et al. 1987) have shown that for
n � 3 the band alignment of the valence band becomes staggered with hole
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confinement in GaAs. However, electrons are confined in AlAs for 3< n< 10; only
for n > 10 are electrons also confined in GaAs, as is expected for thicker super-
lattices with near-bulk gap properties for each layer – see also (Kamimura and
Nakayama 1987). For SinGem ultrathin superlattices, see Pearsall et al. (1987) and
Froyen et al. (1987).

3.2 Dimensionality of the Density of States

The electronic density of states g(E) is obtained from the number of electron states per
volume and per energy interval, g= 2� (1/V) (dN/dE), the factor 2 accounting for the
spin degeneracy (see also▶Sect. 4.2 of chapter “Quantum Mechanics of Electrons in
Crystals”). dN is obtained from the volume in k space (where states are equally spaced)
between two planes of constant energy at E and at E + dE, respectively. The volume
apparently depends on the dimension of the considered electronic system and so does g
(E). We consider an isotropic parabolic energy band where

E kð Þ � E0 / k2 (60)

applies; see Fig. 36a. E0 represents the energy of the band edge Ec (or Ev for holes as
carriers) in the three-dimensional case and that of a confined state in lower
dimensions.

For a one-dimensional band, we obtain from Eq. 53

k /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E kð Þ � E0

p
, and dk / dEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E kð Þ � E0

p ,

yielding

g1D Eð Þ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E kð Þ � E0

p : (61)

Fig. 36 (a) Energy of carriers in an isotropic parabolic energy band. States are equidistant along
the k axis. (b) Two-dimensional k space with equally spaced states along the kx and ky axes. The red
ring with radius kr and thickness dkr comprises states of equal energy E(kr)
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The proportionality factor is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�= 2π2ℏ2

� �q
; hence, g1D(E) is expressed in units of

m�1 � J�1 or cm�1 � eV�1.
In a two-dimensional band, all states of equal energy between E and E + dE lie in

a ring of radius kr /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E kð Þ � E0

p
and thickness dk as illustrated in Fig. 36b; for their

number dN / kr dk applies. Since E(k) – E0 / kr
2 we obtain a constant density of

states

g2D Eð Þ / θ E� E0ð Þ, (62)

θ(E� E0) being the unit step function (i.e., 0 for E< E0 and 1 for E� E0). The factor
is m*/(πℏ2), yielding g2D(E) in units of cm�2 � eV�1.

In a three-dimensional band, the states of equal energy between E and E + dE are
contained in a shell of radius kr and thickness dk with a number dN/ kr

2dk, yielding

g3D Eð Þ / θ E� E0ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E0

p
: (63)

The proportionality factor is (2π2)�1(2m*/ℏ2)3/2; consequently g3D(E) is expressed
in units of cm�3 � eV�1.

Equations 61 through 63 can be combined in the relation

g Eð Þ / E� E0ð Þd=2�1
, (64)

with the dimensionality d = 1, 2, or 3. The dependence of g on the energy is
illustrated in Fig. 37 for various dimensionalities d � 3 and three confined levels.
We note that the dimensionality has a strong effect on the density of states. In

Fig. 37 Electronic density of states g(E) in isotropic semiconductors (red), clad by barriers (blue)
which reduce the dimensionality: 3D bulk semiconductor, 2D quantum well, 1D quantum wire, and
0D quantum dot. The dashed curve represents the 3D case drawn for reference (Note: its unit
differs)
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particular, g(E) increases strongly at the lowest occupiable energy (band edge) as the
dimensionality decreases. This feature makes low-dimensional structures particu-
larly interesting for applications with carriers in or near the ground state (see, e.g.,
Asada et al. 1986).

The 2D density of states of a quantum well and of a superlattice differ. When
proceeding from the level structure of an isolated quantum well to mini-bands in a
superlattice with sufficiently permeable barriers, we can follow the broadening of the
energy level in a given state. g(E) has a staircase character for the isolated well with
equidistant steps of the height Δg = m*/(π ℏ2) as shown in Fig. 38. Each level can
be occupied by the number of electrons given by its degeneracy multiplied by the
number of atoms in the wells. When significant tunneling becomes possible, each
level splits into bands, and the staircase behavior (light-blue steps) becomes some-
what softened (Fig. 38). The effective density of states near the bottom of the first
mini-band (for thin enough barriers, so that the mini-band width is less than several
kT) is given by Nmini = m* kT/(π ℏ2), measured in cm�2.

3.3 Quantum Wires

While a quantum well follows naturally from the epitaxy of a double heterostructure,
a further reduction of dimensionality toward a one-dimensional quantum wire or a
zero-dimensional quantum dot requires some patterning to define an additional
lateral confinement. The interface-to-volume ratio of 1D and 0D structures increases
as compared to 2D quantum wells; the electronic properties of such structures are
therefore sensitive to interface defects, usually precluding fabrication by patterning a
quantum well using lithography techniques. Techniques employed instead are
outlined in▶Sect. 2.2 of chapter “The Structure of Semiconductors”. Most epitaxial
techniques lead to complicate and often only weak lateral confinement potentials,
and early studies suffered from thickness fluctuations on a length scale of the exciton
Bohr radius, leading to 0D behavior; peculiarities of bound states in quantum wires
are reviewed by Akiyama (1998) and Hurt (2000).

Fig. 38 Two-dimensional
density of states for electrons
in a quantum well (2D QW)
and in mini-bands of a
superlattice (2D SL). The
mini-bands extend in the
energy ranges of the S-shaped
segments around the steps of
the QW-related density of
states
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The basic changes of eigenvalues and density of states occurring for a reduction
of the dimensionality from 3D bulk to a 2D quantum well were outlined above
(Sects. 3.1 and 3.2) and apply also for a further reduction to a 1D quantum wire. The
additional confinementW(y) leads to a quasi-free mobility only along the x axis. We
again assume infinite barriers and the parabolic approximation. Analogous to Eq. 55
the eigenvalues of the wavefunction are then given by the sum of that for the
unrestricted carrier motion along the x direction and those for the confined y and
z directions, yielding

E ¼ El,n ¼ ℏ2k2x
2m�

x

þ l2
ℏ2

2m�
y

π

Ly

� �2

þ n2
ℏ2

2m�
z

π

Lz

� �2

, (65)

where Ly and Lz are the (independent) extensions of the wire along the respective
axes, mx* and my* are the corresponding effective masses, and l, n are the integer
quantum numbers defining the subbands. The actual geometry and finite depth of the
potential lead to some modifications of this dependence, but the general trend is
preserved (for the effect of a finite potential on a quantum well, see Fig. 31). The
quantum-mechanical behavior was nicely demonstrated for V-shaped (Vouilloz et al.
1997, 1998) and T-shaped quantum wires (Wegscheider et al. 1996) fabricated from
GaAs/GaxAl1-xAs heterostructures. See also ▶ Sect. 3 of chapter “Band-to-Band
Transitions” and ▶ Sect. 2 of chapter “Excitons”.

3.4 Quantum Dots and Nanocrystals

A quantum dot represents the ultimate limit of carrier confinement; the three-
dimensional confinement restricts the carrier motion in all three spatial dimensions
and leads to fully quantized electron and hole states, similar to the discrete states in
an atom. Assuming again infinite barriers, we obtain the eigenvalues of the
wavefunction analogous to Eqs. 55 and 65,

E ¼ Ej,l,n ¼ ℏ2π2

2

j2

m�
xLx

þ l2

m�
yLy

þ n2

m�
z Lz

 !
: (66)

The zero-dimensional density of states is a sum of δ functions given by g(E) = Σ
2 δ(E-Ej,l,n), with the factor 2 accounting for the spin degeneracy. The function is
shown in Fig. 37 for the three energy levels of lowest energy. Similar to the
two-dimensional case, the peaks are not equidistant and not degenerate if the
products m* � L differ along the spatial directions.

With finite barriers a minimum size of a quantum dot is required to allow for
confining a carrier, in contrast to structures of higher dimensionality. For a dot with
spherical shape, the minimum diameter Dmin required to confine at least one bound
state is given by (Bimberg et al. 1999)
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Dmin ¼ π ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�W0

p , (67)

where W0 is the confining potential and m* the effective mass (assumed to be
isotropic and identical in dot and barrier). For a rough estimate of the minimum
size to confine a single electron in a spherical InAs/GaAs dot, we use a conduction-
band offset of �0.9 eV for W0 and an effective electron mass in InAs of 0.03 m0,
yielding Dmin ffi 6 Å. The finite barrier height provided by the matrix environment of
the quantum dot usually allows for only few confined electronic states.

Electrons and holes are confined to quantum dots with type I band alignment;
therefore, the binding energy of this electron–hole pair (exciton) is increased com-
pared to that of the bulk material (see ▶Sect. 3 of chapter “Excitons”).

The wavefunctions of the confined states can be calculated by considering
realistic size, shape, and composition of the dot, in addition to material properties
like dielectric constants, strain tensors, and piezoelectric tensors (Schliwa et al.
2007). Results for one electron and one hole confined in an epitaxially grown
InAs dot with pyramidal shape of 11.3 nm base length and {101} side facets in a
GaAs matrix (▶ Sect. 2.2.3 of chapter “The Structure of Semiconductors”) are
shown in Fig. 39. The iso-surfaces encase 65% probability and resemble atomic
s-like ground states (left column) and p- and d-like excited states. Corresponding
wavefunctions of single-electron states in uncovered InAs/GaAs dots were experi-
mentally imaged using a low-temperature scanning-tunneling microscope. The
images were obtained from spatially resolved differential voltage–current curves
dI/dV taken at different sample voltage (Maltezopoulos et al. 2003). In the same way
states of holes confined in InAs quantum dots embedded in GaAs matrix were
imaged from cleaved samples (Urbieta et al. 2008).

Fig. 39 Top: Calculated probability densities of electron and hole wavefunctions confined in a
pyramid-shaped InAs quantum dot in a GaAs matrix (After Stier et al. 1999). Bottom:
Low-temperature STM images of an uncovered InAs quantum dot on GaAs. Left image:
Constant-current image showing the dot shape. Right four images: Single-electron densities of
different excited states sampled at different bias voltage (After Maltezopoulos et al. 2003)
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The electronic structure of very small isolated crystallites (nanocrystals), e.g., as a
suspension in a liquid dielectric or embedded in glass or polymer matrices (▶Fig. 26
of chapter “The Structure of Semiconductors”), may be compared with a
zero-dimensional quantum dot with infinite barriers; the barrier height is generally in
the eV range. The bandgap increases from that of the bulk when the crystallite size
decreases below a few hundred Å. For reviews see, e.g., (Woggon 1997; Scholes 2008).

Often such nanocrystals have a spherical shape. In this case three regimes of
quantization are usually distinguished, depending on the ratio of the nanocrystal
radius R with respect to the Bohr radius of the confined exciton or with respect to the
orbit radii of electron and hole in the exciton (around the common center of mass);
the regimes are also referred to as weak, intermediate, and strong confinement
(Klingshirn 2012).

For an estimate of the quantization energy, we assume again isotropic parabolic
bands. Weak confinement is characterized by R � aB, yielding a quantization energy

Eweak ffi ℏ2π2

2MR2
, (68)

whereM = me + mh is the mass of the exciton. The relation expresses a quantization
of the center-of-mass motion of the exciton, while relative motion of electron and
hole is hardly affected because the nanocrystal is larger than the exciton. In the
intermediate regime the nanocrystal radius lies between the Bohr radii of electron
and hole, aB,e � R � aB,h, yielding

Eintermediate ffi const� Ry�
aBπ

R

� 	2
: (69)

Ry* is the effective Rydberg constant, and the constant is of the order unity. At this
medium confinement the confinement energy is of the same order as the Rydberg
energy, while it is smaller in the weak and larger in the strong confinement regime.
Strong confinement occurs if the nanocrystal radius is significantly smaller than the
electron and hole Bohr radii, R� aB,e, aB,h. The quantization energy can be roughly
approximated as

Estrong ffi ℏ2π2

2μR2
, (70)

μ being the reduced mass of electron and hole.
The estimates above neglect the exciton binding energy (which depends on the

nanocrystal size) and the contribution of the Coulomb energy; the latter scales
with 1/R, while the quantization energy scales as 1/R2. A minor correction term
�const � e2/(4πee0R) may be included for a better description in the intermediate
and strong confinement regimes; still other factors like effects of the confinement
potential or limited validity of the effective-mass approach may be more
important.
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The increase of the bandgap energy by quantization is illustrated for CdSe nano-
crystals in Fig. 40. The graph gives the measured energy of the lowest confined state,
compared to an effective-mass calculation which applied a fit to the Luttinger parameters
(for VB nonparabolicity) and the potential energy for the electron (Norris and Bawendi
1996). The trend – implying also excited states – is reasonably well reproduced by the
simple approach, though some discrepancy in the curvature and at large sizes occur.

4 Bands in Organic and Amorphous Semiconductors

4.1 Bands and Bandgap in Organic Semiconductors

The charge transport in organic semiconductor crystals and highly organized thin
films can often be described in a band-like regime similar to that in inorganic solids.
The lowest unoccupied and the highest occupied molecular-orbital (LUMO and
HOMO) bands are then also termed valence and conduction bands, and the mobile
polaron18 carriers in these bands are referred to as electrons and holes.

The width of the conduction and valence bands is generally small; it is deter-
mined by the weak intermolecular interaction.19 The bandwidth given for some
organic semiconductors in ▶Table 1 of chapter “Quantum Mechanics of Electrons

Fig. 40 Measured and
calculated energy of the
lowest state of electron–hole
pairs in CdSe nanocrystal
quantum-dots as a function of
the radius (After Norris and
and Bawendi 1996)

18For the concept of polaron quasiparticles, see ▶ Sect. 1.2 of chapter “Carrier-Transport
Equations”.
19The intermolecular interaction is expressed in terms of a transfer integral (see the chapter on
transport later in the book). In the tight-binding approximation of a one-dimensional molecule
chain, the total bandwidth equals four times the transfer integral between neighboring molecules.
The bandwidth for any molecular packing can be expressed from the amplitude of the transfer
integrals between the various interacting units (Brédas et al. 2002).
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in Crystals” is maximum at T ! 0. At increasing temperature the bandwidth is
progressively reduced (Fig. 41) by an increased electron–phonon coupling and
therefore an enhancement of the polaron mass. The carriers get more and more
localized over single molecules (or molecule chains), leaving only transport by a
thermally activated hopping mechanism. The transport thus gradually changes from
coherent band-like motion at low temperatures to phonon-assisted hopping transport
at high temperature. This transition occurs in oligoacenes at about room temperature
(Cheng et al. 2003).

The width of the bands illustrated in Fig. 41 is intimately connected with the
temperature-dependent effective mass of electrons and holes. The minimum limit
at low temperature is obtained from the curvature of the HOMO and LUMO bands
according to Eq. 1 resulting from band-structure calculations. Instead of effective
masses generally the mobility is reported for organic semiconductors (▶ Sect. 4 of
chapter “Carrier Transport Induced and Controlled by Defects”). This quantity is
readily accessible in experiment and usually much larger for holes than for
electrons. Furthermore, it is strongly anisotropic due to the low symmetry of
molecules and crystal lattices and hence the oriental dependence of the transfer
integrals19.

The bandgap energy of organic solids is given by the difference between the
LUMO and the HOMO energy levels. It is the relevant quantity for electrical
conductivity and also referred to as transport gap Eg

transport. The value differs from
the optical bandgap Eg

opt determined from the long-wavelength edge of absorption
spectra. Organic solids are easily polarized and have large binding energies for
excitons; the absorption edge reflects the formation of (Frenkel) excitons with the
electron and hole on the same molecule. The charge separation energy, Eg

transport �
Eg

opt, is the binding energy of the exciton, which is far larger than in inorganic
semiconductors (Hill et al. 2000). Figure 42 shows the transport and optical
bandgaps for many organic semiconductors; their difference is given by the separa-
tion of the straight and dotted lines, illustrating an increase of the exciton binding
energy for larger bandgap energies.

Fig. 41 Temperature-
dependent narrowing of the
LUMO and HOMO bands in
anthracene and tetracene
crystals (After Hannewald
et al. 2004)
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The bandgap of organic semiconductors is generally large (typically well above
2 eV). The thermal activation of carriers is therefore negligible: pure organic solids
are insulating. Since reliable and robust doping proved difficult up to now, charge
carriers (both electrons and holes) are injected from the contacts in all organic
semiconductors used for devices.

The energy of the transport gap Eg
transport can be directly obtained from electron

spectroscopy: ultraviolet photoelectron spectroscopy (UPS) measures the HOMO
energy, and inverse photoelectron spectroscopy (IPES) determines the LUMO
energy. Data for some organic crystals are given in Table 11.

4.2 Bands in Amorphous Semiconductors

The band structure in amorphous semiconductors cannot be determined in the same
fashion as for the crystalline state (described in chapter ▶ “Quantum Mechanics of
Electrons in Crystals”) since long-range periodicity is missing and k is no longer a

Fig. 42 Transport-bandgap
energy Eg

transport versus
optical bandgap energy Eg

opt

for 24 organic
semiconductors. Numbers at
data points refer to the
compounds listed in Table 11;
the solid line signifies a linear
fit to the data, and the dashed
straight line represents
Eg

transport = Eg
opt (After

Djurovich et al. 2009)

Table 11 LUMO and HOMO energies for organic semiconductor compounds measured by
photoelectron spectroscopy (IPES and UPS, respectively), transport bandgap Eg

transport = ELUMO

– EHOMO, and measured optical bandgap Eg
opt. The numbers in the first column refer to those in

Fig. 42 (Data from Djurovich et al. 2009)

No Compound ELUMO (eV) EHOMO (eV) Eg
transport (eV) Eg

opt (eV)

1 Benzene �0.4 �7.58 7.2 4.68

2 Naphthalene �1.1 �6.4 5.3 4.00

3 Anthracene �1.7 �5.70 4.0 3.25

4 Tetracene �1.8 �5.10 3.3 2.51

5 Alq3 �1.96 �5.65 3.69 2.75

6 Perylene �2.5 �5.2 2.7 2.83

7 α-Hexathiophene �2.57 �5.3 2.7 2.43

8 CuPc 2.65 �4.82 2.17 1.80

9 Pentacene �2.8 �4.85 2.1 2.06
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good quantum number. Therefore, an E(k) diagram cannot be drawn for amorphous
materials. Consequently, the effective-mass picture, which depends on an analysis of
E(k), cannot be used in its classical form.

Nevertheless, there is a strong experimental evidence from optical absorption,
reflection, and photoemission spectroscopy that similarities exist between the band
structure in amorphous and crystalline states of the same material. This can be
understood by recognizing that the major features of the electronic properties of a
solid are determined by short-range order, as proposed by Ioffe and Regel (1960) and
shown more convincingly by Weaire and Thorpe (1971) for amorphous Si and Ge,
using a tight-binding model.

Density-of-state distributions for amorphous and crystalline Ge are shown in
Fig. 43 – as obtained experimentally (a) and compared with the theoretical distribu-
tion (b). The distribution of the amorphous state is much smoother. The sharp van
Hove singularities due to long-range order are absent, while several of the major
features remain in both states.

The more refined tight-binding calculation of Bullett and Kelly (1975) shows a
substantially improved agreement with the experiment. A review of the subject is
given by Connell and Street (1980), in the book by Mott and Davis (1979), and by
Robertson (1983) (see also ▶ Sect. 4 of chapter “Band-to-Band Transitions” and
▶ Sect. 2 of chapter “Defects in Amorphous and Organic Semiconductors”).

The properties near the band edges are more sensitive to the actual amorphous
structure. Therefore, it is no longer possible to describe the dispersion relation and
the level distribution here in general terms. There seems to be a rather smooth
transition between extended (band) states and localized states due to the lack of
long-range order. This does not permit a cohesive discussion of the band-edge
behavior similar to the discussion for crystalline semiconductors. On the other
hand, the measurement of transport properties suggests the existence of an edge.

Fig. 43 Electron density-of-
state distributions of
amorphous and crystalline
Ge. (a) Experimental data
derived from photoemission,
(b) theory (After Economou
et al. 1974)
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This will be analyzed later in ▶ Sect. 4 of chapter “Carrier Transport Induced and
Controlled by Defects”.

5 Summary

For semiconducting purposes, only the band structure of conduction and valence
bands near the edge to the bandgap is of direct interest. This structure is well
investigated for important semiconductors. It has nearly spherical equi-energy sur-
faces for the conduction band at Γ and ellipsoids of rotation at X and L. The lowest
minimum of E(k) of the conduction bands and the highest maximum of E(k) of the
valence bands determine the bandgap. In the valence band of cubic semiconductors,
two subbands need to be considered; the light- and heavy-hole bands are
degenerated at Γ in isotropic semiconductors and split by the crystal field in
anisotropic ones; in hexagonal semiconductors three nondegenerate subbands
occur at Γ, originating from light, heavy, and crystal holes. The spin–orbit split-off
band may additionally become important at higher hole energy, especially for low
atomic number elements where such splitting is relatively small. The E(k) behavior
of the bands near the band edges is described by the effective mass of electrons or
holes and is directly accessible to cyclotron-resonance measurements.

The band structure and the bandgap are influenced by external parameters. The
bandgap usually shrinks with increasing temperature and expands with increasing
pressure. It can be changed by alloying, where, for alloying with similar elements,
the gap interpolates linearly between the value of the pure compounds. With
dissimilar element alloying, a substantial bowing is observed. The bandgap is also
changed (decreased) by heavy doping.

In low-dimensional semiconductors anisotropic carrier confinement occurs and
energy levels get quantized to discrete values along the axes of restricted carrier
motion. The quantization energy is inverse to the effective carrier mass and approx-
imately inverse to the square of the confinement length for a square potential. Bands
along unrestricted carrier motion remain essentially unaffected; different quantized
states along the confined directions create subbands along the unrestricted axes. In
superlattices, the coupling of adjacent quantum wells leads to mini-bands. The
effective gap and bandwidth of mini-bands can be varied easily by changing layer
width and barrier height of the superlattice. With reduced layer width, the electronic
behavior of such superlattices approaches that of simple chemical compounds,
assuming bulk properties. The electronic density of states changes strongly as
the dimensionality is reduced; it gradually increases at lowest energy when going
from a three-dimensional bulk crystal to a two-dimensional quantum well, a
one-dimensional quantum wire, eventually to a zero-dimensional quantum dot.

In organic semiconductors conduction and valence bands arise from the lowest
unoccupied and the highest occupied molecular orbitals LUMO and HOMO. The
bandwidth is typically small and narrows as the temperature increases, and the
bandgap is large. At increased temperature band-like conduction gradually changes
to hopping transport.
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The bands in amorphous semiconductors near the band edge are ill-defined, since
k is no longer a good quantum number due to missing long-range periodicity.
Nevertheless, the density-of-state distribution shows significant similarities to that
of the same material in the crystallite state. Near the band edge, a smooth transition
between extended and localized states occurs.
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Abstract
Magnetic properties are introduced into solids by paramagnetic ions. These are
transition-metal ions of the iron series with a partially filled electronic 3d shell
or rare-earth ions of the lanthanide series with an incomplete 4f shell. In
magnetic semiconductors, they represent a cation component of the crystal,
while in diluted magnetic semiconductors, they are a substitutional alloy com-
ponent on the cation sublattice. The magnetic moments of the paramagnetic ions
are coupled by different kinds of exchange interactions. Superexchange medi-
ated by p states of anion ligands favors antiferromagnetism with antiparallel
alignment of the magnetic moments, while double exchange and p–d exchange
favor ferromagnetism with parallel alignment. Magnetic ordering is disturbed if
the thermal energy exceeds the exchange energy; critical Curie and Néel
temperatures exist for the transition from the paramagnetic high-temperature
range to magnetically ordered respective ferromagnetic and antiferromagnetic
regimes at lower temperature.
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Paramagnetic ions � P–d exchange � Rare-earth ions � Superexchange � Transition-
metal ions

1 Magnetic Interaction in Solids

Carriers in solids have a spin in addition to their charge, giving rise to a magnetic
moment. Control of the carrier spin in semiconductors is interesting for novel
devices such as, e.g., low-power nonvolatile memories. Magnetic semiconductors
are compounds with paramagnetic ions on a sublattice. These ions may either
represent a component of the compound semiconductor (e.g., Eu in EuO) or a
magnetic impurity introduced into a nonmagnetic host semiconductor (e.g., Mn in
Cd1-xMnxTe). The latter are alloys with magnetic ions and are referred to diluted
magnetic semiconductors (Sect. 2). We will first provide a general description of
magnetic properties in solids and then focus on this kind of semiconductors.

1.1 Paramagnetic Ions

Magnetic ions introduced into a nonmagnetic semiconductor at low concentration
(doping regime, composition parameter x below 10�3) behave similar to isolated
ions. We therefore first refer to the magnetic properties of a free ion (or, atom). The
magnetic moment of an ion may originate from the spin of the electrons and from
their orbital angular momentum.1

The magnetic moment of an ion tends to align in the presence of an external
magnetic field H. Any system containing electrons in a volume V experiences a
magnetization densityM given by

M ¼ 1

μ0V

@E

@H
, (1)

where μ0 = 4π � 10�7 Vs/(Am) is the vacuum permeability. Magnetic properties
of matter are described by the magnetic susceptibility per unit volume, which is
defined as

χ ¼ @M

@H
: (2)

1There is also a small diamagnetic contribution arising from filled electronic shells with zero spin
and orbital angular momentum known as Larmor (or Langevin) diamagnetic susceptibility; this
contribution does not depend on temperature and is generally counteracting paramagnetism in
solids.
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The dimensionless quantity χ describes how strong the externally applied field
Hmagnetizes the matter; it is positive for paramagnetic and negative for diamagnetic
materials.2 Often M is linear in H and Eq. 2 simply reduces to χ = M/H.

The magnetic momentμ of a free ion is composed of the contributions arising
from the spin S and the angular momentum L, which are coupled by
Russell–Saunders coupling to a total angular momentum J = L + S, yielding

μ ¼ �gμB J=ℏ, (3)

where g is the Landé factor. Taking the g-factor g0 of a free electron to be exactly
2 (instead of actually 2.0023. . .), the Landé g-factor of the free ion in Eq. 3 reads

g ¼ 1þ 1

2

J J þ 1ð Þ þ S Sþ 1ð Þ � L Lþ 1ð Þ
J J þ 1ð Þ ; (4)

here, J, L, and S are the respective quantum numbers of total angular momentum,
angular momentum, and spin of the coupled electrons of the considered ion. The
Bohr magnetonμB in Eq. 3 is the absolute value of the magnetic moment of a free
electron with mass m0 and spin sj j ¼ 1

2
ℏ and is given by

μB ¼
eℏ
2m0

: (5)

To obtain the magnetic susceptibility of N identical ions in a volume V, we
consider the effect of the magnetic field H on the populated ground state of the
ions. The degenerate ground state of an ion with total angular momentum J splits
into (2J + 1) levels with different quantum numbers mJ = J, J�1, . . ., �J with
respective energies

EmJ
¼ mJ g μB B, (6)

where B = μ0 (H + M ) is the magnetic flux density (often also termed magnetic
field). If there are N identical ions of angular momentum J in a volume V, their
magnetization according Eq. 1 is obtained from the added contributions of each
thermally excited level for all ions. If only the (2J + 1) levels of the split ground state
are occupied (and not an additional excited state of the ion), then, using Eqs. 1 and 2,
the magnetic susceptibility of N such ions is

χ ¼ N=Vð Þ g J μB BJ xð Þ; (7)

2The susceptibility χ is generally a tensor. For simplicity we assume a magnetization vector
M parallel to H in Eq. 1, yielding a scalar χ. In a vector relation a set of equations according
Eq. 1 applies for the vector components.
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here x � g J μB B/(kT), and the Brillouin function BJ(x) accounts for the thermal
occupation of the states, which are split by the magnetic field.3 For small splitting
compared to thermal energies (x� 1), Eq. 7 reads

χ ffi N

V

p2 μB
2

3kT
, (8)

where p, the effective number of Bohr magnetons μB, is defined by

p � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J þ 1ð Þ

p
: (9)

Magnetic ions in semiconductors are generally rare-earth ions of the lanthanide
series with a partially filled electronic 4f shell or, particularly in diluted magnetic
semiconductors, transition-metal ions of the iron series with a partially filled 3d
shell. The effective numbers p of Bohr magnetons for these ions are listed in Table 1;
the values were measured from the 1/T dependence of the susceptibility according
Eq. 8. The given ground-state terms obey Hund’s rules, which state that the occu-
pation of the 2(2l + 1) states of a partially filled shell maximizes (1) the total spin
S and (2) the orbital momentum L (consistent with maximum S) and (3) takes either
maximum J (for more than half-filled shells) or otherwise minimum J. We note a
very good agreement of the measured values and those calculated from Eq. 9 for the
4f ions.4 By contrast, J = S, i.e., L = 0 must be assumed for the 3d ions to obtain an
agreement.

The reason for the deviating behavior of the 3d ions is due to the effect of the
crystalline environment. The 3d shell is the outermost shell of transition metals;
electrons in this shell experience the electric field of neighboring ions. The interac-
tion with this crystal field is much stronger than the spin-orbit coupling and leads to
a crystal-field splitting of orbital Lmultiplets (▶ Sects. 1.4 and▶ 3 in chapter “Deep-
Level Centers”). As a consequence, the mean value of every L component averages
to zero by a precession of the angular orbital momentum in the crystal field; L is said
to be quenched. The crystal field does not affect electrons in the 4f shell of rare-earth
ions, because this shell lies beneath the filled 5s and 5p shells deep in the ions and is
thereby well screened. Since the electric crystal field does not split the spin degen-
eracy, the ground-state multiplet is determined by S.

Equation 8 is known as Curie’s law and usually written in the form

χ ffi C

T
, (10)

3The Brillouin function is defined by BJ xð Þ ¼ 2Jþ1
2J coth 2Jþ1

2J x
� �� 1

2J coth
x
2J

� �
and varies from 0 to

1 for x = 0 to 1. For high temperature or small splitting, x � 1 applies, and the hyperbolic
cotangent can be approximated by coth y = 1/y + y/3 – y3/45 + . . ..
4The poor agreement for Sm and Eu originates from excited states lying closely above the ground
state; such conditions were excluded for the validity of Eqs. 7, 8, and 9.
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where C is the Curie constant related to the quantities appearing in Eq. 8. This
temperature-dependent paramagnetism of magnetic ions in semiconductors is
complemented by a paramagnetic component of carriers (electrons and holes).5 In
metals the Pauli paramagnetic susceptibility of conduction electrons is essentially
independent on temperature; such conditions apply similarly for highly doped,
degenerate semiconductors. In nondegenerate semiconductors the carrier concentra-
tion depends strongly on temperature, and likewise their paramagnetic contribution;

Table 1 Measured and calculated effective magneton numbers p for rare-earth ions of the
lanthanide series and transition-metal ions of the iron series incorporated in insulating crystals;
for transition metals an electron g-factor g0 = 2 is used

Electron
configuration

Ground state
2S+1LJ Ion

p
measured p= g[J(J + 1)]½ p= g0[S(S + 1)]½

4f1 2 F5/2 Ce3+ 2.4 2.54

4f2 3H4 Pr3+ 3.5 3.58

4f3 4I9/2 Nd3+ 3.5 3.62

4f4 5I4 Pm3+ – 2.68

4f5 6H5/2 Sm3+ 1.5 0.84

4f6 7 F0 Eu3+ 3.4 0.00

4f7 8S7/2 Gd3+ 8.0 7.94

4f8 7 F6 Tb3+ 9.5 9.72

4f9 6H15/2 Dy3+ 10.6 10.63

4f10 5I8 Ho3+ 10.4 10.60

4f11 4I15/2 Er3+ 9.5 9.59

4f12 3H6 Tm3+ 7.3 7.57

4f13 2 F7/2 Yb3+ 4.5 4.54

3d1 2D3/2 Ti3+ – 1.55 1.73

3d1 2D3/2 V4+ 1.8 1.55 1.73

3d2 3 F2 V3+ 2.8 1.63 2.83

3d3 4 F3/2 V2+ 3.8 0.77 3.87

3d3 4 F3/2 Cr3+ 3.7 0.77 3.87

3d3 4 F3/2 Mn4+ 4.0 0.77 3.87

3d4 5D0 Cr2+ 4.8 0 4.90

3d4 5D0 Mn3+ 5.0 0 4.90

3d5 6S5/2 Mn2+ 5.9 5.92 5.92

3d5 6S5/2 Fe3+ 5.9 5.92 5.92

3d6 5D4 Fe2+ 5.4 6.70 4.90

3d7 4 F9/2 Co2+ 4.8 6.54 3.87

3d8 3 F4 Ni2+ 3.2 5.59 2.83

3d9 2D5/2 Cu2+ 1.9 3.55 1.73

5The additional paramagnetism of nuclear spins is negligible compared to electronic contributions
(a fraction below 10�3).

1 Magnetic Interaction in Solids 307



furthermore, band effects and diamagnetic contributions appear in the susceptibility
of semiconductors (▶ Sect. 2 in chapter “Carriers in Magnetic Fields and Temper-
ature Gradients”).

1.2 Magnetic Ordering in Semiconductors

1.2.1 Exchange Interactions
In a solid the magnetic ions are located on the sites of a Bravais lattice. Their
magnetic moments are affected by an interaction with those of neighboring magnetic
ions, in addition to the interaction with an externally applied field. The coupling to
neighboring magnetic ions can be described in the simplified spin-Hamiltonian
formalism by the sum of two-spin contributions Si� Sj and corresponding interaction
parameters Jij, yielding

Eexc ¼ �
X

i 6¼jJij SiSj: (11)

The energy Eexc gets minimum if the scalar product of the vector spin operators Si
and Sj tends to parallel spins for positive Jij and to antiparallel spins for negative Jij.
Equation 11 is known as Heisenberg model. The Heisenberg exchange parameter Jij
is an exchange integral of overlapping charge distributions of neighboring magnetic
ions. The sign of the exchange integral depends on the ratio of the interatomic
distance aij of the interacting atoms i and j with respect to the radius r of the shell of
the magnetic electrons. A small interatomic distance, i.e., strong overlap of the
electrons in the paramagnetic shell, leads to antiparallel alignment of the spins due
to Pauli principle; at larger aij this condition is relaxed and parallel spin alignment is
favored. As a rule of thumb, a distance aij exceeding three times the radius of the
magnetic shell is required for a parallel alignment. A representation of the exchange
parameter J for transition metals, i.e., metallic solids, as a function of the ratio of aij
to the radius r3d of the 3d electron shell (4f shell for Gd) is given in Fig. 1. A parallel
spin alignment is referred to as ferromagnetism and the antiparallel alignment to
antiferromagnetism.

The Heisenberg model in Eq. 11 was introduced above for the case of a direct
exchange, arising from the direct Coulomb interaction among electrons of two
neighboring magnetic ions (Fig. 2a). There are also other types of exchange mech-
anisms illustrated below and discussed in more detail in Sect. 2.3. In transition
metals characterized in Fig. 1, conduction-band electrons also contribute to the
interaction.

In a semiconductor like europium monoxide, the magnetic ions occupy a sublattice
and are surrounded by nonmagnetic nearest neighbors on another sublattice (e.g., Eu2+

and O2� ions on the cation and anion sublattices of the rock-salt structure of EuO,
respectively). The concept of an exchange mechanism can still be applied; the
magnetic interaction of the Eu ions is mediated by their common nonmagnetic O
neighbors. This type of interaction is termed superexchange and illustrated in Fig. 2b.
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The exchange interaction may also be mediated by electrons in the conduction
band or holes in the valence band. Such kind of interaction is of particular impor-
tance for a low concentration of magnetic ions in semiconductors with mediating
holes (p–d exchange, Sect. 2.3). Conduction-band electrons may also have a signif-
icant effect which acts simultaneously to the direct exchange: the partially filled 4f
shells of rare-earth metals, e.g., lie deep beneath filled 5s and 5p shells and do hence
overlap very little. Consequently the direct exchange is weak among next neighbors,
and the contribution of free electrons, referred to in this case as indirect exchange,
may even prevail.

The exchange mechanisms outlined above are illustrated in Fig. 2.
The magnetic properties of the europium chalcogenides EuO, EuS, EuSe, and

EuTe can be described by the Heisenberg model with dominating nearest-
neighbor Eu–Eu exchange and next-nearest-neighbor Eu–anion superexchange
interactions J1 and J2, respectively. These compound semiconductors crystallize
in rock-salt structure with increasing Eu–anion distance for larger atomic number
of the anion. The resulting variation of the exchange parameters shown in Fig. 3

Fig. 1 Exchange parameter J for transition metals as a function of the ratio aij/r3d of the interatomic
distance aij to the radius r3d of the 3d (Gd: 4f ) electrons. Parallel and antiparallel arrows indicate
ferromagnetic and antiferromagnetic coupling for Eexc > 0 and Eexc < 0, respectively

Fig. 2 Schematic of
exchange mechanisms.
(a) Direct exchange with
overlapping charge
distributions of magnetic ions,
(b) superexchange with
overlapping charge
distributions of magnetic ions
and nonmagnetic mediating
ions, and (c) indirect exchange
or itinerant exchange with
mediating conduction carriers
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leads to a decreasing strength of ferromagnetic order from EuO to EuS, a tendency
to antiferromagnetic alignment in EuSe, and to pure antiferromagnetic order in
EuTe.

1.2.2 Ferromagnetic Domains
The exchange interaction acts solely between two respective neighboring magnetic
ions and leads in a ferromagnet to a parallel alignment of the adjacent magnetic
moments. Successive coupling of all neighboring pairs would thus lead to a spon-
taneously occurring (i.e., without the action of an external magnetic field) homoge-
neous alignment of all magnetic moments in the solid. There is, however, an
additionally acting very weak magnetic dipolar interaction among the magnetic
moments of the ions. Though being weak, its interaction range only falls inversely
to the cube of the distance, in contrast to the exponentially falling short-ranged
exchange interaction. The dipolar interaction thus couples many magnetic moments
and has hence a sizeable contribution to the magnetic energy.

Due to the dipolar contribution, a homogeneous magnetization throughout a
sample has a larger energy than the segmentation into two antiparallel domains as
illustrated in Fig. 4. This is intuitively clear if the two halves A and B were two bar
magnets with opposite poles near one another: a parallel alignment would bring
repelling like poles near one another. Adding two more domains C and D further
reduces the dipolar energy, thereby also reducing the unfavorable magnetic stray
field outside the solid. The energy cost of forming domain walls (with magnetic
orientations being unfavorable for the short-ranged exchange interaction) is over-
balanced by the dipolar energy gain.

A ferromagnetic solid contains many uniformly magnetized domains with a
random mutual orientation similar to grains in a polycrystalline solid, leaving an
only minor external magnetization. Application of a weak external magnetic field
leads to the growth of domains with a favorable orientation on expense of the others;
at stronger fields the orientation of all domains gets aligned to the external field, until

Fig. 3 Heisenberg exchange
parameters for nearest (J1,
squares) and next-nearest
neighbors (J2, circles) for
europium chalcogenides with
different Eu–anion distances.
Gray lines are guides to the
eye (After Grundmann 2006)
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a saturation magnetization is attained (such saturation existed already within the
randomly oriented domains). Removing the external field leaves a preferred orien-
tation of domains, leading to a remanence. Since the same behavior occurs at
reversed orientation of the external field, a hysteresis curve appears in the field-
dependent magnetization (Figs. 9b and 12).

1.2.3 Ferromagnetic Susceptibility
The magnetic ordering described above exists only at sufficiently low tempera-
ture. The alignment of magnetic moments is disturbed if the thermal energy is
of the same order as the exchange energy. Well above a critical temperature,
which is referred to as Curie temperature TC, a ferromagnet behaves like a
paramagnet. In this region the susceptibility is described by a relation termed
Curie–Weiss law, which can be motivated by a mean-field approach. The approx-
imation assumes that all interactions expressed by Eq. 11 can be replaced by
a mean external field

Heff ¼ Hþ λM (12)

acting on each spin (also assumed to have the same average value), where the
molecular-field constant λ is given by

λ ¼ V

N

J0

gμBð Þ2 , J0 ¼
X

i
Ji: (13)

J0 is an effective single-ion term of magnetic ions replacing the two-ion exchange
parameters appearing in Eq. 11. The field H acting on a magnetic moment of a
paramagnet is replaced by Heff, yielding with Eq. 10 in a linear approximation

M

H þ λM
ffi C

T
: (14)

Since, according Eq. 2, the susceptibility is defined with respect to the external field
H, we obtain from Eq. 14, after rearranging, the Curie–Weiss law

Fig. 4 A ferromagnet with two magnetic domains A and Bwith a reduced dipolar energy compared
to a homogeneous single domain A extending throughout the solid. Green dashed lines indicate the
introduction of two further domains C and D leading to a still lower dipolar energy
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χ ¼ M

H
ffi T

C
� λ

� ��1
¼ C

T � TC

for T > TC, (15)

where TC = λ C is often taken as the Curie temperature and C is the Curie constant.
The critical temperature in Eq. 15 actually does not coincide with the Curie temper-
ature TC, which is defined for the transition from the ferromagnetic low-temperature
region to the paramagnetic region at high temperature. Near TC the actual suscepti-
bility is rather described by a law χ / (T – TC)

�γ, with an exponent γ between 1.3
and 1.4. Keeping Eq. 15, i.e., γ = 1, yields a reasonable description well above TC
but requires a critical temperature Tcrit somewhat above the transition temperature
TC. Curie temperatures for ferromagnets are given in Table 2.

1.2.4 Antiferromagnetic Susceptibility
The transition of an ordered alignment of magnetic moments to a paramagnetic
phase at higher temperature applies also for the antiferromagnetic coupling.6 The
temperature for such transition is called Néel temperatureTN. Antiferromagnetism
does not lead to a macroscopic magnetization outside the solid; instead, it leads to an
anomalous dependence of susceptibility and specific heat on temperature below TN
and can also be measured in neutron scattering. Below TN the susceptibility depends
on the orientation of the external magnetic field with respect to the spin axis; see

Table 2 Curie temperature
TC for ferromagnetic solids.
The rare-earth metals
terbium (Tb) to thulium
(Tm) become
antiferromagnetic above
TC; see Table 3

Crystal Structure TC (K)

Fe bcc 1044

Co hcp 1388

Ni fcc 624

Gd hcp 292

Tb hcp 219

Dy hcp 85

Ho hcp 19

Er hcp 19

Tm hcp 32

Fe2O3 Corundum Al2O3 948

CrO2 Rutile TiO2 386

MnAs Hexagonal MnAs 318

MnBi Hexagonal NiAs 630

MnSb Hexagonal NiAs 587

EuO Cubic NaCl 69

EuS Cubic NaCl 17

6Besides ferro- and antiferromagnetic coupling, the magnetic moments can be ordered in a
ferrimagnetic coupling with a not canceling antiparallel alignment for the moments of neighboring
(not identical) magnetic ions.
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Fig. 5c. A perpendicular orientation leads to an approximately constant value χ⊥; on
the other hand, an orientation of antiparallel and parallel spins along the axis of the
magnetic field leads to a vanishing χ || at T = 0 and a steady increase up to TN.

The susceptibility of an antiferromagnet in the paramagnetic high-temperature
range is described by the Curie–Weiss law

χ ¼ C

T þ Θ
for T > TN, (16)

with a characteristic Curie–Weiss temperature Θ (<0) in the range �Θ/TN = 0.4 . . .
0.53; C is referred to as Curie–Weiss constant. Comparison with Eq. 15 indicates that
the Curie–Weiss temperature Θ of an antiferromagnet represents a negative Curie
temperature; this is a consequence of the negative exchange interaction J and
indicated by the vertical dotted line in Fig. 5c. The Néel and characteristic temper-
atures of antiferromagnetic solids are listed in Table 3.

Fig. 5 Qualitative temperature dependence of the magnetic susceptibility in (a) paramagnetic, (b)
ferromagnetic, and (c) antiferromagnetic solids. Susceptibilities χ⊥ and χ || in (c) denote values
perpendicular and parallel to an external magnetic field, respectively

Table 3 Néel temperature TN of antiferromagnetic solids; for compounds also the Curie–Weiss
temperature Y is listed

Crystal Structure TN (K) Crystal Structure TN (K) �Θ (K)

Cr bcc 308 MnO NaCl 116 610

Mn Cubic α-Mn 103 MnS NaCl 160 528

Tb (>219 K) hcp 230 MnSe NaCl 247

Dy (>85 K) hcp 179 MnTe NiAs 307 690

Ho (>19 K) hcp 132 Cr2O3 Al2O3 320

Er (>19 K) hcp 85 FeO NaCl 198 570

Tm (>32 K) hcp 57 CoO NaCl 291 330

NiO NaCl 525 �2,000
EuSe NaCl 5

EuTe NaCl 10
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2 Diluted Magnetic Semiconductors

Diluted magnetic semiconductors (DMS) are compound semiconductors alloyed
with paramagnetic ions. The magnetic ions are predominantly 3d transition metals
like Mn, usually located on a substitutional cation site.7 Most work was devoted to
II–VI and III–V semiconductors with zincblende or wurtzite structure. Carrier-
induced ferromagnetism found in these compounds fueled investigations for
creating novel devices based on spin manipulation of carriers. The goal to achieve
an ordering temperature well above room temperature proved challenging, and so
did as well the understanding of the magnetic interactions. An early review on
II–VI DMS was given by Furdyna and Kossut (1988), and more recent aspects
emphasizing III–V DMS were reviewed by Jungwirth et al. (2005) and Dietl et al.
(2008); an excellent review on first-principles theory was provided by Sato
et al. (2010).

2.1 II–VI Diluted Magnetic Semiconductors

In II–VI semiconductors a large concentration of 3d elements can be substituted for
the nonmagnetic group-II cation in the lattice. This holds particularly for manganese,
which is about an order of magnitude more miscible than other magnetic transition
metals (Fe, Co, Cr) and is the most studied element due to its large spin (Table 1).
The composition range for ternary AII

1-xMnxB
VI alloys along with the thermody-

namically stable phases is depicted in Fig. 6. We note a large miscibility, usually well
above x= 0.35 in the crystal structure of the host. At large composition parameters x,
alloying with Mn not only leads to the usual effects of altering the bond length
(▶ Sect. 3.2 in chapter “Crystal Bonding”; for Cd1-xMnxTe, see Balzarotti et al.
1984) and bandgap (▶Sect. 2.1 in chapter “Bands and Bandgaps in Solids”) but is
also accompanied by a phase change. MnS and MnSe crystallize in the cubic NaCl
(rock-salt) structure and MnTe in the hexagonal NiAs structure; there are also small
alloy phases with NaCl structure near x = 1 for Cd1-xMnxSe and Zn1-xMnxS. The
alloys shown in Fig. 6 all show similar magnetic properties, outlined in the following
for various ranges of the composition parameter x.

2.1.1 Doping Regime
The magnetic properties of the AII

1-xMnxB
VI DMS depend on the concentration of

the substitutional Mn2+ ions. For dilute samples (x < 0.001) only isolated paramag-

7Occasionally also incorporation on an interstitial site of the host crystal is found. Such incorpo-
ration in parallel to substitutional alloying may be detrimental for the intended magnetic properties
as, e.g., pointed out for Ga1-xMnxAs in Sect. 2.2.
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netic Mn2+ ions with 6S5/2 ground state need to be considered. The susceptibility for
T > 1K is described in this doping regime by a Curie law8 according to Eq. 89:

χ ffi NMn

V

g20 μ
2
B S Sþ 1ð Þ
3kT

: (17)

2.1.2 Low-Alloying Regime
At increased concentration of Mn2+ ions (0.002 < x < 0.10), there is an increased
probability for the occurrence of interacting Mn clusters. Pairs of Mn2+ ions on
neighboring fcc sublattice sites have antiparallel spin alignment, i.e., they have an
antiferromagnetic interaction (Jnn < 0), coupled by the superexchange mechanism.
The susceptibility can be approximated at high temperatures by a Curie–Weiss law
according Eq. 16 with a composition-dependent characteristic temperature; see
Fig. 7a. A diamagnetic contribution χdia accounting for the magnetic properties of
the host crystal is added, yielding in this low-alloying regime

χ ¼ C

T þ Θ
þ χdia: (18)

Fig. 6 AII
1-xMnxB

VI ternary
alloy semiconductors and
their crystal structures. ZB, W,
and RS signify, respectively,
zincblende, wurtzite, and
rock-salt modifications; the
numbers denote the Mn
composition parameters
x (molar fraction) on the
cation sublattice, for which
homogeneous crystal phases
form (After Giriat and
Furdyna (1988))

8A slight departure from the Curie law found for Cd1-xMnxTe and Cd1-xMnxSe at T < 0.1K was
attributed to the small crystal-field splitting of the 6S ground state enabled by minute contributions
of excited states and the additional effect of the nuclear spin.
9Also a Curie–Weiss law according to Eq. 16 with a characteristic temperature |Θ|� 1 was widely
applied, indicating some minor residual coupling effects among the magnetic ions.
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χdia ffi �3.5 � 10�7 emu/g applies for the alloys of Fig. 6.10 The Mn2+ ions were
found to be randomly distributed in the cation sublattice.11 For such random
distributions the probability of small clusters was calculated by Pohl and Busse
(1989) for cubic lattices and by Kreitman and Barnet (1965) for hexagonal lattices.
Using these probabilities the susceptibility can be described in terms of a spin-cluster
model, yielding

χ ffi
X
i

Ni

V
χi: (19)

Here i is the type of cluster (e.g., pair or triple; various configurations must be
distinguished; see also Pohl and Busse 1989) and Ni/V is the respective number per
unit volume; χ is thus composed from the contributions of all cluster types. An
explicit evaluation of the contributions χi leads to the expression (Nagata et al. 1980)

X
i

Ni

V
χi ¼

X
i

Ni

V

g20 μB
2

3 kT

X
S

X
m
S Sþ 1ð Þ 2Sþ 1ð Þexp � ES � gμBmHð Þ=kTð ÞX

S

X
m
2Sþ 1ð Þexp � ES � gμBmHð Þ=kTð Þ ;

ES is the energy at zero magnetic field H, S is the total spin, and m is the magnetic
quantum number; the second summation is performed over –S 	 m 	 S. In the

Fig. 7 (a) Inverse susceptibility of Cd1-xMnxTe for various composition parameters x. Red and blue
data points were measured after zero-field cooling for increasing T and after field cooling, respec-
tively. (b) Susceptibility of Cd1-xMnxTe (blue symbols) and Cd1-xMnxSe (red symbols) for zero-
field cooling (symbol!) and field cooling (symbol ); vertical arrows indicate cusps in the data
obtained for zero-field cooling (After Oseroff 1982)

10The mass magnetization is given here in the conventionally used units of emu/g; the conversion
factor to the SI unit is 1 emu/g = 10�3 A � m2 = 10�3 J/T.
11The sublattice of the cations is fcc in (cubic) zincblende and hcp in (hexagonal) wurtzite lattices.
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exchange interaction, only nearest neighboring Mn2+ ions were taken into account,
with |Jnn/k| ffi 10K (7. . .8 for CdMnTe and CdMnSe and 9. . .15 for ZnMnS,
ZnMnSe, and ZnMnTe).

2.1.3 High-Alloying Regime
As the concentration of Mn2+ ions is further increased (x 
 0.17), the clusters get
more extended; at a critical concentration xc given by the site-percolationthreshold,
the cluster extends over the entire sample. The value of xc depends on the lattice
structure and interaction range; for fcc lattice xc ffi 0.20 and 0.14 for nearest and
second-nearest neighbors, respectively. In this high-alloying regime, a spin-glass
behavior occurs for antiferromagnetic coupling of nearest-neighbor ions, resulting
from the frustration mechanism: if three neighboring spins are considered that form
an equilateral triangle, two of them may be aligned antiparallel, but the third cannot
also be aligned antiparallel simultaneously to both of the two others. Since both fcc
and hcp sublattices in zincblende and wurtzite structures are composed of tetrahe-
drons (which comprise such triangles), frustration occurs in both structures.

In the spin-glass regime, the low-temperature susceptibility shows a different
temperature dependence upon sample cooling either with or without an externally
applied field H. When the sample is cooled in zero field and H is applied at lowest
temperature (zero-field cooling, ZFC), the susceptibility increases and passes a
maximum as the temperature is raised; by contrast, cooling in presence of an applied
field yields a larger low-T susceptibility, which steadily decreases as T is increased
(Fig. 7b). The temperature Tf of the ZFC cusp indicated by vertical arrows in the
figure broadens, gets weaker, and shifts to lower temperature as the magnitude of
H is increased (Oseroff 1982). Such cusp is also observed in classical metallic spin-
glass alloys CuMn and AuFe.

The value of Tf depends also on the composition parameter x as illustrated in Fig. 8.
All diluted magnetic semiconductors of Cd and Zn given in Fig. 6 show a composition
x ffi 0.17 for Tf! 0 (intersection of dashed line with abscissa in the figure) which is
close to the percolation threshold xc for next-nearest-neighbor interaction; a spin-glass

Fig. 8 Magnetic phase diagram showing the maximum temperature (cusp) of χ measured under
zero-field cooling versus manganese composition x; Tf is the transition temperature separating the
paramagnetic phase P from the spin-glass phase SG (After Oseroff and Keesom 1988)
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is generally expected for antiferromagnetically coupled next-nearest neighbors which
are subjected to the frustration mechanism (de Seze 1977).

For applications employing the magnetic properties of semiconductors, a ferro-
magnetic coupling of magnetic moments is important. Such coupling is difficult to
achieve in II–VI semiconductors, particularly for high operation temperature.12

Reliable room-temperature ferromagnetism was reported for Zn1-xCrxTe, where the
d4 electrons of Cr2+ experience a p–d exchange interaction (Sect. 2.3). Figure 9
shows respective calculated and experimental Curie temperatures. Based on a mean-
field approach, ferromagnetic coupling resulting in a Curie temperature exceeding
300 K was also predicted for ZnO alloyed with 5% Mn (Dietl et al. 2000). This
theory requires mediation by free holes, which can hardly be obtained in the
notorious n-type ZnO. On the other hand, such mechanism operates well in III–V
semiconductors alloyed with Mn considered in the following section.

2.2 III–V Diluted Magnetic Semiconductors

The solubility of paramagnetic 3d ions in III–V semiconductors is much lower than
in II–VI compounds (�10�3 in equilibrium, �8% at nonequilibrium); usually
nonequilibrium low-temperature growth employing epitaxy (▶Sect. 3.3 in chapter
“Properties and Growth of Semiconductors”) is applied to achieve a sufficient
alloying composition with magnetic ions. Substitutional incorporation of – usually
divalent – transition-metal ions for a trivalent cation in a III–V semiconductor leads

Fig. 9 (a) Curie temperature of ferromagnetic Zn1-xCrxTe for varied Cr composition. MFA, LRPA,
and MC denote computations by a mean-field approximation, the local random-phase approxima-
tion, and the Monte Carlo method, respectively (After Sato et al. 2010). The red data point
labeled exp was experimentally obtained from the sample studied in panel (b). (b) Magnetization
of a Zn1-xCrxTe layer grown using molecular-beam epitaxy (After Saito et al. 2003)

12In some cases an observed ferromagnetism did solely originate from precipitates of magnetic ions
alloyed into nonmagnetic II–VI host crystals (Saito et al. 2003).
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to localized acceptor or donor states in the bandgap of the host crystal. The location
of these states with respect to the valence band of the host crystal and the position of
the Fermi level determine the kind of magnetic interaction; see Sect. 2.3. For some
III–V semiconductors, the position of the localized 3d states is shown in Fig. 10.
Ga1-xMnxAs, In1-xMnxAs, and Ga1-xMnxN are the most studied semiconductors. In
GaAs alloying with Mn induces a fairly shallow acceptor level (denoted Mn3+/2+ in
Fig. 10), leading to one hole carrier per substitutional Mn ion.

2.2.1 Mediation of Ferromagnetism by Holes
Control of defects is important as demonstrated for the Curie temperature measured
for Ga1-xMnxAs: the early finding of 110 K (Ohno et al. 1996) was improved later to
a value of 170 K by annealing the samples; the difference was attributed to the
removal of interstitial Mni and AsGa antisite point defects, which were
unintentionally introduced during the low-temperature epitaxy.13 The ferromagnetic
interaction of Mn2+ ions in GaAs is mediated by holes. Mni and AsGa defects are
both donors: they introduce free electrons and thereby compensate the hole carrier-
density, which is created via the intended substitution of trivalent Ga3+ by divalent
Mn2+ on a cation lattice site. The Curie temperature of ferromagnetic Ga1-xMnxAs
given in Fig. 11a shows an increase for Mn composition. Calculated values agree
well with those of samples, which were annealed to remove compensating donor
defects, while as-grown samples with defects have significantly lower TC values.14

Calculated TC of Fig. 11a assumed one hole per Mn ion. Evidence for the
mediation of ferromagnetic coupling by holes is provided by calculations, which
assume a reduced number of holes per Mn ion (Fig. 11b). Below unity the Curie
temperature decreases strongly and gets negative for a very low hole density: in this

Fig. 10 Measured locations
of 3d-impurity acceptor or
donor levels in III–V
semiconductors: Mn (circles),
Fe (squares; different values
for GaN are from different
references), and Cr
(diamonds). Gray lines are
guides to the eye; (After
Wolos and Kaminska 2008)

13Molecular-beam epitaxy is performed at low deposition temperatures down to 180 �C to allow for
high nonequilibrium alloying levels; due to the limited kinetics at such low temperature, point
defects are easily created.
14At highest Mn composition, a deviation from expected values even for annealed samples indicates
some onset of compensation.
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range the ferromagnetic state becomes unstable and the short-range antiferromag-
netic coupling mediated by superexchange (illustrated in Fig. 2a) dominates.

Mediation of the ferromagnetism by holes is experimentally demonstrated in the
isothermal magnetization of (InMn)As by an electric field (Ohno et al. 2000); the
example also demonstrates electric control of magnetic properties. A thin layer of
In0.03Mn0.97As is used as magnetic channel material of an insulating-gate field-effect
transistor; the magnetization M of the layer in a magnetic field B can be measured in
terms of the sheet resistance RHall in a Hall geometry (▶Sect. 1.2.2 in chapter
“Carriers in Magnetic Fields and Temperature Gradients”), which is given by

RHall ¼ R0

d
Bþ RS

d
M;

d is the thickness of the layer, and R0 and RS are, respectively, the ordinary and
anomalous Hall coefficients. The measurement of RHall at B = 0 slightly below the
Curie temperature of the (InMn)As channel is shown in Fig. 12 for various gate bias
voltages VG. At zero bias a small hysteresis loop indicates some spontaneous
magnetization; at positive bias holes are depleted from the channel, and the loop
develops to a paramagnetic linear response without hysteresis. By contrast, at
negative bias holes are accumulated in the channel, and a pronounced hysteresis
loop appears.

2.2.2 Stability of the Ferromagnetic State
The stability of the ferromagnetic (FM) state with respect to antiferromagnetic
(AFM) coupling can be expressed by a stabilization energy δ = EFM – EAFM.
Table 4 lists stabilization energies for substitutional Mn ion pairs in various III–V

Fig. 11 (a) Curie temperature TC of Ga1-xMnxAs for varied Mn composition. Open and filled
squares denote values of as-grown and of subsequently annealed samples, respectively. The red
circles represent theoretical values obtained from the local random-phase approximation, assuming
one free hole per Mn ion (After Sato et al. 2010). (b) Normalized Curie temperature TC per Mn
composition x, calculated using a tight-binding coherent-potential approximation for various
numbers p of holes per Mn ion and Mn composition parameters x (After Jungwirth et al. 2005)
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and chalcopyrite I–III–VI2 DMS, calculated using density-functional theory; in both
kinds of semiconductors, Mn2+ ions substitute Ga3+ ions. The locations of the first
(1nn) to the fourth (4nn) next neighbor on the cation fcc sublattice noted in the table
refer to 1

2
, 0, 1

2
ð Þa, (1, 0, 0)a, 1

2
, 1
2
, 1ð Þa, and (1, 1, 0)a, respectively, for the zincblende

semiconductors.15 Large negative values denote a stable ferromagnetic state; the
calculations yield for all cases ferromagnetic coupling, with largest stability for the
1nn pair 1

2
, 1
2
, 0ð Þa� 0, 0, 0ð Þa and the 4nn pair (1, 1, 0) a� (0, 0, 0) a, which both are

oriented along the 110 direction. The reason for this orientation dependence is the
coupling of the Mn–As bonds to similarly directed states of the dangling-bond holes
introduced by the replacement of trivalent Ga3+ ions by divalent Mn2+ ions (Zhao
et al. 2004).

Table 4 Calculated ferromagnetic stabilization energies d = EFM – EAFM given in (meV/Mn ion)
for substitutional first (1nn) to fourth (4nn) next-neighbor Mn ion pairs in various diluted magnetic
semiconductors; ZB denotes the cubic zincblende (b) modification of GaN

Semiconductor 1nn 2nn 3nn 4nn

GaN ZB �188 �11 �63 �161
GaP 139 131 �89 �132
GaAs �124 �30 �76 �114
GaSb �56 �7 �28 �54
CuGaS2 �81 �83
CuGaSe2 �71 �61
CuGaTe2 �52 �59
Data from Zhao et al. (2004)

Fig. 12 Magnetization of
In0.03Mn0.97As, measured via
the proportional Hall
resistance RHall in a gated
field-effect transistor,
measured at different gate
biases (After Ohno et al.
2000)

15In the chalcopyrite structure (Fig. 13 in chapter ▶ “The Structure of Semiconductors”), the 1nn
and 3nn neighbors are located at a

2
, 0, c

4
ð Þand a

2
, a
2
, c
2

ð Þ, respectively.
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A clear trend of the ferromagnetic stabilization energy with respect to paramag-
netism was found within the series of transition-metal ions from calculations based
on density-functional theory with the local-density approximation and the coherent-
potential approximation (Sato and Katayama-Yoshida 2002). The results given in
Fig. 13 show the total energy difference per unit cell ΔE between the ferromagnetic
and the paramagnetic state; here, positive values denote a stable ferromagnetic state.
The first half of the 3d transition-metal series (Vand Cr, in II–V compounds also Mn)
tends to ferromagnetism (positive ΔE), while – except for ZnO – the second half
(Fe and Co) tends to paramagnetism. In the II–VI semiconductors, the trend is
shifted by one to lower atomic number; this originates from the divalent charge
state and a corresponding occupation of 3d states increased by one compared to a

Fig. 13 Chemical trend of the energy difference ΔE per unit cell between ferromagnetic and
paramagnetic states in diluted magnetic semiconductors (After Sato and Katayama-Yoshida (2002))
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trivalent charge state in III–V semiconductors. The universal trend does not depend
on the concentration of the magnetic ions and indicates some general rule in the
exchange mechanism discussed in the next section.

2.3 Exchange Mechanisms in Diluted Magnetic Semiconductors

In diluted magnetic semiconductors, several simultaneously acting exchange mech-
anisms exist, which either induce ferromagnetism or antiferromagnetism; a physical
understanding of mechanisms leading to ferromagnetism or magnetic disorder is still
incomplete. In the following the most relevant and usually dominating interactions
of double exchange, p–d exchange, and superexchange are outlined.

Transition-metal ions alloyed into nonmagnetic semiconductors introduce elec-
tronic impurity bands with low dispersion. The energy of these bands with respect to
those of the host crystal and to the Fermi level determines the prevailing kind of
interaction. We therefore first consider the electronic structure of the 3d states of a
transition-metal ion in the crystal environment of the host semiconductor.

In semiconductors with wurtzite or zincblende structure, substitutional 3d ions
occupy lattice sites with a tetrahedral environment of anion ligands (Td symmetry).
As schematically illustrated in Fig. 14, the tetrahedral crystal field of the ligands
leads to a spitting of the states of the five d orbitals, separating states of the three 3de
orbitals with e symmetry (dxy, dyz, dzx) from those of the two 3dγ orbitals (dx2�y2 ,
d3z2�r2 ) with t2 symmetry (▶ Sects. 1.4 and ▶ 3 in chapter “Deep-Level Centers”).
The 3de wavefunctions are extended to the neighboring host-crystal anions and
therefore hybridize with their p states (which form the host valence band) and to
some extent also with their s orbitals (p–d hybridization), forming bonding states tb
in (or, near) the valence band; the corresponding antibonding states ta are raised high

Fig. 14 Electronic structure
of 3d electrons of a transition-
metal ion on a substitutional
tetrahedral site, subjected to
successive interactions
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into the bandgap of the host. The 3dγ orbitals are strongly localized and extend more
to the interstitial region; they hence show only weak p–d hybridization, leading to
nonbonding e states (Zunger 1986; Sato and Katayama-Yoshida 2002). The degree
of hybridization depends on the mutual location of the impurity d states with respect
to the host p and s states. The charge–charge Coulomb interaction is complemented
by spin–spin interaction, which splits each of the e and t2 states into spin-up and
spin-down states. The different exchange mechanisms are illustrated below in a
scheme representing the density of spin-polarized states, with up-spin and down-spin
DOS drawn separately; in the host crystal half of the states refer to the spin-up DOS
and the other part to the spin-down DOS.

2.3.1 Superexchange
Coupling of the magnetic moments of magnetic ions by superexchange does not
require a finite density of states at the Fermi energy; it hence also occurs in insulating
magnetic solids (Goodenough 1955; Kanamori 1959). In Fig. 2b the mechanism is
illustrated by a coupling of two magnetic ions mediated by the p orbitals of the
nonmagnetic anions, i.e., by an overlap of d states of the magnetic impurity and
p states of a ligand. Hybridization of two different states generally leads to the level
scheme drawn in Fig. 15b. The simple molecular model yields an energy gain for the
low-energy state of ion 1 by approximately |t|2/(Eion2� Eion1), where t is the hopping
integral. We assume for simplicity the state of ion 1 as a gap state of a magnetic
impurity and that of ion 2 as host states, albeit strictly speaking the gap states
originating from an impurity are already hybrids. The electronic structure of two
coupled magnetic ions is shown in Fig. 15a. Due to their antiparallel alignment

Fig. 15 (a) Density of spin-polarized states of two alike magnetic ions with their antiparallel
moments coupled by superexchange. Dark-red and red lines indicate d states before and after
hybridization. (b) Energies of two unlike interacting ions in a molecular model
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which is usually induced by superexchange, their respective density of spin-
polarized states is mirrored at the energy axis. The Fermi energy is assumed to lie
between the energy of the d states; hybridization of the d states with equal spin will
then lower the energy of the occupied low-energy d" states and raise the energy of
the unoccupied d# states in ion 1 and vice versa in ion 2. This yields the energy gain
for stabilizing the antiferromagnetic coupling.

In a diluted magnetic semiconductor, the energy gain considered for two coupled
ions in Fig. 15b is proportional to the impurity concentration x. The energy gain for
superexchange therefore reads

ΔESExc ffi x tj j2= Et"
2

� Et#
2

� �
: (20)

Equation 20 shows that the superexchange depends strongly on the exchange
splitting appearing in the denominator. The interaction is short-ranged but quite
strong, because the overlap of t2 states can be rather large. Superexchange does not
depend on the location of the Fermi level, provided it lies between the spin-polarized
d states. It gets weaker if EF lies in one of these bands and disappears if EF lies
outside.

Superexchange may also induce ferromagnetic alignment. This occurs if hybrid-
ization occurs between t2 and e impurity states with EF lying in between. The energy
gain is similar to Eq. 20 with an additional factor of 2 and the denominator replaced

by Et"
2

� Ee"

� �
. Due to the stronger localization of e states, the hopping integral is,

however, much smaller. Usually double exchange and p–d exchange dominate
ferromagnetic coupling, with contributions from both mechanisms.

2.3.2 Double Exchange
Double exchange is the prevailing ferromagnetic coupling mechanism in diluted
magnetic II–VI semiconductors. The interaction introduced by Zener (1951a) is a
strong, short-range ferromagnetic coupling mechanism; it occurs if relevant partially
filled 3d bands of magnetic impurities lie in the bandgap of the host semiconductor.
The electronic structure of 3d impurities which experiences double exchange is
illustrated in Fig. 16a. The split 3d states correspond, e.g., to tb

" and tb
# of Fig. 14,

and the Fermi level EF is assumed to lie in the middle of the lower impurity band
labeled d". A coupling of two ions with two states of equal energy leads generally to
a symmetric bonding–antibonding splitting indicated in the scheme in Fig. 16b; here,
both of these states lie in the broad impurity band. If the impurity band is only half
filled, solely the bonding states Ebond are occupied, yielding an energy gain ΔEDExc

/|t| for a coupled impurity pair, where t is the hopping matrix element. We notice
from Fig. 16 that the energy gain gets maximum for a half-filled impurity band and
zero for a completely filled or empty band; since EF lies within a partially filled band,
a stabilization of ferromagnetism is also accompanied by a considerable itinerant
character of the electrons; the mobility is, however, lower than that of conduction-
band electrons, which mediate itinerant exchange in transition-metal ferromagnets:
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the deeper lying states of d electrons are more atomic-like (also expressed by a low
dispersion; compare ▶ Sect. 1.1 and ▶ Fig. 3 in chapter “The Origin of Band
Structure”).

The energy gain ΔEDExc increases for larger impurity concentration x. At higher
doping the impurity band broadens (dotted distribution of d" in Fig. 16a); occupation
of states can then be transferred to lower energies, yielding also a larger net gain. The
width of the impurity band W is proportional to

ffiffiffi
x
p

, yielding

ΔEDExc /
ffiffiffi
x
p

tj j: (21)

Double exchange is a prominent interaction in diluted ferromagnetic II–VI
semiconductors. The p states of the six-valent host anions that build the valence
band lie lower than those of the five-valent anions in III–V semiconductors. There-
fore, relevant impurity 3d states are always located in the bandgap of II–VI semi-
conductors. The spin-polarized DOS of Zn0.95Cr0.05Te given in Fig. 17 shows the

Fig. 17 Calculated density of
spin-polarized states in
Zn0.95Cr0.05Te. Green lines
refer to the total averaged
DOS per unit cell of the ZnTe
host crystal; blue and red lines
signify, respectively, states
with e and t2 symmetry of the
partial DOS per Cr2+ 3d ion.
Abscissa values are energies
relative to the Fermi level EF

(After Sato et al. 2010)

Fig. 16 (a) Schematic of the density of spin-polarized states for double exchange. Hatched area
designates filled spin-up d states for low-alloying concentration; at high concentration the d band
broadens as indicated by the dotted line. (b) Energies of two like interacting ions in a molecular
model yielding bonding and antibonding states

326 Magnetic Semiconductors



states of the Cr2+d4(e2", t2
2") electronic configuration: states of the two t2

" electrons
occupy an approximately half-filled ta

" impurity band above the valence band of the
ZnTe host; states of the two e" electrons and the bonding tb

" states lie in range of the
host valence band and are completely filled. The exchange interaction arises from the
half-filled ta

" band. The narrow energy distributions of the two sharp e state peaks
reflect the strong localization of these nonbonding states, while ta and tb states are
more delocalized.

Similar calculations for other semiconductors alloyed with magnetic 3d transition
metals are reviewed in Sato et al. (2010) and Mahadevan and Zunger (2004).

2.3.3 p–d Exchange
The p–d exchange is a weaker but more extended ferromagnetic exchange interac-
tion (Zener 1951b; Dietl et al. 2000). The mechanism is illustrated in Fig. 18; the
low-energy d" impurity band lies below the host p band, and the d# impurity band
lies above. The p–d hybridization enlarges the separation of p and d states with like
spins: the host p" band moves to higher and the p# band to lower energy. If the Fermi
energy EF is located below the valence-band maximum as indicated in the figure,
such shifts lead to a spin polarization in the host – the occupation of p" and p# bands
is no longer balanced. Additional holes appear in the p" host band, while the p# band
gets almost fully occupied; the host becomes polarized with a moment antiparallel to
the local moment of the occupied d" states of the magnetic impurity. By configura-
tional averaging, a homogeneous host polarization is obtained, which favors the
ferromagnetic coupling of the magnetic impurities. The coupling energy is propor-
tional to the host polarization and scales linearly with the alloying parameter x; this
distinguishes the weaker, longer-ranged p–d exchange from the stronger, short-
ranged double exchange with its x½ dependence.

A level ordering like that of Fig. 18 is found in diluted magnetic III–V
semiconductors with a narrow bandgap like GaMnSb or InMnSb. The density of

Fig. 18 Spin-polarized density of states for p–d exchange. Solid and dotted lines signify the host
p band before and after hybridization with impurity d states of like spins
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spin-polarized states in Ga0.95Mn0.05Sb (Fig. 19) shows that the large peak of the d"

impurity band (basically originating from e" states) lies below the center of the host
5p band of Sb anions; the d# impurity band formed by e# and ta

# states lies above the
Sb valence band and above EF. The Mn2+ impurity has a localized magnetic moment
of 5 magnetons μB; in the neutral state with respect to the host, i.e., Mn3+, one
electron per Mn ion is missing: ½ electron is transferred to the spin-up and ½
electron to the spin-down valence band. As pointed out above, the p# band is almost
fully occupied; the p states of Sb hence carry about 1 μB per Mn ion, antiparallel
oriented to the effective moment of 4 μB per Mn ion.

3 Summary

Magnetic properties introduced into nonmagnetic semiconductors by substitutional
paramagnetic 3d transition-metal cations or rare-earth cations are described by the
magnetic susceptibility χ. Above a critical Curie (or Néel) temperature, thermal
energy disturbs magnetic coupling and a paramagnetic behavior with an inverse
dependence of χ on T is found; below this temperature spontaneous magnetic
ordering of the magnetic moments located at the paramagnetic ions occurs, and χ
depends on the orientation and the temporal evolution of the magnetic field. The
magnetic moments are coupled by various, simultaneous acting exchange interac-
tions. Superexchange mediated by p states of nonmagnetic anion ligands favors
antiferromagnetism, while double exchange and p–d exchange favor ferromagne-
tism with a parallel alignment.

Diluted magnetic semiconductors represent interesting solids with the ability to
control magnetic properties via electric fields and carriers introduced by injection or
doping. The magnetic impurities represent substitutional alloy components on the
cation sublattice and introduce both, locally strongly confined and more extended,
hybridizing states into the host semiconductor. The ordering temperature depends on

Fig. 19 Calculated density of
spin-polarized states in
Ga0.95Mn0.05Sb. Green lines
refer to the total averaged
DOS per unit cell of the GaSb
host crystal; blue and red lines
signify the partial DOS per
Mn 3d ion. Abscissa values
are energies relative to the
Fermi level EF (After Sato
et al. 2010)
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the alloy composition and the Fermi level, which controls the kind of prevailing
interaction. The achievement of magnetic ordering well above ambient temperature
proved challenging and is presently an active field of research.
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Interaction of Light with Solids
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Abstract
The interaction of light with solids is described by Maxwell’s equations, which
treat the solid as a continuum and lead to its optical parameters as a function of the
frequency of the electromagnetic radiation: the complex dielectric constant. The
dielectric constant describes the ability of a solid to screen an electric field – with
electronic and ionic contributions – and is one of the most important material
parameters. This function is closely related to the index of refraction and the
optical absorption (or extinction) coefficient. All these parameters are derived
from measured quantities: the transmitted and reflected light as a function of
wavelength, impinging angle, and polarization.

A periodic modulation of the dielectric constant along a spatial direction leads
to a photonic bandgap for the propagation of specific modes along this direction,
analogous to the electronic bandgap for electrons traveling in the periodic crystal
potential. A complete bandgap for propagation along any direction can be created
for three-dimensional periodicity; defects given by deviations from periodicity
lead to localized states in such photonic crystals, similar to effects in the
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electronic counterpart, allowing for, e.g., waveguiding or suppresion of sponta-
neous emission.

At high field amplitudes, nonlinear optical effects occur due to the non-
parabolicity of the lattice potential. These effects can be described by a
field-dependent dielectric function. The resulting nonharmonic oscillations per-
mit mixing of different signals with corresponding change in frequency and
amplitude.

Keywords
Absorption � Dielectric constant � Dielectric function � Dielectric screening �
Electro-optical effects � Ellipsometry � Fresnel coefficient � Fresnel equations �
Index of refraction � Metamaterial � Microcavity � Nonlinear optical effects �
Optical constants � Optical defect � Photonic bandgap structures � Photonic
crystals � Reflectance � Reflection � TE mode � TM mode � Transmittance �
Transmission � Upconversion

1 Continuum Model of Solid-Light Interaction

The interaction of electromagnetic radiation (photons) with semiconductors pro-
vides major insight into the electronic and phononic structure of these solids.
Such interactions can be described as resonant and nonresonant. Resonant
absorption related to ionic charge of crystal atoms is observed in the infrared
part of the spectrum; resonant absorption dealing with bound electrons is
observed at shorter wavelengths and is usually separated from the ionic compo-
nent by a wavelength range with low optical absorption, except for semiconduc-
tors with almost zero bandgap. Both types of absorption describe intrinsic
properties of the semiconductor. In addition, a large variety of extrinsic ionic
and electronic resonance transitions of semiconductor defects can be distin-
guished. These optically induced transitions are extensively used for the identi-
fication of such defects. Nonresonant interactions can be observed between
photons and free electrons, except at high densities of free electrons when they
act jointly as plasmons.

The interaction between photons and elementary excitation processes in the
semiconductor can be elastic, without absorption, or inelastic, with absorption.
The latter requires damping of the excited state by either absorption or emission of
phonons or by collisions with electrons or other quasiparticles. The resonant transi-
tions will be described for ions in ▶ Sect. 2.1 of chapter “Photon–Phonon Interac-
tion” and for electrons in chapter ▶ “Photon–Free-Electron Interaction.” The
description in this chapter is based on solutions of Maxwell’s equations, which
deal with the resonant transitions in a phenomenological way: the semiconductor
is considered a continuum, disregarding its atomic structure. Comparison with the
experiment requires the transformation of experimentally accessible quantities, such
as reflectance and optical transmissivity, into quantities obtained as a result of a
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theoretical analysis, such as the set of optical constants.1 This relationship is
summarized in Sect. 1.2.

1.1 Reflection, Transmission, and Absorption

In this section, the interaction of electromagnetic radiation with a semiconductor is
described in a classical model. We begin with Maxwell’s equations, which result in
the dispersion equation, yielding the optical parameters of the semiconductor (its
complex dielectric constant) as a function of the frequency of the electromagnetic
radiation (the energy of the photons). For more information, see Palik (1985, 1991),
Ward (1994).

Light impinging on a semiconductor is subject to a number of optical interactions
before it is absorbed. First, a fraction of the light is reflected at the outer surface;
another fraction is scattered by crystal imperfections, phonons, and other quasipar-
ticles; then a fraction of the light within the semiconductor is absorbed by various
elementary excitation processes. The unabsorbed fraction is transmitted and exits
through the semiconductor’s surfaces after partial reflection.

Initially, we regard the semiconductor as a continuum, represented by four
parameters which can be measured macroscopically: the magnetic permeability μ,
the dielectric constant e, the space charge density ρ, and the electric conductivity σ.
With these parameters, the relationship between absorption, reflection, and trans-
mission can be obtained from Maxwell’s equations2:

@

@r
� E ¼ �μμ0

@H

@t
(1)

@

@r
�H ¼ e e0

@E

@t
þ σE (2)

@

@r
E ¼ ρ

e e0
(3)

@

@r
H ¼ 0: (4)

1This chapter contains quite a few equations; the most important relations are pointed out by a
shading.
2The operators @

@r� and @
@r � are also written as ∇� or rot and ∇� or div, respectively, with ∇ being the

Nabla operator. The symbolic vector @
@r has the components @

@x ,
@
@y ,

@
@z

� �
, and the “�” and “�”

operations yield consequently a vector and a scalar, respectively.
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with the proper boundary conditions adapted to the given geometry. Here, E is
chosen as the electric field vector rather than F as in other chapters of this book; H is
the magnetic field vector.

1.1.1 Nonabsorbing Dielectrics
We consider light propagation and the corresponding energy flow in a homogeneous,
nonmagnetic, and nonconductive dielectric; from Maxwell’s equations, one obtains
by putting ρ = σ = 0, μ = 1, and e0�μ0 = 1/c2 (with c being the speed of light in
vacuum):

@

@r
� @

@r
� E ¼ @

@r

@

@r
E

� �
� @2

@r2
E ¼ � @

@r
� 1

e0 c2
@H

@t

� �
¼ � 1

e0 c2
@

@t

@

@r
�H

� �
; (5)

which yields the undamped wave equation for the electric vector field

@2

@r2
E ¼ e

c2
@2

@t2
E (6)

and a similar one for the magnetic vector field. Assuming a plane wave entering the
dielectric in the x-direction with linear polarization in the y-direction, one has with
E = (0, Ey, 0) from Eq. 6

@2Ey

@x2
¼ e

c2
@2Ey

@t2
(7)

which can be solved with the trial solution

Ey ¼ f xð Þexp �iω tð Þ (8)

where f(x) is the amplitude function and ω the oscillation frequency. Substitution of
Eq. 8 into Eq. 7 yields

@2f

@x2
þ eω2

c2
f ¼ 0 (9)

with the solution

f xð Þ ¼ E0 exp �i
ωx

v

� �� �
; (10)

where

v ¼ cffiffi
e

p ¼ c

nr
: (11)
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Here, nr ¼
ffiffi
e

p
is the index of refraction3 and c is the light velocity in vacuum.

Thus, with the + sign in Eq. 10, Eq. 8 describes a plane wave traveling in + x-direction
with a phase velocity v and amplitude E0:

Ey ¼ E0 exp iω
x

v
� t

� �� �
¼ E0 exp iω

nr
c
x� t

� �� �
: (12)

The energy flow in this wave is given by the Poynting vector (a vector in the
direction of the wave propagation)

S ¼ E�H: (13)

Here, we assume E= (0, Ey, 0) andH= (0, 0,Hz). The energy density is given by

W ¼ 1

2
ee0E2 þ μμ0H

2
� �

: (14)

With an equal amount of energy in the electrical and magnetic component, one
obtains for the total energy density twice the energy represented by the electrical
vector:

W ¼ ee0E2: (15)

1.1.2 Metamaterials
With the assumptions made to obtain the undamped wave Eq. 6, we referred to the
case μ = 1, which is generally fulfilled for semiconductors and leads to the positive
sign for the refractive index nr and the phase velocity in Eq. 11. Both μ and e depend,
however, on the frequency ω of the electromagnetic radiation as discussed later, and
a more general formulation of the wave equation reads:

@2

@r2
E� μ0 μ ωð Þ e0 e ωð Þ @2

@t2
E ¼ 0: (16)

This leads to the complex index of refraction ~n ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e ωð Þμ ωð Þp

introduced for
the case μ = 1 below in Eq. 20. In metamaterials, there exists a frequency range
where both e(ω)< 0 and μ(ω)< 0. In such case ~n ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e ωð Þμ ωð Þp
applies, resulting

in a negative real refractive index nr(ω) at these frequencies.
A real nr(ω) < 0 leads to a number of counterintuitive consequences (Veselago

1968). The phase velocity v is negative according Eq. 11. The vectors E, H,
and k follow a left-hand rule; the energy flow is still given by the Poynting vector

3An index r is added to the widely used symbol n to distinguish this quantity from the carrier
density n.
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S ¼ E� H, but S is antiparallel to the wavevector k. Snell’s law of refraction Eq. 38
remains valid, but the light beam is refracted on the same side of the normal since
one of the two refractive indices is negative; consequently, a convex lens acts as a
diverging lens and a concave lens focuses the light. A negative refractive index was
experimentally first verified by scattering experiments at microwave frequencies
(Shelby et al. 2001).

Metamaterials are fabricated using periodic stuctures with resonant building
blocks of individual subwavelength size and periodicities below the wavelength,
see Busch et al. (2007), Soukoulis and Wegener (2010). The structures resemble
photonic crystals (Sect. 2), but the latter employ wavelength-scale building blocks
which produce collective Bragg resonances. In metamaterials, the building blocks
are ideally noninteracting and produce individual Mie resonances. Potential appli-
cations of metamaterials include superlenses with increased optical resolution
beyond that of conventional lenses and lenses for high-gain antennas. For more
details on metamaterials, see Engheta and Ziolkowski (2006), Zouhdi et al. (2009),
and Cui et al. (2010).

In the following, we resume the treatment with a positive refractive index nr.

1.1.3 Semiconductors with Optical Absorption
The introduction of a finite conductivity σ = σ(ω) (second term of Eq. 17) produces a
damping contribution on the electromagnetic wave in a semiconductor, resulting in a
finite optical absorption.4 From Eqs. 2 and 5, we obtain the damped wave equation
for the electric vector

@2E

@r2
¼ e

c2
@2E

@t2
þ σ

e0 c2
@E

@t
: (17)

Using the same trial solution as given in the previous section for f(x), we obtain

@2f

@x2
þ ω2

c2
e� i

σ

e0ω

� �� �
f ¼ 0 (18)

which has a solution that can be written exactly as Eq. 10. This yields a plane wave
traveling in the x-direction

Ey ¼ E0 exp iω
~n

c
x� t

� �� �
(19)

except that the index of refraction used to describe the ratio c/v (Eq. 11) is now
complex and is identified as ñ. This complex index of refraction

4We can understand this by equating damping with transfer of energy into heat and optical
absorption with extraction of this energy from the radiation field. Such absorption occurs even
outside a specific electronic or ionic resonance absorption – see chapters ▶ “Photon–Phonon
Interaction” and ▶ “Photon–Free-Electron Interaction.”

338 Interaction of Light with Solids



~n ¼ c

v
¼

ffiffiffieep
¼ nr þ iκ (20)

is related to the complex dielectric constant ee in a similar fashion as given in Eq. 11
and contains as its real part the previously defined index of refraction nr and as
its imaginary part the extinction coefficient κ. The complex dielectric constant ee is
given by

ee ¼ e0 þ ie00 with e0 ¼ e and e00 ¼ σ

e0ω
; (21)

with its imaginary part related to the conductivity. From Eqs. 20 and 21, we obtain
the important relations for an optically absorbing (damping) homogeneous
continuum:

e0 ¼ n2r � κ2

e00 ¼ σ

e0ω
¼ 2nrκ

or

n2r ¼ 1
2
e0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e02 þ e002

p� �
κ2 ¼ 1

2
�e0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e02 þ e002

p� �
:

(22)

The optical parameters e0, e00, nr, and κ, complemented by the related reflec-
tance R0 defined in Eq. 54, are listed in Table 1 for a number of typical semi-
conductors. Note that all optical constants depend strongly on the photon energy
and also on temperature; moreover, crystals with a symmetry lower than cubic
like, e.g., wurtzite semiconductors, show some dependence on the polarization.
The spectral dependence of nr is shown for some semiconductors in Fig. 1.
For the wurtzite GaN, nr is given for E⊥c; the difference to E//c is 1.5 � 0.2%
at 2.48 eV (500 nm). The dielectric constant is discussed in more detail in
Sect. 1.3.

Using Eq. 20, the propagating wave can be rewritten as

Ey ¼ E0 exp iω
nr
c
x� t

� �� �
exp �ωκ

c
x

� �
(23)

and shows the damping factor in the second exponential. Using a more conventional
expression exp(�αo x) for the damping of the energy flux, with αo as the optical
absorption coefficient for the energy density, we obtain by comparison with the
second exponential in Eq. 23

αo ¼ 2ωκ

c
¼ 4π

λ
κ; (24)

here the energy flow is given by the product of the electric and magnetic vectors, thus
producing a factor of 2 in the exponent. However, Hz is phase shifted by δ with
tan δ = κ/nr. From Eqs. 22 and 23, we also obtain
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Table 1 Optical constants for element and III-V compound semiconductors for E > Eg: real and
imaginary parts of the dielectric constant e0 and e00, respectively, refractive index nr, extinction
coefficient k, normal-incidence reflectance R0, and absorption coefficient ao for various photon
energies E = hn. e0 and e00 after Aspnes and Studna (1983); from these data, nr and k are calculated
according to Eq. 22, R0 according to Eq. 54 and ao according to Eq. 24. For more extensive data, see
Palik (1985, 1991)

E(eV) e0 e00 nr κ R0 αo(10
3 cm�1)

Silicon(Si)

1.5 13.488 0.038 3.673 0.005 0.327 0.78

2.0 15.254 0.172 3.906 0.022 0.351 4.47

2.5 18.661 0.630 4.320 0.073 0.390 18.48

3.0 27.197 2.807 5.222 0.269 0.461 81.73

3.5 22.394 33.818 5.610 3.014 0.575 1,069.19

4.0 12.240 35.939 5.010 3.586 0.591 1,454.11

4.5 �19.815 24.919 2.452 5.082 0.740 2,317.99

5.0 �10.242 11.195 1.570 3.565 0.675 1,806.67

5.5 �9.106 8.846 1.340 3.302 0.673 1,840.59

6.0 �7.443 5.877 1.010 2.909 0.677 1,769.27

Germanium(Ge)

1.5 21.560 2.772 4.653 0.298 0.419 45.30

2.0 30.361 10.427 5.588 0.933 0.495 189.12

2.5 13.153 20.695 4.340 2.384 0.492 604.15

3.0 12.065 17.514 4.082 2.145 0.463 652.25

3.5 9.052 21.442 4.020 2.667 0.502 946.01

4.0 4.123 26.056 3.905 3.336 0.556 1,352.55

4.5 �14.655 16.782 1.953 4.297 0.713 1,960.14

5.0 �8.277 8.911 1.394 3.197 0.650 1,620.15

5.5 �6.176 7.842 1.380 2.842 0.598 1,584.57

6.0 �6.648 5.672 1.023 2.774 0.653 1,686.84

Aluminum Arsenide(AlAs)

2.5 3.394 0.001 0.297 0.25

3.0 3.77 0.053 0.337 16.11

3.5 4.48 0.334 0.405 118.47

4.0 4.92 2.49 0.523 1,009.37

4.5 4.18 2.63 0.505 1,199.38

5.0 2.48 3.95 0.642 2,001.50

5.5 1.36 2.89 0.609 1,610.83

Gallium Arsenide(GaAs)

1.5 13.435 0.589 3.666 0.080 0.327 12.21

2.0 14.991 1.637 3.878 0.211 0.349 42.79

2.5 18.579 3.821 4.333 0.441 0.395 111.74

3.0 16.536 17.571 4.509 1.948 0.472 592.48

3.5 8.413 14.216 3.531 2.013 0.425 714.20

4.0 9.279 13.832 3.601 1.920 0.421 778.65

4.5 6.797 22.845 3.913 2.919 0.521 1,331.28

5.0 �11.515 18.563 2.273 4.084 0.668 2,069.81

(continued)
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αo ¼ σ

e0 nr c
; (25)

which shows the direct connection of αo with the electrical conductivity.
This conductivity is to be taken at the optical frequency and needs further
explanation.

1.1.4 The Complex Electrical Conductivity
The right-hand side of Maxwell’s Eq. 2 is considered as a total current density j; this
quantity includes both the current induced by a change of the electric field and that
originating from the electric field in a conductive solid:

j ¼ e e0
@E

@t
þ σE:

After applying a Fourier transformation from the time into the frequency domain,
this current density can be written

Table 1 (continued)

E(eV) e0 e00 nr κ R0 αo(10
3 cm�1)

5.5 �6.705 8.123 1.383 2.936 0.613 1,636.68

6.0 �4.511 6.250 1.264 2.472 0.550 1,503.20

Indium Arsenide(InAs)

1.5 13.605 3.209 3.714 0.432 0.337 65.69

2.0 15.558 5.062 3.995 0.634 0.370 128.43

2.5 15.856 15.592 4.364 1.786 0.454 452.64

3.0 6.083 13.003 3.197 2.034 0.412 618.46

3.5 5.973 10.550 3.008 1.754 0.371 622.13

4.0 7.744 11.919 3.313 1.799 0.393 729.23

4.5 �1.663 22.006 3.194 3.445 0.566 1,571.19

5.0 �5.923 8.752 1.524 2.871 0.583 1,455.26

5.5 �3.851 6.008 1.282 2.344 0.521 1,306.62

6.0 �2.403 6.005 1.434 2.112 0.448 1,284.15

Indium Phosphide(InP)

1.5 11.904 1.400 3.456 0.203 0.305 30.79

2.0 12.493 2.252 3.549 0.317 0.317 64.32

2.5 14.313 3.904 3.818 0.511 0.349 129.56

3.0 17.759 10.962 4.395 1.247 0.427 379.23

3.5 6.400 12.443 3.193 1.948 0.403 691.21

4.0 6.874 10.871 3.141 1.730 0.376 701.54

4.5 8.891 16.161 3.697 2.186 0.449 996.95

5.0 �7.678 14.896 2.131 3.495 0.613 1,771.52

5.5 �4.528 7.308 1.426 2.562 0.542 1,428.14

6.0 �2.681 5.644 1.336 2.113 0.461 1,285.10
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j ωð Þ ¼ �iωe ωð Þe0Eþ σ ωð ÞE ωð Þ; (26)

when introducing a complex conductivity eσ ¼ σ0 þ iσ00 or using the complex
dielectric constant ee according to Eq. 21, Eq. 26 reads

j ωð Þ ¼ eσ ωð ÞE ωð Þ ¼ �iωee ωð Þe0E ωð Þ: (27)

The real and imaginary parts of the complex conductivity are consequently

σ0 ¼ e00 e0ω
σ00 ¼ �e0 e0ω ¼ � n2r � κ2

� �
e0ω:

(28)

Observe that the real part of eσ is proportional to the imaginary part of ee and vice
versa.

The total current density can now be expressed in terms of the real and imaginary
parts of the dielectric constant; Eq. 26 then reads
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Fig. 1 Refractive index nr of (a) Si, (b) GaAs, and (c) GaN at 300 K as a function of the photon
energy; (a) illustrates the frequency dependence for a wide range, curves in (b) demonstrate the
temperature dependence; the refractive index of GaN is given for E⊥c; after Philipp and Taft
(1960), Marple (1964), and Ejder (1971), respectively
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j ωð Þ ¼ eσ ωð Þ E ωð Þ ¼ e0ω e00 ωð Þ � ie0 ωð Þð ÞE ωð Þ
¼ σ0 ωð Þ � iωe0 n2r � κ2

� �� �
E ωð Þ: (29)

The first term in Eq. 29 comprising σ0 is proportional to the displacement current;
this part of the total current is caused by bound electrons surrounding each atom
core, which oscillate out of phase with the applied electric field.

1.1.5 Dielectric Polarization
For later discussions of microscopic models, it is advantageous to introduce the
dielectric polarization as the response of the solid on an applied electric field E. The
electric displacement D, field strength E, and polarization P are related by

D ¼ e0ee E ¼ e0Eþ P (30)

and

P ¼ e0eχ E ¼ e0 ee � 1ð ÞE (31)

with ee as the complex dielectric constant. Here, only a linear relationship
between P and E is given. Higher-order terms in E are of importance at higher
fields and give rise to nonlinear optical effects, which are discussed in Sect. 3.
Equation 31 defines the susceptibilityeχ as the proportionality constant between the
polarization P and the electric field E. From Eqs. 30 and 31, we have an electric
displacement

D ¼ e0 1þ eχð ÞE: (32)

In an anisotropic material, ee and eχ have tensor form with components

Pi ¼ e0eχ ij Ej and Di ¼ e0eeij Ej: (33)

This matrix relationship must be used when applying Maxwell’s equations to an
anisotropic medium. For instance, from Poisson’s equation @

@rE ¼ ρ= ee e0ð Þ, we have
for the ij component

e0eeij @Ej

@xi
¼ ρ: (34)

Depending on the crystal symmetry, the dielectric constant tensor can be reduced
and contains at most six independent coefficients – see Table 2. This dielectric
constant will be discussed in more detail in Sect. 1.3.
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1.2 Measurement of Optical Parameters

The parameters experimentally measured are the intensities of reflected and trans-
mitted radiation and its change of the state of polarization. On the other hand, the
parameters obtained from an analysis of the optical phenomena are the complex
dielectric constant (or index of refraction) and the complex conductivity as well as
the amplitude and polarization of electromagnetic waves after interacting with the
semiconductor. It is the purpose of this section to summarize briefly the most
relevant interrelation of these two sets of parameters, thereby permitting a quantita-
tive comparison between theory and experiment. For more details, see Palik (1985,
1991) or Ward (1994).

1.2.1 Reflectance and Transmittance in Dielectrics
The index of refraction as well as the extinction and absorption coefficients can be
related to the amplitude and polarization of reflected and transmitted optical waves
which can be measured directly. The relationship between these waves can be
obtained from the wave equation and the boundary conditions at the interface
between two media (see Palik 1985; Balkanski and Moss 1994; Born and Wolf
2002).

The electric vector of the incident wave (denoted by subscript i) can be described
by its two components normal and parallel to the plane of incidence at z= 0 (Fig. 2):

Ey,Ez

� �
i
¼ E⊥,Ejj
� �

i
exp iω

n r1

c
x sin Φi þ z cos Φið Þ � t

� �� �
(35)

Table 2 Dielectric constant tensor

Crystal
system Characteristic symmetry

Number of
independent
coefficients

Form of tensor showing
independent coefficients

Cubic Four 3-fold axes 1 ee 0 0

0 ee 0

0 0 ee
0@ 1A

Tetragonal One 4-fold axis 2 ee1 0 0

0 ee1 0

0 0 ee3
0@ 1AHexagonal One 6-fold axis

Trigonal One 3-fold axis

Orthorhombic Three mutually perpendicular
twofold axes of higher order

3 ee1 0 0

0 ee2 0

0 0 ee3
0@ 1A

Monoclinic One 2-fold axis 4 ee11 0 ee13
0 ee22 0ee13 0 ee33

0@ 1A
Triclinic A center of symmetry or no

symmetry
6 ee11 ee12 ee13ee12 ee22 ee23ee13 ee23 ee33

0@ 1A
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with the corresponding components of the reflected (index r) and transmitted (index t)
waves

Ey,Ez

� �
r
¼ E⊥,Ejj
� �

r
exp iω

n r1

c
x sin Φr þ z cos Φrð Þ � t

� �� �
(36)

Ey,Ez

� �
t
¼ E⊥,Ejj
� �

t
exp iω

n r2

c
x sin Φt þ z cos Φtð Þ � t

� �� �
: (37)

The coordinate system is chosen so that the interface between the two media is
normal to the z-axis and cuts the interface at z = 0. The x- and y-axes are chosen so
that the plane of incidence lies in the xz-plane; the angles are identified in Fig. 2.5

From the condition that at the plane of incidence (z= 0) the tangential component
of the electrical field of all three waves must be the same, we require that the
corresponding exponents must be equal: nr1 sinΦi ¼ nr1 sinΦr ¼ nr2 sinΦt . From
here, Snell’s law can be deduced:

Φi ¼ Φr

nr1 sinΦi ¼ nr2 sinΦt:
(38)

For nr1 > nr2, this yields an angle of total reflection (i.e., forΦt= 90�), withΦi=Φc

the critical angle,6 given by

incident wave reflected wave
E ||

E⊥

Фi Фr

Фt

transmitted wave

z
y

x

Fig. 2 Coordinate system
with light beams and the
interface between the two
different media above and
below z = 0

5The components of the electric field vector parallel and perpendicular to the plane of incidence,
Ejj and E⊥ , are also referred to as p-polarized and s-polarized (s from German for senkrecht),
respectively.
6A Brewster angle ΦB is defined as the angle under which no component E|| is reflected. This
happens for Φt⊥Φr, or Φt + Φr = 90�; from this, we obtain with Eq. 38 nr1 sin Φi = nr2 cos Φr, and
eventually

tanΦB ¼ nr2=nr1: (39)
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sinΦc ¼ nr2
nr1

: (40)

Total reflection is sometimes used in optical fibers and in photosensing devices for
light trapping by properly shaping the surface in order to increase the optical path within
the device for more optical absorption and thereby increasing the photosensitivity.

The amplitudes of the tangential components of the reflected and transmitted
waves must be continuous when passing through z = 0; hence,

Ej ij � Ej rj
� �

cosΦi ¼ Ej tj cosΦt (41)

E⊥i þ E⊥rð Þ ¼ E⊥t (42)

nr1 E⊥i � E⊥rð Þ cosΦi ¼ nr2E⊥t cosΦt (43)

nr1 Ej ij þ Ej rj
� � ¼ nr2Ej tj : (44)

The first set of two equations is obtained from the electric vector components; the
second set is obtained from the magnetic vector components.

After solving this set of four equations for the four components of the electric
vector, we obtain Fresnel’s equations:

Ej rj ¼ Ej ij
nr2 cosΦi � nr1 cosΦt

nr2 cosΦi þ nr1 cosΦt

E⊥r ¼ E⊥i

nr1 cosΦi � nr2 cosΦt

nr1 cosΦi þ nr2 cosΦt

Ej tj ¼ Ej ij
2nr1 cosΦi

nr1 cosΦt þ nr2 cosΦi

E⊥t ¼ E⊥i

2nr1 cosΦi

nr2 cosΦt þ nr1 cosΦi

(45)

which are generally valid and are the basis for all following discussions.
All measurable quantities are related to the energy flux, i.e., for the incident and

reflected waves of the Poynting vector. For the incident and reflected waves, we have

Wa ¼ e0 n2r1E
2
a for a ¼ i, r: (46)

For the transmitted wave, we have

Wt ¼ e0 n2r2E
2
t : (47)

The reflectance7 R and transmittance T are defined by the ratios of the reflected
and transmitted energy flux to the incident energy flux normal to the interface:

7Reflectance (etc.) is used rather than reflectivity since it is not normalized to the unit area; this is
similar to the use of the word resistance (not normalized) versus resistivity, distinguishing between
the suffixes -ance and -ivity.
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R ¼ Er

Ei

� �2

and T ¼ Et

Ei

� �2 nr2 cosΦt

nr1 cosΦi

: (48)

which can be computed from the normal and parallel components given by the
Fresnel equations. The resulting formulae become rather lengthy and confusing.

Some simplified cases better demonstrate the typical behavior. These simplifica-
tions include

1. Air as the first medium with nr1 = 1 and σ1 = 0
2. A nonabsorbing second medium with σ2 = 0
3. An incident wave that is normal to the interface, i.e., ϕi = 0

With assumptions (1) and (2), we obtain from Eqs. 48 and 45 for the two
components of the reflected beam

R⊥ ¼ sin2 Φt � Φið Þ
sin2 Φt þ Φið Þ and Rjj ¼ tan2 Φt �Φið Þ

tan2 Φt þΦið Þ (49)

and the transmitted beam

T⊥ ¼ sin 2Φi sin 2Φt

sin2 Φi þ Φtð Þ and Tjj ¼ sin 2Φi sin 2Φt

sin2 Φi þ Φtð Þ cos2 Φi � Φtð Þ : (50)

When assumptions (2) and (3) hold, we obtain the well-known relations for the
reflected and transmitted beams at normal incidence:

R ¼ R⊥ ¼ Rjj ¼ nr1�nr2
nr1þnr2

� �2
T ¼ T⊥ ¼ Tjj ¼ 4nr1 nr2

nr1 þ nr2ð Þ2 :
(51)

1.2.2 Reflectance and Transmittance in Semiconductors
In semiconductors, condition (2) of the previous section (no absorption) no longer
holds since there is absorption. In the following, we drop the subscript 2 in the
optical constants of the semiconductor and just use nr, while outside vacuum is
assumed. In spectral ranges in which nr is much larger than κ, we still obtain rather
simple approximations, which for the reflected wave are

R⊥ ffi nr � cosΦið Þ2 þ κ2

nr þ cosΦið Þ2 þ κ2
and Rjj ffi R⊥

nr � sinΦi tanΦið Þ2 þ κ2

nr þ sinΦi tanΦið Þ2 þ κ2
: (52)

These reflectance7 components are shown for a set of nr and κ in Fig. 3. There is a
substantial amplitude difference for low angles of incidence between the parallel and
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perpendicular polarized components. The ratio of the components R|| and R⊥ shows a
maximum at the pseudo-Brewster angle6 given by

tan2ΦB ffi n2r þ κ2: (53)

Reflection at this angle can be used to obtain nearly linearly polarized light from the
normal component (the amplitude of the parallel component is negligible) – see
Fig. 3.

For normal incidence, parallel or normal components can no longer be distin-
guished in reflectance, and we obtain for an absorbing medium

R0 ¼ R⊥ ¼ Rjj ¼ nr � 1ð Þ2 þ κ2

nr þ 1ð Þ2 þ κ2
: (54)

Equation 54 can be rewritten as

κ2 þ nr � 1þ R0

1� R0

� �2

¼ 4R0

1� R0ð Þ2 : (55)

This is the equation of a circle centered at n = (1 + R0)/(1 � R0) with a radius of
2
ffiffiffiffiffi
R0

p
= 1� R0ð Þ, as shown in Fig. 4.

For a semiconductor plate with two planar surfaces separated by a distance d, we
must consider reflection from both surfaces, as shown in Fig. 5. The result of the
series of sequential reflections indicated by the subscript Σ is

RΣ ¼ R0 1þ T2
0 1� R0ð Þ2
1� R2

0 T
2
0

 !
and TΣ ¼ T0

1� R0ð Þ2
1� R2

0 T
2
0

; (56)

R || / R^ R^
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0 20 40 60 80
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R
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%
)

R||

Fig. 3 Polarized components
of the reflectance parallel and
perpendicular to the
semiconductor surface as a
function of the incident angle,
computed from Eq. 49 for
nr = 3 and κ = 1
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with T0 as the transmittance through the slab at its first pass under normal incidence
without reflection. For a perfectly transmitting slab (T0= 1), we consequently obtain

RΣ ¼ 2R0

1� R0

ffi 2R0: (57)

In a more precise analysis, a phase shift δ between both reflected waves must be
included, which, for normal incidence, is given by

δ0 ¼ 2π nr d

λ
; (58)

where λ is the wavelength of the light in vacuum and d is the slab thickness. The total
reflectance of this plate at normal incidence is given by
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Fig. 4 Relation between reflectance of a single surface at normal incidence and the optical
constants nr and κ for a single surface using Eq. 55
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RΣ ¼ exp αo d=2ð Þ � exp �αo d=2ð Þð Þ2 þ 4R0 sin
2δ0

exp αo d=2ð Þ � R0 exp �αo d=2ð Þð Þ2 þ 4R0 sin
2 δ0 þ ψ0ð Þ ; (59)

where αo is the optical absorption coefficient (Eq. 24), R0 is the reflectance from a
single surface from Eq. 54, and ψ0 ¼ tan �1 2κ= n2r þ κ2 � 1

� �� �
. The transmittance

through this plate is given by

TΣ ¼ 1� R0ð Þ2 þ 4R0 sin
2ψ0

exp αo d=2ð Þ � R0 exp �αo d=2ð Þð Þ2 þ 4R0 sin
2 δ0 þ ψ0ð Þ : (60)

For vanishing absorption (κ = αo = 0, ψ0 = 0), we confirm from Eqs. 59 and 60
that the sum of transmittance and reflectance is 1.

The interference pattern from the superposition of front and back reflections
makes an evaluation of κ (or αo) in thin planar layers difficult. However, one can
deduce the index of refraction from the difference in the wavelength of adjacent
maxima (or minima) of the transmittance. TΣ has extrema for

2nrd ¼ Nλ1 and 2nrd ¼ N þ 1ð Þλ2; (61)

where N is the order of the fringe. By elimination of N, we obtain the refractive index
from

2nrd ¼ λ�1
2 � λ�1

1

� ��1
: (62)

This method is applicable if the refractive index nr does not vary significantly
between the two extrema. The useful Eq. 62 may also be applied to evaluate the
thickness d of a transparent slab from a known refractive index nr.

In order to determine the absorption coefficient, compromises must be made to
average out the interference pattern by making either the surfaces slightly non-
planar (rough) or the light slightly polychromatic. This yields an “average”
reflectance

R ¼ R0 1þ Texp �αo dð Þ� �
(63)

and an “average” transmittance

T ¼ 1� R0ð Þ2exp �αo dð Þ
1� R2

0exp �2αo dð Þ ffi 1� R0ð Þ2exp �αo dð Þ; (64)

with R0 given by Eq. 54. From the measured values of T and R, the more relevant
values of αo and R0, and hence of κ and nr, can be obtained. This is done most easily
with an Abac chart (Nazarewicz et al. 1962), as shown in Fig. 6.

The reflectance and absorption coefficients of some typical semiconductors are
given in Table 1.
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1.2.3 Modulation Spectroscopy
For measuring optical constants, modulating one of the parameters of a semicon-
ductor while analyzing the optical response is a very powerful technique. The light
itself (frequency or intensity), temperature, pressure, mechanical stress (uniaxial),
and electric or magnetic field have all been employed as parameters to be modulated.
As optical response, the reflectance is most often used by measuring its relative
change ΔR/ R0 or its higher derivatives (see ▶ Sect. 2.3.3 of chapter “Carrier
Generation”) as a function of the wavelength; absorption within the band is too
strong to be observed except for extremely thin platelets. The modulation is detected
with a phase-sensitive lock-in technique, which is extremely sensitive and permits
detection of rather small signals (<10�5) – see Cardona (1969), Seraphin (1973),
Aspnes (1980), and Pollak and Shen (1993). With this technique, it is relatively easy
to detect changes in spectral ranges of high optical absorption. For instance, we can
measure the energy difference between the critical points within the valence and
conduction bands. This method is analyzed below.

0 0

10 0.1

20 0.2

30 0.3

40 0.4

50 0.5

60 0.6

70 0.7

80 0.8

90 0.9

100 1

0 10 20 30 40 50 60 70 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rmeas

Tmeas

ex
p(

-α
od

)

R0

R (%)

T
 (

%
)

ex
p(

-α
od

)

R0

Fig. 6 Abac chart for obtaining the optical absorption coefficient αo and the normal-incidence
reflectance R0 from measured values of the average transmittance T and the average reflectance R
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From the reflectance equation (Eq. 51)

R0 ¼ nr � nra
nr þ nra

� �2

; (65)

we obtain the modulated signal of the reflected light beam, which is proportional to
the changes in the complex dielectric constant; nra is the index of refraction for the
ambient, i.e., an external medium in contact with the semiconductor. Using the
Maxwell relation

n2r ¼ eopt ¼ e and n2ra ¼ ea, opt ¼ ea; (66)

such changes can be expressed as (Re = real part)

ΔR
R0

¼ Re
2nra

nr e=eað ÞΔe
� �

; (67)

Equation 67 can also be written as

ΔR
R0

¼ Re αS � iβSð ÞΔeeð Þ ¼ αS e0, e00ð ÞΔe0 þ βS e0, e00ð ÞΔe00; (68)

where αs and βs are the Seraphin coefficients (Seraphin and Bottka 1965) and e0, e00

and Δe0, Δe00 are, respectively, the real and imaginary parts of the dielectric constants
and their changes due to the modulation.

A more useful equation for comparing the experimental results with a theoretical
analysis is the inverse relation

Δe ¼
ΔR

R0

þ 2iΔθ

αS � iβS
(69)

with

Δθ ωð Þ ¼ �ω

π
P

ð1
0

ΔR ω0ð Þ
R0 ω0ð Þ

dω0

ω02 � ω2
; (70)

where P indicates the principal value of the integral. The integral can be evaluated by
a Kramers-Kronig analysis – see ▶ Sect. 1.2 of chapter “Photon–Phonon Interac-
tion” and Basu (1998).

The analysis of the modulation reflection spectrum is complicated. It permits
identification of the energy and type of critical points. As an example, we will give
below a short outline of how the energy difference from the valence band to an
extremum of an upper conduction band can be obtained from typical reflection
signals.
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The complex dielectric constant for band-to-band excitation in a one-electron
approximation is given by (see ▶ Sect. 1.2 of chapter “Band-to-Band Transitions”
and, e.g., Petroff 1980; Aspnes 1980)

e E, γð Þ ¼ 1

þ e2ℏ2

π2e0m2
0E

2

X
k, c, v

eMcv kð Þj j2 1

Ec kð Þ � Ev kð Þ � hv� iγ
þ 1

Ec kð Þ � Ev kð Þ þ hvþ iγ

� �
;

(71)

where Mcv is the momentum matrix element, e is the unit polarization vector of the
impinging electromagnetic wave, E= hv is the photon energy, Ec and Ev are energies
of conduction and valence bands, and γ is an empirical damping parameter. Equation
71 can be simplified for a direct transition into one parabolic band to

e E, γð Þ ffi e2ℏ2

π2e0m2
0E

2
eMcv kð Þj j2

ð
d3k

Ec kð Þ � Ev kð Þ � hv� iγ
; (72)

with

Ec kð Þ � Ev kð Þ ¼ Eg þ ℏ2

2

k2x
mx

þ k2y
my

þ k2z
mz

 !
: (73)

From Eq. 72, we deduce that an isolated critical point (of the type M0 or M3 –
▶ Sect. 1.1 of chapter “Band-to-Band Transitions”) can be described by

e E, γð Þ ffi Aγ�nexp iθð Þ E� Eg þ iγ
� �n

; (74)

where A is an amplitude factor, θ is a phase factor for the critical-point transition, and
n is an exponent which is �1/2, 0 (logarithmic), or 1/2 for one-, two-, or three-
dimensional critical points. The energy gap Eg (i.e., the energy difference at the critical
point in any of the valence and conduction bands related to the initiated transition) and
the damping γ can be determined from the line shape, which typically shows three
extrema near the critical point (Fig. 7). With subscripts A and B identifying the two
largest extrema, Eg and γ can be estimated according to (Aspnes 1980)

Eg ¼ EA þ EB � EAð Þf qð Þ (75)

and

γ ¼ EB � EAð Þg qð Þ ffi EB � EA; (76)

with 0.8 < g(q) < 1.2 and f(q) monotonically increasing from 0 to 1 with increasing
q = (ΔR/ R0)A/(ΔR/ R0)B. Hence, Eg always lies closest to the largest peak in the
reflection spectrum: the closer to the peak, the larger the ratio of their magnitude.
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1.2.4 Ellipsometry
Ellipsometry is widely used to determine the optical constants of metals, semi-
conductors, and insulators. The technique is sensitive to the phase of the radiation
unlike reflectometry, which evaluates the intensity and hence the power flow.
Ellipsometry measures the change in polarization of an incident radiation (in a
known state) by the interaction with the solid; the interaction process may involve
reflection or refraction, transmission, or scattering (Azzam and Bashara 1987). We
focus on the usually applied reflection ellipsometry illustrated in Fig. 8. The linearly
polarized beam of a light source with components E⊥i andEj ij of the electric field
normal and parallel to the plane of incidence meets the sample surface at an incident
angle Φi near the Brewster angle ΦB. The electric field components are in phase.
After reflection, the amplitudes and the mutual phase of the components are altered,
yielding an elliptically polarized beam.8 The optical constants of the sample are
obtained from the parameters of the ellipse.

From Fresnel’s Eq. 45, we read the Fresnel coefficients

rjj ¼ Ej rj =Ej ij ¼ nr2 cosΦi � nr1 cosΦt

nr2 cosΦi þ nr1 cosΦt

,

r⊥ ¼ E⊥r=E⊥i ¼ nr1 cosΦi � nr2 cosΦt

nr1 cosΦi þ nr2 cosΦt

:
(77)

If media 1 and 2 are transparent, their refractive indices and also the anglesΦi and
Φt are real numbers, yielding real Fresnel coefficients; however, if one medium
(or both) is absorbing, all quantities are complex quantities. In the following, we
follow the conventional notation and omit the tilde (~) indicating complex quantities.
The complex Fresnel coefficients are often written in terms of their amplitude |r| and
the phase shift δr experienced upon reflection

B A

A B

hn

ΔR
 / 

R
0

Fig. 7 Typical line shape of a
reflection signal caused by a
simple band-to-band
transition

8The reflected light is elliptically polarized if there is absorption in the sample. Without absorption,
the reflected light remains linearly polarized, but with an altered angle of polarization with respect to
the plane of incidence.
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rjj ¼ rjj
		 		 exp iδrjj

� �
,

r⊥ ¼ r⊥j j exp iδr⊥
� �

:
(78)

The measurement of the polarization state in ellipsometry yields the ratio ρ of the
Fresnel coefficients, which is also expressed in terms of the ellipsometric angles Ψ and Δ,

ρ ¼ rjj=r⊥ ¼ tanψexp iΔð Þ: (79)

We note that the reflectance R in Eq. 48 equals |ρ|2. From Eq. 79 follows

tanψ ¼ rjj
		 		= r⊥j j, and (80)

Δ ¼ δrjj � δr⊥: (81)

The ellipsometric angles in Eqs. 80 and 81 express which change the incident
oscillating electric field vector experiences in amplitude and phase upon reflection in
its components parallel and perpendicular to the plane of incidence. Use of Eq. 79
and Snell’s law Eq. 38 yields a relation of the refractive indices in terms of ρ and ϕi

(Azzam and Bashara 1987)

n2 ¼ n1 tanϕi 1� 4ρ

1þ ρð Þ2 sin2ϕi

 !1=2

¼ n1 sinϕi 1þ 1� ρ

1þ ρ

� �2

tan2ϕi

 !1=2

: (82)

According to Eq. 82, the complex index of refraction in the sample n2 can be
determined if that in the medium of incidence n1 is known and the ratio ρ of the

linearly polarized light elliptically polarized light

sample

E|| i E||r

E⊥i E⊥r

Ψ

Φi ∆

Fig. 8 Principle of a ellipsometry measurement. Linearly polarized incident light is reflected from
the sample surface and experiences a change of its polarization state; the generally elliptically
polarized reflected light is characterized by the ellipsometric angles Ψ and Δ
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Fresnel coefficients is measured at an angle ϕi. Since n ¼ ffiffi
e

p
(Eq. 20), a measure-

ment at varied photon energies (spectroscopic ellipsometry) also yields the complex
dielectric function e(ℏω).

Equation 82 describes the ideal two-phase case with homogeneous media (e.g.,
ambient and bulk) and a sharp interface. Real samples are, however, generally
covered with oxides and adsorbed contaminants and are usually microscopically
rough; even atomically sharp surfaces have a relaxed and usually also reconstructed
structure which differs from the bulk. Such transition region alters the measured data
with respect to that of a pure bulk by averaging the dielectric responses of overlayer
and bulk. In the analysis of ellipsometric data, usually still the perfect case
is assumed, and the measured quantity is referred to as pseudodielectric function
eh i ¼ e1h i þ i e2h i. The true bulk dielectric function e can be extracted from hei by
assuming an ideal three-phase model consisting of ambient/overlayer/bulk. A rough
surface is typically modeled using the Bruggemann effective-medium model
(Bruggemann 1935), where the (homogeneous) overlayer is assumed to consist of
a given fraction of bulk material and the remaining fraction of voids (i.e., vacuum).
The effect of a 1 nm thick oxide overlayer on hei for GaAs is shown in Fig. 9a. The
same effect was found for a 1.4 nm thick microscopic roughness modeled as a
uniform film consisting of 60% GaAs and 40% voids (Aspnes and Studna 1983).

In the two-phase model, the pseudodielectric function is calculated from the
ellipsometrically measured complex reflectance ratio ρ according to Eqs. 82 and 20

eh i ¼ ea sin2Φi þ sin2Φi tan
2Φi

1� ρ

1þ ρ

� �2
 !

; (83)

where ea is the dielectric function of the ambient. If an overlayer with a dielectric
function eo is inserted between ambient and bulk sample, and the reasonable
assumption ej j � eoj j � eaj j applies, then the resulting hei can be approximately
expressed in the three-layer model as (Burge and Bennett 1964; Aspnes 1976)
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Fig. 9 (a) Pseudodielectric function hei of a GaAs bulk crystal without (solid line) and with a 1 nm
thick oxide overlayer (dashed line). (b) Reflectance of GaAs with an abrupt surface and surfaces
covered with 3 nm microscopic roughness or oxide; from Aspnes and Studna 1983
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eh i ¼ eþ 4π i d

λ

e e� eoð Þ eo � eað Þ
eo e� eað Þ e� ea sin2Φi

� �1=2
: (84)

Here, d is the thickness of the overlayer and e is the dielectric function of the solid
without overlayer.

The reflectance is also affected by overlayer effects, albeit to a smaller extent as
illustrated in Fig. 9b. Both, a 3 nm thick roughness composed as in panel (a) but
3 nm thick and an oxide layer of equal thickness reduce the reflectance. The effect is
more pronounced at higher photon energy, where the penetration depth into the
sample is smaller.

1.3 Frequency Dependence of the Dielectric Function
and Dielectric Screening

The interrelated optical constants (summarized in Eqs. 22, 24, and 45 leading to
Eq. 54) show a strong dependence on the photon energy as illustrated in Table 1 and
Figs. 1a and 9. In this section, we outline the origin of this dependence for the
dielectric constant; a more detailed treatement on the underlying microscopic inter-
actions is given in the following chapters.

The dielectric constant ee descibes the static and dynamic response of the solid
on an electric field E by a polarization P according to P ¼ e0 ee � 1ð ÞE . In this
response, we can distinguish a transverse dielectric constant related to interaction
with electromagnetic radiation and a longitudinal one related to charge screening; the
dielectric screening can be divided into electronic and ionic parts. The transverse
dielectric constant is influenced by resonance transitions. It becomes a function of
the optical excitation frequency, as shown for the real part of ee in Fig. 9. It is
no longer a constant and therefore better called the dielectric function.

1.3.1 Longitudinal and Transverse Dielectric Constants
Most of the discussion in the literature deals with the longitudinal dielectric constant,
which is responsible for the screening of free and bound charges and is important for
the field distribution seen by carriers near impurities, for plasmon interaction, etc.
Much less attention has been given to the transverse dielectric constant which
couples with transverse phonons even though it is responsible for the screening
seen by an interacting electromagnetic field, i.e., for optical properties. One of the
reasons is the fact that most of this interaction takes place near the center of the
Brillouin zone with negligible change of the momentum vector, and it can be shown
that near q = 0, the longitudinal and transverse dielectric constants are the same
(Sharma and Auluck 1981):

eL q ¼ 0,ωð Þ ¼ eT q ¼ 0,ωð Þ: (85)

This justifies the use of the common e = eL for the analysis of most optical data.
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When the wavevector deviates from q = 0, however, both dielectric constants
become different. For the static dielectric constant, Sharma and Auluck (1981) have
evaluated eL and eT and obtained for the real part

e0L, T ¼ e0 q ¼ 0,ω ¼ 0ð Þ � 24
EpEF

E2
g kF

 !2

q2 f L, T Δð Þ		 		; (86)

where Ep is the plasmon energy (see ▶Sect. 1.1 of chapter “Photon–Free-Electron
Interaction”), EF is the Fermi energy (ℏ2kF

2/(2m)), and kF is the wavenumber at the
Fermi surface assumed to be spherical. The bandgap is Eg,Δ= Eg/(4EF), and fL,T(Δ)
is the correction function for transverse or longitudinal interaction, shown in Fig. 10.
Both eL and eT decrease proportional to q2, however, with eT becoming smaller
than eL.

1.3.2 Spectral Ranges of the Dielectric Function
The interaction of the solid with electromagnetic radiation with a frequency v 6¼ 0 can
be described classically by oscillations with resonance frequencies. There are several
types of oscillators with respective resonances. Ionic oscillations occur in lattices with
(at least partial) ionic forces and refer to the motion of the ions. Electronic oscillations
comprise the motion of electrons jointly acting as an entity with respect to ions of the
lattice; these may be the ensemble of free conduction-band electrons or that of all
valence electrons oscillating with respect to the ion cores. The effect on the dielectric
functionee ωð Þ is given by the sum of all resonances of these oscillators, leading to the
Kramers-Heisenberg dielectric function
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Fig. 10 Correction function f
(Δ) (Eq. 86) for the
longitudinal (L ) and
transverse (T ) dielectric
constant near ω = 0 (After
Sharma and Auluck 1981)
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ee ωð Þ ¼ 1þ
X
j

ω2
0j

ω2
0j � ω2 � iγjω

; (87)

where ω0j are the resonance frequencies and γj are the corresponding damping
coefficients. Near resonance, the states of the photon and the respective oscillator
interact strongly and cannot be distinguished; these mixing states are referred to as
polariton states. The resonance with ionic lattice oscillations is labeled phonon-
polariton and described in ▶ Sect. 3.1 of chapter “Photon–Phonon Interaction”, and
the plasmon-polariton referring to oscillations of electron ensembles is treated in
▶ Sect. 1 of chapter “Photon–Free-Electron Interaction.” Further effects occur at
band-to-band transitions considered in chapter▶ “Band-to-Band Transitions.” In the
nonresonant regions between resonances, the dielectric function is approximately
constant. The general form of ee ωð Þ can be concluded from the energies of the
contributing resonances as illustrated in Fig. 11.

At frequencies above the bandgap energy (hv > Eg ), electronic band-to-band
transitions take energy from the electric (electromagnetic) field and are therefore
responsible for the screening, which, dependent on the excitation spectrum, is a
rather complicated function of the frequency.

For hv < Eg, only few electrons are free; their influence on the dielectric constant
is usually negligible. Impurity atoms with electronic resonances in this range are too
few to markedly influenceee. Hence, for ℏωTO < hv < Eg, we have a nearly constant
dielectric constant: e0 = eopt = const, and e00 = 0; eopt is also referred to as e1 in
literature.

At lower frequencies, ionic motion can follow the ac-electric field with reso-
nances in the Reststrahl range (▶ Sect. 2.2 of chapter “Photon–Phonon Interaction”).
For hv < ℏωTO , the real part of the dielectric constant e0 is given by the static
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Fig. 11 Frequency dependence of the real part e0 of the dielectric constant, with ionic and
electronic resonances indicated. The structure within the band-to-band transition is indicative of
the multilevel transition
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dielectric constant estat. The major change in e occurs near the energy of the
transversal optical phonon ℏωTO, see ▶ Sect. 2.1 of chapter “Photon–Phonon
Interaction” (▶ Fig. 2 of chapter “Photon–Phonon Interaction”).

When melting, the semiconductor’s molecular dipoles become free to rotate at
rather low frequencies, causing another step in the dispersion relation shown in
Fig. 11.

In summary, the tabulated values of the dielectric constants are restricted to the
nonresonance frequency ranges of the spectrum: the optical dielectric constant
between band edge and Reststrahl frequencies and the static dielectric constant
below the Reststrahl frequency but above melting-related transitions. The static
and optical dielectric constants of various crystals at room temperature are listed in
Table 3. Near resonances, the dielectric function changes in a complex fashion with
frequency and polarization of the interacting field.

The imaginary part of the dielectric function e00 cannot be described in the
classical model indicated for e0 above; it requires a quantum-mechanical analysis
considered in chapter ▶ “Band-to-Band Transitions.” If the real part e0(ω) is known
in the entire frequency range, the imaginary part can also be obtained by using
Kramers-Kronig relations, see ▶Sect. 1.2 of chapter “Photon–Phonon Interaction”.
For a general overview, see Stern (1963).

1.3.3 Dielectric Screening as Function of Wavevector
There are occasions where it is more appropriate to consider dielectric screening as a
function of the wavevector instead of the frequency. In the neighborhood of a lattice
defect, one uses the dielectric constant to describe the influence of the screening of
the surrounding lattice on the electric potential extending from such a defect. Only
when the polarization of this lattice, farther away from the center by at least a few
lattice constants is considered, the static dielectric constant estat may be well used.

Table 3 Static and optical dielectric constantsa of various crystals at T = 300 K. Two entries
denote respective different quantities parallel and perpendicular to the c axis of wurtzite crystals

Crystal estat eopt Crystal estat eopt Crystal estat eopt
C 5.7 5.7 InN 15 8.4 PbS 19 18.5

Si 11.9 11.9 InP 12.6 10.9 PbSe 280 25.2

Ge 16.0 16.0 InAs 15.2 12.4 PbTe 450 36.9

SiC 10.0 6.7 InSb 16.8 15.7 CuCl 6.3 3.7

AlN 9.1 4.8 ZnO 8.8, 7.8 3.7 CuBr 7.0 4.4

AlP 9.8 7.5 ZnS 8.6 5.2 CuI 7.1 5.5

AlAs 10.1 8.2 ZnSe 8.6 5.7 CuO2 7.1 6.2

AlSb 12.1 10.2 ZnTe 10.3 7.3 LiF 9.3 1.9

GaN 9 5.4 CdO 21.9 2.1 KCl 4.5 2.2

GaP 11 9.1 CdS 8.7, 8.3 5.3 KBr 4.5 2.4

GaAs 12.8 10.9 CdSe 10.2, 9.3 6.1 KI 4.7 2.7

GaSb 15.7 14.4 CdTe 10.4 7.1 CsI 6.3 3.1
aFor many applications such a simple representation of e is much too coarse. For a listing of n(ω)
and k(ω) in a very large frequency range from vacuum UV to IR, see Palik (1985)
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When the interaction in closer vicinity of the center is concerned so that less
screening from the lattice occurs, the dielectric constant decreases. For an estimate of
such a dielectric function, one considers the eigenstates between which such inter-
action takes place, yielding as the screening function an expression similar to the
expression for optical band-to-band absorption ▶Eq. 13 of chapter “Band-to-Band
Transitions” (Cohen 1963):

e0 k,k0ð Þ ¼ 1þ 4π e2

k2

X
v, c, k0

e �Mcv
kk0

		 		
Ec kþ k0ð Þ � Ev kð Þ: (88)

where Mcv
kk0 is the matrix element for transitions from k in the valence band to k0 in

the conduction band. This expression shows more clearly the decrease of e/ k�2 for
larger values of k – see Fig. 12.

The screening function was computed for Si first by Nara (1965) and for other
semiconductors by Walter and Cohen (1970) and Brust (1972). An approximation
was given by Penn (1962):

e0 kð Þ ¼ 1þ
ℏωp

E	
g

� �2
1� E	

g

4EF

� �
1þ EF

E	
g

k
kF

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E	

g

4EF

q� �2
(89)

where ωp is the plasma frequency, Eg
* is the energy difference between bonding and

antibonding states in the valence and conduction bands (Table 4), EF is the Fermi
energy for valence electrons, and kF= k(EF); for screening by valence electrons in an
isotropic crystal, kF is given by

k3F ¼ 3π2 nv; (90)
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Fig. 12 Dielectric constant of Si as a function of the wavenumber (a) according to numerical
computations by Nara (1965) and (b) in comparison to analytical approximations by Penn (1962)
and Tosatti and Pastori Parravicini (1971). kF is given by Eq. 90
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where nv is the density of valence electrons. See also Tosatti and Pastori
Parravicini (1971).

The behavior of the dielectric constant for Si as a function of the wavenumber was
computed by several groups and is shown in Fig. 12. Aside from a small maximum
near k= 0, it shows a rapid decrease toward e= 1 for higher k values, indicating that
the capability of the lattice to screen decreases / k�2, that is, with higher excitation
into the band. Since k/ 1/r, it also indicates that as expected, the screening decreases
rapidly as one approaches the immediate proximity of the defect center.

1.3.4 Empirical Screening Parameters
An empirical formula for the dielectric function was given by Nara and Morita
(1966)

1

e kð Þ ¼
Ak2

k2 þ α2
þ Bk2

k2 þ β2
þ 1

estat

γ2

k2 þ γ2
(91)

Table 4 Electronic crystal parameters: Fermi energy of valence electrons EF,v, plasmon energy of
valence electrons, fraction of ionicitya, dielectric average bandgap Eg

*, and Thomas-Fermi screening
length of valence electrons (After van Vechten 1980)

Crystal
EF,v

(eV)
ℏωp

(eV)
f1
(%)

Eg
*

(eV)
λTF
(Å) Crystal

EF,v

(eV)
ℏωp

(eV)
f1
(%)

Eg
*

(eV)
λTF
(Å)

C 28.9 31.2 0 13.5 0.39 BeO 25.3 28.3 62.0 18.8 0.40

Si 12.5 16.6 0 4.77 0.48 BeS 15.6 19.7 28.5 7.47 0.45

Ge 11.5 15.6 0 4.31 0.49 BeSe 14.3 18.4 26.1 6.57 0.46

α-Sn 8.72 12.7 0 3.06 0.52 BeTe 12.0 16.1 16.9 4.98 0.49

SiC 19.4 23.2 17.7 9.12 0.43 MgTe 9.04 13.0 55.6 4.80 0.52

BN 28.1 30.6 25.7 15.2 0.39 ZnO 17.6 21.5 65.5 12.5 0.44

BP 17.8 21.7 5.8 7.66 0.44 ZnS 12.6 16.7 62.3 7.85 0.48

BAs 16.1 20.1 2.6 6.47 0.45 ZnSe 11.4 15.6 62.3 6.98 0.49

AlN 19.3 23.0 44.6 11.0 0.45 ZnTe 9.91 14.0 59.9 5.66 0.51

AlP 23.4 16.5 38.8 6.03 0.47 CdS 10.8 14.9 67.9 7.01 0.50

AlAs 11.4 15.5 43.2 5.81 0.47 CdSe 9.94 14.0 68.4 6.42 0.51

AlSb 9.77 13.8 43.3 4.68 0.51 CdTe 8.75 12.7 67.5 5.40 0.53

GaN 18.2 22.1 45.2 10.3 0.44 HgS 10.8 14.9 79.0 8.20 0.50

GaP 12.4 16.5 32.8 5.76 0.48 HgSe 9.91 14.0 68.0 6.06 0.51

GaAs 11.5 15.6 31.0 5.20 0.48 HgTe 8.75 12.6 65.2 4.95 0.52

GaSb 9.82 13.9 26.0 4.12 0.51 CuF 20.3 23.9 76.6 18.1 0.42

InN 14.9 18.9 49.6 8.36 0.46 CuCl 12.6 16.7 74.6 9.60 0.48

InP 10.7 14.8 42.1 5.16 0.50 CuBr 11.1 15.2 73.5 7.35 0.49

InAs 10.1 14.2 35.9 4.58 0.51 CuI 10.1 14.1 69.2 6.61 0.51

InSb 8.76 12.7 32.7 3.76 0.52 AgI 8.77 12.8 77.3 6.48 0.52
aWith f defined by f1 = (C/ Eg

*)2 with C = 1.5e2(Zb/rb – Za/ra)exp(�rab/λTF), Zi and ri the valency
and covalent radii, and Eg

* the distance of bonding and antibonding band states in valence and
conduction bands

362 Interaction of Light with Solids



with adjustable parameters which, for Si, have the values A = 1.175, B = �0.175,
α = 0.7572, β = 0.3123, and γ = 2.044.

Often, instead of the dielectric function, one uses an effective dielectric constant
given by

1

e	
¼ 1

eopt
� 1

estat
: (92)

when the screening close to a defect center is concerned. This effective dielectric
constant expresses the difference between the electronic polarization already
accounted for in a Bloch electron picture and the lattice polarization including
ionic displacements.

1.3.5 Screened Coulomb Potential
When the Coulomb potential screened by the dielectric function extends too far from
a center to give reasonable agreement with the experiment because of other inter-
fering charges, one introduces a stronger screened Coulomb potential. Such screen-
ing can be caused by additional charged carriers that are interfering within the reach
of the Coulomb potential. The long-range part of the Coulomb potential can be
reduced by an empirical exponential factor

V rð Þ ¼ e

4π estat e0 r
exp � r

λs

� �
: (93)

This potential is called the Yukawa potential, with λs the screening radius, and is
shown in Fig. 13 compared with the unscreened Coulomb potential.

When the screening is caused by a relatively small density of free electrons
surrounding the center, e.g., a charged defect, λs is defined as a Debye-Hückel-
type9 length:

λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
estat e0 kT

e2 n

r
¼ 381

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
estat
10

T Kð Þ
100

1016

n cm�3ð Þ

s
Åð Þ: (94)

Here, the Boltzmann statistic is applied for the screening electrons. In contrast, λs
is defined as a Thomas-Fermi length when a higher carrier density requires the
application of the Fermi-Dirac statistics:

λTF ¼ π2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
estat e0ℏ2

32=3mn e2 n1=3

s
¼ 11:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
estat
10

m0

mn

1018

n cm�3ð Þ
� �1=3

s
Åð Þ: (95)

9In semiconductors, mostly free electrons rather than ions (as in the Debye-Hückel theory) provide
the screening. This characteristic length in semiconductor physics is more commonly called the
Debye length.
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Finally, a combination of dielectric and electronic screening was proposed by
Haken (1963), who introduced as an effective dielectric constant

1

eeff
¼ 1

estat
þ 1

2

1

eopt
� 1

estat

� �
exp

re
rpe

� �
þ exp

rh
rph

� �� �
: (96)

with

rpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2mnωLO

r
and rph ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mpωLO

s
(97)

the polaron radii for electrons and holes; re and rh in Eq. 96 are the relative distances
of the electron and hole from their respective center of gravity within an exciton –
see ▶ Sect. 1 of chapter “Excitons”.

By introducing empirical parameters in simple relations, an improved agreement
between theory and experiment is obtained, and the results can be given in an
analytical form.

2 Photonic Bandgap Structures

The solids considered in Sect. 1 were homogeneous media characterized by a unique
dielectric function.10 If the dielectric properties in the solid are periodically altered,
we obtain a photonic crystal (Russell 1986; John 1987; Yablonovitch et al. 1991).
Photonic crystals can be considered an analogue to semiconductors where the atoms
of the crystal lattice are replaced by a periodic arrangment of mesoscopic media
(periodicity in the order of the optical wavelegth) with differing dielectric constants:
periodic dielectric structures modify the refractive index in spatial dimensions and

0 1 2 3 4 5

Yukawa potential

Coulomb potential

−V
(r

)

r /l sFig. 13 Coulomb and
screened Coulomb (Yukawa)
potentials. The radius r is
scaled in units of the screening
radius λs

10An exception was the inclusion of an overlayer considered in ellipsometry (Eq. 84), leading to the
description by an effective yet spatially not varying dielectric function hei.
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thereby create a bandgap for photons at optical frequencies similar to the periodic
atomic lattice creating a bandgap for electrons. Such photonic bandgap gives rise to
distinct optical phenomena, which can be utilized for, e.g., low-loss waveguiding,
highly reflecting and even omnidirectional mirrors, suppresion or enhancement of
spontaneous radiation of an emitter in a solid, and efficient light outcoupling; for
reviews, see Villeneuve and Piché (1994), Joannopoulos et al. (2008), Sakoda
(2001), Busch and Wehrspohn (2003), and Busch et al. (2007).

2.1 Photonic Crystals

The basic concepts of Brillouin zones, dispersion relations, or Bloch waves devel-
oped for electrons in chapters ▶ “The Origin of Band Structure” to ▶ “Bands and
Bandgaps in Solids” also apply for photons, i.e., optical modes, propagating through
a medium with periodically varying dielectric properties. Some differences arise
from the scalar waves used for electrons, while the electromagnetic wave of an
optical mode is described by vectors H and E. In addition, the time-dependent
Schrödinger equation allows also negative eigenvalues, while only squares of
eigenfrequencies and thus positive values appear in the wave equation of electrody-
namics. Still, the conclusions are similar: the propagation of some energies is
inhibited by interference effects (Bragg reflections), and defects representing devi-
ations from periodicity create localized states.

Photonic crystals can be fabricated for one, two, or three dimensions as indicated
in Fig. 14. A one-dimensional (1D) photonic crystal is made of an alternating stack
of two layers with different dielectric constants eA and eB. In a 2D photonic crystal,
periodicity of eA and eB occurs in two directions (achieved, e.g., by etching parallel
holes into a homogeneous medium), and a 3D photonic crystal has periodicity of eA
and eB in all directions. Fabrication of 3D structures for optical frequencies is
particularly challenging due to the requirement of high precision on a submicron
scale; a total bandgap for propagation in any direction can only be achieved for a 3D
photonic crystal.

a b c

y x
zz y x

Fig. 14 Schematic of photonic crystals in (a) one, (b) two, and (c) three dimensions. Arrows
indicate axes of periodicity, providing photonic bandgaps for specific modes along these directions
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A number of approximations is usually assumed for the dielectric materials of the
photonic crystal for calculating the dispersion relation. The field strengths are small,
yielding linear equations and allowing for ignoring higher-order terms considered in
Sect. 3. The dielectric media are isotropic, leading to a scalar e(r, ω) instead of a
tensor ee r,ωð Þ. The frequency dependence of the dielectric function is neglected,
and an appropriate dielectric constant for the considered frequency range is used.
Losses in the dielectrics are also neglected, yielding a real dielectric constant e(r),
and the media are assumed to be nonmagnetic and nonconductive, i.e., μ = 1 and
σ = 0. With the above approximations, n = nr =

ffiffi
e

p
applies.

The optical properties of a photonic crystal are described by the dispersion
relations for modes traveling through the medium; these follow from the eigenwert
equation for the vector field. Generally, the eigenwert problem of photonic crystals is
solved for the magnetic field H(r) and not for the electric field E(r) due to a
significant simplification in the eigenwert evaluation11; E(r) is then determined via
Eq. 2.

Combining Maxwell’s curl equations 2 and 1 we obtain a wave equation for the
magnetic field:

@

@r
� 1

e rð Þ
@

@r
�H

� �
� ω2

c2
H ¼ 0; (98)

where c ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0μ0

p
is the vacuum speed of light. The dielectric constant e(r) =

e(r + Ri) with primitive lattice vectors Ri contains the entire information on the
spatially periodic structure of the photonic crystal. Due to this periodicity, the
solutions for H (and also those for E) can be written in terms of the Bloch form,
i.e., a plane wave (or, more generally, linear combinations of plane waves) times a
vector function with the periodicity of the lattice,

Hnk r, tð Þ ¼ exp i kr� ωtð Þð Þ unk rð Þ,
unk rð Þ ¼ unk rþ Rð Þ: (99)

Here, R is a lattice vector for the Bravais lattice over which e(r) is periodic in
space, k is a wavevector in the first Brillouin zone defined by the primitive compo-
nents of the reciprocal lattice vector G which fulfills G R = m 2π, and n is the band
index that labels the multiple solutions corresponding to k in the reduced zone
scheme. Substituting the solution Eq. 99 into the wave equation 98 with periodic
boundary conditions, a (basically infinite) family of solutions with discrete eigen-
values (ωn/c)

2 labeled by their band index is found; such problem corresponds to
higher harmonics of a vibrating string. The eigenvalue problem is solved numeri-
cally using matrices typically of size 1,000 � 1,000.

11Equation 98 expressed in terms of E is correct but not hermitian, see Joannopoulos et al. (2008).

366 Interaction of Light with Solids



2.1.1 Scaling of Solutions
The solutions obtained from the eigenvalue problem are scalable due to the linearity
of the Maxwell equations (Joannopoulos et al. 2008). If we know an electromagnetic
eigenmode H(r) for a given frequency ω in a periodic dielectric assembly e(r),
we also know the solution of another dielectric configuration which is scaled by a
factor s (e.g., enlarged) with respect to the former, i.e., estructure2(r) = e(r/s); the new
mode profile and its frequency are obtained by scaling the old mode and the old
eigenfrequency by the same factor:Hstructure2(rstructure2)=H(rstructure2/s) and ωstructure2

= ω/s. This scaling rule is important for applications: models mechanically fabricated
on a length scale of centimeters to be tested in the microwave regime have the same
electromagnetic properties as downscaled microstructures operating with light.

Scaling can also be applied to the dielectric constant. If the dielectric constant is
changed by a constant scaling factor everywhere in a new structure such that
estructure2(r) = e(r)/s2, the mode profiles remain unchanged, but their corresponding
frequencies are changed to ωstructure2 = s ω.

Due to the scaling property of photonic structures, often wavenumbers and
frequencies with dimensionless units are used defined by

k0 ¼ k a

2π
, ω0 ¼ ω a

2π c
; (100)

where c is the speed of light. The primed dimensionless quantity k0 measures the
wavenumber in units of 2π/a (a is the spatial periodicity of e), and the boundary of
the first Brillouin zone is just given by k0 = ½. Spatial coordinates are measured in
units of a, yielding for one dimension z0 = z/a. Photonic band schemes are usually
discussed in terms of these scaled quantities.

2.1.2 One-Dimensional Photonic Crystal
A one-dimensional photonic crystal consists of periodically alternating layers
with different dielectric constants as shown in Fig. 15. Such multilayer films are
widely used since long as distributed Bragg reflectors (DBR mirrors) and interfer-
ence filters.

The dispersion relation of the 1D photonic crystal for the modes traveling along
the z direction follows from the eigenwert equation for the vector field, analogous to

e> e<

a> a<

z

a

Fig. 15 One-dimensional photonic crystal realized by a stack comprising layers with larger and
smaller dielectric constants e> and e< in a repetition with periodicity a = a> + a<
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the periodicity approach for electron waves discussed in ▶ Sect. 1.2 of chapter “The
Origin of Band Structure”. In the 1D problem, e(r) = e(z) applies, given by e< in the
layer with low refractive index and e> in the other.

If the 1D system has a uniform dielectric constant e< = e> = e, then the
eigenvalues representing the frequency spectrum are given by the light line ω kð Þ
¼ ck=

ffiffi
e

p
; this linear dispersion relation is depicted by the blue lines in Fig. 16. The

artificial periodicity folds the bands to the first Brillouin zone, a scenario
corresponding to the empty lattice discussed in ▶Sect. 4.1 of chapter “Quantum
Mechanics of Electrons in Crystals”. There are many eigenvalues ωn for each k,
n being the band index.12 The first band with lowest frequencies has a degeneracy
at the zone boundary: the mode k = π/a lies at an equivalent wavevector to the
k = �π/a mode and at the same frequency ω1; the same applies for higher bands
at higher frequencies.

Now, the periodic variation of e(z) is introduced as indicated in Fig. 15. Values
applied for the calculated results presented in Fig. 16 are e>= e(Si)= 12, e<= e(air)
= 1, and a> = a< = a/2. The dispersion relations ωn(k) show features also found for
photonic crystals in higher dimensions. The first band with lowest frequency (n= 1)
has a linear dispersion near k = 0 similar to the unperturbed case. Since the
wavelength λ = 2π/k of the corresponding waves is large (much larger than the
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Fig. 16 Band structure for
on-axis propagation in a
one-dimensional photonic
crystal, realized by a stack
comprising layers A and B in a
repetition with periodicity a=
aA + aB 
 a> + a<. Red lines
refer to aA = aB = a/2 and eA
= 12, eB = 1; blue lines apply
for a uniform e = e> = e<

12Here, n is just a label not to be confused with the refractive index; the number of eigenvalues ωn is
given by the size of the (generally truncated) matrix in the secular equation of the eigenvalue
problem for a periodically perturbed e. Considering more plane waves enlarges the secular equation
and thereby the number of solutions ωn for a given k including increasingly more contributions of
shorter waves with higher frequencies.
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periodicity a of e), such waves experience an averaged, largely uniform dielectric
constant. Near the boundary of the Brillouin zone, the dispersion curves bend and
have zero slope at k= π/a (or, k0 = 0.5). Here, the group velocity@ω kð Þ=@k vanishes.
The solutions are standing waves with a short wavelength λ = 2a. We note that the
degeneracy of the empty lattice is now lifted: the two waves have different frequen-
cies separated by a gap.

It is instructive to study the intensity of the two modes at the zone boundary,
given by the square of the electric field. Fig. 17 shows that the mode of the lower
band (n = 1) has maximum intensity in the layers with high dielectric constant e> =
eSi, while the mode of the upper band13 (n = 2) has maximum intensity at e< = eair;
the band below the gap is therefore referred to as the dielectric band and a band
above a gap as the air band analogous to the valence and conduction bands in a
semiconductor. A similar behavior is also found in the pair of bands at higher
frequencies at the zone boundary; lower-order modes generally tend to concentrate
its displacement field in regions of high dielectric constant. Even if – for large
dielectric contrast – both bands of a pair concentrate in e> layers, the bottom band
always concentrates more; the photonic bandgap originates from this difference in
field energy location (Joannopoulos et al. 2008).

In the frequency range of the photonic bandgap, there are no solutions for on-axis
propagating waves with a real wavevector k. Any spatially periodic dielectric
variation in one dimension leads to a bandgap for propagation in this direction,
and the gap widens for larger dielectric contrast. The reflectivity spectrum of such a
layer stack exhibits a frequency range with nearly perfect reflectance R= 1 (compare
Fig. 19); this range is given by the optical bandgap and is referred to as stop band.
Such distributed Bragg reflectors are widely used in optical devices as dielectric
mirrors (DBR mirrors).

2.1.3 Two-Dimensional Photonic Crystals
A two-dimensional photonic crystal with periodicity in e(r) along two axes and
constant e along the third shows some additional features, which are not observed in

e> e<
a> a<

a

n = 2

n = 1

b

a

Fig. 17 Squared electric field
of modes related to (a) the top
of band labelled 1 and (b) the
bottom of band 2 for the 1D
photonic crystal shown in
Fig. 15 with parameters used
in Fig. 16. Bright regions
represent layers with the lower
dielectric constant (After
Inoue and Ohtaka 2004)

13There are only two ways to center such standing waves: the nodes can either be centered in each
e> layer or in each e< layer; other positions violate the symmetry of the unit cell about its center.
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1D photonic crystals. The electromagnetic vector field decouples into two fields of
different polarization directions; their modes are referred to as TM (transverse-
magnetic) and TE (transverse-electric). TM modes have H in the photonic-crystal
plane and E normal to the plane, while TE modes have the reverse: E in the plane
and H normal. The photonic bandgaps of TE and TM modes may occur at different
frequencies such that there may be a gap for one but not the other or that the gap of
one is larger than that of the other. Examples are shown in Fig. 18 for a hexagonal 2D
lattice near ωa/2πc equals 0.84 and 0.44, respectively. Furthermore, there occur
many narrow bands with zero group velocity in the interior of the Brillouin zone and
not only at the zone boundary.

The band structure of a two-dimensional photonic crystal composed of a trian-
gular airhole pattern (e = 1) in Si (e= 12) is shown in Fig. 18. The difference in e of
the two media is sufficient to open a complete photonic bandgap for in-plane
propagation in such structures. A useful quantity for characterizing such gaps is
the gap-midgap ratio defined by the frequency width of the gap Δω over the
frequency ω0 in the middle of the gap; this quantity remains constant in scaled
systems. Besides the dielectric contrastΔω/ω0 also depends, however, on the ratio of
hole radius to hole distance. The effective dielectric constant in the long-wavelength
limit discussed for the first band at the zone boundary is given for TE modes by the
arithmetic volume average of e> and e<; for TM modes, however, no such explicit
expression can be given (Kirchner et al. 1998), yielding different bandgaps despite
equal periodicity of the two mode types.
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Fig. 18 (a) Band structure and (b) density of states for a two-dimensional photonic crystal with a
triangular pattern of cylindrical holes (bottom inset), the top inset shows the corresponding
reciprocal lattice (After Birner et al. 1999)
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Photonic bandgaps appear as spectral regions where the photonic density of states
N(ω) equals zero. Analogous to the electronic density of states, N(ω) is obtained by
counting all allowed states of a given frequency

N ωð Þ ¼
X
n

ð
BZ

dDk δ ω� ωn kð Þð Þ: (101)

The superscript D denotes the dimensions being 2 in 2D photonic crystals. N(ω)
of the airhole structure with the band structure of Fig. 18a is given in panel b of
the figure. The triangular hole arrangement forms a hexagonal lattice with the
hexagonal Brillouin zone shown in the inset of Fig. 18b. Comparing band structure
and corresponding density of state, we find that most peaks in N(ω) are related to
the critical points Γ, M, or K of the Brillouin zone14 but points of zero group
velocity also occur in the interior of the zone. Bandgaps are easily seen and
obviously different for TM and TE modes, though there is a clear complete gap
near ωa/2πc = 0.44.

Airhole structures like that illustrated in Fig. 18b were realized with many semi-
conductors using electron-beam lithography and anistropic etching. The photonic
bandgap of a Si structure for in-plane TM modes propagating in the Γ-M direction
is shown in Fig. 19. The ratio of hole radius to hole distance is r/a = 0.458 with
a= 1.55 μm; the transmission was measured using Fourier transform IR spectroscopy.
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Fig. 19 Calculated and measured transmission of a triangular Si air-hole structure for TM modes.
Dashed lines mark the frequency interval of the complete bandgap for in-plane propagation (After
Birner et al. 1999)

14Instead of the notations M and K, also the labels X and J, respectively, are used in literature for
critical points of a two-dimensional hexagonal Brillouin zone.
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Within the range marked by dashed lines, no propagation occurs for any polarization
and any lateral direction.

2.1.4 Three-Dimensional Photonic Crystals
A complete photonic bandgap for mode propagation in any direction can only be
achieved for 3D photonic crystals. Such bandgap provides an omnidirectional mirror
for light in this frequency range and thus the ability to localize light at a single point.
Dispersion relations are similar to those of 2D photonic crystals illustrated in Fig. 18,
but complete photonic bandgaps are rarer since they must apply for all modes along
all directions in the Brillouin zone and not just for a single plane. Still structures exist
and were experimentally demonstrated, albeit fabrication remains challenging.

A variety of approaches was applied for 3D photonic-crystal fabrication. A
woodpile (or logpile) structure as shown in Fig. 14c was made by a repeated
deposition and either patterning of a dielectric film or wafer bonding followed by
substrate removal. Such structures consist of a pile of straight rods with adjacent
layers rotated by 90� (Ho et al. 1994). With a lateral rod distance of a and every
second layer shifted by a/2, the sequence repeats after four layers with a vertical
lattice constant b; this leads for b/a =

ffiffiffi
2

p
to a face-centered ( fcc) unit cell with a

two-rod basis. Theoretically, a gap-midgap ratio of 0.18 is achieved for 30% volume
filling with Si and a ratio of 0.25 for the inverse structure at 82% Si volume filling.
Experimentally, up to 40 dB suppression of transmittance was achieved (Noda et al.
2000). An inverse-opal structure was fabricated employing self-assembly of
spheres. An opal structure can be made via colloidal assembly of silica or polysty-
rene spheres; neither the fcc nor the hexagonally close-packed (hcp) structure
exhibits a complete bandgap, but the inverse fcc structure does for nr > 2.8 and
the inverse hcp structure for nr > 3.1 (Busch et al. 2007). They can be made by
infiltration of the air voids by the dielectric and removal of the spheres using wet
etching. A gap-midgap ratio of up to 0.086 can theoretically be achieved for partial
infiltration for inverse fcc opals; experimentally, a ratio of 0.05 was reported
applying this approach (Blanco et al. 2000).

2.2 Localized Defect Modes and Microcavities

2.2.1 Optical Defects
The photonic crystals considered in the previous section have perfect periodicity and
consequently bandgaps at specific frequencies; modes with frequencies inside the
bandgap have a complex wavevector k + iκ. The imaginary component leads to an
exponential decay of these evanescent modes on a length scale 1/κ. The decay
constant κ grows as the frequency approaches the midgap and disappears at the
gap edges.

Evanescent modes cannot be excited in perfect photonic crystals due to their lack
of translational symmetry. However, if the translational symmetry of the photonic
crystal is broken by some optical defect, one evanescent mode may be compatible
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with the symmetry of this defect (the locally altered period) and thereby be sustained.
This – still evanescent – mode is then localized at the defect, and its frequency lies
within the gap. Since κ gets maximum near midgap, states with such frequency can
be localized more tightly than those near the gap edges.

Defects can be created by various means. If a 1D photonic crystal (Fig. 15) is
considered, a single layer of the sequence can be altered by using another thickness
or another dielectric constant. The same applies for 2D and 3D photonic crystals,
where, e.g., in a 2D airhole structure (inset Fig. 18b), one hole is omitted or altered in
radius; such irregularity creates a point defect. In 2D and 3D photonic crystals also
line defects can be created, e.g., by omitting an entire row of holes in a 2D airhole
structure. Eventually also a planar defect can be created in a 3D photonic crystal just
by altering an entire plane in the crystal.

The introduction of optical defects is the basis for photonic-crystal cavities and
photonic-crystal waveguides. The microcavity of a vertical-cavity surface-emitting
laser (VCSEL) is an optical defect of a 1D photonic crystal formed by the top and
bottom DBR mirrors; the λ/(4n>) + λ/(4n<) periodicity of the distributed Bragg
reflectors is broken at the location of the active zone which comprises electrically
pumped quantum wells in the antinode of the localized defect mode. The electronic
transition of the quantum wells is designed to be resonant to the optical defect, which
sustains this specific mode and weakens the suppression of propagation within the
stop band (the optical bandgap) at lasing energy. Line defects are used to guide light
along a line in a photonic crystal for modes that lie in the photonic bandgap; thereby
low-loss waveguides even with sharp bends can be created. A photonic-crystal fiber
is also a 2D photonic crystal which guides light not only by refractive index
differences; in a Bragg fiber, a lateral photonic bandgap is formed by concentric
rings of multilayer films, and a holey fiber uses airholes in cross section to confine
the light to the core representing the optical defect.

2.2.2 Microcavity Effects
In presence of an optical defect, the global density of states N(ω) given in Eq. 101 is
locally altered, yielding the local density of states

N r,ωð Þ ¼
X
n

ð
BZ

dDk Enk rð Þj j2 δ ω� ωn kð Þð Þ: (102)

The local density of states strongly modifies the electromagnetic environment of
an embedded optically active material. The spontaneous emission of, e.g., a quantum
dot (▶ Sects. 2.2 of chapter “The Structure of Semiconductors” and▶ 3.4 of chapter
“Bands and Bandgaps in Solids”) located in a 3D photonic crystal can completely be
suppressed for frequencies inside the complete photonic bandgap (Yablonovitch
1987). On the other hand, the spontaneous emission can also be strongly enhanced,
an effect referred to as Purcell effect (Purcell et al. 1946; Gérard et al. 1998). This
effect is particularly pronounced in cavities with simultaneously a high quality factor
Q= ω0/Δω (the inverse of the gap-midgap ratio) and a small volume of the confined
mode V; the latter condition leads to microcavities with dimensions in the range of λ.
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At large Q/V ratio, the interaction of the emitter and the mode in the cavity is
enhanced. The effect of this interaction was widely studied with quantum dots
placed in microcavities providing 3D confinement for the light. In the regime of
weak coupling between the emitter and the cavity mode, the emission rate of
the emitter is increased over that of a simple planar cavity (1D confinement) for
on-resonance conditions; off-resonance the emission rate can be strongly
suppressed (Bayer et al. 2001). The change of the emission rate from the value
without cavity Γ0 = 1/τ0 with respect to the value for cavity coupling Γc is
described by the Purcell factor FP = Γc/ Γ0. The coupling to the cavity mode
also affects the emission characteristics of the emitter. This effect is employed to
strongly enhance the outcoupling efficiency of light generated in a semiconductor
since otherwise most light is lost by internal total reflection due to the large
refractive index step to air.15

In the strong-coupling regime, a reversible exchange of energy between the
emitter and the cavity mode occurs: the photon is emitted into the mode of the
cavity and reabsorbed by the emitter. The characteristic frequency of this oscil-
lation is the Rabi frequency ωR (Rabi et al. 1939). As a consequence, a Rabi
splitting of the initial mode frequency into two frequencies is observed. The
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Fig. 20 Emision spectra of a
quantum dot in a microcavity
in the strong-coupling regime.
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the dot emission through the
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15Light generated, e.g., by luminescence within a GaAs crystal (nr ffi 3.5) is coupled out to air by
only ~4% due to the small critical angle of total reflection (~17�, Eq. 40) and the consequential
small fraction of the solid angle. The resulting poor external quantum efficiency is strongly
increased if the light is emitted into the defect mode of a cavity cladding the light emitter. This is
of particular importance for the performance of single-photon sources.
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effect is shown in Fig. 20, where the emission of a quantum dot embedded in a
microcavity was thermally shifted over the cavity resonance16 (Reithmaier et al.
2004). The two corresponding emissions show a characteristic no-crossing
behavior and a double peak of the mixed coherent state in resonance (at T =
21 K), split by the Rabi energy ℏωR. The mixed half-light/half-matter state is
described in the field of cavity quantum electrodynamics by a quasiparticle called
cavity polariton. There are various types of polaritons in semiconductors all
resulting from a strong coupling of electromagnetic waves with an elementary
excitation like, e.g., a phonon or a plasmon; they will be discussed along with the
respective excitations.

3 Nonlinear Optical Effects

Nonlinear optical effects are based on the fact that at sufficiently high amplitudes, all
solid-state oscillations become anharmonic (Rabin and Tang 1975). This amplitude
range is readily accessible with high light intensities (i.e., values of the electric field
comparable to interatomic electric fields, typically 108 V/m, like those provided by
pulsed lasers,17 Bloembergen 1982) or with excitation near resonances where high-
amplitude oscillations can easily be excited. Anharmonic oscillations cause the
displacement D and the polarization P to respond no longer linearly to the electric
field E; the description of the dependence requires higher-order terms in the dielec-
tric constant or dielectric susceptibility.

These nonlinearities permit active interaction between two or more photons with
a large variety of technically interesting phenomena of light mixing, rectification,
and amplification. It opens a host of opportunities in the field of nonlinear optics to
develop new devices and to design new experiments for analytical purposes. We will
discuss here the basic elements of nonlinear optical effects. For more information,
see reviews by Zernike and Midwinter (1973), Chemla and Jerphagnon (1980),
Boyd (2008), and Stegeman and Stegeman (2012).

16The emission of the quantum dot shifts to lower energy at increased temperature according to the
change of the bandgap described by the Varshni dependence ▶Eq. 44 of chapter “Bands and
Bandgaps in Solids”; the energy of the cavity resonance also experiences a redshift by the
T-dependence of the refractive index but at a much lower rate.
17Material destruction is avoided by monochromatic irradiation in a wavelength range of little
absorption and by the use of short pulses. Material destruction can occur by simple lattice heating,
by dielectric breakdown (109 W/cm2 is equivalent to 106 V/cm oscillation amplitude and achieved
by focusing a 103 W laser on a spot of 10 μm diameter), by stimulated Brillouin scattering with
intense multiphonon absorption, or by self-focusing. Typical destruction thresholds are 100MW/
cm2 for a 100 ns pulse in a low-absorbing range and 1 kW/cm2 for a cw laser beam (In comparison,
sunlight on the earth’s surface transmits 100 mW/cm2). For more on damage, see Kildal and
Iseler (1976).
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3.1 Electronic and Mixing Effects

Nonlinear effects are mostly investigated in the frequency range between atomic and
electronic resonance absorption, i.e., between Reststrahl absorption in the infrared
range (▶ Sect. 2.2 of chapter “Photon–Phonon Interaction”) and the band edge.
Here, the electronic contribution can come from either the valence electrons or free
conduction-band electrons if their density is high enough. We will discuss the
influence of valence electrons first.

3.1.1 Nonresonant Effects of Valence Electrons
When the amplitude of the external electric field E is small, the induced polarization
P is linear in E:

P ¼ e0 χE ¼ e0 e� 1ð ÞE; (103)

where χ is the linear susceptibility tensor (assumed isotropic and real for simplicity).
At higher amplitudes, the corresponding polarization has higher terms in E and is
known as hyperpolarization. It is expressed as an expansion in E containing the
higher harmonics:

1

e0
P ωið Þ ¼ χ 1ð Þ ωið ÞE ωið Þ þ

X
j, k

χ 2ð Þ �ωi : ωj,ωk

� �
E ωj

� �
E ωkð Þ

þ
X
j, k, l

χ 3ð Þ �ωi : ωj,ωk,ωl

� �
E ωj

� �
E ωkð ÞE ωlð Þ þ . . .

(104)

where the susceptibility χi) is an i + 1-rank tensor containing waves of possibly the
same or different frequencies ωi, ωj, ωk, etc

18; in the notation of the frequencies, the
resulting value is given before the colon and the incident stimulating frequencies
thereafter. The second-rank susceptibility tensor χij

(1) corresponds to χ in Eq. 103.
Often, the third-rank susceptibility tensor χijk

(2) is replaced by the tensor dim with the
convention

i ¼ 1, . . . , 3 for x, y, z and m ¼ 1, . . . , 6 for xx, yy, zz, yz, zx, xy; (107)

18Sometimes, an inverted relation between E and P is used; for instance, for the second-order term,
one obtains

Ei ω3ð Þ ¼ 1

e0

X
i, j, k

δijk �ω3 : ω1,ω2ð Þ Pj ω1ð ÞPk ω2ð Þ (105)

with

χ 2ð Þ
ijk �ω3 : ω1,ω2ð Þ ¼ e0

X
l,m, n

χ 1ð Þ
il ω3ð Þχ 1ð Þ

jm ω1ð Þχ 1ð Þ
kn ω2ð Þδlmn �ω3 : ω1,ω2ð Þ: (106)
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respectively. The values of the nonlinear susceptibility show dispersion like other
optical parameters of semiconductors. For evaluation of χ(n), see Moss et al. (1973),
Choy and Byer (1976), and Kurtz et al. (1979).

Such nonlinearities represent the ability of interaction of electromagnetic waves
of different frequencies with each other. The influence of two electromagnetic waves
(ωl and ω2) acting simultaneously on a crystal with anharmonic oscillations can be
expressed as

m0

@2u

@t2
� γ

@u

@t
þ ω2

0uþ q2 u
2

� �
¼ eE 1ð Þ

x exp iω1tð Þ þ eE 2ð Þ
x exp iω2tð Þ ; (108)

where u is the displacement, m0 the oscillating mass, and a polarization of both
waves in x direction is assumed; ω0 is the appropriate resonance frequency, and q2 is
assumed as the nonharmonicity factor. The displacement u(ω) now contains com-
ponents of � ωl � ω2, the sum and differences of the original frequencies:

u ωð Þ ¼ A �ω1, � ω2ð Þexp i �ω1 � ω2ð Þt½ �: (109)

When using a specific combination of ωl and ω2, e.g., ωl + ω2 with ωl = ω2, we
obtain for the amplitude of the second harmonic

A 2ω1ð Þ ¼ �q2
e2 E 1ð Þ

x

� �2
2m2

0

1

ω2
0 � 2ω1ð Þ2 þ 2iγω1

h i 1

ω2
0 � ω2

1 þ iγω1


 �2 : (110)

From the polarization relation P(2ω1) = eNu(2ω1), one obtains the appropriate
equation for the susceptibility. In general, one has

χ 2ð Þ
xxx �ω3 : ω1,ω2ð Þ ¼ q2

e3N

e0m0

1

D ω3ð Þ
1

D ω1ð Þ
1

D ω2ð Þ (111)

with D ωið Þ ¼ ω2
0 � ω2

i þ iγωi. For higher-order susceptibilities χ
(n), the D(ωi) term

is repeated n + 1 times. In the extrinsic range between band edge and Reststrahl
energy (▶ Sect. 2.2 of chapter “Photon–Phonon Interaction”), one has with (ω, ωl,
ω2) � ω0 a simple relationship for the polarization: χ 2ð Þ

xxx ¼ q2 e
3N= e0m0ω6

0

� �
. This

relation can be transformed by using Eq. 45 for (κ,γ ! 0) into

χ 2ð Þ
xxx ¼

n2r � 1
� �

e

m0ω4
0

q2: (112)

In order to estimate the anharmonicity parameter q2, we can use the displacement
u which is obtained from

m0ω
2
0 u ¼ �m0 q2 u

2: (113)
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Here, restoring force and nonlinear force are made equal to each other – see
Eq. 108. This yields q2 ¼ ω2

0=u and, consequently,

χ 2ð Þ
xxx ¼

n2r � 1
� �

e

m0ω2
0 u

¼ 1:76 � 10�9 n2r � 1
� � 1016

ω0

� �2
0:1nm

u

� �
cm=Vð Þ: (114)

Typical displacements for observing unharmonicities are on the order of the
covalent radii (l Å). It should be noted, however, that restoring forces / u2 imply
that crystals with inversion symmetry cannot produce second(even)-order
harmonics.19

3.1.2 Nonlinear Polarization of Free Electrons
A free-carrier gas has a statistical center of symmetry, thereby excluding second-
order effects in polarization. Free carriers contribute, however, to third-order effects
in the susceptibility. These can be distinguished from other effects by their depen-
dency on the carrier density.

Nonlinear polarization of free carriers is caused by nonparabolicity of conduction
or valence bands and by the field dependence of some of the carrier scattering
mechanisms (Rustagi 1970; Wang and Ressler 1969, 1970).

The third-order susceptibility due to free carriers (fc) can be given as

χ 3ð Þ
fc ¼ χ 3ð Þ

np þ χ 3ð Þ
cs þ χ 3ð Þ

if (115)

with the subscripts “np”, “sc”, and “if” standing for nonparabolicity of the respective
band, carrier scattering, and interference between the two processes. In a simple
(Kane) model, the nonparabolic contribution can be estimated (Wolf and Pearson
1966) as

χ 3ð Þ
np �ω3;ω1,ω2ð Þ ¼ n

e4

e0m2
n Egω1ω2ω2

3

1þ 8
5
EF=Eg

1þ 4EF=Eg

� �5=2 (116)

where EF is the Fermi energy. For EF � Eg and semiconductors of mn = 0.1 m0 and
Eg ffi 1 eV, we have χ 3ð Þ

np ffi 10�33n (cm2/V2), which, for moderate carrier densities,
can approach the values of χ(3) due to valence electrons.

3.1.3 The Different Mixing Effects
In semiconductors with no inversion symmetry, the second (or higher)-order sus-
ceptibility is large enough for relatively efficient (>10%) interaction of two or more

19When the restoring potential is nonlinear but symmetrical with respect to the equilibrium position
r0, then the nonlinear oscillatory motion on both sides of r0 is equal, and the Fourier analysis of the
ensuing oscillation does not contain even coefficients. Still, such potential can produce odd
harmonics (3rd, 5th, . . .). For producing even-order harmonics, the nonlinear medium must not
have inversion symmetry.
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photons (or phonons) with each other, often without invoking resonance transitions
in the solid. These interactions can be used to generate light of a different wave-
length; others can be used for light amplifiers or detectors of light beams. Such
interactions consist of

1. Second-harmonic generation (SHG) by two identical photons /χ(2) with ωi = ωj

2. Third-harmonic generation (THG) by three identical photons/χ(3) withωj=ωk=ωl

3. Sum and difference frequency mixing /χ(2) with ωi = ωj � ωk

4. Parametric amplification, closely related to mixing20 /χ(3)

5. Optical rectification /χ(2) with ωi = �ωj

6. Self-focusing of light /χ(3) with ωj = �ωk = ωl

Some of these multiphoton interactions can be used as analytical tools and are
important for gaining new insight about the oscillatory behavior of solids, which is
not otherwise obtainable. For example, multiphonon absorption can yield excited
states which cannot be excited otherwise because of selection rules. A few examples
are given below and illustrated in Fig. 21. For a review, see Byer and Herbst (1977),
Warner (1975), or Mandel (2010).

Most of these experiments are based on the mixing of several photons or of
photons and phonons in order to probe levels with different symmetries. As an
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Fig. 21 Various nonlinear optical mixing effects. (a) and (b) second harmonic generation, (c)
schematic set-up for sum-frequency generation ω3 = ω1 + ω2 shown in the energy diagram (d) and
for difference-frequency generation ω3 = ω1 – ω2 shown in (e)

20Amplification is achieved when a small signal at ωs is mixed with a strong laser pump beam at ωp

and results in the creation of an additional beam at ωi, the idler frequency, according to ωp = ωs +
ωi. In this process, energy from ωp is pumped into ωs and ωi; consequently, ωs is amplified.
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example, we can compare a typical linear absorption experiment in which the
parity of the excited state must be opposite to that of the ground state (since the
dipole moment is odd and causes the final state to change its parity) with a
nonlinear two-photon interaction in which the parity of the excited state remains
the same since the dipole matrix element appears twice. Consequently, one can
observe the same parity transitions compared to the ground state with nonlinear
mixing experiments.

There is a very wide variety of experiments in which nonlinear optical effects are
used whenever two or more quasi-particles such as photons, phonons, polaritons, or
electrons are involved. Several of these will be discussed in other sections of this
book, e.g., multiphonon absorption (▶ Sect. 3.2 of chapter “Photon–Phonon Inter-
action”) and the Burstein-Moss shift (▶ Sect. 3.2 of chapter “Optical Properties of
Defects”). In each of these cases and sometimes implicit, a nonlinearity of the
dielectric polarization is involved, i.e., e and χ are a function of the incident field.

An important topic is the nonlinear solid-state spectroscopy, which is an exten-
sion of the well-known one-photon spectroscopy. It deals with all types of interac-
tions accessible for single photons and probes the higher amplitude behavior; it also
makes bulk regions of crystals accessible for excitation in ranges of very high optical
absorption (see the following section) or permits stimulations of transitions which
are forbidden for simple photon or phonon processes as discussed before.

An interesting range for nonlinear spectroscopy is that in which the sum or
difference of energy of two photons equals a specific resonance transition. Here,
high amplitudes can be reached with rather modest input signals (see below). For
details on three-photon mixing, see Lee and Ahmad (1996).

3.1.4 Upconversion and Difference Mixing
Since the polarization is low when far from a resonance transition and higher-order
susceptibilities rapidly decrease with increasing order, we need a high-intensity
laser for most experiments to create signals above noise. Near resonances, how-
ever, the efficiency for higher-order interaction dramatically increases. The absorp-
tion of single photons in this range is usually too high to reach regions beyond the
near-surface layer. These difficulties can be avoided by upconversion, i.e., by
mixing two low-energy photons (Fig. 21d). These photons enter the crystal bulk
without appreciable absorption, while the effect of an upconverted photon with
energy near or at the electron resonance with large absorption can now be studied
within the bulk. Such upconversion is commonly used to reach exciton-polaritons
(see ▶ Sect. 1.3 of chapter “Excitons”) or characteristic points in band-to-band
transitions.

Difference mixing (Fig. 21e) can bring the resulting photon into the phonon
absorption range, i.e., the Reststrahl range (▶ Sect. 2.2 of chapter “Photon–Phonon
Interaction”), where the bulk photon-phonon or phonon-polariton interactions can be
studied (see Kildal and Mikkelsen 1973 and ▶ Sect. 1.3 of chapter “Excitons”).

The transfer of energy between the two beams of light for mixing depends on the
coherence length of the interaction. The energy transfer follows the conservation-of-
photon relation given by the Manley-Rowe equations (Manley and Rowe 1959):
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1

ω1

dI1
dz

¼ 1

ω2

dI2
dz

¼ 1

ω3

dI3
dz

: (117)

In sum frequency generation (ω3 = ω1 + ω2), both lower energy laser beams lose
power, the sum of which is gained by the higher-frequency beam. In difference
frequency generation (ω3 = ω1 – ω2), the higher-frequency beam (ω1) loses power
while both lower-frequency beams (ω2 and ω3) gain the equivalent amount; such
scenario is shown in Fig. 21e; the corresponding setup has one beam ω1 entering the
crystal to produce two emerging beamsω2 andω3. This effect can be used to amplify the
amplitude of a low-intensity beam. The frequency ω2 can be generated with high
efficiency (approaching 50%) and can be amplified when a cavity (Sect. 2.2) is provided
and tuned to ω2. This constitutes a parametric oscillator (see Byer and Herbst 1977).

3.1.5 Phase Matching
In order for the different beams to remain in phase throughout the crystal, the index
of refraction for the involved frequencies must remain the same. Even away from
resonances, however, this is usually not the case. As a result, the beams with
frequency ω1 and ω3 will walk off in slightly different directions, limiting the
coherence length (the length along which two light beams can interact when they
remain parallel to each other and in phase) to

lcoh ¼ λ

4 nr ω2ð Þ � nr ω3ð Þð Þ ; (118)

where λ is the fundamental wavelength for second-harmonic generation (ω1 = ω2

and ω3 = 2 ω2 in Eq. 117, compare Fig. 21b). By carefully adjusting the incident
angle θ with respect to the optical axis, however, one can match for two beams
the refractive index for the fundamental beam of one to the extraordinary beam of
the other if birefringence is strong enough to compensate dispersion (Fig. 22):

θ0

ne(θ,2ω)

no(ω)

no(2ω)

Fig. 22 Phase matching
achieved by varying the angle
of propagation θ in the crystal
such that no(ω) = ne(2ω). At
an angle θ0 maximum second-
harmonic output is obtained
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nordinary(ω) = nextraordinary(2ω). This birefringence phase matching utilizes the angle
dependence of the extraordinary beam and has been analyzed by Midwinter and
Warner (1965) for uniaxial crystals and by Hobden (1967) for biaxial crystals. For
perfect phase matching also momentum conservation k(2ω) = 2 k(ω) must apply.

Other methods of phase matching include matching in optically active media,
Faraday rotation, and using anomalous dispersion; see the literature listed in the
review by Chemla and Jerphagnon (1980). Phase matching is important for efficient
nonlinear optical devices.

3.1.6 Mixing and dc Fields
Nonparabolic effects on the polarization can be tested by an external dc field that
causes a sufficient relative shift of the bound valence electrons relative to the ion
cores. This could be regarded as a prestressing of the lattice atoms in an external
electric field and testing these prestressed atoms with the electromagnetic irradiation.
In the presence of the dc field, the nonlinear susceptibilities increase. As a result, one
observes an increase in the power of second-harmonic generation with applied
external field:

P 2ωð Þ / E2
dc: (119)

The inverse of this process – namely, the frequency difference generation of two
identical photons –

ω1 � ω2 ¼ 0; (120)

is called optical rectification and generates a dc field (from an ac field) or, in an
external circuit, a dc current. For optical rectification in zincblende crystals, see Rice
et al. (1994).

3.1.7 Conversion Efficiencies
Depending on the material, rank of susceptibility, the frequencies’ proximity to a
resonance, and the acting field amplitude, the conversion efficiencies for nonlinear
processes can vary from less than 1% to values in excess of 80%. The efficiency of a
phase-matched harmonic generation was evaluated by Armstrong et al. (1962) and is
given by

η ω ! 2ωð Þ ¼ I 2ωð Þ
I ωð Þ ¼ tanh2 eA0 lcohð Þ; (121)

where A0 is the amplitude of the incident laser and lcoh is the coherence length. Total
power transfer into the upconverted beam is theoretically possible; experimentally,
well above 50% efficiency is achieved.

For transitions close to resonances, giant oscillator strengths are sometimes
observed, e.g., when creating excitonic molecules (▶Sect. 1.4 of chapter
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“Excitons”). In CuCl, up to fourth-order excitation and cascade recombination was
observed for such multiphoton processes (Maruani et al. 1978).

3.2 Electro-Optical Effects

Electro-optical effects refer to a change in the dielectric function with an applied
electric field. Such changes can be derived from the anharmonic oscillator model.
When such a change is linear with the electric field, it is referred to as the Pockels
effect. When it is quadratic, it is called the Kerr effect.

3.2.1 The Pockels Effect
When in Eq. 108 a constant electric field E0 is added on top of the electromagnetic
radiation, we have similar conditions as indicated earlier for nonharmonic lattice
oscillations – see ▶ Sect. 1.2 of chapter “Elasticity and Phonons”. Even for small-
amplitude oscillations (i.e., low light intensities), the range of anharmonic oscilla-
tions can be reached by sufficient prestressing – here by a sufficient dc field. This
lowers the symmetry of centrosymmetric crystals so that these also show second-
harmonic generation (e.g., seen in Si). Such prestressing causes a shift in the
resonance frequency

Δ ω2
0

� � ¼ ω2
0 � ω0

0

� �2 ¼ 2q2
eE0

mω2
0

(122)

and results in a change in the index of refraction

Δnr ¼
n2r � 1
� �

Δ ω2
0

� �
2nr ω2

0 � ω2
� � : (123)

This change in nr is anisotropic because of the external dc field, which renders the
optical properties of isotropic semiconductors anisotropic. Such anisotropy is
expressed by the index of refraction ellipsoid

x2

n21
þ y2

n22
þ z2

n23
þ 2yz

n24
þ 2zx

n25
þ 2xy

n26
¼ 1 (124)

with indices as identified in relation Eq. 107. Conventionally, the anisotropic index
of refraction relates to the field as

1

n2m
¼ 1

n2r
þ
X
i

rmi Ei (125)

with the electro-optical coefficient rmi.We can show easily that in x direction, rxx and
χxxx are related as n4m rxx ¼ �2χxxx (using Eqs. 112, 122, and 123) and in a general
form (Franken and Ward 1963)
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n4m rmi ¼ �2dim: (126)

This anisotropy results in different light velocities dependent on the relative orien-
tation of the dc field and light-beam polarization (with propagation perpendicular to
the dc field). It causes a rotation of the plane of polarization of the light while
traveling through the medium (Meintjes and Raab 1999). When rotation by π/2 is
achieved, a light beam of linear polarization is fully switched on when exiting
through a polarizing filter with orientation normal to the polarization of the incident
beam. The field necessary to achieve this switching is

Eπ=2 ¼ λ

n3r r41 L
(127)

The field to accomplish this switching is on the order of 104 V/cm for λ= 1 μm, nrffi
3, L = 3 cm, and r41 ffi 10�10 cm/V.

3.2.2 The Kerr Effect
The Kerr effect depends on introducing a third-order term in displacement m0q3u

3

into Eq. 108. Here, the index of refraction changes proportional to quadratic terms
in the dc field. Such an effect is the only electro-optic nonlinear effect in centrosym-
metric semiconductors. The corresponding change in the index of refraction is
given by

Δnr ¼ �q3
3e2 n2r � 1
� �

2nrm2
0ω

4
0 ω2

0 � ω2
� �E2

0: (128)

obtained similarly as in Eq. 123. Centrosymmetric semiconductors in which the Kerr
effect can be observed are the element semiconductors such as Si and Ge. More on
the Kerr effect in seminconductors is reported in Sheik-Bahae et al. (1994). The Kerr
effect is also well known in certain organic liquids such as nitrobenzene and CS2. Its
field-induced birefringence is often used for modulation or fast switching of a light
beam.

4 Summary

The interaction of electromagnetic radiation with a semiconductor can be described
by two parameters: the complex dielectric constant and conductivity. They can be
derived from Maxwell’s equations applied to the semiconductor as a continuum
without considering its atomic structure. These parameters are closely associated
with the index of refraction, the extinction (or optical absorption) coefficient, and the
displacement current. These in turn can be related to directly measured quantities
such as the transmitted and reflected light as a function of the wavelength, impinging
angle, and polarization. The so-obtained optical constants are connected to the
microscopic theory of optically induced elementary excitation processes and involve
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a wide variety of quasiparticles such as electrons, holes, excitons, phonons, or
polaritons – particles which will be discussed in later chapters.

Light propagation and light-matter interaction can be controlled by an artificially
introduced periodic modulation of the dielectric constant on a scale of the wave-
length. Photonic band structures are thereby created similar to the band structure for
electrons originating from the periodic lattice potential. Deviations from periodicity
create optical defects, which localize optical modes; line defects allow for guiding
optical waves; point defects form microcavities like omnidirectional mirrors allo-
wing to enhance or suppress radiation of an enclosed emitter.

Nonlinear optical effects originate from anharmonic terms in the potential, which
couple electromagnetically induced oscillations. The effects emerge at high field
amplitudes or by prestressing with an applied dc field and are described by higher-
order terms in a field-dependent dielectric function (or polarization). Nonlinear
effects lead to a mixing of two or more excitation processes (of, e.g., photons,
phonons, polarons) and result in new states with the sum or difference of incident
energies. They can involve transitions far from resonance (virtual states) or near
resonance, the latter with much increased conversion efficiencies.
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Abstract
The interaction of photons with solids comprises ionic and electronic oscilla-
tions; this chapter focuses on lattice vibrations. The dielectric polarization is
related to the atomic polarizability. The dynamic response of the dielectric
function on electromagnetic radiation can be described classically by elemen-
tary oscillators, yielding strong interaction of photons and TO phonons with a
resulting large Reststrahl absorption in the IR range. The dispersion is described
by a phonon-polariton, which is observed in inelastic scattering processes.
Brillouin scattering at acoustic phonons and Raman scattering at optical pho-
nons provide direct information about the spectrum and symmetry of vibrations
in a semiconductor.
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The continuum model presented in chapter ▶ “Interaction of Light with Solids” will
now be refined by introducing the atomic microstructure of the semiconductor. The
interplay of the electromagnetic radiation with the solid can be described classically
by interaction with atomic oscillations. In this chapter, we will deal with the
interaction of photons with lattice oscillation, i.e., with the vibronic part; a descrip-
tion of the relation between electric fields and the lattice polarization provides the
foundation for the understanding of this interaction. Respective interactions of
photons with electrons are discussed in chapters ▶ “Photon–Free-Electron Interac-
tion” and ▶ “Band-to-Band Transitions”.

In the following we discuss how an external field is related to the polarization of
the lattice and introduce the time dependence of the dielectric response. Then we
focus on the coupling of electromagnetic radiation to lattice oscillations in ionic
solids.

1 Lattice Polarization

1.1 Electric Fields and Polarizability

The dielectric polarization enhances a local electric field Eloc in the presence of an
external field Eext. Neglecting space-charge effects the local electric field Eloc can be
expressed as

Eloc ¼ Eext þ Esurf ; (1)

where Esurf is the field at the center of a cavity produced by the induced charges at
the sample surface. This field can be evaluated in an isotropic crystal by a spherical
cavity, yielding

Esurf ¼ 1

3e0
P: (2)

For anisotropic crystals the derivation of the local field is more complex (Jackson
1999). From the definition P = e0(e � 1) E (see Eq. 31 in chapter ▶ “Interaction of
Light with Solids” and Eqs. 1 and 2) we obtain the relation between the local and
externally applied fields:

Eloc ¼ eþ 2

3
Eext: (3)

When using the fact that the total polarization per unit volume is composed of Nj

atoms with individual polarizability αj, we obtain

390 Photon–Phonon Interaction



P ¼ e0Eloc

X
j

Nj αj ¼ e0
eþ 2

3
Eext

X
j

Nj αj: (4)

Since P = e0(e � 1) E, we obtain the Clausius-Mossotti relation

e� 1

eþ 2
¼ 1

3

X
j

Nj αj ¼ 1

3V

X
j

αj ; (5)

which relates the dielectric constant with the atomic polarizabilities.
The polarizability in ionic crystals is additive. For instance, in a binary compound

AB, we have
αAB ¼ αA þ αB: (6)

When one atomic polarizability is known (e.g., for Li obtained by Pauling 1927), one
can derive all other ionic polarizabilities from Eqs. 5 and 6. For a review see Shanker
et al. (1986).

1.1.1 Ionic and Electronic Polarizability
In (at least partially) ionic crystals, the atomic polarizability αj can be divided into a
ionic part αi, determined by the relative shift of oppositely charged ions, and an
electronic part αe, determined by the relative shift of the electrons. The static
dielectric constant estat contains both parts and can be obtained from Eq. 5:

estat � 1

estat þ 2
¼ 1

3
Ni αi þ Ne αeð Þ: (7)

At high frequencies only the electrons can follow a changing external field; we
therefore obtain another dielectric constant referred to as the optical dielectric
constant eopt, yielding

eopt � 1

eopt þ 2
¼ 1

3
Ne αe; (8)

consequently, we relate the ionic polarizability to the difference of Eqs. 7 and 8:

αi ¼ 3

Ni

estat � 1

estat þ 2
� eopt � 1

eopt þ 2

� �
; (9)

a quantity which is on the order of 1/Ni ffi 10�24 cm3.
Some ionic polarizabilities are given in Table 1. It shows an increase of these

polarizabilities with increasing number of electrons within each row of elements (see
also Fig. 1). For the same electronic shell (e.g., Na+ and F�, or K+, Ca2+, and Cl�) it
also increases with increasing nuclear charge. The additivity rule for polarizabilities
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applied for calculating the listed values has been found to be satisfied surprisingly
well even for the predominantly covalent III-V crystals.

1.1.2 Piezoelectricity and Electrostriction
Crystals lacking inversion symmetry become electrically polarized when they
are elastically strained (piezoelectricity), or they change their lattice constant

Table 1 Crystalline state
polarizability of ions in
units of 10�24 cm3 (After
Shanker et al. (1986), and
Pandey et al. (1977))

Ion αi Ion αi
Li+ 0.029 F� 0.867

Na+ 0.314 Cl� 3.063

K+ 1.136 Br� 4.276

Rb+ 1.785 I� 6.517

Cs+ 3.015

Mg2+ 0.094 O2� 1.657

Ca2+ 1.157 S2� 4.497

Sr2+ 1.795 Se2� 5.686

Ba2+ 3.188 Te2� 9.375

Al3+ 3.831 P3� 2.659

Ga3+ 4.435 As3� 3.786

In3+ 6.489 Sb3� 6.737
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when exposed to an external electric field (electrostriction). This effect is used
in electromechanical transducers. Examples for such materials are SiO2 (α-
quartz), ADP (NH4H2PO4), and KDP (KH2PO4). A much smaller quadratic
(in E) effect is observed in other ionic crystals due to the nonharmonicity of
the lattice forces.

If the centers of positive and negative charges in a piezoelectric crystal do not
coincide under zero external field, the crystal may show a spontaneous electric
polarization and is called ferroelectric. The spontaneous polarization may be
compensated by charges from the atmosphere absorbed at the surface. In some
crystals such compensation may be relieved after heating, when spontaneous
polarization again becomes observable. These crystals, of which Turmalin is an
example, are called pyroelectric. In other materials (e.g., organic waxes), such a net
dipole moment may be frozen-in during solidification. These are called electretes
(Gutman 1948).

Such state of ordered molecular dipoles is stabilized by its lower total energy.
The order is destroyed at temperatures exceeding the critical temperature TC
(Curie temperature). Examples of ferroelectric crystals with Curie temperatures
(K) and saturation polarization (μCoul/cm2) – separated by a comma in paren-
theses – are potassium dihydrogen phosphate KDP (213, 9), barium titanate
(393, 26), and potassium niobate (712, 30). For more information see Lines
and Glass (1979).

1.2 Dielectric Response and Kramers-Kronig Relations

The previous discussion of the dielectric polarization indicates a time-delayed
response of the semiconductor to changes in the electric field. Such delay is caused
by the time it takes for the different dielectric displacements to adjust; inertia requires
that any response cannot be instantaneous. Phenomenologically, we can express the
total response as

D tð Þ ¼ e0E tð Þ þ P tð Þ; (10)

with D(t) the dielectric displacement. The relation between the changing electric
field E(t) causing a change in polarization P(t) can be related by a dielectric response
function f(t). The principle of causality requires the output P(t) is zero for t < 0 if the
system is excited by an electric field E(t) turned on at t = 0. Thus, P(t) can be
written as

P tð Þ ¼
ð1
0

f τð ÞE t� τð Þ dτ; (11)

with 0 as the lower integration limit. With respect to optical phenomena, it is more
appropriate to transform Eq. 11 from the time into the frequency domain by means of
a Fourier transformation in order to introduce the susceptibility:
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P ωð Þ ¼ 1ffiffiffiffiffi
2π

p
ð1
�1

P tð Þexp�� iωt
�
dt ¼ eχ ωð ÞE ωð Þ: (12)

The frequency-dependent polarization P(ω) is determined by the frequency-
dependent susceptibility eχ ωð Þ which can be expressed in terms of the response
function

eχ ωð Þ ¼ χ0 ωð Þ þ χ00 ωð Þ ¼
ð1
0

f tð Þexp�� iωt
�
dt (13)

with

χ0 ωð Þ ¼
ð1
0

f tð Þ cos �ωt�dt and χ0 ωð Þ ¼ χ0 �ωð Þ evenð Þ

χ00 ωð Þ ¼
ð1
0

f tð Þ sin �ωt�dt and χ00 ωð Þ ¼ �χ00 �ωð Þ oddð Þ
(14)

or similar relations betweenee ωð Þ and f(t). It is the purpose of a microscopic theory
to provide such a response function as will be shown for a simple example in
Sect. 2.1.

1.2.1 Kramers-Kronig Relations
As shown above, χ0(ω) and χ00(ω), or e0(ω) and e00(ω) are related to each other. With
the help of the Hilbert transformation

P

ð1
�1

sin ω tð Þ
ω� ωa

dω ¼ π cos ωa tð Þ (15)

such relation can be further developed, as shown below. P is the Cauchy principal

value of the integral: in order to avoid the singularity at ω = ωa,P

ð1
�1

. . . dω is split

according to lim
δ!0

ðωa�δ

�1
. . . dω þ

ð1
ωaþδ

. . . dω:

We can eliminate the unknown dielectric response function in Eq. 13 by inserting
Eq. 15 into the first equation of Eq. 14:

χ0 ωað Þ ¼
ð1
0

f tð Þ 1
π
P

ð1
�1

sin ωtð Þ
ω� ωa

dωdt

¼ 1

π
P

ð1
�1

dω

ω� ωa

ð1
�1

f tð Þ sin ωtð Þdt; (16)

the extension of the lower integration limit over ω from 0 to �1 is permitted for
causality reasons: its contribution (for t < 0) must be equal to zero. When inserting
χ00(ωa) for the second integral in Eq. 16 we obtain
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χ0 ωað Þ ¼ 1

π
P

ð1
�1

χ00 ωð Þ
ω� ωa

dω; (17)

and in a similar fashion

χ00 ωað Þ ¼ 1

π
P

ð1
�1

χ0 ωð Þ
ω� ωa

dω: (18)

These equations can easily be transformed1 into the more familiar forms of the
Kramers-Kronig integrals

χ0 ωað Þ ¼ 2

π
P

ð1
0

ωχ00 ωð Þ
ω2 � ω2

a

dω and χ00 ωað Þ ¼ 2ωa

π
P

ð1
0

χ0 ωð Þ
ω2 � ω2

a

dω: (19)

When usingee ωð Þ, we obtain the corresponding Kramers-Kronig relations (Kramers
(1929), Kronig (1926); see, e.g., also Cardona 1969; Yu and Cardona 1999):

e0 ωað Þ ¼ 1þ 2

π
P

ð1
0

ω e00 ωð Þ
ω2 � ω2

a

dω (20)

and

e00 ωað Þ ¼ �2ωa

π
P

ð1
0

e0 ωð Þ
ω2 � ω2

a

dω; (21)

where ωa is the arbitrary frequency at which e0 and e00 are evaluated. Equations 20
and 21 show that the values of e0 and e00 at a given frequency ωa depend on the
behavior of e00 and e0, respectively, in the entire frequency range; thus the extinction
coefficient and the dielectric constant depend on each other. This interdependence is
amplified2 when the contributing transition at ω is a resonance transition and lies
close to the evaluated transition ωa.

The dispersion relation given here relates the dispersion process to absorption
processes in a single integral formula. For instance, it permits us to determine the
dispersion at any frequency if we know the absorption in the entire frequency range.
However, frequency ranges far away from the range to be evaluated, i.e., far away
from ωa, have little influence. It also makes immediately clear that there is no
dispersion (e0 = 1) if there is no absorption (e00 = 0). The shape of e0(ω) depends
in a sensitive way on the shape of e00(ω): for instance, an edge in the absorption

1This follows from P

ð1
�1

f xð Þ
x� a

dx ¼ P

ð1
0

x f xð Þ � f �xð Þð Þ þ a f xð Þ þ f �xð Þð Þ
x2 � a2

dx:

2Such interdependence can be visualized by considering a row of coupled pendula and forcing one
of them to oscillate according to a given driving force. All other pendula will influence the motion,
the more so, the closer the forced oscillation is to the resonance frequency of the others.
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corresponds to a maximum in the dispersion, while an isolated maximum in absorp-
tion corresponds to a decline of e0 with ω.

Kramers-Kronig relations also exist between other related optical parameters. The
real and imaginary parts of the complex refractive index ñ are connected by

nr ωað Þ ¼ 1þ 2

π
P

ð1
0

ωκ ωð Þ
ω2 � ω2

a

dω (22)

and

κ ωað Þ ¼ �2ωa

π
P

ð1
0

nr ωð Þ � 1

ω2 � ω2
a

dω: (23)

Another Kramers-Kronig relation relates amplitude and phase of reflection. The
complex amplitude of reflection at a single surface can be written as

~r ¼ ρexp iΔð Þ
where ρ is the modulus of the reflection amplitude at normal incidence, which

is connected to the measured reflectance R(ω) by R ¼ ρj j2 ; Δ is the phase
difference between the incident and reflected wave. The phase difference is
related to R(ω) by

Δ ωað Þ ¼ �ωa

π
P

ð1
0

log R ωð Þð Þ
ω2 � ω2

a

dω: (24)

Since

ρexp iΔð Þ ¼ ρ cosΔþ iρ sinΔ ¼ nr þ iκ � 1

nr þ iκ þ 1
(25)

(see ▶ Sect. 1.2 of chapter “Interaction of Light with Solids”) we can relate
the reflectance R to nr and κ by equating real and imaginary parts of Eq. 25,
yielding

nr ωð Þ ¼ 1� R ωð Þ
1þ R ωð Þ � 2

ffiffiffiffiffiffiffiffiffiffi
R ωð Þp

cosΔ

κ ωð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
R ωð Þp

sinΔ
1þ R ωð Þ � 2

ffiffiffiffiffiffiffiffiffiffi
R ωð Þp

cosΔ
:

(26)

Using Eq. 26 both nr and κ, and hence also the real and imaginary parts of the
dielectric function, can be determined for any frequency by measuring R(ω) over
the entire frequency range and calculating Δ(ω) by Eq. 26. Kramers-Kronig
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relations can also be applied to derive changes in the dielectric function from
measured changes in the reflectance, see ▶ Sect. 1.2 of chapter “Interaction of
Light with Solids”.

1.2.2 Sum Rules
The interrelation of e0(ω) and e00(ω) in the entire frequency range leads to a number of
interesting sum rules. These rules are helpful in checking the consistency of the
approximation used, e.g., to check whether all important transitions are included in the
Kramers-Kronig relation. Equation 20 yields the following dependence for ωa = 0:

e0 0ð Þ ¼ estat ¼ 1þ 2

π
P

ð1
0

e00 ωð Þ
ω

dω: (27)

The static dielectric constant estat is hence determined by the total area under
the curve of e00(ω), independent on the spectral range where the absorption occurs.

At very high frequencies, when all valence electrons behave like free electrons,
the dielectric function becomes that of an ensemble of free electrons (see▶ Sect. 1 of
chapter “Photon–Free-Electron Interaction”) given by

e0 ωð Þ ffi 1� ω2
p

ω2
with ω2

p ¼ 1� n e2

e0m0

; (28)

where n is the valence-electron density and m0 is the free-electron mass. Equating
this result with Eq. 20 for ωa � ω we obtain the dipole sum ruleð1

0

ω e00 ωð Þdω ¼ π

2
ω2
p: (29)

This sum rule is equivalent to the f-sum rule for atoms (Kronig 1926). It indicates
that strong emission in one part of the spectrum must be compensated by additional
absorption in the same or other parts of the spectrum (Stern 1963). The
corresponding sum rule for the absorption coefficient isð1

0

ωκ ωð Þdω ¼ π

4
ω2
p: (30)

Another important sum rule is (Lifshits et al. 1985)

ð1
0

nr ωð Þ � 1ð Þdω ¼ 0; (31)

i.e., the index of refraction averaged over all frequencies must be equal to one.
A review over further sum rules which are helpful for absorption and dispersive

processes is given by Smith (1985).
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2 The Dielectric Function in the IR Range

The dielectric function was introduced as a frequency-dependent material parameter
in the effective-medium model of solid-light interaction discussed in chapter
▶ “Interaction of Light with Solids”. The frequency dependence originates micro-
scopically from the interaction with ionic and electronic oscillations in the solid
typically occurring in the IR and UV ranges, respectively (▶ Fig. 11 of chapter
“Interaction of Light with Solids”). In the following we focus on the lattice vibra-
tions. Their interaction with the electromagnetic radiation can be described classi-
cally, providing a rather simple illustration of connecting the microscopic lattice
parameters with optical constants.

2.1 Elementary Oscillators

In semiconductors with ionic bonding forces, certain lattice oscillations couple
strongly with electromagnetic radiation. These are the transverse optical oscillations
near the center of the Brillouin zone at q = 0, or, equivalently, λ � a. Such lattice
oscillations were discussed in ▶ Sect. 3.1 of chapter “Elasticity and Phonons” by
analyzing the equation of motion.

Now an external force, caused by an electric field E, is introduced which
interacts with the ionic charges of the lattice. Since most semiconductors are
partially ionic and partially covalent, the effective charge eeff instead of the
electron charge e is used here – see end of this section. Counteracting the external
force are the elastic restoring forces assumed to be/β, and a damping friction term
/γ which prevents unchecked energy extraction from the external field at reso-
nance. As in classical mechanics the friction is assumed to be proportional to the
velocity. The friction constant γ is related to absorption (inelastic scattering events)
and is equal to 1/τ, where τ is the lifetime of the given state, or, as will be discussed
later, the appropriate relaxation time (see ▶ Sect. 4 of chapter “Carrier-Transport
Equations”). The equation of motion for the relative movement u = u1– u2 of the
ions in a diatomic crystal under the influence of an electromagnetic wave of
frequency ω then reads

Mr

d2u

dt2
þ γ

du

dt
þ β

Mr

u

� �
¼ eeffE ¼ eeffE0exp �iωtð Þ: (32)

Mr is the reduced mass of an ion pair in the diatomic crystal given by3

3Sometimes the effective atomic weight is used, related to the mass MH of the hydrogen atom:

M�
r ¼ 1=Mr þ 1=MH: (33)
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1

Mr

¼ 1

M1

þ 1

M2

: (34)

Equation 32 has the solution

u tð Þ ¼ ~AE0exp �iωtð Þ (35)

with the complex amplitude factor

~A ωð Þ ¼ A0 þ iA00 ¼ eeff
Mr

1

ω2
TO � ω2 � iγω

: (36)

The derivation of Eq. 36 is straightforward and can be found in many textbooks. The

relevant eigenfrequency (ωTO ffi ffiffiffiffiffiffiffiffiffiffiffi
β=Mr

p
) is the transverse optical frequency at the

center of the Brillouin zone (see ▶ Sect. 3.1.3 in chapter “Elasticity and Phonons”)
and is the frequency where the interaction with the electromagnetic wave is
strongest.

Introducing Eq. 36 into Eq. 35, we obtain for the ionic displacement

u ¼ eeff
Mr

1

ω2
TO � ω2 � iγω

E: (37)

Equation 37 describes the displacement in a microscopic lattice oscillator.
In the macroscopic approach, the interaction with light is described by the

dielectric polarization. A crystal containing N lattice oscillators per unit volume
shows a lattice polarization of

Platt ¼ Neeffu ¼ Ne2eff
Mr

1

ω2
TO � ω2 � iγω

E: (38)

The electronic polarization is

Pel ¼ e0 eopt � 1
� �

E: (39)

The total polarization thus becomes

P ¼ Platt þ Pel ¼ Neeffu ¼ Ne2eff
Mr

1

ω2
TO � ω2 � iγω

þ e0 eopt � 1
� �� �

E: (40)

When using the definition of the complex dielectric constant, P is also written as

P ¼ e0 ee � 1ð Þ E: (41)

By comparing this relation with Eq. 40, we obtain the complex dielectric
constant
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ee ωð Þ ¼ e0 þ ie00 ¼ eopt þ
ω2
p

ω2
TO � ω2 � iγω

; (42)

where ωp is introduced as a characteristic frequency, the ionic plasma frequency4

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ne2eff
Mr e0

s
(43)

or

ωp ¼ 2:94� 1013
eeff
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

1022
20

M�
r

s
s�1
� �

;

Mr
* is the effective atomic weight (Eq. 33).
We can now separate the real and imaginary parts of Eq. 42, and obtain

e0 ωð Þ ¼ n2r � κ2 ¼ eopt þ ω2
p

ω2
TO � ω2

ω2
TO � ω2

� �2 þ γ2ω2
; (44)

which is proportional to the squared index of refraction (for κ2 � n2r ), and

e00 ωð Þ ¼ 2nrκ ¼ ω2
p

ω γ

ω2
TO � ω2

� �2 þ γ2ω2
; (45)

which is proportional to the optical absorption coefficient (for nr ffi const).
Both e0 and e00 are given as functions of the frequency of the impinging optical

wave in Fig. 2. It shows an absorption peak at the transverse optical frequency ωTO,
with a half-width equal to the damping factor γ; other useful relations for γ are:

Δω1=2 ¼ γ or
Δω
ω

ffi tan δ ffi γ

ωTO

:

The real part of the dielectric function shows a transition from the optical dielectric
constant at high frequencies (ω � ωTO) to the static dielectric constant for low
frequencies (ω� ωTO). The amplitudes at the extrema and their interrelationship are
given in Fig. 2.

The relations derived here are rather general and show a strong absorption at the
eigenfrequency of dipole oscillators. The half-width of the absorption peak is
proportional to the damping. With 1/γ given by the lifetime of the state, the half-
width of the line is also referred to as its natural line width. Often the Lorentzian

4ωp has the same form as the plasma frequency for electrons (Eq. 4 in chapter ▶ “Photon–Free-
Electron Interaction”), except N is the density and Mr the mass of phonons. Sometimes the
definition of ωp includes an additional factor eopt in the denominator.
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line-shape function g(ω) is used to describe the spectral distribution of the optical
absorption near ωTO (see ▶ Sect. 2 of chapter “Optical Properties of Defects”):

g ωð Þ ¼ γ

2π

1

Δωð Þ2 þ γ=2ð Þ2 ; (46)

where, Δω = (ωTO – ω). Using g(ω) as band-shape function, Eqs. 44 and 45 can be
approximated for ω ffi ωTO as

e0 ¼ eopt þ
πω2

p

ωTO

Δω
γ

g ωð Þ and e00 ¼ πω2
p

2ωTO

g ωð Þ: (47)

A few additional relations are instructive. For low frequencies, we obtain from
Eq. 44 the relation

e0 0ð Þ ¼ estat ¼ eopt þ
ω2
p

ω2
TO

: (48)

Therefore, Eq. 42 can also be written as

ee ωð Þ ¼ eopt þ
estat � eopt
� �

ω2
TO � ω2 � iγω

� �
=ω2

TO

: (49)

The corresponding relation for a longitudinal wave (which is not excited by a
transverse electromagnetic wave) can be obtained by setting ee ωð Þ ¼ 0 in Eq. 42 or

w TO-(g/2) w TO+(g/2)

e"(w)

e'(w)e opt + (wp /w TO)2 eopt

e opt + wp / 2gw TO 

e opt - wp/ 2gwTO 

w/w TO

estat

w TO
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wp/gw TO = e"max
2
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2

Fig. 2 Real (blue curve) and imaginary (red curve) parts of the dielectric function near a single
resonance of lattice-atom oscillators, calculated from Eqs. 44 and 45 with eopt = 12, ωp/ωTO = 1.7,
and γ /ωTO = 0.05
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Eq. 49. Neglecting damping (γ = 0), we obtain for the frequency ωLO of the
longitudinal optical oscillation at q = 0 the useful Lyddane-Sachs-Teller relation
(Lyddane et al. 1959)

ωLO

ωTO

¼
ffiffiffiffiffiffiffi
estat
eopt

r
: (50)

For resonances including damping, the Lyddane-Sachs-Teller relation requires some
modification – see Chang and Mitra (1968). Using Eq. 50 the complex dielectric
function in Eq. 49 can be written as

ee ωð Þ ¼ eopt
ω2
LO � ω2 � iγω

� �
ω2
TO � ω2 � iγω

� � : (51)

Both the LO and TO frequencies of diatomic crystals are obtainable from the
reflection spectra by fitting the parameters of a simple harmonic lattice oscillator to
the measured spectra as shown in Fig. 3.

In covalent monatomic crystals, with vanishing dipole moment, estat = eopt;
hence ωTO = ωLO, which for these materials is usually denoted as ω0. For the
description of crystals with a (partial) ionic bonding the concept of effective charge,
which was already used in Eq. 32, is introduced.

2.1.1 Effective Charges
Crystals with partially covalent and partially ionic binding forces can be described as
crystals composed of ions, but with a fractional (i.e., an effective) charge. Since
kinetic effects are involved, this charge is slightly different from the static effective
charge introduced in ▶Sect. 3.1 of chapter “Crystal Bonding”. Three types of
dynamic effective charges are used, which are all equal for nonpolarizable
(rigid) ions.

The effective charge eeff that appeared in Eq. 32 is called the macroscopic
transverse effective charge denoted here eT; it is also referred to as Born effective
charge. It is the apparent charge of a dipole under the influence of an external
macroscopic field and the charge measured directly in experiment. Using the defi-
nition of the ionic plasma frequency Eq. 43, we obtain from Eq. 48

eT ¼ ωTO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 estat � eopt
� �

Mr

N

s
: (52)

The charge eT does, however, not reproduce the real situation, in which a dipole
inside the crystal is subjected to a local field, which is the sum of the macroscopic
field minus the depolarization field induced by it (see Eq. 3). This effect is included
in the real effective charge introduced by Szigeti (1949); this charge eS is defined for
diatomic cubic crystals by
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eS ¼ 3

eopt þ 2
eT: (53)

There is another dynamic effective charge which relates a longitudinal oscillation
to its induced longitudinal polarization. It was introduced by Callen (1949) and is
called Callen effective charge eC defined by
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Fig. 3 (a) Reflectance of a semi-infinite plate in the range of an absorption maximum, calculated
for a simple harmonic oscillator with eopt = 12, estat = 15, ωp/ωTO = 1.73, and γ/ωTO = 0.05,
0.02, and 0.004 for curves 1–3, respectively. (b) Solid lines: Experimental IR reflection spectra for
InAs, GaAs, InSb, GaSb (measured at helium temperature) and AlSb, InP (measured at room
temperature). Dashed lines: Spectra calculated for simple harmonic oscillators with frequencies
ωTO, ωLO, and γ adjusted to fit the measured spectra (After Hass 1967)
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eC ¼ ωTO

eopt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 estat � eopt
� �

Mr

N

s
¼ eT

eopt
: (54)

For nonpolarizable ions with eopt = 1 we have eT = eS = eC. A list of effective
charges for some III-V semiconductors is given in Table 2.

2.2 IR Reflection and Reststrahlen

The optical eigenfrequencies of typical semiconductor lattices are on the order of
1013 s-l; that is, they are in the 20–60 μm IR range. As discussed in the previous
section, only the long-wavelength TO oscillations of a diatomic lattice have a
nonvanishing dipole moment; they are infrared active and absorb light.

Since the absorption coefficient is rather large, it is difficult to measure this
coefficient in absorption: it requires a very thin layer. The change in the reflectance
is more easily accessible. For a sufficiently thick sample, so that neglecting the
reflection at the back surface is permissible, the reflectance is given by Eq. 54 of
chapter ▶ “Interaction of Light with Solids”. The reflectance shows a steep rise near
ωTO, followed by a sharp drop-off with a minimum at ω = ωLO (Fig. 3). The
reflectance spectrum, although similar to e0(ω), shows distinct differences in its
quantitative behavior, as seen by comparing the blue curve in Fig. 2 with Fig. 3;
the observed reflectivity spectra for typical diatomic (III-V) semiconductors follows
much of the simple theory given above, as shown in Fig. 3b.

The range of high optical reflection can be used to obtain nearly monochromatic IR
light when employing multiple reflections (Fig. 4). In each reflection, one loses a
fraction of the nonreflected (i.e., the transmitted) light leaving very little of it after
several of these steps. This method is called the Reststrahlen method (from “residual
rays” in German). The Reststrahlen wavelength is identified by λres (μm) = 104/ωTO

Fig. 4 Reststrahlen setup to
obtain monochromatic light
near ωTO. The unreflected part
of the spectrum is absorbed at
the black wall of the box after
penetration through each slab
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(cm�1), see Fig. 3, since for reasonable damping factors the reflection maximum lies
only slightly above ωTO. Herein, ωTO can be approximated by

ωTO ffi
ffiffiffiffiffiffi
β

Mr

r
: (55)

Here β can be estimated for an ionic crystal from the Coulomb force,

β ffi Z2 e2

4π e0 a30
: (56)

with Z as the ionic charge and a0 as the interionic equilibrium distance. Mr is given
by Eq. 34.

Table 2 lists the Reststrahlen wavelengths for a number of semiconductors. As
can be seen from Eqs. 55 and 56, the Reststrahlen frequency decreases (i.e., its
wavelength increases) with increasing ionic mass (or, reduced mass), with increasing
interionic distance, and with decreasing ionic charge.

3 Scattering of Photons with Phonons

3.1 The Phonon-Polariton

In the previous section, the interaction of an electromagnetic wave with TO phonons
at q = 0 was discussed. We will now analyze this interaction more precisely. In
actuality, photons have a finite momentum ℏq ¼ ℏ 2π=λ ¼ h=λwhich is very small
compared to the extent of the Brillouin zone ℏ π/a. For IR light, the ratio ℏ 2π=λð Þ
= ℏπ=að Þ ¼ 2a=λ is on the order of 10�5. When enlarging the E(q) diagram, shown
for phonons in▶ Fig. 13 of chapter “Elasticity and Phonons”, for the TO branch near

Table 2 Reststrahlen wavelength lres, transverse and longitudinal optical frequencies oTO and
oLO, optic and static dielectric constants, and effective charges for some III-V semiconductors
and SiC

Crystal λres (μm) ωTO (cm�1) ωLO (cm�1) eopt estat eT/e eC/e eS/e

AlSb 31 319 340 10.240 11.633 1.9 0.19 0.48

GaP 27 367 403 9.102 11.051 2.0 0.24 0.58

GaAs 37.3 268 292 10.890 12.861 2.2 0.2 0.51

GaSb 43.5 230 240 14.440 15.694 1.8 0.13 0.33

InP 33 303 345 9.610 12.401 2.5 0.26 0.66

InAs 45 219 243 12.250 15.133 2.6 0.22 0.56

InSb 55 180 191 15.682 17.723 2.5 0.16 0.42

SiC 12.6 796 972 6.708 10.002 2.5 0.56 1.14
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q = 0, we obtain a horizontal line. For the photon we have another straight line
according to

pphot ¼
h

λ
¼ hν

c
¼ ℏk: (57)

Both lines cross as shown in Fig. 5a (in Fig. 5, k is used instead of q to emphasize the
interaction with light).

Since there is interaction between the photon and the phonon, we observe a
characteristic split in the dispersion spectrum according to the von Neumann
noncrossing principle. This split occurs near the E(k) value where the dispersion
curves of the two quasi-particles would cross if they did not interact with each other.
This is shown schematically in Fig. 5b, and will become more transparent from a
quantitative analysis.

Since photons and phonons are bosons, the interaction between the two leads
to a state that can no longer be distinguished as a photon or a phonon. To
emphasize this, a new name is used to describe this state: the polariton or,
more precisely, the phonon-polariton, when mixing between a phonon and a
photon state occurs, to set it apart from the exciton-polariton (▶ Sect. 1.3 of
chapter “Excitons”) or plasmon-polariton (▶ Sect. 1.1 of chapter “Photon–Free-
Electron Interaction”).

The set of governing equations for such polaritons, yielding the dispersion
relation, can be obtained from Maxwell’s equations and the equation of motion in
the polarization field

@

@r
� E ¼ �μμ0

@H

@t
(58)

@

@r
�H ¼ e e0

@E

@t
þ σE ¼ e e0

@E

@t
þ @P

@t
(59)

EE

a b

kk

phonon polariton

photon

wTO

Fig. 5 Dispersion relation E(k) of simple oscillatory phenomena (a) without and (b) with
interaction
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@2P

@t2
þ ω2

0P ¼ χ e0E; (60)

with ω0 as the eigenfrequency of the free oscillator (here a phonon, later in our
discussion it could be an exciton or a plasmon). These equations define the electric,
magnetic, and polarization fields. Assuming linear polarized planar waves, propa-
gating in the x direction with E = (0, Ey, 0), H = (0, 0, Hz), and P = (0, Py, 0), we
obtain after insertion of

Ey ¼ Ey0 exp i k x� ω tð Þð Þ (61)

Hz ¼ Hz0 exp i k x� ω tð Þð Þ (62)

Py ¼ Py0 exp i k x� ω tð Þð Þ (63)

into Eqs. 58, 59, and 60, the following governing equations for ω(k):

ω e e0Ey þ ωPy � kHz ¼ 0 (64)

kEy � ωμμ0Hz ¼ 0 (65)

χ e0Ey þ ω2 � ω2
0

� �
Py ¼ 0: (66)

These equations yield the dispersion equation for polaritons after eliminating Ey, Py,
and Hz:

ω4 � ω2
0 þ

χ

e
þ k2

e e0 μμ0

� �
ω2 þ k2ω2

0

e e0 μμ0
¼ 0: (67)

Entering the resonance frequencies for phonons and using the Lyddane-Sachs-Teller
relation (Eq. 50), we obtain for semiconductors with μ = 1 the phonon-polariton
equation (after using e0 μ0 = 1/c2):

ω4 � ω2 ω2
LO þ c2 k2

eopt

� �
þ c2 k2

eopt
ω2
TO ¼ 0: (68)

The resulting dispersion curves are shown in Fig. 6. The slope of the longitudinal
branch approaches c=

ffiffiffiffiffiffiffi
eopt

p
, i.e., it has a slightly larger slope than the slope of the

transverse branch near k = 0, which is c=
ffiffiffiffiffiffiffi
estat

p
.

The energy of the phonon-polariton is typically on the order of 50 meV. The
first direct observation of the lower branch of this dispersion spectrum was
published by Henry and Hopfield (1965) and is shown for GaP in Fig. 7. The
measurement involves Raman scattering and will be discussed in more detail in
Sect. 3.3. The upper branch was measured for GaP by Fornari and
Pagannone (1978).
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3.2 One- and Multiphonon Absorption

The one-phonon spectrum provides information only very near to the Γ point, i.e.,
the center of the Brillouin zone (see previous section). A multiphonon interaction,
however, yields a wealth of information about the phonon spectrum in the entire
Brillouin zone, since the second phonon can provide the necessary momentum shift.
The second phonon interacts because of the anharmonicity of the lattice potential,
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Fig. 7 Dispersion curves of the LO and TO phonons of GaP and the 6328 Å (ffi1.96 eV) photon
(dashed) at long-wavelengths (small q values), and of the polariton (solid curves). Raman scattering
angles are indicated (After Henry and Hopfield 1965). Observe that the edge of the Brillouin zone is
at (π/a = 5.76.107 cm�1) ℏcq = 1137 eV, i.e., far to the right in the scale given for the abscissa
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Fig. 6 Dispersion relation for
the phonon-polariton with
appropriate slopes indicated.
The dashed line hν = ck is for
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which results in a weak optical absorption. Such an interaction takes place when all
three (or more) particles fulfill energy and momentum conservation:

hν ¼ ℏω q1ð Þ 	 ℏω q2ð Þ 	 . . .ð Þand ℏk ¼ ℏq1 	 ℏq2 	 . . .ð Þ; (69)

where the positive signs in the sums represent simultaneous absorption of two
(or more) photons and negative signs, in a two-phonon process, a simultaneous
absorption of photon and an emission of another phonon. An example for a
two-phonon absorption with momentum conservation is shown in Fig. 8.

Stronger absorption peaks are obtained at critical points – that is, where the slopes
of the two (or more) ω(q) branches of the involved phonons are nearly horizontal; in
other words, when the density of such phonons is relatively high – see ▶ Sect. 3.2.1
of chapter “Elasticity and Phonons”.

The multiphonon processes are observable in materials in which the much
stronger one-phonon absorption does not occur because of selection rules, e.g., in
Si and Ge, as the latter would hide the weaker multiphonon absorptions. In Fig. 9 a
typical multiphonon absorption spectrum is given for Si. The correlation with the
phonon dispersion spectrum is indicated by horizontal arrows. In the lower and
upper parts of the figure are two-phonon and three-phonon processes, respectively.
The corresponding positions are indicated in the dispersion curves at the left and
right sides of the absorption spectrum.

3.3 Brillouin and Raman Scattering

Scattering of photons is based on the modulation of the polarizability by phonons or
other quasi-particles. There is a multitude of possibilities for such scattering pro-
cesses; in the following we focus on the interaction with phonons.

