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Chapter 1

Introduction

We propose in this book to give a simple and accurate theoretical description of
photon acceleration, and of related new concepts such as the effective photon
mass, the equivalent photon charge or the photon Landau damping.

We also introduce, for the first time, the concepts of time reflection and
time refraction, which arise very naturally from the theory of wave propagation
in non-stationary media. Even if some of these concepts seem quite exotic,
they nevertheless result from a natural extension of the classical (and quantum)
electrodynamics to the cases of very fast processes, such as those associated with
the physics of ultra-short and intense laser pulses.

This book may be of relevance to research in the fields of intense laser–
matter interactions, nonlinear optics and plasma physics. Its content may also help
to develop novel accelerators based on laser–plasma interactions, new radiation
sources, or even to establish new models for astrophysical objects.

1.1 Definition of the concept

The concept of photon acceleration appeared quite recently in plasma physics. It
is a simple and general concept associated with electromagnetic wave propaga-
tion, and can be used to describe a large number of effects occurring not only in
plasmas but also in other optical media. Photon acceleration is so simple that it
could be considered a trivial concept, if it were not a subtle one.

Let us first try to define the concept. The best way to do it is to establish a
comparison between this and a few other well-known concepts, such as with re-
fraction. For instance, photon acceleration can be seen as a space–time refraction.

Everybody knows that refraction is the change of direction suffered by a light
beam when it crosses the boundary between two optical media. In more technical
terms we can say that the wavevector associated with this light beam changes,
because the properties of the optical medium vary in space.

We can imagine a symmetric situation where the properties of the optical
medium are constant in space but vary in time. Now the light wavevector remains

1



2 Introduction

constant (the usual refraction does not occur here) but the light frequency changes.
This effect, which is as universal as the usual refraction, can be called time
refraction. A more general situation can also occur, where the optical medium
changes in both space and time and the resulting space–time refraction effect
coincides with what is now commonly called photon acceleration.

Another natural comparison can be established with the nonlinear wave pro-
cesses, because photon acceleration is likewise responsible for the transfer of
energy from one region of the electromagnetic wave spectrum to another. The
main differences are that photon acceleration is a non-resonant wave process,
because it can allow for the transfer of electromagnetic energy from one region of
the spectrum to an arbitrarily different one, with no selection rules.

In this sense it contrasts with the well-known resonant wave coupling pro-
cesses, like Raman and Brillouin scattering, harmonic generation or other three-
or four-wave mixing processes, where spectral energy transfer is dictated by well-
defined conservation laws. We can still say that photon acceleration is a wave
coupling process, but this process is mainly associated with the linear properties
of the space and time varying optical medium where the wavepackets propagate,
and the resulting frequency shift can vary in a continuous way.

Because this is essentially a linear effect it will affect every photon in the
medium. This contrasts, not only with the nonlinear wave mixing processes,
but also with the wave–particle interaction processes, such as the well-known
Compton and Rayleigh scattering, which only affect a small fraction of the in-
cident photons. We can say that the total cross section of photon acceleration is
equal to 1, in contrast with the extremely low values of the Compton or Rayleigh
scattering cross sections. Such a sharp difference is due to the fact that Compton
and Rayleigh scattering are single particle effects, where the photons interact with
only one (free or bounded) electron, while photon acceleration is essentially a
collective process, where the photons interact with all the charged particles of the
background medium.

This means that photon acceleration can only be observed in a dense
medium, with a large number of particles at the incident photon wavelength
scale. For instance, in a very low density plasma, an abrupt transition from
photon acceleration to Compton scattering will eventually occur for decreasing
electron densities. This may have important implications, for instance, in
astrophysical problems.

The concept of photon acceleration is also a useful instrument to explore
the analogy of photons with other more conventional particles such as electrons,
protons or neutrons. Using physical intuition, we can say that the photons can be
accelerated because they have an effective mass (except in a vacuum).

In a plasma, the photon mass is simply related with the electron plasma
frequency, and, in a general optical medium, this effective mass is a consequence
of the linear polarizability of the medium.

This photon effective mass is, in essence, a linear property, but the particle-
like aspects of the electromagnetic radiation, associated with the concept of the
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photon, can also be extended in order to include the medium nonlinearities.
The main nonlinear property of photons is their equivalent electric charge,

which results from radiation pressure, or ponderomotive force effects. In a
plasma, this ponderomotive force tends to push the electrons out of the regions
with a larger content of electromagnetic wave energy. Instead, in an optical fibre
or any similar optical medium, the nonlinear second-order susceptibility leads to
the appearance of an equivalent electric dipole. Because these equivalent charge
distributions, monopole or dipole charges according to the medium, move at very
fast speeds, they can act as relativistic charged particles (electrons for instance)
and can eventually radiate Cherenkov, transition or bremsstrahlung radiation.

These and similar effects have recently been explored in plasmas and in
nonlinear optics, especially in problems related to ultra-short laser pulse prop-
agation [3, 23], or to new particle accelerator concepts and new sources of radia-
tion [42]. The concept of photon acceleration can then be seen as a kind of new
theoretical paradigm, in the sense of Kuhn [51], capable of integrating in a unified
new perspective, a large variety of new or already known effects associated with
electromagnetic radiation.

Furthermore, we can easily extend this concept to other fields, for instance
to acoustics, where phonon acceleration can also be considered [1]. This photon
phenomenology can also be extended to the physics of neutrinos in a plasma
(or in neutral dense matter), if we replace the electromagnetic coupling between
the bound or free electrons with the photons by the weak coupling between the
electrons and the neutrino field [106].

Taking an even more general perspective, we can also say that photon ac-
celeration is a particular example of a mean field acceleration process, which can
act through any of the physical interaction forces (electromagnetic, weak, gravi-
tational or even the strong interactions). This means that, for instance, particles
usually considered as having no electric charge can efficiently be accelerated by
an appropriate background field.

This has been known for many centuries (since the invention of slingshots),
but was nearly ignored by the builders of particle accelerators of our days. It
also means that particles with no bare electric charge can polarize the background
medium, and become ‘dressed’ particles with induced electric charge, therefore
behaving as if they were charged particles.

1.2 Historical background

Let us now give a short historical account of this concept. The basic equations
necessary for the description of photon acceleration have been known for many
years, even if their explicit meaning has only recently been understood. This is
due to the existence of a kind of conceptual barrier, which prevented formally
simple jumps in the theory to take place, which could provide a good example of
what Bachelard would call an obstacle epistemologique [6].
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The history of the photon concept is actually rich in these kinds of conceptual
barrier, and the better known example is the 30 year gap between the definition
by Einstein of the photon as a quantum of light, with energy proportional to
the frequency ω, and the acceptance that such a particle would also have a mo-
mentum, proportional to the wavevector �k, introduced in the theory of Compton
scattering [86].

It is therefore very difficult to have a clear historical view and to find out
when the concept of photon acceleration clearly emerged from the already ex-
isting equations. The assumed subjective account of the author of the photon
acceleration story will be proposed, accepting that other and eventually better and
less biased views are also possible.

One of the first papers which we can directly relate to photon acceleration
in plasma physics was published by Semenova in 1967 [97] and concerns the fre-
quency up-shift of an electromagnetic wave interacting with a moving ionization
front. At this stage, the problem could be seen as an extension of the old problem
of wave reflection by a relativistic mirror, if the mirror is replaced by a surface of
discontinuity between the neutral gas and the ionized gas (or plasma).

The same problem was later considered in greater detail by Lampe et al in
1978 [53]. In these two papers, the mechanism responsible for the ionization
front was not explicitly discussed. But more recently it became aparent that
relativistic ionization fronts could be produced in a laboratory by photoionization
of the atoms of a neutral gas by an intense laser pulse.

A closely related, but qualitatively different, mechanism for photon acceler-
ation was considered by Mendonça in 1979 [63] where the ionization front was
replaced by a moving nonlinear perturbation of the refractive index, caused by
a strong electromagnetic pulse. In this work it was shown that the frequency
up-shift is an adiabatic process occurring not only at reflection as previously
considered, by also at transmission.

At that time, experiments like those of Granatstein et al [36, 87], on
microwave frequency up-shift from the centimetric to the milimetric wave range,
when reflected inside a waveguide by a relativistic electron beam, were exploring
the relativistic mirror concept. The idea behind that theoretical work was to
replace the moving particles by moving field perturbations, easier, in principle, to
be excited in the laboratory.

In a more recent work produced in the context of laser fusion research,
Wilks et al [118] considered the interaction of photons with plasma wakefield
perturbations generated by an intense laser pulse. Using numerical simulations,
they were able to observe the same kind of adiabatic frequency up-shift along
the plasma. This work also introduced for the first time the name of photon
acceleration, which was rapidly adopted by the plasma physics community and
stimulated an intense theoretical activity on this subject.

A related microwave experiment by Joshi et al, in 1992 [95] was able to show
that the frequency of microwave radiation contained in a cavity can be up-shifted
to give a broadband spectrum, in the presence of an ionization front produced by
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an ultraviolet laser pulse. These results provided the first clear indication that the
photon acceleration mechanism was possibly taking place.

In the optical domain, the observation of a self-produced frequency up-shift
of intense laser pulses, creating a dense plasma when they are focused in a neutral
gas region, and the measured up-shifts [120], were also pointing to the physical
reality of the new concept and giving credit to the emerging theory. Very recently,
the first two-dimensional optical experiments carried out by our group [21], where
a probe laser beam was going through a relativistic ionization front in both co- and
counter-propagation, were able to demonstrate, beyond any reasonable doubt, the
existence of photon acceleration and to provide an accurate quantitative test of the
theory.

Actually, the spectral changes of laser beams by ionization of a neutral gas
were reported as early as 1974 by Yablonovich [122]. In these pioneering experi-
ments, the spectrum of a CO2 laser pulse was strongly broadened and slightly up-
shifted, when the laser beam was focused inside an optical cavity and ionization
of the neutral gas inside the cavity was produced. This effect is now called
flash ionization for reasons that will become apparent later, and it can also be
considered as a particular and limiting case of the photon acceleration processes.

In parallel with this work in plasma physics, and with almost completely
mutual ignorance, following both theoretical and experimental approaches clearly
independently, research on a very similar class of effects had been taking place in
nonlinear optics since the early seventies. This work mainly concentrated on the
concept of phase modulation (including self-, induced and cross phase modula-
tion), and was able to prove both by theory and by experiments, that laser pulses
with a very large spectrum (called the supercontinuum radiation source) can be
produced. This is well documented in the book recently edited by Alfano [3].

As we will see in the present work, the theory of photon acceleration as
developed in plasma physics is also able to explain the phase modulation effects,
when we adapt it to the optical domain. This provides another proof of the interest
and generality of the concept of photon acceleration. We will attempt in this work
to bridge the gap between the two scientific communities and between the two
distinct theoretical views.

1.3 Description of the contents

Four different theoretical approaches to photon acceleration will be considered in
this work: (1) single photon trajectories, (2) photon kinetic theory, (3) classical
full wave models and (4) quantum theory.

The first two chapters will be devoted to the study of single photon equations
(also called ray equations), derived in the frame of geometric optics. This is the
simplest possible theoretical approach, which has several advantages over more
accurate methods. Due to its formal simplicity, we can apply it to describe,
with great detail and very good accuracy, various physical configurations where
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photon acceleration occurs. These are ionization fronts (with arbitrary shapes and
velocities), relativistic plasma waves or wakefields, moving nonlinearities and
flash ionization processes.

It can also be shown that stochastic photon acceleration is possible in several
physical situations, leading to the transformation of monocromatic radiation into
white light. An interesting example of stochastic photon behaviour is provided by
the well-known Fermi acceleration process [29], applied here to photons, which
can be easily described with the aid of single photon equations.

Apart from its simplicity and generality, photon ray equations are formally
very similar to the equations of motion of a material particle. This means that
photon acceleration happens to be quite similar to electron or proton acceleration
by electromagnetic fields, even if the nature of the forces acting on the photons
is not the same. For instance, acceleration and trapping of electrons and photons
can equally occur in the field of an electron plasma wave.

Chapter 2 deals with the basic concepts of this single photon or ray theory,
as applied to a generic space- and time-varying optical medium. The concept
of space–time refraction is introduced, the generalized Snell’s laws are derived
and the ray-tracing equations are stated in their Hamiltonian, Lagrangian and
covariant forms.

Chapter 3 deals with the basic properties of photon dynamics, illustrated with
examples taken from plasma physics, with revelance to laser–plasma interaction
problems. Extension to other optical media, and to nonlinear optical configura-
tions will also be discussed.

This single photon theory is simple and powerful, but it can only provide a
rough description of the laser or other electromagnetic wavepackets evolving in
non-stationary media. However, an extension of this single particle description to
the kinetic theory of a photon gas is relatively straightforward and can lead to new
and surprising effects such as photon Landau damping [14]. This is similar to the
well-known electron Landau damping [54].

Such a kinetic theory is developed in chapter 4 and gives a much better
description of the space–time evolution of a broadband electromagnetic wave
spectrum. This is particularly important for ultra-short laser pulse propagation.
In particular, self-phase modulation of a laser pulse, propagating in a nonlinear
optical medium, and the role played by the phase of the laser field in this process,
will be discussed.

Chapter 5 is devoted to the discussion of the equivalent electric charge of
photons in a plasma, and of the equivalent electric dipole of photons in an optical
fibre. We will also discuss the new radiation processes associated with these
charge distributions, such as photon ondulator radiation, photon transition radi-
ation or photon bremstrahlung.

The geometric optics approximation, in its single photon and kinetic ver-
sions, provides a very accurate theoretical description for a wide range of different
physical configurations. Even very fast time events, occurring on a timescale
of a few tens of femtoseconds, can still be considered as slow processes in the
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optical domain and stay within the range of validity of this theory. But, in several
situations, a more accurate theoretical approach is needed, in order to account for
partial reflection, for specific phase effects, or for arbitrarily fast time processes.

We are then led to the full wave treatment of photon acceleration, which
is presented in chapters 6 and 7. Most of the problems discussed in previous
chapters are reviewed with this more exact approach and a comparison is made
with the single photon theory when possible. New aspects of photon acceleration
can now be studied, such as the generation of a magnetic mode, the multiple
mode coupling or the theory of the dark source which describes the possibility of
accelerating photons initially having zero energy.

In chapter 8 we show that a quantum description of photon acceleration
is also possible. We will try to establish in solid grounds the theory of time
refraction, which is the basic mechanism of photon acceleration.

The quantum Fresnel formulae for the field operators will be derived. We
will also show that time refraction always leads to the creation of photon pairs,
coming out of the vacuum. More work is still in progress in this area.

Finally, chapter 9 is devoted to new theoretical developments. Here, the
photon acceleration theory is extended in a quite natural way to cover new physi-
cal problems, which correspond to other examples of the mean field acceleration
process. These new problems are clearly more controversial than those covered
in the first eight chapters, but they are also very important and intellectually very
stimulating.

Two of these examples are briefly discussed.The first one concerns collective
neutrino plasma interaction processes, which were first explicitly formulated by
Bingham et al in 1994 [13] and have recently received considerable attention
in the literature. The analogies between the photon and the neutrino interaction
with a background plasma will be established. The second example will be the
interaction of photons with a gravitational field and the possibility of coupling
between electromagnetic and gravitational waves. One of the consequences of
such an interaction is the occurrence of photon acceleration in a vacuum by
gravitational waves.



Chapter 2

Photon ray theory

It is well known that the wave–particle dualism for the electromagnetic radiation
can be described in purely classical terms. The wave behaviour is described by
Maxwell’s equations and the particle behaviour is described by geometric optics.
This contrasts with other particles and fields where the particle behaviour is de-
scribed by classical mechanics and the wave behaviour by quantum mechanics.

Geometric optics is a well-known and widely used approximation of the
exact electromagnetic theory and it is presented in several textbooks [15, 16].
We will first use the geometric optics description of electromagnetic wavepackets
propagating in a medium. These wavepackets can be viewed as classical particles
and can be assimilated to photons. We will then apply the word ‘photon’ in
the classical sense, as the analogue of an electromagnetic wavepacket. A single
photon can be used to represent the mean properties of a given wavepacket. The
photon velocity will then be equal to the group velocity of the wavepacket.

This single photon approach will be used in the present and the next chapters.
A more accurate description of a wavepacket can still be given in the geometric
optics approximation, by using a bunch of photons, instead of a single one. The
study of such a bunch will give us information on the internal spectral content
of the wavepacket. This will be discussed in chapter 4. The use of the photon
concept in a quantum context will be postponed until chapter 8.

2.1 Geometric optics

It is well known that a wave is a space–time periodic event, where the time
periodicity is characterized by the angular frequency ω and the space periodicity
as well as the direction of propagation are characterized by the wavevector �k. In
particular, an electromagnetic wave can be described by an electric field of the
form

�E(�r , t) = �E0 exp i{�k · �r − ωt} (2.1)

where �E0 is the wave field amplitude, �r is the position and t the time.

8



Geometric optics 9

In a stationary and uniform medium the frequency and the wavevector are
constants, but they are not independent from each other. Instead, they are related
by a well-defined expression (at least for low amplitude waves) known as the
dispersion relation. In a vacuum, the dispersion relation is simply given by ω =
kc, where the constant c is the speed of light in a vacuum and k is the absolute
value of the wavevector (also known as the wavenumber).

In a medium, the dispersion relation becomes

ω = kc

n
= kc√

ε
= kc√

1 + χ
(2.2)

where n is the refractive index of the medium, ε its dielectric constant and χ its
susceptibility. In a lossless medium these quantities are real, and in dispersive
media they are functions of the frequency ω and the wavevector �k.

In particular, for high frequency transverse electromagnetic waves propa-
gating in an isotropic plasma [82, 108], we have ε = 1 − (ωp/ω)2, where ωp
is the electron plasma frequency. It is related to the electron density ne by the
expression: ω2

p = e2ne/ε0m, where e and m are the electron charge and mass,
and ε0 is the vacuum permittivity.

From equation (2.2) we can then have a dispersion relation of the form

ω =
√

k2c2 + ω2
p. (2.3)

A similar equation is also valid for electromagnetic waves propagating in a
waveguide [25]. The plasma frequency is now replaced by a cut-off frequency ω0
depending on the field configuration and on the waveguide geometry.

In the most general case, however, the wave dispersion relation is a com-
plicated expression of ω and �k, and such simple and explicit expressions for the
frequency cannot be established. It is then preferable to state it implicitly as

R(ω, �k) = 0. (2.4)

The above description of wave propagation is only valid for uniform and
stationary media. Let us now assume that propagation is taking place in a non-
uniform and non-stationary medium. If the space and time variations in the
medium are slow enough (in such a way that, locally both in space and in time,
the medium can still be considered as approximately uniform and constant), we
can replace the wave electric field (2.1) by a similar expression:

�E(�r , t) = �E0(�r , t) exp iψ(�r , t) (2.5)

where ψ(�r , t) is the wave phase and �E0(�r , t) a slowly varying wave amplitude.
We can now define a local value for the wave frequency and for the wavevec-

tor, by taking the space and time derivatives of the phase function ψ :

�k = ∂

∂�r ψ, ω = − ∂

∂t
ψ. (2.6)
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This local frequency ω and wavevector �k are still related by a dispersion
relation, which is now only locally valid:

R(ω, �k; �r , t) = 0. (2.7)

The parameters of the medium, for instance its refractive index or, in a
plasma, its electron plasma frequency ωp, depend on the position �r and on time
t . Such a dispersion relation is satisfied at every position and at each time. This
means that its solution can be written as ω = ω(�r , �k, t).

Starting from Maxwell’s equations, it can be shown that this expression
stays valid as long as the space and timescales for the variations of the medium
are much slower than k−1 and ω−1, or, in more precise terms, if the following
inequality is satisfied:

2π

ω

∣∣∣∣ ∂

∂t
ln ξ

∣∣∣∣ + 2π

k
|∇ ln ξ | 
 1 (2.8)

where ξ is any scalar characterizing the background medium, for instance the
refractive index or, for a plasma, the electron density.

It can easily be seen from the above definitions of the local frequency and
wavevector that

∂ �k
∂t

= −∇ω = −
[

∂ω

∂�r + ∂ �k
∂�r · ∂ω

∂ �k

]
. (2.9)

The last term in this equation was established by noting that, because ω

is assumed to be a function of �r and �k, it varies in space not only because of
its explicit dependence on �r but because the value of �k is also varying. Let us
introduce the definition of group velocity

�vg = ∂ω

∂ �k . (2.10)

This is the velocity of the centroid of an electromagnetic wavepacket moving
in the medium, �vg = d�r/dt . The above equation can be written as(

∂

∂t
+ �vg · ∂

∂�r
)

�k = −∂ω

∂�r . (2.11)

The differential operator on the left-hand side is nothing but the total time
derivative d/dt . It means that we can rewrite the last two equations as

d�r
dt

= ∂ω

∂ �k ,
d�k
dt

= −∂ω

∂�r . (2.12)

These equations of motion can be seen as describing the evolution of point
particles: the photons. We notice that they are written in Hamiltonian form. The
canonical variables are here the photon position �r and the wavevector �k, while the
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frequency plays the role of the Hamiltonian function, ω ≡ h(�r , �k, t). In general,
it will be time dependent according to

dω

dt
= ∂ω

∂t
. (2.13)

These equations are well known in the literature and their derivation is given
in textbooks [55] and in papers [8, 9, 117]. We see that they explicitly predict
a frequency shift as well as a wavevector change. Equations (2.12) and (2.13)
have, in fact, an obvious symmetrical structure. But, for some historical reason,
the physical implications of such a structure for media varying both in space and
time have only recently been fully understood [66].

These ray equations can also be written with implicit differentiation as

d�k
dt

= ∂ R/∂�r
∂ R/∂ω

,
d�r
dt

= − ∂ R/∂ �k
∂ R/∂ω

(2.14)

and
dω

dt
= − ∂ R/∂t

∂ R/∂ω
. (2.15)

This implicit version, even if it is appropriate for numerical computations
(this is currently used for magnetized plasmas with complicated spatial config-
urations), loses the clarity and elegance of the Hamiltonian approach. For this
reason we will retain our attention on the explicit Hamiltonian version of the ray
or photon equations.

2.2 Space and time refraction

In order to understand the physical meaning of the photon equations stated above,
let us use a simple and illustrative example of a photon propagating in a non-
dispersive (but space- and/or time-dependent) dielectric medium, described by
the dispersion relation

ω ≡ ω(�r , �k, t) = kc

n(�r , t)
. (2.16)

From equations (2.12), we have

d�r
dt

= ω

k2
�k,

d�k
dt

= ω
∂

∂�r ln n. (2.17)

From equation (2.13), we can also obtain

dω

dt
= −ω

∂

∂t
ln n. (2.18)

Let us successively apply these equations to three distinct situations: (i) an
inhomogeneous but stationary medium; (ii) an homogeneous but time-dependent
medium; (iii) an inhomogeneous and non-stationary medium.
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2.2.1 Refraction

In the first situation, we assume two uniform and stationary media, with refractive
indices n1 and n2, separated by a boundary layer of width lb located around the
plane y = 0. In order to describe such a configuration we can write

n(�r , t) ≡ n(y) = n1 + �n

2
[1 + tanh(kb y)] (2.19)

where �n = n2 − n1, and kb = 2π/ lb.
The hyperbolic tangent is chosen as a simple and plausible model for a

smooth transition between the two media. Clearly, the ray equations (2.17, 2.18)
are only valid when lb is much larger than the local wavelength 2π/k. On the
other hand, if we are interested in the study of the photon or ray propagation across
a large region with dimensions much larger than lb, such a smooth transition can
be viewed from far away as a sharp boundary, and the above model given by
equation (2.19) corresponds to the usual optical configuration for wave refraction.

In this large scale view of refraction, the above law can be approximated by

n(y) = n1 + �nH(y) (2.20)

where H(y) = 0 for y < 0 and H(y) = 1 for y > 0 is the well-known step
function or Heaviside function.

First of all, it should be noticed that from equations (2.18) and (2.19) we
have

dω

dt
= 0. (2.21)

This means that the wave frequency is a constant of motion ω(�r , �k, t) =
ω0 = const. If the plane of incidence coincides with z = 0, the time variation of
the wavevector components is determined by

dkx

dt
= 0 (2.22)

dky

dt
= ω0

∂

∂y
ln n(y) = ω0�n

2n(y)
kb sech2(kb y). (2.23)

We see that the wavevector component parallel to the gradient of the re-
fractive index is changing across the boundary layer, and that the perpendicular
component remains constant. Defining θ(y) as the angle between the wavevector
�k and the normal to the boundary layer êy , we can obtain, from the first of these
equations,

kx = ω0

c
n(y) sin θ(y) = const. (2.24)

Considering the asymptotic values of θ(y) as the usual angles of incidence
and of transmission θ1 = θ(y → −∞) and θ2 = θ(y → +∞), we reduce this
result to the well-known Snell’s law of refraction

n1 sin θ1 = n2 sin θ2. (2.25)
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Figure 2.1. Photon refraction at a boundary between two stationary media.

Returning to equations (2.17) we can also see that refraction leads to a
change in the group velocity, or photon velocity, with asymptotic values vg =
c/n1, for y → −∞, and vg = c/n2, for y → +∞. In a broad sense, we
could be led to talk about photon acceleration during refraction. But, as we will
see later, this is not appropriate because this change in group velocity is exactly
compensated by a change in the photon effective mass, in such a way that the
total photon energy remains constant. This will not be the case for the next two
examples.

2.2.2 Time refraction

Let us turn to the opposite case of a medium which is uniform in space but changes
its refractive index with time. We can describe this change by a law similar to
equation (2.19):

n(�r , t) ≡ n(t) = n1 + �n

2
[1 + tanh(�bt)] . (2.26)

Here, the timescale for refractive index variation 2π/�b is much larger than
the wave period 2π/ω. From equation (2.19), we now have

dω

dt
= −ω

∂

∂t
ln n(t) = − ω�n

2n(t)
�b sech2(�bt). (2.27)

We see that the photon frequency is shifted as time evolves, following a law
similar to that of the wavevector change during refraction. On the other hand, if
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Figure 2.2. Time refraction of a photon at the time boundary between two uniform media.

propagation is taken along the x-direction, we can see from equation (2.18) that

dx

dt
= c

n(t)
= vg(t),

dk

dt
= 0. (2.28)

The photon momentum is now conserved and the change in the group ve-
locity is only related to the frequency (or energy) shift. Snell’s law (2.24) is now
replaced by

k = ω(t)

c
n(t) = const. (2.29)

Defining the initial and the final values for the frequency as the asymptotic
values ω1 = ω(t → −∞) and ω2 = ω(t → +∞), we can then write

n1ω1 = n2ω2. (2.30)

This can be called the Snell’s law for time refraction. Actually, in the plane
(x, ct) we can define an angle α, similar to the usual angle of incidence θ defined
in the plane (x, y), such that tan α = vg/c = 1/n. This could be called the angle
of temporal incidence. Replacing it in equation (2.30), we get

ω1 tan α2 = ω2 tan α1. (2.31)

This equation resembles the well-known Snell’s law of refraction, equa-
tion (2.25). However, there is an important qualitative difference, related to
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the mechanism of total reflection. We know that this can occur when a photon
propagates in a medium of decreasing refractive index. From equation (2.25)
we see that, for n1 > n2, it is possible to define a critical angle θc such that
sin θc = n2/n1. For θ1 ≥ θc we would have sin θ2 ≥ 1 which means that
propagation is not allowed in medium 2 and that total reflection at the boundary
layer will occur.

In contrast, equations (2.30) or (2.31) are always satisfied for arbitrary (pos-
itive) values of the asymptotic refractive indices n1 and n2. Not surprisingly, no
such thing as a reflection back in time (or a return to the past) can ever occur. This
is the physical meaning of the replacement of the sine law for reflection by the
tangent law for time refraction.

2.2.3 Space–time refraction

Let us now assume a more general situation where the optical medium is both
inhomogeneous in space and non-stationary in time. As a simple generalization
of the previous two models, we will assume that the boundary layer between
media 1 and 2 is moving with a constant velocity u along the x-direction.

Equations (2.19) and (2.26) are now replaced by a similar expression, of the
form

n(�r , t) ≡ n(x − ut) = n1 + �n

2
[1 + tanh(kbx − �bt)] (2.32)

with �b = kbu. From the ray equations (2.12) we can now derive a simple
relation between the time variation of frequency and wavenumber:

dk

dt
= 1

u

dω

dt
. (2.33)

This relation means that, when a photon interacts with a moving boundary
layer, the wave frequency and wavevector are both shifted, in a kind of space–
time refraction. We notice that in order to establish the Snell’s laws (2.24, 2.25),
or their temporal counterparts (2.29, 2.30), we had to define some constant of
motion.

In the first case, the constants of motion were the photon frequency ω and
the wavevector component parallel to the boundary layer kx . In the second case,
the constant of motion was the photon wavevector. Now, for the case of refraction
in a moving boundary, or space–time refraction, we need to find a new constant
of motion because neither the frequency nor the wavevector are conserved.

This new constant of motion can be directly obtained from equation (2.33),
but it is useful to explore the Hamiltonian properties of the ray equations (2.12,
2.13). For such a purpose, let us then define a canonical transformation from the
variables(x, k) to the new pair of variables (x ′, k′), such that

x ′ = x − ut, k′ = k. (2.34)
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The resulting canonical ray equations can be written as

dx ′

dt
= ∂ω′

∂k′ ,
dk′

dt
= −∂ω′

∂x ′ . (2.35)

It can easily be seen that the new Hamiltonian ω′ appearing in these equa-
tions is a time-independent function defined by

ω′ ≡ ω′(x ′, k′) = ω(x ′, k′) − uk′ =
[

c

n(x ′)
− u

]
k′. (2.36)

In a more formal way, we can define a generating function for this canonical
transformation, as

F(x, k′, t) = (x − ut)k′ (2.37)

such that

k = ∂ F

∂x
= k′ (2.38)

x ′ = ∂ F

∂k′ = x − ut. (2.39)

The Hamiltonian (2.36) is determined by

ω′ = ω + ∂ F

∂t
= ω − uk′. (2.40)

Because, based on this canonical transformation, we were able to define a
new constant of motion ω′ = const, we can take the asymptotic values of n(x ′)
and k′ for regions far away from the boundary layer (x ′ → ±∞), and write

ω′ =
(

c

n1
− u

)
k1 =

(
c

n2
− u

)
k2 (2.41)

or, equivalently, in terms of the frequency

ω′ = ω1

(
1 − n1

c
u
)

= ω2

(
1 − n2

c
u
)

. (2.42)

We are then led to the following formula for the total frequency shift associ-
ated with space–time refraction:

ω2 = ω1
1 − β1

1 − β2
(2.43)

where βi = uni/c, for i = 1, 2. We see that the resulting frequency up-shift can
be extremely large if the boundary layer and the photons are moving in the same
direction at nearly the same velocity: β2 � 1.
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When compared with the frequency shifts associated with the case of a
purely time refraction, this shows important qualitative and quantitative differ-
ences. This new effect of almost unlimited frequency shift is a clear consequence
of the combined influence of the space and time variations of the medium, or
in other words, of the synergy between the usual refraction and the new time
refraction considered above.

A comment has to be made on the exact resonance condition, defined by
β2 = 1. At a first impression, it could be concluded from equation (2.43) that
the frequency shift would become infinitely large if this resonance condition were
satisfied. However, because in this case the photons are moving with the same
velocity as the boundary layer, they would need an infinite time to travel across
the layer and to be infinitely frequency shifted.

A closer look at the resonant photon motion shows that this trajectory would
be x ′ = const and, according to equation (2.36), no frequency shift would occur.
On the other hand, the resonant photon trajectory is physically irrelevant because
it represents an ensemble of zero measure in the photon phase space (x, k). What
is relevant is that, in the close vicinity of this particular trajectory, a large number
of possible photon trajectories will lead to extremely high-frequency transforma-
tions taking place in a finite but large amount of time.

Let us now apply the above analysis to the well-known and famous problem
of photon reflection by a relativistic mirror. This can be done by assuming that
n1 = 1 and �n is such that n(x ′) = 0 for x ′ ≥ 0.

The mirror will move with constant velocity −u and its surface will coincide
with the plane x ′ = 0. A photon propagating initially in a vacuum in the opposite
direction, with a wavevector �k = k1êx , will be reflected by the mirror and come
back to medium 1 with a wavevector �k = −k1êx .

This means that in the above equation (2.43) we can make β2 = β = u/c
and β1 = −β. It will then become

ω2 = ω1
1 + β

1 − β
. (2.44)

This is nothing but the well-known formula for the relativistic mirror, which
was derived here in a very simple way, without invoking relativity or using any
Lorentz transformation. Such a result is possible because the photon equations are
exactly relativistic by nature. Apart from providing a very simple and alternative
way to derive the relativistic mirror effect, this result is also interesting because
it shows that such an effect can be seen as a particular case of the more general
space–time refraction or photon acceleration processes.

2.3 Generalized Snell’s law

We generalize here the above discussion of space–time refraction, by considering
oblique photon propagation with respect to the moving boundary between two
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different dielectric media. The moving boundary will now be described by the
following refractive index:

n(�r , t) = n1 + �n

2

[
1 + tanh(�kb · �r − �bt)

]
(2.45)

where �b = �kb · �u and �u is the velocity of the moving boundary. As before,
we assume that the velocity and the slope of the boundary layer, defined by �kb,
remain constant.

It is useful to introduce parallel and perpendicular propagation, by defining
�r = r‖b̂ + �r⊥ and �k = k‖b̂ + �k⊥, where b̂ = �kb/kb. We conclude from the photon
equations of motion that

dk‖
dt

= kc

n2

∂n

∂r‖
(2.46)

d�k⊥
dt

= 0. (2.47)

The conservation of the perpendicular wavevector is due to the fact that the
refractive index is only a function of r‖: n(�r , t) = n(r‖, t). We can now use the
canonical transformation from (�r , �k) to a new pair of variables (�r ′, �k′), generated
by the transformation function

F(�r , �k′, t) = (�r − �ut) · �k′. (2.48)

This is a straightforward generalization of the canonical transformation used
for the one-dimensional problem. This leads to

�k = ∂ F

∂�r = �k′ (2.49)

�r ′ = ∂ F

∂ �k′ = �r − �ut. (2.50)

The new Hamiltonian ω′(�r ′, �k′, t) appearing in these equations is determined
by

ω′ = ω + ∂ F

∂t
= ω − �u · �k′. (2.51)

This Hamiltonian is a constant of motion because in the new coordinates
neither n nor ω depend explicitly on time. It is clear that we can now define two
constants of motion for photons crossing the moving boundary. Let us call them
I1 and I2. The first one is simply the new Hamiltonian ω′, and the other one is the
perpendicular wavenumber k⊥:

I1 = ω(�r ′, �k′) − �u · �k′ (2.52)

I2 = |�k′ × b̂|. (2.53)
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Notice that our analysis is valid even if the velocity of the moving boundary
�u is not parallel to the gradient of the refractive index b̂. However, in order to
place our discussion on simple grounds, we assume here that �u is parallel to b̂. If
θ(�r ′) is the angle between the photon wavevector and the front velocity, defined
for each photon position �r ′ along the trajectory, we can rewrite the two invariants
as

I1 = ω(�r ′, �k′)
[
1 − u

c
n(�r ′) cos θ(�r ′)

]
(2.54)

I2 = k′ sin θ(�r ′). (2.55)

In the first of these equations, we made use of the local dispersion relation
n(�r ′)ω(�r ′, �k′) = k′c. Let us retain our attention on photon trajectories which start
in medium 1 far away from the boundary, at �r ′ → −∞, cross the boundary layer
(at �r ′ = 0) and then penetrate in medium 2 moving towards �r ′ → +∞.

Denoting by the subscripts 1 and 2 the frequencies and angles at the extreme
ends of such trajectories, we can conclude, from the above two invariants, that

ω2 = ω1
1 − β1 cos θ1

1 − β2 cos θ2
(2.56)

where βi = (u/c)ni , for i = 1, 2. This expression establishes the total frequency
shift. We can also conclude that

n1 sin θ1 = ω2

ω1
n2 sin θ2. (2.57)

This last equation can be seen as the generalized Snell’s law, valid for refrac-
tion at a moving boundary betwen two different dielectric media. It shows that
the relation between the angles of incidence and transmission depends not only
on the refractive indices of the two media but also on the photon frequency shift.

Of course, when the velocity of the boundary layer tends to zero, u → 0,
the frequency shift also tends to zero, ω2 → ω1, as shown by equation (2.56).
In this case equation (2.57) reduces to the usual form of Snell’s law (2.25), as it
should. On the other hand, for a finite velocity u �= 0, but for normal incidence
θ1 = θ2 = 0, equation (2.56) reduces to ω2 = ω1(1−β1)/(1−β2), in accordance
with the discusssion of the previous section.

We should notice that equation (2.56) is valid for an arbitrary value of the
velocity of the moving boundary. It stays valid, in particular, for supraluminous
moving boundaries, such that u > c. It is well known that such boundaries can
exist without violating the principles of Einstein’s theory of relativity [31]. They
can even be built in a medium where the atoms are completely at rest, as will be
discussed in the next chapter.

Let us consider the limit of an infinite velocity u → ∞. Equation (2.56) is
then reduced to equation (2.30): n2ω2 = n1ω1. This means that it reproduces the
above result for a pure time refraction.
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Figure 2.3. Illustration of the generalized Snell’s law: photon refraction at the moving
boundary between two uniform media. (a) Diagram (x, ct) for one-dimensional propaga-
tion; (b) oblique propagation.

Now, for an arbitrary oblique incidence, but for highly supraluminous fronts,
u � c, we get from equations (2.56, 2.57)

sin(θ1 − θ2) � 0. (2.58)

We see that, in this limit of a highly supraluminous front, there is no momen-
tum transfer from the medium to the photon, θ1 � θ2. The resulting frequency
shift is determined in this case by the law of pure time refraction, showing that
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Figure 2.4. Dependence of the critical angle θc on the front velocity β1, for n2/n1 = 0.8.

space changes of the refractive index of the medium do not contribute to the final
frequency shift. The dominant processes are associated with the time changes.

Let us now examine the conditions for the occurrence of total reflection.
From the above expression of the generalized Snell’s law (2.57) we can define a
critical angle θ1 = θc such that θ2 = π/2, or

sin θc = n2

n1

ω2

ω1
. (2.59)

Using equation (2.56), we also see that

sin θc = n2

n1
(1 − β1 cos θc). (2.60)

This can be explicitly solved and gives

sin θc = n1n2

n2
1 + β2

1 n2
2


1 + |β1|

√
1 −

(
n2

n1

)2

(1 − β2
1 )


 . (2.61)

For a boundary at rest, β1 = 0, this expression reduces to the well-known
formula for the critical angle sin θc = n2/n1. We also notice that this result
guarantees that in the absence of any boundary (which means n2 = n1) we always
get sin θc = 1, or θc = π/2 (absence of total reflection) for arbitrary values of
β1, as expected. The same occurs for purely time-varying media (|βi | → ∞),
confirming that no time reflection is possible.

For angles of incidence larger than this critical angle θ1 > θc, the photon
will be reflected. This means that the direction of the reflected wavevector will be
reversed with respect to that assumed in equation (2.56).

If the boundary layer is moving towards the incident photon (which is the
usual configuration of the relativistic mirror effect), we have to replace β1 by −β1



22 Photon ray theory

in this equation. Moreover, we will replace the subscript 2 by the subscript 3,
in order to stress that the final photon state is given by reflection and not by
transmission:

ω3 = ω1
1 + β1 cos θ1

1 − β1 cos θ3
. (2.62)

Here the angle of reflection θ3 is not equal to the angle of incidence (as
occurs for a stationary boundary) but, according to equation (2.57), it is given by

sin θ3 = ω1

ω3
sin θ1. (2.63)

These two formulae state the relativistic mirror effect for oblique incidence,
as a particular case of photon acceleration at the moving boundary. Actually,
these formulae stay valid even for partial reflection at the boundary, for angles
of incidence smaller than the critical angle. But in order to account for partial
reflection we will have to use a full wave description and not use the basis of the
geometric optics approximation.

Let us return to the general expression for the two photon invariants I1 and
I2, and make a short comment on the case where the vector velocity, �u, and �kb,
characterizing the gradient of the refractive index across the boundary layer, are
not parallel to each other. We can then write �u · �k′ = uk′ cos α(�r ′) and |�k′ × b̂| =
k′ sin θ(�r ′), where these two angles α(�r ′) and θ(�r ′) are not necessarily equal to
each other. If �u is contained in the plane of incidence, we have θ(�r ′) = α(�r ′)+θ0,
where θ0 is a constant. In the expressions of the two invariants I1 and I2, as given
by equation (2.55), the angle θ(�r ′) has to be replaced by α(�r ′) = θ(�r ′) − θ0.

In our discussion we have kept our attention on very simple but paradigmatic
situations of boundary layers moving with constant velocity. This is because our
main objective here was to extend the existing geometric optics theory to the
space–time domain and to obtain simple but also surprising generalizations of
well-known formulae and well-known concepts.

Our Hamiltonian approach to photon dynamics can however be applied to
more complicated situations of space–time varying media, for instance to non-
stationary and accelerated boundary layers.

2.4 Photon effective mass

Let us now go deeper in the analysis of the photon dynamics and explore the
analogies between the photon ray equations and the equations of motion of an
arbitrary point particle with finite rest mass. From the above definitions of the
local wavevector �k and local frequency ω, it is obvious that the total variation of
the phase ψ , as a function of the space and time coordinates, is

dψ = �k · d�r − ω dt. (2.64)
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If we identify the photon frequency ω with the particle Hamiltonian, and
the wavevector �k with its momentum, as we did before, we can easily see from
classical mechanics [33, 56] that this phase is nothing but the photon action

ψ =
∫

�k · d�r − ω(�r , �k, t) dt. (2.65)

In order to establish the photon trajectories we can apply the principle of
minimum action, and state that the phase has to obey the extremum condition

δψ = 0. (2.66)

It is well known that, from this variational principle, it is possible to rederive
the photon canonical equations already established in section 2.1. On the other
hand, for a dielectric medium with refractive index n = kc/ω, and from the
definitions of �k and ω, we can get the following equation for the phase:(

∂ψ

∂�r
)2

= n2

c2

(
∂ψ

∂t

)2

. (2.67)

In the particular case of a stationary medium, we have ω = ω0 = const, and
equation (2.65) reduces to

ψ = ψ0 − ω0t =
∫

�k · d�r − ω0t (2.68)

where ψ0 is the reduced photon action. Equation (2.67) is then reduced to the
usual eikonal equation of geometric optics [15](

∂ψ0

∂�r
)2

= n2

c2
ω2

0. (2.69)

We can then refer to the more general equation for the phase, equation (2.67),
as for the generalized eikonal equation, valid for space–time varying media.

We also know from classical mechanics that the action can be defined as the
time integral of a Lagrangian function. The photon Lagrangian is then determined
by

ψ =
∫ t2

t1
L(�r , �v, t) dt (2.70)

where �v = d�r/dt is the photon velocity, or group velocity. Comparing this with
equation (2.65), we obtain

L(�r , �v, t) = �k · �v − ω(�r , �k, t). (2.71)

It should be noticed that, in this expression, the photon wavevector is not an
independent variable because it is determined by

�k = ∂L

∂ �v . (2.72)
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We can also determine the force acting on the photon as the derivative of the
Lagrangian with respect to the coordinates (or the gradient of L):

�f = ∂L

∂�r . (2.73)

With these definitions we can reduce the Lagrangian equation

d

dt

∂L

∂ �v − ∂L

∂�r = 0 (2.74)

to Newton’s equation of motion

d�k
dt

= �f = −∂ω

∂�r . (2.75)

Obviously, this also agrees with the second of the Hamiltonian ray equa-
tions (the first one can be seen as the definition of �v = d�r/dt). We have given
here the three equivalent versions of the photon equations of motion in a space–
time varying medium: (1) the Newtonian equation (2.75); (2) the Lagrangian
equation (2.74) and (3) the Hamiltonian equations already stated in section 2.1.
This means that the photon trajectories can be described by the formalism of
classical mechanics, in a way very similar to that of point particles with finite
mass.

Let us explore further this analogy between the photon and a classical parti-
cle. The example of high-frequency transverse photons in an isotropic plasma is
particularly interesting because of the simple form of the associated dispersion

relation: ω =
√

k2c2 + ω2
p(�r , t). If we multiply this expression by Planck’s

constant (divided by 2π ), redefine the photon energy as ε = h̄ω and the photon
momentum as �p = h̄�k, we get

ε =
√

p2c2 + h̄2ω2
p(�r , t) =

√
p2c2 + m2

effc
4. (2.76)

This means that the photon in a plasma is a relativistic particle with an
effective mass defined by

meff = ωph̄/c2. (2.77)

We see that the photon mass in a plasma is proportional to the plasma fre-
quency (or to the square root of the electron plasma density). Therefore, in a
non-stationary and non-uniform medium, this mass is not a constant because it
depends on the local plasma properties.

In the following, we will use h̄ = 1. We can also see that the photon velocity
in this medium is determined by v = pc2/ε, or v = kc2/ω. The corresponding
relativistic gamma factor is then

γ =
(

1 − 1

c2

∣∣∣∣d�r
dt

∣∣∣∣
2
)−1/2

=
(

1 − k2c2

ω2

)−1/2

= ω

ωp
. (2.78)
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We can also adapt Einstein’s famous formula for the energy of a relativistic
particle to the case of a photon moving in a plasma, as

ω = γωp = meffγ c2. (2.79)

Let us now write the photon Lagrangian in an explicit form. Using equa-
tion (2.71), we have

L = v

c

√
ω2 − ω2

p − ω = −ωp

(
γ − v

c

√
γ 2 − 1

)
. (2.80)

This can also be written as

L(�r , �v, t) = − 1

γ
meffc

2 = −ωp(�r , t)

(
1 − v2

c2

)1/2

. (2.81)

The photon momentum �k, and the force acting on the photon �f , are deter-
mined by

�k = ∂L

∂ �v = −ωp
∂

∂ �v
(

1 − v2

c2

)1/2

= ωp

c2
γ �v = meffγ �v (2.82)

and

�f = ∂L

∂�r = −
(

1 − v2

c2

)1/2 ∂ωp

∂�r = −ωp

ω

∂ωp

∂�r . (2.83)

The Newtonian equation of motion (2.75) can then be written as

d�k
dt

= −ωp

ω

∂ωp

∂�r . (2.84)

The same kind of description can be used for electromagnetic wave propa-
gation in a waveguide. The effective mass of the confined photons will then be
equal to meff = ω0/c2, where ω0 is the cut-off frequency for the specific mode of
propagation.

The same equations of motion apply here, but only for one-dimensional
propagation (along the waveguide structure) and, for non-stationary and non-
uniform waveguides, the same effective mass changes and frequency shifts are
expected. The implications of the effective mass of a photon in a waveguide were
considered, in a somewhat speculative maner, by Rivlin [90].