TO

TA

Optical
branch

Acoustic
branch

ħw
(q

)

-p/a p/a0 q

Fig. 8 Schematics of a two-phonon absorption from a photon (of k ffi 0) with conservation of
momentum
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3.3.1 Elastic and Inelastic Scattering
During a scattering event, energy and momentum must be conserved. If the scatter-
ing particle absorbs only a small amount of energy compared to the photon energy,
while a substantial amount of momentum is transferred, we refer to an elastic
scattering event. When a significant amount of energy and momentum are trans-
ferred, we speak of an inelastic scattering event. When this energy transfer occurs to
or from the phonon, we speak of Stokes or anti-Stokes scattering, respectively, with

hνs ¼ hνi 	 ℏω qð Þ (70)

and

ℏks ¼ ℏki 	 ℏq: (71)

where (hνs, ks) and (hνi, ki) are the energy and wavevector of the scattered and
incident photon, and ℏω(q) and q are the wavevector and energy of a phonon. The
angle between ks and ki is determined by the experimental setup: the direction of
incoming light and the offset position of the scattered-light detector. The selection of
q is then automatic fulfilling Eq. 72. The vector diagram in Fig. 10 indicates the
influence of the scattering angle θ on the selection of the phonon with appropriate
wavevector q to maintain momentum conservation in the scattering process:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s þ k2i � 2kski cos θ

q
: (72)

This indicates an important peculiarity of the scattering process. Since the
energies or momenta of the scattering particles can be vastly different, substantially
different paths in the Brillouin zone are traversed. With

kj j ¼ 2π

λ
and 0 < q <

π

a
ffi 108 cm�1; (73)

we see that photons of energy comparable to phonons (IR), or of visible light, have a
k vector of 103–105 cm�1; this is very small compared to the extent of the Brillouin
zone. These photons therefore can probe only the range very close to the center of the
Brillouin zone near q = 0, i.e., the long-wavelength part of the phonon spectrum
(see Sect. 3.1). X-ray photons can provide significantly higher momenta up to the

Q

ki

ks

q

Fig. 10 Vector diagram of
momentum conservation
during the scattering process
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zone boundary for λ = 2a. However, the energy transmitted by the phonon is only a
very small fraction of the x-ray energy and poses difficulties in detecting the small
relative Stokes or anti-Stokes shift of such interaction. On the other hand, substan-
tially larger shifts in the phonon momentum can be obtained by scattering with
neutrons, as discussed in ▶ Sect. 3.3.5 of chapter “Elasticity and Phonons”.

Elastic scattering of light on phonons, i.e., scattering on density fluctuation,
resulting in fluctuation of nr and κ, is called Rayleigh scattering. As it represents a
very small effect in solids, it will not be considered further.5 Inelastic scattering
caused by acoustic phonons is identified as Brillouin scattering, and inelastic
scattering caused by optical phonons is called Raman scattering. In most of these
scattering events only a small amount of light is scattered by phonons when an
intense light beam impinges on the solid.

3.3.2 Brillouin Scattering
Brillouin scattering (Brillouin 1922) – the inelastic scattering at acoustic phonons –
can be understood on the basis of classical arguments. The propagation of acoustic
phonons as sound waves causes local density waves, creating waves of small
changes in the index of refraction propagating with the speed of sound. The scattered
light is a Bragg reflection (Fig. 11) from the grating of these density waves, which
has a spacing of Λq = 2π/q and moves with velocity vq, resulting in a Doppler shift
of the incident light.

The light beam is scattered at the angle θ (Fig. 106) and contains two components:
one photon with the phonon frequency added (anti-Stokes) and another with this
phonon frequency subtracted (Stokes):

Lq

ni

Q

ki ksq

ns

Fig. 11 Brillouin scattering
by a moving acoustic wave,
with Bragg reflection at an
angle θ. Λ is the spatial
periodicity of the
density wave

5Rayleigh scattering is a well-known effect in media with large density fluctuations, such as gasses.
The elastic scattering proceeds without changes in frequency of the scattered photon. Rayleigh
scattering is responsible for the blue light of the sky by scattering the short-wavelength component
of the sunlight on density fluctuations of the earth’s atmosphere. The scattering amplitude – and

consequently the absorption coefficient α – increases with decreasing wavelength: α / nr � 1ð Þ2=
N λ4
� �

, where N is the density of air molecules and λ is the wavelength. In solids, the Rayleigh
component can usually be neglected, except near critical points where density fluctuations can
become rather large, e.g., when electron–hole condensation starts to occur. Frozen-in density
fluctuations in glasses, although very small, provide transparency limitations for fiber optics
because of such Rayleigh scattering.
6The scattering angle θ defined in Fig. 10 is twice the Bragg angle θΒ, which is the angle between
the diffracting planes and the incident or diffracted beam.
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hνi 	 ℏωq ¼ hνi 	 2hνi nr
vsound
c

sin
θ

2
: (74)

Here vsound is the sound velocity and c is the light velocity.
7 Such a Brillouin shift is

shown in Fig. 12 and is a direct measure of the phonon frequency and the sound
velocity. Thus, it yields information on elastic constants, their anisotropy, and
various other properties related to the interaction of acoustic phonons with other
low-energy excitation phenomena (Pine 1972, 1983). The width Γ of the two
Brillouin components yields information on a variety of relevant damping processes,
such as carrier-induced damping or structural relaxation (Balkanski and Lallemand
1973).

A typical spectrum for Brillouin scattering is shown in Fig. 13a. The Stokes and
anti-Stokes shifts are generally very small (usually below 1 meV); furthermore, the
coupling to acoustic phonons is weaker than to optical phonons, requiring a high-
resolution setup with strong stray-light suppression for detecting Brillouin scatter-
ing. The Brillouin peaks of scattering at TA and LA phonons of CdS are
superimposed on the strong signal of the elastically scattered Rayleigh line at zero
energy shift.

Resonant Brillouin Scattering When the wavelength of monochromatic light
approaches an electronic transition, resonant Brillouin scattering can be observed
(Ulbrich and Weisbuch 1978). Scattering with a phonon of sufficient energy to permit
such an electronic transition is then enhanced. Fine tuning to achieve this transition can
be achieved by changing the laser frequency or the bandgap by slight temperature
variation (Pine 1972). Such enhancement is usually found for energy of the incident
light below the bandgap of semiconductors; for a review, see Yu (1979). Resonant
Brillouin scattering also occurs in scattering processes on polaritons, where the phonon

G G

Stokes
Brillouin shift

anti-Stokes
Brillouin shift

exciting
frequency

n0n0-wTA/2p n0+wTA/2p

Fig. 12 The Brillouin-scattering spectrum with Stokes and anti-Stokes scattering components

7The very small difference between the refractive indices at hνi þ ℏωq and hνi � ℏωq is neglected
in Eq. 74.

3 Scattering of Photons with Phonons 413



supplies missing energy to match a resonance. Intense acoustical waves can also be
produced by acoustoelectric domain generation (Conwell 1967). Strongly enhanced
scattering, expressed by a large scattering cross-section, is observed when the band
edge or other critical points are approached – see, e.g., Hamaguchi et al. (1978).

Stimulated Brillouin Scattering Stimulated Brillouin scattering can be achieved at
high optical intensities, where both the Brillouin scatterd Stokes light and the
acoustic waves can be amplified by a parametric process (Chiao et al. 1964). The
energy for the parametric amplification (see ▶ Sects. 3.1.3 and ▶ 3.1.4 of chapter
“Interaction of Light with Solids”) of the acoustic wave is supplied from the Stokes
component of the Brillouin scattering. Usually longitudinal acoustic waves are most
strongly excited; see Hasegawa and Hotate (1999).

3.3.3 Raman Scattering
Raman scattering occurs with emission or absorption of optical phonons – for a
review, see Balkanski (1980). While Brillouin scattering is very sensitive to the
scattering angle (the acoustic phonon energy changes linearly with q near q = 0),
the classical Raman scattering is not. At a well-defined optical phonon energy, added
to or subtracted from the incident photon, scattering occurs independent of the
scattering angle. The absence of spatial dispersion is due to the weak q-dependence
of the optical phonon frequencies near q = 0 (see Sect. 3.1).

The selection rules for light scattering are different from the selection rules for
optical absorption. Therefore, a different set of optical phonons is Raman active at
the center of the Brillouin zone – see Mitra (1969). Specifically, for crystals with
inversion symmetry, even-parity excitations are Raman active, while odd-parity
transitions are observed in IR absorption. The set of Raman active oscillations can
be identified by group-theoretical rules according to the crystal symmetry. Conse-
quently, the intensity distribution and polarization of different Raman lines, observed
in anisotropic semiconductors, depend on the angle and polarization of the imping-
ing light relative to the crystal orientation; see Birman (1974) and Poulet and
Mathieu (1970).
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Fig. 13 Typical anti-Stokes spectra for (a) Brillouin and (b) Raman scattering of CdS measured at
T = 10 K (After Broser and Rosenzweig (1980) and Martin and Damen (1971), respectively)
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Raman scattering is a relatively rare process. Its probability can be estimated from
the polarizability tensor (Born and Huang 1954). The efficiency for scattering with
TO phonons is estimated as

ηs ¼
3h4ν4sLdΩ

ρ c4ωTO

αRj j2 � f BE ωTOð Þ þ 1 for Stokes processes

f BE ωTOð Þ for anti� Stokes processes

�
; (75)

where ρ is the density, L is the sample length for radiation of the scattered light of
frequency vs, emitted into the solid angle dΩ; αR is the first derivative of polariz-
ability (with respect to a ionic displacement Δx) @χ 1ð Þ=@Δx , or Raman polariz-
ability, which relates to the polarization by P ¼ χ 1ð ÞEþ NαREu (Wynne 1974);
fBE(ωTO) is the phonon population given by the Bose-Einstein distribution func-
tion. This efficiency is strongly dependent on the frequency of the exciting light
and, through fBE(ωTO), on the temperature. Typically, it is on the order of
10�6–10�7; thus, one needs a strong monochromatic light source to generate an
observable (faint) scattering signal. An example for Stokes and anti-Stokes spectra
is given in Fig. 14a.

Typical Raman spectra are shown for CdS in Fig. 13b. By choosing the polari-
zation with respect to the lattice orientation, discrimination between TO and LO
phonons is possible. The ratio of scattering efficiencies for parallel and normal
polarization of the scattered beam with respect to the polarization of the exciting
beam assists in analyzing more complex Raman spectra (Loudon 1964). Another
example, given in Fig. 14b, shows the typical development of the scattering spectra
when the composition of a ternary alloy is varied. These spectra can be explained by
a system of two coupled modes of lattice oscillation (Jahne 1976) and provide
valuable information on crystal structure and composition.

In an alloy of the type AxBl-xC like AlxGal-xSb phonon spectra show an either one-
mode or two-mode behavior; also a mixed one-two-mode may occur. A one-mode

system appears ifMA < M�1
B þM�1

C

� ��1
applies for the masses in the alloy (Chang

and Mitra 1971). In such case, realized for I-VII alloys, a single set of long-
wavelength phonon appears with a wavelength continuously shifting with alloy
composition. The two-mode behavior, which is more common for III-V and II-VI
semiconductors, appears if the mass relation is not fulfilled. Here two sets of optical
modes being characteristic for the binary (not alloyed) solids appear with intensities
roughly proportional to the respective alloying fraction, see Fig. 14b. For more
information see Chang and Mitra (1968, 1971).

Polar and Nonpolar Raman Scattering We must distinguish scattering on lattice
vibrations which are associated with a dipole moment (polar modes) and such on
nonpolar modes. The latter are: (a) vibrations in covalent crystals, and (b) vibrations
in crystals with an ionic bonding fraction that do not possess a dipole moment, i.e.,
long-wavelength acoustic modes with q � π=a.

For a discussion of scattering on nonpolar phonons, see Born and Huang (1954)
or Cochran (1973). The discussion of polar-mode scattering is more involved in
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Poulet (1955). Both treatments are substantially different from each other (Hayes
and Loudon 1978).

First- and Higher-Order Raman Scattering First- and second-order Raman
scattering are distinguished by the emission or absorption of one or two phonons.
In second-order Raman scattering, both phonons may be emitted or absorbed, or
one may be emitted and another one absorbed, giving a Stokes and an anti-Stokes
component. In addition, we distinguish sequential and simultaneous scattering
events involving two phonons. Second-order Raman scattering provides access
to the entire Brillouin zone, since the second phonon can deliver the necessary
momentum. In nonpolar modes, it has been used to obtain information on the
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deformation potential (Carles et al. 1978), which is important for electron–phonon
scattering. A review of second- and higher-order Raman scattering is given by
Spitzer and Fan (1957), for ab initio calculation of second-order Raman spectra see
Windl et al. (1995). Second-order Raman spectra of GaN are shown in Fig. 15.
Besides the two strong first-order LO and TO modes, a large number of weaker
second-order peaks is found; from symmetry considerations and phonon-
dispersion curves the features with energies below the TO mode were assigned
to overtone processes of acoustic phonons, while features up to 1100 cm�1 belong
to combinations between acoustic and optical phonons, and features at higher
energies to combinations of optical phonons and optical overtones (Siegle
et al. 1997).

Resonant Raman Scattering Resonant Raman scattering – like resonant Brillouin
scattering – is observed with substantial enhancement of the scattering cross-section
for band-to-band transitions, free and bound excitons, and for polaritons when the
energy of the initiating light is slightly below the energy for the transition which then
is enabled by the additional phonon. In Fig. 16 such a resonant enhancement is
shown for the first-order TO (Γ) mode in the region of the direct bandgap of GaP.
The bandgap energy can be considered as being modulated by the phonon oscillation
by a small amount δEg, and hence to a corresponding proportional Raman polariz-
ability αR in Eq. 75. The dispersion of the Raman scattering efficiency is propor-

tional to @χ=@Ej j2. The band-to-band transition of the zincblende semiconductor GaP
involves two transitions E0 and E0 + Δ0 split by spin-orbit interaction (see▶ Fig. 11
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of chapter “Bands and Bandgaps in Solids”). The solid and dashed curves show the

calculated dispersion @χ=@Ej j2 either with inclusion of E0 + Δ0 transitions or
considering only the E0 transition, respectively (Weinstein and Cardona 1973). In
the calculations, the bandgap energy was replaced by ℏω0 ¼ ℏω0 þ ωTO=2, where
ωTO is the TO(Γ) phonon frequency; thereby the theoretical curves are set to peak at
ℏω0, since the separate resonances due to the incident and scattered photon energies
were not expected to be resolved.

Raman Scattering from Local Modes Raman scattering from local modes of
optical phonons yields the frequency of these modes related to certain crystal
defects. Thereby, it has given a great deal of information about these defects,
including the symmetry of their nearest lattice environment, the mass and bond-
ing force of these impurities (sensitive even for isotope distinction), and their
tendency to form defect associates (Barker and Sievers 1975; Hayes and Loudon
1978).

Raman scattering can also be modified or enhanced by surface interaction, e.g.,
by reduced bonding surface plasmons (see Burstein et al. 1979).
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Fig. 16 Resonance enhancement of the first-order TO(Γ) Raman line in GaP; abscissa values are
the difference between the energy of the incident photon ℏωi and the bandgap energy ℏωg. Crosses
are experimental values, the solid and dashed curves give calculated scattering intensities with and
without spin-orbit splitting, respectively (After Weinstein and Cardona 1973)
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3.3.4 Raman Scattering in Superlattices
Dynamics in a superlattice of alternating layers A and B depend on whether phonon
modes of one material can also exist in the other material or not. While acoustic
modes propagating in both materials can be described by an averaged dispersion, the
dispersion of optical phonons may not overlap in the two materials and the modes
get confined. For a review on Raman scattering in superlattices, see Abstreiter
(1986), Abstreiter et al. (1986), Fasolino and Molinari (1990), and Ruf (1998).

Folded Acoustic Phonons The long-wavelength character of acoustic phonons and
the common propagation in both materials of a superlattice yield an effective sound
velocity, which reflects the relative thicknesses of layers A and B. Normal to the
interfaces,8 the superlattice periodicity leads to a backfolding of this averaged bulk-
like dispersion to the mini-Brillouin zone, see ▶Sects. 3.3.1 of chapter “Elasticity
and Phonons” and ▶ 3.1.2 of chapter “Bands and Bandgaps in Solids”. Raman
scattering provides direct evidence for such folding: new doublets are seen, as
presented in Fig. 17. These doublets appear for the second and higher folded
branches of the phonon-dispersion curves, as shown in the insert of this figure.
The dispersion relation within the folded lower branches for TA or LA modes can be
approximated by (Rytov 1956)
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Fig. 17 (a) Schematic of
folded acoustic phonon
dispersion-curve in the
Brillouin zone; the horizontal
dashed line denotes the
wavevector transfer in the
Raman scattering process (b)
pairs of folded acoustic
phonons in the Raman
spectrum of a 10 � (2 nm
In0.53Ga0.47As/7 nm InP)
multi quantum well (After
Geurts et al. 1995)

8There is no such folding of the branches parallel to the superlattice layers, i.e., in in-plane
directions. Thus, phonons propagating in this direction do not show the additional Raman doublets,
as shown in the lower curve in Fig. 18 of chapter ▶ “Elasticity and Phonons”.
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ωm ¼ ν⊥sound
2πm

l

���� ����	 q; (76)

wherem is the order of the branch, ν⊥sound is the averaged sound velocity normal to the
layers, and l is the superlattice periodicity; here, the small splittings at the boundaries
of the mini Brillouin zone are neglected.

The frequency shift of the Raman signal depends on the period l of the superlattice
and the wavevector ki of the incident photon (i.e., the wavelength of the excitation
laser). A change of l alters the width of the mini-zone; this breaks up the bulk phonon
branch at different points (Jusserand et al. 1984). The folded acoustic phonon peaks in
the Raman spectrum occur at those frequencies where the horizontal line in Fig. 17a
marking the wavevector ki crosses the folded phonon dispersion curve.

Confined Optical Phonons Optical phonons have usually flat dispersion relations.
Their frequency depends strongly on atomic bonding and may be distinctly different
in layers A and B constituting the superlattice. Their dispersion then does not overlap
in the two materials, yielding nonpropagating modes, which are separately confined
in the layers A and B; this is analogous to electronic states in (multi) quantum wells
with thick barrier layers.

The oscillation amplitude of a confined optical mode is restricted to the respective
layer, yielding a series of harmonics with a longest wavelength λmax/2. If the
confining layer has a thickness on n lattice constants a0, the effective wavevector
of the modes is given by

qm ¼ mπ

nþ δð Þa0 , m ¼ 1, 2, . . . , n; (77)

where the correction δ (ffi1) accounts for a short penetration of the oscillation into the
cladding layers of different material. These wavevectors lead to a series of discrete
mode frequencies as depicted in Fig. 18a and corresponding Raman modes shown in
Fig. 18b; even and odd indexed modes may be selected due to symmetry selection
rules. Figure 18c gives a Raman spectrum of a GaAs/AlAs superlattice showing LO
modes confined in the GaAs layers.

3.3.5 Raman Scattering in Glasses
Raman scattering in glasses does not follow the selection rules for anisotropic
crystals.9 Hence, a wider spectrum of Raman transitions is observed, although
some of the gross features are similar to those obtained in the same material in
crystalline form. A typical Raman spectrum is shown in Fig. 19 for amorphous
As2O3 and compared to the IR optical dispersion distribution. It is obvious that both
spectra expose different features which can be associated with the various oscillatory

9In glasses, one cannot plot Brillouin zones; there is a breakdown of q conservation, i.e., all
momenta can contribute during scattering, causing substantial broadening.
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modes of the different As-O bonds: rocking, stretching, and bending of an As4O6

cluster molecule. Some of these are optically active, while others are Raman active.
For more detail, see the review of Galeener et al. (1983).

4 Summary

Photons and TO phonons interact strongly near q = 0, resulting in a large absorp-
tion, which is characteristic for the atomic mass, bonding force, and effective ionic
charge of the specific semiconductor. This absorption is located in the 10–100 μm
range and is referred to as Reststrahl absorption. In semiconductors with vanishing
ionic charges, photons cannot excite single phonons; however, a much weaker
optical absorption is observed by simultaneous interaction with two or more
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phonons, thereby offering for such materials the opportunity to obtain information
about the entire phonon dispersion spectrum – in addition to neutron spectroscopy.

Phonon spectroscopy offers access to direct information about the vibrational
spectrum of a semiconductor and many of its defects. Such information is helpful in
judging bonding forces, effective ionic charges of crystal lattices, and the local
structure of crystal defects which have modes in the gap between acoustic and
optical modes of the host lattice. Photon scattering with acoustic (Brillouin) and
optical (Raman) phonons provides data on the anisotropic spectrum of sound
velocities, effective mass, phonon dispersion, and – from the line shape – the
lifetimes of the involved states. With a different set of selection rules, spectra become
accessible which cannot be observed by single-photon absorption experiments.
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Abstract

The interaction of photons with free electrons or holes in the respective bands

strongly influences optical absorption and reflection in the spectral region

between the absorption edge and the Reststrahlen wavelength. In a driving

external field, the ensemble of free electrons (or, at higher frequency, of

valence-electrons) oscillates with respect to the ion cores on the whole, leading

to a plasma resonance absorption. The plasmon dispersion has two branches

with frequencies depending on the carrier density. Nonresonant carrier absorp-

tion occurs away from the resonance, with a free-electron contribution predom-

inantly from indirect transitions within the conduction band, and prevalent direct

transitions for holes. The spectra and underlying dispersion relations provide

valuable information about the effective masses of electrons and holes, carrier

concentrations, and carrier-relaxation times.
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1 Free-Electron Resonance Absorption

The optical excitation of electrons or holes within their respective bands may

involve a large variety of excitation mechanisms and multiparticle influences

during the excitation process, such as:

• Direct (vertical in k space) transition from one into another branch of the same

band

• Indirect transition with phonon assistance

• Transitions followed by other inelastic scattering processes

• Transitions involving collective effects of electrons (plasmons)

• Transitions between subbands created by a magnetic field

These processes will be discussed in the following sections. The treatment is

quite similar to that applied to lattice vibrations discussed in chapter

▶ “Photon–Phonon Interaction”. Collective electronic resonances and single-

particle excitations can be well described in such classical model. The dielectric

function of free electrons is similar to that of optical lattice vibrations, except that

here the eigenfrequency is zero and the damping processes of the related optical

absorption require a quantum-mechanical treatment.

The interaction of photons with free electrons in the conduction band or holes in

the valence band can result in resonant or nonresonant absorption. Resonant

absorption is discussed first because of the similarities in the mathematical treat-

ment with the ionic oscillations. The logical extension of the field-induced lattice

oscillation is the polarization of the electronic shell surrounding each lattice atom in

an external electromagnetic field. In a classical model, the shift of the electron

cloud with respect to the nucleus is proportional to the electric field and given by the

electronic polarizability αel. The resulting dispersion formula is similar to Eq. 42 in

chapter ▶ “Photon–Phonon Interaction”, except for a different eigenfrequency and

damping factor relating to the electronic shell. When the electron density is large

enough, such electron-collective effects cause resonance absorption, which for

semiconductors lie in the IR range beyond the band edge.

1.1 Electron-Plasma Absorption

In an external electric field, the electrons act jointly when they are shifted as an

entity with respect to the ionized donors. The field Ex exerts a force -eEx and
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causes a shift by Δx from their on-the-average neutral position, creating a net

charge at the two outer surfaces of the solid, which can be calculated by integrat-

ing the Poisson equation

δEx ¼ ρ

e e0
Δx ¼ ne

e e0
Δx; (1)

where n is the concentration of free electrons. The induced field δEx counteracts the

driving field Ex; that is, eδEx acts as restoring force, causing oscillations of the

electron collective, following the equation of motion (Pines 1999):

nmn
d2Δx
dt2

þ nmn γ
dΔx
dt

¼ �n eδEx ¼ � n2 e2

eopt e0
Δx; (2)

mn is the effective mass of a free electron, and γ is a damping parameter which can

be related to an energy-relaxation time of electrons by γ = 1/τel. We have intro-

duced for e the optical dielectric constant eopt, since we expect oscillations between
the band edge and the Reststrahl frequency. With a driving external field, this

equation can be modified as a damped harmonic oscillator equation (similar to

Eq. 32 in chapter ▶ “Photon–Phonon Interaction”)

mn
d2Δx
dt2

þ γ
dΔx
dt

þ ω2
pΔx

� �
¼ eExexp �iωtð Þ: (3)

ωp is the plasma frequency obtained by comparing (Eqs. 2 and 3):

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ne2

eopt e0mn

s
: (4)

ωp is the frequency at which an undamped plasma of electrons and positive ions

oscillate on the whole in a longitudinal mode; this mode interacts strongly with

electrons. There is also a transverse oscillation which interacts with electromag-

netic radiation.

The restoring force in the motion of the electron plasma is proportional to the

square of the plasma frequency. As a quantum of quantized energy, ħωp is referred

to as a plasmon:

ħωp ¼ 38:9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n cm�3ð Þ
1016

10

eopt

m0

mn

s
meVð Þ: (5)

Plasmons can be observed directly by IR spectroscopy or Raman scattering,

when the density of free carriers exceeds �1015 cm�3. Raman spectra of

undoped GaAs show for the backscattering geometry applied for Fig. 1 a strong
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LO phonon resonance1 (at 292 cm�1) and some weak resonance of the forbidden

TO phonon (at 268 cm�1), while n-doped GaAs (n= 3.5� 1017 cm�3) shows the

strong coupled plasmon modes ω� and ω+. Longitudinal plasmon modes can

scatter with other quasi-particles such as LO phonons and electrons (Harper

et al. 1973). The frequency of these plasmons increases with the square root of

the electron density according to Eq. 4 and is on the order of the optical phonon

frequencies at a carrier density between 1015 and 1017 cm�3. Resonance effects

occur which are similar to those of the photon – TO-phonon interaction leading

to polaritons. However, the completely longitudinal plasma oscillation cannot

interact with transverse electromagnetic radiation, leaving the TO phonon

unaffected.

The occurrence of two Plasmon modes (Fig. 2a) originates from the photon-

phonon interaction and a resulting typical split of the dispersion relation (shown in

Fig. 2b) according to the von Neumann noncrosing rule, similar to the phonon-

polariton discussed in ▶ Sect. 3.1 of chapter “Photon–Phonon Interaction”. At low

carrier density, the plasmon energy shows the square-root dependence on the carrier
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Fig. 1 Plasmon modes ω -

and ω + in the Raman

spectrum of n-type GaAs. The
nominally undoped as-grown

sample is dominated by the

LO resonance (After

Tiginyanu et al. 1997)

1In optical spectroscopy energies are often given in units of cm�1, which are related to eV units by

10 cm�1 ffi 1.24 meV.
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density n according to Eq. 4. As the plasmon energy approaches the energy of LO

phonons at higher carrier concentration, a mixed plasmon-phonon state is formed

with two branches such that the dispersion curves of phonons and plasmon do not

cross, see Fig. 2b.

This set of dispersion curves can be obtained from the polariton equation (Eq. 68

in chapter ▶ “Photon–Phonon Interaction”), considering plasmons instead. The LO

resonance splits into two branches ħωþ and ħω�, given by

ω2
� ¼ 1

2
ω2
LO þ ω2

p

� �
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
LO þ ω2

p

� �2
� 4ω2

pω
2
TO

r
(6)

and shown in Fig. 2b. The coupled mode energies can be obtained from the Raman

spectra shown in Fig. 2a. The dots show the unchanged TO branch, and the circles

show the two measured branches of the LO phonon as a function of the electron

density, which causes the change of the plasmon frequency. The multiparticle

interaction involves a phonon, a photon, and a plasmon (Patel and Slusher 1968).

For more information, see Platzman and Wolff (1973).

The dielectric function of the plasmon follows from the oscillatory solution of

Eq. 3; the oscillation amplitude is similar to Eq. 37 in chapter ▶ “Photon–Phonon

Interaction”,

Δx ¼ eEx

mn

1

ω2
p � ω2 � iγω

: (7)

¼ n = 3.9*1017
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Fig. 2 (a) Anti-Stokes Raman scattering from plasmons coupled with LO phonons in n-type
GaAs. The high-energy peak ω+ shifts to higher energies, while the lower-energy peak ω�
approaches the TO peak with increasing electron density n. The TO peak remains at the same

energy (After Mooradian and Wright 1966). (b) Eigenenergies of the mixed plasmon-phonon state

in GaAs samples of different electron densities n; the TO phonon is unaffected (After Mooradian

and McWhorter 1967)
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For ω = ωp the amplitude is resonant and inverse to the damping parameter. This

amplitude can be related to the polarization by

Px ¼ ne

eopt
Δx: (8)

From Eqs. 7 and 8, and Eq. 39 in chapter ▶ “Photon–Phonon Interaction” with

Eq. 4, we obtain for the complex dielectric constant

ee ωð Þ ¼ e0 þ ie00 ¼ eopt þ
ω2
p

ω2
p � ω2 � iγω

(9)

which can be separated into real and imaginary parts as

e0 ¼ eopt þ ω2
p

ω2
p � ω2

� �
ω2
p � ω2

� �2
þ γ2ω2

0B@
1CA (10)

and

e00 ¼ ω2
p

ωγ

ω2
p � ω2

� �2
þ γ2ω2

: (11)

Equations 10 and 11 have a form similar to Eqs. 44 and 45 in chapter

▶ “Photon–Phonon Interaction”, except that the resonance frequency is given by

the plasma frequency ωp.

1.2 Valence-Electron Plasma Absorption

The plasmon absorption discussed before is caused by free electrons in the conduc-

tion band. In addition, we observe valence-electron plasmons when all the valence-
electrons oscillate with respect to the cores. The mathematical theory is quite similar

to that given in the previous section, except that in the expression for the plasmon

frequency the density of all valence-electrons (typically 1023 cm�3) is entered, mn

equals the electron rest mass, and the optical dielectric constant e ffi 1. This results in

a plasmon frequency of �1016 s-l and a plasmon energy of �10 eV.

The valence plasmon absorption can be measured as distinct losses when

electrons penetrate through a thin layer of the semiconductor. The inelastic scat-

tering of electrons is analyzed in electron energy-loss spectroscopy (EELS) typi-

cally carried out in a transmission-electron microscope; for a review see Egerton

(2009). Figure 3 gives EELS spectra of GaN and In0.5Ga0.5N regions in a nanowire,

showing the composition dependence of the plasma peak within a selected small

spot of 5–10 nm diameter. Typical plasmon energies are listed in Table 1.
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1.3 Charge-Density Waves

In materials with a high density of free electrons (metals or degenerate semicon-

ductors) the conduction-electron charge-density, which is usually constant in a

homogeneous material, can undergo a wave instability. Then the charge density

becomes sinusoidally modulated in space (Overhauser 1978) with an extra period-

icity not related to the lattice periodicity:

ρ rð Þ ¼ ρ0 rð Þ 1þ A cos qrþ ϕð Þð Þ; (12)

where A is the amplitude (typically �0.1 Å) and q is the wavevector of the charge-

density wave

jqj ffi 2pF=ħ (13)

with pF as the momentum at the (here assumed to be spherical) Fermi surface. In

Eq. 12, ϕ is the phase. The charge-density wave is caused by the interaction

between the electrons, which can be described by the exchange energy (Pauli

principle) and the correlation energy (electron–electron scattering). Wave
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Fig. 3 Plasmon peaks in electron energy-loss spectra of GaN and In0.5Ga0.5N (After Kong

et al. 2012)

Table 1 Valence-electron plasmon energies of some semiconductors

Semiconductor Si Ge GaP GaAs InP InSb

ħωp (eV) 16.9 16.2 16.6 15.8 14.8 12.8
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formation tends to reduce these contributions. The Coulomb interaction counteracts

the above-mentioned effects and suppresses wave formation. Additional interaction

with the lattice cancels part of the suppression; hence in lattices with small elastic

moduli, which could interact more readily, such charge-density waves are more

likely to occur. Here, the lattice ions are also slightly displaced with an average

amplitude of �0.01 . . . 0.1 Å and with the periodicity of the charge-density wave

(Overhauser 1978). These waves are observed, e.g., in TaS2 and TaSe2, as two

satellites to the Bragg reflection caused by the slight lattice displacement (Wilson

et al. 1975).

A phase modulation, when quantized, can yield low-energy collective excitation

spectra with quanta ħω from

ϕ ¼ ϕ r, tð Þ / sin qr� ωtð Þ: (14)

These are called phasons and are observed in LaGe2. At low temperature, they

could have a measurable effect on electron scattering (Huberman and Overhauser

1982).

2 Nonresonant Free-Carrier Absorption

Far away from the resonance transition at ω = ωp, we observe the nonresonant part
of the absorption with a much reduced amplitude, tailing from the resonance peak

through the extrinsic optical absorption range and extending toward the band edge.

2.1 Dispersion Relation for Free Carriers

The optical absorption and reflection induced by free carriers outside of the

resonance absorption provide valuable information about carrier relaxation and,

for holes, about the band structure near k = 0. The relationship between free

carriers and an external field is the same as developed in Sect. 1.1 (Lax 1963),

except that here the restoring forces are negligible and electrons respond only to

external electromagnetic forces and damping:

mn
d2Δx
dt2

� γ
dΔx
dt

� �
¼ �eExexp �iωtð Þ: (15)

This equation of motion was introduced for the classical treatment of free-carrier

dispersion (Drude model) by Drude (1900); it provides an independent opportunity

to measure the electron scattering by optical absorption and will be discussed in

more detail in the following section. The damping parameter γ can be related to the
energy-relaxation time τel for a free electron by γ = 1/τel. Equation 15 has the

solution
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Δx ¼ � eE

mn

1

ω2 � iω=τel
: (16)

The electric polarization P arising from bound and free electrons is then

P ¼ e0 eopt � 1
� �

Eþ enΔx: (17)

The complex dielectric function is related to P byP ¼ e0 ee � 1ð ÞE. Using this, we
obtain from Eq. 17

ee ωð Þ ¼ eopt 1� ω2
p

ω2 þ iω=τel

 !
; (18)

where ωp is given by Eq. 4. This dielectric function describes the response of free

electrons on an external electromagnetic field. Equation 18 can be separated into

real and imaginary parts as

e0 ¼ n2r � κ2 ¼ eopt 1� ω2
p

ω2

ω2τ2el
1þ ω2τ2el

 !
(19)

and

e00 ¼ 2nrκ ¼ eopt
ω2
p

ω2

ωτel
1þ ω2τ2el

: (20)

Equations 19 and 20 have a form similar to the resonance case of Eqs. 44 and 45 in

chapter ▶ “Photon–Phonon Interaction”, except that the resonance frequency here

is zero. Free carriers give a negative contribution to e0 and, hence, to the index of

refraction nr.
There is another approach to the free-carrier dielectric function and optical

absorption. Is is used here for educational purposes in order to arrive directly at

the complex conductivity (see ▶ Sect. 1.1.4 in chapter “Interaction of Light with

Solids”):

dΔx
dt

¼ vx ¼ � eE

mn

τel
1� iωτel

: (21)

This velocity can be used to define an electric current density2

2This is an ac current at the frequency ω which, for higher ω (i.e., for ω � τ�1
el ), is substantially

different from the dc current, as indicated in ▶ Sect. 1.1.4. of chapter “Interaction of Light with

Solids”
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~jx ¼ �en ~vx ¼ eσ E; (22)

with a complex conductivity

eσ ¼ σ0 þ iσ00 ¼ σ0
1

1þ ω2τ2el
þ i

ωτel
1þ ω2τ2el

� �
; (23)

with σ0 ¼ e2 nτel=mn as the dc conductivity. Introducing Eq. 23 into j(ω) given in

▶Eq. 26 of chapter “Interaction of Light with Solids”, we obtain with σ0 ¼ ω2
pτel

e0eopt again (Eqs. 19 and 20).

We can experimentally obtain ωp and eopt by measuring the reflectance. In the

frequency range where n2r 	 κ2 we obtain from Eq. 54 in chapter ▶ “Interaction of

Light with Solids”

R0 ffi nr � 1ð Þ2
nr þ 1ð Þ2 or nr ffi

1þ ffiffiffiffiffi
R0

p

1� ffiffiffiffiffi
R0

p : (24)

The index of refraction as a function of ω for the condition n2r 	 κ2 refers to

ωτel 	 1, yielding from Eq. 19

n2r ffi eopt 1� ω2
p

ω2

 !
¼ eopt � λ2 e2

4π2 c2e20mn
: (25)

In the last expression, we have used ω ¼ 2π c=λ. The frequencies ωmin and ωmax at

which the reflection minimum and maximum occur are those for which R0 
 1

(or nr ffi 1) and R0 ffi 1 (or nr ffi 0), respectively; they are related to ωp and eopt using
Eq. 25 by

ωmin ffi ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eopt

eopt � 1

r
andωmax ffi ωp: (26)

With known eopt, we have a useful method for determining ωp, and with it the

effective carrier mass in ωp (Eq. 4), provided the carrier density is known by

independent means. We can vice versa extract the carrier density from reflection

spectra if the effective mass is known. Typical IR reflection spectra observed for

n-type InP are shown in Fig. 4, with reflection minima shifting to higher energies

with increasing carrier density according to Eqs. 4 and 26.

To conclude, when the concentration of free carriers is sufficiently high, the

reflection in the IR range between the wavelength corresponding to the bandgap

and the Reststrahlen wavelength is strongly influenced by free carriers. From an

analysis of the reflection spectra, we can obtain the plasma frequency. For a review

of optical characterization of free carriers in semiconductors see Palik and

Holm (1979).
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2.2 Free-Electron Absorption

The optical absorption coefficient due to free electrons is obtained from Eq. 24 in

chapter ▶ “Interaction of Light with Solids” and Eq. 20:

αo ¼ 2ωκ

c
¼ ω

c

e00

nr
¼ ω2

p

nr c

τel
1þ ω2τ2el

: (27)

The strength of the absorption is / ω2
p . For high enough frequencies (ωτel 	 1),

Eq. 27 becomes the classical αo / λ2 relation

αo ¼
ω2
p

ω2

1

nr cτel
¼ ω2

p λ
2

4π2 nr c3τel
: (28)

¼ 3� 10�4 10

eopt

m0

mn

n

1016 cm�3ð Þ
λ2 μmð Þ2

nr

10�13s

τel

Such behavior is often observed for the free-electron absorption in the extrinsic

range beyond the band edge. The free-electron absorption is a continuous absorp-

tion tailing off from the lattice resonances toward the band edge (Fig. 5). This

absorption is rather small near the absorption edge for semiconductors with normal

electron densities and becomes observable in the IR only at higher levels of doping

(n > 1017 cm�3 – see Fig. 5a) when the probing frequency is closer to the plasma

frequency – see Sect. 1.1.

In the following section, we will show that this λ2 relation is modified by specific

scattering mechanisms of the carriers when this scattering depends on the energy of

the carrier within the band; here τel = τel(λ), and αo becomes a more complicated

function of λ.
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Fig. 4 Infrared reflectance of n-type InP with various doping densities (After Kim and Bonner 1983)
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2.2.1 Effect of Scattering Mechanisms on Free-Electron Absorption
Examining the electronic band structure E(k) of a typical conduction bands, we

recognize that direct optical transitions of electrons in the conduction bands, which

are essentially vertical in E(k), are rather rare events. They are restricted to

transitions at specific values of k, which find an allowed E(k) for the given photon

energy (e.g., hvdir(3) in Fig. 6) and a sufficiently large occupation probability of the
ground state from which such a transition (3) starts. Only from the minimum of the

conduction band to a band above it are such transitions plentiful (at the Γ-point with
hvdir (1) in Fig. 6). For most other photon energies, only indirect transitions are

possible – see ▶ Sect. 2 in chapter “Band-to-Band Transitions”. They require the

supply or emission of a phonon in addition to the absorption of the photon, as shown

in Fig. 6 as transition hvindir 2ð Þ ¼ hvdir 2ð Þ � ħωp.

The transition probability for such indirect transitions can be calculated from a

second-order perturbation theory (see Sakurai and Napolitano 2011) including the

Hamiltonian for a photon and the Hamiltonian for a phonon transition. This is

necessitated by the fact that three particles are involved in the transition: a photon,

an electron, and a phonon or a lattice defect. The interaction is much like that of the

scattering of an electron with a phonon: the electron is first elevated by the photon

to a virtual state within the conduction band.

The mathematical formulation of the theory for the scattering with different

types of phonons is similar to the analysis of the electron scattering for

carrier transport (chapter ▶ “Carrier Scattering at Low Electric Fields”) or for
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Fig. 5 (a) Optical absorption of free electrons with predominant acoustic phonon scattering

beyond the band edge of n-type InAs at room temperature for various electron densities (After

Dixon 1960). (b) Optical absorption of free electrons as in (a), at various temperatures, with Ca

(μm2) a proportionality factor (After Seeger 1973)
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higher energies within the band (chapter ▶ “Carrier Scattering at High Electric

Fields” – see also Seeger 2004). In a first approximation, the optical absorption

coefficient can be expressed by the classical free-electron absorption αo Eq. 28 and
by replacing the electron relaxation time τel with the one relating to the predominant

scattering mechanism. This permits the replacement of the yet unknown τel in
Eq. 28 with an appropriate expression (see Seeger 2004).

For instance, we obtain for predominant acoustic deformation potential scatter-
ing with a phonon energy being much smaller than the photon energy ħωq 
 hv:

αo, ac,E ffi αo, ac
hv

4 kT

ffiffiffiffiffiffi
T

Tel

r
sinh

hv

2 kTel

� �
K2

hv

2 kTel

� �
; (29)

where Tel is the electron temperature3 and hv is the energy of the absorbed photon;

K2 is a modified Bessel function (Poole 1998).

When only small deviations from thermal equilibrium are considered (Tel ffi T)
and the photon energy is small compared to the thermal energy (hv 
 kT), then the
factor following αo,ac approaches 1 and αo, ac,E ffi αo, ac with

αo, ac ¼ αo
27=2 mn kTð Þ3=2Ξ2

c

3π3=2ħ4Cl

(30)

and αo given by Eq. 28. Here Ξc is the deformation potential for the conduction

band, and Cl is the appropriate elastic stiffness constant. Also, αo,ac shows the

classical λ2 behavior (contained in αo) as indicated in Fig. 5a.
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Fig. 6 Direct (hνdir)
and indirect transitions (hνindir
¼ hνdir � ℏωp) for free

electrons within conduction

bands. The indirect transition

requires, in addition to the

absorption of a photon hνdir,
the absorption (ℏωp1) or

emission (ℏωp2) of a phonon

of the proper energy and

momentum

3An elevated (above the lattice temperature) electron temperature is used here to indicate the

occupancy of states higher in the conduction band by electrons.
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For photons with higher energies (for hv 	 kT), however, one obtains

αo, ac,E ffi αo, ac
2

ffiffiffiffiffiffiffiffiffiffi
π

2

hv

kT

r
/ λ3=2; (31)

which gives a somewhat lower slope (when the emission of many phonons becomes

possible), which is indicated in Fig. 5b.

There are substantial differences for the scattering of electrons which are excited

into higher band states. From here, scattering is greatly enhanced by rapid gener-

ation of LO phonons (▶ Sect. 3 in chapter “Carrier Scattering at High Electric

Fields”). This scattering can be described as the scattering of a heated electron gas
with Tel much larger than T.

The absorption coefficients for other phonon-scattering mechanisms show a

wavelength dependence similar to the acoustic one for long-wavelength excitation.

However, at low temperatures, it becomes nonmonotonic as soon as the electron

energy exceeds that of the rapidly generated optical phonons (Fig. 7a). At low

temperature LO phonons are frozen-out; a low scattering and therefore a

low absorption results. When the electrons gain energy above ħωLO with decreasing

λ of the exciting light, the relaxation time decreases dramatically, and therefore
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Fig. 7 (a) Optical absorption of free electrons computed for predominant optical deformation
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various temperatures. (b) Optical absorption of free electrons computed for ionized impurity

scattering with Ciis a proportionality factor of dimension cm�2 at various temperatures (After

Seeger 1973)
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αo,opt,E increases. At high temperatures this resonance is hidden since there are

enough electrons thermally excited near ħωLO.
The maximum is due to resonance scattering when the electron energy within

the band equals that of the LO phonon. This nonmonotonic behavior is observed

for optical deformation potential scattering as well as for polar optical scatter-
ing, for which the wavelength dependence increases from λ2 to λ2.5 for higher

energies.

For lower temperatures (kT < ħωLO=2) near thermal equilibrium (Tel = T ) one
obtains for the ratio of optical and acoustic deformation potential scatterings:

αo, opt
αo, ac

¼ 4ffiffiffi
π

p Dovl
Ξcω0

� �2
ffiffiffiffi
t

Θ

r
; (32)

where Do and Ξc are the optical and acoustic deformation potential constants, and vl
is the longitudinal sound velocity. Here Θ is the Debye temperature.

Ionized impurity scattering (Wolfe 1954) causes a stronger dependence on the

wavelength, which for higher energies approaches λ3:

αo, ion / NionZione
4

3
ffiffiffi
2

p
π3=2 ee0ð Þ2 mkTelð Þ1=2hv

sinh
hv

2 kTel

� �
K0

hv

2 kTel

� �
/ λ3; (33)

where K0 is a modified Bessel function (Poole 1998). The computed absorption

behavior for scattered ionized impurities is shown in Fig. 7b.

With different scattering mechanisms, the optical absorption coefficients for

each one of them is added (the inverse of the relaxation times are added – see

Eq. 28) in order to obtain the total optical absorption:

αo, total ¼
X
i

αo, i: (34)

When studying a family of absorption curves at different temperatures, we can

obtain some information about the predominant scattering mechanism, especially

about scattering at higher electron energies for semiconductors with sufficient

electron densities.

2.2.2 Free-Hole Absorption
The absorptions of free electrons and holes follow similar principles. However,

although most electron transitions within the conduction band are indirect, requir-

ing the emission or absorption of phonons (Fan 1967), the most prevalent long-

wavelength transitions for holes are direct, as shown in Fig. 8. Therefore, under

otherwise similar conditions, the absorption coefficient for holes is much larger

than that for electrons.
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Closely spaced valence bands (Fig. 8a) provide possibilities for a wide spectrum

of direct transitions at very long wavelengths. In addition, the change from heavy to

light holes, detected by simultaneous conductivity measurements, assists in identi-

fying the specific feature in the absorption spectrum.

Steps in the optical absorption spectrum are observed when the energy of the

holes is sufficient to permit optical phonon relaxation. Such a step was calculated

for a single threshold in the electron energy for ħωLO emission (see section above

and Fig. 7a).

3 Carrier Dispersion in Electric and Magnetic Fields

The dispersion equation with an additional magnetic field is obtained from Max-

well’s equations, exactly as in ▶ Sect. 1.1.3 from Eq. 17 in chapter “Interaction of

Light with Solids”, except that the magnetic field causes a change in wave propa-

gation or polarization and therefore requires a vector relation for the amplitude

function E(x), resulting in

@2

@r2
Eþ ω2

c2
«þ i

e0ω
σ Bð Þ

� �
E ¼ 0: (35)

α
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Fig. 8 (a) Schematic of intervalence-band transitions. (b) Optical absorption cross-section as a

function of wavelength (wavenumbers) for n- and p-type Ge (After Kaiser et al. 1953)
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where « and σ are the dielectric and the conductivity matrices, respectively.
The dielectric matrix is not influenced by the magnetic field. For isotropic crystals,

we can simply use the dielectric constant, requiring, however, matrix notation

to permit matrix calculus. For a magnetic induction in the z direction, the σ matrix

simplifies to

σ ¼
σxx σxy
σyx σyy

σzz

0@ 1A: (36)

The components of this matrix are obtained from the equation of motion,

which is identical to Eq. 15, except for the addition of the Lorentz force

e vdrift � Bð Þ:

mn
dvdrift
dt

þ vdrift

τmag

� �
¼ e Eþ vdrift � Bð Þ: (37)

We assume an isotropic effective mass mn and an isotropic relaxation time τmag

independent on the velocity. With E ¼ E xð Þexp �iω tð Þ and envdrift ¼ σ Bð ÞE, we
obtain

σxx ¼ σyy ¼ σ0
1� iωτmag

1� iωτmag

� �2 þ ωc τmag

� �2 (38)

σxy ¼ �σyx ¼ σ0
ωc τmag

1� iωτmag

� �2 þ ωc τmag

� �2 (39)

σzz ¼ σ0
1

1� iωτmag

; (40)

with ωc ¼ eB=mn as the cyclotron frequency and σ0 ¼ e2nτmag=mn ¼ enμ as the dc
conductivity. Given the magnetic induction B ¼ 0, 0,Bzð Þ, we can distinguish from
the general dispersion equation4

k2E ¼ ω2

c2
«Eþ i

ω

e0 c2
σ Bð ÞE; (41)

a number of cases depending on the relative orientation of the propagation (k) and

polarization (E) of the light interacting with the semiconductor. These cases are

identified in Table 2.

4Obtained from Eq. 35 with E ¼ E0exp i kr� ω tð Þ½ �.
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For the longitudinal case one has

k2zEx ¼ ω2

c2
eoptEx þ i

ω

e0 c2
σxxEx þ σxyEy

� �
: (42)

k2zEy ¼ ω2

c2
eoptEy þ i

ω

e0 c2
�σxyEx þ σxxEy

� �
: (43)

For circular polarizarized light (Ex � i Ey) we obtain by using k2z ω=cð Þ2 nþ iκð Þ2
and adding Eq. 42 � i � Eq. 43

n� þ iκ�ð Þ2 ¼ eopt þ i
σ�
e0ω

with σ� ¼ σxx � iσxy: (44)

After separation of real and imaginary parts we arrive at

e0� ¼ n2� � κ2�
� � ¼ eopt 1� ω2

p τ
2
mag

ω

ω� ωc

ω� ωcð Þ τmag

	 
2 þ 1

 !
(45)

e00� ¼ 2n�κ� ¼ eopt 1� 1

ω

ω2
p τmag

ω� ωcð Þ τmag

	 
2 þ 1

 !
: (46)

with the + or – sign for right- or left-polarized light, respectively, and ωp the plasma

frequency (Eq. 4).

For the transverse case there are three dispersion equations:

k2yEx ¼ ω2

c2
eoptEx þ i

ω

e0 c2
σxxEx þ σxyEy

� �
; (47)

0 ¼ ω2

c2
eoptEy þ i

ω

e0 c2
�σxyEx þ σxyEy

� �
; (48)

k2yEz ¼ ω2

c2
eoptEz þ i

ω

e0 c2
σzzEz; (49)

Table 2 Various cases for dispersion relations discussed in the text, depending on the relative

orientation of B, k, and E

Magnetic induction B = (0, 0, Bz)

Wave propagation Longitudinal

Faraday configuration

k = (0, 0, kz)

Transverse

Voigt configuration

k = (0, ky, 0)

Electric vector linear

Linear

Circular

E = (0, Ey,0)

E = (Ex, 0, 0)

E = (Ex � i Ey)

E = (0, 0, Ez)

E = (Ex, 0, 0)
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which yield for parallel polarization (E||B)

eejj njj þ iκjj
� �2 ¼ eopt þ i

σzz
e0ω

; (50)

with

e0 ¼ eopt 1� ωp τmag

� �2
ωτmag

� �2 þ 1

 !
and e00 ¼ eopt

1

ω

ω2
p τmag

ωτmag

� �2 þ 1
: (51)

For the perpendicular polarization (E⊥B) we have

ee⊥ n⊥ þ iκ⊥ð Þ2 ¼ eopt þ i
1

e0ω
σxx þ i

σ2xy
eopte0ωþ iσxx

 !
(52)

with

e0 ¼ eopt 1� ωp τmag

� �2
β

ωτmag

� �2
β2 þ α2

 !
and e00 ¼ eopt

1

ω

ω2
p τmag α

ωτmag

� �2
β2 þ α2

(53)

and with the auxiliary functions

α ¼ 1þ ω2 τ2magω
2
c

ω2 þ ω2 � ω2
p

� �
τmag

h i2 and β ¼ 1�
ω2 � ω2

p

� �
τ2magω

2
c

ω2 þ ω2 � ω2
p

� �
τmag

h i2 : (54)

There are two characteristic frequencies entering the dispersion equation: the

plasma (ωp) and the cyclotron (ωc) frequencies, which determine possible reso-

nances. The damping is determined by the appropriate relaxation time and gives the

width of the resonance peak. These equations describe all possible interactions of

electromagnetic radiation with a semiconductor while exposed to a dc magnetic

induction. Examples for such interactions are cyclotron resonance, magnetoplasma

reflection, and the Faraday and Voigt effects. They will be discussed in the

following sections. For more detail, see Madelung (1978), Roth (1982), Basu

(1997), and Sugano and Kojima (2000).

3.1 Magnetoplasma Reflection

A relatively simple means to determine one or both of the characteristic frequencies

ωc and ωp – and thereby the effective mass, carrier type, and carrier density – is to

measure the spectral distribution of the reflectivity with k||B or k⊥B, i.e., for
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Faraday or Voigt configuration, respectively. The effect in reflectivity can be

derived by substituting the magneto-optical constants n�, κ�, n||, n⊥, κ||, and κ⊥ in

the Fresnel formula for the reflection coefficient (Eq. 54 in chapter▶ “Interaction of

Light with Solids”):

R0 ¼ R⊥ ¼ Rjj ¼ nr � 1ð Þ2 þ κ2

nr þ 1ð Þ2 þ κ2
: (55)

Faraday Configuration Arranging the propagation of the interacting light parallel

to the magnetic induction and using circular polarized light yields a reflectivity

R� ¼ n� � 1ð Þ2 þ κ2�
n� þ 1ð Þ2 þ κ2�

: (56)

For n2þ 	 κ2�, the reflectivity shows a maximum (see Eq. 45) when the index of

refraction tends to vanish (n� ffi 0) – that is, when

ω ffi ωp � 1

2
ωc þ

ffiffiffiffiffiffiffieopt
p
8

ω2
c

ωp

(57)

for left (�) or right (+) circular polarized light. Consequently, a shift in the plasma

edge by � ωc/2 is seen (when ωp 	 ωc) when a magnetic induction is applied. This

is shown in Fig. 9a for InSb and can be used to determine ωc and thereby the

effective mass.

450 500 550 600350 400 450 500

0.0

0.5

1.0

0.0

0.2

0.4

0.6

6 7 8 9 10 9 10 11

n InSb n InSb

ν~ (cm−1) ν~ (cm−1)

B = 0 left circular
right circular

R R

E║B E ┴ 
B

w (1013 s−1)

a b

w (1013 s−1)

Fig. 9 (a) Shift of the plasma absorption edge in n-type InSb at room temperature for n =
1018 cm�3, τel = 2.8 � 10�13s, and mn/m0 = 0.035 at B = 0 and �2.54 T (Faraday configuration);

the curves are calculated (After Palik et al. 1962). (b) Transverse magnetoplasma reflection (Voigt

configuration) in n-type InSb at room temperature for n = 1.8 � 1018 cm�3, τel = 3.6 � 10�13s, and

B = 3.52 T (After Wright and Lax 1961)
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Voigt Configuration With plane-polarized light at normal incidence to the crystal

surface and the magnetic vector parallel to the surface, we obtain for E⊥B as a

condition for minimum reflection (R⊥ ffi 0 because of n⊥ ! 1) from Eq. 53,

neglecting the damping term:

ω4 eopt � 1

eopt

� �
� ω2 eopt � 1

eopt

� �
ω2
p þ ω2

c

� �
þ ω2

p

� �
þ ω4 ¼ 0 (58)

which has two minima at

ω2
1 ffi ω2

p

eopt
eopt � 1

� �
þ eoptω2

c and ω2
2 ffi ω2

p � ω2
c eopt � 1
� �

: (59)

They are shown in Fig. 9b for n-type InSb from which the cyclotron frequency, and

thereby the effective mass, can be obtained. Once the cyclotron frequency is

known, the plasma frequency can also be obtained and thereby the carrier density.

For more information on magneto-optical and magnetoplasma effects, see Palik and

Wright (1967), Maan (1993), and Seeger (2004).

3.2 Cyclotron-Resonance Absorption and Faraday Effect

3.2.1 Cyclotron-Resonance Absorption
Cyclotron-resonance absorption occurs when the frequency of the impinging elec-

tromagnetic radiation (usually in the microwave range) equals the cyclotron fre-

quency (eB/mn). It is measured with k||B and linear polarized E = (Ex, 0, 0)
radiation, which renders (Eq. 42)

k2z ¼
ω2

c2
eopt þ i

ω

e0 c2
σxx: (60)

With k2z ¼ ω=cð Þ2 ~n2r ¼ ω=cð Þ2 nr þ iκð Þ2 we obtain with (Eq. 38)

2nrκ ¼ 1

e0ω
σxx ¼ σ0

e0ω

1þ ω2
c þ ω2

� �
τ2mag

1þ ω2
c � ω2

� �
τ2mag

h i2
þ 4ω2 τ2mag

: (61)

Cyclotron resonance effectively determines ωc, which is a direct measure of the

effective mass. By rotating the semiconductor with respect to B, one obtains mn as a

function of the crystallographic orientation. This was discussed in more general

terms in ▶ Sect. 1.2.5 of chapter “Bands and Bandgaps in Solids”.

In addition to the conventional method of observing cyclotron resonance by

microwave absorption, one can detect the resonances optically by exciting carriers

near the band edges. With a magnetic field applied, electrons are forced into orbits
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with the cyclotron frequency ωc and the band states split into Landau levels with

spacing ħωc. The ensuing mixed collective mode frequency in Voigt configuration

is then composed of three frequencies,

ω� ¼ 1

2
ω2
p þ ω2

c þ ω2
LO

� �
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p þ ω2

c þ ω2
LO

� �2
� 4 ω2

c ω
2
LO þ ω2

pω
2
LO

� �r
: (62)

Consequently, the resonances become magnetic field dependent. These resonances

are given by ω2
c þ ω2

p ¼ ω2
LO (Palik and Furdyna 1970). In Faraday configuration,

strong absorption occurs at ω = ωc or ω= ωTO, the former is independent of lattice

coupling. In addition to the resonant Raman scattering at ωc, two-photon reso-

nances occur when ω1 – ω2 = 2ωc (Patel and Slusher 1968).

In superlattices, the confinement of cycling electrons within each well can be

easily detected by the optical method described before (Cavenett and Pakulis 1985):

the resonances become angle-dependent and are pronounced only within the plane

of the superlattice, where electrons can follow the Lorentz force.

3.2.2 Faraday Effect
The dispersion relation for circular polarized light (Eqs. 44 to 46) with k||B shows

that the propagation velocity for circular polarized light c/n� is different for right-

or left-hand polarization. Therefore, a linear polarized light beam, composed of an

equal fraction of left- and right-polarized components, experiences a turning of its

polarization plane with progressive traveling through a semiconductor sample with

a thickness d. The corresponding Faraday angle is defined by

θF ¼ ωd

2c
nþ � n�ð Þ ffi ωd

4c
ffiffiffiffiffiffiffi
eopt

p n2þ � n2�
� �

; (63)

since n2þ � n2�
� � ¼ nþ þ n�ð Þ nþ � n�ð Þ ffi 2

ffiffiffiffiffiffiffi
eopt

p
nþ � n�ð Þ: The angle can be

obtained from Eq. 45 for κ2þ 
 n2� and ωcτmag,ωτmag

� �	 1,

θF ¼ 360

2π

ne3B

m2
ne0

ffiffiffiffiffiffiffi
eopt

p
2c ω2 � ω2

c

� � d for ω 	 ωc: (64)

The quantity θF/(B d) is known as the Verdet coefficient and is proportional to

nλ2. The proportionality of the Verdet coefficient with λ2 is shown in Fig. 10 for

n-InSb with the electron density and temperature as the family parameters. It shows

an increase of the Verdet coefficient with carrier density in agreement with Eq. 64.

It also shows an increase with decreasing temperature due to a temperature-

dependent effective mass (see below). With known carrier density, the Verdet

coefficient yields the value of the effective mass. The changes in mn, as a function
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of T and n, are due to changes in the electron distribution within the band, indicating
that the effective mass increases for electrons higher in the conduction band – see

▶ Sect. 1.2.8 in chapter “Bands and Bandgaps in Solids”.

Faraday rotation for electrons is opposite in sign to the rotation for holes.

In a multiband semiconductor, both carriers must be considered. For instance, with

heavy and light holes, the quantity n/mn
2 in Eq. 64 must be replaced by nlh=m

2
lh þ nhh

=m2
hh for holes.

4 Plasmon Dispersion in 2D Semiconductors

Collective oscillations of carriers (electrons or holes) are altered if they are free

to move in two spatial dimensions but have their motion constrained in the third

dimension. Two-dimensional plasmons were observed first for electrons on the

surface of liquid helium (Grimes and Adams 1976). Most studied two-dimensional

free-carrier systems in semiconductors are the two-dimensional electron gas

(2DEG) created in semiconductor inversion or accumulation layers of

modulation-doped field-effect transistors (Fig. 11a) and multiple layers of

2DEGs, so-called layered electron gas (LEG), realized in modulation-doped mul-

tilayer stacks of semiconductor heterojunctions (Fig. 11b). In these structures the

free electrons are spatially separated from the ionized donor impurities and
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Fig. 10 Faraday rotation in n-type InSb with electron density and temperature as parameters; blue
and red curves are for T = 77 K and 290 K, respectively. The corresponding average effective

mass ratios for the six curves are shown at the right side of the figure (After Pidgeon 1962)
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scattering by charged impurities is only weak, yielding a high carrier mobility

(chapter ▶ “Carrier Transport in Low-Dimensional Semiconductors”).

The two-dimensional plasmon resonance of the collective free-carrier motion

was calculated for single quantum wells (Stern 1967) and inversion systems

(Chaplik 1972), yielding for long wavelengths (qk ! 0)

ω2D
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2D e2

2eeff e0mn

s ffiffiffiffiffi
qk

p
: (65)

with the areal carrier density n2D (in units of cm�2) and the in-plane wavevector of

the plasmon qk. eeff is an effective dielectric function, which accounts for the

geometry of the system.5 Equation 65 shows a square-root dependence on the

wavevector for 2D plasmons, in contrast to dispersionless 3D plasmons (Eq. 4).

In a layered electron gas with an infinite number N of equally spaced 2DEGs

according to Fig. 11b the plasma frequency gets (Jain and Allen 1985; Oleg

et al. 1982)

ωLEG
p ¼ n2D e

2

2eeff e0mn
qk

sinhqkd
coshqkd � cos q⊥d

 !1=2

(66)

with the normal component q⊥ of the wavevector. Equation 66 contains a transition

between regimes of different dimensionality. For large separation d between the

2DEG planes (q|| d	 1) the equation reduces to that of a single 2D plama expressed

by Eq. 65. For long in-plane wavelengths (q|| d 
 1) and in-phase oscillation of all

E

EF

Ec

EF

Ec

GaAs n-AlGaAsz

ionized donors

2DEG

a b

2DEG
E1E1

E3

E

z

Fig. 11 Two-dimensional electron gas (2DEG) in modulation-doped GaAs/n-AlxGa1-xAs struc-
tures created (a) at the heterojunction and (b) in a multi-quantum-well superlattice. Ec and EF

denote the conduction-band edge and the Fermi energy, respectively. Free electrons are confined

in the triangular-shaped potential at the interface forming an inversion layer (a) or in the undoped
GaAs quantum wells (b)

5In single and multiple quantum wells eeff is the dielectric function of the barriers. In a metal-

oxide-semiconductor junction with oxide thickness dox and perfectly screening gate, eeff =
½(esemiconductor + eox coth (qk dox)), see Chaplik 1972.
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planes (q⊥ = 0) the plasma frequency is similar to that of a 3D system with an

electron density n2D/d (Das Sarma and Quinn 1982).

The in-plane wavevector q|| can be varied in inelastic light scattering by

changing the angle Θ of the incident light outside the sample with respect to the

normal of the sample surface. Choosing the angle between incident and detected

backscattered light to 90, the components of the scattering wavevector are

qk ¼
2π

λ
sinΘ� cosΘð Þ and q⊥ ¼ 4π

λ
nr 1� 1

4n2r

� �
: (67)

The resulting dispersion of the 2D plasmon resonance in a layered 2D electron gas

(Fig. 11b) is shown in Fig. 12. The dispersion curves indicate the dependence on the

sample structure (q||d ) and doping (n2D).
In a layered electron gas with a finite number N of 2DEG layers, the plasmon

resonance is fanned out into a band due to the reduced symmetry (the mirror

symmetry at each 2DEG is lost) and the Couplomb interaction between the

2DEG layers. A superlattice with N layers has N eigenmodes for the correlated

motion of electrons in the different layers. The normal components of the

wavevectors for these eigenmodes are given by

q⊥i ¼ i
2π

Nd
, i ¼ 1 . . .N; (68)

where d is the superlattice period. q⊥i d represents the phase relation beween the

layers for the plasmon mode i; for small N the quantity q⊥i loses the physical

meaning of a wavenumber.
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Fig. 12 (a) Plasmon Raman line of a layered electron gas (LEG) for different incident angles Θ
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relation of the 2D plasma frequency for two LEG samples with different electron densities n2D and

values of q⊥ d; upper data points refer to the spectra of panel (a). Solid and dashed lines refer to a
calculation according to Eq. 66 and a linear dispersion, respectively (After Oleg et al. 1982)
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The calculated dispersion relation for a layered electron gas with N = 6 2DEG

layers is shown in Fig. 13a; the parameters are those of sample 1 in Fig. 12. Each

single 2DEG layer has a dispersion ωp / ffiffiffi
q

p
, leading to ωp ! 0 as q ! 0 for each

branch. In the highest-energy branch electrons in each plane oscillate in phase; for

q|| L
 1 the entire layered electron gas of thickness L= (N-1)d then acts as a single
2DEG layer with an electron density of N � n. The two modes above the 3D

plasmon band are surface modes (Giuliani and Quinn 1983). For large values

q|| L the plasmons on the two outer surfaces do not couple and these modes are

degenerate; for small q|| L the surface modes split into a symmetric and an

antisymmetric mode. We note that the surface modes shown in Fig. 13a lie outside

the 3D plasmon band. Such feature originates from a dielectric mismatch between

the top and bottom side of the outermost 2DEG layers, if the dielectric constant

outsite the superlattice is less than inside. The resulting image charges modify the

Coulomb interaction and increase the plasmon energy.

The number of modes increases in a finite layered electron gas as the number of

layers N increases as shown in Fig. 13b. The figure also illustrates that the band of

the 3D plasmon then becomes gradually more densely populated and eventually

continuous for N ! 1; the boundaries of the 3D plasmon are obtained by putting

cos(q⊥d ) = �1 in Eq. 66.

The discrete plasmon modes were also observed in experiment (Pinczuk

et al. 1986; Fasol et al. 1986). A measurement of the plasmon branches in a finite

layered electron gas by inelastic light scattering with a GaAs/(AlGa). As sample

a

0

Wavevector (10 cm )q 5 -1

P
la

sm
on

 e
ne

rg
y

(m
eV

)
hw

p

0.5 1.0 1.5 2.0

4

8

12

16

surface
plasmons

LEG = 6N

w = q vF

6 5 4 3 2

i = 1

b

0
Number of layers N

P
la

sm
on

 e
ne

rg
y

(m
eV

)
hw

p
4 8 12 16

4

8

12

16
LEG = 10 cmq 5 -1

20

surface
plasmons

Fig. 13 (a) Calculated plasmon energies in a layered electron gas with six 2DEG layers. The red
lines represent the boundaries of the 3D plasmon band; the green shaded area signifies the single-
particle continuum. (b) Plasmon energies for various numbers N of 2DEG layers in a layered

electron gas, calculated for a fixed in-plane plasmon wavevector q|| = 105 cm�1 (After Jain and

Allen 1985)
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corresponding to the schematic of Fig. 11b is shown in Fig. 14. Solid and dashed

lines represent calculated plasmon energies for antisymmetric and symmetric

modes, respectively.

5 Summary

Plasmon oscillations of the free-electron ensemble with respect to the ion cores lead

to a resonance absorption in the IR range described by two branches; the plasma

frequency depends on the square root of the free-carrier density and represents the

low- and high-energy asymptote of the ω� and ω+ branches, respectively. An

additional resonance absorption occurs at high (�10 eV) photon energy for

valence-electron plasmons. The plasma resonance can be used to determine opti-

cally the density, effective mass, and relaxation time of free carriers. The effective

mass and its anisotropy can be measured by simple changes of the relative align-

ment of crystal, electrical, and magnetic fields. The other parameters can often be

obtained more easily by electrical measurements; however, optical measurements

can be performed when electrical contacts cannot be applied, or electrical mea-

surements are otherwise impeded. If the free carriers are confined to two dimen-

sions the plasmon frequency depends on the in-plane wavevector. In multiple

two-dimensional layers of free carriers discrete plasmon branches exist.

Away from the resonance free-carrier absorption and reflection with or without

magnetic fields provide also important information about carrier parameters – most

significantly about the effective carrier mass, its anisotropy, and its dependence on

other variables, such as carrier density and temperature. The knowledge of the

effective carrier mass is essential for the analysis of a large variety of semicon-

ducting and electro-optical device properties.
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Abstract

Optically induced band-to-band transitions are resonance transitions and related

to the band structure by the momentum matrix-element and the joint density of

states. For transitions near the band edge, the theory of optical transitions

between the valence and conduction bands can be simplified with an effective-

mass approximation, assuming parabolic band shapes and arriving at quantita-

tive expressions for the absorption as a function of the photon energy.

Depending on the conduction-band behavior, strong direct or weak indirect

transitions occur at the band edge. In addition, a contribution of forbidden

transitions modifies the absorption further away from the band edge. Deviations

from the ideal, periodic crystal lattice provide tailing states extending beyond the
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band edge, usually as an Urbach tail which decreases exponentially with dis-

tance from the band edge. In quantum wells the two-dimensional joint density

of states leads to a steplike increase of the absorption for increasing photon

energy.

Keywords

Absorption coefficient � Band structure � Band tailing � Direct transitions �
Forbidden transitions � Indirect transitions � Joint density of states �Momentum-

matrix element � Optical transitions � Parabolic bands � Urbach tail � Van Hove

singularities

1 Optical Absorption Spectrum

The description of optical band-to-band transitions requires a quantum mechanical

analysis (Bassani 1966; Bassani and Pastori Parravicini 1975). For a simplified

treatment of transitions near the fundamental bandgap, an effective-mass model

can be used. This chapter focuses on the absorption process; the subsequent

radiative or nonradiative recombination processes are treated in chapter ▶ “Carrier

Recombination and Noise”. The absorption spectrum is directly related to the

imaginary part of the dielectric function introduced in chapter ▶ “Interaction of

Light with Solids”. One distinguishes direct band-to-band transitions, which are

essentially vertical transitions in E(k), and indirect transitions, which involve

phonons, permitting major changes of k during the transitions. We will first discuss

the direct transitions.

1.1 The Joint Density of States

Light of sufficiently short wavelength with

E ¼ A0 e exp i kr� ωtð Þ½ � (1)

initiates electronic transitions from one band to another. We have used A0 here as

the amplitude to avoid confusion with the energy of an optical transition, E. e is the
unit vector of the electric polarization and k is the wavevector of the light, traveling

in r direction.

The number of optically induced transitions at the same k (i.e., neglecting the

wavevector of the photon) between band μ and band ν is proportional to the square
of the momentum matrix elements given by

eMμν kð Þ ¼ e

ð
V

ψ�
μ k, rð Þ �iℏ

@

@r

� �
ψν k, rð Þ dr; (2)
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with the integral extending over the crystal volume V. The proportionality factor for
a specific transition is

Pμν kð Þ ¼ 1

h

eA0

m0 c

� �2

δ Eμ kð Þ � Eν kð Þ � hν
� �

; (3)

where δ is the Dirac delta function. The factor 1/h indicates the quantum

nature of the transition, e/(m0c) stems from the interaction Hamiltonian

between light and electrons, and A0 from the amplitude of the light (i.e.,

the value of the Poynting vector A0
2). The delta function switches on

this contribution when a transition occurs from one state to another, i.e.,

when Eμ kð Þ � Eν kð Þ ¼ hν . No broadening of any of these transitions is

assumed. Close proximity to adjacent transitions and Kramers–Kronig inter-

action make such broadening consideration unnecessary, except for very pro-

nounced features.

After integration over all states within the first Brillouin zone and all

bands between which the given photon hν can initiate transitions, we

obtain for the number of such transitions per unit volume and time Fermi’s
golden rule:

W νð Þ ¼
X
μ, ν

ð
BZ

2

2πð Þ3 Pμν e �Mμν kð Þ�� ��2dk
¼ 2

2πð Þ3h
eA0

m0 c

� �2X
μ, ν

ð
BZ

e �Mμν kð Þ�� ��2δ Eμ kð Þ � Eν kð Þ � hν
� �

dk;

(4)

where the integration is over the entire Brillouin zone (BZ). The factor Vunit cell/

(2π)3 normalizes the k vector density within the Brillouin zone; Vunit cell cancels

from the integration of Eq. 2; the factor 2 stems from the spin degeneracy.

Equation 4 follows directly from a perturbation theory. The matrix elements vary

little within the Brillouin zone; therefore, we can pull these out in front of the

integral. This leaves only the delta function inside the integral. The integral

identifies the sum over all possible transitions which can be initiated by photons

with a certain energy hν, and it is commonly referred to as the joint density of states
between these two bands. It is given by

Jμν νð Þ ¼ 2

2πð Þ3
ð
BZ

δ Eμ kð Þ � Eν kð Þ � hν
� �

dk: (5)

The argument of the delta function is a function of k. Since the photon

momentum is negligibly small, kinitial = kfinal applies for the transition (assumed
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to be direct), yielding for the delta function1 δ Eμ � Eν � hν
� � ¼ δ kinital � kfinalð Þ=

@=@k Eμ kð Þ � Eν kð Þ� ��� ��
Eμ�Eν¼hν

. The joint density of states can then be written as

an integral over a surface of constant energy instead of an integral in k space:

Jμν νð Þ ¼ 2

2πð Þ3
ð

dS

@=@k Eμ kð Þ � Eν kð Þ� ��� ��
Eμ�Eν¼hν

; (7)

where dS is an element on the equal-energy surface in k space, with the surface

depicted by

Eμ kð Þ � Eν kð Þ ¼ hν; (8)

here μ stands for any one of the conduction bands and ν for any one of the valence

bands.

For each of the transitions, k is constant; it is a direct transition.When the slopes

of E(k) of both bands are different, Eq. 4 is fulfilled only for an infinitesimal surface

area. In contrast, a larger area about which such transitions can take place appears

near points at which both bands have the same slope, i.e., near critical points (van
Hove 1953 and Phillips 1956). Here

@Eμ kð Þ=@k ¼ @Eν kð Þ=@k ¼ 0 or @Eμ kð Þ=@k� @Eν kð Þ=@k ¼ 0; (9)

and the expression under the integral of Eq. 7 has a singularity. By integration this

results in a kink in the joint density of states. The singularity related to Eq. 7 is

referred to as a van Hove singularity.
The types of critical points are referred to asM0 . . .M3, P0 . . . P2, and Q0 orQ1 in

three-, two-, and one-dimensional E(k) representations, respectively; two- and

one-dimensional representations are applicable to superlattices or quantum wire

configurations (▶Sect. 3 of chapter “Bands and Bandgaps in Solids”). They describe

the relative curvature of the lower and upper bands with respect to each other. In

a first-order expansion at a critical point kcp in k space, we can express this by

Eμ kð Þ � Eν kð Þ ¼ Eμν, 0 kcp
� �þX3

i¼1

ai k� kcp
� �2

; (10)

where the components of k and kcp are along the principal axes. Equation 10 may be

interpreted as a flat lower band (Eμν,0) and the appropriately changed curvature of

the upper band describing the energy difference between the original valence and

conduction bands. Here positive quantities ai are proportionality factors measuring

1The rewriting of Eq. 5 can be understood from the behavior of the Dirac delta function

ð
g xð Þ δ f xð Þ½ �dx ¼ g x0ð Þ d f xð Þ

dx

���� �����1

x¼x0

: (6)
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the relative band curvatures, and the combination of their signs identifies the type of

critical point,2 with a schematic representation shown in Fig. 1.

The integrand in Eq. 7 can be written π dk3/a1, yielding for the joint density of

states the expression Jμν νð Þ ¼ const
8π2a1

ð
dk3 (Cohen and Chelikowsky 1988). Jμν is thus

proportional to the extent of the surface in k3 direction. At an M0 critical point, the

surface extends k3 ¼ � ω� ωcp

� �
=a3

� �1=2
, leading to Jμν νð Þ / ν� νcp

� �1=2
rising

from hνcp. The structure of other critical points follows similar geometrical argu-

ments (Cohen and Chelikowsky 1988). In optical spectra of αo, R, or e00, the critical
points lead to sharp van Hove singularities, albeit the matrix elements (Eq. 2) effect

some deviation from the ideal structure.

Matrix elements are mainly influenced by selection rules, which are similar to

those in atomic spectroscopy. The symmetry properties of ψμ and ψν in Eq. 2 – for

example, whether even or odd under reflection or inversion and whether they are the

same or different from each other – determine whether the matrix element has a

finite value or vanishes; judgment can be rendered on group theoretical arguments

(see Bassani and Pastori Parravicini 1975). Comparing the results of such an

analysis with experimental observation of strong or weak optical absorption pro-

vides quite convincing arguments by assigning certain features of the absorption

spectrum to the appropriate critical points of the E(k) behavior.
The photon which is absorbed in the band-to-band transition can be released in a

radiative recombination process. Such luminescence – referred to as spontaneous

emission – is important for optoelectronic devices. Luminescence is time-reversed

to optical absorption; therefore, the same matrix elements and selection rules apply

for both processes. The luminescence intensity is obtained from a product of the

matrix element with the joint density of states and the distributions of the excited

carriers. Radiative recombination is discussed in chapter▶ “Carrier Recombination

and Noise”.

3D 2D 1D

M0 M1 M2 M3 P0 P1 P2 Q0 Q1

E

J(E )

Fig. 1 Joint density-of-state representation near critical points (schematic) in three (Mi), two (Pi),

and one (Qi) dimensions of E(k) with subscripts identifying the number of negative signs of the

factors ai in Eq. 10

20, 1, 2, or 3 negative factors ai in Eq. 10 yield forM0 toM3 a maximum, saddle point, saddle point,

or minimum, respectively, in three dimensions; 0, 1, or 2 negative factors for P0 to P2 a maximum,

saddle point, or minimum, respectively, in two dimensions; and 0 or 1 negative factors forQ0 orQ1

a maximum or minimum, respectively, in one dimension.
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1.2 Absorption Coefficient and Dielectric Function

The optical absorption coefficient αo (▶Sect. 1.1.3 of chapter “Interaction of Light

with Solids”) is proportional to the number of optical transitions per unit volume

and unit time. The coefficient can be calculated from simple optical principles

(Bassani and Pastori Parravicini 1975): it is given by the absorbed energy per unit

time and volume, hv � W(v), divided by the energy flux 2πA0
2ν2e0nr/c. The energy

flux is equal to the optical energy density given by the square of the wave amplitude

per wavelength interval 2πA0
2ν2nr

2/c2, divided by the light velocity within the

semiconductor c/nr. With Eq. 4 we now obtain

αo νð Þ ¼ 2

2πð Þ3
e2

e0 nr cm2
0 2πν

X
μ, ν

ð
BZ

e �Mμν kð Þ�� ��2δ Eμ kð Þ � Eν kð Þ � hν
� �

dk: (11)

For a further analysis of the integral, we need more knowledge about E(k). This will
be done near the fundamental absorption edge in Sect. 1.3 where some simplifying

assumptions for the valence and conduction bands are introduced. For a short

review, see Madelung (1981).

With the availability of synchrotron radiation sources, light sources of sufficient

power and stability have become available to perform absorption and reflection

spectroscopy for higher bands in the vacuum UV and soft x-ray range. Since the

optical absorption here is very strong, requiring extremely thin crystals for absorp-

tion spectroscopy which are difficult to obtain with sufficient crystal perfection, it is

preferable to obtain such spectra in reflection.

A more sensitive set of methods relates to modulation spectroscopy (▶Sect.

1.2.3 of chapter “Interaction of Light with Solids”) where a crystal variable – e.g.,

the electric field, temperature, or light intensity – is modulated and the changing

reflection signal is picked up by look-in technology. To compare the optical

properties with the band structure, one must now express the transitions in terms

of the complex dielectric constantee ¼ e0 þ ie00 ¼ e1 þ ie2ð Þ. The optical absorption
constant αo is then obtained from e00 ¼ αonrc= 2πνð Þ (see ▶Eqs. 22 and ▶ 24 of

chapter “Interaction of Light with Solids”), with

e00 ¼ 2

2πð Þ3
e2

e0m2
0 2πνð Þ2

X
μ, ν

ð
BZ

e �Mμν kð Þ�� ��2δ Eμ kð Þ � Eν kð Þ � hν
� �

dk: (12)

This representation has the advantage of not depending on the index of refraction,

which causes a distortion of the calculated e00(ν) distribution. With the first

Kramers–Kronig relation (▶Eq. 20 of chapter “Photon–Phonon Interaction”) and

ωa ¼ Eμ � Eν

� �
=ℏ, we obtain for e0 from Eq. 12 after conversion of the δ function

(Bassani and Pastori Parravicini 1975)

e0 ¼ 1þ 2e2

πm2
0

X
μ, ν

ð
BZ

2

2πð Þ3
e �Mμν kð Þ�� ��2

Eμ kð Þ � Eν kð Þ� �
=ℏ

dk

Eμ kð Þ � Eν kð Þ� �2
=ℏ2 � ω2

:

(13)
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As an example, the e00(ν) spectrum is given in Fig. 2 for Ge. It shows several

shoulders and spikes that can be connected to critical points in the corresponding

theoretical curve, such as the L, Γ, and X transitions (see ▶ Sect. 4.2 of chapter

“Quantum Mechanics of Electrons in Crystals”). The theoretical spectrum was

obtained from an empirical pseudopotential calculation (Phillips 1966) by numer-

ically sampling Eμ kð Þ � Eν kð Þ in the entire Brillouin zone at a large number of
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1 Optical Absorption Spectrum 461



k values. By ordering and adding the transitions that occur at the same value of hv,
possibly involving different band combinations, and repeating for other values of

hv, we obtain the joint density of states. These yield the given e00(ν) as shown in

Fig. 2. The biggest peaks relate to ranges in E(k) where both bands involved in the

transition run parallel to each other for an extended k range.

The spectral distribution between 0 and 6 eV of e0 and e00 (also written e1 and e2)
and their relation to the experimentally obtained optical constants (see ▶Eqs. 22

and ▶ 24 of chapter “Interaction of Light with Solids”) for Si are shown in Fig. 3.

Advances in ab initio calculations – mostly within density-functional theory and

local-density approximation (DFT-LDA, ▶ Sect. 2.2.2 of chapter “Quantum

Mechanics of Electrons in Crystals”) – made it possible to compare the optical

absorption spectrum calculated from first principles with experiment. Commonly

LDA eigenvalues and eigenfunctions are used to calculate e00. Several corrections
are, however, to be made to obtain quantitative agreement with experiment. These

are self-energy corrections (▶ Sect. 2.2.3 of chapter “Quantum Mechanics of

Electrons in Crystals”; Hybertsen and Louie 1985; Aulbur et al. 2000) for

correcting the underestimation of the energy gap in LDA and excitonic effects

associated with Coulomb interaction between electron and hole (Albrecht

et al. 1998).
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The influence of temperature on the principal bandgap was discussed in ▶ Sect.

2.2 of chapter “Bands and Bandgaps in Solids”. An example for changes within

higher bands is shown in Fig. 4 for the real and imaginary parts of the dielectric

constant for GaAs (for Si see Lautenschlager et al. 1987a; Shkrebtii et al. 2010).

Absorption from Core Levels When the excitation takes place from a sharp core

level rather than from a wide valence band, the structure of the band to which this

transition occurs, the conduction band, can be obtained directly. When comparing

excitation spectra from core levels with those from the valence band, however, a

difference occurs because of the different relaxation of the excited state which is

stronger when the hole is localized at the core than when it is more widely spread out

in the valence band (Zunger 1983).

The joint density of states involving excitation from a core level is identical with

the density of states in the conduction band. A typical example for a core-to-

conduction-band spectrum of the reflectivity is given in Fig. 5. The experimental

curves usually show less detail than those obtained from band-structure calculations

(Martinez et al. 1975). This may be caused by electron–hole interaction and local
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energy with the temperature as the family parameter (After Lautenschlager et al. 1987b)
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field effects which are insufficiently accounted for in the single-electron approxi-

mation used for band calculation (Hanke and Sham 1974). These effects can be

included following methods similar to those applied in valence–conduction-band

transitions (Aulbur et al. 2000; Albrecht et al. 1998).

1.3 The Fundamental Absorption Edge

Attention will now be focused on the energy range near the threshold for

valence–conduction-band transitions, the fundamental absorption edge. Usually,
several excitation processes are possible between different subbands for a given

d 
2 R

 / 
dλ

2  
(a

rb
. u

ni
ts

)

0

1

–1

PbTe

PbTe

0.0

0.01

0.02

0.03

0.04

R
ef

le
ct

iv
ity

Th
re

sh
ol

d
E

ne
rg

y

hν (eV) 

d5 /
2

Σ(
6)

d5 /
2

Σ(
7)

d5 /
2

|Σ’
(7

)
Λ

(7
,8

)
d3 /

2
L(

6)

d3 /
2

Π
(6

)

d3 /
2

Δ”
(6

)

d3 /
2

Δ’
(6

)
d3 /

2
Σ’

(6
), Λ

(6
)

d3 /
2

Σ(
6)

d3 /
2

Δ
(6

),P
(6

)

1 2 3 4 5 6 7
18 20 22 24 26

Exp. (arb. units)

Theory

Exp.

Fig. 5 Reflectivity of PbTe in the conduction-band range with excitation from the core levels d3/2

and d5/2 (distance from the conduction-band edge �18.6 eV; see shifted scale.) The upper part of
the figure shows the second derivative of the reflectivity and exposes more structure of the

reflection spectrum. The transitions to the corresponding critical points are identified (After

Martinez et al. 1975)

464 Band-to-Band Transitions



optical excitation energy. For a photon energy slightly exceeding the bandgap,

transitions from different valence bands into different E(k) values of the conduction
band are possible near k = 0, as shown in Fig. 6. The distribution of these states is

represented by nearly spherical shells (upper part of Fig. 6). Deviations from

spherical shells occur because of the warping of the valence bands. Thermalization

will average the excited electron distribution to approach a Boltzmann distribution

(chapter ▶ “Equilibrium Statistics of Carriers”).

The transition between the top of one valence band to the bottom of the lowest

conduction band when both lie at k = 0 is discussed first. This transition is

responsible for the direct optical absorption edge. The joint density of states is

estimated from a parabolic approximation of both bands:

hν ¼ Ec kð Þ � Ev kð Þ ¼ Eg þ ℏ2k2

2mn
þ ℏ2k2

2mp
¼ Eg þ ℏ2k2

2μ
(14)

with Eg as the bandgap energy and μ as a reduced carrier mass

1

μ
¼ 1

mn
þ 1

mp
: (15)

Recognizing that Eq. 5 yields

Jcv ¼ 2

2πð Þ3
d

d hνð Þ
4π

3
k3

� �
and using Eq. 14, we obtain for the joint density of states

kz
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cb

Eg

kx
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∆0
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Γ8
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Γ7

Fig. 6 Optical vertical

excitation transitions for

monochromatic photons at

the band edge of GaAs near

k = 0 from the heavy hole

(hh), light hole (lh), and
spin–orbit split-off (so)
valence bands into the

conduction band. The upper
diagram indicates the

resulting electron distribution

in k space. The flattened outer

rings indicate the strongly

warped hh and the lesser

warped lh valence bands

(▶ Sect. 1.2 of chapter

“Bands and Bandgaps in

Solids”); the split-off valence

band is not warped (After

Lyon 1986)
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Jcv ¼ 1

2π2
2μ

ℏ2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� Eg

p
: (16)

After introducing Jcv into Eq. 11, we obtain for the optical absorption coefficient

near the band edge (Moss et al. 1973):

αo, cv ¼ 2π e2 2μð Þ3=2 e �Mcvj j2
3m2

0 e0 nr ch
3ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� Eg

p
: (17)

The momentum matrix element can be approximated for transitions from the three

valence bands in zincblende-type semiconductors across the bandgap (near Eg)

from the Kane estimate (Kane 1957) when using

e �Mcvj j2 ffi m0

ℏ


 �2
P2; (18)

where P is the interband (momentum matrix) parameter, which can be obtained

from the k � p perturbation theory (▶Sect. 2.1.1 of chapter “Quantum Mechanics of

Electrons in Crystals” and ▶Sect. 1.2.8 of chapter “Bands and Bandgaps in

Solids”):

P2 ¼ 1

m0
n

� 1

m0

� �
3ℏ2

2

Eg þ Δ0

3Eg þ 2Δ0

Eg (19)

(compare with ▶Eq. 33 of chapter “Bands and Bandgaps in Solids”). Here Δ0 is

the spin–orbit splitting energy and mn
0 the effective mass at the bottom of the

conduction band. With known mn, Eg, and Δ0, we obtain a numerical value for P,
and therefore for the matrix element,3

e �Mcvj j2 ¼ 3m0

2m0
n

m0 � m0
n

� � Eg þ Δ0

3Eg þ 2Δ0

Eg: (21)

When this is introduced into Eq. 17, we obtain for hν ffi Eg and m0
n ffi mn:

3The momentum matrix-element with dimension W2s4cm�2 should not be confused with the often

used oscillator strength

f cv ¼
2

3m0 hν
e �Mcvj j2; (20)

which is dimensionless and of the order of one, while the matrix element is not. The factor 1/3 in

Eq. 19 is due to averaging, with Mxj j2 ¼ My

�� ��2 ¼ Mzj j2 ¼ 1=3 Mj j2; factor 2 accounts for the spin.
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αo, cv ffi 2π e2
ffiffiffiffiffiffiffiffi
2m0

p

e0 nr h2c
mn mp

m0 mn þ mp

� � !3=2
m0 � mn

mn
f Eg

� �
(22)

with

f Eg

� � ¼ Eg þ Δ0

3Eg þ 2Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� Eg

p
; (23)

which increases proportional to the square root of the energy difference from the

band edge:

αo, cv ¼ αo, dir /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� Eg

p
: (24)

2 Direct and Indirect Transitions

The optical transitions discussed in the previous section are direct transitions; they
involve a direct optical excitation from the valence to the conduction band, using

only photons. This is represented by a vertical transition in the reduced E(k)
diagram, since the momentum of a photon, which is added to or subtracted from

the electron momentum when a photon is absorbed or emitted, is negligibly small:

the ratio of photon to electron momentum can be estimated from pph=pel ¼ hν=cð Þ
= ℏkð Þ which, at the surface of the Brillouin zone, is ffi h=λð Þ= ℏπ=að Þ ¼ 2a=λ ffi
10�3 for visible light.

2.1 Indirect Transitions

Nonvertical transitions are possible when, in addition to the photon, phonons are
absorbed or emitted during the transition. These transitions are indirect transitions.
The phonons can provide a large change in the electron momentum k (the phonon

momentum is identified by q):

k0 ¼ k� q: (25)

Because of the necessity of finding a suitable phonon for the optical transition to

obey energy and momentum conservation for the transition, the probability of an

indirect transition is less than that of a direct transition by several orders of

magnitude. An estimate of the matrix elements for phonon-assisted electron tran-

sitions follows the corresponding selection rules including the symmetry of the

phonon (Lax and Hopfield 1961).

Indirect transitions identify the bandgap for materials where the lowest energy

minimum of the conduction band is not at the same k as the highest maximum of the

2 Direct and Indirect Transitions 467



valence band. For instance, the highest maximum of the valence band is at k =
0, but the lowest minimum of the conduction band is at k 6¼ 0 (Fig. 7). These

materials are indirect bandgap semiconductors; Si, Ge, GaP, AlAs, and AlSb are

examples. Most other semiconductors are direct gap semiconductors.
When, together with the photon, a phonon is absorbed, we obtain for the

absorption constant

αabso ¼ e2f BE Mj j2
e0 nr cm2

0 2πν

ðð
BZ

2dk12dk2

2πð Þ3 2πð Þ3 δ Ec k2ð Þ � Ev k1ð Þ � hνþ ℏωð Þ; (26)

where fBE is the Bose–Einstein distribution function for the phonon and M is the

matrix element for the simultaneous absorption of a phonon and a photon (Bassani

and Pastori Parravicini 1975). Using a parabolic band approximation and integrat-

ing over the delta function yields

αabso ¼ e2f BE Mj j2
e0 nr cm2

0 2πν

1

8 2πð Þ3
2mp

ℏ2

� �3=2
2mn

ℏ2

� �3=2

hν� Eg þ ℏω
� �2

: (27)

A similar value for the absorption constant is obtained when a phonon is emitted,

except þℏω is replaced by �ℏω and fBE is replaced by 1 � fBE. The total optical
absorption of the indirect transition results as the sum

αo, ind ¼ αabso þ αemi
o : (28)

It has a quadratic dependence on the photon energy (for more details, see Moss

et al. 1973):

αo, ind / f BE hνþ ℏω� Eg

� �2 þ 1� f BEð Þ hν� ℏω� Eg

� �2
; (29)

where ℏω is the energy of a phonon of proper momentum and energy. The two

branches of indirect transitions (Eq. 29 and Fig. 8) show a different temperature

E E E
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EvEv

Ec
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kx kx kx

+ħω
-ħω

Ec

a b c

Fig. 7 (a) Direct and (b) indirect transitions with absorption and (c) with emission of a phonon
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dependence. The phonon absorption branch vanishes at low temperatures, when the

phonons are not thermally excited (frozen-out).

Weak indirect transitions, resulting in a factor �103 lower absorption, can be

observed only in a wavelength range where they do not compete with direct

transitions. Indirect transitions are followed at higher energies by direct transitions

with a secondary band edge. Figure 9 shows an example for Ge where the indirect

band edge is preceding the direct edge.

2.2 Allowed and Forbidden Transitions

The matrix element (Eq. 2) contains two terms; the second one was neglected in the

previous discussions. The one described before relates to an allowed transition and
has a value close to 1 for its oscillator strength; here the selection rules are fulfilled.

The other term relates to a forbidden transition; it represents a transition in which

the Bloch function of the electron wave is orthogonal to the electric polarization of

the light. The forbidden transition becomes finite but small when the electron

momentum changes slightly during a transition from the ground to the excited

state, which is caused by the finite, small momentum of the photon. It becomes

important for the agreement between theory and experiment for the absorption

spectrum further away from the band edge (Johnson 1967). This is indicated in

Fig. 10b for the example of InSb.

The matrix element for such a forbidden transition may be calculated from the

k � p perturbation theory with

Mcv kð Þ ¼ k� k0ð Þ @=@k Mcv kð Þð Þj jk¼k0
: (30)

This transition-matrix element increases for larger values of k and therefore pro-

vides a larger contribution to the optical absorption (see Fig. 10b).

direct indirect

phonon
emission

phonon
absorption

Eg+ħωEg-ħωEg Eghν hν

ao
2 √ao

a b

Fig. 8 Simple theoretical behavior of the absorption coefficient for (a) direct and (b) indirect
transitions
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Forbidden transitions are always additional components for both direct and

indirect transitions. The absorption coefficient for these transitions varies as a

function of photon energy as (Bardeen et al. 1956)

αo, dir, forb ¼ Adf hν� Eg

� �3=2
, (31)

αo, ind, forb ¼ Aif hν� ℏω� Eg

� �3
: (32)
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Fig. 9 (a) Absorption coefficient near the band edge for Ge (After Dash and Newman 1955). (b)
Analysis of the lower (10�1 . . . 101 cm�1) and upper (101 . . . 5	 102 cm�1) part of the absorption

range at 300 K, giving evidence for indirect and direct absorption edges following each other at

0.66 and 0.81 eV, respectively (After Bube 1974)
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The proportionality coefficient for forbidden direct transitions is given for parabolic

bands as

Adf ¼ 8π3 e2 2μð Þ3=2
3e0 nr cm2

0 h
5ν

@=@k Mcvð Þj j2k¼k0
(33)

(Moss et al. 1973).

Transitions from Different Valence Bands Transitions from the two upper

valence bands, which are split at k = 0 in anisotropic lattices, can be separated

by using polarized light. For instance, the band-edge transitions from the two

valence bands, which are separated by crystal-field splitting in CdS (▶Sect. 1.2.3

of chapter “Bands and Bandgaps in Solids”), can be identified. When polarized light

with its electric vector perpendicular to the c axis is used, transitions from one band

are allowed, whereas transitions from the other band are only allowed when the

electric vector is parallel to the c axis (Fig. 11). Transitions from the spin–orbit

split-off band overlap and are more difficult to separate because they cannot be

turned off individually.

In anisotropic semiconductors, certain band degeneracies in valence and con-

duction bands are removed and the optical absorption depends on the relative

orientation of the crystal with respect to the light beam and its polarization. Only

such transitions which have a component of the dipole orientation in the direction of

the electrical vector of the light can be excited. Consequently, the absorption

spectrum becomes angle dependent: it is anisotropic. An example for such anisot-

ropy related to valence-band splitting was given above.
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2.3 Band-to-Band Magnetoabsorption

In a magnetic field, band degeneracies are lifted. Band states are split into different

Landau levels. Such splitting is proportional to the magnetic induction B. It is
described in more detail in ▶ Sect. 2 of chapter “Carriers in Magnetic Fields and

Temperature Gradients”. Direct band-to-band transitions at k ffi 0 in a magnetic

field are then given by transitions between the different Landau levels of the

valence and conduction bands.

For a simple two-band model, the splitting of the bands is shown in Fig. 12a. The

allowed transitions near k = 0 are – for the field Bz along the z axis – given by

ΔE ¼ Eg þ nq þ 1
2

� �
ℏ ωe þ ℏ ωhð Þ þ Δmj ge þ ghð ÞμBBz þ ℏ2k2

2μ

¼ Eg þ nq þ 1
2

� � ℏ eBz

μ
þ Δmj gtot μBBz þ ℏ2k2

2μ
, nq ¼ 0, 1, 2, 3, . . . ;

(34)

where nq is the quantum number denoting the Landau levels (equal in the valence and

conduction band for allowed transitions),ℏωe, h ¼ eB=me, h is the cyclotron-resonance

energy for electrons or holes, and Δmj = Δ(ml + sz) is the difference in the respective
azimuthal plus spin quantum numbers of the two bands; μB is the Bohr magneton, and

μ is the reduced effective mass m�1
n þ m�1

p


 ��1

. Here g is the respective Landé

g factor (see also▶Sect. 2 of chapter “Carriers in Magnetic Fields and Temperature

Gradients”), which is derived from the g tensor (Yafet 1963); it depends on the angle θ
between the magnetic induction and the principal axis of the band ellipsoid:
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Fig. 12 (a) Band structure near k = 0 for single bands (a) without and (b) with a magnetic

induction B; B splits the bands into equidistant Landau levels. (c) Band structure for zincblende

semiconductors. (d) Allowed transitions for spin-split Landau levels of one pair of valence and

conduction bands with equal quantum number nq. Positive g factors are assumed for the splitting;

numbers at the transitions indicate the absorption-intensity ratio
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g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2k cos

2θ þ g2⊥ sin2θ
q

, where gk ¼ gzz and g⊥ ¼ gxx ¼ gyy.

The transitions are subject to selection rules which depend on the polarization of
the radiation. These selection rules are

For EkB : Δkz ¼ 0, Δnq ¼ 0, Δmj ¼ 0

For E⊥B : Δkz ¼ 0, Δnq ¼ 0, Δmj ¼ �1;
(35)

for right and left circular polarized light with Δmj = +1 and �1 indicated as σ+ and
σ�, respectively. The intensity ratio of the different transitions is indicative of the

original degree of spin orientation. For instance, for equidistributed spin of conduc-

tion electrons, the intensity ratio of absorption for right polarized light (�3
2
! �1

2
to

�1
2
! þ1

2
) is 3:1.

In typical semiconductors, the valence band is p-like and the conduction band is
s-like (Fig. 12c). There are hence four possibilities at k = 0 for the angular

momentum quantum number mj = ml + sz of the valence band: mj = �3/2, �1/2,

1/2, and 3/2. Those of the conduction band are �1/2 and +1/2. For E⊥B and sz =
�1/2, we have transitions from mj = +1/2 and �3/2; for sz = 1/2, we have

transitions from mj = +3/2 and �1/2. The permitted transitions are shown in

Fig. 12d; such scheme applies for each pair of Landau levels with equal quantum

numbers nq for valence and conduction band.

The general behavior can be seen in Fig. 13a with Landau levels of Ge at room

temperature identified. They shift linearly with the magnetic induction (Fig. 13b)

and permit a measurement of the reduced effective mass μ�1 from the slopes, and

the bandgap from an extrapolation4 to B ! 0. At low temperatures, the transitions
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Fig. 13 (a) Transmission spectrum of Ge with minima at absorbing transitions. (b) Energy of

principal minima in panel (a) as a function of the magnetic induction (After Zwerdling et al. 1957)

4For semiconductors without inversion symmetry (e.g., GaAs), the valence-band extrema do not

occur exactly at k = 0, and the extrapolations of the measured lines in Fig. 13b do not precisely

meet in one point at B = 0; a detailed analysis is given by Zwerdling et al. (1957).
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from the light and heavy-hole bands and from the split-off band are resolved

(Zawadzki and Lax 1966; Roth et al. 1959). Oscillatory magnetoabsorption was

observed for many semiconductors, e.g., for GaAs (Vrehen 1968), InN (Millot

et al. 2011), InP (Rochon and Fortin 1975), GaSe (Watanabe et al. 2003), or InSe

(Millot et al. 2010). An analysis of such spectra also provides information about

band anisotropies (Sari 1972). For a review, see Mavroides (1972). Interband

transitions between Landau levels were also observed in emission spectra (Gubarev

et al. 1993).

3 Transitions in Quantum Wells

One of the most direct confirmations of the simple quantum-mechanical model is

obtained from the measurement of the optical spectra in low-dimensional structures

(quantum wells, quantum wires, or quantum dots). Since the limited interaction

volume of a single structure leads to only weak absorption, usually either absorp-

tion spectra of multiple similar structures5 or photoluminescence excitation spectra

are measured.

3.1 Energy Levels in Multiple Quantum Wells

Optically induced absorption transitions in multiple quantum wells give an instruc-

tive picture of the energy-level structure and reflect selection rules.6 A single

quantum well contains a set of energy levels that can approximately be calculated

from a square-well potential with infinite barrier height, yielding

En ¼ ℏ2π2

2mnl
2
QW

n2, n ¼ 1, 2, 3, . . . , (36)

see ▶Eq. 54 of chapter “Bands and Bandgaps in Solids”.

When multiple wells in a periodic superlattice are separated by barriers with a

small thickness, their states interact and the energy levels start to split. Eventually,

the interaction of many wells leads to mini-bands (see ▶ Sect. 3.1.2 of chapter

“Bands and Bandgaps in Solids”). A development of mini-bands is shown in

Fig. 14. Two quantum wells are formed by quantum well (QW) layers of GaAs

and are separated by one barrier (B) layer of Al0.35Ga0.65As. In a sequence of

experiments, the well or barrier width was varied. For each well the transitions

show a shift toward higher energies according to Eq. 36 and wider spacing of the

lines with decreased well width lQW. In addition, the lines split and the splitting

5Such structures are multiple quantum wells or arrays of quantum wires with a sufficient thickness

of the separating barrier material or ensembles of quantum dots.
6For a study of quantum wires, see, e.g., Ihara et al. (2007).
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increases with reduced barrier width lB, as shown in Fig. 14b. With decreasing

barrier width, these lines also become broader (Schulman and McGill 1981); here,

the interaction between the wells becomes more probable (see ▶Sect. 3.1.2 of

chapter “Bands and Bandgaps in Solids”). The observation agrees with the calcu-

lation of a simple one-dimensional square well/barrier potential.

When more wells in a periodic superlattice structure can interact, the lines

spread to mini-bands: due to the interaction of a sufficient number of layers, the

discrete features shown in Fig. 14 are broadened into continuous mini-bands, as

indicated in a sequence of curves in Fig. 15 and discussed in the following section.

The mean free path of electrons, however, gives their coherence length across

which superlattice periodicity is recognized.

3.2 Absorption in Quantum Wells

When the well width is very large, the optical absorption spectrum for superlattices

is identical to that of the bulk (well) material (Fig. 15, uppermost curve). With

decreasing well width, the onset of optical absorption shifts to higher energies, and

relatively sharp lines appear within the band of the well material, as shown in the

second and third curves. The lines correspond to the eigenstates of conduction

electrons in this well, which for a simple square well are given in Eq. 36, indicating

a 1/lQW
2 dependence (Dingle 1975; Miller et al. 1980; Pinczuk and Worlock 1982).

The bound eigenstates penetrate only about 25 Å into the AlGaAs barriers, which

are 250 Å thick and hence separate the wells. The doublets shown in this figure are

due to transitions from the light- and heavy-hole mini-bands which were omitted in
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Fig. 14 Optical transmission spectrum of two GaAs quantum wells coupled by one

Al0.35Ga0.65As barrier layer with (a) variation of the well thickness lQW and (b) variation of the

barrier thickness lB expressed in numbers of monolayers (ML; 10 ML ffi 28 Å) and showing the

split into two levels for each quantum state. (c) Schematics of the well and barrier geometry for a

30/10/30 ML structure, the third curve in (a) (After Torabi et al. 1987)
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Fig. 16 for clarity. The lines become broader and mini-bands develop as the wells

and the barrier become thinner (lowest curve in Fig. 15).

The envelope functions of the different eigenstates of valence and conduction

electrons within the well are shown in Fig. 16a for a deep, isolated quantum well.

For the optical transitions, the figure indicates maximum overlap between

eigenfunctions of the same subband index n, while transitions between subbands

of different indices have rather small transition probabilities. This is the basis for

the corresponding selection rules.

The two-dimensional joint density-of-state function (Fig. 16b) is steplike

for quantum wells (or superlattices with wide barriers). These steps become smooth

when mini-bands develop and broaden with decreasing barrier width – see

▶ Fig. 38 of chapter “Bands and Bandgaps in Solids”. Due to excitonic contribu-

tions to absorption (see ▶ Sect. 2.1 of chapter “Excitons”), peaks occur slightly

below each subband threshold, which causes a modified, increased absorption at

each lower edge shown by the solid curve of Fig. 16b. This is in general agreement

with the experiment – see Fig. 15 and also ▶Sect. 2.1 of chapter “Excitons”.

The confinement of the electron eigenfunctions in narrow mini-bands yields

high oscillator strength for optical transitions. The optical absorption into the

mini-bands is a direct one, even though the well material may have an indirect

bandgap.
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4 Optical Bandgap of Amorphous Semiconductors

4.1 Intrinsic Absorption

The optical bandgap of amorphous semiconductors is less well defined than in a

crystalline material (▶ Sect. 4.2 of chapter “Bands and Bandgaps in Solids”), due to

substantial tailing of defect states into the bandgap (Mott and Davis 1979;

Sa-yakanit and Glyde 1987; see also ▶ Sect. 1 of chapter “Defects in Amorphous

and Organic Semiconductors”). Usually, an effective bandgap is taken from the

optical absorption spectrum plotted in an (αo hv)
1/2 versus (hv�Eg) presentation and

extrapolated to αo = 0 or, for practical purposes in thin films, presented as E04 – the

energy is used at which αo reaches a value of 104 cm�1. Plotting the absorption

coefficient versus bandgap energies in a semilogarithmic graph, we obtain a straight

line and deduce from its slope the Urbach parameter E0:

αo νð Þ ¼ αo, 0exp
hν� Eg

E0

� �
; (37)

which gives the steepness of the level distribution near the band edge.7
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Fig. 16 (a): Envelope functions of three eigenstates in a single quantum well. (b) Corresponding
joint density of states from valence- to conduction-band transitions (dashed curve) and absorption
coefficient including a simple excitonic feature preceding each step (solid curve)

7An exponential Urbach tail (with Urbach energy in the meV range) was also observed in

absorption spectra of high-quality GaAs/AlGaAs quantum wells (Bhattacharya et al. 2015). The

broadening is assigned to disorder originating from the electric field of zero-point oscillations of

LO phonons in polar semiconductors, yielding a fundamental limit to the Urbach slope.
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A particularly striking example of band tailing of α-Si:H is given in Fig. 17

which demonstrates the relation between an increased severity of disorder and the

slope of the band tailing (Cody et al. 1981). Such increased severity is caused by a

heat treatment of α-Si:H at temperatures above 700 K, when hydrogen is released:

thereby dangling bonds are created which act as major defects (see ▶Sect. 2.2.3 of

chapter “Defects in Amorphous and Organic Semiconductors”). The tailing,

described by Eq. 37, increases from E0 = 50–100 meV with increasing treatment

temperature. Recent modeling indicates that the bandgap energy is not fixed but

depends somewhat on hydrogen saturation (Legesse et al. 2014).

Another example for hydrogenated (or fluorinated) amorphous Si and Si1�xGex
alloys is shown in Fig. 18. The α-Si:H shows a relatively steep absorption edge,

indicating direct absorption; the slope decreases with alloying.

The hydrogenated α-Si1�xGex alloys show little bowing in spite of the large lattice

mismatch between Si andGe. This is characteristic for one-atomic semiconductors which

show less restraint against lattice deformation than two-atomic or higher-atomic lattices.

4.2 Extrinsic Absorption in Glasses

The absorption of amorphous materials below the band edge decreases rapidly,

following the Urbach tail, and reaches values that can be much lower than those for

high-purity crystals. It is difficult to make crystals with very low defect densities,
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Fig. 17 Optical absorption of α-Si:H as a function of the photon energy with measurement

temperature Tmeas or treatment temperature Ttreat indicated, pointing to an additive effect of

temperature and structural disorder (After Cody et al. 1981)
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while in amorphous structures, most defects, i.e., wrong bonds or impurities, are

incorporated into the host material and yield a much lower optical absorption far

from the absorption edge. This makes glasses good materials for optical fibers in

communication systems.

Fused silica (SiO2) is used at a length of up to 30 km between repeater stations

with an absorption of �0.16 dB/km,8 corresponding to an absorption constant of

�3.7 	 10�7 cm�1, compared to the lowest absorption of high-purity GaAs of 2 	
10�3 cm�1 (Lines 1986). Optical absorption and pulse spreading because of finite

dispersion (@nr/@λ) are the limiting factors for the length of an optical transmission

line (Lines 1986). Absorption losses are usually caused by larger inclusions,

imperfections, and impurities and require purification in the range 1013 cm�3, i.e.,

in the parts per billion (ppb) range. The remaining losses in SiO2 fibers are due to

water contamination, which is difficult to remove.

When fibers are prepared well enough so that only intrinsic phenomena limit the

absorption, then three effects have to be considered:

1. The Urbach tail, responsible for electronic transitions, and extending in energy

from the bandgap downward

2. Multiphonon absorption, extending from the Reststrahl frequency upward
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Fig. 18 (a) Optical absorption spectra of α-Si1�xGex:H and α-Si1�xGex:F. (b) Variation of the

bandgap energies with composition (After Mackenzie et al. 1988)

81 dB (decibel) is equal to the logarithm (base ten) of the ratio of two power levels having the value

0.1, that is, log10( pl/p0) = 0.1 or pl/p0 = 1.259. For the example given above of 0.16 dB/km, one

measures a reduction of the light intensity by 3.8% per km. The intensity is reduced to 33% after

30 km.
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3. Rayleigh scattering (see ▶ Sect. 3.3.1 of chapter “Photon–Phonon Interaction”),

due to density fluctuation in the midfrequency range, as shown in Fig. 19

The lowest intrinsic absorption values predicted for SiO2 are 0.1 dB/km at λ =
1.55 μm with �90% of the attenuation stemming from Rayleigh scattering, �10%

from multiphonon absorption, and negligible contribution from the Urbach tail.

5 Summary

The theory of optical transitions between the valence and conduction bands was

sketched in rather general terms. Fermi’s golden rule yields the transition proba-

bility from the momentum matrix-element and the joint density of states. The joint

density of states has characteristic kinks or maxima at critical points; they occur at

energies where the k-depending slopes of the contributing bands are equal. For

transitions near the band edge, the theory can be simplified by assuming parabolic

band shapes. This effective-mass approach yields quantitative expressions for the

dielectric function and the absorption as a function of the photon energy. In

quantum wells, the two-dimensional joint density of states leads to a steplike

increase of the absorption for increasing photon energy, modified by additional

excitonic absorption at the step edges.

Depending on the conduction-band behavior, one has strong direct or weak

indirect transitions at the band edge; the latter require the participation of a phonon

to fulfill energy and momentum conservation. Contributions of forbidden
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a hypothetical glass (After

Lines 1986)
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transitions additionally modify the absorption further away from the band edge.

Depending on the slope of the optical absorption in the intrinsic range near the band

edge, direct or indirect transitions can be identified unambiguously, and, with the

help of an external magnetic field, the effective mass can be determined from the

period of magneto-oscillations of the near-edge absorption due to Landau splitting

of the band states.

Deviations from the ideal, periodic crystal lattice provide tailing states extending

beyond the band edge, usually as an Urbach tail which decreases exponentially with

distance from the band edge. The resulting tailing of the absorption coefficient below

the bandgap energy is particularly pronounced for amorphous semiconductors.
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Abstract

Optical band-to-band absorption can produce an electron and a hole in close

proximity which attract each other via Coulomb interaction and can form a

hydrogen-like bond state, the exciton. The spectrum of free Wannier–Mott

excitons in bulk crystals is described by a Rydberg series with an effective

Rydberg constant given by the reduced effective mass and the dielectric con-

stant. A small dielectric constant and large effective mass yield a localized

Frenkel exciton resembling an excited atomic state. Excitons increase the

absorption slightly below the band edge significantly. The interaction of photons

and excitons creates a mixed state, the exciton–polariton, with photon-like and

exciton-like dispersion branches. An exciton can bind another exciton or carriers

to form molecules or higher associates of excitons. Free charged excitons

(trions) and biexcitons have a small binding energy with respect to the exciton

state. The binding energy of all excitonic quasiparticles is significantly enhanced
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in low-dimensional semiconductors. Basic features of confined excitons with

strongest transitions between electron and hole states of equal principal quantum

numbers remain similar. The analysis of exciton spectra provides valuable

information about the electronic structure of the semiconductor.
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exciton

1 Optical Transitions of Free Excitons

The transitions discussed in the previous chapters considered electron–hole pair

generation by the absorption of a photon with bandgap energy Eg and neglected the

Coulomb attraction between the created electron and hole. With photons ofhv ffi Eg

, both electron and hole do not have enough kinetic energy at low temperatures to

separate. They form a bound state. This state can be modeled by an electron and a

hole, circling each other much like the electron and proton in a hydrogen atom,

except that they have almost the same mass1; hence, in a semiclassical model, their

center of rotation lies closer to the middle on their interconnecting axis (Fig. 1).

This bound state is called an exciton. These excitons have a significant effect on the
optical absorption close to the absorption edge. There are various kinds of excitons.

Free excitons, the main topic of Sect. 1, are free to move in the crystal; further

classification distinguishes the degree of localization and free excitons in direct or

indirect semiconductors. Confined excitons experience spatial restrictions by

heterojunctions in low-dimensional semiconductors and are discussed in Sect. 2.

Bound excitons are excitons trapped in the potential of a defect, e.g., an impurity

atom, when the interaction to the defect becomes larger than their thermal energy;

their analysis requires a knowledge of the specific defect and is considered in

▶ Sect. 2 of chapter “Shallow-Level Centers”. Furthermore, an exciton may be

(weakly) bound to a free carrier or another exciton, forming a charged exciton

(a trion) or an exciton complex. These states are discussed in Sects. 1.4, 2.2, and 2.3.
The Hamiltonian to describe a free exciton can be approximated as

1This causes the breakdown of the adiabatic approximation. The error in this approximation is on

the order of the fourth root of the mass ratio. For hydrogen this is mn=MHð Þ1=4 ffi 10% and is

usually acceptable. For excitons, however, the error is on the order of 1 and is no longer

acceptable. This is relevant for the estimation of exciton molecule formation discussed in Sect. 1.4.
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H ¼ H0 þ U, U ¼ � e2

4πee0 re � rhj j ; (1)

where H0 is the kinetic energy of the electron–hole pair in the center-of-mass frame

(we neglect the center-of-mass kinetic energy) and U describes the Coulomb

attraction between the electron and hole, screened by the dielectric constant e.
The Schrödinger equation Hψ ¼ Eψ has as eigenvalues a series of quasi-hydrogen

states

Eexc, n ¼ �R1 μ

m0

1

e2
1

n2
with R1 ¼ m0e

4

8e20h
2
¼ 13:6 eV; (2)

whereR1 is the Rydberg energy, μ is the reduced exciton mass given by μ�1 ¼ m�1n

þm�1p for simple parabolic bands, and n as the principal quantum number. The

exciton radius is a quasi-hydrogen radius

aexc, n ¼ aH
e

μ=m0

n2 with aH ¼ h2e0
πm0 e2

¼ 0:529 Å; (3)

where aH is the Bohr radius of the hydrogen atom. For a review, see Bassani and

Pastori-Parravicini (1975), Haken (1976), or Singh (1984).

Depending on the reduced exciton mass and dielectric constant, one distin-

guishes between Wannier–Mott excitons, which extend over many lattice

constants and are free to move through the lattice, and Frenkel excitons,
which have a radius comparable to the interatomic distance. Frenkel excitons

become localized and resemble an atomic excited state (for more detail, see

Singh (1984)). For the large Wannier–Mott excitons, the screening of the Coulomb

potential is appropriately described by the static dielectric constant estat which is

used in Eq. 2.

When the lattice interaction is strong, the electron–hole interaction can be

described by an effective dielectric constant e� ¼ e�1opt þ e�1stat

� ��1
, which provides

less shielding. A further reduction of the correlation energy by modifying the

a bFig. 1 (a) Exciton with a

large radius extending over

many lattice constants and a

center of mass slightly shifted

toward the heavier hole

(Wannier–Mott exciton). (b)
Exciton with a small radius

localized at a molecule in an

organic crystal or an atom in

an organic crystal (Frenkel

exciton)

1 Optical Transitions of Free Excitons 487



effective dielectric constant was introduced by Haken (1963 – see ▶Eq. 96 of

chapter “Interaction of Light with Solids”):

U ¼ � e2

4πe0 re � rhj j
1

estat
þ 1

2

1

eopt
� 1

estat

� �
exp

re
rpe

� �
þ exp

rh
rph

� �� �� 	
: (4)

Here, rpe and rph are the electron and hole polaron radii
2, respectively. The radius of

the exciton consequently shrinks, and the use of the effective mass becomes ques-

tionable. Here, a tight-binding approximation becomes more appropriate to estimate

the eigenstates of the exciton, which is now better described as a Frenkel exciton.

For both types of excitons, one obtains eigenstates below the bandgap energy by

an amount given by the binding energy of the exciton. In estimating the binding

energy, the band structure of valence and conduction bands must be considered,

entering into the effective mass and dielectric function. Such structures relate to

light- and heavy-hole bands, energy and position in k of the involved minima of the

conduction band, and other features determining band anisotropies. This will be

explained in more detail in the following sections. We will first discuss some of the

general features of Frenkel and Wannier–Mott excitons.

1.1 Frenkel Excitons

Frenkel excitons (Frenkel 1931 – see also Landau 1933) are observed in ionic

crystals with relatively small dielectric constants, large effective masses, and strong

coupling with lattice, as well as in organic molecular crystals (see below). These

excitons show relatively large binding energies, usually in excess of 0.5 eV, and are

also referred to as tight-binding excitons. They cannot be described in a simple

hydrogenic model.

1.1.1 Excitons in Alkali Halides
In alkali halides Frenkel excitons with lowest energy are localized at the

negatively charged halogen ion, which have lower excitation levels than the

positive ions. Figure 2 shows the absorption spectrum of KCl with two relatively

narrow Frenkel exciton absorption lines. They relate to the two valence bands at

the Γ point that are shifted by spin–orbit splitting. The doublet can be interpreted

as excitation of the Cl� ion representing the valence bands in KCl. This absorp-

tion produces tightly bound excitons, but does not produce free electrons or holes; that

2When a quasi-free charge carrier (electron or hole) moves through a crystal with strong lattice

polarization, it is surrounded by a polarization cloud. Carrier plus polarization form a polaron, a
quasiparticle with an increased effective mass (see ▶ Sect. 1.2 of chapter “Carrier-Transport

Equations”).
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is, it does not produce photoconductivity as does an absorption at higher energy. The

excited state of theCl� is considered theFrenkel exciton (seeKittel 1966). Itmaymove

from one Cl� to the next Cl� ion by quantum-mechanical exchange. The long-range

Coulomb attraction between electron and hole permits additional excited states which

have a hydrogen-like character, although with higher binding energy (�1 eV) than in
typical semiconductors because of a large effectivemass and relatively small dielectric

constant. An extension of a short-range (tight-binding) potential with a Coulomb tail is

observed in a large variety of lattice defects (see chapter▶ “Deep-Level Centers”) and

provides characteristics mixed between a deep-level and a shallow-level series. It

creates a mixture of properties with Frenkel and Wannier–Mott contributions (see

Tomiki 1969).

Lowest excitation energies Eexc,0 of Frenkel excitons in alkali halides are listed

in Table 1 (Song and Williams 1993). The large difference to the bandgap energy

Eg yields large binding energies EB = Eg�Eexc,0, which significantly exceed those

of Wannier excitons.

The strength of the exciton absorption substantially exceeds that of the band

edge which coincides with the series limit (n =1). The features to the right of this

limit in Fig. 2, labeled with roman numerals, result from excitation into the higher

conduction bands.
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Fig. 2 Absorption spectrum

of KCl at 10 K with two

narrow exciton peaks

identified as transitions at the

Γ point. The hydrogen-like

series are due to the Coulomb

tail of the potential (After

Tomiki 1969)

Table 1 Experimental

lowest-excitation energies

Eexc,0 of Frenkel excitons

for alkali-halide crystals;

Eg and EB denote,

respectively, the bandgap

energy and the resulting

binding energy

Crystal Eg (eV) Eexc,0 (eV) EB (eV)

LiF 13.7 12.8 0.9

NaF 11.5 10.7 0.8

NaCl 8.8 7.9 0.9

NaBr 7.1 6.7 0.4

KF 10.8 9.9 0.9

KCl 8.7 7.8 0.9

KBr 7.4 6.7 0.7
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1.1.2 Excitons in Organic Crystals
Frenkel excitons are observed particularly in organic molecular crystals, such as

in anthracene, naphthalene, benzene, etc., where the binding forces within the

molecule (covalent) are large compared to the binding forces between the mole-

cules (van der Waals interaction, see ▶ Sect. 1.5 of chapter “The Structure of

Semiconductors”). Here, localized excited states within the molecules are favored.

If more than one electron is involved in the excited state, we can distinguish

singlet and triplet excited states, while the ground state is always a singlet state (see

Fig. 3a). In recombination, the singlet–singlet transition is allowed (it is a lumines-

cent transition), while the triplet–singlet transition is spin forbidden. Consequently,

the triplet state has a long lifetime, depending on possible triplet/singlet mixing, and

a much weaker luminescence.

Such singlet and triplet excitons are common in organic semiconductors and

have been discussed extensively (see Pope and Swenberg 1982). Their importance

has also been recognized in inorganic semiconductors in the neighborhood of

crystal defects (Cavenett 1984; Davies et al. 1984) and also in layered semicon-

ductors (GaS and GaSe; Cavenett 1980). The luminescence of singlet excitons is

employed in organic LED (OLED) devices used to create displays for, e.g., mobile

phones or TV screen or for solid-state lighting; for more information, see Shinar

(2004) and Kamtekar et al. (2010).

An example of a molecular singlet and triplet Frenkel exciton is shown in Fig. 3.

Panel (a) gives the level scheme of organic molecules with an even number of π
electrons (i.e., no ions or radicals); the absorption spectrum for tetrachlorobenzene
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Fig. 3 (a) Singlet/triplet exciton schematics with ground state S0, excited singlet states S1 and S2,
and triplet states T1 to T3; occupied spin states are indicated beside the electronic levels. (b)
Optical absorption spectrum of singlet–triplet excitons in a tetrachlorobenzene crystal platelet,

measured at 4.2 K with unpolarized light; line labels denote energy differences in units of cm�1

with respect to the zero-phonon line labeled 0,0 (After George and Morris 1970)
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is shown in panel (b). The transition near 375 nm labeled 0,0 refers to the T1 S0
absorption; transitions at shorter wavelength originate from additional excitations

of molecule and lattice vibrations with energies indicated at the lines. When the unit

cell contains more than one identical atom or molecule, an additional small splitting

of the excited eigenstates occurs. This is referred to as Davydov splitting and is

observed in molecule crystals but not in isolated molecules.

For the exciton transport, we have to distinguish between triplet and singlet

excitons – for a short review, see Knox (1984). For the latter, a dipole–dipole

interaction via radiation, i.e., luminescence and reabsorption, contributes to the

exciton transport. Such a mechanism is negligible for triplet excitons, which have a

longer lifetime and therefore much lower luminescence. For exciton diffusion, see

▶ Sect. 2 of chapter “Carrier-Transport Equations”.

1.2 Wannier–Mott Excitons

Wannier–Mott excitons are found in most of the typical semiconductors and extend

over many lattice constants (seeWannier 1937 andMott 1938). In the center-of-mass

frame, their eigenfunctions, which solve the Schrödinger equation with the Hamilto-

nian Eq. 1, can bewritten as the sumof two terms: a translational partϕ(R) describing
the motion of the entire exciton as a particle with massM= mn + mp and a rotational

part ϕn(r) related to the rotation of electron and hole about their center of mass:

ψ ¼ ϕ Rð Þ þ ϕn rð Þ: (5)

The center-of-mass coordinate R and the electron–hole separation r are given by

R ¼ mnre þ mprh

mn þ mp
and r ¼ re � rh: (6)

The Schrödinger equation of the translation is

� ħ2

2M

@2

@R2
ϕ Rð Þ ¼ EK ϕ Rð Þ; (7)

with the eigenfunctions and eigenvalues determined by the wavevectorK= ke + kh
of the entire exciton:

ϕ Rð Þ ¼ eiK�R, EK ¼ ħ2 Kj j2
2M

: (8)

The rotation is described by

� ħ2

2μ

@2

@r2
� e2

4πee0 rj j
� �

ϕn rð Þ ¼ En ϕn rð Þ; (9)

solved by the quasi-hydrogen eigenvalues given in Eq. 2.
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For isotropic parabolic bands, the minimum optical energy needed to excite an

electron and to create an exciton is slightly smaller than the bandgap energy:

Eg, exc ¼ Eg � R1
μ

m0

1

e2stat

1

n2
þ ħ2 K2

2 mn þ mp


 � with n ¼ 1, 2, . . . ; (10)

the second term is the quasi-hydrogen binding energy (Eq. 2) with e = estat,
and the third term is the kinetic energy due to the center-of-mass motion of

the exciton. This term leads to a broadening of optical transitions compared

to those of bound and confined excitons. The bandgap energy can be

determined from two transitions of the series; e.g., from the 1S and 2S transition

energies Eg ¼ Eg, exc þ Reff
1 ¼ 4

3
E 2Sð Þ � E 1Sð Þð Þ þ Reff

1 is concluded, with Reff
1 the

effective Rydberg energy (or binding energy Eexc,n=1) of the exciton. The values of

the binding energy Eexc,n=1 (Eq. 2) and the quasi-hydrogen Bohr radius aexc,n=1

(Eq. 3) show a clear trend in the dependence on bandgap energy: Fig. 4 shows the

increase of the binding energy and the decrease of the exciton Bohr radius

for increasing low-temperature bandgap. For a listing of exciton energies, see Table 2.

The Wannier–Mott exciton is mobile and able to diffuse (see chapter ▶ “Carrier-

Transport Equations”). Since it has no net charge, it is not influenced in its motion by

an electric field3 and does not contribute directly to the electric current.
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Fig. 4 Exciton binding energy (blue symbols) and ground-state Bohr radius for semiconductors

(green symbols) at low temperature. Ordinate and abscissa values are from ▶Table 2 and

▶Table 8 of chapter “Bands and Bandgaps in Solids,” respectively

3It is, however, influenced by the gradient of an electric field or by strain; see, e.g., Tamor and

Wolfe 1980.
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The ionization energy4 of these excitons in typical semiconductors is on

the order of 10 meV (Table 2 and Thomas and Timofeev 1980); hence, the

thermal energy kT at room temperature (26 meV) is sufficient to dissociate most

of them.

Table 2 Experimental parameters of 1SWannier–Mott excitons for some semiconductors at low

temperature; d and i denote direct and indirect excitons, respectively, and A, B, C excitons with

holes from the respective valence bands in wurtzite crystals; T signifies the measurement temper-

ature; 0 refers to extrapolated data

Crystal d/i

Ground-state

energy

Eg,exc
1S (eV) T(K)

Binding

energy

Eexc,n=1

(meV)

Bohr radius

aexc,n=1 (Å)

Reduced

mass

μ (m0)

Cdiam i 5.409 1.6 80 16 0.191

Si i 1.1545 1.6 14.7 42 0.145

Ge i 0.7405 2.1 4.2 (�3/2)
3.1 (�1/2)

108

143

0.079

0.059

AlN d 6.025 (A)
6.243 (B)
6.257 (C)

1.7

1.7

1.7

�55 (A)
�55 (B)
�55 (C)

AlAs i 2.228 2 18 41 0.134

AlSb i 1.677 4.2 10 64 0.092

α-GaN d 3.476 (A)
3.482 (B)
3.499 (C)

4.2

4.2

4.2

24.0 (A)
22.8 (B)
24.5 (C)

31 (A)
33 (B)
31 (C)

0.164 (A)
0.156 (B)
0.168 (C)

β-GaN d 3.2725 26 32 0.156

GaAs d 1.5152 2 3.6 155 0.044

GaSb d 0.8099 2 1.5 306 0.027

InP d 1.4814 2 4.8 120 0.055

InAs d 0.4157 4.8 1.0 494 0.016

InSb d 0.2347 1.7 0.4 1017 0.009

ZnO d 3.3756 (A)
3.3811 (B)
3.4327 (C)

1.5

1.5

1.5

63 (A)
50 (B)
49 (C)

32 (A)
35 (B)
37 (C)

0.062 (A)
0.057 (B)
0.054 (C)

α-ZnS d 3.8069 0 34.2 27 0.106

ZnSe d 2.8052 0 19.9 41 0.119

ZnTe d 2.3816 0 12.7 62 0.078

α-CdS d 2.5529 (A)
2.5676 (B)

1.6

1.8

27 (A)
31 (B)
30 (C)

26

25

25

0.197 (A)
0.204 (B)
0.211 (C)

CdSe d 1.8265 (A)
1.8503 (B)

0

0

15.7 (A)
16.7 (B)

48

45

0.106 (A)
0.112 (B)

CdTe d 1.595 4.8 10.5 65 0.085

Cu2O d 2.1472 (n = 2) 1.2 98 (n � 2) 11 0.407

4The ionization energy is also referred to as binding energy or Rydberg energy.
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The principal quantum number n defines S states (l = 0) which contribute to

electric dipole transitions in direct-gap semiconductors with allowed transitions,

while P states (l = 1) contribute to dipole-forbidden transitions (see triplet excitons

in previous section). With introduction of symmetry-breaking effects, such as

external fields, external stresses, or those in the neighborhood of crystal defects

(Gislason et al. 1982), and moving slightly away from k = 0, the other quantum

numbers, l and m, need to be considered. This results in a more complex line

spectrum. Exciton transitions with n ! 1 merge into the edge of the band

continuum (Fig. 5).

At low temperatures, excitons have a major influence on the optical absorption

spectrum. This can be seen from the matrix elements Mcv for transitions from near

the top of the valence band to the vicinity of the bottom of the conduction band.

When considering exciton formation, the band-to-band transition matrix elements

(e.g., ▶Eq. 21 of chapter “Band-to-Band Transitions”) are modified by multipli-

cation with the eigenfunction of the exciton ϕn(r) as discussed in the following.

1.2.1 Direct-Gap Excitons
For an excitonic single-photon absorption at the Γ point in a direct-bandgap

material, the matrix element is given by

M excð Þ
cv ¼ Mcvϕn 0ð Þ; (11)

withMcv given by▶Eq. 21 of chapter “Band-to-Band Transitions”. The strength of

the absorption is proportional to the square of the matrix element, which yields

E

Eg

Eg, exc

n = 1

K

2

3

Reff
∞

Fig. 5 Band model with

exciton levels that result in a

hydrogen-like line spectrum

for direct-gap

semiconductors. The shaded

area above Eg indicates

unbound continuum states
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αo, vc, exc ¼ αo, vc ϕn 0ð Þj j2; (12)

where αo,vc is the valence-to-conduction band optical absorption coefficient

neglecting excitons. In the case of isotropic parabolic bands, the eigenfunction of

the nth exciton state is related to the ground state with n = 1 by

ϕn 0ð Þj j2 ¼ n�3 ϕ1 0ð Þj j2: (13)

For exciton states5 below the bandgap, it follows

ϕn 0ð Þj j2hv<Eg
¼

1

a3qH n
3

allowed

n2 � 1

π a5qH n
5

forbidden

8>>><
>>>:

(14)

for the indicated type of transitions (▶ Sects. 1.3 and ▶ 2.2 of chapter “Band-to-

Band Transitions”) and with the quasi-hydrogen radius aqH= aHestatm0/μ= aexc,n=1

for e = estat. For higher excited states, the line intensity decreases proportional to

n�3 or n�5(n2�1) for allowed or forbidden transitions. The optical absorption per

center is spread over a large volume element of radius aqH � n2; therefore, the
corresponding matrix element is reduced accordingly. The spacing of the absorp-

tion lines is given by

E dirð Þ
g, exc ¼ Eg � Eexc,n; (15)

Eg is also the limit of the line series (Fig. 5). Hence, we expect one strong line for

the ground state in absorption, followed by much weaker lines for the excited states

which converge at the absorption edge (see Fig. 7).

Electric dipole-forbidden (1S) transitions6 are observed in only a few semi-

conductors. Most extensively investigated is Cu2O with d-like valence bands,

which has two series of hydrogen-like levels – the yellow (superscript y) and

the green (superscript g) series from the Γ7 and Γ8 valence bands, respectively.

The observed level spectra are given in Fig. 6, with

5ϕn 0ð Þ 6¼ 0 applies only for S states.
6Strictly, such transitions cannot occur at k = 0; however, a slight shift because of the finite

momentum of the photon permits the optical transition to occur because of a weak electric

quadrupole coupling (Elliott 1961). Such transitions can also be observed under a high electric

field using modulation spectroscopy (Washington et al. 1977). Dipole-forbidden transitions are

easily detected with Raman scattering (Sect. 1.3) or two-photon absorption (for Cu2O, see Uihlein

et al. 1981), which follow different selection rules.
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E yð Þ
n ¼ 2:1661� 0:0971=n2


 �
eV and E gð Þ

n ¼ 2:2975� 0:1565=n2

 �

eV (16)

for the P levels of these two series. According to the second case of Eq. 14, the

series starts with n= 2 (Fig. 7b) and is observed up to n= 25 in pure Cu2O crystals7

(Kazimierczuk et al. 2014). In addition, there are two dipole-allowed excitons in the

blue and violet range of the spectrum from the two valence bands into the higher

conduction band Γ12 (Compaan 1975). Figure 7b shows that with sufficient pertur-

bation by an electric field, the electric dipole selection-rule is broken, and the

S transitions are also observed in the yellow (and also in the green) series. Another

material showing forbidden exciton spectra is SnO2.

In contrast to the strongly absorbing Frenkel exciton with a highly localized

electron–hole wavefunction in the ground state, the intensity of the Wannier–Mott

exciton lines is reduced by (a/aqH)
3: the larger the quasi-hydrogen radius aqH is

compared to that of the corresponding atomic eigenfunction a, the weaker is the

corresponding absorption line (see Fig. 7b and Kazimierczuk et al. 2014).

Forhv > Eg near the band edge, the absorption is substantially increased due to the

effect of the Coulomb interaction. With exciton contribution, a semiconductor with a

direct bandgap between spherical parabolic bands has an increased absorption given

by (for details, see Bassani and Pastori-Parravicini 1975)

α dirð Þ
o, vc, exc ¼

γe
expγe
sinhγe

allowed

γe
1þ γe=πð Þ2
h i

expγe

sinhγe
forbidden

8>>><
>>>:

, with γe ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eexc, n

hv� Eg

s
: (17)

Cu2O
a b

Fig. 6 (a) Absorption spectrum and (b) band structure near the Γ point of Cu2O with strong dipole-

allowed (blue and violet) and weak forbidden (yellow and green) transitions. The absorption below
the yellow series corresponds to indirect transitions to the 1S exciton via phonon coupling

7With a correspondingly large exciton Bohr radius of 1.04 μm for n = 25, compared to �1 nm for

n = 1.
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The Coulomb interaction of the electron and hole influences the relative motion,

and the optical absorption in the entire band-edge range is thereby enhanced, as

shown in Fig. 8. In semiconductors with large estat and small reduced mass μ, only
the first exciton peak is usually observed: in GaAs the relative distance Eg –

Eexc(K= 0) is only 3.4 meV. Higher absorption lines, which are too closely spaced,

are reduced in amplitude and merge with the absorption edge in most direct-gap

III–V compounds. Figure 8 shows the pronounced excitonic absorption below the

band-edge energy Eg and the onset of continuum absorption above Eg. For an

advanced discussion, see Beinikhes and Kogan (1985).

A line spectrum including higher excited states can be observed more easily

when it lies adjacent to the reduced absorption of forbidden transitions. It is also

easier to observe in materials with a somewhat higher effective mass and lower

dielectric constant to obtain a wide enough spacing of these lines. Well-resolved

line spectra of higher excited states can be observed when they do not compete with

other transitions and are not inhomogeneously broadened by varying lattice

environments.

1.2.2 Complexity of Exciton Spectra
The simple hydrogen-like model described above must be modified in real semi-

conductors because of several contributions (Flohrer et al. 1979):

• The anisotropy of effective masses and dielectric constants

• The electron–hole exchange interaction

• The exciton–phonon interaction

• The action of local mechanical stress or electrical fields

• The interaction with magnetic fields
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Fig. 7 (a) Direct-bandgap dipole-forbidden transitions including (red curves) and excluding

exciton excitation (blue curve). (b) Transitions in Cu2O at 4 K (After Grosmann 1963)
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These contributions act on quantum numbers l, m, and s not included in the

discussed model; they introduce anisotropies and lift the degeneracy of conduction

or valence bands as considered in the following.

The anisotropy of the effective masses produces excitons, elongated in the

direction in which the mass is smallest. A compression in the direction of the

largest effective mass reduces the quasi-hydrogen Bohr radius aqH in this direc-

tion by a factor of less than 2 and increases EqH up to a factor of 4 (Shinada and

Sugano 1966). The reduced exciton mass μ, entering the expression for the

exciton energy in Eq. 10, is given by
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Fig. 8 Direct-bandgap dipole-allowed transitions including exciton excitation (i.e., effects of

Coulomb interaction, red curves in (a)) and excluding this (blue curves in a and b). Examples are

(b) for transitions in GaAs (After Weisbuch et al. 2000) and (c) for Ge (After McLean 1963); (c)
shows the decrease of absorption at higher temperatures where excitons can no longer exist;

measured curves are shifted due to the temperature dependence of the bandgap energy Eg(T )
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1

μ
¼ 2

3

1

μ⊥
þ 1

3

e⊥
ek

1

μk
: (18)

The meaning of ⊥ and k depends on the crystal structure. For instance, in wurtzite-
type semiconductors, kmeans parallel to the c direction. For calculation of the reduced

effective mass, we distinguish six effective masses: m⊥
n ,m

k
n,m

⊥
pA,m

k
pA,m

⊥
pB,m

k
pB

with the A and B valence bands split by the crystal field with Γ9 and Γ7 symmetry,

respectively, neglecting the spin–orbit split-off band, the C band.

The lifting of band degeneracies occurs generally when bands are split by, e.

g., intrinsic anisotropy in a crystal or, following the application of mechanical

stress, an electric or a magnetic field. The exciton line spectrum can be distin-

guished with respect to transitions from different valence bands, which result in

different exciton line series with different spacings because of a different

reduced mass. Taking splitting and warping of the valence bands (▶ Sects.

1.2.2 and ▶ 1.2.3 of chapter “Bands and Bandgaps in Solids”) into consider-

ation, one obtains a splitting of the P-like exciton states (Baldereschi and Lipari

1973). This is shown in Fig. 9 as a function of the reduced effective mass. The

reduced mass μ can in turn be expressed as a function of the Luttinger valence-

band parameters:

μ ¼ 6γ3 þ 4γ2
5

mnm0

m0 þ mnγ1
: (19)

For a review, see Rössler (1979) and Hönerlage et al. (1985).

The electron–hole exchange interaction due to the coupling of the electron and

hole spins contains a short-range (JSR) and a long-range term (JLR) (also referred to
as analytic and nonanalytic contributions), which depend on the wavevector of the

exciton motion: Jlongitudinal ¼ JSR þ 2
3
JLR and Jtransversal ¼ JSR � 1

3
JLR. Thereby the

fourfold degenerate A(n = 1) exciton is split into two Γ6 and Γ5 exciton states, each
twofold degenerate (compare Fig. 10b); the fourfold B(n= 1) exciton splits into the

≈ ≈
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Fig. 9 Exciton binding

energy for S and P states as a
function of the reduced mass

(After Baldereschi and Lipari

1973)
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Γ5 exciton, which is twofold degenerate, and into the nondegenerate Γ1 and Γ2
exciton states. The A(Γ6) and B(Γ2) states are not affected by the exchange

interaction. For details, see Denisov and Makarov (1973) and Flohrer

et al. (1979) who model explicitly wurtzite CdS. The splitting for GaN is discussed

by Rodina et al. (2001) and for ZnO by Lambrecht et al. (2002).

The exciton–phonon interaction depends strongly on the carrier–lattice cou-

pling, which is weak for predominantly covalent semiconductors, intermediate for

molecular crystals, and strong for ionic crystals (alkali halides). Excitons can

interact with phonons in a number of different ways. One distinguishes exciton

interaction (for reviews, see Vogl 1976 and Yu 1979) by:

• Nonpolar optical phonons via the deformation potential (a short-range interac-

tion; Loudon 1963)
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Fig. 10 Splitting of exciton levels for (a) cubic and (b) uniaxial crystals from the spin-triplet states

(t) into dipole-allowed spin singlets and to the longitudinal (L ) and transverse (T ) dipole-allowed
states due to exchange effects; numbers denote degeneracies. Levels in (b) are given for exciton

wavevectorsK parallel and perpendicular to the crystal c axis. (c) Mixed longitudinal and transverse

modes of the A and B excitons as a function of the angle θ of K with respect to c (After Cho 1979)
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• Longitudinal optical phonons via the induced longitudinal electrical field

(Fröhlich interaction; Fröhlich 1954)

• Acoustic phonons via the deformation potential for a large wavevector, since for

qffi 0 the exciton experiences a nearly uniform strain resulting in a near-dc field,

resulting in no interaction with the electrically neutral exciton (Kittel 1963)

• Piezoelectric acoustic phonons via the longitudinal component similar to the

Fröhlich interaction (Mahan and Hopfield 1964)

Another interaction involves three-particle scattering among photons, phonons,

and excitons, such as the relevant Brillouin and Raman scattering (see Yu 1979 and

Reynolds and Collins 1981).

In solids with a strong coupling of electrons (and holes) with the lattice, the

exciton–phonon interaction can become large enough to cause self-trapping of an

exciton (Kabler 1964). This can be observed in predominantly ionic crystals with a

large bandgap energy and occurs because of a large energy gain due to distortion of

the lattice by the exciton. It results in a very large increase of the effective mass of the

exciton, which is usually a Frenkel exciton. It is distinguished from a polaron by the

short-range interaction of the exciton dipole, compared to the far reaching Coulomb

interaction of the electron/polaron. The self-trapped exciton may be a significant

contributor to photochemical reactions. It is best studied in alkali halides; for a

review, see Toyozawa (1980) and Song and Williams (1993).

In anisotropic crystals with an external perturbation, wemust consider the relative

direction of the exciting optical polarization e, the exciton wavevector K, and the

crystallographic axis c. One distinguishes σ and π modes when e is ⊥ or k to the

plane of incident light, respectively (transverse and longitudinal excitons). When the

incident angle θ 6¼ 90	, mixed modes appear (Fig. 10c). The resulting exciton lines in

cubic and hexagonal systems for k⊥c and kkc are given in Fig. 10a, b.

Many of the band degeneracies are lifted when the crystal is exposed to internal

or external perturbation. Internally, this can be done by alloying (Kato et al. 1970)

and, externally, by external fields such as mechanical stress and electrical or

magnetic fields (reviewed by Cho 1979).

1.2.3 Indirect-Gap Excitons
Indirect-gap excitons are associated with optical transitions to a satellite minimum

at K 6¼ 0. The energy of an indirect exciton is

E indirð Þ
g, exc ¼ E indirð Þ

g � Eexc, n þ ħ2

2μ
K� q0ð Þ2; (20)

with μ as the reduced mass between the valence bands and the satellite minima of

the conduction band. In order to compensate for the electron momentum k0 at the

satellite minimum, the transition requires an absorption or emission of a phonon of

appropriate energy and momentum. The phonon momentum q0 is equal to k0 (see

Fig. 11).
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During the indirect excitation process, an electron and a hole are produced with a

large difference in wavevectors. Such excitation can proceed to higher energies

within the exciton dispersion using a slightly higher photon energy. The excess in

the center-of-mass momentum is balanced by only a small change in phonon

momentum. Therefore, we observe an onset for each branch of appropriate phonon

processes for indirect-bandgap transitions, following selection rules, rather than a

line spectrum observed for direct-bandgap material. Here, relaxing phonon pro-

cesses are hardly observed since they have a much smaller probability.

One obtains for the absorption coefficient caused by these indirect transitions

α indirð Þ
o, cv, exc ¼

α�o f BE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv� E indirð Þ

g þ Eg,exc,n þ ħωq

q
þ f BE þ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv� E indirð Þ

g þ Eg,exc,n � ħωq

qh i
;

(21)

where αo
* is a proportionality factor. This factor includes the absorption enhance-

ment relating to the square of the exciton envelope function, and fBE is the

Bose–Einstein distribution function for the phonons. The two terms describe

transitions with absorption and emission of a phonon, respectively. The allowed

spectrum consequently has two edges for the ground state of the exciton, plus or

minus the appropriate phonon energy. It is shown in Fig. 12b for the indirect gap of

Ge. Excited exciton states disappear because of the strong (1/n3) dependence of the
oscillator strength. The branch caused by phonon absorption also disappears at

lower temperatures as less phonons are available.

For indirect-bandgap semiconductors like Ge, also transitions at K = 0, i.e.,

direct-gap exciton transitions, can be observed; they proceed into a higher band

above the bandgap. As an example, the exciton line near the direct transition at the

Γ point of Ge at 0.883 eV for 77 K is shown in Fig. 12a, c.

k0
q00

Eg

kq00

Eg

EexitonEelectron
LB

VB

Eg - Eg,exc

a b

Fig. 11 Dispersion relation for indirect-bandgap excitons: (a) Typical band dispersion E(k) of an
indirect semiconductor. (b) Satellite minimum with ground and first excited state parabolas of

indirect excitons

502 Excitons



A more structured series of square-root shaped steps at the indirect excitonic

transition is shown for GaP in Fig. 13. Here, different types of involved phonons are

observed more pronounced. The corresponding energies of the absorbed or emitted

phonons are 12.8, 31.3, and 46.5 meV for TA, LA, and LO phonons in GaP,

respectively.
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1.3 Exciton–Polaritons

In some of the previous sections, the interaction of light with electrons was

described by near band-to-band transitions close to K = 0, creating direct-bandgap

excitons. This interaction requires a more precise analysis of the dispersion relation.

The exciton and photon dispersion curves are similar to those for phonons and

photons (Fig. 14). Both show the typical splitting due to the von Neumann

noncrossing principle. In this range, the distinction between a photon and the

exciton can no longer be made. The interacting particle is a polariton or, more

specifically, an exciton–polariton.
Entering the resonance frequency for excitons into the polariton dispersion

equation (▶Eq. 68 of chapter “Photon–Phonon Interaction”) and including spatial

dispersion (ħ2K2ωt
2/μ2), we obtain the exciton–polariton equation

v4 � v2 v2l þ
c2k2

e�

� �
þ c2K2

e�
v2t ¼ 0 (22)

with a kinetic energy term

hv l,tð Þ ¼ hvexc l,tð Þ þ ħ2K2

2 mn þ mp


 � : (23)

The ability of the exciton to move through the lattice represents propagating

modes of excitation within the semiconductor. They are identified by the term/ K2

and have a group velocity (/ @E/@K ) on the order of 107 cm/s. Consequently, the

dielectric constant is wavevector dependent and can be written as

k k

phonons excitons

LB - LP

LB - TP

UB

ck/√ εopt

ck/√ εstat
√ εstat/εopt

ħwLO

ħwTO

Eg-hνl
Eg-hνt

ν2k2

αν2k2
t

a b EE

≈≈

Fig. 14 Comparison between (a) a phonon–polariton and (b) an exciton–polariton (schematic and

not to scale) with upper (UB)- and lower-branch (LB) longitudinal (LP) and transverse polaritons

(TP)
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e� ¼ eopt 1þ v2l � v2t
v2t � v2 þ βK2 � iγv

� �
, whereβ ¼ hvt

mn þ mp
: (24)

There is now an additional spatial dispersion term βK2 in the denominator in

contrast to an otherwise similar equation for the phonon–polaritons, which does

not have spatial dispersion.

The polariton dispersion-equation has several branches. These branches depend

on crystal anisotropy and the relative orientation of the polarization of light, exciton

K vector, and crystallographic axes. As many as four lower and two upper branches

are predicted and observed by single- and two-photon excitation processes. An

example is shown for CdS in Fig. 15, with upper and lower branches for longitu-

dinal and transverse excitons pointed out; the given abscissa values are related to

the wavevector by Re kð Þ ¼ ω=cð ÞRe ~nð Þ . See also Girlanda et al. (1994); for a

review, see Hönerlage et al. (1985).

If the impinging light has an energy below, but close to, a free exciton line in

direct-bandgap semiconductors, a longitudinal acoustic phonon can supply the

missing energy, and resonant Brillouin scattering with exciton–polaritons

occurs. When the energy supplied by the photon lies below the 1S exciton,

one observes a single backward scattered Stokes line at hv1s (Fig. 16) with a

transition k2 ! k02 . When the frequency of the photon lies above hv1S, four
Stokes-shifted lines are expected, for which energy and momentum conserva-

tion is fulfilled. The same number of blue-shifted anti-Stokes lines is addition-

ally observed (not shown in the figure for clarity). The exciton–polariton state is

created with phonons near the center of the Brillouin zone, which interact

strongly with optical radiation.
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Fig. 15 Energy of A and

B exciton–polaritons as a

function of the real part of the

index of refraction for E k and
⊥ to c in a wedge-shaped CdS
crystal compared to

theoretical curves (After

Broser et al. 1981)
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In contrast to the phonon–polariton scattering discussed in▶Sect. 3.1 of chapter

“Photon–Phonon Interaction”, the lower branch of the exciton–polariton is not flat

but parabolic in its upper part, since the exciton is mobile and can acquire kinetic

energy which causes an E / k2 behavior. In addition, there are several lower

branches according to the different excited states of the exciton; for a review, see

Yu (1979). A measured spectrum8, showing several of these branches from the

ground and excited states of the exciton, is shown in Fig. 17. Some of these relate to

interaction with LA phonons, others with TA phonons, as indicated in the figure.

Additional information about the exciton–polariton dispersion relation is

obtained from hyper-Raman scattering. More intense optical excitation is required

to induce a two-photon excitation of a virtual biexciton9 (see Fig. 18). Hyper-

Raman scattering, when using two photons of frequencies v1 and v2, each having an
energy slightly below the bandgap energy and propagating with wavevectors kl and

k2 inside the semiconductor, creates a new intermediate state with

k1 þ k2 ¼ K and hv1 þ hv2 ¼ E Kð Þ: (25)

If the energy hv1 þ hv2 is close to the resonant state (the biexciton), one observes a
strongly enhanced transition (see Fröhlich 1981). The virtual biexciton decays into

two quasiparticles, one of which is observed, while the other remains in the crystal

to conserve energy and momentum. There are three possibilities:

≈

k1 k2

k2

k2’

k2’

k2’

k2’
k2’

k1’

k1’
k1’

k1’

k0

2’ 21’ 1hν
 

hν1s 

Fig. 16 Dispersion curves of

free exciton–polaritons with

inner (1, 10) and outer

branches (2, 20), indicating
the Stokes processes of

Brillouin scattering between

different branches

8The analysis of the measured reflection spectrum as a function of the wavelength and incident

angle is rather involved. A relatively simple method for measuring the central part of the

exciton–polariton spectrum in transmission through a prismatic crystal was used by Broser

et al. (1981) (see Fig. 13).
9A state close to an actual biexciton state (Sect. 1.4) which immediately decays into other states.
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Fig. 17 Brillouin shift of the scattered laser light in CdS as a function of the laser energy.

Theoretical transitions refer to the indexing shown in Fig. 16. Parameters: dielectric constant eb =
9.38, oscillator strength 4παo = 0.0142, excitonic mass 0.83 m0, phenomenological damping

constant γ = 0.5 cm, transverse exciton energy 2.5448 eV, and longitudinal exciton energy

2.5466 eV. The numerals 1 and 2 refer to inner and outer branch polaritons (After Wicksted

et al. 1984)
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Fig. 18 (a) Hyper-Raman scattering illustrated by one lower polariton branch drawn in two

dimensions (kx, ky). Exciting laser photon, hνl(kl); virtual biexciton, 2hνl(2kl); indicated recombi-

nation, backscattering (red arrows) one polariton-like and one exciton-like state, arrow at 180	

paired to arrow at 0	 for leftover polariton; forward scattered pair, blue arrows as alternatives. (b)
Dispersion curves of five branches of polaritons in CuBr for ek[001] and Kk[110] (After

Hönerlage et al. 1985)
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hv1 þ hv2 ¼ ELP KLPð Þ þ ELP KLPð Þ (two lower-branch polaritons)

hv1 þ hv2 ¼ ELP KLPð Þ þ EUP KUPð Þ (one lower, one upper polariton)
hv1 þ hv2 ¼ ELP KLPð Þ þ EL, exc KL, exc


 �
(one lower polariton, one longitudinal

exciton)

For all of these alternatives, the condition

k1 þ k2 ¼ Ki þKj (26)

is fulfilled.

Figure 18a depicts the creation of a biexciton from two photons (two green

arrows up) with energies hv1 ¼ hv2 ¼ hvl and wavevector k1 ¼ k2 ¼ kl along the

ky axis; both photons are provided by the same laser with energy hvl, and the

biexciton has 2hvl energy and 2kl wavevector. This biexciton decays into two

lower polaritons (pair of red arrows down) which are offset by an angle to fulfill

momentum conservation and land at different points (hv) on the polariton surface;
one of these polaritons is observed, and θ is the scattering angle between incident

photon and observed polariton. The point of landing depends on the energy of

the initiating photon pair and the angle of observation of the emitted (scattered)

photon [backscattering, small θ (<30	), solid red arrows; forward scattering

(observation through the sample), large θ, dashed arrows]. This makes hyper-

Raman scattering a three-photon process; it is determined by the third-order term

in the susceptibility. The entire polariton spectrum is obtained by changing

the energy of the exciting light (the resulting virtual biexciton), the angle and

energy of the emitted photon, and calculating energy and momentum of the

leftover polariton. Several polariton branches have consequently been observed

(Fig. 18b).

Hyper-Raman scattering follows selection rules other than those for normal

Raman scattering or IR absorption. It thereby yields additional information about

the lattice vibrational spectrum, e.g., about dipole modes in centrosymmetrical

lattices which are forbidden in normal Raman scattering. It also permits excitation

deep inside a crystal. For reviews, see Denisov et al. (1987) and Hönerlage

et al. (1985); see also García-Cristóbal et al. (1998).
Besides the bulk polaritons discussed so far, there are also surface-polariton

modes; they progress in a thin layer near the semiconductor surface and can be used

to reveal properties of the crystal near the surface. Grazing incident light or

reflection measurement is used for their detection (Hopfield and Thomas 1963);

for Raman measurements, see Davydov et al. (1997). The region near the surface

cannot be penetrated by bulk-excitons to a thickness of either the space-charge

region at the surface or the bulk-exciton diameter, whichever is larger (Altarelli

et al. 1979). These surface exciton–polaritons are reviewed by Fischer and

Lagois (1979).

508 Excitons



1.4 Trions and Biexcitons in Bulk Crystals

Free Trions An exciton can be weakly bound to an electron or another exciton to

form a trion or biexciton, respectively (Lampert 1958; Moskalenko 1958; a pro-

ceeding on trions is found in Phys. Stat. Sol. B 227 (2), 2001). The trion is

composed of either two electrons and a hole (this one is similar to an H� ion) or

two holes and an electron. Therefore, it is negatively or positively charged.

Predicted by Gerlach (1974) and observed first by Thomas and Rice (1977), their

binding energy in Ge is on the order of 0.2 meV; this trion has an effective mass of

about 20% more than the sum of the free electron and hole masses, a radius about

50% larger than that of an exciton, and an ionization energy about 10% of the

ionization energy of excitons.

Reports on free trions in semiconductors are scarce. Calculations yield states

which are stable against dissociation into an exciton and a free carrier in both three-

dimensional (3D) and lower-dimensional semiconductors. The binding energy

(with respect to the exciton energy) depends on the ratio of electron and hole

effective masses and is generally small for bulk semiconductors, typically one

tenth for 3D trions compared to 2D quantum-well trions (Fig. 19); often experi-

mental assignments are not unequivocal.

Characteristic features distinguish trions from excitons. Their formation is

influenced by the position of the Fermi energy, as explicitly demonstrated for 2D

trions (Sect. 2.2). In optical transitions, the initial electron or hole momentum is

transferred to the final trion state, which leads to low-energy tails at the trion and

exciton lines; in addition, exciton–electron scattering gives rise to a high-energy tail

(trion continuum) at the exciton transition (Esser et al. 2001). In a magnetic field,

trions show circularly polarized transitions for singlet and triplet states. Since trions

have a significantly increased binding energy in low-dimensional semiconductors,

they are well studied there and discussed in more detail in Sect. 2.
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Fig. 19 Calculated binding

energies of 3D and 2D

negative (X�) and positive

trions (X+) as a function of the

electron and hole effective

mass ratio (After Stébé and
Ainane 1989). Energies are

given with respect to the

binding energy of a donor in a

3D crystal (The generally

used symbol for trions is X+;

in initial work also the symbol

Xþ2 was used, in analogy to a

positively charged Hþ2
molecule)
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Free Biexcitons Biexcitons are exciton molecules X2 similar to a hydrogen mol-

ecule (when mp
mn) or a positronium molecule (when mpffimn). Biexcitons form

a stable bound state of two excitons for all ratios of electron to hole effective masses

and in all dimensions from 3D to 0D. The binding energy of a biexciton is higher

than that of a trion and is typically of the order of 10–20% of that for an exciton. For

isotropic bands, it decreases monotonically with increasing ratio of mn/mp from E
B

X2ð Þ=Reff
1 Xð Þffi 0.3 for mn/mp! 0 to 0.03 for mn/mp = 1 (Akimoto and Hanamura

1972; Brinkman et al. 1973). This is similar to the decrease in relative binding

energy from a hydrogen molecule E
B
H2ð Þ=R1 Hð Þ= 4.7/13.6 = 0.35 to the relative

binding energy of a positronium (Ps) molecule E
B
Ps2ð Þ=E

B
Psð Þ = 0.13/6.8 = 0.02.

Such biexcitons have been observed in Si (Hanamura and Haug 1977; Thewalt and

Rostworowski 1978) and can be observed readily in II–VI semiconductors (Zn and

Cd chalcogens) or CuCl and CuBr (see Haken and Nikitine 1975 and Ueta and

Nishina 1976). Biexciton and exciton spectra of a bulk-like thick ZnS layer are

given in Fig. 20. Tensile strain splits the valence band of the zincblende ZnS into the

heavy- and light-hole bands, each producing an exciton emission. The exciton

emission increases approximately linearly with excitation intensity Iex, while the

biexciton emission increases roughly quadrastically10 (IXLH
/ I1:1ex , IXX / I1:9ex ): the

probability to form a biexciton molecule XX is proportional to the density of each of
the two participating excitons X; the dominating line in Fig. 20 is the light-hole

biexciton Xlh.

A high density of excitons hence favors the formation of biexcitons. However,

the low binding energy requires low temperatures which, in turn, favors further
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Fig. 20 Photoluminescence

spectra of biexcitons

(XX) and light- (Xlh) and

heavy-hole exciton (Xhh) in a

6 μm-thick tensely strained

ZnS layer on GaAs substrate.

Spectra are normalized with

respect to the peak intensity

of the Xlh line (After Yamada

et al. 2000)

10Deviations from a pure quadratic dependence are due to the short radiative lifetime for the

involved species in direct-bandgap semiconductors, preventing a thermal equilibrium of the

population.
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condensation into an electron–hole liquid (▶ Sect. 3.2 of chapter “Equilibrium

Statistics of Carriers”). This condensation can be suppressed by applying a uniaxial

stress (Gourley and Wolfe 1978) or biaxial strain as in epitaxial layers (Fig. 20);

larger biexciton signals are then observed. Further discussion of excitonic mole-

cules is provided by Kulakovskii et al. (1985).

The line shape of biexcitons, observed by luminescence or scattering experi-

ments, is typically asymmetric (similar to that of trions) because of the recoil energy

when they recombine: the line has a larger low-energy tail. During this process, there

is always a remaining partner that can take up part of the energy as kinetic energy.

For a review, see Hanamura (1976) and Hönerlage et al. (1985). At higher densities,

excitons or excitonic molecules can no longer exist, but form an electron–hole

plasma, as described in ▶ Sect. 3.2 of chapter “Equilibrium Statistics of Carriers”.

2 Excitons in Low-Dimensional Semiconductors

In low-dimensional semiconductors, the density of states is modified (▶ Sect. 3.2

and ▶Fig. 37 of chapter “Bands and Bandgaps in Solids”), yielding an increase at

the band-edge energy for gradually decreased dimensionality. In addition, the

dielectric constant and effective mass are anisotropic and result in ellipsoidal

excitonic eigenfunctions. The exciton binding-energy is increased by confining

barriers, affecting energies of the Rydberg series, the Bohr radius, and the oscillator

strength. We first focus on two-dimensional excitons.

2.1 Excitons in Quantum Wells

Carriers in a quantum well are free to move in two spatial directions (x,y), while
confining barriers lead to quantized states in the third dimension (z) (see ▶Sect.

3.1.1 of chapter “Bands and Bandgaps in Solids”). The confinement applies also for

excitons, and the two-dimensional exciton energy gets

Eg, exc, 2D ¼ Eg þ Ez � R1
μ

m0

1

e2stat

1

n� 1
2

ð Þ2 þ
ħ2 K2

x þ K2
y

� �
2 mn þ mp


 � with

n ¼ 1, 2, . . . :

(27)

Here, Ez is the energy of the quantization in z direction given by the quantum

number nQW= 1 in▶Eq. 54 of chapter “Bands and Bandgaps in Solids” for infinite

barriers and shown in ▶ Fig. 31 of chapter “Bands and Bandgaps in Solids” for

finite barriers. The third term is the effective Rydberg energyReff
1 (or binding energy

Eexc,n=1; see Eq. 10); if the exciton wavefunction does not penetrate significantly

into the barriers, the material parameters of Reff
1 remain unchanged; consequently,

the binding energy of the two-dimensional 1S exciton is increased by a factor of
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4 compared to the 3D 1S exciton (Shinada and Sugano 1966). In real quantum wells

with finite barriers, the factor is smaller and depends on the well width (see Fig. 21).

The confinement results in elliptical orbits with a highly compressed coordinate in

the direction normal to the quantum-well plane. Here, the orbiting electron and hole

approach each other closely, which causes the increase in their binding energy.

Initial work on quantum wells was done by Dingle et al. (1974). For a review, see

Ploog and Döhler (1983) and Miller and Kleinman (1985).

Since the binding energy depends on the well width, variations of this width by a

roughness of the interfaces between well and barriers (also on a scale of atomic

monolayers) also affect the binding energy. This applies not only to excitons but

also to charged excitons (trions) and higher exciton complexes (Filinov et al. 2005).

The binding energy depends also on the effective mass (see Eq. 27); since heavy

and light holes have different effective masses, their splitting in exciton spectra can

be used to measure the strain in quantum wells (Kudlek et al. 1992).

The increased binding energy and decreased spatial extension in two dimensions

are accompanied by an increased oscillator strength f, originating from a larger

overlap of the electron and hole wavefunctions. In three dimensions, f nð Þ / n�3; in
two dimensions n is replaced by n� 1

2
, yielding a substantial increase in transition

probability. Exciton absorption in quantum wells causes the near-band edge

features shown in ▶ Fig. 15 of chapter “Band-to-Band Transitions”. These

Wannier–Mott excitons are observed in bulk material only at low temperatures,

but remain visible to much higher temperatures in quantum wells. The substantially

increased lifetime of excitons at higher temperatures is due to the increased exciton

binding energy, which is caused by the two-dimensional confinement.
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In the energy diagram (Fig. 22a), the exciton energies are shown as lines below the

electron levels ei. The bonding energy of the 1S exciton is indicated as EB= e1�Eexc,

n=1. The exciton energy, however, lies above the gap energy of the well material

(labeled by QW in Fig. 22a). We distinguish light- (lh) and heavy-hole (hh) excitons
and excitons relating to the first or higher electron level. An example is given in

Fig. 22b for a single GaAs/AlGaAs quantum well: excitons are shown combining up

to the third conduction-band level with up to the fourth valence-band level.

The linewidth of the exciton absorption is given by its relaxation time (discussed

in▶ Sect. 2.2 of chapter “Dynamic Processes”). Additional broadening is caused by

disorder in the alloy of the quantum well or the barriers and, particularly when

severely confined, also by the quality of the well interfaces. Roughness in these

interfaces causes broadening by well-width fluctuation (Bajaj and Reynolds 1987).

At very low temperatures, well-size fluctuations are resolved as different spikes

separated by <1 meV, as shown by Yu et al. (1987).

Electric and uniaxial stress fields cause characteristic changes in the exciton

spectrum of quantum wells. The electric field perpendicular to the layers causes a

Stark shift toward longer wavelength. New peaks become visible, caused by transi-

tions which were forbidden without perturbation, e.g., such from themth level of the
valence band to the nth level of the conduction band with m 6¼ n (also seen for the

strained QW in Fig. 22b). Such transitions become permitted because of a field-

induced deformation of electron and hole eigenfunctions which now overlap. It is

shown in Fig. 23a for 1-2 hh and 1-3 hh excitons which are not observed in these

samples at zero bias. The changes in peak position with the electric field illustrate the

anticrossing of two levels, demonstrating the von Neumann noncrossing rule when

the states interact with each other (see Fig. 23b, c).
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Fig. 22 (a) Exciton states for light (lh) and heavy holes (hh) with 1S exciton binding energy EB

indicated. Red arrows mark the strongest transitions. (b) Photoluminescence excitation (PLE)
spectrum of hh valence- or lh valence-band excitons in a L= 22 nm-wide GaAs quantum well with

AlGaAs barriers, measured at T = 5 K (After Koteles et al. 1987). The first and second indices

identify the quantum level in the well of the conduction band and valence band, respectively;

energies are given with respect to the e1-hh1 exciton emission
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Similarly, shifts and anticrossing of levels are observed when uniaxial stress is

applied, as shown by Koteles et al. (1987) for the transitions given in Fig. 22b. For

earlier works, see Miller et al. (1985).

2.2 Biexcitons and Trions in Quantum Wells

Biexcitons and trions experience in low-dimensional structures a substantial increase

of binding energy due to the confining potential similar to confined excitons.

Two-Dimensional Trions There are many reports on trions in quantum wells; for

reviews, see Bar-Joseph (2005) and Shields et al. (1995a). A slight, often

unintentional n-type or p-type doping provides excess carriers and increases the

probability for X� = (e,e,h) or X+ = (e,h,h) formation, respectively, after creation

of excitons. Using a modulation-doped quantum-well structure (similar to

▶ Fig. 11b of chapter “Photon–Free-Electron Interaction”), the two-dimensional

remote electron density can be controlled, yielding an increased negative trion

emission at higher electron density (see Fig. 24). Vice versa the reflectivity of the

trion resonance was used to measure the carrier density (Astakhov et al. 2002a).

The separation between the X and X� emissions in Fig. 24 is the binding energy of

the trion, i.e., the energy of the second electron bound to the exciton. It varies with

well width and reaches about 2 meV for X� in 10 nm-wide GaAs QWs (Bar-Joseph

2005). Since trions can also be bound to donors which provide the remote electron

density, the experimentally determined X� binding energy may be overestimated;

significantly smaller values (factor ½) were evaluated from an extrapolation to large

GaAs/AlGaAs QW
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Fig. 24 Negative trion

photoluminescence in a

modulation-doped GaAs/

AlGaAs quantum well with

an electron density controlled

by a negative gate voltage. At

high electron sheet-density,

the heavy-hole exciton

emission X disappears, and

the trion emission X�

dominates (After Bar-Joseph

2005)
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donor distances for comparable GaAs QW samples (Solovyev and Kukushkin 2009).

II–VI semiconductors have larger exciton and consequently also larger X� binding

energies. For ZnSe, up to 8.9 meV for thin QWs (2.9 nm) was determined for X� and
slightly smaller values for X+ (Astakhov et al. 2002b).

The binding energy for the second hole in positively charged (X+) trions should

theoretically slightly exceed that of the second electron value for X� by 17% in the

2D limit due to the larger hole effective mass (Stébé and Ainane 1989). Experi-

mentally roughly similar values are observed due to the uncertainties noted above

and the quite small difference (Shields et al. 1995b).

Two-Dimensional Biexcitons A biexciton binding energy of�22% of the respec-

tive exciton binding energy was calculated for quantum wells (Singh et al. 1996), in

agreement with experimental values (Birkedal et al. 1996). This implies a largely

similar dependence of the binding energy on QW width for both biexcitons

(XX) and excitons (X), a finding also observed in quantum dots (Zieliński

et al. 2015). Values are typically slightly larger than for trions.

The superlinear increase of the biexciton emission-line with increase of excita-

tion density Iex is shown for a GaAs/AlGaAs quantum well in Fig. 25. Similar to the

bulk case (Fig. 20), the measured dependence of biexciton to exciton intensity IXX
/ I1:6X has an exponent below 2 due to the short radiative lifetime; the displayed XX

and X lines are from heavy-hole excitons.

2.3 Excitons in Quantum Wires and Quantum Dots

Starting from a two-dimensional quantum well, further reduction of dimensionality

toward a one-dimensional quantum wire or a zero-dimensional quantum dot
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Fig. 25 (a) Biexciton emission (XX) in a GaAs/Al0.33Ga0.67As quantum well at different exci-

tation levels. The spectra (blue) are normalized with respect to the exciton peak (X); continuous

curves (red) are model calculations. (b) Dependence of exciton and biexciton luminescence

intensity on excitation density (After Phillips et al. 1992)
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requires some patterning to define an additional lateral confinement. The small

dimensions needed to obtain quantum-size effects can usually not be accomplished

by patterning a quantum-well structure using lithography techniques: the electronic

properties of such structures are governed by interface defects. A variety of

techniques was developed instead to realize 1D and 0D structures with high optical

quality (see ▶ Sect. 2.2 of chapter “The Structure of Semiconductors”). Most of

these techniques lead to complicate confinement potentials, and often an additional

quantum well is coupled to the quantum wires or quantum dots.

2.3.1 Excitons in Quantum Wires
Work on epitaxial quantum wires (QWRs) was mostly performed using a V-shaped

or T-shaped geometry (see ▶Sect. 2.2.2 and ▶Fig. 20 of chapter “The Structure of

Semiconductors”). Structures based on GaAs are particularly well studied; the

effective-mass approximation describes quantum effects quite good, and the fabri-

cation technology is well developed. The lateral confinement of commonly used

wire geometries is small, typically 30–40 meV, leading to small subband energy

spacings of only 10 meV. For a review, see Akiyama (1998) and Wang and Voliotis

(2006). Another approach for fabricating QWRs is whisker growth-forming

nanowires (▶ Fig. 22 of chapter “The Structure of Semiconductors”) or colloidal

synthesis of nanorods. In these structures, the confinement and dielectric contrast to

the environment is larger than in epitaxial structures.

The exciton binding energy in a 1D quantum wire is expected to be stronger than

in 2D or 3D. Analytical solutions of the Schrödinger equation for eigenenergies of

states bound in a bare Coulomb potential for d dimensions (d = 1,2,3,. . .) yield in

each dimension a Rydberg series (Ogawa and Takagahara 1991):

E dð Þ
n ¼ �Reff

1 nþ d � 1

2

� ��2
, n ¼ 0, 1, 2, . . . : (28)

For 3D and 2D, we recognize the Rydberg series of hydrogen in Eq. 2 and 2D

excitons in Eq. 27. For 1D a singularity occurs for the lowest state n = 0; the 1/r
singularity of the Coulomb potential is removed upon integration in 2D and 3D, but

it remains as a logarithmic singularity in 1D. This suggests the attractive force

between electron and hole being stronger in 1D than in 2D or 3D. In a descriptive

picture a particle may move around the origin of a Coulomb potential in 2D or 3D,

while it moves through the origin in 1D. Experimentally, an enhancement of the

exciton binding energy to 27 � 3 meV (six to seven times larger than the bulk

value) was observed in T-shaped quantum wires (Someya et al. 1996); binding

energies exceeding 100 meV were found in semiconductor–insulator quantum

wires (nanowires), where the effect is further enhanced by the strong dielectric

contrast (Muljarov et al. 2000; Giblin et al. 2011).

Luminescence properties of one-dimensional excitons confined in a V-shaped

quantum wire are shown in Fig. 26. The GaAs QWR is formed at the bottom of an

AlGaAs V groove and has a crescent-like shape (▶ Fig. 21 of chapter “The Structure

of Semiconductors”); at the groove sidewalls, additional quantum wells are formed
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during deposition of the upper AlGaAs barrier material, giving rise to the dominat-

ing luminescence in panel a. Placing the spectrometer on the QWR emission and

varying the energy of the excitation photons yields the PLE spectrum shown in panel

b. Labels mark exciton transitions, which similar to quantum wells are strong when

quantum numbers of electrons and hole states are equal. An assignment of the

transitions is not trivial due to the complicate geometry of the confinement potential;

the transition energies indicated in Fig. 26b refer to model calculations, using a

QWR shape extracted from electron micrographs. No distinction between heavy and

light holes is made: the calculations reveal a strong mixing of the light- and heavy-

hole character in the valence-band states (Vouilloz et al. 1998).

2.3.2 Excitons in Quantum Dots
The confinement in all three spatial directions leads to fully quantized electron

and hole states of quantum-dot excitons without a kinetic contribution. Exciton

transitions are consequently sharp like the discrete spectral lines of atoms.11

The three-dimensional confinement may prevent dissociation of exciton complexes

which are not stable in presence of a translational degree of freedom.

Excitonic emission from a single quantum dot is employed to create single

photons on demand (Shields 2007); such single-photon sources are required for

e1-h1
e2-h2 e3-h3 e4-h4

e5-h5

e6-h6

e8-h8e7-h7

e9-h9

e1-h6

1.56 1.60 1.64 1.68 1.72 1.76

GaAs/AlGaAs QWR

Photon Energy  (eV)

P
LE

 In
te

ns
ity

  (
ar

b.
 u

ni
ts

)

T = 8 K

2.21.5 1.6 1.7 1.8 1.9

GaAs/AlGaAs QWR

Photon Energy  (eV)

P
L 

In
te

ns
ity

  (
ar

b.
 u

ni
ts

)

T = 8 K

2.0 2.1

QWR

QW

AlGaAs
barrier

a b

Fig. 26 (a) Photoluminescence (PL) of a 2.5 nm-thick V-shaped GaAs/Al0.3Ga0.7As quantum wire

(QWR); the strong QW luminescence originates from sidewall quantum-wells. (b) PL excitation

spectra polarized parallel (solid line) or perpendicular (dotted line) the [110]-oriented wire. Arrows
mark calculated positions of excitonic en-hm interband transitions (After Vouilloz et al. 1997)

11Still a significant broadening of exciton transitions (of single quantum dots) well above the

natural linewidth is observed due to the interaction of the quantum dot with its environment. The

interaction with acoustic phonons (deformation potential coupling) and optical phonons (Fröhlich

coupling) leads to broad transitions at increased temperature (Rudin et al. 1990); in addition,

randomly fluctuating electrical fields of charged defects in the vicinity of the dots lead to a spectral

jitter of the transitions on a very short time scale (spectral diffusion) even at low temperature

(T€urck et al. 2000).
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quantum light generation applied, e.g., for intrinsically secure data transmission

using quantum-key distribution (Scarani et al. 2009). The excitonic emission

spectrum of a single quantum dot shown in Fig. 27 is dominated by the recombi-

nation of the neutral exciton labeled X; in addition emissions from positively and

negatively charged excitons (X�, X+) and those of neutral (XX) and positive

biexcitons (XX+) are observed. We note that the emission energy of several lines

is greater than that of the exciton; this means that their binding energy with respect

to the exciton energy is negative: they are in an antibinding state. The energy to

keep the particles in a combined state is provided by the 3D confinement.

The binding energy of the exciton complexes depends on the size of the quantum

dots. The binding energies of the biexciton (XX) and the positive trion (X+) increase

as the exciton energy decreases, i.e., for larger quantum dots (Fig. 28b); in this trend,

the biexciton changes from antibinding to a binding state, as also indicated in

Fig. 28a. The negative trion (X�) is largely unaffected by the QD size and has

always positive binding energy (i.e., the emission is shifted to the red). These

features originate from the Coulomb interaction and correlation of the confined

particles. The negative trion consists of two electrons and one hole confined in the

QD; its binding energy is governed by the difference between the two Coulomb

terms C(e,h) and C(e,e). The binding energy of the positive trion X+ correspondingly

depends on C(e,h) and C(h,h). Due to the larger effective mass of holes and the small

size of the QDs, the wavefunction of the hole is stronger localized than that of the

electron. Consequently |C(e,e)| < |C(e,h)| < |C(h,h)| and the negative trion has a

positive binding energy, while the positive trion has a negative binding energy.

Calculations show that the trend is due to the number of bound hole states in the QD

(Rodt et al. 2005); larger dots (smaller exciton energy) have more bound states and

consequently more configuration interaction and increased binding energy.

The splitting of the exciton emission shown in Fig. 28a for different polarization

directions is called fine-structure splitting. It appears in reversed order also in the

biexciton emission, and for varied QD sizes, it has a trend comparable to that of the

biexciton binding energy (Seguin et al. 2005). The mirrored appearance in the
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exciton and biexciton emission is due to the splitting of the exciton state, which is

the final state of the radiative recombination of the biexciton XX to an exciton X

(the biexciton state and the exciton ground state are unsplit). Studies of the fine-

structure splitting received much advertence, since the radiative biexciton–exciton

cascade can be employed to create pairs of entangled single photons for quantum

optics and quantum-cryptography applications, if the splitting is smaller than the

linewidth; for a review, see Shields (2007).

3 Summary

Excitons are quasiparticles combining an electron and a hole within their mutual

Coulomb field; they resemble hydrogen atoms, except that the positively charged

partner is not a heavy proton but a hole of about the same mass as an electron.

Excitons show a hydrogen-like excitation spectrum; however, because of the

perturbation from the lattice, other than S states are also observed in optical

transitions, while in a free hydrogen atom, all optical transitions are equivalent to

transitions between S states. One distinguishes large (Wannier–Mott) and small

(Frenkel) excitons. Large excitons, with a typical diameter above three lattice

constants, have a small ionization energy, typically on the order of 20 meV,

while small excitons have ionization energies on the order of 1 eV. Wannier–Mott

excitons are found in typical, mostly covalent semiconductors with large dielectric

constant and small effective mass, while Frenkel excitons are found in ionic or

organic molecule crystals. Many kinds of excitons are observed depending on the

type of hole within the light, heavy, or spin–orbit split-off band and on the type of
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electron: from a band at Γ (a direct exciton) or from a satellite valley (an indirect

exciton). The interaction of an exciton with a charge carrier may form a charged

exciton, a trion; similarly neutral or charged biexcitons can be formed. The binding

energy of such free exciton molecules or higher associates is typically well below

20% of the exciton binding energy.

In low-dimensional semiconductors the binding energy and oscillator strength of

all excitonic associates are significantly enhanced. Strongest transitions of confined

excitons occur between electron and hole states of equal principal quantum num-

bers, similar to bulk excitons. In quantum dots, the three-dimensional confinement

allows for forming stable antibinding exciton associates.

Excitons have a profound effect on the optical absorption spectrum by

permitting absorption slightly below the corresponding band edge and by substan-

tially increasing the absorption near the edge, but inside the intrinsic band-to-band

range. Their analysis permits significant insight into the bonding type of the

semiconductor, the dielectric function, and effective mass, all of which influence

the spectrum. In low-dimensional semiconductors, they can be used as an

optical probe of the perfection of the interlayer boundaries on an atomic scale

and can also be used to analyze in detail the influence of a variety of field

perturbations, e.g., internal strain. As such, they offer an important potential for

analytical purposes.
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Kossacki P, Nicolet AAL, Potemski M, Wasilewski ZR, Babiński A (2015) Excitonic com-
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Abstract

Semiconducting properties of most interest are predominantly caused by

crystal defects. They are classified into point, line, and planar defects. Some defects

are beneficial, such as donors, acceptors, or luminescence centers. These defects

determine the desired electronic and optical properties of the semiconductor. Other
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defects promote nonradiative carrier recombination, carrier trapping, or excessive

carrier scattering and are detrimental to device performance.

Native point defects and associates of these defects are formed at elevated

temperature and may be frozen-in with decreasing temperature. Their creation is

interrelated – among each other and also to the presence of extrinsic (impurity)

defects – and governed by the conservation of particles and quasi-neutrality. The

mobility of defects is provided by various diffusion mechanisms and affected by

their charge. Line defects involve rows of atoms. Most important are edge and

screw dislocations, which affect crystal growth and accommodate strain in

semiconductors. Dislocations are characterized by their Burgers vector and its

angle to the dislocation line, and their mobility is provided by glide and climb

processes. Planar defects comprise stacking faults, grain and twin boundaries,

inversion-domain boundaries, and interfaces between different semiconductors

or between a semiconductor and a metal.

Keywords

Acceptor � Antisite defect � Antiphase domain � Brouwer approximation �
Burgers vector � Crystal defects � Compensation � Defect-formation energy �
Diffusion mechanisms � Donor � Edge dislocations � Fick diffusion � Frenkel
defects � Grain boundary � Intrinsic defect � Interstitial � Inversion-domain

boundary � Jog � Kink � Line defects � Native defect � Partial dislocations � Point
defects � Twin boundary � Screw dislocation � Stacking fault � Polytype � Quasi-
neutrality � Schottky disorder � Vacancy

1 Classification of Defects

A crystal defect is any region where the microscopic arrangement of atoms differs

from that of a perfect crystal. A large variety of crystal defects determine the

electronic properties of semiconductors. Some of them provide donors or acceptors.

Others are responsible for carrier scattering or recombination; still others trap

carriers and influence the space charge that determines the carrier transport.

1.1 Defect Types

Defects are classified into zero-, one-, or two-dimensional types, depending on

whether the imperfect region is bounded in three, two, or one dimension, respec-

tively. We distinguish:

• Point defects, such as single impurity atoms or vacancies in an otherwise ideal

lattice

• Line defects (dislocations) involving rows of atoms

• Planar defects relating to surfaces or internal crystal interfaces
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In addition, volume defects, relating to usually small, three-dimensional inclu-

sions (precipitates) or defect associates, may be distinguished. Some types of

defects are illustrated in Fig. 1.

Point Defects Point defects, considered in Sect. 2, are the main class of defects

that act as donors or acceptors or, when their energy levels are farther separated

from the band edges, as traps or recombination centers. They are also important as

scattering centers, especially when charged with respect to atoms of the host lattice.

We distinguish intrinsic and extrinsic defects. Intrinsic or native defects are lattice
defects, which do not involve foreign atoms. These are vacancies, i.e., missing atoms

on a lattice site, and interstitials, i.e., additional host atoms within the lattice (Fig. 1b,

upper part). In compound semiconductors, also antisite defects occur, e.g., in an AB
compound where an A atom occupies a B site. Extrinsic defects are impurities located

at a lattice site (substitutional impurity; Fig. 1b, lower part) or at an interstitial site.

Small defect associates are also counted as point defects such as defect pairs1 and

higher defect associates. A large variety of defects can be distinguished according to

their geometrical arrangement with respect to each other, forming an anisotropic

center or forming distant pairs, distinguished by their distance within the lattice while

still interacting. Finally, all defects containing an impurity are distinguished by their

chemical identity, which relates to the defect center and to the host lattice.

Line Defects Line defects, discussed in Sect. 4, extend through the crystal along a

straight or bended line. Most important are dislocations, such as the edge disloca-

tion depicted in the cross section in Fig. 1c. The extra lattice plane inserted into the

lattice creates at its edge a row of atoms with a dangling bond, yielding pronounced

electronic properties. Line defects are inevitably introduced in strained

a b c d

Fig. 1 (a) Two-dimensional representation of an ideal cubic lattice. (b) Point defects: a vacancy,
an interstitial, and an impurity atom. (c) Line defect: cross section perpendicular to a dislocation

line located at the end of the inserted lattice plane marked in red. (d) Planar defect: interface at the
heterojunction of two dissimilar solids

1These comprise divacancies, an impurity associated with an intrinsic defect, and two impurities

associated with each other.

1 Classification of Defects 531



heteroepitaxial structures with a layer thickness exceeding a critical value; for more

information, see ▶ Sect. 1.2 of chapter “Crystal Interfaces”. Since line defects are

detrimental to electronic devices, their density should generally be low (with a

mutual spacing below the diffusion length of carriers).

Planar Defects Planar defects comprise intrinsic faults treated in Sect. 5 and

interfaces discussed in chapter ▶ “Crystal Interfaces”. Intrinsic planar faults are

stacking faults, low- and high-angle grain boundaries, twin boundaries, and crystal
surfaces. Interfaces are extrinsic planar faults and comprise heterojunctions to a

dissimilar solid (Fig. 1d) or to a metal.

Planar defects have a significant influence on the electronic properties of semi-

conductors. Most of this influence is caused by defect levels at the boundaries; they are

usually charged and attract compensating charges in the adjacent crystal volume (space
charges). The control of space-charge regions is a major topic of electronic devices.

This list of defects given above is by no means complete but gives an impression

of the great abundance of defects present in real crystals. Each of these defects

contributes to the wealth of electronic eigenstates, most of them as levels in the

bandgap. Therefore, it is not surprising that many of these defects are not unam-

biguously identified. For a survey on point defects, see Lannoo and Bourgoin

(1981); experimental methods of defect identification are described in Bourgoin

and Lannoo (1983). Line defects, particularly dislocations, are of basic importance

for epitaxy; for more information, see Ayers (2007) and Pohl (2013); interfaces are

discussed in more detail in chapter ▶ “Crystal Interfaces”.

1.2 Defect Notation and Charged Point Defects

Both, intrinsic (native) and extrinsic (impurity) defects may change their charge

state. This feature is of fundamental importance for the electronic properties of

semiconductors. We consider some point defects to illustrate the basic mechanism,

which is discussed in more detail later in this chapter.

Extrinsic Donors and Acceptors Foreign atoms which substitute for an intrinsic

lattice atom are most easily described when they are from an adjacent column of the

periodic system of elements with respect to the replaced atom, e.g., a boron or

phosphorus atom replacing a silicon atom in a silicon crystal. The P atom is

pentavalent and thus has one electron more in its outer shell than the host lattice

atoms (Fig. 2a). When the P atom replaces one of the atoms of a Si lattice, this extra

electron is only loosely bound and can easily be separated from the P ion core.

Therefore, the P acts as a donor in the Si host crystal. In a similar fashion, the

incorporation of a trivalent B atom on a Si site causes the deficiency of an electron

(Fig. 2b). This missing electron can be regarded as a hole bound to the B atom. The

hole can be replaced by an adjacent valence electron and thereby move through the

crystal; the B atom acts as an acceptor.
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The extra electron of the P donor is much less tightly bound than a valence

electron. Consequently much less energy than the bandgap energy Eg is required to

make it a quasi-free electron: it is easily emitted by thermal ionization into the

conduction band. Therefore, the donor energy-level (of this P electron) lies close

below the edge of the conduction band as shown in Fig. 3a. Similarly, in the hole

picture, the B atom becomes ionized (Fig. 3b); it produces a free hole and acts as an

acceptor (of a valence-band electron), with a level close to the valence band. The

energies Ed and Ea are assigned to the unionized donor and acceptor. The energy of

defect states is discussed in more detail in ▶ Sect. 1 of chapter “Shallow-Level

Centers”.

Si

Si

P

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

B

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

a b

Fig. 2 Two-dimensional representation of a covalently bound silicon crystal with ion cores (red)
and valence electrons (blue). (a) Substitutional phosphorus P as donor with extra electron (blue dot
with arrow). (b) Substitutional boron B as acceptor with missing electron (circle) to complete

bonding at the B atom; the arrow indicates the ionization
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Fig. 3 Band model of a typical semiconductor with (a) a donor and (b) an acceptor, indicating the
respective energy level and the relative charge character with and without charge carrier
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It is often appropriate to distinguish isovalent impurities (from the same column

of the periodic system – also called isoelectronic), isocoric impurities2 (from the

same row of the periodic table, i.e., having the same core), substitutionals with

Δz = �1 (z is the chemical valency) such as P and B in the example considered

above, substitutionals withΔz=�2 or more, amphoteric defects,3 in which the sign

of Δz can change, and transition metals; the latter are identified as a separate group

because of their outer shell screening, giving more individuality to the defect and

mostly yielding levels deep in the bandgap.

Defect Notation within the Host Lattice When the donor is ionized, it becomes

positively charged. The change in charge character plays an important role in later

discussions on carrier capture and scattering. Such charge relations can be followed

easily in a chemical representation: the “reaction” between a donor (D) and an

electron (e) can be written as

D0 �! �Dþ þ e�; (1)

where 0, +, and � represent neutral, positive, and negative charge characters with

respect to the lattice. In literature, also the Kröger-Vink notation4 is found:� for the

neutral, • for the positive, and 0 for the negative net charge with respect to the

perfect lattice (see Hayes and Stoneham 1985); it is less used in more recent

literature. If we want to be more descriptive with respect to the chemical nature

of the defect, we write

P0Si �! � PþSi þ e�; (2)

which indicates the atomic defect (P) with its position within the lattice (i.e.,

substituting a Si atom) as the subscript. In general, point defects are identified by

the symbol of the defect, with the lattice site on which the defect is located as a

subscript. For example, a chlorine vacancy (V) in a NaCl lattice is identified as VCl,

a potassium ion replacing a sodium ion in the same lattice as KNa, and a copper

interstitial as Cui.

2An isocoric P in a Si lattice can be thought of as “created” by adding to a lattice atom a proton, i.e.,

a point charge, and an extra electron (the donor electron), thereby creating the most ideal

hydrogen-like defect. Any other hydrogen-like donor, e.g., As or Sb in Si, is of different size,

causing more lattice deformation and a substantially different core potential (see ▶ Sect. 1 of

chapter “Shallow-Level Centers”).
3That is, a defect that can act as a donor or acceptor depending on the chemical potential of the

lattice (influenced, e.g., by optical excitation or other doping).
4The notation of charges with respect to the neutral lattice was introduced by Kröger, Vink, and

Schottky (see Schottky and Stockmann 1954). This notation allows to distinguish from the charge

identification used in an ionic lattice, e.g., Na+Cl�. Inclusion of a Cd++ instead of a Na+ ion makes

the cadmium ion singly positively charged with respect to the neutral lattice.
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In a similar fashion, the recharging of an acceptor can be described by

A0 �! � A� þ hþ; (3)

or

B0
Si �! � B�Si þ hþ; (4)

where h+ represents a hole in the valence band.

Substitutionals in AB Compounds Substitutionals in an AB-host lattice act sim-

ilarly to substitutionals in element semiconductors, except one distinguishes

whether an anion or a cation is being replaced. For instance, replacement of a

divalent Cd ion in a CdS crystal by a trivalent In ion, denoted by InCd, yields

In0Cd �! � InþCd þ e�: (5)

This results in a shallow donor, as does the replacement of a sulfur ion from

group VI with a halogen ion from group VII. On the other hand, the replacement of

Cd in CdS with an alkali metal ion like Li, or of S with a group V element like P or

As, produces an acceptor. However, the incorporation of one type of defect (in CdS,

the incorporation of donors) is often easier than for the oppositely charged defect

(acceptors in CdS), rendering the material preferably n- or p-type (CdS is n-type).
Intrinsic compensation (see Sect. 2.5) is one reason for this preference. An inter-

esting case occurs for some trivalent compounds. For example, in GaAs, the

replacement of Ga with the tetravalent Si results in

Si0Ga �! � SiþGa þ e� (6)

acting as a shallow donor, while the same Si, replacing a pentavalent As ion,

Si0As �! � Si�As þ hþ; (7)

results in a shallow acceptor. Depending on the growth condition, one or the other is

preferred, and the material becomes either n- or p-type.

Vacancies and Interstitials Vacancies and interstitials are denoted in a similar

fashion. Metal-ion interstitials usually act as donors. For example, in CdS,

Cd0i �! � Cdþi þ e�: (8)

Metal-ion vacancies act as acceptors:

V0
Cd �! �V�Cd þ hþ: (9)
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Nonmetal-ion vacancies usually act as donors:

V0
S �! �VþS þ e�: (10)

A first and rather simplified judgment as to whether the defect more readily

becomes positively or negatively charged is easily rendered in ionic compounds.

Semiconductors with mixed bonding character can also be judged by following the

8-N rule (see ▶Sect. 3.1 of chapter “The Structure of Semiconductors”). The rule

maintains that elements tend to complete their outer shell by sharing electrons with

neighbor atoms; surplus electrons are donated to the lattice, and missing electrons

are attracted from elsewhere in the lattice. Interstitial metal ions tend to donate their

valence electron(s), consequently reducing their radius, and cause less lattice

deformation. For more basic information, see Seeger (1997) or Li (2007). Other,

more complex aspects of point defects will be discussed in the following.

2 Point Defects

Point defects, such as vacancies and interstitials, are inevitably incorporated into a

given crystal lattice by thermodynamic creation, while dopants are usually inten-

tionally incorporated by diffusion from a source.5 Both types of incorporation will

be discussed in this section.

2.1 Density of Intrinsic Point Defects

With increased temperature, lattice vibrations (discussed in chapter ▶ “Elasticity

and Phonons”) become more vigorous, which makes the creation of intrinsic lattice
defects, i.e., vacancies and interstitials, more probable. In addition, because of the

anharmonicity of lattice vibrations, the lattice expands and thereby facilitates such

defect creation. We briefly consider two such types of intrinsic disorder.

One type of thermodynamic defect is created by an atom moving from a lattice

site into an interstitial position and leaving behind a vacancy. In thermodynamic

equilibrium, the density of these defects is determined by the equality of thermal

generation of these defect pairs and recombination, i.e., an interstitial finds a

vacancy and “recombines.” From size consideration, cation interstitials and vacan-

cies are more probable. These are referred to as Frenkel pairs and the corresponding
lattice disorder as Frenkel disorder (Frenkel 1926) (see Fig. 4a).

5In contrast, purification can be accomplished by diffusion of impurities into a sink. With the

solubility of impurities being a function of the temperature, a temperature gradient can be used as a

driving force for purification. A more effective means is the use of the boundary between the liquid

and solid phase, using the fact that the solubilities in these two phases are substantially different

(a measure of which is the segregation coefficient). Zone refining is a well-established technique to
achieve such purification (see de Kock 1980).
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Another type of disorder is generated at the surface of a crystal, where an atom

from the bulk moves to the surface, creating a vacancy which in turn diffuses deeper

into the crystal bulk. In an ionic AB compound, both types of (A and B) vacancies
must be created in equal amounts to avoid preferential charging of the surface or the

bulk after vacancy diffusion. In fact, such charging will occur initially with every

vacancy formed but will make it more difficult to form another vacancy of the same

type adjacent to it. It will also make it easier to place a vacancy of the opposite type

adjacent to it, which in essence balances their density. The resulting disorder, i.e.,

an equal amount of anion and cation vacancies distributed throughout a crystal, is

referred to as Schottky disorder (Schottky 1935) (see Fig. 4b).

The density of Frenkel- or Schottky-type intrinsic defects can be obtained from

thermodynamic considerations: the Helmholtz free energy,

F ¼ U � TS; (11)

due to these defects must be minimized. As a simple example, we will discuss

Schottky defects in an elemental crystal, i.e., single vacancies. Assuming that the

concentration of these vacancies is low enough so that they are created indepen-

dently of each other, the energy of n of these vacancies is given by

U ¼ nESchottky; (12)

where ESchottky, the Schottky energy, is the energy required to take a single atom

from the crystal volume and put it at the crystal surface (for more details, see

Sect. 2.3). The configurational entropy6

ba

Fig. 4 Intrinsic types of disorder in an ionic compound: (a) Frenkel disorder comprising cation

vacancies and an equal amount of cation interstitials. (b) Schottky disorder with cation and anion

vacancies in equal densities distributed throughout the crystal bulk

6For simplicity, we have neglected here the vibrational part of the entropy (S = Sconfig + Svib).
These contributions are considered later in this section. The vibrational part results in an increase

of the intrinsic defect density.
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Sconfig ¼ k lnW (13)

is described by the total number of possibilities of selecting n indistinguishable

atoms and moving them to the surface from a crystal containing N atoms:

W ¼ N N � 1ð Þ . . . N � nþ 1ð Þ
n!

¼ N!

N � 1ð Þ! n!
: (14)

Using the Stirling approximation, valid for large n,

ln n! ffi n ln n� n; (15)

we obtain

S ¼ klnW ¼ k NlnN � N � N � nð Þln N � nð Þ � N � nð Þf g � nlnn� nð Þ½ �: (16)

When minimizing F at a given temperature, we obtain from Eqs. 11 to 16

@F

@n

� �
T

¼ ESchottky � kTln
N � n

n
¼ 0; (17)

and for n� N

n ¼ Nexp �ESchottky

kT

� �
: (18)

Since, for a crystal of unit volume, n is equal to the density of vacancies NV and N is

the density of lattice atoms Nlattice, we have for the density of Schottky defects in a

monatomic crystal in thermal equilibrium

NV ¼ Nlatticeexp �ESchottky

kT

� �
: (19)

In a diatomic lattice, for neutrality reasons, an equal amount of anion and cation

vacancies must be formed.7 Since the probability of forming ion pairs Wpair is the

square of the probability of forming single vacancies (Wpair = W 2), it follows that

7This simple model of a pair-wise defect formation maintaining stoichiometry will be modified

later (Sect. 2.5) to permit slight changes in the stoichiometry, thereby making the crystal n- or p-
type. Inversely, the creation of such intrinsic defects can be enhanced or suppressed depending on

the position of the Fermi level, i.e., depending on doping.
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@F

@n

� �
T

¼ ESchottky � kTln
N � n

n

� �2

¼ 0; (20)

Hence, for n� N and for n= NSchottky, the density of Schottky defects in a diatomic
lattice is given by

NSchottky ¼ Nlatticeexp �ESchottky

2kT

� �
: (21)

In a similar fashion, the density of Frenkel pairs is determined, resulting in

NFrenkel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NlatticeNinterstitial

p
exp �EFrenkel

2kT

� �
; (22)

where Ninterstitial is the density of interstitial sites and EFrenkel is the

Frenkel energy, i.e., the energy to take one cation and put it at a (distant)

interstitial site.

A more sophisticated approach involving the grand canonical ensemble that

permits an analysis of more complicated cases can be found in Landsberg and

Canagaratna (1984). We will complement the simple model discussed above by

lattice relaxation and entropy contributions occurring in semiconductors.

Lattice Relaxation In actual semiconductors, the simplified picture given above

needs to be modified to take into consideration:

• The different actual positions within the lattice which can be occupied by an

interstitial

• The relaxation of the lattice surrounding a vacancy or an interstitial

For example, within the Si lattice, there are three different sites (H, T, and B) to

place a self-interstitial, shown for a 011
� �

plane in Fig. 5a. They have different

formation enthalpies, which also depend on the occupancy, i.e., the charge charac-

ter of the center (Car et al. 1984).

The relaxation of the surrounding lattice may be minor or can be very substan-

tial. The lattice-relaxation energy is the energy difference between the unrelaxed

defect (illustrated for a vacancy in Fig. 5b), where all atoms near the defect remain

in their ideal lattice sites, and the relaxed defect (Fig. 5c); in the latter, bonds

rearrange to minimize the number of dangling bonds and to maximize bonding

energy.

Entropy Contribution There are two contributions for an increased entropy of

realistic intrinsic defects:

• The extended relaxation of the lattice surrounding such a defect

• The change in oscillatory frequencies of the surrounding lattice
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The extended relaxation permits numerous similar configurations with nearly

identical energy. This causes a substantial increase in the configurational entropy

and thereby yields a much larger pre-exponential factor determining the density of

such defects in equilibrium (see Lannoo and Bourgoin 1981).

The vibrational part of the entropy is given in its most simple form as

ΔSvib ¼ kln
X
i

νi0
νi

 !
; (23)

where νi0 and vi are the original and changed frequencies of the undisturbed lattice

and the lattice surrounding the defect. There are two major modes considered near

the defect: the breathing mode, with all surrounding atoms moving in and out in

phase (▶ Fig. 2 of chapter “Optical Properties of Defects”), and a vector-like motion,
including the defect (interstitial). When considering a somewhat reduced binding of

the lattice surrounding the defect, we expect νi0> vi and therefore a positive entropy
contribution. This contribution also increases the pre-exponential factor and

a

b c

T

HT

H
B

(011) plane

[100]

[011]

Fig. 5 (a) Different sites of self-interstitials in Si shown in a 011
� �

plane. Open circles indicate

interstitials with tetragonal (T ) or hexagonal (H ) symmetry; B denotes a bond-centered site. (b, c)
Vacancy (b) in anunrelaxed statewith dangling bonds and (c) in a relaxed statewithout dangling bonds
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therefore causes a somewhat larger density of intrinsic defects (Talwar et al. 1980).

For a review of ab initio calculation of native defects, see Jansen and Sankey (1989).

2.2 Frozen-in Intrinsic Defect Density

The analysis presented in Sect. 1.1 assumes thermodynamic equilibrium but does

not ask how long it takes to achieve equilibrium. At sufficiently high temperatures,

equilibrium is usually reached faster than the temperature is changed. While

cooling a crystal, the density of defects8 will start to lag behind the value

corresponding to the temperature. Finally, at low enough temperatures, it will not

decrease appreciably within the time of the experiment. This “frozen-in” defect

density Nfreezing-in identifies – via Eqs. 19, 21, or 22 – a freezing-in temperature
Tfreezing-in. For example, for Frenkel defects

Nfreezing-in ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NlatticeNinterstitial

p
exp � EFrenkel

2kTfreezing-in

� �
: (24)

Freezing-in occurs because of the reduced mobility of lattice defects with

decreasing temperature, which finally makes it impossible for them in the given

time frame to find a defect partner for recombination, e.g., for an interstitial to find a

vacancy.

For example, the interatomic potential distribution of a Frenkel defect in a

simple cubic monatomic lattice is shown in Fig. 6. In the figure, x = xV is the

position of the vacancy; xi1, xi2, xi3, . . . are the positions of interstitial sites, and ΔEi

is the activation energy for interstitial motion. The time required for an atom to

move from one to the adjacent interstitial site can be estimated from

E

ΔE i

xV x i1 x i2 x i3 x

ΔEV

Fig. 6 Atomic potential for

an atom on a vacancy site xV
or on an interstitial position xi

8In materials in which two types of defects need to be considered, two different freezing-in

temperatures appear, and, because of conservation and neutrality considerations, a more complex

behavior is expected (Hagemark 1976).
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τi ¼ 2π

ωi

exp
ΔEi

kT

� �
; (25)

where ωi is an effective oscillation frequency of the interstitial atom. In a crystal

with a density of NFrenkel Frenkel defects, the average time τr for a recombination

event to occur is given by

τr ¼ 1

4π Di riNFrenkel

; (26)

where ri is the reaction distance, which here is equal to the distance between

adjacent interstitial sites ai. When using Eq. 80 for the diffusion constant Di with

α = 1/6, we obtain

τr ¼ 3

a3i ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NinterstitialNlattice

p exp
ΔEi þ EFrenkel=2

kT

� �
: (27)

With ωi on the order of 1013 s�1, ΔEi = 1 eV, and EFrenkel = 2 eV, we obtain a

recombination time on the order of 1 year at 500 K. After increasing the temper-

ature to 700 K, the time constant is reduced to about 10 s, and the defect density

comfortably follows a sufficiently slowly decreasing temperature.

The freezing-in temperature is a function of the rate of cooling. Freezing-in is

reached when this cooling rate equals the rapidly decreasing rate of recombination

defined by dT/dτr:

dT

dt
¼ dT

dτr
¼ � kT

ΔEi þ EFrenkel=2

T

τr
: (28)

From Eqs. 27 and 28, we obtain a well-defined freezing-in temperature contained in

τr, which increases with increasing cooling rate:

Tfreezing-in ¼ �ΔEi þ EFrenkel=2

k

� 1

ln
kTfreezing-in

ΔEi þ EFrenkel=2

a3i ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NinterstitialNlattice

p
Tfreezing-in

3 �dT
dt

� �
 ! : (29)

With the values of the above-given example and a cooling rate of 1 deg/s, the value of

the logarithmic term is 	25. Thus, we obtain as a rough estimate, with ΔE
 ¼ ΔEi

þ EFrenkel=2:

Tfreezing-in ffi 400 ΔE
 eVð Þ � 1þ 1

30
ln

dT

dt

����
����

� �
Kð Þ: (30)
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Since Tfreezing-in is logarithmically dependent on the cooling rate, the freezing-in

temperature changes little with a normal variation of cooling rates except for rapid

quenching (see Fig. 7).

2.3 Defect-Formation Energy

Vacancies The formation energy9 of vacancies ESchottky is obtained at sufficiently

high temperature from the exponential change of the electrical conductivity with

temperature when these vacancies are electrically active as the dominant acceptors

(see ▶ Sect. 2.5 of chapter “Equilibrium Statistics of Carriers”). The formation

energies are typically in the 2 . . . 6 eV range.

A rough estimate about the formation energy ESchottky of vacancies can be made

from the microscopic equivalent of a macroscopic cavity:

ESchottky ¼ A HSchottky; (31)

where A is the surface area of the cavity of the vacancy volume and HSchottky is the

macroscopic surface energy (Brooks 1963; Friedel 1966). This simple model pro-

vides fair agreement with the experiment and can be improved by considering the

anisotropy of the cavity, which is not spherical, and of the surface energy (van

Vechten 1980). The same cavity model gives some indication of a slight disparity in

the density of VA and VB in an AB compound, since the formation energy increases

∆E *=1.6 (eV)
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T
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K
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Fig. 7 Freezing-in

temperature as a function of

the cooling rate with ΔE* as

the family parameter

9Often, the enthalpy HSchottky is cited rather than the energy; however, withΔHSchottky ¼ ΔESchottky

þPΔV and negligible volume changes in the solid, both are almost identical at room temperature.

Near the melting point, a ΔV=V ffi 1=3ð Þ Δl=lð Þ ffi 2% change in volume (▶Eq. 17 of chapter

“Phonon-Induced Thermal Properties”) may be considered.
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with increasing cavity radius. As a net result, we observe a strong preference of n-
or p-type semiconductivity when rA > rB or rA < rB, respectively, in lattices with a

substantial ionic bonding component; here, A is the cation, and B is the anion.

In Table 1, additional information is given for some of the II–VI compounds.

These show substantial preference of nonstoichiometry because of the asymmetry

of the formation energy of cation and anion vacancies.

For a more thorough evaluation of the formation energy, we must consider:

• Dangling bonds of the surrounding lattice atoms

• Reconstruction of the surrounding lattice

• Lattice relaxation beyond nearest neighbors

These effects are lattice specific and require an individual analysis for each type

of vacancy (see literature cited in Pantelides 1987). For example, the Si vacancy is

discussed by Watkins (1986). In contrast to vacancies in other materials, it cannot

be frozen-in by rapid quenching at measurable densities because of its high

mobility. It is efficiently produced by radiative electron damage at low tempera-

tures. In order to avoid rapid recombination with the coproduced and highly mobile

interstitial, trapping of the interstitial at group III atoms in p-type Si can be

employed (Watkins 1974). For the electron structure of the Si vacancy, see

▶ Sect. 2.2.1 of chapter “Deep-Level Centers”. For an estimation of the energy of

vacancy formation, see Car et al. (1985) and Table 2.

Table 1 Melting point

Tm (K), minimum vapor

pressure Pmin (atm),

equilibrium constant log

Kp, and surplus element of

some II–VI compounds

(After Lorenz 1967)

II–VI Compound Tm Pmin(Tm) log Kp Surplus

ZnS 2,103 3.7 0.85 Zn

ZnSe 1,703 0.53 �1.65 Zn

ZnTe 1,568 0.64 �1.4 Te

CdS 1,748 3.8 0.9 Cd

CdSe 1,512 0.41 �2.0 Cd

CdTe 1,365 0.23 �2.75 Te

Table 2 Activation energies for vacancies and interstitials of Si, P, and Al or combined with

vacancies in intrinsic, n- and p-type silicon in eV (After Car et al. 1985)

Species Eint Species Eint En Species Eint Ep

V2þ
Si

5.1 PSiVSið Þþ 3.2 3.8 AlSiVSið Þþ 3.9 3.2

VþSi 4.7 (PSiVSi)
0 3.0. 3.0 (AlSiVSi)

0 3.5 3.5

VSi
0 4.2 PSiVSið Þ� 3.2 2.6 AlSiVSið Þ� 3.5 4.1

V�Si 4.5 (PSiSii)
0 5.7 5.7 (AlSiSii)

0 4.0 4.0

Si2þi 5.6 Pi
0 5.1 5.1 Al2þi 4.3 3.0

Siþi 5.5 P�i 5.2 4.6 Alþi 3.9 3.1

Sii
0 5.7 P2�i 5.6 4.5 Ali

0 3.9 3.9
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Divacancies Vacancies in a covalent crystal are attracted to each other. This can

be interpreted as being caused by the reduction of the surface area, which thereby

reduces their surface energy. This process is similar to that which causes air bubbles

in water to coalesce. Estimated accordingly, the binding energy of divacancies in Si

is 1.03 eV, compared to a measured value of 1.2 eV (Ammerlaan and Watkins

1972). In a microscopic model, one realizes that in a divacancy only six bonds are

broken, rather than eight in two separate vacancies.

Antisite Defects Antisite defects are intrinsic lattice atoms in a compound placed

on a wrong lattice site, e.g., a B atom on an A site BA in an AB lattice. Such antisite

defects may be regarded as substitutional impurities except that they are supplied

by a large reservoir of sublattice B atoms. Their energy of formation has two

contributions: one from the reduction of the bandgap due to disorder and one

from an electronic contribution causing a shift in the Fermi energy – the latter

depending on doping.

2.4 Defect Chemistry

The creation of different types of defects is often interrelated (see Sect. 2.1). For

instance, for Schottky disorder of an AB compound, vacancies of both A and B ions

are produced in equal densities. The quasi-neutrality relation prevents the creation

of one charged defect in substantial excess over the others. The creation of lattice

defects can be described similarly to the creation of a chemical compound in the

presence of other reaction partners. The governing relation is the mass-action law,
which, for a reaction

Aþ B �! � AB; (32)

can be written as

A½ � þ B½ � ¼ KAB � AB½ �; (33)

where the square brackets indicate concentrations and KAB is the mass-action law

constant:

KAB ¼ KAB, 0 exp �ΔG
kT

� �
; (34)

with ΔG as the change in Gibbs free energy10:

10In Sect. 2.1, the Helmholtz free energy Fwas used, which is related to the Gibbs free energyG by

G = F+PV. Since some of the reactions involve an interaction with a gas atmosphere, the more

general notation is used here.
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ΔG ¼ ΔU þ PΔV � TΔS ¼ ΔH � TΔS; (35)

where ΔU is the change in internal energy due to changes in the interaction potential
of the vacancy with the surrounding lattice and ΔV is the often negligible change in

volume. Both are usually combined as the change in enthalpyΔH ¼ ΔU þ PΔV.ΔS
is the change in entropy:

ΔS ¼ ΔSconfig, basic þ ΔSconfig, extend þ ΔSvib: (36)

The basic configurational entropy part and the parts dealing with extended lattice

relaxation and with lattice vibration are described in Sect. 2.1.

In solids, defect-chemistry description is advantageous because it illustrates the

interconnection of the different defects. We will now take into consideration that

these defects “react” with each other and thereby change their charge and position

in the lattice, i.e., their “defect chemical” composition.

For example, for the Schottky disorder in the Ge crystal, the defect-chemistry

notation can be written as

GeGe �! �VGe þ Gesurface: (37)

Neglecting the difference between GeGe and Gesurface, they cancel in Eq. 37,

yielding

0 �! �VGe: (38)

The corresponding mass action law reads

NSchottky ¼ VGe½ � ¼ KV ¼ KV, 0 exp �ΔG
kT

� �
: (39)

Disregarding a change in volume and with ΔH = ESchottky as the Schottky

energy, Eq. 39 can be rewritten as

NSchottky ¼ K0KVexp �ΔH
kT

� �
: (40)

This is equivalent to Eq. 19, derived earlier, with KV ¼ Nlattice and

K0 ¼ exp ΔSvibr=kð Þ, a factor accounting for the vibrational entropy part in ΔG.

Defect Chemistry Involving Neutral and Ionized Defects Solid-state reactions

take place between crystal defects, carriers, and external partners, such as a gas

atmosphere. Types of reactions to be considered in solid-state defect chemistry

include:
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• Intrinsic defect formation

• Changing of stoichiometry by interaction with a gas atmosphere of one of the

components

• Doping with foreign defects

• Defect associate formation

• Formation of ionized defects

• Creation of free carriers

A few examples of some typical reactions are given below, along with an

analysis that shows the interdependence of the different reactions. For more details,

see Kröger (1964).

For example, a Frenkel disorder generates metal-ion (M ) interstitials which act

as donors and metal-ion vacancies (V) which act as acceptors. The reaction

equation for the Frenkel disorder is

M0
M þ V0

i �! �M0
i þ V0

M; EFrenkelð Þ: (41)

A “0” is added to the chemical symbol of each defect, representing its neutral state;

the energy necessary to achieve this transition is appended in parentheses. These

defects can be ionized according to

M0
i �! �Mþi þ e�; ~Ed

� �
(42)

and

V0
M �! �V�M þ hþ; ~Ea

� �
(43)

with ~Ed ¼ Ec � Ed and ~Ea ¼ Ea � Ev. In addition, we create intrinsic carriers (see

▶ Sect. 1.3 of chapter “Equilibrium Statistics of Carriers”):

0 �! � e� þ hþ; Eg

� �
: (44)

These reactions can be described by the following set of mass-action law

equations:

M0
i

	 

V0

M

	 

M0

M

	 

V0

i

	 
 ¼ KM, i / exp �EFrenkel

kT

� �
; (45)

Mþi
	 


n

M0
i

	 
 ¼ KD / exp �
~Ed

kT

� �
; (46)

2 Point Defects 547



V�M
	 


p

V0
M

	 
 ¼ KA / exp �
~Ea

kT

� �
; (47)

np

NcNv

¼ Ki / exp � Eg

kT

� �
; (48)

with the connecting quasi-neutrality condition:

nþ V�M
	 
 ¼ pþ Mþi

	 

: (49)

The value of the defect chemical approach becomes apparent when we recognize

that a crystal defect can participate in various reactions – e.g., VM in Eqs. 41 and 43

– and can form different species, VM
0 and V�M. Without ionization, the density of all

vacancies is given by Eqs. 22 or 45; with ionization, only the density of neutral

vacancies is given by Eq. 45; ionized vacancies drop out of Eq. 45 and are governed

by Eq. 47. Therefore, the total amount of vacancies increases.

In general, several of these reactions influence each other and cause a shift in the

density of the reaction partners. In order to obtain the densities of all partners, the

system (45–49) must be solved simultaneously. In Sect. 2.6, we will introduce an

instructive approximation for accomplishing this.

2.5 Changing of Stoichiometry and Compensation

In this example, we will show how the heat treatment of an AB compound in an

atmosphere of one of the components can change the stoichiometry of this

compound.

For example, with Schottky defects we have11

0 �! �V0
A þ V0

B; ESchottky

� �
: (50)

The treatment of the AB compound in a gas of A makes AB grow and conse-

quently causes an increase in the relative density of B vacancies:

Agas �! � AA þ V0
B; EA, gas
� �

; (51)

which yields for equilibrium

11Or, for an AnBm compound, we have 0! nV0
A þ mV0

B with V0
A

	 
n
V0

B

	 
m ¼ KSchottky.
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V0
A

	 

V0

B

	 
 ¼ KSchottky / exp �ESchottky

kT

� �
(52)

and

A0
A

	 

V0

B

	 

PA

¼ KA, gas / exp �EA, gas

kT

� �
: (53)

Therefore, we obtain for the change in stoichiometry δ, with AB! A1þδB , the
expression

δ ¼ A0
A

	 
� B0
B

	 
 ¼ V0
B

	 
� V0
A

	 

; (54)

which can be evaluated using Eqs. 52 and 53.

Another possibility is the reduction of A vacancies according to

A0
A �! � Agas þ V0

A

	 

and consequently an increase in A interstitials or of antisites

AB. In actual compound crystals, the densities of both vacancies are not the same,

since their formation energy differs. This difference must be taken into account for

any real crystal (see Sect. 2.3).

Doping in Equilibrium with a Foreign Gas In a similar fashion, the treatment

of a semiconductor in a vapor of a foreign atom C with a partial pressure PC

causes a change of the intrinsic defect density. The interaction takes place via the

neutrality condition. For instance, if the foreign atom is a metal atom replacing

a lattice atom

Cgas �! � C0
A with

C0
A

	 

PA
¼ KCgas

(55)

and acting as a donor

C0
A �! � CþA þ e� with

n CþA
	 

C0
A

	 
 ¼ KD; (56)

it will tend to reduce the density of intrinsic defects with the same charge and to

increase the density of intrinsic defects with the opposite charge, since they are

interrelated by

nþ V0
B

	 
 ¼ pþ VþA
	 
þ CþA

	 

: (57)

In more general terms, a foreign atom incorporated as a donor tends to reduce the

intrinsic donor densities and to increase the density of intrinsic acceptors. Vice
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versa, intrinsic and extrinsic acceptors cause an increase in the equilibrium density,

i.e., the solubility of the foreign donors.