In general terms, a photon always propagates in a medium with velocity less
than c. In the language of modern quantum field theory it can be considered as
a ‘dressed’ photon, because of the polarization cloud. For a generic dispersive
dielectric medium, the photon velocity is determined by

�v ≡ ∂ω

∂ �k = ∂

∂ �k
kc

n
= ∂

∂ �k
kc√

1 + χ(ω)
(2.85)
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where χ(ω) is the susceptibility of the medium. We then have

v = c
√

1 + χ

(1 + χ) + (ω/2)(∂χ/∂ω)
. (2.86)

The relativistic γ factor associated with the photon in the medium is then,
by definition,

γ =
(

1 − v2

c2

)−1/2

= (1 + χ) + (ω/2)(∂χ/∂ω)

{[(1 + χ) + (ω/2)(∂χ/∂ω)]2 − (1 + χ)}1/2
. (2.87)

In the case of a plasma, we have χ = −ω2
p/ω

2 = −1/γ 2. This is in
agreement with equation (2.78), as expected. For a non-dispersive medium we
have ∂χ/∂ω = 0, and we get the following simple result:

γ =
(

1 + 1

χ

)1/2

= n√
n2 − 1

. (2.88)

The gamma factor tends to infinity when the refractive index tends to one
(the case of a vacuum) because the photon velocity then becomes equal to c. Let
us now establish a definition of the photon effective mass, valid for a dispersive
optical medium. Using Einstein’s energy relation for a relativistic particle, we get

meff = ω

γ c2
. (2.89)

This means that, in general, meff is a function of the frequency ω. Exceptions
are the isotropic plasma and the waveguide cases. As a consequence, we are not
allowed to write the dispersion relation as ω = (k2c2 + m2

effc
4)1/2, except for

these important but still exceptional cases, because for a refractive index larger
than one this would simply imply imaginary effective masses, in contrast with the
well-behaved definition stated above. For instance, for a non-dispersive dielectric
medium with n > 1 we have, from equation (2.89),

meff = ω

nc2

√
n2 − 1. (2.90)

Let us now write the Lagrangian for a photon in a generic dielectric medium.
Using equation (2.71), we have

L = −ω

(
1 − v

c

√
1 + χ

)
. (2.91)

This reduces to equation (2.80) for a plasma, where χ = −ω2
p/ω

2. In con-
trast, for a non-dispersive medium, we have v = c/

√
1 + χ and the Lagrangian is

equal to zero. Notice that, in general, we are not allowed to write L = −meffc2/γ ,
except for plasmas and waveguides.
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From equation (2.73) we can calculate the force acting on the photon

�f = ∂L

∂�r = ω
∂

∂�r ln n = 1

2

ω

(1 + χ)

∂χ

∂�r . (2.92)

This reduces to equation (2.83) for χ = −ω2
p/ω

2.
We will now make a final comment on the nature of this force. For a non-

uniform but stationary medium, the force acting on the photon is responsible for
the change in the photon velocity according to the usual laws of refraction: a
gradient of the refractive index always leads to a change in the photon velocity, as
stated by this expression for the force. We have then a variation in the relativistic
γ factor: ∂γ /∂t �= 0.

However this is not equivalent to photon acceleration, because the total en-
ergy of the photon remains unchanged: ∂ω/∂t = 0. The reason is that the
variation in velocity (or in kinetic energy) is exactly compensated by an equal
and opposite variation in the effective mass (or in the rest energy)

∂

∂t
ln γ = − ∂

∂t
ln meff. (2.93)

If, in contrast, the properties of the medium are also varying with time, this
equality is broken and we can say that photon acceleration takes place. The
medium exchanges energy with the photon, and the photon frequency (or its total
energy) is not conserved: ∂ω/∂t �= 0.

2.5 Covariant formulation

The similarities between space and time boundaries noted in the preceding sec-
tions suggest and almost compel the use of four-vectors, defined in relativistic
space–time. Let us then define the four-vector position and momentum as

xi = {ct, �r}, ki =
{

ω

c
, �k

}
. (2.94)

The flat space–time of special relativity [43, 55] is described by the
Minkowski metric tensor gi j , such that g00 = −1, gii = 1 (for i = 1, 2, 3) and
gi j = 0 (for i �= j). From the relation ki = gi j k j , we get ki = ki (for i = 1, 2, 3)
and k0 = −k0 = ω/c.

The total variation of the photon phase (or action) will then be given by

dψ = �k · d�r − ω dt =
3∑

i=1

ki dxi − k0 dx0 = ki dxi (2.95)

where, in the last expression, we have used Einstein’s summation rule for repeated
indices.
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We can then establish an expression for the variational principle (2.66), as

δψ = δ

∫
ki dxi = 0. (2.96)

The photon canonical equations can now be written as

dxi

dx0
= −∂k0

∂ki
,

dki

dx0
= ∂k0

∂xi
. (2.97)

Notice that, for i = 0, the second of these equations simply states that
dω/dt = ∂ω/∂t , and the first one is an identity. For i = 1, 2, 3, we obtain
the above three-dimensional canonical equations.

It should also be noticed that, in these equations, the momentum component
k0 is not an independent variable, but a function of the other variables k0 ≡
k0(k1, k2, k3, xi ). The explicit form of this function depends on the properties
of the medium. For a generic dielectric medium, we have

k0 = − 1

n(k0, xi )

( 3∑
j=1

k j k
j
)1/2

. (2.98)

We can certainly recognize here the dispersion relation ω = kc/n, written
in a more sophisticated notation. The square of the four-vector momentum is
determined by

ki k
i = −(k0)

2 +
3∑

j=1

(ki )
2 = k2 −

(ω

c

)2
. (2.99)

Noting that k = ωn/c, and using n = √
1 + χ , we obtain

ki k
i = (k0)

2χ(k0, xi ). (2.100)

This is the dispersion relation in four-vector notation. In the case of a plasma,
we simply have

ki k
i = −ω2

p

c2
= −m2

effc
2. (2.101)

Now, the moving boundary between two dielectric media can be described
by the law

n(xi ) = n1 + �n

2

[
1 + tanh(K j x j )

]
(2.102)

where K j = {�b/c = �kb · �u/c, �kb} is the four-vector defining the space–time
properties of that boundary.

The invariant I1 can also be written in the same notation as

I1 = −ui k
i (2.103)
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where the four-vector velocity ui = {c, �u} was used.
What we have written until now is nothing but the equations already es-

tablished for the photon equations of motion in the new language of the four-
dimensional space–time of special relativity. This new way of writing can be
useful in, at least, two different ways.

First, it stresses the fact that the apparently distinct phenomena of refraction
and photon acceleration are nothing but two different aspects of a more general
physical feature: the photon refraction due to a variation of the refractive index in
the four-dimensional relativistic space–time. Second, it can be useful for future
generalizations of photon equations to the case of a curved space–time, where
gravitational effects can also be included.

We can now make a further qualitative jump. Given the formal analogy
between equation (2.95) and the phase defined in the usual three-dimensional
space coordinates, we can generalize it and write

dψ = ki dxi − h(xi , ki ) dτ. (2.104)

Here we have used a timelike variable τ , to be identified later with the photon
proper time, and a new Hamiltonian function such that h(xi , ki ) = 0. This
function is sometimes called a super-Hamiltonian [33, 76].

The covariant form of the variational principle (2.96) can now be written as

δφ = δ

∫
ki dxi − h dτ

=
∫

δki

(
dxi − ∂h

∂ki
dτ

)
−

∫ (
dki + ∂h

∂xi
dτ

)
δxi

= 0 (2.105)

where the integration is performed between two well-defined events in space–
time. For arbitrary variations δki and δxi , we can derive from here the photon
canonical equations in covariant form:

dxi

dτ
= ∂h

∂ki
,

dki

dτ
= − ∂h

∂xi
. (2.106)

In contrast with the above equations of motion (2.97), these new equations
are formally analogous to the three-dimensional canonical ray equations (2.12).
The question here is how to define the appropriate function h(xi , ki ) such that
these new canonical equations are really equivalent to equations (2.97). This is
simple for the plasma case, but not obvious for an arbitrary dielectric medium.

We notice that, for a plasma, the photon effective mass is not a function of
the frequency. In this case, we can use the analogue of the covariant Hamiltonian
for a particle with a finite rest mass:

h(xi , ki ) = k j k j

2meff
+ 1

2
meffc

2. (2.107)
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This is equivalent to

h(xi , ki ) = (k j k j )c2

2ωp(xi )
+ 1

2
ωp(xi )

= 1

2ωp(xi )

[
k2c2 + ω2

p(xi ) − ω2
]
. (2.108)

It can easily be seen that, for i = 0, the use of this Hamiltonian function
in equations (2.106) leads to the appropriate definition of the relativistic γ factor.
For i = 1, 2, 3, it leads to equations (2.12), just showing that equations (2.106)
are indeed an equivalent form of the photon canonical equations.

In the general case of a dielectric medium with refractive index n (where
the photon effective mass is, in general, a function of the photon frequency), the
covariant Hamiltonian h(xi , ki ) = 0 has to satisfy the following conditions:

∂h

∂ω
= −γ,

∂h

∂t
= −γω

∂

∂t
ln n (2.109)

and
∂h

∂ �k = γ �v,
∂h

∂�r = −γω
∂

∂�r ln n. (2.110)

For a non-dispersive medium, where v = c/n, we see that these four condi-
tions are satisfied by the covariant Hamiltonian

h(xi , ki ) = γ

(
kc

n
− ω

)
= γ c

n(xi )

[
k0 +

( 3∑
i=1

ki ki

)1/2]
. (2.111)

The photon ray theory for non-stationary plasmas was first proposed by
us [66]. This work has been considerably extended in the present chapter.
The covariant formulation was considered in reference [65], where the
Hamiltonian (2.107) was first stated.



Chapter 3

Photon dynamics

Two different kinds of moving perturbation can be imagined in a non-stationary
medium. The first one is a shock front or moving discontinuity, similar to the
moving boundary between two media considered in the previous chapter. The
second is a wave-type perturbation of the refractive index.

Both kinds of perturbation can be excited in a plasma by an intense laser
pulse. They can also be analytically described in a simple way. The moving
boundary will be the ionization front created by the laser pulse, and the wave
perturbation will be the wakefield left behind the pulse.

For the sake of simplicity we will focus here on the dynamical properties
of the photon motion in a non-magnetized plasma, in the presence of ionization
fronts and of wakefields. At the end of this chapter, we will discuss the ways in
which the same kind of perturbation can also be excited in magnetized plasmas
and in other optical media.

As a particular example of photon acceleration in a dielectric medium, we
will consider the well-known induced phase modulation processes.

3.1 Ionization fronts

One simple way of producing a moving discontinuity of the refractive index is to
create an ionization front, which is the boundary between the neutral state and the
ionized state of a given background gas. In other words, the ionization front is the
boundary between a neutral and a plasma medium. The motion of this boundary
is independent of the motion of the atoms, ions or electrons of the medium, which
means that we can eventually produce a relativistic moving boundary in a medium
where the particles stay nearly at rest.

The ionization front is one of the main problems in the theory of photon
acceleration in plasmas, as referred to in chapter 1. A relativistic front can be
efficiently produced by photoionization of a gas by an intense laser pulse [4, 47].
Because the photoionization is a fast process, occurring within a timescale of a
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Figure 3.1. Ionization front scheme: an intense laser pulse photoionizes a background gas.
The resulting plasma boundary follows the pulse, moving at nearly the same speed.

few femtoseconds, the front will tend to replicate the form of the ionizing laser
pulse and will move with nearly the same velocity.

The formation and propagation of such a front is a very complicated process.
First of all, the laser pulse is moving at the boundary between two different media
and, for that reason, its group velocity cannot be determined in a simple way.

Furthermore, its spectral content is also changing, due to the self-frequency
shift, or acceleration of the laser photons by the laser itself, which will be dis-
cussed later. On the other hand, the photoionization process cannot be isolated
from other ionization mechanisms because the primary electrons (created and
subsequently accelerated by the laser field) will also contribute to the ionization
process, by electron-impact ionization [60].

Here we are not interested in the details of the ionization front structure. It is
only interesting to note that, behind the ionizing laser pulse, the plasma state will
have a much longer lifetime than the duration of the pulse, because of the long
timescales of the diffusion and recombination processes, which will eventually
destroy it. We will therefore restrict our attention to the dynamics of individual
probe or test photons, interacting with a given ionization front.

We start with a discussion of the different types of photon trajectory, as given
by the one-dimensional ray equations

dq

dt
= ∂�

∂p
,

dp

dt
= −∂�

∂q
(3.1)

where q = x − ut , p = k and u is the front velocity. We restrict our analysis to
high-frequency photons, which is pertinent for laser propagation.
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We can then neglect the contribution of the ion response and, for an isotropic
or non-magnetized plasma, the Hamiltonian function � is simply determined by

� ≡ �(q, p, t) =
√

p2c2 + ω2
p0 f (q) − up. (3.2)

Here, ωp0 is the maximum value of the electron plasma frequency attained
by the ionization front and f (q) is a function increasing with q from 0 to 1
and describing the form of the front. One possible choice, already mentioned
in chapter 2, is f (q) = [1 + tanh(k f q)]/2, where k f determines the front width.

Another possible choice, for fronts created by a single step ionization of
the background neutral atoms, by a Gaussian pulse, is f (q) = exp(−k2

f q2), for
q < 0, and f (q) = 1, for q ≥ 0. Other, more complicated but more realistic
forms of front profiles can also be proposed, but will not significantly modify our
view of the various possible classes of photon trajectories.

From equation (3.2) we can determine the photon trajectory p(q) in the two-
dimensional phase space (q, p)

p(q) = γ 2 �

c


sβ ±

√
1 − 1

γ 2

ω2
p0

�2
f (q)


 (3.3)

where β = |u|/c, s is the sign of the velocity u and γ −2 = (1 − β2).
From this result we can establish two different conditions for photon reflec-

tion by the front. First, we can say that a reversal in direction of the photon
trajectory in phase space (q, p) will occur if

∂p

∂q
→ −∞. (3.4)

Using equation (3.3), we see that such a condition is satisfied if, for a given
point q = qr , we have

� = ωp0

γ

√
f (qr ). (3.5)

Noting that the maximum value for f (q) is equal to 1, we can say that the
photon trajectory will be sooner or later reflected in phase space if � < ωp0/γ .
For a photon with initial frequency ω1, which moves with a positive velocity
along the x-axis (or, equivalently, along the q-axis) and then interacts with a front
moving in the oposite direction (such that s = −1), we can write � = ω1(1 −
sβ) = ω(1 + β).

This allows us to establish an upper limit ωq for the frequencies of those
photons with trajectories which reverse sense in phase space (q, p)

ω1 <
ωp0

1 + β

√
1 − β2 ≡ ωq . (3.6)
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On the other hand, we have reflection in real space (a reflection observed in
the laboratory frame of reference) if there is a turning point x where the photon
momentum reverse changes its sign: p = k = 0. According to equation (3.3) this
implies that

� = ωp0
√

f (q). (3.7)

More generally, we can say that reflection in real space occurs if � < ωp0.
This allows us to establish a new upper limit ωx for the frequency of photons with
this kind of behaviour

ω1 <
ωp0

1 + β
≡ ωx . (3.8)

From equations (3.6, 3.8) we can get a simple relation between the two upper
limits

ωx = ωq√
1 − β2

. (3.9)

This shows that we will always have ωx > ωq . We are now ready to establish
the distinct regimes of photon propagation across the ionization front or, in other
words, the different types of trajectory in phase space. If we assume that the
parameter ωp0 is fixed and if we vary the value of the incident photon frequency
ω1, we successively obtain:

(a) type I trajectories, for low-frequency photons, such that ω1 < ωq—there is
reflection in both the real space and the phase space;

(b) type II trajectories, for moderate values of the frequency, such that ωq <

ω < ωx —there is reflection in real space but transmission (no reversal) in
phase space. This means that the reflected photon and the front move both
in the backward direction, but the front moves faster, which means that the
photon can still cross the entire front region;

(c) type III trajectories, for high-frequency photons with frequencies such that
ω1 > ωx —there is transmission in both the real space and the phase space.

If instead, we had assumed a fixed incident frequency ω1 and had increased the
value of the maximum plasma frequency of the front, we would have type III
trajectories for 0 < ωp0 < ωa , where ωa = ω1(1 + β), type II trajectories for
moderate densities ωa < ωp0 < ωb, where ωb = γωa , and type I trajectories for
high-density trajectories, such that ωp0 > ωb. These three types of trajectory are
illustrated in figure 3.2.

The maximum values for the photon frequency shifts can easily be obtained
from the invariance of �, as already shown in chapter 2, independently of the
choice of the form function f (q). For type I trajectories, we have

ω2 = ω1
1 + β

1 − β
(3.10)

where ω2 is the final value of the frequency. This result is identical to that of
reflection of an incident photon in a relativistic mirror with normalized velocity
β.
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Figure 3.2. Trajectories of photons interacting with an ionization front. The three
counter-propagating types of trajectory are shown for the following parameters: front
velocity β = 0.9, electron density ne = 5 × 1020 cm−3. A co-propagating trajectory
is also shown, but for a different electron density ne = 1020 cm−3, for numerical reasons.
This trajectory would not intersect the others if the plasma parameters were the same.
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Figure 3.3. The same four trajectories as in figure 3.2, but represented in terms of the
vaccuum wavelength λ = 2πc/ω, which is the prefered unit for the experimentalists to
denote the measured photon frequency ω.

This is a very interesting result because, as we explained above, the particles
of the media can stay at rest, and we still have a moving mirror effect.

The boundary between two different states of the medium (the neutral and
the plasma state) act then as a moving material obstacle. Such an equivalence be-
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tween the ionization front and a material moving mirror is however not complete,
as discussed in chapter 4.

Using the same kind of argument, we can also easily obtain for type II and
III trajectories the following frequency transformation:

ω2 = ω1

1 − β

[
1 − β

√
1 − (ωp0/ω1)2(1 − β)

]
. (3.11)

For high-frequency photons, such that ω1 � ωp0, this leads to the following
frequency shift:

�ω = ω2 − ω1 � 1

2

ω2
p0

ω1

β

1 + β
. (3.12)

As expected, the frequency shift for these highly energetic photons interact-
ing with low-density fronts is very small. The interesting thing however is that
even in this case a positive shift is expected. Actually, for β � 1, the frequency
shift is half of the value expected for the case of flash ionization (β → ∞). This
limiting case, and its physical meaning, will be discussed later.

Until now we have only considered photons counter-propagating with re-
spect to the moving front. However, in order to get the full picture of the pho-
ton phase space, we have to consider type IV trajectories, corresponding to co-
propagation. In this case, the frequency shift is

ω2 = ω1

1 − β

[
1 − β

√
1 − (ωp0/ω1)2

]
. (3.13)

For high frequencies ω1 � ωp0, this reduces to an expression similar to
equation (3.12), but where (1 + β) is replaced by (1 − β), in the denominator.
This means that, in co-propagation, much larger frequency shifts are expected.

Furthermore, two independent measurements of the frequency shifts, for
co- and counter-propagation, will allow us to determine the two independent
parameters of the ionization front: the normalized velocity β and the maximum
plasma density or electron plasma frequency ωp0.

Such a approach was followed in the experiments by Dias et al [21], who es-
tablished a proof of principle of the photon accelerated process and also made the
first observation of frequency shift in counter-propagation. Previous experiments
of frequency up-shift by an ionization front propagating inside a microwave cav-
ity, where essentially the co-propagating signal was observed, were reported by
Savage et al [95]. Several other observations of frequency up-shift in microwave
experiments were reported [52, 121].

These four types of trajectory correspond to four distinct regions in phase
space, which are delimited by three separatrix curves. If we use � = ωp0/γ in
equation (3.3), we obtain an expression for two of the separatrix curves

p(q) = γ
ωp0

c

[
−β ± √

1 − f (q)
]
. (3.14)
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Figure 3.4. Photon interaction with ionization fronts: the three separatrix curves and the
four types of trajectory.

If, instead, we use � = ωp0, we get the third separatrix

p(q) = γ 2 ωp0

c

[
−β +

√
1 − f (q)/γ 2

]
. (3.15)

These three curves, and the corresponding four regions of phase space, are
shown in figure 3.4.

In the above discussion we have used an arbitrary form function f (q) but
where f (q) = 0 for q → −∞. Another possible version of the front assumes
that the ionizing laser pulse is propagating not in a neutral gas, but in a partially
ionized gas, with a residual plasma frequency equal to δωp0, with δ 
 1. This
model of the front was considered by Kaw et al [46]. It can be described by the
following form function:

f (q) = δ + 1

2
(1 − δ)[1 + tanh(k f q)]. (3.16)

This improvement in the model slightly changes the photon trajectories and
the values of the resulting frequency shifts, but the basic picture of the photon
phase space remains valid. For type I trajectories, the invariance of � now leads
to the expression

ω2 = �(ω1)

1 − β2

{
1 + β

√
1 − δ(1 − β2)[ωp0/�(ω1)]2

}
. (3.17)

Here, we have used �(ω1) = ω1[1 + β

√
1 − δ(ωp0/ω1)2]. For δ = 0 this

reduces to equation (3.10), and, for δ �= 0 but for ω1 � ωp0, this simplifies to

ω2 = ω1

1 − β2

[
1 + β2 + 2β

√
1 − δ

]
. (3.18)
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Similarly, for type II and III trajectories, equation (3.11) is generalized to

ω2 = �(ω1)

1 − β2

{
1 − β

√
1 − (1 − β2)ωp0/�(ω1)2

}
(3.19)

where �(ω1) is the same as in equation (3.17).
Finally, for the co-propagating type IV trajectories, we have, instead of equa-

tion (3.13),

ω2 = �′(ω1)

1 − β2

{
1 + β

√
1 − δ(1 − β2)[ωp0/�′(ω1)]2

}
. (3.20)

Here we have to use �′(ω1) = ω1[1 − β

√
1 − (ωp0/ω1)2]. Let us now turn

to another (and eventually more realistic) model of the ionization front where, in
the absence of the front, we have a neutral gas, but where the influence of the
neutral gas on the refractive index n is not neglected as it was before.

If we consider a value n �= 1 (but still neglect dispersion in the neutral
region), we can use the following model:

�(q, p) =
{

p2c2

1 + χ [1 − f (q)] + ω2
p0 f (q)

}1/2

− up. (3.21)

Here χ = n2 − 1 is the susceptibility of the background neutral gas, and a
singly ionized plasma is assumed. With this model we still get the same picture
of the photon phase space and similar expressions for the frequency shift. For
instance, for type I trajectories, we have now

ω2 = ω1
1 + βn

1 − βn
. (3.22)

For types II and III, we get

ω2 = ω1
1 + βn

1 − β2


1 − β

[
1 − ω2

p0

ω2
1

(1 − β)2

(1 + βn)2

]1/2

 (3.23)

and, for type IV trajectories, we obtain

ω2 = ω1

1 − βn

[
1 − β

√
1 − (ωp0/ω1)2

]
. (3.24)

Let us briefly consider oblique interaction of photons with an infinite ioniza-
tion front. In this case, the generalization of the above one-dimensional analysis
to the two-dimensional case allows us to determine the cut-off frequencies.
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In particular, the condition for the existence of a type I trajectory (corre-
sponding to reflection both in real space and in phase space) corresponds to
incident photon frequencies ω1 smaller than some limit ωq , defined by

ωq = ωp0

√
1 − β2√

[1 + β cos(θ1)]2 − (1 − β2) sin2(θ1)

(3.25)

where β = |u|/c.
For normal incidence, such that θ1 = 0, this expression reduces to equa-

tion (3.6). But a new and very interesting physical situation occurs when the
incident photon is co-propagating in the vacuum region (or, more precisely, in the
neutral gas region) and is overtaken by the ionization front.

Even if the photon travels with a velocity nearly equal to c, its velocity
perpendicular to the front can be much smaller due to oblique propagation. In this
case, we have π/2 ≤ θ1 ≤ π and photon reflection can still take place, as shown
by the above expression. This new effect can be called co-propagating relativistic
mirror and it is due to oblique interaction with the front. The corresponding
frequency shift can be obtained from the expressions of the two invariants I1 and
I2, defined in chapter 2, and the result is

ω2 = ω1

[
1 + β cos(θ1) + β|β + cos(θ1)|

1 − β2

]
. (3.26)

This effect was observed in the experiments by Dias et al [21] mentioned
already.

3.2 Accelerated fronts

A front moving with constant velocity can only be considered as an ideal and
limiting case. It is therefore quite natural to extend the above analysis to the
more general situation of accelerated ionization fronts. This can easily be done
by considering a plasma frequency space–time dependence of the form

ω2
p(�r , t) = ω2

p(�r − �R(t)). (3.27)

For a density perturbation moving with constant velocity, we would simply
have �R(t) = �vt , which is the case discussed in the previous section. But now we
can have d2 �R/dt2 �= 0, which corresponds to accelerated density perturbations.

In order to treat our problem we can easily generalize the above canonical
transformation (�r , �k) → (�q, �p), using the following generating function:

F(�r , �k, t) = �k · (�r − �R(t)). (3.28)

This leads to

�q = ∂ F

∂ �k = �r − �R(t), �p = ∂ F

∂�r = �k. (3.29)
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The transformed Hamiltonian is

� = ω + ∂ F

∂t
=

√
p2c2 + ω2

p(�q) − �p · ∂ �R
∂t

. (3.30)

Now, the velocity of the front ∂ �R/∂t is not constant, which means that � is
no longer a constant of motion. New qualitative aspects of photon acceleration
can be associated with accelerated fronts.

For co-propagation (photons and front propagating in the same direction)
we can improve the frequency up-shifting by increasing the interaction time. For
counter-propagation (photons and front propagating in the opposite sense) two
sucessive reflections can take place.

We will illustrate these new aspects, by focusing our discussion on the one-
dimensional problem. As before, we can write ω2

p(q) = ω2
p0 f (q). But, instead

of using our tanh model, we will assume an even simpler form for the ionization
front, described by

ω2
p(q) =




0 (q < −1/k f )

ω2
p0(1 + k f q) (−1/k f < q < 0)

ω2
p0 (q > 0)

. (3.31)

The width of the front is obviously equal to 1/k f . It is also clear that the
photon frequency will only change as long as the photon travels inside the gradient
region, or when the photon coordinates are such that

−1/k f < q(t) < 0. (3.32)

Inside that region, the photon frequency is determined by the expression

ω(t) =
√

p2(t)c2 − ω2
p0k f q(t). (3.33)

In order to obtain an explicit expression for the frequency shift, we have to
consider the photon equations of motion, allowing us to determine q(t) and p(t).
They can be written as

dq

dt
= pc2

ω(t)
− ∂ R

∂t
(3.34)

dp

dt
= 1

2

ω2
p0k f

ω(t)
. (3.35)

These equations can easily be integrated by noticing that equation (3.33)
allows us to write

q(t) = p2(t)
c2

ω2
p0k f

+ Q(t) (3.36)
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with

Q(t) = − ω2(t)

ω2
p0k f

. (3.37)

Using equations (3.34, 3.35) we realize that the total time derivative of equa-
tion (3.36) leads to

dQ

dt
= −∂ R

∂t
. (3.38)

This can be integrated to give

Q(t) = Q0 − R(t). (3.39)

Going back to equations (3.33, 3.37), we obtain

ω(t) =
√

ω2
0 + ω2

p0k f R(t) (3.40)

where ω0 ≡ ω(t = 0) is the initial value of the photon frequency (just before
entering the acceleration region).

The constant of integration in equation (3.39) is Q0 = −ω2
0/(ω

2
p0k f ), as can

be seen from equation (3.37).
In the particular case of a front moving with constant velocity, we have

R(t) = v f t . This expression shows that the photon frequency grows with
√

t ,
as first noticed by Esarey et al [27]. This expression is valid as long as the photon
stays inside the gradient region (3.32). It means that the closer the photon velocity
is to the front velocity v f , the longer t will be and the larger the final value of the
frequency shift will be, as already shown in the previous section.

However, because of the photon acceleration process itself, the photon will
have a tendency to escape from the gradient region, and a phase slippage between
the photons and the front will always exist. Such a slippage can however be
avoided (or at least significantly reduced) if the ionization front is accelerated as
well.

Then, in principle, we can imagine an ideal situation where the photon co-
propagating with the front is indefinitely accelerated up to arbitrary high frequen-
cies, just by using a very small (but accelerated) plasma density perturbation. The
external source responsible for the creation of such an accelerated plasma density
perturbation would provide the energy necessary to accelerate the co-propagating
photons.

Let us illustrate this idea with the simple case of a front moving with constant
acceleration a:

R(t) = v f t + 1

2
at2. (3.41)

In this case, we can estimate the maximum frequency up-shift for very un-
derdense fronts (or, equivalently, for very high-frequency photons), such that
ω2

0 � ω2
p0. The photon velocity can be assumed to be nearly equal to c and
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the total interaction time can be determined by the equality ctin − R(tin) � 1/k f .
The solution is

tin = c

a

[
(1 − β f ) −

√
(1 − β f )2 + 2a/(k f c2)

]
(3.42)

where we have used β f = |v f |/c. For small accelerations, such that atin 

2c(1 − β f ), we can simplify this expression and, using equation (3.40), we can
write

�ω ≡ ω(tin) − ω0 � ω2
p0

2ω2
0

β f

1 − β f

[
1 + a

2(1 − β f )2c2

]
. (3.43)

The first term in this expression coincides with that derived in the previ-
ous section for fronts moving with constant velocity. The second one gives the
contribution of the front acceleration. We can see that a positively accelerated
front (a > 0) introduces a significant increase in the total frequency up-shift,
especially due to the factor (1−β f )

3. This illustrates our previous statement that,
by increasing the time of interaction between the photons and the front, we can
optimize the photon acceleration process.

If we are not entirely satisfied with these qualitative arguments and want to
replace them by a more detailed description of the photon dynamics, we can go
back to equations (3.34, 3.35, 3.40) and derive explicit expressions for the photon
trajectories. In particular, from equation (3.35), we can get

dp

dt
= 1

2

ωp0
√

k f√−Q(t)
. (3.44)

The photon trajectory will then be determined by

p(t) = p0 + ωp0

2

√
k f

∫ t

0

dt ′√
R(t ′) − Q0

. (3.45)

For positively accelerated fronts (a > 0), this leads to

p(t) = p0 + ωp0
√

k f /2a ln

(
ω(t)ωp0

√
k f /2a

ω0 + ωp0vk
√

k f /2a

∂ R

∂t

)
. (3.46)

With equation (3.36), this completes the explicit integration of the photon
trajectories. Until now we have focused our qualitative discussions on photons co-
propagating with the front. But it can easily be seen that the above equations stay
valid for the counter-propagating photons, except that in equations (3.42, 3.43)
the factor (1 − β f ) is replaced by (1 + β f ). The frequency shift is still increased
by a positive front acceleration.

However, a qualitatively new effect occurs for co-propagating photons: more
than one turning point, defined by

dq

dt
= 0 (3.47)
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can be observed along the same trajectory.
This means that a counter-propagating photon can be first reflected by the

front, suffering the corresponding double Doppler shift, and then it is caught again
by the front, and reflected a second time into the co-propagating direction. These
doubly reflected trajectories were numerically identified by Silva [99] and can
attain considerably large frequency shifts.

3.3 Photon trapping

3.3.1 Generation of laser wakefields

It is well known that a plasma can support several kinds of electrostatic wave and
oscillations. One of the basic types of such waves is called an electron plasma
wave, because its frequency is nearly equal to the electron plasma frequency [82,
108]. To be more precise, the electron plasma waves are characterized by the
following dispersion relation:

ω2 = ω2
p + 3k2v2

the (3.48)

where ω and k are here the frequency and wavenumber of the electrostatic oscil-
lations, and vthe = √

Te/m is the electron thermal velocity and Te the electron
temperature.

The electron plasma waves can only persist in a plasma if their wavenumber
satisfies the inequality k 
 ωp/vthe. Otherwise, they will be strongly attenuated
by electron Landau damping.

Such a damping is due to the energy exchange between the waves and the
electrons travelling with a velocity nearly equal to the wave phase velocity vφ =
ω/k (the so-called resonant electrons). This is equivalent to saying that the
electron plasma waves can only exist if their wavelength is much larger than a
characteristic scale length of the plasma λ 
 λDe, where λDe = vthe/ωp is called
the electron Debye length.

The existence of the electron Landau damping implies that the frequency of
the allowed electron plasma waves is always very close to the electron plasma
frequency, ω ∼ ωp. As can be seen from the above dispersion relation, the phase
velocity of the electron plasma waves can be arbitrarily high: vφvg = 3v2

the.
It is then possible to excite electrostatic waves with relativistic phase veloc-

ities vφ � c, and nearly zero group velocities. These waves will not be Landau
damped, because resonant electrons will be nearly absent (except for extremely
hot plasmas).

Relativistic electron plasma waves can be excited by intense laser beams in
a plasma. Using a simplified but nevertheless accurate view of this problem, we
can say that there are two different excitation mechanisms: the beat-wave and the
wakefield.

The first mechanism [64, 77, 92] is valid for long laser pulses, with a duration
�t much larger than the period of the electron plasma wave: �t � ω−1

p . In this
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laser
pulse wakefield

Figure 3.5. Schematic of the laser wakefield mechanism. A short laser pulse propagating
in a plasma excites a relativistic electron plasma wave.

case, the superposition of two parallel laser pulses with different but very close
frequencies, ω1 and ω2, such that their difference matches the electron plasma
frequency, ω1 − ω2 � ωp can resonantly excite an electron plasma wave. The
phase velocity of this wave is determined by the laser beating vφ = (ω1 −
ω2)/(k1 − k2).

The second mechanism [12, 34, 89] is valid for short laser pulses, with a
duration of the order of the electron plasma period �t � ω−1

p . A single laser pulse
can then excite a tail of electron plasma oscillations, which is usually called the
laser wakefield. It is important to notice that the phase velocity of this wakefield
is nearly equal to the group velocity of the laser pulse.

With both the beat-wave and the wakefield mechanisms, relativistic electron
plasma waves can be excited. Interaction of these waves with fast electrons can
accelerate them further and provide the basis for a new generation of particle
accelerators [109].

The problem of electron acceleration is not our concern here. Our interest
is mainly focused on the analogies between charged particles and photons and,
especially, on the possibility of accelerating and trapping photons in the field
of an electron plasma wave. But, it should also be mentioned that the study of
photon acceleration and trapping by a relativistic plasma wave can be an important
diagnostic tool for particle accelerator research [22, 107].

3.3.2 Nonlinear photon resonance

From now on, we will simply refer to a relativistic electron plasma wave as
a wakefield. In order to describe such a wakefield, we will assume a plasma
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frequency perturbation of the form

ω2
p(�q) = ω2

p0

[
1 + ε cos(�kp · �q)

]
(3.49)

where ε < 1 is the relative amplitude of the wakefield and �kp is the wakefield
wavevector, and the subscript p is added in order to avoid confusion with the
photon wavevector.

The photon equations of motion can be explicitly written as

d�q
dt

= c2 �p
ω(�q, �p)

− �u (3.50)

d �p
dt

= ε

2

ω2
p0

�kp

ω(�q, �p)
sin(�kp · �q) (3.51)

where �u � (ωp0/|kp|2)�kp is the wakefield phase velocity and

ω(�q, �p) =
{

p2c2 + ω2
p0[1 + ε cos(�kp · �q)]

}1/2
. (3.52)

Let us determine the fixed points, defined by

d�q
dt

= 0,
d �p
dt

= 0. (3.53)

This is equivalent to writing

c2 �p = ω(�q, �p)�u, sin(�kp · �q) = 0. (3.54)

At this point we could split the variables �q and �p into their parallel and
perpendicular components with respect to the direction of the wakefield propa-
gation �u/u, or �kp/kp. However, it can easily be realized that the perpendicular
components play only a secondary role in the photon dynamics.

We will now proceed by just retaining the simple case of one-dimensional
motion, where q‖ = q , p‖ = p, and q⊥ = p⊥ = 0. From equations (3.53) we
can then explicitly establish the elliptic fixed points as

qe = π

kp
, pe = sγβ

ωp0

c

√
1 − ε (3.55)

and the hyperbolic fixed points as

qh = 0,
2π

kp
, ph = sγβ

ωp0

c

√
1 + ε. (3.56)

Here we have used β = |u|/c, s = sign of u and γ = (1 − β2)−1/2. We
should notice that, in contrast with the simple pendulum, the momenta pe and ph
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Figure 3.6. The separatrix curves of the photon nonlinear resonance in phase space (q, p).

corresponding to the elliptic and hyperbolic fixed points are not identical. The
photon nonlinear resonance described by equations (3.50, 3.51) appears then as a
kind of asymmetric pendulum [98].

Furthermore, the resonance asymmetry increases with the wakefield rela-
tivistic γ -factor. For small wakefield amplitudes ε 
 1, the distance between the
two fixed points can be written as

|pe − ph| � γβ
ωp0

c
ε. (3.57)

A qualitative representation of the photon nonlinear resonance in phase space
(q, p) is shown in figure 3.6.

It is also interesting to notice that, for the one-dimensional case, the invariant
� can be written as

� = ω(q, p) − up = γ −2ω(q, p). (3.58)

This means that the elliptic fixed point given by equation (3.55) can be
defined by

pe = sγ 2β
�e

c2
(3.59)

where
�e = ωp0

γ

√
1 − ε. (3.60)

The value of ph, for the hyperbolic fixed point, is also determined by an
expression similar to equation (3.59), where �e is replaced by �h such that

�h = ωp0

γ

√
1 + ε. (3.61)
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Replacing this expression in the definition of the invariant Hamiltonian �,
we obtain the equation for the separatrix

(�h − up)2 = p2c2 + ω2
p(q), (3.62)

or, more explicitly,

p = γ
ωp0

c

√
1 + ε


sβ ±

√
1 − 1 + ε cos(kpq)

1 + ε


 . (3.63)

For q = 0, (2π/kp), this reduces to p = ph. On the other hand, for q =
(π/kp), this expression determines the maximum and the minimum values of the
photon momentum on the separatrix

p± = γ
ωp0

c

√
1 + ε

[
sβ ±

√
2ε

1 + ε

]
. (3.64)

The width of the nonlinear resonance will then be given by the difference
between these two extreme values of the separatrix curves:

�pmax = p+ − p− = 2γ
ωp0

c

√
2ε. (3.65)

From this analysis we recognize that the photons are trapped by the elec-
tron plasma wave if their trajectories are associated with values of the invariant
Hamiltonian � such that

�e ≤ � < �h. (3.66)

Inside the separatrix, the photon frequency will oscillate according to the
value of � characterizing its trajectory. We will have no frequency variation
only for exactly resonant photon trajectories such that p = pe, or � = �e,
corresponding to the elliptic fixed point.

The frequency variation will grow when we approach the separatrix curve,
but such a change will require longer and longer times to take place. We will also
attain a maximum for the frequency variation at the separatrix, between the points
p+ and p− defined by equation (3.64), if we wait an infinite time.

For very high-frequency photons, such that ω � ωp0, we have ω � pc
and the maximum frequency shift will be determined by �ωmax � c�pmax =
2γωp0

√
2ε. For untrapped photons, the photon frequency will also oscillate, but

with smaller and smaller amplitudes when we displace the photon trajectories
away from the separatrix. This is illustrated in figure 3.7.

It is now interesting to look at the deeply trapped trajectories, oscillating
around p = pe. If we introduce q = (π/kp) + q̃ and linearize the photon
equations of motion around the elliptic fixed point, we can easily obtain

d2q̃

dt2
+ ω2

bq̃ = 0 (3.67)
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Figure 3.7. Examples of photon trajectories around a nonlinear resonance, showing
trapped and untrapped motion, corresponding to the following parameters: β = 0.9995,
ne = 1018cm−3, ε = 0.5. The photon frequency ω is represented in terms of the vacuum
wavelength λ = 2πc/ω.

which corresponds to a linear oscillator with a frequency

ωb = ckp

γ

√
ε

2(1 − ε)
. (3.68)

This can be called the photon bounce frequency. It is instructive to compare
its value with the bounce frequency of an electron trapped in the field of the same
electron plasma wave [82]

ωbe =
√

(e/m)E0kp (3.69)

where E0 is the amplitude of the electric field associated with this wave.
Using Poisson’s equation we can relate it to the electron density amplitude

perturbation

kp E0 = eñ

ε0
= en0

ε0
ε. (3.70)

This allows us to write the electron bounce frequency as

ωbe = ωp0
√

ε. (3.71)

This shows the striking similarities of the photons and electrons trapped in
the field of an electron plasma wave. Other and eventually even more surprising
similarities will be discussed later.
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3.3.3 Covariant formulation

As an example of an application of the covariant equations established in sec-
tion 2.5, we can describe the photon trapping by using equations (2.106, 2.108)
with

ω2
p(xi ) = ω2

p0

[
1 + ε cos(Ki xi )

]
(3.72)

where K i is the four-momentum associated with the plasma wakefield and ε is,
as before, its amplitude. Let us write

Ki xi = K 1x1 − K 0x0 = k′x1 − ω′t (3.73)

where ω′ � ωp0 is the wakefield frequency and is related to k′ by the dispersion
relation (3.48).

In this particular case, the covariant Hamiltonian (2.108) is independent of x2

and x3, which means that the components k2 and k3 of the photon momentum are
two constants of motion. We will assume a one-dimensional photon propagation
by making these two constants equal to zero: k2 = k3 = 0. We can then write the
reduced one-dimensional form of the covariant Hamiltonian as

h(x0, x1, k0, k1) = k2
1 − k2

0

2ωp(x0, x1)
c2 + 1

2
ωp(x0, x1). (3.74)

The corresponding equations of motion in the relativistic space–time are

dx0

dτ
= ∂h

∂k0
= − k0c2

ωp(x0, x1)
(3.75)

dx1

dτ
= ∂h

∂k1
= k1c2

ωp(x0, x1)
(3.76)

and

dk0

dτ
= − ∂h

∂x0
= −1

2

[
1 − k2

1 − k2
0

ω2
p(x0, x1)

c2

]
∂ωp

∂x0
(3.77)

dk1

dτ
= − ∂h

∂x1
= −1

2

[
1 − k2

1 − k2
0

ω2
p(x0, x1)

c2

]
∂ωp

∂x1
(3.78)

where τ is the photon proper time.
In order to write these equations in a more convenient form, it is useful to

introduce new adimensional variables, such that

x = K 1x1 = k′x1, y = k′x0 (3.79)

and

v = k1c

ωp0
, u = k0c

ωp0
. (3.80)
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We can see from the definition of the variable y that K 0x0 = β ′y, where
β ′ = ω′/k′c is the normalized phase velocity of the wakefield. The normalized
proper time z, and Hamiltonian h0, are defined by

dz = k′c dτ, h0 = h

ωp0
. (3.81)

We can state the new equations of motion as

dx

dz
= ∂h0

∂v
,

dy

dz
= ∂h0

∂u
(3.82)

and
dv

dz
= −∂h0

∂x
,

du

dz
= −∂h0

∂y
. (3.83)

The explicit form of the normalized Hamiltonian is

h0(x, v; y, u) = v2 − u2 + 1 + ε cos(x − β ′y)

2
√

1 + ε cos(x − β ′y)
. (3.84)

By definition, we always have h0 = 0. Noting that the denominator in this
equation cannot become imaginary because the wakefield modulation is always
less than one, ε < 1, we can write

u2 = v2 + 1 + ε cos(x − β ′y). (3.85)

This is nothing but the photon dispersion equation, written in adimensional
form. Noticing that h0 only depends on x and y through (x − β ′y), we conclude
that

∂h0

∂x
= − 1

β ′
∂h0

∂y
. (3.86)

Replacing this in the canonical equations (3.83), we obtain

dv

dz
= − 1

β ′
du

dz
. (3.87)

This expression means that, apart from the Hamiltonian H0, it is possible to
define another constant of motion I , such that

I = u + β ′v = const. (3.88)

The existence of these two independent constants of motion, h0 and I , proves
that the motion of a photon in a sinusoidal wakefield is integrable, as expected.
Notice that this equation is equivalent to stating that ω − kv′ is a constant, where
v′ = ω′/k′ is the phase velocity of the wakefield. This invariant was already iden-
tified in the non-covariant formulation of photon acceleration. It will appear again
in the full wave description, where it corresponds to the wave phase invariance.



Stochastic photon acceleration 51

The position of the nonlinear resonance contained in the Hamiltonian (3.84)
is determined by the stationary condition (in the proper time z), or

d

dz
(x − β ′y) = 0. (3.89)

Noting that, from the canonical equations (3.82), we have

dx

dz
= v

�p
,

dy

dz
= − u

�p
(3.90)

where �p = √
1 + ε cos(x − β ′y) is a positive quantity, we can write this sta-

tionary condition as
v + β ′u = 0. (3.91)

In non-normalized variables this is equivalent to kc2/ω = ω′/k′. This means
that the nonlinear resonance corresponds to the equality between the photon group
velocity vg ≡ kc2/ω and the phase velocity of the wakefield perturbation ω′/k′.

Replacing this resonance condition in equation (3.85), we obtain

u2(1 − β ′) = 1 + ε cos(x − β ′y). (3.92)

The centre of this resonance corresponds to (x − β ′y) = π/2, which leads
to the following coordinates:

u0 = − 1√
1 − β ′2 ≡ −γ ′, v0 = β ′√

1 − β ′2 = −β ′u0. (3.93)

The value of the invariant I , defined by equation (3.88), corresponding to
this particular photon trajectory is equal to I0 = −√

1 − β ′. We can also see,
from equation (3.92), that the maximum excursion of u2 associated with trapped
trajectories inside the nonlinear resonance is determined by δu2(1 − β ′2) = 2ε.

The resonance half-width is then given by

δu0 =
√

ε

2

1√
1 − β ′ . (3.94)

This completes the characterization of the trapped photon trajectories in the
four-dimensional relativistic space–time.

3.4 Stochastic photon acceleration

In his famous experiment, Isaac Newton inaugurated spectroscopy by decompos-
ing white light into its spectral components with the help of a prism. In very recent
days it was discovered that the opposite process can also occur and, starting from
a nearly monochromatic spectral light source, we can regenerate white light. For
that purpose, stochastic acceleration of photons can be used.
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3.4.1 Motion in two wakefields

Let us first discuss the simple case of photon motion in the presence of two
different wakefields (or, in other words, two relativistic electron plasma waves)
with amplitudes ε1 and ε2, distinct wavevectors �k1 and �k2 and distinct phase
velocities �u1 = (ω′/|k1|2)�k1 and �u2 = (ω′/|k2|2)�k2.

The photon dispersion relation can now be written as

ω =
{

k2c2 + ω2
p0

[
1 +

∑
i=1,2

εi cos(�ki · �r − ωi t)

]}1/2

. (3.95)

Using the canonical variables �q = �r − �u1t and �p = �k, we can write
the photon equations of motion in the form of equations (3.1), with the new
Hamiltonian (which is now time dependent)

� = ω − �u1 · �p =
{

p2c2 + ω2
p0[1 + ε1 cos(�k1 · �q)

+ε2 cos(�k2 · (�q − �vt))]
}1/2 − �u1 · �p (3.96)

where
�v = �u1 − �u2 � ωp0[(�k1/k2

1) − (�k2/k2
2)]. (3.97)

In order to simplify the discussion, we will assume that the wakefields prop-
agate in the same direction, and we will concentrate on the one-dimensional
case. The extension to three dimensions is straightforward and does not lead
to qualitatively new effects.

We can see from the above Hamiltonian (or from its one-dimensional ver-
sion) that two nonlinear resonances exist in the (q, p) phase plane. They are
defined by the elliptic fixed points

qi = π

kp
, pi = siγiβi

ωp0

c

√
1 − εi (3.98)

for i = 1, 2. The following definitions were used here: si = sign of ui , βi =
|ui |/c and γi = (1 − β2

i )−1/2.
It is also quite well known that the second of these two resonances (the

one corresponding to i = 2) can only be seen in the phase plane if we use a
stroboscopic plot of the photon motion, at the instants tn = (2nπ/k2v), for n
integer. Such a discrete representation of the motion is usually called a Poincaré
map.

In accordance with equation (3.65) we can also say that the the width of these
two resonances is determined by

(�p)i = 2γi
ωp0

c

√
2εi . (3.99)
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It is well known from the theory of dynamical systems [59, 124] that the
interaction between the two resonances leads to the destruction of the separatrix
curves. These curves will both break up into a thin region of stochastic motion
and the width of such a region will exponentially grow with the amplitude of the
resonances εi . With increasing values of εi , the two stochastic regions will even-
tually merge, and a large fraction of the photon phase space (q, p) will be filled
with stochastic trajectories, leading to what is called large-scale stochasticity.

Occurrence of large-scale stochastic acceleration is dictated by a qualitative
criterion, called the Chirikov criterion or the resonance overlapping criterion. This
is confirmed by numerical calculations within an error of a few per cent, for a large
variety of similar nonlinear Hamiltonian motions. The criterion states that large-
scale stochasticity occurs when the sum of the resonance half-widths becomes
larger than the distance between these resonances.

In our case it can be written as

(�p)1 + (�p)2 ≥ 2|p2 − p1|. (3.100)

Using equations (3.98, 3.99) we can write the overlapping criterion as

γ1
√

2ε1 + γ2
√

2ε2

|s2β2γ2
√

1 − ε2 − s1β1γ1
√

1 − ε1| ≥ 1. (3.101)

It is important to notice that this criterion is independent of the mean electron
plasma frequency ωp0, and that it only depends on the velocities and amplitudes of
the two wakefields. If we assume that the two amplitudes are equal, ε1 = ε2 = ε,
we can simplify the overlapping criterion and write√

2ε

1 − ε

1 + ν

|s2β2 − s1β1ν| ≥ 1 (3.102)

where ν = γ1/γ2.
In the weakly relativistic limit, where we have γi � 1 and ν � 1, we

conclude from this expression that large-scale stochasticity occurs for

ε ≥ 1

23
(s2β2 − s1β1)

2. (3.103)

Noting that βi are always smaller than one, we conclude that this criterion
is compatible with low values of the wakefield amplitude ε 
 1. In the opposite
limit of strongly relativistic phase velocities of the plasma wakefields, where γi �
1 and βi � 1, we obtain from equation (3.102)

ε ≥ 1

23
(1 − ν)2 (3.104)

where we have assumed that the wakefields propagate in the same direction, s1 =
s2, and that their relativistic γ factors are similar, ν � 1.
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We see that, again, the criterion is compatible with low wakefield amplitudes
ε 
 1. Even in the most unfavourable situation of very different relativistic
factors, ν � 1, we get from equation (3.103) ε ≥ 1/3. We can then say
that, in very broad terms, both in the weakly and the strongly relativistic limits,
transition from regular to stochastic trajectories can be expected with moderately
low wakefield amplitudes.

However, the strongly relativistic case is physically more interesting, be-
cause the width of the region between the two resonances where stochastic ac-
celeration can occur is proportional to the relativistic gamma factors, and a larger
frequency spread of a bunch of photons with nearly identical initial frequencies
can be obtained. From initial monochromatic radiation we can then obtain broad-
band radiation (white light) [66].

A similar situation occurs if, instead of having two different wakefields, we
can excite a single wakefield in a plasma, but with a modulated amplitude. Such
a modulation can be due, for instance, to the existence of ion acoustic waves
propagating in the background plasma. Here, instead of two nonlinear resonances,
we have three nearby resonances to which we can apply the same overlapping
criterion. This was studied, using the covariant formulation, in reference [65].

3.4.2 Photon discrete mapping

It is also interesting to consider the interaction of a photon moving in a plasma
with an electrostatic wavepacket containing a large spectrum of electron plasma
waves. Here we will follow a procedure similar to that used by Zaslavski et
al [125] for studying charged particles.

The photon dispersion relation (3.95) is now replaced by

ω =
{

k2c2 + ω2
p0

[
1 +

∞∑
n=−∞

εn cos(�kn · �r − ωnt)

]}1/2

. (3.105)

The corresponding one-dimensional photon equations of motion are

dx

dt
= kc2

ω
,

dk

dt
= ω2

p0

2ω

∞∑
n=−∞

εnkn sin(kn x − ωnt). (3.106)

As a simple and reasonable model for the wavepacket, we can use

εnkn = a, ωn = ω0 � ωp0, kn = k0 + n�k (3.107)

where a is a constant and �k 
 k0 is the characteristic distance between two
consecutive spectral components.

This model is convenient from the physical point of view because, in con-
trast with similar models used in nonlinear dynamics where the amplitudes are
assumed constant, it corresponds to a spectrum with variable amplitudes, where
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the lower amplitudes correspond to the higher wavenumbers. This is compatible
with the idea that electron Landau damping of the wakefield spectrum prevents
the higher wavenumbers.

The sum in equation (3.106) can then be replaced by

a sin θ

∞∑
n=−∞

cos(n�kx) (3.108)

where θ = k0x − ω0t is the phase of the central spectral component. We can also
use the identity

∞∑
n=−∞

cos(n�kx) = 2π

�k

∞∑
n=−∞

δ(x − xn) (3.109)

with xn = (2nπ/�k) ≡ nL . This means that, from equation (3.106), we can
write

dk

dt
= ω2

p0

2ω
aL sin θ

∞∑
n=−∞

δ(x − xn). (3.110)

This shows that the photon moves with a constant wavenumber (or a constant
velocity), except when it crosses the point x = xn , where it suffers a sudden kick
and abruptly changes its wavenumber. This new wavenumber remains constant
until it crosses the next point x = xn+1, and so on.

This picture of the photon motion means that we can transform the variable
position x inside the delta function argument into a time variable, just by using
the relation x = |vg|t = (|k|c2/ω)t . The above equation is then replaced by

dk

dt
= ω2

p0

2|k|c2
aL sin θ

∞∑
n=−∞

δ(t − tn). (3.111)

The instants tn are defined by x(tn) = xn , apart from a minor detail resulting
from the fact that the photon can eventually be reflected at some point xn , and in
that case the instant tn+1 will be defined by x(tn+1) = xn−1. Of course, such a
reversal in the direction of photon propagation is not likely to occur for energetic
photons, with initial frequencies much larger than the electron plasma frequency.

Let us now introduce an adimensional variable w, such that

w = kc2

ω2
p0

|k| = k2c2

ω2
p0

sk (3.112)

where sk is the sign of k. This is equivalent to writing

k = ωp0

c
|w|1/2sw (3.113)
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where sw is the sign of w. According to equation (3.111) the new variable w will
evolve in time as

dw

dt
= aL sin θ

∞∑
n=−∞

δ(t − tn). (3.114)

This has to be completed with an equation describing the time evolution for
the phase variable θ . By definition, we have dθ/dt = (k0c2/ω)k −ω0. But, at this
point, we should notice that it is physically quite natural to assume that εn 
 1.

According to equation (3.105), this allows us to replace ω by ω̄ and to write,
using the new variable w

dθ

dt
= k0c

ωp0

ω̄
sw − ω0. (3.115)

This equation, with ω̄ in the denominator, is also physically very convenient
because it guarantees that θ varies continuously across the points t = tn . We
now have two coupled and closed equations for the variables w and θ , equa-
tions (3.114, 3.115), and we can build up a map on the new phase plane (w, θ).
For that purpose, we define

wn = w(t−n ), θn = θ(t−n ) (3.116)

where t±n = tn ± δ, with δ → 0, represent the instants imediately before (−) and
after (+) the critical instants tn .

Equations (3.114, 3.115) show that, at t = tn , the variable w suffers a sudden
jump, and that the phase θ remains constant. This can be stated as

w(t+n ) − w(t−n ) = aL sin θ, θ(t+n ) − θ(t−n ) = 0. (3.117)

During the interval (t+n , t−n+1) the variable w, and the corresponding photon
momentum p, remain unchanged. This is equivalent to stating that w(t−n+1) =
w(t0

n ), or
wn+1 = wn + aL sin θn . (3.118)

We can also see from equation (3.115) that the time derivative of the phase
θ also stays constant over the same time interval. We can then write

θ(t−n+1) = θ(t+n ) + d

dt
θ(t+n )�tn . (3.119)

Here, �tn is the interval between two consecutive kicks

�tn = L
ω̄n+1

kn+1c2
. (3.120)

Using equation (3.115, 3.119), we can then obtain the following result:

θn+1 = θn − ω0L

c

√
1 + |wn+1|√|wn+1| + k0Lsn+1 (3.121)
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where sn+1 is the sign of wn+1.
We see that equations (3.118, 3.121) define a discrete mapping on the phase

plane (w, θ), which can be written as

wn+1 = wn + A sin θn (3.122)

θn+1 = θn − B
√

1 + |wn+1|−1 + θ̃sn+1. (3.123)

This mapping depends on two parameters, A and B, determined by

A = aL , B = ω0

c
L . (3.124)

The map (3.123) also shows a constant phase shift determined by θ̃ = k0L .
For small values of the adimensional variable w, which corresponds to small val-
ues of the photon wavenumber, this mapping reduces to the L̂-mapping introduced
in [125], which shows an intermittency behaviour for A � 1.

This means that the photons can suffer intermittency acceleration when they
interact with an electrostatic wavepacket in the limit of small photon wavenum-
bers (when they are close to the cut-off conditions).

3.5 Photon Fermi acceleration

We shall now discuss a different mechanism for photon acceleration which can
occur inside an electromagnetic cavity with moving boundaries. This can be seen
as the photon version of the well-known mechanism for cosmic ray acceleration
first proposed by Fermi [29], where charged particles can gain energy by bouncing
back and forth between two magnetic clouds.

This mechanism became extremely successful and it is dominantly used in
the current models for cosmic ray acceleration in shocks. In its simplest and
most popular versions, the charged particle can be described by two-dimensional
discrete maps [59].

We will show in this section that a similar mechanism can be applied to pho-
tons, and that the photon motion can also be described by a discrete mapping [30].

In the case of photons, the magnetic clouds of the original model are replaced
by mirrors or by plasma walls with a sharp density gradient. We can assume that
one of the walls is fixed at x = 0 and the other oscillates around x = L0 with a
frequency ω′.

This can be described by a plasma frequency space–time variation of the
form

ω2
p(x, t) = ω2

p0

{ f (x − L(t)) x > L(t)
0 L(t) ≥ x > 0
f (−x) x < 0

. (3.125)

The function f (x) describes the plasma density profile of the two plasma
walls (assuming that they have identical profiles), to be specified later. The
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Figure 3.8. Fermi acceleration of photons inside an oscillating cavity.

moving wall is supposed to oscillate according to

L(t) = L0(1 + ε cos ω′t) (3.126)

where the amplitude of this oscillation is assumed to be very small: ε 
 1.
The plasma walls are also supposed to be sufficiently dense in order to act

as mirrors and to reflect all the incoming photons, which then remain trapped
in a kind of one-dimensional cavity. Each time the photons are reflected by the
moving plasma wall, they suffer a double Doppler shift, and their initial frequency
ωi is transformed into a final frequency ωf, defined by the well-known law

ωf = ωi
1 + β

1 − β
. (3.127)

The velocity of this moving wall is just the time derivative of L(t) and we
can write

β = −ε
L0ω

′

c
sin ω′t. (3.128)

If we define two adimensional quantities

b = L0ω
′

c
, θ = ω′t (3.129)

we obtain the following law for the frequency shift after successive reflections at
the moving plasma wall:

ωn+1 = ωn
1 − εb sin θn

1 + εb sin θn
. (3.130)
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Now we have to find a corresponding transformation law for the phase θ

between two successive reflections. Clearly, we can write θn+1 = θn + ω′�t ,
where �t is the time spent by the photon between two successive reflections at
the moving wall. This time interval can be divided into two distinct parts: �t =
�t0 + �tp. The first part is the time spent by the photon in the vaccum region
between the two plasma walls.

For ε 
 1, we can use, as a good approximation

�t0 = 2
L0

c
. (3.131)

In order to calculate the time spent by the photon inside the two plasma
regions, �tp, we notice that the photon velocity is determined by:

dx

dt
= c

√
1 − (ωp0/ω)2 f (x, t). (3.132)

If the time spent inside the moving plasma region is much shorter than
the period of the wall oscillations, �tp 
 (4π/ω′), we can neglect the plasma
motion during the process of photon reflection, and replace f (x, t) by f (x) in
this equation. This leads to

�tp = 4

c

∫ xc

0

dx√
1 − (ωp0/ω)2 f (x)

. (3.133)

Here, the factor of 4 was introduced in order to account for the four distinct
paths inside the two plasma walls. This integral extends from the plasma bound-
ary to the cut-off position xc, where the photon frequency equals the electron
plasma frequency ω = ωp(xc). Let us also introduce a normalized frequency

u = ω

ωp0
. (3.134)

Using equations (3.130, 3.133), we can establish the following discrete map
on the phase plane (u, θ):

un+1 = un F(θn) (3.135)

θn+1 = θn + G(un+1). (3.136)

The function F(θn) is solely dependent on the double Doppler shift at the
moving wall, and the function G(un+1) is determined by the plasma density
profile

F(θ) = 1 − εb sin θ

1 + εb sin θ
(3.137)

G(u) = 2b

(
1 + 2

L0

∫ xc

0

dx√
1 − f (x)/u2

)
. (3.138)
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Let us take the particularly interesting example of a parabolic density profile

f (x) = α2π2

L2
0

x2 (3.139)

where the parameter α defines the plasma density slope.
Then equation (3.138) reduces to

G(u) = 2b
(

1 + u

α

)
. (3.140)

The map (3.135, 3.136) also takes a simpler form for very small plasma wall
oscillations, such that εb 
 1. In this case, we have

F(θ) = 1 + 2εb sin θ. (3.141)

We should note that all these maps are not area preserving. This can easily be
seen by considering the Jacobian of the transformation (un, θn) → (un+1, θn+1):

|J | =
∣∣∣∣ ∂un+1/∂un ∂un+1/∂θn

∂θn+1/∂un ∂θn+1/∂θn

∣∣∣∣ = |F(θ)| �= 1. (3.142)

This is precisely the factor by which the photon frequency is double Doppler
shifted by the moving plasma wall. However, because F(θ) is a periodic function
of θ , we see that sets consisting of thin layers in phase space, of infinitesimal
width δu and extending in phase from θ = 0 to θ = 2π , are area preserving.

It is also quite useful to determine the fixed points of the map, and their sta-
bility. This will give us important information concerning the qualitative aspects
of photon motion. The first-order fixed points are determined by

un+1 = un F(θn) = un (3.143)

θn+1 = θn + G(un+1) = θn + 2mπ (3.144)

for m integer. This is equivalent to

F(θ) = 1, G(u) = 2mπ. (3.145)

For the parabolic density profile (3.139), this leads to

θm = 0, um = α
(mπ

b
− 1

)
. (3.146)

The stability of these fixed points can be determined by locally linearizing
the map around each of them. Let us first linearize on the variable u, by defining

u = um + ū. (3.147)
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Replacing it in equations (3.135, 3.136, 3.141), we obtain

ūn+1 = ūn + 2εum sin θn (3.148)

θn+1 = θn + 2b

α
ūn+1 + 2mπ. (3.149)

Introducing a new variable I and a new parameter K , such that

I = 2b

α
ū, K = 4b2

α
εum, (3.150)

this reduces to the well-known standard map, first studied by Chirikov [17, 59]:

In+1 = In + K sin θn (3.151)

θn+1 = θn + In+1. (3.152)

This shows that the photon dynamics around a given fixed point (θm, um)

is approximately described by the standard map. It is well known that such a
map suffers a topological transition into large-scale stochasticity if K > 1. This
means that, near the fixed points, the photon motion will become stochastic in a
significant fraction of the available phase space, if

um >
α

4b2ε
. (3.153)

We now examine the stability of the fixed points (3.145) of the Fermi map-
ping for the parabolic density profile. Following the usual procedure [59], we
linearize the map on both variables, and obtain

�xn+1 = A · �xn (3.154)

where �x = (ū, θ̄ ) = (u − um, θ − θm), and the matrix transformation A is the
linearized Jacobian matrix

A =
[

1 −2εbum
2b
α

1 − 4 εb2

α
um

]
. (3.155)

It can easily be seen that this linear map is area preserving:

|A| = 1. (3.156)

Stability of the fixed points (3.145) requires that |Tr A| < 2, or, more explic-
itly, that

um <
α

εb2
. (3.157)

We can then say that, for high enough integers m such that this inequality is
not verified, the first-order fixed points are all unstable. This means that, for such
values of the photon normalized frequency u, the photon motion is essentially
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Figure 3.9. Phase space of the Fermi photon map. Regular and stochastic trajectories are
shown.

stochastic. However, for much lower frequencies, significant stochastic motion
had already taken place, according to the much less stringent threshold criterion
(3.153). This is well illustrated by numerical calculations.

From here we conclude that a broad spectrum of radiation (which can be
called white light) can be generated from nearly monochromatic light trapped
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inside an oscillating plasma cavity.
It is interesting to compare this qualitative aspect of the photon Fermi map

with the usual Fermi mappings for charged particles [59] where, in contrast with
the threshold criterion given by equation (3.157), an upper limit exists for particle
energies, above which they cannot be accelerated. In some sense the photon Fermi
map is similar to the inverted Fermi map for charged particles, where the energy
axis is turned upside down.

This model of Fermi acceleration of photons could, in principle, be experi-
mentally tested using an oscillating optical cavity, if the cavity parameters were
conveniently chosen and if the photons could bounce back and forth several times
inside the cavity, before escaping out, or before being absorbed by the walls.

It can also be useful in the context of astrophysics. For instance, the spectrum
emitted by some very high-redshift radio galaxies reveals a strong asymmetry in
the Lyman α line profile, indicating a clear blueshift [115]. This can be interpreted
as a result of Fermi acceleration of the Lyman α photons by a moving shock [11].

Finally, we should notice that the concept of photon acceleration in a plasma
can be extended to the acceleration of plasmons, or quanta of electron plasma
waves, when they are trapped inside an unstable cavity. In this case [24], the plas-
mon Fermi acceleration will mainly lead to a change in the plasmon wavenumber
because the plasmon frequency is always nearly equal to the electron plasma
frequency.

3.6 Magnetoplasmas and other optical media

In this chapter we have only focused on processes occurring in isotropic plasmas
because most of the published work on photon acceleration concerns this medium.
However, our theoretical approach remains valid for other optical media.

Let us then conclude the chapter with some brief comments on the photon
processes associated with moving perturbations of the refractive index in magne-
tized plasmas and in non-ionized optical media, such as a neutral gas, a glass or
an optical fibre.

The photon dispersion relation in a magnetized plasma depends, not only on
the electron plasma frequency ωp, but also on the value and direction of the static
magnetic field �B0. We can represent it generally as

R(ω, �k; ωp(�r , t), ωc(�r , t)) = 0 (3.158)

where ωc = e|B0|/m is the electron cyclotron frequency.
This means that we can expect to obtain photon acceleration, not only by

using moving electron density perturbations, such as ionization fronts and wake-
fields, but also if we excite similar forms of moving magnetic field perturbations.
They can be produced by non-stationary currents applied to external coils, or by
propagating low-frequency electromagnetic waves, such as Alfven waves.



64 Photon dynamics

The explicit expression of this dispersion relation is quite complicated, even
in the limit of high-frequency waves for which the ion dispersion effects can be
neglected, but we can still consider some simple examples.

First, if we assume photon propagation in a direction perpendicular to the
static magnetic field �B0, there are two distinct polarization states. One corre-
sponds to the ordinary mode, with photons linearly polarized along �B0, for which
the dispersion relation is identical to that considered before for a non-magnetized
plasma. The other corresponds to the extraordinary mode, with photons ellipti-
cally polarized in the plane perpendicular to �B0. The dispersion relation for this
new mode is

ω2 = k2c2 + ω2
p

ω2 − ω2
p

ω2 − ω2
uh

(3.159)

where ωuh =
√

ω2
p + ω2

c is called the upper-hybrid frequency (the lower-hybrid

one would only appear for low-frequency waves where the influence of the ion
motion has to be retained).

We see that, for a photon frequency close to this resonance frequency, a small
time change in the static magnetic field, or equivalently in the electron cyclotron
frequency ωc, will significantly alter the value of the refractive index and will lead
to a frequency shift. In order to calculate this effect with the aid of the canonical
equations for the photons we have to make use of the Hamiltonian function, valid
for the extraordinary mode.

From the above dispersion relation, we can easily get

ω(�r , �k, t) =
[

1

2
(k2c2 + ω2

p + ω2
uh)

+1

2

√
(k2c2 + ω2

p + ω2
uh)

2 − 4(k2c2ω2
uh + ω4

p)

]1/2

(3.160)

where both the electron plasma frequency and the upper-hybrid frequency are
functions of �r and t .

Similarly, for propagation parallel to the static magnetic field, we have two
photon polarization states, with the corresponding dispersion relation

ω2 = k2c2 + ω2
p

ω

ω ± ωc
. (3.161)

The plus sign corresponds to the L-mode, which is left circularly polarized,
and the minus sign corresponds to the R-mode, which is right circularly polarized.
Because, by definition, we have ωc > 0, we can see that the L-mode has no
resonances, while the R-mode is resonant for ω = ωc. This is the so-called
cyclotron resonance. This means that a small space–time change in the cyclotron
frequency will lead to a significant change in the refractive index for the R-mode.

However, in dealing with photon motion very close to resonances, we have to
take into account the wave absorption mechanisms, which will eventually reduce
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the efficiency of the expected frequency shift or photon acceleration processes.
These absorption mechanisms are well known in plasma physics and will not be
discussed here.

Let us now turn to non-ionized optical media. The typical form for the linear
dispersion relation in these media is

ω2 = k2c2 + ω2ω2
f

ω2 − ω2
0

(3.162)

where ω0 is the frequency of the nearest resonant transition between two quantum
levels and ω f plays the role of the plasma frequency. It depends on the density of
atoms or molecules in the medium and on the value of the transition probabilities
between these two quantum levels.

For ω � ω0 this dispersion relation reduces to that of the non-magnetized
plasma. However, for visible light propagating in the usual optical media, we
have ω 
 ω0, which explains why the refractive index is usually greater than one
(in contrast with the plasma case where it is less than one).

Two ways can be foreseen to produce a space–time change in the refractive
index and a subsequent photon acceleration in such media. The first one is to
change the transition frequency ω0. This can, for instance, be done with the aid
of an externally applied electric field. The resulting Stark effect will lead to a
detuning (quite often a splitting) of the atomic transition energy levels. We can
then imagine a physical configuration where the optical medium is located inside
an elongated capacitor.

By applying a sudden voltage signal at one extremity of this capacitor, the
voltage signal will propagate along the capacitor arms and produce a moving
transition between two different values of the refractive index of the optical
medium [28]. The closer we are to the resonance condition, the stronger will be
the change in the refractive index.

A more drastic change in the refractive index can be obtained by using
electromagnetic induced transparency (EIT) [38]. This corresponds to exactly
equating to zero the value of ω f , by inhibiting transitions between the two quan-
tum states with the help of an auxiliary light source. The photons of this auxiliary
source couple one of these two energy states with a third one. In this way,
the refractive index of a nearly resonant medium (which is opaque, because it
completely absorbs the resonant photons) can be reduced exactly to the vacuum
value, corresponding to a complete transparency.

It should be noticed that, in recent experiments with EIT produced by auxil-
iary short laser pulses, a large spectral broadening is observed [39], which can be
interpreted as the result of photon acceleration.

These ways of changing the refractive index of a medium are essentially lin-
ear, but we can also imagine similar effects resulting from nonlinear mechanisms.
For instance, it is known that a strong laser beam can produce a change in the
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refractive index, according to

n = n0 + n2 I (�r , t) (3.163)

where n0 is the linear refractive index, n2 is the nonlinear refractive index (pro-
portional to the nonlinear susceptibility of the medium) and I (�r , t) is the intensity
profile of the strong laser beam.

If photons having a different frequency and belonging to a probe beam co-
propagate with the first one and cross the strong-beam boundary (because their
group velocities are different), they will suffer a frequency shift described by
the above canonical equations and similar to the one observed for the ionization
front. The difference here is that the frequency shift will be negative for a photon
crossing the front of the strong beam, and positive for a photon crossing the rear of
the beam, because n2 is positive, in contrast with the ionization front case which
led to a decrease in the refractive index.

This effect is well understood in the frame of our single photon dynamical
approach, but it is currently known as induced phase modulation. It is quite
clear that the field phase is not an essential aspect of the problem, because the
phase is completely absent from our photon canonical equations, and we still get
a frequency shift.

The problem of the influence of the field phase in the so-called phase modu-
lation effects is very interesting and will be discussed in detail later. Here we only
would like to stress that the photon dynamical theory discussed in this chapter can
equally well treat the cases of co-propagating and counter-propagating photons,
in contrast with the usual theory of induced phase modulation which is only used
for the co-propagation case [3].



Chapter 4

Photon kinetic theory

Until now, we have considered single particle trajectories, which (as we have
shown) can account for several new and interesting features of electromagnetic
wavepackets travelling in a non-stationary medium. However, this approach is
not capable of describing the change in the internal structure of the wavepackets
themselves, because such a structure is simply forgotten.

The easiest way to obtain a more detailed description of the wavepackets is
to describe them, not as a single photon, but as an ensemble of photons with a
given spectral and space–time distribution. The electromagnetic wave spectrum
will then be seen as a gas of photons evolving in an optical medium. The kinetic
equation describing the space–time evolution of such a gas is derived here.

First, we will use simple and intuitive arguments which are similar to those
leading to the Klimontovich equation for charged particles in a gas. A second and
more elaborated method will also be described, where the analogue of the Wigner
function for the electromagnetic field is introduced.

These kinetic equations sometimes contain too much information for several
problems, for which a simpler description of the photon distributions is required.
For that reason it is also interesting to derive photon conservation equations which
allow us to describe the electromagnetic field as a fluid of identical particles, and
to consider only averaged photon properties.

This chapter will be completed by a detailed discussion of the phase-space
representation of a short electromagnetic pulse. Examples of time evolution of
short pulses with chirp and frequency shift are given. In particular, we present a
model for the self-induced blueshift, which is produced when a strong laser pulse
propagates along a neutral gas and produces an ionization front.

We conclude the chapter by considering the well-known effect of self-phase
modulation and by showing that it can be described as a particular example of
photon acceleration.

67
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4.1 Klimontovich equation for photons

Let us first consider a single photon trajectory, as defined by the ray equations
in their canonical form. The dynamical state of the photon (position and local
frequency) can be determined by its location in the six-dimensional phase space
(�r , �k).

We can also associate with this single photon a microscopic density distribu-
tion defined by the product of two Dirac δ functions

N1(�r , �k, t) = δ[�r − �r(t)]δ[�k − �k(t)] (4.1)

where �r(t) and �k(t) represent the actual photon trajectory, as determined by the
solutions of the ray equations.

Of course, in order to accurately describe the evolution of a given elec-
tromagnetic pulse propagating in a medium, it is more convenient to consider,
instead of a single photon trajectory (which gives no information on the detailed
structure of the pulse), a large number of nearby photon trajectories. Let us then
assume n different photon trajectories, and the associated density distribution

N (�r , �k, t) =
n∑

j=1

δ[�r − �r j (t)]δ[�k − �k j (t)]. (4.2)

Integration in phase space clearly gives the total number of photons (or ray
trajectories)

n =
∫

d�r
∫

d�k N (�r , �k, t). (4.3)

If we want to establish an equation for the time evolution of the photon
density distribution, we can take the partial time derivative of equation (4.2). We
have

∂

∂t
N (�r , �k, t) =

n∑
j=1

(
d�r j

dt
· ∂

∂�r j
+ d�k j

dt
· ∂

∂ �k j

)
δ[�r − �r j (t)]δ[�k − �k j (t)]. (4.4)

Now, we can use the obvious relation ∂/∂x f (x − y) = −∂/∂y f (x − y), and
transform this expression into

∂

∂t
N (�r , �k, t) =

n∑
j=1

(
d�r j

dt
· ∂

∂�r + d�k j

dt
· ∂

∂ �k

)
δ[�r − �r j (t)]δ[�k − �k j (t)]. (4.5)

Another simplification can be introduced by using the following property of
the Dirac δ function: xδ(x − y) = yδ(x − y). This allows us to replace the
remaining �r j and �k j by �r and �k inside the differential operator acting on the δ

functions.
The result is

d

dt
N (�r , �k, t) = 0 (4.6)
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with
d

dt
= ∂

∂t
+ d�r

dt
· ∂

∂�r + d�k
dt

· ∂

∂ �k . (4.7)

Equation (4.6) can be called a kinetic equation for photons in its Klimon-
tovich form [49]. It simply states that the photon number density is conserved.
The problem with this simple result is that it was obtained by assuming that the
photons are point particles, which is obviously not the case, and its validity has
to be confirmed a posteriori by using Maxwell’s equations. We will see below
that this equation is only approximately valid, as should be expected, and that its
range of validity is nearly (but not exactly) coincident with the range of validity
of geometric optics.

From the canonical ray equations, we see that this kinetic equation can also
be written as

∂ Nk

∂t
+ [Nk, ω] = 0 (4.8)

where Nk ≡ Nk(�r , t) ≡ N (�r , �k, t), and the Poisson bracket is

[Nk, ω] = ∂ Nk

∂�r · ∂ω

∂ �k − ∂ Nk

∂ �k · ∂ω

∂�r . (4.9)

At this point we could follow the usual statistical procedure and introduce
some coarse-graining in the photon phase space, which would replace the quite
spiky quantity Nk(�r , t) by a smooth and well-behaved function like its ensemble
average 〈Nk(�r , t)〉. This would lead us too far from our present purpose. It is more
interesting here to establish a link between this quantity and the electromagnetic
energy density.

By definition, we can write the total energy as

W (t) =
∫

w(�r , t) d�r (4.10)

where the energy density is

w(�r , t) = 2
∫

h̄ωk Nk(�r , t)
d�k

(2π)3
. (4.11)

This equation states that the energy of each photon is equal to h̄ωk , as we
know from quantum theory. The factor of 2 is introduced because of the existence
of two possible states of polarization. On the other hand, we can exactly establish,
from the classical theory of radiation [57], that

w(�r , t) = ε0

4

∫ (
∂ωR

∂ω

)
k
|Ek |2 d�k

(2π)3
(4.12)

where |Ek |2 is the module square of the electric field amplitude of the Fourier
component �k, and R ≡ R(ω, �k) = 0 is the dispersion relation of the medium:

R(ω, �k) = ε(ω, �k) − k2c2

ω2
+ |�k · ê|2 c2

ω2
= 0. (4.13)
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Here ê is the unit polarization vector. By comparing these two expressions
for the electromagnetic energy density, we obtain

Nk(�r , t) = ε0

8h̄

(
∂ R

∂ω

)
k
|Ek |2. (4.14)

Obviously, this definition of the photon number density can only make sense
if we assume that the electric field amplitude of each Fourier component is a
slowly varying function of space and time. A more refined way of establishing
the definition of Nk(�r , t) is based on the concept of the Wigner functions for the
electromagnetic field, which will be considered next.

4.2 Wigner–Moyal equation for electromagnetic radiation

4.2.1 Non-dispersive medium

We will consider first a non-dispersive medium, in order to clearly state our
procedure. We will also assume that the medium is isotropic and with no losses.
In the absence of charge and current distributions, we have, from Maxwell’s
equations,

∇2 �E − ∇(∇ · �E) − µ0
∂2

∂t2
�D = 0 (4.15)

where �D = ε0ε �E is the displacement vector. We also have ε = 1 + χ , where χ

is the susceptibility of the medium.
Assuming, for simplicity, that the fields are transverse (∇ · �E = 0), we can

write

∇2 �E − 1

c2

∂2 �E
∂t2

= 1

c2

∂2

∂t2
(χ �E). (4.16)

For a wave with a given frequency ω and wavenumber �k, we can define the
Wigner function for the electric field as

F(�r , t; ω, �k) =
∫

d�s
∫

dτ �E
(

�r + �s
2
, t + τ

2

)
· �E∗

(
�r − �s

2
, t − τ

2

)
e−i�k·�s+iωτ .

(4.17)
This quantity is formally quite similar to the Wigner function for a quantum

system [40]. In contrast with our classical approach, the quantum Wigner function
is well understood and of current use in quantum optics [58, 116].

Following a procedure explained in detail in appendix A, we can derive from
the above wave equation an equation describing the space–time evolution of the
Wigner function. The same procedure was used in reference [111] to study the
case of relativistic plasmas.

In our case of a non-dispersive medium, the evolution equation for
F(�r , t; ω, �k) takes the form(

ε
∂

∂t
+ c2�k

ω
· ∇

)
F +

(
∂ε

∂t

)
F = −ω(ε sin �F) (4.18)
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where � is a differential operator, which acts both backwards on ε and forwards
on F . It can be defined by

� = 1

2

← [
∂

∂�r · ∂

∂ �k − ∂

∂t

∂

∂ω

]→
. (4.19)

The right and left arrows are here to remind us that, in each of the two terms,
the first differential operator acts backwards on ε and the second one acts forwards
on F . The sine differential operator in equation (4.18) is, in fact, an infinite series
of differential operators, according to

sin � =
∞∑

l=0

(−1)l

(2l + 1)!�
2l+1. (4.20)

At the cost of such an unusual operator, we were able to derive from
Maxwell’s equations a closed evolution equation for the Wigner function F of
the electric field. This is valid in quite general conditions, apart from our basic
assumptions that the medium should be non-dispersive and that the dielectric
constant should only evolve on a slow timescale. Its relation to the geometric
optics approximation will become apparent below.

Equation (4.18) is formally quite similar to the Wigner–Moyal equation for
quantum systems [40, 80], except for the term on the time derivative of the refrac-
tive index, which has no equivalent in the quantum mechanical problem. For that
reason it can be called the Wigner–Moyal equation for the electromagnetic field.
Clearly, it is significantly more complex than the kinetic equation established at
the begining of this chapter.

In order to compare these two approaches, it is useful to introduce a few
simplifying assumptions. The first one is associated with the character of the
electromagnetic spectrum. We can assume that this spectrum is just a superposi-
tion of linear waves. For each spectral component, the value of the frequency ω

has to satisfy the linear dispersion relation of the medium

ω = ωk = kc/
√

ε. (4.21)

The corresponding group velocity is

�vk = ∂ωk

∂ �k = c√
ε

�k
k

= c2

ωkε
�k. (4.22)

In this case of a linear wave spectrum, the Wigner function F takes the form

F ≡ F(�r , t; ω, �k) = Fk(�r , t)δ(ω − ωk). (4.23)

Replacing it in equation (4.26), and noting that the reduced Wigner function
Fk is independent of ω and consequently that

∂m F

∂ωm
= Fk

∂m

∂ωm
δ(ω − ωk) = (−1)mδ(ω − ωk)

∂m Fk

∂ωm
= 0, (4.24)
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we can write the Wigner–Moyal equation in a simplified form(
∂

∂t
+ �vk · ∇

)
Fk + ∂ ln ε

∂t
Fk = −ωk

ε
[ε sin �k Fk] . (4.25)

Here, �k is a reduced differential operator defined by

�k = 1

2

← ∂

∂�r · ∂

∂ �k
→

. (4.26)

Because, in the Wigner–Moyal equation, the sine operators are too compli-
cated to be calculated in specific problems, it is useful to simply retain the first
term in the development (4.20):

sin �k � �k . (4.27)

This is valid for a slowly varying medium, where the gradients contained in
the operator �k are very small. In such a case, we are close to the conditions
where the geometric optics approximation is valid, and the Wigner–Moyal equa-
tion reduces to(

∂

∂t
+ �vk · ∇

)
Fk +

(
∂ ln ε

∂t

)
Fk � −ωk

2ε

(
∂ε

∂�r · ∂ Fk

∂ �k
)

. (4.28)

On the other hand, if we neglect the logarithmic derivative in this equation,
we notice that this equation implies that a triple equality exists, namely

dt = d�r
�vk

= d�k
(ωk/2ε)(∂ε/∂�r)

. (4.29)

This is equivalent to stating that

d�r
dt

= �vk = ∂ωk

∂ �k (4.30)

d�k
dt

= ωk

2ε

∂ε

∂�r = kc

2ε3/2

∂ε

∂�r = −∂ωk

∂�r . (4.31)

We recover here the ray equations of the geometric optics approximation,
identical to those used before. They are nothing but the characteristic equations of
the simplified version of the Wigner–Moyal equation, which can then be written
as

d

dt
Fk ≡

(
∂

∂t
+ �vk · ∇ + d�k

dt
· ∂

∂ �k

)
Fk � 0. (4.32)

This equation, which states the conservation of the Wigner function Fk , is
valid when the logarithmic time derivative, as well as the higher order deriva-
tives associated with the diffraction terms l > 0 in the development of the sine



Wigner–Moyal equation for electromagnetic radiation 73

operator sin �k , can be neglected. Furthermore, from equation (4.17) we can
define Fk(�r , t) as the space Wigner function for the electric field, as shown in
appendix A:

Fk(�r , t) =
∫

�E(�r + �s/2, t) · �E∗(�r − �s/2, t)e−i�k·�s d�s. (4.33)

It is now useful to define the number of photons Nk(�r , t) in terms of this
reduced Wigner function, as

Nk(�r , t) = ε0

8h̄

(
∂ R

∂ω

)
ωk

Fk(�r , t) (4.34)

where R = 0 is the dispersion relation of the medium. For the case considered
here of a non-dispersive medium it reduces to

R ≡ R(ω, �k) = ε − c2k2/ω2 = 0. (4.35)

The expression for the number of photons (4.34) is then reduced to

Nk(�r , t) = ε0

4h̄

ε

ωk
Fk(�r , t). (4.36)

We can now return to the somewhat more exact expression for the Wigner–
Moyal equation (4.28) and rewrite it as

d

dt
Fk = −

(
∂ ln ε

∂t

)
Fk (4.37)

where the total derivative is determined by equation (4.32).
On the other hand, if we take the total time derivative of the number of

photons (4.36), and if we notice that

dωk

dt
= ∂ωk

∂t
= −ωk

2

(
∂ ln ε

∂t

)
, (4.38)

we can then obtain

d

dt
Nk =

[(
1

2

∂

∂t
+ �vk · ∇

)
ln ε

]
Nk . (4.39)

Neglecting the slow variations of the refractive index appearing on the right-
hand side, we can finally state an equation of conservation for the number of
photons, in the form

dNk

dt
≡

(
∂

∂t
+ �vk · ∇ + d�k

dt
· ∂

∂ �k

)
Nk = 0. (4.40)
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This is identical to the Klimontovich equation derived at the begining of this
chapter. This new derivation, which is much more complicated, has however the
advantage of using a more general definition for Nk .

On the other hand, we understand from this that the conservation equation
for the number of photons is only valid when the higher order terms contained
in the sine operator of the Wigner–Moyal equation can be neglected. This means
that these terms represent the diffraction corrections to the geometric optics ap-
proximation.

Finally, we note that the classical Wigner function for the electromagnetic
field introduced in this section is sometimes used to characterize ultra-short laser
pulses with a time-dependent spectrum, as measured in optical experiments [45].
In contrast, an evolution equation of this quantity seems to have been ignored.
The Wigner–Moyal equation described here can eventually be used to understand
the space–time evolution of such short pulses along a given optical circuit.

4.2.2 Dispersive medium

The above derivation is conceptually quite interesting because it establishes a
clear link between the exact Maxwell’s equations and the heuristically derived
Klimontovich equation. However, its range of validity is not very wide because
we have neglected dispersion effects.

The generalization to the case of a dispersive medium is considered in this
section. For simplicity, we still neglect the losses in the medium, which can easily
be included afterwards.

First of all, if the electromagnetic radiation propagates in a dispersive
medium, our starting equation (4.16) has to be replaced by(

∇2 − 1

c2

∂2

∂t2

)
�E = µ0

∂2

∂t2
�P (4.41)

where �P = ε0 �E − �D is the vector polarization of the medium. In general terms it
can be related to the electric field �E by the integral

�P(�r , t) = ε0

∫
d�r ′

∫
dt ′χ(�r , t, �r ′, t ′) �E(�r − �r ′, t − t ′). (4.42)

Again, we can derive from here an evolution equation for the double Wigner
function for the electric field. The derivation is detailed in appendix B and, to the
lowest order of the space and time variations of the medium, the result is(

∂

∂t
+ �vg · ∇

)
F = − 2

2ω + ∂η0/∂ω
(η�F) (4.43)

where � is the differential operator defined by equation (4.19) and �vg is the group
velocity defined by

�vg = 2c2�k − ω2∂ε/∂ �k
2ωε + ω2∂ε/∂ω

(4.44)
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with ε = 1 + χ = 1 + η/ω2.
This means that, if we had used the full developement of η± around (�r , t),

instead of the first terms, we would have obtained the operator sin � instead of just
�, characteristic of the Wigner–Moyal equation. This equation therefore gener-
alizes the above derivation of this equation to the case of a dispersive medium.
Obviously, for a non-dispersive medium, such that ∂η0/∂ω = 0, this would
reduce to the result of the previous section.

Let us assume that the electromagnetic wave spectrum is made of a superpo-
sition of linear waves, such that we can use equation (4.23), F = Fkδ(ω − ωk).
Then, equation (4.43) becomes(

∂

∂t
+ �vk · ∂

∂ �k + 1

(∂ω2ε/∂ω)ωk

∂ηk

∂�r · ∂

∂ �k
)

Fk = 0 (4.45)

where �vk = (∂ω/∂ �k)ωk and ηk = ω2
kχ(�r , �k, t).

As an example of a dispersive medium, we can consider an isotropic plasma,
where we have ηk = −ω2

p. In this case, the gradient of ηk appearing in the last
term of this equation reduces to the gradient of the electron plasma density, or
equivalently, to the gradient of the square of the plasma frequency.

We have then (
∂

∂t
+ �vk · ∂

∂ �k − 1

2ωk

∂ω2
p

∂�r · ∂

∂ �k

)
Fk = 0 (4.46)

where ωk =
√

k2c2 + ω2
p(�r , t).

This is equivalent to stating that the reduced Wigner function Fk is con-
served:

d

dt
Fk ≡

(
∂

∂t
+ �vk · ∂

∂ �k + d�k
dt

· ∂

∂ �k

)
Fk = 0 (4.47)

because we know, from the photon ray equations, that

d�k
dt

= −∂ωk

∂�r = − 1

2ωk

∂ω2
p

∂�r . (4.48)

From these reduced forms of the Wigner–Moyal equation for a dispersive
medium, we can then justify the use of the equation of conservation for the
number of photons Nk(�r , t), equation (4.40), which can also be called the kinetic
equation for photons propagating in slowly varying dispersive media. The prac-
tical interest of this kinetic approach will now be illustrated with a few specific
examples.

4.3 Photon distributions

In order to illustrate the interest of this kinetic approach, let us give some exam-
ples and introduce some definitions. First of all, it should be noticed that we have
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introduced in equation (4.34) a more general definition for the number of photons
than those usually found in the literature. As it states, it can be applied to arbitrary
forms of wavefields (plane, spherical or cylindrical waves).

In particular, if we take the simple case of plane waves, such that �E(�r , t) =
�E0 exp(i�k0 · �r − iω0t), our definition reduces to

Nk(�r , t) = ε0

8h̄

∂ R

∂ω
|E0|2δ(�k − �k0). (4.49)

This is just the definition commonly found in the literature [93, 114] which
is not very useful to describe, for instance, short laser pulses.

4.3.1 Uniform and non-dispersive medium

Let us now consider some examples of solutions of the photon kinetic equation.
For simplicity, we will discuss one-dimensional propagation. The pertinent ki-
netic equation will be(

∂

∂t
+ vk

∂

∂x
+ fk

∂

∂k

)
Nk(x, t) = 0. (4.50)

The simplest possible case corresponds to a photon beam propagation in a
uniform and non-dispersive medium. The third term in this equation will then be
equal to zero, due to uniformity:

fk ≡ dk

dt
= −∂ω

∂x
= kc

n2

∂n

∂x
= 0 (4.51)

where the refractive index n is time independent.
Furthermore, in a non-dispersive medium, we also have vk = v0 = c/n =

const. This means that the one-dimensional kinetic equation (4.50) is reduced to(
∂

∂t
+ v0

∂

∂x

)
Nk(x, t) = 0. (4.52)

A possible solution of this equation is a Gaussian pulse, with a duration τ ,
which propagates along the medium without changing its shape. This can be
represented by

Nk(x, t) = N (k) exp
[
−(x − v0t)2/σ 2

x

]
(4.53)

where σx = v0τ is the spatial pulse width, and N (k) describes the spectral
content.

Taking its space and time derivatives, we can easily see that this solution
satisfies equation (4.52) for an arbitrary function N (k). A useful choice is that of
a spectral Gaussian distribution, centred around some wavenumber value k0, with
a spectral width σk

N (k) = N0 exp
[−(k − k0)

2/σ 2
k

]
. (4.54)
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Compatibility between the spectral and the spatial distributions implies that
we always have σk ≥ 1/σx . The equality σkσx = 1 corresponds to the case of
a transform limited pulse, which minimizes the position–momentum uncertainty
relations.

4.3.2 Uniform and dispersive medium

As a first step in complexity, we consider a uniform but dispersive medium, where
the refractive index is frequency dependent. The third term in the photon kinetic
equation (4.50) will still be equal to zero, but the group velocity vk will not be a
constant. In order to calculate its value, let us linearize the refractive index around
the central pulse frequency

n(ω) � n0 + (ω − ω0)

(
dn

dω

)
ω0

(4.55)

where ω0 = ω(k0) and n0 = n(ω0). The dispersion relation can then be written
as

kc = n0ω + (ω − ω0)ωn′
0 (4.56)

with n′
0 = (dn/dω)ω0 . This can be solved for ω to give

ω = 1

2

(
ω0 − n0

n′
0

)
+ 1

2

√
(ω0 − n0/n′

0)
2 + 4kc/n′

0. (4.57)

The group velocity becomes

vk = ∂ω

∂k
= c√

b2 + 4kcn′
0

(4.58)

with b = (ω0n′
0 − n0).

We see that, for n′
0 > 0, the higher frequencies inside the pulse (with

higher values of k) will travel with lower velocities and will be retarded along
propagation vk < v0, for k > k0. In such a medium, the pertinent equation to be
solved is (

∂

∂t
+ vk

∂

∂x

)
Nk(x, t) = 0. (4.59)

Instead of the Gaussian distribution (4.53), we can try here a solution of the
form

Nk(x, t) = N (k) exp
[
−(x − vk t)2/σ 2

x

]
(4.60)

wher vk is determined by equation (4.58) and is independent of x and t .
This is clearly a solution of equation (4.59). Let us see the meaning of this

new solution and compare it with (4.53), by linearizing vk around k0, vk � v0 +
(k − k0)v

′
0, with

v′
0 =

(
∂vk

∂k

)
k0

= − 2c2n′
0

(b2 + 4k0cn′
0)

3/2
. (4.61)
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Replacing this development of vk in equation (4.60), and using N (k) as given
by equation (4.54), we obtain a photon distribution formally analogous to (4.53),
but with N (k) replaced by a space- and time-dependent function:

Nk(x, t) = N (k, x, t) exp
[
−(x − v0t)2/σ 2

x

]
(4.62)

with

N (k, x, t) = N0 exp
[
−(k − k0)

2/σk(t)
2
]

× exp
[
2t (k − k0)v

′
0(x − v0t)/σ 2

x

]
. (4.63)

Here, we have used

1

σk(t)2
= 1

σ 2
k

+ v′
0t2

σ 2
x

. (4.64)

4.3.3 Pulse chirp

The above result shows that, when an initially Gaussian beam propagates in a
uniform but dispersive medium it maintains its spatial Gaussian shape but its
spectral distribution is distorted in time. At this point, the concept of pulse chirp
has to be introduced, because it is associated with such a pulse distortion.

In the frame of our kinetic description of a photon beam, the chirp is deter-
mined by the space–time distribution of the averaged wavenumber:

〈k〉 = 1

nγ (x, t)

∫
k Nk(x, t)

dk

2π
(4.65)

where the normalization factor

nγ =
∫

Nk(x, t)
dk

2π
(4.66)

is the photon mean density.
The concept of pulse chirp is very important for the optics of short laser

pulses. We can say that a given pulse (or photon beam) is chirped if its averaged
wavenumber is not constant across the pulse. As an example, let us consider the
distribution (4.62–4.64). Replacing it in equation (4.65), we obtain

〈k〉 =
∫ ∞
−∞ k dk exp(−ak2 + 2bk)∫ ∞
−∞ dk exp(−ak2 + 2bk)

(4.67)

where we have used

a = 1

σk(t)2
, b = k0

σk(t)2
+ v′

0

σ 2
x
(x − v0t)t. (4.68)
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Using the following solutions for these two integrals [35]:

∫ ∞

−∞
exp(−ak2 + 2bk) dk =

√
π

a
exp

(
b2

a

)
(4.69)

and ∫ ∞

−∞
k exp(−ak2 + 2bk) dk = b

a

√
π

a
exp

(
b2

a

)
, (4.70)

we obtain

〈k〉 = b

a
= k0 + v′

0
σk(t)2

σ 2
x

(x − v0t)t. (4.71)

This shows that the mean value of the wavenumber inside the photon beam is
time dependent, which means that propagation of a Gaussian pulse in a dispersive
medium leads to pulse chirping, simply because some of the photons will travel
with larger velocities than the others. In a similar way, we can calculate the
spectral width of the chirp, by defining a new mean value

〈k2〉 = 1

nγ (x, t)

∫
k2nk(x, t)

dk

2π
. (4.72)

In our case, it can be written as

〈k2〉 =
∫ ∞
−∞ k2 dk exp(−ak2 + 2bk)∫ ∞
−∞ dk exp(−ak2 + 2bk)

. (4.73)

Using the following solution for the integral in the numerator [35]:

∫ ∞

−∞
k2 exp(−ak2 + 2bk) dk = 1

2a

√
π

a

(
1 + 2b2

a

)
exp

(
b2

a

)
, (4.74)

we obtain

〈k2〉 = 1

2a

(
1 + 2b2

a

)
= σk(t)2

2
+ 〈k〉2. (4.75)

This is equivalent to writing

〈(�k)2〉 ≡ 〈(k − 〈k〉)2〉 = σk(t)2

2
. (4.76)

According to the definition of σk(t), as given by equation (4.64), this means
that the square mean deviation decreases with time, while the pulse chirp associ-
ated with the mean value 〈k〉 increases in time. Starting from a Gaussian spectral
distribution, at t = 0, such that 〈k〉 is constant across the pulse spatial width, we
obtain a thin and elongated spectral distribution as time evolves (or as the pulse
propagates).
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x

k

Nk

( a )

x

k

Nk

( b )

Figure 4.1. Representation of the photon distribution Nk(x, t) in phase space (x, k), at a
given time t , for (a) a transform limited Gaussian pulse; (b) a chirped pulse.