This important interrelationship is called compensation. It is used to increase

doping densities otherwise limited by low solubility; this is technically important, e.

g., for tunnel diodes. In devices fabricated under significant depart from thermo-

dynamic equilibrium using epitaxy (▶Sect. 3.3 of chapter “Properties and Growth

of Semiconductors”), doping limits given by Eq. 57 may be exceeded to some

extent by kinetic barriers.

Formation of Defect Associates When crystal defects are able to form defect

associates, these associates constitute a new species and influence the balance of the

unassociated defects. For instance, in an AB compound with Schottky disorder, the

metal vacancies may form dimers, i.e., two vacancies as nearest neighbors:

2V0
A �! �V0

A2
; E2ð Þ; (58)

with E2 as the binding energy of these dimers.12 With the formation of V0
A2
, a new

species is created involving metal vacancies. The total amount of A vacancies is thus

increased. Therefore, the balance between VA and VB in the Schottky disorder is shifted.

Compensation with Fixed Density of Donors In the following example, an

impurity is present at a fixed density within a monatomic semiconductor together

with Schottky defects acting as acceptors. The extrinsic substitutional dopant acts

as a donor with a density [FM]total. The following reactions take place, following the

corresponding mass-action laws:

FM½ �total ¼ const (59)

0 �! �V0
M; ESchottky

� �
V0

M

	 
 ¼ K0 exp �ESchottky

kT

� �
(60)

V0
M �! �V�M þ hþ; ~Ea

� �
p V�M
	 
 ¼ Nv V0

M

	 

exp �

~Ea

kT

� �
(61)

F0
M �! � F�M þ e�; ~Ed

� �
n F0

M

	 
 ¼ Nc F0
M

	 

exp �

~Ed

kT

� �
(62)

0 �! � np; Eg

� �
np ¼ NcNvexp � Eg

kT

� �
(63)

12With proper charging, these dimers could be regarded as equivalent to a nonmetal molecule B2

sitting on a lattice site of a cluster of four vacancies. Such molecules are often covalently bound

and therefore have a substantial binding energy; hence, they have a high probability of occurring.
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Two conditional equations, the conservation of mass equation:

FM½ �total ¼ F0
M

	 
þ FþM
	 


(64)

and the quasi-neutrality equation:

nþ V�M
	 
 ¼ pþ FþM

	 

; (65)

force an interaction between the different reaction partners, i.e., force compensa-

tion. We will analyze this interaction in the following section after introducing the

useful Brouwer approximation.

2.6 Brouwer Approximation

Before discussing the solution to the problem given above, we will indicate here

how to analyze the typical system of equations encountered in defect chemistry.

The governing equations for defect chemical reactions are coupled with conserva-

tion of mass or charge equations. They contain the sum of densities, e.g., the

neutrality equation Eq. 49:

nþ V�M
	 
 ¼ pþ Mþi

	 

: (66)

Since each of these densities varies exponentially with temperature, mostly with

different slopes, they are usually of substantially different magnitudes. Therefore,

we can neglect one of the terms on each side and thereby can distinguish four cases:

V�M
	 
 ¼ Mþi

	 

(67)

n ¼ Mþi
	 


(68)

V�M
	 
 ¼ p (69)

n ¼ p (70)

Depending upon the relative magnitude of the different activation energies, we

have different temperature ranges in which the validity of these neutrality approx-

imations changes over from one to the other case. For example, at low temperatures,

Eq. 68 holds; with increasing temperature, Eq. 70 becomes valid. In each of these

temperature ranges, the governing equation can be given explicitly. For instance,

for n ¼ Mþi
	 


, we obtain from Eq. 4613

13In order to avoid exact compensation, we must also consider some extrinsic donors to make the

donors predominant (see ▶ Sect. 2 of chapter “Equilibrium Statistics of Carriers”).
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n ¼ Mþi
	 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mþi
	 


KD

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
Mþi
	 
q

exp �
~Ed

2kT

� �
; (71)

and have p ¼ V�M
	 


with Eq. 47, if Ea < Ed. At higher temperature, we obtain from

n = p with Eq. 48:

n ¼ p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcNvKi

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp � Eg

2kT

� �
: (72)

In each of these temperature ranges, the densities can be represented as straight lines

in an Arrhenius plot (ln[ ] vs. 1/T), which shows the dominant interaction. In the

intermediate temperature range, a smooth transition occurs. Such a transition is

neglected and replaced by sharp breaks in the Brouwer approximation (Brouwer

1954). An illustration for such a relation is shown in Fig. 8 for the example given above.

In the Brouwer diagram, majority (n) and minority ( p) carrier densities show a

split with the same angle (α) in the semilogarithmic plot (Fig. 8). The obtained

results are similar to those obtained in ▶ Sect. 2 of chapter “Equilibrium Statistics

of Carriers”; however, the carrier depletion range is neglected here.

Brouwer Diagram of Compensation with Fixed Donor Density When carriers

and atomic reaction partners are involved, the resulting Brouwer diagram becomes

more instructive. For instance, in a monatomic semiconductor with Schottky

defects and a fixed density of donors given by Eq. 64, several of these defects

n = p
intrinsic

p = [VM ]
minority
carrier

n  = [ M i ]

majority
carrier

1/T

a
a

ln
(n

) 
or

 ln
(p

)

Fig. 8 Brouwer diagram for

a simple example of a

semiconductor with one

dominant intrinsic donor and

free carriers
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interact. We see from Eqs. 59, 60, 61, 62, 63, 64, 65 that five out of eight possible

temperature ranges occur:

I FM½ �total ¼ FþM½ �; V�M
	 
 ¼ FþM½ �

II ¼ F0
M

	 

; V�M
	 
 ¼ FþM½ �

III ¼ F0
M

	 

; n ¼ FþM½ �

IV ¼ FþM½ �; n ¼ FþM½ �
V ¼ FþM½ �; n ¼ p

(73)

The corresponding Brouwer diagram is given in Fig. 9. It shows that the density of

the neutral intrinsic vacancy [VM
0 ] is not influenced by any of the other reactions. It

extends as a straight line through all temperature ranges. All other reactions show

interdependencies.

In the temperature ranges I, IV, and V, essentially all foreign atoms are ionized

( FM½ �total ¼ FþM½ �). At low temperatures (range I), FþM½ � is equal to the density of

ionized acceptors V�M
	 


. At higher temperatures (range III), FþM½ � is equal to the free

electron density; this is the depletion range. In range V, we observe n > FþM½ �; this is
the intrinsic range with n= p. There are two intermediate ranges where the density of

ionized donors is depressed (II and III); the density of charged acceptors starts to

decline (II) because of competition with electrons in the quasi-neutrality condition.

The density of charged intrinsic acceptors dramatically increases at low temper-

atures (I) because of the incorporation of foreign donors, permitting neutrality via

[ F + ]

p

p

n

n, p

V IV III II I 1/T

ln
 [c

on
ce

nt
ra

tio
n]

M
n, [ F + ]

M

n, [ F + ]
M

[ F + ],[ V
−
]

M M
[ F + ],[ V

−
]

M M

[ F 0 ]M

[ F 0 ]M

[ V 0 ]M

[ F 0 ]M

[ V 0 ]M

[ V
− 

]
M

Fig. 9 Brouwer diagram for a monatomic semiconductor with fixed density of foreign donors

FM½ �total ¼ const and intrinsic vacancies acting as acceptors (see text). Dotted curve occurs if no

foreign doping is present FM½ �total ¼ 0
� �

(After Kröger 1964)
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FþM½ � ¼ V�M
	 


. When the electron density increases (II and III), the density of

ionized acceptors decreases until n takes over (IV) in the neutrality condition.

With n larger than the donor density (i.e., when n = p), V�M
	 


approaches the

density it would have in the undoped case. The recombination of free holes also

causes a reduction in F�M
	 


. Therefore, the neutral donor density increases again.

This example shows the rather complex interdependency of the different densi-

ties and presents a good illustration of an instructive analysis. The examples

presented in these sections, which dealt with defect chemistry, have been simplified

somewhat in order to indicate the principles involved, rather than to illustrate actual

material behavior. For further reading, see original literature in Kröger (1964).

3 Diffusion of Lattice Defects

The basic concepts of the diffusion of lattice defects are summarized here briefly

since they are prerequisites for actual doping – where foreign atoms are supplied by

diffusion from the surface or when intrinsic Schottky defects are created by

outdiffusion of lattice atoms to the surface.

3.1 Fick’s Laws of Diffusion

Diffusion is determined by Fick’s first law, which relates the diffusion current ji to
the diffusion tensor Dik and the density gradient:

ji ¼ �
X3
k¼1

Dik
@N

@xk
; (74)

where N is the density of the diffusing lattice defect. Diffusion must also follow the

continuity equation (Fick’s second law):

@N

@t
¼ �

X
i

@

@xi
ji ¼

X
i k

@

@xi
Dik

@N

@xk
: (75)

For small defect densities, we can disregard defect interaction, i.e., Dik is

independent of N, and we have

@N x, tð Þ
@t

¼
X
i k

Dik
@2N x, tð Þ
@xi@xk

; (76)

with D as a symmetrical second-rank tensor following the point-group symmetry of

the crystal. For an isotropic (cubic) crystal, the diffusivity D (also referred to as

diffusion coefficient) is a scalar, and we have
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@N x, tð Þ
@t

¼ D
@2N x, tð Þ

@x2
: (77)

The diffusion equation can be integrated most easily by employing a Laplace

transformation. For a simple case of initial conditions, with the dopant deposited at

the surface (x = 0) and no depletion of dopants for a one-dimensional semi-infinite
sample, we have

N ¼ N0 at x ¼ 0 for t � 0

N ¼ 0 at x > 0 for t ¼ 0
; (78)

yielding as the solution of Eq. 77

N x, tð Þ ¼ N0 1� erf
xffiffiffiffiffiffiffiffi
4Dt
p
� �� �

; (79)

the well-known error-function distribution of dopants as the diffusion experiment

proceeds (see Fig. 10).

In a very simple example of foreign atoms diffusing on interstitial sites, we

relate the diffusivity to the spacing between interstitial sites a and the jump

frequency νj by

D ¼ αa2 νj; (80)

where a is a geometry-related factor. For a cubic lattice and interstitial diffusion,

one has α = 1/6. The jump frequency depends, via a Boltzmann factor, on the

temperature:
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Fig. 10 Density distribution

of dopants N(x, t) supplied
from a sample surface without

depletion and shown for

varied values of the diffusion

time Dt
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νj ¼ ν0exp �ΔEi

kT

� �
; (81)

where ΔEi is the height of the saddle point between adjacent lattice atoms over

which the diffusion proceeds (Fig. 6). We express the diffusivity as

D ¼ D0exp �ΔEi

kT

� �
, where D0 ¼ αa2 ν0 (82)

and ν0 as an effective jump frequency.

The path of each of the diffusing atoms is that of a random walk, ignoring

correlation effects, with R2 the mean square total displacement given by

R2 ¼ n̂ a2 ¼ αDt; (83)

where n̂ is the number of interstitial jumps. The average distance traveled by the

diffusing atom is simply
ffiffiffiffiffiffi
R2

p
; the factor α is often included in published values of

D, yielding for the average distance
ffiffiffiffiffi
Dt
p

.

The diffusion coefficients for intrinsic and a number of extrinsic defects are

given in Table 3.

3.2 Types of Diffusion

In the previous section, a simple diffusion of a foreign or lattice atom from

interstitial to adjacent interstitial position was assumed, following a potential as

shown in Fig. 6. In actual crystals, such a path is only one of the several paths which

contribute to the diffusivity (see Flynn 1972). Additional possibilities exist, and one

distinguishes the following types of lattice diffusion:

(a) A simple exchange mechanism

(b) A ring-type exchange mechanism

(c) A vacancy-induced diffusion (vacancy mechanism)

(d) A lattice-relaxation mechanism

(e) A simple interstitial diffusion (as previously described)

(f) An interstitial diffusion with collinear displacement

(g) An interstitial diffusion with noncollinear displacement (interstitialcy

mechanism)

(h) A dumbbell interstitial mechanism

(i) A crowdion mechanism

(j) Motion with alternating recharging (athermal motion)
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Nine simple examples of these mechanisms are shown schematically in Fig. 11

for a two-dimensional square lattice (see also Gösele 1986. For a comprehensive

review of some earlier concepts, see Flynn (1972).

In actual semiconductors, the diffusion processes are more involved since in all

of them lattice relaxation, and in several of them recharging, is involved. Such

recharging makes diffusion possible at much lower temperatures (see below). In

addition, there are usually several interstitial positions possible, offering different

paths for interstitial diffusion (see Fig. 5).

Diffusion in Covalent Semiconductors Self-diffusion at high temperatures in Si

follows the Arrhenius law, with an activation energy in the 5 eV range. However,

the exponential carries a very large pre-exponential factor indicating a larger

entropy contribution, probably due to substantial lattice relaxation, as well as a

significant change in vibrational modes, due to force constant reduction. For an

estimate of formation and migration energies through the different interstitial paths

(Fig. 12), see Car et al. (1984, 1985).

Hydrogen as H+ is a fast diffuser in p-type Si. It preferentially moves on

an interstitial B-B path, meandering between the relaxing (by 0.4 Å) Si atoms.

a

b

c

d

e

f

g

h

i

Fig. 11 Different types of lattice diffusion for (a–i) given in the text

558 Crystal Defects



In n-type Si, hydrogen in the H� charge state may be more stable with diffusion

along a T-H path, as indicated in Fig. 12 (see Van de Walle et al. 1989).

Impurities diffuse while associating with a vacancy, as interstitials, or combin-

ing with a lattice atom, together sharing a lattice site. A concerted exchange
mechanism, suggested by Pandey (1986), appears less favorable for impurity

diffusion. Depending on the charge character of these defects, the activation energy

changes substantially when the semiconductor is n- or p-type. For instance, in Si the
dopants P and Al associate with vacancies and diffuse as associates.

An analysis of Nichols et al. (1989), using interstitial injection from the surface

of Si by oxidation (Tan et al. 1983), indicates that the diffusion of B, P, and As in Si

is interstitial mediated, while the diffusion of Sb seems to be vacancy mediated. All

of these have an activation energy of approximately 2.5 eV (Nichols et al. 1989).

Deep centers, especially some of the transition metal ions, are known to be fast

diffusers (Weber 1983). They easily form associates with intrinsic defects mediat-

ing their diffusions, e.g., gold associates with interstitials, vacancies, or other

dopants (see Stolwijk et al. (1983) and Lang et al. (1980)).

Athermal Diffusion When intrinsic defects in Si are produced by electron radia-

tion at low temperatures (	20 K), they are observed to migrate with very low

activation energies of 	0.2 eV (Watkins 1986). This is in contrast to high-

temperature (thermal) diffusion data, which indicates generation and motion of

intrinsic defects in Si with an activation energy on the order of 3 . . . 5 eV (Frank

1981). Such vacancies or interstitials are known to act as deep-level defects. With

sufficient free electrons and holes available from the preceding electron irradiation,

they can be alternately recharged as they move to different sites, in turn stimulating

the next jump – Bourgoin and Corbett mechanism (Bourgoin and Corbett 1972).

T

H

TH

H

B

(011) plane

[100]

[011]
[111]

TS

TB

BS path

T

Fig. 12 Various interstitial

migration paths in Si shown

in a (110) plane involving

bond-centered (B), hexagonal
(H ), and tetrahedral (T ) sites.
Path TS points in [100] and

paths TB and TH point in

[111] direction; the TS path

involves exchange with atoms

at lattice sites, while TH and

BS paths do not (After Car

et al. 1984)
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Other alternate diffusion processes which proceed at very low temperatures may

also involve dopants, e.g., aluminum (Troxell et al. 1979) or boron (Troxell and

Watkins 1980), Zn-O pairs in GaP, or Fe-B pairs in Si (see Pantelides (1987) for

more information).

4 Line Defects

Line defects are one-dimensional imperfections of the crystalline order, which

often extend throughout the entire lattice. Along the line characterizing the defect,

the symmetry of the crystal may be distorted either with respect to translation or to

rotation. Line defects referring to translation are called dislocations. Dislocation
have a major influence on semiconductor interfaces, on certain types of crystal

growth, and on electron transport and are therefore discussed here (see Friedel

(1964), Hull (1975), and You and Johnson (2009)). Other important influences

include mechanical deformation (yield strength) and the formation of grain bound-

aries (see Sect. 5.2).

Distortions of the rotational symmetry are called disclinations. Like dislocations
they are sources of internal strain. Disclinations can be used to describe frustrated

systems resulting in curved lattice regions which are common in amorphous or

organic semiconductors. For more information, see the review of Kleman (1985)

and the original literature cited therein.

There are two main types of dislocations:

• Edge dislocations

• Screw dislocations

Other ways to distinguish dislocations will be discussed below (see Read (1953),

Weertman and Weertman (1960), Cottrell (1964), Pirouz (1989), or Hao

et al. (1998); for theoretical analyses, see Nabarro (1967) and Hirth and Lothe

(1982)).

4.1 Edge and Screw Dislocations, Burgers Vector

4.1.1 Edge and Screw Dislocations
Edge dislocations (Taylor 1934; Orowan 1934) are formed by an extra lattice plane

inserted into a part of a crystal as illustrated in Fig. 13a. The dislocation line extends
along the terminating edge of the inserted plane. The edge dislocation is called

positive, if the extra half plane is added above the dislocation line, and negative for
an insertion below. Such dislocations are produced when a crystal is exposed to

nonuniform mechanical stress large enough to result in plastic deformation along a

glide plane or when two semiconductors with different lattice constants form a

common interface. In Fig. 13a, a {001} plane is indicated. Another preferred glide

plane in cubic crystals is the {110} plane.
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Dislocations are identified by the dislocation line and their Burgers vector (see

below). For an edge dislocation, the Burgers vector b is at an angle of 90� to the

dislocation line l (Fig. 13a).

A screw dislocation (Burgers 1939 – Fig. 13b) shows a step at the outer surface,
while only a slight lattice deformation exists surrounding the dislocation within the

crystal. The screw dislocation is important for crystal growth (Frank 1949a) since

adherence of atoms is substantially enhanced at an inside surface edge (see ▶ Sect.

3.1.5 and▶ Fig. 8 of chapter “Properties and Growth of Semiconductors”). A screw

dislocation continuously maintains such an edge during growth by forming a

growth spiral (Fig. 14). For a screw dislocation, the Burgers vector b is parallel to

the dislocation line l (Fig. 13b).

a

b
l

b

l

b

Fig. 13 (a) Edge dislocation with an additional plane (marked in green) partially inserted into a

simple cubic crystal, ending at the dislocation line l. The glide plane is indicated by a dashed line.
(b) Screw dislocation in a simple cubic crystal producing a step at the crystal surfaces. The Burgers

vector b is identified by a red arrow. Orange arrows mark a Burgers circuit about the

dislocation line

Fig. 14 Spiral growth shown

on the (0001) surface of a

GaN crystal with the core of a

screw dislocation in the center

of the picture (After Akasaka

and Yamamoto 2014)
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A mixed dislocation is formed when the Burgers vector is at an angle 0 < θ <
90� to the dislocation line. Such dislocation has a step and a screw component; an

example is shown in Fig. 15. Mixed dislocations are far more common than pure

edge and screw dislocations; they are often termed after the angle between Burgers

vector b and dislocation line l.

4.1.2 The Burgers Vector
The Burgers vector and its angle to the dislocation line identify the dislocation, and
its square yields the strain energy of the dislocation per unit length. In order to

define the Burgers vector, we construct a polygon with an equal number of lattice

steps on each side of the polygon.14 The path is closed in a perfect crystal. However,

when this path surrounds a dislocation, it is no longer closed. The lattice vector

needed for completion of the polygon is the Burgers vector b (see Fig. 13).

For a pure edge dislocation, the Burgers vector is orthogonal to the dislocation

line, and for a pure screw dislocation, it is parallel. If the dislocation line is a straight

line, the Burgers vector is constant, and the type of dislocation does not change.

When the dislocation line bends, the step and screw components of such mixed

dislocation continuously change (see Fig. 15).

A B

b

b

l

Burgers vector

b1 b2
screw
component

-O

step
component

l

a b

c

Fig. 15 Mixed dislocation,

with bend dislocation line l.
(a) Lattice model, (b) varying
angel between b and l,
yielding pure screw at A and

pure edge at B. (c) The
Burgers vector b involves an

edge (b1) and a screw (b2)
component

14When a mirror-symmetry plane exists normal to the dislocation line, an arbitrariness in the sense

of this line cannot be avoided. There are hence different conventions to define the sign of the

dislocation line and the Burgers circuit (clockwise or reverse), yielding different signs for the

Burgers vector (see Hirth and Lothe 1982). For a finish-start/left-hand (FS/LH) convention with a

counterclockwise circuit, l pointing from surface to bulk and b drawn from the finish to the start

point to close the circuit, the screw dislocation in Fig. 13b is defined left-handed.
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A dislocation line can neither begin nor end within a crystal (Hirth and Lothe

1982). Consequently, the dislocation line forms a closed loop within the crystal, or

it begins and ends at an interface (surface) or grain boundary of the crystal.

The displacement of atoms near the dislocation line is connected to a strain

energy per unit length. The strain energy increases quadratically with strain in the

linear stress-strain relation of Hooke’s law, Edislocation/length / Gb2, where G is the

shear modulus; the proportionality constant varies only little for different types of

dislocations (less than a factor of two). To minimize strain in the crystal, a

dislocation line can move as outlined in Sect. 4.3, or it can split: the strain energy

of a dislocation with Burgers vector b is lowered, if the dislocation is divided into

two (or more) partial dislocations with smaller Burgers vectors b1 and b2 fulfilling
b = b1 + b2 and Frank’s rule:

b1j j2 þ b2j j2 < bj j2: (84)

According to Frank’s rule, dislocations with shortest Burgers vector are stable. If

the Burgers vector is a translation vector of the crystal, the corresponding disloca-

tion is termed perfect dislocation. In an fcc structure and the related zincblende

structure, primitive translations represent vectors of the type a0
2
110h i . Burgers

vectors which do not correspond to a primitive translation refer to partial disloca-
tions. In the fcc structure, a partial dislocation leads to a change of the ABC stacking

order along the {111} direction, resulting in a planar stacking fault (see Sect. 4.2).

An example for a dissociation of a perfect dislocation into two more favorable

partial dislocations according to Frank’s rule is the reaction

a0
2

101
	 
! a0

6
211
	 
þ a0

6
1 12
	 


: (85)

The two created partials are Shockley dislocations with Burgers vectors of length

a0=
ffiffiffi
6
p

, while the perfect dislocation has a0=
ffiffiffi
2
p

in length, thus obeying Eq. 84.

4.1.3 Dislocation Counting
Dislocations can be made visible by several methods (Hull 1975). One of the easiest

is via surface etching, i.e., removing parts of the lattice surrounding the dislocation,

which are under stress and therefore dissolve more easily. The surface etching

method is shown schematically in Fig. 16. Since most of the dislocations extend

throughout the entire crystal, we obtain their density by counting the etch pits at the
surface. The best Si crystals contain less than 1 etch pit/cm2. Typical commercial

semiconductors have a dislocation density of 102–104 etch pits/cm2. Other methods

which involve the direct observation of dislocations include transmission electron

microscopy of thin layers; EBIC,15 relating to their electronic properties; reflection

15Electron beam-induced conductivity is used in a scanning electron microscope (Heydenreich

et al. 1981).
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or transmission imaging, relating to mechanical stress of the surrounding; X-ray

diffraction; tunneling; and field ion microscopy. Indirect observation is possible by

using decoration, which uses precipitates along dislocation lines to increase con-

trast and also to permit light microscopic observation. For recombination-

generation behavior of decorated defects in Si, see Berg et al. (1992).

4.2 Dislocations in Compound Semiconductors

In a binary (AB) compound with zincblende structure, edge dislocations in the

[110] direction are energetically favored but require two extra (110) planes: an

a plane and a b plane as shown in Fig. 17a. Again, the Burgers vector is a lattice

vector. There is the possibility of splitting these adjacent planes into two separate

partial dislocations, as shown in Fig. 17b. The separation of planes maintains the

correct AB sequence above and below the dislocation line, except for a jump of

composition between both partial dislocations. Such partial dislocations have a

lower energy than the unit edge dislocation and therefore are favored. In more

complex crystals, more than two extra planes are required to restore periodic order.

Therefore, the larger the Burgers vector becomes, the more complex the crystal

structure is.

In wurtzite AB compounds, common Burgers vectors are of the type a
3
1120
 �

with slip (see Sect. 4.3) in the basal plane (0001), but slip on 1100
� �

and 1120
� �

also occurs. For perfect dislocations in wurtzite lattices, see Osipiyan and

Smirnova (1968).

The preferred slip plane in tetragonally bound semiconductors is the {111} plane

which could lie either between the closely spaced planes, called glide set, or
between the wider spaced planes, called shuffle set (Ba or bB in Fig. 18). These

are 60� dislocations; they are prominent in tetrahedrally bonded semiconductors

and can best be visualized by cutting out a lattice slab and rejoining the displaced

atoms along the dashed lines 1-5-6-4 for the glide set or along 1-2-3-4 for the shuffle

set. With such an operation, an extra lattice plane is inserted below 5-6. For more

information, see Bauer et al. (1993), Branchu et al. (1999), Inoue et al. (1998), and

Brochard et al. (1998).

a b c d

Fig. 16 Formation of etch pits at the surface surrounding an edge (a, b) and a screw dislocation (c, d)
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Along such dislocations, a row of dangling bonds would appear, as shown in a

perspective view in Fig. 19a.16 Dangling bonds are expected to effectively trap

electrons with major influence on electrical properties (Labusch and Schröter

1980). However, reconstruction of the dislocation core eliminates most of these

dangling bonds with substantial reduction of the electrical influence of such dislo-

cations (Hirsch 1985). For imaging of such dislocations, see Ning and Huvey

(1996) and Gutakovskii et al. (1995).

The 60� dislocation consists of two partials (a 30� and a 90� partial), each of

which is capable of reconstruction. Figure 20a shows the reconstruction of the 30�

glide partial; whereas Fig. 20b shows dangling bonds along a 90� glide partial and
its reconstructed core. The 90� glide partial shows an interesting alternative of

b a b a b a b a b a b a

b a b a b a  b  a b  a b a 

b ba ba ba ba a

b a  b a   b a b a b  a

[111]

[112]

[110]

(111)
glide plane

Burgers 
vector

b

Burgers vector of
complete dislocation

Burgers vectors of
partial dislocations

stacking-fault
plane

bb2

deq

b1

a

b

Fig. 17 (a) Unit edge
dislocation in an AB
compound with Burgers

vector along the [110]

direction of a face-centered

cubic crystal. (b) Extended
dislocation of the same

compound of two Shockley

partial dislocations separated

by a stacking fault (plane

b continues as plane a and

plane a as plane b above the

partial dislocation plane)

16The 60� dislocation in Fig. 19a is drawn for zincblende structure; to obtain this defect for the

diamond structure of silicon, consider all atoms to be identical.

4 Line Defects 565



bonding (upper and lower middle part of the structure shown at the bottom right in

Fig. 20b) which has the same energy. In the transition region, a dangling bond is

created. Such a defect is also referred to as an antiphase defect and can move as a

soliton along the reconstructed glide partial (Heggie and Jones 1983; for more

details, see Hirsch 1985).

4.3 Motion and Creation of Dislocations

All dislocations can move conservatively if the motion is parallel to the Burgers

vector or, more generally, when the dislocation moves within its slip plane. Such

motion is called glide,17 shown in a two-dimensional representation in Fig. 21, and

is the essential part in a plastic deformation of a crystal.

The motion of an edge dislocation normal to both its Burgers vector and its

dislocation line is called climb. It is nonconservative; meaning, it causes a change of

5

2

1

6

3

4
a

A
c

C
b

B
a

A
c

B

[111]

[112]Fig. 18 Projection of a Si

lattice in the 110
� �

plane.

Blue circles represent atoms

in the paper plane; dark
circles lie in the next plane

below or above, as indicated

also by two bonds. The (111)

plane is normal to the paper

(also normal to the direction

[111]) and would appear as a

horizontal trace. The dashed
red lines indicate a cutout of a
lattice slab for creating a 60�

dislocation just below it

a b

b

l

[111]

[001]

[111]

l

b

Fig. 19 60� dislocation in a (a) zincblende and a (b) wurtzite crystal with a row of dangling bonds

at the dislocation line l (green). The Burgers vector is drawn in red, and the inserted extra plane is
marked in yellow

17The terms glide and slip are generally used to describe, respectively, the motion of a single

dislocation and many dislocations.
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the height of the inserted plane, i.e., atoms must move to or from the dislocation

core (dislocation line) (see Fig. 22a). A gliding dislocation that encounters an

obstacle – such as another crossing dislocation, a vacancy, a foreign atom, or

other crystal defects – can become pinned at such an obstacle, i.e., the obstacle

hinders dislocation movement. For crossing dislocation, see Justo et al. (1997). For

the example given in Fig. 22b, the dislocation must “climb over” the obstacle in

bB

A

C
D

b-2u

a b

Fig. 20 (a) Top, 30� glide partial dislocation in Si shown in a (111) plane; bottom, reconstructed.
(b) 90� glide partial dislocation in Si in a (111) plane; top right, reconstructed; bottom right,
antiphase defect (After Jones 1981)

slip plane

Fig. 21 Glide motion of an edge dislocation along a slip plane. Arrows indicate stress exerted on

the crystal
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order to continue moving. Therefore, glide and climb are important in plastic

deformation of crystals (see Cottrell 1958 or Hirth and Lothe 1982).

4.3.1 Dislocation Kinks and Jogs
Dislocation lines in real crystals are not straight lines; they contain short segments,

where the dislocation line is displaced on an atomic scale. A kink is formed when

part of the dislocation is shifted within the same glide plane by one lattice plane

from its original position (Fig. 23a, b). At these kinks, dangling bonds exist where

reconstruction cannot be completed (Hirsch 1985). A kink does not impede glide of

the dislocation.

If the dislocation line moves from one atomic slip plane to another, a jog is

formed (Fig. 23c, d). Jogs are segments of the dislocation line that have a compo-

nent normal to the glide plane. If this segment extends over more than one

interplanar spacing, it is termed superjog. The jog on a screw dislocation has an

edge component; it can only glide in the plane containing the dislocation line before

and after the jog (paper plane in Fig. 23c).

Both kinks and jogs can nucleate in pairs on an initially straight dislocation line

(Fig. 24). Such pairs (of opposite sign) are formed by thermal fluctuations in the

crystal and can initiate movement of the dislocation line.

Dislocation Climb If the last line of atoms along an edge dislocation is removed,

e.g., by diffusion to the crystal surface, then the dislocation has climbed by one

atomic spacing. A climb is a motion out of the glide plane. However, the diffusion

of only a few atoms from the edge is more likely. This results in a climb of only a

fraction of the dislocation, with a jog to the undisturbed part. Climb by nucleation

of jog pairs is equivalent to dislocation motion in perpendicular direction by

nucleation of kink pairs. Widening of the distance between jog pairs usually

requires diffusion of the interspacing line of atoms to the surface.

4.3.2 Dislocation Velocity
When a shear stress is exerted parallel to the Burgers vector of an edge dislocation,

it is unlikely that the entire dislocation moves step by step as shown in Fig. 21.

When drawing the edge dislocation in a plane normal to that shown in Fig. 21, we

climb

a b

Fig. 22 (a) Edge dislocation performing a climb process and releasing atoms thereby. (b) Strain
field surrounding a foreign atoms hinders motion of a dislocation along a glide plane
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can picture a more probable sequence of events, in which part of the dislocation

moves one lattice spacing and connects to the remaining part with kinks (Fig. 24).

The dislocation velocity is then determined by the nucleation rate and motion of

double kinks, as well as by the interaction of such kinks with localized lattice

defects. Such interaction is known to depend on the electrical charge of these

defects and is influenced by the position of the Fermi (or quasi-Fermi) level

(Patel and Chaudhuri 1966). For instance, the velocity of dislocations under other-

wise identical conditions is 	50 times larger in n-type than in p-type Ge. Other

deep-level centers, e.g., oxygen, cause pinning of the dislocation. This dislocation

motion is more complicated when partial dislocations need to be considered.

a

Fig. 24 Top view on a glide plane: movement of a dislocation line l in the glide plane by

nucleation of a pair of kinks

b

b

b

b

a c

b d

Fig. 23 Dislocation line with a kink (a, b) and a jog segment (c, d) on a screw (a, c) and an edge

dislocation (b, d). The glide plane is marked in yellow
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Generation of double kinks in the two partials may be correlated (Wessel and

Alexander 1977). The velocity v of dislocations can generally be described by the

empirical relation

v ¼ v0 σ=σ0ð Þmexp ΔE= kTð Þð Þ; (86)

where σ is the applied stress, T is the temperature, and the activation energy ΔE and

characteristic parameters v0 and σ0 are experimentally determined. Some partials

(e.g., with a Burgers vector inclined to a stacking fault) cannot glide; these are

called sessile (Frank 1949b). Other dislocations which can move easily are called

glissile.
Edge dislocations in semiconductors are generally at least partially charged,

since in addition to some remaining dangling bonds, the stress field surrounding the

dislocation creates traps for carriers, and the termination of an extra layer in an ionic

crystal carries an inherent charge (Petrenko and Whitworth 1980). The movement

of such a dislocation is therefore influenced by other charges.

The Frank-Read Source The application of sufficient shear stress produces

additional dislocations from a dislocation pinned at the two ends (Frank-Read
source, Frank and Read 1950) and forced to bow by mechanical deformation

perpendicular to the direction of the dislocation (Fig. 25). In this way, dislocation
loops can be formed sequentially, and the process repeats itself periodically as long

as the stress persists (see Read 1953). For observation of dislocation loops in

Si-doped GaAs, see Chen et al. (1992).

4.3.3 Dislocations and Electronic Defect Levels
The dangling-bond states introduced by dislocations are electronic defect states within

the bandgap. Nonreconstructed dislocations result in a half-filled defect band in the

bandgap. Their presence affects the carrier density; for instance, plastic deformation

on n-type Ge can render the material p-type (Labusch and Schröter 1980).

A

B

A

B

A

B

A

B

A

B

A

B

S1

S2
(1) (2) (3) (4)

(5)
(6)

Fig. 25 (1) Frank-Read source with progressively growing dislocation loop (2–5) and separation

(6) to repeat this process (1–6)
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Core reconstruction reduces the density of dangling bonds dramatically

so that the remaining ones act as isolated deep-level point defects. In addition,

the lattice deformation near the reconstructed core causes defect levels in the

bandgap.

Electron paramagnetic resonance and its angular dependence yield information

about the density and orientation of defects with unpaired spins, i.e., dangling

bonds. Experiments with plastically deformed Si at 650 �C indicate that only

0.2 ... 2 % of the available sites are not reconstructed and have unpaired spins at

dangling bond centers (Weber and Alexander 1983). Kinks, curved dislocations, or

other special features, such as jogs or nodes, are the suspected sites of the remaining

dangling bonds (Osip’yan 1983).

Deep-level transient spectroscopy (DLTS) indicates that filling of deep

levels at dislocations, which lie in closer proximity to each other, produces

a Coulomb barrier. This impedes consequent trapping of adjacent centers and

can be recognized in the DLTS signal (Kveder et al. 1982). Acceptor levels at

Ec � Ea ffi 0:35and 0:54eV, and a donor level at Ed � Ev ffi 0:4eV, have been

detected in plastically deformed Si (Kimerling and Patel 1979; Weber and

Alexander 1983).

Luminescence and photoconductivity measurements yield additional informa-

tion about deep levels associated with (mostly reconstructed) dislocations, kinks,

jogs, etc. For a review, see Weber and Alexander (1983), Mergel and Labusch

(1982), and Suezawa and Sumino (1983).

The unique identification of specific dislocation-related defects is difficult: with

deformation at elevated temperatures, other defects and defect associates are

formed, the signatures of which cannot easily be separated.

5 Planar Defects

Planar faults are two-dimensional defects. There are several types of such faults:

• Stacking faults

• Low-angle grain boundaries, twin boundaries, and crystallite boundaries

• Inversion-domain boundaries

• Heterointerfaces and metal/semiconductor interfaces

• Surfaces (ideal and with absorption or chemisorption layers)

These defects have a significant influence on the electrical properties of real

semiconductors. Most of this influence is caused by defect levels at the boundaries

(interfaces, surfaces), which are usually charged and attract compensating charges

in the adjacent crystal volume (space charges). Heterointerfaces between two

semiconductors and metal/semiconductor interfaces are treated in chapter

▶ “Crystal Interfaces”. The other planar defects will only be mentioned briefly

here since they deal with profound inhomogeneities which are not the topic of

this book.
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5.1 Stacking Faults and Antiphase Domains

Stacking Faults Stacking faults are the least disordered types of interface defects.

They occur by alternating between wurtzite and zincblende structures: to form the

lattice from atomic layers stacked on top of each other in the c direction,18 we start

from a hexagonal (“close-packed”) layer (A) and deposit the next identical layer (B)
offset and turned by 60� to touch each second interspace at 1

4
1
4
1
4
. For the deposition of

a similarly offset third layer, we have the choice of turning it back by 60� to the

original position (A), resulting in a wurtzite lattice, or turning it forward by another

60� to offset it from the bottom layer by 120� (C), resulting in a zincblende lattice

(see ▶ Figs. 9 and ▶ 11 of chapter “The Structure of Semiconductors”). The layer

sequence ABABAB therefore characterizes wurtzite; the layer sequence ABCABC
characterizes zincblende. The sequences ABABABCABAB and ABCABCBCABC
consequently identify stacking faults in the wurtzite and the zincblende structure,

respectively. A thin slice of a stacking fault can be seen as being imbedded between

two partial dislocations, i.e., the boundary of a stacking fault is a partial dislocation

(see Fig. 26; for more details, see Nabarro 1967 and Hirth and Lothe 1982).

ZnS and SiC are examples for materials that show such stacking faults. The reason is

a small difference of lattice energy between wurtzite and zincblende structure in these

semiconductors (Yeh et al. 1992). There can be a long-range periodicity in these

stacking faults, up to a few hundred Å in SiC, which produces so-called polytypes.

Antiphase Domains An antiphase domain is a region in a polar crystal where the

atoms are located on regular lattice sites but in the opposite order with respect to the

undisturbed crystal. In binary crystals with zincblende or wurtzite lattices, hence

anions occupy cation sites and vice versa within the domains (see Fig. 27). Such

disorder nucleates particularly at the heterointerface of a polar semiconductor

grown on a nonpolar semiconductor.19 Here, antiphase domains are created during

A
B
C
A
B
C
A

[111]a

A
B
C
A
B
C

B

b

Fig. 26 (a) Intrinsic and (b) extrinsic stacking fault in a zincblende lattice with a removal or an

insertion of a layer between two dislocations, respectively. A, B, and C denote hexagonal close-

packed layers stacked along the [111] direction

18Along [0001] in the hexagonal wurtzite lattice, corresponding to the [111] direction of the cubic

zincblende lattice
19An example is the well-lattice-matched InP/Si(001), a prominent material for integrating

optoelectronics of InP-based devices with the established Si electronics.
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growth at monoatomic steps on the nonpolar semiconductor; if growth starts

with an anion layer, growth on a one monolayer higher region yields an

inequivalent crystal orientation. Such mismatch can be avoided by double

steps on the nonpolar semiconductor.20 Boundaries between domains of reversed

orientation correspond to stacking faults and are also termed inversion-domain
boundaries. At these boundaries, bonds among equally charged ions occur (see

Fig. 27). Heterointerfaces are discussed in more detail in chapter ▶ “Crystal

Interfaces”.

Inversion-domain boundaries (IDBs) generally create states in the bandgap. They

introduce nonradiative carrier recombination and degrade the performance of

electronic and optoelectronic devices. IDBs which are inclined to the interface

may lead to a restoring of the undisturbed order: a further monoatomic step in the

right part of Fig. 27 induces second IDB which can be inclined to the left; at the line

of intersection of the two IDB planes, the disorder annihilates, yielding an antiphase

domain bounded by these planes.

5.2 Grain Boundaries

One distinguishes several types of grain boundaries, the more important ones will

be discussed in this section.

[001]

[110]

Fig. 27 Creation of an antiphase domain boundary at a monoatomic step at the interface of a

nonpolar to a polar semiconductor. No such boundary forms at a double step. The crystal

orientations in the non-shaded and shaded regions are inverse. The green dashed line marks an

inversion-domain boundary

20On Si(001) substrates, such double steps can be achieved applying 	6� offcut orientation to

create single-step terraces and a thermal treatment for double-step formation.
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Low-angle Grain Boundaries Low-angle grain boundaries show a very small tilt

between two regular crystallites and can be regarded as an array of dislocations

(Bragg and Burgers 1940), as shown in Fig. 28. The angle between the two grains

(at most a few degrees) is given by

θ ffi b=d; (87)

where b is the length of the Burgers vector and d is the dislocation spacing.

Large-angle Grain Boundaries Twin boundaries are special angle boundaries

between two identical crystallites. The least disturbed twin boundary is that of a

stacking fault, as discussed in Sect. 5.1: in a zincblende or diamond lattice, the

stacking order may reverse at a single fault yielding ABCABCBACBA; the sequence
in a wurtzite lattice may proceed from an AB sequence to a BC sequence yielding

ABABCBCBC. In either case, there is a single plane of atoms – the twinning plane –

shared by two undisturbed crystals with mutual reflection symmetry.

Other twin boundaries are under an angle at which solely each second (or third)

atom falls onto a lattice site as shown in Fig. 29. It can therefore be regarded as an

array of vacancy lines similar to an array of edge dislocations in low-angle grain

boundaries.

Other crystallite boundaries may occur under a wide variety of angles and may

incorporate at the interface a variety of disorders, including vacancies, dislocations,

and liquid-like structures with a high degree of local stress (Fig. 30).

Grain boundaries can have a major influence on semiconducting properties by

trapping carriers and creating compensating space-charge layers. Some of the

effects related to carrier mobility will be discussed in▶Sect. 4.3 of chapter “Carrier

Scattering at Low Electric Fields”.

Fig. 28 Low-angle grain boundary with an array of edge dislocations separated by seven lattice

planes. The symbol ⊥ indicates the insertion of an extra lattice plane
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6 Summary

Crystal defects are classified into point defects, line defects, and planar defects.

Intrinsic point defects, and associates of these defects, are formed at elevated

temperatures in thermodynamic equilibrium. The density of vacancies and intersti-

tials increases following the Arrhenius law with an activation energy for typical

semiconductors in the 2 . . . 5 eV range and with a very large pre-exponential factor

indicating substantial entropy contribution. With decreasing temperature, one

reaches a freezing-in temperature below which the annealing of these defects can

no longer follow any reasonable cooling rate, leaving a residual density of these

intrinsic defects which are frozen-in; almost all electronic devices contain

Fig. 30 Grain boundaries of

nanocrystalline palladium

(fcc structure) taken with

high-resolution transmission

electron microscopy along

[110], making the atomic

array visible. Burgers circuits

at the triple and quadruple

points show a projected

translation of a0
4
112h i,

representing the edge part of

60� mixed dislocations with a0
2

110h i Burgers vector (Rösner
et al. 2011)

Fig. 29 Twin-grain

boundary (dashed line) in the

(112) surface of a cubic

crystal

6 Summary 575



inhomogeneous doping distributions which must remain frozen-in during the life of

the device. The thermodynamic approach of estimating the density of point defects

can be extended to a defect-chemistry approach in which various interactions can

be taken into account. Such interactions include reactions between extrinsic and

intrinsic defects, associate formation, ionization of these defects, and interrelation

with free carriers. All of these force an interrelation through conservation of

particles and quasi-neutrality.

Defect incorporation often involves diffusion from or to outer surfaces or

between different defects. Such diffusion is described by a random walk of atoms

between neighboring sites; it may also involve more complicated site exchanges of

atoms during each step, including recharging of defects during alternating steps,

and associate formation. The diffusion is measured by a diffusion constant that has

matrix form in anisotropic crystals and can have vastly different magnitude depen-

dent on activation energies, temperature, and crystal structure.

Line defects are created during crystal growth (epitaxy) or under external stress.

Most important are dislocations, which are characterized by their Burgers vector and

its angle to the dislocation line. Mixed dislocations comprise edge and screw compo-

nents, and any bending of the dislocation line changes their fraction. Perfect disloca-

tions may dissociate into partial dislocations with smaller Burgers vectors.

Dislocations move conservatively on glide planes and nonconservatively by climb

processes. The motion may commence by thermally activated pairs of kinks and jogs.

Planar defects are two-dimensional faults representing extended inhomogenei-

ties in the crystal. A disturbed order of close-packed atom layers in tetrahedrally

bonded semiconductors leads to stacking faults or, by local variations of the

stacking order in compound semiconductors, to antiphase boundaries. A single

stacking-fault plane may constitute a large-angle twin boundary separating perfect

crystals of different orientations. A low-angle grain boundary is formed between

two regular crystallites by a series of dislocations.

Defects are present in very small concentrations in any semiconductor device,

where they determine the electronic and optical properties. Materials, described by

chemists as very pure, often contain too many impurities for semiconductor devices

to work properly. Purification with respect to certain impurities to a concentration

of less than one atom in 108 is sometimes required, corresponding to 99,999,999 %

purity (8-niner material), while 6-niner semiconducting grade is common. The

control altogether of point, line, and planar defects, the identification of desirable

defects which can be introduced in appropriate concentrations, and the recognition

and avoidance (or electrical neutralization) of undesirable defects are essential.
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Abstract

Interfaces to other semiconductors, producing a heterojunction, or to conductors,

acting as contacts, are important parts of almost every semiconductor device.

Their basic interface properties are a decisive element of the device operation

and its performance. Layers of different semiconductors with a common inter-

face may be coherently strained up to a to a critical layer thickness, which is

roughly inverse to the mismatch of their in-plane lattice parameters. In thicker

layers strain is at least partially relaxed by misfit dislocations.

The electronic properties of semiconductor heterojunctions and metal-

semiconductor contacts are governed by the alignment of their electronic

bands. Early models describe band offsets and barrier heights as the difference

of two bulk properties. While related chemical trends are found for certain
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conditions, the band lineup cannot be predicted with sufficient accuracy by a

single universal model. Interdiffusion on an atomic scale, defects located at the

interface, and leaking out of eigenfunctions from one into the other material

create interface dipoles, which modify alignments guessed from simple proper-

ties of the bulk materials. Additional shifts originate from strain. Various models

exist, each describing certain groups of materials forming interfaces. Linear
models define reference levels within each material such as charge neutrality

levels or branch-point energies within the bandgap, average interstitial poten-

tials, or use localized states of impurities lying deep in the bandgap. Nonlinear
models account for the formation of interface dipoles; such charge accumulation

can be induced by band states near the interface in one semiconductor lying in

the bandgap of the other or by disorder at the interface inducing gap states. More

recent first-principle approaches model heterointerfaces explicitly or align bands

with respect to the vacuum level by including surfaces.

Keywords

Anderson model � Band alignment � Band bending � Band lineup � Bardeen
model � Blocking contact � Debye length � Diffusion potential � Disorder-induced
gap states � Electron affinity � Heterointerfaces � Interface-dipol theory �
Interfaces � Metal-induced gap states � Metal-semiconductor interfaces � Model-

solid theory � Ohmic contact � Pseudomorhic layer � Schottky barrier � Schottky-
Mott model � Space-charge region � Strain relaxation � Transition-metal

reference level � Valence-band offset

1 Structure of Heterointerfaces

The heteroboundary between two crystals of different composition is of great

technical importance for heterojunction devices. It is characterized by a mismatch

in several parameters, most importantly the lattice constant, the electron affinity1

(see Bauer et al. 1983), and the bandgap energy. The mismatch of expansion

coefficients is of interest when a device is produced at temperatures substantially

different from room temperature or is exposed to temperature cycling during

operation. It may generate major interface defects and cause curling of thin layers

or, in extreme cases, result in delamination. This chapter first outlines the structural

1The electron affinity of a semiconductor is defined as the energy difference from the lower edge of

the conduction band to the vacuum level, i.e., the energy gained when an electron is brought from

infinity into the bulk of a crystal, resting at Ec. It should be distinguished from the electron affinity

of an atom, which is equal to the energy gained when an electron is brought from infinity to attach

to an atom and forms an anion.
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properties of heterointerfaces and then presents the electronic properties; eventually

the properties of the interface of a semiconductor to a metal are pointed out.

1.1 Pseudomorphic Layers

Thin semiconductor layers may be grown by epitaxy (▶Sect. 3.3 of chapter

“Properties and Growth of Semiconductors”) on a semiconductor of a different

composition without defects at the common interface. Figure 1 illustrates a layer

with the same (cubic) crystal structure as the substrate beneath but – in absence of

the common interface – with a different unstrained lattice constant aL. If the

difference in lattice constants is not too large (below �1%), the layer adopts an

in-plane lattice constant aL|| identical
2 to that of the substrate aS. If aL< aS the layer

is tensely strained in lateral direction and consequently experiences a compressive

deformation in the vertical direction to approximately maintain its bulk density;

vice versa, aL > aS leads to aL|| < aL and aL⊥ > aL. Such a heterostructure is called
pseudomorphic, and the layer is designated coherently strained.

The lateral strain (in-plane strain) in a pseudomorphic layer is given by the

lattice mismatch3 (or misfit) f:

eII ¼ f� aS � aL
aL

: (1)

Often alloys, e.g., InxGa1-xP/GaAs, are used as layer material with a composition

parameter chosen to match the lattice constant of the substrate (here x = 0.49); still

such layers are not perfectly matched due to differences in thermal expansion and

the high growth temperatures. The vertical strain e⊥ is given by

aL

aL

aS

Fig. 1 Coherently strained

layer (yellow atoms) with an

unstrained lattice constant aL
on a substrate (blue atoms)
with a different lattice

constant aS

2The substrate remains almost unstrained due to its large thickness.
3It must be noted that also other definitions for f are used in literature, particularly f= (aL–aS)/aS or
f = (aL–aS)/aL.
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e⊥ ¼ �D eII; (2)

where the distortion factor D depends on the crystal structure and the orientation of

the interface with respect to the crystallographic axes of the layer. The assumption

of a constant ratio D in strained layers is based on the assumed validity of Hooke’s

law (▶Eq. 10 of chapter “Elasticity and Phonons”), i.e., a linear stress-strain

relation. For cubic crystals and biaxial strain (i.e., exx = eyy = e||), the distortion

factors for the main orientations are

D001 ¼ 2C12

C11

,

D110 ¼ C11 þ 3C12 � 2C44

C11 þ C12 þ 2C44

,

D111 ¼ 2C11 þ 4C12 � 4C44

C11 þ 2C12 þ 4C44

:

(3)

For biaxially strained hexagonal crystals and a basal-plane interface the distortion

factor reads

D0001 ¼ 2C13

C33

: (4)

Since the stiffness constants Cij are positive quantities, vertical and lateral strains

have always opposite sign; a tensile lateral strain leads to a vertical compression

and vice versa.

The bulk density of the strained layer is not perfectly preserved despite the

counteracting vertical strain. The relative volume change is given by the trace of the

strain tensor,

ΔV=V ¼ exx þ eyy þ ezz: (5)

1.2 Strain Relaxation

A coherently strained layer contains an elastic strain energy. This homogeneous

strain energy increases in the harmonic approximation of Hooke’s law quadratically

with the strain e||, i.e., with the misfit f for a pseudomorphic layer. Furthermore, it

increases linearly with the layer thickness tL. At some critical layer thickness tc, this
strain energy gets larger than the energy required to form structural defects, such as

misfit dislocations, which plastically relax part of the strain (see Fig. 2). The plastic
relaxation reduces the overall strain; at the same time the dislocation energy

increases from zero to a value determined by the particular kind of the introduced

dislocation.

Dislocations (▶ Sect. 4 of chapter “Crystal Defects”) in the active part of a

semiconductor device introduce dangling bonds and inhomogeneities; the resulting
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enhanced nonradiative relaxation and scattering of carriers seriously degrade the

device performance. The thickness of all layers in a device are therefore kept below

the critical value tc for each individual layer.4

The dependence of the critical thickness tc of a pseudomorphic layer on the

misfit f (Eq. 1) was calculated assuming a balance of forces (Matthews and

Blakeslee 1974) or areal strain energies (Frank and Van der Merve 1949; Van der

Merve 1962; Matthews 1975) in thermodynamic equilibrium. The formation of a

dislocation requires a formation energy ED associated with the locally highly

strained region at the dislocation line. In the energy balance model, this energy

cost is balanced by the elastic release of homogeneous strain energy EH in the layer

outside the core region of the dislocation. The elastic energy EI at the interface is

given by the sum of EH + ED. The remaining mismatch fr of the partially relaxed

layer refers to an average lattice constant of the layer. In the presence of disloca-

tions, fr is less than the natural misfit f of Eq. 1, which is defined by the unstrained
lattice constants. To a good approximation, fr is given by the sum of f and the

residual strain

e ¼ aL, r � aL
aL

which may have opposite sign; aL and aL,r denote the unstrained and partially

relaxed lateral lattice parameters of the layer. The dependence of the elastic energy

at the interface from e is then given by

EI ¼ EH þ ED,

EH / tL e2,
ED / eþ f :

(6)

Fig. 2 Cross-section scheme

of an edge dislocation (red
line) introduced into an

initially coherently strained

layer (yellow atoms) for
plastic strain relaxation

4In a stack of layers, strain compensation may be applied by using different layer materials with

counteracting positive and negative strain to keep the accumulated overall strain low.
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The relation for the interface energy given by Eq. 6 is illustrated in Fig. 3 for a

GaAs0.9P0.1 layer on GaAs substrate with a misfit f = �0.36% and a thickness

below, just at, and above the critical value for plastic relaxation (Ball and Van der

Merve 1983). The homogeneous strain energy-density disappears at zero strain

and increases quadratically with e (blue curves), while the dislocation energy-

density gets zero at fr = e + f = 0 (red curves). In any case the energy at the

interface EI (green curves) tends to attain a minimum. The criterion for the critical

thickness tc is

@ EIð Þ=@ ej jð Þ ¼ 0 (7)

evaluated at jej = j f j. For tL > tc the homogeneous strain of the layer gets larger

than the misfit j f j, and dislocations introduce a strain of opposite sign, thereby

reducing jej and hence EI.

For the evaluation of the critical thickness in a given heterostructure, the

geometry of the strain-relaxing dislocations must be specified. Applying an explicit

expression for ED in Eqs. 6 and 7, we obtain a transcendent equation (Ball and Van

der Merve 1983), which can be calculated numerically:

tc fj jð Þ ¼ b
1� v cos2αð Þ

8π fj j 1þ vð Þ sin α cos β ln
ρ tc
b

� �
: (8)

Here, b is the absolute value of the Burgers vector, v = C12/(C11+C12) is Poisson’s

ratio, α is the angle between the Burgers vector and the dislocation line, β is

the angle between the glide plane of the dislocation and the interface, and the

ε f

E

15

50

100

| |

Fig. 3 Energy densities occurring at a biaxially strained layer with a thickness of 15, 50, and

100 times the substrate lattice constant aS. e denotes lateral strain, and f = �0.36% is the assumed

misfit. The blue, green, and red curves are homogeneous strain, strain at the interface, and

dislocation energy, respectively. The arrow denotes an energy minimum of the thick layer attained

by plastic strain relaxation
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factor ρ ffi 2 . . . 4 accounts for the strain energy of the dislocation core.5 In the

solution shown in Fig. 4, accommodating 60� dislocations in a biaxially strained

layer with zincblende (or diamond) structure and (001) interface plane, aL =
5.657 Å, ν = 0.33, and ρ = 2.72 are assumed.

The critical layer thickness is approximately inverse to the misfit f. For crystal-
line metal layers, the experimentally determined values agree reasonably well with

the predictions by equilibrium theory. For semiconductor layers, however, also

significantly larger values were observed. Due to kinetic barriers for the generation

and movements of misfit dislocations, the critical thickness calculated from equi-

librium models provides a lower limit.

Above the critical layer thickness, the lattice mismatch is partially relieved by a

network of mismatch dislocations, which form a more or less regular grid at the

interface. The average spacing is inverse to the remaining lateral misfit fr and may

be anisotropic as shown in Fig. 5 due to the effect of different kinds of dislocations.

The dislocation density decreases linearly down to a minimum value with the

distance from the heterojunction (Fig. 6), resulting from an annihilation of misfit

dislocations. The density of threading dislocations at the surface was found to be

approximately inverse to the layer thickness (Sheldon et al. 1988) and depends on

the heterogeometry. Usually, it results in an opposite strain at the outer surfaces.

100

101

102

103

10-4 10-3 10-2 10-1

t c(n
m

)

f ½½

Fig. 4 Critical thickness tc of
a pseudomorphic layer with

zincblende structure for

accommodating 60�

dislocations. An unstrained

lattice constant aL = 5.657 Å

is assumed

5Linear elasticity theory is not applicable at the highly strained dislocation core. Only the elastic

strain energy outside a somewhat arbitrary cutoff radius rcutoff about the dislocation line is hence

calculated and a term comprising rcutoff is added to account for nonlinear elastic energy and

dangling bonds in the core. Usually rcutoff = b/ρ is chosen yielding in Eq. 8 the term ln(tc/rcutoff)=
ln(ρ tc/b), also written ln(tc/b)+const with const = ln(ρ).
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This can best be seen for a lattice mismatch in one direction within the interface

plane. It results in a bending of the crystal, with a neutral plane near its center. It has

compression and expansion at the heterointerface and the surface, respectively.

2 Electronic Properties of Heterointerfaces

2.1 Issues for Band Alignment

At the interface from one semiconductor to another or to a metal the connection of

the bands, the so-called band alignment (also band lineup or band discontinuity) is

the most interesting property of its electronic structure. It has become clear that the

Fig. 6 Cross-section

transmission-electron

micrograph of a 1.8 μm thick

ZnTe/GaAs(001) layer with

f = �7,5%, imaged along

[110]. Double reflections in

the diffraction pattern from

the interface region (inset)

refer to GaAs (outer spots)

and ZnTe (inner spots) (After

Bauer et al. 1993)

Fig. 5 Plan view

transmission-electron

micrograph of a 20 nm thick

partially relaxed In0.2Ga0.8As/

GaAs(001) layer with f =
�1.4%. Average spacings in

orthogonal h110i directions
are 200 and 400 nm (After

Dixon and Goodhew 1990)
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general behavior which determines the band lineup is rather similar between

semiconductor-to-semiconductor, semiconductor-to-metal, and metal-to-metal

interfaces. Therefore, aspects which are important for heterojunctions or for con-

tacts are introduced in a parallel description.

2.1.1 Experimental Results for Valence-Band Offsets
The band alignment is caused by a number of factors, not all of which are

understood to date. Some of the contributing factors are the difference between

the two electron affinities (or workfunctions) of the involved semiconductors

(or metals), the interface defect levels and an induced interface dipole, and the

lattice misfit f at the interface. The experimental results that are obtained for abrupt

heterojunctions can be summarized as follows (Flores and Tejedor 1987):

1. There is commutativity for the valence-band offset for a wide variety of well-

deposited semiconductors (Margaritondo 1983). For instance,

ΔEv AlAs=GaAs 110ð Þ½ � ¼ �ΔEv GaAs=AlAs 110ð Þ½ � 	 0:05 eV (9)

applies (in this example the first semiconductor is deposited on top of the

second); see also Bauer et al. (1983) and Katnani (1987).

2. There is transitivity of the valence-band offset for a wide variety of semicon-

ductors (Katnani and Bauer 1986; Katnani 1987):

ΔEv A ! Bð Þ þ ΔEv B ! Cð Þ ¼ �ΔEv C ! Að Þ: (10)

3. In many heterojunctions there is only a minor dependency of the valence-band

offset on the crystal-face orientation of any of the semiconductors with good

interface match (Grant et al. 1987; Chiaradia et al. 1984).

4. The valence-band offset for semiconductors with good lattice match is indepen-

dent of initial surface reconstruction or interface defects (Katnani et al. 1985;
Katnani 1987).

5. The common-anion rule indicates that the valence-band offset is very small for

heterojunction couples of compounds having the same anion. This rule is best

fulfilled for compounds with a large fraction of ionic bonding (Frensley and

Kroemer 1977; Kroemer 1984) but not well fulfilled for III–V compounds, e.g.,

AlAs/GaAs, or even some II–VI compounds, such as HgTe/CdTe.

6. Monoatomic metal interlayers may or may not change the valence-band offset.

Examples for the first type are Al-interlayers at Si/CdS or Ge/CdS

heterojunctions resulting in a change of ΔEv of up to 0.3 eV (Niles et al. 1985)

or Cs at Si/GaP with a change of ΔEv of 0.4 eV, while an Al interlayer at

Ge/GaAs does not change ΔEv (Katnani et al. 1985).

These experimental results can be used as a guideline within a certain band of

accuracy which is typically on the order of 	0.1 eV and with caution for possible

exceptions. Items (1–4) are consistent with linear theories. The summary of the
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experimental results given above indicates the typical observation of an insensitiv-
ity of the band offsets to a large variety of interface manipulation. Only rarely are

specific effects observed in mostly covalent semiconductors that extend substan-

tially beyond the band of experimental uncertainties when repeating the same

experiment. From this experimental basis of rather weak general trends, it is

difficult to develop a common ground for testing theoretical models. Therefore, it

is not surprising that several of widely different models often yield agreement

within the band of experimental uncertainties, and it is difficult to weed out

insufficient models still to date.

Table 1 lists the experimental values for the band-edge offset of a number of

heterojunctions compiled by Margaritondo and Perfetti (1987).

2.1.2 Space-Charge Regions
When describing the contact between two materials in this section, we will use a

scale that extends typically several hundred nm from the interface. The interface

presents boundary conditions, e.g., in its charge character that needs compensating

charges further inside the material. Depending on the conductivity and other

Table 1 Experimental values for valence and conduction-band offset. DEv > 0 for A-B
heterojunctions means Ev(B) > Ev(A); A/B means A deposited on B. sg and av denote staggered

gap and average value; data in parenthesis are estimated from DEc + DEv = DEg. Experimental

methods: photoemission (PH), I–V characteristics (IV), other methods (OT) (Data of crystalline

materials only; for individual references see original, after Margaritondo and Perfetti 1987)

Heterojunction Layer/substrate ΔEv ΔEc Exp. method

Si-Ge Ge/Si(111) 0.17 (0.27) PH

Si/Ge(111) 0.4 (0.04) PH

AlAs-Ge Ge/AlAs 0.9 (0.63) PH

AlAs/Ge(100) 0.78 (0.75) PH

AlAs-GaAs GaAs/AlAs(110) 0.4 (0.45) PH

AlAs/GaAs(110) 0.15 (0.7) PH

Either on (100) 0.38 (0.47) PH

AlSb-GaSb Superlattice 0.4 (0.5) OT

GaAs-Ge Ge/GaAs(110) av 0.49 av (0.18) PH

GaAs/Ge(110) 0.34 0.39 OT

Ge/GaAs(111)Ga 0.48 (0.20) PH

Ge/GaAs(1 1 1)As 0.60 (0.08) PH

GaAs/Ge(110) 0.24 (0.34) PH

GaAs/Ge(100) 0.44 (0.24) PH

GaAs/Ge(100) 0.68 0.05 IV

GaAs-InAs GaAs/InAs(100) sg 0.17 (�0.09) PH

GaP-Si Si/GaP(110) 0.80 (0.33) PH

ZnSe-Ge Ge/ZnSe(110) av 1.46 av (0.45) PH

ZnSe/Ge(110) 1.29 (0.62) PH

ZnSe-GaAs ZnSe/GaAs(110) 0.96 (0.27) PH
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material parameters, such compensating charges are distributed (i.e., they are space
charges) over a region of several Debye lengths6 which in semiconductors are

typically on the order of 100 nm. Connected with such charges is a characteristic

bending of bands. It is this aspect which permits some helpful classification,

particularly for interfaces to metals (Sect. 3.1).

In order to identify interactions that produce the interconnection of the bands at

the interface and the band bending in the space-charge region, we consider two

materials that are separated by a wide enough distance in vacuum, as shown in

Fig. 7 for a semiconductor-semiconductor pair (a) and for a metal-semiconductor
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Fig. 7 Schematics of band diagrams for heterojunctions (left, a, b, c) and metal-semiconductor

contacts (right, d, e, f) with aligned vacuum level E0 (a, d), brought into thermodynamic

equilibrium resulting in an aligned Fermi level EF (b, e) and brought into contact with compen-

sating space-charge regions (c, f)

6The Debye length LD is a function of the carrier density. It is typically on the order of

30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1016cm3=n

q
nmð Þ with n (cm�3) as the density of free carriers.
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pair (d ). Each pair is aligned through the common vacuum level E0. Within each

material there are a number of relevant energies7 which will play an important role:

• The band edges Ec and Ev

• The Fermi level EF

• The workfunction ϕ = E0 – EF counted from the Fermi level

• The electron affinity χ = E0 – Ec counted from the conduction-band edge

• The ionization energy I = E0 – Ev counted from the valence-band edge

• The bandgap energy Eg = Ec – Ev = I – χ.

Let us assume first that such a pair is suspended in a vacuum vessel by an

insulating filament and kept at a high enough temperature so that some electrons

can exit through the surface of the semiconductor and the metal. These electrons

will flow between both materials, charging one with respect to the other until

equilibrium is reached and the current becomes the same in one direction as in

the opposite direction. Now, both Fermi levels have become aligned; the two

materials are in thermodynamic equilibrium. The amount of the resulting potential

shift between the two materials is referred to as the Volta potential or contact

potential8 Vc = ΔE0/e, with

ΔE0 ¼ ϕ2 � ϕ1: (11)

Such alignment is shown in the second row Fig. 7b, e.

When narrowing the gap between the two materials, their relative charge will be

attracted to each other, and as free carriers move toward the interface, they create a

more localized dipole layer across a thin gap that is left open. These carriers leave

behind a partially depleted region that now has the opposite charge (e.g., caused by

depleted donors or acceptors) with respect to the carriers which drifted toward the

interfaces. This partially depleted region comprises the space-charge region; its

exact width and charge distribution is not important for this discussion and will be

analyzed in Sect. 3.2.

7The workfunction ϕ and the electron affinity χ are in literature also defined in terms of potentials,

yielding an additional factor e to obtain an energy.
8The contact potential can be measured by the Kelvin method, i.e., by shaping the two materials

into the plates of a capacitor and vibrating these plates against each other. With an induced areal

charge

QA ¼ e0Vc=d

and d oscillating in time, the charge must also oscillate since Vc does not depend on the distance

d between both plates; hence an ac current will flow between the plates when externally connected

with a wire. The current vanishes when a counterpotential is applied which is equal and opposite to

the contact potential. This null method is a convenient one to directly determine the contact

potential.
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When closing the gap, the double layer and the space-charge region will readjust

to maintain equilibrium, i.e., without external forces applied; the current across the

interface will become zero after adjustment, and within each space-charge region,

the gradient carriers will be stabilized by a built-in field (corresponding to the slope

of the bands) that produces a drift current equal and opposite in sign to the diffusion

caused by the gradient.

Such band bending is shown in the last row of panels (c and f ) of Fig. 7. It
extends into both sides of the heterojunction for a few Debye lengths (subfigure c)
but is invisible on the metal side of the metal-semiconductor interface in the scale

drawn because the Thomas-Fermi length9 is much shorter. The total band bending

is given by the diffusion potential VD, also referred to as built-in potential.

We will now focus on the different relative energy offsets at this interface that

permit a classification of the various semiconductor heterojunctions; metal-to-

semiconductor interfaces are considered in Sect. 3.

2.1.3 Classification of Interfaces
A classification of semiconductor heterojunctions is conventionally with respect to

interfaces, disregarding space-charge regions, and with respect to their electrical

performance by including space-charge effects.

Classification Disregarding Space Charges Disregarding the band deformation

due to space-charge regions, one can distinguish several types of semiconductor

heterojunctions or metal-contact interfaces dependent on the relative values of

electron affinities or workfunctions. For metal-semiconductor pairs, see Sect. 3.

For semiconductor heterojunctions, the main types of interfaces are shown in Fig. 8.

Ec

Ev

E

x

b ca

Ec

Ev

E

x

Ec

Ev

x

E

Fig. 8 Schematics of the different types of possible band lineups of semiconductor

heterojunctions, neglecting band bending due to space charges near the interface. (a) Type I

alignment (straddled configuration), (b) type II (staggered), (c) type III (misaligned, broken gap)

9The Thomas-Fermi length in a metal, in which the carriers are constrained by the Fermi-Dirac

distribution, is the equivalent of the Debye length in a semiconductor.
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The type designation is used to distinguish low-dimensional structures like quan-

tum wells; see▶ chapter “Bands and Bandgaps in Solids” (Sect. 3 and▶ Fig. 30).10

The band aligning sketched in Fig. 8 corresponds to the conventional classifications

type I–III.

Classification Including Space-Charge Regions The classification between dif-

ferent types of heterojunctions becomes a bit more involved when space-charge

regions are included. There are several possibilities for arranging heterojunctions

depending on the relative size and sign of ΔEc and ΔEv and the doping of both

semiconductors. For an overview, see Milnes and Feucht (1972). One has to

distinguish between interfaces that have simple steps, as shown in Fig. 7c, or

spikes, either in the conduction band or in the valence band or in both.

An example for a p-n heterojunction is shown for the AlSb/GaSb heterojunction
in Fig. 9.11 This figure also indicates how a heterojunction can change from one

behavior to the other with spikes appearing in different bands by simply changing

the sequence of doping (n to p in subfigure (a) or p to n in subfigure (b)).
For semiconductor couples that contain a spike in the energy diagram at the

interface, an impediment in the carrier transport results and carrier trapping can

occur. Such trapping can become part of a charge redistribution at the interface

which modifies the simple Anderson model (see next section).
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Fig. 9 AlSb/GaSb heterojunction with energy values given in eV. When AlSb is p-type (a) the

spike occurs in the valence band; when AlSb is n-type (b) the spike occurs in the conduction band
(After Milnes and Feucht 1972)

10E(z) energies within a low-dimensional nanostructure are usually drawn without slope or

bending in absence of electric fields, because the nanostructure dimensions are commonly much

smaller than Debye lengths.
11The valence-band lineup for InSb/GaSb/AlSb/InAs is 0,�0.45,�0.15 eV (Milnes, 1991, private

communication).
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2.2 Band-Alignment Models

2.2.1 The Anderson Model for Heterojunctions
A simple electron-affinity rule for the band alignment of a heterojunction proposed

by Anderson (1962) can be used for some orientation when the following condi-

tions are fulfilled:

1. The interface represents an abrupt transition from one to the other semiconductor

with no interdiffusion.

2. There are no heavy-doping effects with influence on the bandgap energies.

3. There is a negligible density of interface states; hence there are negligible dipole

effects at the interface.

4. There is no interface strain due to lattice mismatch.

Furthermore, the band offsets are considered independent on interface orienta-

tion, interface bonding and arrangements of atoms, and doping of both semicon-

ductors. For such heterojunctions, the Anderson model is valid, and the band offsets

are a property of the bulk material; the conduction-band and valence-band offsets

are then given by the difference of the electron affinities and ionization energies,

respectively:

ΔEc ¼ χsemicond2 � χsemicond1; (12)

ΔEv ¼ I semicond2 � Isemicond1; (13)

where I = E0 - Ev is the ionization energy and E0 is the vacuum level. The sum of

both band offsets is equal to the difference in bandgap energy of the two

semiconductors:

ΔEg ¼ ΔEv þ ΔEc: (14)

This extremely simple rule has enjoyed great popularity and is often used for

design estimates of new experimental devices. However, mostly one or the other of

conditions (1–4) are not fulfilled, and the validity of the electron affinity rule is far

from being universal. Electron affinities for some semiconductors are given in

Table 2. Values for the band-edge offset calculated using various approaches for

a number of heterojunctions as compiled by Bechstedt and Enderlein (1988) are

listed in Table 3.

Theoretical reasons for a need to modify the Anderson model were already

pointed out by Kroemer (1975). Experimental discrepancies became obvious for

large ΔEv couples, e.g., for Ge/ZnSe which individually show a difference in

ionization energies of Δ(E0 – Ev) = 2.21 eV, while the interface valence-band

offset was measured as ΔEv = 1.44 eV. Such discrepancy is indeed too large to be

accounted for by experimental errors and clearly gives an example for the break-

down of the Anderson model (Niles and Margaritondo 1986).
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2.2.2 Linear Models for Band-Edge Offsets
Many of the early attempts to model the band offset at the interface were histori-

cally influenced by the belief that electron affinities and workfunctions that deter-

mine the exit of electrons from semiconductors or metals can be described as

intrinsic bulk properties. Therefore, it was suggestive to search for means to

describe the band interconnection between two solids by the difference of two

numbers, each one related to the bulk of one solid:

ΔEv ¼ Eref,A � Eref,B; (15)

with Eref,A and Eref,B as the appropriate reference levels of semiconductors A and B.
The ensuing theories are the linear theories and are supported by the experimental

items (1–4) in Sect. 2.1.1.

Table 2 Electron affinity

w for some semiconductors,

modifications indicated in

brackets are 3C,

zincblende; 2H, wurtzite;

6H, hexagonal polytype

(After Adachi 2005)

Semiconductor χ (eV) Semiconductor χ (eV)

Ge 4.14 InP 4.50

Si 4.05 InAs 5.06

SiC (3C) 3.83 InSb 4.72

SiC (6H) 3.34 ZnS (3C) 3.9

AlAs 3.5 ZnSe 4.06

AlSb 3.65 ZnTe 3.68

GaN (2H) 3.3 CdS (2H) 4.5

GaP 3.75 CdSe (2H) 4.95

GaAs 4.15 CdTe 4.28

GaSb 4.21

Table 3 Valence-band offsets DEv calculated using various approaches (After Bechstedt and

Enderlein 1988)

Heterojunction

Andersen

model

Harrison

model

Frensley-

Kroemer

model

Tersoff

interface-dipole

model

Hasegawa-

Ohno model

Ge-Si 0.30 0.38 0.18 0.29

Ge-GaAs 0.67 0.41 0.71 0.32 0.66

Ge-ZnSe 2.02 1.46 1.82 1.52 2.01

Si-GaP 0.73 0.50 0.96 0.45 0.69

GaAs-AlAs 0.18 0.06 0.00 0.55 0.12

GaSb-AlSb 0.51 �0.02 0.38 0.09

GaAs-ZnSe 1.35 1.05 1.11 1.20 1.35

InAs-GaSb �0.60 �0.53 �0.49 �0.43 �0.33

InAs-GaAs 0.16 0.32 0.00 �0.13

Ga0.48In0.52As/

InP

0.30 0.28 0.40 0.26 0.36

GaAs/

Ga0.52In0.48P

0.29 0.30 0.38 0.29 0.37
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All of the linear theories neglect any nonlinear influence of the interface, such as

defect-induced modifications. These are introduced either by an additive term to Eq. 15

ΔEv ¼ Eref,A � Eref,B þ eVdipole (16)

with eVdipole the correction due to an interface dipole, or by a compression factor

S in

ΔEv ¼ S Eref,A � Eref,B
� �

(17)

that reduces the bulk-related band offset by an interface adjustment (see Sect. 3.3).

The first type of the linear theories comprises the Anderson and Schottky-Mott

theories, which use the differences between workfunction and electron affinities.

The limited success of these theories sparked the search for improvements that will

be discussed in the following sections.

Several attempts were made to describe the band-edge offsets by a linear

combination of bulk properties of both semiconductors: All of them depend on

finding an appropriate intrinsic energy reference-level Eref in the bulk of each

semiconductor, relative to the vacuum level from which the valence-band offset

can be determined (Eq. 15). A wide variety of suggestions have been made to

determine such a level that is characteristic for the bulk. The choice of Anderson,

using the electron affinity eχ with Eref= eχ + E0, i.e., including the electron transfer

through the surface to vacuum for such a definition, is not a good one, as was

experimentally shown, e.g., by Niles and Margaritondo (1986).

Other suggestions for a bulk-related reference level were:

• The intrinsic Fermi level (Adams and Nussbaum 1979), suffering from substan-

tial shortcomings (Lee 1985)

• The mean energy of atomic p orbitals of cations and anions from LCAO

calculations (Harrison 1977)

• The average interstitial potential computed from pseudopotentials (Frensley and

Kroemer 1977)

• The branch-point energy or the charge neutrality-level considered by Tersoff

(1984a, b, 1985) and Flores and Tejedor (1979)

• Localized states of transition-metal impurities (Zunger 1986; Langer and

Heinrich 1985a) or interstitial hydrogen (Van de Walle and Neugebauer 2003)

• A local reference in a model solid composed of neutral atoms (Van deWalle 1989)

The linear models must be expanded to contain specific microscopic elements of

the interface which include the creation of dipoles, the micro-diffusion of ions to

adjust such interfaces (see Sect. 2.3.1), and the interface strain. These nonlinear

elements of the theory can be appended by:

• Simply adding a dipole part (Eq. 16), as suggested by Frensley and Kroemer

(1977) and by Mailhiot and Duke (1986)
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• Modifying the bulk-related band offset by a pinning strength parameter, similar

as it is done successfully for the Schottky barriers (Tersoff 1985)

• Introducing a strain-induced deformation of the band edge at the interface (Van

de Walle 1989)

In Sect. 2.3, we will delineate in more detail some of these nonlinear models. In

the following subsections, we will first describe the linear models.

2.2.3 The Harrison Valence-Band Offsets
The most direct way to obtain the band-edge offsets was proposed by Harrison

(1977). The method resorts to the top edge of the valence band in the bulk which is

less than the conduction-band edge influenced by perturbations and can be esti-

mated from tabulated values of atomic p-state orbitals.
Harrison uses an expression suggested by Chadi and Cohen (1975) that com-

putes the top of the valence band (Γ8v) of a diatomic compound semiconductor from

Ev ¼ Ep, cation þ Ep, anion

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
covalent þ V2

polar

q
(18)

with Ep,cation and Ep,anion as the atomic term values of the p orbitals of cations and

anions, respectively, and Vcovalent as the covalent energy

Vcovalent ¼ �1:28ℏ2= m0d
2

� �
(19)

with d as the nearest anion-cation distance. Vpolar is the polar energy

Vpolar ¼ Ep, cation � Ep, anion

� �
=2: (20)

The valence-band offset at the heterointerface is then obtained from the differ-

ence of the values of Ev (Eq. 18) for the two materials. For a listing of differences in

the atomic term values of the p orbitals, see Table 3 and Harrison (1980). Figure 10
shows a comparison between experimental values and the prediction of the Harri-

son values. The difference between electron affinities can be obtained experimen-

tally from photoemission measurements, where the threshold energy directly yields

the difference from the top of the valence band to the vacuum level. There is

reasonable agreement (between 	0.1 eV) for couples with low lattice mismatch,

but only fair agreement is observed and a deviation of up to 1 eV for semiconductor

couples with larger lattice mismatches. For a review, see Katnani and

Margaritondo (1983).

2.2.4 Transition-Metal Levels as Reference
Another reference energy is that of deep defect levels of transition-metal impurities.

Because of the screening from outer shell electrons and the d-like localized

character of their wavefunction, it was suggested that their defect levels are more
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related to the vacuum level (like free atoms) than are adjusted relative to the band

edges of the host semiconductor (see Ledebo and Ridley 1982; Vogl and

Baranowski 1985; Caldas et al. 1984).

When used as a reference level, one adjusts the valence (and conduction) bands

so that the deep levels of transition metals are matched at the same energy,

independent of the host. In Fig. 11a the so-adjusted band offsets are held constant

and the defect-level energy of six transition-metal dopants is shown within three

semiconductors: GaAs, InP, and GaP. The figure confirms excellent matching of the

defect-level energy. This procedure, proposed by Langer and Heinrich (1985a) and

Zunger (1986), can be used to deduce the valence-band offset at actual (ideal)

interfaces.12 An indication in favor of this scheme can also be obtained by plotting

the valence- and conduction-band edges (solid lines) of Ga1-xAlxAs of various

compositions in relation to the assumed constant level of an Fe acceptor

(Fig. 11b). The band edges shift with composition x in good agreement with the

∆ 
E ν    

   (
eV

)
ex

p

∆ Eν
       (eV)theo

ZnSe/Si 
ZnSe/Ge

CdSe/Ge

ZnTe/Ge
 GaP/Si

CdTe/Ge
ZnTe/Si

GaP/Ge

InP/Ge
CdTe/Si

GaAs/Ge
GaSb/Ge

Si/Ge

InAs/Ge

GaAs/Si
InAs/Si

InSb/GeInSb/Si

GaSb/Si
Ge/Si

InP/Si 

CdS/Ge

CdS/Si

-1 0 1 2

0

1

2

Fig. 10 Experimental values for the jump of the valence band of various heterojunctions obtained

from photoemission (ΔEv
exp), compared with the calculation from the Harrison model (ΔEv

theo).

Best agreement is obtained for junctions with high degree of lattice match (After Bauer et al. 1983)

12That is, such interfaces in which no other effects, e.g., strain, atomic defects, or dislocations,

modify the bands or an interface dipole exists (see also Heinrich and Langer 1986).
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observed shifts of the valence- or conduction-band offset, indicated by open

symbols in Fig. 11b.

A comparable universal alignment of deep impurity levels as described above

was also reported for hydrogen (Van de Walle and Neugebauer 2003). By comput-

ing the position of the Fermi energy where the stable charge state of interstitial

hydrogen changes from the H+ donor state to the H– acceptor state, predictions of

band alignments for a wide range of host zincblende and wurtzite compound

semiconductors were given.

2.2.5 The Frensley-Kroemer Model
Frensley and Kroemer (1977) suggested to take the average interstitial potential

Vinterstitial as a reference potential, given by the average electrostatic potential at the

midpoint between adjacent atoms. Relative to this interstitial potential, they com-

puted the position of the valence-band edge from pseudopotential bandstructure

calculations, including the exchange interaction using a Slater approximation. The

agreement of this simple model with the experiment is surprisingly good (Tables 1

and 3). However, Frensley and Kroemer then added a term due to an interface
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Fig. 11 (a) Energy levels of transition-metal dopants in three III–V semiconductors obtained by a

vertical shift of each band diagram so that the deviation of the average experimental value of each

acceptor level is minimized. (b) Band edges of various Ga1-xAlxAs samples plotted relative to the

energy of the Fe acceptor, assumed to remain at the same level (symbols at Fe2+ levels). Plotted

also are the observed Ga1-xAlxAs/GaAs band-edge offsets measured for interfaces between

couples of different compositions x (symbols at valence and conduction bands) (After Langer

and Heinrich (1985a, b))
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dipole ΔEv ¼ Ev 2ð Þ � Ev 1ð Þ þ Vdipole and assumed a Vdipole given by the average

Philips electronegativities of all component elements. Unfortunately, the inclusion

of this dipole term usually worsens the agreement with experimental results. One

therefore needs to look for better ways to account for the nonlinearities induced by

the interface. This will be discussed in the next section.

2.3 Interface Dipole

2.3.1 Heterovalent Interfaces
The interface between two semiconductors with different ionicity of the bonding, e.

g., ZnSe/GaAs(001) or Ge/GaAs(001), creates polar charges. In order to understand

the general principles involved, we simplify the interface by assuming ideal tetra-

hedral bonding and negligible bond-polarization effects.

The Ge/GaAs(001) interface can be arranged in several different ways, with

significant consequences for the interface potential. This results in a net charging of

the Ga and As atom of +e and –e with respect to the Ge atom. When proceeding

with a probe in [110] direction from the Ge through the Ge/GaAs(110) interface, the

average potential (as calculated by integrating the Poisson equation) remains the

same as in Ge (here assumed to be zero): the atomic planes in GaAs parallel to the

interface contain an equal amount of cations and anions and are consequently not

charged on average; see Fig. 12a.

When now turning the crystal and looking at the Ge/GaAs(00l) interface, we

recognize that each atom plane parallel to the interface is charged (Fig. 12b). Here a

potential gradient occurs when proceeding from Ge and crossing the first charged

Ga layer; the gradient becomes zero (the potential remains constant) after crossing

the oppositely charged As plane and reappears at the following Ga plane. Conse-

quently, one obtains a staircase-like increase of the potential starting from the

interface. Obviously, this is impossible to maintain for any larger sequence of

steps since the built-in field would create a dielectric breakdown (Grant et al. 1987).

This problem can be easily eliminated by an atomic rearrangement shown in

Fig. 13a with an alternating protrusion of Ge and Ga atoms across the interface.

This causes the charge at this interface to be one half of the flat interface with half

the potential step height as a result. The next (full) As layer then overcompensates

the first charge and causes a potential step-down. The following alternating full

layers result in an oscillation of the potential with an average potential step at the

interface of δ, representing a net dipole of about 0.1 eV there.

A third alternative is shown in Fig. 13b for an interface which is corrugated by

three layers, providing the possibility to imbed 1/16 of a full layer of As, followed

by 1/2 of a layer of Ga, and then followed by a layer that contains 1/16 of a full layer

of Ge, replacing As. The result of this corrugation is the elimination of the interface

dipole, as shown at the bottom of Fig. 13b. It is suggestive that even during the most

careful sequential MBE deposition, the self-regulating forces to minimize the

interface energy (i.e., here to minimize the interface dipole) are not operating to

full perfection. The probability of obtaining an atomic interface misalignment is
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indeed larger than that for generating intrinsic point defects which are basically

controlled by nearest-neighbor interaction. The controlling forces at a polar inter-

face extend over larger lattice distances and probably can be expected to cause on

an average the dipole to vanish, however, with large local fluctuations (Kroemer

1983). This may explain the substantial fluctuation of 	0.l eV of the band offsets

that are observed even under the most careful deposition of heterojunctions.

2.3.2 Interface-Dipole Theory
The dominant role of charge accumulation at the interface rather than the effect of

bulk properties was applied by Tersoff for calculating heterojunction-band offsets

(Tersoff 1984a, 1986) and barrier heights at a metal-semiconductor interface

(Tersoff 1984b). According to this model, there is generally a dipole at a

heterointerface associated with electronic states in the bandgap, which are induced

by the band discontinuity; these states induced in one of the semiconductors are

analogous to the metal-induced gap states discussed in Sect. 3.3.3. States lying near

the conduction-band edge at side A of the interface have exponentially decaying

tails into side B; at side B they lie in the gap of the semiconductor (Fig. 14). Any

state in the gap has a mixture of valence- and conduction-band character.

[001]

[110]
[001]

[110]

0 0

Φ Φ

x z

Ge
Ga

As
a b

Fig. 12 Ge/GaAs heterojunction. The double lines shown are two tetrahedral bonds projected

onto the plane of the figure. The lower part of the figure gives the potential integrated by probing

normal to the interface (from left to right) with the average potential in Ge assumed to be zero. (a)

The Ge/GaAs(110) heterojunction with a perfectly flat interface; (b) the Ge/GaAs(001)

heterojunction with a perfectly flat interface starting with a Ga layer. The potential averaged

over planes parallel to the interface shows a staircase-type increase when proceeding into the GaAs

lattice (After Harrison et al. 1978)
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Occupying such state leads locally to an excess charge, according to its degree of

conduction character. Filling a state which lies near the top of the gap gives a large

excess charge of almost one electron due to a large conduction character. Leaving

that state empty gives an only slight charge deficit. Conversely filling a state near

the bottom of the gap at side A results in a slight excess charge in proportion to its

little conduction character, while leaving it empty leads to a charge deficit of almost

one electron; states at the bottom of the bandgap are occupied, and those at the top

are unoccupied. The band discontinuity at the interface hence induces a net dipole.

The resulting dipole always acts to oppose the leaking out of carriers; it conse-

quently reduces the band offset, i.e., the potential step is screened by a factor of e,
the bulk dielectric constant.

The dipole drives the lineup toward a minimum dipole moment. A condition

for zero-dipole lineup is the alignment of the characteristic energies (effective
midgap energies or branch-point energies) separating the bonding and antibonding
character of the states in the two semiconductors. Such reference levels are the

effective midgap energies EB for each semiconductor, which are calculated from

the band structure. The band alignment between two semiconductors A and B is

then given by

Ge Ga As

[001] [001]

[110][110]

0
0

Φ Φ

z z

δ

a b

Fig. 13 Ge/GaAs(001) heterojunction as in Fig. 12. (a) Corrugated interface with Ge and Ga

atoms alternatingly exchanged, resulting in an interface dipole of δ; (b) corrugated interface

involving three layers with As and Ge penetrating one layer each beyond the average position of

the interface. The resulting average potential shows a vanishing dipole (After Harrison et al. 1978)
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ΔEv ¼ EB Bð Þ � EB Að Þ: (21)

For a heterojunction EB plays a role in analogy to the Fermi energy in metals: EB

is aligned for the respective semiconductors. Results of the interface-dipole theory

are given in Table 3 for some heterojunctions.

2.3.3 Disorder-Induced Gap-State Model
Another means to align the valence bands is by using an average hybrid-orbital

energy EHO which for numerous semiconductor-insulator and semiconductor-metal

interfaces is observed to lie at

EHO � E0 ffi 5	 0:1 eV (22)

in reference to the vacuum level E0 (Hasegawa and Ohno 1986; Hasegawa

et al. 1986). Analogous to Harrison’s model (Sect. 2.2.3), the reference energy

EHO is derived from atomic s and p states,

EHO ¼ � Es þ 3Ep

4

� �
average

þ ΔU; (23)

where ΔU is a correction accounting for electron-electron interaction (Hasegawa

and Ohno 1986; see also Harrison and Tersoff 1986). Figure 15 gives an illustration

of the observed lineup of valence-band offsets after calibration to the observed

pinning of the Fermi level in p-type Ge, taken as E = 0. The observed values for

Fermi-level pinning for other semiconductor-insulator or Au-semiconductor inter-

faces lie then within a band of 	0.1 eV around the E = 0 level.

Hasegawa and Ohno (1986) assume that a thin disordered layer at the interface

always causes disorder-induced gap states (DIGS) that pin the position of the Fermi

level within the gap. This thin layer is characterized by fluctuation of bond lengths and

angles and possibly other defects, including interface stress, andmay cause a sufficient
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Fig. 14 Scheme of band

alignment at a semiconductor

heterojunction. (+) and (–)

represent net charges of

unoccupied states with

electron deficit and occupied

states with electron excess,

respectively
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level density for Anderson localization (▶Sects. 1 and ▶ 2.2 of chapter “Defects in

Amorphous and Organic Semiconductors”) yielding a DIGS continuum, consisting

of bonding and antibonding states. The Fermi level is determined by charge neutrality,

i.e., at the neutrality level which is identified here as EHO.

2.4 Ab Initio Approaches

Ab initio calculations provide another access to the valence-band offset. It can be

shown within these calculations that a dependence of ΔEv on interfacial strain and,

to a lesser extent, on crystal orientation exist, as demonstrated by Van de Walle and

Martin (1985, 1986) for pseudomorphic Ge/Si interfaces, using a self-consistent

local density-functional theory in conjunction with nonlocal pseudopotentials.

Strain relation seems to have a dominant effect.

With an improved theoretical basis, supercell calculations were performed:

dipoles at the interface can be extracted from valence-electron distribution, which

are found to be only three to four lattice planes apart from the interface different

from the corresponding bulk values. Therefore, a supercell of more than five

monolayers, calculating the electron structure of such a superlattice, is often

sufficient to obtain the band offsets.

There are largely four first-principle approaches for the calculation of band

alignment, where more recent calculations combine density-functional theory and

many-body GW calculations; for a review see Robertson (2013).
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Fig. 15 Lineup of experimental valence and conduction band offsets in respect to a reference

level EHO that is 0.1 eV above Ev(Ge) and 5.0 eV below the vacuum level E0. This level is

identified as horizontal dashed line. Experimental values of the Fermi-level pinning observed at

heterojunction interfaces (squares) and metal-semiconductor Schottky barriers (circles) show a

fluctuation of less than 	0.1 eV around EHO (After Hasegawa and Ohno 1986)
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1. Explicit modeling of heterointerfaces to obtain unstrained, natural valence-band

offsets. A band alignment assuming transitivity can be constructed by averaging

offset values for a large number of atomic configurations at the heterointerface

(Van de Walle and Martin 1987; Li et al. 2009).

2. Calculation of localized levels of impurities located deep in the bandgap, such as

levels of transition metals (Ledebo and Ridley 1982; Caldas et al. 1984) or

hydrogen (Van de Walle and Neugebauer 2003).

3. Calculation of charge neutrality levels (branch-point energies) from bulk band-

structures to define an internal reference energy; at such level the character of

electronic states changes from valence-band-like to conduction-band-like char-

acter (Tersoff 1984a; Mönch (1996), Schleife et al. (2009).

4. Alignment of valence and conduction bands of surfaces with respect to the

vacuum level (Höffling et al. 2012; Gr€uneis et al. 2014; Stevanovic et al. 2014).

The model solid constructed by Van de Walle and Martin (1987) for lattice-

matched systems and mismatched systems (Van de Walle 1989) is an approach

different from (3) using an internal reference energy; the model is able to reproduce

closely the results of their supercell calculations in a simplified manner. The

approach of using localized deep-level impurities was already introduced in

Sect. 2.2.3, and the idea of branch-point energies was pointed out in Sect. 2.3.2.

Wei and Zunger (1993) used the LAPW formalism, e.g., for CdS/CuInSe2
heterojunctions, and argued on this basis for a thoroughly revision of

preassumptions and data for this system. For a review on different theoretical

approaches, see Franciosi and Van de Walle (1996).

2.4.1 The Model-Solid Approach
The model-solid approach suggested by Van de Walle and Martin (1987), Van

de Walle (1989) emulates the classical electron affinity rule Eqs. 12 and 13 by

constructing a local reference level and avoiding dipoles. Within this approach

the charge density in a semiconductor is composed by a superposition of neutral
atoms. The potential outside each such sphere goes exponentially to zero. This

zero is taken as reference level. The construction leads to a well-defined

electrostatic potential with respect to the vacuum level in each atom. By

superposition the average electrostatic potential in a model solid composed of

such atoms is hence specified on an absolute energy scale. The electron config-

uration of an atom in the solid is determined from a tight-binding calculation.

This leads for, e.g., one Si atom in a silicon bulk crystal to 1.46 s and 2.54

p electrons, meaning that a part of the two s electrons of a Si atom are excited

into the p band.

The result of the calculation is the position of the valence band on some absolute

energy scale, allowing to relate it to the respective value of another semiconductor.

For semiconductors with zincblende or diamond structure, a simplified one-band

approach is used by averaging out valence-band splitting, yielding Ev,av with the

uppermost valence band at
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Ev ¼ Ev, av þ Δ0

3
; (24)

Δ0 being the spin-orbit parameter; spin-orbit effects are added a posteriori. The

change of the valence-band edge at the interface due to the hydrostatic part of the

strain can be estimated from

ΔEstrain
v, av ¼ av

ΔV
V

¼ av exx þ eyy þ ezz
� �

; (25)

with av as the hydrostatic deformation potential for the valence band and eii as the
diagonal elements of the strain tensor (▶ Sect. 1.1 of chapter “Elasticity and

Phonons”). In non-isotropic semiconductors, the shear strain causes additional

band-edge deformation and splitting that needs to be considered (Van de Walle

1989). The total valence-band offset is then given by

ΔEtot
v ¼ E Að Þ

v � E Bð Þ
v

� �
þ ΔEstrain Að Þ

v, av � ΔEstrain Bð Þ
v, av

� �
; (26)

with the second bracket caused by lattice strain. The offset of conduction bands

cannot be calculated by a mere shift of each valence-band edge by the bandgap Eg
(i)

but must also consider the strain, requiring an estimate corresponding to Eq. 25:

ΔEstrain
c ¼ ac exx þ eyy þ ezz

� �
(27)

with ac as the conduction-band deformation potential. Table 4 lists the values for

the relevant parameters of various semiconductors. The band-edge offset therefore

depends to a large extent on the substrate or any strain-accommodating interlayer

onto which a strained layer is deposited.

2.4.2 Density-Functional Theory Combined With Many-Body
Perturbation

Combining density-functional theory (DFT) and the many-body perturbation theory

has significantly improved the precision of ab initio models (Aulbur et al. 2000). The

perturbing interaction of an electron with its environment is included by applying a

quasiparticle concept (Hedin 1965): quasiparticles composed of electrons and their

respective positive polarization clouds interact via a screened Coulomb interaction

W; see ▶Sect. 2.2.3 of chapter “Quantum Mechanics of Electrons in Crystals”.

The energy difference between the bare particle states and those of the quasi-

particle are described by the self-energy. Various approaches were developed to

account for this nonlocal energy, which comprises all exchange and correlation

effects. The widely applied GW approximation (GWA) is, e.g., complemented by

first-order vertex corrections in the screened Coulomb interaction (GWΓ1) (Gr€uneis
et al. 2014). Further improvements comprise the Perdew-Burke-Ernzerhof (PBE)
semilocal functional (Perdew et al. 1996) and the Heyd-Scuseria-Ernzerhof (HSE)
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hybrid functional (Heyd et al. 2003). Results of calculations comparing these

models are reported by Hinuma et al. (2014). Values for theoretical and experi-

mental valence-band offsets are listed in Table 5.

3 Metal-Semiconductor Interfaces

Metal-semiconductor interfaces are special types of heterojunctions. The electrical

properties of all metal contacts are determined by this interface.13 The most

important parameter of a metal/semiconductor interface is its barrier height ϕB or

Table 5 Valence-band offsets in eV for various A/B heterojunctions; positive values refer to

Ev(A)> Ev(B). f is the lattice mismatch; PBE, HSE, and GWG1 denote models indicated in the text

(After Hinuma et al. 2014)

Heterojunction f

Theory Experiment

PBE HSE GWΓ1 ΔEv
exp Structure

Si/GaP 0.4% 0.32 0.40 0.51 0.80 Si/GaP(110)

Ge/AlAs 0.1% 0.95 1.10 1.19 0.95 	 0.2 Ge/AlAs(110)

Ge/ZnSe 0.2% 0.96 1.52 1.85 1.52 Ge/ZnSe(110)

GaAs/AlAs 0.1% 0.45 0.47 0.55 0.40 GaAs/AlAs(110)

GaSb/AlSb 0.6% 0.42 0.45 0.48 0.40 	 0.15 GaSb/AlSb(100)

Table 4 Average valence-band energies Ev,av and deformation potentials of the valence band av
and the conduction band ac, calculated from the model-solid theory. D0 and Eg denote measured

spin-orbit splitting and energy gap at 0 K, respectively. All values are given in eV (After Van de

Walle 1989)

Solid Ev,av av ac
dir Eg

dir Ec
dir ac

indir Eg
indir Ec

indir Δ0

Si �7.03 2.46 1.98 3.37 �3.65 4.18 1.17 �5.85 0.04

Ge �6.35 1.24 �8.24 0.89 �5.36 �1.54 0.74 �5.51 0.30

AlP �8.09 3.15 �5.54 3.63 �4.46 5.12 2.51 �5.58

GaP �7.40 1.70 �7.14 2.90 �4.47 3.36 2.35 �5.02 0.08

InP �7.04 1.27 �5.04 1.42 �5.58 0.11

AlAs �7.49 2.47 �5.64 3.13 �4.27 4.09 2.23 �5.17 0.28

GaAs �6.92 1.16 �7.17 1.52 �5.29 0.34

InAs �6.67 1.00 �5.08 0.41 �6.13 0.38

AlSb �6.66 1.38 �6.97 2.32 �4.12 3.05 1.70 �4.74 0.65

GaSb �6.25 0.79 �6.85 0.75 �5.32 0.82

InSb �6.09 0.36 �6.17 0.24 �5.58 0.81

ZnS �9.15 2.31 �4.09 3.84 �5.29 0.07

ZnSe �8.37 1.65 �4.17 2.83 �5.40 0.43

ZnTe �7.17 0.79 �5.83 2.39 �4.48 0.91

13This applies not for point contacts; here, high-field tunneling effects (see chapter ▶ “Carrier

Generation”) and phonon coupling determine the electrical behavior.
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the related contact potential (Sect. 2.1.2), which determines the electron density n at
this interface. Like the difference in electron affinities at a heterojunction, there are

many factors which determine the barrier height, such as the chemical nature of

metal and semiconductor and the actual structure of the interface.

3.1 Classification of Semiconductor-Metal Interfaces

For metal-semiconductor boundaries one distinguishes so-called blocking
(or rectifying) contacts, which show a barrier layer at the interface as given in

Fig. 16a, d and injecting (or ohmic) contacts, shown in subfigures b, c. They are

determined in the simple Schottky model by the relative difference of

workfunctions: for a connection to n-type semiconductors, the ratio of the electron

density at the metal-semiconductor interface is given by

nc ¼ Ncexp
ϕM � χSc

kT

� �
; (28)

where Nc is the effective level density at the conduction-band edge of the semicon-

ductor (▶ Sect. 1.3 of chapter “Equilibrium Statistics of Carriers”); the density of

electrons in the bulk of an n-type semiconductor is

n0 ¼ Ncexp
Ec � EF

kT

� �
: (29)

For a blocking contact, this ratio is nc/n0 
 1, and for an injecting contact, it is
nc/n0 � 1. These are shown in Fig. 16 as panels a and b, respectively.

In a similar fashion one has blocking or injecting contacts for p-type semiconduc-

tors depending on whether the ratio of hole densities pc/p0 
 1 or pc/p0 � 1,

respectively, with pc and p0 defined analogous to Eqs. 28 and 29. In p-type semi-

conductors, holes are the majority carriers and the blocking barrier occurs in the

valence band; see Fig. 16d.

3.2 The Schottky-Mott Model

The Schottky-Mott model of the metal-semiconductor contact goes back to

Schottky et al. (1931). It was further developed by Schottky (1939), Mott (1938,

1939), and Davydov (1938) with most of the attention paid to the carrier transport

through the space region and controlled by the barrier at the interface.

We assume the conditions presumed for the Anderson model (Sect. 2.2.1) and

consider an n-type semiconductor connected to a metal of a sufficiently high

workfunction as illustrated in Fig. 16a. When forming the contact, electrons from
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the semiconductor leak out into the adjacent metal.14 The electron density at the

interface between the metal electrode and the semiconductor is reduced below its

equilibrium bulk value n0, and thereby a positive space-charge region is created

within the semiconductor near the metal contact. The corresponding negative

charge to render the total device neutral is located at the metal contact-surface.

The space-charge layer in the semiconductor results in a field ramp and a potential

step (Fig. 16a), referred to as the Schottky barrier.15
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Fig. 16 Energy-band diagrams of ideal junctions between metal and an either n-type semicon-

ductor (a, b) or a p-type semiconductor (c, d). Metal workfunctions ϕm being larger (a, c) or

smaller (b, d) than the workfunctions of the semiconductors ϕsc are assumed

14Even though the electron density inside a metal is much higher than in the semiconductor, at its

boundary to the semiconductor, this density is substantially reduced according to its effective work-

function. It is this electron density which causes a reduction of n in the semiconductor at the interface.
15A similar Schottky barrier appears in p-type semiconductors near a metal electrode with low

workfunction (Fig. 16d), again when the hole density near the electrode is much smaller than in the

bulk. Here the space-charge region is negatively charged and the resulting field is positive.
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At the metal-semiconductor interface, the band bending extends to a value eVD,

which is the same as the difference of the Fermi levels before equilibrium or the

difference of the workfunctions ϕM – ϕSc. The barrier height counted from the

Fermi level is given for an n-type semiconductor by

ϕBn ¼ ϕM � ϕSc þ Ec � EFð Þbulk ¼ ϕM � χSc; (30)

as shown in Fig. 16a or for a p-type semiconductor by

ϕBp ¼ Eg þ χSc � ϕM ¼ ISc � ϕM (31)

shown in Fig. 16d. ϕBn or ϕBp are identified as the Schottky barrier height.

Workfunctions ϕM for a number of metals as contacts to some typical semi-

conductors are given in Table 6. Since the values sensitively depend on cleanliness

and microscopic structure of the surface, reported data show a considerable scatter;

listed values may be regarded as typical for nominally clean surfaces. For electron

affinities ϕSc of the semiconductor, see Table 2.

Table 6 Workfunction fM of metals determined photoelectrically except for: TE thermionic

emission, FE field emission (After Hayes et al. 2013)

Metal Face ϕM (eV) Metal Face ϕM (eV)

Ag (100) 4.64 Nb (TE) (100) 4.02

(110) 4.52 (110) 4.87

(111) 4.74 (111) 4.36

Al (100) 4.20 Ni (100) 5.22

(110) 4.06 (110) 5.04

(111) 4.26 (111) 5.35

Au (100) 5.47 Pd (111) 5.6

(110) 5.37 Polycr. 5.22

(111) 5.31 Pt (110) 5.84

Cu (FE) (100) 5.10 (111) 5.93

(110) 4.48 Polycr. 5.64

(111) 4.94 Ta (TE) (100) 4.15

Fe (100) 4.67 (110) 4.80

(111) 4.81 (111) 4.00

Hg Liquid 4.475 Ti Polycr. 4.33

Ir (100) 5.57 U (100) 3.73

(110) 5.42 (110) 3.90

(111) 5.76 (111) 3.67

Mo (100) 4.53 W (FE) (100) 4.63

(110) 4.95 (110) 5.22

(111) 4.55 (111) 4.45

Zn Polycr. 3.63
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The electron density at the metal-semiconductor interface is given by

nc ¼ n x ¼ 0ð Þ ¼ Ncexp �ϕMS

kT

� �
; (32)

where ϕMS (= ϕM – χSC in the linear model) is the metal-semiconductor
workfunction (see Eq. 28) and Nc is the effective level density16 at the

metal-semiconductor interface. This density nc is assumed here to be independent

of current and applied voltage. The electron density in the bulk is given by the

density of the shallow, uncompensated donors

n0 ffi ND: (33)

When nc is lower than the electron density in the bulk, a depletion region results
near the contact to the metal producing a blocking contact. We discuss an example

with a donor concentration ND = 1010 cm�3 and a lower electron density at the

boundary of nc= 1010 cm-3. In Fig. 17a we show the electron distribution computed

from Eqs. 35–37 for T = 300 K, e = 10, and a mobility μ = 100 cm2/(Vs). Because

of the large ratio of the bulk-to-surface carrier densities n0 and nc, the electron

density in the space-charge region rapidly decreases to values very small compared

to the donor density ND, thus rendering the space charge

ρ xð Þ ¼ e pD � n xð Þ½ � ffi e ND � n xð Þ½ � ffi eND for 0 � x < xD; (34)

independent of n in a substantial fraction of this junction region; pD is the density of

positively charged, ionized donors.

In using this constant space charge17 within the entire width of the Schottky

barrier (i.e., 0 � x < xD ffi 80 nm) in this example, the resulting approximation –

referred to as the Schottky approximation – permits a major simplification of the

governing set of equations:

dn

dx
¼ jn � eμnnF

μnkT
(35)

dF

dx
¼ eND

estate0
(36)

16This is slightly different from Nc within the semiconductor bulk because of a different effective

mass at the interface.
17The error encountered at the boundary of this range (here 80 nm) seems to be rather large

(factor 2) when judging from the linear plot of Fig. 17. The accumulative error, when integrating

from the metal/semiconductor interface, however, is tolerable, as shown in Fig. 18. The substantial

simplification in the mathematical analysis justifies this seemingly crude approach.
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dψn

dx
¼ F (37)

where ψn is the electrostatic potential and F is the electric field. This allows a

decoupling of the Poisson equation from the transport equation. Integration of

Eq. 36 yields

F xð Þ ¼ Fc þ eND

estate0
x; (38)

the field decreases in the Schottky approximation linearly with increasing distance

from the metal-semiconductor interface (see dashed line in Fig. 18b), with Fc, the

maximum value of the field at x= 0, used here as the integration constant. From the

integration of Eq. 37 after insertion of Eq. 38, one obtains the electrostatic electron

potential

ψn xð Þ ¼ ψn, D þ Fc xþ eND

2estate0
x2; (39)

which decreases parabolically with increasing x. As integration constant we have used
the electron diffusion-potentialψn, D ¼ VDð Þwhich is appropriate for zero current. For
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Fig. 17 (a) Typical electron density and (b) space-charge distribution in a Schottky barrier

computed from Eqs. 35, 36, and 37
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a finite current, the solutions F(x) and ψn(x) have exactly the same form (Eqs. 36 and

37 do not depend on jn), however, with integration constants that are current dependent.
This results in an essentially parallel shift of F(x) and ψn(x) in x with changing jn.

For a positive space charge (+eND), i.e., for an n-type semiconductor, Fc is

negative and ψn,D is positive; their values are calculated below. When inserting Fc

from Eq. 48 (see below), the potential distribution can also be written as

ψn xð Þ ¼ 1ffiffiffi
2

p kT

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eψn, D

kT

r
� x

LD

" #2

; (40)

an expression that is sometimes helpful. LD is the Debye length (Eq. 49), which is a
characteristic length for changing ψn(x) and F(x).

Figure 18 shows a comparison between the approximate (dashed) and the exact

solutions (solid curves) obtained by numerical integration of Eqs. 35–37 with ρ(x)
= e[ND�n(x)] in the Poisson equation. Near the electrode, this approximation is

quite satisfactory and consequently is mostly used.

The Schottky approximation permits the definition of a barrier layer-thickness

xD from the linear extrapolation of F(x) with F(xD)= 0, as indicated in Fig. 18b. For

a computation of xD, see Eq. 50.

Zero-Current Solution of the Electron Distribution The electron density-

distribution can easily be obtained for jn = 0 from the transport equation (Eq. 35)
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dn

dx
¼ � enF

kT
: (41)

After replacing F(x) by dψn/dx one obtains by integration the Boltzmann distribu-

tion with an exponential in the electron potential ψn(x) (see Eq. 40):

n xð Þ ¼ n0exp � eψn xð Þ
kT

� �
: (42)

When inserting F(x) from Eq. 39 and using as a convenient parameter

1

L2D
¼ e

kT

eND

estate0
; (43)

where LD is the Debye length (see below), one obtains

n xð Þ ¼ n0exp � eψn, D

kT
� eFc x

kT
� x2

2L2D

� �
(44)

which is shown as dashed curve in Fig. 18a.

This holds for zero currents or, as a good approximation, as long as the net current

is small compared to both drift and diffusion currents: jn 
 ( jn,drift, jn,diffusion).
This range is referred to as the Boltzmann range.

Diffusion Potential and Junction Field The solutions (Eqs. 38 and 39) contain

two integration constants, the electron potential and the electric field at the metal-

semiconductor interface. These can easily be evaluated for zero current. The

electron-potential step between bulk and metal-semiconductor interface is obtained

from Eq. 42 by setting x = 0, yielding with n(x = 0) = nc:

ψn, D ¼ kT

e
ln

n0
nc

� �
: (45)

The electron diffusion-potential depends only on the ratio of the bulk and interface

densities of carriers. The diffusion potential is also given by the product of

maximum barrier field and barrier width:

ψn, D ¼ �Fc xD
2

: (46)

For the barrier field18 at x = xD, one obtains from Eq. 38:

18That is, the maximum field which lies in this approximation at the metal-semiconductor

boundary (neglecting image forces)
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Fc ¼ � eND xD
estate0

; (47)

after combining Eqs. 46 and 47 and eliminating xD, one can express the barrier field
at zero current as a function of ψn,D:

Fc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eNDψn, D

estate0

s
: (48)

For reasonable values of doping and of the electron potential, Fc is on the order of

40 kV/cm.

Debye Length and Barrier Width The Debye length is introduced from Eq. 43 as

the distance from xD in which the electron potential has increased by a factor kT/(2e):

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
estate0 kT

e2ND

r
(49)

and typically is on the order of a few ten or hundred nm (Fig. 19a).

The barrier layer thickness (Fig. 18) can be expressed in terms of LD by

combining Eqs. 46 and 47, while eliminating Fc:

xD ¼ LD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eψn, D

kT

r
; (50)

which means that xD is usually a few (typically 3–6) Debye lengths thick, since ψn,D

is typically on the order of 10 kT/e.

Accuracy of the Schottky Approximation In the part of the junction near x= xD,
the Schottky approximation is not satisfactory, since ρ has not yet reached its

constant value eND (see Figs. 17 and 18). The error made by computing the

maximum field Fc or the barrier width xD, using the expressions Eq. 48 or 50,

respectively, can be substantial when nc is not (at least) several orders of magnitude

smaller than ND. The error for the barrier field F in the Schottky approximation is

plotted in Fig. 19 as function of nc/ND; it is less than 5% for nc/ND <10�5 but

increases rapidly above 10% when nc/ND increases above 10�2.

3.3 Experimental Results and Interface-Dipole Models

3.3.1 The Bardeen Model
The Schottky model assumes – similar to the Anderson model (Sect. 2.2.1) – an

alignment of the bulk Fermi levels. Bardeen (1947) was the first who pointed out
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that major discrepancies of experimental results on metal-semiconductor contacts

could not be explained with a simple shift of the Fermi levels, as determined by

bulk properties. These observations centered around the fact that for several semi-

conductors the barrier height was essentially independent of the chemical identity

(i.e., the workfunction) of the contacting metal. Bardeen explained this by assuming

that the Fermi level at the semiconductor surface is pinned by surface defects and

no longer free to adjust to the contacting metal. The barrier height is then given by

ϕBn ¼ Eg � Es (51)

or

ϕBp ¼ Es; (52)

where Es is the energy of the surface state responsible for the Fermi-level pinning

and is conventionally counted from the top of the valence band. A thin insulating

film then needs to be assumed between semiconductor and metal in Fig. 20 to

accommodate the additional potential drop. This film must be thin enough to allow

perfect tunneling for currents with nonvanishing bias. The film contains the addi-

tional dipole layer that is required to equalize the Fermi level across the entire

system in equilibrium.

The effect of pinning can be understood qualitatively in terms of localized

interface states with an energy EB called charge neutrality level. States below EB

are assumed neutral if they are filled with electrons, and states lying above are

assumed neutral if they are empty. If the density of such interface states is large,

then adding electrons to the semiconductor or extracting them from the semicon-

ductor does not alter the position of the Fermi energy. The Fermi level is pinned.
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Fig. 19 Computed relative error of Fc = F(z=0, j = 0) between the exact solution and the

Schottky approximation as function of nc/ND
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When the contact between the metal and the semiconductor is made, both addition

of electrons and extraction of electrons are accommodated by the interface states,

leaving the Fermi level virtually unchanged.

With improved experimental accuracy and an increased database, it was recog-

nized that neither the Schottky-Mott nor the Bardeen model describes the experi-

mental results of metal-semiconductor contacts sufficiently. In actuality, there is an

interface-dipole layer, but it is modified to account for an intermediate behavior. An
illustration of the observed behavior is given in Fig. 21 which presents as an

example the dependence of the barrier height at a Si(111)2  1 interface to various

metals as a function of the workfunction of these metals. It shows a “compressed”

linear relationship (compare with Eq. 30):

ϕBn ¼ S ϕM � χScð Þ þ C; (53)

with 0 < S < 1. The Schottky-Mott model corresponds to S = 1, and the Bardeen

model requires S = 0; (in the example of Fig. 21, S ffi 0.2). The compression factor

S is also referred to as the pinning strength parameter (for S >0 the pinning is not

complete), index of interface behavior, or the slope parameter.

3.3.2 Chemical Trends for Schottky Barriers
There is a large body of publications dealing with experimental observations on

metal-semiconductor interfaces, most of them relating to Schottky barrier (rectify-

ing) contacts (Fig. 16a). A general reviews are given by Rhoderick (1978), Henisch

(1984), and Sharma (1984). Numerous review papers deal with experimental

methods, e.g., Brillson (1982), LeLay (1983), Calandra et al. (1985), Flores
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and Tejedor (1987), LeLay et al. (1987), and Capasso and Margaritondo (1987).

Many of these observations are handicapped by an inadequate description of the

actual interface, i.e., when electrodes are applied under insufficiently controlled

ambient conditions onto semiconductor surfaces that lack proper identification in

terms of their atomic structure and adsorbate composition. Furthermore, several

experimental methods to determine the barrier height are limited in accuracy and

produce variances which interfere with a trend analysis.

The basic experimental results that must be explained by a valid Schottky barrier

model can be summarized as follows (Flores and Tejedor 1987):

1. The position of the Fermi level at the metal-semiconductor interface depends

very little on the metal, except for very few cases; but even for these, the changes

are usually limited to 	0.2 eV for elemental and III–V semiconductors; the

Schottky-Mott relation (Eq. 30) is severely compressed (Eq. 53), with S typically
in the 0.1–0.2 range.

2. The sensitivity of the barrier height to the metal workfunction increases sharply

(i.e., S increases) with increasing ionicity or heat of formation.

3. Schottky barriers are fully established at less than monolayer coverage with a

barrier height that does not change with increased metal layer-thickness.

4. A wide variety of chemical reactions involving the semiconductor and metal

layer near their interface, but leaving the cover layer (formerly the metal) highly

conductive, do not change the barrier height significantly.

In Sect. 3.3, we have described the severe compression of the Schottky-Mott

relation (Eq. 30) that can be described with Eq. 53 by a compression factor S <1.

The magnitude of this compression shows a substantial trend toward higher
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surfaces and plotted against the metal workfunction (After Mönch 1970)
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values with increased heat of formation ΔHF of the AB compound, shown in

Fig. 22 (Kurtin et al. 1969). An identical dependence of S is observed on the

difference of electronegativity Δχ of the ions forming an AB compound

semiconductor.

There are several other trends which are barely visible in covalent semiconduc-

tors because of the high compression but become clearly discernible in more ionic

compounds. An example of such a trend is the dependence of the barrier height on

the interface heat of reaction, shown for a number of n-type semiconductor-metal

barriers in Fig. 23.

A reaction between the electrode metal M and the anion B of the AB compound

semiconductor is assumed according to

M þ 1

x
AB ! 1

x
MxBþ A½ � (54)

with
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ΔHR ¼ 1

x
HF ABð Þ � HF MxBð Þ½ �: (55)

HF is the heat of formation of the AB compound and that of the most stable metal-

anion compound MxB, normalized per metal atom M. For a wide range of semi-

conductors, this trend has been confirmed (Brillson 1982). It indicates substantially

higher barriers in nonreactive (noble) metals than in highly reactive ones with a

steep change in barrier height near ΔHR ffi 0 (Fig. 23).
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Similar trends are observed for barriers in p-type semiconductors (Fig. 24). The

barrier height is here measured from the top of the valence band at the interface to

the Fermi level. The barrier height of various p-type III–V and II–VI compounds

shown in Fig. 24 relates to the heat of reaction of their anion partner with the contact

metals Cu, Ag, and Au. The trend is obvious; however, care should be exercised in

the interpretation of the data since various other parameters also change
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monotonically with the heat of reaction such as, e.g., the electronegativity (Fig. 22),

and for some models could be used more appropriately.

3.3.3 Interface-Induced States
Two basically different models on the physical nature of the interface states

introduced in the Bardeen model (Sect. 3.3.1) have been proposed: the model of
metal-induced gap states (MIGS, also referred to as ViGS, virtual gap states) and
the defect model. They both are based on the same mechanism for Fermi-level

pinning. Energy levels in the gap of the semiconductor near the interface accom-

modate carriers flowing across the interface for equilibration of the electronegativ-

ity when the contact is made. The charge transferred between the metal and the

semiconductor creates an interface dipole, which pins the Fermi level and hence

controls the Schottky barrier height.

The MIGS model assumes that the wavefunctions of the metal electrons have

exponentially decaying tails into the semiconductor (Heine 1965; Tersoff 1984b).

The same model was applied in the interface-dipole theory (Sect 2.3.2) to describe

the alignment of a heterojunction. The MIG states are located in the bandgap and

decay on an atomic scale with a charge decay-length of some Å, making the first

few layers of the semiconductor locally metallic: The local density of states in the

semiconductor bandgap is filled with a smooth density of gap states. The gap

states are related to those bands of the semiconductor that are nearest in energy.

MIGS which are related to the valence band are then occupied, and those with

conduction-band character are empty. At an effective midgap point EB gap states

change from primarily valence character to conduction character; see Sect 2.3.2.

The Fermi level is pinned at or near this energy EB, yielding local charge

neutrality. A relatively low number of MIGS (about one per 100 atoms at the

interface) is required to produce the pinning effect. Without adjustable parame-

ters, the MIGS model could reasonably predict experimentally observed pinned

Schottky barrier heights for a number of metal-semiconductor combinations and

explain why more ionic semiconductors do not show a universal barrier height.

The defect model assumes that the Fermi-level pinning originates from

localized electronic states originating from defects near the interface (Spicer

et al. 1979). Such defects are, e.g., vacancies in the semiconductor or the

disorder-induced defects considered in the model of Hasegawa and Ohno

(1986); see Sect. 2.3.3. The energy for the formation of the defect can be created

by the heat of condensation of surface adatoms or from the heat of formation of

compounds made from metal and semiconductor atoms forming at the interface.

A low number of defects (order of 1 per 100 interface atoms) are required to pin

the Fermi energy, analogous to the ViGS model. There exist numerous experi-

mental and theoretical studies on the microscopic nature of such defects and quite

a number of related detailed models. Many chemical trends could be explained for

specific junctions of semiconductors to metals. Sometimes both ViGS model and
defect model are needed to explain the data. No general model accounting for the
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rich variety of phenomena has been reached to date. The density of interface states

is largely governed by experimental imperfections and cannot be predicted with

satisfying degree of certainty.

4 Summary

The interface between two semiconductors or a semiconductor and a metal are of

essential importance to most semiconductor devices. In semiconductor

heterojunctions, the band offset governs electrical and electro-optical effects in

electronic and optoelectronic devices. The metal-semiconductor interface deter-

mines the barrier height and thereby the electrical properties of any device contact.

Early models describe band offsets and barrier heights as the difference of two

bulk properties such as the Fermi-level or band positions. These linear models show
only limited agreement with the experiment. Often, one observes a compression of

scale when assuming a band-edge offset or barrier height given from a linear model.

This is an indication that the specific interface plays an important role causing

various interface defects and modifying interface dipoles. Nonlinear models
account for the formation of such interface dipoles. Disorder at the interface or

defects induced by the close proximity of materials with different band energies

cause leaking out of eigenfunctions from one into the other material.

Charge-neutrality levels or branch-point energies within the bandgap derived

from such states yield reasonable descriptions for many experimental observations

on both types of interfaces for small interface strain. When a larger strain can

coherently be maintained, shifts described by deformation potentials become

important.

The interface between semiconductors or between metal and semiconductor

provides a host of challenging problems, in spite of almost a century of research

that has steadily accelerated its pace and of the introduction of rather sophisticated

experimental methods and theoretical analyses. We still encounter major problems

in predicting the interface band-lineups observed in experiments with an accuracy

in excess of	0.l eV. Designing optimized devices in respect to these interfaces will

thus include extensive empirical studies.
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Abstract
The optical absorption spectrum of lattice defects provides the most direct
information about their electronic properties; general characteristics are
obtained from such spectra even without detailed knowledge about the defect
structure. Two substantially different types of absorption spectra occur: line
spectra near the fundamental band-to-band absorption originating from
shallow-level defects and usually broad spectra from deep-level, tight-bonding
defects. Shallow defects are described by a hydrogen-like model using a
Rydberg energy modified by the effective mass and dielectric constant. Lattice
coupling and relaxation of these centers is only weak. Deep centers show strong
electron-lattice coupling described by the Huang-Rhys factor, which expresses
the mean number of emitted phonons during lattice relaxation after electron
capture. Electronic and vibronic properties of deep centers are described in a
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configuration-coordinate diagram, with optical excitation and emission pro-
cesses represented by vertical transitions according to the Franck-Condon
principle. Photoionization refers to an excitation from a defect center into a
band and leads to edge-shaped absorption.

At high defect density, the localized wavefunctions overlap and form an
impurity band, which at densities exceeding the Anderson-Mott limit merges
with band states. Such extended density of states leads to an Urbach tail in the
optical absoption near the band edge. In addition, the absorption edge of band-to-
band transitions in heavily doped semiconductors is blueshifted due to the
Burstein-Moss effect resulting from band filling.

Keywords
Band tailing � Band-to-band absorption � Burstein-Moss effect � Configuration-
coordinates � Deep-level defects � Defect-center relaxation � Effective-mass
defect � Electron-lattice coupling � Franck-Condon principle � Huang-Rhys
factor � Hydrogen-like model � Inhomogeneous broadening � Lattice coupling �
Line shape � Oscillator strength � Shallow-level defects � Urbach tail

1 Energy and Strength of Defect Absorption

There is a large variety of lattice defects. Two typical classes of prominent point
defects are shallow-level and deep-level centers; their electronic properties will be
discussed in chapters▶ “Shallow-Level Centers” and▶ “Deep-Level Centers”. This
introductory chapter focuses on the optical absorption spectrum which provides
direct information on the electronic defect structure. Attention is given to the general
optical absorption behavior, rather than to the detail.

Optical transitions at a lattice defect are determined by the ground and excited
energy states of the defect center, their oscillator strength, and the influence of the
surrounding lattice. This results in an absorption spectrum with lines (bound-to-
bound transitions) at a certain energy, with a certain absorption constant (the strength
of absorption) and a certain line shape. Each of these will be discussed in the
following sections. Eventually, also bound-to-free transitions resulting in an absorp-
tion edge will be discussed.

1.1 Energy of Shallow Defects

The most obvious difference between various types of defects is the energy of a
specific absorption line. Since an understanding of the optical absorption of lattice
defects requires a knowledge of the basic elements of its electronic structure in
relation to the band structure of the surrounding lattice, these elements will be given
here in a simplified form for the two major classes of point defects: the shallow-level
and deep-level defects.
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Point defects (impurities) that result in shallow levels are described by a hydro-
gen-like model. We focus here on donors; in the description of shallow acceptors
also the structure of the valence band must be considered. In the hydrogen-like
model of a shallow donor the defect is replaced by a proton – the extra proton of
the donor – and one electron, the extra electron that circles the proton at a distance
of several lattice constants. Such a quasi-hydrogen donor can easily be discussed in
a semiempirical form, analogous to Wannier excitons introduced in ▶Sect. 1 of
chapter “Excitons”. For a more detailed analysis, see ▶Sect. 1 of chapter “Shallow-
Level Centers”.

The eigenstates of the shallow donor can be described similar to those of a
hydrogen atom, using a modified field, reduced by the static dielectric constant
estat, and with an electron of modified mass mn instead of m0. When using the
Rydberg energy, which is the ionization energy of the hydrogen atom
R1 ¼ E n ¼ 1ð Þ � E n ¼ 1ð Þ ¼ R1 1

1
� 1

1
� � ¼ 13:6 eV, the eigenstates of the donor

can be expressed by quasi-hydrogen energies

EqH, n ¼ �R1
mn

m0

1

e2stat

1

n2
: (1)

The corresponding quasi-Bohr radius is

aqH, n ¼ aHestat
mn

m0

n2; (2)

where n is the principal quantum number and aH = 0.529 Å is the hydrogen Bohr
radius.

The use of the quasi-hydrogen model obtained from the effective-mass
approximation is justified when the quasi-Bohr radius is large compared to the
lattice constant a: the bound electron “circles” the center well within the lattice of
the host, and the Coulomb forces at this distance are screened by estat. Here, the
extent of the solution in k space is small compared to π/a. Then only k vectors
near the band minimum contribute, and the use of a well-defined effective mass is
justified.1

For typical semiconductors with mn ffi 0:1 m0 and estat ffi 10, we obtain a quasi-
Bohr radius of ffi 50 Å, which is much larger than a typical lattice constant of 5.5 Å,
and a ionization energy offfi 10 meV, i.e., a very small fraction of the bandgap energy.

1The quasi-hydrogen energy can be expressed as a function of the quasi-Bohr radius (for n = 1):
EqH ¼ ℏ2k2r = 2mnð Þ for kr = 1/aqH. This is a familiar expression identifying the circling electron in a
parabolic and isotropic conduction band.
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Such a center is indeed a shallow donor, which is intimately connected to the
conduction band.

There are three possibilities for an optical absorption at such a defect:

1. The transition of its electron into an excited state
2. After its electron is removed, the excitation of an electron from the valence band

into its ground or excited state
3. Transitions from a localized state of the defect center into the continuum states of

the band

The first possibility requires very little energy and lies in the far IR part of the
spectrum as shown for a P donor in silicon in Fig. 1. The second possibility lies close
to the band edge:

hνlow ¼ EqH or hνhigh ¼ Eg � EqH; (3)

with the subscripts for low-energy or high-energy transitions to the same center. The
transitions of the third kind (see also Sect. 2.4) are edge-shaped and distinctly
different from the line-type of absorption listed before.

1.2 Deep-Level Defects

Deep levels (subscript deep) are levels which often are closer to the center of
the bandgap than to one of the band edges. They are created from defect centers
in which their core potential plays a dominant role. This is a tight-binding
potential, rather than the far-reaching Coulomb potential. In calculating their
eigenstates, both conduction and valence bands have to be considered. Exam-
ples of such centers are most of the transition-metal impurities and certain
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632 Optical Properties of Defects



vacancies and self-interstitials. The chemistry of the center, as well as its lattice
surrounding, and its phonons substantially influence its electronic level energy.

The binding energy of deep centers requires a detailed quantum-mechanical
analysis, which is discussed in chapter ▶ “Deep-Level Centers”. The results cannot
be generalized in a simple form, as possible for shallow centers.

Since the binding energy of deep centers is usually much larger than typical
phonon energies, the phonons may play a role in the related transitions. This can
occur via two mechanisms:

1. Adding to, or subtracting from, the excitation energy (phonon-assisted transition,
phonon replica – see, e.g., ▶Figs. 20b and ▶ 23 of chapter “Shallow-Level
Centers” or ▶ Fig. 16 of chapter “Carrier Recombination and Noise”)

hν ¼ Edeep � mℏω (4)

for m phonons involved, a process with decreasing probability for each additional
phonon emitted (�) or absorbed (+)

2. The center relaxes (by emitting phonons) when an electron is emitted into, or
captured from, a band state, thereby changing the charge character of the defect
state. Here, the maximum of the emission or absorption line is given by an
equation similar to Eq. 4

hν ¼ Edeep � Sℏωchar (5)

except that S is the Huang-Rhys factor which gives the number of phonons involved
in the center relaxation, and ωchar is a characteristic (optical) phonon frequency,
typically of a breathing mode – seeQ1 in Fig. 2. For alkali halides, S is very large and
on the order of 20.

In contrast to phonon-assisted transitions where phonons need to be supplied
(a temperature-dependent process), here phonons are created while the center
relaxes. Therefore, the shift given in Eq. 5 is independent of the temperature – see
Fig. 11.

R 0

Θ0
Θ0

Q1 Q2 Q3

Fig. 2 Normal coordinates Q1 – Q3 of a center with tetrahedral symmetry
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1.2.1 Defect-Center Relaxation and Configuration Coordinates
The process of defect-center relaxation illustrated in ▶ Fig. 5 of chapter “Crystal
Defects” needs further explanation as it can substantially change the energy of the
defect level within the gap. Furthermore, energies between the band edges and the
center no longer add up to the bandgap energy, as they do for shallow-level defects
indicated in Eq. 3.

These processes can be qualitatively understood by recognizing that a change in
the charge of a defect causes a change in the bonding to the neighbor atoms and
consequently a change in the relative position of these atoms. This has an influence
on the electronic eigenstates of the defect. Such changes take much more time than,
e.g., a capture of an electron in the defect. Consequently, the defect relaxes after
capture and, with the change in atomic configuration, the electronic defect level also
changes, as the electronic eigenstate relaxes.

A similar process takes place when an electron within the defect is excited from
the ground state into an excited state with a different wavefunction. Consequently,
the excited state requires a somewhat larger space, causing a change in bonding to
the neighboring atoms, and resulting in a change of the atomic configuration.
Another component of this excitation process can be seen as a change from a core
configuration toward a more hydrogen-like one. This causes polarization changes,
which further result in shifts of the positions of the surrounding atoms. Finally, with
defect ionization, the electron now belongs to the conduction band, and the defect
level relaxes to the unoccupied state.

While the recombination or optical excitation occurs instantaneously, shifting of
the neighboring lattice atoms takes time and is described as a relaxation of the lattice
into a new equilibrium position. Since it is the relative atomic distance to the
neighbors that is changing, the configuration-coordinate diagram that pictures this
relation is most helpful.

Configuration-Coordinates The configuration-coordinate representation is used
to depict the coupling between the elastic (vibronic) lattice energy and the
electron-lattice interaction energy. The basic elements of the configuration-
coordinate diagram are briefly sketched here to prepare an understanding of the
influence of lattice relaxation on deep-level defects.

The elastic deformation is represented in terms of normal coordinates Q. The
meaning of Q depends on the symmetry of the center and the considered distortion.
Figure 2 illustrates three of the nine normal coordinates Qi of a center with tetrahedral
symmetry. They are characterized by the irreducible representation of their symmetry
point group, in this case Td. A prominent distortion is the breathing mode Q1 with A1

symmetry, which actually keeps the symmetry of the center and just scales the size;Q1

may hence be described by a simple displacement u = R – R0 of an atom next to the
central atom. The modesQ2 andQ3 both have E symmetry;Q2 represents a twist about
the vertical axis in opposite directions for the lower and upper two atoms. This
distortion may be described by a twisting angle θ – θ0. In the distortion Q3 the bond
angle θ0 is varied and may be described similar to Q2. The remaining six normal
coordinates of the tetrahedron involve more complex atom motions with T symmetry.
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In a simple harmonic approximation of the lattice energy, the Hamiltonian is
given by

H0 ¼ 1

2
M

d2u

dt2
þ 1

2
β u2 ¼ 1

2M
P2 þM2ω2Q2
� �

; (6)

where u is the lattice distortion and β is the restoring force constant – see chapter
▶ “Elasticity and Phonons”. This is conventionally expressed in normal coordinates
P (momentum P = Mdu/dt) and Q (distortion Q; e.g., Q = u = R – R0). Assuming
a linear perturbation (Huang and Rhys 1950; Lax 1952; Pekar 1953; O’Rourke
1953) of the oscillation mode caused by an electron transition and resulting in a shift
of the equilibrium configuration,2 we have for the total Hamiltonian

H ¼ H0 � VQ; (7)

which can be transformed by a simple coordinate shift ~Q ¼ Q� V=β (with V the
electronic interaction force) into

H ¼ 1

2
M _~Q2 þ 1

2
β ~Q2 � 1

2

V2

β
: (8)

Consequently, the energy as a function of the distortion coordinate is given by
parabolas; the elastic energy by the usual parabola with its minimum energy

E = 0 at Q = 0. The total energy is given by the displaced ( ~E, ~Q) parabola, with
its minimum at (E – V 2)/2β at Q = V/β; this yields

Erelax ¼ �V2

2β
; (9)

the relaxation energy after capture of an electron, as shown in Fig. 3 by the solid
parabola.

The electronic interaction force V is proportional to a coupling constant S (the
Huang-Rhys factor – see below) and the spring constant β, which is proportional to
the square of the breathing mode frequency (close to the LO phonon frequency)
ωchar
2 (see ▶Eq. 31 of chapter “Elasticity and Phonons”). Consequently, we obtain

Qmin / � S

ω2
char

: (10)

2The basis for this analysis is the adiabatic approximation describd below. Here, the Hamiltonian is
split into a part that deals with electrons and atoms at fixed lattice positions, multiplied by a function
of displaced lattice atoms. The Hamiltonian can then be written as a sum of the electronic part and
the interacting ionic part. This ionic part results in shifted, harmonic oscillations.
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In actuality, however, we must take into consideration higher order terms in the
lattice distortion and electron-lattice interaction. They cause a deformation of the
displaced parabola in addition to its shift.

1.2.2 The Huang-Rhys Factor and Relaxation Process
The electron-lattice coupling in the neighborhood of a tightly bound defect is
determined by the interaction between electrons and appropriate phonons and is
given by the Huang-Rhys factor S. It is related to the coupling constant αc of a free
electron in an ideal lattice – see below. The Huang-Rhys factor can be interpreted as
the number of phonons emitted, while a defect center relaxes after it has captured an
electron or after it is optically excited and the electron is removed (see Fig. 4; Huang
and Rhys 1950 and Henry 1980):

S ¼ Erelax � Ec

ℏωchar

¼
1
2
μω2

char Q2 � Q1ð Þ2
ℏωchar

; (11)

where μ is the reduced mass (▶Eq. 34 of chapter “Photon–Phonon Interaction”),
Erelax is the relaxation energy, ℏωchar is the characteristic energy of the emitted
phonons, andQ2 andQ1 are the configuration coordinates for the minimum energy in
the excited and ground states, respectively – see below.

The Huang-Rhys factor can also be expressed by

S ¼ Q2 � Q1ð Þ2
2ℏ= μωcharð Þ ; (12)

that is, as the ratio of the square of the total displacement divided by twice the mean
square of the amplitude of the zero-point oscillation ℏ/(μωchar).

Eelastic

Etotal

Erelax=  -V 
2/ (2β)

Eel-latt

Q = V / β

E

Q

Fig. 3 Configuration-
coordinate representation with
elastic and electron-lattice
interaction energies (dashed
curve) and resulting total
energy (solid curve)
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Defect-Level Relaxation In the configuration-coordinate diagram (Fig. 4a), the
electronic plus elastic energy of the defect center and its nearest neighbors is plotted
as a function of the distance (Q) between the defect and one representative neighbor
for a breathing mode. The energy of the defect center, with an electron occupying it,
is given by a curve (deep) with minimum at Q2. When this electron is in the
conduction band (cb) and the hole is in the valence band (vb), the minima are at
Q1. Optical (electronic) transitions occur from the relevant minimum without chang-
ing Q; consequent relaxation occurs with emission of Si phonons, thus changing
Q until the new minimum is reached; Si is the corresponding Huang-Rhys factor. A
typical example is explained in the caption of Fig. 4. More information on this
subject is given in Sect. 2.3.1.

The sum of the optical excitation transitions from the center to the conduction
band, and from the valence band to the same center hν1 + hν2, can consequently
exceed the bandgap energy by a substantial amount:

hν1 þ hν2 ¼ Eg þ S1ℏωchar þ S2ℏωchar: (13)
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Fig. 4 (a) Configuration-coordinate diagram (schematic) of a deep-level center with Edeep(Q)
minimum at Q2 between conduction band Ec(Q) and valence band Ev(Q) minima at Q1 . Optical
excitation of the filled deep-level center takes place from its minimum at Edeep(Q2) to the conduction
band at Ec(Q2) with hν1, followed by (fast) relaxation with S1 phonons to Ec(Q1), the bottom of the
conduction band (see Sect. 2.3.1). When the deep center is empty, the excitation occurs from Ev(Q1)
to Edeep(Q1)with hν2, and consequent relaxation of S2 phonons to Edeep(Q2). (b) The corresponding
band diagram. (c) The shape of a simplified core potential with well depths V(Q1) and V(Q2) and
schematics of the corresponding envelope function (Modified from Henry 1980)
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The two Huang-Rhys factors are a measure of the coupling of an electron trapped at
the center to the lattice. This needs to be distinguished from αc, which is the coupling
factor of a free electron to the lattice. Typically, αc is on the order of 0.1 for
predominantly covalent compounds and is much smaller than S, which can be on
the order of 10 for the same compound, depending on the type of center, i.e., electron
localization. The stronger the coupling, the more phonons that can be emitted in the
process of relaxation.3

Recombination-Center Relaxation The process of capturing a conduction-band
electron into such a deep center shall be described here briefly, since it can be
understood qualitatively in the configuration-coordinate diagram used above to
describe the excitation process. This recombination is the inverse to a thermal
excitation, described first.

When the defect atom is thermally excited to oscillate (curve deep) with sufficient
amplitude to cross Qc in Figs. 4a, b, its electronic eigenstate can effectively mix with
the excited electron states at Em within the band. The trapped electron can then pass
from the defect state to band states. Inversely, when it is in the conduction band it can
pass from band states into the defect state. There, the electron can sequentially emit
phonons until a significant fraction of bandgap energy is dissipated, and it has settled
into the relaxed state of this defect at Q2 (Henry 1980).

One of the important band-to-band recombination processes takes place via
sequential capture of an electron and a hole by the same lattice defect, with
relaxation for a substantial fraction of the bandgap energy. The process needs a
lattice defect that results in a very deep level with strong lattice coupling. Therefore,
such a defect center is also called a recombination center.

An electron trapped at the recombination center has the ability to recombine with
a hole when thermally excited in the center to Ern, with a transition at Qb, and
consequent relaxation by phonon emission to Ev at Ql.

This elastic relaxation must be distinguished from an inelastic relaxation in
which the defect center moves into a metastable position. Such an inelastic relaxa-
tion is related to a photochemical reaction or to DX centers (▶ Sect. 2.7 of chapter
“Deep-Level Centers”). The inelastic relaxation may also be field enhanced and can
be observed by a dielectric loss analysis using Cole-Cole plot responses (Hayes and
Stoneham 1984).

In the adiabatic limit, the capture cross-section of the recombination center can be
evaluated from a semiclassical model (Kayanuma and Fukuchi 1984), as4

3This coupling is related to the depth of the electron levels. Centers with strong bonding (strong
coupling) are more effective in “pushing the surrounding lattice atoms apart” when the electron is
excited to a higher energy state. Eigenfunctions of shallow levels have the tendency to “slide over”
the surrounding atoms when excited, by permitting the electron to circle within the surrounding
lattice, thereby exerting comparatively little force on the surrounding atoms.
4In this chapter cross sections are identified with the commonly used σ. In later chapters treating of
transport the symbol s is used instead to distinguish cross sections from conductivity.
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σr ¼ σ1exp �Em

kT

� �
, where σ1 ¼ ωchar

2π

1

Ncvrms

: (14)

Here σ1 is the cross section of the center in a simple gas kinetic approach (see
▶ Sect. 2.2 of chapter “Carrier-Transport Equations”), Em is the thermal activation
energy, ωchar is the lattice-distortion eigenfrequency (in a breathing mode at the
recombination center), Nc is the density of states near the band edge, and vrms is the
thermal rms velocity of the electrons. This yields (Sumi 1983):

σr cm2
� � ¼ 6:5� 10�14 ℏωchar

40meV

� �
300K

T

� �
mn

m0

� �
exp �Em

kT

� �
: (15)

When is the Adiabatic Approximation Justified? When an electron is captured
from a band state to an excited state of the recombination center, it has a finite
probability to be reemitted into band states. The net capture probability was evalu-
ated by Henry and Lang (1977) to be 60% of the initial capture transition. In the
nonadiabatic limit, reemission of trapped carriers can be neglected (Sumi 1983). The
use of the adiabatic approximation, however, is not appropriate, when during the
electronic transition within the band some relaxation already has taken place. This
lowers the thermal excitation threshold and avoids level crossing.

The decision whether or not to use the adiabatic approximation can be answered
by comparing the natural electron lifetime (τe ffi ℏ=ΔEFWHM , with ΔEFWHM as the
full width at half maximum) with the oscillatory time τlattice ffi 1=ωchar, i.e., the time
in which the potential of the center changes markedly. With τe � τlattice, the
adiabatic approximation can be used since the electron during its lifetime encounters
a certain deformed state of the center rather than a changing one.

The adiabaticity parameter

γa ¼
E2
Sffiffiffiffiffiffiffiffiffiffi

S2kT
p

ℏωchar

(16)

is a more sophisticated measure of this relation and indicates that at sufficiently
high temperatures with γa � 1, the adiabatic approximation is acceptable (Sumi
1983).

For the discussion of transitions with major center relaxation, we distinguish three
closely related approximations: the adiabatic approximation; the Condon approxi-
mation (Kubo 1952), in which the electron-lattice interaction is linearized; and the
static approach (Markham 1956), in which the electronic wavefunctions are inde-
pendent of the defect coordinates, while the lattice wavefunction depends on the
electronic state. A listing of earlier literature and a critical discussion of the different
approximations is given by Peuker et al. (1982). For further development, see Sumi
(1983) and Kayanuma and Fukuchi (1984).

There are other processes which can change the energy of the center, such as
Jahn-Teller distortion and the influence of mechanical, electric, and magnetic fields.
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These effects will be discussed in the appropriate sections of chapters ▶ “Shallow-
Level Centers” and ▶ “Deep-Level Centers”.

Shallow and Deep-Center Spectra The shallow electronic eigenstates are signif-
icantly influenced by the lattice environment of the defect. This environment is
expressed in terms of the effective mass and dielectric constant. The deep eigenstates
are influenced by the chemistry of the defect, the lattice, expressed by its valence and
conduction band, and the lattice coupling (i.e., by phonon interaction).

The resulting optical excitation spectrum would be hopelessly complicated were
it not for that often – for various reasons – only a few lines appear in the spectrum.
Two such reasons are:

1. The lines can have vastly different strengths, causing only the strongest lines to be
recognized, while most of the weaker lines disappear in a broad and often
unstructured baseline absorption.

2. Many of the lines from excited states of a large variety of defects lie almost on
top of each other. These lines are caused by quasi-hydrogen states, which only
depend on the host lattice via estat and mn and not on the chemistry, i.e., the core
potential of the defect (Grimmeiss 1985).

1.2.3 Oscillator Strength of Optical Absorption Lines
A typical absorption spectrum of lattice defects shows a variety of lines with
different shapes and amplitudes. The amplitude or oscillator strength of the absorp-
tion is measured by the absorption constant αo, which is given by the optical cross
section σo for the specific transition and the density of the centers:

αo ¼ σo Nd or αo ¼ σo Jfi: (17)

Here Nd is the density of the defect states, and Jfi is the joint density of states for an
excitation involving bands, e.g., for a transition from a defect level into the band.
The cross section for an absorption of a photon by the defect (from initial state (i) to
final state (f)) is in turn defined by the ratio of hv times the optical transition rate (see
▶Eq. 4 of chapter “Band-to-Band Transitions”)

rfi ¼ 1

π h

eA0

m0

� �2

e �M nð Þ
fi, qH

��� ���2δ Ef � Ei � hνfið Þ (18)

to the energy flux W of the incoming optical radiation; the energy flux is given by

W ¼ 2πν2A2
0 nr e0 c; (19)

which results in an optical cross section of

σo ¼ hν
rfi
W

¼ e2

2π2m2
0 cnre0ν

e �M nð Þ
fi, qH

��� ���2δ Ef � Ei � hνfið Þ: (20)
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This optical cross section is not very useful for practical evaluation since it assumes
an ideal transition represented by a δ-function. Therefore, we need to be more specific
as to an actual transition, which involves damping that causes a finite line width and
strength; both of them are intimately coupled. We replace the δ function by a more
realistic line-shape function, which will be discussed in the next section:

g ν� ν0ð Þ ¼ γ h2

2π

1

hν� Ef � Eij jð Þ2 þ γ h
2

� �2 ; (21)

where γ is the damping constant (=1/τ with τ the lifetime in the excited state),
yielding for the optical cross section

σo ¼ e2 h2

4π3m2
0 cnre0ν

e �M nð Þ
fi, qH

��� ���2 γ

hν� Ef � Eij jð Þ2 þ γ h
2

� �2 : (22)

Another specific assumption needs to be made to evaluate the momentum matrix
element – see Dexter (1958). For instance, for a transition between bound states of a
hydrogen-like defect, we have

Mfi ¼
X
k,k0

ð
V

Ψ�
m k0ð Þ �iℏ

@

@r

� �
Ψn kð Þ dr: (23)

The impurity function can be expressed as an expansion in Bloch electron
eigenfunctions

Ψ kð Þ ¼
X
k

cc kð Þψ c k, rð Þ ¼ F rð Þψ k0, rð Þ; (24)

with F(r) as the envelope function. This permits a substantial simplification: Since
the Bloch function is always the same, the matrix element changes only with changes
in the envelope function. Therefore, we can discuss the strength of the absorption
lines from an analysis of the envelope function only and from corresponding
selection rules. Equation 23 can then be simplified by separating the matrix element
of the unperturbed crystal:

Mfi ¼
ð
V

Ff rð Þψ� k0, rð ÞPA Fi rð Þψ k0, rð Þ dr

ffi
ð
V

ψ k0, rð Þj j2Ff rð ÞPAFi rð Þ dr
(25)

with PA ¼ A �iℏ@=@rð Þ=A0 . For the envelope function F(r), taken as quasi-
hydrogen function

F rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
π a3qH

q exp
�r

aqH

� �
¼
X
k

cc kð Þexp ik � rð Þ; (26)

1 Energy and Strength of Defect Absorption 641



we obtain coefficients cc(k) = cc(k) by Fourier transform

cc kð Þ ¼ 8
ffiffiffiffi
π

p
ffiffiffiffi
V

p
a
5=2
qH k2 þ 1

aqH

� 	2
 �2 ; (27)

here aqH is the quasi-hydrogen radius and V is the normalization volume. We obtain
the matrix element of the optical transition at the defect center by multiplying the
matrix element for an ideal lattice transition with the coefficient cc(k) (Eagles 1960;
Zeiger 1964):

M
nð Þ
fi, qH

��� ���2 ¼ Mfij j2 cc kð Þ½ 	2: (28)

Hence, we observe an enhanced absorption that extends up to k values on the order
of 1/aqH (see Eq. 27). The optical absorption caused by such a transition within a
hydrogen-like donor has been discussed by Callaway (1963) and Zeiger (1964). The
transition is also controlled by selection rules, i.e., by symmetry considerations
involving the defect and its surrounding lattice.

The Oscillator Strength Another way of looking at an optical absorption is to start
from the free center (an isolated defect atom), which interacts with electromagnetic

radiation through its electric (R ¼ e
X

i
ri ) or magnetic (J ¼

X
i
li þ 2si ) dipole

moment for i electrons in the center. The matrix elements of these dipole operators
relate to the corresponding momentum matrix elements as:

Rfij j ¼
ð
ψ fRψ idV ¼ 2πm νf � νið Þ

ð
ψ f Pψ idV: (29)

For centers with inversion symmetry, the matrix elements are 6¼ 0 only for
transitions between states of uneven parity, e.g., from s to p states. Even-parity
transitions are electric dipole-forbidden but magnetic dipole-allowed. These
selection rules are determined by the symmetry of the center, which can be easily
given for an isolated center. The oscillator strength of such an isolated center is
given by

ffi ¼
4πm νf � νið Þ

3h
Rfij j2 ¼ 1

3πmh νf � νið Þ Pfij j2; (30)

and the optical cross section can be expressed as a function of the oscillator strength:

σo ¼ π e2

m0 c
f fi

γ

hν� Ef � Eij jð Þ2 þ γ h
4

� �2 , where γ ¼ 1

τ
: (31)
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When embedding this isolated center into a lattice, the velocity of light is
reduced to c/nr and the effective electric field is increased by the lattice polarization
to Feff ¼ F0 n2r þ 2

� �
=3. When the density N of these centers is small enough to

neglect their interaction, the total absorption αo relates to N times ffi (Smakula
1930) as

N f fi ¼ αo nr γ
F0

Feff

� �2

C�; (32)

where C* is a constant, and nr(F0/Feff)
2 is typically on the order of 1. This gives a very

simple formula to estimate the density of defect centers from the product of absorption
constant αo

max at the line maximum and line width ΔE, related to γ – see Sect. 2.1:

N f fi ¼ 1:3� 1017αmax
o cm�1
� �

ΔE eVð Þ: (33)

For known defect center densities, the oscillator strength can be determined. For
deep centers, ffi is on the order of 1; for F centers in alkali halides ffi ffi 0:5.

2 Line Shape of Electronic Defect Transitions

The optical absorption of defect states by typical resonance absorption has a
Lorentzian line shape, with a line width depending on damping. Other composed
lattice resonances have Gaussian shape and are discussed in Sect. 2.2. Still other line
shapes are related to the specific excitation and deexcitation mechanisms involving
phonons and are discussed in Sect. 2.3.

2.1 Homogeneous Lines

All lines created by the superposition of identical contributions from any one of the
involved centers are called homogeneous lines. Such a superposition is shown in
Fig. 5a. Typical examples are listed in this section.

Lifetime Broadening The line shape can be caused by a finite lifetime of the
electron in the excited state. It can be described by the damping term in the resonance
equation responsible for the absorption, which is of Lorentzian type – see▶Sect. 2.1
and ▶Eq. 46 of chapter “Photon–Phonon Interaction”. It is given by the line-shape
function5

5The line-shape function enters into the absorption cross-section (Eq. 20); that is, (l/h)g(ν – νfi)
replaces δ(Ef – Ei – hνfi) after introducing the damping term – see also Eq. 21.
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g ν� ν0ð Þ ¼ γ

2π

1

ν� ν0ð Þ2 þ γ=2ð Þ2 : (34)

It yields a line width at half of its maximum strength:

FWHM ¼ γ Lorentzianð Þ: (35)

There is another typical line shape, the Gaussian line shape, which is observed
for deep-center relaxation – see Sect. 2.3. It is often related to inhomogeneous
broadening (see Sect. 2.2). The line-shape function for a Gaussian line is given by

g ν� ν0ð Þ ¼ 1ffiffiffiffiffiffiffiffi
2π γ

p exp � ν� ν0
2γ

� �2
" #

(36)

with a line width at half of its maximum strength

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi
2ln2

p
γ ¼ 2:355 γ Gaussianð Þ: (37)

Both line shapes are distinguished by their tails (the Gaussian line shows a steeper
decline) as shown in Fig. 6. The damping factor in Eqs. 32 and 34 can be related to
the lifetime of the excited state and in simple cases is given by γ ffi 1=τ.

In defect centers, the intrinsic line width is determined by the natural lifetime in
the excited state. This lifetime in turn can be determined by

• Recombination
• Nonradiative bound-carrier-phonon interaction

Both contributions depend on the actual type of defect center. For all practical
reasons, the first contribution is usually small compared to the phonon interaction.

In shallow centers and at low temperatures (<20 K) the emission of acoustic
phonons is the limiting process. For instance, a transition from 2p0 to 1 s of a quasi-
hydrogen defect yields for such process a line width of

a b c

Fig. 5 Schematic representation of line widths: (a) Homogeneously broadened line from more and
more identical centers. (b) Inhomogeneously broadened line from superposition of different
homogeneous components. (c) Removal of one of the components by photochemical changes
(hole burning) or bleaching (After Stoneham 1969)
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Δν ffi 10�3 � Ξ2=ρa3qH v
3
s

� 	
νfi; (38)

where ρ is the density of the semiconductor, Ξ is the deformation potential, aqH is
the quasi-hydrogen radius, and vs is the sound velocity. For a donor in Ge this line
width hΔν is estimated to be on the order of 10 μeV. In stress-free ultrapure Ge
with (H,O) donors, it was observed (Haller et al. 1987) to be approximately
8.5 μeV.

In contrast to the homogeneously broadened line, which is rarely seen,6 we
usually observe inhomogeneously broadened lines when slightly shifted narrow
lines are superimposed. This is shown in Fig. 5b and will be discussed in Sect. 2.2.

Influence of a Magnetic Field The optical absorption of defect centers depends on
a number of external influences. Most of these cause inhomogeneous broadening
and will be discussed later. A magnetic field, however, can have an influence on the
homogeneous line width. The high magnetic inductance compresses the defect
eigenfunctions (see ▶Sect. 3.4 of chapter “Shallow-Level Centers”), causing a
reduction in the scattering cross-section and thereby an increase in the lifetime of
hydrogen-like defects. This causes a reduction in the homogeneous line width.

Such a line narrowing is shown in Fig. 7 for InSb, which has a low effective mass,
resulting in extremely large quasi-hydrogen radii. Consequently, this results in a
large magnetic compression at only a moderate magnetic inductance. For more
detail, see Stradling (1984).

ν-ν
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Lorentzian
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-

)
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Fig. 6 Line-shape function
according to Eqs. 34 and 36
with ν0 = 1012 s�1 and
γ = 1 s�1

6Only in ultrapure semiconductors with vanishing internal stress and vanishing electric fields, the
lines of isolated impurities have their natural width – see Jagannath et al. (1981) and Haller
et al. (1987).
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2.2 Inhomogeneous Broadening

Most line broadening is due to the superposition of emissions from different centers
of the same impurity atom, which differ from each other because of slightly variant
lattice environments. Such environments may differ by built-in strain or electric
fields, or by proximity to other defects. Inhomogeneous line broadening (Stoneham
1969) is illustrated in Fig. 5b, and can be detected by bleaching one subgroup of
these centers with a narrow laser line (see Fig. 5c), which can be detected with a
consequent probing scan. This bleaching of a narrow line is often referred to as hole
burning or spectral hole burning.

Hole Burning The width of the spectral hole, burned with a narrow line-width
laser, depends on the transition probability of the defect center in a statistically
arranged surrounding. With a short exposure, followed immediately by probing
(echo), only such centers with highest excitation probability are bleached. This
results in a narrow line width of the bleached spectral “hole.” When given a longer
bleaching time, statistical fluctuations permit a wider distribution to be bleached,
making the line width of the “hole” wider.

2.2.1 Line Broadening by Electric Fields and Stress
An electric field causes a Stark effect shift and splitting of the electronic
eigenstates of the defect – see ▶ Sect. 3.3 of chapter “Shallow-Level Centers”. For
hydrogen-like defects with large orbitals, this effect is rather large. It can be
estimated by including the external field F into the Hamiltonian of the effective-
mass equation:

� ℏ2

2m�
@2

@r2
� e2

4πestate0 r
� Vext rð Þ

� �
ψ e ¼ E ψ e: (39)

The eigenvalues for Eq. 39 in a uniform electric field (Vext ! (F/e) � r) are
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Fig. 7 Cyclotron resonance
(1) and 1 s ! 2p+ transition
(2) of a hydrogen-like
impurity in InSb at 4.2 K,
showing a shift and
substantial narrowing of the
lines with increased magnetic
inductance from 1.0 to 2.4 T
(After Stradling 1984)
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EqH Fð Þ ¼ E
0ð Þ
qH � 1

n2
þ 3

2

Fa
0ð Þ
qH

E
0ð Þ
qH

n n1 � n2ð Þ � Fa
0ð Þ
qH

2E
0ð Þ
qH

 !2

n4

8
� 17n2 � 3 n1 � n2ð Þ � 9m2 þ 19
� þ . . .

8<
:

9=
;;

(40)

with the first term representing the undisturbed quasi-hydrogen solution and the
second and third terms representing the linear and quadratic Stark effects, respec-
tively. The superscript (0) identifies the ground state for quasi-hydrogen solutions, n1
and n2 are two integers (
0) fulfilling n ¼ n1 þ n2 þ mj j þ 1, and m is the orbital
quantum number – here the component in F direction. Such an external (to the lattice
defect) field can also be produced by other charged centers in sufficiently close
proximity. Then, Vext(r) is the potential distribution modified through such charged

centers
X

ei= 4πestate0 Ri � rj jð Þf g
� 	

�
The statistical distribution of defects throughout the lattice causes a variation of

this effective field from defect to defect. Consequently, it creates an accumulated
broadening of the line, instead of a well-defined shift and splitting of the hydrogen-
like spectrum.

The probability of finding an electric field F* is given (Larsen 1976) by

P F�ð Þ ¼ 2

π
F�
ð1
0

r exp
15

4
2πrð Þ3=2

� 	
sin F�rð Þ dr: (41)

Here F* is expressed by the once-integrated Poisson equation (ρ r= estate0ð Þ). After
introducing the average distance between defects r ¼ N

�1=3
i , we obtain

F� ¼ eN
2=3
i = estate0ð Þ; (42)

where Ni is the total density of charged centers. The probability function (Eq. 41)

is given in Fig. 8a and shows a maximum at 5eN
2=3
i = estate0ð Þ ffi 420 V=cm for

Ni = 1013 cm�3 and estat = 10.
The strong broadening of higher excited states is shown in Fig. 8b for the

1 s ! 3p transition of a shallow donor, peaking near 42 cm�1 (5.2 meV). Their
larger eigenfunctions are more prone to overlap into adjacent regions of higher fields
from neighboring Coulomb centers when compared to the narrower 1 s ! 2p
transition near 35 cm�1. For further detail, see Larsen (1976).

Mechanical Stress Broadening Mechanical stress due to dislocations or other
statistically distributed defects surrounding a specific type of lattice defect contrib-
utes to the line broadening of this defect in a manner similar to electric field
broadening. Such stresses, however, have a stronger influence on the structure of
the conduction band. Hence, they will preferably broaden the donor states created by
mixing with such band states – see ▶Sect. 3.2 of chapter “Shallow-Level Centers”.
However, other states may be influenced also, as, e.g., nondonor-like states can be
perturbed by a large deformation potential.
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2.2.2 Line Broadening with Compositional Disorder
The line widths of hydrogenic defects (excitons and impurities) are substantially
broader in semiconductor alloys than in their unalloyed components. As an example,
an exciton line-width is analyzed here.

The compositional disorder in random alloys causes a local variation of the
exciton energy. Depending on the actual composition of the alloy within the volume
of the exciton

Vexc ¼ 4π

3
r3exc
� � ¼ 10π a3qH; (43)

one observes a variation of estat and mn, which in turn causes a change in aqH and EqH

(Goede et al. 1978). The probability of finding j atoms A of the alloy AxB1�xC in the
volume of an exciton is given by

P j,Nexcð Þ ¼ Nexc

j

� �
xj 1� xð ÞNexc�j; (44)

with Nexc as the number of cation sites in the exciton volume Vexc, and x ¼ j=Nexc.
For sufficiently large Nexc one can approximate Eq. 44 with a Gaussian distribution:

P xð Þ ¼ 1ffiffiffi
π

p
Nexcσ

exp � x� xð Þ2
σ2

 !
; (45)

which yields a width at half of its maximum value

I I I

I

I

Fig. 8 (a) Probability distribution for finding an average field F* produced by a random distribu-
tion of point charges of density Ni at a given lattice point (Holtzmark distribution). (b) Photocon-
ductivity distribution of high purity GaAs at 1.6 K (instrument resolution 8.6 μeV = 0.069 cm�1),
showing substantial broadening of the 42 cm�1 peak of a hydrogenic donor due to electric fields
from neighboring Coulomb centers (After Larsen 1976)
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FWHM ¼ 2
ffiffiffiffiffiffiffi
ln2

p
σ ¼ 2

ffiffiffiffiffiffiffiffiffi
2ln2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1� xð Þ
Nexc

s
: (46)

This results in a half-width of the exciton line

FWHM excitonð Þ ¼ 2c
ffiffiffiffiffiffiffi
ln2

p
σ @Eg=@x
�� ��

¼ 2c
ffiffiffiffiffiffiffiffiffi
2ln2

p
ΔEg � b 2x� 1ð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x 1� xð Þ
10π

ffiffiffi
2

p a

aqH

� �3
s

; (47)

where
ffiffiffi
2

p
a3 is the volume of the primitive cell, c is a fitting parameter on the order of

1 (here ffi 1.1), and ΔEg = Eg (x = 0) – Eg (x = 1). With the bowing parameter
b (here ffi 0.3 eV) the bandgap energy is given by

Eg xð Þ ¼ 1� xð ÞEg 0ð Þ þ xEg 1ð Þ � bx 1� xð Þ: (48)

The experimentally observed line broadening of exciton luminescence agrees rea-
sonably well with the given estimates, as shown in Fig. 9 (see also Singh and Bajaj
1986).

Line Broadening with Heavy Doping A very similar line broadening due to the
statistical fluctuation of interdefect distances is observed with heavy doping. In a
simplified approach, the line width can be estimated as

FWHM ¼ FWHM 0ð Þ exp � r

aqH

� �
; (49)
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Fig. 9 Line-width
broadening of the A exciton in
CdSl-xSex due to
compositional disorder. The
curve is calculated from
Eq. 47 with ΔEg = 0.728 eV,
b = 0.31 eV, aqH = 25 Å,
c = 1.1 (After Goede
et al. 1978)
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with aqH as the quasi-Bohr radius of the hydrogen-like defect, and r ¼ N
�1=3
d as the

mean distance between the defects. FWHM (0) is the normalized line width (Mott
1974). For line broadening in quantum wells by compositional disorder see
Baranovskii et al. (1994).

2.3 Deep-Level Defect Line Broadening

Deep-level defect centers can show a much larger line broadening when the coupling
with lattice phonons is strong. The spectrum of some of these deep-level defects
shows, even at low temperatures, a broad Gaussian line shape of typically several
ℏωLO half-widths. This signature is an indication of a strong coupling of the defect
center with the surrounding lattice. Strong lattice coupling can yield line widths of
several hundred meV. In contrast, narrow line widths of the zero-phonon absorption
of �1 meV, with well-separated phonon replica are observed for other centers with
only minor lattice coupling.

The magnitude of the lattice coupling is a function of

1. The host lattice: The coupling is increased with higher ionicity of the lattice
binding-forces and lower elastic force constant.

2. The defect center: Point defects show a stronger coupling than defect associates.
3. The electronic eigenstates of the center: Deep defect levels show a stronger

coupling than shallow states.

In a simplified picture, we may observe a deep-defect center with strong coupling
that tends to push the surrounding lattice atoms apart when an electronic excitation
occurs, rather than to extend a hydrogen-like orbit over more of the surrounding
lattice. The changes in hydrogen-like orbits have little effect on the position and
polarization of the neighboring atoms, while the deformation of the lattice surround-
ing of an expanding, tightly bound center has a larger effect. In strong interaction
with the surrounding lattice, many phonons are created by the relaxation that follows
such an electronic excitation and have a major effect on its excitation energy and line
width. The basic principles involved are discussed in the following section.

2.3.1 Franck-Condon Principle and Lattice Relaxation
The processes involved during excitation of a defect center with strong lattice
coupling are described in a configuration-coordinate diagram as introduced in
Sect. 1.2.1. However, the configuration-coordinate diagram is applied here to the
ground and excited states of a deep center (Fig. 10). It pictures for a breathing mode
the electronic and elastic lattice energies as a function of the relative distance
between the defect center and its nearest surrounding lattice atoms. The center’s
ground state is identified by A0, within a parabola E(Q) near its minimum. Horizontal
lines indicate specific phonon-excited states. With electronic excitation, the parabola
is displaced. It is shifted in energy by the electronic excitation energy and in
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interatomic distance to a larger equilibrium distanceQB0
; the excited defect atom has

an increased effective radius (Fig. 10b).
In Fig. 10a the vibrational eigenfunction ϕ(Q) is indicated from the adiabatic

approximation (chapter ▶ “Quantum Mechanics of Electrons in Crystals”, Eq. 2). It
can be shown that in addition to the normal selection rules for the electronic part, the
optical transition probability depends on the vibrational part of the eigenfunctions
(see Eq. 58) and is largest when the overlap integral

ð
ϕ�
f Qð Þϕi Qð Þ dQ (50)

is a maximum. This is the case for an approximately vertical transition (Franck-
Condon principle; Fig. 10a). For the original discussion of the Frank-Condon
principle, see Condon and Morse (1929).

With changes from this optimum transition energy, the transition probability
drops off gradually, resulting in a rather broad line width (Fig. 10b).

After optical excitation, the vibrational state is also excited and will relax to its
minimum energy (B0 in Fig. 10b). The difference between the initial excited state
and the relaxed state represents the Franck-Condon shift (Lax 1952) between optical
and thermal excitation. The latter, as an indirect transition, can proceed directly from
minimum to minimum and thus needs less energy than the optical excitation. In a
similar fashion, light emission (luminescence) proceeds vertically from the relaxed
excited state to the ground electronic state (A in Fig. 10b) and then relaxes to its
minimum total energy state A0.
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Fig. 10 Configuration-coordinate diagram showing the ground and excited states of a defect with
strong lattice coupling and typical excitation and recombination transitions. (a) Ground and excited
vibrational states indicated. (b) Franck-Condon principle showing larger optical energy than needed
for thermal excitation from A0 to B0 and indicating absorption line shape (A0 ! B) with multiple
transitions possible. Horizontal lines indicate vibrational states of the system
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The energy difference between optical excitation (A0 ! B) and emission
(B0 ! A), the Franck-Condon transitions, is called the Stokes shift.

2.3.2 Strong, Medium, and Weak Lattice Coupling
The strength of the coupling can be measured by the number of phonons emitted
during a relaxation process. This is represented by S1 after optical excitation, and S2
after a photon emission (Fig. 10b), with Si as the Huang-Rhys factor – see below and
Sect. 1.2.2.

The total energy of the defect is given by

Ee ¼ Ee0 þ EQ ¼ Ee0 þ 1

2
β Q� Q0ð Þ2; (51)

where Ee0 is the electronic ground-state energy, EQ is the elastic energy, and β is the
force constant. The relaxation energy in state B, following a transition from state A0,
is expressed by (see Fig. 10b)

EQ ¼ 1

2
β QA0

� QB0

� �2 ¼ 1

2
μω2

char QA0
� QB0

� �2
; (52)

whereω2
char ¼ β=μ and μ is the reduced mass of the center. The Huang-Rhys factor is

given by Eq. 11.
When S > 6, we speak of strong coupling; when S � 1, we have weak coupling.

The line shape is substantially different in each case.

Strong Coupling For strong coupling, the line-shape function is given by a Poisson
distribution of the phonon spikes at low temperatures

g ν� ν0ð Þ ¼
X
m

Sm1
m!

exp �S1ð Þ
� �

δ ν� ν0 � ωchar

2π
m

� 	
; (53)

with m as the number of phonons emitted at the specific transition and the delta
function representing the zero-phonon line (form = 0) as well as the phonon replica.
This results in a spectrum of spikes separated by ℏωchar. In actuality, each of these
phonon lines is broadened, and all replica melt into one broad feature for high values
of the Huang-Rhys factor.

At higher temperatures (kT > ℏωchar ), the line-shape function converts to a
Gaussian distribution

g ν� ν0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πS1ℏωcharkT

p exp � hν� hν0 � S1ℏωcharð Þ2
4S1ℏωcharkT

" #
; (54)

652 Optical Properties of Defects



where hν0 is the optical electronic transition (A0 ! B) in Fig. 10b, and ωchar is the
frequency of the characteristic phonon mode. Individual phonon lines are not
resolved but contribute to a broad line of width

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi
2ln2

p ffiffiffiffiffi
S1

p
ℏωchar for kT < ℏωchar

2
ffiffiffiffiffiffiffiffiffi
2ln2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1ℏωcharkT

p
for kT > ℏωchar:

�
(55)

It is the strong coupling that permits interaction with a wide phonon spectrum. It
broadens each individual line, so that even at very low temperatures only one broad
feature appears in absorption and emission. This is shown in absorption and, shifted
by approximately twice the relaxation energy, in emission for the F centers of KBr in
Fig. 11.

Weak Coupling For weak coupling the parabola for the excited electron state
(Fig. 10b) is not shifted significantly from the ground-state parabola. This causes
the most probable transition to be the minimum-to-minimum zero-phonon line with
a narrow line width.

In addition, Stokes-shifted lines with phonon emission and anti-Stokes lines with
photon absorption occur as phonon replica. The line-shape function here is
represented by

g ν� ν0ð Þ ¼ 1� Sð Þδ ν� ν0ð Þ þ 1

2
Sþ Sið Þδ ν� ν0 � ℏωchar= 2πð Þð Þ

þ 1

2
S� Sið Þδ ν� ν0 þ ℏωchar= 2πð Þð Þ þ . . . ; (56)

where the dots indicate higher-order replica. Each δ function is lifetime broadened,
as discussed in Sect. 2.1. Si is the Huang-Rhys factor given by Eq. 12, and
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spectra of F centers in KBr for
various temperatures (After
Gebhardt and Kuhnert 1964)
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S ¼ Sicoth
ℏωchar

kT

� �
: (57)

For weak coupling, these replica are obtained from Eq. 56 as a series of spikes.

Intermediate Coupling With increasing intermediate coupling, the relative
strength of the zero-phonon line gradually decreases, and the phonon replica
broaden, which renders them less distinct. Finally, all features combine into a
band, which then becomes the broad absorption “line” of the defect for strong
coupling. This development is shown in Fig. 12 for the R2 center – which is an
associate of 3 F centers – in different alkali halides. These defect associates behave
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Fig. 12 Optical absorption spectra of R2 centers at 4 K for LiF, KCl, KBr, and NaCl, showing
decreasing structure with increasing lattice coupling (After Fitchen et al. 1963)
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as one somewhat larger defect. This results in an intermediate behavior between a
deep center and a center with a more extended electron eigenfunction.

With increasing coupling (see Fig. 14), the features in absorption and emission
become mirror symmetric (Fig. 13): the zero-phonon line in absorption finally disap-
pears, both maxima become more and more separated (Fig. 11), and the distinction
between different phonon replica becomes completely washed out (Fig. 12).

The degree of coupling depends on the elastic and electronic properties of the
host. A simple empirical relationship was observed between relaxation energy and
the electronegativity χ of the host anions (Baranowski 1979). This dependence is
shown for the zinc chalcogenides in Fig. 15.

Quantitative Estimates from the Adiabatic Approximation The first quantitative
evaluation of the optical absorption of deep centers with strong coupling was given
by Huang and Rhys (1950) for the F center absorption in alkali halides. Following
the adiabatic approximation with ϕ(R,r) = φ (R)ψ(R,r) (see ▶Eq. 2 of chapter
“Quantum Mechanics of Electrons in Crystals”), we separate electron and phonon

emission absorption
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Fig. 13 Mirror-symmetric
optical absorption and
emission specta for R centers
in SrF2 at 20 K as an example
for intermediate lattice
coupling (After Beaumont
et al. 1972)
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Fig. 14 Ground and excited states in a configuration-coordinate diagram for coupling increasing
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eigenfunctions. This permits us to express the matrix elements for the optical
transition as the product of the matrix elements for the excitation from the electronic
ground (μ0) to the excited state (μ1) and the overlap integral between the vibrational
wavefunctions:

Mμ1 n1
μ0 n0 ffi

ð
ψ�
μ0 � ℏ2

2m�
@

@r

� �
ψμ1dr

ð
φ�
μ0 n0 Rð Þ φμ1 n1 Rð Þ dR; (58)

where ψμ0 and ψμ1 are the electronic eigenfunctions, and φμ0 n0 and φμ1 n1 are the
vibrational wavefunctions with the electron in its initial and final states, respectively.
The absorption constant within the optical frequency range ν, ν + Δν is given by

αo νð Þ ¼ 8π2Ndeep e
2

3hm2
0 cnre0ν

Mμ0 μ1

�� ��2G νð Þ; (59)

where Mμ0μ1 is the matrix element for the electronic transition (first integral in
Eq. 58), Ndeep is the density of deep centers, and G(ν) given as the sum of the overlap
integrals

G νð Þ ¼ 1

Δν

Xν, νþΔν

n1

ð
φ�
μ0 n0 Xð Þ φμ1 n1 Xð Þ dX

����
����
2

: (60)

The first factor in Eq. 59 determines the amplitude of the optical absorption; the
second factor G(ν) determines the line shape which can be approximated by the line-
shape function given in Eq. 54.

There is reasonable agreement between the Huang-Rhys theory and experimental
observations of F centers in KBr (see Fig. 16) with three adjustable parameters.
These include a very large Huang-Rhys factor (S ffi 25), which is characteristic of
such F centers. For a review of the measurements of the related oscillator strengths,
see Huber and Sandeman (1986).
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2.3.3 Line Shape of Resonant States
Resonant states are those that overlap with a band, thereby substantially reducing the
lifetime of an electron in the resonant state. Excitations into resonant states (Fig. 17)
can be distinguished by the shape of the absorption peak, which can be approximated
by (included in the absorption cross-section)

σres hνð Þ ¼ aþ b hν� E0ð Þ
hν� E0ð Þ2 þ γ2deep, res h

2
; (61)
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Fig. 17 Conduction bands
with minima at k = 0 and
k 6¼ 0. The state E0 lies in the
bandgap and is a bound state
with negligible line width.
The state E1 originates from
the unperturbed state E1

0 and is
a resonant state with greatly
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where 1/γdeep,res is the lifetime of the electron in the resonant state, and a and b are
the empirical parameters (Toyozawa et al. 1967; Velicki and Sak 1966). Resonant
peaks are observed which relate to shallow donors, acceptors, or to excitons. See, for
example, Onton (1971) for such resonant states in GaP.

2.4 Photoionization Edge Shape

Excitation from a level directly into a band that results in free carriers is referred to as
photo ionization; the optical absorption spectrum is edge like – see ▶Sect. 1.1 of
chapter “Photoconductivity”. The spectral distribution of the absorption is usually
expressed in terms of the photoionization cross-section σn(hv) for electrons or σp(hv)
for holes (see Eq. 20).

2.4.1 Photoionization from Deep Centers
Photoionization, i.e., the transition from a trapped to a free-electron state, can be
calculated from the deep-level eigenfunction, the Bloch function of free carriers, and
the appropriate perturbation operator. The ground state of the deep-level defect can
be approximated by

ψ i ¼
ffiffiffiffiffi
α

2π

r
exp �αrð Þ

r
with α2 ¼ 2mTrapEI

ℏ2
(62)

as its initial state, where EI is the ionization energy, and mTrap is a pseudomass of the
electron within the deep center, used as an adjustable parameter of the theory. When
ionized, the electron in the conduction band is described by a plane wave

ψ f ¼
X
k

un kð Þexp ik � rð Þ (63)

as its final state. With these, first ignoring any lattice relaxation (for this, see
Sect. 2.4.3), we can obtain (Lucovsky 1965; Grimmeiss and Ledebo 1975) for the
ionization cross-section into a parabolic and isotropic band

σn hνð Þ ¼ 8πνD
3

e2ℏ
e0nr,c

ffiffiffiffiffi
EI

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mTrapmn

p
m2

H

hν� EIð Þ3=2
hν hνþ EI

m0

mn
� 1

� �� �2 : (64)

Here νD is the degeneracy of the occupied impurity state, and mH is an effective
carrier mass defined by the perturbation operator. With mTtrap ffi mH ffi m0,
Grimmeiss and Ledebo (1975) obtained agreement with photoionization of electrons
from O-doped GaAs into the conduction band. See also Zheng and Allen (1994).

2.4.2 Photoionization from Shallow Centers
When considering photoionization from shallow (hydrogen-like) donors, we start
with a somewhat better-known eigenfunction of this defect, see Sect. 2. We then
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evaluate a transition-matrix element with final states that are the eigenstates of the
conduction band.

We also have to consider the occupancy of the involved states: it requires an
occupied ground state, described by the Fermi distribution, and a free excited state –
see Sect. 3.2. Let us look at transitions from filled acceptor levels Ea into the
conduction band as an example. We can express for free electrons k(E) from

E ¼ ℏ2k2

2mn
¼ hν� Eg � Ea

� �
: (65)

This yields for the matrix element with ▶Eq. 21 of chapter “Band-to-Band Transi-
tions”, Eqs. 27, and 28

Mfi, qH
�� ��2 ¼ 3

2V

m2
0

μ

Eg Eg þ Δ0

� �
3Eg þ 2Δ0

32π a3qH

1þ 2mnaqH hν� Eg � Ea

� �� �
ℏ2


 � : (66)

The joint density of states is given by the product of the density of acceptors and
the density of band states near the conduction-band edge:

Ja, c ¼ Na

V2 2mnð Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� Eg � Ea

� �q
ℏ3

: (67)

The optical absorption coefficient (Eqs. 17 and 20) can now be obtained from

αo, qH, c ¼ e2

6e0nrcm2
0νV

Mfi, qH
�� ��2Ja, c; (68)

yielding a lengthy equation when inserting Eqs. 66 and 67 into Eq. 68. However, for
semiconductors with a small effective mass and a large quasi-hydrogen radius, the
second term of the sum in square brackets of Eq. 66 can be neglected, and the
absorption constant can be approximated as

αo, qH, c ¼
64π2νD

ffiffiffiffiffiffiffiffi
2mn

p
e2a3qHNa

3 e0nrcℏ2

Eg þ Δ0

3Eg þ 2Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� Eg � Ea

� �q
; (69)

where vD is the degeneracy of the conduction band. The absorption coefficient
increases steeply with increasing quasi-hydrogen radius and linearly with the density
of acceptors. The optical absorption has an edge-like, square-root shape whenever
bands are involved, rather than appearing as lines when the absorption occurs from a
ground to an excited state within the center (see Fig. 1). When the transition proceeds
into a band, photoconductivity is usually observed. Therefore, most of the discussion
relating to such optical excitation can be found in chapter ▶ “Photoconductivity”.
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2.4.3 Phonon Broadening of the Ionization Edge
For many centers, the phonon coupling plays a major role in broadening this edge of
the optical absorption cross-section σn(hν). Here σn can be expressed approximately
(see Noras 1980 or Kopylov and Pikhtin 1975) as

σn, phon ¼ Cffiffiffi
π

p
ð1
0

ffiffiffi
2

p
Γx

� �b
hν

ffiffiffi
2

p
Γxþ EI

mTrap

mn

� �a exp � x� hν� EIffiffiffi
2

p
Γ

� �
 �( )
dx; (70)

with Γ as the phonon broadening factor

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S ℏωcharð Þ2coth ℏωchar

kT

� �s
; (71)

S is the Huang-Rhys factor. The exponents chosen appropriately for the
corresponding model are

a ¼ 2 for δ function short rangeð Þ potential
4 for Coulomb long rangeð Þ potential

�
(72)

b ¼ 3=2 for a forbidden transition

4 for an allowed transition

�
(73)

This broadened edge-type appearance is shown in Fig. 18 for photoionization of
deep centers in CdTe.

Several of these centers are identified, each of them with different coupling to
the surrounding lattice. For instance, the center with a capture cross-section of
~10�17 cm2 for holes and ~10�16 cm2 for electrons, as shown in Figs. 18a, b,
indicates a coupling7 to the lattice with S ffi 6.7. Another center, shown in
Figs. 18c, d, has a photoionization energy for electrons that is only slightly larger
than the first center (�1.3 eV). It also has a similar ionization cross-section,
although it is coupled more strongly to the lattice with S ffi 30. After electron
capture, the center relaxes by more than 0.62 eV, as indicated in the configuration-
coordinate diagram of Fig. 18d, and thereby releases about 30 phonons (see Takebe
et al. 1982).

The example shown in Fig. 18 illustrates that various centers – even in the same
host material – can have vastly different lattice coupling. This can range from nearly
vanishing coupling of shallow centers to very large coupling of some of the deep
centers, in which trapped carriers can relax to bridge almost the entire bandgap by
emission of many phonons. An example of the temperature dependence of the

7This is obtained from the lattice relaxation of 0.14 eV (=1.27–1.13 or = 0.62–0.48 eV) with
breathing mode phonons of ℏωchar ffi 21 meV after capture of a hole or an electron, as indicated in
Fig. 18a, b.
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optical cross section for a center with large lattice relaxation is shown in Fig. 19 for
the second electron state of oxygen in GaP. The relaxation is larger for the captured
electron than for the hole and amounts to a major fraction of the bandgap.
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Fig. 18 (a) Cross section for photoionization of deep impurity centers in CdTe at 102 K. Solid
curves are calculated according to Eq. 70 with C = 6.4 � 10�17 and 5.4 � 10�15 cm2eV for holes
and electrons, respectively, a = 2, b = 3/2, mn = 0.11 m0, mp = 0.35 m0, mTrap = 0.35 m0, E

0
n

¼ 1:27 eV, E0
p ¼ 0:62 eV, and S = 6.7 for ℏωchar ¼ 21 meV. (b) Corresponding configuration-

coordinate diagram (c) and (d) the same as for (a) and (b) but for a different deep center in CdTe
(possibly a doubly ionized Cd interstitial) with E0

n ¼ 0:66 eV, E0
p ¼ 1:23 eV, and S ffi 30 (After

Takebe et al. 1982)
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3 Optical Absorption of Disordered Crystals

Most point defects in an otherwise ideal lattice can be regarded as missing lattice
atoms, which are replaced by lattice defects. For every defect that creates one or
more levels in the bandgap, the same number of levels that would have been created
by the missing lattice atom within the bands are missing. Moreover, the lattice atoms
surrounding the lattice defect relax into shifted positions and also create levels which
could be shifted into the bandgap. Finally, thermal vibration of the lattice atoms
gives rise to a perturbation of the band edge.

3.1 Band Tailing

At low concentrations, lattice defects cause energy levels within the bandgap with
spatially localized wavefunctions. As the defect density Ndefect increases, these
localized wavefunctions start to overlap and form an impurity band (for donors
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below the conduction band, for acceptors above the valence band). Assuming
hydrogen-like defects with a quasi-hydrogen radius aqH the condition for this
Anderson-Mott transition (Mott and Davis 1979) is

Ndefect a
3
qH ffi 0:01: (74)

At higher defect concentration

Ndefect a
3
qH 
 1 (75)

the gap between the impurity band and the conduction (or valence) band vanishes,
and both bands merge, see Fig. 20. Equation 74 defines the threshold for a heavily
doped semiconductor considered below.

Such a tail of band states into the bandgap is also referred to as a Lifshitz tail
(Lifshitz 1964). It is well pronounced in heavily doped and amorphous semicon-
ductors and can be experimentally observed from the spectral distribution of the
optical absorption (Shklovskii and Efros 1984). For disorder due to dopants, having
a correlation length on the order of interatomic spacing, the absorption coefficient
shows an exponential decline and can be expressed as

αo ¼ αo0exp
hν� Eg

E0

� �
: (76)

Here, αo0 and E0 are empirical parameters depending on the semiconductor and its
defect structure as it relates to preparation, doping, and treatment of the semicon-
ductor. This dependence of the optical absorption is widely observed and is referred
to as the Urbach tail – see Fig. 21 (Urbach 1953). A detailed analysis of the optical
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impurity potentials (Haufe
et al. 1988) and exact
solutions according to Ghazali
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behavior is involved (Casey and Stern 1976). For reviews, see Sritrakool et al.
(1986), Jain et al. (1991), Van Mieghem (1992), Abram (1993), and Chakraborty
and Biswas (1997).

There are several approaches for estimating the level distribution caused by a
statistical distribution of point defects in an otherwise ideal lattice. The general
behavior can be obtained from a semiclassical model evaluated by Kane (1963) –
see also Keldysh and Proshko (1964). Using an independent-electron model, con-
sidering the lattice by replacing m0 with mn, and ignoring any change in the electron
kinetic energy due to the impurities, the density of states is locally perturbed by the
potential of lattice defects V(r). When this potential lowers the conduction band, as a
Coulomb-attractive center does, there are additional levels accessible to quasi-free
electrons at energies below the unperturbed band edge. Near a repulsive center,
however, there are fewer levels. That is, we assume that the density of states is given
by the usual expression for a Fermi gas gn /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
(▶ Sect. 1.1 of chapter

“Equilibrium Statistics of Carriers”), however, with an energy scale shifted by the
potential energy eV(r) at any point r, yielding

g E, rð Þ ¼ 1

2π2
2mn

ℏ2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� eV rð Þ

p
: (77)

Integrating over the entire volume, we obtain the density of states g(E). This
integration can be replaced by an integration over an actual potential distribution

g Eð Þ ¼ 1

2π2
2mn

ℏ2

� �3=2ðE
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� eV

p
f Vð ÞdV; (78)
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Ideal crystal
band to band
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α2
o

Fig. 21 Optical absorption
spectrum of a typical direct-
bandgap semiconductor with
the absorption constant αo
proportional to the extended
density of states in the
Urbach tail
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with f (V) as the distribution function of the potential. V(r) is assumed to be variable
with a Gaussian distribution around a mean potential V (Kane approximation), i.e.,

f Vð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
πV2

p exp � V � V
� �2

V2

" #
; (79)

where e2V2 is the mean square potential energy. For a density N of charged impurity
centers and an assumed Debye screening length λ0 (▶ Sect. 1.3.5 of chapter “Inter-
action of Light with Solids”), we obtain

e2V2 ¼ e4

4πestate0 r0ð Þ2
4π

3
λ30N: (80)

Consequently, we obtain from Eqs. 78 and 79

g Eð Þ ¼ 1

2π2
2mn

ℏ2

� �3=2ðE
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� eV

p ffiffiffiffiffiffiffiffiffi
πV2

p exp � V � V
� �2

V2

" #
dV: (81)

At high energy within a band (E  eV), Eq. 81 yields the unperturbed density of
states, e.g., for the conduction band:

g Eð ÞdE ¼ 1

2π2
2mn

ℏ2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
dE; (82)

that is, high within a band, there are no changes in the density of states compared
with the ideal lattice. For E < Ec, however, the density of states is modified to

g Eð ÞdE ¼ 1

4π2
2mn

ℏ2

� �3=2 ffiffiffiffiffiffi
E2

q
Ec � Eð Þ�3=2

exp � E� Ecð Þ2
E2

 !
dE; (83)

with E2 ¼ e2V2 . Equation 83 indicates that g(E) decreases exponentially (/ exp
(�E2)) below the edge of the conduction band (see Fig. 22, Kane 1963).

Halperin and Lax (1966, 1967) developed a quantum-mechanical theory for
deeper tail states, based on statistical fluctuation of the potential of lattice defects.
They applied a variational method that maximizes the density of states with respect
to the wavefunction containing statistically fluctuating potentials of Coulomb cen-
ters, which are assumed to be of the Yukawa screened Coulomb type.

The Halperin and Lax theory gives the level distribution in the tail as

g Eð Þ ¼ c νð Þexp � a2qH

16πNλ5scr
b νð Þ

 !
; (84)
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withν ¼ 2mn Ej jλ2scr=ℏ2, aqH as the quasi-Bohr radius, and λscr as the screening length.
8

The value of b(ν) is approximately 10 for ν = 1, increases / ν 2 for ν  1, and
decreases / ν �1/2 for ν � 1; c(ν) is a proportionality factor that varies only slowly
with ν compared to the exponential. The Halperin and Lax distribution is also shown in
Fig. 22 and decreases more rapidly than the Kane approximation.

Other more rigorous estimates of the density of state distribution (Sa-yakanit
and Glyde 1980; Sa-yakanit et al. 1982) near the band edge also use randomly
distributed Coulomb-attractive centers and employ a Feynman's path-integral
method (Feynman and Hibbs 1965). They obtain analytic results for g(E), which
can be written as

g Eð Þ / exp � E2
L

2E2
c νð Þνn νð Þ

� �
: (85)

Here, ν ¼ Ec � Eð Þ=EL ; EL ¼ ℏ2= 2mnL
2

� �
is the energy to localize an

electron within the correlation distance L, and c(ν) is a slowly varying function of
the order of 1/10. The exponent n depends on this correlation distance (Sa-yakanit
1979) as

Kane

g(E)

Ec

E

Halperin and Lax

free particle

Fig. 22 Density of states for
a quasi-free electron near the
edge of the conduction band
(Ec) in an ideal crystal, and
Kane tail of states extending
into the bandgap in a crystal
with random point defects.
The figure also contains the
results of the Halperin and
Lax approximation (1966,
1967)

8For a self-consistent determination of the screening, which depends on the carrier density, which in
turn depends on the level density, which again is influenced by the screening length, see Hwang and
Brews (1971).
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n νð Þ ¼ 32νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ν

p � 1
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16ν
p þ 7
� �

¼ 2 for ν ! 1 or L ! 1
0:5 for ν ! 0 or L ! 0:

�
(86)

With a correlation distance of the defects typically between 1 and 10 Å, n is usually

bracketed between 1 and 1.2, yielding with c(1) ffi 1/(18
ffiffiffi
3

p
)

g Eð Þ / exp �E2
L c 1ð Þ
2E2

Ec � E

EL

� �n
 �
ffi exp �E� E1

E0

� �
; (87)

and

E0 ffi 2E2

EL c 1ð Þ ffi 0:06
E2

EL
: (88)

For a review see Shklovskii and Efros (1984). For semiconductors with mn ffi m0,

we have E2=EL ffi 1 eV; hence, E0 ffi 0.06 eV. E0 is identical with the characteristic
energy for the Urbach tail.

These results confirm the tailing nature for deeper tail states, calculated numer-
ically by Halperin and Lax. They approach the Kane approximation in the classical
limit and result in an improved agreement with the experiment (Sritrakool
et al. 1985, 1986).

For heavily doped semiconductors with lower effective mass (mn < 0.1 m0), the
correlation length is on the order of the screening length, i.e., typically 20–100 Å.
The characteristic energy of such semiconductors is typically one to two orders of
magnitude smaller than given above. Here the extent of the Urbach tail is much
reduced in agreement with the experiment (Sritrakool et al. 1986).

A comprehensive treatment of light, intermediate, and heavy doping using a
Green’s-function approach was given by Ghazali and Serre (1982). Their results
obtained by exact numerical solution are given in Fig. 20. For a review of more
rigorous approaches, see Shklovskii and Efros (1984), Haufe et al. (1988).

3.2 Heavy Doping and Burstein-Moss Effect

In heavily doped semiconductors, the absorption edge of band-to-band transitions is
shifted and deformed due to several reasons:

• Tailing of band states into the bandgap
• Shrinking of the bandgap because of many-body effects (▶Sect. 2.3 of chapter

“Bands and Bandgaps in Solids”)
• Partial filling of the conduction-band states with electrons (Burstein-Moss effect)
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Such changes can be detected via excitation spectroscopy (Wagner 1985), with an
optical transition probability from filled states in or near the valence band to empty
states in the conduction band. Experimental results on heavily doped GaN are
reported by Zhao et al. (1999) and results on InN by Davydov et al. (2002). The
band-to-band transitions are discussed in ▶ Sect. 1 of chapter “Band-to-Band Tran-
sitions” and the level-to-band transitions in Sect. 2.4. For reasons relating to highly
disordered lattices, we will deviate here from this treatment as explained below.

Since the translational symmetry is broken by the random potential of the
impurities, k is no longer a good quantum number. Consequently, it is more
appropriate to use the energy as a label, yielding for the absorption coefficient
(Abram et al. 1978)

αo νð Þ ¼ π2 e2ℏ2

m2
0 cnrν

ð
f n Eð Þ f p Eþ hνð ÞP Eþ hνð ÞNv Eð ÞNc Eþ hνð ÞdE; (89)

where the probability P(E, E + hν) can be expressed by the sum of the matrix
elements in a small energy interval around E and around E + hν:

P E,Eþ hνð Þ ¼ 1

3

X ð
ψE

@

@rj
ψEþhνdr

����
����
2

: (90)

Examples of some quantitative estimates of such probabilities are given by Lasher and
Stern (1964), Casey and Stern (1976), and Berggren and Sernelius (1981). Nv(E) and
Nc(E + hν) are the density-of-state functions near the respective band edges. These
band edges are deformed from the ideal band distribution by the tailing of states, due to
band perturbation from the random impurity potential as described in Sect. 3.1.

The occupancy factor, given by the Fermi distributions fn(E) and fp(E + hν),
accounts for the probability of finding occupied states near the valence band with
energy E and empty states in the conduction band with energy E + hν. The tailing of
valence-band states and partial filling of conduction-band states with heavy doping
result in an asymmetric excitation, e.g., for n-type material from the tail of the
valence-band states to states above the Fermi level. These upper states may be
shifted to lie well within the conduction band, see Fig. 23.

The Burstein-Moss Effect In semiconductors with a low effective mass, the
density of states Nc / m3=2

n near the lower edge of the conduction band (▶ Sect.
1.3 of chapter “Equilibrium Statistics of Carriers”) can be so low that even with
moderate donor doping the lower states in the conduction band become filled.
Hence, the Fermi level can be significantly shifted above this band edge (▶ Sect.
2.3.1 of chapter “Bands and Bandgaps in Solids”) .9 Since an optical excitation can

9For instance, in InSb with mn = 0.0116, the effective density of states is Nc ffi 3 � 1016 cm�3 ;
hence doping with a shallow donor density in excess of 1017 cm�3 will cause a significant filling of
conduction-band states.
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proceed only into unoccupied states, this filling results in a shift of the absorption
edge toward higher energies, causing a bandgap widening (see Moss 1961). The
shift, referred to as Burstein-Moss shift, can be estimated from the position of the
Fermi level and is given by

Eg,BM ¼ Eg0 þ EF � Ecð Þ: (91)

With this effect, a fine-tuning of the absorption edge can be achieved, which is
used to produce optical filters of a rather precisely determined long-wavelength
cutoff. Examples for HgTe and InN are given in Fig. 24.

The band-edge narrowing, explained in ▶ Sect. 2.3 of chapter “Bands and
Bandgaps in Solids”, and the tailing of band states, discussed in Sect. 3.1, complicate
this picture, as they have the opposite effect of the Burstein-Moss shift. In GaAs,
both effects can be seen. The change of the optical absorption with higher doping
densities, measured by Casey et al. (1975), shows the tailing (Fig. 25). In n-type
GaAs, the Burstein-Moss shift prevails because of the lower effective mass for
electrons, causing a significant shift of the Fermi level into the conduction band.
For similar doping densities in p-type GaAs, however, the heavier hole mass permits
only a negligible Burstein-Moss shift. Therefore, the shrinking of the gap and tailing-
state transitions provide the major cause for the changes in the absorption spectrum:
The absorption edge shifts in the opposite direction and the effective bandgap
narrows – see Fig. 25.

Since heavy n-type doping moves the Fermi level into the conduction band,
optical excitation requires larger energies, labeled Eg1 in Fig. 26a. Band-to-band
luminescence, however, has a lower energy threshold, shown as Eg2 in Fig. 26a.

optical excitation
from tail states

E

EEv

Ec

g(E)

Fig. 23 Optical transition
from tailing states of the
valence band to free states
above the Fermi level within
the conduction band
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The width of the emission band is shown as ΔEg12. In elemental indirect-gap
semiconductors, this luminescence band involves momentum-conserving TA or
TO phonons with their corresponding replica, as shown for Si in Fig. 26b. In
compound indirect semiconductors, LO phonons are employed in this process. In
Ge, the LA replica are most prominent.

The band filling, obtained by heavy doping and observed by the Burstein-Moss
effect, is obtained from the luminescent line shape. The band filling for Si is shown
in Fig. 27a. The corresponding line broadening is significant only for a carrier
density in excess of 1018 cm�3; it amounts to ~60 meV at 1020 cm�3 and is slightly
larger for holes than for electrons, since it relates to the density-of-states mass, with
mnds ~1.062 m0 and mpds = 0.55 m0 (see Barber 1967).
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The decrease of the bandgap energy with band tailing at higher doping levels is
obtained by a square-root fitting of the low-energy tail of the luminescence. It shows
for Si an essentially constant bandgap energy up to carrier densities of ~1018 cm�3,
and a significant decrease of Eg starting near the critical Mott density, as shown in
Fig. 27b (arrows). For further detail, see Wagner (1985).
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4 Summary

Two major classes of defects result in substantially different types of absorption
spectra: shallow-level, hydrogen-like defects and deep-level, tight-bonding defects.

Optical absorption at a shallow-level defect results in a line spectrum near the
fundamental bandgap; this spectrum is characterized by the energy, amplitude, and
width of each line. The line provides important information about the electronic
structure of the defect center. The line amplitude permits judgment on the density of
these centers or joint density of states and their symmetry relation within the lattice,
matrix elements, and selection rules. The line shape relates to information on the
lifetime of the excited states and center-to-lattice coupling for homogeneously
broadened lines, as well as on the center perturbation due to defect-sensitive stress
and electric fields of the surrounding lattice for inhomogeneously broadened lines.

Shallow-level defects have electronic eigenfunctions which are substantially
influenced by mixing with one band, the conduction band for donors, and the
valence band for acceptors. The shallow-level defects show little electron-lattice
coupling and consequently little relaxation after a change in excitation or in charging
of the center, i.e., the lattice atoms readjust only to a minor degree.

The deep-level defects, in contrast, have eigenfunctions of excited states which
mix with both valence and conduction bands. Deep-level centers show a much larger
lattice relaxation after a change in excitation or in charging of the centers. The degree
of relaxation – the number of phonons emitted during relaxation – differs greatly
with the type of defect and the specific electronic state. One may picture the
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difference between such eigenfunctions as those which tend to press surrounding
atoms apart and those which extend over surrounding atoms; the latter have much
less influence on their equilibrium position.

Both shallow and deep-level defects also show band-to-free electron absorption.
Such photoionization causes an edge-like spectrum, which is characterized by its
onset energy and its slope. These features yield information about the defect density
and lattice coupling.

A high density of lattice defects causes their states to overlap; the related lattice
perturbation forms an exponential tail of states, extending from the band edges. Such
tailing states can be observed as Urbach tails in optical absorption extending from
the band edge into the extrinsic range. They are a measure of the degree of lattice
disorder, resulting from intrinsic defects, or from a high level of doping. High donor
doping influences the position of the Fermi level, and may shift it into the conduction
band, thereby causing a shift of the optical absorption edge to higher energies,
opposite to the Urbach-tail shift. This Burstein-Moss effect may result in substantial
shifts of the absorption edge in semiconductors with a low effective mass.

References

Abram RA (1993) Effects of heavy doping and high excitation on the band structure of gallium
arsenide. Semicond Semimetals 39:259

Abram RA, Rees GJ, Wilson BLH (1978) Heavily doped semiconductors and devices. Adv Phys
27:799

Baranovskii SD, Doerr U, Thomas P, Naumov A, Gebhardt W (1994) Exciton line broadening by
compositional disorder in ZnSexTe1�x quantum wells. Solid State Commun 89:5

Baranowski JM (1979) unpublished. Work published in: Jaros M (1980) Deep levels in semi-
conductors. Adv Phys 29:409

Barber HD (1967) Effective mass and intrinsic concentration in silicon. Solid State Electron
10:1039

Beaumont JH, Harmer AL, Hayes W (1972) The F3 centre in alkaline earth fluorides. J Phys C Solid
State Phys 5:257

Berggren K-F, Sernelius BE (1981) Band-gap narrowing in heavily doped many-valley semicon-
ductors. Phys Rev B 24:1971

Callaway J (1963) Transition processes in semiconductor lasers. J Phys Chem Solid 24:1063
Casey HC Jr, Stern F (1976) Concentration-dependent absorption and spontaneous emission of

heavily doped GaAs. J Appl Phys 47:631
Casey HC Jr, Sell DD, Wecht KW (1975) Concentration dependence of the absorption coefficient

for n- and p-type GaAs between 1.3 and 1.6 eV. J Appl Phys 46:250
Chakraborty PK, Biswas JC (1997) Conduction-band tailing in parabolic band semiconductors.

J Appl Phys 82:3328
Condon EU, Morse PM (1929) Quantum mechanics. McGraw-Hill, New York
Davydov VYu, Klochikhin AA, Emtsev VV, Ivanov SV, Vekshin VV, Bechstedt F, Furthm€uller J,

Harima H, Mudryi AV, Hashimoto A, Yamamoto A, Aderhold J, Graul J, Haller EE (2002) Band
gap of InN and In-rich InxGa1—xN alloys (0.36 < x < 1). Phys Status Solid B 230:R4

Dexter DL (1958) Theory of the optical properties of imperfections in nonmetals. In: Seitz F,
Turnbull D (eds) Solid state physics, vol 6. Academic, New York, pp 353–411

Eagles DM (1960) Optical absorption and recombination radiation in semiconductors due to
transitions between hydrogen-like acceptor impurity levels and the conduction band. J Phys
Chem Solid 16:76

References 673



Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York
Fitchen D, Silsbee RH, Fulton TA, Wolf EL (1963) Zero-phonon transitions of color centers in

Alkali Halides. Phys Rev Lett 11:275
Gebhardt W, Kuhnert H (1964) Temperature dependence of F-centre absorption and emission. Phys

Lett 11:15
Ghazali A, Serre J (1982) Multiple-scattering approach to the formation of the impurity band in

semiconductors. Phys Rev Lett 48:886
Goede O, John L, Hennig D (1978) Compositional disorder-induced broadening for free excitons in

II-VI semiconducting mixed crystals. Phys Stat Solid B 89:K183
Grimmeiss HG (1985) Deep energy levels in semiconductors. In: Chadi JD, Harrison WA (eds)

Proceeding of the 17th international conference on the physics of semiconductors, San
Francisco 1984, pp 589–600. Springer, New York

Grimmeiss HG, Ledebo L-Å (1975) Spectral distribution of photoionization cross sections by
photoconductivity measurements. J Appl Phys 46:2155

Haller EE, Navarro H, Keilmann F (1987) Intrinsic linewidth of 1S ! nP donor transitions in
ultrapure germanium. In: O Engström (ed) Proceedings of the 18th international conferences on
the physics of semiconductors, Stockholm 1986, pp 837–840. World Scientific, Singapore

Halperin BI, Lax M (1966) Impurity-band tails in the high-density limit. I. Minimum counting
methods. Phys Rev 148:722

Halperin BI, Lax M (1967) Impurity-band tails in the high-density limit. II. Higher order correc-
tions. Phys Rev 153:802

Haufe A, Schwabe R, Feiseler H, Ilegems M (1988) The luminescence lineshape of highly doped
direct-gap III-V compounds. J Phys C 21:2951

Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. Wiley,
New York

Henry CH (1980) Large lattice relaxation processes in semiconductors. In: Kubo R, Hanamura E
(eds) Relaxation of elementary excitation. Springer, Berlin, pp 19–33

Henry CH, Lang DV (1977) Nonradiative capture and recombination by multiphonon emission in
GaAs and GaP. Phys Rev B 15:989

Huang K, Rhys A (1950) Theory of light absorption and non-radiative transitions in F centres. Proc
R Soc London A204:406

Huber MCE, Sandemann RJ (1986) The measurement of oscillator strengths. Rep Prog Phys 49:397
Hwang CJ, Brews JR (1971) Electron activity coefficients in heavily doped semiconductors with

small effective mass. J Phys Chem Sol 32:837
Jagannath C, Grabowski ZW, Ramdas AK (1981) Linewidths of the electronic excitation spectra of

donors in silicon. Phys Rev B 23:2082
Jain SC, Mertens RP, Van Overstraeten RJ (1991) Bandgap narrowing and its effects on the

properties of moderately and heavily doped germanium and silicon. Adv Electronics Electron
Phys 82:197

Kane EO (1963) Thomas-Fermi approach to impure semiconductor band structure. Phys Rev
131:79

Kayanuma Y, Fukuchi S (1984) Nonradiative transitions in deep impurities in semiconduc-
tors–study in a semiclassical model. J Phys Soc Jpn 53:1869

Keldysh LV, Proshko GP (1964) Infrared absorption in highly doped germanium. Sov Phys – Solid
State 5:2481

Kopylov AA, Pikhtin AN (1975) Effect of temperature on the optical absorption spectra of deep
centers. Sov Phys Sol State 16:1200

Kubo R (1952) Thermal ionization of trapped electrons. Phys Rev 86:929
Larsen DM (1976) Inhomogeneous broadening of the Lyman-series absorption of simple

hydrogenic donors. Phys Rev B 13:1681
Lasher G, Stern F (1964) Spontaneous and stimulated recombination radiation in semiconductors.

Phys Rev 133:A553
Lax M (1952) The Franck-Condon principle and its application to crystals. J Chem Phys 20:1752

674 Optical Properties of Defects



Lifshitz IM (1964) The energy spectrum of disordered systems. Adv Phys 13:483
Lucovsky G (1965) On the photoionization of deep impurity centers in semiconductors. Sol State

Commun 3:299
Markham JJ (1956) Electron-nuclear wave functions in multiphonon processes. Phys Rev 103:588
Moss TS (1961) Optical properties of semiconductors. Butterworths Scientific Publications,

London
Mott NF (1974) Metal-insulator transitions. Barnes and Noble, New York
Mott NF, Davis EA (1979) Electronic processes in noncrystalline materials. Claredon Press,

Oxford, UK
Noras JM (1980) Photoionisation and phonon coupling. J Phys C 13:4779
Onton A (1971) Donor-electron transitions between states associated with the X1c and X3c

conduction-band minima in GaP. Phys Rev B 4:4449
O’Rourke RC (1953) Absorption of light by trapped electrons. Phys Rev 91:265
Pekar SI (1953) Uspekhi Fiz Nauk 50:193
Peuker K, Enderlein R, Schenk A, Gutsche E (1982) Theory of non-radiative multiphonon capture

processes; solution of old controversies. Phys Status Solid B 109:599
Sa-yakanit V (1979) Electron density of states in a Gaussian random potential: path-integral

approach. Phys Rev B 19:2266
Sa-yakanit V, Glyde HR (1980) Impurity-band density of states in heavily doped semiconductors: a

variational calculation. Phys Rev B 22:6222
Sa-yakanit V, Sritrakool W, Glyde HR (1982) Impurity-band density of states in heavily doped

semiconductors: numerical results. Phys Rev B 25:2776
Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, Berlin
Singh J, Bajaj KK (1986) Quantum mechanical theory of linewidths of localized radiative transi-

tions in semiconductor alloys. Appl Phys Let 48:1077
Smakula A (1930) Über Erregung und Entf€arbung lichtelektrisch leitender Alkalihalogenide.

Z Phys 59:603 (On excitation and decoloration of photoconducting alkali halides, in German)
Sritrakool W, Sa-yakanit V, Glyde HR (1985) Absorption near band edges in heavily doped GaAs.

Phys Rev B 32:1090
Sritrakool W, Sa-yakanit V, Glyde HR (1986) Band tails in disordered systems. Phys Rev B

33:1199
Stoneham AM (1969) Shapes of inhomogeneously broadened resonance lines in solids. Rev Mod

Phys 41:82
Stradling RA (1984) Studies of the free and bound magneto-polaron and associated transport

experiments in n-InSb and other semiconductors. In: Devreese JT, Peeters FM (eds) Polarons
and excitons in polar semiconductors and ionic crystals. Plenum Press, New York

Sumi H (1983) Nonradiative multiphonon capture of free carriers by deep-level defects in semi-
conductors: adiabatic and nonadiabatic limits. Phys Rev B 27:2374

Takebe T, Saraie J, Matsunami H (1982) Detailed characterization of deep centers in CdTe:
photoionization and thermal ionization properties. J Appl Phys 53:457

Toyozawa Y, Inoue M, Inui T, Okazaki M, Hanamura E (1967) Coexistence of local and band
characters in the absorption spectra of solids I. Formulation. J Phys Soc Jpn 22:1337;
Okazaki M, Inoue M, Toyozawa Y, Inui T, Hanamura E (1967) II. Calculations for the simple
cubic lattice. J Phys Soc Jpn 22:1349

Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic
absorption of solids. Phys Rev 92:1324

Van Mieghem P (1992) Theory of band tails in heavily doped semiconductors. Rev Mod Phys
64:755

Velický B, Sak J (1966) Excitonic effects in the interband absorption of semiconductors. Phys
Status Solid 16:147

Vérié C (1967) Electronic properties of CdxHg1-xTe alloys in the vicinity of the semimetal-
semiconductor transition. In: Thomas DC (ed) II-VI semiconductor compounds. Benjamin,
New York, p 1124

References 675



Wagner J (1985) Heavily doped silicon studied by luminescence and selective absorption. Sol State
Electron 28:25

Zeiger HJ (1964) Impurity states in semiconducting masers. J Appl Phys 35:1657
Zhao GY, Ishikawa H, Jiang H, Egawa T, Jimbo T, Umeno M (1999) Optical absorption and

photoluminescence studies of n-type GaN. Jpn J Appl Phys 38:L993
Zheng J, Allen JW (1994) Photoionization of a deep centre in zinc selenide giving information

about the conduction band structure. J Cryst Growth 138:504

676 Optical Properties of Defects



Shallow-Level Centers

Contents
1 Hydrogen-Like Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

1.1 The Chemical Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
1.2 Hydrogen-Like Donors in Indirect-Bandgap Semiconductors . . . . . . . . . . . . . . . . . . . . . . . 684
1.3 Hydrogen-Like Ground State and Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
1.4 Hydrogen-Like Acceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
1.5 Shallow Defects in Compound Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
1.6 Donor-Acceptor Pair and Free-To-Bound Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
1.7 Higher Charged Coulomb Centers and Metal-Ion Interstitials . . . . . . . . . . . . . . . . . . . . . . . 700

2 Excitons Bound to Impurity Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
2.1 Excitons Bound to Ionized Donors or Acceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
2.2 Excitons Bound to Neutral Donors or Acceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
2.3 Excitons Bound to Isoelectronic Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

3 Influence of External Fields on Defect Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
3.1 Influence of Hydrostatic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
3.2 Influence of Uniaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
3.3 Influence of an Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
3.4 Influence of a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

Abstract
Shallow defect centers play a dominant role as donors and acceptors in nearly
all semiconducting devices. The major features of their spectrum can be described
by a quasi-hydrogen model, modified only by the dielectric constant and the
effective mass of the host semiconductor. This relation yields very good results
for higher excited states of a large variety of such defects, while the ground state
shows substantial deviations according to the chemical individuality of the defect
center. Such individuality can be explained by considering the core potential and
the deformation of the lattice after incorporating the defect.

# Springer International Publishing AG 2018
K.W. Böer, U.W. Pohl, Semiconductor Physics,
https://doi.org/10.1007/978-3-319-69150-3_18

677



Band anisotropies and the interaction between bands such as conduction-band
valleys cause the lifting of some of the degeneracies of the quasi-hydrogen
spectrum. Local stress and electric fields cause additional splitting. The dependence
of levels on hydrostatic pressure can be used to identify shallow-level defects which
are connected to one band only. The influence of externally applied uniaxial stress
and electric or magnetic fields can be used for further identification.

Donors and acceptors can bind excitons. The binding energy sensitively
depends on the effective mass ratio of electron and hole and the charge state of
the impurity. For exciton binding at neutral donors and acceptors, a linear
dependence from the ionization energy is found. Isoelectronic impurities can
also bind excitons by attracting the electron at the core potential.

Keywords
Acceptor � Acceptor-bound exciton � Acceptor energies � Bound excitons �
Central-cell correction � Core potential � Donor � Donor-acceptor pairs � Donor-
bound exciton � Donor energies � Electron spin resonance � Effective-mass
impurity � Exciton binding energy � Free-to-bound transitions � Hayne’s rule �
Strain-induced splitting � Quasi-hydrogen model � Shallow acceptor � Shallow
donor � Stark effect � Two-electron transitions � Two-hole transitions � Rydberg
energy � Uniaxial strain � Zeeman effect

1 Hydrogen-Like Defects

In the previous chapter, a general overview of the different defect levels and their
optical absorption spectra was presented. We will now discuss in more detail the
defect-level spectrum of shallow centers. These centers have eigenfunctions that
extend beyond their neighbor atoms and mix only with the nearest band states. We
will indicate that the ground state is influenced by the chemistry, how it is to be
considered, to what degree the quasi-hydrogen approximation can be used, and what
refinements are necessary to obtain a better agreement with the experiment.

In chapter▶ “Deep-Level Centers”, we will then give a more detailed description of
the deep-level centers. In contrast, these have highly localized eigenfunctions of
their ground states, mix with conduction and valence bands, and require a more
thorough knowledge of the core potential for the calculation of their eigenvalues.

Hydrogenic Model Shallow-level defects can be described as hydrogen-like
defects – see ▶ Sect. 1.1 of chapter “Optical Properties of Defects”. As an
example, we will discuss here the electronic states of a substitutional donor,
such as a phosphorus atom on a lattice site in a silicon host crystal. The P atom
becomes positively charged after it has given its electron to the host. This electron,
now near the bottom of the conduction band, is a quasi-free Bloch electron with an
energy
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E kð Þ ¼ Ec þ estat
ħ2k2

2mn
: (1)

Near the PþSi center, the electron can become localized. Its new eigenstate can be
calculated by solving the Schrödinger equation Hψ = Eψ with the Hamiltonian

H ¼ H0 � e2

4πestate0 r
; (2)

where H0 is the unperturbed Hamiltonian of the host lattice, to which the attractive
Coulomb potential of the defect is added. This potential is modified by the screening
action of the host, which is expressed by the static dielectric constant. This is in
contrast to a Bloch electron in an ideal lattice, which interacts only with the
electronic part of the lattice and therefore involves the optical dielectric constant
eopt. When trapped, the electron becomes localized near the defect and causes a shift
of the surrounding ions according to its averaged Coulomb potential. Therefore, the
static dielectric constant is used here.

The eigenfunctions to H0 are Bloch functions. They form a complete
orthonormalized set. The solutions to H can be constructed near the defect from a
wave packet of Bloch functions:

ψ ¼
X
n, k

cn kð Þψn k, rð Þ ffi
X
k

cc kð Þψ c k, rð Þ: (3)

The summation over several bands with index n is dropped, since as shallow levels –
here for a donor – their eigenfunctions are constructed primarily from eigenfunctions of
the nearest band only. ψc(k, r) are the Bloch functions of conduction-band electrons:

ψ c k, rð Þ ¼ uc k, rð Þexp ik � rð Þ: (4)

As will be verified below, the eigenfunctions of such shallow-level defects extend
over several lattice constants, thus restricting k to values close to the center of the
Brillouin zone. Since u(k) changes only slowly with k, we can pull uc(k = k0, r) as
constant from the sum for k ffi 0, or near any of the minima of E(k ffi k0), and
introduce with1

ψ k, rð Þ ¼
X
k

cc kð Þexp ik � rð Þ
" #

uc k0, rð Þ ¼ F rð Þ ψ c k0, rð Þ (5)

an envelope function

1This can easily be seen at theΓ point for k0 = 0: here, we haveψ(k = 0,r) = u(0,r) exp(i0 � r) = u(0,r).
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F rð Þ ¼
X
k

cc kð Þexp ik � rð Þ; (6)

where ψc(k0, r) is the Bloch function in the minimum2 of E(k). The envelope
function satisfies an appropriately modified Schrödinger equation for the quasi-
hydrogen model:

� ħ2

2mn

@2

@r2
� e2

4πestate0 r

� �
F rð Þ ¼ E� Ecð ÞF rð Þ (7)

with the energy normalized to the edge of the conduction band and with an effective
mass mn for Bloch electrons near this band edge. This Schrödinger equation is
identical to that for a hydrogen atom, but for an electron of effective mass mn in a
medium of dielectric constant estat. Therefore, the solution can be transcribed directly
from that of a hydrogen atom and yields for the envelope eigenfunction of the ls
ground state:

F rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
π a3qH

q exp � r

aqH

� �
; (8)

with

aqH ¼ 4πestate0 ħ2

mn e2
¼ estatm0

mn
aH: (9)

aqH is an effective Bohr radius, the quasi-hydrogen radius, and aH = 0.529 Å is the
Bohr radius of the hydrogen atom. This envelope function is shown as the dashed
curve in Fig. 1. The total wavefunction (solid curve) shows the modulation with the
rapidly oscillating Bloch function with a period length of the lattice constant a.

The resulting eigenstates of the envelope function are bound states below the
lowest free states in the conduction band Ec and are given by a quasi-hydrogen
energy spectrum3:

2In semiconductors with several equivalent minima (Si, Ge), the wavefunction becomes a sum of

contributions from each of the minima:
X

j
αj Fj c rð Þ uj c kj 0, r

� �
.

3n is the principal quantum number, describing the entire energy spectrum for a simple hydrogen
atom. All other states are degenerate. Therefore, in a pure Coulomb potential, this quantum number
is the only one that determines the energy of a hydrogen level. When deviations from this spherical
potential appear in a crystal, the D = Σl(l + 1) = n2 degeneracy of each of these levels is removed,
and the energy of the s, p, d, . . . states is shifted according to R1/(n + l )2. The importance of these
transitions is discussed in Sect. 1.2. To further lift the remaining degeneracies of the magnetic
quantum number, a magnetic field must act (see Sect. 3.4).
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EqH, n ¼ Ec � mn e
4

32π2 estate0ð Þ2ħ2
1

n2
¼ Ec � mn

m0

1

e2stat

� �
R1

1

n2
¼ Ec � Ed

1

n2
: (10)

R1 is the Rydberg energy of the hydrogen atom, and Ed is the donor ionization

energy, also referred to donor Rydberg energy.
The dispersion behavior in k space can be obtained from the Fourier transform of

the envelope function:

F rð Þ ¼
ð
F kð Þexp ik � rð Þ dr; (11)

which yields for the ground state (compare with Eq. 8)

F kð Þ ¼ 8
ffiffiffiffi
π

p

a
5=2
qH

1

k2 þ a�2
qH

h i2 (12)

and indicates that the wave packet extends in k space approximately to k ffi 1/aqH.
That is, cc(k) (see Eq. 6) is approximately constant for k up to 1/aqH and decreases
rapidly (/1/k4) for k > 1/aqH. For higher excited states, the extent in k shrinks
proportionally to 1/n2 as aqH increases / n2 – see ▶Eq. 2 of chapter “Optical
Properties of Defects” and Fig. 2.