A more general class of solutions for the photon kinetic equation for uniform
dispersive media can be stated as

Nk(x, t) = N (k, x, t) exp
[
−(x − vk t)2/σ 2

x

]
(4.77)

with
N (k, x, t) = N0 e−[k−g(x,t)]2/σ 2

k . (4.78)

Using this in equation (4.59) we can easily realize that this is a solution of the
photon kinetic equation, for a uniform but dispersive medium, for every function
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satisfying the equation (
∂

∂t
+ vk

∂

∂x

)
g = 0. (4.79)

As an example of a solution, we can consider the family of functions

g(x, t) = k0 + g0(x − vk t)n (4.80)

where k0 and g0 are constants and n is an integer.

4.3.4 Non-stationary medium

Let us now assume a non-dispersive but non-stationary and non-uniform medium,
such that the refractive index is determined by

n ≡ n(x, t) = n0[1 + δ f (x, t)] (4.81)

where f (x, t) describes a small space–time perturbation and δ 
 1 is the scale
of the perturbation.

The dispersion relation can then be written as

ω = kc

n0[1 + δ f (x, t)] � kc

n0
[1 − δ f (x, t)] (4.82)

and the photon, or group velocity, as

vk ≡ vg(x, t) � v0[1 − δ f (x, t)] (4.83)

where we have used v0 = c/n0.
The photon kinetic equation becomes(

∂

∂t
+ vg(x, t)

∂

∂x
+ kv0δ

∂ f

∂x

∂

∂k

)
Nk(x, t) = 0 (4.84)

where we have used v0 = c/n0. Let us try a solution of the form (4.77, 4.78), but
with vk replaced by the constant v0. Using this in equation (4.84) we notice that
the function g(x, t) has to satisfy the following equation:

(
∂

∂t
+ vg

∂

∂x

)
g = δv0k

∂ f

∂x
+ δ f v2

0
σ 2

k

σ 2
x

(x − v0t)

(k − g)
. (4.85)

For a given perturbation of the refractive index of the medium f (x, t), this
equation allows us to obtain the solution g(x, t). However, such solutions, even
if they exist, are in general very difficult to find.

In order to obtain an approximate solution for g(x, t), we can assume that
we are interested in the main region of the pulse, such that x � v0t , and the last
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term in this equation can be neglected. If we also take vg � v0, the equation for
g(x, t) is reduced to (

∂

∂t
+ v0

∂

∂x

)
g � δv0k

∂ f

∂x
. (4.86)

An important example is that of a wakefield perturbation of the refractive
index, such that f (x, t) = cos kp(x − ut). In this case, the approximate solution
for g(x, t) is

g(x, t) = k0 + g0 cos kp(x − ut) (4.87)

with

g0 = −δ
kv0

u − v0
. (4.88)

This shows that the spectral shifts are more important when the phase ve-
locity of the perturbation is nearly equal to the group velocity of the photons,
u ∼ v0, as already found in the analysis of single photon trajectories. But, of
course, these analytical results are quite rough and, for this and other situations,
numerical solutions of the photon kinetic equation are required.

4.3.5 Self-blueshift

An interesting result [91] was obtained from the numerical integration of the pho-
ton kinetic equation, for the self-blueshift of a laser pulse penetrating in a neutral
gas. This blueshift is due to the sudden ionization of the gas and subsequent
creation of an ionization front.

Self-blueshift is a particular aspect of photon acceleration where the space–
time changes in the refractive index are due to the incident laser pulse itself.
Experimentally, this has been well known since the early sixties [120, 122], and
it was studied theoretically by several authors [41, 48].

Let us describe the ionization model. For very intense incident laser fields,
the photoionization processes are described by the tunnelling ionization theory.
If the initial density of the neutral atoms of the gas is n0(�r , t), this number will
decrease due to field ionization as

dn0(�r , t)

dt
= −w1(�r , t)n0(�r , t) (4.89)

where w1 is the ionization rate for the atom.
The number of singly ionized atoms n1(�r , t) will then be determined by the

balance equation

dn1(�r , t)

dt
= w1(�r , t)n0(�r , t) − w2(�r , t)n1(�r , t) (4.90)

where w2 is the probability of double ionization occurring.
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In more general terms, the number density of j-charged ions is determined
by

dn j (�r , t)

dt
= w j (�r , t)n j−1(�r , t) − w j+1(�r , t)n j (�r , t). (4.91)

Finally, the density of completely ionized atoms is given by

dnZ (�r , t)

dt
= wz(�r , t)nZ (�r , t) (4.92)

where Z is the atomic number of the atoms in the gas.
The various ionization probabilities w j depend on the local amplitude of the

laser electric field and are well known from the standard theory of field ionization
[4, 47]. The values of these ionization probabilities can establish the coupling
between these balance equations for the atomic states and the above kinetic equa-
tion for the photons. Furthermore, the local plasma dispersion relation can be
consistently determined by considering charge neutrality.

The electron plasma density will then be determined by

ne(�r , t) =
j=Z∑
j=0

jn j (�r , t). (4.93)

A numerical integration of the kinetic equation for photons, coupled with
these simple balance equations, clearly shows that the front of a Gaussian beam
penetrating in a neutral gas region will be significantly blueshifted (see figure
4.2). Furthermore, the blueshift is not uniform and several wavelike perturbations
can be observed in the up-shifted spectrum, one for each ionization state. These
spectral undulations will be eventually attenuated by electron impact ionization
which was not contained in this model.

4.4 Photon fluid equations

In this chapter we have been able to show that the photon kinetic equation can be
derived from Maxwell’s equations, in the limit of slowly space- and time-varying
media. Even if the range of validity of the photon kinetic theory is limited, it
nevertheless contains detailed information about the photon spectrum. It is then
useful to derive from this equation a set of conservation laws describing the space–
time behaviour of photon averaged quantities, in the same way as fluid equations
can be derived from kinetic equations for the particles of an ordinary gas.

Let us first define the mean density of the photon gas as the integral of the
photon distribution over the entire spectrum:

nγ (�r , t) = 2
∫

Nk(�r , t)
d�k

(2π)3
. (4.94)
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Figure 4.2. Numerical simulation of the self-blueshift of a laser beam with an intensity of
1015 W cm−2, propagating in neutral argon, with an initial Gaussian spectrum. The initial
density of the neutral atoms is 1018 cm−3 for x > 0.

Similarly, we can define the mean photon velocity, or mean group velocity,
as

�u(�r , t) = 2

nγ

∫
�vk Nk(�r , t)

d�k
(2π)3

. (4.95)

The factor of two appearing in these two definitions is due to the existence of
the two independent polarization states. The continuity equation for the photon
gas, or photon density conservation equation, can be derived by integrating the
kinetic equation in �k. Integration of the first term gives

∂

∂t

∫
Nk

d�k
(2π)3

= 1

2

∂nγ

∂t
. (4.96)

Integration of the second term leads to∫
�vk · ∇Nk

d�k
(2π)3

= ∇ · (�unγ ) −
∫

Nk(∇ · �vk)
d�k

(2π)3
. (4.97)

Finally, integration of the third term gives∫
�f · ∂ Nk

∂ �k
d�k

(2π)3
=

∫
Nk∇ · �vk

d�k
(2π)3

. (4.98)

The sum of these three contributions leads to the continuity equation for the
photon gas

∂nγ

∂t
+ ∇ · (�unγ ) = 0. (4.99)
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The second conservation equation to be derived is the photon momentum
conservation law. Multiplying the photon kinetic equation by �vk and integrating
it over the entire spectrum, we get the following contribution from the first term:∫

�vk
∂ Nk

∂t

d�k
(2π)3

= 1

2

∂

∂t
(�unγ ) −

∫
Nk

∂ �vk

∂t

d�k
(2π)3

. (4.100)

The contribution of the second term can be written as∫
�vk �vk · ∇Nk

d�k
(2π)3

= 1

2
∇ · (

nγ 〈�vk �vk〉
) −

∫
Nk∇ · (�vk �vk)

d�k
(2π)3

(4.101)

where we have used the following quantity:

〈�vk �vk〉 = 2

nγ

∫
Nk �vk �vk

d�k
(2π)3

. (4.102)

Here, we can introduce the concept of photon pressure, Pγ , such that

〈�vk �vk〉 = �u�u + Pγ

nγ

I (4.103)

where I is the 3 × 3 identity matrix.
Using equation (4.102) and adding the diagonal terms of this tensorial rela-

tion, it can easily be shown that the photon pressure is determined by

Pγ = 2

3

∫
Nk(vk − u)2 d�k

(2π)3
. (4.104)

We can also define an effective temperature for the photon gas, assuming
that it can be considered an ideal gas, such that

Pγ = nγ Teff. (4.105)

Finally, the contribution from the third term of the photon kinetic equation
to the momentum conservation law is determined by

�vk

(
�f · ∂ Nk

∂ �k
)

d�k
(2π)3

. (4.106)

Adding the contributions from the three terms and using the continuity equa-
tion, we can finally establish the momentum conservation law of the photon gas,
in the form

∂ �u
∂t

+ �u · ∇ �u = −∇ Pγ

nγ

+ �Fγ (4.107)

where the mean force acting on the photons is determined by

�Fγ = 2

nγ

∫
Nk

[
∂ �vk

∂t
+ ∇ · (�vk �vk) + ∂

∂ �k · ( �f �vk)

]
d�k

(2π)3
. (4.108)
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As a first example, let us calculate this force for the case of a non-dispersive
dielectric medium, with refractive index n ≡ n(�r , t). In this case, we have

ω = kc

n
, �vk = c

n

�k
k
. (4.109)

Using these in the above expression for �Fγ , we obtain

�Fγ = 2

nγ

c2

n2

∫
Nk

[
−∂n

∂t

�k
k

+ 1

n

∂n

∂�r ·
(

I − 2
�k�k
k2

)]
d�k

(2π)3
. (4.110)

We see that this mean force acting on the photon gas is due to the space and
time variations of the refractive index. As a second example, let us consider an
isotropic plasma, such that

ω2 = k2c2 + ω2
p, �vk = �kc2

ω
. (4.111)

The mean force now becomes

�Fγ = − 1

nγ

∫
Nk

ω2

(
∇ω2

p + �vk
∂ω2

p

∂t

)
d�k

(2π)3
. (4.112)

If the distribution is even with respect to the quantity (�vk − �u), this can also
be written as

�Fγ = − U

nγ

(
∇ω2

p + �u ∂ω2
p

∂t

)
(4.113)

with

U =
∫

Nk

ω2

d�k
(2π)3

. (4.114)

In a similar way, we can also derive the energy conservation equation, by
multiplying the kinetic equation by h̄ω and integrating it over �k. The contribution
of the first term is∫

h̄ω
∂ Nk

∂t

d�k
(2π)3

= 1

2

∂

∂t
Wγ − h̄

∫
Nk

∂ω

∂t

d�k
(2π)3

(4.115)

where the mean photon energy is determined by

Wγ = 2

nγ

∫
h̄ωNk

d�k
(2π)3

. (4.116)

The contribution of the second term is∫
h̄ω�vk · ∇Nk

d�k
(2π)3

= 1

2
∇ · (�uWγ ) − h̄

∫
Nk∇ · (ω�vk)

d�k
(2π)3

. (4.117)
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Finally, the contribution of the third term is

∫
h̄ω �f · ∂ Nk

∂ �k
d�k

(2π)3
= −h̄

∫
Nk

∂

∂ �k · (ω �f )
d�k

(2π)3
(4.118)

which exactly cancels the last term in equation (4.117).
Adding these three contributions, we obtain

∂

∂t
Wγ + ∇ · (�uWγ ) = 2h̄

∫
Nk

∂ω

∂t

d�k
(2π)3

. (4.119)

In the case of a non-dispersive dielectric medium, we have

∂ω

∂t
= −ω

n

∂n

∂t
(4.120)

where n is the refractive index, and, in the case of a plasma,

∂ω

∂t
= 1

2ω

∂ω2
p

∂t
(4.121)

where ωp is the electron plasma frequency.
We see that, in contrast with the momentum conservation equation (4.107,

4.108), where both the time and the space derivatives of the refractive index
(or of the plasma frequency) contribute to the change in the mean value of the
momentum of the photon gas, only the time derivatives can be a source of energy.

4.5 Self-phase modulation

An important property of the photon kinetic theory is that it can describe the
nonlinear changes of a photon bunch or a short laser pulse due to its own spectrum.
In other words, it can explain the following self-consistent process: the photon
bunch changes the optical properties of the medium which, in turn, modify the
spectral composition of the photon bunch. This was already shown in the example
of the self-blueshift, given at the end of section 4.4.

The best example of such a process is however the well-known self-phase
modulation of a laser pulse in an optical fibre or in other optical media. By this
process, an initially nearly monochromatic laser pulse can be transformed into a
broadband radiation pulse.

In more exact terms, if the initial laser pulse is a nearly transform limited
short pulse, where the spectral width is close to its minimum value allowed by the
uncertainty principle, the nonlinear process, usually called self-phase modulation,
can transform it into nearly white light.

This astonishing effect has been known experimentally since the early 1970s
and the current theory is based on the calculation of the nonlinear contributions to
the total time phase dependence. However, the photon kinetic theory described in
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this chapter suggests the possible use of a totally independent theoretical expla-
nation, where the phase is completely ignored and where only the photon number
distribution is considered.

It will be shown here that this new approach is equally capable of describing
the spectral changes characterizing the so-called self-phase modulation processes,
which leads us to two important conclusions. The first one is that the phase is not
an essential ingredient of self-phase modulation. This is also valid for the induced
phase modulation, briefly discussed at the end of chapter 3. The second is that
self-phase modulation (as well as the other phase modulation processes, such as
induced and crossed phase modulation) is nothing but a particular aspect of the
phenomenology of photon acceleration described in this work.

Physically this means that, starting from a nearly monochromatic laser pulse,
the nonlinear properties of the optical media can accelerate and decelerate the
photons contained inside the pulse, spreading them over a considerable range
of the optical spectrum, thus leading to nearly white light. In order to clarify
these few very important physical statements, and to make them accessible to the
nonspecialist, let us first remind ourselves of the usual optical theory of self-phase
modulation and then compare it to the photon kinetic approach.

4.5.1 Optical theory

If we start from Maxwell’s equations in a dielectric medium, in the absence of
charge and current distributions, we can easily derive the following equation of
propagation for the electric field �E associated with the laser pulse:

∇2 �E − ∇(∇ · �E) − 1

c2

∂2 �E
∂t2

= µ0
∂2 �P
∂t2

. (4.122)

The vector ploarization appearing in this equation can be divided into two
distinct parts: �P = �PL + �PN L . The linear part is determined by

�PL(t) = ε0

∫ ∞

0
χ(1)(τ ) �E(t − τ) dτ. (4.123)

Here we assume that the medium is isotropic, otherwise the linear (or first-
order) susceptibility χ(1) would be replaced by a tensor. For the nonlinear part of
the polarization vector, we can neglect dispersion and simply write

�PN L(t) = ε0χ
(3)|E(t)|2 �E(t). (4.124)

Assuming that the laser field is transverse (∇ · �E = 0), we can then write the
propagation equation as

∇2 �E − 1

c2

∂2

∂t2

{
�E +

∫ ∞

0
χ(1)(τ ) �E(t − τ) dτ

}
= 1

c2

∂2

∂t2
χ(3)|E |2 �E . (4.125)
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Let us assume a solution of the form

�E(�r , t) = 1

2

[�aE0(z, t) exp(ik0z − iω0t) + c.c.
]
. (4.126)

This represents a laser pulse propagating along the z-axis, with a unit po-
larization vector �a and a slowly varying amplitude E0(z, t). This means that the
scales of variation of this amplitude are such that∣∣∣∣ 1

E0

∂ E0

∂t

∣∣∣∣ 
 ω0,

∣∣∣∣ 1

E0

∂ E0

∂z

∣∣∣∣ 
 k0. (4.127)

We can then write

∂2 �E
∂t2

� −ω2
0

�E + 1

2

[
−2iω0�a exp(ik0z − iω0t)

∂ E0

∂t
+ c.c.

]
(4.128)

∇2 �E � −k2
0 + 1

2

[
2ik0�a exp(ik0z − iω0t)

∂ E0

∂z
+ c.c.

]
.

We will also assume weak linear dispersion, which means that the function
χ(1)(τ ) is sharply peaked around τ = 0. The absence of dispersion would
correspond to identifying this function with a Dirac delta function δ(τ ).

In the weak dispersion medium, we can expand the electric field �E(t − τ)

appearing in equation (4.123) as

�E(t − τ) � �E(t) − τ
∂

∂t
�E(t) + · · · . (4.129)

Using this expansion in equation (4.123), and noting that

χ(ω) =
∫ ∞

0
χ(1)(t)eiωt dt (4.130)

∂

∂ω
χ(ω) = i

∫ ∞

0
tχ(1)(t)eiωt dt

we obtain

�PN L(t) = ε0

2

{
�a exp(ik0z − iω0t)

[
χ(ω0) + i

∂χ(ω0)

∂ω

∂

∂t

]
E0(z, t) + c.c.

}
.

(4.131)
We can now use equations (4.129, 4.131) in the propagation equa-

tion (4.125). Noting that the frequency ω0 and the wavenumber k0 are related
by the linear dispersion relation k2c2 = ω2ε(ω), where ε(ω) = 1 + χ(ω) is the
dielectric function of the medium, we obtain an equation describing the slow
space–time evolution of the envelope field amplitude:(

∂

∂z
+ 1

v0

∂

∂t

)
E0 = iω0α|E0|2 E0. (4.132)
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Here v0 is the group velocity, determined by

1

v0
= k0

ω0
+ ω2

0

2c2

∂ε(ω0)

∂ω
(4.133)

and α is the nonlinear coefficient, resulting from the existence of a third-order
susceptibility

α = ω0

k0

1

c2
χ(3). (4.134)

The solution of the envelope equation (4.132) can be written in the form

E0(z, t) = A(η) eiφ(η,t) (4.135)

where we have η = z − v0t and the nonlinear phase

φ(η, t) = φ0 + ω0α|A(η)|2t. (4.136)

Such a solution describes a laser pulse propagating with an invariant pulse
shape, but with a phase which depends on time (or on the travelled distance),
as well as on the form of that shape. The result is that the pulse frequency will
not remain constant along the propagation and will depend on the actual position
inside the pulse envelope:

ω = ω0 − ∂φ

∂t
= ω0

[
1 + α

t

v0

∂

∂η
|A(η)|2

]
. (4.137)

As shown before, this space–time dependence of the frequency (or of the
wavevector) is called the pulse chirp. In order to have a more precise idea of
the chirp, and of the amount of frequency shift �ω = ω − ω0 introduced by the
nonlinear susceptibility of the medium, we can take the simple and illustrative
example of a Gaussian laser pulse, such that

|A(η)|2 = A2
0 e−η2/σ 2

. (4.138)

From equation (4.137), we get

�ω = −αt
ω0

v0

2η

σ 2
|A(η)|2. (4.139)

We see that the frequency shift grows linearly with time, and that it is nega-
tive at the pulse front, for η > 0, and positive at the rear, for η < 0.

4.5.2 Kinetic theory

An alternative description of the same effect is now given in terms of photon
acceleration [103]. Instead of using the envelope field equation, we use, as our
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starting point, the equation describing the space–time evolution of the photon
number distribution Nk(�r , t), which can be written as

d

dt
Nk(�r , t) = 0 (4.140)

where the total time derivative is

d

dt
= ∂

∂t
+ d�r

dt
· ∂

∂�r + d�k
dt

· ∂

∂ �k . (4.141)

In order to determine this total time derivative operator we have to make use
of the ray equations

d�r
dt

= ∂ω

∂ �k ,
d�k
dt

= −∂ω

∂ �k (4.142)

where, in the expression of the frequency ω ≡ ωk(�r , t), we retain the nonlinear
corrections to the refractive index

ω = kc

n
= kc

n0 + n2 I (�r , t)
. (4.143)

Here, n0 is the linear refractive index, n2 is the nonlinear one and I (�r , t) is
the laser pulse intensity, where

I (�r , t) = h̄
∫

ωk Nk(�r , t)
d�k

(2π)3
. (4.144)

This is a slowly varying function as compared with the frequency timescale:

ω �
∣∣∣∣ ∂

∂t
ln I (�r , t)

∣∣∣∣ . (4.145)

Using equation (4.143) in (4.142), we get

d�r
dt

= c

n0 + n2 I (�r , t)
(4.146)

d�k
dt

= kc

[n0 + n2 I (�r , t)]2
n2

∂

∂�r I (�r , t). (4.147)

We know that the formal solution of the photon kinetic equation (4.140) can
be written as

N (�r , �k, t) = N (�k0(�r , �k, t), �r0(�r , �k, t), t0) (4.148)

where (�k0, �r0, t0) are the initial conditions.
This means that, by solving equations (4.146, 4.147) we are able to deter-

mine the evolution of Nk(�r , t). In order to illustrate the procedure, let us solve
these equations in a one-dimensional situation, where propagation is taken along
the z-axis.
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We will also assume that the nonlinear corrections to the refractive index
are small, n0 � n2 I (�r , t), which is usually the case, even for very intense laser
pulses. We can then reduce equations (4.146, 4.147) to

dz

dt
= c

n0

[
1 − n2

n0
I (z, t)

]
(4.149)

dk

dt
= kc

n0

n2

n0

∂

∂z
I (z, t). (4.150)

Let us also assume that the pulse propagates without significant profile de-
formation, with a group velocity c/n0. This means that

I (z, t) � I

(
z − c

n0
t

)
. (4.151)

This suggests the use of a canonical transformation from (z, k) to a new pair
of variables (η, p), such that

η = z − c

n0
t, p = k. (4.152)

The resulting Hamiltonian function is

�(η, p, t) = ω(η, p, t) − p
c

n0
. (4.153)

Using the approximate expression

ω � kc

n0

[
1 − n2

n0
I (z, t)

]
= pc

n0

[
1 − n2

n0
I (η)

]
(4.154)

we get
�(η, p) = −pw I (η) (4.155)

where we have used
w = n2

n0

c

n0
. (4.156)

The ray equations can now be written in the form

dη

dt
= ∂�

∂p
= −w I (η),

dp

dt
= −∂�

∂η
= pw

∂ I (η)

∂η
. (4.157)

The integration of these photon equations of motion is straighforward, and
the result can be written as ∫ η

η0

dη′

I (η′)
= −w(t − t0) (4.158)
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and

p0 = p exp

[
−w

∫ t

t0

∂ I (η)

∂η
dt

]
. (4.159)

The first of these expressions shows that the initial value of the position
coordinate η is independent of the momentum variable p:

η0 ≡ η0(η, t). (4.160)

With regard to the second expression, it corresponds to an implicit integra-
tion, but it will be very useful for the calculation of the spectral changes of the
laser pulse along its propagation. Let us show this by considering the chirp of the
pulse 〈ω〉.

By definition, the chirp is the averaged frequency of the pulse, at a given
position η and at a given instant t :

〈ω〉η,t =
∫

Np(η, t)ω(η, p, t) dp. (4.161)

Using equations (4.148, 4.154), we get

〈ω〉η,t =
∫

pc

n0

[
1 − n2

n0
I (η)

]
N (η0, p0, t0) dp. (4.162)

Using equation (4.159) we can write p dp in terms of p0 dp0, which leads to

〈ω〉η,t =
∫

p0c

n0

[
1 − n2

n0
I (η)

]
N (η0, p0, t0) exp

[
2w

∫
∂ I (η)

∂η
dt

]
. (4.163)

But for a non-dispersive pulse, we have I (η) = I (η0), as already stated in
equation (4.151). This means that we can write the pulse chirp in the form

〈ω〉η,t = 〈ω〉0 exp

[
2w

∂ I (η)

∂η
(t − t0)

]
(4.164)

where 〈ω〉0 ≡ 〈ω〉η0,t0 is the initial pulse chirp.
This is a simple but important result, which will allow us to rediscover the

main features of the so-called self-phase modulation, this time without consider-
ing the field phase. In particular, we can determine the condition for an extremum

∂

∂η
〈ω〉η,t = 0. (4.165)

This will correspond to the stationary points 〈ω〉max of the chirp curve. From
equation (4.164) it is obvious that

∂

∂η
〈ω〉η,t = 2w(t − t0)〈ω〉η,t

[
∂2

∂η2
I (η)

]
= 0. (4.166)
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From this we conclude that the point η = ηmax, for which the maximum
value of the chirp 〈ω〉max is observed, is determined by the condition

∂2

∂η2
I (η) = 0. (4.167)

Let us illustrate these results by assuming a Gaussian pulse

I (η) = I0 e−η2/σ 2
. (4.168)

For this particular pulse shape, we have

∂2

∂η2
I (η) =

(
2η2

σ 2
− 1

)
2

σ 2
I (η). (4.169)

Comparing this with condition (4.167), we conclude that the chirp maxima
are located at the two points determined by 2η2 = σ 2, or equivalently, by

ηmax = ± 1√
2
σ. (4.170)

From equation (4.168) we then get

∂

∂η
I (η)

∣∣∣∣
ηmax

= ∓
√

2

σ
I0 e−1/2. (4.171)

Using equation (4.164) we finally obtain the condition for the maximum
chirp:

〈ω〉max = 〈ω〉0 exp

[
∓2

√
2

σ
w I0 e−1/2(t − t0)

]
. (4.172)

It should be noticed that this concept of maximum chirp can also be physi-
cally identified with the condition for the maximum frequency shift with respect
to the initial pulse frequency. Introducing the frequency shift as �ω = 〈ω〉max −
〈ω〉0, we get, for small arguments of the above exponential,

�ω � ±2
√

2

σ

n2

n0

c

n0
I0 e−1/2�t (4.173)

where we have used �t = t − t0.
Notice that such an expansion is valid for small time intervals, or for small

nonlinearities. This result for the pulse frequency shift is in agreement (not only
qualitatively, but also quantitatively) with that obtained above for the self-phase
modulation of the laser pulse in a nonlinear medium: the spectral width grows
linearly with time and the maxima down-shifts and the up-shifts are equal to each
other.
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Figure 4.3. Time evolution of the maximum frequency shift associated with self-phase
modulation, as determined by the photon kinetic theory.

We should however notice that, for long time intervals �t → ∞, the above
expansion in not valid and the Stokes and anti-Stokes sidebands become quite
asymmetric. This is clearly seen in the more exact equation (4.172) where, for
long time intervals, one of the branches of the exponential tends to zero, while the
other tends to infinity. Such a spectral feature is well confirmed by experiments
and is illustrated in figure 4.3.

This asymmetry is a natural consequence of the present theoretical formula-
tion, even for an initially symmetric laser pulse. In contrast, it cannot be derived
from the optical theory of self-phase modulation discussed above.

Another important feature of this effect, which is the pulse steepening, can
also be explained by our kinetic model. In order to study the changes in the pulse
shape, we can no longer use the non-dispersive solution stated in equation (4.151),
which was one of the basic assumptions of our analytical calculation of the pulse
chirp. Instead, we have to solve numerically the photon kinetic equation. The
result is illustrated in figure 4.4, where the pulse steepening, resulting from the
group (or photon) velocity dispersion, is clearly shown.

We conclude this section by stating that the effect usually called self-phase
modulation can be accurately described with the photon kinetic equation, where
the wavefield phase is completely ignored. The three main experimental features
of this effect are well described by this kinetic model: the pulse chirp, the spectral
asymmetry between the Stokes and the anti-Stokes sidebands, and the steepening
of the pulse shape. In many respects, the analytical solutions of the kinetic theory
are more accurate than the analytical solutions of the optical theory, in particular
for the prediction of spectral asymmetry.

We are then led to two different kinds of conclusion. The first one is that
the so-called self-phase modulation can be seen as a particular example of the
more general concept of photon acceleration in a non-stationary medium. In this
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Figure 4.4. Illustration of pulse steepening associated with self-phase modulation, as
described by the kinetic theory. A Gaussian pulse is also shown, for comparison.

particular case, the non-stationarity of the medium is due to the laser pulse itself
(or to the photon number distribution associated with the pulse) which locally
changes the refractive index, due to the nonlinear response of the medium.

The second, and more surprising, conclusion is that the wavefield phase is
not the essential ingredient of this effect: two laser pulses, with different phase
contents, would lead to nearly the same spectral broadening in the same medium.
This means that the explanation of such a frequency shift or spectral change is
conceptually more accurate in terms of photon kinetics than in terms of phase
modulation.



Chapter 5

Photon equivalent charge

Until now, we have only considered the linear properties of photons in a medium,
which essentially derive from their effective mass. In some sense these are the
most relevant ones.

In this chapter we turn our attention to the influence of the nonlinear prop-
erties of an optical medium, and we show that the photons possess an equivalent
electric charge. In a plasma, this equivalent charge can be directly associated with
the ponderomotive force (or the radiation pressure) of the photon gas acting on
the plasma electrons. We will later see that in a non-ionized medium, for instance
an optical fibre, this electric charge is replaced by an electric dipole.

This new, and somewhat unexpected property of a photon is due to the space–
time varying polarization effects that it induces in the medium. We can then say
that a photon in a vacuum is a ‘bare’ particle with no electric charge, but a photon
with the same frequency (or energy) travelling in a plasma has to be considered
a ‘dressed’ particle with an electric charge which is not quantized and depends
on the plasma density [69, 104, 112]. Furthermore, the existence of this charge
allows us to formulate a new series of problems, related to possible radiation
mechanisms due to accelerated ‘dressed’ photons, or to their motion across the
boundary between two different media.

Finally, a new property associated with this electric charge (or in other words,
with the radiation pressure effects) is the possibility of resonant Cherenkov inter-
actions between photons and electron plasma waves, leading to the concept of
photon Landau damping [14]. Plasma instabilities, induced by particular photon
spectral distributions (such as photon beams), can then be envisaged.

5.1 Derivation of the equivalent charge

One possible way to derive the photon equivalent charge is to consider an elec-
tromagnetic wavepacket propagating in a plasma. Once again, we will assume
for simplicity that the plasma is unmagnetized. The electric field �E ≡ �E(�r , t)

97
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associated with this wavepacket is described by the wave equation

∇2 �E − ∇(∇ · �E) − 1

c2

∂2 �E
∂t2

= µ0
∂ �J
∂t

. (5.1)

For high-frequency waves, we can neglect the ion motion, and the current in
this equation is reduced to the electron current

�J = −en�v. (5.2)

Phase velocities of transverse electromagnetic waves in an unmagnetized
plasma are always larger than the speed of light c, which means that kinetic effects
are usually negligible and that we can use the electron fluid equations in order to
determine the electron density n and the electron mean velocity.

In their simple non-relativistic version (which is valid only for moderate
wave intensities) the electron fluid equations are

∂n

∂t
+ ∇ · n�v = 0 (5.3)

∂ �v
∂t

+ �v · ∇�v = − e

m

( �E + �v × �B
)

. (5.4)

In the first of these equations we recognize the continuity equation of the
electron fluid, and in the second one, the momentum conservation equation. The
magnetic field �B appearing in the Lorentz force term is the magnetic field of the
electromagnetic wave itself and can be expressed in terms of the electric field �E
by using the Faraday equation

∇ × �E = −∂ �B
∂t

. (5.5)

Equations (5.4) are nonlinear and their solution is in general quite compli-
cated. However we can, as a first approximation, linearize them with respect to
the wave electric field. Let us call �E1 this linear solution for the electric field.

If we restrict our discussion to purely transverse waves, we have ∇ · �E1 = 0
and the wave equation (5.1) reduces to

∇2 �E1 − 1

c2

∂2 �E1

∂t2
= µ0

∂ �J1

∂t
(5.6)

where the linear current is
�J1 = −en0�v1. (5.7)

Here n0 is the equilibrium (or unperturbed) electron plasma density. The
linear response of the plasma is determined by the linearized version of equa-
tions (5.3, 5.4)

∂n1

∂t
+ n0∇ · �v = 0 (5.8)

∂ �v1

∂t
= − e

m
�E1. (5.9)
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The solution of this equation can take the general form

�E1(�r , t) = 1

2
�E0(�r , t) exp(i�k0 · �r − iω0t) + c.c. (5.10)

where ω0 and �k0 are the mean frequency and wavevector of the wavepacket and
�E0(�r , t) is a slowly varying amplitude. We should notice that such a general
expression could also be a solution for nonlinear wavepackets.

According to equations (5.8, 5.9), the electron density and velocity pertur-
bations associated with this solution have similar expressions, with amplitudes
determined by

n1 = n0

�k0

ω0
· �v1, �v1 = e

iω0m
�E0. (5.11)

We notice that, for purely tranverse wave solutions, such that �k0 · �E0 = 0, the
electron density perturbations are equal to zero: n1 = 0. Finally, the amplitude of
the wave magnetic field is, according to equation (5.5),

�B1 = �k0

ω0
× �E0. (5.12)

Once this simple linear solution is understood, we can return to the wave
equation (5.1) and try to obtain a more adequate solution which takes the nonlin-
ear terms into account. This can be done by assuming that the total electric field
in this equation is divided in two parts: the main field (which corresponds to the
linear solution) and a small correction due to radiation or polarization effects, i.e.

�E = �E1 + �E2 (5.13)

with
| �E1| � | �E2|. (5.14)

To the first order in the small nonlinear field �E2, we can obtain from equa-
tion (5.1)

∇2 �E2 − ∇(∇ · �E2) − 1

c2

∂2

∂t2
�E2 = µ0

∂

∂t
�J2 (5.15)

where the nonlinear current is determined by

�J2 = −en0�v2. (5.16)

To the same order of approximation, and assuming that equations (5.8, 5.9),
stay valid, we can also get from equations (5.3, 5.4),

∂n2

∂t
+ n0∇ · �v2 = 0 (5.17)

∂ �v2

∂t
+ �v1 · ∇�v1 = − e

m
( �E2 + �v1 × �B1). (5.18)
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Now we should make use of the vector identity

∇(�a · �b) = (�a · ∇)�b + (�b · ∇)�a + �a × (∇ × �b) + �b × (∇ × �a). (5.19)

If we identify the vector �a with the first-order velocity perturbation �v1 and
the vector �b with its complex conjugate, we can easily realize that equation (5.18)
can be rewritten as

∂ �v2

∂t
+ 1

2
∇|v1|2 = − e

m
�E2. (5.20)

In doing so we are neglecting the high-frequency part of the nonlinear pertur-
bation �v2, which would not be valid if we wanted to study harmonic generation.
After elimination of �v2 from equations (5.17, 5.20) we get the following evolu-
tion equation for the low-frequency nonlinear perturbation of the electron plasma
density:

∂2n2

∂t2
− en0

m
∇ · �E2 = n0

2
∇2|v1|2. (5.21)

Using equation (5.11) this can also be written as the equation of a forced
linear oscillator

∂2n2

∂t2
+ ω2

pn2 = 1

2

e2n0

m2ω2
0

∇2|E0(�r , t)|2. (5.22)

The eigenfrequency of this linear oscillator is nothing but the unperturbed
electron plasma frequency ωp = (e2n0/ε0m)1/2. In this equation |E0(�r , t)|2
describes the slowly varying envelope of the electromagnetic wavepacket.

If this wavepacket propagates along the x-axis, with a group velocity �vg =
vg�ex , with negligible shape deformation, we can write

�E0(�r , t) ≡ �E0(ξ, �r⊥) (5.23)

with
ξ = x − vgt. (5.24)

We can now perform a coordinate transformation from (x, t) to (ξ, τ ), with
τ = t . This means that

∂

∂x
= ∂

∂ξ
,

∂

∂t
= ∂

∂τ
− vg

∂

∂ξ
. (5.25)

Using this in the equation for the forced oscillator (5.22), we obtain(
∂2

∂τ 2
+ ω2

p + v2
g

∂2

∂ξ2
− 2vg

∂2

∂τ∂ξ

)
n2

= ε0

2m

(
ωp

ω0

)2
(

∂2

∂ξ2
+ ∇2⊥

)
|E0(ξ, �r⊥)|2. (5.26)
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Before solving this equation we can simplify it in two ways. First we notice
that the gradients in the perpendicular direction can be considered negligible in
several relevant physical situations. In particular, for a ‘pancake’-like wavepacket
(a very short laser pulse), or for wavepackets not very much different from plane
waves, we can always make ∇2⊥ 
 ∂2/∂ξ2.

Second, if we assume that, in the frame of the wavepacket the pulse shape
and the electron perturbations induced by it are not significantly changing, we
can also use the so-called quasi-static approximation: ∂/∂τ � 0. With these two
drastic but physically acceptable approximations the above equation is reduced to
a much simpler form:(

∂2

∂ξ2
+ k2

p

)
n2 = ε0

2m

k2
p

ω2
0

∂2

∂ξ2
|E0(ξ)|2 (5.27)

with kp = ωp/vg.
It is useful, at this point, to introduce a dimensionless space variable η = kpξ

and to replace the square module of the electric field by the number of photons

N (ξ) = ε

4h̄ω0
|E0(ξ)|2. (5.28)

Equation (5.27) now becomes(
∂2

∂η2
+ 1

)
n2 = f (η) (5.29)

where the force term is

f (η) = 2h̄k2
p

mω0

∂2

∂η2
N (η). (5.30)

An appropriate solution of equation (5.29) is

n2(η) =
∫ η

∞
f (η′) sin(η − η′) dη′. (5.31)

Integrating by parts, we have

n2(η) = [
g(η′) sin(η − η′)

]η
∞ +

∫ η

∞
g(η′) cos(η − η′) dη′. (5.32)

Here we have used f (η) = dg/ dη. Noting that g(η′) = 0 for η′ → ∞, and
that sin(η − η′) = 0 for η′ = η, we obtain

n2(η) =
∫ η

∞
g(η′) cos(η − η′) dη′ (5.33)

or, more explicitly,

n2(η) = 2h̄k2
p

mω0

∫ η

∞
cos(η − η′) ∂

∂η′ N (η′) dη′. (5.34)
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This equation is appropriate for a second integration by parts. But for our
purpose this will not be necessary because we notice that, in the limit of very short
pulses, such that the pulse duration �t is shorter than the period of the electron
plasma oscillations �t 
 ω−1

p , we have �η = (η − η′) 
 1. This means that we
can take cos(η − η′) � 1, and obtain

n2(η) = 2h̄k2
p

mω0
N (η). (5.35)

We can now define a photon equivalent charge Qph, such that

−en2(η) = Qph N (η). (5.36)

This means that

Qph = −2h̄
ek2

p

mω0
. (5.37)

The current associated with the N (η) particles of charge Qph moving with
velocity �vg = vg�ex is obviously given by

�J2N L = Qph N (η)vg�ex . (5.38)

The same expression for the second-order nonlinear current can also be
derived if we start from the time derivative of the total second-order current
�J2 = �J2L + �J2N L :

∂ �J2

∂t
= −en0

∂ �v2

∂t
= e2n0

m
�E2 + ε0

2m

ω2
p

ω2
0

∇|E0|2. (5.39)

Writing this equation in terms of the variables (ξ, τ ) and making the above
two assumptions of quasi-static (∂/∂τ = 0) and of a ‘pancake’ pulse (∇⊥ 

∂/∂ξ) approximations, we get

−vg
∂ �J2

∂ξ
= e2n0

m
�E2 − v2

g
∂

∂ξ
Qph N (ξ)�ex . (5.40)

We see that the second term leads to an expression for �J2N L which coincides
with equation (5.38). This justifies the use of the concept of photon equivalent
charge introduced above.

Our derivation of Qph was simplified by considering the integration of equa-
tion (5.34) in the limit of a very short pulse or wavepacket. But it can also be
obtained if we consider a pulse with an arbitrary duration. In this case, the electron
second-order perturbation will consist of two terms: the above term (5.35) which
is directly related to the photon effective charge Qph, and a second term which
represents the wakefield or plasma oscillation left behind the pulse [69].
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To illustrate the existence of these two components, let us return to equa-
tion (5.34) and integrate it by parts. We are led to

ne(η) = 2h̄k2
p

mω0

[
N (η) −

∫ η

∞
N (η′) sin(η − η′) dη′

]
(5.41)

or, using equation (5.37),

n2(η) = −1

e
Qph N (η) + 1

e
Qph

∫ η

∞
N (η′) sin(η − η′) dη′. (5.42)

The first term was already given by equation (5.36) and represents the equiv-
alent charge of the total photon distribution. The second term represents the
wakefield left behind it. It is nothing but an electron plasma oscillation moving
with a phase velocity equal to the photon velocity vg, and which follows the pulse
as a wake. This justifies the statement made in chapter 3 about the possibility
of generating relativistic electron plasma waves by means of a short laser pulse
propagating in a plasma.

Another interesting aspect of the above calculations is the negative value of
the photon effective charge. The sign of Qph can be physically well understood
if we notice that the ponderomotive force appearing on the right-hand side of
equation (5.21) tends to push the plasma electrons out of the region occupied by
the electromagnetic wavepacket. This means that the photons tend to repel the
electrons. Their equivalent charge is therefore negative.

5.2 Photon ondulator

We have just seen how the nonlinear current associated with an electromagnetic
wavepacket propagating in a plasma can be derived. Our result (5.37, 5.38) shows
that such a current is due to a flow of a number N (ξ) of photons with charge Qph
moving with velocity �vg. Replacing this in the wave equation (5.15) we obtain

∇2 �E2 − ∇(∇ · �E2) − 1

c2

∂2

∂t2
�E2 = ω2

p

c2
+ µ0

∂

∂t
Qph N (ξ)�vg. (5.43)

This equation determines the secondary field radiated by the localized
wavepacket (or the primary photon bunch) moving across the medium. An
example of such a radiation effect is discussed here. Let us restrict our discussion
to purely transverse fields, such that ∇ · �E2 = 0.

Using a time Fourier transformation

�E2(�r , t) =
∫ ∞

−∞
�Eω(�r) e−iωt dω

2π
(5.44)

we obtain

∇2 �Eω + ω2

c2
ε(ω) �Eω = −iωµ0

∫ ∞

−∞
�vg Qph N (ξ) eiωt dt. (5.45)
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Here, we have used the plasma dielectric constant ε(ω) = 1 − ω2
p/ω

2.
Neglecting the transverse structure of N (ξ), or the dependence of the photon
distribution on the transverse variable �r⊥, we can use

�Eω(�r) = Aω(x) ei�k⊥·�r⊥ �eω (5.46)

where �eω is the unit polarization vector and Aω is the spectral field amplitude.
Equation (5.45) now reduces to

∂2 Aω

∂x2
+ k2 Aω = −iωµ0(�eω · �ex )

∫ ∞

−∞
vg Qph N (ξ) eiωt dt (5.47)

where

k2 = ω2

c2
ε(ω) − k2⊥. (5.48)

The solution of equation (5.47) for radiation emitted in the backward direc-
tion (or in the direction of negative values of x) is given by

Aω(x) = −µ0
ω

2kc
(�eω · �ex ) e−ikx

∫ ∞

−∞
dt

∫ x

x0

dxvg Qph N (ξ) eikx+iωt . (5.49)

Notice that, due to the factor (�eω · �ex ) we can only observe a radiated trans-
verse field if k⊥ is not equal to zero. Let us assume the case of radiation due to a
modulation in the electron mean density

n0(x) = n0 + ñ cos(k̃x). (5.50)

This leads to

k2
p = ω2

p

v2
g

� ω2
p0

v2
g0

[
1 + ñ

n0
cos(k̃x)

]
. (5.51)

The modulations in the photon group velocity also exist, but they were ne-
glected (vg � vg0) because they would only give second-order contributions.
Using this expression in equation (5.37) we can get from equation (5.49)

Aω(x) = A e−ikx
∫ ∞

−∞
dt

∫ x

x0

dx N (ξ) cos(k̃x) eikx+iωt (5.52)

with

A = µ0(�eω · �ex )
ω

ω0

e

m

ω2
p0

kcvg0

ñ

n0
. (5.53)

The asymptotic field radiated very far away from the emitting region can
then be written as

Aω(x → −∞) = A e−ikx
∫ ∞

−∞
dt

∫ ∞

−∞
dξ N (ξ)

× cos[k̃(ξ + vg0t)] eik(ξ+vg0t)+iωt . (5.54)
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Integration in time leads to

Aω(x → −∞) = π A
∫

dξ N (ξ)
[

ei(k̃+k)ξ δ(ω − ω1)

+ e−i(k̃−k)ξ δ(ω − ω2)
]

(5.55)

with
ω1 = vg0(k̃ − k), ω2 = vg0(k̃ + k). (5.56)

This result shows that an electromagnetic wavepacket (or equivalently a
photon bunch described by N (ξ)) travelling in a plasma with a modulated electron
density, radiates in two characteristic frequencies which depend on the periodicity
scale of the modulation. This is similar to the radiation of electrons travelling in
a vacuum in the presence of a modulated magnetic field (an electron ondulator),
showing once more the analogies between a photon in a plasma and a charged
particle. Such a radiation process [69] can then be called a photon ondulator.

5.3 Photon transition radiation

Let us examine another example of a radiation process directly due to the exis-
tence of the equivalent charge: the possibility of transition radiation emitted by
a photon bunch at a plasma boundary. This process is asociated with the sudden
disappearence of the equivalent charge [71].

In order to simplify the problem, we will assume a nearly monochromatic
burst of photons moving along the x-axis. We have then

Nk(�r , t) = (2π)3 N (ξ, �r⊥)δ(�k − �k0) (5.57)

where ξ = x − v0t , and v0 = vk is the group velocity for �k = k0�ex .
Let us also assume a plasma–vacuum transition layer described by

ω2
p(x) = ω2

p0 f (x). (5.58)

A plausible choice for the shape function is f (x) = [1 + tanh(x/�)]/2,
where � is the width of the boundary layer. The nonlinear current �J2N L reduces
to

�J2N L = Q0 N (ξ, �r⊥)v0(x) f (x)�ex (5.59)

with Q0 = Qph(k) for k = k0 and for ωp = ωp0. We know that the group velocity
v0 is determined by

v0(x) = c
√

1 − (ωp0/ω0)2 f (x). (5.60)

In order to give a simple physical explanation of the photon transition radi-
ation, we consider the particular form of a sharp plasma boundary. We consider
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the simplest case of a boundary with infinitesimal width � → 0, such that
f (x) = H(−x), where H(x) is the Heaviside function. We also assume that
the duration of the bunch of photons is negligible, so that we can write

N (ξ, �r⊥) = N (�r⊥)δ(ξ). (5.61)

In this case, the nonlinear current becomes

�J2N L = −Q0 N (�r⊥)v0 H(−x)δ(x − v0t)�ex . (5.62)

This means that the source term in the wave equation can be written as

∂

∂t
�J2N L = Q0 N (�r⊥)v2

0 H(−x)δ′(x − v0t)�ex

= − Q0 N (�r⊥)v0δ(t)δ(x)�ex . (5.63)

We see that the source term is located both in space and time. In space, it is
located precisely at the plasma boundary. In time it is located at the instant when
the photon bunch crosses the boundary. This means that, in the vacuum region
(x > 0), the transverse field radiated by the boundary is determined by(

∇2 − 1

c2

∂2

∂t2

)
�E = −µ0 Q0v0 N (�r⊥)δ(t)δ(x)�ex . (5.64)

This equation shows that an infinitely sharp boundary will radiate an
infinitely large spectrum. This is very similar to the well-known case of
bremsstrahlung radiation, where the particle velocity changes and its charge
remains constant (because it is an invariant). In contrast here, the velocity of the
radiating particle remains nearly constant and its equivalent charge goes to zero.