The envelope function yields the charge distribution of such a shallow defect:

ρ rð Þ ¼ 1

V

ð
F� rð ÞF rð Þ dr; (13)

A direct means to check such charge distribution is by analyzing the electron nuclear
double resonance (ENDOR) signal with the assistance of an electron spin resonance
(ESR) line width analysis (see Feher 1959, 1998 and Sect. 3.4.2).

Bound and Resonant States The bound electron of a donor can be described as a
wave packet of Bloch states with vanishing group velocity, which is localized at the

aqH

a

(1/e)Fmax

F(r)

Ψ(r)

r

F,Ψ
Fig. 1 Relationship between
the envelope function F(r) and
the wavefunction ψn(r) of a
Bloch wave packet for an
electron localized near a
hydrogen-like impurity. Here,
a denotes the lattice constant
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lattice defect (Fig. 1). These Bloch functions must be centered around critical points
where @E(k)/@k vanishes – see ▶Sect. 4.2 of chapter “Quantum Mechanics of
Electrons in Crystals” and Callaway (1976).

At higher energies and multiple bands, one obtains a permitted excited state of the
defect center within the bandgap with similar features as described above. Alter-
nately, one finds states which are related to higher bands (e.g., the X band in GaP or
the spin-orbit split-off valence band in Si) and observes an overlap of these states
with lower bands (Fig. 3). Here, the eigenfunctions form a resonant statewithin such
a band composed of running Bloch waves (Bassani et al. 1969, 1974). The resonant
states have a width that depends on the exchange integral between localized and
nonlocalized states. The broadening of the resonant state occurs because the electron
has a much reduced lifetime in the quasi-hydrogen state relating to the upper band
before it tunnels to the lower band and relaxes to its E(k) minimum. This is easier for
higher energies; here, the lifetime is smaller, and therefore the broadening is larger –
see Fig. 3a.

Similar features are obtained for localized and resonant states of an acceptor
relating to the spin-orbit split-off band and tunneling into the light- and heavy-hole
bands (Bassani and Pastori Parravicini 1975); see Fig. 3b. Resonant states with
substantial broadening have been observed experimentally – see Onton et al. (1967,
1972), Onton (1971), and Bassani et al. (1969); see also Sect. 3.1.

1.1 The Chemical Identity

In the simple hydrogen-like approximation, the chemical identity of the donor is
totally lost. The identity of the host is provided by estat and mn. In contrast to this
theory, the ground state is observed to depend significantly on the chemical identity
of the donor, such as the different elements of group V impurities in Si (P, As, Sb, or

Conduction
band

E

k0

≈

Fig. 2 Ground and excited
states of the donor level in the
E(k) diagram (red lines),
indicating the extent of these
levels in k space. The ground
state has the smallest radius;
hence, its extension in k space
is the largest
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Bi) or monovalent metal interstitials such as Li (Sect. 1.7). The approximation used
before is too coarse to show such dependency. In Sect. 1.3, a number of refinements
will be discussed, which will address the complexity of the ground state.

It is remarkable, however, that excited states of these shallow donors lose their
chemical identity and are rather well explained by the simple theory given above,
provided the correct effective mass and dielectric constant (see ▶Sect. 1.3.3 of
chapter “Interaction of Light with Solids”) are used, as will be explained in Sect. 1.2.
There are several reasons why an improved agreement is obtained for higher states:

1. Higher s states extend to much larger diameters4 (/n2).
2. p states show a node of the wavefunction near the core (see Fig. 4), making the

wavefunction less sensitive to the actual potential near the core region.

One needs extremely pure crystals, however, to avoid significant overlap of
higher-state eigenfunctions with wavefunctions of other impurities which would
cause a perturbation of these excited states. The eigenfunctions of excited states of
such shallow impurities often extend beyond 1000 Å or more, interacting with
each other when the distance between them is less than 1000 Å, equivalent to a
density of (1/1000 Å)3 ffi 1015 cm�3. This requires ultrapure crystals and con-
trolled doping in the < 100 ppb range. In addition, native defects, which are
usually frozen-in at densities much in excess of 1 ppm, interfere by influencing

kc0 0

Wavevector Wavevector

Conduction
band

Γ1

Γ8

Γ7

E
ne

rg
y 

E

E
ne

rg
y 

Ea b

Fig. 3 Schematic of (a) a donor or (b) an acceptor with excited localized states within the gap and
resonant states within the band

4For instance, when aqH ffi 50 Å for the 1s state, it is 200 Å for the 2s and 450 Å for the 3s states,
making the hydrogenic effective mass approximation a much improved approximation. In addition,
in semiconductors where e/m* is already very large, e.g., in GaAs with estatm0/mn = 192.5, resulting
in aqH = 101.9 Å ffi 18a, this approximation is quite good for the 1s state. In GaAs, it results in
EqH = 5.83 meV, while the experimental values vary from 5.81 to 6.1 meV for GaAs/Si and GaAs/
Ge. For more comparisons between theory and experiment, see Bassani et al. (1974).
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the surrounding lattice. Finally, line defects and surface defects (chapter ▶ “Crys-
tal Defects”), which produce internal stresses and electric fields, interfere by
perturbing the electronic eigenvalues of defect states. Careful preparation of
near-perfect crystals is therefore essential to yield unambiguous results. Very
sharp spectral lines of excited states are indeed measured in ultrapure silicon and
germanium; see, e.g., ▶ Fig. 1 of chapter “Optical Properties of Defects”.

1.2 Hydrogen-Like Donors in Indirect-Bandgap Semiconductors

Most free electrons in indirect semiconductors are in one of the sidevalleys rather
than at k = 0. The energy of such electrons is given by

E kð Þ ¼ E ið Þ
c þ ħ2

2

k2x þ k2y
mt

þ k2z
ml

 !
; (14)

where mt and ml are the transverse and longitudinal effective masses due to the
ellipsoidal shape of these valleys – see ▶ Figs. 10 and ▶ 16 of chapter “Bands and
Bandgaps in Solids”. The effective mass Schrödinger equation for the envelope
function in one of these valleys, here in the kz direction, is

�ħ2

2

1

mt

@2

@x2
þ @2

@y2

� �
þ 1

ml

@2

@z2

� �
F zð Þ rð Þ � e2

4π estate0 r
F zð Þ rð Þ

¼ E� Ecð ÞF zð Þ rð Þ: (15)

The anisotropic envelope function for a hydrogen-like donor electron in Si within
the satellite valley (Kohn 1957) is given by

F xð Þ rlð Þ ¼ F rlð Þisotropic
ffiffiffiffiffiffiffiffi
~a3

a2 b

r exp � x2l
nbð Þ2 þ

y2l þ z2l
nað Þ2

 !" #

exp � rl
n~a

	 
 ; (16)

z

y

x

z

y

x

z

y

x

a b cFig. 4 Shape of the
eigenfunction of atomic
orbitals: (a) s type, (b) p type,
and (c) d type
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with a = 25 Å, b = 14.2 Å, ã = 21 Å, n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:029=Ed eVð Þp

, and Ed as the ground-
state ionization energy of the donor. The x axis is aligned with the direction of k.
Similar expressions are given for F( y) and F(z).

In addition, in noncubic semiconductors the dielectric constant is anisotropic
(anisotropic shielding). The corresponding Schrödinger equation for the envelope
function is then given by

�ħ2

2

1

mt

@2

@x2
þ @2

@y2

� �
þ 1

ml

@2

@z2

� �
Fj rð Þ

� e2

4π
ffiffiffiffiffiffiffiffiffiejje⊥

p e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ e⊥=ejj

� �
z2

q Fj rð Þ ¼ E� Ecð ÞFj rð Þ ;
(17)

with k and ⊥ denoting directions parallel or perpendicular to the z direction and
aligned with the crystallographic c direction. It shows substantial anisotropy of the
envelope function in its ls state as an ellipsoid rather than a sphere – see Eq. 14. The
nomenclature ls, 2s, etc., is usually retained for these states, to which the
eigenfunctions would converge in the limit of vanishing anisotropy. Quasi-Bohr
radius and effective Rydberg energy are defined by using mt and

ffiffiffiffiffiffiffiffiffiejje⊥
p

rather than
mn and estat.

The degree of changes of various excited states as a function of the degree of
sidevalley anisotropy γ can be seen from Fig. 5; often the anisotropy is expressed in
terms of the factors γ, γa, or α, with γ ¼ mt=ml , γa ¼ m⊥e⊥= mjjejj

� � ¼ 1� α. The
values of γ for Ge and Si are marked by dots in the figure. Higher anisotropy
compresses the eigenfunction in one direction and thereby increases the binding
energy as the electron is forced closer to the nucleus (mt > mn; e⊥ > estat). Changes
of the eigenstates can be significant as a function of the anisotropy parameter (up to a
factor of 4 for the ground-state energy; Shinada and Sugano 1966), as shown for the
ground state in Fig. 6 (Pollmann 1976).

The ground-state energies, although improved, do not yet agree with the exper-
iment. Excited states, however, show rather impressive agreement, as indicated in
Fig. 7. In this figure, all experimental values are shifted so that the 2p0 level agrees
with the theory. This figure also includes an alkali interstitial and a group VI element.
The S+-defect yields an energy four times higher because of the double charge of the
center. This example shows that the agreement goes beyond the original quasi-
hydrogen list of shallow donors in group IV semiconductors.

For donors, the chemical shift of the ground state is largest in Si, namely,
111 meV between B and In. The shift is much less severe in semiconductors with
smaller effective mass and larger dielectric constant. In Ge this shift is smaller by a
factor of ~100. Several other approximations, discussed in the following section, are
used to obtain improved donor-state energies [Luttinger and Kohn (1955), Faulkner
(1969), Torres et al. (1997); see also reviews by Baldereschi and Lipari (1973) and
Bassani et al. (1974)].
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1.3 Hydrogen-Like Ground State and Chemical Shift

The disagreement of the ground-state calculation in the hydrogenic effective mass
theory with the experiment is substantial. Immediately apparent from Fig. 7 is the
fact that the donor 1s state is split into three (or two) lines for Si (or Ge). This is
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Si
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γ1/3
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0

E/
E qH

,n
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Fig. 6 Ground-state energy
(normalized to the ls state
energy of the quasi-hydrogen
donor in an isotropic crystal)
as a function of the anisotropy
factor
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Fig. 5 Energy levels of donor states calculated with hydrogenic effective-mass approximation as a
function of the anisotropy parameter γ (see text) for (a) s-like and (b) p-like states. The limits,
γ = 1.0 and γ = 0, indicate isotropic and two-dimensional semiconductors, respectively, and
E = 0 corresponds to Ec. The dots show the levels for Ge and Si (After Faulkner 1969)
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caused by coupling between the states relating to the six (or four) equivalent
sidevalleys of the conduction band in Si (or Ge), which was first analyzed by Morita
and Nara (1966). The splitting varies for different donors and is by far the largest
contribution to the observed deviation of the ground state from the simple effective
mass hydrogen-like model. We will discuss this contribution in Sect. 1.3.1.

Other contributions to the chemical shift deal with the short-range actual potential
of the impurity. Such central cell-corrections to the effective-mass theory included
various attempts to:
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Fig. 7 (a) Energy levels of
shallow donors in silicon. The
theoretical level distribution is
obtained with e = 11.4. The
experimental values are
shifted so that the 2p0 levels
line up with the theoretical
level. The experimental
uncertainty is indicated as the
width of the levels. (b) Same
as (a) for Ge (After Faulkner
1969)
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• Use modified dielectric screening for estimating the short-range potential.
• Consider the strain field from the misfit of the impurity into a substitutional site

(Morita and Nara 1966).
• Use short-range model potentials with adjustable parameters.
• Introduce local pseudopotentials.
• Consider the influence of lattice relaxation surrounding the impurity.

Lattice Relaxation The lattice surrounding a substitutional impurity relaxes. This
was computed using normconserving pseudopotentials to describe the interaction
between core and valence electrons and the local-density approximation for
exchange and correlation interaction with an ab initio calculation with no adjustable
parameters. For instance, incorporating a substitutional B atom relaxes the four
surrounding Si atoms inward (like a breathing mode) by 0.21 Å (9%) and moves
the B atom slightly (0.1 Å) off center toward the plane with three Si atoms, for a
slight tendency of a threefold coordination. The total energy gain by this relaxation is
0.9 e V (Denteneer et al. 1989). A small fraction of it contributes to the chemical shift
of the electronic energy of the hydrogen-like ground state.

There are many models, which are reviewed by Stoneham (1975). We will deal
with the more important aspects of the central-cell correction to the hydrogenic
potential in the following subsections (see also Pantelides 1978).

1.3.1 Band Mixing
In element semiconductors, the mixing of hydrogen-like donor states with different
subbands results in the splitting of the ground state.

Mixing through intervalley interaction in Si (or Ge) (reviewed by Pantelides
1978) removes the degeneracy of the sixfold degenerate ground state (E0) in the
neighborhood of the defect, splitting it into three (two) levels of symmetry Γ1, Γ12,
and Γ15 (or Γ1 and Γ15). The corresponding energies for Si:P (experimental values
from Aggarwal and Ramdas 1965a, b) are

Ec � EΓ1
¼ E0 � λ� 4μ A1 singletð Þ ¼ 45:3 meV

Ec � EΓ12
¼ E0 � λþ 2μ T2 tripletð Þ ¼ 33:7 meV

Ec � EΓ15
¼ E0 þ λ E doubletð Þ ¼ 32:3 meV

(18)

The A1 singlet is an s-like state, and the T2 triplet is a p-like state, with A1 and T2
being irreducible representations of the tetrahedral group Td. For Ge, we have
(experimental values from Reuszer and Fisher 1964)

Ec � EΓ1
¼ E0 � 3λ0 A1 singletð Þ ¼ 14:2 meV

Ec � EΓ15
¼ E0 þ λ0 T2 tripletð Þ ¼ 10:0 meV

(19)

where λ and μ are the matrix elements for transitions from (k0,0,0) to (0, k0,0) and
(�k0,0,0), respectively, in Si and where � λ0 is the matrix element between the
impurity and its mirrored position at �1

2
, 1
2
, 1
2

ð Þ in Ge. These matrix elements are
computed by Baldereschi (1970); see also Bassani et al. (1974).
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Mixing of hydrogen-like states with several bands is considered when the bands
have their edges at similar energies:

• Different equivalent subbands (as discussed above)
• Different nonequivalent subbands (e.g., in GaAs or GaSb)
• Different degenerate bands at k = 0 (valence bands for most semiconductors)

Mixing with nonequivalent valleys is important when the valleys are closely
spaced in energy to Ec (Vul’ et al. 1971). A detailed analysis was performed by
Altarelli and Iadonisi (1971). The coupling increases when, e.g., with hydrostatic
pressure, the energy separation between the Γ and X minima in GaAs decreases
(Costato et al. 1971). Castner (1970) presents indications that higher valleys and
saddle points contribute to the split ground-state energies in Si.

The progressive improvement of the theoretical description of hydrogen-like
defects is indicated in Fig. 8. The corresponding energies are listed in Table 1.
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Fig. 8 Lower energy states of
an electron bound to a donor:
(a) one-valley treatment with
isotropic effective mass (e.g.,
GaAs); (b) one-valley
treatment, anisotropic
effective mass; (c) multivalley
treatment in Td symmetry; (d)
multivalley treatment with
appropriate D3d symmetry
(e.g., Si) (After Grimmeiss
and Janzén 1986). p� denotes
ml = �1 states of the p level

Table 1 Binding energy of donors in Si and Ge (meV); 1s values in brackets are additional levels
of the split 1s ground state (After Bassani et al. (1974))

Semiconductor

State

1s 2p0 2s 2p� 3p0 3s 3p�

Si (theo.) 31.27 (10.6, 1.1) 11.51 8.82 6.40 5.48 4.75 3.12

Si:P 45.5 (33.9, 32.6) 11.45 6.39 5.46 3.12

Si:As 53.7 (32.6, 31.2) 11.49 6.37 5.51 3.12

Si:Sb 42.7 (32.9, 30.6) 11.52 6.46 5.51 3.12

Ge (theo.) 9.81 (0.6) 4.74 3.52 1.73 2.56 2.01 1.03

Ge:P 12.9 (9.9) 4.75 1.73 2.56 1.05

Ge:As 14.17 (10.0) 4.75 1.73 2.56 1.04

Ge:Sb 10.32 (10.0) 4.74 1.73 2.57 1.04
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There are optical transitions possible between these split ground states. Three
absorption lines due to transitions from the 1s(A1) to the 1s(T2) state are observed,
while the transitions to 1s(E) are forbidden; such transitions can be observed,
however, under uniaxial stress (Bergman et al. 1987). In addition, one needs to use
the proper dielectric constant e(k) at the position k of the minima of the sidevalleys
(Baldereschi 1970).

1.3.2 Short-Range Potential Corrections
The energy of the impurity ground-state also depends on the net impurity
potential. In its most simple form, it is given as the difference between the Coulomb
potential of the impurity and the lattice atom that is replaced and the central-cell
potential:

V rð Þ ¼ Zhost � Zimpurity

� � e2

4π estate0 r
þ Vcc rð Þ: (20)

The central-cell potential Vcc extends over the range of the unit cell. It contains
the short-range components due to the chemical individuality of the defect and
the nonlinearity of the polarization in the direct neighborhood of the impurity. In the
first approximation, one connects the central-cell potential asymptotically with the
Coulomb potential, however, using a k-dependent ε near the impurity.

For the central-cell potential, various approximations are made (Csavinszky
1965; Morita and Nara 1966; Bebb 1969). When fulfilling proper orthogonality
requirements on the core orbitals of the impurity, such impurity potentials can be
used for isocoric impurities only in a generalized effective-mass approximation to
obtain better fitting ground-state energies of shallow defect centers (Sah and
Pantelides 1972; Pantelides and Sah 1974). For nonisocoric impurities, see next
Sect. 1.3.3. A central-cell correction of the potential near the core is reviewed by
Stoneham (1975). It is included in an effective impurity potential

Vpseudo rð Þ ¼
e2Z rð Þ

4π estate0 r
for r > r0ð

dk

2πð Þ3
V0 kð Þ

4π e kð Þ e0 exp ik � rð Þ for r < r0;

8>><
>>: (21)

where V 0(k) is the Fourier transform of the unscreened impurity potential and e(k) is
the wavevector-dependent dielectric function – see ▶Fig. 12 of chapter “Interaction
of Light with Solids”. Z(r) = Z0 is used here for r > r0, with Z0 as the point charge
of the impurity with respect to the replaced lattice atom (1 for As, 2 for Se, etc.), and
r0 as an adjustable arbitrary boundary between the inner and outer regions of the
approximation. This is a simple example for an often used treatment. Namely, it is
the splitting of the region of interest into an inner region which is treated in more
detail and an outer region, with a Coulomb potential asymptotically approaching the
unperturbed lattice potential. Boundary conditions between these two regions are of

690 Shallow-Level Centers



importance. For better approximations, the inner region should be made as large as
possible and should contain more than just the neighbor atom of the defect center
(the Keating potential extends to the fifth neighbor; see Stoneham 1986).

1.3.3 Local Pseudopotentials and Model Potentials

Local Pseudopotentials Instead of computing the true impurity potential, which
could yield the set of quasi-hydrogen levels of interest and also deeper core levels of
limited interest, one usually proceeds to estimate a local pseudopotential5 by which
only outer-shell electrons are influenced.

The pseudopotential formalism as applied to impurities can best be explained
(Phillips and Kleinman 1959; Austin et al. 1962) by comparing the Schrödinger
equation containing the true impurity potential V(r)

� ħ2

2m0

@2

@r2
þ V rð Þ

� �
ψn ¼ Enψn (22)

with the Schrödinger equation containing the pseudopotential

� ħ2

2m0

@2

@r2
þ Vpseudo rð Þ

� �
ϕn ¼ E0

nϕn: (23)

Bassani and Celli (1961) have shown that the eigenvalues En and En
0 for Eqs. 22 and

23 are nearly identical for wavefunctions ψn = ψc and ϕn = ϕc for the conduction
band, i.e., if only the behavior of outer electrons is of interest. Therefore, it is
sufficient to obtain the shallow energy states of an impurity when composed of
conduction-band eigenfunctions by using the pseudopotential, rather than the true
impurity potential. A short review on how to obtain the proper pseudopotential is
given by Pantelides (1978).

An example of the potential distribution for several mono- and divalent
hydrogen-like impurities in Si, as computed by Pantelides (1975), is given in
Fig. 9a. It can be seen that isocoric impurities (P and S) have nearly point-charge
Coulomb behavior, since the contribution from the core potential is similar to that of
the replaced host atom and therefore cancels. Other elements with a different atomic
core, however, show a major variation of the atomic potential in the core region
indicated for As and Se. For these impurities, Vpseudo(r) remains closer to the
behavior of a point charge, as shown for AsSi in Fig. 9b.

Pseudopotentials were used to calculate the eigenvalues for a number of shallow-
level defects in Si (Pantelides and Sah 1974) and compared to ENDOR data
(Schechter 1975).

5Such a local pseudopotential is used near an impurity as opposed to the nonlocal pseudopotential
used for band structure analysis (see ▶ Sect. 1.3 of chapter “Quantum Mechanics of Electrons in
Crystals”).
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Model Potentials Simple model potentials have been used with moderate success
(Abarenkov and Heine 1965; Appapillai and Heine 1972). These potentials contain
the essential features of the pseudopotential, namely, a rather smooth core potential
that gives the chemical identity of the impurity and a Coulomb tail that provides
good agreement with higher states of quasi-hydrogen impurities. An example is the
Abarenkov-Heine potential

Vpseudo rð Þ ¼
� e2

4π estate0 r
for r > r0X

l

AlPl for r < r0 ;

8>><
>>: (24)

where Pl is the angular projection operator and Al are the empirical energy constants.
This model potential is shown in Fig. 10 and yields reasonable agreement with the
experiment if the summation in Eq. 24 includes higher terms in l (Baldereschi and
Lipari 1976).

1.4 Hydrogen-Like Acceptors

In principle, the hydrogenic effective-mass theory for a shallow acceptor is much
like that for a donor, except that three bands must be considered: the light- and
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heavy-hole valence bands and the split-off spin-orbit band. With larger split-off
energies Δ compared to kT, the contribution from the split-off band to the ground-
state energy can be neglected. In addition, band warping causes an anisotropy of the
effective masses, which needs to be considered. For example, the characteristic
decay length of the eigenfunction in the [111] direction in Ge:Ga is 92 Å and in
the [100] direction is 87 Å.

The ground-state energy for acceptors depends on the ratio between light- and
heavy-hole masses (β = mlh/mhh), as computed by Gel’mont and D’yakonov (1972)
and shown in Fig. 11. It decreases nearly linearly with decreasing β.

Each of these bands contributes to the excited state level spectrum of the acceptors
and thereby produces a greater wealth of levels. This is shown in Fig. 12, with levels
identified as corresponding to the light- and heavy-hole bands of symmetry Γ8 and
spin-orbit split band of symmetry Γ7. The quantum numbers preceding the band
notation in Fig. 12 indicate successively higher excited states. In addition, the valence
bands are anisotropic, requiring the use of the appropriate Luttinger parameters, also
called the inverse effective-mass constants – see Luttinger and Kohn (1955), Luttinger
(1956), and ▶Sects. 1.2.2 and ▶ 1.2.3 of chapter “Bands and Bandgaps in Solids”.
For a review, see Bassani et al. (1974) and Pantelides (1978).

Baldereschi and Lipari (1973) have computed a number of acceptor levels
(Table 2) in various semiconductors with point-charge screened potential. These
computations provide the correct trend, but the so-obtained levels still show some
differences to the experimental values given in Table 3.
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Fig. 10 Abarenkov-Heine
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Fig. 11 Energy of the
acceptor ground state as a
function of the effective-mass
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heavy holes
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1.5 Shallow Defects in Compound Semiconductors

The shallow donor or acceptor in a compound semiconductor is more complex than
in an elemental semiconductor for two reasons:

1. The interaction of the electron or hole with the alternatingly charged ions of the
lattice

2. The differentiation between incorporating the defect on an anion and cation site

Although the degree of ionicity of most compound semiconductors is small, the
above-stated effects are not negligible. For example, isocoric acceptors in GaP
should be well described by point-charge quasi-hydrogenic models – see Sect. 1.3.
However, the two isocoric acceptors, GaP:ZnGa and GaP:SiP, have substantially
different ground-state energies: 64 and 204 meV, respectively. This difference cannot
be explained by site-dependent screening, even though neighboring anions are
expected to screen more effectively since they are surrounded by more electrons.
It needs a more sophisticated analysis, beyond that of the effective-mass approxi-
mation (Bernholc and Pantelides 1977).

The degree of ionicity in compound semiconductors also determines the coupling
of electrons with the lattice, i.e., with phonons; it is described by Fröhlich’s coupling
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constant αc (▶ Sect. 1.2.1 of chapter “Carrier-Transport Equations”). Such interac-
tion can be included by considering, instead of a Bloch electron, a polaron to interact
with the defect center, with an effective mass mpol = mn/(1� αc/6). The eigenstates
of a hydrogen-like defect in compound semiconductors can be estimated as

E
compoundð Þ
qH ¼ 1þ αc

6
þ αc
24

EqH

ħωLO

� �
EqH; (25)

(see Sak 1971) where EqH is the quasi-hydrogen energy (▶Eq. 1 of chapter “Optical
Properties of Defects”). The modified hydrogenic effective-mass approximation
describes reasonably well the level spectrum of excited states of shallow donors
and acceptors in compound semiconductors with a sufficiently large e/mp ratio, i.e.,
for many III–Vand II–VI compounds. However, this approximation is not sufficient
to explain the observed variations of the ground-state energies indicated above.

The binding energy of substitutional shallow-level impurities is mainly obtained
from photoluminescence and IR spectroscopy. Some experimental values are listed
in Table 4 (Kirkman et al. 1978; Dean 1973a; Kopylov and Pikhtin 1978).

1.6 Donor-Acceptor Pair and Free-To-Bound Transitions

Donor-Acceptor Pairs When donors and acceptors are both present in a semicon-
ductor, there is some probability that a given donor has an acceptor nearby. Since
ionized donors and acceptors are Coulomb attractive to each other, they occupy
preferably nearest lattice sites at low temperatures. In addition to electrostatic
attraction discussed below, space-filling aspects also create attractive forces. For
instance, incorporation of an As donor in Si causes a slight shrinkage of the lattice

Table 2 Acceptor levels in (meV) computed from point-charge screened potentials (After
Baldereschi and Lipari 1973)

Material
1S3/2
(Γ8)

2S3/2
(Γ8)

P1/2

(Γ6)
P3/2

(Γ8)
P5/2

(Γ8)
P5/2

(Γ7)
Si 31.56 8.65 4.18 12.13 8.51 5.86

Ge 9.73 2.89 0.61 4.30 2.71 2.04

AlSb 42.45 12.40 3.35 18.46 12.00 8.22

GaP 47.40 13.69 4.21 19.17 13.04 9.42

GaAs 25.67 7.63 1.60 11.38 7.20 5.33

GaSb 12.55 3.77 0.650 5.74 3.59 2.61

InP 35.20 10.53 1.97 15.89 9.98 7.32

InAs 16.31 5.00 0.420 7.91 4.76 3.63

ZnS 175.6 51.98 11.65 77.62 49.55 35.37

ZnSe 110.2 32.98 6.07 50.04 31.47 22.68

ZnTe 77.84 23.07 5.09 34.72 22.32 15.36

CdTe 87.26 26.42 3.70 41.43 25.85 17.68
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Δa= a � NAsð Þ ffi �0:4 � 10�24 cm3 , while inclusion of a Ga acceptor dilates the
lattice by Δa= a � NGað Þ ffi 0:8 � 10�24 cm3, resulting in a strain-induced attraction
of Ga and As within the Si lattice. Normally, a distribution of these pairs is found
with various distances between them.

Such donor-acceptor pairs may be composed of cation vacancies or impurities
that act as acceptors, as well as substitutionals, cation interstitials, anion vacancies,
or other impurities that act as donors. See Williams (1968), Dean (1973b), and
Taguchi and Ray (1983) for II-VI compounds.

Donor-acceptor pairs in GaP are well investigated. The Coulomb interaction
between the donor and acceptor is “quantized,” since the relative positions are
dictated by the discrete lattice sites. This gives rise to a sequence of discrete lines
in the recombination luminescence spectrum. One distinguishes substitutionals of
the same sublattice, such as a CP-OP (carbon or oxygen on a phosphorus site) pair
acting as acceptor and donor, respectively, which is referred to as type I pair. An
example of a type II pair is ZnGa-OP in GaP, in which the two sublattices are
involved. The energy of donor-acceptor pairs is influenced by their relative distance
rd-a and can be expressed as

Ed�a ¼ Eg � Ed þ Eað Þ � e2

4π estate0 rd�a
� E� rd�að Þ; (26)

where Ed and Ea are the distance of donor or acceptor levels from the respective band
edges. The pair energy is substantially influenced by the Coulomb attraction and by a
correction energy term E*(rd–a), caused by overlap of donor and acceptor
eigenfunctions. The latter term is much reduced at larger distances.

At low temperatures (T < 10 K), the absorption lines are sharp enough to
distinguish a large number of pairs with different pair distance. This distance can
be identified in crystallographic notation for a cubic lattice by the position of both
atoms – the first assumed at 000 and the second at nl n2 n3, with m the shell number
and ni integers starting at 0:

Table 4 Binding energy in meV of hydrogenic donors (Ed) and acceptors (Ea) in GaAs and GaP
measured at low temperatures (typ. 1.8–4.2 K); EMT denotes energy calculated by effective-mass
theory

Donor Ed in GaAs Ed in GaP Acceptor Ea in GaAs Ea in GaP

EMT 5.72 59 EMT 27.0 56.3

C 5.91 Be 28.0 56.6

Si 5.84 85 Mg 28.7 59.9

Ge 5.88 204 Zn 30.6 69.7

S 5.87 107 Cd 34.7 102.2

Se 5.79 105 C 26.9 54.3

Si 34.8 210

Ge 40.4 265
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2m ¼ n21 þ n22 þ n23: (27)

In an fcc sublattice of zincblende structure, the sum (n1 + n2 + n3) is even. The
separation distance in the cubic zincblende lattice with lattice constant a is then
given for type I pairs or for type II pairs by

rd�að ÞI ¼
ffiffiffiffi
m

2

r
a , or rd�að ÞII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2
� 5

16

� �s
a: (28)

The absorption lines of the donor-acceptor pair are identified sequentially according
to m. For some m condition Eq. 28 predicts distances where no lattice site occurs in
type I pairs; these distances are referred to as empty shells.6 A typical spectrum
showing the wealth of distinguished lines is given in Fig. 13. The energy as a
function of the relative pair distance is shown in Fig. 14. We see that for higher
pairs (m > 15), the fit neglecting the perturbation term E* is excellent. For less
distant pairs, however, this term is necessary to provide a better agreement between
theory and experiment. In the highly structured luminescence spectrum of pairs in
GaP peaks up to m ffi 90 are identified (in pair spectra of ZnSe up to m = 117, see
Merz et al. 1973), indicating donor-acceptor interaction over at least seven lattice
constants. At still higher separation, the peaks are more closely spaced and can no
longer be resolved; in GaP, they produce a broad band near hν ffi 2.22 eV of rather
intense luminescence.

In addition to donor-acceptor pairs, we distinguish isoelectronic center pairs,
e.g., N-N pairs of substitutional NP in GaP shown in Fig. 24. Other pairs which
have been the subject of extensive research are the chalcogen pairs in Si (Wagner
et al. 1984).

Free-To-Bound Transitions Luminescence transitions involving shallow hydro-
gen-like defects occur from the band to the acceptor or donor (free-to-bound
transition) or between donor-acceptor pairs described above. With increasing tem-
perature, more recombination transitions involving at least one of the bands are
favored since the lifetime of carriers in shallow donors is decreased.

Free-to-bound transitions from a band into a hydrogen-like donor or acceptor
reflect the optical ionization energy. Because of a Franck-Condon shift (Markham
1966), this optical ionization energy usually is different from the thermal ionization
energy used for determining the semiconductivity. For hydrogen-like defects, how-
ever, such a shift is small because of a very small electron-lattice coupling, except for
the transitions to ground state.

The line shape reflects the carrier distribution within the band. As an example,
Fig. 15a shows the transition of an electron from the conduction band into an

6An empty shell in an fcc sublattice of zincblende structure occurs if 2m = 4i (8j + 7) with integers
i,j � 0 (Pohl and Busse 1989); see arrows at m = 14 and 30 in the upper spectrum of Fig. 13.
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acceptor in GaAs at 1.9 K. This emission line shows a sharp cutoff at low energies
corresponding to the energy from the band edge to the ground state of the acceptor
(Fig. 15b). Toward higher energies, a long exponential tail is observed, which
reflects the electron energy distribution (fn) within the band:

I hνð Þ ¼ Agc hνð ÞNa f n hν� Eg þ Ea

� �
= kTð Þ� �

; (29)

where gc(hν) is the density of states near the conduction-band edge, Na is the density
of the acceptors, and A is a proportionality constant. From the exponential slope of
this tail, one estimates an electron temperature of 14.4 K. This increased electron
temperature is due to the optical excitation, thermalized with phonons. Figure 15a
also contains a lower-energy luminescent feature labeled (D0, A0), which is caused
by the recombination of electrons from a hydrogen-like donor with a nearby
acceptor.

1.7 Higher Charged Coulomb Centers and Metal-Ion Interstitials

Higher Charged Coulomb Centers With higher charges, a Coulomb-attractive
center has its eigenfunctions closer to the core and requires more attention to core
correction. Therefore, its ground state is more akin to deep-level centers – see
chapter ▶ “Deep-Level Centers”.

Higher charged centers can be created by substitutional impurities. These are
further away from the group of the replaced element, and act similarly to a hydrogen-
like donor or acceptor, except that more electrons or holes are donated. For instance,
if in an Si lattice one of its atoms is replaced by a sulfur, selenium, or tellurium atom,
two electrons can be donated. Since the first electron is bound to a doubly charged
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Fig. 15 (a) Luminescence spectrum for transitions from the conduction band (e, A0) and from a
donor (D0, A0) into a hydrogen-like acceptor in GaAs at 1.9 K. Circles: theoretical line shape for
Te = 14.4 K (After Ulbrich 1978). (b) Band model with corresponding transitions

700 Shallow-Level Centers



center, it is bound at a level four times as deep (charge Z = 2); the ionization energy
is given by

EI ¼ Ec � Z2 e4

2 4πe0ħð Þ2
mn

e2stat
¼ R1

Z2

e2stat

mn

m0

(30)

The second electron behaves like an electron attached to an ordinary hydrogen-
like donor. Hence the substitutional sulfur can be represented by a double donor with
two levels (Fig. 16). Occupancy, however, determines which of the two levels is
active: when filled with two electrons, only the shallow level is active; ionized once,
the other electron becomes more strongly bound and the deeper level is active. From
the quasi-hydrogen model, we estimate ionization energies of ~50 meV and
~120 meV for the second donor level in Ge and Si, respectively, compared to
10 or 32 meV for the first level. The actual energies for S in Si are 302 and
587 meV for the first and second ionization levels (Grimmeiss et al. 1980). The
larger energies indicate tight binding, which makes the hydrogen-like approximation
less accurate and requires central-cell potential consideration. We will therefore
return to these centers in chapter ▶ “Deep-Level Centers”.

A similar behavior is expected and observed for two-level acceptors from sub-
stitutional group II elements, e.g., Zn or Cd in Ge or Si with a second acceptor level
at ~25 or ~210 meV, respectively, compared to 10 or 53 meV for the first level.
Elements from groups with larger valence difference are more difficult to implant as
substitutionals. Anions are often too large for the host lattice; cations tend to become
more easily incorporated as interstitials (see below).

In an AB compound, the situation is more complex, as illustrated by incorporating
a group IV element such as Sn (which is two groups away from Cd) as a substitu-
tional into CdS. Replacing the Cd ion, it acts as a two-level donor; replacing an S ion,
it acts as a two-level acceptor. This ambiguity makes it difficult to predict the
behavior of such type of dopants without additional information.

Overcharged Donors or Acceptors One observes doubly charged normal donors
(or acceptors) when the neutral donor (or acceptor) can trap an additional electron

Ec

D0

E

D+ D2+

Ev

Fig. 16 Double donor (e.g.,
S in Si) with corresponding
charge character relative to the
neutral lattice
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(or hole). These are known as D� or A+ centers and can be compared to an H� ion
(Faulkner 1969).

The binding energy of the additional carrier is very small (0.54 and 1.7 meV for
hydrogen-like impurities in Ge and Si, respectively; see Lampert (1958)) and results
in a very large radius of the quasi-hydrogen eigenfunction, requiring high purity to
avoid complications due to overlap.

The ionization energy can be measured from the photoconduction threshold (see
Fig. 17) and shows a chemical shift for AsGe

� and SbGe
� . Anisotropy and multivalley

effects are responsible for the deviations from the simple H�-ion model estimates.
Another type of center develops when a doubly charged donor (or acceptor), as

described in the previous section, traps another electron (or hole); it becomes
overcharged and binds three carriers. Because of the Pauli principle, this center
does not have an isolated atom (such as He�) as an analogue, which exists only in the
metastable (1s)(2s)(2p) state. On the other hand, the overcharged Z = 2 center can
exist in a (1s)3 binding state (McMurray 1985). The ground-state energy of such a
center requires central-cell consideration as well as radial and angular correlation
between the trapped carriers.

Metal-Ion Interstitials Cation interstitials, either extrinsic or intrinsic, usually
behave as donors. An example was given in Sect. 1.2 (Fig. 7) with Li as an interstitial
in Si – see Reiss et al. (1956) and Haller et al. (1981). The metal atom on an
interstitial position prefers to donate its valence electron(s). When it has no coun-
terpart to form a charge-compensating bond, it can be described as a hydrogen-like
donor. Since ionized cations are usually much smaller than anions, they are more
easily incorporated on interstitial sites. Therefore, interstitial donors are more readily
observed than interstitial acceptors.

The ground-state level of the interstitial depends on its site of incorporation, see,
e.g., ▶ Fig. 5a of chapter “Crystal Defects” and Jansen and Sankey (1987); for
interstitials in II-VI compounds, see Watkins (1977). Depending on the valency of
the incorporated metal ion, they can act as single- or multilevel donors.

In a simple hydrogen-like model, higher excited states of these impurities cannot
be distinguished from the classical substitutional donor. The chemical shift of the
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ground state, however, is substantial. In a pseudopotential approximation (Pantelides
1975), a complication arises since there is no cancellation, such as for the potential of
a replaced host atom in a substitutional impurity. Self-interstitials in elemental
semiconductors are rather deep centers and will be discussed in ▶ Sect. 2.3 of
chapter “Deep-Level Centers”.

2 Excitons Bound to Impurity Centers

When a neutral impurity is incorporated, it becomes charged when it traps a carrier.
This now-charged defect acts as a Coulomb-attractive center, which can in turn trap a
carrier of the opposite sign and thereby form a quasi-hydrogen state (Hopfield
et al. 1966). This state can be described as an exciton (see ▶ Sect. 1.2 of chapter
“Excitons”) bound to a neutral defect center.

The binding energy of such a center (also referred to as localization energy) is the
difference between the free-exciton energy and the bonding energy of the exciton to
this center, which is typically on the order of 10 meV (Faulkner 1968); in wide-
bandgap semiconductors such as GaN, the binding energy may be significantly
larger. There are numerous neutral centers to which such excitons can be bound,
such as deep centers (e.g., isoelectronic defects) or shallow centers, such as neutral
hydrogen-like donors or acceptors. We will briefly discuss both excitons bound to
neutral or to ionized donors or acceptors in the following sections.

2.1 Excitons Bound to Ionized Donors or Acceptors

Binding to neutral centers at first view shows some similarities to the binding at
deep-level centers, although the bonding mechanism is different. While the first
carrier binds to a deep center entirely through short-range interaction, consequently
attracting an oppositely charged carrier into a quasi-hydrogen orbit, here both
carriers (the exciton) are attracted simultaneously into an H2-like quasi-hydrogen
state. In some respects, this state may be compared to a trion, i.e., two electrons and a
hole attracted to an ionized donor or two holes and an electron attracted to an ionized
acceptor – see ▶ Sect. 1.4 of chapter “Excitons”. For a review, see Dean (1983) and
Pajot (2009).

It is relatively easy to calculate the bonding of an exciton to an ionized donor. The
Hamiltonian for such a (D+, X) center can be written as

Eb, exc ¼ � ħ2

2mp

@2

@r2p
� ħ2

2mn

@2

@r2n
þ e2

4π estate0 rp
� e2

4π estate0 rn
� e2

4π estate0 rnp
; (31)

where rp and rn represent the distances of the trapped hole and electron from the
donor and rnp is their relative distance. The energy of the bound exciton is sensitive
to the effective mass ratio mn/mp, see Fig. 18. Above a critical value of ~0.45, no
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bound exciton states are observed: the kinetic energy of the hole then becomes too
large to be bound to the neutral donor. Such (D+, X) states therefore exist in CdS but
are absent in Si and GaP, where the mass ratio is larger than 0.45 (Rotenberg and
Stein 1969; see also Dean and Herbert 1979). Luminescence lines due to the
recombination of (D+, X) complexes are found in various II-VI semiconductors
and commonly labeled I3, and those of (D0, X) complexes are labeled I2.

For an ionized acceptor, the mass-ratio condition is inverted and therefore is not
fulfilled for most semiconductors. Consequently, excitons are usually not bound to
ionized acceptors.

2.2 Excitons Bound to Neutral Donors or Acceptors

The bound exciton states on neutral acceptors (A0, X) or on neutral donors (D0, X)
are not limited by the effective-mass ratio. Their binding energy is proportional to
the ionization energy of donors or acceptors, as shown in Fig. 19 – see Dean 1973b.
This empirical relation is referred to as Hayne’s rule (see, e.g., Halsted and Aven
1965) and is given by (Halsted 1967)

Eb, exc ¼ aþ bEa or Eb, exc ¼ cþ dEd: (32)

In GaP the value of a is positive, while c is negative with b ffi 0.1 and d ffi 0.2. The
intersects are related to the increase of the relative charge in the central cell when the
exciton is bound; consequently, a and b are close to zero in Si (Dean 1983; Haynes
1960).

When calculated in an H2-molecule approximation, the binding energies of (D0,
X) or (A0, X) complexes are about 30% of the ionization energy of the corresponding
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Fig. 18 Calculated binding
energy Eb,exc for an exciton
bound to an ionized donor,
normalized to the ionization
energy Ed of the donor, as a
function of the mass ratio mn/
mp (After Skettrup et al. 1971)
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donors or acceptors. These energies are listed in Table 5 for a number of II-IV
compounds.

In addition to the binding energy of such excitons, lines corresponding to the
excited states of the donors or acceptors, as suggested by Thomas and Hopfield
(1962), can be observed (Thewalt et al. 1985).

Excitons bound to hydrogen-like donors or acceptors are known to have high
luminescence efficiencies. They show extremely sharp luminescence lines since the
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?
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Fig. 19 Binding energy of
excitons to neutral donors or
acceptors in GaP as a function
of the ionization energy of
single donors or acceptors
(After Dean 1983)

Table 5 Bound-exciton lines with transition energies EBE and binding energies Eb,exc of bound
excitons in II-IV compounds measured at low temperatures (typ. 1.7–4.2 K) (After Taguchi and Ray
1983)

Semiconductor EBE (eV) Eb,exc (meV) Assignment Energy level

ZnS 3.758 34.4 (A0, X) Ev + 1.22 eV

3.724 68.3

ZnSe 2.799 2–3 (D0, X); VSe
0 Ec – 0.02 eV

2.780 19–22 (A0, X); VZn
0 Ev + 0.28 eV

VZn
2 ‐ Ev + 1.1 eV

ZnTe 2.377 4 (D0, X)

2.375 6 (A0, X); VZn
0 Ev + 0.06 eV

2.362 19 (D+, X); Vþ
Te

Ec – 0.03 eV

CdS 2.547 5 (D0, X)

2.536 16 (A0, X); VCd
0 Ev + 0.8 eV

CdSe 1.822 4 (D0, X); Cdi
0

1.817 9 (A0, X); Sei
0

CdTe 1.594 1 (D0, X); VTe
0 Ec – 0.02 eV

1.590 4 (A0, X); VCd
0 Ev + 0.06 eV
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kinetic energy contribution, which causes the broadening for the free exciton,
vanishes. There is a rich spectrum in high-quality single crystals involving transi-
tions from the ground or excited state of the bound exciton leaving the state of the
donor or acceptor unchanged or with a final state of these impurities at n = 2, 3....
There is an additional structure to the luminescence due to the chemical individual-
ity, i.e., the central-cell potential that shifts the 1s state. This effect is more pro-
nounced for the acceptor than for the donor, because of the larger effective mass of
the hole, which renders the acceptor a deeper center.

The intensity of bound-exciton lines is usually very large, since their line width is
narrow and they have very large oscillator strength (Fig. 20). The oscillatory strength
is proportional to the volume of the ground-state eigenfunction, typically to aqH

3 .
Consequently, a giant oscillatory strength is found for materials of low m* and high
estat (Rashba and Gurgenishvilli 1962).

2.2.1 Two-Electron and Two-Hole Transitions
In many semiconductors like GaAs or InP, the energy of shallow donors and
acceptors does not vary much; identification of the chemical nature of an impurity
may then not be inferred from the bound-exciton recombination energy, since, e.g.,
strain in the samples leads to comparable energy differences. More reliable
assignments are obtained from energy differences of levels within a given bound-
exciton complex; such (usually weak) transitions are two-electron transitions (TET)
of (D0, X) complexes and correspondingly two-hole transitions (THT) of (A0, X)
complexes. Radiative recombination of two-electron transitions leaves the donor in
an excited state D0* (Dean et al. 1967), see Fig. 21. The energy difference between
the (D0, X) 1S ground state of the donor-bound exciton complex and the final state of
the two-electron transition yields the difference between the D0 1s ground state and
the D0* 2s excited state of the donor. This difference is sensitive to the central-cell
potential of the donor. The term two-electron transition indicates that the bound
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Fig. 20 Photoluminescence spectra for (a) GaAs and (b) GaN, recorded at low temperature. Labels
denote typical emission lines near the band edge: free-exciton recombination X, donor- and
acceptor-bound exciton (D0, X) and (A0, X), conduction-band-to-acceptor (free-to-bound) transition
(e, A0), and donor-acceptor pair recombination (D0, A0); the asterisk in (b) labels a plasma line of the
excitation laser (Spectra adapted from Ulbrich (1978) and Cojocari et al. (2004))
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exciton recombines simultaneously producing an excitation of the second electron in
the bound-exciton complex. Analogous conditions apply for acceptors. In the
particle models of Fig. 21, the large charge represents the impurity and the small
charges electrons and holes.

The luminescence of GaAs shown in Fig. 22 illustrates unresolved differences in
the principal (A0, X) emission of excitons bound to different acceptors, despite their
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Fig. 21 Particle model and energy-level scheme for (a) two-electron transitions (TET) in the
recombination of a donor-bound exciton (DBE) complex (D0, X) and (b) two-hole transitions
(THT) of an acceptor-bound exciton (ABE) complex (A0, X). The stars indicate the excited state of
the impurity center
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Fig. 22 Two-hole transitions of acceptor-bound excitons in GaAs. (a) Photoluminescence of the
principal bound-exciton lines due to C, Be, and Mg acceptors appearing at the same energy (inset,
1s) and corresponding well-separated two-hole transitions (THT) that leave the acceptor in the 2s
state, superimposed on the broad (D0, A0) donor-acceptor pair emission. (b) 2s and 3s excited state-
exciton binding energy depending on the 1s acceptor ground state for various acceptors in GaAs,
determined from two-hole transitions; EMT denotes the effective-mass binding energy (After
Ashen et al. 1975)
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significantly different acceptor energies Ea. In contrast, the two-hole transitions
appearing at the high-energy side of the broad donor-acceptor pair luminescence
are well separated.

2.3 Excitons Bound to Isoelectronic Centers

These centers have a central core potential term but no Coulomb field for binding of
the exciton. There is a large variety of such centers, for instance, GaP:NP.

The exciton bound to such centers is referred to as an isoelectronically bound
exciton (Hopfield et al. 1966): an attractive core potential of the center tightly binds
an electron which, in turn, can bind a hole into a quasi-hydrogen orbital. This
electron-hole pair is equivalent to an exciton bound to the center, while it acts as
an acceptor because of its asymmetry in carrier binding. Similar defect centers can be
expected when first attracting a hole into a deep neutral center and then an electron
into the resulting Coulomb-attractive defect, which would act as a donor-like defect
center with the bound exciton. For a bound-exciton model of isoelectronic centers in
Si, see Davis and Nazaré (1994).

Isoelectronic centers are of interest because they show a high luminescence
efficiency at room temperature. This is caused by the fact that these centers,
produced by neutral atoms of the same valency as the replaced lattice atoms, extend
to rather large k values due to their short-range potential. This permits electron
transitions from k 6¼ 0 without phonon assistance, an important feature for indirect
bandgap materials.

Examples of isoelectronic centers are N, As, or Bi in GaP (Thomas et al. 1965;
Trumbore et al. 1966; Dean et al. 1969), O in ZnTe (Dietz et al. 1962; Hopfield
et al. 1966 and Merz 1968), or Te in CdS (Roessler 1970). For reviews, see Bergh
and Dean (1976) or Craford and Holonyak (1976). At first view, the isoelectronic
impurity, which replaces a lattice atom, seems to be a relatively simple defect; in
its incorporation into the lattice, it resembles a shallow donor or acceptor. An
estimate of the binding energy, however, is more difficult (Baldereschi and
Hopfield 1972). The high luminescence efficiency is suggested by an efficient
capture of an exciton at such a center and a high radiative recombination proba-
bility of this exciton. The exciton capture may be a two-step process by which the
impurity first captures an electron (or hole) if it is a donor (or acceptor)-like defect
and consequently, now charged, captures the oppositely charged carrier (Hopfield
1967).

The radiative recombination from isoelectronic centers lies close to the band edge
and, at low temperatures, can be resolved as originating from two different exciton
states, e.g., with J = 1 and J = 2 for emission lines A and B, respectively, in GaP:NP

as shown in Fig. 23.
In Fig. 23 pronounced replica of the primary luminescence (A, B) of excitons

trapped at isoelectronic centers in GaP are visible; they are identified as A-TO, A-LO,
and B-LO. These strong lines indicate that radiative transitions occur with phonon
assistance, i.e., after LO or TO phonon emission, induced by strong lattice coupling
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with a large Huang-Rhys factor (see ▶Sect. 2.3.2 of chapter “Optical Properties of
Defects”). The phonon interaction with such isoelectronic centers is so strong
because of a severe lattice deformation that surrounds the impurity and provides
an efficient coupling. The excitation spectrum shows similar phonon replica and is
almost mirror symmetric to the luminescence spectrum except for slightly different
phonon energies.

At higher nitrogen concentration (> 1018 cm�3), many lines labeled NNi appear at
lower energy, the deepest (NN1) being 0.143 eV below the intrinsic exciton, see
Fig. 24. The concentration of the NN centers varies as the square of the A center
concentration,7 indicating that the NN centers consist of two nitrogen atoms; the NN1

center arises from two substitutional N atoms on the closest possible P sites, the NN2

center from two nitrogen on the second nearest sites, and so on (Thomas
and Hopfield 1966; Cohen and Sturge 1977): the eigenstates of the exciton, bound
to such isoelectronic pairs, depends on the intrapair distance. Such spectral series due
to pairs are also observed for donor-acceptor pairs discussed in more detail in
Sect. 1.6.

Another example of a defect pair that can bind an exciton is the Be-Be center in
Si. Here, two Be atoms replace one Si atom and produce an axial field that causes a
characteristic splitting of the ground state of the center, helping in identifying states
of the same center. The basic line structure of excited states of this bound exciton
behaves like that of an acceptor (e.g., B in Si), but it is redshifted by the binding
energy of the exciton (3 meV); for more details, see Lipari and Baldereschi (1978)
and Thewalt et al. (1985).
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Fig. 23 Luminescence spectrum from GaP:N with 5 � 1016 cm�3 NP at 4.2 K, identified as an
exciton transition bound at the isoelectronic center. The lines identified with LO and TO are phonon
replicas (After Thomas and Hopfield 1966)

7The concentration of the A center and the NN centers is proportional to their absorption strengths.
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3 Influence of External Fields on Defect Levels

Different kinds of fields may act on a considered defect. As to mechanical stress
fields, we distinguish between hydrostatic stress, which leaves the symmetry of the
lattice unchanged, and uniaxial and shear stresses, which induce changes of the
lattice symmetry; stress occurs also in epitaxial layers and may have gradients in case
of partial relaxation. Electric fields can be external, usually homogeneous fields, and
built-in fields which are space-charge induced and show gradients. External mag-
netic fields again are homogeneous, while such fields exerted from spin or orbit
coupling contain inhomogeneous components on the defect atomic scale. We will
discuss the influence of these fields on shallow-level centers in the following
sections.

Although the influence of electric and magnetic fields is much larger in shallow
levels than in deep levels due to the large volume occupied by their eigenfunctions,
there are also substantial influences on some deep-level centers. These, however, are
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Fig. 24 (a) Absorption and (b) luminescence spectrum of GaP doped with ~19 cm�3 nitrogen,
forming N-N pairs, and measured at low temperature. The prime symbols identify phonon replicas,
and LOC identifies local modes. (c) Expected numbers of pairs for a random distribution of N in
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more complex in nature. Furthermore, some deep centers can also show rather
extended wavefunctions, e.g., the Al center in Si which extends 70% up to the
seventh neighbor shell.

3.1 Influence of Hydrostatic Pressure

Hydrostatic pressure does not influence the impurity potential appreciably, nor does
it change the position of deeper bands. There is a much smaller shift of the valence
band than for the conduction band for most semiconductors.

With increasing pressure a decreasing lattice constant causes characteristic
changes, which are most pronounced for the conduction bands and are observable
by a change in the bandgap energies. In cubic semiconductors, the energy separation
from valence to conduction band increases at Γ and L (see Fig. 25 for GaAs) but
decreases at X. These shifts occur with a similar pressure coefficient of approxi-
mately 10 μeV/bar in column IVand III–V semiconductors. For cubic GaN and AlN,
pressure coefficients of ~4 μeV/bar for the Γ conduction band and significantly
smaller values for defects were calculated using Green’s functions (Gorczyca
et al. 1997); respective tight-binding calculations are reported in Jancu
et al. (1998). For a general review on pressure effects, see Goñi and Syassen
(1998), and for recent first-principles calculations, see Freysoldt et al. (2014).
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3 Influence of External Fields on Defect Levels 711



Shallow donor states shift together with the conduction bands and can be
identified as such by their connection to respective bands with an identical shift.
Such a shift can be observed by the recombination luminescence of excitons, which
are bound to such donors and shown in Fig. 25a. Changes of the connection from the
Γ band to the X band are observed near the crossover pressure (~41 kbar for GaAs).
These bound-exciton lines are given here to exemplify shallow defects. Free exci-
tons and conduction-band-to-acceptor luminescence behave similarly.

Near the crossover pressure, the Γ-related shallow levels can become resonant
with the X1 minima. This can be observed by a large increase in carrier scattering to
resonance scattering when the X1 minimum is shifted to coincide with the donor
level. At this pressure a minimum in the carrier mobility is observed (Kosicki and
Paul 1966). Other effects occur when, for example, in Ge the minimum goes from L1
to Δ1 at p ffi 50 kbar. The degeneracy is increased from four- to tenfold and is
decreased to sixfold when the Δ1 minimum is lowered below L1. The consequence is
a splitting from two sublevels (EΓ1

andEΓ15
) into five and then back to three sublevels

– EΓ, EΓ12
, and EΓ15

.
Deeper donor levels show a lesser influence from hydrostatic pressure since they

are more dependent on the core potential, which is little changed. Deep levels also
are connected to several bands which tend to reduce and partially cancel their
individual contributions. This can be seen in nitrogen-doped GaAs at pressures in
excess of 20 kbar, as shown in Fig. 25b (Wolford et al. 1979). Below ~20 kbar the N
levels become resonant within the Γ band and can no longer be observed by
photoluminescence. A theoretical estimate of the shift of deep levels in GaAs was
given by Ren et al. (1982) and is shown in Fig. 26. The pressure derivatives dE/dP of
the levels are significantly smaller than that of the fundamental bandgap dEg/dP
=12.6 meV/kbar.
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and p-type pushed up from the valence band (bonding)
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Acceptors are insignificantly influenced by hydrostatic pressure, as it has a lesser
influence on the valence-band structure near k = 0.

Quantum-well states and superlattice states show the connection of direct
transitions with the Γ band in GaAs/AlxGa1-xAs heterostructures (Fig. 27). Above
the crossover pressure, spatially indirect transitions are observed in a superlattice
(Fig. 27a), including phonon replica, which now shift parallel to the X band with
pressure and composition (Fig. 27b); in a GaAs/AlxGa1-xAs quantum well confined
conduction-band states exist only in GaAs and consequently only direct Γ ! Γ
transitions. For more information, see Wolford (1987).

3.2 Influence of Uniaxial Stress

Uniaxial stress lowers the symmetry of the semiconductor, depending on the relative
direction of the stress with respect to the crystal axes. Consequently, the band
structure becomes more complicated. The band degeneracies are removed, produc-
ing a splitting and a shift of the bands, as indicated for the six, without stress,
equivalent valleys in Si and for the four valleys in Ge in Table 6. The shift is
proportional to the stress, with the deformation potentials Ξdil and Ξshear for
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dilatation (subscript dil) in the direction normal to the main axes of the sidevalley
ellipsoids and for uniaxial shear (subscript shear). This results in stretching along the
main axes and compression in the two normal directions – see Fritzsche (1962),
Pollak (1965), and Cardona (1969a, b). The deformation potentials are proportion-
ality factors for the energy shift which, in cubic materials, is given by

ΔE jð Þ ¼
X
α, β

Ξdilδαβ þ Ξshear
~kα~kβ

� �
uαβ; (33)

with the strain components uαβ (Herring and Vogt 1956). Here δαβ is the Kronecker δ
symbol, and ~kαβ are the components of the unit k vector on the α and β axes. Uniaxial
stress in the [111] direction for Si and in the [100] direction for Ge, however, results
in no splitting, since the symmetry of the valleys remains unchanged under such a
stress – see Table 6.

Shallow impurities relating to these bands split accordingly. In Si, for instance,
the 1s donor state, which is split into A1, T2, and E (Γ1, Γ12, and Γ15) because of
intervalley interaction, splits further when uniaxial stress is applied in [100] direc-
tion. The Γ12 and Γ15 levels split and the Γ1 level shifts. The splitting is proportional
to the stress, and the shifting, as a second-order effect, is proportional to the square of
the stress. Splittings and shifts are shown in Fig. 28a; see also Wilson and
Feher (1961).

The effect of uniaxial stress is similar to that of biaxial stress exerted on epitaxial
layers with some lattice mismatch to the substrate. Figure 29 shows the splitting and
shift of the (D0, X) recombination (lines I2, I20) in ZnSe/GaAs layers (Kudlek
et al. 1992). ZnSe is biaxially strained in the interface plane to GaAs due to a
0.3% larger lattice constant, and layer growth at various temperatures leads to a

Table 6 Removal of degeneracies between equivalent critical points and donor states (s and p0
envelope functions) under uniaxial stress, yielding new symmetries of the resulting deformed
valleys (After Bassani et al. 1974)

Conduction-
band minima at

Cubic crystal
(Td group)

[100] Stress
(D2d group)

[111] Stress
(C3v group)

[110] Stress
(C2v group)

(100) Γ1 þ Γ12 þ Γ15 Sið Þ X1 þ X3 2Λ1 þ 2Λ3 Σ1 þ Σ2 þ Σ3 þ Σ4

100
� �
(010) X1 þ X2 þ X5

010
� �
(001) 2Σ1

001
� �
1
2
, 1
2
, 1
2

� �
Γ1 þ Γ15 Geð Þ X1 þ X3 þ X5 Λ1 Σ1 þ Σ3

1
2
, 1
2
, 1
2

	 

Λ1 þ Λ3

1
2
, 1
2
, 1
2

	 

Σ1 þ Σ4

1
2
, 1
2
, 1
2
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different degree of partial plastic strain relaxation in the layers. The free exciton X
consequently splits with different spacing into a light- and heavy-hole excitons and
related (D0, Xlh) and (D0, Xhh) lines I2 and I20 , which have different pressure
coefficients. At the cryogenic measuring temperature, the ZnSe layers are tensely
strained, since the thermal expansion coefficient of ZnSe is larger than that of the
GaAs substrate.
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The influence of uniaxial stress on acceptor states is determined by the degen-
eracy of the valence bands at k = 0. The states relating to Γ6 and Γ7 are shifted, and
the Γ8 state is shifted and split. The higher excited states are influenced accordingly
(Rodriguez et al. 1972). The transitions are polarization dependent and are shown in
Fig. 28b. Such changes of the level spectrum can be observed in optical absorption
or luminescence and are helpful in identifying the levels with respect to their
symmetry. For a review, see Rodriguez et al. (1972).

An example of the shifting and splitting of levels of the Se donor in Si (see also
Sect. 1.7) is shown in Fig. 30 for the transmission spectrum. The allowed 1T2 level
splits with increasing stress and avoids crossing with the 1E and 3T2 levels, which are
forbidden at low stress and become allowed with increasing linear stress in the [110]
direction (Bergman et al. 1987).

3.3 Influence of an Electric Field

An electric field acts in a manner similar to uniaxial stress by a shifting and splitting
of the defect levels due to a lowering of the crystal symmetry. Although the changes
are similar, they are smaller than those described in Sect. 3.2 for usual experimental
conditions. The ground state typically shifts by 100 μeV for fields of 10 kV/cm; the
shift of the first excited state for the same field is on the order of 1 meV. The effect is
similar to the atomic Stark effect.
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with lower- and upper-branch 1T2 transitions allowed at low stress, changing to 3T2 and 1E
transitions, respectively, at higher stress (After Bergman et al. 1987)
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A splitting of degenerate eigenstates proportional to the applied homogeneous
field was observed by Stark (1914) in hydrogen (linear Stark effect). This effect is
due to the superposition of a perturbation term eF � r in addition to the Coulomb
potential / e2/r. A comprehensive description of the classical effect can be found in
Herzberg (1937) or Sommerfeld (1950). Because of the larger quasi-hydrogen radius
of shallow defect levels, the corresponding splitting within a semiconductor takes
place at much lower electric fields. For an example, a shift of 0.1 meV requires
~104 V/cm for the ground state and only ~103 V/cm for the 2s excited state of
shallow donors. An interpretation of the Stark effect for excited states, however, is
complicated when the extended wavefunction starts to overlap with band states – see
Franz-Keldysh effect, ▶ Sect. 2.3.3 of chapter “Carrier Generation”. A Stark-effect
splitting is shown in Fig. 31 (Blossey 1970). The normalizing field is the so-called
ionization field of such defects, given by

FI ¼ EqH

eaqH
; (34)

is listed for some compound semiconductors in Table 7.
If the field is produced by other defects or electrons, the Stark effect is more

complicated. These defects will already cause some random splitting because of
the statistical distribution of their relative distance from each other, except for
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Fig. 31 Calculated Stark
effect splitting of the n = 2
hydrogen-like level at
normalized fields F as
indicated in units of the
ionization field FI at the
respective curves (After
Blossey 1970)

Table 7 Ionization fields given in (kV/cm) by Eq. 34 for quasi-hydrogen defects in some
compound semiconductors (After Blossey 1970)

AlSb 12 InP 7.8 ZnS 200 CdS 140

GaAs 5.7 InAs 0.70 ZnSe 75 CdSe 60

GaSb 1.0 InSb 0.08 ZnTe 47 CdTe 31
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very low doping densities (Guichar et al. 1972). Therefore, the external field has
only a minor influence, and requires a larger field strength, resulting in a depen-
dence /F2, the quadratic Stark effect. In addition to the described splitting and
shift, the perturbation through the field permits optical transitions which, without
a field, are forbidden by selection rules. For more information, see Blossey (1970,
1971).

For acceptors, one observes that the splitting of the Γ8-related acceptor states is
much larger than the shifts of the Γ6- and Γ7-related levels (Kohn 1957; White 1967;
Blossey 1970).

3.4 Influence of a Magnetic Field

The influence of the magnetic field on shallow, hydrogen-like defects can be divided
into an effect on the conduction-band states and the effect on the eigenstates of the
defect. As discussed earlier (▶ Sect. 1.2.4 of chapter “Bands and Bandgaps in
Solids”), the magnetic field forces electrons into orbits, circling with cyclotron
frequency (▶Eq. 24 of chapter “Bands and Bandgaps in Solids”). When the
magnetic field is small enough so that

ħωc � EqH, n; (35)

where EqH,n is the quasi-hydrogen bonding energy of the nth level, the influence of
this magnetic field can be regarded as a small perturbation. This case is discussed
first. When the field is larger, the band states split into distinct Landau levels. Here,
additional effects need to be considered that will be discussed later.

3.4.1 The Zeeman Effect
The splitting of spectral lines of atoms in a longitudinal or transverse magnetic field
was first observed by Zeeman (1897) and is termed the Zeeman effect. The Zeeman
effect is traditionally related to single atoms – see Herzberg (1937). Within a
semiconductor, the influence of the surrounding lattice must be taken into consider-
ation. In hydrogen-like defects, the electron orbits are very large. Consequently, a
much smaller magnetic induction causes a major splitting.

Defect levels in semiconductors show a Zeeman splitting, which relates to the
defect quantum number and the appropriate Zeeman levels of the impurity (Bassani
et al. 1974). At higher magnetic induction, which can easily be reached for excited
states, the wavefunction becomes severely compressed normal to B, which causes an
increase in the binding energy of the electron at the defect (Baldereschi and Bassani
1970). In addition, the band states split into Landau levels, causing further compli-
cation – see below and ▶Sect. 2 of chapter “Carriers in Magnetic Fields and
Temperature Gradients”. The influence of the magnetic field can be included in the
Schrödinger equation by replacing the momentum operator �iħ@=@r with the
operator �iħ@=@r� eA, with the vector potential
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A ¼ 1

2
B	 rð Þ (36)

and B the magnetic induction. This yields in the effective-mass approximation

� ħ2

2mn

@2

@r2
� eħ
mn

@

@r
� A

� �
þ e2

2mn
A � Að Þ � e2

4π estate0 r

� �
F rð Þ

¼ E� Ecð ÞF rð Þ: (37)

The second term gives normal Zeeman splitting, which is linear in B for all l 6¼ 0
levels:

El ¼ e

2mn
B � L; (38)

where L is the angular momentum operator; L2 has the eigenvalues ħ2l lþ 1ð Þ. The
splitting occurs into 2l + 1 equidistant levels with spacing � ħωc.

When including the spin with spin operator S, an additional paramagnetic
interaction due to the orientation of S in the magnetic field must be considered
(see ▶Sect. 1.1 of chapter “Magnetic Semiconductors”). Eq. 38 is then replaced by

EJ ¼ gμBB � J; (39)

where μB ¼ eħ= 2m0ð Þ is the Bohr magneton and J = L + S is the total angular
momentum operator; J2 has the eigenvalues ħ2j jþ 1ð Þ. g is the Landé factor, given
for isolated atoms by

g ¼ 1þ j jþ 1ð Þ þ s sþ 1ð Þ � l lþ 1ð Þ
2j jþ 1ð Þ : (40)

For electrons in a semiconductor, the g factor is affected by the interaction with
adjacent atoms, resulting in substantially different values. The paramagnetic interac-
tion described by Eq. 39 is the anomaleous Zeeman splitting which is also linear in B.
The splitting results in 2j + 1 equidistant levels with spacing gμBB.

In addition to the linear effects, a diamagnetic term, stemming from the third term
in Eq. 33, produces a quadratic correction

ΔEdia ¼ e2

8mn
B	 rð Þ2 ffi ħωcð Þ2

8EqH

 !
s

; (41)

which is given here explicitly for the s states (van Vleck 1932). The quadratic term is
the only magnetic field dependence for s states which show no normal Zeeman
splitting (l = 0). It produces a compression of the wavefunction and thereby results
in an increase in the binding energy.
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For the small-field approximation, we obtain a Zeeman splitting of the degenerate
levels of the quasi-hydrogen defect and a diamagnetic shift, similar to the observa-
tion in isolated atoms. Within a semiconductor, the magnetic field removes all
degeneracies, including the Kramer’s degeneracy due to time reversal, and conse-
quently causes the most extensive splitting of defect levels (Condon and Shortley
1959; Haug 1972).

At high magnetic field ( ħωc 
 EqH ), the fourth term in Eq. 37, can be
disregarded, and we obtain directly the Landau levels in the conduction band as
solution of Eq. 37.

There is a large body of experimental results showing the influence of the
magnetic induction on defect levels. For example, in Ge a magnetic field in
the [111] direction will split the p0 donor level in Voigt geometry (▶ Sect. 3.1 of
chapter “Photon–Free-Electron Interaction”) into two levels; only one is allowed in
Faraday geometry. The p� levels split into four levels, all of which are allowed in
Faraday geometry. This splitting has helped to identify these and higher excited
states (Horii and Nisida 1970), as is shown for P donors in Ge in Fig. 32a.

The splitting of acceptor impurity states is more complicated because of the band
degeneracy and spin-orbit coupling; with a magnetic field, all degeneracies are
consequently removed. For instance, a Γ8 ! Γ8 transition shows a splitting of the
D� term which can be well separated from the others into eight lines – six of which
are observed in Faraday configuration and two in Voigt configuration. As many as
eight Faraday and four Voigt lines are possible. This is shown in Fig. 32b and c for
the Zn acceptor in Ge – see also Soepangkat et al. (1972) and Carter et al. (1976). For
the Zeeman effect on donor-bound excitons in CdTe:In, see Zimmermann
et al. (1994), and for acceptor-bound excitons in ZnSe:Li, see Pohl et al. (1996).
For reviews, see Kaplan (1970) and Hasegawa (1969).
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3.4.2 Magnetic Resonances at Lattice Defects

Electron Spin Resonance Electron spin-flip resonances can be measured in point
defects with unpaired spin. For an introduction, see, e.g., Lancester (1966) and Lund
et al. (2011). Spin-flip resonance absorption is related to the Zeeman splitting
discussed in the previous section. Spin-flipping resonance of defect levels must be
distinguished from the spin resonance of conduction electrons between different
Landau levels. In a typical spin-doublet splitting, the upper branch relates to the
electronic state with the spin parallel to the magnetic induction; for the lower state,
the spin is antiparallel. In thermal equilibrium, more lower energy states are filled; a
transition from the lower to the upper state can be initiated by supplying the
necessary energy difference between these two states. This energy usually lies in
the microwave range, where the corresponding resonance absorption can be
observed (Poole 1983; Abragam and Bleaney 1976). The absorption permits a rather
sensitive determination of the magnitude of the Zeeman splitting. Examples of
typical spin-flip absorptions are shown in Fig. 33. For a review of such resonances
in III-V compounds, see Schneider (1982), and in II-VI compounds, see
Schneider (1967).

Spin-flip resonances can be detected optically when the microwave-induced
transition occurs from the lower energy spin-up to the higher energy spin-down
states. This also results in corresponding changes of the polarization of absorption or
emission (luminescence) in the presence of the magnetic field. For normal Zeeman
transitions in longitudinal observation (Faraday geometry), one sees two compo-
nents which are left and right circular polarized. In transverse observation (Voigt
geometry), one sees three components with linear polarization, of which one is
parallel and two are perpendicularly polarized to the field axis. These are known
as π and σ components, for parallel and perpendicular (the latter for German
senkrecht) polarization. Such changes occur in single defects or in defect associates
(Cavenett 1981) as indicated in Fig. 34 for a donor-acceptor pair.
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Hyperfine Splitting When the electrons in a defect center interact with the mag-
netic momentum of the nucleus, one observes hyperfine splitting of these levels,
which provides information on the chemical identity of the center. As an example,
the optically detected hyperfine magnetoresonance signal of oxygen-doped GaP is
shown in Fig. 35.

Super-hyperfine Splitting When the electrons of a defect center interact also with
the nuclei of the surrounding lattice atoms, one observes a super-hyperfine or ligand
hyperfine splitting. The interaction causes a splitting of electronic levels of the
unpaired electron: each level is split into 2I + 1 sublevels with I the spin of the
nucleus. The energy difference between the sublevels is proportional to the charge
density of the wavefunction of the defect state.
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This type of splitting provides valuable information on the structure of the
immediate neighborhood of the defect center (Spaeth 1986) and on the chemical
identity of the defect. Super-hyperfine splitting is used to analyze the eigenfunction,
i.e., the electron distribution of defect centers using the electron nuclear double
resonance (ENDOR) signal combined with the electron spin resonance (ESR)8

signal; see Feher (1959). The ENDOR technique is based on changes of the ESR
signal caused by the spin flip of appropriate nuclei [e.g., Si29 in a silicon crystal with
natural Si [Si28 (92.2%), Si29 (4.7%), Si30 (3.1%)]] within the reach of the electron
cloud of the defect and induced by an external electromagnetic field.

4 Summary

Major features of shallow-level defects are easily described by a quasi-hydrogen
spectrum, modified by the dielectric constant and the effective mass of the host
semiconductor. While this relatively simple relationship holds surprisingly well for
higher excited states of many shallow defects, substantial deviations occur in the
ground state due to the core potential and lattice relaxation.

Some of the degeneracies of the quasi-hydrogen spectrum are lifted by band
anisotropies and interaction between band valleys. Local stress and electric fields
cause additional splitting. Because of far-reaching interaction between defects
through such fields, the line spectrum is usually substantially inhomogeneously
broadened. Narrow lines can only be observed in ultrapure, strain-free materials.
The dependence of levels on hydrostatic pressure can be used to identify those which
are connected to one band only. Shallow-level defects are distinguished therefore
from so-called deep-level centers which originate from tightly bound centers and
connect with both bands; only accidentally may they lie close to one of them. The
effect of uniaxial stress and electric or magnetic fields applied along specific
crystallographic directions and selection rules related to field-distorted symmetries
can be used for an identification of the impurity center. Further analysis is obtained
from magnetic resonance techniques in point defects with unpaired spin by applying
resonances in the electron spin-flip typically in the GHz regime at common magnetic
fields.

Donors and acceptors can form pairs even at relatively low defect concentration.
Their discrete distances in the crystal lattice gives rise to optical transitions with
discrete energies, given by the bandgap energy reduced by the donor and acceptor
ionization energies and a Coulomb attraction term; an additional correction accounts
for the overlap of donor and acceptor eigenfunctions becoming significant for close
pairs.

Donors and acceptors can bind excitons with a binding energy typically on the
order of 10 meV. For neutral defects a linear dependence of the binding energy from
the ionization energy of the impurity is observed in experiment. For ionized donors,

8Electron spin resonance (ESR) is also referred to as electron paramagnetic resonance (EPR).
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the binding energy depends on the ratio of electron-to-hole effective mass, and no
bound exciton state exists above a critical ratio of ~0.45. Ionized acceptors usually
do not bind excitons. Isoelectronic impurities can bind excitons by attracting the
electron at the core potential, that in turn binds the hole on a quasi-hydrogen orbital.
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Abstract
Awide variety of deep-level centers exists of both intrinsic and extrinsic origin.
They often provide a preferred path for carrier recombination or act as deep traps.
Deep-level defects have tightly bound electrons in small orbits which, for the
ground state, often do not extend beyond the distance to the next neighbors of the
semiconductors. Their electronic eigenfunctions can mix with both conduction
and valence bands. Many of the deep defect levels relax substantially after defect
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recharging or excitation, causing a significant change in the equilibrium position
of the surrounding atoms. In optical spectra, the strong lattice coupling leads to a
broadened spectrum with a weak zero-phonon transition and hardly identifiable
individual phonon lines.

The description of deep-level centers requires a tight-binding analysis. Such
centers may, however, have higher excited states which have quasi-hydrogen
character with corresponding orbits extending well into the surrounding lattice.
For extrinsic deep-level centers, the atomic electronegativity is an indicator for
the depth of the central-cell potential. The deep centers act as deep traps for
either electrons or holes. Many of them have various charge states in the
bandgap with corresponding levels depending on the Fermi energy, leading to
effective compensation of doping. Deep-level centers may also act as recombi-
nation centers when their relaxation is significant and thereby form a bridge
between conduction and valence band for nonradiative recombination.
Transition-metal impurities are a prominent group with vastly different defect-
level behaviors, showing both intracenter excitations and ionization with charge
transfer.

Keywords
Deep trap � Central-cell potential � Color center � Compensation � Crystal-field
splitting � Crystal-field theory � DX center � F center � Ham effect � Intraionic
transitions � Jahn-Teller distortion � Negative-U center � Passivation �
Recombination centers � Tanabe-Sugano diagram � Transition-metal impurities �
Vacancy

1 Modeling of Deep-Level Centers

Deep-level centers generally require a tight-binding analysis in which, at least for
the ground state, the wavefunction remains localized close to the core of the
defect. Such centers cannot be described by a hydrogenic effective-mass approx-
imation. Deep levels, however, do not necessarily require a large binding energy.1

They are not connected to a specific conduction-band minimum or valence-band
maximum, that is, these deep trap levels do not follow one specific band edge
when perturbed by alloying or the application of hydrostatic pressure. Instead,
the wavefunction of deep levels is derived from conduction- and/or valence-band
states throughout the Brillouin zone. Their central core potential dominates their
behavior at the ground state, or they have unsaturated inner shells in transition-
metal impurities, permitting electronic transitions here. Specifically, such defects
may or may not be charged relative to the lattice; they may be isoelectronic or
isovalent.

1Deep levels also appear in narrow-bandgap materials (see Lischka 1986); deep levels may appear
as well close to the conduction- or valence-band edge (see Hjalmarson et al. 1980).
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The levels of these centers are described by a short-range potential. The pseudo-
potential method is an advantageous tool for determining V(r). In addition, the
deformed lattice environment must be considered – see Sects. 2.1.1 and 2.8, and
for Jahn-Teller distortion Sect. 1.3. Since the deep states of the center extend
throughout the entire Brillouin zone, states from both bands and all near-bandgap
valleys are necessary to construct the ground-state electron eigenfunction. The
resulting deep defect levels communicate with both bands and act as deep traps for
electrons or holes or as recombination centers (▶ Sect. 1.1.2 of chapter “Carrier
Recombination and Noise”). A review of such deep centers can be found by
Queisser (1971), Stoneham (1975), Lannoo and Bourgoin (1981), and Pantelides
(1978, 1986a, 1992), Madelung and Schulz (1989), Watkins (2000), Weber (1993),
and Stavola (1998, 1999a).

In contrast to shallow-level centers, which are easily identified chemically in their
specific lattice environment and are rather well understood in their electronic level
structure, it is much more difficult to identify a specific deep-level lattice defect and to
describe theoretically its electronic behavior. Except for a large variety of centers in
ionic crystals, which were identified earlier (the well-known class of F centers in alkali
halides), most deep centers in semiconductors are still described by a combination of
letters and numbers (Hayes and Stoneham 1984), given to them by the authors who
started their analysis; these centers are identified by their spectral signature.

By a concerted effort of various experimental methods reviewed by Stavola
(1998, 1999a), it is possible to identify some deep-level centers unambiguously.
These methods include optical absorption, luminescence emission and excitation
spectroscopy, electron-spin resonances (ESR, ENDOR), optical detection of mag-
netic resonances (ODMR), x-ray studies (EXAFS), and deep-level transient spec-
troscopy (DLTS). An important contribution was the improved growth techniques of
ultrapure and stress-free crystals, which eliminate disturbing influences of the defect
environment. In spite of new results, other deep level centers seem to escape
generally accepted identification. An important problem with deep centers is their
tendency to form associates or to incorporate into their structure major lattice
deformation of decisive consequences.

In such a complex situation, we will introduce stepwise certain elements charac-
teristic of deep centers.

1.1 General Properties of Deep-Level Centers

First, we will show that the eigenvalue spectrum of deep-level defects is substan-
tially different from hydrogen-like centers. For its instructional value, the very
simple, one-dimensional example of a deep potential well connected to one band
only is presented first.

1.1.1 Model of Square-Well Potential
A means of introducing the chemical individuality of a center is provided by
assuming a rectangular one-dimensional well of depth –V0 and width 2a. A very
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similar approach is used to evaluate a level spectrum in two-dimensional quantum
wells and in superlattices (▶Sect. 3.1 of chapter “Bands and Bandgaps in Solids”).
The steady-state electron behavior is described by a solution of the Schrödinger
equation

d2ψ

dx2
� k2ψ ¼ 0 with k2 ¼ 2m E� V xð Þ½ �

ℏ2
: (1)

Here V is used again as potential energy (eV), following the conventional use. With
arguments similar to those in ▶ Sect. 1.2.1 of chapter “The Origin of Band Struc-
ture”, we can show that solutions of Eq. 1 exist for k values that are solutions of the
transcendental equations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

q
¼ k tan kað Þ or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

q
¼ �k cot kað Þ; (2)

where

μ2 ¼ 2m V0j j
ℏ2

: (3)

These solutions can be obtained graphically from the intersection of the left- and
right-hand sides of Eq. 2, shown in Fig. 1.

With discrete values of k obtained as solutions of Eq. 2, the permitted values of
E inside the well are discrete and real. These are given by

En ¼ ℏ2

2m0

k2n þ V0; (4)

with kn ffi nπ/a for lower values of n (see Fig. 1). The electron rest-mass m0 is used
here since the electron remains close to the center and does not move through the
lattice. The eigenstates of such wells are

�/a 2�/a 3�/a 4�/a 5�/a 6�/a0

RHS

LHS

LH
S 

or
 R

H
S

k

Fig. 1 Left-hand (LHS) and
right-hand sides (RHS) of
Eqs. 2 (first equation: solid
curve; second equation:
dashed curve) with solutions
indicated by dots
(intersections of LHS and
RHS)
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En ffi ℏ2π2

2m0a2
n2 þ V0, where n ¼ 1, 2, . . . (5)

and increase quadratically with n. The individuality of each center is given by a
different a and V0.

In contrast, the eigenstates of a simple hydrogen-like defect are given by

En ¼ mn e
4

2ℏ2 4π estate0ð Þ2
1

n2
, where n ¼ 1, 2, :::: (6)

and decrease/ 1/n2, with eigenstates converging toward the continuum of free states
at the edge of the conduction band (see Fig. 2b).

The use of a better central-cell potential V(r) of the defect in the Schrödinger
equation would yield more realistic results for the deep-defect level spectrum.
However, the inclusion of additional bands into the model of deep centers is more
important. In fact, it is this connection to more than one band extremum that
permits the distinction between deep and shallow levels, as will be discussed in
the following section. This will replace the linear relation between well depth (V0)
and the depth of the ground state with a much compressed relationship, as
indicated in the example shown for the square well in Figs. 3 and 16; see
Sect. 1.1.2 and 2.5.

1.1.2 Coulomb Tail and Deep-Center Potential
In addition to the central-cell potential, we have to consider the long-range Coulomb
potential of charged deep centers. The Coulomb tail determines higher excited states
of these centers and renders them hydrogen-like, similar to shallow centers. Conse-
quently, one or several deep levels are observed, followed by a series of hydrogen-
like shallow levels close to the respective bands (see Grimmeiss 1987).

The model-potential combination of a square well and Coulomb potential
describes the ground state of centers with the Coulomb potential predominating

0
E a b

x

Fig. 2 Electron eigenstates
(a) in rectangular well and (b)
in a Coulomb-attractive well
of a quasi-hydrogen defect
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until, with increasing well depth, the short-range part of the potential becomes very
large (>10 eV in Fig. 3). The ground state of the center then shows typical deep-level
behavior, here calculated properly with interaction of valence and conduction bands.

The atomic electronegativity2 can be used as an indicator for the depth of the square
well representing the core potential. Figure 4 shows the experimentally observed
chemical trend: namely, a flat branch for Coulomb-dominated centers and a steeply
decreasing branch for core-dominated centers, which have a deeper well potential. The
reason for this empirical relationship will become clear in the discussion of Sect. 2.5.

Some important results obtained for deep-level defects can be summarized as
follows:

• Deep centers are connected to more than one valence- or conduction-band edge
and may be connected to both valence and conduction bands.

• The energy of the deep level varies at least an order of magnitude less than the
impurity potential.

• Although the short-range potential is dominating, the eigenfunctions of some of
the deep-level impurity centers, such as substitutional chalcogens in Si or III-V
compounds, extend well beyond nearest neighbors and do not change much with
the chemistry of the impurity if incorporated at the same site (Ren et al. 1982).

1.2 Theoretical Methods to Analyze Defect Centers

The theoretical methods deal with approximations for solving the Schrödinger
equation of the defect within the lattice environment.
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Fig. 3 Influence of an
increasingly attractive square-
well potential, added to a
screened Coulomb potential for
estat = 10, mn/m0 = 0.1, well
diameter 5 Å (After Vogl 1981)

2The atomic electronegativity is defined as the difference between the s energies of host and
impurity atoms for donors and the respective p energies for acceptors.
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1.2.1 Perturbative Methods and Green’s Function Technique

Perturbative Methods Perturbative methods use a defect potential that can be
written as

V ¼ V0 þ U with the Hamiltonian H ¼ H0 þ U; (7)

whereH0 is the one-electron Hamiltonian of the unperturbed lattice andU is the defect
perturbation. The eigenfunctions of the corresponding Schrödinger equation Hψν ¼
Eνψν are determined by expanding ψν in terms of a complete set of functions ϕν:

ψν ¼
X
λ

Fλϕλ: (8)

As such a set of functions, one may choose Bloch functions (as done in ▶ Sect. 1 of
chapter “Shallow-Level Centers”), Wannier functions, or other orthonormalized
functions – for instance, simple exponentials or Gaussian orbitals. The eigenvalues
are then obtained from the secular matrix.

When the range of the perturbation potential is shorter, one advantageously uses
Wannier or other localized functions for the expansion of ψν. Thus, one obtains the
eigenvalues from the corresponding Koster and Slater (1954a, b) determinant (see
also Bassani et al. 1969; Jaros and Brand 1976).

Green’s Function Technique Self-consistent Green’s-function calculations pow-
erfully determine the differences between an ideal crystal and the changes introduced
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by the defect center, recognizing their localization in space. Although more com-
plicated than cluster calculations outlined below, they supply more accurate solu-
tions (Bernholc and Pantelides 1978; Baraff and Schlüter 1980).

This method has been used extensively, providing very valuable information on
deep-level defect centers (Hjalmarson et al. 1980). For a brief review, see also
Pantelides (1986b). In more recent years, the computational complexity of
Green’s-function calculations has led to a decrease in their use.

1.2.2 Cluster Calculation and Supercell Technique
The eigenstates of a deep center can be estimated by considering only the atoms in its
neighborhood, that is, in an atomic cluster (Messmer and Watkins 1973). Cluster
calculations are carried out by calculating the eigenfunctions of such a group of
atoms, treating it as a large molecule. When initially calculating it with atoms from
the ideal crystal, and then inserting the impurity into its center, one obtains infor-
mation on its energy level structure. Although these cluster calculations are easily
implemented, they converge slowly with cluster size and the results are very
sensitive to conditions at the cluster boundary. Moreover, the defect-level energy
is not very accurate, and corresponding changes of band states are difficult to obtain.

An example for a diamond crystal is given in Fig. 5. A level splits into the bandgap
when a nitrogen atom is incorporated into this cluster. In addition, a large shift to lower
energies is seen in Fig. 5, when lattice relaxation in the neighborhood of the N atom is
permitted (Jahn-Teller distortion-see Sect. 1.3 and Sturge 1967). The replacement of a
carbon atom by a nitrogen atom causes a substantial trigonal distortion of the four
neighbor atoms (see Kajihara et al. 1991; Briddon and Jones 1993).

Supercell Technique Related to a cluster calculation is the supercell technique, in
which the defect center is placed periodically in an otherwise perfect crystal. This
technique replaces the questionable boundary condition for a cluster with less
problematic periodic boundary conditions. The method, however, produces artifi-
cially broadened defect levels caused by defect interaction (Louie et al. 1976;
Kauffer et al. 1977). With large computers, this effect can be minimized by using
larger clusters for each cell. Currently, the supercell technique is a valuable tool. For
a recent review, see Freysoldt et al. (2014).

1.2.3 Semiempirical Tight-Binding Approximation
The chemical trend of deep impurities can be obtained rather well from a semiem-
pirical pseudo-Hamiltonian based on a small number of pseudo-orbitals (one s-,
three p-, and one excited s* orbital, sometimes complemented by five d orbitals; see
▶ Sect. 2.1.4 of chapter “Quantum Mechanics of Electrons in Crystals”) for substi-
tutional impurities in tetrahedrally bonded semiconductors. The approximation is
based on the band-orbital model of Harrison (1973), and adopted by Vogl et al.
(1983), to reproduce valence- and conduction-band structures of semiconductors.
Hjalmarson et al. (1980) employed the same model to obtain information on the
chemical trend of deep levels of substitutional impurities-see Sect. 2.5.
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1.3 The Jahn-Teller Effect

The Jahn-Teller effect is the intrinsic instability of a complex with electronic
degenerate states against distortions which can remove this degeneracy. The effect
was predicted by Jahn and Teller (1937) as a general phenomenon in any symmetric
nonlinear configuration of atoms. Besides isolated molecules, there are many defects
in solids affected by the Jahn-Teller effect, such as the F center in halides, the
vacancy in silicon, and transition-metal impurities in elemental and compound
semiconductors. For reviews, see Sturge (1967), Bersuker (1984), and for paramag-
netic crystals Bates (1978).

When occupied states of the defect split, at least one of the states will be lower
than the degenerate state of the undisturbed defect, and the energy of the defect can
be lowered by a Jahn-Teller stabilization energy δE. The local symmetry of the
distorted defect is lower than the point symmetry of the crystal. The distortion that
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Fig. 5 (a) Electron energy-level distribution for the cluster of 35 carbon atoms (left half of a) depicted
in (d) and including a nitrogen atom in its center (right half of a). (b) Energy shifts in the spectrum
when the carbon atoms surrounding the center nitrogen atom relax by a Jahn-Teller distortion; the shift
is shown as a function of the lattice relaxation (minimum total energy at 26% of the nearest-neighbor
distance). (c) Unit cell and (d) 35 atom cluster (After Watkins and Messmer 1970)
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removes the electronic degeneracy is itself degenerate with respect to spatially
equivalent configurations3: there is more than one equivalent position of the
distorted center with equal energy. The energy of these equivalent configurations
is separated by a potential barrier.

One distinguishes between static and dynamic Jahn-Teller effects. In the static
effect, the lowering of the site symmetry is detectable, for example, in magnetic
resonance studies; the symmetry of the defects is frozen-in in the equivalent config-
urations. In the dynamic Jahn-Teller effect, the energy barrier between the configu-
rations is small compared to the thermal energy (or allows for quantum-mechanical
tunneling). The distortion then averages out to zero during the characteristic time of
the experiment, yielding the point symmetry of the undisturbed system.

Ham Effect In the presence of a Jahn-Teller effect, the orbital momentum L and the
spin-orbit coupling λLS are reduced by a factor γ. This effect was described by Ham
(1965). The reduction γ depends on the Jahn-Teller energy δE and the energy of an
effective phonon ℏω, yielding for a strong Jahn-Teller effect γ ffi exp �3δE=2ℏωð Þ.
A strong effect given by a large stabilization energy δE hence leads to a strongly
reduced spin-orbit splitting of energy levels. This is often observed in the fine
structure of zero-phonon transitions in optical spectra of transition-metal impurities
in semiconductors (see Sect. 3.3), albeit a quantitative interpretation usually requires
complex calculations; for such an analysis on d5 ions in cubic symmetry, see Parrot
et al. 1996.

1.4 Crystal-Field Theory

Some qualitative information about the electronic behavior of deep centers can be
obtained by starting from the electron eigenvalue spectrum of the isolated impurity
atom in vacuum. Then one can determine to what extent this spectrum is influenced
after the atom is exposed within the crystal to the field of the surrounding atoms, the
crystal field. This crystal field is used then as a perturbation.

Such description is relatively simple when the symmetry of the surrounding
lattice environment is known. When introduced as a substitutional impurity without
lattice relaxation, the symmetry of the lattice environment is that of the undisturbed
crystal.4 This causes splitting of degenerated energy levels of the free atom: the
eigenfunctions of any free atom in vacuum must be invariant against rotation and
reflection, resulting in a large degeneracy of the eigenvalues. However, this is no

3The electronic degeneracy is hence replaced by a spatial degeneracy. It should be noted that lifting
of the degeneracy does not apply for the two-fold Kramers degeneracy, but for both spin and orbital
degeneracy. A level with only spin degeneracy (e.g., the 6S ground state of Mn2+) leads, however,
only to a minor effect on the order below 0.1 meV, while the effect of orbitally degenerate levels
may be well in the 100 meV range.
4However, in actuality, deformations of the surrounding lattice result, with consequent lowering of
the symmetry.
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longer true within a crystal, where the point group of the lattice determines the
remaining degeneracies with lesser symmetry.

The crystal-field theory deals only with the symmetry-related influence of the
surrounding atoms but neglects the effects of the neighboring valence electrons.
Therefore, it specifically addresses electrons in deeper shells that are partially filled
and are shielded from the influence of other valence electrons. Such impurities are
transition-metal atoms. The splitting of their d orbitals in a crystal field may be
described in terms of an Orgel diagram, where the energy levels are plotted as a
function of the crystal-field strength Dq, where D is a symmetry-dependent param-
eter of the potential and q is the point charge of the ligands (Orgel 1955, see also
McClure 1959, and Schläfer and Gliemann 1967). For Orgel diagrams of various
symmetries, see König and Kremer (1977).

For an illustrating example, the level splitting is discussed for an atom with two
d electrons (for instance, Ti, Zr, or Th) substituting for an atom of a host with Oh

(cubic) symmetry, such as Si or Ge. Each of these electrons has 10 states available
with l = 2, m = �2, �1, 0, 1, and 2, and spin s = �1/2, resulting in 45 different
states for the two electrons, distinguished by their total quantum numbers L and S:

One 1S-state with L = 0 S = 0

Nine 3P states with L = 1 S = 1

Five 1D states with L = 2 S = 0

Twenty-one 3F states with L = 3 S = 1

Nine 1G states with L = 4 S = 0

The splitting of these five levels 2S+1L becomes transparent after sequentially
introducing electron–electron interaction and crystal field. This is shown in Fig. 6.
Electron–electron interaction results in a splitting of the d2 level into the five levels
2S+1L, distinguished by L as shown in the second column of Fig. 6 (the “isolated
impurity atom in vacuum”). The addition of the crystal field results in a further splitting
into levels 2S+1Γ according their transformation behavior in the crystal symmetry (here
Oh):

1D into 2, 3F into 3, and 1G into 4 levels, as shown in the third column of Fig. 6.
When the interaction among levels 2S+1Γ of equal symmetry is finally taken into
consideration, many levels are shifted substantially (without further splitting), pre-
senting a reordered level arrangement as given in the fourth column of Fig. 6.

It is instructive to reverse the sequence of a hypothetical interaction by first
neglecting the electron–electron interaction5 (strong-field scheme, Tanabe and
Sugano 1954a, b): one obtains the d2 level splitting by crystal-field interaction
first. This results in a split into one eg level and one t2g level for each d electron,
that is, for the two d electrons into three levels with two electrons in eg or t2g, or one
electron in each eg and t2g states, as shown in the sixth column of Fig. 6. The splitting
Δ between an eg and a t2g state equals 10 Dq; the index g (for German gerade)
indicates even parity. Adding the electron–electron interaction further splits (eg)

2

5The use of lower- and upper-case letters to describe the states gives a good example to distinguish
between one- and multielectron states. The latter includes electron–electron interaction.
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into three, (eg)
1 (t2g)

1 into four, and (t2g)
2 into three levels, as shown in the fifth

column of Fig. 6. Finally, the level interaction causes level shifting and yields the
same results as for the previously discussed center column.6

The weak- and strong-field schemes discussed above refer only to the orbital
momentum and do not account for the spin-orbit coupling; this causes an additional
(small) splitting. The corresponding optical spectra of some of these transition metal
impurities in wide-bandgap material are therefore quite complicated – see McClure
(1959), and Schläfer and Gliemann (1967). In semiconductors of smaller bandgap,
only a few of these levels fall within the bandgap and are easily identifiable-see
Ludwig and Woodbury (1962), Milnes (1983), and Bates and Stevens (1986).

The inverse field effect on holes and electrons leads to the same multiplet structure
of the ground-state splitting for dN and d10-N atoms (N = 1 . . . 4), with an inversed
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6An Orgel diagram is therefore also referred to as Tanabe-Sugano diagram.
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order of the crystal-field levels (Fig. 7): a d shell filled with N electrons corresponds to
a completely occupied d shell filled with 10-N holes, and the electrical field of the
crystalline environment has an inverse effect on electrons and holes.

A corresponding relation exists between the ground-state levels of a dN atom in
crystal fields of either octahedral (Oh) or tetrahedral (Td) symmetry. Both derive from
cubic symmetry, but atoms in a tetrahedral environment are placed off-axis with
respect to cubic coordinates; as a consequence the term sequence is reversed. The
ground state of d2 shown in Fig. 7 for an octahedral crystal field is a 3T1g(

3F) level; in
tetrahedral environment, this changes to the 3A2(

3F) level. The index g is omitted
here, since tetrahedral symmetry has no center of inversion in contrast to octahedral
symmetry. The change of the crystal field for a change from octahedral to tetrahedral
crystal field can generally be written

Δtetrahedron ¼ �4

9
Δoctahedron: (9)

2 Deep Centers in Semiconductors

A great variety of deep centers exist in semiconductors; however, only a very few of
them can be unambiguously identified (Stavola 1998, 1999a; Madelung and Schulz
1989). Such identification was done very early for a variety of deep defect centers in
alkali halides. For the purpose of illustration, these will be given first as examples.
We will then discuss some of the more important deep-level defects in typical
semiconductors.
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Fig. 7 Schematic level splitting of the ground states of dn atoms in a crystal field with octahedral
(Oh) symmetry
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2.1 Defects in Alkali Halides

2.1.1 Anion Vacancy: The F Center
Anion vacancies act like donors, and cation vacancies act like acceptors; however,
both are deep centers. They are easy to identify by their optical absorption spectrum
of broad isolated lines within wide bandgaps, and their unambiguous response to
specific treatments, which stimulate unique defect reactions. These centers show a
large amount of lattice relaxation (large Huang-Rhys factor-see ▶ Sects. 1.2.2 and
▶ 2.3.2 of chapter “Optical Properties of Defects”) when recharged, providing
excellent examples for electron-lattice interaction.

The classical example of an anion vacancy is an F center in an alkali-halide
crystal7 (Fig. 8). The missing negative charge of the anion is replaced by an
electron in order to restore local neutrality. That electron is not as tightly bound
to the vacancy as it was to the Cl� anion in Fig. 8, which is now missing. The
level associated with this defect therefore lies in the bandgap; in NaCl with a
gap of 7.5 eV, the F center lies 2.7 eV below the conduction band. It becomes deeper
with increasing lattice-binding strength. This is indicated in Fig. 8b as a function of the
lattice constant that decreases monotonically with increasing binding strength. The
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Fig. 8 (a) F center in a sodium chloride crystal. (b) Position of the maximum of the F center
absorption as a function of the lattice constant (After Mollwo 1931)

7F centers (“Farb” centers: German for color centers) were the first lattice defects correctly identified
and described by their electronic structure by Pohl and coworkers (see the review by Pohl 1938).
Later associates of two, three, or four F centers were observed and referred to as M, R, and N centers
(N1 in planar and N2 in tetrahedral arrangement) – see Schulman and Compton (1962).
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vacancy changes its charge character with ionization from neutral to positive, relative to
the lattice

V0
Cl �! �VþCl þ e� (10)

and thus acts as a donor. Excited states of the F center have been observed by Lüty
(1960) and are referred to by the symbols K, L1, L2, and L3 (Chiarotti and Grassano
1966). These levels are probably resonant states with X minima of the conduction
band. They are located with large energy spacings of ~0.6 eV for each consecutive Li
level in KCl, which are typical for deep centers.

Replacing the missing ion with an electron does not completely restore the ideal
lattice periodicity. The resulting lattice perturbation produces another level which
lies closer to the respective band: a second carrier can be trapped in this level. This
center, derived from an F center, is called F’ center and returns to an F center when
ionized:

F� �! � F0 þ e� (11)

In the example of KBr, the ionization energy of the F� center (traditionally called F’
center) is 1.4 eV, which is substantially less then the ionization energy of the F
center: 2.05 eV.

In addition, the surrounding lattice near the vacancy is also perturbed; its eigen-
states split off into levels in the bandgap. When the vacancy is empty, the resulting
perturbation is larger than when this vacancy has an electron trapped in it. These
levels are shown schematically in Fig. 9 and are called α or β bands. Such levels are
observed in alkali halide crystals. They result in a decrease of the bandgap energy in
the immediate neighborhood of the defect for KBr from 6.55 to 6.44 and 6.15 eV,

Cl- Na+ Na+ Cl- 

Na+ Cl- Na+ Cl- Na+ 

Cl- Na+ Cl- Na+ Cl- 

Na+ Cl- Na+ Cl- Na+ 

Cl- Na+ Cl- Na+ Cl- 

F’ F
α β

cb

vb

a b

Fig. 9 (a) Disturbance of the anion and cation lattice around an anion vacancy in NaCl. The
displacement is indicated by arrows. (b) Resulting split-off levels near valence band (vb) and
conduction band (cb) and corresponding transition β. A smaller perturbation is observed if an
electron is trapped, i.e., near an F center, resulting in a split-off with transition α. These perturba-
tions represent the corresponding energies of the trapped excitons (▶ Sect. 2 of chapter “Shallow-
Level Centers”)
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respectively, at 90 K. These can be interpreted as excitons trapped at the empty
vacancy or at the F center.

2.1.2 Other Centers in Alkali Halides
A cation vacancy in an alkali halide is called a V center and acts as an acceptor. It is
deeper than the F center in the same crystal and less sharp, probably because of
stronger lattice relaxation or of distant pair formation. Nearest-neighbor associates of
such centers are termed V2 and V3 centers (Seitz 1954).

There are more intrinsic centers which can be formed. These include the Vk

center, the I center, and theH center, all of which are related to halogen defects (see
e.g., Castner et al. 1958) and are, respectively, a self-trapped hole, a halogen ion
interstitial, and a halogen molecule on a single halogen lattice site (Itoh 1982). A few
of these color centers are shown in Fig. 10. Each of these defects has a characteristic
signature in optical absorption, luminescence, or in spin resonance. The wide
bandgap and tight-binding of defects in alkali halides permit separate identification
and give convincing evidence of a wealth of intrinsic defects, which are much more
difficult to identify in common semiconductors. For a review, see Schulman and
Compton (1962), Fowler (1968), Lüty (1973), Farge (1973), Williams (1978), Itoh
(1982), and Hayes and Stoneham (1984).

2.2 Vacancies in Semiconductors

2.2.1 Vacancies in Covalent Crystals
The vacancy is one of the most important centers in covalent crystals. The change in
the charge distribution when introducing a vacancy into the Si lattice is shown in
Fig. 11. We will return to this topic in Sect. 2.5.

Vacancies in covalent crystals result in deep levels which can have several
occupation states. Typically, one distinguishes five charge states of the vacancy
V2+, V+, V0, V�, and V2�; two of them, V+ and V�, are observed in Si in spin
resonance and two by diffusion experiments (Watkins 2000). The breaking of
covalent bonds results in dangling bonds, which combine within the vacancy to
form molecular orbitals – a singlet state with a1 and a triplet state with t2
symmetry. These yield the ground states of the differently charged vacancies by
population of the states with electrons of appropriate spin (Fig. 12). For Si, the
corresponding states are V2þ a21

� �
, Vþ a21t2

� �
, V0 (a1

2t2
2),V� a21t

3
2

� �
, and V2� a21t

4
2

� �
–

see Watkins (2000) or Hayes and Stoneham (1984). A strong tetragonal Jahn-
Teller distortion lowers the symmetry and significantly shifts and splits these levels
as shown in Fig 12a. The unpaired electron in the VþSi and V�Si states is spread
equally over four or two of the surrounding atoms, respectively. The entire
electronic behavior of the vacancy can be explained in a one-electron model
(Pantelides and Harrison 1976).
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The states V+ and V� are observed by ESR resonances of unpaired electrons
(Fig. 12a), and V0 and V2� are indirectly observed after photoexcitation. The
V+ ! V0 transition is seen to shift below the V2+ ! V+ transition, which is typical
for a negative-U behavior – see Sect. 2.8. This behavior was predicted by Baraff
et al. (1980a, b) and later experimentally confirmed by Watkins (1984). See also
Stoneham (1975), Lipari et al. (1979), and Jaros et al. (1979).

The VþSi state is metastable and disproportionates to VSi
0 and the stable V2þ

Si

(Fig. 12c), which lies ~0.13 eVabove Ev. This center releases two holes when excited
and dissociates immediately after creation, since the VSi

0 center is shallower
(0.05 eV).

a b

21 21 21

3

Fig. 11 Electron-density profile in the (110) plane of Si. (a) Ideal atomic array, (b) array perturbed
by center vacancy; values are in units of electrons per bulk unit cell (After Baraff and Schlüter 1979)
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Much progress has been made with the identification of intrinsic defects in
diamond, in part due to the availability of high-quality synthetic diamonds that can
be enriched with the 13C isotope (nuclear spin I = 1/2) which yields a hyperfine
satellite structure in ESR studies. The diamond vacancy has been studied by optical
spectroscopy (Davies and Manson 1994) and ESR (Isoya et al. 1992).

A convenient method8 for producing such vacancies is by bombardment with
relatively fast electrons (Loferski and Rappoport 1958) at cryogenic temperatures,
and trapping the cogenerated, highly mobile interstitial (▶Sect. 3.2 of chapter
“Crystal Defects”) at other lattice defects, e.g., group III atoms (Watkins 2000).
The threshold energy for producing vacancies with electrons in Ge and Si is 14.5 and
12.9 eV, respectively. Vacancies in binary semiconductors can be analyzed in a
similar fashion, taking into account the distinction between cation and anion
vacancies.

2.2.2 Vacancies in Compound Semiconductors
Vacancies can play an important role in compound semiconductors. They may, for
example, limit the achievable doping level: the Ga vacancy in GaAs acts under
As-rich conditions as a compensating center at high n-type doping (Zhang and
Northrup 1991; Baraff and Schlüter 1985). Calculated energy for the formation of
the Ga vacancy VGa is given in Fig. 13; it depends on the position of the Fermi
energy EF, and the charge-transfer energies are in agreement with more recent
calculations (El-Mellouhi and Mousseau 2005). For a Fermi level near the
conduction-band edge in n-type GaAs, the interstitial VGa defect with threefold
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Fig. 12 (a) Electronic
structure of Si vacancies with
symmetry and occupation of
one-electron orbitals
indicated. (b) Jahn-Teller
distortion (arrows) in the
neutral vacancy. (c) Shift of
levels before (left) and after
lattice relaxation (right) with
charge character indicated
(After Watkins 2000)

8Quenching from high temperature is not fast enough to freeze-in measurable densities of vacancies
(Watkins 1986).
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negative charge has lowest formation energy. The defect hence traps electrons,
thereby compensating the extrinsic doping; if the defect traps Z electrons, an energy
of –Z(EF – Ed) is gained, where Ed is the defect energy-level. As the Fermi level is
lowered, less electrons are trapped by VGa due to an increased formation energy.
Simultaneously, the formation energy of another intrinsic defect decreases, that of
interstitial gallium Gai (Fig. 13b). Hence, gradually more holes are trapped by Gai as
EF approaches the valence-band edge Ev. Since both native defects can be created
by pair formation described by the reaction 0$Gai + VGa, either high doping level,
p-type and n-type, is compensated.

Vacancies also mediate impurity diffusion (Northrup and Zhang 1993) and can
cause deep-level luminescence that degrades the operation of optoelectronic devices.
An example for this is the yellow luminescence in GaN, a broad luminescence band
centered around 2.2 eV that commonly appears in n-type GaN. It is commonly
accepted that this luminescence is caused by Ga vacancies, which introduce energy
levels ~1.1 eV above the valence-band edge, and which forms preferentially in n-
type GaN (Neugebauer and Van de Walle 1996a).

2.3 Self-lnterstitials and Antisite Defects

Self-lnterstitials Elemental semiconductors such as Si and Ge have a rather loosely
packed lattice with coordination number 4 and sufficient space to accommodate
interstitials of the host lattice, that is, self-interstitials. There are several possibilities
for incorporating an additional Si atom in a Si lattice, as shown in ▶ Fig. 5a of
chapter “Crystal Defects”. Three of them are indicated as T, H, and B and have
tetragonal, hexagonal, and bond-centered geometry. After incorporation, the sur-
rounding atoms relax to shifted positions.
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Fig. 13 Calculated formation
energies of defects in GaAs.
(a) Isolated vacancy at the Ga
site VGa, and (b) isolated
interstitial Ga atom Gai at a
tetrahedral site with four
nearest As atoms. The origin
of the Fermi-energy scale is
set to the maximum of the
valence band Ev (After Baraff
and Schlüter 1985)
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The formation energy of the interstitials depends on their specific site as well as
on their charge state. This is shown in Fig. 14, with the formation energy plotted as a
function of the position of the Fermi level (Car et al. 1984). Such dependency
indicates that the recharging of an interstitial makes it more stable at a different
position. Alternating recharging, for example, by recombination with excess carriers
followed by thermal ionization at the changed position, can therefore stimulate
diffusion-see ▶ Sect. 3.2 of chapter “Crystal Defects”.

The Siþi center is metastable; when recharging and relaxing into the Si2þi center, it
shows a negative-U character. Si interstitials are deep-level centers with levels 0.6
and 0.8 eV below the conduction-band edge.

In compound semiconductors, the formation energy of native defects such as the
self-interstitial also depends on the stoichiometry of anions and cations. Ga-rich
conditions in the growth of GaAs, for example, favor the formation of Ga self
interstitals (Baraff and Schlüter 1985). Their formation also depends on the Fermi
level as shown in Fig. 13.

In the II-VI semiconductors ZnSe and ZnTe, families of Frenkel pairs have been
studied (Watkins 2000). In ZnSe, for example, two distinct configurations for
isolated Zn interstitial centers Znþi were identified by optically detected magnetic
resonance, one at the tetrahedral site surrounded by Zn atoms and the other at the
tetrahedral site surrounded by Se atoms. In this case, the migration of interstitials at
cryogenic temperatures could be directly explored.

Antisite Defects Antisite defects are identified in some of the III-V compounds, for
example, AsGa in GaAs. This center can efficiently compensate both shallow
acceptors and shallow donors in GaAs, consequently causing a reduction in semi-
conductivity, and allows for fabricating semi-insulating GaAs (Trautman et al.
1998). The defect by itself is the so-called EL2 center in GaAs (Chadi 2003;
Kaminska and Weber 1993; Baraff 1992; in excited metastable states, this antisite
defect undergoes a large displacement away from Td symmetry and likely forms
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associates related to Asi such as the (VGa – Asi) complex. A comparable defect is the
PIn antisite in InP (Sun et al. 1993).

In compound AB semiconductors, one distinguishes AB and BA as possible antisite
defects. In higher compounds, such antisite formation is often more probable and
presents a larger variety of defects: six in ABC compounds, although only a few of
them are energetically preferred. For a discussion on the relation between stoichi-
ometry and deep-level centers, see Lin et al. (1998).

2.4 Hydrogen in Semiconductors

Hydrogen in semiconductors requires special attention. It can be introduced into the
semiconductor in several ways, either intentionally or unintentionally, where it
diffuses rapidly and interacts with other impurities and defects. Hydrogen is
known to passivate many deep centers and is therefore often used with great benefit
for device fabrication, see Pearton et al. (1992), Pankove and Johnson (1991),
Estreicher (1995), Nickel (1999).

Hydrogen is sometimes introduced into semiconductors intentionally to passivate
defects and improve the electrical properties of the materials. For example, the
efficiency of solar cells is increased by the introduction of H due to the passivation
of deep-level defects and grain boundaries. On the other hand, the unintentional
introduction of H, for example, during epitaxial growth, can lead to the passivation
of the desired shallow dopants. A prominent example is the unintentional passivation
of Mg acceptors in GaN during epitaxial layer growth; the solution of this problem
enabled the rapid development of the GaN-based device technology for lasers and
solid-state lighting (Nakamura et al. 2000).

Experimental and theoretical studies have revealed a variety of interesting prop-
erties of hydrogen in elemental and compound semiconductors. In p-type silicon, for
example, isolated H atoms occupy a bond-centered site where it acts as a donor
which passivates shallow acceptors. In n-type Si, isolated H sits at a thetrahedral site
where it acts as an acceptor which can passivate shallow donors. This amphoteric
behavior originates from the ability of H to adopt different configurations with
different electrical properties (Van de Walle 1991; Johnson et al. 1994). The position
of the Fermi energy where the stable charge state of interstitial hydrogen changes
from the H+ donor state to the H� acceptor state was computed for a wide range of
host zincblende and wurtzite elemental as well as III-V and II-VI compound semi-
conductors by ab initio methods; this study also allowed for predictions of band
aligments in heterojunctions (Van de Walle and Neugebauer 2003).

Many hydrogen-containing defects have been studied; for a survey of defects in Si
see Stavola (1998, 1999a, b). The properties of hydrogenated shallow impurities in
elemental and compound semiconductors are fairly well understood. The structures of
acceptor-H and donor-H complexes in Si are illustrated in Fig. 15. Many hydrogenated
deep-level centers have also been studied. Examples are hydrogenated vacancies and
interstitials in Si and also hydrogenated transition-metal impurities in Si.
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2.5 Substitutional Defects

Substitutionals can be considered as impurities replacing a vacancy. Inserting a Si
atom into a vacant site of a Si host can be considered as having its s and p orbitals
interacting with the A1 and T2 states of the vacancy, producing bonding and
antibonding states which merge with valence and conduction bands, respectively.
Inserting an impurity with substantially lower energy orbitals will produce only a
small shift in the levels, causing (a) an impurity-like hyper-deep bonding level in or
below the valence band and (b) a vacancy-like antibonding level slightly lower than
the vacancy states usually within the bandgap.9 For impurities with energy levels
higher than those of Si, the corresponding levels lie within the conduction band and
slightly above the vacancy states for the bonding-antibonding pair.

The vacancy states are limiting cases for donor- or acceptor-like states to which
both approach asymptotically with increasing depth of the binding potential of the
electron or hole in the impurity. This indicates how the influence of two bands
compresses the spectrum of ground states of a deep level from @E=@V ffi V0 in the
simple one-band model (Sect. 1.1.1) to the actual @E=@Vj j that is rapidly decreasing
with increasing |V0|, where V0 is the depth of the potential well. This is shown
schematically in Fig. 16.

This behavior is deduced from Green’s function calculations using semiempirical
tight-binding Hamiltonians (Hjalmarson et al. 1980). It has been used to calculate the
chemical trend of numerous deep-level centers as a function of the impurity poten-
tial. These levels are shown in Fig. 17. For the impurities to the right of the intersect
of the curves with the conduction-band edge in the figure, the impurity potential is
not large enough to offer a bond state. Here, the effective-mass approximation for
hydrogen-like states yields shallow levels connected to one band only (the conduc-
tion band in this example). For a short review, see Dow (1985).

When using an impurity potential comprised of a deep well and a Coulomb tail
(e.g., like the Abarenkov-Heine potential) with

[111] [111]

a b

H

H

Fig. 15 Structure of (a) the
acceptor-H and (b) the donor-
H complex in Si (After
Stavola 1999b)

9The A1 state of the acceptor is always strongly bound and lies within or below the valence band,
while the T2 states may emerge from the conduction band into the bandgap.
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V rð Þ ¼ λV0 rð Þ þ e2

4πestate0 r
, where V0 rð Þ ¼ V0 for r � r0

0 for r > r0

�
; (12)

and a well deep enough to create a bound ground state in the bandgap, one can
follow the transition from a deep-level center with essentially a vacancy-like charge-
density distribution (dangling-bond-like) to a hydrogen-like (effective-mass-like)
spread-out distribution with decreasing impurity potential (Pantelides 1986b) as
shown in Fig. 18.

The chemical identity of an impurity (i.e., its size, bonding type, and valency) is
responsible for changes of the local symmetry after the incorporation of an impurity.
Some of these changes are related to the symmetry-breaking lattice relaxation,

attractive (V0 < 0) repulsive (V0 > 0)0.0
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Conduction bandFig. 16 Depth of deep donor
and acceptor states as a
function of their impurity
binding-potential V0. The
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is that of the electron state of
the vacancy (After Vogl 1981)
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known as the Jahn-Teller effect and discussed in Sect. 1.3. Others deal with the
strength and angle relation of the bonding forces of the impurity in relation to the
tetrahedrally arranged available dangling bonds of the impurity.

The arrangement of atoms nearest to an impurity has an important influence on
the density of state (DOS) distribution of the resulting levels. This influence is strong
enough to make the DOS of a substitutional sulfur donor in Si look rather similar to
an interstitial Si atom, both in a tetrahedral environment (Vigneron et al. 1983).

Isoelectronic Defects Isoelectronic defects are formed by substitutionals from the
same column of elements as the replaced host atom. Different homologous elements
have a different energy spectrum, since the long-range potential – the Coulomb term –
cancels: the replacing atom has the same valency. The remaining central-cell potential
reflects the chemical identity of the center. Replacing a middle-row host atom (e.g., P
in GaP) with a highest-row atom (here N), one obtains a defect that acts as an electron
trap with binding energy of 10 meV – see ▶Sect. 2.3 in chapter “Shallow-Level
Centers”. Replacing it with a lower-row atom (here Bi), the defect acts as a hole trap
with a binding energy of 38 meV (Dean et al. 1969). Replacement with mid-range
atoms usually does not produce electronic defect centers, but instead produces alloys
with the respective sublattice: As forms a GaAs1-xPx mixed crystal, as does Sb, which
forms GaSb1-xPx. There are no corresponding levels in the bandgap.

λ = 1,00 λ = 0.75 λ = 0.42

λ = 0.40 λ = 0.36 λ = 0.33

λ = 0.30 λ = 0.28 λ = 0.20

Fig. 18 Charge-density distribution of a substitutional impurity (orange circle) in Si, computed
from a potential similar to Eq. 12 for decreasing strength of the short-range potential from λ = 1.00
to λ = 0.20 in the nine subfigures. λ = 1 corresponds to the T2 state of a Si vacancy (After
Pantelides 1986b)
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When traps are created, some of them can be rather deep; for instance, ZnTe:O,
with Ec – Etrap = 0.4 eV, and CdS:Te, with Etrap – Ev = 0.19 eV (Cuthbert and
Thomas 1967, 1968). An extensive review of the experimental observations of
isoelectronic traps is given by Dean (1973). Theoretical models are quite sensitive
to central-cell approximations (Faulkner 1968; Baldereschi and Hopfield 1972; Jaros
and Brand 1979). First-principles calculations are necessary to predict the binding
energy with reasonable accuracy.

In contrast to the hydrogenic effective-mass treatment of shallow donors or
acceptors, where the central-cell corrections are often minor compared to the
far-reaching Coulomb contributions, such short-range potentials are dominant. Fur-
thermore, minor deviations (by 1%) in the estimated potential can result in major
changes (by a factor of 2) of the electronic eigenstates of the defect.

Extensive theoretical and experimental work has been done with GaP. In the next
Sect. 2.6, GaP:OP is discussed as one example. For reviews, see Stoneham (1975)
and Pantelides (1978).

2.6 Chalcogens in Si

Chalcogens (0, S, Se, and Te), incorporated in Si, act as deeper donors. They easily
form associates, especially oxygen, as described by Wagner et al. (1984). Single
substitutional donors are observed for neutral and singly charged S, Se, or Te: they
act as double donors. The charge-density distribution of these donors has been
calculated by Ren et al. (1982).

The ground state of neutral and single ionized donors is rather deep (Table 1)
and shows a substantial chemical shift. In addition, the 1s ground state is split into
A, E, and T2 states, which are nondegenerate, doubly, and threefold degenerate,
respectively. The p states are shallow and follow rather well the effective mass
(hydrogen-like) approximation, as can be seen by comparison with the last column
of Table 1.

The small difference of the ionization energy of ls (A1) states between S and Se is
similar to the minor variance of the ionization energy of the free atoms, compared to
a more substantial difference to Te. The larger hydrostatic pressure coefficient of the
ground state compared to the hydrogen-like centers indicates the connection to
conduction bands (in addition to valence bands). This shift is a result of a substantial
shift in respect to the X valley. For a review, see Grimmeiss and Janzén (1986).

Oxygen-related centers are part of the family of so-called thermal donors,10 some
of which may be isolated oxygen centers, incorporated as interstitials, or combined
with Si as an interstitialcy or a substitutional. For original literature on the different
types of incorporation, see Wagner et al. (1984), Jones (1996).

10Due to the thermal nature of incorporation, that is, during a heat treatment between 350 �C and
555 �C in Czochralski-grown Si.
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Oxygen in GaP and GaAs Oxygen in GaP is one of the more extensively studied
defect centers, since it was of practical interest for light-emitting diodes. Incorporated as a
substitutional of phosphorus, it yields two deep centers stemming from the same defect:

OþP þ e� ! O0
P and O0

P þ e� ! O�P : (13)

The first center with (Ec – Ed)
+ ffi 0.8 eV has a rather small lattice coupling with a

Huang-Rhys factor of S ffi 3: it relaxes to (Ec – Ed)
0 = 0.96 eV. The second center

with (Ec – Ed)
0 ffi 0.6 eV relaxes to (Ec – Ed)

� ffi 2.03 eV; that is, it has a very large
Huang-Rhys factor of S ffi 30. The corresponding band diagram is shown in Fig. 19.
For a review, see Dean et al. (1983).

The strong lattice relaxation (see in chapter ▶ “Optical Properties of Defects”
Sects. 1.2, ▶ 2.3 and ▶Fig. 4) that occurs when a second electron is captured
produces a lower level than that for the captured first electron. This is indicative of
a negative U center discussed in Sect. 2.8. Further observations indicate a much
more complex behavior of the different oxygen-related centers, a discussion of
which is beyond the scope of this book. For a review, see Dean (1986).

Oxygen has long time been supposed to form a deep-level defect in GaAs, until
its role was clarified by local-vibrational-mode studies and deep-level transient
spectroscopy. O has been found to form two distinct centers: an interstitial species
in which oxygen is near the bond center between neighboring Ga and As atoms, and
a second center in which O substitutes for As and is displaced off-center to be
bonded to two of its Ga neighbors. The local-mode spectra and structures of these
oxygen centers are shown in Fig. 20. The substitutional OAs defect is a negative-U
center. For a review, see Skowronski (1992).

In GaN substitutional oxygen with its small covalent radius is found to be a stable
shallow donor, while it forms a deep DX center in AlN (Park and Chadi 1997;
Gordon et al. 2014).

Table 1 Binding energy (in meV) and pressure coefficient (in meV/Pa) of ground and excited
states of neutral and singly ionized chalcogen impurities in silicon (After Wagner et al. 1984)

S0 Se0 Te0 Sþ/4 Seþ/4 Teþ/4 EqH

1s(A1) 318.2 306.5 198.7 153.3 148.3 102.8 31.27

1s(T2) 34.6 34.5 39.2 46.05 41.5 44.3

1s(E) 31.6 31.2 31.6

2p0 11.4 11.5 11.5 11.4 11.5 11.8 11.51

2s 9.37 9.3 9.7 8.83

2p� 6.4 6.4 6.3 6.43 6.4 6.4 6.40

3p0 5.46 5.47 5.5 5.48

3p� 3.12 3.12 3.12 3.12

3d0 3.8 4.0 3.75

4p� 2.2 2.2 2.1 2.19

5p� 1.5 1.44

@E(1s)/@p (	10�8) �1.7 �1.8 �0.9 �2.05 �2.1 �1.2
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2.7 The DX Center

There is a large variety of impurity centers which cause deep levels in the bandgap.
An example is the EL2 defect related to an anion-antisite defect discussed in
Sect. 2.3, which presents a level near the center of the bandgap and plays a key
role in creating semi-insulating GaAs. Another defect in III-V compounds is often
referred to as the DX center: D, since it acts like a donor, and X, because it was
associated with an unknown defect X for a long time. These centers show major
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lattice relaxation and have deep-center characteristics. They are involved in carrier
trapping and recombination traffic and are responsible for persistent photoconduc-
tivity and large Stokes shifts (Lang and Logan 1977).

DX centers are most pronounced in heavily doped n-type III-V compounds and
alloys (e.g., AlGaAs or GaAsP, Lang 1986) and are related to the chemical nature
and concentration of dopants, specifically involving S, Se, Te, Si, and Sn donors. In
AlxGa1-xAs alloys with x > 0.2, the donors show a metastability at ambient pressure
and it can be induced also in GaAs by the application of hydrostatic pressure. Recent
calculations find a similar behavior for AlxGa1-xN alloys (Gordon et al. 2014). O, Si,
and Ge impurities form donors shallow in GaN; in AlN, however, these impurities
exhibit DX-center behavior; by linearly interpolating the (+/�) transition level
energy (relative to the conduction-band maximum) between pure AlN and GaN
for varied Al concentration, the onset for the occurrence of the DX instability is
found at 61% Al for oxygen, 94% for silicon, and 52% for germanium.

Both theory and experiment find that the DX center is related to the isolated
donor. On its metastabile regular lattice site, it is a shallow defect. However, either
the donor (for a donor on the group III sublattice) or its first neighbor (for a donor on
the group V sublattice) can move off its lattice site to create a deep state. The
structure of a Si donor on these two sites is shown in Fig. 21. The DX center traps
two electrons in its deep configuration and is a negative-U defect. For reviews, see
Bhattacharya (1988), Mooney (1990, 1992), Malloy and Khachaturyan (1993),
Kaminska and Weber (1993), and Schmidt et al. (1995).

2.8 Negative-U Centers

In Sects. 2.2.1, 2.3, and 2.6, examples are given for a negative-U center. U is the
Hubbard correlation energy that was introduced by Hubbard (1963) as an energy
penalty when two electrons with opposite spin occupy the same site. For a free atom,
U is the difference between the ionization energy and the electron affinity; typically,
it is on the order of 10 eV. Embedded in a crystal lattice, U is greatly reduced by
lattice shielding and interaction to generally 0.1 . . . 0.5 eV. For most crystal defects,
U is positive; this means that a defect, which has several charge states, has the higher
charged state closer to the related band. This ordering of levels is easily understood

Ga

As Si

Ga

As
Si

Fig. 21 Structure of the
substitutional Si donor in
GaAs on its regular lattice site
(left) and in the distorted DX
configuration (right) (After
Mooney 1992)
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once it is recognized that a second electron is less bound to a donor defect than the
first because the two electrons repulse each other.

Consequently, a negative-U center indicates that with one electron already
trapped, the second one is even more attracted. This can only happen when the
first electron has polarized the defect configuration sufficiently so that the second
one is trapped into a substantially different defect environment: for this, a substantial
lattice interaction (relaxation) is required. The electron-lattice interaction can be
expressed as

V uð Þ ¼ �λu n" þ n#
� �þ βu2=2; (14)

with u as the atomic displacement. For equilibrium (@V=@u ¼ 0), we obtain for the
energy of single and double occupancies �λ2=2β and �λ2=β, respectively, with n"
and n# = 0 or 1 as spin occupancy numbers, λ as the electronic lattice coupling,
similar to Fröhlich’s lattice coupling constant for free electrons αc (but not dimen-
sionless), and β the elastic restoring term. After adding the always-positive normal
Hubbard correlation energy, we have

U ¼ U0 � λ2=β; (15)

which is a defect property and can become negative for large electron-lattice
coupling and small lattice restoring forces. In effect, the lattice near the defect site
now harbors a bipolaron (see ▶ Sect. 1.2.2 of chapter “Carrier-Transport Equa-
tions”), as suggested by Anderson (1975). This can be described as forming an
extrinsic Cooper pair, similar to the Cooper-pair formation in a superconductor
(▶ Sect. 1.2 of chapter “Superconductivity”). Here, however, the defect center
assists such pair formation, consequently yielding a substantially increased binding
energy (U ). For calculation of λ and U, see Baraff et al. (1980b).

As a result, the negative-U center is not stable in its singly occupied state, since
energy (U ) can be gained by trapping another carrier. Consequently, the singly
occupied shallow state is not observed after the filling process (e.g., via optical
excitation) is switched off and sufficient time has passed for relaxation. With
continued excitation, however, both the shallow and deep states can be observed
(Watkins 1984).

In addition to the GaP : OP
0 center, theVþSi and theSi

þ
i are known to have negative-U

character and many more deep centers are probably of a similar type (Watkins and
Troxell 1980). Hydrogen in Si has been identified as a negative-U center, both
theoretically (Van de Walle et al. 1989) and experimentally (Johnson et al. 1994). A
general explanation for the negative-U behavior of hydrogen in semiconductors was
discussed by Neugebauer and Van de Walle (1996b), see also Markevich et al. (1997).

Negative-U in Chalcogenide Glasses Some optical and electron-spin resonance
behavior of chalcogenide amorphous semiconductors can be explained by assuming
negative-U centers (Street and Mott 1975). Such centers were identified by Kastner
et al. (1976) as valence-alternation pairs. For instance, dangling bonds in broken
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chains can be bound to an adjacent unbroken chain by a valence alternation, shown
here as a charge disproportionation

2Se01ð Þ ! Se�1ð Þ þ Seþ3ð Þ; (16)

the two dangling Se atoms in such a chain disproportionate to form a negatively
charged dangling bond in onefold coordination, indicated as subscript, and one
positively charged Se atom attached to the neighboring chain with threefold coordi-
nation (see Fig. 22), in an exothermic reaction: the charged pair has a lower energy
than the neutral defects. The Coulomb energy between the two electrons in the
negatively charged defect is more than compensated by the lattice-relaxation energy.
Therefore, this center is a negative-U center.

The existence of negative-U centers in amorphous semiconductors can explain
the pinning of the Fermi level by such defects without showing a high density of
uncompensated spins, which would otherwise be expected when compensation
occurs between ordinary donors and acceptors (Fritzsche 1976).

2.9 Instabilities of Shallow and Deep Centers

There are centers which show metastability as a shallow or as a deep center.
Examples are metal-acceptor pairs in covalent crystals or excitons bound at a
donor (see ▶Sect. 2 of chapter “Shallow-Level Centers”) in AlGaAs. These centers
can be explained as having a negative-U character. When occupied with one
electron, they behave as a typical shallow center, but turn into a deep center when
a second electron is trapped.

When a carrier is captured by a deep center, it relaxes often to a substantially
lower energy. Such lattice relaxation can be sufficiently large to change the
configuration of the defect. Metastable configurations can also exist for which an
activation energy is required to return to the ground-state configuration. The
vacancy in Si, the EL2 defect in GaAs, the DX center in AlGaAs, and H in Si all
exhibit large lattice relaxation and have bistability or metastability. For a discus-
sion of the effects of large lattice relaxation, see Scherz and Scheffler (1993),
Watkins (1991).

(-) (+)
+ +

(0) (+)

Fig. 22 Negative-U model by disproportionation at a dangling bond with charge character
indicated (After Street and Mott 1975)
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3 Transition-Metal Impurities

A very large group of deep centers are those involving transition metals. Many of
them act as recombination centers. Others are efficient activators for luminescence or
for sensitizing the semiconductor for high-gain photoconductivity. Transition-metal
impurities include 3d, 4d, and 5d transition metals, 4f rare earth, and 5f actinides. All
of these elements have unsaturated inner shells. Their outer-shell electrons shield
part of the interaction with the host lattice. The center can be described by a tight-
binding approximation, that is, like an individual atom, but perturbed by the
surrounding lattice field-see Sect. 1.4.

3.1 Effect of Site, Charge, Spin, and Excitation

The properties of the center are determined by its chemistry and its character relating
to the host lattice, such as its

• Site character, as interstitial or substitutional within a host lattice of given
symmetry

• Charge character in relation to the oxidation state, conventionally identified by
its remaining valence electrons, e.g., Cr3+ when replacing Ga3+ in a GaAs lattice,

and its charge state relative to the host lattice, for example, Cr3þð Þ0Ga neutral,

Cr2þð Þ�Ga, or Cr4þð ÞþGa as negatively or positively charged when incorporated in a
GaAs lattice on a Ga site

• Spin character, as high-spin, when the unsaturated d-shell electrons have preferably
parallel spin (Hund’s rule), resulting in a highelectron–electronandweak crystal-field
interaction, and as low-spin,whenelectrons havemore antiparallel spin,11 resulting in
weak electron–electron and stronger crystal-field interactions (see Table 2)

• Transition character with respect to an optical excitation, for an intracenter
transition with charge conservation at each center, or an ionization with charge
transfer to the conduction or valence band or to another center.

The solubility of 3d impurities in Si is extremely low, typically with a maximum
concentration of 1014 cm�3. This makes positive identification difficult since the
solubility limit lies below the threshold of conventional analytic chemistry. The 3d
elements are preferably incorporated in interstitial sites of Si, while 5d elements are
mostly substitutionals. The solubility of Cu and Ni in Si, however, is much larger, up
to 5 � 1017 cm�3. In III-V and II-VI compounds, the solubility of the 3d elements is
higher, typically 1017 cm�3. An exception is Mn, which forms continuous solid

11With parallel spins there are less alternatives to populate states of equal energy (less degeneracy).
With antiparallel spin orientation, there is more degeneracy, giving the opportunity to the Jahn-
Teller splitting to produce an even lower level. For transition-metal impurities, Hund’s rule, and for
Si vacancies, the Jahn-Teller effect produces the lower ground state (Zunger 1983).
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solutions with II-VI compounds: it produces a dilute magnetic semiconductor (see
▶ Sect. 2 of chapter “Magnetic Semiconductors”).

Site Character Incorporated as a substitutional, the transition-metal impurity entails
interaction with the states of the replaced vacancy. This means that certain states
hybridize strongly with the corresponding states of the vacancy, for example, the d(T2)
state of CrSi with theT2 state of the vacancy (see Zunger and Lindefelt 1983). Interstitials
of the Ti to Zn 3d elements have little interaction of their d orbital with the crystal state.

Charge Character It is characteristic of the 3d impurities that many of them have
several stable charge characters (Fig. 23), yielding levels in the bandgap with a
relatively small energy difference between them, typically 0.5 eV rather than 2–3 eV.
Each of these levels split due to the crystal field and the Jahn-Teller effect (dynamic
and cooperative-see Bates and Stevens 1986). The strain induced by the defect
causes a change in symmetry surrounding each defect center. The tetrahedral
symmetry of GaAs becomes orthorhombic with incorporation of Cr3+ and becomes
tetragonal with Cr2+ (Bates and Stevens 1986). In Si, interstitial 3d impurities cause
an increase in distance of the four nearest neighbors and a decrease in distance of the
six next-nearest neighbors. This makes the lattice surrounding the 3d impurity nearly
tenfold coordinate (Lindefelt and Zunger 1984a, b).

Significant concerns include the identification of the ground state and the proper
sequencing of higher excited states. A number of empirical rules are used in the
classical discussions (Kaufmann and Schneider 1982). Important factors are the Hund
rules, which require that the ground state has maximum multiplicity (2S + 1) and
maximum L, and that J = L � S when the shell is less (+) or more (�) than half full
(see▶Sect. 1.1 of chapter “Magnetic Semiconductors”; Ashcroft and Mermin 1976).
For instance, when a Cr atom replaces a Ga atom in n-type GaAs and traps an
additional electron, it may change from a 3d5 4s1 configuration to a 3d5 4s2 or 3d3

4s2 4p2 configuration; the latter is more Ga-like and more probable. The remaining
three electrons in the d shell determine the defect-level spectrum and distribute

themselves between e orbitals, transforming according to 2z2 � x2 � y2ð Þ= ffiffiffi
6
p

and

Table 2 Occupancies of
the d orbitals (Fig. 24) of a
transition-metal impurity in
states of either t2 or
e symmetry in an octahedral
coordination in a
semiconductor host crystal

Number of d electrons

High-spin Low-spin

t2 e t2 e

1 " "
2 "" ""
3 """ """
4 """ " "#""
5 """ "" "#"#"
6 "#"" "" "#"#"#
7 "#"#" "" "#"#"# "
8 "#"#"# "" "#"#"# ""
9 "#"#"# "#" "#"#"# "#"
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x2 � y2ð Þ= ffiffiffi
2
p

(fourfold degenerate), and t2 orbitals, transforming according to xy, yz,
and zx (sixfold degenerate); lower-case letters indicate one-electron states, see Fig. 24.

The ground states of the differently charged Cr substitutional centers in GaAs are

Cr4þð Þþ (3d2) E – Ev = 0.45 eV, sn = 9 � 10�17 cm2

Cr3þð Þ0 (3d3) E – Ev = 0.74 eV, sn = 10�17 cm2

Cr2þð Þ� (3d4) E – Ec = 0.12 eV, inside conduction band
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cation substitutional incorporation (lower diagram) (After Zunger 1986)
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Many other centers in GaAs as well as other semiconductors are identified and
reviewed by Clerjaud (1985) and Zunger (1986). A list of the different oxidation
states and charges relative to the semiconductor is shown in Fig. 23b. The ionization
energy of 3d transition metal ions is given in Fig. 23a.

Transition Character The transitions at the transition-metal dopant can be
described as intracenter (also referred to as intraionic) transitions; for instance,

eð Þ2t2 þ hν! e t2ð Þ2: (17)

When, on the other hand, carriers from one of the bands are involved, these
transitions can be described as ionization (i.e., as charge-transfer transitions),
such as

eð Þ3 þ hν! eð Þ4 þ hþ: (18)

The corresponding energies for intracenter transitions are listed in Table 3 and for
ionization in Table 4 – see also Pantelides and Grimmeiss (1980).

3.2 The Energy of Levels

The crystal-field splitting of levels of a transition-metal impurity can be estimated in
tetrahedral symmetry as

dyz

dz2

dxz

dx2 - y2

dxy

y

x

y

x

y

x

zz z

y

x

z

y

x

z(1) (2)

(3) (4) (5)

Fig. 24 d orbitals of wavefunctions in e symmetry (1) and (2) and in t2 symmetry (3)–(5)
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Δ ¼ E eð Þ � E t2ð Þj j ¼ � 4

15

Ze2

R

r4
� �
R4

; (19)

where R is the distance to the nearest neighbor (ligand) and hr4i is the expectation
value of r4 for the 3d wavefunction (Hayes and Stoneham 1984). Here Δ increases
with increasing covalency, higher charge of the transition metal, and higher transi-
tion series. The effective crystal-field splitting is given in Table 5 for some of the 3d
impurities in a few binary compounds.

Table 3 Observed excitation energies (eV) of 3d-transition metals as cation substitutionals in
doped II-VI and III-V semiconductors; ZPL denotes a zero-phonon line (After Zunger 1986)

Ground
state
impurity

3A2
4T1

5T2
6A1

5E 4A2
3T1

Ti2+ V2+ Cr2+ Mn2+ Fe2+ Co2+ Ni2+

Host

ZnS 0.53(4T2) 0.64(5E) 2.34(4T1) 0.44(5T1) 0.46(4T2) 0.54(3T2)

1.21 (3T1) 1.14(4A2) 1.36(3T2) 2.53(4T2) 2.07(3A2) 0.77(4T1) l.13(3T2)

1.39(4T1) 1.75(3T1) 2.67(4E) 2.14(3A1) 1.76(4T1) 1.52(3T2)

ZnSe 0.74 (3T1) 0.50(4T2) 0.68(5E) 2.31(4T1) 0.34(5T2) 0.43(4T2) 0.50(3T2)

1.22 (3T1) 1.08(4A2) 1.61(3T2) 2.47(4T2) 1.26(3T1) 0.78(4T1) 1.10(3A2)

1.24(4T1) 1.85(3T1) 2.67(4E) 1.67(4T1) 1.46(3T1)

ZnTe – – 0.68(3E) 2.3 (4T1) 0.31(5T2) 0.72(4T1) –

2.4 (4T2) 1.44(4T1)

2.6 (4E)

CdS 0.40 (3T2) 0.61 0.66(5E) – 0.32(5T2) 6.8(4T1) 0.51(3T2)

0.71 (3T1) 1.08 1.73(4T1) 1.01(3A2)

1.22 (3T1) 1.8(4T1) 1.58(3T1)

CdSe 0.38 (3T2) 0.43(4T2) 0.62(5E) – 0.37(5T2) 0.37(4T2) 0.52(3T2)

0.62 (3T1) 0.86(4A2) 0.29(ZPL) 0.35(ZPL) (0.45, ZPL)

1.18 (3T1) 1.31(4T1) 0.68(4T1) 0.99(3A2)

1.61(4T1) 1.42(3T1)

(1.35, ZPL)

CdTe 0.35 (3T2) 0.85(4A2) 0.63(5E) 2.2 (4T1) 0.28(5T2) 0.37(4T2) –

0.62 (3T1) 1.11(4T2) 2.5 (4T2) 0.72(4T1)

1.14 (3T1) 1.44(4T1)

GaP 0.60 (3T2) 0.87(5E) 1.34(4T1) 0.41(5T2) 0.56(4T2) 0.82(3T2)

– 1.07 1.53(ZPL) 0.87–1.24 (4T1) 1.24(3T1)

1.50(4T1) 1.43(3A2)

GaAs 0.565(3T1) 0.9 – 0.37(5T2) 0.5 (ZPL) (4T2) 1.15(3T1)

0.66 (3T1,
3T2) 1.03 0.84(ZPL, 5E) 0.87–1.05 (4T1)

1.04 (3T1) 0.69 1.40(ZPL) (4T1)

InP – – 0.76(ZPL, 5E) – 0.35(5T2) 0.47(ZPL) (4T2) –

0.92(4T1) –

0.79(ZPL)

0.78–0.92
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The multielectron levels in the irreducible representation of the tetrahedral Td point
group are a1, a2, e, t1, and t2 – see Bassani et al. (1974) or Madelung (1981). In Fig. 25,
an example for the transition from the lower 5T2 (t

2 e2) to the excited 5E (t3 e1) state is
given for GaAs:(Cr2+)� (Clerjaud 1985). A list of possible splittings of the free
transition-metal ion states after incorporation in a semiconductor of Td symmetry is
given in Table 6. In addition, one has to consider splitting due to spin-orbit, lattice-
phonon, and the Jahn-Teller effect interactions.

The relationship of the level spectrum to energies of the host lattice and the
chemical identity of the transition metal has been analyzed using a self-consistent
quasiband crystal-field method and employing a density-functional Green’s func-
tion approach, introduced by Lindefelt and Zunger (1982). This method was first
applied to 3d transition-metal impurities in an Si host lattice (Zunger and Lindefelt
1983) and yields results in agreement with the experiment when spin polarization
is included (Beeler et al. 1985; for comparative remarks, see Zunger 1986). Typical

Table 5 Effective crystal-
field splitting Deff (in eV) of
3d impurities in binary
semiconductors (After
Zunger 1986)

Host crystal

ZnS ZnSe InP GaAs GaP

Impurity Cr 0.540 0.540 0.64 0.65 0.67

Mn 0.402 0.400 0.52

Fe 0.430 0.41 0.43 0.44 0.45

Co 0.453 0.459 0.575 0.590 0.608

Ni 0.520 0.510 0.91 0.97

{∆+

0
K

2K
3K
4K

A2
T2
E
T1
A1

T2

T1

T1 + T2

A2 + E 

-2D + 3/5 a + 2/5 F

-D + 2/5 a + 4/15 F

2D + 3/5 a + 1/15 F
2D + 2/5 a + 1/15 F

5
10

5

5
15

5
5

Fig. 25 Level scheme for
intra d-shell transitions of
GaAs:(Cr2+)� with weight
factors for competing
transitions (not to scale); see
Fig. 28 (After Clerjaud 1985)
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examples are shown in Fig. 26, identifying t2 and e states, which are contained
within the bands for some of the transition-metal impurities. Their energy sequence
is inverted when comparing interstitial and substitutional incorporation into the
host lattice. The charge character of these levels is given in Fig. 26b and identifies
donors (� ! 0) and acceptors (+ ! 0). The level spectrum for substitutional
defects is less structured, and no deep levels are obtained for Ti and Fe. For 4d
impurities, see Beeler et al. (1986); for other transition metals in III-V compounds,
see Clerjaud (1985). For configuration interaction in II-VI and III-V compounds,
see Dreyhsig (1998). For charge-transfer spectra in III-V compounds, see Wolf
et al. (1993). For intracenter transitions of transition-metal impurities in II-VI
compounds, see Bouhelal and Albert (1993); see also Dahan and Fleurov (1994)
and Fleurov and Dahan (1995). Defect levels in Si are reviewed by Chen and
Milnes (1980).

The investigations of Zunger (1985) have shown some universality of binding
energies within the bandgap. When normalized to the vacuum level using the
intrinsic work function of the host, all binding energies of the same 3d impurity in
different host crystals are approximately the same-see Fig. 27. This reflects
the screening of the localized 3d electrons by outer-shell electrons and was
employed to obtain valence-band offsets at semiconductor interfaces, see ▶ Sect.
2.2.4 of chapter “Crystal Interfaces”.

Table 6 Splitting of free transition-metal ion terms into many-electron terms after incorporation
into semiconductors of Td symmetry at lattice site (solid underlining) or interstitial site (dashed
underlining)

Free-ion many-electron terms Td crystalline many-electron terms

Ground state

S J

S Terms

Fe3+,Mn2+,Cr+;d5,6S 6A1, t3e2ð Þ
��������

5
2

5
2

D Terms

Sc2+;d1,2D 2T2 t1e0ð Þ þ 2E e1t0ð Þ 1
2

Mn3+,Cr2+;d4,5D 5T2 t2e2ð Þ þ 5E t3e1ð Þ 2 1, 2, 3

Co3+,Fe2+;d6,5D 5T2 t4e2ð Þ þ 5E t3e3ð Þ 2 0, 1
2
, 1

Cu2+,Ni+; d9,2D 2T2 t5e4
� � þ 2E t6e3

� �
1
2

1
2
, 3
2

F Terms

V3+,Ti2+;d2,3F 3T1 t2e0ð Þ þ 3T2 t1e1ð Þ þ 3A2 e2t0ð Þ 1

Cr3+,V2+; d3,4F 4T1 t1e2ð Þ þ 4T2 t2e1ð Þ þ 4A2 t3e0ð Þ 3
2

1
2
, 3
2
, 5
2

Ni3+,Co2+,Fe+;d7,4F 4T1 t5e2
� � þ 4T2 t4e3ð Þ þ 4A2 t3e4ð Þ 3

2

Cu3+,Ni2+, d8;3F 3T1 t4e4ð Þ þ 3T2 t5e3
� � þ 3A2 t6e2

� �
1 0, 1, 2
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Transition-metal atoms in covalent crystals show only minor net charges, that is, a
minor fraction of ionic bonding, and tend to approach a noble-metal configuration. In
Ni this is best achieved. Its extremely high diffusivity in Si (D = 10�4 cm2 s�1) may
be an indicator of this fact as it renders the Ni atom small and inert.

The ability of transition-metal impurities to trap carriers is used for compensation,
that is, to produce less-conductive (semi-insulating) semiconductors like, for exam-
ple, InP:Fe. For changing charge states in II-VI semiconductors see Kreissl and
Schulz (1996). Much of the earlier work to identify the level spectrum was done by
electron-paramagnetic resonance (EPR), see Ludwig and Woodbury (1962); for a
review, see Weber (1983).
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Fig. 26 (a) Ground-state energies of neutral 3d impurities in a Si host with level occupancy in
parentheses. (b) Calculated (solid curves) and observed (dashed) 3d impurity levels in Si at
interstitial and lattice (substitutional) sites (After Beeler et al. 1985)
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3.3 Optical Transitions of Transition-Metal Dopants

In Fig. 28, a typical optical absorption spectrum of Cr2+ in GaAs at 6 K is shown
which can be understood as intraionic 5T2(

5D) ! 5E(5D) transitions of the d4

electrons, split by the effects of Jahn-Teller and spin-orbit interactions (Williams
et al. 1982). The corresponding zero-phonon transitions are identified in Fig. 25. The
shape of the Cr2+ absorption band is explained by phonon coupling and lattice strains
in a tetragonal site; the Jahn-Teller energy of the 5T2 state is 75 meV and that of the
5E state is 6.2 meV (see Deveaud et al. 1984). For a review of other absorption
spectra of transition metals, see Clerjaud (1985) and Pajot and Clerjaud (2013) . In
semi-insulating GaAs, ionizing transitions from the Cr3+ center are observed in
addition to those listed above:

Cr3þ
� �0

Ga
þ e

�
vb þ hν! Cr2þ

� ��
Ga
: (20)

Most of the deep-center optical transitions have been studied for transition metals
and rare earths in II-VI compounds, which show well-localized states due to the
strong interaction of 3d electrons. Some of these are described by crystal-field
theory (Griffith 1964), as a result of the splitting of d states by the field from
nearest neighbors (Hennel 1978). The transitions are also sensitive to variations of
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the crystal field beyond the nearest naighbors, induced, for example, by stacking
faults (Pohl et al. 1990) or other impurities (Pohl and Gumlich 1989). The Jahn-
Teller shift (see Uba and Baranowski 1978) has been used to correlate some of the
rather complex features of the optical absorption of ZnSe:Co (Fig. 29).

The optical spectra of transition-metal impurities in wide-gap crystals is rich in
absorption and emission lines due to several charge states that are available within
the bandgap for a variety of these elements and various crystal-field splittings.
Vanadium doping of the II-VI semiconductors ZnS (Biernacki et al. 1988), ZnSe
(Goetz et al. 1992), and ZnTe (Peka et al. 1996) leads to three pronounced
luminescence bands related to intraionic multiplett transitions 5E(D) ! 5T2(D) of
V+ (d4), 4T2(F) ! 4T1(F) of V

2+ (d3), and 3T2(F) ! 3A2(F) of V
3+ (d2), as shown

for ZnTe:V in Fig. 30. In ZnTe, the respective acceptor level for the (V+/V2+)
charge-transfer transition lies 9400 cm�1 (1.17 eV) above the valence-band edge,
and the donor level for the (V2+/V3+) charge-transfer transition lies 12,500 cm�1

(1.55 eV) below the conduction-band edge. The broad emission bands with weak
zero-phonon lines at their high-energy onset illustrate the strong lattice coupling
leading to the pronounced phonon-assisted emissions.

The absorption of some transition-metal impurities is responsible for the color
of the host crystal. For example, the red color of ruby is due to Cr3+ in Al2O3,
and the blue color of sapphire is due to charge transfer from Fe2+ to Ti4+ in
Al2O3.

Transition Metal Impurities in Alloys The transition energies of 3d impurities
track with the vacuum level of the host semiconductor. In an alloy AxB1-xC, the
transition energy is given by
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Fig. 28 Optical absorption spectrum of Cr2+ in GaAs at 6 K. The red curve is a theoretical
estimation using spin-Hamiltonian parameters from EPR measurements (After Clerjaud 1985)
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E xð Þ ¼ E 0ð Þ þ α x , where α ¼ φ x ¼ 1ð Þ � φ x ¼ 0ð Þ; (21)

using a linear variation of the slope αwith the intrinsic semiconductor workfunction
φ on composition x; see also ▶Sect. 2.2.4 of chapter “Crystal Interfaces”.

4 Summary

Deep-level defect centers have tightly bound electrons which, for the ground state,
are localized near the core by a central-cell potential. The potential depth for
substitutional defects is indicated by the atomic electronegativity, expressed by the
difference between the s energies of host and impurity for donors and the respective
p energies for acceptors. The electronic eigenfunctions can mix with both conduc-
tion and valence bands, in contrast to shallow-level defects. The potential has
usually long-range Coulomb tails, rendering higher excited states of a deep-level
defect hydrogen-like with carrier orbits extending well into the surrounding lattice.

Many deep defects relax substantially after excitation or charging; consequently
the equilibrium positions of the surrounding atoms can significantly change. Such
deep-level centers may act as centers for nonradiative recombination by forming a
bridge between conduction and valence band. Furthermore, strong lattice coupling
leads to optical spectra with hardly discernible zero-phonon transition lines and
broad phonon-assisted transitions, which are substantially shifted between optical
absorption and emission.

Deep centers act as deep traps for either electrons or holes, yielding donor
character for a (0/+) charge-transfer transition and acceptor behavior for a (0/–)
transition. Many such centers have positive and negative charge states in the
bandgap with energy levels depending on the position of the Fermi energy, providing
the ability to effectively compensate extrinsic doping.

Prominent intrinsic deep-level defects are vacancies, self-intersitials, and anti-
sites. They may be metastable in some charge state with substantial lattice relaxation
and also be affected by Jahn-Teller distortion. A prominent group of extrinsic deep
defect centers are transition-metal impurities with their uncompleted inner d (or f )
shell. Excitation leads either to an intracenter transition within the partially filled
inner shell, leaving the charge state unaffected, or to a charge-transfer transition
changing the charge state.

As traps and recombination centers, these deep-level defects are usually detri-
mental for semi- and photoconducting devices, by reducing their response and
rendering them slow. However, specific types of deep traps can be beneficial by
storing carriers for a long time. This is important for sensitizing photoconductors or
by accumulating the effect of radiation in solid-state dosimeters. Other deep centers
are essential for many applications in luminescence, for example, in LEDs or solid-
state lasers, or to render semiconductor layers semi-insulating for field-effect
transistors.
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Abstract
Amorphous and organic semiconductors have strong topological irregularities
with respect to specific ideal structures, which depend on the particular class
of such semiconductors. Most of these defects are rather gradual displace-
ments from an ideal surrounding. The disorder leads to defects levels with a
broad energy distribution which extends as band tails into the bandgap.
Instead of a sharp band edge known from crystalline solids a mobility edge
exists separating between extended states in the bands and localized states in
the band tails.

Amorphous semiconductors, also referred to as semiconducting glasses, com-
prise the classes of amorphous chalcogenides and tetrahedrally bonded amor-
phous semiconductors. Amorphous chalcogenides are structurally floppy solids
with low average coordination numbers and pronounced pinning of the Fermi
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level near midgap energy. The more rigid tetrahedrally bonded amorphous semi-
conductors have larger coordination numbers. They may be well doped p-type
and n-type much like crystalline semiconductors.

Organic semiconductors comprise small-molecule crystals and polymers. Both
have weak intermolecular bonds favoring deviations from ideal alignment. In
small-molecule semiconductors the structure of thin films grown on substrates
usually deviates from the structure of bulk crystals, with a substantially different
molecule ordering at the interface and a strong dependence on the dielectric
properties of the substrate. Polymers consist of long chain-like molecules packed
largely uniformly in crystalline domains separated by amorphous regions with
tangled polymer chains. Besides chemical structure of the chains crystallinity
depends on the molecular length.

Keywords
Amorphous chalcogenides � Anderson localization �Anderson-Mott localization �
Band tails � Coordination number � Dangling bonds � Defects � Doping �
Localization � Grain boundary � Mobility edge � Organic semiconductors �
Polymers � Semiconducting glasses � Small-molecule crystals � Point defects �
Tailing of states � Trap states � Tetrahedrally bonded amorphous semiconductors �
Thin-film phase

1 Tailing States in Disordered Semiconductors

Amorphous inorganic semiconductors and organic semiconductors show similarities
in their electronic properties despite differences in bonding and structure. Both types
of solids have substantial disorder in their structure induced by topological irregu-
larities and potentially also by alloying. In▶Sect. 3 of chapter “Optical Properties of
Defects” we have shown that heavily disordered crystalline semiconductors have
band tails extending into the bandgap. Band tails, induced by disorder, are also
referred to as Lifshitz tails (Lifshitz 1964).

Doping of disordered semiconductors for achieving controlled n or p-type
conductivity is often hampered by a pinning of the Fermi level deep in the
bandgap. It was originally believed that the transfer of electrons from donor- into
acceptor-like tailing states would cause such pinning, but the small density of
respective defects and transport properties (see chapter ▶ “Carrier Transport
Induced and Controlled by Defects”) do not support this explanation. Anderson
(1975) explained this finding in terms of a model in which the coupling of electrons
to the lattice creates an attractive interaction between two electrons of opposite
spin, which occupy the same one-electron defect state; this leads to negative-U
centers (▶ Sect. 2.8 in chapter “Deep-Level Centers”). The simple model was
improved by Street and Mott (1975) and Kastner et al. (1976), and is outlined in
the next section.
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There is a continuous transition from band states that are not localized to
localized states of major defects within the bandgap. Depending on the degree of
disturbance of the lattice potential, the eigenstate of an arbitrary host atom may lie
in the band, near the band edges, or further separated within the bandgap. An
important question relates to the distribution of these levels in a typical amorphous
semiconductor. More specifically, we are interested when such levels can be
considered part of the band, and when they become defect levels in the bandgap.
This distinction is easily visualized in a crystalline semiconductor, in which band
states can be occupied by electrons that are described by nonlocalized Bloch
wavefunctions, as opposed to gap states described by localized electron eigen-
functions. In amorphous semiconductors and in many cases also in organic semi-
conductors, this is not possible since k is no longer a good quantum number due to
the large topological disorder.

1.1 The Anderson Model

An instructive approach to model the level distribution in a disordered semiconduc-
tor is to change from a strictly periodic potential, representing a crystal and yielding
bands separated by gaps in the classical sense, to a perturbed potential, which can be
made less and less periodic, and analyze the resulting eigenfunctions (Anderson
1958). Anderson starts from a three-dimensional Kronig-Penney potential, which
yields simple bands interspaced with bandgaps, much like the one-dimensional case
discussed in ▶ Sect. 1.2 of chapter “The Origin of Band Structure”. The band width
ΔEB can be expressed as

ΔEB ¼ 2mI, (1)

where m is the mean coordination number1 and I is the transfer integral

I ¼
ð
ψ� r� Rnð ÞHψ r� Rnþ1ð Þdr (2)

between states localized at Rn and Rn+1, and where H is an appropriate one-particle
Hamiltonian. The transfer integral can be approximated in the form

I ¼ I0 exp �r=r0ð Þ; (3)

1In amorphous structures the average number of next neighbors may substantially differ from that of
the corresponding crystalline counterpart, see ▶ Sect. 3.1 of chapter “The Structure of
Semiconductors”.
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it decreases with increasing well depth V = (1/e) I. Here r is the distance from the
well center and r0 is the fall-off radius of the transfer integral. For a hydrogen-like
potential well, I0 is given by

I0 ¼ 3

2
1þ r

r0

� �
þ 1

6

r

r0

� �2
" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2me2E0

p
ħ

; (4)

with E0 as the ground state in a single well and

r20 ¼ ħ2= 2mE0ð Þ: (5)

With periodic wells, the ground state E0 broadens to a band with band width ΔEB –
see Eq. 1. It results in a rather narrow band when the wells are sufficiently deep and
spaced widely enough (Fig. 1a).

This model has a wide range of application. For instance, we can use the results to
explain that donors, when spaced close enough to each other, produce a narrow
impurity band rather than a sharp ground-state level. The application of this model to
amorphous semiconductors will become evident in the next section.

Let us first explore what happens when the model is applied to a periodic lattice
potential, however, with changes from the strict periodicity, introduced by chang-
ing the interatomic distance or the potential. Anderson superimposes a random
potential V with a spread of �ΔV/2 onto the average well depth V0 (Fig. 1b) and
consequently obtains a broader level distribution with tails beyond the original
band edges. When ΔV is very small compared to the well depth, only small
deviations from the periodic Bloch-type solutions occur. These result in some
scattering of essentially free Bloch electrons within this band, with a mean free
path given by (Mott and Massey 1965):

V

V

V0

E

g(E)

E

g(E)

∆V

x

x

a

b

Fig. 1 Anderson model:
(a) periodic potential and
resulting level distribution.
(b) Anderson potential with
random potential V added to
potential-well depth and
resulting level distribution
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λ ¼ ħ
π

2

ΔV

� �
ve

a3 g Eð Þ , where ve ¼ ħ
m

k: (6)

When λ � a, all levels are extended band levels.2 The fluctuating potential then
results only in a slight perturbation of the band edges.

1.2 Anderson and Anderson-Mott Localizations

From Eq. 6 we see that the mean free path λ decreases with increasing spread of the
fluctuating potential ΔV. When the mean free path is reduced to the distance between
the wells, all states within the band become localized. An estimate for the relative
mean free path can be obtained from Eq. 6, using the classical formula for the density
of states g(E) as an approximation near the band edge:

g Eð Þ dE ¼ 1

2π2
2m

ħ2

� �3=2 ffiffiffi
E

p
dE, (7)

yielding

λ

a
¼ 32π

I

ΔV

� �2
¼ 8π

m2

ΔEB

ΔV

� �2
: (8)

Localization occurs when λ/a = 1, i.e., when ΔV increases to 0.7 � ΔEB for an
average coordination number m ¼ 6. The electron is no longer free to move within
the band all over the solid but is localized within the radius of any one atom.

A serious problem of Anderson localization is quite subtle. Anderson determines,
as a criterion for localization, the absence of quantum diffusion in the disordered
system as a function of energy and strength of disorder. This corresponds to a more
stringent decrease of the wavefunction with increasing distance from a center as
expressed by Eq. 8, so that the remaining overlap is insufficient for diffusion from
neighbor to neighbor of an electron in such a center. This yields for an Anderson
localization a potential fluctuation

ΔVA � 8π= κAmð Þ½ 	 ΔEB, (9)

2It should be noted that the definition of a band state is related to the coherence length of an electron
wave, which is essentially the same as the mean free path λ.
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with a numerical factor κA ffi 6. Others have obtained values of κA between 1.3
and 5. A review of these estimations is given by Thouless (1974). The area of
Anderson localization and the transition from localized to delocalized states has been
active for many years; for a review, see Lee and Ramakrishna (1985).

Mott has applied the Anderson idea to randomly distributed defects as they
may exist in heavily doped crystals or for defect states in amorphous or organic
semiconductors, which results in an impurity band of width ΔEimp - see ▶ Sect. 1
of chapter “Carrier Transport Induced and Controlled by Defects”. Instead of a
random distribution of the potential well depth, a random distribution of centers in
space is now assumed. If the density of the randomly placed centers is sufficiently
large, we can think of these as forming an amorphous semiconductor with lateral
disorder.

With a density of Nimp of such centers, the average distance of two neighboring
centers is given by

rimp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Nimp

3

q
: (10)

When close enough, they interact with each other and influence their eigenstates as
given by the transfer integral

Iimp / Vimp ¼ V0 exp �rimp=r0
� �

: (11)

Equating this Vimp (which fluctuates with rimp) with the fluctuating potential in the
Anderson model and assuming according to Eq. 9 that localization occurs when

Vimp ffi ΔVA ffi 2ΔEimp, (12)

we have with Eq. 1

V0 exp �rimp=r0
� � ffi 4mV0 exp �rA=r0ð Þ: (13)

For an average coordination number m ffi 5, we obtain from Eq. 13

rA � rimp

� �
=r0 ffi ln 4mð Þ ffi 3: (14)

A somewhat lower coordination number for covalent crystals or amorphous semi-
conductors has only minor influence on the numerical value of condition (17). With
an Anderson-Mott density, below which localization occurs,

Nimp

� �
loc

¼ 4π

3
r3A

� ��1

, (15)

we now obtain from Eq. 14 with Eqs. 10 and 15:
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Nimp

� �
loc

¼ NA-M ffi 8� 10�3r�3
0 : (16)

Assuming hydrogen-like centers, this yields with r0 = aqH the condition for Ander-
son-Mott localization - see Mott and Davis (1979):

N
1=3
A-M � aqH ffi 0:2: (17)

This is essentially the same condition that was used for an insulator-metal transition
when the density N described donors in a crystalline semiconductor – see the Mott
transition discussed in ▶Sect. 1.2.2 of chapter “Carrier Transport Induced and
Controlled by Defects”.

1.3 Band Tails, Localization, and Mobility Edge

We will now apply the concept of Anderson-Mott localization to a heavily disor-
dered semiconductor. Most of the states well within the conduction or valence band
are similar to the states within a crystal. This can be justified by the measured g(E)
distribution of an amorphous semiconductor shown in▶ Fig. 43 of chapter “Bands
and Bandgaps in Solids”. We may consider the tailing states extending into the
bandgap (caused by defects or deviations from ideal topology) as disorder,
resulting in a continuous distribution of states. Deeper states occur less frequently,
because the centers which produce such states are less probable. When deep
enough, each type of defect center will produce a localized level. Shallower centers
are, however, close enough: Their levels will broaden into bands, and the resulting
states are no longer localized. Overlapping levels and narrow bands will all melt
into the tailing states. Thus one expects a transition from localized to delocalized
states as one goes from deep tail states to the band states at a critical energy,
referred to as the mobility edge.

There is a smooth transition in the density of states between localized and
delocalized states. It is hence difficult to define a band edge in the classical sense.
However, with the help of the localization criterion, a pseudo-band-edge or mobility
edge can be defined as the energy of the defect level at which localization occurs.
Fig. 2 compares the density of states in a crystalline semiconductor showing a well-
defined band edge with that of a highly disordered semiconductor exhibiting strong
tailing of states into the bandgap; a mobility edge is indicated for n-type conductivity.
Carriers which are thermally activated above the mobility edge contribute to charge
transport, while carriers at lower energy are localized in defect states. Consequences of
band tailing are treated in ▶Sects. 2 and ▶ 4 of chapter “Carrier Transport Induced
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and Controlled by Defects”, when carrier transport is discussed - see also Götze
(1981), and Lee and Ramakrishna (1985).

1.4 Simulation of Defect States in Amorphous Semiconductors

Computer simulations have reached a level of realism required for explaining
experimental observations and provided microscopic pictures of processes in amor-
phous semiconductors, such as the subtle effects of photo-induced structural changes
affecting electron-lattice coupling (e.g., for α-Se by Drabold et al. 2001; for α-Si:H
by Pfanner et al. 2013).

The first step in any simulation study of electronic states in a disordered semi-
conductor is an appropriate atomistic model. Several levels of model potentials are
being applied to arrive at realistic modeling of the disordered system (Wooten and
Weaire 1989; Varshishta et al. 1996; Djordjevic et al. 1995; Mousseau and Barkema
2000). In smaller systems also accurate ab initio calculations were performed
(e.g., for α-Si:H by Jarolimek et al. 2009).

An interesting result from such structural modeling demonstrates that an amor-
phous structure is not the same as that of an equilibrated liquid, particularly for
systems which are not glass formers. Thus, for α-Si, a direct quench from the melt
yields a dip in the electronic density of states instead of a state-free optical bandgap.
This is because the liquid, which is predominantly like a sixfold coordinated metal, is
topologically quite distinct from amorphous (or crystalline) Si, which is tetrahedrally
bonded. Thus quenching a liquid in simulation studies to obtain an amorphous
structure gives rise to many overcoordinated defects instead of dangling bonds.

Once an atomistic model is established, one can perform electronic structure
calculations applying either model Hamiltonians and tight-binding methods (Lewis
and Mousseau 1998) or first-principle methods like density-functional theory
(Sanchez et al. 1997). Some significant findings from such studies are the following.
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Fig. 2 Tailing of states into the bandgap of a heavily disordered semiconductor (red solid lines)
with a mobility edge separating extended and localized states. Dashed lines indicate the density of
states in a crystalline semiconductor
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In α-Si, the midgap-defect states originate from dangling bonds. The floating-
bond conjecture discussed in Sect. 2.2.3 assuming that fivefold coordinated atoms
are important has been disproved, though such states are shifted well toward the edge
of the conduction band and are not as localized as the dangling bonds.

Cluster simulations with systems containing 4096 or more atoms showed that
states approaching the middle of the bandgap are exponentially localized, whereas
states deep in the valence-band (and conduction-band) tail are well-extended and
essentially uniform throughout the amorphous semiconductor.

Simulations yield the following qualitative picture of the Anderson transition:
Since severe distortions are rare, respective clusters are isolated from each other and
lead to localized “cluster states.” For less severe distortions the abundance increases,
and cluster states of similar energy not far away from each other get likely. Two,
three, or more cluster states of nearly equal energy and appreciable overlap become
possible and the electronic states become delocalized. This is the Anderson transi-
tion, which is basically a quantum-percolative transition.

2 Defects in Amorphous Semiconductors

In some respects, ideal amorphous semiconductors are topologically equivalent
to their crystalline counterparts except for small variations in bond length and
bond angles (see ▶ Sects. 3.1.1 and ▶ 3.2.2 in chapter “The Structure of Semi-
conductors” and Tanaka 1998). Therefore, it is reasonable to explain some
defect properties in amorphous semiconductors also with the concept of tailing
states into the bandgap (Mott 1969). Before exploring the specific nature of defects
in amorphous semiconductors, we emphasize the distinction of two classes of amor-
phous semiconductors.

2.1 Classes of Amorphous Semiconductors

There are at least two different classes of covalent amorphous semiconductors,
distinguished by their electronic response to changes in the defect structure.3 The
first class are amorphous chalcogenides, which are alloys containing elements of
group VI and others, such as elements of groups IVand V, as the main glass-forming
components, for instance, α-Te40As35Si15Ge7P3, a well-known material because of
its switching4 capability (Cohen et al. 1969). The class also includes less complex
compounds, such as α-As2Se3 and monatomic α-Se. Some of these systems have
both covalent and ionic components to their bonds. Typically, the chalcogenides
have a low average coordination number, below 2.4. For comparison, the average

3A third class, somewhat in between these two, contains α-P and α-As.
4Bipolar devices made from such materials are capable of switching at high speed from a low to a
high conducting state at a critical bias (Ovshinsky 1968).
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coordination numbers of some crystals are, e.g., 4 for Si, Ge, GaAs, etc., 3 for As or
GeTe, 2.7 for GeTe2, 2.4 for As2Se3, and 2 for Se (Adler 1985). It should be noted
that structures with average coordination number m exceeding 2.4 are structurally
rigid, whereas those with smaller values are structurally floppy. For a review on the
average-coordination number concept in chalcogenide glasses see Varshneya
et al. (1993).

In amorphous chalcogenides, it is nearly impossible to move the Fermi level from
its near-midgap position by doping. Some chemical modification, i.e., changing its
conductivity to become extrinsic while maintaining the bandgap, however, was
achieved in a few chalcogenide glasses by adding modifying elements. These should
not be confused with dopants, since the necessary concentration of the modifier is
relatively large to become effective. As such modifiers, the transition metals Ni, Fe,
and Co can be used and in some instances W, B, or C (Ovshinsky 1977, 1980). For a
review, see Adler (1985) and Adler and Fritzsche (1985).

The second class is composed of tetrahedrally bonded amorphous semiconduc-
tors, such as α-Si:H, α-GaAs, and α-CdGeAs2, with an average coordination
number m > 2.4; for details on α-Si:H, see Street (1991). These amorphous
semiconductors behave substantially different: When properly prepared (all Si
atoms fourfold coordinated in α-Si:H), the solids respond easily to doping with a
shift in their Fermi level much like a crystalline semiconductor. These semicon-
ductors can be made n-type or p-type by doping with donors or acceptors, respec-
tively. Nevertheless, α-Si:H also has a strong tailing of defect states into the
bandgap, although these tails do not overlap significantly near the center of the
bandgap. For an example of such band tailing in α-Si:H, see Fig. 17 in chapter
▶ “Band-to-Band Transitions”.

Aside from a pinning of the Fermi level due to overlapping tail states for the first
class, and sensitivity to doping for the second class, there are other experimental
distinctions for these two major groups. These relate to the strength of electron-spin
resonance (ESR) signal, which indicates the existence of unpaired spin electrons
(charged defects), the steepness of the optical absorption edge, which indicates the
degree of band tailing, and other properties relating to carrier transport as discussed
in chapter ▶ “Carrier Transport Induced and Controlled by Defects”.

2.2 Defect Types in Amorphous Semiconductors

Defects are easily identified in crystal lattices, where vacancies, interstitials, and
even small deviations from the periodic structure can be identified. This is much
more difficult in amorphous semiconductors, where deviations from the coordina-
tion number m, bond angle θ, and average bond length a are the principal defect
features. In general, many defects in glasses are of a gradual rather than distinct
nature and may be classified into:

• Local strain-related defects, i.e., variations of a, θ, and m
• Deviation from an optimal bonding configuration
• Incorporation of small concentrations of impurities
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• Dangling or floating bonds
• Microcrystallite boundaries, observed in some glasses
• Variably sized small voids

Most of these defects cause changes in the electron-energy spectrum by deforming
the band edge and extending states into the bandgap (see, e.g., Tanaka and
Nakayama 1999). Depending on the type of amorphous semiconductor, the ensuing
defect spectrum may extend nearly exponentially from the band edge into the
bandgap or into the Urbach tail, or may produce well-defined (although broad)
peaks of the distribution function within the bandgap (Fig. 3).

2.2.1 Strain-Related Defects
The local strain-related defects may be seen as similar to acoustic phonon-induced
deformations (see ▶ Sect. 2.2.1 of chapter “Carrier Scattering at Low Electric
Fields”) of the band edge. Here, however, they are caused by a stationary, frozen-
in strain, often also with a larger amplitude than for thermal phonons. Each of these
stretched bonds or deformed bond angles can produce a level in the band tail when
the deformation from the ideal values is sufficiently large.

In tetrahedrally bonded semiconductors, deviations of the bonding angle and
coordination number can also result in different types of bonding between
neighboring atoms. For instance, in amorphous Si, an sp3 hybrid, an sp2 hybrid, or
a p3-configuration produces respectively a neutral, positively, or negatively charged
dangling bond, while an s2p2 hybrid produces a twofold coordinated Si atom. These
bonds may be formed to relieve some of the stress. The corresponding bond angles
are 109.5� (sp3), 120� (sp2), and 95� ( p3 and s2p2) (Adler 1985).
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Fig. 3 Exponential distribution of states into the bandgap: (a) in chalcogenide glasses, (b) in
tetravalent glasses, and (c) in tetravalent glasses with distinct peaks
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Often, these defect centers are identified as Aq
m, with A identifying the chemical

species: T for tathogen, P for pnictogen, and C for chalcogen, i.e., elements of the
IV, V, or VI groups, respectively; m is the average coordination number and q is the
charge character relative to the lattice (2+, +, 0,�, or 2–). For instance, T4

0 represents
a neutral, fourfold coordinated Si atom, while T3

0 describes a neutral dangling bond,
both for the sp3 ground state. As possible defects in α-Si, all of T2þ

2 , Tþ
2 , T2

0, T�
2 , and

T2�
2 , as well as Tþ

3 , T3
0, and T�

3 , are being considered as centers with lower-than-
normal coordination and as possible alternatives for local stress-relief.

2.2.2 Under- and Overcoordinated Defects
There is evidence that two types of “intrinsic defects” are prevalent in α-Si:H – the
threefold coordinated Si-atom, which is equivalent to a vacancy in crystalline Si, and
the fivefold overcoordinated Si atom, equivalent to a self-interstitial. These two
types can be created in pairs, as indicated in Fig. 4, somewhat similar to a Frenkel-
pair creation. This reaction may be initiated by light and provides a possible
mechanism for the Staebler-Wronski effect (▶ Sect. 3.2.2 of chapter “The Structure
of Semiconductors”; Staebler and Wronski 1977). Other photochemical processes in
chalcogenide glasses can be observed as darkening under light, see, e.g., Li
et al. (1989).

2.2.3 Dangling and Floating Bonds
Dangling bonds do not seem to play a major role in most semiconducting glasses of
technical interest. The elimination of these dangling bonds can be obtained, for
example, by H or F in α-Si:H or α-Si:F. Such removal results in the major differences
between the amorphous Si and the amorphous Si:H or Si:F alloys. The description as
an alloy is used here since a large atomic fraction (>10%) of H or F is incorporated.
As a consequence of the dangling-bond removal, α-Si:H or α-Si:F can be doped and
turn n- or p-type, similar to crystalline Si, as shown in Fig. 5a.

The dominant intrinsic defect in α-Si:H, the D center, characterized by paramag-
netic resonance (g = 2.0055), was initially assigned to the dangling bond, i.e., a
threefold coordinated Si atom. An alternative explanation was given in terms of a
floating bond, i.e., the fivefold coordinated Si atom (Pantelides 1986); more recent
studies favor the dangling bond, indicating a substantial influence of the local

3
5

Fig. 4 Pair creation (and
recombination) of dangling
(3) and floating (5) bonds
(After Pantelides 1989)
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geometric and electronic structure of the immediate surrounding (Pfanner et al.
2013). The close relation of these two centers is shown in Fig. 6. In contrast to the
dangling bond, the floating bond is highly mobile and is of interest to interstitial-
mediated diffusion - see ▶ Sect. 3.2 in chapter “Crystal Defects”.

2.2.4 Deviation from Optimal Bonding Configuration
The deviations from an optimal bonding configuration occur predominately in
chalcogenide glasses and may be understood by comparing the relative bonding
strengths of various bonds. For example, in amorphous GexTe1-x, a configuration
wherein the stronger Ge-Ge bond appears most frequently while the number of the
weaker Te-Te bond is minimized in the entire material, may be termed an ideal
amorphousGexTe1-x structure. Any deviation from it may be identified as a defect of
the structure and has a lower overall binding energy.

Another deviation from optimal bonding relates to a valence-alternation pair, in
which the valency of nearby atoms in amorphous chalcogenide semiconductors is

T3

T5

Fig. 6 Relationship of
threefold (T3) and fivefold
(T5) coordinated Si atoms with
possible interconversion of
these dangling and floating
bonds (After Pantelides 1986)
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Fig. 5 (a) Room temperature electrical conductivity of α-Si:H as a function of the phosphine or
diborane concentration during deposition (After LeComber and Spear 1976). (b) Spin density
optically induced in α-Si:H as a function of doping gas pressure (After Knights et al. 1977)
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changed. Charged dangling bonds may also be formed, in which the lowest-energy
neutral defect is a threefold-coordinated site that is unstable with respect to the
creation of singly and threefold coordinated charged atoms according the sum
reaction 2C0

3 ! Cþ
3 þ C�

1 , with a chalcogen C (Kastner et al. 1976; see also
Sect. 2.2.1). However, these bonds exactly compensate each other and form
“pairs,” so that no electron-spin resonance signal results – see Sect. 2.2.7. As
charged, but compensated defects, they effectively pin the Fermi level.

In chalcogenide glasses, defect states with negative correlation energy, i.e.,
negative-U centers, can occur (Anderson 1975, Ovshinsky 1976). These states can
bind two electrons, the second with a larger binding energy than the first – see
▶ Sect. 2.8 in chapter “Deep-Level Centers”. This can be explained when a strong
electron-lattice interaction exists, and the energy released by the lattice deformation
near the polarized defect (i.e., the defect state occupied by two electrons) is larger
than the Coulomb repulsion between the two electrons. As a result, we expect in a
system with N defect states and n electrons that n/2 states are doubly occupied in the
lowest energy state, causing a pinning of the Fermi level. This also explains why
these materials are diamagnetic.

2.2.5 Doping in Semiconducting Glasses
When the density of impurity atoms is small enough, and the atoms are not
incorporated as part of the glass-forming matrix in tetragonal glasses, the ensuing
defect may result in a distinct level similar to that in a crystalline semiconductor.
Depending on the actual surrounding, however, the resulting energy level of a deep-
level defect is different. The same defect may have even a donor- or an acceptor-like
character or, with external excitation, act as a recombination center in a different
microscopic environment of the host.

In the tetrahedrally bonded amorphous semiconductors (e.g., in α-Si:H), the
chemical nature of shallow defects determines their electronic defect behavior with
less ambiguity. These act as dopants, with a similar effect as in crystals, though with
a more complicated configuration. Incorporation of a P atom is likely to occur in an
sp3 configuration rather than a p3 bonding. It is observed to shift the Fermi level to
within 0.1 eV of the conduction-band edge (or better, the electron-mobility edge –
see Fig. 2 and chapter▶ “Carrier Transport Induced and Controlled by Defects”) and
thereby act as an effective donor. The incorporation of a B atom can be accomplished
in an sp3 or an sp2 configuration, with bond angles of 109.5� or 120� and a
coordination number of 4 or 3, respectively, or as a complex with bridging H
atoms (Adler 1985). It acts as an acceptor. Other local bonding configurations can
occur with the incorporation of N (pnictogen), 0, or S (chalcogen), resulting in
different sets of donor levels within the bandgap.

2.2.6 Microcrystalline Boundaries and Voids
Microcrystallite boundaries seem to be absent in true glasses. However, there is
some evidence that in a few semiconducting glasses precrystallization takes place.
This is possibly the result of imperfect growth techniques and caused by the
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formation of small crystallite nuclei. In this case, the internal strain of the nuclei is
relaxed by the creation of a boundary (microsurfaces) that resembles crystal bound-
aries with localized strain. An example of recrystallization is observed for amor-
phous silicon: amorphous Si layers on crystalline Si recrystallize with an activation
energy of ~2.5 eV (Lietoila et al. 1982). Such recrystallization may occur through
diffusion of dangling bonds (Mosley and Paesler 1984), mediated by floating bonds
(Pantelides 1989), converting all rings into six-member rings. For a review of
structural relaxation models see Illekova and Cunat (1994).

Small voids of variable size can be identified in the center of large-number rings
(see Fig. 1 of chapter ▶ “Properties and Growth of Semiconductors”) in certain
glasses. These defects show some similarities to vacancies in a crystal lattice,
although they vary in size and bond reconfiguration.

2.2.7 Spin Density of Defects
Electron-spin resonance yields additional information about a defect (see ▶ Sect.
3.4.2 of chapter “Shallow-Level Centers”). When the defect possesses an electron
unpaired with another one of opposite spin (short unpaired spin), the resulting
magnetic momentum can be picked up by a spin-flip electromagnetic resonance
experiment. The frequency and line shape of the resonance is influenced by the
surrounding of the defect and yields more detailed information in crystalline solids.
This hyperfine structure is washed out in amorphous semiconductors. However,
from the density of unpaired spins, we still obtain valuable information. This density
is small (~1016 cm�3) in α-Si:H and verifies a low density of dangling bonds, T3

0 (sp3),
which represent unpaired spins (see Adler 1985).

Coexistent with T3
0 centers are pairs of Tþ

3 and T�
3 centers, which have

compensated spins. Their total energy depends on the relative distance (Kastner
et al. 1976) and has its minimum value when they are nearest neighbors (intimate
charge-transfer defect – Adler and Yoffa 1977).

The spin density can be used as a measure of uncompensated donors or acceptors
and is shown for doped α-Si:H in Fig. 5b. However, the observed decrease of
unpaired spin density for high-doping densities causes some problems in explana-
tion. In contrast, nonhydrogenated α-Si shows spin densities which are substantially
larger and increase with damaging ion bombardment up to 1019 cm�3. With subse-
quent annealing, the spin density is reduced as expected (Stuke 1976).

3 Defects in Organic Semiconductors

3.1 Classes of Organic Semiconductors

Organic semiconductors comprise two classes: small-molecule crystals and poly-
mers. A characteristic common feature is the bonding of carbon atoms by a system of
conjugated π electrons; see ▶ Sect. 3.3 in chapter “Crystal Bonding”.
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In small-molecule crystalsmolecules represent the building blocks of the solid.
In bulk crystals these molecules are often arranged in a herringbone packing; see
Fig. 17 and ▶ Sect. 1.5 in chapter “The Structure of Semiconductors”. The weak
intermolecular bonding between rigid molecules and the orientational degree of
freedom favors the formation of local disorder defects and polymorphic struc-
tures. In devices instead of bulk crystals usually thin films of organic semicon-
ductors are employed. The structure of thin-film phases deviates from the bulk
structure and depends on properties of the substrate and on film thickness. Carrier
mobilities are particularly high in some organic bulk single-crystals such as
Rubrene and Pentacene and orders of magnitude lower in respective thin films
due to a very high density of defects. The π electrons are delocalized over the
individual molecules, but conductivity of the crystal largely depends on the
transfer integral between neighboring molecules that is strongly affected by the
defects.

Polymers are interesting for applications due to their favorable large-scale pro-
cessing ability and their robustness. The structure is generally more distorted, and
consequently the mobility of carriers is usually lower than in small-molecule crystals.
The wavefunction of the π electrons is not delocalized over the entire polymer
backbone but localized in the double (or triple) bonds, yielding the alternating bond
lengths of the conjugated π electron system. Defects in the bond alternation sequence
yield unpaired electrons as discussed in Sect. 3.3; furthermore strong disorder in the
alignment of the polymer chains generally lead to low carrier mobility. In Sects. 3.2.1
and 3.2.2 the two classes of organic semiconductors are discussed separately.

The orientation of molecules as building blocks of organic crystals and variations
in their internal structure provide additional degrees of freedom in the assembly of
the solid compared to anorganic semiconductors. This and the weak intermolecular
bonding forces give rise to orientational disorder in organic crystals. In addition,
impurities introduce localized levels in organic semiconductors. All these imperfec-
tions are considered in the following.

3.2 Structural Defects in Small-Molecule Crystals

3.2.1 Molecule Crystals Grown on Substrates
Applications of organic crystals usually imply the deposition of thin films on either
inorganic or organic substrates; we thus put some focus on thin films grown on
substrates. Charge transport in organic materials is generally limited by numerous
defects, which introduce a high density of trap states. Due to the weak intermolecular
bonding organic crystals grown on a substrate do not form layers with significantly
accumulated strain as observed for inorganic heterostructures (▶ Sect. 1 in chapter
“Crystal Interfaces”). Since epitaxy of organic crystals is performed at low deposi-
tions temperatures where many materials are stable, many layer/substrate combina-
tions also may be realized. The large variety of alignment of molecules on a substrate
and variations in conformations within individual molecules provide many degrees
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of freedom, giving rise to a large number of distortions and polymorphs in organic
thin films.

Formation of an ordered organic layer depends on the interaction between substrate
atoms and molecules of the layer. The structure of the interface is basically determined
by the dielectric properties of the substrate material. At least the initial structure of the
organic layer growing on a substrate is different for growth on metals and on insulators.
For reviews on nucleation of organic semiconductors see Hooks et al. (2001), Virkar
et al. (2010), Evans and Spalenka (2015), and Simbrunner and Sitter (2015).

To illustrate the general features we consider the widely studied pentacene. This
organic semiconductor is attractive due to the very high mobility of carriers [up to
~10 cm2/(Vs)] found in bulk crystals and represents a model and benchmark system
for organic small-molecule semiconductors. Pentacene (C22H14) is a polycyclic
aromatic hydrocarbon composed of five fused benzene rings in a linear planar
arrangement (Fig. 12a). Bulk crystals grow in the herringbone structure discussed
in ▶Sect. 1.5 of chapter “The Structure of Semiconductors”; the thin-film phases
deviate from the bulk structure, representing largely modifications of the herring-
bone packing. Thin pentacene films were studied on many substrate materials.

On metals the interaction between substrate and the delocalized electrons of the
layer molecules is strong. The contact of individual molecules with the surface is
hence large, leading mostly to a lying-down configuration of the first molecule
layer(s): The molecular long axis is then parallel to the surface. A lateral ordering
aligned to the periodically arranged metal atoms may occur at suitable growth
conditions; the respective molecular spacing in the organic layer may substantially
differ from that in an organic bulk crystal. For sufficiently strong intermolecular
interactions often a continuous variation toward the bulk value with increasing
distance to the interface is observed, including various structural phases.

The structure of a monolayer thick pentacene layer deposited at room temperature
on a Ni(111) surface is shown in Fig. 7. The molecules are strongly adsorbed on the
metal surface and aligned along the 110

	 

directions of the Ni substrate, with an

a b c

10 nm2 nm

Fig. 7 Scanning-tunneling micrographs of pentacene molecules adsorbed on Ni(111). (a) Individ-
ual molecules with a superimposed structural model. (b) Overview image showing
orientational disorder in the molecule alignment. (c) Same as (b) with color-coded orientations
(After Dinca et al. 2015)
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approximately equal fraction for the three possible orientations (Dinca et al. 2015).
The arrangement is referred to as “random tiling” phase, since the alignment of a
given molecule cannot be concluded from the directional alignment of its neighbor-
ing molecules. Pentacen layers subsequently deposited on the flat-lying molecules
align in a tilted arrangement yielding a pronounced islanding (Käfer et al. 2007).

Organic molecules may be inserted as an interlayer between the metal substrate
and the organic semiconductor to reduce the strong interaction. A monolayer of
benzenethiol on an Au(111) surface was, e.g., applied for growing a pentacene film,
yielding a crystalline bulk-like standing-up phase with the ab plane parallel to the
interface as illustrated in Fig. 8a (Kang et al. 2005). Using such layers it was shown
that defect states may occur even if the two-dimensional crystalline packing with the
herringbone motiv is maintained. Scanning-tunneling microscopy images of two
monolayer thick pentacene layers showed a broad Gaussian distribution of slight
thickness variations in the range of 1–2 Å, well below the thickness of one mono-
layer (~15 Å). A corresponding displacement of pentacene molecules along the long
molecular axis illustrated in Fig. 8 breaks the translation symmetry in a crystal;
calculations show that such disorders are sufficient to create defect states in the
bandgap as shown in Fig. 8b.

On insulating substrates the interaction between the molecules of an organic
layer and the atoms of a substrate is much weaker. Still the effect of the substrate
atoms can lead to crystal structures distinct from the bulk structure. Usually the
lateral alignment of layer molecules with respect to the substrate orientation is poor,
due to the weak interaction and a much larger, normally incommensurate unit cell.
Independent locations of nucleation with different orientations lead to the creation of
extended defects during coalescence. Typically organic thin films exhibit a texture
structure with a preferred crystallographic plane parallel to the interface.
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Fig. 8 (a) Orientation of pentacene molecules deposited at 295 K on a Au(111) surface passivated
with a monolayer of benzenethiol. (b) Creation of trap states in the bandgap for holes and electrons
due to the displacement of pentacene molecules by an amount Δx along the long molecular axis in a
pentacene crystal (After Kang et al. 2005)
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Pentacene on silicon dioxide is a particularly interesting system for organic thin-
film transistors; since the charge transport in such devices predominantly occurs in
the first few monolayers above the dielectric (Lang et al. 2004, Park et al. 2007),
carrier mobility largely depends on the molecular packing in the first monolayer
which determines the overlap of orbitals between neighboring molecules. The two
molecules in the thin-film unit cell of pentacene are vertically oriented on SiO2 (also
on other substrates), yielding a more rectangular cell (γ = 89.8�) than the bulk unit
cell (γ = 86�, see Table 3 in chapter ▶ “The Structure of Semiconductors”), and
molecules of the first monolayer adsorb exactly vertically on SiO2 (γ = 90�,
Mannsfeld et al. 2009). The a-b layers exhibit a herringbone packing (viewed
along the interface normal) like the bulk structure. The upright alignment on the
substrate indicates a somewhat stronger molecular-substrate interaction than the
intermolecular interaction in the layer and yields in the first monolayer a slightly
compressed in-plane unit cell with a shorter a-axis.

The insertion of a thin organic interlayer between the substrate and the organic
semiconductor similar to the passivation layer on a metal shown in Fig. 8a proved
also beneficial for pentacene layers on SiO2 substrates. Measurements of the density
of states in 10 nm thick pentacene films grown on bare SiO2 substrates and on SiO2

treated with hexamethyldisilaxane (HMDS) yield a density of gap states reduced by
1 order of magnitude for the latter (Yogev et al. 2013). Even less gap states were
achieved on a treated AlOx substrate. Fig. 9 demonstrates that the Fermi level moves
deep into the bandgap at a high density of gap states. The high density of deep states
is detrimental for carrier transport and leads to a pinning of the Fermi level, which
controls band alignment at interfaces and doping efficiency.

On an organic substrate due to the weak bonds generally no coherently strained
interface is formed. General rules reviewed by Hooks et al. (2001) distinguish
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Fig. 9 Density of states
(DOS) in pentacene (Pn) thin
films grown on various
substrates, measured using
Kelvin-probe force
microscopy. Dashed lines
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pentacene layers under
equilibrium conditions (After
Yogev et al. 2013)
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substrate-layer combinations which show epitaxy-like behavior and those which are
linearly or axially commensurate; for the latter the lateral vectors aS and bS on the
substrate side are related to the respective vectors aL and bL of the layer by a
coefficient matrix given by

aL
bL

� �
¼ m11 m12

m21 m22

� �
aS
bS

� �
: (18)

The organic substrate and layer crystals are commensurate if all coefficients mij are
integers. If the coefficients are rational numbers, the layer may adopt a coincidence
structure. For irrational coefficients the layer is incommensurate to the substrate.
It may still have a preferred normal orientation but looses the epitaxial relationship to
the substrate and will show a textured structure. A study of a large number of
interfaces showed that the favored alignment of the layer can be estimated from
geometric considerations [Hillier and Ward (1996), Forrest (1997)].

Organic molecules may also be inserted as interlayer between an inorganic
substrate and the organic semiconductor to control the initially formed structure,
as shown above for growth on metals and insulators; this also applies for substrates of
inorganic semiconductors. Pentacene molecules form strong multiple covalent bonds
on Si(001) (Meyer zu Heringdorf et al. 2001) or Si(111) surfaces (Al-Mahboob et al.
2008). The pentacene growth hence commences with a disordered layer of strongly
bonded molecules which form coalescing crystalline islands in a textured organic
solid. Passivating the Si surface prior to pentacen growth by an exposure to organic
molecules such as styrene, cyclopentane, or hexane allows to yield monolayer-thick
pentacene films with low defect densities (Hamers 2008; Seo and Evans 2009).

Graphite is another interesting substate which avoids strong molecule bonding.
Its lattice on the basal plane is furthermore nearly identical to the carbon frame of
polycyclic aromatic hydrocarbons like pentacene, favoring the formation of highly
ordered monolayers. Subsequent molecular layers are gradually vertically tilted with
increasing coverage. In the first pentacene monolayer the molecules are adsorbed in
closely spaced rows with their plane parallel to the surface; the long axis is oriented
along one of the azimuth 1210

	 

directions, and neighboring molecules are slightly

shifted along the long axis yielding an oblique surface unit-cell and a coincidence
7 0

�1 3

� �
superstructure (Götzen et al. 2010). A grain boundary between single-

crystalline domains in a monolayer-thick pentacene layer is shown in Fig. 10.
Pentacen molecules are quite mobile at room temperature due to the weak adsorption
to the substrate: the ovals in panels (a) and (b) mark changes occurring by detach-
ment from and attachment to existing islands on a time scale of minutes. Still the
boundary persists and cannot be closed even in thicker layers and after thermal
treatment. Fig. 10c shows an atomic force micrograph of a thicker layer. The organic
film consists of flat islands separated by narrow, deep crevices.

Grain boundaries like those visible in Fig. 10 strongly deteriorate the conductivity
of the organic layers. The effect of such boundaries on electronic properties was
studied in a self-consistent polarization-field approach (Verlaak and Heremans
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2007); the optimum arrangement of the molecules at the boundary was calculated
using molecular-dynamic forcefields. Results shown in Fig. 11 display the energy of
a free hole at a considered boundary-near molecule with respect to its energy in a
perfect crystal; at increased energy the molecule acts as scattering center, at
decreased energy as a trap. The calculation gives evidence that both traps and
scattering centers for free holes appear at the boundary. The hole energy is deter-
mined by the particular environment of a molecule near the boundary; the boundary

30°
60°

a b

Fig. 11 Effect of boundaries between grains in a pentacene crystal misaligned by (a) 30� and (b)
60�. The molecules are viewed along their long axis; their plane is perpendicular to the image plane.
The shading marks the energy of a hole at a molecule: states with energies below �0.25 eV (dark
shading) are traps, states with energies above 0.25 eV (bright shading) act as scattering centers
(After Verlaak and Heremans 2007)

Fig. 10 (a) Scanning-tunneling micrographs of a monolayer-thick pentacene layer adsorbed on
(0001) graphite; (b) same as (a) recorded some minutes later. Changes to a grainy part of the image
indicate sudden tip switches due to molecule pick-up and release at the scanning tip. (c) Morphol-
ogy of a layer with 35 nm nominal thickness (After Götzen et al. 2010)
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has no periodicity on a short range, leading to a substantial variation in hole energies
along the interface. At larger angles the energies shift gradually from trap states at
the left grain and scattering centers at the right grain to the inverse case with trap
states at the right grain (not shown in the figure); this is traced back to the interaction
between the strongly polarizing hole and the quadrupole moments of neighboring
molecules5 as pointed out by Verlaak and Heremans (2007). The study indicates that
the potential landscape at a grain boundary in organic crystals is complicated and has
a granular structure on the molecular level; charge transport across such extended
defects is not described by a simple model.

3.2.2 Point Defects in Molecule Crystals
The defect types classified for inorganic crystals in chapter ▶ “Crystal Defects” also
occur in organic crystals: planar defects like stacking faults and the grain boundaries
pointed out above, line defects like screw and edge dislocations, and point defects
[Seo and Evans (2009), Maeda et al. (2001)]. The point defects comprise intrinsic
defects like vacancies and impurities. Most organic crystals are not grown under
ultraclean conditions like those applied for inorganic semiconductors. Oxygen,
hydrogen, and water are prominent contaminants known to affect also organic
crystals. We again focus on pentacene as a model system for the effect of such
impurities.

Oxygen is easily introduced into a pentacene crystal due to a calculated energy
drop of 0.13eV per O2 molecule (Tsetseris and Pantelides 2007). Studies on penta-
cene thin-film transistors clearly prove that oxygen only creates defects states if the
Fermi energy is high in the bandgap (Knipp and Northrup 2009). Total-energy
calculations within the local DFT scheme yield two prominent oxygen-related
defects forming trap states in the gap (Fig. 12). Breakup of the O2 molecule leads
to the energetic favorable complex Pn-2O illustrated in Fig. 12b, where the two
dangling O atoms are bond to C atoms at positions 6 and 13 (depicted in panel a) of
the same molecule (pentacenequinone). Oxygen removes a pz orbital of the respec-
tive C atom from the planar π system of the molecule by forming a double bond and
creates a localized gap state (Northrup and Chabinyc 2003); filled with two elec-
trons, the energy of the Pn-2O state is computed to lie 0.36 eV above the valence-
band edge [transition level (�/2–)]. The creation of the twofold charged defect yields
a formation energy of 2(Eg – 0.36 eV) with a Pn bandgap energy of 2.0 eV, greatly
favoring defect formation at high Fermi level. A shallow (0/–) acceptor energy of
0.08 eV was determined for this complex as a possible source of p-type doping. The
dangling oxygen at position C6 may build an intermolecular bridge to a C13 atom of
a neighboring Pn molecule (Fig. 12c), thereby forming the Pn-2OII complex, gaining
0.61 eV formation energy, and creating a deeper acceptor level at E(0/–) = 0.29 eV
above the valence-band edge. Such findings agree with the broad distribution

5Polycyclic aromatic hydrocarbons like pentacene have a positively charged planar backbone of
atom cores and negatively charged π electrons in front and at the back of this plane, yielding a
permanent quadrupole moment.
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(0.16 eV FWHM) of trap states peaking 0.28 eV above valence-band maximum
(mobility edge) measured with pentacene thin-film transistors which were exposed
to photo-oxidation (Kalb et al. 2008). Since the π electron system of penta-
cenequinone is smaller than that of Pn, it has a larger bandgap energy; the molecule
is hence also believed to act as a scattering center.

Hydrogen added to a pentacene molecule acts quite similar to an added oxygen
atom (Northrup and Chabinyc 2003). Adding H2 to a pentacene molecule is exo-
thermic; again the center ring of pentacene is most reactive, and bonding of two
additional hydrogen atoms at the 6 and 13 positions (Fig. 12a) yielding
dihydropentacene is favorable (Mattheus et al. 2002). The calculated (+/0) level
for one additional H atom at C6 position lies ~0.34 eV above the valence-band
maximum and the (0/–) level occurs at ~0.80 eV, yielding a 0.5-eV-wide range of the
Fermi energy for the stable neutral defect; adding two H atoms at the 6 and
13 positions yields a decreased valence-band edge and an increased conduction-
band edge at the dihydropentacene molecule, so that no gap states are expected in
this case (Northrup and Chabinyc 2003). Such a molecule will therefore also act as a
scattering center.

1
2 3

4

5

6

14

13
O

C6

C13
O

OC6

C13

a b c

Fig. 12 (a) Numbering of the 14 outer C atoms in a pentacene (Pn) molecule; the arrow on top
indicates the viewing directions in (b) and (c). (b) The Pn-2O complex with two dangling O atoms
bond to a single Pn molecule. (c) The Pn-2OII complex with an intermolecular O bridge and a
dangling O atom (After Knipp and Northrup 2009)
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Water is also easily introduced into a pentacene crystal; an energy gain of 0.55 eV
was calculated for the incorporation of a H2O molecule at a favorable position
between pentacene layers (Tsetseris and Pantelides 2007); the study indicates that
the molecule does not dissociate. Furthermore, neither the structure of the crystal nor
the electronic density of states shows significant changes for intercalated water.
Scattering of carriers and hence reduction of carrier mobility are the main effects
expected from the incorporation of water into pentacene.

To summarize, impurities give rise to traps in the bandgap with a broad distribu-
tion of states, similar to the effect of structural disorder. The density of trap states was
experimentally derived from various measurements; results from the evaluation of
the space-charge limited current in transistor structures are shown in Fig. 13. We
observe a strong tailing from the valence-band edge (mobility edge at E = 0) into
the bandgap. Particularly low trap densities have pentacene and rubrene single
crystals (sc bulk) and field-effect transitors made with such crystals (sc FET ); the
increased trap density in FET structures is attributed to defects at the interface to the
gate dielectric. The low trap density corresponds to the large carrier mobility found
in such semiconductors. Polycrystalline thin films have significantly higher trap
densities due to the high density of defects discussed in Sect. 3.3. We note that the
defect density in organic small-molecule transistors is comparable to that in hydro-
genated amorphous silicon.

Pentacene sc FET
Pentacene TFT
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DB-TTF

sc FET

Pentacene sc bulk
Rubrene sc bulk

Rubrene sc FET
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Fig. 13 Typical trap densities in small-molecule semiconductors (black, red, and blue curves) and
hydrogenated amorphous silicon (green curves). Blue curves refer to bulk single-crystals, red
curves to field-effect transistors made with single crystals; black curves give results of polycrystal-
line thin-film transistors. Energy values are relative to the valence-band edge Ev (for electrons in α-
Si:H relative to the conduction-band edge Ec) (After Kalb et al. 2010)
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3.3 Defects in Polymers

Polymers are organic compounds consisting of long, chain-like molecules with
typically 102 to 104-fold repeated molecular units. In semiconducting polymers
with π bonding in a conjugated chain the bonds have alternating lengths along the
backbone. In the double (or triple) bonds π electrons of the pz orbitals are localized
and form an occupied valence band (or HOMO, highest occupied molecular orbital),
separated by a bandgap from the conduction band (LUMO, lowest unoccupied
molecular orbital).

Due to alternating bond lengths an irregularity may occur termed bond-alterna-
tion defect as illustrated for polyacetylene in Fig. 14. The terminal repeat units must
have single bonds; thus if a finite polymer chain does not have the correct length,
a mismatch in bond-alternation occurs, yielding the backbone structure shown in
Fig. 14c. The C atom at this bond-alternation defect has two single C–C bonds and
one unpaired π electron. The polymer chain remains electrically neutral, but the
electron at the defect has an unpaired spin, giving rise to a finite paramagnetism of
the otherwise diamagnetic chain. Due to similarities in the theoretical description the
unpaired electron, which may move along the chain, is also referred to as soliton.
The soliton represents a boundary which separates domains in the phase of the π
bonds in the polymer backbone.

In a solid, the long polymer molecules are generally packed together non-
uniformly building both crystalline and highly disordered amorphous domains.
The amorphous regions are composed of coiled and tangled chains, whereas in
crystalline (albeit still distorted) regions linear polymer chains are oriented in a
three-dimensional matrix. Polythiophene and its derivatives are interesting polymers
due to their very high carrier mobility (up to ~10 cm2/Vs at the mobility edge).
Fig. 15 shows a schematic of the polymer structure for polythiophene; in crystalline
regions the molecules are arranged in long sheets, which are oriented along the
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Fig. 14 Different bond-
alternation order in sequences
(a) and (b) of a polyacetylene
chain; (c) bond-alternation
defect occurring when
sequences of (a) and (b)
marked by red boxes meet.
The dot on top of the central C
atom represents an unpaired
electron created at the defect
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conjugated backbone direction labeled [001] and packed along the π � π stacking
direction [010]. The sheets are additionally stacked along the [100] lamella-stacking
direction. Each crystallite represents a grain in the polymer material. Grain bound-
aries are anisotropic regions of strong disorder with bend chains; low-angle grain
boundaries are somewhat less distorted than high-angle grain boundaries.

Trap states appear in polymers predominantly in the most disordered regions; in most
cases the structural nature of such states is unknown. Still the distortions in the crystalline
regions are important, since these crystallites determine the carrier transport in a high-
carrier-mobility polymer, where percolation effects allow for a dominating conduction in
the ordered regions. Polymer segments extending from one ordered domain into another
can enhance the mobility significantly if the π�π coupling is sufficiently large (Northrup
2015). If no perculation by crystalline regions occurs, conduction is primarily through
amorphous regions with very low mobility (Street et al. 2005).

Significant distortions also occur in the crystalline regions of polymers; these
regions are hence referred to as paracrystalline, denoting an intermediate state
between crystalline and amorphous (Hindeleh and Hosemann 1991). Such states
can be characterized by a crystallographic paracrystalline distortion parameter g,
defined by the average separation hdhkli of adjacent repetition units along a specific
[hkl] direction (considered ideal) and the relative statistical deviations of actual
separations:

g2 ¼ d2hkl
	 
� dhklh i2

� �
= dhklh i2 ¼ d2hkl

	 

= dhklh i2 � 1: (19)

The paracrystallinity parameter g allows to classify materials with different degrees
of distortions as listed in Table 1 (Hosemann and Hindeleh 1995); values below 1%
are indicative for crystalline properties, the range between 1% and 10% characterizes
paracrystalline materials, and values of 10–15% represent a glass or a melt.

Distortions in the (para-) crystalline regions of a polymer consist, e.g., of random
variations in the spacings between the backbone lamella illustrated in Fig. 15a. Such
variations create band tailing into the bandgap comparable to the distortions shown
in Fig. 8 for molecule shifts in a pentacene crystal. The magnitude of such variations

[100]

[010]

[001]

a b

Fig. 15 (a) Packing motiv of a polymer semiconductor in crystalline regions. The index at the
bracket indicates the n-fold repetition of the unit along the polymer chain. (b) Tangled polymer
chains in the bulk with crystalline (shaded) and amorphous regions
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was measured for aligned ribbons of fused-ring polythiophene6 by analyzing data of
grazing incidence x-ray diffraction; the resulting effect on the density of states was
calculated using density-functional theory and is shown in Fig. 16 (Rivnay et al.
2011). In the calculations the distance between the chains (ideally a) was varied
according to a Gaussion distribution with a standard deviation σ, yielding a para-
crystallinity g = σ/a. The model predicts an exponential dependence of the distri-
bution of trap-tailing states within the bandgap, similar to results of disordered
inorganic solids discussed with the Kane model in▶ Sect. 3 and▶Eq. 83 of chapter
“Optical Properties of Defects”. The characteristic energy E0 in the DOS function g
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Fig. 16 Calculated density of states (DOS) of fused-ring polythiophene for different degrees of
paracrystalline disorder expressed by the paracrystallinity parameter g. The valence-band maximum
Ev refers to perfectly crystalline region (After Rivnay et al. 2011)

Table 1 Values of the
paracrystalline distortion
parameter g in various
microparacrystals and other
substances

Substance g (%)

Single crystal 0

Crystallite in polymer 2

Bulk polymer 3

Graphite, coal tar 6

SiO2 glass 12

Molten metals 15

Boltzmann gas 100

6The repetition unit of fused-ring polythiophene comprises four rings like those shown in Fig. 15a
with the inner two rings fused by commonly sharing a two carbon atoms with a C = C double bond
(see inset Fig. 16).
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(E) = g0 exp(�E/E0) has values near 10 meV for well-ordered and 100 meV for
strongly disordered polymers.

Properties of polymers related to the macromolecular order (such as crystallinity)
and consequential characteristics depend also on the length of the molecular chains,
in addition to the chemical structure and the applied processing. With increasing
length of the backbone chain (and hence molecular weight) most polymers transform
from a highly ordered chain alignment to a structure composed of crystalline and
amorphous regions. All structures have lamellae like those shown in Fig. 15a as
building blocks, but their size, perfection, and molecular interconnectivity differ.
A qualitative picture for the development of various material properties with
increasing molecular length is given in Fig. 17 (Virkar et al. 2010). The material
properties addressed in the blue curve refer to crystallinity, density, melting temper-
ature, or Young’s modulus, which is related to the stiffness of the solid. Values of
these quantities increase as the molecular chains gets longer and get maximum at a
critical molecular weight (i.e., length) when chains start to entangle. At this length a
two-phase morphology with crystalline and amorphous regions appears, and often
the considered values eventually decrease. For a respective study on charge transport
see Koch et al. (2013). Other mechanical quantities such as tensile strength and
elongation at break increase when the chains entangle (red curve). For a review on
the connection between polymer conformation and materials properties see Virkar
et al. (2010).
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Fig. 17 Qualitative dependence of properties like crystallinity or melting temperature (blue curve)
and mechanical strength (red curve) from the length of the molecular chains in a polymer. The inset
on top illustrates the respective macromolecular structure (After Virkar et al. 2010)
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4 Summary

The most prevalent feature of all amorphous and organic semiconductors is the
broad distribution of defect levels and consequently a pronounced tail of states
extending into the bandgap. There is no sharp band edge as in crystalline solids;
instead, another edge – the mobility edge – can be defined between extended and
localized states, which, for typical semiconducting glasses with aqH = 30 Å, lies at a
level density of ~1018 cm�3.

For amorphous semiconductors (semiconducting glasses) two main classes can
be distinguished: the amorphous chalcogenides, which are often alloys of several
elements, and the tetrahedrally bonded amorphous semiconductors, of which α-Si:H
is a typical representative. Intrinsic defects in both classes are more gradual than in
crystals, where vacancies and interstitials can be identified unambiguously. The
intrinsic defects in semiconducting glasses may be associated with deviations from
an ideal amorphous structure and can be compared with frozen-in local stresses,
causing more or less local deformation. Extrinsic defects (impurities) in chalcogen-
ide glasses are often absorbed and become part of the glass matrix without producing
well-defined defect levels in the bandgap. Even at larger densities they are not able to
shift the Fermi-level from its pinned position close to the center of the bandgap. In
tetrahedrally bonded amorphous semiconductors, however, many impurities act as
donors or acceptors, as in crystalline semiconductors, and can easily render these
materials n- or p-type. Although gradual in nature, the defect-induced tails in the
bandgap have a dominating influence on electrical and optical properties in most
semiconducting glasses. Saturating dangling bonds, with H or F in α-Si:H or α -Si:F,
clean out most of the bandgap and permit well-defined doping, resulting in devices
of high technical interest.

The main classes of organic semiconductors are small-molecule crystals and poly-
mers. For small-molecule semiconductors thin films grown on substrates are techno-
logically most interesting. The structure of their polycrystalline grains represent
usually modifications of the bulk structure, with a substantially different molecule
ordering at the interface. The strong interaction to metal substrates mostly results in a
laying-down configuration of molecules, while weaker interactions to insulating or
molecular substrates favor a bulk-like standing-up phase. Grain boundaries are a major
source of traps and scattering centers and strongly degrade electronic properties. The
long backbone chains of semiconducting polymers are ordered in paracrystalline
grains, which are separated by amorphous regions with tangled polymer chains.
Band tailing increases as the distortion parameter g, which has values near 3 in bulk
polymers, increases. Starting with the macromolecular order for short molecular
chains, crystallinity increases for longer chains up to an optimum length, beyond
which amorphous regions with entangled chain segments degrades crystallinity and
consequential characteristics. Advances in processing techniques enabled specific
polymers to catch up in carrier-transport properties with good data of small-molecule
crystals, paving the way for interesting low-cost applications.
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Abstract
Electrons and holes are the carriers of currents in semiconductors. The density of
these carriers in equilibrium is obtained from the Fermi–Dirac statistics. The
Fermi energy EF as a key parameter can be obtained from quasineutrality; it lies
near the middle of the bandgap for intrinsic and near the donor or acceptor level
for doped semiconductors. The difference between the respective band edge and
the Fermi level represents the activation energy of a Boltzmann factor, whose
product with the joint density of energy states yields the carrier density. The
density of minority carriers may be frozen-in in semiconductors with a large
bandgap and represented by a quasi-Fermi energy.
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At high quasi-particle densities and low temperature, phase transitions take
place with substantial changes in the optical and electronic behavior. An
insulator-metal transition occurs above a critical Mott density of dopants. A
similar process is initiated by sufficient optical generation of electrons and
holes, leading to an electron–hole plasma and – at suitable conditions – to a
condensation into an electron–hole liquid.

Keywords
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1 The Intrinsic Semiconductor

Electrons and holes are the carriers of a current in semiconductors. Their distribution
as a function of temperature and doping is analyzed in this chapter by an equilibrium
statistical approach. The influence of the host material on the electronic properties
will be discussed first. A pure semiconductor with no dopants is called an intrinsic
semiconductor; the influence from lattice defects on its carrier density is negligible.
The electronic properties of such a semiconductor are determined by the mutual
generation or recombination of electrons and holes.

Most of the carriers usually originate from lattice defects, which also determine the
transport properties of these carriers (chapter ▶ “Carrier-Transport Equations”). The
dominating influence of lattice defects on the density of electrons and holes will be
evaluated in Sect. 2.

Carrier Densities in Equilibrium If semiconductors are exposed only to thermal
excitation and are kept long enough at a constant temperature, thermodynamic
(short “thermal”) equilibrium is established. For the following discussion, it is
assumed that such equilibrium is always established, no matter how long it takes
to reach it – see Sect. 2.6. When equilibrium is established, the same temperature
T, which determines the distribution function, characterizes all subsystems, e.g.,
electrons, holes, and phonons (i.e., lattice atoms). The density distribution of
electrons in the conduction band in a small energy range dE can be obtained from
statistical arguments as the product of the density of energy states g(E) and the
statistical distribution function describing the occupation of these states f(E):

n Eð ÞdE ¼ g Eð Þ f Eð ÞdE: (1)

The density distribution for holes, i.e., of missing electrons, in the valence band is
similarly obtained from
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p Eð ÞdE ¼ g Eð Þ 1� f Eð Þ½ �dE: (2)

Since the probability of finding an electron at energy E is proportional to f (E) � 1,
with f (E) = 1 as the certainty, the probability of finding an electron missing is
simply 1�f (E). The total density of electrons n or holes p is then obtained from
integrating over all energies of the respective band. We hence need both the density
of states, i.e., the distribution of energy levels within the band, and the statistical
distribution function to yield the temperature-dependent carrier density in
this band.

1.1 Level Distribution Near the Band Edge

In ▶ Sect. 4.2.2 of chapter “Quantum Mechanics of Electrons in Crystals”, the
density of states within a band was derived in general terms. For the description of
carrier transport, an explicit expression of this distribution is required. Such an
expression can be given easily near the edge of the conduction or valence band. In
an isotropic parabolic band, the dispersion equation of Bloch electrons is given by

E kð Þ ¼ Ec þ ħ2

2mn
k2 þ . . . (3)

These electrons are free to move within the semiconductor but are confined to the
outer bounds. This can be described as confinement within a “box,” for definite-
ness a cube of dimensions l, and requires standing-wave boundary conditions with
nodes at the box surface.1 For the three components of an electron wavevector, we
have

ki ¼ νi
π

li
with νi ¼ 1, 2, 3, . . . and i ¼ x, y, zð Þ: (4)

The wavevector and therefore the energy are represented by a set of discrete values
given by the triplet of integers νx, νy, and νz. In addition, ms is used to identify the
spin quantum state. The energy increases monotonically with these integers.2

At low temperatures, the energy states are filled sequentially; each state is
quantified by νx, νy, and νz and can be occupied by a maximum of two electrons
with opposite spin (Pauli principle). These states are sequentially filled up to a radius

1Or cyclic boundary conditions; here energy and particle number are conserved by demanding, that
with the passage of a particle out of a surface, an identical one enters from the opposite surface
(Born-von Karman boundary condition). The two conditions are mathematically equivalent.
2The values of νi are positive integers. Negative values do not yield linear independent waves and
νi ¼ 0 yields waves which cannot be normalized.
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R = R(νx, νy, νz), which is determined by the number of available electrons. The
number of states G within an energy range from E to E + dE is obtained from the
volume of the spherical shell of the octant depicted in Fig. 1, permitting only positive
values of νi:

G dRð Þ
ν ¼ 1

8

4π

3
R3

2 � R3
1

� � ¼ π

6
d3R ¼ π

2
R2dR: (5)

Since R2 ¼ ν2i in quantum-number space and using Eq. 4, we can replace R with
k and obtain in the momentum space the number of states in the momentum interval dk:

G
dkð Þ
k ¼ π

2

l3

π3
k2dk (6)

within the volume of the semiconductor l3 = V. Finally, replacing k with the energy
from Eq. 3, we obtain

G
dEð Þ
E ¼ V

2π2
k2dk ¼ V

2π2
2mn

ħ2

� �3=2
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
dE (7)

as the number of states between E and E + dE. Dividing by the crystal volume and
permitting double occupancy due to spin up and down for each state, we obtain the
density of states for electrons in the conduction band with E � Ec:

gn Eð ÞdE ¼ 1

2π2
2mn

ħ2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
dE: (8)

This density is zero at the lower edge of the conduction band and increases
proportionally to the square root of the energy (measured from Ec) near the band
edge (Fig. 2). A similar square-root dependence results for the density of states near

νx

R

dR

νy

νz
Fig. 1 Octant of spheres with
constant energy in quantum-
number space spanned by νx,
νy, νz
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the upper edge of the valence band (energy Ev), where a quasi-free hole picture
can be applied.3 Replacing mn with mp in Eq. 8, and shifting the energy axis by
Eg = Ec � Ev, yields for holes with E � Ev:

gp Eð ÞdE ¼ 1

2π2
2mp

ħ2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev � E

p
dE: (9)

The result of this simple model is carried through most of the common discussions of
carrier transport in solids. It is valid near both edges of the band and is an acceptable
approximation as long as the bands are parabolic in E(k). At higher energies the
nonparabolicity affects the effective mass; for respective modification, see ▶ Sect.
1.2 of chapter “Bands and Bandgaps in Solids”.