In order to obtain a finite spectral width, we can replace equation (5.61) by
a more realistic description of a bunch of photons coming out of the plasma. For
instance, we can assume a Gaussian bunch described by

N (ξ, �r⊥) = N (�r⊥)

σ
√

π
exp

[
− ξ2

σ 2

]
(5.65)

where σ is the bunch width. The nonlinear current becomes

�J2N L = −Q0v0 N (�r⊥)H(−x)
�ex

σ
√

π
exp

[
− (x − v0t)2

σ 2

]
. (5.66)

The wave equation for the secondary radiated field can now be written as(
∇2 − 1

c2

∂2

∂t2

)
�E2 = −µ0 Q0v0 N (�r⊥)

�ex

τ
√

π
exp

[
− t2

τ 2

]
δ(x) (5.67)
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where τ is here σ/v0.
Following a procedure similar to that of the previous section, we arrive at a

general solution that can be written in the following simple way:

Aω(z) = A0(ω) eikx (5.68)

with

A0(ω) = i
µ0

2k

Q0√
τ

v0(ê
∗
ω · �ex )N (�k⊥) exp

[
−ω2τ 2

4

]
(5.69)

where k2 = (ω/c)2 − k2⊥, and

N (�k⊥) =
∫

N (�r⊥) e−i�k⊥·�r⊥ d�r⊥. (5.70)

This result shows that the energy radiated by the disappearing equivalent
charge is proportional to the square of this charge, Q2

0, and to the square of the
photon velocity, v2

0, as in the usual linear [57] and nonlinear [62] transition radi-
ation processes. Furthermore, radiation is not emitted along the particle direction
of motion because of the geometric factor (ê∗

ω · �ex ). As already noticed, this factor
is equal to zero for parallel radiation �k⊥ = 0, because of the transverse nature of
the radiated field.

Finally, let us discuss the importance of the transverse dimensions of the
burst of particles crossing the boundary. If these transverse dimensions are neg-
ligible, we can write N (�r⊥) = N0δ(�r⊥). In this case, we can use N (�k⊥) = 1 in
equation (5.70), and the radiated field will have a maximum for nearly perpen-
dicular direction of propagation, where (�e∗

ω · �ex ) � 1. In the opposite limit of an
infinitely large bunch, such that N (�r⊥) = N0, and N (�k⊥) = (2π)2 N0δ(�k⊥), we
will have no transition radiation at all.

These simple calculations can obviously be refined, and the general case
of an arbitrary photon distribution crossing an arbitrary plasma boundary can be
studied with the aid of equations (5.37, 5.43). This shows that, in quite general
conditions, a primary distribution of photons can radiate a large spectrum of elec-
tromagnetic waves (or secondary photons) when they cross a plasma boundary
with nearly constant velocity. This is a direct consequence of their equivalent
electric charge in a plasma.

This new kind of transition radiation is qualitatively similar to the usual
transition radiation of charged particles (for instance electrons) moving across
a dielectric discontinuity with constant velocity. In particular, the radiated power
is proportional to the square of the particle velocity and of the particle equivalent
charge. However, in some respects, the new type of transition radiation discussed
here is also quite similar to the usual bremsstrahlung, with the difference that,
instead of a change in velocity, we have a change in the value of the particle
charge.
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5.4 Photon Landau damping

In section 4.3 we considered the interaction of a photon distribution with an
electron plasma wave moving with a relativistic phase velocity. But it can be
easily recognized that our approach was not self-consistent in the sense that the
electron plasma wave was defined a priori, and its evolution was assumed to
be independent of the radiation spectrum. Here we return to the same problem,
but with a more consistent view of the physics of the photon–plasma interaction,
in the sense that the electron plasma oscillations will be coupled to the photon
field [14].

In equilibrium, we can characterize the plasma by its electron mean density
n0, and the radiation spectrum by some distribution of photons, Nk0, for instance
the Planck distribution for a given plasma temperature T . If the plasma is per-
turbed, the photon field will also be perturbed because they are coupled to each
other.

This means that we can write, for the total electron plasma density n and for
the total photon distribution Nk , the following expressions:

n = n0 + ñ, Nk = Nk0 + Ñk . (5.71)

The objective of the present section is to show how the coupling between
these two perturbed quantities can be described, and what are the new physical
processes associated with it. If we use the electron fluid equations and Poisson’s
equation for the electrostatic field, we can derive the following equation for the
electron density perturbation:

∂2ñ

∂t
+ ω2

p0ñ − 3v2
e ∇2ñ = −n0∇ ·

〈
∂ �v
∂t

〉
(5.72)

where ωp0 is the unperturbed electron plasma frequency and ve = √
T/m is the

electron thermal velocity.
In this equation, the right-hand side describes the ponderomotive force due

to the photon field. We can write it more explicitly as

〈
∂ �v
∂t

〉
= −1

2
∇|v|2 = −1

2

( e

m

)2 ∇
∫ |Ek |2

ω2
k

d�k
(2π)3

. (5.73)

Here we have assumed the linear solution for the electron motion in the
radiation field �v = −i(e �Ek/mωk). This can also be written in terms of the photon
number distribution, if we use the plane wave definition

Nk = ε

8h̄

(
∂ R

∂ω

)
k
|Ek |2 (5.74)

where R ≡ R(ω, k) = 0 is the photon dispersion relation.
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Replacing this in equation (5.72), we obtain

∂2ñ

∂t
+ ω2

p0ñ − 3v2
e ∇2ñ = 4h̄

ω2
p0

m
∇2

∫
Ñk

ω2
k (∂ R/∂ω)k

d�k
(2π)3

. (5.75)

In the absence of any radiation field, Ñk = 0, the right-hand side of this
equation is equal to zero and, for perturbations of the form ñ ∼ exp i(�k · �r − ωt),
this equation will lead to the well-known linear dispersion relation for electron
plasma waves

ω2 = ω2
p0 + 3v2

e k2. (5.76)

It should be kept in mind that, in this equation, the frequency ω and the
wavenumber k are related to the electron plasma wave spectrum, and not to the
photon spectrum. Furthermore, it is known from the plasma kinetic theory that
this dispersion relation is only valid if the electron Landau damping is negligible,
which implies that the phase velocity of the electrostatic wave has to be much
larger than the electron thermal velocity: (ω/k) � ve. We will come back to that
point later.

In the general case where the radiation field is present and we have Ñk �= 0,
equation (5.75) is coupled with the kinetic equation for the photon field which,
after an appropriate linearization, determines Ñk as a function of Nk0 and ñ:

∂ Ñk

∂t
+ �vk · ∂ Ñk

∂�r = − �f · ∂ Nk0

∂ �k . (5.77)

According to our theory of photon acceleration, the force acting on the

photons is determined by �f = −∇ωk , where ωk =
√

ω2
p + k2c2. This leads

to the following explicit expression for the force acting on the photons:

�f = − 1

2ωk

e2

ε0m
∇ñ. (5.78)

The pair of equations (5.75, 5.77) will then describe the coupling between the
electron plasma waves associated with the density perturbation ñ and the photon
number perturbations Ñk . Let us assume sinusoidal perturbations of the form

ñ(�r , t) = ñ(t) ei�k·�r , Ñk′(�r , t) = Ñk′(t) ei�k·�r . (5.79)

Here, the value of the wavevector �k, characterizing the scale of the perturba-
tion in both the electron density and the photon spectrum, should not be confused
with the wavevector �k′ characterizing a specific Fourier component of the photon
spectrum. In physical terms we are dealing with a situation which only makes
sense when we have �k′ � �k. This means that the electron plasma wave has a much
larger scale length than the photons described by Ñk′ , which makes plausible the
description of the transverse radiation field as a fluid of particles (the photons)
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evolving in a slowly varying background medium (the plasma and its electrostatic
wave).

Using equation (5.79) in equations (5.75, 5.77), we obtain

∂2ñ

∂t2
+ (ω2

p0 + 3k2v2
e )ñ = −4h̄k2

ω2
p0

m

∫
Ñk′

ω′2(∂ R/∂ω)ω′
d�k′

(2π)3
(5.80)

and
∂ Ñk′

∂t
+ i�k · �vk′ Ñk′ = i

2ω′
e2

ε0m
ñ�k · ∂ Nk′0

∂ �k′ (5.81)

where ω′ ≡ ω(�k′).
We can now follow the usual Landau approach [82], but apply it to the photon

distribution and not to the electron distribution. This implies the use of a time
Laplace transformation

ñ(ω) =
∫ ∞

0
ñ eiωt dt (5.82)

and a similar transformation for Ñk′(ω), where ω is here a complex quantity.
From equation (5.81) we then get a relation between ñ(ω) and Ñk′(ω):

Ñk′ = − ñ

2n0

ω2
p0

ω′
�k · (∂ Nk′0/∂ �k′)
ω − �k · �v(�k′)

. (5.83)

Similarly, from equation (5.80) we get(
ω2

p0 + 3k2v2
e − ω2

)
ñ

= 2ω4
p0

h̄k2

m

ñ

n0

∫
1

ω′3(∂ R/∂ω)ω′

�k · (∂ Nk′0/∂ �k′)
ω − �k · �v( �k′)

d�k′

(2π)3
. (5.84)

We can use (∂ R/∂ω)ω′ � 2/ω′. From these two equations we can then
derive the following expression:

ω2 = 3k2v2
e + ω2

p0

[
1 − h̄k2

mn0
ω2

p0

∫
1

ω′2
�k · (∂ Nk′0/∂ �k′)
ω − �k · �v( �k′)

d�k′

(2π)3

]
. (5.85)

In order to develop this integral we have to consider separately the paral-
lel and the perpendicular photon motion with respect to the propagation of the
electron plasma wave. This can be done by defining

�k′ = p
�k
k

+ �k′⊥, �v(�k′) = u(p, �k′⊥)
�k
k

+ �v⊥. (5.86)

The integral in equation (5.85) becomes∫
1

ω′2
�k · (∂ Nk′0/∂ �k′)
ω − �k · �v( �k′)

d�k′

(2π)3
= −

∫
d�k′⊥

(2π)3

∫
dp

ω′2
∂ Nk′0/∂p

u − (ω/k)
. (5.87)
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Developing the parallel photon velocity u around the resonant value defined
by u(p0) = (ω/k)

u(p, �k′⊥) � u(p0, �k′⊥) + (p − p0)

(
∂u

∂p

)
p0

(5.88)

we get ∫
dp

ω′2
∂ Nk′0/∂p

u − (ω/k)
� 1

(∂u/∂p)p0

∫
dp

ω′2
∂ Nk′0/∂p

p − p0
. (5.89)

This last integral can be written in the standard form

I (z) ≡
∫

h(z)

z − z0
dz = P

∫
h(z)

z − z0
dz + iπh(z0) (5.90)

where P
∫

means the Cauchi principal part of the integral.
Replacing this result in equation (5.85) and using ω = ωr + iγ , we get from

the real part of the resulting equation

ω2
r = 3k2v2

e ω2
p0

[
1 + h̄k2

mn0
ω2

p0 P
∫

1

p − p0

∂Gp

∂p
dp

]
, (5.91)

and from the imaginary part

γ = π
h̄k2ω3

p0

2mn0

(
∂Gp

∂p

)
p0

. (5.92)

In these two expressions, Gp is a kind of reduced distribution function for
the photon gas, which resulted from the integration of the equilibrium photon
distribution Nk′0 over the perpendicular directions:

Gp =
∫

1

ω′2(p0)

Nk′0
(∂u/∂p)p0

d�k′⊥
(2π)3

. (5.93)

Equations (5.91, 5.92) are the main results of this section. The first one
represents the dispersion relation of electron plasma waves (in the high phase
velocity regime) in the presence of a photon distribution. The second one deter-
mines the damping of these plasma waves due to the resonant interaction with the
photon spectrum. Due to the similarities of this expression with the well-known
electron Landau damping, this new damping effect can be called the photon
Landau damping.

The similarities between the electron and the photon contributions can be
stated in a more appropriate way if we notice that the dispersion relation (5.91)
can be rewritten as

1 + χe + χph = 0 (5.94)

where χe is the electron susceptibility and χph is the photon susceptibility.
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According to equation (5.91) the electron susceptibility is

χe = −ω2
p0

ω2
r

− 3
k2v2

e

ω2
r

(5.95)

and the photon susceptibility is

χph = − h̄k2

mn0
ω2

p0 P
∫

1

p − p0

∂Gp

∂p
dp. (5.96)

As we have noticed already, the above expression for the electron suscepti-
bility is only valid in the limit of very high phase velocities. In the general case,
χe would depend on the actual electron distribution function and moreover, an
electron Landau damping would have to be added to the above photon Landau
damping. These electron kinetic effects are well documented in plasma physics
textbooks and will not be described here.

The important point to notice here is that these electron kinetic effects are
negligible for electron plasma waves with high phase velocities, like those pro-
duced by intense laser pulses propagating in a plasma. In this case the resulting
electron plasma waves (or wakefields) have relativistic phase velocities nearly
equal to the laser pulse group velocity from which they originate.

The important conclusion of the above calculation is that, even in the ab-
sence of resonant electron populations which could exchange efficiently their
energy with the electron plasma wave, the relativistic plasma perturbations can
nevertheless exchange energy with the photon gas. The resulting wave damping
is described by equation (5.92). This means that photon Landau damping can
replace the electron Landau damping, showing that in many respects the photon
dynamics in the field of an electrostatic wave in a plasma is similar to the electron
dynamics, as already documented in chapter 3 for single photon trajectories.

For a plasma in thermal equilibrium at a temperature T , the Planck distribu-
tion

Nk′0 = ω′2

π2c3

1

exp(h̄ω′/T ) − 1
(5.97)

where ω′ =
√

ω2
p0 + k′2c2 should be used in the above equations.

Because of the derivative contained in the expression for the photon Landau
damping (5.92) this equilibrium distribution will always lead to a negative value
of γ , or to a real wave damping. However, the situation can change if a photon
beam is superposed on the Planck distribution. Then, in some regions of phase
velocities, the derivative can be positive, indicating the possibility of a wave
instability or wave growth. This will be illustrated below.

It should also be noticed that a quasi-linear diffusion coefficient for the pho-
tons can be derived from this theory, showing how the photon spectrum changes
in the presence not of a single plasma wave as before, but in the presence of a
spectrum of electron plasma waves [14].
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5.5 Photon beam plasma instabilities

In order to illustrate the new physical aspects contained in the dispersion relation
(5.94, 5.96) let us consider a one-dimensional problem where

Nk′0 = (2π)2 Nk′δ(�k′⊥). (5.98)

The photon susceptibility will then reduce to

χph = h̄k2

mn0

ω2
p0

ω2

∫
1

ω2
k′

∂ Nk′/∂k′

(ω/k) − v(k′)
dk′

2π
(5.99)

where k′ ≡ k′‖. Using the photon (group) velocity

v(k′) = c2k′

ωk′
(5.100)

we obtain, after integration by parts,∫
1

ωk′
∂ Nk′/∂k′

(ω/k) − (c2k′/ωk′)

dk′

2π

= − 1

c2

∫
1

ωk′
Nk′

[(ω/k)(ωk′/c2) − k′]2

dk′

2π
. (5.101)

Let us assume a mono-energetic photon beam propagating across the plasma:

Nk′ = 2π N0δ(k
′ − k′

0). (5.102)

Using ω′
0 = ωk′

0
we can write, after performing the integration,

χph = − h̄k4

mn0

ω4
p0

ω2ω′
0

k2c2

ω′
0

N0

(ω − ku0)2
(5.103)

where u0 = v(k′
0).

Furthermore, if we neglect the electron thermal effects, the electron suscep-
tibility reduces to

χe = −ω2
p0

ω2
. (5.104)

The dispersion relation for the electron plasma waves (5.94) can then be
written as

1 − ω2
p0

ω2

[
1 + �2

(ω − ku0)2

]
= 0 (5.105)

where we have used

�2 = h̄k4c2

mn0

ω2
p0

ω′3
0

N0. (5.106)
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We can see from equation (5.105) that this quantity � plays nearly the same
role in the photon susceptilibity that is played by the electron plasma frequency
ωp0 in the electron susceptibility. Due to that, we can call it the effective photon
plasma frequency.

But the analogy with a plasma frequency can be explored even further, and
we can define a photon plasma frequency �ph, formally identical to the electron
plasma frequency, such that

�2
ph = Q2

ph N0

ε0meff
(5.107)

where Qph is the photon equivalent charge as determined by equation (5.37), and
meff = h̄ωp0/c2 is the photon effective mass introduced in chapter 2. This means
that we can write

�2
ph = 4h̄N0

mn0

ω5
p0

(ω′
0c)2

. (5.108)

Comparing this with equation (5.106), we obtain

�2 = 1

4

(
kc

ωp0

)4 ωp0

ω′
0

�2
ph. (5.109)

Noting that, for the electron plasma waves resonant with the photon beam,
we always have k2c2 � �2

p0 � ω2, we can also write the approximate expression

�2 � ωp0

4ω′
0
�2

ph. (5.110)

We see that the effective photon plasma frequency � is always significantly
larger than the photon plasma frequency �ph as defined by equation (5.107). But,
the fact that this quantity �ph appears in the photon susceptibility shows that the
concept of the photon equivalent charge Qph is already implicit in the photon
susceptibility term and in the photon Landau damping. If the photon effective
charge did not exist, the photon Landau damping would not be possible. We can
then conclude that the high-frequency photons behave in a plasma like any other
charged particle.

Coming back to the dispersion relation (5.105), we can assume the resonant
condition ωp0 = ku0, and we can write ω = ωp0 + iµ. We can then obtain the
growth rate for the photon beam plasma instability as

µ =
√

3

2
ωp0

(
�2

2ω2
p0

)1/3

. (5.111)

We notice that this growth rate is proportional to the power 1/3 of the density
of photons in the beam:

µ ∝ N 1/3
0 . (5.112)
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This instability is comparable to the usual beam plasma instability produced
by the interaction of a monoenergetic electron beam (with mean velocity u0) with
a plasma, for which the growth rate is also proportional to the density of particles
in the beam to the power 1/3. This shows again that the photons behave, in this
respect, just like electrons.

The photon beam plasma instability should also be compared with the for-
ward Raman scattering [50], which occurs when a photon beam (with a well-
defined field phase) interacts with a plasma. Electron plasma waves are also
produced here, but the physical mechanism is completely different because it
implies that the usual resonant conditions for wave decay are satisfied: ω′

1 =
ω′

0 ± ω and k′
1 = k′

0 ± k, where ω′
1 and k′

1 are the frequency and wavenumber of
the scattered photons. This corresponds to the well-known energy and momentum
conservation rules, which are clearly distinct from the resonance condition ω =
ku0, appling to our photon beam plasma instability.

Furthermore, the maximum growth rate for the forward Raman scattering is
determined by

µ � ω2
p0

2
√

2ω′
0

vos

c
(5.113)

where vos = eE0/mω′
0, and E0 is the amplitude of the electric field associated

with the incident photon beam.

We see that this new growth rate is proportional to N 1/2
0 , in contrast with the

result of equation (5.112), thus showing that the photon beam plasma instability
is a new kind of instability, which is clearly distinct from the usual Raman decay
instability.

5.6 Equivalent dipole in an optical fibre

We have shown that it is possible to define an equivalent photon charge in a
plasma, which is a different way of describing the ponderomotive force or ra-
diation pressure effects. Here we examine a similar concept for non-ionized
dielectric media.

In particular, we examine a laser pulse propagation along an optical fibre
having a second-order nonlinearity and show that an equivalent electric dipole
can be derived [70]. The difference with respect to the plasma case is related to
the absence of free electrons in this medium.

From Maxwell’s equations, in the absence of charge and current distribu-
tions, we can establish the following equation for the propagating electric field:

∇2 �E − ∇
(
∇ · �E

)
− 1

c2

∂2 �E
∂t2

= µ0
∂2 �P
∂t2

. (5.114)
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The polarization vector is �P = �PL + �PNL, with the linear part defined by

�PL(t) = ε0

∫ ∞

0
χ(1)(τ ) · �E(t − τ) dτ. (5.115)

The nonlinear part of the polarization vector, if we neglect dispersion effects,
can be written as

�PNL(t) = ε0χ
(2) · �E(t) �E(t) + ε0χ

(3) · �E(t) �E(t) �E(t). (5.116)

We now assume, as we already did for the plasma case, that the electric field
can be divided into two terms: the dominant field associated with the propagating
pulse �Ep, and a secondary perturbation or radiation field, �Er, such that |Er| 

|Ep|:

�E = �Ep + �Er. (5.117)

To the lowest order in the perturbation field �Er, we can write from equa-
tions (5.114–5.117)

∇2 �Ep − ∇
(
∇ · �Ep

)
− 1

c2

∂2

∂t2

[
�Ep +

∫ ∞

0
χ(1)(τ ) · �E(t − τ) dτ

]

= 1

c2

∂2

∂t2
χ(3) · |Ep|2 �Ep. (5.118)

From this equation we can obtain linear (if χ(3) = 0) or nonlinear (if χ(3) �=
0) wave pulse solutions. In general, for propagation along an optical fibre, we can
write both types of solution in the general form

�Ep(�r , t) = âp

2

[
R(�r⊥)A(z, t) ei(kz−ωt) + c.c.

]
. (5.119)

This field is assumed to propagate along the fibre axial directon z with neg-
ligible pulse shape deformation, and with a group velocity vg.

To the first order in the radiation field �Er, and assuming for convenience that
χ(2) is of the same order of �Er, we get from equations (5.114–5.117)

∇2 �Er − ∇
(
∇ · �Er

)
− 1

c2

∂2

∂t2

[
�Er +

∫ ∞

0
χ(1) · �Er(t − τ) dτ

]

= µ0
∂

∂t
�Jr (5.120)

where �Jr is the nonlinear polarization current, defined by

�Jr = ε0
∂

∂t

[
χ(2) · �Ep �Ep + χ(3) · |Ep|2âpâp �Er

]
. (5.121)
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Using equation (5.119), we can see that

�Ep(�r , t) �Ep(�r , t) = 1

4
âpâp

[
R2(�r⊥)A2(z, t) e2i(kz−ωt)

+ |R(�r⊥)|2|a(z, t)|2 + c.c.
]
. (5.122)

The first term oscillates in time as exp(2iωt) and is associated with harmonic
generation. Its physical content is well understood and, for this reason, we can
ignore it here.

The term in χ(3) describes the scattering of a probe radiation field by the
main pulse and can also be ignored because it does not play any role in the effect
to be discussed here. For simplicity, we will use χ(2) · âpâp = χ(2)ê in the
remaining term.

The nonlinear polarization current �Jr is then reduced to

�Jr = ε0

2
χ(2) ∂

∂t
W (�r , t)ê (5.123)

where we have used
W (�r , t) = |R(�r⊥)|2|A(z, t)|2. (5.124)

It is obvious that, if the main pulse moves along the fibre with no significant
change in its envelope shape, we can write

W (�r , t) ≡ W (�r⊥, z − vgt). (5.125)

This means that the time derivative appearing in equation (5.123) can be
replaced by a space derivative

∂

∂t
W = −vg

∂

∂z
W. (5.126)

As a result of this replacement, we can rewrite the nonlinear polarization
current as the product of a charge with a velocity

�Jr = vg Q(�r , t)ê. (5.127)

This quantity Q(�r , t) can be called the equivalent charge distribution of the
main pulse, and it is determined by

Q(�r , t) = −ε0

2
χ(2) ∂

∂z
W (�r⊥, z − vgt). (5.128)

This is clearly a dipole charge distribution because the space derivative re-
verses its sign when we move from the front to the rear of the pulse. This clearly
contrasts with the plasma case where, due to the existence of free electrons which
are pushed away by the electromagnetic pulse, the equivalent charge distribution
reduces to a negative monopole charge.
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An interesting feature is that the total equivalent charge here is equal to zero,
as can be seen by integrating the distribution (5.128) along the pulse distribution:∫ ∞

−∞
Q(z, t) dz = −ε0

2
χ(2)

∫
∂

∂z
W dz = −ε0

2
χ(2) [W ]∞−∞ = 0. (5.129)

This means that we have here total charge conservation, which is physically
quite reassuring. Furthermore, this property is independent of the actual shape of
the pulse.

Let us consider the interesting limiting case of a rectangular pulse: the
equivalent charge distribution reduces to two point charges, one negative and the
other positive, corresponding to

Q(�r , t) = −Qeq(�r⊥)

[
δ

(
z − L

2
− vgt

)
− δ

(
z + L

2
− vgt

)]
(5.130)

where
Qeq = ε

2
χ(2)W0(�r⊥) (5.131)

for a pulse of length L and maximum intensity W0.
Replacing equation (5.127) in equation (5.120) we can determine the sec-

ondary field �Er created by this moving dipole:

∇2 �Er − ∇
(
∇ · �Er

)
− 1

c2

∂2

∂t2

[
�Er +

∫ ∞

0
χ(1) · �Er(t − τ) dτ

]

= 1

c2

∂

∂t
vg Q(�r , t)ê. (5.132)

It should be noticed that this secondary field is not always a radiation field.
For instance, in a homogeneous medium, where both the main pulse velocity vg
and the charge amplitude Qeq are constant, it will reduce to a near field. But even
in this case we can imagine an external loop where the existence of such a field
can eventually be detected.

Radiation will typically occur in two distinct situations: first, when the group
velocity vg changes due to a space dependence of the linear susceptibility of
the medium χ(1); second, when the charge amplitude changes due to the space
variation of the nonlinear susceptibility χ(2).

These two radiation mechanisms are clearly distinct from those usually con-
sidered in the literature [2], which are mainly concerned with soliton propagation
in inhomogeneous but centro-symmetric media, where the second-order nonlin-
earities are forbidden (χ(2) = 0). In this case, the source of radiation is a
linear term of the form δχ(1)Ep, where δχ(1) is the perturbation of the linear
susceptibility due to the inhomogeneities of the medium. In contrast with our
present radiation mechanism, which is clearly associated with an acceleration of
the moving dipole, these more common aspects of secondary radiation can be
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Figure 5.1. Equivalent dipole distribution for (a) a sech laser pulse, and (b) a nearly
rectangular pulse.

described as scattering of the lowest order pulse field by the local inhomogeneities
of the medium.

Let us study equation (5.132) in more detail, and introduce a time Fourier
transformation of the field as

�Er(�r , t) =
∫ ∞

−∞
�Eω(�r) e−iωt dω

2π
. (5.133)
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The Fourier components �Eω will be determined by the equation[
∇2 + ω2

c2
ε(ω)

]
�Eω − ∇

(
∇ · �Eω

)
= i

ω

c
ê
∫ ∞

−∞
vg(z)Q(�r⊥, z, t) eiωt dt

(5.134)
where ε(ω) is the linear dielectric function of the medium.

Let us retain our attention on radiated transverse fields, such that ∇ · �Eω = 0.
Furthermore, in a cylindric geometry, we can use

�Eω(�r) = Rω(�r⊥)Aω(z)êω. (5.135)

Replacing it in the above equation, we get[
Aω∇2⊥ Rω + Rω

∂2

∂z2
Aω

]
+ ω2

c2
ε(ω)Rω Aω

= i
ω

c
(ê · êω)vg(z)

∫ ∞

−∞
Q(�r , t) eiωt dt. (5.136)

This equation can be solved by considering first the corresponding homoge-
neous equation

∇2⊥ Rω + ∂2

∂z2
Aω + ω2

c2
ε(ω) = 0. (5.137)

If we assume that the radial field amplitude Rω is determined by the equation

∇2⊥ Rω = −k2⊥ Rω (5.138)

where k⊥ is the perpendicular wavenumber, the axial field amplitude Aω will have
the solution

Aω = A± e±ikz . (5.139)

The axial wavenumber k is determined by the relation

k2 = ω2

c2
ε(ω) − k2⊥. (5.140)

Returning to equation (5.136), we can write the inhomogeneous equation for
the axial field amplitude Aω in the form

∂2 Aω

∂z2
+ k2 Aω = i

ω

c
(ê · êω)vg(z)

∫ ∞

−∞
q(z, t) eiωt dt (5.141)

where q(z, t) is the axial equivalent charge distribution, determined by

q(z, t) =
∫

R∗
ω(�r⊥)Q(�r⊥, z, t) d�r⊥∫ |Rω(�r⊥)|2 d�r⊥

. (5.142)
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We now use the well-known method of the variation of parameters to solve
equation (5.141). For forward propagation, we obtain

Aω(z)+ = i

w

ω

c
(ê · êω) eikz

∫
dt eiωt

∫ z

z0

dz′vg(z
′)g(z, t) e−ikz (5.143)

where the Wronskian is w = 2ik.
To be more specific, let us assume that we have an axial modulation of the

nonlinear properties of the optical fibre, which can be described by

vg(z) = v0 = const, χ(2) = χ20 [1 + δ cos(k0z)] . (5.144)

This means that we can replace, in the above solution, the axial equivalent
charge by

q(z, t) = q0(z, t)δ cos k0z. (5.145)

The forward field solution becomes

Aω(z)+ = A0 eikz
∫

dt eiωt
∫ z

z0

dz′q0(z
′, t) cos(k0z) e−ikz (5.146)

with an amplitude

A0 = ω

2kc
(ê · êω)v0δ. (5.147)

In the particular case of a rectangular pulse shape, as described by equa-
tion (5.130), we can write

q0(z, t) = q0

[
δ

(
z − L

2
− v0t

)
− δ

(
z + L

2
− v0t

)]
. (5.148)

We can now easily integrate equation (5.146) in z, for a very long fibre, and
we obtain

Aω(z) = A0q0 eikz
∫

eiωt
[

cos

(
k0

L

2
+ k0v0t

)
e−ik(L/2)−ikv0t

− cos

(
k0

L

2
− k0v0t

)
eik(L/2)−ikv0t

]
dt. (5.149)

From this equation it can then be concluded that two distinct frequencies are
radiated by the main pulse when it propagates in a modulated optical fibre:

Aω(z) = 2π iA0q0

{
sin

[
(k0 − k)

L

2

]
δ(ω − ω1)

+ sin

[
(k0 + k)

L

2

]
δ(ω − ω2)

}
eikz . (5.150)

The values of the two frequencies are determined by

ω1 = v0(k − k0), ω2 = v0(k + k0). (5.151)
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When the wavelength of the radiated field is nearly equal to the characteristic
wavelength of the fibre inhomogeneity, k � k0, we have ω1 � 0 and ω2 � 2v0k0.
This means that, in this case, ω2 is a kind of second harmonic.

Finally, we note that, for the more general situation of a pulse with an
arbitrary shape, the solution (5.150) is replaced by

Aω(z)+ = π A0 eikz
∫

q0(ξ)
[
ei(k0−k)ξ δ(ω − ω1)

+e−i(k0−k)ξ δ(ω − ω2)
]

dξ (5.152)

with ξ = x − v0t .
This radiation process is a direct consequence of the existence of an equiv-

alent dipole charge of the optical pulse propagating in an optical medium with
second-order nonlinearities. As already noticed for the plasma case treated in
section 5.2, it can be considered as the analogue of the electron ondulator, or
another version of the photon ondulator.



Chapter 6

Full wave theory

In previous chapters we were able to describe a large number of different physical
phenomena using the Hamiltonian approach to photon dynamics, either in its
simple form of single photon trajectories or in its more elaborated version of the
photon kinetic theory. However, the geometric optics approximation associated
with this elegant and powerful approach is not capable of explaining such basic
and sometimes important phenomena as partial reflection and mode coupling.

A full wave description of the electromagnetic radiation is therefore neces-
sary, and it will be the subject of the present and the next chapters. Several papers
have been devoted to this problem [26, 27, 78, 118, 123].

In chapter 3 we showed that an effect similar to the usual refraction, which
we called time refraction, could take place. Here we will see that a new effect,
which, in the same spirit, can be called time reflection, can also take place.

6.1 Space and time reflection

For comparison with the cases of time-varying media, we start first by reminding
ourselves of the well-known derivation of the Fresnel formulae, by considering
reflection and transmission of an incident electromagnetic wave at the boundary
between two stationary dielectric media.

6.1.1 Reflection and refraction

Let us assume two different media, with dielectric constants ε1 and ε2, with a
sharp boundary at the plane x = 0. If a plane wave with frequency ω and
wavevector �ki propagates along the x-axis and interacts with this boundary, the
total electric field will be determined by

�E(x, t) =
{ �Ei exp i(kix − ωt) + �Er exp i(krx − ωt), (x < 0)

�Et exp i(ktx − ωt), (x > 0).
(6.1)

123
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This field has three different terms, corresponding to the incident, the re-
flected and the transmitted waves. These waves have to satisfy the dispersion
relations of both media, which implies that

ki = ω

c
n1, kr = −ki, kt = ki

n2

n1
(6.2)

with the refractive indices n1,2 = √
ε1,2.

In order to establish a relation between the field amplitudes �Ei, �Er and �Et,
we have to state the associated boundary conditions. These are determined by
Maxwell’s equations. In the absence of charge and current distributions in the
media (ρ = 0, �J = 0), these equations are

∇ × �E = −∂ �B
∂t

, ∇ × �H = ∂ �D
∂t

(6.3)

and
∇ · �D = 0, ∇ · �B = 0. (6.4)

It is well known that, in order to satisfy the first pair of equations, the
components of �E and �H tangent to the boundary have to be continuous across
this boundary:

( �E1 − �E2) × �ex = 0, ( �H1 − �H2) × �ex = 0. (6.5)

From equations (6.3) we realize that, for plane waves propagating in non-
magnetic media, we can write

�B ≡ µ0 �H = �k × �E
ω

. (6.6)

Assuming perpendicular polarization ( �E ·�ex = 0), and using the wavenumber
relations (6.2), we can write the boundary conditions (6.5) in the form

Ei + Er = Et, Ei − Er = Et
n2

n1
. (6.7)

From this we derive the well-known Fresnel formulae for normal wave inci-
dence

T ≡ Et

Ei
= 2n1

n1 + n2
, R ≡ Er

Ei
= n1 − n2

n1 + n2
. (6.8)

These expressions verify the simple relation

1 + R = T . (6.9)

These results are extremely well known and we should not insist on their
physical significance. We should instead use them as a reference guide for the
less understood time-varying processes.
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6.1.2 Time reflection

Let us turn to the opposite situation of a time discontinuity (or a time boundary)
occurring in a homogeneous and infinite medium. For times t < 0, the medium
will have a refractive index n1 everywhere and, for t = 0 the refractive index will
be suddenly shifted to a new value n2.

The electric field associated with a plane wave propagating in the medium,
with the initial frequency ωi, will be described by an expression similar to equa-
tion (6.1)

�E(x, t) =
{ �Ei exp i(kx − ωit), (t < 0)

�Er exp i(kx − ωrt) + �Et exp i(kx − ωtt), (t > 0).
(6.10)

As before, the three distinct plane waves have to satisfy the linear dispersion
relations of the medium, which implies that

ωi = kc

n1
, ωr = −ωt, ωt = ωi

n1

n2
. (6.11)

We should take notice of the symmetry between these relations and those
of equation (6.2). It can easily be understood that the negative frequency mode
corresponds indeed to a reflected wave because, in order to describe a real wave,
we have to add to fields (6.1, 6.10) their complex conjugates. This operation
will then lead to the appearance of a plane wave with positive frequency and
propagating in the opposite direction with respect to that of the initial wave:
�E∗

r exp[−i(kx + |ωr|t)].
In order to determine the relative amplitudes of the transmitted and the re-

flected waves, we have to establish the time continuity conditions for the electro-
magnetic field. We can see from Maxwell’s equations (6.3, 6.4) that they only
contain the time derivatives of the fields �D and �B. These equations can only stay
valid for all times if these two fields are continuously varying in time.

The time continuity conditions are then given by

�D(t = 0−) = �D(t = 0+), �B(t = 0−) = �B(t = 0+). (6.12)

Expressing the fields �D and �B in terms of the electric field �E for the three
distinct waves present in equation (6.10), we can rewrite these continuity condi-
tions as

n2
1 Ei = n2

2(Er + Et), Ei = −Er + Et
n2

n1
. (6.13)

This means that the well-known continuity conditions (6.7), valid for a sharp
spatial boundary in the dielectric properties of the propagating medium, are re-
placed by these new conditions in the case of a sharp time boundary. The explicit
result for the reflected and the transmitted wave amplitudes is

R ≡ Er

Ei
= 1

2

(
n2

1

n2
2

− 1

)
, T ≡ Et

Ei
= 1

2

(
n2

1

n2
2

+ 1

)
. (6.14)
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A simple relation between R and T can also be established here:

T + R = n2
1

n2
2

. (6.15)

These equations can be called the Fresnel formulae for time reflection. They
are very similar to the usual Fresnel formulae (6.8), but they also show quite
surprising differences.

The first surprise is that a time discontinuity can lead to a reflected wave,
that is, a wave propagating in the opposite direction with respect to the initial
wave. The second is that the amplitudes of both the reflected and the transmitted
waves can be very large if the value of the new refractive index n2 is very low.
This can be obtained, for instance, by plasma creation (or flash ionization) with a
nearly resonant plasma frequency ωp ∼ ωt. This means that we could expect to
produce electromagnetic energy out of nearly nothing, in exactly the same way as
photons can be created from a vacuum in quantum models. In this case, of course,
the amount of energy of the waves created by time reflection would have to be
furnished by the external agent responsible for the sudden ionization process.

We should however notice that the limit of n2 = 0 cannot be properly
described by the above model because it does not take into account the existence
of the electrostatic mode, which can be excited in the medium when its dielectric
constant is equal to zero. As we know, for a plasma, this is the electron plasma
wave. The field of this electrostatic wave would have to be added to the above
continuity conditions. Furthermore, for the plasma case, there are important
qualitative differences related, not only to dispersion, but also to the appearance
of a magnetic mode, as will be seen later.

A large amount of work has been devoted to the problem of wave trans-
formation due to a sudden creation of a plasma medium, in several different
configurations including the presence of a static magnetic field [44]. However,
the concept of time refraction was never explored.

6.2 Generalized Fresnel formulae

We can generalize the above treatement of independent space and time disconti-
nuities by considering the case of a sharp boundary of the refractive index moving
in space with a constant velocity �u = u�ex . An earlier discussion of this problem
can be found in reference [110].

Let us assume an incident wave of the form

�Ei exp i(kix − ωit) (6.16)

with ki = (ωi/c)n1. In the reference frame moving with the boundary, the same
wave will be represented by

�E ′
i exp i(k′

i x
′ − ω′

it
′). (6.17)
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Let us invoke the Lorentz transformations from the moving frame to the rest
frame:

x = γ (x ′ + ut ′), t = γ

(
t ′ + β

c
x ′

)
(6.18)

with β = u/c and γ −2 = (1 − β2).
We know that the field phase in equations (6.16, 6.17) is a relativistic invari-

ant, which means that kix − ωit = k′
i x

′ − ω′
it

′. Replacing equations (6.18) in
this equality, and separately equating the terms containing x ′ and t ′, we obtain the
appropriate Lorentz transformations for the frequency and the wavenumber:

ω′ = γωi(1 − βn1), k′
i = γ ki

(
1 − β

n1

)
. (6.19)

From this we get the dispersion relation in the moving frame

k′
i = ω′

c
n′

1 (6.20)

with

n′
1 = n1 − β

1 − βn1
. (6.21)

This equation relates the values of the refractive index as seen in the moving
and in the rest frames. It is a very simple and useful result which, surprisingly,
cannot easily be found in the literature.

Of course, this transformation is only valid for a non-dispersive medium.
The case of a plasma will be considered below. We are now able to repeat, in
the moving frame, the above derivation of the Fresnel formulae (6.8). To do this
we assume that the total electric field in this frame is formally identical to that of
equation (6.1), i.e.

�E ′(x ′, t ′) =
{ �E ′

i exp i(k′
i x

′ − ω′t ′) + �E ′
r exp i(k′

rx
′ − ω′t ′), (x ′ < 0)

�E ′
t exp i(k′

t x
′ − ω′t ′), (x ′ > 0).

(6.22)
In analogy with equation (6.2), the three different wavenumbers are related

by k′
r = −k′

i and k′
t = k′

i(n
′
2/n′

1). This leads to the result

E ′
r

E ′
i

= 1 − w

1 + w
,

E ′
t

E ′
i

= 2

1 + w
(6.23)

with w = (k′
t/k′

i) = (n′
2/n′

1).
Let us see how such a result can be extended to the plasma case. To do that

we assume that medium 1 is just the vacuum region and medium 2 is a plasma
moving in a vacuum with velocity u. This means that the particles contained in
the plasma medium (electrons and ions) all move with an average velocity equal
to u.
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It can easily be realized that the plasma frequency is a relativistic invariant

ω2
p = k2c2 − ω2 = k′2c2 − ω′2. (6.24)

This means that, for the plasma case, equation (6.21) is not valid and we
have

w =
∣∣∣∣k′

tc

ω′

∣∣∣∣ =
√

1 − ω2
p

ω′2 . (6.25)

We clearly see that w = 0 defines a cut-off condition and that total reflection
will occur for

ω2
p = ω2 1 + β

1 − β
. (6.26)

This is in agreement with our single photon model of chapter 3. The trans-
formations (6.23) stay valid for the moving plasma case if we assume that w is
determined by equation (6.25).

We can now make a Lorentz transformation of the electric fields back to the
rest frame. For the field of the incident wave, we have

E ′
i = γ (Ei − u Bi) = γ Ei(1 − βn1). (6.27)

For the reflected wave β is replaced by −β and for the transmitted wave n1
is replaced by n2. From equations (6.23) we then get

R ≡ Er

Ei
= 1 − βn1

1 + βn1

1 − w

1 + w
, T ≡ Et

Ei
= 1 − βn1

1 − βn1

2

1 + w
. (6.28)

We can easily find that

1 + R = T
1 − βn2

1 − βn1
. (6.29)

These equations can be called the generalized Fresnel formulae for moving
dielectric perturbations. We notice that for a stationary boundary, β = 0, these
equations reduce to (6.8, 6.9), as expected.

In the limit of an infinite velocity, β → ∞, which would be the case for a
time discontinuity, equation (6.29) also reduces to (6.15). However, in this limit,
equations (6.28) do not reduce to the Fresnel formulae for time reflection (6.14).
This apparent incongruence is due to the fact that the calculations presented in
this section are based on Lorentz transformations and therefore they are not valid
for β > 1.

6.3 Magnetic mode

An interesting new effect occurs when the moving discontinuity of the refractive
index is associated with an ionization front. We are refering to the excitation of
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Figure 6.1. Comparison between the two cases: (a) a moving plasma and (b) a moving
ionization front.

a purely magnetic mode [53, 97]. This will be examined here in some detail and
will be compared with the (at first sight) generic results of the previous section.

Let us study the problem in the frame of the moving ionization front. In this
frame, the atoms of the neutral gas region are seen to flow with a velocity −u and
to disappear at the front discontinuity x ′ = 0.

On the other hand, the plasma electrons (assuming that they are created with
zero kinetic velocity) will appear to flow away from that front with exactly the
same speed. The electron equation of motion can be written, in the same reference
frame, as

d�v
dt ′

= − e

mγ
( �E ′ − u�ex × �B ′) (6.30)

with
d

dt ′
= ∂

∂t ′
− u

∂

∂x ′ . (6.31)

Notice that, if instead of an ionization front we were considering a plasma
moving with the same velocity, we would have to use u = 0 in these equations,
because the plasma electrons would be moving with the front. The electric and
magnetic fields �E ′ and �B ′ are determined by Maxwell’s equations (6.3), which
can now be written as

∇′ × �E ′ = −µ0
∂ �H ′

∂t ′
, ∇′ × �H ′ = �J ′ + ε0

∂ �E ′

∂t ′
(6.32)

where the electron current is simply

�J ′ = −en0γ �v′ (6.33)
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and n0 is the electron mean density in the rest frame.
We can now solve these equations by assuming that the fields evolve in space

and time according to exp i(k′x ′ − ω′t ′). We obtain

i(ω′ + k′u)�v′ = e

mγ

[ �E ′ − u

ω′ �ex × (�k′ × �E ′)
]

(6.34)

i

[
�k′ × (�k′ × �E ′) + ω′2

c2

]
�E ′ = −en0γµ0ω

′ �v′. (6.35)

Notice that we cannot divide the first of these equations by (ω′+k′u) because
such a factor can eventually be equal to zero, as will be shown below. From these
two equations we can easily derive the following dispersion relation, valid for
transverse modes (�k′ · �E ′ = 0) in the plasma region:

(k′2c2 + ω2
p − ω′2)(ω′ + k′u) = 0. (6.36)

This shows that, for a given frequency, two distinct modes are possible:

k′ = ω′

c

√
1 − (ωp/ω′)2 (6.37)

and

k′ = k′
m = −ω′

u
. (6.38)

The first mode is the usual transverse electromagnetic mode in a plasma. The
second mode can be called the magnetic mode because its electric field is equal
to zero in the rest frame. This can be seen by noting that, according to Maxwell’s
equations (6.32), we have

E ′
m = ω′

k′
m

B ′
m = −u B ′

m. (6.39)

Using the Lorentz transformation for the electric field we get, in the rest
frame,

Em = γ (E ′
m + u B ′

m) = 0. (6.40)

Similarly, it can be shown that its frequency in the rest frame is also equal to
zero:

ωm = γ (ω′ + uk′
m) = 0, km = γ

(
k′

m + β
ω′

c

)
= ω

c

1 − β

1 + β
. (6.41)

This shows that the magnetic mode is a purely magnetostatic perturbation in
the rest frame, with zero frequency but a finite wavelength 2π/km �= 0. From the
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above discussion we can conclude that the total electric field associated with an
ionization front will have four (and not three) distinct waves:

�E ′(x ′, t ′) =
{ �E ′

i exp i(k′
i x

′ − ω′t ′) + �E ′
r exp i(k′

rx
′ − ω′t ′), (x ′ < 0)

�E ′
t exp i(k′

t x
′ − ω′t ′) + �E ′

m exp i(k′
mx ′ − ω′t ′), (x ′ > 0).

(6.42)
The continuity conditions for the transverse fields �E ′ and �B ′ can then be

stated as

E ′
i + E ′

r = E ′
t + E ′

m, E ′
i − E ′

r = E ′
t
k′

t

k′
i
− E ′

m
k′

m

k′
i

(6.43)

where
k′

t

k′
i

= w =
√

1 − (ωp/ω′)2,
k′

m

k′
i

= − 1

β
. (6.44)

We need to complement the two continuity conditions (6.43) by another con-
dition because we have here three unknown field amplitudes. This extra condition
is provided by the second of Maxwell’s equations (6.32).

We notice that the current �J ′ is continuous across the front boundary if we
assume that the electrons are created with zero net velocity: �J ′ = �v′ = 0 for
x ′ = 0. Because the electric field is also continuous, this implies that ∂ B ′/∂x ′
will also be continuous across the boundary:(

∂ B ′

∂x ′

)
x ′=0−

=
(

∂ B ′

∂x ′

)
x ′=0+

. (6.45)

This new continuity condition can be rewritten as

k′
i B ′

i + k′
r B ′

r = k′
t B ′

t + k′
m B ′

m. (6.46)

Noting that k′
r = k′

i , and that B ′ = (k′c/ω′)E ′, we can derive from this and
from equations (6.43) the three conditions for the electric field amplitudes:

E ′
i + E ′

r = E ′
t + E ′

m

E ′
i − E ′

r = wE ′
t + E ′

m

β

E ′
i + E ′

r = w2 E ′
t + E ′

m

β2
. (6.47)

This can be solved as

E ′
r

E ′
i

= 1 + β

1 − β

1 − w

1 + w

E ′
t

E ′
i

= 2

1 + βw

1 + β

1 + w

E ′
m

E ′
i

= 2β2(1 − w)

(1 − β)(1 + βw)
. (6.48)
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This result has to be compared with equations (6.23), which are valid in the
absence of the magnetic mode. The difference between these two results can
better be understood if we calculate the energy of the reflected wave.

In order to perform this calculation we first notice that the energy of an
electromagnetic wave is (apart from the constant h̄, taken here to be equal to 1) the
product of the wave frequency with the number of photons: W = ωN . Because
the number N is a relativistic invariant, the energy will be Lorentz transformed in
a way that is the reverse of the Lorentz transformation for the frequency.