1.2 Statistical Distribution Functions

The distribution function which determines the occupation of the energy levels
depends on the spin of the considered subsystem. Electrons are fermions with
spin � ½ and follow the Fermi–Dirac distribution function

FFD Eð Þ ¼ 1

exp
E� EF

kT

� �
þ 1

(10)

which is shown in Fig. 3 with the temperature as family parameter. This distribution
function has a boxlike shape for T = 0, yielding complete occupancy of states
( fFD = 1) for all levels E < EF and completely unoccupied states ( fFD = 0) for
E > EF. Here EF is the Fermi energy. For T > 0, the degree of filling decreases
exponentially with increasing E and reaches 50% at the Fermi energy: the corners of
the box are “rounded off.” EF is defined by fFD(EF) = 0.5. For the evaluation of the
Fermi–Dirac distribution at energy (several kT) above the Fermi energy, the distri-
bution can be approximated by a shifted Boltzmann distribution

EEcEv

g(
E)

 d
E

Fig. 2 Square-root
dependence of the density of
states near the band edge,
where the quasi-free electron
or hole model can be applied

3In the hole picture, an increasing energy corresponds to a decreasing electron energy. The energy
axis in Fig. 2 refers to an electron energy.
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FB Eð Þ ¼ exp �E� EF

kT

� �
: (11)

The degree of deviation from the Fermi–Dirac distribution is indicated in Fig. 3b.
It is instructive to compare these distributions with the Bose–Einstein distribution

FBE Eð Þ ¼ 1

exp
E

kT

� �
� 1

; (12)

which describes the distribution of bosons, which have integer spin, such as pho-
nons, photons, or excitons. The distribution has a singularity at E = 0; this means it
increases dramatically ( fBE ! 1) as E ! 0, while for a vanishing argument, i.e.,
for E � EF ! 0, we have fB ! 1 and fFD ! 0.5. This is shown in Fig. 3b. The tail
of all three distributions for E=kT > 3 is practically identical.

1.3 Intrinsic Carrier Densities in Equilibrium

The electron distribution n(E) within a band is obtained as the product of the density
of energy states and the Fermi distribution:

n Eð ÞdE ¼ gn Eð Þ f FD Eð ÞdE (13)

and is shown schematically in Fig. 4 for the lower part of the conduction band. The
electron distribution is zero within the bandgap since the level distribution vanishes
in the gap for an ideal semiconductor.

1

6

1

2

3

(E - EF)  (eV) E  (eV)

f F
D

 (E
 - 

E F
)

f (
E)

0

1

0.5

1

-0.2 -0.1 0.100.1 0.2 0.2

ba

0
0

Fig. 3 (a) Fermi–Dirac distribution function with the temperature as family parameter: 0, 50,
100, 200, 300, and 400 K for curves 1–6, respectively. (b) Comparison of Fermi–Dirac, Boltzmann,
and Bose–Einstein distributions for curves 1–3, respectively, at T = 300 K. fFD is drawn at a scale
shifted by EF
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Because of the steep decrease of the Fermi–Dirac distribution function, most of
the conduction electrons are located very close to the bottom of the conduction band:
95% of the electrons are within 3kT from Ec, except for high electric fields when
substantial electron heating occurs. Since a typical band width is on the order of
10 eV, i.e., ~400kT at room temperature, we can assign to the vast majority of the
conduction electrons in a semiconductor the same effective mass.4 Therefore, it is
justified to replace the electron distribution function n(E) with a simple electron
density in the conduction band

n ¼
ð1
Ec

gn Eð Þ f FD Eð ÞdE: (14)

Because of the steep decrease of f(E) with E, the integration to the upper edge of the
conduction band is replaced with 1, with negligible error in the result. When
evaluating Eq. 14, we can rewrite this equation by defining an effective level density
Nc at the lower edge of the conduction band, multiplied by a shifted Boltzmann
distribution (Eq. 11) used instead of the Fermi–Dirac distribution, yielding

n ¼ Ncf B sð Þ, where s ¼ � Ec � EFð Þ= kTð Þ: (15)

Using Eqs. 8 and 11, which are justified for Ec � EF > 3kT, we obtain

E

Ec

Ev

E

f FD(E)

E

gn(E)

f FD(E) gn(E)Eg

[1-f FD(E)] gp(E)0.5

1.0

0

Fig. 4 Level density (left, green curves), Fermi–Dirac function (middle), and electron density
distribution (right, blue curve) within the lower part of the conduction band and corresponding hole
density distribution within the upper part of the valence band (right, red curve). Green shading in
the middle diagram indicates the occupation with electrons

4This is justified since mn does not change much near the bottom of the conduction band (see
▶ Fig. 15 of chapter “The Origin of Band Structure”); moreover, mn increases with increasing E,
which usually renders higher energy electrons less important for a number of low-field transport
properties.
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n ¼ 1

2π2
2mn

ħ2

� �3=2ð1
Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
exp �E� EF

kT

� �
dE; (16)

which can be transformed into

n ¼ 1

π2
2mn kT

ħ2

� �3=2

exp �Ec � EF

kT

� � ð1
0

s1=2exp sð Þ ds: (17)

The integral is tabulated and given as Γ 3=2ð Þ ¼ ffiffiffi
π

p
=2 . This yields for the

pre-exponential factor (= Nc) in Eq. 17 for a simple parabolical band with spherical
cross section near k = 0

Nc ¼ 2
mn kT

2π ħ2

� �3=2

(18)

or
Nc ¼ 2:5 � 1019 mn

m0

� �3=2 T Kð Þ
300

� �3=2

cm�3
� �

: (19)

For a more exact solution (if Ec � EF < 3kT) see Eq. 31 and Fig. 6 below.
The hole density can be obtained using the same arguments as for electrons, with

p ¼
ðEv

�1
gp Eð Þ 1� f FD Eð Þð ÞdE ¼ Nv f B ~sð Þ; (20)

where ~s ¼ � EF � Evð Þ= kTð Þ and 1�fFD are the probability of finding a hole there:

f
pð Þ
FD Eð Þ ¼ 1� f

nð Þ
FD Eð Þ

¼ 1� 1

exp
E� EF

kT

� �
þ 1

¼ 1

exp
EF � E

kT

� �
þ 1

: (21)

Here, Nv is the effective level density for holes at the upper edge of a single parabolic
valence band of spherical symmetry:

Nv ¼ 2
mp kT

2π ħ2

� �3=2

: (22)

The total electron density in the conduction band and the total hole density in the
valence band are consequently given by

n ¼ Ncexp �Ec � EF

kT

� �
and p ¼ Nvexp �EF � Ev

kT

� �
: (23)
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1.4 Density-of-State Effective Mass and Fermi Energy

For real semiconductors, band dispersion must be taken into account, particularly for
valence bands and for anisotropic semiconductors such as wurtzites. In the conduc-
tion band of anisotropic semiconductors, the mass has tensor properties. In general,
the equi-energy surface can be described by an ellipsoid with three different axes,
hence with three different curvatures and therefore three different effective masses in
the direction of the main axes, resulting in a density-of-state mass

mnds ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m3

3
p

: (24)

As discussed in ▶ Sect. 1.2 of chapter “Bands and Bandgaps in Solids”, the satellite
valleys of cubic semiconductors are described by a rotational ellipsoid with
m3 = mnl (the longitudinal effective mass along the h100i direction in Si) and
m1 = m2 = mnt (the transverse effective mass, perpendicular to the main axis)
with spherical symmetry – see ▶Figs. 10 and ▶ 16b of chapter “Bands and
Bandgaps in Solids”. With a coordinate transformation in momentum space, we
can reduce these ellipsoids to spheres and apply the commonly used calculation for
the density of states. If there is more than one ellipsoid with identical energy (six in
the example of conduction bands for Si), a respective degeneracy factor vd must be
employed. This results in a density-of-state mass for electrons of

mnds ¼ ν3=2d mn lm
2
n t

� �1=3
: (25)

Sometimes an anisotropy factor Ka = mnl/mnt is used, rendering the density-of-state

effective mass for electrons mnds ¼ mn lK
�2=3
a ν2=3d . For warped (nonparabolic) con-

duction bands, we have

mnds� ¼ m0

A� B0 1þ 0:0333 Γþ 0:0106 Γ2 þ . . .
� �

; (26)

for the parameters A, B0, and Γ – see ▶Sect. 4.5 of chapter “Carrier-Transport
Equations” and ▶ Sect. 1.2.2 of chapter “Bands and Bandgaps in Solids”.

The distribution of holes between the lh (light hole) and hh (heavy hole) bands is
proportional to their respective density of states:

Nv lh ¼ 2
mp lh k T

2π ħ2

� �3=2

and Nv hh ¼ 2
mphh kT

2π ħ2

� �3=2

: (27)

There are more states per energy interval in a heavy-hole band than in a light-hole
band near the band edge because of the lower curvature of E(k). Hence, when filling
the band to a certain energy, more holes are in the heavy-hole band. Since both
densities are additive, these equations may be used to introduce an effective com-
bined density-of-state mass for holes
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m
3=2
p ds ffi m

3=2
p lh þ m

3=2
p hh; (28)

neglecting the contribution from the spin-orbit split-off band and any deviations
from spherical E(k) behavior in the valence band. If the spin-orbit split-off band is
taken into account, we obtain for cubic semiconductors instead of Eq. 28

mp ds ¼ m
3=2
p lh þ m

3=2
p hh þ e�Δ= kTð Þm3=2

p so

h i2=3

; (29)

where Δ0 is the valence-band splitting energy listed in ▶Table 5 of chapter “Bands
and Bandgaps in Solids”. The leading exponential in the bracket of Eq. 29 accounts for
the (usually not pronounced) occupation of the split-off band with holes at temperature
T. The effective combined hole mass of Eq. 29 corresponds to the density-of-states
mass of an effective single equivalent parabolic valence band. In the density-of state
masses of silicon shown in Fig. 5b, the slight slopes for the heavy hole and split-off
hole reflect the temperature-dependent change of the curvature at the respective band
edges, while the shape for the light hole is mainly determined by nonparabolicity. For
the influence of warping, see ▶Sect. 4.5 of chapter “Carrier-Transport Equations”.

With increasing temperature, higher energy states are filled with a decreased
curvature of E(k) and therefore with an increased effective mass of the carriers;
the corresponding density-of-state masses are shown in Fig. 5 for electrons and
holes. The density of states at the edge of the valence or conduction band (Eqs. 22
and 18) is then obtained by replacing mp or mn with the density-of-state masses mpds

or mnds, which contain potential degeneracy factors according to Eq. 25:

Nv ¼ 2
mp ds kT

2π ħ2

� �3=2

and Nc ¼ 2
mn ds kT

2π ħ2

� �3=2

: (30)
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Fig. 5 Density-of-state mass for Si as a function of the temperature, (a) for electrons and
ND= 5 	 1017 cm�3 (After Barber 1967), (b) for holes and NA = 1014 cm�3 (After Li 1979)
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Use of the Fermi Integral When the Boltzmann approximation cannot be applied
in evaluating Eq. 14 because of the close proximity of EF to the band edge, one must
use the Fermi integral

Fj sð Þ ¼
ð1
0

xj dx

exp x� sð Þ þ 1
; (31)

with j as the order of the Fermi integral. One now obtains

n ¼ 1

2π2
2mn

ħ2

� �3=2

Fj
Ec � EF

kT

� �
: (32)

The Fermi integral is tabulated by McDougall and Stoner (1938) or Blakemore
(1962). For j = 1/2 (see Eq. 17), it can be approximated (Ehrenberg 1950) by:

F1=2 sð Þ ¼ 2
ffiffiffi
π

p
exp s

4þ exp s
: (33)

A comparison between the classical approximation (Eq. 17), the approximation
(Eq. 33), and the exact form (Eq. 31) is shown in Fig. 6. They agree for s < �2, but
deviate substantially from each otherwhen the Fermi levelmoves closer than 2kT toward
or beyond the band edge. For a review of approximations, see Blakemore (1982).
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The Fermi Energy In order to obtain the position of the Fermi level, additional
input is needed. In an undoped ideal homogeneous semiconductor, electrons and
holes are created in pairs. Therefore, the density of electrons in the conduction band
must be equal to the density of holes in the valence band:

n ¼ p: (34)

Using this neutrality condition, we obtain with Eqs. 23 and 30 the relation

EF ¼ Ec þ Ev

2
þ kT ln

mn ds

mp ds

� �3=4

; (35)

which puts EF essentially in the middle of the bandgap for a sufficiently wide
bandgap, except for a shift due to the ratio of mnds/mpds.

1.5 Intrinsic Carrier Generation

In intrinsic semiconductors, both electrons and holes contribute to the electronic
properties. The generation of these carriers by thermal excitation (chapter▶ “Carrier
Generation”) across the bandgap is termed intrinsic carrier generation. The carrier
density is obtained by introducing EF from Eq. 35 into Eq. 17. For sufficiently wide
bandgap material, with Eg in excess of ~6kT at room temperature, where the “1” in
the denominator of the Fermi–Dirac distribution can be neglected, one obtains

n ¼ p ¼ ni ¼ Nc

mp

mn

� �3=4

exp �Ec � Ev

2kT

� �
(36)

or, in a more symmetrical form, for the intrinsic carrier density

ni ¼
ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp �Ec � Ev

2kT

� �
: (37)

The intrinsic carrier density increases exponentially with a slope of one-half of the
bandgap energy. This density is shown in Fig. 7 as a function of temperature with the
bandgap energy as family parameter. For a review, see Blakemore (1962) or
Shklovskii and Efros (1984).

2 The Extrinsic Semiconductor

Extrinsic semiconductors contain lattice defects that determine the density of electrons
or holes in the conduction or valence band, since the intrinsic densities ni at room
temperature are very small: ni = 2.4 	 1013, 1.45 	 1010, and 1.79 	 106 cm�3 for
Ge, Si, and GaAs, respectively. The usually relevant densities of electrons or holes of
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about 1015–1019 cm�3 are generated almost exclusively by donors or acceptors. The
introduction of such donors or acceptors into the host crystal is mostly done by adding
a small density of the appropriate impurities to the semiconductor. This process is
referred to as doping, see ▶Sect. 1.2 of chapter “Crystal Defects”.

n- or p-Type Semiconductors Doped semiconductors have one predominant type
of carriers. With donor doping, n 
 p, the semiconductor is termed n-type. In
homogeneous materials, essentially all transport properties are determined by these
majority carriers, here electrons in the conduction band. The influence of minority
carriers, here holes in the valence band, is negligible with homogeneous doping.
This is no longer true in inhomogeneous materials, where the influence of minority
carriers can play an important role. For example, the current in most solar cells is
almost entirely provided by minority carriers. Semiconductors with acceptor doping
( p 
 n) are called p-type. In these, the influence of electrons is negligible.

A rather simple way to determine experimentally whether a semiconductor is n-
or p-type is based on minority-carrier injection from a point contact. A high field
causes such injection in this geometry, whereas, at a large area contact, the field is
insufficient for injection (Henisch 1957). Therefore, for a bias that injects minority
carriers ( forward bias for these carriers), a large current will flow, while with
opposite polarity (reverse bias), only the small number of already-present minority
carriers can be collected, resulting in a much smaller current (Fig. 8). Other means to
identify n- or p-type conductivity employ the Hall effect or thermo-emf5
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Fig. 7 Intrinsic electron
density in a semiconductor as
a function of the reciprocal
temperature. The bandgap
energy is the family
parameter; the electron mass
mn is assumed equal to the
mass of the free electron m0

5When a hot wire touches the semiconductor, the wire becomes charged oppositely to the carrier
type. For example, when contacted to an n-type semiconductor, the wire becomes positively
charged with respect to the semiconductor since electrons are emitted into the semiconductor.
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measurements (▶ Sect. 1.2.1 of chapter “Carriers in Magnetic Fields and Tempera-
ture Gradients”).

Carrier Densities in Doped Semiconductors The density of electrons and holes in
a semiconductor, with given densities of donors and acceptors of a known energy
and charge character, can easily be determined by again using statistical arguments.
As shown in Sect. 1.3, the carrier density is given by

n ¼ Nc exp �Ec � EF

kT

� �
and p ¼ Nv exp �EF � Ev

kT

� �
: (38)

In contrast to the intrinsic behavior discussed in Sect. 1.3, both of these densities are
no longer equal to each other in an extrinsic semiconductor. Due to an excess of
either donors or acceptors, the Fermi level moves substantially away from the middle
of the bandgap toward the edge of the conduction or valence band, respectively.

2.1 The Position of the Fermi Level

The position of the Fermi level can be determined from the neutrality condition

nþ N�
A ¼ pþ Nþ

D ; (39)

where N�
A is the density of negatively charged acceptors, i.e., acceptors which have

accepted an electron, andNþ
D is the density of positively charged donors, i.e., donors

that have donated their electron – see Fig. 9. Since the total density of a dopant
equals the sum of its charged and neutral parts, the charged acceptors and donors are
given by

N�
A ¼ NA � N0

A and Nþ
D ¼ ND � N0

D (40)

with NA and ND as the total density of acceptors or donors, independent of their
occupation.
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semiconductors. The current
is carried by minority carriers
which are depicted in the
figure
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The degree of filling of donors (ND
0 /ND) and acceptors (NA

0/NA) is given by the
Fermi–Dirac distribution functions

N0
D ¼ ND

1þ 1

νdD
exp

ED � EF

kT

� � and N0
A ¼ NA

1þ 1

νdA
exp

EF � EA

kT

� � ; (41)

with vdD and vdA as the degeneracy factors of the donor and acceptor. The values of
the degeneracy factors depend on the electronic structure of the defect – see
Landsberg (1982). In the simplest case, vdD or vdA = 2 for defects which have an
initially empty or paired state and a final state with an unpaired electron. Alterna-
tively, vdD or vdA = ½ if the initial state was occupied with the unpaired electron,
while the final state is empty or is occupied with paired electrons – see also van
Vechten (1980).

Equations 38 through 41 present a set of algebraic equations for determining EF. It
is helpful to use a graphical method for obtaining EF as a function of doping and
temperature (Shockley 1950).6 In Fig. 10, n, N�

A , p, and Nþ
D are plotted in a

semilogarithmic representation as a function of EF for given temperature and doping
densities – here, predominant acceptor doping is assumed. The intersection of n

þN�
A and pþ Nþ

D (heavy curves) yields the solutions EF
(sol) and p(sol).

From the example shown in Fig. 10, the Fermi level is determined by p and
N�

A only and lies between the acceptor level EA and the valence-band energy Ev.
The material in this example is p-type. The determining equation here can be
simplified to p = N�

A , and neglecting the “1” in the denominators of Eq. 41, we
obtain

Spatial coordinate x

Ec

E
ne

rg
y

E

Ev

ED

EA

ND

NA

ND

–

+0

0 NA

n

p

Fig. 9 Band model with
neutral and ionized donors
and acceptors

6The graphical presentation is similar to the Brouwer diagram introduced in ▶ Sect. 2.6 of chapter
“Crystal Defects”. In the Brouwer diagram, ln(n) is plotted versus 1/kT, while here we plot ln(n)
versus E. In both presentations, small contributions are neglected due to the logarithmic density
scale.

2 The Extrinsic Semiconductor 829



Nv exp
Ev � EF

kT

� �
¼ νdA NA exp �EA � EF

kT

� �
; (42)

yielding for the p-type semiconductor

EF ¼ Ev þ EA

2
� kT

2
ln

Nv

νdA NA

� �
: (43)

When the density of donors is increased for partial compensation, keeping all other
parameters constant, essentially no changes in EF is observed until ND approaches
NA. Then EF moves away from the valence band until, when ND reaches NA, the
Fermi level jumps to the middle of the gap; here compensation is complete. When
ND even slightly exceeds NA, EF further moves to a position near ED. The semicon-
ductor has turned from p-type to n-type, and the Fermi level for this n-doped
semiconductor is determined by

EF ¼ ED þ Ec

2
þ kT

2
ln

Nc

νdDND

� �
: (44)

Figure 10 also shows that, in general, additional doping, indicated for a deeper donor
level Ndd by the dotted curve, has little influence on EF as long as the density is
substantially below that of the most prevalent level of the same type. Observe the
addition of concentrations on the logarithmic density scale in Fig. 10.

Defect Compensation In the presence of both donors and acceptors, surplus
electrons from the donors recombine with holes from the acceptors, with the
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Fig. 10 Carrier densities in
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A ) as a

function of the Fermi energy.
A graphical solution (sol) of
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corresponding hole density in
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overall effect of reducing the surplus density of electrons and holes, i.e.,
bringing the concentration closer to the intrinsic, undoped case. Such a semi-
conductor is called a partially compensated semiconductor (see Fig. 11); the
effective density of defects is given by the difference of the concentration of
donors and acceptors:

Neff ¼ ND � NA: (45)

This effective defect density will be donor-like if ND > NA or acceptor-like if
NA > ND. The carrier density for a partially compensated semiconductor is then
given by an implicit equation:

n nþ NAð Þ
ND � NA � n

¼ νdDNcexp �Ec � ED

kT

� �
; (46)

see, e.g., Blakemore (1962) and Landsberg (1982). For an additional inclusion of
excited donor states, see Landsberg (1956).

2.2 Temperature Dependence of the Fermi Level

The temperature dependence can be obtained from the graphical representation,
shown in Fig. 12 for three temperatures. At low temperature, curve set 1, the carrier
densities between acceptor and donor interact. The governing quasi-neutrality equa-
tion can be simplified to N�

A ¼ Nþ
D or, as seen from Fig. 12,

ND ¼ νdA
νdD

NA exp �EA � EF

kT

� �
; (47)

resulting in a Fermi level that in this example lies close to the acceptor level; this is a
partially compensated case:

x

Ec

E

Ev

Fig. 11 Recombination of
surplus electrons and holes
from donors and acceptors in a
partially compensated
semiconductor
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EF ¼ EA � kTln
νdA
νdD

NA

ND

� �
: (48)

With increasing temperature, curve set 2, the carrier densities in the acceptors and
in the valence band interact, yielding the set of equations discussed in the previous
section. The effect of compensation is reduced. The Fermi level lies about halfway
between the defect level and the corresponding band.

At still higher temperature, curve set 3, the acceptor becomes depleted, and the
quasi-neutrality equation becomes

p ¼ Nv exp
Ev � EF

kT

� �
¼ νdANA; (49)

with the Fermi level shifting closer to the center of the bandgap:

EF ¼ Ev � kTln
Nv

νdANA

� �
: (50)

Finally, at still higher temperatures (not shown in Fig. 12), electron and hole densities
from the two bands are the dominating partners; this is the intrinsic case, described in
Sect. 1.3 and given by Eq. 35. The Fermi level has now approached the center of the gap.

A typical temperature dependence of the Fermi level in a doped semiconductor is
summarized in Fig. 13 for n- and p-type Si. This figure also indicates the dependence of
the bandgap energy on the temperature – see ▶Sect. 2.2 of chapter “Bands and
Bandgaps in Solids”. For donor doping, one of the upper curves is selected; for acceptor
doping, one of the lower curves is selected, according to the donor or acceptor density.
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2.3 Carrier Density in Extrinsic Semiconductors

Introducing the Fermi level, as obtained in Sect. 2.2, into the equations for the carrier
densities (Eq. 38) yields the extrinsic branches in the n(T ) or p(T ) curves.

We distinguish different temperature ranges for partially compensated or for
essentially uncompensated semiconductors.

1. Low temperatures: from Eqs. 38 and 50, we obtain for partially compensated
semiconductors

n ¼ νdD
νdA

Nc ND � NAð Þ
NA

exp �Ec � ED

kT

� �
(51)

and for uncompensated semiconductors

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νdDNcND

p
exp �Ec � ED

2kT

� �
: (52)

The factor 1/2 in the exponent is characteristic of uncompensated semiconductors.
2. Medium temperatures: from Eqs. 38 and 44, we obtain for compensated or

uncompensated semiconductors

n ¼ νdDND � νdANA; (53)

i.e., carrier depletion from donors.
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Fig. 13 Fermi energy in Si as a function of the temperature for five different doping levels, also
showing the decrease of the bandgap energy at higher temperatures (After Grove 1967)
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3. High temperatures: one reaches the intrinsic branch with

n ¼ ffiffiffiffiffiffiffiffiffiffiffi
NvNc

p
exp �Ec � Ev

2kT

� �
: (54)

This behavior is depicted in Fig. 14 for partially compensated and uncompensated
semiconductors.

A similar set of equations is obtained for p-type semiconductors by replacing Nc

with Nv and (vdDND, ED) with (vdANA, EA) in Eqs. 51, 52, 53, and 54.

Defects in Gapless Semiconductors Donors or acceptors also influence the con-
ductivity of gapless semiconductors such as Hg1-xCdxTe, although the defect states
lie inside one of the bands and therefore become resonant states – see ▶ Sect. 1 of
chapter “Shallow-Level Centers”. These defects cause a shift of the Fermi level away
from the touching point in E(k) (see, e.g., center diagrams of Figs. 4 and 5a in chapter
▶ “Bands and Bandgaps in Solids”) making the material n- or p-type. The position
of the Fermi level is determined by the quasineutrality condition Eq. 39. See
Tsidilkovski et al. (1985) for a review.

2.4 Intrinsic and Minority Carrier Densities

The density of minority carriers, i.e., electrons in a p-type or holes in an n-type
semiconductor, is obtained from the equilibrium equation once the position of the
Fermi level is known. For instance, in the example given in the previous section for
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Fig. 14 Carrier density as a function of the temperature in (a) compensated and (b) uncompensated
semiconductors
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an n-type semiconductor, with EF given by Eq. 44 and n given by Eq. 52, the
minority carrier density p is given by

p ¼ Nv exp �EF � Ev

kT

� �
: (55)

The product of minority and majority carrier densities in thermal equilibrium
yields the intrinsic carrier density

n2i ¼ np ¼ NcNv exp �Ec � Ev

kT

� �
: (56)

In graded junctions or highly doped inhomogeneous materials (see ▶ Sects. 2.3 of
chapter “Bands and Bandgaps in Solids” and ▶ 3.1 of chapter “Carrier-Transport
Equations”), a similar relationship holds except that Eg = Eg(x) = Eg0 + ΔEg(x),
where x is the composition parameter of the alloy; hence n2i ¼ n2i xð Þ with

n2i xð Þ ¼ NcNv exp �ΔEg xð Þ
kT

� �
exp �Eg0

kT

� �
; (57)

and thus is independent of doping. With the knowledge of ni, we can easily obtain
the corresponding equilibrium density of minority carriers for any given majority
carrier-density. For example

p ¼ n2i =n; (58)

with n as given in Eq. 51. This relation, however, no longer holds when another
excitation such as light is employed or when the minority carrier-density is frozen-in
– see Sect. 2.6; thenn p > n2i – see chapter▶ “Photoconductivity”. For deviations in
degenerate semiconductors, see Blakemore (1962).

2.5 Self-Activated Carrier Generation

Doping with acceptors and donors to provide extrinsic conductivity, as discussed in
the previous section, is usually done at a constant level, independent of temperature.
However, vacancies and interstitials can also act as donors or acceptors (▶ Sect. 2.4
of chapter “Crystal Defects”) and thereby contribute to the carrier generation. Since
the generation of these defects from Schottky or Frenkel disorder is an intrinsic
process, they may be considered as influencing an intrinsic carrier generation (i.e., a
generation which is not doping dependent).

In a monatomic semiconductor with vacancy generation in thermodynamic
equilibrium, the influence on the carrier generation is unambiguous. When
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vacancies act as acceptors, the density of the acceptors increases with temperature
according to

NA ¼ NL exp �ESchottky

kT

� �
(59)

where NL is the density of lattice sites and ES is the Schottky energy.
Introducing this relationship into the carrier–density relation Eq. 55, we obtain

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
NvNL

p
exp �EA � Ev þ ES

2kT

� �
: (60)

The pre-exponential factor of Eq. 60 is larger than for an extrinsic carrier generation
(Eq. 55). The behavior resembles electronic intrinsic generation (Eq. 54), since EA�
Ev + ES can be on the order of the bandgap energy and is not determined by doping
except for compensation, which is neglected here.

This self-activated conductivity can be distinguished from a purely electronic,
intrinsic conductivity by a larger carrier density at the intercept for T ! 1, since NL

is typically on the order of 1022 cm�3, while Nv and Nc are on the order of
1019 cm�3 (Fig. 15). In addition, one has to consider the temperature dependence
of the bandgap energy, which causes a contribution in the pre-exponential factor.

An experimental determination of self-activated conductivity by comparing the
slope with the optically measured bandgap energy Eg is handicapped by ambiguities.
These ambiguities are due to levels in the Urbach tail (see ▶Sect. 3 of chapter
“Optical Properties of Defects” and ▶Sect. 1 of chapter “Defects in Amorphous
and Organic Semiconductors”) and by the unknown magnitude of the Franck–Condon
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Fig. 15 Self-activated carrier
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shift (see ▶Sect. 2.3.1 of chapter “Optical Properties of Defects”), which permits
thermal ionization with a lower energy than the optical band–edge transition. In
addition, pairs of intrinsic defects in binary or higher compounds are created at
densities which do not yield exact compensation – see ▶Sect. 2.3 of chapter “Crystal
Defects”. This does not eliminate the influence of intrinsic defects, as an exact
compensation would, but makes an analysis more complex.

2.6 Frozen-In Carrier Densities

The minority carrier density for sufficiently doped, wider bandgap materials
becomes unreasonably small. For instance, in n-type GaAs with a bandgap energy
of 1.424 eVat 300 K, the intrinsic carrier density is 1.8 	 106 cm�3. With a density
of shallow donors of 1017 cm�3 yielding n ffi 1017 cm�3 at room temperature, the
density of minority carriers in thermal equilibrium would be p ffi 3 	 10�5 cm�3

(Eq. 56). This density is substantially below a value probably maintained by
background cosmic radiation, and it would take an extremely long time to approach
equilibrium without such radiation. Therefore, a different approach is necessary to
describe the actual behavior for minority carriers in wider-gap semiconductors.

The minority-carrier response time can be estimated from

τp ¼ 1

νp
exp

EF � Ev

kT

� �
; (61)

with νp as the attempt-to-escape frequency of a hole from a shallow acceptor. With νp
typically on the order of 1010–1013 s�1 (see ▶Sect. 1.2.2 of chapter “Carrier Genera-
tion”), one estimates that it will take more than 105 s to achieve equilibrium when the
Fermi level is farther away than ~1 eV from the band edge. For most electronic
experiments, the present state is considered frozen-in if a delay of more than one day
(~105 s) is necessary to achieve a steady state, that is, whenever the Fermi level is more
than 1 eVaway from the respective band edge. This means that minority carrier densities
at room temperatures are not expected to drop below a frozen-in (f-i) density of

pf�i ffi Nv exp � 1 eV

kT

� �
ffi 102 cm�3: (62)

When, for consistency, one wants to maintain the Fermi-level concept, then it
requires the introduction of a quasi-Fermi level for minority carriers, here EFp for
holes, which is formally introduced by

pf�i ¼ Nv exp �EFp � Ev

kT

� �
: (63)
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This concept can be justified as reasonable under certain conditions7 – see ▶ Sect.
3.3 of chapter “Carrier-Transport Equations”. It is a helpful approximation for a
variety of discussions dealing with an additional excitation (e.g., optical) to thermal
excitation.

When defining a quasi-Fermi level, it is customary to also convert the notation of
the Fermi level relating to the majority carrier, although essentially unchanged from
EF,

8 to another quasi-Fermi level: here EFn ffi EF. Deviations from the thermal
equilibrium then result simply in a split of EF into EFn and EFp. Extensive use of
this concept will be made in ▶Sect. 3.3 of chapter “Carrier-Transport Equations”.

It will suffice here to summarize that quasi-Fermi levels in normal observation of
semiconductors cannot be farther separated from the respective bands than by at
most ~40kT, i.e., about 1 eV for room temperature due to freezing-in:

Ec � EFnð Þ < 40kT and EFp � Ev

� �
< 40kT: (64)

In wider-bandgap materials (Eg > 1 eV) or at lower temperatures, freezing-in
becomes an important consideration. Freezing-in also applies to thermal excitation
from deep defect levels in the bandgap. However, since the frequency factor depends
on the type of defect center (see chapter▶ “Carrier Generation”), the freezing-in depth
varies between 20kT and 40kT for Coulomb-repulsive to Coulomb-attractive centers,
respectively, for a freezing-in time of 105 s. In devices, usually much shorter response
times are required. For freezing-in, this causes a much smaller distance of the quasi-
Fermi level to the corresponding bands and requires a more detailed discussion
regarding which of the trap levels can follow with their population and which cannot.

3 Phase Transitions at High Carrier Densities

3.1 The Mott Transition

At very low temperature (T ! 0), hydrogen-like donors and acceptors are neutral,
states in the conduction and valence bands are unoccupied, and the semiconductor
behaves like an insulator (see Fig. 14). At very high doping concentrations, however,
energy states in the bandgap lose their localization if their mutual energy is close
enough (see band tailing in ▶Sect. 3 of chapter “Optical Properties of Defects” and
▶Sect. 1 of chapter “Defects in Amorphous and Organic Semiconductors”). These
states then form a narrow band and, when partially filled, contribute to electronic
conduction even for T ! 0, i.e., the semiconductor behaves like a metal (Mott 1984).

7Justification in steady state, e.g., with optical excitation, is reasonable. The use, however, of quasi-
Fermi levels close to a frozen-in situation becomes questionable when different types of defects are
involved.
8Through mutual generation and recombination of electrons and holes, a change in minority carrier
density also causes a change in majority carrier density; but, because of the much larger density of
majority carriers, the change is truly negligible.
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The critical value of doping concentration for such an insulator–metal transition is
reached when the average distance between hydrogen-like impurities (▶Sect. 1 of
chapter “Shallow-Level Centers”) approaches their diameter. Their Coulomb poten-
tials start to overlap, and as a consequence carriers can be transferred to adjacent
impurities by either thermionic emission over the separating barrier or by tunneling.
These processes increase for decreasing interimpurity separation. In addition, the
ionization energy of the shallow impurities is lowered by the screening of their
potential due to the high free-carrier concentration. This produces more free carriers,
which contribute to screening, consequently causing (even at low temperature) ioni-
zation of yet unionized hydrogen-like impurities, in turn producing more free carriers.
As a consequence, a quite abrupt transition occurs for increased doping, the Mott
transition (Mott 1990), which causes an increase in conductivity and makes the
semiconductor metal-like. Such semiconductor–metal transitions, following Eq. 65,
are observed for a variety of semiconductors (Edwards and Sienko 1978). This
transition can be achieved in thermal equilibrium: a semiconductor turns into a
metal at high doping densities – it becomes a degenerate semiconductor. Beyond
such a transition, the electrical conductivity remains high and nearly constant down to
T ! 0, as shown in Fig. 16b for Si with a donor density above ~3.2 	 1018 cm�3.
The semiconductor then behaves like a metal.

The critical density for the Mott transition is closely related to the Anderson–Mott
localization density (▶Eq. 17 of chapter “Defects in Amorphous and Organic Semi-

conductors”) and is attained when the average distance r ffi n
-1=3
Mott between shallow

donors or acceptors is approximately four times their quasi-hydrogen radius aqH:
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Fig. 16 (a) Electrical conductivity of n-type Si:P extrapolated to T = 0 as a function of the P donor
concentration (After Rosenbaum et al. 1980). (b) Resistivity of Si:P as a function of the temperature
with the donor density as family parameter (After Sasaki 1980). A semiconductor–metal transition
is accomplished when a finite conductivity is maintained for T ! 0
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aqHn
1=3
Mott ffi 0:24 (65)

(Mott and Davis 1979; Mott 1987, 1990); see also ▶Sect. 1.2.2 of chapter “Carrier
Transport Induced and Controlled by Defects”. Figure 17 indicates good agreement
with the experiment for a variety of semiconductors. These critical densities are
within the accuracy of the estimate on the same order of magnitude as the densities
for electron–hole droplet formation discussed in the following section.

3.2 Electron–Hole Condensation

There are also other ways to initiate metal-like behavior in semiconductors. Rather
than generating free carriers by the overlap of hydrogen-like impurities creating an
impurity band, a similar critical process can be initiated by a sufficient optical
generation of free electrons and holes. When their density is large enough, the
interaction between electrons and holes becomes strong, and they can no longer be
regarded as a gas of independent particles; at low enough temperatures, their
Coulomb energy becomes larger than their thermal energy:

e2

4π estate0
n1=3 > kT; (66)

then condensation of the carrier ensemble into a liquid phase takes place, which
causes substantial changes in the behavior of the semiconductor and renders it metal-
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like. Such condensation within an electron–hole system is similar to the phase
transition of normal gasses into liquids; at low temperatures and sufficient densities,
electrons and holes can occupy a state as interpenetrating fluids with a lower energy
than that of excitons or biexcitons.

Optically created electrons and holesfirst thermalizewith the lattice, typicallywithin
τth ffi 1 ns, before the carriers recombine, typically within τrec ffi 10 μs. Therefore,
these carriers can be regarded as having acquired lattice temperature. At low enough
temperatures, they tend to form excitons or, at high excitation density, also biexcitons

(exciton molecules). At even higher density, i.e., when nexc > ncrit ffi 2aqH
� ��3

,
excitons overlap and no individual electron–hole binding persists. The exciton gas
then transforms to an electron–hole plasma with an average energy per electron–hole
pair below that of a single exciton Eexc. Such an electron–hole plasma is stabilized in
indirect semiconductors like Si andGe by themultivalley degeneracy of the conduction
bands, which lowers the kinetic energy. At sufficiently high density and low temper-
ature, the condensation into the evenmore stable state of an electron–hole liquid occurs
(Landau and Lifshitz 1976; Reinecke and Ying 1979). Such condensation is similar to
that of forming a liquid metal from its vapor phase; during the condensation, the orbits
of valence electrons disappear, changing their behavior into that of free electrons.
However, the heavy ion cores are replaced here by holes which have a mass on the
same order of magnitude as the electrons, causing a breakdown of the adiabatic
approximation. As a result, large zero-point vibrations with amplitudes of the exciton
diameter prevent solidification of the electron–hole liquid at T = 0 K and yield a much
lower binding energy of the liquid than for the core atoms in a corresponding metal.

The resulting electron–hole liquid has metallic properties where electrons and
holes are free to move as interpenetrating Fermi liquids. The condensation into an
electron–hole liquid was originally proposed by Keldysh (1968). It can be described
with a diagram with liquid and gas phases, similar to the one for first-order phase
transitions for vapor to liquid condensation.

Phase Diagram The properties of a system consisting of electrons, holes, excitons,
biexcitons, and the electron–hole liquid at any given temperature can be described
by a phase diagram. It is instructive to plot such a phase diagram in a T versus ln(n/
ncrit) representation (Fig. 18), which is rather universal when scaled to the individual
ncrit, Tcrit values. In any isothermal process below Tcrit, one observes at low densities
a gas which, in equilibrium, contains excitons and excitonic molecules (biexcitons).
At higher densities, it will appear as a mixture of electron–hole plasma (vapor) and
liquid. Beyond the second phase boundary, it will show only the liquid phase. An
experimental phase diagram is given in Fig. 19.

The critical parameters of an electron–hole liquid depend on the binding energy

per carrier pair Epair given by Epair ¼ E
nþpð Þ
kin þ E nþpð Þ

xc . The correlation energy E nþpð Þ
xc

stems from the Pauli exclusion principle. It causes an increase of the distance
between carriers of the same spin and consequently reduces the attractive and
dominating Coulomb energy, but prevails when the interparticle distance decreases
much below aqH. The relevant critical parameters are listed in Table 1 for a number
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of semiconductors. The critical temperatures are on the order of 6 . . . 60 K for Ge
and CdS, respectively. The critical density is related to the quasi-hydrogen radius aqH
(see Eq. 65) and the critical temperature to the binding energy Epair as

n
1=3
crit ffi 0:2a�1

qH and kTcrit ffi 0:1Epair: (67)

Typical values for ncrit range from 1015 to 1020 cm�3, and typical binding energies
range from below 1 meV for GaAs to � 50 meV (Thomas and Timofeev 1980).
Binding energies, hence Tcrit, are increased in materials with highly anisotropic
effective mass and in multi-valley semiconductors. At low temperatures, electrons
rarely exchange between different valleys; therefore, the electron–hole liquid can be
regarded as a multicomponent Fermi liquid.

The condensation is characterized by a well-defined critical density, binding
energy per electron–hole pair, and surface tension of the liquid; the latter causes
droplets to form during condensation, with typically a few μm in diameter and a
sharp boundary between the gas and the liquid phase. The vapor condenses to liquid
droplets to fill only part of the total volume, much like a liquid condensing from a gas
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Fig. 18 Phase diagram for an
exciton gas G and an
electron–hole liquid L (After
Keldysh 1986)
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Fig. 19 Experimental phase
diagram of Si for an
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(G + L ) (After Dite et al.
1977). The diagram also
contains the theoretical curve
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in a container of fixed volume. Such drops can be detected directly because of their
different diffractive index, which gives rise to increased light scattering for photons
with an energy below the bandgap energy (Hensel et al. 1978), or by their specific
luminescence, shown in Fig. 20. Strain confinement may give rise to larger drops up
to 1 mm diameter (Wolfe et al. 1975). The strain produces a band deformation which
acts as a well for the electron–hole drops (Gourley and Wolfe 1978).

Carriers are confined within such drops as electrons are within a metal. They have to
overcome a work function given by the difference of Epair and the exciton Rydberg
energy Eexc to exit from the drops. With increasing temperature, electron–hole pairs can
evaporate from the drops by forming excitons. When the optical excitation is turned off,
this proceeds until all droplets have evaporated, provided the recombination lifetime is
longer than the time for evaporation (as often occurring in indirect-gap semiconductors).

Bose–Einstein Condensation The formation of excitons implies the possibility
of another phase transition referred to as Bose–Einstein condensation. While elec-
trons and holes are fermions, in their mutually bound state they form composite

Table 1 Critical
parameters for
electron–hole droplets. Epair

is the binding energy per
carrier pair, ncrit is the
critical carrier density in the
electron–hole plasma, and
nL,0 is the density of the
electron–hole liquid in
equilibrium with the gas
phase (After Tikhodeev
1985)

Solid Epair Tcrit (K) ncrit (cm
�3) nL,0 (cm

�3)

Si 23 28 1.2 � 1018 3.5 � 1018
Ge 6 6.7 6 � 1016 2.3 � 1017
GaP 6 7 � 1018
GaS 9 4.5 � 1020
AlAs 14.5 12 � 1019
GaAs 1 6.5 4 � 1015 1 � 1016
CdS 14 64 7.8 � 1017 5.5 � 1018
CdSe 5 30 1.2 � 1017 8.3 � 1017
CdTe 0.9 18 4.4 � 1016 2.9 � 1017
ZnO 22 70 4 � 1017 2.8 � 1019
ZnS 12 79 1.4 � 1017 8.3 � 1017
ZnSe 5 3.2 � 1018
ZnTe 3 6.6 � 1017
AgBr 30 1 � 1019

Fig. 20 Electron–hole liquid
(EHL) with 300 μm radius in a
strained Ge disk at 2 K,
viewed through a (001) face.
The bright region originates
from e–h recombination
luminescence at 1.75 μm in
the liquid (After Markiewicz
et al. 1977)
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bosons.9 Bosons do not obey the Pauli exclusion principle, i.e., they do not tend to
avoid each other. At sufficiently low temperature and high density, the entire
ensemble of bosons can condensate into a single quantum-mechanical entity,
described by a unique wavefunction on a near-macroscopic scale. Prominent phe-
nomena related to such condensation are the superconductivity with zero electrical
resistance (chapter▶ “Superconductivity”) and the superfluidity of helium with zero
friction of the flow in the liquid state. While the 4He isotope is a genuine boson, the
3He isotope and the electrons need to form pairs to become composite bosons.

In contrast to the electron–hole liquid, which is described by interpenetrating
Fermi fluids, the boson gas of the excitons is expected to coalesce into a
Bose–Einstein condensate when the de Broglie wavelength λDB of the exciton at
thermal velocity becomes equal to the interparticle distance (Blatt et al. 1962;
Keldysh and Kopaev 1965)

λDB TBECð Þ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mexc kTBEC

p � 1ffiffiffiffiffiffiffiffi
nexc3

p ; (68)

where mexc is the effective mass of the exciton and TBEC is the critical temperature
for Bose–Einstein condensation. This temperature is expected to be on the order of
10 K at nexc ffi 1017 cm-3 for a typical exciton mass. At low enough temperatures,
excitons can associate to biexciton molecules which are also bosons and should also
undergo a Bose–Einstein condensation (Keldysh 1968).

Despite half a century of efforts to demonstrate excitonic Bose–Einstein condensa-
tion, a compelling experimental evidence is missing. The experiments particularly
focused on small-gap alloy semiconductors with a bandgap energy tuned below the
exciton binding energy. The exciton ground state is then expected to become unstable
against formation of excitonic correlations (Zimmermann 2007). The fermionic con-
stituents lead, however, always to a phase transition into an electron–hole plasma or an
electron–hole liquid. Whether or not an excitonic Bose–Einstein condensation exists is
still controversial; for more recent contributions, see publications in Solid State Com-
munications vol. 134 (2005), Combescot and Snoke (2008), Deveaud (2015),
Combescot et al. (2015), and Phan et al. (2016).

4 Summary

The density of electrons and holes as carriers of currents in semiconductors can be
obtained from equilibrium statistics – the Fermi–Dirac statistics. The key parameter of
this statistics is the Fermi level EF, which can be obtained from the quasineutrality

9With strong photon coupling, however, one has polaritons rather than excitons. They cannot
accumulate near K = 0 because of their photon nature. Therefore, Bose–Einstein condensation of
these quasi-particles in bulk material is impossible. However, for exciton–polaritons coupled to the
mode of a microcavity mode, such a condensation appears meanwhile established as discussed by
Deng et al. (2010).
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condition. EF lies near the middle of the bandgap for intrinsic semiconductors and near
the donor or acceptor level for doped (extrinsic) semiconductors. The carrier density is
determined by the product of the joint density of states, i.e., the product of defect level
and effective band-level densities, and the Boltzmann factor, with an activation energy
given by the difference between band edge and Fermi energy. In doped semiconduc-
tors, both majority and minority carrier-densities are of interest for semiconducting
devices. The minority carrier-density of wider-gap semiconductors is often frozen-in at
densities in excess of 102 cm�3, represented by a quasi-Fermi level of typically not
more than 1 eVabove the minority carrier band-edge at room temperature. In materials
with dominating intrinsic defects, i.e., Schottky or Frenkel disorder, self-activated
conductivity must be considered at elevated temperatures. Here, the density of these
defects, as well as the carrier densities, is temperature dependent.

At high doping concentrations above the Mott density, the Coulomb potentials of
hydrogen-like impurities start to overlap, and free carriers are produced. This
insulator–metal transition yields a degenerate semiconductor with a metal-like
conductivity even at lowest temperature.

Further phase transitions take place at high quasi-particle densities and low tem-
peratures. One of these transitions involves an optically generated exciton gas which
transforms to an electron–hole plasma at high carrier density. At even higher density,
the carriers condense to an electron–hole liquid. The condensation from the exciton
gas may also directly form electron–hole droplets, which can be optically observed.
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Abstract
The current in semiconductors is carried by electrons and holes. Their lattice
polarization modifies the effective mass, expressed as a change to polarons. While
for large polarons the effect is small, semiconductors with narrow bands and large
lattice polarization show a significant effect described by small polarons. The
total current is composed of a drift and a diffusion current of electrons and holes.

# Springer International Publishing AG 2018
K.W. Böer, U.W. Pohl, Semiconductor Physics,
https://doi.org/10.1007/978-3-319-69150-3_22

847



The drift current is determined by the electric field, and the energy obtained by
carrier acceleration is given to the lattice by inelastic scattering, which opposes
the energy gain, causing a constant carrier-drift velocity and Joule’s heating. The
diffusion current is proportional to the carrier gradient up to a limit given by the
thermal velocity. Proportionality factor of both drift and diffusion currents is the
carrier mobility, which is proportional to a relaxation time and inverse to the
mobility effective mass. Currents are proportional to negative potential gradients,
with the conductivity as the proportionality factor. In spatially inhomogeneous
semiconductors, both an external field, impressed by an applied bias, and a built-
in field, due to space-charge regions, exist. Only the external field causes carrier
heating by shifting and deforming the carrier distribution from a Boltzmann
distribution to a distorted distribution with more carriers at higher energies.

The Boltzmann equation permits a detailed analysis of the carrier transport and
the carrier distribution, providing well-defined values for transport parameters
such as relaxation times. The Boltzmann equation can be integrated in closed
form only for a few special cases, but approximations for small applied fields
provide the basis for investigating scattering processes; these can be divided into
essentially elastic processes with mainly momentum exchange and, for carriers
with sufficient accumulated energy, into inelastic scattering with energy
relaxation.

Keywords
Boltzmann transport equation � Built-in electric field � Carrier heating � Collision
integral � Conductivity � Diffusion current � Drift current � Drift velocity �
Effective mass � Einstein relation � Energy relaxation � Fröhlich coupling �
Inelastic and elastic scattering � Joule’s heating � Mean free path � Mobility
effective mass � Momentum relaxation � Polaron � Polaron mass � Polaron self-
energy � Quasi-Fermi level � Relaxation time � Relaxation-time approximation

1 Carriers in Semiconductors

Electrons and holes in the conduction and valence bands are quasi-free to move in
space and energy and to accept energy from an external field. Carrier transport in
semiconductors with nonideal periodicity1 is subjected to scattering with a mean free
path λ between scattering events. Such scattering reduces the effective volume to a
value of λ3, in which there is coherence of the electron wave. Only within such
limited volume does any one electron experience lattice periodicity and is non-
localized. Scattering introduces a loss, i.e., a damping mechanism counteracting the

1A crystal with nonideal lattice periodicity is a solid which contains lattice defects (e.g., impurities)
and oscillatory motions (i.e., phonons).
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energy gain from an electric field. All scattering events change the carrier momen-
tum, i.e., its direction of motion. However, only some of them, the inelastic scatter-
ing events, significantly change the energy of the carrier. Usually, several elastic
scattering events are followed by one inelastic event after the carrier has gained
sufficient energy from the field to permit inelastic scattering, usually by generating
optical phonons. A large variety of scattering events can be distinguished; they are
listed in ▶ Sect. 4.4 and discussed in chapter “Carrier Scattering at Low Electric
Fields”. The sum of all of these determines the carrier motion, its mobility, which
will be defined later.

First a quasiclassical picture will be used in this chapter to describe the basic
elements of the carrier motion in a semiconductor. The quantum-mechanical part is
incorporated by using an effective mass rather than the rest mass, i.e., by dealing with
Bloch electrons or Bloch holes as quasiparticles. Before we discuss carrier transport, we
need to specify in a more refined model what we mean by carriers in semiconductors.

The excitation of electrons from the valence band (e.g., by absorption of photons)
creates a certain concentration n of electrons in the conduction bands. These
electrons interact with lattice imperfections, such as phonons, impurities, or other
deviations from an ideal periodicity. This interaction is termed a scattering event.
The scattering tends to bring the electrons into thermal equilibrium with the lattice
and, in doing so, to the lowest valley of the lowest conduction band.

1.1 Bloch Electrons and Holes

Near the bottom of the conduction band, the electron is described as a Bloch
electron,2 i.e., as an electron with an effective mass given by the curvature of
E(k), as defined in ▶ Sect. 2.2 of chapter “The Origin of Band Structure”, Eq. 20.

In an analogous description, the hole is described as a Bloch-type quasiparticle,
residing near the top of the uppermost valence bands, with an effective mass given
by their curvatures – see ▶ Sect. 1.1.1 of chapter “Bands and Bandgaps in Solids”.

The band picture, however, which is the basis for this discussion, results from a
series of approximations listed in chapter ▶ “Quantum Mechanics of Electrons in
Crystals”. The most severe one is the adiabatic approximation, which limits the
electron-phonon interaction. Within the band model, the Bloch electron interacts
with a static potential of the nuclei, while only the electrons surrounding each
nucleus are polarized dynamically. With sufficient coupling between the moving
electron and the lattice (i.e., a sufficiently large coupling constant ac – see Sect. 3
1.2.1, this is no longer justified. For these cases, therefore, the Bloch electron picture

2We are adopting here the picture of a localized electron. Such localization can be justified in each
scattering event. In this model, we use a gas-kinetic analogy with scattering cross-sections, e.g., for
electron-phonon interaction. This is equivalent to a description of the interaction of delocalized
electrons and phonons when calculating scattering rates.
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needs to be augmented. The corresponding quasiparticle derived from a higher
approximation is the polaron.

1.2 The Polaron

The previous discussion of free carriers with an effective mass was based on an ideal
periodic lattice. There are many reasons why a real crystal lattice shows deviations
from this periodicity. The perturbations, which cause major changes in the carrier
trajectories, can be described as local scattering centers discussed in chapter▶ “Car-
rier Scattering at Low Electric Fields”.

Another interaction that steadily accompanies the carrier throughout its entire
motion,3 however, is better incorporated in the effective-mass picture. It also has an
influence on the scattering effectiveness and thus on the mobility, which will be
discussed in this section. This interaction involves lattice polarization and causes
deviations from the Bloch electron picture discussed above. Deviations are signifi-
cant in lattices with a large coupling of carriers to the lattice, such as in ionic crystals
(typically alkali halides), crystals with a strong ionic character and large bandgap
energy (e.g., transition-metal oxides), or organic crystals. Also many typical semi-
conductors contain at least a fraction of ionic bonding, especially compound semi-
conductors with higher iconicity (e.g., nitrides or II-VI compounds). Moreover, a
strong polarization of the lattice occurs also in the neighborhood of certain impurities
or in highly disordered semiconductors. In all these cases the interaction of electrons
with lattice polarization becomes important. Such interaction can be static (for an
electron at rest) or dynamic (accompanying a moving electron).

The interaction involves the part of the Hamiltonian not considered in the band
theory when describing the Bloch electron. This adiabatic approximation neglects
the interaction of electrons with the induced motion of lattice atoms. In order to
include the motion due to the lattice polarization by the electron, several approaches
can be taken, all of which relate to the coupling of the electron with the lattice. Such
coupling can be expressed as (Hayes and Stoneham 1984):

• Fröhlich coupling, i.e., via interaction with longitudinal optical phonons
• Deformation-potential coupling, i.e., via the electric field produced by the strain

field in acoustic oscillations
• Piezoelectric coupling, i.e., via the electric field produced by acoustic phonons in

piezoelectric semiconductors

The first coupling effect is dominant. It can be described as absorption or
emission of virtual LO phonons by the electron, which thereby lowers its eigenstate
– see, e.g., Comas and Mora-Ramos (1989).

3This interaction is also commonly described as an electron-phonon interaction, however, of a
different kind than that responsible for scattering. As a lattice deformation relates to phonons, the
interaction of electrons with the lattice causing a specific deformation can formally be described by
continuously absorbing and emitting phonons (see the following sections).
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Another approach to describe the interaction is a static description in which the
electron induces a shift of the surrounding ions due to its own Coulomb field
(Fig. 1a). The eigenstates of the electron in this Coulomb funnel are hydrogen-
like, similar to that of a hydrogen-like donor (▶ Sect. 1 of chapter “Shallow-Level
Centers”); the ground state describes its self-energy. This lowers the energy of a
Bloch electron accordingly.

The energy lowering can be estimated from a simple consideration. The strain of
the lattice environment illustrated in Fig. 1a requires an elastic work

Estrain ¼ C1=2ð Þ e2ΔV; (1)

where e describes the relative displacements of the ions within the deformation
volume ΔV and the constant C1 is the energy density for a strain e = 1. This energy
cost is overbalanced by an energy gain Eion due to the polarization:

Eion ¼ �C2 e ΔV: (2)

The constant C2 is an energy density, which describes the change of the charge
balance at a strain e = 1. The sum of Eqs. 1 and 2 yields the net energy gain Epol by
the formation of the polaron state as shown in Fig. 1b:

Epol=ΔV ¼ C1=2ð Þ e2 � C2 e; (3)

with a minimum �C2
2=2C1 at the strain e ¼ C2=C1.

Estrain

Epol

Eion

E

εe

a b

Fig. 1 (a) Schematic of the polarization cloud in the vicinity of an electron (e) in a ionic lattice.
Gray circles indicate regular lattice sites. (b) Polaron energy Epol given by the sum of elastic strain
energy Estrain and electrical polarization energy Eion
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For a sufficiently large coupling to the lattice, the self-energy is large enough so
that the electron is actually trapped in its own potential well: it becomes a self-
trapped electron. This was suggested by Landau (1933) and Frenkel (1936) for bulk
crystals and later reported also in semiconductor confined systems such as quantum
wires (e.g., Muljarov and Tikhodeev 1997). Pekar (1954) pointed out, however, that
when the electron moves to a neighboring lattice position, the same trap level
appears. Thus, one can describe this as a continuous virtual level or a band below
the conduction band in which the electron can move. This picture applies for lattices
with smaller coupling constant.

The state of the electron with its surrounding polarization cloud can then be
described as a quasiparticle, the polaron. The distinguishing parameter between the
self-trapped and the mobile polaron is the strength of the electron-lattice interaction,
which also can be related to the polaron size. The small polaron is tightly bound and
self-trapped: it moves via hopping between neighboring ions. The large polaron
moves much like an electron described by the Boltzmann equation with scattering
events, but with a larger effective mass caused by the polarization cloud carried
along by the polaron (for a review, see Christov 1982). One can also describe the
polaron as an electron surrounded by a cloud of virtual phonons, which represents its
surrounding polarization. One refers to these polarons as phonon-dressed electrons,
since attached to them is the “fabric” of the surrounding lattice. They can be
described by a Fröhlich Hamiltonian, which explicitly accounts for the electron-
phonon (LO phonons at k = 0) interaction (Fröhlich et al. 1950, advanced by Lee
et al. 1953). Alternatively, it can be described with the Feynman Hamiltonian
(Feynman path integral, Feynman 1955), which simulates the virtual phonons by
a fictitious particle that interacts with the electron via a harmonic potential (Peeters
and Devreese 1984).

The size of the polaron is measured by the extent of the lattice distortion caused
by the electron. Large polarons extend substantially beyond nearest-neighbor
distances; small polarons do not. For a review, see Velasco and García-
Moliner (1997).

1.2.1 Large Polarons and Fröhlich Coupling
In the conventional band model, the polarization of Bloch electrons is included by
using the optical dielectric constant, which describes the interaction with the elec-
trons of each lattice atom. In the discussion of polarons, their polarization also
considers the shift in the position of the nuclei: the static dielectric constant is then
used to account for the more intensive shielding of the Coulomb interaction:

e2

8π eopte0 r

� �
el

! e2

8π estate0 r

� �
pol

¼ e2

8π e0 r
1

eopt
� 1

eopt
� 1

estat

� �� �
: (4)

The net difference unaccounted for in the Bloch electron picture describes the
Coulomb energy of the polaron:
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Epol, Coul ¼ e2

8π e�e0 rpol
with

1

e�
¼ 1

eopt
� 1

estat
: (5)

The resulting net Coulomb potential of the polaron is shown in Fig. 2. Within this
potential funnel, the polaron self-energy can be expressed as the 1s quasi-hydrogen
ground-state energy

Epol ¼ EqH

estat
e�

� �2 mpol

mn
: (6)

It is distinguished from the quasi-hydrogen ground-state energy by replacing estat
with e�, and the electron effective mass with that of the polaron.

The radius of the polaron can be defined as the corresponding 1s quasi-hydrogen
radius

rpol ¼ aqH
e�

estat

mn

mpol

¼ 4π e�e0ℏ2

mpol e2
: (7)

When the polaron eigenfunctions are overlapping, the polaron self-energy (Eq. 6)
broadens from a sharp level into a polaron band within which polarons can move
through the crystal. The width of this band can be estimated from the uncertainty by
absorbing or emitting virtual LO phonons as�ℏωLO. The corresponding uncertainty
radius of such a polaron is given by the uncertainty distance of finding a particle that
interacted with an LO phonon: it has an energy ℏ2k2/(2mpol) with uncertainty�ℏωLO.

Therefore, it has an uncertainty in wavenumber of� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpolωLO=ℏ

p
, the reciprocal of

which is its corresponding uncertainty in position

r�pol ¼
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mpolℏωLO

p ; (8)

which is also used as the radius of a large polaron. For typical compound semi-
conductors, the polaron radius is on the order of several lattice constants.

The Fröhlich Coupling Constant For interaction with LO phonons, it is conve-
nient to express the Fröhlich coupling in terms of the coupling constant αc. It is given

V(r)
rpol

Epol/e

r

e/(ε*ε0 r)

Fig. 2 Net potential
distribution assigned to a
polaron, indicating the
polaron radius rpol, below
which the uncertainty relation
precludes further
extrapolation of the quasi-
Coulomb potential
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as the ratio of the Coulomb energy of a polaron, which describes the electron-phonon
interaction, to the energy of the LO phonon, i.e., the predominantly interacting
phonon:

αc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

e2

4π e�e0 rpol

� �
ℏωLO

vuuut
: (9)

Entering the expression for rpol Eq. 7 into Eq. 9 and replacing e* from Eq. 5, we
obtain for the Fröhlich coupling constant αc:

αc ¼ e2

8π e0ℏ

ffiffiffiffiffiffiffiffiffiffiffi
2mpol

ℏωLO

r
1

eopt
� 1

estat

� �
; (10)

which is below unity for good semiconductors. Here αc can be interpreted as twice
the number of virtual phonons surrounding – that is, interacting with – a slowly
moving carrier in the respective band.

Semiconductors without ionic bonding (Si, Ge, α-Sn) have eopt = estat and
consequently αc = 0. Fröhlich coupling constants are therefore much larger for
ionic than for covalent semiconductors and increase with increasing effective charge
and decreasing strength of the lattice binding forces.4 Some values of αc for typical
semiconductors are given in Table 1.

Polaron Energy and Effective Mass Using αc, we can express the polaron energy
as a fraction of the LO phonon energy5:

Epol ¼ Ec � p2

2mpol

ffi � αc þ 0:01592 α2c þ . . .
	 


ℏωLO: (11)

Assuming a small perturbation of the parabolic band, Lee et al. (1953) obtain for the
energy dispersion within the band

E kð Þ ¼ ℏ2k2

2mn
� αc ℏωLO þ ℏ2k2

12mn
þ . . .

� �
ffi �αc ℏωLO þ ℏ2k2

2mpol

; (12)

which yields for the polaron mass

4A decrease of lattice-bonding forces corresponds also to a decreased Debye temperature; see also
▶ Sect. 1.1.2 of chapter “Phonon-Induced Thermal Properties”.
5This result is obtained from Fröhlich et al. (1950) and with a variational method from Lee et al.
(1953). It can be used up to αc � 1. Earlier results from Pekar, using an adiabatic approximation,
yielded Epol ¼ � α2c=3π

	 

ℏωLO , which gives a lower self-energy than Eq. 11 in the range of

validity αc < 1.
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mpol, large ffi mn

1� αc
6

: (13)

Equation 13 may be used for small αc, i.e., a weak electron-phonon interaction. For
larger values αc � 1 , the following approximation is used for the polaron mass
(Feynman 1955):

mpol, large ffi 16 α4c mn

81π4
: (14)

Materials with large polarons that show a significant increase in the effective mass
are silver halides. These have an intermediate coupling constant (1.60 and 1.91 for
AgBr and AgCl, respectively).

The variational method of Lee et al. (1953) is used to compute intermediate
coupling. Many II-VI and some III-V compounds have αc values that make these
large polarons sufficiently distinct from electrons (see Table 1 and Evrard 1984).
Their effective mass can be determined by cyclotron resonance (Peeters and
Devreese 1984). The Landau levels appearing in a magnetic field are shifted by ΔE
ffi αcℏωLO for αc 	 1; when the cyclotron resonance frequency approaches ωLO,
this level splits into two peaks indicating the strength of the electron-lattice interac-
tion. For a more exact approximation using a path integral formulation, see Feynman
(1955). For reviews, see Kartheuser et al. (1979), Bogoliubov and Bogoliubov Jr.
(1986), and Devreese (1984).

In Table 2, the properties of large polarons for a number of crystals are listed. We
note the inverse relation of rpol and Epol; for III-V semiconductors, the polaron mass
is close to the electron rest-mass, while it increases for II-VI semiconductors and gets
large for halides. Correspondingly mn/mpol reflects basically the effective electron
mass in typical semiconductors.

In the presence of a magnetic field, the cyclotron behavior of polarons within the
corresponding Landau levels is observed instead of the bare Bloch bandmass of carriers.
For a transition from Landau level n to n + 1, Bajaj (1968) obtained for polarons

ωc, pol ¼ ωc 1� αc
6

� �
� 3

20
αc

ω2
c

ωLO

ℏk2

2mnωc

þ nþ 1

� �
; (15)

Table 1 Fröhlich coupling constants ac of various solids

Solid αc Solid αc Solid αc Solid αc
InSb 0.02 GaP 0.201 CdTe 0.35 ZnS 0.63

InAs 0.05 GaN 0.48 CdSe 0.46 ZnO 1.19

InP 0.15 AlSb 0.023 CdS 0.51

InN 0.24 AlAs 0.126 CdO 0.74 KI 2.50

GaSb 0.025 AlP 0.49 ZnTe 0.33 KBr 3.05

GaAs 0.068 AlN 0.65 ZnSe 0.43 KCl 3.44
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where ωc is the cyclotron-resonance frequency of electrons (▶Eqs. 24 and ▶ 25 of
chapter “Bands and Bandgaps in Solids”).

1.2.2 Small Polarons and Criteria for Different Polarons
Small polarons were introduced by Tjablikov (1952) and further analyzed by Hol-
stein (1959). They are observed when the coupling constant is larger than 5. This
strong interaction causes self-trapping: the wavefunction corresponds to a localized
electron; the tight-binding approximation is appropriate for a mathematical descrip-
tion (Tjablikov 1952). Small polarons are distinguished from electrons by a rather
large polaron self-energy Epol. The optical energy necessary to bring a small polaron
into the band, i.e., to free the self-trapped electron, was estimated by Pekar to be

Epol,opt,small ffi 0:14 α2c ℏωLO: (16)

Their thermal ionization energy Epol,th,small is considerably smaller, typically ~(1/3) 

Epol,opt,small, because of the strong lattice coupling; see ▶Sects. 1.2.1 and ▶ 1.2.2 of
chapter “Optical Properties of Defects”. For further discussion ofEpol, see the review of
Devreese (1984).

The effective mass of small polarons is given by (see Appel 1968):

mpol,small ffi mn α2c
48

: (17)

Examples for materials with small polarons are narrow-band semiconductors with
large αc values (~10), e.g., transition-metal oxides such as NiO or the molecular
crystals described in ▶Sect. 3 of chapter “The Origin of Band Structure” with their

Table 2 Polaron
parameters of various solids

Solid rpol (Å) Epol (meV) mpol/m0 mn/mpol

InSb 105 0.5 1.00 0.014

InAs 73.9 1.5 1.01 0.023

InP 33.8 5.2 1.02 0.078

GaSb 52.2 0.9 1.01 0.047

GaAs 38.5 2.6 1.01 0.068

GaP 21.1 6.5 1.02 0.175

CdTe 42.8 8.1 1.07 0.107

CdSe 33.1 12.2 1.08 0.14

CdS 25.3 20.2 1.10 0.126

ZnTe 30.5 8.4 1.06 0.169

ZnSe 27.0 13.1 1.08 0.183

ZnS 17.7 30.8 1.14 0.31

ZnO 14.8 64.8 1.18 0.276

KI 25.6 44.8 1.71 0.56

KBr 22.1 64.3 2.03 0.75

KCl 18.2 92.2 2.26 0.97
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particularly small band dispersion (see▶Sect. 4.3 of chapter “QuantumMechanics of
Electrons in Crystals”). Due to this narrow bandwidth, the band conductivity is usually
disturbed by phonon scattering in organic crystals at room temperature, and hopping
mechanisms may prevail even if the material has crystalline structure; see▶Sects. 4.3
and ▶ 5.1.2 of chapter “Carrier Transport Induced and Controlled by Defects”. A
review for small polarons is given by Emin (1973); for a summary of polaron mobility
due to various scattering mechanisms, see Appel (1968) and Evrard (1984).

When the coupling to the lattice is strong enough so that the polarizing electron
produces a significant Coulomb funnel, a second electron with opposite spin may
be trapped within the same funnel (Chakraverty and Schlenker 1976). This
bipolaron again can move through the lattice at an energy below that of a free
electron and with an effective mass somewhat larger than that of two free
electrons (Böttger and Bryksin 1985). For bipolarons in organic polymers, see
Brazovskii et al. (1998). A significant difference, compared with two free elec-
trons or two independent polarons, is the fact that the new quasiparticle bipolaron
has zero spin and consequently acts as a boson. It is also referred to as a Cooper
pair, and its formation is used to explain superconductivity; see ▶ Sect. 1.2 of
chapter “Superconductivity”.

Existence Criteria for Different Polarons There are three different energies, the
relative magnitudes of which determine the preferred existence of large polarons,
small polarons, or bipolarons. These are6

• The relaxation energy Erelax ¼ αc ℏωLO

• The transfer energy J ¼ ℏ2= ncoordm
� a2ð Þ

• The Hubbard correlation energy U ¼ U0 � λ2=β (▶ Sect. 2.8 of chapter “Deep-
Level Centers”)

Here ncoord is the coordination number, m* is the effective mass, a is the nearest-
neighbor distance, λ is an electron-lattice coupling constant, and β is an elastic
restoring term.

We distinguish:

1. The competition between band formation and lattice relaxation
(a) Erelax	 J large polaron
(b) Erelax� J small polaron

2. The competition between lattice relaxation and carrier correlation
(a) Erelax	 U large polarons remain at separate sites.
(b) Erelax� U electrons prefer to share sites.

3. Sign change in carrier-correlation energy
U < 0 bipolaron formation

6More precisely, these three energies are: Erelax, the energy given to phonons during lattice
relaxation; J, the bandwidth of a band created by free, uncoupled carriers of the given density;
and U, the energy necessary to put two carriers with opposite spin on the same lattice site.
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For further discussion, see Toyozawa (1981).

Electrons or Polarons in Semiconductors In a rigorous presentation, all elec-
trons or holes near the band edges in equilibrium with the lattice should be
replaced by polarons. Since for most semiconductors the difference between
electrons and polarons is very small (Table 2), it is justified to proceed with the
conventional description, using instead Bloch electrons and holes. Even in such
semiconductors, this is no longer sufficient in the neighborhood of lattice defects
with strong electron coupling. Here, the Huang-Rhys factor S, rather than the
Fröhlich coupling constant αc, is used, and the polaron picture is applied in order
to obtain reasonable results for the defect and lattice relaxation in agreement with
the experiment – see ▶ Sect. 1.2.2 of chapter “Optical Properties of Defects”.
Polaron effects are also significant in some amorphous semiconductors (Cohen
et al. 1983).

2 Conductivity and Mobility of Carriers

Carrier transport proceeds under external forces,7 resulting in drift, and under
internal quasiforces, resulting in diffusion. This may involve different charged
particles which contribute additively to the current or have an indirect effect when
it involves neutral particles, e.g., excitons (see ▶ Sect. 1.2 of chapter “Excitons”).
Exciton diffusion plays a major role in devices fabricated from organic semicon-
ductors; for a review see Mikhnenko et al. (2015).

Carrier transport occurs in bands near the band edges, i.e., near Ec for electrons
and near Ev for holes. For materials with a sufficiently large defect density, carrier
transport may proceed also via tunneling between trapping states. It may also involve
carriers hopping from traps into the band or hopping of self-trapped small polarons.
Trapped carriers travel a short distance in the band and later are recaptured, then
reemitted, and so on; an analogous process occurs with small polarons – see chapter
▶ “Carrier Transport Induced and Controlled by Defects”.

All of these processes add up to produce the total current and usually have vastly
different magnitudes. Ordinarily, only one transport process predominates in homoge-
neous semiconductors. In nonhomogeneous materials, however, at least two and fre-
quently four contributions are important in different regions of the devices. These are
drift and diffusion currents of electrons and holes. First, a rather simple picture of the
carrier transport is presented, which serves as guidance for a more sophisticated
approach in later chapters.

7Strictly speaking, steady-state carrier transport is due to external forces only. The diffusion current
originates from a deformed density profile due to external forces and is a portion of the conven-
tionally considered diffusion component. The major part of the diffusion is used to compensate the
built-in field and has no part in the actual carrier transport: both drift and diffusion cancel each other
and are caused by an artificial model consideration – see Sect. 3.4.
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At finite temperatures, carriers are found above the edge of the respective band
according to their statistical distribution function. In semiconductors, they usually
follow the Boltzmann distribution function within the bands when they are not
degenerate, i.e., when the carrier densities are below 0.1Nc or 0.1Nv (▶Eqs. 18
and ▶ 22 of chapter “Equilibrium Statistics of Carriers”). Their thermal velocity, the
root mean square velocity,8 is obtained from the equipartition principle, i.e., kinetic
energy = ½kT per degree of freedom:

mn

2
v2
� � ¼ 3

2
kT; (18)

hence

ffiffiffiffiffiffiffiffi
v2h i

p
¼ vrms ¼ 3kT

mn
; (19)

or

vrms ¼ 1:18
 107

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

mn

T Kð Þ
300

s
cm=sð Þ: (20)

The velocity distribution is illustrated in Fig. 3. In thermal equilibrium and in an
isotropic lattice, the motion of the carriers is random.

The quantum-mechanical model of a periodic potential teaches that, in contrast to a
classical model, an ideal lattice is transparent for electrons or holes within their
respective bands. That is, the carriers belong to the entire semiconductor and as
waves are not localized: their position cannot be identified, except stating that
n carriers (per cm3) are within the given crystal. There is no scattering of carriers
within such an ideal crystal. This behavior of carriers is unexpected in a classical model,
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Fig. 3 Classical velocity
distribution, with root mean
square, average, and most
probable velocities identified

8The rms (root mean square) velocity vrms, which is commonly used, should be distinguished from
the slightly different average velocity vav ¼ vj jh i and from the most probable velocity vmp. Their

ratios are vrms : vav : vmp ¼
ffiffiffiffiffiffiffiffi
3=2

p
:

ffiffiffiffiffiffiffiffi
4=π

p
: 1 ¼ 1:2247 : 1:1284 : 1, as long as the carriers follow

Boltzmann statistics. For a distinction between these different velocities, see Fig. 3.
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which visualizes the filling of space with atomic spheres and expects only very limited
possibilities for an electron traversing between these spheres without being scattered.

The introduction of phonons and crystal defects provides centers for scattering. In
this way, a carrier motion results, which can be described as a Brownian motion9 with a
mean free path commensurate with the average distance between scattering centers.
This distance is several hundred angstroms in typical crystalline semiconductors, i.e.,
the mean free path extends to distances much longer than the interatomic spacing.

When a carrier responds to an external field, it is accelerated in the direction of the
electric field. Many important features of the carrier motion can be explained by
assuming only inelastic scattering. Since it takes place at defects, which themselves
are in thermal equilibrium with the lattice, the carrier tends to lose the excess energy
gained between the scattering events. Figure 4 illustrates the typical motion of a
carrier with and without an external electric field, assuming for both cases identical
scattering events. The changes due to the field are exaggerated; under normal
external fields, the changes from the random walk without field are very small
perturbations barely being visible in the scale of Fig. 4.

Sign Conventions In previous chapters, the elementary charge is used as e ¼ ej j.
When the transport of electrons and holes is discussed, it is instructive to discuss the
proper signs: �e for electrons and +e for holes. This has an influence on derived
parameters, e.g., the mobility, as will be discussed in Sect. 2.2.

The electric field10 F is defined as the negative gradient of the vacuum level. The
bias V is conventionally labeled + for the anode and – for the cathode, while the
electrostatic potential ψ has the opposite signs: electrons have a larger potential
energy at the cathode than at the anode. The relation to the field F is therefore

F ¼ dV

dx
¼ � dψ

dx
: (21)

With Ec ¼ ej jψ þ const; it yields a positive field when the band slopes downward
from the cathode toward the anode, giving the visual impression that electrons “roll

A

B C

Fig. 4 Random walk of a
carrier with (red curves) and
without (blue lines) an
external electric field. The
green arrow from B to
C indicates the relative
displacement in field direction
after the indicated nine
scattering events

9This motion resembles a random walk (Chandrasekhar 1943).
10In chapters dealing with carrier transport, F is chosen for the field, since E is used for the energy.
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downhill” and holes “bubble up.” We will use the proper signs in the following
sections, however, reverting back to the commonly used e ¼ ej j later in order to
avoid confusion in comparison to familiar descriptions.

When expressing forces, we need to distinguish the sign of the carrier; therefore,
for an accelerating force we have

Force ¼ �eFð Þn ¼ þeFð Þp; (22)

with subscripts n and p for electrons and holes.

2.1 Electronic Conductivity

In following the arguments introduced by Drude (1900; later refined by Lorentz
1909, and Sommerfeld 1928), electrons are accelerated in an electric field F by the
force �eF:

mn
dv

dt
¼ �eF: (23)

During a free path, the electron gains an incremental velocity, for an arbitrarily
chosen field in x direction F = (Fx, 0, 0):

Δvx ¼ � e

mn
Fx τsc: (24)

After averaging the incremental velocity between collisions and replacing the scat-
tering time τsc with the average time τ between scattering events, we obtain the drift
velocity vd:

vd ¼ � e

mn
τFx: (25)

With an electron density n and a charge �e, we obtain for the current density for
electrons

jn ¼ envd; (26)

or, introducing the electron conductivity σn,

jn ¼ σn F, withσn ¼ e2

mn
τn n : (27)

In a homogeneous semiconductor, the external field is given by the bias V, divided
by the electrode distance d, yielding Ohm’s law

2 Conductivity and Mobility of Carriers 861



jn ¼ σn F ¼ σn
V

d
¼ V

AR
; (28)

with A as the area of the semiconductor normal to the current and the resistance

R ¼ ρn d

A
¼ d

Aσn
; (29)

where ρn is the specific resistivity ρn ¼ 1=σn:

Joule’s Heating The additional energy gained by the accelerated electrons from the
external electric field is delivered to the lattice during inelastic collisions, generating
phonons. This Joule’s heating is given by the power density p which n electrons
transfer to the lattice while travelling at the average constant drift velocity vd despite
the accelerating force – eF; applying the sign convention used above we obtain

p ¼ nevdF ¼ jn F ¼ σn F
2 ¼ j2n

σn
: (30)

Bloch Oscillations When a Bloch electron is accelerated in an external field, it moves
up relative to the conduction-band edge. When the band is narrow and the field is high
enough, the electron can cross the center of the conduction band; as it approaches the
upper band edge before scattering occurs, its effective mass becomes negative (▶Sect.
2.2 of chapter “The Origin of Band Structure”). It is consequently decelerated and
finally reflected at the upper conduction-band edge. It hence moves down in the
conduction band until the process repeats, and the Bloch electron undergoes an
oscillatory motion, the Bloch oscillation. This was proposed early (Esaki and Tsu
1970), but can hardly be observed in bulk semiconductors, because conduction bands
are usually too wide for an undisturbed motion high into the band before scattering
occurs. In superlattices, however, minibands are narrow enough to permit the observa-
tion of Bloch oscillations; see, e.g., Shah (1994), Leo (1996), and Waschke
et al. (1994).

2.2 Electron Mobility

The quantity

e

mn
τn ¼ μn (31)

is the electron mobility, since carriers are more mobile when they experience
less scattering, i.e., the time between collisions is larger, and when their effective
mass is smaller, i.e., they can be accelerated more easily. With �e for electrons and
+e for holes, the mobility is negative for electrons and positive for holes, while
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the conductivity (/ e2, see Eq. 27) is always positive. Conventionally, however,
μn ¼ μnj j is used, and we will follow this convention here.

The electron conductivity and hole conductivity are given by

σn ¼ eμn n andσp ¼ eμp p: (32)

Gas-Kinetic Model for Electron Scattering Different types of lattice defects are
effective to a differing degree in carrier scattering. In a simple gas-kinetic model,
scattering centers have a well-defined scattering cross-section sn; a scattering
event, i.e., a marked deflection11 from an otherwise straight carrier path with
exchange of momentum and/or energy, takes place when the carrier approaches
the scattering center within its cross section. A mean free path λn can then be
derived by constructing a cylinder of cross section sn around an arbitrary straight
carrier path and computing the average distance from the last scattering center to
which this cylinder will extend until it incorporates the centerpoint of the next
scattering center. At this length the cylinder volume λn sn equals the average
volume 1/Nsc (cm

3) that one of these centers occupies, where Nsc is the density
of scattering centers; hence

λn ¼ 1

sn Nsc

: (33)

Consequently, the time between scattering events is given by

τsc ¼ 1

vrms sn Nsc

: (34)

This time is used to obtain an estimate for the carrier mobility in the Drude
approximation:

μn ¼
e

mn
τsc ¼ e

mn

λ

vrms

; (35)

or

μn ¼ 1:8
 1015
m0

mn
τsc sð Þ cm2=Vs

	 

; (36)

or, using the expression of Eq. 19 for vrms:

11Often a minimum scattering angle of 90� is used to distinguish scattering events with loss of
memory from forward scattering events – see Sect. 4.6.1.
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μn ¼ 1:5
 λ Åð Þ m0

mn

� �3=2
300

T Kð Þ
� �1=2

cm2=Vs
	 


: (37)

The dependence of the carrier mobility on the mean scattering time and mean free
path is shown in Fig. 5. The application of this simple gas-kinetic model, however,
has to be taken with caution because of its simplified assumptions. Generally, it
yields too large densities of tolerable scattering centers.

3 Currents and Electric Fields

3.1 Drift Current in an Electric Field

The drift current is the product of the elementary charge, the carrier mobility, the
single carrier density (derived in chapter ▶ “Equilibrium Statistics of Carriers”), and
the electric field. For electrons or holes, it is

jn, drift ¼ enμn F or jp, drift ¼ epμp F: (38)

External Electric Field In homogeneous semiconductors, disregarding space-
charge effects near interfaces, and for steady-state conditions – assumed with few
exceptions throughout this book – the electric field is given by the applied voltage
(bias) divided by the distance between the electrodes in a one-dimensional geome-
try; see Fig. 6:

mn /m0= 0.1

log (τsc/s)

a
 lo
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(μ

/(c
m

2 /
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1 2 3 4 5–14
1

2

3

4

5

–13 –12 –11 –10

0.7

mn /m0= 0.1
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Fig. 5 Carrier mobility as a function of (a) the time between scattering events τsc and of (b) the
mean free path λ, with the effective electron mass mn as family parameter
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F ¼ V

d
: (39)

For the field concept to apply, the distance d between electrodes must also be
large compared to the interatomic spacing. The field can then be expressed by the
macroscopic sloping of the bands12:

F ¼ 1

e

dEc

dx
¼ 1

e

dEv

dx
: (40)

It is also given, and more importantly so, by the slope of the Fermi potential (see Sect.
3.3) which, within the homogeneous material, is the same as the slope of the bands:

F ¼ 1

e

dEF

dx
: (41)

The bias is expressed as the difference of the Fermi levels between both electrodes;
compare Fig. 6.

When using the electrostatic potential ψn with

� dψn

dx
¼ F; (42)

the drift current can be expressed as a product of the electrical conductivity and the
negative gradient of this potential:

d

x

eV

V

Ev

Ec

E

EF

Fig. 6 Preferred quasi-one-
dimensional geometry with
band diagram subject to an
external bias V, resulting in
band tilting

12As a reminder: here and in all following sections, |e| is used when not explicitly stated differently.
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jn,drift ¼ �σn
dψn

dx
or jp,drift ¼ �σp

dψp

dx
: (43)

For reasons to become apparent below, two electrostatic potentials are introduced: ψn

and ψp for conduction and valence bands, respectively, with e ψn � ψp

	 
 ¼ Eg.
In a homogeneous semiconductor in steady state and with vanishing space

charge, these drift currents are the total currents, and the slopes of both potentials
are the same. There are special cases, however, in which the band edges of the
valence and conduction bands are no longer parallel to each other. One of these will
be mentioned briefly in the following section.

The Built-In Electric Field A semiconductor with a graded composition produces
a position-dependent, varying bandgap energy. If this composition varies smoothly
without steps, one or both bands are sloped without an applied bias, representing
built-in fields – see Sect. 3.4. As an example, in ZnSeuS1-u, there is complete
miscibility in the entire range (0 � u � 1), with the S-Se sublattice being a statistical
alloy.13 The bandgap energy changes linearly14 from 2.45 eV for ZnSe at the left side
of the crystal shown in Fig. 7 to 3.6 eV for ZnS at its right side – see also Fig. 24 of

Ec

ZnSe ZnSeuS1-u

1 u

x

0

0 d

ZnS

EF

Ev

EFig. 7 Band diagram for a
ZnSeuS1-u mixed crystal with
linearly varying composition
u along the x axis. At x =
0, the material is ZnSe; at x =
d, the material is ZnS

13The atoms in the alloyed lattice (or here in the anion sublattice) are statistically arranged. Strictly
speaking, this causes random fluctuation of the composition in a microscopic volume element of the
crystal and results in a local fluctuation of the bandgap energy due to a locally varying parameter x;
as a result, extended or localized states with energies Ec,v(x) close to the band edge Ec, v xð Þ of the
mean composition x are formed, leading to some tailing of the band edges (▶ Sect. 3.1 of chapter
“Optical Properties of Defects”). The composition parameter x used in the text actually refers to the
mean composition, and the effect of band tailing is neglected here.
14Major deviations from linearity of Eg with composition are observed when the conduction-band
minimum lies at a different point in the Brillouin zone for the two end members. One example is the
alloy of Ge and Si. Other deviations (bowing – see ▶Sect. 2.1 of chapter “Bands and Bandgaps in
Solids”) are observed when the alloying atoms are of substantially different size and electronegativity.
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chapter ▶ “Bands and Bandgaps in Solids”. ZnSe and ZnS are both n-type materials.
Depending on doping, the Fermi level in ZnSe can be shifted easily between 0.8 and
0.2 e V below Ec and in ZnS between 1.0 and 0.4 eV. Depending on the doping profile
in the mixed-composition region, a wide variety of relative slopes, including non-
monotonic slopes, of valence and conduction bands can be designed for a
vanishing bias, i.e., for a horizontal Fermi energy EF. In Fig. 7, an example with
opposite and linear sloping of Ec(x) and Ev(x) is shown, resulting effectively in a
built-in field (see Sect. 3.4) of opposite sign for electrons and holes. In thermo-
dynamic equilibrium, however, there is no net current in spite of the sloping
bands. This is accomplished by exact compensation of finite drift currents with
opposing diffusion currents, which self-consistently determine the slopes of the
bands. An example for the application of such graded AluGa1-uAs composition is
given in Horio et al. (1999).

The change in the bandgap energy can be expressed as

Ec xð Þ ¼ Ev xð Þ þ Eg0 þ ΔEg xð Þ; (44)

where x is a spatial coordinate. Using a conventional asymmetry factor AE, which
measures the fraction of the bandgap change ΔEg(x) occurring in the conduction
band relative to the horizontal Fermi level, Eq. 44 is also written

Ec xð Þ ¼ Ec x ¼ 0ð Þ þ AEΔEg xð Þ ¼ eψn xð Þ (45)

and

Ev xð Þ ¼ Ev x ¼ 0ð Þ � 1� AEð ÞΔEg xð Þ ¼ eψp xð Þ: (46)

The corresponding built-in fields for electrons and holes are given by

Fn ¼ �AE
@ΔEg xð Þ

e@x
¼ � @ψn

@x
(47)

and

Fp ¼ � AE � 1ð Þ @ΔEg xð Þ
e@x

¼ � @ψp

@x
; (48)

justifying the introduction of separate electrostatic potentials for electrons and holes:
with ΔEg xð Þ 6¼ 0 and AE 6¼ 1/2, we have Fn 6¼ Fp.

3.2 Diffusion Currents and Total Currents

Carrier diffusion by itself can be observed when the external field vanishes and a
concentration gradient exists. An example in which these conditions are approxi-
mately fulfilled is the diffusion of minority carriers created by an inhomogeneous
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optical excitation (see, e.g., Najafi et al. 2015). The diffusion current is proportional
to the diffusion coefficient D and to the carrier-density gradient; for electrons or
holes, it is

jn,diff ¼ eDn
dn

dx
or jp,diff ¼ �eDp

dp

dx
: (49)

The negative sign of the hole current is due to the fact that in both equations �e
¼ ej j is used. The diffusion current can be derived as the difference between two
currents caused by a completely random motion of carriers originating in adjacent
slabs with slightly different carrier densities (Fig. 8). The current originating at x0 +
dx/2 and crossing the interface at x0 from right to left, is caused by the Brownian
motion of electrons of a density n0 + dn/2. It is given by

j
 
n,diff ¼ e n0 þ dn

2

� �
v2rms

3

τn
dx

: (50)

The current crossing the boundary from left to right is accordingly given by

j
!
n, diff ¼ e n0 � dn

2

� �
v2rms

3

τn
dx

: (51)

The current is proportional to the carrier velocity vrms and the carrier mean free
path λn. In turn, λn is given by vrmsτn. The factor 1

3
arises from gas-kinetic arguments

when the root mean square velocity is obtained from an isotropic velocity distribu-

tion: v2 ¼ v2rms ¼ v2x þ v2y þ v2z ; with v2x ¼ v2y ¼ v2z , we obtain the relation v2x ¼ 1
3
v2rms

for the x-component used in Eq. 50.
The difference of both currents (Eqs. 50 and 51) is the net diffusion current

n0+dn/2

n0-dn/2

n0

n

x0 xx0-dx/2 x0+dx/2

Fig. 8 Illustration of the
derivation of the diffusion
current in a medium with
inhomogeneous carrier
density n(x). Arrows indicate
diffusion currents
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jn, diff ¼ j
!
n, diff � j

 
n, diff ¼ e

v2rmsτn
3

dn

dx
; (52)

with the diffusion coefficient given by

Dn ¼ v2rmsτn
3

: (53)

By using v2rms ¼ 3kT=mn (Eq. 19), we obtain the more commonly used equation
for the diffusion current

jn,diff ¼ μn kT
dn

dx
and jp,diff ¼ �μp kT

dp

dx
: (54)

Both diffusion currents for electrons and holes have the same negative sign for a
positive gradient of n(x) or p(x) when recognizing that μn is negative and μp is
positive. However, since the conventional notation with μn ¼ μnj j is used, the
difference in signs appears.

Maximum Diffusion Currents As the gradient of the carrier density increases, the
diffusion current increases proportionally to it (Eq. 49). However, this proportion-
ality is limited, when the density gradient becomes so steep that the reverse current
(Eq. 51) becomes negligible compared to the forward current (Eq. 50).

When increasing the distance dx to the mean free path λn, we obtain from Eq. 52

with j
!
n, diff 	 j

 
n, diff for the maximum possible diffusion current through a planar

surface

jn,diff,max ¼ e n0
v2rms

3

τn
λn

; (55)

or, for carriers following Boltzmann statistics and within a device with planar
geometry,

jn,diff,max ¼
e nffiffiffiffiffi
6π
p vrms: (56)

This current is known as the Richardson-Dushman current (Dushman 1930). It
is equal to the thermionic emission current into the vacuum if the semiconductor
is cut open at x0 (Fig. 8) and if a vanishing work function is assumed – that is, if
all electrons in the conduction band at x0, with a velocity component toward the
surface, could exit into the vacuum (see also Simoen et al. 1998).
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The Einstein Relation Comparing the diffusion equations, Eq. 49 with Eq. 54, we
obtain a relation between the diffusion constant and the carrier mobility:

Dn, p ¼
μn, p kT

e
; (57)

which is known as the Einstein relation and holds for systems that follow Boltzmann
statistics. This can be seen from the following arguments. In thermal equilibrium, the
total current, as well as each carrier current, vanishes: j  jn  jp  0. The electron
current is composed of drift and diffusion currents – see Eq. 61; hence,

μn nFþ Dn
dn

dx
¼ 0; (58)

which can be integrated to yield

n x0 þ Δxð Þ ¼ n x0ð Þexp �μn FΔx=Dnð Þ: (59)

On the other hand, electrons obey the Boltzmann distribution in equilibrium in
the conduction band of a semiconductor. Their surplus energy, obtained in an electric
field at a distance Δx, is ΔE = eΔV = e FΔx (Fig. 9), yielding a density

n0

n

x0
x

V0

x0 x

n0+Δn

x0+Δx

x0+Δx

ΔV=FΔx

V

Fig. 9 Electron density and
electrostatic potential
distribution in the Boltzmann
region in thermal equilibrium
(schematic)
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n x0 þ Δxð Þ ¼ n x0ð Þexp � eFΔx
kT

� �
: (60)

A comparison of the exponents in Eqs. 59 and 60 yields the Einstein relation
(Eq. 57). In case the Boltzmann distribution is not fulfilled (degeneracy), a
generalization of Eq. 57 can be derived involving Fermi integrals (Landsberg
1952).

The assumptions used beyond the Boltzmann distribution are that of a one-carrier
model near equilibrium and that the total current is small compared to drift and
diffusion currents; hence, Eq. 58 holds. At high fields, one or more of these
conditions are no longer fulfilled. Consequently, the Einstein relation needs to be
modified – see ▶ Sect. 1 of chapter “Carrier Scattering at High Electric Fields” and
Kan et al. (1991). For nonparabolic bands, see Landsberg and Cheng (1985). For
hot-carrier diffusion at low temperature in quantum wells, see Chattopadhyay
et al. (1989).

Total Currents The total current is given as the sum of drift and diffusion currents.
For electrons, we have

jn ¼ jn,drift þ jn,diff ¼ eμn nFþ Dn
dn

dx
; (61)

and for holes

jp ¼ jp,drift þ jp,diff ¼ eμp pF� Dp
dp

dx
: (62)

The total carrier current is the sum of both,

j ¼ jn þ jp: (63)

In homogeneous semiconductors, only one of the four components is usually
predominant, while in a pn junction with sufficient bias, each one becomes predom-
inant within a different region.

3.3 Electrochemical Fields and Quasi-Fermi Levels

For evaluating the total current, we need to consider the gradient of ψ(x) for the drift
component and the gradient of n(x) for the diffusion component. It is instructive to
deduce the electron and hole current for thermal equilibrium. In thermal equilibrium,
n is given by the Fermi distribution (▶Eq. 10 of chapter “Equilibrium Statistics of
Carriers”). When the Fermi energy is separated by several kT from the band edge, we
can disregard the 1 in the denominator of▶Eq. 10 in chapter “Equilibrium Statistics
of Carriers” and approximate this equation with the Boltzmann distribution, yielding
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Ec xð Þ � EF xð Þ ¼ kT ln
Nc

n xð Þ : (64)

Replacing Ec(x) with �eψ xð Þ þ c and differentiating both sides of Eq. 64 with
respect to x, we obtain after division by e

� dψn

dx
� 1

e

dEF

dx
¼ � kT

e

1

n

dn

dx
: (65)

After multiplying both sides with σn ¼ e μn n and rearranging, we obtain

σn
1

e

dEF

dx
¼ �σn dψn

dx
þ μn kT

dn

dx
: (66)

The right-hand side is the total electron current; thus, the left-hand side must also be
equal to jn:

jn ¼ �σn
1

e

dEF

dx
: (67)

Since in thermal equilibrium, i.e., with vanishing external field, the Fermi level must
be constant (horizontal in an E(x) presentation), we conclude that the electron and
hole current must vanish separately in equilibrium:

dEF

dx
 0 ) jn  jp  0: (68)

Quasi-Fermi Levels In steady state, e.g., with a constant external excitation (chap-
ter ▶ “Carrier Generation”), the electron and hole densities deviate from thermody-
namic equilibrium values. Nevertheless, we may use the Fermi distribution to
describe their density in the bands, using the quasi-Fermi levels EFn and EFp

according to the definition equations

n  Nc

1

exp
Ec � EFn

kT

� �
þ 1

; (69)

and

p  Nv

1

exp
EFp � Ev

kT

� �
þ 1

; (70)

with EFn 6¼ EFp. This rather useful approximation introduces errors which may or
may not be acceptable depending on the cause for deviation from the thermal
equilibrium. In general, the error is quite small for optical excitation and for low
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external fields. For high external fields, the distribution function is substantially
deformed (see chapter ▶ “Carrier Scattering at High Electric Fields”), and a more
sophisticated approximation is required.

With optical or field-induced carrier generation discussed in chapter ▶ “Carrier
Generation”, n and p are increased above their thermodynamic equilibrium value;
hence, EFp < EF < EFn, resulting in a decreased distance of both quasi-Fermi levels
from their corresponding bands; see Fig. 10. In certain cases, the recombination may
be increased above the equilibrium value, as, for instance, in a pn junction in reverse
bias; here, EFn can drop below EFp.

In using the same algebraic procedure as described in the previous section, we
have for the total electron current in steady state:

jn ¼ �σn
1

e

dEFn

dx
; (71)

this means, the total electron current is proportional to the negative slope of the
quasi-Fermi potential, as the drift current is proportional to the negative slope of the
electrostatic potential (Eq. 43). For both currents, the conductivity is the proportion-
ality constant.

In order to emphasize this similarity, we define the electrochemical potentials for
electrons and holes:

φn ¼
1

e
EFn and φp ¼

1

e
EFp: (72)

The total currents can now be expressed as

jn ¼ �σn
@φn

@x
and jp ¼ �σp

@φp

@x
: (73)

For homogeneous semiconductors with homogeneous generation of carriers, these
currents become the drift currents, and Eq. 73 becomes equal to Eq. 43.

In steady state, the total current is divergence-free, i.e., jn+ jp = const (for
included carrier generation see chapter ▶ “Photoconductivity”). Therefore,

Ec

EF

Ev

E

EFp

EFn

x

Fig. 10 Band model with
external excitation resulting in
a split of the Fermi level EF

into two quasi-Fermi levels
EFn and EFp. The scheme
represents the zero-field case
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σn
@φn

@x
þ σp

@φp

@x
 const (74)

or

μn n xð Þ @φn

@x
þ μp p xð Þ @φp

@x
 const: (75)

Since a semiconductor is predominantly either n- or p-type, except for the inner part
of a junction, we usually can neglect one part of the sum. For example, for the n-type
region,

n xð Þ @φn

@x
 const; (76)

i.e., if there is a gradient in the carrier density, then the highest slope in φn(x) is
expected where the carrier density is lowest for an inhomogeneous n(x) distribution.

From Eq. 75, we also conclude that for vanishing currents in steady state, the
slopes of the quasi-Fermi potentials must be opposite to each other. The lower the
corresponding carrier densities, the higher the slopes:

μn n xð Þ @φn

@x
¼ �μp p xð Þ @φp

@x
: (77)

Summary: Potential Gradients and Currents The various currents in a semicon-
ductor can be expressed in a similar fashion. They are proportional to the negative
gradient of electrostatic or electrochemical potentials with the conductivity as a
proportionality factor:

jn ¼ �σn
@φn

@x
, jp ¼ �σp

@φp

@x
;

jn, drift ¼ �σn
dψn

dx
, jp, drift ¼ �σp

dψp

dx
; (78)

jn, diff ¼ �σn
φn � ψnð Þ

@x
, jp, diff ¼ �σp

φp � ψp

	 

@x

:

3.4 Carrier Distributions in External and Built-In Fields

An external bias resulting in a surface charge on the two electrodes leads to an
external field with no space charge within the semiconductor (Fig. 6). However, if
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there are inhomogeneities in the distribution of charged donors or acceptors15 or
spatially inhomogeneous compositions in an alloy semiconductor (Fig. 7), regions
with a space-charge density ρ exist within the semiconductor. This charge density
causes the development of an internal field Fint according to the Poisson equation

dFint

dx
¼ ρ

e e0
: (79)

The acting resulting field is the sum of both internal and external fields,

F ¼ Fint þ Fext: (80)

An external and internal field of equal magnitude results in the same slope of the
bands. Therefore, this distinction between internal and external fields is usually not
made, and the subscripts at the fields are omitted. There are, however, drawbacks in
such a general description of fields, which can best be seen from carrier heating in an
electric field. Carrier heating is used to describe the field dependence of the mobility
(see ▶Sects. 2 and ▶ 3 of chapter “Carrier Scattering at High Electric Fields”) in a
microscopic model: accelerated carriers are shifted up to higher energies within a
band; consequently, their effective mass and the scattering probability change. Usually
the effective mass increases and the creation of phonons becomes easier. The mobility
hence becomes field dependent and usually decreases with increasing field.

Such carrier heating is absent in thermal equilibrium: the carrier gas and the
lattice with its phonon spectrum are in equilibrium within each volume element;
thus, carrier and lattice temperatures remain the same (Stratton 1969). No energy can
be extracted from an internal field, i.e., from a sloped band, due to a space charge in
equilibrium.16 This situation may be illustrated with an example replacing electrical
with gravitational forces: a sloping band due to a space-charge region looks much
like a mountain introduced on top of a sea-level plane, the Fermi level being
equivalent to the sea level. As the introduction of the mountain does little to the
distribution of molecules in air, the introduction of a sloping band does little to the
distribution of electrons in the conduction band. Since there are fewer molecules
above the mountain, the air pressure is reduced, just as there are fewer electrons in a
band where it has a larger distance from the Fermi level as illustrated in Fig. 11.

However, when one wants to conveniently integrate overall altitudes (energies) in
order to arrive at a single number – the air pressure (or electron density) – one must
consider additional model consequences to prevent winds from blowing from the
valleys with high pressure to the mountain top with low pressure by following only
the pressure gradient. Neither should one expect a current of electrons from the

15pn junctions are the best studied intentional space-charge regions. Inhomogeneous doping
distributions – especially near surfaces, contacts, or other crystal inhomogeneities – are often
unintentional and hard to eliminate.
16This argument no longer holds with a bias, which will modify the space charge; partial heating
occurs, proportional to the fraction of external field. This heating can be related to the tilting of the
quasi-Fermi levels.
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regions of a semiconductor with the conduction band close to the Fermi level, which
results in a high electron density, to a region with low electron density in the absence
of an external field. To prevent such currents in the electron-density model, one uses
the internal fields, i.e., the built-in fields, and balances the diffusion current with an
exactly compensating drift current. The advantage of this approach is the use of a
simple carrier density and a simple transport equation. The penalty is the need for
some careful definitions of transport parameters, e.g., the mobility, when comparing
external with built-in fields and evaluating the ensuing drift and diffusion currents
when the external fields are strong enough to cause carrier heating.

Carrier Concentrations in Built-In or External Fields The carrier distribution
and mobility are different in built-in or external fields. The carrier distribution is
determined relative to the Fermi level. For vanishing bias, the distribution does not
depend on the position; the Fermi level is constant (horizontal). The distribution
remains unchanged when a junction with its built-in field is introduced.17 The
sloping bands cut out varying amounts from the lower part of the distribution,
much like a mountain displaces its volume of air molecules at lower altitudes; see
Fig. 11. The carrier concentration n becomes space dependent through the space

Ec

EF

f (E)

E

x
1/2

1

0

Fig. 11 Fermi distribution
for different positions in a
semiconductor at zero-applied
bias with a built-in field region
due to a junction or a gradient
in composition (After Böer
1985a)

17With bias, the Fermi level in a junction is split into two quasi-Fermi levels which are tilted,
however, with space-dependent slope. Regions of high slope within the junction region will become
preferentially heated. The formation of such regions depends on the change of the carrier distribu-
tion with bias and its contribution to the electrochemical potential (the quasi-Fermi level). Integra-
tion of transport, Poisson, and continuity equations yields a quantitative description of this behavior
(Böer 1985b).
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dependence of the lower integration boundary, while the energy distribution of the
carrier n(E) remains independent in space:

n xð Þ ¼
ð1
Ec xð Þ

n Eð Þ dE: (81)

This is similar to the velocity distribution of air molecules, which is the same at any
given altitude, whether over a mountain or an adjacent plane; whereas the integrated
number, i.e., the air pressure near the surface of the sloping terrain, is not. This does
not cause any macroscopic air motion, since at any stratum of constant altitude, the
molecular distribution is the same; hence, the molecular motion remains totally
random.

In a similar fashion, electrons at the same distance above the Fermi level are
surrounded by strata of constant electron density; within such strata their motion
must remain random. During scattering in thermal equilibrium, the same amounts of
phonons are generated as are absorbed by electrons, except for statistical fluctua-
tions: on the average, all events are randomized. Electron and hole currents both
vanish in equilibrium for every volume element. Figure 12a illustrates such a
behavior.

In an external field, however, bands and Fermi level are tilted parallel to each
other; this means, with applied bias, the carrier distribution becomes a function of the
spatial coordinate as illustrated in Fig. 12b. When electrons are accelerated in the
field, they move from a region of higher density n E1 � EFð Þx1 to a region of lower
density n E1 � EFð Þx2. These electrons can dissipate their net additional energy to the
lattice by emitting phonons and causing lattice (Joule’s) heating. In addition, while in

E

x xx1 x2

E

E1

EF

Ec

EF

a b

ħω

Fig. 12 Sloping band due to (a) an internal (built-in) field with horizontal Fermi level EF and (b)
due to an external field with parallel sloping of both, bands and Fermi level. The electron
distribution is indicated by a dot distribution, and the action of field and scattering by arrows
(After Böer (1985a))
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net motion, electrons fill higher states of the energy distribution, thereby causing the
carrier temperature to increase. The carrier motion in an external field is therefore no
longer random; it has a finite component in field direction: the drift velocity vd =
μFext and the collisions with lattice defects are at least partially inelastic. A net
current and lattice heating result.

Field Dependence of Mobilities At higher fields the carrier mobility becomes
field dependent. The difference between the built-in and the external fields relates
to the influence of carrier heating on the mobility, since the averaging process for
determining the mobility uses the corresponding distribution functions. For
instance, with an electric field in the x direction, one obtains for the drift velocity
of electrons

vd ¼ μn Fx ¼ vx ¼

ð
vx f vð Þg vð Þd3vð
f vð Þg vð Þd3v

; (82)

where g(v) is the density of states in the conduction band per unit volume of velocity
space and d3v is the appropriate volume element in velocity space. If Fx is the built-in
field Fint, then the distribution function is the Boltzmann function fB(v). If Fx is the
external field Fext, the distribution function is modified due to carrier heating
according to the field strength f Fext

vð Þ – see Sects. 4.4 and 4.6. The averaging process
involves the distribution function, which is modified by both scattering and
effective-mass contributions. For a review, see Nag (1980); see also Seeger (1973)
and Conwell (1967). In contrast, when only a built-in field is present, the averaging
must be done with the undeformed Boltzmann distribution, since lattice and electron
temperatures remain the same at each point of the semiconductor.

A more detailed discussion of differences in carrier transport for external, built-in,
and mixed fields is postponed to chapter ▶ “Carrier Scattering at High Electric
Fields” after an explicit introduction of carrier heating.

4 The Boltzmann Equation

There are several simplifying assumptions in the Drude-Sommerfeld approach
introduced in Sect. 2.1 that are not generally valid.

First, most of the scattering events are not inelastic. A carrier usually accumulates
energy during several mean free paths. Each path is interrupted by a mostly elastic
collision until it dissipates the increased energy in one inelastic collision; then it
continues to accumulate energy, and so on. Different kinds of collisions must be
distinguished. This requires replacing the average time between collisions with a
relaxation time, which is typical for the decay of a perturbation introduced by an
applied external force, e.g., an external electric field.
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Second, the interaction with a scattering center often depends on the energy of the
electron, e.g., the scattering cross-section of ions is energy dependent, and only more
energetic electrons can be scattered inelastically. Therefore, the assumption of a
constant, energy-independent time between scattering events needs to be refined. In
this chapter, we will introduce the basic Boltzmann equation which permits an
analysis of a more advanced description of carrier scattering.

4.1 The Boltzmann Equation for Electrons

A formalism that permits a refinement of the carrier-transport analysis must account
for the change in the population of carriers in space and energy or momentum when
exposed to external forces. This population is described by a distribution function: in
equilibrium, these are the Boltzmann or Fermi functions. Under the influence of a
field, this distribution is modified. It is the purpose of an advanced theory to
determine the modified distribution function. From it, other transport parameters
can be derived.

A formalism first proposed by Liouville (1838, see Ferziger and Kaper 1972) is
too cumbersome for the evaluation of carrier transport. A more useful approach can
be derived from the Liouville equation as a zeroth-order approximation18; this was
suggested by Boltzmann, based on empirical arguments and will be described below.

Conventionally, one uses an accounting procedure for carriers in phase space,
i.e., in a six-dimensional space-and-momentum representation (x, y, z, kx, ky, kz). The
population of electrons in phase space is given by the distribution function f (r, k, t);
it changes with time. A group of electrons within a volume element of phase space
will move and reside in different volume elements as time progresses. Such motion is
described by df/dt. To express the total differential by the local differential, one must
consider the deformation of the distribution function due to the time dependence of
r and k and obtains, using only the first term of a Taylor expansion:

df

dt
¼ @f

@t
þ _k � @f

@k
þ _r � @f

@r
¼ @f

@t

� �
coll

; (83)

where the index coll indicates the collisions. The first term accounts for the local
change of the distribution in time, the second term for the change in momentum
space, and the third term for the change of the distribution in real space. The sum of
these changes must be equal to the changes of the distribution caused by collisions.
This simplified Liouville equation is called the Boltzmann equation.

In steady state (@f/@t  0), the Boltzmann equation reads

18The most severe approximation is the linear relation in time, which eliminates memory effects in
the Boltzmann equation (Nag 1980).
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@f r, k, tð Þ
@t

� �
coll

¼ _k � @f
@k
þ _r � @f

@r
(84)

with the first term determined by the forces acting on free electrons, and _k given by

_k ¼ � e

ℏ
F: (85)

Here F is the electric field. The second term is proportional to the spatial gradient of
the carrier distribution and to the group velocity

_r ¼ 1

ℏ
@E kð Þ
@k

¼ v: (86)

This basic Boltzmann equation contains all the dependences necessary for analyzing
carrier transport.19 Some of these dependences, such as the temperature dependence,
are contained implicitly. The important part for the carrier transport is the innocent-
looking left-hand side of the Boltzmann Eq. 84, which contains the contribution of
the more or less inelastic collisions that provide the “friction” for the carrier
transport.

The collision term, also referred to as the collision integral, describes the transi-
tion of an electron from a state Ek, k to a state Ek0 ,k

0. This can be expressed as the
difference between electrons scattered from the state k, occupied according to the
Fermi-Dirac distribution function fFD(k), into the state k0, unoccupied according to
1� f FD k0ð Þ, minus the reverse process, and integrated over all possible states k0, into
and from which such scattering is possible:

@f kð Þ
@t

� �
coll

¼ V

2πð Þ3
ð

f FD kð Þ 1� f FD k0ð Þ½ �S k,k0ð Þ� f FD k0ð Þ 1� f FD kð Þ½ �S k0,kð Þf g dk0;

(87)

where V is the crystal volume and S is the scattering probability

S k,k0ð Þ ¼ 2π

ℏ
M k,k0ð Þj j2 δ Ek � Ek0 � ΔEð Þ: (88)

19Here discussed for electrons, although with a change of the appropriate parameters, it is directly
applicable to holes, polarons, etc. The influence of other fields, such as thermal or magnetic fields, is
neglected here; for such influences, see chapter ▶ “Carriers in Magnetic Fields and Temperature
Gradients”.
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M(k, k0) is the matrix element for the scattering event and ΔE is the fractional
change in electron energy during the partially inelastic scattering. The matrix
elements can be expressed as

M k,k0ð Þ ¼
ð
v

ψ�q0, k0 ΔVψq, k dv (89)

whereΔV is the perturbation potential inducing the scattering event, dv is the volume
element, and ψq, k, ψq0, k0 are the wavefunctions before and after scattering. The
perturbation potential depends on the type of scattering event and could be the
deformation potential for scattering on acoustic or optical phonons; see chapter
▶ “Carrier Scattering at Low Electric Fields”:

ΔV ¼ Ξc @=@rð Þ � u acoustic phonons

D0 u optical phonons


(90)

with u as the displacement of the lattice atoms and Ξc or D0 as the appropriate
deformation potentials. Other examples will be given in chapter ▶ “Carrier Scatter-
ing at Low Electric Fields”, where also the scattering potential and matrix elements
for some of the most important scattering centers are tabulated.

4.2 The Boltzmann Equation for Phonons

A Boltzmann-type equation similar to Eqs. 83 and 84 can be set up for the phonon
system, which interacts with the electron system. Since the only driving forces for
the phonon system are those of diffusion due to thermal gradients (neglecting drag
effects discussed in Sect. 4.7), we obtain for steady-state conditions

@f qð Þ
@t

� �
coll

¼ _r � @f qð Þ
@r

with _r ¼ @ω qð Þ
@r

; (91)

here _r is the group velocity of phonons, i.e., the sound velocity in the low
q acoustic branch. The gradient of the phonon distribution function f (r, q, T(r),
t) contains the thermal gradient. If undisturbed, the phonon distribution
is described by the Bose-Einstein function fBE(q) – see ▶ Eq. 12 of chapter
“Equilibrium Statistics of Carriers”. The collision term contains all phonon-phonon
and phonon-electron interactions. We will regard the former as less important to the
present discussion. Interaction of optical with acoustic phonons, however, can
become quite important, e.g., for cooling of a heated electron ensemble – see chapter
▶ “Dynamic Processes”. In a fashion similar to that given for the electron collision
term (Eq. 87), we obtain the transition rate by taking the product of the densities of
the occupied and the empty states and the matrix element for each transition,
integrated over all possible transitions for absorption and a similar term for emission
of phonons,
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@f k, qð Þ
@t

� �
coll

¼ V

2πð Þ3
ð ð

S kþ q,kð Þ 1þ f BE kð Þ½ � f BE kþ qð Þf g

� S k, kþ qð Þ 1þ f BE kþ qð Þ½ � f BE kð Þ 
 dkdq : (92)

In equilibrium, the right side vanishes as transitions from k to k + q equal those
from k + q to k. Only when a perturbation is introduced, either from the electron
ensemble interacting with phonons or from a temperature gradient, will the right side
remain finite. The collision term dealing with the interaction of phonons and
electrons can be evaluated after linearization.

In order to obtain numerical values, however, one needs to introduce specific
assumptions about the microscopic collision process between phonons and elec-
trons. The analysis of such collisions will fill the major part of chapter ▶ “Carrier
Scattering at High Electric Fields”.

4.3 The Relaxation-Time Approximation

In order to further discuss carrier transport, we have to solve the Boltzmann
equation; that is, we have to obtain an expression for f (r, k,t). Since the Boltzmann
equation is a nonlinear integrodifferential equation, it cannot be integrated analyti-
cally and requires the use of approximations or of numerical methods. Both will be
mentioned later (Sect. 4.4). However, in order to see some of the important relations,
a simplified approach is introduced first: the relaxation-time approximation.

The balance between gain due to all forces and loss due to collisions of a
perturbation, induced by external forces, produces a steady state with a deformed
electron distribution. When such forces are suddenly removed, the distribution
rapidly returns to its unperturbed state according to

@f

@t
¼ @f

@t

� �
coll

: (93)

Assuming that this collision term is linear in the deviation from the unperturbed
distribution f0, we obtain

@f

@t

� �
coll

¼ � f � f 0
τm

: (94)

Equation 93 can then be integrated. It yields an exponential return from the steady-
state, perturbed function f= f0 + δ f (with a time-independent δ f ) to the undisturbed
distribution in equilibrium f0 with the momentum relaxation time τm as the charac-
teristic time constant (see Sect. 4.6.1):
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f tð Þ � f 0 ¼ δf exp � t

τm

� �
: (95)

In this linearized form, the deformed distribution function will be used first. In the
following sections, an example with zero magnetic field and vanishing gradients in
n and T is discussed. Here the second term of Eq. 84 vanishes.

In a homogeneous semiconductor with a force produced by a constant electric field
F, we obtain from Eqs. 94 and 84 for a small perturbation of the distribution function

eF

ℏ
@f

@k
¼ δf

τm
(96)

or, with ℏk ¼ mnv, hence @=@k ¼ ℏ=mnð Þ @=@v, we obtain

e

mn
τmF

@f

@v
¼ δ f : (97)

This shows that the change in the distribution function is proportional to the drift
velocity vd = (e/mn) τmF. With f0 given by the Boltzmann distribution

f 0 / exp �
mnv

2

2

kT

� �
; (98)

we obtain for a small perturbation

@f

@v
ffi @f 0

@v
¼ �mnv

kT
f 0; (99)

and with Eq. 97, we have the following equation as the final result for the deformed
Boltzmann distribution due to an external field, in the relaxation time approximation:

f ¼ f 0 1� e

kT
τmF � v

� �
: (100)

An illustration of the relaxation process within this approximation is given in
Fig. 13. A constant and small homogeneous electric Field F shifts the Fermi sphere
in k space a small amount δk along the field direction. After switching off the field,
the return to equilibrium proceeds by inelastic scattering processes from occupied
states of the displaced sphere to unoccupied states of the undisturbed distribution in
equilibrium. Therefore, only electrons in states with kj j > kF scattered to states with
kj j < kF can reestablish equilibrium, with kF being the radius of the Fermi sphere
illustrated in Fig. 13. These are all electrons with energy close to the Fermi energy
EF, which have states near the surface of the Fermi sphere and hence a speed near
vF ¼ ℏkF=mn.
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4.4 Carrier Scattering and Energy Relaxation

For a homogeneous semiconductor,@f=@r0holds, and we obtain from Eqs. 83 and 87

@f kð Þ
@t
¼ � eF

ℏ
� @f kð Þ

@k

� V

8π3

ð
f kð Þ 1� f k0ð Þ½ �S k,k0ð Þ � f k0ð Þ 1� f kð Þ½ �S k0,kð Þf g dk0; (101)

with the electric field F producing a deformation from the equilibrium distribution
and the collision integral, i.e., the second term in Eq. 99, counteracting this defor-
mation. For an analysis, see Haug (1972).

In equilibrium, the solution of the Boltzmann equation is the Boltzmann or Fermi
function f0(k). With an applied electric field F, the distribution is shifted by the drift
velocity (see Fig. 13) and is slightly deformed. If the effective mass mn is isotropic,
the scattering probability S (Eq. 88) generally depends only on the magnitude
k� k0j j and hence on the angle included by the vectors, but not on the individual
orientations of k and k0. The distribution function is then conveniently expressed by
a series development using Legendre polynomials (Pn):

f kð Þ ¼ f 0 kð Þ þ
X1
n¼1

f n kð ÞPn cos θð Þ; (102)

where θ is the angle between F and k. After introducing f (k) into Eq. 101, we obtain
for the steady-state (@f=@t0) a set of n equations to determine f (k).

ky

kx

δkx

Fig. 13 At an applied electric field, the Fermi sphere of occupied states in k space (green-filled
circles) is shifted by an amount δkx, yielding the sphere indicated by the red circle; magenta filling
indicates states occupied due to the applied field. Relaxation to equilibrium occurs by inelastic
scattering into unoccupied states (red arrow) of the equilibrium sphere (gray circle)
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For small fields, only the first two terms of the development of Eq. 102 are taken
and yield

f kð Þ ¼ f 0 kð Þ þ cos θ f 1 kð Þ: (103)

The perturbation term f1(k) of the distribution function is often expressed in terms of
a function ϕ(E)

f 1 kð Þ ¼ eℏ
mn

F � k @f 0 Eð Þ
@E

ϕ Eð Þ; (104)

with E = E(k). This permits a simplified expression for the collision integral (Nag
1980)

@f kð Þ
@t

� �
coll
¼ � eℏ

mn kT
F � k V

8π3

ð
f 0 Eð Þ 1� f 0 E0ð Þ½ �


 ϕ Eð Þ � k0 cos θk
k

ϕ E0ð Þ
� �

S k, k0ð Þdk0;
(105)

where θk is the angle between k and k0 and E0 is the energy corresponding to the
wavevector k0.

Any further simplification of the collision integral requires assumptions of the
specific scattering event, which will be listed in ▶ Sect. 1 of chapter “Carrier
Scattering at Low Electric Fields” and dealt with sequentially in the following
sections. However, some general remarks here will assist in categorizing the differ-
ent scattering types.

Elastic Scattering Elastic scattering keeps the electron energy during the scattering
event unchanged: E0 ¼ E. This simplifies Eq. 105 to

@f kð Þ
@t

� �
coll

¼ � eℏ
mn kT

F � k


 f 0 Eð Þ 1� f 0 Eð Þ½ � V
8π3

ð
1� cos θkð ÞS k,k0ð Þdk0: (106)

Elastic scattering events are:

1. All acoustic phonon scattering events, such as deformation-potential scattering
and piezoelectric scattering

2. All defect scattering events, such as scattering at neutral impurities, ionized
impurities, and larger-defect scattering

3. Alloy scattering
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Inelastic Scattering Inelastic scattering does not permit further simplification of
Eq. 105. Here E0 6¼ E , and in each case the collision integral must be evaluated
separately. Such inelastic scattering events are

1. Optical phonon scattering, such as nonpolar and polar optical scattering
2. Intervalley scattering

The total scattering term is given as the sum over the different scattering types:

@f

@t

� �
coll

¼
X
i

@f

@t

� �
coll, i

: (107)

The Carrier Current The current of carriers can be obtained from the
deformed Boltzmann distribution Eq. 100 by summation over all nel carriers
and velocities v,

j ¼ e
Xnel
i¼1

X
v

evδf ¼ e2
Xnel
i¼1

X
v

vF � v f 0 τm
kT

: (108)

Assuming a spherical equi-energy surface for E(k), the summation overvF � v can be
carried out,20 using for v v the averages vx vy

� � ¼ vy vz
� � ¼ vz vxh i ¼ 0 and v2x

� �
¼ v2y

D E
¼ v2z

� � ¼ v2=3; this yields

j ¼ e2

3kT

X
v

v2 τm f 0F: (109)

Considering that

n ¼
Xnel
i¼1

X
v

f 0; (110)

we obtain

j ¼ en
eF

3kT

X
v

v2 τm f 0X
v

f 0
¼ en

e

3kT
v2 τm
� �

F; (111)

20The quantities τm and f0 in Eq. 108 are functions of E only and hence do not change over a
constant-energy surface.
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which gives the electron mobility as

μn ¼
e

3kT
v2 τm
� �

: (112)

With Eh i ¼ 3=2ð Þ kT ¼ mn v2
� �

=2; we can replace 3 kT by mnhv2i, yielding

μn ¼
e

mn

v2 τm
� �

v2h i ¼
e

mn

E τmh i
Eh i : (113)

This result replaces the average time between scattering events obtained from the
Drude theory with the energy-weighted average of the relaxation time τm. Dropping
the requirement of spherical equi-energy surfaces, the end result (Eq. 113) remains
the same, except that mn is replaced by the anisotropic mobility effective mass; for
more detail, see Conwell (1982).

4.5 The Mobility Effective Mass

Following external forces, the carriers are accelerated proportionally to their effec-
tive masses (Eq. 23). Their anisotropy is taken into consideration by introducing a
mobility effective mass. For a three-axes ellipsoid, this effective mass is given by the
inverse average of the effective masses along the main axes:

1

mn, μ
¼ 1

3

1

m1

þ 1

m2

þ 1

m3

� �
: (114)

In general, a mobility tensor is introduced for each of the νd satellite valley E(k)
ellipsoids, identified by the index i:

μ ið Þ ¼ e τm
ℏ2

@2E ið Þ

@k2x

@2E ið Þ

@kx@ky

@2E ið Þ

@kx@kz
@2E ið Þ

@ky@kx

@2E ið Þ

@k2y

@2E ið Þ

@ky@kz

@2E ið Þ

@kz@kx

@2E ið Þ

@kz@ky

@2E ið Þ

@k2z

0
BBBBBBBB@

1
CCCCCCCCA
: (115)

In Si, there are three pairs of ellipsoids with different h1 0 0i orientations;
see ▶ Fig. 10a of chapter “Bands and Bandgaps in Solids”.” All of these
ellipsoids have their E(k) minima at equal energies and are therefore equally

populated at vanishing external forces with N
ið Þ
0 ¼ 1

6
N0. Their effect on the total

mobility is obtained by adding its components, which results in an isotropic
mobility tensor
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μ
tot
¼ e τm

ℏ2

1

3

2

mn, t
þ 1

mn, l

� �
0 0

0
1

3

2

mn, t
þ 1

mn, l

� �
0

0 0
1

3

2

mn, t
þ 1

mn, l

� �

0
BBBBBB@

1
CCCCCCA
; (116)

with indices l and t indicating transversal and longitudinal components with
respect to the h1 0 0i axes. Consequently, the electron mobility effective mass
for Si is given by

1

mn, μ
¼ 1

3

2

mn, t
þ 1

mn, l

� �
: (117)

The hole mobility effective mass can be derived in a similar fashion. Assuming
spherical E(k) surfaces around k= 0 (for warped bands, see below) and disregarding
the deeper spin-orbit band, one obtains

1

mp, μ
¼ 1

2

1

mp, lh
þ 1

mp, hh

� �
; (118)

here, mp,lh and mp,hh represent the light and heavy hole masses in the corresponding
bands.

Hole-Mobility Mass in Warped Bands The valence bands are significantly
warped; see ▶ Sects. 1.2.2 and ▶ 1.2.3 of chapter “Bands and Bandgaps in Solids”.
In cubic semiconductors, the E(k) surfaces can be represented by an empirical
expression (Eq. 15 of chapter ▶ “Bands and Bandgaps in Solids”); using the

abbreviations B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1

6
C2

q
and Γ� ¼ �C2= 2B0 
 A� B0ð Þf g in this equation,

we obtain, after taking the second derivative of E(k) for the effective masses, a useful
approximation

mp,� ¼ m0

A� B0
1þ 0:333Γþ 0:0106Γ2 þ . . .
	 


(119)

for the mobility effective mass. The variable m� represents the light or heavy
hole mass if the upper or lower sign, respectively, is used in Eq. 119. The values
of the constants A, B, and C can be obtained from the Luttinger parameters
(▶ Eq. 16 of chapter “Bands and Bandgaps in Solids”), which are given in
▶ Table 5 of chapter “Bands and Bandgaps in Solids” for a number of typical
semiconductors.
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4.6 Momentum and Energy Relaxation

With each scattering event, momentum is exchanged; the carrier changes the direc-
tion of its path. In addition, more or less energy is exchanged, with the carrier losing
or gaining energy from the scattering center. There are different rates for momentum
and energy relaxation, and the relaxation times depend on the specific scattering
mechanism.

4.6.1 The Average Momentum Relaxation Time
The average momentum relaxation time, which was already introduced in Eq. 95, is
defined as

τmh i ¼

ð
τm vð Þ vx @f=@vxð Þd3vð

f 0 d
3v

¼ mn

kT

ð
τmv

2
x f 0 d

3vð
f 0 d

3v
: (120)

It can be obtained from the net increment of the electron momentum, which is
proportional to the average drift velocity,

vx ¼

ð
vx f vð Þg vð Þd3vð
f vð Þg vð Þ d3v

; (121)

where g(v) is the density of states. Assuming only small changes from the thermal
distribution, g(v) can be expressed as the effective density of states at the edge of the
band (▶Eq. 18 of chapter “Equilibrium Statistics of Carriers”) and cancels out in
Eq. 121. This yields

vx ¼ � eFx

3kT

ð1
0

v4 τm f 0 vð Þ dvð1
0

v2 f 0 vð Þ dv
¼ � eFx

3kT
v2 τm vð Þ� �

: (122)

Using the equipartition law for a Boltzmann gas of electrons m
2

v2
� � ¼ 3

2
kT, we obtain

for the average drift velocity

vx ¼ � eFx

3kT

v2 τm vð Þ� �
v2h i ¼ � e

mn
τmh iFx: (123)

This result is closely related to the Drude equation, however, having replaced τ in
Eq. 25 with the average momentum relaxation time
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τmh i ¼
v2 τm vð Þ� �

v2h i : (124)

For an evaluation of Eq. 124, we need the distribution function f0 and the actual
scattering mechanism to determine τm(v) – see chapter ▶ “Carrier Scattering at Low
Electric Fields” and Seeger (1973).

After a collision, the electron path changes by an angle θ, and the fractional
change of angle per collision is on the average 1� cos θh i . The momentum
relaxation time is the time after which the electron path is totally randomized, i.e.,
its “memory” is lost; hence,

τm ¼ τsc
1� cos θh i ; (125)

where τsc is the average time between two collisions. Scattering with θ � 90� is
memory erasing (▶ Sect. 3.1 of chapter “Carrier Scattering at Low Electric
Fields”). Only the collisions in which all angles θ are equally probable result
in hcos θi = 0 and, therefore, yield τm = τsc. For small-angle scattering events,
one needs several scatterings before the momentum is relaxed, leading to τm >
τsc.

The Mean Free Path of Carriers Between collisions, the carrier traverses one free
path. The mean free path is obtained by averaging

λ ¼ v2λ vð Þ� �
v2h i : (126)

λ is related to the momentum relaxation time:

λ ¼ τmh i
v2
� �
vh i ¼

ffiffiffiffiffi
3π

8

r
τmh ivrms: (127)

4.6.2 The Average Energy Relaxation Time
The energy loss or gain due to scattering of electrons with phonons is given by

dE

dt
¼ V

8π3

ð
ℏωqS k, k0ð Þ� �

emi, q � ℏωqS k0, kð Þ� �
abs, q

n o
dk0: (128)

The subscript emi,q stands for emission and abs,q for absorption of a phonon. When
multiplying the Boltzmann equation with E and integrating over k, we obtain
(Seeger 1973)
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d Eh i
dt
¼ eF vh i � Eh i � EL

τe
; (129)

with EL the equilibrium energy at lattice temperature,

Eh i ¼

ð
Ef dkð
f dk

, and vh i ¼

ð
v f dkð
f dk

: (130)

The energy relaxation time is then obtained from Eq. 127 after switching off the
field, yielding

τe ¼ Eh i � EL

d Eh i
dt

; (131)

this means, τe is given by the ratio of the average surplus energy to the rate of energy
loss due to scattering and is a function of E; the energy-loss rate is not a simple
exponential function. It shows a maximum when the electron energy equals the
optical phonon energy.

The rate of momentum or energy loss depends on the actual scattering mecha-
nism. From gas-kinetic arguments, one obtains for collisions between an electron
and a lattice defect of mass M an energy-exchange rate of

τe
τsc

� �
ion

¼ mn

M
: (132)

The energy loss is negligible in one scattering event if the scattering center is a defect
atom, since M� mn.

The fraction of energy lost by an electron in a collision with acoustic phonons can
also be obtained from an effective-mass ratio. Using the equivalent phonon mass

mphonon ¼ kT

v2s
; (133)

where vs is the sound velocity, we obtain

τe
τsc

� �
ac phonon

¼ mn

mphonon

¼ mnv
2
s

kT
¼ 3v2s

v2rms

; (134)

which is on the order of 10�3. In other words, only 0.1% of the electron energy can
be lost to an acoustic phonon during any one-scattering event.

In contrast, the ratio of energy relaxation time to scattering time for optical
phonons is
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τe
τsc

� �
opt phonon

¼ ℏω0

kT
; (135)

which is on the order of 1 at room temperature. This means that many scattering
events usually pass before the accumulated energy obtained from the field can be
dissipated to the lattice by emitting one optical phonon, while the momentum is
relaxed after one or only a few collisions. This modifies the rather crude model
given in Sect. 2.1 by introducing the momentum relaxation time for evaluating the
mobility and the energy relaxation time for Joule’s heating.21 A more detailed
discussion is given in chapters ▶ “Carrier Scattering at Low Electric Fields” and
▶ “Carrier Scattering at High Electric Fields”, when an analysis of the different
scattering mechanisms and a better estimate of the magnitude of energy obtained
from the field is given.

4.7 Phonon and Electron Drag

Interacting electrons and phonons exchange energy and momentum. A drift motion
superimposed on the random motion of one ensemble transfers part of the net
momentum to the other ensemble during scattering. This means that electrons
drifting in an external field tend to push phonons in the same direction, which causes
a slight temperature gradient in the field direction, superimposed on the homoge-
neous Joule’s heating. This process is called electron drag (Hubner and Shockley
1960).

Similarly, a temperature gradient tends to push electrons from the warm to the
cold end of a semiconductor. This is known as phonon drag. The drag effect can be
quite large, e.g., up to a factor of 6 compared to simple thermopower in p-type Ge at
20 K, as shown by Herring (1954).

When phonons propagate as acoustic waves, ac-electric fields can be induced; or,
vice versa, when sufficiently high electric fields are applied, coherent phonon waves
can be generated when the drift velocity of electrons surpasses the (sound) velocity
of the phonon waves (McFee 1966). These acousto-electric effects have technical
application for creating current oscillators (Bray 1969).

5 Summary

Electrons and holes are carriers of the current in semiconductors. Their effective
mass is modified by polarizing the lattice, but this influence, expressed as a change to
polarons, is negligible for most semiconductors. It is contained in the effective mass

21In two-dimensional structures, significant momentum relaxation is found due to near-surface
acoustic phonon scattering; see Pipa et al. (1999).
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obtained by cyclotron resonance and is commonly listed as the effective mass of the
carriers, i.e., of electrons or holes. Only for small polarons, which occur in semi-
conductors with narrow bands and large lattice polarization, the effective mass is
significantly affected and self-trapping occurs.

The current through a semiconductor is composed of a drift and a diffusion
current of electrons and holes. In homogeneous semiconductors, only one of these
four components is dominant. The drift current is determined by the electric field,
which acts as a slight perturbation of an essentially random walk of carriers, except
for very high fields. The additional energy obtained by carrier acceleration from the
field is given to the lattice by inelastic scattering, causing Joule’s heating. The
diffusion current is proportional to the carrier gradient up to a maximum diffusion
current, which is limited by the thermal velocity of carriers. Proportionality factor of
both drift and diffusion currents is the carrier mobility, which is proportional to a
relaxation time and inversely proportional to an effective mass tensor, the mobility
effective mass.

Drift and total currents are proportional to negative potential gradients: the first
one being the electrostatic potential and the second the electrochemical potential.
The proportionality factor of both is the conductivity. In spatially inhomogeneous
semiconductors, both an external field, impressed by an applied bias, and a built-in
field, due to space-charge regions, exist within the semiconductor. The external field
causes carrier heating by shifting and deforming the carrier distribution from a
Boltzmann distribution to a distorted distribution with more carriers at higher
energies within the band. In contrast, the built-in field leaves the Boltzmann distri-
bution of carriers unchanged; the carrier gas remains unheated at exactly the same
temperature as the lattice at every volume element of the crystal, except for statistical
fluctuations. A consequence of the difference between external and built-in fields is
the difference in determining the field dependence of the mobility, which requires an
averaging over carriers with different energies within the band. For a built-in field,
the averaging follows a Boltzmann distribution; in an external field, there are more
electrons at higher energies, and the distribution is distorted accordingly. This can
have significant impact for the evaluation of device performances when high fields
are considered.

The Boltzmann equation permits a sophisticated analysis of the carrier transport,
including changes in the carrier distribution. Such change in the distribution sub-
stantially influences the averaging, which is necessary to arrive at well-defined
values for a number of transport parameters – most importantly the relaxation
times. Significant differences can be defined between the time between two scatter-
ing events τsc, the momentum relaxation time τm, and the energy relaxation time τe.
Although the Boltzmann equation cannot be integrated in closed form except for a
few special cases, the deformed distribution function can be approximated for small
applied fields. It provides the basis for the investigation of various scattering
processes, which can be divided into essentially elastic processes with mainly
momentum exchange and, for carriers with sufficient accumulated energy, into
inelastic scattering with energy relaxation. The latter becomes more prevalent at
elevated temperatures and higher electric fields.
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Abstract
Carrier scattering, originating from deviations from ideal lattice periodicity, acts
as a damping process for carrier motion. Both elastic and inelastic scattering
involve a large variety of scattering centers. Carriers are scattered by acoustic and
optical phonons, at neutral or charged impurities, at interfaces, and at other
scattering centers. Most scattering events are elastic, changing only the
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momentum of a carrier but not its energy. Inelastic scattering involves optical
phonons and intervalley scattering; in these processes carriers lose much of their
energy to the lattice.

At low electric fields, many elastic scattering events precede an inelastic event.
The dominating type of scattering changes with lattice temperature. Usually,
ionized-impurity scattering prevails at low temperatures and scattering at pho-
nons at high temperatures. The type of carrier scattering determines the relaxation
time and with it the carrier mobility.

Keywords
Acoustic-phonon scattering � Alloy scattering � Carrier-carrier scattering � Carrier
mobility � Deformation potential � Elastic scattering � Inelastic scattering �
Intervalley scattering � Momentum-relaxation time � Optical-phonon scattering �
Piezoelectric scattering � Scattering centers � Surface-induced scattering

1 Types of Scattering Centers

At low electric fields1 the carrier-distribution function is only little deformed at
carrier scattering with respect to the equilibrium state, and the linearization discussed
in ▶ Sect. 4.3 of chapter “Carrier-Transport Equations” is appropriate. The goal of
this chapter is an estimation of the relaxation time for the return to equilibrium,
which is a measure of the carrier mobility. When carriers are accelerated in an
external electric field, their increased momenta and energies relax according to a
multitude of scattering events. It is impossible to account for these events in a global
fashion, and various approximations, which are different for different types of
scattering centers, are required.

The carrier mobility introduced in ▶ Sect. 2.2 of chapter “Carrier-Transport
Equations” is, by definition, the ratio of the electron group-velocity to the applied
electric field. It may also be expressed by the ratio of the electrical conductivity (here
discussed for electrons) to the carrier density,

μn ¼ σn= enð Þ, (1)

where e is the electron charge. In semiconductors, the mobility is a more convenient
quantity to characterize scattering events than the electrical conductivity, since the

1These are electric fields F � vrms/μ, where carriers gain only a small fraction of k T between
scattering events; this means F� 5�104 V/cm for a typical semiconductor with mn = 0.05 m0 and
μ = 1000 cm2/(Vs).
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carrier density depends strongly on temperature in addition to sample purity. The
mobility is closely related to the effective mass by

μn ¼
e

mn
τ, (2)

where τ is the time between two scattering events in the simple Drude approximation
or a weighted relaxation time in the more refined analysis as discussed in ▶ Sects.
2.2 and ▶ 4.4 of chapter “Carrier-Transport Equations”, respectively. Eq. 2 shows
that the mobility depends (via mn) on the band structure of the semiconductor, as
well as on the scattering mechanisms affecting the carriers. Due to the dependence
on band structure we must distinguish between semiconductors with a Fermi surface
shaped as a single body and those with carriers in multiple valleys yielding multiple
equi-energy surfaces at the band edge. Examples for the former are III-V compounds
and for the latter group IV semiconductors.

Often the temperature dependence of the mobility is used to determine the
dominant scattering mechanism. Figure 1 illustrates that this dependence may span
several orders of magnitude and that it is a complex function due to the effect of
various scattering types. A positive temperature coefficient of the mobility indicates
scattering by charged impurities, while a negative coefficient is usually indicative of
carrier scattering by phonons.

In this chapter we will introduce step by step some estimates of the various
relaxation mechanisms, providing corresponding relations for the temperature-
dependent carrier mobilities. The following sections are organized following
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the nature of the scattering mechanisms. The considered types of scattering
centers are

1. Phonons
(a) Acoustic phonons, interacting with electrons via deformation potentials
(b) Acoustic phonons with piezoelectric interaction
(c) Optical phonons with deformation-potential interaction
(d) Optical phonons, interacting with electrons via the polarization of the

lattice
2. Coulomb potentials

(a) Ionized-impurities
(b) Dislocations
(c) Carrier-carrier scattering
(d) Carrier-plasmon scattering

3. Neutral defects
(a) Neutral lattice defects
(b) External surfaces
(c) Microcrystallite boundaries
(d) Intrinsic point defects
(e) Local fluctuations in alloys

4. Transport in multivalley semiconductors and intervalley scattering

Each of these scattering centers will shorten the relaxation time τ. When estimat-
ing the effect of several types of scattering centers, each related to a specific τi, the
total time between independent scattering events can be estimated fromMathiessen’s
rule2

1

τ
¼
X
i

1

τi
, (3)

since the collision term in the Boltzmann equation (▶Eq. 83 of chapter “Carrier-
Transport Equations”) is additive. Consequently, the inverse mobilities calculated
for single, independent types of scattering are also added to result in the inverse total
carrier mobility – see also Debye and Conwell (1954)

1

μ
¼
X
i

1

μi
: (4)

2An error up to 20% can occur when applying Eq. 3 because of nonlinearities and interaction of
different scattering events as shown by Rode and Knight (1971).
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From Eq. 3, it is clear, however, that only the centers which influence the carriers the
most need to be considered in an actual crystal under a given condition. Depending
on the type of crystal bonding, crystal preparation (growth and treatments), doping,
temperature, and other external influences – such as light, strain, and electric
and magnetic fields – the predominant scatterer may vary from sample to sample.
A review by Nag (1984) summarizes the different scattering mechanisms and gives
tables for the expressions of the relaxation times; see also Seeger (2004).

The scattering events described in the next sections leave the carrier within its
valley (for intervalley scattering see Sect. 5). We will first assume that such scatter-
ing events take place with electrons near the Γ point.

2 Electron Scattering with Phonons

Most carriers have an energy near (3/2) k T. At low electric fields (F� vrms/μ), they
gain only a small fraction of additional energy compared to their thermal energy
between scattering events. Carriers can interact with various types of phonons by
absorbing or emitting a phonon. Before discussing this scattering in detail, a few
general remarks will provide some overall guidance.

2.1 General Properties of Scattering with Phonons

The phonon-dispersion relation of most semiconductors shows that optical phonons
have an energy larger than kT at room temperature, see Table 6 in chapter ▶ “Elas-
ticity and Phonons”; therefore, only above 300 K an appreciable density of optical
phonons is thermally created. Also the creation of optical phonons by scattering is
unlikely since most of the carriers do not have sufficient energy. Therefore, carriers
scatter predominantly with the lower-energy acoustic phonons, which are plentiful at
room temperature. During such a scattering event, the electron energy is changed by
only a small fraction (▶Eq. 132 of chapter “Carrier-Transport Equations”); this
means, the scattering is an essentially elastic event.

In semiconductors with a direct bandgap, only phonons near the center of
the Brillouin zone have a high probability of scattering. During such events,
substantial changes in the direction of motion can occur: k can easily change its sign.

In semiconductors with indirect bandgap, electrons are in a valley of a relatively
large k value. Elastic scattering with phonons of low energy and momentum tend to
leave the electrons within their valley, with only small changes of their momentum,
which changes their direction insignificantly. Intervalley scattering, which will be
discussed in Sect. 5, requires a higher phonon momentum, i.e., higher-energy
acoustic or optical phonons. Electrons near the surface of the Brillouin zone can,
however, undergo Umklapp processes; in such a process the electron wavevector is
changed from an initial state k to a final state k0 in the neighboring Brillouin zone,
requiring only small values of q to reverse the direction of the electron motion during
scattering. This occurs most easily in Ge, where the conduction-band minimum lies
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at this surface, rather than in Si, where the minima of E(k) for conduction electrons
lie at 0.8π/a – for more detail, see Sect. 5.1.

Elastic and Inelastic Scattering When electrons scatter with phonons, energy and
momentum conservation laws must be fulfilled. At room temperature, electrons have
an average energy of kT (ffi 25 meV). Near the Γ point, optical phonons are of the
same order of magnitude, while acoustic phonons start from ℏω = 0 at q = 0 and
have energies ℏω � k T in its vicinity. Therefore, almost no energy is exchanged
when scattering with such acoustic phonons; hence, such scattering is an elastic
scattering event as noted above.

In contrast, only the faster electrons have enough energy to create an optical
phonon, and thereby lose almost all of their excess energy. This type of scattering
is an inelastic scattering event. One needs, however, to be careful with an
assignment to phonons when scattering with phonons of higher momentum is
considered. Since at higher q the energy of acoustic phonons approaches, in order
of magnitude, that of optical phonons, both types of phonons cause inelastic
scattering.

Phonon Generation and Annihilation When interacting with electrons, phonons
can be generated, thereby cooling the electron ensemble, or annihilated, thereby
heating it.

We now consider scattering that brings electrons with an initial momentum k to a
final momentum k0 = k + q. The probability W for such transitions is proportional
to the corresponding matrix elements (see ▶Eq. 88 of chapter “Carrier-Transport
Equations”, with ΔV given by the deviation from the periodic potential), and the
population of initial and final states. For the absorption or emission of a phonon (see
▶ Sect. 4.2 of chapter “Carrier-Transport Equations”) we have

W k, kþ qð Þ ¼ 2π

ℏ
Mk,kþq

�� ��2f kð Þ 1� f kþ qð Þ½ � f qð Þf δ E kþ qð Þ � E kð Þ � ℏωq

� �
þ 1� f �qð Þ½ � δ E kþ qð Þ � E kð Þ þ ℏωq

� ��
,

(5)

where Mk,k+q is the matrix element for the scattering event, f is the distribution
function, and δ is the Dirac delta function. After integration over all possible
transitions, we obtain the collision term of the Boltzmann equation (see ▶Eq. 87
of chapter “Carrier-Transport Equations”)

@f kð Þ
@t

� �
coll

¼ V

8π3

ð
W k,k0ð Þ dk (6)

This integration, however, is difficult to perform for complex lattice oscillation.
Therefore, the collision term is evaluated for one specific type of oscillation at a time,

902 Carrier Scattering at Low Electric Fields



when approximations can easily be introduced. A simple example is the scattering of
electrons on longitudinal acoustical phonons, which is discussed in the following
section.

2.2 Scattering with Acoustic Phonons

2.2.1 Longitudinal Acoustic Phonon Scattering
The interaction of electrons with longitudinal acoustic phonons can be analyzed in a
variety of models; for reviews, see Mitra (1969), Nag (1980), Madelung (1981),
Zawadzki (1982), and Seeger (2004).

It is instructive to introduce a classical approach with acoustic waves. In the
acoustic branch at longer wavelengths, the lattice is alternatingly compressed and
dilated. Consequently, the width of the bandgap is modulated: it widens with
compression – see▶ Sect. 2.2 of chapter “Bands and Bandgaps in Solids”. Electrons
are scattered by the modulation of the band edge as illustrated in Fig. 2.

In a further simplified model, the deformation wave is approximated by a
potential step in both bands (Fig. 2b; see also McKelvey 1966). An electron wave
impinging on such a step is partially transmitted and partially reflected. The reflec-
tion probability is estimated from the solution of the Schrödinger equation as
the difference between the impinging wave (index I ) and the transmitted wave
(index T ). Their energies are given by

EI ¼ ℏ2k2I
2mn

and ET ¼ ℏ2k2T
2mn

¼ EI � δEc: (7)

From continuity of the wavefunction and its derivatives at each step, we obtain
for kI ffi kT for the reflection probability R ffi [(kI � kT)/(kI + kT)]

2, which yields

R ffi mn δEc

2ℏ2k2I

� �2

, (8)

Ec

Ev

E

x

Ec

Ev

δEc
I

R

T

a

b

Fig. 2 (a) Undulation of the
band edges Ec and Ev due to
“pressure waves,” produced,
e.g., in the long-wavelength
range of longitudinal acoustic
phonons. (b) Step-like
approximation of these
undulations
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where δEc is the step-height and kI is the wavevector of the impinging electron. The
step-height is related to the lattice compression by

δEc ¼ Ξ
δV

V
(9)

with Ξ as the deformation potential,3 Vas the volume, and δVas its change, which is
related to the thermal energy by a simple thermodynamic analogy:

1

2
δpdV ¼ ckT, (10)

where c is a proportionality factor on the order of 1. Replacing the pressure
increment δp from the compressibility (κ) relation

κ ¼ 1

V

δV

p
, (11)

we obtain for the probability of reflection from Eqs. 8 to 11:

R ffi mn

2ℏ2k2I

� �2 cκ kT

V
Ξ2: (12)

The probability of reflection can be connected with a mean free path λ by λ= l/R,
with l as the length of the sample (of volume V = l3). We obtain for kI ffi π/l, i.e., for
long-wavelength acoustic phonons:

λ ffi h4

4m2
n cκ kTΞ

2
: (13)

Table 1 Deformation potentials (eV). The subscripts u and d signify pure shear strain and diagonal
component of the deformation-potential tensor, respectively

Material

Ge ΞX
u ΞX

d ΞL
u ΞX

d

10.4 0.53 16.4 �6.4

GaAs Ξτ 111ð Þ
u Ξτ 111ð Þ

d Ξτ 100ð Þ
d

16.5 �8 �11.2

3The deformation potential is defined as the change in bandgap energy per unit strain and is
typically on the order of 10 eV. For a listing, see Table 1. It should be noted that deformation
potentials are generally tensors with components Ξij, relating the shift of the band edge δEc to the
components of the strain tensor eij (see chapter ▶ “Elasticity and Phonons”): δE ¼Pij Ξij eij; Eq. 9

hence provides only an average in anisotropic media.
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A more rigorous treatment (Bardeen and Shockley 1950) yields a similar result:

λ ffi h4cl

m2
n kTΞ

2
, (14)

where cl is the elastic constant for longitudinal deformation in cubic crystals: cl= c11
for strain in the h1 0 0i direction, cl ¼ 1

2
c11 þ c12 þ c44ð Þ for strain in the h1 1 0i

direction, and cl ¼ 1
3
c11 þ 2c12 þ 4c44ð Þ for strain in the h1 1 1i direction. Here, cij

are components of the elastic stiffness tensor, see ▶ Sects. 1.1 and ▶ 1.2 of chapter
“Elasticity and Phonons”. Assuming an energy-independent λ ¼ λ using τ ¼ λ=vrms,
and replacing vrms with ▶Eq. 19 of chapter “Carrier-Transport Equations”, we
obtain for the electron mobility due to acoustic phonon scattering

μn, ac phon ¼
ffiffiffiffiffi
8π

p

3

eh4cl

m
5=2
n kTð Þ3=2Ξ2

(15)

¼ 6:1� 103 cl
1012 g cm=s2ð Þ

m0

mn

	 
5=2
300 K
T

� �3=2 eV
Ξ

� �2
cm2=Vsð Þ:Eq. 14 yields a T�3/2

dependence of the mobility at higher temperature, where this type of scattering is
dominant. This is generally observed for semiconductors with a direct bandgap, see
Fig. 1. In indirect semiconductors intervalley scattering has a significant effect
leading to a different dependence,4 see Sect. 5.2.

The effective mass used in Eqs. 12 to 15 requires the proper mix of density-of-
state and mobility effective masses:

m5=2
n ¼ m

3=2
nds mnμ: (16)

The deformation potential used here has only slowly varying components in
space. Another approach, suggested by Ginter and Mycielski (1970), contains a
part of the potential varying with the lattice periodicity, which is more appropriate
for shorter-wavelength phonons. This approach is a more general one; still, it gives
similar results in a number of examples.

The mobility is determined by the effective mass and the momentum-relaxation
time, μn / τm=mn , see Eq. 2 and ▶ Sect. 4.6 of chapter “Carrier-Transport Equa-
tions”. Assuming parameters of a typical semiconductor, Nag (1984) calculated the
relaxation time for scattering with acoustic phonons as shown in Fig. 3, indicating a
strong dependence on carrier density; comparable dependences are found for alloy

4The experimentally observed exponent of T is �1.67 for Ge (Conwell 1952) and not �1.5. The
exponent of T for Si is still larger (ffi 2.4). Inserting actual values for Si (cl = 15.6�1010 N/m2,
mn= 0.2m0, and Ξ = 9.5 eV), one obtains μn= 5900 cm2/Vs, a value that is larger by a factor of ~4
than the measured μn = 1500 cm2/Vs at 300 K.
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scattering discussed in Sect. 4.4. The normalizing constants τac and τpz at the
ordinate in Fig. 3 refer to the respective scattering mechanisms and represent the
values of τm at T = 300 K including all controlling physical constants.

2.2.2 Acoustic Phonon Scattering with Piezoelectric Interaction
In piezoelectric crystals, ion oscillations cause a dipole moment, which interacts with
carriers rather effectively. A dipole moment can be generated by alternating lattice
compression and dilatation, which in turn are caused by longitudinal acoustic
phonons. These create an electric field parallel to the propagation direction which
has a similar interaction with carriers, although slightly stronger than the acoustic
deformation potential discussed above. The resulting mobility shows a somewhat
similar behavior (Meyer and Polder 1953):

μn, pe ac phon ¼
16

ffiffiffiffiffi
2π

p

3

h2ee0
em

3=2
n K2 kTð Þ1=2

¼ 1:5� 104
e
10

m0

mn

� �3=2
10�3

K

� �2
300 K

T

� �1=2

cm2=Vs
� �

:

(17)

Here K is the electromechanical coupling constant5, which for most semiconductors
is on the order of 10�3. At low temperatures we obtain a T �1/2 dependence that
clearly differs from the T �3/2 relation for acoustic deformation potential scattering –
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Fig. 3 Calculated momentum-relaxation time for (a) scattering by acoustic phonons, and (b)
scattering by piezoelectric phonons in a semiconductor with mn = 0.05 m0, e = 15, and varied
carrier density with n as a function of the lattice temperature. After Nag (1984)

5K 2 can be expressed as the ratio of the mechanical to the total work in a piezoelectrical material:

K2 ¼ e2pz=cl

	 

= e e0 þ e2pz=cl

	 

, with epz the piezoelectric constant (which is on the order of 10�5

As/cm2), and cl the longitudinal elastic constant (relating the tension T to the stress S and the electric
field F as T = cl S � epz F).
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see Fig. 7. Piezoelectric phonon scattering can be an important scattering mechanism
in samples with a low density of ionized impurities, which otherwise dominate
electron scattering. See Zawadzki (1982), Nag (1984), and Seeger (2004).

2.3 Scattering with Optical Phonons

2.3.1 Optical Phonon Scattering in Nonpolar Compounds
Low-energy electron scattering with optical phonons is predominantly elastic. This
process can be understood as the annihilation of an optical phonon to create a high-
energy electron, which in turn immediately creates an optical phonon in a highly
probable transition. Therefore, the electron energy is conserved in the turnaround,
but not its momentum. When electrons have accumulated sufficient energy to create
optical phonons, the scattering becomes very effective and is inelastic; this will be
discussed in chapter ▶ “Carrier Scattering at High Electric Fields”.

Optical phonon scattering in elemental nonpolar semiconductors couples both
longitudinal and transverse optical modes with the scattering electron (Boguslawski
1975). It can be estimated by using a deformation-potential formalism for longitu-
dinal optical phonons (see also Conwell 1967). We obtain an electron mobility

μn,opt phon ¼
4
ffiffiffiffiffi
2π

p

3

eℏ2ρ
ffiffiffiffiffiffiffi
kΘ

p

m
5=2
n D2

o

ϕ Tð Þ (18)

where ρ is the density of the semiconductor, Θ is the Debye temperature, and Do is
the optical deformation potential (Meyer 1958),

δEc ¼ Do δr, (19)

with δr as the change in the interatomic distance, and ϕ(T ) as a function that contains
the temperature dependence of μ and the density of phonons (Seeger 2004). At low
temperatures, ϕ(T ) is large (typically 104 to 105 at T = Θ/10) and decreases rapidly
to a value on the order of 1 near the Debye temperature Θ. The actual form of ϕ(T )
depends on the approximation used, the function shows a nearly exponential
decrease with increasing temperature for T < Θ/3.

Deformation potentials for various semiconductors are listed in Table 2. These
deformation potentials are defined by the hydrostatic strain.

ai ¼ dEi

dlnV
¼ dEi

1

V
dV

B
dEi

dp
(20)

with B as the bulk modulus, or by shear strain in cubic crystals along [111] or [100]

b ¼ δE

6 e½100�
and d ¼ δE

2
ffiffiffiffiffi
3

p
e½111�

, (21)
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where e is the strain in the direction indicated by the index. |d0| is defined by splitting
of the Γ15 state in the absence of the spin-orbit interaction,

d0 ¼ δEa0
u

(22)

with δE as the observed energy shift, a0 as the lattice constant, and u as the atomic
displacement. The parameter b is related to the optical deformation potential Do by
Do = �(3/2)b.

Numerically, the mobility due to optical phonon scattering (Eq. 18) can be
expressed as

μn,opt phon ¼ 1:77� 103

ρ

g cm-3

� �
Θ

300 K

� �1=2
mn

m0

	 
5=2
Do

108 eV=cmð Þ

	 
2 ϕ Tð Þ cm2=Vs
� �

: (23)

This mobility shows a sufficiently low value near and above the Debye temper-
ature, where ϕ(T ) � 1, and becomes the determining factor in high-purity
semiconductors.

Nonpolar optical phonon scattering is the only electron-optical phonon interac-
tion in nonpolar semiconductors, such as Si and Ge. It is important for Γ8 bands, and,

Table 2 Deformation
potentiala at G points
(in eV)

Solid a Γc
1

� �
a Γc

1

� �� a Γv
15

� �
b d |do|

C 90

Si �15.3 �10.0 �2.2 �5.1 40

Ge �19.6 �12.6 �2.3 �5.0 34

AlSb �5.9 �1.4 �4.3 37

GaP �19.9 �9.3 �1.8 �4.5 44

GaAs �17.5 �9.8 �2.0 �5.4 48

GaSb �8.3 �1.8 �4.6 32

InP �18.0 �6.4 �2.0 �5.0 35

InAs �6.0 �1.8 �3.6 42

InSb �14.6 �7.7 �2.0 �5.0 39

ZnS �14.5 �4.0 �0.62 �3.7 4

ZnSe �11.5 �5.4 �1.2 �4.3 12

ZnTe �9.5 �5.8 �1.8 �4.6 23

CdS �3.1

CdSe �3.0

CdTe �9.5 �3.4 �1.2 �5.4 22

CuCl �0.7 0.43 7

CuBr �0.25 �0.65 3.8

CuI �0.64 �1.4 1.1

Source: Blacha et al. (1984)
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as was pointed out by Harrison (1956), vanishes for the Γ6 band. Therefore, it is
unimportant for n-type InSb but important for hole scattering in p-type InSb (Costato
et al. 1972; Bir and Pikus 1974).

2.3.2 Optical Phonon Scattering in Polar Semiconductors
The scattering of carriers with longitudinal optical phonons (Fröhlich interaction) in
an (at least partially) ionic lattice has a larger influence than the deformation-
potential interaction on the carrier mobility due to the larger dipole moment associ-
ated with such lattice vibration. This causes an induced electric field F proportional
to the polarization P:

F ¼ � P

e e0
: (24)

The polarization can be obtained from

P ¼ � ec δa

V0

(25)

where δa is the change in the interatomic distance, V0 is the volume of the unit lattice
cell, and ec is the Callen effective charge (Eq. 54 in chapter ▶ “Photon–Phonon
Interaction”).

The mobility was calculated by Ehrenreich (1961) using a variational method of
Howarth and Sondheimer (1953), which accounts for the inelastic scattering. It
yields for polar-optical scattering at temperatures well below the Debye temperature
(T � Θ) an electron mobility

μn,ion,opt phon ¼
eℏ

2mn ac kΘ
exp

Θ

T

� �
, (26)

¼ 2:6� 105
exp

Θ

T

� �

ac
mn

m0

� �
Θ

K

� � cm2=Vs
� �

:

where ac is the coupling constant given in ▶Eq. 9 of chapter “Carrier-Transport
Equations”. The Debye temperature Θ is used here to account for the LO phonon
energy at q = 0 with ℏωLO = k ΘLO ffi k Θ.

The mobility given by optical phonon scattering decreases linearly with increas-
ing coupling constant. The mobility increases exponentially with decreasing tem-
perature due to optical phonon freeze-out at lower temperatures. At temperatures
T 	 Θ a different approximation yields:
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μn, ion, opt phon ¼ 1:5
eℏ

2mn ac kΘ

ffiffiffiffi
T

Θ

r
exp

Θ

T

� �
ffi 1:6� 105

ffiffiffiffi
T

Θ

r
exp

Θ

T

� �

ac
mn

m0

� �
Θ

K

� � (27)

Zawadzki and Szymanska (1971) used a Yukawa-type screened potential that
results in a reduced effectiveness of the optical phonon scattering. At higher tem-
peratures they obtained for parabolic bands

μn, ion, opt phon ¼
ffiffiffi
2

p

8π

Mra
3 kΘð Þ2

ee2cm
3=2
n kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
Fopt

, (28)

where Fopt is a screening parameter6 that depends on the Debye screening length and
is on the order of 1 (Zawadzki 1982). This results in an increased mobility by a factor
of 3.5 for InSb at room temperature and n = 1019 cm�3. When the Fermi level is
shifted into the conduction band, the mobility becomes explicitly electron-density-
dependent:

μn, ion, opt phon ¼
ffiffiffiffiffiffiffiffi
3

16π

r
Mra

3 kΘð Þ2ℏ
ee2cmn EFð ÞkT

ffiffiffi
n3

p
Fopt

: (29)

Figure 4 shows the electron mobility of InSb as a function of the electron density
at 300 K and identifies the most important branches of scattering by longitudinal
optical phonons at low densities, by ionized impurities at high densities – see

acoustic
deformation
potential

ionized
impurities

optical
phonons

InSb
T = 300 K

104

105

1016 1017 1018 1019
n  (cm-3)

µ 
 (c

m
2 /

(V
s)

)

5x105

Fig. 4 Electron mobility of
n-type InSb at 300 K as a
function of the free-electron
density. Dashed curves
indicate the corresponding
theoretical contributions.
After Zawadzki (1972)

6Here, Fopt ¼ 1þ 2
β ln β þ 1ð Þ þ 1= β þ 1ð Þ, With β = (2|k|LD)

2; LD is the Debye length given in

▶Eqs. 94 of chapter “Interaction of Light with Solids” and ▶ 49 of chapter “Crystal Interfaces”.
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Sect. 3.1; scattering by acoustic phonons (Sect. 2.2.1) is of lesser importance. For the
dependence on temperature see Fig. 7.

3 Scattering at Coulomb Potentials

When scattering occurs on charged defects, the carriers interact with the long-range
Coulomb forces, resulting in a substantially larger scattering cross-section that is
typically on the order of 10�13 cm2.

3.1 Ionized-Impurity Scattering

The original scattering analysis on charged particles was done by Rutherford (1911)
for α particles and is easily adapted to carriers scattered by ions of charge z in a solid.
This is accomplished after introducing the screening of this potential in the solid by
using the dielectric constant estat and considering Bloch electrons by using the carrier
effective mass mn. A differential cross section for the scattering of an electron of
velocity vrms under an angle θ into an element of solid angle dΩ = 2π sin θ dθ (see
Fig. 5) is then given (Leighton 1959) by

sn θð ÞdΩ ¼ Z e2

8π e e0mn v2rms

� �2

sin �4 θ

2
dΩ (30)

with

θ

2
¼ tan �1 Z e2

4π e e0 dmn v2rms

, (31)

which shows a rather slow decrease of the scattering angle θ with increasing
minimum distance d from the center – see Fig. 5. In order to totally randomize the

Θ

Φ

Θ

Φ rr

d
d

baFig. 5 Electron trajectories
for (a) a Coulomb-attractive
and (b) a Coulomb-repulsive
scattering center
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angle after collision, however, only a fraction of (1 � cos θ) of all scatterings
describes the number of memory-erasing collisions (▶Eq. 125 of chapter “Carrier-
Transport Equations”):

dn ¼ Nionvrmssn θð Þ 1� cos θð ÞdΩ ¼ d
1

τm

� �
: (32)

This number is inversely proportional to the differential momentum-
relaxation time.

Integration over all angles θ to obtain the total relaxation time requires a cutoff
in order to avoid an infinite result, since sn(θ = 0) = 1. Conwell and Weisskopf
(1950) assumed that the closest distance d of the trajectory from the center to be

considered must be smaller than a maximum distance, d < dmax ¼ 1
2
N

1=3
ion , given by

the average distance 2dmaxbetween nearest-neighbor ionized centers in the crystal.
This yields for the time between collisions of carriers with velocity vrms:

τ ¼ 4π estat e0ð Þ2m2
n v

3
rms

2πZ2 e4 Nion

1

ln 1þ estat e0 mn v2rms

2 Z e2 N
1=3

ion

� �2
" # : (33)

After averaging, we obtain the momentum-relaxation time τm. The dependence of
τm on the temperature is given in Fig. 6.

Using vrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kT=mn

p
and the averagedmomentum-relaxation time, we obtain

for the mobility with μn ¼ eτm=mn:
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Fig. 6 Momentum-relaxation
time for scattering by ionized
impurities with the carrier
density n = 1013 to 1018 cm�3

for curves 1 to 5 as the family
parameter; mn = 0.05 m0 and
e = 15 are assumed. The
normalizing constant τimp

refers to τm at T = 300 K.
After Nag (1984)
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μn,ion imp ¼
8
ffiffiffi
2

p
4π estat e0ð Þ2 kTð Þ3=2

π3=2 Z2 e3m
1=2
n Nion

1

ln 1þ 3estat e0 k T
2 Z e2 N

1=3

ion

� �2
" # (34)

The mobility in this Conwell-Weisskopf dependence increases with temperature
/T 3/2, i.e., faster electrons are less effectively scattered; the logarithmic depen-
dence is usually neglected. As expected, μn decreases inversely with the density of
scattering centers and with the square of their charge e Z. A conversion of Eq. 34,
using the definition of a scattering cross-section, reveals that, when disregarding
the logarithmic term, sn is given by

sn ¼ π3=2 Z2 e4

8
ffiffiffi
6

p
4π estat e0ð Þ2 kTð Þ2 ¼ π r2ion, (35)

where rion is the “scattering radius” of the ion. This scattering radius can be
compared with rC, the radius of a Coulomb well at a depth of kT:

Z e2

4π estat e0 rC
¼ kT or rC ¼ Z e2

4π estat e0 kT
: (36)

We now relate the scattering radius defined in Eq. 35 with the above defined
Coulomb radius by

rion ¼ ccorr rC (37)

where ccorr is a correction factor. By comparison with Eq. 34, now including the
logarithmic term, we obtain:

ccorr ¼ 2
2π

3

� �1=4
1

ln 1þ 3estat e0 k T
2 Z e2 N

1=3
ion

� �2
" # (38)

which is on the order of 1. We thereby see that, except for this correction factor,
the scattering cross-section is equal to the square of the Coulomb radius at
E = Ec � k T. Therefore, the cross section decreases /1/T2, or the increase in
mobility is directly related to a decrease of rC with T. This relationship is
closely associated with the trapping of a charge at a Coulomb-attractive center
when energy is dissipated – see ▶ Sect. 2 of chapter “Carrier Recombination
and Noise”). For such inelastic events to occur, the carrier must penetrate to
r < rC.
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With the Coulomb radius introduced above, the Conwell-Weisskopf formula can
be rewritten as the classical scattering relation.

μn, ion imp ¼
e

mn

ccorr
vn sn Nion

: (39)

A somewhat refined approach was suggested by Brooks and Herring (Brooks
1955). They assumed a cut-off in the integration over θ by replacing the Coulomb
potential with a screened Yukawa potential and used the Debye length LD as the
screening length. In addition, they replaced the electron density in ▶Eq. 94 of
chapter “Interaction of Light with Solids” with n + (n + Na)[1� (n + Na)/Nd],
considering partial compensation. The ensuing result is similar to Eq. 34:

μn,ion imp ¼
27=2 4π estat e0ð Þ2 kTð Þ3=2
π3=2 Z2 e3m

1=2
n Nion

1

ln 1þ β2
� �� β2 1þ β2

� � ,
with β ¼

ffiffiffiffiffiffiffiffi
8mn

p
ℏ

ffiffiffiffiffiffiffiffiffi
3kT

p
LD:

(40)

Comparing the cut-off by Brooks and Herring with that of Conwell and
Weisskopf, we observe a simple relation:

rcorr L
2
D ¼ n�1, (41)

which introduces the carrier-density dependence into the scattering. For a review, see
Zawadzki (1982), and Chattopadhyay and Queisser (1981). The dependence of the
mobility on the electron density is given in Fig. 4 (Sect. 2.3.2).

The effect of various scattering mechanisms on the electron mobility is shown in
Fig. 7 as a function of the temperature. It indicates major scattering at ionized
impurities (low T, see Sect. 3.1) and by longitudinal optical phonons (high T, see
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Sect. 2.3.2); whereas scattering by acoustic phonons, piezoelectric scattering, and
scattering at neutral impurities are of lesser importance, in this order.

Quantum Corrections for Ion Scattering Several assumptions of the Brooks-
Herring approximation are often not fulfilled (Moore 1967). Corrections obtained
by dropping these assumptions may be expressed in a linearized form:

μ ¼ μ0
1

1þ δB þ δm þ δd
(42)

with three correction contributions:
1. The Born approximation, used to estimate the scattering probability, requires

|k| LD 
 1, with the average wavevector |k| = mn vrms/ℏ. When this condition is
not fulfilled, a Born correction component δB is introduced with

δB ¼ 2Q βð Þ
k2 LD aqH

(43)

withβ ¼ 4L2D kj j2, andQ(β) a slowly varying function: 0.2<Q< 0.8. One estimates
0.1 < δB < 1 for ion densities between 1016 and 1019 cm�3. It is a more important
correction for lower temperatures (T < 100 K, Moore 1967).

2. When coherent scattering occurs from more than one ion, the mean free path
becomes comparable to the screening length. The multiple-scattering correction
factor δm has been estimated by Raymond et al. (1977) and is of minor importance
at low temperatures.

3. A dressing effect can be expected to take care of the chemical individuality of
the scattering center. The effect of the electron wavefunction of the scattering ion is
rather small: δd is about 30–50% of δm.However, the defect individuality is observed
at higher impurity densities for InSb doped with Se or Te (Demchuk and
Tsidilkovskii 1977) and for Si or Ge doped with As or Sb (Morimoto and Tani
1962). It is suggested that the stress field surrounding impurities of different sizes is
the reason for the individuality of the scattering probability of such ions rather than
central-cell potential corrections (Morgan 1972).

3.2 Coulomb Scattering in Anisotropic Semiconductors

Carrier scattering at an ionized impurity is sensitive to the anisotropy of the band
structure, since low-angle scattering events dominate and interfere with randomizing
electron velocities (Herring and Vogt 1956). One also requires that the screening
length be substantially smaller than the mean free path in order to prevent successive
collisions from occurring in the same defect-potential region.

The anisotropy of the effective mass and of the density of states, which are largest
along the long axes of the valley ellipsoids, influences the mobility (Boiko 1959).
The mobility can be expressed as (Samoilovich et al. 1961)
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μ ¼ e
2

3

τ⊥h i
m�

⊥

þ 1

3

τk
 �
m�

k

 !
(44)

with mk
�/m⊥

� = 19 or 5.2 for Ge or Si, respectively.
With a screened Yukawa potential (▶ Sect. 1.3.5 of chapter “Interaction of Light

with Solids”), the anisotropy factor Ka = m⊥
�/mk

� decreases with increasing carrier
density as shown in Fig. 8. A smaller cross section of the scattering centers with
higher carrier densities is caused by a decreasing Debye length LD / 1=

ffiffiffi
n

p
; it also

renders ion scattering more randomizing with increasing carrier density n.

3.3 Scattering at Dislocations

The edge dislocation presents a major disturbance in carrier transport within the
lattice because of the charging of the reconstructed core states (see ▶ Sect. 4.2 of
chapter “Crystal Defects”) and the surrounding stress field. Another disturbance can
be expected from the charges induced in piezoelectric crystals and can be caused by
the strain field around edge and screw dislocations (Levinson 1966, Pödör 1970).
These core states attract electrons or holes, depending on the position of the Fermi
level, and are screened by free carriers surrounding the line as a cylinder of a radius

equal to the Debye length LD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e e0 kT= e2p0ð Þp

, where p0 is the hole density in the
bulk of the semiconductor, when electrons are attracted to the dislocation core.

Core states in Ge and Si are positively charged at low temperatures and negatively
charged at higher temperatures. Bonch-Bruevich and Kogan (1959) discussed the
carrier scattering at a charged cylinder. By treating the scattering cylinder similarly to
a scattering center of spherical symmetry, Pödör (1966) obtained an expression for
the mobility due to dislocation scattering:

μdisloc ¼
75

ffiffiffiffiffi
p0

p
a2l estat e0ð Þ3=2

e2m
1=2
n Ndisloc

kT, (45)
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Fig. 8 Mobility-anisotropy
factor Ka measured at 77 K in
n-type Ge; data after Baranskii
et al. (1975) calculated curve
after Dakhovskii and Mikhai
(1965)
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where Ndisloc (cm
�2) is the dislocation density, and al is the distance between charged

defect centers along the dislocation core-line. Even without charge of the dislocation
core at a “neutrality temperature” between negative and positive core charges, a
lower mobility in deformed Ge is observed. This is caused by the scattering at the
strain field.

A more refined theory takes into consideration the influence of the deformation
potential and the anisotropy of the scattering for dislocation fields with a preferred
orientation (Düster and Labusch 1973). The mobility, measured parallel to an array
of aligned dislocations, is nearly equal to the mobility without dislocations. In
contrast, when carriers move perpendicular to the array, the mobility is substantially
reduced. This was experimentally confirmed by Schröter (1969). For a short review
see Zawadzki (1982).

3.4 Carrier-Carrier and Carrier-Plasmon Scattering

3.4.1 Carrier-Carrier Scattering
The scattering of carriers by other carriers within the same band does not change the
total momentum of the carrier gas. Therefore, it does not influence the momentum
relaxation-time. Combined with other scattering mechanisms, however, it causes an
accelerated relaxation – see▶Sect. 1.2 of chapter “Dynamic Processes”. This results
in a slight decrease in mobility, which is usually on the order of only a few percent.
Estimates made by Appel (1961) for covalent semiconductors, and by Bate et al.
(1965) for ionic semiconductors, indicate a mostly negligible effect of low-field
electron-electron scattering. Some larger effects in energy relaxation are discussed
by Dienys and Kancleris (1975) and by Nash and Holm-Kennedy (1974). When a
subgroup of electrons is excited to higher energies, electron-electron scattering is
important, as it tends to restore a thermal electron distribution.

When carriers of different bands are scattering with each other, a more pro-
nounced influence can be observed, especially at higher fields (see chapter ▶ “Car-
rier Scattering at High Electric Fields”), where the carriers are heated to differing
degrees according to their effective mass. This can be a significant effect for holes in
the light-hole and heavy-hole bands. Scattering reduces the difference between the
two carrier temperatures.

Electron-Hole Drag Effect At low fields, the electron-hole scattering can be
regarded as similar to the scattering of carriers at ionized impurities. It reduces the
mobility of minority carriers (Prince 1953, Ehrenreich 1957) and can be described as
a drag effect (McLean and Paige 1960).

The exchange of momentum between the two sets of carriers also results in a carrier
drag caused by the higher-mobility majority carrier that, under extreme conditions, can
lead to a drift reversal of the minority carriers. Minority holes are then dragged toward
the anode, and minority electrons toward the cathode. Such a negative absolute mobility
was observed in GaAs quantum wells by Höpfel et al. (1986).
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3.4.2 Carrier Scattering on Plasmons
At higher carrier densities, we must consider the interaction of an electron with the
collective electron plasma (see ▶Sect. 1.1 of chapter “Photon–Free-Electron Interac-
tion”), characterized by its plasma frequency ωp as given in ▶Eq. 4 of chapter
“Photon–Free-Electron Interaction” A substantial energy loss occurs at resonance
when the energy of the carrier equals the plasmon energy ℏωp. For thermal electrons,
the corresponding carrier density is below 1016 cm�3 (▶Eq. 5 of chapter “Photo-
n–Free-Electron Interaction”). With faster electrons, resonance occurs with a denser
plasma and losses increase. Examples are photo-excited plasmon–LO-phononmodes at
ZnSe/GaAs interfaces (Krost et al. 1992), damping of plasmons in semiconductor
superlattices (Tripathi and Sharma 1999), surface plasmons in GaN (Polyakov et al.
1998), and plasmon–phonon modes in highly doped n-type InAs (Li et al. 1992). See
also the plasmon peaks in electron energy-loss spectra shown in ▶Fig. 3 of chapter
“Photon–Free-Electron Interaction”.

In metals, plasmons have an energy of ~10 eV, and fast electrons penetrating a
thin metal foil show distinct losses of a multiple of this plasmon energy; see, e.g.,
León-Monzón et al. (1996). Metal plasmons are observed in reflected-electron
energy-loss microscopy (REELM), see Paparazzo and Zema (1997).

4 Scattering by Neutral Defects

The size of neutral defects ranges from the atomic scale, e.g., for neutral lattice
defects, to a macroscopic scale, e.g., for boundaries of the crystal. The nature of
carrier scattering is determined by the actual size of the scattering object, compared
to the wavelength of the scattered electrons.

4.1 Scattering by Neutral Lattice Defects, Intrinsic Point Defects,
and Defect Clusters

Scattering by Neutral Lattice Defects Neutral lattice defects have a scattering
cross-section which is about the size of the defect atom, typically 10�15 cm2. As
described by Erginsoy (1950), they can become important scattering centers at low
temperatures (at T < 100 K), when the density of ionic impurities has decreased by
carrier trapping due to carrier freezeout, and the phonon scattering has decreased due
to phonon freeze out. In analogy to the scattering of electrons by hydrogen atoms,
the scattering cross-section sn is estimated as / π a2qH , where aqH is the equivalent

quasi-Bohr radius in the lattice:

sn ¼ π a2qH
λdB
aqH

¼ 2π2
aqH
kj j ; (46)
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The Bohr radius is modified by a scattering correction factor λdB/aqH (Seeger
2004), where λdB is the de Broglie wavelength. Erginsoy estimated a similar relation
sn / 20 aqH/|k|. Using the gas-kinetic estimate for the collision time

τn ¼ 1

N0 sn vrms

(47)

and |k| = 2π/λdB = mv/ℏ, we obtain with v ffi vrms for the mobility due to neutral
impurity scattering

μ0n,imp ¼
e

mn
τn ¼ e

2π2aHℏ
mn=m0

estatN0

¼ 1:46� 103
1016

N0 cm�3ð Þ
� �

10

estat

� �
mn

m0

� �
cm2=Vs
� �

; (48)

here aH is the true Bohr radius and N0 is the density of neutral defects. This mobility
is independent of the temperature. The Erginsoy approximation is valid for temper-
atures T > 20 K. For lower temperatures, the screening depends on the energy;
Blagosklonskaya et al. (1970) obtained

μ0n,imp ¼
e m3=2

nffiffiffi
2

p
π a2qHN

0

1ffiffiffi
E

p
E=EI þ 0:0275ð Þ�1 þ 10

	 
 , (49)

where EI is the ionization energy of the impurity.
The temperature dependence of neutral-impurity scattering shown in Fig. 7 is due

to the variation of N0 with temperature; there are less neutral impurities at higher
temperature due to ionization.

The scattering is different if the spin of the incident electron is parallel or
antiparallel to the electrons in the scattering atom (triplet or singlet states, respec-
tively). In considering also the multivalley structure of the conduction bands, Mattis
and Sinha (1970) arrived at results similar to those of Blagosklonskaya et al. (1970)
at low temperatures, with only a slight mobility reduction at temperatures above
10 K; see also Norton and Levinstein (1972).

Scattering by Intrinsic Point Defects Carrier scattering by intrinsic point defects,
such as by interstitials, vacancies, or antisite defects (an A atom on a B site), is caused
by deviations from the periodicity of the lattice potential in the equilibrium position
of the disordered atoms. These changes can be seen as a local deformation of the
bands. The interaction potential responsible for the scattering may be approximated
as a Coulomb potential at charged localized centers (Sect. 3.1) or by using the
central-core potential if the defect is not charged relative to the lattice (Sect. 4.1).
The intrinsic defects are similar to foreign atoms with respect to their behavior as
scattering centers.
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All such scattering events at atomic point defects are considered elastic: the
electron momentum is changed but not its energy; the fraction of energy transferred
is / mn/M� 1. When its energy is changed, however, the electron becomes trapped
as discussed in chapter ▶ “Carrier Recombination and Noise”.

Scattering at Defect Clusters Larger clusters of defects, such as associates of
defects or small inclusions of a different phase, can interfere with the carrier transport
beyond their own occupied volume via a space-charge cloud surrounding the defect.
Depending on the charge, size, and distribution of these defects, the interaction can be
modeled by a simple neutral center of a larger effective diameter or by a charged center
with a surrounding space charge extending up to a distance of several Debye lengths.

The charge of the defect associate may be due to carrier trapping. The charge of a
different phase inclusion can be estimated from the difference in electron affinity
between inclusion and host. In addition, the strain field surrounding such a defect
cluster influences the band edge via the deformation potential and, as such, can act as
an extended scattering center.

The influence on carrier transport may range from the scattering similar to that at
point defects to the carrier repulsion from areas comparable to or larger than the
mean free path.

4.2 Influence of External Surfaces

External surfaces can interact with carriers as perfect scattering surfaces, as surfaces
for carrier recombination, and via their space charge. The space charge compensates
the surface charge and extends into the bulk to a few Debye lengths. These space-
charge effects are of technical importance (for example, in field-effect transistors)
and are discussed by, e.g., Anderson (1970) and Sze (1981). Surface scattering
reduces the mean free path on the order of the crystal dimensions (see below). It
also plays a role at low temperatures in high-mobility semiconductors, where the
mean free path becomes comparable to at least one of the crystal dimensions – for
example, in thin platelets.

In a homogeneous thin semiconductor platelet, we distinguish in a simple
approach for surface scattering between specular and nonspecular scattering at
both platelet surfaces7. Specular scattering has no influence on the mobility, while
nonspecular scattering causes a reduction in the average carrier-relaxation time:

1

τ
¼ 1

τbulk
þ 1

τsurf
, (50)

with the surface-induced relaxation time τsurf given by (see Many et al. 1965)

7More sophisticated estimates are given for thin metal layers (e.g., Fuchs 1938, Sondheimer 1952),
where surface effects are less complex. These yield results on the same order of magnitude as those
given here.
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τsurf ffi δ

λ
τbulk: (51)

Here, τ bulk is the bulk relaxation time, λ is the mean free path, and δ is the mean
carrier distance from the surface. From Eqs. 50 and 51, we obtain for the ratio of
actual-to-bulk mobility

μ

μbulk
¼ τ

τbulk
¼ 1

1þ λ=δð Þ : (52)

Setting 2 δ= d, where d is the platelet thickness, and using s as the fraction of the
specular scattering events at the platelet surfaces, we obtain

μ ¼ μbulk
d

d þ 2 1� sð Þλ , (53)

which is shown in Fig. 9 with s as the family parameter.

4.3 Influence of Microcrystallite Boundaries

The influence of microcrystallite boundaries is important for carrier transport in most
microcrystalline semiconductors. A substantial reduction in mobility is observed
when carriers must pass through the interface between crystallites on their way from
one electrode to the other. These interfaces contain a high density of lattice defects,
such as dislocations along small-angle grain boundaries (▶ Fig. 28 of chapter
“Crystal Defects”) and vacancies or clusters of defects with substantial lattice
relaxation along other grain boundaries (▶Figs. 29 and ▶ 30 of chapter “Crystal
Defects”). Carrier transport through the interfaces is therefore subject to a high
degree of scattering.

For a first approximation, we may assume that a free path ends at such interfaces,
with a consequent reduction of the effective mobility: The smaller the crystallite
grains, the more the mobility is reduced compared with the mobility in large single
crystals, consistent with Eq. 51.

s =
 0s =

 0.5s =
 0.8

0.1 1.0 10 100
d / λ

0.2

0.4

0.6

0.8

1.0

μ 
/ μ

bu
lk

Fig. 9 Carrier mobility in a
platelet with respect to the
bulk mobility as a function of
the platelet thickness d,
normalized to the mean free
path λ. The specular surface-
scattering fraction s is the
family parameter. Data points
are results of the approximate
theory of Anderson (1970),
curves are calculated from
Sondheimer (1952)
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Usually, interfaces have a high density of traps, which can become occupied by
carriers. As a consequence, interfaces are often charged. Screening charges are
located on both sides of the interface, causing a space-charge triple layer (Fig. 10),
which produces a potential barrier between each of the crystallites. The height of the
barrier can be estimated from the integrated Poisson equation

d2

dr2
Vboundary ¼ eninterface LD

ee0
, (54)

where ninterface is the surface-charge density at the interface and LD is the Debye
length. The actual surface-charge density, however, is usually insufficiently known
to make such an estimate meaningful. The barrier height eVboundary is deduced from
experimental data. With such a barrier, an exponential dependence of the mobility
versus 1/T is observed:

μboundary ¼ μ0exp � eVboundary

kT

� �
, (55)

when carriers must pass over these intergrain barriers, that is, when the grain size is
smaller than the distance between the electrodes.

The mobility μboundary is an effective mobility. Within each grain, the carrier
mobility μ0 is larger than the effective mobility. Carrier transport through grain
boundaries has received much attention. However, since this topic deals with the
inhomogeneous semiconductor, it is not the focus of this book. For a review see
Seager (1985).

x1 x2

ΔV

x

a

b
V

Fig. 10 (a) Crystallite
boundary and (b) potential
barrier along line x1- x2 as
indicated in (a)
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4.4 Alloy Scattering

Mixing homologous elements forms semiconductor alloys in which – in absence of
ordering effects – these elements are statistically distributed. Examples of such
random alloys have been mentioned previously, e.g., in ▶ Sect. 2.1 of chapter
“Bands and Bandgaps in Solids” and ▶ 2.5 of chapter “Deep-Level Centers” and
include AlxGa1-xAs and SixGe1-x. The random distribution of the alloying elements
causes a fluctuation in the periodic potential of the lattice and an increased carrier
scattering, known as alloy scattering as originally discussed by Wilson (1965); see
also Makowski and Glicksman (1973). The alloy-scattering relaxation time was
calculated for typical parameters of semiconductors by Nag (1984, see Fig. 11)
and for ternary group II-VI and III-V compounds by Auslender and Hava (1993).

The scattering probability, obtained by integrating S(k, k0) in▶Eq. 88 of chapter
“Carrier-Transport Equations” over all k0,

S kð Þ ¼ V

8π3

ð
S k,k0ð Þ dk0, (56)

can be approximated for alloys by

S kð Þ ¼
ffiffiffi
2

p

πℏ4
N0 x 1� xð Þ Eg1 � Eg2

� �2
m3=2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E kð Þ � Ec

p
(57)

where Eg1 and Eg2 are the bandgap energies of the pure constituents of the alloy, and
N0 is the density of atoms in the alloy.

The dependence of the scattering probability on the quantity x(1 – x) leads to the
rule
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μalloy /
1

x 1� xð Þ , (58)

which is valid for semiconductors (Slack 1997) as well as for metals (Ziman 1972).
Alloy scattering in quantum wires is analyzed by Nag and Gangopadhyay (1998).

5 Multivalley Carrier Transport

Indirect-bandgap semiconductors have several satellite minima at the conduction-
band edge in the different crystallographic directions. Scattering of carriers can occur
within one of these valleys, intravalley scattering, or from one valley to another,
intervalley scattering. The scattering described in the previous sections is a scatter-
ing that leaves each electron within its valley. The carrier distribution in all equiv-
alent valleys remains equal.

5.1 Processes in Intervalley Scattering

Scattering from one valley to another requires a large exchange of momentum,
which is provided by phonons of large q values, i.e., for optical phonons or for
acoustic phonons of large energy – see Fig. 12. Such intervalley phonons with
energy ℏωi may transfer electrons in Si from a valley near 0.8 π/a to the equivalent
valley at �0.8 π/a, requiring a momentum exchange8 of q = 0.4 π/a (Fig. 12).
Another scattering into a nonequivalent valley at 0.8 π/b needs an even larger
momentum exchange.

0
0.8 1.2
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E

qi

q

ħωinter,opt

ħωinter,ac

0 aaa

E
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Fig. 12 (a) Phonon E(q) and (b) electron E(k) diagrams indicating intervalley scattering

8See Fig. 8b, which shows two equivalent transitions: one requires 2�0.8 π/a = 1.6 π/a in the
extended E(k) diagram, but actually one needs only a momentum transfer of 2�0.2 π/a = 0.4 π/a.
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Polar and piezoelectric scattering does not provide a large momentum transfer
and can be neglected for intervalley scattering. All phonons with sufficient momen-
tum have similar energies, usually within a factor of two, whether they are in the
acoustic or the optical branch. Intervalley scattering can therefore be treated simi-
larly to optical phonon scattering by replacing the longitudinal optical phonon
energy ℏωLO = kΘ in Eq. 18 with ℏωinter,ac = ℏωinter,opt = kΘinter which requires
typically a 20–40% less-energetic phonons.

The intervalley scattering into a valley on the same axis is referred to as g-scat-
tering. It results in a change of the sign of the electron momentum, i.e., “reflecting”
the electron path by a sufficiently large angle. These scattering events are also known
as Umklapp processes, indicating that the momentum has changed its sign without
much change in value9 (in German, Umklapp is a mirror operation). The other
intervalley scattering processes, which transfer an electron into one of the four
valleys on the other axes, are called f-scatterings. Selection rules determine which
of the valleys can be reached depending on the symmetry of the scattering phonon
(Bir and Pikus 1974). Forbidden transitions, however, are also significant for carrier
transport (Eaves et al. 1975).

5.2 Mobility for Intervalley Scattering

All intervalley scattering events cause a reduction in the momentum-relaxation time;
the mobility is reduced. The Debye temperature Θi is large for intervalley phonons
(300–720 K) and the function ϕ(T ) in Eq. 18 can be approximated by an exponen-
tial; therefore, Θi enters exponentially into a polar-optical scattering, and a reduction
from Θ to Θi < Θ also reduces the electron mobility:

μinter ¼
eℏ

2mn ac kΘinter

ffiffiffiffiffiffiffiffiffiffi
T

Θinter

r
exp

Θinter

T

� �
: (59)

Therefore, intervalley scattering becomes the dominant optical phonon-scattering
mechanism: the increased phonon interaction with intervalley scattering reduces the
relaxation time substantially at higher temperatures.

As shown before, intravalley scattering is insufficient to explain the observed
lowering of μn with increasing temperatures: acoustic deformation-potential scatter-
ing, although frequent enough, yields only a T�3/2 decrease of μn(T ); optical
deformation-potential scattering could give a steeper decrease of μn(T ), but does
not occur frequently enough to cause a marked reduction in the mobility: there are
only few optical phonons at temperatures below the Debye temperature.

9Umklapp processes were introduced for scattering in metals, in which changes in the magnitude of
the momentum after scattering from one to another side of the near-spherical Fermi surface are even
smaller.
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The degree of the additional mobility reduction by intervalley scattering
depends on the ratio of acoustic to optical deformation-potential interaction
rates, ωac and ωopt, which are described by the ratio of the material-specific
coupling constants:

ωopt

ωac

¼ 1

2

Di vs
Ξcωinter

� �2

, (60)

where Di is the intervalley optical deformation-potential constant, Ξc is the acoustic
deformation-potential constant, vs is the sound velocity, and ωinter is the phonon
frequency for intervalley scattering. Considering the sum of acoustic and intervalley
optical scattering relaxation

1

τm
¼ 1

τac
þ 1

τinter
, (61)

we obtain a family of curves shown in Fig. 13. Adjusting the curves by selecting
Θinter = 720 K and ωopt /ωac = 3 , we obtain for Si a much improved agreement with
the experiment (Herring 1955), see Fig. 14.

Rode (1972) computed the electron mobility for n-type Si and Ge for a combination
of intervalley and intravalley acoustic deformation-potential scattering. Excellent
agreement with the experiment was obtained by using two adjustable parameters:
the inter- and intravalley deformation potentials. The experimental slope is T�2.42

(Putley and Mitchell 1958) and T�1.67 (Morin 1954) for Si and Ge, respectively, see
Fig. 14. Other intervalley-scattering effects need a larger energy transfer and are
discussed in ▶Sect. 3.1 of chapter “Carrier Scattering at High Electric Fields”.

acoustic and optical
deformation potential

4.0 2.0

1.0
0.5

0.0

ωopt/ωac

T / Θi
0.1 1.0 10

10-2

10-1

100

101

μ 
/ μ

0

Fig. 13 Intervalley scattering
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Resonant Intervalley Scattering A very large additional scattering occurs when
nonequivalent valleys coincide in energy. This can be achieved by applying hydro-
static pressure, e.g., 41 kbar for GaAs (see ▶ Sect. 3.1 of chapter “Shallow-Level
Centers”), with the result that the energy for the minima at Γ and X coincide. At this
pressure, the mobility decreases markedly because of resonance-intervalley scatter-
ing (Kosicki and Paul 1966).

6 Summary

Carriers are scattered by a multitude of deviations from ideal lattice periodicity.
Examples include the scattering at neutral or charged impurities as well as intrinsic
defects, intravalley scattering of acoustic phonons, and scattering by absorbing an
optical phonon followed by immediate reemission. Most of these events are elastic
because of the large mass ratio between scattering center and carrier. During elastic
scattering, only the momentum of the carrier is changed; its energy is not.

Inelastic scattering causes a change in momentum and energy. Scattering by
emitting optical phonons and intervalley scattering are the only inelastic scattering
processes during which the carriers can lose a significant amount of their energy to
the lattice. This occurs only to a marked degree after the carriers have accumulated a
substantial amount of energy from external sources, i.e., a high lattice temperature,
electric field, or electromagnetic radiation. Under low-field conditions, many elastic
scattering events occur before an inelastic event can follow.

Different types of scattering are dominant for various conditions of tempera-
ture, doping, and other material parameters. The type of carrier scattering deter-
mines the relaxation time for energy and momentum; both, inversely added,
determine the carrier mobility. Usually, ionized-impurity scattering is dominant
at low temperatures, and scattering at various phonons at high temperatures. At a
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Fig. 14 Temperature
dependence of the electron
mobility in pure Si, Ge, and
GaP. Solid lines are calculated
for deformation potential
inter- and intravalley
scattering; ionized-impurity
scattering is included in the
dashed curve for GaP. After
Rode (1972)
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given temperature, the ionized-impurity scattering becomes dominant at sufficient
doping levels. Usually, the scattering at neutral impurities and with intravalley
acoustic phonons are of lesser importance near or below room temperature.

Carrier scattering determines the relaxation time, and with it, the carrier mobility.
The carrier mobility is one of the key parameters for transport in semiconductors. By
proper treatment, the carrier mobility can be changed within certain limits with
concurrent improvement in the performance of devices.

References

Anderson JC (1970) Conduction in thin semiconductor films. Adv Phys 19:311
Appel J (1961) Electron-electron scattering and transport phenomena in nonpolar semiconductors.

Phys Rev 122:1760
Auslender M, Hava S (1993) On the calculation of alloy scattering relaxation time for ternary III–V

and II–VI semiconductors. Solid State Commun 87:335
Baranskii PI, Klochov WP, Potykievich IV (1975) Semiconductor Electronics. Naukova Dumka,

Kiev
Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys

Rev 80:72
Bate RT, Baxter RD, Reid FJ, Beer AC (1965) Conduction electron scattering by ionized donors in

InSb at 80�K. J Phys Chem Sol 26:1205
Bir GL, Pikus GE (1974) Symmetry and strain induced effects in semiconductors. Wiley, New York
Blacha A, Presting H, Cardona M (1984) Deformation potentials of k = 0 states of tetrahedral

semiconductors. Phys Stat Sol B 126:11
Blagosklonskaya LE, Gershenzon EI, Ladyshinskii YP, Popova AP (1970) Scattering of electrons

by neutral donors in semiconductors. Sov Phys Sol State 11:2402
Boguslawski P (1975) Nonpolar scattering of electrons by optical phonons in small-gap semi-

conductors. Phys Stat Sol B 70:53
Boiko II (1959) The theory of the mobility of electrons. Sov Phys Sol State 1:518
Bonch-Bruevich VL, Kogan SM (1959) The theory of electron plasma in semiconductors. Sov Phys

Sol State 1:1118
Brooks H (1955) Theory of the electrical properties of germanium and silicon. Adv Electronics

Electron Phys vol 7, pp 85–182. Academic Press, New York
Chattopadhyay D, Queisser HJ (1981) Electron scattering by ionized impurities in semiconductors.

Rev Mod Phys 53:745
Conwell EM (1952) Properties of silicon and germanium. Proc Inst Radio Engrs 40:1327
Conwell EM (1967) High-field transport in semiconductors. Academic Press, New York
Conwell EM, Weisskopf VF (1950) Theory of impurity scattering in semiconductors. Phys Rev

77:388
Costato M, Mancinelli F, Reggiani L (1972) Anomalous behavior of shallow donor ground state

levels in Ge under pressure. Sol State Commun 9:1335
Dakhovskii IV, Mikhai EF (1965) Calculation of the anisotropy parameter for n-type Si. Sov Phys

Sol State 6:2785
Debye PP, Conwell EM (1954) Electrical properties of n-type germanium. Phys Rev 93:693
Demchuk KM, Tsidilkovskii IM (1977) Scattering of electrons by the deformation potential in

doped InSb. Phys Stat Sol B 82:59
Dienys V, Kancleris Z (1975) Influence of E–E scattering on the phenomenological energy

relaxation time in nonpolar semiconductors. Phys Stat Sol B 67:317
Düster F, Labusch R (1973) On the mobility of holes in deformed semiconductors. Phys Stat Sol B

60:161

928 Carrier Scattering at Low Electric Fields



Eaves L, Hoult RA, Stradling RA, Tidey RJ, Portal JC, Askenazy S (1975) Fourier analysis of
magnetophonon and two-dimensional Shubnikov-de Haas magnetoresistance structure. J Phys
C 8:1034

Ehrenreich H (1957) Electron scattering in InSb. J Phys Chem Sol 2:131
Ehrenreich H (1961) Band structure and transport properties of some 3-5 compounds. J Appl Phys

Suppl 32:2155
Erginsoy C (1950) Neutral impurity scattering in semiconductors. Phys Rev 79:1013
Fletcher K, Butcher PN (1972) An exact solution of the linearized Boltzmann equation with

applications to the Hall mobility and Hall factor of n-GaAs. J Phys C 5:212
Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals.

Proc Cambridge Philos Soc 34:100
Ginter J, Mycielski J (1970) Localized potential method in the theory of electron-phonon interac-

tion. J Phys C 3:L1
Harrison WA (1956) Scattering of electrons by lattice vibrations in nonpolar crystals. Phys Rev

104:1281
Herring C (1955) Transport properties of a many-valley semiconductor. Bell Sys Tech J 34:237
Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semicon-

ductors with anisotropic scattering. Phys Rev 101:944
Höpfel RA, Shah J, Gossard AC (1986) Nonequilibrium electron-hole plasma in GaAs quantum

wells. Phys Rev Lett 56:765
Howarth DJ, Sondheimer EH (1953) The theory of electronic conduction in polar semi-conductors.

Proc Roy Soc (London) A 219:53
Kosicki BB, Paul W (1966) Evidence for quasilocalized states associated with high-energy con-

duction-band minima in semiconductors, particularly Se-doped GaSb. Phys Rev Lett 17:246
Krost A, Richter W, Zahn DRT (1992) Photoexcited plasmon-LO-phonon modes at the ZnSe/GaAs

interface. Appl Surf Sci 56:691
Leighton RB (1959) Principles of modern physics. McGraw-Hill, New York
León-Monzón K, Rodríguez-Coppola H, Velasco VR, García-Moliner F (1996) The inverse

dielectric function of a quasi-two-dimensional electron gas in a quantum well: plasmons in a
thin metal layer. J Phys Condensed Matter 8:665

Levinson IB (1966) Piezoelectric scattering by uncharged dislocations. Sov Phys Sol State 7:2336
Li YB, Ferguson IT, Stradling RA, Zallen R (1992) Raman scattering by plasmon-phonon modes in

highly doped n-InAs grown by molecular beam epitaxy. Semicond Sci Technol 7:1149
Madelung O (1981) Introduction to solid state theory. Springer, Berlin/New York
Makowski L, Glicksman M (1973) Disorder scattering in solid solutions of III–V semiconducting

compounds. J Phys Chem Sol 34:487
Many A, Goldstein Y, Grover NB (1965) Semiconductor surfaces. North Holland, Amsterdam
Mattis D, Sinha O (1970) Impurity scattering in semiconductors. Ann Phys 61:214
McKelvey JP (1966) Solid state and semiconductor physics. Harper & Row, New York
McLean TP, Paige EGS (1960) A theory of the effects of carrier-carrier scattering on mobility in

semiconductors. J Phys Chem Sol 16:220
Meyer HJG (1958) Infrared absorption by conduction electrons in germanium. Phys Rev 112:298
Meyer HJG, Polder D (1953) Note on polar scattering of conduction electrons in regular crystals.

Physica 19:255
Mitra TK (1969) Electron-phonon interaction in the modified tight-binding approximation. J Phys C

2:52
Moore EJ (1967) Quantum-transport theories and multiple scattering in doped semiconductors.

I. Formal theory. Phys Rev 160:607. And: Quantum-transport theories and multiple scattering in
doped semiconductors. II. Mobility of n-type gallium arsenide Phys Rev 160:618

Morgan TN (1972) How big is an impurity? – Studies of local strain fields in GaP. In: Proceedings
of the international conference on physics of semiconductors, PWN Polish Scietific Publishers,
Warsaw, pp 989–1000

Morimoto T, Tani K (1962) Scattering of charge carriers from point imperfections in semiconduc-
tors. J Phys Soc Jpn 17:1121

Morin FJ (1954) Lattice-scattering mobility in germanium. Phys Rev 93:62

References 929



Nag BR (1980) Electron transport in compound semiconductors. Springer, Berlin
Nag BR (1984) Relaxation of carriers. In: Alfano RR (ed) Semiconductors probed by ultrafast laser

spectroscopy vol I. Academic Press, Orlando, pp 3–44
Nag BR, Gangopadhyay S (1998) Alloy scattering in quantum wires. Semicond Sci Technol

13:417
Nash JG, Holm-Kennedy JW (1974) Experimental determination of highly concentration-sensitive

effects of intervalley electron-electron scattering on electric-field-dependent repopulation in
n-Si at 77 K. Appl Phys Lett 24:139

Norton P, Levinstein H (1972) Determination of compensation density by Hall and mobility
analysis in copper-doped germanium. Phys Rev B 6:470

Paparazzo E, Zema M (1997) Reflected electron energy loss microscopy and scanning Auger
microscopy studies of electron irradiated alkali halide surfaces. Surf Sci 372:L301

Pödör BP (1966) Electron mobility in plastically deformed germanium. Phys Stat Sol B 16:K167
Pödör BP (1970) On the dislocation scattering in silicon-on-insulator films. Phys Stat Sol A 2:K197
Polyakov VM, Tautz FS, Sloboshanin S, Schaefer JA, Usikov AS, Ja Ber B (1998) Surface

plasmons at MOCVD-grown GaN(000-1). Semicond Sci Technol 13:1396
Prince MB (1953) Experimental confirmation of relation between pulse drift mobility and charge

carrier drift mobility in germanium. Phys Rev 91:271
Putley EH, Mitchell WH (1958) The electrical conductivity and Hall effect of silicon. Proc Phys Soc

(London) A 72:193
Raymond A, Robert JL, Pistoulet B (1977) New method for measuring the compensation and the

spatial fluctuations of impurities in n-type III-V compounds - application to bulk and epitaxial
layers. In: Hilsum C (ed) Proceeding of the 4th international conference on GaAs and related
compounds. Institute of Physics, London

Rode DL (1972) Electron mobility in Ge, Si, and GaP. Phys Stat Sol B 53:245
Rode DL, Knight S (1971) Electron transport in GaAs. Phys Rev B 3:2534
Rutherford E (1911) The scattering of alpha and beta particles by matter and the structure of the

atom. Philos Mag 21:669
Samoilovich AG, Korenblit IYa, Dakhovskii IV, Iskra VD (1961) Solution of the kinetic equation

for anisotropic electron scattering. Sov Phys Sol State 3:2148. And: The anisotropy of electron
scattering by ionized impurities and acoustic phonons. Sov Phys Sol State 3:2385

Schröter W (1969) Trägerbeweglichkeit in verformtem Germanium. Phys Stat Sol B 31:177.
(Carrier mobility in deformed germanium, in German)

Seager CH (1985) Grain boundaries in polycrystalline silicon. Ann Rev Mater Sci 15:271
Seeger K (2004) Semiconductor Physics, 9th edn. Springer, Berlin
Slack GA (1997) New materials and performance limits for thermoelectric cooling. In: Rowe D

(ed) CRC Handbook on thermoelectricity. CRC Press, New York, p 407
Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1:1
Stillman GE, Wolfe CM, Dimmock JO (1970) Hall coefficient factor for polar mode scattering in n-

type GaAs. J Phys Chem Sol 31:1199
Sze SM (1981) Physics of semiconductor devices. Wiley, New York
Tripathi P, Sharma AC (1999) Plasmons and their damping in a doped semiconductor superlattice.

Pramana J Phys 52:101
Wilson AH (1965) Theory of metals. Cambridge University Press, London
Zawadzki W (1972) Electron scattering and transport phenomena in small-gap semiconductors. In:

Proceedings of the 11th international conference on physics of semiconductors. PWN Polish
Scientific Publishing, Warsaw, pp 87–108

Zawadzki W (1982) Mechanisms of electron scattering in semiconductors. In: Moss TS, Paul W
(eds) Handbook on semiconductors, Theory and transport properties, vol 1. North Holland,
Amsterdam, pp 713–803

Zawadzki W, Szymanska W (1971) Elastic electron scattering in InSb-type semiconductors. Phys
Stat Sol B 45:415

Ziman JM (1972) Principles of the theory of solids, Cambridge University Press, Cambridge, UK

930 Carrier Scattering at Low Electric Fields



Carrier Scattering at High Electric Fields

Contents
1 Transport-Velocity Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932

1.1 Drift-Velocity Saturation in External Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
1.2 Carrier-Diffusion Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
1.3 High-Field Carrier Transport in Built-In Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

2 Distribution Function at Higher Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
2.1 Warm and Hot Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
2.2 Mobility Changes Induced by Optical Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
2.3 Numerical Solution of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946

3 Elastic and Inelastic Scattering at High Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
3.1 Intravalley Scattering at High Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
3.2 Intervalley Scattering at High Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958

Abstract
At high electric fields the scattering of carriers is significantly influenced by
carrier heating. Usually scattering is increased and counteracts an enhanced
accumulation of carrier energy from the field. Such increased scattering is
observed for interaction with phonons, causing a decrease in mobility: first mostly
from acoustical scattering and at higher fields from LO-phonon scattering. The
drift velocity is thereby limited to values close to the thermal carrier velocity. The
deformed carrier distribution can be approximated by a Boltzmann distribution,
assuming a carrier temperature elevated above the lattice temperature. Above the
energy of longitudinal optical phonons the distribution is skewed substantially,
and a description of the distribution function and carrier mobility by a Fourier
series is more appropriate. Also numerical solutions of transport problems are
then advantageous.
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1 Transport-Velocity Saturation

In the preceding chapter ▶ “Carrier Scattering at Low Electric Fields”, low electric
fields F were assumed in carrier transport; the energy gain between scattering events
under such conditions is limited to an only small fraction of kT. The incremental
speed gained between collisions is then much less than the mean carrier velocity
vrms, and the linearization used in the Drude-Sommerfeld theory (▶ Sect. 2 in chapter
“Carrier-Transport Equations”) is justified; this yields Ohm’s law vd = μ F, with a
field-independent mobility μ and carrier density. In this chapter, changes in the
carrier mobility are analyzed for larger electric fields. These changes are caused by
a substantial perturbation of the carrier path between scattering events as illustrated
in Fig. 1; they involve a significant increase in carrier energy. A discussion of
changes in the carrier density induced by high fields will be presented in the chapter
“Carrier Generation and Noise”.

At sufficiently high fields, the carrier drift-velocity vd increases sublinearly with
field F (subohmic behavior) and eventually saturates.1 The reason for a decrease of
the transport velocity and its saturation can be seen either from microscopic argu-
ments, dealing with the specific scattering events, or from a more general picture, as
discussed below.

Microscopic arguments relate to the scattering events that become more plentiful
or more efficient when carriers gain more energy from the field, since the additional
energy must be dissipated to the lattice according to detailed-balance considerations.
The energy dissipation increases rapidly when the additional energy gained from the
field exceeds the LO phonon energy. These phonons interact strongly with electrons
and effectively remove the surplus energy. Increased scattering results in a decreased
mobility. Such a decrease of the mobility with sufficient electric field F is discussed
in chapter ▶ “Carrier Scattering at Low Electric Fields”, Sects. 2.3, ▶ 3.4.2, and
▶ 5. It leads into a range in which the carrier mobility decreases first proportional to
F�l/2. At still higher fields, it decreases proportionally to 1/F and results in a drift-
velocity saturation, yielding vd = μF = const.

1This sublinearity occurs as long as no run-away currents preceding the dielectric breakdown are
initiated (Yu and Cardona 1996). The run-away current regime will be discussed in ▶ Sect. 2.2 of
chapter “Carrier Generation”.
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General arguments identify a maximum transport velocity that can be deduced
easily for a built-in electric field: for thermodynamic equilibrium, i.e., for zero bias
and no light, the current vanishes at any position within a semiconductor. Therefore,
throughout the semiconductor, the drift current is equal and opposite in sign to the
diffusion current. This diffusion current (as shown in▶ Sect. 3.2 of chapter “Carrier-
Transport Equations”) can never exceed the thermal velocity of the carriers, thus
limiting the drift velocity to the thermal carrier velocity for these conditions. Since
the carrier-distribution function in thermal equilibrium is the undeformed Boltzmann
distribution (Roberson 1993), this velocity is vrms given by ▶Eq. 19 of chapter
“Carrier-Transport Equations”.

Although such an argument cannot be made for external electric fields, the
mobility behavior is expected to result in a velocity saturation on the same order
of magnitude.

1.1 Drift-Velocity Saturation in External Fields

In an external electric field, the carriers are heated. The drift current is well understood
at low fields (▶Sect. 3.1 of chapter “Carrier-Transport Equations” and ▶ chapter
“Carrier Scattering at Low Electric Fields”). At high fields, it requires the selection of
the most important scattering mechanisms related to material, doping, and temperature
for the computation of the deformed distribution function appropriate for the field range
under investigation – see ▶Sects. 3.4.2 and ▶ 5 of chapter “Carrier Scattering at Low
Electric Fields”.

An example for the relation of the onset of field-induced changes in the
mobility and the onset of carrier heating, with consequent changes in the
distribution function, can be found in Fig. 2, here obtained for GaAs with
predominant polar-optical phonon scattering (Price 1977). It is assumed that
the electrons are in thermal equilibrium among themselves with an electron

vd = μF

λvrms

F

Fig. 1 Carrier path λ between
two scattering events at high
electric fields F, showing the
comparable magnitudes of
drift velocity vd = μ F and
thermal velocity vrms
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temperature Te, which is larger than the lattice temperature T (hot electrons, see
Sect. 2.1). This assumption is reasonable due to the very fast equilibration of
hot-electron ensembles: the ultrafast equilibration in momentum space (� 1 ps)
results in an energy relaxation with a common energy relaxation time τe at any
valleys in a time domain still in the ps range, with a rate ruled by the excess
energy only (Tanimura et al. 2016).

An empirical formula describes the observed high-field behavior of the drift
velocity (Jacoboni et al. 1977):

vd ¼ μ0 F

1þ μ0F=vsatð Þβ
� �1=β , (1)

where vsat is the saturation velocity, β is a temperature-dependent parameter2 on the
order of 1, and μ0 is the low-field mobility.

This saturation velocity is on the same order of magnitude as the rms velocity of
carriers. For a specific scattering mechanism, it can be estimated; it is given in Sect.
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Fig. 2 (a) Drift velocity vd and electron temperature Te calculated for electrons in the central valley
of GaAs at 77 K. (b) Saturation of the drift velocity of holes in p-type Ge, after Prior (1960) and
Bray and Brown (1960)

2The parameters vsat and β are obtained from curve-fitting, depending on materials; for Si they are
(Canali et al. 1975) for electrons vsat n = 1.53�109�T -0.87 (cm/s), βn = 2.57�10�2�T 0.66 (cm/s),
and for holes vsat p = 1.62�108�T -0.52 (cm/s), βp = 0.46�T 0.17 (cm/s), with the temperature
given in K.
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3.1.2, Eq. 35 for optical deformation-potential scattering. The drift current, e.g., for
electrons, is thus limited to

jn, drift ¼ enμn Fð Þ F � envsatn: (2)

For a review, see Jacoboni and Reggiani (1979). Drift-velocity saturation in
AlGaAs/GaAs heterostructures is reported in Wirner et al. (1992).

Mobility Reduction of Holes At high electric fields, the mobility of holes
decreases because of the repopulation of the different valence bands. In typical
semiconductors with light-hole and heavy-hole bands, the heavy-hole bands become
more populated at higher fields because of both the more effective heating of the
holes in light-hole bands and the more effective scattering. This causes a mobility
reduction. At still higher fields, the more effective optical phonon scattering cuts off
the distribution function at ℏωLO and finally leads to a 1/F decrease of the mobility,
i.e., to drift-velocity saturation also for holes – see Figs. 2b and 3.

High-Energy Drift Measurements The high-field carrier drift can be measured
directly. Well-compensated semiconductors with good ohmic contacts are used at low
temperatures to reduce the conductivity and thus Joule’s heating. This and a variety of
other measurements, including microwave and time-of-flight techniques, are summarized
by Jacoboni et al. (1977). In small-size semiconductors a velocity overshoot occurs when
the mean free path exceeds the device dimensions (ballistic regime); see Ohno (1990) and
▶Sect. 3.1 of chapter “Carrier Transport in Low-Dimensional Semiconductors”.

Although each method has certain shortcomings,3 the resulting μ(F) dependences
are reassuringly similar (see Fig. 3) when care is taken to avoid, or to minimize,
modifying effects.
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Fig. 3 Drift-velocity
limitation in Si at 300 K due
to a decrease of the mobility
/1/F at fields in the 104 V/cm
range, applied in the [111]
direction. The different curves
represent different sets of
measurements collected by
Jacoboni et al. (1977)

3For example, conductivity measurements rely on carrier densities obtained from low-field measurements
using Hall-effect data; time-of-flight techniques can hardly exclude shallow-level trapping.
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One method for measuring the high-field carrier drift, that avoids contact effects,
can be used when stationary high-field domains can be obtained (Böer and Voss
1968). Within such a domain the semiconductor is free of space-charges; the quasi-
Fermi levels and bands are tilted parallel to each other, and the domain field is an
external field.4 The tilted bands can be imaged by the Franz-Keldysh effect, using
light near the fundamental absorption band-edge – thereby distinguishing spatially
regions of low and high electric fields. Within the low-field domain, the Hall
mobility can be measured and its field dependence can be directly obtained (Böer
and Bogus 1968); it shows current saturation near vrms. For a detailed discussion on
these high-field domains see the appendix.

1.2 Carrier-Diffusion Saturation

The equivalent of a drift current in an exclusively external field is the diffusion
current without a space-charge region. Such a current can be obtained in good
approximation as a minority-carrier current with the density gradient created in a
homogeneous semiconductor by an inhomogeneous optical excitation, as indicated
in Fig. 4. The resulting density gradient of the minority carriers (here n) causes a
diffusion current of these carriers. This current is called theDember current (Dember
1931) in short-circuit conditions.

The minority-carrier diffusion current is given by the conventional
proportionality to the carrier gradient, yielding by use of the Einstein relation

jn, diff ¼ μn kT
dn

dx
: (3)

The diffusion current is illustrated in Fig. 5a. The figure also contains the two
quasi-Fermi levels and shows both electrodes, at which the quasi-Fermi levels
coincide. The collapse of both quasi-Fermi levels is due to perfect recombination
at the metal surface. This diffusion current is also the total electron current as long as
the field is small enough to neglect the drift component.

The diffusion current increases proportional to the gradient of the carrier density.
However, since it is derived as the difference of two random-walk currents (▶Eq. 52
of chapter “Carrier-Transport Equations”) through an arbitrary surface, it is limited,
as discussed in ▶ Sect. 3.2 of chapter “Carrier-Transport Equations”, by the
Richardson-Dushman current

4Compare to the high-field domains in superlattices discussed in ▶ Sect. 2.3.2 of chapter “Carrier
Transport in Low-Dimensional Semiconductors”.
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jn, diff, max ¼ en0 vrms: (4)

Therefore, the diffusion current also saturates; the saturation velocity is the
thermal electron velocity vrms. A comparison between Fig. 5a and b indicates
that, for a mixed field condition, carrier heating also occurs and causes a
deformed carrier distribution. The root-mean-square velocity vrms must then

E

xx

E

EF

Ec

EF

a

ħω

EFn

Ec
EFn

b

Fig. 5 (a) Electron diffusion only, indicated by a sloping (quasi) Fermi level EFn and a horizontal
band. (b) Mixed case of built-in and external fields with carrier drift and diffusion, indicated by
different slopes of the Fermi level and band. The carrier-density distribution is indicated by the dot
density

p

n
x

Fig. 4 (a) Semiconductor
with intrinsic optical
excitation absorbed in a
surface layer on the right.
(b) Majority ( p) and minority
(n) carrier density
distributions
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be calculated from this deformed Boltzmann function. Here, the electrochem-
ical field gradient determines carrier heating with a similar result as for an
external field. In order to identify this averaging with a modified distribution,
the rms velocity vrms is now replaced with a modified ~vrms (Böer 1985a). Thus,
we obtain

jn, diff ¼ μn kT
dn

dx
� en ~vrms: (5)

Both drift and diffusion currents are therefore limited at high-electric fields
or high-density gradients, respectively, to similar velocities vsat and ~vrms

(Eqs. 2 and 5).
The saturation diffusion-current can be used to estimate the carrier lifetime in

junction devices and provides additional means for analyzing high-injection prop-
erties in such devices (Ivanov et al. 2000).

High-Energy Diffusion Measurements The diffusion of carriers, which are
excited to higher densities and thus extend within the band to higher energies,
can be measured directly. These measurements involve transient effects, such as
using field or light pulses, and electro-optical effects for detection. For instance,
one uses an optical grating created by electron-induced bleaching and the
disappearance of the grating due to carrier diffusion after the initiating light is
switched off. The density of carriers that determines the change in the optical
absorption (see ▶ Sect. 2.2.1 of chapter “Photon–Free-Electron Interaction”) is
given by

dn x, y, tð Þ
dt

¼ g x, y, tð Þ � ccv n x, y, tð Þð Þ2 þ D @2=@r2 n x, y, tð Þð Þ, (6)

with the optical generation rate g(x, y, t) that produces the carrier-density grating by
bleaching of a grating design created by the interference pattern of two coherent light
beams. The second term describes the recombination of these carriers (▶ Sect. 1.2 of
chapter “Photoconductivity”). The third term gives the out-diffusion of carriers from
the highly illuminated segments of the interference pattern and thereby reduces its
contrast.

When probing with a third light beam (Fig. 6), we observe a diffracted beam with
an intensity proportional to the contrast of the diffraction pattern, which provides a
direct measure of the diffusion constant D in Eq. 6. Such measurements were carried
out by Smirl et al. (1982) for Ge, who obtainedD= 142 cm2/s at 135 K and 53 cm2/s
at 295 K for ambipolar diffusion under the given experimental conditions.
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The results of these diffusion studies are complicated by several overlapping
effects:

• The high density of carriers necessary for obtaining measurable optical absorption
causes enhanced diffusion because of degeneracy.

• Many-body effects enhance the diffusion due to carrier screening and reduce it
due to bandgap narrowing, resulting in selftrapping.

• The increased carrier energy, expressed by an increased carrier temperature,
influences diffusion.

• The increased lattice temperature caused by the optical excitation results in a
decrease in diffusion; it increases scattering with phonons – see Smirl (1984) and
van Driel (1985).

The diffusion coefficient of electrons as a function of an external field, which
heates the electrons, measured at different temperatures in Si is shown in Fig. 7. The
solid curves are obtained from Monte-Carlo simulation – see Sect. 2.3. The change
of the diffusion coefficient at higher fields shows the expected 1/F behavior, as
observed for the drift mobility in the same field range of up to ~104 V/cm. It is
caused by a reduction in the carrier mobility.