We can then write, for the number of photons associated with both the inci-
dent and the reflected wave

Ni = Wi

ω
= W ′

i

ω′ , Nr = Wr

ωr
= W ′

r

ω′ . (6.49)

This means that, for both cases (absence and presence of the magnetic mode),
we can write the fraction of reflected energy as

Wr

Wi
= ωr

ω

W ′
r

W ′
i

= ωr

ω

∣∣∣∣ E ′
r

E ′
i

∣∣∣∣
2

. (6.50)

Using the Lorentz transformation for the the frequencies, we get

ω′ = ω

γ (1 + β)
= ωr

γ (1 − β)
(6.51)

which leads to
Wr

Wi
= 1 − β

1 + β

∣∣∣∣ E ′
r

E ′
i

∣∣∣∣
2

. (6.52)

In the absence of the magnetic mode (in the case of a moving plasma, con-
sidered in the previous section), and assuming total reflection (w = 0), we can
obtain from equations (6.23, 6.52)

Wr

Wi
= 1 − β

1 + β
= ωr

ω
. (6.53)

This means that, for a counter-propagating ionization front (β < 0), we have
a significant gain in the energy of the reflected wave. From equation (6.49) we
can also see that the number of photons is conserved, Nr = Ni, which means that
all the incident photons are reflected, but with a different frequency.

In contrast, when the magnetic mode is present (in the case of an ionization
front, considered in this section), and assuming once again that total reflection is
taking place (w = 0), we get from equation (6.48)

Wr

Wi
= 1 + β

1 − β
= ω

ωr
. (6.54)
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This means that, for β < 0, we now have a significant decrease in the energy
of the reflected wave. From equation (6.49) we can also see that the number of
photons is not conserved upon reflection, even if it is a total reflection:

Nr

Ni
=

(
ω

ωr

)2

. (6.55)

The missing photons are, in this case, converted into a static magnetic field
(zero energy photons), and we could be talking about a photon freezing or photon
condensation effect. In the next section we will consider a situation which, in
some respects, can be considered as the reverse of this photon freezing.

6.4 Dark source

Let us assume a static electric field, applied to a region of space containing a
neutral gas. No net current is produced by this field, as long as the atoms or
molecules of the gas stay in the neutral state. But, if an ionization front propagates
across that region, the static electric field will accelerate the free electrons created
by the front, and the resulting space- and time-varying currents will eventually
become a source of electromagnetic radiation.

To be specific, we first assume a sinusoidal electrostatic field, described by

�E0(�r) = �E0 cos(k0x) = �E0

2

(
eik0x + c.c.

)
, �B0(�r) = 0. (6.56)

Let us also assume that the ionization front moves with velocity �u along the
x-axis, but in the negative direction, and that the electrostatic field is perpendicular
to this velocity:

�E0 = E0�ey, �u = −u�ex . (6.57)

Assuming that the ion motion is irrelevant to the fast processes associated
with high-frequency wave radiation, we can write the electron current in the
plasma region as

�J = −en0 H(x + ut)�v (6.58)

where the Heaviside function H(x + ut) represents the sharp boundary between
the neutral and the plasma regions, and the electron velocity �v is determined by
the linearized equation of motion

∂ �v
∂t

= − e

m

[ �E0(�r) + �E
]
. (6.59)

Here, �E represents the radiation field. This field is determined by the wave
equation
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∇2 �E − 1

c2

∂2 �E
∂t2

= µ0
∂ �J
∂t

. (6.60)

Taking the time derivative of equation (6.58) and assuming that the electrons
are created at the plasma boundary x = ut with no kinetic energy, we obtain

∂ �J
∂t

= − en0uδ(x + ut)�v − en0 H(x + ut)
∂ �v
∂t

= e2n0

m
H(x + ut)

[ �E0(�r) + �E
]
. (6.61)

If we want to calculate the field radiated in the plasma region x > ut and
propagating in the forward direction, along the x-axis and in the positive direction,
we can write from these two equations(

∂2

∂x2
− 1

c2

∂2

∂t2
− ω2

p

c2

)
�E = ω2

p

c2
H(x + ut) �E0(�r⊥, x). (6.62)

In order to solve this equation, let us introduce a time Fourier transformation
defined by

�E(x, t) =
∫

�Eω(x) e−iωt dω

2π
. (6.63)

The one-dimensional wave equation becomes

∂2

∂x2
�Eω + 1

c2
(ω2 − ω2) �Eω = ω2

p

c2
�E0(x)

∫
H(x + ut) eiωt dt. (6.64)

The time integral in the source term can easily be solved and we are led to
the following equation:

∂2

∂x2
Eω + k2 Eω = iA

{
exp

[
i
(

k0 − ω

u

)
x
]

+ exp
[
−i

(
k0 + ω

u

)
x
]}

(6.65)

with a wavenumber k determined by

k2c2 = ω2 − ω2
p (6.66)

and a source term amplitude A where

A = 1

2ωu

ω2
p

c2
( �E0 · â). (6.67)

Here we have used the unit polarization vector â = �Eω/|Eω|. The solution
of equation (6.65), for forward propagation, is

Eω(x) = A

2k
eikx

∫ x

−∞
e−ikx ′ {

exp
[
i
(

k0 − ω

u

)
x ′]

+ exp
[
−i

(
k0 + ω

u

)
x ′]} dx ′. (6.68)
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The asymptotic value of the radiated field, observed in the plasma side but
very far away from the ionization front (x → ∞), will contain at most two
spectral components:

Eω(x) = π

k
A eikx

[
δ
(

k − k0 + ω

u

)
+ δ

(
k + k0 + ω

u

)]
(6.69)

with the allowed wavenumbers determined by

k = −ω

u
± k0. (6.70)

We can see that only the positive sign is allowed here because we are con-
sidering forward propagation (k > 0). This expression also implies that we have
an upper limit for the frequency of the radiation produced in the plasma side:
ω < k0u.

The value of ω can be obtained by using this equation in the dispersion
relation (6.66): (

k0 − ω

u

)2
c2 = ω2 − ω2

p. (6.71)

The explicit result is

ω = k0uγ 2


1 − β

√√√√1 − ω2
p

γ 2k2
0u2


 (6.72)

with β = u/c and γ 2 = (1 − β2)−1.
This result was first obtained by Mori et al [79], who used a different ap-

proach. The interest of our present approach is that we did not use any Lorentz
transformation on the front frame. Let us consider the case where ω2

p 
 γ 2k2
0u2,

which corresponds to a large gamma factor or a small plasma density.
Equation (6.72) then reduces to

ω � k0u

2
+ ω2

p

2k0u
. (6.73)

This result is very interesting because it shows that a large value of the
radiated field frequency ω can be obtained even with very small values of k0,
which means, for a long length scale of the static electric field �E0(x), if we use
k0u 
 ωp, we obtain a radiation frequency ω � ω2

p/2k0u � ω2
p.

The result described by the present model can be seen as a special case of
photon acceleration: (virtual) photons initially with zero frequency, and associ-
ated with the static electric field (6.56), are accelerated into high frequencies by
the relativistic ionization front and propagate along the plasma medium in the
forward direction.
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The conversion efficiency of the process is stated by the radiation field solu-
tion, equation (6.69):

|Eω|2 ∼
(π

k
A
)2 = π2

4k2

(ωp

c

)4 |E0|2
ω2u2

. (6.74)

Let us now consider the field radiated into the neutral gas side, for x < ut ,
and propagating in the backward direction. If we restrict again our attention to
the one-dimensional problem, this field is determined by the wave equation(

∂2

∂x2
− 1

c2

∂2

∂t2

)
�E = ω2

p

c2
H(x + ut) �E0(x). (6.75)

Following the above procedure, we can write the asymptotic solution, valid
far away from the ionization front, for x → −∞, as

Eω(x) � π

k
A e−ikx

[
δ
(

k + k0 − ω

u

)
+ δ

(
k − k0 − ω

u

)]
. (6.76)

The two possible spectral components are

k = ω

u
± k0. (6.77)

In contrast with the previous case where the resulting radiation was prop-
agating in the plasma side, here the waves propagate in a vacuum and have to
satisfy the vacuum dispersion relation ω = kc. Using this in the above condition,
this leads to

ω = k0u

1 − β
. (6.78)

This means that, for relativistic ionization fronts such that (1−β) ∼ γ 2 � 1,
very high frequency radiation fields can eventually be emitted. However, the total
energy associated with this new wave is much smaller than the energy of the
lower frequency emitted into the plasma side, because the value of k appearing in
equation (6.76) is now much larger, typically by a factor of γ 2.

The apparatus necessary to produce this kind of radiation process can be
based on an array of capacitors, periodically spaced along the x-axis with pe-
riodicity 2π/k0, in order to create the static periodic electric field defined in
equation (6.56). Such a configuration can be named a dark source [79] because it
transforms a static field into very high frequency photons propagating in both the
plasma and the vacuum region.

However, other configurations can also be imagined, based on the same
principle, as will be illustrated in the following pages. Let us then generalize
the above procedure, by replacing the static periodic electric field by an arbitrary
electrostatic field:

�E0(�r) =
∫

�Eq(�r⊥) eiqx dq

2π
. (6.79)
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The previous case obviously corresponds to

�Eq(�r⊥) = π �E0 [δ(q − k0) + δ(q + k0)] . (6.80)

The one-dimensional wave equation for the time Fourier component of the
radiated field, valid in the plasma region for this case of an arbitrary electrostatic
field, is

∂2

∂x2
Eω + 1

c2
(ω2 − ω2

p)Eω = i
∫

Aq ei(q−ω/u)x dq

2π
(6.81)

with

Aq = ω

u

ω2
p

c2

( �Eq · â
)

. (6.82)

The general solution for radiation in the forward direction is then given by

Eω(x) = 1

2k
eikix

∫ ∞

−∞
dx ′

∫
dq

2π
Aq e−i(k−q+ω/u)x ′

. (6.83)

Asymptotically, for x → ∞, we get

Eω(x) = π

k
A0 eikx (6.84)

where A0 = Aq for q = q0, and q0 is determined by

q0 = k + ω

u
. (6.85)

A similar result could equally well be obtained for radiation emitted in the
backward direction and propagating in the vacuum region.

As an example of an application of this more general formulation of the
problem, let us consider the case of an electric field acting on a very small region
of space, around some point x = x0. This could, for instance, be obtained by a
capacitor of infinitesimal width (two pointlike electrodes) located at that position:

�E0(�r) = �E0δ(x − x0). (6.86)

This can be described by equation (6.79) by using an infinite Fourier spec-
trum with amplitudes

�Eq(�r⊥) = 2π �E0 e−iqx0 . (6.87)

In this case, we could generate an infinitely large spectrum of radiation, in
both the forward and the backward direction. Such a configuration, different
(but very similar in its principle) from the original idea of a dark source using
a capacitor array as described above, could be interesting for the production of
ultra-short (or even sub-cycle) radiation pulses, if the resulting broad spectrum of
radiation was subsequently compressed by some appropriate optical system.
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Figure 6.2. Examples of dark sources: (a) a periodic E-field produced by a capacitor
array; (b) a pointlike E-field.

Exploring further this idea of producing high-frequency radiation out of a
sharp ionization front moving with relativistic velocity, we can even imagine a
situation where the static electric field is absent. This means that we do not need
to consider any capacitor system acting on the gas medium: �E0(�r) = 0. But now,
some other ingredient has to be introduced in order to replace this field.

We can, for instance, assume that the density of the background neutral gas
medium is modulated in space. Such a modulation can be obtained, for instance,
by producing a sound wave, or by forcing the gas to flow through a parallel grid
before entering the interaction zone.

When the ionization front moves across the gas, a space modulation of the
electron plasma density will take place. The resulting electron current in the
plasma region left behind the front is now described by

�J = −en0[1 + ε cos(k0x)]H(x + ut)�v (6.88)
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where ε is the amplitude of the density modulation and k0 determines the period
of the space modulation.

A radiation field �E can eventually result from this configuration, as deter-
mined by the wave equation (6.60). But now the electron velocity �v is determined
by equation (6.59) with �E0(�r) = 0.

Instead of equation (6.61), we will be led to a Mathieu-type wave equation,
which shows unstable solutions inside some region of the space of parameters. In
this case, a dark source radiation instability will occur. A brief discussion of the
Mathieu equation is postponed to the end of the next chapter.



Chapter 7

Non-stationary processes in a cavity

In this new chapter devoted to the full wave theory of photon acceleration, we will
explore a simple theoretical model for mode coupling inside an electromagnetic
cavity. This is formally analogous to the elementary quantum theory of collisions
and it has the merit of reducing the space–time-varying evolution problem to a
purely time-varying problem.

Moreover, this cavity model can also be adequately applied to several exper-
imental configurations. It was initially developed in references [67, 100].

7.1 Linear mode coupling theory

Let us consider an electromagnetic cavity with metalic walls containing a neutral
gas, which can be ionized by some external agent (for instance, by an intense laser
pulse or by a high voltage applied to adequate electric probes). In quite general
conditions, we can describe the electric field associated with the electromagnetic
modes contained in the cavity by the following equation:(

∇2 − 1

c2

∂2

∂t2

)
�E = µ0

∂ �J
∂t

. (7.1)

The electric field has to satisfy certain boundary conditions and its value will
be determined by the source term which is described by the electric current �J .
The boundary conditions will imply that the general solution of this equation can
take the form of a superposition of eigenmodes, such that

�E(�r , t) =
∑

l

el(t)E l(�r) (7.2)

where el(t) are time-dependent amplitudes, and El(�r) are the cavity eigenmodes
depending on three quantum numbers labelled by l.

In order to be more specific, let us assume the simplest possible example of a
rectangular cavity with the length of the three sides given by Lx , L y and Lz . If we
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restrict our discussion to transverse electric modes, the fields El(�r) are determined
by

Elx (�r) = E0 cos(mπx/Lx ) sin(nπy/L y) sin(pπ z/Lz),

Ely(�r) = E0
m

n

L y

Lx
sin(mπx/Lx ) cos(nπy/L y) sin(pπ z/Lz), (7.3)

Elz(�r) = 0.

The quantities m, n and p are integers and, in this case, we have l ≡
(m, n, p). The generalization of the present discussion to another type of cavity,
and the inclusion of transverse magnetic modes, is straightforward.

In order to guarantee that the eigenmodes are normed and orthogonal we
define the constant E0 as

E0 =
√

8

V

(
1 + m2

n2

L2
y

L2
x

)−1/2

(7.4)

where we have introduced the cavity volume V = Lx L y Lz . This choice for E0
allows us to write the orthonormality condition∫

V
El(�r) · El ′(�r) d�r = δll ′ . (7.5)

Let us now turn to the electric current appearing in equation (7.1). If we
make some simple and plausible assumptions for the gas ionization process, this
source term can be written as a function of the cavity electric field �E(�r , t) [7].

We first notice that the plasma created out of the neutral gas can be seen as
containing an infinity of electronic species, corresponding to the electrons created
at different times:

�J = −e
∑

i

�ni �vi . (7.6)

The density �ni of each of these electron populations is determined by

�ni =
(

∂n

∂t

)
ti

�t (7.7)

where �t is the elementary time interval around ti during which these populations
are created.

The velocity �vi of the electrons created at the successive instants ti is deter-
mined by

�vi (t) = − e

m

∫ t

ti

�E(t ′) dt ′ + �vi0. (7.8)

We can replace this integral inside equation (7.7), assume that the electrons
are created initially with zero kinetic energy, �vi0 = 0, and take the limit �t → 0.
The result is

�J = e2

m

∫ t

−∞
dt ′

(
∂n

∂t

)
t ′

∫ t

t ′
dt ′′ �E(t ′′). (7.9)
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If we take the time derivative of the current, we get

∂ �J
∂t

= e2

m

[∫ t

−∞

(
∂n

∂t

)
t ′

�E(t ′) dt ′ +
(

∂n

∂t

)
t

∫ t

t

�E(t ′′) dt ′′
]

. (7.10)

The second term in this expression is obviously equal to zero, and therefore
the equation reduces to

∂ �J
∂t

= e2

m

∫ t

−∞

(
∂n

∂t

)
t ′

�E(t ′) dt ′

= e2

m

[
n(t ′) �E(t ′)

]t

−∞ −
∫ t

−∞
n(t ′)∂

�E
∂t ′

dt ′. (7.11)

If the electric field varies much faster than the electron density (which im-
plies once again the existence of two timescales), this expression reduces to

∂ �J
∂t

= ε0ω
2
p(t) �E(t). (7.12)

This allows us to write the field equation (7.1) in the following closed form:(
∇2 − 1

c2

∂2

∂t2

)
�E = ω2

p

c2
�E . (7.13)

We can now replace the mode decomposition (7.2) in this equation and, after
using the orthonormality condition (7.5), we obtain(

∂2

∂t2
+ k2

l c2

)
el(t) = −

∑
l ′

Cll ′(t)el ′(t) (7.14)

where we have used

k2
l ≡ k2

mnp = (mπ/Lx )
2 + (nπ/L y)

2 + (pπ/Lz)
2. (7.15)

This equation describes the time evolution of the mode amplitudes due to the
linear mode coupling induced by the ionization of the gas inside the cavity. The
mode coupling coefficients Cll ′ are determined by

Cll ′(t) =
∫

V
ω2

p(�r , t)El(�r) · El ′(�r) d�r . (7.16)

The mode coupling equation (7.14) can also be written in the following form:[
∂2

∂t2
+ ω2

l (t)

]
el(t) = −

∑
l ′ �=l

Cll ′(t)el ′(t). (7.17)
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Here we have used the time-dependent mode frequency

ω2
l (t) = k2

l c2 + Cll(t). (7.18)

Here, the self-coupling coefficient (l ′ = l) corresponds to a kind of averaged
plasma frequency, taken over the mode space configuration

Cll =
∫

v

ω2
p(�r , t)|El(�r)|2 d�r . (7.19)

The mode coupling equation (7.17) is the basic equation of the present
model, and can be used for a detailed description of the spectral changes inside
the electromagnetic cavity. Its physical content and its relevance to our problem
will be discussed in the next few sections.

7.2 Flash ionization in a cavity

The simplest possible model of plasma formation inside a cavity is to admit that
ionization is uniform over the entire volume of the cavity: ω2

p(�r , t) ≡ ω2
p(t). In

this case, from equation (7.16), we have

Cll ′(t) = ω2
p(t)δll ′ . (7.20)

This means that the cavity eigenmodes are decoupled from each other and
that they evolve according to the equation

∂2el

∂t2
+ ω2

l (t)el = 0 (7.21)

where ω2
l (t) = k2

l c2 + ω2
p(t).

Assuming that the plasma frequency ωp changes over a slow timescale, we
can integrate this equation and obtain the following WKB solution:

el(t) = El

√
klc/ωl(t) exp

[
−i

∫ t

ωl(t
′) dt ′)

]
. (7.22)

Here El is a constant amplitude. In order to be more specific, let us use the
following explicit law for the plasma creation inside the cavity:

ω2
p(t) = ω2

p0

(
1 − e−γ t) . (7.23)

This means that the plasma is formed on a timescale of 1/γ . The integral in
equation (7.22) can now be written as

∫ t

ωl(t
′) dt ′ = klc

{[
1 + 1

2

(
ωp0

klc

)2
]

t + 1

2γ

(
ωp0

klc

)2

e−γ t

}
. (7.24)
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Let us see what happens during the first stage of the plasma formation when
we have γ t 
 1. We simply get

el(t) � El exp

(
−iklct − i

ω2
p0

2γ klc

)
. (7.25)

This means that, in this short time limit, the cavity eigenmode keeps oscil-
lating at the same frequency, but suffers a small phase shift. In the opposite limit
of very long times, such that γ t � 1, we have

el(t) � El

√
klc/ωl(∞) exp(−iωl(∞)t) (7.26)

where ωl(∞) is the asymptotic value of the mode eigenfrequency for very large
times: ω2

l (∞) = k2
l c2 + ω2

p0.
We can see that this WKB solution gives, for long times, a result which

coincides with that of the simple theory of flash ionization outlined in previous
chapters: the frequency shift of a given eigenmode of an electromagnetic cavity,
where a plasma is uniformly created by some external agent, is simply determined
by the asymptotic value of the plasma frequency.

On the other hand, in order to compare this new approach with the pre-
vious one, we should not forget that an eigenmode in a cavity is equivalent to
two travelling waves propagating in opposite directions. This can be seen from
equations (7.3), where the factor sin(pπ z/Lz) can be decomposed into the two
factors exp(±ikzz), with kz = pπ/Lz , representing propagation along the z-axis
in opposite directions.

However, as we will see next, this view of flash ionization is still too simple
and we have to refine it. A more realistic model for flash ionization inside a
cavity will have to contain the description of some spatial structure. In general,
the plasma creation will not be completely uniform over the entire cavity volume,
and we have to retain the space dependence of ω2

p(�r , t). This is illustrated in
figure 7.1.

Let us then return to the mode coupling equation (7.17) and try a WKB
solution of the form (7.22), but where El represents a time-dependent amplitude.
Taking the second time derivative of this new solution we get

∂2el

∂t2
� −ω2

l el − 2i
√

ωl klc
∂ El

∂t
exp

[
−i

∫ t

ωl(t
′) dt ′

]
. (7.27)

Using this in the mode coupling equation, we obtain an equation for the
slowly varying amplitude, in the form

∂ El

∂t
= −i

∑
l �=l ′

Bll ′(t)El ′ . (7.28)

The new mode coupling coefficients are determined by

Bll ′(t) = Cll ′(t)

2
√

ωl(t)ωl ′(t)
exp

(
−i

∫ t

[ωl ′(t
′) − ωl(t

′)] dt ′
)

. (7.29)
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plasma

Figure 7.1. Non-uniform plasma formation inside a cavity.

Let us examine the simple but physically meaningful case where a given
mode l = l0 pre-exists in the cavity for t < 0, and all the other modes are absent
before the plasma formation. If the coupling is not too strong, the amplitude of
this mode can still be considered as approximately constant for times t ≥ 0.

Using this parametric approximation, we can write from equation (7.27) that,
for any other mode l �= l0, the amplitudes are

El(t) = −iEl0

∫ t

Bll ′(t
′) dt ′. (7.30)

This equation allows us to calculate explicitly, and in a simple way, the
mode coupling efficiency. The explicit calculation can be performed by using
the following model for non-uniform ionization inside the cavity:

ω2
p(�r , t) = ω2

p0(1 − e−γ t ) exp[−a(�r − �r0)
2]. (7.31)

Here 1/γ is the timescale for plasma formation and a−1/2 is the dimension
of the ionized region around some point �r0. According to their definition, the
mode coupling coefficients Cll ′(t) can be split into two factors, one containing
the time dependence and the other containing the spatial mode coupling.

Using equations (7.31) and (7.16), we obtain

Cll ′(t) = ω2
p0(1 − e−γ t )Ill ′ (7.32)

where

Ill ′ =
∫ t

e−a(�r−�r0)
2El(�r) · El ′(�r) d�r . (7.33)

Using the eigenmodes (7.3), or any others, this quantity can then be explicitly
evaluated. From our analysis, two new aspects relevant to flash ionization can be
clearly identified [67].
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plasma

Figure 7.2. Moving ionization front inside a cavity.

First, the ionization processes inside a cavity not only produce a shift in
the frequency of a pre-existing mode but also give rise to a large spectrum of
radiation associated with the amplitudes el(t), for l �= l0, due to linear mode
coupling. Second, the frequency shift associated with each mode is not simply
determined by the asymptotic value of the plasma frequency ωp0 but by the self-
coupling coefficient Cll < ωp0 defined by equation (7.19), which is a kind of
plasma frequency averaged over the eigenmode spatial field distribution.

This means that the spectrum generated by flash ionization inside a cavity is
broader, and the frequency shift of the pre-excited mode is smaller, than predicted
by single photon dynamics. These two qualitative aspects are well confirmed by
experimental results in microwave cavities, where the observed frequency shifts

were always smaller than the expected ωl =
√

k2
l c2 + ω2

p0, and a broad spectrum

of radiation was observed.

7.3 Ionization front in a cavity

Let us now turn to the problem of an ionization front travelling across the cavity,
as illustrated in figure 7.2. Then ω2

p(�r , t) will be of the general form ω2
p(�r −�vt). In

the simplest but physically realistic case of a front which is uniform in the planes
z = const, and starts its motion at the position z = Lz , moving along the z-axis
with a velocity v, we can write

ω2
p(�r , t) = ω2

p0 f (z + vt) (7.34)

where f (z + vt) describes the form of the front.
In this case, the coupling coefficients (7.16) can be written as

Cll ′(t) = 2

Lz
ω2

p0δmm′δnn′ Ipp′(t) (7.35)

where the integral Ipp′(t) is determined by

Ipp′(t) =
∫ Lz

0
sin(pπ z/Lz) sin(p′π z/Lz) f (z + vt) dz. (7.36)
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In order to have an order of magnitude estimate of the amplitude of the cavity
modes excited by the ionization front, we can use the simple model for the front
form

f (z + vt) = H(z + vt − Lz) (7.37)

where H(z − a) is the Heaviside function and the particular value a = Lz − vt is
chosen in order to describe a sharp front starting its motion at (z = Lz, t = 0) and
moving across the cavity along the z-axis towards the point z = 0 with a negative
velocity.

For this particular case, the integral (7.36) can be easily calculated and gives

Ipp′(t) = − Lz

2π

1

p − p′ sin
[
(p − p′)π(1 − vt/Lz)

]
+ Lz

2π

1

p + p′ sin
[
(p + p′)π(1 − vt/Lz)

]
. (7.38)

It can be noticed from equation (7.35) that the mode coupling is only as-
sociated with the quantum numbers p and p′, leaving the other two quantum
numbers m and n invariant. This is due to the fact that the plasma frequency is
constant along the x- and the y-axis with which these two quantum numbers are
associated. This means that the mode coupling will only occur along the direction
of the electron density gradient.

Using this expression in equation (7.35) and noting that kz = pπ/Lz and
k′

z = p′π/Lz , we obtain

Cll ′(t) = −ω2
p0

π
δmm′δnn′

×
{

(−1)p−p′

p − p′ sin[(kz − k′
z)vt] − (−1)p+p′

p + p′ sin[(kz + k′
z)vt]

}
. (7.39)

This expression is valid for p �= p′. In the case of p = p′, it is replaced by

Cll(t) = − ω2
p0

2pπ
{2kz + sin[2kz Lz(1 − vt/Lz)]} . (7.40)

In order to discuss the physical meaning of this result, let us go back to the
evolution equation (7.17). Let us also assume that the mode l ′, pre-existing in the
cavity for times t < 0, is still the dominant mode for subsequent times (which
implies that the mode coupling is not very efficient).

For our qualitative discussion it is appropriate to neglect the slow variation
of the frequency eigenmode, such that we can use the approximate expression

el ′(t) � E ′ e−iωl′ t . (7.41)
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We can then see that only four distinct forced terms exist, for which the
mode amplitudes el are resonantly excited, and these terms verify the resonance
condition

ωl = ωl ′ ± [(kz ± k′
z)v]t. (7.42)

If we were in a free space configuration, and not inside a cavity, we would
simply have kz = ωl/c and k′

z = ωl ′/c, which means that this resonance condition
would reduce to the well-known expression for the relativistic mirror:

ωl = ωl ′
1 ± β

1 ± β
(7.43)

where β = v/c.
The only and significant difference with respect to the relativistic mirror

effect is that here we generally have partial and not total reflection. The four
resonance conditions therefore have a very simple explanation: the pre-existing
cavity mode would correspond in free space to two travelling waves with the same
frequency, but propagating in opposite directions. Each of these travelling waves
interacts with the front and, from its partial reflection, two new waves result,
propagating in opposite directions and with distinct frequencies.

Let us come back to the mode coupling equation and retain one of the four
resonant terms. We can then write(

d2

dt2
+ ω2

l

)
el = E ′ e−iωl t (7.44)

where E ′ depends on the coupling with the pre-existing mode l ′, and ωl is given
by one of the possible four choices of equation (7.42).

Using
el(t) = El(t) e−iωl t (7.45)

we obtain the following saturation amplitude for the resonant mode p � p′, after
the completed journey of the ionization front across the cavity:

El(sat) � ω2
p0

4π

E ′

pωl

Lz

v
. (7.46)

We can see that a larger value for the front velocity v corresponds to a larger
value for the quantum number p compatible with the resonance condition, and
to a smaller saturation amplitude. This qualitative discussion suggests that the
resonant mode with a lower frequency shift will have a larger saturation amplitude
than the resonant mode with a larger frequency shift. This eventually explains the
absence of this mode in the first experiments of ionization fronts in a microwave
cavity [95].

But, apart from the resonant modes which are more strongly coupled with
the pre-existing mode in the cavity, many other modes can also be excited by
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Figure 7.3. Time variation of the mode coupling coefficient and of amplitudes of the
lowest order excited modes.

linear mode coupling, leading to an electromagnetic energy cascade over a large
spectral width, as shown by numerical integration of the above mode coupling
equations [100], and qualitatively confirmed by experiments. See figure 7.3 for a
numerical example.

7.4 Electron beam in a cavity

Instead of considering ionization processes inside a cavity, we can also obtain a
similar moving boundary if an electron beam is sent across the cavity. The mode
coupling due to an electron beam is formally analogous to that due to an ionization
front. However, the two processes also present very distinctive features.

First of all, it should be noticed that the field equation (7.1) can also be
written as (

c2∇2 − ∂2

∂t2

)
�A = − �J (7.47)

where �A is the vector potential.
In our discussion of the flash ionization and the ionization front we used

equation (7.12), which can be rewritten as

�J = −e2

m

∫ t

−∞

(
∂n

∂t

)
t ′

[ �A(t) − �A(t ′)] dt ′. (7.48)

Using this expression in equation (7.47) leads to our previous field equa-
tion (7.13). However, the current associated with an electron beam cannot be
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described by the same source current because equations (7.12, 7.48) were derived
for electrons created at specific times and positions, with a velocity equal to zero.

In contrast, the electrons of an electron beam will exist for all times, and will
always move with a non-negligible velocity. Using the equation of motion for the
beam electrons we can easily obtain the following new expression for the electric
current:

�J = −en(�r , t)�v = −e2

m
n(�r , t) �A. (7.49)

Using it in equation (7.47), we obtain(
c2∇2 − ∂2

∂t2

)
�A = ω2

p(�r , t) �A. (7.50)

This is formally identical to equation (7.13), but with the electric field re-
placed by the vector potential. Because the spatial eigenfunctions for the electric
field and for the vector potential are identical, we can again use a linear expansion
for �A of the form

�A(�r , t) =
∑

l

al(t)El(�r). (7.51)

The evolution equation for the mode amplitudes can now readily be found:(
∂2

∂t2
+ ω2

l (t)

)
al(t) = −

∑
l ′ �=l

Cll ′(t)al ′(t). (7.52)

We see that it is formally identical to equation (7.17), but with a different
physical meaning, the mode amplitudes al(t) being related to the vector potential
eigenmodes. We can then repeat the calculations of the previous section. The
result is that the frequency spectum generated by the electron beam will be iden-
tical to that generated by the ionization front, because the modes with the same
frequency are coupled in the same way.

However, the energy content of each mode is different because the vector
potential amplitudes are related to the electric field amplitude by el(t) = al(t)ωl .
This means that, for instance, the saturation amplitude obtained after the com-
pleted journey of the electron beam front across the cavity is now determined
by

Al(sat) � ω2
p0

4π

A′

pωl

Lz

v
(7.53)

where A′ is the amplitude of the source term and where we have assumed that
al(t) � Al exp(−iωl t).

Again, this is formally identical to equation (7.46), with the electric field
amplitudes replaced by vector potential amplitudes. But, if we rewrite this ex-
pression in terms of the electric field amplitudes, we realize that the saturation
amplitude is now larger, by a factor of ωl ′/ωl , than that for the ionization front
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case. Also, as we have seen from the resonance condition for the frequency shift
(7.42, 7.43), this factor can be much larger than one.

This means that the electron beam is a much more efficient way to up-shift
the electromagnetic energy in the frequency domain, not because the frequency
up-shift itself is different, but because the amplitudes of the shifted modes are
much larger. This can be illustrated by a numerical integration of the coupled
mode equations for both cases [100]. Using the same argument we can also con-
clude that the down-shifted modes will have, in contrast, a much lower amplitude
in the case of the electron beam.

The physical differences between these two processes of frequency up-
shifting can be better understood if we consider the total magnetic field generated
inside the cavity. We know that the magnetic field is determined by �B = ∇ × �A
and, using equation (7.51), we can write, for the case of the electron beam

�B(�r , t > Lz/v) =
∑

l

[∇ × El(�r)]Al exp(−iωl t). (7.54)

This means that the total magnetic field is just the sum of the magnetic fields
associated with each of the modes excited in the cavity.

A different situation occurs for the case of an ionization front. If we write
the total magnetic field in terms of the total electric field, we get

�B(�r , t) = −∇ ×
∫ t

0

�E(�r , t) = −
∑

l

[∇ × El(�r)]
∫ t

0
el(t

′) dt ′. (7.55)

The asymptotic value for this magnetic field will then be

�B(�r , t > Lz/v) =
∑

l

1

iωl
[∇ × El(�r)]

×
(

δll ′ + iωl

∫ Lz/v

0
el(t

′) dt ′ − El e−iφl + El e−iωl t
)

(7.56)

where we have φl = ωl Lz/v.
It can be seen from this expression that the last term, which oscillates at

the frequencies ωl , corresponds to the sum of the magnetic fields associated with
each of the modes excited in the cavity. But, the remaining terms describe a static
magnetic field which was excited by the ionization process and which can be
identified with the magnetic mode discussed in the previous chapter.

This means that, in the case of the ionization front, a large amount of energy
is transferred to the static magnetic field, which explains why this process of
frequency up-shifting is much less efficient than that of an electron beam where
such a static field is absent.

Finally, we should keep in mind that other possible non-stationary processes
occurring inside the cavity, which do not create new electron populations, are
described by the same mode coupling equations as the electron beam case. This is,
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for instance, the situation where, in a pre-existing plasma medium, a space–time
variation of the plasma density is produced, associated with an electron plasma
wave with relativistic velocity (wakefield). As shown in the above discussion, the
up-shifting frequency effect will be as efficient as in the case of the electron beam
and no static magnetic field will be excited.

7.5 Fermi acceleration in a cavity

The linear mode coupling formalism explored in this chapter allows us to give a
new description of the Fermi acceleration of photons, using a full wave descrip-
tion [101]. Let us then assume that, due to some externally applied perturbation,
the neutral gas inside the cavity is ionized in a limited domain near the boundary
z = Lz , in such a way that the width of the plasma region oscillates in time with
a frequency �, much smaller than the cavity mode eigenfrequencies ωl .

This can be described by the following space–time distribution for the elec-
tron plasma frequency:

ω2
p(�r , t) = ω2

p0 H [z − Lz + A(1 − cos �t)]. (7.57)

Here we have used the Heaviside function H(z − a). This simple law
describes a plasma with constant plasma frequency ωp0 but oscillating in a region
of the cavity between Lz and Lz − 2A.

The coupling coefficients (7.39) now take the form, for p �= p′,

Cll ′ = − ω2
p0

π
δmm′δnn′

{
1

p − p′ sin[π(p − p′)(1 − ε(1 − cos �t))]

− 1

p + p′ sin[π(p + p′)(1 − ε(1 − cos �t))]
}

(7.58)

where ε = A/Lz . For p = p′, equation (7.41) becomes

Cll = εω2
p0(1 − cos �t) − ω2

p0

2pπ
sin[2pπε(1 − cos �t)]. (7.59)

Using this explicit expression in the mode coupling equations (7.17) we can
calculate the time evolution of the eigenmode field amplitudes. Let us start by
neglecting the mode coupling and let us study the evolution of a single mode
el(t), when according to equation (7.59), the effective value of plasma frequency
is modulated by a much lower frequency �. Notice that mode coupling would be
absent if the plasma frequency were oscillating uniformly over the entire cavity
volume.

In this case, we can write the single mode evolution equation as

d2

dt2
el(t) +

{
k2

l c2 + εω2
p0(1 − cos �t)
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+ ε

2pπ
sin[2pπε(1 − cos �t)]

}
el(t) = 0. (7.60)

Here it is appropriate to use a dimensionless time variable τ = �t/2, and to
introduce two parameters:

δ = 4

�2
(k2

l + εω2
p0), γ0 = 2ε

ω2
p0

�2
. (7.61)

Equation (7.60) can then be reduced to a more familiar form:

d2

dτ 2
el(τ ) +

{
δ − 2γ0 cos(2τ) − 2

γ0

2pπε
sin[2pπε(1 − cos(2τ))]

}
el(τ ) = 0.

(7.62)
For high-frequency cavity modes such that 2pπε � 1 the last term can be

neglected and this reduces to the well-known Mathieu equation. In order to illus-
trate the main physical processes in the cavity let us first restrict our discussion to
this equation.

It is well known [81] that the Mathieu equation has bounded solutions, as
well as unbounded ones, depending on the values of the two parameters δ and γ0.
The existence of unbounded (or unstable) solutions is physically very interesting
because this means that it is possible to excite cavity modes, starting from the
noise level up to arbitrary amplitudes. The energy source responsible for the
creation of this electromagnetic field, nearly out of nothing, can only be identified
with the external source producing the plasma oscillations.

The stability diagram of the Mathieu equation shows that the most favourable
modes to be excited verify the resonance condition klc � m�/2, where m is some
positive integer. However, because we are assuming that � is much smaller than
the eigenmode frequencies ωl , this resonance condition implies that m has to be
quite large. Also, in this case, we known from the properties of the Mathieu
equation that the unstable domain in the parameter space (δ, γ0) is extremely
narrow and very difficult to experimentally satisfy. This means that, in principle,
generation of electromagnetic energy inside an oscillating and empty cavity is
possible, but it is very unlikely to be observed, due to the fact that it will only
occur inside very narrow regions of the parameter space.

We now turn to the stable regions of the parameter space, where it is pos-
sible to derive approximate analytical expressions for the time evolution of the
amplitude of a given uncoupled mode el(t), and to describe the entire frequency
spectrum associated with this single mode. Due to the frequency modulations of
the self-coupling coefficient (7.59), the frequency spectrum of a single mode no
longer corresponds to a well-defined frequency ωl , but to an infinite number of
frequencies.

This can be clearly seen if we assume that the mode amplitude el(t) is
described by

el(t) =
∑

k

elk exp[−i(ω̄l + k�)t] (7.63)
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where we have used ω̄2
l = k2

l c2 + εω2
p0, and have assumed that the amplitudes

elk(t) vary over a timescale much larger than 1/ω̄l .
Using this solution in the single mode evolution equation (7.62), and retain-

ing only the terms with the same fast timescale, we can easily derive an equation
for the new amplitudes elk(t):

− 2i(ω̄l + k�)
d

dt
elk + [ω̄2

l − (ω̄l + k�)2]elk

− ε

2i
ω2

p0(el,k−1 − el,k+1) + i
ω2

p0

4pπ

∑
m

Jm(2pπε)

×
[
im e2ipπεel,k−m − i−m e−2ipπεel,k+m

]
= 0. (7.64)

In order to obtain this expression we have used the expansion of the sine
term of equation (7.62) in Bessel functions of integer order Jm . We can simplify
it considerably if we notice that, for � 
 ω̄l , the second term (proportional
to elk) can be neglected. On the other hand, if the oscillation parameter ε is
small and if the quantum number p is large, in such a way that the inequality
2pπε 
 1 is satisfied, we can also neglect the term containing the sum over the
Bessel functions.

With these two simplifying assumptions, we can reduce equation (7.64) to

d

dt
elk = ε

ω2
p0

4ωk
(el,k−1 − el,k+1) (7.65)

where we have used ωk = ω̄l + k�.
This system of coupled equations for the amplitudes elk can be easily inte-

grated by noting that it is formally identical to the well-known recurrence relation
for Bessel functions Jk [84]. This means that it satisfies the following solution:

elk(t) = Jk

(
ε

ω2
p0

2ωk
t

)
. (7.66)

Let us now consider the opposite limit of small ε and large p, such that
2pπε � 1. In this case, the sum term dominates over the term proportional to ε

in equation (7.64). Moreover, we also have J1(2pπε) � Jm(2pπε), for m �= 1,
which means that we can also neglect all the terms in the series expansion except
those for m = ±1.

The resulting equation is

d

dt
elk = i

ω2
p0

4pπωk
J1(2pπε) cos(2pπε)(el,k−1 + el,k+1). (7.67)

Here again, the integration becomes possible because of the formal analogy
with the recurrence relation between the Bessel functions with purely imaginary
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argument Ik . The solution can now be written as

elk(t) = (−1)k i−k Jk

(
ω2

p0

2pπωk
cos(2pπε)J1(2pπε)t

)
. (7.68)

We clearly see from these solutions that, in the two opposite limits of the
parameter (2pπε), an infinitely large spectrum of frequencies with decreasing
amplitudes can be generated out of a single mode contained in a variable cavity.
This means that Fermi acceleration results in a considerable line broadening.

This effect of energy spreading over the frequency domain is even more dra-
matic when we include the linear mode coupling associated with the coefficients
Cll ′ established above. Once again, it is not possible to integrate the resulting
mode equations, unless we introduce some simplifying assumptions.

First of all, let us assume that the cavity contains a dominant mode character-
ized by the index l ′, such that coupling occurs mainly between this and the other
cavity modes.We can write the amplitude el ′ of the dominant mode in the form

el ′(t) = El ′ e−iω̄l′ t (7.69)

where El ′ can be assumed nearly constant.
The amplitudes of all the other modes, l �= l ′, can then be described by[

d2

dt2
+ ω2

l (t)

]
el(t) = −Cll ′ El ′ e−iω̄l′ t (7.70)

where ω2
l (t) and Cll ′(t) are determined by equations (7.18, 7.58).

We can see from here that the modes which are excited with a larger ampli-
tude satisfy the nearly resonant condition

ωl(t) � ω̄l = ω̄l ′ ± m� (7.71)

where m is an integer.
For these nearly resonant modes, we can write the following evolution equa-

tion: [
d2

dt2
+ ω2

l (t)

]
el(t) = ± iEl ′

ω2
p0

2π

{
Jm((p + p′)πε)

p + p′

− Jm((p − p′)πε)

p − p′

}
e−iω̄l′ t . (7.72)

This equation can easily be integrated if we neglect the slow time evolution
of the eigenfrequency ωl � ω̄l , and assume that

el(t) = El e−iω̄l t (7.73)
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where El(t) is the slow amplitude of the nearly resonant modes.
In this approximation, the solution for short times is given by

El(t) = ∓El ′
ω2

p0

4πω̄l

{
Jm((p + p′)πε)

p + p′ − Jm((p − p′)πε)

p − p′

}
t. (7.74)

This result shows that the modes that are more easily excited are those for
which, in addition to the resonance condition (7.71), we have p � p′. Of course,
for low modulation frequencies � 
 ωl , these resonance conditions are satisfied
by several modes. In the limit � 
 (ωl+1 − ωl) all the modes in the cavity will
be nearly resonant, with an amplitude approximately given by equation (7.74).

If we complement this with the tendency of each mode considered indi-
vidually to suffer a considerable resonant broadening, as shown by the above
discussion of the single mode evolution, we conclude that Fermi acceleration
inside an oscillating cavity provides an efficient mechanism for generating a broad
spectrum of electromagnetic radiation.

This is in qualitative agreement with our previous discussion of the Fermi
photon acceleration using the Hamiltonian approach, where it was shown that
the photon trajectories would become stochastic under certain conditions. Here
the particle stochastic behaviour is replaced by the mode coupling, in the same
way as stochasticity in classical particle motion is replaced by a non-stochastic
description based on the wave equation for a quantum particle.



Chapter 8

Quantum theory of photon acceleration

In order to complete our theoretical framework, it is important to show that photon
acceleration is not a result of the classical or semi-classical approximations, but
that it can easily be identified and described in purely quantum grounds.

As an introduction to this chapter, we will describe first the well-known
quantization procedure of the electromagnetic field [37, 61], with small changes,
in order to adapt the notation to our specific needs. We will also describe the less
well-known procedure for the field quantization in a plasma.

We will then examine the quantum theory of space and time refraction, which
not only confirms the main features of the classical theory, but also identifies
intrinsic quantum processes such as the possibility of photon creation from the
vacuum.

8.1 Quantization of the electromagnetic field

8.1.1 Quantization in a dielectric medium

We consider an infinite, non-dispersive and non-dissipative dielectric medium,
characterized by a real dielectric constant, ε. We give a phenomenological de-
scription of the problem of the field quantization in this medium, by assuming
that ε is a well-known constant, given a priori and not explicitly calculated by a
microscopic theory. This approach will be useful for our problem.

We start with Maxwell’s equations which can be written, in the absence of
charge and current distributions, as

∇ × �E = −∂ �B
∂t

, ∇ · �D = 0

∇ × �H = ∂ �D
∂t

, ∇ · �B = 0

(8.1)

with �D = ε �E and �B = µ0 �H .
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We define the scalar and the vector potentials, φ and �A, such that

�E = −∂ �A
∂t

− ∇φ, �B = ∇ × �A. (8.2)

It is convenient to choose the Coulomb gauge, defined by the condition

∇ · �A = 0. (8.3)

In this case, we can derive from equations (8.1) the following equations for
the scalar and vector potentials:

∇2φ = 0 (8.4)

∇2 �A − n2

c2

∂2 �A
∂t2

= n2

c2
∇ ∂φ

∂t
(8.5)

with n = √
ε/ε0.

This obviously implies that φ = 0, and

∇2 �A − n2

c2

∂2 �A
∂t2

= 0. (8.6)

We know that, in classical theory, the general solution of this equation can
be written as

�A(�r , t) = 2
∫

�Ak ei(�k·�r−ωk t) d�k
(2π)3

(8.7)

where ωk = (kc/n).
In this expansion, the integration extends over both the negative and the

positive values of the three components of the wavevector �k. But we know that,
in order to guarantee that the electromagnetic fields are real quantities, we have
to assume that �A−k = �A∗

k .
This allows us to rewrite the above general solution as

�A(�r , t) =
∫

�Ak(�r , t)
d�k

(2π)3
(8.8)

with
�Ak(�r , t) =

[ �Ak ei(�k·�r−ωk t) + �A∗
k e−i(�k·�r−ωk t)

]
. (8.9)

The corresponding electric and magnetic fields are, according to equa-
tions (8.2),

�E(�r , t) =
∫

�Ek(�r , t)
d�k

(2π)3
, �B(�r , t) =

∫
�Bk(�r , t)

d�k
(2π)3

(8.10)
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with

�Ek(�r , t) = − iωk

[ �Ak ei(�k·�r−ωk t) − �A∗
k e−i(�k·�r−ωk t)

]
(8.11)

�Bk(�r , t) = i�k ×
[ �Ak ei(�k·�r−ωk t) − �A∗

k e−i(�k·�r−ωk t)
]
. (8.12)

Let us now consider the total electromagnetic energy density

W =
∫

Wk
d�k

(2π)3
(8.13)

with

Wk = 1

2

[
ε| �Ek(�r , t)|2 + 1

µ0
| �Bk(�r , t)|2

]
= 2εω2

k (
�Ak · �A∗

k). (8.14)

We know that the amplitudes of the vector potential are, in general, complex
quantities and it is useful to consider their real and imaginary parts separately, by
defining

qk = √
ε(Ak + A∗

k), pk = iωk
√

ε(Ak − A∗
k). (8.15)

Here we have considered scalar quantities, by using �Ak = Ak �ek , where �ek is
the unit polarization vector. From these two quantities, we can write

Ak = 1

4εωk
(ωkqk + ipk). (8.16)

Using this in equation (8.14), we obtain for the energy density of the mode �k

Wk = 1

2
(p2

k + ω2
kq2

k ). (8.17)

This is formally identical to the energy of a one-dimensional oscillator with
unit mass, frequency ω, position q and momentum p:

W ≡ H(q, p) = p2

2
+ ω2 q2

2
. (8.18)

The first term represents the kinetic energy and the second term the parabolic
potential. This classical oscillator can be quantized by defining a Hamiltonian
operator Ĥ , such that

Ĥ = 1

2
( p̂2 + ω2q̂2) (8.19)

where the position and the momentum operators satisfy the commutation relations

[q̂, p̂] ≡ q̂ p̂ − p̂q̂ = ih̄. (8.20)
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The Hamiltonian operator can also be written in terms of the destruction and
creation operators, â and â+, such that

q̂ =
√

h̄

2ω
(â + â+), p̂ = −i

√
h̄ω

2
(â − â+). (8.21)

This is equivalent to

â = 1√
2h̄ω

(ωq̂ + i p̂), â+ = 1√
2h̄ω

(ωq̂ − i p̂). (8.22)

From this and from equations (8.17, 8.20), we have

â+â = 1

2h̄ω
(ω2q̂2 + p̂2 + iω[q̂, p̂]) = 1

h̄ω

(
Ĥ − 1

2
h̄ω

)
. (8.23)

We also have

ââ+ = 1

h̄ω

(
Ĥ + 1

2
h̄ω

)
. (8.24)

This leads to the following commutation relation:

[â, â+] = ââ+ − â+â = 1. (8.25)

From equations (8.19, 8.24) we can also write the Hamiltonian operator in
the form

Ĥ = h̄ω

(
1

2
+ N̂

)
(8.26)

where N̂ is the quantum number operator

N̂ = â+â. (8.27)

Returning to the electromagnetic field, we see that we can associate with
each mode �k a one-dimensional quantum oscillator with destruction and creation
operators âk and â+

k , such that the field amplitude operators for each mode are
established by the equivalence

�Ak →
√

h̄

2εωk
âk �ek, �A∗

k →
√

h̄

2εωk
â+

k �e∗
k . (8.28)

At this point we should notice that the electromagnetic radiation has two
independent polarization vectors. In order to take them both into account we
change the operators in the following way:

âk �ek →
∑

λ=1,2

a(�k, λ)�e(�k, λ). (8.29)
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From now on, we will remove the hat in the operator notation. The two unit
polarization vectors are orthogonal:

�e(�k, λ) · �e(�k, λ′) = δλλ′ . (8.30)

An obvious choice of these two orthogonal polarization vectors is two linear
polarizations in the plane perpendicular to the direction of wave propagation:

�k · �e(�k, λ) = 0 (λ = 1, 2) (8.31)

�e(�k, 1) × �e(�k, 2) = �k/|k|. (8.32)

The total vector potential operator will then be given by

�A(�r , t) =
∑

λ=1,2

∫
d�k

(2π)3

√
h̄

2εωk

[
a(�k, λ)�e(�k, λ) ei(�k·�r−ωk t)

+a+(�k, λ)�e∗(�k, λ) e−i(�k·�r−ωk t)
]
. (8.33)

From equations (8.2) we can also establish the electric and the magnetic field
operators:

�E(�r , t) = i
∑

λ=1,2

∫
d�k

(2π)3

√
h̄ωk

2ε

[
a(�k, λ)�e(�k, λ) ei(�k·�r−ωk t)

−a+(�k, λ)�e∗(�k, λ) e−i(�k·�r−ωk t)
]

(8.34)

and

�B(�r , t) = i
∑

λ=1,2

∫
d�k

(2π)3

√
h̄

2εωk

[
a(�k, λ)�k × �e(�k, λ) ei(�k·�r−ωk t)

−a+(�k, λ)�k × �e∗(�k, λ) e−i(�k·�r−ωk t)
]
. (8.35)

These field operators are strictly equivalent to those obtained for propagation
in a vacuum, the only difference being the replacement of the vacuum permitivity
ε0 by the appropriate dielectric constant of the medium, ε.

8.1.2 Quantization in a plasma

We consider an infinite, homogeneous and unmagnetized plasma. In contrast with
the previous case, we are now dealing with a dispersive medium. Instead of using
the plasma dielectric function, it is more appropriate to describe this medium as a
vacuum plus charge and current distributions. Maxwell’s equations, which are the
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starting point of our quantization procedure, can then be written in the following
form:

∇ × �E = − ∂ �B
∂t

, ∇ · �E = ρ

ε0
(8.36)

∇ × �H = �J + ε0
∂ �E
∂t

, ∇ · �B = 0 (8.37)

with �B = µ0 �H .
Assuming that the plasma ions are at rest, with a mean density n0, we can

write the charge and current densities as

�J = −en�v, ρ = −e(n − n0). (8.38)

The electron density and mean velocity are described by the continuity and
the momentum conservation equations:

∂n

∂t
+ ∇ · n�v = 0 (8.39)

∂ �v
∂t

+ �v · ∇�v = − e

m
( �E + �v × �B) − S2

e ∇ ln n. (8.40)

We define here the electron thermal velocity by the quantity ve = √
T/m,

where T is the plasma temperature, and use S2
e = 3v2

e . By treating the plasma
electrons as a fluid we are neglecting the resonant particle effects which can, for
instance, lead to purely kinetic effects such as the electron Landau damping. The
inclusion of these effects would require a more refined and purely microscopic
quantization procedure.

Apart from the fluid approach, we will also restrict our discussion to low
field intensities. This allows us to linearize the fluid equations (8.39, 8.40) around
the equilibrium state.

Using n = n0 + ñ, where |ñ| 
 n0 is the density perturbation, we get

∂ ñ

∂t
+ n0∇ · �v = 0

∂ �v
∂t

= − e

m
�E − S2

e

n0
∇n.

(8.41)

The linearized electron current and charge densities are

�J = −en0�v, ρ = −eñ. (8.42)

Let us introduce the scalar and vector potentials φ and �A, by using equa-
tions (8.2), and retain the Coulomb gauge, defined by the condition (8.3). The
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corresponding potential equations can be derived from equations (8.37) and take
the form

∇2φ = e

ε0
ñ (8.43)(

∇2 − 1

c2

∂2

∂t2

)
�A = en0

c2ε0
�v⊥ (8.44)

where �v⊥ is the transverse part of the electron velocity, determined by the condi-
tion

∇ · �v⊥ = 0. (8.45)

On the other hand, from the electron fluid equations we can easily derive(
∂2

∂t2
− S2

e ∇2

)
ñ = − en0

m
∇2φ (8.46)

∂2�v⊥
∂t2

= e

m

∂2 �A
∂t2

. (8.47)

This allows us to write(
∂2

∂t2
− S2

e ∇2

)
ñ = − ω2

pñ (8.48)

�v⊥ = e

m
�A (8.49)

which, according to equations (8.43, 8.44), implies that(
∇2 − 1

S2
e

∂2

∂t2

)
φ = ω2

p

S2
e
φ (8.50)

(
∇2 − 1

c2

∂2

∂t2

)
�A = ω2

p

c2
�A. (8.51)

We notice here that, if the electron thermal velocity could be made equal to
c/

√
3, such that S2

e = c2, these two equations would reduce to a single Klein–
Gordon equation for the four-vector potential Aν ≡ (φ/c, �A), in the form(

∇2 − 1

c2

∂2

∂t2

)
Aν = meffc

h̄
Aν (8.52)

where meff = ωph̄/c2 would be the mass of the vector field.
However, it is obvious that we have S2

e �= c2 for general plasma conditions,
which means that the electromagnetic field in a plasma will not be exactly equiva-
lent (but it will be similar) to a massive vector field. In order to prepare for the field
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quantization procedure we can write the general solution of equations (8.50, 8.51)
in the form

�A(�r , t) =
∫

�Ak(�r , t)
d�k

(2π)3
, φ(�r , t) =

∫
φ(�r , t)

d�k
(2π)3

(8.53)

with
�Ak(�r , t) =

[ �Ak ei(�k·�r−ωk t) + �A∗
k e−i(�k·�r−ωk t)

]
(8.54)

and
φk(�r , t) =

[
φk ei(�k·�r−ωk t) + φ∗

k e−i(�k·�r−ωk t)
]
. (8.55)

These two equations for the vector and the scalar potentials are formally
identical to each other. But it should be noticed that, according to equa-
tions (8.50, 8.51), the frequencies for the vector potential (the first equation) are
determined by the dispersion relation

ωk =
√

k2c2 + ω2
p (8.56)

and for the scalar potential (the second equation) by

ωk =
√

k2S2
e + ω2

p. (8.57)

The corresponding electric and magnetic fields are still represented by equa-
tions (8.2, 8.10), but now equation (8.12) is replaced by

�Ek(�r , t) = iωk �Ak(�r , t) − i�kφk(�r , t), �Bk(�r , t) = i�k × �Ak(�r , t). (8.58)

Let us now consider the total energy density

wk = 1

2

[
ε0| �Ek(�r , t)|2 + 1

µ0
| �Bk(�r , t)|2

]
+ wpart(�k)

= 2εk2φkφ
∗
k + 2ω2

k
�Ak · �A∗

k . (8.59)

Here, the first term corresponds to longitudinal (or electrostatic) oscillations,
and the second term to the transverse electromagnetic waves. For convenience, we
have added to the purely electromagetic energy the kinetic energy of the particles
associated with the oscillations of the scalar potential.

It is well known from plasma theory that, in the electron plasma oscillations,
the averaged energy is equally divided between the electrostatic field energy and
the kinetic energy of the plasma electrons. The result is the appearance of a factor
of 2 in the first term of this equation.

Field quantization is obtained by introducing destruction and creation opera-
tors a(�k, λ) and a+(�k, λ), for each of the three distinct modes, such that we have,
for the transverse modes (λ = 1, 2),

�Ak →
√

h̄

2ε0ωk
a(�k, λ)�e(�k, λ), �A∗

k →
√

h̄

2ε0ωk
a+(�k, λ)�e∗(�k, λ) (8.60)
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and, for the longitudinal mode (λ = 3),

φk →
√

h̄

2ε0k
a(�k, λ), φ∗

k →
√

h̄

2ε0k
a+(�k, λ). (8.61)

The total vector potential operator will then be determined by

�A(�r , t) =
∑

λ=1,2

∫
d�k

(2π)3

√
h̄

2ε0ωk

[
a(�k, λ)�e(�k, λ) ei(�k·�r−ωk t)

+a+(�k, λ)�e∗(�k, λ) e−i(�k·�r−ωk t)
]
. (8.62)

The total scalar potential operator is

φ(�r , t) =
∫

d�k
(2π)3

√
h̄

2ε0k

[
a(�k, 3) ei(�k·�r−ωk t) + a+(�k, 3) e−i(�k·�r−ωk t)

]
. (8.63)

The resulting total energy operator will be given by

W =
3∑

λ=1

∫
d�k

(2π)3
h̄ωk(λ)

[
a+(�k, λ)a(�k, λ) + 1

2

]
(8.64)

such that
ωk(λ) =

√
k2c2(λ) + ω2

p (8.65)

with c2(λ = 1, 2) = c2, and c2(λ = 3) = S2
e .

The first two modes correspond to the two transverse photons and the third
mode corresponds to plasmons (or longitudinal photons). Here we find the three
independent polarization states of a massive vector field (which has spin one) [88],
but with two distinct characteristic velocities: for the transverse particles it is the
speed of light c, and for the plasmons it is the thermal velocity Se.

The similarities of the electromagnetic field quantization in a plasma with
the quantization of a massive vector field was noticed long ago by Anderson [5].
It has served as a phenomenological model for the theory of the Higgs boson [88].

8.2 Time refraction

8.2.1 Operator transformations

Let us consider a time discontinuity in an infinite dielectric medium such that, at
time t = 0, the dielectric constant suddenly changes from a value ε1 to a new
value ε2. This transformation law can be described by the expression

ε(t) = ε1 H(−t) + ε2 H(t) (8.66)
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where H(t) is the Heaviside function.
We know from equation (8.34) that, for a given polarization state of the

photons in the dielectric medium (λ = 1, or λ = 2), the electric field operator
can be written as

�E(�r , t) = i

√
h̄ωk

2ε

[
a(�k, t) ei�k·�r − a+(�k, t) e−i�k·�r] �ek . (8.67)

Here we have used a real polarization vector �ek = �e∗
k , and introduced time-

dependent destruction and creation operators

a(�k, t) = a(�k) e−iωk t , a+(�k, t) = a+(�k) eiωk t . (8.68)

We also know that the displacement vector and the magnetic field operators
can be determined by

�D(�k, t) = ε �E(�k, t), �B(�k, t) = �k
ωk

× �E(�k, t). (8.69)

This means that we can write

�D(�k, t) = i�ek

√
h̄

2
ω jε j

[
a j (�k, t) ei�k·�r − a+

j (�k, t) e−i�k·�r] (8.70)

�B(�k, t) = i(�k × �ek)

√
h̄

2ω jε j

[
a j (�k, t) ei�k·�r − a+

j (�k, t) e−i�k·�r] . (8.71)

For t < 0 we use the index j = 1, and for t > 0, we use j = 2, in these
expressions. Our main problem is to relate the new operators a2 and a+

2 , to the
old ones, a1 and a+

1 . These operators are different from each other because the
meaning of a photon (or of an elementary excitation of the field) changes with the
refractive index at t = 0.

In order to obtain such a relation we use the continuity conditions for the
fields

�D(�r , t = 0−) = �D(�r , t = 0+), �B(�r , t = 0−) = �B(�r , t = 0+). (8.72)

Noting that these equalities are independent of �r , we can easily reduce them
to the following relations between the new and the old operators:

√
ω1ε1[a1(�k) − a+

1 (−�k)] = √
ω2ε2[a2(�k) − a+

2 (−�k)] (8.73)

1√
ω1ε1

[a1(�k) + a+
1 (−�k)] = 1√

ω2ε2
[a2(�k) + a+

2 (−�k)]. (8.74)

Let us define the parameter

α =
√

ω1ε1

ω2ε2
=

√
n2ε1

n1ε2
=

√
n1

n2
. (8.75)
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Equations (8.74) can be rewritten as

α[a1(�k) − a+
1 (−�k)] = a2(�k) − a+

2 (−�k)

a1(�k) + a+
1 (−�k) = α[a2(�k) + a+

2 (−�k)]. (8.76)

By adding and subtracting these two equations, we obtain

a1(�k) = Aa2(�k) − Ba+
2 (−�k)

a+
1 (−�k) = Aa+

2 (−�k) − Ba2(�k). (8.77)

Here we have used the real coefficients A and B, defined by

A = 1 + α2

2α
, B = 1 − α2

2α
. (8.78)

The reciprocal relations can also be obtained:

a2(�k) = Aa1(�k) + Ba+
1 (−�k)

a+
2 (−�k) = Aa+

1 (−�k) + Ba1(�k). (8.79)

This shows that each field mode existing for t < 0, with a given wavevector
�k, will be coupled to two modes existing for t > 0, with wavevectors �k and −�k.
Such a coupling provides an explanation, at the quantum level, of the effect of
time reflection obtained with the classical theory of chapter 6.

8.2.2 Symmetric Fock states

It is particularly important to look at the behaviour of the number states, or
Fock states, when we go through a time discontinuity. They are defined as the
eigenstates of the number operator Nk ≡ a+(�k)a(�k):

a+(�k)a(�k)|nk〉 = nk |nk〉. (8.80)

The eigenvalues nk of the number operator are the occupation numbers, or
the number of photons in the mode �k. The energy eigenvalues are

〈nk |Hk |nk〉 = h̄ωk

〈
nk |

(
a+(�k)a(�k) + 1

2

)
|nk

〉
= h̄ωk

(
nk + 1

2

)
. (8.81)

The ground state, corresponding to an occupation number equal to zero,
nk = 0, is called the vacuum state. It is well known (and can easily be derived
from the above equations) that the eigenvectors |nk〉, corresponding to an arbitrary
excited state, can be derived by applying nk times the creation operator a+(�k) to
the vacuum eigenstate |nk = 0〉 ≡ |0k〉.

For normalized eigenvectors we can write

|nk〉 = 1√
n! [a

+(�k)]nk |0k〉. (8.82)
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We have shown that, in the process of time discontinuity, the modes �k and −�k
are coupled to each other. It is then useful to introduce the following symmetric
state vectors:

|n, n′〉 j ≡ |nk, n′−k〉 j = |nk〉 j |n′−k〉 j . (8.83)

The index j = 1 pertains to the Fock states valid for t < 0, and j = 2 to
the Fock states valid for t > 0. Using equation (8.71), we can then define these
symmetric Fock states in terms of the symmetric vacuum:

|n, n′〉 j = 1√
n!n′! [a

+
j (�k)]n[a+

j (−�k)]n′ |0, 0〉 j . (8.84)

This expression means that, if we want to establish a relation between some
initial symmetric state |n, n′〉1 and some final symmetric state |m, m′〉2, we have
to establish a relation between the symmetric vacuum states, before and after the
time discontinuity, |0, 0〉1 and |0, 0〉2. This can be achieved by representing the
initial vacuum states |0, 0〉1 in terms of the final state vectors

|0, 0〉1 =
∑
m,m′

Cm,m′ |m, m′〉2. (8.85)

It is obvious that such a development has to be perfectly symmetric with
respect to the modes �k and −�k, simply because the vacuum is a state of zero total
momentum. This implies that

Cm,m′ = Cmδmm′ . (8.86)

If we apply the destruction operator a1(�k) to equation (8.85), and use equa-
tion (8.77), we obtain

a1(�k)|0, 0〉1 ≡ 0 =
∑

m

Cm

[
Aa2(�k) − Ba+

2 (−�k)
]
|m, m〉2

= Cm

[
A
√

m|m − 1, m〉2 − B
√

m + 1
]
|m, m + 1〉2

= (ACm+1 − BCm)
√

m + 1|m, m + 1〉2. (8.87)

This leads to the following recurrence relation for the coefficients Cm :

Cm = B

A
Cm−1 =

(
B

A

)m

C0. (8.88)

The initial symmetric vacuum states (8.85) can then be represented as

|0, 0〉1 = C0

∞∑
m=0

(
B

A

)m

|m, m〉2. (8.89)
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Now, we can use the normalization condition in order to determine the re-
maining coefficient:

1〈0, 0|0, 0〉1 = |C0|2
∞∑

m=0

(
B

A

)2m

= |C0|2 1

1 − (B/A)2
= 1. (8.90)

This means that

C0 = eiθ0

√
1 − (B/A)2 (8.91)

where θ0 is an arbitrary phase.
Using equation (8.89), and assuming that θ0 = 0, we can write the final

expression for the symmetric vacuum decomposition (8.85) as

|0, 0〉1 =
√

1 − (B/A)2
∞∑

m=0

(
B

A

)m

|m, m〉2. (8.92)

This result shows that a time boundary at t = 0 will be able to generate,
from an initial vacuum state described by the vector states |0, 0〉1, a number of
2m photons which will appear in symmetric pairs of modes, �k and −�k. According
to the above equation, the probability of finding such a symmetric Fock state with
2m photons at times t > 0, will be given by

p(m) =2 〈m, m|0, 0〉11〈0, 0|m, m〉2 =
[

1 −
(

B

A

)2
] (

B

A

)2m

. (8.93)

p 

(m)

m

Figure 8.1. Probability of photon creation from the vacuum, for B/A = 0.5.
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In order to have a more precise idea of the physical consequences of this
result, let us assume the following plausible situation of a very small time per-
turbation of the refractive index of the medium, such that n2 = n1(1 + δ), with
δ 
 1:

α =
√

n1

n2
� 1 − δ

2
. (8.94)

It means that we have (B/A) � (δ/2), which leads to

p(m) �
(

δ

2

)2m

. (8.95)

This gives an order of magnitude estimate for the probability of creation of
photons out of the vacuum due to a sudden change of the refractive index. This
probability decreases with the number of photons m according to a power law.
The possible generation of photons out of the vacuum inside an optical cavity
with a time-dependent dielectric was recently considered in reference [19].

8.2.3 Probability for time reflection

The above results on the transformation of an initial vacuum by a time discontinu-
ity can be generalized to an arbitrary initial state |φ1〉 ≡ |n, n′〉1, not necessarily
perfectly symmetric (n �= n′). The probability of observing a given final state
|φ2〉 ≡ |m, m′〉2 is determined by

p(m, m′) =2 〈m, m′|φ1〉〈φ1|m, m′〉2. (8.96)

In order to remain as close as possible to our previous discussion of the
classical model for time reflection, we will concentrate on initial completely
asymmetric states, where n �= 0 photons pre-exist in the mode �k and no photons at
all propagate in the opposite direction, which means that n′ = 0. This corresponds
to an initial photon beam propagating along �k for t < 0. The initial photon state
is |φ1〉 = |n, 0〉1.

Using equations (8.84, 8.92), we obtain

|n, 0〉1 = 1√
n! [a

+
1 (�k)]n|0, 0〉1

= 1√
n!

√
1 − (B/A)2

∞∑
m=0

(
B

A

)m

[a+
1 (�k)]n|m, m〉2. (8.97)

We can now use equation (8.77) and, noting that the operators a+
2 (�k) and

a2(−�k) commute, we obtain, after a binomial expansion

[a+
1 (�k)]n = An

n∑
r=0

n!
(n − r)!r ! (−1)n−r

(
B

A

)r

[a+
2 (�k)]n−r [a2(−�k)]r . (8.98)
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Using this in equation (8.97), we arrive at

|n, 0〉1 =
n∑

r=0

∞∑
s=0

bsr (n)|n + s, s〉2 (8.99)

where we have used the new index s = m − r , and the coefficients

bsr (n) = 1√
n! An

√
1 − (B/A)2 n!

(n − r)!r ! (−1)n−r
(

B

A

)s+2r

. (8.100)

From this we can calculate the probability for observing at a time t > 0 a
given photon state |n + s, s〉2:

p(n, s) =2 〈n + s, s|n, 0〉11〈n, 0|n + s, s〉2 =
∣∣∣∣

n∑
r=0

bsr (n)

∣∣∣∣
2

. (8.101)

This result shows that, after the occurrence of a sudden time change at t = 0
of the refractive index of an infinite dielectric medium, there is a probability
p(n, 0) �= 1 of observing a state |n, 0〉2 with the same number of photons propa-
gating with the same wavevector (but with a shifted frequency).

But there is also a finite probability p(n, s) �= 0 of observing a number s > 0
of photons propagating in the opposite direction −�k. This gives us the quantum
explanation for the effect of time reflection already described with the classical
theory of chapter 6.

The above discussion can easily be generalized to include the case of coher-
ent states. It is well known that these particular quantum states have the advantage
of tending to a classical field in the limit of large occupation numbers.

By definition, a coherent state for a given field mode �k is

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |nk〉. (8.102)

This means that we can, in our symmetric representation, define an initial
coherent state as

|α, 0〉1 = e−|α|2/2
∞∑

n=0

αn

√
n! |n, 0〉1. (8.103)

Using equation (8.99) we can write this state vector in terms of the final
states

|α, 0〉1 = e−|α|2/2
∞∑

n,m=0

n∑
r=0

αnbsr (n)√
n! |n + s, s〉2. (8.104)

This expression shows that, in general, an initial coherent state will not
lead to time-transmitted and time-reflected coherent states. This means that the
time discontinuity does not preserve the classical-like properties of the initial
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photon state. However, it is also obvious that, for very large values of the initial
occupation number n ≡ nk the transmitted state will be very similar to the initial
one and close to a similar coherent state, propagating in a similar direction but
with a shifted frequency. This problems would deserve a detailed numerical
study [74].

Furthermore, the non-conservation of the classical-like properties of the ini-
tial states has to be related to the creation of squeezed states (states with no
classical counterpart), which is also associated with the time discontinuity. This
problem is not directly related to photon acceleration and will not be discussed
here.

8.2.4 Conservation relations

We conclude the quantum theory of time refraction by briefly discussing the
energy and momentum conservation relations. Let us first consider the total
energy operator

W =
∫

wk
d�k

(2π)3
=

∫
h̄ωk

[
a+(�k)a(�k) + 1

2

]
d�k

(2π)3
. (8.105)

For an initial state |n, 0〉1, the expectation value of this operator is

〈W 〉1 = 1〈n, 0|W |n, 0〉1

= h̄ω1

(
〈nk |a+(�k)a(�k)|nk〉 + 〈0|a+(−�k)a(−�k)|0〉 + 1

)
= h̄ω1(nk + 1) (8.106)

with ω1 = |k|c/n1.
We have seen that the time discontinuity generates final states |n + s, s〉2,

with a finite probability p(n, s). The expectation value for the energy operator for
t > 0 will then be

〈W 〉2 = 2〈n + s, s|W |n + s, s〉2

= h̄ω2

(
〈n + s|a+(�k)a(�k)|n + s〉 + 〈s|a+(−�k)a(−�k)|s〉 + 1

)
= h̄ω2(nk + 2s + 1) (8.107)

with ω2 = |k|c/n2.
This means that the energy variation introduced by the time discontinuity of

the medium on the electromagnetic spectrum is

�W = 〈W 〉2 − 〈W 〉1 = h̄�ωnk + h̄ω22s. (8.108)

We see that the energy is not conserved for two distinct reasons. The first one
was already observed in the classical description and corresponds to the frequency
shift �ω = ω2−ω1 of the nk photons initially existing in the medium. The second
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one is specific to the quantum nature of light and is due to the generation at t = 0
of oppositely propagating s pairs of photons.

Let us consider next the total momentum operator

P =
∫

pk
d�k

(2π)3
=

∫
h̄�k

[
a+(�k)a(�k) + 1

2

]
d�k

(2π)3
. (8.109)

Using the same kind of approach we can calculate the initial and the final
expectation values of this operator. The result is

〈P〉1 = h̄�knk, 〈P〉2 = h̄�k(n + s − s). (8.110)

This means that the total momentum is conserved, as expected: �P =
〈P〉2 − 〈P〉1 = 0.

8.3 Quantum theory of diffraction

Let us consider a sharp boundary between two stationary dielectric media with
no dispersion. For simplicity, we assume that the media, with dielectric constants
equal to ε1 and ε2, have a boundary at x = 0, and that the propagation is along
the x-axis.

If photons with frequency ω and initial wavevector ki are propagating in
medium 1 and interact with this boundary, we can write for the associated electric
field operator, valid in the semi-infinite region x < 0, and for a given polarization
(λ = 1, or 2)

�E(x, t) = �Ei(x, t) + �Er(x, t) (8.111)

where the incident and the reflected field operators are

�Ei(x, t) = i

√
h̄ω

2ε1

[
a1(ki, t) eikix − a+

1 (ki, t) e−ikix
]

�e(ki) (8.112)

�Er(x, t) = i

√
h̄ω

2ε1

[
a1(kr, t) eikrx − a+

1 (kr, t) e−ikrx
]

�e(kr) (8.113)

with ki = ωn1/c and kr = ki.
In the second medium (x > 0), we can define the electric field operator

associated with the transmitted wave as

�Et(x, t) = i

√
h̄ω

2ε2

[
a2(kt, t) eiktx − a+

2 (kt, t) e−iktx
]

�e(kt) (8.114)

with kt = ωn2/c = ki(n2/n1).
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The corresponding magnetic field operators are determined by similar ex-
pressions:

�Bi(x, t) = ki

ω
Ei(x, t)[�ex × �e(ki)] (8.115)

�Br(x, t) = kr

ω
Er(x, t)[�ex × �e(kr)] (8.116)

and
�Bt(x, t) = kt

ω
Et(x, t)[�ex × �e(kt)]. (8.117)

The quantization of the electromagnetic field is based on the assumption that
the field operators satisfy Maxwell’s equations. This means that the boundary
conditions for these operators have to be formally identical to those for the classi-
cal fields. We know, from classical theory, that the components of the electric and
magnetic fields tangent to the boundary between the two media are continuous.

We can then write, for the operators

( �Ei + �Er) × �ex = �Et × �ex , ( �Bi + �Br) × �ex = �Bt × �ex . (8.118)

Using equation (8.117) and noting that the field is polarized in the perpen-
dicular direction �e(ki) = �e(kr) = �e(kt), we obtain

Ei(0, t) + Er(0, t) = Et(0, t), Bi(0, t) + Br(0, t) = Bt(0, t). (8.119)

At this point we notice that the time-dependent destruction and creation
operators in equations (8.113, 8.114) are of the form

a(k, t) = a(k) e−iωt , a+(k, t) = a+(k) eiωt . (8.120)

Equating separately the terms with the same time dependence, we obtain

a1(ki) + a1(−ki) = α2a2(kt)

a1(ki) − a1(−ki) = a2(kt) (8.121)

with

α =
√

n1

n2
=

(
ε1

ε2

)1/4

. (8.122)

From this we obtain

a2(kt) = 2

1 + α2
a1(ki), a1(−ki) = −1 − α2

1 + α2
a1(ki). (8.123)

These expressions can be seen as the Fresnel formulae relating the incidence,
the transmission and the reflection destruction operators. We can easily realize
that the same expressions are valid for the creation operators. We can then derive
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from (8.123) a more familiar version of the Fresnel formulae, by multiplying them
by exp(−iωt), and by adding their Hermitian conjugates. We therefore get

Ei(0, t) + Er(0, t) = Et(0, t), Ei(0, t) − Er(0, t) = 1

α2
Et(0, t). (8.124)

This is nothing but a different version of equation (8.119). From this, we get

R ≡ Ei(0, t)

Er(0, t)
= −1 − α2

1 + α2
, T ≡ Et(0, t)

Ei(0, t)
= 2α2

1 + α2
. (8.125)

These operator relations are equivalent to equation (8.123), and they are
formally identical to the Fresnel formulae for the classical fields. The same result
could be obtained by using a different method [94].

For comparison with the time reflection case, it is interesting to consider
the energy and momentum conservation relations. Let us start with the number
operator associated with the incident photon states: Ni ≡ a+(ki)a(ki). By using
equations (8.123) and noting that a2(kt) and a1(−ki) commute, we obtain

Ni = [a+
1 (−ki) + a2(kt)][a1(−ki) + a2(kt)]

= a+
1 (−ki)a1(−ki) + a+

2 (kt)a2(kt) = Nr + Nt. (8.126)

We see from here that, for a generic quantum state of the radiation field,
the expectation value of the incident number operator Ni is equal to the sum of
the expectation values of the reflected and transmitted photons: ni = nr + nt.
In addition, because the photons maintain their frequency upon reflection and
refraction, the total energy is also conserved:

�W = (Wr + Wt) − Wi = h̄ω(nr + nt) − h̄ωni = 0. (8.127)

We see that photon creation from a vacuum around a space boundary cannot
exist, in contrast with the case of a time boundary. On the other hand, the total
momentum is not conserved, in agreement with the results of the classical theory:

�P = (Pr + Pt) − Pi = h̄(krnr + ktnt) − h̄kini

= h̄(ki + kt)nt = h̄ki

(
1 + 1

α2

)
nt. (8.128)

Let us conclude with a comment on the more general case of a moving space
boundary. It is clear from the above results that we can follow the approach used
in the classical theory: first, we make a Lorentz transformation to the reference
frame moving with the dielectric boundary. Second, we repeat the above quan-
tization procedure in the moving frame and, finally, we make an inverse Lorentz
transformation back to the rest frame. The result cannot be other than a relation
between the incidence, reflection and transmission field operators identical to that
obtained for the classical fields.
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This leads us to the conclusion that the quantum theory of photon refraction
at a moving boundary will not predict the creation of photons from a vacuum,
because such an effect is already absent in the moving frame (or for a boundary at
rest). This is in contrast with the quantum theory of section 8.2 which shows that
such an effect is present for a time discontinuity, or equivalently, for a boundary
moving with an infinite velocity.



Chapter 9

New developments

The theory of photon acceleration, as presented in its various versions in the
present book, has recently been extended to new and exciting areas of physics.
Two examples are given here.

One example is related to the new field of neutrino interactions with dense
plasmas [13]. Here, the striking similarities between the photon and the neutrino
dispersion relations in a plasma can be explored [68]. A considerable amount
of theoretical work has already been performed by several authors, leading to an
already quite coherent view of the collective neutrino–plasma interactions [106].

The other example concerns the coupling between photons and the gravita-
tional field. Of particular interest is the attempt to describe photon acceleration
processes associated with gravitational waves [72]. Given the extreme difficulty
of this subject, these results have to be received with some caution, and can be
considered as merely tentative. But, we firmly believe that these attempts can be
very positive for the progress of knowledge in this yet quite unexplored area.

9.1 Neutrino–plasma physics

The neutrino interaction with very dense plasmas is of considerable importance in
the early universe and during supernova explosions. The mechanisms for photon
acceleration in non-stationary media can easily be transposed to neutrino–plasma
physics.

It is well known that, in the presence of matter, the neutrino effective mass
is changed due to the weak-current interaction. In particular, the charged current
couples the electron neutrinos with the electrons existing in a dense plasma.

In order to describe this weak coupling we can use the dispersion relation of
a neutrino in a plasma, relating its momentum �p and its energy E [10, 119]:

(E − V )2 − p2c2 − m2
νc4 = 0 (9.1)

177
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where mν is the (eventually existing) neutrino rest mass and V is an equivalent
potential energy such that

V = √
2GF

ε0m

e2
ω2

p ≡ gω2
p. (9.2)

Here GF is the Fermi constant for weak interactions, e and m are the electron
charge and mass and ε0 is the vacuum permittivity. Because the coupling constant
g is very small, we can assume, even for extremely dense plasmas, that the
equivalent potential energy V is always much smaller than the total neutrino
energy E .

We also know that the standard theory for electro-weak interactions assumes
a zero value for the neutrino rest mass mν [88], but some recent observations of
solar neutrinos point to the existence of a small rest mass [32]. For that reason,
we opt here for retaining the rest mass in the neutrino dispersion relation. This
relation can be rewritten in terms of the neutrino frequency ω and of the neutrino
wavevector �k (using h̄ = 1), for a space- and time-varying plasma, as

ω(�r , �k, t) =
√

k2c2 + m2
νc4 + gω2

p(�r , t). (9.3)

This is indeed very similar to the photon dispersion relation. Here we can
also use the ray equations for the neutrino field, which are formally identical to
the equations for single photon trajectories. In the presence of electron plasma
perturbations moving with a velocity �u, the electron plasma frequency is such
that ω2

p(�r , t) ≡ ω2
p(�η), with �η = �r − �ut .

Following the procedure described in chapter 3, we can establish an invariant
for the neutrino trajectories in the form I = ω − �k · �u. From this we conclude
that the total energy exchange between the neutrino and the background plasma
medium, when it crosses the moving plasma boundary (for instance, during the
collapse of an exploding neutron star) is

�E = gω2
p0

β

1 − β
(9.4)

where β = |u|/c and where we have supposed counter-propagation between the
neutrino and the plasma front.

It should be noticed that, as before for the photon case, this process of energy
exchange between the particle and its background plasma medium is linear and
not resonant, which means that all the particles with the same initial energy will
exchange the same amount of energy with the medium.

This simple approach is based on the classical description of the neutrino,
equivalent to the geometric optics approximation for the photon field. This is
clearly valid as long as the plasma space and timescales are much larger than
those characterizing the neutrino state.

But we can do better and use a quantum mechanical description of this non-
resonant interaction between the neutrinos and the plasma medium. For that
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purpose, we derive from the above dispersion relation (9.1) a Klein–Gordon wave
equation by making the usual replacement:

�p → −ih̄
∂

∂�r , E → ih̄
∂

∂t
. (9.5)

From this we get(
h̄2c2∇2 − m2

νc4 − h̄2 ∂2

∂t2

)
ψ = 2ih̄V

∂ψ

∂t
(9.6)

where ψ is the normalized wavefunction associated with the neutrino field.
We could improve our quantum description of the neutrino field by replacing

this Klein–Gordon equation by a more adequate Dirac equation. But, the present
formulation stays valid as long as we neglect the coupling between different
helicity states.

We are interested in the case where the effective potential V (�r , t) is associ-
ated with a plasma perturbation moving with a velocity �u. If the perturbation is
nearly uniform in the plane perpendicular to its velocity, we can choose the x-axis
as parallel to �u and reduce the wave equation with its one-dimensional version:(

∂2

∂x2
− 1

c2

∂2

∂t2
− m2

νc2

h̄2

)
ψ(x, t) = 2i

h̄c2
V (x − ut)

∂

∂t
ψ(x, t). (9.7)

Let us now use the D’Alembert transformation of variables:

ξ = x − ut, η = x + ut. (9.8)

We can easily see that(
∂2

∂x2
− 1

c2

∂2

∂t2

)
= (1 − β2)

(
∂2

∂ξ2
+ ∂2

∂η2

)
+ 2(1 + β)2 ∂2

∂η∂ξ
. (9.9)

When u = c, or β = 1, this reduces to the expression(
∂2

∂x2
− 1

c2

∂2

∂t2

)
= 4

∂2

∂η∂ξ
. (9.10)

When written in terms of the new variables, the wave equation (9.7) becomes[
(1 − β2)

(
∂2

∂ξ2
+ ∂2

∂η2

)
+ 2(1 + β)2 ∂2

∂η∂ξ
− m2

νc2

h̄2

]
ψ(ξ, η)

= 2iβ

h̄c
V (ξ)

(
∂

∂η
− ∂

∂ξ

)
ψ(ξ, η). (9.11)
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Because the potential V is independent of the variable η, we can introduce a
Fourier transformation in that variable, such that

ψ(ξ, η) =
∫

ψq(ξ) eiqη dq

2π
. (9.12)

This means that we can reduce the wave equation to[
(1 − β2)

(
∂2

∂ξ2
− q2

)
+ 2iq(1 + β)2 ∂

∂ξ
− m2

νc2

h̄2

]
ψq(ξ)

= 2iβ

h̄c
V (ξ)

(
iq − ∂

∂ξ

)
ψq(ξ). (9.13)

In order to understand the meaning and to test the validity of this form of
wave equation, let us first briefly consider the particular case of neutrino motion in
a vacuum: V (ξ) = 0. In this trivial case, we can perform a Fourier transformation
in the remaining variable, ξ , of the form

ψq(ξ) =
∫

ψqp eipξ dp

2π
. (9.14)

The wave equation then leads to a neutrino dispersion relation of the form

(1 − β2)(p2 + q2) + 2(1 + β2)pq + m2
νc2

h̄2
= 0. (9.15)

This strange expression has to be equivalent to the dispersion relation (9.3),
with ωp = 0, which means it is equivalent to

ω2 − k2c2 − m2
νc4

h̄
= 0. (9.16)

In order to be convinced of such an equivalence, we notice that

∂

∂x
= ∂

∂ξ
+ ∂

∂η
,

∂

∂t
= u

∂

∂η
− ∂

∂ξ
. (9.17)

This leads to the two relations

k = p + q, ω = u(p − q). (9.18)

Using this in equation (9.15), we obtain equation (9.16). It means that this is
indeed the neutrino dispersion relation in a vacuum, written in terms of the more
complicated quantities p and q .

The physical meaning of these new variables is given by (9.18): their sum is
the neutrino momentum and their difference is its energy divided by its velocity.
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If the neutrino rest mass was made equal to zero, these two quantities, k and ω/u,
would be identical.

We can now return to the non-trivial case of a slowly varying potential,
V (ξ) �= 0. Here, we can try a WKB solution for the wave equation (9.13) of
the form

ψq(ξ) = ψq0 exp

(
i
∫ ξ

p(ξ ′) dξ ′
)

. (9.19)

With this, we can obtain a dispersion relation, which is locally valid in ξ :

(1−β2)
[

p(ξ)2 + q2
]
+2(1+β2)p(ξ)q+ m2

νc2

h̄2
= 2β

h̄c
V (ξ) [q − p(ξ)] . (9.20)

For this type of solution to be valid, equations (9.18) have to be replaced by
similar ones, valid only locally, and which can be written as

2q = k(ξ) − ω(ξ)

u
, 2p(ξ) = k(ξ) + ω(ξ)

u
. (9.21)

Here, the quantities k(ξ) and ω(ξ) represent the local values of the
wavenumber and frequency for a given neutrino state characterized by the
quantity q . This quantity remains constant over the entire trajectory. Due to the
existence of such an invariant (which also appeared in the classical theory), we
can easily calculate the change of the neutrino energy when it interacts with a
non-stationary plasma background, in the same way as we have established the
photon frequency shift in a non-stationary optical medium.

In particular, if we assume that the plasma potential tends to zero at infinity,
V (ξ → ∞) = 0, and if in the other side of the discontinuity at ξ = 0 its value is
V0, then we can derive from the invariance of q an energy shift equal to the one
given by equation (9.4). But, apart from confirming the classical results for the
energy variation, the quantum description can also reveal a qualitative new effect,
namely the possibility of quantum reflection at the moving plasma boundary.

Using equations (9.21), we can easily obtain a relation between the energy
of the incident and the reflected energy states, Ei = h̄ωi and Er = h̄ωr:

−2qu = kiu + ωi = −kru + ωr. (9.22)

Assuming that we nearly have kc = ω, we get from this the relativistic mirror
relation ωr = ωi(1 + β)/(1 − β). According to the same equations (9.21), the
values of the quantum number p associated with the incident and the reflected
wave solution, for the same value of q , are different:

2piu = kiu − ωi � −ωi(1 − β), 2pru = −kru − ωr � −ωr(1 + β). (9.23)

Using the above relativistic mirror relation, we obtain

pr � pi
(1 + β)2

(1 − β)2
. (9.24)
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The probability amplitudes for the reflected neutrino state can also be derived
from the wave equation, by using a mode coupling approach. If we assume wave
function solutions of the form

ψq(ξ) =
∑
j=1,2

ψq j (ξ) ei
∫ ξ p j (ξ

′) dξ ′
(9.25)

where ψq j (ξ) are slowly varying amplitudes such that

∂ψq j

∂ξ

 p jψq j , (9.26)

this means that we can write

∂2

∂ξ2
ψq j � −p2

jψq j + ip j
∂ψq j

∂ξ
. (9.27)

Using the solution (9.25) in the wave equation (9.13), and assuming that the
local dispersion relation (9.20) stays valid for both the incident and the reflected
particle state, we obtain

∑
j

[
(1 − β2)p j (ξ)

] ∂ψq j

∂ξ
ei

∫ ξ p j (ξ
′) dξ ′

� 2β

h̄c
V (ξ)

∑
l �= j

[q − pl(ξ)] ψql ei
∫ ξ pl (ξ

′) dξ ′
. (9.28)

We know that the neutrino–plasma interaction is very weak, even for very
dense plasmas, due to the extremely small value of the Fermi constant GF. This
means that we can assume, in quite general conditions, that the incident mode ψq1
is dominant, and that its amplitude is only slightly perturbed by the interaction
with the moving plasma discontinuity.

We can then write the evolution equation for the reflected mode in the para-
metric form

∂ψq2

∂ξ
= w(ξ)ψq1 (9.29)

where the coupling coefficient is determined by

w(ξ) = 2

h̄c

β

(1 − β)2

V (ξ)

p1(ξ)
ei

∫ ξ
(p1−p2) dξ ′

. (9.30)

This expression shows that the coupling between the initial and the reflected
state is proportional to the velocity of the moving plasma perturbation, or equiv-
alently to the value of β. It is also proportional to the Fourier component of the
potential V (ξ) for p = p1 − p2.
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This can be seen by integrating equation (9.29) and assuming that the initial
value of the reflected state amplitude is zero (or ψq2(ξ0) = 0):

ψq2(ξ) = ψq1

∫ ξ

ξ0

w(ξ ′) dξ ′. (9.31)

We can further explore the analogy between the neutrino and the photon
coupling with a non-stationary background plasma by developing a kinetic theory
for the neutrino gas present in the medium. The result is a neutrino kinetic
equation, or neutrino fluid equations, similar to those derived in chapter 4 for
the photon gas [112].

We should also keep in mind that the neutrino gas will react back on the
plasma electrons. This can be described by a neutrino pressure term, similar to
the radiation pressure considered before, which has to be added to the electron
equations of motion. Associated with this pressure term we can likewise define
an equivalent electric charge for the neutrino gas [69, 83, 85, 113].

The result of this mutual coupling between the neutrino and the electron gas
in a plasma leads to the possibility of neutrino Landau damping of relativistic elec-
tron plasma oscillations [73], and to the possibility of transferring a considerable
fraction of the energy of a neutrino beam into the plasma, by exciting electron
plasma waves in the medium [102]. Other surprising results arising from the
study of this collective neutrino plasma are the generation of magnetic fields and
inhomogeneities in the early stages of the universe [105].

9.2 Photons in a gravitational field

The large variety of effects leading to a frequency shift (or to a spectral change) of
the electromagnetic radiation, which we have classified under the name of photon
acceleration, present some analogies with the well-known gravitational frequency
shift occurring when photons escape from regions of strong gravitational fields.
Even if the gravitational effects are described by a completely different theoretical
approach, one can question the possible connections between these gravitational
frequency shifts and our concept of photon acceleration.

Such a question is relevant, not only because it can lead to a deeper and more
global view of photon dynamics, but also because it is known that, at least in some
limit, a gravitational field can be adequately described as a dielectric medium in a
flat space [55, 126]. We can then make the bridge between the photon propagation
in a dielectric medium (in the absence of a gravitational field) as described in this
book, and the photon propagation in the presence of a gravitational field (and in
the absence of a medium).

9.2.1 Gravitational redshift

We show first that the Hamiltonian ray theory can be easily extended to include the
influence of the gravitational fields. This can be done by choosing a convenient
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definition for the photon frequency, as explained below. This new theoretical
approach will then provide an alternative derivation of the gravitational redshift.
Once this question is clarified, we can eventually use a kinetic photon theory in a
gravitational field, in the same way as we did for plasmas and for other dielectric
media.

Let us consider an electromagnetic wavepacket characterized by the four-
vector ki ≡ (ω/c, �k), where ω is the mean frequency and �k the mean wavevector.
We know that, in a vacuum and in the absence of a gravitational field, the absolute
value of this four-vector vanishes:

ki ki = 0. (9.32)

If a wave is propagating in a slowly varying gravitational field we can intro-
duce an eikonal ψ , such that:

ki = ∂ψ/∂xi . (9.33)

If we replace this in the above condition for the absolute value of ki we
obtain the eikonal equation [55]

gik ∂ψ

∂xi

∂ψ

∂xk
= 0 (9.34)

where gik are the components of the metric tensor.
We will illustrate our ideas by using a very simple metric tensor such that,

for an arbitrary but constant gravitational field, the spatial coordinate system is
Cartesian at a given point and at a given time: gik = −δik , where the indices
i and k are supposed to take the values 1, 2 and 3, corresponding to the space
coordinates. As concerns the time coordinates, we use g00 �= 1. More realistic
(but also more complicated) metric tensors will be discussed at the end of this
section.

If we define the frequency of the electromagnetric wave ω as the derivative
of the eikonal function ψ with respect to the time variable

ω = −c
∂ψ

∂x0
, (9.35)

we obtain from equation (9.34) the following dispersion relation:

ω2 = k2c2g00 (9.36)

where we noticed that g00 = 1/g00.
The same result could be obtained by noting [55, 126] that the influence

of a (quasi-static) gravitational field on the electromagnetic wave propagation
is equivalent to the change of the dielectric constant of a vacuum from ε0 to
ε0/

√
g00, and a similar change of the magnetic permeability of a vacuum from

µ0 to µ0/
√

g00.
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Introducing a scalar potential V , such that g00 = 1 + 2V/c2, we can rewrite
this photon dispersion relation as

ω = kc

√
1 + 2

V

c2
� kc + k

c
V . (9.37)

We know that the frequency ω = ω(�r , �k, t) can be used as the photon
Hamiltonian for the ray equations written in the canonical form

d�r
dt

= ∂ω

∂ �k �
(

c + V

c

) �k
k

d�k
dt

= −∂ω

∂�r � −k

c

∂V

∂�r .

(9.38)

For the total time derivative of the Hamiltonian function, we can also write

dω

dt
= ∂ω

∂t
� k

c

∂V

∂t
. (9.39)

This equation shows that, for a static gravitational field, the frequency ω, as
defined by equation (9.35), is a constant of motion. This will be discussed in more
detail below.

If the potential V is due to a single massive object (for instance a star),
of mass M and radius R, we can write V (�r) = −G M/r , for r ≥ R. One
photon emitted at the surface of that star will have the initial wavenumber k1
such that ω = k1c − (k1/c)G M/R. This photon will be observed on earth with a
wavenumber k2, such that (r → ∞) ω = k2c.

We obtain from these two expressions of ω the following change in the
wavenumber:

�k = k2 − k1 = −(k1/c)G M/R < 0. (9.40)

This means that the observed wavelength observed on earth will be larger
than the one emitted at the star surface (�λ > 0). This is the well-known
gravitational redshift.