1.3 High-Field Carrier Transport in Built-In Electric Fields

It is common practice to assume for a built-in electric field (i.e., the field in a space-
charge region with negligible external perturbation) the validity of the same basic
transport equations as for an external field (▶Eqs. 61 and ▶ 62 of chapter “Carrier-
Transport Equations”); this is permissible for low fields. In the absence of an external
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Fig. 6 Schematics of a light-
beam arrangement for creating
a diffraction grating by
induced electron absorption
within a semiconductor and
consequent light diffraction
by a low-intensity probe beam
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bias, the carrier equilibrium in a built-in field region is expressed by the balance
between drift and diffusion currents of opposite sign – see ▶ Sect. 3.4 of chapter
“Carrier-Transport Equations”. This formal treatment is valid until the built-in field
exceeds values for which an external field would result in substantial carrier heating,
whereas the built-in field does not. In this field-range, the mobility becomes field-
dependent and, for reasons indicated in the above mentioned section, the difference
between a built-in and an external field must be considered.

Saturation Currents with Built-In Electric Fields The limiting diffusion current
is given by the Richardson-Dushman thermal emission current (Sect. 1.2),

jn, diff,max ¼ jn, RD ¼ env�rms, (7)

with v�rms ¼ vrms=
ffiffiffiffiffi
6π

p
for planar geometry and Boltzmann statistics; for built-in

fields, the carrier-distribution function remains a Boltzmann distribution at lattice
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Fig. 7 Longitudinal diffusion coefficient of electrons in Si as a function of an external electric field
F. Filled and open circles refer to time-of-flight measurements with field directions along
h111i and h100i, respectively, triangles are electronic-noise data. The curves correspond to
Monte-Carlo computation. After Brunetti et al. (1981)
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temperature. Within a space-charge region, e.g., a pn junction at zero bias and in
thermodynamic equilibrium (no external excitation), the drift and diffusion currents
must be equal with opposite sign to render the total electron and hole current
separately zero in every volume element of the semiconductor. Therefore, even for
high built-in fields, the maximum drift velocity cannot exceed the Richardson-
Dushman velocity v�RD,max ¼ v�rms.Therefore, the drift current must also be limited

to jn, diff, max ¼ env�rms . With applied bias, however, the situation becomes more
complex and needs additional discussion.

High-Field Carrier Transport in Mixed Electric Fields Space-charge regions
with external bias show a mixed, partially built-in, partially external-field behavior,
see Fig. 5b. In some regions of the semiconductor the field is predominantly external,
whereas in others it is predominantly a built-in field (Böer 1985a). In contrast to a
semiconductor with only an external field, the carrier transport controlled by the
built-in part of the field is not accessible to direct measurements. Both drift and
diffusion current densities are highly inhomogeneous. In a typical pn junction, these
current densities show a maximum on the order of 10 kA/cm2 where the carrier
gradient peaks, although the net current is usually a very small fraction thereof.

Since within the built-in field region the net current is small compared to the drift
or diffusion current, we obtain from

jn, drift ffi �jn, diff (8)

an equation that is independent of the mobility:

1

n

dn

dx
¼ eF

kT
¼ � e

kT

dψ

dx
: (9)

It yields the well-known Boltzmann condition, resulting in an exponential depen-
dence of the carrier density on the electrostatic potential:

n ¼ n0exp � e ψn � ψn0ð Þ
kT

� �
: (10)

This relation holds throughout most of the built-in field region in which Eq. 8 is
sufficiently well fulfilled. This region is therefore referred to as the Boltzmann region. It
represents the parts of the space-charge region with a sufficiently high majority-carrier
gradient and, at zero bias, comprises the entire space-charge region. With bias, how-
ever, there are regions adjacent to the Boltzmann region in which Eq. 8 no longer holds.
These are the regions of predominant drift or diffusion currents – see the quantitative
discussion by Böer (1985b); these regions with predominant drift and diffusion currents
are referred to as drift only or diffusion only regions, respectively. In semiconductors
within a region of a built-in electric field, they represent well-distinguished regions of
major drop in the minority-carrier electrochemical potential and lie adjacent to the part
of a junction with dominant space charge.
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Substantial carrier heating in space-charge regions (Böer 1985a) is restricted to
minority carriers; that is, quasi-Fermi levels of minority carriers show the highest
slopes when a bias is applied. Marked majority-carrier heating in devices with space-
charge regions will occur only when the external fields become comparable to the
built-in field, and this occurs only close to dielectric breakdown.

2 Distribution Function at Higher Electric Fields

We have indicated before that the carrier drift and diffusion currents saturate at a
value close to the thermal rms velocity. The reasons for such saturation will be
analyzed in a microscopic model in the following sections.

First, the concept of an electron temperature that is above the lattice temperature
when an external field is applied will be introduced. For this purpose we start with
the Boltzmann equation. With an electric field Fx applied along the x direction, the
electron distribution function f(E) is deformed, as discussed in ▶Sect. 4 of chapter
“Carrier-Transport Equations”; from Eq. 96 of that chapter we obtain

f vð Þ ¼ f 0 vð Þ � e

mn
τ vð Þ Fx

@f vð Þ
dvx

, (11)

with the carrier velocity v and the relaxation time τ. For small fields f (v) in the
derivative may be replaced by f0(v). This can be seen by forming the derivative of
f (v) from Eq. 11,

@f vð Þ
dvx

¼ @f 0 vð Þ
dvx

� e

mn
τ vð Þ Fx

@2f vð Þ
dv2x

; (12)

when introduced into Eq. 11, it gives a third term that is proportional toF2
x and can be

neglected for small fields.
When higher fields are applied, however, we must consider higher-order terms in

Eq. 11; this will be discussed in the following section.

2.1 Warm and Hot Carriers

The expression describing the field-induced changes in the distribution function can
be extended in two ways (see Seeger 2004). The first approach uses an extension of
the Fourier development given in Eq. 11:

f vð Þ ¼ f 0 vð Þ � μn Fx
@f 0 vð Þ
dvx

þ μn Fxð Þ2 @
2f 0 vð Þ
dv2x

� . . . : (13)

This introduces higher terms in the definition equation for the drift velocity
(Eq. 1), which can now be expressed as
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vd n ¼ μn0 Fx þ α3F
3
x þ α5F

5
x þ . . .

� �
; (14)

the even terms vanish because f0 is an even function. Retaining the definition of the
drift velocity as vd = μ Fx obtains a field-dependent mobility (Seeger 2004):

μn ¼ μn0 Fx þ α3F
2
x þ α5F

4
x þ . . .

� �
; (15)

with μn0 as the field-independent mobility. Carriers are called warm when the second
term in Eq. 15 is included and hot when still higher terms are considered. For warm
electrons in GaAs quantum wells see Cross et al. (1999), for hot electrons in
superlattices see Burtyka et al. (1991); a general review is given in Ridley (1997).

In a second approach, a deformed distribution function f(E) is introduced, which
is approximated by the Boltzmann distribution5 at an elevated carrier temperature,
Te > T, with Te the carrier temperature (here discussed for electrons) and T the lattice
temperature:

f Eð Þ ¼ f 0 E,Teð Þ / exp �E= kTeð Þð Þ: (16)

The increase in carrier temperature can be estimated from the incremental carrier
energy in field direction – see also chapter ▶ “Carrier Generation”.

mn

2
Δv2 ¼ μn eF

2 τe ¼ 3

2
k Te � Tð Þ, (17)

where τe is the energy-relaxation time. The field-dependent mobility can be
expressed in terms of the increased electron temperature. For instance, for warm
electrons

μn ¼ μn0 1þ Te � Tð Þφ Tð Þ þ . . .ð Þ, (18)

where φ(T ) is a function of the lattice temperature alone and depends on the
scattering mechanism. Hot electrons can leave the semiconductor as shown by
Bass et al. (1996).

At sufficiently high external electric fields, the carrier-distribution function is
substantially deformed. It may be approximated by a Boltzmann distribution with a
carrier temperature that significantly exceeds the lattice temperature (Te > T ):

f ¼ n

In
exp � E

kTe

� �
, (19)

where In is a normalization integral, given by

5This approximation is no longer acceptable for electrons exceeding the energy of LO phonons, as
the tail of the distribution becomes substantially deformed, see ▶ Sect. 2.2.1 in chapter “Carrier
Generation”.
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In ¼ 1

4π3

ð
BZ

�E kð Þ
kTe

� �
dk, (20)

with the integration extending over the Brillouin zone BZ. At high electron densities,
scattering between carriers is more frequent than with lattice defects. Here, a
displaced Maxwellian distribution (Nag 1980) describes the electron ensemble:

f kð Þ ¼ c exp �ℏ2 k� k0j j2
2mnkTe

 !
¼ c exp �E� ℏvd � k

kTe

� �
: (21)

Here k0 is the displacement vector of the momentum in field direction and

ℏ2 k � k0ð Þ2=m2
n is the drift velocity.

Analytical expressions require a consideration of the different scattering mecha-
nisms given in Sect. 3. Since serious simplifications are introduced in such treat-
ments also numerical solutions of the Boltzmann equation considered in Sect. 2.3 are
interesting to provide an insight into high-field transport.

2.2 Mobility Changes Induced by Optical Excitation

When a semiconductor is illuminated, carriers are optically excited and a number of
defects will change their charge state. Charged centers may become neutral (e.g., a
donor-type center after trapping an electron or an acceptor-type center after trapping
a hole), while other centers may become negatively or positively charged when
trapping a photoexcited carrier or when ionized by light; see, e.g., Haug and Koch
(1990) and Henneberger et al. (1993).

The redistribution of carriers, indicated by the split of the two quasi-Fermi levels
under illumination, can be used to identify the degree of recharging: centers with
their energy levels between the two quasi-Fermi levels are preferentially recharged.
Centers just above EFp tend to be depleted, whereas centers just below EFn tend to be
filled by the optical excitation. During illumination the filling of centers between
these quasi-Fermi levels is inverted from thermodynamic equilibrium – see Fig. 8.

The changes in the densities of neutral and charged centers consequently cause
changes in the relative magnitude of scattering on these two types of defects, as
described in ▶ Sects. 4.1 and ▶ 3.1 of chapter “Carrier Scattering at Low Electric
Fields”. In addition, an optical generation initially creates carriers which are not in
thermal equilibrium. Usually, they are excited to levels substantially beyond the
band edge. Between continuous excitation and relaxation due to scattering, the
resulting distribution function becomes severely deformed.

Both the defect-center recharging and the change in the distribution function will
cause the mobility to become a function of the optical generation rate go:

μ ¼ μ goð Þ: (22)
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Energy Relaxation of Optically Excited Carriers The absorption into states
higher in the conduction bands produces high-energy electrons which will relax
into lower states according to their energy-relaxation time. As a consequence, the
electron gas is heated. Scattering with longitudinal optical phonons is the main
energy-dissipation mechanism to the lattice.

On the other hand, if the optical excitation proceeds within less than k T of the
band edge, the produced electron distribution is compressed and may be approxi-
mated by a Boltzmann distribution of a lower-than-lattice temperature. This means
that the electron gas is cooled, a phenomenon referred to as optical cooling. This
effect is accompanied by a heating of the lattice, caused by the fraction of non-
radiatively recombining electrons, which produce large numbers of phonons.

Further inside the band, scattering probabilities are different between the different
branches and vary widely within each branch. Again, scattering with LO phonons is
the predominant energy-relaxation mechanism. Fröhlich and Paranjape (1956) esti-
mate the energy-relaxation time for such scattering:

τe, LO ffi 1

αcωLO

k

cosh�1 k að Þ , (23)

with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnωLO=ℏ

p
. For further estimations on energy relaxation of optically

generated carriers, see in ▶ chapter “Dynamic Processes” the ▶ Sects. 1.2.2 and
▶ 1.2.3. Using the Boltzmann equation, the surplus energy E - Ec, given by the
optical excitation to an electron in the conduction band, can be equated to the surplus
energy provided by an external electric field (Ferry 1980). However, the influence of
optical excitation on the carrier distribution is distinctly different; it can severely
skew the distribution. Kinetic effects are helpful in distinguishing the different
relaxation mechanisms, as discussed in the section mentioned above.
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An example of optical carrier heating is the oscillatory photoconductivity
observed in InSb and GaSb, when monotonically increasing the photon energy of
the exciting light. Such nonmonotonic changes in photoconductivity can be
explained by a nonmonotonic carrier density caused by a preferred recombination
from the band edge. When electrons are excited to an energy above the band edge
equal to an integer of the LO phonon energy, the LO scattering brings the excited
electrons close to the bottom of the band, i.e., to k ffi 0, from which preferred
recombination with holes near k = 0 occurs. Consequently, this reduces the
steady-state carrier density more readily than recombination from higher states in
the conduction band (Habegger and Fan 1964).

2.3 Numerical Solution of the Boltzmann Equation

The analytical methods discussed in Sect. 3 for solving the Boltzmann equation
require drastic simplifications and permit only one type of interaction, i.e., a specific
scattering mechanism to be discussed at a time. Often the approximations used are
justified only in a very limited parameter range. This becomes critical at higher
electric fields, when major deviations from the Boltzmann distribution are observed.
Here, the truncation of an expansion of the distribution function, as given in
▶Eq. 103 of chapter “Carrier-Transport Equations”, is no longer an acceptable
approximation. Numerical solutions of the specific transport problems are then
advantageous.

Iterative Method An iterative technique proposed by Budd (1966), extending the
variable path method of Chambers (1952), yields solutions of the Boltzmann
equation by stepwise processing the evolving carrier-distribution function (Rode
1970). A modification of this method, involving a fictitious self-scattering for the
purpose of mathematical simplification, was proposed by Rees (1969, 1972).

Monte Carlo Method This method simulates the motion of a carrier under the
influence of an electric field and the different scattering mechanisms by applying
basic kinetic laws. Here, the scattering process (phonons, impurities, carrier-to-
carrier, etc.) and the final states are stochastically selected, with a probability
distribution given by the density of states times the squared matrix elements,
determined from a microscopic theory of the different scattering centers (Kurosawa
1966).

When successive scattering events of one electron are followed long enough, its
behavior is equivalent to that of the average behavior of the entire electron ensemble
(ergodicity). Figure 9 illustrates the principle of the Monte Carlo technique. Sub-
figure a shows the actual electron path in two dimensions under the influence of a
large external field. Subfigure b shows the same eight events as line segments in
momentum space. These segments are connected by gray lines representing the
momentum changes in each of the scattering events. Subfigure c gives the velocity of
the carrier averaged at the nth point over all previous (n - 1) paths. This average
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velocity approaches the drift velocity (dashdotted line) when enough paths are taken;
90 paths are shown in subfigure c. The drift velocity is a direct measure of the
mobility, which then can be obtained by using the relation vd = μd F.

The Monte Carlo method permits the extraction of derived physical information
from simulated experiments and is a powerful tool for the discussion of stationary
(Jacoboni and Reggiani 1983) or transient (Lebwohl and Price 1971; Oh et al. 1992;
Reklaitis 2012) transport effects in semiconductors. It also has become the preferred
technique to analyze the carrier transport under nonhomogeneous conditions, such
as in device simulation.

Ab Initio Approaches The development of the density-functional perturbation
theory (DFPT) and its application to lattice-dynamics in crystals allows for calcu-
lating phonon dispersions (Baroni et al. 2001), which can be combined with elec-
tronic band structures and electron-electron scattering within a hot-electron
ensemble computed using the GW method.6 Such ab initio approach yields results
free of empirical parameters. Additionally calculating electron-phonon scattering-
matrix elements using a Wannier-function formalism (Giustino et al. 2007),
hot-carrier dynamics was recently calculated for GaAs yielding electron-phonon
relaxation times in agreement with ultrafast optical experiments (Bernardi et al.
2015). The study showed that the ultrafast (tens of femtoseconds) hot-electron
relaxation time originates from electron-phonon scattering and that all optical and
acoustic modes contribute substantially to electron-phonon scattering, with a dom-
inant contribution from transverse acoustic modes.
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Fig. 9 Schematics for Monte
Carlo method. (a) Real space
path of an electron with large
electric field F in the
x direction; (b) same path as in
(a) but in momentum space;
(c) carrier velocity averaged
over all steps starting from
step 1 up to the running step
number as a function of
simulation time. After
Brunetti and Jacoboni (1984)

6G is the Green function andW is the screened Coulomb potential; GW is employed for calculating
the electron exchange-correlation interactions – see also ▶ Sects. 2.1.7 and ▶ 2.2.3 of chapter
“Quantum Mechanics of Electrons in Crystals”.
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For a detailed description of the field dependence, the collision term in the
Boltzmann equation must be evaluated analytically. This will be done for a few
examples in the following sections.

3 Elastic and Inelastic Scattering at High Electric Fields

At low electric fields, the energy gained from the field is transmitted to the lattice
predominantly via scattering with longitudinal optical phonons, see ▶ Sect. 4.6.2 of
chapter “Carrier-Transport Equations” and▶ Sect. 2.3 of chapter “Carrier Scattering
at Low Electric Fields”. Intermediate scattering with acoustic phonons is substan-
tially elastic; this means that the electron gains more energy from a sufficiently high
electric field than it can dissipate by generating acoustic phonons.

At higher fields the carrier temperature is increased markedly above the lattice
temperature. However, when the carrier temperature approaches the Debye temper-
ature, at which optical phonons can be generated in large quantities, a further rise in
electron temperature is slowed down; that is, scattering increases substantially and
the mobility decreases with increasing field.

A measure of the interaction between electrons and acoustic or optical phonons
was obtained in ▶ Sect. 4.6.2 of chapter “Carrier-Transport Equations” from the
ratio between momentum and energy relaxation. This ratio is changed at high fields
according to the electron temperature, indicating the average energy gain of the
electron ensemble from the field. For nondegeneracy, it can be estimated from
(Seeger 2004)

τeh i
τmh i ffi

3k Te � Tð Þ
8mn v2s

, (24)

where vs is the sound velocity, and T is the lattice temperature. The ratio of elastic to
inelastic scattering events is not significantly changed for the average electron, since
Te usually remains close to T, while the fast electrons in the high-energy tail of the
distribution are affected drastically (Brunetti and Jacoboni 1984). The dependence of
τm on T for significantly varying electron temperature Te is illustrated for optical
nonpolar phonon scattering in Fig. 12.

3.1 Intravalley Scattering at High Electric Fields

When electrons are heated only slightly, their main scattering will remain with the
abundant low-energy acoustic phonons (Srivastava 1990) determining the momen-
tum relaxation.
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3.1.1 Scattering with Acoustic Phonons
The dependence of the mobility on the electric field F can be estimated from the
energy-balance equation. In steady state, the collision term must equal the incre-
mental electron energy between collisions:

� @E

@t

	 

coll

¼ mn

2
v2d τ�1

m

� � ¼ eμF2: (25)

When this energy is dissipated with acoustic phonons, the collision term can be
estimated (Seeger 2004) as

� @E

@t

	 

coll

¼ mn

2
v2s, l τ�1

m

� �
ca

Te � T

T
, (26)

where vs,l is the velocity of longitudinal acoustic phonons, and ca is a proportion-
ality factor (ffi 32/(3π)). The factor (Te - T )/T is introduced to account for the
increased average energy of the phonons created by collisions with warm electrons
at energy (3/2)kTe. Combining Eqs. 25 and 26, we obtain

Te � T

T
¼ 1

ca

μF

vs, l

� �2

: (27)

Introducing the approximation

μ ¼ μ0

ffiffiffiffiffi
T

Te

r
, (28)

yields for the field dependence of the mobility for warm electrons (μ0F � vs,l)

μ ffi μ0 1þ 1

ca

μ0F

vs, l

� �2
" #�1=2

: (29)

At higher fields (μ0F 	 vs,l) we obtain for the relative electron temperature

Te

T
ffi 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ca

μ0F

vs, l

� �2
s2

4
3
5, (30)

which is shown in Fig. 10 as a function of the low-field drift velocity μ0F, with the
sound velocity as the family parameter. Eliminating Te/T from Eqs. 28 and 30, we
obtain the Shockley approximation (Shockley 1951)

μ ffi μ0 c1=4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vs, l= μ0Fð Þ

q
, (31)
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i.e., a square-root branch of the field dependence of the drift velocity vd in the high-
field regime

vd ¼ μF ¼ c1=4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vs, l μ0F

p
: (32)

The field dependence of the mobility for scattering with acoustic phonons is
given by Eq. 29 and shown in Fig. 11

3.1.2 Scattering with Optical Phonons
At sufficiently high electric fields a large number of electrons have enough energy to
dissipate this surplus energy through the creation of longitudinal optical phonons.

Scattering with Optical Deformation Potential The scattering mechanism is
similar to that described before, except that the fraction of electrons involved in
this type of scattering is larger. Therefore, a more substantial reduction of the average
relaxation time τ results, and μ ¼ e=mnð Þτ decreases more rapidly with the electron
temperature. The dependence of the momentum-relaxation time τm on the ratio of
lattice versus electron temperature T / Te is illustrated in Fig. 12, calculated applying
various approaches. The normalization factor τop represents the value of τm at
T = 300 K. It decreases significantly for a given lattice temperature as Te increases.

Applying an average relaxation time τ yields a mobility (Seeger 2004):

μ Teð Þ ¼ 3π3=2ℏ2ρ
ffiffiffiffiffiffiffi
kΘ

p

2m
3=2
n D2

oΘ
3=2

φe Teð Þ (33)
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with Θ the Debye temperature, Do the optical deformation-potential constant of the
band edge, ρ the mass density, and

φe Teð Þ ¼
T
2Θ

� �3=2
sinh

Θ

2T

� �

cosh
Te � T

Te

Θ

2T

� �
K2

Θ

2Te

� �
þ sinh

Te � T

Te

Θ

2T

� �
K1

Θ

2Te

� � : (34)
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For the modified Bessel functions K1 and K2 see Abramowitz and Stegun (1968).
With increasing electron temperature, the electron mobility decreases, see also
Fig. 12. Introducing the field dependence of the electron temperature from Eq. 27,
we obtain a drift velocity which first increases linearly with the field and then levels
off at the saturation velocity

vd, sat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kΘ tanh Θ= 2Tð Þð Þ= 4mnð Þ

p
: (35)

The saturation drift-velocity can be obtained by eliminating the electric field F
from the energy balance e vd F = (3 k Θ/2) (expx � 1) and the momentum balance
e F = 2mnvd (expx + 1) with x= Θ/T. It is close to the thermal velocity at the Debye
temperature: mn=2ð Þv2d, sat ¼ 3=2ð ÞkΘccorr , where ccorr = 1/{4 coth [Θ/(2T)]} is a

correction factor on the order of one. The temperature dependence of vd,sat is shown in
Fig. 13.

The dependence of the drift velocity on the electric field F is shown in Fig. 14 for
various values of the lattice temperature T. It indicates that, above the Debye
temperature, saturation is approached for μ0 F ffi 2 vd , sat. At lower temperatures,
drift-velocity saturation occurs more gradually.

The saturation velocities for different materials are given in Fig. 15, as compiled
by Ferry (1975), and indicate a satisfactory agreement with Eq. 35.

Polar Optical Scattering at High Fields With polar optical scattering, the mobility
as a function of the electron temperature at high fields is similar to the optical
deformation-potential scattering in the warm-electron range. An equation similar
to Eq. 33 is obtained, except that the order of both modified Bessel functions in the
φe dependence is reduced by one (Seeger 2004).
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Fig. 13 Saturation drift-
velocity as a function of the
lattice temperature according
to Eq. 35, for mn = m0, with
the Debye temperature Θ as
family parameter
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The drift velocity does not saturate at high fields but shows an increase above the
threshold field before the hot-electron range is reached. Here the onset of dielectric
breakdown effects begins (Conwell 1967), see Fig. 16.
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3.2 Intervalley Scattering at High Electric Fields

Similar to carrier scattering al low fields (▶Sect. 5 of chapter “Carrier Scattering at Low
Electric Fields”) we have to distinguish between intervalley scattering for equivalent and
nonequivalent valleys (Kim and Yu 1991). Equivalent valleys have their minima at the
same energy, the conduction-band edge. Nonequivalent valleys have a slightly higher
energy and hence need additional carrier energy to become populated. For a review on
intervalley scattering of electrons in GaAs see Mickevicius and Reklaitis (1990).

3.2.1 Equivalent-Intervalley Scattering
Intervalley scattering with optical phonons can be evaluated for warm electrons
using a deformation-potential approximation. The resulting mobility is given by

μi ¼
4αc kΘi

3ℏ

ffiffiffiffiffi
Te

Θi

r sinh
Θi

2T

� �

cosh
Te � T

Te

Θ

2T

� �
K1

Θi

2Te

� � , (36)
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Fig. 16 Drift velocity as a function of the electric field for polar optical scattering with the lattice
temperature as the family parameter, indicating the onset of dielectric breakdown effects (arrows).
Values of the relative electron temperature are indicated along each of the curves. After Seeger
(2004)

954 Carrier Scattering at High Electric Fields



where K1 is the modified first-order Bessel function.
At higher electric fields, the anisotropy of the valleys must be taken into

consideration. The direction of the field relative to the valley axis identifies the
relevant effective mass, which changes with different alignment. In the k-space
representation of Fig. 17 the effective mass is proportional to the square of the
projection of the constant-energy surfaces in field direction (green arrows in the
figure). It is smallest in the direction of the short axis and largest in the direction of
the long axis of the rotational ellipsoid. Hence, electron heating, which is propor-
tional to μ F = (e/mn)τm F, is most effective when the electric field F is aligned
with the short axis of the ellipsoid. This ellipsoid is called the hot ellipsoid and the
corresponding valley the hot valley; the other with the long axis in field direction is
called the cool ellipsoid and the corresponding valley the cool valley. Scattering
proceeds preferentially from the hot to the cool valley, since hot electrons have a
higher average energy and consequently generate more intervalley phonons. This
influences the average electron mobility.

The largest repopulation is observed when the field is applied in the direction of
one of the main axes of the ellipsoids. No change in the population occurs when the
field direction is 45
 off the direction of the main axes.

The Sasaki-Shibuya Effect The anisotropy of the intervalley scattering at high
fields, which causes a repopulation from hot to cool valleys, also causes the effective
conductivity to become anisotropic. The current prefers to flow in a direction closer
to an alignment with the long axis of the ellipsoid; that is, the current may deviate
from the direction of the applied field. As a result, the surfaces of the semiconductor,
having a component in this preferred direction, become charged. This produces a
field component perpendicular to the applied electric field. It is similar to the Hall
field, which is caused by surface charging in a magnetic field. Applied and induced
field vectors define an angle ϑ, called the Sasaki angle (Fig. 18):

hot valley

cool valley

ky

kx

F

Fig. 17 Intervalley scattering
into nonequivalent valleys
from hot to cool valleys;
ellipses represent constant-
energy surfaces. Hot valleys
have their short axis aligned
closer to the field direction
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Ft

Fl
¼ jt

jl
¼ tan ϑ ffi ϑ: (37)

Subscripts t and l stand for transverse and longitudinal. The effect, called the Sasaki-
Shibuya effect, can be used to obtain information about the anisotropy of the equi-
energy surfaces in E(k) (Shibuya 1955; Sasaki et al. 1959).

3.2.2 Intervalley Scattering into Nonequivalent Valleys
A rather large effect is observed when electrons are scattered into higher valleys in
which they have a substantially higher effective mass – as, e.g., in GaAs.

In an external field of sufficient magnitude, electrons in a valley with a small
effective mass are heated very efficiently. When scattered into higher satellite valleys
(see Fig. 19) with a higher effective mass, heating is reduced and backscattering is
lowered. Therefore, a substantial fraction of the conduction electrons can be pumped
into the higher valley. As a result, the average electron mobility is reduced, and the
current therefore increases less than ohmically with increased field (see Jacoboni
et al. 1981 for Ge and Alberigi-Quaranta et al. 1971 for compound semiconductors).
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∆EГL = 0.36 eV
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+ħωi

0

EFig. 19 Electron scattering
(arrows) into a higher satellite
valley with higher
effective mass

jl

jt
ϑ jl

jt

Fig. 18 Sasaki-Shibuya
measurement of longitudinal
and transverse currents in a
semiconductor with elliptical
valleys
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Negative Differential Conductivity Effects If the ratio of mobilities is high
enough, one observes a negative differential conductivity (Singh 1993) as shown
in curve 2 of Fig. 20a. Corresponding experimental results are shown in Fig. 20b for
several III-V compounds. Here a field range exists in which the current decreases
with increasing field. In this range, stationary solutions of the transport equation may
not exist, and high-field domains may develop which can move through the semi-
conductor and cause current oscillations. These have been observed by Gunn (1963)
and are termed Gunn-effect oscillations (Dalven 1990).

If such a repopulation, with an increasing electric field, competes with thermal
excitation at higher temperatures, only a change in the slope of the current-voltage
characteristic is observed, without going through a maximum (curve 1 in Fig. 20a).
Increased doping in the high-doping range causes a decrease in the threshold field
and finally the disappearance of the negative differential conductivity (Seeger 2004).

In GaAs, the L satellite minimum lies 0.36 eVabove the Γ point E(k) minimum at
k= 0 – see Fig. 19. The effective mass in the central minimum is mn = 0.07 m0, and
mn ffi m0 in the satellite minima.7 This causes a reduction of the mobility in n-type
GaAs from ~8000 cm2/Vs at low fields to ~200 cm2/Vs at high fields, when most of
the electrons are pumped into the satellite valley. Fields of 3 kV/cm are sufficient for
achieving the necessary pumping. A similar effect is observed for electron-electron
scattering, see Asche (1989) and Ohno (1994). High-field transport of GaN with an
electron-velocity peak maximum of 2.4 � 107 cm/s at 180 kV is reported in
Schwierz (2005).
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Fig. 20 (a) Drift velocity as a function of the field when major repopulation of the higher satellite
valley with substantially lower effective mass becomes effective at the threshold field Fth (sche-
matic). (b) Measured field dependence of the drift velocity for several semiconductors. After Evans
and Robson (1974)

7The effective mass in one of the four satellite minima is 0.4 m0; the density-of-state mass is hence
(0.43/2 � 4)2/3 m0 = 1.01 m0).
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4 Summary

High external electric fields cause a deformation of the carrier distribution with more
carriers at higher energies. In a first approximation, such a deformed distortion can
be approximated by a Boltzmann distribution, assuming an equilibrated carrier
ensemble at a carrier temperature Te above lattice temperature T, with acceptable
errors when Te - T � T (warm carriers). When carriers are accelerated further, the
distribution is skewed substantially near and above an energy ℏωLO, where strong
inelastic scattering occurs, and the concept of carrier heating with a further elevated
Te (hot carriers) becomes less satisfactory. A better description includes higher terms
in the Fourier development of the distribution function or mobility. Also a numerical
solution of the Boltzmann equation yields better results.

With increasing electric field F, an increased scattering counteracts an increased
accumulation of energy from the field. Such increased scattering is observed for

interaction with phonons, causing a decrease in mobility: first/ 1=
ffiffiffi
F

p
from mostly

acoustical scattering, and at higher fields /1/F from LO-phonon scattering. Scatter-
ing with ionized impurities, however, decreases with increasing field, as carriers can
penetrate closer to the center before being scattered.

The dominating effect of LO-phonon scattering causes a saturation of the drift
velocity close to the rms velocity of carriers. Similarly, a saturation of the diffusion
current is observed at high carrier density gradients, with a maximum effective
diffusion velocity also close to the rms velocity. With additional thermal excitation,
the saturation branch of the drift velocity may be hidden by dielectric breakdown
effects.
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Abstract
The application of a magnetic field in addition to an electric field yields signif-
icant information on carrier polarity and mobility, on the effective mass, and on
the origin of energy levels in paramagnetic centers. If a temperature gradient
exists in addition to an electric field, thermoelectric effects occur with useful
applications, such as the Seebeck effect rendering thermoelectricity used in
thermocouples and the Peltier effect applied for cooling. If a magnetic field is
added to the temperature gradient and to the electric field, several galvanomag-
netic and thermomagnetic effects are observed.

In strong magnetic fields, the electronic density of states is changed: energy levels
condenseonquantizedLandau levelswith cylindrical equi-energysurfaces ink space.
Quantities controlled by their vicinity to the Fermi energy then show an oscillatory
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dependence on the magnetic field, such as the DeHaas-van Alphen oscillations of the
magnetic susceptibility and Shubnikov-DeHaas oscillations of the resistivity.

If scattering is suppressed in highly pure samples at very low temperature, a strong
magnetic field forces carriers to propagate on edge states at the sample surface,
creating a topological insulator with no conductance in the bulk. In a two-dimensional
electron gas, this leads to the quantum Hall effect, which established an international
metrological standard for the electrical resistance. The related fractional quantumHall
effect lead to the discovery of composite fermions, quasi-particles composed of an
electron andflux quanta,which conjointly carry a fractional charge. The quantum spin
Hall phase represents a third type of topological insulators, which require no external
magnetic field.

Keywords
DeHaas-van Alphen effect � Fractional quantum Hall effect � Galvanomagnetic
effects � Hall effect � Hall mobility � Landau levels � Magnetoresistance � Peltier
effect � Quantum Hall effect � Quantum spin Hall phase � Seebeck effect �
Shubnikov-DeHaas effect � Thermoelectric effects � Thermomagnetic effects �
Topological insulator

1 Transport Equations and Thermoelectric Effects

The transport of carriers is described by Boltzmann equation introduced in ▶ Sect.
4 of chapter “Carrier-Transport Equations”. We now include an additional magnetic
field or a temperature gradient into this equation and analyze their influences on the
electron transport.

1.1 The Boltzmann Equation in Magnetic Fields and Temperature
Gradients

The steady-state Boltzmann equation

@f

@t

� �
coll

¼ _k � @f
@k

þ _r � @f
@r

; (1)

which describes the transport of electrons under the influence of external fields, can
readily be expanded to include the magnetic field1 when expressing the forces acting

1In the following sections themagnetic induction B is used, which is connected to themagnetic field
H by B = μμ0H, with μ0 the permeability of free space and μ the relative permeability. Occasion-
ally, the magnetization M is used, defined by B = μ0H + M with M = χmagμ0H, μ = 1 + χmag,
and with χmag the magnetic susceptibility, see chapter ▶ “Magnetic Semiconductors”.
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on the electrons (see ▶Eq. 85 of chapter “Carrier-Transport Equations”) by the sum
of the electric field F and Lorentz forces exerted by the magnetic field:

_k ¼ e

ℏ
Fþ _r� BÞ:ð (2)

Here _r is the group velocity of the electron wave-packet and B is the magnetic
induction. The distribution function f = f(r, k, T, t) contains the temperature, which
also can include temperature gradients.

Using the relaxation-time approximation and setting f = f0 + δf, where δf is a
small perturbation of the Fermi distribution-function f0, we have

@f

@t

� �
coll

¼ � δf

τ Eð Þ : (3)

Assuming that each collision probability is independent of the collision angle, the
Boltzmann equation can be integrated. This can be done in a closed form when
B = 0:

f ¼ f0 1� f0ð Þτ
kT

v � eF� @EF

@r
� E� EF

T

@T

@r

� �� �
: (4)

Here and in the following equations, the Fermi energy EF is used, which includes the
potential energy as well as changes in the carrier density, and permits a simplified
expression. When applying the equation to a deviation from thermal equilibrium, EF

must be replaced by the quasi-Fermi energies EFn or EFp for electrons or holes,
respectively – see ▶Sect. 3.3 of chapter “Carrier-Transport Equations”.

When the magnetic induction B is included, its influence can no longer be treated
as a small perturbation. In contrast to the electrical and thermal conductivities, which
are observed at small fields, typical magnetical effects, such as the Hall effect and
magnetoresistance, require rather large fields to become observable. Mathematically,
this means that the term proportional to the gradient of δf must also be taken into
consideration. This yields

δf ¼ f0 1� f0ð Þτ
kT

v � eF� @EF

@r
� E� EF

T

@T

@r

� �� �
þ e

ℏ
τ v� Bð Þ δf

@k
; (5)

which can be solved by iteration. Evaluating the solution near the bottom of the
conduction band, where, for spherical equi-energy surfaces, the electron velocity can
be expressed as v ¼ ℏk=mn, we obtain

δf ¼ f 0 1� f 0ð Þ
kT

τ v � f þ v � b� fð Þ þ v � bð Þ b � fð Þ½ �
1þ b2

; (6)

with the abbreviations
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b ¼ e

mn
τB and f ¼ eFþ @EF

@r
þ E� EF

T

@T

@r
: (7)

The distribution function f = f [r, k, T(r), B, t] now contains the influence of
electric, thermal, and magnetic fields; for more detail, see Haug (1972) and
Madelung (1981).

The deformed distribution function causes changes in the transport properties,
i.e., changes in the electrical or thermal currents as a result of the interacting fields.
Rather than following a stringent development of the transport from the Boltzmann
equation, a task first solved for carrier conduction by Bloch, the following section
will take an alternative, semiempirical approach by describing the different currents
with proportionality constants. These constants are later interpreted by a microscopic
model.

1.2 Transport Equations

The two governing transport equations, dealing a with carrier current j and an energy
(heat) current w [with wj j ¼ @q= A@tð Þ], are given in their general form as

j ¼ � e

ℏ

ð
@E kð Þ
@k

g kð Þ f r,k,T rð Þ,B, t½ �dk; (8)

w ¼ 1

ℏ

ð
@E kð Þ
@k

E kð Þ g kð Þ f r,k,T rð Þ,B, t½ �dk; (9)

they contain the density of states g(k) and the distribution functions developed in the
previous section.

In addition, we need two conservation laws to describe the transport behavior in a
homogeneous semiconductor: the conservation of the number of carriers

e
@n

@t
þ @

@r
� j ¼ 0; (10)

and the conservation of energy2

ρ
@u

@t
þ @

@r
w ¼ �F � j; (11)

where ρ is the mass density and u is the specific internal energy.

2Although the electric and magnetic fields act as external forces, and we have e (F + v � B) as total
force, the scalar product of (v � B) � j is zero since the vectors v � B and j are perpendicular to each
other; in first approximation, there is no energy input into the carrier gas from a magnetic field.

964 Carriers in Magnetic Fields and Temperature Gradients



The solution of these transport equations in steady state can be expressed as a
linear combination of transport parameters and driving forces. For example, when
only electric fields act we obtain

j ¼ α11
@φ

@r

w ¼ α21
@φ

@r
;

(12)

when electric and thermal fields act we have

j ¼ α11
@φ

@r
þ α12

@T

@r

w ¼ α21
@φ

@r
þ α22

@T

@r
;

(13)

and when incorporating in addition a magnetic field we obtain

j ¼ α11
@φ

@r
þ α12

@T

@r
þ β11 B� @φ

@r

� �
þ β12 B� @T

@r

� �

þγ11B � B � @φ
@r

� �
þ γ12B � B � @T

@r

� �

w ¼ α21
@φ

@r
þ α22

@T

@r
þ β21 B� @φ

@r

� �
þ β22 B� @T

@r

� �

þγ21B � B � @φ
@r

� �
þ γ22B � B � @T

@r

� �
:

(14)

Here φ is the electrochemical potential, distinguished from the electrochemical
energy eφ � EF, the Fermi energy. At a deviation from thermodynamic equilibrium,
we have to replace φwith φn, the quasi-Fermi potential for electrons and φp for holes
(see ▶Sect. 3.3 of chapter “Carrier-Transport Equations”). The coefficients αik, βik,
and γik are the transport coefficients: the electrical conductivity α11 = σc, the
Seebeck coefficient �α�1

11 α12 = S, the Peltier coefficient α21α�1
11 = Π, and the

electronic contribution of the thermal conductivity involving the respective carriers
(with subscript c = n or p) α21α�1

11 α12 � α22 ¼ κc ; for details, see Beer 1963;
Madelung 1981.

In anisotropic semiconductors, each of the transport parameters is a tensor, e.g.,

σn ¼ σ nð Þ
ik ¼ enμik . Important relations connect the different transport coefficients,

such as the Onsager relations, obtained from the reciprocity of the effects

αik Bð Þ ¼ αki �Bð Þ; (15)

where αki is the transposed tensor of αik.
The transport coefficients are directly accessible through experimental observa-

tion. Their magnitudes depend on the relative orientation of the different fields and,
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for an anisotropic semiconductor, also on the relative crystallographic orientation. In
samples that permit electrical currents in the x direction only, one also distinguishes
isothermal and adiabatic galvanomagnetic effects,3 depending on whether @T=@y
¼ 0 or wy = 0 (see Madelung 1981).

An overview of the different possibilities in an isotropic semiconductor is given
in Tables 1 and 2. Some of the effects listed have gained technical interest or are used
extensively for analytical purposes; the Hall effect and the Peltier effect are
examples.

In the following sections, a few of the more important effects will be discussed in
some detail and the corresponding transport parameters will be analyzed in a
microscopic model to yield information about the basic transport properties.

1.2.1 Thermoelectric Effects
There are four experimentally accessible constants that describe the relations
between the electric and thermal fields and the electric and thermal currents given
in Eq. 13. It is convenient to invert these equations, which directly yields the four
conventional parameters (electrical resistivity ρ = 1/σ, Seebeck coefficient S, Peltier
coefficient Π, and thermal conductivity κ):

F� ¼ ρ jþ S
@T

@r
,

w� ¼ Π j� κ
@T

@r
;

(16)

with F� ¼ F� @φ=@r and w� ¼ w� j φ=e. The coefficients can be obtained by
solving the Boltzmann equation for a small perturbation (Conwell 1982). The results
are listed in Table 1.

One relation between the Peltier coefficient and the Seebeck coefficient, called
the Kelvin relation, is often useful:

S ¼ Π=T: (17)

Another relation is theWiedemann-Franz law▶Eq. 41 of chapter “Phonon-Induced
Thermal Properties”, which holds for metals, i.e., as long as the thermal conductivity
is determined by the electron gas alone and the lattice conductivity is negligible:

κ ¼ LσT, with L ¼ 1

3

π κ

e

� �2
¼ 2:45� 10�8 V2

K2

� �
; (18)

3Galvanomagnetic effects signify electrical and thermal phenomena occurring when a current
passes through a solid placed in a magnetic field, see Table 2. It should be noted that often different
sign conventions in defining the tensor coefficients are used in literature.
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where L is the Lorentz number for a strongly degenerate electron gas, see
▶ Sect. 3.3.1 of chapter “Phonon-Induced Thermal Properties”. For a comprehen-
sive review, see Beer (1963).

When exposed to a temperature gradient, the electron gas at the hotter end obtains
a higher kinetic energy. Therefore, some of these electrons in a “simple metal,” i.e.,
an alkali metal, move preferentially to the cooler end, charging it negatively. The
Seebeck coefficient, also referred to as thermoelectric power, can be obtained
classically by equating the currents caused by an electric field and by a thermal

gradient, yielding with Drude’s model S ¼ c
eð Þ
V = 3neð Þ. When replacing the specific

heat of the electron gas with c
eð Þ
V ¼ π2=2ð Þ= kT=EFð Þnk, we obtain

S ¼ � π2

3

k

e

kT

EF

; (19)

except for a factor of 2 due to insufficient consideration of scattering (see below).
With k/e ffi 86 μeV/K, we expect S to be typically on the order of l μeV per degree.
The Seebeck coefficient S observed for metals at T = 300 K is on the same order of
magnitude4 and can be positive or negative.

For semiconductors, the thermoelectric power is usually much larger and is
approximated by

Sn ¼ � k=eð Þ r � ln Nc=nð Þ½ � or Sp ¼ k=eð Þ r � ln Nv=pð Þ½ � (20)

for n-type or p-type semiconductors, respectively. Here r is a parameter depending
on the scattering mechanism:

r = 1 for amorphous semiconductors (Friedman 1971)
r = 2 for acoustic phonon scattering
r = 3 for (polar) optical phonon scattering
r = 4 for ionized impurity scattering
r = 2.5 for neutral impurity scattering.

For a cubic ambipolar semiconductor, we have

S ¼ αnσn þ αpσp
σn þ σp

: (21)

See, for example, Smith (1952) and Tauc (1954). Under some experimental condi-
tions, the thermoelectric effect can be observed as a change of the refractive index, as
described by Xu and Shen (1994).

4Experimental Seebeck coefficients S (in μeV/K) are �8.3 (Na), �15.6 (K), �4.4 (Pt), +1.7 (Au),
+11.5 (Li), and +0.2 (W).
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The Inhomogeneous Thermoelectric Effect The thermo emf is usually measured
between two endpoints of a metal wire that is connected to a second metal wire. The
two connecting points are kept at different temperatures. The resulting thermo emf is
then given by the difference of the thermoelectric power of the two metals times the
temperature difference between the two connecting points

Δφ ¼ S2 � S1ð Þ T2 � T1ð Þ; (22)

where Si are the two respective Seebeck coefficients. When measured against a metal
with exceptionally small S, e.g., lead, one obtains the tabulated value for an absolute
thermoelectric power. For a review, see Pollock (1985).

1.2.2 Magneto-Electric Effects
With a magnetic induction, the Lorentz force results in a curving of the electron path.
When the magnetic induction is small enough, so that between scattering events only
a small deviation from the straight path occurs, the superposition of electric field
F and magnetic induction B results in a bending of the electron path independently.
This means that in the relaxation-time approach of the Boltzmann equation, two
components must be distinguished. From

e Fþ v� Bð Þ @f
@p

¼ � δf

τm
withδf ¼ δf1 Fð Þ þ δf2 F,Bð Þ (23)

we obtain

δf1 Fð Þ ffi �e τmF @f=@p ¼ e

kT
τmF � v f0; (24)

as discussed in ▶Sect. 4.3 (Eq. 97) of chapter “Carrier-Transport Equations”, and

δf2 F,Bð Þ ffi �e τm v� Bð Þ @f=@p ¼ � e2τ2m
mn kT

v� Bð Þ � F f0: (25)

From Eq. 25 it follows that a magnetic induction parallel to the electric field
has no effect δf2 ¼ 0ð Þ, whereas with a magnetic induction component perpen-
dicular to F the contribution of δf2 becomes finite. This contribution determines
the Hall effect. Effects occurring in solids with a simultaneously applied
magnetic field B and an electric field F or a temperature gradient @/@r are listed
in Table 2.

The Hall Effect
For definiteness, we assume F = (Fx,0,0) and B = (0,0,Bz) for the relative orienta-
tions of the electric field F and the magnetic induction B. The current density is
given by
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j ¼ e2

kT

X
v

τf0F � v v� e

mn

X
v

τ2f0 v� B � Fð Þ v

 !
; (26)

which for the chosen fields has the components

jx ¼
e2

kT

X
v

τf0 v2x
� 	

Fx þ e

mn

X
v

τ2f0 v2x
� 	

Bz Fy

 !
¼ σxx Fx þ σxy Fy; (27)

jy ¼
e2

kT
� e

mn

X
v

τ2f0 v2y

D E
Bz Fx þ

X
v

τf0 v2y

D E
Fy

 !
¼ σyx Fx þ σyy Fy: (28)

The components of the magneto-conductivity tensor are

σxx ¼ σyy ¼ ne2

mn

Eτh i
Eh i and � σyx ¼ σxy ¼ ne2

mn

eBz

mn

E τ2
� 	
Eh i : (29)

A more general expression of the average is used here in terms of the energy-
distribution function, which is equivalent to the relation hv2τi/hv2i for quasi-free
electrons with Eh i ¼ mn v2

� 	
=2 . When more complex equi-energy surfaces are

involved, the anisotropy of the effective carrier mass must be considered; for more
detail see Conwell (1982).

For a two-dimensional semiconductor in the shape of the platelet shown in Fig. 1,
the initial B-induced current in y direction causes a charging of the corresponding
surfaces until the polarization field forces jy to vanish. From Eqs. 28 and 29 we obtain

Fy

Fx
¼ � σyx

σxx
¼ e

mn
Bz

E τ2
� 	
Eτh i : (30)

R

d D

Vy

FxBz
y

Ix

+   +  +  +  +  +        +  +  +  +  +  +

_    _  _  _         _   _          _  _  _  __    _  _  _         _   _          _  _  _  _

Fig. 1 Experimental setup
for Hall-effect measurements
in a long two-dimensional
sample of thickness d and
width D. The Hall angle is
determined by a setting of the
rheostat R, which renders the
current component jy = 0
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The ratio of the resulting fields determines the Hall angle

θH ¼ tan �1 Fy

Fx

� �
ffi e

mn
Bz τmh i ¼ Bz μH: (31)

This permits a direct measurement of theHall mobility μH. The subscriptH is used to
distinguish the Hall mobility from the carrier mobility μ; the latter is usually slightly

smaller than μH, namely μH=μ ¼ Eτ2
� 	

Eh i= Eτh i2 ffi 3π=8 for acoustic mode scat-
tering, μH=μ ffi 1:7 for ionized-impurity scattering, and μH=μ ffi 1 for higher defect
densities and temperatures.

The electric field Fy corresponds to the Hall voltage Vy ¼ FyD ¼ vxh iBz D, where
D is the sample width (see Fig. 1). Expressing this voltage by the current Ix ¼ jx D � d
with jx ¼ en vxh i and d the sample thickness, we obtain

Vy ¼ RH

Ix Bz

d
: (32)

RH is the Hall coefficient given by

RH ¼ Fy

jx Bz
¼ � 1

Bz

σyx
σxx σyy

¼ 1

en

Eτ2
� 	

Eh i
Eτh i2 : (33)

The Hall constant is proportional to 1/(en), except for a numerical factor that depends
on the scattering mechanism and is on the order of 1; this factor applies also for the
ratio μH/μ as noted above.

For ellipsoidal equi-energy surfaces, the Hall constant is given by (Herring 1955)

RH ¼ 1

en

E τ2
� 	

Eh i
E τh i2

3 mxmy


 ��1 þ mymz


 ��1 þ mzmxð Þ�1
n o

m�1
x þ m�1

y þ m�1
z

� �2 : (34)

When electrons and holes are present in comparable densities (compensated
semiconductors) or two types of carriers (electrons or holes in different bands, or
polarons) are present, both types contribute to the Hall constant:

RH ¼ n1 e1μ1μH1
þ n2 e2μ2μH2

n1 e1μ1 þ n2 e2μ2ð Þ2 : (35)

With (e1, e2) = (�e, +e) for electrons and holes, respectively, the sign of the Hall
constant indicates the type of majority carrier: it is negative for n-type and positive
for p-type conduction. Here, the signs of e and μ are carried in accordance with the
sign convention, see ▶ Sect. 2 of chapter “Carrier-Transport Equations”.

Transverse Magnetoresistance
For higher magnetic induction, we can no longer ignore second-order terms (/B2).
These terms cause a reduction in the conductivity with increased magnetic induction.
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This results from the fact that the Hall field compensates only for the deflection of
electrons with average velocity, while slower or faster electrons of the distribution
are more or less deflected, resulting in a less favorable path average for the carrier
conductivity. Scattering itself, however, is not influenced by magnetic induction.
This magnetoresistance effect, discovered by Thomson (1857), yields information
about the anisotropy of the effective mass (Glicksman 1958).

For a quantitative treatment, an alternative method to the evaluation of the
Boltzmann equation will be used (Seeger 2004). It is based on the equation of
motion for quasi-free electrons (Brooks 1955):

mn dv=dt ¼ e Fþ v� Bð Þ: (36)

With B = (0,0,Bz) and F the electric field in Eq. 36, we obtain two components

dvx=dt ¼ eFx=mn þ ωc vy
dvy=dt ¼ eFy=mn � ωc vx

�
with ωc ¼ eBz

mn
; (37)

where ωc is the cyclotron frequency. These two components can be discussed in a
complex plane:

v ¼ vx þ i vy and F ¼ Fx þ iFy; (38)

yielding from Eq. 37

dv=dt ¼ eF=mn � iωc v: (39)

This equation can be integrated after both sides are multiplied by exp(iωct), yielding
for the drift velocity (McKelvey 1966)

vd ¼ v0 exp �iωctð Þ þ eF= iωcmnð Þ 1� exp �iωctð Þf g; (40)

which shows oscillatory behavior. Due to interfering scattering, however, only a
fraction of a cycle about B in the carrier path is completed for ωc τm < 1. Consid-
ering a distribution of relaxation times τm, we obtain for the average drift velocity

vdh i ¼

ð1
0

vd tð Þ exp �t=τmð Þ dtð1
0

exp �t=τmð Þ dt

¼ 1

1þ iωc τm
v0 þ eF τm

mn

� �
: (41)

The first term (v0) of Eq. 40 drops out when averaging over all angles. Separating the
real and imaginary parts of v and F, we obtain

vx ¼ e

mn
τm � ω2

c

τ3m
1þ ω2

c τ
2
m

� �
Fx þ ωc

τ2m
1þ ω2

c τ
2
m

Fy

 �

vy ¼ e

mn
�ωc

τ2m
1þ ω2

c τ
2
m

Fx þ τm
1þ ω2

c τ
2
m

Fy

 �
:

(42)
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For the current densities j ¼ e nvd in the x and y directions, we must average these
velocities, yielding

jx ¼ en
e

mn
τmh i � ω2

c

τ3m
1þ ω2

c τ
2
m

� �� �
Fx þ ωc

τ2m
1þ ω2

c τ
2
m

� �
Fy

 �

jy ¼ en
e

mn
�ωc

τ2m
1þ ω2

c τ
2
m

� �
Fx þ τm

1þ ω2
c τ

2
m

� �
Fy

 �
:

(43)

For ωc τm 	1, which is generally fulfilled, we can neglect the frequency dependence
in the denominators. With jy = 0, we then obtain from Eq. 43 by eliminating Fy

jx ¼ en
e

mn
τmh iFx 1� e2B2

z

m2
n

τ3m
� 	

τmh i � τ2m
� 	2

τmh i2
( )

: (44)

This expression contains a second-order term that causes a decrease of the current
jx with increasing magnetic induction. With ρ = 1/σ and e τmh i=mn ¼ μn, and thus
jx ¼ σFx 1� f B2

z


 �� �
, we obtain for the magnetoresistance coefficient

Δρ
ρB2

z

¼ μ2n
τ3m
� 	

τmh i � τ2m
� 	2

τmh i4 ; (45)

that is, the coefficient is essentially equal to μn
2 except for the term containing the

relaxation-time averages. This term represents a numerical factor that depends on the
scattering mechanism and lies between 0.38 and 2.15 (Seeger 2004).

The case of magnetoresistance with two carriers is straightforward (McKelvey
1966) and is additive for both carriers, even though they may be of opposite sign.
The case of nonspherical equi-energy surfaces is rather involved and is summarized
by Conwell (1982), see also Beer (1963).

As an example, the magnetoresistance of a two-carrier semiconductor, p-type Ge,
is given in Fig. 2. The two carrier types are light hole ( plh, μlh) and heavy hole ( phh,
μhh). Predominant carrier scattering is assumed to be due to acoustic phonons. The
magnetoresistance coefficient is then given by (Seeger 2004)

Δρ
ρB2

z

¼ μ2hh
9π

16

1þ ηβ3

1þ ηβ
� π

4

1þ ηβ2

1þ ηβ

� �2
( )

; (46)

with the carrier-density ratio η = plh/phh and their corresponding mobility ratio
β = μlh/μhh. Although in p-type Ge at 205 K only 4% of the holes are in the light-
hole band (η = 0.04), the large ratio of hole mobilities (β = 8) renders the numerical
factor in Eq. 46 greater by a factor of 24 than for a single-carrier model. As a result,
the magnetoresistance is substantially enhanced by the light carriers; this is illus-
trated in Fig. 2, where the dashed curve is a calculation neglecting the high mobility
of light holes.
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1.3 Cyclotron Resonance

When the magnetic field is strong enough, and the mean free path is long enough for
carriers to complete cyclic paths about the applied magnetic induction, strong
resonances in an oscillating electromagnetic probing field are observed at the
cyclotron frequency (▶Eq. 24 of chapter “Bands and Bandgaps in Solids”)

ωc ¼ eB

m� ¼ 178:4
m0

m� B GHz=Tð Þ: (47)

For the derivation of resonance conditions, see McKelvey (1966). The more
cycles are completed before scattering occurs the sharper is the cyclotron-resonance
line width. Scattering, with its limiting relaxation time, acts as the damping param-
eter in the resonance equation (Eq. 41), and with τm = 1/γ in ▶Eq. 34 of chapter
“Optical Properties of Defects” determines the resulting line shape.

Cyclotron-resonance measurements are well suited for determining the effective
mass in different crystallographic directions as pointed out in ▶ Sect. 1.2.5 of
chapter “Bands and Bandgaps in Solids”.

2 Quantum Effects in a Strong Magnetic Field

When the magnetic induction becomes large enough so that ℏωc is no longer much
smaller than kT, quantum-mechanical effects must be considered: the splitting of
electron energies into Landau levels. The influence of a strong magnetic induction

0

1/
B2  ×

 ∆ρ
/ρ

 (T
-2

)

0 0.2 0.4 0.6

0.8

0.4

1.2

1.6

2.0

B (T)

p - Ge
  T = 205 K

j  ⊥  〈111〉
B ⎢⎢ 〈111〉   

Fig. 2 Transverse
magnetoresistance of p-type
Ge at 205 K as observed (blue
solid curve) and calculated for
a single-carrier heavy-hole
model (red dashed curve)
(After Willardson et al. 1954)
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will be discussed in two steps: first including scattering to obtain information on the
density of states, and, as in Sect. 3, excluding scattering.

2.1 Quasi-Free Carriers in a Strong Magnetic Field

Assuming that the magnetic induction is given by B = (0,0,Bz) acting in the
z direction, the electron motion is described by the Schrödinger equation (Landau
1933)

� ℏ2

2mn

@2

@x2
þ @2

@y2

� �
þ mnω2

c

8
x2 þ y2

 �� iℏωc x

@

@y
þ y

@

@x

� � �
ψ

¼ E ψ ; (48)

including two additional terms caused by the magnetic induction and depending on the
cyclotron frequency ωc. These terms impose a constraint on the electron motion in the
xy plane due to the Lorentz force. The electron motion is given semiclassically by

x ¼ x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ

mnωc

νþ 1

2

� �r
cos ωc tð Þ ¼ x0 þ rν cos ωc tð Þ

y ¼ y0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ

mnωc

νþ 1

2

� �r
sin ωc tð Þ ¼ y0 þ rν sin ωc tð Þ;

(49)

which are circles with a radius rν (Eq. 62), determined by the magnetic induction and
the quantum number ν. In k space, we consequently obtain, using kx ¼ mn=ℏð Þ �
dx=dtð Þ and ky ¼ mn=ℏð Þ dy=dtð Þ,

k2x þ k2y ¼ k2ν ¼ 2mnω
2
c=ℏ


 �
νþ 1

2

� �
: (50)

Equation 50 describes in k space a set of cylinder surfaces determined by the
quantum number ν with a radius rν inverse to Bz, shown in Fig. 3.

The energy of the electrons on these surfaces, obtained as eigenvalues of the
Schrödinger equation (48), is given by

E ¼ ℏ2k2z= 2mnð Þ þ νþ 1

2

� �
ℏωc: (51)

In anisotropic semiconductors with anisotropic effective mass, the relative direction
of the magnetic field and the crystal orientation must be considered and are included
in the cyclotron frequency, as given in ▶Eq. 25 of chapter “Bands and Bandgaps in
Solids”.

The effect described above shows that the application of a strong magnetic
induction substantially changes the behavior of Bloch electrons from being
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quasi-free to being confined in the xy plane. This results in a splitting into magnetic
subbands5 referred to as Landau levels at a given magnetic field according to the
quantum number ν; whereas in the kz direction, although the E / k2z relation known
for free electrons holds, it is offset by steps of the height of the cyclotron energy.

2.2 Diamagnetic and Paramagnetic Electron Resonance

The interactions between free electrons and a magnetic field due to the Lorentz force,
leading to cyclotron resonances, are diamagnetic interactions. With a sufficient
density of free electrons, the semiconductor becomes diamagnetic, i.e., its magnetic
moment becomes negative: an oblong probe of the semiconductor turns perpendic-
ular to the magnetic flux when suspended from a filament to permit free rotation. The
induced magnetic momentum opposes its inducing force.

When including the electron spin in this discussion, we must consider an addi-
tional paramagnetic interaction. This interaction produces a positive contribution to
the magnetic moment. The eigenvalues of the Schrödinger equation including spin
interaction (last term) are

E ¼ ℏ2k2z= 2mnð Þ þ νþ 1

2

� �
ℏωc 
 1

2
gμBB; (52)

3

2

ν = 4

1
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3

2

ν = 4

1

0

E
B≠0

B=0

kz
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a b

Fig. 3 (a) Constant-energy surfaces in k space for a given magnetic induction B 6¼ 0, resulting in
concentric cylinders for each of the Landau levels, which are labeled by their quantum number ν. (b)
E(kz) dispersion relation for zero-magnetic induction (lowest curve) and for a constant magnetic
induction B 6¼ 0 showing the split into a sequence of Landau bands

5In the kz direction there are subbands; in the kx and ky directions there are discrete levels in E(k).
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with – or + dependent on parallel or antiparallel spin, respectively. μB ¼ eℏ= 2m�ð Þ is
the Bohr magneton, and g is the Landé g factor. Figure 4 illustrates the additional
splitting of the Landau levels due to the spin. For free electrons in vacuum, the cyclotron
frequency is ωc = eB/m0, which can also be expressed with the Bohr magneton μB ¼ e

ℏ2= 2m0ð Þ as ωc ¼ 2μBB=ℏ. The corresponding frequency in an atom is the Larmor
frequencyωL ¼ gμBB=ℏ, which is equal toωc for g = 2. For electrons orbiting within a
semiconductor, g can deviate substantially from 2, depending on the effective mass and
the spin-orbit splitting energy Δ0 (Lax et al. 1959):

g ffi 2 1þ mn � m0

mn

Δ0

Eg þ 2Δ0

 �
; (53)

and may even become negative (g ffi �50 for InSb). Since the effective mass
has tensor properties, g is also a tensor. Some values of g are listed in Roth and
Lax (1959). Care must be taken not to measure the superimposed response of
defects in the semiconductor. Furthermore, Landé factors depend on temperature,
see Eq. 53 containing Eg and mn; e.g., in GaAs the g factor of free conduction-
band electrons varies from �0.48 at T ! 0 to �0.33 at 300 K (Hübner et al.
2009).

With a sufficient density of impurities with uncompensated spins, we can observe
resonant absorption when flipping the spin by electromagnetic radiation of a fre-
quency corresponding to the energy difference between states with parallel and
antiparallel spin. This is an electronparamagnetic resonance (EPR), also called
electron spin resonance (ESR), and occurs at

ℏωS ¼ gμBB; (54)

see also▶ Sect. 3.4.2 in chapter “Shallow-Level Centers”. These resonances provide
information about the symmetry of the impurity (by the angle dependence of B with
respect to the crystallographic axes), the density of uncompensated spins (by the
strength of the resonance), and about the g factor and hence the chemical identity
(by the resonance frequency).

The resonance absorption can be measured directly by interacting with an
electromagnetic field of appropriate frequency (ωS, typically in the GHz range) or
optically by observing changes in the intensity or polarization of laser-excited
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ν ν, s
band states Landau levels spin splittingFig. 4 Splitting of band

states into Landau levels,
considering diamagnetic
interaction by orbiting
electrons and additional
paramagnetic interaction with
the electron spin resulting in
further splitting
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luminescence – see a review by Cavenett (1981), see also optically induced electron
spin resonance of A centers reported by Allen (1995).

Further information about defect centers can be obtained from the paramagnetic
interaction with nuclear spins, which can be measured by inducing spin-flipping by
absorption of electromagnetic radiation (nuclear spin resonance), see ▶ Sect. 3.4.2
of chapter “Shallow-Level Centers”. There is a wide variety of interactions involving
the nuclear spin of defects that can be used for analyzing certain defect properties –
see Bagraev and Mashkov (1986).

In addition to the paramagnetic interaction of electron spins, the Pauli spin
paramagnetism at an impurity center, there is the diamagnetic part due to the orbital
quantization: for bound electrons, this is the Landau diamagnetism that is 1/3 the
magnitude of the Pauli contribution. For more detail, see Wilson (1954). Landau
diamagnetism plays also an important role in two- and one-dimensional quantum
structures, see Koyano and Kurita (1998) and Tamura and Ueda (1996).

2.3 Density of States and DeHaas-Type Effects

Density of States in Magnetic Fields The modified E(k) relation described in the
previous section is shown in Fig. 3a, b with an applied magnetic field. The density of
states depends on the Landau quantum number ν, and is given for each subband by

g kzð Þdkz ¼ 2

2π2
mnωc

ℏ
dkz: (55)

Using Eq. 51, we obtain the density of states as a function of the energy

gν Eð ÞdE ¼ 1

2π2
2mn

ℏ2

� �3=2 ℏωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� νþ 1

2
ð Þℏωc

p dE; (56)

which shows an inverse square-root dependence. The total density of states is
obtained by summation over all possible quantum numbers ν within the band: near
the bottom of it, lifted to Ec þ ℏωc=2, for Ec þ ℏωc=2 < E < Ec þ 3ℏωc=2 with a
summation over only one subband, for Ec þ 3ℏωc=2 < E < Ec þ 5ℏωc=2 with
summation over two subbands, and so on for the conduction band; this yields the
total density of states

g Eð Þ ¼ 1

2π2
2mn

ℏ2

� �3=2X1
ν¼0

ℏωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� νþ 1

2
ð Þℏωc

p : (57)

This density-of-state distribution is compared in Fig. 5 with the undisturbed
distribution for vanishing magnetic induction g0(E) showing a square-root depen-
dence for parabolic bands.
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DeHaas-Type Effects In a metal or a degenerate semiconductor, the Fermi level
lies within the conduction band. With increasing magnetic field, the spacing of the
Landau levels ΔE ¼ ℏωc ¼ ℏeB=m� increases and causes one after the other of
these levels to cross EF, see Fig. 5. This leads to a periodically changing the density
of states g(E,B) at EF, and in turn causes the amplitude of certain properties which are
determined near the Fermi surface to change periodically.

A prominent effect is the oscillatory dependence of the magnetic susceptibility on
the inverse magnetic field, referred to as the DeHaas-van Alphen effect shown in
Fig. 6a (DeHaas and van Alphen 1930). The magnetization M is given by

M ¼ � @U

@B
; (58)

where U is the internal energy.6 Since the energy of the electron system changes
periodically with B�1 due to the changes of g(E,B) by level crossing at EF, so does
the magnetization. The period is given by

Δ B�1

 � ¼ 2π e

ℏAorbit

; (59)

where Aorbit is the extremal cross-section area7 included by the orbit on the Fermi
surface perpendicular to B. Using this relation the shape of the Fermi surface can be
measured.

Another effect related to the changing the density of states g(E,B) at EF is the
oscillatory dependence of the electrical conductivity on the inverse magnetic field,
referred to as the Shubnikov-DeHaas effect (Fig. 6b).

3
2

ν = 4

1

0

E

kz

E

EF

g0(E)
g(E,B)

g(E)

ħωc

Fig. 5 Landau levels (left)
and corresponding density of
state (right) with magnetic
induction g (E,B), neglecting
spin and lifetime broadening.
The gray curve is the density
of state g0(E) without
magnetic induction; the total
areas under g(E,B) and g0(E)
up to any given energy are the
same. The shaded area
represents the filling of levels
up to the Fermi energy EF

6At finite temperature U must be replaced by U – TS, where S is the entropy of the system.
7The area in k space has a unit of length�2.
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In actual materials, the orbits occur only rarely at a spherical Fermi surface. In
semiconductors, the orbits may be elliptical (in sidevalleys); the orbits can also have
quite complicated shapes (see ▶ Sects. 1.1.4 and ▶ 1.2.4 of chapter “Bands and
Bandgaps in Solids”) that make the oscillations more complex (see Fig. 6a for a
metal, ▶Fig. 18 of chapter “Bands and Bandgaps in Solids” for Ge) and in turn
provide information about the shapes of the Fermi surfaces (first suggested by
Onsager 1952, see also Shoenberg 1969; Ziman 1972). As an example, the ratio of
the wavelength of oscillation shown in Fig. 6a gives the ratio of the area of belly and
neck (here 9); see also ▶ Fig. 9 of chapter “Bands and Bandgaps in Solids”.

Magneto-Phonon Effects When the spacing between the Landau levels coincides
with the energy of longitudinal optical phonons,

ℏωLO ¼ i ℏωc, i ¼ 1 , 2 , 3 , . . . ; (60)

electrons can be transferred more easily by scattering with these phonons between
different Landau levels. This causes a more pronounced change in the magnetore-
sistance, with a period length

Δ B�1

 � ¼ e

mnωLO

; (61)
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Fig. 6 (a) DeHaas-van Alphen oscillations of the magnetic susceptibility in silver with neck (high-
frequency fn) and belly (low-frequency fb) oscillations when a Landau level passes through the
Fermi surface (After Joseph and Thorsen 1965). (b) Shubnikov and DeHaas (1930) oscillations
of the relative resistivity as a function of the magnetic field in GaSb at 4.2 K (After Becker and
Fan 1964)
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which was first observed by Firsov et al. (1964) in InSb. The effect is small but
observable at an intermediate range of the magnetic induction (Eq. 60), temperature
(to have sufficient optical phonons), and doping (the effect is sensitive to changes in
scattering, see Gurevich and Firsov 1964). It can be used to obtain information about
the effective carrier mass.

When higher electric fields are applied in addition to the magnetic field, carrier
heating takes place, and distinct multiphonon transitions can be observed – see the
review by Stradling (1984).

3 Ballistic Transport in Strong Magnetic Fields

New transport phenomena occur in a strong magnetic field (above ~10 T) if the
motion of carriers is not disturbed by scattering. Such a situation can be achieved
experimentally by confining electrons in a two-dimensional (2D) electron gas
(2DEG, see▶ Sect. 4 of chapter “Photon–Free-Electron Interaction”), using samples
of extraordinary high purity and applying very low temperatures (below ~1 K). In a
2DEG scattering by impurities is suppressed by modulation doping, which provides
a spatial separation of donors and the free electrons8; these can then move free in the
2D quantum well or in the inversion layer of the 2D channel in a field-effect
transistor (▶Fig. 11 of chapter “Photon–Free-Electron Interaction”). If also the
scattering at phonons is suppressed by applying low temperatures, electron mobil-
ities exceeding 107 cm2/(Vs) have been demonstrated in a modulation-doped
AlxGa1�xAs/GaAs structure (Pfeiffer et al. 1989).

3.1 The Integer Quantum-Hall Effect

If a magnetic field Bz is applied and no scattering occurs, electrons move in circles
when exposed to Lorentz forces (e v � B), with the radius, frequency, and energy
given by

rc ¼ mn v

eBz
, ωc ¼ eBz

mn
, E ¼ mn

2
ω2
cr

2
c (62)

With the addition of an electric field Fx in the x direction, the electrons move
perpendicularly to Bz and Fx in the y directionwith constant velocity

9 of the center of
each circle, forming trochoids (flat spirals) as shown in Fig. 7:

8This concept applies also for a two-dimensional hole gas (2DHG). However, the mobility of holes
is usually much lower due to a larger effective mass.
9In contrast to the case of vanishing magnetic induction where the motion proceeds in the x direction
and, without scattering, is accelerated (ballistic transport, see ▶ Sect. 3.1 of chapter “Carrier
Transport in Low-Dimensional Semiconductors”).
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vy ¼ Fx

Bz
or σxy ¼ en

Bz
; (63)

while

vx ¼ 0 or σxx ¼ 0: (64)

With substantial scattering, σxy decreases and σxx increases; σxy is responsible for the
Hall voltage, while σxx is related to the longitudinal magnetoresistance.

When the magnetic field is large enough to cause significant Landau-level
splitting ℏωc � kTð Þ, instead of a continuum of states in the band we obtain a set
of discrete energy levels at

Eν ¼ Ec þ νþ 1

2

� �
ℏωc, ν ¼ 0, 1, 2, . . . ; (65)

with radii

rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ
eBz

vþ 1

2

� �r
: (66)

Each of these Landau levels is degenerate, permitting occupation by

D ¼ 1

2π r2v¼0

¼ eBz

h
cm�2

 �

(67)

electrons; e.g., at B = 10 T each Landau level can be occupied by D ffi 2.4 � 1011

electrons per cm2 in the 2D conductive layer. As B is gradually increased, only D out
of n electrons in the conduction band can fill the first Landau level; then D will fill
the second level and so on, until all electrons are distributed, with the highest level at
T = 0 partially filled, as long as the electron density n is not accidentally an integer
multiple of D. The ratio n/D is referred to as the filling factor ν. The filling of the

Bz
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y

Bz

x
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r
v

E

j=enE/B

a b

Fig. 7 (a) Two-dimensional electron gas with magnetic field B only. (b) Movement of these
electrons in the y direction when an additional electric field F acts in the x direction
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Landau levels can be done by electron injection10 with increasing bias (VSD in Fig. 8)
at constant magnetic induction, or by constant bias and increasing magnetic induc-
tion, which results in fewer Landau levels below EF. This causes carrier
rearrangement whenever a Landau level passes over the Fermi level, which tends
to increase EF and thereby changes the injection.

Scattering can only occur for electrons in the highest Landau level, and only if this
level is incompletely filled or kT > ℏωc . Consequently, the electron ensemble will
follow unperturbed trochoids as shown in Fig. 7b. When the Fermi level coincides with
a Landau level, the magnetoresistivity ρxx = 1/σxx vanishes, and the Hall resistance
ρxy = 1/σxy shows a pronounced step at (h/e2)/ν (von Klitzing et al. 1980), see Fig. 8.

From Eqs. 63 and 67 we can eliminate the incremental electron density per
Landau step (where n = D) and obtain a step distance, referred to as the von-Klitzing
constant RK, of

1

Δσxy
¼ Bz

eD
¼ h

e2
�RK ¼ 25, 812:807 Ω: (68)

It must be noted that the measured Hall-resistance steps in ρxy = Vxy/ISD are not
influenced by layer material, layer geometry, defects, or by the carrier effective-
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Fig. 8 Measured Hall resistance ρxy and longitudinal magnetoresistance ρxx in a GaAs/AlxGa1–xAs
heterojunction at T = 0.06 K as a function of the magnetic induction, with Landau-level steps 1/ν
(ν = 1, 2, 3 . . .) indicated at the right axis; after Tsui et al. 1994). Inset: Experimental setup to
measure the quantized Hall effect

10Electron injection relates to electrode properties not discussed in this book. It provides an
experimental means of increasing the carrier density by simply increasing the bias, thereby injecting
more carriers from an appropriate electrode. For a review, see Rose (1978).
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mass. They are measured precisely to within 1 part in 108. Since 1990 the step
distance has been defined to RK = 25.812807 kΩ (exact) and has established a new
international standard for the electrical resistance, i.e., for the unit Ohm. The step
distance can also be used to measure the fine-structure constant11 α ¼ μ0 ce

2= 2hð Þ
(Tsui et al. 1982; von Klitzing 1981, 1986).

The rounding of the step edges and the step width is due to localized defect states
in the gap between the Landau levels, and the broadening of the Landau levels into
narrow Landau bands. The persistence of the plateau for a substantial width is more
difficult to understand (Stormer and Tsui 1983); carrier transport responsible for the
resistance values of ρxy and ρxx occurs almost exclusively via small paths at the
sample edges illustrated in Fig. 9: since virtually no scattering occurs within the
sample, only collisions at the edges remain, yielding carrier motion along segments
of circles. Carriers in these spatially separated edge states of the two opposite sample
sides propagate in opposite directions.

Topological Insulators Structures that are insulating in the bulk but conducting at
their boundaries represent a new state of matter referred to as topological insulator.
The surface states of these topological insulators are symmetry protected by particle-
number conservation and time-reversal symmetry (Gu andWen 2009; Pollmann et al.
2012). The integer and fractional quantum Hall states in a 2D electron gas were the
first realizations of topological phases in matter. Later the quantum spin Hall insulator
was predicted (Kane and Mele 2005; Bernevig and Zhang 2006) and eventually
demonstrated in HgxCd1–xTe quantum wells at mK temperatures (König et al. 2007)
as a third type of 2D topological insulator. The quantum spin Hall phase requires no
external magnetic field; it can be described as a parallel pair of quantum-Hall-like
edge states (helical edge states) with opposite spins propagating in opposite directions
(spin-momentum locking). There exists also a three-dimensional topological-insulator
phase, which can be realized at room temperature without magnetic field (Hasan and
Kane 2010), particularly in semiconductors with Heusler structure. For more infor-
mation, see Shen (2012), Bernevig and Hughes (2013), and Ortmann et al. (2015).

BFig. 9 Motion of electrons in
a two-dimensional electron
gas with solely scattering at
the sample edges, subjected to
a strong magnetic field.
Conduction between contact
pads (light blue) occurs via
these edge states, where
carriers move in opposite
directions along the two
opposite side edges

11The velocity of light contained in α is the best known of the three constants.
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3.2 The Fractional Quantum Hall Effect

At magnetic fields above the Landau plateau of the filling factor ν = 1, more such
plateaus were observed in high-quality GaAs/Al1–xGaxAs heterostructure samples at
very low temperatures (Tsui et al. 1982). These steps refer to fractional quantum
numbers. The first pronounced fractional filling factor appears at ν = 1/3 and is identi-
fied at 0.09 K to better than 3 parts in 105 (Chang et al. 1984). This step is shown in
Fig. 10; note the disappearance of the features as the temperature approaches T = 4 K.

Later a rich structure with more and more fractional steps have been identified by
plateaus in the Hall resistance ρxy and peaks in the longitudinal magnetoresistance
ρxx, see Fig. 11. The additional plateaus refer to fractional filling factors for ν = p/q,
where q must be an odd integer for the initially discovered states (3, 5, 7, 9),12 while
p is a positive integer (1 . . . 13), see Tsui and Stormer (1986), White et al. (1990).

The dominance of the effect at fractions of 1/3 and 2/3 indicates the existence of
quasi particles carrying a fractional charge (1/3) e. If we assume an energy gap to
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Fig. 10 Appearance of an
additional step in ρxy and a dip
in ρxx at high magnetic field
B and temperatures well
below 4 K (After Tsui et al.
1982)

12Later also even denominators were observed, see Willett et al. (1987).
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appear in the lowest Landau level at ν = 1/3, we can apply the model of the integer
quantum-Hall effect to these quasi particles for describing the effects at such
fractional filling factors.

The explanation of the fractional quantum Hall effect requires the additional
consideration of the electron–electron interaction. If the position of the jth electron
at (xj, yj) in the two-dimensional electron gas is denoted by a complex number
zj = xj – i yj, the many-electron wavefunction of the 1/ν-states can be written as a
product over all differences between particle positions (zj – zk),

Ψ 1=ν z1, z2, . . . zNð Þ ¼ z1 � z2ð Þ1=ν z1 � z3ð Þ1=ν z2 � z3ð Þ1=ν . . . zN�1 � zNð Þ1=ν (69)

(Laughlin 1981, 1983); this wavefunction obeys Pauli’s principle, since it becomes
0 for two electrons at the same position. Furthermore, ν must be odd to ensure that Ψ
changes sign when two electrons are exchanged. In the ground state, the electrons have
an optimum correlation with minimum Coulomb repulsion. Ψ must have a finite
density of zeros equal to the density of magnetic flux quanta ϕ0 = h/(2e) (vortices)
penetrating the sample. This means each electron experiences ν zeros of Ψ at the
positions of the adjacent electrons, or, ν vortices are bound to each electron: electron
plus ν vortices represent a new quasi particle. The addition or subtraction of a single
electron or flux quantum to the ensemble disturbs the ordering at the expense of a
substantial energy cost. The Laughlin state hence represents a condensed many-
particle ground state, separated by an energy gap to an unbound electron state. Since
the position of an electron is not fixed, the ensemble is referred to as a quantum liquid.
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Fig. 11 Appearance of an additional step in ρxy and a dip in ρxx at a fractional filling factor ν = 1/3
at high magnetic field B and temperatures well below 4 K (After Abstreiter 1998)
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The new quasi particle is called a composite Fermion and is illustrated in Fig. 12.
An electron added to the ensemble immediately splits up into a number of the
composite particles with fractional charge each, where charges 1/m (m integer)
occur with m the eigenvalue of the angular momentum of the many-electron
wavefunction in the lowest Landau level (Laughlin 1983). Besides states of filling
1/3, 1/5, . . . also states of fractions 1 – 1/ν appear due to the electron–hole symmetry.
Plateaus at filling factors 2/5, 3/7, 4/9, etc., may be explained by a hierarchy of
condensed states, where p/q-states are assigned to daughter states of 1/q-states. Near
the filling factor 1/q then many excited quasi particles correlate to optimize the total
energy and condense into a state with filling factor p/q (Jain 1989, 1990).

The striking symmetry of the magnetoresistivity (ρxx) oscillations around the
filling factor ½ (near B1/2 = 11 T in Fig. 11) is related to composite Fermions
composed of one electron and two flux quanta. For these quasi particles, the
magnetic field B1/2 corresponds to an effective field B* = 0; B1/2 may be considered
a field to provide the two flux quanta per electron for creating this quasi-particle. The
filling factor 1/3 for these composite fermions then corresponds to a filling factor of
1 for normal electrons, and the filling factors 2/5, 3/7, 4/9 (at 13–14 T in Fig. 11)
correspond to ν = 2, 3, 4 of the integer Hall effect.

4 Summary

The application of a magnetic field or of a temperature gradient in addition to an
electric field is an important tool to analyze properties of a semiconductor. The most
significant information is obtained for the mobility by the Hall-effect, the effective
mass by the cyclotron resonance, the origin of levels in a complex spectrum by spin-
flip resonance, and the type of conductivity by the Hall effect or the thermo-
electromotive force (thermo-emf). In addition, a number of thermoelectric effects
occur with useful applications, such as the Seebeck effect rendering thermoelectricity

a bFig. 12 Schematic of
composite particles consisting
of an electron (blue circle) and
(a) three or (b) two magnetic
flux quanta (green arrows)
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used in thermocouples and the Peltier effect applied for cooling; moreover, several
galvanomagnetic and thermomagnetic effects are observed.

In strong magnetic fields, the density of states of quasi-free electrons is substan-
tially altered; energy levels condense on quantized Landau levels with cylindrical
equi-energy surfaces in k space. The shape of the density of states gives rise to an
oscillatory behavior of quantities controlled by their vicinity to the Fermi energy
when the magnetic field is increased. Prominent examples are DeHaas-van Alphen
oscillations of the magnetic susceptibility and Shubnikov-DeHaas oscillations of the
resistivity.

Additional transport phenomena are observed if scattering is suppressed in pure
samples at very low temperatures. The strong magnetic induction forces carriers to
propagate on edge states near the sample surface, creating a topological insulator
with no conductance in the bulk. The effect was first observed in the quantum-Hall
effect, which provides a means for high-precision measurement of elementary
constants (h/e2), and since 1990 became an international metrological standard for
the electrical resistance. New insight into quantum effects of a confined
two-dimensional electron gas was provided by the fractional quantum Hall effect,
which lead to the discovery of composite fermions composed of an electron and
some flux quanta, conjointly carrying a fractional charge (1/m)e, with m an integer.
The more recently discovered quantum spin Hall phase represents a third type of
topological insulators, which require no external magnetic field.
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Abstract
There exists a large diversity of superconductors following different mechanisms
to achieve the superconducting phase. Low-temperature superconductivity
appears in metals and degenerate semiconductors; it is induced by the formation
of electron pairs in a bipolaron state referred to as Cooper pair. The supercon-
ductive state is separated from the normal-conductivity state by an energy gap
below the Fermi energy. This gap appears at the critical temperature and widens
as the temperature decreases. In type I low-temperature superconductors an
external magnetic field is expelled from the bulk up to an upper value, which
eliminates superconductivity. In type II superconductors an array of flux lines
penetrates into the bulk above a lower critical field, creating a mixed normal and
superconductive phase up to the upper critical field.

High-temperature superconductivity of type II is observed mostly in layered
compounds such as cuprates and iron pnictides, with critical temperatures exceed-
ing 100 K. Superconductivity in these materials is usually carried by hole pairs and
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requires sufficient doping. The mechanism of pair formation differs from that in
metals and involves an interaction with spin fluctuations. The symmetry of the
layered superconductive system and of the superconductive gap is lower than in the
basically isotropic metals; in cuprates pairs with a lateral d symmetry are found.

Keywords
Anderson RVB model � BCS theory � Ceramic superconductor � Cooper pair �
Critical temperature � Cuprates � Flux-line lattice � High-Tc superconductor �
Isotope effect � Jospehson tunneling � London penetration depth � Magnetic
ordering � Meissner phase � Meissner-Ochsenfeld effect � Organic
superconductor � Pnictides � Superconduction energy-gap � SQUID � Two-fluid
model � Type I and II superconductors � Vortices

1 Low-Temperature Superconductors

1.1 Superconductive Solids

Superconductivity denotes the occurrence of zero electrical resistance and the
expulsion of an external magnetic field below a characteristic critical temperature.
There exist two classes of semiconductors that show superconductivity,
low-temperature superconductors and high-temperature superconductors, which
follow different paths to become superconductive.

Inorganic Superconductors The low-temperature superconductors are metals or
highly doped semiconductors with their superconductivity carried by electron-
related quasiparticles. These materials become superconductive at very low temper-
atures – almost exclusively well below 30 K. Most high-temperature superconduc-
tors have a semiconducting antiferromagnetic ground state and can be doped with
sufficient carrier density to become superconductors at higher temperatures (albeit
still low, typically 40 . . . 150 K). They have highly anisotropic lattices, and their
conduction mechanism is linear or layer-like with a superconductivity usually
carried by hole-related quasiparticles. A list of some superconductive materials is
given in Table 1. For a complete list of classic low-temperature superconductors see
Harshman and Mills (1992). High-temperature superconductors are discussed in
Sect. 2.

Low-temperature superconductivity in semiconductors was predicted by
Gurevich et al. (1962) and by Cohen (1964), and in 1964 it was observed in
Ge1�xTe, SnTe, and SrTiO3 (Hein et al. 1964; Schooley et al. 1964). Transition
temperatures are typically below 1 K, and depend on the stoichiometry, which
influences the carrier density. The critical temperature increases with increasing
carrier density, i.e., decreasing stoichiometry. When the electron density exceeds
1020 cm�3 in SrTiO3, the transition temperature again decreases (Appel 1966).
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Many-valley semiconductors have a higher critical temperature as they have a larger
density of states, since the density-of-state mass is increased.

Organic Superconductors A variety of organic semiconductors have been
observed to become superconductive at low temperatures (typically below 10 K) –
for a review, see Ishiguro et al. (1998). The superconductive phase was first
discovered in compounds based on quasi-one-dimensional conducting radical
salts, including the TMTSF2X salts (Jérome 1994), where TMTSF denotes
tetramethyl-tetraselenafulvalene (Fig. 1a) and X is an electron acceptor such as, e.
g., AsF6, TaF6, or ClO4. The molecules arrange in a stacked order with a relative
good, nearly one-dimensional normal conductivity along the stacking direction.
Most of these compounds become superconductive only at high hydrostatic pres-
sure, see Table 2; an exception is the similar structure TMTTF2ClO4, where TMTTF
denotes tetramethyl-tetrathiafulvalene with Se of TMTSF being replaced by S. The
chemical structure of the molecules in two superconducting compounds is depicted
in Fig. 1.

Most attention is devoted to two new classes with (ET)2X structure, having a
critical temperature of 12 K, and of fullerites with Tc up to 33 K. In superconductors
based on the BEDT-TTF compound usually the abbreviation ET is used for this
molecule. The molecules form planes which are separated by anions like, e.g., I3 or

Table 1 Various
superconducting materials
and their transitions
temperature Tc

Type Material Tc (K)

High Tc HgBa2Ca2Cu3O8+δ 135

Tl2Ba2Ca2Cu3O10+δ 125

YBa2Cu3O7 92

Bi2Sr2CaCu2O8 89

La1.85Sr0.15CuO4 39

Nd1.85Ce0.15CuO4 24

RbCs2C60 33

Low Tc Nb3Ge 23.2

Nb 9.25

Pb 7.20

Ta 4.39

Hg 4.15

Sn 3.72

a

Se

Se Se

Se CH3

CH3

b

S

SS

S

S

S

S

S

H3C
H2C

H2CH3C

CH2

CH2

Fig. 1 Chemical structure of molecules in organic superconductors. (a) tetramethyl-
tetraselenafulvalene (TMTSF), (b) bisethylenedithio-tetrathiafulvalene (BEDT-TTF)
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Cu[N(CN)2]Br. The molecules arrange in various phases with orderings in fishbone
or checkerboard structures, yielding two-dimensional conductivity. Similar to the
TMTSF2X salts they are type II superconductors (Sect. 1.4).

Superconductors based on the insulator fullerene C60 form a three-dimensional
isotropic solid crystallizing in an fcc arrangement. Conductivity is achieved by
doping with a alkali dopants such as Rb to form, e.g., Rb3C60 molecules.

1.2 Cooper Pairs and Condensation

We will first review basic properties of the conventional low-temperature supercon-
ductors, although this type of superconductivity is mostly observed in metals and
thus beyond the scope of this book; for a general overview, see Buckel and Kleiner
(2004). According to the Bardeen–Cooper–Shrieffer (BCS) theory (Bardeen et al.
1957), superconductivity originates from the formation of electron pairs; for
reviews, see Schrieffer (1964), deGennes (1966), and Allen and Mitrovic (1982).
Such Cooper pairs can undergo Bose–Einstein condensation when the denominator
in the distribution function f (defined by ▶Eq. 91 of chapter “Carrier-Transport
Equations”) vanishes. Superconductivity is assigned to this condensation (Blatt
1961; Onsager 1961). The BCS theory predicts that the lowest energy state of
such electron pairs is separated from higher energy states of unpaired electrons by
an energy gap, which prevents any damping of the electron transport at low
temperatures. For this damping, scattering events must occur with energy transfer.
However, since all states below the bandgap are occupied, no such scattering is
possible for the Cooper pairs. They can move through the lattice as condensed
bosons without energy loss, similarly to superfluid helium.

Table 2 Organic
superconducting materials
with their transitions
temperature Tc and ambient
pressure P

Compound Tc (K) P (bar)

(TMTTF)2ClO4 1.4 1

(TMTSF)2PF4 1.1 6500

(TMTSF)2AsF6 1.1 9500

(TMTSF)2TaF6 1.35 11000

β-(ET)2I3 1.5 1

κ-(ET)2I3 3.6 1

κ-(ET)2Cu(NCS)2 10.4 1

κ-(ET)2Cu[N(CN)2]Cl 12.8 1.3

κ-(ET)2Cu[N(CN)2]Br 11.6 1

Sr6C60 6.8 1

K3C60 19.3 1

K2RbC60 23 1

Rb3C60 29.4 1

RbCs2C60 33 1
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Electrons are fermions with energies up to some eV due to the Pauli principle, i.e.,
with thermal energies corresponding to very high temperatures. Since the transition
to superconductivity occurs at quite low temperatures, an interaction operating at
such energies is required. The model of superconductivity is based on the idea of
forming electron pairs which are bosons; these quasiparticles follow Bose–Einstein
statistics and can condensate into a common ground state. Electrons can form such
pairs despite the strong Coulomb repulsion if they have opposite spin; they are
assisted in pair formation by lattice polarization as evidenced by the isotope effect
(Sect. 1.3). This assistance can be imagined by recognizing the polarization well
created by an electron,1 which at sufficiently low temperatures traps another electron
in the same well, forming an electron pair. This pair is sometimes referred to as a
bipolaron, see ▶ Sect. 1.2.2 of chapter “Carrier-Transport Equations.”

The electron interaction with the lattice, necessary for pair formation, can be
modeled by assuming emission and absorption of phonons from paired electrons,
which results in eigenstates below those of two independent electrons. Pairs formed
between two electrons with opposite spin and wavevector directly at the Fermi
surface of a metal or a highly degenerate semiconductor at T ! 0 K are called
Cooper pairs. With pair formation, the electrons can lower their energy to occupy a
state at an energy Δ below the Fermi energy EF,

ECp ¼ EF � Δ, with Δ ffi ℏωDexp � 1

g EFð ÞV
� �

(1)

Here ωD is the Debye frequency, g(EF) is the density of states at EF, and � Vj j is the
interaction energy, which is of the form

V ¼ Mkq

�� ��2 2ℏωq

E k þ qð Þ � E kð Þ½ �2 � ℏωq

� �2 ; (2)

withMkq as the electron–phonon matrix element; ωq is an average phonon frequency
typical of the lattice, with ωq ffi ωD/2. A reduction in energy is possible despite full
occupation of every single energy state below EF by electrons, since Cooper pairs are
bosons and as such can condense at a lower ground-state energy.

An energy Δ per electron is gained when Cooper pairs are formed. This renders
the filled Fermi sphere unstable, and provides the driving force for Bose–Einstein
condensation of such pairs. When condensation of Cooper pairs takes place, the
excited states for individual electrons are given by

E kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� EFð Þ2 þ Δ2

q
; (3)

1The polaron state introduced in ▶ Sect. 1.2 of chapter “Carrier-Transport Equations”.
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which has a minimum at E = EF, and creates a gap of 2Δ between the ground and
excited states for two paired electrons. This energy gap makes superconductivity
plausible: it does not permit any scattering with an energy exchange of less than 2Δ.
An electron can only be scattered when the displacement of the Fermi sphere in an
external field exceeds 2Δ:

ΔE ¼ ℏ2

2m
kF þ δkð Þ2 � kF � δkð Þ2

h i
¼ 2ℏ2kF δk

m
� 2Δ: (4)

Therefore, the current density j ¼ e nv ¼ e nℏk=m must remain below a critical
current density jcrit, above which superconductivity vanishes:

j � 2enΔ
ℏkF

¼ jcrit: (5)

With typical values for Δ ffi 1 meV, n ffi 1022 cm�3, and kF ffi 108 cm�1, we obtain
jcrit ffi 107 A/cm2 in an order-of-magnitude agreement with the experiment. In a
classical sense these high current densities indicate a very high drift velocity vD of
superconducting electrons: j = envD yields vD on the order of 104 cm/s at jcrit.

1.3 The Critical Temperature

Cooper-pair formation requires pairs of electrons with k" and �k# at the Fermi
surface. The density of such pairs decreases with increasing temperature, following
Fermi-Dirac statistics. Since the gap energyΔ is a function of available electrons,2 Δ
shrinks with increasing temperature and vanishes at a critical temperature Tc, which
can be estimated from a numerical integration of Eq. 1, yielding

kTc ffi 2=3:5ð ÞΔT¼0: (6)

Since Tc / Δ / ωD / 1=
ffiffiffiffiffi
M

p
, we expect an increase in the critical temperature with

decreasing mass M of the oscillating atoms. With different isotopes of a given
element, only the mass changes while all other parameters are left unchanged.
Such an isotope effect of Tc is indeed observed3 and shown for Hg (a solid below
�39 �C) in Fig. 2.

The superconductive state can be approximately described as consisting of a
superfluid liquid of Cooper pairs, which is mixed with a liquid of normal
electrons; the density ratio of both is determined by the temperature: the density

2g(EF) was used in Eq. 1 at T = 0 K.
3Exponents β in Tc / M–β are 0.5 for isotopes of Hg, Cd, and Tl, 0.48 for Pb, 0.47 for Sn; also
smaller effect are observed, e.g., β = 0.33 for Mo and 0.2 for Os.
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of Cooper pairs decreases as the temperature increases. Above Tc no Cooper pair
can exist and the gap vanishes. Therefore, all carriers above Tc are normal
electrons. Below Tc, more and more electrons condense as Cooper pairs. Evi-
dence for such a two-fluid model can be obtained from optical absorption and
ultrasound attenuation. Only the Cooper pairs have an energy gap, yielding a
far-IR absorption edge. Only the free electrons provide ultrasound attenuation;
Cooper pairs cannot be split by the low energy of ultrasonic phonons. This model
yields a temperature-dependent density ratio between electrons and Cooper pairs
and provides evidence for a temperature-dependent gapSuperconduction gap
Δ(T ), as shown in Fig. 3.

1.4 Meissner-Ochsenfeld Effect and Type I or Type II
Superconductors

Meissner-Ochsenfeld Effect A superconductor is characterized by a second effect
in addition to the vanishing resistance: an externally applied magnetic field is
expelled from a superconductor when cooled below Tc; this phenomenon is
referred to as the Meissner-Ochsenfeld effect (Meissner and Ochsenfeld 1933).
Such a perfect diamagnetic behavior cannot be explained solely by a vanishing
resistivity. For this, Maxwell’s equations of electrodynamics must be modified, as
performed by the phenomenological London theory for superconductors with the
London equations
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Fig. 2 Isotope effect of the
critical temperature Tc for
samples of Hg isotopes with
different massM, according to
data from Reynolds et al.
(1950)
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@

@r
	 js ¼ � B

μ0 λ
2

and
@js
@t

¼ E

μ0 λ
2

(7)

where js is the superconducting current density and λ is the London penetration
depth4 of the magnetic field (London and London 1935). The penetration depth
denotes the exponential decrease of an externally applied magnetic field B inside the
superconductor according to B ¼ Bsurfaceexp �z=λð Þ. It is on the order of 500 Å in
typical metals. With increasing temperature the penetration depth increases
according to

λ Tð Þ ¼ λ T ¼ 0ð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=Tcð Þ4

q (8)

as shown in Fig. 4. When the penetration depth exceeds the thickness of the wire
carrying the current, superconductivity has vanished.

Type I or Type II Superconductors Superconductors that expel the magnetic
flux as described in the previous section are called type I superconductors. They
show diamagnetic behavior with χmag = �1, created by surface currents within the

BCS theory
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Fig. 3 Temperature
dependence of the energy gap
Δ, depicted in reduced units;
for absolute values of Tc see
Table 1. Symbols are
experimental results, the solid
curve is calculated from the
BCS theory (After Townsend
and Sutton 1962)

4λ is related to the density of superconducting carriers ns by λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mCp= μ0q

2
Cp ns

� 	r
, where

mCp = 2mn and qCp = �2e.
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penetration depth λ that induce a magnetization M which perfectly cancels the
external field H inside the superconductor according to M = χmag H = �H.
Above a critical magnetic field Hc, the entire superconductor becomes normal
conductive. The phase boundary between the normal and superconductive states
can empirically be described by

H Tð Þ ¼ H T ¼ 0ð Þ 1� T=Tcð Þ2
h i

; (9)

where B(T = 0) = μ0 H(T = 0) is usually on the order of 0.01 . . . 0.1 T for Al and V,
respectively, as examples. All superconductive metals are type I, except for Nb.

Type II superconductors have two critical magnetic fields, Hc1 and Hc2. Below
Hc1, the superconductor displays type I behavior. Above Hc1, the magnetic field
penetrates into the superconductor, and microscopic flux lines, also called vortices,
are formed in a regular trigonal close-packed pattern: the flux-line lattice imaged in
Fig. 5. The period of the pattern grows with decreasing magnetic field, and the flux
of the magnetic field through one elementary vortex cell is a constant, referred to as
the magnetic flux quantum Φ0 = h/(2e). The area of a vortex is partially normal-
conductive and increases at higher temperatures (for constant field) on the expense of
the superconductive area outside the vortices (Fig. 5b, c), until above Tc no super-
conductive area remains.

Above Hc2, the type II superconductor becomes normal-conductive. Typical
fields Hc2 are an order of magnitude higher than Hc1 with the maximum known
value at ~60 T for PbMo6S8, a Chevrel-phase superconductor. A typical phase
diagram for type I and type II superconductors is shown in Fig. 6.

The flux-line pattern is influenced by crystal defects. Flux lines may move in the
presence of a current that creates Lorentz forces normal to these lines. Consequently,

BCS 
local

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

T/Tc

BCS 
nonlocal

Eq. 8

[λ
(0

)/λ
(T

)]
2

0
0

Fig. 4 Temperature-
dependent penetration depth
of an external magnetic field
according to the BCS theory
or nonlocal approximations as
indicated; the green curve
shows the dependence
according to Eq. 8 (After
Fetter and Walecka 1971)
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some minor power dissipation is observed in such type II superconductors above Hc1.
Some crystal defects are known to pin flux lines and thereby create a more stable
superconductor at high fields – see Matsushita (2014). This is important for NMR
imaging, where high and extremely constant fields over long periods are required.

1.5 Josephson Tunneling and SQUID

Tunneling between two superconductors through a very thin insulating layer pro-
vides the most direct evidence for the energy gap. If both superconductors are metals

a b c

1 µm 1 µm

Fig. 5 (a) Schematic of magnetic vortices ( flux lines) in a type II superconductor (blue rectangle).
Red circles indicate currents shielding areas outside the penetrating magnetic field. (b) Plane-view
imaging of flux lines (bright spots) emerging from the surface of the high-temperature supercon-
ductor Bi2Sr2CaCu2O8+δ using magnetic force microscopy with a magnetic-tip cantilever. A
constant external field B ffi 2 mT is applied at T = 5.1 K. (c) Same as panel (b) at T = 38.1 K
(After Schwarz et al. 2010)
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Fig. 6 Phase boundaries between normal and superconductive states. (a) for type I and (b) for type
II superconductors, with critical field boundaries indicated
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in their normal-conductive phase, tunneling proceeds at T � 0 K without threshold,
see Fig. 7a.

If one of the metals is a superconductor, no current flows near zero bias. Only
when electrons are elevated above the gap does a small current flow (Giaever
tunneling – Fig. 7c light green curve for 0 < T < Tc). With further increased bias,
electrons from below the Fermi surface can be drawn across the barrier (Josephson
tunneling, Fig. 7c green curve), and the tunneling current increases steeply.

Superconducting Quantum-Interference Device The flux of an externally
applied magnetic field enters a type II superconductor in integer multiples of flux
quanta Φ0 = h/(2e) (Sect. 1.4). This applies also for the magnetic flux through a
superconductive ring, which is given by

Φring ¼ Φext þ Ljs ¼ iΦ0; (10)

here L is the inductance of the ring, js is the superconducting current induced by the
magnetic field, and i is an integer. Thus, although the externally applied fluxΦext and
the current js are continuous quantities, the magnetic flux inside the ring is not; this
can only be fulfilled if js oscillates with an amplitude Ljsj j � Φ0=2 , when an
externally applied magnetic field is continuously increased: the current in the ring
js completes the total flux in the ring to an integer multiple of Φ0.

The induced superconducting current js can be measured using a superconducting
quantum-interference device (SQUID); a schematic of the setup is given in Fig. 8.
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conductors; (b) one metal is a superconductor: current flow requires at T = 0 a voltage exceeding
Δ/e. (c) I-V characteristics of the tunnel current for a metal-metal junction (straight red curve) and a
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Two very thin insulators are introduced into the superconductive ring considered
above. They constitute tunnel junctions (Josephson junctions) between two super-
conductors similar to the junction depicted in Fig. 7b. At a Josephson junction the
current js tunnels through the barrier, and the two collective wavefunctions of the
Cooper pairs on both side of a junction experience a phase difference γ. The phase
difference is related to the maximum critical current density jc through such a
junction by js ¼ jc sin γ . Using this relation, the current in the ring with two
Josephson contacts can be written

js ¼ jc=2	 sin γ1 � sin γ2ð Þ; (11)

with phase differences γ1 and γ2 at the two junctions.
If this ring is connected to an external current source, the current entering the ring

splits into two parts. If a small external field B applied, a screening current js begins
to circulate in the ring to cancel the applied external flux. In one branch of the ring js
is in the same direction as the applied current, j1 ¼ j=2þ js, and it is opposite in the
other branch, yielding j2 ¼ j=2� js. When the current in either branch exceeds the
critical current density jc of the Josephson junction, a voltage ΔV appears across the
junction. If the external flux is further increased and eventually exceeds Φ0/2, an
increase of the flux to 1 	 Φ0 is energetically more favorable than a stronger
shielding current to prevent a flux from entering into the ring. The screening current
thus flows in the opposite direction. Every time the flux increases by multiples ofΦ0/
2, js changes direction and hence oscillates as a function of the applied external
magnetic field. The period corresponds to the addition of a single flux quantumΦ0 to
the flux already penetrating the ring.

SQUIDs are very sensitive magnetometers and are widely used for measuring
magnetic properties of materials, magnetic resonance imaging (MRI), or biology for
studies such as magnetoencephalography (MEG).

Φ ΔV

j

j

j2

jS

j1

Fig. 8 Superconducting ring
with two Josephson junctions
(red thin insulators), building
a superconducting quantum-
interference device (SQUID)
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2 High-Temperature Superconductors

2.1 Ceramic High-Tc Superconductors

Transition temperatures exceeding the highest observed in metals have been reported
for the class of high-temperature superconductors (also termed high-Tc supercon-
ductors), which are all type II superconductors. These are usually layered com-
pounds that are semiconductors at or above room temperature. In 1986 the
perovskite-type ceramic La2�xBaxCuO4 was found to become superconductive
near 30 K (Bednorz and Müller 1986; Tc was later specified to 35 K), substantially
above the highest Tc value of a conventional superconductor (Nb3Ge, 22.3 K).
Shortly after this discovery further ceramic compounds with even much higher Tc
values surpassing the boiling point of liquid nitrogen (77 K) were found: Y-Ba-Cu-
O, Bi-Sr-Ca-Cu-O, and Hg-Ba-Ca-Cu-O. Later also other structures such as the
pnictides were discovered, see Fig. 9. Over 150 high-temperature superconducting
compounds with Tc exceeding that of Nb3Ge were found; they may be roughly
divided into cuprates, bismuthades, and iron pnictides (Chu 1997) – in addition to
the fullerenes mentioned with organic superconductors in Sect. 1.1, carbon nano-
tubes, and various other inorganic compounds. Some ceramic superconductors are
listed in Table 1.
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A common feature of the ceramic superconductors is the layer structure. A prominent
large family are the superconductive cuprates; they comprise La-M-Cu-O-type com-
pounds (M = Ba, Sr, Ca), Y-Ba-Cu-O-type compounds like RBa2Cu3O6+x (R = Y, La,
Ca, or a rare-earth element), and Bi-, Tl-, Hg-type compounds like, e.g., TlmBa2Can�1

CunO2n+m+2+δ (m = 1,2; n = 1�4). They all have CuO2 layers, which carry the
superconductive electron system. The other layers serve as dopants to provide the
carriers (“charge reservoir”) and couple the stacked layers. At least two of such weakly
coupled layers are needed to create superconductivity, and Tc increases with the number
of these layers. The cuprates are reviewed in detail by Plakida (2010). Another prom-
inent family are the more recently found iron pnictides such as, e.g.,MFFeAs (M = Ca,
Sr, Ba, Eu) with doping by La3+ ions. The pnictides have conductive FeAs layers
playing the role of the CuO2 layers in the cuprates. The lattice structure of some cuprate
superconductors is shown in Fig. 10. Their structure is usually closely related to the
perovskite structure, with alternating layers of CuO2 planes and an oxygen deficiency.

The critical temperature of high-Tc superconductors increases with increasing carrier
density, similar to semiconducting low-temperature superconductors. The carrier den-
sity is generally low (typ. 5 	 1021 cm�3) compared to conventional superconductors
(5 	 1022 . . . 1023 cm�3). The doping properties are outlined below for cuprates;
similar properties are also found for the iron pnictides (Ishida et al. 2009).

Undoped cuprates are often Mott insulators with antiferromagnetic ordering of
the spins of the Cu2+ ions, which have an incomplete d shell (3d9) with one hole spin
S ¼ 1

2
ℏ. The antiferromagnetic correlations in cuprates create a pseudogap, which is

detrimental to superconductivity and is of a different origin than the superconducting
gap. Superconductivity appears upon doping, as depicted in the universal phase

Hg
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Fig. 10 Unit cells of superconductive cuprates with CuO2 layers. (a) La2�xSrxCuO4, (b)
YBa2Cu3O6, (c) HgBa2Ca2Cu3O8
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diagram of a cuprate with p-type conductivity in Fig. 11. Doping with holes is
achieved,5 e.g., in La2�xMxCuO4, by substituting La3+ ions with divalent ions such
as Ba2+, Sr2+, or Ca2+. The critical temperature Tc/Tc,max is an approximately
parabolic function of the hole concentration, with a maximum near 0.16 holes per
Cu atom in the superconducting layer (Tallon et al. 1995). A similar phase diagram
applies for cuprates with n-type conductivity, which are a minority of the ceramic
copper-oxide-based superconductors. They differ in their magnetic texture and
doping dependence (Zhang and Bennemann 1995), and their critical temperature is
generally somewhat lower (~30 K).

The critical temperature of superconductivity can often be raised when hydro-
static pressure is applied, as noted for organic superconductors in Table 2 and as
earlier found for La2-xBaxCuO4 by Chu et al. (1987). This effect can be mimicked in
ceramics by replacing some atoms apart from the superconductive layer with smaller
atoms, e.g., Ba with Sr.

It is instructive to discuss first the properties of these materials at temperatures
above the superconductive transition temperature.

2.2 Normal-State Properties of High-Tc Superconductors

Experiments on high-temperature superconductors yield complex and often irregular
results, although some generic trends are found, and a couple of general conclusions
are drawn in Sect. 2.4. Here we point out a few prominent findings.
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Fig. 11 Schematic phase diagram of a cuprate superconductor, indicating the dependence of Tc on
doping; p is given in units of holes per Cu atom. An antiferromagnetic phase occurs at low doping,
superconductivity appears in an intermediate doping range

5Doping can also be performed by changing the composition with oxygen. An excess of oxygen
extracts electrons from the environment to form O2� ions; these electrons partly come from the
CuO2 layers, leaving holes.
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The conductivity in ceramic superconductors is highly anisotropic, with σk=σ⊥ =
102–105 near the transition temperature. The conductivity within the Cu-O layers of
cuprates is metallic,6 whereas the current perpendicular to these layers is substan-
tially reduced, probably due to tunneling through barriers. Rather unusual is the
ubiquitous temperature-linear increase of the resistivity above the transition temper-
ature depicted in Fig. 12 for La2�xSrxCuO4 with compositions 0.075 � x � 0.15
that show superconductivity; in contrast, at compositions x � 0.07 that become not
superconductive, the more common behavior of the resistivity is observed: it
changes / T2, indicating electron–electron scattering. A further peculiarity of the
linear dependence is the wide range without saturation at higher temperatures
(Gurvitch and Fiory 1987). Such saturation is commonly found in transition metals,
when the mean free path approaches the interatomic distance (Ioffe-Regel limit). Up
to now there exists no microscopic theory to describe such transport properties along
with the observed pseudogap behavior and the pairing mechanism. For a review see
Hussey (2007); see also an early review by Batlogg (1991).

The Hall coefficient of the high-Tc cuprates shows a strong temperature depen-
dence instead of an expected near-constant behavior that prevails for non-
superconducting compositions (Hwang et al. 1994; Segawa and Ando 2004). As
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Fig. 12 Resistivity ρ of La2�xSrxCuO4 single crystals within the CuO4 plane as a function of
temperature; the composition x is the family parameter. Solid lines are measurements at zero
magnetic field; at low T (symbols) superconductivity is suppressed by applying a high field
(60 T) which exceeds the upper critical field. Inset: dependence of the critical temperature Tc on
the Sr composition x; I, SC, and M denote insulating, superconducting, and metallic, respectively
(After Boebinger et al. 1996)

6Metallic conductivity is found above the Néel temperature, which, e.g., for undoped YBa2Cu3O6+x,
is quite high (500 K for x = 0, decreasing with doping). Below this temperature antiferromagnetic
ordering leads to an energy gap and consequently to insolating behavior.
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an example the 1/T dependence of YBa2CuO7 above the transition temperature is
shown in Fig. 13. The temperature and doping dependence of the Hall effect is
related to complex topological changes of the Fermi surface, which are not yet fully
understood.

2.3 The Superconductive State of High-Tc Superconductors

In conventional low-temperature superconductors the wavefunction of cooper pairs
is generally isotropic and shows virtually no dependence on the orientation of k; it
has s symmetry. This applies also for the Fermi sphere and the superconduction
energy-gap (Fig. 7), which appears below Tc at the Fermi surface.

Ceramic superconductors are different. The model system of the cuprates is
characterized by the superconducting CuO2 layers illustrated in Fig. 14. Without
doping there is one electron (correspondingly one hole) in the dx2�y2 orbital of each
copper ion; in absence of magnetic ordering this yields metallic conductivity of a
half-filled band. Doping with holes disturbs the magnetic order (lowers TNéel), until
eventually superconductance occurs. Holes coupled to a pair repel each other and
hence do not form a wavefunction with s symmetry, where the probability for both
holes is maximum at the same place. Since the angular momentum of the pair must
be even, L ¼ 2ℏ is the smallest possible angular momentum, yielding d symmetry
for a Cooper pair in cuprates and hence also for the symmetry of the superconductive
system.
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The d-wave nature of cuprate superconductors was confirmed by many experi-
ments, most directly by nodes observed in the excitation spectrum using angle-
resolved photoemission spectroscopy (ARPES) for mapping the Fermi surface in
momentum space (Platé et al. 2005; Koitzsch et al. 2004). The results clearly show
that the density of carriers in the superconducting state and also the energy gap to
normal-state carriers has four lateral nodes in k space with a symmetry corresponding
to d character. Such a symmetry is also found in experiments on tunneling currents.

The superconduction gap Superconduction gap can directly be measured using
scanning tunneling spectroscopy (STS). Measurement of the tunneling conductance
at one point of the sample yields the surface-near local density of states (LDOS),
averaged over the in-plane angles of k. In low-temperature superconductors the
conductance and correspondingly the DOS vanish below Tc (Fig. 7b); above Tc the
conductance has a U shape centered at zero bias in STS measurements with peaks
at 
 Δ. In high-temperature superconductors the nodes in Δ(k) result in a linear
increase of the DOS, yielding a V shaped conductance centered at zero bias in STS
measurements with a peak separation of 2Δp depending on doping, see Fig. 15.

In the superconductive state, the critical current density is also anisotropic (jck=
jc⊥ ffi 103). This provides a further indication that superconductivity occurs within
the plane of such layered crystals and may be interrupted by interfacing normal
conducting layers. In Bi1.6Pb0.6Sr1.8CaCu2Ox also an in-plane anisotropy of the
critical current density was measured (Nakayama et al. 2000).

All high-Tc superconductors show type-II behavior, with low critical fields and
substantial flux-line movements, causing some residual power dissipation. The flux-
line lattice “melts” at temperatures7 well below Tc, when thermal fluctuations of the

Cu O

py

px

dx2- y2

Fig. 14 Schematic of the
CuO2 layer in a cuprate
superconductor, showing the
half-filled dx2�y2 orbital of a
Cu ion and the px, py orbitals
of adjacent O ions

7The flux-line melting temperature is about 75 K for a material with Tc = 93 K, and is somewhat
lower for Tc = 125 K material.
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vortex positions become comparable to the generally small coherence length of the
Cooper pairs. The critical current density may be increased if the flux lines are
pinned by, e.g., point defects (Theuss 1993), or radiation damage induced by neutron
bombardment (van Dover et al. 1989; Terai et al. 1997). The pinning mechanism is
discussed by Matsushita (2014), see also Xu et al. (1995) and Schwarz et al. (2010).

The upper critical magnetic fieldHc2 Tð Þhas a large value and a large slope@Hc2=@T.
From critical-field measurements, the size of the quasiparticles can be determined
(Tajima et al. 1988). In EuBa2Cu3O7, they display a pancake shape, with coherent
lengths of 35 Å diameter and 3.8 Å height lying in the Cu-O plane.

2.4 Mediating-Partner Models for High-Tc Superconductors

Even after three decades of intensive research there exists no all-encompassing
microscopic model on the origin of high-Tc superconductivity, in contrast to the
BCS theory valid for low-temperature superconductors. Still a number of conclu-
sions are generally agreed (Leggett 2006):

• High-Tc superconductivity originates from the formation of Cooper-pair-like
carrier pairs.

• In the cuprates the superconductive electron system is located in the CuO2 layers,
in the iron pnictides correspondingly in the FeAs layers.

• In the two-dimensionally layered high-Tc superconductors the Cooper pairs form
independently in the different layers, i.e., there is hardly hopping from one layer
to another.

• Cooper pairs are not coupled by an electron–phonon interaction like those in
low-temperature superconductors. There are indications for an at least predomi-
nant electronic pairing of wavefunctions.

Bi2Sr2CaCu2O8+x

overdoped
Tc=83.0 K

underdoped
Tc=74.3 K

optimum doped
Tc=92.2 K

T = 4.2 K
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)Fig. 15 Differential

conductance of differently
doped Bi2Sr2CaCu2O8+x

single crystals measured using
scanning tunneling
spectroscopy. Horizontal lines
indicate zero conductance for
the respective vertically offset
spectra. Positive and negative
sample bias results in electron
tunneling into unoccupied and
out of occupied electronic
states, respectively (After
Renner et al. 1998)
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Superconductance in ceramic compounds appears at sufficient doping (Fig. 11).
Doping with holes generally leads to higher critical temperatures as doping with
electrons. The mediating partner required to provide the coupling of the quasi-
Cooper pair also needs to be a boson. As such, one may consider resonance valence
bands (Anderson 1987), magnons (Chen and Goddard 1988), spin fluctuations
(Schrieffer et al. 1988; Schrieffer 1991), plasmons (Tajima et al. 1991; Bill et al.
2003), and excitons.

Electron interaction with spin fluctuations are prominent in high-temperature
superconductors. There are essentially two mechanisms creating hole (or electron)
pairs. Intersubband hopping in a lattice with antiferromagnetic order lowers the
electronic kinetic energy and may induce pairing by antiferromagnetic exchange.
This mechanism is proposed by Anderson (1987) and is outlined in the following.

The Anderson RVB Theory The formation of Cooper pairs by phonon interaction
in low-temperature superconductors can be imagined as trapping of an electron in the
lattice-deformation funnel created by another electron (Sect. 1.2). In a high-Tc super-
conductor, the role of phonons is in Anderson’s RVB model replaced by spin-density
waves8 (Anderson 1987): the spin of a moving electron creates a spin-density wave
around it, causing a nearby electron to fall into the spin depression created by the first
electron. Since the Coulomb repulsion prevents pairing of the two electrons on the
same lattice site, the pairing occurs at near-neighbor lattice sites. The symmetry of the
Cooper pair is hence not s-like as in the classical BCS theory. In the cuprates the pair
wavefunction has dx2�y2 symmetry instead (Tsuei et al. 1997; Kirtley et al. 2006); this
reflects the symmetry of the Cu orbitals in the Cu-O layers as indicated in Fig. 14.

In Anderson’s resonating-valence-bond (RVB) theory there exist magnetic singlet
pairs in the undoped insulating magnetic phase of cuprates (Fig. 16). These pairs
become Cooper pairs when the insulator is sufficiently strongly doped (Fig. 11),
providing a predominantly electronic and magnetic mechanism for superconductiv-
ity (Lee et al. 2006). Doping with holes in cuprates destroys the antiferromagnetic
order of the two-dimensional Mott insulator and creates a disordered state like a spin
liquid of resonating valence bonds. Spin fluctuations play also a major role in the
pairing of the iron pnictides (Hosono and Ren 2009).

Charge-Fluctuation Models Within the classical BSC theory a high critical tem-
perature Tc is connected to a large energy of the mediating boson, which may
basically be an exciton or a plasmon. Considering an exciton as mediating partner,
two groups of electrons are required: more localized electrons providing the cou-
pling and the coupled electrons in the superconducting band. The excitons in
cuprates may result from a charge transfer according to Cu2+O2� ! Cu1+O1�

(Varma et al. 1987, Varma 1997). Such a charge-transfer excitation can induce
pairing with s or dxy symmetry. For a review, see Little (1992).

8All high-Tc superconductors are strong spin-density wave systems.
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The two-dimensionality and van Hove singularities close to the Fermi energy
favor charge instabilities and thereby the possibility of pairing by charge fluctua-
tions. Also the occurrence of specific plasma excitations is enhanced by such
conditions, basically allowing for plasmon-induced pairing. The two-dimen-
sionality9 and increasing ionicity10 supports the formation of tightly bound excitons,
which can survive higher temperatures.

Resume on Mediating-Partners The present status indicates that the pair forma-
tion in high-temperature superconductors could actually comprise more than one
singular mechanism. Spin fluctuation certainly contributes to pairing as a major part,
which may be substantially assisted by charge fluctuations that in turn enhance
electron–phonon interaction.

3 Summary

Superconductivity was in early days believed to be restricted to metals and to
temperatures below 25 K. It involves Cooper pairs of electrons, which can be formed
due to phonon interaction. Bose–Einstein condensation of such pairs creates a
bandgap that eliminates damping of the transport, which still occurs for the
remaining normal electrons. An injection of electrons above the gap, via Giaever
tunneling, shows conductivity of normal electrons in superconductors. The density

a b

Fig. 16 Schematic of the two-dimensional Cu-O layer in a cuprate superconductor (a) in the
insulating undoped case showing antiferromagnetic orientation of the spins, and (b) doped with a
hole located at a Cu ion

9Confinement of three-dimensional excitons to two dimensions leads to a substantial increase of the
exciton binding-energy see▶ Sect. 2.1 of chapter “Excitons”. The superlattice-like (2D) structure of
the ceramic superconductors could provide such a confinement.
10Here excitons, or polarons, become more tightly bound (Frenkel excitons). Earlier observation of
heavy-fermion superconductors (Stewart 1984; Joynt andTaillefer 2002)maypoint toward the assistance
of more tightly bound polarons (with mn ffi 200 m0) in forming superconducting compounds, (e.g.,
CeCu2Si2 or UPt3).
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of superconducting Cooper pairs increases with decreasing temperature at the
expense of normal electrons, causing an increasing superconduction bandgap for
Cooper pairs, an increasing critical current (above which superconductivity van-
ishes), and a decreasing penetration depth for a magnetic field – the Meissner field
expulsion. Above the temperature-dependent critical field, these type I supercon-
ductors become normal conductive. Type II superconductors enter a mixed
Shubnikov phase above a lower critical magnetic field, with a regular pattern of
flux lines penetrating the superconductor. The density of these (partially normal-
conductive) vortices increases for increasing field, until above the upper critical field
superconductivity vanishes.

High-temperature superconductivity is found mostly in perovskite-type solids,
with transition temperatures exceeding 100 K. In the large family of cuprates
superconductivity occurs in the CuO2 layers and is usually carried by quasiparticles
related to pairs of holes. Generally undoped compounds are insulating due to
magnetic ordering of the spins located at the Cu ions; these cuprates require doping
of the layers beside the CuO2 layers with sufficient holes to generate superconduc-
tivity. Unlike in low-temperature superconductors the wavefunction of Cooper pairs
is anisotropic with in-plane d symmetry, yielding a corresponding symmetry of the
Fermi surface and the superconduction energy-gap. Similar conditions are found for
the more recently discovered family of iron pnictides, where the superconductive
electron system is carried in FeAs layers. The microscopic mechanism for pair
formation in high-temperature superconductors differs from that found in typical
metals. While spin fluctuations certainly play a major role, a generally accepted
model is still to be developed.
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Carrier Transport in Low-Dimensional
Semiconductors
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Abstract
Carrier transport in semiconductors with reduced dimensions is determined by the
low-dimensional density of states. In two-dimensional systems such as quantum
wells and superlattices, the carrier mobility is highly anisotropic. Parallel to the
barriers it may exceed the bulk value by far in a two-dimensional electron gas at
low temperature. Perpendicular to the interfaces, carriers have to penetrate the
barriers and the mobility is low. Tunneling through thin barriers is an important
process; it is enhanced when matched with quantized energy levels and leads to
negative differential resistance. In one-dimensional quantum wires, ballistic
transport occurs and the conductance gets quantized. Transport through a zero-
dimensional quantum dot is affected by charging with single electrons, giving rise
to a Coulomb blockade with zero conduction at certain bias values.
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1 In-Plane Transport in Two-Dimensional Structures

The carrier transport in two-dimensional semiconductor structures is highly aniso-
tropic. It is rather low perpendicular to the interfaces, where electrons have to
penetrate the barriers. Transport through these barriers is controlled by quantum-
mechanical tunneling. Furthermore, the potential in double-barrier and superlattice
structures leads to electron energies quantized in discrete levels or minibands affecting
the tunneling process. Transport perpendicular to barriers is discussed in Sect. 2

In contrast, carrier mobility parallel to the interfaces may be very high and is often
much higher than in the bulk material. This applies particularly for modulation-doped
structures, where a high density of carriers can drift within layers of high purity and
lattice perfection, while dopants are confined within barrier layers. At low temper-
atures, these structures form an ideal two-dimensional electron gas (2DEG), which is
applied, e.g., to define the standard for the electrical resistance via the quantum-Hall
effect (▶Sect. 3.1 of chapter “Carriers in Magnetic Fields and Temperature Gradi-
ents”). The 2DEG is a convenient model system to study quantum transport, because
the electron density and hence the Fermi wavelength are adjustable by external
potentials; the mean free path of carriers may exceed device dimensions, and lateral
patterning allows for further reducing the dimensionality to planar quantum wires or
quantum dots. We therefore consider the properties of such a 2DEG in more detail.

1.1 The Two-Dimensional Electron Gas (2DEG)

In a two-dimensional electron gas (2DEG)1 the electrons are free to move in two
lateral dimensions (x, y) and are confined in the third perpendicular dimension (z).
The lateral mobility of the electrons is basically limited by phonon scattering at
higher temperatures and by scattering at ionized impurities at low temperatures
(▶ Sects. 2 and ▶ 3 of chapter “Carrier Scattering at Low Electric Fields”). The
limitation at low temperatures can effectively be circumvented by separating the

1The analogous system with holes as free carriers is called two-dimensional hole gas (2DHG). Due
to their smaller effective mass usually electrons are preferred as carriers in transport devices.
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ionized donor dopants from the free electrons using modulation doping. This term
indicates that doping is not homogeneous; in the 2D electron gas of a modulation-
doped heterostructure, the doping range is restricted to the barrier material, and the
2DEG is created by a band-bending effect at the interface of the heterojunction.
Another approach to create a 2DEG is the formation of an inversion layer formed at
the gate of a field-effect transistor (FET). In both cases a narrow, highly conductive
layer is generated parallel to the interface in an approximately triangular vertical
potential V(z). Since usually an additional gate potential is applied to the hetero-
junction, both approaches allow to adjust the Fermi level with respect to the band
edge and consequently to vary the electron density of the 2DEG.

2D Electron Gas at an Inversion Layer A common device creating a 2D electron
gas is the metal-oxide semiconductor FET (MOSFET) based on p-type silicon; for a
comprehensive review see Ando et al. (1982). The native SiO2 oxide has a large
(~3 eV) conduction-band offset to Si; application of a positive gate voltage bends the
conduction-band edge of the p-type Si electrostatically below the Fermi energy EF,
creating an inversion layer with electron conductance at the SiO2/Si interface
(Fig. 1).

The sheet carrier density n2D (in units of m�2) depends on the areal capacitance
C2D (in units of F/m2) formed by the 2DEG and the gate electrode, and on
the difference of the threshold voltage Vt and the gate voltage Vg indicated in
Fig. 1; the inversion layer is created for Vg > Vt. From e n2D = C2D (Vg�Vt) and
C2D ¼ eoxide � e0=doxide we obtain

n2D ¼ eoxide e0
edoxide

Vg � Vt

� �
: (1)

metal

E1

E3

E

EF

Ec

z

Ev

oxide semiconductor

eVg

EF,m

Fig. 1 Energy-band diagram
of a metal-oxide-
semiconductor (MOS)
structure with a 2DEG created
at the interface between the
oxide and the p-type Si,
indicating the subbands (red
lines) created at the interface
with the lowest subband E1

occupied
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The electron mobility in the 2DEG of the inversion layer in Si is typically about
103 cm2V�1s�1 at 300 K and an order of magnitude higher at low T. It is limited by
various effects; the effective electron mass of Si (mn = 0.19 m0) is higher than that
of direct semiconductors, and there occurs intervalley scattering due to the degen-
eracy of conduction-band minima, and surface scattering due to the microscopically
rough interface of Si to the amorphous SiO2.

2D Electron Gas at a Heterointerface This approach usually applies a GaAs/
AlGaAs interface with a metal gate at the wide-bandgap AlGaAs, forming a
modulation-doped FET (MODFET),2 see Störmer et al. (1979). The AlGaAs is
doped with donors, except for a narrow undoped region at the interface to the
undoped GaAs. Electrons diffusing from the doped AlGaAs barrier to the interface
are confined in the potential well illustrated in Fig. 2 and form a conductive channel.
The confinement perpendicular to the interface creates subbands, which can be
populated depending on the applied gate voltage; usually only the lowest subband
is occupied. For a review see Harris et al. (1989).

The sheet carrier-density n2D of the MODFET is also controlled by the gate
potential Vg similar to the Si MOSFET and likewise described by Eq. 1, see also
Fig. 5. The threshold voltage Vt is not fixed; it can be adjusted by the Shottky barrier
ϕBn at the metal/AlGaAs interface (see▶Fig. 16 of chapter “Crystal Interfaces”) and
the conduction-band offset at the AlxGa1-xAs/GaAs interface.

The 2DEG of the AlGaAs-based MODFET benefits from the low effective mass
of electrons in GaAs (mn = 0.067 m0) and the continuous crystalline periodicity

metal

E1

E

EF

Ec

z

Ev

AlGaAs GaAs

ds

Fig. 2 Energy-band diagram
of a modulation-doped
AlGaAs/GaAs heterostructure
with a metal gate-contact and
a 2DEG located at the
interface; an undoped spacer
layer of thickness ds is
indicated

2Such a device is also referred to as high-electron-mobility transistor (HEMT) or two-dimensional
electron gas field-effect transitor (TEGFET). Typical Al mole fraction x of AlxGa1-xAs and donor-
doping level are 0.30 cm�3 and 1018 cm�3, respectively. Donor doping stops at a spacer distance
d (typically on the order of 10 nm, see Fig. 5) away from the interface to GaAs.
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across the interface of this well lattice-matched material combination, avoiding
interface scattering; furthermore, no intervalley scattering occurs in the single-
conduction-band GaAs. As a result, electron mobilities are much higher than in
Si-based inversion layers, yielding values up to 107 cm2V�1s�1 (Pfeiffer et al.
1989).

Energy Levels in a 2D Electron Gas Various quantities change abruptly across the
interface of the two-dimensional electron gases described above, particularly the
band edge, the effective mass, and the dielectric constant. The resulting energies of
the 2DEG can only be evaluated numerically (Stern and Das Sarma 1984). For
practical electron gases some approximations are introduced yielding also analytical
solutions. The conduction-band offset at the heterojunction is often assumed infi-
nitely high; this approach is reasonable, since the ground-state energy in the confin-
ing potential V(z) is in the range of some tens of meV, compared to the very large
offset at the SiO2/Si interface and still ~300 meVat the AlGaAs/GaAs junction. This
assumption leads to the boundary conditionφ z ¼ 0ð Þ ¼ 0 for the wavefunction at the
interface located at z = 0; consequently the variations of the effective mass mn(z)
and the dielectric constant er(z) are neglected and set to the values of the channel
material.

For low carrier densities n2D the potential can then be well approximated by the
triangular dependence

V zð Þ ¼ 1 z ¼ 0

eFz z > 0

�
; (2)

where in an AlGaAs/GaAs heterostructure the electric field F is given by the sum of
the fields produced by the ionized donors in the barrier, F0, and by that of the
electrons in the 2DEG:

F ¼ F0 þ 1

2

en2D
ere0

; (3)

the factor ½ is introduced to obtain an average of the field over the space-charge
layer of the electrons. Using the potential of Eq. 2, the analytic solution of the
Schrödinger equation yields Airy functions for the electron wavefunctions with
energy levels

Ei ¼ ħ2

2mn

� �1=3
3π

2
i� 1

4

� �
eF

	 
2=3
, i ¼ 1 , 2 , 3 , . . . : (4)

The solutions are illustrated in Fig. 3.
The approximations lead to a ground-state energy E1 being typically 20% too

high, while the energy separation to the first excited level E2 is less affected.
For larger carrier densities n2D > 2 ere0F0/e, the approximation of Eq. 2 is poor. If

only the ground state is occupied, a parameterized wavefunction yields more realistic
solutions (Stern 1972).
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The energy Ei(z) represents the bottom of the two-dimensional subband i with free
carrier motion in the (x, y) plane, where no restriction exists. The carrier density n2D,i in
each subband depends on the energy separation to the Fermi level EF and is given by

n2D, i ¼ mn kT

π ħ2
ln 1þ EF � Ei

kT

� �
: (5)

For practical applications usually only the ground state E0 is occupied to avoid
intersubband scattering between occupied bands (Störmer et al. 1982; Piazza et al.
1998). The mobility of the excited subband is substantially lower than that of the
ground subband. This behavior originates from stronger ionized-impurity Coulomb
scattering for carriers with small wavevectors and the smaller Fermi wavevector of
carriers in the higher subband.

1.2 Carrier Mobility in a 2D Electron Gas

The mobility of carriers in a 2D electron gas depends on temperature, carrier density,
and, in modulation-doped heterostructures, on the thickness of the undoped spacer
layer. The temperature dependence of the mobility in an AlGaAs/GaAs hetero-
structure is shown in Fig. 4, along with limits imposed by various scattering
processes. Major effects are scattering at ionized impurities at low temperatures
and scattering at optical and acoustical phonons at high temperatures; at low
temperature a limit is also given by piezoelectric scattering for very pure samples.
In the 2D electron gas the mobility continues to increase for decreasing temperature
beyond the expected maximum at μ ffi 105 cm2/(Vs) for a residual donor density of
4 � 1013 cm�3 and approaches 5 � 106 cm2/(Vs) below 10 K.

The high mobility of carriers at low temperature results from the reduced ionized-
donor scattering achieved by the spatial separation between the electrons in the
two-dimensional channel and the ionized donors in the adjacent barrier region. The

E2

E(z)‚φ(z)

z

E1

E3

V(z)

φ1

φ2

φ3

Fig. 3 Wavefunctions φ(z)
and energy levels Ei in a
triangular potential V(z) for
typical values of an AlGaAs/
GaAs heterointerface; the
ground state is located at
E0 ffi 50 meV
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Coulomb scattering is further reduced by the thickness of the undoped spacer layer
in the barrier between these two regions, which also affects the carrier density. The
effect of a varied undoped spacer thickness on mobility and carrier density n2D is
shown in Fig. 5: the 40 nm thick n-type AlGaAs barrier with 1.3 � 1018 cm�3 Si
donors is separated from the conductive GaAs channel by undoped AlGaAs barriers
with thicknesses ds varied from 0.9 to 320 nm. The mobility is maximum in an
intermediate range, partly due to the dependence on the carrier density n2D.

For a fixed thickness of the undoped spacer layer, the low-temperature mobility
increases with increasing carrier density n2D. The effect is also controlled by the
temperature dependence of the scattering processes as illustrated in Fig. 6 for a
modulation-doped AlGaAs/GaAs heterostructure with a 4.5 nm thick spacer layer.
The increase of μ at larger carrier density observed at low temperature is less
pronounced in the intermediate temperature range due to the contribution of
acoustic-phonon scattering; at even higher temperature the polar-optical phonon
dominates due to its increased exponential rise in T.

Hot-Electron Mobility The carrier mobility in a 2D electron gas considered above
refers to low electric fields. The changes of scattering processes at high electric fields
discussed for bulk semiconductors in chapter ▶ “Carrier Scattering at High Electric
Fields” also affect the mobility in a 2DEG. The electron mobility at low temperatures
decreases rapidly with increasing electric field, as shown in Fig. 7 for a modulation-
doped AlGaAs/GaAs heterostructure. In general, the peak drift-velocities do not
exceed the bulk velocities; typical values of 1 . . . 3 � 107 cm/s are observed, the
latter at 4 K (Inoue 1985).
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Fig. 4 Temperature
dependence of the electron
mobility in the 2D electron
gas of modulation-doped
AlGaAs/GaAs
heterostructures (2DEG,
green curves) with different
undoped spacer thicknesses
ds, compared to
homogeneously doped bulk
GaAs (red curves) with
different donor concentrations
Nd. Other lines indicate limits
by scattering at ionized donors
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(After Morkoç 1985)
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Fig. 6 Dependence of the mobility μ in a 2D electron gas on the carrier density n2D at different
temperatures. Calculated limits imposed by various scattering processes are indicated by broken
lines with labels as in Fig. 4, circles are measured data points (After Hirakawa and Sakaki 1986)

2DEG
μ 

(c
m

2 /
(V

s)
)

100

105

106

n 2D
 (c

m
-2

)

1011

1012

101 102

ds (nm)

T = 4.2 K
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a modulation-doped AlGaAs/GaAs heterostructure with various thicknesses ds of the undoped
AlGaAs spacer layer (After Harris et al. 1986)

1024 Carrier Transport in Low-Dimensional Semiconductors



An interesting effect was pointed out by Hess (1981), when with high electric
fields carrier acceleration is large enough that electrons can be transferred above the
barrier and diffuse into the wide-gap material, which contains most of the donors.
Here, the electrons turn from a 2D into a 3D continuum, and the scattering increases
substantially: a range of negative differential conductivity can be observed at high
donor densities within the barrier layer.

2 Perpendicular Carrier Transport in 2D Structures

2.1 Tunneling Through a Planar Barrier

In a classical consideration a carrier which is incident on an energy barrier with a
height eV0 is always reflected, if eV0 exceeds the total energy of the carrier. However,
if we consider the wavefunction of the carrier, there are also nonzero solutions inside
and behind the barrier if the barrier height is finite. The square of the wavefunction
behind the barrier represents the probability density for finding the carrier; this
probability is hence finite, i.e., the carrier has – with some probability – penetrated
the barrier despite a lack of energy. This phenomenon is referred to as a tunneling
process. Such a tunneling is illustrated in Fig. 8.

The wavefunction of the carrier with mass mn can in one dimension along z be
described by
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φ zð Þ ¼ A0e
ikz þ A1e

�ikz z � 0

φ zð Þ ¼ A2e
ikz z � d;

(6)

where the carrier meets the barrier at z = 0; the wavevector is given by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn E=ħ2

q
: (7)

The amplitudes A0 and A1 represent the incident and reflected parts of the
wavefunctions, and A2 is the amplitude of the transmitted part behind the barrier
with thickness d. Inside the barrier the wavefunction reads

φ zð Þ ¼ A3e
iβz þ A4e

�iβz 0 < z < d; (8)

with

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn eV0 � Eð Þ=ħ2

q
: (9)

The amplitudes are determined by the boundary conditions: The
wavefunction and its derivatives must be continuous at the interfaces. The probabil-
ity of finding the carrier behind the barrier is then given by the transmission
coefficient T:

T ¼ A2

A0

� �2

¼ 1þ eV0 sinh β dð Þ2
4E eV0 � Eð Þ

" #�1

: (10)

For a small transmission probability βd �1 applies and Eq. 10 can be approx-
imated as

T ffi exp �2βdð Þ ¼ exp �2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn eV0 � Eð Þ=ħ2

q� �
: (11)
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Fig. 8 Energy-band diagram
of two semiconductors
separated by a barrier of
thickness d. Green lines
represent conduction-band
edges, blue lines illustrate the
incident and transmitted part
of the wavefunction of a
carrier impinging on the
barrier from the left

1026 Carrier Transport in Low-Dimensional Semiconductors



According to Eq. 11 a finite transmission coefficient T requires a small thickness d of
the barrier, a low barrier height eV0, and a small effective mass mn. For a more
detailed discussion of tunneling, see ▶ Sect. 2.3 of chapter “Carrier Generation”.

2.2 Tunneling Through a Double-Barrier Quantum Well

Adding a second barrier with a small distance dQW to the first creates an interesting
device: a resonant tunneling diode. It may be readily fabricated by a GaAs quantum
well (QW) layer sandwiched by two thin AlGaAs barrier layers and further embed-
ded in degenerately n-type doped GaAs. The band diagram of such a double-barrier
QW structure is shown in Fig. 9.

Discrete energy levels exist between the two barriers if their distance dQW is small
(dQW � 10 nm). Tunneling across the barriers is possible for sufficiently thin barrier
layers (on the order of some nm). However, the transmission coefficient is only large
if the energy of an incident carrier equals one of the energy levels in the well.

We focus on the conduction-band edge and on electrons.3 If a bias is applied
across the device, a voltage drop occurs in the barriers and the well, but not in the
highly conductive degenerate semiconductors beyond the barriers. The discrete
energies in the QW are hence shifted with respect to the conduction bands outside
the barriers, such that the energy of incidents electrons can be matched to the energy
in the well for an appropriate bias. At this resonance electrons near the Fermi level
tunnel through the first barrier into the discrete state of the quantum well, and
subsequently through the second barrier into unoccupied states beyond. If the bias
is further increased, the conduction-band edge shifts above the energy of the QWand
the tunnel current decreases.

The energy diagrams for zero bias, resonant condition and further increased bias
are illustrated in Fig. 10, along with the resulting tunneling current of an AlAs/GaAs

EF
Ec

dQW

Ev

E

z

E1

E2

Fig. 9 Energy diagram of a
double-barrier resonant
tunneling device at zero bias.
Green shading indicates
electron occupation in the
bands, red lines indicate
electron states in the quantum
well; respective hole states are
not shown

3For resonant tunneling of holes, see, e.g., Hayden et al. (1991).
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mesa device with 6 μm diameter. We observe a strong increase of the current up to a
peak occurring when the bias establishes resonant conditions at Vbias = 2E1/e as
depicted in Fig. 10b, followed by a decrease down to a minimum at Ivalley. The range
between Ipeak and Ivalley has a negative differential resistance (NDR): dI/dV < 0.
This NDR can, e.g., be applied to overcompensate the ohmic resistance yielding a
simple oscillator; for applications see Capasso et al. (1990). The peak-to-valley ratio
Ipeak/Ivalley is relevant for device applications; for the device of Fig. 10d it is 9:1 at
T = 77 K and 3:1 at room temperature (Morkoç et al. 1986). Its magnitude is limited
by the spreading of the distribution function around the resonance energy, scattering
of the tunneling electrons by phonons, scattering at defects, and interface roughness.
Moreover, thermally assisted tunneling through higher confined levels and therm-
ionic emission over the barriers occur at higher temperatures; such processes reduce
the peak-to-valley ratio and should be minimized for device applications.

The wavefunction of the carriers may either maintain quantum-mechanical coherence
or, in case of scattering, loose coherence in the tunneling process. These cases are
referred to as coherent or sequential tunneling and are discussed in the following section.

2.3 Perpendicular Transport in Superlattices

An equally spaced stacking of resonant-tunneling structures like that described
above yields a superlattice, which allows for improved current-peak magnitudes. If
the wells are placed sufficiently close together, the wavefunctions in the wells
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Fig. 10 Energy diagram of the double-barrier device for different bias conditions: (a) zero bias, (b)
resonant bias at V = 2E1/e, and (c) V > E1/e. (d) Measured current–voltage characteristic of a
device with two 2.5 nm thick AlAs barriers cladding a 5 nm thick GaAs quantum well (After
Morkoç et al. 1986)
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overlap and narrow minibands are formed from the otherwise degenerate energy
levels of different wells, see ▶Sect. 3.1.2 of chapter “Bands and Bandgaps in
Solids”. Transport of carriers through the superlattice occurs in these minibands,
where they have a large effective mass. The carriers also have to tunnel through the
barriers. The effective carrier mobility is therefore rather small.

The minibands are shifted with respect to each other with increasing applied total
bias. Consequently, the current will vary according to the density-of-states product in
adjacent wells until the minibands in adjacent wells no longer join. Similar to the effect
in a double-barrier QW discussed above, a sharp reduction in the current (a negative
differential resistivity regime) results, as shown in Fig. 11. When, with further increased
bias, a match with the next higher miniband is reached (Fig. 11a), the current increases
again until these bands are shifted away from each other and a second range of negative
differential resistance appears as illustrated in Fig. 11b, and so on.

The sharpness of the current maxima and their positions are a direct measure of
miniband width and energy and are in reasonable agreement with theoretical esti-
mation using a Kronig-Penney potential and tunneling. With broader minibands,
occurring in superlattices with narrow barrier layers, one estimates the electronic
conduction at very low fields similarly to the classical Drude theory. Because of the
relatively small band width, however, the assumption of a constant effective mass is
no longer justified.
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Fig. 11 (a, b) Tunneling between quantum wells of an Al0.48In0.52As/Ga0.47In0.53As superlattice
including phonon emission and (c) corresponding current–voltage characteristics of a 35 period
Al0.48In0.52As/Ga0.47In0.53As superlattice with 13.8 nm thick wells and barriers; uppercase indices
designate QW numbers (After Capasso et al. 1990)
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Coherent and Sequential Tunneling At low bias the tunneling from well to well
can proceed within the same miniband over several barriers without losing its phase
relation, if there is negligible scattering. This process is referred to as coherent or
resonance tunneling. In coherent resonant tunneling, the effect of negative differential
resistance is accompanied by a coherent enhancement of transmission, analogous to
the transmission of an optical wave in a Fabry-Pérot filter (Choi et al. 1987a).

At increased bias tunneling occurs into an excited state of the subsequent well as
illustrated in Fig. 11a, b. A carrier relaxation into the ground state is then required
before tunneling to the next well can proceed. Such inelastic scattering is accompa-
nied by radiative or phonon emission; phonon emission may act as the bottleneck for
carrier transport through the superlattice when the gap between the minibands is
larger than the energy of an optical phonon ħωLO (Capasso et al. 1986; Capasso
1987). The coherence of the electron wave is lost in this process, and the tunneling to
the next well is described as sequential tunneling. Since wavefunction coherence is
usually not required, most work focuses on the sequential tunneling.

Tunneling Through Wells with Variable Width A special case of resonance
tunneling through a superlattice can be achieved when the thickness of consecutive
wells decreases in such a way that each of the resulting first levels lines up across the
entire superlattice at a certain bias, as shown in Fig. 12. Here, the current through the
superlattice is much increased, while it is very small at lower or higher bias values
(Brennan and Summers 1987a). The energy of electrons in thinner wells can exceed
the impact-ionization energy, rendering the behavior of such structures similar to that
of a photomultiplier (Brennan and Summers 1987b).

2.3.1 Wannier-Stark Ladder and Bloch Oscillations
An electric field Fz applied along the growth direction z of the superlattice tilts the band
edges; if the related energy shift between adjacent wells is on the order of or larger than
the zero-field width of the minibands, the degeneracy of the energies in the individual
wells is lifted, see Fig. 13. The formation of minibands is hence largely inhibited, and
the wavefunctions along z get localized: they extend over only a few adjacent wells.4

The discrete energies around a well with eigenenergy E0 are then given by

Ei ¼ E0 þ i eFz L, i ¼ 0, 	 1, 	 2, . . . ; (12)

where L is the superlattice period (Mendez et al. 1988). The equally spaced series of
energies with differences eFzL according to Eq. 12 is referred to as Wannier–Stark
ladder. The transitions indicated in Fig. 13a are measured in optical spectra (Voisin
et al. 1988; Leisching et al. 1994).

An additional effect occurs due to the motion of an electron through the periodic
potential of the superlattice: the Bloch oscillations. The electric field Fz leads to an
increase of the carrier momentum kz. If we neglect scattering the carrier gains energy,

4Heavy holes in the valence band get localized much stronger due to their larger effective mass.
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its effective mass increases, and eventually changes sign. The carrier velocity hence
decreases near the edge of the Brillouin zone, and at further increased momentum
the edge of the Brillouin zone with zero group velocity is reached at kz = π/L
(L = superlattice period). Bragg reflection then transfers the momentum to kz = �π/L,
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Fig. 13 (a) Band diagram of a Wannier–Stark ladder in a superlattice in an electric field Fz along
the growth direction. Vertical arrows indicate optical transitions between states localized in the
wells. (b) Photocurrent excitation spectrum of a GaAs/AlGaAs superlattice embedded in a pin
junction, measured at varied bias; dashed lines mark transitions between localized heavy-hole (hh)
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Fig. 12 (a) Superlattice with decreasing well width in thermal equilibrium. (b) Superlattice with
states aligned for maximum tunneling current at a certain applied bias

2 Perpendicular Carrier Transport in 2D Structures 1031



where the carrier is accelerated again. As a consequence, the carrier velocity
and thus the macroscopically observed current through the superlattice are
expected to oscillate with a Bloch frequency ωB given by

ωB ¼ eFz L=ħ: (13)

This frequency lies in the terahertz (THz) range; Bloch oscillations in superlattices
are hence a means to fabricate tunable emitter devices for coherent radiation in the
middle to far IR range (Lyssenko and Leo 2011).

Bloch oscillations should in principle already occur in the periodic potential of a
crystal (i.e., for L in Eq. 13 replaced by the lattice constant a), but in crystals the
oscillation period, which is inverse to the periodicity of the potential, is much longer
than the mean scattering time. In a superlattice the period L is substantially larger
than the lattice constant of a crystal, and the conditions are more favorable to observe
these oscillations (Esaki and Tsu 1970).

2.3.2 Quantum-Cascade Laser and High-Field Domains
The principles of size quantization and tunneling outlined above are exploited in the
quantum-cascade laser (QCL). While in conventional semiconductor lasers light is
generated by radiative recombination of electrons in the conduction band with holes
in the valence band, light in a QCL is generated by transitions between subbands of
the conduction band (Faist et al. 1994). The QCL is hence a unipolar device
operating solely with electrons. The emission wavelength of a QCL can be tailored
from the mid-infrared to the submillimeter-wave region without changing the semi-
conductor material – just by changing the thickness of the quantum wells.

The quantum-cascade laser consists of many layers with different bandgap
energies, divided into injector and active QW sections, see Fig. 14. The transfer
rate between two subbands depends upon the overlap of their wavefunctions and
their energy spacing. Layer thicknesses are tailored such that electrons are efficiently
injected from an injector section into an excited state of a QW (Köhler et al. 2002).
QC lasers are typically based on a three-level system; as in any such laser a long
lifetime of the upper laser level and an efficient depletion of the lower laser level are
needed to obtain population inversion.5 In the example of Fig. 14 the energy match
of E3 in the two coupled QWs and the miniband in the injector provides a strong
injection, and the node of φ3 placed at the peaks of φ2 and φ1 provides a longer
lifetime; the absolute maximum of φ1 in the right QW and its overlap with φ2 in the
left QW produces a fast depopulation6 of E2 and electron transfer to the (energy-
matched) subsequent injector section after the lasing transition. A QCL may have
over 50 active regions and injector sections; thereby each electron generates that
many photons when it traverses the structure.

5A nonthermal electron distribution in the active region makes laser action possible even in the
absence of a global population inversion, see Faist et al. (1996).
6The transfer from E2 to E1 gets particularly efficient if their difference equals the energy of an LO
phonon, thereby inducing resonant electron-LO-phonon scattering.
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There are various scattering processes operating in the carrier relaxation. Gener-
ally intrasubband and intrawell relaxations are faster than intersubband and interwell
relaxations (Ferreira and Bastard 1989). The thermalization of the electron gas is
provided by highly efficient intrasubband LO-phonon and electron–electron scatter-
ing. Intersubband relaxation is dominated by electron–LO-phonon scattering for
subband separations exceeding the LO phonon energy, but even at smaller energy
spacings relaxation is fast due to carrier-carrier scattering (Hartig et al. 1998).
Besides electron–electron scattering intersubband transport is controlled by scatter-
ing at ionized impurities.

A QCL is a complex structure comprising a large number of layers; its fabrication
requires an extraordinary precision of growth with respect to layer thickness and
homogeneity. QCLs were realized with many materials such as, e.g., InGaAs/InAlAs
on InP substrate for the mid-IR range, GaAs/AlGaAs on GaAs for the terahertz region,
and InGaAs/AlAsSb on InP for short-wavelengths in the μm range; the short- wave-
length limit is determined by the conduction-band offset between wells and barriers. A
survey of fabricated quantum-cascade lasers and their temperature performance is
given in Fig. 15. The achievements in the development of devices are impressive;
continuous-wave operation is produced at room temperature with watt-level output
power and power conversion (wall-plug) efficiencies above 20% (over 50% at 77 K).
For reviews see Capasso (2010), Faist (2013), and Vitiello et al. (2015).

QC lasers find numerous applications. The high atmospheric transmission in the
3–5 and 8–12 μm wavelength ranges allows for long-distance remote chemical
sensing using laser-absorption spectroscopy, since most chemicals have distinctive
absorption lines in the 3–16 μm wavelength range; further applications include
optical free-space communication, laser radar, and medical imaging.

Without application of a bias a QCL can also be operated as a photovoltaic
detector. The performance can, however, be substantially improved by specifically
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Fig. 14 Conduction-band
edge Ec of a quantum cascade
laser (green lines) with
alternating injector and QW
sections. Red horizontal lines
are energy states of the
coupled QWs, square of the
wavefunctions in the QWs
and the injectors are drawn
bluish and green, respectively,
green shadings in the injector
sections indicate miniband
regions. Red arrows signify
lasing transitions
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designing the quantum-cascade structure for detection, because the dependence of
energy levels and wavefunctions on the bias is taken into account in the laser design.
An advantage of quantum-cascade detectors over well-established mid-IR detector
types is their designable operation wavelength, low-noise photovoltaic operation
mode, and the ability of room-temperature operation. For more information see
Giorgetta et al. (2009) and Harrer et al. (2016).

High-Field Domains In a superlattice with weakly coupled quantum wells a high-
field domain may appear at high bias. Such stable stationary domains lead to a
characteristic sawtooth pattern in the current–voltage characteristics7 as shown in
Fig. 16a (Esaki and Chang 1974; Kwok et al. 1995). They were also found in
quantum-cascade lasers (Lu et al. 2006). The domain appears if carriers cannot
tunnel resonantly through the entire superlattice due to a misalignment of the QWs
by the applied bias; the resistance then increases at one of the QWs, where most of the
applied bias drops at his leading barrier. Now tunneling may occur from the ground
state E1 to an excited state E2 with a subsequent relaxation by phonon emission as
illustrated in Fig. 16b. The voltage drop at the QW is then V ffi (E2�E1)/e. A
subsequent bias increase will appear across this domain until the ground level rises
to level E2 of the next well. The first domain forms at the anode and then extends one
after the other towards the cathode (Choi et al. 1987b). Consequently 48 negative
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Fig. 15 Emission wavelength of various quantum-cascade lasers, showing room-temperature
operation in the mid-IR range and low-temperature operation in the THz range. Squares and circles
denote continuous-wave and pulsed operation, respectively (After Vitiello et al. 2015)

7The current is usually measured by applying a slow continuous sweep of the bias. As the branches
overlap, different parts of the branches are observed for sweep-up and sweep-down.
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conductance peaks were observed in a superlattice with 49 periods. From optical
measurements an energy difference in reasonable agreement with the voltage drop per
superlattice period measured in transport was determined.

The instability of a homogeneous field distribution in the superlattice also gives
rise to a self-sustained oscillatory behavior at fixed bias in the range of negative
differential conduction. The oscillations originate from the formation, motion, and
recycling of the domain boundary inside the superlattice (Kastrup et al. 1997) and
allow for tunable generation of frequencies over 100 GHz (Schomburg et al. 1999).
Also bistability between stationary and oscillatory behavior has been observed at
fixed bias within the first plateau of the current–voltage characteristics (Zhang et al.
1997); for a review see Wacker (2002).

3 Transport in 1D Structures

Fabrication of 1D and 0D structures requires confining barriers in addition to those
obtained by the epitaxy of 2D layers discussed in the previous sections. Most
progress for transport structures was achieved by imposing such confinement later-
ally on two-dimensional electron gases8 (2DEGs) using lithography techniques: the
definition of negatively biased gates depletes the underlying 2DEG to the region
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Fig. 16 (a) Measured current–voltage characteristic in a superlattice with 40 periods of 9 nm GaAs
wells and 4 nm AlAs barriers. The sweep-up was measured from 0 to �5 V and the sweep-down
vice versa (After Kastrup et al. 1994). (b) Band diagram of the superlattice for several values of the
average potential drop per period

8We focus again on electron gases; one-dimensional transport structures made using 2DHGs
(two-dimensional hole gases) were studied as well, see, e.g., Danneau et al. (2006).
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between the gates. This approach creates smooth lateral confinements with designed
shapes and tuning ability. Compared to the confinement of a heterostructure the
potential is quite shallow, yielding subband splittings in the range of only some meV
in the transverse direction. On the other hand, the straightforward approach of
creating high lateral barriers by etching a 2D system is often hampered by the high
defect density introduced at the sidewall interfaces for the required small scale; these
defects may give rise to pinning of the Fermi level and a high density of centers for
nonradiative recombination. Growth of nanowires (▶Sect. 2.2.2 of chapter “The
Structure of Semiconductors”) is a further technique for fabricating quantum wires
with high lateral barriers. For a brief survey on fabrication techniques see Thornton
(1994), Ahmed and Nakazato (1996).

Split-Gate Lateral Potential A widely used method for fabricating a
one-dimensional channel, referred to as quantum wire (QWR), is the split-gate tech-
nique using two parallel gate electrodes with a narrow channel in between on top of a
2DEG. At negative bias, the 2DEG is depleted underneath these electrodes due to the
electrostatic potential, leaving an undepleted 1D channel between the electrodes.

The negative bias applied to the split gate creates an approximately parabolic
potential, which laterally confines the 2DEG to a small region as illustrated in
Fig. 17a.When charge accumulates in the 2DEG for less negative gate bias, the potential
approximates a truncated parabola with a flat bottom (Laux et al. 1988). The calculated
potential of a GaAs/Al0.26Ga0.74As 2DEG shown in Fig. 17b for a 400 nm wide slit
between the gates yields nearly equidistant 1D subbands with ~5 meV spacing. As the
effective channel width increases at less negative bias, the level spacing decreases.

The density n2D of the electrons in the channel and the effective width W of the
channel depend on the applied bias voltage Vg, see Fig. 17b. Both quantities were
found to decrease linearly with Vg as illustrated for a GaAs/AlGaAs structure in
Fig. 18; the magnitude of the effect depends on the device geometry. An independent
control of n2D andW can be achieved by placing an additional top gate on top of the
slit between the split-gate electrodes, vertically separated by an insulating layer
(Tkachenko et al. 2001); usually, however, the more simple assembly illustrated in
Fig. 17a is used.

3.1 Diffusive and Ballistic Transport

In the discussion of conductivity in previous chapters we used a classical description
of the electron dynamics (chapter ▶ “Carrier-Transport Equations”), including the
quantum-mechanical Fermi-Dirac statistics (chapter ▶ “Equilibrium Statistics of
Carriers”). For a conductor we derived Ohm’s law

j ¼ σ F; (14)

which relates the local current density j to the applied electric field F. σ is the
conductivity, which, for a 3D conductor of width W, thickness W, and length L, is
related to the conductance G by
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G ¼ W2=L
� �

σ: (15)

In two dimensions Eq. 15 reads

G ¼ W=Lð Þ σ; (16)

and G and σ have the same unit. Equations 14, 15, and 16 hold for large homoge-
neous conductors, where the current is given by a diffusion process characterized by
many scattering events as illustrated in Fig. 19a; the mean free path λ of a carrier is
much smaller than the sample dimensions W and L. This regime is referred to as
diffusive transport. Diffusive scattering increases the resistivity ρ = σ�1.
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In a quantum wire, the sample dimensionsW and L get smaller than the mean free
path λ. This is the ballistic transport regime depicted in Fig. 19b. There may occur
scattering at boundaries, but – for smooth confinement potentials – such scattering is
found to be predominantly specular with a probability close to unity (Thornton et al.
1989). In contrast to diffusive scattering, specular scattering at a boundary with a
roughness on a length scale smaller than the Fermi wavelength does not increase the
resistivity. In this case the electron motion along the wire is not affected by the lateral
confinement; a quantum wire defined by a 2DEG confined along the z direction and
by an additional lateral smooth confinement then maintains the resistivity value of
the 2DEG. The resistivity refers in the classical description to the mean time τ
between two scattering events9 and yields ρ ¼ mn= e2n2Dτ Tð Þð Þ. At zero temperature
a residual resisitivity remains due to elastic scattering at defects.

Between the ballistic and the diffusive regimes there is an intermediate range
referred to as quasi-ballistic. It is characterized by a mean free path λ larger than the
wire width W but smaller than the wire length L. For a review on the transport
regimes and scattering mechanisms see Beenakker and van Houten (1991).

3.2 Quantization of Conductance

Evidence for ballistic transport is found in the conductance of a quantum wire
fabricated by the split-gate technique described above. At sufficiently high negative
bias the depletion regions of both gates overlap and the 2DEG gets completely
depleted; the conductance G hence drops to zero. As the negative gate voltage is
reduced the number of occupied channels below the Fermi level increases.
In samples with negligible scattering the conduction then increases in steps as
shown in Fig. 20 (Wharam et al. 1988; van Wees et al. 1988). The step height10 is
given by

y

x

b

L

y

x

a

W

Fig. 19 Trajectories of carriers in (a) the diffusive and (b) the ballistic transport regime in a
conductive wire. Red circles indicate scattering at defects

9In the classical description the phase correlation of the carrier wavefunctions before and after
scattering are destroyed. In the description of quantum diffusion the phase correlation is limited by
inelastic scattering events only; the corresponding mean scattering time τϕ is at low temperatures
significantly larger than τ.
10The conduction step 2e2/h corresponds to a resistance of 12907 Ω.
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ΔG ¼ 2e2

h
; (17)

The quantization of the conductance G in integer multiples of 2e2/h originates
from ballistic transport in the 1D quantum wire (Thornton et al. 1986). The factor 2 is
a consequence of the spin degeneracy of the transported electrons. If the degeneracy
is lifted, the electrons become spin-polarized and an additional conductance plateau
is observed at 0.5(2e2/h); this occurs in a large external magnetic field.11

The importance of low scattering is illustrated in the simulation shown in Fig. 21.
Ionized donors are assumed to be distributed at random in a δ-doping layer separated by
a 42 nm spacer from the 2DEG with n2D = 2.5 � 1012 cm�2, and negatively biased
split-gate contacts define a 300 nm wide and 600 nm long channel (Nixon et al. 1991).
For a uniform (averaged) donor potential the calculated conductance shows pronounced
quantized steps, while the accuracy of quantization is reduced by scattering from the
random potential of the donors. The quantization eventually disappears at sufficiently
strong disruption of ballistic transport, yielding diffusive conduction.

The occurrence of the conductance steps may be understood within the simple
model for noninteracting electrons. We consider a 2DEG created by a heterostructure
with a potential along z like that illustrated in Fig. 2 with only the lowest state En = 1

occupied. An additional parabolic potential along y like that shown in Fig. 17 creates
the 1D quantum wire (QWR) along the x direction. An electron with momentum ħkk
moving along this x direction behaves like a free electron described by a plane wave
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Fig. 20 Differential
conductance G(Vg) of a
quantum wire after correction
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11The degeneracy may already be lifted at zero magnetic field if there is a spontaneous spin
polarization due to electron interactions (Chen et al. 2008), see the section on the “0.7 conduction
anomaly” below.
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with kinetic energy ħ2k2k= 2mnð Þ. Perpendicular to the QWR along y the energy is

quantized into levels El of subbands. The single occupied 2D subband of the 2DEG
with quantum number n = 1 hence splits into a number of higher lying 1D subbands
specified by their quantum number l, see also ▶ Sect. 3.3 of chapter “Bands and
Bandgaps in Solids”; since the confinement along y is usually quite shallow, the
energy spacing of the 1D subbands is on the order of only a few meV, and several 1D
subbands may easily be occupied. The total energy of the electron above the
conduction-band edge Ec is

En, l ¼ En þ El þ ħ2k2k= 2mnð Þ, n, l ¼ 1 , 2 , 3 , . . . ; (18)

where El for a parabolic potential is given by the energies of a harmonic oscillator
El ¼ lþ 1

2
ð Þ ħω. The total wavefunction of the electron is described by

ψn, l rð Þ / φn zð Þ ϕl yð Þ exp i kkx
� �

: (19)

The electron wave in the QWR is analogous to an electromagnetic wave in a
waveguide; the subbands are hence also referred to as modes and the QWR as a
quantum-wire waveguide.

If a voltage Vsd is applied between source and drain, i.e., between the two ends of the
QWR, with a higher potential at the source contact (see inset of Fig. 20), a net flow of
electrons moves from source to drain. The velocity of an electron in a particular subband
state isvx ¼ ħkk=mn. The total current I is obtained by integrating evx over the k states in
a small energy range of 	eVsd/2 around the Fermi energy EF,
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Fig. 21 Calculated conductance for a 600 nm long channel with a smooth potential (curve A) and
potential fluctuations from a random distribution of ionized donors (curves B to D) (After Nixon
et al. 1991)
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I ¼
ðEFþeVsd=2

EF�eVsd=2

evx g1D dE; (20)

where the one-dimensional density of states g1D in the quantum wire equals 1/(hvx).
The current is hence

I ¼ e

h

ðEFþeVsd=2

EF�eVsd=2

dE ¼ e2

h
Vsd; (21)

yielding a conductance G = I/Vsd = e2/h per spin direction. If we account for both
spin directions and N occupied subbands, we obtain for the total conductance

G ¼ N
2e2

h
, N ¼ 0 , 1 , 2 , :::: (22)

The 0.7 Conduction Anomaly A close inspection of the first conduction step
shows a feature near 0.7 � (2e2/h), i.e., below the first plateau at 2e2/h (Thomas
et al. 1998). The structure is observed at zero magnetic field and may vary in
appearance from a resonance to a plateau; it is called the 0.7 structure. If an
increasing in-plane magnetic field is applied, the conductance value of the 0.7
structure smoothly approaches the value 0.5 � (2e2/h); e2/h represents the normal
spin-split value of the conductance when the spin degeneracy is lifted by a
magnetic field. The continuous transition from zero field to this value indicates
an origin from the electron spin. The 0.7 structure appears at a temperature below
5 K, but it disappears below 1 K by merging with the 2e2/h plateau. The
temperature behavior shows an Arrhenius dependence, indicating an origin at
the spin-degenerate 2e2/h state (Kristensen et al. 2000). Although the nature of
this structure is not yet fully understood, an assignment to spin polarization
induced by electron interactions is generally agreed. For a review see Berggren
and Pepper (2010).

3.3 Landauer-Büttiker Formalism

The classical picture of conduction based on electrons being localized in space was
generalized by Landauer (1957) and Büttiker (1986), assuming a nonlocal character
of the current flow by viewing conduction as a transmission problem. Such a
description includes contacts on the same level as the mesoscopic active part of
the device and is also appropriate for describing the conductance of multiple-
terminal devices.

We consider the multiterminal structure depicted in Fig. 22 with an active region
connected with leads to electron reservoirs, which are individually fixed at some
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chemical potential EF,i (here i = 1 . . . 5). Analogous to Eq. 20 an electron fed from
any reservoir i to the active region contributes to a current by

dIi ¼ evi g EF, i � EF, 0
� �

; (23)

where EF,0 is an arbitrarily chosen reference energy (e.g., the lowest potential of all
reservoirs). For a one-dimensional wire the total current (per spin direction) in lead i is
e=hð Þ � EF, i � EF, 0

� �
, see Eq. 21. The actual current injected from reservoir i is

reduced by a fraction reflected back into reservoir i, expressed by a reflection coefficient
Rii, and a part transmitted into reservoir i from all the other reservoirs j, analogously
expressed by transmission coefficients Tij. This yields a current per spin direction

Ii ¼ e

h
1� Riið ÞEF, i �

X
j 6¼i

TijEF, j

" #
: (24)

When the current in lead i is carried byN occupied subbands, the transmission in lead
i is calledmultimoded, and the term 1� Riið Þ in Eq. 24 is replaced by Ni � Riið Þ, yielding

Ii ¼ e

h
Ni � Riið ÞEF, i �

X
j 6¼i

TijEF, j

" #
: (25)

The reflection and transmission coefficients then comprise all electrons in all modes;
since reflection may also occur from an electron in mode n to a mode m and an
electron may change the mode when transmitted from reservoir i to reservoir j, we
obtain for the coefficients

Rii ¼
X
m, n

Rii,mn and Tij ¼
X
m, n

Tij,mn: (26)

I
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EF,2

EF,1

EF,5
Fig. 22 Schematic of a five-
terminal structure with all
contacts kept at individually
fixed Fermi energies
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It is instructive to apply the general Landauer-Büttiker formalism to a 1D
(two-terminal) conductor like those depicted in Fig. 19. The electrons in all modes
N1 fed from wire 1 into the conductor are either reflected back into wire 1 or
transmitted into wire 2, yielding by conservation of the carrier flux N1 = R11 + T12
in terminal 1 and N2 = R22 + T21 in terminal 2; the transmission coefficients are
T21 = T12 
 T. Inserting this into Eq. 24 we obtain a conductance (per spin direction)

G ¼ I=V1, 2 ¼ I e= EF, 1 � EF, 2
� � ¼ e2

h
T: (27)

Equation 27 is the single-channel Landauer formula.12 If we consider ballistic
conduction, each electron injected from one reservoir into the conductor will reach
the other reservoir without any backscattering. The transmission probability T in the

conductor is then given by T12 ¼
X

m
T12,m ¼

X
m
δn,m ¼ N, with the number N of

occupied modes in the conductor. Considering the spin degeneracy (factor 2) yields
the conductance of the ballistic conductor given in Eq. 22.

The general result of Eq. 25 can also be applied to multiterminal devices such
as a four-terminal Hall probe, where a current flows between one pair of terminals and
the voltage is measured across the other pair. For examples see Ferry et al. (2009).

4 Zero-Dimensional Transport

In a zero-dimensional semiconductor the electronic states are completely quantized,
see ▶ Sect. 3.4 of chapter “Bands and Bandgaps in Solids”. The electronic states in
such a quantum dot are sensitive to the number of confined electrons due to their
mutual Coulomb interaction. Transport through quantum dots is performed by
connections to surrounding carrier reservoirs; generally transport occurs via tunnel-
ing through thick barriers with a tunnel resistance exceeding the quantum resis-
tance13 h/e2. Adding a single electron to the dot may give rise to a Coulomb blockade
of electron transfer, suppressing further transport (Kouwenhoven and McEuen
1999). Thereby single-electron turnstile devices can be realized with interesting
applications in metrology.

12Instead of a factor T also a factor T/(1�T ) = T/R is found in literature. The difference arises from
the location where V1,2 is measured. In a two-terminal measurement with I and V measured through
the same pair of leads a factor T results, while an ideal (noninvasive) four-terminal measurement
yields a factor T/R; for a small T of the conductor both measurements coincide; for details see
Engquist and Anderson (1981).
13This requirement for Rtunnel is related to Heisenberg’s uncertainty relation: quantum fluctuations in
the number of electrons on the dot due to tunneling through the barriers must be much less than one
for the duration of measurement. In addition, the charging energy must exceed the thermal energy
(see text). The characteristic discharging time of the dot is then Δτ = RtunnelCdot, and the uncer-
tainty relation yields ΔEΔτ = (e2/Cdot) RtunnelCdot > h, or Rtunnel > h/e2.
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The size of a quantum dot required for a sizeable Coulomb blockade can be
estimated by a simplified consideration. We imagine a flat circular disk above a
grounded conductive plane with parallel orientation. When the disk is charged by
transferring a charge Q to it, it adopts an electric potential V ¼ Q=C , where the
capacitance of the disk depends on its radius r and the distance d above the plane; for
r � d the capacitance is C ¼ 8e0er r , with er the dielectric constant of the insulator
surrounding the disk. The work W performed to charge the disk14 is stored in the
electrostatic energy given byW ¼ Q2= 2Cð Þ. If the energy e2/(2C) is significantly larger
than the thermal energy kT, the related voltage change gets relevant compared to thermal
voltage fluctuations. This voltage represents a barrier for further electron transfer. The
condition is met if C � e2/(2kT), or r � e2/(16ekT). Applying a typical er = 13, we
obtain a range well below 10 nm at T = 300 K; although Coulomb blockade was
observed with a very small (~2 nm) dot at room temperature (Shin et al. 2011), most
structures are larger and observation requires very low temperatures.

Fabrication of such quantum dots for charge transport is often based on 1D
structures discussed in Sect. 3 with additional constrictions introduced along the
wire direction. Such barriers are readily realized when the split-gate technique
defining depletion regions in a two-dimensional electron gas is applied. Often
more sophisticated geometries with additional gates are applied to obtain an inde-
pendent control of the barriers along the wire and the electron density. Besides these
lateral quantum dots also vertical quantum dots were fabricated by etching small
mesa structures from layers defining source, dot, and drain regions (e.g., Reed et al.
1988) or nanowires (e.g., Björk et al 2004); for a brief review of fabrication
techniques see Ahmed and Nakazato (1996).

4.1 Single-Electron Tunneling

The effect of Coulomb blockade can be well observed with a single-electron transis-
tor. This three-terminal device illustrated in Fig. 23a consists of source and gate
electrodes, which are connected through tunnel junctions to the common quantum-
dot island with a low capacitance. The quantum dot is decoupled from the environ-
ment by thick barriers, which allow to confine a defined number N of electrons. An
additional gate contact provides a capacitive electrostatic coupling to the dot and
continuously controls the electrochemical potential of the electrons in the dot.

The energy levels of the dot are shown in Fig. 23b; in a lateral quantum dot
they are approximately evenly spaced with spacings ΔE. The (spin-degenerate)
spacing can be estimated for a disk-shaped dot15 by ΔE ¼ ħ2= mnr

2ð Þ ; using the

14If the considered disk is replaced by a sphere, the factor 8 in the capacitance formula is replaced by
a factor 4π. The simple consideration in the text does neither include single-particle energies of a dot
with charge Ne nor external charges or capacities (e.g., from a gate electrode).
15The level spacing is given by the scaling ħ2π2/(mnL

2) times a factor, which depends on the
dimensionality of the “dot” (Kouwenhoven andMcEuen 1999); L is the size of the confining box. In
1D, 2D, and 3D the factors are given by N/4, 1/π, and 1/(3 π2N ), respectively. The spacing in lateral
dots (2D) does not depend on the number of confined electrons N.
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effective electron mass in GaAs (0.067 � m0) and a radius r = 200 nm, we obtain
ΔE = 0.03 meV. Observation of such small spacing requires thermal energies well
below this value. The change of the electrostatic potential for such a dot by adding an
extra charge e is given by the charging energy e2=C ¼ e2= 8πer e0 rð Þ, yielding with
er = 13 a value of 1 meV.

For simplicity we assume a dot capacitance being independent on the number of
confined electrons, a coupling to the leads which does not affect the energies in the
dot, and zero temperature (Kouwenhoven et al. 1997). We first consider a fixed gate
voltage Vg ¼ EF, source � EF, drain

� �
=e , with EF, source � EF, drain < ΔE . The single-

particle states EN, measured from the bottom of the conduction band in the dot,
represent excitations of the dot with constant electron number N; they are occupied
up to a maximum electron number N, for which the condition EF,dot(N ) < EF,source

ffi E
F,drain

is met. Adding one electron to the dot requires an energy

EF, dot N þ 1ð Þ � EF, dot Nð Þ ¼ ΔEþ e2=C; (28)

where the single-electron charging energy e2/C creates an energy gap at the Fermi
energy between the occupied and unoccupied states, see Fig. 23b, c. This Coulomb
gap prevents tunneling through the dot, if EF,dot(N + 1) > EF,source ffi EF,drain. This
effect is the previously introduced Coulomb blockade.

When Vg is increased to achieve EF,source > EF,dot(N + 1), an electron can tunnel to
the dot as illustrated in Fig. 23b. The conduction-band edge Ec in the dot is then raised
by the charging energy e2/C as shown in Fig. 23c. Since EF,dot(N + 1) exceeds EF,drain,
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Fig. 23 (a) Schematic of a single-electron transistor with a lateral quantum dot coupled to source
and drain by tunnel barriers. (b) Energy diagram of the device with bias Vsd adjusted for tunneling into
an empty state of the dot. Solid and dotted red lines signify occupied and empty levels in the dot,
respectively. (c) Energies with increased electrostatic dot energy eφdot N þ 1ð Þ ¼ eφdot Nð Þ þ e2=C
due to the added electron
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one electron can now tunnel from the dot to the drain; this causes the potential in the
dot to return back to EF,dot(N). Since Vsd is unchanged, another electron can now
tunnel to the dot and the cycle repeats. The device hence operates as an electron
turnstile, producing a current by single-electron tunneling. Such behavior is interesting
for the realization of a quantum standard for current (Rossi et al. 2014) or
capacity (Keller et al. 1999) by generating a current defined by I ¼ ne f or a capacity
C ¼ ne=V , where n is an integer and f is the frequency of an externally applied ac
pumping signal. The time constant RtunnelCdot limits the rf frequency, but proper gate
tuning or phase-shifted pumping (Blumenthal et al. 2007) yield high frequencies up to
3.4 GHz and currents of about 100 picoamperes (Rossi et al. 2014).

When Vsd (smaller than the level spacing ΔE) is kept constant and the gate
voltage Vg is continuously increased, the conductance G changes periodically from
zero in Coulomb-blocking states to finite values in the conductive states described
above (Meirav et al. 1990). Such oscillation of G with sweeped gate voltage is
shown in Fig. 24. At zero conductance the number of electrons on the dot is fixed and
equals an integer N. In the subsequent valley the number of electrons is increased to
N + 1. In the conductive states between the valleys the number alternates between
N and N + 1 and leads to the current flow.

When Vg is kept constant and the source-drain voltage Vsd is continuously
increased, the conductance G exhibits a nonlinear I-Vsd characteristic with a Cou-
lomb staircase: each time the number of electrons on the dot increases by one a new
current step occurs; see, e.g., Kouwenhoven et al. (1991).
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Fig. 24 Coulomb oscillations in the conductance as a function of the gate voltage, observed for a
1D channel with constrictions defining a dot region (inset) (After Meir et al. 1991). The stairs at the
top of the measured curves indicate the number of electrons in the dot
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4.2 Coulomb Blockade in Few-Electron Dots

In dots carrying many electrons the simple approach of expressing the Coulomb
interaction among the electrons in terms of a constant capacitance holds reasonably
well; the Coulomb oscillations (Fig. 24) are then usually periodic. In a small dot with
just a few electrons, the electron–electron interactions and quantum confinement
effects become stronger, and the spacings between the peaks of Coulomb oscillations
become irregular (see, e.g., Tarucha et al. 1996). This effect is well studied in vertical
dot structures comprising heterostructure barriers, e.g., mesa structures or quantum
wires. Tunnel barriers in such structures are abrupt and thin; these barriers are also
less affected by the gate potential, which strongly increases the tunnel barriers in
lateral dots when less than some 20 electrons are to be confined.

The conductance of a single-electron transistor fabricated from an InAs nanowire
with an InAs dot section clad by InP barriers is shown in Fig. 25. The data show the
conductance (in a gray scale) as a function of the source-drain voltage Vsd, which is
required for current flow at a given gate voltage Vg; a horizontal cut, i.e., G(Vg) at a
fixed Vsd, yields Coulomb oscillations like those shown in Fig. 24. We observe the
irregular spacings of Gmaxima at Vsd = 0 for the small electron numbers N noted in
the figure. The yellow regions with zero conductance represent Coulomb blockades
and are referred to as Coulomb diamonds due to their shape. The shape depends on
the confining potential and hence on the particular device. The Coulomb diamond in
the region N = 0 does not close even for more negative gate voltage since the dot
contains no electron in this range.

There is a rich structure in stability diagrams like that of Fig. 25 comprising
information on electron–electron interaction, spin, and the confining potential. For a
more detailed discussion on zero-dimensional transport see Kouwenhoven et al.
(1997, 2001), Reimann and Manninen (2002).
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Fig. 25 Stability diagram of electron tunneling, given by the source-drain voltage Vsd at which
current starts to flow for a given gate voltage Vg. Dark shadings indicate peak maxima in the
conductance G(Vg), diamond-shaped regions correspond to Vg–Vsd combinations where Coulomb
blockade occurs; numbers indicate electron occupations on the dot (After Björk et al. 2004)
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5 Summary

In two-dimensional semiconductor structures the in-plane carrier mobility can reach
very high values up to 107 cm2/(Vs) at low temperature, if the electron gas is
spatially separated from ionized donor dopants by applying modulation doping.
Occupation of only the lowest 2D subband is favorable to avoid intersubband
scattering. At higher temperature, the mobility is mainly limited by scattering at
optical phonons. Carrier transport perpendicular to the confining barriers yields
lower mobility. For thin barriers tunneling occurs; the transmission coefficient
increases for smaller barrier height and smaller effective mass. In a quantum well
clad by thin barriers or a superlattice with thin barriers resonant tunneling occurs
when the energy of incident electrons matches a quantized energy level; at increased
bias a range of negative differential resistance is observed. Resonant tunneling and
radiative intersubband relaxation is exploited in quantum-cascade lasers for designed
emission wavelength in the mid-IR range.

Additional lateral confinement leads to a one-dimensional quantum wire, where
each subband of the 2D semiconductor splits into 1D subbands with free carrier
motion only along the wire direction. The split-gate technique provides a widely
applied means to create such lateral confinement with tunable width and electron
density of the quantum wire. For stronger lateral confinement etched mesa structures
or nanowires are used. In quantum wires ballistic transport is observed, leading to
quantization of the conductance in integer multiples of 2e2/h.

In a zero-dimensional quantum dot the electronic states are completely quantized
and sensitive to the number of confined carriers. Transport through such a dot is
controlled by the charging energy for single electrons; conductance proceeds by
tunneling of individual electrons at certain bias values, while a Coulomb blockade
yields zero conduction at other bias.
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Abstract
With a large density of impurities or other lattice defects, the carrier transport
deviates substantially from the classical transport within the band. It is carried
within energy ranges (within the bandgap), which are determined by the defect
structure. Heavy doping produces predominant defect levels split into two impu-
rity bands. Below a density to permit sufficient tunneling, carrier transport
requires excitation into the conduction band; at higher defect density, a diffusive
transport within the upper impurity band becomes possible. At further increased
defect density, metallic conductivity within the then unsplit impurity band occurs.

In amorphous semiconductors, tunneling-induced carrier transport can take
place within the tail of states, which extend from the conduction or valence band
into the bandgap. Major carrier transport starts at an energy referred to as the
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mobility edge. With statistically distributed defects, only some volume elements
may become conductive. These volume elements widen at increasing tempera-
ture, eventually providing an uninterrupted percolation path through a highly
doped or disordered semiconductor with a density-related threshold of
conduction.

Conductance in organic semiconductors is governed by static and dynamic
disorder. Band conductance in small-molecule crystals shows a decreasing carrier
mobility at increased temperature with a power law similar to that of inorganic
semiconductors. Small-molecule or polymer semiconductors with dominating
static disorder show hopping conductance with a typically low but increasing
mobility at higher temperatures.

Keywords
Amorphous semiconductor � Band conductance � Dispersive transport � Heavy
doping � Hopping conduction � Hopping mobility � Impurity band �Mobility edge
� Organic semiconductor � Percolation � Phonon-activated conduction �
Tunneling-induced transport � Variable-range hopping

1 Impurity-Band Conduction

In addition to causing scattering, lattice defects can contribute directly to the
carrier transport in two ways. They permit direct quantum-mechanical exchange
of carriers from defect to defect (i.e., tunneling from one trap level to the next), or
by thermal ionization of a carrier from a trap level into the band, intermediate
transport within the band, and then a retrapping as shown in Fig. 1. The first type
of carrier transport is called tunneling or impurity-band conduction; the second
type is known as hopping conduction or phonon-activated conduction. These
types of carrier transport are of major importance in highly disordered, highly
doped, or amorphous semiconductors. For reviews, see Shklovskii and Efros
(1984) and Mott (1993).

E

x

a
E

x

b

Ec

Ev

Fig. 1 (a) Impurity-band
conduction and (b) hopping
conduction in highly doped
semiconductors
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1.1 Concept of Impurity Bands

In a rather simple model, the overlapping hydrogen-like donor states can be used to
form a Hubbard band (Hubbard 1963), which is centered about their ground-state
energy. With partial compensation, there are Nd�Na free states in this Hubbard band,
and conduction can occur (Adler 1980). The band width ΔEB is given by the overlap

integral between equal centers at distance 1=
ffiffiffiffi
N3

p
, where N is the density of

uncompensated donors (= Nd�Na). This bandwidth is roughly equal to the interac-
tion energy

ΔEB ffi e2
ffiffiffiffi
N3

p

4πestate0
: (1)

The effective mass within this narrow impurity band is much larger than in the
adjacent carrier band; hence, the impurity-band mobility is usually quite small
(< 10�2 cm2/(Vs)). The mobility-effective mass in this impurity band should not
be confused with the effective mass of a Bloch electron within the conduction band,
which is hence related to each quasihydrogen state of the donor.

The carrier transport within such a narrow impurity band can no longer be
described by the Boltzmann equation. The carrier transport must now be evaluated
from the quantum-mechanical expectation value for the current, which is given by
the Kubo formula (Kubo 1956, 1957). A somewhat simplified version was devel-
oped by Greenwood (1958) in which the conductivity can be expressed as

σ ¼ �
ð
σ0 Eð Þ @f

@E
dE, (2)

with

σ0 Eð Þ ¼ 2π e2ħ2V
m2

n

g Eð Þf g2
ð
ψ � E0ð Þ @

@r
ψ Eð Þdr

����
����
2

, (3)

being proportional to g(E), the density of states, and the matrix element describing the
electron transitions from E to E0; f is the Fermi distribution function and V is the sample
volume. Equation 2 is referred to as the Kubo-Greenwood formula, which, when
evaluated for E = E0, gives the tunneling current between equivalent defect centers.

The distance between the impurities is not constant but fluctuates statistically; the
impurity band is therefor substantially undulated. It is broader where impurities are
closer together and narrower where they are more widely spaced.

Since there is no scattering during the tunneling process between adjacent defects,
the tunneling is essentially temperature-independent. Except for thermal expansion,
which has a small influence on the average distance between defects, and except for
the broadening of the defect levels with increased lattice oscillation, the trap
conductivity is almost temperature-independent when the Fermi level lies close to
the extended states. Trap conductivity is important in highly doped semiconductors,
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semiconducting glasses, and inorganic semiconductors, that is, in all semiconductors
with a high density of defects (see Sect. 4).

When carriers are created by optical excitation, trap conductivity persists to low
temperatures and has a quasi-metallic behavior (Mott and Davis 1979). We will now
describe in more detail the impurity band.

1.2 The Impurity Band

In semiconductors with high doping densities (> 1018 cm�3), shallow donors or
acceptors can come close enough (<100 Å) to each other so that their eigenfunctions
overlap significantly and therefore permit the exchange of carriers directly, without
the involvement of the adjacent bands. Consequently, the defect level is split and
develops into a narrow impurity band-see Fig. 1a. Such impurity-band formation is a
basic effect that occurs whenever a defect level is present at sufficient density. The
formation of an impurity band is widely applied in blocked-impurity-band devices,
where a heavily – but not degenerately – donor-doped layer creates an impurity
band; this region is used as an infrared-active layer in IR photo detectors, where an
incoming photon lifts an electron from the impurity band to the conduction band
(Haegel et al. 2003, Wang et al. 2015).

The term “band” should, however, be used with caution, as it requires a more
detailed density-of-states analysis and a distinction between localized and
delocalized states; the latter are true band states. In principle, the Anderson Model
(▶ Sect. 1.1 of chapter “Defects in Amorphous and Organic Semiconductors”)
should be used to obtain some information about the localization aspect of the states.
We will first discuss this behavior in a rather general fashion.

1.2.1 The Lifshitz-Ching-Huber Model
In the Lifshitz model, a statistical distribution of N identical potential wells is
analyzed to obtain a density-of-states distribution of these defect levels and to
identify a critical density at which the states within the center of the distribution
become delocalized (Lifshitz 1965). This model is a forerunner of the Mott version,
which is used to distinguish localized and nonlocalized states in band tails, see
▶ Sect. 1.2 of chapter “Defects in Amorphous and Organic Semiconductors” and
Sect. 4.1.

When two identical defect centers are brought together, they show a split of
eigenstates of the form

ψ s ¼
1ffiffiffi
2

p ϕ1 þ ϕ2ð Þ and ψ a ¼
1ffiffiffi
2

p ϕ1 � ϕ2ð Þ with Es � Ea ¼ 2I, (4)

where ϕ1 and ϕ2 are the wavefunctions of the two centers, Es and Ea are the energies
of the symmetric and antisymmetric states ψ s and ψa, respectively, and I is the
transfer integral (▶Eq. 2 of chapter “Defects in Amorphous and Organic Semi-
conductors”). When a third center is approaching at an arbitrary distance, it will not,

1056 Carrier Transport Induced and Controlled by Defects



however, participate in the resonance splitting. This is due to the fact that the doublet
of the two centers closest to each other is far enough apart to be out of resonance with
the third center. Hence, the Lifshitz model yields a band of localized states for
statistically distributed traps. Only when these defects are close enough to fulfill

N1=3r0 ffi 0:3, (5)

with r0 as the fall-off radius of the wavefunction of an isolated defect (= aqH for a
hydrogen-like defect) can delocalization of the states in the center of the band occur
(Ching and Huber 1982). This result is close to the Mott-Anderson result for
localization (see ▶Eq. 17 of chapter “Defects in Amorphous and Organic Semi-
conductors”. When interacting with each other, the splitting of the defect states also
gives rise to a splitting of this defect band, causing the density of states to have a
minimum near the center of the distribution.

1.2.2 Coulomb Gap and Mott Transition
The density minimum of the defect levels near the center of the density-of-states
distribution may become complete in (partially) compensated semiconductors with a
gap between filled and empty states. Such splitting is caused by the long-range
Coulomb interaction of localized electrons (Knotek and Pollak 1974; Efros and
Shklovskii 1975) and occurs at the position of the Fermi level. For an inclusion of
static screening, see Mazuruk et al. (1989); such screening affects the density of
states at the Fermi level and can replace the Coulomb gap by a dip in the density of
states.

It can be shown that the Coulomb gap appears only for localized states. When the
density of states becomes large enough, so that delocalization occurs (see below),
then the Coulomb gap disappears (Aronov et al. 1979; Altshuler et al. 1980).

The impurity band with localized states cannot contribute to the conductivity at
T= 0 K since it has an energy gap between filled and empty states. When the density
of impurities is increased to an extent that delocalization occurs at the Fermi level,
the gap disappears, and quasi-metallic conductivity is observed. This transition
within an impurity band is a Mott-transition and is related to a critical conductivity
that was termed by Mott as minimum metallic conductivity

σmin ffi 0:05
e2

ħ
N

1=3
Mott, (6)

where NMott is the critical doping density–see below (Mott and Davis 1979). The
Mott transition is observed to be smooth rather than abrupt, probably because of
density fluctuation of impurities.

For Si:P, the Mott-transition occurs at a critical donor density of
NMott = 3.7 � 1018 cm�3; for this example, we obtain σmin ffi 20 Ω�1 cm�1

(Rosenbaum et al. 1980) (see also ▶ Sect. 3.2 of chapter “Equilibrium Statistics of
Carriers”).
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Scaling When, for example, hydrogen-like donors are close enough to each other,
the donors’ electrons no longer belong to a certain donor, but are able to move freely
between donors even at T = 0 K, like electrons in a metal; that is, they belong to all
of the donors. Critical to this transition are three units of length: the inter-donor

distance 1=
ffiffiffiffi
N3

p
, the quasi-hydrogen radius aqH, and the mean free path λ – for a

diffusion-type of carrier migration. Their relative magnitude determines the type of
conductivity, and its discussion is a subject of the theory of scaling. For a recent
tight-binding analysis of localization in 3D to 1D systems with hopping matrix-
elements that decay exponentially in the separation distance between neighboring
sites, see Priour (2012); extended states in 3D are found to occur even for small
decay lengths, but the interval of energies supporting extended states decreases
exponentially for decreasing decay length.

Abrahams et al. (1979) suggested to use a dimensionless conductance of a cube of
length L rather than the conductivity

G ¼ σL� 2ħ
e2

, (7)

measured in elementary units of 2ħ/e2. They discussed the changes inG as a function
of L; it should change when L approaches atomic dimensions. They argued that the
scaling function

β Gð Þ ¼ @ ln G

@ ln L
(8)

is a universal function (Thouless 1974, 1980), which is ~1 for large conductances,
becomes zero at a critical conductance Gc, and turns negative for G< Gc–see Fig. 2.
Within this theory, Gc is a universal constant1 and indicates the transition between
metal-like and semiconductor-type conductivity. Here, Mott obtains for the critical
conductivity

σc ffi 0:03
e2

ħ aqH
, (9)

a value close to σmin given by Eq. 6, here for
ffiffiffiffiffiffiffiffiffiffiffi
NMott

3
p ffi 1=aqH:

Ioffe-Regel Rule For a further discussion of the concept of minimum metallic
conductivity, we start from a metal and look for candidates of lower and lower
mean free paths, that is, reduced conductivities. There are indications that with
increased lattice disturbance, lower conducting metals (such as liquid metals)
have a lower mean free path, but with a lower limit equal to the interatomic

1It should, however, depend on the microscopic atomic arrangement and on the coordination (Mott
and Kaveh 1985).
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distance. The Ioffe-Regel rule argues that the electron wavefunction cannot lose
phase memory faster than on the order of the interatomic distance a (Ioffe and
Regel 1960). This means that the conductivity of a metal cannot be smaller than
σ = e μ n, with n = a�1/3 and μ = (e/mn) τ = (e/mn) (a/vF). The Fermi-
momentum is given by ħ kF = mn vF = mn(3π

2n)1/3; hence, one obtains as min-
imum metallic (Ioffe-Regel) conductivity

σI-R ¼ 1ffiffiffiffiffiffiffi
3π23

p e2

ħa
¼ 0:32

e2

ħa
: (10)

In doped semiconductors, two changes need to be introduced:

1. Instead of the interatomic distance, the quasi-hydrogen radius applies
2. Only a certain fraction of the impurity-band states are extended states, which,

after Mott and Kaveh (1985), is on the order of 8.5%, yielding Eq. 9 as critical
conductivity in a semiconductor. For aqH ffi 30 Å, this critical conductivity is on
the order of 20 Ω�1 cm�1.

Carrier Localization in Strong Electric Fields When carriers are transported
in narrow bands, independent of how such bands are produced, carrier locali-
zation can occur when the electric field is strong enough. Here, stationary
electron states become localized in the direction of the electric field due to
reflection at the boundaries of the Brillouin zone (Wannier 1960). This causes
a Stark ladder, with the possibility of phonon-induced jumps between the levels
of this ladder (Hacker and Obermair 1970). Resonance effects occur when the
steps become equal to LO phonons (Maekawa 1970), causing current
oscillations.

Another possibility of carrier localization occurs for small polarons in strong
electric fields, where the mobility decreases with increasing field in the tunneling

0

ln G

Gc

1

bFig. 2 Scaling function
versus the dimensionless
conductance (Eq. 7) for a 3D
semiconductor
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regime (Böttger and Bryksin 1979, 1980). For electric-field-induced carrier locali-
zation in one-dimensional semiconductors, see Pronin et al. (1994).

2 Phonon-Activated Conduction

For sufficiently high densities of impurities, the carrier transport within an impurity
band occurs with a mean free path longer than the spacing of impurities. With less
doping, the defect levels will become localized, and conduction can occur in one of
two fashions:

1. By tunneling from one defect to the nearest neighboring defect of the same type
2. After thermal excitation into the adjacent band

Competition between these two processes is exponentially dependent on the
temperature, due to a minor T dependence of the former and an Arrhenius-type
dependence of the latter. At sufficiently high temperatures, the carrier transport via
the conduction or valence band predominates.

If the mean free path of carriers is given by capture at impurities rather than by
scattering, the conductivity can be described as a motion from one impurity center to
another, but with electron transport through the conduction band2 as illustrated in
Fig. 1b (Fritzsche and Cuevas 1960; Butcher 1972). It can also be described as due to
inelastic scattering at Coulomb-attractive centers, with phonon emission causing
carrier capture. The corresponding carrier mobility is thermally activated:

μ ¼ μ0exp �ΔEtrap

kT

� �
, (11)

where μ0 is an effective mobility given by equivalent scattering mechanisms of
carriers within the band, and ΔEtrap is the thermal activation energy of the trap.
Density Dependence of HoppingWhen the density of impurities increases, tunnel-
ing from center to center becomes more probable. The tunneling transport is
accomplished by hopping from one to the adjacent center, resulting in a conductivity

σhop ¼ σ0, hopexp �ΔEhop

kT

� �
, (12)

2In highly disordered semiconductors the motion may occur through excited states with greater
overlap of their eigenfunctions.
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with ΔEhop as the activation energy for hopping described below (Eq. 15) and with
the preexponential factor given by

σ0, hop ¼ σ00 exp
2rc
r0

� �
, (13)

where r0 is the fall-off radius of the impurity wavefunction (= aqH for quasi-
hydrogen impurities). It is ~90 Å for Ga in Ge and ~47 Å for Cu in Ge; Cu has a
larger ionization energy of ~40 meV. Also, rc is the critical radius to establish a
percolation path (see Sect. 4.2) from one electrode to the other, and can be estimated
(McInnes and Butcher 1979) as

rc ffi 0:865� 0:015ð ÞN�1=3, (14)

where N is the density of the specific impurities between which hopping occurs.
The computed relation of the resistivity ρ= σ�1 versus the mean separation of the

impurities is shown in Fig. 3a. The corresponding relation of the measured resistivity
for different donor densities Nd in GaAs is given in Fig. 3b (Shklovskii and Efros
1984); the solid curves gives the theoretical estimate according to Eqs. 13 and 14.
Activation Energy for Hopping When impurities are spaced close enough to permit
tunneling, the levels split to form a narrow band. Therefore, tunneling to arbitrary
neighbors usually requires a slight thermal activation energy (see Sect. 1.2.1). The
activation energy can be interpreted as the energy from the Fermi level to the energy of
the maximum of the density of empty-state distribution. Typically, it is on the order of a
fewmeVand can be approximated for low compensation (Efros et al. 1972) by ~60% of
the Coulomb energy at the average separation between the impurities:
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Fig. 3 (a) Calculated resistivity related to hopping conductivity as a function of the average
separation between impurities. (b) Hopping resistivity as a function of the donor density in
n-type GaAs (After Shklovskii and Efros 1984)
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ΔEhop ffi 0:61
e2

4π estate0

4π

3
N

� �1=3

: (15)

The experimental values for ΔEhop for Ge doped with P, Ga, or Sb are shown
together with the theoretical curves (Eq. 15) in Fig. 4.

With a distribution of defects in space and energy, the relation becomes more
complex and is relevant for amorphous semiconductors, see Sect. 4.3. For reviews,
see Mott and Davis (1979), Shklovskii and Efros (1984) and Mott (1993).

A special type of hopping conduction relates to the hopping of small polarons and
is discussed by Holstein (1959) and Schnakenberg (1968) (see also Sect. 5).

3 Heavily Doped Semiconductors

The basic concepts discussed in the previous sections apply also for highly doped
semiconductors, however, in a modified fashion relating to the specific level distri-
bution. This permits a number of more transparent theoretical approximations.

A semiconductor is heavily doped when the condition

N a3qH � 1 (16)

is fulfilled, which, dependent on the effective mass, is reached at vastly different
doping densities in various semiconductors. For instance, N a3qH ¼ 1 requires

N = 5 � 1015 cm�3 in n-type InSb and N = 3 � 1019 cm�3 in n-type Ge. In several
semiconductors, the highly doped regime cannot be obtained by diffusion doping,
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Fig. 4 Activation energy for
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since clusters will form with limited solubility. Here, ion implantation or radiation
damage can be used.

We will give a short review of the phenomena related to heavy doping in the
following sections.

3.1 Intermediate Doping Range

The distinction between light and heavy doping can be made in relation to the
disappearance of the gap in the impurity band and the transition from an activated
semiconductivity to a quasi-metallic conduction (see Sect. 1.2.2). There is, however,
a large intermediate range between the Mott-transition atN a3qH ffi 0:02 (▶Eq. 64 of

chapter “Equilibrium Statistics of Carriers”) and the range of heavily doped semi-
conductors which starts at N a3qH ffi 1 . In this intermediate range, some of the

electrons are already delocalized.
The transition is related to the statistical distribution of the defects, which are frozen

in and are located within the ensemble of free electrons, even at low temperatures. We
will give some insight into this relation below. Other fluctuations are initiated at higher
temperatures ( fluctuons) and are reviewed by Krivoglaz (1974).
Density of States in Heavily Doped Semiconductors In highly doped semi-
conductors, there are two major contributions to the density of states: (1) the states
which are due to the extended eigenfunctions of the defects and (2) the states
which are due to the perturbation in the surrounding host lattice. The latter may be
described by analyzing the influence of heavy doping on free electrons. This
influence can be expressed by band-edge perturbation, through the modulation
of the band edges by the Coulomb potential of the defects (Kane 1963; Halperin
and Lax 1966). In highly doped semiconductors, clusters of charged impurities
often dominate. The charges of such clusters, however, are not Coulomb point
charges.

In turn, the potential fluctuation near charged impurities results in an inhomogeneous
distribution of electrons. When the potential fluctuation is smooth within the deBroglie
wavelength of free electrons, the electron gas can be described classically. Its density
varies according to the density of states, which is increased at positions near an attractive
center where the conduction band is lowered. Near attractive centers there will be more
carriers, while near repulsive centers there will be less of the corresponding type. With
high doping densities, the potential fluctuations will have a higher amplitude. Complete
state filling of the valleys occurs at sufficiently low temperatures, whereas higher parts
of the potential mountains extend above this “electron lake.”

The density of states now becomes space-dependent

g E, rð Þ dE ¼ 2mnð Þ3=2
2π2ħ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ eV rð Þ

p
, (17)

with the fluctuating potential determined by a screened Coulomb potential
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V rð Þ ¼ e

4π estate0 r
exp � r

r0

� �
: (18)

When averaging over the space-dependent potential, we obtain from Eq. 17 the
density of states tailing into the bandgap (Lifshitz tail), as discussed in▶ Sect. 3.1 of
chapter “Optical Properties of Defects” and ▶ Sect. 1 of chapter “Defects in Amor-
phous and Organic Semiconductors”.

3.2 Degenerate and Highly Compensated Heavily Doped
Semiconductors

The highly doped semiconductor with shallow impurities is usually degenerate, i.e.,
the Fermi-level is shifted to well within the band. Depending on its position, the
“lake” of electrons rises within a hilly terrain to fill only the lowest valleys as little
lakes, or with a rising level connects more and more lakes until navigation from one
electrode to the other becomes possible. This behavior is similar to that of a
percolation conductivity, as described in Sect. 4.2.

When compensating a highly doped semiconductor, the level of the carrier lake
within the modulated band drops, which causes a substantial decrease of the
conductivity.

With sufficient compensation, the semiconductor reverts from metallic conduc-
tion to one with thermal activation over saddle points in the hilly terrain, as shown in
Figs. 5 and 6. Here, carriers cannot contribute to percolation since they occupy only
a small fraction of the volume, and tunneling is too expensive because of the high
barriers between the remaining small puddles.

In completely compensated semiconductors, the potential fluctuation can increase
further since the density of carriers is reduced below values, which are necessary for

Ec

Ev

EF

E

x

yE

Fig. 5 Two-dimensional representation of the band-edge fluctuation in highly doped semiconduc-
tors. Ec and Ev refer to average values of conduction and valence band edges. Red and blue circles
signify ionized donors and acceptors, respectively
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efficient screening. The maximum band fluctuation, however, is limited to Eg/2.
Here, with penetration through the Fermi level, the deep valleys again become filled
and screening reappears, thereby limiting any further increase in fluctuation of the
band edges. For the effect of random defect density on the Fermi level in highly
compensated semiconductors, see Donchev et al. (1997).

There is a large body of experimental and theoretical research on highly doped
semiconductors, including the influence of light (persistent photoconductivity -

Ryvkin and Shlimak 1973), of a magnetic field (quantum screening - Horring 1969,
Aronzon and Chumakov 1994), and of low-temperature conductivity.

The carrier transport in such macroscopically fluctuating potentials is similar
to that in semiconducting glasses (Ryvkin and Shlimak 1973, Overhof and
Beyer 1981). In the following sections, we will analyze such transport in more
detail.

4 Transport in Amorphous Semiconductors

The carrier transport in semiconducting glasses deserves a separate discussion
because of the lack of long-range order and the high density of defects specific to
the amorphous material. This does not permit simple translation of the effective-
mass picture and requires a reevaluation of carrier transport and scattering concepts.
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There are two aspects with direct influence on the carrier transport: (1) the strong
tailing of states into the bandgap, and (2) the absence of specific doping-induced
defects in amorphous chalcogenides.

The tailing of states from the band into the bandgap is rather smooth and does not
show a well-defined band edge. This necessitates a more careful analysis of the
mobility at different energies. At higher energies within the conduction band – i.e.,
closer to the surface of the Brillouin zone (see below for justification) – the electrons
are quasi-free, except for scattering events, and have a mean free path λ larger than
the interatomic spacing. Here, λ k	 1, and k may be used, albeit with some caution
(Mott and Davis 1979).

With decreasing electron energy, the scattering probability increases, with scat-
tering on potential fluctuations due to noncrystalline structures. Hence, the mean free
path becomes comparable to the interatomic distance, and λ k ffi 1. Here, k is no
longer a good quantum number.3 Substantial differences between the crystalline and
the amorphous semiconductor become important. Therefore, the carrier transport
must now be described in terms of a transport between localized states; the
Mott-Anderson localization threshold is reached (see▶ Sect. 1.2 of chapter “Defects
in Amorphous and Organic Semiconductors”).

In taking a slightly different point of view, we expect the band states near the edge
to become perturbed with a concurrent widening or narrowing of the bandgap,
depending on the local degree of disorder. With charging of these defects, the
Coulomb potential creates band undulations, as shown schematically in Fig. 5
(Böer 1972). In amorphous semiconductors with a much lower density of charged
centers, a similar mountainous profile of the near-edge band states results from the
local stress and other defect-induced perturbations.

When the Fermi- or quasi-Fermi level is moved above the lowest valleys of this
edge (discussed in more detail in Sect. 4.2), these valleys will fill up with carriers.
Assuming that only near the surface of such “lakes” a carrier transport is possible, one
recognizes that a continuous current can only flow when the Fermi-level rises enough
to permit a percolation path from one to the other electrode (Fig. 7a–c); much below
the “edge” carriers are trapped. We will now refine this roughly stated model.

4.1 The Mobility Edge

Carriers are able to travel readily when the eigenfunctions of traps overlap. There are
two arguments for a larger overlap of shallower traps: (1) they usually have a larger

3In a crystalline structure, k, when closer to the center of the Brilloin zone, represents points in real
space farther away from the unit cell; in this case long-range deviation from periodicity becomes
important. In contrast, when λ k ffi 1, the wavenumber is closer to the boundaries of the Brillouin
zone; wheras in real space, the corresponding points are closer to the unit cell and the structure of
the amorphous material resembles more that of a crystal.
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fall-off radius of their eigenfunctions and (2) they are more plentiful, diminishing the
intertrap distance. With an exponentially decreasing trap distribution, and with an
adequately large overlap of shallow traps, the carrier transport through such shallow
centers is almost band-like.

At slightly deeper trap levels, the carrier transport proceeds from trap to neigh-
boring trap and has a diffusive character, with a diffusion constant given by the
exchange frequency νtrap:

D ¼ νtrap a2trap
6

; (19)

here atrap is the distance between these traps.
Carriers in yet deeper traps will have to penetrate through increasingly thicker

barriers via tunneling. Finally, such carrier transfer via tunneling becomes negligible
and requires thermal excitation into higher states.

In summary, the type of carrier transport depends on the depth of the traps
between which such transport takes place. Carriers are significantly more mobile
in shallower traps. There is a major step in the mobility of carriers between
“localized” deeper and “extended” shallow trap states. This step at an energy Eμ is
referred to as the mobility edge; see also ▶ Sect. 1.3 of chapter “Defects in Amor-
phous and Organic Semiconductors”.

A material in which the Fermi level at T= 0 K coincides with the mobility edge is
called a Fermi glass. This material displays metallic conductivity.

The distance between two defect centers at the mobility edge is approximately
that of the nearest neighbors (Mott and Davis 1979), yielding for approximately
cubic atom configurations (see ▶ Sect. 3.1 and ▶Eq. 80 of chapter “Crystal
Defects”):

Dμ ffi νμ a2

6
, (20)

a b c

Fig. 7 Percolation regions (green), which become larger and interconnect with increasing energy
from (a) to (c), connect as puddles in a hilly terrain to form small and larger lakes when the water
level rises, finally leaving only small islands near the highest points of the terrain
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with the tunneling frequency νμ approximated by the atomic electron frequency

νμ ffi ħ
m0 a2

: (21)

We are not assuming hydrogen-like defects here. Therefore, tunneling is much
reduced, and the distance of defects centers between which tunneling becomes
significant can no longer be much larger than the normal interatomic distance a.
Using the Einstein relation, this yields, as an order of magnitude estimate for the
mobility at the mobility edge,

μedge ¼
e Dμ

kT
ffi e ħ

6m0kT
ffi 7:5� 300K

T

� �
cm2V�1 s�1
� �

, (22)

Electrons that are excited much above the mobility edge contribute to the current, as
they do in a crystal, by being scattered at defects, and usually have a mean free path that
is much larger than the interatomic distance. Electrons closer to the mobility edge
contribute via exchange interaction to neighboring traps, and electrons that have relaxed
much below the mobility edge contribute through tunneling or after thermal activation.

Since the mobility decreases very steeply at the mobility edge, whereas the
density of states does not, it is customary to identify the bandgap in amorphous
semiconductors as a mobility gap, i.e., the distance between the mobility edges for
electrons and holes.

4.2 Diffusive Carrier Transport and Percolation

We will now look a bit closer at the carrier transport around the mobility edge Eμ.
With decreasing trap energy Etrap, the trap density is reduced and the average
distance between these defects is increased. At any given energy, the distance will
fluctuate about an average value, making carrier transfer preferred in directions in
which the distance is shortest. With further decreasing Etrap, preferred paths become
rarer. The carrier has to move in a diffusive path along preferred intertrap connec-
tions. This indicates that the carrier motion, which was randomly diffusive at higher
energies, now becomes direction-selective toward the closest neighbor, thereby
reducing the effective diffusion constant. Finally, the path connecting the two
electrodes will be broken. From this point on, thermally activated conductivity
becomes the sole possibility for carrier transport.

The selection of paths between neighboring sites at the mobility edge is signif-
icant in that it is a determinant of the Hall mobility. In amorphous semiconductors,
the Hall effect cannot be calculated from Lorentz forces, but must be computed from
quantum-mechanical jump probabilities between localized states (Grünewald et al.
1981). Paths following the Lorentz force become slightly preferred. Because of this
structure-determined path selection, the Hall voltage becomes dependent on the
average microscopic geometry of the atomic arrangement. An anomalous sign of
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the Hall effect may occur at weak fields for the mean free path below a critical
magnitude (Okamoto et al. 1993). Mott (1991) has shown that the sign anomaly of
the Hall coefficient in α-Si:H should be expected when the disorder causing the
mobility edge originates from stretched bonds. With a scattering length of 20 Å in
such amorphous materials at the mobility edge, only 1% of the bonds need to be
stretched to produce such anomaly in the sign. Also preferred even- or
odd-numbered rings (see ▶ Sect. 3.1 of chapter “The Structure of Semiconductors”)
cause a sign reversal of the Hall effect for n- or p-type material (see Dresner 1983).
Percolation We return to the carrier transport near the mobility edge. When filling
traps by raising the Fermi-level, carrier diffusion is eased. This would appear
homogeneously throughout the semiconductor if it were not for the mountainous
profile of the potential, as illustrated in Fig. 5. Here, in a mountain, the mobility edge
is pushed above the Fermi-level, whereas in a valley, the Fermi-level lies above the
mobility edge. In these lakes, the mobile electrons show diffusive motion along the
surface of the lakes, but have to tunnel through the mountains. This type of transport,
which can be understood from classical arguments (Broadbent and Hammersley
1957), is commonly referred to as percolation. For a review, see Shante and
Kirkpatrick (1971) or Böttger and Bryksin (1985).

The analysis of percolation was facilitated by the simple model of Miller and
Abrahams (1960), using a network of random resistors and Kirchhoff’s law to
calculate the corresponding resistivity between the electrodes in a semiconductor
with percolating conductivity. Many aspects of carrier percolation can be discussed
in the frame work of fractal networks, i.e., a network of resistors in which a
statistically increasing number of the interconnecting resistors are omitted. Multi-
fractality in carrier transport at the mobility edge in amorphous semiconductors is
discussed by Huckestein and Schweitzer (1993).

4.3 Activated Mobility

Further below the mobility edge, the defect centers are sufficiently separated so that
tunneling between them can be neglected compared to the thermal excitation into
levels near the mobility edge. From here, electrons can be retrapped, excited again,
etc. This process can be described as thermally activated hopping4 and requires a
periodic interplay with phonons, i.e., carriers alternately absorb or emit phonons.
Consequently, the hopping mobility depends exponentially on the temperature. For
excitation from centers at an energy Etrap, we obtain

4Hopping conduction can also involve small polarons which move by hopping from site to site, ions
which hop from interstitial to interstitial site, electrons which hop between soliton-bound states in
one-dimensional conductors (acetylene) (Kivelson 1982), or Frenkel excitons in molecularcrystals
(see Sect. 5 and references in Böttger and Bryksin 1985).
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μhop ¼ μ0exp �Eμ � Etrap

kT

� �
: (23)

The thermally activated hopping mobility can be described in the form of a
diffusion relation (Butcher 1972):

μhop ¼
e Dhop

kT
¼ e

kT

νhop r2hop
6

: (24)

The thermally activated effective hopping frequency is given by

νhop ¼ ωphon

2π
exp �2

rhop
r0

�Whop

kT

� �
, (25)

whereWhop is the average energy difference between the two states for hopping, rhop
is the hopping distance, r0 is the radius of the center, and ωphon is an effective phonon
frequency to match the energies of initial and scattered states. For hops of distance
rhop, the corresponding hopping energy is given by the band width of centers located
at the Fermi energy ΔEB(EF), which in turn is given by

Whop ¼ ΔEB EFð Þ ¼ 3

4π r3hop gN EFð Þ , (26)

with gN (EF) (dimension eV�1 cm�3) the density of states for defects with an energy
at the Fermi level, from which such activation makes the largest contribution to the
mobility (see Mott 1969, Pollak 1972).
Variable Range Hopping In amorphous semiconductors with the Fermi level below
the mobility edge, thermal activation becomes essential to carrier transport. With
reduced temperature, the width of the energy band decreases, thereby involving less
centers, i.e., the distance between the active centers increases (Mott 1968, 1969).
The average hopping distance, which maximizes the hopping rate, is given by

rhop ¼ 3 r0
2π gN EFð Þ kT

� �1=4

: (27)

This results in a hopping frequency of

νhop / exp � C

kTð Þ1=4
 !

, withC ¼ 2
3

2π

� �1=4
1

r30 gN EFð Þ
� �1=4

: (28)

Introducing this relation into Eq. 23, we obtain a hopping mobility

μhop ¼ μ0exp � T0

T

� �
, (29)
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which is experimentally observed in some of the amorphous semiconductors (see
Fig. 8). In thin layers, the T�1/4 relation changes to a T�1/3 relation (Knotek et al.
1973). Here, percolation paths are cut open by the layer surfaces normal to the
current flow (Hauser 1975). For a review of hopping conduction, see Böttger and
Bryksin (1985); for variable-range hopping in n-channel α-SiGe quantum well
structures, see Shin et al. (1999).
Hopping Mobility of Polarons The strong interaction of trapped carriers with
phonons suggests the involvement of polarons in the carrier transport of amorphous
semiconductors (Emin 1975, Mott and Davis 1979). In certain amorphous semi-
conductors, the carrier transport may also be caused by hopping of bipolarons
(Schlenker and Marezio 1980, Elliott 1977, and Elliott 1978).
Dispersive Carrier Transport One of the most convincing arguments about the
carrier transport involving a quasi-exponential trap distribution stems from experi-
ments with excess carriers, e.g., injected or photo-excited carriers. These are trapped,
reemitted from shallow traps, retrapped, and so on; during the period between
trapping, they are mobile and drift in an electrical field. The first carriers that traverse
the device have not been trapped, followed by carriers that have been trapped once,
twice, etc. Consecutive trapping causes further slow-down of carrier traversal. When
being retrapped, energy is dissipated by emitting phonons, and successively deeper
traps are filled; from here escape is much slower. This behavior results in a typical
distribution of these excess carriers as a function of the time while in transit, in
agreement with the experiment. This confirms the intimate involvement of a trap
distribution in carrier transport.

200 100 50 30 20 15

0.25 0.35 0.450.40 0.500.30

45

95

180

300

as deposited

Tanneal (K)

Si

(T/K)−1/4

σ 
(Ω

−1
cm

−1
)

T  (K)

10−3

10−5

10−7

10−9

Fig. 8 Electrical conductivity
of amorphous Si as a function
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after damage with Si+
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Transport with a nonconstant hopping rate due to multiple trapping of carriers
into progressively deeper states is referred to as dispersive transport. The change in
hopping rates effects the broadening of a generated carrier ensemble. We will return
to this subject when we discuss carrier kinetics in▶ Sect. 1.1.3 of chapter “Dynamic
Processes”. For a review, see Tiedje (1984).

4.4 Temperature Dependence of the Conductivity

The relative magnitude of the different contributions to the conductivity is a function of
the temperature. This is depicted in Fig. 9, in which the Fermi level remains pinned.

(a) At low temperatures (T1), only carriers near EF can contribute to the conductiv-
ity. Since pinning of the Fermi level requires a high density of defect states at EF,
such conductivity is similar to the impurity conduction in crystalline semicon-
ductors. We can distinguish two cases of this impurity conductivity:
(a1) The impurity density near EF is large enough to permit sufficient tunneling

within a band of width ΔE1; then impurity conduction similar to a
crystalline semiconductor dominates, with

σ ¼ σa1exp � ΔE1

2 kT

� �
: (30)

(a2) The impurity density is smaller and its bandwidth is larger than kT; then
variable-range hopping occurs with the characteristic (kT)�1/4 dependence:

σ ¼ σa2exp � Cffiffiffiffiffiffi
kT4

p
� �

, (31)
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T3
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Eμ
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E E E E

Fig. 9 Typical carrier distributions resulting in three different modes of conductivity at tempera-
tures T1, T2, and T3
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with C as given by Eq. 28. Such a dependence is shown in Fig. 8.
(b) At medium temperatures (T2), sufficient carriers are excited into tailing states

near EA. They show sufficient overlap for tunneling, so that hopping is activated.
With ΔE2 as the activation energy for hopping, we obtain

σ ¼ σbexp �EA � EF � ΔE2

kT

� �
: (32)

However, since EA � EF is usually much larger than ΔE2, one observes a
constant slope in the ln(σ) versus 1/T diagram.

(c) At higher temperatures (T3), when sufficient carriers are excited into non-
localized, i.e., band states with an energy above the mobility-edge energy Eμ,
the conductivity is given by

σ ¼ σc exp �Eμ � EF

kT

� �
: (33)

(d) With further increasing temperatures, the mobility may increase sufficiently
above the saddle point between the undulating band edges to provide yet one
more significant contribution to the conductivity:

σ ¼ σd exp � E0
g

2kT

� �
, (34)

where E0
g is a shifted effective bandgap energy: the mobility gap related to the

mobility edges of electrons and holes. The pre-exponential factors are

σa2 ¼ e2ω N EFð Þ r2, (35)

for variable range hopping (see Eq. 27),

σb ¼ 0:03
e2

ħλi
, (36)

for hopping from tailing states, and

σa1
σc

�
¼ σmin ffi e2

2π2 ħaqH
ffi 610

aqH=Å
Ω�1 cm�1
� �

(37)

for band conductivity. Finally,

σd ¼
e2 gN E0

g

	 

kT τe

mn
(38)
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for conduction above the saddle points of the band edges. Here, σmin is the minimum
metallic conductivity (see Mott and Davis 1979), τe is the energy-relaxation time,

and gN E0
g

	 

is the joint density of states at E0

g, the shifted effective bandgap energy.

The type of predominant conductivity depends on material preparation (Connell
and Street 1980). This becomes rather sensitive in tetrahedrally bound amorphous
semiconductors, such as α-Ge:H or α-Si:H, where a wide range of σ(T ) behavior is
observed, depending on deposition parameters, doping, hydrogenation, and
annealing treatments (LeComber et al. 1972; Bullot and Schmidt 1987).

5 Charge Transport in Organic Semiconductors

Organic semiconductors comprise small-molecule crystals and polymers. Quite a
few of them have been obtained as single crystals and highly purified to obtain their
intrinsic semiconductor properties (▶Sect. 1.5 of chapter “The Structure of Semi-
conductors”). Most organic solids are excellent insulators and become semi-
conductive only after doping (Pope and Swenberg 1982). Also organic polymers
show semiconducting properties (Goodings 1976). They typically consist of poly-
mer chains with a semiconducting backbone. Organic semiconductors are employed
today in a wide field of applications, e.g., in organic LEDs (OLEDs) and displays,
radio-frequency tags, solar cells, and integrated devices (Sirringhaus et al. 1998); for
reviews see Hung and Chen (2002), Gather et al. (2011), Arias et al. (2010),
Peumans et al. (2003), and Hains et al. (2010).

Conductance in organic semiconductors is governed by disorder. Even in perfect
small-molecule crystals, the weak intermolecular van der Waals bonds give rise to a
dynamical disorder which affects the mobility of carriers. Highly pure single crystals
hence show generally an increase of mobility at decreased temperature. In contrast,
less ordered organic solids exhibit an decrease of the mobility at lower temperatures
due to localization of carriers and a required thermal activation for transport. We
consequently observe both band conductance and hopping conductance in organic
semiconductors.

Carriers in organic semiconductors couple strongly to molecular oscillations,
suggesting a polaron-state contribution (Spear 1974). An early review of the theory
of carrier mobility in organic semiconductors is given by Druger (1975). Karl (1984)
gives a critical review of mobility and other physical data for both one-component
and mixed organic semiconductors. A recent comprehensive review is given by
Bässler and Köhler (2012).

5.1 Band Conductance in Organic Crystals

Band conductance is found particularly in small-molecule crystals. These are pre-
dominantly van der Waals bonded (▶ Sect. 3.3 of chapter “Crystal Bonding”); some
of them have other bonding superimposed, such as ionic, hydrogen, and charge-
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transfer bonding. We distinguish single-component and two-component (charge-
transfer) semiconductors. The first group contains the classical organic semiconduc-
tors, such as the acenes (▶ Sect. 1.5 of chapter “The Structure of Semiconductors”),
which show comparatively high mobilities; the second group includes highly con-
ductive compounds, some of which show semiconductor-metal transitions and even
superconductivity (▶ Sects. 1.1 and ▶ 2 of chapter “Superconductivity”).

5.1.1 Single-Component and Two-Component Semiconductors
Single-Component Semiconductors. Single-component organic crystals are usu-
ally good insulators, but may become photoconductive with sufficient optical exci-
tation. The class of aromatic hydrocarbons like the acenes has been more thoroughly
investigated. They have bandgap energies between 2 and 5 eV (see ▶ Sect. 3 of
chapter “The Origin of Band Structure”) and are considered a class of
one-dimensional conductors (Kivelson and Chapman 1983), albeit with a compara-
bly small anisotropy ratio. The bandgap energy of organic semiconductors can rarely
be determined by optical absorption, since valence-to-conduction band transitions
are masked by transitions to excited molecular states referred to as excitons
(Davidov 1962), which lie within the bandgap and do not support charge transport.
Transport bandgap and optical bandgap are hence distinguished, see ▶ Sect. 4.1 of
chapter “Bands and Bandgaps in Solids.” The transport bandgap can be measured
directly from the threshold of intrinsic photoconductivity (Marchetti and Kearns
1970) or from photoelectron spectroscopy.

The mobility is usually low compared to inorganic semiconductors, for electrons
and holes typically in the 10�2 to 10 cm2/(Vs) range at 300 K, and falls with
increasing temperature.
Two-Component Semiconductors Two-component semiconductors consist of
pairs of complementary molecules with large differences in their redox properties:
the organic molecules with a low ionization energy acts as electron donors D and the
other molecules with a high electron affinity act as acceptors A. Such a combination
produces organic crystals that can show very low or vanishing activation energies
and comparatively high conductivities. The crystals are formed by a sandwich-like
stacking of planar molecules, where donors and acceptors form Dδ+Aδ–Dδ+Aδ–

structures, or they are located in separated stacks, i.e., the stacking contains
Dδ+Dδ+. . . and Aδ–Aδ–. . . complexes for segregated stacking with face-to-face stacks.
δ denotes the transferred charge per molecule in units of elementary charges. The
charge transfer (CT) may be incomplete, yielding two limiting cases: weak CT
complexes and strong CT complexes, also referred to as radical ion salts (Soos
1974).

In radical ion salts, an organic radical cation (such as perylene+) is combined
with a counter anion (such as a halogen or PF�6 ), or an organic radical anion (such as
TCNQ�) is combined with a counter cation. The solids have a pronounced ionic
character, i.e., δ is often close to 1; usually δ < 1 for conductive radical ion salts.

Charge-transfer complexes with δ significantly smaller than unity can show high
conductivities, caused by the incomplete charge transfer between D and A, which
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results for the ground state in partially filled bands. Typical donor and acceptor
molecules that form such charge-transfer crystals are given in Fig. 10. Many such
semiconductors have low-lying electronically excited states in which an electron is
transferred from D to A. The charge-transfer transition in the excited state5 may be
written as

D A ! DþA�with ECT ¼ ID � AA � C, (39)

where ID is the ionization energy of the donor and AA is the electron affinity of the
acceptor (both in the gas phase), and C is a Coulomb binding-energy of the excited
state. ECT is the “energy gap” between the ground state and the excited charge-
transfer state (Mulliken 1952).

The resulting structures are termed neutral charge-transfer crystals, typically
with stacks of alternating D and A molecules: DADADA. . . . The lowest excited
state is DADAD+A�DADA . . .; the respective activation energy for semiconductivity
is typically (Kuroda et al. 1962)

Es ffi 1

2
ECT: (40)

The incomplete electron exchange and consequently partially filled bands
results in a rather large semiconductivity – or even metallic conductivity. The
resistivity of these semiconductors lies between 102 and 106 Ω cm at room
temperature with a transfer-energy gap in the 0.1–0.4 eV range (Braun 1980).
The conductivity is usually highly anisotropic, with the electron transfer-integral in
the stacking direction typically a factor of 10 larger than in the direction
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Fig. 10 Structure of some
typical organic donor
and acceptor molecules in
charge-transfer crystals:
Tetrathiofulvalene (TTF),
Hexamethylenetetra-
selenofulvalene (HMTSF),
Tetracyanoquinodimethan
(TCNQ), N-
methylphenazinium (NMP),
Quinolinium (Qn)

5The excited state has essentially ionic charge character.
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perpendicular to the stacks (Keller 1977). Trapping is of minor importance in these
semiconductors with a high carrier density (Karl 1984). The charge-transfer crys-
tals provide an opportunity for fine tuning of the semiconductive properties by
replacing TTF-type donors and TCNQ-type acceptors with other similar molecules
(Bloch et al. 1977), which could render such materials attractive for some technical
applications.

5.1.2 Carrier Mobility in Pure Organic Crystals
Organic molecules show a strong structural relaxation on introducing a charge. The
band structure calculated for a crystal composed of weakly bonded neutral mole-
cules may hence not be preserved in the presence of carriers. As a rule of thumb,
band conductance occurs despite lattice relaxation if the transfer integral between
molecules is sufficiently large: a large transfer integral delocalizes the carrier
wavefunction over several molecules. A more quantitative estimate follows from
the widthW of the energy band for carrier transport. If the mean scattering time τ is
in the range or smaller than ħ/W, no wavevector k can be assigned to the carrier.
The description in terms of conduction in a band with dispersion E(k) hence
requires

τ 	 ħ
W

: (41)

The bands in organic crystals are rather narrow due to a small amount of
wavefunction overlap of π electrons, see ▶Sect. 4.1 of chapter “Bands and
Bandgaps in Solids”.” Typical bandwidths W are in the range of some hundred
meV (see Table 1), yielding τ > 10�15 s. If scattering results from molecular
relaxation, τ is given by the characteristic time of molecular vibration; the carrier
must leave the molecule before a significant relaxation and consequential trapping
can occur. Equation 41 then reads W 	 ħ/τ. This yields bandwidths of
100–200 meV, a condition reasonable well fulfilled for crystals of acenes and
comparable aromatic compounds.

A clear indication for band conduction is provided by the temperature depen-
dence of the mobility. In inorganic semiconductors scattering at acoustic phonons
leads to a T�3/2 dependence of the carrier mobility (▶Eq. 15 of chapter “Carrier
Scattering at Low Electric Fields”). A comparable decrease of mobility at higher

Table 1 Bandwidth W of
acene crystals for holes in
the valence band (HOMO)
and electrons in the
conduction band (LUMO)
(After Cheng et al. 2003)

Crystal

Bandwidth W

Valence band Conduction band

Naphthaline 409 372

Anthracene 509 508

Tetracene 626 503

Pentacene 738 728
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temperature is observed for the carrier mobility in organic crystals with band
conduction.

The mobility data in Fig. 11 show typical features of transport in organic crystals.
The temperature dependence at low electric field F is described by a power law

μ Tð Þ ¼ μ300K T
α, (42)

where μ300 K is the mobility at T = 300 K. The exponent α deviates somewhat from
the ideal value of�3/2, see Table 2. The mobilities do not depend on the value of the
electric field and show a pronounced anisotropy; the principal axes of the mobility
tensor deviate slightly from the crystallograpic crystal axes. Typical mobilities are on
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Fig. 11 Temperature dependence of the electron mobility (a) in a perylene crystal, and (b) in a
naphthalene crystal (After Warta et al. (1985) and Karl (2001))

Table 2 Mobility m in
units of cm2 V�1 s�1 for
organic crystals at 300 K
and exponent a of the
temperature dependence
according to Eq. 42

Crystal Direction

Electrons Holes

μ α μ α

Naphthalene a 0.62 �1.4 0.94 �2.8

b 0.64 �0.55 1.84 �2.5

c’ 0.44 +0.04 0.32 �2.8

Anthracene a 1.73 �1.45 1.13 �1.46

b 1.05 �0.84 1.84 �1.26

c’ 0.39 +0.16 0.32 �1.43

Perylene a 2.37 �1.78

b 5.53 �1.72

c’ 0.78 �2.15
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the order of 10�2. . . 10 cm2/(Vs). Data for a large number of organic semiconductors
are tabulated by Schein (1977); they decrease at higher temperature according to
Eq. 42 with 0 > α > �3.

At high electric field F, the mobility shows a sublinear velocity-field relation, see
Fig. 11a. The drift velocity of the carrier saturates at high fields, similar to the
transport in inorganic semiconductors discussed in ▶ Sect. 1.1 of chapter “Carrier
Scattering at High Electric Fields”.

5.2 Hopping Conductance in Disordered Organic
Semiconductors

Many organic compounds – small molecules or polymers – cannot be prepared as
single crystals. They are usually prepared as thin films by evaporating or spin
coating. The carrier mobility of these semiconductors is by orders of magnitudes
lower than that of crystalline semiconductors considered above. In these semi-
conductors, the static disorder dominates at most temperatures, and the mobility
increases for increasing temperature. The low coupling between the molecules in
the solid state leads to a strong localization of the carriers on a molecule; transport
occurs via a sequence of charge-transfer steps from one molecule to another,
similar to the hopping between defect states in inorganic semiconductors. The
transport properties are thus described by the formalism of hopping conductance
developed for amorphous inorganic semiconductors (Sect. 4): the charge carriers
are assumed to hop in a time-independent disordered energy landscape as illus-
trated in Fig. 5.

The basic difference between amorphous inorganic semiconductors and dis-
ordered organic semiconductors is the shape of the density of states (DOS). In an
amorphous solid, the DOS is found to have a mobility edge and a tail of localized
states with an exponentially decreasing distribution extending into the bandgap,
see ▶ Figs. 2 and ▶ 3 of chapter “Defects in Amorphous and Organic Semi-
conductors” and Sect. 4. In contrast, the DOS in organic materials has a Gaussian
shape:

g Eð Þ ¼ Gtotffiffiffiffiffi
2π

p
σ
exp

E� Ecenterð Þ2
2σ2

" #
, (43)

whereGtot is the total DOS, Ecenter is the center of the energy distribution, and σ is the
variance of the distribution (Bässler 1993). Hopping of carriers is determined by
both the energy difference ΔE and the spatial separation Δr of initial and final states;
in addition, hopping is affected by an electric field F.

The hopping rate νij between two localized states i and j depends on whether a
hop-up (") occurs with ΔE = Ej � Ei � eF(xj � xi) or a hop-down (#) with
ΔE < 0, where Ej and Ei are the energies within g(E) at F = 0. Adopting the
model of Miller and Abrahams (1960) we obtain
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νi j "ð Þ ¼ ν0 exp �2γ a
Δri j
a

� �
exp �Ej � Ei � eF xj � xi

� �
kT

� �
, (44)

νi j #ð Þ ¼ ν0 exp �2γ a
Δri j
a

� �
: (45)

Here the constant γ is the spatial decrease of the wavefunction (invers Bohr radius for
hydrogen-like wavefunctions), and a is the mean separation of localization sites. We
note that a hop-down does not require a thermal activation.

Analogous to transport in amorphous inorganic semiconductors different trans-
port regimes can be distinguished:

(a) Very low temperatures – nearest neighbor hopping: since kT
ΔE, the spatial
separation Δr controls the transfer, favoring next neighbors

(b) Low temperatures – variable-range hopping: the thermal energy kT allows for
hopping within a narrow energy band around Ecenter, thereby relaxing the
next-neighbor constraint

(c) Medium temperatures –hopping in a wider energy range: similar to (b) within a
wider energy band, possibly opening percolation paths which are not restricted
to next neighbors

(d) High temperatures – multiple trapping and release: carriers are excited from
localized to extended states above the mobility edge, where band transport takes
place until trapping at other localized states occurs. This regime requires a
material where extended states exist.

The model of Bässler (1993) results in a thermally activated mobility

μ ¼ μ0 exp � 2σ

3kT

� �2

þ C
σ

kT

	 
2
� Σ2

� � ffiffiffi
F

p" #
(46)

determined by the spread σ of the energy distribution in the conducting band, the
structural disorder parameter Σ, the applied electric field F, and the parameter
μ0 representing the mobility of the hypothetic not-disordered semiconductor at
high temperature. The field dependence of Eq. 46 is comparable to the
Poole-Frenkel effect (Frenkel 1938). For a more detailed review of various transport
models, see Noriega and Salleo (2012). A review on experimental techniques for
measuring transport properties is given by Coropceanu et al. (2007).
Polymers Typical examples of disordered organic semiconductors are the
one-dimensional organic polymers, such as polyacetylene, as the simplest member
(for cis-isomer see ▶ Fig. 15a of chapter “Crystal Bonding”), or the aromatic linear
polymer poly(para-phenylenevinylene) (▶ Fig. 16 g of chapter “The Structure of
Semiconductors”). Polyacetylene has been investigated most extensively – see the
review by Heeger and MacDairmid (1980). It can easily be doped with donors or
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acceptors, which are incorporated between the polymer chains of the trans isomer,
resulting in controlled changes of the conductivity over 13 orders of magnitude up to
3 � 103 Ω�l cm�l. At lower doping densities, devices with a pn junction can be
formed from polyacetylene. At high doping densities, i.e., above 1%, a
semiconductor-metal transition occurs. In the metallic state, polyacetylene has the
optical appearance of a highly reflecting metal.

The typical structure of organic polymers has a bond alternation between conju-
gated single and double bonds within the backbone of the chain, see ▶Sect. 3.3 of
chapter “Crystal Bonding”; in polyacetylene there are two CH groups per unit cell,
with one π electron for each CH group. At the boundary of two bond-alternation
sequences with different phase, an unpaired electron is created; this bond alternation
defect, illustrated in ▶ Fig. 14 of chapter “Defects in Amorphous and Organic
Semiconductors,” has attracted substantial interest as a manifestation of a soliton.
Such a soliton can be described as a kink in the electron-lattice symmetry, rather than
a spread-out transition; according minimum-energy calculations some spreading
occurs, typically over about 10 lattice constants, remaining unchanged during the
kink motion. Highly mobile, the soliton has a room-temperature hopping rate in
excess of 1013 s�1. The soliton seems to be responsible for a wide variety of unusual
electrical, optical, and magnetic properties of these polymers. A short review is
given by Heeger (1981).
Mobility in Polymers The mobility is widely measured using time-of-flight exper-
iments. Such studies of disordered organic semiconductors show both dispersive and
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Fig. 12 Hole mobility in derivatives of PPV. (a) Mobility in derivatives with different side groups
at zero electric field; OC1C10-PPV: R1 = CH3, R2 = C10H21; OC10C10-PPV: R1 = R2 = C10H21

(After Blom and Vissenberg 2000). (b) Dependence of the hole mobility on the electric field F for
MEH-PPV (R1= C8H16, R2= CH3) prepared without (a) and with application of an electric field of
3 and 6 kV/cm for b and c; after Shi et al. (2006)
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nondispersive components, depending on temperature, electric field, and chemical
purity. Nondispersive carrier mobilities show typical features (Bässler 1993): a field-
independent activated mobility at low fields, characterized by an activation energy,
and a field-dependent contribution in the form of a stretched exponential at high
fields F. These findings can in many cases be described by the empirical dependence

μ ffi μ0 exp � EA

kT
þ β

ffiffiffi
F

p� �
, (47)

with the zero-field mobility μ0, an activation energy EA, and the field-activation
factor

β ¼ B
1

kT
� 1

kT0

� �
; (48)

B and T0 are empirical parameters. Since polymers are stable only in a very limited
temperature range, the temperature dependence can often be described in this
interval by different relations, such as Eqs. 46 or 47.

The hole mobility of the poly(paraphenylene vinylene) (PPV) is shown in Fig. 12.
Holes dominate the current in many polymers. The polymer PPV is a prominent
compound due to its electroluminescence properties; PPV derivatives are soluble
and can be spin coated for, e.g., fabrication of organic LEDs. The mobility is
reasonably described by a log(μ) /T �2 dependence, although also an Arrhenius
dependence log(μ) /T �1 fits well (Blom et al. 1997); in the limited temperature
range a clear distinction is not possible. The activation energies EA for PPV deriv-
atives (Eq. 47) range between 0.3 and 0.5 eV, and widths σ of the Gaussian DOS
according to Eq. 46 are near 100 meV, with mean separations a of localization sites
in the range 1.1 . . . 1.7 nm (Blom and Vissenberg 2000). We note in Fig. 12 the
comparatively low mobility of disordered organic semiconductors and the charac-
teristic increase at higher temperature.

The enhancement of the mobility in an electric field is shown in Fig. 12b. The
dependence on F1/2 is well fulfilled. This behavior has also been observed from time-
of-flight measurements in many molecularly doped polymers and amorphous
glasses. An electrically induced polarization of MEH-PPV during the preparation
of films significantly enhances the mobility.

6 Summary

Carrier transport is generally influenced by defects; however, in highly doped or
disordered semiconductors, the carrier transport becomes induced by defects. If
doping produces a well-defined predominant defect level with increasing density,
it will split into two (bonding and antibonding) bands separated by an energy gap.
Below a density to permit sufficient tunneling, excitation from the filled, lower
impurity band into the conduction band is required for carrier transport. When the
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impurity band is wider than 2kT and the Fermi level lies in the middle of this band,
variable range hopping occurs: with decreasing T, the predominant excitation occurs
from a narrower range of width kT of these centers, and causes a semilogarithmic
slope /T1/4. With increased defect density, a diffusive transport within the upper
impurity band becomes possible; the conductivity in this band requires a small
activation energy to bridge the gap. With further increase of the defect density, the
carriers become delocalized, the gap disappears, and the conductivity within the
impurity band becomes metallic.

In amorphous semiconductors, a similar tunneling-induced carrier transport can
take place within the tail of states that extend from the conduction or valence band
into the bandgap, when the states are close enough to each other to permit significant
tunneling. Here carriers become delocalized. The edge at which delocalizing occurs
is referred to as the mobility edge. At this edge, major carrier transport starts; below
the mobility edge, carriers are trapped rather than being mobile.

With a statistical distribution of defects within semiconductors, at a given thresh-
old, only some volume elements become conductive. With increasing temperature
these volume elements will widen, will start to interconnect, and finally will provide
an uninterrupted path from electrode to electrode. Such percolation character is
typical for most of the conduction phenomena in highly doped or disordered semi-
conductors, which have a density-related threshold of conduction. The mobility of
carriers in such semiconductors is typically on the order of 10 cm2/(Vs) or lower. At
low temperatures it is determined by tunneling (hopping) from neighbor to neighbor
and is very sensitive to the density of defects and their distribution in space and
energy. At sufficiently high temperatures, carrier transport higher within the con-
duction or valence band may compete significantly with the conduction mechanisms
described above. This band conduction may have a mean free path compatible to the
one in crystalline semiconductors.

Organic semiconductors can be single-componentmaterials, which can be doped,
such as aromatic hydrocarbons (e.g., anthracene). These materials are good insula-
tors and show photoconductivity. Another group of single-component semiconduc-
tors is comprised of certain linear polymers, such as polyacetylene. With doping this
group can change its conductivity up to 13 orders of magnitude and can become
metallic in electrical behavior and optical appearance. Two-component semiconduc-
tors contain molecules or molecular layers, which act as donors and others which act
as acceptors. Variation of their donor/acceptor ratio can change the behavior from
highly compensated to n- or p-type, with a wide range of conductivities, depending
on the deviation from a donor to acceptor ratio of 1: 1. There is a great variety of such
crystals that exhibit a broad range of properties, including metallic conductivity and,
at low temperatures, superconductivity.

The carrier mobility in organic semiconductors is substantially lower than in good
semiconducting inorganic compounds and typically is in the 10�3 to 10 cm2/
(Vs) range. It is controlled by static and dynamic disorder. Small-molecule crystals
show band conductance with a decreasing carrier mobility at increased temperature;
it is affected by dynamic disorder and described by a power law similar to that of
inorganic semiconductors. Films of small-molecules or polymer semiconductors
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have dominating static disorder; they show hopping conductance with a typically
very low mobility, which increases at higher temperatures.
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Abstract
When the semiconductor is exposed to an external electromagnetic field, a
phonon field, or an electric field, free carriers can be generated, resulting in
semiconductivity or photoconductivity. Carriers can also be generated by high-
energy particles, such as fast electrons or ions. Optical carrier generation proceeds
as band-to-band direct or indirect generation or from defect levels with photons of
sufficient energy. Thermal generation of free carriers is substantially enhanced by
defect centers. Shallow centers may absorb a phonon of sufficient energy or a few
phonons involving intermediate steps into excited states; generation from deep
centers requires multiphonon-induced giant oscillations.

Generation of carriers by an electric field can at low fields be caused by
the Frenkel-Poole effect: a field-enhanced thermal generation from Coulomb-
attractive defect centers. At high fields, impact ionization from deep centers or
band-to-band impact ionization is observed. At still higher fields in the 106 V/cm
range, tunneling from deep defect centers or from the valence band occurs.
Besides thickness and height of the barrier, the tunneling probability depends
on the shape of the barrier potential.
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1 Thermal and Optical Carrier Generation

Typical Electron Transitions The density of carriers1 in semiconductors can be
determined from the difference between generation rate gn, recombination rate rn,
and the net influx of carriers from surrounding regions described by the divergence
of the current density:

dn

dt
¼ gn � rn þ 1

e

@

@r
jn (1)

In homogeneous semiconductors, this net influx vanishes and the electron density
changes, just as a change in population occurs when there is a difference between
birth and death rates.

Three types of generation processes can be distinguished. Each one of the
generation processes needs energy, which can be supplied as one of the following
forms:

• Thermally via a phonon field
• Optically via an electromagnetic (photon) field
• Electrically via an electric field

Two types of recombinations are distinguished. Each of the recombination
processes releases energy in one of the following forms:

• Thermal energy via nonradiative recombination
• Luminescence via radiative recombination

The type of generation selected is usually the choice of the experimentalist,
whereas the type of predominant recombination is mostly a function of the defect
structure of the selected material. It is also influenced by the temperature and

1We consider n-type carriers (electrons, indicated by the index n) unless stated otherwise.
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sometimes by the electric field and other parameters. A number of examples will be
discussed for each type of generation in this chapter and for the recombination in the
following chapter ▶ “Carrier Recombination and Noise.”

1.1 Optical Carrier Generation

Typical electronic transitions among a variety of states are shown in Fig. 1. For
consistency in the following descriptions, only electron transitions will be identified;
hole transitions proceed in the opposite direction. The transition coefficients for
capture cik and excitation eik can then be unambiguously defined by the first and
second subscripts, indicating the initial and final states, respectively.

A transition rate Rik is defined as the product of the electron density in the
original state ni, the hole density in the final state pk, and the transition coefficient cik:

Rik ¼ cik ni pk: (2)

For example, the capture rate of an electron from the conduction band into an
electron trap is given by

Rc,trap ¼ cc,trap n Ntrap,n � ntrap,n
� �

, (3)

where Ntrap,n and ntrap,n are the densities of electron traps and of captured electrons in
these traps, respectively. In deviation from the above-given rule, the index c is left off
from the electron density in the conduction band (nc! n) to conform with common
notation. This implies that an approximation is used here by describing the conduc-
tion and valence bands as levels at the respective band edges and assuming that
transition coefficients are independent of the actual carrier distribution within the
bands.

The transition coefficients cik or eik have the units cm
3s�1. The product of these

coefficients with the hole density in the final state, cik pk, is the transition probability
with the unit s�1. For further detail, see Sect. 1.2.2.

gv,c cc,v

etrap,c cc,trap

ev,trap
ctrap,v

cc,rec

crec,v

Nc

Nv

Ntrap,n
ntrap,n Nrec

Ntrap,p
ntrap,p

E

x

nrec

Fig. 1 Electron transitions
between localized (in the
bandgap) and nonlocalized
states (bands). Labels e and
c denote rates of excitation
and capture, respectively
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The following sections present a brief review of the different excitation mecha-
nisms into higher-energy states.

Optical Generation Rate In ▶ Sect. 1.1 of chapter “Band-to-Band Transitions,”
the optical excitation of electrons across the bandgap was discussed as the product of
the joint density of the initial and final states and the probability for each of these
transitions. This probability is given by the product of the matrix element and the
probability of finding the initial state occupied and the final state empty before the
transition. The optical excitation is the part of the optical absorption that generates
free carriers – electrons and holes.

We distinguish bound-to-free and free-to-free excitation, depending on whether the
excitation started from a center with an occupied state, i.e., below the Fermi level, or
from the valence band. In both cases, the optical absorption has an edge-like character
– see ▶Sect. 2.4 of chapter “Optical Properties of Defects” and ▶ 2.2 of chapter
“Band-to-Band Transitions.” When the excitation proceeds in energy beyond the
exciton spectrum, free carriers are produced (chapter ▶ “Photoconductivity”).

From the flux of impinging photons ϕo traveling in the direction z normal to the
semiconductor surface, a certain fraction, depending on the wavelength, will be
absorbed. The photon flux within the semiconductor is given by

ϕλ λ, zð Þ ¼ ϕ0 λð Þexp �αo λð Þ z½ �: (4)

Here, ϕo(λ) is the photon flux per unit wavelength Δλ, which penetrates, after
reflection is subtracted, through the top layer of the solid, measured in
cm�2s�1Δλ�1; αo is the optical absorption coefficient, measured in cm�1. When
polychromatic light is used, the total carrier-generating photon flux as a function of
the penetration depth z is obtained by integration

ϕ zð Þ ¼
ðλ2
λ1

ϕλ λ, zð Þdλ, (5)

where ϕ(z) is measured in cm�2s�1. Although ϕλ(λ,z) depends exponentially on the
penetration depth, ϕ(z) usually does not, since, with polychromatic light of various
absorption coefficients αo(λ), the superposition of a wide variety of such exponential
functions causes a dependence of ϕ on z of much lesser steepness than an exponen-
tial function.

The optical generation rate g(z) is given by the absorbed photoelectrically active
light in each slab of infinitesimal thickness; hence

g zð Þ ¼ � dϕ zð Þ
dz

: (6)

This rate depends exponentially on z for monochromatic light:

g z, λ0ð Þ ¼ αo λ0ð Þϕ0 λ0ð ÞΔλexp �αo λ0ð Þ z½ �, (7)
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where Δλ is a small wavelength range in which αo(λ) is constant. For polychromatic
excitation, the decline of g with increasing depth is much more gradual; often a
constant space-independent generation rate g = g0 can be used as a better approx-
imation (Böer 1977). Optical excitation and carrier generation were discussed in
chapters ▶ “Band-to-Band Transitions” and ▶ “Equilibrium Statistics of Carriers,”
and consequent photoconductivity is described in chapter ▶ “Photoconductivity,”
where more detail about the various types of optical excitation and related references
can be found.

1.2 Thermal Ionization

Thermally induced ionization can occur from any type of lattice defect as extrinsic
ionization or from lattice atoms as intrinsic ionization. Such ionization was
discussed in ▶ Sects. 1 and ▶ 2 of chapter “Equilibrium Statistics of Carriers,”
using an equilibrium approach without requiring an understanding of the micro-
scopic mechanism involved in the actual process of ionization. The previous analysis
required only the magnitude of the ionization energy and the density of levels in
equilibrium. In this section, the discussion is extended to include information
relating to the excitation process, which is necessary for a kinetic evaluation.

1.2.1 Thermal Ionization Mechanism
Thermal ionization is a process requiring statistical consideration, since it usually
needs the presence of several phonons simultaneously – or in a short time interval –
to supply sufficient energy. Such a “simultaneous” supply of phonons is necessary
for centers that do not have eigenstates spaced closely enough, into which an
intermediate thermal excitation can take place. The simultaneous phonon excitation
can be interpreted as a process involving a transient giant oscillation of a
lattice atom.

For deep defect centers that possess a phonon ladder, there exist two possibilities:
a multiphonon absorption or a sequential absorption of phonons, a cascade process.
For the latter case, the absorption of the next phonon must occur within the lifetime
of an excited state to accomplish the subsequent step of excitation, and so on, until
the total ionization energy is supplied. In both cases, a transient giant oscillation of
the defect center results, as indicated by the large double-headed arrow in Fig. 2a.
This results in the total energy of the center exceeding that of the bottom of the
conduction band, from which the electron can tunnel into the adjacent states of the
conduction band.

Such a deep defect center can induce transitions from the valence to the conduc-
tion band. In this case, a giant oscillation of a lattice atom, i.e., a multiphonon
process, can result in a transfer of an electron from the valence band into the defect
center. If the lifetime of the electron within the center is long enough, a consequent
giant oscillation of the center, as previously discussed, would bring this electron into
the conduction band. The sum of these two processes is equivalent to a thermally
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induced band-to-band transition, which is more difficult to understand without this
intermediate step.

For every excitation process, there exists an inverse de-excitation process. The
lifetime of an electron in any intermediate state and the supply of phonons with the
proper energy for accomplishing the next excitation step decide with what probabil-
ity any higher excitation is accomplished. For further discussion of the actual
microscopic phonon stepping, or “simultaneous” multiphonon excitation, see the
review of Stoneham (1981). A semiclassical model of such ionization, presented
below, will provide some insight.

1.2.2 Thermal Excitation Probability
In a simple configuration-coordinate diagram, we can represent the eigenstate of an
electron as that of an oscillator as illustrated in Fig. 2. With its surrounding lattice, it
will oscillate between different electronic eigenstates. With each of the oscillations
of variable amplitude, the electron has a varying probability of escaping from the
center into the adjacent band.

Determining when enough phonons have been supplied for such escape is a matter
of statistics. This probability is given by the Boltzmann factor exp[�Ei/(k T)]. Hence,
the total ionization probability is

Pi ¼ vi exp �Ei= kTð Þ½ �, (8)
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electron and possible
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giant oscillations indicated by
the red double-headed
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where vi is the attempt-to-escape frequency vi = ωi/2π, which may be approximated
by the breathing mode or a specific vector-mode phonon frequency ωi of the defect
center; see ▶Sect. 1.2.1 of chapter “Optical Properties of Defects.” For Coulomb-
attractive shallow centers, there is a different, rather crude way of estimating an
electronic attempt-to-escape frequency from the ionization radius ri of such a center,
as well as the thermal velocity vrms of the electron, assuming that it behaves like an
effective-mass particle:

vi ¼ vrms

2π ri
: (9)

This radius also determines the capture cross-section sn ¼ π r2i ; we hence obtain

vi ¼ vrms

2
ffiffiffiffiffiffiffi
π sn
p : (10)

This approximation, however, is only useful for a Coulomb-attractive center,
wherein the effective-mass picture can be applied, and therefore the appropriate
capture cross-section can be determined. With an rms velocity of ~107 cm/s, and a
capture cross-section of ~10�13 cm2, we estimate the frequency factor of such
centers to be ~1013 s�l. This simple model, however, should not be applied to
other types of centers, which would yield values that are substantially too high.

Thermal excitation probabilities are readily obtained from thermodynamic argu-
ments. This will be shown for a defect center that contains only the ground level and
interacts preferably with the conduction band: an electron trap. In equilibrium, all
transitions into the level must equal all transitions out of this level between each
group of two states, since its population remains constant within each volume
element. This fundamental detailed-balance principle yields (see Fig. 1)

etrap,c ntrap pc ¼ cc,trap n Ntrap � ntrap
� �

: (11)

Equation 11 holds independently of the position of the Fermi level. For ease of the
following computations, let us assume that the Fermi energy coincides with the
energy of the trap level (EF = Etrap ); then, in thermal equilibrium, the population of
these traps is Ntrap/2, and (Ntrap� ntrap)/ntrap= 1 applies. Therefore, with pcffi Nc (the
density-of-state distribution in the conductance band), we obtain

etrap, cNc ffi cc,trap n ¼ cc,trapNcexp �Ec � Etrap

kT

� �
, (12)

yielding for the ratio of emission-to-capture coefficients

etrap,c
cc,trap

¼ exp �Ec � Etrap

kT

� �
: (13)
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Although this condition was obtained for a specific case, namely, in thermal
equilibrium with EF= Etrap, the ratio holds true in general, since both coefficients are
constant and do not change with trap population.

The emission probability etrap,cNc can also be expressed in a microscopic model
as the product of the attempt-to-escape frequency vi and the Boltzmann factor:

etrap, cNc ¼ vi exp �Ec � Etrap

kT

� �
: (14)

From gas-kinetic arguments, we can describe the capture coefficient as the product
of the capture cross-section sn of the center and the rms velocity of the mobile carrier:

cc,trap ¼ sn vrms: (15)

Along its path through the lattice, a carrier can be thought of as sweeping out the
cylinder of a cross section of the capturing defect, as it recombines when it touches
the defect at any point on its cross section. In combining Eqs. 11, 12, 13, 14, and 15,
we obtain for Coulomb-attractive centers a useful relation between the capture cross-
section sn and an effective attempt-to-escape frequency:

vtrap ¼ Nc sn vrms: (16)

The typical parameters characterizing an electron trap are given in Table 1. The
use of Eq. 16 becomes problematic for centers with a capture cross-section less than
10�14 cm2; thus, the attempt-to-escape frequency for these centers is left open in
Table 1. In centers with a capture cross-section less than the geometric cross section
of the defect center, other arguments need to be considered, such as resonance
transitions or tunneling.

The population of a defect center in thermal equilibrium is determined by its
energy alone, while the attainment of this equilibrium, i.e., the time it takes to follow
changes in excitation, is determined by the center’s kinetic parameters cc,trap and
etrap,c – i.e., by two parameters: the energy of the level Etrap and either its capture
cross-section or its attempt-to-escape frequency vtrap.

Table 1 Typical capture and ionization parameters for electron traps

Center
type

Coulomb-
attractive Neutral

Coulomb-
repulsive

Tight
binding Dimension

sn 10�13 10�16 10�21 10�18 cm2

cc,trap 10�6 10�9 10�14 10�11 cm3/s

νtrap 1013 s�1
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2 Field Ionization

There are three field-ionization mechanisms:

• Frenkel-Poole ionization
• Impact ionization
• Tunnel ionization

All of these mechanisms produce free carriers predominantly by inducing bound-to-
free transitions. At sufficiently high fields, band-to-band transitions can also be initiated.

2.1 Frenkel-Poole Ionization

The Frenkel-Poole effect requires the lowest field2 for the ionization of Coulomb-
attractive centers (Frenkel 1938; Poole 1921). This ionization is achieved by tilting
the bands and thus lowering the thermal ionization energy of such a center. The
ionization probability is thereby increased as illustrated in Fig. 3.

The lowering of the potential barrier is obtained by superimposing an external
electric field F upon the Coulomb potential:

V xð Þ ¼ e Z

4π estat e0 x
� Fx, (17)

which shows a maximum where dV/dx vanishes:

x Vmaxð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e Z

4π estat e0F

r
; (18)

at x(Vmax) the barrier is lowered by δE = eVmax:

δE ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e F Z

π estat e0

r
: (19)

The field-enhanced thermal ionization probability of such a center can now be
approximated by

etrap,c ¼ v
0ð Þ
trap,c exp �

Ec � Etrap � δE

kT

� �
, (20)

where v 0ð Þ
trap,c is the frequency factor for thermal ionization.

2Except for high-mobility semiconductors for excitation from shallow centers at low temperatures,
where impact ionization favorably competes – see Sect. 2.2.
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By setting δE = kT, a simple estimate yields a critical electric field for marked
Frenkel-Poole ionization at

FFP ¼ π estat e0
e Z

kT

e

� �2

ffi 1:08� 104
estat
10

	 
 T

300K

� �2

V=cmð Þ: (21)

Effect of Local Fields The classical Frenkel-Poole model yields an ionization value
which is often too large when compared to experimental data. At sufficient density,
Coulomb-attractive centers will interact with each other due to their local field Floc,
which needs to be added to the external field F (Dallacasa and Paracchini 1986). The
ionization probability consequently is given as

etrap,c g ¼ e
0ð Þ
trap,c exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3 Z

π estat e0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fþ Floc

p
kT

" #
; (22)

the local field Floc is on the order of 10
4 V/cm for typical densities of charged defects

of 1016 cm�3. In Fig. 4, the relative ionization probability is given as a function of
the normalized electric field for a number of different approximations.

For Frenkel-Poole emission due to phonon-assisted tunneling, see Ganichev
et al. (1999).

2.2 Impact Ionization

An electron that gains enough energy between scattering events to exceed the
ionization energy can set free an additional electron on impact. This ionization
energy can be that of a defect center, e.g., a donor or, at sufficient fields, the bandgap
energy. The two resulting electrons will in turn gain energy, each one setting free
another electron. Sequentially, two, four, eight, etc., free electrons will result in an
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Fig. 3 Lowering of the
electron-binding energy by δE
for a Coulomb-attractive
center with an external electric
field (Frenkel-Poole effect),
assuming estat = 10 and
F = 50 kV/cm
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avalanche formation. In homogeneous semiconductors, it takes place over the length
of the high-field region, i.e., throughout the entire distance between electrodes. With
avalanche formation, the current increases dramatically and can lead to a dielectric
breakdown. In very thin semiconductors, however, there is not enough space from
electrode to electrode to develop a breakdown avalanche. Consequently, breakdown
fields at which the avalanche reaches critical values (see the following sections) are
higher in such thin layers.

Impact Ionization of Shallow Donors Shallow donors can easily be ionized by an
impact with free carriers at relatively low fields, i.e., a few V/cm in the 4–10 K range
in Ge, until all donors are depleted at ~50 V/cm. In Fig. 5, we see two ohmic
branches with moderate slope dI/dVand a steeply increasing branch in between when
impact ionization occurs. The magnitude of the shift between the low- and high-field
branches is determined by the initial population of the shallow donors. This popu-
lation is reduced at higher temperatures because of thermal ionization. For more
detail, see Sclar and Burstein (1957) and Bratt (1977). For the measurement of the
impact ionization cross-section, see Schappe et al. (1996).

2.2.1 Impact Ionization Across the Bandgap
Impact ionization can proceed by the impact of a conduction-band electron with an
electron from the valence band, thereby creating an additional electron and a hole.
The critical energy for such ionization can be estimated from the conservation of
momentum and energy. We will examine first a rather simple model that explains the
main principles.

The momentum conservation between initial (kn,init) and final states (2kn + kp),
while conserving the group velocity after impact (Anderson and Crowell 1972)
kn/mn = kp/mp, yields

√e3Z/(�εstatε0)   (√F /kT)

1 2 3 4 5 6

7

2 4 6 8

e tr
ap

,c
(F

) /
e tr

ap
,c

(0
) 
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100

1

Fig. 4 Relative ionization
probability as a function of the
normalized external field for:
(1) the original Frenkel-Poole
model, (2) Dallacasa and
Paracchini (1986) for γ = 1
(=abscissa value with
F replaced by Floc), (3) the
Hartke (1968) model, (4) the
Hill (1971) and Connell et al.
(1972) model for emission in
field direction, (5) the Pai
(1975) model; and (6) the Hill
(1971) model for isotropic
emission, (7) the Dallacasa
and Paracchini (1986) model
plotted for γ = 10. After
Dallacasa and Paracchini
(1986)
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kn,init ¼ kn 2þ mp

mn

� �
, (23)

and the energy conservation with En,init = 2En + Ep reads

En,init ¼ ℏ2 k2n
2mn

2þ mp

mn

� �
þ Eg: (24)

Also, as long as a parabolic band approximation holds, we have

En,init ¼
ℏ2 k2n,init
2mn

¼ ℏ2 k2n
2mn

2þ mp

mn

� �2

; (25)

for narrow bandgap material this may be a reasonable approximation. When com-
bining Eqs. 23, 24, and 25, we obtain for the threshold energy for impact ionization
Eii = En,init:

Eii ¼ Eg
2mn þ mp

mn þ mp
, (26)

which becomes the often-cited

Eii ffi 1:5Eg for mn ¼ mp

Eg for mn � mp

�
(27)
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Fig. 5 Current-voltage
characteristics of Ge with the
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54 K. (After Lautz (1961))
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as the condition for the electron-energy threshold. In typical semiconductors, the
observed threshold energy is larger, since the bands are nonparabolic and the
effective mass increases with increasing energy; for example, for GaAs, we
find Eii ffi 2.0 Eg, and for Si, we have Eii ffi 2.3 Eg. In indirect-bandgap semi-
conductors, momentum conservation requires that intervalley phonons are
involved in the ionization process: holes are located at the Γ point, while
conduction electrons are accelerated from a side valley – see Anderson and
Crowell (1972).

We must now evaluate how conduction electrons reach this threshold. This was
originally done by Wolff (1954), who estimated the balance between energy gain
from the field and losses due to scattering and ionization, in analogy to a gas
discharge analyzed by Townsend. We first will briefly review the main concepts of
Wolff’s theory.

The characteristic parameter of the impact ionization is the ionization rate ~αi per
unit path length, measured in cm�1. Electrons gain energy from the field and lose
part of the incremental gain during scattering events. Since the scattering is a
statistical process, there is a finite probability that an electron can accumulate enough
energy for impact ionization over a sufficiently long path length [a “lucky” electron,
as it is referred to later (Shockley 1961)].

The ionization rate increases rapidly with increasing field. The incremental speed
Δv of an electron gained from the electric field F is given by

mn
dvx
dt
¼ mn

Δvx
τm
¼ eFx, (28)

with τm as the momentum-relaxation time. The average energy gain is therefore

ΔE ¼ mn

2
Δv2x ¼

e2F2
x τ

2
m

2mn
: (29)

The energy gain can be dissipated most efficiently by scattering with longitu-
dinal optical phonons. Wolff estimates that the average gain during a free path
λ is approximately equal to the optical phonon energy ℏωLO near threshold
fields:

ΔELO ¼ e2F2
x τ

2
e

2mn
¼ e2F2

x λ
2

2mnv2e
ffi ℏωLO, (30)

where ve is the average electron velocity in the given electric field Fx, i.e., a velocity
above the rms velocity of electrons, not to be confused with the drift velocity. We
have also used the energy-relaxation time τe here, rather than the momentum-
relaxation time at lower energies, in order to consider the strong interaction with
LO phonons. With the kinetic energy of the accelerated electron E ¼ mnv

2
e=2, we

obtain from Eq. 30
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ΔELO

E
¼ e2F2

x λ
2

4ℏωLO

1

mn=2ð Þv2e
ffi 1 (31)

in the hot-electron field range. The field-modified electron distribution-function can
then be written as

f Eð Þ ffi Aexp � E

ΔELO

� �
¼ Aexp �B E

F2

� �
, (32)

where A is a proportionality constant on the order of 1, and B ffi 4 ℏωLO/(e
2 λ2). The

calculation of the ionization rate results in a similar functional dependence on the
electric field:

~αi ¼ Cexp �BE

F2

� �
: (33)

Shockley (1961), however, argued that impact ionization is caused by a few
“lucky” carriers that escape scattering altogether and are accelerated within one free
path to the ionization energy Eii. He obtains for the ionization rate

~αi ¼ C�exp �B�E
F

� �
: (34)

Baraff (1962) assumed a more general distribution function and obtained results that
contain Shockley’s ~αi as the low-field limit and Wolff’s ~αi as the high-field limit.

All of these theories have a shortcoming in as much as they do not recognize the
actual band structure, i.e., major deviation from the parabolic (effective mass)
approximation of the conduction band. Except for very narrow bandgap semicon-
ductors, the impact ionization energy lies high within the conduction band and
requires a more accurate accounting of E(k). See Curby and Ferry (1973) for a
Monte Carlo analysis of impact ionization in InAs and InSb; see also Fig. 6.
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Shichijo and Hess (1981) have used a Monte Carlo method to account for the
competing field acceleration and polar optical or intervalley scattering within the
Brillouin zone of GaAs. They observed characteristic anisotropies of scattering and
ionization thresholds and recognized that electrons can never gain sufficient energy
within one ballistic path (Shockley’s “lucky” electrons) while confined within the
Brillouin zone. However, after an elastic scattering event, such electrons could start
over again and attain sufficient energy for impact ionization – see Fig. 7. At an energy
sufficient for ionization, the electron in GaAs lies in the second conduction band.

The total phonon-scattering rate is shown in Fig. 8 as a function of the electron
energy; the data agree well with more recent calculations (Grupen 2011). Above the
impact-ionization energy, the scattering rate increases dramatically, as given by
Keldysh (1965):

eii ¼ 1

τ Eiið ÞP
E� Eii

Eii

� �2

, (35)
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Fig. 7 (a) Momentum vector trajectory in the Γ K L plane of the Brillouin zone with an electric
field in the h1 1 1i direction and one elastic scattering event (A! B). (b) Variation of the electron
energy in time for the process shown in (a). After Shichijo and Hess (1981)
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where eii = 1/τ(Eii) represents the scattering (impact ionization) rate at the threshold
energy, P ffi 50 . . . 500 is a dimensionless factor, and E is the electron energy.

Typical trajectories in the Brillouin zone near threshold fields are shown in Fig. 9,
with corresponding variations of the electron energy computed by Shichijo and Hess
during a sample of 1,000 scattering events. This figure shows the typical behavior in
which only a few events bring the electron to favorable starting positions from which
they can be accelerated to reach the threshold energy. At lower fields, the amplitudes
of the energy variation are much more quiet and electrons stay well below the
threshold energy.

The generation rate of electrons due to impact ionization can be obtained from the
deformed distribution function fF, density of states g(E), and energy-relaxation time
according to

gi ¼
ð
f F Eð Þg Eð Þ

τe Eð Þ dE, (36)

and is shown for InSb in Fig. 6. The estimate includes the electron-electron interac-
tion, which tends to shorten the relaxation time at higher electron energies. The
ionization rate and the generation rate are related by

~αi ¼ gi
vd

, (37)

with vd as the drift velocity. For reviews, see Stillman and Wolfe (1977), Ridley (1983),
Dmitriev et al. (1987), Higman et al. (1991), and Fischetti and Vandenberghe (2016).
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2.2.2 Avalanche Current and Multiplication Factor
With impact ionization, the electron current increases with increasing distance from
the cathode. The increment of electrons in a distance dx is given by

dn ¼ ~αn n dx, (38)

where ~αn is the ionization rate of electrons. For band-to-band ionization, this
increment is equal to the increment of holes (dn= dp) because of the mutual creation
of electrons and holes during each ionizing impact.

In a similar fashion, the hole current increases with increasing distance from the
anode, with an increment given by

dp ¼ ~αp p dx: (39)

In an arbitrary slab of a semiconductor with planar electrodes at a distance x from the
cathode (shown at the left in Fig. 10), the change in electron density is given by the
change due to electrons coming from the left, ~αn n0 þ n1ð Þ dx, plus the change due to
the holes coming from the right, ~αp p2 dx ¼ ~αn n2 dx, yielding

dn1 ¼ ~αn n0 þ n1ð Þ dxþ ~αp n2 dx, (40)

where n0 is the electron density at the cathode. Shifting x to the anode, we obtain as
the electron density at the anode

na ¼ n0 þ n1 þ n2, (41)

and as a multiplication factor for electrons

Mn ¼ na
n0

: (42)

A similar multiplication factor for holes can be defined asMp= pc/p0, where pc is the
hole density at the cathode.

After eliminating n2 from Eqs. 40 and 41, we obtain the linear differential
equation:

dn1
dx
¼ ~αn � ~αp

� �
n0 þ n1ð Þ þ ~αpna: (43)

This yields for the boundary conditions n(x = 0) = n0 and n(x = d) = n0 + n1 = na
the electron-multiplication factor:

Mn ¼ 1

1� Ð d
0
~αn exp � Ð x

0
~αn � ~αp

� �
dx0

� � �
dx

: (44)

The electron current increases from cathode to anode by
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djn ¼ jn ~αn dxþ jp ~αp dx, (45)

and the hole current increases similarly from anode to cathode, so that the sum of
both remains independent of x, as shown in Fig. 10. The total current increases with
increasing M. When M becomes infinite, dielectric breakdown occurs. This occurs
when the integral in Eq. 44 is equal to 1. In materials for which ~αn ffi ~αp, e.g., in GaP,
this breakdown condition reduces to

ðd
0

~α dx ¼ 1: (46)

This means that every electron or hole passing through the semiconductor creates
another electron-hole pair, with a probability equal to 1. As this process goes on with
more and more new carriers generated, breakdown occurs.

On the other hand, as long as the integral in Eq. 46 remains below 1, a stationary,
increased carrier density is obtained and no breakdown occurs. For a review, see
Dmitriev et al. (1987). For impact-ionization characteristics in group III–V semi-
conductors, see Yuan et al. (2000); for Si, see Maes et al. (1999).

Avalanche multiplication is applied particularly in sensitive photodetectors used
for single-photon detection. Multiplication factors for InAs obtained from Monte
Carlo simulation are shown in Fig. 11. The simulation assumed photogeneration of
electron-hole pairs at random locations in the bulk. Due to the random creation of
the initial carriers within the device and an inherent dead space of the impact-
ionization process, the breakdown threshold-field, which corresponds to the sharp
vertical increases in the curves, is higher for shorter devices (Satyanadh et al.
2002); in addition, the multiplication factors depend on the length of the device and
are smaller than those obtained for electrical injection. The threshold fields are
roughly invers to the device length, yielding comparable avalanche voltages for
devices of varying lengths due to a comparable total energy gain for carrier
multiplication.

j

jn0

jp(x)

jn(x)

xd0

Fig. 10 Current distribution as a function of the distance from the cathode (at left) with impact
ionization. jn0 is the original current at the cathode; Δjn = j – jn0 is the current multiplied by
impact ionization. Holes are minority carriers; thus jp(x = d ) = 0. Pair production by impact
ionization makes the incremental currents for electrons and holes equal to each other: Δjn =
Δjp= jp(x = 0) � jp(x = d )
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2.2.3 Ionization via Energetic Particles
Carriers can be generated by a wide variety of high-energy particles, such as fast
electrons, x-ray photons, and various nuclear particles. Such particles are used, e.g.,
for cathodoluminescence in cathode-ray tubes, imaging, or dosimetry. In all of these
excitation processes with high-energy particles, a large number of carriers are
produced per incident particle. In addition, however, lattice damage is also produced
depending on the energy and the mass of the particle. Such damage varies in severity
from photochemical reactions with x-rays to severe impact damage with protons and
α-particles. The excitation process depends on the type of particle. It may occur in
the bulk via x-rays or γ-rays or near the surface by fast electrons or α-particles; it may
also be of a cascade character, i.e., the initially generated fast carriers may in turn
create secondary carriers of sequentially lower energy.

Radiation with energetic particles, such as electrons, nuclei, or ions, results in the
creation of lattice defects, if the energy and momentum of the impacting particle are
sufficiently large. The energy transfer depends on the scattering angle θ in the center-
of-mass reference frame. The actual collision (scattering) event is particularly angle-
dependent when far-reaching Coulomb forces provide the interaction, e.g., for pro-
tons or α-particles. This type of collision is described as Rutherford scattering. On
the other hand, the event does not depend on θ for so-called hard-sphere collisions,
i.e., for neutrons or fast ions; here θ is the angle between impacting and scattered
particle trajectories.

The result of a particle impact can be divided into metastable atomic displace-
ments (i.e., radiation damage) and electronic ionization. The minimum energy
necessary for displacing a lattice atom after an impact is typically on the order of
5 . . . 50 eV and is shown in Table 2 for some semiconductors. From energy and
momentum conservation, we estimate that the minimum energy for impacting
electrons is on the order of 100 keV to cause radiation damage. Atoms displaced
in such a manner have insufficient energy to cause secondary damage; however,
displacement occurs preferably in the neighborhood of lattice defects.
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Bombardment with protons or neutrons transfers substantially more energy, and
results into numerous secondary damage events, which are wider-spaced for protons
and in a more compact region for neutrons. A similar, compact region of high
disorder is observed after bombardment with high-energy ions. Ion bombardment
from a gas discharge creates disorder in a region close to the surface. Ion implanta-
tion leaves even larger defect clusters. Careful posttreatment annealing is required
to restore sufficient order to reobtain attractive semiconductive properties (i.e.,
high mobility and low recombination rates), since these defect clusters usually
act as major scattering or recombination centers. For a review, see Hayes and
Stoneham (1984).

2.3 Electron Tunneling

Electrons can penetrate potential barriers if these barriers are thin and low enough,
as pointed out by Oppenheimer (1928), Fowler and Nordheim (1928), and others.
We addressed this effect briefly in the discussion of perpendicular carrier transport
in two-dimensional structures in ▶ Sect. 2.1 of chapter “Carrier Transport in
Low-Dimensional Semiconductors.” Here, we consider this quantum mechanical
phenomenon in more detail; it can easily be understood by recognizing that the
wavefunction of an electron cannot immediately stop at a barrier but rather decreases
exponentially into the barrier with a slope determined by the barrier height. If the
barrier is thin, there is a nonzero amplitude of the wavefunction remaining at the end
of the barrier, i.e., a nonzero probability for the electron to penetrate, as illustrated in
Fig. 12. For a comprehensive review, see Duke (1969) or Wolf (1975). This electron
tunneling phenomenon will first be recalled from chapter ▶ “Carrier Transport in
Low-Dimensional Semiconductors” for a simple one-dimensional rectangular bar-
rier and then be discussed for differently shaped barriers.

Table 2 Measured atomic displacement energies Edis and calculated displacement energy
thresholds Edis,thr,Frenkel for A or B Frenkel-pair formation by radiation damage in AB compound
semiconductors, after Hayes and Stoneham (1984) and van Vechten (1980), respectively. Values of
Edis,thr,Frenkel in brackets are experimental data

Crystal

Edis (eV) Edis,thr,Frenkel (eV)

Cation A Anion B Cation A Anion B

GaAs 9 9.4 12.4 (15–17) 17.6

InP 6.7 8.7 12.2 16.5

InAs 6.7 8.3 10.8 14.9

InSb 5.7 6.6 9.1 12.9

ZnO 30–60 60–120 18.5 41.4 (57)

ZnS 7–9 15–20 12.1 27.5

ZnSe 7–10 6–8 10.8 (10) 24.8

CdS 2–7 8–25 11.0 (8) 24.3

CdSe 6–8 8–12 10.1 22.4

CdTe 5.6–9 5–8 8.7 19.5
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Tunneling Through a Rectangular Barrier When an electron wave with an energy
E impinges on a rectangular barrier with height eV0 and width d, we distinguish three
wavefunctions in the three regions: before, in, and after the barrier, see Fig. 12:

φ1 xð Þ ¼ A1e
ik0x þ B1e

�ik0x for x < �d=2
φ2 xð Þ ¼ A2e

ik1x þ B2e
�ik1x for � d=2 < x < d=2

φ3 zð Þ ¼ A3e
ik0x for x > d=2

(47)

with amplitude coefficients Ai for the incoming wave and Bi for the reflected wave at
�d/2 and +d/2, respectively. The wavenumbers k0 and k1 outside and inside the
barrier are given by

k20 ¼ 2mnE=ℏ2 and k21 ¼ 2mn eV0 � Eð Þ=ℏ2: (48)

Continuity of φ and dφ/dx at x = �d/2 and at x = +d/2 provides four conditions
for the coefficients Ai and Bi, from which we derive an expression for the transmis-
sion and reflection probabilities Te and R:

Te ¼ A3

A0

� �2

and R ¼ B2
1 ¼ 1� A3

A1

� �2

: (49)

Solving the set of condition equations for Ai and Bi yields

Te ¼ 1þ k20 þ k21
4k0 k1

� �2

sinh2
k1 d

2

� �" #�1
ffi 4k0 k1

k20 þ k21

 !2

exp �k1 dð Þ; (50)

this approximation is for kl d	 1. After introducing the expressions for k0 and kl, we
obtain for the transmission probability:

Te ffi 16
E

eV0

� �2 eV0

E
� 1

� �
exp �d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn eV0 � Eð Þ=ℏ2

q� �
: (51)

E

x
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φ

d 0
2

d
2

1 2 3

Fig. 12 One-dimensional
rectangular barrier (green
lines) with incoming and
attenuated transmitted waves
(blue curves)
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For a barrier height eV0 much larger than the kinetic energy of the tunneling
electrons, the �1 in Eq. 51 can be neglected yielding a more simple approximation.
For example, thermal electrons [E = kT (300 K)] are attenuated by a factor of
2.2 � 10�3 when impinging on a 10 Å thick barrier of 1 V height.

2.3.1 Tunneling Through Triangular or Parabolic Barriers

Tunneling Through a Triangular Barrier The transmission probability also
depends on the shape of the barrier. In semiconducting devices, the potential barrier
often can be approximated by a triangular shape, for instance, at a simplified metal-
semiconductor (Fig. 13a) or heterojunction interface or for a band-to-band transition
(Fig. 13b). At sufficiently high fields, the band edges are substantially tilted and
tunneling through such a barrier can become important.
The transmission probability Te for a wide class of barriers is given in the WKB
approximation3 by

Te ffi exp �
ðd
0

k xð Þj j dx
� �

, (52)

neglecting the pre-exponential factor which is on the order of 1 and with the shape of
the barrier contained in the wavevector:

k xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn eV0 � E xð Þ½ �=ℏ2

q
: (53)

For the triangular barrier, k(x) is given by

Ec(x)Ec(x)
Ev(x)

x xd d
EF

00

Eg
V0

E E

∆E

a b

Fig. 13 Triangular potential barrier at (a) a metal-semiconductor contact neglecting image forces,
(b) for a band-to-band transition in tilted band edges

3This semiclassical approximation of the one-dimensional, stationary Schrödinger equation is
named after G. Wentzel, H.A. Kramers, and L. Brillouin.
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k xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

ℏ2
ΔE� eFxð Þ

r
: (54)

Integration of Eq. 52 with Eq. 54 yields

ð
k xð Þdx ¼

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
2

3

ΔE� eFxð Þ3=2
eF=2

�����
d

0

, (55)

and with ΔE � eF�0 = ΔE, and ΔE � eF�d = 0, we obtain

Te,triangle ¼ exp � 4

3

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
ΔEð Þ3=2
eF

 !
: (56)

The pre-exponential factor is similar in form to that given in Eq. 51; compared
with the exponential, its ΔE- and F-dependences are usually neglected. The barrier
height to field relation is superlinear; thus, doubling the barrier height requires
23/2 = 2.83 times the field to result in the same tunneling probability.

For band-to-band tunneling,ΔE in Eq. 56 is replaced by the bandgap energy Eg:

Te,band-band ffi exp � 4

3

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
E3=2
g

eF

 !
: (57)

Although this transmission probability is multiplied by a large density of electrons
acting as candidates for tunneling from band to band, very high fields (>106 V/cm)
are needed to produce significant tunneling currents, except for very-narrow-gap
semiconductors.

A parabolic barrier is better suited as an approximation for barriers in which
two fields overlap, e.g., the Coulomb-attractive field of a center or the image force of
a metal-semiconductor barrier and the external field. This barrier type is shown in
Fig. 14. The corresponding wavevector is given by

k xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

ℏ2

ΔEð Þ2 � eFxð Þ2
ΔE

s
, (58)

and yields after integration

ðd
0

k xð Þdx ¼
ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
π

8

ΔEð Þ3=2
eF=2

: (59)
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Therefore, the transmission probability for a parabolic barrier is given by

Te,parabola ¼ exp � π

4

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
ΔEð Þ3=2
eF

 !
, (60)

with an exponent that is reduced by a numerical factor of 3π/16 = 0.589 from the
expression for the triangular barrier.

2.3.2 Tunneling in a Three-Dimensional Crystal
In the one-dimensional model, we are concerned only with the momentum in the
direction of the normal on the barrier plane; it decreases exponentially during the
tunneling transition. In a three-dimensional crystal, however, there is a three-
dimensional distribution of momenta. Assuming a planar barrier, only the compo-
nent in the direction of tunneling is influenced by the tunneling process; the two
components perpendicular to the tunneling are not: these components are conserved.
The total transition probability is therefore reduced by a factor given by the fraction
of electrons having a favorable momentum component to those that do not. This
fraction η was calculated by Moll (1964):

η ¼ exp �E⊥=E
� �

, (61)

with E⊥ the energy associated with the momentum perpendicular to the direction of
tunneling, equal to ℏ2k2⊥= 2mnð Þ, and with E given by

E ¼
ffiffiffiffiffiffiffiffi
ℏ2

2mn

s
eF

π
ffiffiffiffiffiffiffi
ΔE
p : (62)

Hence, for the tunneling probability through a flat plate barrier with a potential of
parabolic shape, we obtain

E

x

∆E

EF

Ec

Emax

Fig. 14 Parabolic barrier
showing the lowering of
a triangular barrier from
Eg to Emax
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Te,parabola, 3D ¼ η Te,parabola, 1D ¼ exp �Eg þ 4E⊥

4E

� �
: (63)

Tunneling Currents The current is proportional to the product of the tunneling
transmission-probability and the incident carrier flux. As an example, an idealized
n+ p+-junction is shown in Fig. 15 for various bias conditions.

Depending on the bias, the current can flow across this junction from filled
states in the valence to empty states in the conduction band with reverse bias or
from filled states in the conduction band to the empty states in the valence band with

forward bias. The net current is the difference of both (Moll 1964): jn ¼ j
!
n � j

 
n. For

any given bias, we have

j
!
n ¼ jn,v-c ¼ A

ðEv,l

Ec,r
Nv Eð Þ f n Eð Þf gl Nc Eð Þ f p Eð Þ� 

r
Te,triangle, 3D dE, (64)

j
 
n ¼ jn,c-v ¼ A

ðEv,l

Ec,r
Nc Eð Þ f n Eð Þf gr Nv Eð Þ f p Eð Þ� 

l
Te,triangle, 3D dE, (65)

with Te,triangle,3D = ηTe,triangle,1D from Eqs. 56 and 61. The subscripts l and r stand for
the left and right sides in Fig. 15, Nv(E) and Nc(E) are the respective density-of-state
distributions in the valence and conduction bands, and fn and fp = 1� fn are the Fermi
distributions for electrons and holes. The first factor in parentheses under the integral
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Fig. 15 Band model with
idealized tunnel junction for
four different bias conditions.
The current flow is indicated
by red arrows
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identifies the density of available electrons; the second factor gives the density of holes
into which tunneling can proceed. We therefore obtain

jn ¼ A

ðEv,l

Ec,r
Nv Eð ÞNc Eð Þ f n,r Eð Þ � f n,l Eð Þ

� 
Te,triangle,3D dE: (66)

The proportionality constant A can be obtained by accounting for the charge and
the velocity of electrons in k space; with these, the current density is

jn ¼
e mn

2π2ℏ3
exp

π m1=2
n E3=2

g

2
ffiffiffi
2
p

eℏ F

 !ð ð
f n,r Eð Þ � f n,l Eð Þ
� 

exp � 2E⊥

E

� �
dE dE⊥,

(67)

assuming the same isotropic effective mass at the left and right sides of the junction.
After integrating over E⊥, which yields E/2, and approximating the integral over E,
we obtain

jn ¼
e3 m1=2

n d

2
ffiffiffi
2
p

π3ℏ2E1=2
g

F2 exp � π m1=2
n E3=2

g

2
ffiffiffi
2
p

eℏ F

 !
(68)

for Va	 kT/e andVa 	 E=e; Va is the applied voltage across the barrier. Equation 68
has the field dependence given by the Fowler-Nordheim formula (Fowler and
Nordheim 1928): j / F 2 exp(�F0/F). Equation 68 yields a substantial tunneling
(>10�3 A/cm2) for fields in excess of 1.5 � 106 V/cm for the parameters d = 100 Å
and mn ffi m0. A reduced effective mass lowers the critical field by a factor of 3 for
mn = 0.1 m0.

2.3.3 Tunneling Spectroscopy
The dependence of the tunneling current on the level-density distribution (Eq. 66)
permits the use of this current for obtaining information about the distribution. There
are several methods available; they involve a similar principle in shifting the Fermi
level or quasi-Fermi level on one side of a barrier with respect to the Fermi level on
the other side (see Fig. 15), thereby permitting the tunneling of carriers through the
barrier at variable energies. Thus, the level distribution is profiled near the top of the
valence band or in the conduction band, depending on forward or reverse bias,
respectively: the increment in tunneling current becomes larger when more levels
become available. The probing side of the barrier can be either a highly doped
semiconductor, a metal electrode, or a superconductor.

Examples for tunneling spectroscopy were given for a double-barrier QW and
superlattices in ▶ Figs. 10, ▶ 11, and ▶ 16 of chapter “Carrier Transport in Low-
Dimensional Semiconductors.” An example for an asymmetric GaAs/AlGaAs/
GaAs double heterostructure is shown in Fig. 16. Two 2D electron gases exist on
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either sides of the doped AlGaAs barrier; contacts to GaAs on both sides allow for
shifting the 2D subbands on each side with respect to each other. The relative energy
shift of the 2D systems equals the bias eV to a very good approximation, since all of
the applied voltage drops across the barrier (Smoliner 1996). The self-consistently
calculated structure of the conduction-band edge is shown in Fig. 16a. Bound states
En are clearly seen in the current-voltage (I-V) characteristics and even more
pronounced in the dI/dV derivative.

Other examples of tunnel spectroscopy are listed in the following sections (see
also Tsui 1982; Hayes et al. 1986).

Phonon Assistance Indirect bandgap materials show a much lower band-to-band
tunneling probability, since an indirect transition requires an additional phonon to
accomplish the change in momentum. An estimate of the tunneling probability by
Keldysh (1958) shows a similar functional behavior as given by Eq. 57, but reduced
by a factor on the order of 10�3.

Other changes in the tunneling probability are seen when the phonon energy is
used in addition to the electron energy to bridge the barrier:
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Fig. 16 (a) Calculated profile
of the conduction-band edge
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Te ¼ exp � 4

3

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
Eg � ℏω0

� �3=2
eF

 !
: (69)

When the bias V reaches the phonon energy, V 
 ℏω0/e, the tunneling current
increases measurably. This change can be used to identify the corresponding phonon
energies as shown in Fig. 17 for Ge.

Trap Assistance Tunneling through a barrier into the conduction band can be
assisted by tunneling first into a trap and then from the trap into the conduction
band – a two-step tunneling process, as indicated in Fig. 18. When defect
centers are spaced close enough to an interface, and are present at sufficient
densities, the two-step tunneling can substantially increase the overall tunneling
probability, which is calculated from the sum of the reciprocal individual
probabilities:

Te,two-step ¼ 1

Te1
þ 1

Te2

� ��1
: (70)

Photon Assistance (Franz-Keldysh Effect) The Franz-Keldysh effect is an impor-
tant tunneling phenomenon in which only a small fraction of the energy is supplied
from the electric field. Most of the energy comes from an optical excitation from a
state in the gap near the valence-band edge to a symmetrical state close to the
conduction-band edge; see Fig. 19a.

This three-step process was suggested by Franz (1958) and Keldysh (1958) and
was observed first by Böer et al. (1959). It results in a shift of the absorption edge
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 / 
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T = 4.2 K
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Fig. 17 Second derivative of
tunnel current to emphasize
the structure for a Ge tunnel
diode, indicating the phonon
spectrum. After Payne (1965)
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toward lower energies. The amount of the shift can be estimated from the photon-
assisted tunneling – compared with Eq. 69:

Te ¼ exp � 4

3

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
Eg � hv
� �3=2

eF

 !
, (71)

where mn is the effective mass in the direction of the electric field. As a result, the
optical absorption edge is shifted (Fig. 19b) by the same amount:

αo ¼ αo0 exp � 4

3

ffiffiffiffiffiffiffiffi
2mn

ℏ2

r
Eg � hv
� �3=2

eF

 !
: (72)

The shift ΔEg,opt can be obtained from the condition that the exponent remains
constant and ffi 1, resulting in

ΔEg,opt ¼ Eg � hv ¼ 4

3
eF

ffiffiffiffiffiffiffiffi
ℏ2

2mn

s0
@

1
A

2=3

, (73)

or

Etrap

Ec

E

x

Fig. 18 Tunneling from a
contact metal into a
semiconductor, which
becomes marked when the
trap level is lowered by the
electric field to coincide with
the Fermi level of the metal
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F = 0

α0

hν

Fig. 19 Franz-Keldysh effect: (a) Photon-assisted tunneling from band to band; (b) resulting shift
of the band-edge absorption
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ΔEg,opt ¼ 7:25� 10�6 F= V=mð Þð Þ2=3 eVð Þ: (74)

This means, for a band-edge shift of ~10 meV, an electric field of ~50 kV/cm is
required. A theoretical analysis of the optical absorption tails near the absorption
edge is given by Kuwamura and Yamada (1996).

The photon-assisted tunneling is not restricted to the transition from the valence to
conduction band near its principal edge; an electron can optically be excited to a state
close to any higher band and complete the transition via tunneling. The Franz-Keldysh
effect thereby provides a relatively simple method for measuring the energy of charac-
teristic points in the E(k) behavior of any band (Seraphin 1964; Aspnes 1967). At first
view, this may suggest no advantage over a purely optical transition. When applying an
ac electric field, the maximum modulation signal of the optical response is observed
where the absorption edge has the highest slope, i.e., at the inflection point of κ(λ). With
overlapping higher bands, the optical absorption itself is not very structured. In contrast,
however, the Franz-Keldysh modulation is highly structured and shows unusually
sharp features with characteristic oscillations; see Fig. 20. For reviews, see Frova and
Handler (1965), Seraphin and Bottka (1965), and Aspnes (1980).

3 Summary

Free carriers are obtained by thermal, optical, or electrical field generation or by a
combination of these processes. In addition, carriers can be generated by high-
energy particles, such as fast electrons, ions, or x-ray photons; these excitation
processes produce a large number of carriers, but also lattice damage depending
on the energy and mass of the particle. Thermal carrier generation from shallow
centers requires the absorption of a phonon of sufficient energy or at most a few
phonons involving intermediate steps into excited states. Thermal generation from
deep centers requires multiphonon-induced giant oscillations. Such oscillations
cause a crossover of the defect level and levels of the conduction band and provides
sufficient probability for the defect-level electron to be ejected into band states.
Similarly, a giant oscillation of an adjacent lattice atom could result in a replenishing
of the emitted electron from the valence band. Thereby, a defect-assisted, band-to-
band thermal excitation can take place.

Optical carrier generation proceeds from defect levels or as band-to-band direct
or indirect generation with photons of sufficient energy. Electrical field generation of
carriers can be caused by a field-enhanced thermal generation from Coulomb-
attractive defect centers (Frenkel-Poole effect) at fields typically in the low
10 kV/cm range. Impact ionization from shallow impurity levels can be induced at
very low fields, typically 10 V/cm at low temperatures. Impact ionization from deep
centers is observed at much higher fields in materials of sufficient thickness and
carrier density. Band-to-band impact ionization in typical semiconductors requires
fields in the l05 V/cm range. At still higher fields, typically 106 V/cm, tunneling from
deep defect centers or from the valence band takes place. These field-excitation
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mechanisms increase rapidly with increased bias and, when unchecked by a suffi-
ciently large series resistance, cause dielectric breakdown.

Interaction between two or more of the generation processes provides a means of
sensitive detection. For instance, optically stimulated thermal or field generation of
carriers yields information about defect levels or band spectra which are difficult to
obtain otherwise. Field-enhanced thermal generation provides an ionization mech-
anism that acts selectively on Coulomb-attractive centers and can be controlled at
relatively low-field strengths. The generation of carriers, controlled by external
parameters such as temperature, optical excitation, or bias (electric field), is the
primary process for many semiconducting devices.
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Abstract
In steady state, for each act of carrier generation or excitation there must be one
inverse process of recombination or relaxation. Carriers can return immediately
or after scattering to their original state, or they can recombine radiatively or
nonradiatively with another state.

Nonradiative recombination is almost always defect-center controlled; it
releases energy in the form of phonons, or in Auger recombination, by acceler-
ating another electron. Phonon emission occurs as a single-phonon process when
trapping a carrier at a shallow defect center or as a multiphonon emission when
recombination occurs at a deep center. In carrier traps, which are located close to
one band, excitation into the adjacent band and trapping at the center dominate,
while in recombination centers, which are located closer to the center of the
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bandgap, carriers recombine from one band to the other. The capture cross-
section of defect centers spread over more than 12 orders of magnitude.

Radiative recombination proceeds as an emission delayed by the lifetime of
an excited state and changed in energy after relaxation of the excited state. The
spectral distribution of the luminescence is related to the electronic structure of
the semiconductor and its defects. The sharp low-temperature spectra of
shallow-level defects in pure crystals are well understood, while the assignment
of the broad emissions of deep defects with strong lattice coupling is usually
difficult.

The random fluctuation of individual carrier motion and carrier generation-
recombination creates noise. Equilibrium noise is caused by the Brownian motion
of carriers and independent of the frequency. Nonequilibrium noise is generated
upon optical excitation or current injection and has usually a typical 1/f frequency
dependence. It is composed of various contributions; a fundamental part origi-
nates from energy loss by low-frequency bremsstrahlung in basically elastic
scattering processes. Noise creates a lower limit for signal detection.

Keywords
1/f noise � Auger recombination � Band-to-band recombination � Bound-exciton
luminescence � Capture cross-section � Electron-lattice coupling � Equilibrium
noise � Extrinsic luminescence � Geminate recombination � Generation-
recombination noise � Luminescence � Luminescence centers � Near-band-edge
emission � Noise � Nonequilibrium noise � Nonradiative recombination �
Phosphors � Radiative recombination � Recombination � Recombination centers �
Recombination coefficient � Recombination cross-section � Shockley-Read-Hall
center � Shot noise � Spontaneous emission � Stimulated emission � Thermal
noise � Thermal radiation � Trap

1 Nonradiative Recombination

Carrier recombination is the opposite process to carrier generation, which was
discussed in the previous chapter. For reasons of detailed balance, a process of
recombination must occur for every process of generation in equilibrium. Although
there is a wide variety of such recombinations, depending on the type of energy
released during recombination, we can distinguish two principle types:

• Nonradiative recombination
• Radiative recombination

The technically important radiative recombination is discussed in Sect. 3. In the
following we consider nonradiative recombination.
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Nonradiative recombination is usually an undesired effect, since it converts high
electronic energy into heat, i.e., it increases the entropy of the system. It thereby
decreases the performance of all but a few devices – such as bolometers, which are
designed to measure the incident total energy; this is best accomplished by
converting it into heat. Nonradiative recombination can occur by:

• Single-phonon emission when recombining with a shallow level
• A cascade emission of phonons
• Simultaneous multiphonon emission
• Auger generation of an accelerated carrier

Recombination can occur from a band edge at k= 0 or at k 6¼ 0 or from an excited
state of a defect level. Recombination can proceed to another band, from a higher to a
lower excited state or to the ground state of a defect level. Finally, recombination can
proceed either directly back, or after some scattering back into the same state
(geminate recombination), or after migration to another site.

In the following we first describe recombination mechanisms with an initial
energy transfer to phonons and then describe mechanisms with an initial energy
transfer to electrons.

1.1 Energy Transfer to Phonons

When a carrier collides with a defect center, it can be captured at this defect center
and release its energy in a cascade emission of phonons (a phonon ladder), if the
dissipated energy is at least k T. Its probability of reemission would be equal to its
probability of further emitting a phonon, but multiplied with the probability of
finding a phonon for the reemission. This probability is <1.

The capture cross-section of such a center is

snonrad ¼ π r20, (1)

where r0 is the radius of the electron eigenstate at an energy � kT below the band
edge. In the following section, we will present an estimate of r0 for a Coulomb-
attractive center.

Capture occurs with a high probability when, during its Brownian path within a
band, a carrier approaches the center (a) within an energy kT of the band edge and
(b) within a distance of less than r0 of the recombination center. The first condition is
usually fulfilled (it occurs for carriers in thermal equilibrium), and only the second
condition needs to be considered. Therefore, using a gas-kinetic model, carrier
capture, like ordinary scattering, takes place after the electron has traveled a distance

λr ¼ vrms τr, (2)
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where τr is the lifetime of a carrier between generation and capture and is given by

τr ¼ 1

vrms snonrad
Nrec � nrecð Þ, (3)

with (Nrec � nrec) as the density of unoccupied recombination centers and the
carrier velocity vrms. A few capture cross-sections for electrons or holes of some
defect centers are listed in Table 1. When nonequilibrium conditions are involved
at higher electric fields or with optical excitation, an energy-dependent capture
cross-section must be considered that involves relaxation processes within the
band – see Sect. 1.1.2; see also ▶ Sect. 2.1 of chapter “Carrier Scattering at High
Electric Fields”.

1.1.1 Recombination at Coulomb-Attractive Centers
The energy spectrum of a Coulomb-attractive quasi-hydrogen center is given by

EqH ¼ m�=m0

e2stat n2
R1, (4)

where n is the quantum number and R1 is the hydrogen Rydberg energy, see ▶Sect.
1 of chapter “Shallow-Level Centers”. For capture to take place, we identify a
quantum number nkT as the closest integer of n, for which En = 1 � En � k T. Then

n2kT ¼ m�=m0

e2stat kT
R1; (5)

for the radius of the corresponding eigenstate, we obtain

rkT ¼ aH
estatm0

m� n2kT , (6)

Table 1 Capture cross-sections sn for electrons and sp for holes of deep-level impurities at room
temperature in cm2 and level depth from the edge of the conduction band Ec or valence band Ev

Dopant

Host crystal

Si GaAs CdS

Depth (eV) s (cm2) Depth (eV) s (cm2) Depth (eV) s (cm2)

Ag sn = 10�12a Ev + 0.24 sp = 10�17 Ec � 0.23 sn = 10�13

Au Ev + 0.35 sn = 10�14 Ev + 0.40 sp = 10�17 Ec � 0.07 sn = 10�19

Ec � 0.55 sp = 10�15 Ec � 0.15 sn = 10�17

Ni Ec � 0.35 sn = 10�15 Ev + 0.2 sp = 10�16 sn = 10�17

Ev + 0.23 sn = 10�15 Ev + 0.14 sp = 10�15

aat T = 77 K
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where aH is the Bohr radius of the hydrogen atom. Usually the ground state is only
slightly below kT at room temperature. Thus, n = 1 is often used for the quasi-
hydrogen recombination radius, yielding the well-known approximation

rkT ¼ aH
estatm0

m� : (7)

From Eqs. 5 and 6, we obtain

rkT ¼ aH
R1

estatkT
¼ e2

8π estate0 kT
¼ 27:8� 10

estat

300K

T

� �
Åð Þ: (8)

Except for a factor of 3/2, this is the same result as obtained by setting a random-walk
velocity away from the center equal to a drift velocity due to the Coulomb potential
(Bube 1974, p. 488). The derivation presented here is not limited to lower-mobility
semiconductors, which are implicitly required (λ � rkT) in the velocity criterion.

The resulting recombination cross-section is independent of m*,

snonrad ¼ e4

64π estate0 kTð Þ2 ¼ 2:43� 10�13 � 10

estat

300K

T

� �2

cm2
� �

, (9)

and decreases with increasing temperatures /1/T2. It becomes very large at low
temperatures, e.g., ~4�10�12 cm2 at T= 70 K or 6�10�10 cm2 at 5 K. Measured capture
coefficients are given in Fig. 1, exhibiting giant cross sections at low temperatures.

From Eq. 8 we obtain for the Coulomb potential

Si

As
Sb

1

10-11

2 3 4 5 6 8 10 20

10-12

3

3

3

T (K)

s n
 (c

m
2 )

6

6

Fig. 1 Giant capture cross-
section for electrons by
positively charged donors in
As- or Sb-doped Si as a
function of temperature (After
Ascarelli and Rodriguez
1961)
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2rkT ¼ e2

4π estate0 kT
; (10)

the radius of the Coulomb well for En ffi kT is just twice the corresponding quasi-
Bohr radius.

Geminate Recombination In semiconductors with a relatively short mean free
path, the excitation from a Coulomb-attractive center higher up into the band is
followed by a number of scattering processes until the carrier is within kTof the band
edge. If the carrier reaches the band edge within the same Coulomb funnel, it will
recombine with the same center from which it was generated, see Fig. 2a. Such a
recombination is referred to as geminate recombination. It is observed in organic
crystals and plays an important role in some amorphous semiconductors. A similar
process also holds for geminate band-to-band recombination.

With an additional IR excitation, it is possible to increase the probability for
out-diffusion and thereby reduce geminate recombination as illustrated in Fig. 2.

Recombination in Amorphous Semiconductors After optical excitation higher
into the bands of amorphous semiconductors, inelastic scattering will relax these
carriers into the tailing states, which extend from the band edges. Near the mobility
edge (▶ Sect. 4.1 of chapter “Carrier Transport Induced and Controlled by Defects”),
the carriers continue to diffuse, thereby losing energy and consequently being
trapped at deeper and deeper centers until thermal reemission and tunneling from
center to center is no longer possible, as the deeper centers are more widely spaced.

1.1.2 Nonradiative Recombination at Deep Centers
Electron eigenfunctions in deep centers are strongly coupled with lattice oscillations –
see ▶Sect. 1.2 of chapter “Optical Properties of Defects”. The energy of such a
defect level depends on the relative position of the defect atom with respect to its
surrounding lattice atoms. With vibrations of these atoms, the defect level moves up
and down in the bandgap about its equilibrium position.

E
IRr

E
r

a bFig. 2 (a) Geminate
recombination after excitation
from a Coulomb-attractive
center. (b) Out-diffusion after
excitation with an additional
IR excitation. The red wavy
arrow pointing down
symbolizes scattering with
phonon emission
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One mechanism of nonradiative capture is related to a sufficiently large lattice
vibration, which moves the defect level into the conduction band. Here it can accept
an electron from the conduction band. After the capture, the lattice is far from the
equilibrium position, considering the recharging of the defect. This causes a violent
vibration, which quickly relaxes with the emission of many phonons.

If the relaxation is very large, the defect level can move from the upper to the
lower half of the bandgap. Here, it can act now as a similar trap for holes, thereby
completing the process of band-to-band recombination (Henry and Lang 1977). This
mechanism was alluded to in ▶ Sect. 1.2 of chapter “Optical Properties of Defects”
and is pictured schematically in Fig. 3a. The equilibrium position of the defect after
electron capture is given by the configuration coordinate Q2. The extent of average
oscillations before and after capture (short arrows), as well as the extent of the giant
oscillation directly after electron capture but before relaxation (large arrow), are
indicated at the bottom of Fig. 3a. The corresponding configuration-coordinate
diagram, which was given in ▶Sect. 1.2.1 of chapter “Optical Properties of
Defects”, is redrawn here for convenience – see Fig. 3b. The diagram identifies
the activation energy Eb1 for the electron trapping-transition and Eb2 for hole
trapping. The thermal binding energy of the electron in the center is Ec – Etrap.

As an important consequence of this model, we obtain a temperature-dependent
capture cross-section:

Ec

Ev

Eb2

Eb1

Etrap

cb

υb

E e
le

ct
ro

n
E e

le
ct

ro
n 

+ 
E e

la
st

ic

Q1 Q2 Q

Q

a

b

Ec

Etrap

Ev

before
capture

after
capture

Fig. 3 (a) Electron energy
versus configuration
coordinate of a deep center
before and after relaxation.
(b) Electron plus elastic
energy versus coordination
coordinate, shown for the
deep level between valence
and conduction bands

1 Nonradiative Recombination 1131



sn ¼ s1exp
Ec � Eb1

kT

� �
: (11)

The pre-exponential factor s1, obtained from detailed-balance arguments, relates
capture and emission, as shown in ▶Eqs. 11 and ▶ 12 of chapter “Carrier Gener-
ation” for an unrelaxed trap. With lattice relaxation, care must be taken to account for
the different activation energies; we then obtain (Sumi 1983)

etrap, c ¼ νc
νtrap

cc, trapexp � S ћωr

kT

� �
, (12)

where νc is the number of equivalent valleys in the conduction band, νtrap is
the degeneracy of the deep trap level, and S is the number of phonons emitted
(Huang-Rhys factor) during the relaxation process after electron capture. Here, ωr is
the relevant defect eigenfrequency of a breathing mode (see ▶ Fig. 2 of chapter
“Optical Properties of Defects”).

With etrap,c also given by (see Fig. 3b)

etrap, c ¼ ωr

2πNc

exp �Ec � Etrap

kT

� �
, (13)

we obtain (with cc,trap = vrms sn and Eq. 13, setting Ec � Etrap = S ћωr) for the
pre-exponential factor of the capture cross-section Eq. 11:

s1 ¼ νtrap
νc

ωr

2π

1

Ncvrms

; (14)

Nc is the density-of-state distribution in the conduction band. A more careful
consideration of the approximations used to compute the capture requires the
introduction of a factor η into Eq. 14, yielding a modified s01 ¼ η s1. The correction
factor η can be approximated as (Sumi 1983)

η ffi 3π=4ð Þγ for γ � 1

1� �5π= 9
ffiffiffi
3

p
,
�� �

γ�2=3 for γ 	 1

�
(15)

with the material parameter

γ ¼ 4αc
ffiffiffiffiffiffiffiffiffi
ΔEc

p
3ћωr

Ec � Etrap

� �3=2
(16)

and ΔEc as the width of the conduction band (see also Kayanuma and Fukuchi 1984).
Peuker et al. (1982) have given a short review of the different approaches to obtain
transition probabilities between the states in the adiabatic approximation. Such prob-
abilities in turn are proportional to the capture cross-section discussed here.

The pre-exponential factor s1 in Eqs. 11 and 14 is for deep centers on the order of
10�15 cm2 and depends on the effective mass and degeneracies in agreement with
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measurements in typical III–V compounds (Henry and Lang 1977). The thermal
activation energies vary between a few meV and 0.6 eV for different defects; the
larger energies represent a significant fraction of the level depth and require sub-
stantial thermal activation for recombination.

Competition Between Radiative and Nonradiative Recombination For transi-
tions within a deep center, there is a simple rule as to whether radiative recombina-
tion from the upper minima to the lower curves in Fig. 4 or radiationless
recombination from the upper curve via crossover to the lower curve is preferred.
The Dexter-Klick-Russell rule (Dexter et al. 1956) states that radiative recombina-
tion occurs if the optical excitation En ends above the crossover energy Eb, i.e., for
relatively weak coupling. Otherwise, the electron will cross over to the lower curve
and reach the ground state in a nonradiative process via multiphonon emission.
Depending on the strength of the coupling, such a crossover for nonradiative
recombination may or may not require thermal activation; the nonthermal part is
accomplished by tunneling to the lower curve.

This rule can be translated into the ratio of measurable energies, En � E0 for
optical excitation and E0

0 � E0 for thermal excitation:

Λ ¼ En � E0
0

En � E0

0 < Λ < 0:25 luminescence

0:25 < Λ < 0:5 weak luminescence

0:5 < Λ no luminescence

8<
: (17)

with En,E0, and E0
0 as defined in Fig. 4 and as discussed by Bartram and Stoneham

(1975). These authors have shown that, for F centers in a variety of wide-bandgap
materials, this rule is fulfilled reasonably well. The energy Eb can be estimated as

weak coupling
0Λ

E

Q

stronger coupling
0.25Λ0

strong coupling
0.5Λ0.25

very strong coupling
0.5Λ

E 0

E 0
‚

E n

E b

E 0

E n

E b

E 0
‚

Luminescence
efficiency

Λ
0 0.25 0.5

100%

0

Fig. 4 Bottom Luminescence efficiency as a function of the electron-lattice coupling expressed as
parameter Λ (Eq. 17). Top Four typical configuration-coordinate diagrams for ground and excited
states of a deep-level center for various degrees of coupling (After Hayes and Stoneham 1984)
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Eb ¼
E0
0 � En

� �2
4 En � E0ð Þ : (18)

Nonradiative Multiphonon Recombination Nonradiative recombination into
tightly bound centers, or from band to band with simultaneous emission of multiple
phonons (i.e., typically ~30 phonons for a 1 eV bandgap transition), are compara-
tively rare transitions. Haug (1972) estimates the transition probability for band-to-
band recombination as

Pcv ffi A exp � hνe � S ћω0ð Þ2
C kT

 !
, (19)

where hve is the electron energy to be dissipated; ћω0 is the relevant phonon energy,
and S, the Huang-Rhys factor, gives the average number of phonons emitted in the
recombination process. From Eq. 19 we see that Pcv increases exponentially with
temperature and decreases with increasing energy dissipation. A comparison with a
similar equation for the radiative transition, which shows only minor temperature
dependence, indicates that nonradiative transitions will predominate at higher tem-
peratures. There is a large body of investigation dealing with nonradiative transi-
tions, which is based on nonadiabatic approximations, rather than the static approach
used by Haug. For a detailed discussion, see Gutsche (1982).

Other types of radiationless transitions are required to explain the observed large
rate of nonradiative recombination at elevated temperatures. These include the
involvement of deep centers with large lattice relaxation (see begin of Sect. 1.1.2)
or the acceleration of free carriers in the proximity of a recombination center, which
takes up part of the energy set free during a recombination transition. This process is
described in Sect. 1.2.

Calorimetric Absorption Spectroscopy The generation of phonons upon optical
excitation raises the lattice temperature; this can directly be measured using calo-
rimetry. A particularly sensitive method is the calorimetric absorption spectroscopy
introduced by Bubenzer et al. (1980) with a high sensitivity at lowest temperatures
(Gruhl et al. 1985; Juhl and Bimberg 1988). The absorbed power of the integral
production of phonons is detected by a temperature-dependent resistor; absolute
values for quantum efficiencies are obtained by calibration via an attached heater.
Figure 5 shows as an example the nonradiative part of transitions related to Fe, which
is introduced as a deep impurity in III–V semiconductors to produce semi-insulating
material. At lower photon energy intra-ionic crystal-field transitions of iron in the 2+
state (see ▶ Sect. 3 of chapter “Deep-Level Centers”) are optically excited, which
relax both radiatively and nonradiatively. In Fig. 5a the transmitted part of the optical
excitation is compared to the power absorbed in the sample; lines A and B are dipole-
allowed transitions, line gm is assigned to a local-mode phonon replica of line A;
from this measurement an external quantum efficiency of (26 
 4)% is determined
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for this transition (Heitz et al. 1995). The broad absorption band observed at higher
photon energy originates from the Fe3+! Fe2+ + h photoionization of the iron acting
as an acceptor. The fivefold fine structure at the onset of this band (Fig. 5b) is due to
the splitting of the 6A1(S) ground state of the Fe3+ ion; the structures a, b are
attributed to an excited state 2P3/2 of the hole in a (Fe2+,h) complex. For the
charge-transfer transition, a similar quantum efficiency of 26% was evaluated.

1.2 Energy Transfer to Electrons

1.2.1 Auger Recombination
An electron in the conduction band will lose a large amount of energy while
recombining with a defect center or a hole in the valence band if it can transmit
this energy to another nearby electron. The second electron is thereby excited high
into the band and can easily return to the bottom of the band by sequential LO
phonon scattering. The process is called Auger recombination and is the inverse
process to the impact ionization. It was originally proposed by Beattie and
Landsberg (1959). For a review, see Landsberg (1987) and Haug (1988).

Energy and momentum need to fit the excited state higher in the band. When a
phonon is provided to facilitate the momentum match, we speak of phonon-assisted
Auger transitions (Lochmann and Haug 1980). Several types of Auger recombina-
tion are possible, depending on whether the recombination occurs into an ionized
defect center or into the valence band. The energy set free during the Auger
recombination can be used to accelerate a second electron or a hole as illustrated
in Fig. 6. The smaller electron mass is the reason for a preference for the acceleration
of a second electron (Landsberg and Willoughby 1978; Landsberg 1987).

TA

a b

GaP:Fe
T = 45 mK

Fe2+→ Fe3++ h

820 830 840

420 440 460
E (meV)

700 800 900

GaP:Fe
T = 45 mK

Fe2+ (5T2→ 5E)

transmision

absorption
A B gm

0

a b

10

15

5

85

95

100

90

P C
A

S/
P 0

 (%
)

P t
ra

ns
/P

0 
(%

)

E (meV)

P C
A

S/
P 0

 (a
rb

.u
ni

ts
)

Fig. 5 Bottom Spectrally resolved power absorbed by an optically excited deep impurity, measured
using calorimetric absorption spectroscopy. (a) Intra-ionic 5E(D) ! 5 T2(D) transition of Fe2+ in
GaP with the transmitted (top) and absorbed part of the spectrum (bottom). (b) Charge-transfer
transition Fe3+ ! Fe2+ + h of the deep iron acceptor in GaP (After Heitz et al. 1995)
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A typical electron lifetime as a function of the electron density is given in Fig. 7; it
shows three ranges. At low densities, T is independent of n, then it decreases /1/n,
and finally /1/n2. We will concentrate first on the final range, which is determined
by band-to-band Auger recombination.

The recombination rate and the electron lifetime, which are limited by Auger
recombination, are given by:

C Að Þ
cv ¼ B n2 p and τA ¼ 1

B n2
; (20)

B is typically on the order of 10�30 . . . 10�22 cm6 s�1.
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Fig. 6 Comparison between Auger recombination and impact ionization involving (a) a second
electron or (b) a second hole (open circles), with an additional phonon indicated for momentum
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A quantum-mechanical derivation of the Auger-recombination rate for band-to-
band transitions from thermally produced intrinsic carriers is given by

C Að Þ
cv ¼ 2

2π

ћ
V3

2πð Þ9
ð ð ð ð

Mj j2f E1ð Þf E2ð Þ 1� f E0
1

� ��� �� 1� f E0
2

� ��� ��
� δ E1 þ E2 þ E0

1 � E0
2

� �
d3k1 d

3k2 d
3k01 d

3k02

(21)

with the Auger matrix

M ¼ ϕ�
k1

r1ð Þϕ�
k2

r2ð ÞV r1 � r2j jð Þϕk01
r1ð Þϕk02

r2ð Þ d3r1 d
3r2, (22)

where ϕ is the Bloch function, and V(r) is the screened Coulomb potential

V rð Þ ¼
ð

d3q

2πð Þ3
4π e2

e qð Þ q2 þ λ2
� � exp iq � rð Þ: (23)

Here, λ is the electron screening factor, q = |k0 � k| is the momentum transfer,
and e(q) is the dielectric constant of the material. Assuming parabolical isotropic
bands and mn � mp, Haug (1972) obtains for the electron lifetime

τA ffi π ћ 4π eopt e0 ћ
� �2
24e4 mn

ΔE
kT

ffiffiffi
2

p

0:01
exp

ΔE
kT

� �
: (24)

Haug’s formula also contains two overlap integrals, the values of which are
estimated (Beattie and Landsberg 1959) as I1 ffi 1 and I2 ffi 0.1, resulting in
(I1 I2)

2 ffi 0.01, and as such are included in the denominator of Eq. 24; for com-
ments, see Haug (1988) and Laks et al. (1988).ΔE= [(2mn +mp)/(mn +mp)]Eg is the
energy dissipated in the Auger process. With an increasing bandgap energy, the
Auger-determined electron lifetime increases according to Eq. 24 rapidly1 and
reaches values not attained in a semiconductor with a bandgap Eg > 0.35 eV; here,
one estimates τA ffi 10�6 s.

1.2.2 Auger Recombination at High Carrier Densities
Intrinsic Auger recombination at room temperature for thermally excited carriers is
important only for narrow-gap semiconductors. With high doping densities, how-

1It is interesting to see that Eq. 24 can be rewritten, using the quasi-hydrogen energy EqH, as

τA ffi h

EqH

Eg

kT
exp

Eg

kT

� �
: (25)

The first part of Eq. 25 represents the Heisenberg uncertainty relation, indicating that τA cannot
be smaller than the Heisenberg uncertainty time for an exciton, τA � l.6�10�13 s. This presents a
lower limit for Eg ffi kT for the approximation used.
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ever, sufficient carrier densities can be created to obtain Auger recombination rates
also in wider-gap semiconductors. Band-to-band Auger recombination is often the
dominating carrier-loss mechanism in InP-based long-wavelength laser diodes
(Agrawal and Dutta 1993) due to the high density of electrons and holes
(>1018 cm�3) in the active region. Auger recombination is also identified as a
main cause of the decrease in the conversion efficiency of GaN-based LED lamps
at high current densities, an effect referred to as efficiency droop (Iveland et al.
2013).

For semiconductors with larger bandgap energy, the approximations used are too
coarse. Computations using the empirical pseudopotential method, with self-
consistent calculation plus Thomas-Fermi screening and e = e (q), resulted in
much improved results, as shown in Fig. 8 for n-type Si (Laks et al. 1988). Similar
results are obtained for Auger recombination with ionized defects, where again only
shallow defects influence the observed lifetime.

With additional excitation, e.g., high-intensity optical carrier generation, suffi-
cient carriers are available to render Auger recombination important. The Auger
lifetime for recombination via recombination centers is given by (Haug 1981)

τA ffi 1

BNrec n
¼ vrms

Nrec n

m2
n

8π2 e4 ћ3
Q

R

ffiffiffiffiffiffi
mp

mn

r
Ec � Erecð Þ3, (26)

with Q = 0.5(m0/mn)
3/2(1 + mn/m0)

2 and R ffi 2.6 being an enhancement factor; Erec

is the energy of the recombination center. This yields for typical values of
Ec � Erec ffi 0.5 eV and mn ffi 0.1 m0 an Auger coefficient B ffi 10�26 cm6 s�l.
Somewhat lower values have also been suggested by Robbins and Landsberg
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Fig. 8 Auger lifetime in n-type Si as function of the electron density at 77 and 300 K (After
Dziewior and Schmid 1977) and computation for the corresponding temperatures (After Laks et al.
1988)
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(1980). For a density of recombination centers Nrecffi 1017 cm�3 and nffi 1014 cm�3,
we obtain an Auger lifetime of 10�5 s.

The Auger coefficient at recombination centers can be estimated from rough
formulae with simple power-law dependences in Ec � Erec (Landsberg and Pimpale
1976). In particular, for GaAs it can be estimated as (Haug 1980)

B ¼ 2:5� 10�25

Q Ec � Erecð Þ3 : (27)

The capture cross-section for Auger recombination is given as

sn ¼ Bn

vrms

, (28)

and is on the order of 10�11 cm2 for shallow traps and 10�18 cm2 for deep traps,
when n ffi 1014 cm�3.

Evidence of intrinsic Auger recombination can be obtained from the dependence
of the lifetime of minority carriers on the square of the density of majority carriers
(Haynes and Hornbeck 1955; Dziewior and Schmid 1977).

Plasmon-Induced Recombination At very high excitation rates, the carrier density
becomes high enough so that the plasmon energy ћωp equals the bandgap energy;
the recombination is much enhanced by such resonance transitions. Typical critical
densities for a bandgap of 1 eV are on the order of 1020–1021 cm�3 (see ▶Eq. 4 of
chapter “Photon–Free-Electron Interaction”). This plasmon-induced recombination
can exceed the Auger recombination, which is also effective at high carrier densities
(Malvezzi 1987).

2 Statistics of Recombination

All recombination transitions are spontaneous and follow the rules of statistics,
except for stimulated transitions discussed in Sect. 3.3.6. The statistical description
of the recombination does not consider how a carrier loses its energy, but with what
state the carrier recombines and what changes in carrier densities occur with
changing rates of generation and temperature. The probability of recombination is
described by a capture rate, which is linked to the capture cross-section by ▶Eq. 15
of chapter “Carrier Generation”.

2.1 Trapping or Recombination

The return of a carrier to an ionized state is referred to as recombination. When a
carrier is captured by a shallow level from which it can be thermally reemitted into the
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band before it finally recombines, the process is called trapping. A more precise way
to distinguish between trapping and recombination is given in the following section.

2.1.1 Electron and Hole Traps
There are several transitions possible between the electronic state of any center and
other states. All such transitions are described by their corresponding rates. These
rates are additive and describe the change in the population of the center. For
instance, the change of the electron density in an electron trap is determined by
excitation from the trap into the conduction band, by electron capture from the
band, by recombination with holes from the valence band, and by electron transfer
to other localized states of nearby defects to which such transitions are sufficiently
probable.

For reasons of detailed balance, there are always pairs of transitions between two
states (Fig. 9), which must be equal to each other in thermal equilibrium. The
magnitude of transition rates varies from pair to pair over a wide range. For
example, thermal excitation of an electron from the more distant valence band into
an electron trap is much less probable than thermal excitation of a trapped electron
into the closer conduction band.

In steady state (see Sect. 2.2), the total rate of transition from the center must
equal the total rate into the center. Usually, we can neglect all transitions
compared to the one pair with the highest transition probability. These pairs
can now involve different states (see below). Thereby, we can identify different
classes of centers according to the predominant types of transitions. Centers close
to the conduction band are identified as electron traps and centers close to the
valence band as hole traps, when these centers communicate predominantly with
the adjacent bands.

2.1.2 Recombination Centers
Centers close to the middle of the bandgap readily communicate with both bands,
since it is easier for a captured electron to recombine with a hole in the valence
band than to be reemitted into the conduction band. These centers are called

Ec

Ev

Etrap

E

x

(n)

Etrap
(p)

Fig. 9 Various possible
transitions to and from a
localized state of an electron

trap with energy E
nð Þ
trap
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recombination centers. Relaxation of the center after trapping a carrier is not
included here. Such relaxation can assist significantly in bridging the bandgap during
recombination and is discussed in Sect. 1.1.2 and ▶ Sect. 2.3.2 of chapter “Optical
Properties of Defects” – see also Henry and Lang (1977).

A demarcation line between electron traps and recombination centers is defined
(Rose 1951) when the transition rates of electrons from these centers to the conduc-
tion band and to the valence band become equal:

ntrap etrap, cNc ¼ ntrap ctrap, v p; (29)

here we use the symbols introduced in ▶Sect. 1.1 of chapter “Carrier Generation”.
Applying the expression for the excitation from the electron trap to the conduction
band etrap,c and for the hole density p (see ▶ Sect. 2.4 of chapter “Equilibrium
Statistics of Carriers”),

etrap, c ¼ vrms sn exp �Ec � Etrap

kT

� �
and p ¼ Nvexp

Ev � EFp

k T

� �
, (30)

we obtain an equation for this electron demarcation line EDn
from Eq. 29, defining a

specific Etrap (Eq. 30) = EDn
:

Ec � EDn
¼ EFp � Ev þ δi, where δi ¼ 3

2
kT ln

mn sni
mp spi

� �
: (31)

Although possibly confusing at first glance, the reference to the hole quasi-Fermi
level EFp for determining the electron demarcation line is understandable, since the
recombination path, competing with thermal ionization, depends on the availability
of free holes. Figure 10 may help to clarify this dependence: the distance of the
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Fig. 10 Band model with quasi-Fermi potentials EFn and EFp and demarcation lines EDn
and EDp

separating electron traps, recombination centers, and hole traps
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demarcation line for electrons from the conduction band, identified asΔp, is the same
as the distance of the quasi-Fermi level for holes from the valence band plus a
corrective δi or δj – see below. These correction terms are logarithmically related to
the ratio of the capture cross-sections for electrons and for holes at this center. The
electron demarcation lineEDn

defines the energy border between electron traps above
and recombination centers below this energy.

A similar relationship holds for the hole demarcation line EDp
:

EDp
� Ev ¼ Ec � EFn þ δj, where δj ¼ kT ln

mp spi
mn sni

� �
; (32)

this line is also shown in Fig. 10. For n-type material with narrowEc � EFn, there is a
wide range of electron traps and a narrow range of hole traps and vice versa.

The correction terms δi and δj depend on the ratio of capture cross-sections for
electrons and holes that change with the occupancy of the center. As an illustration,
let us assume a simple example of a center that is neutral without an electron in it,
having a cross section for an electron on the order of 10�16 cm2. After it has captured
the electron, it is negatively charged; its capture cross-section for a hole has thus
increased, say to ~10�14 cm2. For this example sni=spi ffi 10�2 and δiffi�0.12 eV. For
a similar type of hole trap, the charge character changes from neutral to positive after
hole capture, making snj=spj ffi 100 and δj ffi +0.12 eV. The shifts δi and δj in Fig. 10

have been chosen accordingly.
Since the capture cross-section varies from center to center, typically from ~10�12

to ~10�22 cm2, δi varies for these different centers by as much as ~0.6 eV at room
temperature. Hence, the demarcation lines of these centers are spread over a wide
range within the bandgap. Therefore, it is not customary to plot demarcation lines of
all the possible centers, while it is still instructive to discuss those that provide the
most important transitions in the given model.

Neglect of the other centers is often justified, because all transitions enter
additively, spanning many orders of magnitude; therefore, usually only one kind
of transition is important to each type of trap or recombination center for a given
situation.

2.2 Thermal Equilibrium and Steady State

Thermodynamic (thermal) equilibrium is reached when a semiconductor without
any external excitation is kept long enough at a constant temperature to reach such
equilibrium. Deviations from thermal equilibrium can occur because of nonthermal,
additional excitation by light or an electric field. When such deviations occur but
have become stationary, a nonequilibrium steady state is reached.

Thermal Equilibrium In a semiconductor at constant temperature without optical
or electrical excitation, thermal equilibrium becomes established. Electrons and
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holes are then generated by thermal excitation alone. The same number of carriers
which are generated in any volume element must recombine in the same volume
element except for statistical fluctuations considered in Sect. 4.2. There is no net
transport of carriers. This also holds for space-charge regions, e.g., in a p n junction,
in which n and p are rapidly changing functions of the spatial coordinate, whereas jn
and jp vanish independently in every volume element.

For thermal equilibrium the carrier distribution is uniquely described by the Fermi
level EF. Consequently, when formally using quasi-Fermi levels, they must collapse
to EFn ¼ EFp ¼ EF. We see from Eqs. 31 and 32 that the resulting demarcation lines
then coincide: EDn

¼ EDp
, i.e., electron and hole traps join borders with no recom-

bination-center range in between. Here, thermal ionization (generation) and recom-
bination on the average attain a balance within each volume element of the
semiconductor.

Steady State When nonthermal carrier generation is introduced, the equilibrium
density-distribution is altered. As a consequence, the Fermi energy splits into two
quasi-Fermi levels, and sets of two demarcation lines for each type of defect center
appear. Thus, some levels, which previously acted as traps, will now act as recom-
bination centers. Much of the content of the following sections deals with this
steady-state condition.

The Shockley-Read-Hall Center Changing the external excitation will alter the
demarcation lines between traps and recombination centers. Therefore, we need to
include all four transitions between the level and the two bands for such centers when
variations of carrier distributions are considered (Shockley and Read 1952).

For a center in the bandgap that interacts only with the bands, the four transition
rates are etrap,c ntrap pc, cc,trap n (Ntrap� ntrap), ev,trap nv (Ntrap� ntrap), and ctrap,v ntrap p –
see Fig. 11. In equilibrium, the sum of each pair of transitions to each band must
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cc,trap

E

x

ctrap,vev,trap

etrap,c

Fig. 11 Shockley-Read-Hall
center with transitions to both,
conduction band and
valence band
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vanish. In steady state, this is no longer necessary; there may be a net flow of carriers
from one band through such a center to the other band, which is balanced with another
transition, e.g., an optical band-to-band generation of carriers. The sum of all four
transition rates, however, must vanish to maintain a time-independent electron popu-
lation in the center:

cc, trap n Ntrap � ntrap
� �� etrap, c ntrap pc ¼ ctrap, v ntrap p

� ev, trap nv Ntrap � ntrap
� �

: (33)

Equation 33 can be used to determine this population. After using ▶Eq. 13 of
chapter “Carrier Generation” and an analogous condition for holes to convert etrap,c
and ev,trap into the respective capture coefficients, and with the parameters n1 = Nc

exp ((Etrap � Ec)/(k T)) and p1 = Nv exp ((Ev � Etrap)/(k T)), we obtain

ntrap ¼
Ntrap cc, trap nþ ctrap, v p1

� �
cc, trap nþ n1ð Þ þ ctrap, v pþ p1ð Þ : (34)

We now introduce this steady-state density of the trapped electrons into the net
rate equation, permitting a net flow U of electrons through such a center:

U ¼ cc, trap n Ntrap � ntrap
� �� etrap, c ntrapNc

¼ ctrap, v ntrap p� ev, trap nv Ntrap � ntrap
� �

: (35)

By eliminating ntrap from the net carrier flow rate, we obtain

U ¼ cc, trap ctrap, vNtrap np� n1 p1ð Þ
cc, trap nþ n1ð Þ þ ctrap, v pþ p1ð Þ : (36)

Using the condition

n1 p1 ¼ n2i (37)

and introducing the intrinsic level Ei

Ei ¼ Ec � Ev

2
þ kT

2
ln

Nv

Nc

� �
, (38)

we obtain the expression for the net carrier flow through a Shockley-Read-Hall
center:

U ¼ cc, trap ctrap, vNtrap np� n2i
� �

cc, trap nþ niexp
Etrap � Ei

kT

� �	 

þ ctrap, v pþ niexp

Ei � Etrap

kT

� �	 
 (39)
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From Eq. 39 we see immediately that U vanishes for thermal equilibrium, i.e., for
np ¼ n2i . In steady state, however, with optical generation and the Shockley-Read-
Hall center acting as a dominant recombination center, U must equal the generation
rate g0 in a homogeneous semiconductor.

Equation 39 becomes very valuable when deviations from the thermal equilib-
rium are analyzed. A separation into thermal generation rates

gn ¼ gp ¼
cc, trap ctrap, vNtrap n

2
i

cc, trap nþ nþi
� �þ ctrap, v pþ n�i

� � (40)

and recombination rates

rn ¼ rp ¼ cc, trap ctrap, vNtrap np

cc, trap nþ nþi
� �þ ctrap, v pþ n�i

� � , (41)

is helpful. For brevity, the expression

n
i ¼ niexp 
Etrap � Ei

kT

� �
(42)

is used above.
A deviation from thermal equilibrium may be caused by optical excitation. With

band-to-band excitation, the optical generation term go is simply added to Eq. 40,
yielding

gn, o ¼ gp, o ¼
cc, trap ctrap, vNtrap n

2
i

cc, trap nþ nþi
� �þ ctrap, v pþ n�i

� �þ go; (43)

the necessarily increased recombination in steady state is automatically included in
Eq. 41 through the increase in n and p.

In homogeneous semiconductors and for steady-state conditions, the generation
rate will always be equal to the recombination rate; therefore, U will vanish.
Deviations from U = 0 will occur during kinetics (see chapter ▶ “Dynamic
Processes”) and when spatial inhomogeneities are considered. In space-charge
regions, such as in Schottky barriers or pn junctions, this formalism becomes
most valuable.

3 Radiative Recombination

In the previous sections, carrier recombination was discussed in general terms.
Recombination requires the dissipation of energy, which can proceed via the creation
of phonons and can involve Auger collision of electrons, which results in non-
radiative recombination or by the emission of photons as radiative recombination.
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We distinguish between several types of radiative processes, depending on their
relationship to the excitation process and on intermittent processes. One process
occurring in optical excitation is the reflection of radiation impinging on the surface
of the solid, i.e., the coherent reradiation. Reflection of electromagnetic radiation
involves the polarization of the semiconductor lattice, which is characterized by its
index of refraction and extinction coefficient. The polarization appears in phase with
the electric vector of the incoming radiation and produces coherent reradiation,
essentially without delay. Such reradiation occurs from the undamped fraction of
the excitation processes. It is observed from any medium with a refraction index
larger than 1, as seen from the basic reflectance equation, presented here for normal
incidence and interface to vacuum. For details see ▶ Sects. 1 of chapter “Interaction
of Light with Solids” and ▶ 2 of chapter “Photon–Phonon Interaction”.

Besides reflection the following radiative recombination processes occur and are
discussed in this chapter:

• Thermal radiation (blackbody radiation)
• Luminescence
• Stimulated emission (lasing)
• Phosphorescence (delayed luminescence)

3.1 Thermal Radiation

The intrinsic band-to-band radiative recombination transition can be observed as
thermal blackbody radiation. Electrons, thermally excited into the conduction
band, can recombine with holes in the valence band with the emission of light.
If the temperature is high enough, the emission becomes visible – the material
will glow.

In the wavelength range of the intrinsic absorption, the semiconductor can be
described as a blackbody. Here, the (thermally excited) emitted photon flux in the
frequency range Δν is given by Planck’s formula

Φbb ¼ 8π hν3

c
nr

� �2 Δν

exp
hν

kT

� �
� 1

(44)

with the index of refraction nr introduced in▶Eq. 11 of chapter “Interaction of Light
with Solids”. This emission, originating within a thickness of d ffi 1/αo of the
semiconductor, requires a volume-generation rate of electron-hole pairs

go ¼
ð1
Eg

Φbb νð Þ
d

dν, (45)
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which must be equal to the radiative recombination rate of these electrons and
holes

r radð Þ
c, v ¼ c radð Þ

c, v n p: (46)

In equilibrium, we have

n p ¼ n2i ¼ NcNv exp �Eg= kTð Þ� �
; (47)

thus, we obtain from go = rc,v for the radiative recombination coefficient

c radð Þ
c, v ffi π ћ3E2

g αo

c2 mnmp

� �2=3
kTð Þ2

: (48)

Equation 48 yields for the cross section of radiative band-to-band recombination
snp ¼ c

radð Þ
c, v =vrms . For typical values of Eg = 1 eV, T = 1000 K, and assuming

mn = mp = 0.1 m0 and αo = 105 cm�1, we obtain snp ffi 10�19 cm2, which is a much
smaller value than we would expect from a semiclassical model, i.e., an electron
colliding with an ionized lattice atom with s ffi 10�16 cm2. It should, however, be
recognized that Eq. 48 is based on a rather crude estimate and provides only an
order-of-magnitude guidance for any specific transition.

Blackbody Radiation of Semiconductors Compared to the Planck’s emission
distribution of a blackbody, the emission spectrum of the semiconductor is modified,
since in the bandgap range there is essentially no absorption and thus little emission
(Kirchhoff’s law). Therefore, in a semiconductor, the long-wave emission is
suppressed as illustrated in Fig. 12. If the band edge lies in the visible range, the
thermal glow of the semiconductor is visibly different from the usual red or orange
glow of a blackbody. For instance, ZnS with a bandgap of ~2.5 eVat 1000 K shows a
green thermal glow: it is transparent for red and yellow light and thus shows no

Φbb

hv

αo

a b

c

Fig. 12 Emission of a
blackbody (curve a) and
absorption of a semiconductor
(b). Curve c is the emission
spectrum of a semiconductor
obtained by multiplication of
curves a and b
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blackbody radiation there. This glow-light emission is closely related to the sponta-
neous band-to-band luminescence described in Sect. 3.2.1.

Thermal Radiation from Free Electrons In addition to the band-to-band emis-
sion, a bandgap emission can be observed when sufficient free electrons are created
by doping, which in turn can recombine with the ionized donors and emit long-
wavelength radiation. An increase of thermal radiation has also been observed after
the injection of excess electrons (Ulmer and Frankl 1968).

Thermal Radiation from Lattice Vibration The thermal emission spectrum
shows strong emission maxima in the Reststrahl range (Stierwalt and Potter 1967).
Such emission is indicative of the direct coupling of the different types of phonons to
the electromagnetic radiation and can be used to obtain the corresponding spectrum
of the optically active phonons.

3.2 Intrinsic Luminescence

Luminescence is defined as any radiative recombination from an excited electronic
state, with the exception of reflection and blackbody radiation, and lasing.2 There are
various possibilities for the excitation of luminescence:

• Optical excitation (photoluminescence)
• Excitation by carrier injection (electroluminescence)
• Electron-beam excitation (cathodoluminescence)
• Excitation by high-energy nuclear radiation (α-, β -, γ -, or X-rays)
• High-field excitation (e.g., by impact ionization)

In photoluminescence, it is instructive to measure the intensity of a specific
luminescence line as a function of the wavelength of the exciting light,
called photoluminescence excitation spectroscopy. In this mode of excitation,
the connection between the excitation process and the luminescent center
becomes evident. We observe selective enhancement of the luminescence when
resonance transitions take place. This is important for the analysis of bound
excitons and the processes involved in the generation of such excitations (see
Dean 1984).

In all of the excitation processes listed above, excited states or free carriers are
produced, a certain fraction of which in turn recombine with emission of a photon,
yielding the luminescence efficiency

2Other radiation due to nonlinear optical processes, such as photon (Raman or Brillouin) scattering
and higher harmonic generation, are also excluded in this discussion. These are discussed in▶ Sect.
3.3 of chapter “Photon–Phonon Interaction”.
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ηL ¼ rrad
rrad þ rnonrad

, (49)

where rrad is the radiative, and rnonrad is the nonradiative transition rate. Radiative
transitions can occur along a variety of paths, which are indicated in Fig. 13a for
intrinsic and Fig. 13b for extrinsic luminescence.

The intrinsic transitions are:

(a) Direct band to band
(b) Indirect band to band
(c) Free exciton
(d) Free-exciton molecule
(e) Electron-hole liquid
(f) Phonon-assisted band edge

The extrinsic transitions (with or without assistance of phonons) are:

(A) Band to impurity
(B) Band-to-multilevel impurity
(C) Excited state to ground state of a localized defect
(D) Donor-to-valence band, similar to conduction-band-to-acceptor
(E) Conduction-band-to-donor, similar to acceptor-to-valence band
(F) Donor-acceptor pair
(G) Bound exciton

During the luminescent transition, various types of photons or phonons can be
released or absorbed (at higher temperatures), in addition to the emitted lumines-
cence photon, which provides additional structure or broadening in the luminescence
spectrum. A luminescent line spectrum can also be broadened due to a kinetic energy
fraction of free carriers or excitons participating in the transition. Other effects, too
numerous to list here, influence the luminescence. They are described in many
reviews of various fields relating to luminescence (see Voos et al. 1980). A few

a b c d e f A B C D E F G
E E

a b

Fig. 13 Typical transitions for (a) intrinsic and (b) extrinsic luminescence (see text)
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examples of some of the more important luminescence effects are given in the
following sections.

3.2.1 Band-to-Band Luminescence
Direct band-to-band radiative recombination proceeds whenever an electron finds a
hole with the same momentum vector within its recombination cross-section. The
highest probability, therefore, is realized when both the electron and hole are close to
the band edge near k = 0.

Band-to-band luminescence is called spontaneous emission. It is time reversed
to the optical excitation process, and thus the same matrix elements and selection
rules apply – see ▶ Sect. 1 of chapter “Band-to-Band Transitions”. The connection
between optical absorption and luminescence emission can be seen by thermody-
namic arguments. When a semiconductor is in equilibrium with a radiation field of
brightness B (in photons/cm2 per unit bandwidth, unit time and solid angle 4π), this
field loses entropy, which is gained by the optical excitation of the semiconductor
and is expressed in the spread of quasi-Fermi levels:

ΔS ¼ �kln 1þ 8π ν2

B

nr
c

� �2� 
¼ 1

T
hν� EFn � EFp

� �� �
: (50)

This equation yields for the brightness of a radiation field in equilibrium with the
semiconductor

B ¼ 8π ν2
nr
c

� �2 1

exp hν� EFn � EFp

� �
= kTð Þ� �� 1

: (51)

For reasons of detailed balance, we can now express the radiative transition rate
rrad for the spontaneous luminescence as the product of absorption and brightness of
the impinging radiation field

rrad ¼ αoB, (52)

which yields for weak optical excitation hν � EFn � EFp

� �
the van Roosbroeck-

Shockley (1954) relation

rrad ¼ αo 8π ν2
nr
c

� �2
exp

EFn � EFp � hν

kT

� �
: (53)

Equation 53 connects spontaneous luminescence emission with the optical
absorption spectrum under the assumption that the electron distributions in conduc-
tion and valence bands are thermalized. In a microscopic description, we obtain the
intensity of the luminescence by multiplying the matrix element with the joint
density of states and the product of the distributions of electrons and holes in the
conduction and valence bands, respectively (see Yariv 1975).
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The recombination rate given above can be expressed as the product of electron
and hole densities with a recombination coefficient. The recombination coefficient is
given as the product of the capture cross-section (of electrons finding the hole) and
the thermal velocity of these carriers. In Table 2, the recombination coefficients are
listed for a number of typical semiconductors at two temperatures, indicating
recombination cross-sections of 10�22–10�15 cm2 that decrease with increasing
temperature. These cross sections are low for indirect-bandgap semiconductors;
they require a matching phonon for momentum conservation. In direct-bandgap
materials, e.g., in CdS (Reynolds 1960) and GaAs (Shah and Leite 1969), the
recombination cross-sections are more than three orders of magnitude higher and
are on the order of the atomic cross section.

A band-to-band luminescence spectrum is shown in Fig. 14 for Ge at 77 K. It
shows two peaks: one due to an indirect transition near 0.71 eV and one with six

Table 2 Recombination coefficients and cross sections for radiative band-to-band recombination
at various temperatures (After Varshni 1967)

Semiconductor T (K) c
radð Þ
cv (cm3 s�1) srad

Si 90 1.3�10�15 2.4�10�22

290 1.8�10�15 1.9�10�22

Ge 77 4.1�10�13 8.5�10�20

300 5.3�10�14 5.5�10�21

GaAs 90 1.8�10�8 3.3�10�15

294 7.2�10�9 7.6�10�17

GaSb 80 2.8�10�8 5.6�10�15

300 2.4�10�10 2.5�10�17
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Fig. 14 Band-to-band recombination luminescence spectrum for Ge at 77 K for (a) indirect and (b)
direct recombination (After Haynes and Nilsson 1965)
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orders of magnitude smaller intensity near 0.88 eV due to direct transitions. The
intensity relation can be easily understood from the smaller occupation for the higher
valley: the Boltzmann factor indicates a ratio of ~10�10; however, the fact that we
compare the direct with the indirect transition makes the direct emission ~104 times
more probable. Therefore, the observed ratio of 106 has a reasonable explanation.

The luminescence photoflux is given by

IL ¼ ϑ rrad d, (54)

where ϑ is a geometry factor, taking into consideration that only a fraction of the
light can exit the front surface where it can be observed; it is assumed here that
reabsorption of the emitted light can be neglected. rrad is the radiative recombination
rate, and d is the thickness of the device. The spectral distribution of the spontaneous
luminescence intensity shows a steep rise at the band edge and an exponential decay
toward higher energies, which reflects an exponential decrease of the distribution of
thermalized electrons and holes with further distance from the band edges.

Spontaneous Luminescence from Hot Electrons The high-energy tail of the
spontaneous luminescence, after sufficient relaxation (see ▶ Sect. 1.2 of chapter
“Dynamic Processes”), is a direct measure of the electron temperature. When
electrons are excited with light substantially above the bandgap energy, electron
heating occurs and results in Te > T. The intensity distribution of the spontaneous
luminescence is given by (see Eq. 53):

IL, spont hνð Þ / αo exp � hν� Eg

kTe

� �
: (55)

The electron temperature Te can be obtained directly from the high-energy slope
of the luminescence peak, as shown in Fig. 15 for GaAs at a lattice temperature of
T= 2 K. The hole distribution is little influenced by the optical excitation because of
the larger hole mass.

The temperature of the electron gas increases logarithmically with the generation
rate between 102 and 104 W/cm2 and with a slope of �k/ћωLO due to a shift of the
quasi-Fermi level in agreement with the experiment. At higher rates, the electron-
hole interaction modifies the results (Shah 1974); at lower rates, additional piezo-
electric deformation-potential scattering dominates, which keeps the electron tem-
perature low and explains the deviation from the straight line in Fig. 15b.

Phonon-Assisted Oscillatory Luminescence When optical excitation is used to an
energy level high within the band, rapid relaxation occurs with the preferred
emission of LO phonons. Such relaxation is observed before the recombination of
an electron with a hole occurs for spontaneous luminescence. Alternatively, a
sufficiently slowed down electron can capture a hole to form an exciton with
consequent exciton luminescence – see Sect. 3.2.3. The luminescence probability
increases with decreasing kinetic energy of the carriers, hence causing oscillatory
behavior with maxima when the LO phonon fits to bring the carrier close to the band
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edge. This is shown in Fig. 16. This condition yields luminescence maxima at
energies given by

hν ¼ Eg þ n ћωLO 1þ mn

mp

� �
, (56)

with n an integer number.
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Fig. 16 Photoexcitation
spectrum of bound-exciton
luminescence (upper curve)
and photoconductivity (lower
curve) in CdTe at 1.8 K.
Arrows according to Eq. 56
(After Nakamura and
Weisbuch 1978)
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Fig. 15 (a) High-energy tails of the spontaneous luminescence of GaAs at 2 K with the optical
generation rate as the family parameter: go = 0.0011, 0.0016, 0.0034, 0.0049, 0.64, and 0.76 go for
curves 1–6, respectively. Corresponding electron temperatures are Te = 14, 21, 36, 45, 64, and 76 K
(After Shah and Leite 1969). (b) Inverse electron temperatures as a function of the optical excitation
rate in GaAs (After Shah 1978)
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3.2.2 Recombination of Free Excitons
At low temperatures, free electrons and holes first recombine to form excitons.
Consequent recombination radiation occurs from free excitons or, after trapping at
lattice defects (impurities or dislocations), from bound excitons. The intensity of this
exciton recombination increases relative to the free electron-hole luminescence with
decreasing temperature. We distinguish free excitons in direct- and indirect-bandgap
materials. Their recombination luminescence is different.

Exciton Luminescence in Direct-Gap Semiconductors Direct-gap semiconduc-
tors have excitons close to K = 0, where mixing with photons is important. This
creates exciton polaritons, which have been discussed in ▶ Sect. 1.3 of chapter
“Excitons”. The shape of the dispersion curves for |K| > 0 near K = 0 approaches a
parabola (see ▶Fig. 14b of chapter “Excitons”) for the different branches, since the
exciton can acquire a kinetic energy that renders its total energy / K2:

Eexc, t, lð Þ ffi Eg � E
excð Þ
qH t, lð Þ þ

ћ2K2

2 mn þ mp

� � , (57)

where E
excð Þ
qH is the ground state of the quasi-hydrogen exciton; the subscripts t and

l are for transverse and longitudinal excitons. The third term represents the kinetic
energy of the exciton, which can be a substantial contribution. Therefore, the free-
exciton line is relatively broad.

An example of a line spectrum for GaAs is given in Fig. 17, superimposed on the
E(k) dispersion diagram for identification of the upper and lower polariton branches
(observe the stretched energy scale). The structure below the lower-branch exciton
peak is due to impurities, which dominate the luminescence spectrum in bulk GaAs
discussed in Sects. 3.3.2 and 3.3.3 for exciton-absorption spectra, which according
to Eq. 53 are similar to exciton-luminescence spectra, see ▶ Figs. 7 and ▶ 8 of
chapter “Excitons”. For a review of spectra in II–VI compound semiconductors see
Shionoya (1991).

The splitting of the exciton into longitudinal and transverse excitons is caused by

the difference in polarizability; their energy difference is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
estat=eopt

p
.

Only the transverse exciton couples with the photon (Knox 1963). For a more
extensive discussion, see ▶ Sect. 1.3 of chapter “Excitons”. For phonon assistance
or phonon scattering, see the review by Voos et al. (1980).

Excitons in Indirect-Gap Semiconductors In indirect-bandgap semiconductors,
the luminescence emission-lines are usually phonon assisted:

Eexc ffi Eg � E
excð Þ
qH � ћω: (58)

Selection rules determine which of the phonons is dominant, e.g., LA and TO
phonons for Si or LA and TO phonons for Ge as shown in Fig. 18.
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3.2.3 Recombination of Exciton Molecules and of Electron-Hole
Liquids

Exciton Molecules Trions and biexcitons are formed at higher excitation density
with binding energies EB,trion or EB,XX, which are on the order of meV or below
(see Fig. 19 of chapter▶ “Excitons”). The resulting luminescence energy is, e.g., for
biexcitons,

X - TO
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Fig. 18 LA and TO phonon-
assisted free-exciton
(X) luminescence of Ge at
4.2 K (After Etienne 1975)
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Fig. 17 Exciton-
luminescence spectrum of the
free-exciton polariton (upper
two maxima); excitons bound
at lattice defects (lower three
maxima). UPB and LPB stand
for upper and lower polariton
branches, respectively. The
dashed curve shows the E(k)
diagram (After Weisbuch and
Ulbrich 1978)
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EB,XX kð Þ ffi Eg � E
excð Þ
qH � EB,XX þ ћ2K2

4 mn þ mp

� � : (59)

The existence of such excitonic molecules can be seen by observing the growth of
this emission peak with increasing generation rate, see ▶ Figs. 20 and ▶ 25 of
chapter “Excitons”. Excitonic molecules have been observed in direct- and
indirect-bandgap semiconductors. For more details see ▶ Sect. 1.4 of chapter “Exci-
tons”. Due to the low binding energy, further condensation into an electron-hole
liquid is favored at high excitation density, as also observed in Fig. 19.

Electron-Hole Liquid Luminescence Electron-hole condensation can be observed
from a bandgap reduction to the renormalized bandgap energy E0

g and from a broad

line that appears at a well-defined temperature and at an intensity-related threshold –
see ▶ Sect. 3.2 of chapter “Equilibrium Statistics of Carriers”. The emission related
to the electron-hole liquid occurs at

EEHL ¼ E0
g þ EFn þ EFp

� �
, (60)

where EFn and EFp represent the kinetic energies of free electrons and holes, see
Fig. 19. The luminescence intensity is given by

I hνð Þ /
ð
gn EFnð Þ gp EFp

� �
f FD EFnð Þ 1� f FD EFp

� �� �
δ EFn þ EFp þ E0

g � hν
� �

,

(61)
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Fig. 19 Electron-hole liquid luminescence transitions; (a) band diagram E(k), (b) photo-
luminescence spectrum of intrinsic Si at high excitation intensity, showing radiative recombination
from an electron-hole liquid (EHL) (After Rostworowski and Bergersen 1978)
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with g as the density of states and fFD as the Fermi-Dirac distribution. The lumines-
cence spectrum of a typical electron-hole liquid is shown in Fig. 19, which also
contains free-exciton-related peaks. The characteristic energies can be obtained from
such spectra. From amplitude and shape of the EHL peak, we can obtain the pair
density and carrier temperature. With decreasing temperature and pair density, the
EHL peak increases at the expense of the free-exciton-related peak. For further
discussion, see the reviews by Reinecke (1982), Rice (1977), and Hensel et al.
(1978). For confined semiconductor structures, see Kalt (1994).

At temperatures above the critical temperature Tc (▶ Sect. 3.2 of chapter “Equi-
librium Statistics of Carriers”) and at exciton densities approaching the Mott tran-
sition density nMott (▶Eq. 65 of chapter “Equilibrium Statistics of Carriers”), the
exciton gas becomes unstable and dissociates into a dense electron-hole plasma,
indicating the semiconductor-metal transition (Mott 1974). Consequently, a broad-
ening of the recombination emission lines occurs, as observed by Shah et al. (1977).

3.3 Extrinsic Luminescence

Impurities in semiconductors cause a wealth of optical transitions in addition to
the intrinsic transitions discussed in the previous sections. They usually appear
at energies below the band-to-band and free-exciton luminescence described in
Sects. 3.2.1 and 3.2.2. At very high doping level, however, the band-to-band
transition is found at increased energy.
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Fig. 20 (a) Density-of-state distribution of a heavily doped n-type semiconductor with partially
filled conduction band (schematic). (b) Band-to-band luminescence of p-type Si:B
( p = 1.7 � 1020 cm�3 – upper curve) and n-type Si:P (n = 8 � 1019 cm�3 – lower curve); NP
denotes the no-phonon transition. Dotted curve theoretical fit (After Wagner 1985)
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3.3.1 Band-Edge Luminescence in Heavily Doped Semiconductors
Heavy doping moves the Fermi level into the conduction band – see ▶ Sect. 3.2 of
chapter “Optical Properties of Defects”. Optical excitation then requires larger
energies, labeled Eg1 in Fig. 20a; band-to-band luminescence, however, has a
lower energy threshold, shown as Eg2 in the figure. The width of the emission
band is shown as ΔEg12. In elemental indirect-gap semiconductors, this lumines-
cence band involves momentum-conserving TA or TO phonons with their
corresponding replica, as shown for Si in Fig. 20b. In Ge, the LA and TO replica
are most prominent. In direct-gap compound semiconductors, LO phonons are
employed in this process.

The band filling, obtained by heavy doping and observed by the Burstein-Moss
effect (▶Sect. 3.2 of chapter “Optical Properties of Defects”), is obtained from the
luminescent line shape. The band filling is shown in Fig. 21a. The corresponding line
broadening for Si is significant only for a carrier density in excess of 1018 cm�3; it
amounts to ~60 meVat 1020 cm�3 and is slightly larger for holes than for electrons,
since it relates to the density-of-states mass, withmndsffi 1.062m0 andmpdsffi 0.55m0

(see Barber 1967).
The decrease of the bandgap with band tailing at higher doping levels (see also

▶ Sect. 3.2 of chapter “Optical Properties of Defects”) is obtained by a square-root
fitting of the low-energy tail of the luminescence. It shows for Si an essentially
constant bandgap energy up to carrier densities of ~1018 cm�3 and a significant
decrease of Eg starting near the critical Mott density, as shown in Fig. 21b. For
further detail, see Wagner (1985).
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Fig. 21 (a) Band filling of Si as a function of carrier density: calculated curves for n-type (dashed)
and for p-type (solid curve) Si at T= 20 K. (b) Bandgap reduction as a function of carrier density for
Si obtained from optical absorption and from the photoluminescence cutoff at T = 5 K. The critical
Mott density indicated by the arrows (After Wagner 1985)
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3.3.2 Free-to-Bound and Donor-Acceptor-Pair Transitions
A large variety of luminescent transitions occurs between those of free carriers
and emissions of defect centers or within a defect center from a higher to a lower
excited state or to the ground state. Shallow, hydrogen-like donors or acceptors are
known to have high luminescence efficiencies; in GaAs, for instance, these are BeGa,
MgGa, ZnGa, CdGa, CAs, SiAs, GeAs, and SnAs as acceptors and SAs, SeAs, TeAs, SiGa,
GeGa, and SnGa as donors.

The hydrogen-like impurities produce spectra below the energy of the bandgap
referred to as near-band-edge emission. Luminescence transitions, involving these
defects, occur from the band to an acceptor or a donor ( free-to-bound transitions),
within such centers (two-electron or two-hole transitions), or between a donor and an
acceptor (donor-acceptor-pair transitions). With increasing temperature, recombi-
nation transitions involving at least one of the bands are favored, since the lifetime of
carriers in shallow donors is decreased. This is indicated by a relation of the type
given in Eq. 64 – see Sect. 3.3.5 (William and Hall 1978).

Luminescence transitions from a band into a hydrogen-like donor or acceptor
reflect the optical ionization energy, as discussed for the example of the transition of
an electron from the conduction band into an acceptor in GaAs shown in ▶ Fig. 15a
of chapter “Shallow-Level Centers”.

When donors are located close to acceptors, their relative positions must have
certain values dictated by their occupied lattice sites. The Coulomb interaction
between donor and acceptor is hence “quantized” according to the “shell” number,
giving rise to a sequence of closely spaced discrete lines in the recombination-
luminescence spectrum – see in ▶ chapter “Shallow-Level Centers” Sect. 1.6 and
▶ Fig. 13. Distant donor-acceptor pairs are numerous and have a broad distribution
of donor-acceptor distances and a related spread in Coulomb energy. This yields
broad luminescence lines as shown in▶ Fig. 20 of chapter “Shallow-Level Centers”.

Virtually all emission lines are accompanied by phonon replica. Pronounced
phonon-assisted emissions appear at energies n � ELO (n = 1, 2 . . .) below the
zero-phonon line, where ELO is the energy of an LO phonon (e.g., 35 meV for GasAs
and 92 meV for GaN). The intensity of phonon replica depends on the strength of
phonon coupling expressed by the Huang-Rhys factor (▶ Sect. 1.2.2 of chapter
“Optical Properties of Defects”). Since the Huang-Rhys factor of donor-acceptor
pairs is usually substantially larger than that of excitons, donor-acceptor pair transi-
tions have pronounced replica of LO phonons at the low-energy side of the
no-phonon emission.

3.3.3 Bound-Exciton Luminescence
Excitons can interact with point defects via an attractive dipole-monopole coupling
when the defects are charged or via a somewhat weaker dipole-dipole coupling to
neutral defects. These excitons (X) are identified as (D+,X), (D0,X), or (A0,X)
complex when bound to a charged donor, a neutral donor, or an acceptor, respec-
tively (Lampert 1958). Excitons, bound to neutral or ionized donors or acceptors
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may be considered akin to an H atom, H� ion, or H2 molecule (Hopfield 1964). In
many materials, the line spectrum of bound excitons is abundant because of a variety
of involved defects, various phonon replica, and the narrow line shape that permits
the resolution of rather complex spectra at low temperatures. The transition energies
are decreased with respect to the free-exciton line by the binding energy to the
defect. Acceptors provide a stronger binding potential to excitons than donors: due
to the larger effective mass of the hole, the central-cell potential (i.e., chemical
individuality) has a more pronounced effect3; recombinations of (A0,X) complexes
hence appear at lower energy than those of (D0,X) complexes.

In order to separate and identify the closely spaced lines, a magnetic field can be
applied, which compresses the wavefunction; it also splits states with different
orbital angular momentum. A splitting of the free-exciton state is also found in
crystals of reduced symmetry, such as wurtzite crystals (like GaN or CdS), crystals
under uniaxial stress (Benoit a la Guillaume and Lavallard 1972), or strained cubic
crystals. Emission lines of free excitons, usually labelled X or FE, are then labelled
XA to XC for split A to C valence bands or Xhh and Xlh for light- and heavy-hole
excitons, respectively.

No-phonon transitions occur from the ground or excited state of the bound
exciton leaving the state of the donor or acceptor unchanged or with a final state
of these impurities at n = 2, 3, . . .. When the radiative recombination of an exciton
bound to a donor or an acceptor leaves the shallow impurity in an excited state, the
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Fig. 22 Luminescence of excitons bound to neutral C and Zn acceptors in GaAs at 2 K. Termi-
nation of the luminescent transition occurs in the 2s, 3s, or 4s excited states of the acceptor. The fine
structure is due to the initial-state splitting as indicated by J = 1/2, 3/2, or 5/2 as a result of
combining two J = 3/2 holes and one J = 1/2 electron (After Reynolds et al. 1985)

3The binding energy of excitons bound to donors or acceptors is proportional to the ionization
energy of these defects (Hayne’s rule, ▶ Sect. 2.2 of chapter “Shallow-Level Centers”).
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transition energy is reduced accordingly. The related luminescence is referred to as
two-electron transitions or two-hole transitions, respectively.

An example of the luminescent spectral distribution in GaAs with C and Zn
acceptors is shown in Fig. 22. The transitions involve the annihilation of an exciton
bound to these acceptors, with the acceptor at the end of the transition in the excited
2s, 3s, or 4s states as indicated by n = 2, 3, and 4, respectively. The high degree of
resolution in the small range of the spectrum shown – here a total of 6 meV – is
emphasized (see Reynolds et al. 1985).

Excitons can also be bound by neutral atoms of the same valency as the replaced
lattice atoms. Such isoelectronic centers have a short-range potential and therefore
extend to rather large k values. This permits electron transitions from k 6¼ 0 without
phonon assistance and hence yield a high luminescence efficiency at room temper-
ature, an important fact for indirect-bandgap materials such as N, As, or Bi in GaP
(Thomas et al. 1965; Trumbore et al. 1966; Dean et al. 1969).

For a detailed discussion of bound-exciton states see ▶Sect. 2 of chapter
“Shallow-Level Centers”.

3.3.4 Luminescence Centers
Materials that show highly efficient luminescence are called luminophores or phos-
phors.4 They consist of a host material such as aluminates, oxides, phosphates,
sulfates, selenides, or silicates of Ba, Ca, Cd, Mg, or Zn and of a light-emitting
dopant referred to as luminescence center or activator. They are of high technical
interest for luminescent displays, such as CRT screens or luminescent lamps (LEDs).
For reviews, see Curie (1963), Goldberg (1966), and Cantow et al. (1981).

By introduction of an activator with preferred radiative transitions the lumines-
cence of a semiconductor can greatly be enhanced. In contrast to the exciton and
band-edge transitions, which were discussed in the previous sections, such activator-
related luminescence is shifted from the band edge well into the bandgap, where the
optical absorption is reduced. These luminescent transitions have a very high
transition probability, approaching 100% at room temperature.

Activators are often transition-metal ions, which produce optical transitions
within their uncompleted inner d or f shell, see ▶ Sect. 3 of chapter “Deep-Level
Centers”. White-emitting LEDs, e.g., superimpose blue light of an InGaN LED
emitting at 450 nm with the broad yellow emission of a phosphor peaking near
550 nm; a common yellow phosphor is yttrium aluminum garnet (Y3Al5O12 or
YAG) with a bandgap energy of 4.7 eV at room temperature, doped with cerium
(YAG:Ce3+). Another example of a good luminophore is ZnS with a bandgap energy
of 3.6 eVat room temperature; with Cu as an activator, it yields a green luminescence
peak at 2.3 eV. Other typical activators of ZnS are Mn, Ag, Tl, Pb, Ce, Cr, Ti, Sb, Sn,

4The term phosphor should not be confused with the chemical element phosphorus, which emits a
faint glow when exposed to oxygen. This property is related to its Greek nameΦωσφóρoς, meaning
light bearer, which also lead to the term phosphorescence to describe a glow after illumination, and
the general term phosphor for fluorescent materials.
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and other transition metal ions except Fe, Ni, and Co – see Sect. 3.3.5. Some
prominent phosphors are listed in Table 3. For more information on the numerous
types of phosphors and their applications, see, e.g., Blasse and Grabmayer (1994),
Ronda (2008).

The intensity of the luminescence can be obtained from the reaction-kinetic
considerations

dn

dt
¼ go � n cc, act pact þ cc, rec prec

� �
, (62)

with the optical generation rate go and n = pact + prec; cc,act is the coefficient for the
transition from the conduction band to the activator, and pact is the hole density in the
activator, yielding the luminescent transition as the product of these two quantities.
Correspondingly cc,rec prec is the nonradiative transition, see ▶ Sect. 1 of chapter
“Carrier Generation”. For steady-state conditions (dn/dt � 0), we obtain for the
luminescent intensity IL (proportional to the radiative recombination transition)

IL / cc, act n pact ¼ gocc, rec nprec (63)

for reasons of detailed balance. Losses in luminescence efficiency relate to partial
absorption, to internal reflection, and to competing nonradiative recombination
transitions. The luminescence intensity (/cc,act n pact) increases also with increas-
ing activator concentration. Doping with a higher density of activators is usually
restricted by their solubility, which is related to neutrality considerations – see
▶ Sect. 2.5 of chapter “Crystal Defects”. The neutrality is provided by intrinsic
lattice defects, which are generated during the incorporation of the activator
according to thermodynamic relations – see▶ Sect. 2.4 of chapter “Crystal Defects”.
Further increased doping can be achieved by the incorporation of atoms with an
opposite charge character. In the example of ZnS doped with Cu, an oppositely
charged defect is Cl, which results in ZnS:Cu,Cl. This additional dopant is called a
co-activator. Heavily doped luminophores often show additional emission maxima.
ZnS:Cu,Cl first shows a green emission; increased densities of Cu and Cl result in a
blue emission maximum. This is due to the fact that Cu can be incorporated at two

Table 3 Emission-peak wavelength, peak photon energy, and peak width of phosphors used in
fluorescent lamps and cathode-ray/projection-TV tubes

Color Phosphor λ (nm) hνpeak (eV) hΔν (eV)
UV BaSi2O5:Pb

2+ 350 3.56 0.22

Blue ZnS:Ag+,Cl� 438 2.83 0.15

ZnS:Cu+,Cl� 453 2.74 0.19

ZnS:Ag+ 457 2.71 0.36

Green Zn2SiO4:Mn2+ 520 2.38 0.11

Yellow Y3Al5O12:Ce
3+ 539 2.30

Red Y2O3:Eu
3+ 620 2.0
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different sites in the ZnS lattice, replacing one Zn atom as CuZn and as an interstitial
Cui. The blue emission is attributed to a CuZnCui associate.

3.3.5 Quenching of Luminescence
When holes are released into the valence band from electron-activated luminescent
centers, the luminescence is reduced (quenched) since these holes can become
trapped at other, competing centers, the quenchers with nonradiative transitions.
Typical luminescent quenchers are Fe, Ni, and Co.

The release of such holes can be caused by thermal ionization, resulting in
thermal quenching of the blue luminescence of ZnS:Cu, which is thermally
quenched already below room temperature or by optical (IR) irradiation resulting
in quenching also of the green luminescence. These transitions are similar to
those that will be discussed in the section on photoconductivity, see chapter
▶ “Photoconductivity”. The intensity of luminescent transitions, competing with
thermal quenching, can be described by (see Eq. 49)

I ¼ I0

1þ τnonrad
τrad

¼ I0

1þ γ exp
ΔEth

kT

� � , (64)

where γ = τnonrad exp[ΔEth/(k T)]/τrad, and ΔEth is the thermal activation energy for
the quenching transition (William and Hall 1978).

With increasing concentration of activators, first an increase and, at higher
densities, a decrease of luminescence efficiency is observed. One reason for such a
concentration quenching is a carrier transfer from activator to activator, facilitated
by their close proximity, until a quencher is encountered before luminescent recom-
bination occurs.

When deep traps are present, they may store optically excited or injected electrons
for a substantial amount of time. These carriers are then slowly released by thermal
excitation and consequently recombine under radiative transitions. This phenome-
non is called phosphorescence. Release of electrons from such traps can be enhanced
by increasing the temperature. The distinction between luminescence and phospho-
rescence is kinetic in nature.

3.3.6 Stimulated Emission
In the previous sections, spontaneous luminescent emission was discussed. This
emission type dominates when the density of photogenerated carriers is small
enough so that each act of photon emission is generally spontaneous; that is, the
different acts of emission do not communicate significantly with each other, and the
emission is incoherent.

When the density of photogenerated carriers becomes very large, the light
generated by luminescent recombination can stimulate other electrons at nearby
luminescent centers to also recombine and emit light in phase with the stimulating
luminescent light. This stimulated emission increases with increasing excitation.
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When reflections create standing waves of the corresponding wavelength in an
optical resonator and thereby identify a well-defined phase relation, in-phase emis-
sion occurs, i.e., coherent emission. Lasing can finally be achieved with sufficient
pumping to a critical intensity of the exciting light at this wavelength. In a somewhat
simplified fashion, such critical intensity can be deduced from the condition that the
internal luminescent efficiency, given by Eq. 49: ηL = 1/(1 + τspont/τnonrad) must
increase sufficiently to overcome the optical losses in the luminophore. The relax-
ation time for spontaneous luminescence τspont is usually much longer than that for
nonradiative recombination τnonrad; hence, ηL is usually � l. When an inverted
population of the excited and ground states of the luminescence center is produced,
the luminescent lifetime decreases sharply from τspont to a stimulated-emission
lifetime τstim; thus, ηL rapidly rises and lasing occurs. Such inverted population
can be achieved when the excitation is strong enough so that there are more electrons
in the excited than in the ground state.

The pumping of a laser, in order to achieve a sufficient population of excited
states, can be performed by optical excitation. This was done first with a light flash
exciting a ruby rod from its circumference (Maiman 1960). Carrier injection pro-
vides another efficient mode for pumping semiconductor lasers, originally carried
out by Hall et al. (1962), Nathan et al. (1962), and Quist et al. (1962) in GaAs. Today,
many kind of semiconducting lasers are available. For reviews of semiconductor
lasers, see, e.g., Agrawal and Dutta (1993), Chow et al. (1997), Kapon (1999), and
Coleman et al. (2012).

4 Noise

In previous sections and chapters, carrier generation, recombination, and transport
were regarded as stationary with a time-independent current or luminescence.
However, statistical fluctuations of carrier density, mobility, and electric field are
the cause for current-density fluctuations, called noise, as in the acoustic impression
one hears in a loudspeaker after sufficient amplification:

δ j ¼ eμnδFþ eμ Fδnþ enFδμ: (65)

Fluctuations of the electric field F are of importance for inhomogeneous semi-
conductors and will not be discussed here. We will first discuss the basic elements of
current fluctuation (see van der Ziel 1986) and then will give a brief review of the
different noise mechanisms, with some emphasis on 1/f noise – also denoted here as
1/ν noise for consistency.

4.1 Description of Fluctuation

The current in a semiconductor fluctuates about an average value. Such fluctuations
are observable after amplification; band-pass filtering transforms the fluctuation j(t)
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from the time (t) domain into the frequency (ν) domain j(ν)dν, mathematically
requiring a Fourier transformation. Usually, we sample the random fluctuation of
j(t) shown in Fig. 23, or of V(t) = R I(t) in a small frequency interval Δν, with its
variance given by the mean square

j tð Þ � j
� �2 ¼ Δj2 ¼

ðν2
ν1

Sj νð Þ dν ffi Sj νð Þ Δν: (66)

Here, Sj(ν) is the spectral intensity of the current fluctuation, which can be measured
after amplification, and is the subject of most theoretical investigation. Alternatively,
sometimes the spectral intensity SV(ν) of the fluctuation of an emf across the device
is analyzed.

When expressing a fluctuating current j(t) by its Fourier components

j tð Þ ¼
X1

n ¼ �1
an exp iωn tð Þ with ωn ¼ n

2π

t0
, (67)

the amplitudes can be expressed as

an ¼
ðt0
0

j tð Þexp �iωn tð Þ dt; (68)

here 1/t0 = Δν, and Δν is the sampling bandwidth. The spectral density is given by

Sj νð Þ ¼ lim
t0!1 2t0 an a�n : (69)

In the following sections, we will give a simplified picture of the general noise
phenomenon. We then will present the results for the different types of noise for a
homogeneous semiconductor, rather than deriving the spectral density in a vigorous
manner. Such derivations can be found in several monographs (see, e.g., Ambrozy
1982; van der Ziel 1986; Kogan 1996).

√ ∆j2

j

j

t0 t0

Fig. 23 Fluctuating current
j with average value and mean
square deviation identified.
Probing occurs in specific
time intervals of length t0 after
amplification through an
amplifier of bandwidth
Δν = 1/t0
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Electronic Noise Electronic noise can be described as a train of pulses, which are
generated by each movement of an electron between scattering events or between
generation and recombination of carriers. The averaged square of the deviation from
the average current, divided by i2, is inversely proportional to the number n of current
pulses. Hence, with i = n e/t, and t as the length of each current pulse, we have,
following the square-root law of Poisson statistics,

Δi2

i2
¼ 1

n
¼ e

i t
, or Δi2 ¼ e i

t
: (70)

After Fourier transformation of each current pulse, by taking the squared absolute
value and integrating over all amplitudes in a small frequency interval Δν of
amplification, we obtain the total mean square current fluctuation within Δν.

Commonly we distinguish:

• Thermal noise
• Shot noise
• Generation-recombination noise
• 1/f noise

The first three classifications can be derived from basic classic principles, while
the fourth is derived from quantum electrodynamics. For reviews, see van der Ziel
(1970, 1986, 1988), Dutta and Horn (1981), Hooge et al. (1981), Ambrozy (1982),
van Kampen (1992), and Handel (1994, 1996). We also distinguish noise under
equilibrium and nonequilibrium conditions.

4.2 Noise in Equilibrium Conditions

The equilibrium noise is given by the thermodynamic behavior of carriers. Little can
be done to reduce its amplitude, except by changing the temperature or the band-
width of the amplifier.

Thermal Noise Thermal noise, also referred to as Johnson-Nyquist noise, is
caused by the random motion of carriers in a semiconductor. It was originally
discussed by Nyquist (1928) from thermodynamic arguments and was later
analyzed by Bakker and Heller (1939). The respective mean square of the current
is given by

Δ jð Þ2 ¼ 4Δν
R

hν

exp hν= kTð Þ½ � � 1
ffi 4kT

R
Δν, (71)

where R is the resistance of the semiconductor and Δν is the bandwidth of the
amplifier. This noise is caused by the Brownian motion of the carriers. Equation 71
aptly describes the noise observed in metals and semiconductors in thermodynamic
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equilibrium, i.e., for vanishing current or optical excitation. However, the noise can
be larger by many orders of magnitude due to density and field fluctuation in
nonequilibrium conditions (see below).

Equivalent Noise Resistor The actual noise in semiconducting devices is often
described by an equivalent noise resistor, using Eq. 71, but describing the potential
fluctuation

V2 ¼ j2 R2 ¼ 4kT RnΔν (72)

by an equivalent resistor Rn. When such a resistor becomes larger than given
by the actual device resistivity, nonequilibrium noise is also included in this description.

Another way of assigning an elevated noise output to a device is by defining an
equivalent noise temperature Tn, according to a similar formula,

V2 ¼ j2 R2 ¼ 4kTnRΔν: (73)

Temperature Fluctuations The phonon content in a small semiconductor in
thermal equilibrium can fluctuate with respect to its internal energy distribution as
well as its connection to the surrounding. We hence expect temperature fluctuations
which in turn affect the resistance noise. This was first suggested by Voss and Clarke
(1976) as a cause for 1/f noise, but was later rebutted when measurements of noise
correlations disagreed with their predictions; see, e.g., Dutta and Horn (1981) and
Kilmer et al. (1982). van Vliet and Mehta (1981) proved that thermal fluctuations do
not yield 1/f noise in any geometry or number of dimensions.

4.3 Nonequilibrium Noise

Nonequilibrium noise is generated by an injected current or by extrinsic excitation.
This noise can be changed by doping, variation of interfaces, or contacts.

4.3.1 Shot Noise or Injection Noise
The shot noise was derived for vacuum diodes. It is caused by the discreteness of
elementary charges crossing the diode and is related to the statistical exit of electrons
from the cathode. It may be applied to carrier injection from one (or two, in double
injection) of the electrodes of a semiconductor (see Nicolet et al. 1975). The shot
noise was first estimated by Schottky (1918) with a current fluctuation obtained for
1/2 Δν from Eq. 70

ΔIð Þ2 ¼ 2e IΔν: (74)
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Except for a factor of 2, it is equal to the thermal noise5 given in Eq. 71, when using
thermal emission from the electrode I = Is exp[�e(ψMS � V)/(k T)], where ψMS is
the metal-semiconductor work function and Is is the saturation current, linearizing, and
setting @I/@V = 1/R. For a review of the measurement techniques of intrinsic noise,
see the classic work of Bittel (1959) and van der Ziel (1970, 1986, 1988).

Noise Due to Mobility Fluctuation The fluctuation of carrier mobilities due to a
variety of scattering processes was evaluated by Kousik et al. (1985, 1989) and
Tacano (1993); it yields a 1/f noise for ionized-impurity scattering as well as for
electron-phonon, intervalley, and umklapp scattering. See also Pellegrini (1986).

Noise in Quantum-Ballistic Systems In point contacts and devices that are smaller
than the free path of carriers, the carriers move in a ballistic fashion without scattering,
see ▶Sect. 3.1 of chapter “Carrier Transport in Low-Dimensional Semiconductors”.
Still, the carrier motion in the entire device is dissipative because the heated carriers
loose their energy in the adjacent parts of the device by scattering with phonons.

In thermal equilibrium, such ballistic system follows the Johnson-Nyquist formula
(Eq. 72). With an applied voltage the noise increases; however, it reaches the full level
of the shot noise 2 e I only when the current is low. With higher currents this noise is
substantially reduced. The suppression of the shot noise is due to the Fermi statistics
(i.e., the Pauli principle), as first shown by Levitov and Lesovik (1993): In “small”
quantum devices the transfer of electrons becomes restricted as soon as their density
exceeds a quantum limit (the Fermi limit) of electron correlation. To emphasize this
correlation, we speak of a quantum shot noise. The magnitude of this noise suppres-
sion is seen from Fig. 24, which shows for different currents the spectral density of the
noise in a quantum-point contact as a function of the gate voltage defining a
two-dimensional electron gas (2DEG).

With larger contacts or devices, this suppression disappears. González et al.
(1998) discuss this crossover between the diffusive and the ballistic regime. The
joint effect of Coulomb and Fermi correlation in shot-noise suppression in ballistic
conductors is emphasized by González et al. (1999); see also Liefrink et al. (1991).
For the analysis of quantum shot noise in mesoscopic systems, see Reznikov et al.
(1998). Contacts also produce 1/f noise, see Sect. 4.4.

Noise in Tunnel Junctions The noise in tunnel junctions is governed by two
contributions: the statistical transit of carriers through a constant junction and the
fluctuation of the barrier height and its resistance produced by the motion of defects
at the boundary or inside the junction (Kogan 1996). The first effect yields the full
shot noise, except for small-area tunnel junctions; here the capacitance is small
enough to change its energy e2/2C, when a single electron passes, by more than kT
(see▶Sect. 4.1 of chapter “Carrier Transport in Low-Dimensional Semiconductors”).

5In contrast to the vacuum diode, the current in a semiconductor is bidirectional, hence the factor 2.
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This regime is referred to a Coulomb blockade and is reviewed byGrabert and Devoret
(1992); see also Korotov (1994).

4.3.2 Generation-Recombination Noise
Carriers can be generated by injection from the electrode, as discussed before, or
within the semiconductor (e.g., by thermal generation or by light – see ▶ Sect. 1 of
chapter “Carrier Generation”) and annihilated by recombination or temporarily
immobilized by trapping. This causes a fluctuation in carrier density. This contribu-
tion was first calculated by Gisolf (1949) and was later modified by van Vliet (1958),
yielding

ΔI2n ¼ 4
I

N

� �2 τn
1þ 4π2 ν2 τ2n

N NA þ Nð Þ ND � NA � Nð Þ
NA þ Nð Þ ND � NA � Nð Þ þ NND

Δν, (75)

where τn is the electron lifetime in the conduction band, and N, ND, and NA represent
the numbers (not concentrations) of electrons, donors, and acceptors in the actual
device (see also van Vliet and van der Ziel 1958). An example of the spectral
distribution for a device with two pronounced centers is shown in Fig. 25; the figure
also contains two other noise components. The observed frequency distributions of
the generation-recombination noise component usually also shows a dispersive
behavior, indicating a wide distribution of lifetimes (Böer and Junge 1953;
McWorther 1955).
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4.4 The 1/f Noise

The 1/f noise, in the early literature referred to as flicker noise, was first observed by
Johnson (1925) and prevails in many semiconducting devices. This noise contains,
in general, both fundamental and nonfundamental fluctuations (see van der Ziel
1950). Nonfundametal quasi-1/f-like contributions include superposition of
Lorentzian generation-recombination noise spectra, with a distribution of electron-
relaxation times τn (McWorther 1955), and mobility fluctuation. The fundamental 1/f
noise is the quantum 1/f noise and is described by Handel (1980, 1994, 1996) and
Sherif and Handel (1982).

In collision-free devices (diodes and ballistic devices), the 1/f noise can be
explained by accelerated electrons emitting bremsstrahlung, which has a l/ν -spec-
trum. This is caused by the feedback of the emitted photon on the decelerating
electron, yielding

I2 ¼ αH
νN

I2Δν, (76)

where N is the number of carriers in the system, and αH is the Hooge parameter
(Hooge 1969)

αH ¼ 4α

3π

Δv
c

� �2

: (77)

Here, α = e2/ћc = 1/137 is the fine-structure constant, Δv is the change of carrier
velocity along its path, and c is the light velocity (see Handel 1982; van der Ziel
1986, 1988). A similar formula can also be applied to semiconductors in which the
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carrier transport is collision limited, and αH is calculated by averaging Eq. 77 over
the various scattering processes. Often it is sufficient to focus on a single, dominant
large-angle scattering, recombination, or tunneling process to obtain the average

Δv=cð Þ2 . For larger samples or devices, Handel obtains for the coherent quantum-
1/f-effect αH ffi 2α/π, independent of the scattering mechanism.

The coherent or conventional quantum 1/f effect is of basic nature and is generally
referred to as quantum 1/f noise as discussed below; for reviews see van der Ziel
(1986, 1988).

4.4.1 The Conventional Quantum 1/f Effect
The physical origin of quantum 1/f noise can be understood by considering the
example of Coulomb scattering of electrons at a charged defect. The scattered
electrons reach a detector at different angles with respect to the incident direction.
When they lose energy in this process due to the emission of (low frequency)
bremsstrahlung photons, a part of the outgoing de Broglie waves is slightly shifted
to lower frequencies. This makes the scattering slightly inelastic. When calculating
the probability density of the scattered electron ensemble, we obtain also cross terms,
linear in both the part scattered elastically and inelastically, i.e., with and without
emission of bremsstrahlung. These cross terms oscillate with the same frequency as the
emitted bremsstrahlung photons. The emission of photons at all frequencies therefore
results in probability-density fluctuations. The corresponding current-density fluctua-
tions are obtained bymultiplying the probability-density fluctuations by the velocity of
the scattered carriers; they are detected as low-frequency current fluctuations and can
be interpreted as fundamental cross-section fluctuations in the scattering cross-section
of the scatterer. While incoming carriers may have been Poisson distributed, the
scattered ensemble will exhibit super-Poissonian statistics with more probable
bunching; due to this effect, we may call this a quantum 1/f effect.

The quantum 1/f effect is thus a collective many-body effect; it can be analyzed as
a two-particle effect, described by a two-particle wavefunction and two-particle
correlation function. The two-particle wavefunction is the product of two single-
particle functions ψ with negligible interaction between them, so its square is |ψ |4.

In a semiclassical approach, a particle of charge e and acceleration a radiates a
power given by the classical (Larmor) formula 2e2a2(Δv)2/(3ћ c3). The acceleration
can be approximated by a delta function a(t) = Δvδ(t), whose Fourier transform Δv
is constant and is the change in the velocity vector of the particle during the almost
instantaneous inelastic scattering process; the spectral density of the emitted brems-
strahlung power is therefore also constant. The number of emitted photons per unit
frequency-interval is obtained by dividing the bremsstrahlung power by the energy
of one photon; the probability amplitude of photon emission is then given by the
square root of this photon-number spectrum. If ψ is a representative single-particle
Schrödinger wavefunction of the scattered charged particles, the beat term in the
probability density ρ = |ψ |2 is linear in both the bremsstrahlung amplitude and in the
non-bremsstrahlung amplitude, i.e., in the square root of the probability for inelastic
and elastic scattered electrons. Its spectral density will therefore be given by the
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product of the squared probability amplitude of photon emission (/1/ν) with the
squared non-bremsstrahlung amplitude which is independent of ν. This yields the
spectral density of fractional probability-density fluctuations

ψj j�4S ψj j2 νð Þ ¼ 8e2 Δvð Þ2
3hνNc3

¼ 2αA

νN
¼ α0

νN
¼ j�2Sj νð Þ, (78)

where α is the fine-structure constant, α0 is the quantum 1/f noise coefficient, and α A
is known as the infrared exponent in quantum-field theory. From Eq. 78 we obtain
the current fluctuation in the 1/f regime by insertion of the spectral density Sj(ν) into
Eq. 76. The spectral density of the current-density fluctuations is obtained by
multiplying the probability-density fluctuation spectrum with the squared velocity
of the outgoing particles. When we calculate the spectral density of fractional
fluctuations in the scattered current j, the outgoing velocity simplifies, and therefore
Eq. 78 also gives the spectrum of current fluctuations Sj. The quantum 1/f noise
contribution of each carrier is independent, and therefore the quantum 1/f noise from
N carriers is N times larger; since also the current j is N times larger, a factor N was
included in the denominator of Eq. 78.

The fundamental fluctuations of cross sections and process rates are reflected in
various kinetic coefficients in condensed matter, such as the mobility μ, the diffusion
constant D, and the thermal diffusivity in semiconductors, the surface and bulk
recombination speeds vrec, recombination times τrec, or the rate of tunneling jt.
Therefore, the spectral density of fractional fluctuations in all these coefficients is
given also by Eq. 78. This conventional quantum 1/f theory was verified by
calculations of van Vliet (1990). The application of the theoretical approach outlined
above yields excellent agreement with the experiment in a large variety of samples
(Tacano 1993), devices (van der Ziel 1988; van der Ziel and Handel 1985; Berntgen
et al. 1999), and microstructures (Balandin et al. 1999).

4.4.2 The Coherent Quantum 1/f Effect
This effect arises for any electric current in matter (solids, liquids, gases) or in vacuum
from the definition of the physical electron (or other charged particle) as a bare particle
plus a coherent state of the electromagnetic field (Handel 1996). It is caused by the
energy spread (uncertainty) in characterizing any coherent state of electromagnetic field
oscillators. This energy spread causes nonstationarity, i.e., fluctuations that have a 1/f
spectrum both in probability density and in the current.

The spectral density of these fundamental fluctuations was obtained through both
derivation from the quantum-electrodynamical propagator of a physical charged
particle and through an earlier elementary derivation similar to Eq. 78. The spectral
density for the particle concentration |ψ |2, or for the current density j = e(k/m) |ψ |2,
is given by

S ψj j2 ¼ Sjj
�2 ¼ 2α

π νN
¼ 4:6� 10�3 ν�1N�1: (79)
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Here, we have included the total number N of charged particles, which
are observed simultaneously in order to define the current j, in the denominator,
because the noise contributions from each particle are independent. This
result is related to the conventional quantum 1/f effect introduced in the previous
section.

Relation to the Conventional Quantum 1/f Effect The coherent state in a con-
ductive sample is a state defined by the collective motion, i.e., by the drift current of
the carriers. It is expressed in the Hamiltonian by the magnetic energy Emag per unit
length of the current. In very small samples or electronic devices, this coherent
magnetic energy

Emag ¼
ð
B2

8π
d3x ¼ NevS

c2

� �2

ln R=rð Þ (80)

is much smaller than the total kinetic energy Ekin of the drift motion of the carriers

Ekin ¼
Xmv2

2
: (81)

Here B is the magnetic field, n the carrier concentration, S the cross-sectional area,
r the radius of the cylindrical sample (e.g., a current-carrying wire), and R is the
radius of the electric circuit. Introducing the “coherence ratio” s = Emag/Ekin, the
total observed spectral density of the mobility fluctuations can be written by a
relation of the form (Handel 1994, 1996)

1=μ2
� �

Sμ νð Þ ¼ 1

1þ s

2αA

νN
þ s

1þ s

2α

π νN
¼ 2α

1þ sð ÞνN Aþ s=πð Þ, (82)

which can be interpreted as an expression of the effective Hooge parameter aH if ν
and the number N of carriers in the (homogeneous) sample are brought to the
numerator of the left-hand side. In this equation α A = 2α(Δv/c)2/3π is the usual
nonrelativistic expression of the infrared exponent, present in the familiar form of the
conventional quantum 1/f effect. This equation is limited to quantum 1/f mobility
(or diffusion) fluctuations and does not include other contributions. Including all
contributions finally yields the empirical Hooge parameter αH.

Contact Noise A major contribution to noise can be generated at the contact
interface or in the high-field region of a Schottky barrier (Çeik-Butler 1996). This
contact noise also has 1/f behavior, is part of the flicker noise, and can be calculated
as the sum of various types of 1/f noise. Two important contributions are known;
with R the contact resistance, the first is given by (1/R2)SR(ν) = παR3/(10nνρ3). It
originates from a coherent quantum 1/f effect in metals or degenerated semiconduc-
tors of carrier concentration n and resistivity ρ, in agreement with data of Hooge
(1969). The second contribution occurs from the conventional quantum 1/f effect in
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very small, less-doped semiconductors with a coherence ratio s � 1; in metals, a
similar effect arises from electron-hole waves at the Fermi surface. In nanoscale
devices with inhomogeneous contact areas, this contact noise can become the
dominating noise.

5 Summary

After generation or excitation, carriers can return to their original state, or they can
recombine radiatively or nonradiatively with another state. Nonradiative recombi-
nation of carriers releases energy in the form of phonons or by accelerating another
electron, with Auger recombination, which consequently leads to LO phonon
emission by the accelerated electron. Phonon emission occurs as a single-phonon
process when trapping a carrier at a shallow defect center or as a multiphonon
emission when recombination at a tightly bound deep center occurs; a sequential
release of a phonon cascade is possible during the lattice-relaxation process of a deep
center.

We distinguish between carrier traps in which excitation into the adjacent band
and trapping at the center dominate and recombination centers through which
carriers recombine from one band to the other. The former are located close to one
band, the latter closer to the center of the bandgap. They are separated from each
other by demarcation lines, which lie near the quasi-Fermi levels and appear when
deviating from thermal equilibrium. As a characteristic parameter for carrier recom-
bination, the capture cross-section, which measures the “effectiveness” of a defect
center in trapping or recombination, can be defined. The capture cross-sections
spread over more than 12 orders of magnitude, ranging from 10�10 cm2 for
Coulomb-attractive centers at low temperatures to less than 10�22 cm2 for some
Coulomb-repulsion centers or for deep centers with high lattice coupling. At high
carrier densities, both Auger- and plasmon-induced recombinations become effec-
tive and transfer the relaxed recombination energy to single carriers or the collective
of carriers, respectively. Nonradiative recombination is one of the most important
loss mechanisms in most semiconductor devices; it is almost always defect center
controlled and can be reduced by avoidance of deep-level defects, low doping levels,
or proper doping with luminescence centers.

Radiative recombination proceeds as an emission delayed by the lifetime of an
excited state and changed in energy after relaxation of the excited state. Depending
on the lifetime, luminescence and the slowlier phosphorescence are distinguished. In
thermal blackbody radiation, excitation is accomplished by phonons alone. Such
radiation has many similarities with the phonon-induced luminescence in the far-IR
emission range. At higher frequencies, the intrinsic coupling to a phonon distribution
causes quantitative changes in the behavior, which makes thermal radiation dis-
tinctly different from luminescence.

The spectral distribution of the luminescence offers a wide variety of methods to
analyze the electronic structure of the semiconductor and its defects. The spectra of
shallow-level defects in stress-free ultrapure crystals at low temperatures are
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extremely sharp and well understood. When lattice relaxation by phonon emission
becomes involved, these spectra become broader and it is more difficult to unam-
biguously relate these to specific deep-defect level centers. Band-to-band excitation
preceding spontaneous emission, the so-called band-edge luminescence, provides
direct information concerning the carrier distribution near the edge. Clear lumines-
cence signatures are obtained from excitons bound to defects and from the rich
spectrum of defect pairs, which assist in unambiguous identification. Electron-hole
drop and carrier plasma luminescence help at high carrier densities to identify carrier
phase-transitions.

Random fluctuations of the carrier density, the local carrier mobility, and electric
fields of local space charges in semiconductors cause electronic noise. When these
sources are independent of each other, superposition holds, and each of the noise-
frequency components is added to obtain the total noise. Equilibrium noise, also
described as thermal noise, is independent of the frequency (white noise) and directly
proportional to the bandwidth of the amplifier. Nonequilibrium noise requires optical
excitation or a current and depends on doping or space-charge effects. The discrete-
ness of elementary charges gives rise to shot noise in the carrier injection from
electrodes to a semiconductor. Carrier generation from or by thermal generation or
by light and annihilation by recombination or trapping cause a fluctuation in carrier
density referred to as generation-recombination noise. Noise components usually
increase with decreasing frequency with a typical 1/f behavior, composed of funda-
mental and nonfundamental contributions. The first can be considered as energy loss
from low-frequency bremsstrahlung in a basically elastic scattering process, while
the latter arises from the energy uncertainty in characterizing any coherent state of
electromagnetic field oscillators.

Electronic noise presents a lower limit for signal detection in electronic devices
and hence of reliable device operation. It is difficult to separate unambiguously the
different components of nonequilibrium noise. However, avoidance of material and
electrode defects has a major effect in reducing device noise.
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Abstract
Free carriers, causing an increase in electrical conductivity, can optically be
generated either intrinsically by band-to-band absorption or extrinsically involv-
ing defect states in the bandgap. Photoconductivity provides information about
carrier excitation and relaxation processes and hence about electronically signif-
icant imperfections. Photoconductors can be substantially sensitized by doping
with slow recombination centers. An exceedingly long dwell time for carriers
captured in traps may induce persistent photoconductivity. A related very small
recombination cross-section occurs for deep impurities with a large lattice relax-
ation. Photoconductivity can be quenched (reduced) by a shift of minority carriers
from predominantly slow to fast recombination centers. Such a shift can be
induced optically with additional long-wavelength light, as well as thermally or
by an electric field.
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Photoconductivity � Photo-ionization cross-section � Quenching � Recombination
center � Sensitization � Trap

1 Basic Photoconductivity Processes

Photoconductivity denotes the increase of the electric conductivity due to an
increased carrier density as a result of an optical excitation. With excitation from
the valence to the conduction band, it is termed intrinsic photoconductivity; with
excitation involving levels in the bandgap, it is called extrinsic photoconductivity;
semiconductors that show strong photoconductivity (see below) are called photo-
conductors. Related phenomena are photoexcitation-caused changes in the Hall
effect (photo-Hall effect), thermoelectric effect (photothermoelectric effect), and
photo-induced capacitance changes of a semiconductor junction (photocapacitance);
when additional carriers are photoexcited in a material containing an internal electric
field, a current and voltage are generated (photovoltaic effect). For reviews on
photoconductivity, see Bube (1978), Capasso (1990), Rose (1978), Ryvkin (1964),
and Stillman et al. (1977); methods are briefly reviewed in Brinza et al. (2005).

In this chapter, we will first review different intrinsic and extrinsic carrier-
generation processes. Then, we will give an overview of a reaction-kinetic analysis,
which is the basis for a quantitative description of the change in carrier distribution
due to optical excitation, and discuss the effect of traps and recombination centers.
Finally, we will provide typical examples for various processes of photon-induced
changes in conductivity.

A general diagram for the main phenomena involved in photoconductivity is
given in Fig. 1. In the bandgap, only localized energy states associated with crystal
imperfections such as intrinsic defects or impurities exist. The major processes of
interest are optical absorption creating free carriers, electrical transport by which free
carriers contribute to the electrical conductivity, capture of free carriers leading to
trapping or recombination, and thermal excitation of trapped carriers to the nearest
band.

The response of a photoconductor upon irradiation with light is described by a set
of equations, one for each of the electron densities in a given level or band; we will
neglect a redistribution of carriers within the band and assume here that all transition
coefficients are independent of such redistribution. In a homogeneous semiconduc-
tor, the kinetic expressions are of the form

dni
dt

¼ gi � ri, i ¼ 1, 2, . . . , (1)

where gi and ri are the generation and recombination rates for the ith energy level,
respectively, defined in chapter ▶ “Carrier Generation.” The generation term con-
tains all contributions that cause an increase in the population of this level, while the
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recombination term combines all contributions that cause a decrease of the popula-
tion. The rates can be written as

gi ¼
X

j
nj eji Ni � nið Þ and ri ¼

X
j
ni cij Nj � nj

� �
(2)

where eji and cij are the transition coefficients between level i and level j, Ni is the
density of defects with level i, and ni is the density of electrons in the level, assuming
single occupancy of each level; e transitions are upward (excitation) transitions
within the band diagram, while c transitions are downward (capture) transitions
with release of energy; see Fig. 1 and ▶ Fig. 1 of chapter “Carrier Generation.”

Equation 1 represents a set of first-order, nonlinear differential equations, which
usually cannot be solved in closed form except for some exceedingly simple cases,
examples of which are given in Sects. 1.2 and 2.

1.1 Carrier Generation

Optical absorption due to band-to-band excitation is an intrinsic photoexcitation
process creating equal densities of electrons and holes (Fig. 1a). At photon energies
exceeding the bandgap energy, the optical absorption becomes large; consequently the
carrier generation occurs closer to, and often within, the first 10–100 nm of the front
surface. The deformed electron-energy distribution immediately after photoexcitation
relaxes to approach a Boltzmann distribution, with most of the electrons near the lower
edge of the conduction band and most of the holes near the upper edge of the valence
band. Therefore most of the photoconductivity occurs near the band edges.

Photoconductivity with excitation energy below the band edge, i.e., extrinsic
photoexcitation, is rather homogeneous throughout the volume of the semiconduc-
tor. Optical absorption results from transitions of electron-occupied imperfection

E

x

Ec

Ev

transport

a

b

c

d

e

f

f

Fig. 1 Major transitions and
phenomena associated with
photoelectronic effects in
homogeneous
semiconductors: (a) intrinsic
absorption, (b) and (c)
extrinsic absorption, (d ) and
(e) capture and recombination,
( f ) trapping and detrapping.
Arrows indicate electron
transitions
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states to the conduction band (Fig. 1b), producing only free electrons, or from
transitions from the valence band to electron-unoccupied imperfection states
(Fig. 1c), producing only free holes. Free carriers may also be produced by a
ground-to-excited state excitation involving an imperfection, when a secondary
process completes excitation into the band by a process such as tunneling, impact
ionization, thermal ionization, or excitation by additional photons.

Optical absorption is described quantitatively through the optical absorption
constant αo. In the simplest case – that is, neglecting effects due to reflection or
interference of light with intensity I0 that is incident on a sample with thickness d and
absorption constant αo – the transmitted light intensity through the photoconductor is
expressed by the Beer-Lambert law:

I ¼ I0 exp �αo dð Þ: (3)

The magnitude of αo for intrinsic photoabsorption is usually large compared to
the thickness of the photoconductor and can be calculated by a quantum mechanical
perturbation calculation in which the effect of the light is treated as a perturbation in
the basic Schrödinger equation. We will briefly point out the energy dependence of
αo in the following section.

In the case of extrinsic photoabsorption, αo is usually much smaller and can be
simply expressed as

αo ¼ soptN, (4)

where N is the density of imperfections involved in the absorption process and sopt is
their photoionization cross-section, a quantity usually on the order of 10�16 cm2 near
the band edge, but smaller for transitions further from the band edge.

1.1.1 Wavelength Dependence of the Generation Rate
The generation rate of carriers depends on the energy of the impinging photons.
Band-to-band excitation was discussed in ▶ Sect. 1 of chapter “Band-to-Band
Transitions,” with a focus on an excitation near the fundamental edge. Most intrinsic
transitions are direct transitions (vertical in an E(k) representation), which can
proceed from any point in k space with the appropriate photon energy as illustrated
in Fig. 2. The optical generation rate go introduced in▶ Sect. 1.1 of chapter “Carrier
Generation” is proportional to the impinging light flux ϕo (photons/cm

2s) normal to
a sample surface (i.e., in z direction) and the optical absorption coefficient αo, all of
which are functions of the wavelength:

go λð Þ ¼ η ϕo λð Þαo λð Þexp �αo zð Þ: (5)

The quantum efficiency η describes the number of carriers (or e–h pairs) per
absorbed photon. It is usually close to unity for photon energies below and near the
bandgap energy; at very high photon energies (above 2Eg), a gradual increase is
found due to impact ionization. Data of η for various photoconductors are reported
by Marfaing (1980).
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With high optical absorption, the reflection r(λ) can no longer be neglected. We
then need to replace Eq. 5 by

go λð Þ ¼ η ϕo αo 1� rð Þ exp �αo zð Þ þ r exp αo zð Þexp �2αo dð Þ
1� r2exp �2αo dð Þ , (6)

which yields Eq. 5 for the limit of vanishing reflection r.
The optical absorption is proportional to the square of the matrix element for each

of the transitions at a given photon energy and to the joint density of states between
valence and conduction band Jc,v:

αo λð Þ ¼ e2 λ

6e0 nr c2m2
0V

Mfij j2Jc, v: (7)

Integration over the energy range, given by the specific optical excitation (e.g., a
band-to-band excitation with a given spectral band width), yields the total generation
rate with electrons distributed over the corresponding regions of the k space (see
▶ Fig. 6 of chapter “Band-to-Band Transitions”). From this deformed distribution,
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the electrons will relax to approach the Boltzmann distribution, with most of the
electrons near the lower edge of the conduction band and holes near the upper edge
of the valence band.

Defect-to-band excitationwas extensively discussed in▶ Sects. 1.2.3 and▶ 2.4.2
of chapter “Optical Properties of Defects”; here, again, excitations into higher states
of the band need to be considered. In addition we must take the electron occupation
probability f into account. If, e.g., the photo-ionization of an acceptor impurity is
considered, we obtain an absorption coefficient:

αo ¼ sANA 1� fð Þ, (8)

where NA is the acceptor concentration and sA is the photo-ionization cross section
(see below).

Excitation from deeper centers shows a wider distribution, since they are more
localized in real space. Hence, their eigenfunctions are more spread out in k space,
and they offer a broad range of vertical transitions, whereas for shallow-level centers,
the direct transitions are restricted closer to k = 0.

Finally, an excitation of free carriers from states near the band edge to higher
states influences the photoconductivity by changing the effective mass and
relaxation time. Devices based on this effect are referred to as free-electron
bolometers.

1.1.2 Photo-Ionization Cross Section
The excitation of electrons from deep-level centers into the conduction band can be
described as transitions into resonant states. Such transitions are possible when the
excited state contains Bloch functions of the same k value as the ground state
(conservation of momentum). The cross section of localized deep centers extends
over a large range in k space; it therefore extends to a wide energy range of the band
continuum. This cross section can be approximated (see ▶ Sect. 2.4.1 of chapter
“Optical Properties of Defects”) by

so hνð Þ / hν� EIj j
hνð Þ3 g hν� EIj jð Þ, (9)

where EI is the ionization energy and g(hν � |EI|) is the density of states, which, for
a simple parabolic band near its edge, can be expressed as

g hν� EIj jð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν� EIj j

p
: (10)

The cross section can be calculated when the deep center potential is
known. When it is approximated by a square-well function (Lucovsky 1965), we
obtain
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so hνð Þ ¼ 1

nr

Feff

F

� �2
32π2 e2ℏ

ffiffiffiffiffi
EI

p
hν� EIj jð Þ2=3

3m� c hνð Þ3 , (11)

where Feff/F is the ratio of the effective local field to the electromagnetic radiation
field, which takes into consideration the local screening by charges near the defect
center. This ratio is typically on the order of 1 for shallow levels; so is on the order of
10�16 cm2 near the band edge. Further from the band edge, the expression becomes
more complicated, causing a rapid reduction of the cross section (Jaros 1977).
Equation 11 describes rather well the IR absorption of GaAs:Au or GaAs:Ag
(Queisser 1971).

For excitation into an excited state, we obtain for the cross section

so hνð Þ ¼ 1

nr

Feff

F

� �2
2π2 e2ℏ
3m� e

f ba, (12)

with fba as the oscillator strength, which is given for a hydrogen atom in Table 1 and
applies to a quasi-hydrogen (shallow) defect.

The relative cross section of different impurities can be easily obtained by a
constant-photoconductivity method developed by Grimmeiss and Ledebo (1975).
One can show from detailed balance1 that the photoionization cross-section so is
inversely proportional to the intensity I(hν) of light required to produce, with light of
different photon energies, the same photoconductivity:

so hνð Þ ¼ const

I hνð Þ : (13)

This assumes that, with changing photon energy, photo-ionization occurs from
different deep defect levels into the same band and results in carriers with the
same mobility. It also presumes that these levels do not communicate with other
levels or bands.

An example of results obtained from this method is given in Fig. 3, which shows
the photo-excitation from three deep impurity levels into the conduction band of
GaAs:O. The deepest level occurs at an energy of 1.03 eV below the conduction-
band edge, with a cross section almost 105 times larger than the shallowest level at

Table 1 Oscillator strength ( fba) for transitions of a hydrogen atom (After Bethe and Salpeter
1957)

1s ! 2p 0.4162 1s ! 5p 0.0139

1s ! 3p 0.0791 1s ! 6p 0.0078

1s ! 4p 0.0290 1s ! contin. 0.436

1The principle of detailed balance states that in equilibrium all transitions into a level must equal all
transitions out of this level between each group of two states.
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0.46 eV below Ec. The middle level, with a cross section close to the deepest level,
lies at 0.79 eV below Ec.

Careful checking as to whether all of the assumptions used are fulfilled is
imperative. The photo-Hall effect2 can be used to detect competing transitions
involving the opposite carrier. For transient spectroscopy of the photo-Hall effect
in semi-insulating GaAs, see Yasutake et al. (1997).

1.2 Intrinsic Photoconductivity

The density of carriers in the respective bands and in levels in the bandgap is
changed from thermal equilibrium with optical excitation. These densities can be
obtained from reaction-kinetic arguments. The carrier density in the respective bands
is discussed for a number of simple reaction-kinetic models in order to identify the
specific influence of certain defect levels.

In the following, we consider the effect of light impinging on a semiconductor on
the conductivity. A semiconductor kept in the dark exhibits a dark conductivity:

σ0 ¼ ej j n0 μn þ p0 μp
� �

, (14)

with carrier densities n0 and p0 originating from thermal generation of carriers. When
light is irradiated on the semiconductor, electrons and holes are generated, and the
conductivity is increased by
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Fig. 3 Relative photo-
ionization cross section for
excitation of three deep
impurity centers into the
conduction band of GaAs
(After Grimmeiss and Ledebo
1975)

2That is, the Hall effect (▶ Sect. 1.2.2 of chapter “Carriers in Magnetic Fields and Temperature
Gradients”) measured for photogenerated majority carriers.
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Δσ ¼ ej j μnΔnþ μpΔp
� �

: (15)

For intrinsic absorption, equal numbers of electrons and holes are generated: the
intrinsic photoconductivity is ambipolar. In contrast, in the extrinsic photoconduc-
tivity with photon energies below the bandgap energy, only one kind of carriers may
be generated by absorption at defects (see Sect. 2). From Eq. 15, we obtain the
relative increase of conductivity:

Δσ
σ0

¼ μnΔnþ μpΔp
μn n0 þ μp p0

¼ bΔnþ Δp
bn0 þ p0

, (16)

where b = μn/μp is the ratio of the electron and hole mobilities.
In the following, we consider high generation rates. The incremental carrier

densities Δn and Δp are then large compared to the thermally generated densities
n0 and p0:

Δn ¼ n� n0 ffi n and Δp ¼ p� p0 ffi p: (17)

In the intrinsic photoconductivity, electrons and holes are always generated in
pairs, and n = p; Eq. 16 hence yields for strong illumination:

Δσ=σ0 ffi Δn=n0: (18)

When the intensity of the light is changed, the ensuing change in carrier densities
is given by the difference between generation (g) and recombination (r) rates; with
an optical generation rate go we obtain

dn

dt
¼ g� r ¼ go � cc,v np ¼ dp

dt
; (19)

cc,v is the coefficient3 for the transition from the conduction to the valence band
(intrinsic recombination) introduced in ▶ Sect. 1.1 of chapter “Carrier Generation”
In the intrinsic photoconductor go = gv,c, and a similar equation as Eq. 19 applies for
the kinetics of holes.

We consider boundary conditions with n = go = 0 for t < t0 and g = go for
t � t0, i.e., the illumination is turned on at t = t0. The solution of Eq. 19 is then
given by

n tð Þ ¼
ffiffiffiffiffiffiffi
go
cc,v

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffi
go cc,v

p
t� t0ð Þ� �

: (20)

3The coefficients for downward transitions (capture c) or upward transitions (excitation e) used here
are given in units of cm3 s�1, yielding units of cm�3 s�1 for generation or recombination rates. In
literature symbols for capture or excitation are also defined differently, meaning transition proba-
bilities (e.g., c � n) measured in s�1.
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This function shows a nearly linear rise of n for t < t0 < t + τ0, with τ0 as the
photoconductive rise time

τ0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
go cc,v

p
: (21)

According to the tanh function, the electron density approaches its steady-state
value

nmax ¼
ffiffiffiffiffiffiffi
go
cc,v

r
(22)

exponentially. When, after reaching a steady state, the optical excitation is switched
off (g= 0 for t> t1), the decay of the photoconductivity is described by (see Eq. 19)

dn

dt
¼ �cc,v n

2: (23)

This decay is hyperbolic and given by

n tð Þ ¼ 1

cc,v t� t1ð Þ ¼ nmax

τ1
t� t1

(24)

with a decay time constant

τ1 ¼ nmax cc,v
� ��1

: (25)

Introducing nmax from Eq. 22, we see that both rise and decay time constants are
equal:

τ1 ¼ τ0: (26)

Rise and decay of the carrier density n is illustrated in Fig. 4. Both processes proceed
faster at higher light intensity and in semiconductors with larger recombination cross-
sections cc,v = sc,vvrms, see ▶Sect. 1.2.2 of chapter “Carrier Generation”; the steady-

Time
t1
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n

t0

light off

nmax( )g3 g3

g2
g1

Fig. 4 Transient change of
the carrier density n in
intrinsic photoconductivity
with the optical generation
rate g as the family parameter
and g3 > g2 > g1
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state value nmax and the time constant τ0 both depend on the intensity of the incident
light (i.e., the generation rate g0) and on cc,v. Since the response of photoconductivity on
switching of the illumination usually deviates from an exponential behavior, the time
constant (or rise time τrise for light turned on) is specified in practice as the time required
to increase the photocurrent from 10% to 90% of its final value.

2 Extrinsic Photoconductivity

Extrinsic photoconductivity involves levels in the bandgap. It is either n- or p-type.
A defect center from which carrier generation occurs is called an activator. We can
distinguish three types of extrinsic photoconductivities involving such activators:

• Excitation from an activator with direct recombination into the same type of level
• Excitation from an activator with carrier recombination through another type of

level
• Excitation into a band from which major trapping occurs before recombination

Effect of Activators. When generation and direct recombination involve
the same type of activator, and this activator is separated far enough from the
valence band so that thermal ionization of the optically generated hole is of
minor importance, the carrier density follows the same relation as that for intrinsic
carrier generation expressed by Eq. 19, with the coefficient cc,v replaced by the
coefficient cc,act involving the activator state, and the density of holes in activators
denoted pact:

dn

dt
¼ go � cc,act npact ¼

dpact
dt

: (27)

The quasi-neutrality condition now reads pact = n. In steady state, the carrier
density hence attains a value:

n ¼
ffiffiffiffiffiffiffiffiffiffi
go
cc,act

r
: (28)

The photoconductivity is then n-type with

σn ¼ enμn: (29)

At high intensities, depletion of these activators causes a saturation of the
photoconductivity. Such a saturation has been observed, e.g., by Bube and Ho
(1966) and Celler et al. (1975).

In a photoconductor which is sensitized with an activator, a small intensity
of light causes a large change of carrier density. An example is an n-type
photoconductor with doubly negatively charged activators, which become singly
negatively charged when photo-ionized. Such a repulsive center has a very
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small recombination cross-section; in CdS a typical value of snrec ffi 10�22 cm2 is
observed, yielding cc,act = snrec vrms ffi 10�15 cm3 s�1. When doped with
an activating recombination center density of Nact = 1017 cm�3, we obtain
with a generation rate of 1018 cm�3 an increase in carrier density of
Δn = go/(cc,act � Nact) ffi 1016 cm�3. This increment is much larger than the
carrier concentration in the dark n0, which is typically below 1010 cm�3 for wide
gap semiconductors. By contrast, insensitive photoconductors with a recombina-
tion cross-section of snrec ffi 10�13 cm2 yield with the same density of centers and
generation rate an increment of Δn ffi 107 cm�3.

Sensitive photoconductors have a typical carrier lifetime τn = 1/(cc,act � Nact) of
10�5 to 10�2 s, whereas the carrier lifetime in insensitive photoconductors is on the
order of 10�12 to 10�8 s.

An example for a sensitizing center is the Zn impurity in Si. Zn introduces at
room temperature a single-acceptor level at Ev + 0.31 eV and a double-acceptor
level at Ev + 0.57 eV. When EF > 0.57 eV, the impurity is in the Zn2� state and
acts as a sensitizing center for n-type photoconductivity. At T = 80 K, the
photoconductivity shows an optical quenching spectrum with a low-energy
threshold at 0.58 eV, i.e., at the energy required to excite an electron from the
valence band to the Zn� level to form a Zn2� center. At low temperature, Zn2�

changes to Zn� as the result of hole capture; at these temperatures, an electron
capture cross-section of 10�20 cm2 is determined from the onset of optical
quenching.

In the following sections, we analyze the two other types of extrinsic photocon-
ductivity: traps and recombination centers.

2.1 Effect of Traps on Photoconductivity

Defects acting as traps provide levels in the bandgap, where carriers can be
captured from the band and thermally be reemitted; see ▶ Sect. 2.1.1 of chapter
“Carrier Recombination and Noise.” When photogenerated carriers are trapped
intermittently before they recombine, competing transitions exist and the carrier
balance is shifted. We consider the effect of an electron trap; the respective balance
equations are

dn

dt
¼ go �

dntrap
dt

� cc,v np, (30)

dntrap
dt

¼ cc,trap n Ntrap � ntrap
� �� etrap,cNc ntrap: (31)

The quasi-neutrality condition now requires

p ¼ nþ ntrap: (32)
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The transitions of electrons into traps compete with transitions into the valence band.
Steady state. In steady state, all time derivatives vanish. As a consequence, the

two terms in Eq. 31 related to trapping drop out. The conditions then become
identical to the balance equation 27, i.e., go = cc,v n p. The influence of traps enters
through the neutrality condition, yielding

go ¼ cc,v n nþ ntrap
� �

: (33)

Deep traps tend to be completely filled, i.e.,

ntrap ffi Ntrap: (34)

Introducing this into Eq. 33, we obtain for the electron density:

n ¼ 1

2
�Ntrap þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

trap þ 4
go
cc,v

r� �
: (35)

For a small-optical generation rate with go � N2
trapcc,trap=4, Eq. 35 reduced to

n ffi go
cc, vNtrap

: (36)

This approximation means that each electron finds a constant density of available
recombination sites with p ffi Ntrap. For high optical generation rates, Eq. 35 converts
back to Eq. 28 with cc,act replaced by cc,v; p increases and becomesmuch larger thanNtrap,
and therefore nffi p, yieldingn / ffiffiffiffiffi

go
p

. Figure 5 shows the dependence of n on go, with a
break between the linear and square-root branches at nffi Ntrap, permitting a determination
of the trap density in a photoconductor with one dominating deep trap level.

Shallow traps have an incomplete degree of filling. Thus, Eq. 34 must be replaced
by the equation obtained from Eq. 31 in steady state:

log n

log go

Ntrap3
Ntrap2
Ntrap1

a
log n cc,trap3

b

Ntrap

log go

cc,trap2

cc,trap1

Fig. 5 Electron density n as a function of the optical generation rate with one deep trap level and
(a) the trap density as a family parameter, or (b) the recombination coefficient as a family parameter
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ntrap ¼ cc, trap nNtrap

cc, trap nþ etrap, cNc

, (37)

which yields Eq. 34 for high optical generation rates (cc,trap n 	 etrap,c Nc) and
decreases proportionally to n for lower excitation rates:

ntrap ffi n
cc,trapNtrap

etrap,cNc

: (38)

The transitions rates cc,trap and etrap,c can be replaced from detailed balance
arguments, yielding

ntrap ffi n
Ntrap

Nc

exp
Ec � Etrap

kT

� �
, (39)

i.e., an exponential increase of electrons in traps with trap depth until saturation
occurs. Then, Eq. 39 becomes identical to Eq. 34.

In the range of incomplete trap filling, we obtain by introducing Eq. 39 into
Eq. 33 the relation

go ¼ cc,v n
2 1þ ηtrap
� �

, (40)

with ηtrap = ntrap/n as an effective trap-availability factor:

ηtrap ffi
Ntrap

Nc

exp
Ec � Etrap

kT

� �
; (41)

Thus, for higher generation rates, we obtain

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

go
cc,v 1þ ηtrap

� �s
: (42)

Since ηtrap > 0, we can see that the introduction of traps usually leads to a
reduced photoconductivity4: part of the otherwise photoelectrically active electron
population is stored in localized states, while the holes remain available for increased
recombination.

Kinetic Processes When the intensity of the illumination changes, the derivatives
in Eqs. 30 and 31 are finite. We consider rise and decay of the photoconductivity
when the light is turned on and off, and the competing effect of electron transitions
into either the traps or into the valence band. As long as traps are mostly empty, the
first transition predominates; with ntrap � Ntrap we obtain

4Except when carrier excitation occurs from filled trap levels.
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dntrap
dt

ffi cc,trapnNtrap, (43)

which leads to

dn

dt
ffi go � cc,trap nNtrap (44)

as long as cc,trap Ntrap 	 cc,v p(n + ntrap). After separation of variables, Eq. 44 can
be solved, yielding

n tð Þ ¼ nmax 1� exp � t� t1
τtrap

� �	 

with τtrap ¼ 1

cc,trapNtrap

, (45)

and with τtrap as the time constant for trap filling. Between carrier generation and
trapping into nearly empty traps, there occurs a quasi-steady state with an electron
density in the conduction band given by

n trapð Þ
max ¼ go

cc,trapNtrap

, (46)

see Fig. 6. When the traps become filled, the trapping transition gets clogged.
Consequently, n rises again until steady state between generation and recombination
is reached.WithNtrap 	 n, i.e., for a low-generation rate, we obtain for the second rise

dn

dt
ffi go � cc,v nNtrap: (47)

The kinetics for trap filling is similar to the first rise of the electron density, except for
a somewhat longer time constant, since usually cc,trap 	 cc,v, and correspondingly

τ1 ¼ cc,vNtrap

� ��1
: (48)

This behavior is presented in Fig. 6, showing first a rise to a plateau while trap filling
occurs, and then another rise to reach a steady-state value at

Time
t1

light on

n

t0

light off

nmax

Δt

nmax
(trap)

rise decay

Fig. 6 Dynamics of the
carrier density n in extrinsic
photoconductivity. At
medium intensity of the
optical excitation, a plateau
appears in the rise until deep
traps are filled. In the decay,
two slopes are indicated
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nmax ¼ go
cc,vNtrap

: (49)

The ratio nmax=n
trapð Þ
max can be used to determine the ratio of capture cross-sections

of electron traps and band-to-band transitions:

n
trapð Þ
max

nmax

¼ sc,trap
sc,v

: (50)

The length of the plateau Δt can be used to estimate the density of traps
Ntrap ffi goΔt, if recombination during trap filling can be neglected.

The decay after switching off the light proceeds inversely. First with a time
constant given by the recombination transition obtained from

dn

dt
ffi �cc,v nNtrap, (51)

which yields an exponential decay

n tð Þ ¼ n trapð Þ
max exp � t� t1

τ1

� �
, (52)

where τ1 is given by Eq. 48. Later, electrons are supplied by the emission from traps
(etrap,c Nc ntrap), which determines the slow tail of the decay of n.

Evidence for the effect of traps on the measured carrier lifetime is also observed in
spatially resolved measurements. In multicrystalline silicon, the lateral structure of
the reduced excess-carrier lifetime is found to be clearly correlated to the local
distribution of defects in the crystal structure (Schubert et al. 2006); simultaneous
imaging of the recombination lifetime, the trap density, and the related etch-pit
density of same region proves the direct relation of trap density and lifetime. In n-
type Si the density of traps is related to interstitial oxygen and thermal donors
(Hu et al. 2012). The parameters of the traps (trap density, energy level, capture
cross-section, trapping time) could well be determined from a fit of kinetic data to the
model reported by Hornbeck and Haynes (1955). More recently trapping effects
were described also for complex defect models by applying numerically a system of
generalized rate equations (Schüler et al. 2010).

2.2 Effect of Recombination Centers

Recombination of photogenerated carriers proceeds mostly not radiatively with the
emission of photons but nonradiatively via recombination centers. The activators from
which the conduction electrons are optically generated can act as such centers; for the
demarcation between traps and recombination centers, see ▶Sect. 2.1.2 of chapter
“Carrier Recombination and Noise.” The effectiveness of a recombination center
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depends on its capture cross-section srec, which is affected by the charge character
before and after photoionization. Such recombination can be very strong, e.g., into
Coulomb-attractive centers, resulting in a low carrier lifetime; it may also beweak, e.g.,
for Coulomb-repulsive centers or centers with strong lattice coupling, resulting in a
long lifetime. A photoconductor with a long carrier lifetime is called a sensitive
photoconductor; see Sect. 2 (Effect of Activators) and the discussion following Eq. 58.

The rate of capture of photo-induced excess electrons Δn at a single type of
recombination centers (acting as deep donors) is given by

Δn=τn ¼ cc,recNrec n 1� N 0ð Þ
rec=Nrec

� �
, (53)

where cc,rec = srecvrms is the capture coefficient of the recombination centers
(see ▶Eq. 15 of chapter “Carrier Generation”), Nrec is their density, τn is the
electron lifetime, and N 0ð Þ

rec=Nrec 
 f is the probability of finding the center in its neutral
state.

Without illumination and in thermal equilibrium, the electron capture is balanced
by the thermal emission rate gth=Δn/τn, with the electron lifetime τn. This condition
yields

n
1� f

f
¼ ν�1Nc exp � Erec � Ecð Þ= kTð Þ½ �, (54)

where Nc is the effective density of states of the conduction band and ν is the
dimensionless spin factor depending on the kind of the defect. If the Fermi energy
coincides with the energy of the recombination center Erec, Eq. 54 equals a particular
electron density ν�1

donor n1.
When light is impinging on this photoconductor, nonequilibrium conditions are

established, and the recombination rate of electrons changes to

Δn=τn ¼ n 1� fð Þ � ν�1
donor n1 f

 �
=τn0 , (55)

where τn0 ¼ cc,recNrec

� ��1
. Such a recombination rate applies also for holes:

Δp=τp ¼ p f � νacceptor p1 1� fð Þ �
=τp0 (56)

with τp0 ¼ c
pð Þ
v, recN

pð Þ
rec

� ��1

. In a steady-state illumination, electrons and holes recom-

bine in pairs, i.e., with equal quantities, yieldingΔn/τn = Δp/τp. Denoting this byΔn/
τ and using the intrinsic carrier concentration ni for the condition of EF coinciding with
Erec (index 1) and for the dark conditions (index 0), ni ¼ ffiffiffiffiffiffiffiffiffiffi

n1 p1
p ¼ ffiffiffiffiffiffiffiffiffiffi

n0 p0
p

, we obtain

Δn=τ ¼ n0Δpþ p0Δnþ ΔpΔn
τp0 nþ ν�1

donor n1
� �þ τn0 pþ νacceptor p1

� � ; (57)
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here Δn = n � n0 and Δp = p � p0 are the carrier concentrations in conduction and
valence bands in excess of the dark concentrations, induced by the light irradiation.

At low light intensity, the photo-induced carrier concentrations are much smaller
than the concentrations in the dark, i.e., Δn = Δp � n0 and p0; Eq. 57 then yields

τ ffi n0 þ Δnþ ν�1
donor n1

n0 þ p0
τp0 þ

p0 þ Δpþ νacceptor p1
n0 þ p0

τn0 : (58)

In a p-type semiconductor with p0 	 n0 and νacceptor p1, we obtain from Eq. 58 τ

ffi τn0 ¼ cc, recNrec

� ��1
; similarly we obtain in an n-type semiconductor with n0 	 p0

and ν�1
donorn1 from Eq. 58 τ ffi τp0 ¼ c

pð Þ
v, recN

pð Þ
rec

� ��1

. In both cases, τ does not depend

on the carrier densities in the dark p0 or n0. Note that this is in contrast to radiative
recombination, where Eq. 19 yields a lifetime depending on carrier concentration. If
p0 	 n0 does not apply and p0 in the p-type semiconductor is small and near the
intrinsic carrier concentration ni, the time constant τ gets maximum.

3 Persistent and Negative Photoconductivity

3.1 Persistent Photoconductivity

Current Continuity The generation, recombination, extraction, and replenishment
of carriers require a more detailed analysis of the current within the photoconductor.
When an electric field is acting, electrons generated in one volume element are carried
into another one by the current drift, where they recombine. Consequently, the net
change of the population in this volume element is given by the difference between
birth (generation) and death (recombination) rates plus the net difference between the
incoming and outgoing traffic (current density) from electrode to electrode in the
direction of the electric field; therefore, we have for electron or holes

dn

dt
¼ gn � rn � 1

e

djn
dx

or
dp

dt
¼ gp � rp � 1

e

djp
dx

: (59)

These are the basic equations5 that permit an analysis of the reaction-kinetic behav-
ior. For steady state, we obtain the steady-state current continuity equations:

5These relate to the basic Maxwell’s equation with its condition for the conservation of electrons div
j = �dρ/dt; for equilibrium, with dρ/dt 
 0, it follows div j 
 0. In semiconductors with the
introduction of holes, we have two types of currents, jn and jp, and expect with gn = gp and rn = rp
that div (jn + jp) 
 0; the sign dilemma in comparing this equation with Eq. 60 can be resolved by
replacing the conventional e = |e| with �e for electrons and +e for holes. This is the condition for
the conservation of charges. In actuality, however, only a fraction of the electrons and holes are
mobile, others are trapped and do not contribute to the currents while participating in the total
neutrality account.
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1

e

djn
dx

¼ gn � rn and
1

e

djp
dx

¼ gp � rp: (60)

In the previous sections, we assumed that only one of the photogenerated carriers
is mobile and that the other is trapped. The charge neutrality requires current
continuity of the photogenerated carriers; therefore, for an n-type photoconductor,

dj

dx
¼ djn

dx

 0: (61)

Here, all generated carriers must recombine within the photoconductor, typically
after passing several times through the external circuit. In actuality, some of the
generated holes are mobile, e.g., between thermal ionization from activators and
trapping in recombination centers, although with substantially different lifetimes; for
an n-type photoconductor with τp � τn. With any bias, some of these holes can be
pulled into the electrode and recombine outside of the photoconductor in the external
circuit with electrons supplied from the other electrode, thereby maintaining neu-
trality. This renders djn/dx 6¼ 0. In order to make the total current divergency-free, it
requires a finite djp/dx of the same magnitude and opposite sign, yielding

djn
dx

þ djp
dx


 0: (62)

This situation is negligible in homogeneous semiconductors, but plays a major
role in structures containing space-charge regions.

Persistent Photoconductivity An interesting consequence of current continuity in
photoconductors with activators of extremely small capture cross-section is a per-
sistent photoconductivity (Lang et al. 1979). At low temperature, photoconductivity
has been observed which persists for days or even months after the optical excitation
is terminated. The initially generated carriers are extracted from the photoconductor
and are repeatedly replenished. The current continues in order to maintain neutrality,
since recombination is extremely slow. A prominent example is a deep donor in
AlxGa1�xAs with a thermal depth of 0.1 eVand an optical depth of 1.3 eV, thus with
a giant lattice relaxation of 1.2 eV, which shows a recombination cross-section of
sn < 10�30 cm2 at 77 K (Lang and Logan 1977; Northrop and Mooney 1991).

Such extremely small recombination cross-sections are difficult to explain
with Coulomb-repulsive centers. With large impurity-lattice coupling, however,
a very large relaxation, e.g., for some DX centers (▶ Sect. 2.7 of chapter “Deep-
Level Centers”), is possible when the charge state of the impurity is changed;
see Fig. 7. Such relaxation causes a large effective barrier for carrier capture,
which cannot be overcome at low temperatures by thermal excitation. The
tunneling probability through this barrier is sufficiently small to explain the
exceedingly small recombination cross-section. For a review, see Bhattacharya
and Dhar (1988).
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The photo-induced persistent conductivity depends on the dose of irradiated
photons. Measurements of the Hall effect in n-type GaAs:Cr show a linear increase
of the electron concentration with the cumulative flux of above-bandgap
photons irradiated on a sample, which was kept in the dark after illumination
(Queisser and Theodorou 1979; Theodorou et al. 1982). After optical electron-hole
pair generation, the deep Cr traps immobilize the holes and thereby preclude
recombination. The number of remaining free electrons is hence proportional to
the number of electron-hole pairs up to a maximum saturation level, provided the
holes remained trapped.

3.2 Negative Photoconductivity

Negative photoconductivity is defined as a decrease in conductivity with additional
light. It can be observed when two light beams of different wavelengths are applied
and the second beam causes a reduction in carrier lifetime. The reduction of
photoconductivity is called quenching.

The reduction in majority-carrier lifetime is induced by a redistribution of minor-
ity carriers over recombination centers of different capture cross-sections. This
redistribution can also be induced by thermal or field ionization. Consequently, we
can distinguish among optical, thermal, and field quenching. All quenching transi-
tions can be regarded as a desensitization, i.e., a shift of minority carriers from slow
to fast recombination centers. Therefore, quenching can only be observed in sensi-
tized photoconductors.

3.2.1 Optical Quenching
The quenching transition is, for an n-type photoconductor, induced by the optical
excitation of holes from the slow recombination centers into the valence band.

Etotal

Q

tunneling

opt.

ionized
impurity

neutral
impurity

Fig. 7 Configuration-
coordinate diagram for an
impurity with a large lattice
coupling, accounting for an
extremely small
recombination cross-section
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Although in a sensitized photoconductor these holes tend to fall back into the
Coulomb-attractive slow recombination centers, their population can be significantly
reduced when the quenching light is sufficiently intense. The average dwell time τ2
introduced for traps in Sect. 3.1 is hence substantially reduced. The fraction of holes
that is captured by fast recombination centers then causes an increase in the
recombination of electrons through these centers and thereby results in a decrease
in photoconductivity.

The optically induced desensitization is illustrated in Fig. 8. An optical excitation
with consequent sensitizing (S) is shown on the left side of Fig. 8a. The recombi-
nation occurs predominantly through slow centers (denoted slow) as illustrated in the
middle. On the right side of this figure, the optical quenching transition (Q) with a
long wavelength λ2 is shown: it removes holes from slow centers and thereby
reactivates some recombination traffic through fast centers (fast) illustrated at the
right. The spectral distribution of the optical quenching is given in Fig. 8b. The first
beam of light at a constant wavelength λ1 produces a photocurrent j1. The second
beam with variable wavelength causes an increase of the photocurrent near λ1,
yielding the photocurrent j2, and a decrease with a pronounced minimum below
the photocurrent j1 at λ2, corresponding to the transition into the slow recombination
center.

An example for photoconductivity quenching of an n-type GaN/SiC layer
(n = 2 � 1018 cm�3) is given in Fig. 9. A beam of radiation (λ1) with a near-
bandgap photon energy of 3.4 eV generates strong photoconductivity; a simulta-
neously irradiated second beam with smaller photon energy (λ2), which provides
solely extrinsic excitation, produces a pronounced reduction of the photoconductiv-
ity. The quenching is assigned to the presence of hole traps with a broad distribution
of the density of states peaking at Ev + 1.2 eV, tentatively attributed to gallium
vacancies (Ursaki et al. 2003).

In some photoconductors, e.g., ZnS and CdS, the sensitizing center has more than
one level; optical quenching can be observed from both of these levels at low

a b

Fig. 8 (a) Sensitizing (S) and quenching (Q) transitions in a sensitized photoconductor. (b)
Corresponding spectral distribution of the photoconductor excited with a second light beam of
variable wavelength λ (red line) while the first light beam is kept constant; the horizontal blue line
indicates the photocurrent j1 excited with the first beam only
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temperatures, while at higher temperatures only the higher-energy transition is
observed since holes from the lower level are already thermally depleted. An
example is the Cu center in CdS, which forms a deep donor with an excited hole
state; see Grimmeiss et al. (1981).

3.2.2 Thermal Quenching
The quenching transition can be thermally initiated. Sensitizing (S) and desensitizing
(quenching, Q) steps are both thermal ionization steps and depend exponentially on
the temperature. With little ionization from slow centers, holes are stored there until
they are eliminated by recombination with electrons. When they are ionized faster
than they can recombine with electrons, quenching is observed. A shift of the hole
population occurs toward fast centers. This emphasizes the competitive nature of the
slow and fast recombination processes and indicates the light-intensity dependency
of thermal quenching.

Thermal quenching is shown in Fig. 10 as a steep decrease in photocurrent with
increasing temperature. Thermal quenching needs higher temperatures to become
dominant for higher-optical excitation.

3.2.3 Field Quenching
Since sensitizing centers are Coulomb attractive, they can be ionized by relatively
low fields in the 10 kV/cm range due to the Frenkel-Poole effect as schematically
illustrated in Fig. 11a; see also ▶Sect. 2.1 of chapter “Carrier Generation.”
As a result, a reduction in photosensitivity can be observed when the recombination
traffic is shifted from slow to fast recombination centers by the action of the
electric field. If this field quenching is strong enough at sufficient light intensity
and fields, a decrease in the photocurrent with increased bias is found (Dussel and
Böer 1970).

The effect of the electric field on the electron density in the conduction band of a
CdSe layer is shown in Fig. 11b (Yodogawa et al. 1973). At low electric field, the

Fig. 9 Quenching of the
photoconductivity of n-type
GaN subjected to the
excitation of a UV beam at λ1
and temporarily an additional
green beam at λ2 (After Ursaki
et al. 2003)
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electron density decreases at decreased temperature due to thermal quenching. At
higher electric fields the field-induced quenching leads to an additional decrease of
the electron density; this effect is more pronounced at lower temperature.

4 Summary

Photoconductivity is initiated by the generation of free carriers either directly by
photon-absorption from band-to-band or bound-defect states or indirectly with the
assistance of phonons either for matching momenta or to supply additional energy.

Fig. 10 Thermal quenching
of the photocurrent measured
at 10 V bias, shown as a steep
reduction with increasing
temperature as observed for
CdSe; the light intensity L in
relative units is the family
parameter (After Bube 1978)
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Fig. 11 (a) Schematic of the Frenkel-Poole effect causing field-quenching by a depletion of slow
centers. (b) Dependence of the electron density n on the applied electric field F in CdSe with the
temperature as the family parameter; the sample is irradiated by an intense beam of white light
(After Yodogawa et al. 1973)
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The resultant photoconductivity can be used to detect electromagnetic radiation
(light, IR) and to measure the successful carrier generation to obtain information
about the excitation process: the joint density-of-states distribution, the symmetry
consideration distinguishing allowed and forbidden transitions, photon capture
cross-section, and lifetime of the excited state. With excitation into higher states of
the band, the relaxation of carriers and recombination from different energy distri-
butions can be investigated.

By doping with slow recombination centers, photoconductors can be dramatically
sensitized, although, usually at the expense of time response. A long dwell time of
carriers in traps may induce persistent photoconductivity, being preserved for days or
even months after termination of the optical excitation. The required exceedingly
small recombination cross-section occurs for deep impurities with large lattice
relaxation, providing large barriers for thermal excitation.

Photoconductivity can be quenched (reduced) by a shift of minority carriers from
predominantly slow to fast recombination centers. Such a shift can be induced
optically by a simultaneous irradiation with long wavelength light. In addition,
quenching may be initiated thermally or by an electric field.
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Abstract
When an external parameter such as an electric field or an optical generation rate
is changed as a function of time, carriers in the semiconductor respond on this
disturbance by a redistribution controlled by relaxation times. Relaxation pro-
ceeds by elastic or inelastic scattering with carriers, phonons, defects, or spin
momenta, and respective time constants range from femtoseconds to years.

Relaxation of injected carriers is given by the carrier lifetime and related to
their diffusion or drift length. Nonthermal excess energy of hot carriers is
transferred to the lattice mostly by optical phonons. At high carrier density also
plasmons, and at high carrier-generation rates and low lattice temperature, con-
densation into electron-hole droplets with evaporation into excitons are involved.
Optical phonons, excited by fast carriers or by an IR light pulse, relax their
momenta by elastic scattering with phonons in the same branch, or by a decay
into acoustical phonons.
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Relaxation of excitons created by nonresonant optical excitation proceeds by
inelastic scattering, eventually yielding radiative recombination for momenta
near the zone center. The rise time in the luminescence after pulse excitation is
controlled by the balance to uncorrelated electron-hole pairs. Resonantly excited
excitons show a fast rise in the coherent regime and an exponential decay with an
observed time constant depending on excitation density.

Carrier spin and orbital momenta are coherently aligned by excitation with
polarized light. The subsequent relaxation can be detected by the degree of
polarization of the radiative recombination. Holes in semiconductors with degen-
erate valence bands at the zone center have short spin-relaxation times in the
sub-ps range; lifting this degeneracy slows relaxation down. Electrons have
usually longer spin-relaxation times, limited by various mechanisms. In an
exciton with weak electron-hole interaction the spin-relaxation time of the
sequential spin flip of electron and hole is given by the slower particle, while at
stronger interaction the faster simultaneous spin flip occurs.

Keywords
Carrier cooling � Carrier heating � Dephasing � Dispersive transport � Electron-
hole plasma � Energy relaxation � Exciton relaxation � Hot carriers � Lattice
temperature � Lifetime �Momentum relaxation � Phonon relaxation � Polarization �
Recombination � Relaxation time � Scattering processes � Spin relaxation �
Trapping

1 Carrier Transit and Relaxation

Relaxation Times in Dynamic Processes In previous chapters usually stationary
conditions were assumed in the consideration of structural, optical, and electronic
properties. There are, however, also various kinetic effects in semiconductors; these
are effects in which any of the semiconductor variables change with time. These could
be related to defect densities, carrier densities and mobilities, optical absorption,
luminescence, or to the polarization. In order to induce such changes, external param-
eters are changed as a function of time, such as an external bias, magnetic field, optical
generation rate, temperature, pressure, or other electromagnetic or particle irradiations.