In the present formulation, we could be led to the conclusion that the grav-
itational redshift appears only as a shift in wavelength, and not a shift in fre-
quency, because the photon frequency ω, as defined by equation (9.35), is an
invariant. However, this apparent contradiction with the conventional description
of the gravitational redshift disappears if we notice that we are using a different
definition for the photon frequency. It is well known that the conventional view
is based on the photon ‘proper frequency’ ωτ , which is defined as the derivative
of the eikonal with respect to the proper time τ (notice that this is the observer
proper time and not the photon proper time):

ωτ = −∂ψ

∂τ
= − ∂ψ

∂x0

∂x0

∂τ
= ω√

g00
. (9.41)
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With this local definition of frequency we get ωτ = kc everywhere, meaning
that �ωτ = �kc. In this way, the gravitational redshift becomes a frequency shift
as well.

We propose to use the universal time ω, instead of the proper time ωτ , be-
cause it coincides with the Hamiltonian function appearing in the photon canoni-
cal equations (9.38). In addition, as discussed below, these equations can easily be
extended to other situations and used to describe several other important effects,
such as the photon bending in the vicinity of a star or the photon acceleration by
a gravitational wavepacket.

9.2.2 Gravitational lens

Let us first discuss a gravitational lens, or photon bending near a massive star.
The massive astrophysical objects that can produce important light bending are
also very often surrounded by dense and warm plasmas. It is then useful to study
the photon equations of motion in a plasma and in a gravitational field. In order
to keep the discussion formally simple, we include the plasma dispersive effects
but neglect the influence of static magnetic fields.

For V = 0, the dispersion relation for photons in a non-magnetized plasma
is simply: ω2

τ ≡ ω2 = k2c2 + ω2
p, where ωp is the electron plasma frequency. If

a static gravitational field is also present, we have V �= 0, and, using the above
metric transformation, we obtain ω2 = [k2c2 + ω2

p]g00, or more explicitly

ω =
√

(k2c2 + ω2
p)

(
1 + 2

V

c2

)
. (9.42)

Let us again assume that the static gravitational field is related to a star of
mass M and radius R. We can then replace V (r) = −G M/r , for r > R in
this dispersion relation and use it as the appropriate Hamiltonian function for the
photon canonical equations

ω ≡ ω(�r , �k) =
√

(k2c2 + ω2
p)

(
1 − α

r

)
(9.43)

with α = 2G M/c2.
In general, the plasma density will decay exponentially away from the sur-

face of the star (r > R), according to a Boltzmann distribution. This means that
we can rewrite it as

ω2
p = ω2

p0e−mV (r)/T � ω2
p0

(
1 − β

r

)
(9.44)

where T is the plasma temperature, β = mG M/T and the approximate expres-
sion is valid for a warm plasma such that T � mV (r).
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The photon equations of motions (9.38) can now be written as

d�r
dt

= c2

ω

(
1 − α

r

) �k
d�k
dt

= −∂ω

∂r
�er .

(9.45)

In the second of these equations we have used spherical coordinates �r =
(r, θ, φ). For motion in the plane φ = const, we can write

�k = kr �er + (L/r)�eθ (9.46)

where L = const is the angular momentum of the photon trajectory. Assuming
that along the photon trajectory we always have (α/r) 
 1 and neglecting the
term in 1/r2, we obtain an approximate expression for the Hamiltonian:

ω � c

√
k2

r + L2

r2
+ m2

effc
2 − a

r
. (9.47)

Here we have used the photon equivalent mass in a plasma: meff =
ωp0/c2.We have also introduced the new parameter

a = αω

[
1 − ω2

p0

ω2

(
1 − β

α

)]
. (9.48)

This approximate photon Hamiltonian is formally identical to that of a rel-
ativistic particle with mass meff, moving in a Coulomb field. The corresponding
trajectories are well known from the textbooks [55] and it is not necessary to state
them here.

What is important to notice is that this description of photon motion around
a massive object generalizes the usual description of gravitational bending for the
case of a plasma in a gravitational field. Notice also that diffraction due to plasma
inhomogeneities around a star can dominate over purely gravitational bending if
β 
 α. In this case we have a � βω2

p0/ω. In the absence of a plasma, we recover
the well-known results concerning light bending by a star.

9.2.3 Interaction of photons with gravitational waves

It is already quite surprising and rewarding that we could rederive, from our
simple photon equations of motion, the gravitational redshift and the gravitational
lens effects, and moreover, that we could easily include the plasma refraction
effects. The inclusion of plasma effects is quite interesting because stars or other
massive objects are usually surrounded by warm and dense plasmas which can
eventually influence the total lensing effect.
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Let us now consider a much less obvious case, where the static gravitational
field of the previous two cases is replaced by a time-dependent gravitational field.
This is, in general, a difficult problem because in order to solve it, we have to
make explicit use of the Einstein equations of general relativity.

However, if this time-varying field is due to an infinitesimal gravitational
wavepacket, propagating in an otherwise flat space–time, we can still define a
universal frequency and use the dielectric description of gravitation as an accept-
ably good approximation [126]. This means that we can use, as a first-order
approximation, a flat space where the spatial part of the metric tensor is still
Euclidian and the temporal metric component g00 becomes a function of time.

Let us neglect plasma effects and consider the propagation of a photon in a
vacuum. Equation (9.36) shows that the universal photon frequency ω is no longer
a constant, and the same will happen to the proper photon frequency ωτ . We can
then say that, for a time variation g00, photon acceleration (or energization) by the
gravitational field can eventually occur.

In order to derive explicit results, let us use the following scalar potential:

V (�r , t) = V0 + Ṽ (�r − �v f t). (9.49)

Here �v f is the velocity of the infinitesimal gravitational field perturbation
and Ṽ its amplitude. In analogy with several other similar occasions, we can
introduce a canonical transformation from (�r , �k) to a new pair of variables (�η, �p),
such that �η = �r − �v f t and �p = �k.

The photon equations of motion become

d�η
dt

= ∂ω′

∂ �p
d �p
dt

= −∂ω′

∂ �η .

(9.50)

The new Hamiltonian associated with these canonical equations is

ω′(�η, �p) = ω(�η) − �v f · �p

=
{

(p2c2 + ω2
p)

[
1 + 2

V0

c2
+ 2

Ṽ (�η)

c2

]}1/2

− �v f · �p. (9.51)

Several physical configurations can be studied with these Hamiltonian for-
mulations and all lead, even for very small moving gravitational perturbations,
to strong photon acceleration. This is due to the nearly resonant character of the
photon–gravitational-wave interaction because of their close group and phase ve-
locities. Moreover, such an interaction takes place over extremely large distances,
which enhances the process of photon acceleration.

In order to illustrate this general feature, let us consider two different situ-
ations. In the first one we assume that, near some radiating source (for instance
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a collapsing star), a gravitational shock wave starts to form before being radiated
away, and interacts with the surrounding photons. Strictly speaking, this first
example is not quite compatible with our assumption of a small gravitational
perturbation travelling in a flat space. However, we will keep it here as a first
and illustrative attempt to formulate a new problem that will be interesting for a
future and more accurate solution.

We will retain the flat space approximation and describe the shock front in
the following simple form of a potential perturbation:

Ṽ (�η) = Ṽ

2
[1 + tanh(�k f · �η)]. (9.52)

Here �k f determines the scale of the moving shock front. The photon equa-
tions of motion (9.50) could be solved numerically. However, because we are
concerned with order of magnitude estimates, based on a very rough description,
it is more interesting to extract some results from the invariance of ω′. This will
allow us to discuss the relevant properties of the photon motion.

If the photons are emitted at some point η 
 0, their initial frequency ω1 is
such that

ω′ = ω1 − �v f · �k1 (9.53)

where we assume that the shock front velocity �v f and the initial photon wavevec-
tor �k1 are nearly parallel.

After crossing the entire shock front, the photons will acquire a final fre-
quency ω2 and a final wavevector �k2, such that

ω′ = ω2 − �v f · �k2. (9.54)

Equating these two different expressions for the invariant ω′, we obtain

ω2 = ω1
1 − β(1 − δ)

1 − β(cos θ2/ cos θ1)(1 − δ + Ṽ /c2)
(9.55)

where θ1 and θ2 are the initial and final angles between the photon wavevector
and the front velocity, and where we have introduced the following auxiliary
parameters:

β = v f

c
cos θ1, δ = V0

c2
+ ω2

p

2k2
1c2

. (9.56)

In order to have an estimate of the total frequency up-shift, let us assume that
θ1 = 0 and that β ∼ 1. We obtain

�ω = ω2 − ω1 = ω1
Ṽ

c2

β

1 − β
. (9.57)

For a perturbation Ṽ /c � 10−1 and ε = 1 − β � 10−8, this leads to
ω2 � ω1 × 107, which means that the background infrared or visible photons
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existing near the exploding star can be accelerated up to the gamma ray frequency
range. Notice that the time necessary for the photon to cross the front will be, in
this case, equal to τ = (2/k f ) seconds, if k f is given in cm−1.

As a second example, let us consider photons interacting in a vacuum with
an infinitesimal gravitational wavepacket. In contrast with the previous example
this is now well inside the domain of validity of the dielectric model for the
gravitational field. Because we are considering propagation in a vacuum, we use
ωp = 0 and write

Ṽ = Ṽ cos(�k f · �η). (9.58)

The photon frequency shift will occur when it travels from a region of grav-
itational wave maximum to a wave minimum. In this case, the same kind of
analysis leads to a maximum frequency shift which is twice the value given by
equation (9.57).

But now we have a much smaller field perturbation (Ṽ /c2 
 1) and, because
the photons and the gravitational wave travel almost exactly at the same speed, we
have to assume that the angles θ1 and θ2 are small but not exactly zero. Otherwise,
the total frequency shift would be zero.

We can then write

�ω � ω1
4

θ2
2

Ṽ

c2
. (9.59)

For an extremely small perturbation Ṽ /c2 � 10−9 we still obtain photon
accelerations up to the gamma ray energies ω2 � 4ω1 × 107 for a very small
angle between the photon wavevectors and the gravitational wavevechtor: θ2 �
10−8 radians. The distance necessary for the photons to travel from a maximum
to a minimum of the gravitational wavepacket will be d � k−1

f × 10−2 parsecs,
which is quite small on a cosmological scale.

We should point out that in these estimates we have neglected the focusing
effects associated with the difference between the initial and the final angles, θ1
and θ2. However these two angles can easily be related, due to the existence of
a second invariant for the photon trajectories, as discussed in chapter 3. This
invariant states the conservation of the transverse photon wavevector, and can be
written as k1 sin θ1 = k2 sin θ2.

The result of this two-dimensional effect is to focus the photon trajectories
in the direction of the gravitational wave propagation, leading to a decrease in the
local angles θ and an increase in the effective β. This is due to the fact that the
photon acceleration process increases the parallel photon wavevector, while the
transverse one is kept constant. It then enhances the acceleration process (at the
expense of a larger interaction distance) and broadens the region of photon phase
space with a significant frequency up-shift.

Notice that the value of β = 1 is never exactly attained by these trajectories.
This means that the exactly resonant condition between the photons and the grav-
itational waves, for which no acceleration exists, is an ensemble of zero measure
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in the photon phase space and, quite fortunately, is physically irrelevant to this
problem.

It should be noted that, for arbitrary field amplitudes, the wave solutions of
the Einstein equations generally imply that, apart from g00, other time-dependent
components of the metric tensor should also be included. This is equivalent to
saying that, in general, a universal frequency cannot be defined. This will lead to
the necessity of using a different dispersion relation.

9.2.4 Other metric solutions

Let us briefly show how the above description of photon motion in a gravita-
tional field can be improved, by using more accurate metric tensors. First of all,
we should notice that the general dispersion relation in a vacuum (9.34) can be
explicitly written as

g00ω2 − 2g0αωkαc + gαβkαkβc2 = 0 (9.60)

where α = 1, 2, 3, ω = −ck0, and we have used the symmetry g0α = gα0.
If the vacuum was replaced by a plasma medium, we would have to replace

the zero, in the right-hand side of this equation, by ω2
p, due to the existence of a

cut-off frequency. We can then use the explicit form of the Hamiltonian function
ω = ω(kα, xα, t), where t = x0/c in the photon canonical equations (2.97).

These equations (9.60, 2.97) are valid in quite general conditions. Let us
give some examples of metric solutions, which can be physically more accurate
than the simple example used above.

For instance, if we have a weak gravitational field, the interval is determined
by

ds2 = gi j dxi dx j =
(

1 + V

c2

)
c2 dt2 −

(
1 − V

c2

)
dl2. (9.61)

If the field is created by a star with mass M , we have V = −2G M/r , as
stated above. The corresponding metric tensor will have components g00 = (1 +
V/c2) and gαα = −(1 − V/c2), for α = 1, 2, 3. The dispersion relation in a
plasma will be given by

ω2 =
(

ω2
p − k2c2

gαα

)
g00. (9.62)

This is not very much different from equation (9.42). Let us now consider a
Schwarzschild type of metric, which is valid for a non-rotating spherical distribu-
tion of mass. The interval can be written in spherical coordinates as

ds2 = A(r)c2 dt2 − B(r) dr2 − r2 dθ2 − r2 sin2 θ dξ2 (9.63)

where A(r) and B(r) are functions of the radial coordinate r .
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The photon dispersion equation can now be written as

ω2 − ω2
p

B(r)
= A(r)

B(r)
k2

r + A(r)

r2
k2⊥ (9.64)

with

k2⊥ = k2
θ + k2

ξ

sin2 θ
. (9.65)

This expression shows a clear asymmetry between the radial and the perpen-
dicular propagation.

As a final example of a photon dispersion relation in a gravitational field, let
us consider the metric solution of a gravitational wavepacket of the form

ds2 = c2 dt2 − dl2 + f (x, t)(c dt − dx)2. (9.66)

We can use

f (x, t) = a cos(k0x0 + k1x1) = a cos(qx − �t) (9.67)

where a and � are the gravitational wave amplitude and frequency.
It can easily be shown that the photon dispersion relation in a vacuum takes

the form

(1 − f )
(ω

c

)2 + 2 f
(ω

c

)
k‖ − (1 + f )k2‖ − k2⊥ = 0. (9.68)

Here, we have used the photon wavenumbers parallel and perpendicular to
the direction of the gravitational wave propagation: k‖ = k1 and k2⊥ = k2

2 + k2
3.

Solving for ω, we obtain

ω = − f

1 − f
k‖c ± c

√
k2‖

(1 − f )2
+ k2⊥

1 − f
. (9.69)

From here we can see that, for photon propagation perpendicular to the
direction of the gravitational wave, the dispersion relation is simply given by
ω = k⊥c/(1 − f ), and for parallel photon propagation, we are reduced to the
case of pure vacuum ω = k‖c. This last expression shows that photons with an
exactly parallel motion cannot be accelerated by the gravitational wave, as already
stated before.

These various examples of metric solutions, and of the corresponding pho-
ton dispersion relations, show that the exchange of energy between the electro-
magnetic (or photon) field and the gravitational field is possible in a variety of
situations. For a stationary gravitational field, our approach leads to a new and
simple derivation of the well-known gravitational redshift and gravitational lens
effects.

For moving gravitational field perturbations, we have shown that the photons
can resonantly interact (in a plasma or in a vacuum) with gravitational shocks and
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with gravitational wavepackets. According to our rough estimates, this interaction
will eventually lead to very high frequency up-shifts, over distances well inside
the cosmological constraints.

This could eventually provide a natural explanation for the recently observed
gamma ray bursts [75]. However, our estimates need to be validated by more
credible metric solutions and more accurate numerical calculations.

Nevertheless, it results from our equations that such an interaction is univer-
sal, in the sense that it affects every photon moving in a gravitational field. We
also believe that, apart from its specific astrophysical implications, our simple
approach points to a new and fundamental coupling mechanism between the
electromagnetic and the gravitational waves which should be investigated in the
future.

Actually, it has been known for quite some time that a gravitational wave
can be Landau damped by a background photon gas [18], but the physical conse-
quences of such damping, which is the statistical counterpart of the acceleration
of photons by a gravitational wave, has not yet been explored.

9.3 Mean field acceleration processes

This section contains a few concluding remarks. We have started with very simple
ideas concerning the processes of time refraction and time reflection, which cor-
respond to a natural extension of the familiar concepts of refraction and reflection
into the space–time domain.

The frequency shift resulting from these basic processes is what we call
photon acceleration. We have shown that it can occur in a large variety of physical
situations, in plasmas, in optical fibres or other optical media, and that it is more
effective when the space–time disturbance of the medium travels with a velocity
nearly equal to that of the photons.

Presently, a significant fraction of the physics community is still reluctant to
talk about photon acceleration and prefers to use other terms such as frequency
shift or phase modulation. This is not, in principle, a big problem, because what
is important in physics is to have an accurate view of the physical processes,
independent of the way they are known. However, the choice of the words is
never completely innocent or arbitrary, and reflects the ideas that we have about
the physical reality.

We have shown in this work that the photons in a medium are subjected to
a force, proportional to the time derivative of the refractive index. Furthermore,
their dynamical interaction with electrostatic waves in a plasma is very similar to
that of a charged particle (an electron or an ion) interacting with the same wave.

In particular, photons can oscillate and can be trapped in the wavefield. On
the other hand, the plasma waves can be damped by photon Landau damping, in
the same way as they are Landau damped by the electrons.

We have also found that an effective photon mass, and an equivalent electric
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charge (or a dipole) for the photons in a medium, could be defined. This shows
that our familiar view of photons as particles with no rest mass, and with no
electric charge, can only apply to ‘bare’ photons moving in a vacuum and not to
‘dressed’ photons moving in a background medium. This means that we should
not deny for photons what we accept as true for other particles: that, by receiving
energy from the fields with which they interact, they are energized or, in other
words, they are accelerated.

We can still argue that photons correspond to a particle description of the
electromagnetic field, and that more generally, a wave description is necessary.
But the same is also true for the other fields and for the other particles.

This means that the use of photon acceleration as a genuine physical concept
can lead to a more global view of the physical processes and of the elementary
interactions between the various particles and the various fields. What, at first
sight, is seen as a more fashionable choice of terminology can lead us to ask new
questions and eventually to get a deeper understanding about physics.

As an example, we could say that the equivalent charge of a photon in a
plasma is nothing but a different way of describing the well-known ponderomo-
tive force, or radiation pressure effects. However, the fact that we were able to
isolate the new concept of an equivalent charge led us immediately to the prob-
lem of secondary radiation emitted by accelerated photons, such as the photon
ondulator effects of the photon transition radiation. Other questions related to this
concept, but not considered here, are the possibility of photon bending in a static
magnetic field or the attraction between two parallel photon beams.

We can also explore the idea of photon acceleration as a particular example
of particle acceleration by a time-varying mean field. Such a mean field process
could operate not only with photons and the electromagnetic field, but also with
other particles and with other fields. We saw in this chapter that the ideas of
photon acceleration in an optical medium can be extrapolated to the case of
photons interacting in a vacuum with a gravitational field, or to neutrinos moving
in a dense plasma.

These different mean field processes involve the electromagnetic, the weak
and the gravitational interactions. Similar processes can also be found for the
strong interaction. In particular, the possibility of particle acceleration by the
non-stationary nuclear matter produced by relativistic heavy ion collisions [20] is
presently being explored [96].



Appendix

Derivation of the Wigner–Moyal equation

A.1 Non-dispersive media

We consider transverse electromagnetic fields (∇ · �E = 0), in a non-dispersive
medium, as described by

∇2 �E − 1

c2

∂2 �E
∂t2

= 1

c2

∂2

∂t2
(χ �E). (A.1)

Now, we use the notation �Ei ≡ �E(�ri , ti ) and χi ≡ χ(�ri , ti ), for i = 1, 2, and
we write (

∇2
1 − 1

c2

∂2

∂t2
1

)
�E1 = 1

c2

∂2

∂t2
1

χ1 �E1 (A.2)

(
∇2

2 − 1

c2

∂2

∂t2
2

)
�E2 = 1

c2

∂2

∂t2
2

χ2 �E2. (A.3)

Let us multiply the first of these equations by �E∗
2 and the complex conjugate

of the second one by �E1. Noticing that, in the absence of losses, the refractive
index is always real and for this reason we can write χi = χ∗

i , we obtain, after
subtracting the resulting two equations,[

(∇2
1 − ∇2

2 ) − 1

c2

(
∂2

∂t2
1

− ∂2

∂t2
2

)]
C12 = 1

c2

(
∂2

∂t2
1

χ1 − ∂2

∂t2
2

χ2

)
C12 (A.4)

with
C12 = �E1 · �E∗

2 . (A.5)

For convenience, let us introduce new space and time variables, such that

�r = 1

2
(�r1 + �r2), �s = �r1 − �r2 (A.6)

195



196 Derivation of the Wigner–Moyal equation

and

t = 1

2
(t1 + t2), τ = t1 − t2. (A.7)

In an equivalent manner, we could have stated that

�r1 = �r + �s
2
, �r2 = �r − �s

2
(A.8)

and
t1 = t + τ

2
, t2 = t − τ

2
. (A.9)

Using these variable transformations, we can easily realize that(
∂2

∂t2
1

χ1 − ∂2

∂t2
2

χ2

)
=

(
1

4

∂2

∂t2
+ ∂2

∂τ 2

)
(χ1 − χ2) + ∂2

∂t∂τ
(χ1 + χ2). (A.10)

This expression can be simplified by noting that τ is a fast timescale and t
is a slow timescale, as will become more obvious in the following. Furthermore,
we can assume that the susceptibility χ is a slowly varying function and that its
dependence on the fast time variable τ is negligible. Using (χ1 + χ2) � 2χ , we
can then write this equation as

2

(
∇ · ∇s − ε

c2

∂2

∂t∂τ

)
C12 � 1

c2
(χ1 − χ2)

∂2

∂τ 2
C12 + 2

∂χ

∂t

∂

∂τ
C12. (A.11)

We know that, by making a Taylor expansion of a function of time f (t + τ)

around f (t), we can obtain

f (t + τ) = f (t) +
∞∑

m=1

1

m!τ
m ∂m

∂tm
f (t) � f (t) + τ

∂ f (t)

∂t
+ · · · . (A.12)

Introducing an exponential operator, this can be written in a more elegant
and more compact form as

f (t + τ) = exp

(
τ

∂

∂t

)
f (t). (A.13)

A power series development of this exponential operator clearly shows that
this is equivalent to equation (A.12). Similarly, a function of the coordinates
f (�r + �s) can be expanded around f (�r) as

f (�r + �s) = exp(�s · ∇) f (�r). (A.14)

This means that, by performing a double (space and time) Taylor expansion
of the susceptibilites χ1 and χ2 around �r and t , we obtain

χ1 = χ(�r + �s/2, t + τ/2) = exp

( �s
2

· ∇ + τ

2

∂

∂t

)
χ(�r , t) (A.15)
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and

χ2 = χ(�r − �s/2, t − τ/2) = exp

(
−�s

2
· ∇ − τ

2

∂

∂t

)
χ(�r , t). (A.16)

This means that the difference between the two values of the susceptibility
of the medium can be written as

(χ1 − χ2) = 2 sinh

( �s
2

· ∇ + τ

2

∂

∂t

)
χ

= 2
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l=0

1

(2l + 1)!
[( �s

2
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)
+
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∂
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χ. (A.17)

At this point it is useful to introduce the double Fourier transformation of
C12:

C12 ≡ C(�r , �s, t, τ ) =
∫

d�k
(2π)3

∫
dω

2π
F(�r , t; ω, �k) ei�k·�s−iωτ . (A.18)

The corresponding inverse transformation is related to the electric field as
follows:

F(�r , t; ω, �k) =
∫

d�s
∫

dτC(�r , �s, t, τ ) e−i�k·�s+iωτ

=
∫
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2
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· �E∗

(
�r − �s

2
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e−i�k·�s+iωτ . (A.19)

This quantity is the Wigner function for the electric field. Using this defini-
tion in equation (A.11), we obtain(

∂

∂t
+ c2�k

ωε
· ∇

)
F + ∂ ln ε

∂t
F = i

ω

2ε
(χ1 − χ2)F. (A.20)

Using equation (A.17), we can write on the right-hand side of this equation

(χ1 − χ2)F = 2
∞∑

l=0

F

(2l + 1)!
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2
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But, from the definition of F , we can also write

∂m

∂ �km
= (−i�s)m F,

∂m

∂ωm
= (iτ)m F. (A.22)

This means that we can rewrite equation (A.21) as
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Using this result in equation (A.20) we finally obtain

(
ε

∂

∂t
+ c2�k

ω
· ∇

)
F +

(
∂ε

∂t

)
F = −ω(ε sin �F) (A.24)

with

� = 1

2

← [
∂

∂�r · ∂

∂ �k − ∂

∂t

∂

∂ω

]→
. (A.25)

For a linear wave spectrum, we have

F ≡ F(�r , t; ω, �k) = Fk(�r , t)δ(ω − ωk). (A.26)

Using this in the definition of C12, we get

C12 ≡ C(�r , �s, t, τ ) = e−iωkτ

∫
Fk(�r , t) ei�k·�s d�k

(2π)3

= e−iωkτ C(�r , �s, t, τ = 0). (A.27)

According to equation (A.19), this means that we can define Fk(�r , t) as the
space Wigner function for the electric field:

Fk(�r , t) =
∫

C(�r , �s, t, τ = 0) e−i�k·�s d�s

=
∫

�E(�r + �s/2, t) · �E∗(�r − �s/2, t) e−i�k·�s d�s. (A.28)

A.2 Dispersive media

In a dispersive medium, we have

(
∇2 − 1

c2

∂2

∂t2

)
�E = µ0

∂2

∂t2
�P (A.29)

with �P = ε0 �E − �D.
Returning to the procedure followed in appendix A.1, we can see that equa-

tions (A.2, A.3) have to be replaced by

(
∇2
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c2

∂2

∂t2
i

)
�Ei = µ0

∂2

∂t2
i

�Pi (A.30)

for i = 1, 2.
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Again, we can derive from here an evolution equation for the quantity C12 =
�E1 · �E∗

2 . The result is[
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Let us now introduce the space and time variables defined by equa-
tions (A.6, A.7). This equation becomes

2
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Here we can introduce the Fourier transformation

�Ei ≡ �E(�ri , ti ) =
∫

dωi

2π

∫
d�ki

(2π)3
�E(ωi , �ki ) ei�ki ·�ri −iωi ti . (A.33)

A similar transformation for the polarization vector is defined by

�Pi ≡ �P(�ri , ti ) =
∫

dωi

2π

∫
d�ki

(2π)3
�P(�ri , ti ; ωi , �ki ) ei�ki ·�ri −iωi ti (A.34)

such that
�P(�ri , ti ; ωi , �ki ) = ε0χ(�ri , ti ; ωi , �ki ) �E(ωi , �ki ). (A.35)

The susceptibility of the medium χ(�r , t; ω, �k), appearing in this expression,
is assumed to be a slowly varying function of space and time. We can rewrite
the quantity C12 in terms of the Fourier components of the electric field. But
because this would lead to quite cumbersome expressions, we prefer to introduce
new frequency and wavevector variables, such that

�q = �k1 + �k2, �k = 1

2
(�k1 − �k2) (A.36)

and

� = ω1 + ω2, ω = 1

2
(ω1 − ω2). (A.37)

Equivalently, we could have stated that

�k1 = �q
2

+ �k, �k2 = �q
2

− �k (A.38)
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and

ω1 = �

2
+ ω, ω2 = �

2
− ω. (A.39)

As in the case of the space and time variable transformations (A.6–A.9),
the Jacobian of the new transformations is equal to one: dω1 dω2 = d� dω and
d�k1 d�k2 = d�q d�k. In terms of these new variables, the quantity C12 becomes for-
mally identical to equation (A.18), as it should be, with the quantity F(�r , t; ω, �k)

defined now as
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∫
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with

J (�q, �k, �, ω) = �E(ω + �/2, �k + �q/2) · �E(−ω + �/2, −�k + �q/2). (A.41)

Returning to equation (A.32) and retaining on its right-hand side only the
dominant term, the one proportional to ∂2/∂τ 2, we can write
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where, in order to simplify the expression, we have introduced the quantities
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Here, we should notice that |ω| � |�| because ω is associated with the fast
timescale τ , whereas the frequency � is associated with the slow timescale t . In
the same way, we can assume that |�k| � |�q|. Developing these quantities around
the values (ω, �k) and (�r , t), we obtain
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where we have considered that

η0 = ω2χ(�r , t; ω, �k). (A.45)

This means that, in equation (A.42), we can use
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But we also notice that the quantity η0 and its derivatives are independent
of � and �q . It means that, in equation (A.42), they can be taken out of the



Dispersive media 201

integrations in these variables. This allows us to make the following replacements,
in the same equation:∫

d�
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∫
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The result is
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We can now replace C12 ≡ C(�r , t, �s, τ ) by its Fourier integral, as defined by
equation (A.18), and we obtain
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But, it is also clear that we can write∫
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and ∫
�s ei(�k′−�k·�s) d�s = −(2π)3 iδ(�k′ − �k)

∂

∂ �k′ . (A.52)

This means that we can finally transform equation (A.51) into a closed dif-
ferential equation for the Wigner function F ≡ F(�r , t, ω, �k), which takes the
form

2ω

(
∂

∂t
+ c2�k

ω
· ∇

)
F = −

(
∂η0

∂ω

∂ F

∂t
− ∂η0

∂ �k · ∇F

)

+
(

∂ F

∂ω

∂η0

∂t
− ∂ F

∂ �k · ∇η0

)
. (A.53)
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After rearranging the terms in this equation, we can rewrite it in a more
suitable form: (

∂

∂t
+ �vg · ∇

)
F = − 2

2ω + ∂η0/∂ω
(η0�F) (A.54)

where � is defined by equation (A.25), and

�vg = 2c2�k − ω2∂ε/∂ �k
2ωε + ω2∂ε/∂ω

(A.55)

with ε = 1 + χ = 1 + η0/ω
2.
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Glossary

Dark source

This is the name of an experimental configuration where an ionization front radi-
ates high-frequency electromagnetic waves by moving across a region filled with
a static and spatially periodic electric field. This field can be produced by an array
of capacitors with alternate polarities. In the language of photon acceleration, this
radiation process can be seen as an acceleration of photons initially having zero
frequency.

Flash ionization

When an intense laser pulse is focused into a region filled with a neutral gas it
photoionizes the gas around the focal region and creates a plasma. This process
of nearly instantaneous plasma creation, with the corresponding frequency up-
shift of the laser frequency, is usually referred to as flash ionization. It should
be contrasted with the ionization front case, where the boundaries of the plasma
region can move with relativistic velocities. In some sense, flash ionization is a
limiting case of an ionization front where the velocity of the front tends to infinity,
because the whole plasma is created in the focal region simultaneously.

Frequency up-shift

Frequency up-shift (or the equally possible, but usually less exciting, frequency
down-shift) is another name for photon acceleration. It comes naturally from
the full-wave description of wave propagation in non-stationary media, where the
concept of the photon is not explicitly considered. However, photon acceleration
is a more suggestive concept, if we use geometric optics or quantum theory, or if
we compare it with similar effects in other physical domains.

209
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Induced phase modulation

This is the frequency shift of a probe laser pulse which propagates in a nonlinear
optical medium in the presence of a second laser pulse. If the intensity of this
second pulse is non-negligible, it produces a time-dependent phase modulation
of the first pulse. If the two pulses have similar intensities they can mutually
modulate their phases, and both shift their frequencies, thus leading to cross-
phase modulation. These two processes of induced and cross-phase modulation
can be seen as particular examples of photon acceleration.

Ionization front

This is the boundary between two distinct regions of a gaseous medium. On one
side of the boundary the gas is neutral, and on the other side, the gas is ionized
(a plasma). If the plasma state is created by an intense laser pulse propagating
across a neutral gas, such a boundary can move with relativistic velocities, even if
the particles in these two media stay nearly at rest. The interest of the ionization
front is that it creates a moving discontinuity of the refractive index, leading to
the acceleration (or frequency shift) of photons which interact with this moving
boundary.

Landau damping

In a famous paper, Landau was able to prove that an electron plasma wave can
be damped in a collisionless plasma. This damping process is due to the resonant
interaction of the wave with the plasma electrons travelling with a velocity nearly
equal to the wave phase velocity. Of course, for electron plasma waves with
relativistic phase velocities (such as those associated with laser wakefields) the
electron Landau damping is negligible because the number of resonant electrons
tends to zero. However, in this case, the electron plasma waves can still be Landau
damped, not by the electrons, but by the resonant photons. This surprising result
is a consequence of the acceleration of those many photons resonantly interacting
with a relativistic plasma wave. Its existence reveals the possibility of energy
exchange between the non-stationary medium (in this case a plasma perturbed by
the electron plasma wave) and the photon gas.

Magnetic mode

When an incident electromagnetic wave interacts with a moving ionization front
it excites, not only the expected reflected and transmitted waves, but also a new
kind of wave which is (in the laboratory frame of reference) a purely magnetic
perturbation with zero frequency. This is called the magnetic mode. This mode
has not yet been observed in experiments, but the theoretical arguments clearly
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point to its existence. In the language of photon acceleration we could say that
the creation of a magnetic mode corresponds to a deceleration of the incident
high-frequency photons down to zero-frequency photons.

Photon

The word photon has two different meanings, depending on whether we are re-
ferring to classical or quantum theory. In classical theory, it refers to an elec-
tromagnetic wavepacket with a length and time duration much shorter than the
characteristic space and timescales of the medium. In the frame of geometric
optics, the photon trajectories are determined by the ray equations. In quantum
theory, it refers to the elementary excitation of the electromagnetic field, and can
be identified with a quantum of electromagnetic energy and momentum.

Photon acceleration

This is the total energy variation of a photon when it moves in a non-stationary
medium. The change in energy is equivalent to a shift in the photon frequency,
with a change in the (group) velocity, which justifies the name. It should be
noticed that the total energy of a photon can be divided in two parts: a kinetic
part, associated with its wavevector, and a rest-mass part, associated with the
polarization of the medium. In inhomogeneous but stationary media, the kinetic
energy of the photon is not conserved, even if its total energy stays constant. In
this case, we cannot talk about photon acceleration. Such an acceleration can only
occur in non-stationary media.

Photon effective mass

A photon always moves in a material medium with a velocity less than the velocity
of light in vacuum c. For that reason, we can say that the photon behaves like a
particle with an effective mass. If the medium is an isotropic plasma, the photon
mass is simply proportional to the electron plasma frequency. In general, it will be
determined by the susceptibility of the medium. We should notice that, when we
say a photon in a medium we are refering to a complex entity, which we can call
a dressed photon, in contrast with the bare photon which only exists in a vacuum.

Photon equivalent charge

The electrons in a plasma are pushed away from the regions of intense electromag-
netic energy (or regions containing a large photon density) by the ponderomotive
force or radiation pressure. Alternatively, we can say that the photons behave as if
they had a negative electric charge, thus pushing away the other negative charges
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(the electrons). This property can only be described with nonlinear equations, in
contrast with the photon effective mass, which is intrinsically linear. We use here
a different adjective (equivalent, instead of effective) in order to keep in mind the
different nature of the photon charge and mass, one being linear and the other
nonlinear. We can also derive a similar concept for a non-ionized medium. For
instance, we can associate an electric dipole with the photons moving along an
optical fibre. The main difference with respect to the plasma case is the non-
existence of free electrons in the fibre.

Self-blueshift

The process of ionization of a neutral gas by an incident laser pulse produces a
temporal change in the refractive index leading to an upshift, or a blueshift, of
the laser frequency. This is a particular case of photon acceleration where the
acceleration process is due to the incident photon beam itself.

Self-phase modulation

When an intense and short laser pulse propagates in a nonlinear optical medium
(for instance along an optical fibre) it produces a nonlinear modulation of its
own phase, thus leading to a significant frequency shift. The resulting spectral
width can be significantly larger than that of the initial laser pulse and the final
light pulses are sometimes referred to as supercontinuum radiation. Self-phase
modulation can also be seen as a photon acceleration process.

Time reflection

A sudden change in the refractive index of a dielectric medium leads to the
appearance of a wave with the same wavenumber as the pre-existing wave but
propagating in the opposite direction. Fresnel formulae for time reflection, similar
to the well-known Fresnel formulae for the usual (space) reflection, can be found.

Time refraction

A sudden change in the refractive index of a dielectric medium leads to a change
in the frequency of the photons moving in this medium, but maintaining their
wavevector. This is similar, but in some sense symmetric, to the case of the
usual (space) refraction, where the refractive index changes in space and not in
time, leading to the conservation of the photon frequency but a variation of the
wavevector. A very simple and general Snell’s law for time refraction can be
found.
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Wakefield

We call the laser wakefield, or more simply the wakefield, the fast electron plasma
wave created by a short and intense laser pulse propagating in a plasma. The phase
velocity of this electron plasma wave is nearly equal to the group velocity of the
laser pulse.
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plasma wave, 6, 43, 97, 108, 112,

126, 152, 164, 183, 193,
211, 210, 213

temperature, 43, 162, 186
thermal velocity, 43, 108, 162,

165
electron-impact ionization, 32
electrostatic waves, 43
energy,

cascade, 149
conservation law, 86–87
density, 69
eigenvalues, 167

envelope equation, 89
extraordinary mode, 64

Faraday equation, 98
Fermi,

acceleration, 6, 57, 152–156
constant, 178, 182
mapping, 61

field,
configuration, 9
operators, 7
phase, 127
quantization, 157–165
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fixed points, 45–47, 52
stability, 60, 61

flash ionization, 126, 143, 149, 209
flat space–time, 27
Fock states, 167–169
force acting on the photons, 109,

193
forced linear oscillator, 100
form function, 37
Fourier transformation, 119, 134,

180, 197, 199
four-vectors, 27, 28, 29, 49, 163,

184
frequency,

cut-off, 9, 25
local, 8

frequency shift, up-shift, 4, 39, 40,
58, 64, 146, 171, 172, 181,
190, 193, 209, 209

maximum value, 34, 47, 94
Fresnel formulae, 7, 123, 124, 212

generalized, 126–128
for time reflection, 126
quantum, 174, 175

front,
acceleration, 41
profiles, 33
velocity, 40
width, 33

full wave models, 5, 209

gamma rays, 189, 192
Gaussian,

distribution, 77, 78
pulse, 33, 83, 90, 94, 106

geometric optics, 5, 69, 71, 123,
178, 209

generating function, 16, 18, 39
glass, 63
gravitational,

field, 7, 29, 177, 183, 194
lens, 186, 192
redshift, 183–186, 192
shock, 189, 192

wavepackets, 186, 187, 193
group velocity, 8, 10, 13, 23, 25,

61, 74, 77, 81, 90, 105, 112,
113, 213

growth rates, 114

Hamiltonian, 6, 10, 11, 23, 33, 40,
47, 50, 52, 64, 92, 156, 185,
186, 187, 188, 191

covariant, 49
operator, 159, 160
theory, 183

harmonic generation, 100, 117, 122
Heaviside function, 12, 133, 147,

152, 166
heavy ion collisions, 194
helicity states, 179
Higgs boson, 165
hyperbolic tangent model, 12

ideal gas, 85
inhomogeneous medium, 11
instabilities,

decay, 115
dark source radiation, 139
photon beam-plasma, 113–115
wave, 112

intensity profile, 66
interactions,

elementary, 194
gravitational, 3
laser–plasma, 6
laser–matter, 1
neutrino–plasma, 7, 177
strong, 3, 194
weak, 3, 177, 178

interaction time, 42
intermittency, 57
invariants, 28, 46, 47, 39, 50, 178,

181, 185, 189, 190
ionization,

flash, 5, 36
front, 4, 31-39, 67, 82–84, 128,

133, 138, 146, 148, 141,
209, 210
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probabilities, 82, 83
single step, 33, 38

Jacobian, 60, 200
matrix, 61

kinetic equation, 67, 69, 74, 75, 83,
91

Klein–Gordon equation, 163, 179
Klimontovich equation, 67–69

Lagrangian, 6, 23, 25, 26
equation, 24

Landau damping, 210
electron, 43, 55, 109, 111, 112,

162, 193
of gravitational waves, 193
neutrino, 183
photon, 1, 6, 97, 108, 111, 112,

114, 193
Laplace transformation, 110
large-scale stochasticity, 53, 61
laser beating, 44
laser pulse,

CO2, 5
intense, 1, 31, 43, 65, 67, 112,

140, 210, 212, 213
short, ultra-short, 1, 65, 74, 76,

78, 87, 101, 103, 137
ultraviolet, 5

linear map, 61
line broadening, 155
L-map, 57
L-mode, 64
local wavevector, 8
Lorentz,

force, 98
transformation, 17, 127, 128, 130,

132, 175
lossless medium, 9
lower hybrid frequency, 64
Lymann α line, 63

magnetic,
clouds, 57

mode, 7, 126, 129, 130, 141, 151,
210

magnetoplasmas, 11, 63
massive vector field, 163, 165
Maxwell’s equations, 69, 70, 71, 74,

83, 88, 115, 124, 125, 129
matrix transformation, 61
Mathieu equation, 139, 153
mean field acceleration, 3, 193
mean force, 85
method of the variation of

parameters, 121
metric tensor, 184
microscopic density distribution, 68
microwave,

cavity, 4, 148
experiments, 36

Minkowski’s metric tensor, 27
mirrors, 57
mode coupling, 7, 123, 142, 144,

148, 152
momentum conservation law, 85
mono-energetic photon beam, 113
moving,

boundaries, 15, 31, 57
magnetic field perturbations, 63

neutrino, 7, 194
dispersion relation, 177, 178, 180
effective mass, 177
fluid equations, 183
kinetic equation, 183
reflection, 181

neutron star, 178
Newtonian equation, 23
nonlinear,

coefficient, 90
current, 99, 106, 107
dynamics, 54
optical medium, 88, 210
optics, 1
phase, 90
polarization, 116
wavepacket, 99
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nonlinear resonance, 52
width, 47, 51, 53

nonstationary medium, 11
normal incidence, 124
nuclear matter, 194
number of photons, 73, 132, 167

oblique propagation, 39
obstacle epistomologique, 3
occupation numbers, 167
operator,

creation and destruction, 160,
164, 166, 174

displacement vector, 166
electric field, 161, 166, 173
energy, 165, 172
number, 160, 167, 175

optical,
cavity, 5, 170
circuits, 74
experiments, 74
fibre, 6, 63, 87, 97, 115, 121, 193,

212
medium, 31, 67, 193, 194

ordinary mode, 64
overlapping criterion, 53

pancake-like wavepackets, 101, 102
paradigm, 3
partially ionized gas, 37
particle accelerators, 44
phase,

function, 9, 23
slippage, 41
velocity, 98

phase modulation, 193
crossed, 5, 88, 210
induced, 5, 31, 66, 88, 210
self, 5, 67, 87, 212

phase space,
two-dimensional, 33
six-dimensional, 68

photon,
acceleration, 211

action, 23
averaged quantities, 83
bending, 186
classical concept, 8
distribution, 108
effective mass, 1, 13, 97, 114,

187, 193, 211
effective temperature, 85
equivalent charge, 1, 2, 3, 97,

102, 103, 107, 114, 193, 211
equivalent dipole, 6, 97, 115–122,

194, 212
gas, 6, 67
mean density, 78, 83
mean energy, 86
mean velocity, 84
number density, 70
ondulator, 6, 105, 122, 194
pair creation, 7
plasma frequency, 114
position, 10
pressure, 85
proper frequency, 185, 188
proper time, 29, 49
quantum concept, 8, 166
trajectories, 5, 42
universal frequency, 188
velocity, 8, 23, 25

photon acceleration,
stochastic, 6

photoionization, 4, 32, 82
Planck’s constant, 24
Planck distribution, 108, 112
plasma physics, 1
plasma,

boundary, 105
instabilities, 97
isotropic, un-magnetized, 9, 24,

33, 75, 86, 97, 161, 211
kinetic theory, 109
magnetized, 11, 31, 63
temperature, 112
wave, 6

plasmons, 63, 165
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Poincaré map, 52
Poisson bracket, 69
Poisson’s equation, 48, 108
polarization states, 64, 69, 84, 160–

161, 166
ponderomotive force, 2, 97, 103,

108, 115, 194, 211
pulse,

distortion, 78
invariant shape, 90
steepening, 95

quantum,
numbers, 140
optics, 70
oscillator, 160
theory of collisions, 140

quasi-linear diffusion coefficient,
112

quasi-static approximation, 101

R-mode, 64
radiation,

mechanisms, 97
microwave, 4
monochromatic, 6, 51, 54, 62, 87,

88
pressure, 2, 97, 115, 183, 194,

211
supercontinuum, 5, 212

radio galaxies, 63
ray equations, 5, 72, 82, 178, 185,

211
recombination, 32
rectangular pulse, 118, 121
reduced,

distribution function, 111
photon action, 23

reflection, 4, 33, 175, 193
partial, 7, 123, 148
total, 15, 21, 128, 132, 148

refraction, 1, 3, 12-13, 175, 193
refractive index, 9, 31, 64, 125, 193,

195

nonlinear, 4, 66, 91
relativistic,

electron plasma waves, 103
gamma factor, 24, 26, 27
invariants, 127, 128, 132
phase velocities, 43, 108, 112
space–time, 49

relativistic mirror, 4, 17, 21, 22, 34,
148, 181

co-propagating, 39
residual plasma frequency, 37
resonance

asymmetry, 46
condition, 148, 153, 155, 190

resonant,
electrons, 44, 112
transition, 65

saturation amplitude, 148, 150
scattering,

Brillouin, 2
Compton, 3, 4
Raman, 2, 115
Rayleigh, 3

Schwarzschild metric, 191
secondary,

field, 116, 118
photons, 107

self blueshift, 82, 87, 212
self-coupling coefficient, 143, 146,

153
self-frequency shift, 32, 67
separatrix, 36–37, 46, 47

destruction, 53
shocks, 31, 57
simple pendulum, 45
sine differential operator, 71, 74
slingshots, 3
Snell’s law, 12, 14, 15, 212

generalized, 6, 17–19, 21
soliton propagation, 118
sound wave, 137
space–time refraction, 15–17
special relativity, 27



Index 221

spectroscopy, 51
spectral,

asymmetry, 95
broadening, 65
undulations, 83
width, 79, 87

spin one, 165
squeezed states, 172
standard map, 61
stars, 185, 186, 187, 191
static,

electric field, 133, 135, 136
magnetic field, 63

Stark effect, 65
stationary medium, 11
stochastic,

acceleration, 6, 51
trajectories, 156

Stokes sideband, 95
stroboscopic plot, 52
sub-cycle pulses, 137
successive reflections, 40, 43
super-Hamiltomian, 29
supernova explosion, 177
supraluminous boundaries, 19, 20
susceptibility, 9, 26, 70, 118, 196,

199, 211
electron, 111, 112, 113, 114
linear, 88
nonlinear, 66
photon, 111, 112, 113, 114
second-order, 116
third-order, 90, 117

theory of field ionization, 83
threshold criterion, 62
time,

boundary, 169, 175
continuity conditions, 125
discontinuity, 125, 165–172
reflection, 1, 13–15, 19, 123,

125–126, 167, 171, 175,
193, 212

refraction, 1, 13–15, 123, 193,
212

time-dependent medium, 11
timescales, 10
topological transition, 61
transition probabilities, 65
transition radiation, 3, 105, 194

nonlinear, 107
transform limited pulse, 77, 87
transverse electromagnetic waves,

9, 24
trapping, 6
tunnelling ionization, 82
turning point, 34, 42
two wakefields, 52
types of trajectories, 34–38

upper-hybrid frequency, 64
uncertainty,

principle, 87
relations, 77

underdense fronts, 41
unlimited frequency shift, 17
unstable solutions, 153

vacuum, 9, 180, 184, 188, 194, 211
magnetic permeability, 184
permittivity, 9, 161, 178
photon creation, 126, 157, 170,

175, 176
symmetric, 168, 169
states, 167, 168

variational principle, 23, 28
covariant formulation, 29

virtual photons, 135
visible light, 65

wakefield, 31, 43, 102, 109, 112,
152, 210, 213

wavevector, 45
wave absorption, 64
wave equation, 70, 74, 88, 98, 103,

106, 115, 134, 137, 179
wavefunction, 179
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waveguide, 4, 9, 25
wavenumber, 9

averaged, 78
wavepacket, 8, 54, 184

centroid, 10
envelope, 100
internal structure, 67

wave-particle dualism, 8
white light, 6, 51, 62, 87, 88
Wigner function, 67, 70–73, 197,

198, 201

quantum, 70
reduced, 71

Wigner-Moyal equation, 71, 72, 74,
75, 195–202

WKB solutions, 143, 144, 181
wronskian, 121

zero,
energy, 7
frequency photons, 209, 211
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