Five major systems with vastly different relaxation times can be distinguished:

• Creation of atomic lattice defects
• Carrier-scattering relaxation
• Phonon relaxation
• Carrier redistribution in defect levels
• Electron spin relaxation

The corresponding relaxation times span time constants from geologic times
down to the femtosecond range. In the relaxation of carrier distribution after
scattering we have to distinguish relaxation times referring to momentum and to
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energy relaxation. In the case of optical excitation the incident electromagnetic field
creates a polarization, which is initially in phase with the field; this phase coherence
is destroyed by scattering processes and by recombination. There is hence a phase-
relaxation time in addition to the relaxation time of the optical excitation.

The external changes of parameters are induced as part of the operation of a
semiconducting device, e.g., the bias or changing light intensity, or as a means of
obtaining specific information about certain semiconducting parameters. In this
chapter, a few examples of both will be presented.

1.1 Transit Effects in Carrier Transport

We can divide kinetic studies of carriers into carrier relaxation within or between
energy bands, and transit through a device. In addition, global effects, which deal
with all carriers, and the detailed analysis of the carrier distribution have to be
distinguished. First, we will analyze the transit of carriers from electrode to elec-
trode, which causes a specific transient behavior of injected current pulses and
reveals transport and trapping properties. In Sect. 1.2 we will discuss changes in
carrier distribution within the band, which follow specific excitation pulses. The
ensuing relaxation usually is analyzed by optical means, and reveals insight into the
various relaxation mechanisms.

When electrons are injected at a certain position of the semiconductor, and a bias
voltage is applied, the electrons drift toward the anode. Their drift velocity can be
determined by observing the increase in current as the drifting carrier cloud arrives at
the anode – see Sect. 1.1.2. This drift is slowed down by an intermittent trapping and
release of these carriers, and can be used to obtain information about a number of
typical relaxation mechanisms in the semiconductor.

When a bias pulse is applied and there is no trapping in a homogeneous semi-
conductor, the corresponding current pulse rises without delay, following the change
in the electric field. However, if there is a space-charge region (a barrier at an
electrode or a pn junction), the changes in field distribution require a change in
carrier distribution in the space-charge region (without trapping); this change follows
with a delay given by the dielectric relaxation time1 τσ.

1.1.1 Characteristic Transport Times and Lengths
When electrons are injected and drift in an electric field Fwithout being trapped until
they reach the anode at a distance Δx, we observe a transit time

1The dielectric relaxation time takes polarization effects in the current after changing the bias into
account. In absence of traps this quantity is given by τσ = ee0/σ. Simple polarization effects have a
very short time constant; with σ in the 10�4 to 10+2 Ω�1 cm�1 range for typical semiconductors, τσ
is on the order of 10�8 to 10�14 s.
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τtrans ¼ Δx
μF

, (1)

which is usually much longer than the dielectric relaxation time τσ. The injected
electrons have a lifetime in the conduction band

τn ¼ 1

cc, rec Nrec � nrecð Þ , (2)

where Nrec� nrec is the density of unoccupied recombination centers, and cc,rec is the
recombination coefficient for the transition from the conduction band into the
recombination centers. When this lifetime is smaller than the transit time, these
carriers do not reach the electrode, but travel for a distance of the drift length

Ldrift ¼ μn Fτn: (3)

In absence of an electric field F, carriers diffuse in a random walk during their
lifetime from the position of injection to a distance given by the diffusion length

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μn kT

e
τn

r
: (4)

With an electric field applied, the distance traveled can be obtained by solving the
transport and continuity equations for a homogeneous semiconductor with constant
electric field, and is given by Smith (1978)

Ln u, dð Þ ¼ Ln
2Lnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4L2n þ L2diff

q
� Ldiff

, (5)

where Ln(u) and Ln(d) are the upstream and downstream diffusion lengths, for which
the sign in the denominator is positive or negative, respectively. This modified
diffusion length is determined by an electric field opposed to, or in the direction
of, the diffusion of the carriers. Consequently, the diffusion profile is compressed or
stretched as shown in Fig. 1. For high electric fields (Ldrift � Ln), it yields for the
upstream diffusion length

Ln uð Þ ¼ L2n
Ldrift

, (6)

and for the downstream diffusion length, it yields the drift length (Eq. 3)

Ln dð Þ ffi Ldrift: (7)

These distances are often compared to the characteristic length of a space-charge
region, the Debye length LD (▶Eq. 94 of chapter “Interaction of Light with Solids”).
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When caused by a cloud of free carriers, LD can be written in a fashion similar to the
diffusion length, but with the dielectric relaxation time τσ replacing the carrier
lifetime:

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μkT

e
τσ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e e0 kT
e2 n

r
¼ 1205Å�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
10

T

300K

1015cm�3

n

s
: (8)

Often, however, the space charge is due to trapped carriers ntrap. The carrier
density n in Eq. 8 must then be replaced by ntrap. The length that injected carriers can
travel in a given time is given by the drift velocity vd = μnF, with

Ln ¼ vd
τn

; (9)

the same drift velocity is used to describe the current:

j ¼ envd: (10)

This is justified when we consider that only while in the conduction band do the
electrons contribute to the current. The density of these electrons in steady state is n.
In the bulk of a semiconductor, quasineutrality forces the establishment of a constant
electron density, which is given by the detailed balance between trapping and
reemission of trapped carriers into the band.

When intermittent trapping and subsequent release from traps occur, the time
required for a certain group of injected carriers to traverse a given distance becomes
longer, since it includes the time of resting in the traps. This traversing time can be
obtained by kinetic experiments – see below. Here, we account for this delayed
arrival by defining a modified drift velocity according to

~vd ¼ μdF, (11)

where μd is the drift mobility, which includes trapping.

n

n(u)

n(d)

0 xLn(u)Ln Ln Ln(d)

Fig. 1 Diffusion profile (schematic) of carriers injected at x = 0 in absence of an electric field
(F = 0, dashed curve), and for a sufficiently large electric field F with upstream diffusion at the left
and downstream diffusion at the right (solid line)
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Current Kinetics with Traps Trapping and carrier release from traps modify the
current kinetics of injected carriers. When one type of trap is present, trapping and
release time are represented by the time constant τ1 (▶Eq. 26 of chapter “Photo-
conductivity”); an injected carrier pulse decays exponentially with τ1.

When a trap distribution is present, a distribution of time constants determines the
decay, which becomes dispersive. There are three types of current decays, which are
shown in Fig. 2: one is box-like, with Gaussian spread shown as a dashed curve (see
also Fig. 4 for carrier transport without trapping); another one is a simple exponential
for a single trap level, with a well-defined decay time τ1; still another one is
dispersive, and usually has two straight-line segments in a double logarithmic plot
with slopes <1 and >1 below and above the break, respectively – see Fig. 6
(Jonscher 1983; Tiedje 1984).

1.1.2 Shockley-Haynes-Type Experiment
The modified drift velocity, which includes trapping, can be measured when the
movement of an injected carrier cloud can be followed. Haynes and Shockley (1951)
used the injection of a carrier cloud from a point contact into a long semiconducting
sample (Fig. 3), and detected, with an electric field F applied, the delayed arrival of
this carrier cloud after a transit time ttrans = t2 � t1 ffi t4 � t3. The drift mobility is
then derived from

μd ¼
d

ttransF
: (12)

The solution of transport and continuity equations for Shockley-Haynes-type
experiments can be written for the injected electron pulse as

n tð Þ ¼ n0 exp �t=τnð Þffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp � Δx2

4Dt

� �
, (13)

with Δx = μd F t, and the halfwidth of the Gaussian pulse can be written as

I

tτT

a
I

t

b
logI

log tτT

c

Fig. 2 Shape of a current transient caused by a pulse of carriers injected near one electrode.
(a) Ideal train of carriers with a Gaussian spread (dashed curve) without trapping, (b) exponential
response with carrier trapping in a time shorter than the transit time, (c) dispersive bilinear
logarithmic response with a high degree of carrier dispersion
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FWHM ¼ 2
ffiffiffiffiffiffiffi
ln2

p ffiffiffiffiffiffiffiffiffi
4Dt

p
¼ 3:33

ffiffiffiffiffiffi
Dt

p
, (14)

which permits us to determine the diffusion constant D = μd k T/e, the drift mobility,
and the minority carrier lifetime τn. The spreading of the pulse due to out-diffusion of
carriers from the original confines within the narrow injected cloud is shown in Fig. 4.

1.1.3 Dispersive Carrier Transport in Amorphous Semiconductors
Awide distribution of a large density of traps in amorphous semiconductors causes a
highly dispersive type of carrier transport; see ▶Sect. 4 of chapter “Carrier Transport
Induced and Controlled by Defects”. This can be measured by the current kinetics
induced by a light pulse absorbed in a thin near-surface layer of a photoconductive
platelet. The carriers are then driven by an external electric field across the sample to
the opposite electrode, in an arrangement similar to that shown in Fig. 3. In the example
of amorphous As2Se3 given in Fig. 5 the measured current is represented by two slopes
on the order of �0.5 and �1.5 in the log j versus log t diagram. These slopes remain
unchanged,with changes in temperature (not shown), electricfield, or sample thickness.

The dispersive carrier transport in an amorphous semiconductor originates from
the exponentially tailing distribution of traps. Here, carriers that were generated near
one electrode are rapidly trapped while diffusing toward the other electrode. With
repeated retrapping, deeper traps will become progressively filled at the expense of
the shallow traps.
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Fig. 3 (a) Shockley-Haynes experiment to measure at point C the drift time of minority carriers
injected at position E in a long semiconductor sample. (b) Schematic representation of the voltage
V(t) when the switch S is closed at time t1 and opened at time t2
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Fig. 4 Diffusion profile for
minority carriers injected at
x = 0, after elapsed time
intervals τ1 and τ2
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It is observed that a drift-current pulse decays after injection according to Scher
and Montroll (1975):

j tð Þ ¼ tα�1 for t < ttrans
t�α�1 for t > ttrans

�
, (15)

where α is the dispersion parameter and ttrans is the transit time. This behavior can be
explained by a progressive redistribution of carriers in an exponential trap distribu-
tion (Tiedje 1984). The dispersion parameter is given by

α ¼ T

Tc

, with N Eð Þ ¼ N0 exp � E

kTc

� �
, (16)

and provides a means to determine the slope of the trap distribution in the range
where it is exponential.

In some amorphous semiconductors such asα-Se a transition between dispersive and
nondispersive carrier transport becomes visible in a certain temperature range, where
the trap distribution is not exponential and only few traps are active (Pfister 1976).

1.2 Relaxation of Carriers

Free carriers in thermal equilibrium follow the Fermi-Dirac distribution within their
respective bands. They are coupled with phonons, which, as bosons, follow Bose-

10-1 10110-2 100

As2Se3
T = 296 Kslope = -0.55

slope = -1.45Gaussian spread

t / ttrans

I /
 I 0

L(μm) ttrans(ms)  V(V)

 36         2.8          300
              8.5          150
             64              50
100       38            800
           720            200
         6600              80

10-1

100

101

Fig. 5 Dispersive transport of injected hole transitions in amorphous As2Se3. Plots are obtained by
parallel shifting of the curves along the time and current axis to match the kinks at (1,1). The kink
identifies the transit time ttrans, which is listed together with the sample width L and bias V in the
table insert of the figure. The dashed curve gives the expected Gaussian spread for a transit time of
6600 ms (After Pfister and Scher 1977)
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Einstein statistics. In equilibrium, both systems are described by the same temper-
ature. The average momentum of the two systems is zero; the average energy is
related to the common temperature, e.g., 3kT/2 per quasi-particle for a Boltzmann
ensemble.

When external forces such as a field, light, etc., are applied, the thermal equilib-
rium is disturbed, thermal conditions of the subsystems become diverse, and the
distributions can no longer be described by exact thermodynamic distribution
functions. Depending on the nature of the forces, either the electronic or phononic
subsystem is disturbed primarily, while the other subsystem reacts by their mutual
coupling: the electron-phonon scattering. This interaction has a dominating influ-
ence on the carrier or phonon transport determining the respective mobilities. This
was discussed for steady-state conditions in▶ Sect. 3.2 of chapter “Phonon-Induced
Thermal Properties” and in chapters ▶ “Carrier Scattering at Low Electric Fields”
and ▶ “Carrier Scattering at High Electric Fields”. However, the addition of a
multitude of effects often makes an unambiguous analysis in steady state difficult.
A kinetic study permits differentiation of the involved subsystems when they have
substantially different relaxation times. In addition, steady-state experiments relating
to carrier transport do not permit a direct analysis of the distribution of carriers as a
function of energy. Instead, an average of the contribution of all electrons is obtained
and expressed by the carrier mobility, from which only indirect conclusions about
the distribution function can be deduced.

Relaxation studies deal with an analysis of the distribution functions of quasi-
particles of the different subsystems after external forces are switched off. The
momentum and energy relaxation of electrons or holes will be discussed first. We
need to distinguish two ranges, similar to the steady-state consideration in chapter
▶ “Carrier Scattering at Low Electric Fields”: one of a small perturbation, with the
system not far removed from thermal equilibrium; and one of a large perturbation,
somewhat similar to the discussion of warm and hot electrons in chapter ▶ “Carrier
Scattering at High Electric Fields”.

1.2.1 Momentum Relaxation of Electrons
Under the influence of an external electric field F, the conduction-electron gas is
moved through the semiconductor with a momentum given by the product of its
effective mass and the drift velocity μn F. When the field is switched off, this motion
of the entire electron gas will relax to zero with a characteristic time, the momentum-
relaxation time. The momentum relaxation occurs through all types of scattering
processes (see chapter ▶ “Carrier Scattering at Low Electric Fields”), i.e., the same
types of scattering that are responsible for the steady-state distribution; however, not
necessarily in the same sequence of importance. For instance, in Si high-energy
electrons are preferably scattered by LO phonons or as optical intervalley
scattering. When equilibrium is approached, the dominant scattering processes
involve preferably acoustic deformation-potential scattering and piezoelectric
scattering. At the end of the relaxation process, the momenta of the electrons are
distributed equally in all directions, and the electron gas has come to a standstill
relative to the lattice.
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A simple method of measuring this relaxation, wherein we observe the decay of
a current after the electric field (bias) is switched off, runs into difficulties because
of the extremely short relaxation times, which are on the order of τm ffi λ/vrms ffi
10�13 s (=100 femtoseconds), with λ as the mean free path. Therefore, we
better work in the frequency domain than in the time domain, and measure the
complex conductivity at low IR frequencies. Here, the semiconductor responds to
a harmonic excitation, i.e., to an electromagnetic sinusoidal wave, and the time-
and frequency-dependent behaviors are related to each other by the Fourier
transformation.

The response can be analyzed by using the Boltzmann equation (▶ Sect. 4 of
chapter “Carrier-Transport Equations”),

@f

@t
¼ �eF

@f

@k
� f � f 0

τm
, (17)

which, with F = F0 exp(i ω t) and the ansatz f = f0 + δf exp(i ω t), yields

δf ¼ � 1

iω
eF

@

@k
f 0
�δf

τm

� �
: (18)

With @f0/@k = v f0/(k T) (see ▶ Sect. 4.3 of chapter “Carrier-Transport Equa-
tions”), we obtain the solution

δf ¼ e F0 � vð Þτm
kT 1þ iωτmð Þ f 0, (19)

which yields for the current (see ▶Eq. 108 of chapter “Carrier-Transport
Equations”)

j ¼
X
v

e2 vF0 � vτm
kT 1þ iωτmð Þ f 0 exp iω tð Þ ¼ σ ωð ÞF0 exp iω tð Þ (20)

with a frequency-dependent conductivity. Applying the arguments of ▶ Sect. 4.4 in
chapter “Carrier-Transport Equations” for averaging, we obtain for the complex
conductivity

σ ωð Þ ¼ 2

3

ne2

mn kT

E τm
1þ ω2 τ2m

� �
� iω

Eτ2m
1þ ω2 τ2m

� �� 	
, (21)

showing that, for frequencies for which ω τm ffi 1, the electrons are no longer in
phase with the electric field. This results in a dispersion of the dielectric constant (see
▶ Sect. 1.1 of chapter “Interaction of Light with Solids”),

e ωð Þ ¼ eL � ne2

mn

3

2
kT

� ��1 Eτ2m
1þ ω2 τ2m

� �
, (22)
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where eL is the dielectric constant of the lattice without free electrons. Here, e(ω) shows
a frequency dependence in the ω � τ�1

m range, i.e., for far IR radiation with λ 	 0.1
mm, which can be measured. For reviews, see Conwell (1982) and Jonscher (1983).
This analysis assumes an independence of τm on E. Usually, this is not fulfilled,

and significant errors are encountered when scattering is dominated by ionized
impurities, where a substantial τm(E) dependence exists. Errors are small, however,
when acoustic or optical phonon scattering predominates (Nag 1975).

Other means of measuring momentum-relaxation times relate to the width of a
cyclotron-resonance peak, indicative of damping; also magneto-resistance or Fara-
day rotation measurements can be employed (Nag 1984). The observed values for
the momentum-relaxation time in typical semiconductors lie in the 1 ps and 0.1 ps
ranges at liquid nitrogen and room temperatures, respectively.
Ballistic Carrier Transport When the dimensions of a semiconductor device
become comparable to the mean free path between scattering events, or the time of
observation becomes comparable to the relaxation time, there is a drift overshoot of
the carrier velocity if the applied electric field is high enough, as shown by Monte-
Carlo calculation (Maloney and Frey 1977) and given in Fig. 6.

For times and distances that are shorter than those between scattering events, a
ballistic transport occurs, which can be compared to the electron transport in a
vacuum diode (Shur and Eastman 1981): the electron is accelerated in the electric field
without scattering until it hits the anode. The current-voltage characteristic can be
calculated similarly to that of a vacuum diode in a space-charge-limited case, using
j = e n vwithmnv

2/2 = e V, andVas the bias voltage. Integrating the Poisson equation
(▶Eq. 79 of chapter “Carrier-Transport Equations”) with ρ = e [(n0 � n(x)], we can
approximate the current by

jn ffi
4

9

ffiffiffiffiffiffi
2e

mn

r
e e0
l2

V3=2, (23)

where l is the length of the ballistic region.

GaAs 
T = 300 K

25 kV/cm

15 kV/cm

5 kV/cm

3 kV/cm

6.0

5.0

4.0

3.0

2.0

1.0

0.0 2.01.00.5 1.5
d (μm)

v  
(1

05
 m

/s
)

Fig. 6 Drift-velocity
overshoot as a function of the
platelet thickness with the
(homogeneous) electric field
as the family parameter;
obtained by Monte-Carlo
calculation in GaAs at 300 K
(After Ruch 1972)
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Ballistic electron transport accounts for the improved high-frequency perfor-
mance of small devices at high electric fields. In addition, it permits observation of
quantum-mechanical interference phenomena, since the phase relation is not dis-
turbed by scattering. Therefore, maxima and minima of the current flow are observed
when the bias, and thereby the energy of the ballistic electrons, is varied. Ballistic
transport was confirmed in GaAs by Heiblum et al. (1985). For a review, see
Eastman (1982). For diffraction of ballistic electrons in semiconductor gratings see
Henderson et al. (1993).
Transient Carrier-Transport Analysis The transport dynamics in the ballistic
overshoot regime are no longer described by the classical Boltzmann equation,
which assumes simultaneous response of the carriers to an applied force (Barker
and Ferry 1980). On a short time scale, there are memory effects from path to path.
Retardation effects due to nonzero collision duration (Kreuzer 1981) must also be
taken into consideration.

One conceptual approach is to replace the mean additional velocity

Δvh i ¼ e

mn
Ft (24)

with a more appropriate time-dependent velocity function

v tð Þ ¼ e

mn
F

ðt
0

ϕv t0, θð Þ dt0, (25)

by introducing an autocorrelation function ϕv, which describes the variation of v in
time (Zimmermann et al. 1981). This velocity is linear in time only if ϕ ffi const. We
can then use the corresponding balance equations

mn
dv

dt
¼ eF� mn

ðt
0

Xv t0ð Þvd t� t0ð Þ dt0 (26)

and

dE

dT
¼ eFv tð Þ 1� ϕv t, 0ð Þ½ 
 �

ðt
0

E t� t0ð Þ � E0


 �
XE t0ð Þ dt0, (27)

where XE and Xv are the decay functions, which are intimately related to the energy
and velocity autocorrelation functions ϕE and ϕv . After integration over a sufficiently
long time, the time integrals over XE and Xv yield the corresponding relaxation times
τe and τm.

The correlation function is determined by a number of effects, including the
influence of the electric field on the duration of each collision (Ferry 1980; Barker
1980) and on bandgap renormalization with injection of a large density of free
carriers (Ferry 1978). A bandgap narrowing is determined by the self-energy of
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electron-hole pairs (Haug and Schmitt-Rink 1985), and by a change in phonon
frequencies due to free-carrier bond weakening2 (Brooks 1955).

The typical behavior of the velocity autocorrelation function is shown in Fig. 7, as
calculated by a Monte-Carlo approach for Si (Ferry and Barker 1981; Ferry 1991).
The resulting transient drift velocity shows the velocity overshoot when the corre-
lation function decreases in time; for more detail, see the review of Ferry
et al. (1984).

1.2.2 Energy Relaxation of Electrons
In contrast to the momentum relaxation, there is no direct means of measuring the
energy relaxation of hot electrons directly from carrier transport. The average energy
of carriers cannot be measured directly; it can be obtained indirectly from parameters
that are a function of the carrier energy, such as the mobility. More direct information
can be obtained from optical transmission, reflection, luminescence, or Raman
scattering experiments after carrier heating in a pulsed electric field (Bauer 1978)
or after an optical excitation pulse (Hearn 1980). Optical techniques allow for
relaxation studies into the femtosecond range (Shah and Leheny 1984), and are
reviewed in the following section.
Picosecond Spectroscopy Traditional electronic methods are limited in their high-
frequency resolution in the 100 ps range. This range can be extended to the 100 fs
range (in this time a light pulse travels only 10�3 cm) by optical means, with light
pulses of this duration produced by mode-locked lasers (Valdmanis et al. 1985).
These laser pulses have a large natural line width in the 10 meV range, requiring a
laser cavity that permits an optical gain in a rather large band of frequencies. If the
loss or gain of the cavity is modulated in this frequency range, an optical wave packet
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Fig. 7 Velocity
autocorrelation function ϕv

and drift velocity vd as a
function of the time after
switching on the bias.
Computed for an ensemble in
Si at 300 K applying the
Monte-Carlo method (After
Ferry and Barker 1981)

2When light of sufficient energy is absorbed in a semiconductor, free carriers or excitons are
produced; this reduces the bond strength of the lattice atoms from which ionization took place
and changes related lattice parameters (i.e., elastic stiffness). The changes observed in mechanical
and thermal properties are small, since only a very small fraction of the bonds are involved.
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can be created, which produces a train of light pulses of extremely short duration
(Laubereau and Kaiser 1974).

Detection of light signals in the picosecond range requires fast shutters (Kerr
cells) or a streak camera. In the latter, the light is focused onto an image converter,
and the electrooptical image is swept by electronic means across the screen with a
speed near light velocity. The streak image, when it passes a narrow slit, is then read
by a videcon coupled to a multichannel analyzer, yielding the light intensity as a
function of time and photon energy. A streak camera covers the range from micro-
seconds down to a few picoseconds; the direct electronic sequencing analysis,
however, is limited in time resolution by the electronic circuit.

The detection limit can be extended from some (tens) of picoseconds down to a
few femtoseconds by applying correlation techniques and nonlinear optical means.
The pulse of the excitation laser can be analyzed by autocorrelation: the pulse is split
into two parts of half intensity by a beam splitter, and one part is variably delayed as
illustrated in Fig. 8a. Both beams are then focussed on a nonlinear crystal, which
produces the second harmonics. Only while both pulses are simultaneously present
within the mixing crystal is the harmonic produced, which can then be detected by a
properly tuned light sensor. The amplitude of this signal is proportional to the
intensity product of both beams while overlapping. The pulse shape of a longer
pulse can be analyzed by using a shorter pulse as a gate, and varying its time delay by
variation of the relative optical path length (Fig. 8b), as shown by Mahr and Hirsch
(1975). The nonlinear crystal produces a sum frequency of the two beams that can be
detected as a function of the mutual time delay.

In another setup the temporal evolution of a luminescence or a transmitted signal
is measured by correlating this signal with the trigger pulse of a Kerr cell as shown in
Fig. 8c. The crossed polarizers and a Kerr cell in between transmit the signal only
when the trigger pulse induces a birefringence in the Kerr cell; the pulse shape is
analyzed by shifting the delay of the trigger pulse.

Periodic pulse repetition permits detection above background noise. For reviews,
see von der Linde (1979) and Shah (1999).
Optical Studies of Carrier Distribution Information about the occupation of states
within the bands can be obtained by using a high-intensity optical excitation from
valence-band to conduction-band states, and consequent scanning of the optical
absorption spectrum, which yields the energy distribution of carriers in these
bands when significant filling is attained. Such filling causes a bleaching of the
corresponding optical absorption. The kinetics of such a distribution is then observed
by picosecond laser spectroscopy.

Optical absorption spectra yield information on the evolution of the carrier
distribution near the band edge, from which the carrier relaxation can be derived
(Haug and Koch 1990). An example is given in Fig. 9 for GaAs. It shows three major
features that are clearly visible in the difference spectra shown in subfigures b to e,
compared to the initial absorption given in subfigure a:

1. 1 ps after optical excitation with a 500 fs pulse, we observe an increase in
absorption below the bandedge energy (E< 1.52 eV) because of a renormalization
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of the gap, i.e., a decrease of the bandgap energy due to exchange and correlation
effects of the high-density free-carrier plasma (▶Sect. 2.3 of chapter “Bands and
Bandgaps in Solids”), as summarized by Arya and Hanke (1981), and Vashishta
and Kalia (1982). These new states are rapidly filled by relaxing electrons; conse-
quently, this enhanced absorption below the original band edge vanishes after 10 ps
(curves b and c).

2. A sharp decrease in absorption at the exciton peak (Effi 1.52 eV) is observed, due
to the screening of the exciton states by free electrons, which persists for the
length of the carrier lifetime (>250 ps, curves b to e).

3. The main feature indicating the dynamics of the energy distribution of the carriers
is the tail of the bleaching within the band for hν> 1.53 eV, which decreases with
a short relaxation time at higher energies (curves b and c) and a somewhat longer
time at energies close to the band edge near 1.52 eV (curves d and e). This
relaxation of hot carriers involves the effective scattering with longitudinal
optical phonons and will be discussed in the following section.

4. Later, and not clearly discernible in Fig. 9, further relaxation takes place via
scattering with acoustic phonons, a substantially slower process; carrier
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ing signal and probe pulses, (c) gating with an optical Kerr-cell shutter. The detector in (a) and (b) is
sensitive only to the mixed signal
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recombination also becomes effective as seen by the area reduction under the
difference-of-absorption curves.

Luminescence Studies Luminescence provides information about the electron
temperature from the slope of the high-energy tail of the emission peak. Use of a
streak camera shows a successive sharpening of the emission peak, with proceeding
energy relaxation of the excited electron gas (Graudszus and Göbel 1981; Tanaka
et al. 1980); this is shown in Fig. 10 for GaAs in a somewhat longer time frame, and
clearly indicates the successive cooling of the electron gas that was heated by the
exciting light pulse.

When carriers are confined within quantum-well structures, many electronic
properties change, such as their density of states, carrier screening (it becomes
weaker), and plasmon properties – they have zero energy and zero wavevector.
However, the interaction of electrons with LO phonons in 2D structures has shown
rather similar behavior as in 3D bulk semiconductors, as discussed in several reviews
(Lyon 1986; Shah 1986). The average energy-loss rate from heated carriers to the
lattice can be expressed much like that in a bulk semiconductor; it is given by

dE

dt

� �
e, LO

¼ �ℏωLO

τLO
exp �ℏωLO

kT

� �
, (28)

where τLO is an effective electron-LO phonon relaxation time (Shah and Leheny
1984). A more advanced analysis shows only a negligible increase in this loss rate
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compared to that of bulk GaAs.3 Hot-phonon modes, however, may cause a more
significant reduction in the energy-loss rate, as shown by Price (1985).

Optical probing by luminescence while heating in an electric field shows larger
energy-loss rates for holes than for electrons in multiquantum wells (MQWs), as
shown in Figs. 11 and 12. The samples were modulation-doped to achieve high
carrier mobility and structured for Hall measurements (Shah et al. 1985). A DC
current was applied, and the electric field was determined from the voltage drop
across two additional adjacent contacts. The photoluminescence (PL) spectra were
excited by a laser beam which was kept weak (�10 mW cm�2) to prevent optical
carrier heating. The PL spectra given in Fig. 11 show the effect of carrier heating by
the electric field F via the high-energy tail, which has an exponentially decreasing
intensity at higher photon energy. This behavior proves that the carriers are charac-
terized by a Fermi-Dirac distribution function with a temperature Tcarrier higher than
the lattice temperature TLattice.

By combining the electrical and optical measurements the energy-loss rate of the
carriers can be determined as a function of the carrier temperature. The steeper slope
of the high-energy tail in the p-type sample for a given field F indicates a larger
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3Modification of the simple model with parabolic minibands, infinite potential steps, nondegenerate
electrons, nonscreening to include degeneracy (insignificant up to 2D densities of 1012 cm�2), slab
modes (small effect, see Shah et al. 1985), plasma effects, and screening (less than 40% influence,
see Das Sarma and Mason 1985) has shown little effect on the energy transfer.
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energy-loss rate for holes than for electrons. The reduction of energy losses from
electrons could be explained by significant heating of LO phonons: a heated LO
phonon gas is less effective in cooling than a cold phonon gas (Shah et al. 1985).
Consequently, the electron temperature remains higher than the hole temperature.
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The electron-hole scattering rate is �10�13 s�l as shown by Höpfel et al. (1986).
Typically, carriers thermalize within less than 100 fs (see review by Göbel et al.
1986). The most direct information is obtained by time-resolved bleaching experi-
ments (Knox et al. 1986), which give direct evidence of spectral hole burning in
GaAs/AlGaAs MQWs and show electron relaxation with a relaxation time of�50 fs
at a carrier density of �1018 cm�3. A review of the field is given by Fouquet and
Burnham (1986).

1.2.3 Energy-Relaxation Mechanisms
The time response of the different scattering mechanisms of carriers depends on the
type of carrier, its density, and its initial energy distribution (Lyon 1986). A large
amount of data has been reviewed by Luzzi and Vasconcellos (1984) and discussed
in terms of a nonequilibrium thermodynamics approach, using generalized rate
equations. The different contributions depend on the material, experimental setup,
and progressing relaxation, when one or the other transition rate becomes dominant,
as will be discussed below. In addition, we must distinguish between hole and
electron relaxation.
Hole Cooling Mechanisms Holes usually have a larger effective mass than elec-
trons, and follow different selection rules for the excitation of phonons: holes excite
mainly TO phonons, while electrons excite predominately LO phonons (for a review,
see Wiley 1975 and Srivastava 1990). In Fig. 13 the different relaxation processes
are summarized: when electrons and holes are produced simultaneously by absorb-
ing a photon (vertical transition), the electron obtains a much higher energy (typi-
cally 400 meV) before the hole is energetic enough (�35 meV) to excite an optical
phonon; see also ▶ Fig. 6 of chapter “Band-to-Band Transitions”. Consequently,
most of the hole cooling is caused by scattering with acoustic phonons, which is a
relatively slow process.
Electron Cooling Mechanisms Electron cooling, starting from sufficiently high
energy, can be divided into four regimes:

(a) Electron-electron interaction thermalizes the electron ensemble if the density
of free carriers is high enough (Shah 1978). The critical electron density at
which electron-electron scattering exceeds interaction with phonons can be
estimated from plasmon emission (Quinn 1962), which yields for the energy
loss

dE

dt

� 	
e-e

ffi 2π ne4

e2optmn v2rms

: (29)

At high electron densities, preferred energy loss occurs by hopping down in units
of the plasmon energy (Lyon 1986) when the plasmon energy exceeds the
LO-phonon energy. Therefore, from ▶Eq. 4 of chapter “Photon–Free-Electron
Interaction” we obtain as the critical electron density for preferred electron-electron
interaction:
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ne-e ffi ω2
LO eopte0mn

e2
¼ 3:14� 1017cm�3 � ωLO

1013

� �2 eopt
10

mn

m0

: (30)

This thermalization from a spike-like initial excitation takes place in the 100 fs
range. Experimentally, we obtain as critical density a somewhat lower value of
ne-e ffi 8 � 1016 cm�3 (Kash 1989).

(b) Electron-LO-phonon interaction (Fröhlich interaction, see Fröhlich 1937) is very
strong.4 This interaction produces step-like reductions of excess energy (Mirlin
1984), and proceeds in the Γ valley of GaAs with a time constant of 180 fs (Levi
et al. 1986). An observed reduced rate of cooling via LO phonons at higher
carrier densities (Leheny et al. 1979) can be explained by carrier screening of the
Fröhlich interaction (Graudszus and Göbel 1983; Yoffa 1981). Another reason
for such a reduced cooling rate may be the creation of “hot phonons” –
specifically, heating the LO mode, which consequently reduces the cooling
efficiency of this mode until it has time to relax (Lyon 1986).

(c) Final cooling involves acoustic phonons and is a relatively slow process,
extending into the nanosecond range, due to the small amount of energy trans-
ferred in any one transition (Ulbrich 1978).

(d) Recombination of electrons with holes depends on the product of their densities
for intrinsic recombination, and on the defect density for extrinsic recombination
(see Dymnikov et al. 1978); it can extend from the nanosecond to the microsec-
ond range or longer.
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cbFig. 13 Schematics of
different carrier-relaxation
processes after optical
excitation (see text). The line
denoted A is an acceptor level
with the varied width
indicating the spreading in
E and k space

4TO phonons can also interact with electrons and are coupled through their deformation potential.
They are, however, forbidden to do so with carriers in s-like states (Wiley 1975); such forbidden
transitions have a factor of only 3 reduced probability, and are important for holes.
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High-Energy RelaxationMechanismsWhen an optical excitation creates electrons
with sufficient energy, intervalley scattering becomes important. Such scattering can
be investigated with the help of the free-to-bound (e,A0) luminescence as a probe
(Fasol and Hughes 1986); it is very fast.

An overview of the relaxation of higher-energy electrons in GaAs can be obtained
from Fig. 14. When excitation occurs below 1.9 eV, only the main valley (Γ) is
involved with relaxation via LO phonons or electron-plasma interaction, as
discussed in the previous section. The corresponding curve (a) shows the lumines-
cence spectrum after excitation from heavy (hh) and light (lh) hole bands, with
additional maxima given by LO-phonon relaxation. At slightly higher excitation
energies (1.9 eV < hv < 2.3 eV), electrons can rapidly scatter from the Γ- into the
L-valley with a time constant of �540 fs. At energies above �2.3 eV, an intervalley
scattering from the Γ- into the X-valley now becomes dominant, with a time constant
of �180 ps. These time constants can be obtained from competition with the LO
relaxation, and from the Γ valley, with consequent (e,A0) luminescence, acting as an
internal clock with 180 fs time constant. When electrons are scattered into side
valleys, such luminescence does not occur: the extent of the A0 level in k does not
reach to the minima of the side valleys. This is seen from curves (b) and (c) in Fig. 14
which are taken with excitation at energies at which intervalley scattering is impor-
tant. Consequently, the direct hh and lh signatures are much reduced, giving a
measure of the relative population of Γ and side valleys.

In addition, a substantially shifted reentry signal (R), after back-scattering from
the X- or L- into the Γ-valley, and its LO-relaxation peaks, can be observed, again
with much lower intensities (Ulbrich et al. 1989). The time constant for the reentry
(from L or X to Γ) is longer because of the larger effective mass in the satellite
valleys. It is on the order of 2.5 ps, and can be obtained from the slow rise of the
luminescence – e.g., after excitation above 2 eV. Here, fast scattering into the L valley
provides a carrier storage, and consequently a slow supply path via reentry into the Γ
valley (Shah et al. 1987). When no reentry into the Γ valley occurs, as, e.g., in InP,
the rise of the luminescence is much faster (Shah et al. 1987).

At higher energy, excitation takes place further away from k= 0, and warping of the
valence bands becomesmarked. Consequently, there is a wider spread of initial electron
energies from which LO-phonon relaxation starts, resulting in a broader luminescence
peak: 1.5 meVat 1.57 eV, and 8 meVat 1.85 eVexcitation (Ulbrich et al. 1989).

The scattering of holes between different valence bands becomes important for
hole-distribution relaxation. This distribution relaxes in the 10 ... 100 ps range, as
shown in Fig. 15 for wurtzite CdSe at 4.2 K. With sufficient energy, both the A band
and the split-off B valence band are populated. Changes in population occur through
intervalence-band relaxation and via recombination of holes with electrons. Recom-
bination with electrons occurs from both bands with a similar time constant of about
300 ps in the given example, as long as both are in quasithermal equilibrium.
Intervalence-band relaxation from B⊥ to A⊥ is much faster (30 ps). Since the split-
off energy (26.3 meV) is sufficient to accommodate an LO phonon with an energy of
26.1 meV, such scattering, in addition to LA-phonon scattering, is probably respon-
sible for the relaxation.
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In the optical study of the initial carrier distribution the coherent coupling
between the laser pulse and the interband polarization strongly influences the
luminescence spectra; an observed nearly constant linewidth of the successively
created phonon replicas is explained by a broadening occurring in the ultrafast
generation process (Leitenstorfer et al. 1994).
Lattice Heating Through Hot Electrons The electron-electron scattering does not
remove energy from the electron ensemble, but causes thermalization within this
ensemble: it smoothes out the distribution, which initially is shaped by the exciting
laser pulse, and results in a Maxwell-type distribution with a well-defined electron
temperature Te > TLattice. A substantial amount of energy can be stored in the
electron ensemble before interaction with phonons cools the electron plasma. In
fast-rising, high-energy laser pulses, the electron plasma can be heated to more than
103 K in the 100 fs range before the lattice temperature increases in the low ps range
(Malvezzi 1987).

1.3 Recombination in Electron-Hole Plasmas and Liquids

The energy relaxation and recombination of an electron-hole plasma are highly
density-dependent. When the optical excitation occurs at an energy slightly below

L

R

X
Γ

hhlh

laser
A0

(e,A0)
emission

E

k

lh

lh

lh

hh

hh

hh

R

R

LO

LO

LO

a)   1.893 eV

b)   2.175 eV

c)   2.410 eV

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
Energy  (eV)

Lu
m

in
es

ce
nc

e 
in

te
ns

ity
  (

ar
b.

 u
ni

ts
)

a

b

c

GaAs:Mg
T = 25 K

Fig. 14 (e,A0) luminescence in GaAs:Mg at 25 K ( p= l.2� 1017 cm�3). Laser excitation at 1.893,
2.175, and 2.410 eV for curves (a) to (c), respectively. The peaks identified as LO are Raman
scatterings. Inset: E(k) with relevant transitions (After Ulbrich et al. 1989)

1228 Dynamic Processes



bandgap energy, initially excitons, or exciton-polaritons, are formed. When the
generation rate is high enough so that the created excitons closely fill the semicon-
ductor and their orbits start to overlap, the exciton state becomes unstable and an
electron-hole plasma is created – see ▶Sect. 3 of chapter “Equilibrium Statistics of
Carriers”. In typical indirect-bandgap semiconductors, this plasma condenses at low
temperatures to an electron-hole liquid of droplet shape (Rice 1977); see Fig. 20 in
chapter ▶ “Equilibrium Statistics of Carriers”.
Kinetics of Electron-Hole Liquids The electron-hole liquid and electron-hole
plasma in indirect-gap materials have a rather long recombination lifetime, typically
in the microsecond range. The low probability of finding a phonon of proper
wavenumber at the same position with an electron and a hole causes the low
probability for recombination in indirect-gap semiconductors. In direct-bandgap
semiconductors, however, no evidence of droplet formation is yet obtained (Saito
and Göbel 1985), while a high-density electron-hole plasma is formed (Haug et al.
1980), but with a substantially shorter recombination lifetime in the nanosecond
range.

Electron-hole droplets evaporate, thereby creating excitons, which in turn recom-
bine. After cessation of the optical excitation which created the droplets, droplet
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evaporation continues until all droplets have evaporated. This process can take much
longer than the lifetime of excitons. Evidence for the slow evaporation of electron-
hole drops, which replenishes the exciton gas, is shown in Fig. 16. When all the
drops are evaporated, the density of the exciton gas decreases with its much faster
decay time. When the exciting light pulse is stronger, more droplets are created, and
it takes longer until all of them are evaporated (Manenkov et al. 1976).

During a short and intense light pulse, a sufficiently large density of electron-hole
pairs is created near the surface, and a liquid layer can be formed. Consequent
instabilities occur which complicate the kinetics: the phonon wind generated within
the layer creates capillary waves at the liquid surface, from which droplets of critical
size (▶ Sect. 3.2 of chapter “Equilibrium Statistics of Carriers”) break off and are
then driven away (Keldysh 1986). This can be experimentally observed since the
index of refraction in droplets is different from that in a normal crystal, which makes
the droplets visible (Worlock et al. 1974). For electron-hole plasma and liquid in
confined semiconductors see Keldysh (1997) and Kalt (1994).
Electron-Hole Pair Dephasing and State Filling When the optical excitation
occurs with an energy exceeding the bandgap energy, electron-hole pairs are formed,
as opposed to excitons, which exist only at energies below the bandgap. These
optically coupled electron-hole pairs, when scattered, undergo a dephasing, i.e., a
change of momentum for at least one of the carriers. The dephasing time is extremely
short. It has been observed by following the time evolution of optical bleaching in a
thin GaAs layer after excitation with a 100 fs high-power laser pulse (Oudar et al.
1985). The intense laser pulse bleaches out the corresponding states in the valence
and conduction bands because of state filling. This is to be distinguished from band-
filling, which is observed after thermalization, e.g., in steady state, and is known as
the Burstein-Moss effect – see▶ Sect. 3.2 of chapter “Optical Properties of Defects”.
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State filling is also referred to as optical (or spectral) hole burning within the bands,
since a very narrow wavelength range of optical excitation is preferentially
bleached. These states have an inverted population.

Figure 17 shows the transmission spectrum of GaAs and its changes over time at
15 K. Bleaching (arrow) occurs initially in the wavelength range of the laser pulse
shown in the lower inset. The bleached maximum at 1.54 eV then broadens and
disappears when the bleaching pump pulse has ceased, indicating a dephasing time
of the electron-hole pairs of �300 fs. With the progression of time, the bleaching
spectrum becomes smooth, indicating thermalization after �4 ps with Te ffi 120 K in
the given example.

2 Phonon and Exciton Kinetics

Quasiparticles can be excited by short light pulses and, following this excitation,
reveal their relaxation behavior. These quasiparticles include excitons, phonons, and
the corresponding polaritons. With fast detection techniques, the relaxation of simple
lattice polarization is accessible to observation. In the following we will give
examples of these relaxation processes.

2.1 Relaxation of Phonon Distributions

Nonthermal changes in phonon distributions can be achieved by selectively heating
a specific phonon mode. This can be accomplished most directly by optical
(IR) excitation of a specific atomic vibration in the reststrahlen range, and by
controlling the frequency and phase relation of the stimulated phonon branch.
Another efficient method applies mixing of lasers beams with photon energies
differing by the phonon energy; this creates coherent phonons, which can be probed
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by a delayed pulse measuring the coherent anti-Stokes Raman scattering (CARS).
An indirect mode of phonon generation is that of inelastic scattering by hot electrons,
which, when energetic enough, interact preferably with one phonon branch – the LO
phonons.

The relaxation of a deformed phonon spectrum into its equilibrium distribution
proceeds via inelastic three-phonon collisions: the optical phonon, following selec-
tion rules, decays into other phonons of lower energy, e.g., two acoustic phonons
(Orbach 1967); various decay schemes for diamond-structure, zincblende, and
wurtzite semiconductors are discussed by Barman and Srivastava (2004) considering
anharmonic interaction between phonons.

In semiconductors with sufficient electron density, scattering with electrons pro-
vides an additional relaxation mechanism (von der Linde et al. 1980). When heated,
electrons interact with each other; they thermalize with a relaxation time that can be
shorter than the electron-phonon relaxation at sufficiently high electron densities; see
Sect. 1.2.3. Interaction with LO phonons accelerates their relaxation.

2.1.1 TO-Phonon Relaxation
Due to their weak coupling with carriers TO phonons are usually less important in
carrier thermalization. When, however, carrier–LO-phonon interaction is damped
due to screening in highly doped semiconductors, TO phonons dominate in the
redistribution of energy. Optical pumping of energy into a specific branch of the
phonon spectrum requires intense illumination and can induce coherent oscillations
due to nonlinear effects (▶ Sect. 3 of chapter “Interaction of Light with Solids”), or,
below threshold, incoherent oscillations. Excitation can be accomplished by two
synchronized laser pulses of slightly different energy, so that the energy difference is
equal to the energy of the phonon branch which is to be stimulated. The energy of
such laser pulses is selected preferably below the bandgap energy, and away from
any other resonances. Usually, only one phonon mode, the one with the larger
Raman cross-section, is stimulated (Gale and Laubereau 1983).

When the intensity of the exciting light is high enough, and the crystal geometry
is appropriate for the stimulated phonon branch so that a gain in excess of unity is
achieved (Laubereau 1984), amplification arises from the input Stokes signal, and
lasing occurs. Transient excitation of a specific mode of lattice oscillations appears
when the duration of the pumping pulse is comparable to the lifetime of these
phonons, typically in the 10 ps range. For transient pumping, a higher gain is needed
to initiate stimulated scattering, starting from quantum noise (Penzkofer et al. 1979).

The kinetics of the phonon population can be measured directly with a delayed
probing light beam, or indirectly from the line width of the Raman signal, using the
Heisenberg uncertainty relation. A typical time evolution of the coherent anti-Stokes
signal for hot TO phonons in GaAs and InP is shown in Fig. 18. A theoretical
analysis of the zone-center TO mode in GaAs yields a lifetime similar to that of the
LO mode, with low- and high-temperature values of 8.3 and 2.5 ps, respectively,
with processes TO!LA + LA and TO!LA + TA involved (Barman and Srivastava
2004). These values are in good agreement with experimental results obtained by
Ganikhanov and Vallée (1997) shown in Fig. 18 and lifetimes derived from the
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linewidths of spontaneous Raman scattering by Irmer et al. (1996). In InP the decay
of the TO mode can only occur via the channel TO!LA + LA due to energy
conservation; the calculated lifetimes of 11.0 ps (T = 6 K), 9.7 ps (78 K), and 3.9 ps
(300 K) agree well with the Raman measurements (Barman and Srivastava 2004;
Debernardi 1998).

Similar measurements in GaP (Kuhl and von der Linde 1982) yield lifetimes for
LO phonons at room temperature of 6.7 � 0.3 ps. The lifetime increases with
decreasing temperatures, and at 5 K a value of 26 � 2.5 ps is measured. Measure-
ments of the decay of phonon-polaritons in GaP, which are connected with the TO
mode, have also been performed by Kuhl and von der Linde (1982), with apparent
lifetimes below 1.3 ps.
Phonon Dephasing Phonon scattering, as discussed above, is inelastic. In addition,
elastic scattering events (“dephasing”) change the momentum of the heated phonons
but not their energy. The dephasing time is equal to the momentum-relaxation time.
An example is the phonon scattering with impurities or phonon-phonon interaction
within the same phonon branch, which results in a loss of phase information. This
elastic scattering, following a preceding excitation, will produce a heated phonon
ensemble distributed over a wide range within the Brillouin zone. The evolution of
the signal from spontaneous anti-Stokes scattering provides a possibility of directly
measuring the phonon distribution and its time evolution.

The time for an incoherent phonon ensemble to approach its thermal distribution
is the energy-relaxation time. This should not be confused with the lifetime of a
mono-energetic phonon mode at a given wavevector.

In studies of ultrafast phenomena the dephasing time is usually referred to as T2,
while the lifetime of an excited state is referred to as T1. The phase-relaxation time
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Fig. 18 (a) Coherent TO anti-Stokes signal, stimulated by a short laser-pulse pair terminating at
t = 0 in GaAs and InP at low temperature. Gray squares denote the system-response function. (b)
Measured temperature dependence of the TO phonon dephasing rate Γ = 2/T2. Solid lines are
calculated, in GaAs for a phonon decay into a TA and a LA phonon, and in InP into two equal
lower-energy phonons and an additional up-conversion into a LO phonon (After Ganikhanov and
Vallée 1997)
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T2 is connected to the decay of the polarization P produced in the semiconductor by
an intense electromagnetic field according to Pcoherent = P0 exp(�t/T2). On the
other hand, the decay of an excited ensemble is described by the number density
N = N0 exp(�t/T1). This number density N is proportional to the squared polari-
zation, yielding T2 = 2 T1; this equality holds if the decay of the excitation is the
only phase-destroying process. Usually there are further processes disturbing the
phase coherence, leading to the general relation T2 	 2T1; this is conventionally
written as

1

T2

¼ 1

2T1

þ 1

T0
2

, (31)

where T0
2 is the pure dephasing time.

The exponential decay of the coherent anti-Stokes Raman signal shown in
Fig. 18a translates to a homogeneous Lorentzian broadening of the TO phonon
line. The linewidth is given by the dephasing rate Γ= 2/T2 and shown in Fig. 18b for
the measurements of panel a for various temperatures. The data points are well
described by the decay of the TO phonons into lower-energy acoustic phonons. In
the case of the phonon-dispersion curves in InP only few relaxation channels are
allowed by energy and momentum conservation, and an additional up-conversion
TO! LO is required to reproduce the measured data (Ganikhanov and Vallée 1997).

2.1.2 LO-Phonon Relaxation
Optically excited electrons at sufficient energy within the conduction band stimulate
mainly LO phonons during scattering. Their heated distribution can be analyzed by
the spontaneous (incoherent) Raman scattering induced by LO phonons with a time-
delayed probing pulse.

Figure 19 shows the time evolution of the Raman signal in GaAs after cessation
of the optical pulse (colored curve) that causes the generation of hot electrons. The
measured signal is proportional to the density of LO phonons, and rises steeply with
the integrated energy input from the exciting light pulse (von der Linde et al. 1980).
The energy-relaxation time of the LO phonon is obtained from the exponential decay
of the Raman signal, and yields 7� 1 ps in GaAs at 77 K (see also Kash et al. 1985).
This value agrees with the lifetime of LO phonons in GaAs obtained from the Raman
linewidth of 0.1 meV. The relaxation time of optical phonons depends generally only
weakly on temperature; it increases by a factor of �2–4 between 0 K and room
temperature; see also Sect. 2.1.1 and the dependence for TO phonons shown in
Fig. 18b. The lifetime of GaAs LO phonons calculated from anharmonic phonon
interaction yields 8.7 and 2.3 ps at low and room temperatures, respectively; due to
the downward dispersion of the LO branch, a dominant decay of the zone-center LO
phonon into a zone-edge LO phonon and a TA phonon is concluded (Barman and
Srivastava 2004).

In polar zincblende materials the lifetime of the TO mode compared to the LO
mode depends on the cation-anion mass ratio; a ratio larger unity leads to a shorter
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lifetime and vice versa (Barman and Srivastava 2004). In GaAs with a ratio near
1 both modes have hence similar lifetimes.

The distribution of LO phonons generated by the relaxation of photoexcited
electrons is usually not in equilibrium because the energy distribution of the photo-
excited electron is usually nonequilibrium. Depending on the electron concentration,
the electrons can reach a quasi-thermal equilibrium in times as short as 100 fs or less
in GaAs for an electron concentration of�1017 cm�3. However, it typically takes the
phonon distribution about 1 ps or longer to relax to equilibrium via elastic and
inelastic scattering.

Since Raman scattering can probe only a limited region of the phonon-
momentum space, the relaxation of the nonequilibrium phonon distribution has not
been measured. Advances in computer simulation, however, allow for calculating
the time evolution of the phonon distribution, e.g., via the ensemble Monte-Carlo
simulation. Figure 20 shows the LO phonon-occupation number in GaAs at room
temperature calculated by Lugli et al. (1989) as a function of the wavevector q for
various delay times after excitation of the sample by a 400 fs laser pulse of above-
bandgap photon energy. The calculation assumes that the LO phonon has a q-
independent anharmonic decay time of 3.5 ps at room temperature. The calculated
distribution shows a peak near 8 � 105 cm�1 and a sharp cutoff at the small-
wavevector side near 5 � 105 cm�1. Both features are in agreement with the results
of a simple two-band parabolic model in GaAs calculated by Collins and Yu (1984).
The fortuitous coincidence of this peak in the nonequilibrium LO-phonon distribu-
tion and the wavevectors which can be probed by Raman scattering in GaAs is
responsible for the success of this technique as a probe of nonequilibrium LO
phonons. Using their simulation Lugli et al. (1989) were able to obtain the time
evolution of the anti-Stokes Raman signal after excitation. Their results are in good
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agreement with the data of von der Linde et al. (1980) shown in Fig. 19, as well as
with the data of Kash et al. (1985).

One interesting result of the calculation of Lugli et al. (1989) is that the LO
phonons with a wavevector near the peak of the distribution decay much faster than
phonons with wavevectors twice as large. This finding can be understood by the
coupling of the larger-wavevector phonons only to electrons of highest energy.
When the kinetic energy of these electrons falls below a certain level they can no
longer couple to the large-wavevector phonons, because the simultaneous conser-
vation of both energy and wavevector cannot be satisfied; the large-wavevector LO
phonons are hence decoupled from partially cooled electrons.

On the other hand, LO phonons with smaller wavevectors can continue to interact
with the lower-energy electrons. In fact, a simulation by Kim and Yu (1991) found
that the “Raman-observable” phonons with q � 8 � 105 cm�1 achieve thermal
equilibrium with electrons only after about 1 ps. The net effect of this is twofold:
first, the cooling of hot electrons slows down because their cooling by LO phonon
becomes less effective. Second, the reabsorption of LO phonons by the electrons
speeds up the LO-phonon energy relaxation. The first effect is essentially the “hot
phonons” effect mentioned in the electron-cooling mechanisms (Sect. 1.2.3). The
second effect is most prominent in times shorter than 1 ps when the electron
temperature can be lower than the phonon temperature. Figure 21 shows the
calculated “effective” electron temperature (Te) and “effective” phonon temperature
(Tq) for q� 8� 105 cm�1. For delay times between 100 and 1000 fs the temperature
of phonons is higher than that of the electrons (Kim and Yu 1990). The main reason
for this phenomenon is the strong cooling rate of the high-energy electrons via
intervalley scattering in GaAs from the Γ valley to the L valleys mentioned in Sect.
1.2.3. Kim and Yu (1991) demonstrated that this phenomenon would be absent if
intervalley scattering is neglected.

2.1.3 Phonon Relaxation in Quantum Wells
Phonon properties are modified in quantum wells and superlattices (▶ Sect. 3.3.1 of
chapter “Elasticity and Phonons”). These modifications affect the dynamics of the
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phonon modes. Interface (IF) mode and confined LO phonons couple most strongly
to electrons via their longitudinal electric fields. These modes are equivalent to the
LO phonon in bulk semiconductors.

Most information on the time-dependent properties of phonons in quantum wells
and superlattices is obtained by time-resolved Raman scattering. Fig. 22 shows the
time dependence of the anti-Stokes Raman intensity of the IF and confined phonon
modes in a 56 Å wide GaAs quantum well clad by AlAs barriers, excited by a 4 ps
laser pulse (Ryan and Tatham 1992). There are two IF modes in such QW structures.
The AlAs IF mode studied in Fig. 22 has a frequency between those of TO and LO
phonons in AlAs; its electric field is strongest in the GaAs QW, producing a strong
interaction with the confined electrons. The GaAs IF mode with a frequency between
those of TO and LO phonons in GaAs couples only weakly to electrons and is
difficult to measure.

The time dependence of the phonon population of the modes shown in Fig. 22a
was simulated by the Monte-Carlo method (Lugli et al. 1992). The results given for
51 Å wide GaAs quantum wells in Fig. 22b reproduce the exerimentally observed
faster decay of the AlAs IF mode compared to the GaAs IF mode. The decay of the
AlAs IF mode was also measured as a function of the GaAs well thickness (Ruf et al.
1993; Tsen 1993). The decay rate decreases with increase in well thickness. This
decrease is theoretically well described if only phonons with a limited range of
wavevectors qk centered around qk = 6 � 107 cm�1 is assumed to be sampled in
Raman scattering (Tsen 1993).

2.2 Exciton Kinetics

The exciton is a two-particle system consisting of an electron and a hole. Their
charges give rise to an electric dipole moment, and the excitation of an exciton
ensemble can produce a macroscopic polarization P. When excitons are excited by a
laser beam with field F(q, ω) the resultant exciton polarization-wave has a well-

200 400 600 800 10000

400

800

1200

1600

2000

Delay time (fs)
T e

, T
q 

 (K
)

Te

Tq

GaAs

Fig. 21 Effective electron
(Te) and phonon (Tq)
temperature of GaAs
calculated as a function of
time delay after excitation by
a fs laser pulse. Intervalley
scattering of excited electrons
has been included in the
calculation (After Kim and Yu
1991)

2 Phonon and Exciton Kinetics 1237



defined energy and wavevector. This electric-dipole wave radiates in turn an elec-
tromagnetic wave; the exciton and the photon fields are hence coupled to form the
exciton polariton introduced in ▶Sect. 1.3 of chapter “Excitons”. The subtle nature
of exciton-polaritons complicates their relaxation.

Free excitons in semiconductors can recombine radiatively only close to the
center of the Brillouin zone due to momentum conservation. The dispersion curve
of a photon is given by

E ¼ hν ¼ ℏ2πν ¼ ℏck=nr, (32)

where k is the (small) photon wavevector and nr is the refractive index. The dispersion
of an exciton with mass M = mn + mp and kinetic energy E = ℏ2K2/(2M) reads

E ¼ Eg � EB,X þ ℏ2K2= 2Mð Þ; (33)

here K is the wavevector of the exciton and EB,X is the binding energy of the exciton
in the ground state. These dispersion curves intersect at a wavevector K0 given by

Eg � EB,X ¼ ℏck=nr � ℏ2K2
0= 2Mð Þ: (34)

The degeneracy of the photon and exciton energies is removed by the exciton-
photon interaction, yielding the dispersion of the coupled quasi-particle excitonic
polariton described in▶ Sect. 1.3 of chapter “Excitons”. There are several polariton
branches, and depending on the wavevector the polariton has a more excitonic or
photonic character. Radiative recombination within the exciton-polariton picture
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means the conversion of the exciton-polariton near the sample surface to a photon
which exits to the outside of the semiconductor.

If excitons are nonresonantly created by hot carriers, inelastic scattering processes
are required to obtain radiative recombination with a wavevector near the center of
the Brillouin zone. In bulk semiconductors such scattering is provided by phonons,
but also by impurities or surfaces. The exciton dynamics in bulk semiconductors
differs from that in low-dimensional structures of the same material. Moreover, the
processes depend on excitation energy (resonant or nonresonant), excitation density,
and lattice temperature. We first consider bulk excitons and discuss quantum-well
excitons in Sect. 2.2.2; the spin dynamics is discussed separately in Sect. 3.

2.2.1 Dynamics of Bulk Excitons
Resonant Excitation The experimental study of free excitons requires generally
samples with very low defect densities to prevent the formation of bound excitons,5

since usually free excitons are rapidly trapped by impurities, where they recombine
with a short lifetime of typically 0.5 or 1 ns for donor- or acceptor-bound excitons
(Henry and Nassau 1970).

We focus on GaAs with an exciton binding energy of �3.6 meV and an exciton
Bohr-radius of �155 Å. In ultrapure GaAs recombination paths of bound excitons
can be saturated; in addition, resonant excitation into the 1S or 2S state is applied to
directly address the creation and recombination of free excitons. The photo-
luminescence decay then yields a direct measure of the radiative lifetime T1 of free
excitons of about 3.3 ns at 1.4 K, increasing to 10 ns at 10 K, as shown in Fig. 23.
This corresponds to an oscillator strength of nearly unity, indicating an oscillator
strength per exciton volume rather than per unit cell volume (t’Hooft et al. 1987).
Such lifetimes of free excitons can be explained by assuming a conversion of the
originally generated exciton-like polaritons into photon-like polaritons via polariton
– acoustic-phonon scattering and consequent recombination (Rappel et al. 1988).

The dephasing of the coherent macroscopic polarization introduced by the exci-
tation on an ultrashort time scale is not resolved in Fig. 23a. A dephasing time T2 of
7 ps was measured in GaAs, corresponding to a homogeneous Lorentzian linewidth
of Γ = (h/e)(2/T2) = 0.18 meV (Schultheis et al. 1986). The spectral width of
ultrashort laser pulses may be much larger, e.g., 20 meV for a 100 fs pulse, leading to
different population and polarization decay within and outside the exciton linewidth.
Dephasing is almost exclusively studied with quantum wells and discussed in Sect.
2.2.2.
Nonresonant Excitation The dynamics for nonresonant excitation of excitons
differs substantially from that for resonant excitation discussed above. Nonresonant

5The probability of finding an impurity within the volume of the exciton is proportional to the
number of unit cells in the excitonic volume (aX/a)

3. If impurities are located in the volume of
excitons, only bound-exciton recombination is observed. For experiments with GaAs high-purity
thick epitaxial layers are used with a residual impurity concentration on the order of only 1012 cm�3,
additionally clad by AlGaAs barriers to prevent outdiffusion and surface recombination of optically
excited excitons.
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excitation into continuum band states creates in a first stage hot carriers, which
thermalize and cool down, accompanied by the formation of nonthermal excitons.
Carrier cooling initially produces optical phonons, followed by the emission of
acoustic phonons at lower carrier temperature. In a second stage the exciton ensem-
ble thermalizes by mutual interaction and by quasi-elastic interaction with acoustic
phonons, until the excitons eventually cool to the range of the lattice temperature due
to inelastic acoustic-phonon interaction.

Relaxation after nonresonant optical excitation of excitons in pure bulk GaAs is
slow and leads to a pronounced rise time of the exciton luminescence on the order of
1 ns, which is not observed with resonant excitation; the subsequent decay time is
similar to that observed with resonant excitation (Elsaesser et al. 1996; Gurioli et al.
1998); see Fig. 24. The long PL rise time was modeled by Monte-Carlo simulation
with a set of coupled Boltzmann equations for electrons, holes, and excitons, and
was assigned to the exciton relaxation to radiative states via acoustic-phonon
emission. Studies at higher lattice temperature (kT > EB,X) or high excitation
densities (>1015 cm�3 in bulk GaAs) indicate that the dynamics is dominated by
coexisting contributions of exciton and electron-hole pair recombination and relax-
ation (Amo et al. 2006).

PL studies provided only recently clear evidence that the long-discussed slow rise
time and the power-dependent decay time originate from a time-dependent balance
between free excitons and the uncorrelated electron-hole plasma. Beck et al. (2016)
monitored the second LO-phonon replica of the exciton recombination instead of the
zero-phonon line; the strict K-vector selection rule of radiative relaxation only close
to the Brillouin zone center is fully relaxed for this emission, because wavevectors of
two LO phonons can always add up such that they compensate for the center-of-
mass momentum of the recombining exciton (Segall and Mahan 1968). Thereby
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detecting a signal of the total free-exciton density the rather slow buildup of the free-
exciton population was measured.

The balance between the population of free excitons and that of the uncorrelated
electron-hole plasma is described by the Saha equation

np

nX
¼ kTX

2πℏ2

� �3=2 mnmp

M

� 3=2

exp
EB,X

kTX

� �
, (35)

where nX, TX, EB,X, and M are respectively the density, temperature, binding energy,
and mass of the free excitons. The time-dependent fraction of free excitons fX = nX/n0
in a photo-generated population of carriers with a total electron-hole pair density n0
can be determined from Eq. 35 by the condition

n ¼ p ¼ 1� fXð Þn0: (36)

The exciton fraction fX following from Eq. 35 is given in the plot Fig. 25 for
various total carrier densities n0 and exciton temperatures TX. A high density of
photo-generated carriers n0 produces a high density of excitons particularly at low
exciton temperatures. At elevated exciton temperature thermal breakup of free
excitons into pairs of unbound carriers leads to a decrease of the exciton population.
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The modeled traces for the cooling of excitons shown in Fig. 25 indicate that the
exciton ensemble does not attain the lattice temperature TL= 5 K even for long delay
times (Beck et al. 2016). Since only the subset of excitons at K ffi 0 recombines
radiatively, low-energy excitons are selectively removed from the entire ensemble
and the leftover exciton population has an increased kinetic energy distribution; such
recombination heating compensates the cooling rate resulting from acoustic-phonon
emission. This effect is potentially detrimental for creating excitonic Bose-Einstein
condensates, which require ultracold free-exciton ensembles (▶ Sect. 3.2 of chapter
“Equilibrium Statistics of Carriers”).

2.2.2 Dynamics of Quantum-Well Excitons
The interaction of excitons confined in a quantum well (QW) with electromagnetic
radiation leads to two kind of modes, radiative polariton modes and surface polariton
modes. The latter are stationary modes like those of bulk polaritons, but decay
exponentially outside the well; they are only excited with special techniques. Most
studies focus on the radiative modes.

Radiative modes are not stationary states of the QW system. Unlike bulk modes,
which after nonresonant excitation need the interaction with phonons or defects for
radiative recombination, radiative polariton modes of quantum wells have a finite
intrinsic recombination rate. This effect originates from a coupling of radiative QW
polaritons to a photon mode for an in-plane momentum (parallel to the interfaces)
Kk < K0, with the momentum K0 of the crossing point given by Eq. 34 (Hanamura
1988). In a quantum well, the absorption of an incident photon creates an exciton
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with well-defined Kk, which is a good quantum number. In absence of scattering,
such excitons can only radiate in the direction of transmission or reflection.

In past decades, most investigations on the recombination dynamics were
performed applying time-resolved luminescence or optical pump-and-probe tech-
niques; the recently available sources for terahertz radiation (see, e.g., ▶ Sect. 2.3.2
of chapter “Carrier Transport in Low-Dimensional Semiconductors”) are meanwhile
a valuable additional tool for such studies (Ulbricht et al. 2017). Optical-pump
terahertz-probe experiments yield both real and imaginary parts of transient response
functions. Terahertz radiation can probe intraexcitonic transitions largely indepen-
dent of the momentum K, independent of the interband dipole moment; since such a
probe is also sensitive to free carriers, i.e., unbound e-h pairs, the complex dielectric
function derived from the terahertz response comprises both intraexcitonic and
Drude features. A description in terms of a two-component dielectric function
provides access to the transient density of both excitons and unbound e-h pairs
(Kaindl et al. 2009).

The study of intrinsic relaxation mechanisms requires QW samples with well-
defined interfaces to the barriers. Such samples have a basically homogenous
linewidth of excitonic emission and a negligible Stokes shift between absorption
and emission spectra.6 Optical-pump terahertz-probe was used to probe transitions
between the 1S and higher-energy exciton or continuum levels of either resonantly or
nonresonantly optically excited excitons.
Resonant Excitation We consider results of the transient terahertz response7 after
resonant excitation at the 1S–heavy-hole exciton (Kaindl et al. 2009). The studied
excitons in a GaAs/Al0.3Ga0.7As MQW sample with 14 nm wide wells and 10 nm
thick barriers were optically excited at 1.540 eV and probed by 7 meV THz
excitation into the 2P level; the dielectric function comprising excitonic and free-
carrier signatures was derived from the Fourier-transformed transmitted THz
response. The density nX of two-dimensional excitons derived from the fitted
excitonic and Drude models is shown in Fig. 26a (dots). We observe the fast rise
at zero time delay within the coherent regime and the long decay of the incoherent
exciton population, described by an exponential decay (dashed line). The incoherent
decay agrees well with time-resolved PL measurements recorded with a streak
camera (solid line); deviations at the coherent regime shortly after excitation are
attributed to insufficient suppression of perturbing effects.

The measured decay of �1 ns is quite long. The exciton binding energy in a 2D
well is expected to be significantly larger than in 3D bulk; see ▶Eq. 27 of chapter
“Excitons”. The 2D exciton Bohr radius is consequently smaller and the electron-
hole overlap larger, leading to an increased oscillator strength and faster decay

6QW samples with rough interfaces exhibit a large Stokes shift due to fluctuation in the well width.
Exciton relaxation to Kk= 0 is then accompanied by the relaxation of excitons from narrow well
regions to regions of larger well width. Luminescence intensity, energy, and shape consequently
vary during relaxation in a way depending on the particular sample.
7In this study the THz radiation was generated from a part of the pump pulse by optical rectification
(▶ Sect. 3.1.3 of chapter “Interaction of Light with Solids”) in a ZnTe crystal.
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(Andreani and Pasquarello 1990; Citrin 1993). The quite slow decay is assigned to
the large well width and the high exciton density.

At increased lattice temperature the resonantly excited excitons are thermally
ionized and unbound e-h pairs are generated, leaving a fraction fX after pulse
excitation. The temporal dynamics of fX obtained from the dielectric function
derived from the THz response for various lattice temperatures shown in Fig. 27a
is well described by exponential fits with shorter time constants at higher tempera-
ture. The temperature dependence fX(T ) agrees with a Boltzmann quasithermal
equilibrium between excitons and e-h pairs given by the Saha model for a total
pair density near 2� 1010 cm�2 and long delay times after pulse excitation, showing
the carrier cooling-dynamics (Fig. 27b).
Nonresonant Excitation After nonresonant pulse excitation the exciton lumines-
cence given in Fig. 26b displays a slow rise with a maximum 1000 ps after
excitation. The lack of the fast exciton formation indicates the dominant initial
population of states with high momenta K. The figure shows for the given excitation
density an initial exciton fraction of fX ffi 40%, followed by a slower binding of e-h
pairs into excitons within several 100 ps and the eventual decay due to
recombination.
Cavity Effects on Dynamics The relaxation dynamics of excitons, which are
confined in low-dimensinal semiconductors, is substantially altered if the optical
density of states in the environment is modified by an optical cavity, as pointed out in
▶ Sect. 2.2 of chapter “Interaction of Light with Solids”. When the energy of the
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spontaneous emission lies within the optical bandgap of the cavity, the radiation can
be suppressed; on the other hand the oscillator strength can be enhanced for a
resonance to a cavity mode (Purcell effect). In addition, for a strong coupling
between cavity mode and the embedded emitter an emitted photon can be reabsorbed
and reemitted, giving rise to Rabi oscillations. For a review, see Yamamoto
et al. (2000).

3 Relaxation of the Spin Momentum

When a photon creates an electron and a hole in a direct transition, the total spin and
angular momentum of these two carriers equals the angular momentum of the
absorbed photon. In right- or left-polarized light, the photons have a projection of
their angular momentum in the direction of their propagation of +ℏ or �ℏ, respec-
tively.8 This momentum is distributed between the electron and the hole, according
to the selection rules within the band structure of the given semiconductor. The
coherently aligned orientations of angular or spin momentum of the created carriers
usually relax rapidly due to a variety of processes. Spin relaxation can occur for
several reasons:

• Elliot-Yafet mechanism: momentum relaxation during electron scattering through
spin-orbit coupling; this mechanism is strong in semiconductors with a small
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8Linearly polarized photons are a superposition of these two states.
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direct bandgap energy, large spin-orbit splitting, and high hole concentration
(Elliot 1954; Yafet 1963).

• Dyakonov-Perel mechanism: relaxation between scattering events through a
momentum-dependent spin precession with an effective Larmor frequency
corresponding to the spin splitting of the conduction band; this mechanism is
effective on electrons in noncentrosymmetric semiconductors like III-Vand II-VI
compounds (not in Si, Ge), particularly at high temperature (Dyakonov and Perel
1971, 1972).

• Bir-Aronov-Pikus mechanism: exchange interaction between electrons and an
unpolarized population of holes; the mechanism contributes to spin relaxation
particularly in highly doped semiconductors (Bir et al. 1976).

• Coupling of the electronic spin to the spins of lattice nuclei (Dyakonov and Perel
1984).

• Reabsorption of recombination luminescence (Kleinman and Miller 1981).

For a review, see Pikus and Titkov (1984) and Dyakonov (2008).
The relaxation times of coherent spin states are rather short, when the coupling to

other degrees of freedom listed above is strong. Observation of the time evolution of
such randomization may employ diffraction on a bleached-out grating, time-resolved
Faraday rotation (transmission) or magneto-optical Kerr rotation (reflection) (see
Baumberg et al. 1994; Zheludev et al. 1994; Awschalom and Samarth 2002) or four-
wave mixing, in which nonlinear interaction between pump and test beams creates
additional photons (Lyon 1986; Leo 1993). On the other hand, if the spin states are
well separated from other degrees of freedom (e.g., the spin of an electron at a single
defect), relaxation times can be rather long.

We focus on the dynamics of spin relaxation, introducing the Hanle effect as a
means to measure the decoherence time, and then discuss a few examples for spin
relaxation of single carriers and of excitons in semiconductors.

3.1 Measurement of Spin Relaxation

Spin-polarized conduction-band electrons can efficiently be generated by optical
excitation with circularly polarized light of above-bandgap energy. In zincblende
semiconductors the application of right (σ+) circular light along the x direction
generates preferentially electrons with spin sx = �1/2 (in units of ℏ), because the
dipole interband-transition probability from heavy holes ( jhh = �3/2 ! sx = �1/2)
is three times that from light holes ( jlh = �1/2 ! sx = +1/2); see Dyakonov and
Perel (1984). Due to spin-orbit coupling the holes lose their spin-polarization
generally rapidly,9 in contrast to electrons (Sham 1993). The fraction of photo-

9For bulk GaAs a spin-relaxation time of 110 fs was measured for heavy holes (Hilton and Tang
2002).
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excited carriers, which have not lost their original spin orientation, will cause a
circularly polarized luminescence when recombining (Parsons 1969); thereby the
spin-relaxation time can be extracted from the degree of polarization, when the
recombination time is known and exponential decay of recombination and spin
relaxation is assumed.

The method is improved by applying an external magnetic field B perpendicular
to the direction of the excitation, which coherently aligns the spins of the electrons;
the spins then perform Larmor precessions in a plane perpendicular to the B axis; see
Fig. 28. The dependence of the luminescence on a transverse magnetic field is
known from atoms as the Hanle effect (Hanle 1924) and is also observed in semi-
conductors (Lampel 1974). The precessions cause an additional depolarization of the
luminescence, which now depends on the spin-relaxation time (τs), the electron-
recombination time (τn), and the Larmor frequency ωL; when the polarization has a
Lorentzian dependence on |B|, then two of the three quantities can be determined if
one is independently measured (Snelling et al. 1991).

When the magnetic field is perpendicular to the exciting light beam, i.e., B ⊥ s0
(the initial spin), the component of the spin in beam direction (x) is given by

sx Bð Þ ¼ s0 cosωLτ with ωL ¼ μB gB=ℏ, (37)

if all electrons in a photo-excited ensemble have approximately the same descent
time τ; μB is the Bohr magneton,10 and g is the Landé factor. The value of τ and
hence sx(B) determines the polarization of the luminescence. The average of the sx
component depends on the spin lifetime, i.e., what fraction of a Larmor revolution or
how many revolutions can be completed before spin relaxation (τs) or electron
recombination (τn) occurs:

τ�1 ¼ τ�1
n þ τ�1

s : (38)

Consequently, we obtain for the component of the electron spin

sx Bð Þ ¼ sx B ¼ 0ð Þ
1þ ωLτð Þ2 , with sx B ¼ 0ð Þ ¼ s0

1þ τn=τs
: (39)

Since the degree of circular polarization ρ of the luminescence is equal to the
component of the average spin in the direction of the exciting beam, we can obtain
the electron lifetime from Eqs. 37 and 39 as

10The Larmor frequency is equivalent to the cyclotron frequency for free electrons, with ωc = (2/g)μL
and g as the Landé factor (g factor), which is given for isolated atoms by▶Eq. 4 of chapter “Magnetic
Semiconductors”; for electrons in a semiconductor the g factor is influenced by the spin-orbit splitting of
the valence band, and can have substantially different values – see in ▶ chapter “Carriers in Magnetic
Fields and Temperature Gradients”, Sect. 2.2 and ▶Eq. 53.
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τn ¼ ρ0
ρ B ¼ 0ð Þ

ℏ
gμBB1=2

, (40)

and the spin-relaxation time as

τs ¼ ρ0
ρ0 � ρ B ¼ 0ð Þ

ℏ
gμBB1=2

, (41)

where B1/2 is the value of the magnetic induction at which the degree of polarization
is reduced to one half of its original value at B = 0, and with the degree of circular
polarization under σ+ excitation

ρ ¼ I σþð Þ � I σ�ð Þ
I σþð Þ þ I σ�ð Þ ; (42)

here I(σ+) and I(σ�) are the intensities of the right and left polarized luminescence.
This is an interesting example of obtaining important relaxation times from steady-
state experiments. The Hanle effect has been used to study the spin relaxation of
electrons in a variety of semiconductors (Dyakonov and Perel 1984).

3.2 Spin-Relaxation of Free Electrons in Bulk Semiconductors

Relaxation in p-Type Semiconductors. When exciting a p-type semiconductor
with circularly polarized light, practically all conduction-band electrons are created
by this light. By measuring the degree of circular polarization of the band-to-band
(edge) luminescence, the average spin of these electrons in the conduction band is
measured. In a cubic semiconductor, the maximum value of the degree of circular
polarization of this luminescence in the absence of electron-spin relaxation for
transitions between a Γ8 valence band (heavy and light holes) and the Γ7 conduction

excitation

detection
B

0

1/4 2 /π ωL

2/4 2 /π ωL

3/4 2 /π ωL

t =Fig. 28 Schematic
illustrating the circular
polarizarion of excitation and
detection beams (blue arrows)
to measure spin dephasing,
and four stages of the
precession of a spin (red
arrows) in an externally
applied magnetic field
B (green arrow)

1248 Dynamic Processes



band is equal to the initial average value of electron spin in such transitions (see
Dyakonov and Perel 1984).

ρmax ¼ 0:25: (43)

With spin relaxation, the degree of circular polarization is reduced to

ρ ¼ ρ0
1

1þ τn=τs
, where ρ0 ¼ ρmax: (44)

The measured electron lifetime and spin-relaxation time in the p-type zincblende
semiconductors AlGaAs and GaSb are shown in Fig. 29 as a function of the
temperature and acceptor density (at 4.2 K). These relaxation times vary widely,
depending on the type of the most active relaxation mechanism, and lie typically
between 10�8 and 10�11 s.

Spin relaxation can be used to show that in highly doped degenerate p-type
semiconductors the interaction of electrons with thermalized, nonpolarized holes
dominate: here, the spin relaxation has a temperature dependence consistent with the
theory of electron-hole relaxation (Pikus and Titkov 1984).
Relaxation in n-Type Semiconductors Long spin-relaxation times up to 200 ns
were observed in bulk n-type GaAs at low-temperatures, where electrons are bound
to their donor dopants (Dzhioev et al. 2002a). At lowest doping levels the spin
lifetime is limited by stochastic precession of electron spins in random magnetic
fields created by the spins of lattice nuclei. The isolated donor-bound electrons
interact independently with a large number of nuclei (�105), which create a “hyper-
fine” field with a mean-squared fluctuation corresponding to the effect of �

ffiffiffiffiffiffiffi
105

p
ffi 300 spins, amounting in GaAs to a magnetic field of �4.3 kA/m (Dzhioev et al.
2002b). Larmor precession in this fluctuating field relaxes the spin. At higher donor
concentration (still in the low-doping regime) the electron wavefunctions start to
overlap, resulting in a dynamical averaging of the hyperfine interaction and conse-
quently to a smaller effect of nuclear-spin fluctuations; the spin-relaxation time
hence increases; see Fig. 30.

When at higher donor concentrations the overlap of electron wavefunctions
becomes stronger, the anisotropic exchange interaction couples electrons of different
donors which are randomly distributed. The related distribution of spin-rotation axes
leads to the relaxation of the total spin of the donor-bound electrons and a conse-
quent decrease of the relaxation time for increased doping.

At high donor concentrations ND exceeding 2� 1016 cm�3 GaAs gets degenerate
producing delocalized electrons. Due to Fermi statistics only electrons at the Fermi
edge within the conduction band have a nonzero average spin, as observed in the
polarization of the photoluminescence (Dzhioev et al. 2002a). In this metallic region
an increase of the donor and related electron concentration leads to an increase of the
Fermi wavevector, and consequently to a stronger effect of the Dyakonov-Perel
mechanism decreasing the spin-relaxation time (Fig. 30).
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3.3 Spin-Relaxation of Free Carriers and Excitons in
Quantum Wells

The spin-relaxation in two-dimensional systems differs from that of bulk semiconduc-
tors. Localization in one direction alters the wavefunctions and energies of carriers and
the related transitions. In addition, quantum wells are generally strained; in cubic
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semiconductors the degeneracy of heavy and light holes at the zone center is conse-
quently lifted, even if the effective masses were equal. Usually the quantum well
(QW) is compressively strained, yielding an upper heavy-hole and a lower light-hole
valence band (in the electron coordinate system). Localization effects due to interface
roughness of thickness and composition fluctuations add additional constraints.

Using doped quantum wells by applying either p-type or n-type modulation
doping, the spin-relaxation dynamics of electrons and holes can be studied separately.
The dynamics of excitons is investigated using undoped quantum wells; often GaAs
(multi-) QWs clad by Al0.3Ga0.7As barriers are used, since this model system can be
fabricated with exceptionally sharp interfaces preventing unintended lateral localiza-
tion. For reviews see Viña (1999), Harley (2008), and Amand and Marie (2008).
Spin-Relaxation of Electrons The optical low-temperature spectra of a modulation-
doped MQW sample with 6 nm wide p-type quantum wells given in Fig. 31 show a
strong circular σ+ luminescence for excitationwith σ+ light (I+ curve) near the Fermi edge
marked A. The σ+ excitation near energy A creates heavy holes with �3=2 spin and
electrons with�1=2 spin. The optically created holes (excitation density is 2� 1010 cm�2)
are negligible compared to the holes produced by doping (4 � 1011 cm�2); the polari-
zation ρ of the band-to-band luminescence given by Eq. 41 hence reflects the spin of the
electrons (minority carriers), and the decay of ρ their spin relaxation. A purely exponen-
tial decay with a lifetime of 150 ps for σ+excitation at energy Awas observed for this
sample (Damen et al. 1991a). This is about four times shorter than in bulk p-typeGaAs of
this doping level; the Bir-Aronov-Pikus mechanism was assigned to this reduction.

At energy B there is no spin polarization ρ observed, i.e., I(σ+) = I(σ�) in Eq. 41.
The reason is a nearly equal population of spin þ1=2 and �1=2 electrons at this light-
hole exciton excitation energy.
Spin-Relaxation of Holes The investigation of the hole-spin relaxation is analogous
to that for electrons described above. The optical low-temperature spectra of a single
modulation-doped n-type 7.5 nm wide GaAs/AlGaAs QW implemented in a pin
diode are given in Fig. 32 (Roussignol et al. 1992). The diode bias allows for an
independent control of the electron sheet density in the quantum well. The excitation
spectrum (PLE) of the band-to-band emission shows resonances of the e1-hh1, e2-

PLE I 
+

PLE Iρ

D
eg

re
e 

of
 p

ol
ar

is
at

io
n 

ρ

PL
 in

te
ns

ity
  (

ar
b.

 u
ni

ts
)

0.1

0.2

0.3

0.4

0.5

0.6
A B C

1.56 1.58 1.60 1.62 1.64 1.66
Energy  (eV)

p-GaAs/AlGaAs MQW
d = 6 nm, T = 10 K

PL

_

Fig. 31 σ+ Photoluminescence
(PL), PL excitation (PLE) with
σ+ light (I+) or σ� light (I�), and
polarization (ρ) spectra of a
p-type GaAs/AlGaAs
QW. Energy A refers to the
Fermi edge of the highly doped
sample, B indicates the energy
of the light-hole exciton; in the
range of energy C the heavy-
hole exciton dominates (After
Viña et al. 1992).

3 Relaxation of the Spin Momentum 1251



hh1, and e1-lh1 transitions between light (lh) and heavy holes (hh) in the ground state
and electrons (e) in the ground or excited states. The two heavy-hole resonances
appear also in the cw polarization ρcw, while a steep decrease is observed at the e1-lh1
light-hole transition. Optical σ+ excitation at the e1-hh1 resonance creates spin �1=2
electrons and �3=2 heavy holes with a wavevector equals the Fermi wavevector,
kk = kF, since conduction-band states with smaller wavevectors are occupied in the
2D electron gas; no light holes are created at this energy. The optically created
electrons are negligible compared to those produced by doping, so that the polari-
zation ρ reflects the spin of the minority holes, and the decay of ρ their spin
relaxation. In pulsed measurements the observed initial polarization ρpulse(t = 0) is
similar to the steady-state polarization ρcw. These measurements yield a hole-spin
relaxation time τ holeð Þ

s of 1 ns, in the investigated range being independent on the
electron density; this time is much longer than the bias-dependent recombination
time τr (300 . . . 100 ps). Finite hole-relaxation times, albeit mostly smaller, were also
reported from other studies on QWs (typically on the order of a few tens of
picoseconds; see Bar-Ad and Bar-Joseph 1992; Koudinov et al. 2016). These
relaxation times are in clear contrast to the sub-picosecond hole-spin relaxation in
cubic bulk semiconductors with their degenerate valence band in the zone center.

At increased electron density the polarization ρ decreases substantially. This is
due to the creation of heavy holes with increasingly larger wavevector kk at higher
electron density, while always detecting the hole population at kk ffi 0; a significant
fraction of the polarization is hence lost by scattering during relaxation to the band
edge (Roussignol et al. 1992). In addition, spin states in the valence band are
generally an admixture of various spin states for k 6¼ 0; any momentum or energy
relaxation will hence relax the hole spins.
Spin-Relaxation of Excitons Spin relaxation of an exciton is affected by the spin
relaxation of both, the electron and the hole, which are mutually bound by Coulomb
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interaction. For weak electron-hole interaction, electron and hole basically conserve
their individual relaxation times. Since spin flip of both particles is required for
observing an optically active (bright) exciton with total angular momentum 〈Jz =
� 1|, the particle with slower spin relaxation – typically the electron – determines

the measured spin-relaxation time (indirect mechanism with sequential spin flips). In
case of strong electron-hole interaction, both electron and hole flip simultaneously
(direct mechanism), yielding an average relaxation time between that of the faster
and of the slower particle.

For resonant excitation a slower spin-relaxation is observed than for nonresonant
excitation at the same exciton density (50 ps vs. �10 ps; Damen et al. 1991b). This
effect is assigned to the nonresonant formation of excitons at large wavevectors Kk as
discussed in Sect. 2.2. Large Kk mean particularly large (heavy-) hole-wavevectors
due to their larger effective mass. These holes have a strong spin-orbit mixing,
leading to a high spin-relaxation rate. In contrast, excitons created resonantly have
wavevectors close to Kk = 0, and their holes have a weaker spin-orbit mixing.

Nonresonant excitation of GaAs/AlGaAs quantum wells shows that the spin-
relaxation time of excitons increases with increasing density, varying from 	 20 ps
for a sheet density of 5 � 108 cm�2 to 150 ps for 1 � 1010 cm�2 (Damen et al.
1991a, b; Viña et al. 1992). The increase of the relaxation time is due to the decrease
of exciton-binding energy at higher density and the related reduced overlap of the
electron and hole wavefunctions, leading to a reduced exchange interaction.

An additional lateral confinement of excitons creates quantum dots. Such zero-
dimensional structures may be formed from unintentional lateral inhomogeneities of a
quantum well, leading to weakly confining interfacial quantum dots, or from fabri-
cated more strongly confining structures applying self-organization or other tech-
niques; see ▶Sect. 2.2.3 of chapter “The Structure of Semiconductors”. The discrete
energy spectrum as well as absence of translational motion of the particles and related
relaxation mechanisms leads to longer spin lifetimes than in 2D and 3D semiconduc-
tors. The lateral confinement increases the exchange interaction of electron and hole,
and leads thereby to a dependence of spin-relaxation times on the size of the confine-
ment potential. The effect is pronounced for strong lateral confinement. The relaxation
rates increase severely upon reduction in the dot size; for typical InAs/GaAs quantum
dots, numerical estimates range from hundreds of microseconds for large dots to few
tens of nanoseconds for small dots at low temperatures (Tsitsishvili and Kalt 2010;Wei
et al. 2014). Besides size also the shape and composition of the quantum dots has a
substantial influence, and experimental data show a large scatter; also a strong effect of
dark-exciton states is observed (Johansen et al. 2010). Details on the complex spin
dynamics of excitons are discussed in the review by Marie et al. (2008).

4 Summary

When any external parameter such as the temperature, an electric or magnetic field,
or the optical generation rate is changed as a function of time, carriers in the
semiconductor respond on this disturbance by a redistribution controlled by
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relaxation times. Relaxation times refer to elastic or inelastic scattering of carriers
with other carriers, with phonons, with defects, or with spin momenta, and span time
constants from femtoseconds up to geologic times.

When carriers are injected by a bias, their relaxation time is given by the carrier
lifetime within the band, and relates to a corresponding diffusion or drift length. The
lifetime of a carrier cloud depends on trapping, yielding an exponential decay of a
current pulse for a single type of trap and the more common dispersive decay
(usually following a power law) for a distribution of traps. When carriers are heated
– e.g., by intense light pulses – the energy exceeding the thermal energy is trans-
ferred from electrons to the lattice mostly by LO phonons, and from holes primarily
by TO phonons. At high optical excitation rates other coupling mechanisms become
operative, and involve plasmons for a rapid first cooling step before LO phonons
become dominant. The close interaction between electrons and holes in such a
plasma has an influence of cooling the hotter electron gas because of mn < mp.
Most of these fast processes are accessible either through ultrafast laser spectroscopy
in the sub-ps range using correlation techniques, or from the broadened spontaneous
luminescence signal. At very high carrier-generation rates and low lattice tempera-
ture, condensation into electron-hole droplets takes place, with droplet evaporation
into an exciton gas and exciton annihilation determining the two relaxation
mechanisms.

Optical phonons, excited directly by an IR light pulse (TO phonons) or
indirectly by fast electrons (LO phonons) or holes (TO phonons), relax their
momenta by elastic scattering with phonons in the same branch, or undergo an
energy relaxation by scattering with a decay into two acoustical phonons. Energy
relaxation of optical phonons can be measured by Raman spectroscopy, and is
typically on the order of 10 ps.

Free excitons, observed in bulk semiconductors of very high purity, recombine
radiatively only close to the center of the Brillouin zone. Resonant optical excitation
creates exciton-polaritons, which convert to photon-like polaritons by phonon scat-
tering before recombination. Nonresonant excitation creates nonthermal excitons via
hot carriers; the balance between excitons and the electron-hole plasma leads to a
slow rise time after pulsed excitation and an observed decay time depending on the
excitation density. In quantum wells optical excitation creates excitons with well-
defined in-plane wavevectors. Time constants of the radiative decay are usually
smaller than those of respective bulk excitons. Nonresonant pulse excitation creates
initially predominantly excitons with high momenta and leads to a slow rise time in
the PL given by the balance to uncorrelated electron-hole pairs.

The spin of electrons, holes, and electron-hole pairs and their orbital momenta are
coherently aligned by excitation in polarized light; the photon angular momentum is
conserved by the excited electron-hole pair. With subsequent scattering, relaxation
occurs, which can be detected by the degree of polarization of the ensuing recom-
bination luminescence. Orbital and spin relaxation have short relaxation times,
typically in the sub-ns range and decreasing at higher temperature and on doping,
since they are sensitive to any of the various scattering events and wavefunction
overlap. Holes in semiconductors with degenerate valence bands in the zone center
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have particularly short relaxation times in the sub-ps range; lifting this degeneracy in
quantum wells yields larger times on the order of some tens of ps. Spin relaxation of
an exciton occurs either indirectly with a sequential spin flip of electron and hole or
directly by a simultaneous flip; for weak electron-hole interaction the relaxation time
is controlled by the slower particle, while an average relaxation time in the direct
mechanism results for strong interaction.
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Appendix: High-Field Domains

Karl W. Böer

Abstract
In regimes of over-linear negative differential conductivity of a bulk semiconductor,
the field distribution must get inhomogeneous and divides into two parts: a domain
with low conductivity and a high field, and the other part with a low field; this field
distribution can be stationary or nonstationary. Both regions are joined by a narrow
layer of only a few Debye width. The high-field domain can be imaged by applying
the Franz-Keldysh effect. CdS has proved an ideal model semiconductor, where high-
field domains can sweep the bulk free of space charges and connect thework functions
of cathode and anode. The electrode-adjacent high field can set CdS into different
thermodynamic stable states being n- or p-type, depending on whether the domain is
attached to the cathode or anode. Within the domains, the crystal is free of space
charges and permits to investigate sharp electronic transitions to defect levels around
the quasi-Fermi levels without the interference from broadening electric fields.

Inhomogeneous Field or Current Distributions

Homogeneously doped semiconductors develop inhomogeneous distributions of
carrier densities when this density at the metal-semiconductor boundary deviates
from the density in the semiconductor bulk. Then, a space-charge layer is formed
which creates inhomogeneous field and potential distributions near the electrode.
When the deviation of the boundary electron density nc from the bulk density n10 is
significant, it influences the current through the semiconductor, reducing it by
creating a Schottky barrier when nc � n10, and increasing it via carrier injection
when nc � n10.

A different kind of inhomogeneous distribution of the electric field or the current
density may occur in the regime of nonlinear transport far from thermodynamic
equilibrium. In that case, the spatial patterns arise in a self-organized way, even in
homogeneous semiconductors. Two types of nonlinear spatial patterns that are
associated with specific field or current density inhomogeneities, respectively, are
the topic of this appendix.
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We will first ignore the boundary condition and deal with the semiconductor
bulk. Close to thermodynamic equilibrium – that is, at sufficiently low bias voltage,
the current density j as a function of the local electric field F in a homogeneous
semiconductor is linear (Ohm’s law), but at larger bias the j(F) relation will
generally become nonlinear and may display a regime of negative differential
conductivity

σdiff ¼ dj

dF
< 0: (A:1)

Thus, the current density decreases with increasing field and vice versa, which in
general corresponds to an unstable situation. Here, the originally homogeneous field
and current density distributions may evolve into an inhomogeneous pattern,
referred to as a high-field domain sketched in Fig. A.1. The high-field domains
can be stationary, when they are attached to an electrode, or they can move from one
electrode to the other.

Negative Differential Conductivity

In bulk semiconductors, the drift-current density of electrons can generally be
written as

j ¼ en Fð Þ v Fð Þ: (A:2)

Here e is the electron charge, and n(F) and v(F) are the field-dependent electron
concentration and drift velocity, respectively. The differential conductivity, assum-
ing a homogeneous electric field, is expressed as

σdiff ¼ dj

dF
¼ e n

@v

@F
þ v

@n

@F

� �
: (A:3)

There are then two distinct ways to achieve σdiff< 0 – that is, negative differential
conductivity:

F

x

acFig. A.1 Top: Semiconductor
between anode a and cathode
c electrodes. Bottom: Electric
field distribution in a
semiconductor with a
cathode-adjacent high-field
domain
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1. dv/dF < 0, which corresponds to negative differential mobility (drift instability)
2. dn/dF < 0, which corresponds to negative differential carrier concentration

(generation-recombination instability)

We explore some typical example systems below.
Two important classes of negative differential conductivity (NDC) are described

by an N-shaped or an S-shaped j(F) characteristic and are denoted by NNDC and
SNDC, respectively (see Fig. A.2). However, more complicated forms like Z-shaped,
loopshaped, or disconnected characteristics are also possible and may be treated
analogously (Wacker and Schöll 1995). NNDC and SNDC are associated with
voltage- or current-controlled instabilities, respectively. In the NNDC case the
current density is a single-valued function of the field, but the field is multivalued:
the F( j) relation has three branches in a certain range of j. The SNDC case is
complementary in the sense that F and j are interchanged. This duality is in fact
far-reaching (Shaw et al. 1992).

The global current-voltage characteristic I(V ) of a semiconductor can, in princi-
ple, be calculated from the local j(F) relation by integrating the current density j over
the cross section A of the current flow

I ¼
ð
A

j da, (A:4)

and the electric field F over the length L of the sample

V ¼
ðL
0

F dx: (A:5)

Unlike the j(F) relation, the I(V ) characteristic is not only a property of the
semiconductor material, but also depends on the geometry, the boundary conditions,
and the contacts of the sample. Only for the idealized case of spatially homogeneous
states, the j(F) and the I(V ) characteristics are identical, up to rescaling. The I(V )
relation is said to display negative differential conductance if

j

F

a b
j

F

Fig. A.2 Typical current density-field characteristics that show a negative differential conductivity
range. (a) N-shaped characteristics leading to high-field domain formation. (b) S-shaped character-
istics leading to current filament formation
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dI

dV
< 0: (A:6)

In case of NNDC, the NDC branch is often but not always – depending upon
external circuit, contacts, and boundary conditions – unstable against the formation
of electric field domains, while in the SNDC case current filamentation generally
occurs (Ridley 1963). These primary self-organized spatial patterns may themselves
become unstable in secondary bifurcations leading to periodically or chaotically
breathing, rocking, moving, or spiking filaments or domains, or even solid-state
turbulence and spatiotemporal chaos (Schöll et al. 1998; Schöll 2001).

At this point, a word of warning is indicated. First, negative differential conduc-
tivity does not always imply instability of the steady state, and positive differential
conductivity does not always imply stability. For example, SNDC states can be
stabilized (and experimentally observed!) by a heavily loaded circuit, and, on the
other hand, the bifurcation of a self-sustained oscillation can occur on a j(F)
characteristic with positive differential conductivity. Second, there is no one-to-
one correspondence between SNDC and filaments or between NNDC and domains.
Finally, it is important to distinguish between the local j(F) characteristic and the
global I(V ) relation, which may exhibit negative differential conductance even if the
j(F) relations do not show NDC and vice versa (Schöll 2001).

Domains and filaments can be theoretically described as special nonuniform
solutions of the basic semiconductor transport-equations, subject to appropriate
boundary conditions. A linear stability analysis around the spatially homogeneous
steady state (singular point) for small space- and time-dependent fluctuations of the
electromagnetic field and the relevant transport variables (e.g., carrier concentrations
or charge densities) yields conditions for the onset of domain-type or filamentary
instabilities (Schöll 1987).

Domain Instability

The formation offield domains in a samplewithNNDC can be understood froma simple
argument. By way of example, we consider the case where the negative differential
conductivity results from negative differential mobility, as in the Gunn effect (Gunn
1963, 1964), so that a range of fields exists where dv/dF < 0. The case of negative
differential carrier concentration will be analyzed in Sect. Phase-Space Analysis below.

To illustrate the response of an NNDC element to a charge fluctuation, we
consider a uniform field with a domain of increased field in the center of the sample
as shown in Fig. A.3a. The charge distribution that produces this field is shown in
Fig. A.3b. There is a net accumulation of charge on the left side of the domain and a
depletion layer on the right. If we consider negatively charged carriers, the carriers
and hence the domain will be moving to the right (cathode at left, anode at right).

Assuming that the field within the domain is within the NDC range and the field
outside the domain is within the ohmic range, but close to the field of peak velocity,
then it is clear that the field fluctuation will initially grow with time. This happens
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because the higher upstream field in the center of the domain results in carriers
moving more slowly than those at the edges, where the field is lower. Charge will
therefore deplete on the right (leading) edge of the domain and accumulate at the left
(trailing) edge. This charge will add to what is already there, increasing the field in
the domain. If the element is in a resistive circuit, the increasing voltage across the
domain will cause the current to decrease in the circuit and lower the field outside the
domain. The field in the domain will continue to grow in the interior of the domain
and drop outside. Thus, an instability of the uniform field with respect to domain
formation results.

The constitutive equations in one spatial dimension are the carrier continuity-
equation, neglecting recombination processes,

@n x, tð Þ
@t

þ @

@x
n x, tð Þv Fð Þ � D

@n x, tð Þ
@x

� �
¼ 0 (A:7)

and Gauss’ law

@F x, tð Þ
@x

¼ e

e e0
n x, tð Þ � N0ð Þ, (A:8)

where eN0 is the negative uniform background charge density, and D is the diffusion
constant. Equations A.7 and A.8 can be combined by differentiating Eq. A.8 with
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Fig. A.3 (a) Electric field
profile, (b) carrier density
profile of a high-field Gunn
domain. The domain is
moving with velocity v in the
positive x direction
(schematic) (After Shaw et al.
1992)
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respect to time and substituting into Eq. A.7. Integration over x gives the total current
density j(t), which is composed of displacement current, drift, and diffusion contri-
butions, respectively:

e e0
@F x, tð Þ

@t
þ e n x, tð Þv Fð Þ � D

@n x, tð Þ
@x

� �
¼ j tð Þ, (A:9)

with the external current density j(t). Substituting Eq. A.8 into Eq. A.9 to eliminate
n yields the governing nonlinear transport equation

e e0
@F x, tð Þ

@t
þ v Fð Þ @F x, tð Þ

@x
� D

@2F x, tð Þ
@x2

� �
þ eN0 v Fð Þ ¼ j tð Þ: (A:10)

The stability of the uniform steady state F* can be tested by linearizing Eq. A.10
around F* for small space- and time-dependent fluctuations

δF x, tð Þ ¼ exp λtð Þ exp i kxð Þ: (A:11)

Substituting this ansatz into Eq. A.10 for fixed external current density
j determines the time increment λ for any given wave vector k – that is, the dispersion
relation

λ ¼ � 1

τM
� Dk2 � i k v F�ð Þ: (A:12)

Here the effective differential dielectric relaxation time τM � (eN0(dv/dF)/e e0)
�1

has been introduced. For negative differential mobility (dv/dF < 0), τM is negative,
and small fluctuations

δF x, tð Þ ¼ exp �t
1

τM
þ Dk2

� �� �
exp i k x� v tð Þð Þ (A:13)

grow in time for k2 < (D |τM|)
�1 – that is, for long wavelengths. Equation A.13

describes an undamped traveling wave propagating in the positive x direction with
velocity v0 = v(F*).

This instability leads to the bifurcation of moving field domains from the uniform
steady state, which depends, however, sensitively upon the sample length, the
boundary conditions at the cathode contact, and the external circuit (Shaw et al.
1979, 1992). A simple criterion for the onset of a moving field domain can be
derived from Eq. A.13 by neglecting diffusion and assuming that the linearization
remains valid throughout its transit across the element of length L. The growth at the
end of the transit – that is, after the transit time t = L/v0 – is then given by

G ¼ δF tð Þ
δF 0ð Þ ¼ exp

L

v0 τMj j
� �

¼ exp
N0 Le

dv

dF
e e0 v0

0
B@

1
CA: (A:14)
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Substantial growth, i.e., a moving domain instability, occurs if the exponent in
Eq. A.14 is larger than unity or

N0 L >
e e0 v0

e
dv

dF

: (A:15)

This is the N0L product stability-criterion for the Gunn effect derived by
McCumber and Chynoweth (1966) and by Kroemer (1968).

The fully developed field domains must be calculated from the full nonlinear
transport equation (Eq. A.10), subject to appropriate boundary conditions. A
simple visualization of the moving domain solution can be obtained by trans-
forming Eq. A.10 to the comoving frame x0 = x � ct, where c is the domain
velocity, yielding

e e0 v Fð Þ � cð Þ @F
@x0

� D
@2F

@x02

� �
þ eN0 v Fð Þ � v1ð Þ ¼ 0: (A:16)

Here j = eN0 v1 with v1 = v(F1) is the current density in the neutral material
outside the domain. The result can be written in the form of a “dynamic system” of
two first-order differential equations for F and n = (ee0/e)@F/@x + N0, where the
parameter corresponding to “time” is given by x0.

The topology of the solutions may be conveniently discussed in terms of a phase-
space analysis or field-of-directions analysis (Shaw et al. 1992), which gives
qualitative insight into the nature of the solutions and the effect of boundary
conditions. Such methods have been extensively used by Böer and Voss (1968a)
and Böer (1969) in the early investigations of Gunn domains and recombination
domains, and they will be reviewed in the next section.

Phase-Space Analysis

The analysis of (stationary) high-field domains can be performed by inserting the
field dependence of the relevant parameters (e.g., of the generation or recombination
rates) into the set of governing transport equations; the solutions then can be
obtained numerically.

Another type of analysis is suited to obtain more general information; it shows the
solution type more easily and can be used to obtain quantitative information in a
simple but satisfactory approximation. This analysis is known as field-of-directions
analysis or as phase-space analysis and can be used easily in a one-carrier model in
which the set of governing equations (transport, Poisson, and continuity equations)
may be written as1

1For an n-type semiconductor, and assuming p � n and jp � jn ffi j.

Appendix: High-Field Domains 1267
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eμn
� nF

� �
(A:17)

and

@F

@x
¼ e

e e0
pd � n� nað Þ: (A:18)

For definiteness we will assume first that the field dependence enters via reaction
kinetics and makes the carrier density n, the density of electrons in acceptors na, and
of holes in donors pd implicit functions of F.

The solution curves of interest are n(x) and F(x) and, derived from the latter, the
electron potential distribution Ψ n(x). Because Eqs. A.17 and A.18 are an autono-
mous system of differential equations that does not contain x explicitly, and fulfills
the Lipschitz conditions of having continuous partial derivatives with respect to
F and n, the solution curves can be projected into any nF plane, yielding a single-
valued curve. That is, through every point of the nF plane traverses one and only one
solution curve or every point in this plane uniquely defines one slope, except for
singular points or fixed points which are defined by

dF

dx
¼ dn

dx
� 0: (A:19)

Solutions cannot leave or enter singular points that represent solutions in which
n(x) = const and F(x) = const. One therefore concludes that no solutions can cross
each other in the entire nF plane.

When identifying the direction of increasing x from the cathode toward the
anode, one can attach to each point in the nF plane an arrow indicating this
direction as illustrated in Fig. A.4. This field of arrows is known as a field of
directions.

When the boundary values [n(x= 0) and F(x= 0)] are given, one can start from this
point and follow along the directions from point to point to obtain the solution curve
n(F). Because an x value is attached to every point in the nF plane, one finally obtains
the desired n(x) andF(x). Such a procedure seems to be tedious. However, with the help
of two auxiliary curves that can easily be identified, a simple method can be derived,
which permits immediate classification of the possible set of solution curves. These
auxiliary curves (null-isoclines) are those for which (Böer and Wilhelm 1963)

dF

dx
� 0, identified as n1 Fð Þ, (A:20)

and

dn

dx
� 0, identified as n2 Fð Þ, (A:21)

and are shown in Fig. A.5.
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The first curve, n1(F), is known as the quasi-neutrality curve because, following
the Poisson equation, the space charge vanishes for any point on this curve. It can be
crossed only vertically in the nF plane because, according to Eq. A.20, F remains
constant with changing x. If F changes in x, the n1(F) curve is the locus of field
extrema.

The second curve, n2(F), is known as the drift-current curve (see Eq. A.17), since
for any point on this curve the diffusion current vanishes. It is therefore also referred
to as diffusion-neutrality curve. This curve can only be crossed horizontally in the nF
plane because n remains constant with changing x according to Eq. A.21.

Below n1(F), one obtains
2 dF/dx < 0; above n1(F), one has dF/dx > 0, as seen

from Eq. A.18. In a similar fashion, one sees that dn/dx < 0 below and >0 above
n2(F). Therefore, the direction of any solution curve n(F) points into different
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Fig. A.4 Field of directions
computed for a typical
homogeneous semiconductor,
with the neutrality electron
density n1(F) of vanishing
space charge, and the drift-
current curve n2(F) of
vanishing diffusion current.
n1(F) and n2(F) divide the nF
plane into four quadrants I to
IV, which indicate by the
arrows the different signs of
dF/dx and dn/dx
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Fig. A.5 Symbolized field of
directions with quasi-
neutrality curve n1(F) and
drift-current curve n2(F); solid
arrows indicate the four
quadrants of possible
directions of the solution
curve. I indicates the singular
point; curves (1) and (2) show
typical solutions for a
Schottky barrier and an
injection contact, respectively

2Observe that the field F is negative here.
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quadrants below or above the quasi-neutrality and the drift-current curves, as
symbolized by the arrows3 in Fig. A.5. This figure also shows typical shapes for
the n1(F) and n2(F) curves.

The n1(F) curve shows the field dependence of the electron density under the
neutrality condition, that is, in the given one-carrier model n1(F) is the same as n(F)
in a homogeneous and space-charge-free semiconductor. It is constant for low fields
and usually increases at sufficiently high fields because of field excitation. With
optical carrier generation it may have an intermediate field range in which
n decreases with increasing F because of field quenching (Dussel and Böer 1970).
Such a decreasing branch is included in the example given in Fig. A.5.

The n2(F) curve is a hyperbola for a given j, as long as the mobility is field
independent. In the double logarithmic representation of Fig. A.5, it is given as a
straight line with a slope of �1. The crossing point of curves n1(F) and n2(F) is the
singular point I. Solution curves that are long compared to the Debye length must
approach this singular point. In the bulk of a semiconductor, which is usually several
orders of magnitude thicker than the Debye length, n(x) and F(x) change very little
with x; hence, the solution curve “approaches” the singular point. It should, how-
ever, be remembered that no solution can leave or cross a singular point. Thus, a
physically meaningful solution will always start or end in one of the quadrants, but
slightly removed from the singular point.

One value of the field-of-direction analysis lies in the fact that one can immedi-
ately identify what types of solutions are possible. These are given as curves 1 and
2 and are the only types possible as stationary solutions for a long (compared to the
Debye length) device.4

A typical solution curve for a Schottky barrier is shown as curve 1 in Fig. A.5. It
starts at the metal-semiconductor interface (x = 0) at a lower density nc and a higher
field Fc than in the bulk (given by the singular point) and follows the field of
directions (see Fig. A.4) toward the singular point I. Another solution is shown for
an injecting contact as curve 2 in Fig. A.5. It starts at a higher electron density and
consequently at a lower field at x = 0, and it also moves toward the singular point I.

From Fig. A.5 one sees that it is possible to approach the singular point I from the
second or fourth quadrants only; it is impossible to enter any other quadrants from
the first or third quadrant. Namely, crossing the n1(F) or n2(F) curve from the second
or fourth quadrant means irrevocably turning away from the singular point, yielding
physically meaningless solutions. In mathematical terms the singular point I is a
saddle point, i.e., it is impossible to circle it.

3The arrow in the upper right quadrant, for example, indicates that through any point in this
quadrant the solution curve must have a direction between 0� and 90�; this holds correspondingly
for the other quadrants.
4These solutions represent a device with one electrode. When including the other electrode one
must be careful with the signs in the transport equations which result in a reversal of the arrows in
the field of directions when approaching the second electrode; this reversal permits the traverse of
the projection of the solution curve in the opposite direction in part of the solution.
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We will now apply this field-of-direction analysis to include a range of negative
differential conductivity. This can be achieved by a decrease of the carrier density
due to field quenching or a decrease of the mobility, for example, by carrier
excitation into a sidevalley in GaAs, with increasing field.

Decrease of Carrier Density with Field

The carrier density in a homogeneous semiconductor can decrease with increasing
field only in nonequilibrium conditions. In steady state, this means that the field
causes an increase of the recombination (a reduction of the generation is unlikely).
This can be achieved in a number of ways; most researched are quenching transitions
in which the field activates fast recombination centers.

Field Quenching
Field quenching is a means to reduce the space charge by field-enhanced ionization
(Frenkel-Poole ionization) of minority carriers from compensating deep hole traps.
When incorporating fast recombination centers (Nr), the model can explain field
quenching of photogenerated carriers in homogeneous photoconductors.

Figure A.6 shows such a model. Light generates electron-hole pairs; when the
holes are captured more readily by Coulomb-attractive hole traps (Na) that have a
very small capture cross section for electrons, the electron density in the conduction
band increases substantially and n-type photoconductivity is observed: The lifetime
of photogenerated electrons is much larger than that of holes, thus n � p. When a
sufficient field is applied, however, the trapped holes can be freed from these
Coulomb-attractive hole traps. A fraction of them will be captured by fast recombi-
nation centers (Fig. A.6b), which have a much larger cross section for electrons
(typically 10�16 cm2) than the deep hole traps (typically 10�21 cm2). This causes a
reduction of the electron density as a function of the field. Such a reduction of n(F) is
pictured in the quasi-neutrality curve n1(F) of Fig. A.5 and immediately precedes the
steeply rising branch of carrier generation by field ionization.

Cathode- and Anode-Adjacent Domains
When increasing the bias to the device, the current increases, thereby causing a
parallel shift of the drift current curve toward higher values – for example, from
curve (1) to curve (2) in Fig. A.7. If the field-quenching branch of the quasi-
neutrality curve decreases more than linearly with the field, then n1(F) and n2(F)
will cross again, thereby creating two more singular points (II and III in Fig. A.7).

Assuming for simplicity that the boundary density nj does not change with
increasing bias and current (nj = nc), the field at the boundary increases until the
starting point of the solution has moved close to the second singular point. Then the
drift-current curve cannot rise further, because it would force the solution curve to
cross n1(F) while maintaining the boundary condition at nc. Such a crossing of n1(F)
from the fourth quadrant is impossible. This means that with further increasing bias,
n1(F) can no longer rise, the current must saturate, and the solution expands in x near
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the second singular point. This solution (2) becomes step like, i.e., n(x) and F(x) are
almost constant near x = 0, rather than n(x) steeply increasing and F(x) linearly
decreasing near x = 0 in a Schottky barrier. This distinctly different, step-like
behavior of n(x) and F(x) is referred to as a high-field domain (Böer et al. 1958;
Böer 1959; Böer and Wilhelm 1963).

With increased bias, the high-field domain widens without increasing the field at
the cathode (in n-type materials), while the current remains constant. In the field-of-
directions representation, no changes are visible, except for a minute extension of the
solution closer to the singular point II.

As long as the field remains constant within the domain, here also the space
charge vanishes. When the field is increased to initiate field quenching, localized
holes in deep hole traps, which produce this space charge in compensated photo-
conductors, are freed and can either move into the adjacent electrode or recombine,

a b
EcEc

Nd Nd

Nr
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Nr

Na

EvEv

g0g0

Fig. A.6 (a) Band model of an n-type photoconductor with hole traps Na and fast recombination
centers Nr. (b) Field-induced transition from slow (hole traps) to fast recombination centers causes
field quenching of the photoconductivity
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Fig. A.7 Field of directions
representation with quasi-
neutrality curve (n1) and two
drift-current curves (n2) for
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(2) current with corresponding
solution curves (a) and (b)
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thus reducing the positive space charge. With sufficient depletion of these hole traps,
the space charge is reduced to zero.5

When the bias is increased sufficiently so that the high-field domain has expanded
to fill the entire device, the solution remains at the singular point II. A further
increase in bias causes a minute increase of the current [a slight shift upward of
n2(F)] that brings the solution into the quadrant between the singular points II and III
and between n1(F) and n2(F); it extends the solution from II toward the singular
point III. A still further increased bias causes part of the solution (toward the anode)
to approach III, now forming an anode-adjacent domain of even higher fields (FIII),
which then expands from the anode toward the cathode until it fills the entire device.

In the next section, we will show that a major part of this domain behavior can be
experimentally confirmed before electric breakdown phenomena set in. Without a
field-of-direction analysis, this domain behavior would be rather difficult to explain.
The given discussion, however, even though qualitative makes such analysis trans-
parent. It is for this reason that we have included the more qualitative field-of-
directions method with the otherwise preferred numerical or analytical discussion.

We will also show in the next sections that in a number of realistic cases this
method provides enough information to yield unambiguously the carrier density and
mobility as a function of the electric field from rather simple experiments. The key to
the success of this simple analysis is the fact that the field is essentially constant
within a domain, and the transition region between bulk and domain has a thickness
of only a few Debye lengths; that is, its width can usually be neglected compared to
the thickness of the device and the domain. Then a simple step approximation is
sufficient to describe the voltage drop across the device:

V ¼ FII x1 þ FI d1 � x1ð Þ: (A:22)

With changing bias the width x1 of the high-field domain changes linearly. This
permits the determination of FI and FII when the domain width is measured as
function of the bias.

Franz-Keldysh Effect to Directly Observe High-Field Domains
The domain width can be measured directly with probing light by using the Franz-
Keldysh effect (Franz 1958; Keldysh 1958), which causes the absorption edge to
shift toward longer wavelengths with increasing field. When observing the light
transmitted through the semiconductor platelet,6 one detects the domain as region of
increased absorption when using light at the absorption edge (Böer et al. 1958,
1959), as shown in Fig. A.8. Such high-field domains were first seen in CdS (Böer
et al. 1958) and have since been extensively investigated with this method.

5Overcompensation is avoided because a reversal of space charge would reduce the field that was
the cause for field quenching and would automatically cause an adjustment to yield ρ � 0.
6For reasons of optical observation, the geometry of the device was chosen so that the thin platelet
dimension is parallel to the probing light and the field direction is perpendicular to it.
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The high-field domains are directly visible in the shadow projection given in
Fig. A.9a for a CdS sample, showing the widening of the cathode-adjacent domain
(upper row, at left) with increasing bias until the domain fills the entire device at
1750 V (upper row at right). With further increased bias, an anode-adjacent domain
of higher field strength (with an increased band-edge shift, hence darker shadow)
emerges from the anode and broadens toward the cathode with further increased bias
(lower row of Fig. A.9a). The current-voltage characteristics show no break in the
saturation behavior during the transition from cathode- to anode-adjacent domain as
indicated by the arrow in Fig. A.9b, in agreement with the prediction from the field-
of-direction analysis (Böer and Voss 1968a, b).

As long as the domain is attached to the cathode, the electron density at the
cathode and the work function of the cathode are measurable. When, on the other
side, the domain is attached to the anode, the hole density at the anode is measurable
with the work function of holes from the anode. All this occurs with the same current
that has not changed: at the cathode-adjacent domain it is a drift current of electrons,
and at the anode-adjacent domain it is again a drift current, but now from the holes:

j ¼ jn ¼ jp ¼ enμn Fcathode ¼ epμp Fanode: (A:23)

This is very remarkable because the carrier densities and mobilities are different;
this holds, however, only as long as high-field domains are present and they adjust in
width and field to permit the equality of Eq. A.23.

When plotting the domain width as a function of the bias for the cathode-
adjacent (A) and anode-adjacent (B) high-field domains, as shown in Fig. A.10a,
one obtains from the slopes and intersections with the abscissa according to
Eq. A.22 the fields of the three singular points. These are shown in Fig. A.10b.

Electrode
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F = 0
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a b

Crystal

Fig. A.8 (a) Experimental setup to use the Franz-Keldysh effect for observing high-field domains.
(b) Shift of the absorption edge due to the electric field. The crystal platelet is viewed in transmitted
monochromatic light (λ0) that shows the high-field domain as a region of increased absorption
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With the electron mobility μn and field in the cathode-adjacent domain Fcathode or
the hole mobility μp and field in the anode-adjacent Fanode, the carrier densities are
then directly obtained from the drift-current curves. Most remarkable is the fact
that the drift current at the transition point from cathode- to anode-adjacent
domains is also the transition from n-type to p-type conductivity. With only drift
currrent in the two cases of cathode- and anode-adjacent domains this, hence,
requires the equality of Eq. A.23.

Drift-Velocity Saturation
The field-dependent Hall mobility was measured using high-field domains (Böer and
Bogus 1968) with Hall electrodes close to the cathode and applying a sufficient bias
so that the cathode-adjacent domain extends well beyond the Hall electrodes. The
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Fig. A.9 (a) Shadow pictures of a CdS platelet (at 210 K) between two electrodes at a distance of
0.36 mm, in monochromatic light (1012 photons/cm2 s) at the band edge (at 505 mm). The cathode
is at the left side, the anode at right; arrows indicate the edge of the high-field domain. The anode-
adjacent domain broadens in the opposite direction from the anode toward the cathode indicating
that the CdS has changed from n-type to p-type. (b) Current-voltage characteristics showing current
saturation in the entire bias range. The arrow indicates the transition from a cathode- to an anode-
adjacent domain and the change of the CdS from n-type to p-type (After Böer and Voss 1968a)
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low-field mobility can be checked by reversing the polarity, thereby placing the Hall
probes in the low-field bulk. Different pairs of experimental points were obtained by
using different metal electrodes yielding different values of nc.

The results of these experiments are shown in Fig. A.11. Starting near 20 kV/cm,
the mobility decreases with increasing field. Such a decrease follows a 1/F behavior
at higher fields and causes a saturation of the drift velocity (μF = const) as it
approaches the rms velocity of the electrons. This results in a bending of the drift-
current curve n2(F) in the field of directions and results in corrected values for the
first and third singular point (Fig. A.11b). The figure also reproduces as dash-dotted
curves the results given in Fig. A.10b for comparison.7

Workfunction Dependence on Photoconductivity
The field near the metal-semiconductor interface cannot exceed the domain field
which is usually <100 kV/cm, thereby excluding tunneling through the barrier. The
carrier density in the domain is therefore a reasonable measure of the metal-
semiconductor workfunction according to

nII ffi nc ¼ Ncexp �ψ�
MS

kT

� �
, (A:24)

where ψ�
MS is the effective workfunction, reduced from the workfunction by the
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Fig. A.10 (a) Domain width l as function of bias in CdS at 230 K, obtained from the experiment
described in Fig. A.9. (b) Singular points obtained from the slopes of the curves A and B in panel (a)
(After Böer and Voss 1968a)

7The shift of the first singular point is not resolved experimentally because of the limited accuracy
of the method to determine this point.
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ψ�
MS ¼ ψMS �

ffiffiffiffiffiffiffiffiffiffiffiffi
eFII

4πe e0

r
, (A:25)

with nII and FII the carrier density and electric field, respectively, at the second
singular point (Fig. A.7). The image force lowering with fields of FII ffi 105 V/cm is
on the order of 50 meV.

The current over the top of the barrier is carried by Richardson-Dushmann
emission

j ¼ enc v
�
rms ffi enII μFII, (A:26)

with μFII ffi v�rms in the drift-velocity saturation range, this permits the identification
of nc with nII.

When this method is applied to vacuum-cleaved CdS with immediately thereafter
vapor-deposited electrodes, one observes with optical excitation rather high satura-
tion currents in reverse bias. This yields workfunctions that are reduced to about one
half of their values for vanishing currents which, for a gold electrode or other
blocking metals, are on the order of 1 eV.

Figure A.12 shows the linear dependence of domain width as a function of bias,
and it indicates a slight increase in domain fields with increasing optical generation
rate (from 83 to 122 kV/cm for optical generation rates go changing from 4	 1014 to
5 	 1016 cm�3 s�l, respectively). Because the carrier density within the domain also
increases with increasing optical generation, one thereby observes a trend of a
decreasing workfunction with increasing optical excitation for all investigated
contact metals (Fig. A.12b).

These findings indicate that holes can significantly change the dipole layer at the
metal-semiconductor interface. These holes are created by excitation and released by
field quenching within the high-field domain directly adjacent to the interface and
thereby cause the corresponding lowering of the workfunction.
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Fig. A.11 (a) Hall mobility in CdS as function of the electric field measured in a high-field domain
at 230 K (After Böer and Bogus 1968). (b) Field of directions with corrected n2(F) and values for
the three singular points obtained by the corrected experimental values. Uncorrected n1(F) and
n2(F) shown as dash-dotted curve segments
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Moving High-Field Domains

In the previous sections, we discussed stationary high-field domains. Under certain
boundary conditions the high-field domains become unstable after formation and start
to break up and move through the bulk. Moving field domains due to the Gunn effect
(Shaw et al. 1979; Shaw et al. 1992) or a recombination instability (Bonch-Bruevich
et al. 1975) have been extensively investigated experimentally and theoretically in the
1960s and 1970s. The earliest studies of such NNDC and SNDC instabilities in semi-
conductors were published by Böer et al. (1961) for CdS. They discovered moving
highfield domains in CdS single crystals (Böer 1959), long before the observation of
Gunn domain oscillations in GaAs was reported (Gunn 1963, 1964), and developed the
electro-optical method described in Sect. Franz-Keldysh Effect to Directly Observe
High-Field Domains above to measure these field inhomogeneities (Böer et al. 1959)
based on the first experimental evidence of the Franz-Keldysh effect.

Well-known mechanisms for field-domain formation in bulk semiconductors are
provided, for example, by field-quenching in CdS (Böer 1959) and in semi-
insulating GaAs (Northrop et al. 1964; Samuilov 1995; Piazza et al. 1997),
intervalley transfer (Ridley and Watkins 1961; Gunn 1963; Kroemer 1964), non-
linear generation-recombination kinetics in the regime of impurity impact-ionization
breakdown (Kahn et al. 1991, 1992a, b; Cantalapiedra et al. 1993; Bonilla et al.
1994, 1997; Bergmann et al. 1996) in p-Ge, and the photorefractive Gunn effect
(Segev et al. 1996; Bonilla et al. 1998).

Fig. A.12 (a) Domain width in CdS as a function of the applied voltage with light intensity as
family parameter. Slopes yield the domain fields. (b) Effective workfunction as a function of the
optical generation rate (After Stirn et al. 1971)
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The Franz-Keldysh effect can most effectively be used to study kinetic effects.
Under certain conditions domains can separate from the electrode and move through
the device, accompanied by current oscillations, as observed first by Böer et al.
(1959) in any solid; see also Böer and Rompe (1960), Böer and Dussel (1967), and
Böer and Voss (1968a).

Moving high-field domains that enclose a small circular electrode as a ring
indicate the two-dimensional equipotential distribution following the contour of
the ring (with equicurrent lines as orthogonal trajectories of the equipotential
lines). In the example given on Fig. A.13 (CdS at 250 K) the speed of expansion
of the ring is ~10�2 cm/s. When the ring reaches the anode at one point, it disappears
altogether with a sharp increase in current. A new ring then emerges from the
cathode with a corresponding current decrease. This motion repeats itself with
almost perfect periodicity.

In the stationary high-field domains in n-type semiconductors discussed in pre-
vious sections the domains either extended from the cathode or, at higher applied
voltages with substantially higher fields, emerged from the anode. Under boundary
conditions set for the sample shown in Fig. A.13 the high-field domain breaks up and
moves toward the anode. Depending on boundary conditions and applied voltage,
three kinds of moving high-field domains were observed:

1. Unstable domains that appear near the cathode of an otherwise observed station-
ary cathode-adjacent domain and move toward the anode while disappearing
(a) Before they reach the edge of the previous domain
(b) After passing through the edge of this domain

2. Undeformed domains moving from cathode to anode

When moving domains of type 1a or 1b appear, the current oscillates around
the value of its stationary saturation, exceeding this value when the moving
domain reaches its anode limit, and decreasing below this value after starting
near the cathode. Free-moving domains of type 2 have a much larger field and are
maintained by a substantially lower current. For a comprehensive analysis see
Böer (2010).

Fig. A.13 Ring-shaped high-field domain (arrow) enclosing a small circular cathode and
expanding (a)–(c) in time (pictures taken in 1 s time intervals). After the high-field domain touches
the anode at the end of the contact wire at the lower middle left, the ring disappears, a new ring
develops at the cathode, and the cycle repeats itself (period length 5 s, contact distance ~2 mm).
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Summary and Emphasis

Whenever the conductivity decreases more than linearly with increasing electric
field, a new type of solution of transport and Poisson equations is attained which
divides the semiconductor into two parts, one with a high field (the high-field
domain) and the other part with a low field. This field distribution can be stationary
or nonstationary. In stationarity, the field is essentially constant in each of these
regions. Both regions are joined by a narrow step of only a few Debye lengths
width.

When the high-field domain moves from one electrode to the other, it disappears
when it reaches the electrode, while a new domain evolves from the first electrode
and the process repeats itself periodically. Stationary domains are usually observed
when the negative differential conductivity is caused by a field-dependent decrease
of the carrier density, while no stationary solution can be maintained when the
change in conductivity is caused by a mobility that decreases more than linearly
with increasing field. Other examples of stationary or moving domains are provided
by resonant tunneling in superlattices, real-space transfer in modulation-doped
heterostructures, or nonlinear generation-recombination kinetics in p-type Ge or
semiinsulating GaAs. With increasing bias, stationary high-field domains expand
at the expense of the low-field region, until the entire semiconductor is filled by the
high-field domain. With further increased bias, a second type of domain with a
substantially higher field develops from the opposite electrode and expands as
required for absorbing the entire applied voltage.

A relatively simple field-of-direction analysis of the family of solution curves
of Poisson and transport equations permits us to obtain a general overview of the
different types of domains and to deduce unambiguous information on the field
dependence of carrier densities and mobilities, as well as on the carrier density and
field at the metal-semiconductor boundary. Stationary high-field domains can be
used to measure the workfunction of a metal-semiconductor contact and its depen-
dence on various parameters, providing direct evidence of a reduction of this
workfunction with increasing optical generation rates in photoconductors.

The use of a pseudoelectrode by a band of reduced illumination in photo-
conductors permits the direct measurement of the field-dependent carrier density in
semiconductors. Moving high-field domains are slow when related to carrier redis-
tribution over traps and can be very fast when trapping can be neglected in domains
caused by a field induced decrease of carrier mobilities. The Gunn effect is an
example where such steeper-than-linear decrease of the mobility with increasing
field in GaAs is used for high frequency ac generation. High-field domains can be
visually observed by the shift of optical absorption edge due to the Franz-Keldysh
effect.

High-field domains are a valuable tool to unambiguously investigate the field
dependence of important parameters in semiconduetors, and as moving domains
they are of technical interest for ac generation and the detectieon of small lattice
defects.
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A
Abarenkov-Heine potential, 692, 752
Ab initio calculations, 214
Absorption coefficient, 350, 496, 640, 643,

659, 663
indirect exciton, 502
optical, 339, 435, 466, 477, 495

Acceptor, 532
energies, 708
ground and excited states of, 694
hydrogen-like, 692–694
levels, 693, 695, 829

Acceptor-bound exciton (ABE), 707
Acenes, 79, 202
Acoustic branch, 130, 134
Acoustic deformation-potential

scattering, 437
Acoustic phonon scattering, 905, 925, 1023
Activator, 1161, 1191, 1199
Adamantine, 75
Adiabatic approximation, 199, 209, 639,

655–656, 850
Adiabatic bandgap, 204
Adiabaticity parameter, 639
Air band, 369
Alkanes, 77
Alkyls, 28
Alloy, 52, 75, 270, 314, 648, 923
Alloy scattering, 923–924
Amorphous chalcogenides, 789, 809
Amorphous semiconductors, 90, 760, 1054,

1062, 1065–1066, 1083
bands in, 295–297
density-of-states, 296
electronic structure, 186–188
extrinsic absorption, 478–480
intrinsic absorption, 477–478
specific heat of, 158

Amorphous silicon, 97
Amphoteric behavior, 751
Anderson localization, 785–787, 1066
Anderson model, 595–596, 783–786
Anderson-Mott density, 786
Anderson-Mott transition, 663
Anderson’s resonating-valence-bond (RVB)

theory, 1012
Anderson transition, 789
Anharmonic oscillations, 377
Anion vacancy, 744–746
Anisotropic lattices, 471
Anisotropic shielding, 685
Anthracene, 55, 77–80, 145, 202, 236, 294
Antibonding state, 40, 187, 323
Antiferromagnetic interaction, 315
Antiferromagnetic ordering, 1006
Antiferromagnetic susceptibility, 312–313
Antiphase defect, 566
Antisite defects, 545, 750–751
Anti-Stokes, 411–416, 1032–1035
Anti-Stokes lines, 505
Anti-Stokes Raman scattering, 429
Approaches containing electron–electron

interaction, 221–225
APW, see Augmented plane-wave (APW)

method
Athermal diffusion, 559–560
Atomic basis, 60
Atomic electronegativity, 736, 773
Atomic polarizability, 391
Atomic radii, 48–52
Auger recombination, 1135–1137
Auger-recombination rate, 1137
Augmented plane-wave (APW) method, 220
Avalanche current, 1107–1109
Avalanche formation, 1101
Axial quasicrystals, 99
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B
Ballistic phonon transport, 164
Ballistic transport, 982, 1036–1039, 1048, 1217
Band alignment, 280, 588, 589

Anderson model, 595–596
classification of interfaces, 593–594
Frensley-Kroemer model, 600–601
linear models, 596–598
space-charge region, 590–593
transition-metal levels, 598–600
valence-band offsets (see Valence-band

offsets)
Band bending, 593
Band conductance, 1074–1079, 1083
Band-edge fluctuation, 194–195
Band filling, 669, 670, 1158
Bandgap, 269–270

of alloys, 270–273
energy of organic solids, 294
at high doping level, 277
pressure dependence, 275
temperature dependence, 275

Band model, 185, 200, 533
Band of localized states, 1057
Band offset, see Band alignment
Band parameters, 258

wurtzite, 261
Band structure of organic crystals, 235–238
Band structure of three-dimensional lattices,

227–229
Band structure of typical semiconductors,

231–235
Band tail(s), 478, 662–667, 782, 787–788, 791
Bands in amorphous semiconductors, 295–297
Band-structure calculation, 214
Band-to-band luminescence, 1150–1153
Band-to-band recombination, 1131, 1134,

1147, 1151
Band-to-band transitions, 1157

absorption coefficient and dielectric
function, 460–464

allowed and forbidden transitions, 469–471
amorphous semiconductors, optical

bandgap of (see Amorphous
semiconductors)

fundamental absorption edge, 464–467
joint density of states, 456–459, 465, 659
indirect transitions, 467–469, 502
magneto-absorption, 472–474
in quantum wells (see Quantum wells)
valence bands, 471

Bardeen model, 616–618

Bardeen-Cooper-Shrieffer (BCS) theory, 996,
1000, 1001, 1011, 1012

Beer-Lambert law, 1184
Bethe lattice, 97
Biaxial strain, 584–587, 714
Biexciton, 485, 506, 510, 1155

2D, 516
Binding energy, 492, 695, 703

biexciton, 510
0D exciton complexes, 519
1D exciton, 517
2D exciton, 511
2D trion, 515
negative, 519
trion, 509

Bipolaron, 857, 997
Birefringence, 381
Blackbody radiation, 1146
Bloch electron, 246, 284, 849–850
Bloch function, 189, 211, 679
Bloch oscillation(s), 200, 862, 1030–1032
Bloch theorem, 189, 211
Bohr magneton, 305, 719, 978
Bohr radius, 85, 487, 492, 631, 680
Boltzmann distribution, 85, 465, 615, 819,

870, 883
Boltzmann equation, 878–892, 942

for phonons, 881–882
Bond-alternation defect, 805, 1081
Bond angle, 93, 97, 99, 186, 634, 791
Bond length, 41, 52–54, 56
Bonding in organic crystals, 54–56
Bonding state, 40, 187, 323
Born forces, 37
Born–Haber cyclic process, 38
Born–Oppenheimer approximation, 209–210
Bose–Einstein condensation, 843–844, 996,

997, 1013, 1242
Bose–Einstein distribution, 153, 468, 502, 820
Bound exciton(s), 703, 705, 707, 715

luminescence, 706, 1159–1161
Bound states, 282, 680
Bourgoin and Corbett mechanism, 559
Bowing, 271–273, 649
Bowing parameter, 271
Bragg reflection, 166, 200, 365, 412
Bravais lattices, 61–62
Breathing mode, 139, 540, 633, 634, 637,

650, 1132
Bremsstrahlung, 1171
Brewster angle, 354
Bridgman method, 18
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Brillouin and Raman scattering, 409–421
Brillouin function, 306
Brillouin scattering, 412–414, 505

resonant, 413–414
stimulated, 414

Brillouin zone (BZ), 69–70, 139, 196, 236, 252,
285, 457, 1106

Broken-gap band alignment, 280
Bruggemann effective-medium model, 356
Buckingham potential, 47, 55
Building blocks, 54, 80, 93–94, 338
Built-in field, 601, 866, 876–878, 940
Burgers vector, 562–563
Burstein-Moss effect, 279, 668–672, 1158

C
Calorimetric absorption spectroscopy,

1134–1135
Capture cross-section, 1127, 1131–1132, 1142,

1192, 1196, 1197, 1199, 1200, 1204
Carrier, 4, 246

concentration, 876–878
current, 964
density, 833–834, 1019, 1020
distribution, 874–878, 937, 945, 946, 958,

1220
drag, 892, 917
heating, 875, 937, 942, 958, 1219, 1223
mobility, 863, 878, 898–900, 1018,

1022–1025, 1060, 1077
scattering, 884–887
temperature, 943, 1224

Carrier-carrier scattering, 917
Casimir length, 167
Cation interstitials, 702
Cation vacancy, 75, 746–749
Cauchy relation, 119
Cavity-polariton, 375
Cellular method, 219
Central-cell correction, 687, 688
Central-cell potential, 690, 735, 754
Ceramic superconductor, 1005–1109
Chalcogens in Si, 736, 755–756
Chalcopyrite(s), 73, 273
Charge-fluctuation models, 1012–1013
Charge of a hole, 247
Charge-transfer complexes, 1075
Charge-transfer transitions, 764, 771, 773
Chemical potential, 9, 10
Chemical shift, 755
Chemical trend, 736, 738, 752

Chemical valence force, 42
Chemical vapor transport, 21–22
Chemisorption, 27
Circular polarizarized light, 442
Classes of superconducting semiconductors,

994
Clausius-Mossotti relation, 391
Cluster calculations, 738
Coherence length, 381
Coherent quantum 1/f effect, 1172–1174
Coherent tunneling, 1028, 1030
Collision integral, 880, 885
Colloidal quantum dots, 89–90
Color center, 746, 747
Compensation, 550–554, 769, 830, 1064–1065
Complex conductivity, 342
Complex dielectric constant, 339, 399
Complex index of refraction, 338, 355
Composite fermion, 988
Compositional disorder, 648–650
Conductance, 1036, 1043
Conductance quantization, 1038–1041, 1048
Conduction band, 202, 230, 246, 254–256

at higher energies, 266–267
Conductivity, 338, 341, 434, 441, 861–863,

1060, 1072
Conductivity above Tc, 1008
Configuration-coordinate(s), 634–637, 650,

1096, 1131
Confined states, 281, 291, 1021
Conjugated π bonds, 79, 805
Conjugated π electrons, 54
Conservation laws, 964
Constant-energy surface, 251, 955, 977
Contact noise, 1173–1174
Conversion efficiencies, 382–383
Conwell-Weisskopf dependence, 913
Cooling carriers, 945, 1240, 1244
Cooling electron, 1225–1226, 1236
Cooling holes, 1225, 1226
Cooper pair(s), 759, 996–998, 1009
Cooper-pair formation, 997, 1012
Coordination number, 37, 44, 71, 93, 783, 785,

786, 789, 790, 792
Core electron, 212
Core potential, 691, 692, 708, 732, 736
Coulomb blockade, 1043–1047
Coulomb diamonds, 1047
Coulomb tail, 489, 692, 735–736, 752
Coupling constant, see Fröhlich coupling

constant
Covalent bonding, 39–42

Index 1285



Critical cluster size, 15
Critical current density, 998, 1004, 1010
Critical energy of nucleation, 13
Critical points, 139, 233, 353, 371, 458, 459
Critical temperature, 311, 393, 842, 844, 994,

998–999, 1006, 1008, 1012
Cross section

capture, 1196, 1197, 1199, 1200
excited state, 1187
photo-ionization, 1186–1188

Crystal defects
defect notation, 534–535
extrinsic donors and acceptors, 532–534
lattice defects, diffusion of, 554–560
line defects (see Line defects)
planar defects (see Planar defects)
point defects (see Point defects)
vacancies and interstitials, 535–536, 547,

749
Crystal-field splitting, 259, 306, 323, 764, 771
Crystal-field theory, 740–743, 770
Crystal interfaces

heterointerfaces (see Heterointerfaces)
metal–semiconductor interfaces

(see Metal–semiconductor interfaces)
Crystallographic notations, 65–67
Crystal potential, 211
Crystal structure, 60, 77, 98
Crystal systems, 61
Cubic semiconductors, valence band,

256–259
Cuprates, 1005, 1006, 1008, 1009,

1011, 1012
Curie constant, 307, 312
Curie temperature, 312, 319
Curie’s law, 306
Curie-Weiss law, 311
Curie-Weiss temperature, 313
Current continuity, 1198–1199
Current density, 341, 433, 861
Cyclotron frequency, 264, 718, 976
Cyclotron resonance, 263–264, 445, 975
Cyclotron-resonance absorption, 263, 445–446
Czochralski method, 19

D
Damped wave equation, 338
Dangling bonds, 746, 754, 759, 789, 791–793,

795, 809
Dark conductivity, 1188
Davidov splitting, 491
DBR mirror, 369
de Broglie wavelength, 85, 189, 200, 280, 844

Debye frequency, 154, 997
Debye length, 363, 591, 593, 616
Debye model, 153–155
Debye temperature, 154, 155
Deep-center spectra, 640, 770
Deep-level defects, 632–636, 732, 743, 761
Deep-level transient spectroscopy (DLTS), 571
Deep trap(s), 732, 733, 773, 1193
Defect level, 195, 598
Defect types, 790–795
Defect-center recharging, 535, 750, 944
Defect-center relaxation, 539, 634–636
Deformation potential, 608, 713, 904, 908
Deformed Boltzmann distribution, 883
2DEG, see Two-dimensional electron gas

(2DEG)
Degenerate semiconductor, 839, 980, 1064
DeHaas-van Alphen effect, 980–981
Demarcation line, 1141
Density-functional theory (DFT), 222–224,

607–608
Density of spin-polarized states, 324
Density of states, 233–235, 665, 818, 824, 976,

979, 989, 1055, 1057, 1063–1064, 1070,
1079

amorphous semiconductor, 296
dimensionality, 287–289
effective, 817, 818
mass, 823
quantum wire, 290
two-dimensional, 289–290

Dephasing, 1230–1231, 1233–1234, 1239,
1248

Detailed-balance principle, 1097, 1187
Dexter-Klick-Russell rule, 1133
DFT, see Density-functional theory (DFT)
2DHG, see Two-dimensional hole

gas (2DHG)
Diamagnetic shift, 719
Diamond lattice, 71
Dielectric band, 369
Dielectric breakdown, 1108
Dielectric constant, 339, 343, 357, 360

tensor, 344
Dielectric function, 356, 357, 359, 398, 433,

460
Dielectric matrix, 441
Dielectric polarization, 343–344, 393, 399
Dielectric response function, 393–397
Dielectric screening, 360–363
Difference mixing, 380–381
Diffusion coefficient, 554, 869, 939
Diffusion current, 867–871
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Diffusion-current saturation, 936
Diffusion length, 556, 1210
Diffusion measurements, 938
Diffusion potential, 615–616
Diffusive carrier transport, 867, 1068–1069
Diffusive conduction, 1039
Diffusive thermal transport, 164–165
Diffusive transport, 1036–1038
Diluted magnetic semiconductors (DMS),

48, 314
exchange mechanisms, 323
II–VI, 314–318
III–V, 318–323
miscibility, 314

Dirac relativistic equation, 225
Direct exchange, 308
Direct-gap excitons, 494–497
Direct gap semiconductors, 468
Direct optical absorption edge, 465
Dislocation, 560
Disordered crystals, 75, 662–671, 536, 782,

1079
Disorder-induced gap states (DIGS) model,

604–605
Dispersion relation, 121, 127, 130, 136, 191,

227, 407, 448, 504
Dispersive carrier transport, 1071–1072
Dispersive transport, 1071, 1214
Distributed Bragg reflectors, 367
Distribution function, 819, 820, 942–948, 964
DMS, see Diluted magnetic semiconductors

(DMS)
Donor, 678, 682
Donor-acceptor pairs, 695

energy, 697
transitions, 1159

Donor-bound exciton, 706, 715, 720
Donor ionization-energy, 681
Doping, 532, 790, 794, 826–830
Double-barrier quantum well, 1027–1028
Double donor, 701, 755
Double exchange, 325–327

energy gain, 326
Drift current, 864–867, 935
Drift length, 1210
Drift measurements, 935–936
Drift velocity, 861, 878, 1211, 1219
Drift-velocity saturation, 932–936
Driving force for crystallization, 10
Drude approximation, 861, 863
Dulong-Petit law, 152
d-wave, pairing 1010
DX center, 756–758, 760, 1199

E
Edge states, 985
Effective charges, 402–404
Effective dielectric constant, 363, 364
Effective electron mass, 199–201
Effective impurity charge, 692
Effective impurity potential, 690
Effective ion charge, 43, 49
Effective level density, 821
Effective mass, 199–201, 216, 246, 905

anisotropy of, 498
at higher energies, 268–269
measurement, 264–266
ratio, 703
in real bands, 253–254

Efficiency droop, 1138
Effusion rate, 25
Einstein model, 153
Einstein relation, 870–871
EL2 defect, 757, 760
Elastic and inelastic scattering, 411–412
Elastic compliance constants, 115
Elastic constant, higher-order, 161
Elastic moduli, 113
Elastic scattering, 901
Elastic stiffness constants, 115–120
Elastic waves, 120–121
Electric displacement, 343
Electric field

built-in, 866–867
external, 864–866, 877

Electrochemical potential, 873
Electromagnetic eigenmode, 367
Electron(s), hot, 942–944, 1236

affinity, 202, 582, 595, 596
density, 821, 822
distribution, 820
drag, 892
lifetime, 639, 1136, 1169, 1247
temperature, 934, 942, 948–951, 1152,

1222, 1236
traps, 1098, 1140
tunneling, 1044, 1110–1112
turnstile, 1046
wave, 188, 200, 848

Electron energy-loss spectroscopy
(EELS), 430

Electron–hole condensation, 840–844
critical parameters, 841–843

Electron–hole drag effect, 917
Electron–hole droplets, 842
Electron–hole liquid, 841, 1156–1157,

1229–1230
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Electron–hole plasma, 841, 1228–1231, 1240,
1242, 1254

Electron-lattice coupling, 636, 672, 850–857,
1130, 1133

Electronic conductivity, 861–862
Electronic noise, 1166
Electronic polarization, 399
Electron paramagnetic resonance (EPR), 978
Electron spin resonance (ESR), 681, 721, 978
Electro-optical effects, 383–384
Electrostriction, 392–393
Ellipsometric angles, 355
Ellipsometry, 354–357
Empirical pseudopotential method (EPM), 213
Empty band, 245
Empty lattice, 196, 229–231, 368
Empty shells, 698
Energy band, 185
Energy density of light wave, 337
Energy flow of light wave, 337
Energy flux, 346
Energy relaxation, 884–887, 945–946, 1219
Energy relaxation time, 891, 945
Entropy contribution, 539–541
Envelope function, 679
Epitaxy, 23–30
EPM, see Empirical pseudopotential method

(EPM)
Equi-energy surface, 251–253, 823, 955
Equilibrium crystal shape, 17
Equilibrium bond distance, 36
Equilibrium noise, 1166–1167

resistor, 1167
temperature, 1167

Evanescent mode, 372
Exact-exchange (EXX) method, 224
EXAFS, see Extended x-ray absorption fine

structure (EXAFS)
Exchange-correlation potential, 223, 226
Exchange interaction, 222
Exchange-interaction parameter, 308
Exchange mechanisms in DMS, 323–328
Excited donor states, 683
Exciton, 486, 511

Bohr-radius, 85
0D, 518
1D, 517
energy, 492, 511
exciton-polaritons, 504–508
free biexcitons, 510–511
free trions, 509
Frenkel excitons (see Frenkel excitons)
kinetics, 1237–1239

in QDs, 518–520
in quantum wells, 511–516
in QWRs, 517–518
Wannier-Mott excitons (see Wannier-Mott

excitons)
Exciton luminescence

in direct-gap semiconductors, 1154
in indirect-gap semiconductors, 1154–1155

Exciton molecules, 1155–1157
Exciton polariton, 504–508, 1154, 1238
Exciton Schrödinger equation, 491
Expansion coefficient, 159
Extended x-ray absorption fine structure

(EXAFS), 95–96
External modes, 145
Extinction coefficient, 339
Extrinsic luminescence, 1157–1164
Extrinsic photoconductivity, 1182, 1191–1192
Extrinsic semiconductor, 826
Extrinsic transitions, 1149
EXX method, see Exact-exchange (EXX)

method

F
Faraday angle, 446
Faraday effect, 446–447
F center, 733, 739, 744–746
Fermi-Dirac distribution, 819
Fermi energy, 234, 826, 829, 833, 877

temperature dependence, 831
Fermiglass, 1067
Fermi level, at high doping densities, 278–279
Fermi’s golden rule, 457
Fermi integral, 825
Ferromagnetic domains, 310–311
Ferromagnetic interaction, 319
Ferromagnetic stabilization energy, 320–323
Ferromagnetic state, stability, 320–323
Ferromagnetic susceptibility, 311–312
Fibonacci sequence, 103
Fick’s laws of diffusion, 554–556
Field ionization, 1099
Filling factor, 983, 986
Fine-structure splitting, 519
Flicker noise, 1170, 1173
Floating bond, 792–793, 795
Flux-line lattice, 1001, 1010
Flux quantum, 1001, 1003
Fock contribution, 222
Folded branches, 142, 419
Forbidden gap, 185, 193
Formation energy, 543, 748, 750
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Fractional quantum Hall effect, 986–988
Franck-Condon principle, 650–652
Franck-Condon shift, 651
Frank-Read Source, 570
Frank’s rule, 563
Frank–van der Merve growth mode, 13
Franz–Keldysh effect, 1118–1120
Free-electron resonance absorption

charge-density waves, 431–432
electron-plasma absorption, 426–430
valence-electron plasma absorption, 430

Free-to-bound transitions, 695–700, 1159
Frenkel defects, 536, 541
Frenkel disorder, 536, 537
Frenkel exciton 487, 488, 501

in alkali halides, 488–489
in organic crystals, 490–491

Frenkel pairs, 536, 539
Frenkel-Poole effect, 1099–1100
Frensley-Kroemer model, 600–601
Frequency mixing, 379
Fresnel coefficients, 354
Fresnel’s equations, 346
Fröhlich coupling constant, 854
Fröhlich interaction, 501, 851, 909, 1226
Frozen-in carrier densities, 837–838
Frustration mechanism, 317

G
Galvanomagnetic effects, 966, 968, 989
Gapless semiconductor, 250
Gaussian distribution, 648, 652
Gaussian line shape, 644
Geminate recombination, 1130
Generalized gradient approximations (GGA),

223
Generation processes, 1092
Generation rate, 1094, 1146, 1184–1186
Generation-recombination noise, 1169–1170
GGA, see Generalized gradient approximations

(GGA)
Gibbs energy, 9
Glass(e)s, 90
Glass formation, 91
Glide set, 564
Goldschmidt radii, 48
Gradient freezing method, 18
Grain boundary, 573–575, 800, 802
Green’s function calculations, 737–738
Green’s function (KKR) method, 220–221
Grüneisen parameter, 162
Grüneisen rule, 159

Group velocity, 132, 198, 880
Growth (of semiconductors), 8
Growth affinity, 10
Growth from a solution, 20–22
Growth habit, 17
Growth kinetics, 14
Growth modes, 13–14
Growth of organic crystals, 22–23
Gunn effect, 957
GW approximation (GWA), 225

H
Hall angle, 972
Hall coefficient, 972, 1008
Hall effect, 963, 970–972, 982–988
Hall insulator, 985
Hall mobility, 972
Hall-resistance step, 984
Ham effect, 740
Hanle effect, 1247
Hardness, 50
Hartree approximation, 210, 217–218
Hartree–Fock approximation (HFA), 222
Hayne’s rule, 704
Heat capacity, 152
Heat current, 964
Heated electron gas, 438
Heavily doped semiconductor, 663, 1062
Heavy doping, 649, 667–671, 1062–1065
Heavy hole, 256–261, 513
Heavy-hole band, 257
Heisenberg model, 308
Helmholtz free energy, 537
HEMT, see High-electron-mobility transistor

(HEMT)
Hermann–Mauguin, 65
Herringbone alignment, 80
Herringbone packing, 78
Heterogeneous nucleation, 12
Heterointerfaces

band alignment (see Band alignment)
DFT, 607–608
DIGS model, 604–605
heterovalent interfaces, 601–602
interface-dipol theory, 602–604
model-solid approach, 606–607
pseudomorhic layers, 583–584
strain relaxation, 584–588

HFA, see Hartree–Fock approximation
(HFA)

High-electron-mobility transistor (HEMT),
1020
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Higher charged coulomb centers, 700–703
Highest occupied molecular orbital (HOMO),

201, 235, 293
High-field domain, 1034–1035
High-field transport in built-in fields,

939–942
High-Tc superconductor

ceramic, 1005–1007
mediating-partner models, 1011–1013
normal-state properties of, 1007–1009
superconductive state of, 1009–1011

Historic development, 4
Hole, 246–248

density, 822
traps, 1140

Homogeneous lines, 643–645
Homogeneous nucleation, 11
HOMO, see Highest occupied molecular

orbital (HOMO)
Hooke’s law, 113
Hopping, 1069
Hopping conductance in organic crystals,

1079–1082
Hopping conduction, 205, 1054,

1062, 1071
Hopping conductivity, 1073
Hopping mobility, 1069, 1071
Hot carriers, 942, 1221, 1228, 1240
Hot electron(s), 934

mobility, 943, 1023–1025
Huang-Rhys factor, 633, 636–640, 652, 1132,

1134
Hubbard band, 1055
Hubbard correlation energy, 758, 857
Hund’s rules, 306, 762
Hybridization, 41
Hydrogen impurities, 803
Hydrogenation, 97
Hydrogen bonding, 47
Hydrogen in semiconductors, 751–752, 759
Hydrogen-like model, 631
Hydrogen States, 487
Hydrostatic pressure, 711–713
Hydrothermal method, 20
Hyperfine splitting, 722
Hyperpolarization, 376
Hyper-Raman scattering, 506, 508
Hysteresis curve, 311, 320

I
Icosahedral quasicrystals, 99
Impact ionization, 1100–1110

Impurity band(s), 325–328, 662, 784, 786,
1055–1060, 1082

Impurity conductivity, 1072
Impurity potential, 690–692, 735–736, 752
Index of refraction, 337, 355
Indirect bandgap semiconductors, 468
Inelastic scattering, 902
Inhomogeneous line broadening, 646–648
Insulator, 245–246
Interaction parameter (spin), 308
Interatomic forces, 36, 112
Interatomic potential, 112
Intercalated compounds, 83–84
Internal modes, 144
Intervalley interaction, 688
Intervalley scattering, 924–925, 954–957
Intracenter transitions, 761, 764, 768, 773
Intraionic transitions, 764, 770, 771
Intravalley scattering, 948–957
Intrinsic carrier density, 826, 835
Intrinsic carrier generation, 826
Intrinsic level, 1144
Intrinsic luminescence, 1148–1157
Intrinsic photoconductivity, 1182, 1188–1191
Intrinsic semiconductor, 816–817
Intrinsic transitions, 1149
Inverse-opal structure, 372
Inversion-domain boundaries (IDBs), 573
Ioffe-Regel rule, 1059
Ionic bonding, 37–39
Ionic plasma frequency, 400
Ionic polarizability, 391–392
Ionic radii, 48–52
Ionicity, 43
Ionization energy, 202, 493, 592, 631, 681,

701, 704, 764
Ionization field, 717
Ionization rate, 1103, 1104
Ionized impurity scattering, 439, 911
Isoelectronic defects, 708–710, 754–755
Isoelectronic pairs, 709
Isoelectronically bound exciton, 708
Isomorph, 68
Isotope effect, 997, 998

J
Johnson-Nyquist noise, 1166
Jahn-Teller effect, 739–740, 762
Jahn-Teller stabilization energy, 739
Josephson junctions, 1004
Josephson tunneling, 1002–1004
Joule’s heating, 862, 877, 892
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K
Keating’s relation, 120
Kelvin relation, 966
Kerr effect, 384
Kinetic processes, 1194–1196
Kinetically limited growth, 29
Kink site, 15
KKR method, see Green’s function (KKR)

method
Knudsen cells (K-cells), 25
Knudsen equation, 25
K•p method, 215–217
Kramers-Heisenberg dielectric function, 358
Kramers-Kronig interaction, 457
Kramers-Kronig relations, 352, 360, 393–397
Kröger-Vink notation, 534
Kronig-Penney model, 190, 284
Kubo-Greenwood formula, 1055

L
LACO, see Linear combination of atomic

orbitals (LCAO)
Landauer-Büttiker formalism, 1041–1043
Landauer formula, 1043
Landau levels, 472–474, 975, 977, 981,

983, 985
Landé g factor, 305, 719, 978
Langmuir-Blodgett films, 84
LAPW, see Linearized augmented plane-wave

(APW) method
Larmor frequency, 978, 1247
Lasing, 1164
Lattice constant, 61
Lattice coupling, 650, 652, 850
Lattice oscillation, amplitude, 161
Lattice polarization, 399
Lattice relaxation, 539, 650–652
Lattice temperature, 934, 942–943, 945, 950,

952, 954, 1223
Laughlin state, 987
Layered electron gas (LEG), 447, 449
LDA, see Local density approximation (LDA)
Level splitting (crystal field), 741, 743
Lifetime

electron, 1210, 1213, 1247, 1249
electron–hole plasma, 1229
exciton, 1239
LO phonons, 1233, 1234
spin, 1247, 1249, 1251, 1253
TO-Phonon, 1232

Lifshitz model, 1056–1057
Ligand hyperfine splitting, 722

Light-hole band, 257
Light-hole exciton, 513
Lindemann relation, 160
Line defects, 531–532, 560

Burgers vector, 562–563
compound semiconductors, dislocations in,

564–566
dislocation and electronic defect levels,

570–571
dislocation counting, 563–564
dislocation kinks and jogs, 568
dislocation velocity, 568–570
edge dislocations, 560–561
screw dislocation, 561

Line shape, 643–661
Linear combination of atomic orbitals (LCAO),

218
Linearized augmented plane-wave (LAPW)

method, 220
Linearized muffin-tin orbital method, 221
Line-shape function, 641, 643
Liquid encapsulation, 20
Liquid-phase epitaxy (LPE), 23–24
Liquid phase growth (bulk crystals), 17
Local-density approximation (LDA), 223, 462
Local equilibrium, 26
Localization, 785–788, 1056–1059
Localization energy, 703
Localized state, 195, 319, 682, 783, 785, 1056,

1140
Localized vibrational mode (LVM), 139
Local phonon modes, 139–140
Local pseudopotential, 691–692
Local-spin-density approximation (LSDA),

226
London penetration depth, 1000
Longitudinal dielectric constant, 357–358
Longitudinal lattice oscillation, 127–128
Longitudinal mode, 127
Lorentz number, 172
Lorentzian line shape, 401, 643
Lowest unoccupied molecular-orbital (LUMO),

202, 235, 293
LSDA, see Local-spin-density approximation

(LSDA)
Luminescence, 1148, 1152, 1222–1225, 1239

centers, 705, 706, 708, 751, 1161–1163
efficiency, 1148
photoflux, 1152
quenching of, 1163

Luminescent intensity, 1162
LUMO, see Lowest unoccupied molecular-

orbital (LUMO)
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Luttinger parameters, 257, 499, 693
Lyddane-Sachs-Teller, 402
Lying-down configuration, 797

M
Madelung constant, 38
Magnetic fields, 304, 305, 366

ballistic transport in, 982–988
quantum effects in, 975–982
transport equations and thermoelectric

effects, 962–975
Magnetic moment, 305
Magnetic ordering, 308–313, 1006, 1014
Magnetic susceptibility, 304
Magnetization density, 304
Magneto-electric effects, 970–974
Magneto-phonon effects, 981–982
Magnetoplasma reflection, 443–445
Magnetoresistance, 963, 972–974, 984, 986

coefficient, 974
Majority carriers, 827
Manley-Rowe equations, 380
Many-body problem, 208, 223, 225
Mathiessen’s rule, 900
Matrix glasses, 97–98
Maxwell’s equations, 335
Maxwell relation, 352
Mean free path, 165, 784, 785, 860, 863, 890,

904
Measurement of elastic constants, 124
Meissner-Ochsenfeld effect, 999–1000
Metal, 248
Metal-induced gap states (MIGS) model,

623
Metal-ion vacancies, 535, 547
Metallic bonding, 45–46
Metallic conductivity, 248, 1057, 1059, 1076
Metalorganic chemical vapor deposition

(MOCVD), 23
Metalorganic precursors, 27–30
Metalorganic vapor-phase epitaxy (MOVPE),

27
Metal-oxide semiconductor FET (MOSFET),

1019, 1020
Metal–semiconductor interfaces

Bardeen model, 616–618
classification of, 609
defect model, 623–624
MIGS model, 623
Schottky barriers, chemical trends for,

618–623

Metamaterials, 337–338
Metastability, 747, 750, 758, 760
Microcavity, 373–375
Microcrystallite boundaries, 921–923
Miller indices, 66
Mini-band, 284, 474
Mini-bandgap, 284
Mini-Brillouin zone, 81
Minority carriers, 827, 834–835, 837
Miscibility, diluted magnetic semiconductors,

314
Mobility, 247, 862–864, 887, 905, 907, 909,

912, 914, 919, 925–927, 949, 950, 954,
1068

in disordered organic semiconductors, 1080
edge, 787–788, 804, 809, 1066–1069, 1079,

1083
effective mass, 887–888
gap, 1068
in organic crystals, 1077–1079
in polymers, 1081–1082
tensor, 887

Mobility-anisotropy, 887, 916
Model potentials, 692, 735
Modes of oscillations, 126
Modulation doping, 1019
Modulation spectroscopy, 351, 353
Mohs hardness, 51
Molecular beam epitaxy (MBE), 24
Molecule crystals, 46
Momentum effective mass, 267
Momentum-relaxation time, 882, 889–890,

905, 912, 923, 950, 1215
Monte Carlo method, 946–947
Morphotrop, 68
MOSFET, see Metal-oxide semiconductor FET

(MOSFET)
Mott density, 671, 786, 840, 845, 1158
Mott transition, 839, 1057–1060
Muffin-tin potential, 213
Multiphonon absorption, 408–409
Multiphonon process, 1095
Multiplication factor, 1107–1109

N
Nanocrystal(s), 89–90, 292
Nanowires, 87–88, 1047
Narrow-gap semiconductor, 248–250
Néel temperature, 312
Near-band-edge emission, 1159
Nearest-neighbor tight-binding model, 219
Nearly empty lattice, 230
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Negative differential conductivity, 957, 1035
Negative differential resistance (NDR), 1028,

1030, 1048
Negative photoconductivity, 1200–1203
Negative refractive index 338
Negative-U behavior, 747, 759
Negative-U center, 756, 758–760, 782, 794
Negative-U character, 760
Network structures, 96–97
Neutrality condition, 551, 553, 826, 828
Newtonian particle, 197
Noise, 1164

contact, 1173
electronic, 1166
equilibrium, 1166–1167
flicker, 1170, 1173
generation-recombination, 1169–1170
nonequilibrium, 1167–1170
quantum, 1/f, 1171–1172
shot, 1167–1169
thermal, 1166–1167

Nonequilibrium noise, 1167–1170
Non-interacting electrons, 214–221
Nonlinear optical effects, 375–384
Nonmetal-ion vacancies, 536

See also Anion vacancy
Nonradiative multiphonon recombination, 1134
Nonradiative recombination, 1127

at Coulomb-attractive centers, 1128–1130
at deep centers, 1130–1135

Nonresonant free-carrier absorption
dispersion relation for, 432–434
free-hole absorption, 439–440
scattering mechanisms, 436–439

Nonvertical transitions, 467
Nowotny-Juza compounds, 74–75
Nucleation, 11–13
Numerical solution (Boltzmann eq.), 946–948

O
Ohm’s law, 861, 1036
Oligoacenes, 77, 203, 294
Oligomers, 79
Oligothiophenes, 78
One-dimensional photonic crystal, 367–369
One-dimensional transport, 1035–1043
One-electron approximation, 210–211
One-mode behavior, 140
One-phonon spectrum, 408–409
Optical absorption, 1184, 1185
Optical absorption coefficient, 339, 460
Optical bandgap, 204, 294, 369, 477

Optical branch, 130, 134, 142
Optical carrier generation, 1093–1095
Optical carrier heating, 946, 1219
Optical cooling, 945
Optical cross section, 641, 642
Optical defects, 372–373
Optical deformation potential scattering,

439, 925
Optical generation rate, 1094–1095
Optical phonon(s), 132
Optical phonon scattering, 907–910
Optical rectification, 382
Ordered compounds, 83, 273
Organic interlayer, 799, 800
Organic semiconductors, 54, 77, 234, 293, 490,

795, 995–996, 1056, 1074–1082
bands, 235, 293

Organic superlattices, 84
Orgel diagram, 741
Oscillator strength, 466, 512, 640–643
Oscillatory luminescence, 1152–1153
Over-charged donors, 701–702
Overcoordination, 788, 792
Oxygen impurities, 802–803
Oxygen in GaP and GaAs, 756–757

P
Pair distance, 697
Paracrystallinity, 806, 807
Paramagnetic ion, 304–308
Paramagnetic materials, 305
Partial dislocations, 563
Passivation, 751
Pauli operator matrix, 226
P-d exchange, 327–328
Peltier effect, 966, 989
Penetration depth, 1000
Penrose tiling, 103
Pentacene, 79, 796, 800, 802, 803

on insulating substrates, 798–799
on metals, 797–798
on organic substrates, 799–802

Pentacenequinone, 802, 803
Percolation, 317, 1061, 1064, 1066, 1069,

1071, 1080
Periodic lattice structure, 194
Periodicity approach, 194–196

band structure, 188
Perpendicular carrier transport, 2D, 1025–1035
Persistent photoconductivity, 1198–1200
Perturbative methods, 737–738
Phase matching, 381–382
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Phase space, 879
Phase velocity, 133
Phillips cancellation theorem, 212
Phonon(s), 126, 134, 467

amorphous semiconductors, 146
hot, 1226, 1236
organic semiconductors, 144
in superlattices, 142

Phonon-activated conduction, 1060–1062
Phonon broadening, 660–661
Phonon density of states, 135–139
Phonon dispersion, 136–139, 145
Phonon-distribution function, 156–157
Phonon drag, 892
Phonon-dressed electrons, 852
Phonon gas, 165, 1224
Phonon modes, 129, 136, 140, 144, 1237
Phonon-phonon scattering, 166–167
Phonon-polariton, 405–407
Phonon replica, 653, 709
Phonon scattering, 169–166

in amorphous semiconductors, 172–173
at lattice defects, 168, 901, 1225, 1232,

1234
mechanisms, 165–169
rate, 1105

Phonon spectra, 125–126
Phonon velocity, 132–134
Phosphorescence, 1163
Phosphors, 1161
Photo ionization, 658
Photoconductivity, 1182–1183

carrier generation, 1183–1188
extrinsic, 1191–1198
intrinsic, 1188–1191
main processes, 1182
negative, 1200–1203
persistent, 1198–1200
response, 1191

Photo-ionization cross section, 1186–1188
Photon-free-electron interaction

electric and magnetic fields, carrier
dispersion in, 440–447

free-electron resonance absorption,
425–432

nonresonant free-carrier absorption,
432–440

2D semiconductors, plasmon dispersion in,
447–451

Photonic bandgap(s), 364, 369, 371
Photonic crystals, 365–366

one-dimensional, 367–369
scaling property, 367

three-dimensional, 372
two-dimensional, 369–372

Photonic density of states, 371
Photon-phonon interaction

dielectric function in IR range, 398–405
lattice polarization, 390–397
scattering of photons with phonons,

405–421
Photon scattering at crystal boundaries,

167–168
Photothermal expansion, 163–164
Physical vapor deposition, 20–21
Physisorption, 27
Picosecond spectroscopy, 1219
Piezoelectric interaction, 906–907
Piezoelectricity, 392–393
Planar defects, 532, 571–575

antiphase domains, 572–573
large-angle grain boundaries, 574–575
low-angle grain boundaries, 574
stacking faults, 572

Planck’s formula, 1146
Plasma frequency, 400, 427
Plasmon energy, 358, 427
Plasmon energy of valence electrons,

362, 430
Plasmon-induced recombination, 1139, 1174
Pnictides, 74, 1006, 1011, 1014
Pockels effect, 383–384
Point defects, 531, 536, 802–804, 919

Brouwer approximation, 551–554
defect-chemistry, 545–548
defect-formation energy, 543–545
frozen-in intrinsic defect density, 541–543
intrinsic point defects, density of, 536–541
stoichiometry and compensation,

changing of, 548–551
Point groups, 64–65
Poisson equation, 343, 427, 922
Poisson’s ratio, 85, 586
Polar optical scattering, 439
Polariton, 359, 405, 429, 504, 1154, 1238
Polariton dispersion, 407, 429, 504
Polariton modes of quantum wells, 1242
Polarization energy, 202, 203, 851
Polaron, 203, 850–858

existence criteria, 857
large, 852–856
mass, 854
radius, 853
self-energy, 851, 853
small, 856–858

Polyacetylene, 805, 1080, 1081

1294 Index



Polymers, 80, 796, 805–808, 1080–1082
Polymorph, 67
Polythiophene, 805, 807
Polytype(s), 72, 572
Poynting vector, 337, 346
Pressure coefficient, 140
Primitive unit cell, 62
Proximity approach, 194

band structure, 184–188
in organic crystals, 201–205

Pseudo Brewster angle, 348
Pseudodielectric function, 356
Pseudogap, 102, 1006
Pseudopotential(s), 211

charge, 692
first-principles, 213–214

Purcell effect, 373, 1245

Q
QCL, see Quantum-cascade laser (QCL)
Quadratic Stark effect, 718
Quantization energy, 281, 292
Quantized state, 281, 290, 511
Quantum, 1/f noise, 1171
Quantum-cascade laser (QCL), 1032–1034
Quantum dots (QDs), 88–90, 290–293,

518–520, 1043–1047
Quantum efficiency, 1134, 1184
Quantum Hall effect, 982–988
Quantum spin, 985
Quantum spin Hall phase, 985, 989
Quantum wells (QW), 85–86, 281–283, 1027

absorption in, 475–476
energy levels in, 474–475

Quantum wells (QW)
excitons, 511–516, 1236, 1242, 1250

Quantum wires (QWRs), 86–88, 289–290,
517–518, 1036, 1038, 1039, 1041, 1048

Quasi-Bohr radius, 631
Quasicrystals, 98–100
Quasi-Fermi level(s), 837, 872
Quasi-free electron, 196–199
Quasi-hydrogen energy, 487, 631, 680, 695
Quasi-hydrogen radius, 487, 492, 495, 680
Quasi-neutrality equation, 551, 553
Quasi-particle(s)

GW calculations, 225
size, 853, 1011

Quasiperiodicity, 100–102
Quenching

field-induced, 1202–1203
optical, 1163, 1200–1202

thermal, 1202
transition, 1163, 1201

R
Rabi frequency, 374
Rabi splitting, 374
Radiative recombination, 1133, 1145

rate, 1150, 1152
Radical ion salts, 1075
Raman scattering, 409–421, 427, 429

first-and higher-order, 416–417
in glasses, 420–421
from Local Modes, 418
in superlattices, 419–420
polar and nonpolar, 415
resonant, 417–418

Random distribution (alloy), 316, 648, 786,
1039

Rare earth ion, 306, 761, 1006
Rayleigh scattering, 412
Reciprocal lattice, 68–70
Recombination, 1139–1142

center, 638, 733, 761, 773, 1140, 1145,
1196–1198

coefficient, 1151
cross-section, 1129, 1151
of free excitons, 1154–1155
heating, 1242

Reduced effective mass 472, 499
Reduced exciton mass, 487, 498
Reduced k vector, 196–201
Reduced mass, 493, 498, 499
Reflectance, 344–351
Reflection, 345, 1146
Refractive index, 337, 340, 350
Relaxation

electron, 1227
energy, 1219–1221
LO-phonon, 1234–1236
mechanisms, 1225–1228
momentum, 1215–1217
parameter, 52
phonon, 1231–1232
phonon in quantum wells, 1236–1237
process, 636–640
spin, 1245–1251
spin exciton, 1252–1253
spin holes, 1251
TO-Phonon, 1232–1234

Relaxation time, 889, 900, 1208
approximation, 882–883, 963
energy, 890–892, 945, 1233

Index 1295



Relaxation time (cont.)
in dynamic processes, 1208
momentum, 889–890, 1215–1219, 1233
phonon, 1231–1237
spin, 1246–1253

Resonance scattering, 712
Resonating-valence-bond, 1012
Resonant state(s), 657, 682
Resonant tunneling, 1027–1030
Reststrahlen, 404–405
Reststrahl range, 359
Richardson-Dushman current, 869
Roosbroeck-Shockley relation, 1150
Root mean square velocity, 859
Rubrene, 79, 237, 796, 804
Rutherford scattering, 911–912, 1109
Rydberg energy, 487, 492, 511, 681
Rydberg series 487, 517, 631

S
Saha model, 1241, 1244
Sasaki-Shibuya effect, 955–958
Satellite conduction band, 255, 264, 887, 924
Satellite minima, 233, 256, 501, 956, 1227
Saturation drift-velocity, 932–935, 952
Scaling of photonic structures, 367
Scattering

carrier-carrier, 917
centers, 900
at dislocations, 916–917
elastic, 885, 901, 948, 1105, 1233
ionized-impurity, 911–915
inelastic, 411, 430, 886, 902
by intrinsic point defects, 919–920
by neutral lattice defects, 918–920
optical phonon, 907–911
processes, 1022, 1208, 1215, 1227, 1239,

1245
radius, 913
surface-induced, 920
with phonons, 901

Schönflies symbol, 64
Schottky disorder, 537, 545, 550
Schottky energy, 537, 546, 836
Schottky-Mott model, 609–616
Schrödinger equation, 208–209, 487, 491, 679,

691
Screened Coulomb potential, 363–364, 1063
Screening function, 361
Screening parameters, 362–363
Second harmonic generation, 377, 379
Seebeck coefficient, 965, 966, 969
Seebeck effect, 966, 967, 988

Self-activated conductivity, 836
Self-energy, 225, 607, 851
Self-interstitials, 749–750
Self-trapped electron, 852, 856
Semiconducting glasses, 792, 794, 809
Semiconductor, 245–246

band structure of typical, 231–235
Semimetal, 248–250
Sensitive photoconductor, 1197
Sensitization, 1191, 1192, 1201
Sequential tunneling, 1028, 1030
Seraphin coefficients, 352
Shallow-center spectra, 640
Shallow acceptor, 692
Shallow defects in compound

semiconductors, 694–695
Shallow-level defect, 630–632
Shallow traps, 1193
Shell number, 697
Shockley approximation, 949
Shockley-Haynes experiment, 1212–1213
Shockley-Read-Hall Center, 1143–1145
Short-range order, 94–96
Shot noise, 1167–1169
Shubnikov-DeHaas effect, 980
Shuffle set, 564
Sidevalley anisotropy, 685
Sign convention, 860–861
Single-component organic crystals, 1075
Single-electron transistor, 1044
Single-electron tunneling, 1044–1046
Single-photon sources, 518
Singlet exciton, 490
Singlet state, 201
Singlet–singlet transition, 490
Site-percolation, 317
Size quantization, 84
Slater determinant, 217
Sliding-boat technique, 24
Small-molecule crystals, 79, 796–804,

809, 1074
Snell’s law, 345
Solvothermal method, 20
Sound damping, 124–125
Sound velocities, 122, 133
Sound waves, 121–125
Space groups, 65
Spatially indirect transitions, 713
Specific heat, 157
Specific heat, of amorphous

semiconductors, 158
Specific resistivity, 862
Spectral hole burning, 646, 1225, 1231
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Spectroscopic ellipsometry, 356
Spin degeneracy, 217, 230, 287, 1039, 1041
Spin density, 793, 795, 1012
Spin-flip resonances, 721
Spin-glass, 317
Split-gate technique, 1036
Split-off band, 256
Spin-orbit splitting, 226, 255, 256, 259, 740
Spin-polarized state density, 324–328
Spin relaxation, 1245–1253
Spontaneous emission, 373, 459, 1150
Square potential, 281, 733–735
SQUID, see Superconducting quantum-

interference device (SQUID)
Standing-up phase, 798, 809
Stark effect, 646, 716–717
Stark shift, 513
State filling, 1220, 1230–1231
Steady state, 1143
Step-flow growth, 14
Sticking coefficient, 26
Stimulated emission, 1163–1164
Stirling approximation, 538
Stokes, 411, 412

line, 505
shift, 413–414, 652

Stop band, 369
Strain coefficients, 114
Stranski–Krastanow growth mode, 14, 88
Stress–strain relations, 113–115
Strong-coupling regime, 374
Strong-field schemes, 741, 742
Subband(s), 281, 284, 476, 1019, 1022, 1032,

1033, 1036, 1040, 1042, 1048
Substitutional defects, 752–755
Supercell technique, 738
Superconducting quantum-interference device

(SQUID), 1003–1004
Superconduction energy-gap, 998,

1009, 1014
Superconductive materials, 994–995
Supercooling, 10
Superexchange, 308, 324

energy gain, 325
Super-hyperfine splitting, 722
Superlattice, 81, 283

ultrathin, 286–287
thermal transport in, 173–175

Supersaturation, 10
Superspace approach, 102
Surface-induced scattering, 920
Surface phonons, 143
Surface-polariton modes, 508

Susceptibility tensor, 376
Symmetry, 70
Symmetry of E(k), 231
Symmetry points, 70

T
Tail states, 665, 667
Tailing of states, 782–789, 804
Tanabe-Sugano diagram, 742
Tetrahedrally bonded amorphous

semiconductors, 790, 794, 809
Thermal conductivity, 164–165

alloy, 168
cross-plane, 174
modeling, 174

Thermal energy flux, 164
Thermal equilibrium, 816, 1142
Thermal excitation probability, 1096
Thermal expansion, 158

negative, 163
Thermal ionization, 1095
Thermal noise, 1166
Thermal radiation, 1146, 1148
Thermal resistivity, 168
Thermal transport in superlattices, 173
Thermal velocity, 859
Thermodynamic equilibrium, 816, 1142
Thermoelectric effects, 962–975
Thermoelectric power, 969

absolute value, 970
Thermomagnetic effects, 968, 989
Thin-film phase, 796, 797
Thiophenes, 79
Third harmonic generation, 379
Third-order elastic constants, 116
Third-order susceptibility, 378
Thomas-Fermi length, 363
Thomas-Fermi screening length, 362
Three-dimensional lattices, band structure of,

227–229
Three-dimensional photonic crystal, 369, 372
Threshold energy for impact

ionization, 1102
Tight-binding approach, 186, 218
Tight-binding approximation, 738, 761
Topological insulator, 985, 989
Total carrier mobility, 900
Total current, 871
Transfer integral, 294, 783, 786, 796
Transistor, 4
Transit time, 1209
Transition coefficient, 1093, 1183
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Transition metal(s), 306–307, 314
impurities, 732, 739, 741, 761–773
ion, 306, 318

Transition probability, 457, 651, 1093, 1134
Transition rate, 1093
Transition temperature, 91, 157, 994, 1005
Transmission coefficient, 1026, 1042, 1048
Transmittance, 344–347, 350
Transport

analysis, 1218–1219
ballistic, 982, 1036, 1217
bandgap, 294, 1075
coefficients, 965
dispersive, 1212–1214
equations, 962–975
limited growth, 29

Transverse and longitudinal excitons, 501,
508, 1154

Transverse dielectric constant, 357
Transverse-electric (TE), modes, 370
Transverse lattice oscillation, 128–130
Transverse-magnetic (TM), modes, 370
Transverse oscillation in a diatomic lattice,

130–132
Transverse polarizations, 128
Trap, 195
Trap states, 796, 798, 802, 804, 806
Trapping, 658, 1054, 1093, 1140, 1209, 1211,

1212, 1254
Traps, 1140, 1192–1196
Trion(s), 485, 509, 519

free, 509
2D, 515

Triplet excitons, 490
Triplet–singlet transition, 490
Triplet state, 201
Tunneling, 286, 1110

assisted by phonons, 1117
assisted by traps, 1118
band-to-band, 1113
coherent and sequential, 1030
current, 1115
definition, 1025
double-barrier quantum well, 1027–1028
parabolic barrier, 1113
planar barrier, 1025–1027
rectangular Barrier, 1111
single-electron, 1044–1046
and size quantization, 1032
spectroscopy, 1116
superlattices, 1028
three-dimensional, 1114
triangular barrier, 1112

wells, variable width, 1030
Tunneling-induced transport, 1061, 1073–1073
Two-component organic semiconductors,

1075–1077
Two-dimensional electron gas (2DEG), 447,

448, 1019, 1035, 1037, 1039
carrier mobility, 1022–1025
energy levels, 1021–1022
heterointerface, 1020–1021
inversion layer, 1019–1020

Two-dimensional hole gas (2DHG), 1018, 1035
Two-dimensional photonic crystal, 369, 372
Two-electron transitions, 706–708
Two-fluid model, 999
Two-hole transitions, 706–708
Two-level acceptors, 701
Two-level donor, see Double donor
Two-mode behavior, 140
Type I band alignment, 280, 593
Type I superconductors, 1000, 1001, 1014
Type II band alignment, 280, 593
Type II superconductors, 1001–1002, 1005,

1014
Type-I pairs, 698
Type-II pairs, 698

U
Ultrathin superlattices, 82–83
Umklapp process, 167, 901, 925
Uniaxial stress, 275, 513, 713–716
Unit cell, 60, 69
Up-conversion, 380, 381
Urbach tail, 479, 663, 667

V
Vacancy, 739, 744–746

in compound semiconductors, 748–749
in covalent crystals, 746–748
in GaAs, 748
vacancy states, 752

Valence band, 245
cubic semiconductors, 256–259
quantum well, 282
wurtzite semiconductors, 259–263

Valence-band offsets
common-anion rule, 589
commutativity for, 589
crystal face orientation, 589
experimental values for, 590
Harrison valence-band offsets, 598
metal interlayers, 589
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reconstruction/interface defects, 589
transitivity of, 589

van der Waals, 77
bonding, 46
interaction, 46, 55

van Hove singularity, 458
Vapor–liquid–solid (VLS), 87
Vapor-phase epitaxy (VPE), 23
Vapor-phase growth, 20
Variable-range hopping, 1070–1072, 1080
V center, 746
Vegard’s rule, 52, 271
Verdet coefficient, 446
Vertical gradient freeze (VGF), 19
Voigt configuration, 445
Voigt notation, 115
Volmer–Weber growth mode, 13
von Neumann noncrossing, 406, 504, 513
von-Klitzing constant, 984
Vortices, 1001, 1014

W
Wannier function, 211
Wannier–Mott excitons 487, 491–494

band continuum, 494
band degeneracies, lifting of, 499
effective masses, anisotropy of, 498
electron–hole exchange interaction,

499–500
exciton-phonon interaction, 500
indirect-gap excitons, 501–503
reduced exciton mass, 498

Wannier-Stark ladder, 1030
Warm carrier, 942–944
Warm electrons, 943

Water contamination, 804
Wave equation, 336, 337, 366
Wave packet of Bloch functions, 679
Waveguide, 373, 1040
Wavevector, 68, 121, 188
Weak coupling, 374
Weak-field scheme, 742
Wetting angle, 12
Wetting layer, 14, 88
Wiedemann-Franz law, 171
Wigner-Seitz cell, 69–70
Woodpile structure, 372
Wulff’s theorem, 17
Wurtzite lattice, 72
Wurtzite semiconductors

exciton effective mass, 499
valence band, 259–263

Y
Young’s relation 13
Yukawa potential, 363

Z
Zeeman effect, 718–720
Zeeman splitting

anomaleous, 719
normal, 719

Zeeman transitions, 721
Zero-dimensional transport, 1043–1047
Zero-field cooling, 317
Zero-phonon transitions, 652–655, 740, 770,

771, 1159
Zero-point energy, 129
Zincblende lattice, 72

Index 1299


	Foreword
	Preface
	Contents
	About the Authors
	Part I: Growth, Bonding, and Structure
	Properties and Growth of Semiconductors
	1 Historic Development
	2 Some General Properties of Semiconductors
	2.1 Electrical Aspects
	2.2 Structural Aspects
	2.3 Chemical Aspects

	3 Growth of Semiconductors
	3.1 Driving Force and Nucleation
	3.1.1 Equilibrium
	3.1.2 Driving Force
	3.1.3 Nucleation
	3.1.4 Growth Modes
	3.1.5 Kinetic Approach
	3.1.6 Growth Habit

	3.2 Growth of Bulk Single Crystals
	3.2.1 Growth from the Liquid Phase
	Growth from the Melt
	Growth from a Solution

	3.2.2 Growth from the Vapor Phase
	Physical Vapor Deposition
	Chemical Vapor Transport

	3.2.3 Growth of Organic Crystals

	3.3 Epitaxy of Layer Structures
	3.3.1 Liquid-Phase Epitaxy
	3.3.2 Molecular-Beam Epitaxy
	Beam Sources
	Kinetic Aspects

	3.3.3 Metalorganic Vapor-Phase Epitaxy
	Metalorganic Precursors
	Precursor Supply
	Growth Regimes



	4 Summary
	References

	Crystal Bonding
	1 Ionic and Covalent Bonding
	1.1 Ionic Bonding
	1.2 Covalent Bonding
	1.3 Mixed Bonding

	2 Metallic Bonding
	3 Further Types of Bonding in Solids
	3.1 Atomic and Ionic Radii
	3.2 Bond-Length Relaxation in Alloys
	3.3 Bonding in Organic Crystals

	4 Summary
	References

	The Structure of Semiconductors
	1 Structure and Symmetry in Crystalline Solids
	1.1 Crystal Systems and Bravais Lattices
	1.1.1 Crystal Systems
	1.1.2 Bravais Lattices
	1.1.3 The Primitive Unit Cell

	1.2 Point Groups (Crystal Classes) and Space Groups
	1.2.1 Point Groups
	1.2.2 Space Groups
	1.2.3 Crystallographic Notations
	1.2.4 Morphology of Similar Crystals

	1.3 The Reciprocal Lattice
	1.3.1 Wigner-Seitz Cells and Brillouin Zones

	1.4 Relevance of Symmetry to Semiconductors
	1.4.1 Elemental Semiconductors and Binary Semiconducting Compounds
	Elemental Semiconductors
	Binary Semiconducting Compounds

	1.4.2 Ternary and Quaternary Semiconducting Compounds
	Ternary Chalcopyrites
	Ternary Pnictides and ABC2 Compounds
	Nowotny-Juza Compounds
	The Adamantine AnB4-nC4 and Derived Vacancy Structures
	Pseudoternary Compounds


	1.5 Structure of Organic Semiconductors

	2 Superlattices and Quantum Structures
	2.1 Superlattice Structures
	2.1.1 Mini-Brillouin Zone
	2.1.2 Ultrathin Superlattices
	2.1.3 Intercalated Compounds and Organic Superlattices
	Intercalated Compounds
	Organic Superlattices


	2.2 Quantum Wells, Quantum Wires, and Quantum Dots
	2.2.1 Quantum Wells
	2.2.2 Quantum Wires
	Epitaxial Quantum Wires
	Nanowires

	2.2.3 Quantum Dots
	Epitaxial Quantum Dots
	Colloidal Quantum Dots



	3 Amorphous Structures
	3.1 Building Blocks and Short-Range Order
	3.1.1 Building Blocks
	3.1.2 Short-Range Order
	EXAFS and NEXAFS


	3.2 Network Structures and Matrix Glasses
	3.2.1 Network Structures
	3.2.2 Matrix Glasses, α-Si:H


	4 Quasicrystals
	4.1 Quasiperiodicity and Properties of Quasicrystals
	4.1.1 Quasiperiodicity
	4.1.2 Quasicrystal Compounds

	4.2 Modeling Quasicrystals
	4.2.1 The Superspace Approach
	4.2.2 Three-Dimensional Direct-Space Approach


	5 Summary
	References


	Part II: Phonons
	Elasticity and Phonons
	1 Elastic Properties
	1.1 Stress-Strain Relations
	1.2 Elastic Stiffness Constants
	1.2.1 Third-Order Elastic Constants
	1.2.2 Temperature Dependence
	1.2.3 Information from Elastic Stiffness Constants


	2 Elastic Waves
	2.1 Sound Waves in Crystals
	2.1.1 Cubic Crystals
	2.1.2 Hexagonal Crystals


	3 Phonon Spectra
	3.1 Oscillations of One-Dimensional Lattices
	3.1.1 Longitudinal Lattice Oscillation
	3.1.2 Transverse Lattice Oscillation
	3.1.3 Transverse Oscillation in a Diatomic Lattice
	3.1.4 Phonon Velocity

	3.2 Phonons in a Three-Dimensional Lattice
	3.2.1 Phonon Density of States
	3.2.2 Local Phonon Modes
	3.2.3 Phonon Modes in Mixed Crystals
	3.2.4 Pressure Dependence of Phonons
	3.2.5 Microscopic Force Models

	3.3 Phonons in Superlattices, at Surfaces, in Organic Semiconductors, and in Amorphous Semiconductors
	3.3.1 Phonons in Superlattices
	3.3.2 Surface Phonons
	3.3.3 Phonons in Organic Semiconductors
	3.3.4 Phonons in Amorphous Semiconductors
	3.3.5 Measurement of Phonon Spectra


	4 Summary
	References

	Phonon-Induced Thermal Properties
	1 Heat Capacity
	1.1 Classical Models
	1.1.1 Einstein Model
	1.1.2 Debye Model
	1.1.3 Validity Range of the Approximations

	1.2 General Phonon-Distribution Function and Phase Changes
	1.2.1 Phase Changes

	1.3 Specific Heat of Amorphous Semiconductors

	2 Thermal Expansion
	2.1 Phenomenological Description
	2.2 Lattice Dynamic Consideration
	2.2.1 Negative Thermal Expansion
	2.2.2 Photothermal Expansion


	3 Thermal Conductivity
	3.1 Diffusive Thermal Transport
	3.2 Phonon-Scattering Mechanisms
	3.2.1 Phonon-Phonon Scattering 
	3.2.2 Scattering at Crystal Boundaries 
	3.2.3 Phonon Scattering at Lattice Defects

	3.3 Phonon Scattering in Crystalline and Amorphous Semiconductors
	3.3.1 Thermal Conductivity by Free Carriers
	3.3.2 Phonon Scattering in Amorphous Semiconductors

	3.4 Thermal Transport in Superlattices

	4 Summary
	References


	Part III: Energy Bands
	The Origin of Band Structure
	1 Approaches for Modeling
	1.1 The Proximity Approach
	1.1.1 Electronic Structure of Amorphous Semiconductors

	1.2 The Periodicity Approach
	1.2.1 The Kronig-Penney Model

	1.3 Periodicity Versus Proximity Approach
	1.3.1 Band-Edge Fluctuation
	1.3.2 Discrete Defect Level in the Bandgap


	2 The Reduced k Vector
	2.1 Newtonian Description of a Quasi-Free Electron
	2.2 The Effective Mass

	3 The Proximity Approach in Organic Crystals
	4 Summary
	References

	Quantum Mechanics of Electrons in Crystals
	1 The Schrödinger Equation
	1.1 Born-Oppenheimer Approximation
	1.2 One-Electron Approximation
	1.3 Pseudopotentials

	2 Band-Structure Calculation
	2.1 Noninteracting Electrons in Crystals
	2.1.1 The kp Method
	2.1.2 Hartree Approximation
	2.1.3 Tight-Binding or LCAO Approach
	2.1.4 Nearest-Neighbor Tight-Binding Model
	2.1.5 Cellular Method
	2.1.6 Augmented Plane-Wave Method
	2.1.7 Green´s Function (KKR) Method
	2.1.8 Linearized Muffin-Tin Orbital Method

	2.2 Approaches Explicitly Containing Electron-Electron Interaction
	2.2.1 Hartree-Fock Approximation
	2.2.2 Density-Functional Theory
	2.2.3 Quasiparticle GW Calculations


	3 Relativistic Effects
	4 Band Structure of Three-Dimensional Lattices
	4.1 Empty and Nearly Empty Lattices
	4.2 The Band Structure of Typical Semiconductors
	4.2.1 Symmetry of E(k)
	4.2.2 Density of States

	4.3 Band Structure of Organic Crystals

	5 Summary
	References

	Bands and Bandgaps in Solids
	1 Valence and Conduction Bands
	1.1 Insulators, Semiconductors, and Metals
	1.1.1 Insulators and Semiconductors
	Electrons and Holes

	1.1.2 Metals
	1.1.3 Semimetals and Narrow-Gap Semiconductors
	1.1.4 The Shape of Valence and Conduction Bands in Semiconductors

	1.2 The Effective Mass in Real Bands
	1.2.1 The Conduction Bands
	1.2.2 The Valence Band of Cubic Semiconductors
	1.2.3 The Valence Band of Wurtzite Semiconductors
	1.2.4 Probing Bands with Cyclotron Resonance
	1.2.5 Measurement of Effective Masses with Cyclotron Resonance
	1.2.6 The Conduction Band at Higher Energies
	1.2.7 The Momentum Effective Mass
	1.2.8 The Effective Mass at Higher Energies


	2 The Bandgap
	2.1 Bandgap of Alloys
	2.2 Bandgap Dependence on Temperature and Pressure
	2.3 Bandgap at High Doping Level
	2.3.1 Fermi Level at High Doping Densities


	3 Electronic States in Low-Dimensional Semiconductors
	3.1 Quantum Wells and Superlattices
	3.1.1 Quantum Wells
	3.1.2 Superlattices
	3.1.3 Ultrathin Superlattices

	3.2 Dimensionality of the Density of States
	3.3 Quantum Wires
	3.4 Quantum Dots and Nanocrystals

	4 Bands in Organic and Amorphous Semiconductors
	4.1 Bands and Bandgap in Organic Semiconductors
	4.2 Bands in Amorphous Semiconductors

	5 Summary
	References

	Magnetic Semiconductors
	1 Magnetic Interaction in Solids
	1.1 Paramagnetic Ions
	1.2 Magnetic Ordering in Semiconductors
	1.2.1 Exchange Interactions
	1.2.2 Ferromagnetic Domains
	1.2.3 Ferromagnetic Susceptibility
	1.2.4 Antiferromagnetic Susceptibility


	2 Diluted Magnetic Semiconductors
	2.1 II-VI Diluted Magnetic Semiconductors
	2.1.1 Doping Regime
	2.1.2 Low-Alloying Regime
	2.1.3 High-Alloying Regime

	2.2 III-V Diluted Magnetic Semiconductors
	2.2.1 Mediation of Ferromagnetism by Holes
	2.2.2 Stability of the Ferromagnetic State

	2.3 Exchange Mechanisms in Diluted Magnetic Semiconductors
	2.3.1 Superexchange
	2.3.2 Double Exchange
	2.3.3 p-d Exchange


	3 Summary
	References


	Part IV: Photons
	Interaction of Light with Solids
	1 Continuum Model of Solid-Light Interaction
	1.1 Reflection, Transmission, and Absorption
	1.1.1 Nonabsorbing Dielectrics
	1.1.2 Metamaterials
	1.1.3 Semiconductors with Optical Absorption
	1.1.4 The Complex Electrical Conductivity
	1.1.5 Dielectric Polarization

	1.2 Measurement of Optical Parameters
	1.2.1 Reflectance and Transmittance in Dielectrics
	1.2.2 Reflectance and Transmittance in Semiconductors
	1.2.3 Modulation Spectroscopy
	1.2.4 Ellipsometry

	1.3 Frequency Dependence of the Dielectric Function and Dielectric Screening
	1.3.1 Longitudinal and Transverse Dielectric Constants
	1.3.2 Spectral Ranges of the Dielectric Function
	1.3.3 Dielectric Screening as Function of Wavevector
	1.3.4 Empirical Screening Parameters
	1.3.5 Screened Coulomb Potential


	2 Photonic Bandgap Structures
	2.1 Photonic Crystals
	2.1.1 Scaling of Solutions
	2.1.2 One-Dimensional Photonic Crystal
	2.1.3 Two-Dimensional Photonic Crystals
	2.1.4 Three-Dimensional Photonic Crystals

	2.2 Localized Defect Modes and Microcavities
	2.2.1 Optical Defects
	2.2.2 Microcavity Effects


	3 Nonlinear Optical Effects
	3.1 Electronic and Mixing Effects
	3.1.1 Nonresonant Effects of Valence Electrons
	3.1.2 Nonlinear Polarization of Free Electrons
	3.1.3 The Different Mixing Effects
	3.1.4 Upconversion and Difference Mixing
	3.1.5 Phase Matching
	3.1.6 Mixing and dc Fields
	3.1.7 Conversion Efficiencies

	3.2 Electro-Optical Effects
	3.2.1 The Pockels Effect
	3.2.2 The Kerr Effect


	4 Summary
	References

	Photon-Phonon Interaction
	1 Lattice Polarization
	1.1 Electric Fields and Polarizability
	1.1.1 Ionic and Electronic Polarizability
	1.1.2 Piezoelectricity and Electrostriction

	1.2 Dielectric Response and Kramers-Kronig Relations
	1.2.1 Kramers-Kronig Relations
	1.2.2 Sum Rules


	2 The Dielectric Function in the IR Range
	2.1 Elementary Oscillators
	2.1.1 Effective Charges

	2.2 IR Reflection and Reststrahlen

	3 Scattering of Photons with Phonons
	3.1 The Phonon-Polariton
	3.2 One- and Multiphonon Absorption
	3.3 Brillouin and Raman Scattering
	3.3.1 Elastic and Inelastic Scattering
	3.3.2 Brillouin Scattering
	3.3.3 Raman Scattering
	3.3.4 Raman Scattering in Superlattices
	3.3.5 Raman Scattering in Glasses


	4 Summary
	References

	Photon-Free-Electron Interaction
	1 Free-Electron Resonance Absorption
	1.1 Electron-Plasma Absorption
	1.2 Valence-Electron Plasma Absorption
	1.3 Charge-Density Waves

	2 Nonresonant Free-Carrier Absorption
	2.1 Dispersion Relation for Free Carriers
	2.2 Free-Electron Absorption
	2.2.1 Effect of Scattering Mechanisms on Free-Electron Absorption
	2.2.2 Free-Hole Absorption


	3 Carrier Dispersion in Electric and Magnetic Fields
	3.1 Magnetoplasma Reflection
	3.2 Cyclotron-Resonance Absorption and Faraday Effect
	3.2.1 Cyclotron-Resonance Absorption
	3.2.2 Faraday Effect


	4 Plasmon Dispersion in 2D Semiconductors
	5 Summary
	References

	Band-to-Band Transitions
	1 Optical Absorption Spectrum
	1.1 The Joint Density of States
	1.2 Absorption Coefficient and Dielectric Function
	1.3 The Fundamental Absorption Edge

	2 Direct and Indirect Transitions
	2.1 Indirect Transitions
	2.2 Allowed and Forbidden Transitions
	2.3 Band-to-Band Magnetoabsorption

	3 Transitions in Quantum Wells
	3.1 Energy Levels in Multiple Quantum Wells
	3.2 Absorption in Quantum Wells

	4 Optical Bandgap of Amorphous Semiconductors
	4.1 Intrinsic Absorption
	4.2 Extrinsic Absorption in Glasses

	5 Summary
	References

	Excitons
	1 Optical Transitions of Free Excitons
	1.1 Frenkel Excitons
	1.1.1 Excitons in Alkali Halides
	1.1.2 Excitons in Organic Crystals

	1.2 Wannier-Mott Excitons
	1.2.1 Direct-Gap Excitons
	1.2.2 Complexity of Exciton Spectra
	1.2.3 Indirect-Gap Excitons

	1.3 Exciton-Polaritons
	1.4 Trions and Biexcitons in Bulk Crystals

	2 Excitons in Low-Dimensional Semiconductors
	2.1 Excitons in Quantum Wells
	2.2 Biexcitons and Trions in Quantum Wells
	2.3 Excitons in Quantum Wires and Quantum Dots
	2.3.1 Excitons in Quantum Wires
	2.3.2 Excitons in Quantum Dots


	3 Summary
	References


	Part V: Defects
	Crystal Defects
	1 Classification of Defects
	1.1 Defect Types
	1.2 Defect Notation and Charged Point Defects

	2 Point Defects
	2.1 Density of Intrinsic Point Defects
	2.2 Frozen-in Intrinsic Defect Density
	2.3 Defect-Formation Energy
	2.4 Defect Chemistry
	2.5 Changing of Stoichiometry and Compensation
	2.6 Brouwer Approximation

	3 Diffusion of Lattice Defects
	3.1 Fick´s Laws of Diffusion
	3.2 Types of Diffusion

	4 Line Defects
	4.1 Edge and Screw Dislocations, Burgers Vector
	4.1.1 Edge and Screw Dislocations
	4.1.2 The Burgers Vector
	4.1.3 Dislocation Counting

	4.2 Dislocations in Compound Semiconductors
	4.3 Motion and Creation of Dislocations
	4.3.1 Dislocation Kinks and Jogs
	4.3.2 Dislocation Velocity
	4.3.3 Dislocations and Electronic Defect Levels


	5 Planar Defects
	5.1 Stacking Faults and Antiphase Domains
	5.2 Grain Boundaries

	6 Summary
	References

	Crystal Interfaces
	1 Structure of Heterointerfaces
	1.1 Pseudomorphic Layers
	1.2 Strain Relaxation

	2 Electronic Properties of Heterointerfaces
	2.1 Issues for Band Alignment
	2.1.1 Experimental Results for Valence-Band Offsets
	2.1.2 Space-Charge Regions
	2.1.3 Classification of Interfaces

	2.2 Band-Alignment Models
	2.2.1 The Anderson Model for Heterojunctions
	2.2.2 Linear Models for Band-Edge Offsets
	2.2.3 The Harrison Valence-Band Offsets
	2.2.4 Transition-Metal Levels as Reference
	2.2.5 The Frensley-Kroemer Model

	2.3 Interface Dipole
	2.3.1 Heterovalent Interfaces
	2.3.2 Interface-Dipole Theory
	2.3.3 Disorder-Induced Gap-State Model

	2.4 Ab Initio Approaches
	2.4.1 The Model-Solid Approach
	2.4.2 Density-Functional Theory Combined With Many-Body Perturbation


	3 Metal-Semiconductor Interfaces
	3.1 Classification of Semiconductor-Metal Interfaces
	3.2 The Schottky-Mott Model
	3.3 Experimental Results and Interface-Dipole Models
	3.3.1 The Bardeen Model
	3.3.2 Chemical Trends for Schottky Barriers
	3.3.3 Interface-Induced States


	4 Summary
	References

	Optical Properties of Defects
	1 Energy and Strength of Defect Absorption
	1.1 Energy of Shallow Defects
	1.2 Deep-Level Defects
	1.2.1 Defect-Center Relaxation and Configuration Coordinates
	1.2.2 The Huang-Rhys Factor and Relaxation Process
	1.2.3 Oscillator Strength of Optical Absorption Lines


	2 Line Shape of Electronic Defect Transitions
	2.1 Homogeneous Lines
	2.2 Inhomogeneous Broadening
	2.2.1 Line Broadening by Electric Fields and Stress
	2.2.2 Line Broadening with Compositional Disorder

	2.3 Deep-Level Defect Line Broadening
	2.3.1 Franck-Condon Principle and Lattice Relaxation
	2.3.2 Strong, Medium, and Weak Lattice Coupling
	2.3.3 Line Shape of Resonant States

	2.4 Photoionization Edge Shape
	2.4.1 Photoionization from Deep Centers
	2.4.2 Photoionization from Shallow Centers
	2.4.3 Phonon Broadening of the Ionization Edge


	3 Optical Absorption of Disordered Crystals
	3.1 Band Tailing
	3.2 Heavy Doping and Burstein-Moss Effect

	4 Summary
	References

	Shallow-Level Centers
	1 Hydrogen-Like Defects
	1.1 The Chemical Identity
	1.2 Hydrogen-Like Donors in Indirect-Bandgap Semiconductors
	1.3 Hydrogen-Like Ground State and Chemical Shift
	1.3.1 Band Mixing
	1.3.2 Short-Range Potential Corrections
	1.3.3 Local Pseudopotentials and Model Potentials

	1.4 Hydrogen-Like Acceptors
	1.5 Shallow Defects in Compound Semiconductors
	1.6 Donor-Acceptor Pair and Free-To-Bound Transitions
	1.7 Higher Charged Coulomb Centers and Metal-Ion Interstitials

	2 Excitons Bound to Impurity Centers
	2.1 Excitons Bound to Ionized Donors or Acceptors
	2.2 Excitons Bound to Neutral Donors or Acceptors
	2.2.1 Two-Electron and Two-Hole Transitions

	2.3 Excitons Bound to Isoelectronic Centers

	3 Influence of External Fields on Defect Levels
	3.1 Influence of Hydrostatic Pressure
	3.2 Influence of Uniaxial Stress
	3.3 Influence of an Electric Field
	3.4 Influence of a Magnetic Field
	3.4.1 The Zeeman Effect
	3.4.2 Magnetic Resonances at Lattice Defects


	4 Summary
	References

	Deep-Level Centers
	1 Modeling of Deep-Level Centers
	1.1 General Properties of Deep-Level Centers
	1.1.1 Model of Square-Well Potential
	1.1.2 Coulomb Tail and Deep-Center Potential

	1.2 Theoretical Methods to Analyze Defect Centers
	1.2.1 Perturbative Methods and Green´s Function Technique
	1.2.2 Cluster Calculation and Supercell Technique
	1.2.3 Semiempirical Tight-Binding Approximation

	1.3 The Jahn-Teller Effect
	1.4 Crystal-Field Theory

	2 Deep Centers in Semiconductors
	2.1 Defects in Alkali Halides
	2.1.1 Anion Vacancy: The F Center
	2.1.2 Other Centers in Alkali Halides

	2.2 Vacancies in Semiconductors
	2.2.1 Vacancies in Covalent Crystals
	2.2.2 Vacancies in Compound Semiconductors

	2.3 Self-lnterstitials and Antisite Defects
	2.4 Hydrogen in Semiconductors
	2.5 Substitutional Defects
	2.6 Chalcogens in Si
	2.7 The DX Center
	2.8 Negative-U Centers
	2.9 Instabilities of Shallow and Deep Centers

	3 Transition-Metal Impurities
	3.1 Effect of Site, Charge, Spin, and Excitation
	3.2 The Energy of Levels
	3.3 Optical Transitions of Transition-Metal Dopants

	4 Summary
	References

	Defects in Amorphous and Organic Semiconductors
	1 Tailing States in Disordered Semiconductors
	1.1 The Anderson Model
	1.2 Anderson and Anderson-Mott Localizations
	1.3 Band Tails, Localization, and Mobility Edge
	1.4 Simulation of Defect States in Amorphous Semiconductors

	2 Defects in Amorphous Semiconductors
	2.1 Classes of Amorphous Semiconductors
	2.2 Defect Types in Amorphous Semiconductors
	2.2.1 Strain-Related Defects
	2.2.2 Under- and Overcoordinated Defects
	2.2.3 Dangling and Floating Bonds
	2.2.4 Deviation from Optimal Bonding Configuration
	2.2.5 Doping in Semiconducting Glasses
	2.2.6 Microcrystalline Boundaries and Voids
	2.2.7 Spin Density of Defects


	3 Defects in Organic Semiconductors
	3.1 Classes of Organic Semiconductors
	3.2 Structural Defects in Small-Molecule Crystals
	3.2.1 Molecule Crystals Grown on Substrates
	3.2.2 Point Defects in Molecule Crystals

	3.3 Defects in Polymers

	4 Summary
	References


	Part VI: Transport
	Equilibrium Statistics of Carriers
	1 The Intrinsic Semiconductor
	1.1 Level Distribution Near the Band Edge
	1.2 Statistical Distribution Functions
	1.3 Intrinsic Carrier Densities in Equilibrium
	1.4 Density-of-State Effective Mass and Fermi Energy
	1.5 Intrinsic Carrier Generation

	2 The Extrinsic Semiconductor
	2.1 The Position of the Fermi Level
	2.2 Temperature Dependence of the Fermi Level
	2.3 Carrier Density in Extrinsic Semiconductors
	2.4 Intrinsic and Minority Carrier Densities
	2.5 Self-Activated Carrier Generation
	2.6 Frozen-In Carrier Densities

	3 Phase Transitions at High Carrier Densities
	3.1 The Mott Transition
	3.2 Electron-Hole Condensation

	4 Summary
	References

	Carrier-Transport Equations
	1 Carriers in Semiconductors
	1.1 Bloch Electrons and Holes
	1.2 The Polaron 
	1.2.1 Large Polarons and Fröhlich Coupling
	1.2.2 Small Polarons and Criteria for Different Polarons 


	2 Conductivity and Mobility of Carriers
	2.1 Electronic Conductivity
	2.2 Electron Mobility

	3 Currents and Electric Fields
	3.1 Drift Current in an Electric Field
	3.2 Diffusion Currents and Total Currents
	3.3 Electrochemical Fields and Quasi-Fermi Levels
	3.4 Carrier Distributions in External and Built-In Fields

	4 The Boltzmann Equation
	4.1 The Boltzmann Equation for Electrons
	4.2 The Boltzmann Equation for Phonons
	4.3 The Relaxation-Time Approximation
	4.4 Carrier Scattering and Energy Relaxation
	4.5 The Mobility Effective Mass
	4.6 Momentum and Energy Relaxation
	4.6.1 The Average Momentum Relaxation Time
	4.6.2 The Average Energy Relaxation Time

	4.7 Phonon and Electron Drag

	5 Summary
	References

	Carrier Scattering at Low Electric Fields
	1 Types of Scattering Centers
	2 Electron Scattering with Phonons
	2.1 General Properties of Scattering with Phonons
	2.2 Scattering with Acoustic Phonons
	2.2.1 Longitudinal Acoustic Phonon Scattering
	2.2.2 Acoustic Phonon Scattering with Piezoelectric Interaction

	2.3 Scattering with Optical Phonons
	2.3.1 Optical Phonon Scattering in Nonpolar Compounds
	2.3.2 Optical Phonon Scattering in Polar Semiconductors


	3 Scattering at Coulomb Potentials
	3.1 Ionized-Impurity Scattering
	3.2 Coulomb Scattering in Anisotropic Semiconductors
	3.3 Scattering at Dislocations 
	3.4 Carrier-Carrier and Carrier-Plasmon Scattering
	3.4.1 Carrier-Carrier Scattering
	3.4.2 Carrier Scattering on Plasmons


	4 Scattering by Neutral Defects
	4.1 Scattering by Neutral Lattice Defects, Intrinsic Point Defects, and Defect Clusters
	4.2 Influence of External Surfaces
	4.3 Influence of Microcrystallite Boundaries
	4.4 Alloy Scattering

	5 Multivalley Carrier Transport
	5.1 Processes in Intervalley Scattering
	5.2 Mobility for Intervalley Scattering

	6 Summary
	References

	Carrier Scattering at High Electric Fields
	1 Transport-Velocity Saturation
	1.1 Drift-Velocity Saturation in External Fields
	1.2 Carrier-Diffusion Saturation
	1.3 High-Field Carrier Transport in Built-In Electric Fields

	2 Distribution Function at Higher Electric Fields
	2.1 Warm and Hot Carriers
	2.2 Mobility Changes Induced by Optical Excitation
	2.3 Numerical Solution of the Boltzmann Equation

	3 Elastic and Inelastic Scattering at High Electric Fields
	3.1 Intravalley Scattering at High Electric Fields
	3.1.1 Scattering with Acoustic Phonons
	3.1.2 Scattering with Optical Phonons

	3.2 Intervalley Scattering at High Electric Fields
	3.2.1 Equivalent-Intervalley Scattering
	3.2.2 Intervalley Scattering into Nonequivalent Valleys


	4 Summary
	References

	Carriers in Magnetic Fields and Temperature Gradients
	1 Transport Equations and Thermoelectric Effects
	1.1 The Boltzmann Equation in Magnetic Fields and Temperature Gradients
	1.2 Transport Equations
	1.2.1 Thermoelectric Effects
	1.2.2 Magneto-Electric Effects
	The Hall Effect
	Transverse Magnetoresistance


	1.3 Cyclotron Resonance

	2 Quantum Effects in a Strong Magnetic Field
	2.1 Quasi-Free Carriers in a Strong Magnetic Field
	2.2 Diamagnetic and Paramagnetic Electron Resonance
	2.3 Density of States and DeHaas-Type Effects

	3 Ballistic Transport in Strong Magnetic Fields
	3.1 The Integer Quantum-Hall Effect
	3.2 The Fractional Quantum Hall Effect

	4 Summary
	References

	Superconductivity
	1 Low-Temperature Superconductors
	1.1 Superconductive Solids
	1.2 Cooper Pairs and Condensation
	1.3 The Critical Temperature
	1.4 Meissner-Ochsenfeld Effect and Type I or Type II Superconductors
	1.5 Josephson Tunneling and SQUID

	2 High-Temperature Superconductors
	2.1 Ceramic High-Tc Superconductors
	2.2 Normal-State Properties of High-Tc Superconductors
	2.3 The Superconductive State of High-Tc Superconductors
	2.4 Mediating-Partner Models for High-Tc Superconductors

	3 Summary
	References

	Carrier Transport in Low-Dimensional Semiconductors
	1 In-Plane Transport in Two-Dimensional Structures
	1.1 The Two-Dimensional Electron Gas (2DEG)
	1.2 Carrier Mobility in a 2D Electron Gas

	2 Perpendicular Carrier Transport in 2D Structures
	2.1 Tunneling Through a Planar Barrier
	2.2 Tunneling Through a Double-Barrier Quantum Well
	2.3 Perpendicular Transport in Superlattices
	2.3.1 Wannier-Stark Ladder and Bloch Oscillations
	2.3.2 Quantum-Cascade Laser and High-Field Domains


	3 Transport in 1D Structures
	3.1 Diffusive and Ballistic Transport
	3.2 Quantization of Conductance
	3.3 Landauer-Büttiker Formalism

	4 Zero-Dimensional Transport
	4.1 Single-Electron Tunneling
	4.2 Coulomb Blockade in Few-Electron Dots

	5 Summary
	References

	Carrier Transport Induced and Controlled by Defects
	1 Impurity-Band Conduction
	1.1 Concept of Impurity Bands
	1.2 The Impurity Band
	1.2.1 The Lifshitz-Ching-Huber Model
	1.2.2 Coulomb Gap and Mott Transition


	2 Phonon-Activated Conduction
	3 Heavily Doped Semiconductors
	3.1 Intermediate Doping Range
	3.2 Degenerate and Highly Compensated Heavily Doped Semiconductors

	4 Transport in Amorphous Semiconductors
	4.1 The Mobility Edge
	4.2 Diffusive Carrier Transport and Percolation
	4.3 Activated Mobility
	4.4 Temperature Dependence of the Conductivity

	5 Charge Transport in Organic Semiconductors
	5.1 Band Conductance in Organic Crystals
	5.1.1 Single-Component and Two-Component Semiconductors
	5.1.2 Carrier Mobility in Pure Organic Crystals

	5.2 Hopping Conductance in Disordered Organic Semiconductors

	6 Summary
	References


	Part VII: Generation-Recombination
	Carrier Generation
	1 Thermal and Optical Carrier Generation
	1.1 Optical Carrier Generation
	1.2 Thermal Ionization
	1.2.1 Thermal Ionization Mechanism
	1.2.2 Thermal Excitation Probability


	2 Field Ionization 
	2.1 Frenkel-Poole Ionization
	2.2 Impact Ionization
	2.2.1 Impact Ionization Across the Bandgap
	2.2.2 Avalanche Current and Multiplication Factor
	2.2.3 Ionization via Energetic Particles

	2.3 Electron Tunneling
	2.3.1 Tunneling Through Triangular or Parabolic Barriers
	2.3.2 Tunneling in a Three-Dimensional Crystal
	2.3.3 Tunneling Spectroscopy 


	3 Summary
	References

	Carrier Recombination and Noise
	1 Nonradiative Recombination
	1.1 Energy Transfer to Phonons
	1.1.1 Recombination at Coulomb-Attractive Centers
	1.1.2 Nonradiative Recombination at Deep Centers

	1.2 Energy Transfer to Electrons
	1.2.1 Auger Recombination
	1.2.2 Auger Recombination at High Carrier Densities


	2 Statistics of Recombination
	2.1 Trapping or Recombination
	2.1.1 Electron and Hole Traps
	2.1.2 Recombination Centers

	2.2 Thermal Equilibrium and Steady State

	3 Radiative Recombination
	3.1 Thermal Radiation
	3.2 Intrinsic Luminescence
	3.2.1 Band-to-Band Luminescence
	3.2.2 Recombination of Free Excitons
	3.2.3 Recombination of Exciton Molecules and of Electron-Hole Liquids

	3.3 Extrinsic Luminescence 
	3.3.1 Band-Edge Luminescence in Heavily Doped Semiconductors
	3.3.2 Free-to-Bound and Donor-Acceptor-Pair Transitions
	3.3.3 Bound-Exciton Luminescence
	3.3.4 Luminescence Centers
	3.3.5 Quenching of Luminescence 
	3.3.6 Stimulated Emission


	4 Noise 
	4.1 Description of Fluctuation
	4.2 Noise in Equilibrium Conditions
	4.3 Nonequilibrium Noise
	4.3.1 Shot Noise or Injection Noise
	4.3.2 Generation-Recombination Noise

	4.4 The 1/f Noise
	4.4.1 The Conventional Quantum 1/f Effect
	4.4.2 The Coherent Quantum 1/f Effect


	5 Summary
	References

	Photoconductivity
	1 Basic Photoconductivity Processes
	1.1 Carrier Generation
	1.1.1 Wavelength Dependence of the Generation Rate
	1.1.2 Photo-Ionization Cross Section

	1.2 Intrinsic Photoconductivity

	2 Extrinsic Photoconductivity
	2.1 Effect of Traps on Photoconductivity
	2.2 Effect of Recombination Centers

	3 Persistent and Negative Photoconductivity
	3.1 Persistent Photoconductivity
	3.2 Negative Photoconductivity
	3.2.1 Optical Quenching
	3.2.2 Thermal Quenching
	3.2.3 Field Quenching


	4 Summary
	References

	Dynamic Processes
	1 Carrier Transit and Relaxation
	1.1 Transit Effects in Carrier Transport
	1.1.1 Characteristic Transport Times and Lengths
	1.1.2 Shockley-Haynes-Type Experiment
	1.1.3 Dispersive Carrier Transport in Amorphous Semiconductors

	1.2 Relaxation of Carriers
	1.2.1 Momentum Relaxation of Electrons
	1.2.2 Energy Relaxation of Electrons
	1.2.3 Energy-Relaxation Mechanisms

	1.3 Recombination in Electron-Hole Plasmas and Liquids

	2 Phonon and Exciton Kinetics
	2.1 Relaxation of Phonon Distributions
	2.1.1 TO-Phonon Relaxation
	2.1.2 LO-Phonon Relaxation
	2.1.3 Phonon Relaxation in Quantum Wells

	2.2 Exciton Kinetics
	2.2.1 Dynamics of Bulk Excitons
	2.2.2 Dynamics of Quantum-Well Excitons


	3 Relaxation of the Spin Momentum
	3.1 Measurement of Spin Relaxation
	3.2 Spin-Relaxation of Free Electrons in Bulk Semiconductors
	3.3 Spin-Relaxation of Free Carriers and Excitons in Quantum Wells

	4 Summary
	References


	Appendix: High-Field Domains
	Inhomogeneous Field or Current Distributions
	Negative Differential Conductivity
	Domain Instability

	Phase-Space Analysis
	Decrease of Carrier Density with Field
	Field Quenching
	Cathode- and Anode-Adjacent Domains
	Franz-Keldysh Effect to Directly Observe High-Field Domains
	Drift-Velocity Saturation
	Workfunction Dependence on Photoconductivity


	Moving High-Field Domains
	Summary and Emphasis
	References

	Index

